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Abstract—We have developed a model for a spheroidal, ring-shaped galaxy. The stars move in aring with an
elliptical cross section at the 1 : 1 frequency resonance. The shape of the cross section of the equilibrium ring
depends on the oblateness of the galaxy itself, so that the ellipse of the ring cross section is radially extended
when the oblateness of the galaxy is small. If the oblateness of galaxy exceeds some critical value, the ellipse
cross section is extended along the Ox; axis. The shape of the ring cross section is circular for a galaxy with
critical eccentricity. The stability of the ring over awide range of perturbationsis studied. A fundamental bicu-
bic dispersion eguation for the frequencies of small oscillations of a perturbed ring is derived. Application of
the model to thering galaxy NGC 7020 showsthat its ring cross section should be approximately circular. Anal-
ysis of the dispersion equation demonstrates that stellar orbitsin the arm are unstable (but the instability incre-
ment is small). We conclude that stars in the ring of this galaxy should drift from the 1 : 1 resonance, and the
ring itself should evolve. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The rings (or partia ring structures) existing in
many galaxies have long attracted the attention of theo-
rists. The abundance of such stellar systems was empha-
sized, for example, in [1], which notes about 200 flat gal-
axies with ring structures. The most prominent example
of agalaxy possessing adistinct nucleus—ing combina-
tion (outwardly smilar to Saturn and its rings) is
NGC 7702. According to [2], this galaxy has not one
but two well-separated rings. The well-known exam-
ples [3-5] indicate that ring and spiral-arm structures
have similar compositions and stellar dynamics. Inves-
tigations of such structures are necessary if we wish to
elucidate the important role of secular evolution pro-
cessesin spiral and SO galaxies.

The existence of ring galaxies is a serious theoreti-
cal problem. A quite simplestellar dynamical model for
agalactic ring was devel oped and its stability studiedin
[6]. That paper was primarily concerned with general
collective effectsin the dynamics of prolate structures,
whereas the dynamics of individual stars within such
structures were not studied. However, the existence of
prolate structures and circular rings is possible only if
there are certain definite rel ations between the parame-
tersof stellar orbitsand the corresponding first integrals
of motion. Precisely the character of individual orbitsis
the decisive factor determining the particular form of
the components of the velocity dispersion tensor, and
pressure anisotropy in the “stellar gas,” which is char-
acterized by these components, will considerably affect
the stability of ringsin galaxies.

Therefore, when considering the orbits of individual
starsin the arms, we should first and foremost examine
possible resonances. Thisis especially important since
the evolution of dynamical systems often leads to the

appearance of various commensurability ratios. Recall
that our solar system is literally saturated with reso-
nances between the frequencies of the spin-orbital
motions of planets and satellites[7].

Galaxies are the oldest stellar systems and have
undergone long periods of evolution. Therefore, we can
assume that resonances could be formed in galaxies in
much the same way as in the solar system. Taking such
resonances into account when devel oping galactic mod-
els can radically change the dynamical properties of the
models.? Therefore, when constructing models for ring
galaxies, we should first and foremost investigate the
dynamical consegquences of resonances between the
frequencies of small oscillations of stars in a plane of
the ring cross section.

The present paper is concerned with a stellar
dynamical model for aring galaxy withalocal 1: 1res-
onance of the frequencies of stellar motionsin acircu-
lar arm with an elliptical cross section. The equilibrium
model itself isdeveloped in Sections 2-5, and its stabil -
ity is studied in Sections 6-10. We apply this model to
the ring galaxy NGC 7020, whose structure was studied
indetail in[9].

2. EQUATIONS OF STELLAR MOTION
IN AN ELLIPTICAL ARM

Let us consider an axially symmetric galaxy pos-
sessing auniform circular arm with density p and ellip-

1 see, for example, [8], which describes a self-consistent phase
model for a spheroidal galaxy with an additional resonant integral
of the stellar motion. Torus-shaped vortex mations of the cen-
troids arise in this model, in agreement with both observations
and numerical experiments in the framework of the N-body
problem.
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tical cross section. The arm is characterized by a cross
section with semi-axes a, and a;:
2

TRy

a;
(where& = R-R,), andisfilled with stellar orbits. Since
the cross section and curvature of the generatrices of
the arm are small, we can take itsinner potential at the
point (€, X;) in the form

a, > a,, (1)

¢, = const—a,&” — 0,3, 2)

which istypical for a uniform two-dimensional €llipti-
cal cylinder with straight generatrices. The constant
coefficientsin expression (2) are equal to

_ a | _
o, = ZnGpal+ ;O3 = 2nGp 3)

a; a + 3-3
A star inthe arm is also affected by the gravitational
field of the galaxy itself. Let usexpand the galacticfield
potentia in aTaylor seriesin powers of & and x; in the
neighborhood of the arm. Then, with accuracy up to
quadratic terms, we obtain

0, = const— QIR,E — AL — Agxa. %)
Here,
20m) = 1990
QiR) = ~(RIRTh- )

isthe square of the angular velocity in areference orbit
with radius R, from the galaxy center and the coeffi-
cients of the potential are equal to

®°¢,0 B°¢,0
A = —1B—¢§D , A= —lmﬁgm . (6)
2R’ k- R 200%; [k = g,
X3 =0 X3 =0

The total potential inside the arm is the sum of the
contributions:

0= dp+o,
= const — QZ2RyE — (a; + A)E” — (a3 + Ag)X;.

Theinitial equations for the motion of a star inside
the arm in cylindrical coordinates (R, 6, x;) are well-
known:

)

a¢+R6

SR = 22, ®)
@

X3 = .
370X,

When solving this system of equations, we first note
the quadratic dependence (7) of ¢ on x;. As a result,
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motion along the corresponding axisisdescribed by the
equation of a one-dimensional harmonic oscillator

X3 = —2(03+ Ag)Xs, )
and obviously does not depend on motions along the R
and O directions.

Let ussimplify the problem and assume that the dis-
tribution of mass in the galaxy and ring possesses cir-
cular symmetry; i.e.,

¢ _
00

Next, let us consider a coordinate system rotating
with angular velocity Q.

(10)

a(t) = B(t) + Q.t.
Then, the first two equations of (8) take the form

(1)

_0¢ A 2
= 6R+ R(6+Q,) , )

d, 2% _ :
dt(R 0) = 2RQ.R.

Consequently, we obtainin alinear approximation with

respect to & and )

£ = (Q2-20,-2A)E + 2R,Q,0 (13)

and

R = —20..

By substituting n = Roé into the last two equations

and using (9), the complete system of equations for the
stellar motion can be reduced to the form

(14)

E = (Q2-2a,-2A))E +2Q.1,
= —2Q.,
5(.3 = —2((]3 + A3)X3.

(15)

After thefirst integration (to within aconstant, whichis
not important in our consideration), the middle equa
tion of system (15) gives

n =-2Q..
Substituting (16) into the right-hand side of the first

equation of (15), we finally obtain the equations of a
two-dimensional harmonic oscillator,

£ = —wiE,

.. 2
X3 = —W3X3,

(16)

(17)
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where we have introduced the parameters

W = 3Q2+2(ay + Ay), s
w; = 2(05+ Ay).

In particular, when thearm isabsent (i.e., a, = a5 = 0),
thefirst relation of (18) can be written in the equivalent
form

309, 0°%,
ROR OR? <0, (19
leading to the well-known criterion for the stability of
circular orbits (see, for example, [10]).

3. STELLAR MOTIONS
AT THE FREQUENCY RESONANCE

The solution of system (17) can be written in the
form

& = C,cos(wgt +k,),

: (20)
Xz = Czsin(wst +kj).

Next, we require that the stellar orbits be closed in
the meridional plane of the arm; i.e., that they be repre-
sented by Lissgjousfigures. Inthis case, theratio of the
oscillation frequencies must be arational number:

W _m

%, N (21)

In addition, the condition of conservation of the
elipse boundary (1) must be satisfied for al stellar
orbits. We shall consider here the simplest case of equal
frequencies(i.e., the 1: 1 resonance) and initial phases:

K, = Ks. (22)
Then, the motion of a star is described by the formulas
&(t) = C,cos(w,t+k;),

W; = W,

. (23)
X5(t) = Cssin(w,t +k;)
and under the condition
C,_a

the stars move along €llipses similar to the boundary
elipse (1). Such an arm, resembling a swiss roll, con-
sistsof concentric tori with homothetic lliptical cross sec-
tions. Consequently, the condition that the boundary (1)
be conserved is satisfied.

Note that equality (22) impliesthe relation
W= 307+ 2(A,~A;) = 4nGp1%;((

between the ratio of the semi-axes of the arm cross sec-
tion X = as/a, and the parameters of the galaxy itself.

(25)
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4. SLOW EVOLUTION OF A RING GALAXY

In the case of slow evolution, the adiabatic invari-
ants must be conserved. In accordance with (17), we
have a harmonic oscillator with respect to & and x;.
Consequently, as is well known [11], the products of
the squares of the amplitudes and the frequency are
conserved:

a2J3Q%+2(a, + A;) = a5 /2(a5+ Ay).

In addition, the mass per unit length of the arm should
be conserved:

(26)

pa;a, = const. 27)

The system of equations (25), (26), and (27) deter-
mines variations in the arm parameters during the sec-
ular evolution of the stellar system.

5. MODEL CALCULATIONS

As a simple equilibrium model of a galaxy, let us
consider anonuniform stratified spheroid with similar lay-
ersand the redlistic normalized dendity distribution [12]

o(m?) = — [31m2]3’2' (28)

where

2 2
X
m’ = %+~—2

a; 83

and 0<sm<1,

a, and a, are the semi-axes of the spheroidal galaxy

itself, and 3 is a constant that can be derived from pho-
tometric data.

It follows from (25) that
W

1 ———
_ __41Go(R) 29)

1+____qi___

AnGp(Ry)

where
1

= — 30
P(Ro) T (30)

As aresult (for details, see the Appendix), the expres-
sion for W from (25) will be equal to

4G
e’ + PR

0 | 1-¢* [(F-F) 2-&+pRiD
x [P 2 2 2 +E |- 2 32 J
ONe +BR) BRg (1+BRy) U

W(e) =
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Dependence of the semi-axisratio X = as/a; of the elliptical
cross section of an equilibrium ring at the 1 : 1 frequency
resonance on the eccentricity of themeridional crosssection
e of aspheroidal galaxy with density distribution (28). The
calculations were conducted for NGC 7020. We found, in
accordance with the photometric data [9], that B = 100,
RO/él = 0.6, and e = 0.89. The ellipse of the arm cross sec-

tionturnsinto acircleat e, = 0.88.

Here, e= |1- %3%2 isthe eccentricity of ameridional
1

cross section of the galaxy (and all its layers of equal
density), R, isnormalized to a,, and F and E are éllip-
tical integrals of the first and second kinds.

Formulas (31) and (29) specify theratio of the semi-
axes X = ag/a; of the arm as afunction of the eccentric-

ity e of the galactic layers [ via the parameters Ry/a,
(the central radius of the arm) and 3. The calculations
showed that the dependence of X on 3 and R/a, isquite

weak over awide range of their values. Therefore, it is
possible that the results of our calculations, with rea
sonable accuracy, are characteristic for many ring gal-
axies. Of course, the condition of azimuthal symmetry
in these objects must be satisfied. Thisistrue, for exam-
ple, for the ring galaxy NGC 7020. The corresponding
plot of x(e) is shown in the figure.

There is an interesting characteristic feature: The
cross sections of the resonant rings in weakly oblate
galaxies are radially extended, while the cross sections
of the arms in galaxies whose oblateness exceeds the
critical value e, are extended along the Ox; axis. The
value of e, isdetermined by equation (29) for x = 1. For
NGC 7020, we obtained e, = 0.88, which is very close
to the mean eccentricity e = 0.89 of the isophotesin the
galaxy itself. Consequently, in the resonance model
under consideration, the ring of NGC 7020 has an
approximately circular cross section.
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6. SMALL PERTURBATIONS OF THE ARM

Let the dliptical cross section of thearm (1) at each
time be deformed into a slightly different ellipse by the
linear transformation

3% = a + bxa,

(32)
OX5 = C& +dxs,

where the functions of time a(t), b(t), c(t), and d(t)
[whose specific formisgiven by (45)] are small enough
that we can neglect their sguares in the subsequent
analysis. The symmetric part of transformations (32)

0, = af, 0;Xz = dX3 (33)

obviously leads to changes in the semi-axes a, —
a,(1 + a) and a; — a;(1 + d) and, consequently, in the
density p.

We can eadsily find the new coefficients of the inner
potential of the elliptical arm. It is obvious that

a aa, +da
3 [1_a_ 1 3};
a;ta, a;ta,

a, = 2nGp

i.e., theincrement in the first coefficient is

a aa, +da
3 %i+ 1 3]

o0, = —2nGpal+a3 a,+a; 0

In the same way, we find

y aa; +dagp

= = +

00 2nGpa1+a3Ej a,+a, 0

On the other hand, the antisymmetric part of trans-
formations (32)

0,X3 = bXg, O,%X;3 = € (34)

leads to rotation of the arm through asmall angle 6 and
atrivial shift of the particles along the elliptical cross
section of the orbits. Indeed,

8,x; = C& = BE —gasf,
273 32 (35)
622 = bX3 = - 9X3 + 8&1X3,

where 0 isjust the small angle of the arm rotation:

2 2
a;c+asb
0= ——.
al_a3

7. PERTURBATION OF THE POTENTIAL

The potential of the unperturbed eliptical arm is
given above by formula (2). A shift along the elipse
obvioudly does not affect the arm potential. Therefore,
we obtain

$ = const—a; (& +0x;)° — (% —B0E)%.  (36)
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Theincrement in the potential dueto the antisymmetric
part of transformations (35) isequal to

2 2
a;c+asb

5,0 = ATiGp =€ Xs. (37)

(2, +a,)

Then, the total increment of the potentia at the inner
point (€, x;) is given by the formula

r aa, +dag aa, + dag
%= 0(1%1 at+ag % Ej atag %(
(38)
2
a,C+
+4TtGp1C—a325x3.
(g +a,)

8. MOTION OF A PARTICLE
IN THE PERTURBED ARM

Let us now consider the motion of a particle. The
equations of its dynamicsin the unperturbed potential

L2

CD=¢—2—R2, R=Ry+&, (39)

(where ¢ is given by formula (7), and L is the integral
of angular momentum) will be

% _ 00 dx _ 00
a< 2= 92 40
a? 08’ g | 0xg 40
In the perturbed state,
§—~&+0, Xg—=Xg+0x5, ¢ — 0 +30,

in place of (40), we obtain the following set of inhomoge-
neous, ordinary differential equations for the unknown
quantities 8 and &xs:

d? acb °d e
ae EZE a8ax, > = g
(41)
d? R RO 0 <o
Xy — O — —— Xy = —
dt 026X3€ o 0% %,

where 3 is given by formula (38). For the reduced
potential

L2
2RO%L+ &

we obtain with the required accuracy the expression

®=¢- (42)

® = const—Q.R,E — (A, +a,)E&’

(43)
—(Ag+ a3)x3_50m Zéo + 3;)%
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Consequently, equations (42) reduce to the form
d? 2
d—t262+w16§
+asb
=—20(1%:1 aa1 da3% 4TGp alc a32 Yo,
+a
3) (44)

d2 2
d_t26X3 + (})16)(3

2 2
+ ajc+azb
= _2(]3% + aal—dag%(g + 4',-[Gpl—32
8 t+a; (a; +ay)
9. THE DISPERSION EQUATION

The unperturbed solutions &(t) and X,(t) from (23),
aswell as the time dependences for the coefficients

a= aoemot’ c = Coelwt
b = boelwt, d = doelcot

(where w is the frequency of small oscillations of the
perturbed arm), must be substituted into the right-hand
sides of equations (44). In addition,

8E = [ag& (1) + boxs(t)] €,

OXg = [Co&(t) + doxs(t)]elwt,
[where &(t) and x;(t) are also taken from (23)] must be
substituted for ¢ and dx; on the left-hand sides of the
above equations. After these substitutions into (44) and
calculation of the second derivatives of functions (46),

the system (44) can be reduced after extensive manipu-
lation to the equations

Q1 (@, b, do) cos(ot + ky)
+Qz(ag, bo, Co)sin(ot + k;) = 0,
Qs(by, Cor do) cOs(00,t + ki)
+Q4(ag, Co, d)Sin(wyt +k;) = 0.

(45)

(46)

47

Here,

0
Q aoCl|: 00 + 20 %I.+al+a3|:|i|

+ by Cs[ 2iww, ] +d,C [20(1a T a }
1 3

Q; = agCy[-2iwawy]

(a, + az)
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Solutions of the dispersion equation

€ X oof co§ oog
0.25 | 0.029431 | 5.341189 | 5.133680 | —0.176781
0.5 | 0.139000 | 5.442480 | 5.005362 | —0.140321
0.75 | 0.461141 | 5.439000 | 4.615930 | —0.078983
0.85 | 0.810901 | 5.224364 | 4.292386 | —0.060398
0.88 | 0.998620 | 5.091055 | 4.151278 | —0.060223
0.90 | 1.169900 | 4.970489 | 4.037862 | —0.063190
0.95 | 1.995270 | 4.467905 | 3.633548 | —0.093558

8.2
+ COC{—4T[Gp—1} (48)

2
(2, +a,)

Q, = byC, {—4nGpa—}
(a; + as)

2
+ cocl[—oo2 - 4T[GDL)2} +dyCs[ 2i w0, ],

1T a3

Qs = aocs[zaaa +aj

. a
+CoCy[—2i W, + d0C3[— W + 20(3%[ ta +3a£]

Since equations (47) must be satisfied at any instant
of timet, we impose the requirement

Q=Q;=Q;=Q,=0.

Equality (49) represents a system of four linear alge-
braic equations for the unknown quantities a,, b,, c,,
and d,,. Since the right-hand sides of these equationsare
equal to zero, they have nontrivial solutions only if the
determinant of this systemis equal to zero. This condi-
tion yields the basic dispersion equation of the problem:

(49)

W (W + K o'+ K,w’ +Ky) = 0 (50)
with the coefficients
Ki=y,+ Y3‘V1‘V4—800i;
K, = 1600‘11 - 40)f(V2 +Y3—Y1—Va)
+Y1Ya—Y2Ya— (Y1 +Ya) (Y2 +V3); (51)
Ko = 403i(V1V2 +Y3Ya—2Y,Ys)
+ (Y2 +Y3)(Y1Ya—VY2Ys)-

KONDRAT’EV

Here, we have introduced the notation

D (C53'V SV GRS S
(1+x)° (1+x)° (1+X)° 5,
Va = 2x+1
RSN

3D . In addition, w? and w; are normalized

and%(

to 41iGp:
2 _ W’ .
" 4nGp’
S (53)
W) = 1+A3—X+3Q°+A1_
1+x 4nGp 1+ 4nGp 4nGp

10. ANALY SIS OF THE DISPERSION EQUATION
Since o’ # 0, the dispersion equation (50) can be
reduced to the bicubic equation:

W’ + K w' + Ko+ Ky = 0. (54)

We calculated the coefficients of this equation for the
same parameters B and R/a, asin the figure. Solutions

of equation (54) for several values of e are presented in
thetable.

We can see that there are two positive and one neg-
ative square of the frequency at each value of e. This
implies the existence of imaginary frequencies and,
therefore, the instability of the stellar orbits in the arm
around the galaxy. We can also see that the absolute
value of the negative square of the frequency is small
everywhere. Consequently, the instability increment of
the stellar orbitsis also asmall quantity.

11. CONCLUSION

As can be seen in the figure, the most interesting
consequence of our assumption that the frequencies of
stellar oscillations in an equilibrium ring have a reso-
nant character is that the shape of the ring cross section
depends on the oblateness of the spheroidal galaxy
itself. In the framework of the model considered, rings
whose cross sections vary from flat to circular and fur-
ther to prolate in the direction perpendicular to the sym-
metry plane of the galaxy are possible from the dynam-
ical point of view. In particular, the ring in the galaxy
NGC 7020 should have an approximately circular arm
cross sectionin the case of the 1 : 1 resonance. We have
studied the stability of ringsin the general case of linear
affine perturbations. Our solution of the dispersion
equation for NGC 7020 shows that orbits in the ring
will be slightly unstable. We conclude that the stellar
orbitsin thering of this galaxy will drift fromthel1: 1
resonance, and the ring will slowly evolve asawhole.
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APPENDIX

Sincethering in NGC 7020 isaninner ring [2], we
shall use the formulasfor the inner potential of nonuni-
form dratified dlipsoids from monograph [12], ch. 2,
when caculating the quantities appearing in expression
(25) for W. In the case under consideration, the layers
with constant density are spheroids that are similar to
each other. This simplifies the calculations.

First, we must find the derivative

00
—f = _
R 2nGa a Rl

p[m” (U)]du
(al + u) A/ag +u

By substituting here the density distribution (28) in the
form

(A.1)

1

2
p[m(u)] = . (A2)
0 R2 Xg 032
1+BG—+ g
;+tu a3 +ul
we obtain for ch from formula (5)
2 _ ~2 h du
Q.= 2nGa1a3J' 75+ (A.3)
032 + u) 35+ u[l + 2
1
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Finaly, Qf can be expressed in terms of the incom-
plete elliptical integrals of the first and second kinds:

Q§4m IR0 -E@0. K], (Ad)
BR: B&
where

q):arccos/l_ezz, k=R, 2B -
1+BRG e +BRy

Next, the second derivative of the potentia in the
equatorial plane of the galaxy isequa to

02¢g
R

00

= Q2+ 6MGAA,PR,

=Ry
=0

(A.5)
du

-Lﬁ+s%+uﬁikﬁ+ux£+uf

After the substitution x = [3% + PR} + u]~"2 and aseries

of transformations, we obtain the following expression
for 2A, from formula (6):

2
2A, = Q7 —4nG |25
e +BR;
XE 1 1-¢ (A.6)
O(1+BRy)™ N e+ BRS '

(2+k)F(¢ K) —2(1+Kk*)E(9, k)D
BR: D

In the same way, after quite simple but cumbersome
caculations, we obtain

4G
€+B%

(A.7)
>< / [F(¢ k) —2E(9, k)]D
«/1+BR0

Substituting expressions (A .4), (A.6), and (A.7) into
(25), wefinally obtain the required formula (31).

2A, =

Trandlated by Yu. Dumin
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Abstract—Interplanetary scintillation observations of the radio sources 4C 31.04, 3C 67, 4C 34.07, 4C 34.09,
OE 131, 3C 93.1, OF 247, 3C 147, 3C 173, Ol 407, 4C 68.08, 3C186, 3C 190, 3C 191, 3C 213.1, 3C 216,
3C 237, 3C 241, 4C 14.41, 3C 258, and 3C 266 have been carried out at 102 MHz. Scintillations were detected
for nearly all the sources. The integrated flux densities and flux densities of the scintillating components are
estimated. Nine of the 21 sources have alow-frequency turnover in their spectra; three of the sources have high-
frequency turnovers. The physical parameters are estimated for sources with turnovers in the spectra of their
compact components. In most of the quasars, the relativistic-plasma energy exceeds the magnetic-field energy,
while the opposite is true of most of the radio galaxies. Empirical relations between the size of the compact
radio source and its magnetic field and relativistic-electron density are derived. © 2000 MAIK “ Nauka/Inter-

periodica” .

1. INTRODUCTION

Observations at 2.7 GHz [1, 2] have shown that
about 30% of strong radio sources have angular sizes
lessthan 2" and steep spectra. Thus, there exists a spe-
cial sample of compact radio sources with steep spectra
above 1 GHz. These sources have been actively studied
with high angular resolution and high sensitivity at cen-
timeter and decimeter wavel engths, while observations
at meter wavelengths are virtually absent. We decided to
conduct meter-wavelength interplanetary-scintillation
observations of these compact steep-spectrum (CSS)
radio sources in order to acquire a better understanding
of their nature. The basis for these observations was the
sample of 62 CSS sources published in [3].

We presented results for 12 sourcesin [4], our first
paper in this cycle. We took primarily strong sources
from the initial sample, for which there were abundant
high-frequency observations. This enabled us to con-
struct the spectra of compact (<0.1") features. The
spectra for the compact features of all 12 sources had
low-frequency turnovers. Assuming that these were the
result of synchrotron self-absorption, we obtained esti-
mates of the magnetic field, number density of relativ-
istic electrons, and energiesin the magnetic field and in
relativistic electrons. In most cases, equipartition of
energy between the magnetic field and relativistic par-
ticleswas violated.

The present paper is the second in this cycle. Our
main goal is to study the physical conditions in the
compact (<1") features of the CSS sources studied and
to search for differences in these physical conditions
for the quasars and radio galaxies in the sample.

2. OBSERVATIONS

Our 102-MHz interplanetary-scintillation observa-
tions were carried out in 1995-1997 on the Large
Phased Antenna (LPA) of the Lebedev Physical Insti-
tute. The effective area of the antenna in the zenith
directionis 3 x 10* m?. The receiver time constant is
T = 0.4 sand the receiver bandwidth is about 200 kHz.
The rms confusion for the LPA due to extended (non-
scintillating) sources is 1 Jy. Here, we present results
for 21 sources.

We calibrated the observations using radio sources
from the 3C catalog. As arule, data for no fewer than
five calibration sources were recorded in each observ-
ing session. All flux-density estimates were obtained
using the scale of Kellermann [5]. The observation
reduction method is described in [6, 7]. The method
used enables the detection of weak scintillating sources
whose scintillation dispersions are smaller than the
noise dispersion.

We present a detailed description of the results for
each source. As arule, the sources have complex struc-
tures, and our observations separate out the main com-
ponent (or components) contributing to the scintilla:
tions. Unless otherwise indicated, scintillations were
reliably detected. Unfortunately, we are not ableto pub-
lish all the spectra (they are accessible in [8]); there-
fore, the spectra were divided into groups with charac-
teristic behaviors.

4C 31.04

4C 31.04 is aradio galaxy with redshift z = 0.059.
Observations at 327 MHz with resolution 0.064" x
0.041" [9] showed that it has a double structure with
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separation 0.07" in the southeast—northwest direction.
Both components make roughly equal contributions to
the scintillationsat 102 MHz, sincetheir flux dengitiesdif-
fer by less than a factor of two and they are both equaly
compact (0.03" x 0.02" for the southeast component and
0.043" x 0.024" for the northwest component). 1.5-GHz
observations with resolution ~1" and ~7' [9, 10] show
an extended (~2") halo whose flux density is less than
6% of the total flux density.

We observed 4C 31.04 over four days at elongations
~26°. Strong scintillations were recorded. Taking into
account the angular size of the source and its elonga-
tion, we estimate the flux density of the scintillating
component to be S, = 2.6 Jy. We estimate the inte-
grated flux density to be S,; = 4.7 Jy. The integrated
spectrum of the source (Fig. 1) shows a clear flattening
toward lower frequencies; given the large errorsin the
flux density due to the effect of confusion, there may
even be aturnover intheintegrated spectrum. The spec-
trum of the compact radio emission also has a maxi-
mum near 200 MHz and a turnover at lower frequen-
cies. Note that, in connection with the small number of
observations with high angular resolution (~0.01"), the
inferred spectrum of the compact emission corresponds
to the sum of the flux densities of both compact compo-
nents. In this case, the turnover in the spectrum could
reflect aturnover in the spectrum of either one or both
components.

3C 67

This source is aradio galaxy with redshift z=0.31.
The radio source is double, with northern and southern
components separated by 2.4". The southern compo-
nent contributes about 60% of the total flux at 1.6 GHz
[3]. At 0.6 GHz, the northern component isonly half as
strong as the southern component and istwice as large.
This suggeststhat the contribution of the southern com-
ponent will dominate at 102 MHz. This component is
0.06" x 0.02" in size and is surrounded by a diffuse hao.
The flux density of the halo is about 80% of the flux
density of the southern component at 1.6 GHz [17].
0.6-GHz observations with resolution ~0.1" [18] yield
asizefor thehalo of 0.09" x 0.09". We adopted thissize
for the characteristic size of the source. The optical
object that has been identified with the radio source
coincides with the southern component, which is prob-
ably the radio core.

3C 67 was observed over five days at elongations
~30°. We estimate the flux density of the scintillating
component to be S, = 5.2 Jy, and the integrated flux
density to be S, = 14.6 Jy. The integrated spectrum of
3C 67 and the spectrum of its southern component do
not show alow-frequency turnover.

4C 34.07
Theredshift of 4C 34.07 isunknown, though optical
observations suggest that it is probably a quasar [3].
Observations at 1.66, 5, and 15 GHz with resolution
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Fig. 1. Integrated spectrum of 4C 31.04 (filled triangles)
based on pointsat 31.4 GHz (0.71 Jy) [11], 10.7 GHz (1.03 Jy)
[12], 4.85 GHz (1.57 Jy) [13], 2.7 GHz (1.93 Jy) [14],
1.4 GHz (2.68 Jy) [15], 0.408 GHz (3.6 Jy) [15], 0.178 GHz
(2.4 Jy) [16], and 0.102 GHz (4.7 Jy) [this paper]. Spectrum
for the compact (scintillating) component (hollow triangles)
based on points at 5 GHz (1.48 Jy) [10], 1.5 GHz (2.46 Jy)
[10], 0.327 GHz (3.3 Jy) [9], and 0.102 GHz (2.6 Jy) [this

paper].

~0.1" [19] show that it is a very compact source sur-
rounded by an extended halo. The halo contributes
about 2% of the integrated flux density at 5 GHz and
about 20% of the integrated flux density at 1.67 GHz.
Sincethehaoisrather large (~2" at 1.67 GHz[19]), we
do not expect it to make a significant contribution to
scintillations at 102 MHz. 1.67-GHz observations with
resolution ~0.01" [20] indicate that more than 50% of
thetotal flux density at thisfrequency isassociated with
a component 0.006” x 0.003" in size. We expect that
precisely this component will dominate the scintilla-
tionsat 102 MHz.

We observed 4C 34.07 over three days at elonga-
tions near 33°. There were large variations in the flux
density from day to day (AS=1.4—2.4). Thismay be due
to the small angular size of the scintillating radio source.
We estimate S, = 2.2 Jy. Theintegrated spectrum shows
some steepening at low frequencies (S, = 6 Jy). Thisover-
estimation of the integrated flux density is probably the
result of confusion. The spectrum of the scintillating radio
source has a maximum at 300-500 MHz and turnover at
lower frequencies (similar to the spectrumin Fig. 1).

4C 34.09

Thissourceisaradio galaxy with redshift z=0.020.
5-GHz observations with resolution 0.4" [3] show that
the source has two components separated by 1.1" inthe
southeast—northwest direction. 1.6-GHz observations
with resolution 0.08" [3] confirm that the source has two
main components surrounded by aweak hdo. Thehdois
large (~3") and extended in the southeast—northwest direc-
tion. Its contribution to the 102-MHz scintillation isinsg-
nificant. The southeast component contributes ~80% of
theintegrated flux dendity at 1.6 GHz, and we expect that
this same feature will dominate the 102-MHz scintilla:
tions. Itsangular sizeis0.15" x 0.075".

We observed 4C 34.09 over three days at elonga
tions ~40°. We estimate S;, = 3.8 Jy and S, = 11 Jy.
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Fig. 2. Integrated spectrum of OF 247 (filled triangl es) based
on points a 31.4 GHz (0.38 Jy) [11], 15 GHz (0.92 Jy) [25],
10.7 GHz (1.44 Jy) [15], 5 GHz (2.47 Jy) [15], 2.7 GHz
(3.18 Jy) [15], 1.41 GHz (3.89 Jy) [15], 0.960 GHz (4.2 Jy)
[15], 0.635 GHz (3.96 Jy) [15], 0.430 GHz (3.42 Jy) [15],
and 0.318 GHz (2.65 Jy) [15]. Spectrum for the compact
(scintillating) component (hollow triangles) based on points
at 15 GHz (1.06 Jy) [19], 5 GHz (2.34 Jy) [19], 1.6 GHz
(3.77 Jy) [19], and 0.102 GHz (1.1 Jy) [this paper].

The integrated spectrum clearly steepens at low fre-
guencies, probably due to confusion. The spectrum of
the scintillating component does not show a low-fre-
quency turnover.

OE 131

Not much information about OE 131 is available. Its
optica counterpart has been identified with a quasar with
redshift z=2.67. Observationsat 5 and 1.66 GHz [ 20, 21]
revealed several components with sizes ~0.001"; how-
ever, most (60%) of the flux density at thisfrequency is
from acompact region 0.0012" x 0.0002" in size. There
is no significant halo component of OE 131 at least to
1 GHz

We observed OE 131 over six days at elongations
23° and 32°. There were large jumps in the measured
flux-density fluctuations, AS=0.35-1.3 Jy. Thismay be
due to the small angular size of the compact radio emit-
ting region. We estimate S;,,= 0.8 Jy and S,; = 3.6 Jy.
The spectrum of the scintillating component has a max-
imum near 400 MHz and a turnover at lower frequen-
cies (similar to the spectrumin Fig. 1).

3C 931

Thissourceisaradio galaxy with redshift z=0.244.
Observations at 1.67 and 5 GHz with resolution ~0.1"
[19, 22, 23] show acompact component with character-
isticangular size0.3" x 0.2" and aweak extended halo,
whose contribution to the scintillations at 102 MHz will
be negligible. 1.67-GHz observations with resolution
~0.01" [20] indicate that ~70% of the emission at this
frequency comes from a compact region 0.19" x 0.19"
in size. Thisregion should also dominate the 102-MHz
scintillations.
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We observed 3C 93.1 over three days at €longations
~31°. We estimate S, =39 Jy and S,; = 11 Jy. The
radio spectrum isflat.

OF 247

Thissourceisaradio galaxy with redshift z=0.219.
It was unresolved in observations at 1.67, 5, and 15 GHz
with resolution ~0.1" [19], so that it is very compact.
1.67-GHz observations with resolution ~0.01" [24]
indicate that the structure of OF 247 is asymmetric and
that there is weak emission from a region to the north-
east. The characteristic angular size of the source indi-
cated by the radio contoursin [24] is0.02" x 0.01".

We observed OF 247 over three days at elongations
~35°. We estimate S, = 1.1 Jy; we were not able to
measure the integrated flux density. Figure 2 presents
the spectrum of OF 247. The general appearance of the
spectrum indicates that the rol e of the weak halo should
be completely negligible, even at the lowest frequen-
cies. The spectrum has apeak at 1 GHz and a turnover
at lower frequencies. Therefore, OF 247 is more aptly
classfied as a GHz-peaked-spectrum (GPS) source
rather than a CSS source.

3C 147

This is a quasar with redshift z = 0.545. Observa-
tions at 22.5, 15, 8.4, 5, and 1.6 GHz with resolution
~0.1" [19, 22, 26-29] show a weak, extended compo-
nent to the north and astronger, more compact structure
to the south, stretching 0.25" from northwest to south-
east. Observations with resolution ~0.02" [30-34] indi-
cate that the souther component has a core—jet structure
surrounded by a weak halo. The core, which is at the
southern end of the jet, is very compact (=0.005" X
0.002") and contributes mogt of the flux density from
compact emission at 1.67 GHz [34]. Superlumina expan-
sion has been observed in the core [35]. A comparison
of thecoreand jet at 1.67 GHz, 609 MHz, and 329 MHz
[32] showed that the shape and size of the jet are the
same at these three frequencies, but its relative contri-
bution to the total flux changes. At 1.67 GHz, the core
contributes most of the compact flux density, while the
flux densities from the core and the two knots dominat-
ing the jet emission are comparable at 329 MHz. Unfor-
tunately, many papers dealing with high-resolution
observations do not present estimates for the flux den-
sities of individual features, forcing usto estimate these
flux densities from the radio maps presented.

We observed 3C 147 over six days at elongations
~29°. Thisisthe strongest source in our sample, bothin
terms of itsintegrated flux density (S, = 84 Jy) and the
flux density of the scintillating component (S, =39 Jy,
for 8 =0.2"). Figure 3 presents an example of arecord-
ing for 3C 147. The scintillations are clearly visible,
even in the sidelobes of the antenna. There is an appre-
ciable turnover in the integrated spectrum, due to a
turnover in the spectrum of the compact features. How-
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Fig. 3. Analog recording of strong scintillations from 3C 147.

ever, we were not able to construct a trustworthy spec-
trum including our measurement. It appears that thisis
one of relatively few cases in which the components
dominating the scintillations are negligible at high fre-
quencies. Therefore, we used the spectrum presented in
[32] to estimate the physical conditionsin this source.

3C 173

Thissourceisaradio galaxy with redshift z=1.035.
1.67-GHz observations with resolution 0.1" [19] show
that it has a double structure with separation 2" in the
northeast—southwest direction. The northeast compo-
nent is an extended (~0.7") region of low surface
brightness and contributes ~10% of the total flux den-
sity at 5 GHz [23]. Thus, we expect the 102-MHz scin-
tillations to be dominated by the southwest component,
which has angular size 0.2" x 0.1".

We observed 3C 173 over three days at elongations
~30°. Weestimate S;, =4 Jy and S,; = 18 Jy. A modest
flattening can be seen in the spectrum of the compact
component (Fig. 4). However, there is an evident flat-
tening of the integrated spectrum at 38 MHz, suggest-
ing there is a turnover in the spectrum of the compact
component near 38 MHz.

Ol 407

Theredshift of thisradio sourceis unknown; optical
observations indicate that it is probably a quasar [3].
The source was essentialy unresolved in 5-GHz obser-
vationswith resolution ~0.1" [3]. VLBI observations at
1.6 GHz with resolution 0.007" [3] show that the
sourceisan east—west double with the components sep-
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arated by 0.052". Both components have roughly equal
angular sizes of 0.008" x 0.004" and should probably
make comparable contributions to 102-MHz scintilla-
tions. A comparison of the integrated flux densities at
1.4 GHz (resolution ~10", 1.57 Jy [39]) and 1.67 GHz
(resolution 0.007", 1.37 Jy [3]) indicate that ~90% of
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Fig. 4. Integrated spectrum of 3C 173 (filled triangles) based
on pointsat 4.85 GHz (0.4 Jy) [13], 1.4 GHz (1.666 Jy) [36],
0.408 GHz (5.01 Jy) [37], 0.178 GHz (9 Jy) [16], 0.102 GHz
(18 Jy) [this paper], and 0.038 GHz (17 Jy) [38]. Spectrum
for the compact (scintillating) component (hollow triangles)
based on pointsat 15 GHz (0.098 Jy) [29], 8.4 GHz (0.223 Jy)
[29], 5 GHz (0.373 Jy) [23], 1.6 GHz (1.14 Jy) [19], and
0.102 GHz (4 Jy) [this paper].
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Fig. 5. Integrated spectrum of Ol 407 (filled triangles) based
on points at 4.85 GHz (0.625 Jy) [13], 1.4 GHz (1.44 Jy)
[36], and 0.408 GHz (1.9 Jy) [37]. Spectrum for the compact
(scintillating) component (hollow triangles) based on points
at 5 GHz (0.61 Jy) [2], 1.67 GHz (1.37 Jy) [3], 1.4 GHz
(1.568 Jy) [39], and 0.102 GHz (0.25 Jy; upper limit) [this

paper].

the emission isfrom compact components, and the con-
tribution of halo emission is negligible.

We observed Ol 407 over five days at elongations
~31°. No scintillations were detected. The extended
component was also not detected. We estimate the
upper limit S, < 0.25 Jy. Figure 5 showsthe spectrum,
which has a maximum at 300-500 MHz and a rather
sharp turnover at lower frequencies (a = —1.5, where
S~v%.

4C 68.08

This is a quasar with redshift z= 1.139. 1.67-GHz
observations with resolution 0.08" [3] show that the
source has a triple structure oriented in the southeast—
northwest direction. The central component includes
several features, the brightest and most compact of
which is probably the core. Two extended (~0.6")
regions of emission are located 0.4" to the northwest
and southeast of the central component. The northwest
component contributes ~65% of thetotal flux density at
1.67 GHz, and we expect this component to dominate
in 102-MHz scintillations. Most of the energy flux from
thisregion is contributed by a component with angular
size(.17" x 0.10".

We observed 4C 68.08 over two days at elongation
47°. Due to the large elongation, it was necessary to
make large correctionsin order to estimate the flux den-
sity of the scintillating source. If AS = 0.6 Jy, then
Siin = 1.5 Jy. Weestimate S, = 3 Jy. Wewere unable to
construct an accurate spectrum using our measure-
ments. However, in our view, it isunlikely that thereis
a low-frequency turnover in the spectrum of the com-
pact emission.

3C 186

This source is a quasar with redshift z= 1.063. In
low-resolution images (~1"), it has two components

TYUL’BASHEV, CHERNIKOV

lying in the southeast—orthwest direction [29]. How-
ever, higher resolution observations show a more com-
plex structure [18, 28, 29, 40, 41]. The brightest com-
ponent at 15 GHz, which has been identified asthe core
[40], is absent from a 0.6-GHz image [18], suggesting
the presence of synchrotron self-absorption [28].
Observations with higher resolution reveal additional
components. Three components are visible in images
with resolution~0.1" (v =15 GHz) [40], while six com-
ponents can be distinguished in 1.6-GHz images with
resolution ~0.025" [41]. Considering all the available
radio observations, the radio source has an S-shaped
structure with the core at the center; the core flux den-
sity is negligible at frequencies below 1 GHz. There is
ajet consisting of a number of weak knots leading to a
radio lobe to the northwest. Thereisno jet visibleto the
southeast, though the southeast |obe has a compact hot
spot (~0.03"). All the observed components are com-
pact and should therefore scintillate at 102 MHz. How-
ever, the lowest frequency (v = 609 MHZz) observations
indicate that 2/3 of the energy in compact components
is emitted by the southeast |obe and its hot spot [19].
Thus, we expect the contribution of the southeast lobe
(0=0.2" x0.04") and its hot spot (8 = 0.05" x 0.015")
to dominate in 102-MHz scintillations.

We observed 3C 186 over four days at elongations
=37°. Averaging over the days of observations yielded
an estimate of the integrated flux density S, = 33 Jy,
while averaging of the observations of flux-density
fluctuations with allowance for the angular size and
elongation of 3C 186 yielded an estimate of the flux
density for the scintillating radio source Sy, = 7.7 Jy.
The spectrum of the southeast lobe and hot spot
remains steep to 102 MHz. At the same time, the spec-
trum of the northwest lobe and jet has a maximum near
1.5 GHz and aturnover at lower frequencies (Fig. 6).

3C 190

This is a quasar with redshift z = 1.197. Observa-
tions at 15, 5, and 1.6 GHz with angular resolution
~0.2" [22, 28, 41] show four components extending
roughly 3" in the southwest—northeast direction. There
is also aweak, diffuse halo surrounding this structure.
609-MHz observations with comparable resolution
[18] only detect three of the components visible at
higher frequencies. The angular size of the 609-MHz
components (~0.3") arein agreement with those for the
corresponding components detected at the higher fre-
guencies. Nan et al. [18] suggest that thereisalow-fre-
guency turnover in the spectrum of the component that
was not detected at 609 MHz, which is probably the
core(0.03" x0.017" at 1.66 GHz) [41]. The coordinates
of thiscomponent are al so closest to those of the optical
quasar [22]. The spectra of the remaining three compo-
nents are steep (o ~ 1), and their expected 102-MHz
flux is 6 Jy. Due to their small sizes, al three of these
components should scintillate, so that the observed
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102-MHz scintillations should correspond to the sum
of their flux densities.

We observed 3C 190 over four days (in the middle
of June 1996) at elongations near 40°. The source
showed appreciable scintillation, and AS= 2 Jy. How-
ever, as noted above, these scintillations probably corre-
spond to all three compact components. Taking into
account the direction of the solar wind, the component
sizes, and the elongation, we obtained the crude estimate
Sin = 2 Jy. We estimate S, = 24.5 Jy. The spectrum of
the core turns over at low frequencies, as noted in [18].
The spectra of the three remaining components essen-
tially merge due to their similar flux densities. Both the
integrated spectrum and the spectrum of the compact
emission show a clear flattening. There is probably a
turnover at lower frequencies (smilar to that in Fig. 6).

3C 191

Thisis aquasar with redshift z = 1.956. Few obser-
vations with high resolution are available. A north—
south triple structure can be seen in images at 15, 84, 5,
and 1.6 GHz [22, 29, 40]. There is a compact hot spot
in the northern component. The central component isa
relatively weak core, whose spectrum may be flat, but
probably has amaximum near 6-7 GHz and aturnover at
lower frequencies. A long (~3") strongly polarized jet
extendsto the south of the core[29]. The northern compo-
nent is~0.1"-0.15" in size and should scintillate strongly
at 102 MHz. The contribution of the core to the scintilla
tions should be negligible. The southern jet may or may
not scintillate, depending on its orientation on the sky rel-
ative to the solar wind during the 102-MHz observations.

We observed 3C 191 in the middle of June 1996 at
elongation 33°. The effective angular size of the jet was
~1.5", so that its contribution to the scintillations
should have been negligible. Thus, the scintillations
were dominated by the northern hot spot. We estimate
Sin=4.3Jy and S,; = 23 Jy. The integrated spectrum
remains steep to the lowest frequencies. There is a
modest flattening in the spectrum of the northern com-
ponent (similar to the spectrum in Fig. 6).

3C 213.1

Thissourceisaradio galaxy with redshift z=0.194.
Observations with resolution as good as< 0.2" are few
in number and reveal a complex structure [19, 23, 29].
Observations with resolution ~1" show two large, dif-
fuseregions, in one of which (the northern region) there
are compact features [29]. The overall extent of the
source is ~30". 8.4-GHz observations with resolution
~0.2" show three compact featuresin the northern com-
ponent, lying along aline north—south [29]. The maxi-
mum distance between these features is 7-8". The
southern compact feature in the northern component is
the most powerful and is strongly polarized (to 38%)
[29]. The centra feature in the northern component is
the weakest, is unpolarized (~0.2%), and is probably
the core [29]. This feature was not detected in 5- and
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Fig. 6. Integrated spectrum of 3C 186 (filled triangl es) based
on points at 4.85 GHz (0.308 Jy) [13], 1.4 GHz (1.261 Jy)
[36], 0.408 GHz (5.55 Jy) [37], 0.102 GHz (33 Jy) [this
paper], and 0.038 GHz (49 Jy) [38]. Spectrum for one com-
pact (scintillating) component (hollow triangles) based on
points at 15 GHz (0.009 Jy) [40], 8.4 GHz (0.041 Jy) [29],
1.67 GHz (0.52 Jy) [41], 0.61 GHz (1.019 Jy) [18], and
0.102 GHz (7.7 Jy) [this paper]. Spectrum for the other
compact (scintillating) component (hollow squares) based
on points at 15 GHz (0.015 Jy) [40], 8.4 GHz (0.042 Jy)
[29], 1.67 GHz (0.5 Jy) [41], and 0.61 GHz (0.315 Jy) [18].

1.6-GHz observations [19, 23, 29]. The flux density of
the southern feature in the northern component istwice
that of the northern feature at 1.6 GHz [19], suggesting
that the main contribution to the 102-MHz scintilla-
tions should be the southern compact feature. 1.6-GHz
observations with resolution ~0.3" show that this fea-
tureiscompact (0.2" x 0.2") and issubmerged in ahalo
1.2" x0.7" insize.

We observed 3C 213.1 over four days at el ongations
near 40°. No scintillations were detected. We estimate
an upper limit for S, < 0.8 Jy and estimate the inte-
grated flux density to be S, = 12 Jy. We are not able to
construct an accurate spectrum using our measure-
ments; however, we suggest that it is very likely that
thereisalow-frequency turnover in the spectrum of the
compact emission.

3C 216

This source is a quasar with redshift z = 0.668. In
low-resolution (~1") maps, it hasan irregular shape ~8"
in size extending from southwest to northeast (see, for
example, [28, 29, 42]). In higher resolution (~0.2")
images, three components can be distinguished, whose
relative flux densitiesvary with frequency [18, 22, 28, 29].
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Fig. 7. Integrated spectrum of 3C 216 (filled triangl es) based
on pointsat 14.9 GHz (1.27 Jy) [48], 10.695 GHz (1.41 Jy)
[49], 8.085 GHz (1.26 Jy) [50], 5 GHz (1.8 Jy) [15], 2.7 GHz
(2.45 Jy) [15], 0.968 GHz (6.2 Jy) [15], 0.408 GHz (11.9 Jy)
[37], 0.178 GHz (21.54 Jy) [15], 0.102 GHz (36 Jy) [this
paper], 0.038 GHz (51 Jy) [38], and 0.026 GHz (89 Jy) [15].
Spectrum of the radio lobe (?) (hollow triangles) based on
points at 15 GHz (0.125 Jy) [28], 8.4 GHz (0.204 Jy) [29],
5 GHz (0.45 Jy) [22], 0.6 GHz (0.505 Jy) [18]. Spectrum of
thecoreand jet (?) (hollow squares) based on pointsat 5 GHz
(0.966 Jy) [43], 5 GHz (0.7 Jy) [45], 5 GHz (0.5 Jy) [44],
2.3 GHz (0.5 Jy) [46], 1.6 GHZ (0.32 Jy) [47], and 0.6 GHz
(0.389 Jy) [18].

The southwest component is extended (>1") and weak,
so that it should contribute to the total flux density at
102 MHz, but should not scintillate. The northeast
component is compact (=0.19" x 0.035" [18]) and hasa
steep spectrum above 5 GHz (o = 1, see the fluxes in
[28, 29, 42]). The spectrum of this component (Fig. 7)
has amaximum near 2 GHz and turns over at lower fre-
guencies. The central component, in turn, consists of a
variable, very compact (~0.1 milliarcsecond [43]) core
and =0.09" x 0.05" jet; superlumina expansion has
been observed on milliarcsecond scales [18, 43-47]. It
is difficult to measure the spectrum of the core due to
its variability. Using observations separated by roughly
ayear and assuming that the variability will be modest
on such time scales (<10% of the total core flux den-
sity), it appears that the core spectrum has a maximum
at 10 GHz and turns over at lower frequencies, while
the jet spectrum remains steep. The flux densities from
the core and jet are approximately equal at 5 GHz
[22, 44]. The spectrum constructed (Fig. 7) suggeststhat
the flux density from the core should fall toward lower
frequencies, while the expected flux density from the jet
rises. Thus, we expect the jet to make the dominant con-
tribution to 102-MHz scintillation observations.

We observed 3C 216 over two days at elongations
~40°. The quality of the observations was high. Large
fluctuations of the flux density AS= 3 Jy wererecorded.

TYUL’BASHEV, CHERNIKOV

We estimate S;;,, = 6 Jy and §,, = 36 Jy. It isdifficult to
derive the spectrum of the jet due to uncertainty about
separating the core and jet emission in our observa-
tions. It is likely that the spectrum of the jet remains
steep to 102 MHz. Note also that the spectrum of
3C 216 isthe most complex among those considered in
this study.

3C 237

Thissourceisaradio galaxy with redshift z=0.877.
The numerous observations of this source at various
frequencieswith various resolutionsindicate that it has an
ead—west double structure with separation ~1" [17-19,
22, 28, 29, 51]. Both components have sizes ~0.1"-0.2",
so that they should scintillate at 102 MHz.

We observed 3C 237 over three days at elongations
30-35°. Powerful scintillations were recorded (AS =
6.8 Jy). We estimate S, = 7.4 Jy for each of the com-
ponents, and S, = 28 Jy. The spectrafor the two com-
pact features are very similar. They appear to have max-
ima at 102 MHz and to turn over at lower frequencies.
The integrated spectrum shows a clear flattening at
102 MHz (similar to the spectrum in Fig. 8 below).

3C 241

Thissourceisaradio galaxy with redshift z=1.617.
It is an east—west double with separation ~0.9" [3, 17-19,
22, 23, 28, 29]. Maps with resolution ~0.1" show that
the western component is made up of two compact
(<0.1") features [3, 17, 18, 23, 28], which should both
scintillate at 102 MHz.

We observed 3C 241 over four days at elongations
near 35°. The mean value of the flux variations as AS=
3 Jy. We estimate S;,, = 2.5 Jy for each of the two com-
pact components, and S, = 14.5 Jy. The spectra of the
compact features clearly have maxima near 400 MHz
and turn over at lower frequencies (Fig. 8). A modest
flattening is also apparent in the integrated spectrum.

4C 14.41

Few data are available for this source; its redshift is
unknown, but it is expected to be a quasar [3]. The
source was unresolved in 1.6-GHz observations with
resolution ~1" [53]. Higher resolution (~0.01") obser-
vationsat 1.66 and 0.6 GHz [ 3, 54] show that the source
is double. The components are both compact (~0.01")
and are separated by ~0.08" in the northwest—southeast
direction. We expect both these features to scintillate at
102 MHz.

We observed 4C 14.41 over two days at elongation
21°. In spite of the small fluctuationsin the flux density
(AS=0.65 Jy), scintillations were clearly detected. We
estimate Sy, = 0.4 Jy for each of the two components,
and S, = 4.5 Jy. The spectra of the scintillating compo-
nents have obvious low-frequency turnovers (similar to
the spectrum in Fig. 8).

ASTRONOMY REPORTS Vol. 44 No.5 2000
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3C 258

Thisisaradio galaxy with redshift z= 0.165. Low-
resolution (~2") 5-GHz maps show abright, unresolved
corewith jets~30" in length extending toward the north
and south [55]. The core emits a large fraction of the
energy. Higher-resolution (0.08") 5-GHz observations
indicate that the core has two components with similar
flux densities separated by ~0.1" in the southwest—north-
east direction [23]. 1.6-GHz observationswith resolution
0.007" show that these components are ~0.01" in size
[3]. Thus, we expect both components to scintillate at
102 MHz.

We observed 3C 258 at the end of September 1997
over two days, in the presence of sharply worsening
interference. The observations were of low quality,
though scintillations were detected. We estimate S, =
0.55 Jy and S,; = 3.5 Jy. There is no low-frequency
turnover in the spectra.

3C 266

Thisisaradio galaxy with redshift z= 1.275. Obser-
vations at 8.4, 5, and 1.6 GHz show that it has a double
structure with separation 4" [19, 29, 56]. The northern
and southern components have sizes 0.5" x 0.1" and
0.7" x 0.3", respectively [19]. The flux densities of the
components are roughly equal at all frequencies. We
therefore expect both components to scintillate at
102 MHz.

We observed 3C 266 over six days. Scintillations
were recorded reliably. Given the source elongation
(44°), the component separation (4"), and the direction
of solar-wind propagation, we estimated the flux den-
sity in the compact features and the integrated flux den-
sity to be S, = 4.2 Jy and S, = 19 Jy, respectively.
Thereisno low-frequency turnover in the spectra of the
two compact features.

3. PHYSICAL CONDITIONS IN THE CORES
OF THE SOURCES STUDIED

Our observations indicate the presence of low-fre-
guency (102 MHz) turnoversin the spectra of the com-
pact components of nine of the 21 radio source investi-
gated. For three sources, there is a turnover at higher
frequencies. Asdiscussed in[4], the most probable rea-
son for a low-frequency turnover is synchrotron self-
absorption. Artyukh [57] has presented a method for
estimating the magnetic field and relativistic plasma
density without resorting to the usual assumption of
equipartition.

Assuming that the radio emission of the sources
studied is synchrotron radiation and that the inferred
low-frequency turnovers are the result of synchrotron
self-absorption, we have estimated the corresponding
physical parameters for all 12 sources with low-fre-
quency turnovers. We adopted H,= 75 km s Mpc? and
Qo = V2 for the calculations. The results are presented
in Table 1. The columns give (1) the source name,
(2) redshift z, (3) angular size Q, (4) mean linear sizeL,
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Fig. 8. Integrated spectrum of 3C 241 (filled triangles) based
on pointsat 4.85 GHz (0.388 Jy) [13], 2.7 GHz (0.8 Jy) [52],
1.41 GHz (1.7 Jy) [52], 0.635 GHz (4.8 Jy) [52], 0.178 GHz
(11.1 Jy) [52], 0.102 GHz (14 Jy) [this paper], and 0.08 GHz
(17 Jy) [52]. Spectrum for one compact (scintillating) com-
ponent (hollow triangles) based on pointsat 15 GHz (0.046 Jy)
[28], 8.4 GHz (0.124 Jy) [29], 5 GHz (0.22 Jy) [3], 1.6 GHz
(0.65 Jy) [3], 0.6 GHz (2 Jy) [18], and 0.102 GHz (2.4 Jy)
[this paper]. Spectrum for the other compact (scintillating)
component (hollow sguares) based on points at 15 GHz
(0.011 Jy) [28], 8.4 GHZz (0.043 Jy) [29], 5 GHz (0.095 Jy) [3],
1.6 GHz (0.57 Jy) [3], 0.6 GHz (2.2 Jy) [18], and 0.102 GHz

(2.4 Jy) [this paper].

(5) spectral indices in the optically thin region of the
spectrum a, (6) magnetic-field strength, (7) energy of
the magnetic field per cm?, (8) total magnetic-field
energy in the volume L3, (9) density of relativistic elec-
trons, (10) energy of relativistic electrons per cm?, and
(12) total relativistic-electron energy in the volume L3.
The accuracy of this method is approximately an order
of magnitude, or two orders of magnitude if the source
angular sizeis not accurately known [57].

Theredshifts of 4C 34.07, Ol 407, and 4C 14.41 are
unknown, and we have adopted z = 2. In the formula
used to derive the physical parameters considered, the
redshift enters as (1 + z)~!, so that the value of z only
weakly influences the final result. In the case of 3C 147
and 3C 241, the estimates of the physical parameters
are different for different components; the components
are marked by letters A and B in Table 1.

We can see from Table 1 that all estimates corre-
spond to linear scales L ~ 100 pc, except in the case of
4C 31.04,4C 34.07, OE 131, and Ol 407, whereL ~ 10 pc.
Our results indicate equipartition of energy only for
4C 31.04. The magnetic field varies over awide range
from 107! to 10° G. It is obvious that the existence of
fieldsof 10° or 10* G on scales of 100 pcisimprobable.
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Table 1. Estimates of the physical conditionsin compact radio sources with steep spectra

TYUL’BASHEV, CHERNIKOV

Name z Q, arcsec Lpc | a | Hy,G Erg» Ey . eg| ng, cm B .| E, eg
erg o3 o ergcm
4C 31.04 | 0.059 0.03 x 0.02 20 | 04 | 1033 107 [4x10°2| 10° |4x107 10%3
+0.043 x 0.024
4C34.07 | 2 0.006 x 0.003 20 | 04 | 107 |6x10716 | 10" 10° 5 x 10t 1061
OE131 | 2.67 | 0.0012 x 0.0002 3 05| 10 |6x10% [3x10%®| 10° 10° 4 x 105
OF 247 0.219 0.02 x 0.01 50 | 1.1 |6x102| 10*% |4x10%|4x10° |7x10°8 10%3
3C147A | 0.545 0.17 x 0.05 400 | 1.1 | 10t 102 |[6x10%| 10° 1011 | 3x10%
3C147B | 0.545 05x05 2500 | 1.3 | 1073 10”7 109 |7x107 |6x10 | 3x10%
Ol 407 2 0.008 x 0.004 30 | 08 |6x10°| 10710 10% 1 1073 10%7
+0.008 x 0.004
3C 186 1.063 | 0.224 x 0.083 500 | 16 | 10* 4x106 |7x10°| 1012 |7x10% | 10%
3C 190 1.197 0.03 x 0.017 100 | 08 | 10° 3x108 10° |5x102 | 100 |4x10%
3C213.1 | 0.194 0.2x0.2 600 | 0.8 5 1 5x10% [6x 10710 | 107'° 10%
3C 237 0.877 02x0.1 800 | 1.4 |4x103|7x107 108 |3x10° 10°° 10%
3C241A | 1617 0.1x0.1 600 | 1.1 | 102 |[4x10° 10% |3x10° 1010 | 7x10%
3C241B | 1617 0.1x0.1 600 | 1.6 |6x10°| 10° |7x10% [2x10° 107° 5 x 10%
4C 1441 | 2 0.01 x 0.01 60 | 04 | 10* |7x1010 |3x10°|6x102 |7x10° |3x10%

It islikely that such results are severely overestimated
due to our inadequate knowledge of the source struc-
ture. As noted above, we took the angular sizes for
components from VLBI observations and assumed that
these angular sizes did not depend on frequency. How-
ever, in contrast to the situation in [4], where there were
numerous VLBI observations for most of the sources
studied, many of the sources considered in the present
paper have only sparse data on the angular sizes of their
components. It is likely that some of the angular sizes
we have adopted are only upper limits. The method
used to estimate the physical parametersis very sensi-
tive to the source angular size.

Let us consider, for example, the quasar 3C 190.
According to[41], theangular size of the core (for which
we determined the physical parameters) was =0.03" x
0.017". However, the highest resolution measurements
for 3C 190 have resolution 0.034" x 0.034" [41]. Thus,
the real angular sizes of components could be smaller
than indicated in radio measurements. For example, if
the angular size of the core of 3C 190 is decreased by
an order of magnitude, the magnetic field will decrease
by four orders of magnitude and become 10 G for alin-
ear scale of 10 pc. For comparison, a magnetic field
>0.1 G was obtained for a scale of 40 pc for the giant
radio galaxy DA 240[58]. Itislikely that such errorsin
the angular sizes of componentsled to errorsin the cal-
culated physical conditions for 3C 186, 3C 190, and
3C 213.1.

Figure 9 presents the dependences of the (a) mag-
netic field and (b) relativistic-electron density on the
linear scale of the source. We can see especialy clearly

in Fig. 9athat the distribution of pointsis not random.
We have fit linear dependences to both distributions on
logarithmic scales. The points corresponding to results
obtained in the present paper show the largest scatter
about these lines. This probably reflects larger errorsin
the derived physical parameters resulting from the rel-
atively sparse input data available for these sources.
The parameters for the two linear dependences fit are

H=10"11736 G,
Ne=10°L~ cm.

Note that, if the density behaves in a fairly natural
fashion (the smaller the scale for a feature, the higher
the density in that feature), the behavior of the magnetic
field is difficult to explain. The field is virtually absent
on small linear scales and begins to grow as the linear
Size scale increases.

Itisalso possiblethat the turnoversin the spectraare
due to thermal absorption. In [4], the possible presence
of thermal plasma in the region emitting synchrotron
radiation was considered; the temperature of the non-
relativistic plasma was ~10* K, and X-ray emission
should come from avery small region L, < 1 pc. Inthis
case, the emission coefficient is determined by the syn-
chrotron radiation, while the absorption coefficient is
determined by the thermal plasma. It was demonstrated
that the inferred density of thermal electrons was com-
parable to the density of thermal electrons in the cores
of ultraluminous infrared galaxies. In [4], we consid-
ered thisto beimprobable. However, it seems appropri-
ate to estimate in the same way the thermal electron

ASTRONOMY REPORTS Vol. 44 No.5 2000
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Fig. 9. Dependence of the (a) magnetic field strength H and (b) density of relativistic electrons ng on the linear size of the radio
source L. The squares present results from [4] and the triangles results from the present paper.

densities for the radio sources studied here, since the
previous estimates for the thermal electron density
exceed the expected densities on the size scales consid-
ered by only an order of magnitude. The resulting esti-
mates are presented in Table 2. The columns present (1)
the source name, (2) linear size, (3) peak frequency in
the spectrum, and (4) inferred thermal electron density.
We can see from this table that the estimates for n, are
higher than the densities of thermal electrons in our
Galaxy on the same scales [59] and are close to the
thermal plasma densities in ultraluminous IR galaxies
[60]. Consequently, as asserted in [4], this mechanism
for the low-frequency turnoversisimprobable.

Table 2. Estimates of the nonrelativistic-electron density at
temperature 7 = 10* K

Source name L, pc Vp, GHz Ng, CMT™S
4C 31.04 20 0.5 140
4C 34.07 20 0.4 110
OE 131 3 0.4 290
OF 247 50 1 90
3C147A 400 1.6 100
3C147B 2500 0.1 3
Ol 407 30 0.6 140
3C 186 500 1 60
3C 190 100 3 380
3C 2131 600 0.3 16
3C 237 800 0.2 9
3C 241 600 0.3 16
4C 14.41 60 0.4 66

ASTRONOMY REPORTS Vol. 44 No.5 2000

Absorption due to the Razin-Tsytovich effect [61, 62]
was also considered in [4], where it was shown to be
improbable.

4. CONCLUSION

(1) 102-MHz interplanetary-scintillation observa
tions of 21 compact steep-spectrum radio sources car-
ried out on the LPA of the Lebedev Physical Institute
indicate that nine of the sources have low-frequency
turnoversin their radio spectra. Three of the 21 sources
had been known earlier to have high-frequency turn-
overs.

(2) The most probable origin for such turnovers is
synchrotron self-absorption. Based on this assumption,
we estimated the magnetic-field strengths, relativistic-
electron densities, and the energies of the magnetic
field and relativistic electron—positron plasma in the
compact components of the sources studied.

In all the quasars with low-frequency turnovers in
their spectra, the relativistic-electron energy is much
larger than the magnetic-field energy, with the excep-
tion of 3C 147, in which the opposite is true. At the
sametime, in al the radio galaxies analyzed, the mag-
netic-field energy is much larger than the relativistic-
particle energy, with the exception of 4C 31.04, in
which the two energies are comparable.

(3) There may be a correlation between the size of
compact features and the physical conditions in them.
The smaller the feature, the higher the density of rela
tivistic electrons and the weaker the magnetic field. At
the same time, the number of steep-spectrum sources
for which we have been able to estimate these physical
conditionsisinsufficient for a statistical analysis of the
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properties of these sources and of possible differences
between the conditions in quasars and radio galaxies.
Weare currently planning afinal paper that will present
our results for the remaining (~20) sources from the
sample of [3], together with an analysis of our results
for the sample asawhole.
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Abstract—In dynamical modelsfor open clusters, virial equilibrium isnot achieved over the violent relaxation
time scale 1,,. The stars form an equilibrium distribution in (g, &, |) space, where € and | are the energy and
angular momentum per unit stellar mass in the combined field of the Galaxy and cluster and €; is the energy of
motion perpendicular to the Galactic plane per unit mass of cluster starsin the gravitational field of the Galaxy.
Thisdistribution of stars changeslittlewhent > 1. The stellar phase-space distribution corresponding to thistype
of equilibrium and the regular cluster potentia vary periodicaly (or quasi-periodicaly) with time. This phase-
space equilibrium is probably possible due to an approximate balance in the stellar transitions between phase-
space cells over times equal to the oscillation period for the regular cluster field. © 2000 MAIK “ Nauka/Inter-

periodica’ .

1. INTRODUCTION

In [1], we considered models of open clusters that
were nonstationary with respect to the regular cluster
field. In the course of their dynamical evolution, such
models develop an equilibrium distribution of starsin
the space of certain parameters of the stellar motion
over thefirst violent-relaxation time scalet,,. Thisdis-
tribution varies little with timewhent > t,,. The stellar
phase-space distribution corresponding to this equilib-
rium and the regular potential of the cluster vary peri-
odicaly (or quasi-periodically) with time. In the open-
cluster models of [1], virial equilibrium was not
attained, and att > 1, thevirial coefficients of the clus-
ter models continued oscillating with nearly constant
amplitude and period. Wewill call the phase-space den-
sity of the cluster corresponding to the equilibrium
attained at t > 1,, the equilibrium phase-space density.
In this equilibrium, there is probably an approximate
balance in the stellar transitions between phase-space
cellsontime scales equal to the oscillation period of the
regular cluster field.

Due to the instability of the phase-space density to
small perturbations, open-cluster models with low
phase-space densities develop different equilibrium
phase-space densities over thetimet = t,,. In each of
the intervals of distance from the cluster center consid-
ered in [1], the relative differences between the phase-
space densities of such models averaged over the stellar
velocities increased at t < 1, and stabilized at t > 1,,.
Here, t, isthelocal violent relaxation time a distance r
from the cluster center. The fact that the mean-velocity
relative phase-space density differences stabilize and
remain constant in time indicates the formation of an
equilibrium phase-space density in the cluster models.

Kandrup et al. [2] considered the energy—space
domain occupied by the particles of an isolated system
that is nonstationary in the regular field, subdividing
thisdomaininto 20-particleintervalsat each moment in
time. The mean particle energies in these intervals
remain nearly constant once the system attainsacertain
equilibrium state. According to [2], thisindicates acon-
straint on the coarse-grained phase-space density,
which restricts the possible outcome of violent relax-
ation in the system. We believe that this constancy of
the average particle energies is due to a balance in the
particle transitions between the energy intervals con-
sidered in [2], which is typical of systems that have
attained equilibrium in the particle energy space.

Kandrup [3] performed a theoretica analysis of the
evolution of collisonless sdf-gravitating systems.
According to [3], in a“coarse-grained” description, such
systems can approach a time-independent equilibrium
during their evolution, which corresponds to time-
dependent distribution functions f, for certain parame-
ters that are “energy extremal” with respect to al per-
turbations of in the systems of gravitating points.
Depending on the type of extremum, the function f, can
be linearly stable or unstable, and the system’s evolu-
tion can proceed with linear or nonlinear phase-space
oscillations about f,. At the same time, Kandrup [3]
pointsout that it isnot clear what sort of coarse-grained
description should be implemented in order to recog-
nize the approach of the system to equilibrium.

Theoretical and experimental analyses of the prop-
erties and parameters of the equilibrium phase-space
density that develops as a result of the violent relax-
ation of a nonstationary open cluster are of interest
here. In the case of open clusters moving in circular
orbits in the Galactic plane, the phase-space density

1063-7729/00/4405-0298%$20.00 © 2000 MAIK “Nauka/Interperiodica’
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that forms as a result of violent relaxation is con-
strained by the conditions of conservation of cluster
mass M and energy E, as well as by the symmetries
present in the density and stellar velocity distributions
in the cluster.

According to formulas (5.517-5.519) in [4], the
equations of motion for cluster starsin (&, n, {) coordi-
nates imply, under a number of assumptions, that the
cluster “energy” isan integral of mation; i.e., E = const
(formula (5.522) in [4]). In addition, if the cluster is
symmetric with respect to the & and/or n¢ planes, the
angular momentum of the cluster is another integral of
motion; i.e., A, = const (formula (5.530) in [4]). (Chan-
drasekhar [4] usesthe rotating coordinate system (€, n, {)
fixed to the center of mass of the cluster, where the &,
N, and { axes are directed from the center of mass of the
cluster away from the Galactic center, in the direction of
Galactic rotation, and perpendicular to the Galactic plane,

respectively.) After multiplying byZI = Z'

over al cluster dtars, the stellar equation of motion aong
the { coordinate (formula(5.519) in[4]) yields

N
dgtzmisz,l - ZZIaZI 1 (1)
i=1

where m isthe mass of theith cluster star; Q and N are
the potential energy and the number of starsin the clus-

ter, respectively; me; ;= %m(ziz + 0(3Zi2) isthe energy

of motion of the ith cluster star along the ¢ axisin the
Galactic gravitationa field; and a; = const.

In the cluster models considered here, Q and E; =

iN: .Mé&, i exhibit oscillations that are damped with
timet. Q oscillates about Q = 0. The largest deviations
of Q from zero are small and correspond to relative E;
variations of several per cent (6.4 and 4.5%) for cluster
models 1 and 2 below, respectively. The oscillations in
Q and E; aredueto oscillationsin g; ; for the relatively
small number of stars with the highest €; ; values (see
Fig. 2 below). The relative deviations of ¢; ; for these
stars are, on average, 20% when't < 1., and decrease by
afactor of 2-4whent>1,,. Theoscillationsineg; ; aver-
aged over several stars within specified g; ; intervals
(see Fig. 2 below) indicate that the establishment of an
equilibrium stellar distribution functionin g; space pro-
ceeds more slowly at high g; than at low and intermedi-
ate g;. Some of the stars with the highest €, ; values
gradually escape from the cluster in the course of its
evolution.

Using the condition Q = 0 as an approximation to
describe the evolution of the open cluster, we find, in
accordance with (1), that E; = const. This condition fol-
lows from the symmetry of the potential U(r) and the

velocity distribution g(Z) with respect to the { = 0,

and summing
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plane in the cluster model (here, r = (&, n, ) is the
radius-vector of acluster star).

In the collisionless approximation, the right-hand
sides of the equations of stellar motion (formulas
(5.517-5.519) in [4]) should be replaced by partial
derivatives (multiplied by m) of the regular potential U
with respect to the corresponding coordinatesé, n, . In
this case, after computing the stellar integral s of motion
in the usual way, it can easily be shown that the energy
of the motion per unit stellar masse; isan integral of the
motion:

g = ——U+alE+a3? = const, )

wherea, = congt, v2 = & +A? + ¢, and the angular
momentum per unit mass |; and energy €, ; of motion
along the ¢ coordinate are not integrals of the motion:
I = &N = &N —w(& +n7) # const,
€z,; # const,

3)

where w, = const is the angular velocity of the cluster
with respect to the Gal actic center.

ThequantitiesM, E, A, = § ' ml;, and E; are con-

served during violent relaxation of the cluster (see [4]
and text above). Following [5], we can obtain the most
likely (equilibrium) stellar distributionin (g, &, I) space
from the condition of maximum entropy of the system
combined with the above constraints on M, E, A;, and
E;. If the possible states are filled by only a few stars
(i.e., if the stars occupy only a small fraction of the
phase-space microcells belonging to a predefined macro-
cell—a* coarse-grained” cdl in the phase space [6]), this
leads to the Maxwell-Boltzmann distribution

f(e, e 1) = foexp(—=v —pe—Bl—-vye,), 4

wheref,, v, U, B, y are constants.

If astar cluster develops an equilibrium distribution
of the form (4) as aresult of various relaxation mecha-
nisms (including those due to stellar encounters), the
mean values of €, &, and | for stars located in pre-
defined cells in (e &z, 1) space (see below) should be
conserved at timest > 1,,. Kandrup et al. [2] obtained
asimilar result for € in models of isolated star clusters
for systems that have attained some sort of equilibrium
by the end of the violent-relaxation stage.

An experimental analysis of the form, parameters,
and properties of the equilibrium phase-space distribution
of stars F(r, v) ~ f(g, &, 1) = f(e(r, v), &(r, v), I(r, v)) for
nonstationary open-cluster modelsis of interest. Here,

v=(&,n, {)isthestar'svelocity vector in the cluster.
The results of such analyses can be used to construct
analytical cluster models that are nonstationary in the
regular cluster field, investigate the stellar velocity
fieldsin such clusters, and estimate the total masses and
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other cluster parameters from the coordinate and veloc-
ity datafor cluster stars.

The aim of this paper is to analyze the equilibrium
stellar distribution functionsin (g, €, |) space and phase
space that develop during violent relaxation in open-
cluster models that are nonstationary in the regular
cluster field.

2. DESCRIPTION OF MODELS

We now consider a cluster consisting of N = 500
stars moving in the Galactic plane about the Galactic
center inacircular orbit of radius 8200 pc. At theinitial
time t, the cluster is modeled as a system of two con-
centric gravitating spheres, imitating the halo and core
of the cluster. We considered open cluster models with

R,
initial parameters — =0.24 d — =0.25 and strong
R, Nz

manifestations of non-stationarity in the regular cluster
field. Here, R, and R, are the radii of the cluster core
and halo, respectively, and N, and N, are the number of
starsin the core and halo, respectively. These parame-
ters correspond to model 5 in [7]. We assumed that all
cluster stars have mass 1 M. We used a random-num-
ber generator to specify the initial positions and veloc-
itiesof thestarsinthe(r, 6, ¢) and (v,, 6,, ¢,) spherical

coordinate systems fixed to the (§, n, {) and (¢, n, )
Cartesian reference frames. Here, v, is a star’s radia
velocity component and r = |r|.

We analyzed two cluster models. In model 1, asin
the models considered in [ 7], theangles ¢ and ¢, spec-
ifying the direction of the vectorsr and v in the (&, n)

and (&, n) planes, and also the angles 6 and 6, speci-
fying the projections of the vectors r and v onto the

and { axes, are randomly distributed in the intervals 6,
8, 0 [0, M and ¢, ¢, O [0, 217 using arandom-number
generator. In model 2, the azimuthal angles ¢ and ¢,
are distributed as in model 1, and the angles 6 and 6,
are distributed in theinterval [0, 17 in accordance with

the probability density functions p(8) = —sme and

p®,) =
tancer |sd|str| buted over theintervals[0, R] with prob-

ability density p(r) = 3r¥R’ (i = 1, 2) to ensure con-
stancy of the stellar number density in subsystems at
different radii. Model 1 correspondsto model 5in[7].

The initial stellar number densities in model 2 are
approximately the same at all points of the subsystems
considered. In model 1, there is some excess of stars

with large |¢] and |{ | at t = 0, resulting in atwo-peaked
initial velocity distribution, with local maxima at large

and small Z . Because of the uniform initial distribution

smev, respectively. In both models, the dis-
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of 8 and 6, over theinterval [0, 1 in model 1, the fac-

torssin® = r//&2 +n? and sin®, = v//& + 1’ appear
in the expressions for the initial density and velocity
digtributions for thismoddl. Here, r2 =&+ n>+ (%, v2 =

£ + /2 + ¢ and, for the sake of brevity, we do not
present the formulas for the above distributions.
According to [7], cluster model 5 develops a core that
is extended along the { axis. Our computations show
that model 2 develops a spherical core. The extension
of the cores of the cluster models analyzed in [7] along
the ¢ axiswas, thus, due to the particular choice of ini-
tial conditions.

Models 1 and 2 are defined such that, at t = O, they
do not rotate with respect to external galaxies, and the
cluster and its subsystems meet the conditions of viria
equilibrium for isolated clusters. We used the units 1 pc,
1 Ma, and 1 M, in our computations. For each model
with fixed R, N; (i = 1, 2) a t = 0, we computed the
dynamical evolution several times with dlightly (and
randomly) different initial stellar phase-space coordi-
nates. See[7] for a description of the technique used to
generate the magnitudes of the vectors v for the initial
stellar velocities and small perturbations of the stellar
phase-space coordinates in the cluster. We smoothed
the force functions in the right-hand sides of the stellar
equations of motion (see [7] for a description of the
technique employed and the smoothing parameter).

In our computations, we used the (&, n, ¢) coordi-
nate system (see above) and corresponding equations
of stellar motion (formulas (5.517)—5.519) in [4]) with
the components of the Galactic field given up to linear
termsiné&, n, and {. We used the formulafor @ presented
by Kutuzov and Osipkov [8] to compute the constant
coefficients o, and a5 in the expansion for the regular
Galactic potential @ as a power seriesin €, n, and .
In contrast to [4], we have (in the notation adopted here)

dP [od a*ep _ @Pep

®20, 5= <0,0,= [RaR aRzD’m O3 DaZZD’

oR
where R and Z are cylindrical Galactocentric coordi-
nates; the subscript 0 indicates that the derivatives of ®
aretaken at R = 8200 pc and Z = O for the adopted cir-
cular cluster orbit in the Galactic plane.

We monitored the integration errors by checking the
constancy of the integral of the energy E of peculiar
motions of the cluster stars (formula (5.522) in[4]). We
also used the statistical method [9], which is more sen-
sitive to computational errors, to monitor the accuracy
of integration of the equations of motion; this allowed
us to check the accuracy of the computed phase-space
density in the dynamical cluster models.

To integrate the equations of motions of the cluster
stars, we used an improved (optimized) version of the
code[9] (wereduced the number of operationsrequired
to solve the equations, eliminated certain operations
involving numbers with different sizes in the computer
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memory, etc.). As aresult, we increased the time inter-
val t, for the dynamical evolution during which the
accuracy of the computed cluster phase-space density
can be considered sufficient fromt, = 1.71,, (the maxi-
mum attained in [9]) to t, = 1.91,, for model 1 and t, =
2.2t1,, for model 2. Asin [7, 9], we adopted an initial

violent relaxation time of t,, = 2.6t ~5 x 107 yr; {,,
isthe average cluster crossing time.

We integrated the equations of motion using sixth
and seventh order Runge—Kutta methods with the grid
functions (2) from [9], with an accuracy of 15-16 dec-
imal places. The maximum relative error of the com-
puted energy E did not exceed 2.8 x 108 and 2.1 x 10~ for
cluster models 1 and 2, respectively. The computations
also met the statistical criterion for the accuracy of the
computed phase-space density (0.9 < P; < 1.0) for all
distance intervals Ar, (j=1, ..., 10) considered (see
below). Here, P; = P(r [A r;) are the probabilities that
the samples of stellar phase-space coordinates obtained
by solving the equations of motions with seventh- and
sixth-order integration methods are drawn from the same
stellar phase-space coordinate population. According to
[9], the differences between the stellar phase-space coor-
dinate distributions obtained using the seventh- and
sixth-order methods are random, and the accuracy of
the computed stellar phase-space coordinates can be
considered sufficiently high to use them to draw con-
clusions about the physical properties of the phase-
space density of a cluster model.

We compared the results obtained with cluster mod-
els 1 and 2 with dlightly different initial stellar phase-
space coordinates. To this end, we subdivided al the
stars of cluster model 1 at timet into ten groups of 50
stars in order of increasing distance r from the cluster
center of mass. Let Ar; be the distance interval r; corre-
sponding to thejthgroup (j =1, ..., 10). See[1] for the
technique used to partition the velocity space occupied
by the cluster starsinto k equal cells. When computing
the cluster evolution, wefollowed the time variations of
the relative differences ; of the phase-space densi-
tiesof cluster models 1 and 2 in the distanceintervals
Ar; averaged over al k velocity-space cells with k =
1000.

3. RESULTS OF COMPUTATIONS
AND DISCUSSION

In the cluster models considered, there isinitially a
small contraction (mainly perpendicular to the Galac-
tic plane) that ends by atimet = (0.30-0.35) x t,,. At
t>0.6 x 1,,, steady-state oscillationsin the regular field
are established, with periods of P, = 0.7 x 1, and P, =
0.6 x 1, in models 1 and 2, respectively. The mean
ratios da of the amplitudes of the virial coefficient a =
2E./Q andthevalue a = a, averaged over the period P,
are equal to 0.55-0.59 for models 1 and 2, indicating
that the models are appreciably nonstationary in the
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Fig. 1. [@0values averaged over five stars as a function of
time. The stars are numbered in order of increasing e.
Curves 1, 2, 3, 4, 5, and 6 are based on the results for stars
1-5, 101105, 201-205, 301-305, 401405, and 496-500
in € space, respectively.

regular field (here, E.= T + Q and T isthe total kinetic
energy of the cluster-star peculiar motions).

The fractional phase-space density differences ),
due to instability of the phase-space densities to small
initial perturbations in the stellar phase-space coordi-
nates increase rapidly during a time t,, then remain
approximately constant, and an equilibrium phase-
space density is established in cluster models 1 and 2
(see, eg., Fig. 1in[1]). The values of t, can be consid-
ered estimates of thelocal relaxation time. t, in the cen-
tral regions of models 1 and 2, whereas t, = 0.5 X T,
andt, = 1.1 X1, andt, = 1.5 x 1, at the peripheries of
modes 1 (seedso[1]) and 2, respectively. Thus, model 2,

which has a single-peaked initial distribution of ¢
coordinates that is closer to the equilibrium distribu-
tion, is slower to develop the equilibrium phase-space
density at its periphery. In the central regions, the equi-
librium phase-space density develops over essentially
the same time for models 1 and 2 (0.5 x T1,,).

To analyze the properties and parameters of the
equilibrium distributions that develop in models 1 and 2,
we, like Kandrup et al. [2], subdivide all cluster stars at
each timet into groups consisting of five stars (10 and
20), with each in order of ascending specific energy €
per unit stellar mass [see formula (2)]. We then com-
pute the mean [80and the dispersions of e—[8for each
group and perform analogous computations for | and g;
[seeformula(3) and the discussion of formula(1)]. Fig-
ures 1-3 show (80 [g,[) and [lCplotted as functions of
time for anumber of the stellar groupsin cluster model 2
(the corresponding relations for model 1 are similar to
those in Figs. 1-3). [80J [g,[] and Oremain virtually
constant at t > 1, throughout most of the ¢, &, and |
domain occupied by the cluster stars. Deviations of [80)
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Fig. 2. Same as Fig. 1 for [g;Ll

[g,0) and from their constant values become appre-
ciable with time only near the boundaries of the distri-
butions of €, &, and |, where the number of stars is
small. The increase of [E00withtimeat higheatt>T1,,
is due to stars at the cluster periphery (near or outside
the cluster tidal radius r = R, [10]). The fractiona
amplitudes of oscillations of [E0are small for small €,
amountingto~11and6% att<t, andt>T1,,, respec-
tively, and are determined by stars located near the
cluster center. The decrease with time of [IlCet small | is
due to stars escaping from the cluster, located at dis-
tancesr > 2R, from the cluster center. The highest frac-
tional amplitudes of oscillations of [g;[lat large g; are
13-25% at t < 1,, and decrease by a factor of 24 at

gﬂ(t)D pe?/Myr
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t > 1,,. These oscillations are due to the small number
of starsoutside the cluster core, at the cluster periphery.
Since [80] [g,[] and 0are primarily constant in time
only for starsat distancesr <R, (i.e., inside the cluster),
the constancy of [8[] [8,[] and Cmust be due to stellar
encounters within the cluster. (The periods of temporal
oscillations of [80) [g8,;[) and ICare mostly near P, =
0.61,,, so that temporal oscillations of [8L] [8,[]and ]
are most likely due to oscillations of the regular cluster
field.)

The dispersions o,, 0, ;, and o, of the deviations of
€, &, and | from [80] [g,[Jand in theintervals of these
parameters considered are also characterized by the
sizes of these intervals and, at t > 1,,, should exhibit
small, random oscillations about certain constant val-
ues over most of the domain S= (¢, €, |) occupied by
the cluster starsin the (&, &;, and |) coordinate space. g,
for starswith small | increases when these stars move to
distancesr >2R,. Thedispersions g, for the starswith the
highest and lowest € change appreciably at t < 1., (the
stellar € distributions develop their “wings’ during this
period). The constancy of [E[J [g,[] and [llJand of g,
O, z» and 0; for most of the cluster stars at t > 1, indi-
cates that the stellar distribution in (g, &, and I) space
has attained equilibrium.

Figure 4 shows the distribution of starsin model 2
in (€, &, |) space for seven equally spaced timest; (sep-
arated by steps At = 0.1t for t/t,, O [1.0, 1.6], i =
1, ..., 7) spanning the period P, = t; —t, for the oscilla-
tions of the regular cluster field. The dashed curves
show the distributions averaged over P,. The central

. 1
distributions correspond to t = 72?:1'“ =13 xT1,,

3
\SAVNIE N

]
1.5 2.0 2.5
tt,,

Fig. 3. Same as Fig. 1 for 0] Curves 1, 2, 3, 4, and 5 are based on results for stars 101-105, 201-205, 301-305, 401405, and

496-500 in | space, respectively.
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and have been constructed as follows. During the inte-
gration of the equations of stellar motions, the sets of
stellar phase-space coordinatesfor the seven timesindi-
cated are written to a single file, which is then used to
compute the overall stellar distributions in (g, €, |)
space. The resulting distributions are then normalized
to the number of starsinthe cluster (N =500). Although
the cluster is strongly nonstationary, and in spite of the
oscillations of the regular field in cluster model 2 over
the period P, the “instantaneous’ distributions of €, &,
and | at timet differ little from the corresponding distri-
butions averaged over the period for oscillations of the
regular field. Figure 5 shows the distributions of the
magnitude of the stellar velocities v = |v| for the times
indicated, which differ more from the mean distribution
than do the distributions in Fig. 4. It is interesting that,
during the violent relaxation of the cluster model con-
sidered, i.e, for t/t, O [0, 0.6], the differences
between the instantaneous distributions of €, and | and
the corresponding mean distributions are as small as
thosein Fig. 4. The differences between the instantaneous
and mean distributions of € for t;/t,, O [0, 0.6] are some-
what more subgtantial than for t;/t,, 0 [1.0, 1.6].

Although cluster model 2 is strongly nonstationary
intheregular field, the instantaneous distribution of the
starsin (g, &, 1) space attains equilibrium at t > 1, ; the
resulting equilibrium distribution varies only dightly
over the period P,, does not differ statistically from the
distribution f(g, €, I) averaged over P,, and exhibits only
small random dewatlonsfrom (€, &, 1) (see below).

4. EQUILIBRIUM DISTRIBUTION
OF CLUSTER STARS IN (g, £, 1) SPACE

We estimated the parameters of the stellar distribu-
tion in (g, &, ) space for cluster model 2 for several

times t . To thisend, we used the distribution (4) written
in the more convenient form

f(e, e 1) = foexp(—ule—& Bl -1l -ve)), 3

where € and | are € and | averaged over P,, derived
from the set of stellar phase-space coordinates for seven

equally spaced times corresponding to the given . The

quantity v from (4) can be written v = + ug + BI,
where the signs in front of the i and [ coefficients

depend on those of € — &€ and | — | .

To estimate the parameters of distribution (5), we
subdivided the € domain occupied by the cluster stars
during the given period P, into L = 60 equal intervals
Ag. To determine this domain, we used the combined
file containing the stellar phase-space coordinates for
seven equally spaced times spanning the period P, . We
also partitioned the Ag; and Al domains occupied by the
cluster stars during the period P, into intervals €, and |
in the same way. We then determ| ned the stellar number
densities f(g, €, |) in the resulting (¢, &, |)-space cells
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Fig. 4. Thee, gz, and | distributions for starsin model 2 for
timestj=[1+ (- 1) x0.1]t,, i = 1, ..., 7. The dashed
curves show the n(g), n(g;z), and n(l) distributions of the
cluster stars averaged over P, at time t = 1.3t,,.

and derived the parameters of distribution (5) using the
method of Marquardt [11] to minimize the sum of the
squares of the deviations of f; from f computed using (5).
We repeated these computations for L = 20 and 40.

The table summarizes the resulting coefficient esti-
mates for L = 60 (for L = 20 and 40, the function f is
more coarsely represented by f, near the maximum f
values). We can see from the table that the parameters
of the stellar distribution f(e, g, |) averaged over P, for
cluster model 2 vary comparatively little over the time
interval considered (fromt =13 x1,t0t =1.9 x1,).
Such variations of the stellar distribution in (g, &, )
space could be due, among other things, to approxima-
tion errorswhen fitting the function f, (e, &, 1) using (5).
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Fig. 5. Distributions of stellar velocity magnitudesin model 2 for timestj=[1+ (i —1) x0.1]1 T, i =1, ..., 7. The dashed curve
shows the n(v) distribution of the cluster stars averaged over P, at time t = 1.3t,,.

The function (5) used asf(g, €, |) only approximately
describes the properties of f,(e, &, |). A more accurate
description of the averaged € distribution of stars could
probably be obtained by using two exponentia func-
tionsin (5) tofit the distributions of € in the cluster core
and halo (see Fig. 44). The small temporal variations of
distribution (5) in the table could also be due to system-
atic changes (evolution) of the averaged cluster model.
f, systematically decreases over the time considered in
the table due to the expansion of the cluster in phase
space.

When comparing f,(, &, |) and (g, &, I), we should
bear in mind that € and €; are not independent. To deter-
mine the boundaries of the (g, €,) domain occupied by
the starsin the cluster model averaged over P,, we used
the combined file containing the stellar phase-space coor-
dinatesfor seven equally spaced times spanning period P, .
Wederivedtherelationse, , =€, 5(&) and €, , =& 1 »(€)

for eachtime t from the table. The subscripts1 and 2 in
relaions €, , = &, (&) refer to the lowest and highest €
valuesfor starswhoseg; fal intheinterval [g;, €, + Ag,].
Thesubscripts 1and 2inrelationsg; | , = & ,(€) have
an analogous meaning. Using the adopted notation, f,
in (5) can be determined from the normalization condi-
tion for (5):
N = f (&, &, 1)dede,dl
]

.- (6)
_ ¢ Y(B) .

foTpy J’ exp(—ple —€[C(y, €))de,

where

W(B) = 2~ exp(—B( ~Imin)) — XP(—B(lmax = 1)),
C(y, &) = exp(-y(g,1(€))) — exp(-y (g 2(€)))-

Parameters of the stellar distribution in (g, &, [) space averaged over P, for model 2

t/ity,
Parameter
1.3 14 15 1.6 1.7 1.8 1.9
1 (Myr/pc)? 4,155+ .089| 4.252 +.087| 4.326 +.082| 4.069 + .079| 3.944 + .076| 4.415+ .083| 3.692 *+ .066
B (Myr/pc)? 0.984 + .020| 0.977 +.019| 1.022 +.019| 0.995+ .019| 0.992 +.018| 1.050+.018| 1.040+ .018
y (Myr/pc)? 11.090 £ .227|11.143 + .224(11.810 + .220{11.177 + .216|11.656 + .227|13.049 + .232|12.331 + .234
ASTRONOMY REPORTS Vol. 44 No.5 2000
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The subscripts “min” and “max” in (6) indicate the
minimum and maximum values in the domain Sfor €
and |. According to (5), the formulas for the stellar dis-
tributionin (g, &, I) space can be written in the form

x(g) = f (e, g, 1)dlde;
3
w(

= fOWB)C(y, g)exp(—ule —g|),

w(l) = IJ' f(e, g, 1)dede,

(e.8)

™
- m%“"') [ exp(-tle -E)CLy. e)ck,

Emin

w(gy) = f (e, g, 1)dedl
I

%K(u, £))exp(-yey).

= f0
where K(H, &) =2 — exp(-H|€ — &(&)]) — exp(—Hlex(Ey) —
g and (1, &), (¢, &), and (g, I) refer to the domains for
the quantities in parentheses occupied by the stars in
the combined file containing stellar phase-space coor-
dinates for seven equidistant timesin the period P, .

On the whole, formulas (7) for wx(g;) and Y(l) with
the parameters of the distribution (5) given in the table
describe the g; and | distributions of the cluster stars
averaged over P, fairly well (see Figs. 6b, 6¢). x(€) fits
the € distribution somewhat worse (see Fig. 6a), due to
the fact that the cluster includes two subsystems (core
and halo) with different € values (see above for a pos-
sible way to refine x(¢)).

To study the properties of the phase-space density
function that formsin cluster model 2 as a result of its

violent relaxation, we compared the (¢, n, C) stellar
velocity distribution averaged over P, with the corre-
sponding instantaneous distributions for each of the
seven equally spaced timest; in each of the 10 distance
intervals Ar; and for each of the intervals 0 < r < 1,

wherer; = zlj(zlArk,j =1, ..., 10. We also performed
an analogous comparison of the averaged (g, &, |) dis-
tribution of the cluster stars and the corresponding
instantaneous distributions. We used the Kolmaogorov
criterion in the comparisons; see[9] for adescription of
the technique used. We computed for each timet; I P,

the probabilities P(r A ;) that the differences in the

stellar parameters considered [(§, n, {) or (&, &;, I)]
for the distance interval r OA r| (e, r 0 [r_1 rl,
where r, = 0) were purely random and that the corre-
sponding samples of stellar parameters are drawn from
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Fig. 6. The n(e), n(€z), and n(l) distributions of the cluster

stars averaged over P, at time t = 1.31,,, for model 2 (solid
curves). The dashed curves show the x(€), w(€;), and W(l)

distributions for time t = 1.3t,, computed in accordance
with formulas (7) and the data from the table.

the same population. We also computed the probabili-
ties P(r UA r)) and dispersions o (r OAr) for the
deviations of P(r [A ry) from P(rn r;) averaged over
the seven timest; O P,. We performed anal ogous com-
putations for stars at distancesr <r;,j =1, ..., 10. We

will denote the computed probabilities and their disper-
sionsP(r<r)) and o5 (r <r)).

Let usfirst consider the comparison of the (g, €, I)
stellar distribution averaged over P, and the corre-
sponding instantaneous distributions. The probabilities

P(r<rpinthecluster (i.e,ar < R, seebelow) increase
with j and distance, from P(r <r,) = 0.55-0.65 to
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P(r<R;)=0.85-0.95, for all timesinthetable. Inthis
case, the characteristic o5 (r <)) are equal to 0.05-0.06.

Here, R, and R; denote the tidal radii of the cluster for
stars with “retrograde’ and “prograde’ motions, respec-
tively, when the star’s angul ar-vel ocity vector with respect
to the { axisisopposite or parallel to the angular-vel ocity
vector of the cluster with respect to the Z axis of the
Galactic rotation. The technique we used to estimate

R, and R/ from the distance dependences of the

squares of the velocities and velocity dispersions for
stars with prograde and retrograde cluster orbits is

described in [7]. In our models, R, =2R; .

Thus, the (g, &, |) distributions of the cluster stars
averaged over P, are statistically indistinguishablefrom
the corresponding instantaneous distributions, and the

probability that the differences between these two dis-
tributions are purely random for all timest; considered

isP(r<R;)=0.85-0.95.

The probabilities P (r CA 1)) fortimest = (1.3-1.5)T,,
increase with distance, from P (r [ r,) = 0.55-0.65 to
P (r [A r3) = 0.90; further, they decrease to 0.65-0.75
near r = R/, increase to 0.85-0.94 near r = R;, and
finally decrease to P(r A r,p) = 0.5. P(r CA 1)) =
0.60-0.65 at t > 1.5 x 1,,. They remain approximately
constant at r < R/, increase with r intheinterval R} <
r <R, reaching 0.85at r = R, and then decrease to
=0.5 in the interval r 0 Ary,. The o5 (r [A r;) vaues
are equal to 0.04-0.05 inside the cluster and increase to
=0.lar>R;.

It followsthat, for all Ar; intervalsinside the cluster,
the (&, &, |) distributions of the cluster stars averaged
over P, are statistically equivalent to the corresponding

instantaneous distributions with probability P (r [A 1)) =
0.6-0.9; i.e., thisis the probability that the differences
between the distributions can be attributed to random
fluctuations for al timest; in the period P, .

Let us consider the comparison of the averaged (E ,

n, Z) stellar velocity distribution and the correspond-
ing instantaneous distributions. For all times t in the
table, the probabilities P(r < r;) primarily decrease
with distance, from P(r <r,) =0.85t0 P(r< R;) =
0.65, or decrease from P (r <r,) = 0.75-0.85 to 0.61—
0.65 and thenincreaseto P (r < R; ) = 0.75. Thetypical
dispersions o (r <)) areequal to 0.05-0.07. It follows
that, considering the entire cluster, the probability that

the(é , N, {) stellar velocity distribution averaged over
P, and the corresponding instantaneous distributions

DANILOV

can be considered statistically equivdentis P(r < R;) =
0.65-0.75 [whichislower than the corresponding prob-
ability for the (g, g, 1) distribution], while the differ-
ences between them in velocity space can be consid-
ered to be random with the same probability for all the
timest; in the period P,. Indeed, the instantaneous dis-
tributions of the velocity magnitudes for cluster model 2
in Fig. 5 differ more from the average distribution than
the instantaneous (&, €, 1) distributions differ from the
corresponding average distributionsin Fig. 4.

Attimest = (1.3-1.5)1,,, the probabilities P (r [A r;)
decrease with distance, from P (r [ r,) = 0.75-0.85 at
the cluster center to =0.38-0.40 at the cluster periph-
ery. At t > 1.8 x 1,,, two regions with low probability

P(r [ rj) =0.51-0.53 forminthecluster, near r = R/

andr = R;. P(r OA r,) remains high and is equal to
=0.85. The dispersions o5 (r A r;) inside the cluster
are 0.04-0.10 in this case.

Note that, near the cluster center, P(r 0A r,) and

P(r <r,) are substantially lower for the distribution of
stellar coordinates (g, €, |) than for the distribution of

stellar veIocities(E, N, ). Thisisdueto thefollowing
specific features of the stellar distributions in (g, &, 1)

and (&, n, {) space. Thedistribution of € near theclus-
ter center differs appreciably from any of the € distribu-
tions for the cluster starsin Fig. 4a, since it has a max-
imum near € = —0.56 and contains a large fraction of
starswith small € <-0.5. According to Fig. 1, the mean
[80for stars in this € domain exhibit appreciable peri-
odic oscillations, which result in substantial variations
of the e distribution for stars near the cluster center dur-
ing the period P, . The distribution of the stellar velocity
magnitudes near the cluster center has a maximum near
Iv| = 0.38-0.40 km s and has only a comparatively
small number of starswith |v| > 0.7 km s, where peri-
odic oscillations of [Jv|Obecome appreciable. There-
fore, the stellar velocity distribution near the cluster
center undergoes much weaker variations over the
period P, than does the ¢ distribution of the cluster
stars, thisisreflected in the comparisons of the (g, &, 1)

and (¢, n, ) distributions of the cluster stars averaged
over P, and the corresponding instantaneous distribu-
tions (see above).

The largest changes of the stellar velocity distribu-
tion over the period P, a t = (1.3-1.5)t,, take place at
the cluster periphery, inthedistanceinterval R, <r < R}

[where P (r O Arj) = 0.38-0.40]; this separates in the
course of thecluster'sevolutionat t > 1.6 x T,, intotwo

regionswithlow P (r A 1)) = 0.5 and appreciable tem-
pora variations of the velocity distribution near the

tidal boundaries of the cluster at r ~ R andr = R; .
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The deviations of the instantaneous phase-space densi-
ties from the phase-space density of the cluster model
averaged over P, corresponding to these temporal vari-
ations of the stellar velocity distributions are due to the
departure of the cluster model from virial equilibrium and
nonstationarity of the cluster in the regular field. The most
important tempora variations of the stellar distributionsin
(€, &, 1) space over the period P, occur near the cluster cen-

ter and near r ~ R, . However, even here, the probabilities

P(r [A r) areequal t00.55-0.75; i.e,, they arefairly high.
Thus, this is the probability that the differences between
the instantaneous distributions of the cluster stars in
(¢, &, |) space and the corresponding distributions aver-
aged over P, are purely random.

According to Fig. 4 and the results of our statistical
comparison of the stellar distribution in (g, &, |) space
averaged over P, and the corresponding instantaneous
distributions, the distribution (5) with the parameters
given in the table are statisticaly indistinguishable
from the equilibrium distribution that developsin clus-
ter model 2, which is nonstationary in the regular field.
The linear form

©=0(r,v) = —ple-g-Bli-il-ye; @B

for (g, &, 1) in (5) is aso congtant over the period P, and
variesonly dightly over atimeinterva ~2t,,,. We now fix
the coordinates of the vectorsr and v. If © = congt, peri-
odic variations of the cluster potential U(r) at the point
r should produce oscillations (with period P,) in the
stellar distribution function, which are detected via
appreciable changes in the magnitudes of the stellar
velacities over the period P, (Fig. 5).

5. CONCLUSIONS

(1) The open-cluster models considered in this
paper develop an equilibrium stellar distribution in
(¢, &, 1) space over atimet = 1, which varies lowly at
t>1,,. The equilibrium in (g, &, I) space develops as a
result of relaxation in the absence of virial equilibrium.
The equilibrium distribution function f(e, &, |) for the
stars in the cluster models considered can be written
f(e, &, 1) ~ exp(©), where © isalinear form for the vari-
ables (g, &, 1), whose coefficients vary only dlightly
over a time interval ~2t,,. The equilibrium stellar
phase-space distribution function F(r, v) corresponding
to the equilibriumin (g, &, I) space and the regular cluster
potential vary periodicaly (or quasi-periodicaly) with
time. This equilibrium is probably possible due to an
approximate balance of the stellar transitions between
phase-space cells over time intervals equal to the oscil-
lation period for the regular cluster field.

(2) The local time for cluster relaxation toward the
equilibrium stateist, = 0.5 x 1, in the central regions
of both cluster models considered andt, = 1.1 x 1, and
t. = 1.5 x 1, a the peripheries of models 1 and 2,
respectively.
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(3) Att>r1,, the [80) [8;[) and lvalues averaged
over severa stars in intervals of €, &, and | remain
approximately constant over most of the domain S of
(¢, &, 1) space occupied by cluster stars at distances

r < R; . Near the boundaries of and outside S, both the
number of stars and the stellar density are small, and
(80 [8,[) and [lCare not constant in time. In the cluster
models considered, the dispersions a;, o, ;, and g, of
the deviations of &, €, and | from the corresponding
average values (gl [§;LJand [for stars occupying the
(¢, &, 1) intervals determined above have small (and
probably random) oscillations about certain constant
values throughout most of Sat t > 1,,. 0, and g, can
vary appreciably with time near the boundaries of and
outside S. The approximate constancy of the (0] [g,L)
() and (0, O ¢, 0)) valuesfor starsin the domain S of
(€, &, |) space at t > 1, indicates the formation of an
equilibrium stellar distribution function f(e, &, |) in the
cluster.

(4) At t; > 1,,, the probability that the instantaneous
distribution function for the cluster stars in (g, €, |)
space is statistically indistinguishable from the corre-
sponding distribution function averaged over the period
P, for oscillations of the regular cluster field at all times
tiandinal distanceintervals Ar; isP(r [A 1)) = 0.6-0.9.
In other words, this is the probability that the differ-
ences between the stellar distributionsin (g, €, |) space
averaged over P, and the corresponding instantaneous
stellar distributions are random in all distance intervals
Ar; considered (r < R;). On the whole, the stellar dis-
tribution functionin (g, €, |) space for the entire cluster
averaged over P, is statistically indistinguishable from
the corresponding instantaneous distributions with proba-
bility Pr < R/) = 0.85-0.95, while the differences
between them are random with the same probability for
all the times ¢; considered in the period P,. Our tech-
nigue for computing a cluster-model distribution func-
tionin (g, &, |) space averaged over P, can be used to
determine the equilibrium stellar distribution function
f(e, &z, 1) at the central time of the period P,

(5) The instantaneous and averaged stellar distribu-
tionsin velocity space are statistically indistinguishable
with probability P(r < R;) = 0.65-0.75 [i.e., somewhat
lower than for the (&, &, 1)-space distribution]. In the dis-

tanceinterval R <r< R, a t =(1.3-1.5) x 1,, and near

thetidal boundariesof theclusterr= R, at { > 1.6 x 1,,,
the probability that the instantaneous stellar velocity
distributions and the corresponding averaged distribu-
tions are statistically indistinguishable (i.e., differ only
randomly) isonly P(r [A rj) =0.4-0.5 for all timest; in
the period P,. The temporal variations of the instanta-
neous phase-space density of the cluster stars over P,
are due primarily to deviations from the stellar phase-
space density functions averaged over P, at the cluster
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Abstract—We present a mechanism to take into account angular-momentum loss in binary systems with non-
conservative mass transfer. In a number of cases, mass loss in the system can increase the orbital angular
momentum of the stars. Including this mechanism in evolutionary models substantially expands the domain of
stable mass transfer in binary systems. All observed cataclysmic binaries with known component masses fall
within the calculated area for stable mass transfer. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Cataclysmic variable stars are close binary systems
consisting of a low-mass main-sequence star that fills
its Roche lobe and a white dwarf. The main sequence
star (donor) loses matter through the region surround-
ing the inner Lagrangian point L,. The white dwarf
(accretor) accretes at least some of this matter via an
accretion disk or accretion columnsin polar areas (pro-
vided the white dwarf possesses a strong magnetic
field).

The physics and evolution of cataclysmic binaries
(and of low-mass X-ray systems, whose evolution is
similar) have been actively studied since the end of the
1960s (see, for example, [1-10] and references therein).
Theoretical studies of cataclysmic binaries have been
driven by the fact that their evolution is determined by
orbital angular momentum loss via gravitationa -wave
radiation [11, 12] and magnetic stellar wind [13-16].
A number of studies (see, for example, [17-19]) have
considered the effect of angular-momentum loss due to
matter outflow from the system over the course of acat-
aclysmic binary’s evolution, aswell as redistribution of
momentum between the components and accretion
disk. However, in the absence of gas dynamical calcu-
lations of masstransfer in binary systems, it was neces-
sary to study these processes in parametric approximar
tions.

Recent three-dimensional gas dynamical calcula
tions of gas flows in cataclysmic binaries (see, for
instance, [20, 21]) have shown that, in the course of
mass transfer, an intercomponent envelope is formed
around the binary, and a considerable fraction of the
matter lost by the donor leaves the system. In the
present study, we perform a numerical analysis of the
evolution of cataclysmic binaries taking into account
the results of these three-dimensional gas dynamical
calculations. In accordance with these results, in our

model for the evolution of acataclysmic binary, wetake
into account the loss of mass and angular momentum
by the system during mass transfer.

We pay special attention to the stability of the mass
transfer for various values of the donor mass M, and
donor-to-accretor mass ratio q = M,/M,. It is known
that mass loss from a star results in violation of its
hydrostatic and thermal equilibrium. Hydrostatic equi-
librium is reestablished adiabatically over the dynami-
cal time scale, while thermal equilibrium is reestab-
lished over the Kelvin time scale. The reestablishment of
the star’s equilibrium is accompanied by variationsinits
radius, which depend on the convective or radial stability
of the outer envel ope. For starswithmassM <= Mg and a
deep convective zone, and also for white dwarfs, mass
loss is accompanied by an increase of the star’s radius,
while, for stars with radiative envelopes, mass loss
results in contraction. The mass transfer in a close
binary system is unstable if, in the course of evolution,
the donor consistently tends to expand beyond its
Roche lobe. This occurs when the radius of the donor
R, increases more rapidly (or decreases more slowly)

than does the average radius of the Roche lobe.! It is
also possible for the radius of the donor to increase
while that of the Roche |obe decreases. Thus, the situa-
tion is determined by the ratio of the derivatives of the
donor radius 0R,/0M, and the average Roche-lobe
radius 0Ry, /0M,, which admitsthe possibility of unsta-
blemasstransfer even for starsthat contract asthey lose
mass.

Refining our understanding of the conditionsfor sta-
ble mass transfer has two interconnected objectives:

1 The average radius of the Roche lobeis defined to be the radius of
the sphere whose volume is equal to that of the Roche lobe.
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(a) To understand the 10% of cataclysmic binaries
with known component masses for which any combi-
nation of M, and q should make stable mass transfer
impossible under the standard assumptions about vari-
ations of the system’s angular momentum.

(b) To understand which detached systems consisting
of awhite dwarf and low-mass secondary can become cat-
aclysmic binaries at the beginning of their evolution (i.e,
for which of these systems stable mass transfer is poss-
ble), which is essential for modeling of the cataclysmic-
binary population. A smilar problem aso arises, for
example, in studies of low-mass X-ray binaries.

In Section 2, we describe the main factors determin-
ing the evolution of cataclysmic binaries and the condi-
tions for stable mass transfer in binary systems. Rea
sons to abandon conservative approximations are con-
sidered in Section 3. In Sections 4 and 5, we present a
model for the angular-momentum loss due to the non-
conservative character of the mass transfer, based on
three-dimensional gas dynamical calculations of matter
flows in semidetached binary systems. In Section 6, we
compare the results of calculations made for conserva-
tive and nonconservative evolutionary models. The
conditions for stable mass transfer in an evolutionary
model that is nonconservative with respect to mass and
angular momentum are determined in Section 7.

2. MAIN FACTORS DETERMINING
THE EVOLUTION OF CATACLY SMIC BINARIES

In the present study, we consider dynamically stable
mass transfer; i.e., we assume that, during mass trans-
fer, the state of the star can differ appreciably from ther-
mal equilibrium and the mass-transfer rate can exceed
appreciably a rate corresponding to the Kelvin time

scade(M =3 x 107 RL/M Mg yr!, withtheradiusR,
luminosity L, and mass M of the star in solar units). We
take the mass transfer to be unstable when the rate of
variation of the donor radius exceeds that for the effec-
tive radius of the Roche lobe: R, > Rg.. Using the
derivatives of radius with respect to the donor mass M,,
we can formulate the mass-transfer stability condition

7, = 0InR, dInRg
* 0InM, "~ dalnM,
The average radius of the donor Roche |obe can be esti-

mated, for example, using the interpolation formula of
Eggleton [22]:

= (g (D

q2/3
Rgp. = 0.49A
R 0697 +In(1+ ™)’
where A is the semimajor axis of the orbit. For q < 1,
the approximation of Paczynski [23] is more conve-

nient:
|:}1/3
AT 2)

RRL
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Thederivative of the Roche lobe radius can be expressed

6|nRR|__ dInA aln(RRL/A)
olnM, aInM2 olnM,

We can see from (2) and (3) that the variation of the
average Roche-loberadius as afunction of the decrease
of the donor mass is determined by the variations of the
masses of the donor and accretor and the distance between
them, i.e.,, on the mass and angular momentum lost from
the system. As arule, only the orbital angular momen-
tum of the system has been considered; i.e., the angular
momentum is taken to be the sum of the angular
momenta of the two stars, which are treated as material
points. Consequently, the angular momenta of the axial
rotation of the components, of the accretion disk (if it
exists), and of matter streams in the system are usually
not included in the total angular momentum. The devi-
ation of the donor’s angular momentum from that of a
point, which can be substantial, is not taken into con-
sideration [24]. This approach has been necessitated by
the extreme difficulty of taking all these factors into
account in calculations. In the ssimplified case we con-
sider here, the orbital angular momentum of a binary
system with acircular orbitis

MM,
(M; + M)

where G isthe gravitationa constant.

It is currently widely believed that the evolution of
cataclysmic binaries is determined by the loss of
momentum from the system via gravitational -wave radi-
ation (GWR) and/or a magnetic stellar wind (MSW)
from the donor, as well as via the transfer of mass
between the components. The standard model of close-
binary evolution supposes that the mass transfer itself
does not affect the momentum of the system and that its
influenceisonly indirect, viapossible masslossfrom the
system and carrying away of angular momentum with
the outflowing matter. Therefore, the variation of the sys-
tem’s orbital angular momentum can be written

dJ _ @ |, @30 +E‘f”D . )
dt Lot q;WR Eat E\L/]sw qoss

Let us consider the various components of (5).
(1) Angular Momentum Lossfromthe Systemvia GWR
The variations of the system’s orbital angular momen-

tum due to the radiation of gravitational waves can be
written [25]

@indg  _ _3_2G_3M1M2(M1+ M)
U ot DGWR 5¢° A

where c isthe speed of light. One characteristic feature
of GWR is the very strong dependence of its intensity
on the orbital semimgjor axis and, accordingly, on the
orbital period. GWR is substantial for short-period sys-
tems with orbital periods P, = 10", since only in this

3)

J = Gl/2A1/2 (4)

; (6)
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case does the characteristic time for momentum loss
become shorter than the age of the Universe.

(2) Angular Momentum Loss from the System via a
MSW from the Donor

A mechanism for angular momentum loss via a
MSW from the donor was suggested in [13, 14]. If the
donor possesses a convective envelope and, accord-
ingly, a surface magnetic field, its intrinsic axial rota-
tion is inhibited by the magnetic stellar wind, and the
angular-momentum loss rate can be appreciable even
when the mass loss rate is small. The subseguent syn-
chronization of the donor axial rotation and the orbital
rotation, due to tidal interactions between the compo-
nents, results in a loss of orbital angular momentum
from the system and the decrease of A. A semiempirical
formula from [16], which is based on extrapolation of
the dependence of rotation velocity on age for G main
seguence stars found by Skumanich [26] to the K and M
components of cataclysmic binaries is most frequently
used to take this effect into account. The decrease of
orbital angular momentum as a function of time given
by thisrelationis

2 4
@Indg  _ 28 2 (M1 + Mp)'R,
T, = 05X 107K Ce

Here, k isthe gyroradius of the donor and C is a coeffi-
cient determined by comparing theoretical calculations
with observations. Based on the observed magnetic-
field decay for stars with masses smaller than ~0.3M,,
Spruit and Ritter [27] proposed that the total mixing
that occursin these stars when their masses decrease to
this limit results in an abrupt “switch off” of the
dynamo mechanism responsible for the generation of
the stellar magnetic field. At that time, thetime scalefor
angular-momentum loss determined by equation (7) is
shorter than the thermal time scale for a star with mass
~0.3Mg, and the star is no longer in thermal equilib-
rium. In this case, the star’s radius exceeds the radius of
a star with the same massin thermal equilibrium.? When
the action of the MSW carrying away angular momentum
from the system terminates, the rate of decrease of the
orbital semimajor axis sows, the donor-star radius
decreases to its equilibrium value, and the star shrinks
within its Roche-lobe surface [27]. Since the binary con-
tinues to lose angular momentum via GWR, its compo-
nents continue to approach each other dowly and, after
some time, the main-sequence star again fills its Roche
lobe. The further evolution of the system is determined
by the loss of angular momentum via GWR.

It is currently thought that termination of the MSW
after total mixing of the donor-star material can explain
the so-called gap in the observed orbital periods of cat-
aclysmic binaries. The theoretical width of this gap
compared to its observed value determines the choice

)

2 For a discussion of the reaction of stars to mass loss on various
time scales see, for example, [5, 9].
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of the coefficient C in (7). In accordance with the
results of [7], we adopted C = 3.0.

(3) Angular-Momentum Loss by the System During
Matter Outflow

Asarule, the possibility of mass loss from the sys-
tem has been treated as a parameter in theoretical stud-
ies of the evolution of cataclysmic binaries and related
systems; for example, this parameter could be varied in
order to reach consistency with observational estimates
of the cataclysmic-binary minimum period [1]. More
specific assumptions about the evolution of the system
were made only in the following cases.

(&) The rate of capture of matter by the accretor
(awhite dwarf) islimited by the rate of hydrogen burn-
ing (~1077-107% Mu/yr), while the donor mass-loss rate
appreciably exceeds thislimit, not exceeding, however,
the Eddington limit for the dwarf, which is close to
1.5 x 10> Mg /yr (see, for example, [28, 29]). The excess
matter can be lost via stellar wind [30].

(b) Matter is lost in flares on the white dwarf (see,
for example, [17, 31-33]).3 In both cases, it is usually
assumed that the specific momentum of the matter
flowing from the system is equal to the specific
momentum of the accretor.

To describe mass and angular-momentum loss from
the system, it is convenient to use parameters character-
izing the degree of nonconservation with respect to
mass [34]

B = _%‘ = _%‘
M,  OM,
and angular momentum:*
_J,J _ alnJ

‘“‘ﬁﬁ‘alnm’ ®)
whereM =M, + M,.

In this case, the loss of angular momentum carried
from the system by outflowing matter assumesthe form

IO
Lot

In cataclysmic-binary evolution calculations, an
equation for the orbital semimajor axis as afunction of
time is used rather than the time dependence of the
angular momentum of the system; the former equation
can be derived from the latter. Let us differentiate
expression (4) for the orbital angular momentum of the

= (1-B)Maps.

0SS

31N thetwo last studies, the angular momentum loss due to interac-
tions between the donor star and the envelope gected by a nova
was also considered.
4The specific ¢ angular momentum carried from the system in
QAZ units, where Q isthe angular velocity of the orbital rotation,
is sometimes used instead:
: ] M, M
Jioa?=32 -9 = 172
M M H

a = g, H
(1+q)° M
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system and substitute the result into (5), making use of

the relation My = —B M. Then, the variation of the
orbital semimajor axis can be written

gAD. DAD A0 A0 A0 (o
Odt0 00t~ 0ot " 00t e+ L0t Gygy

Here, the subscript “trans’ reflects variation of A as a
result of mass transfer between the components. Note

“ , 9J0
that, if thereisno “trans’ term Che D

trans

in (5), the cor-

A
responding term B‘% n E

trans

(9), as naturally follows from the dependence of the
orbital angular momentum on both the orbital semima-
jor axis and the mass of the components. For the case
of conservative mass transfer (with respect to mass and
angular momentum), variation of the orbital semimajor
axis is determined by the assumption that the mass
transfer does not affect the orbital angular momentum
of the system. During the mass transfer, matter with
specific angular momentum from the donor iscarried to
the accretor, and eventually acquires specific momen-
tum from the accretor. If the orbital angular momentum
is constant and the donor is less massive than the accre-
tor, the excess angular momentum of the accreted mat-
ter should increase the orbital momentum, so that the
mass transfer increases the semimajor axis of the orhit.
If the donor is more massive, the deficit angular
momentum of the accreted matter should be taken from
the orbital angular momentum, so that the masstransfer
decreases the semimajor axis.

In our modeling of the evolution of a cataclysmic
binary, we simultaneously calculated the evolution of
the donor and the time variation of the orbital semima-
jor axis of the binary. We did not take into account the
evolution of the accretor, except for variations in its
mass. Let us consider the parameters determining the
time evolution of the semimajor axis. Using the param-
eters 3 and ), we derive formulas for the components
of equation (9), where massis givenin M, distancein
Ro, and timein years:

PAD

term is present in equation

M,—-M,;

OotO, . ~ ZAWBM2' (10
E%_’I_EWR = —1.65x 10‘9'\/'1'\/'2(2/'3l M)
B%’?ELM = —6.06 % 10‘70('\/'1'\/Il )’ E’}E (13)

As we can see from (10)—(13), the mass ratio g is
one of the main parameters determining the variation of
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Ry, . Since the variation of R, depends on M, and Mz,
the “mass ratio ¢—donor mass M,” diagram is useful
for determining the boundaries of the domain of stable
mass transfer.

In anumber of cases, expression (3) can be simpli-
fied and andytica formulae for the derivative of the
Roche lobe radius can be obtained. In particular, in the
absence of angular-momentum loss due to GWR and
MSW, we can obtain the dependence of the distance
between the components [the first term in (3)] on their
mass ratio and the parameters 3 and Y from (10) and (11):

dInA _ 2¢(1- B)g+aB+29°B—q— 2
alnM, 1+q

For the second term (3), using (2), as suggested by
Paczynski [23], we obtain for Ry,

oIn(Ra/A) _ 1 19(1-B)

oinM, 3 3 1+q °

From (14) and (15), we havefor totally conservative
mass transfer without mass and angular-momentum
loss by the system (B = 1)

0InRgy. _ 2 5

(14)

(15)

ainm, 9473
In so-called Jeans mass | o0ss, there is no mass trans-

fer in the system, but the donor loses matter viaits stel-
lar wind, which leaves the system, carrying away spe-

(16)

cific momentum from the donor (B = 0, Y = 1/q). We
obtain in this case
1
dInRy 3~ M an
alnM,  1+q

For the case of a stdlar wind from the accretor, when
al the matter lost by the donor flows onto the accretor but
somelater leavesthe system, carrying away specific angu-
lar momentum from the accretor (here, we must formally
adopt 3 =0and Y = q), we have

1+q (13)

At any stage of evolution, a comparison of the rates
of variation of theradii of the donor and the Rochelobe (3)
determines the type of mass transfer (i.e., stable or
instable). There are two methods for determining the
boundary of the domain of stable masstransfer. We can
directly calculate the derivatives of the donor radius

with respect to massfor various M. and compare them
with derivatives of the average radius of the Roche
lobe, which depend on M, M,, and A, as was done, for
example, in [35]. In thisway, we can delineate the area
of the g — M, diagram in which mass transfer is dynam-
icaly stable and identify areas in which mass transfer
should occur on various time scales: the Kelvin, nuclear,
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or momentum-loss time scale. Alternatively, we can
adopt as a condition for stable mass transfer that the
accretion rate immediately after the donor Roche lobeis
filled not to exceed the Eddington limit for dwarfs. This
approach is justified by the fact that evolution calcula
tions often yield very high mass-loss rates immediately

after the Roche lobe filling, after which M decreases
rapidly. In essence, this approach limits the dynamical
stability of the masstransfer but makesit possible for the
star to lose mass on the thermal time scale.

3. DOMAIN OF STABLE MASS TRANSFER
IN A MASS-CONSERVATIVE
CATACLY SMIC-BINARY MODEL

Figure 1 presents the boundaries for the domain of
stable mass transfer determined using standard mass-
conservative models for cataclysmic-binary evolution.
Boundary 1 wasfound in[35], and boundary 2 was pre-
sented in [36]. These are in good agreement in the area
of low donor masses but differ somewhat at large
masses. Since the technique used to calculate this
boundary was not described in [36], we can only sup-
pose that these discrepancies result from differencesin
the codes used, the ways in which possible attenuation
of the donor's MSW at masses exceeding ~1Mg, was
taken into account, and the methods used to calculate
the derivative of the stellar radiusin this area.

Figure 1 also plots cataclysmic binaries with known
component masses from the catalog [37]. Among the
80 systems plotted, 11 cataclysmic binaries are in the
domain of unstable mass transfer. For eight of these
11 systems, the errors are known and marked in Fig. 1
with bars. We can clearly see that the location of these
stars in the domain of unstable mass transfer cannot be
explained solely by the errorsin the component masses.
The cataclysmic binaries whose parameters Smith and
Dhillon [38] consider to be most accurately determined
are also indicated in Fig. 1. For a number of systems,
refined mass values are given in [38], which are some-
what different from thosein [37]. Nonethel ess, even for
these well-studied cataclysmic binaries, the situation
remains unchanged: Three of 22 systemsfall in thefor-
bidden area.

To explain this result, we will consider a model for
cataclysmic-binary evolution in which we assume mass
and momentum loss from the system. This assumption
is grounded in the results of our previous three-dimen-
sional gas dynamical calculations of matter flows in
close binary systems.

4. CALCULATION
OF THE ANGULAR-MOMENTUM LOSS
RATE IN THREE-DIMENSIONAL GAS
DYNAMICAL MODELS

The above analysis shows that evolution calcula-
tionscritically depend on two parameters: the degree of
nonconservation of the mass transfer with respect to
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Fig. 1. Plot of donor-to-accretor mass ratio g versus donor
mass M,. Cataclysmic binaries from [37] are marked by
asterisks and circles (the circles denote less reliable data).
For some stars, errors are indicated. Cataclysmic binaries
from [38] are marked with triangles. The dashed line 7 indi-
cates the boundary of the domain of stable mass transfer
according to [35], and the dashed line 2 shows the same
boundary according to [36]. The solid line 3 delineates the
domain of stable mass transfer derived in the present study.
The dash—dot lines indicate the upper (M; < 1.4 M) and
lower (M; = 0.15 Mg) limits for the mass of the accretor,
which is awhite dwarf.

mass 3 and angular momentum . These parameters
can be estimated only through three-dimensional gas
dynamical modeling of the mass transfer in cataclys-
mic binaries. Such studies have been made for binary
systems with mass ratio g = 1/5[20] and g = 1 [21].
In addition, to study the effect of q on the flow pat-
tern, we made numerical simulationsfor a system with
g=>5.

The calculations indicated that the mass transfer
remains nonconservative for all q values, and the
degree of nonconservation is 3 ~ 0.4-0.6. The typica
flow patterns in three-dimensional numerical simula-
tions aso indicate that matter leaves the system with
substantial angular momentum. However, determining
the degree to which the mass transfer is nonconserva-
tive with respect to angular momentum proves to be
more difficult. Let us consider the equations determin-
ing angular-momentum transfer in the system. Since
viscosity playsan important rolein redistributing angu-
lar momentum in the system, we must consider the
Navier—Stokes equations. From the stationary gas
dynamical equations for the x and y components of the
velocity in arotating coordinate system (here, u = (u, v, w)
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isthe velocity vector, p the dendity, % the stress tensor, ©
the Roche potential, and Q the orbita angular velocity)

ua_u+ VaU+Wa_LJ+1-|]39)xx+ag>xy+ag)xz|:|

ox ay o0z pUax oy oz U
= —%% +2Qv,
u% + v%—\; w%—‘; + F—l) Eﬁg)xyx + GZPJV + G?ZVZB
= —%;;) —2Qu,
we obtain the equation for angular-momentum transfer
ug%( ¥ v% +w%§ ¥ F—l)((r o) X diVP),

= —((r —reu) x grad®),,

wherer o, isthe radius vector for the center of mass of
the system, and the angular momentum A (in the labo-
ratory coordinate frame) is determined by the expres-
sion

A= (X=Xem)V = YU+ Q((X=Xew)” +Y)

= (X=Xem)(V + Q(X—Xcu)) —y(u—Qy).

Let us write the equation for angular-momentum trans-
fer in divergence form:

div(pAu) + ((r —rcy) x divp),
= —p((r =rcm) x grad®),.

This yields an integral expression for variations in the
angular momentum:

IpAu [dn +I((r —rew) X Pdn),

= [P((r =T ow) x grad®) 0V = T1.
\

The value of INM describes angular-momentum varia-
tion due to the noncentral character of the force field
determined by the Roche potential. The quantity

F = pAu+2r" (r'=(=y, X—Xcm 0)) (19)

represents the angular-momentum flux density A. Asa
result, we obtain for the stationary case

—(Fn = (Fn+ (F Cdn -11,
frem=fred

FEDOROVA et al.

where Z, isthe boundary of the donor, Z, is the bound-
ary of the accretor, and Z; is the outer boundary. By
analogy with the mass flux from the system

M = —!pu [dn,

we can estimate the angular-momentum flux from the
system

J= —ZIFEdn

and use thisin our expression for the parameter speci-
fying the degree to which the evolution is nonconserva
tive with respect to angular momentum (8).

Note that, in our simulations, we solved the Euler
equations for a nonviscous gas rather then the Navier—
Stokes equations. Accordingly, to calculate the integral
(20) in the expression for the momentum flux density F
in the stress tensor %, only the isotropic term corre-
sponding to the gas dynamical pressure was taken into
account: P = Pd,e. This substitution is completely
justified, since viscosity does not play an appreciable
role at the outer boundary of the domain wheretheinte-
gral (20) is calculated.

Applying expression (20) to the simulation of asys-
tem with q = !/5 [20], we obtain the value Y ~ 6, which
corresponds to a = 0.83 (see the determination of a
given above in Note 4), while we obtain ) ~ 5 for a
binary system with q = 1 [21], which corresponds to
o = 1.25. Thislatter value is consistent with the results
of Sawadaet al. [39], who obtained o = 1.65 for a binary
system with equal component masses.

However, applying these estimates to | in our evo-
lution calculations indicated that the angular-momen-
tum loss rates in binary systems are so high that, in
most binaries, the mass transfer quickly becomes
unstable and the donor mass-lossrate beginsto increase
without bound. Apparently, it is not entirely correct to
use formula (20) to estimate the angular-momentum
loss in cataclysmic-binary evolution calculations, since
the gas dynamical and evolutionary models do not fit
together well. The gas dynamical model does not take
into account variations of the stellar positions in time
(the distance between the componentsis assumed to be
constant), so that variations in the angular momentum
of the gas due to the noncentral character of thefield N
are not compensated by corresponding variationsin the
angular momenta of the stars.

A more general gas dynamical model taking into
account variations of the positions of the stars would
enabl e correct estimation of the variations of the system
angular momentum in the form of a momentum flux-
density integral for the flux through the outer boundary
of the closed “donor + accretor + gas’ system. Due to
difficulties in the gas dynamical calculations, however,

(20)
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such estimations are possible only for a specific stage in
the life of a binary. Moreover, the gas dynamica results
cannot be directly used in standard evolutionary models,
which do not take into account the presence of intercom-
ponent matter in the system. Therefore, in the nearest
future, an approach in which a simplified model for
angular-momentum transfer in the system is devel oped
on the basis of gasdynamical calculationsislikely to be
promising; the results of this smplified and parame-
trized model can then be used in evolution calculations.

5. A SIMPLIFIED MODEL FOR ESTIMATING
THE ANGULAR-MOMENTUM LOSS RATE
IN SEMI-DETACHED SYSTEMS

Gas dynamical modeling of mass transfer in
semidetached systems suggests that the outflow from
the donor’s surface passes through a quite small area
near L, so that the specific angular momentum of the

outflowing matter can be estimated as A = QA%
where A = [x.— X, |isthedistancefrom L, to the center

of the mass of the system. Accordingly, the angular-
momentum flux from the donor surfaceis

Fr = A M2 = QA°M,.

Since the mass transfer is nonconservative, only
some fraction 3 of the matter flowing through L, is
accreted, and the specific angular momentum of the
accreted matter is equal to the specific angular momen-
tum of the accretor (neglecting the finite radius of the
accretor and/or the residual momentum of the matter,
which is a reasonable approximation for cataclysmic
binaries). In this case, the accreted matter possesses
zero angular momentum relative to the accretor in the
rotating coordinate frame. Consequently, it does not
spin up the accretor; i.e., the problem of the efficiency
of the transfer of momentum from the axial rotation of
the accretor to the orbital motion of the system need not
be considered. As aresult, the flux of angular momen-
tum onto the accretor is

1

2
F} = Ao BM2 = QEM—ZDAZBMz.

Om O

The expressions for the flux of angular momentum
from the donor to the accretor correspond to the general
formulafor the angular-momentum flux density F (19).
As at the outer boundary, viscosity does not play an
important role near the surfaces of the donor or accretor,
where the matter has already lost its angular momentum
completely, and the flow is radial in the rotating coordi-
nate frame. Consequently, in this case, the stress tensor
reduces to an isotropic pressure, which does not con-
tribute to the integral of the angular-momentum flux
density.
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These considerations enabl e us to write the momen-
tum flux lost by the system in the form

2

R = n(Fr—Fy) = n%)AzMz—QBMVZE ABME
where n is a parameter determining the fraction of
intercomponent-envelope momentum carried away by
the matter leaving the system. Then, 1 —n is the frac-
tion of the angular momentum of the intercomponent
envelope that returns to the system via tidal interac-
tions. From this point on, we will assume that n = 1,
i.e., al the momentum of the intercomponent envelope
is carried away with matter leaving the system.

In this case, the specific angular momentum of the
matter leaving the system is

QA*M —BEM—ZDZQAzM
2 DM 0 2

(1-BIM2

or, in units of the specific angular momentum of the
SySten’] ()\w = QAZMle/Mz),

l-|J = )\I oss/)\ syst

1 f oo d f
_ %(Q)—mD—BtmD(l+q)2

1-B q
where f(g) = x_ /A is the dimensionless distance from
the donor center of masstoL,.

Note that (21) was derived assuming coaxia syn-
chronousrotation of the binary components. The angular-
momentum loss due to matter outflow through the vicinity
of L, canh make the intrinsic rotation of the donor star and
the orbital rotation of the system become noncoaxial
[40]. Although the flow structure in systems with
noncoaxia, asynchronous rotation was treated previoudy
in [41], we will not consider this effect here, due to the
simplified form of the evolutionary models under study.

Figure 2 presents a plot of the relation Y(q) for var-
ious degrees of nonconservation 3. Thisfigure also pre-
sents the values Y = 0 and Y = 1, marked with dashed
lines. Inthe domain Y > 1, the angular momentum carried
out per gram of matter leaving the system exceeds the
average specific momentum of the system, resulting in a
decrease of the binary’s specific momentum:

oo
6tD\/ID< 0.

In the domain 0 < Y < 1, the angular momentum carried
out per gram of matter leaving the system is smaller than
the average specific momentum of the system, so that

[Antin
6tD\/ID>0'

Aloss = FlAOSS/Mloss =

21)
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Fig. 2. Dependence of the degree of nonconservation with
respect to angular momentum y on the mass ratio q for var-
ious degrees of nonconservation with reference to mass 3
[see(21)]. Thedashed linescorrespondto y=0and P =1. The
thick dashed curve shows the dependence g = (1 + g)*/g, cor-
respondingto a = 1.

As we can see from Fig. 2, for most cases of non-
conservative mass transfer (with the exception of 3 ~ 0),
) becomes negative for some range of g. In this case,
the redistribution of angular momentum in the closed
“donor + accretor + gas’ system, due to the outflow of
matter to infinity, increases the total momentum of the

binary: J > 0. It is obvious that such “pumping” of
angular momentum into the system can stabilize the
mass transfer in cataclysmic binaries. For example, a
qualitative examination of variations in the orbital
semimajor axis resulting from mass transfer indicates
that, in conservative models, the mass transfer tends to
increase the semimgjor axis only when g < 1. In “non-
conservative” models, the interval of g in which both
mass transfer and mass loss from the system tend to
increase the semimajor axis is considerably broader:
When 3 = 0.5, thisoccursfor 0 < q< 2.8.

The dependence Y(qg, B) [see Fig. 2 and (21)] dis-
plays the following interesting peculiarity: The (q)
curves for different values of 3 go through a common
point. The position of this point corresponds to the case
when the center of mass of the system is exactly
between L, and the accretor, since, in this case, P does
not depend on B. Fortunately, this does not affect the
solution.

Three-dimensional simulations of the gas dynamics
of matter flows in cataclysmic binaries confirm that,
depending on the component mass ratio g, the matter
outflow from the system can either decrease or increase
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Fig. 3. Velocity vectors in the equatorial plane for three-
dimensional gas dynamical calculations for a binary with
M,/M; =1:5(q=1/5, top) and withM,/M; =5:1(q=5,
bottom). The position of the accretor is marked by an aster-
isk. The shaded area showsthe donor, and the dashed curves
its Roche equipotentials. The vector in the upper right cor-
ner corresponds to a velocity 3AQ.

the total angular momentum of the system. The typical
flow patternsfor syssemswithM,/M, =1:5and M,/M, =
5: 1 (Fig. 3) indicate that, in the laboratory coordinate
frame, the gas flowing out of the system rotates in dif-
ferent directions relative to the orbital motion (in both
Figs. 3a and 3b, the orbita motion is counterclock-
wise). Accordingly, in the solutions, the variation of the
total angular momentum of the binary system displays
oppositesigns: For q='/5, the momentum of the system
decreases, whilefor q =5, it increases.

A reasonable physical explanation for the different
types of gas dynamical solutions obtained is provided
by the following qualitative picture.

(1) The flux of matter leaving the system through
the vicinity of the outer Lagrangian point L, is made up
of intercomponent gas whose angular momentum is
sufficient for it to overcomethe gravitation of the accre-
tor. The initial velocity of this matter (in the rotating
coordinate frame) coincides with the direction of the
orbital motion.

(2) The velocity of gas leaving the system varies
depending on the gravitation of both components of the

ASTRONOMY REPORTS Vol. 44 No.5 2000
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system, the centrifugal force, the Coriolisforce, and the
pressure force. Variations in the azimuthal velocity of
the gas are determined primarily by the Coriolis and
gravitational forces, since the centrifugal force is cen-
trally symmetric and the deviation of the pressure from
central symmetry is also small. The action of the Cori-
olis force deflects the flux in the direction opposite to
the orbital motion. In turn, the initial flux of matter
leaving the vicinity of L, can be divided into two parts:
The first maintains the direction of its initial motion,
while the second, being deflected by the Coriolisforce,
assumes the opposite direction. The predominance of
one or the other flux determines the final direction for
the gas motion in the stationary solution.

(3) In a centrally symmetric gravitational field, the
effect of the Coriolis force obviously cannot result in a
solution where the direction of gas rotation does not
coincidewith the orbital rotation in thelaboratory coor-
dinate frame. The situation is fundamentally different
when the field of the binary is not central. In this case,
the gravitation of the donor star can additionally accel-
erate the matter of the flow, resulting in a solution with
the opposite direction of gas rotation in the laboratory
coordinate frame.

(4) 1t follows from (21) and Fig. 3 that there exists
an interval of g for which the gas in the system moves
opposite to the orbital rotation. This corresponds to the
case when the gravitation of the donor star becomes
sufficient to accelerate the gas to the extent required
(theleft boundary of theinterval) but is not so high that
it leads to inverse accretion back onto the donor (the
right boundary of theinterval). For all other values of q,
the flux in the direction of the orbital rotation prevails.

The presence of an additional interval of g where
nonconservative mass transfer is accompanied by an
increase in the momentum of the binary expands the
domain of stable mass transfer. This can be displayed
withaq- ¢ plot, frequently used to qualitativeillustrate
the problem of mass-transfer stability in cataclysmic
binaries. Curves corresponding to analytical formulas
for the derivative of the Roche-lobe radius with respect
to the donor mass (g, can be drawn, together with lines
corresponding to the derivative of the star’s radius with
respect to the mass (., which is known from studies of

their internal composition (see, for example, [35]). The
mass transfer will be stable for the interval of g where
the {g,_ curve passes below theline {,, for the donor star

of the corresponding type. Such a plot is presented in
Fig. 4, which contains the derivative of the Roche-lobe

, 0InR

for the case when the momentum loss is described by
(21) for various values of the mass nonconservation
parameter . Figure 4 also shows the dependences
(. () for masstransfer that is completely conservative
with respect to mass and momentum and for cases
when matter leaves the system and carries away spe-

as afunction of the mass ratio q

ASTRONOMY REPORTS Vol. 44 No.5 2000

317
Cres G
Accr-wind
1.0
_______________________ B=0.7
B=0.5
=03

-1.0

-2.0 ' ' !
0 1.0 2.0 3.0

q=M,/M,

Fig. 4. Dependence of the logarithmic derivative of the
Roche-lobe radius with respect to donor mass (g =

0InRy,
aInM,

degrees of mass nonconservation 8 [(3) and (21)]; depen-
dence of the logarithmic derivative of the donor radius with

on the mass ratio g (thick curves) for various

dln
respect to {,, = cWMZz on q (thin curves) for the case of

mass-conservative transfer [“cons,” equation (16)], a Jeans
mass-loss regime [“Jeans,” equation (17)], and a stellar
wind [“accr-wind,” equation (18)]. The dashed curvesindi-
cate (., values for totally convective and degenerate stars

(€4 ==1/3), roughly solar-mass main-sequence starsin ther-
mal equilibrium ({,. = 0.6), and subgiants with degenerate
low-mass helium cores (,, = 0).

cific angular momentum from the donor or accretor.

The derivative (,, = %
2

degenerate stars (., = —1/3), roughly solar-mass main-
sequence stars in thermal equilibrium (¢, = 0.6), and

subgiants with degenerate low-mass helium nuclei
(€4 = 0) arealso plotted. We can seethat, in accordance

with (21), masslossfrom the system is able to stabilize
the mass transfer from the donor over a substantialy
broader interval of gthaninthe case of conservativetrans-
fer. Note that, in the case of conservative masstransfer for
astar with mass of the order of M, thetransfer time scale
is determined by the momentum-loss or nuclear time
scale for g < 1.2 [35], but, in the case considered, the
corresponding boundary for q is aso appreciably
higher.

We note again that, in the case under study, thereis
a region of ungtable mass transfer for smal g. The insta
bility—i.e., the failure to satisfy condition (1)—results

for totally convective and
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Fig. 5. Evolutionary tracksin the “orbital period-ogarithm
of the donor mass-loss rate” plane for systems with initial
component masses M; = 1.0 Mg, M, = 1.0 Mg, (top) and
M; = 0.28 Mg, M, = 1.0 Mg, (bottom). Tracks 1 and 3
(dashed) are “conservative,” and tracks 2 and 4 (solid) are
“nonconservative.”

from the rapid increase of theratio of the lost to the aver-
age specific momentum of the system [see (14) and (21)].
This can lead to the destruction of a donor with very
low mass.® Thus, it is possible that some cataclysmic
binariesthat start their evolution as stable stars end with
the catastrophic destruction of the donor when q
decreases below some lower limit.

6. EVOLUTION OF CATACLYSMIC BINARIES
LOSING MASS AND MOMENTUM

In order to take into account the results of three-
dimensional gas dynamical calculations of mass trans-
fer in cataclysmic binaries and corresponding estimates
of the loss of momentum from the system via matter
outflow, we have studied the evolution of cataclysmic
binaries with various assumptions about the extent to
which it is conservative.

5 Another case of mass-transfer instability for small q is known,
brought about by low efficiency of the tidal interaction between
the accretion disk and orbital motion (see, for example, [42, 43)]).
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We calculated the evolution of the donor using a
modified version of a code designed for studies of low-
mass stars, used previoudly in [7, 10, 44-48]. The code
uses the opacity tables compiled by Hebner et al. [49],
supplemented at low temperatures with the tables of
Alexander et al. [50], and the equation of state derived
by Fontaine et al. [51], with the corrections of Denisen-
kov [52]. We adopted nuclear reaction rates in accor-
dance with [53, 54].

All calculations assumed that the donor fills its
Roche lobe immediately after the star reaches the zero-
age main sequence. The donor mass was taken to be
between 0.1 and 1.2M,, with various mass ratios q. We
assumed the donor had a chemical composition X =
0.70, Y=0.28, Z=0.02. In calculations for the convec-
tive temperature gradient, we took the mixing length
parameter I/H to be 1.8. We used the method suggested
by Kolb and Ritter [55] to calculate the mass-l0ss rate
of the donor for a given donor radius and average
Roche-lobe radius. Based on the earlier results of gas
dynamical calculations, when considering nonconser-
vative evolution, we assumed that the fraction of matter
accreted by the dwarf 3 was 0.5 and that the momentum
carried away by matter leaving the system was deter-
mined by (21). We did not take into consideration pos-
sible mass and momentum loss due to the gection of
matter in flares.

Let us consider the evolution of cataclysmic bina-
ries with stable mass transfer in a mass-conservative
model. Figure 5 (a plot of orbital period vs. the loga
rithm of the donor mass-loss rate) presents two tracks,
one calculated in the “conservative” approximation
(track 1) and the other in the “ nonconservative” approx-
imation (track 2). The initial masses of both the donor
and accretor are 1.0 M. We can see that there are no
fundamental differences between tracks 1 and 2. In the
initial stage of evolution of the cataclysmic binary, the
predominant factor is the loss of momentum from the
system via a MSW from the donor. As a result of this
momentum loss, the orbital semimajor axis and period
decrease in the course of the system’s evolution. With

the decrease of the donor mass and radius, PAD
at EL/ISW

the MSW also decreases [see (13)], which, after some
time, results in a gradual decrease of the donor mass-

loss rate M. My is appreciably smaller for the non-
conservative track than for the conservative track, since
Y is negative at this stage of the evolution (Fig. 2), and
the total loss of orbital angular momentum in the non-
conservative system is smaller than in the conservative
system. At later stages of evolution, after g decreases
enough that the loss of momentum for the nonconser-
vative evolution increases sharply, the situation is
reversed.

After the star becomes totally convective, the MSW
from the donor terminates. The stellar massfor which total
mixing occurs depends on the extent of deviation from
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thermal equilibrium. Equilibrium models for main-
sequence stars become totdly convective a masses
~0.36M,; stars in binary systems losing mass become
totally convective at smaler masses, close to 0.25-
0.30M, (for our assumptions about the chemical com-
position and opacity of the stellar matter).

For the conservative track, mixing occurs when M, =

0.265M, (at thistime, P, = 3'.‘27), while, for the non-
conservative track, mixing occurs when M, = 0.249M,

(Pyp=3 '.‘54).6 Thus, the donor mass and orbital period
corresponding to the upper boundary of the gap in the
cataclysmic-binary periods differ little for the conser-
vative and nonconservative tracks.

After the donor MSW ceases, the momentum loss
rate in the system decreases dramatically, and the
approach of the two components decelerates. As a
result, the donor is no longer able tofill its Roche lobe,
and its mass loss terminates. Since the radius of the
donor exceeds the radius of a main sequence star in ther-
mal equilibrium when the M SW ceases, the donor radius
decreases to its equilibrium value [27]. Consequently,
the ratio of the radii of the donor and its Roche lobe
decreases even further. The only factor determining the
evolution of the system during this detached stage of
evolution is GWR, which causes the stars to dowly
approach until the donor again fills its Roche lobe and
the mass transfer resumes. During the detached stage,
the system is not manifest as a cataclysmic binary, so
that it “disappears’ during some interval of periods.
This provides an explanation for the observed gap in
the periods of cataclysmic binaries.

The observed period gap is between 2" and 371
[37]. The edges of the theoretical period gap depend on
the rate of momentum loss viathe MSW and theinitial
physical parameters of the evolution code, which deter-
mine the theoretical radii of the gtars. The code we used
overestimates the lower boundary to some extent. The

edges of the gap for the conservative track were 2"53"3,
while those for the nonconservative track were 2"4—

3"5. The discrepancy is due to the different rates of
momentum loss before the gap and also to the different
masses of the accretors after termination of the first
semidetached stage of evolution.

Note that a pronounced deficiency of cataclysmic
binaries is observed in the period gap, rather than their
total absence [37]. The presence of cataclysmic bina-
riesin the gap can be understood as follows:

6 Since we areinterested in the details of cataclysmic-binary evolu-
tion related to possible nonconservation of mass and momentum,
we formally continued our calculations after the accretor reached
the Chandrasekhar mass, despite the fact that the evolution of real
systems s interrupted at this time by thermonuclear explosion of
the white dwarf. In principle, our extension of the calculations for
M; > Mgy, = 1.4 Mg is justified by the fact that, in redlity, the
accretion may spin up the accretor and that the critical mass for
rapidly rotating dwarfs can substantially exceed Mcy,.
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() For cataclysmic binaries with donor masses
0.25-0.4 Mg, mass transfer starts immediately within
the gap.

(b) If the donor fillsits Roche lobe at alater stage of
core hydrogen burning rather than at the zero age main
sequence, total mixing does not occur when its mass
decreases to ~0.3 M, due to the presence of a helium
core (see, for example, [46, 47]; note, however, that
such systems are very rare).

The stage of evolution after the period gap is char-
acterized by substantially lower rates of mass loss by
the donor, since the main factor determining the evolu-
tion isthe radiation of gravitation waves by the system.
In this case, the loss of momentum from the system is
substantially smaller than at earlier stages, when
momentum is lost via MSW from the donor. The other
characterigtic feature of this stage of evolution is the
presence of a minimum period. This is related to the
increase in the degeneracy of the matter in the donor
and the corresponding variation of the radius-mass
dependence of the star [56, 57]: When the donor mass
decreases to ~0.05 M, its radius begins to increase as
its mass decreases, and the exponent of the mass—+adius
relation tends to —1/3. The minimum period corre-
spondsto the exponent +1/3. The minimum periods for
the conservative and nonconservative tracks are 75™
and 81™, respectively. Thisdiscrepancy in P, isdueto
differencesin the total masses of the systemsand in the
extent to which the donor radii deviate from the values
corresponding to thermal equilibrium, due to differ-
ences in their mass-1oss rates. After passing the mini-
mum period, the orbital period begins to increase. At
this stage, the rate of mass loss by the donor decreases
rapidly as the period increases. We can see from Fig. 5
that the difference between the conservative and non-
conservative tracks increases at this stage. This is due
to the fact that the orbital angular-momentum loss rate
rapidly increases as q decreases in the nonconservative
case.

The mass-transfer rates for the conservative and
nonconservative tracks become considerably different
after the passage of the minimum orbital period. The
probability of observing a semidetached binary in a
given interval of orbital periodsis

0 (_MZ)V,
P/P

where y is a positive constant. For apparent-magnitude
limited samples, y = 1 [58].
After the minimum period is passed, in the period

interval 2"-2"5, the average probability for observing a
cataclysmic binary on the nonconservative track is
approximately afactor of 1.2 larger than the probability
for abinary on the conservative track. Thus, in spite of
the appreciable difference in mass-transfer rates, the
probabilities of observing cataclysmic binaries in the
two cases only dightly differ, since a nonconservative

p(logP) (22)
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system passes through the corresponding interval of
periods more rapidly.

Since the characteristic variability of cataclysmic
binaries depends on their mass-transfer rates, the differ-

encesin M predicted for conservative and nonconser-
vative evolution could be reflected in the distribution of
cataclysmic binaries according to variability type.

Figure 5 presents tracks for cataclysmic binaries
that should undergo dynamically unstable mass trans-
fer in a standard mass-conservative evolutionary
model. Theinitial massesfor the donor and accretor are
equal to 1.0 My and 0.28 M, respectively. We have
chosen such an extreme mass ratio purely for the pur-
pose of demonstration.

Track 3 was calculated under the standard assump-
tion of momentum loss only dueto GWR and MSW. It
represents atypical case of unstable mass transfer with
unlimited increase of the mass-loss rate of the donor
and rapid approach of the mass-loss time scale to the
dynamical time scale. Strictly speaking, this can only
be considered a qualitative illustration of this type of
evolution, since the calculation did not take into
account the formation of a common envelope in the
system, which should increase the orbital angular-
momentum |oss rate even more.

Track 4, calculated assuming a loss of mass and
momentum from the system in accordance with (21), is
similar to tracks for the stable evolution of cataclysmic
binaries, with all their typical features. It differs from
track 2 in the higher mass-loss rate of the donor in the
initial stage of evolution, due to the substantial increase

. @D . .
in the o, for large g [see (13)]. Thisresultsin a

larger deviation of the donor from equilibrium and,
accordingly, in variations in the upper edge of the

period gap: Thisedgeisat 474 for track 4, whereasit is

3"5 for track 2. The minimum period for track 4is76™,
which is nearly the same as that for track 1, but some-
what smaller than that for track 2.

7. BOUNDARIES OF THE DOMAIN
OF STABLE MASS TRANSFER

We determined the boundary of the domain of stable
mass transfer in the non-mass-conservative model as
follows. We calculated a series of tracks for a given
donor mass with different q values in steps of 0.1. We
took the boundary to be the maximum q value for
which the accretion rate onto the white dwarf remained
below the Eddington limit in the course of evolution,
i.e., such that, when q was increased by 0.1, the accre-
tion rate exceeded the Eddington limit. Note that, upon
further increase of g, an unlimited increase in the mass-
loss rate of the donor arises in the calculated tracks
when q becomes 0.2-0.3 larger than the limiting value.
Note that the results of this method for determining the
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domain of stable mass transfer are in good agreement
with those based on comparing the derivatives of the
donor and Roche-lobe radii.

The new boundary for the stable mass-transfer
domain (assuming nonconservative evolution) is pre-
sented in Fig. 1. We can see that this domain includes
all observed cataclysmic binaries with estimated com-
ponent masses. Thus, in the transition to a nonconser-
vative model for the evolution of cataclysmic binaries,
the problem of observed binaries being outside the
domain of stable mass transfer disappears.

In the q— M, diagram, al observed cataclysmic
binaries are concentrated toward g < 1, whereas the
nonconservative model predicts considerably higher g
values. To study the origin for this discrepancy, we cal-
culated a number of tracksfor nonconservative systems
with initial donor massesfrom M, = 0.1 Mg to My™
=1.2 Mg instepsof 0.1 Mg and g values such that these
tracks originate in the immediate vicinity of the new
boundary for the domain of stable mass transfer. These
tracks are presented inthe g — M, diagramin Fig. 6. We
used these tracks to derive the isochrones presented in
Fig. 6, corresponding to times of 10, 10°, 107, 108, 10°,
and 10'° yrs, calculated from the onset of the mass
transfer between the components.” We chose this
“extreme”’ group of tracks since these systems spend
the most time between the new and old boundaries for
the stable mass-transfer domain. It is obvious that sys-
tems with smaller initial g, whose tracks originate to
the left of the new boundary, will spend a shorter time
there. Therefore, cataclysmic binaries with initial
parameters close to these “extreme” values have the
highest probability to fall in this area.

According to the locations of the isochronesin Fig. 6,
the tracks can be divided into two distinct groups:

(1) Tracks for systems with massive donors (0.4—
1.2 Mg), for which the specifics of evolution before the
period gap are primarily determined by the loss of
momentum from the system via the donor’'s MSW.

(2) Tracks with low-mass donors (0.1-0.3 M), for
which this stage is absent, since their donors are com-
pletely convective from the very beginning.

The tracks for the first group are characterized by a
high (~10°-10~ Mg/yr) donor mass-loss rate before
the period gap and, consequently, a rapid decrease of
the donor mass and the component mass ratio. This
resultsin therapid evolution of thesystemintheq - M,
diagram, so that the system passes through the section
near the new boundary of the stable mass-transfer
domain over atime not exceeding 107 yrs. This explains
the absence of observed cataclysmic binariesin the vicin-
ity of this boundary. The evolution of tracks in the second

7 Note that the isochrone corresponding to 10° yrs merges with the
108-yr isochrone for tracks with initial donor masses of My' = >
0.4M¢, since both timesfall in the period gap.
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Fig. 6. Cataclysmic binary evolutionary tracksin the“gM,” planefor anonconservative model (dotted; the number next to the origin
of thetrack denotestheinitial donor massin Mg). Thethick curves areisochrones; the numbers near them denotetimeinyears. The
dashed line indicates the boundary for the domain of stable masstransfer according to [35]. The solid line indicates the correspond-
ing boundary derived in the present study. Other notation isthe same asin Fig. 1.

group, excluding a short initid stage with a high mass-
transfer rate, is characterized by a low (~1071° Mg/yr)
donor mass-loss rate, which remains nearly constant
over an extended period of time (until the minimum
period is reached). Accordingly, in the course of evolu-
tion, the donor mass and the component massratio vary
very slowly. Consequently, systems starting their evo-
lution near the new stable mass-transfer boundary
should, in principle, remain near it for a fairly long
time. The absence of cataclysmic binariesinthisareais
dueto thefact that the masses of dwarfsin zero-age cat-
aclysmic systems cannot exceed ~0.15 Mo—the mini-
mum massfor the helium core of astar leaving themain
sequence. All the observed cataclysmic binaries in Fig. 6
are located in the area delineated by the lines corre-
sponding to the maximum and minimum masses of a
white dwarf—1.4 and 0.15 M.

8. CONCLUSION

Results of three-dimensional gas dynamical calcu-
lations indicate that, in the course of a cataclysmic
binary’s evolution, aconsiderabl e fraction of the matter
lost by the donor should leave the system. At the same
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time, a number of observed cataclysmic binaries have
combinations of donor and accretor masses that are
“forbidden” under the standard assumptions for varia-
tions of the angular momentum of the system, since the
mass transfer should be unstable in these cases. This
problem is resolved by the model proposed in our
study, which takes into account the loss of mass and
angular momentum from the system, in accordance
with the results of the gas dynamical calculations. We
have shown that the observations can be satisfactorily
explained if we estimate the momentum loss using an
approximation in which the specific angular momen-
tum of the matter flowing out of the system is deter-
mined by the difference between the specific momen-
tum of the matter of the donor at the Lagrangian point
L, and the specific momentum of the accretor. In this
case, the fraction of matter lost by the donor that |eaves
the system can be of the order of 50%. It is important
that, in our evolution calculations, the transition to a
nonconservative model does not result in appreciable
variations of such evolutionary-track parameters as the
boundaries of the period gap or the minimum period of
the system.
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Abstr act—We have analyzed for thefirst time profiles of the Silll 1892 A and CII1 1909 A intercombinational
linesin HST spectraof the stars RY Tau and RU Lup. The widths of these optically thin lines exceeded 400 kn/s,
ruling out formation in the stellar chromosphere. Since the intensity of the Si line exceeds that of the C ling, it
isunlikely that alarge fraction of the observed line flux is formed in a stellar wind. The observed profiles can
be reproduced in the framework of an accretion shock model if the velocity field in the accretion zone is appre-
ciably nonaxisymmetric. In this case, the line profiles should display periodic variations, which can be used to
determine the accretion zone geometry and the topology of the magnetic field near the stellar surface; corre-
sponding formulas are presented. In addition, periodic variations of the 0.3-0.7 keV X-ray flux should be

observed. © 2000 MAIK “ Nauka/lnterperiodica” .

1. INTRODUCTION

The activity of classical T Tauri stars is usually
interpreted as the result of protoplanetary disk accre-
tion onto a magnetized young star. It is thought that
material from the inner regions of the disk isfrozen in
the star's magnetic-field lines and then dlides along the
field linesto the stellar surface. When the gas reaches a
velocity of ~300 km/s, it decelerates sharply in a shock
and is heated; the radiation of thisgasisresponsiblefor
the observed line and short-wavelength continuum
emission.

In this picture, the profiles and intensities of emis-
sion lines should vary as a result of nonstationary
accretion and/or of displacements of the accretion zone
relative to the observer due to the star’s rotation. Both
regular and quasiperiodic variations of emission-line
parameters are observed in classical T Tauri stars (see,
for example, [1-3]).

Information about the shape and extent of the accre-
tion zoneon the surface of aclassica T Tauri star would
offer a unique possibility to investigate the topology of
the magnetic fields of young stars and interactions
between the accretion disk and magnetosphere, making
studies of the accretion-zone geometry very important.
The application of Doppler tomography for this pur-
pose using the rich observational data available for
optical lines [4] is very promising but still premature.
The main problem is that this technique is based on
comparisons of observed profiles with those obtained
using corresponding theoretical models. However, al
the optical emission linesin classical T Tauri stars are
optically thick, and it is not known how the intensities
of these lines depend on the parameters of the accreted
gas or the angular coordinates in shock models. The sit-
uation is complicated by the fact that almost every opti-

cal line could be formed not only in the shock, but also
in the stellar wind.

This problem can be substantially ssimplified if opti-
cally thin lines, which are obviously formed in the
shock, are used to study the accretion-zone geometry.
The Silll 1892 A and ClII 1909 A intercombinational
lines (ICL) observed in the UV spectra of classical
T Tauri stars[5] probably provide one example of such
lines. We will show that even single observations of the
profiles for these lines make it possible to draw some
important conclusions.

2. OBSERVATIONAL DATA

Among the large number of UV spectra of T Tauri
stars in the Hubble Space Telescope Archive Database
(http://archive.stsci.edu/hst/target_descriptions.html),
only two spectra clearly display Silll 1892 A and ClI|
1909 A intercombinational lines. These are the spectra of
RU Lup (z10t0109m) and RY Tau (zIe70108t) obtained
with the GHRS spectrograph on August 24, 1992, and
December 31, 1993, respectively. Each spectrum has a
width of 40 A, aresolution of ~13 km/s, and consists of
five consecutive exposureswith atotal duration of =1500 s,
The spectra were processed using the IRAF package
v2.11 (http://iraf.noao.edu/iraf) and STSDAS/TABLES
code v2.0.2 (http://ra.stsci.edu/STSDA S.html), follow-
ing the standard technique described in Section 36 of
the “HST Data Handbook” (http://www.stsci.edu/do-
cuments/data_handbook.html). We adopted the calibra-
tion filesrecommended in the Archive Database for each
star. Figure 1apresentsthe spectrum of RU Lup averaged
over al exposures, and Fig. 1b showsthe same spectrum
smoothed with a five-point diding average. Figure 2 pre-
sents the same information for RY Tau.

1063-7729/00/4405-0323%20.00 © 2000 MAIK “Nauka/Interperiodica’
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Fig. 1. Spectrum of RU Lup obtained with the Hubble Space Telescope. See the text for more details.

For RU Lup, only the Silll 1892.03 A line can be
identified confidently. One characteristic feature of this
line is the presence of extended wings, with the short-
wavelength wing almost twice as broad as the long-
wavelength wing: AV = 400 and 250 km/s, respectively.
We suggest that the profile asymmetry is due to the
presence of blending emission lines at wavelengths
1890-1891 A.

Among spectral lines of the most abundant ele-
ments with a low excitation potential E; < 4 eV, we
believe that only the Fell 1890.24 A line (Fig. 1b)—

which belongs to the b2P;,—w?Dg, multiplet, with
E, =3.19 eV (seethe Atomic Line List v2.01 database
(http://www.pa.uky.edu/peter/atomic))—is suitable for

thisrole. The Fell 1897.55 A (2P;,—°Dy,,) line, which
can be identified with a corresponding emission feature
in the spectrum of RU Lup (Fig. 1b), belongs to this
same multiplet. Using the values of A; for Fell [6], we
find that, if the upper levels of the multiplet are popu-
lated in proportion to their statistical weights and the
lines are opticaly thin, the 1890.24 A line should be
nearly an order of magnitude more intense than the

1897.55 A line; however, thisis not observed. Note that
emission around 1897.5 A is also seen in the spectrum
of RY Tau (Fig. 2); however, the 1890.24 A lineis not
observed there. Nonetheless, we cannot exclude the
possibility that the Fell line contributes to the short-
wavelength wing of the Silll] 1892 A linein RU Lup.
This could betested by searching for the 1939.70 A line

(*P;,—"Dy, transition), which, under the same condi-
tions, should be roughly a factor of five more intense
than the 1897.55 A line. Unfortunately, the 1892 A line
does not fall in the range of available spectrograms.

Isit possibleto relatethe Silll] 1892 A line to matter
outflow from RU Lup? The profiles of the Ol 6300 and
5577 A andthe SI1 4069 and 6731 A forbidden linesinthe
spectrum of this star, indeed, have broad short-wavel ength
wings extending to =300 km/s[7]. However, the wings of
these lines from the red side the extension are a factor of
five smaller than in the case of the Silll] 1892 A line. In
addition, in the spectra of Herbig—Haro objects—i.e, in
regions of stelar wind, where the lines of highly ionized
ionsareformed—the Cl11] 1909 A lineisan order of mag-
nitude moreintensethan the Silll 1892 A line (see[8] and
referencestherein), in contrast to the situation observed in

ASTRONOMY REPORTS Vol. 44 No.5 2000
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Fig. 2. Spectrum of RY Tau obtained with the Hubble Space Telescope. See the text for more details.

RU Lup. We, therefore, conclude that the bulk of the
Silll] 1892 A line emission is not formed in the stellar
wind. On the other hand, the large width of the line
rulesout the possibility that itisformedin aregion sim-
ilar to the solar chromosphere.

However, these arguments do not exclude the pos-
sibility that roughly 5% of the observed flux in the
Silll] 1892 A line formsin materia in the stellar wind,
which primarily distorts the shape of the short-wave-
length wing. In this connection, note the narrow peak dis-
placed —280 km/s from the expected position of the
ClI1] 1909 A line. It is tempting to interpret this peak
asaline associated with the stellar wind: The star of RU
Lupisprobably viewed nearly pole-on[9], sothat aline
formed in ajet perpendicular to the disk should be dis-
placed toward the blue. The only problem isthat afea-
turewith similar shape and intensity can be seen in the
z10t0107m spectrogram, which was obtained at
1622-1657 A 25 minutes before the spectrogram under
consideration, and this feature falls on the same photo-
diodes of the receiving matrix (342-345). Since no
other spectraof the star display any feature of thiskind,
it is reasonable to assume that both features resulted

ASTRONOMY REPORTS Vol. 44 No.5 2000

from a temporary defect in the detector. At the same
time, these photodiodes were not marked defective in
service files for these spectra. Therefore, the nature of
the emission featire near 1907 A remains unclear.

The Cll1] 1908.73 A line can be identified with con-
fidence, but due to its low intensity, we can only say
that the extent of its long-wavelength wing is roughly

the same as that of the Sill] 1892 A line, whileits flux
is about an order of magnitude lower. This last fact
implies that the density of the accreted gas is much
larger than derived in [10] on the basis of IUE spectra
with resolution 6 A and is closer to 3 x 10'2 cm=3 [9].
Therelatively small signal-to-noise ratio of the RU Lup
spectrum also prevents accurate determination of the
structure of the Sill1] 1892 A line around its maximum;
i.e., wedo not know if it really displays two peaks or if
this is the effect of noise or the contribution of weak
lines of other elements.

In connection with the question of faint lines, based
on the above criteria, we suggest that the remaining
emission features in Fig. 1 can be identified as fol-

lows: Fell 1895.69 A (a2H,,,-W? Gy, ); SI] 1900.29 A
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Fig. 3. (a) Shapeof “quasi-dipole” field linesfor n=1 (inner
curve), 2, 4, and « (straight lines); accretion zone geometry
for (b) Model 2 and (c) Model 3. See the text for more
details.

3p* 3P,-3p%4s5 S ; note that the second component of

this doublet 3P,—5S, with A = 1914.70 A should have
half the intensity, consistent with the observations); and

Fell] 1901.77 A (aDy,—Z Gy, ). We especially note
the possible presence of the Felll 1914.06 A line,

0
which corresponds to the ’S,~'P, transition of the

3d°4s configuration: The upper level of this transi-
tion could be excited due to absorption of photons
from the short-wavelength wing (more exactly, with
AV = —265 km/s) of the hydrogen L, line. Judging
from the presence of strong H, lines in the UV spec-
trum of RU Lup, which originate due to fluorescent
excitation by the L, line [11], thisis very likely.

In the studied spectrum of RY Tau, both intercombi-
national lines (Silll 1892 A and CIII 1909 A) can be
identified with confidence (Fig. 2; seeaso Fig. 8 below).

LAMZIN

We can see that the lines have roughly the same intensity
and total widths exceeding 350 km/s, which, as in the
case of RU Lup, makes their formation in the stellar
wind or the chromosphere unlikely. However, the qual-
ity of the spectrum makes it impossible to judge about
the presence of other lines or the similarity of the pro-
file shapes for the two ICLs.

3. METHOD FOR CALCULATING ICL PROFILES
IN A SHOCK WAVE

If we assume, based on the above discussion, that
the ICLs are formed neither in the stellar wind nor in
the chromosphere, it makes sense to check whether
their profiles can be understood as a consequence of
accretion, given that accretion shock models can prob-
ably adequately reproduce both the absolute and rela-
tive intensities of ICLs in the UV spectra of other
T Tauri stars [9]. In this case, the ICL radiation by the
Sit* and C** ions should form essentially completely at
the shock front, in the region where the gas is highly
ionized by X-rays from behind the shock front. (The
basis for this and al following statements concerning
the shock structureis givenin [12].) It is essential that
theseregionsbe small in extent (Ar < R[) and that both
the density and velocity of the infalling gas be virtually
constant (N, and =V,, respectively). Therefore, to
model the ICL profiles, we need specify only the veloc-
ity field asafunction of the coordinates of pointson the
stellar surface. The region itself can be taken to be
plane-parallel.

Let ustake an arbitrary point A at the surface of the
accretion zone and calculate the flux dF, reaching the
Earth from aregion around this point with areadSin the
wavelength interval from A to A + dA. If I,(y) is the
intensity of optically thin ICL radiation in the direction

making an angle y with the normal, then I, (y) = Ifcosy,

where If isthe intensity of the radiation in the normal
direction. Therefore,

I\(y)cosydS Ide
d2 - d2 ’
where d is the distance to the star.

L et usintroduce spherical coordinateswith their ori-
gin at the center of the star and the polar axis coinciding
with the star’s rotation axis. The position of a point A
will be described by the polar angle 8 and the azimuth

angle ¢, with dS= R sinB8dBd¢, where Rjistheradius

of the star. Then, the total flux from the accretion zone
will be

dF, =

F, = Re 1)sin6dodd. (1)
dzﬂ

Dueto the comparatively low temperature of the gas
in the line formation region (T < 2 x 10* K), the loca

ASTRONOMY REPORTS Vol. 44 No.5 2000
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Fig. 4. ICL profilesfor acoaxial quasi-dipolewithn =2 (Model 1). The left row of profiles corresponds to azone with 8, = 10°,
6, = 30° for inclination angles of the rotation axis to the line of sight (from top to bottom) i = 20°, 50°, and 70°; the middle row
corresponds to azone with 8; = 30°, 8, = 50° and the right row to a zone with 8, = 50°, 8, = 70° for the same inclination angles.

width of the ICL, which is determined by therma
motions, should not exceed 5 knv/s, which is much lower
than the velocity of the infalling gas, V, ~ 300 km/s.
Therefore, the local line profile can be represented to
good accuracy as a o function. In this approximation,
each point of the accretion zone emits towards the
observer monochromatic radiation at the wavelength
A = A1 + V,o4/C), where A, is the laboratory wave-
length of the ICL and V, (8, ¢) is the projection of the
velocity of theinfalling gas onto the line of sight at this
point.

Let us assume that the velocity V,, and the gas den-
sity N, are the same at al points of the accretion zone
(the accretion is uniform). In this case, the observed
flux inside afinite wavelength interval A—A + AA (or the
corresponding velocity interval V-V + AV) is propor-
tional to the area of the accretion zone in which the
radiation in thiswavelength interval originates. In order
to determine the ICL profile, we adopt the following
procedure:

(1) Specify the velocity field within the accretion
zone and the zone geometry.

ASTRONOMY REPORTS Vol. 44 No.5 2000

(2) Divide the largest possibleinterval for variations
inV, 44 inthe accretion zone (V,,;,—Vmax) 1Nt0 asufficient
number of equal subintervals.

(3) Dividethe zone of interest into cells of equal size
AB x Ad and calculate the value of V, 4 in each of them
(seeformulae (A.6) and (A.7) in the Appendix).

(4) For each interval V-V, ,, sum the values for
sin® for cells whose radia velocity V,,4 fals in the
given interval and which are situated in the hemisphere
facing the observer (see inequality (A.5) in the Appen-
dix).

Then, by dividing the resulting sums by their max-
ima, we obtain ICL profiles normalized to unity as a
function of radial velocity.

4. RESULTS FOR ICL PROFILE MODELING

Let usconsider several simple accretion zone geom-
etries and the corresponding velocity fields. For T Tauri
stars, the velocity of the infalling gas cannot apprecia-
bly exceed 400 km/s, whereas the ICL in the spectrum
of RU Lup is considerably broader. This implies that
the accretion occurs in such an extended area that the
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Fig. 5. Same as Fig. 4 for aquasi-dipole with n = 4.

effect of variation of the angle between the line of sight
and the streamlines (due to the sphericity of the star)
plays a substantial role. However, in this case, the
accretion flux cannot be in the shape of a quasi-cylin-
drical gas stream occupying ~10% of the stellar sur-
face, as suggested in [13].

In the accretion shock, the Silll] 1892 A and ClII]
1909 A lines are formed essentially at the stellar sur-
face so that these lines can only be seen from pointsin
the accretion zone in the hemisphere facing the
observer. It follows that, if the gas falls inward along
the radius of the star, theradial velocity of visible emit-
ting points should be positive, given that the lines are
optically thin and have very narrow local profiles. Thus,
the presence of extended short-wavelength wingsin the
observed ICLs implies that the velocity field of the
infalling gasis appreciably nonradial.

Let us suppose that the gas infal occurs aong the
star's magnetic-field lines, whose shape near the stellar
surface bears at least a qudlitative resemblance to a
dipolefidd. Let thefield lines be described in polar coor-
dinatesr, ©, ® by the expression r = R{sin®/sin@p)",
where Orjis the polar angle at which a force line
crosses the stellar surface and n is a parameter of the

problem. When n = 2, we obtain a purely dipolar field,
whilefor n —» oo, the force lines become straight lines
(Fig. 3a).

Let us first consider the case when the “quasi-
dipole” axis coincides with the rotation axis (Model 1).
Due to the axial symmetry, the accretion zone should
have the shape of two belts8, <0< 6, andm-6,<6<
-9, with0 < ¢ <21, where 8, ¢ are polar coordinates
related to the rotation axis of the star. It follows from
the calculations of [14] that the field of the star is
strongly distorted in the case of disk accretion onto a
coaxia dipole; however, we are interested only in the
field in the immediate vicinity of the stellar surface,
where the distortions are not so large. In fact, we chose
the “quasi-dipole” approximation specifically to take
these distortions into account; for the sake of simplic-
ity, wewill assumethat both the velacity and density of
the accreted plasma are equal at all pointsin the accre-
tion belts. Another specific feature stemming from the
calculations of [14] isthat the field and velocity vector
of the infalling material acquire a toroidal component,
whose value reaches ~1/3 of the meridional compo-
nent. In order to qualitatively take thisinto account, we
will assumethe presence of atoroidal component of the

ASTRONOMY REPORTS Vol. 44 No.5 2000
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Fig. 6. Variation of the ICL profile shapein Model 2 as afunction of rotation period phase, which isindicated for each curve. The
observed profile of the Silll] 1892 A line from the spectrum of RU Lup is presented for phase (s = 0.935. Seethe text for more details.

infall velocity that everywhere constitutes a constant
fraction & of the meridional component V.

Inthe Appendix, we outline aprocedurefor deriving
the radial velocity in the quasi-dipole case. In the situ-
ation considered here, we calculated V,,4 using (A.6)
and (A.7) for8,= 6, ¢,,= ¢, anda = = 0. Figure 4
presentsthe ICL profiles cal culated using the technique
described in the previous section, for the dipole-field
geometry under consideration (n = 2). Inspection of the
top-to-bottom sequence of plots indicates that the ICL
profile depends on the location of the accretion belts on
thestellar surface (6,, 6, = 10°, 30°; 30°, 50°; 50°, 70°);
the left-to-right sequence of plots shows the depen-
dence of the profile on the angle i between the stellar
rotation axis and the line of sight (i = 20°; 50°; 80°).
The solid curves show profiles calculated without tak-
ing into account the toroidal component of the velocity
(& =0), and the dashed curves show profilesfor the case
& = 0.25. Figure 5 presents the anal ogous dependences
of the ICL profiles on the parameters of the problem for
n = 4. We performed these cal cul ations assuming only
one accretion belt is visible (the one closer to the

ASTRONOMY REPORTS Vol. 44 No.5 2000

observer), since the other belt is obscured by the disk.
The discontinuities of the derivative visible in the cal-
culated profiles are due to the assumption that the local
ICL profile has a d-function shape.

We can see that the shape of the calculated profiles
differs qualitatively from the ICL profilesin the spectra
of RU Lup and RY Tau. It is obvious that taking into
account the dependence of V, and & on B will not enable
us to substantially improve the agreement between the
theory and observations. In other words, the origin for
the disagreement must be the initial hypothesisthat the
guasi-dipole and rotation axes of the star are coinci-
dent.

We now assume that the magnetic axis makes an
angle a with the rotation axis and that the field near the
stellar surface resembles a quasi-dipole. Let us first
consider the situation when a is not so large that the
difference between the parameters of the infalling gas
at different points of the accretion zone must be taken
into account. In this case, it is reasonable to suppose
that the accretion zone is made up of two belts perpen-
dicular to the quasi-dipole axis (Moddl 2; Fig. 3b). Ina
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Fig. 7. Same as Fig. 6 for Model 3 and the set of free parametersindicated in the text. The observed Silll] 1892 A line profile from

the spectrum of RU Lup is shown for phase { = 0.447.

coordinate frame fixed to the quasi-dipole axis, the
accretion region is determined by the conditions 6, <
0,<06,,andm-6,,<6,<1-6,,with0 <, <21
As before, we will take into account radiation only
from a single accretion belt (the one closer to the
observer).

The orientation of the accretion belt relative to the
observer will periodically vary due to the movement of
the magnetic pole on the surface of the star during its
rotation. For this reason, the ICL profiles should
undergo periodic variations, unlike the situation when
a = 0. Mathematically, thisimplies that the expression
for theradia velocity V, 4 (formulas (A.6) and (A.7) in
the Appendix) does not depend only on the angle a, but
also on the rotation phase . We calculated the varia-
tions of the ICL profiles for the given geometry during
the rotation of the star for various values of i, a, 6,
0,0, &, and n. For a < 10°, we were not able to obtain
reasonable consistency between the cdculated profiles
and the ICL profilesin the observed spectrum of RY Tau.
For RU Lup, we were able to obtain a better agreement
between the calculated profiles and the Silll] 1892 A

line profile; however, the corresponding model cannot
provide a sufficiently extended short-wavelength wing.
Figure 6 presents the expected variations of the ICL
profile as a function of the phase of the axial rotation
fori=18° a=10°,6,, = 58° 6,,="71° & =0.15, and
n = 4. For phase = 0.935, we have plotted the
observed profile assuming V,, = 400 km/s. Note that, in
both Model 1 and Modd 2, the velocity field is sym-
metrical about the magnetic axis.

What will happen if the angle between the magnetic
and rotation axes of the star becomes fairly large, say,
appreciably greater than 10°? We can see from Fig. 3b
that, in this case, points with the same 6, but different
¢, will be located at considerably different distances
from the accretion disk. In this situation, it is very
unlikely that the accretion zone is made up of belts
symmetrically placed relative to the magnetic axis,
inside of which the velocity and density of theinfalling
gas are uniform. There do not exist any reliable calcu-
lations for the magnetic-field topology for the case of
disk accretion onto an inclined rotator that we could use
to calculate the ICL profilesfor this case. Remaining in

ASTRONOMY REPORTS Vol. 44 No.5 2000
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Fig. 8. Same as Fig. 7 for another set of free parameters. The observed Silll] 1892 A line profile from the spectrum of RY Tau is

shown for phase Y = 0.675. See the text for more details.

the framework of the uniform-accretion hypothesis, we
can make the model more realistic by assuming that the
field topology near the stellar surface does not differ too
much from the field of an inclined quasi-dipole with a
toroidal component (Model 2) but that the accretion
zones are symmetrically placed relative to the rotation
axis (Fig. 3c¢). This Model 3 represents a combination
of the two preceding models;, however, in contrast to
Models 1 and 2, its appropriateness for the situation at
hand is far from obvious.

Surprisingly, it was this model that was able to
reproduce the observed Silll] 1892 A line profiles. For
RU Lup, we were able to reach a good agreement for
i=12° a=18°0,=56°0,=72° & =0.15,V, =
400 km/s, and n = 4. Figure 7 presents the observed
profile for phase W = 0.447. Figure 8 presents a series
of calculated profiles for i = 36°, a = 18°, 8, = 60°,
0, =80°, & =0.25, V, = 280 km/s, and n = 4.25. We can
see that, for ) = 0.675, the theoretical profile approxi-
mates the Silll] 1892 A line profile in the spectrum of
RY Tau with reasonable accuracy, provided the two-
humped profile shapeisreal.
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We stress that our ability to reproduce the observed
profiles using Model 3 does not imply that this model,
indeed, provides an adequate description of the physi-
cal situation. The consistency obtained only demon-
strates the fundamental possibility of interpreting
observed ICL profiles using shock models in which
the velocity field in the accretion zone is apprecially
nonaxisymmetric.

5. CONCLUSIONS

Our analysis of the Silll] 1892 A and CII1] 1909 A
line profilesin the spectra of RY Tau and RU Lup indi-
cates that these lines cannot form in regions similar to
the solar chromosphere. It is also unlikely that a large
fraction of the lineflux isformed in shock waves dueto
interactions between the stellar wind and the surround-
ing medium (i.e., in Herbig—Haro objects).

If we assume that the Silll] 1892 A and ClI1] 1909 A
lines are formed in an accretion shock, the observed
profile shapes can be used to impose some restrictions
on the character of accretion in low-mass young stars:
(1) Thevelocity field of theinfalling gasis substantially



332

X

m

Fig. 9. A scheme clarifying the derivation of formulas
(A.1D)—(A.7). Seetext for more detail.

nonradial, (2) the accretion zone must be appreciably
extended aong the stellar disk, (i.e., accretion in the
form of anisolated quasi-cylindrical streamisexcluded),
and (3) the structure of the magnetic field directing the
infalling gas must be considerably nonaxisymmetric.

This last circumstance suggests there should be
periodic variations of the profiles of line formed in the
shock, due to variations in the orientation of the accre-
tion zone relative to the observer. For the same reason,
the 0.3-0.7 keV X-ray flux from T Tauri stars should
also vary periodically. In this case, nonstationary accre-
tion will distort the periodicity of the X-ray flux varia-
tions much less than it will the line-profile variations,
since the X-ray flux depends only weakly on the den-
sity of theinfalling gas[15].

Since only one spectrum is available for each star
and it isnot of very high quality, it does not make sense
to try to reconstruct the velocity field and geometry of
the accretion zone. We wished only to demonstrate that
the observed ICL profiles could be reproduced in the
framework of an accretion shock theory, whichis not at
al obviousapriori. Asaresult, itisnow clear that it is
a reasonable goal to investigate ICL profile variations
in the UV spectra of T Tauri stars, then apply Doppler
tomography to reconstruct the accretion zone geometry
and velocity field. In the theoretical model, expression
(2) should be used for the dependence of the intensity
on the angular coordinates, together with the relation
between theintensity and N, and V,, for theinfalling gas
from [9]. Naturally, the local ICL profile should be
described as a Gaussian rather than a6 function, whose
width is determined by the thermal motion of gas with
temperature =1.5 x 10* K.
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APPENDIX

Figure 9 presents a star whose center is marked by
the O; the line OE indicates the direction towards the
Earth. Let us introduce a rectangular (right-handed)
coordinate framewithitsoriginat O, its Z axis coincid-
ing with the rotation axis of the star and its X axisin the
plane determined by the lines OE and OZ. We will
name EOP the inclination angle i. Let us relate the
spherical coordinate system to this rectangular system
in the standard way, so that, for some point A on the
stellar surface, the arc PA will serve as the polar angle
8 and the dihedral angle between the arcs EP and PA
will be the azimuthal angle ¢. The 8, ¢ coordinates of
the point A obviously do not depend on time.

If the magnetic quasi-dipole axisformsan anglea >0
with the rotation axis of the star, the magnetic pole M
will move on the surface of the star. In so doing, its
polar angle 6,, = a does not vary, unlike the azimuthal
coordinate ¢,, = U of the dihedral angle between the
arcsEPand PM (Fig. 9). Let usintroduce another right-
sided rectangular coordinate frame with its origin at O,
its Z,,, axis directed along the quasi-dipole axis, and its
X, axis directed as shown in the diagram (Fig. 9), so
that OMOT = 172. Asin the previous case, let usrelate
the spherical coordinate system with this rectangular
system. Aswe can seefrom Fig. 9, thelargecircular arc
MA isthe polar angle 6,,, of the point A in the new coor-
dinate system, while the dihedral angle between arcs
MA and MT isitsazimuthal angle ¢,,. The coordinates
0,, ¢, vary periodically due to the rotation of the star
about its axis.

Let us derive relations between the coordinates 6, ¢
and 6, ¢,, of the point A. Applying spherical trigonom-
etry to the triangles PMA, MTA, and PTA [16], we
obtain the relations

cos@ = cosa cosB,,—sinasing,cosd,,, (A.l1)
cosO,, = cosa cost + sinasinBcos($ —Y), (A.2)
and aso

sin@sin(¢ —Y) = sinB,,sing,,
Ecosasinecos(cb—lp) = sinB,,cosd,,+ sina coso.
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After corresponding transformations, we obtain

gsin@sing = sinB,,sing,cosy + f,siny (A3)
Esinecosq) = f,cosy —sind,,sind,,siny, ’
where f, = sin0cosB,,, + cosasinBcosd,, and
inB,,sing,,, = sinBsin(¢ —
OsinB,sing, (o-w) Ad)

Esinemcosq)m = sinBcos(¢ — ) cosa — sina cosh.

Relations (A.1) and (A.3) make it possible to make
a unique transformation from coordinates in the rotat-
ing system to coordinatesin the fixed system, whilefor-
mulas (A.2) and (A.4) provide the inverse transforma-
tion.

The observer will see the point A if the angle
between the vectors OE and OA does not exceed T172.
Since these unit vectors have coordinates (sini; O; cosi)
and (sinBcos; sinBsind; cosO), respectively, in the
rectangular system OXY Z the condition that point A be
visible can be written

cos(JEOA) = cosicosB + sinisinBcos = 0. (A.5)

L et the shape of the magnetic field lines of the star
r = r(®) be described in the “magnetic” coordinate sys-
tem by the equation r = R(sin®,,/sin0,,)", where Risthe
radius of the star and 6,,, is the polar angle of the point
A, where aline of force crossesthe stellar surface. This
field possesses only ameridional component. Let ey, be
a unit vector in the meridional plane, tangent to the
forceline at the point A and directed towards the star.
It is easy to show that the projections of this vector
onto the coordinate axes of the OX,,.)Y .Z,, System are
equal to w,cos¢,, w,sind,, and w,, where w, =
—(n+ 1)sin26,/w,, W, = 2(sin’6,, — ncos’6,)/w,, and
W, = 2[?cos?0,, + sin’0,,] .

If gas moves near the surface of the star along mag-
netic field lines, with the velocity of infall V, equal at
al points of the accretion zone, then V = Vyey. At an

arbitrary point A, the component of the velocity V:v'ad

along theline of sight isEO - V. Expressing the coordi-
nates of the vector EO in the rotating frame using rela-
tions (A.2) and (A.4), we abtain

M
Vrad

Vo
—w,(cosi cosa + sinasini cosy),

= wi(fic0s0,+ fosnd) o

wheref, = sina cosi — sinicosd cos and f, = sinisin .
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Assume now that, in addition to the meridiond
“guasi-dipole” component, the stellar magnetic field
also possesses a toroidal ¢, component. In this case,
thetotal velocity of theinfalling gas can be represented
asasum of meridional Ve, and toroida xV,e; compo-
nents, where et isthe unit ¢,,, vector for the point A and
¢ is the ratio of the amplitudes of the toroidal and
meridional velacities. The projections of the vector e
onto the axes of the rotating coordinate system are
—sind,, cos¢,,,, and 0. As above, we find that the com-
ponent of the radial velocity relative to the gas motion
in the toroidal direction and the total radial velocity are
equal to

T

Via .
U = E(fooosy = fisingy),

_ M T
Vrad - Vrad +Vrad-
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Abstract—The color indices of the Sun inthe uvby system are calculated using the spectral energy distribution
of Lockwood, Tug, and White. Thisalows errorsin the absol ute calibration to be excluded from the cal cul ated
color indices. The normal position of the Sun on the (v — b)—(b-y) and (v - y)—(b -y) color—color diagrams
for early G stars testifies to the absence of any significant peculiarities in the Sun compared to other stars of
similar spectral type. These diagrams can provide auseful tool in searchesfor candidate solar analogues among

faint stars. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The uvby photometric system [1] is very promising
for searches for candidate solar analogues [2]. An
extensive uvby catalog containing a large number of
stars with spectral types close to that of the Sun has
been compiled [3]. This system was originally created
for A—F stars, and proved to be a useful tool for studies
of stars of these spectral types. The b —y color index is
similar to the B -V index of the UBV system (b—yisa
temperature parameter), m, = (v —b) — (b -y) reflects
the blanketing effect near A ~ 4100 A, and ¢, = (u— v) -
(v — b) isameasure of the Balmer discontinuity. L ater,
this system was extended to early G stars (GO-G5).

We areinterested in the question of which indicesor
color indices in the uvby system could be useful in
searches for candidate solar analogues. The ¢, index is
of littleinterest for this purpose, sinceit displays no corre-
lation with b—y[4] or other color indicesfor early G stars.
A comparison of them—(b—y) and (v — y)—~(b—Y) color—
color diagrams (Figs. 1, 2) for FO-G5 main-sequence
stars based on the data of [3] indicates that using v — b
instead of m, affects only the behavior of early F stars.
For late F and early G stars, v — b and m, show identical
b — y dependences. However, since the accuracy of a
color index is higher than that of a quantity constructed
from the difference of two color indices, we prefer to
use v —b. The v —y color index for early G stars also
displaysagood dependenceon b—y (Fig. 3). Thesedia-
grams can be used in searches for candidate solar ana-
logues once we determine the color indices for the Sun
in this photometric system.

There are a number of indirect determinations of
b — y for the Sun in the literature. Some of these are
based on the relationship between b — y and B — V,
because of uncertainties in UBV for Sun, these have a
relatively large scatter, from 0.395™ to 0.425™ [5-9].
Other indirect determinations are based on the depen-
dence of b—yon T, [10-12]; these studiesyieldb—-y =
0.407™, 0.402™, and 0.404™, respectively. We have cal-
culated the color indices of the Sun in the uvby system,

based on the observed solar spectral energy distribution
and the response curves of this photometric system.

2. SYNTHETIC COLOR INDICES

The color indices of a star can be calculated in any
photometric system if areliable spectral energy distri-
bution (SED) and the response curves of the system are
available. A formula modeling photometric observa-
tions in the system (either in the absence of or taking
into account atmospheric extinction) is used:

(1)
= —2.5Iog(IE*()\)q)i()\)d)\/J’E*()\)q)j()\)d)\) +Cj.
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Fig. 1. (b — y)-m; color—color diagram for FO-G5 main-

sequence stars. Crosses. FO—F4 stars; pluses: F5-F9 stars;
triangles: GO-G5 stars.
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Fig. 2. (b-y)—(v - b) color—color diagram for FO-G5 main-
sequence stars. Crosses. FO—F4 stars; pluses: F5-F9 stars;
triangles: GO-G5 stars.

Here, EHA) is the SED of the star in the interval cov-
ered by the system response curve, ¢;(A) and ¢;(A) are
the response curves of the photometric system in the i
and j filters, and C;; = (m — m)y — (M — my) isacon-
stant defining the zero point of the calculated color
indices. This constant is determined using a star with a
known SED, based on the difference between the
observed color index and the index for the photometric
system considered calculated using the known SED
and thefirst term of ().

We estimated the accuracy of our calculated color
indices by comparing them with the observed indices
for starsin three photometric systems: uvby [3], WBVR
[13], and the Vilnius system [14]. For this purpose, we
selected groups of single, nonvariable, main-sequence
stars of spectral types FO—G5 from the catalog [15] for
which observations in these systems are available. The
three lists of stars substantially overlap. The accuracy
of the SEDs of these starsis 1.5-2% from 4000 to 6000 A,
falling to 2-3% at the violet and red edges. The
response curves were taken from [16] (uvby), [13]
(WBVR), and [17] (Vilnius).

We fixed the zero point using two sources of dataon
the energy distribution in the integrated spectrum of
Vega [15, 18]. The absolute calibration at continuum
points free of absorption was identical in both cases,
but blanketing due to the Balmer lines was taken into
account differently. The resulting differences of the
constants defining the zero point in the three photometric
systems was 0.02™. The constants determined using the
Vegadatafrom [15] yield color indices that are in better
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Fig. 3. (b—y)—(v —y) color—color diagram for GO-G5 main-
sequence stars. Crosses: GO-G5 stars, open circle: the Sun;
triangles: stars from the list of solar analogues[12].

agreement with the observed indices (within 1-1.5%) in
all three systems. Using the data of [18] to fix the zero
point worsens this agreement. We conclude that the
SED for Vega presented in [15] better accounts for
blanketing, which plays an important role when calcu-
lating color indices, and precisely these data should be
used to establish the zero point.

Thetablelistsacomparison of the observed and cal-
culated color indices in the three photometric systems;
n isthe number of stars used, A is the mean difference
between the observed and cal culated color indices, and

0 = /= (Dyean — D). This table shows that the accu-
racy of the calculated color indices can be comparable
to the accuracy of the observed indices if (1) the
response curves for the photometric systems are well
known, (2) the SEDs of the stars are known to no worse
than 2%, and (3) we havereliable data on the SED of the
star determining the zero point of the calculated color
indices. The good agreement between the observed and
calculated color indices of the stars in the three photo-
metric systems confirms the trustworthiness of the
response curves used. All these considerations are also
relevant for calculation of the solar color indices.

3. COLOR INDICES OF THE SUN
IN THE uvby SYSTEM

The solar SED can be derived from comparisons
with standard sources, which are calibrated against a
primary standard—a model blackbody. The procedure
for calibrating data for the Sun is rather laborous, and,



336

Comparison of calculated and observed color indicesin three
photometric systems

UPXYZVS (n = 35)

A(U-P)ean 0.015
o{ A(U-P)} 0.031
AP—X) mean 0.003
o{ A(P—X)} 0.030
DY) mean 0.000
o{ A(X-Y)} 0.018
ANY-2) mean 0.011
o{ A(Y-2)} 0.018
AZV) mean -0.015
o{ A(Z-V)} 0.041
uvby (n=47)
DY) mean —0.006
o{ A(b—y)} 0.013
ANVD) mean 0.001
o{ A(vh)} 0.012
AL ean 0.007
o{ Am1} 0.019
WBVR (n = 64)
AW-B) mean 0.014
o{ A(W-B)} 0.034
ABV)mean —-0.009
o{ A(B-V)} 0.015

in many respects, the quality of the result depends on
how reliably the energy scale has been transferred from
the primary standard to the Sun. When calibrating data
for the Sun, different authors have used different stan-
dard sources cdibrated in different laboratories, and no
mutual comparison has been performed. There areconsid-
erable discrepancies among the best known determina-
tionsof thesolar SED [19-22], whichincreaseintheultra:
violet (to 10%) and red (up to 6%), possibly due to the
effect noted above. We decided to use the data of Lock-
wood et al. [21], since these were the only data for
which it was possible to eliminate errors associated
with the absolute calibration. Lockwood et al. [21] cal-
ibrated the solar spectrum against Vega, using the abso-
lute energy distribution they had obtained earlier [23].
The advantage of these data is that by fixing the zero-
point using data for Vega presented in the same energy
scale asthe Sun, we can exclude the error introduced by
the absolute calibration, since these errors will appear
in the two terms of formula (1) with opposite signs.

KNYAZEVA, KHARITONOV

Below, we present the calculated solar color indices
based on the data of [21] and the response curves [16].

u-v=0.99,
b-y=0.404,
m, = 0.217,
¢, =0.373,
v-b=0.621,
v-y=1025.

The constants were obtained for Vega using the SED
from [15], reduced to the absolute calibration of Tug et al.
[23]. The calculated value of b — y is consistent with
that derived from the dependence of T, on b —y from
[12], with T, for the Sun taken to be 5777 K. If we can
be confident of the reliability of the T — (b —y) rela
tionship derived in [12], this suggests that the relative
behavior for the solar SED abtained by L ockwood et al.
[21] in the spectral region we have considered is close to
the true distribution. However, the error of b—y givenin
[12] (0.005™ seemsto be underestimated, and the good
coincidence may be accidental.

The Sun’s calculated color indices are shown in the
color—color diagrams in Figs. 3 and 4, constructed for
G-star data together with data for candidate solar ana-
logues approved by the working group [2]. There is
only one star near the Sun, HD 44594 (BS 2290),
whose effective temperature is equa to the solar value
[12]. This suggests that the solar color indices we have
obtained are quite trustworthy. The Sun lies on both
sequencesin anatural way, testifying to the absence of
any significant peculiarities in the Sun compared to
other early G stars.

The anomal ous position of the solar color indiceson
the (U — B)—(B - V) color—color diagram is most likely
associated with errors in the observed solar color indi-
ces; these were derived from direct comparisons of the
Sun and other stars, require a large number of reduc-
tions, and depend on the choice of comparison stars. In
the WBVR system [24], we plotted solar indices calcu-
lated from the mean energy distribution of [25] on a
color—color diagram constructed using the observa-
tional data for other stars. The error of the zero-point
shifts the Sun in one or the other direction in both coor-
dinates. We discussed this problem in [26]. We calcu-
lated new solar color indicesin the WBVR system using
the procedure described above. We obtained the values
W - B =-0.025"and B - V = 0.656™, which shift the
former position of the Sun on the (W - B)—(B - V) color—
color diagram blueward. Note that the normal color indi-
cesof G2V stars calculated using the normal energy dis-
tribution for stars of this spectral subtype [27] are per-
fectly consistent with these values (W — B = -0.025™,
B-V=0.663").

Based on the b —y color index for the Sun, we have
selected stars from catalog [3] that have b — y values
close to the solar value (£0.005). This yields a rather
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Fig. 4. (b—y)—(v —b) color—color diagram for GO-G5 main-
sequence stars. Crosses: GO-G5 stars; open circle: the Sun;
triangles: stars from the list of solar analogues[12].

long list of candidates, which we will analyze in a
future paper. We believe that, in combination with b -y,
the v —band v -y color indices can provide agood tool
for searches for candidate solar analogues among faint
G dtars, aswell asfor constructing an effective-temper-
ature scale for stars of thistype.

4. CONCLUSION

The main results of the work are the following:

(2) It is possible to obtain accuracies in calculated
color indices that are comparable to those of the
observed magnitudes if we have (1) accurate response
curves for the photometric system under consideration,
(2) trustworthy SEDsfor the stars studied, and (3) accu-
rate data on the SED of the star used to determine the
zero point of the calculated color indices. This last
point, in particular, is avery important factor.

(2) We have calculated color indices and the indices
m, and ¢, for the Sun in the uvby system by convolving
its SED [21] with the response curves for this system.
Using thissolar SED alowsusto eliminate errorsin the
absolute calibration from the calculated color indices.

(3) The position of the Sun on the (v — b)—(b-y) and
(v -y)~(b-vy) color—color diagrams for early G starsis
quite normal, testifying to the absence of any signifi-
cant peculiarities in the Sun compared to these stars.
These diagrams can provide a useful tool for searching
for candidate solar anal ogues among faint stars.
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Abstract—Photoabsorption by systems of hydrogen atoms and protons in the solar photosphere is studied.

Analytical formulasfor the partial cross sectionsfor photodissociation of the H; molecular ion are derived for
the cases of fixed vibrational—rotational energy levels and averaging over a Boltzmann distribution for a given
temperature. The photoabsorption coefficients for bound—free and free—free transitions of H-H* in the solar
photosphere are cal culated. These are compared with the absorption coefficients for photo-ejection of an elec-
tron from a negative hydrogen ion H- and free—free transitions of an electron in the field of ahydrogen atom H.
Results can be applied to the Sun and hotter stars. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The largest contribution to the Sun’'s radiation is
made by the negative hydrogen ion H-, whose density
in the photosphere is of the order of 108 of the density
of neutral hydrogen atoms H [1]. Computations of the
spectrum and total intensity of the solar emission usu-
ally assume that the optical depth of the photosphere at
visual and near-infrared wavelengths is determined by
photoabsorption via bound—free transitions, with the
gjection of an electron from an H-ion,

H-(1 'S + A — H(1s) + € (1)
and viafree—free transitions
H(1s) + e+ A0 — H(ls) + & 2)

The effective cross sections for the photoabsorption
processes (1) and (2) have been calculated in a number
of studies. The calculations in [2, 3] are probably the
most trustworthy. The accuracy of the results of [2]
should be at least 1%. The cross section for photoab-
sorption by an H-ion (1) is of the order of 10-'7 cm? in
theenergy range 1 < Aiw < 5 eV and reaches a maximum
of Oma = 4 % 10717 cm? when the photon energy is
1.4¢eV.

In connection with the accurate calculations [2, 3],
itisinteresting to analyzein detail therole of other pos-
sible photoabsorption processes. The contribution of
such processes to the optical depth of the photosphere
at visua and near-infrared wavelengths could be as
large as 1-10% of the contribution from (1) and (2).

One such process is absorption by the H, molecular
ion during its photodissociation:

Hy(°Z) + hoo— H3(°Z) — H(19 +H"  (3)

with the formation of a proton and a neutral hydrogen
atom. A photon is absorbed as a result of an electron

transition between the even (bound) 22; and odd

(repulsive) °s" terms of the H ion, which are split by
the exchange interaction between the hydrogen atom
and proton (see figure). We emphasize that precisely
H> isof interest here, although the concentration of H,
molecules is a factor of ~10*-10° higher. The ground
term "= and first excited (repulsive) term °%; for these
molecules have different multiplicities. Therefore, the

intercombination transition between them is strongly
suppressed, since a spin must be exchanged.

Process (3), which describes photoabsorption via
bound-free transitions of the H-H* system, must be
supplemented by free—free transitions of the same sys-
tem:

H1s) +H +fiw = (H+ H+)zzg + AW

R X 4)
— (H+H)epr —H(1g) +H".

As for photodissociation (3), the process (4)—absorp-
tion of a photon during a collision between H and H*
particles—takesplaceasaresult of a’x; — °Z, tran-
sition, during which there is a change in the symmetry
of the electron wave function.

The possible role of bound—free and freefree tran-
sitions (3) and (4) in the H-H* system in some stellar
atmospheres was first noted in [4]. H; is the simplest
diatomic molecule and has been the subject of many
theoretical studies. Perhaps the largest contribution to
the theory of the H; ion and °z; —~ °5} radiative
transitions has been made by Bates and his coworkers

([5] and references therein). These studies were con-
cerned with calculations of energy-level splitting for

1063-7729/00/4405-0338%$20.00 © 2000 MAIK “Nauka/Interperiodica’
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the H; system and of oscillator strengths for °z; —»

?s" radiative electron transitions, which were | ater also
calculated in [6].

The first quantitative treatment of processes (3) and
(4) was performed by Batesin [7], where he calcul ated
the integrated absorption coefficient K(w) for a wide
range of transition frequencies w and temperatures T =
2500-12000 K. He derived a simple analytic formula
for Ky(w) [7], based on quantum calculations of the
oscillator strengths assuming a fixed internuclear dis-
tance R and treating the H and H* nuclei as classical
particles, with the coordinates R distributed according
to the probability Wi(R) O 4niR?exp[-U(R)/KT] in the
bound Uy(R) and repulsive U,(R) terms. By using a
model with fixed H and H* centers and a classical dis-
tribution function for the internuclear distance R in a
diatomic system with agiven interaction potential U(R)
(see, for example, [8], p. 167), Bates completely
avoided calculating the photodissociative absorption
cross sections for particular vibrational—rotational
states vK and summing over these states.

L ater, the influence of the quantum character of the

nuclear motions during the photodissociation (3) of H;

ions was studied in [9] for short wavelengths (2.7 < aw <
14.3 eV) and relatively low temperatures (T = 1000 and
2500 K), and the results for the absorption coefficients
were compared with the data of [7]. Further, the calcu-
lations of [7] were used to compile tables and derive
approximation formulas for bound—free and free—free

transitions “z; —~ °Z; inthe H; ion[10].

Quantum-mechanical calculations of cross sections
for photodissociation (3) from fixed vibrational levels v
were conducted in [11, 12] for the case of small rota-
tional quantum numbersK = 0 and 1. The data of Bates
cited above were used for the electron matrix elements

of the °Z; — “%, transition. In [12], the resulting
Cross sections were summed over v using a Franck—
Condon distribution, which is characteristic of the for-
mation of H; ions during the photoionization of neu-
tral hydrogen molecules H, or the ionization of H, by
electron bombardment (the temperature of the H, mol-
ecules was assumed to be low, equal to room tempera-
ture). The conditions assumed in calculations such as

those of [11, 12] are obvioudy far from those in the
solar photosphere.

The aim of the present paper is to analyze absorp-

tion by molecular (quasi-molecular) H; ions at visual,
near-infrared, and near-ultraviol et wavelengths at fairly
high temperatures (T = 4500-10000 K). Under these
conditions, alarge number of vibrational and rotational
levels of the ground electron state 22; are simulta-

neously excited. We adopted a self-consistent approach
to calculate the cross sections of the radiative processes
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’5,f2po,)

H(ls) + H*

Rlag]

A diagram of light absorption via photodissociation of the
H; molecular ion during an electron transition between its

ground (even) 22; and first excited (odd) ZZ: terms.

(3) and (4) together with the integrated photoabsorption
coefficient, taking into account a realistic Boltzmann
digtribution over the vibrationa—rotationa levels and the
contribution of the continuum of the H-H* system. We
aso transform our results to smple analytic expressions
corresponding to the semiclassical limit of Bates[7]. Spe-
cia attention is paid to comparing the roles of these
processes and of photoabsorption by bound-free (1)
and free—free (2) transitionsin the H-e system (i.e., the
H-ion) in the photospheres of the Sun and hotter stars.

2. PHOTODISSOCIATION OF THE H; ION
AND FREE-FREE TRANSITIONS
IN THE H-H* SYSTEM

2.1. Equilibrium Density of H, lons

The number density of H; in the solar photosphere
isof the same order of magnitude asthat of H-ions. The
law of mass action specifying the equilibrium condi-
tions (see [8]) leadsto the relations

Ng _ % remi®” 79 explPel]
NuN,. G0, DukTU Zy = &PRH )
3/2
8l £ Poy
o.M, KTeprTn
NH7 - gH EQT[hZ 72 |:|E | (6)

NuNe  9nQelme kTD



gH; = 21 gH_ = 11 gH = 2!
9. =2, g,=1
Here, g, and g - are the statistical weights of the

)

electron states for the H; (°Z) and H-(1$* 'S ions; gy
is the statistical weight of a hydrogen atom in its 1s
ground state; m,, N, g. and M, NH+, g, ae the
masses, number densities, and statistical weights of the
electrons and protons H*, respectively; |EH_| =0.754 eV

isthe binding energy of the electronin an H-ion; D, =

2.65 eV isthe energy of dissociation of an H, ionfrom
the ground vibrational—otational state v =0, K =0

(K = M,/2 isitsreduced mass); | = uRﬁ is the moment
of inertia; R, = 2.0a, is the equilibrium internuclear
distance (a, = 0.529 x 10-® cm is the Bohr radius); and
Q.=4.37 x 10'* s'! isthe oscillation frequency for the
lowest level v =0, K=0(see[13]). Expression (5) con-
tains the vibrational—rotational statistical sum for the

even ground term 22; (1soy) of H> , whichis equal to

1

(@ _
Zv—r - 2

Zv—r
(®)

_1 0 €wg. _(KT)’
- 2ZK(2K+1)eXpD kTO " 2BAiQ.

where Z, _, isthe vibrational—rotational statistical sum
for a diatomic molecule with arbitrary nuclei (which
can, in general, be different from each other, as distinct
from the H; ion), €, is the energy of the vibrational—
rotational level vK measured from the zero level v =0,
K =0 (so that €« > 0), and B, = #%/2l is the rotational

constant in energy units. Relation (8) specifies the quan-
tity Z, _, inthetemperaturerange#Qy3 < KT < D, (see

Table 1. Dependence of relative number densities of H;
and H~ on temperature (T = 4500-10000 K)

A L T Y
10%em3 102 cm?® z

4500 3.20 2.34 1.37
5000 1.70 1.68 1.01
5500 1.02 1.24 0.82
5800 0.79 1.06 0.74
6000 0.67 0.96 0.70
6500 0.47 0.76 0.62
8000 0.21 0.43 0.50

10000 0.11 0.25 0.45

LEBEDEV et al.

[8], pp. 157-167). The equilibrium values of the rela-
tive number densities N, ./NyN . and N ./NyN, cal-

culated using (5) and (6) and theratio N . /N - arepre-

sented in Table 1. We took the number densities of the
electrons N, and protons N, . to be equal. The number

densities N are expressed in cm.

2.2. Cross-Section for Photodissociation
from an Excited Vibrational—Rotational Sate

The figure shows potential-energy curves for the
ground *%;(lso,) and first excited (repulsive)

’s" (2po,) electron terms of Hj. In the case of large
internuclear distances R —» oo, these terms are corre-
lated with the H(1s) + H* state of theisolated hydrogen
atom and proton; i.e., they tend to the same dissociation
limit—the electron energy of the 1slevel of the hydro-
genatom. Theminimum Uy(R,) =-D,=-2.79¢eV inthe

potential energy curve Uy(R) of the 22; state corre-

sponds to the internuclear distance R, = 2.0a,. The cor-
responding electron-term splitting energy isAU (Re) =
11.84 V.

Therefore, ’;, v, K — %, , E, K + 1 phototrans-
itions from low vibrational—rotational levels vK (v =0,
1, 2) near the bottom of the potential well R, = 1.6-2.6 a,
of the Uy(R) term correspond to very large energies
(A = 8-16 eV) and small wavelengths (A = 800-
1600 A). Inthevisua (and the adjacent near-ultraviolet
and near-infrared, with photon energies 0.25 < aw < 6 eV,
i.e., 0.2 <A <5 pum), the process (3) of photodissocia-
tive absorption by Hj is primarily realized from
excited levels vK. Phototransitions at these wave-
lengths take place in the attraction region (R, > R,) of
the potential-energy curve Uy(R) of the lowest electron
state at internuclear distances3< R, < 7 a,. Table 2 pre-
sents the potential energies Uy(R) in the 1sg, ground
state, the splitting energies AU (R) for even (g) and
odd (u) terms, and the oscillator strengths f(R) of the
1so4 —= 2po, electron transition as functions of R for
the above range of distances, R= 3a,,

The cross section for photodissociation from agiven
vibrational—rotational energy level vK of the ground

electron term Zzg to the continuum of the repulsive

term °S" with energy E = 4202/l is determined by the

expression [14, 15]
AP W

, max (K", K)| ,u,
o) = L0y ML)

EK', vK|
Loy (PKHD) ©)
E = ﬁ&)—lEvKl
ASTRONOMY REPORTS Vol.44 No.5 2000
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Here, c isthe speed of light, [E,«| isthe bonding energy

of the H3 (°Z;) molecular ion at the level VK, and g is

the wave number of H and H* particles separated by
R — oo. We will measure the potential energies Uy(R)
and U,(R) from the ion dissociation edge; i.e., Uy(o) =
Uy(e0) =0and E « < 0, whereas E > 0 (the vibrational—
rotational energy E « of level vK is related to the
energy €.« > 0in (8), measured from the level v =0,
K =0, by the expression |[E x| = Dy — €,«)-

The matrix element d'?,,. of the dipole moment of

the 22;, v, K — °5!, E, K' transition in the radial
wave functions x(R) for the relative motion of the H
and H* in the discrete spectrum of the initial bound

electron state 22; of the H; ion and the continuum of
the final repulsive state °>;, takes the form:

(U 9)

d&% &k = (XEHR)|duy(RIXX(R)

j(x(“) (R) (R X LR R (o

Here, d y(R) isthe electron matrix element for the tran-
sition between the °s; —~ S, terms

dyg(R) = [ip(r, R)ler[gy(r, R)O

= [0 R)(er)@yr, Rydr

in the adiabatic wave functions @,(r, R) and @(r, R) for
the electron in the axially symmetric two-proton field,
H* and H*, whered,, || R (see[5] and [16], pp. 362-364)
and r is the electron radius vector measured from the

center of mass of the H; ion.

The electron-transition dipole matrix element (11)
is related to the corresponding oscillator strength
fu(Ry) of thetransition at frequency w= AU (R,)/% by
the expression

(11)

zmw

ug(Rm) - 2|dug(Rw)| (12)

The nuclear wave functions in (10) are normalized as
follows:

1
‘!4

j|x<g)(R)|2R2dR
(13)
j(x(”’(R)) Y(RRAR = 3(E-E).

When calculating the partia photodissociation
cross section (9) for the case of high vibrational—rota-
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Table2. Splitting of terms AU,,(R), potential energy U,(R) of

the lowest state 22; of the H; ion (measured from the dis-
socigionedge U () = U, () = 0), and ostillator strengthsf, (R)

2 2
of the "=, — "%, dectron transition according to [5, 6]

R[ag] Ug eV AU, eV fug(R)
3.0 -2.110 5.701 0.289
3.2 -1.925 4.925 0.281
3.4 -1.744 4.256 0.271
3.6 -1.570 3.676 0.261
3.8 —1.407 3.173 0.250
4.0 -1.254 2.736 0.238
4.2 -1.113 2.356 0.226
4.4 -0.984 2.027 0.213
4.6 -0.866 1.744 0.201
4.8 -0.760 1.497 0.188
5.0 —-0.664 1.282 0.175
55 —-0.469 0.865 0.144
6.0 -0.326 0.580 0.116
6.5 -0.226 0.385 0.090
7.0 -0.152 0.253 0.070
75 -0.103 0.166 0.052
8.0 -0.070 0.109 0039
8.5 -0.047 0.070 0.028
9.0 -0.033 0.046 0.021

tiona levels vK, we should bear in mind that the main
contribution to the integral over internuclear distance (10)
for a given transition frequency w is made by a small

neighborhood of the point R, where the H, (°Z; ) + i
and H3 (°=") potential-energy curvesintersect; i.e.,

Ug(Ry) + A0 = Uy(Ry),
Ang(Rm) = Uu(Rw)_Ug(Rw) = hw

Therefore, we can calculate the radial matrix element
of the dipole moment (10) using the quasi-classica
method of Landau ([16], pp. 399-401) or using an
approach based on a quantum solution for the nonadia-
batic transitions in a model with linearly intersecting
terms. This type of approach enables us to correctly
account for the contribution to the photodissociative

absorption coefficient k’;h;d (w), summed over all vK, of

al excited vibrationa—otational levels of the potential-
energy curves (14) whose classicd turning points R= a, «
are both far from and near the intersection point R,,.

Exact solutions for the one-dimensional motion of
nuclel in auniform field (which, apart from normaliza-
tion coefficients, reduce to Airy functions d@(x); see

(14)
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[16], Para 24) should be taken for the nuclear wave func-

tions of the discrete X'%(R) and continuum X 2(R).
Thus, instead of the widely used quasi-classical for-
mula (see [16], p. 401) for the transition probability at
thepoint R, we use amore general method to calculate
the nonadiabatic transitions between two different el ec-
tron terms (this method is similar to that in Exercise 3
of Para90[16] in connection with collisions of the second
kind). Applying this approach to radiative transitions

between the ectron terms of the H;, ion leadsto the fol -

lowing expression for the cross section for photodi sso-
ciation from a given vibrational—rotational level vK:

phd( ) 8T[20L)|dug(Rw)|2
 3cT kAF (R
) A (15
J@2/ WIE—Uy(R) —#2(K + 12)"/ 2uR2)

Here, T, = 21/|E,« — E, . 1 | is the period of the
vibrational—rotational motion of the nuclel in the state
vK, and AF (R, is the difference between the slopes
of the potentlal energy curves Uy(R) and Uy(R) at their
point of intersection R,;:

o) = 07 ) = [0

i .(16)

10}

The quantity A,k in (15) can be expressed in terms of
the square of an Airy function

A = 2[E =g,

[

a7

D(x) = —J’cos +ux%jx
where
30 #2(K +1/2)°0
i %Zh_l:% e Yl - (2pRi )E
(18)
< AFRY [P
FIOMRIFSIRY

and F{(R,) and F{(R,) are the slopes of the even

and odd terms taking into account the centrifugal
energy:

dOd  #A%(K+12)°
FORy = - Ly + LKLV 5 )
R

:Rw

oy - dH AA(K+12)°
R TR T R
KR, R

=R

LEBEDEV et al.

In accordance with [16], we use the definition of the
Airy function @(x) introduced by Fock (which differs
from that presented in some handbooks by a factor of
172). Note that, throughout the paper, we give only a
gualitative physical basis for the approximations used
and the final formulas and will publish detailed calcu-
lations in a separate article.

Further, we use the well-known asymptotic of the
Airy function @(x) in the classically permitted region
of motion for the H and H* nuclei (§ > 0), average the
result (15) over the period of therapidly oscillating part
of the function ®2(-£) in this region, and neglect its
exponentially small decrease in the classically forbid-
denregion (¢ < 0). Then, we can seefrom (17) and (18)
that Ajx — 1 far from the inflection point (i.e.,
for sufficiently large values of the energy difference

Evk — Ug(Ry) —#2(K + 1/2)/2pR%). Inthis case, asim-
ple, quasi-classical expression for the cross section for

photodissociation of H; (Zz; ) from afixed vibrational—
rotational level vK followsimmediately from the quan-
tum formula (15). Note that this asymptotic of (15),
which corresponds to A« = 1, can aso be derived
directly from the initial expression (9), if the results of
Landau’'s [16, pp. 399-401] quasi-classical theory are
used to calculate the dipole matrix element for transi-
tionsin the H-H* system at the intersection point of the
potential-energy curves.

We can see from (15)—(18) that the quantum calcu-
lation of the partial photodissociation cross section differs
from the quasi-classica calculation only at small values
for the difference [E,« — Uy(Ry) — A2(K + 1/2)2uR5,]. In
particular, taking account of the factor A« in (15) leads
to afinite value for the cross section at E « — Uy(R,) —
#2(K + 1/2)%2uR%, = 0 and describesiits rapid decrease
in the classically forbidden region for nuclear motion.

2.3. Averaging over the Boltzmann Distribution
and the Photodi ssociative Absor ption Coefficient

A large number of vibrational—otationd levels vK are
excited smultaneoudy at temperatures kT > 2Q, > B,

(hQ.=0.288 ¢V, B,=3.74 x 107 eV [13]), present in
the solar photosphere (KT ~ 0.5 eV). Inthis situation, if
we wish to find the photodissociative absorption coeffi-

cient kph 4 (w)

K> d(oo) = 0™(w) N, 21)

it is of the most interest to calculate the cross section
e . (w) averaged over v and K and normalized to the

ASTRONOMY REPORTS Vol. 44 No.5 2000
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total number density of H,, in the photosphere at tem-
perature T:

(VK)

phd(w) _ zo_phd

i (22)
ph.d (2K + l) 0 Ex+ D0|:|
ED R S VR

where the statistical sum Z,, _, is determined from for-
mula (8).

When calculating the photodissociation cross sec-

tion cph d((o) averaged over a Boltzmann distribution,

the summation over the vibrational—rotationa levels vK
in (22) can be replaced by integration over dv and dK,
and carried out using a method similar to that of [17]
This corresponds to replacing the discrete spectrum of
the vibrational—rotational energy levels with a quasi-
continuum.

Further, numerical computations demonstrate that,
at temperatures T = 4500-10000 K and for al transi-
tion frequencies w in the range 0.25 < Aw < 5.7 eV
under consideration, the energy interval E, « where the
classical inflection points R= a,« are near the intersec-
tion point R, of the potential-energy curves (14) (i.e.,
wherethe factor [E,« — Uy(R,) — #2(K + 1/2)%2u R3] in
(15) is close to zero) does hot make an important con-
tribution to theintegral over dv and dK. Thisenablesus
to restrict our treatment to a quasi-classical approxima-
tion when caculating the averaged cross section

o™ d((A)) [cm?] and the corresponding absorption coef-
ficient k[:(w) [cm']; in other words, we can use the
value A« =1in(15) and (17) in the classically permit-
ted region and neglect the exponential ly small decrease

of the partial cross section o) (oo) in the classically

forbidden region. The integration over the rotational
guantum numbersin (22) is conducted over the range

0 < K < Koo (Where 2K oo, /2HRS, = E i — U(R); the

integration over the energy of the H;, ionin the discrete
spectrum is conducted over the range E;,, < E< 0
(where Epip = Ug(R,,) < 0).

The calculation result obtained using the above
approximations can be written

32

1670 0RG|dug( R KT [
3c AFug(Rm)Zv—r[bﬂhZD

xpl Do+ Ug(RIV(3/2, [U(RI/KT)
kT U r312)

o (w) =
(23)
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Here, y(3/2, 2) is an incomplete gamma function of
order 3/2 (see, for example, [18]):

z

v(3/2,2) = Itme_tdt, r@3R) = Jva, (24
0

The average cross section o?h'd(w) determined by

formula (23) is a function of the frequency w and gas
temperature T and enables us, using (21), to calculate
the photodissociative absorption coefficient for a given

value of the total number density of H; in the discrete
spectrum. During specific calculations, it is convenient

to express the total number density of H} in the bound

state 22; in terms of the number densities of neutral

hydrogen atoms H(1s) and protons H* in the continuum
using relation (5). Then, with relation (12) for the elec-
tron-transition oscillator strengths, the corresponding

result for the absorption coefficient kﬂl‘d(oo) [em™] (21)
for photodissociation (3) takes the form

ph.d _ 3 [ﬁ_f[lRfifug(Rw)
kH; (w) = 41T 0@ ™ D___AFUQ(Rw)

9 exp% Ug;f_lsw)gy(3/2 |U(R|/KT)

(25)

r(3/2) NiNyg

where a = e¥/#c = 1/137 is the fine-structure constant.

2.4. Contribution of the Continuous Spectrum
and the Resulting Photoabsor ption Coefficient

Let us consider now the contribution of (4) to pho-
toabsorption resulting from free—free transitions of the
H-H* system. The initiad gquantum expression for the
absorption coefficient for collisions of H(1s) and H*
particles during transitions from a continuum state with
energy E for theinitial term Uy(R) to a continuum state

with final repulsive term UU(R) withenergy E'=E + 7w
takes the form [14, 15]
fr fr (w) _ wo_(u g)E‘_ [cm_l],
2.2 2, w2 (26)
Ezh_q, e = M@y
2u 2u
" M Y% Br'hiw
oE () = QHEHJ 0 3cq’
" @27)

Z[(K +1)[dE P, EK| +K|dg Ry, EK|2]-
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Here, o2 [cm* g is the effective cross section for the

photoabsorption process (4), V = (2E/W)'? is the rela
tive velocity of the colliding H(1s) and H* particles at
R — o0, and K isthe orbital quantum number of these
particles (in the quasi-classical limit, K = gp, where p
is the impact parameter). The averaging in (27) is car-
ried out over aMaxwell distribution for the velocities V.
The matrix element of the dipole moment of the free—
free transition differs from (10) only in the exchange of
the initial nuclear wave function of the discrete spec-

trum X9 (R) with the corresponding wave function of

the continuum x(E@‘,i (R), normalized to an energy & func-

tion.

The factor of one-half in the bracesin (27) isdueto
the symmetry of process (4) with respect to permuta-
tion of the H and H* nuclel, similar to the factor of one-
half in the statistical sum (8) for the discrete spectrum.
Callisions of the H and H* can occur with equal proba-
bilities via the two channels

(H+H")zpe
H+H — ! (28)

(H+H3ﬁ.

We can cal culate the absorption coefficient (26) for
free—free transitions (4) using the same approximation
asfor (23) and (25). Theresult is

1 rRe f ug(Rw
CnJAF 4(R,)

x exp LR T (32, |Uy(R,)]/KT)
PO kT O r(32)

fr—fr

_ 3
Ky (@) = 410

(29)

NH NH+,

r(3/2,2) = It”ze“dt = I(32)-y(32,2). (30)

Asin the case of photodissociation, the total contri-
bution of the continuum to the absorption coefficient is
described by a simple formula in the quasi-classical
approximation. Comparison of expressions (25) and
(29) for the absorption coefficients for bound—free (3)
and free—free (4) transitions shows that, in the quasi-
classical approximation, they differ only in the factors
of v(3/2, 2 and ' (3/2, 2) corresponding to the contribu-

tions of the discrete and continuous spectra of the H,
ion (wherez=|U(R,)|/KT). In particular, both contribu-
tions are proportional to the product NyN . of the
number densities of hydrogen atoms H(1s) and protons

H* in the continuum. This enables us to derive a more
compact analytical expression for the total absorption

LEBEDEV et al.

coefficient for processes (3) and (4). In a quasi-contin-
uum approximation, the general formulatakestheform

ke(@) = k(@) + K (@)

P Refug(Ry) 1 Ug(RY)
PRy P TN

This result has a clear physical interpretation: The
absorption coefficient is proportiona to the oscillator

strength f,g(R,,) of the °Z; — % electron transition a
theintersection of the terms (14). It isaso proportional to
the probability W (R,) 0 4TIR., exp[-Uy(R,)/KT] that the
H(1s) and H* particles are separated by adistance R, in
the initid bound state Uy(R). The Boltzmann factor
exp(-Uy/KT) in (31) specifies the temperature depen-
dence of the total absorption coefficient.

Formula (31) represents the total contribution of the
direct processes (3) and (4) to the H-H* system photo-
absorption coefficient. Taking into account stimulated
emission, the resulting absorption coefficient K(w)

under conditions of thermodynamic equilibrium is
given by the well-known relation (see [14])

(31)
= 4110

Tl (32)

K@) = kn(e)] 1- exp ]
We are primarily interested in acomparative analysis of
the roles of the photoabsorption processes (3), (4) and
(1), (2) as functions of the frequency w. The factor in
square brackets in (32) affects the formulas for the
absorption coefficients for the direct and inverse pro-
cesses in the same way. Therefore, we present our
results for the absorption coefficients below, without
taking into account stimulated emission.

Combining (31) and (32) leads to the well-known
result of Bates [7] for photoabsorption by the H-H*
system, derived using a simple model with fixed Cou-
lomb centers and a classical Boltzmann distribution
function for their coordinates. Our treatment was based
on the initial qguantum formulas for the cross sections
for photodissociation and free—free transitions. Our
results show that, in aquasi-classical limit for the nuclear
wave functions, the total contribution of these processes
can be described by the smple analytic expression (31),
if, in addition, we use a quasi-continuum approximation
for the vibrational—rotational levels.

Our numerical computation was based on the more
exact formula (15) for the partial photodissociation
cross section and an analogous formula for the contri-
bution of the continuum. The computation shows that
the correction factor (17), alowing for the quantum
character of the nuclear mation in the classicaly for-
bidden region near the turning points, affects the total
absorption coefficients in the visual, near-infrared, and
near-ultraviolet only dightly for the gas temperatures
T = 4500-10000 K under consideration. This immedi-
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Table 3. Dependence of & (w), cm™! on w (or wavelength ) for temperatures in the range T = 4500-10000 K. Values of
(@) =k ()/NyH . calculated using (31) are in units of 1073% cm®

T,K
hw, eV A, HM R, [ad] 4500 5000 5500 5800 6000 6500 8000 10000
Nr(w), 10 cm®

5.701 0.217 3.0 16.09 9.33 5.98 476 413 3.02 1.49 0.807
4,925 0.252 32 12.40 7.55 5.03 4.08 3.59 2.69 141 0.809
4.256 0.291 3.4 9.54 6.08 4.21 3.48 3.10 2.39 1.33 0.805
3.676 0.337 3.6 7.44 4.96 3.56 3.01 2.71 2.14 1.27 0.803
3.173 0.391 38 5.93 412 3.06 2.63 2.39 1.94 1.21 0.806
2.736 0.453 4.0 4.80 3.47 2.67 2.33 2.14 1.78 1.17 0.811
2.356 0.526 4.2 3.97 2.98 2.36 2.09 1.94 1.64 1.13 0.820
2.027 0.612 4.4 3.39 2.63 2.14 1.92 1.80 1.55 1.12 0.840
1.744 0.711 4.6 2.95 2.36 1.96 1.79 1.69 1.48 111 0.863
1.497 0.828 4.8 2.64 217 1.85 1.70 1.62 1.45 1.12 0.898
1.282 0.967 5.0 241 2.03 1.78 1.64 1.57 1.42 1.14 0.940
0.580 2.137 6.0 2.04 1.88 1.75 1.69 1.66 1.58 141 1.29
0.253 4,900 7.0 2.38 2.29 2.22 2.18 2.16 211 2.01 1.92

ately suggests that the quasi-classical approximation
can be applied to calculations of absorption coefficients
in the photospheres of the Sun and hotter stars and con-
firmsthe validity of the semiclassical approach used by
Bates.

Further development of the theory of absorption by
amedium in equilibrium containing atomic and molec-
ular components must go beyond the Born—Oppenhe-
imer approximation, which assumes that the electron
and nuclear motions are completely separate. This
approximation is most justified for low vibrational—
rotational states. As the quantum numbers v and K
increase, the interdependence between the e ectron and
nuclear motions ceases to be negligible and can lead to
considerable additional effects. These effects have been
studied in the physics of atomic collisions, where meth-
ods for taking into account electrorn—nuclear correla-
tions were developed. Applying these methods to pho-
toabsorption by diatomic systems could increase the
absorption coefficient at long wavelengths. Another
improvement of the theory is to use methods making it
possible to go beyond the limitations of models with
linearly intersecting terms (see, for example, [19]).

Note also that formulas (25), (29), and (31) refer to
the frequency range of interest to us, where the quan-
tum energy Aiw is considerably less than the splitting
term AU, 4 at the point R, where Uy(R)) =0 (R,=1.12 &,

and AU(Ry) = 22.2 eV for the H3 ion). When %w >
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AU (Ry), the classically permitted region of internu-
clear distances does not affect the photodissociation
cross section, and only the contribution from the con-
tinuum is present. We do not consider this case of large
transition frequencies here.

3. RESULTS AND DISCUSSION

We calculated the total molecular (quasi-molecular)

ion H; absorption coefficient for several values of w

and T using formula(31) and the datafrom Table 2. The
results for k(w) are presented in Table 3.

Theresults show that, at the temperatures T = 4500—
6500 K typical for the solar photosphere, after a very

small decrease at 0.25 < #iw < 1 eV, the H, photoab-

sorption coefficient (31) increases with the frequency
w. This behavior is primarily determined by the Boltz-
mann factor exp[|U4(R,)|/KT]. Theincreasein wisfol-
lowed by adecreasein the internuclear distance R, cor-
responding to the phototransition, and, accordingly, by
anincrease in the absolute value of the potential energy
lUg(Ry)|- (Recall that Uy(R,,) < 0 in the frequency range
under consideration; see Table 2.) Absorption will occur
from the lower levels vK, whose populations increase as
the vibrational quantum number v decreases. The absorp-
tion coefficient ki(w) monotonically decreases as
exp[|U4(R,)|/KT] as the temperature rises.
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Table 4. B;(w) calculated using (31), (33), and (34) for T =
4500, 5800, 8000, and 10000 K, assuming the number den-
sitiesof N, and NH+ are equal

T,K
hw, eV | A, pm | 4500 5800 8000 | 10000

Br, %
5.70 0.22 63.8 41.1 30.3 275
4.93 0.25 40.3 28.9 235 225
4.26 0.29 257 204 18.4 185
3.68 0.34 16.7 14.7 145 152
3.17 0.39 111 10.7 115 12.6
274 0.45 7.7 8.0 9.4 10.6
2.36 0.53 54 6.2 7.7 9.1
2.03 0.61 4.1 50 6.9 8.0
174 0.71 32 4.2 54 7.2
1.50 0.83 2.7 3.7 5.5 6.8
1.28 0.97 2.6 3.6 5.4 6.7
0.86 1.43 56 7.2 8.3 9.2
0.58 214 10.0 8.0 6.6 6.0
0.54 2.28 9.0 7.2 6.0 55
0.38 3.22 4.7 4.0 35 3.3
0.25 4.90 2.2 21 17 16

Let us compare the resulting values for the H,
absorption coefficient ky(w) and the total coefficient for
absorption by the negative ion H- viathe process (1)

k(w) = o _(oo)NH_ = 0, ()

(33)
Dl[?ﬂﬁ g dEdn -1
* DTkt pDkT DEN Ne [em "]
and viafreefreetransitions (2)
(@) = VO wGNuNe [em ™. (34)

Here, o, -(w) [cm?] isthe cross section for the photo-

gection (1) of an electron from an H- ion and
W00 cm* ] is the effective cross section for pho-
toabsorption (2), normalized to a unit flux of electrons
with velocity v, colliding with the H(1s) atom (for
details, see [14]).

Let us consider theratio
ph.d fr—fr
kH; () + k iy (w)

ki (@) + k()

ke(w)
kﬁf‘(w) + K ()

Br(w) = , (35)
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determined by (31), (33), and (34). It follows from
these formulas that, when No = N, B(w) isadimen-

sionless parameter that depends only on the frequency
w and the temperature T. Values for 3(w) are presented
in Table 4. We used the photoejection cross sections
0, (w) from [2] and the results of [3] for w0, yLifor

the absorption coefficient (34) for free—free transitions
).

Thus, the values of B1(w) in Table 4 characterize the
additional photoabsorption by molecular and quasi-

molecular H}, ions over the total photoabsorption by
the negative ions H- and collisions of electrons with

neutral hydrogen atoms H. Note that the H;, absorption

spectrum extends to frequencies considerably greater
than those in Tables 2—4. However, a comparison of the

H> and H- absorption coefficientsis meaningless at ener-
gies i > 4.93 eV, since absorption from the triplet level
3s3p *P of the Mg atom becomes dominant (see [1]).

Thefrequency range iw ~ 0.5-3 eV, which approx-
imately corresponds to the half-width of the Planck
distribution for black-body emission at temperature
KT ~ 0.5 eV, is of particular interest for studies of solar
emission. In this frequency range, 3+(w), which speci-
fiesthe relative contributions of photoabsorption by the
H-H* system and photoabsorption via (1) and (2), is,
on average, equal to ~6—7% and is only weakly depen-
dent on temperature. Thereisaconsiderableincreasein
B(w) (by ~30-40%) at i ~ 3-5 eV due to both the
increase in ki(w) [see (31) and Table 3] and the
decrease in the absorption coefficients for H- ions and
free—free electron transitions in the field of the hydro-
gen atom, which are determined by (33) and (34). How-
ever, therange w ~ 3—-5 eV isof little interest for cal-
culations of the radiation integrated over the spectrum,
since its contribution is appreciably suppressed by the
exponential dependence of the Planck distribution.

For stars hotter than the Sun with temperatures T =
8000-10000 K, the range of photon energies 3 < Aw <
5 eV either partialy (at T=8000 K) or completely (T =
10000 K) overlaps the half-width of the Planck distri-
bution. The results presented above (Table 4) show that

photoabsorption by H; ions substantially increases the
total absorption coefficient. In this case, the character-
istic values of B(w) are approximately 7-12% at visual
wavelengths and can be as large as 20-30% at short
wavelengths.

At temperatures of about 3000 K, the contribution
of photodissociation of H, ions and free—free pho-
totransitions in the H-H* system integrated over the
spectrum is approximately 3% of the total contribution
of photoabsorption by H- and free—free electron transi-
tions. However, the relative contributions of photoab-
sorption by the H-H* system and of photoabsorption
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viaprocesses (1) and (2) appreciably increases at short
wavelengths, and the corresponding values of B(w)
reach ~50-150% at energies 4.5 < iy < 5.5 eV. Note
also that the free—free electron phototransitions in the
fields of neutral hydrogen molecules H,, whose number
density sharply increases with decreasing temperature,
must be also taken into account when considering
absorption in stellar atmospheres with temperature
T~ 3000 K.
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