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Abstract—We have developed a model for a spheroidal, ring-shaped galaxy. The stars move in a ring with an
elliptical cross section at the 1 : 1 frequency resonance. The shape of the cross section of the equilibrium ring
depends on the oblateness of the galaxy itself, so that the ellipse of the ring cross section is radially extended
when the oblateness of the galaxy is small. If the oblateness of galaxy exceeds some critical value, the ellipse
cross section is extended along the Ox3 axis. The shape of the ring cross section is circular for a galaxy with
critical eccentricity. The stability of the ring over a wide range of perturbations is studied. A fundamental bicu-
bic dispersion equation for the frequencies of small oscillations of a perturbed ring is derived. Application of
the model to the ring galaxy NGC 7020 shows that its ring cross section should be approximately circular. Anal-
ysis of the dispersion equation demonstrates that stellar orbits in the arm are unstable (but the instability incre-
ment is small). We conclude that stars in the ring of this galaxy should drift from the 1 : 1 resonance, and the
ring itself should evolve. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The rings (or partial ring structures) existing in
many galaxies have long attracted the attention of theo-
rists. The abundance of such stellar systems was empha-
sized, for example, in [1], which notes about 200 flat gal-
axies with ring structures. The most prominent example
of a galaxy possessing a distinct nucleus–ring combina-
tion (outwardly similar to Saturn and its rings) is
NGC 7702. According to [2], this galaxy has not one
but two well-separated rings. The well-known exam-
ples [3–5] indicate that ring and spiral-arm structures
have similar compositions and stellar dynamics. Inves-
tigations of such structures are necessary if we wish to
elucidate the important role of secular evolution pro-
cesses in spiral and SO galaxies.

The existence of ring galaxies is a serious theoreti-
cal problem. A quite simple stellar dynamical model for
a galactic ring was developed and its stability studied in
[6]. That paper was primarily concerned with general
collective effects in the dynamics of prolate structures,
whereas the dynamics of individual stars within such
structures were not studied. However, the existence of
prolate structures and circular rings is possible only if
there are certain definite relations between the parame-
ters of stellar orbits and the corresponding first integrals
of motion. Precisely the character of individual orbits is
the decisive factor determining the particular form of
the components of the velocity dispersion tensor, and
pressure anisotropy in the “stellar gas,” which is char-
acterized by these components, will considerably affect
the stability of rings in galaxies.

Therefore, when considering the orbits of individual
stars in the arms, we should first and foremost examine
possible resonances. This is especially important since
the evolution of dynamical systems often leads to the
1063-7729/00/4405- $20.00 © 20279
appearance of various commensurability ratios. Recall
that our solar system is literally saturated with reso-
nances between the frequencies of the spin–orbital
motions of planets and satellites [7].

Galaxies are the oldest stellar systems and have
undergone long periods of evolution. Therefore, we can
assume that resonances could be formed in galaxies in
much the same way as in the solar system. Taking such
resonances into account when developing galactic mod-
els can radically change the dynamical properties of the
models.1 Therefore, when constructing models for ring
galaxies, we should first and foremost investigate the
dynamical consequences of resonances between the
frequencies of small oscillations of stars in a plane of
the ring cross section.

The present paper is concerned with a stellar
dynamical model for a ring galaxy with a local 1 : 1 res-
onance of the frequencies of stellar motions in a circu-
lar arm with an elliptical cross section. The equilibrium
model itself is developed in Sections 2–5, and its stabil-
ity is studied in Sections 6–10. We apply this model to
the ring galaxy NGC 7020, whose structure was studied
in detail in [9].

2. EQUATIONS OF STELLAR MOTION
IN AN ELLIPTICAL ARM

Let us consider an axially symmetric galaxy pos-
sessing a uniform circular arm with density ρ and ellip-

1 See, for example, [8], which describes a self-consistent phase
model for a spheroidal galaxy with an additional resonant integral
of the stellar motion. Torus-shaped vortex motions of the cen-
troids arise in this model, in agreement with both observations
and numerical experiments in the framework of the N-body
problem.
000 MAIK “Nauka/Interperiodica”



 

280

        

KONDRAT’EV

                                                       
tical cross section. The arm is characterized by a cross
section with semi-axes a1 and a3:

(1)

(where ξ = R – R0), and is filled with stellar orbits. Since
the cross section and curvature of the generatrices of
the arm are small, we can take its inner potential at the
point (ξ, x3) in the form

(2)

which is typical for a uniform two-dimensional ellipti-
cal cylinder with straight generatrices. The constant
coefficients in expression (2) are equal to

(3)

A star in the arm is also affected by the gravitational
field of the galaxy itself. Let us expand the galactic field
potential in a Taylor series in powers of ξ and x3 in the
neighborhood of the arm. Then, with accuracy up to
quadratic terms, we obtain

(4)

Here,

(5)

is the square of the angular velocity in a reference orbit
with radius R0 from the galaxy center and the coeffi-
cients of the potential are equal to

(6)

The total potential inside the arm is the sum of the
contributions:

(7)

The initial equations for the motion of a star inside
the arm in cylindrical coordinates (R, θ, x3) are well-
known:

(8)

When solving this system of equations, we first note
the quadratic dependence (7) of ϕ on x3. As a result,
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motion along the corresponding axis is described by the
equation of a one-dimensional harmonic oscillator

, (9)

and obviously does not depend on motions along the R
and θ directions.

Let us simplify the problem and assume that the dis-
tribution of mass in the galaxy and ring possesses cir-
cular symmetry; i.e.,

(10)

Next, let us consider a coordinate system rotating
with angular velocity Ωc:

(11)

Then, the first two equations of (8) take the form

(12)

Consequently, we obtain in a linear approximation with

respect to ξ and 

(13)

and

(14)

By substituting η = R0  into the last two equations
and using (9), the complete system of equations for the
stellar motion can be reduced to the form

(15)

After the first integration (to within a constant, which is
not important in our consideration), the middle equa-
tion of system (15) gives

(16)

Substituting (16) into the right-hand side of the first
equation of (15), we finally obtain the equations of a
two-dimensional harmonic oscillator,

(17)
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where we have introduced the parameters

(18)

In particular, when the arm is absent (i.e., α1 = α3 = 0),
the first relation of (18) can be written in the equivalent
form

(19)

leading to the well-known criterion for the stability of
circular orbits (see, for example, [10]).

3. STELLAR MOTIONS
AT THE FREQUENCY RESONANCE

The solution of system (17) can be written in the
form

(20)

Next, we require that the stellar orbits be closed in
the meridional plane of the arm; i.e., that they be repre-
sented by Lissajous figures. In this case, the ratio of the
oscillation frequencies must be a rational number:

(21)

In addition, the condition of conservation of the
ellipse boundary (1) must be satisfied for all stellar
orbits. We shall consider here the simplest case of equal
frequencies (i.e., the 1 : 1 resonance) and initial phases:

(22)

Then, the motion of a star is described by the formulas

(23)

and under the condition

, (24)

the stars move along ellipses similar to the boundary
ellipse (1). Such an arm, resembling a swiss roll, con-
sists of concentric tori with homothetic elliptical cross sec-
tions. Consequently, the condition that the boundary (1)
be conserved is satisfied.

Note that equality (22) implies the relation

(25)

between the ratio of the semi-axes of the arm cross sec-
tion χ = a3/a1 and the parameters of the galaxy itself.
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4. SLOW EVOLUTION OF A RING GALAXY

In the case of slow evolution, the adiabatic invari-
ants must be conserved. In accordance with (17), we
have a harmonic oscillator with respect to ξ and x3.
Consequently, as is well known [11], the products of
the squares of the amplitudes and the frequency are
conserved:

(26)

In addition, the mass per unit length of the arm should
be conserved:

(27)

The system of equations (25), (26), and (27) deter-
mines variations in the arm parameters during the sec-
ular evolution of the stellar system.

5. MODEL CALCULATIONS

As a simple equilibrium model of a galaxy, let us
consider a nonuniform stratified spheroid with similar lay-
ers and the realistic normalized density distribution [12]

(28)

where

 and  are the semi-axes of the spheroidal galaxy
itself, and β is a constant that can be derived from pho-
tometric data.

It follows from (25) that

(29)

where

(30)

As a result (for details, see the Appendix), the expres-
sion for Ψ from (25) will be equal to
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Here, e =  is the eccentricity of a meridional

cross section of the galaxy (and all its layers of equal
density), R0 is normalized to , and F and E are ellip-
tical integrals of the first and second kinds.

Formulas (31) and (29) specify the ratio of the semi-
axes χ = a3/a1 of the arm as a function of the eccentric-
ity e of the galactic layers β via the parameters R0/
(the central radius of the arm) and β. The calculations
showed that the dependence of χ on β and R/  is quite
weak over a wide range of their values. Therefore, it is
possible that the results of our calculations, with rea-
sonable accuracy, are characteristic for many ring gal-
axies. Of course, the condition of azimuthal symmetry
in these objects must be satisfied. This is true, for exam-
ple, for the ring galaxy NGC 7020. The corresponding
plot of χ(e) is shown in the figure.

There is an interesting characteristic feature: The
cross sections of the resonant rings in weakly oblate
galaxies are radially extended, while the cross sections
of the arms in galaxies whose oblateness exceeds the
critical value ecr are extended along the Ox3 axis. The
value of ecr is determined by equation (29) for χ = 1. For
NGC 7020, we obtained ecr ≈ 0.88, which is very close
to the mean eccentricity e ≈ 0.89 of the isophotes in the
galaxy itself. Consequently, in the resonance model
under consideration, the ring of NGC 7020 has an
approximately circular cross section.

1
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Dependence of the semi-axis ratio χ = a3/a1 of the elliptical
cross section of an equilibrium ring at the 1 : 1 frequency
resonance on the eccentricity of the meridional cross section
e of a spheroidal galaxy with density distribution (28). The
calculations were conducted for NGC 7020. We found, in
accordance with the photometric data [9], that β ≈ 100,
R0/  ≈ 0.6, and e ≈ 0.89. The ellipse of the arm cross sec-

tion turns into a circle at ecr ≈ 0.88.

ã1
6. SMALL PERTURBATIONS OF THE ARM

Let the elliptical cross section of the arm (1) at each
time be deformed into a slightly different ellipse by the
linear transformation

(32)

where the functions of time a(t), b(t), c(t), and d(t)
[whose specific form is given by (45)] are small enough
that we can neglect their squares in the subsequent
analysis. The symmetric part of transformations (32)

(33)

obviously leads to changes in the semi-axes a1 
a1(1 + a) and a3  a3(1 + d) and, consequently, in the
density ρ.

We can easily find the new coefficients of the inner
potential of the elliptical arm. It is obvious that

i.e., the increment in the first coefficient is

In the same way, we find

On the other hand, the antisymmetric part of trans-
formations (32)

(34)

leads to rotation of the arm through a small angle θ and
a trivial shift of the particles along the elliptical cross
section of the orbits. Indeed,

(35)

where θ is just the small angle of the arm rotation:

7. PERTURBATION OF THE POTENTIAL

The potential of the unperturbed elliptical arm is
given above by formula (2). A shift along the ellipse
obviously does not affect the arm potential. Therefore,
we obtain
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The increment in the potential due to the antisymmetric
part of transformations (35) is equal to

(37)

Then, the total increment of the potential at the inner
point (ξ, x3) is given by the formula

(38)

8. MOTION OF A PARTICLE
IN THE PERTURBED ARM

Let us now consider the motion of a particle. The
equations of its dynamics in the unperturbed potential

(39)

(where ϕ is given by formula (7), and L is the integral
of angular momentum) will be

(40)

In the perturbed state,

,

in place of (40), we obtain the following set of inhomoge-
neous, ordinary differential equations for the unknown
quantities δξ and δx3:
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we obtain with the required accuracy the expression

(43)

δ2ϕ̃ 4πGρ
a1

2c a3
2b+

a1 a3+( )2
-----------------------ξ x3.=

δϕ̃  = α1 a
aa1 da3+

a1 a3+
-----------------------+ 

  ξ2– α3 d
aa1 da3+

a1 a3+
-----------------------+ 

  x3
2–

+ 4πGρ
a1

2c a3
2b+

a1 a3+( )2
-----------------------ξ x3.

Φ ϕ L2

2R2
---------, R– R0 ξ ,+= =

d2ξ
dt2
--------

∂Φ
∂ξ
-------,

d2x3

dt2
---------- ∂Φ

∂x3
--------.= =

ξ ξ δξ , x3 x3 δx3, ϕ ϕ δϕ̃+ + +

d2

dt2
-------δξ ∂2Φ

∂ξ2
----------δξ–

∂2Φ
∂ξ∂x3
--------------δx3–

∂
∂ξ
------δϕ̃ ,=

d2

dt2
-------δx3

∂2Φ
∂ξ∂x3
--------------δξ–

∂2Φ
∂x3

2
----------δx3–

∂
∂x3
--------δϕ̃ ,=

ϕ̃

Φ ϕ L2

2R0
2 1 ξ

R0
-----+ 

  2
--------------------------------–=

Φ const ΩcR0ξ– A1 α1+( )ξ2–=

– A3 α3+( )x3
2 L2

2R0
2

--------- 1 2
ξ
R0
-----– 3

ξ2

R0
2

-----+
 
 
 

.–
ASTRONOMY REPORTS      Vol. 44      No. 5      2000
Consequently, equations (42) reduce to the form

(44)

9. THE DISPERSION EQUATION

The unperturbed solutions ξ(t) and x3(t) from (23),
as well as the time dependences for the coefficients

(45)

(where ω is the frequency of small oscillations of the
perturbed arm), must be substituted into the right-hand
sides of equations (44). In addition,

(46)

[where ξ(t) and x3(t) are also taken from (23)] must be
substituted for δξ and δx3 on the left-hand sides of the
above equations. After these substitutions into (44) and
calculation of the second derivatives of functions (46),
the system (44) can be reduced after extensive manipu-
lation to the equations
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(48)

Since equations (47) must be satisfied at any instant
of time t, we impose the requirement

(49)

Equality (49) represents a system of four linear alge-
braic equations for the unknown quantities a0, b0, c0,
and d0. Since the right-hand sides of these equations are
equal to zero, they have nontrivial solutions only if the
determinant of this system is equal to zero. This condi-
tion yields the basic dispersion equation of the problem:
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with the coefficients
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Solutions of the dispersion equation

e χ

0.25 0.029431 5.341189 5.133680 –0.176781

0.5 0.139000 5.442480 5.005362 –0.140321

0.75 0.461141 5.439000 4.615930 –0.078983

0.85 0.810901 5.224364 4.292386 –0.060398

0.88 0.998620 5.091055 4.151278 –0.060223

0.90 1.169900 4.970489 4.037862 –0.063190

0.95 1.995270 4.467905 3.633548 –0.093558
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Here, we have introduced the notation

(52)

and χ = . In addition, ω2 and  are normalized

to 4πGρ:

(53)

10. ANALYSIS OF THE DISPERSION EQUATION

Since ω2 ≠ 0, the dispersion equation (50) can be
reduced to the bicubic equation:

(54)

We calculated the coefficients of this equation for the
same parameters β and R/  as in the figure. Solutions
of equation (54) for several values of e are presented in
the table.

We can see that there are two positive and one neg-
ative square of the frequency at each value of e. This
implies the existence of imaginary frequencies and,
therefore, the instability of the stellar orbits in the arm
around the galaxy. We can also see that the absolute
value of the negative square of the frequency is small
everywhere. Consequently, the instability increment of
the stellar orbits is also a small quantity.

11. CONCLUSION

As can be seen in the figure, the most interesting
consequence of our assumption that the frequencies of
stellar oscillations in an equilibrium ring have a reso-
nant character is that the shape of the ring cross section
depends on the oblateness of the spheroidal galaxy
itself. In the framework of the model considered, rings
whose cross sections vary from flat to circular and fur-
ther to prolate in the direction perpendicular to the sym-
metry plane of the galaxy are possible from the dynam-
ical point of view. In particular, the ring in the galaxy
NGC 7020 should have an approximately circular arm
cross section in the case of the 1 : 1 resonance. We have
studied the stability of rings in the general case of linear
affine perturbations. Our solution of the dispersion
equation for NGC 7020 shows that orbits in the ring
will be slightly unstable. We conclude that the stellar
orbits in the ring of this galaxy will drift from the 1 : 1
resonance, and the ring will slowly evolve as a whole.
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APPENDIX

Since the ring in NGC 7020 is an inner ring [2], we
shall use the formulas for the inner potential of nonuni-
form stratified ellipsoids from monograph [12], ch. 2,
when calculating the quantities appearing in expression
(25) for Ψ. In the case under consideration, the layers
with constant density are spheroids that are similar to
each other. This simplifies the calculations.

First, we must find the derivative

(A.1)

By substituting here the density distribution (28) in the
form

(A.2)

we obtain for  from formula (5)
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Finally,  can be expressed in terms of the incom-
plete elliptical integrals of the first and second kinds:

(A.4)

where

Next, the second derivative of the potential in the
equatorial plane of the galaxy is equal to

(A.5)

After the substitution x = [  + β  + u]–1/2 and a series
of transformations, we obtain the following expression
for 2A1 from formula (6):

(A.6)

In the same way, after quite simple but cumbersome
calculations, we obtain

(A.7)

Substituting expressions (A.4), (A.6), and (A.7) into
(25), we finally obtain the required formula (31).

Translated by Yu. Dumin
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Abstract—Interplanetary scintillation observations of the radio sources 4C 31.04, 3C 67, 4C 34.07, 4C 34.09,
OE 131, 3C 93.1, OF 247, 3C 147, 3C 173, OI 407, 4C 68.08, 3C186, 3C 190, 3C 191, 3C 213.1, 3C 216,
3C 237, 3C 241, 4C 14.41, 3C 258, and 3C 266 have been carried out at 102 MHz. Scintillations were detected
for nearly all the sources. The integrated flux densities and flux densities of the scintillating components are
estimated. Nine of the 21 sources have a low-frequency turnover in their spectra; three of the sources have high-
frequency turnovers. The physical parameters are estimated for sources with turnovers in the spectra of their
compact components. In most of the quasars, the relativistic-plasma energy exceeds the magnetic-field energy,
while the opposite is true of most of the radio galaxies. Empirical relations between the size of the compact
radio source and its magnetic field and relativistic-electron density are derived. © 2000 MAIK “Nauka/Inter-
periodica”.
1. INTRODUCTION

Observations at 2.7 GHz [1, 2] have shown that
about 30% of strong radio sources have angular sizes
less than 2″ and steep spectra. Thus, there exists a spe-
cial sample of compact radio sources with steep spectra
above 1 GHz. These sources have been actively studied
with high angular resolution and high sensitivity at cen-
timeter and decimeter wavelengths, while observations
at meter wavelengths are virtually absent. We decided to
conduct meter-wavelength interplanetary-scintillation
observations of these compact steep-spectrum (CSS)
radio sources in order to acquire a better understanding
of their nature. The basis for these observations was the
sample of 62 CSS sources published in [3].

We presented results for 12 sources in [4], our first
paper in this cycle. We took primarily strong sources
from the initial sample, for which there were abundant
high-frequency observations. This enabled us to con-
struct the spectra of compact (< 0.1″) features. The
spectra for the compact features of all 12 sources had
low-frequency turnovers. Assuming that these were the
result of synchrotron self-absorption, we obtained esti-
mates of the magnetic field, number density of relativ-
istic electrons, and energies in the magnetic field and in
relativistic electrons. In most cases, equipartition of
energy between the magnetic field and relativistic par-
ticles was violated.

The present paper is the second in this cycle. Our
main goal is to study the physical conditions in the
compact (≤1″) features of the CSS sources studied and
to search for differences in these physical conditions
for the quasars and radio galaxies in the sample.
1063-7729/00/4405- $20.00 © 20286
2. OBSERVATIONS

Our 102-MHz interplanetary-scintillation observa-
tions were carried out in 1995–1997 on the Large
Phased Antenna (LPA) of the Lebedev Physical Insti-
tute. The effective area of the antenna in the zenith
direction is 3 × 104 m2. The receiver time constant is
τ = 0.4 s and the receiver bandwidth is about 200 kHz.
The rms confusion for the LPA due to extended (non-
scintillating) sources is 1 Jy. Here, we present results
for 21 sources.

We calibrated the observations using radio sources
from the 3C catalog. As a rule, data for no fewer than
five calibration sources were recorded in each observ-
ing session. All flux-density estimates were obtained
using the scale of Kellermann [5]. The observation
reduction method is described in [6, 7]. The method
used enables the detection of weak scintillating sources
whose scintillation dispersions are smaller than the
noise dispersion.

We present a detailed description of the results for
each source. As a rule, the sources have complex struc-
tures, and our observations separate out the main com-
ponent (or components) contributing to the scintilla-
tions. Unless otherwise indicated, scintillations were
reliably detected. Unfortunately, we are not able to pub-
lish all the spectra (they are accessible in [8]); there-
fore, the spectra were divided into groups with charac-
teristic behaviors.

4C 31.04

4C 31.04 is a radio galaxy with redshift z = 0.059.
Observations at 327 MHz with resolution 0.064″ ×
0.041″ [9] showed that it has a double structure with
000 MAIK “Nauka/Interperiodica”
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separation 0.07″ in the southeast–northwest direction.
Both components make roughly equal contributions to
the scintillations at 102 MHz, since their flux densities dif-
fer by less than a factor of two and they are both equally
compact (0.03″ × 0.02″ for the southeast component and
0.043″ × 0.024″ for the northwest component). 1.5-GHz
observations with resolution ~1″ and ~7′ [9, 10] show
an extended (~2″) halo whose flux density is less than
6% of the total flux density.

We observed 4C 31.04 over four days at elongations
~26°. Strong scintillations were recorded. Taking into
account the angular size of the source and its elonga-
tion, we estimate the flux density of the scintillating
component to be Sscin = 2.6 Jy. We estimate the inte-
grated flux density to be Sint = 4.7 Jy. The integrated
spectrum of the source (Fig. 1) shows a clear flattening
toward lower frequencies; given the large errors in the
flux density due to the effect of confusion, there may
even be a turnover in the integrated spectrum. The spec-
trum of the compact radio emission also has a maxi-
mum near 200 MHz and a turnover at lower frequen-
cies. Note that, in connection with the small number of
observations with high angular resolution (~0.01″), the
inferred spectrum of the compact emission corresponds
to the sum of the flux densities of both compact compo-
nents. In this case, the turnover in the spectrum could
reflect a turnover in the spectrum of either one or both
components.

3C 67
This source is a radio galaxy with redshift z = 0.31.

The radio source is double, with northern and southern
components separated by 2.4″. The southern compo-
nent contributes about 60% of the total flux at 1.6 GHz
[3]. At 0.6 GHz, the northern component is only half as
strong as the southern component and is twice as large.
This suggests that the contribution of the southern com-
ponent will dominate at 102 MHz. This component is
0.06″ × 0.02″ in size and is surrounded by a diffuse halo.
The flux density of the halo is about 80% of the flux
density of the southern component at 1.6 GHz [17].
0.6-GHz observations with resolution ~0.1″ [18] yield
a size for the halo of 0.09″ × 0.09″. We adopted this size
for the characteristic size of the source. The optical
object that has been identified with the radio source
coincides with the southern component, which is prob-
ably the radio core.

3C 67 was observed over five days at elongations
~30°. We estimate the flux density of the scintillating
component to be Sscin = 5.2 Jy, and the integrated flux
density to be Sint = 14.6 Jy. The integrated spectrum of
3C 67 and the spectrum of its southern component do
not show a low-frequency turnover.

4C 34.07
The redshift of 4C 34.07 is unknown, though optical

observations suggest that it is probably a quasar [3].
Observations at 1.66, 5, and 15 GHz with resolution
ASTRONOMY REPORTS      Vol. 44      No. 5      2000
~0.1″ [19] show that it is a very compact source sur-
rounded by an extended halo. The halo contributes
about 2% of the integrated flux density at 5 GHz and
about 20% of the integrated flux density at 1.67 GHz.
Since the halo is rather large (~2″ at 1.67 GHz [19]), we
do not expect it to make a significant contribution to
scintillations at 102 MHz. 1.67-GHz observations with
resolution ~0.01″ [20] indicate that more than 50% of
the total flux density at this frequency is associated with
a component 0.006″ × 0.003″ in size. We expect that
precisely this component will dominate the scintilla-
tions at 102 MHz.

We observed 4C 34.07 over three days at elonga-
tions near 33°. There were large variations in the flux
density from day to day (∆S = 1.4 – 2.4). This may be due
to the small angular size of the scintillating radio source.
We estimate Sscin = 2.2 Jy. The integrated spectrum shows
some steepening at low frequencies (Sint = 6 Jy). This over-
estimation of the integrated flux density is probably the
result of confusion. The spectrum of the scintillating radio
source has a maximum at 300–500 MHz and turnover at
lower frequencies (similar to the spectrum in Fig. 1).

4C 34.09

This source is a radio galaxy with redshift z = 0.020.
5-GHz observations with resolution 0.4″ [3] show that
the source has two components separated by 1.1″ in the
southeast–northwest direction. 1.6-GHz observations
with resolution 0.08″ [3] confirm that the source has two
main components surrounded by a weak halo. The halo is
large (~3″) and extended in the southeast–northwest direc-
tion. Its contribution to the 102-MHz scintillation is insig-
nificant. The southeast component contributes ~80% of
the integrated flux density at 1.6 GHz, and we expect that
this same feature will dominate the 102-MHz scintilla-
tions. Its angular size is 0.15″ × 0.075″.

We observed 4C 34.09 over three days at elonga-
tions ~40°. We estimate Sscin = 3.8 Jy and Sint = 11 Jy.

0.01
ν, GHz

0.1 1 10
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S, Jy

~~
Radio lobes

4ë31.04

Fig. 1. Integrated spectrum of 4C 31.04 (filled triangles)
based on points at 31.4 GHz (0.71 Jy) [11], 10.7 GHz (1.03 Jy)
[12], 4.85 GHz (1.57 Jy) [13], 2.7 GHz (1.93 Jy) [14],
1.4 GHz (2.68 Jy) [15], 0.408 GHz (3.6 Jy) [15], 0.178 GHz
(2.4 Jy) [16], and 0.102 GHz (4.7 Jy) [this paper]. Spectrum
for the compact (scintillating) component (hollow triangles)
based on points at 5 GHz (1.48 Jy) [10], 1.5 GHz (2.46 Jy)
[10], 0.327 GHz (3.3 Jy) [9], and 0.102 GHz (2.6 Jy) [this
paper].
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The integrated spectrum clearly steepens at low fre-
quencies, probably due to confusion. The spectrum of
the scintillating component does not show a low-fre-
quency turnover.

OE 131

Not much information about OE 131 is available. Its
optical counterpart has been identified with a quasar with
redshift z = 2.67. Observations at 5 and 1.66 GHz [20, 21]
revealed several components with sizes ~ 0.001″; how-
ever, most (60%) of the flux density at this frequency is
from a compact region 0.0012″ × 0.0002″ in size. There
is no significant halo component of OE 131 at least to
1 GHz.

We observed OE 131 over six days at elongations
23° and 32°. There were large jumps in the measured
flux-density fluctuations, ∆S = 0.35–1.3 Jy. This may be
due to the small angular size of the compact radio emit-
ting region. We estimate Sscin = 0.8 Jy and Sint = 3.6 Jy.
The spectrum of the scintillating component has a max-
imum near 400 MHz and a turnover at lower frequen-
cies (similar to the spectrum in Fig. 1).

3C 93.1

This source is a radio galaxy with redshift z = 0.244.
Observations at 1.67 and 5 GHz with resolution ~0.1″
[19, 22, 23] show a compact component with character-
istic angular size 0.3″ × 0.2″ and a weak extended halo,
whose contribution to the scintillations at 102 MHz will
be negligible. 1.67-GHz observations with resolution
~0.01″ [20] indicate that ~70% of the emission at this
frequency comes from a compact region 0.19″ × 0.19″
in size. This region should also dominate the 102-MHz
scintillations.

0.01
ν, GHz

0.1 1 10

1

S, Jy

OF 247

Core?

Fig. 2. Integrated spectrum of OF 247 (filled triangles) based
on points at 31.4 GHz (0.38 Jy) [11], 15 GHz (0.92 Jy) [25],
10.7 GHz (1.44 Jy) [15], 5 GHz (2.47 Jy) [15], 2.7 GHz
(3.18 Jy) [15], 1.41 GHz (3.89 Jy) [15], 0.960 GHz (4.2 Jy)
[15], 0.635 GHz (3.96 Jy) [15], 0.430 GHz (3.42 Jy) [15],
and 0.318 GHz (2.65 Jy) [15]. Spectrum for the compact
(scintillating) component (hollow triangles) based on points
at 15 GHz (1.06 Jy) [19], 5 GHz (2.34 Jy) [19], 1.6 GHz
(3.77 Jy) [19], and 0.102 GHz (1.1 Jy) [this paper].
We observed 3C 93.1 over three days at elongations
~31°. We estimate Sscin = 3.9 Jy and Sint = 11 Jy. The
radio spectrum is flat.

OF 247

This source is a radio galaxy with redshift z = 0.219.
It was unresolved in observations at 1.67, 5, and 15 GHz
with resolution ~0.1″ [19], so that it is very compact.
1.67-GHz observations with resolution ~0.01″ [24]
indicate that the structure of OF 247 is asymmetric and
that there is weak emission from a region to the north-
east. The characteristic angular size of the source indi-
cated by the radio contours in [24] is 0.02″ × 0.01″.

We observed OF 247 over three days at elongations
~35°. We estimate Sscin = 1.1 Jy; we were not able to
measure the integrated flux density. Figure 2 presents
the spectrum of OF 247. The general appearance of the
spectrum indicates that the role of the weak halo should
be completely negligible, even at the lowest frequen-
cies. The spectrum has a peak at 1 GHz and a turnover
at lower frequencies. Therefore, OF 247 is more aptly
classified as a GHz-peaked-spectrum (GPS) source
rather than a CSS source.

3C 147

This is a quasar with redshift z = 0.545. Observa-
tions at 22.5, 15, 8.4, 5, and 1.6 GHz with resolution
~0.1″ [19, 22, 26–29] show a weak, extended compo-
nent to the north and a stronger, more compact structure
to the south, stretching 0.25″ from northwest to south-
east. Observations with resolution ~0.02″ [30–34] indi-
cate that the souther component has a core–jet structure
surrounded by a weak halo. The core, which is at the
southern end of the jet, is very compact (≈0.005″ ×
0.002″) and contributes most of the flux density from
compact emission at 1.67 GHz [34]. Superluminal expan-
sion has been observed in the core [35]. A comparison
of the core and jet at 1.67 GHz, 609 MHz, and 329 MHz
[32] showed that the shape and size of the jet are the
same at these three frequencies, but its relative contri-
bution to the total flux changes. At 1.67 GHz, the core
contributes most of the compact flux density, while the
flux densities from the core and the two knots dominat-
ing the jet emission are comparable at 329 MHz. Unfor-
tunately, many papers dealing with high-resolution
observations do not present estimates for the flux den-
sities of individual features, forcing us to estimate these
flux densities from the radio maps presented.

We observed 3C 147 over six days at elongations
~29°. This is the strongest source in our sample, both in
terms of its integrated flux density (Sint = 84 Jy) and the
flux density of the scintillating component (Sscin = 39 Jy,
for θ ≈ 0.2″). Figure 3 presents an example of a record-
ing for 3C 147. The scintillations are clearly visible,
even in the sidelobes of the antenna. There is an appre-
ciable turnover in the integrated spectrum, due to a
turnover in the spectrum of the compact features. How-
ASTRONOMY REPORTS      Vol. 44      No. 5      2000
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3C 147

5Jy

Fig. 3. Analog recording of strong scintillations from 3C 147.
ever, we were not able to construct a trustworthy spec-
trum including our measurement. It appears that this is
one of relatively few cases in which the components
dominating the scintillations are negligible at high fre-
quencies. Therefore, we used the spectrum presented in
[32] to estimate the physical conditions in this source.

3C 173

This source is a radio galaxy with redshift z = 1.035.
1.67-GHz observations with resolution 0.1″ [19] show
that it has a double structure with separation 2″ in the
northeast–southwest direction. The northeast compo-
nent is an extended (~0.7″) region of low surface
brightness and contributes ~10% of the total flux den-
sity at 5 GHz [23]. Thus, we expect the 102-MHz scin-
tillations to be dominated by the southwest component,
which has angular size 0.2″ × 0.1″.

We observed 3C 173 over three days at elongations
~30°. We estimate Sscin = 4 Jy and Sint = 18 Jy. A modest
flattening can be seen in the spectrum of the compact
component (Fig. 4). However, there is an evident flat-
tening of the integrated spectrum at 38 MHz, suggest-
ing there is a turnover in the spectrum of the compact
component near 38 MHz.

OI 407

The redshift of this radio source is unknown; optical
observations indicate that it is probably a quasar [3].
The source was essentially unresolved in 5-GHz obser-
vations with resolution ~0.1″ [3]. VLBI observations at
1.6 GHz with resolution 0.007″ [3] show that the
source is an east–west double with the components sep-
 REPORTS      Vol. 44      No. 5      2000
arated by 0.052″. Both components have roughly equal
angular sizes of 0.008″ × 0.004″ and should probably
make comparable contributions to 102-MHz scintilla-
tions. A comparison of the integrated flux densities at
1.4 GHz (resolution ~10″, 1.57 Jy [39]) and 1.67 GHz
(resolution 0.007″, 1.37 Jy [3]) indicate that ~90% of

0.01
ν, GHz

0.1 1 10

1

S, Jy

3ë 173

0.1

10

Fig. 4. Integrated spectrum of 3C 173 (filled triangles) based
on points at 4.85 GHz (0.4 Jy) [13], 1.4 GHz (1.666 Jy) [36],
0.408 GHz (5.01 Jy) [37], 0.178 GHz (9 Jy) [16], 0.102 GHz
(18 Jy) [this paper], and 0.038 GHz (17 Jy) [38]. Spectrum
for the compact (scintillating) component (hollow triangles)
based on points at 15 GHz (0.098 Jy) [29], 8.4 GHz (0.223 Jy)
[29], 5 GHz (0.373 Jy) [23], 1.6 GHz (1.14 Jy) [19], and
0.102 GHz (4 Jy) [this paper].
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the emission is from compact components, and the con-
tribution of halo emission is negligible.

We observed OI 407 over five days at elongations
~31°. No scintillations were detected. The extended
component was also not detected. We estimate the
upper limit Sscin ≤ 0.25 Jy. Figure 5 shows the spectrum,
which has a maximum at 300–500 MHz and a rather
sharp turnover at lower frequencies (α ≈ –1.5, where
S ~ ν−α).

4C 68.08

This is a quasar with redshift z = 1.139. 1.67-GHz
observations with resolution 0.08″ [3] show that the
source has a triple structure oriented in the southeast–
northwest direction. The central component includes
several features, the brightest and most compact of
which is probably the core. Two extended (~0.6″)
regions of emission are located 0.4″ to the northwest
and southeast of the central component. The northwest
component contributes ~65% of the total flux density at
1.67 GHz, and we expect this component to dominate
in 102-MHz scintillations. Most of the energy flux from
this region is contributed by a component with angular
size 0.17″ × 0.10″.

We observed 4C 68.08 over two days at elongation
47°. Due to the large elongation, it was necessary to
make large corrections in order to estimate the flux den-
sity of the scintillating source. If ∆S = 0.6 Jy, then
Sscin = 1.5 Jy. We estimate Sint = 3 Jy. We were unable to
construct an accurate spectrum using our measure-
ments. However, in our view, it is unlikely that there is
a low-frequency turnover in the spectrum of the com-
pact emission.

3C 186

This source is a quasar with redshift z = 1.063. In
low-resolution images (~1″), it has two components

0.01
ν, GHz

0.1 1 10

1

S, Jy

OI 407
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0.1

Fig. 5. Integrated spectrum of OI 407 (filled triangles) based
on points at 4.85 GHz (0.625 Jy) [13], 1.4 GHz (1.44 Jy)
[36], and 0.408 GHz (1.9 Jy) [37]. Spectrum for the compact
(scintillating) component (hollow triangles) based on points
at 5 GHz (0.61 Jy) [2], 1.67 GHz (1.37 Jy) [3], 1.4 GHz
(1.568 Jy) [39], and 0.102 GHz (0.25 Jy; upper limit) [this
paper].
lying in the southeast–northwest direction [29]. How-
ever, higher resolution observations show a more com-
plex structure [18, 28, 29, 40, 41]. The brightest com-
ponent at 15 GHz, which has been identified as the core
[40], is absent from a 0.6-GHz image [18], suggesting
the presence of synchrotron self-absorption [28].
Observations with higher resolution reveal additional
components. Three components are visible in images
with resolution ~0.1″ (ν = 15 GHz) [40], while six com-
ponents can be distinguished in 1.6-GHz images with
resolution ~0.025″ [41]. Considering all the available
radio observations, the radio source has an S-shaped
structure with the core at the center; the core flux den-
sity is negligible at frequencies below 1 GHz. There is
a jet consisting of a number of weak knots leading to a
radio lobe to the northwest. There is no jet visible to the
southeast, though the southeast lobe has a compact hot
spot (~0.03″). All the observed components are com-
pact and should therefore scintillate at 102 MHz. How-
ever, the lowest frequency (ν = 609 MHz) observations
indicate that 2/3 of the energy in compact components
is emitted by the southeast lobe and its hot spot [18].
Thus, we expect the contribution of the southeast lobe
(θ = 0.2″ × 0.04″) and its hot spot (θ = 0.05″ × 0.015″)
to dominate in 102-MHz scintillations.

We observed 3C 186 over four days at elongations
≈37°. Averaging over the days of observations yielded
an estimate of the integrated flux density Sint = 33 Jy,
while averaging of the observations of flux-density
fluctuations with allowance for the angular size and
elongation of 3C 186 yielded an estimate of the flux
density for the scintillating radio source Sscin = 7.7 Jy.
The spectrum of the southeast lobe and hot spot
remains steep to 102 MHz. At the same time, the spec-
trum of the northwest lobe and jet has a maximum near
1.5 GHz and a turnover at lower frequencies (Fig. 6).

3C 190

This is a quasar with redshift z = 1.197. Observa-
tions at 15, 5, and 1.6 GHz with angular resolution
~0.2″ [22, 28, 41] show four components extending
roughly 3″ in the southwest–northeast direction. There
is also a weak, diffuse halo surrounding this structure.
609-MHz observations with comparable resolution
[18] only detect three of the components visible at
higher frequencies. The angular size of the 609-MHz
components (~0.3″) are in agreement with those for the
corresponding components detected at the higher fre-
quencies. Nan et al. [18] suggest that there is a low-fre-
quency turnover in the spectrum of the component that
was not detected at 609 MHz, which is probably the
core (0.03″ × 0.017″ at 1.66 GHz) [41]. The coordinates
of this component are also closest to those of the optical
quasar [22]. The spectra of the remaining three compo-
nents are steep (α ~ 1), and their expected 102-MHz
flux is 6 Jy. Due to their small sizes, all three of these
components should scintillate, so that the observed
ASTRONOMY REPORTS      Vol. 44      No. 5      2000
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102-MHz scintillations should correspond to the sum
of their flux densities.

We observed 3C 190 over four days (in the middle
of June 1996) at elongations near 40°. The source
showed appreciable scintillation, and ∆S ≈ 2 Jy. How-
ever, as noted above, these scintillations probably corre-
spond to all three compact components. Taking into
account the direction of the solar wind, the component
sizes, and the elongation, we obtained the crude estimate
Sscin = 2 Jy. We estimate Sint = 24.5 Jy. The spectrum of
the core turns over at low frequencies, as noted in [18].
The spectra of the three remaining components essen-
tially merge due to their similar flux densities. Both the
integrated spectrum and the spectrum of the compact
emission show a clear flattening. There is probably a
turnover at lower frequencies (similar to that in Fig. 6).

3C 191

This is a quasar with redshift z = 1.956. Few obser-
vations with high resolution are available. A north–
south triple structure can be seen in images at 15, 8.4, 5,
and 1.6 GHz [22, 29, 40]. There is a compact hot spot
in the northern component. The central component is a
relatively weak core, whose spectrum may be flat, but
probably has a maximum near 6–7 GHz and a turnover at
lower frequencies. A long (~3″) strongly polarized jet
extends to the south of the core [29]. The northern compo-
nent is ~0.1″–0.15″ in size and should scintillate strongly
at 102 MHz. The contribution of the core to the scintilla-
tions should be negligible. The southern jet may or may
not scintillate, depending on its orientation on the sky rel-
ative to the solar wind during the 102-MHz observations.

We observed 3C 191 in the middle of June 1996 at
elongation 33°. The effective angular size of the jet was
~1.5″, so that its contribution to the scintillations
should have been negligible. Thus, the scintillations
were dominated by the northern hot spot. We estimate
Sscin = 4.3 Jy and Sint = 23 Jy. The integrated spectrum
remains steep to the lowest frequencies. There is a
modest flattening in the spectrum of the northern com-
ponent (similar to the spectrum in Fig. 6).

3C 213.1

This source is a radio galaxy with redshift z = 0.194.
Observations with resolution as good as ≤ 0.2″ are few
in number and reveal a complex structure [19, 23, 29].
Observations with resolution ~1″ show two large, dif-
fuse regions, in one of which (the northern region) there
are compact features [29]. The overall extent of the
source is ~30″. 8.4-GHz observations with resolution
~0.2″ show three compact features in the northern com-
ponent, lying along a line north–south [29]. The maxi-
mum distance between these features is 7–8″. The
southern compact feature in the northern component is
the most powerful and is strongly polarized (to 38%)
[29]. The central feature in the northern component is
the weakest, is unpolarized (~0.2%), and is probably
the core [29]. This feature was not detected in 5- and
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1.6-GHz observations [19, 23, 29]. The flux density of
the southern feature in the northern component is twice
that of the northern feature at 1.6 GHz [19], suggesting
that the main contribution to the 102-MHz scintilla-
tions should be the southern compact feature. 1.6-GHz
observations with resolution ~0.3″ show that this fea-
ture is compact (0.2″ × 0.2″) and is submerged in a halo
1.2″ × 0.7″ in size.

We observed 3C 213.1 over four days at elongations
near 40°. No scintillations were detected. We estimate
an upper limit for Sscin ≤ 0.8 Jy and estimate the inte-
grated flux density to be Sint = 12 Jy. We are not able to
construct an accurate spectrum using our measure-
ments; however, we suggest that it is very likely that
there is a low-frequency turnover in the spectrum of the
compact emission.

3C 216

This source is a quasar with redshift z = 0.668. In
low-resolution (~1″) maps, it has an irregular shape ~8″
in size extending from southwest to northeast (see, for
example, [28, 29, 42]). In higher resolution (~0.2″)
images, three components can be distinguished, whose
relative flux densities vary with frequency [18, 22, 28, 29].
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Fig. 6. Integrated spectrum of 3C 186 (filled triangles) based
on points at 4.85 GHz (0.308 Jy) [13], 1.4 GHz (1.261 Jy)
[36], 0.408 GHz (5.55 Jy) [37], 0.102 GHz (33 Jy) [this
paper], and 0.038 GHz (49 Jy) [38]. Spectrum for one com-
pact (scintillating) component (hollow triangles) based on
points at 15 GHz (0.009 Jy) [40], 8.4 GHz (0.041 Jy) [29],
1.67 GHz (0.52 Jy) [41], 0.61 GHz (1.019 Jy) [18], and
0.102 GHz (7.7 Jy) [this paper]. Spectrum for the other
compact (scintillating) component (hollow squares) based
on points at 15 GHz (0.015 Jy) [40], 8.4 GHz (0.042 Jy)
[29], 1.67 GHz (0.5 Jy) [41], and 0.61 GHz (0.315 Jy) [18].
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The southwest component is extended (>1″) and weak,
so that it should contribute to the total flux density at
102 MHz, but should not scintillate. The northeast
component is compact (≈0.19″ × 0.035″ [18]) and has a
steep spectrum above 5 GHz (α ≈ 1, see the fluxes in
[28, 29, 42]). The spectrum of this component (Fig. 7)
has a maximum near 2 GHz and turns over at lower fre-
quencies. The central component, in turn, consists of a
variable, very compact (~0.1 milliarcsecond [43]) core
and ≈0.09″ × 0.05″ jet; superluminal expansion has
been observed on milliarcsecond scales [18, 43–47]. It
is difficult to measure the spectrum of the core due to
its variability. Using observations separated by roughly
a year and assuming that the variability will be modest
on such time scales (≤10% of the total core flux den-
sity), it appears that the core spectrum has a maximum
at 10 GHz and turns over at lower frequencies, while
the jet spectrum remains steep. The flux densities from
the core and jet are approximately equal at 5 GHz
[22, 44]. The spectrum constructed (Fig. 7) suggests that
the flux density from the core should fall toward lower
frequencies, while the expected flux density from the jet
rises. Thus, we expect the jet to make the dominant con-
tribution to 102-MHz scintillation observations.

We observed 3C 216 over two days at elongations
~40°. The quality of the observations was high. Large
fluctuations of the flux density ∆S = 3 Jy were recorded.
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Fig. 7. Integrated spectrum of 3C 216 (filled triangles) based
on points at 14.9 GHz (1.27 Jy) [48], 10.695 GHz (1.41 Jy)
[49], 8.085 GHz (1.26 Jy) [50], 5 GHz (1.8 Jy) [15], 2.7 GHz
(2.45 Jy) [15], 0.968 GHz (6.2 Jy) [15], 0.408 GHz (11.9 Jy)
[37], 0.178 GHz (21.54 Jy) [15], 0.102 GHz (36 Jy) [this
paper], 0.038 GHz (51 Jy) [38], and 0.026 GHz (89 Jy) [15].
Spectrum of the radio lobe (?) (hollow triangles) based on
points at 15 GHz (0.125 Jy) [28], 8.4 GHz (0.204 Jy) [29],
5 GHz (0.45 Jy) [22], 0.6 GHz (0.505 Jy) [18]. Spectrum of
the core and jet (?) (hollow squares) based on points at 5 GHz
(0.966 Jy) [43], 5 GHz (0.7 Jy) [45], 5 GHz (0.5 Jy) [44],
2.3 GHz (0.5 Jy) [46], 1.6 GHz (0.32 Jy) [47], and 0.6 GHz
(0.389 Jy) [18].
We estimate Sscin = 6 Jy and Sint = 36 Jy. It is difficult to
derive the spectrum of the jet due to uncertainty about
separating the core and jet emission in our observa-
tions. It is likely that the spectrum of the jet remains
steep to 102 MHz. Note also that the spectrum of
3C 216 is the most complex among those considered in
this study.

3C 237

This source is a radio galaxy with redshift z = 0.877.
The numerous observations of this source at various
frequencies with various resolutions indicate that it has an
east–west double structure with separation ~1″ [17–19,
22, 28, 29, 51]. Both components have sizes ~0.1″–0.2″,
so that they should scintillate at 102 MHz.

We observed 3C 237 over three days at elongations
30–35°. Powerful scintillations were recorded (∆S =
6.8 Jy). We estimate Sscin = 7.4 Jy for each of the com-
ponents, and Sint = 28 Jy. The spectra for the two com-
pact features are very similar. They appear to have max-
ima at 102 MHz and to turn over at lower frequencies.
The integrated spectrum shows a clear flattening at
102 MHz (similar to the spectrum in Fig. 8 below).

3C 241

This source is a radio galaxy with redshift z = 1.617.
It is an east–west double with separation ~0.9″ [3, 17–19,
22, 23, 28, 29]. Maps with resolution ~0.1″ show that
the western component is made up of two compact
(<0.1″) features [3, 17, 18, 23, 28], which should both
scintillate at 102 MHz.

We observed 3C 241 over four days at elongations
near 35°. The mean value of the flux variations as ∆S =
3 Jy. We estimate Sscin = 2.5 Jy for each of the two com-
pact components, and Sint = 14.5 Jy. The spectra of the
compact features clearly have maxima near 400 MHz
and turn over at lower frequencies (Fig. 8). A modest
flattening is also apparent in the integrated spectrum.

4C 14.41

Few data are available for this source; its redshift is
unknown, but it is expected to be a quasar [3]. The
source was unresolved in 1.6-GHz observations with
resolution ~1″ [53]. Higher resolution (~0.01″) obser-
vations at 1.66 and 0.6 GHz [3, 54] show that the source
is double. The components are both compact (~0.01″)
and are separated by ~0.08″ in the northwest–southeast
direction. We expect both these features to scintillate at
102 MHz.

We observed 4C 14.41 over two days at elongation
21°. In spite of the small fluctuations in the flux density
(∆S = 0.65 Jy), scintillations were clearly detected. We
estimate Sscin = 0.4 Jy for each of the two components,
and Sint = 4.5 Jy. The spectra of the scintillating compo-
nents have obvious low-frequency turnovers (similar to
the spectrum in Fig. 8).
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3C 258

This is a radio galaxy with redshift z = 0.165. Low-
resolution (~2″) 5-GHz maps show a bright, unresolved
core with jets ~30″ in length extending toward the north
and south [55]. The core emits a large fraction of the
energy. Higher-resolution (0.08″) 5-GHz observations
indicate that the core has two components with similar
flux densities separated by ~0.1″ in the southwest–north-
east direction [23]. 1.6-GHz observations with resolution
0.007″ show that these components are ~0.01″ in size
[3]. Thus, we expect both components to scintillate at
102 MHz.

We observed 3C 258 at the end of September 1997
over two days, in the presence of sharply worsening
interference. The observations were of low quality,
though scintillations were detected. We estimate Sscin =
0.55 Jy and Sint = 3.5 Jy. There is no low-frequency
turnover in the spectra.

3C 266

This is a radio galaxy with redshift z = 1.275. Obser-
vations at 8.4, 5, and 1.6 GHz show that it has a double
structure with separation 4″ [19, 29, 56]. The northern
and southern components have sizes 0.5″ × 0.1″ and
0.7″ × 0.3″, respectively [19]. The flux densities of the
components are roughly equal at all frequencies. We
therefore expect both components to scintillate at
102 MHz.

We observed 3C 266 over six days. Scintillations
were recorded reliably. Given the source elongation
(44°), the component separation (4″), and the direction
of solar-wind propagation, we estimated the flux den-
sity in the compact features and the integrated flux den-
sity to be Sscin = 4.2 Jy and Sint = 19 Jy, respectively.
There is no low-frequency turnover in the spectra of the
two compact features.

3. PHYSICAL CONDITIONS IN THE CORES
OF THE SOURCES STUDIED

Our observations indicate the presence of low-fre-
quency (102 MHz) turnovers in the spectra of the com-
pact components of nine of the 21 radio source investi-
gated. For three sources, there is a turnover at higher
frequencies. As discussed in [4], the most probable rea-
son for a low-frequency turnover is synchrotron self-
absorption. Artyukh [57] has presented a method for
estimating the magnetic field and relativistic plasma
density without resorting to the usual assumption of
equipartition.

Assuming that the radio emission of the sources
studied is synchrotron radiation and that the inferred
low-frequency turnovers are the result of synchrotron
self-absorption, we have estimated the corresponding
physical parameters for all 12 sources with low-fre-
quency turnovers. We adopted H0= 75 km s–1 Mpc–1 and
q0 = 1/2 for the calculations. The results are presented
in Table 1. The columns give (1) the source name,
(2) redshift z, (3) angular size Ω , (4) mean linear size L,
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(5) spectral indices in the optically thin region of the
spectrum α, (6) magnetic-field strength, (7) energy of
the magnetic field per cm3, (8) total magnetic-field
energy in the volume L3, (9) density of relativistic elec-
trons, (10) energy of relativistic electrons per cm3, and
(11) total relativistic-electron energy in the volume L3.
The accuracy of this method is approximately an order
of magnitude, or two orders of magnitude if the source
angular size is not accurately known [57].

The redshifts of 4C 34.07, OI 407, and 4C 14.41 are
unknown, and we have adopted z = 2. In the formula
used to derive the physical parameters considered, the
redshift enters as (1 + z)–1, so that the value of z only
weakly influences the final result. In the case of 3C 147
and 3C 241, the estimates of the physical parameters
are different for different components; the components
are marked by letters A and B in Table 1.

We can see from Table 1 that all estimates corre-
spond to linear scales L ~ 100 pc, except in the case of
4C 31.04, 4C 34.07, OE 131, and OI 407, where L ~ 10 pc.
Our results indicate equipartition of energy only for
4C 31.04. The magnetic field varies over a wide range
from 10–11 to 105 G. It is obvious that the existence of
fields of 105 or 104 G on scales of 100 pc is improbable.
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Fig. 8. Integrated spectrum of 3C 241 (filled triangles) based
on points at 4.85 GHz (0.388 Jy) [13], 2.7 GHz (0.8 Jy) [52],
1.41 GHz (1.7 Jy) [52], 0.635 GHz (4.8 Jy) [52], 0.178 GHz
(11.1 Jy) [52], 0.102 GHz (14 Jy) [this paper], and 0.08 GHz
(17 Jy) [52]. Spectrum for one compact (scintillating) com-
ponent (hollow triangles) based on points at 15 GHz (0.046 Jy)
[28], 8.4 GHz (0.124 Jy) [29], 5 GHz (0.22 Jy) [3], 1.6 GHz
(0.65 Jy) [3], 0.6 GHz (2 Jy) [18], and 0.102 GHz (2.4 Jy)
[this paper]. Spectrum for the other compact (scintillating)
component (hollow squares) based on points at 15 GHz
(0.011 Jy) [28], 8.4 GHz (0.043 Jy) [29], 5 GHz (0.095 Jy) [3],
1.6 GHz (0.57 Jy) [3], 0.6 GHz (2.2 Jy) [18], and 0.102 GHz
(2.4 Jy) [this paper].
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Table 1.  Estimates of the physical conditions in compact radio sources with steep spectra

Name z Ω, arcsec L, pc α H⊥ , G
, 

erg cm–3
, erg ne, cm–3 Ee, 

erg cm–3 Ee, erg

4C 31.04 0.059 0.03 × 0.02 20 0.4 10–3 10–7 4 × 1052 10–3 4 × 10–7 1053

+0.043 × 0.024

4C 34.07 2 0.006 × 0.003 20 0.4 10–7 6 × 10–16 1044 103 5 × 101 1061

OE 131 2.67 0.0012 × 0.0002 3 0.5 10–10 6 × 10–22 3 × 1035 109 109 4 × 1065

OF 247 0.219 0.02 × 0.01 50 1.1 6 × 10–2 10–4 4 × 1056 4 × 10–3 7 × 10–8 1053

3C 147 A 0.545 0.17 × 0.05 400 1.1 10–1 10–3 6 × 1060 10–6 10–11 3 × 1052

3C 147 B 0.545 0.5 × 0.5 2500 1.3 10–3 10–7 1059 7 × 10–7 6 × 10–11 3 × 1055

OI 407 2 0.008 × 0.004 30 0.8 6 × 10–5 10–10 1050 1 10–3 1057

+0.008 × 0.004

3C 186 1.063 0.224 × 0.083 500 1.6 104 4 × 106 7 × 1070 10–12 7 × 10–20 1045

3C 190 1.197 0.03 × 0.017 100 0.8 105 3 × 108 1070 5 × 10–12 10–19 4 × 1042

3C 213.1 0.194 0.2 × 0.2 600 0.8 5 1 5 × 1063 6 × 10–10 10–15 1049

3C 237 0.877 0.2 × 0.1 800 1.4 4 × 10–3 7 × 10–7 1058 3 × 10–5 10–9 1055

3C 241 A 1.617 0.1 × 0.1 600 1.1 10–2 4 × 10–6 1058 3 × 10–6 10–10 7 × 1053

3C 241 B 1.617 0.1 × 0.1 600 1.6 6 × 10–3 10–6 7 × 1057 2 × 10–5 10–9 5 × 1054

4C 14.41 2 0.01 × 0.01 60 0.4 10–4 7 × 10–10 3 × 1051 6 × 10–2 7 × 10–5 3 × 1056

EH ⊥ EH ⊥
It is likely that such results are severely overestimated
due to our inadequate knowledge of the source struc-
ture. As noted above, we took the angular sizes for
components from VLBI observations and assumed that
these angular sizes did not depend on frequency. How-
ever, in contrast to the situation in [4], where there were
numerous VLBI observations for most of the sources
studied, many of the sources considered in the present
paper have only sparse data on the angular sizes of their
components. It is likely that some of the angular sizes
we have adopted are only upper limits. The method
used to estimate the physical parameters is very sensi-
tive to the source angular size.

Let us consider, for example, the quasar 3C 190.
According to [41], the angular size of the core (for which
we determined the physical parameters) was ≈0.03″ ×
0.017″. However, the highest resolution measurements
for 3C 190 have resolution 0.034″ × 0.034″ [41]. Thus,
the real angular sizes of components could be smaller
than indicated in radio measurements. For example, if
the angular size of the core of 3C 190 is decreased by
an order of magnitude, the magnetic field will decrease
by four orders of magnitude and become 10 G for a lin-
ear scale of 10 pc. For comparison, a magnetic field
>0.1 G was obtained for a scale of 40 pc for the giant
radio galaxy DA 240 [58]. It is likely that such errors in
the angular sizes of components led to errors in the cal-
culated physical conditions for 3C 186, 3C 190, and
3C 213.1.

Figure 9 presents the dependences of the (a) mag-
netic field and (b) relativistic-electron density on the
linear scale of the source. We can see especially clearly
in Fig. 9a that the distribution of points is not random.
We have fit linear dependences to both distributions on
logarithmic scales. The points corresponding to results
obtained in the present paper show the largest scatter
about these lines. This probably reflects larger errors in
the derived physical parameters resulting from the rel-
atively sparse input data available for these sources.
The parameters for the two linear dependences fit are 

H = 10–11.7L3.6 G,

ne = 109.5L–5 cm–3.

Note that, if the density behaves in a fairly natural
fashion (the smaller the scale for a feature, the higher
the density in that feature), the behavior of the magnetic
field is difficult to explain. The field is virtually absent
on small linear scales and begins to grow as the linear
size scale increases.

It is also possible that the turnovers in the spectra are
due to thermal absorption. In [4], the possible presence
of thermal plasma in the region emitting synchrotron
radiation was considered; the temperature of the non-
relativistic plasma was ~104 K, and X-ray emission
should come from a very small region Lp < 1 pc. In this
case, the emission coefficient is determined by the syn-
chrotron radiation, while the absorption coefficient is
determined by the thermal plasma. It was demonstrated
that the inferred density of thermal electrons was com-
parable to the density of thermal electrons in the cores
of ultraluminous infrared galaxies. In [4], we consid-
ered this to be improbable. However, it seems appropri-
ate to estimate in the same way the thermal electron
ASTRONOMY REPORTS      Vol. 44      No. 5      2000
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Fig. 9. Dependence of the (a) magnetic field strength H and (b) density of relativistic electrons ne on the linear size of the radio
source L. The squares present results from [4] and the triangles results from the present paper.
densities for the radio sources studied here, since the
previous estimates for the thermal electron density
exceed the expected densities on the size scales consid-
ered by only an order of magnitude. The resulting esti-
mates are presented in Table 2. The columns present (1)
the source name, (2) linear size, (3) peak frequency in
the spectrum, and (4) inferred thermal electron density.
We can see from this table that the estimates for ne are
higher than the densities of thermal electrons in our
Galaxy on the same scales [59] and are close to the
thermal plasma densities in ultraluminous IR galaxies
[60]. Consequently, as asserted in [4], this mechanism
for the low-frequency turnovers is improbable.

Table 2.  Estimates of the nonrelativistic-electron density at
temperature T = 104 K

Source name L, pc νp, GHz ne, cm–3

4C 31.04 20 0.5 140
4C 34.07 20 0.4 110
OE 131 3 0.4 290
OF 247 50 1 90
3C 147 A 400 1.6 100
3C 147 B 2500 0.1 3
OI 407 30 0.6 140
3C 186 500 1 60
3C 190 100 3 380
3C 213.1 600 0.3 16
3C 237 800 0.2 9
3C 241 600 0.3 16
4C 14.41 60 0.4 66
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Absorption due to the Razin–Tsytovich effect [61, 62]
was also considered in [4], where it was shown to be
improbable.

4. CONCLUSION

(1) 102-MHz interplanetary-scintillation observa-
tions of 21 compact steep-spectrum radio sources car-
ried out on the LPA of the Lebedev Physical Institute
indicate that nine of the sources have low-frequency
turnovers in their radio spectra. Three of the 21 sources
had been known earlier to have high-frequency turn-
overs.

(2) The most probable origin for such turnovers is
synchrotron self-absorption. Based on this assumption,
we estimated the magnetic-field strengths, relativistic-
electron densities, and the energies of the magnetic
field and relativistic electron–positron plasma in the
compact components of the sources studied.

In all the quasars with low-frequency turnovers in
their spectra, the relativistic-electron energy is much
larger than the magnetic-field energy, with the excep-
tion of 3C 147, in which the opposite is true. At the
same time, in all the radio galaxies analyzed, the mag-
netic-field energy is much larger than the relativistic-
particle energy, with the exception of 4C 31.04, in
which the two energies are comparable.

(3) There may be a correlation between the size of
compact features and the physical conditions in them.
The smaller the feature, the higher the density of rela-
tivistic electrons and the weaker the magnetic field. At
the same time, the number of steep-spectrum sources
for which we have been able to estimate these physical
conditions is insufficient for a statistical analysis of the
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properties of these sources and of possible differences
between the conditions in quasars and radio galaxies.
We are currently planning a final paper that will present
our results for the remaining (~20) sources from the
sample of [3], together with an analysis of our results
for the sample as a whole.
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Abstract—In dynamical models for open clusters, virial equilibrium is not achieved over the violent relaxation
time scale τvr . The stars form an equilibrium distribution in (ε, εζ, l) space, where ε and l are the energy and
angular momentum per unit stellar mass in the combined field of the Galaxy and cluster and εζ is the energy of
motion perpendicular to the Galactic plane per unit mass of cluster stars in the gravitational field of the Galaxy.
This distribution of stars changes little when t > τvr. The stellar phase-space distribution corresponding to this type
of equilibrium and the regular cluster potential vary periodically (or quasi-periodically) with time. This phase-
space equilibrium is probably possible due to an approximate balance in the stellar transitions between phase-
space cells over times equal to the oscillation period for the regular cluster field. © 2000 MAIK “Nauka/Inter-
periodica”.
1. INTRODUCTION

In [1], we considered models of open clusters that
were nonstationary with respect to the regular cluster
field. In the course of their dynamical evolution, such
models develop an equilibrium distribution of stars in
the space of certain parameters of the stellar motion
over the first violent-relaxation time scale τvr . This dis-
tribution varies little with time when t > τvr . The stellar
phase-space distribution corresponding to this equilib-
rium and the regular potential of the cluster vary peri-
odically (or quasi-periodically) with time. In the open-
cluster models of [1], virial equilibrium was not
attained, and at t > τvr , the virial coefficients of the clus-
ter models continued oscillating with nearly constant
amplitude and period. We will call the phase-space den-
sity of the cluster corresponding to the equilibrium
attained at t > τvr the equilibrium phase-space density.
In this equilibrium, there is probably an approximate
balance in the stellar transitions between phase-space
cells on time scales equal to the oscillation period of the
regular cluster field.

Due to the instability of the phase-space density to
small perturbations, open-cluster models with low
phase-space densities develop different equilibrium
phase-space densities over the time t . τvr . In each of
the intervals of distance from the cluster center consid-
ered in [1], the relative differences between the phase-
space densities of such models averaged over the stellar
velocities increased at t < τvr and stabilized at t > τvr .
Here, tr is the local violent relaxation time a distance r
from the cluster center. The fact that the mean-velocity
relative phase-space density differences stabilize and
remain constant in time indicates the formation of an
equilibrium phase-space density in the cluster models.
1063-7729/00/4405- $20.00 © 20298
Kandrup et al. [2] considered the energy–space
domain occupied by the particles of an isolated system
that is nonstationary in the regular field, subdividing
this domain into 20-particle intervals at each moment in
time. The mean particle energies in these intervals
remain nearly constant once the system attains a certain
equilibrium state. According to [2], this indicates a con-
straint on the coarse-grained phase-space density,
which restricts the possible outcome of violent relax-
ation in the system. We believe that this constancy of
the average particle energies is due to a balance in the
particle transitions between the energy intervals con-
sidered in [2], which is typical of systems that have
attained equilibrium in the particle energy space.

Kandrup [3] performed a theoretical analysis of the
evolution of collisionless self-gravitating systems.
According to [3], in a “coarse-grained” description, such
systems can approach a time-independent equilibrium
during their evolution, which corresponds to time-
dependent distribution functions f0 for certain parame-
ters that are “energy extremal” with respect to all per-
turbations δf in the systems of gravitating points.
Depending on the type of extremum, the function f0 can
be linearly stable or unstable, and the system’s evolu-
tion can proceed with linear or nonlinear phase-space
oscillations about f0. At the same time, Kandrup [3]
points out that it is not clear what sort of coarse-grained
description should be implemented in order to recog-
nize the approach of the system to equilibrium.

Theoretical and experimental analyses of the prop-
erties and parameters of the equilibrium phase-space
density that develops as a result of the violent relax-
ation of a nonstationary open cluster are of interest
here. In the case of open clusters moving in circular
orbits in the Galactic plane, the phase-space density
000 MAIK “Nauka/Interperiodica”



        

EQUILIBRIUM PHASE-SPACE DENSITY DISTRIBUTION 299

                                                                                                                
that forms as a result of violent relaxation is con-
strained by the conditions of conservation of cluster
mass M and energy E, as well as by the symmetries
present in the density and stellar velocity distributions
in the cluster.

According to formulas (5.517–5.519) in [4], the
equations of motion for cluster stars in (ξ, η, ζ) coordi-
nates imply, under a number of assumptions, that the
cluster “energy” is an integral of motion; i.e., E = const
(formula (5.522) in [4]). In addition, if the cluster is
symmetric with respect to the ξζ  and/or ηζ  planes, the
angular momentum of the cluster is another integral of
motion; i.e., Aζ = const (formula (5.530) in [4]). (Chan-
drasekhar [4] uses the rotating coordinate system (ξ, η, ζ)
fixed to the center of mass of the cluster, where the ξ,
η, and ζ axes are directed from the center of mass of the
cluster away from the Galactic center, in the direction of
Galactic rotation, and perpendicular to the Galactic plane,

respectively.) After multiplying by  =  and summing

over all cluster stars, the stellar equation of motion along
the ζ coordinate (formula (5.519) in [4]) yields

(1)

where mi is the mass of the ith cluster star; Ω and N are
the potential energy and the number of stars in the clus-

ter, respectively; miεζ, i = mi(  + α3 ) is the energy

of motion of the ith cluster star along the ζ axis in the
Galactic gravitational field; and α3 = const.

In the cluster models considered here, Q and Eζ =

miεζ, i exhibit oscillations that are damped with
time t. Q oscillates about Q = 0. The largest deviations
of Q from zero are small and correspond to relative Eζ
variations of several per cent (6.4 and 4.5%) for cluster
models 1 and 2 below, respectively. The oscillations in
Q and Eζ are due to oscillations in εζ, i for the relatively
small number of stars with the highest εζ, i values (see
Fig. 2 below). The relative deviations of εζ, i for these
stars are, on average, 20% when t < τvr and decrease by
a factor of 2–4 when t > τvr . The oscillations in εζ, i aver-
aged over several stars within specified εζ, i intervals
(see Fig. 2 below) indicate that the establishment of an
equilibrium stellar distribution function in εζ space pro-
ceeds more slowly at high εζ than at low and intermedi-
ate εζ . Some of the stars with the highest εζ, i values
gradually escape from the cluster in the course of its
evolution.

Using the condition Q = 0 as an approximation to
describe the evolution of the open cluster, we find, in
accordance with (1), that Eζ = const. This condition fol-
lows from the symmetry of the potential U(r) and the

velocity distribution g( ) with respect to the ζ = 0,

ζ̇ i
dζ i

dt
-------

d
dt
----- miεζ i,

i 1=

N

∑ ζ̇ i
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ζ i∂

-------
i 1=
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i 1=
N∑
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plane in the cluster model (here, r = (ξ, η, ζ) is the
radius-vector of a cluster star).

In the collisionless approximation, the right-hand
sides of the equations of stellar motion (formulas
(5.517–5.519) in [4]) should be replaced by partial
derivatives (multiplied by mi) of the regular potential U
with respect to the corresponding coordinates ξ, η, ζ. In
this case, after computing the stellar integrals of motion
in the usual way, it can easily be shown that the energy
of the motion per unit stellar mass εi is an integral of the
motion:

(2)

where α1 = const,  =  +  + , and the angular
momentum per unit mass li and energy εζ, i of motion
along the ζ coordinate are not integrals of the motion:

(3)

where ωc = const is the angular velocity of the cluster
with respect to the Galactic center.

The quantities M, E, Aζ = mili , and Eζ are con-
served during violent relaxation of the cluster (see [4]
and text above). Following [5], we can obtain the most
likely (equilibrium) stellar distribution in (ε, εζ, l) space
from the condition of maximum entropy of the system
combined with the above constraints on M, E, Aζ, and
Eζ. If the possible states are filled by only a few stars
(i.e., if the stars occupy only a small fraction of the
phase-space microcells belonging to a predefined macro-
cell—a “coarse-grained” cell in the phase space [6]), this
leads to the Maxwell–Boltzmann distribution

(4)

where f0, ν, µ, β, γ are constants.
If a star cluster develops an equilibrium distribution

of the form (4) as a result of various relaxation mecha-
nisms (including those due to stellar encounters), the
mean values of ε, εζ, and l for stars located in pre-
defined cells in (ε, εζ, l) space (see below) should be
conserved at times t > τvr . Kandrup et al. [2] obtained
a similar result for ε in models of isolated star clusters
for systems that have attained some sort of equilibrium
by the end of the violent-relaxation stage.

An experimental analysis of the form, parameters,
and properties of the equilibrium phase-space distribution
of stars F0(r, v) ~ f(ε, εζ, l) = f(ε(r, v), εζ(r, v), l(r, v)) for
nonstationary open-cluster models is of interest. Here,

v = ( , , ) is the star’s velocity vector in the cluster.
The results of such analyses can be used to construct
analytical cluster models that are nonstationary in the
regular cluster field, investigate the stellar velocity
fields in such clusters, and estimate the total masses and

εi

v i
2
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other cluster parameters from the coordinate and veloc-
ity data for cluster stars.

The aim of this paper is to analyze the equilibrium
stellar distribution functions in (ε, εζ, l) space and phase
space that develop during violent relaxation in open-
cluster models that are nonstationary in the regular
cluster field.

2. DESCRIPTION OF MODELS

We now consider a cluster consisting of N = 500
stars moving in the Galactic plane about the Galactic
center in a circular orbit of radius 8200 pc. At the initial
time t, the cluster is modeled as a system of two con-
centric gravitating spheres, imitating the halo and core
of the cluster. We considered open-cluster models with

initial parameters  = 0.24 and  = 0.25 and strong

manifestations of non-stationarity in the regular cluster
field. Here, R1 and R2 are the radii of the cluster core
and halo, respectively, and N1 and N2 are the number of
stars in the core and halo, respectively. These parame-
ters correspond to model 5 in [7]. We assumed that all
cluster stars have mass 1 M(. We used a random-num-
ber generator to specify the initial positions and veloc-
ities of the stars in the (r, θ, ϕ) and (vr, θv, ϕv) spherical

coordinate systems fixed to the (ξ, η, ζ) and ( , , )
Cartesian reference frames. Here, vr is a star’s radial
velocity component and r = |r|.

We analyzed two cluster models. In model 1, as in
the models considered in [7], the angles ϕ and ϕv spec-
ifying the direction of the vectors r and v in the (ξ, η)

and ( , ) planes, and also the angles θ and θv speci-
fying the projections of the vectors r and v onto the ζ
and  axes, are randomly distributed in the intervals θ,
θv ∈ [0, π] and ϕ, ϕv ∈  [0, 2π] using a random-number
generator. In model 2, the azimuthal angles ϕ and ϕv

are distributed as in model 1, and the angles θ and θv
are distributed in the interval [0, π] in accordance with

the probability density functions p(θ) = sinθ and

p(θv) = sinθv , respectively. In both models, the dis-

tance r is distributed over the intervals [0, Ri] with prob-

ability density p(r) = 3r2/  (i = 1, 2) to ensure con-
stancy of the stellar number density in subsystems at
different radii. Model 1 corresponds to model 5 in [7].

The initial stellar number densities in model 2 are
approximately the same at all points of the subsystems
considered. In model 1, there is some excess of stars

with large |ζ| and | | at t = 0, resulting in a two-peaked
initial velocity distribution, with local maxima at large

and small . Because of the uniform initial distribution

R1

R2
-----

N1

N2
------

ξ̇ η̇ ζ̇

ξ̇ η̇

ζ̇

1
2
---

1
2
---

Ri
3

ζ̇

ζ̇

of θ and θv over the interval [0, π] in model 1, the fac-

tors sinθ = r/  and sinθv = v/  appear
in the expressions for the initial density and velocity
distributions for this model. Here, r2 = ξ2 + η2 + ζ2, v2 =

 +  +  and, for the sake of brevity, we do not
present the formulas for the above distributions.
According to [7], cluster model 5 develops a core that
is extended along the ζ axis. Our computations show
that model 2 develops a spherical core. The extension
of the cores of the cluster models analyzed in [7] along
the ζ axis was, thus, due to the particular choice of ini-
tial conditions.

Models 1 and 2 are defined such that, at t = 0, they
do not rotate with respect to external galaxies, and the
cluster and its subsystems meet the conditions of virial
equilibrium for isolated clusters. We used the units 1 pc,
1 Ma, and 1 M( in our computations. For each model
with fixed Ri, Ni (i = 1, 2) at t = 0, we computed the
dynamical evolution several times with slightly (and
randomly) different initial stellar phase-space coordi-
nates. See [7] for a description of the technique used to
generate the magnitudes of the vectors v for the initial
stellar velocities and small perturbations of the stellar
phase-space coordinates in the cluster. We smoothed
the force functions in the right-hand sides of the stellar
equations of motion (see [7] for a description of the
technique employed and the smoothing parameter).

In our computations, we used the (ξ, η, ζ) coordi-
nate system (see above) and corresponding equations
of stellar motion (formulas (5.517)–(5.519) in [4]) with
the components of the Galactic field given up to linear
terms in ξ, η, and ζ. We used the formula for Φ presented
by Kutuzov and Osipkov [8] to compute the constant
coefficients α1 and α3 in the expansion for the regular
Galactic potential Φ as a power series in ξ, η, and ζ.
In contrast to [4], we have (in the notation adopted here):

Φ ≥ 0,  ≤ 0, α1 = , and α3 = – ,

where R and Z are cylindrical Galactocentric coordi-
nates; the subscript 0 indicates that the derivatives of Φ
are taken at R = 8200 pc and Z = 0 for the adopted cir-
cular cluster orbit in the Galactic plane.

We monitored the integration errors by checking the
constancy of the integral of the energy E of peculiar
motions of the cluster stars (formula (5.522) in [4]). We
also used the statistical method [9], which is more sen-
sitive to computational errors, to monitor the accuracy
of integration of the equations of motion; this allowed
us to check the accuracy of the computed phase-space
density in the dynamical cluster models.

To integrate the equations of motions of the cluster
stars, we used an improved (optimized) version of the
code [9] (we reduced the number of operations required
to solve the equations, eliminated certain operations
involving numbers with different sizes in the computer

ξ2 η2+ ξ̇
2

η̇2+

ξ̇
2

η̇2 ζ̇
2

Φ∂
R∂

------- 1
R
--- Φ∂

R∂
------- ∂2Φ

R2∂
----------– 

 
0
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Z2∂
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 

0
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memory, etc.). As a result, we increased the time inter-
val t0 for the dynamical evolution during which the
accuracy of the computed cluster phase-space density
can be considered sufficient from t0 = 1.7τvr (the maxi-
mum attained in [9]) to t0 = 1.9τvr for model 1 and t0 =
2.2τvr for model 2. As in [7, 9], we adopted an initial
violent relaxation time of τvr = 2.6  ~5 × 107 yr; 
is the average cluster crossing time.

We integrated the equations of motion using sixth
and seventh order Runge–Kutta methods with the grid
functions (2) from [9], with an accuracy of 15–16 dec-
imal places. The maximum relative error of the com-
puted energy E did not exceed 2.8 × 10–8 and 2.1 × 10–9 for
cluster models 1 and 2, respectively. The computations
also met the statistical criterion for the accuracy of the
computed phase-space density (0.9 ≤ Pj ≤ 1.0) for all
distance intervals ∆rj (j = 1, …, 10) considered (see
below). Here, Pj = P(r ∈∆ rj) are the probabilities that
the samples of stellar phase-space coordinates obtained
by solving the equations of motions with seventh- and
sixth-order integration methods are drawn from the same
stellar phase-space coordinate population. According to
[9], the differences between the stellar phase-space coor-
dinate distributions obtained using the seventh- and
sixth-order methods are random, and the accuracy of
the computed stellar phase-space coordinates can be
considered sufficiently high to use them to draw con-
clusions about the physical properties of the phase-
space density of a cluster model.

We compared the results obtained with cluster mod-
els 1 and 2 with slightly different initial stellar phase-
space coordinates. To this end, we subdivided all the
stars of cluster model 1 at time t into ten groups of 50
stars in order of increasing distance r from the cluster
center of mass. Let ∆rj be the distance interval rj corre-
sponding to the jth group (j = 1, …, 10). See [1] for the
technique used to partition the velocity space occupied
by the cluster stars into k equal cells. When computing
the cluster evolution, we followed the time variations of
the relative differences ψj of the phase-space densi-
ties of cluster models 1 and 2 in the distance intervals
∆rj averaged over all k velocity-space cells with k =
1000.

3. RESULTS OF COMPUTATIONS
AND DISCUSSION

In the cluster models considered, there is initially a
small contraction (mainly perpendicular to the Galac-
tic plane) that ends by a time t . (0.30–0.35) × τvr . At
t > 0.6 × τvr , steady-state oscillations in the regular field
are established, with periods of Pr = 0.7 × τvr and Pr =
0.6 × τvr in models 1 and 2, respectively. The mean
ratios δα of the amplitudes of the virial coefficient α =
2Ec/Ω and the value α = αv averaged over the period Pr
are equal to 0.55–0.59 for models 1 and 2, indicating
that the models are appreciably nonstationary in the

t cr t cr
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regular field (here, Ec = T + Ω and T is the total kinetic
energy of the cluster-star peculiar motions).

The fractional phase-space density differences ψj

due to instability of the phase-space densities to small
initial perturbations in the stellar phase-space coordi-
nates increase rapidly during a time tr , then remain
approximately constant, and an equilibrium phase-
space density is established in cluster models 1 and 2
(see, e.g., Fig. 1 in [1]). The values of tr can be consid-
ered estimates of the local relaxation time. tr in the cen-
tral regions of models 1 and 2, whereas tr . 0.5 × τvr

and tr . 1.1 × τvr and tr . 1.5 × τvr at the peripheries of
models 1 (see also [1]) and 2, respectively. Thus, model 2,

which has a single-peaked initial distribution of 
coordinates that is closer to the equilibrium distribu-
tion, is slower to develop the equilibrium phase-space
density at its periphery. In the central regions, the equi-
librium phase-space density develops over essentially
the same time for models 1 and 2 (0.5 × τvr).

To analyze the properties and parameters of the
equilibrium distributions that develop in models 1 and 2,
we, like Kandrup et al. [2], subdivide all cluster stars at
each time t into groups consisting of five stars (10 and
20), with each in order of ascending specific energy ε
per unit stellar mass [see formula (2)]. We then com-
pute the mean 〈ε〉  and the dispersions of ε—〈ε〉 for each
group and perform analogous computations for l and εζ
[see formula (3) and the discussion of formula (1)]. Fig-
ures 1–3 show 〈ε〉 , 〈εζ〉 , and 〈l〉  plotted as functions of
time for a number of the stellar groups in cluster model 2
(the corresponding relations for model 1 are similar to
those in Figs. 1–3). 〈ε〉 , 〈εζ〉 , and 〈l〉  remain virtually
constant at t > τvr throughout most of the ε, εζ, and l
domain occupied by the cluster stars. Deviations of 〈ε〉 ,

ζ̇

0.3

t/τvr

0.1

–0.1

–0.3

–0.5

–0.7
0 0.5 1.0 1.5 2.0 2.5
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1

Fig. 1. 〈ε〉  values averaged over five stars as a function of
time. The stars are numbered in order of increasing ε.
Curves 1, 2, 3, 4, 5, and 6 are based on the results for stars
1–5, 101–105, 201–205, 301–305, 401–405, and 496–500
in ε space, respectively.
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〈εζ〉 , and 〈l〉  from their constant values become appre-
ciable with time only near the boundaries of the distri-
butions of ε, εζ, and l, where the number of stars is
small. The increase of 〈ε〉  with time at high ε at t > τvr

is due to stars at the cluster periphery (near or outside
the cluster tidal radius r = Rt [10]). The fractional
amplitudes of oscillations of 〈ε〉  are small for small ε,
amounting to ~11 and 6% at t < τvr and t > τvr , respec-
tively, and are determined by stars located near the
cluster center. The decrease with time of 〈l〉  at small l is
due to stars escaping from the cluster, located at dis-
tances r > 2Rt from the cluster center. The highest frac-
tional amplitudes of oscillations of 〈εζ〉  at large εζ are
13–25% at t < τvr  and decrease by a factor of 2–4 at

0.7

t/τ vr

–0.1
0 0.5 1.0 1.5 2.0 2.5

〈ε(t)〉 , (pc/Myr)2

6

5
4
321

0.5

0.3

0.1

Fig. 2. Same as Fig. 1 for 〈εζ〉 .
t > τvr . These oscillations are due to the small number
of stars outside the cluster core, at the cluster periphery.
Since 〈ε〉 , 〈εζ〉 , and 〈l〉  are primarily constant in time
only for stars at distances r < Rt (i.e., inside the cluster),
the constancy of 〈ε〉 , 〈εζ〉 , and 〈l〉  must be due to stellar
encounters within the cluster. (The periods of temporal
oscillations of 〈ε〉 , 〈εζ〉 , and 〈l〉  are mostly near Pr =
0.6τvr , so that temporal oscillations of 〈ε〉 , 〈εζ〉 , and 〈l〉
are most likely due to oscillations of the regular cluster
field.)

The dispersions σε, σε, ζ, and σl of the deviations of
ε, εζ, and l from 〈ε〉 , 〈εζ〉 , and 〈l〉  in the intervals of these
parameters considered are also characterized by the
sizes of these intervals and, at t > τvr , should exhibit
small, random oscillations about certain constant val-
ues over most of the domain S = (ε, εζ, l) occupied by
the cluster stars in the (ε, εζ, and l) coordinate space. σl
for stars with small l increases when these stars move to
distances r > 2Rt. The dispersions σε for the stars with the
highest and lowest ε change appreciably at t < τvr (the
stellar ε distributions develop their “wings” during this
period). The constancy of 〈ε〉 , 〈εζ〉 , and 〈l〉  and of σε,
σε, ζ, and σl for most of the cluster stars at t > τvr indi-
cates that the stellar distribution in (ε, εζ, and l) space
has attained equilibrium.

Figure 4 shows the distribution of stars in model 2
in (ε, εζ, l) space for seven equally spaced times ti (sep-
arated by steps ∆t = 0.1τvr for ti/τvr ∈ [1.0, 1.6], i =
1, …, 7) spanning the period Pr = t7 – t1 for the oscilla-
tions of the regular cluster field. The dashed curves
show the distributions averaged over Pr . The central

distributions correspond to  = ti = 1.3 × τvr ,t
1
7
---

i 1=
7∑
6

t/τ vr

0 0.5 1.0 1.5 2.0 2.5
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Fig. 3. Same as Fig. 1 for 〈 l〉 . Curves 1, 2, 3, 4, and 5 are based on results for stars 101–105, 201–205, 301–305, 401–405, and
496–500 in l space, respectively.
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and have been constructed as follows. During the inte-
gration of the equations of stellar motions, the sets of
stellar phase-space coordinates for the seven times indi-
cated are written to a single file, which is then used to
compute the overall stellar distributions in (ε, εζ, l)
space. The resulting distributions are then normalized
to the number of stars in the cluster (N = 500). Although
the cluster is strongly nonstationary, and in spite of the
oscillations of the regular field in cluster model 2 over
the period Pr , the “instantaneous” distributions of ε, εζ,
and l at time t differ little from the corresponding distri-
butions averaged over the period for oscillations of the
regular field. Figure 5 shows the distributions of the
magnitude of the stellar velocities v = |v| for the times
indicated, which differ more from the mean distribution
than do the distributions in Fig. 4. It is interesting that,
during the violent relaxation of the cluster model con-
sidered, i.e., for ti/τvr ∈  [0, 0.6], the differences
between the instantaneous distributions of εζ and l and
the corresponding mean distributions are as small as
those in Fig. 4. The differences between the instantaneous
and mean distributions of ε for ti/τvr ∈  [0, 0.6] are some-
what more substantial than for ti/τvr ∈  [1.0, 1.6].

Although cluster model 2 is strongly nonstationary
in the regular field, the instantaneous distribution of the
stars in (ε, εζ, l) space attains equilibrium at t > τvr; the
resulting equilibrium distribution varies only slightly
over the period Pr, does not differ statistically from the
distribution f(ε, εζ, l) averaged over Pr, and exhibits only
small random deviations from (ε, εζ, l) (see below).

4. EQUILIBRIUM DISTRIBUTION
OF CLUSTER STARS IN (ε, εζ, l) SPACE

We estimated the parameters of the stellar distribu-
tion in (ε, εζ, l) space for cluster model 2 for several
times . To this end, we used the distribution (4) written
in the more convenient form

(5)

where  and  are ε and l averaged over Pr , derived
from the set of stellar phase-space coordinates for seven
equally spaced times corresponding to the given . The
quantity ν from (4) can be written ν = ± µ  ± β ,
where the signs in front of the µ and β coefficients
depend on those of ε –  and l – .

To estimate the parameters of distribution (5), we
subdivided the ε domain occupied by the cluster stars
during the given period Pr into L = 60 equal intervals
∆ε. To determine this domain, we used the combined
file containing the stellar phase-space coordinates for
seven equally spaced times spanning the period Pr . We
also partitioned the ∆εζ and ∆l domains occupied by the
cluster stars during the period Pr into intervals εζ and l
in the same way. We then determined the stellar number
densities f(ε, εζ, l) in the resulting (ε, εζ, l)-space cells

t

f ε εζ l, ,( ) f 0 µ ε ε– β l l– γεζ–––( ),exp=

ε l

t
ε l

ε l
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and derived the parameters of distribution (5) using the
method of Marquardt [11] to minimize the sum of the
squares of the deviations of f1 from f computed using (5).
We repeated these computations for L = 20 and 40.

The table summarizes the resulting coefficient esti-
mates for L = 60 (for L = 20 and 40, the function f is
more coarsely represented by f1 near the maximum f
values). We can see from the table that the parameters
of the stellar distribution f(ε, εζ, l) averaged over Pr for
cluster model 2 vary comparatively little over the time
interval considered (from  = 1.3 × τvr to  = 1.9 × τvr).
Such variations of the stellar distribution in (ε, εζ, l)
space could be due, among other things, to approxima-
tion errors when fitting the function f1(ε, εζ, l) using (5).

t t

100
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80

60

40

20

0
–1.2 – 0.9 – 0.6 – 0.3 0 0.3 0.6

(a)

ε

160
n(εζ)

120

80

40

0 0.2 0.8

(b)

εζ
0.60.4

120
n(l)

80

40

0
–5 5

(c)

l31–3 –1

Fig. 4. The ε, εζ, and l distributions for stars in model 2 for
times ti = [1 + (i – 1) × 0.1]τvr, i = 1, …, 7. The dashed
curves show the n(ε), n(εζ), and n(l) distributions of the

cluster stars averaged over Pr at time  = 1.3τvr .t
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Fig. 5. Distributions of stellar velocity magnitudes in model 2 for times ti = [1 + (i – 1) × 0.1] τvr, i = 1, …, 7. The dashed curve

shows the n(v) distribution of the cluster stars averaged over Pr at time  = 1.3τvr .t
The function (5) used as f(ε, εζ, l) only approximately
describes the properties of f1(ε, εζ, l). A more accurate
description of the averaged ε distribution of stars could
probably be obtained by using two exponential func-
tions in (5) to fit the distributions of ε in the cluster core
and halo (see Fig. 4a). The small temporal variations of
distribution (5) in the table could also be due to system-
atic changes (evolution) of the averaged cluster model.
f0 systematically decreases over the time considered in
the table due to the expansion of the cluster in phase
space.

When comparing f1(ε, εζ, l) and f(ε, εζ, l), we should
bear in mind that ε and εζ are not independent. To deter-
mine the boundaries of the (ε, εζ) domain occupied by
the stars in the cluster model averaged over Pr , we used
the combined file containing the stellar phase-space coor-
dinates for seven equally spaced times spanning period Pr .
We derived the relations ε1, 2 = ε1, 2(εζ) and εζ, 1, 2 = εζ, 1, 2(ε)
for each time  from the table. The subscripts 1 and 2 in
relations ε1, 2 = ε1, 2(εζ) refer to the lowest and highest ε
values for stars whose εζ fall in the interval [εζ, εζ + ∆εζ].
The subscripts 1 and 2 in relations εζ, 1, 2 = εζ, 1, 2(ε) have
an analogous meaning. Using the adopted notation, f0
in (5) can be determined from the normalization condi-
tion for (5):

(6)

where

t

N f ε εζ l, ,( ) εd εζd ld∫
S

∫∫=

=  f 0
Ψ β( )

βγ
------------- µ ε ε– C γ ε,( )–( )exp ε,d

εmin

εmax

∫

Ψ β( ) 2 β l lmin–( )–( ) β lmax l–( )–( ),exp–exp–=

C γ ε,( ) γ εζ 1, ε( )( )–( ) γ εζ 2, ε( )( )–( ).exp–exp=
Parameters of the stellar distribution in (ε, εζ, l) space averaged over Pr for model 2

Parameter
/τvr

1.3 1.4 1.5 1.6 1.7 1.8 1.9

µ (Myr/pc)2 4.155 ± .089 4.252 ± .087 4.326 ± .082 4.069 ± .079 3.944 ± .076 4.415 ± .083 3.692 ± .066

β (Myr/pc)2 0.984 ± .020 0.977 ± .019 1.022 ± .019 0.995 ± .019 0.992 ± .018 1.050 ± .018 1.040 ± .018

γ (Myr/pc)2 11.090 ± .227 11.143 ± .224 11.810 ± .220 11.177 ± .216 11.656 ± .227 13.049 ± .232 12.331 ± .234

t
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The subscripts “min” and “max” in (6) indicate the
minimum and maximum values in the domain S for ε
and l. According to (5), the formulas for the stellar dis-
tribution in (ε, εζ, l) space can be written in the form

(7)

where K(µ, εζ) = 2 – exp(–µ|  – ε1(εζ)|) – exp(–µ|ε2(εζ) –
|) and (l, εζ), (ε, εζ), and (ε, l) refer to the domains for

the quantities in parentheses occupied by the stars in
the combined file containing stellar phase-space coor-
dinates for seven equidistant times in the period Pr .

On the whole, formulas (7) for ω(εζ) and ψ(l) with
the parameters of the distribution (5) given in the table
describe the εζ and l distributions of the cluster stars
averaged over Pr fairly well (see Figs. 6b, 6c). χ(ε) fits
the ε distribution somewhat worse (see Fig. 6a), due to
the fact that the cluster includes two subsystems (core
and halo) with different  values (see above for a pos-
sible way to refine χ(ε)).

To study the properties of the phase-space density
function that forms in cluster model 2 as a result of its

violent relaxation, we compared the ( , , ) stellar
velocity distribution averaged over Pr with the corre-
sponding instantaneous distributions for each of the
seven equally spaced times ti in each of the 10 distance
intervals ∆rj and for each of the intervals 0 ≤ r ≤ rj ,

where rj = ∆rk, j = 1, …, 10. We also performed
an analogous comparison of the averaged (ε, εζ, l) dis-
tribution of the cluster stars and the corresponding
instantaneous distributions. We used the Kolmogorov
criterion in the comparisons; see [9] for a description of
the technique used. We computed for each time ti ∈ Pr

the probabilities P(r ∈ ∆ rj) that the differences in the

stellar parameters considered [( , , ) or (ε, εζ, l)]
for the distance interval r ∈ ∆ rj (i.e., r ∈  [rj – 1, rj],
where r0 = 0) were purely random and that the corre-
sponding samples of stellar parameters are drawn from

χ ε( ) f ε εζ l, ,( ) ld εζd

l εζ,( )
∫∫=

=  f 0
Ψ β( )

βγ
-------------C γ ε,( ) µ ε ε––( ),exp

ψ l( ) f ε εζ l, ,( ) εd εζd

ε εζ,( )
∫∫=

=  f 0
β l l––( )exp
γ

--------------------------------- µ ε ε––( )C γ ε,( )exp ε,d

εmin

εmax

∫

ω εζ( ) f ε εζ l, ,( ) εd ld∫
ε l,( )
∫=

=  f 0
Ψ β( )
βµ

-------------K µ εζ,( ) γεζ–( ),exp

ε
ε

ε

ξ̇ η̇ ζ̇

k 1=
j∑

ξ̇ η̇ ζ̇
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the same population. We also computed the probabili-

ties (r ∈ ∆ rj) and dispersions (r ∈  ∆rj) for the

deviations of P(r ∈ ∆ rj) from (r ∈ ∆ rj) averaged over
the seven times ti ∈ Pr . We performed analogous com-
putations for stars at distances r ≤ rj , j = 1, …, 10. We
will denote the computed probabilities and their disper-
sions P(r ≤ rj) and (r ≤ rj).

Let us first consider the comparison of the (ε, εζ, l)
stellar distribution averaged over Pr and the corre-
sponding instantaneous distributions. The probabilities

P(r ≤ rj) in the cluster (i.e., at r ≤ , see below) increase

with j and distance, from (r ≤ r1) . 0.55–0.65 to

P σ
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P
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Fig. 6. The n(ε), n(εζ), and n(l) distributions of the cluster

stars averaged over Pr at time  = 1.3τvr for model 2 (solid
curves). The dashed curves show the χ(ε), ω(εζ), and ψ(l)

distributions for time  = 1.3τvr computed in accordance
with formulas (7) and the data from the table.

t

t
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(r ≤ ) . 0.85–0.95, for all times in the table. In this
case, the characteristic (r ≤ rj) are equal to 0.05–0.06.

Here,  and  denote the tidal radii of the cluster for
stars with “retrograde” and “prograde” motions, respec-
tively, when the star’s angular-velocity vector with respect
to the ζ axis is opposite or parallel to the angular-velocity
vector of the cluster with respect to the Z axis of the
Galactic rotation. The technique we used to estimate

 and  from the distance dependences of the
squares of the velocities and velocity dispersions for
stars with prograde and retrograde cluster orbits is
described in [7]. In our models,  . 2 .

Thus, the (ε, εζ, l) distributions of the cluster stars
averaged over Pr are statistically indistinguishable from
the corresponding instantaneous distributions, and the
probability that the differences between these two dis-
tributions are purely random for all times ti considered

is (r ≤ ) . 0.85–0.95.

The probabilities (r ∈ ∆ rj) for times  = (1.3–1.5)τvr

increase with distance, from (r ∈ ∆ r1) . 0.55–0.65 to

(r ∈ ∆ r3) . 0.90; further, they decrease to 0.65–0.75

near r . , increase to 0.85–0.94 near r . , and

finally decrease to (r ∈ ∆ r10) . 0.5. (r ∈ ∆ rj) .

0.60–0.65 at  > 1.5 × τvr. They remain approximately

constant at r < , increase with r in the interval  <
r < , reaching 0.85 at r . , and then decrease to
.0.5 in the interval r ∈  ∆r10. The (r ∈ ∆ rj) values
are equal to 0.04–0.05 inside the cluster and increase to
.0.1 at r > .

It follows that, for all ∆rj intervals inside the cluster,
the (ε, εζ, l) distributions of the cluster stars averaged
over Pr are statistically equivalent to the corresponding

instantaneous distributions with probability (r ∈ ∆ rj) .
0.6–0.9; i.e., this is the probability that the differences
between the distributions can be attributed to random
fluctuations for all times ti in the period Pr .

Let us consider the comparison of the averaged ( ,

, ) stellar velocity distribution and the correspond-
ing instantaneous distributions. For all times  in the
table, the probabilities (r ≤ rj) primarily decrease

with distance, from (r ≤ r1) . 0.85 to (r ≤ ) .

0.65, or decrease from (r ≤ r1) . 0.75–0.85 to 0.61–

0.65 and then increase to (r ≤ ) . 0.75. The typical
dispersions (r ≤ rj) are equal to 0.05–0.07. It follows
that, considering the entire cluster, the probability that

the ( , , ) stellar velocity distribution averaged over
Pr and the corresponding instantaneous distributions
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can be considered statistically equivalent is (r ≤ ) .
0.65–0.75 [which is lower than the corresponding prob-
ability for the (ε, εζ, l) distribution], while the differ-
ences between them in velocity space can be consid-
ered to be random with the same probability for all the
times ti in the period Pr . Indeed, the instantaneous dis-
tributions of the velocity magnitudes for cluster model 2
in Fig. 5 differ more from the average distribution than
the instantaneous (ε, εζ, l) distributions differ from the
corresponding average distributions in Fig. 4.

At times  = (1.3–1.5)τvr, the probabilities (r ∈ ∆ rj)

decrease with distance, from (r ∈ ∆ r1) . 0.75–0.85 at
the cluster center to .0.38–0.40 at the cluster periph-
ery. At  ≥ 1.8 × τvr , two regions with low probability

(r ∈ ∆ rj) . 0.51–0.53 form in the cluster, near r . 

and r . . (r ∈ ∆ r1) remains high and is equal to
.0.85. The dispersions (r ∈ ∆ rj) inside the cluster
are 0.04–0.10 in this case.

Note that, near the cluster center, (r ∈ ∆ r1) and

(r ≤ r1) are substantially lower for the distribution of
stellar coordinates (ε, εζ, l) than for the distribution of

stellar velocities ( , , ). This is due to the following
specific features of the stellar distributions in (ε, εζ, l)

and ( , , ) space. The distribution of ε near the clus-
ter center differs appreciably from any of the ε distribu-
tions for the cluster stars in Fig. 4a, since it has a max-
imum near ε . –0.56 and contains a large fraction of
stars with small ε < –0.5. According to Fig. 1, the mean
〈ε〉  for stars in this ε domain exhibit appreciable peri-
odic oscillations, which result in substantial variations
of the ε distribution for stars near the cluster center dur-
ing the period Pr . The distribution of the stellar velocity
magnitudes near the cluster center has a maximum near
|v| . 0.38–0.40 km s–1 and has only a comparatively
small number of stars with |v| > 0.7 km s–1, where peri-
odic oscillations of 〈|v|〉 become appreciable. There-
fore, the stellar velocity distribution near the cluster
center undergoes much weaker variations over the
period Pr than does the ε distribution of the cluster
stars; this is reflected in the comparisons of the (ε, εζ, l)

and ( , , ) distributions of the cluster stars averaged
over Pr and the corresponding instantaneous distribu-
tions (see above).

The largest changes of the stellar velocity distribu-
tion over the period Pr at  = (1.3–1.5)τvr take place at

the cluster periphery, in the distance interval  < r < 

[where (r ∈  ∆rj) . 0.38–0.40]; this separates in the
course of the cluster’s evolution at  > 1.6 × τvr into two

regions with low (r ∈ ∆ rj) . 0.5 and appreciable tem-
poral variations of the velocity distribution near the
tidal boundaries of the cluster at r .  and r . .
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The deviations of the instantaneous phase-space densi-
ties from the phase-space density of the cluster model
averaged over Pr corresponding to these temporal vari-
ations of the stellar velocity distributions are due to the
departure of the cluster model from virial equilibrium and
nonstationarity of the cluster in the regular field. The most
important temporal variations of the stellar distributions in
(ε, εζ, l) space over the period Pr occur near the cluster cen-

ter and near r . . However, even here, the probabilities

(r ∈ ∆ rj) are equal to 0.55–0.75; i.e., they are fairly high.
Thus, this is the probability that the differences between
the instantaneous distributions of the cluster stars in
(ε, εζ, l) space and the corresponding distributions aver-
aged over Pr are purely random.

According to Fig. 4 and the results of our statistical
comparison of the stellar distribution in (ε, εζ, l) space
averaged over Pr and the corresponding instantaneous
distributions, the distribution (5) with the parameters
given in the table are statistically indistinguishable
from the equilibrium distribution that develops in clus-
ter model 2, which is nonstationary in the regular field.
The linear form

(8)

for (ε, εζ, l) in (5) is also constant over the period Pr and
varies only slightly over a time interval ~2τvr. We now fix
the coordinates of the vectors r and v. If Θ = const, peri-
odic variations of the cluster potential U(r) at the point
r should produce oscillations (with period Pr) in the
stellar distribution function, which are detected via
appreciable changes in the magnitudes of the stellar
velocities over the period Pr (Fig. 5).

5. CONCLUSIONS

(1) The open-cluster models considered in this
paper develop an equilibrium stellar distribution in
(ε, εζ, l) space over a time t . τvr, which varies slowly at
t > τvr. The equilibrium in (ε, εζ, l) space develops as a
result of relaxation in the absence of virial equilibrium.
The equilibrium distribution function f(ε, εζ, l) for the
stars in the cluster models considered can be written
f(ε, εζ, l) ~ exp(Θ), where Θ is a linear form for the vari-
ables (ε, εζ, l), whose coefficients vary only slightly
over a time interval ~2τvr . The equilibrium stellar
phase-space distribution function F0(r, v) corresponding
to the equilibrium in (ε, εζ, l) space and the regular cluster
potential vary periodically (or quasi-periodically) with
time. This equilibrium is probably possible due to an
approximate balance of the stellar transitions between
phase-space cells over time intervals equal to the oscil-
lation period for the regular cluster field.

(2) The local time for cluster relaxation toward the
equilibrium state is tr . 0.5 × τvr in the central regions
of both cluster models considered and tr . 1.1 × τvr and
tr . 1.5 × τvr at the peripheries of models 1 and 2,
respectively.

Rt
+

P

Θ Θ r v,( ) µ ε ε– β l l– γεζ–––= =
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(3) At t > τvr , the 〈ε〉 , 〈εζ〉 , and 〈l〉  values averaged
over several stars in intervals of ε, εζ, and l remain
approximately constant over most of the domain S of
(ε, εζ, l) space occupied by cluster stars at distances
r ≤ . Near the boundaries of and outside S, both the
number of stars and the stellar density are small, and
〈ε〉 , 〈εζ〉 , and 〈l〉  are not constant in time. In the cluster
models considered, the dispersions σε, σε, ζ, and σl of
the deviations of ε, εζ, and l from the corresponding
average values 〈ε〉 , 〈εζ〉 , and 〈l〉  for stars occupying the
(ε, εζ, l) intervals determined above have small (and
probably random) oscillations about certain constant
values throughout most of S at t > τvr . σε and σl can
vary appreciably with time near the boundaries of and
outside S. The approximate constancy of the (〈ε〉 , 〈εζ〉 ,
〈l〉) and (σε, σε, ζ, σl) values for stars in the domain S of
(ε, εζ, l) space at t > τvr indicates the formation of an
equilibrium stellar distribution function f(ε, εζ, l) in the
cluster.

(4) At ti > τvr , the probability that the instantaneous
distribution function for the cluster stars in (ε, εζ, l)
space is statistically indistinguishable from the corre-
sponding distribution function averaged over the period
Pr for oscillations of the regular cluster field at all times
ti and in all distance intervals ∆rj is P(r ∈ ∆ rj) . 0.6–0.9.
In other words, this is the probability that the differ-
ences between the stellar distributions in (ε, εζ, l) space
averaged over Pr and the corresponding instantaneous
stellar distributions are random in all distance intervals
∆rj considered (r ≤ ). On the whole, the stellar dis-
tribution function in (ε, εζ, l) space for the entire cluster
averaged over Pr is statistically indistinguishable from
the corresponding instantaneous distributions with proba-
bility P(r ≤ ) . 0.85–0.95, while the differences
between them are random with the same probability for
all the times ti considered in the period Pr . Our tech-
nique for computing a cluster-model distribution func-
tion in (ε, εζ, l) space averaged over Pr can be used to
determine the equilibrium stellar distribution function
f(ε, εζ, l) at the central time of the period Pr .

(5) The instantaneous and averaged stellar distribu-
tions in velocity space are statistically indistinguishable
with probability P(r ≤ ) . 0.65–0.75 [i.e., somewhat
lower than for the (ε, εζ, l)-space distribution]. In the dis-

tance interval  ≤ r ≤  at  = (1.3–1.5) × τvr and near

the tidal boundaries of the cluster r =  at  > 1.6 × τvr ,
the probability that the instantaneous stellar velocity
distributions and the corresponding averaged distribu-
tions are statistically indistinguishable (i.e., differ only
randomly) is only P(r ∈ ∆ rj) . 0.4–0.5 for all times ti in
the period Pr . The temporal variations of the instanta-
neous phase-space density of the cluster stars over Pr
are due primarily to deviations from the stellar phase-
space density functions averaged over Pr at the cluster

Rt
–

Rt
–

Rt
–

Rt
–

Rt
+ Rt

–
t

Rt
±

t
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periphery and near the tidal boundaries of the cluster.
The oscillations of the phase-space density for cluster
stars about the averaged phase-space density are due to
the absence of virial equilibrium in the cluster and its
nonstationarity in the regular field.
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Abstract—We present a mechanism to take into account angular-momentum loss in binary systems with non-
conservative mass transfer. In a number of cases, mass loss in the system can increase the orbital angular
momentum of the stars. Including this mechanism in evolutionary models substantially expands the domain of
stable mass transfer in binary systems. All observed cataclysmic binaries with known component masses fall
within the calculated area for stable mass transfer. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Cataclysmic variable stars are close binary systems
consisting of a low-mass main-sequence star that fills
its Roche lobe and a white dwarf. The main sequence
star (donor) loses matter through the region surround-
ing the inner Lagrangian point L1. The white dwarf
(accretor) accretes at least some of this matter via an
accretion disk or accretion columns in polar areas (pro-
vided the white dwarf possesses a strong magnetic
field).

The physics and evolution of cataclysmic binaries
(and of low-mass X-ray systems, whose evolution is
similar) have been actively studied since the end of the
1960s (see, for example, [1–10] and references therein).
Theoretical studies of cataclysmic binaries have been
driven by the fact that their evolution is determined by
orbital angular momentum loss via gravitational-wave
radiation [11, 12] and magnetic stellar wind [13–16].
A number of studies (see, for example, [17–19]) have
considered the effect of angular-momentum loss due to
matter outflow from the system over the course of a cat-
aclysmic binary’s evolution, as well as redistribution of
momentum between the components and accretion
disk. However, in the absence of gas dynamical calcu-
lations of mass transfer in binary systems, it was neces-
sary to study these processes in parametric approxima-
tions.

Recent three-dimensional gas dynamical calcula-
tions of gas flows in cataclysmic binaries (see, for
instance, [20, 21]) have shown that, in the course of
mass transfer, an intercomponent envelope is formed
around the binary, and a considerable fraction of the
matter lost by the donor leaves the system. In the
present study, we perform a numerical analysis of the
evolution of cataclysmic binaries taking into account
the results of these three-dimensional gas dynamical
calculations. In accordance with these results, in our
1063-7729/00/4405- $20.00 © 20309
model for the evolution of a cataclysmic binary, we take
into account the loss of mass and angular momentum
by the system during mass transfer.

We pay special attention to the stability of the mass
transfer for various values of the donor mass M2 and
donor-to-accretor mass ratio q = M2/M1. It is known
that mass loss from a star results in violation of its
hydrostatic and thermal equilibrium. Hydrostatic equi-
librium is reestablished adiabatically over the dynami-
cal time scale, while thermal equilibrium is reestab-
lished over the Kelvin time scale. The reestablishment of
the star’s equilibrium is accompanied by variations in its
radius, which depend on the convective or radial stability
of the outer envelope. For stars with mass M & M( and a
deep convective zone, and also for white dwarfs, mass
loss is accompanied by an increase of the star’s radius,
while, for stars with radiative envelopes, mass loss
results in contraction. The mass transfer in a close
binary system is unstable if, in the course of evolution,
the donor consistently tends to expand beyond its
Roche lobe. This occurs when the radius of the donor
R2 increases more rapidly (or decreases more slowly)

than does the average radius of the Roche lobe.1 It is
also possible for the radius of the donor to increase
while that of the Roche lobe decreases. Thus, the situa-
tion is determined by the ratio of the derivatives of the
donor radius ∂R2/∂M2 and the average Roche-lobe
radius ∂RRL/∂M2, which admits the possibility of unsta-
ble mass transfer even for stars that contract as they lose
mass.

Refining our understanding of the conditions for sta-
ble mass transfer has two interconnected objectives:

1 The average radius of the Roche lobe is defined to be the radius of
the sphere whose volume is equal to that of the Roche lobe.
000 MAIK “Nauka/Interperiodica”



 

310

        

FEDOROVA 

 

et al

 

.

                                                                   
(a) To understand the 10% of cataclysmic binaries
with known component masses for which any combi-
nation of M2 and q should make stable mass transfer
impossible under the standard assumptions about vari-
ations of the system’s angular momentum.

(b) To understand which detached systems consisting
of a white dwarf and low-mass secondary can become cat-
aclysmic binaries at the beginning of their evolution (i.e.,
for which of these systems stable mass transfer is possi-
ble), which is essential for modeling of the cataclysmic-
binary population. A similar problem also arises, for
example, in studies of low-mass X-ray binaries.

In Section 2, we describe the main factors determin-
ing the evolution of cataclysmic binaries and the condi-
tions for stable mass transfer in binary systems. Rea-
sons to abandon conservative approximations are con-
sidered in Section 3. In Sections 4 and 5, we present a
model for the angular-momentum loss due to the non-
conservative character of the mass transfer, based on
three-dimensional gas dynamical calculations of matter
flows in semidetached binary systems. In Section 6, we
compare the results of calculations made for conserva-
tive and nonconservative evolutionary models. The
conditions for stable mass transfer in an evolutionary
model that is nonconservative with respect to mass and
angular momentum are determined in Section 7.

2. MAIN FACTORS DETERMINING
THE EVOLUTION OF CATACLYSMIC BINARIES

In the present study, we consider dynamically stable
mass transfer; i.e., we assume that, during mass trans-
fer, the state of the star can differ appreciably from ther-
mal equilibrium and the mass-transfer rate can exceed
appreciably a rate corresponding to the Kelvin time

scale (  . 3 × 10–7 RL/M   M( yr–1, with the radius R,
luminosity L, and mass M of the star in solar units). We
take the mass transfer to be unstable when the rate of
variation of the donor radius exceeds that for the effec-

tive radius of the Roche lobe:  > . Using the
derivatives of radius with respect to the donor mass M2,
we can formulate the mass-transfer stability condition

(1)

The average radius of the donor Roche lobe can be esti-
mated, for example, using the interpolation formula of
Eggleton [22]:

where A is the semimajor axis of the orbit. For q & 1,
the approximation of Paczynski [23] is more conve-
nient:

(2)

Ṁ

Ṙ2 ṘRL

ζ*
∂ R2ln
∂ M2ln
----------------

∂ RRLln
∂ M2ln
-----------------> ζRL.= =

RRL 0.49A
q2/3

0.6q2/3 1 q1/3+( )ln+
--------------------------------------------------,≈

RRL
2

34/3
--------A

q
1 q+
------------ 

 
1/3

.≈
The derivative of the Roche lobe radius can be expressed

(3)

We can see from (2) and (3) that the variation of the
average Roche-lobe radius as a function of the decrease
of the donor mass is determined by the variations of the
masses of the donor and accretor and the distance between
them, i.e., on the mass and angular momentum lost from
the system. As a rule, only the orbital angular momen-
tum of the system has been considered; i.e., the angular
momentum is taken to be the sum of the angular
momenta of the two stars, which are treated as material
points. Consequently, the angular momenta of the axial
rotation of the components, of the accretion disk (if it
exists), and of matter streams in the system are usually
not included in the total angular momentum. The devi-
ation of the donor’s angular momentum from that of a
point, which can be substantial, is not taken into con-
sideration [24]. This approach has been necessitated by
the extreme difficulty of taking all these factors into
account in calculations. In the simplified case we con-
sider here, the orbital angular momentum of a binary
system with a circular orbit is

(4)

where G is the gravitational constant.
It is currently widely believed that the evolution of

cataclysmic binaries is determined by the loss of
momentum from the system via gravitational-wave radi-
ation (GWR) and/or a magnetic stellar wind (MSW)
from the donor, as well as via the transfer of mass
between the components. The standard model of close-
binary evolution supposes that the mass transfer itself
does not affect the momentum of the system and that its
influence is only indirect, via possible mass loss from the
system and carrying away of angular momentum with
the outflowing matter. Therefore, the variation of the sys-
tem’s orbital angular momentum can be written

(5)

Let us consider the various components of (5).
(1) Angular Momentum Loss from the System via GWR
The variations of the system’s orbital angular momen-

tum due to the radiation of gravitational waves can be
written [25]

(6)

where c is the speed of light. One characteristic feature
of GWR is the very strong dependence of its intensity
on the orbital semimajor axis and, accordingly, on the
orbital period. GWR is substantial for short-period sys-
tems with orbital periods Porb & 10h, since only in this

∂ RRLln
∂ M2ln
----------------- ∂ Aln

∂ M2ln
----------------

∂ RRL/A( )ln
∂ M2ln

-----------------------------.+=

J G1/2A1/2 M1M2

M1 M2+( )1/2
-------------------------------,=

dJ
dt
------

J∂
t∂

------ 
 

GWR

J∂
t∂

------ 
 

MSW

J∂
t∂

------ 
 

loss

.+ +=

∂ Jln
t∂

------------ 
 

GWR

32
5
------–

G3

c5
------

M1M2 M1 M2+( )
A4

-----------------------------------------,=
ASTRONOMY REPORTS      Vol. 44      No. 5      2000



NONCONSERVATIVE EVOLUTION OF CATACLYSMIC BINARIES 311
case does the characteristic time for momentum loss
become shorter than the age of the Universe.

(2) Angular Momentum Loss from the System via a
MSW from the Donor

A mechanism for angular momentum loss via a
MSW from the donor was suggested in [13, 14]. If the
donor possesses a convective envelope and, accord-
ingly, a surface magnetic field, its intrinsic axial rota-
tion is inhibited by the magnetic stellar wind, and the
angular-momentum loss rate can be appreciable even
when the mass loss rate is small. The subsequent syn-
chronization of the donor axial rotation and the orbital
rotation, due to tidal interactions between the compo-
nents, results in a loss of orbital angular momentum
from the system and the decrease of A. A semiempirical
formula from [16], which is based on extrapolation of
the dependence of rotation velocity on age for G main
sequence stars found by Skumanich [26] to the K and M
components of cataclysmic binaries is most frequently
used to take this effect into account. The decrease of
orbital angular momentum as a function of time given
by this relation is

(7)

Here, k is the gyroradius of the donor and C is a coeffi-
cient determined by comparing theoretical calculations
with observations. Based on the observed magnetic-
field decay for stars with masses smaller than ~0.3M(,
Spruit and Ritter [27] proposed that the total mixing
that occurs in these stars when their masses decrease to
this limit results in an abrupt “switch off” of the
dynamo mechanism responsible for the generation of
the stellar magnetic field. At that time, the time scale for
angular-momentum loss determined by equation (7) is
shorter than the thermal time scale for a star with mass
~0.3M(, and the star is no longer in thermal equilib-
rium. In this case, the star’s radius exceeds the radius of
a star with the same mass in thermal equilibrium.2 When
the action of the MSW carrying away angular momentum
from the system terminates, the rate of decrease of the
orbital semimajor axis slows, the donor-star radius
decreases to its equilibrium value, and the star shrinks
within its Roche-lobe surface [27]. Since the binary con-
tinues to lose angular momentum via GWR, its compo-
nents continue to approach each other slowly and, after
some time, the main-sequence star again fills its Roche
lobe. The further evolution of the system is determined
by the loss of angular momentum via GWR.

It is currently thought that termination of the MSW
after total mixing of the donor-star material can explain
the so-called gap in the observed orbital periods of cat-
aclysmic binaries. The theoretical width of this gap
compared to its observed value determines the choice

2 For a discussion of the reaction of stars to mass loss on various
time scales see, for example, [5, 9].
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of the coefficient C in (7). In accordance with the
results of [7], we adopted C = 3.0.

(3) Angular-Momentum Loss by the System During
Matter Outflow

As a rule, the possibility of mass loss from the sys-
tem has been treated as a parameter in theoretical stud-
ies of the evolution of cataclysmic binaries and related
systems; for example, this parameter could be varied in
order to reach consistency with observational estimates
of the cataclysmic-binary minimum period [1]. More
specific assumptions about the evolution of the system
were made only in the following cases.

(a) The rate of capture of matter by the accretor
(a white dwarf) is limited by the rate of hydrogen burn-
ing (~10–7–10–6 M(/yr), while the donor mass-loss rate
appreciably exceeds this limit, not exceeding, however,
the Eddington limit for the dwarf, which is close to
1.5 × 10–5 M(/yr (see, for example, [28, 29]). The excess
matter can be lost via stellar wind [30].

(b) Matter is lost in flares on the white dwarf (see,
for example, [17, 31–33]).3 In both cases, it is usually
assumed that the specific momentum of the matter
flowing from the system is equal to the specific
momentum of the accretor.

To describe mass and angular-momentum loss from
the system, it is convenient to use parameters character-
izing the degree of nonconservation with respect to
mass [34]

and angular momentum:4

(8)

where M = M1 + M2.
In this case, the loss of angular momentum carried

from the system by outflowing matter assumes the form

In cataclysmic-binary evolution calculations, an
equation for the orbital semimajor axis as a function of
time is used rather than the time dependence of the
angular momentum of the system; the former equation
can be derived from the latter. Let us differentiate
expression (4) for the orbital angular momentum of the

3 In the two last studies, the angular momentum loss due to interac-
tions between the donor star and the envelope ejected by a nova
was also considered.

4 The specific ψ angular momentum carried from the system in
ΩA2 units, where Ω is the angular velocity of the orbital rotation,
is sometimes used instead:
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Ṁ
-----/ΩA

2 J̇

Ṁ
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system and substitute the result into (5), making use of

the relation  = –β . Then, the variation of the
orbital semimajor axis can be written

(9)

Here, the subscript “trans” reflects variation of A as a
result of mass transfer between the components. Note

that, if there is no “trans” term  in (5), the cor-

responding term  term is present in equation

(9), as naturally follows from the dependence of the
orbital angular momentum on both the orbital semima-
jor axis and the mass of the components. For the case
of conservative mass transfer (with respect to mass and
angular momentum), variation of the orbital semimajor
axis is determined by the assumption that the mass
transfer does not affect the orbital angular momentum
of the system. During the mass transfer, matter with
specific angular momentum from the donor is carried to
the accretor, and eventually acquires specific momen-
tum from the accretor. If the orbital angular momentum
is constant and the donor is less massive than the accre-
tor, the excess angular momentum of the accreted mat-
ter should increase the orbital momentum, so that the
mass transfer increases the semimajor axis of the orbit.
If the donor is more massive, the deficit angular
momentum of the accreted matter should be taken from
the orbital angular momentum, so that the mass transfer
decreases the semimajor axis.

In our modeling of the evolution of a cataclysmic
binary, we simultaneously calculated the evolution of
the donor and the time variation of the orbital semima-
jor axis of the binary. We did not take into account the
evolution of the accretor, except for variations in its
mass. Let us consider the parameters determining the
time evolution of the semimajor axis. Using the param-
eters β and ψ, we derive formulas for the components
of equation (9), where mass is given in M(, distance in
R(, and time in years:

(10)

(11)

(12)

(13)

As we can see from (10)–(13), the mass ratio q is
one of the main parameters determining the variation of
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RRL. Since the variation of R2 depends on M2 and ,
the “mass ratio q—donor mass M2” diagram is useful
for determining the boundaries of the domain of stable
mass transfer.

In a number of cases, expression (3) can be simpli-
fied and analytical formulae for the derivative of the
Roche lobe radius can be obtained. In particular, in the
absence of angular-momentum loss due to GWR and
MSW, we can obtain the dependence of the distance
between the components [the first term in (3)] on their
mass ratio and the parameters β and ψ from (10) and (11):

(14)

For the second term (3), using (2), as suggested by
Paczynski [23], we obtain for RRL

(15)

From (14) and (15), we have for totally conservative
mass transfer without mass and angular-momentum
loss by the system (β = 1)

(16)

In so-called Jeans mass loss, there is no mass trans-
fer in the system, but the donor loses matter via its stel-
lar wind, which leaves the system, carrying away spe-
cific momentum from the donor (β = 0, ψ = 1/q). We
obtain in this case

(17)

For the case of a stellar wind from the accretor, when
all the matter lost by the donor flows onto the accretor but
some later leaves the system, carrying away specific angu-
lar momentum from the accretor (here, we must formally
adopt β = 0 and ψ = q), we have

(18)

At any stage of evolution, a comparison of the rates
of variation of the radii of the donor and the Roche lobe (3)
determines the type of mass transfer (i.e., stable or
instable). There are two methods for determining the
boundary of the domain of stable mass transfer. We can
directly calculate the derivatives of the donor radius

with respect to mass for various  and compare them
with derivatives of the average radius of the Roche
lobe, which depend on M1, M2, and A, as was done, for
example, in [35]. In this way, we can delineate the area
of the q – M2 diagram in which mass transfer is dynam-
ically stable and identify areas in which mass transfer
should occur on various time scales: the Kelvin, nuclear,
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Ṁ2
ASTRONOMY REPORTS      Vol. 44      No. 5      2000



NONCONSERVATIVE EVOLUTION OF CATACLYSMIC BINARIES 313
or momentum-loss time scale. Alternatively, we can
adopt as a condition for stable mass transfer that the
accretion rate immediately after the donor Roche lobe is
filled not to exceed the Eddington limit for dwarfs. This
approach is justified by the fact that evolution calcula-
tions often yield very high mass-loss rates immediately
after the Roche lobe filling, after which  decreases
rapidly. In essence, this approach limits the dynamical
stability of the mass transfer but makes it possible for the
star to lose mass on the thermal time scale.

3. DOMAIN OF STABLE MASS TRANSFER 
IN A MASS-CONSERVATIVE 

CATACLYSMIC-BINARY MODEL

Figure 1 presents the boundaries for the domain of
stable mass transfer determined using standard mass-
conservative models for cataclysmic-binary evolution.
Boundary 1 was found in [35], and boundary 2 was pre-
sented in [36]. These are in good agreement in the area
of low donor masses but differ somewhat at large
masses. Since the technique used to calculate this
boundary was not described in [36], we can only sup-
pose that these discrepancies result from differences in
the codes used, the ways in which possible attenuation
of the donor’s MSW at masses exceeding ~1M( was
taken into account, and the methods used to calculate
the derivative of the stellar radius in this area.

Figure 1 also plots cataclysmic binaries with known
component masses from the catalog [37]. Among the
80 systems plotted, 11 cataclysmic binaries are in the
domain of unstable mass transfer. For eight of these
11 systems, the errors are known and marked in Fig. 1
with bars. We can clearly see that the location of these
stars in the domain of unstable mass transfer cannot be
explained solely by the errors in the component masses.
The cataclysmic binaries whose parameters Smith and
Dhillon [38] consider to be most accurately determined
are also indicated in Fig. 1. For a number of systems,
refined mass values are given in [38], which are some-
what different from those in [37]. Nonetheless, even for
these well-studied cataclysmic binaries, the situation
remains unchanged: Three of 22 systems fall in the for-
bidden area.

To explain this result, we will consider a model for
cataclysmic-binary evolution in which we assume mass
and momentum loss from the system. This assumption
is grounded in the results of our previous three-dimen-
sional gas dynamical calculations of matter flows in
close binary systems.

4. CALCULATION
OF THE ANGULAR-MOMENTUM LOSS
RATE IN THREE-DIMENSIONAL GAS 

DYNAMICAL MODELS

The above analysis shows that evolution calcula-
tions critically depend on two parameters: the degree of
nonconservation of the mass transfer with respect to

Ṁ
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mass β and angular momentum ψ. These parameters
can be estimated only through three-dimensional gas
dynamical modeling of the mass transfer in cataclys-
mic binaries. Such studies have been made for binary
systems with mass ratio q = 1/5 [20] and q = 1 [21].
In addition, to study the effect of q on the flow pat-
tern, we made numerical simulations for a system with
q = 5.

The calculations indicated that the mass transfer
remains nonconservative for all q values, and the
degree of nonconservation is β ~ 0.4–0.6. The typical
flow patterns in three-dimensional numerical simula-
tions also indicate that matter leaves the system with
substantial angular momentum. However, determining
the degree to which the mass transfer is nonconserva-
tive with respect to angular momentum proves to be
more difficult. Let us consider the equations determin-
ing angular-momentum transfer in the system. Since
viscosity plays an important role in redistributing angu-
lar momentum in the system, we must consider the
Navier–Stokes equations. From the stationary gas
dynamical equations for the x and y components of the
velocity in a rotating coordinate system (here, u = (u, v, w)

1.2
M1 = 1.4M(

0.8

0.4

0 0.1 0.5 1 2 3 40.2

1

2

3

M1 = 0.15M(

M2/M(

q = M2/M1

Fig. 1. Plot of donor-to-accretor mass ratio q versus donor
mass M2. Cataclysmic binaries from [37] are marked by
asterisks and circles (the circles denote less reliable data).
For some stars, errors are indicated. Cataclysmic binaries
from [38] are marked with triangles. The dashed line 1 indi-
cates the boundary of the domain of stable mass transfer
according to [35], and the dashed line 2 shows the same
boundary according to [36]. The solid line 3 delineates the
domain of stable mass transfer derived in the present study.
The dash–dot lines indicate the upper (M1 & 1.4 M() and
lower (M1 * 0.15 M() limits for the mass of the accretor,
which is a white dwarf.



314 FEDOROVA et al.
is the velocity vector, ρ the density, 3 the stress tensor, Φ
the Roche potential, and Ω the orbital angular velocity)

we obtain the equation for angular-momentum transfer

where rCM is the radius vector for the center of mass of
the system, and the angular momentum λ (in the labo-
ratory coordinate frame) is determined by the expres-
sion

Let us write the equation for angular-momentum trans-
fer in divergence form:

This yields an integral expression for variations in the
angular momentum:

The value of Π describes angular-momentum varia-
tion due to the noncentral character of the force field
determined by the Roche potential. The quantity

(19)

represents the angular-momentum flux density λ. As a
result, we obtain for the stationary case
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where Σ1 is the boundary of the donor, Σ2 is the bound-
ary of the accretor, and Σ3 is the outer boundary. By
analogy with the mass flux from the system

we can estimate the angular-momentum flux from the
system

(20)

and use this in our expression for the parameter speci-
fying the degree to which the evolution is nonconserva-
tive with respect to angular momentum (8).

Note that, in our simulations, we solved the Euler
equations for a nonviscous gas rather then the Navier–
Stokes equations. Accordingly, to calculate the integral
(20) in the expression for the momentum flux density F
in the stress tensor 3, only the isotropic term corre-
sponding to the gas dynamical pressure was taken into
account: 3αβ = Pδαβ. This substitution is completely
justified, since viscosity does not play an appreciable
role at the outer boundary of the domain where the inte-
gral (20) is calculated.

Applying expression (20) to the simulation of a sys-
tem with q = 1/5 [20], we obtain the value ψ ~ 6, which
corresponds to α = 0.83 (see the determination of α
given above in Note 4), while we obtain ψ ~ 5 for a
binary system with q = 1 [21], which corresponds to
α = 1.25. This latter value is consistent with the results
of Sawada et al. [39], who obtained α = 1.65 for a binary
system with equal component masses.

However, applying these estimates to ψ in our evo-
lution calculations indicated that the angular-momen-
tum loss rates in binary systems are so high that, in
most binaries, the mass transfer quickly becomes
unstable and the donor mass-loss rate begins to increase
without bound. Apparently, it is not entirely correct to
use formula (20) to estimate the angular-momentum
loss in cataclysmic-binary evolution calculations, since
the gas dynamical and evolutionary models do not fit
together well. The gas dynamical model does not take
into account variations of the stellar positions in time
(the distance between the components is assumed to be
constant), so that variations in the angular momentum
of the gas due to the noncentral character of the field Π
are not compensated by corresponding variations in the
angular momenta of the stars.

A more general gas dynamical model taking into
account variations of the positions of the stars would
enable correct estimation of the variations of the system
angular momentum in the form of a momentum flux-
density integral for the flux through the outer boundary
of the closed “donor + accretor + gas” system. Due to
difficulties in the gas dynamical calculations, however,

Ṁ ρu dn,⋅
Σ3

∫–=

J̇ F dn⋅
Σ3

∫–=
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such estimations are possible only for a specific stage in
the life of a binary. Moreover, the gas dynamical results
cannot be directly used in standard evolutionary models,
which do not take into account the presence of intercom-
ponent matter in the system. Therefore, in the nearest
future, an approach in which a simplified model for
angular-momentum transfer in the system is developed
on the basis of gas dynamical calculations is likely to be
promising; the results of this simplified and parame-
trized model can then be used in evolution calculations.

5. A SIMPLIFIED MODEL FOR ESTIMATING
THE ANGULAR-MOMENTUM LOSS RATE

IN SEMI-DETACHED SYSTEMS

Gas dynamical modeling of mass transfer in
semidetached systems suggests that the outflow from
the donor’s surface passes through a quite small area
near L1, so that the specific angular momentum of the
outflowing matter can be estimated as  = Ω∆2,
where ∆ = |xc – | is the distance from L1 to the center
of the mass of the system. Accordingly, the angular-
momentum flux from the donor surface is

Since the mass transfer is nonconservative, only
some fraction β of the matter flowing through L1 is
accreted, and the specific angular momentum of the
accreted matter is equal to the specific angular momen-
tum of the accretor (neglecting the finite radius of the
accretor and/or the residual momentum of the matter,
which is a reasonable approximation for cataclysmic
binaries). In this case, the accreted matter possesses
zero angular momentum relative to the accretor in the
rotating coordinate frame. Consequently, it does not
spin up the accretor; i.e., the problem of the efficiency
of the transfer of momentum from the axial rotation of
the accretor to the orbital motion of the system need not
be considered. As a result, the flux of angular momen-
tum onto the accretor is

The expressions for the flux of angular momentum
from the donor to the accretor correspond to the general
formula for the angular-momentum flux density F (19).
As at the outer boundary, viscosity does not play an
important role near the surfaces of the donor or accretor,
where the matter has already lost its angular momentum
completely, and the flow is radial in the rotating coordi-
nate frame. Consequently, in this case, the stress tensor
reduces to an isotropic pressure, which does not con-
tribute to the integral of the angular-momentum flux
density.
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These considerations enable us to write the momen-
tum flux lost by the system in the form

where η is a parameter determining the fraction of
intercomponent-envelope momentum carried away by
the matter leaving the system. Then, 1 – η is the frac-
tion of the angular momentum of the intercomponent
envelope that returns to the system via tidal interac-
tions. From this point on, we will assume that η = 1;
i.e., all the momentum of the intercomponent envelope
is carried away with matter leaving the system.

In this case, the specific angular momentum of the
matter leaving the system is

or, in units of the specific angular momentum of the
system (λsyst = ΩA2M1M2/M2),

(21)

where f(q) = /A is the dimensionless distance from
the donor center of mass to L1.

Note that (21) was derived assuming coaxial syn-
chronous rotation of the binary components. The angular-
momentum loss due to matter outflow through the vicinity
of L1 can make the intrinsic rotation of the donor star and
the orbital rotation of the system become noncoaxial
[40]. Although the flow structure in systems with
noncoaxial, asynchronous rotation was treated previously
in [41], we will not consider this effect here, due to the
simplified form of the evolutionary models under study.

Figure 2 presents a plot of the relation ψ(q) for var-
ious degrees of nonconservation β. This figure also pre-
sents the values ψ = 0 and ψ = 1, marked with dashed
lines. In the domain ψ > 1, the angular momentum carried
out per gram of matter leaving the system exceeds the
average specific momentum of the system, resulting in a
decrease of the binary’s specific momentum:

In the domain 0 < ψ < 1, the angular momentum carried
out per gram of matter leaving the system is smaller than
the average specific momentum of the system, so that
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Ṁ2–

1 β–( )Ṁ2
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As we can see from Fig. 2, for most cases of non-
conservative mass transfer (with the exception of β ~ 0),
ψ becomes negative for some range of q. In this case,
the redistribution of angular momentum in the closed
“donor + accretor + gas” system, due to the outflow of
matter to infinity, increases the total momentum of the

binary:  > 0. It is obvious that such “pumping” of
angular momentum into the system can stabilize the
mass transfer in cataclysmic binaries. For example, a
qualitative examination of variations in the orbital
semimajor axis resulting from mass transfer indicates
that, in conservative models, the mass transfer tends to
increase the semimajor axis only when q < 1. In “non-
conservative” models, the interval of q in which both
mass transfer and mass loss from the system tend to
increase the semimajor axis is considerably broader:
When β = 0.5, this occurs for 0 < q < 2.8.

The dependence ψ(q, β) [see Fig. 2 and (21)] dis-
plays the following interesting peculiarity: The ψ(q)
curves for different values of β go through a common
point. The position of this point corresponds to the case
when the center of mass of the system is exactly
between L1 and the accretor, since, in this case, ψ does
not depend on β. Fortunately, this does not affect the
solution.

Three-dimensional simulations of the gas dynamics
of matter flows in cataclysmic binaries confirm that,
depending on the component mass ratio q, the matter
outflow from the system can either decrease or increase

J̇

15

0

–5

–10
1 10

ψ

q = M2/M1

0.1

10

α =
 1

β = 0.1

β = 0.3

β = 0.5

β = 0.7β = 0.9

Fig. 2. Dependence of the degree of nonconservation with
respect to angular momentum ψ on the mass ratio q for var-
ious degrees of nonconservation with reference to mass β
[see (21)]. The dashed lines correspond to ψ = 0 and ψ = 1. The
thick dashed curve shows the dependence ψ = (1 + q)2/q, cor-
responding to α = 1.
the total angular momentum of the system. The typical
flow patterns for systems with M2/M1 = 1 : 5 and M2/M1 =
5 : 1 (Fig. 3) indicate that, in the laboratory coordinate
frame, the gas flowing out of the system rotates in dif-
ferent directions relative to the orbital motion (in both
Figs. 3a and 3b, the orbital motion is counterclock-
wise). Accordingly, in the solutions, the variation of the
total angular momentum of the binary system displays
opposite signs: For q = 1/5, the momentum of the system
decreases, while for q = 5, it increases.

A reasonable physical explanation for the different
types of gas dynamical solutions obtained is provided
by the following qualitative picture.

(1) The flux of matter leaving the system through
the vicinity of the outer Lagrangian point L2 is made up
of intercomponent gas whose angular momentum is
sufficient for it to overcome the gravitation of the accre-
tor. The initial velocity of this matter (in the rotating
coordinate frame) coincides with the direction of the
orbital motion.

(2) The velocity of gas leaving the system varies
depending on the gravitation of both components of the

1.5

1.0

0.5

0

–0.5

–1.0

–1.5
1.5

1.0

0.5

0

–0.5

–1.0

–1.5
–2.0 –1.5 –1.0 –0.5 0 0.5 1.0 1.5 2.0 2.5

X/A

Y/A

Fig. 3. Velocity vectors in the equatorial plane for three-
dimensional gas dynamical calculations for a binary with
M2/M1 = 1 : 5 (q = 1/5, top) and with M2/M1 = 5 : 1 (q = 5,
bottom). The position of the accretor is marked by an aster-
isk. The shaded area shows the donor, and the dashed curves
its Roche equipotentials. The vector in the upper right cor-
ner corresponds to a velocity 3AΩ .
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system, the centrifugal force, the Coriolis force, and the
pressure force. Variations in the azimuthal velocity of
the gas are determined primarily by the Coriolis and
gravitational forces, since the centrifugal force is cen-
trally symmetric and the deviation of the pressure from
central symmetry is also small. The action of the Cori-
olis force deflects the flux in the direction opposite to
the orbital motion. In turn, the initial flux of matter
leaving the vicinity of L2 can be divided into two parts:
The first maintains the direction of its initial motion,
while the second, being deflected by the Coriolis force,
assumes the opposite direction. The predominance of
one or the other flux determines the final direction for
the gas motion in the stationary solution.

(3) In a centrally symmetric gravitational field, the
effect of the Coriolis force obviously cannot result in a
solution where the direction of gas rotation does not
coincide with the orbital rotation in the laboratory coor-
dinate frame. The situation is fundamentally different
when the field of the binary is not central. In this case,
the gravitation of the donor star can additionally accel-
erate the matter of the flow, resulting in a solution with
the opposite direction of gas rotation in the laboratory
coordinate frame.

(4) It follows from (21) and Fig. 3 that there exists
an interval of q for which the gas in the system moves
opposite to the orbital rotation. This corresponds to the
case when the gravitation of the donor star becomes
sufficient to accelerate the gas to the extent required
(the left boundary of the interval) but is not so high that
it leads to inverse accretion back onto the donor (the
right boundary of the interval). For all other values of q,
the flux in the direction of the orbital rotation prevails.

The presence of an additional interval of q where
nonconservative mass transfer is accompanied by an
increase in the momentum of the binary expands the
domain of stable mass transfer. This can be displayed
with a q – ζ plot, frequently used to qualitative illustrate
the problem of mass-transfer stability in cataclysmic
binaries. Curves corresponding to analytical formulas
for the derivative of the Roche-lobe radius with respect
to the donor mass ζRL can be drawn, together with lines
corresponding to the derivative of the star’s radius with
respect to the mass ζ*, which is known from studies of

their internal composition (see, for example, [35]). The
mass transfer will be stable for the interval of q where
the ζRL curve passes below the line ζ* for the donor star

of the corresponding type. Such a plot is presented in
Fig. 4, which contains the derivative of the Roche-lobe

radius ζRL =  as a function of the mass ratio q

for the case when the momentum loss is described by
(21) for various values of the mass nonconservation
parameter β. Figure 4 also shows the dependences
ζRL(q) for mass transfer that is completely conservative
with respect to mass and momentum and for cases
when matter leaves the system and carries away spe-

∂ RRLln
∂ M2ln
-----------------
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cific angular momentum from the donor or accretor.

The derivative ζ* =  for totally convective and

degenerate stars (ζ* = –1/3), roughly solar-mass main-

sequence stars in thermal equilibrium (ζ* = 0.6), and

subgiants with degenerate low-mass helium nuclei
(ζ* = 0) are also plotted. We can see that, in accordance

with (21), mass loss from the system is able to stabilize
the mass transfer from the donor over a substantially
broader interval of q than in the case of conservative trans-
fer. Note that, in the case of conservative mass transfer for
a star with mass of the order of M(, the transfer time scale
is determined by the momentum-loss or nuclear time
scale for q & 1.2 [35], but, in the case considered, the
corresponding boundary for q is also appreciably
higher.

We note again that, in the case under study, there is
a region of unstable mass transfer for small q. The insta-
bility—i.e., the failure to satisfy condition (1)—results
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Fig. 4. Dependence of the logarithmic derivative of the
Roche-lobe radius with respect to donor mass ζRL =

 on the mass ratio q (thick curves) for various

degrees of mass nonconservation β [(3) and (21)]; depen-
dence of the logarithmic derivative of the donor radius with

respect to ζ* =  on q (thin curves) for the case of

mass-conservative transfer [“cons,” equation (16)], a Jeans
mass-loss regime [“Jeans,” equation (17)], and a stellar
wind [“accr-wind,” equation (18)]. The dashed curves indi-
cate ζ* values for totally convective and degenerate stars

(ζ* = –1/3), roughly solar-mass main-sequence stars in ther-

mal equilibrium (ζ* = 0.6), and subgiants with degenerate

low-mass helium cores (ζ* = 0).

∂ RRLln

∂ M2ln
------------------

∂ R2ln

∂ M2ln
----------------



318 FEDOROVA et al.
from the rapid increase of the ratio of the lost to the aver-
age specific momentum of the system [see (14) and (21)].
This can lead to the destruction of a donor with very
low mass.5 Thus, it is possible that some cataclysmic
binaries that start their evolution as stable stars end with
the catastrophic destruction of the donor when q
decreases below some lower limit.

6. EVOLUTION OF CATACLYSMIC BINARIES 
LOSING MASS AND MOMENTUM

In order to take into account the results of three-
dimensional gas dynamical calculations of mass trans-
fer in cataclysmic binaries and corresponding estimates
of the loss of momentum from the system via matter
outflow, we have studied the evolution of cataclysmic
binaries with various assumptions about the extent to
which it is conservative.

5 Another case of mass-transfer instability for small q is known,
brought about by low efficiency of the tidal interaction between
the accretion disk and orbital motion (see, for example, [42, 43]).
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Fig. 5. Evolutionary tracks in the “orbital period–logarithm
of the donor mass-loss rate” plane for systems with initial
component masses M1 = 1.0 M(, M2 = 1.0 M( (top) and
M1 = 0.28 M(, M2 = 1.0 M( (bottom). Tracks 1 and 3
(dashed) are “conservative,” and tracks 2 and 4 (solid) are
“nonconservative.”
We calculated the evolution of the donor using a
modified version of a code designed for studies of low-
mass stars, used previously in [7, 10, 44–48]. The code
uses the opacity tables compiled by Hebner et al. [49],
supplemented at low temperatures with the tables of
Alexander et al. [50], and the equation of state derived
by Fontaine et al. [51], with the corrections of Denisen-
kov [52]. We adopted nuclear reaction rates in accor-
dance with [53, 54].

All calculations assumed that the donor fills its
Roche lobe immediately after the star reaches the zero-
age main sequence. The donor mass was taken to be
between 0.1 and 1.2M(, with various mass ratios q. We
assumed the donor had a chemical composition X =
0.70, Y = 0.28, Z = 0.02. In calculations for the convec-
tive temperature gradient, we took the mixing length
parameter l/Hp to be 1.8. We used the method suggested
by Kolb and Ritter [55] to calculate the mass-loss rate
of the donor for a given donor radius and average
Roche-lobe radius. Based on the earlier results of gas
dynamical calculations, when considering nonconser-
vative evolution, we assumed that the fraction of matter
accreted by the dwarf β was 0.5 and that the momentum
carried away by matter leaving the system was deter-
mined by (21). We did not take into consideration pos-
sible mass and momentum loss due to the ejection of
matter in flares.

Let us consider the evolution of cataclysmic bina-
ries with stable mass transfer in a mass-conservative
model. Figure 5 (a plot of orbital period vs. the loga-
rithm of the donor mass-loss rate) presents two tracks,
one calculated in the “conservative” approximation
(track 1) and the other in the “nonconservative” approx-
imation (track 2). The initial masses of both the donor
and accretor are 1.0 M(. We can see that there are no
fundamental differences between tracks 1 and 2. In the
initial stage of evolution of the cataclysmic binary, the
predominant factor is the loss of momentum from the
system via a MSW from the donor. As a result of this
momentum loss, the orbital semimajor axis and period
decrease in the course of the system’s evolution. With

the decrease of the donor mass and radius, 

the MSW also decreases [see (13)], which, after some
time, results in a gradual decrease of the donor mass-

loss rate .  is appreciably smaller for the non-
conservative track than for the conservative track, since
ψ is negative at this stage of the evolution (Fig. 2), and
the total loss of orbital angular momentum in the non-
conservative system is smaller than in the conservative
system. At later stages of evolution, after q decreases
enough that the loss of momentum for the nonconser-
vative evolution increases sharply, the situation is
reversed.

After the star becomes totally convective, the MSW
from the donor terminates. The stellar mass for which total
mixing occurs depends on the extent of deviation from
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thermal equilibrium. Equilibrium models for main-
sequence stars become totally convective at masses
~0.36M(; stars in binary systems losing mass become
totally convective at smaller masses, close to 0.25–
0.30M( (for our assumptions about the chemical com-
position and opacity of the stellar matter).

For the conservative track, mixing occurs when M2 =

0.265M( (at this time, Porb = 3 27), while, for the non-
conservative track, mixing occurs when M2 = 0.249M(

(Porb = 3 54).6 Thus, the donor mass and orbital period
corresponding to the upper boundary of the gap in the
cataclysmic-binary periods differ little for the conser-
vative and nonconservative tracks.

After the donor MSW ceases, the momentum loss
rate in the system decreases dramatically, and the
approach of the two components decelerates. As a
result, the donor is no longer able to fill its Roche lobe,
and its mass loss terminates. Since the radius of the
donor exceeds the radius of a main sequence star in ther-
mal equilibrium when the MSW ceases, the donor radius
decreases to its equilibrium value [27]. Consequently,
the ratio of the radii of the donor and its Roche lobe
decreases even further. The only factor determining the
evolution of the system during this detached stage of
evolution is GWR, which causes the stars to slowly
approach until the donor again fills its Roche lobe and
the mass transfer resumes. During the detached stage,
the system is not manifest as a cataclysmic binary, so
that it “disappears” during some interval of periods.
This provides an explanation for the observed gap in
the periods of cataclysmic binaries.

The observed period gap is between 2 1 and 3 1
[37]. The edges of the theoretical period gap depend on
the rate of momentum loss via the MSW and the initial
physical parameters of the evolution code, which deter-
mine the theoretical radii of the stars. The code we used
overestimates the lower boundary to some extent. The

edges of the gap for the conservative track were 2 5–3 3,

while those for the nonconservative track were 2 4–

3 5. The discrepancy is due to the different rates of
momentum loss before the gap and also to the different
masses of the accretors after termination of the first
semidetached stage of evolution.

Note that a pronounced deficiency of cataclysmic
binaries is observed in the period gap, rather than their
total absence [37]. The presence of cataclysmic bina-
ries in the gap can be understood as follows:

6 Since we are interested in the details of cataclysmic-binary evolu-
tion related to possible nonconservation of mass and momentum,
we formally continued our calculations after the accretor reached
the Chandrasekhar mass, despite the fact that the evolution of real
systems is interrupted at this time by thermonuclear explosion of
the white dwarf. In principle, our extension of the calculations for
M1 > MCh ≈ 1.4 M( is justified by the fact that, in reality, the
accretion may spin up the accretor and that the critical mass for
rapidly rotating dwarfs can substantially exceed MCh .
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(a) For cataclysmic binaries with donor masses
0.25–0.4 M(, mass transfer starts immediately within
the gap.

(b) If the donor fills its Roche lobe at a later stage of
core hydrogen burning rather than at the zero age main
sequence, total mixing does not occur when its mass
decreases to ~0.3 M(, due to the presence of a helium
core (see, for example, [46, 47]; note, however, that
such systems are very rare).

The stage of evolution after the period gap is char-
acterized by substantially lower rates of mass loss by
the donor, since the main factor determining the evolu-
tion is the radiation of gravitation waves by the system.
In this case, the loss of momentum from the system is
substantially smaller than at earlier stages, when
momentum is lost via MSW from the donor. The other
characteristic feature of this stage of evolution is the
presence of a minimum period. This is related to the
increase in the degeneracy of the matter in the donor
and the corresponding variation of the radius–mass
dependence of the star [56, 57]: When the donor mass
decreases to ~0.05 M(, its radius begins to increase as
its mass decreases, and the exponent of the mass–radius
relation tends to –1/3. The minimum period corre-
sponds to the exponent +1/3. The minimum periods for
the conservative and nonconservative tracks are 75m

and 81m, respectively. This discrepancy in Pmin is due to
differences in the total masses of the systems and in the
extent to which the donor radii deviate from the values
corresponding to thermal equilibrium, due to differ-
ences in their mass-loss rates. After passing the mini-
mum period, the orbital period begins to increase. At
this stage, the rate of mass loss by the donor decreases
rapidly as the period increases. We can see from Fig. 5
that the difference between the conservative and non-
conservative tracks increases at this stage. This is due
to the fact that the orbital angular-momentum loss rate
rapidly increases as q decreases in the nonconservative
case.

The mass-transfer rates for the conservative and
nonconservative tracks become considerably different
after the passage of the minimum orbital period. The
probability of observing a semidetached binary in a
given interval of orbital periods is

(22)

where γ is a positive constant. For apparent-magnitude
limited samples, γ . 1 [58].

After the minimum period is passed, in the period

interval 2h–2 5, the average probability for observing a
cataclysmic binary on the nonconservative track is
approximately a factor of 1.2 larger than the probability
for a binary on the conservative track. Thus, in spite of
the appreciable difference in mass-transfer rates, the
probabilities of observing cataclysmic binaries in the
two cases only slightly differ, since a nonconservative

p Plog( ) Ṁ2–( )γ

Ṗ/P
-----------------,∝

.h
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system passes through the corresponding interval of
periods more rapidly.

Since the characteristic variability of cataclysmic
binaries depends on their mass-transfer rates, the differ-

ences in  predicted for conservative and nonconser-
vative evolution could be reflected in the distribution of
cataclysmic binaries according to variability type.

Figure 5 presents tracks for cataclysmic binaries
that should undergo dynamically unstable mass trans-
fer in a standard mass-conservative evolutionary
model. The initial masses for the donor and accretor are
equal to 1.0 M( and 0.28 M(, respectively. We have
chosen such an extreme mass ratio purely for the pur-
pose of demonstration.

Track 3 was calculated under the standard assump-
tion of momentum loss only due to GWR and MSW. It
represents a typical case of unstable mass transfer with
unlimited increase of the mass-loss rate of the donor
and rapid approach of the mass-loss time scale to the
dynamical time scale. Strictly speaking, this can only
be considered a qualitative illustration of this type of
evolution, since the calculation did not take into
account the formation of a common envelope in the
system, which should increase the orbital angular-
momentum loss rate even more.

Track 4, calculated assuming a loss of mass and
momentum from the system in accordance with (21), is
similar to tracks for the stable evolution of cataclysmic
binaries, with all their typical features. It differs from
track 2 in the higher mass-loss rate of the donor in the
initial stage of evolution, due to the substantial increase

in the  for large q [see (13)]. This results in a

larger deviation of the donor from equilibrium and,
accordingly, in variations in the upper edge of the

period gap: This edge is at 4 4 for track 4, whereas it is

3 5 for track 2. The minimum period for track 4 is 76m,
which is nearly the same as that for track 1, but some-
what smaller than that for track 2.

7. BOUNDARIES OF THE DOMAIN
OF STABLE MASS TRANSFER

We determined the boundary of the domain of stable
mass transfer in the non-mass-conservative model as
follows. We calculated a series of tracks for a given
donor mass with different q values in steps of 0.1. We
took the boundary to be the maximum q value for
which the accretion rate onto the white dwarf remained
below the Eddington limit in the course of evolution,
i.e., such that, when q was increased by 0.1, the accre-
tion rate exceeded the Eddington limit. Note that, upon
further increase of q, an unlimited increase in the mass-
loss rate of the donor arises in the calculated tracks
when q becomes 0.2–0.3 larger than the limiting value.
Note that the results of this method for determining the

Ṁ2

A∂
t∂

------ 
 

MSW

.h

.h
domain of stable mass transfer are in good agreement
with those based on comparing the derivatives of the
donor and Roche-lobe radii.

The new boundary for the stable mass-transfer
domain (assuming nonconservative evolution) is pre-
sented in Fig. 1. We can see that this domain includes
all observed cataclysmic binaries with estimated com-
ponent masses. Thus, in the transition to a nonconser-
vative model for the evolution of cataclysmic binaries,
the problem of observed binaries being outside the
domain of stable mass transfer disappears.

In the q – M2 diagram, all observed cataclysmic
binaries are concentrated toward q & 1, whereas the
nonconservative model predicts considerably higher q
values. To study the origin for this discrepancy, we cal-
culated a number of tracks for nonconservative systems

with initial donor masses from  = 0.1 M( to 
= 1.2 M( in steps of 0.1 M( and q values such that these
tracks originate in the immediate vicinity of the new
boundary for the domain of stable mass transfer. These
tracks are presented in the q – M2 diagram in Fig. 6. We
used these tracks to derive the isochrones presented in
Fig. 6, corresponding to times of 105, 106, 107, 108, 109,
and 1010 yrs, calculated from the onset of the mass
transfer between the components.7 We chose this
“extreme” group of tracks since these systems spend
the most time between the new and old boundaries for
the stable mass-transfer domain. It is obvious that sys-
tems with smaller initial q, whose tracks originate to
the left of the new boundary, will spend a shorter time
there. Therefore, cataclysmic binaries with initial
parameters close to these “extreme” values have the
highest probability to fall in this area.

According to the locations of the isochrones in Fig. 6,
the tracks can be divided into two distinct groups:

(1) Tracks for systems with massive donors (0.4–
1.2 M(), for which the specifics of evolution before the
period gap are primarily determined by the loss of
momentum from the system via the donor’s MSW.

(2) Tracks with low-mass donors (0.1–0.3 M(), for
which this stage is absent, since their donors are com-
pletely convective from the very beginning.

The tracks for the first group are characterized by a
high (~10–6–10–9 M(/yr) donor mass-loss rate before
the period gap and, consequently, a rapid decrease of
the donor mass and the component mass ratio. This
results in the rapid evolution of the system in the q – M2
diagram, so that the system passes through the section
near the new boundary of the stable mass-transfer
domain over a time not exceeding 107 yrs. This explains
the absence of observed cataclysmic binaries in the vicin-
ity of this boundary. The evolution of tracks in the second

7 Note that the isochrone corresponding to 109 yrs merges with the

108-yr isochrone for tracks with initial donor masses of  ≥
0.4M(, since both times fall in the period gap.

M2
init M2

init

M2
init
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Fig. 6. Cataclysmic binary evolutionary tracks in the “qM2” plane for a nonconservative model (dotted; the number next to the origin
of the track denotes the initial donor mass in M(). The thick curves are isochrones; the numbers near them denote time in years. The
dashed line indicates the boundary for the domain of stable mass transfer according to [35]. The solid line indicates the correspond-
ing boundary derived in the present study. Other notation is the same as in Fig. 1.
group, excluding a short initial stage with a high mass-
transfer rate, is characterized by a low (~10–10 M(/yr)
donor mass-loss rate, which remains nearly constant
over an extended period of time (until the minimum
period is reached). Accordingly, in the course of evolu-
tion, the donor mass and the component mass ratio vary
very slowly. Consequently, systems starting their evo-
lution near the new stable mass-transfer boundary
should, in principle, remain near it for a fairly long
time. The absence of cataclysmic binaries in this area is
due to the fact that the masses of dwarfs in zero-age cat-
aclysmic systems cannot exceed ~0.15 M(—the mini-
mum mass for the helium core of a star leaving the main
sequence. All the observed cataclysmic binaries in Fig. 6
are located in the area delineated by the lines corre-
sponding to the maximum and minimum masses of a
white dwarf—1.4 and 0.15 M(.

8. CONCLUSION

Results of three-dimensional gas dynamical calcu-
lations indicate that, in the course of a cataclysmic
binary’s evolution, a considerable fraction of the matter
lost by the donor should leave the system. At the same
ASTRONOMY REPORTS      Vol. 44      No. 5      2000
time, a number of observed cataclysmic binaries have
combinations of donor and accretor masses that are
“forbidden” under the standard assumptions for varia-
tions of the angular momentum of the system, since the
mass transfer should be unstable in these cases. This
problem is resolved by the model proposed in our
study, which takes into account the loss of mass and
angular momentum from the system, in accordance
with the results of the gas dynamical calculations. We
have shown that the observations can be satisfactorily
explained if we estimate the momentum loss using an
approximation in which the specific angular momen-
tum of the matter flowing out of the system is deter-
mined by the difference between the specific momen-
tum of the matter of the donor at the Lagrangian point
L1 and the specific momentum of the accretor. In this
case, the fraction of matter lost by the donor that leaves
the system can be of the order of 50%. It is important
that, in our evolution calculations, the transition to a
nonconservative model does not result in appreciable
variations of such evolutionary-track parameters as the
boundaries of the period gap or the minimum period of
the system.
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Abstract—We have analyzed for the first time profiles of the SiIII 1892 Å and CIII 1909 Å intercombinational
lines in HST spectra of the stars RY Tau and RU Lup. The widths of these optically thin lines exceeded 400 km/s,
ruling out formation in the stellar chromosphere. Since the intensity of the Si line exceeds that of the C line, it
is unlikely that a large fraction of the observed line flux is formed in a stellar wind. The observed profiles can
be reproduced in the framework of an accretion shock model if the velocity field in the accretion zone is appre-
ciably nonaxisymmetric. In this case, the line profiles should display periodic variations, which can be used to
determine the accretion zone geometry and the topology of the magnetic field near the stellar surface; corre-
sponding formulas are presented. In addition, periodic variations of the 0.3–0.7 keV X-ray flux should be
observed. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The activity of classical T Tauri stars is usually
interpreted as the result of protoplanetary disk accre-
tion onto a magnetized young star. It is thought that
material from the inner regions of the disk is frozen in
the star’s magnetic-field lines and then slides along the
field lines to the stellar surface. When the gas reaches a
velocity of ~300 km/s, it decelerates sharply in a shock
and is heated; the radiation of this gas is responsible for
the observed line and short-wavelength continuum
emission.

In this picture, the profiles and intensities of emis-
sion lines should vary as a result of nonstationary
accretion and/or of displacements of the accretion zone
relative to the observer due to the star’s rotation. Both
regular and quasiperiodic variations of emission-line
parameters are observed in classical T Tauri stars (see,
for example, [1–3]).

Information about the shape and extent of the accre-
tion zone on the surface of a classical T Tauri star would
offer a unique possibility to investigate the topology of
the magnetic fields of young stars and interactions
between the accretion disk and magnetosphere, making
studies of the accretion-zone geometry very important.
The application of Doppler tomography for this pur-
pose using the rich observational data available for
optical lines [4] is very promising but still premature.
The main problem is that this technique is based on
comparisons of observed profiles with those obtained
using corresponding theoretical models. However, all
the optical emission lines in classical T Tauri stars are
optically thick, and it is not known how the intensities
of these lines depend on the parameters of the accreted
gas or the angular coordinates in shock models. The sit-
uation is complicated by the fact that almost every opti-
1063-7729/00/4405- $20.00 © 20323
cal line could be formed not only in the shock, but also
in the stellar wind.

This problem can be substantially simplified if opti-
cally thin lines, which are obviously formed in the
shock, are used to study the accretion-zone geometry.
The SiIII 1892 Å and CIII 1909 Å intercombinational
lines (ICL) observed in the UV spectra of classical
T Tauri stars [5] probably provide one example of such
lines. We will show that even single observations of the
profiles for these lines make it possible to draw some
important conclusions.

2. OBSERVATIONAL DATA

Among the large number of UV spectra of T Tauri
stars in the Hubble Space Telescope Archive Database
(http://archive.stsci.edu/hst/target_descriptions.html),
only two spectra clearly display SiIII 1892 Å and CIII
1909 Å intercombinational lines. These are the spectra of
RU Lup (z10t0109m) and RY Tau (zle70108t) obtained
with the GHRS spectrograph on August 24, 1992, and
December 31, 1993, respectively. Each spectrum has a
width of 40 Å, a resolution of .13 km/s, and consists of
five consecutive exposures with a total duration of .1500 s.
The spectra were processed using the IRAF package
v2.11 (http://iraf.noao.edu/iraf) and STSDAS/TABLES
code v2.0.2 (http://ra.stsci.edu/STSDAS.html), follow-
ing the standard technique described in Section 36 of
the “HST Data Handbook” (http://www.stsci.edu/do-
cuments/data_handbook.html). We adopted the calibra-
tion files recommended in the Archive Database for each
star. Figure 1a presents the spectrum of RU Lup averaged
over all exposures, and Fig. 1b shows the same spectrum
smoothed with a five-point sliding average. Figure 2 pre-
sents the same information for RY Tau.
000 MAIK “Nauka/Interperiodica”
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Fig. 1. Spectrum of RU Lup obtained with the Hubble Space Telescope. See the text for more details.
For RU Lup, only the SiIII 1892.03 Å line can be
identified confidently. One characteristic feature of this
line is the presence of extended wings, with the short-
wavelength wing almost twice as broad as the long-
wavelength wing: ∆V . 400 and 250 km/s, respectively.
We suggest that the profile asymmetry is due to the
presence of blending emission lines at wavelengths
1890–1891 Å.

Among spectral lines of the most abundant ele-
ments with a low excitation potential Ei < 4 eV, we
believe that only the FeII 1890.24 Å line (Fig. 1b)—

which belongs to the b2P3/2–w2  multiplet, with
Ei = 3.19 eV (see the Atomic Line List v2.01 database
(http://www.pa.uky.edu/peter/atomic))—is suitable for

this role. The FeII 1897.55 Å (2P3/2– ) line, which
can be identified with a corresponding emission feature
in the spectrum of RU Lup (Fig. 1b), belongs to this
same multiplet. Using the values of Aij for FeII [6], we
find that, if the upper levels of the multiplet are popu-
lated in proportion to their statistical weights and the
lines are optically thin, the 1890.24 Å line should be
nearly an order of magnitude more intense than the

D5/2
0

D2 0
3/2
1897.55 Å line; however, this is not observed. Note that
emission around 1897.5 Å is also seen in the spectrum
of RY Tau (Fig. 2); however, the 1890.24 Å line is not
observed there. Nonetheless, we cannot exclude the
possibility that the FeII line contributes to the short-
wavelength wing of the SiIII] 1892 Å line in RU Lup.
This could be tested by searching for the 1939.70 Å line

(2P3/2–  transition), which, under the same condi-
tions, should be roughly a factor of five more intense
than the 1897.55 Å line. Unfortunately, the 1892 Å line
does not fall in the range of available spectrograms.

Is it possible to relate the SiIII] 1892 Å line to matter
outflow from RU Lup? The profiles of the OI 6300 and
5577 Å and the SII 4069 and 6731 Å forbidden lines in the
spectrum of this star, indeed, have broad short-wavelength
wings extending to .300 km/s [7]. However, the wings of
these lines from the red side the extension are a factor of
five smaller than in the case of the SiIII] 1892 Å line. In
addition, in the spectra of Herbig–Haro objects—i.e., in
regions of stellar wind, where the lines of highly ionized
ions are formed—the CIII] 1909 Å line is an order of mag-
nitude more intense than the SiIII 1892 Å line (see [8] and
references therein), in contrast to the situation observed in

D2 0
3/2
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Fig. 2. Spectrum of RY Tau obtained with the Hubble Space Telescope. See the text for more details.
RU Lup. We, therefore, conclude that the bulk of the
SiIII] 1892 Å line emission is not formed in the stellar
wind. On the other hand, the large width of the line
rules out the possibility that it is formed in a region sim-
ilar to the solar chromosphere.

However, these arguments do not exclude the pos-
sibility that roughly 5% of the observed flux in the
SiIII] 1892 Å line forms in material in the stellar wind,
which primarily distorts the shape of the short-wave-
length wing. In this connection, note the narrow peak dis-
placed –280 km/s from the expected position of the
CIII] 1909 Å line. It is tempting to interpret this peak
as a line associated with the stellar wind: The star of RU
Lup is probably viewed nearly pole-on [9], so that a line
formed in a jet perpendicular to the disk should be dis-
placed toward the blue. The only problem is that a fea-
ture with similar shape and intensity can be seen in the
z10t0107m spectrogram, which was obtained at
1622–1657 Å 25 minutes before the spectrogram under
consideration, and this feature falls on the same photo-
diodes of the receiving matrix (342–345). Since no
other spectra of the star display any feature of this kind,
it is reasonable to assume that both features resulted
Y REPORTS      Vol. 44      No. 5      2000
from a temporary defect in the detector. At the same
time, these photodiodes were not marked defective in
service files for these spectra. Therefore, the nature of
the emission featire near 1907 Å remains unclear.

The CIII] 1908.73 Å line can be identified with con-
fidence, but due to its low intensity, we can only say
that the extent of its long-wavelength wing is roughly
the same as that of the SiII] 1892 Å line, while its flux
is about an order of magnitude lower. This last fact
implies that the density of the accreted gas is much
larger than derived in [10] on the basis of IUE spectra
with resolution 6 Å and is closer to 3 × 1012 cm–3 [9].
The relatively small signal-to-noise ratio of the RU Lup
spectrum also prevents accurate determination of the
structure of the SiIII] 1892 Å line around its maximum;
i.e., we do not know if it really displays two peaks or if
this is the effect of noise or the contribution of weak
lines of other elements.

In connection with the question of faint lines, based
on the above criteria, we suggest that the remaining
emission features in Fig. 1 can be identified as fol-

lows: FeII 1895.69 Å (a2H11/2–w2 ); SI] 1900.29 ÅG9/2
0
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3p4 3P2–3p34s5 ; note that the second component of

this doublet 3P1–5  with λ = 1914.70 Å should have
half the intensity, consistent with the observations); and

FeII] 1901.77 Å (a6D9/2–z8 ). We especially note
the possible presence of the FeIII 1914.06 Å line,

which corresponds to the 7S3–  transition of the
3d54s configuration: The upper level of this transi-
tion could be excited due to absorption of photons
from the short-wavelength wing (more exactly, with
∆V = –265 km/s) of the hydrogen Lα line. Judging
from the presence of strong H2 lines in the UV spec-
trum of RU Lup, which originate due to fluorescent
excitation by the Lα line [11], this is very likely.

In the studied spectrum of RY Tau, both intercombi-
national lines (SiIII 1892 Å and CIII 1909 Å) can be
identified with confidence (Fig. 2; see also Fig. 8 below).
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Fig. 3. (a) Shape of “quasi-dipole” field lines for n = 1 (inner
curve), 2, 4, and ∞ (straight lines); accretion zone geometry
for (b) Model 2 and (c) Model 3. See the text for more
details.
We can see that the lines have roughly the same intensity
and total widths exceeding 350 km/s, which, as in the
case of RU Lup, makes their formation in the stellar
wind or the chromosphere unlikely. However, the qual-
ity of the spectrum makes it impossible to judge about
the presence of other lines or the similarity of the pro-
file shapes for the two ICLs.

3. METHOD FOR CALCULATING ICL PROFILES 
IN A SHOCK WAVE

If we assume, based on the above discussion, that
the ICLs are formed neither in the stellar wind nor in
the chromosphere, it makes sense to check whether
their profiles can be understood as a consequence of
accretion, given that accretion shock models can prob-
ably adequately reproduce both the absolute and rela-
tive intensities of ICLs in the UV spectra of other
T Tauri stars [9]. In this case, the ICL radiation by the
Si++ and C++ ions should form essentially completely at
the shock front, in the region where the gas is highly
ionized by X-rays from behind the shock front. (The
basis for this and all following statements concerning
the shock structure is given in [12].) It is essential that
these regions be small in extent (∆r ! R∗ ) and that both
the density and velocity of the infalling gas be virtually
constant (N0 and .V0, respectively). Therefore, to
model the ICL profiles, we need specify only the veloc-
ity field as a function of the coordinates of points on the
stellar surface. The region itself can be taken to be
plane-parallel.

Let us take an arbitrary point A at the surface of the
accretion zone and calculate the flux dFλ reaching the
Earth from a region around this point with area dS in the
wavelength interval from λ to λ + dλ. If Iλ(γ) is the
intensity of optically thin ICL radiation in the direction

making an angle γ with the normal, then Iλ(γ) = cosγ,

where  is the intensity of the radiation in the normal
direction. Therefore,

where d is the distance to the star.
Let us introduce spherical coordinates with their ori-

gin at the center of the star and the polar axis coinciding
with the star’s rotation axis. The position of a point A
will be described by the polar angle θ and the azimuth

angle ϕ, with dS = sinθdθdϕ, where R∗  is the radius
of the star. Then, the total flux from the accretion zone
will be

(1)

Due to the comparatively low temperature of the gas
in the line formation region (T < 2 × 104 K), the local
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Fig. 4. ICL profiles for a coaxial quasi-dipole with n = 2 (Model 1). The left row of profiles corresponds to a zone with θ1 = 10°,
θ2 = 30° for inclination angles of the rotation axis to the line of sight (from top to bottom) i = 20°, 50°, and 70°; the middle row
corresponds to a zone with θ1 = 30°, θ2 = 50° and the right row to a zone with θ1 = 50°, θ2 = 70° for the same inclination angles.
width of the ICL, which is determined by thermal
motions, should not exceed 5 km/s, which is much lower
than the velocity of the infalling gas, V0 ~ 300 km/s.
Therefore, the local line profile can be represented to
good accuracy as a δ function. In this approximation,
each point of the accretion zone emits towards the
observer monochromatic radiation at the wavelength
λ = λ0(1 + Vrad/c), where λ0 is the laboratory wave-
length of the ICL and Vrad(θ, ϕ) is the projection of the
velocity of the infalling gas onto the line of sight at this
point.

Let us assume that the velocity V0 and the gas den-
sity N0 are the same at all points of the accretion zone
(the accretion is uniform). In this case, the observed
flux inside a finite wavelength interval λ–λ + ∆λ (or the
corresponding velocity interval V–V + ∆V) is propor-
tional to the area of the accretion zone in which the
radiation in this wavelength interval originates. In order
to determine the ICL profile, we adopt the following
procedure:

(1) Specify the velocity field within the accretion
zone and the zone geometry.
ASTRONOMY REPORTS      Vol. 44      No. 5      2000
(2) Divide the largest possible interval for variations
in Vrad in the accretion zone (Vmin–Vmax) into a sufficient
number of equal subintervals.

(3) Divide the zone of interest into cells of equal size
∆θ × ∆ϕ and calculate the value of Vrad in each of them
(see formulae (A.6) and (A.7) in the Appendix).

(4) For each interval Vi−Vi + 1, sum the values for
sinθ for cells whose radial velocity Vrad falls in the
given interval and which are situated in the hemisphere
facing the observer (see inequality (A.5) in the Appen-
dix).

Then, by dividing the resulting sums by their max-
ima, we obtain ICL profiles normalized to unity as a
function of radial velocity.

4. RESULTS FOR ICL PROFILE MODELING

Let us consider several simple accretion zone geom-
etries and the corresponding velocity fields. For T Tauri
stars, the velocity of the infalling gas cannot apprecia-
bly exceed 400 km/s, whereas the ICL in the spectrum
of RU Lup is considerably broader. This implies that
the accretion occurs in such an extended area that the
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Fig. 5. Same as Fig. 4 for a quasi-dipole with n = 4.
effect of variation of the angle between the line of sight
and the streamlines (due to the sphericity of the star)
plays a substantial role. However, in this case, the
accretion flux cannot be in the shape of a quasi-cylin-
drical gas stream occupying ~10% of the stellar sur-
face, as suggested in [13].

In the accretion shock, the SiIII] 1892 Å and CIII]
1909 Å lines are formed essentially at the stellar sur-
face so that these lines can only be seen from points in
the accretion zone in the hemisphere facing the
observer. It follows that, if the gas falls inward along
the radius of the star, the radial velocity of visible emit-
ting points should be positive, given that the lines are
optically thin and have very narrow local profiles. Thus,
the presence of extended short-wavelength wings in the
observed ICLs implies that the velocity field of the
infalling gas is appreciably nonradial.

Let us suppose that the gas infall occurs along the
star’s magnetic-field lines, whose shape near the stellar
surface bears at least a qualitative resemblance to a
dipole field. Let the field lines be described in polar coor-
dinates r, Θ, Φ by the expression r = R∗ (sinΘ/sinΘ∗ )n,
where Θ∗  is the polar angle at which a force line
crosses the stellar surface and n is a parameter of the
problem. When n = 2, we obtain a purely dipolar field,
while for n  ∞, the force lines become straight lines
(Fig. 3a).

Let us first consider the case when the “quasi-
dipole” axis coincides with the rotation axis (Model 1).
Due to the axial symmetry, the accretion zone should
have the shape of two belts θ1 ≤ θ ≤ θ2 and π − θ2 ≤ θ ≤
π − θ1, with 0 ≤ ϕ < 2π, where θ, ϕ are polar coordinates
related to the rotation axis of the star. It follows from
the calculations of [14] that the field of the star is
strongly distorted in the case of disk accretion onto a
coaxial dipole; however, we are interested only in the
field in the immediate vicinity of the stellar surface,
where the distortions are not so large. In fact, we chose
the “quasi-dipole” approximation specifically to take
these distortions into account; for the sake of simplic-
ity, we will assume that both the velocity and density of
the accreted plasma are equal at all points in the accre-
tion belts. Another specific feature stemming from the
calculations of [14] is that the field and velocity vector
of the infalling material acquire a toroidal component,
whose value reaches ~1/3 of the meridional compo-
nent. In order to qualitatively take this into account, we
will assume the presence of a toroidal component of the
ASTRONOMY REPORTS      Vol. 44      No. 5      2000
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Fig. 6. Variation of the ICL profile shape in Model 2 as a function of rotation period phase, which is indicated for each curve. The
observed profile of the SiIII] 1892 Å line from the spectrum of RU Lup is presented for phase  ψ = 0.935. See the text for more details.
infall velocity that everywhere constitutes a constant
fraction ξ of the meridional component V0.

In the Appendix, we outline a procedure for deriving
the radial velocity in the quasi-dipole case. In the situ-
ation considered here, we calculated Vrad using (A.6)
and (A.7) for θm ≡ θ, ϕm ≡ ϕ, and α = ψ = 0. Figure 4
presents the ICL profiles calculated using the technique
described in the previous section, for the dipole-field
geometry under consideration (n = 2). Inspection of the
top-to-bottom sequence of plots indicates that the ICL
profile depends on the location of the accretion belts on
the stellar surface (θ1, θ2 = 10°, 30°; 30°, 50°; 50°, 70°);
the left-to-right sequence of plots shows the depen-
dence of the profile on the angle i between the stellar
rotation axis and the line of sight (i = 20°; 50°; 80°).
The solid curves show profiles calculated without tak-
ing into account the toroidal component of the velocity
(ξ = 0), and the dashed curves show profiles for the case
ξ = 0.25. Figure 5 presents the analogous dependences
of the ICL profiles on the parameters of the problem for
n = 4. We performed these calculations assuming only
one accretion belt is visible (the one closer to the
ASTRONOMY REPORTS      Vol. 44      No. 5      2000
observer), since the other belt is obscured by the disk.
The discontinuities of the derivative visible in the cal-
culated profiles are due to the assumption that the local
ICL profile has a δ-function shape.

We can see that the shape of the calculated profiles
differs qualitatively from the ICL profiles in the spectra
of RU Lup and RY Tau. It is obvious that taking into
account the dependence of V0 and ξ on θ will not enable
us to substantially improve the agreement between the
theory and observations. In other words, the origin for
the disagreement must be the initial hypothesis that the
quasi-dipole and rotation axes of the star are coinci-
dent.

We now assume that the magnetic axis makes an
angle α with the rotation axis and that the field near the
stellar surface resembles a quasi-dipole. Let us first
consider the situation when α is not so large that the
difference between the parameters of the infalling gas
at different points of the accretion zone must be taken
into account. In this case, it is reasonable to suppose
that the accretion zone is made up of two belts perpen-
dicular to the quasi-dipole axis (Model 2; Fig. 3b). In a
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Fig. 7. Same as Fig. 6 for Model 3 and the set of free parameters indicated in the text. The observed SiIII] 1892 Å line profile from
the spectrum of RU Lup is shown for phase ψ = 0.447.
coordinate frame fixed to the quasi-dipole axis, the
accretion region is determined by the conditions θm1 ≤
θm ≤ θm2 and π – θm2 ≤ θm ≤ π – θm1, with 0 ≤ ϕm < 2π.
As before, we will take into account radiation only
from a single accretion belt (the one closer to the
observer).

The orientation of the accretion belt relative to the
observer will periodically vary due to the movement of
the magnetic pole on the surface of the star during its
rotation. For this reason, the ICL profiles should
undergo periodic variations, unlike the situation when
α = 0. Mathematically, this implies that the expression
for the radial velocity Vrad (formulas (A.6) and (A.7) in
the Appendix) does not depend only on the angle α, but
also on the rotation phase ψ. We calculated the varia-
tions of the ICL profiles for the given geometry during
the rotation of the star for various values of i, α, θm1,
θm2, ξ, and n. For α ≤ 10°, we were not able to obtain
reasonable consistency between the calculated profiles
and the ICL profiles in the observed spectrum of RY Tau.
For RU Lup, we were able to obtain a better agreement
between the calculated profiles and the SiIII] 1892 Å
line profile; however, the corresponding model cannot
provide a sufficiently extended short-wavelength wing.
Figure 6 presents the expected variations of the ICL
profile as a function of the phase of the axial rotation
for i = 18°, α = 10°, θm1 = 58°, θm2 = 71°, ξ = 0.15, and
n = 4. For phase ψ = 0.935, we have plotted the
observed profile assuming V0 = 400 km/s. Note that, in
both Model 1 and Model 2, the velocity field is sym-
metrical about the magnetic axis.

What will happen if the angle between the magnetic
and rotation axes of the star becomes fairly large, say,
appreciably greater than 10°? We can see from Fig. 3b
that, in this case, points with the same θm but different
ϕm will be located at considerably different distances
from the accretion disk. In this situation, it is very
unlikely that the accretion zone is made up of belts
symmetrically placed relative to the magnetic axis,
inside of which the velocity and density of the infalling
gas are uniform. There do not exist any reliable calcu-
lations for the magnetic-field topology for the case of
disk accretion onto an inclined rotator that we could use
to calculate the ICL profiles for this case. Remaining in
ASTRONOMY REPORTS      Vol. 44      No. 5      2000
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Fig. 8. Same as Fig. 7 for another set of free parameters. The observed SiIII] 1892 Å line profile from the spectrum of RY Tau is
shown for phase ψ = 0.675. See the text for more details.
the framework of the uniform-accretion hypothesis, we
can make the model more realistic by assuming that the
field topology near the stellar surface does not differ too
much from the field of an inclined quasi-dipole with a
toroidal component (Model 2) but that the accretion
zones are symmetrically placed relative to the rotation
axis (Fig. 3c). This Model 3 represents a combination
of the two preceding models; however, in contrast to
Models 1 and 2, its appropriateness for the situation at
hand is far from obvious.

Surprisingly, it was this model that was able to
reproduce the observed SiIII] 1892 Å line profiles. For
RU Lup, we were able to reach a good agreement for
i = 12°, α = 18°, θ1 = 56°, θ2 = 72°, ξ = 0.15, V0 =
400 km/s, and n = 4. Figure 7 presents the observed
profile for phase ψ = 0.447. Figure 8 presents a series
of calculated profiles for i = 36°, α = 18°, θ1 = 60°,
θ2 = 80°, ξ = 0.25, V0 = 280 km/s, and n = 4.25. We can
see that, for ψ = 0.675, the theoretical profile approxi-
mates the SiIII] 1892 Å line profile in the spectrum of
RY Tau with reasonable accuracy, provided the two-
humped profile shape is real.
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We stress that our ability to reproduce the observed
profiles using Model 3 does not imply that this model,
indeed, provides an adequate description of the physi-
cal situation. The consistency obtained only demon-
strates the fundamental possibility of interpreting
observed ICL profiles using shock models in which
the velocity field in the accretion zone is apprecially
nonaxisymmetric.

5. CONCLUSIONS
Our analysis of the SiIII] 1892 Å and CIII] 1909 Å

line profiles in the spectra of RY Tau and RU Lup indi-
cates that these lines cannot form in regions similar to
the solar chromosphere. It is also unlikely that a large
fraction of the line flux is formed in shock waves due to
interactions between the stellar wind and the surround-
ing medium (i.e., in Herbig–Haro objects).

If we assume that the SiIII] 1892 Å and CIII] 1909 Å
lines are formed in an accretion shock, the observed
profile shapes can be used to impose some restrictions
on the character of accretion in low-mass young stars:
(1) The velocity field of the infalling gas is substantially
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nonradial, (2) the accretion zone must be appreciably
extended along the stellar disk, (i.e., accretion in the
form of an isolated quasi-cylindrical stream is excluded),
and (3) the structure of the magnetic field directing the
infalling gas must be considerably nonaxisymmetric.

This last circumstance suggests there should be
periodic variations of the profiles of line formed in the
shock, due to variations in the orientation of the accre-
tion zone relative to the observer. For the same reason,
the 0.3–0.7 keV X-ray flux from T Tauri stars should
also vary periodically. In this case, nonstationary accre-
tion will distort the periodicity of the X-ray flux varia-
tions much less than it will the line-profile variations,
since the X-ray flux depends only weakly on the den-
sity of the infalling gas [15].

Since only one spectrum is available for each star
and it is not of very high quality, it does not make sense
to try to reconstruct the velocity field and geometry of
the accretion zone. We wished only to demonstrate that
the observed ICL profiles could be reproduced in the
framework of an accretion shock theory, which is not at
all obvious a priori. As a result, it is now clear that it is
a reasonable goal to investigate ICL profile variations
in the UV spectra of T Tauri stars, then apply Doppler
tomography to reconstruct the accretion zone geometry
and velocity field. In the theoretical model, expression
(1) should be used for the dependence of the intensity
on the angular coordinates, together with the relation
between the intensity and N0 and V0 for the infalling gas
from [9]. Naturally, the local ICL profile should be
described as a Gaussian rather than a δ function, whose
width is determined by the thermal motion of gas with
temperature .1.5 × 104 K.
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Fig. 9. A scheme clarifying the derivation of formulas
(A.1)–(A.7). See text for more detail.
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APPENDIX

Figure 9 presents a star whose center is marked by
the O; the line OE indicates the direction towards the
Earth. Let us introduce a rectangular (right-handed)
coordinate frame with its origin at O, its Z axis coincid-
ing with the rotation axis of the star and its X axis in the
plane determined by the lines OE and OZ. We will
name EOP the inclination angle i. Let us relate the
spherical coordinate system to this rectangular system
in the standard way, so that, for some point A on the
stellar surface, the arc PA will serve as the polar angle
θ and the dihedral angle between the arcs EP and PA
will be the azimuthal angle ϕ. The θ, ϕ coordinates of
the point A obviously do not depend on time.

If the magnetic quasi-dipole axis forms an angle α > 0
with the rotation axis of the star, the magnetic pole M
will move on the surface of the star. In so doing, its
polar angle θM = α does not vary, unlike the azimuthal
coordinate ϕM ≡ ψ of the dihedral angle between the
arcs EP and PM (Fig. 9). Let us introduce another right-
sided rectangular coordinate frame with its origin at O,
its Zm axis directed along the quasi-dipole axis, and its
Xm axis directed as shown in the diagram (Fig. 9), so
that ∠ MOT = π/2. As in the previous case, let us relate
the spherical coordinate system with this rectangular
system. As we can see from Fig. 9, the large circular arc
MA is the polar angle θm of the point A in the new coor-
dinate system, while the dihedral angle between arcs
MA and MT is its azimuthal angle ϕm . The coordinates
θm, ϕm vary periodically due to the rotation of the star
about its axis.

Let us derive relations between the coordinates θ, ϕ
and θm, ϕm of the point A. Applying spherical trigonom-
etry to the triangles PMA, MTA, and PTA [16], we
obtain the relations

(A.1)

(A.2)

and also

θcos α θm α θm ϕm,cossinsin–coscos=

θmcos α θ α θ ϕ ψ–( ),cossinsin+coscos=

θ ϕ ψ–( )sinsin θm ϕmsinsin=

α θ ϕ ψ–( )cossincos θm ϕm α θ.cossin+cossin=


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After corresponding transformations, we obtain

(A.3)

where f0 = sinαcosθm + cosαsinθmcosϕm, and

(A.4)

Relations (A.1) and (A.3) make it possible to make
a unique transformation from coordinates in the rotat-
ing system to coordinates in the fixed system, while for-
mulas (A.2) and (A.4) provide the inverse transforma-
tion.

The observer will see the point A if the angle
between the vectors OE and OA does not exceed π/2.
Since these unit vectors have coordinates (sini; 0; cosi)
and (sinθcosϕ; sinθsinϕ; cosθ), respectively, in the
rectangular system OXYZ the condition that point A be
visible can be written

(A.5)

Let the shape of the magnetic field lines of the star
r = r(Θ) be described in the “magnetic” coordinate sys-
tem by the equation r = R(sinΘm/sinθm)n, where R is the
radius of the star and θm is the polar angle of the point
A, where a line of force crosses the stellar surface. This
field possesses only a meridional component. Let eM be
a unit vector in the meridional plane, tangent to the
force line at the point A and directed towards the star.
It is easy to show that the projections of this vector
onto the coordinate axes of the OXmYmZm system are
equal to w1 cosϕm, w1 sinϕm, and w2, where w1 =
−(n + 1)sin2θm/w0, w2 = 2(sin2θm – ncos2θm)/w0, and
w0 = 2[n2cos2θm + sin2θm]1/2.

If gas moves near the surface of the star along mag-
netic field lines, with the velocity of infall V0 equal at
all points of the accretion zone, then V = V0eM. At an

arbitrary point A, the component of the velocity 
along the line of sight is EO · V. Expressing the coordi-
nates of the vector EO in the rotating frame using rela-
tions (A.2) and (A.4), we obtain

(A.6)

where f1 = sinα cosi – sin icosα cosψ and f2 = sin isinψ.

θ ϕsinsin θm ϕm ψ f 0 ψsin+cossinsin=

θ ϕcossin f 0 ψ θm ϕm ψ,sinsinsin–cos=



θm ϕmsinsin θ ϕ ψ–( )sinsin=

θm ϕmcossin θ ϕ ψ–( ) α α θ.cossin–coscossin=



EOA∠( )cos i θ i θ ϕ 0.≥cossinsin+coscos=

Vrad
M

Vrad
M

V0
---------- w1 f 1 ϕm f 2 ϕmsin+cos( )=

– w2 i α α i ψcossinsin+coscos( ),
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Assume now that, in addition to the meridional
“quasi-dipole” component, the stellar magnetic field
also possesses a toroidal ϕm component. In this case,
the total velocity of the infalling gas can be represented
as a sum of meridional V0eM and toroidal χV0eT compo-
nents, where eT is the unit ϕm vector for the point A and
ξ is the ratio of the amplitudes of the toroidal and
meridional velocities. The projections of the vector eT
onto the axes of the rotating coordinate system are
−sinϕm, cosϕm, and 0. As above, we find that the com-
ponent of the radial velocity relative to the gas motion
in the toroidal direction and the total radial velocity are
equal to

(A.7)
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Abstract—The color indices of the Sun in the uvby system are calculated using the spectral energy distribution
of Lockwood, Tug, and White. This allows errors in the absolute calibration to be excluded from the calculated
color indices. The normal position of the Sun on the (v – b)–(b – y) and (v – y)–(b – y) color–color diagrams
for early G stars testifies to the absence of any significant peculiarities in the Sun compared to other stars of
similar spectral type. These diagrams can provide a useful tool in searches for candidate solar analogues among
faint stars. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The uvby photometric system [1] is very promising
for searches for candidate solar analogues [2]. An
extensive uvby catalog containing a large number of
stars with spectral types close to that of the Sun has
been compiled [3]. This system was originally created
for A–F stars, and proved to be a useful tool for studies
of stars of these spectral types. The b – y color index is
similar to the B – V index of the UBV system (b – y is a
temperature parameter), m1 = (v – b) – (b – y) reflects
the blanketing effect near λ ~ 4100 Å, and Ò1 = (u – v) –
(v – b) is a measure of the Balmer discontinuity. Later,
this system was extended to early G stars (G0–G5).

We are interested in the question of which indices or
color indices in the uvby system could be useful in
searches for candidate solar analogues. The Ò1 index is
of little interest for this purpose, since it displays no corre-
lation with b – y [4] or other color indices for early G stars.
A comparison of the m1–(b – y) and (v – y)–(b – y) color–
color diagrams (Figs. 1, 2) for F0–G5 main-sequence
stars based on the data of [3] indicates that using v – b
instead of m1 affects only the behavior of early F stars.
For late F and early G stars, v – b and m1 show identical
b – y dependences. However, since the accuracy of a
color index is higher than that of a quantity constructed
from the difference of two color indices, we prefer to
use v – b. The v – y color index for early G stars also
displays a good dependence on b – y (Fig. 3). These dia-
grams can be used in searches for candidate solar ana-
logues once we determine the color indices for the Sun
in this photometric system.

There are a number of indirect determinations of
b – y for the Sun in the literature. Some of these are
based on the relationship between b – y and B – V;
because of uncertainties in UBV for Sun, these have a
relatively large scatter, from 0.395m to 0.425m [5–9].
Other indirect determinations are based on the depen-
dence of b – y on Teff [10–12]; these studies yield b – y =
0.407m, 0.402m, and 0.404m, respectively. We have cal-
culated the color indices of the Sun in the uvby system,
1063-7729/00/4405- $20.00 © 20334
based on the observed solar spectral energy distribution
and the response curves of this photometric system.

2. SYNTHETIC COLOR INDICES

The color indices of a star can be calculated in any
photometric system if a reliable spectral energy distri-
bution (SED) and the response curves of the system are
available. A formula modeling photometric observa-
tions in the system (either in the absence of or taking
into account atmospheric extinction) is used:

(1)
mi m j–

=  2.5 E* λ( )ϕ i λ( ) λ E* λ( )ϕ j λ( ) λd∫⁄d∫( ) Cij.+log–

0.24
m1

0.22

0.20

0.18

0.16

0.14

0.12

0.10
0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

b – y

Fig. 1. (b – y)–m1 color–color diagram for F0–G5 main-
sequence stars. Crosses: F0–F4 stars; pluses: F5–F9 stars;
triangles: G0–G5 stars.
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Here, E∗ (λ) is the SED of the star in the interval cov-
ered by the system response curve, ϕi(λ) and ϕj(λ) are
the response curves of the photometric system in the i
and j filters, and Cij = (mi – mj)H – (mi – mj)B is a con-
stant defining the zero point of the calculated color
indices. This constant is determined using a star with a
known SED, based on the difference between the
observed color index and the index for the photometric
system considered calculated using the known SED
and the first term of (1).

We estimated the accuracy of our calculated color
indices by comparing them with the observed indices
for stars in three photometric systems: uvby [3], WBVR
[13], and the Vilnius system [14]. For this purpose, we
selected groups of single, nonvariable, main-sequence
stars of spectral types F0–G5 from the catalog [15] for
which observations in these systems are available. The
three lists of stars substantially overlap. The accuracy
of the SEDs of these stars is 1.5–2% from 4000 to 6000 Å,
falling to 2–3% at the violet and red edges. The
response curves were taken from [16] (uvby), [13]
(WBVR), and [17] (Vilnius).

We fixed the zero point using two sources of data on
the energy distribution in the integrated spectrum of
Vega [15, 18]. The absolute calibration at continuum
points free of absorption was identical in both cases,
but blanketing due to the Balmer lines was taken into
account differently. The resulting differences of the
constants defining the zero point in the three photometric
systems was 0.02m. The constants determined using the
Vega data from [15] yield color indices that are in better

0.65

v – b

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
b – y

0.60

0.55

0.50

0.45

0.40

0.35

0.30

Fig. 2. (b – y)–(v – b) color–color diagram for F0–G5 main-
sequence stars. Crosses: F0–F4 stars; pluses: F5–F9 stars;
triangles: G0–G5 stars.
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agreement with the observed indices (within 1–1.5%) in
all three systems. Using the data of [18] to fix the zero
point worsens this agreement. We conclude that the
SED for Vega presented in [15] better accounts for
blanketing, which plays an important role when calcu-
lating color indices, and precisely these data should be
used to establish the zero point.

The table lists a comparison of the observed and cal-
culated color indices in the three photometric systems;
n is the number of stars used, ∆ is the mean difference
between the observed and calculated color indices, and

σ = (∆mean – ∆i)2/n. This table shows that the accu-
racy of the calculated color indices can be comparable
to the accuracy of the observed indices if (1) the
response curves for the photometric systems are well
known, (2) the SEDs of the stars are known to no worse
than 2%, and (3) we have reliable data on the SED of the
star determining the zero point of the calculated color
indices. The good agreement between the observed and
calculated color indices of the stars in the three photo-
metric systems confirms the trustworthiness of the
response curves used. All these considerations are also
relevant for calculation of the solar color indices.

3. COLOR INDICES OF THE SUN 
IN THE uvby SYSTEM

The solar SED can be derived from comparisons
with standard sources, which are calibrated against a
primary standard—a model blackbody. The procedure
for calibrating data for the Sun is rather laborous, and,

Σ

1.15
v – y

0.34 0.36 0.38 0.40 0.42 0.44 0.46
b – y

1.10

1.05

1.00

0.95

0.90

0.85

0.80

HD53705

HD44594

HD1835
HD76151

51Peg
16CygB

16CygA

Fig. 3. (b – y)–(v – y) color–color diagram for G0–G5 main-
sequence stars. Crosses: G0–G5 stars, open circle: the Sun;
triangles: stars from the list of solar analogues [12].
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in many respects, the quality of the result depends on
how reliably the energy scale has been transferred from
the primary standard to the Sun. When calibrating data
for the Sun, different authors have used different stan-
dard sources calibrated in different laboratories, and no
mutual comparison has been performed. There are consid-
erable discrepancies among the best known determina-
tions of the solar SED [19–22], which increase in the ultra-
violet (to 10%) and red (up to 6%), possibly due to the
effect noted above. We decided to use the data of Lock-
wood et al. [21], since these were the only data for
which it was possible to eliminate errors associated
with the absolute calibration. Lockwood et al. [21] cal-
ibrated the solar spectrum against Vega, using the abso-
lute energy distribution they had obtained earlier [23].
The advantage of these data is that by fixing the zero-
point using data for Vega presented in the same energy
scale as the Sun, we can exclude the error introduced by
the absolute calibration, since these errors will appear
in the two terms of formula (1) with opposite signs.

Comparison of calculated and observed color indices in three
photometric systems

UPXYZVS (n = 35)

∆(U–P)mean 0.015

σ{∆(U–P)} 0.031

∆(P–X)mean 0.003

σ{∆(P–X)} 0.030

∆(X–Y)mean 0.000

σ{∆(X–Y)} 0.018

∆(Y–Z)mean 0.011

σ{∆(Y–Z)} 0.018

∆(Z–V)mean –0.015

σ{∆(Z–V)} 0.041

uvby (n = 47)

∆(b–y)mean –0.006

σ{∆(b–y)} 0.013

∆(v–b)mean 0.001

σ{∆(v–b)} 0.012

∆m1mean 0.007

σ{∆m1} 0.019

WBVR (n = 64)

∆(W–B)mean 0.014

σ{∆(W–B)} 0.034

∆(B–V)mean –0.009

σ{∆(B–V)} 0.015
Below, we present the calculated solar color indices
based on the data of [21] and the response curves [16].

u – v = 0.994,

b – y = 0.404,

m1 = 0.217,

c1 = 0.373,

v – b = 0.621,

v – y = 1.025.

The constants were obtained for Vega using the SED
from [15], reduced to the absolute calibration of Tug et al.
[23]. The calculated value of b – y is consistent with
that derived from the dependence of Teff on b – y from
[12], with Teff for the Sun taken to be 5777 K. If we can
be confident of the reliability of the Teff – (b – y) rela-
tionship derived in [12], this suggests that the relative
behavior for the solar SED obtained by Lockwood et al.
[21] in the spectral region we have considered is close to
the true distribution. However, the error of b – y given in
[12] (0.005m) seems to be underestimated, and the good
coincidence may be accidental.

The Sun’s calculated color indices are shown in the
color–color diagrams in Figs. 3 and 4, constructed for
G-star data together with data for candidate solar ana-
logues approved by the working group [2]. There is
only one star near the Sun, HD 44594 (BS 2290),
whose effective temperature is equal to the solar value
[12]. This suggests that the solar color indices we have
obtained are quite trustworthy. The Sun lies on both
sequences in a natural way, testifying to the absence of
any significant peculiarities in the Sun compared to
other early G stars.

The anomalous position of the solar color indices on
the (U – B)–(B – V) color–color diagram is most likely
associated with errors in the observed solar color indi-
ces; these were derived from direct comparisons of the
Sun and other stars, require a large number of reduc-
tions, and depend on the choice of comparison stars. In
the WBVR system [24], we plotted solar indices calcu-
lated from the mean energy distribution of [25] on a
color–color diagram constructed using the observa-
tional data for other stars. The error of the zero-point
shifts the Sun in one or the other direction in both coor-
dinates. We discussed this problem in [26]. We calcu-
lated new solar color indices in the WBVR system using
the procedure described above. We obtained the values
W – B = –0.025m and B – V = 0.656m, which shift the
former position of the Sun on the (W – B)–(B – V) color–
color diagram blueward. Note that the normal color indi-
ces of G2V stars calculated using the normal energy dis-
tribution for stars of this spectral subtype [27] are per-
fectly consistent with these values (W – B = –0.025m,
B – V = 0.663m).

Based on the b – y color index for the Sun, we have
selected stars from catalog [3] that have b – y values
close to the solar value (±0.005). This yields a rather
ASTRONOMY REPORTS      Vol. 44      No. 5      2000
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long list of candidates, which we will analyze in a
future paper. We believe that, in combination with b – y,
the v – b and v – y color indices can provide a good tool
for searches for candidate solar analogues among faint
G stars, as well as for constructing an effective-temper-
ature scale for stars of this type.

4. CONCLUSION

The main results of the work are the following:

(1) It is possible to obtain accuracies in calculated
color indices that are comparable to those of the
observed magnitudes if we have (1) accurate response
curves for the photometric system under consideration,
(2) trustworthy SEDs for the stars studied, and (3) accu-
rate data on the SED of the star used to determine the
zero point of the calculated color indices. This last
point, in particular, is a very important factor.

(2) We have calculated color indices and the indices
m1 and c1 for the Sun in the uvby system by convolving
its SED [21] with the response curves for this system.
Using this solar SED allows us to eliminate errors in the
absolute calibration from the calculated color indices.

(3) The position of the Sun on the (v – b)–(b – y) and
(v – y)–(b – y) color–color diagrams for early G stars is
quite normal, testifying to the absence of any signifi-
cant peculiarities in the Sun compared to these stars.
These diagrams can provide a useful tool for searching
for candidate solar analogues among faint stars.

0.70
v – b

0.34 0.36 0.38 0.40 0.42 0.44 0.46
b – y

0.50

HD53705

HD44594

HD1835

HD76151 51Peg

16CygB

16CygA

0.65

0.60

0.55

Fig. 4. (b – y)–(v – b) color–color diagram for G0–G5 main-
sequence stars. Crosses: G0–G5 stars; open circle: the Sun;
triangles: stars from the list of solar analogues [12].
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Abstract—Photoabsorption by systems of hydrogen atoms and protons in the solar photosphere is studied.

Analytical formulas for the partial cross sections for photodissociation of the  molecular ion are derived for
the cases of fixed vibrational–rotational energy levels and averaging over a Boltzmann distribution for a given
temperature. The photoabsorption coefficients for bound–free and free–free transitions of H–H+ in the solar
photosphere are calculated. These are compared with the absorption coefficients for photo-ejection of an elec-
tron from a negative hydrogen ion H– and free–free transitions of an electron in the field of a hydrogen atom H.
Results can be applied to the Sun and hotter stars. © 2000 MAIK “Nauka/Interperiodica”.

H2
+

H2
+

1. INTRODUCTION

The largest contribution to the Sun’s radiation is
made by the negative hydrogen ion H–, whose density
in the photosphere is of the order of 10–8 of the density
of neutral hydrogen atoms H [1]. Computations of the
spectrum and total intensity of the solar emission usu-
ally assume that the optical depth of the photosphere at
visual and near-infrared wavelengths is determined by
photoabsorption via bound–free transitions, with the
ejection of an electron from an H– ion,

H–(1s2  1S) + "ω  H(1s) + e (1)

and via free–free transitions

H(1s) + e + "ω  H(1s) + e. (2)

The effective cross sections for the photoabsorption
processes (1) and (2) have been calculated in a number
of studies. The calculations in [2, 3] are probably the
most trustworthy. The accuracy of the results of [2]
should be at least 1%. The cross section for photoab-
sorption by an H– ion (1) is of the order of 10–17 cm2 in
the energy range 1 < "ω < 5 eV and reaches a maximum
of σmax ≈ 4 × 10–17 cm2 when the photon energy is
1.4 eV.

In connection with the accurate calculations [2, 3],
it is interesting to analyze in detail the role of other pos-
sible photoabsorption processes. The contribution of
such processes to the optical depth of the photosphere
at visual and near-infrared wavelengths could be as
large as 1–10% of the contribution from (1) and (2).

One such process is absorption by the  molecular
ion during its photodissociation:

(3)

with the formation of a proton and a neutral hydrogen
atom. A photon is absorbed as a result of an electron

H2
+

H2
+ Σ2 +

g( ) "ω H2
+ Σ2 +

u( ) H 1s( ) H++ +
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transition between the even (bound)  and odd

(repulsive)  terms of the  ion, which are split by
the exchange interaction between the hydrogen atom
and proton (see figure). We emphasize that precisely

 is of interest here, although the concentration of H2

molecules is a factor of ~104–105 higher. The ground

term  and first excited (repulsive) term  for these
molecules have different multiplicities. Therefore, the
intercombination transition between them is strongly
suppressed, since a spin must be exchanged.

Process (3), which describes photoabsorption via
bound–free transitions of the H–H+ system, must be
supplemented by free–free transitions of the same sys-
tem:

(4)

As for photodissociation (3), the process (4)—absorp-
tion of a photon during a collision between H and H+

particles—takes place as a result of a    tran-
sition, during which there is a change in the symmetry
of the electron wave function.

The possible role of bound–free and free–free tran-
sitions (3) and (4) in the ç–H+ system in some stellar

atmospheres was first noted in [4].  is the simplest
diatomic molecule and has been the subject of many
theoretical studies. Perhaps the largest contribution to

the theory of the  ion and    radiative
transitions has been made by Bates and his coworkers
([5] and references therein). These studies were con-
cerned with calculations of energy-level splitting for

Σ2 +
g

Σ2 +
u H2

+

H2
+

Σ1 +
g Σ3 +

u

H 1s( ) H+
"ω H H++( ) Σ2 +

g
"ω+ + +

H H++( ) Σ2 +
u

H 1s( ) H+.+

Σ2 +
g Σ2 +

u

H2
+

H2
+ Σ2 +

g Σ2 +
u
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the  system and of oscillator strengths for  

 radiative electron transitions, which were later also
calculated in [6].

The first quantitative treatment of processes (3) and
(4) was performed by Bates in [7], where he calculated
the integrated absorption coefficient KT(ω) for a wide
range of transition frequencies ω and temperatures T =
2500–12000 K. He derived a simple analytic formula
for KT(ω) [7], based on quantum calculations of the
oscillator strengths assuming a fixed internuclear dis-
tance R and treating the H and H+ nuclei as classical
particles, with the coordinates R distributed according
to the probability WT(R) ∝  4πR2exp[–U(R)/kT] in the
bound Ug(R) and repulsive Uu(R) terms. By using a
model with fixed H and H+ centers and a classical dis-
tribution function for the internuclear distance R in a
diatomic system with a given interaction potential U(R)
(see, for example, [8], p. 167), Bates completely
avoided calculating the photodissociative absorption
cross sections for particular vibrational–rotational
states vK and summing over these states.

Later, the influence of the quantum character of the

nuclear motions during the photodissociation (3) of 
ions was studied in [9] for short wavelengths (2.7 < "ω <
14.3 eV) and relatively low temperatures (T = 1000 and
2500 K), and the results for the absorption coefficients
were compared with the data of [7]. Further, the calcu-
lations of [7] were used to compile tables and derive
approximation formulas for bound–free and free–free

transitions    in the  ion [10].

Quantum-mechanical calculations of cross sections
for photodissociation (3) from fixed vibrational levels v
were conducted in [11, 12] for the case of small rota-
tional quantum numbers K = 0 and 1. The data of Bates
cited above were used for the electron matrix elements

of the    transition. In [12], the resulting
cross sections were summed over v using a Franck–
Condon distribution, which is characteristic of the for-

mation of  ions during the photoionization of neu-
tral hydrogen molecules H2 or the ionization of H2 by
electron bombardment (the temperature of the H2 mol-
ecules was assumed to be low, equal to room tempera-
ture). The conditions assumed in calculations such as
those of [11, 12] are obviously far from those in the
solar photosphere.

The aim of the present paper is to analyze absorp-

tion by molecular (quasi-molecular)  ions at visual,
near-infrared, and near-ultraviolet wavelengths at fairly
high temperatures (T = 4500–10000 K). Under these
conditions, a large number of vibrational and rotational

levels of the ground electron state  are simulta-
neously excited. We adopted a self-consistent approach
to calculate the cross sections of the radiative processes

H2
+ Σ2 +

g

Σ2 +
u

H2
+

Σ2 +
g Σ2 +

u H2
+

Σ2 +
g Σ2 +

u

H2
+

H2
+

Σ2 +
g
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(3) and (4) together with the integrated photoabsorption
coefficient, taking into account a realistic Boltzmann
distribution over the vibrational–rotational levels and the
contribution of the continuum of the ç–H+ system. We
also transform our results to simple analytic expressions
corresponding to the semiclassical limit of Bates [7]. Spe-
cial attention is paid to comparing the roles of these
processes and of photoabsorption by bound–free (1)
and free–free (2) transitions in the ç–e system (i.e., the
H– ion) in the photospheres of the Sun and hotter stars.

2. PHOTODISSOCIATION OF THE  ION
AND FREE–FREE TRANSITIONS

IN THE ç–H+ SYSTEM

2.1. Equilibrium Density of  Ions

The number density of  in the solar photosphere
is of the same order of magnitude as that of H– ions. The
law of mass action specifying the equilibrium condi-
tions (see [8]) leads to the relations

(5)

(6)

H2
+

H2
+

H2
+
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(7)

Here,  and  are the statistical weights of the

electron states for the ( ) and H–(1s2  1S) ions; gH

is the statistical weight of a hydrogen atom in its 1s
ground state; me, Ne, ge and Mp, ,  are the

masses, number densities, and statistical weights of the
electrons and protons H+, respectively;  = 0.754 eV

is the binding energy of the electron in an H– ion; D0 =

2.65 eV is the energy of dissociation of an  ion from
the ground vibrational–rotational state v = 0, K = 0

(µ = Mp/2 is its reduced mass); I = µ  is the moment
of inertia; Re = 2.0a0 is the equilibrium internuclear
distance (a0 = 0.529 × 10–8 cm is the Bohr radius); and
Ωe = 4.37 × 1014 s–1 is the oscillation frequency for the
lowest level v = 0, K = 0 (see [13]). Expression (5) con-
tains the vibrational–rotational statistical sum for the

even ground term (1sσg) of , which is equal to

(8)

where Zv – r is the vibrational–rotational statistical sum
for a diatomic molecule with arbitrary nuclei (which
can, in general, be different from each other, as distinct

from the  ion), evK is the energy of the vibrational–
rotational level vK measured from the zero level v = 0,
K = 0 (so that evK > 0), and Be = "2/2I is the rotational
constant in energy units. Relation (8) specifies the quan-
tity Zv – r in the temperature range "Ωe/3 ! kT ! D0 (see
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Table 1.  Dependence of relative number densities of 

and H– on temperature (T = 4500–10000 K)

T [K] 
/NH , 

10–21cm3

/NHNe,

10–21 cm3
/

4500 3.20 2.34 1.37

5000 1.70 1.68 1.01

5500 1.02 1.24 0.82

5800 0.79 1.06 0.74

6000 0.67 0.96 0.70

6500 0.47 0.76 0.62

8000 0.21 0.43 0.50

10000 0.11 0.25 0.45

H2
+

N
H2

+ N
H

+ N
H

– N
H2

+ N
H

–

[8], pp. 157–167). The equilibrium values of the rela-
tive number densities /NH  and /NHNe cal-

culated using (5) and (6) and the ratio /  are pre-

sented in Table 1. We took the number densities of the
electrons Ne and protons  to be equal. The number

densities N are expressed in cm–3.

2.2. Cross-Section for Photodissociation
from an Excited Vibrational–Rotational State

The figure shows potential-energy curves for the

ground (1sσg) and first excited (repulsive)

(2pσu) electron terms of . In the case of large
internuclear distances R  ∞, these terms are corre-
lated with the H(1s) + H+ state of the isolated hydrogen
atom and proton; i.e., they tend to the same dissociation
limit—the electron energy of the 1s level of the hydro-
gen atom. The minimum Ug(Re) = –De = –2.79 eV in the

potential energy curve Ug(R) of the  state corre-
sponds to the internuclear distance Re = 2.0a0. The cor-
responding electron-term splitting energy is ∆Uug(Re) =
11.84 eV.

Therefore, , v, K  , E, K ± 1 phototrans-
itions from low vibrational–rotational levels vK (v = 0,
1, 2) near the bottom of the potential well Rω ≈ 1.6–2.6 a0
of the Ug(R) term correspond to very large energies
("ω ≈ 8–16 eV) and small wavelengths (λ ≈ 800–
1600 Å). In the visual (and the adjacent near-ultraviolet
and near-infrared, with photon energies 0.25 < "ω < 6 eV;
i.e., 0.2 < λ < 5 µm), the process (3) of photodissocia-

tive absorption by  is primarily realized from
excited levels vK. Phototransitions at these wave-
lengths take place in the attraction region (Rω > Re) of
the potential-energy curve Ug(R) of the lowest electron
state at internuclear distances 3 < Rω < 7 a0. Table 2 pre-
sents the potential energies Ug(R) in the 1sσg ground
state, the splitting energies ∆Uug(R) for even (g) and
odd (u) terms, and the oscillator strengths fug(R) of the
1sσg  2pσu electron transition as functions of R for
the above range of distances, R ≥ 3a0.

The cross section for photodissociation from a given
vibrational–rotational energy level vK of the ground

electron term  to the continuum of the repulsive

term  with energy E = "2q2/2µ is determined by the
expression [14, 15]

(9)
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Here, Ò is the speed of light, |EvK| is the bonding energy

of the ( ) molecular ion at the level vK, and q is
the wave number of H and H+ particles separated by
R  ∞. We will measure the potential energies Ug(R)
and Uu(R) from the ion dissociation edge; i.e., Ug(∞) =
Uu(∞) = 0 and EvK < 0, whereas E > 0 (the vibrational–
rotational energy EvK of level vK is related to the
energy evK > 0 in (8), measured from the level v = 0,
K = 0, by the expression |EvK| = D0 – evK).

The matrix element  of the dipole moment of

the , v, K  , E, K' transition in the radial
wave functions χ(R) for the relative motion of the H
and H+ in the discrete spectrum of the initial bound

electron state  of the  ion and the continuum of

the final repulsive state  takes the form:

(10)

Here, dug(R) is the electron matrix element for the tran-

sition between the    terms:

(11)

in the adiabatic wave functions φg(r, R) and φu(r, R) for
the electron in the axially symmetric two-proton field,
H+ and H+, where dug || R (see [5] and [16], pp. 362–364)
and r is the electron radius vector measured from the

center of mass of the  ion.

The electron-transition dipole matrix element (11)
is related to the corresponding oscillator strength
fug(Rω) of the transition at frequency ω = ∆Uug(Rω)/" by
the expression

(12)

The nuclear wave functions in (10) are normalized as
follows:

(13)

When calculating the partial photodissociation
cross section (9) for the case of high vibrational–rota-
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tional levels vK, we should bear in mind that the main
contribution to the integral over internuclear distance (10)
for a given transition frequency ω is made by a small

neighborhood of the point Rω where the ( ) + "ω

and ( ) potential-energy curves intersect; i.e.,

(14)

Therefore, we can calculate the radial matrix element
of the dipole moment (10) using the quasi-classical
method of Landau ([16], pp. 399–401) or using an
approach based on a quantum solution for the nonadia-
batic transitions in a model with linearly intersecting
terms. This type of approach enables us to correctly
account for the contribution to the photodissociative

absorption coefficient (ω), summed over all vK, of

all excited vibrational–rotational levels of the potential-
energy curves (14) whose classical turning points R = avK

are both far from and near the intersection point Rω.

Exact solutions for the one-dimensional motion of
nuclei in a uniform field (which, apart from normaliza-
tion coefficients, reduce to Airy functions î(x); see

H2
+ Σ2 +

g

H2
+ Σ2 +

u

Ug Rω( ) "ω+ Uu Rω( ),=

∆Uug Rω( ) Uu Rω( ) Ug Rω( )– "ω.= =

k
H2

+
ph.d

Table 2.  Splitting of terms ∆Uug(R), potential energy Ug(R) of

the lowest state  of the  ion (measured from the dis-
sociation edge Ug(∞) = Uu(∞) = 0), and oscillator strengths fug(R)

of the    electron transition according to [5, 6]

R [a0] Ug, eV ∆Uug, eV fug(R)

3.0 –2.110 5.701 0.289

3.2 –1.925 4.925 0.281

3.4 –1.744 4.256 0.271

3.6 –1.570 3.676 0.261

3.8 –1.407 3.173 0.250

4.0 –1.254 2.736 0.238

4.2 –1.113 2.356 0.226

4.4 –0.984 2.027 0.213

4.6 –0.866 1.744 0.201

4.8 –0.760 1.497 0.188

5.0 –0.664 1.282 0.175

5.5 –0.469 0.865 0.144

6.0 –0.326 0.580 0.116

6.5 –0.226 0.385 0.090

7.0 –0.152 0.253 0.070

7.5 –0.103 0.166 0.052

8.0 –0.070 0.109 0039

8.5 –0.047 0.070 0.028

9.0 –0.033 0.046 0.021

Σg
+2

H2
+

Σg
+2

Σu
+2
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[16], Para 24) should be taken for the nuclear wave func-

tions of the discrete  and continuum .
Thus, instead of the widely used quasi-classical for-
mula (see [16], p. 401) for the transition probability at
the point Rω, we use a more general method to calculate
the nonadiabatic transitions between two different elec-
tron terms (this method is similar to that in Exercise 3
of Para 90 [16] in connection with collisions of the second
kind). Applying this approach to radiative transitions

between the electron terms of the  ion leads to the fol-
lowing expression for the cross section for photodisso-
ciation from a given vibrational–rotational level vK:

(15)

Here, TvK = 2π"/|EvK – Ev ± 1, K| is the period of the
vibrational–rotational motion of the nuclei in the state
vK, and ∆Fug(Rω) is the difference between the slopes
of the potential-energy curves Ug(R) and Uu(R) at their
point of intersection Rω:

(16)

The quantity AvK in (15) can be expressed in terms of
the square of an Airy function

(17)

where

(18)

and  and  are the slopes of the even
and odd terms taking into account the centrifugal
energy:

(19)
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In accordance with [16], we use the definition of the
Airy function î(x) introduced by Fock (which differs
from that presented in some handbooks by a factor of
π1/2). Note that, throughout the paper, we give only a
qualitative physical basis for the approximations used
and the final formulas and will publish detailed calcu-
lations in a separate article.

Further, we use the well-known asymptotic of the
Airy function î(x) in the classically permitted region
of motion for the H and H+ nuclei (ξ > 0), average the
result (15) over the period of the rapidly oscillating part
of the function î2(–ξ) in this region, and neglect its
exponentially small decrease in the classically forbid-
den region (ξ < 0). Then, we can see from (17) and (18)
that AvK  1 far from the inflection point (i.e.,
for sufficiently large values of the energy difference

EvK – Ug(Rω) – "2(K + 1/2)2/2µ ). In this case, a sim-
ple, quasi-classical expression for the cross section for

photodissociation of ( ) from a fixed vibrational–
rotational level vK follows immediately from the quan-
tum formula (15). Note that this asymptotic of (15),
which corresponds to AvK = 1, can also be derived
directly from the initial expression (9), if the results of
Landau’s [16, pp. 399–401] quasi-classical theory are
used to calculate the dipole matrix element for transi-
tions in the H–H+ system at the intersection point of the
potential-energy curves.

We can see from (15)–(18) that the quantum calcu-
lation of the partial photodissociation cross section differs
from the quasi-classical calculation only at small values

for the difference [EvK – Ug(Rω) – "2(K + 1/2)2/2µ ]. In
particular, taking account of the factor AvK in (15) leads
to a finite value for the cross section at EvK – Ug(Rω) –

"2(K + 1/2)2/2µ  = 0 and describes its rapid decrease
in the classically forbidden region for nuclear motion.

2.3. Averaging over the Boltzmann Distribution
and the Photodissociative Absorption Coefficient

A large number of vibrational–rotational levels vK are
excited simultaneously at temperatures kT > "Ωe @ Be

("Ωe = 0.288 eV, Be = 3.74 × 10–3 eV [13]), present in
the solar photosphere (kT ~ 0.5 eV). In this situation, if
we wish to find the photodissociative absorption coeffi-

cient (ω)

, (21)

it is of the most interest to calculate the cross section

(ω) averaged over v and K and normalized to the
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total number density of  in the photosphere at tem-
perature T:

(22)

where the statistical sum Zv – r is determined from for-
mula (8).

When calculating the photodissociation cross sec-

tion  averaged over a Boltzmann distribution,
the summation over the vibrational–rotational levels vK
in (22) can be replaced by integration over dv and dK,
and carried out using a method similar to that of [17]
This corresponds to replacing the discrete spectrum of
the vibrational–rotational energy levels with a quasi-
continuum.

Further, numerical computations demonstrate that,
at temperatures T = 4500–10000 K and for all transi-
tion frequencies ω in the range 0.25 < "ω < 5.7 eV
under consideration, the energy interval EvK where the
classical inflection points R = avK are near the intersec-
tion point Rω of the potential-energy curves (14) (i.e.,

where the factor [EvK – Ug(Rω) – "2(K + 1/2)2/2µ ] in
(15) is close to zero) does not make an important con-
tribution to the integral over dv and dK. This enables us
to restrict our treatment to a quasi-classical approxima-
tion when calculating the averaged cross section

 [cm2] and the corresponding absorption coef-

ficient  [cm–1]; in other words, we can use the

value AvK = 1 in (15) and (17) in the classically permit-
ted region and neglect the exponentially small decrease

of the partial cross section  in the classically
forbidden region. The integration over the rotational
quantum numbers in (22) is conducted over the range

0 ≤ K ≤ Kmax (where "2 /2µ  = EvK – Ug(Rω)); the

integration over the energy of the  ion in the discrete
spectrum is conducted over the range Emin ≤ E ≤ 0
(where Emin = Ug(Rω) < 0).

The calculation result obtained using the above
approximations can be written

(23)
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Here, γ(3/2, z) is an incomplete gamma function of
order 3/2 (see, for example, [18]):

(24)

The average cross section  determined by
formula (23) is a function of the frequency ω and gas
temperature T and enables us, using (21), to calculate
the photodissociative absorption coefficient for a given

value of the total number density of  in the discrete
spectrum. During specific calculations, it is convenient

to express the total number density of  in the bound

state  in terms of the number densities of neutral
hydrogen atoms H(1s) and protons H+ in the continuum
using relation (5). Then, with relation (12) for the elec-
tron-transition oscillator strengths, the corresponding

result for the absorption coefficient  [cm–1] (21)

for photodissociation (3) takes the form

(25)

where α = e2/"c = 1/137 is the fine-structure constant.

2.4. Contribution of the Continuous Spectrum
and the Resulting Photoabsorption Coefficient

Let us consider now the contribution of (4) to pho-
toabsorption resulting from free–free transitions of the
ç–H+ system. The initial quantum expression for the
absorption coefficient for collisions of H(1s) and H+

particles during transitions from a continuum state with
energy E for the initial term Ug(R) to a continuum state
with final repulsive term Uu(R) with energy E' = E + "ω
takes the form [14, 15]
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Here,  [cm4 s] is the effective cross section for the
photoabsorption process (4), V = (2E/µ)1/2 is the rela-
tive velocity of the colliding H(1s) and H+ particles at
R  ∞, and K is the orbital quantum number of these
particles (in the quasi-classical limit, K = qρ, where ρ
is the impact parameter). The averaging in (27) is car-
ried out over a Maxwell distribution for the velocities V.
The matrix element of the dipole moment of the free–
free transition differs from (10) only in the exchange of
the initial nuclear wave function of the discrete spec-

trum (R) with the corresponding wave function of

the continuum (R), normalized to an energy δ func-
tion.

The factor of one-half in the braces in (27) is due to
the symmetry of process (4) with respect to permuta-
tion of the H and H+ nuclei, similar to the factor of one-
half in the statistical sum (8) for the discrete spectrum.
Collisions of the H and H+ can occur with equal proba-
bilities via the two channels

(28)

We can calculate the absorption coefficient (26) for
free–free transitions (4) using the same approximation
as for (23) and (25). The result is

(29)

(30)

As in the case of photodissociation, the total contri-
bution of the continuum to the absorption coefficient is
described by a simple formula in the quasi-classical
approximation. Comparison of expressions (25) and
(29) for the absorption coefficients for bound–free (3)
and free–free (4) transitions shows that, in the quasi-
classical approximation, they differ only in the factors
of γ(3/2, z) and Γ(3/2, z) corresponding to the contribu-

tions of the discrete and continuous spectra of the 
ion (where z = |Ug(Rω)|/kT). In particular, both contribu-
tions are proportional to the product  of the

number densities of hydrogen atoms H(1s) and protons
H+ in the continuum. This enables us to derive a more
compact analytical expression for the total absorption
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coefficient for processes (3) and (4). In a quasi-contin-
uum approximation, the general formula takes the form

(31)

This result has a clear physical interpretation: The
absorption coefficient is proportional to the oscillator

strength fug(Rω) of the    electron transition at
the intersection of the terms (14). It is also proportional to

the probability WT (Rω) ∝  4π exp[–Ug(Rω)/kT] that the
H(1s) and H+ particles are separated by a distance Rω in
the initial bound state Ug(R). The Boltzmann factor
exp(–Ug/kT) in (31) specifies the temperature depen-
dence of the total absorption coefficient.

Formula (31) represents the total contribution of the
direct processes (3) and (4) to the ç–H+ system photo-
absorption coefficient. Taking into account stimulated
emission, the resulting absorption coefficient KT(ω)
under conditions of thermodynamic equilibrium is
given by the well-known relation (see [14])

(32)

We are primarily interested in a comparative analysis of
the roles of the photoabsorption processes (3), (4) and
(1), (2) as functions of the frequency ω. The factor in
square brackets in (32) affects the formulas for the
absorption coefficients for the direct and inverse pro-
cesses in the same way. Therefore, we present our
results for the absorption coefficients below, without
taking into account stimulated emission.

Combining (31) and (32) leads to the well-known
result of Bates [7] for photoabsorption by the ç–H+

system, derived using a simple model with fixed Cou-
lomb centers and a classical Boltzmann distribution
function for their coordinates. Our treatment was based
on the initial quantum formulas for the cross sections
for photodissociation and free–free transitions. Our
results show that, in a quasi-classical limit for the nuclear
wave functions, the total contribution of these processes
can be described by the simple analytic expression (31),
if, in addition, we use a quasi-continuum approximation
for the vibrational–rotational levels.

Our numerical computation was based on the more
exact formula (15) for the partial photodissociation
cross section and an analogous formula for the contri-
bution of the continuum. The computation shows that
the correction factor (17), allowing for the quantum
character of the nuclear motion in the classically for-
bidden region near the turning points, affects the total
absorption coefficients in the visual, near-infrared, and
near-ultraviolet only slightly for the gas temperatures
T = 4500–10000 K under consideration. This immedi-
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Table 3.  Dependence of kT (ω), cm–1 on ω (or wavelength λ) for temperatures in the range T = 4500–10000 K. Values of ηT

(ω) = kT (ω)/NH  calculated using (31) are in units of 10–39 cm5

\ω, eV λ, µm Rω [a0]

T, K

4500 5000 5500 5800 6000 6500 8000 10000

ηT(ω), 10–39 cm5 

5.701 0.217 3.0 16.09 9.33 5.98 4.76 4.13 3.02 1.49 0.807

4.925 0.252 3.2 12.40 7.55 5.03 4.08 3.59 2.69 1.41 0.809

4.256 0.291 3.4 9.54 6.08 4.21 3.48 3.10 2.39 1.33 0.805

3.676 0.337 3.6 7.44 4.96 3.56 3.01 2.71 2.14 1.27 0.803

3.173 0.391 3.8 5.93 4.12 3.06 2.63 2.39 1.94 1.21 0.806

2.736 0.453 4.0 4.80 3.47 2.67 2.33 2.14 1.78 1.17 0.811

2.356 0.526 4.2 3.97 2.98 2.36 2.09 1.94 1.64 1.13 0.820

2.027 0.612 4.4 3.39 2.63 2.14 1.92 1.80 1.55 1.12 0.840

1.744 0.711 4.6 2.95 2.36 1.96 1.79 1.69 1.48 1.11 0.863

1.497 0.828 4.8 2.64 2.17 1.85 1.70 1.62 1.45 1.12 0.898

1.282 0.967 5.0 2.41 2.03 1.78 1.64 1.57 1.42 1.14 0.940

0.580 2.137 6.0 2.04 1.88 1.75 1.69 1.66 1.58 1.41 1.29

0.253 4.900 7.0 2.38 2.29 2.22 2.18 2.16 2.11 2.01 1.92

H
H

+

ately suggests that the quasi-classical approximation
can be applied to calculations of absorption coefficients
in the photospheres of the Sun and hotter stars and con-
firms the validity of the semiclassical approach used by
Bates.

Further development of the theory of absorption by
a medium in equilibrium containing atomic and molec-
ular components must go beyond the Born–Oppenhe-
imer approximation, which assumes that the electron
and nuclear motions are completely separate. This
approximation is most justified for low vibrational–
rotational states. As the quantum numbers v and K
increase, the interdependence between the electron and
nuclear motions ceases to be negligible and can lead to
considerable additional effects. These effects have been
studied in the physics of atomic collisions, where meth-
ods for taking into account electron–nuclear correla-
tions were developed. Applying these methods to pho-
toabsorption by diatomic systems could increase the
absorption coefficient at long wavelengths. Another
improvement of the theory is to use methods making it
possible to go beyond the limitations of models with
linearly intersecting terms (see, for example, [19]).

Note also that formulas (25), (29), and (31) refer to
the frequency range of interest to us, where the quan-
tum energy "ω is considerably less than the splitting
term ∆Uug at the point R0 where Ug(R0) = 0 (R0 = 1.12 a0

and ∆Uug(R0) = 22.2 eV for the  ion). When "ω >H2
+
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∆Uug(R0), the classically permitted region of internu-
clear distances does not affect the photodissociation
cross section, and only the contribution from the con-
tinuum is present. We do not consider this case of large
transition frequencies here.

3. RESULTS AND DISCUSSION

We calculated the total molecular (quasi-molecular)

ion  absorption coefficient for several values of ω
and T using formula (31) and the data from Table 2. The
results for kT(ω) are presented in Table 3.

The results show that, at the temperatures T = 4500–
6500 K typical for the solar photosphere, after a very

small decrease at 0.25 ≤ "ω < 1 eV, the  photoab-
sorption coefficient (31) increases with the frequency
ω. This behavior is primarily determined by the Boltz-
mann factor exp[|Ug(Rω)|/kT]. The increase in ω is fol-
lowed by a decrease in the internuclear distance Rω cor-
responding to the phototransition, and, accordingly, by
an increase in the absolute value of the potential energy
|Ug(Rω)|. (Recall that Ug(Rω) < 0 in the frequency range
under consideration; see Table 2.) Absorption will occur
from the lower levels vK, whose populations increase as
the vibrational quantum number v decreases. The absorp-
tion coefficient kT(ω) monotonically decreases as
exp[|Ug(Rω)|/kT] as the temperature rises.

H2
+

H2
+
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Let us compare the resulting values for the 
absorption coefficient kT(ω) and the total coefficient for
absorption by the negative ion H– via the process (1)

(33)

and via free–free transitions (2)

(34)

Here, (ω) [cm2] is the cross section for the photo-

ejection (1) of an electron from an H– ion and
〈veσe−H〉  [cm4 s] is the effective cross section for pho-
toabsorption (2), normalized to a unit flux of electrons
with velocity ve colliding with the H(1s) atom (for
details, see [14]).

Let us consider the ratio

(35)

H2
+

k
H–
b–fr ω( ) σ

H– ω( )N
H– σ

H– ω( )= =

× 1
4
--- 2π"

2

mekT
------------- 

 
3/2 E

H–

kT
----------- 

 exp
 
 
 

NHNe  cm 
1– [ ]

ke–H
fr–fr ω( ) v eσe–H〈 〉 T NHNe  cm 

1– [ ] .=

σ
H–

βT ω( )
k

H2
+

ph.d ω( ) k
H+–H

fr–fr ω( )+

k
H_
b–fr ω( ) ke–H

fr–fr ω( )+
--------------------------------------------

kT ω( )

k
H_
b–fr ω( ) ke–H

fr–fr ω( )+
-----------------------------------------,= =

Table 4.  βT(ω) calculated using (31), (33), and (34) for T =
4500, 5800, 8000, and 10000 K, assuming the number den-
sities of Ne and  are equal

\ω, eV λ, µm

T, K

4500 5800 8000 10000

βT, %

5.70 0.22 63.8 41.1 30.3 27.5

4.93 0.25 40.3 28.9 23.5 22.5

4.26 0.29 25.7 20.4 18.4 18.5

3.68 0.34 16.7 14.7 14.5 15.2

3.17 0.39 11.1 10.7 11.5 12.6

2.74 0.45 7.7 8.0 9.4 10.6

2.36 0.53 5.4 6.2 7.7 9.1

2.03 0.61 4.1 5.0 6.9 8.0

1.74 0.71 3.2 4.2 5.4 7.2

1.50 0.83 2.7 3.7 5.5 6.8

1.28 0.97 2.6 3.6 5.4 6.7

0.86 1.43 5.6 7.2 8.3 9.2

0.58 2.14 10.0 8.0 6.6 6.0

0.54 2.28 9.0 7.2 6.0 5.5

0.38 3.22 4.7 4.0 3.5 3.3

0.25 4.90 2.2 2.1 1.7 1.6

N
H

+

 

determined by (31), (33), and (34). It follows from
these formulas that, when 

 

N

 

e

 

 = 

 

, 

 

β

 

T

 

(

 

ω

 

)

 

 is a dimen-

sionless parameter that depends only on the frequency

 

ω

 

 and the temperature 

 

T

 

. Values for 

 

β

 

T

 

(

 

ω

 

)

 

 are presented
in Table 4. We used the photoejection cross sections

 

(

 

ω

 

)

 

 from [2] and the results of [3] for 

 

〈

 

v

 

e

 

σ

 

e

 

–

 

H

 

〉

 

 for

the absorption coefficient (34) for free–free transitions
(2).

Thus, the values of 

 

β

 

T

 

(

 

ω

 

)

 

 in Table 4 characterize the
additional photoabsorption by molecular and quasi-

molecular  ions over the total photoabsorption by
the negative ions H

 

–

 

 and collisions of electrons with

neutral hydrogen atoms H. Note that the  absorption
spectrum extends to frequencies considerably greater
than those in Tables 2–4. However, a comparison of the

 and H

 

–

 

 absorption coefficients is meaningless at ener-
gies 

 

"

 

ω

 

 > 4.93 eV, since absorption from the triplet level

 

3

 

s

 

3

 

p 

 

3

 

P

 

 of the Mg atom becomes dominant (see [1]).
The frequency range 

 

"

 

ω

 

 ~ 0.5–3

 

 eV, which approx-
imately corresponds to the half-width of the Planck
distribution for black-body emission at temperature

 

kT

 

 ~ 0.5

 

 eV, is of particular interest for studies of solar
emission. In this frequency range, 

 

β

 

T

 

(

 

ω

 

)

 

, which speci-
fies the relative contributions of photoabsorption by the
H

 

–

 

H

 

+

 

 system and photoabsorption via (1) and (2), is,
on average, equal to 

 

~6

 

−

 

7% 

 

and is only weakly depen-
dent on temperature. There is a considerable increase in

 

β

 

T

 

(

 

ω

 

) 

 

(by 

 

~

 

30–40%) at 

 

"

 

ω

 

 ~ 3–5

 

 eV due to both the
increase in 

 

k

 

T

 

(

 

ω

 

) [see (31) and Table 3] and the
decrease in the absorption coefficients for H– ions and
free–free electron transitions in the field of the hydro-
gen atom, which are determined by (33) and (34). How-
ever, the range "ω ~ 3−5 eV is of little interest for cal-
culations of the radiation integrated over the spectrum,
since its contribution is appreciably suppressed by the
exponential dependence of the Planck distribution.

For stars hotter than the Sun with temperatures T =
8000–10000 K, the range of photon energies 3 < "ω <
5 eV either partially (at T = 8000 K) or completely (T =
10000 K) overlaps the half-width of the Planck distri-
bution. The results presented above (Table 4) show that

photoabsorption by  ions substantially increases the
total absorption coefficient. In this case, the character-
istic values of βT(ω) are approximately 7–12% at visual
wavelengths and can be as large as 20–30% at short
wavelengths.

At temperatures of about 3000 K, the contribution

of photodissociation of  ions and free–free pho-
totransitions in the H–H+ system integrated over the
spectrum is approximately 3% of the total contribution
of photoabsorption by H– and free–free electron transi-
tions. However, the relative contributions of photoab-
sorption by the H–H+ system and of photoabsorption

N
H+

σ
H–

H2
+

H2
+

H2
+

H2
+

H2
+
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via processes (1) and (2) appreciably increases at short
wavelengths, and the corresponding values of βT(ω)
reach ~50–150% at energies 4.5 < "ω < 5.5 eV. Note
also that the free–free electron phototransitions in the
fields of neutral hydrogen molecules H2, whose number
density sharply increases with decreasing temperature,
must be also taken into account when considering
absorption in stellar atmospheres with temperature
T ~ 3000 K.
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