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Abstract—A strategy is developed for constructing noncentrosymmetric (polar) packings of crystals necessary
for the manifestation of a number of important physical properties of crystals. The strategy is based on the anal-
ysis of the data obtained in the systematic studies of general structural characteristics of pairs of centro- and
noncentrosymmetric polymorphic modifications of a number of organic molecular structures. An algorithm for
prediction of such packings is designed on the basis of the potential function singled out by the method of auto-
matic statistical search for information (Data Mining) in the Cambridge Structural Database. © 2005 Pleiades
Publishing, Inc.
INTRODUCTION

Crystal symmetry reflects the arrangement of mole-
cules in crystals and determines many of the physical
properties of solids including electrical, magnetic, lin-
ear and nonlinear optical properties, and electronic and
ionic conductivity. Crystal engineering is a field of
modern science dealing with the prediction and control
of formation of crystal packings in order to create
organic crystalline materials with the preset symmetry
of the molecular environment that would ensure the
manifestation of a desirable physical property. Since
crystal formation depends not only on the thermody-
namic but also on the kinetic factors (such as tempera-
ture, type of solvent, concentration, crystallization
rate), a successful strategy for predicting packings
should take into account the enthalpy of a possible
packing and also the dynamic processes occurring in
the solution. Although, in principle, it is possible to
simulate molecular dynamics [1], the corresponding
computations are very labor- and time-consuming.
Therefore, the search for alternative ways of taking into
account various kinetic factors is still an important
problem in the experimental and theoretical construc-
tion of crystal symmetry. One of the possible
approaches to a comparatively simple and fast
(although not always explicit) method for taking into
account the kinetic effects is analysis of a large bulk of
structural information accumulated in various data-
bases. Obviously, an experimentally determined crystal
structure cannot provide information either on kinetics
of nucleation or on kinetics of crystal growth, but it
obviously demonstrates the final result of these pro-
cesses. It is possible to assume that if a certain struc-
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tural motif were encountered rather often it would
reflect both the thermodynamic stability of the packing
and the kinetic advantages of its formation. Therefore,
the systematic study of the structures of typical
supramolecular ensembles formed in crystals because
of intermolecular bonds by the invocation of the infor-
mation stored in the Cambridge Structural Database
(CSD) acquires an ever-increasing importance for pre-
diction of possible crystal structures [2, 3]. The
attempts to study the types of supramolecular associ-
ates and their use in crystal engineering have repeatedly
been made [4–12]. Thus, Gavezzotti and Filippini [13]
suggested analysis of the CSD for better understanding
of the possible ways of formation of various crystal
packings. Earlier, we also undertook a systematic study
of the crystal structures of the compounds which simul-
taneously formed centro- and noncentrosymmetric
polymorphic modifications [14, 15]. The same chemi-
cal composition of the pairs of centro- and noncen-
trosymmetric polymorphic modifications allowed us to
focus attention on the structural aspect and establish a
number of the structural characteristics including com-
mon structural motifs of such modifications.

There have been numerous attempts to use the CSD
data in the theoretical prediction of crystal packings
[16, 17]. With this aim, Hofmann [18] used the method
of automatic statistical search for information (Data
Mining) in the CSD, managed to single out the real
energy function, and made the minimum number of
assumptions about the form of the functional. The force
field of the potential function used by Hofmann
allowed him to identify the “correct” structure in a list
of predicted possible packings in 93% of the cases in
© 2005 Pleiades Publishing, Inc.
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the sp. gr. P1 and 37% of the cases in the sp. gr. .
Since the accuracy of the parameterization of the Hof-
mann potential directly depends on the number and
quality of the structural data analyzed, an ever-increas-
ing number of precision structure determinations
allows one to hope that the method of collecting struc-
tural information suggested by Hofmann would
become an important instrument for solving numerous
crystallographic problems and, in particular, for pre-
dicting crystal structures.

Below, we combine both above methods to design
new materials with the structures with polar symme-
tries necessary for the manifestation of nonlinear opti-
cal activity and some magnetic properties.

BASIC STRUCTURAL CHARACTERISTICS 
OF PAIRS OF CENTRO- AND 

NONCENTROSYMMETRIC POLYMORPHIC 
MODIFICATIONS

Consider the most important structural characteris-
tics established in the analysis of the structures of pairs
of centro- and noncentrosymmetric polymorphic mod-
ifications [14, 15]. We selected the crystals described

by the most widespread centrosymmetric , P21/c,
Pbca, chiral P212121, P21, P1, and racemic noncen-
trosymmetric Pc, Pna21, Pca21 space groups. We ana-
lyzed the modifications with the same literal refcodes
so that our sampling contained the compounds belong-
ing to the groups of unresolved and rapidly inverted
enantiomers.1 The CSD (version 2000) has 128 such
pairs.

When analyzing the structures of polymorphic mod-
ifications, we took into account the conditions of crys-
tal formation, the molecule geometry, the type of a
molecular associate formed in the crystal, and the unit-
cell parameters.

All the structural information used in analysis was
taken from the CSD, but, since the data on crystal for-
mation are seldom indicated there, we also analyzed all
the accessible original papers. The characteristics of the
formation of centro- and noncentrosymmetric modifi-
cations were established by analyzing the most wide-
spread pairs of polymorphs in the space groups P21/c –
P212121 (41 pairs), P21/c – P21 (17 pairs), P21/c –
Pna21 (16 pairs), and P21/c – Pc (11 pairs).2

It turned out that in more than half of the centro- and
noncentrosymmetric pairs considered, the polymorphs
are formed in the same mother liquids and under the
same kinetic conditions (concomitant polymorphism).
Most of these pairs are formed by the compounds that
may form rather strong intermolecular H bonds. It was
also established that, in this case, both centro- and non-

1 The modifications of resolved enantiomers (stereomers) often
have different refcodes in the CSD.

2 The structural characteristics of rare pairs of centro- and noncen-
trosymmetric polymorphic modifications will be considered in a
separate publication.

P1

P1
C

centrosymmetric modifications usually consist of the
same supramolecular associates formed due to intermo-
lecular hydrogen bonding.

The theoretical basis of the existence of concomi-
tant polymorphism and the most typical examples of it
were discussed in detail by Bernstein et al. [19]. Below,
we analyze the structural characteristics of a large num-
ber of such modifications. We also compare the densi-
ties and thermodynamic stability of these modifications
calculated with the use of the Hofmann potential func-
tion [17, 18] and the corresponding programs.

ENERGY CALCULATIONS AND DENSITY 
CORRELATIONS OF CENTRO- 

AND NONCENTROSYMMETRIC PACKINGS

Earlier, Gavezzotti and Filippini [13] compared the
packing energies and some other thermodynamic prop-
erties of the pairs of centro- and noncentrosymmetric
polymorphic modifications stable at room temperature
found in the CSD, version 1991. However, they did not
indicate the preferable type of packing because they
were interested only in the absolute difference between
these characteristics.3 It was established that the differ-
ences between the packing energies (∆E), packing den-
sities (∆D), and vibrational lattice entropies (∆S) of two
polymorphic modifications usually did not exceed sev-
eral percent. Brock et al., [20] took also into account
the signs of these differences and performed compara-
tive statistical analysis of crystal densities of the com-
pounds crystallizing in both racemic and chiral space
groups. They established that the character of the ∆D4

distribution depends on the type of molecules forming
a chiral–racemic pair of polymorphic modifications.
Thus, they established that there is no noticeable differ-
ence between the packing densities of the racemic and
chiral crystals for polymorphic modification of rapidly
inverted enantiomers (∆Dav = 0.20%). At the same time,
on the average, the racemic crystals of the group of
resolved enantiomers (∆Dav = 0.92%) have denser
packings than the chiral pairs.

Analysis of the differences in the densities of cen-
tro- and noncentrosymmetric polymorphic modifica-
tions in the crystals analyzed in [14, 15] is illustrated by
the histograms in Fig. 1. Note that in our sampling the
molecules of rapidly inverted enantiomers prevailed.
We also show the normal distribution curves that
describe these histograms. The average ∆Dav value for
all the pairs of polymorphic modifications is –0.98%.
(Characteristics of the normal distribution: the standard
(root-mean-square) deviation σ = 1.46, the distribution
amplitude Ao = 15.89, the correlation coefficients
Kcorr = 0.858). Thus, on the whole, the noncentrosym-
metric structures in the modifications considered are
denser than the noncentrosymmetric pairs.

3 ∆P = [|(Pi – Pj)| × 100]/Pi.
4 ∆D = [(Dcentro – Dnoncentro) × 2 × 100]/(Dcentro + Dnoncentro).
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We also made an attempt to see whether the type of
an associate and the growth conditions influence the
character of the ∆D distribution. With this aim, we
divided all the ∆D values into two groups. The first one
included the ∆D values of the polymorphs consisting of
equivalent associates (mainly concomitant polymor-
phic modifications). The second group included the ∆D
values of all the remaining polymorphic modifications
synthesized under different conditions. It is seen from
Figs. 1b and 1c that the distributions of the ∆D values
for these two groups are different; in other words, the
distribution of the ∆D values depends not only on the
type of the molecules (as was indicated in [20]) but also
on the method of preparation of the polymorphic mod-
ification. For the first group (Fig. 1b) (concomitant
polymorphic modifications), the average ∆Dav value is
–1.46% (σ = 0.84, Ao = 10.32, Kcor = 0.817); whence, it
follows that the packings of concomitant polymorphic
modifications are denser than the packings of their
counterparts. In the second group (different crystalliza-
tion conditions), ∆Dav = –0.31% (σ = 1.29, Ao = 9.17,
Kcor = 0.852) (Fig. 1c) in full accordance with the
results obtained in [20] for fast invertable enantiomers,
where no noticeable difference between the densities of
the packings of the racemic and chiral crystals was
found either.

The distributions of the differences between ener-
gies are shown in Fig. 2.5 The energies of the modifica-
tions were calculated using the FlexCryst program [18].
It is seen from Fig. 2 that the most energy advantageous
modifications in our sampling are centrosymmetric
ones. The average difference between energies is
∆Eav = 2.61% (characteristics of the distribution σ =
2.06, Ao = 4.20, Kcor = 0.59). These data are in good
accordance with the results obtained by Gavezzotti and
Filippini [13], who established that 80% of all the ∆E
values lie within the range 1–3%. At the same time, the
maximum in the ∆E distribution in [13] was located in
the interval 0–1%.

In distinction from the ∆D distribution, the division
of all the ∆E values into two groups in accordance with
the associate type and the method of crystal synthesis
(Figs. 2b, 2c) does not qualitatively influence the char-
acter of this distribution. The average ∆Eav value for the
concomitant polymorphic modifications consisting of
equivalent associates is 1.73% (σ = 0.55, Ao = 5.06,
Kcor = 0.86, Fig. 2b) and for the pairs of modifications
obtained under different conditions this value is 3.47%
(very poor distribution parameters: σ = 22.2, Ao = 1.94,
and Kcor = 0.49). The absence of any correlation in this
case is explained by different crystal structures of the
polymorphic modifications of this group. Thus, even if
one takes into account a rather poor statistics of ∆E val-
ues, both concomitant modifications—centro- and non-
centrosymmetric—obtained under different conditions
are energetically favorable.

5 ∆E = [(Ecentro – Enoncentro) × 2 × 100]/(Ecentro + Enoncentro).
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Fig. 1. Histograms of the ∆D distribution (and the corre-
sponding normal distribution curves) for pairs of centro-
and noncentrosymmetric polymorphic modifications:
(a) general, (b) for the modifications constructed from
equivalent supramolecular associates (concomitant poly-
morphic modifications), and (c) for modifications con-
structed from nonequivalent associates.
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Fig. 2. Histograms of ∆E distributions (and the correspond-
ing normal distribution curves) for pairs of centro- and non-
centrosymmetric polymorphic modifications: (a) general,
(b) for the modifications constructed from equivalent
supramolecular associates (concomitant polymorphic mod-
ifications), and (c) for modifications constructed from non-
equivalent associates.
C

Despite the existing difference between the densi-
ties, the centrosymmetric groups are more favorable.
The point is that in denser packings (especially consist-
ing of the equivalent supramolecular associates with
hydrogen bonding) may have reduced intermolecular
atom–atom contacts (in comparison with their equilib-
rium values). These reductions may give rise to stron-
ger interatomic repulsion, which is reflected in a certain
decrease in the total crystal energy. This may be illus-
trated by detailed analysis of atom–atom contacts in
concomitant polymorphic modifications of meta-nitro-
phenol, MNPHOL [21, 22] (P212121, Enoncentro =
−65.80 kJ/mol, ρ = 1.542 g/cm3; P21/n, Ecentro =
−70.10 kJ/mol, ρ = 1.478 g/cm3). In these crystals, the
molecules linked by hydrogen bonds form equivalent
molecular OH···O chains (Fig. 3). Table 1 lists the char-
acteristics of the most representative contacts of the
atoms participating in hydrogen bonding. As is seen
from Table 1, a denser acentric structure described by
the sp. gr. P212121 has shorter contacts than the cen-
trosymmetric crystal described by the sp. gr. P21/n.
Considering the energy characteristics, we may state
that, despite the unchanged character of the interatomic
interactions (attraction of repulsion) in different modi-
fications, the repulsive interaction is always much more
pronounced in a denser structure. This reduces the total
energy of the acentric structure in comparison with the
energy of the centrosymmetric modification.

ROLE OF THE SYMMETRY OF MOLECULAR 
ASSOCIATE IN FORMATION OF CRYSTAL 
PACKING AND PREDICTION OF CRYSTAL 

STRUCTURE

When constructing a crystal with a preset symmetry,
one has to bear in mind the conclusion drawn from the
systematic study of pairs of centro- and noncentrosym-
metric modifications: the symmetry of a molecular
associate formed by sufficiently strong intermolecular
hydrogen bonds plays an important role in the forma-
tion of the symmetry of a structure.

The two following cases are possible in the forma-
tion of centro- and noncentrosymmetric crystal pack-
ings (scheme 1):

.
Scheme 1

If the molecules related by intermolecular hydrogen
bonds form a noncentrosymmetric (NCS) associate,
both noncentrosymmetric (NCS) or centrosymmetric
(CS) crystal may be formed.6 If the molecules related
by intermolecular hydrogen bonds form a centrosym-

6 It should be remembered that inversion in the molecules related
to the group of unresolved enantiomers takes place without a con-
siderable energy loss and, as a rule, proceeds due to rotations of
the functional groupings by small angles with respect to one
another.

CS associate
Solution

NCS associate

 CS crystal

NCS crystal
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O(2B) O(2A)

O(1A)

N(1A)

Fig. 3. Hydrogen bonding in polymorphic modifications of MNPHOL.
metric (CS) associate, a centrosymmetric (CS) crystal
is usually formed. However, in some instances, a non-
centrosymmetric (NCS) crystal structure with a pseu-
dosymmetry and several molecules in the crystallo-
graphically independent part of the unit cell (Z' > 1)
may be formed [23].

In both above cases, the crystal structure is formed
not by individual molecules but by supramolecular
associates which are more or less stable and still present
in the mother liquor. Therefore, in terms of structure,
the existence of polymorphic modifications, including
concomitant ones, may be considered as the conse-
quence of the multivariant superposition of the local
equivalent supramolecular fragments (most often lay-
ers).

The results obtained were used to develop the strat-
egy for constructing noncentrosymmetric crystal struc-
tures. This strategy reduces to the following. If mole-
cules linked by intermolecular hydrogen bonds form a
sufficiently stable noncentrosymmetric associate, the
probability of the formation of a stable noncentrosym-
metric structure under the appropriately selected crys-
tallization conditions is rather high. In this case, the
possibility of formation of a noncentrosymmetric asso-
ciate may be confirmed either theoretically by compu-
tations (prediction of a crystal structure) or experimen-
tally (presence of a noncentrosymmetric associate in a
real but centrosymmetric crystal structure).

COMPUTATIONAL–THEORETICAL 
PREDICTION OF CRYSTAL STRUCTURE

At the first stage, it is very important to check
whether the program and the statistical potential func-
tion suggested by Hofmann may generate real motifs of
packings for compounds with strong intermolecular
hydrogen bonds.

As a test, we tried to generate the crystal packing of a
3,4-dihydroxy-2-oxo-1-methyl-4-piperidine (TOMYEZ)
crystal [24] in which the molecules form a branched
system of intermolecular hydrogen bonds and rather
strong double chains of centrosymmetric dimers
(Fig. 4). The predicted optimum crystal structure
turned out to be identical to the experimentally deter-
mined one and reproduced its unit-cell parameters, its
 REPORTS      Vol. 50      No. 2      200
system of hydrogen bonds, and the type of the
supramolecular associate. Both the calculated and the
experimentally determined crystal structures are shown
in Fig. 5.

Another test example is a meta-nitrophenol
(MNPHOL) crystal whose two well-known concomi-
tant modifications have close unit-cell parameters and
the same layered packings. The layers consist of infinite
chains (hydrogen OH⋅⋅⋅H bonds) typical of monatomic
alcohols (Figs. 6a, 6b) and connected via additional
weaker CH⋅⋅⋅O interactions.

The predicted optimum MNPHOL structure is
described by the orthorhombic sp. gr. Pbca with the a
and b parameters close to the parameters of the well-
known modifications and a double parameter c. The
calculated packing and the real crystal structure have a
layered nature. The layers are formed due to intermo-
lecular hydrogen OH⋅⋅⋅O and CH⋅⋅⋅O bonds and have
the topology (Fig. 6c) equivalent to the topology of the
noncentrosymmetric orthorhombic polymorphic modi-
fication described by the sp. gr. P212121. The unit-cell
characteristics of the experimental and predicted pack-
ings are indicated in Table 2. The close unit-cell param-
eters of the experimentally determined and predicted
structure and the equivalent topology of the supramo-
lecular associates lead to the assumption that the pre-
dicted packing may be related to one of possible (but
not implemented in practice) polymorphic modification
of this compound and that the force field of the Hof-
mann potential function may reproduce the typical
structural motifs even if they are formed by relatively
weak hydrogen bonds.

CONSTRUCTION OF NONCENTROSYMMETRIC 
CRYSTAL STRUCTURE OF N'-(2-PHENYL-1H-

INDOLE-3-ALDEHYDO-4-
NITROPHENYLHYDROZONE)

An example of the successful use of the approach
developed here is the construction of the packing of
noncentrosymmetric N'-(2-phenyl-1H-indole-3-alde-
hydo-4-nitrophenylhydrozone) (I) crystals [25]. The
donor–acceptor derivatives of hydrozones belong to the
class of crystalline materials promising for nonlinear
optics because they possess high values of molecular
5
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Table 1.  Lengths and energies of hydrogen bonds and reduced contacts in concomitant polymorphic modifications of MNPHOL

Contact Dnoncentro, Å
P212121

Dcentro, Å
P21/n

Enoncentro, kJ/mol 
P212121

Ecentro, kJ/mol
P21/n Enoncentro– Ecentro

O(1B)···H 1.91 1.95 –0.16 –0.031 –0.129

O(1B)···O(3A) 2.89 2.94 0.859 0.459 0.400

O(2B)···H 2.53 2.65 0.799 0.629 0.170

O(2B)···O(3A) 3.25 3.32 –0.904 –0.975 0.071

N(1B)···H 2.53 2.62 1.291 0.875 0.416

N(1B)···O(3A) 3.46 3.52 –0.814 –0.784 –0.030

Total energy 1.071 0.173 0.898
hyperpolarizabilities and may be readily synthesized by
condensation of various donor derivatives of aromatic
aldehydes and nitrophenylhydrazine. Crystals I are
convenient objects for construction because they allow
the comparatively easy control of formation of a crystal
structure by varying the crystallization conditions
[26−28]. Moreover, in crystals, hydrozone molecules
usually form stable acentric supramolecular associ-
ates—planar chains—because of the hydrogen bonds
of the central amino group to one of the oxygen atoms
of the nitro group and the additional weak interaction
between the CH group of the azomethine fragment with
the same oxygen atom (the so-called Λ contacts). Mol-
ecules in I have additional groupings, the donors of
hydrogen bonds, which, in principle, may change the
scheme of formation of a supramolecular associate.
However, our X-ray diffraction study of crystals I
grown from dioxane [25] showed that their centrosym-
metric packing described by the sp. gr. P21/c is formed

Fig. 4. Supramolecular associate formed due to H-bonds in
the TOMYEZ structure.
C

by noncentrosymmetric planar Λ chains characteristic
of hydrozones (Fig. 7a). The geometric characteristics
of a Λ contact are (N)H⋅⋅⋅O 2.01 Å and (C)H⋅⋅⋅O 2.54 Å.

An attempt of calculating the optimum packing of I
using the Hofmann program [18] gave the desirable
noncentrosymmetric crystal described by the sp. gr. Cc
with a stable associate of another type (Fig. 7b) in
which Λ chains are formed by the NH group of the
indole fragment of the molecule and not by the NH
group of the triadic grouping of hydrozone (the charac-
teristics of an Λ contact: (N)H···O 2.14 Å and (C)H⋅⋅⋅O
2.31 Å). We also calculated molecular hyperpolariz-

c

ob

a

Fig. 5. Comparison of the experimentally determined and
theoretically predicted TOMYEZ structures.
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(b)

(a)

Fig. 6. Topology of supramolecular MNPHOL layers in (a) polymorphic modifications described by the sp. gr. P21/c, (b) polymor-
phic modifications described by the sp. gr. P212121, and (c) predicted packing described by the sp. gr. Pbca.
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(a)

(b)

(c)

(d)

Fig. 7. Topology of the supramolecular chains in a N'-(2-phenyl-1H-indole-3-aldehydo-4-nitrophenylhydrozone) (I) crystal, sp. gr. P21/c.

(a) Crystal grown from dioxane; (b) predicted packing, sp. gr. ëÒ; (c) crystal grown from pyridine, sp. gr. ; and (d) crystal grown
from acetonitrile, sp. gr. Pna21.

P1
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Table 2.  Unit-cell parameters of the polymorphic modifications of meta-nitrophenol and the predicted crystal structure

Sp. gr., Z a, Å b, Å c, Å α, deg β, deg γ, deg

P21/c, Z = 4 11.240 6.891 8.154 90 98.05 90

P212121, Z = 4 11.136 6.649 8.091 90 90 90

Pbca, Z = 8 12.011 6.554 15.546 90 90 90
ability β and crystalline susceptibility d for the pre-
dicted noncentrosymmetric structure in accordance
with [29]. The obtained characteristics of both molecu-
lar and crystalline nonlinearity were high (β = 66.68 ×
10–51 cm3/V2, dxxx = 90.8 pm/V and dzzx = 28.6 pm/V).
In the hope to obtain a real noncentrosymmetric crystal,
we tried to grow other modifications of compound I by
using various solvents. As a result, we obtained several
new crystalline modifications;7 however, only the crys-
tals grown from pyridine and acetonitrile had the qual-
ity appropriate for X-ray diffraction analysis.

Crystals grown from pyridine were centrosymmet-

ric, sp. gr. . The structure of these real crystals con-
sists of Λ chains of the same type as in the predicted
noncentrosymmetric structure described by the sp. gr.
Cc (Fig. 7c). Hydrogen bonding in this structure is
formed with the participation of NH groups of indole
fragments and oxygen atoms of nitro groups, (N)H⋅⋅⋅O
2.05 Å. However, because of the rotation of the phenyl
group of the molecule, the CH⋅⋅⋅O contact stabilizing
the planar structure of the Λ chain is considerably
weakened, (C)H⋅⋅⋅O 2.97 Å.

The crystals grown from acetonitrile are noncen-
trosymmetric, sp. gr. Pna21, Z = 4. Like in crystals
grown from dioxane, the supramolecular associate
(Fig. 7d) is formed with the participation of the proton
of the central amino group ((N)H⋅⋅⋅O 1.85 Å). However,
as in the previous case, the contact between the CH
group of the azomethine fragment and the oxygen atom
of the nitro group is considerably weakened, (C)H⋅⋅⋅O
2.93 Å. As a result, the chain is not planar and the chain
molecules are rotated with respect to one another so
that the angle between the mean-square molecular
planes of the chain amounts to 70.2°. Although molec-
ular hyperpolarizability in the crystal is still rather high
(β = 65.7 × 10–51 cm3/V2), the components of the sus-
ceptibility tensor (d31 = –8.9 pm/V, d32 = 7.9 pm/V, and
d33 = 23.2 pm/V) are much lower than in the predicted
optimum structure.

Thus, the developed construction strategy based on
the establishment of common structural features, the
rules of the formation of a desirable crystal structure,
and the computational–theoretical prediction of opti-
mum packings of promising compounds may become

7 The study of their structures by different methods including pow-
der diffractometry and various computational methods are under
way.

P1
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an important instrument for designing new materials
with preset physical properties.
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Abstract—Methods for calculating some properties of molecules and crystals from the electron density recon-
structed from a precise X-ray diffraction experiment using the multipole model are considered. These properties
include, on the one hand, the characteristics of the electron density and the inner-crystal electrostatic field and,
on the other hand, the local electronic energies (kinetic, potential, total), the exchange energy density, the elec-
tron-pair localization function, the localized-orbital locator, the effective crystal potential, and others. It is
shown that the integration of these characteristics over pseudoatomic volumes bounded by the surfaces of the
zero flux of the electron density gradient makes it possible to characterize directly from an experiment the prop-
erties of molecules and crystals in terms of the atomic contributions. The computer program WinXPRO2004,
realizing these possibilities, is briefly described. © 2005 Pleiades Publishing, Inc.
In recent years, precise X-ray diffraction experiment
became an effective tool for studying the physical and
chemical properties of solids that depend on the elec-
tron density distribution [1, 2]. The popularity of this
method is due to the progress in the development of the
experimental techniques and equipment [3–7] and
improvement of the methods for processing experimen-
tal data and interpreting obtained results [1]. Recon-
struction of the electron density from X-ray diffraction
intensities (corrected for the absorption, thermal diffuse
scattering, multiple scattering, and extinction) is gener-
ally performed using the structural multipole model [8–
11]. The model (quasi-static) electron density is a func-
tion extrapolated to resolution of ~0.1 e Å–3, which,
despite the limited measurement accuracy and incom-
plete elimination of the effect of thermal averaging, is
close to the quantum-mechanical electron density
obtained from first principles. It is important that the
model and quantum-mechanical electron densities are
topologically similar (provided that the experimental
data are sufficiently accurate and the diffraction and
structural models used correspond to the physical real-
ity) [12–15]. Therefore, the model electron density can
be regarded as a homeomorphic image of the quantum-
mechanical electron density, which is suitable for anal-
ysis in solid-state physics and chemistry.

In this paper, we report the results of the calculation
of some properties of crystals based on the data on the
experimental (model) electron density. Such calcula-
tions have not been reported previously.

Presently, the model electron density can be used to
obtain, in good agreement with theory, the following
1063-7745/05/5002- $26.00 ©0177
characteristics of the electronic structure and properties
of solids [16–18]:
the deformation, valence, and total electron densities;
the Laplacian of electron density [19];
the electrostatic potential [20–22];
the field of the electron density gradient [19] and/or the
electrostatic potential field [23];
the dipole and quadrupole electric moments of mole-
cules [24];
the electrostatic part of the intermolecular energy
[1, 25];
the effective atomic charges corresponding to the elec-
trostatic potential [26];
the electric field gradient at the positions of nuclei
[1, 27];
the one-electron potential [28–33];
the local, kinetic, and potential electronic energies cal-
culated within different approximations of the density-
functional theory [34];
the critical points in the electron density, electrostatic
potential, the Laplacian of the electron density, and the
local energies;
the electron-pair localization function [35–37];
the localized-orbital locator [38];
the distribution of the exchange electron density in dif-
ferent approximations [17];
the local temperature and entropy of the electron gas
[33, 39];
the exchange potential [17];
 2005 Pleiades Publishing, Inc.
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Fig. 1. Electron density distribution in a molecule of urea CO(NH2)2 (a) reconstructed from experimental X-ray diffraction data and
(b) calculated by the ab initio Hartree–Fock method in the 6–311G** basis. Isolines are plotted with steps of 2 × 10n, 4 × 10n, and
8 × 10n e Å–3 (0 < n < 3). The corresponding distributions of the kinetic energy density: (c) approximate distribution calculated from
the experimental electron density according to (4) and (d) the Hartree–Fock distribution (isoline steps are 2 × 10n, 4 × 10n, and 8 ×
10n e Å–3 (0 < n < 3)). The experimental maps are constructed on the basis of the multipole parameters of one molecule. Small
negative regions near the hydrogen nuclei (c) originate from the approximation scheme used (see [34] for more details).
the local Fermi momentum [17];
and any scalar field (electron density, electrostatic
potential, local energies, and so on) integrated over a
volume bounded by the surface of the zero flux of the
electron density gradient.

Note that the local kinetic, potential, and exchange
energies; the electron localization function; and the
localized-orbital locator are calculated using the model
electron density in the formulas of the density-func-
tional theory [40]. In this case (the validity of which
was demonstrated in [34]), theory and experiment are
combined to the maximum extent.
C

The existence of corresponding software plays an
important role in practical application of any new
approach. There are programs [41–44] for calculating
some of the properties listed above for the systems
composed of atoms with Z ≤ 36. We have developed a
new version of the WinXPRO program [45] which
makes it possible to calculate all the above properties.
The initial data for the calculation are the electron den-
sity parameters obtained within the Hansen–Coppens
multipole model and the data on the crystal symmetry.

The WinXPRO program is a Windows application
and has a graphical user interface which allows one to
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 2      2005
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easily create or automatically generate an input file
using an output file and symmetry operations of the
MOLLY [46] or XD [42] programs. The possibility of
combining functions (for example, the effective crystal
potential can be easily calculated as a sum of the elec-
trostatic and exchange potentials) and the calculation of
standard deviations of the electron density and its char-
acteristics are provided. All characteristics can also be
calculated for a promolecule or a procrystal. An atomic
or a molecular cluster used in calculations is specified
by choosing the distance from a specified atom (chosen
point) or some space volume. The version of the
WinXPRO2004 program used here makes it possible to
perform calculations for a cluster of 350 independent
atoms with Z ≤ 76.

The results of the calculations are given as both the
numerical characteristics of the properties of molecules
and crystals and their 1D, 2D, and 3D images, which
can be visualized using the corresponding graphical
programs (for more detailed information about the
WinXPRO2003 program, see the Internet sites
http://stash.chat.ru and http://xray.nifhi.ru/wxp).

Let us consider in more detail some new possibili-
ties for calculating the properties of molecules and
crystals within the above approach. We have chosen the
characteristics that are especially important to establish
the details of the chemical bond and the effect of struc-
ture on the physico-chemical properties of materials.
As the objects of study, we chose a molecular crystal of
urea, which is characterized by covalent and hydrogen
bonds, and an YBa2Cu3O7 crystal, in which bonds are
predominantly ionic. The multipole parameters for
these compounds were obtained in [47] (urea, measure-
ment at 148 K) and [48] (YBa2Cu3O7, synchrotron
measurement [49] at room temperature).

The distribution of local kinetic energy in the one-
electron theory is determined by the expressions [19]

(1)

(2)

which are related as follows:

(3)

(λi is the occupation number of the orbital ϕi(r); from
here on, the atomic system of units is used). The func-
tion –∞ < k(r) ≤ ∞ is the quantum-mechanical
(Schrödinger [19]) kinetic energy density. The function
g(r) > 0 is the quasi-classical kinetic energy density.
Although it is impossible to unambiguously determine
the kinetic energy density [50], expansion (2) gives the
necessary condition for the nonnegativity of the elec-
tron distribution function over momenta and coordi-
nates [50, 51].

k r( ) 1/2( ) λ i∇
2ϕ i r( ),

i

∑–=

g r( ) 1/2( ) λ i∇ϕ i r( )∇ϕ i r( ),
i

∑=

k r( ) g r( ) 1
4
--- ∇ 2ρ r( )–=
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Using the result of Kirzhnits [52], which is well
known in the density-functional theory [40], expression
(2) can be approximated by the formula

(4)

Thus, the density of the kinetic energy of electrons is
approximately expressed in terms of the electron den-
sity and its first and second derivatives. The correct
electron density cannot be obtained as a result of the
minimization of the total energy within this approxima-
tion. However, in calculating g(r), this approach makes
it possible to use the experimental electron density,
which is close to that calculated by the Hartree–Fock
method (Figs. 1a, 1b). In this case, very good agree-
ment with the Hartree–Fock kinetic energy density is
obtained (Figs. 1a, 1b). Other examples concerning
inorganic, organoelement, and organometallic systems
were considered in [33, 39].

The distribution of the potential energy of electrons
(the local potential energy density) is the field of the
virial of the Ehrenfest force [19], which acts on an elec-
tron at a point r from nuclei and other electrons
[53−55]. The Ehrenfest force governs the motion of
electrons and, therefore, plays an important role in the
quantum mechanics of molecules and crystals [54]. For
each type of atomic interaction, the lines of maximum
electron density connecting some nuclei (Bader bond
paths) correspond to the lines of maximally negative
potential energy density connecting the same nuclei
(virial paths) [19]. The resulting pattern of the concen-
tration/depletion of electrons in space accounts for the
balance of forces providing the dynamical equilibrium
structure of a molecule or a crystal. According to Bader
[19], virial paths serve as a universal indicator to
directly reveal chemically bound atoms and determine
the molecular graph, which is invariant with respect to
nuclear vibrations in a stable system. Thus, analysis of
the potential energy distribution can be an efficient tool
for detecting structure-forming interactions in mole-
cules and crystals.

The local virial theorem [19]

2g(r) + v (r) = (1/4)∇ 2ρ(r) (5)

makes it possible to determine the potential energy den-
sity from the experimental electron density by calculat-

g r( ) = 
3
10
------ 3π2( )

2/3
ρ5/3 r( ) 1

72
------ ∇ρ r( ) 2

ρ r( )
-------------------- 1

6
--- ∇ 2ρ r( ).+ +

Contributions to the electronic energy of the urea molecule
(in au) calculated by integrating the local electronic energy
density (6) over atomic volumes limited by the surfaces of
the zero flux of the electron density gradient

C O N H1 H2

–36.690 –75.193 –55.807 –0.215 –0.256

Total electronic energy 
of the molecule

–224.45 
(crystal)

–224.046 (quantum-
chemical calculation 

for one molecule)
5
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Fig. 2. Distributions of the (a) electron density and (b) potential energy density in pairs of neighboring molecules of urea CO(NH2)2
in a crystal reconstructed from the multipole parameters obtained in an X-ray diffraction experiment. Intermolecular contacts in
bands of molecules and between bands are indicated. The geometric parameters are taken from the experiment. The surfaces corre-
sponding to an electron density of 0.13 e Å–3 and a potential energy density of –0.012 au are shown.
ing g(r) from formula (4) and ∇ 2ρ(r). Analysis of the
local potential energy is highly effective in finding the
physical reasons for the formation of the 3D structure
of molecules and crystals [33, 34, 39]. For example,
neighboring pairs of molecules in a urea crystal con-
nected by electron density bridges are also connected
by bridges of negative potential energy density (Fig. 2).
Thus, electron density bridges are formed as a result of
the energy redistribution upon the formation of a crystal
C

from molecules and not from simple overlapping of
atomic electron densities. This approach is especially
effective in establishing the structural formula of mole-
cules in nontrivial cases [55].

The density of the total electronic energy is

h(r) = g(r) + v (r). (6)

In principle, the electronic energy h(r) clearly reveals
the regions of electron concentration at covalent bonds
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 2      2005
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Fig. 3. Distribution of the electronic energy density (see expression (6)) in a CO(NH2)2 crystal calculated from the multipole model
parameters (isoline step 0.2 au, positive lines correspond to negative values of the electronic energy density). It can be seen that the
electronic energy density reveals core and valence regions in the urea molecule; the electron concentration at the covalent bonds C–
O, C–N, and N–H; and unshared electron pairs of the oxygen atom. The regions of intermolecular hydrogen bonds O⋅⋅⋅H are char-
acterized by positive values of the electronic energy density; the directionality of these bonds is very weakly expressed.
and unshared electron pairs, as well as the depletion of
electrons in hydrogen bonds (Fig. 3). We will indicate
here a new useful application of the analysis of elec-
tronic energy. It is known [19] that the regions around
nuclei in a molecule or a crystal, separated by the sur-
faces of the zero flux of the electron density gradient,

(7)

can be identified with bound atoms (pseudoatoms). An
integral of any quantity A(r) over the volume of such an
atom Ω

(8)

gives the average value of this quantity, and the sum of
the atomic contributions is the total value of this quan-
tity for the system under consideration. In particular,
integrating the electronic energy distribution over
atomic volumes and summing the contributions, one
can calculate the energies of functional groups, bound
molecules in the crystal, and the unit cell of a crystal.
Figure 4 shows pseudoatoms bounded by the surfaces
of the zero flux of the electron density gradient for a
urea molecule in a crystal, and the atomic components
of the electronic energy are listed in the table. Summa-
tion of the atomic contributions gives the electronic
energy for a bound molecule. Its comparison with the
quantum chemically calculated electronic energy for a
free molecule shows that the result obtained correctly

∇ρ r( ) n r( )⋅ 0, ∇ r Si r( ),∈=

A〈 〉 A r( ) Vd

Ω
∫=
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reflects the physically justified decrease in the energy in
going from a free molecule to a crystal. In principle,
this approach makes it possible to obtain the intermo-
lecular interaction energy directly from an X-ray exper-
iment. However, very accurate experimental data are
required to do this.

Hunter [28, 29] considered the one-electron poten-
tial

(9)

which is a part of the effective potential in the Kohn–
Sham equations [32, 56], and indicated that negative
regions of P(r) correspond to positive values of the
local kinetic energy of electrons: an electron in these
regions is referred to as classically allowed. In contrast,
positive regions of P(r) reveal classically forbidden
potential barriers, where electrons demonstrate quan-
tum behavior. It has been ascertained that the one-elec-
tron potential of free atoms reveals alternating minima
and maxima related to fact that the atoms have a shell
electronic structure. This structure manifests itself in
the regions of concentration (P(r) < 0) and depletion
(P(r) > 0) of electrons, which alternate with an increase
in the distance from a nucleus [30, 31]. The second term
in (9) is always negative, whereas the first term has the
same sign as ∇ 2ρ(r); hence, the classically allowed
regions of P(r) approximately correspond to the
regions of the negative Laplacian of the electron den-
sity: the empirical characteristic of concentra-

P r( ) ∇ 2ρ r( )/4ρ r( ) ∇ρ r( ) 2
/8 ρ r( )[ ] 2

,–=
5
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Fig. 4. Surfaces of the zero flux of the electron density gradient which separate atoms in a molecule of urea CO(NH2)2.
tion/depletion of electrons in the theory of the chemical
bond developed by Bader [19]. Alternating negative
minima and positive maxima of P(r) are observed for
all atoms, whereas the Laplacian of the electron density
makes it impossible to distinguish the valence electron
shells of some atoms, beginning with the fourth group
of the periodic table [30, 31, 57]. The latter circum-
stance has important practical consequences. When
analyzing a chemical bond, the regions of the valence
shells of bound atoms, in which ∇ 2ρ(r) < 0, are identi-
fied with the regions of concentration of valence elec-
tron pairs [19]. Since these regions do not manifest
themselves in the Laplacian of the electron density for
compounds with heavy atoms, the one-electron poten-
tial in fact may serve in this case as the only indicator
of chemical bond features.

Let us illustrate the above considerations by the
analysis of the function P(r) along the interaction line
between a Ba ion and one of the oxygen atoms in the
Cu(2)–O plane of an YBa2Cu3O7 crystal (Fig. 5). Free
Ba and O atoms have, respectively, six and two pairs of
minima and maxima of the one-electron potential P(r).
As a result of the interference of the valence orbitals of
C

these atoms upon the formation of a crystal (a quantum
effect), the external positive regions of the atomic func-
tions P(r) merge to form a unified classically forbidden
region at the Ba–O line. This region contains a bond
critical point (the point where ∇ρ (r) = 0 and the curva-
ture of the electron density along the bond line is posi-
tive and both perpendicular curvatures are negative)
located at a distance of 1.511 Å from the Ba ion
(Fig. 5b). The manifestation of the concentrations of
valence electrons in the Laplacian of the electron den-
sity is limited, and the Laplacian minimum in the
region of interference of the valence Ba and O orbitals
does not take negative values. As is known, a positive
Laplacian of the electron density at the bond critical
point is interpreted as the manifestation of interaction
of a closed shell type [19]. The one-electron potential
also demonstrates the depletion of electrons around the
critical point. Simultaneously, the function P(r) reveals
a fine detail of interaction: the manifestation of the
interference interaction between Ba and O ions in
YBa2Cu3O7. In other words, the one-electron potential
shows the presence of a low electron concentration at
the Ba–O bond, i.e., the covalent component of this
bond.
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According to (8), the integration of the electron den-
sity over atomic basins in YBa2Cu3O7 (the volumes of
barium and oxygen atoms are 23.50 and 12.03 Å3,
respectively) gives the following charges at the atoms:

(a)

Ba
–100

0

100
P(r)

1
2

0.2 0.4 0.6 O(4)

(b)

Ba
–15

0

15

1
2

1.0 1.5 2.0 O(4)

(c)

Ba
–30

0

30

1
2

2.0 2.5 O(4)

r, Å

Fig. 5. Profiles of the one-electron potential (9) (dashed
lines) and the Laplacian of the electron density (solid line)
along the Ba–O(4) direction in the Cu(2)–O plane in a
YBa2Cu3O7 crystal. The arrow (b) indicates the position of
the bond critical point.
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+1.48(2) and –0.86(2) e for Ba and O(4), respectively.
These charges, differing from the formal ones (which
one might expect in the case of a purely ionic bond), are
in excellent agreement with the conclusions drawn on
the basis of the analysis of the function P(r).
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Abstract—Neutron diffraction investigation of the 152Sm0.45Sr0.55MnO3 manganite is performed. The diffrac-
tion data are compared with the magnetic and transport properties of this compound. The parameters of the
crystal and magnetic structures are determined. Manganite belongs to the orthorhombic system (sp. gr. Pnma)
and has a perovskite-like structure in the entire temperature range under study (1.5–260 K). The ground state
of the 152Sm0.45Sr0.55MnO3 manganite at low temperatures is a single-phase A-type antiferromagnetic insulator
with TN ~ 180 K. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

The discovery of the phenomenon of negative colos-
sal magnetoresistance (CMR) in manganites with per-
ovskite structure, i.e., the decrease in their resistivity in
a magnetic field by several orders of magnitude, has
stimulated numerous physical investigations in this
field [1−3]. The main purpose of all these studies was
the determination of the mechanisms responsible for
the CMR. However, when carrying out a complex study
of manganites, it turned out that these compounds are
no less interesting from the point of view of manifesta-
tion of other fundamental properties of solids: metal–
insulator transitions, first-order phase transitions, the
formation of mixed ground magnetic states with phase
separation (electronic, nanoscopic, microscopic, meso-
scopic), the formation of charge and/or orbital ordering
states, and strong cooperative Jahn–Teller effects.
Since various physical properties of these compounds
are related to a particular type of ordering of magnetic
moments of Mn ions, neutron diffraction data are very
important.

This work is a continuation of the systematic neu-
tron diffraction investigation performed by us previ-
ously [4–8] on Sm–Sr manganites with the general for-
mula Sm1 − xSrxMnO3. These compounds are of much
scientific interest because, owing to the large difference
in the ionic radii of samarium and strontium, interac-
tions between the electronic, phonon, and magnetic
subsystems are pronounced in Sm–Sr manganites. The
previous systematic investigation of ceramic samples
of the Sm–Sr system by measuring the temperature and
field dependences of the resistivity and magnetization
[9, 10] demonstrated that the CMR effect manifests
itself only in the range of hole doping at 0.3 ≤ x ≤ 0.52
1063-7745/05/5002- $26.00 0185
with a maximum at x = 0.44. Recently, these data were
confirmed by a similar investigation on single crystals
[11]. Some new results were obtained for concentra-
tions x ≥ 0.5, which, however, require confirmation and
explanation.

In view of the above considerations, we believe that
it is important to supplement the previously obtained
neutron diffraction data on hole-doped Sm1 − xSrxMnO3
manganites with the data on electron-doped Sm–Sr
manganites having threshold values of x that corre-
spond to a change in the sign of carriers near the region
where the CMR effect exists. This is even more urgent
because, presently, there are no experimental data on
the ground magnetic states of such compounds in the
literature. On the basis of these considerations, we
choose the strontium content x to be 0.55.

EXPERIMENTAL

Preparation and certification of the sample. In order
to suppress the very strong absorption of neutrons by
the 149Sm isotope present in natural samarium, the
Sm0.45Sr0.55MnO3 sample for neutron diffraction analy-
sis was synthesized using the 152Sm isotope.

The sample was prepared from a mixture of
152Sm2O3, SrCO3, and MnO2 in the corresponding
ratio. The mixture was first heated in air for 12 h to
carry out decarbonization; then ground; and, finally,
pressed into pellets under a pressure of 1 t/cm2. The
synthesis was performed by heating the mixture at
1400°C for 12 h, after which the sample was slowly
cooled at a rate of 5 K/min to 800°C and, finally,
quenched to room temperature.
© 2005 Pleiades Publishing, Inc.
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A large number of crystallites of the sample used for
the neutron diffraction study were characterized by
electron microscopy. For each crystallite, reciprocal-
space reconstruction was performed at room tempera-
ture on a JEOL 200 CX electron microscope equipped
with a sample holder that could be oriented obliquely.
At low temperatures, the reconstruction was performed
on a JEOL 2010 electron microscope. The cation com-
position was determined by energy-dispersive spectro-
scopic analysis using analyzers constructed on the basis
of three electron microscopes. It was found that the dis-
tribution of cations is very uniform and the real compo-
sition is absolutely identical to the nominal one. The
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Fig. 1. Temperature dependences of the resistivity R of
152Sm0.45Sr0.55MnO3 measured in a zero external magnetic
field and in a field of 7 T.
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Fig. 2. Field dependences of the magnetization of
152Sm0.45Sr0.55MnO3 at temperatures of 2.5 and 5.0 K
(zero-field cooling). Different symbols denote different
regimes of field cycling.
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certification of the sample by X-ray diffraction analysis
and iodometric titration confirmed that the compound
under study is single-phase and has a homogeneous
nominal composition.

Macroscopic measurements. The temperature
dependence of the resistivity was measured upon cool-
ing from 400 to 5 K in a zero magnetic field and in a
field of 7 T by the conventional four-probe technique on
columnar samples (obtained after cutting pellets) 2 ×
2 × 10 mm3 in size. The magnetization was measured in
magnetic fields from 0 to 5 T at T = 2.5 and 5 K after
zero-field cooling of the sample.

Neutron powder diffraction. The diffraction mea-
surements were performed on the Russian–French
7-section high-resolution neutron powder diffractome-
ter G4.2 equipped with 70 counters [12] and installed
on a cold neutron guide of the Orphee reactor (Leon
Brillouin Laboratory, Saclay, France). Neutron diffrac-
tion patterns were measured in the superposition mode
using monochromatic neutrons with a wavelength λ =
2.3428 Å in the angular range 3° ≤ 2θ ≤ 174° upon
heating at temperatures T = 1.5, 50, 100, 150, 177, and
260 K in a cryofurnace. During the measurements, the
powdered sample was placed in a vanadium cylindrical
container 8 mm in diameter.

RESULTS AND DISCUSSION

Macroscopic measurements. The temperature
dependence of the resistivity of the 152Sm0.45Sr0.55MnO3
sample (Fig. 1) demonstrates the absence of the metal–
insulator transition, which is characteristic of all Sm–Sr
manganites exhibiting the CMR effect. The sample
remained an insulator in the entire temperature range
under investigation, independent of the applied mag-
netic field (7 T). However, we should note that a small
jump in the temperature dependence of the resistivity
arises in the temperature range 130–170 K. A similar
local maximum of the resistivity was observed previ-
ously in [11] for single crystals with x = 0.5–0.575.

The curves of the field dependence of magnetization
(Fig. 2) confirm that ferromagnetic ordering is practi-
cally absent at low temperatures.

Neutron powder diffraction. The crystal structure of
Sm0.45Sr0.55MnO3 was determined by the Rietveld
method using the FULLPROF program [13]. In the
entire temperature range under study (1.5–260 K), the
crystal structure of the sample is adequately described
by the orthorhombic sp. gr. Pnma. Figure 3 shows as an
example the refinement of the diffraction pattern mea-
sured at T = 260 K. Figure 4 shows all experimental dif-
fraction patterns measured in the cryofurnace at tem-
peratures T = 1.5, 50, 100, 150, 177, and 260 K.

The temperature dependences of the unit-cell
parameters and volume are shown in Figs. 5a and 5b,
respectively. As can be seen from Fig. 5a, the unit cell
is characterized at all temperatures by the relation
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 2      2005
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b/  < a < c and is typical of manganites, with toler-
ance factor t < 0.94 and distortion of the cubic perovs-
kite lattice of the a–b+a– type [14]. The orthorhombic
lattice distortion δ = (a – c)/(a + c) is fairly high (δ ~
0.4%). At T = 1.5 K, MnO6 octahedra are strongly com-
pressed along the b axis. With an increase in tempera-
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Fig. 5. Temperature dependences of the parameters of
152Sm0.45Sr0.55MnO3: (a) the unit-cell parameters, (b) the
unit-cell volume, and (c) the Mn–O bond lengths in MnO6
octahedra (which demonstrate the presence of coherent
Jahn–Teller distortions).
C

ture, the distortion of MnO6 octahedra decreases and
their symmetry tends to become cubic. The unit-cell
parameters a and c decrease with a corresponding
advanced increase in the parameter b. The unit-cell vol-
ume, due to the strong increase in b, demonstrates nor-
mal thermal expansion with increasing temperature.

The neutron diffraction experiments carried out here
yielded detailed data on the coherent Jahn–Teller dis-
tortions of MnO6 octahedra (Fig. 6). At all tempera-
tures, the apical Mn–O(1) bond length remains smaller
than the equatorial Mn–O(2) and Mn–O(22) bond
lengths; the equatorial bond lengths are almost equal at
temperatures at which the Sm0.45Sr0.55MnO3 sample
under study is a paramagnet. In the temperature range
in which the sample is an antiferromagnet, octahedra
are distorted in the equatorial plane (maximally at tem-
peratures close to the magnetic transition). This distor-
tion decreases somewhat with a decrease in tempera-
ture. It should be noted that the distortion of MnO6

octahedra in the equatorial plane is relatively small in
comparison with similar distortions for the
Sm0.6Sr0.4MnO3 [5] and Sm0.55Sr0.45MnO3 [7] composi-
tions. The Mn–O–Mn bond angles are almost indepen-
dent of temperature and equal to approximately 161°
and 167° for the oxygen positions O(1) and O(2),
respectively. The average value of the bond angle Mn–
O–Mn at all temperatures is 164°. The values of the
bond angles are similar to those obtained for the com-
pounds with other Sr contents: 40, 45, and 50%. At the
same time, the magnetic-ordering temperatures are
quite different: 120 K for Sm0.6Sr0.4MnO3, 122 K for
Sm0.55Sr0.45MnO3, 135 K for Sm0.5Sr0.5MnO3, and
180 K for the compound under consideration:
Sm0.45Sr0.55MnO3.

The Rietveld analysis of the magnetic contribution
to the neutron diffraction patterns at low temperatures
was performed using the same FULLPROF program;

0.5
0
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50 100 150 200
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Fig. 6. Temperature dependence of the magnetic moment.
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Fig. 7. An example of the refinement of a neutron diffraction pattern of 152Sm0.45Sr0.55MnO3 measured at T = 1.5 K: experimental
(symbols) and Rietveld-refined (solid lines) neutron diffraction patterns. The difference (experiment minus calculation) curve is
shown by a solid line at the bottom. The positions of Bragg reflections are denoted by vertical bars; the upper row corresponds to
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only a single-phase homogeneous model for the Mn
sublattice based on the Pnma unit cell was considered.

The results of the analysis unambiguously indicate
that the compound under investigation is homogeneous
in the ground magnetic state and is an A-type antiferro-
magnet, which is sometimes referred to as a weak fer-
romagnet. In fact, we are dealing with the ferromag-
netic ordering of the magnetic moments of Mn ions in
a plane and the antiferromagnetic ordering between the
planes, i.e., the two-dimensional ferromagnetic order-
ing. This antiferromagnetic phase is formed at TN ~
180 K (at T = 177 K, very weak antiferromagnetic
(010) and (111) reflections are still observed in the
measured neutron diffraction pattern). The value of the
magnetic moment at low temperatures in the saturation
regime is mAFM = 2.97(2) µÇ/Mn. The diffractometer
resolution makes it possible to unambiguously deter-
mine that the antiferromagnetic moment is directed
along the a axis. Figure 6 shows the temperature depen-
dence of the antiferromagnetic moment. An example of
the mathematical refinement of the pattern measured at
T = 1.5 K is shown in Fig. 7.

It should be noted that no additional peaks, which
could be related to the existence of long-range charge
ordering, were observed in the neutron diffraction pat-
terns.
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 2      2005
CONCLUSIONS

Systematic investigation of the 152Sm0.45Sr0.55MnO3

manganite with the threshold composition correspond-
ing to the change in the sign of charge carriers near the
range of Sr content x = 0.30–0.52 is performed. Here
the CMR effects and the metal–insulator transition
manifest themselves and the ground magnetic state is
either homogeneous ferromagnetic (for x = 0.45) or
mixed ferromagnetic and A-type antiferromagnetic
with a dominating ferromagnetic phase (x = 0.4, 0.5).
The results obtained confirmed that the
152Sm0.45Sr0.55MnO3 compound belongs to perovskite-
like structures with the sp. gr. Pnma. However, the
ground magnetic state turned out to be purely antiferro-
magnetic without any impurity of the ferromagnetic
phase and its magnetic structure is of the A type, just
like it is in the antiferromagnetic phases in Sm–Sr hole-
doped manganites exhibiting the CMR effect.
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Abstract—The crystal structure of a new compound, namely, Nd2TeMo6O24 ⋅ 19H2O, is determined using
X-ray diffraction. The crystal has a chain structure and consists of [Nd2TeMo6O24 ⋅ 14H2O]n neutral chains
aligned parallel to the [010] direction and crystallization water molecules. In a chain, each Nd atom links two
heteropoly anions. The Nd3+ environment includes seven water molecules and two oxygen atoms of the two
heteropoly anions adjacent in the chain. The polyhedron is a monocapped tetragonal antiprism. In the previ-
ously studied complex of similar composition, namely, Nd2TeMo6O24 ⋅ 18H2O, the Nd coordination polyhe-
dron has the shape of a tricapped trigonal prism formed by six water molecules and three oxygen atoms of the
two heteropoly anions adjacent in the chain. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

This paper continues our studies of f-element com-
plexes with various heteropoly anions, in particular,
those characterized by an Anderson structure [1], some
of which exhibit luminescence properties [2–4].

Earlier [2], we described the crystal structure of
Nd2TeMo6O24 ⋅ 18H2O (I). This compound was synthe-
sized by adding a 0.1 mol/l Nd(NO3)3 solution to a sat-

urated (~0.02 mol/l) TeMo6  solution. It was found
that the reaction between diluted solutions

(~0.002 mol/l TeMo6 , ~0.004 mol/l Nd3+) yields
crystals of a compound with a somewhat different for-
mula, namely, Nd2TeMo6O24 · 19H2O (II). After hold-
ing the solution for approximately 20 h, light lilac
platelike crystals of II precipitated. The composition of
II was determined using X-ray diffraction analysis.

EXPERIMENTAL

X-ray diffraction analysis was performed with a sin-
gle-crystal fragment 0.18 × 0.09 × 0.07 mm in size. The
experimental data were collected on an Enraf–Nonius
KappaCCD automated diffractometer (MoKα radiation,
graphite monochromator). The parameters of the tri-
clinic unit cell were determined at 20°C from
10 images with ∆ϕ = 1° and were then refined using the
complete set of reflections: a = 9.543(2) Å, b =
10.151(2) Å, c = 10.503(2) Å, α = 95.97(3)°, β =

104.48(3)°, γ = 112.92(3)°, space group , Z = 1, and
dcalcd = 3.227 g/cm3. In the range 2° < θ < 27.5°, the
intensities of 7168 reflections were measured, among

O24
6–

O24
6–

P1
1063-7745/05/5002- $26.00 0191
which 3766 reflections [including 3354 reflections with
I > 2σ(I)] were unique. The MULABS empirical
absorption correction (PLATON [5]) was applied to the
experimental set of intensities. The structure was
solved by direct methods [6]. The positions of all the
non-hydrogen atoms were refined using the full-matrix
least-squares method [7] in the anisotropic approxima-
tion. The hydrogen atoms of the coordinated and crys-
tallization water molecules were located from differ-
ence Fourier syntheses and refined with the constraint
that the O–H bond lengths tend to be 0.85 Å and that the
thermal parameters exceed the Ueq values of the oxygen
atoms of the water molecules by a factor of 1.5. The
final refinement of 298 parameters resulted in R1 =
0.0414 and wR2 = 0.0879 [for reflections with I >
2σ(I)]. The atomic coordinates in structure II have been
deposited with the Inorganic Crystal Structure Data-
base, Karlsruhe, Germany (ICSD no. 413 414).

RESULTS AND DISCUSSION

Crystal II (figure) has a chain structure and consists
of [Nd2TeMo6O24 ⋅ 14H2O]n neutral chains aligned par-
allel to the [010] direction. In a chain, each Nd atom
links two heteropoly anions. Crystallization water mol-
ecules are located between the chains.

The TeMo6  heteropoly anions are located at the
centers of inversion, and their structures are similar to
those in (NH4)6TeMo6O24 ⋅ Te(OH)6 ⋅ 7H2O [8],
Nd2TeMo6O24 ⋅ 18H2O [2], and
(NH4)3[Tb(TeMo6O24)(H2O)5] ⋅ 5H2O [3]. The coordi-
nation environment of the central Te atom is an almost

O24
6–
© 2005 Pleiades Publishing, Inc.
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Chains of [Nd2TeMo6O24 ⋅ 12H2O]n in structure I and [Nd2TeMo6O24 ⋅ 14H2O]n in structure II.
undistorted oxygen octahedron, whereas the molybde-
num octahedra are severely distorted.

The Nd3+ environment is formed by seven water
molecules and two oxygen atoms of the two heteropoly
anions adjacent in the chain. The coordination number
of neodymium is nine, and the polyhedron is described
as a monocapped tetragonal antiprism. The oxygen
atoms of the heteropoly anions form a lateral edge of
the antiprism. The Nd–O bond lengths in the coordina-
tion sphere of neodymium have close values, but the
interatomic distance to the capping (apical) O(5w)
atom is somewhat elongated. The mean length of the
Nd–O bond involving the oxygen atoms located at the
vertices of the tetragonal antiprism is equal to
2.494(4) Å, and the Nd–O(5w) bond length is
2.552(5) Å. The capped face is planar within 0.018 Å,
and the lower face is planar within 0.046 Å. The dihe-
dral angle between the upper and lower faces of the
antiprism is 2°. The oxygen atoms in the environment
of the central atom differ in nature, and the symmetry
of the Nd coordination polyhedron is C1.
C

The structure contains three independent molecules
of crystallization water. One of these molecules is situ-
ated in the vicinity of the center of inversion; therefore,
this site is half occupied. This corresponds to five crys-
tallization water molecules per formula unit. The crys-
tal packing is characterized by an extended system of
hydrogen bonds. The oxygen atoms of the water mole-
cules and heteropoly anions serve as acceptors of pro-
tons in these hydrogen bonds.

Compound II reported in this paper differs from the
previously described compound I, which also has a
chain-type structure [2]. In the structure of these com-
pounds, the heteropoly anions are arranged in the
chains in different fashions. In compound I, the axis
perpendicular to the centered fragment of six MoO6

octahedra are aligned parallel to the chain. In com-
pound II, this axis is located at a right angle to the chain
(figure). In I, the Nd environment consists of six water
molecules and three terminal oxygen atoms of two
[Nd2TeMo6O24 ⋅ 12H2O]n heteropoly anions that are
adjacent in the chain. The Nd coordination polyhedron
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 2      2005
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is a distorted tricapped trigonal prism and also has a low
symmetry (C1).

CONCLUSIONS

Thus, the Nd3+ cation forms two complexes with the
hexamolybdotellurate anion. The complexes are similar
in composition but differ in structure. It can be assumed
that different environments of the neodymium ions in
compounds I and II will manifest themselves in the
luminescence spectra. At present, we have investigated
how the structure of rare-earth heteropoly complexes
affect their luminescence properties. The results
obtained will be published elsewhere.
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Abstract—The crystal structure of mineral sakhaite Ca48[Mg13.2(Fe,
Mn)2.8](CO3)16{Al[SiO3.75(OH)0.25]4}(BO3)28[(H2O)3.3(HCl)3.3] from the Solongo deposit, Zabaykalye, is
established (R 0.047) by X-ray diffraction analysis (Bruker Smart CCD diffractometer, 2θ : θ scan, λMoKα
radiation, graphite monochromator): a = 14.679(2) Å, sp. gr. Fd3m, Z = 1, ρcalcd = 2.99 g/cm3. It is shown that
some part of BO3 triangles in the structure of sakhaite from Solongo is replaced with five-member complexes
{Al[SiO3(O,OH)]4}, established previously in the harkerite structure. Three schemes of isomorphism, which
are characteristic of the sakhaite–harkerite mineral series, are selected and the general formula is proposed:
Ca48(Mg,Fe,Mn)16(CO3)16{Al[SiO3(O,OH)]4}y(BO3)32 – y · n(H2O,HCl) (Z = 1), ymax = 8, nmax = 16 – y. The
structural relationship of sakhaite–harkerite minerals with borate–sulfates of the tychite family
Na6(Mg,Fe,Mn)2(BO3)4(SO4) is revealed. The correlation between the number of harkerite fragments forming
the mineral structure, the structural symmetry, and the degree of imperfection is ascertained. © 2005 Pleiades
Publishing, Inc.
INTRODUCTION

Ca,Mg–borate–carbonate sakhaite is a rock-forming
mineral; it substitutes kotoite marbles and kurchatovite
in the early stage of metasomatic calcic-skarn transfor-
mation of borate ores [1]. Sakhaite is the end member
of the isomorphic sakhaite–harkerite series, in which
individual phases differ by the content of SiO2 and
Al2O3: from tenths of a percent (sakhaite) to 20% (hark-
erite) [2]. It was proposed in [3] to consider sakhaite
and harkerite as indicators of magnesian skarns since
these minerals are characteristic of the least depths at
which the metasomatic process can develop. These
minerals were also found in greenschist-facies rocks in
South Africa [4], in amphibolite-facies rocks in Swe-
den, and in granulite-facies rocks in North America [5].
On the basis of the estimation of the conditions of the
formation of harkerite in granulite schists in the
Adirondack Mountains (New York, the United States),
it was concluded [5] that harkerite cannot be regarded
as a typomorphic mineral fixing low pressures because
it is also stable at moderate pressures (~8 kbar).

Sakhaite from magnesian skarns in Polar Yakutia was
described as a new mineral by Ostrovskaya et al. [6]. On
the basis of X-ray diffraction analysis, spectroscopic
study, chemical analysis, and the experimental value of
the density, the following crystallochemical formula
was proposed: Ca48Mg16(BO3)28(CO3)16Cl4(OH)8 ⋅
1063-7745/05/5002- $26.00 ©0194
4(H2O). Harkerite from Skye Island, Scotland, which
was described for the first time in [7], was analyzed
anew in [6] and its formula was reported:
Ca48Mg16Al3(BO3)15(CO3)18(SiO4)12Cl2(OH)6 ⋅ 3(H2O).
It was suggested in [6] that the main structural differ-
ence between these minerals is in partial substitution of
triangular borate groups (sakhaite) with orthosilicate
tetrahedra (harkerite).

The crystal structure of sakhaite was first deter-
mined for a synthetic material in the space group F4132
[8]. The formula obtained Ca48Mg16(BO3)32(CO3)16 ⋅
2(H2O) = 16[Ca3Mg(BO3)2(CO3) ⋅ 0.125(H2O)] dif-
fered from the formula of the mineral by the number of
BO3 groups (32 instead of 28) and the absence of Cl–

and (OH)– anions. In 1978, Yakubovich et al. reported
the results of X-ray diffraction investigation of sakhaite
from the Solongo deposit in Buryatia [9]. The system-
atic absence of reflections unambiguously indicated the
sp. gr. Fd3m. However, the structural model in the
sp. gr. F4132 of the synthetic analog was preferred. The
small size of the sakhaite single crystal (rmax ≈ 0.1 mm)
made it impossible to obtain, using the available tech-
nology of the 1980s, sufficiently representative experi-
mental data for the detailed analysis of the crystal struc-
ture. Thus, the results obtained in [9] on the basis of
83 experimental reflections needed to be refined. In
addition, statistical symmetry analysis performed by us
 2005 Pleiades Publishing, Inc.
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showed that the “axial” sp. gr. F4132 is not characteris-
tic of minerals; it has been recorded only for sakhaite
(most likely, erroneously, taking into account the above
facts). In this study, we report the results of repeated
determination of the crystal structure of sakhaite from
the Solongo deposit (Zabaykalye, Buryatia, East Sibe-
ria) and subsequent crystallochemical interpretation of
the minerals of the sakhaite–harkerite series.

EXPERIMENT AND INTERPRETATION 
OF THE STRUCTURE

Sakhaite from the contact-metasomatic Solongo
iron ore deposit, where it is coordinated with the rocks
formed as a result of partial substitution of magnesian
calciphyres by calcic skarns, was established and
described by Malinko in [10] in the form of dense crys-
talline masses; more rarely, as individual octahedra of
gray, brownish gray, or greenish brown color. This min-
eral has a greasy luster; it is optically isotropic and has
the following parameters: the refractive index n =
1.648–1.650, and ρexp = 2.91 g/cm3.

The composition of sakhaite from Solongo accord-
ing to the chemical analysis data [10] is as follows:
CaO, 50.88; MgO, 10.84; Al2O3, 1.42; SiO2, 2.03;
B2O3, 15.80; CO2, 14.20; H2O, 3.04; and Cl, 2.03;
100.24 wt % in total. It was also noted in [10] that the
refractive index and the density of sakhaite from
Solongo exceed the corresponding parameters of
sakhaite from Yakutia, described for the first time by
Ostrovskaya [6]. In addition, the high contents of sili-
con and aluminum and low content of boron in sakhaite
from Solongo make this mineral closer to harkerite.
According to [11], the silicon content in sakhaites from
Solongo varies from 2 to 8 au per unit cell.

In this study, we performed X-ray analysis of the
same single-crystal fragment from the sample supplied
to us by Malinko that was investigated in [9]. A Bruker
Smart three-circle diffractometer equipped with a
highly sensitive CCD detector was used. The cubic
symmetry of sakhaite from Solongo with the period a ≈
14.7 Å, which corresponds to the pseudoperiod of hark-
erite, was confirmed. The measured reflection intensi-
ties are corrected for the Lorentz factor and the polar-
ization effect.

All calculations were carried out using the SHELX
program package [12, 13]. The atomic scattering curves
and corrections for the anomalous dispersion [14] were
used. The systematic absence of reflections unambigu-
ously indicated the sp. gr. Fd3m, within which the
structure was interpreted. The structural model found
by direct methods was refined in the anisotropic
approximation taking into account the absorption. The
crystal data for sakhaite, the details of the X-ray diffrac-
tion study, and the refinement parameters are listed in
Table 1. The coordinates of the basic atoms with ther-
mal displacement parameters and the interatomic dis-
tances are given in Tables 2 and 3, respectively.
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After the X-ray diffraction analysis, the composi-
tion of the polished sample of the same single-crystal
fragment was investigated on an electron probe
microanalyzer with a voltage of 15 kV, beam current of
10 nA, and beam diameter of 5 µm. As references, we
used synthetic anorthite glass (Al, Si, Ca), natural oliv-
ine (Mn, Fe, Mg), and synthetic chlorine apatite (Cl).
The obtained data on the elemental composition are
listed in Table 4.

The main fragments forming the structure of the
mineral studied are those that were established previ-
ously [8, 9]. These are large Ca polyhedra, octahedra
predominantly occupied by Mg atoms, and CO3 and
BO3 triangles. According to the X-ray spectroscopic
data, the mineral contains Fe and Mn atoms. The most
probable divalent forms of their cations have been fixed
in most chemical analyses of sakhaites and harkerites
[1, 2, 5]. Since Mn2+ ions can isomorphously substitute
both Mg and Ca, we refined the degree of occupation of
the 48-multiple position by Ca atoms. It was found that
this position does not contain impurity defects and is
completely occupied by calcium. Since the atomic scat-
tering curves for Mn and Fe (neighbors in group IV of
the periodic table) are similar to each other and the
approximate ratio Fe : Mn in the sample under study is
3 : 1, we used the f curves for Mg and Fe in the refine-
ment of the degree of occupation of the octahedral posi-
tion. It is ascertained that the 16-multiple position is
statistically occupied by Mg and Fe atoms in the ratio
13.2 : 2.8. Although Fe and Mn were not found in the
composition of the sakhaite studied in [10], the data
of the later chemical analyses of sakhaites from
Solongo indicate the presence of these elements in all
samples [11].

During the structure refinement, we also assumed
that some part of BO3 triangles are replaced by five-
member complexes {Al[SiO3(O,OH)]4} formed by an
Al tetrahedron and four Si tetrahedra. Each Si tetrahe-
dron shares one vertex with the Al tetrahedron (Fig. 1).
Such complexes are characteristic of the harkerite
structure [15, 16]. The unit cell of harkerite from Scot-
land [16] contains four {Al[SiO3(O,OH)]4} groups,
while the unit cell of harkerite from Yakutia [15] con-
tains three such groups. The refinement of the occupa-
tions of the structural positions corresponding to the B,
Si and Al atoms showed that in the case under consid-
eration the unit cell contains 28 B, 4 Si, and 1 Al atoms.
This indicates that in the structure of sakhaite from
Solongo only one aluminosilicate group from five tetra-
hedra statistically substitutes four BO3 triangles. It
should be noted that, similar to the harkerite structure
[15, 16], the Si atoms (upon statistical substitution) do
not occupy the boron positions but are shifted along the
threefold axis to the oxygen atoms O(3) which com-
plete the tetrahedral configuration of the boron posi-
tions. The O(1) atoms which coordinate boron are also
shifted in this case from their positions to the O(1')
positions, remaining in the plane of symmetry m.
5
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Table 1.  Crystallographic data and the details of the X-ray data collection and refinement

Chemical formula Ca3[Mg0.825(Fe,Mn)0.175](CO3){Al[SiO3.75(OH)0.25]4}0.0625(BO3)1.75[(H2O)0.2(HCl)0.2]

µ, mm–1 2.56

Space group Fd3m

Z 16

Unit cell parameter a, Å 14.679(2)

V, Å3 3162.9(7)

ρcalcd, g/cm3 2.99

Diffractometer Bruker Smart CCD

Radiation MoKα (graphite monochromator)

Temperature, K 293(2)

Range of collection: θmax, deg 28.12

Total number of reflections 8795

Number of independent/collected 
with I > 1.96σ(I) reflections

220/210

Refinement method on F2

Number of parameters 
in refinement

37

Absorption correction Semiempirical, using equivalents

Rint, σ(Rint) 0.051, 0.012

Reliability factors: R 
(for collected reflections)

0.047

wR2 (for all independent 
reflections)

0.089

s 1.25

Residual electron density, e/Å3 ρmax = 0.45, ρmin = –0.57
Table 2.  Coordinates of the basic atoms and equivalent thermal displacement parameters

Atom G* Position
symmetry x/a y/b z/c Ueq, Å2

Mg 0.0687(7) m 0 0.5 0 0.0088(6)

Fe 0.0146(7) m 0 0.5 0 0.0088(6)

Ca 0.25 mm 0.125 0.37706(9) 0.125 0.0249(3)

C 0.08333 m 0.25 0.25 0 0.062(4)

B 0.1462(9) 3m –0.0351(4) 0.2851(4) –0.0351(4) 0.012(1)

Si 0.0204(9) 3m –0.0117(6) 0.2617(6) –0.0117(6) 0.012(1)

Al 0.005(1) 3m 0.375 0.375 –0.125 0.06(2)

O(1) 0.44(1) m 0.0059(2) 0.3603(3) 0.0059(2) 0.0222(9)

O(1') 0.06(1) m –0.005(2) 0.370(3) –0.005(2) 0.0222(9)

O(2) 0.25 m 0.2296(4) 0.3330(5) 0.0204(4) 0.064(2)

O(3) 0.020(3) 3m 0.442(2) 0.308(2) –0.058(2) 0.06(2)

O(4) (H2O) 0.017(3) 3m 0.350(1) 0.400(1) –0.150(1) 0.13(2)

Cl (HCl) 0.017(3) 3m 0.350(1) 0.400(1) –0.150(1) 0.13(2)

* Ratio of the number of atoms in a given position to the multiplicity of the general position.

3

3

3

4
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The O(2) atoms of carbonate groups are statistically
(with a probability of 50%) located in the planes of
symmetry m. In other words, CO3 triangles can be inter-
preted as groups occupying two equiprobable positions
around the threefold axis which passes through C
atoms.

DESCRIPTION OF THE STRUCTURE

The B–O distances in BO3 triangles, equal to
1.395(5) Å, are typical of B atoms in the threefold coor-
dination. CO3 triangles are systematically smaller, with
C–O distances of 1.290(7) Å. Al atoms in the high-

symmetry position  are tetrahedrally surrounded
by oxygen atoms at a distance of 1.71(5) Å. Si atoms
form strongly distorted tetrahedra with three shortened
Si–O(1') distances of 1.59(4) Å and one extended Si–
O(3) distance of 1.77(6) Å, corresponding to the bridge
interaction between the vertices: Si–O(OH)–Al. The
average Si–O distance of 1.63 Å is typical of Si in the

43m

Table 3.  Interatomic distances, Å

Mg(Fe,Mn) octahedron B triangle

M–O(1) 2.054(4) × 6 B–O(1) 1.395(5) × 3

O(1') 1.92(4) × 6 Si tetrahedron

Ca eight-vertex polyhedron Si–O(1') 1.59(4) × 3

Ca–O(2) 2.265(8) × 2 O(3) 1.77(6)

(or O(2) 2.718(2) × 4) Si–O(av.) 1.63

O(1) 2.484(4) × 2 C triangle

O(1) 2.587(1) × 4 C–O(2) 1.290(7) × 3

Ca–O(av) 2.537 Al tetrahedron

O(1') 2.576(2) × 4 Al–O(3) 1.71(5) × 4

O(1') 2.70(4) × 2

Ca–O(av) 2.59
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tetrahedral coordination. The local valence balance for
the O(3) atom, as well as the electroneutrality of the
structure as a whole at a replacement of four BO3 trian-
gles by an {Al[SiO3(O,OH)]4} tetrahedral pentagroup,
is provided when 1/4 of the O(3) atoms are incorpo-
rated into OH groups. The presence of OH groups in the
sakhaite structure correlates with both the X-ray dif-
fraction data for harkerite from Scotland [16] and the
features of the IR specta of the minerals of the
sakhaite–harkerite series [6, 11].

The statistical character of substitution according to
the scheme 4(BO3)  {Al[SiO3(O,OH)]4} in
sakhaite manifests itself in the change in the bond
lengths in Mg(Fe,Mn) octahedra and Ca polyhedra.
With a probability of 0.875, borate oxocomplexes are
involved in the construction of the anion radical, while
the octahedra are formed by O(1) atoms with Mg–O(1)
distances of 2.054(4) Å. At the substitution of BO3 tri-
angles with island aluminosilicate groups, octahedra
somewhat decrease in size: the Mg–O(1') distance
becomes equal to 1.92(4) Å.

The reverse situation is observed for Ca eight-vertex
polyhedra (or ten-vertex polyhedra: the possibility of
twofold coordination of Ca is related to the statistical
occupation of O(2) atoms of their positions). Indeed,
the replacement of a borate anion by an aluminosilicate
anion is accompanied by the increase in the Ca–O(1')
distances up to 2.70(4) Å in comparison with the largest
Ca–O(1) distances: 2.587(1) Å (Table 3).

The basis of the sakhaite structure is a framework
formed by Ca eight-vertex (ten-vertex) polyhedra
linked by shared edges and faces into columns extended
in three directions along the coordinate axes (Fig. 2).
Each Ca polyhedron belongs to two such columns.
Each Mg octahedron, sharing six faces with Ca eight-
vertex polyhedra, plays the role of the site in which
three mutually perpendicular columns are linked. BO3
and CO3 triangles reinforce the framework, sharing

                                             
Table 4.  X-ray microanalysis data for sakhaite

Wt % Relative atomic numbers

element 1* 2* 3* synthetic
sakhaite** element 1* 2* 3* synthetic

sakhaite** average

Fe 1.91 1.68 2.95 0.034 0.030 0.052 0.039

Mn 0.67 0.62 1.10 0.012 0.011 0.020 0.014

Mg 5.70 5.93 5.00 7.10 0.235 0.244 0.206 0.292 0.228

Mg + Fe + Mn = 0.281 0.285 0.280 0.292 0.282

Mg, % 84 86 73 100 81

Si 1.83 2.08 1.22 0.065 0.074 0.044 0.081

Al 0.71 0.72 0.61 0.026 0.027 0.023 0.025

Ca 33.5 34.3 33.6 35.3 0.837 0.858 0.840 0.883 0.845

Cl 2.81 2.80 3.37 0.079 0.079 0.095 0.084

  * 1, 2, and 3 are measurement points on the sample.
** Synthetic sakhaite Ca3Mg(BO3)2(CO3) · nH2O.
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Fig. 1. Crystal structure of sakhaite in axonometry. The aluminosilicate pentagroup, which statistically substitutes four BO3 trian-
gles in the sakhaite unit cell, is shown at the top.
edges (BO3) and vertices (CO3) with Ca polyhedra.
Cavities of two types, arranged similar to Na+ and Cl–

ions in the rock salt structure [9], alternate with each
other along the coordinate axes (Fig. 2). Small cavities,
which are Archimedean cuboctahedra, are formed by
four tetrahedrally arranged BO3 triangles, four tetrahe-
drally arranged triangular faces of Mg octahedra
(Fig. 3), and six rectangular (slightly distorted) faces of
Ca polyhedra. Large cavities are formed mainly by Ca
polyhedra, four tetrahedrally arranged BO3 triangles,
and four CO3 triangles. Each CO3 triangle belongs
simultaneously to two large cavities separating neigh-
boring cells in the framework, whereas BO3 triangles
separate cells of different type. When borate oxocom-
plexes are substituted by aluminosilicate ones, it is
large cavities that serve as a reservoir for
{Al[SiO3(O,OH)]4} pentagroups (Fig. 1). Since only
1/8 of the cavities are statistically occupied by alumino-
silicate five-member complexes, water molecules of
zeolite type [O(4)] and HCl molecules are also incorpo-
rated into these cavities (Fig. 2). They equiprobably
occupy the position with symmetry 3m, being statisti-
cally located at 20% of the points of the 32-multiple
regular system. Thus, the unit-cell content of sakhaite
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 2      2005
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from Solongo is described by the formula
Ca48(Mg13Fe2Mn)(CO3)16{Al[SiO3.75(OH)0.25]4}(BO3)28 ·
[(H2O)3(HCl)3].

CRYSTALLOCHEMICAL FEATURES 
OF MINERALS OF THE SAKHAITE–HARKERITE 

ISOMORPHIC SERIES

The data obtained by us and the previous results
[8, 15, 16] make it possible to distinguish three
schemes of isomorphism that are typical of minerals of
the sakhaite–harkerite series:

(i) The octahedra predominantly occupied by Mg2+

cations can also contain subordinate amounts of Fe and,
more rarely, Mn atoms. Representatives of this mineral
family with dominance of Fe (or Mn) over Mg are yet
to be found.

Ca

C

B

Mg

H2O
O

a

b

Fig. 2. Sakhaite crystal structure projected onto the xy
plane.
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(ii) The presence of Si and Al atoms in the mineral
composition indicates the replacement of four borate
triangular groups by equal-charge aluminosilicate oxo-
complexes formed by one Al and four Si tetrahedra:
4(BO3)  {Al[SiO3(O,OH)]4}.

(iii) Neutral H2O and HCl molecules can be statisti-
cally isomorphously incorporated into structural cavi-
ties. In this case, they are not involved in the coordina-
tion of cations, being molecules of zeolite type. Theo-
retically, they may also occupy positions in small
cavities (as in synthetic sakhaite [8]) and large cavities
[9, 15, 16]. The number of such molecules per unit cell
must not exceed 16: the maximally possible number in
the absence of aluminosilicate pentagroups.

Taking into account the above considerations, we
propose the following general formula for minerals of
the sakhaite–harkerite series (for Z = 1):
Ca48(Mg,Fe,Mn)16(CO3){Al[SiO3(O,OH)]4}y(BO3)32 – y ·
n(H2O,HCl), ymax = 8, nmax = 16 – y. At y = 0, the formula
takes the form Ca48Mg16(CO3)16(BO3)32 · n(H2O) =
16[Ca3Mg(CO3)(BO3)2 · nH2O] which corresponds to the
synthetic sakhaite composition [8]. The second end mem-
ber of the series (y = 8) is a hypothetical carbonate alumino-
silicate: Ca48(Mg,Fe,Mn)16(CO3){Al[SiO3(O,OH)]4}8 ·
n(H2O,HCl) = 16[Ca3Mg(CO3){Al[SiO3(O,OH)]4}0.5 ·
nH2O]. Natural or synthetic compounds of such com-
position are yet to be found. However, cubic borate–sul-

fates (sp. gr. )—tychite Na48Mg16(BO3)32(SO4)8 =
8[Na6Mg2(BO3)4(SO4)] (a = 13.90 Å), ferrotychite
Na6(Fe,Mg,Mn)2(BO3)4(SO4) (a = 13.96 Å) [17], and
manganotychite Na6(Mn,Fe,Mg)2(BO3)4(SO4) (a =
14.00 Å), in whose unit cells eight SO4 tetrahedra
occupy the positions of AlO4 tetrahedra of the hypo-
thetical (harkerite) end member—are homeotypic with
harkerite (Figs. 3, 4).

Table 5 contains the compositions of the mineral
species of the series under consideration. These data
show that, in comparison with the unit-cell contents of
sakhaites and harkerites with known structures, the
number of Mg atoms in chemical analyses is generally

     

Fd3

             
c
a

b

c B Mg
C

Fe

Fig. 3. Polyhedral environment of small cavities in the sakhaite crystal structure (left) in comparison with the environment of anal-
ogous cavities in the ferrotychite structure (right).

b a
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a

b

a

b

Al

Ca

B
C

Na
S

Fig. 4. Arrangement of tetrahedral ([AlO4]5– and [SO4]2–) and triangular ([BO3]3– and [CO3]2–) oxocomplexes in the sakhaite (left)
and ferrotychite (right) crystal structures.
overestimated and the number of Ca atoms is underes-
timated. A similar situation occurs with the formula
numbers of B and C atoms. As was noted in [5, 16], the
systematic overestimation of the C content and corre-
sponding deficit of B can be due to the contamination
of the material studied by the wet chemistry method
with calcite, which is always present in skarns. If we
recalculate all analyses based on the numbers of atoms
in defect-free structural positions Ca, 48; Mg + Fe +
Mn, 16; and C, 16, we obtain the unit-cell contents that
are in satisfactory agreement with the proposed general
formula for the minerals of the sakhaite–harkerite
series. As can be seen from Table 5, y takes different

30

10 2 3 4 5 6 7 8

26

22

18

14

10

6

2

y

Number of BO3 oxocomplexes per formula unit

12

11 13

109

86

7

53

1

2 4

Fig. 5. Relation between the numbers of aluminosilicate
groups and borate oxocomplexes in the sakhaite–harkerite
mineral series. Numbers of points correspond to the num-
bers of samples from Table 5.
C

values from 0.1 to 4; i.e., specific mineral species are
the members of a one isomorphic series and are deriva-
tive combinations of two minerals: harkerite
Ca6y(Mg,Fe,Mn)2y(CO3)2y{Al[SiO3(O,OH)]4}y · n(H2O,
HCl) and sakhaite
Ca48 − 6y(Mg,Fe,Mn)16 − 2y(CO3)16 − 2y(BO3)32 – 4y · n(H2O,
HCl) (Fig. 5).

A gradual increase in the harkerite component up to
y = 1.5 does not lead to a radical change in the structure:
all minerals of the sakhaite edge of the isomorphic
series are characterized by cubic symmetry and the
absence of a pseudoperiod along the unit-cell axes
[3, 4, 6, 10, 18]. X-ray powder patterns of the minerals
containing two or more harkerite fragments per unit
cell have a more complex, as compared with sakhaite,
spectrum with lines shifted in the same direction and
additional weak reflections. In addition, many lines are
broad or split into doublets [3, 5, 6]. Such a character of
the diffraction pattern indicates the presence of a
pseudoperiod a' = a/2 and, possibly, rhombohedral
symmetry. Rhombohedral symmetry was unambigu-
ously established [7] for the harkerite from Scotland, in
whose structure harkerite and sakhaite fragments (y =
4) are ordered in equal amounts along the threefold
axis.

Apparently, the structural transformations from syn-
thetic sakhaite (end member with ordered cubic struc-
ture, y = 0) to the harkerite from Scotland (intermediate
member with ordered rhombohedral structure, y = 4)
pass through the formation of imperfect cubic sakhaites
with a relatively small (15 Å) cell (sakhaites from
Yakutia, Buryatia, Kazakhstan, and Namibia) up to
harkerite from the Tas Haiatah mountain ridge (y = 2),
beginning with which the cubic unit-cell parameter
doubles (harkerites from Yakutia, California, and New
York). Further increase in the number of harkerite frag-
ments (y > 4) should lead to the formation of new
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 2      2005
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Table 5.  Compositions of the harkerite–sakhaite mineral species from skarns of different genesis*

Element

1 2 3 4 5 6

Synthet-
ic

sakhai-
te [8]

Moral’nyi Riv-
er, Tas Haiatah, 

Yakutia [6]

Lou Lou River, 
Tas Haiatah, 
Yakutia [3]

Moral’nyi Riv-
er, Tas Haiatah, 

Yakutia [3]

Solongo deposit, 
Zabaykalye, 
Buryatia [10]

Solongo
deposit,
our data

Sajak deposit,
Pribalkhashie,

Kazakhstan [20]

structure chemical
analysis N**** chemical

analysis N chemical
analysis N chemical

analysis N probe
analysis structure probe

analysis
chemical
analysis N

Si 0.2 0.2 0.9 0.9 1.4 1.4 1.8 1.8 3.5 4.0 5.6 6.3 5.6

Al 0.3 0.3 0.3 0.3 0.7 0.7 1.5 1.5 1.4 1.0 1.7 2.3 1.7

B 32.0 27.8 29.9 29.0 29.5 28.4 30.0 24.7 26.3 und. 28.0 und. 24.8 25.5

C 16.0 18.1 16.0 16.5 16 17.2 16.0 17.6 16.0 und. 16.0 und. 16.7** 16.0

Mn2+ 0.2 0.2 0.1 0.1 0.8

2.8

0.2 und. 0.2

Fe3+

0.2 0.2 0.4 0.4
0.3 0.3

2.2 3.0
2.2 2.0

Fe2+ 0.5 0.5 1.0 1.0

Mg 16.0 16.3 15.8 16.7 15.4 17.0 15.1 14.6 16.0 13.0 13.2 15.3 12.9 12.8

Ca 48.0 47.3 47.8 46.7 48.0 46.3 48.2 49.4 48.0 48.0 48.0 48.7 50.0 48.7

Cl 4.1 4.1 4.8 4.8 4.8 4.8 3.1 3.1 4.8 3.3 5.5 4.1 4.8

H 4.0 15.0 15.0 7.5 7.5 8.5 8.5 18.4 18.4 und. 9.9 und. 3.2 3.2

y*** 0 0.1 0.25 0.4 1.0 1.5

n*** 2.0 11.6 8.5 9.0 6.6 6.4

Element

7 8 9 10 11 12 13

Kombat Mine, 
Namibia [4]

Lou Lou River, 
Tas Haiatah, 
Yakutia [3]

Crestmore quar-
ry, Riverside 

County, Califor-
nia, the United 

States [5]

Yakutia
[15]

Broadford, Skye,
Scotland [7]

Adirondack 
Mountains,
New York,
the United 
States [5]

Albano,
Italy [2]

chemical
analysis N chemical

analysis N chemical
analysis N structure chemical

analysis N structure chemical
analysis N chemical

analysis N

Si 5.9 5.9 8.3 8.3 10.8 10.8 12.0 13.6 13.6 16.0 15.9 15.9 16.5 16.5

Al 1.5 1.5 3.7 3.7 2.7 2.7 3.0 3.2 3.2 4.0 3.4 3.4 3.6 3.6

B 26.2 26.6 19.5 24.6 16.4 21.6 20.0 12.9 16.5 16.0 10.1 14.5 11.8 15.9

C 16.4 16.0 21.1 16.0 21.2 16.0 16.0 19.6 16.0 16.0 20.4 16.0 20.1 16.0

Mn2+ 0.1 0.1 0.1 0.1

Fe3+ 0.7 0.7 0.6 0.6

Fe2+ 0.7 0.7 0.4 0.4 0.4 0.4 0.6 0.6 1.5 1.5

Mg 16.6 16.0 14.5 14.5 15.8 15.6 16.0 16.0 15.0 16.0 16.2 15.4 16.1 14.4

Ca 47.4 48.0 47.5 47.5 47.7 47.9 48.0 47.6 48.6 48.0 47.2 48.0 46.3 48.0

Cl 3.5 3.5 4.0 4.0 2.2 2.2 2.0 2.1 2.1 0.1 0.1

H 30.5 30.5 14.0 14.0 4.0 4.0 8.0 5.2 5.2 4.0 4.0 4.0 8.2 8.2

y*** 1.5 2.0 2.5 3.0 4.0 4.0 4.0

n*** 14.5 10.5 6.0 4.0 4.0 4.1 4.2

und.—undetermined.
      * The number of atoms in the unit cell is normalized to the basis Ca + Mg + Mn + Fe = 64.
    ** Was not determined; taken from the 100% sum.
  *** The values correspond to the formula Ca48Mg16(CO3)16{Al[SiO3(O,OH)]4}y(BO3)32 − y · n(HCl,H2O).
**** N is recalculated on the basis of the following contents: C = 16 (excess is added to the B content) and (Mg,Fe,Mn) = 16 (excess is
         added to the Ca content).
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defects and structural disorder. One might expect a new
ordered structure at y = 8, when only the harkerite com-
ponent will form the second end member in the isomor-
phic mineral series under consideration. The existence
of tychite (and its Fe and Mn analogs) in nature sug-
gests that a harkerite can be found, in whose structure
all borate oxocomplexes would be replaced with alumi-
nosilicate ones.

However, the noted regularity is violated by harker-
ite from Albano, Italy [2]. Judging from the results of
the chemical analysis and the X-ray diffraction data,
this mineral is a disordered cubic species of harkerite
from Skye, Scotland. While harkerite from Skye is
genetically related to apomagnesian calcic skarns [11],
harkerite from Albano is identified in metamorphized
effusives in rock cavities [2]. The growth of crystals in
cavities is indicative of fairly rapid cooling of the melt
which may be the reason for the formation of disor-
dered cubic polymorphs of minerals, whereas the slow
growth of crystals in magnesian skarns at small depths
is, apparently, the necessary basis for the formation of
defect-free rhombohedral harkerite structure. The poly-
morphic character of the relationship between these
mineral species was also suggested in [16].
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Abstract—The structures of as-grown Cd0.90R0.10F2.10 (R = Sm–Lu and Y) crystals are determined and related
to the CaF2 structure type. It is assumed that in all the crystals R3+ and Cd2+ ions form clusters with the tetra-
hedral configuration of the [Cd2R2F26] and [CdR3F26] cations. The concentration of [Cd2R2F26] cations in crys-
tals with R = Er–Lu and Y is considerably higher that in crystals with R = Sm–Ho. The tendency to a decrease
in the coordination number of R3+ toward the end of the rare earth series manifests itself in the fact that the Yb3+

ions in Cd0.90Yb0.10F2.10 occupy both tetrahedral (c.n. 10) and octahedral (c.n. 8) clusters. The Yb3+ ions in tet-
rahedral clusters are displaced from their basic positions by 0.15 Å along the 〈100〉  directions. In Cd1 − xRxF2 + x
the relaxation of the anion sublattice of the fluorite matrix around clusters is much more pronounced than in the
Ca1 − xRxF2 + x phases having similar geometry. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

This work continues the studies [1, 2] of synthesis,
structures, and properties of CdF2 crystals and nonsto-
ichiometric fluorite phases of Cd1 − xRxF2 + x (R = RE
and In). The structural part of these studies reduces to
the establishment of the changes in the defect (cluster)
structure of the phases with the fixed Cd0.90R0.10F2.10
composition of as-grown crystals and the effect of sub-
sequent annealing of these crystals across the RE
series. The term as-grown crystals indicates crystals
grown from melts and not subjected to any additional
thermal treatment.

The prerequisite of the changes mentioned above is
that the clusters of structural defects in all the fluorite
phases with the composition M1 − xRxF2 + x (M = Ca, Sr,
Ba, Cd, and Pb) also contain RE ions whose dimen-
sions and electronic structure vary across the RE series.
The result of such changes are the structural (morpho-
tropic and polymorphic) transformations observed in
homologous series of RE-containing compounds.

The most representative homologous series
(17 compounds) with the simplest composition is the
series of RE trifluorides. In the RF3 series (R = La–Lu,
Y, Sc), a decrease in the radius from that of La3+ to that
of Lu3+ (effect of lanthanide contraction) and then to
Sc3+ results in the change of the structure type in the
1063-7745/05/5002- $26.00 ©0203
following sequence: LaF3  β-YF3  α-UO3 
ReO3. An increase of the temperature “spreads” the
morphotropic change of the structure from one to sev-
eral RF3 groups. Two such groups may be called transi-
tional groups. Each RF3 forming a transitional group has
two polymorphic modifications. One of these modifica-
tions is related to the structure of the previous morphotro-
pic group, whereas the other is related to the structure of
the subsequent morphotropic group. As a result, the RF3

series consists of five morphotropic groups.

The first group includes RF3 (LaF3 to NdF3) belong-
ing to the tysonite structure type (LaF3) in the whole
temperature range from room temperature to the melt-
ing point. The second (transitional) group includes
dimorphic RF3 (R = Sm–Gd). These crystallized from
melts in the tysonite structure type (LaF3) but, when
cooled, are transformed into the structure of orthor-
hombic β-YF3. The compounds of the third group,
TbF3, DyF3, and HoF3, are crystallized from melt in the
form of orthorhombic β-YF3 and preserve this structure
during cooling. The fourth (transitional) group consists
of dimorphous RF3 from ErF3 to LuF3. Their low-tem-
perature phases preserve the β-YF3 structure type,
whereas the high-temperature modifications are iso-
typic to α-UO3. In accordance with the ionic radius, the
Y3+ ion occupies the position intermediate between
 2005 Pleiades Publishing, Inc.
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Ho3+ and Er3+; therefore, YF3 is related to the fourth
morphotropic group. The fifth group is formed by ScF3
of the ReO3 type.

An In3+ ion does not belong to the family of RE ele-
ments, but it is of interest as an ion with a radius inter-
mediate between those of Lu3+ and Sc3+ and, thus,
partly fills a considerable gap in the sizes of R3+ cations.
Crystal–chemical analysis of the morphotropic and
polymorphic transformations in RE fluorides was per-
formed in [3].

The present publication describes the study of evo-
lution of the defect structure of Cd1 − xRxF2 + x crystal–
solid solutions in CdF2 of RE trifluorides of the second
(R = Sm, Gd), third (R = Dy, Ho), and fourth (R = Er–
Lu and Y) morphotropic RF3 groups. The basic struc-
ture of these groups belongs to the β-YF3 (Fe3C) struc-
ture type. This type is characterized by the change of
the coordination number of a cation across the RE
series with the preservation of the structure type [4]. To
exclude the possible influence of the RF3 concentration
in the solid solution on the Cd1 − xRxF2 + x defect struc-
ture, we studied the isoconcentration series of the
phases with 10 mol % RF3.

The M1 − xRxF2 + x phases studied earlier were syn-
thesized and studied by various research groups under
various conditions by different experimental methods.
This hinders the establishment of the regularities in the
changes of the chemical composition of the defect
structures in these M1 − xRxF2 + x phases across the RE
series. Up to now, no structural study of the isoconcen-
tration series of M1 − xRxF2 + x crystals with different RE
components synthesized under the same conditions has
been performed.

The data on the dependence of the defect structure
of the M1 − xRxF2 + x phases on the synthesis conditions
are rather scarce, unsystematic, and are obtained only
for the CaF2 phases. In [5], the influence of annealing
on the symmetry of optical Gd3+ centers was studied by
the NMR method. The structural data obtained in [6]
show the stable defect structure of Ca1 − xGdxF2 + x crys-
tals in the temperature range from 500 to 900°C (pow-
der neutron diffraction data). The results obtained in [6]
were refuted by the study of the same crystals in [7]. In
[8], it was shown that the Ca0.68Er0.32F2.32 samples
quenched from 1000°C and the Ca0.68Y0.32F2.32 samples
annealed at 700°C had different defect structures.

Earlier [1], we indicated optical inhomogeneity of
as-grown Cd1 − xRxF2 + x crystals, which, in particular,
reflects the appearance during cooling of thermal
stresses in different parts of crystalline boules. This fac-
tor seems to be unimportant for the change of the defect
structure. We decided to check the structure homogene-
ity of the Cd1 − xRxF2 + x phases by the X-ray diffraction
method on Cd0.90Yb0.10F2.10 samples obtained from var-
ious parts of one transverse cross section of a crystal-
line boule.
C

We also plan to continue our study of the influence
of sample annealing on the structure of some
Cd1 − xRxF2 + x crystals.

EXPERIMENTAL

The Cd1 − xRxF2 + x (R = Sm–Lu) crystals were grown
from melt by the Bridgman method [1]. A
Cd1 − xYxF2 + x crystal was grown from melt in a graph-
ite crucible placed into a C-1020 setup by the same
method. The initial extra-pure grade reagent was pre-
liminarily melted in a fluorinating atmosphere (prod-
ucts of Teflon pyrolysis). Crystal growth was per-
formed in the same atmosphere at a velocity of crucible
descend of 10 mm/h in a temperature gradient of about
33 K /cm. The crystal grown was first cooled at a rate
of about 120 K/h for 4 h, and then the heater was
switched off.

The as-grown Cd1 − xRxF2 + x (R = La–Lu) samples
for diffraction experiments were cut off from the mid-
dle parts of crystalline boules. A Cd1 − xYxF2 + x sample
was cut off from the upper part of the crystal grown
from the charge with 15% YF3. The YF3 concentration
in the crystal fragment determined by atomic emission
spectroscopy with inductively coupled plasma (ICP–
AES) was equal to 11 ± 0.3 mol %. The content of LuF3
in a Cd1 − xLuxF2 + x sample determined by the same
method was 11 ± 0.5 mol %. The Cd1 − xRxF2 + x (R = Lu,
Y) structures were refined on the samples with x = 0.11
studied by ICP–AES.

Earlier, it was shown by ICP–AES on several sam-
ples [2] that the RF3 concentration in the middle parts
of the crystalline boules was close to their concentra-
tion in the charge (10 mol %). Therefore, in the refine-
ment of the Cd1 − xRxF2 + x (R = Sm–Yb) structures of the
samples not studied by the ICP–AES, the composition
was assumed to be the same as in the charge containing
10% RF3. Taking into account the close concentration
of RF3 in the crystals under study (within the accuracy
of analysis), hereafter we use Cd0.90R0.10F2.10 as the gen-
eral composition. In the cases where chemical analysis
was performed, the composition is given within an
accuracy of 0.5 mol %.

To check the identity of the defect structures in dif-
ferent parts of a crystalline boule, we studied two
Cd1 − xYbxF2 + x samples cut from various parts of a disk
with a diameter of 10 mm and a height of 3 mm. The
disk is a transverse section normal to the growth axis in
the middle part of the boule.

Some RE elements (Eu, Yb, Sm, and Tm indicated
in the sequence of the decreasing propensity to reduc-
tion) in fluorides are in two reduction states, 2+ and 3+.
The partial reduction of R3+ to R2+ may take place
because of the melt’s contact with the graphite crucible
during crystal growth. We grew no Cd0.90Eu0.10F2.10
crystals since, under the growth conditions in a graphite
crucible, Eu3+ may be partly reduced to Eu2+.
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 2      2005
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Table 1.  Main characteristics of diffraction experiments on Cd0.90R0.10F2.10 (R = Sm–Lu, Y) single crystals

R Sm Gd Dy Ho Y

Diffractometer CAD-4 Enraf Nonius

Radiation MoKα , λ = 0.71069

T, K 295

Radius of spherical sample, µm 160(5) 170(5) 170(5) 150(5) 114(5)

Absorption coefficient, mm–1 15.36 15.94 16.52 16.82 15.55

Interval of ω/2θ scanning, mm 0.80 + 0.35tan(θ)

Maximum sinθ/λ, Å–1 1.2 1.15 1.2

Total number of measured reflections 2390 1601 2487 1540 1448

Total number of crystallographically
independent reflections

88 88 88 77 88

Rav(I), % 1.70 2.31 2.00 1.56 3.21

Sp. gr. Fm3m

Lattice parameter, Å 5.451(5) 5.436(5) 5.429(5) 5.428(5) 5.452(5)

R Er Tm Yb (sample 1) Yb (sample 2) Lu

Diffractometer CAD-4 Enraf Nonius

Radiation MoKα , λ = 0.71069

T, K 295

Radius of spherical sample, µm 156(5) 134(5) 170(5) 156(5) 142(5)

Absorption coefficient, mm–1 17.13 17.44 17.76 18.60

Interval of ω/2θ scanning, mm 0.80 + 0.35tan(θ)

Maximum sinθ/λ, Å–1 1.2 1.1 1.2

Total number of measured reflections 1426 1003 2391 3192 1725

Total number of crystallographically
independent reflections

88 88 88 88 88

Rav(I), % 2.31 1.85 2.86 2.26 1.86

Sp. gr. Fm3m

Lattice parameter, Å 5.426(5) 5.425(5) 5.422(5) 5.420(5)
Possible reduction of RE elements in the crystals
grown was checked by taking the absorption spectra of
Cd0.90Yb0.10F2.10 and Cd0.90Sm0.10F2.10 having the highest
(after europium) propensity to reduction. The absorp-
tion spectra showed no lines corresponding to Yb2+ and
Sm2+ absorption. The as-grown Cd0.90Yb0.10F2.10 and
Cd0.90Sm0.10F2.10 crystals contain RE elements in the
form R3+.

The methods used in the diffraction experiments are
described elsewhere [2]. The parameters of the diffrac-
tion experiment for Cd1 − xRxF2 + x (R = Sm–Lu, Y) are
listed in Table 1.

REFINEMENT OF THE STRUCTURE 
OF AS-GROWN Cd0.90R0.10F2.10 (R = Sm–Lu, Y) 

SINGLE CRYSTALS

Notation of fluoride-ion positions. Studying the
structure of Cd0.90R0.10F2.10 crystals, we had to consider
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 2      2005
the notation of fluoride-ion positions. In earlier studies
of Ca1 − xRxF2 + x (R = La–Lu, Y) phases, the interstitial
fluorine atoms were located in the positions 48i and 32f
(sometimes, in both these positions) of the sp.
gr. Fm3m. Characterizing the interstitial fluorine atoms
by their displacements along the threefold axis from the
basic fluorine position 8c, we have to consider the 32f
position with a considerable displacement and high
occupancy as an additional position. The position with
smaller displacement and lower occupancy is consid-
ered as a relaxed position. The occupancy of the relaxed
position in Ca1 − xRxF2 + x structure is comparable with
the accuracy of the structure determination, which
gives rise to some doubts about the existence of this
position.

We determined three types of interstitial fluoride
ions in the positions 32f of the sp. gr. Fm3m for all the
Cd1 − xRxF2 + x phases studied in this work. The mini-
mum and maximum displacements from these posi-
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Fig. 1. The (110) difference and zeroth electron-density syntheses of Cd0.90R0.10F2.10 (R = Sm–Ho) crystals. The (Cd2+, R3+) and

F(8c) ions are subtracted. The isolines are spaced by 0.05 e/Å3. Solid lines indicate positive electron density; small-scale dashed
lines, negative electron density; and large-scale dashed lines, the zeroth level. The synthesis is constructed after the refinement of
the occupancy with due regard for third-order anharmonicity of thermal vibrations of F(8c) ions and fourth-order anharmonicity of

(Cd2+, R3+) ions.
tions approximately correspond to the displacements of
fluorine atoms in the Ca1 − xRxF2 + x structure.

The Cd1 − xRxF2 + x structure also has the third 32f
position occupied by interstitial fluorine atoms, with
the displacement value being intermediate between the
minimum and maximum displacements. The distribu-
tion of interstitial fluorine atoms in the position 32f into
the additional and relaxed positions does not make
sense for Cd1 − xRxF2 + x crystals. These positions do not
differ qualitatively; they differ only quantitatively by
their coordinates and occupancies. The electron-den-
sity syntheses of some Cd1 − xRxF2 + x crystals showed
electron-density maxima in the 48i and 48g positions.

Thus, Cd0.90R0.10F2.10 single crystals have five types
of interstitial fluoride ions: one in the position 48i
(r, r, 0.5), one in the position 48g (0.25, 0.25, y), and
three in the position 32f (w, w, w). To make the structure
description clearer, we suggested a new notation.
According to this new notation, an interstitial fluoride
anion is indicated as Fint(position)number, where “int” indi-
cates that the anion is interstitial and the Wyckoff posi-
tion is indicated in parentheses. If a crystal contains
C

several Fint located in the same positions but with differ-
ent coordinates, then the indicated position is followed
by a number which indicates the corresponding posi-
tion coordinate (in the sequence of its increase), i.e., the
coordinate r for the position 48i, coordinate y for the
position 48g, and coordinate w for the position 32f. If
the position is occupied only by one type of Fint anion,
the notation indicates only the position without its coor-
dinates.

Then, the basic anionic position is indicated as F(8c),
and the interstitial positions are indicated as Fint(32f)1,
Fint(32f)2, Fint(32f)3, Fint(48i), and Fint(48g). This notation is
somewhat cumbersome, but it uniquely indicates the
anion position and allows one also to indicate new posi-
tions (if any) without a change of the notation. Also,
this notation avoids the use of noninformative primes
and terms.

Refinement of the structure of as-grown
Cd0.90R0.10F2.10 (R = Sm–Lu, Y) single crystals. The
upper parts of Figs. 1 and 2 show the (110) sections of
difference electron-density syntheses after the subtrac-
tion of (Cd, R) cations and the F(8c) fluoride ion. The
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 2      2005
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Fig. 2. The (110) difference and zeroth electron-density syntheses of Cd0.90R0.10F2.10 (R = Y, Er, Tm, Lu) crystals. The isolines are

spaced by 0.05 e/Å3.
position occupancy for F(8c) was refined with due regard
for the third-order anharmonicity of thermal vibrations.
For Cd0.90R0.10F2.10 (R = Sm–Ho, Y, Tm) crystals,
fourth-order anharmonicity of (Cd, R) was also taken
into account. The lower parts of Figs. 1 and 2 show the
(110) sections of the zero electron-density synthesis.

Refinement of the Cd0.90R0.10F2.10 (R = Sm–Tm,
Lu, Y) structures. The difference syntheses of these
crystals shown in Figs. 1a–1d and 2a–2d have three
electron-density maxima corresponding to the 32f posi-
tions. These maxima were identified with the part of
fluoride ions relaxed from the 8c position at the three-
fold axis (Fint(32f)1 and Fint(32f)2) and fluoride ions of the
tetrahedral anionic grouping Fint(32f)3 [2].

The difference synthesis of a Cd0.90Sm0.10F2.10 crys-
tal shows a weak electron-density maximum in the
position 48g, which was identified with the fluoride ion
Fint(48g) relaxed from the 8c position at the fourfold axis.
Relaxation of the main fluoride ions along the fourfold
axis in fluorite solid solutions of the composition
M1 − xRxF2 + x was revealed for the first time. The differ-
ence electron-density syntheses of Cd0.90R0.10F2.10 crys-
tals with R = Er, Lu of the fourth morphotropic group
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 2      200
are characterized by the absence of anharmonicity of
thermal vibrations for cations.

Refinement of the structure of a Cd0.90Yb0.10F2.10
single crystal. Figure 3 shows the (110) section of the
difference (upper part) and zeroth (lower part) electron-
density syntheses of samples 1 and 2 cut from a
Cd0.90Yb0.10F2.10 crystal.

Figure 3a shows the difference synthesis of
Cd0.90Yb0.10F2.10 crystals (sample 1) constructed after
the refinement of the structure variant with both Cd and
Yb cations being statistically located in the 4a (0, 0, 0)
position. The synthesis contains the electron-density
maximum in the position 24e (x, 0, 0), which cannot be
removed by the allowance for the fourth-order anhar-
monicity of thermal vibrations of these cations. This
maximum can indicate that Yb3+ cations are displaced
from the 4a position along the fourfold axis to the 24e
position. The difference synthesis shows only the
“sole” of the Yb3+ cationic maximum in the position
24e not taken into account after the subtraction of the
(Cd, R) cations in the position 4a. Therefore, the coor-
dinate of the electron-density maximum in the position
24e on the difference synthesis does not correspond to
the coordinate of the displaced Yb3+ ions. We refined
5
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Fig. 3. The (110) section of difference and zeroth electron-density syntheses of Cd0.90Yb0.10F2.10 crystals (samples 1 and 2).
the variant with all the Cd2+ ions being located in the 4a
position and all the Yb3+ ions in the 24e position. This
resulted in disappearance of the electron-density maxi-
mum in the 24e position from the difference synthesis.
The subsequent refinement was performed with due
regard of fluoride anions Fint(32f)1, Fint(32f)2, and Fint(32f)3
in the 32f position.

Figure 3b shows the difference synthesis of sample 2
cut from a Cd0.90Yb0.10F2.10 crystal and constructed after
the refinement of the variant with no Yb3+ displace-
ment. This synthesis also shows the electron-density
maximum in the 24e position, but it is much lower than
in the analogous synthesis for sample 1. The syntheses
of both samples 1 and 2 show electron-density maxima
in the 32f position Fint(32f)1, Fint(32f)2, and Fint(32f)3.

The specific characteristic of the difference synthe-
sis of sample 2 is an additional electron-density maxi-
mum in the 48i position at the twofold axis, which is
denoted as Fint(48i) in Fig. 3b. Fluoride ions in the 48i
position indicate the formation in sample 2 of cubocta-
hedral anionic groupings which may form the core of
octahedral cationic–anionic [(Cd,R)6F36] clusters.
C

The difference synthesis of sample 1 cut from a
Cd0.90Yb0.10F2.10 crystal (Fig. 3a) indicates a larger
number of Yb3+ cations displaced from the positions 4a
to 24e than the synthesis of sample 2. Since all the Fint
anions in sample 1 are located only in the 32f position,
we assume that the Yb3+ displacement is a consequence
of formation or the cause of formation of tetrahedral
anionic groupings. The Fint anions in sample 2 occupy
both 32f and 48i positions, which indicates the forma-
tion in this sample of both tetrahedral and cuboctahe-
dral anionic groupings. The diffraction data did not
allow us to perform the sufficiently reliable refinement
of the occupancies of the Fint positions [2] and, thus, to
determine the number of the tetrahedral and octahedral
clusters in sample 2. Therefore, the refinement of the
structure of sample 2 was performed without allowance
for displacements of Yb3+ cations.

The total occupancy of the fluoride positions at the
concluding stage of the structure refinement of the
Cd0.90R0.10F2.10 phases (R = Sm–Lu, Y) was fixed in
accordance with the crystal composition at a level of
8.40 (8.44) anions per unit cell. The structure parame-
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 2      2005
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Table 2.  Results of the final structural refinement of Cd0.90R0.10F2.10 (R = Sm–Tm, Lu, Y) single crystals

R Sm Gd Dy Ho

x 0.10
(Cd1 − xRx) (0, 0, 0) B11 × 103, Å2 7.71(6) 7.14(2) 6.70(8) 7.53(4)

D1111 × 108, Å2 1.6(5) 0 –1.3(5) 2.3(5)
D1122 × 108, Å2 –0.6(2) –0.57(9) –0.8(2) 0

F(8c) (1/4, 1/4, 1/4) Q, at./unit cell 6.88 6.73 6.74 6.53
B11 × 102, Å2 1.19(2) 1.15(2) 1.14(2) 1.19(4)
C123 × 106, Å2 2.2(5) 2.8(4) 2.8(4) 2.9(7)

Fint(48g) (y, 1/4, 1/4) Q, at./unit cell 0.31
y 0.17(2)
Biso, Å2 1.3(9)

Fint(32f)1 (u, u, u) Q, at./unit cell 0.39 0.75 0.85 0.90
u 0.301(10) 0.300(7) 0.301(3) 0.300(9)
Biso, Å2 1.5(8) 2.5(6) 1.6(2) 2.3(6)

Fint(32f)2 (v , v , v) Q, at./unit cell 0.27 0.28 0.22 0.32
v 0.340(14) 0.359(12) 0.349(5) 0.350(8)
Biso, Å2 2.3(9) 2.4(9) 1.2(6) 2.8(9)

Fint(32f)3 (w, w, w) Q, at./unit cell 0.55 0.64 0.59 0.65
w 0.418(2) 0.418(4) 0.421(2) 0.411(6)
Biso, Å2 1.7(3) 2.2(6) 1.6(2) 2.8(8)

Fraction of clusters [Cd2R2F26], % 9 50 29 54
Number of vacancies, vac/unit cell 0.01 0.08 0.01 0.09
Q, at./cluster Fint(48g) 2.25 0 0 0

Fint(32f)1 2.84 4.69 5.76 5.54
Fint(32f)2 1.96 1.75 1.49 1.97

Number of independent structure factors 85 85 85 72
Number of parameters to be refined 19 15 16 15
R 0.24 0.32 0.23 0.29
Rw, % 0.26 0.36 0.29 0.33

R Y Er Tm Lu

x 0.11 0.10 0.11
(Cd1 − xRx) (0, 0, 0) B11 × 108, Å2 9.5(2) 7.48(3)

D1111 × 108, Å2 9.3(6) 1.1(4)
D1122 × 104, Å2 2.5(5) 0
Biso, Å2 0.828(2) 0.864(2)

F(8c) (1/4, 1/4, 1/4) Q, at./unit cell 6.34 6.53 6.58 6.11
B11 × 102, Å2 1.67(4) 1.17(2) 1.24(3) 1.15(6)
C123 × 106, Å2 6.0(9) 2.8(6) 3.0(6) 2.0(8)

Fint(48g) (y, 1/4, 1/4) Q, at./unit cell
y
Biso, Å2

Fint(32f)1 (u, u, u) Q, at./unit cell 0.94 0.82 0.84 1.16
u 0.305(3) 0.299(3) 0.302(5) 0.289(8)
Biso, Å2 1.1(2) 1.3(3) 1.7(3) 1.8(3)

Fint(32f)2 (v , v , v) Q, at./unit cell 0.34 0.31 0.27 0.43
v 0.343(4) 0.349(6) 0.350(8) 0.339(9)
Biso, Å2 0.9(4) 1.6(7) 1.4(7) 2.1(7)

Fint(32f)3 (w, w, w) Q, at./unit cell 0.82 0.74 0.71 0.74
w 0.416(2) 0.422(3) 0.416(5) 0.419(4)
Biso, Å2 1.8(3) 2.1(4) 2.8(6) 2.6(5)

Fraction of clusters [Cd2R2F26], % 85 84 78 62
Number of vacancies, vac/unit cell 0.18 0.16 0.13 0.12
Q, at./cluster Fint(48g) 0 0 0 0

Fint(32f)1 4.59 4.43 4.73 6.27
Fint(32f)2 1.66 1.68 1.52 2.32

Number of independent structure factors 81 82 84 85
Number of parameters to be refined 15 14 15 14
R 0.36 0.33 0.31 0.31
Rw, % 0.39 0.36 0.37 0.34
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Table 3.  Results of the final refinement of the structure of Cd0.90Yb0.10F2.10 single crystals

R Yb (sample 1) Yb (sample 2)

Cd0.90 (0, 0, 0) Biso, Å2 0.797(3) 0.850(2)

Yb0.10 (p, 0, 0) p 0.028 0

Biso, Å2 1.3(1) 0.850(2)

F(8c) (1/4,1/4,1/4) Q, at./unit cell 6.59 6.55

B11 × 102, Å2 1.24(3) 1.20(3)

C123 × 103, Å2 3.0(6) 2.8(6)

Fint(32f)1 (u, u, u) Q, at./unit cell 0.65 0.69

u 0.299(6) 0.298(6)

Biso, Å2 1.5(5) 1.8(9)

Fint(32f)2 (v , v , v) Q, at./unit cell 0.46 0.35

v 0.344(11) 0.348(6)

Biso, Å2 2.6(9) 1.5(6)

Fint(32f)3 (w, w, w) Q, at./unit cell 0.70 0.31

w 0.410(5) 0.409(7)

Biso, Å2 2.6(7) 1.8(9)

Fint(48i) (r, r, 0.5) Q, at./unit cell 0.50

r 0.400(6)

Biso, Å2 1.7(6)

Fraction of clusters [Cd2R2F26], % 71

Number of vacancies, vac/unit cell 0.13 0

Q, at./cluster Fint(32f)1 3.71

Fint(32f)2 2.63

Number of independent structure factors 81 85

Number of parameters to be refined 15 17

R 0.37 0.29

Rw, % 0.37 0.36
ters and reliability factors obtained after the refinement
of as-grown Cd0.90R0.10F2.10 (R = Sm–Tm, Lu, Y) crys-
tals are listed in Table 2 those for Cd0.90Yb0.10F2.10 crys-
tals are listed in Table 3.

DISCUSSION OF RESULTS

Anionic composition of clusters. Fluoride ions in a
CdF2 crystal fully occupy the 8c position (anionic fluo-
rite sublattice). During the formation of the heterova-
lent Cd0.90R0.10F2.10 solid solution, the excessive charge
of R3+ is compensated by the incorporation of fluoride
ions (additional to the CdF2 stoichiometry) into the flu-
orite structure. The total volume of large cubic voids of
the structure with the center coordinates (1/2, 1/2,1/2)
(which are called Goldschmidt voids) is too small for
locating F1– ions there. The difference syntheses of the
C

Cd0.90R0.10F2.10 phases show no electron-density maxi-
mum in the 4b position in the center of a cubic void.
Additional F1– ions in the CaF2 structure may be located
only after the rearrangement of the anionic motif of the
structure.

F1– ions in the CdF2 structure form a simple cubic
packing. In the Cd0.90R0.10F2.10 structure, Fint ions may
form groupings which fill the space with a higher den-
sity than the density of the main anionic motif of the
fluorite structure. These may be both tetrahedral and
cuboctahedral anionic groupings: the fragments of a
cubic close packing.

Fluoride ions entering tetrahedral anionic groupings
occupy the 32f position in Cd0.90R0.10F2.10, whereas the
fluoride ions entering cuboctahedral anionic groupings
occupy the 48i position. Tetrahedral anionic groupings
(see Fig. 3 in [2]) are formed instead of a void formed
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 2      2005
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due to removal of one fluoride ion, F(8c), whereas cub-
octahedral anionic groupings are formed due to
removal of eight F(8c) ions from their position (Fig. 4).

The first necessary condition for the formation of
any grouping of fluoride ions in the fluorite structure is
the existence of admissible F–F distances between the
ions in these groupings. The second necessary condi-
tion is the formation of admissible distances with all the
ions surrounding the formed groupings.

The electron density in the 48i position is seen only
on the difference electron-density synthesis of a
Cd0.90Yb0.10F2.10 crystal (sample 2). The electron-den-
sity maximum has the coordinates (0.4, 0.4, 0.5). The
distances between the maxima, 2.763(6) Å, are practi-
cally equal to the F(8c)−F(8c) distances (2.7113(5) Å).
Thus, we assume that all the interstitial anions in the 48i
positions in the Cd0.90Yb0.10F2.10 crystal (sample 2) are
those from the cuboctahedral anionic groupings.

The electron density in the 32f position on differ-
ence electron-density syntheses is observed for all the
crystals. However, since the Fint(32f)3−Fint(32f)3 distances
in Cd0.90R0.10F2.10 are approximately equal to the
F(8c)−F(8c) distance in the fluorite structure, tetrahedral
anionic groupings may be formed only by fluoride ions
with the maximum displacements from the main posi-
tion, namely, by the Fint(32f)3 ions.

Relaxation of the anions sublattice. To avoid the
inadmissibly short F–F distances with all the fluoride
ions surrounding the formed grouping, the F(8c) ions are
displaced from their positions (relax). Consider the
relaxation observed in each of the Cd0.90R0.10F2.10 crys-
tals studied.

In tetrahedral anionic groupings formed in all the
Cd0.90R0.10F2.10 crystals, each Fint(32f )3 ion contacts six
F(8c) anions, of which the three contacts with Fint(32f )3
are inadmissibly short. It is possible to assume that
these F(8c) ions relax (F(8c)  Fint(32f )1 relaxation). This
relaxation provides leveling of the Fint(32f )3–Fint(32f )3 and
Fint(32f)3–Fint(32f)1 distances.

However, the calculated number of Fint(32f )1 per tet-
rahedral anionic grouping in all the crystals is less than
6. The only exception is observed in Cd0.90Lu0.10F2.10,
where the number of Fint(32f)1 exceeds 6, and in
Cd0.90Sm0.10F2.10, where the number of Fint(32f)1 is almost
twice as small as that in the remaining crystals.

In the Cd0.90Sm0.10F2.10 crystal, interstitial fluorides
are also located in the 48g position. The F(8c) 
Fint(48g) relaxation provides leveling of the
Fint(32f)3−Fint(32f)3 and Fint(32f)3−Fint(48g) distances.

All the Cd0.90R0.10F2.10 crystals contain Fint(32f)2 ions.
Such relaxation provides leveling of the Fint(32f)3–F(8c)
and Fint(32f)3−Fint(32f)2 distances. The F(8c)  Fint(32f)2
relaxation yields inadmissibly short distances between
Fint(32f)2 ions and the neighboring F(8c) ions. It is possible
to assume that three F(8c) ions simultaneously relax to
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 2      2005
exclude the formation of inadmissibly short
F(8c)−Fint(32f)2 distances. This assumption is consistent
with the calculated number of Fint(32f)2 per cluster rang-
ing from 0 to 3 in Cd0.90R0.10F2.10 compounds.

It should be emphasized that the electron-density
maximum of Fint(32f)2 on all the difference electron-den-
sity syntheses of all the crystals studied may be consid-
ered a result of anisotropy of thermal vibrations of
Fint(32f)1 ions. The allowance for anisotropy for Fint(32f)1,
results in disappearance of the Fint(32f)2 maximum. This
may also be achieved by introducing into consideration
one more Fint(32f)2 ion. To answer the question whether
the electron density in the position denoted as Fint(32f)2

F(8c)

Fint(48i)

[Cd6F32]

[Cd3R3F36]

[Cd2R4F36]

Fig. 4. Scheme of the formation of [Cd6 − nRnF24 + 12] clus-
ters (n = 3, 4) in the crystal structure of Cd0.90R0.10F2.10
solid solutions.
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is caused by a fluoride ion, one has to perform the dif-
fraction experiments at low temperatures.

Probably, the fluorine atoms surrounding a tetrahe-
dral anionic grouping relax in different ways. It is also
possible that the relaxation is caused by different cat-
ions, Cd2+ and R3+, surrounding a tetrahedral anionic
grouping. Then, it is possible to assume that RE ele-
ments in Cd1 − xRxF2 + x solid solutions may be located
around either tetrahedral anionic or cuboctahedral
anionic groupings, and vice versa, a tetrahedral anionic
grouping (cuboctahedral anionic grouping) may be
formed under the influence of RE groupings. In other
words, the Cd1 − xRxF2 + x solid solutions may contain
cationic–anionic clusters favorable in terms of the geo-
metric factor.

Cationic composition of clusters. X-ray diffraction
analysis does not give any information on the possible
formation of RE groupings in Cd0.90R0.10F2.10 crystals.
However, since each R3+ cation contributes an excess
positive charge to the fluorite structure, its interaction
with an excess negative charge of the anionic groupings
should result in a local charge compensation. This com-
pensation was studied by spectroscopic methods
mainly for Ca1 − xRxF2 + x crystals.

A modified model of tetrahedral clusters [9] in
Cd0.90R0.10F2.10 crystals was suggested in [2]. The mod-
ification concerned the cationic composition of the
clusters. A tetrahedral anionic grouping introduces a
local excess negative charge (–3). To compensate the
excess negative charge of the anionic core, a tetrahedral
cationic cluster should not contain more than three R3+

cations, and an octahedral cluster should not contain
more than four R3+ cations. At a larger number of cat-
ions, the cluster would acquire a local positive charge,
which would be compensated with interstitial fluorines
in the positions different from Fint(32f)3 and Fint(48i). None
of the as-grown Cd0.90R0.10F2.10 crystals showed the
existence of such fluoride ions. The relaxed fluoride
ions cannot compensate the charge difference since
their existence in the structure excludes the presence of
F(8c) in the nearest position and, thus, cannot ensure the
charge compensation.

Thus, tetrahedral cationic clusters in Cd0.90R0.10F2.10

crystals may contain only one or two Cd2+ ions. Con-
sider the basis leading to the assumption that
[Cd2R2F26] and [CdR3F26] groupings are clusters of
defects.

Earlier [10], we suggested inclusion into clusters of
structural defects all those cations whose coordination
with respect to fluorine differs from the ideal fluorite
(undistorted cubic) structure. This was made for all the
octahedral cationic groupings in M1 − xRxF2 + x (M = Ca,
Sr, Ba). Now, apply a similar procedure to the
Cd0.90R0.10F2.10 crystals studied in the present work. A
polyhedron of both R3+ and Cd2+ cations entering a tet-
rahedral cationic cluster presents itself as a cube one
C

vertex of which is substituted by a triangle. The coordi-
nation number of each cation of such a grouping with
respect to fluorine is ten. The coordination number of
Cd2+ entering the cluster differs from the c.n. of Cd2+

cations of the fluorite CdF2 matrix. In accordance with
the assumption made in [10], such noncubic Cd2+ ions
may be considered as a structural defect with respect to
the fluorite matrix. The [Cd2R2F26] and [CdR3F26]
groupings with participation of such CdF2 may be con-
sidered as tetrahedral cationic clusters.

The [Cd2R2F26] clusters have three sorts of F(8c) ions
that should relax: one ion simultaneously contacting
two R3+ cations (we consider only the cluster cations),
one ion contacting two Cd2+ ions, and four anions con-
tacting different cations. A [CdR3F26] cluster has only
two kinds of relaxing F(8c) anions: three anions contact-
ing two R3+ cations and three anions contacting differ-
ent kinds of cations.

Evolution of the defect (cluster) structure of as-
grown Cd0.90R0.10F2.10 phases with RE = Sm–Lu and
Y. Figure 5 schematically illustrates the formation of
tetrahedral cationic clusters containing two
([Cd2R2F26]) or three ([CdR3F26]) R3+ cations in the
Cd1 − xRxF2 + x phases with different RE elements. Small
dark circles indicate F(8c) ions. The relaxed fluoride ions
in the 32f position, Fint(32f)1 and Fint(32f)2, are indicated by
large dark and light circles, respectively. The relaxed
fluoride ions in the position 48g, Fint(48g), are indicated
by large hatched circles.

It is possible to assume that the F(8c) ions contacting
only R3+ and the F(8c) ions contacting only Cd2+ relax in
a different manner. The results obtained for the
Cd0.90Tb0.10F2.10 structure [2] allow us to answer the
question in what way the F(8c) ions contacting different
cations can relax. It is established that this crystal con-
tains only relaxed Fint(32f)1 ions (about seven ions per
cluster). This signifies that all six F(8c) ions which
should relax do so in the same way. Since
Cd0.90Tb0.10F2.10 contains 96% of [CdR3F26] not con-
taining F(8c) contacting only Cd2+, one may draw the
conclusion that F(8c) ions contacting different cations
relax in the same way as F(8c) contacting only the same
R3+ cations.

The absence of relaxed Fint(32f)2 ions in
Cd0.90Tb0.10F2.10 allows us to assume that the presence
of these ions depends on the number of the [Cd2R2F26]
clusters formed. Since Cd0.90Tb0.10F2.10 has only 4% of
the [Cd2R2F26] clusters, it practically does not contain
Fint(32f)2. In other words, the F(8c)  Fint(32f)2 relaxation
takes place only in the vicinity of Cd2+ cations entering
the cluster.

Thus, the F(8c) ions contacting the same R3+ cations
and the fluoride ions F(8c) containing different cations
relax in the same way: F(8c)  Fint(32f)1 relaxation. The
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 2      2005
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CdF2

[Cd2R2F26] [CdR3F26] [Cd2R2F26] [CdR3F26]

F(8c)

Fint(48g)

Fint(32f)1

Fint(32f)2

1 Fint(48g)

4 Fint(32f)1

3 Fint(32f)2

3 Fint(48g)

3 Fint(32f)1

0 Fint(32f)2

0 Fint(48g)

5 Fint(32f)1

3 Fint(32f)2

0 Fint(48g)

6 Fint(32f)1

0 Fint(32f)2

0 Fint(48g)

7 Fint(32f)1

3 Fint(32f)2

0 Fint(48g)

9 Fint(32f)1

0 Fint(32f)2

R = Sm R = Gd–Yb, Y R = Lu

Fig. 5. Change in relaxation of the anionic sublattice of the fluorite matrix around the defect clusters in Cd0.90R0.10F2.10 (R = Sm–
Lu, Y) single crystals along the RE series.
fluoride ions F(8c) contacting the same Cd2+ cations,
relax in different way: F(8c)  Fint(32f)2 relaxation.
Probably, F(8c) ions in Cd0.90Sm0.10F2.10 contacting the
same R3+ cations relax not along the threefold axis, as
in all the other studied Cd0.90R0.10F2.10 crystals, but
along the fourfold axis to the position 48g.

A cluster in a Cd0.90Lu0.10F2.10 crystal contains a
larger number of Fint(32f)1 ions than clusters in other
crystals. It is probable that the F(8c) ions occupying the
vertices of Lu3+ polyhedra in this crystal also relax.
This relaxation may arise because the Lu3+ cations tend
to reduce a polyhedron’s volume by decreasing the
coordination number from 10 to 9 by removing one flu-
oride ion from a Lu3+ polyhedron. This leads to the
assumption that the tetrahedral cationic configuration
of clusters for R3+ ions at the end of the RE series
becomes geometrically less advantageous than the
octahedral one.

The structural data obtained for as-grown
Cd0.90R0.10F2.10 (R = Sm–Lu, Y) crystals indicate that the
[Cd2R2F26] and [CdR3F26] clusters may exist simulta-
neously. At the same time, it was noticed the ratio of the
numbers of these clusters varies along the RE series.
The estimation of the varying ratio of two types of cat-
ionic clusters (their cationic composition) according to
the scheme suggested in [2] showed that the average
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 2      2005
content of [Cd2R2F26] clusters in Cd0.90R0.10F2.10 (R =
Er–Lu, Y) is considerably higher than in the analogous
phases with R = Sm–Ho. The average content of the
clusters in the transition from one RE group to another
varies in a jumpwise manner. Such a character of the
variation of the properties of RE-containing com-
pounds is usually explained by the so-called effect of
secondary periodicity in the RE series. We come back
to this effect in defect structures of the isoconcentration
series of the Cd0.90R0.10F2.10 phases after the consider-
ation of crystals with RE elements of the cerium sub-
group (R = La–Nd).

Vacancies in the anionic sublattice of
Cd0.90R0.10F2.10 phases. If the number of cations in a
tetrahedral (octahedral) cluster is less then three (four),
the local negative charge of a cluster is compensated
with the vacancies of the main anionic motif in the
vicinity of the cluster.

The total occupancy of the positions of the basic and
relaxed fluoride ions in all the crystals studied is much
less than eight ions per unit cell. This signifies that the
main anionic motif has some vacancies. The total num-
ber of the vacancies includes both anionic vacancies in
the main fluorite motif and the voids inside clusters of
tetrahedral (cuboctahedral) anionic groupings, which,
strictly speaking, are not vacancies. There is one such
void per each tetrahedral cluster and eight voids per
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each octahedral cluster. Thus, the number of vacancies
in the anionic Cd1 − xRxF2 + x sublattice is calculated as q
(vacancies) = 8 – q(F(8c)) – q(Fint(32f)1) – q(Fint(32f)2) –
q(Fint(48g)) – q(Fint(32f)3)/4 – 2/3 × q(Fint(48i)). The numbers
of vacancies calculated according to such a scheme for
all the Cd0.90R0.10F2.10 crystals are listed in Tables 2
and 3.

The number of vacancies in the anionic sublattice of
Cd0.90R0.10F2.10 phases with R = Er–Lu, Y is consider-
ably higher than for phases with R = Sm–Ho. Anionic
vacancies participate in ionic transport and provide
superionic conductivity with respect to fluoride ions in
fluorite Cd1 − xRxF2 + x phases. Thus, one may expect
that the conductivity of Cd0.90R0.10F2.10 with R = Er–Lu,
Y would be higher than the conductivity of the analo-
gous phases with R = Sm–Ho. The results obtained in
the study of ionic transport in Cd0.90R0.10F2.10 crystals
will be published later.

Variation of a defect structure within one crystal-
line boule. The study of two samples cut from different
portions of a transverse section of the crystalline boule
of an as-grown Cd0.90Yb0.10F2.10 single crystal showed
that they differ considerably. Sample 1 of the
Cd0.90Yb0.10F2.10 composition has only tetrahedral clus-
ters, with all the Yb3+ ions being displaced by 0.15 Å
from their positions along the fourfold axis. Sample 2
also contains octahedral clusters, with cations being
practically not displaced. It is possible to assume that
the Yb3+ ions are displaced only if they form a tetrahe-
dral cationic cluster with large coordination numbers
(10) of R3+ cations. A cation in such a polyhedron is not
necessarily located in the center. In octahedral clusters
with lower coordination numbers (8) of R3+ cations, no
displacements of Yb3+ cations are observed.

The electron-density maxima in the 32f and 48i
positions on the syntheses of sample 2 of
Cd0.90Yb0.10F2.10 cannot be uniquely interpreted as addi-
tional fluoride ions incorporated simultaneously into
both positions. The point is that the maximum corre-
sponding to the position 32f may also be interpreted as
the overlap of the maxima due to fluoride ions in the 48i
position.

Consider these possibilities proceeding from the
obtained coordinates of Fint ions. The electron-density
maximum in the position 48i of sample 2 of the compo-
sition Cd0.90Yb0.10F2.10 has the coordinates (0.4, 0.4,
0.5). The three corresponding electron-density maxima
with the coordinates (0.4, 0.4, 0.5), (0.4, 0.5, 0.4), and
(0.5, 0.4, 0.4) are located in the plane x + y + z – 1.3 =
0, so that the maximum of their overlap should have the
coordinates (0.433, 0.433, 0.433). It is seen from the
synthesis in Fig. 3b, that the electron-density maximum
of the anion Fint(32f)3 has the coordinates (0.409, 0.409,
0.409) and only the “sole” of this maximum includes
the point (0.433, 0.433, 0.433). Thus, the electron den-
sity due to Fint(48i) may only insignificantly contribute to
C

the electron density due to Fint(32f)3. The zero synthesis
(lower part of Fig. 3b) calculated with due regard for all
the Fint ions shows the electron-density maximum in the
position 32f with the coordinates (0.440, 0.440, 0.440),
which may be interpreted as the overlap of the maxima
in the 48i position. The above estimates lead to the
assumption that sample 2 of a Cd0.90Yb0.10F2.10 crystal
contains additional fluoride ions simultaneously in the
positions 48i and 32f. Earlier, a similar model was sug-
gested for some crystals of the Ca1 − xRxF2 + x family.

Thus, the type of a defect structure may change even
within a rather limited volume of a crystalline boule
having no pronounced composition fluctuations. It is
possible to assume that these structural changes are
associated with insignificant noncontrollable variations
of the thermal conditions in crystal growth.

The as-grown Cd0.90R0.10F2.10 crystals are in a non-
equilibrium state. Annealing of these crystals may
result in their equilibrium state, which, in turn, may
give rise to formation by RE cations of the fourth mor-
photropic group (R = Er–Lu, Y) of a more size-advan-
tageous octahedral cationic configuration. The results
of the study of annealed single crystals will be pub-
lished later.

Comparison of the defect structure of as-grown
Cd0.90R0.10F2.10 fluorite phases with the structure of
as-grown Ca1 - xRxF2 + x phases. Of all the fluorite
crystalline MF2 matrices underlying the formation of
nonstoichiometric M1 − xRxF2 + x phases, the unit-cell
parameter of the CdF2 (a = 5.462 Å) [11] is the closest
to the unit-cell parameter of CaF2 (a = 5.393(3) Å) [2].
Therefore, it is reasonable to compare the data on the
defect structures of these two families of nonstoichio-
metric phases: Cd0.90R0.10F2.10 and Ca1 − xRxF2 + x.

The as-grown Cd0.90R0.10F2.10 crystals studied in this
work differ from the Ca1 − xRxF2 + x crystals studied ear-
lier by a considerably more pronounced relaxation of
the anionic sublattice. In the Ca1 − xRxF2 + x phases,
F(8c)  Fint(32f)1 relaxation is rather weak, whereas
F(8c)  Fint(48g) and F(8c)  Fint(32f)2 relaxation does
not take place at all. Probably, the more pronounced
relaxation in Cd1 − xRxF2 + x crystal in comparison with
relaxation in Ca1 − xRxF2 + x crystals is explained by
more pronounced covalence of bonds in the former
crystals.

In the first approximation, the geometric limit for
formation of tetrahedral cationic clusters is determined
by the ratio of the ionic radii of the matrix cations M2+

and an impurity component R3+. The ionic radius of
Cd2+ is practically equal to the radius of Ca2+ (in the
system of ionic radii given in [12] for c.n. = 8, they are
equal to 1.10 and 1.12 Å, respectively). In the
Ca1 − xRxF2 + x crystals, an octahedral cluster is formed
in the Ca1 − xDyxF2 + x solid solution. Proceeding only
from the geometric factor, we could expect the forma-
tion of an octahedral cationic cluster already in the
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 2      2005
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Cd1 − xDyxF2 + x solid solution. The structural study of
as-grown Cd0.90R0.10F2.10 (R = Sm–Lu, Y) crystals
shows that, although octahedral clusters were observed
in the Cd0.90Yb0.10F2.10 solid solution, they did not play
the part of a prevalent type of defects. In an as-grown
Cd0.90Lu0.10F2.10 crystal with Lu3+ cations (following the
ytterbium cation), only tetrahedral cationic groupings
were observed.

CONCLUSIONS

It is shown by X-ray diffraction analysis that as-
grown Cd0.90R0.10F2.10 (R = Sm–Lu, Y) crystals belong
to the CaF2 structure type.

It is established that Cd0.90R0.10F2.10 crystals have
five types of interstitial fluoride ions (Fint): three in the
32f position (w, w, w), Fint(32f)1, Fint(32f)2, and Fint(32f)3,
with the w coordinate ranging within 0.289 to 0.422;
one Fint(48i) in the position 48i; and one Fint(48g) in the
position 48g. The Fint ions in the position 32f were
observed in all the crystals studied.

In a Cd0.90Sm0.10F2.10 crystal, we observed for the
first time in the family of fluorite M1 − xRxF2 + x phases
the fluoride ions Fint(48g) in the position 48g, i.e., the dis-
placements from the position 8c along the fourfold
symmetry axis.

In Cd0.90Yb0.10F2.10 crystals, we revealed Fint(48i) in
the position 48i with the displacements along the two-
fold symmetry axis with respect to the position 8c.

The main grouping of the anionic defects (Fint) in
Cd0.90R0.10F2.10 (R = Sm–Lu, Y) crystals is a tetrahedral
anionic grouping formed by Fint(32f)3 with the maximum
displacement with respect to the main anionic position 8c.

In the as-grown Cd0.90Yb0.10F2.10 crystals (to the end
of the RE series), tetrahedral anionic groupings are
formed along with cuboctahedral anionic groupings
typical of the structures of most M1 − xRxF2 + x phases
studied earlier.

Fluoride ions interact differently with cations. The
ions from the main position F(8c), which form contacts
with the same R3+ and different (ëd2+, R3+) cations,
relax in the same way: F(8c)  Fint(32f)1 relaxation. This
relaxation levels Fint(32f)3 –Fint(32f)3 and Fint(32f)3 – Fint(32f)1

distances. The F(8c) ions contacting the same Cd2+ cat-
ions relax in different ways: F(8c)  Fint(32f)2 relaxation
leveling the Fint(32f)3−F(8c) and Fint(32f)3−Fint(32f)2 dis-
tances.

In a Cd0.90Lu0.10F2.10 crystal, the presence of a large
number of Fint(32f)1 ions is associated with relaxation of
fluoride ions not contacting Fint(32f)3. This relaxation
takes place because c.n. = 10 is not typical of small Lu3+

ions. As a result, these ions decrease the polyhedron
volume by reducing the coordination number to nine.
This process manifests itself in the general tendency to
reduce the coordinating ability of RE ions across the
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 2      2005
series because a decrease in their size due to lanthanide
contraction.

The variations in the anionic motif of the
Cd0.90R0.10F2.10 phases may be explained by formation of
tetrahedral cationic–anionic [CdR3F26] and [Cd2R2F26]
clusters with tetrahedral anionic groupings playing the
part of a cluster core. Both clusters may be formed in
crystals simultaneously. In crystals with R = Er—Lu, Y,
the [Cd2R2F26] content is much higher than in the
phases with R = Sm–Ho.

In all the Cd0.90R0.10F2.10 phases, the main anionic
motif has vacancies in the position 8c. The concentra-
tion of such vacancies in the Cd0.90R0.10F2.10 crystals
with R = Er–Lu and Y is considerably higher than in
phases with R = Sm–Ho. Anionic vacancies give rise to
superionic conductivity with respect to fluoride ions.

We observed for the first time the parts of a crystal-
line boule of the Cd0.90Yb0.10F2.10 composition having
different defect structures. One part had the
Cd0.90R0.10F2.10 structure with tetrahedral cationic–
anionic clusters but differs from such crystals by the
displacement (0.15 Å) of Yb3+ ions to the 24e position
along the fourfold symmetry axis. Differentiation of
cations in the structure of Cd0.90R0.10F2.10 solid solutions
was observed in the fluorite M1 − xRxF2 + x phases for the
first time. In the other type of the defect
Cd0.90Yb0.10F2.10 structure, the tetrahedral and octahe-
dral cationic clusters simultaneously formed in the
structure show no displacements of Yb3+ ions.

On the whole, the anionic sublattices of the
Cd0.90R0.10F2.10 (R = Sm–Lu, Y) phases are characterized
by more pronounced relaxation than the Ca1 − xRxF2 + x
phases. This may be explained by a considerably larger
fraction of covalence in chemical bonding in CdF2
against the background of which the processes of the
formation of structural defects proceed in different
ways.
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Abstract—The asymmetric complex [Ni(HL)]I (where H2L is pyridine-2,6-dicarbaldehyde-bis(S-methyl-
isothiosemicarbazone)) is synthesized by the [2 + 1] template condensation of S-methylisothiosemicarbazide
hydroiodide with pyridine-2,6-dicarbaldehyde in the presence of nickel(II) acetate. The crystal structure of the
[Ni(HL)]I complex (where HL is C11H14N7S2) is determined using X-ray diffraction. The square-planar coor-
dination of the nickel(II) central atom is provided by four N donor atoms of the chelating ligand, namely, one
N atom of the pyridine residue and three N atoms of the isothiosemicarbazide fragments. The deprotonated
isothiosemicarbazide fragment in the imino form and the neutral ammonium isothiosemicarbazide fragment
differ in the degree of deprotonation, the mode of coordination to the central atom (N1N3 and N2, respectively),
and the conformation (E and Z, respectively). The structural features of the ammonium isothiosemicarbazide
fragment are associated with the formation of zwitterions. It is established that the crystal structure of the com-
pound under investigation contains centrosymmetric dimers. These dimers participate in the formation of the
second coordination sphere N4S of the central atom. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

Since the mid-1960s, the template synthesis, which
is one of the most efficient synthetic techniques for
designing polydentate systems with different topolo-
gies, geometries, and properties, has been extensively
used in the preparative chemistry of Schiff’s bases of
isothiosemicarbazide derivatives [1–4].

S-alkylated isothiosemicarbazides (N1H2–
N2=C1(SR)–N3H2 · HI) (SR-Thsc) have been success-
fully used as a diamine synton in the template synthesis
for the purpose of designing polydentate ligands with a
different set of donor atoms: N2O, N2O2, N3O, and N4
[2]. Isothiosemicarbazones (i.e., the products of con-
densation of terminal hydrazine amino groups of S-
alkylated isothiosemicarbazides with carbonyl com-
pounds) are potentially tautomeric systems and can
exist in the amino form (R)–C=N1–N2=C1(SR)–N3H2

or the imino form (R)–C=N1–N2H–C1(SR)=N3H. As a
rule, the isothiosemicarbazide fragment is coordinated
to the central atom only through the terminal nitrogen
atom (N1 is the hydrazine nitrogen, and N3 is the thioa-
mide nitrogen) [5] with the formation of an E configu-
ration (the S atom is in the trans position with respect
to the azomethine bond) [6]. By varying the synthesis
conditions, the stoichiometry of S-alkylated isothi-
osemicarbazides and carbonyl compounds, and their
nature, it has become possible to prepare a large num-
ber of mononuclear and binuclear (homonuclear, heter-
1063-7745/05/5002- $26.00 0217
onuclear), chelate [mono(isothiosemicarbazones),
bis(isothiosemicarbazones)], and macrocyclic (sym-
metric, asymmetric) complex compounds. Salicylal,
acetylacetone, nitromalondialdehyde, 1,1,3,3-tetra-
ethoxypropane, and anthranilaldehyde have been used
as carbonyl compounds in syntheses of the aforemen-
tioned complexes. Aromatic dicarbonyl compounds
containing additional donor atoms or functional groups
in their composition have rarely been used in the syn-
thesis of Schiff’s bases with S-alkylated isothiosemi-
carbazides. It seems likely that this series of com-
pounds is represented only by 2,6-diacetylpyridine,
2,6-diformyl-4-methylphenol, and 3-formylsalicylic
acid, which can increase the denticity of the ligands: N5

[7, 8], N4O [9, 10], and N2O4 [11].

The structural features of the compounds synthe-
sized can also be affected by the nature of the metal. For
example, 2,6-diacetylpyridine-bis(S-methylisothi-
osemicarbazone) (H2L*) prepared by the template syn-
thesis on 3d metal matrices is characterized by various
coordination and structural features and different coor-
dination modes depending on the template used [7, 8].
X-ray diffraction investigations revealed that the
Schiff’s base H2L* with the Mn(II) ion behaves like the
neutral pentadentate ligand N5 due to the coordination
through the pyridine nitrogen and terminal isothiosemi-
carbazide nitrogen atoms [7]. On the other hand, the
ligand with the nickel(II) ion is monodeprotonated and
© 2005 Pleiades Publishing, Inc.
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participates in the coordination through four nitrogen
atoms (one pyridine and three isothiosemicarbazide
nitrogen atoms) in a tetradentate coordination mode
(N4). It should be noted that one isothiosemicarbazide
fragment is involved in a typical N1 and N3 coordina-
C

tion, whereas the second fragment is attached only
through the N2 atom. This mode of coordination is
rather unusual and has very rarely been observed in
compounds based on alkylated isothiosemicarbazides
[8] (see Scheme 1).
Scheme 1.
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It is of interest to extend the class of aromatic func-
tional dicarbonyl compounds used for template con-
densation of S-alkylated isothiosemicarbazides. Taking
into account the higher reactivity of dialdehydes (as
compared to ketones) in condensation with S-alkylated
isothiosemicarbazides and the similarity of 2,6-
diacetylpyridine to pyridine-2,6-dicarbaldehyde in
both the geometry and the set of donor atoms (O, N),
the latter compound seems to be promising for the use
in the template synthesis on matrices containing
nickel(II) ions.

The purpose of the present work is to investigate the
crystal structure of pyridine-2,6-dicarbaldehyde-bis(S-
methylisothiosemicarbazonato)nickel(II) iodide
[Ni(HL)]I (I) (where HL is C11H14N7S2). This work is a
continuation of systematic investigations into the tem-
plate synthesis and structure analysis of 3d metal asym-
metric coordination compounds based on alkylated
isothiosemicarbazide and also into the influence of the
nature of the dicarbonyl synton on the structure and
conformation of the molecule as a whole.

EXPERIMENTAL

S-methylisothiosemicarbazide hydroiodide was pre-
pared according to the procedure described earlier in
[12]. The synthesis was performed with the use of com-
mercial pyridine-2,6-dicarbaldehyde (Aldrich). Pyri-
dine-2,6-dicarbaldehyde-bis(S-methylisothiosemicarba-
zonato)nickel(II) iodide [Ni(HL)]I (I) was synthesized
according to Scheme 2.
Scheme 2.
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Pyridine-2,6-dicarbaldehyde (0.13 g, 1.0 mmol)
was dissolved in methanol (15 ml). A solution of
S-methylisothiosemicarbazide hydroiodide (0.47 g,
2.0 mmol) in methanol (15 ml) and a solution of
Ni(CH3COO)2 ⋅ 4H2O (0.25 g, 1.0 mmol) in methanol
(20 ml) were sequentially added to the pyridine-2,6-
dicarbaldehyde solution. The brown reaction mixture
thus prepared was refluxed for 1 h. A finely crystalline
greenish brown compound (0.19 g, 38.5%) precipitated
upon cooling. Then, the compound was filtered off and
washed with methanol and ether. MS m/z: 365.9 [M-I]+

(I, 100%).
For C11H14IN7NiS2 anal. calcd. (%): C, 26.74; H,

2.88; N, 19.85; Ni, 11.88.
Found (%): C, 26.58; H, 2.97; N, 19.63; Ni, 11.64.
The experimental set of X-ray diffraction reflections

was collected on a KM4CCD diffractometer (ω scan
mode). The main crystal data, data collection, and
refinement parameters are listed in Table 1. The struc-
ture was solved and refined with the SHELX97 pro-
gram package [13]. The data on the crystal structure of
compound I have been deposited with the Cambridge
Structural Database (CCDC no. 213283).

The elemental analysis was performed by the
micromethod at the Elemental Analysis Group of the
Institute of Chemistry (Academy of Sciences of Mold-
ova, Chisinau, Moldova). The electrospray ionization
mass spectrum was recorded on a Finnigan LCQ mass
spectrometer.

RESULTS AND DISCUSSION

The asymmetric nickel(II) complex [Ni(HL)]I was
synthesized by the template condensation of S-methyl-
isothiosemicarbazide hydroiodide with pyridine-2,6-
dicarbaldehyde in the presence of nickel(II) acetate.
The stoichiometric composition was determined from
the data of the elemental analysis and mass spectrome-
try (m/z = 365.9 for [M-I]+ (I, 100%), m/z = 318.1 for
[M-I-SCH3]+ (I, 32%)). These results indicate that the
[2 + 1] Schiff’s base H2L is successfully prepared from
the initial compounds and that iodide ions are contained
in the system under investigation. The diamagnetic
properties of the synthesized compound and its brown
color allow us to assume that complex I has a square-
planar structure. Since 2,6-diacetylpyridine-bis(S-
methylisothiosemicarbazone) with similar nature,
geometry of donor atoms, and chemical prehistory can
have different structural and coordination features, it is
assumed that the newly synthesized Schiff’s base H2L
can be coordinated in two modes, namely, the tetraden-
tate mode and the pentadentate mode. In order to eluci-
date the specific features in the structure of the cationic
complex and the formation of the crystal structure of
compound I, we carried out X-ray diffraction analysis.

The crystal structure of compound I is composed of
the asymmetric cationic complexes [Ni(HL)]+ (where
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 2      2005
HL– = C11H14N7S2) and the outer-sphere iodine anions
(Fig. 1). The cationic complex contains two isothi-
osemicarbazide fragments. It is worth noting that the
deprotonated residue is in the imino form and partici-
pates in a trivial coordination through the terminal
atoms N1 and N3. On the other hand, the second isothi-
osemicarbazide residue, which can be treated as an
ammonium form1 of isothiosemicarbazide, is coordi-
nated to the central atom in an unusual manner, namely,
through the N2 intermediate atom. It can be assumed
that the ammonium modification of the isothiosemicar-
bazide fragment is most likely formed under the effect
of the electrostatic field of the crystal lattice. The con-
siderable contribution to the electrostatic field is made
by iodide ions, which completely compensate for the
charge of the [Ni(HL)]+ cationic complexes. These cat-

1 The ammonium form is a modified imino form that implies the

formation of  zwitterions with transfer of a proton from

the intermediate nitrogen atom N(2) to the terminal nitrogen
atom N(3).

N2
–
/N3

+

Table 1.  Crystal data, data collection, and refinement pa-
rameters for the structure of compound I

Compound C11H14IN7NiS2

Molecular weight 612.27

Temperature, K 293(2) 

Wavelength (λ) 0.71073

Crystal system, space group Monoclinic, P21/c

a, Å 7.038(1)

b, Å 10.197(2) 

c, Å 23.572(4) 

β, deg 95.35(1) 

V, Å3 1684.1(6)

Z 4 

ρcalcd, g/cm3 1.948

Crystal size, mm 0.40 × 0.10 × 0.05

µ, mm–1 2.874

θ range, deg 3.47–26.37

Index ranges –8 ≤ h ≤ 6, –12 ≤ k ≤ 12,
–29 ≤ l ≤ 28

Number of reflections
measured

9273

Number of unique reflections 3429 [Rint = 0.0998]

Number of parameter
refined

211

GOOF 1.112

Final R factor [I > 2σ(I)] R1 = 0.0780, wR2 = 0.1940

R factor for all reflections R1 = 0.0944, wR2 = 0.2097
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ionic complexes acquire positive charge due to the
deprotonation of the N(2a) atom of the isothiosemicar-
bazide fragment in the imino form. A strong delocaliza-
tion of the electron density is observed in the metallo-

C(6)

C(5)

C(4)

C(3)

C(7)

C(8)

N(4)

Ni(1)

N(1)N(2)

C(1)

S(1)

C(2)

N(3)

I(1)

C(2a)

N(3a)

S(1a)
C(1a)

N(2a)
N(1a)

C(3a)

Fig. 1. Structure of the [Ni(HL)]I complex.
C

cycle of the deprotonated fragment. Therefore, it
should be emphasized that the results obtained do not
contradict the possible partial deprotonation of both the
imino and ammonium isothiosemicarbazide fragments.

Apart from the complex [Ni(HL*)I] (II) (where
HL*– = C13H18N7S2), which was described earlier by
Leovac et al. [8], compound I is the second example of
an unusual coordination of the ammonium form of the
isothiosemicarbazide fragment to the central atom. Fur-
thermore, apart from complexes II [8] and [NiL**2–]
(where L**2– = C16H20N6OS2) [14], compound I is the
third example of a new mode of coordination of the
isothiosemicarbazide fragment (through the N2 atom).

The square-planar coordination of the nickel(II)
central atom is provided by three atoms, namely, the
N(2), N(1a), and N(3a) atoms of two isothiosemicarba-
zide fragments, and the N(4) atom of the pyridine ring.
The Ni(1)–N(1a) distance [1.839(6) Å] is somewhat
shorter than the Ni(1)–N(3a) distance [1.874(6) Å] and
agrees well with the previously revealed tendency for
tetradentate bis(S-alkylthiosemicarbazones) according
to which the bonding of the central atom to the terminal
dihydrazine nitrogen atom is stronger than that to the
thioamide nitrogen atom [4, 15].

The Ni(1)–N(2) bond [1.900(6) Å] in the ammo-
nium isothiosemicarbazide fragment with the unusual
coordination (through the intermediate hydrazine nitro-
gen atom) is the longest bond with the participation of
the central atom and correlates well with the corre-
sponding bond lengths in complexes II (1.893 Å) and
[NiL**] (1.901 Å). The tendency toward an elongation
of the Ni–N2 distance is common for all three com-
Table 2.  Selected interatomic distances (Å) and bond angles (deg) in the structures of compounds I and II

Atoms I II Atoms I II

Ni(1)–N(1a) 1.839(6) 1.844(2) N(2)–C(1) 1.368(9) 1.343(4)

Ni(1)–N(3a) 1.874(6) 1.890(3) N(3)–C(1) 1.307(10) 1.308(4)

Ni(1)–N(4) 1.882(6) 1.879(2) N(1a)–C(3a) 1.318(9) 1.300(4)

Ni(1)–N(2) 1.900(6) 1.893(2) N(1a)–N(2a) 1.372(9) 1.359(4)

N(1)–C(3) 1.294(9) 1.286(4) N(2a)–C(1a) 1.357(9) 1.339(4)

N(1)–N(2) 1.377(8) 1.379(3) N(3a)–C(1a) 1.319(9) 1.315(4)

N(1a)–Ni(1)–N(3a) 81.2(3) 80.91(12) N(1a)–Ni(1)–N(2) 174.5(3) 176.51(12)

N(1a)–Ni(1)–N(4) 84.5(3) 83.92(12) N(3a)–Ni(1)–N(2) 101.4(3) 102.21(12)

N(3a)–Ni(1)–N(4) 163.5(3) 162.98(12) N(4)–Ni(1)–N(2) 93.6(3) 93.21(12)

Table 3.  System of hydrogen bonds in the structure of compound I

D–H d(D–H) d(H–A) DHA angle d(D⋅⋅⋅A) A

N(3)–H(1) 0.749 2.388 123.3 2.868 N(3a)

N(3)–H(1) 0.749 2.473 149.3 3.140 N(2a)#

N(3)–H(2) 0.884 3.024 138.3 3.730 I(1)
# Symmetry code: –x + 1, –y, –z + 1.
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 2      2005
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Fig. 2. A fragment of the crystal structure of the [Ni(HL)]I complex (projection along the [001] direction).
pounds (I, II, [NiL**]) and indicates that the electron-
donating properties of the coordinated intermediate
atom N2 are weaker than those of the N1 and N3 atoms.
Most probably, this can be associated with the acceptor
effect exerted by the adjacent azomethine group
C1=N2 , which is not involved in the metallocycle. The
nickel atom deviates by 0.022(3) Å from the root-
mean-square plane formed by four nitrogen atoms. The
Ni–N distances vary in the range from 1.839(6) to
1.900(6) Å. The chelate angles are equal to 81.2(3)°
and 84.5(3)° in the five-membered metallocycles and
93.6(3)° in the six-membered metallocycle (Table 2).

Therefore, pyridine-2,6-dicarbaldehyde-bis(S-
methylisothiosemicarbazone) is a monobasic tetraden-
tate ligand N4. The three metallocycles formed,
namely, the two adjacent five-membered metallocycles
NiNCCN and NiNCNN and the six-membered metallo-
cycle NiNCCNN, have a nonplanar structure. The devi-
ations of the atoms from the root-mean-square planes
vary from –0.067(5) to 0.126(4) Å for the six-mem-
bered cycle and from –0.017(4) to 0.046(4) Å for the
five-membered cycles. The dihedral angles which the
plane passing through the Ni(1), N(2), N(1), C(3), and
C(4) atoms makes with the plane through the Ni(1),
N(4), C(8), C(3a), and N(1a) atoms and with the plane
through the Ni(1), N(1a), N(2a), C(1a), and N(3a)
atoms are equal to 6.8(2)° and 5.7(1)°, respectively.

The substantial difference between the structures of
compound I and compound II described earlier in [8]
lies in the fact that, in structure I, methyl substituents
are absent in the 2,6 positions of the HL– ligand and the
iodide ion is not coordinated to the central atom. The
latter circumstance is responsible for the difference not
LLOGRAPHY REPORTS      Vol. 50      No. 2      2005
only in the coordination numbers of the nickel(II) cen-
tral atoms in compounds I (the coordination number is
four) and II (the coordination number is five) but also
in the intermolecular interactions observed in these
crystal structures. Note that, in the structure of com-
pound I, there is a weak stabilizing intramolecular
(S(6) [16]) hydrogen bond N(3)–H⋅⋅⋅N(3a) (2.868 Å)
(Table 3). The formation of this bond makes it possible
to distinguish one more pseudometallocycle. In this
case, as in the [NiL**] complex [14], the molecule
acquires a pseudomacrocyclic structure in which the
5,5,6,6-chelate metallocycles alternate with each other
(Fig. 1).

The deprotonated isothiosemicarbazide fragment,
which is coordinated in a bidentate mode through the
terminal nitrogen atoms N(1a) (azomethine) and N(3a)
(thioamide), forms a five-membered metallocycle in

S(1ac)

N(2aa)
Ni(1a)

N(3ab)

N(1ab)

S(1ab)

Ni(1b)

N(4aa)

Fig. 3. Second coordination sphere of the nickel atom.



222 GRADINARU et al.
z

x

y

0

Fig. 4. A fragment of the crystal structure of the [Ni(HL)]I complex (projection perpendicular to the [010] direction).
the E configuration. The N(3a)–C(1a)–N(2a)–N(1a)
torsion angle is equal to –4.1(5)°. The ammonium
isothiosemicarbazide fragment is coordinated in a mon-
odentate mode through the N(2) hydrazine nitrogen
atom and resides in the Z configuration. The N(3)–
C(1)–N(2)–N(1) torsion angle is equal to 158.7(7)°.

It should be noted that the hydrazine nitrogen atom
N(2a) acquires electron-seeking properties owing to
the participation in the formation of the intermolecular
hydrogen bond N(3)–H···N(2a)# (3.140 Å) (Table 3). In
turn, these hydrogen bonds bring about the formation
of centrosymmetric dimers in the crystal structure
(Fig. 2). In contrast to compound II described in [8],
the negatively charged iodine ion in compound I is not
involved in the coordination of the central atom but
forms a hydrogen bond with the N(3) atom of the
anionic complex [N(3)–H⋅⋅⋅I(1), 3.730 Å]. The iodine
ions are electrostatically bound to the carbon atoms of
the adjacent dimers and join them together into double
centrosymmetric layers that are aligned parallel to the
(001) plane (Fig. 2). In the dimers, the nickel and sulfur
atoms of the symmetrically related cationic complexes
are also linked through a strong electrostatic interac-
tion. This interaction is responsible for the formation of
the second coordination sphere of the nickel atom in the
form of a distorted square pyramid whose base contains
C

four nitrogen atoms of the isothiosemicarbazide frag-
ments and vertex is occupied by the sulfur atom
(Fig. 3). In this case, the coordination polyhedron of the
central atom can be described as N4S, the Ni(1)–S(1)#

distance is equal to 3.553 Å, and the S–N# distances
vary from 3.605 to 4.536 Å. A fragment of the crystal
structure in the projection perpendicular to the [010]
direction is depicted in Fig. 4. The parameters of the
hydrogen bonds formed in structure I are presented in
Table 3.

CONCLUSIONS

Thus, the results obtained in this work demonstrated
that the structure of the [Ni(HL)]I complex under inves-
tigation contains isothiosemicarbazide fragments of
two types, namely, the deprotonated imine isothiosemi-
carbazide fragment and the neutral ammonium isothi-
osemicarbazide fragment. The potentially pentadentate
ligand H2L is coordinated in a tetradentate mode [N4]
and behaves like a monobasic Schiff’s base (HL–). The
structural features of the ammonium isothiosemicarba-
zide fragment are associated with the formation of the

 zwitterions. The isothiosemicarbazide frag-
ments differ in the degree of deprotonation, the confor-
N2

–
/N3

+
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mation, and the mode of their coordination to the cen-
tral atom. The I– anion completely compensates for the
charge of the [NiHL]+ cationic complex and does not
participate in the coordination to the central atom. The
crystal structure also contains centrosymmetric dimers.
These dimers are responsible for the formation of the
N4S second coordination sphere of the central atom.
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Abstract—Bis(acetylacetonato)oxovanadium C10H14O5V (I) and (S)-[2-(N-salicylidene)aminopropi-
onate]oxovanadium monohydrate C10H9NO5V (II) are synthesized. The crystal structures of compounds I and
II are determined using single-crystal X-ray diffraction. Crystals of compound I are triclinic, a = 7.4997(19) Å,

b = 8.2015(15) Å, c = 11.339(3) Å, α = 91.37(2)°, β = 110.36(2)°, γ = 113.33(2)°, Z = 2, and space group .
Crystals of compound II are monoclinic, a = 8.5106(16) Å, b = 7.373(2) Å, c = 9.1941(16) Å, β = 101.88(1)°,
Z = 2, and space group P21. The structures of compounds I and II are solved by direct methods and refined to
R1 = 0.0382 and 0.0386, respectively. The oxovanadium complexes synthesized are investigated by vibrational
spectroscopy. © 2005 Pleiades Publishing, Inc.

P1
INTRODUCTION

Peroxovanadium complexes with optically active
ligands are able, with a high stereoselectivity, to cata-
lyze oxidation of organic compounds that belong to
various classes [1]. Information on the crystal structure
of these complexes can be used to control the oxidizing
processes.

Bis(acetylacetonato)oxovanadium [VO(Acac)2] is a
good initial reactant for use in synthesizing oxovana-
dium complexes [2]. The replacement of an acetylacet-
onato ligand in this compound by bidentate and triden-
tate chiral ligands provides a way of producing opti-
cally active vanadium complexes, which have been
extensively used in asymmetric catalysis. In this work,
crystals of an optically active complex, namely,
(S)-[2-(N-salicylidene)aminopropionate]oxovanadium
monohydrate, were prepared for the first time. The
structure of the compound synthesized was determined
using X-ray diffraction analysis. Data on the structure
of molecules in crystals of bis(acetylacetonato)oxova-
nadium C10H14O5V (I) and (S)-[2-(N-salicylidene)ami-
nopropionate]oxovanadium monohydrate C10H9NO5V
1063-7745/05/5002- $26.00 0224
(II) discussed in this paper are not available in the Cam-
bridge Structural Database (Version 11.02) [3].

EXPERIMENTAL

Synthesis of [VO(Acac)2]

The oxovanadium complex [VO(Acac)2] (I) was
synthesized according to a modified procedure
described in [4]. A mixture of V2O5 (20 g, 0.11 mol),
distilled water (50 ml), concentrated sulfuric acid
(30 ml), and ethanol (100 ml) was boiled with stirring
for 30 min. The dark blue solution obtained was fil-
tered, and freshly distilled acetylacetone (50 ml,
0.49 mol) was added to the filtrate. Then, a solution of
sodium carbonate (80 g of Na2CO3 in 500 ml of water)
in water (50 ml) was slowly added to the reaction mix-
ture. The blue product was filtered off, washed with
water, and dried in air. The yield was 50 g. Blue crystals
were obtained by recrystallization from chloroform.
The crystals were insoluble in water and soluble in
CH2Cl2 and dimethyl sulfoxide. Complex I was formed
according to Scheme 1:
V2O5 + 2H2SO4 + C2H5OH  2VOSO4 + CH3CHO + 3H2O,

VOSO4 + 2C5H7   VO(C5H7O2)2 + .

Scheme 1.

O2
–

SO4
2–
Synthesis of [VO(Sal : L-alanine)(H2O)]

Peroxovanadium complex II was synthesized
according to a modified procedure described earlier by
Theriot et al. [2]. The ligand in the complex is a biva-
©

lent tridentate Schiff’s base, which was produced by the
reaction of salicylal (Sal) with α-amino acid. L-alanine
amino acid (0.1 mol) and sodium acetate (0.2 mol) were
dissolved in distilled water (200 ml). In order to dis-
solve the amino acid completely, the solution was
 2005 Pleiades Publishing, Inc.



        

SYNTHESIS AND STRUCTURE 225

             
Table 1.  Crystal data, data collection, and refinement parameters for the structures of compounds I and II

Compound C10H14O5V (I) C10H9NO5V (II)

Molecular weight 265.15 274.12

Crystal system Triclinic Monoclinic

Space group P P21

a, Å 7.4997(19) 8.5106(16)

b, Å 8.2015(15) 7.373(2)

c, Å 11.339(3) 9.1941(16)

α, deg 91.37(2) 90

β, deg 110.36(2) 101.88(1)

γ, deg 113.33(2) 90

V, Å3 589.7(2) 564.6(2)

Z 2 2

ρcalcd, g/cm3 1.493 1.613

µ(MoKα), cm–1 0.843 0.887

Crystal size, mm 0.3 × 0.3 × 0.3 0.3 × 0.3 × 0.3

θmax, deg 29.96 25.96

Number of reflections with I ≥ 2σ(I)/Number of parameters 3383/158 1146/164

R1/wR2 0.0382/0.0942 0.0386/0.0823 

∆ρmax/∆ρmin, e/Å3 0.555/–0.330 0.359/–0.317 

1

heated and filtered. A solution of salicylal(dehyde)
(0.1 mol) in ethanol (250 ml) was added to the filtrate.
A solution of vanadyl sulfate VOSO4 ⋅ 2H2O
(0.085 mol) in water (80 ml) was slowly added to the
above solution with continuous stirring. Thereafter, the
solution acquired a dark brown color. In a matter of
minutes, a heavy precipitate was formed. After stirring
for 30 min, the substance was filtered off and washed
with distilled water, 50% ethanol solution, and ethyl
ether. The compound synthesized was dried in a vac-
uum desiccator at a temperature of 40°C. The yield of
the product was approximately equal to 80% with
respect to VOSO4 ⋅ 2H2O. The final product was recrys-
tallized from methanol. The blue crystals thus prepared
were insoluble in water, acetone, ether, and benzene

Table 2.  Selected interatomic distances d (Å) in structure I

Bond d

V(1)–O(1) 1.5859(15) 

V(1)–O(21) 1.9644(13) 

V(1)–O(12) 1.9665(13) 

V(1)–O(22) 1.9678(14) 

V(1)–O(11) 1.9727(13) 

O(11)–C(11) 1.273(2) 

O(12)–C(13) 1.280(2) 

O(21)–C(21) 1.270(2) 

O(22)–C(23) 1.274(2) 
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 2      2005
and soluble in methanol, pyridine, methylene chloride,
and chloroform. The melting temperature of the crys-
tals was estimated as Tm ~ 250°C.

X-ray Diffraction Analysis

The experimental intensities of diffraction reflec-
tions for the crystal structures of compounds I and II
were collected on a CAD4 four-circle diffractometer

Table 3.  Selected bond angles ω (deg) in structure I

Angle ω

O(1)–V(1)–O(21) 105.01(7) 

O(1)–V(1)–O(12) 104.75(7) 

O(21)–V(1)–O(12) 150.23(6) 

O(1)–V(1)–O(22) 107.16(8) 

O(21)–V(1)–O(22) 87.57(6) 

O(12)–V(1)–O(22) 83.90(6) 

O(1)–V(1)–O(11) 107.23(8) 

O(21)–V(1)–O(11) 83.94(6) 

O(12)–V(1)–O(11) 87.17(6) 

O(22)–V(1)–O(11) 145.61(6) 

C(11)–O(11)–V(1) 128.78(11) 

C(13)–O(12)–V(1) 128.10(12) 

C(21)–O(21)–V(1) 128.96(11) 

C(23)–O(22)–V(1) 129.13(11) 
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[5] (MoKα radiation, graphite monochromator, ω scan
mode) at room temperature. The unit cell parameters
for crystals of compounds I and II were determined and
refined using 25 reflections in the θ ranges 15°–16° and
15°–17°, respectively. The main crystal data, data col-
lection, and refinement parameters for the structures of
compounds I and II are summarized in Table 1.

Table 4.  Selected interatomic distances d (Å) in structure II

Bond d

V(1)–O(5) 1.589(4) 

V(1)–O(3) 1.925(4) 

V(1)–O(2) 1.957(4) 

V(1)–N(8) 2.021(5) 

V(1)–O(4) 2.031(4) 

O(1)–C(10) 1.214(7) 

O(2)–C(10) 1.277(7) 

O(3)–C(1) 1.323(7) 

Table 5.  Selected bond angles ω (deg) in structure II

Angle ω

O(5)–V(1)–O(3) 107.99(19) 

O(5)–V(1)–O(2) 109.20(19) 

O(3)–V(1)–O(2) 142.70(19) 

O(5)–V(1)–N(8) 106.3(2) 

O(3)–V(1)–N(8) 87.2(2) 

O(2)–V(1)–N(8) 79.85(18) 

O(5)–V(1)–O(4) 108.0(2) 

O(3)–V(1)–O(4) 87.48(17) 

O(2)–V(1)–O(4) 83.82(17) 

N(8)–V(1)–O(4) 145.22(19) 

C(10)–O(2)–V(1) 119.9(3) 

C(1)–O(3)–V(1) 126.0(4) 

O(3)–C(1)–C(2) 119.0(6) 

O(3)–C(1)–C(6) 122.7(5) 

C(2)–C(1)–C(6) 118.3(5) 

N(8)–C(7)–C(6) 125.4(6) 

C(7)–N(8)–C(9) 120.0(5) 

C(7)–N(8)–V(1) 126.0(5) 

C(9)–N(8)–V(1) 113.9(3) 

N(8)–C(9)–C(11) 110.2(5) 

N(8)–C(9)–C(10) 107.0(4) 

C(11)–C(9)–C(10) 109.3(4) 

O(1)–C(10)–O(2) 123.2(5) 

O(1)–C(10)–C(9) 120.5(5) 

O(2)–C(10)–C(9) 116.3(5) 
C

The primary processing of the experimental data for
crystals of compounds I and II was performed with the
WinGX program package [6]. For both crystals, the
North–Phillips–Mathews empirical correction for
absorption [7] was introduced. All the subsequent cal-
culations were carried out with the SHELX97 program
package [8]. The crystal structures were determined by
direct methods. The positional and thermal parameters
for all the non-hydrogen atoms were refined in the
anisotropic approximation. The hydrogen atoms of the
methyl groups in molecules of compounds I and II and
the hydrogen atoms of the phenyl ring in molecules of
compound II were located from geometric consider-
ations and refined as riding atoms together with the cor-
responding carbon atoms. In this refinement, the isotro-
pic thermal parameters Uiso of the hydrogen atoms were
kept greater than the equivalent isotropic thermal
parameters Ueq of the carbon atoms bonded to the par-
ent atoms by a factor of 1.5. The hydrogen atoms at the
C(12) and C(22) atoms in molecule I and at the C(7)
and C(9) atoms in molecule II were located from the
electron-density difference syntheses and refined inde-
pendently. The Flack parameter for compound II was
equal to 0.14(5).

The selected interatomic distances and bond angles
in the structures of compounds I and II are listed in
Tables 2–5. The crystal data for both structures (CIF
files) have been deposited with the Cambridge Struc-
tural Database (CCDC nos. 000000, 000001). The spa-
tial arrangement of atoms in molecules of compounds I
and II and their numbering are depicted in Figs. 1 and
2, which were drawn with the ORTEP-3 program pack-
age [9].

The IR spectra were recorded in the frequency range
400–4000 cm–1 on a Bruker 113v IR Fourier spectrom-
eter with a resolution of 1–4 cm–1. Samples were
pressed in pellets with potassium bromide. The experi-
mental IR spectrum of complex I is shown in Fig. 3.

The Raman spectra of bis(acetylacetonato)oxovana-
dium complex I were measured in the frequency range
100–4000 cm–1 on an Equinox 55 Fourier spectrometer
with an FRA-106 (Bruker) attachment in a 180° geom-
etry upon excitation with the 1064-nm line of an
Nd−YAG laser at a power of approximately 50 mW.
Attempts to record the Raman spectra of the
[VO(Acac)2] compound with the use of the 514.5- and
488.0-nm lines of an argon laser on a Coderg T-800
spectrometer were not successful because of the strong
fluorescence and photodecomposition of the sample.
The experimental Raman spectrum of complex I is
depicted in Fig. 4.

RESULTS AND DISCUSSION

In the IR spectrum (Fig. 3), the intense bands
observed at frequencies of 1558 (with a high-frequency
shoulder) and 1377 cm–1 are assigned to the C–O
stretching vibrations. In the latter case, judging from
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 2      2005
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the calculated normal modes, the ν(CO) vibrations are
strongly mixed with the C–C stretching vibrations,
which also manifest themselves in the IR spectra at fre-
quencies of 1535 and 1320–1270 cm–1. In the ranges
between 1535 and 1320–1270 cm–1, the IR spectra
exhibit bands associated with the bending vibrations of
the CH3 groups. In the range 1200–1000 cm–1, the IR
spectra contain bands attributed to the δ(H3CC) vibra-
tions mixed with the out-of-plane vibrations (distor-

C(25)

C(23)
O(22)

O(1)

O(12)

C(15)

C(13)

C(12)

C(11)

C(14)

O(11)

V(1)

O(21)C(21)

C(24)

C(22)

Fig. 1. Molecular structure and the atomic numbering for
compound I. The ellipsoids of thermal vibrations are shown
at the 50% probability level.
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 2      2005
tions of the C–C–C angles), i.e., the vibrations associ-
ated with the deviations of the methyl groups from the
planes of the ligand rings. The in-plane vibrations of
the cyclic fragments manifest themselves at a fre-
quency of 950 cm–1. These vibrations involve simulta-
neous stretching of the C–C bonds and changes in the
angles between these bonds. The vibrations of the C–C
exo bonds are observed at slightly lower frequencies in
the range characteristic of the ν(CC) vibrations. The
frequency of the vibrations associated with the devia-

C(4)

C(5)

C(6)

C(7)

N(8)

C(9)

C(11)

O(1)
C(10)

O(2)

O(3)

O(4)

V(1)

C(1)

C(2)

C(3)

Fig. 2. Molecular structure and the atomic numbering for
compound II. The ellipsoids of thermal vibrations are
shown at the 50% probability level.
600400 800 1000 1200 1400 1600 1800 2000
ν, cm–1

I, arb. units

Fig. 3. IR spectrum of the [VO(Acac)2] complex.
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Fig. 4. Raman spectrum of the [VO(Acac)2] complex.
tions of the C–H bonds from the ring planes is approx-
imately equal to 800 cm–1.

The Raman spectra (Fig. 4) contain an additional
weak line at a frequency of 3086 cm–1, which is
assigned to the symmetric and antisymmetric C–H
stretching vibrations. In the Raman spectrum, the most
intense lines observed at frequencies of 993 and
466 cm–1 correspond to the stretching vibrations of the
V=O bonds and the totally symmetric vibrations of the
V–O bonds, respectively. The medium-intensity line at
610 cm–1 and an intense line at 486 cm–1 are associated
with the two other (among the three remaining)
νas(VO4) vibrations.

In the IR spectra of complex II, the most intense
bands correspond to the vibrations of crystallization
water molecules (3450–3200 cm–1) and the stretching
vibrations of the V=O bonds (at 980 cm–1). In the IR
spectrum of this complex, the ligand vibrations are pri-
marily responsible for the band at a frequency of
1625 cm–1, which is associated with the stretching
vibrations of the CH=N bonds.

The coordination polyhedron of the vanadium atom
in complex I has the form of a tetragonal pyramid. Four
oxygen atoms, namely, O(11), O(12), O(21), and
O(22), which form the base of the pyramid and belong
to two acetylacetonato ligands, and the O(1) oxo atom
located at the vertex are coordinated to the vanadium
atom (Fig. 1). The acetylacetonato ligand in this com-
pound serves as a bidentate ligand. The V=O bond in
complex I is nearly perpendicular to the plane formed
by four oxygen atoms, namely, the O(11), O(12),
C

O(21), and O(22) atoms of two acetylacetonato ligands.
The vanadium atom slightly deviates toward the center
of the polyhedron [0.5435(8) Å].

The coordination polyhedron of the vanadium atom
in complex II is a distorted tetragonal pyramid (see
Scheme 2).

Scheme 2.

The vertex of the coordination pyramid is occupied
by the O(5) oxygen atom. The base of the tetragonal
pyramid is formed by two oxygen atoms, namely, O(3)
and O(2), the N(8) nitrogen atom of the tridentate
ligand, and the O(4) oxygen atom of the water mole-
cule. The V(1)–O(5) bond length is equal to 1.589(4) Å,
and the V(1)–O(4) bond length is 2.031(4) Å. The
ligand in complex II is a bivalent tridentate Schiff’s
base.

The lengths of the V(1)–O(2) and V(1)–O(3) single
bonds are almost identical and equal to 1.957(4) and
1.925(4) Å, respectively. The C(10)–O(1) bond length
in the carboxyl group is 1.214(7) Å.

O(5)

V
O(4) O(3)

O(2) N(8)
83.8° 87.2°

79.9°
142.7°

145.2°

87.5°
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Abstract—The X-ray diffraction study of Ba[Ni(Cdta)] ⋅ 10H2O is performed (R1 = 0.0441 for 5136 observed
reflections). The crystals are triclinic, a = 8.833(2) Å, b = 9.025(2) Å, c = 16.922(3) Å, α = 80.56(3)°, β =

82.77(3)°, γ = 76.98(3)°, Z = 2, and space group . The crystal is built of the [Ni(Cdta)]2– anionic complexes,
the [Ba(H2O)6]2+ hydrated cations, and crystallization water molecules. The distorted octahedral coordination
of the Ni atom includes two N and four O atoms of the Cdta4– ligand (mean Ni–N, Ni–OG, and Ni–OR are 2.080,
2.082, and 2.036 Å, respectively). The irregular nine-fold coordination of the Ba atom consists of six O atoms
of water molecules and three O(Cdta) atoms from three anionic complexes (Ba–O, 2.715–3.090 Å). With con-
sideration for the bonds with three Ba atoms, the Cdta4– ligand is octadentate (2N + 6O) and fulfills the penta-
dentate µ4-bridging function. The structural units are linked through an extended network of hydrogen bonds.
© 2005 Pleiades Publishing, Inc.

P1
INTRODUCTION

Cyclohexanediamine-N,N,N',N'-tetraacetic acid
(H4Cdta) is the nearest analogue of ethylenediaminetet-
raacetic acid (H4Edta), which is a widely used and most
completely studied aminocarboxylic acid. In the course
of systematic structural studies of compounds of Group
VIII transition metals with diamine aminocarboxylic
acids, the crystal structure of Ba[Ni(Cdta)] ⋅ 10H2O (I)
was determined.

EXPERIMENTAL

Compound Ba[Ni(Cdta)] ⋅ 10H2O was obtained by
a reaction of NiH2Cdta with BaCO3 in an aqueous solu-
tion. Blue needle-like crystals suitable for the X-ray
diffraction study were grown by slow evaporation of
the solution.

Crystals C14H38BaN2NiO18 (M = 718.51) are tri-
clinic, a = 8.833(2) Å, b = 9.025(2) Å, c = 16.922(3) Å,
α = 80.56(3)°, β = 82.77(3)°, γ = 76.98(3)°, V =

1290.9(5) Å3, Z = 2, space group , dcalcd =
1.848 g/cm3, and µ(åÓ) = 2.328 mm–1.

The set of reflections was obtained on a CAD4 auto-
mated diffractometer (λ-åÓäα ω scan mode, 2° < θ <
28°) from a single crystal 0.09 × 0.12 × 0.78 mm in

P1
1063-7745/05/5002- $26.00 0230
size. The structure was solved by the direct method.
The H atoms were located from difference syntheses.
The non-hydrogen atoms were refined in the anisotro-
pic approximation, and the H atoms, except for five
atoms of water molecules, were refined in the isotropic
approximation. The H(2w1), H(2w2), H(2w3), H(2w4),
and H(1w6) atoms were fixed in the positions found
from a difference map with Uiso = 0.08 Å2. The correc-
tion for absorption was performed by azimuthal
scans [1].

The estimates of the refinement were as follows:
R1 = 0.0441 and wR2 = 0.1087 for 5136 reflections
with I > 2σ(I); R1 = 0.0519 and wR2 = 0.1140 for the
whole set of 5931 unique reflections; and GOOF =
1.048. The residual electron density on the zero map
falls in the range –3.144 < ∆ρ < 2.216 e Å–3. All the sig-
nificant peaks are located in the vicinity of the Ba or Ni
atoms.

The calculations were performed with the
SHELXS97 [2] and SHELXL97 [3] programs.
Selected bond lengths are listed in Table 1. The crystal-
lographic data for compound I have been deposited
with the Cambridge Structural Database (CCDC
no. 226912).
© 2005 Pleiades Publishing, Inc.
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RESULTS AND DISCUSSION

The crystal structure of Ba[Ni(Cdta)] ⋅ 10H2O is
built of the [Ni(Cdta)]2– anionic complexes, the
[Ba(H2O)6]2+ hydrated cations, and crystallization
water molecules.

The structure of the [Ni(Cdta)]2– anionic complex is
shown in Fig. 1. The distorted octahedral environment
of the Ni(1) atom consists of atoms N(1), N(2), O(1),
O(3), O(5), and O(7) of the Cdta4– ligand. The hexaden-
tate (relative to the Ni atom) Cdta4– ligand closes six
five-membered metallocycles, namely, the
Ni(1)N(1)C(9)C(10)N(2) (E) ethylenediamine ring and
four glycine rings, two of which, Ni(1)N(1)C(1)C(2)O(1)
(G1) and Ni(1)N(2)C(5)C(6)O(5) (G2), lie approxi-
mately in the plane of the E ring and two other rings,
Ni(1)N(1)C(3)C(4)O(3) (R1) and Ni(1)N(2)C(7)C(8)O(7)
(R2), are approximately perpendicular to this plane. The
R rings are corrugated to a lesser degree than the E and
G rings. The mean atomic deviations from the planes of
rings E, G1, G2, R1, and R2 are 0.176, 0.185, 0.188,
0.074, and 0.059 Å, respectively. The Cdta4– ligand has
an EG/R conformation [4], which is typical of the Edta
and Cdta complexes: the methylene groups of the E and
G rings lie on one side of the N(1)Ni(1)N(2) plane, and
those of the R rings lie on the other side of this plane.
The hexane ring C(9)–C(14) has a typical chair confor-
mation: atoms C(10), C(11), C(13), and C(14) are
coplanar within ±0.017 Å, and atoms C(9) and C(12)
deviate from this plane by –0.590 and 0.708 Å, respec-
tively.

The same structure of the [Ni(Cdta)]2– anionic com-
plex was found earlier in compounds Cu[Ni(Cdta)] ⋅
7H2O (II) [5] and Cu3[Ni(Cdta)]2(NO3)2 ⋅ 15H2O (III)
[6], as well as in isostructural compounds M[Ni(Cdta)] ⋅
6H2O (M2+ = Mn, Ni), which are representatives of a
large series whose structure was characterized by using
the example of Zn[Cu(Cdta)] ⋅ 6H2O [7].

In compound I, the mean Ni–N, Ni–OG, and Ni–OR

bond lengths are 2.080, 2.082, and 2.036 Å, respec-
tively. The differences in the Ni–O bond lengths do not
correspond to the functions of the carbonyl groups.
Thus, the shortest Ni–O bond is formed by the
O(7)C(8)O(8) carboxyl group, which is additionally
bound to two Ba atoms, and the longest bond is formed
by the monodentate O(1)C(2)O(2) group. The mean
lengths of coordination bonds in compound II are close
to the corresponding values in I (2.082, 2.080,
2.036 Å), and the longest Ni–O bond is formed by the
only bidentate carboxyl group. In compound III, the
reverse relationship between the Ni–O bonds is
observed; that is, the Ni–OG bonds are shorter than the
Ni–OR bonds (mean, 2.039 and 2.113 Å, respectively),
and the shortest Ni–O bond is formed by the only mon-
odentate carboxyl group included in a G ring. Hence,
the differences in the Ni–OG and Ni–OR bond lengths in
the [Ni(Cdta)]2– complexes are not systematic. The
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 2      200
same is true for the [Ni(Edta)]2– complexes. In distinc-
tion to the complexes with completely deprotonated
ligands, acid nickel complexes are apparently charac-
terized by the Ni–OG > Ni–OR relationship. In com-
plexes [Ni(H2Cdta)(H2O)] ⋅ 4H2O (IV) [8],
[Ni(H2Edta)(H2O)] (V) [9], [Ni(HEdta)2(H2O)] ⋅ 2H2O
(VI) [10], and Li[Ni(HEdta)(H2O)] ⋅ H2O (VII) [11],
which were characterized structurally, one of the G
arms is open and the remaining Ni–OG bond is signifi-

Table 1.  Selected bond lengths (d, Å) in structure I

Bond d Bond d

Ni(1)–N(1) 2.080(3) Ba(1)–O(3w) 2.820(3)

Ni(1)–N(2) 2.079(3) Ba(1)–O(4w) 2.832(3)

Ni(1)–O(1) 2.091(3) Ba(1)–O(5w) 2.777(3)

Ni(1)–O(3) 2.042(3) C(2)–O(1) 1.253(5)

Ni(1)–O(5) 2.074(3) C(2)–O(2) 1.240(5)

Ni(1)–O(7) 2.029(3) C(4)–O(3) 1.276(5)

Ba(1)–O(6)(i) 2.815(3) C(4)–O(4) 1.240(5)

Ba(1)–O(8) 2.801(3) C(6)–O(5) 1.278(4)

Ba(1)–O(8)(ii) 2.823(3) C(6)–O(6) 1.233(5)

Ba(1)–O(1w) 2.989(3) C(8)–O(7) 1.269(4)

Ba(1)–O(1w)(iii) 3.090(3) C(8)–O(8) 1.245(4)

Ba(1)–O(2w) 2.715(3)

Symmetry codes: (i) –1 + x, y, z; (ii) 1 – x, 1 – y, 1 – z; (iii) 1 –
x, –y, 1 – z.
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C(12)
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C(14)

C(9)
C(10)
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O(7)

C(5)

O(5)C(6)

O(6) O(3)

O(1)

C(4)

O(4)

C(3)

O(2)

C(1)N(2)

C(2)

Fig. 1. Structure of the [Ni(Cdta)]2– anionic complex.
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Table 2.  Geometric characteristics of hydrogen bonds in structure I

X–H···Y Symmetry code for atom Y
Distance, Å XHY angle,

degX···Y H···Y

O(1w)–H(1w1)···O(7) 1 – x, 1 – y, 1 – z 2.905(4) 2.09(6) 160(5)

O(1w)–H(2w1)*···O(8w) 1 – x, 1 – y, 1 – z 3.036(6) 2.24 151

O(2w)–H(1w2)···O(2) x, –1 + y, z 2.744(5) 2.01(7) 176(8)

O(2w)–H(2w2)*···O(7w) –1 + x, y, z 2.802(6) 1.91 156

O(3w)–H(1w3)···O(1) x, –1 + y, z 2.705(4) 2.02(6) 175(7)

O(3w)–H(2w3)*···O(9w) 1 + x, –1 + y, z 2.741(5) 1.85 168

O(4w)–H(1w4)···O(3w) 1 – x, –y, 1 – z 2.782(4) 1.96(8) 164(8)

O(5w)–H(1w5)···O(6) 2 – x, 1 – y, 1 – z 2.773(5) 1.94(6) 168(5)

O(5w)–H(2w5)···O(9w) 1 – x, 1 – y, 1 – z 3.036(6) 2.03(10) 173(9)

O(6w)–H(1w6)*···O(4) 1 – x, 1 – y, 2 – z 2.797(5) 1.95 161

O(6w)–H(2w6)···O(10w) 1 – x, –y, 1 – z 2.856(7) 2.00(7) 155(6)

O(7w)–H(1w7)···O(3) x, y, z 2.954(5) 2.12(7) 149(6)

O(7w)–H(2w7)···O(6w) 1 + x, y, z 2.768(6) 1.95(7) 165(7)

O(8w)–H(1w8)···O(3) –1 + x, y, z 2.864(6) 1.99(10) 165(10)

O(8w)–H(2w8)···O(10w) 1 – x, 1 – y, 1 – z 2.987(7) 2.46(10) 143(10)

O(9w)–H(1w9)···O(8w) x, y, z 2.698(7) 1.71(8) 154(7)

O(9w)–H(2w9)···O(4w) x, 1 + y, z 2.765(5) 2.20(9) 144(10)

O(10w)–H(1w0)···O(2) 1 – x, 1 – y, 1 – z 2.717(6) 1.95(9) 166(9)

O(10w)–H(2w0)···O(4) 2 – x, 1 – y, 1 – z 2.915(6) 2.13(9) 166(8)

Note: The coordinates of the asterisked H atoms were fixed in the least-squares refinement.
cantly longer than the Ni–OR bonds (Ni–OG and mean
Ni–OR are 2.096 and 2.044 Å in IV, 2.159 and 2.035 Å
in V, 2.128 and 2.022 Å in VI, 2.116 and 2.024 Å
in VII).
C

In the Cdta4– ligand of compound I, the
O(1)C(2)O(2) and O(3)C(4)O(4) carboxyl groups of
the acetate arms bound to the N(1) atom are monoden-
tate and form one bond each with the Ni atom. The
w(7)

w(2)

w(1)

w(6)

w(10) w(8)

w(9)

w(4)
w(5)

w(3)

Ba(1)

Fig. 2. A fragment of 20 water molecules included in the hydrogen-bond system.
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O(5)C(6)O(6) and O(7)C(8)O(8) carboxyl groups of
the acetate arms at the N(2) atom are bidentate and
bound not only to the Ni atom but to one or two Ba
atoms, respectively. The C–O bonds in the Ni metallo-
cycles (1.253–1.278 Å) are, as usual, longer than the
acyclic C–O bonds (1.233–1.245 Å). The coordination
of the Ba atom by the O(6) and O(8) atoms does not
result in the lengthening of the C(6)–O(6) and
C(8)−O(8) bonds in relation to the actually terminal
C(2)–O(2) and C(4)–O(4) bonds (mean, 1.239 and
1.240 Å, respectively). On the whole, with consider-
ation for the bonds with three Ba atoms, the function of
the Cdta4– ligand is described as an octadentate (2N +
6O) pentachelate µ4-bridging one.

The Ba atom is surrounded by six O atoms of water
molecules and three O atoms from three anionic com-
plexes (Table 1). The w(1) water molecule coordinates
two Ba atoms, and both Ba–O(1w) bonds [2.989(3) and
3.090(3) Å] are significantly longer than the remaining
seven Ba–O bonds [2.715(3)–2.832(3) Å].

In structure I, layers of the [Ni(Cdta)]2– anionic
complexes related by the a and b translations are distin-
guished. Neighboring layers that are related by the cen-
ters of inversion with the coordinate z = 0 are inter-
linked by hydrogen bonds involving the w(6), w(7), and
w(10) crystallization water molecules. These double
layers alternate along the z axis with the layers of
hydrated Ba cations and the w(8) and w(9) crystalliza-
tion water molecules. Ten independent water molecules
in the structure form an extended system of hydrogen
bonds, in which oxygen atoms of water molecules and
the Cdta4– ligand serve as proton acceptors (Table 2). A
remarkable fragment of the hydrogen-bond system is
the centrosymmetric branched chain of twenty water
molecules, which is connected by the “terminal” w(1),
w(2), and w(5) molecules to the Ba atoms (Fig. 2). The
totality of Ba–O and O–H⋅⋅⋅O hydrogen bonds links the
[Ni(Cdta)]2– anionic complexes, [Ba(H2O)6]2+ hydrated
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 2      200
cations, and crystallization water molecules into a
three-dimensional framework.
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Abstract—The crystal and molecular structures of six perchlorates (viologen analogues) are studied. These
compounds serve as models of the acceptor component of new charge-transfer complexes containing bis(18-
crown-6)stilbene as the donor. The polycyclic aromatic system of divalent cations is demonstrated to be virtu-
ally planar. In all cations, the side chains at the nitrogen atoms are oriented in opposite directions almost per-
pendicular to the plane of the cyclic system. This orientation of the spacers of these carbocations is indicative
of their preorganization for the formation of 1 : 2 charge-transfer complexes. Analysis of the crystal packings
provides evidence that two positive charges on the conjugated systems of the organic cations and the perchlorate
anions play a destructive role in the formation of stacking motifs. An increase in the size of the conjugated sys-
tem and the involvement of an aromatic solvent molecule as an additional building block in a supramolecular
system are favorable for the formation of a stacking supramolecular architecture. © 2005 Pleiades Publishing,
Inc.
INTRODUCTION
New supramolecular systems based on bis(18-

crown-6)stilbene and viologen analogues bearing two
alkylammonium spacers have recently been investi-
1063-7745/05/5002- $26.00 0234
gated [1, 2]. These systems form brightly colored
charge-transfer complexes (CTCs), contain a donor and
an acceptor in a ratio of 1 : 1 or 2 : 1, and have the fol-
lowing compositions:
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These CTCs are of interest as prospective photosen-
sitive sensors. They respond to the presence of metal
cations (which displace the ammonium groups from the
crown ether fragments) in a solution by a change in the
color and fluorescence emission. The formation of
CTCs in acetonitrile solutions of such systems was
studied by spectrophotometry, electrochemical meth-
ods, and 1H-NMR and Raman spectroscopy [1–4]. The
guest–host component (N–H···O hydrogen bonds) was
found to make the major contribution to the stabiliza-
tion of CTCs. The stacking and/or donor-acceptor com-
ponents of interaction have an insignificant effect,
which depends on the type of the bridging group
between the pyridine fragments of the acceptor compo-
nent of an CTC. This result may be due to the follow-
ing: (1) the rings in the donor and/or acceptor compo-
nents are noncoplanar; (2) in a supramolecular system
of CTCs, the parallel offset mutual arrangement (which
is typical of stacking interactions [5]) of the
π-conjugated systems of the donor and acceptor is ster-
ically hindered due to the presence of overly long or
insufficiently flexible side chains (spacers); and (3) per-
chlorate anions present in the supramolecular system of
CTCs are inserted between the donor and acceptor, thus
exerting destructive effect on the stacking interactions
and weakening donor–acceptor interactions.

However, π···π interactions (stacking and donor–
acceptor components) are of importance, because only
these interactions can hold the CTC components in the
immediate vicinity of each other in the absence of ter-
minal ammonium groups in viologen analogues. If
CTCs contain smaller crown ether macrocycles, some
REPORTS      Vol. 50      No. 2      200
metal cations can be coordinated simultaneously by
two crown ether rings to form sandwich structures,
which could give rise to more complicated structures of
supramolecular systems characterized by a rather
extended stacked architecture. This fact is of impor-
tance in studying the prospects of using such CTCs as
photoconducting materials, because it is known that the
conductivity of organic CTCs depends on the presence
of stacks [6].

Our preliminary investigation of the stability of
CTCs of model acceptor compounds 1–6, which con-
tain no ammonium groups in the side chains, with
bis(18-crown-6)stilbene by 1H-NMR spectroscopy
demonstrated that the stability of the complexes in ace-
tonitrile solutions increases in the series 3 < 2 < 4 < 1 <
5 ~ 6. It should be noted that extended and conjugated
acceptors show a certain tendency to form more stable
supramolecular structures. Hence, it was of interest to
study the crystal structures and the characteristic fea-
tures of the supramolecular architecture of (1) model
compounds for the acceptor components of these CTCs
and (2) crown-containing stilbenes containing macro-
heterocycles of different sizes. In particular, it was of
importance to study the degree of flattening of these
macrocycles and electron density delocalization over
the bonds in the chromophore fragments, examine the
possibility of stack formation, and investigate the pos-
sible effect of perchlorate anions on the formation of a
supramolecular structure by positively charged accep-
tor components.
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In this study, we performed structural investigation
of model acceptors 1–6. The results of the study of the
structures of bis(crown)stilbenes will be published
elsewhere.

EXPERIMENTAL

Synthesis. Compounds 1–6 were synthesized
according to the following general procedure. A mix-
ture of the corresponding heterocyclic base, such as
1,2-di(4-pyridyl)ethylene (Aldrich), 4,4'-dipyridyl
(Chemapol), 1,2-di(4-pyridyl)ethane (Aldrich), 1,2-
di(3-pyridyl)ethylene [7], 2,7-diazapyrene [8], or 1,2-
di(4-quinolyl)ethylene [9], (0.3 mmol) and ethyl p-tol-
uenesulfonate (0.24 g (1.2 mmol) for 1–4 or 1.20 g
(6.0 mmol) for 5 and 6) was fused at 140°C for 10 h (1,
3, 4) or 20 h (2, 5, 6). Then the reaction mixture was trit-
urated with benzene (1, 2, 4, 6), acetone (3), or anhy-
drous ethanol (5). The undissolved compound was fil-
tered off, washed with benzene, dried, and dissolved by
heating in ethanol (15 ml) in the presence of a minimal
amount of distilled water. Then 0.20 ml (1.80 mmol) of
a 70% HClO4 solution was added. The reaction mixture
was cooled to 5°C. The precipitate that formed was fil-
tered off, washed with cold anhydrous ethanol and ben-
zene, and dried. Then the reaction mixture was worked
up once again using half amount of the 70% HClO4
solution.

1-Ethyl-4-[(E)-2-(1-ethyl-4-pyridiniumyl)-1-ethe-
nyl]pyridinium diperchlorate (1): yellowish powder,
88% yield, m.p. 297–298°C (with decomposition).
1NMR spectrum (500.13 MHz, DMSO-d6, 25°C, δ,
ppm): 1.56 (t, 6 H, 2 CH3, J = 7.3 Hz); 4.61 (q, 4 H, 2
CH2, J = 7.3 Hz); 8.11 (s, 2 H, 2 CH=CH); 8.34 (d, 4
H, 2 H-3, 2 H-5, J = 6.7 Hz); 9.13 (d, 4 H, 2 H-2, 2 H-
6, J = 6.7 Hz). According to the results of [3], m.p. =
295–296°C (with decomposition).

1-Ethyl-4-(1-ethyl-4-pyridiniumyl)pyridinium di-
perchlorate (2): white powder, 64% yield, m.p. 277–
280°C. 1NMR spectrum (500.13 MHz, D2O, 60°C,
δ, ppm): 1.64 (t, 6 H, 2 CH3, J = 7.4 Hz); 4.71 (q, 4 H,
2 CH2, J = 7.4 Hz); 8.47 (d, 4 H, 2 H-3, 2 H-5, J =
6.6 Hz); 9.06 (d, 4 H, 2 H-2, 2 H-6, J = 6.6 Hz). For
ë14ç18Cl2N2O8 , anal calc (%): C, 40.69; H, 4.39; N,
6.78. Found (%): C, 40.54; H, 4.40; N, 6.72.
C

1-Ethyl-4-[2-(1-ethyl-4-pyridiniumyl)ethyl]pyridi-
nium diperchlorate (3): white powder, 80% yield, m.p.
239–241°C (with decomposition). 1NMR spectrum
(500.13 MHz, DMSO-d6 , 50°C, δ, ppm): 1.54 (t, 6 H,
2 CH3, J = 7.3 Hz); 3.34 (s, 4 H, CH2CH2); 4.59 (q, 4 H,
2 CH2, J = 7.3 Hz); 8.06 (d, 4 H, 2 H-3, 2 H-5, J =
6.4 Hz); 8.99 (d, 4 H, 2 H-2, 2 H-6, J = 6.4 Hz). For
ë16ç22Cl2N2O8 , anal calc  (%): C, 43.55; H, 5.03; N,
6.35. Found (%): C, 43.59; H, 5.14; N, 6.38.

1-Ethyl-3-[(E)-2-(1-ethyl-3-pyridiniumyl)-1-ethe-
nyl]pyridinium diperchlorate (4): white powder, 75%
yield, m.p. 273–275°C. 1NMR spectrum (500.13 MHz,
DMSO-d6, 30°C, δ, ppm): 1.61 (t, 6 H, 2 CH3, J =
7.3 Hz); 4.68 (m, 4 H, 2 CH2); 7.75 (s, 2 H, CH=CH);
8.23 (dd, 2 H, 2 H-5, J = 8.1 Hz; J = 6.1 Hz); 8.78 (d, 2
H, 2 H-4, J = 8.1 Hz); 9.07 (d, 2 H, 2 H-6, J = 6.1 Hz);
9.33 (s, 2 H, 2 H-2). For ë16ç20Cl2N2O8 , anal calc  (%):
C, 43.75; H, 4.59; N, 6.38. Found (%): C, 43.61; H,
4.55; N, 6.34.

2,7-Diethylbenzo[lmn][3,8]phenanthrolinium diper-
chlorate (5): pale-yellow powder, 72% yield, m.p. 345°C
(with decomposition). 1NMR spectrum (500.13 MHz,
CD3CN, 30°C, δ, ppm): 1.90 (t, 6 H, 2 CH3, J = 7.3 Hz);
5.16 (q, 4 H, 2 CH2, J = 7.3 Hz); 8.86 (s, 4 H, H-4, H-5,
H-9, H-10); 9.92 (s, 4 H, H-1, H-3, H-6, H-8). For
C18H18Cl2N2O8 , anal calc  (%): C, 46.87; H, 3.93; N,
6.07. Found (%): C, 46.77; H, 3.94; N, 6.09.

1-Ethyl-4-[(E)-2-(1-ethyl-4-quinoliniumyl)-1-ethe-
nyl]quinolinium diperchlorate (6): yellow powder, 79%
yield, m.p. 295–297°C (with decomposition). 1NMR
spectrum (500.13 MHz, CD3CN, 30°C, δ, ppm): 1.76
(t, 6 H, 2 CH3, J = 7.3 Hz); 5.06 (q, 4 H, 2 CH2, J =
7.3 Hz); 8.13 (m, 2 H, 2 H-7); 8.33 (m, 2 H, 2 H-6);
8.49 (d, 2 H, 2 H-3, J = 6.2 Hz); 8.50 (d, 2 H, 2 H-5, J =
7.5 Hz); 8.58 (s, 2 H, CH=CH); 8.79 (d, 2 H, 2 H-8, J =
8.2 Hz); 9.21 (d, 2 H, 2 H-2, J = 6.2 Hz). For
C24H24Cl2N2O8 ⋅ H2O, anal calc  (%): C, 51.72; H, 4.70;
N, 5.03. Found (%): C, 51.79; H, 4.34; N, 5.07.

X-ray diffraction study. Single crystals of salts 1–
6 were prepared by slow saturation of their solutions in
acetonitrile with benzene vapor at room temperature.

Single crystals were coated with a perfluorinated oil
and mounted under a stream of cooled nitrogen on a
Bruker SMART-CCD diffractometer (MoKα radiation).
X-ray diffraction data sets were collected using the
ω-scan technique. The crystallographic parameters and
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 2      2005
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Table 1.  Crystallographic parameters and details of X-ray diffraction study of compounds 1 and 2

Compound 1 2

Molecular formula C16H20Cl2N2O8 C14H18Cl2N2O8

Molecular weight, kg/kmol 439.24 413.20

Crystal system Monoclinic Monoclinic

Space group P21 P21/c

a, Å 8.1781(2) 12.6135(4)

b, Å 11.6614(4) 14.2532(4)

c, Å 10.6492(3) 9.7307(3)

β, deg 107.295(1) 101.388(1)

V, Å3 969.68(5) 1714.97(9)

Z 2 4

ρcalc, g/cm3 1.504 1.600

F(000) 456 856

µ(MoKα), mm–1 0.382 0.426

Crystal dimensions, mm 0.40 × 0.30 × 0.20 0.10 × 0.10 × 0.10

T, K 120.0(2) 120.0(2)

Scanning mode/θ-scan range, deg ω/2.00–27.50 ω/1.65–27.50

Ranges of reflection indices –10 ≤ h ≤ 10, –15 ≤ k ≤ 12, –13 ≤ l ≤ 13 –15 ≤ h ≤ 16, –18 ≤ k ≤ 18, –11 ≤ l ≤ 12

Number of measured reflections 7038 11571

Number of independent reflections 3229 [R(int) = 0.0548] 3946 [R(int) = 0.0243]

Number of reflections with I > 2σ(I) 3229 3946

Number of refinement parameters 311 233

R factors based on reflections with I > 2σ(I) R1 = 0.0529, wR2 = 0.1458 R1 = 0.0678, wR2 = 0.2011

R factors based on all reflections R1 = 0.0540, wR2 = 0.1497 R1 = 0.0831, wR2 = 0.2165

Goodness-of-fit on F2 1.058 1.108

Residual electron density, min/max, e/Å3 –0.466/0.577 –1.033/1.182
characteristics of X-ray diffraction study are given in
Tables 1–3. The X-ray diffraction data were processed
using the Bruker SAINT software [10].

The structures were solved by direct methods and
refined using the full-matrix least-squares method with
anisotropic displacement parameters for non-hydrogen
atoms against F2 . In all structures, the hydrogen atoms
were located from difference Fourier syntheses. In the
structures of salts 1, 3, and 6, the hydrogen atoms were
refined isotropically. In the structures of salts 2, 4, and
5, the hydrogen atoms were refined using the riding
model with isotropic displacement parameters, which
were constrained to be 1.2 times greater than the corre-
sponding parameters for the parent carbon or nitrogen
atoms (1.5 times greater for the H atoms of the methyl
groups).

The atomic coordinates and other X-ray diffraction
data were deposited with the Cambridge Crystallo-
graphic Data Center (CCDC, 12 Union Road, Cam-
bridge CB2 1EZ, UK; fax: (+44) 1223-336-033; e-
mail: deposit@ccdc.cam.ac); the CCDC reference
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 2      200
numbers are 238 948 (1), 238 949 (2), 238 950 (3), 238
951 (4), 238 952 (5), and 238 953 (6).

In salt 2 (containing the divalent cation and two per-
chlorate anions), both anions are disordered over a
number of positions. The disorder can be described
using the top model, in which one oxygen position is
completely occupied, whereas other oxygen positions
correspond to the rotation of the anions about the Cl–O
bond involving the ordered O atom. All Fourier peaks
present in the difference electron-density map were
localized in the vicinity of the anions, which indicates
that not all types of rotational disorder were taken into
account in the final refined model of the structure of
salt 2. However, the subsequent refinement involving
new electron-density peaks as oxygen atoms did not
actually improve the results and gave low occupancies
of the positions of new “rotamers.” In the structure of
salt 5, one of the two anions is disordered. The other
anion also includes a disordered component, whose
content is vanishingly small. The presence of this com-
ponent is evidenced by numerous peaks in the differ-
ence Fourier synthesis in the vicinity of the latter per-
chlorate anion.
5
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Table 2.  Crystallographic parameters and details of X-ray diffraction study of compounds 3 and 4

Compound 3 4

Molecular formula C16H22Cl2N2O8 C16H20Cl2N2O8

Molecular weight, kg/kmol 441.26 439.24

Crystal system Monoclinic Monoclinic

Space group P21/n P21/c

a, Å 6.5924(5) 24.688(3)

b, Å 10.8631(9) 7.3712(8)

c, Å 13.816(1) 16.372(2)

β, deg 102.128(2) 104.367(3)

V, Å3 967.4(1) 2886.1(6)

Z 2 6

ρcalcd, g/cm3 1.515 1.516

F(000) 460 1368

µ(MoKα), mm–1 0.383 0.385

Crystal dimensions, mm 0.24 × 0.18 × 0.08 0.28 × 0.24 × 0.08

T, K 100.0(2) 100.0(2)

Scanning mode/θ-scan range, deg ω/3.02–28.00 ω/0.85–28.50

Ranges of reflection indices –8 ≤ h ≤ 8, –12 ≤ k ≤ 14, –18 ≤ l ≤ 17 –31 ≤ h ≤ 3, –9 ≤ k ≤ 9, –19 ≤ l ≤ 21

Number of measured reflections 6284 17018

Number of independent reflections 2331 [R(int) = 0.0205] 7180 [R(int) = 0.0254]

Number of reflections with I > 2σ(I) 2331 7180

Number of refinement parameters 172 384

R factors based on reflections with I > 2σ(I) R1 = 0.0298, wR2 = 0.0854 R1 = 0.0476, wR2 = 0.1213

R factors based on all reflections R1 = 0.0323, wR2 = 0.0868 R1 = 0.1248, wR2 = 0.1422

Goodness-of-fit on F2 1.067 1.058

Residual electron density, min/max, e/Å3 –0.333/0.356 –0.461/0.353
Compound 5 forms a crystal solvate with benzene
molecules, which fulfill the structure-forming function
(see the discussion below).

All calculations were carried out using the
SHELXTL-Plus software [11].

RESULTS AND DISCUSSION
Geometry of cations in salts 1–6. Salts 1–3 consist

of a divalent organic cation and two  anions. The
structures of the cations in these salts and the atomic
numbering schemes are shown in Fig. 1. Selected geo-
metric parameters of the cations of salts 1–3 are given
in Tables 4–6, respectively.

In all these cations, both ethylene substituents at the
nitrogen atoms are oriented in opposite directions
approximately perpendicular to the mean plane of the π
system.

The central fragment of the cation in salt 1 (Fig. 1)
is approximately planar. The dihedral angle between
the pyridine rings is 13.5°. The central ethylene bridge
shows virtually no twisting: the C(2)–C(1)–C(11)–

ClO4
–

C

C(12) torsion angle is 178.2°. This geometry is favor-
able for the π conjugation over the entire fragment Py1–
CH=CH–Py2 . The distance between the centroids of
the pyridine rings is 6.60 Å.

Both heterocycles are characterized by similar geo-
metric distortions. Two opposite bonds, C(3)–C(4) and
C(5)–C(6), in one ring and the C(13)–C(14) and C(15)–
C(16) bonds in another ring are systematically short-
ened (1.369(5)–1.376(5) Å) as compared to the other
C–C bonds in the rings (1.394(5)–1.415(4) Å). In the
bridging ethylene group, the double bonds are essen-
tially localized.

It should be noted that the endocyclic angles at the
ipso-C(2) and -C(12) atoms are decreased to 117.4(3)°
and 117.5(3)°, respectively, whereas the C–C–C angles
at the carbon atoms of the ethylene bridge are increased
to 124.3(3)° and 125.2(3)°. This is, apparently, due to
the steric interactions between the atomic fragments in
the planar molecular system.

The Cambridge Structural Database (CSD) (2003
release) [12] includes data on five structures with the
divalent [R–Py–CH=CH–Py–R]2+ cation (the refcodes
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 2      2005
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Table 3.  Crystallographic parameters and details of X-ray diffraction study of compounds 5 and 6

Compound 5 6

Molecular formula C21H18Cl2N2O8 C24H24Cl2N2O8

Molecular weight, kg/kmol 497.27 539.35

Crystal system Triclinic Monoclinic

Space group P P21/n

a, Å 9.664(2) 13.0362(5)

b, Å 9.670(2) 6.8504(2)

c, Å 12.951(2) 14.5061(5)

α, deg 77.204(6) 90.0

β, deg 75.258(5) 115.552(2)

γ, deg 66.010(5) 90.0

V, Å3 1059.8(3) 1168.74(7)

Z 2 2

ρcalcd, g/cm3 1.558 1.533

F(000) 512 560

µ(MoKα), mm–1 0.360 0.333

Crystal dimensions, mm 0.32 × 0.20 × 0.05 0.42 × 0.36 × 0.08

T, K 100.0(2) 120(2)

Scanning mode/θ-scan range, deg ω/1.64–27.00 ω/1.765–27.99

Ranges of reflection indices –12 ≤ h ≤ 11, –12 ≤ k ≤ 9, –10 ≤ l ≤ 16 –15 ≤ h ≤ 17, –8 ≤ k ≤ 8, –19 ≤ l ≤ 16

Number of measured reflections 5477 6466

Number of independent reflections 4276 [R(int) = 0.0421] 2764 [R(int) = 0.0221]

Number of reflections with I > 2σ(I) 4276 2764

Number of refinement parameters 297 212

R factors based on reflections with I > 2σ(I) R1 = 0.1162, wR2 = 0.2921 R1 = 0.0339, wR2 = 0.0975

R factors based on all reflections R1 = 0.1361, wR2 = 0.3034 R1 = 0.0401, wR2 = 0.1007

Goodness-of-fit on F2 1.125 1.033

Residual electron density, min/max, e/Å3 –0.666/1.546 –0.498/0.347

1

AZSTBI, BPETCQ, EPECCQ, MPYRET, and WEM-
NUX). All these data were obtained with low accuracy.
However, there is a clear tendency for systematic dis-
tortion of the geometry analogous to that observed in
the structure of the cation of salt 1. The average lengths
of the shortened C–C bonds and all other C–C bonds in
the rings are 1.364 and 1.390 Å, respectively. The aver-
age length of the C=C double bonds is 1.290 Å, and the
average endocyclic C–C–C angle at the ipso-carbon
atoms is 118°. In all the above-mentioned structures,
the substituents at the nitrogen atoms are oriented in
opposite directions from the mean plane of the conju-
gated system.

The cation in salt 2 consists of two pyridine rings
directly bound to each other. The rings are twisted
about the C(3)–C(13) bond by 15.8°. The cyclic sys-
tems in this cation display a para-quinoid structure
analogous to that observed in the cation of salt 1 (see
Table 5). The bond length between the pyridine rings
(1.486(4) Å) has a standard value. The absence of a
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 2      200
bridge between the rings leads to a decrease in the dis-
tance between the centroids of the rings to 4.28 Å. It
should be noted that the endocyclic angles at the ipso-
C(3) and -C(13) atoms in this cation also decrease to
117.8(3)°.

The CSD contains 126 entries for structures with the
divalent dipyridilium cation [R–Py–Py–R]2+ which are
not involved in macrocyclic systems. Statistical analy-
sis of their geometry confirmed the characteristic fea-
tures revealed in this study. In actuality, the average
length of the shortened (in accordance with the contri-
bution of the para-quinoid structure) opposite C–C
bonds in the rings is 1.371 Å. The average length of the
other C–C bonds in the rings is 1.387 Å, the average
bond length between the rings is 1.481 Å, and the aver-
age C–C–C angle at the key atoms of the conjugated
system of the cation is 117.0°. In all these structures,
the substituents at the nitrogen atoms are displaced in
opposite directions from the mean plane of the viologen
system.
5
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Fig. 1. Structures of the cations of salts 1–3. Thermal ellipsoids are drawn at the 50% probability level.
In salt 3, the divalent cation occupies a center of
symmetry, due to which its pyridine rings are strictly
parallel to each other. One crystallographically inde-
pendent perchlorate anion is ordered.

The presence of the saturated –CH2CH2– bridge
between the pyridine rings precludes conjugation
C

between them. Nevertheless, the geometric features of
these rings are similar to those of the cations of salts 1
and 2. Two opposite bonds, C(1)–C(2) and C(4)–C(5),
are substantially shortened compared to the C(2)–C(3)
and C(3)–C(4) bonds, and the endocyclic C(2)–C(3)–
C(4) angle at the key atom decreases to 117.9(1)°.
Table 4.  Selected interatomic distances (Å), bond angles (deg), and dihedral angles (deg) in the cation of salt 1

N(1)–C(4) 1.360(4) N(2)–C(14) 1.359(4)

N(1)–C(6) 1.353(4) N(2)–C(16) 1.338(5)

N(1)–C(7) 1.486(5) N(2)–C(17) 1.483(5)

C(1)–C(2) 1.465(5) C(11)–C(12) 1.457(5)

C(2)–C(3) 1.394(5) C(12)–C(13) 1.396(5)

C(2)–C(5) 1.410(4) C(12)–C(15) 1.415(4)

C(3)–C(4) 1.371(5) C(13)–C(14) 1.369(5)

C(5)–C(6) 1.371(5) C(15)–C(16) 1.376(5)

C(1)–C(11) 1.345(4) C(13)–C(12)–C(15) 117.5(3)

C(3)–C(2)–C(5) 117.4(3) C(12)–C(11)–C(1) 125.2(3)

C(2)–C(1)–C(11) 124.3(3)

Py1/Py2* 13.5 Py1/N(1), C(7), C(8) 105.0

Py2/N(2), C(17), C(18) 84.2 

* Py1 and Py2 denote the planes passing through the pyridine rings including the N(1) and N(2) atoms, respectively. Analogous notations
   are used also in Tables 5–9.
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Table 5.  Selected interatomic distances (Å), bond angles (deg), and dihedral angles (deg) in the cation of salt 2

N(1)–C(1) 1.338(4) N(2)–C(11) 1.339(4)

N(1)–C(5) 1.343(4) N(2)–C(15) 1.351(4)

N(1)–C(6) 1.488(3) N(2)–C(16) 1.492(4)

C(1)–C(2) 1.378(4) C(11)–C(12) 1.378(4)

C(2)–C(3) 1.396(4) C(12)–C(13) 1.381(4)

C(4)–C(5) 1.377(4) C(14)–C(15) 1.378(4)

C(4)–C(3) 1.387(4) C(14)–C(13) 1.399(4)

C(3)–C(13) 1.486(4) C(12)–C(13)–C(14) 117.8(3)

C(4)–C(3)–C(2) 117.8(3)

Py1/Py2 15.8 Py1/N(1), C(6), C(7) 89.2

Py2/N(2), C(16), C(17) 82.2

Table 6.  Selected interatomic distances (Å), bond angles (deg), and dihedral angles (deg) in the cation of salt 3

N(1)–C(1) 1.345(2) C(3)–C(4) 1.394(2)

N(1)–C(5) 1.348(2) C(4)–C(5) 1.373(2)

N(1)–C(7) 1.487(2) C(3)–C(6) 1.499(2)

C(1)–C(2) 1.378(2) C(6)–C(6A) 1.544(2) 

C(2)–C(3) 1.394(2) C(2)–C(3)–C(4) 117.9(1) 

Py1/Py2 0.0 Py1/N(1), C(7), C(8) 94.4
These results provide evidence that the above-consid-
ered geometric parameters of the pyridine rings are
determined by the character of the positive-charge
delocalization in these rings. The X1···X2 distance
between the centroids of the rings (6.49 Å) is close to
that found in the cation of salt 1.

The CSD contains data on four structures with the
divalent [R–Py–CH2–CH2–Py–R]2+ cation. Two of
these structures (the refcodes BPYETC and
BUMYAJ10) were established with low accuracy.
Hence we excluded these structures from consideration
and used only more precise data on the remaining two
structures (the refcodes EPETCR and MPETCQ). The
structural features of these two compounds are analo-
gous to those observed for the cation of salt 3. The aver-
age length of the shortened C–C bonds in the rings
characterized by a para-quinoid structure is 1.35 Å, the
average lengths of the other C–C bonds in the rings is
1.39 Å, and the bond angle at the key C atom of the
pyridine ring is 117°. In all four structures, the substit-
uents at the nitrogen atoms are displaced in opposite
directions from the mean plane of the chromophore
system.

In the structure of salt 4, the independent cations
have nearly identical geometry. The structures of the
cations and the atomic numbering scheme are shown in
Fig. 2. Selected geometric parameters are listed in
Table 7. The substituents at the nitrogen atoms of each
cation are oriented in opposite directions with respect
to the mean plane of the conjugated system and are
located approximately perpendicular to this plane.
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 2      2005
In the cation of salt 4, the nitrogen atoms are in the
meta positions with respect to the bridging ethylene
group. In the cation located in a center of symmetry, the
planes of the rings are strictly coplanar. In the cation
located in a general position, the analogous planes are
almost coplanar (the corresponding dihedral angle is
0.5°).

Although the accuracy of this investigation is sub-
stantially lower than the data on the above-mentioned
three structures, it can be said with assurance that there
are no systematic distortions of the C–C bond lengths
in the pyridine rings. Nevertheless, the endocyclic
angles at the C(4), C(14), and C(24) atoms involved in
the bridging system are decreased, as in all the above-
considered structures. In the ethenyl bridges of the cat-
ions, the double-bond lengths (1.333(7) and 1.328(4) Å)
and the single-bond lengths (1.471(5), 1.469(4), and
1.467(4) Å) are virtually identical to those in the cation
of salt 1. It should be noted that data on the structures
of analogous cations are lacking in the CSD.

Salt 5 crystallizes as a solvate with benzene. The
cation : anion : solvate ratio is 2 : 4 : 1. The structure of
the divalent cation is shown in Fig. 3. Selected geomet-
ric parameters are given in Table 8.

The geometry of the cation is substantially distorted
toward a boat conformation. The dihedral angle
between two formally pyridine rings is 11.4°. In this
cation, the substituents at the nitrogen atoms are ori-
ented in opposite directions virtually perpendicular to
the mean plane of the cyclic system. There is a pro-
nounced systematic alternation of the bond lengths in
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Fig. 2. Structures of two crystallographically independent cations of salt 4. Thermal ellipsoids are drawn at the 50% probability
level.
the cation, which corresponds to the following struc-
tural scheme:

.N NEt Et
C

The lengths of the shortened C–C bonds vary from
1.364(8) to 1.401(8) Å, and the elongated bond lengths
are in the range 1.403(8)–1.443(8) Å; the average bond
lengths are 1.387 and 1.426 Å, respectively.

The CSD contains 12 entries for analogous cations
which are not involved in macrocyclic systems (the ref-
Table 7.  Selected interatomic distances (Å), bond angles (deg), and dihedral angles (deg) in the cation of salt 4

N(1)–C(1) 1.344(4) C(3)–C(4) 1.403(5)

N(1)–C(5) 1.354(4) C(4)–C(5) 1.396(5)

N(1)–C(7) 1.492(5) C(4)–C(6) 1.471(5)

C(1)–C(2) 1.395(6) C(6)–C(6A) 1.333(7)

C(2)–C(3) 1.382(5) C(16)–C(26) 1.328(4)

N(2)–C(11) 1.344(4) N(3)–C(21) 1.370(4)

N(2)–C(15) 1.349(4) N(3)–C(25) 1.344(4)

N(2)–C(17) 1.494(5) N(3)–C(27) 1.494(5)

C(11)–C(12) 1.388(5) C(21)–C(22) 1.358(6)

C(12)–C(13) 1.382(5) C(22)–C(23) 1.398(5)

C(13)–C(14) 1.391(4) C(23)–C(24) 1.405(4)

C(14)–C(15) 1.394(5) C(24)–C(25) 1.398(5)

C(14)–C(16) 1.469(4) C(24)–C(26) 1.467(4)

C(3)–C(4)–C(5) 116.7(3) C(13)–C(14)–C(15) 117.6(3)

C(23)–C(24)–C(25) 118.5(3) Py1/N(1), C(7), C(8) 87.5

Py2/N(2), C(17), C(18) 85.7 Py3/N(3), C(27), C(28) 86.9

Py1/Py1A 0.0 Py2/Py3 0.5
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Fig. 3. Two projections of the structure of the cation of salt 5. In the upper projection, thermal ellipsoids are drawn at the 50% prob-
ability level.
codes ECAXIP, ECAXOV, GOWKEK, GOYJIN,
GOYKIO, GOYKOU, NEBQOA, TASHIE, TAXROZ,
TAXROZ, and TAXROZ01; the final structure contains
two independent formula units). In these structures, the
average lengths of the C–C multiple bonds in the pyri-
dine and benzene rings are 1.394 and 1.360 Å, respec-
tively, and the average length of the elongated C–C
bonds is 1.409 Å. Slight systematic differences
between the geometric parameters of the conjugated
system in the cation of salt 5 and those published in the
literature are, apparently, related to stacking interac-
tions between this conjugated system and the benzene
solvate molecule which is located in the crystal
between the planes of two adjacent cations. This fact is
discussed in more detail in the next section.

The structure of the cation of salt 6 is shown in
Fig. 4. Selected geometric parameters are given in
Table 9.

The cation occupies a center of symmetry and is
strictly planar. The double bond in the ethylene bridge
in salt 6, like those in 1 and 4, is localized (C(10)–
C(10A), 1.320(3) Å). In the pyridine rings, the charac-
ter of alternation of the bond lengths differs from that
observed in the other cations. The overall distribution
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 2      2005
of the bonds in the conjugated system is described by
the following scheme:

The length of the shortened C(2)–C(3) bond in the pyri-
dine ring is 1.388(2) Å. The adjacent C(1)–C(2) and
C(3)–C(4) bond lengths are 1.392(2) and 1.433(2) Å,
respectively. The C(1)–N(1) bond (1.332(2) Å) is
shorter than the C(9)–N(1) bond (1.386(2) Å). The
C−C multiple-bond lengths in the benzene ring are
1.370(2) and 1.368(2) Å. Other bond lengths vary from
1.413(2) to 1.431(2) Å. The longest C(4)–C(9) bond is
shared by two rings. The ethyl substituents are oriented
in opposite directions virtually perpendicular to the
conjugated system.

The distances between the centroids of the benzene
rings in molecules 1–6 are 6.60, 4.28, 6.49, 6.63 (6.57),
4.19, and 6.64 Å, respectively. This distance in trans-
stilbene (6.68 Å) is almost the same as those in the cat-
ions of salts 1, 3, 4, and 6. In the overwhelming major-

N

N
Et

Et
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Table 8.  Selected interatomic distances (Å), bond angles (deg), and dihedral angles (deg) in the cation of salt 5

N(1)–C(1) 1.345(8) N(2)–C(6) 1.354(8)

N(1)–C(5) 1.359(8) N(2)–C(10) 1.352(8)

N(1)–C(15) 1.494(7) N(2)–C(17) 1.499(7)

C(1)–C(2) 1.401(8) C(6)–C(7) 1.389(8)

C(2)–C(3) 1.419(8) C(7)–C(8) 1.413(8)

C(3)–C(4) 1.425(8) C(8)–C(9) 1.403(8)

C(4)–C(5) 1.396(9) C(9)–C(10) 1.392(8)

C(3)–C(8) 1.423(8) C(11)–C(12) 1.364(8)

C(13)–C(14) 1.380(9) C(2)–C(11) 1.437(8)

C(4)–C(13) 1.435(8) C(7)–C(12) 1.433(8)

C(9)–C(14) 1.442(9) C(7)–C(8)–C(9) 121.0(5)

C(2)–C(3)–C(4) 120.3(5)

Py1/Py2 11.4 Py1/N(1), C(15), C(16) 89.9

Py2/N(2), C(17), C(18) 90.0

Table 9.  Selected interatomic distances (Å), bond angles (deg), and dihedral angles (deg) in the cation of salt 6

N(1)–C(1) 1.332(2) C(4)–C(9) 1.431(2)

N(1)–C(9) 1.386(2) C(4)–C(5) 1.423(2)

N(1)–C(11) 1.497(2) C(5)–C(6) 1.370(2)

C(1)–C(2) 1.392(2) C(6)–C(7) 1.413(2)

C(2)–C(3) 1.388(2) C(7)–C(8) 1.368(2)

C(3)–C(4) 1.433(2) C(8)–C(9) 1.416(2)

C(3)–C(10) 1.472(2) C(10)–C(10A) 1.320(3)

C(2)–C(3)–C(4) 118.1(1) C(3)–C(10)–C(10A) 125.2(2)

Py1/Py2 0.0 Py1/N(1), C(11), C(12) 84.3
ity of cases, stacking interactions between aromatic
systems are known to lead to an offset superposition of
the molecules [5, 13]. Hence, the equality of the X1···X2

distances in donor–acceptor pairs is not as essential as
the geometric factor for the occurrence of stacking
interactions, and, vice versa, the inequality of these dis-
tances is not unfavorable for such interactions. In the
C

former case, one would expect either a lateral offset of
the superimposed planes of the molecules or a twist of
the π systems of the donor and acceptor with respect to
each other, whereas this does not necessarily occur in
the latter case.

Crystal packings of compounds 1–6. A set of crys-
tal packings formed by molecules of a particular class
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Fig. 4. Structure of the cation of salt 6. Thermal ellipsoids are drawn at the 50% probability level.
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Fig. 5. Fragment of the crystal packing of salt 1.
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Fig. 6. Nearest environment of the perchlorate anion Cl(1)  in the crystal of 1.O4
–

of compounds gives an insight into the structures of
supramolecular systems in a solution, although the lat-
ter are less well organized and less rigid compared to
those in a crystal [14]. It is known that aromatic organic
compounds having planar disklike structures can give
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 2      200
rise to a moderate number of various packing motifs.
Their classification was given in [15]. Elements of this
classification are retained for conjugated organic sys-
tems of a more complicated shape. For example, both
staircaselike [16] and stacking [17–19] architectures
5
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are observed for photochromic crown-containing dyes
and substituted benzocrown ethers. In the case of the
stacking architecture, stacking interactions are domi-
nant, whereas C–H···π system interactions prevail in
staircaselike structures [13, 20]. Interestingly, the
stacking architecture is often observed even for conju-
gated organic cations of crown-containing dyes, in spite
of the Coulomb repulsion between likely charged frag-
ments.

“Staircases” can be packed in the following two
fashions ((a), staircase-herringbone, (b), parallel-stair-
case):

.a b
C

In a solution, the transformation into a stacking
structure in a “soft” supramolecule is equally probable
for both these packings upon the corresponding coop-
erative shift of the molecules in their planes. When ana-
lyzing the crystal packings of compounds 1–6, we were
interested primarily in how the presence of two positive
charges and additional structural elements (in the case
under consideration, the presence of perchlorate
anions) can affect the tendency of conjugated systems
to form characteristic packings. In particular, we con-
sidered the possibility of preparing stacking structures
in large supramolecules composed of the above-
described CTCs. For CTCs containing the donor and
acceptor components (D and A, respectively) in a ratio
of 1 : 2, one can discuss the possibility of formation of
stacking structures only between the donor compo-
nents, because the acceptors are packed between the
donors in the [DAD][DAD][DAD] fashion. For 1 : 1
CTCs, stacks can be arranged in supramolecules in the
[DA][DA][DA] or [AD][DA][AD] fashion; other combi-
nations are also possible. The possibility of the forma-
tion of stacks involving an additional element (for
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 2      2005
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Fig. 8. One layer of the crystal packing of salt 3.
example, aromatic solvent molecules) also cannot be
excluded.

A fragment of the crystal packing of salt 1 is shown
in Fig. 5. In the crystal structure, the aromatic frag-
ments are packed neither in stacks nor in a staircase
fashion because of the presence of perchlorate anions
between the cations. It is possible that two positive
charges in the cation give rise to a very strong Coulomb
repulsion, which hinders the occurrence of a packing
typical of conjugated systems. However, counterions
can also have an effect. One type of anions (containing
the Cl(2) atom) are located in the packing cavities and
do not form secondary bonds with the adjacent atoms.
On the contrary, the second perchlorate anion is
involved in numerous secondary bonds, thus influenc-
ing the mutual arrangement of the cations in the struc-
ture. The environment of the latter perchlorate anion in
the crystal packing is shown in Fig. 6.

The O(11A)···N(2A) contact (2.90 Å) corresponds to
the sum of the van der Waals radii of these atoms. The
O(11A)···N(2A)–C(14A), O(11A)···N(2A)–C(16A), and
O(11A)···N(2A)–C(17A) angles at the nitrogen atom
(85.4°, 93.5°, and 91.2°, respectively) indicate that the
O(11) atom of the anion is, in fact, projected onto the
nitrogen atom at which the positive charge of the cation
YSTALLOGRAPHY REPORTS      Vol. 50      No. 2      200
is formally localized. It can be hypothesized that this
arrangement is most favorable for the Coulomb interac-
tion between the cation and anion, but it is also optimal
for a weak n···π*-type orbital interaction. The
O(11A)···H(6E) contact (2.44 Å), which is shortened
compared to the sum of the van der Waalls radii
(~2.6 Å), and the O(11A)···H(6E)–C(6E) angle (169°)
are typical of hydrogen bonding. The O(12A) atom
forms three short contacts: (O(12A)···H(1D), 2.48 Å;
O(12A)···H(4C), 2.42 Å; and O(12A)···H(15D),
2.24 Å). The angles at the hydrogen atoms are 163°,
164°, and 158°, respectively, which are optimal for
O···H–C hydrogen bonds. The O(14A) atom forms one
hydrogen bond, O(14A)···H(3D)—C(3D), character-
ized by the parameters 2.42 Å and 175°.

Thus, the characteristic features of this crystal pack-

ing indicate that the  anions cannot only occupy
the cavities in the packings whose motifs are deter-
mined by conjugated organic elements of the structure,
but can also fulfill the structure-forming function.
Apparently, this is responsible for the unusual
supramolecular architecture of the conjugated organic
systems in salt 1.

A fragment of the crystal packing of salt 2 is shown
in Fig. 7. Of two typical packing motifs (stacking and

ClO4
–

5
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Fig. 9. Fragment of the crystal packing of salt 3.
staircaselike), a staircase-herringbone packing of con-
jugated organic structural units is observed in the crys-
tal of salt 2. Both disordered perchlorate anions have
only a slight effect on the type of this packing, each
anion being involved in one hydrogen bond. It should
be noted that it is these ordered oxygen atoms of the
anions that are involved in the hydrogen bonding (see
above).

The O(11A)···H(15A) and O(21A)···H(1AA) dis-
tances (2.41 and 2.37 Å, respectively) are comparable
to those in the above-described structure. The angles at
the hydrogen atoms are 156° and 157°, respectively.
The formation of a larger number of secondary bonds
between the anion and cation in the crystal of salt 1
compared to that observed in the crystal of salt 2 is,
C

apparently, associated with higher electron-withdraw-
ing ability of the cation of salt 1 in comparison with that
of salt 2 owing to a more efficient mutual electron-with-
drawing effect of the pyridine rings.

One layer of the crystal packing of salt 3 is shown in
Fig. 8. This layer is composed of cations and anions
linked to each other by hydrogen bonds. Each anion is
involved in two hydrogen bonds, serving as a bridge
between the adjacent cations. The O(2)···H(1) and
O(3)···H(5) distances are 2.42 and 2.38 Å, respectively.
The angles at these hydrogen atoms are 151° and 164°,
respectively. A superposition of the layers gives rise to
a typical staircase-herringbone motif (Fig. 9).
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 2      2005
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Fig. 10. Fragment of the crystal packing of salt 4 and the hydrogen bond network.
Therefore, although perchlorate anions in crystals of
salt 3 fulfill the structure-forming function (within the
layers), they have no effect on the character of superpo-
sition of the layers. Hence, the resulting crystal struc-
ture does not contradict the packing motif formed by
the organic cations of salt 3. This packing motif is typ-
ical of conjugated systems.

A fragment of the crystal packing of cations and
anions of salt 4 is shown in Fig. 10. In this structure,
cations are also packed in a staircase-herringbone fash-
ion. Anions are located between the “staircases.”

Three crystallographically different anions in this
structure make different contributions to the stabiliza-
tion of the crystal structure. The perchlorate anion

Cl(1)  occupies cavities in the crystal structure and is
not involved in specific interactions. Two other anions
form numerous hydrogen bonds with various C–H frag-
ments of the adjacent molecules.

The Cl(2)  anion forms three weak hydrogen
bonds. The O(6) atom of this anion is not involved in
the hydrogen bonding. The O(5) atom forms a weak

O4
–

O4
–
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hydrogen bond with the H(3)–C(3) fragment of the
adjacent molecule (O···H, 2.55 Å; O···H–C, 159°). The
O(7) atom is involved in the O(7)···H(21)–C(21) hydro-
gen bond with the parameters 2.52 Å and 140.9°. The
O(8) atom forms the O(8)···H(22)–C(22) hydrogen
bond (O···H, 2.43 Å; O···H–C, 139°). The perchlorate

anion Cl(3)  is involved in five weak hydrogen
bonds. The O(11) atom of this anion forms the
O(11)···H(7)–C(7) (O···H, 2.48 Å; O···H–C, 175°) and
O(11)···H(2)–C(2) (O···H, 2.41 Å; O···H–C, 154°)
hydrogen bonds with two adjacent molecules. The
O(9), O(10), and O(12) atoms are involved in the weak
interactions O(9)···H(23)–C(23), O(10)···H(17)–C(17),
and O(12)···H(1)–C(1). The geometric parameters of
these contacts are as follows: 2.55 Å and 159°; 2.50 Å
and 141°; and 2.55 Å and 139°, respectively. All the
above-mentioned contacts are rather long (comparable
to the sum of the van der Waals radii) and are not quite
optimal for hydrogen bonding. Hence, it is hardly prob-
able that the packing requirements of the anions play a
decisive role here. It is more likely that the anions are
fitted to the packing motif determined by the cations.

O4
–
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0
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Fig. 11. Crystal packing of salt 5. All hydrogen atoms are omitted for simplicity.
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Fig. 12. Stacking pair of the cations projected onto the mean plane of one of the cations.
The crystal packing of salt 5 is shown in Fig. 11. It
is characterized by a stacking structure. The stacks are
formed with the participation of benzene solvate mole-
cules, which occupy centers of symmetry in the crystal.
Thus, the two cations between which a benzene mole-
cule is located are related by the center of symmetry at
(1/2 0 1/2). Each cation in the stack is surrounded on
C

opposite sides by two cations which are related to the
former cation by the centers of symmetry at (0 1/2 1/2).
It should be noted that the concave sides of the cations
(see above) face benzene molecules. This packing
shows that the presence of two charges on the extended
conjugated system of the cation does not hinder the pair
stacking of the cations. However, the formation of the
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Fig. 13. Mutual arrangement of the structural units in a crystal of salt 5 in the cation–benzene–cation triad projected onto the plane
of the benzene ring.
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Fig. 14. Fragment of the crystal packing of salt 5 and the hydrogen-bond network. Only hydrogen atoms involved in hydrogen bond-
ing are shown.
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Fig. 15. Fragment of the crystal packing of salt 6.
stack requires the presence of an aromatic solvent mol-
ecule as the third stabilizing element.

Two adjacent cations in the stack projected onto
each other are shown in Fig. 12. The mean planes of
these cations are strictly parallel, and the value of the
interplanar distance (3.55 Å) is typical of stacking
structures formed by neutral conjugated molecules
(3.3–3.8 Å [5]). The mutual arrangement of the cations
is offset, which is typical of systems with stacking
interactions [5].

The mutual arrangement of the structural units in the
cation–benzene–cation triad projected onto the plane of
the benzene ring is shown in Fig. 13. Although the ben-
zene molecule is not strictly parallel to the mean plane
of the cation, the dihedral angle between these frag-
ments is very small (0.8°). The average distance from
the plane of the benzene ring to the mean plane passing
through six atoms of the central fragment of each cation
(3.42 Å) is rather short and undoubtedly corresponds to
a stacking interaction.

In the crystal, perchlorate anions are located
between stacks. Nevertheless, the anions form weak
hydrogen bonds with the C–H fragments of the stacks.
Figure 14 shows a fragment of the crystal packing
involving two crystallographically independent anions
which are located between the stacks.
C

All these hydrogen bonds are very weak, and their
existence does not even preclude disorder of the

Cl(1)  anion. For the ordered perchlorate anion, the
parameters of the O(8)···H(12)–C(12), O(5)···H(5)–
C(5), and O(6)···H(5)–C(5) hydrogen bonds (the latter
two bonds form a bifurcated hydrogen bond) are as fol-
lows: 2.42 Å and 154°, 2.52 Å and 135°, and 2.52 Å and
142°, respectively. For the disordered perchlorate
anion, most weak interactions correspond to the sum of
the van der Waals radii, the C–H···O angles varying
from 131° to 156°.

A fragment of the crystal packing of salt 6 is shown
in Fig. 15. In this structure, cations are packed in a her-
ringbone-staircase fashion and anions are located
between the staircases. The conjugated system of the
cation in this structure, unlike that in the structure of
salt 5, is not sufficiently extended to form a pair stack-
ing. It is not inconceivable that the molecules of this
compound can also be packed in stacks upon crystalli-
zation from aromatic solvents.

In a crystal, perchlorate anions form a network of
weak hydrogen bonds O(1)···H(1)–C(1), O(1)···H(11)–
C(11), and O(4)···H(2)–C(2) with the following geo-
metric parameters: 2.57 Å and 158°, 2.58 Å and 140°,
2.43 Å and 170°, respectively.

O4
–
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Qualitative consideration of the crystal packings of
viologen analogues available in the CSD shows that
almost all known types of supramolecular architectures
were found in this study. The packing of these cations
in stacks occurs rarely and only if either the coordina-
tion compounds [M(d8)X4]– (X is halogen) or carban-
ions, such as trisubstituted methanides (trini-
tromethanide or tricyanomethanide), serve as anions.
These structures contain infinite stacks consisting of
alternating cations and anions. When halogens (I– or
Cl–), which are characterized by rather small sizes, are
used as counterions, their influence on the supramolec-
ular architecture is too strong, because these anions
(especially I–) tend to form extensive hydrogen-bond
networks. In this case, the possible supramolecular
architecture is much more difficult to predict. Struc-
tures of viologen analogues containing F– as the coun-
terion are lacking in the CSD.

CONCLUSIONS

On the basis of the comparative analysis of the geo-
metric features of the cations in salts 1–6, their crystal
packings, and the related data available in the CSD, the
following conclusions can be made:

In the crystalline state, the molecular cations of
acceptors 1–6 have a nearly planar system of two pyri-
dine rings. This is indicative of the possible occurrence
of full stacking in CTCs containing these cations as
acceptors.

In all cations, the substituents at the nitrogen atoms
are oriented in opposite directions from the mean plane
of the pyridine rings. Hence, the acceptor is preorga-
nized for the formation of 2 : 1 rather than 1 : 1 CTCs.

The presence of perchlorate anions in the packing
and the Coulomb repulsion between the cations are the
main factors that hinder the stacked packing of the mol-
ecules and do not preclude the packing of molecules in
a staircase fashion.

Perchlorate anions can play a destructive role
against stacking interactions in the systems under con-
sideration. In particular, anions can be inserted between
a donor and an acceptor. Presumably, CTCs with such
acceptor compounds can be synthesized with the use of
other counterions which are less prone to hydrogen
bonding.

The involvement of new elements (for example, aro-
matic solvents) in a supramolecular system can stabi-
lize the stacked packing of this system.
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 2      2005
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Abstract—The effect of temperature and the concentration of ammonium on the lattice parameters and the
amplitude-weighted phonon density of states in mixed salts of ammonium potassium halides is studied by neu-
tron powder diffraction and incoherent inelastic neutron scattering. It is found that at 10 K incoherent inelastic
neutron scattering spectra show four different excitation modes of ammonium: two resonant excitations below
the cutoff energy of the phonon density of states of potassium halide and two localized excitations above the
cutoff energy. The high-energy localized modes correspond to translational and librational vibrations of NH4
ions in the crystal lattice. These modes are typical of ordered phases of ammonium halides. © 2005 Pleiades
Publishing, Inc.
† INTRODUCTION

With decreasing temperature, ammonium halides
undergo a series of structural phase transitions: α–β–δ
in NH4Cl, α–β–γ–δ in NH4Br, and α−β–γ in NH4I [1].
The α and β phases have cubic structures of the NaCl
and CsCl types, respectively, with disordered arrange-
ment of ammonium ions in the lattice. In the α phase,
NH4 tetrahedra are octahedrally surrounded by halide
ions. It is generally accepted that NH4 ions adapt them-
selves to the site symmetry C3v in such a way that the
bond formed by one of the hydrogen atoms is directed
along the body diagonal of the cube 〈111〉, whereas the
other hydrogen atoms of the ammonium ion are located
at minimum distances from the nearest halogen atoms
[2, 3]. The cubic symmetry of this phase is stabilized by
fast reorientations of the NH4 group between eight
symmetrically equivalent positions. In the β phase, NH4
groups are reoriented between two energetically equiv-
alent orientations within the cubic environment formed
by halide anions [4].

The anharmonic effects associated with the fast
reorientation of ammonium ions at temperatures above
~100 K hinder the study of the harmonic lattice dynam-
ics of disordered phases of pure ammonium halides.
Preparation of solid solutions of ammonium potassium
halides at room temperature was investigated in [5]. It
was shown that K1 − x(NH4)xI mixed crystals are formed

† Deceased.
1063-7745/05/5002- $26.00 0254
throughout the concentration range of ammonium and
K1 − x(NH4)xBr and K1 − x(NH4)xCl mixed crystals are
formed in limited ranges of ammonium concentration.
Further study of the x–T phase diagrams of mixed crys-
tals of ammonium potassium halides in the concentra-
tion section at low temperatures showed that, with an
increase in the ammonium concentration, those phases
are reproduced that are observed with decreasing tem-
perature from high to liquid helium temperature in pure
ammonium halides [6–11]. This allows one to investi-
gate the harmonic lattice dynamics of disordered
phases and quantum-mechanical effects in the dynam-
ics of NH4 groups.

However, the x–T phase diagram of mixed crystals
containing alkali metals, ammonium, and halogens
becomes more complex at low temperatures owing to
the formation of additional concentration ranges with
structures that are absent in pure ammonium halides.
The system of ä1 − x(NH4)xI mixed crystals has been
investigated by different physical methods during last
15 years and has undergone a complex evolution pre-
dominantly in the average concentration range. The
first observation (by dielectric spectroscopy) of the ori-
entational glass state in ä1 − x(NH4)xI mixed crystals
with concentrations x = 0.14 and 0.43 with “freezing”
temperatures Tg = 4.5 and 18 K, respectively, was
reported in [6]. Then, using X-ray diffraction and
Raman and neutron scattering, the first x–T phase dia-
gram of ä1 − x(NH4)xI mixed crystals was obtained in [7].
© 2005 Pleiades Publishing, Inc.
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It was shown in [7] that mixed crystals in the concen-
tration range 0.82 < x < 0.92 undergo α ⇔ β phase tran-
sitions with a large hysteresis; for compositions with x
< 0.72, phase transitions are not observed; and the con-
centrations in the range from 0.72 to 0.82 are consid-
ered to be the critical concentrations xc, below which
(in the range 0.3 ≤ x < xc) the orientational glass phase
is formed. In subsequent studies [8–10], the concentra-
tion dependence of the x–T phase diagram of
ä1 − x(NH4)xI mixed crystals was studied in more detail.
Using neutron single-crystal diffraction, Paasch et al.
[9, 10] found in the concentration range 0.55 ≤ x ≤ 0.75
a new phase (ε phase) with a crystal structure belonging
to the space group R3m. The existence of the ε phase in
ä1 − x(NH4)xI mixed crystals was confirmed in [11].
The concentration ranges of the orientational glass
phase in ä1 − x(NH4)xI mixed crystals below x = 0.55
are different in [8, 9, 11] since these are divided into
different subranges, for example, g1, g2, and g3, with
different boundaries [8, 9]. According to [11], the sec-
tion of the x–T phase diagram at a temperature of 1 K
depending on the lattice parameter a of ä1 − x(NH4)xI
mixed crystals of the NaCl type at room temperature
can be represented as follows:

KI ⇔ α phase ⇔ (7.115 Å) ⇔ OC ⇔ (7.17 Å) 
⇔ SRO ⇔ (7.185 Å) 

⇔ ε phase ⇔ (7.225 Å) ⇔ β phase ⇔ (7.255 Å) 
⇔ γ phase ⇔ NH4I.

Potassium halides lightly doped with ammonium
were used to study the rotational tunneling transitions
in NH4 ions [12–15]. The results obtained demon-
strated that the tunneling transitions in ammonium ions
can be adequately described by the single-ion approxi-
mation [4, 12]. With an increase in the ammonium con-
centration, collective behavior arises due to the increas-
ing role of ammonium–ammonium interactions
[13, 14]. It has been suggested that the rotational tunnel
excitations are suppressed by the formation of the ori-
entational glass phase in K1 − x(NH4)xI mixed crystals
[13]. A temperature study demonstrated that there is a
continuous transition from the quantum (T < 5 K) to
classical (T > 20 K) nature of reorientational motion
[12, 13]. The model of rotational tunneling states in the
energy range up to 8 meV was proposed for NH4-doped
KBr crystals [15].

Investigation of K1 − x(NH4)xI mixed crystals at
20 K in the concentration range 0.05 < x < 0.7 by inco-
herent inelastic neutron scattering (IINS) revealed three
pronounced inelastic features at 10, 21, and 31 meV
[16]. Our neutron scattering studies of K1 − x(NH4)xI
mixed salts demonstrated an additional band at
2.5 meV [17, 18].

In this study, we examine the influence of the NH4
concentration on the ammonium dynamics and the
order–disorder phase transition in K1 − x(NH4)xI mixed
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salts at 10 K. We also present the results obtained for
the α phase of K0.95(NH4)0.05Br and K0.95(NH4)0.05Cl
mixed salts.

EXPERIMENTAL RESULTS

Mixed crystals of ammonium potassium halides
were prepared by evaporation of the corresponding sto-
ichiometric aqueous solutions at a pressure of about
10 Pa at room temperature. Powder samples were dried
for several hours at 50°C under normal pressure before
the neutron scattering experiments. The neutron scat-
tering spectra of the powder samples were measured on
an IBR-2 high-flux pulsed reactor using the time-of-
flight technique on an NERA high-resolution inverse-
geometry spectrometer [19]. The neutron powder dif-
fraction (NPD) and IINS spectra were measured simul-
taneously. The NPD spectra were recorded at four scat-
tering angles (45°, 69°, 135°, and 144°). The IINS spec-
tra were measured at 15 scattering angles in the range
from 20° to 160°. The energy of incident neutrons was
determined from the time of flight using a path length
of 109.05 m between the neutron moderator and the
sample. The energy of inelastically scattered neutrons
was fixed at an average value of E0 = 4.53 meV (which
corresponds to the wavelength λ0 = 4.25 Å) using a
beryllium filter and pyrolytic-graphite analyzers. The
full width at half maximum of the elastic peak of the
NERA spectrometer was 0.6 meV.

NPD spectra make it possible to monitor the phase
of the samples under study and investigate the concen-
tration and temperature dependences of the lattice
parameters. The dependence of the parameter a of the
cubic lattice of the disordered α phase in the concentra-
tion range 0.05 < x < 0.60 and the parameters a and c of
the tetragonal lattice of the ordered γ phase for x = 0.8
and 1.0 in K1 − x(NH4)xI mixed crystals at 10 K were
determined from the NPD spectra and used to calculate
the concentration dependence of the volume per for-
mula unit [20].

In Fig. 1, the IINS spectra of ä0.95(NH4)0.05Br mea-
sured at 290, 80, and 10 K are compared with the IINS
spectrum of KBr measured at 80 K. The spectra, mea-
sured as a function of the incident-neutron wavelength,
are summed over 15 scattering angles and normalized
to the same number of incident neutrons and the same
bromine concentration. The IINS spectrum measured at
290 K is indicative of a broad excitation-energy distri-
bution of ammonium in the range from about 1 to
4.25 Å (the position of the elastic peak). Incoherent
quasi-elastic neutron scattering (IQENS) observed on
the wings of the elastic peak indicates the fast stochas-
tic reorientation of NH4 ions. The profile of the IQENS
line is described by a Lorentzian whose position on the
wavelength scale coincides with the position of the
Gaussian describing the elastic peak intensity at the
wavelength λ0 = 4.25 Å. At the same time, while the
width at half maximum of the Gaussian describes the
5
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Fig. 1. Incoherent inelastic neutron scattering spectra of a K0.95(NH4)0.05Br mixed crystal at 10, 80, and 290 K and KBr at 80 K.
resolution function of the spectrometer, the width at
half maximum of the Lorentzian is proportional to the
frequency of reorientations of ammonium ions. How-
ever, with decreasing temperature, the linewidth of the
Lorentzian describing the IQENS contribution is nar-
rowed due to the decrease in the frequency of reorien-
tations of ammonium ions, which is accompanied by
the decrease in the contribution of the quasi-elastic
scattering intensity at the wings of the elastic line. The
spectrum measured at 80 K contains peaks correspond-
ing to translational and librational excitations of ammo-
nium (at wavelengths of about 1.65 and 1.45 Å, respec-
tively) above the band of lattice vibrations of an KBr
crystal, whose cutoff energy corresponds to the inci-
dent-neutron wavelength of about 2 Å. In the region of
lattice vibrations of KBr, the IINS spectrum of a
K0.95(NH4)0.05Br mixed crystal at 10 K shows two addi-
tional excitations at 2.4 and 3.5 Å.

The amplitude-weighted phonon densities of states
G(E) calculated from the IINS spectra in the approxi-
mation of one-phonon incoherent scattering [21] are
shown in Fig. 2. Four pronounced bands, which corre-
spond to vibrational excitations of ammonium ions in
the disordered α phase of K0.95(NH4)0.05Br, are clearly
observed at 10 K. Two bands in the phonon spectrum of
KBr are generally referred to as resonance modes. The
modes corresponding to the band at 2.5 meV may be
due to rotational tunneling excitations [4, 12–15], while
C

the mode corresponding to the band at 9 meV is associ-
ated with librations of the ammonium ion around its
dipole axis [16]. The modes at energies of 25 and
38.75 meV are related to localized translational and
librational vibrations (perpendicular to the dipole axis)
of ammonium ions, respectively. These two modes
were observed for the ordered phase of NH4Br with
energies of 20 and 42.9 meV, respectively [22].

The temperature dependence of the amplitude-
weighted phonon density of states G(E) for a
K0.95(NH4)0.05Cl mixed crystal is shown in Fig. 3. The
G(E) spectrum of K0.95(NH4)0.05Cl shows quite strong
lattice vibrations of KCl due to a relatively high scatter-
ing cross-section of chlorine atoms. The low-energy
resonance mode of ammonium with an energy of
2.5 meV has a high intensity at 10 K. The second reso-
nance mode is lost against the high background of lat-
tice vibrations of potassium chloride and is expected to
appear at higher ammonium concentrations. The local-
ized translational and librational modes are well
defined with energies of 28.75 and 42.5 meV, respec-
tively. The corresponding modes in the ordered phase
of NH4Cl were observed with energies of 22.5 and
49.4 meV, respectively [22].

We studied ammonium potassium iodide in wide
concentration (0.0 < x < 1.0) and temperature (10–
290 K) ranges [17, 18]. The results of our studies of the
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 2      2005
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Fig. 2. Amplitude-weighted phonon density of states G(E) for KBr at 80 K and a K0.95(NH4)0.05Br mixed crystal at 10, 80, and
290 K.
inelastic neutron scattering (INS) spectra of
K1 − x(NH4)xI solid solutions at 10 K are shown in
Fig. 4. The G(E) spectra of the disordered α phase in
the concentration range 0.05 < x < 0.60 clearly show
four modes of ammonium with energies of 2.5, 8.75,
21.9, and 31.25 meV. The bandwidths of these modes
are larger than the spectrometer resolution width. The
G(E) spectra of the γ phase demonstrate only localized
modes of ammonium. Their bands with energies of
18.75 and 37.5 cm–1, denoted as ν5 and ν6 , correspond,
respectively, to the translational and librational phonon
modes of NH4 groups in the crystal. The INS spectra of
the ordered phases of ammonium halides, measured at
low temperatures, also contain bands at higher ener-
gies, which correspond to the ν5 + ν6 combination band
and excitations of higher harmonics, for example, 2ν6 .
These bands are very weak in the G(E) spectra of the
disordered α phase. The mode ν6 manifests itself as the
most intense band in the G(E) spectra of the γ phase,
whose width is close to the resolution of the NERA
spectrometer. The corresponding band in the spectrum
of the α phase is broader and weaker and its energy
decreases from 37.5 to 31.25 meV. This decrease in the
energy of the librational mode at the order–disorder
phase transition is consistent with the increase in the
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 2      2005
volume per formula unit [20]. The energy of transla-
tional phonons for the disordered α phase slightly
decreases when the lattice expands due to the increase
in the ammonium concentration (see Fig. 4). For these
excitations, the G(E) spectrum changes only slightly at
the transition from the α to the γ phase. The excitation
with an energy of 8.75 meV was attributed to librations
of ammonium ions around the dipole axis under the
assumption that tetrahedral ammonium ions adapt
themselves to the octahedral environment formed by
halogen atoms with the site symmetry C3v [16]. The
energy of this excitation slightly increases with an
increase in the ammonium concentration in mixed salts
(despite the lattice expansion).

It is likely that the broad resonance mode with an
energy of 2.5 meV, which was observed in our studies
of mixed ammonium potassium halides, corresponds to
the tunneling transitions of ammonium tetrahedra in the
octahedral field of halide ions. At low ammonium con-
centrations (x < 0.01) and low temperatures (T < 5 K),
these transitions are observed as narrow peaks in the
INS spectra [12–15]. These excitation peaks broaden as
the concentration and temperature increase. In the case
under consideration (T = 10 K and 0.05 < x < 0.6), the
low-energy excitations are convolved with the resolu-
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Fig. 3. Amplitude-weighted phonon density of states G(E) for KCl at 80 K and a K0.95(NH4)0.05Cl mixed crystal at 10, 80, and
290 K.
tion function of the NERA spectrometer [19], which is
similar to the Gaussian with a full width at half maxi-
mum of about 0.625 meV, if the transferred energy is
2.5 meV. Under these conditions, “tunneling transi-
tions” are observed as a broad band at an energy of
2.5 meV, whose maximum and width slightly increase
with an increase in the ammonium concentration. Our
present study of a K0.55(NH4)0.45I sample demonstrates
that the width of the band at 2.5 meV increases with an
increase in temperature. At approximately 30–40 K,
this band disappears, transforming into broad quasi-
elastic wings [23].

DISCUSSION AND CONCLUSIONS

The amplitude-weighted phonon density of states
G(E) of ammonium in ammonium potassium halides
with NaCl-type structure was measured in the entire
energy range of lattice vibrations in the α phase. The
ammonium dynamics in this phase is characterized by
four pronounced bands, whose energies are shown in
Fig. 5 as functions of the nitrogen–halogen distance.
The energies of the translational (ν5) and librational
(ν6) modes of ammonium in low-temperature ordered
phases of ammonium halides with CsCl-type structure
C

are also shown in Fig. 5 for comparison. The transition
from the NaCl to CsCl type is related to the increase in
the nitrogen–halogen distance (in the cubic-structure
approximation, from a/2 to (3a)1/2/2, where a is the
halogen–halogen distance). This indicates that the
translational modes ν5 have higher energies in the
α phase than in ordered phases of ammonium halides.
The librational modes ν6 of ammonium ions are influ-
enced more by the geometry and the number of sur-
rounding halogen atoms (which varies from six in the
octahedral α phase to eight in the ordered cubic α phase
or tetragonal β phase). The energies of the librational
modes in the β and γ phases of ammonium halides
exceed those in the α phase in spite of the large nitro-
gen–halogen distances.

The existence of two additional bands with lower
excitation energies of ammonium in the α phase can be
explained in terms of the so-called model of triple
approximation, in which tetrahedral ammonium ions
are adapted to the site symmetry C3v in the octahedral
environment of halide ions. Three rotational degrees of
freedom of the ammonium tetrahedron, which are triply
degenerate (F1) within the site symmetry Oh in the
cubic cell, are split into the modes E and A2 within the
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 2      2005
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site symmetry C3v. The doubly degenerate mode νE

relates the librations of ammonium ions around the axis
perpendicular to the dipole moment directed along the
C3v symmetry axis [16]. The low energy of the νA mode
suggests very low potential barriers for librations of
ammonium ions around the C3v symmetry axis and
large splitting of the tunneling states [15]. The tunnel-
ing spectra are very sensitive to the ammonium concen-
tration, and the lines below about 1.25 meV completely
collapse into a quasi-elastic line at x = 0.28 [13]. The
concentration dependence of higher frequency tunnel-
ing transitions has yet to be studied. In our spectra of
the α phase of K1 − x(NH4)xI mixed salts, the low-energy
band at approximately 2.5 meV was observed at T =
10 K throughout the concentration range 0.05 < x < 0.6
(see Fig. 4).
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 2      2005
The concentration dependences of the average exci-
tation energies of ammonium in K1 − x(NH4)xI mixed
salts are shown in Fig. 6. According to the present-day
knowledge of the x–T phase diagram of K1 − x(NH4)xI
solid solutions, our samples of mixed ammonium
potassium iodides with x of approximately 0.6 or 0.8
should correspond to the ε and β phases, respectively
[9, 10]. The occurrence of the structural transition from
the NaCl-type ε phase [10] to the CsCl-type β phase is
confirmed by the NPD and INS spectra measured by us
(see [20] and Fig. 4). A significant difference in the
ammonium dynamics is observed only for these types
of crystal lattices. The amplitude-weighted phonon
density of states G(E) for the α phase at 10 K is abso-
lutely identical throughout the concentration range
0.05 < x < 0.6. Local distortions, which violate the fcc
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symmetry in glass phases, and the complex dipole order
in the ε phase seem to be of less importance than the
simple concentration dependence of the average excita-
tion energies of ammonium. Hence, it appears to be rea-
sonable to approximate the average energies of these
excitations by a hypothetical α phase of ammonium
iodide at low temperatures. It would be of interest to
calculate the dynamics of lattice vibrations for the
α phase with the antiferroelectric ordering of ammo-
nium ions or for the ε phase with the complex dipole
ordering and to compare these data with the experimen-
tal G(E) spectra reported here. Calculations of the lat-
tice dynamics for the ordered phase of ammonium
chloride using the rigid-molecule model [24] ade-
quately account for the experimental dispersion curves
for ND4Cl and the G(E) spectra of NH4Cl. The model
of lattice dynamics used to study the dispersion curves
for the α phase of ND4Cl at 296 K [25] can account
only for the translational band in the G(E) spectra
shown in Fig. 4.

It is unlikely that interactions in dipole glasses,
which are similar to interactions in spin glasses, change
the energies in the vibrational spectrum. However,
these interactions can affect the width of certain bands
in this spectrum [16]. The widths of the four bands cor-
responding to different excitations of ammonium in the
α phase of ammonium potassium halides exceed the
width of the resolution function. These bandwidths
slightly increase with an increase in the ammonium
concentration for the low-energy resonance modes and
translational modes but decrease for the librational
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Fig. 5. Comparison of the average excitation energies Es of
ammonium in the disordered α phase of K0.95(NH4)0.05Hal
mixed crystals (Hal = Br, Cl, or I) at 10 K (dashed lines) and
in the ordered phases of ammonium halides at low temper-
atures (solid lines).
C

mode νE. However, it is difficult to perform their quali-
tative analysis because we measured the state density
but did not estimate the width of the excitation band at
well-determined transferred energy and momentum.
The concentration dependences of the average excita-
tion energies for ammonium in the α phase of
K1 − x(NH4)xI solid solutions are shown in Fig. 6. The
average energies of the low-frequency resonance
modes increase with an increase in the ammonium con-
centration in spite of the lattice expansion. This indi-
cates that the direct ammonium–ammonium interaction
affects the potential barrier that hinders the rotation
around the C3v dipole axis.
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Abstract—Striction-mediated attraction of domain walls, solitons in incommensurate phases, and Abrikosov
vortices in superconductors are considered. It is shown (a) that it is this type of attraction that can be responsible
for a soliton-density jump in lock-in transitions and (b) that the strain-induced vortex interaction in supercon-
ductors with a high Ginzburg–Landau parameter is higher by one or two orders of magnitude than was assumed
earlier. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

The influence of long-range elastic interactions on
the properties of modulated phases, which are the reg-
ular structures of solitons, has long attracted attention
in connection with the study of the properties of various
systems such as dielectrics possessing structurally
incommensurate phases [1] and second-order super-
conductors with Abrikosov-vortex lattices [2, 3]. Usu-
ally, this problem in incommensurate phases was stud-
ied with the aim to establish whether a lock-in transi-
tion is continuous or the soliton density at the transition
point changes in a jumpwise manner. As a rule, the
mechanisms that could give rise to a soliton-density
jump were examined with no allowance for the striction
effect. At the same time, in studies of vortex-lattice ori-
entations in crystals, the striction-mediated interaction
in superconductors was often considered as one of the
main types of interactions. Such interaction was usually
calculated based on a simplified model under the
assumption that the elastic strains inducing vortex
interactions are due only to vortex cores. However, it
turned out that the interactions in these studies were
considerably underestimated. Therefore, the present
study is dedicated to the consideration of these prob-
lems.

At the beginning, the striction effect is considered
on the simplest example of domain walls described by
the one-dimensional distribution of a one-component
order parameter. This example allows us to reveal the
characteristic features of this interaction and to evaluate
it for different types of domain walls. Then, following
the concepts stated in [4, 5], we calculate the striction-
mediated attraction of two-dimensional solitons in
incommensurate phases and Abrikosov vortices in
superconductors. Some computations are performed by
a method somewhat different from the method used in
1063-7745/05/5002- $26.00 0262
the studies cited above, and some of the results obtained
are considered in more detail.

A POLYDOMAIN CRYSTAL

Consider a polydomain structure described by a spa-
tially inhomogeneous distribution of a one-component
order parameter η(x). The order parameter inside a
domain wall is inhomogeneous and, at a certain point,
goes to zero. Variation of the order parameter inside the
wall should change the crystal strains in such a way that
the temperature variation in a certain layer of a crystal
undergoes no phase transitions. In this case, the relief at
the site of the wall intersection by the surface should be
distorted in conformity with relaxation of elastic
stresses in the vicinity of the surface. It is natural that
the strain and order-parameter distributions in the
vicinity of the surfaces and in the crystal bulk are dif-
ferent. The strain distributions in the bulk can be calcu-
lated under the condition of zero bulk stresses. Then, in
order to obtain the exact solution of the problem, one
has to introduce some additional imaging forces having
the zero average values at the surface. Since the prob-
lem is of a periodic nature, these forces should have a
periodic distribution along the surfaces. As is well
known [6], these forces give rise to additional strains
decreasing in the crystal depth within a characteristic
length of the order of the period of a surface-force dis-
tribution. Therefore, the contribution of the near-sur-
face distortions to the energy of this regular structure is
rather small because of the small ratio of the structure
period to the crystal size. However, the distributions in
the crystal bulk we are interested in are one-dimen-
sional. It should be indicated that the solution of this
elastic problem at the given one-dimensional distribu-
tion of the strain sources and arbitrary anisotropy was
obtained in [7]. We are interested in the solution of a
© 2005 Pleiades Publishing, Inc.
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more complicated problem in which the spatial distri-
butions of strains and order parameter vary self-consis-
tently.

Consider the case of an elastically isotropic medium
and analyze the anisotropic case of an example of a
more complicated domain-wall structure in an incom-
mensurate phase. Represent the energy per volume unit
of the system, f, in the form

(1)

where V is the sample volume, η is the order parameter
varying along x, uik is the strain tensor, µ is the shear
modulus, K is the bulk modulus, and A = AT(T – Tc) <
0; i.e., the phase has a low symmetry.

For a homogeneous system, we have

(2)

where B' = B – 2r2/K.
Following [8], we start calculating the energy of a

polydomain structure with the solution of the elastic
problem. For one-dimensional strain distributions
(along the x axis), the corresponding compatibility con-
ditions have the form

(3)

With due regard for the problem symmetry in the yz
plane, only the following solutions of above equations
are possible: uzz = uyy =  and uyz = 0, where  is a con-
stant.

The equations of the local elastic equilibrium have
the form

(4)

where, in accordance with Eq. (1), elastic stresses have
the form

(5)

Moreover, in the absence of any external stresses, the
σij values averaged over the bulk should be equal to
zero [9]:

(6)

From Eqs. (4)–(6), we have

(7)
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(8)

As a result, the nonzero components of strain are

(9)

Substituting these solutions into Eq. (1), we arrive at
the free-energy density in the form

(10)

where 2L is the sample dimension along the x axis, r ' =
4rµ/(K + 4µ/3), K ' = 12Kµ/(K + 4µ/3), and B'' = B –
2r2/(K + 4µ/3). Then,  may be considered as a certain
parameter which, similar to η(x), may be determined by
minimizing the free energy described by Eq. (10).
Assuming that the distance l between the walls is much
larger than the wall width, rc, we may represent the
solution for a polydomain structure (with the accuracy
of exponentially small corrections) as a sum of the solu-
tions (x + ml) corresponding to isolated walls

(11)

Substituting Eq. (11) into Eq. (10), we obtain

(12)

where n = l/(2L) is the wall concentration. If n ! 1,
then, minimizing Eq. (12) with respect to , we obtain

(13)

where  = K + 4µ/3. The second term in the right-hand
side of Eq. (13) corresponds to the sum of wall self-
energies, whereas the third term corresponds to wall
attraction.

Consider the interaction effect in more detail. It
should be noted that Eq. (6) yields the ratio 〈ull 〉  =
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−r〈η 2〉 /K, which, together with Eq. (9), gives rise to the
equalities uzz = uyy =  = –r〈η 2〉/3K. Then, Eqs. (7), (9),
and (11) yield longitudinal stresses as

(14)

where rc = (DB')1/2/(2|A |B'')1/2 is the correlation radius.
It is seen from Eq. (14) that the walls give rise to longi-
tudinal stresses not only in the regions of their localiza-
tion but also in the whole crystal bulk, which results in
the wall interaction.

INCOMMENSURATE PHASE

In the case of a multicomponent order parameter,
striction corresponds to coupling between strain and
the squared modulus of the order parameter. Moreover,
the striction-mediated interaction strongly depends on
the wall type. Thus, in the case of Bloch walls, the mod-
ulus of the order parameter, ρ, is constant in the region
of wall localization; therefore, there is no wall interac-
tion: the longitudinal stresses have zero values since
ρ2 – 〈ρ2〉 ≡ 0 (see Eq. (14)). For quasi-Bloch walls char-
acteristic of incommensurate (IC) phases of type I (with
the Lifshitz invariant in the free-energy expansion) with
weak anisotropy in the space of order-parameter com-
ponents, the local quantity ρ2 – 〈ρ2〉 has a very low non-
zero value [1]. However, in this case, the wall width is
of the order of a reciprocal wave vector (q0) of the struc-
ture at the point of the transition “normal (N) phase–IC

phase,” whose typical value is of the order of 10–2

(where dat is the interatomic distance). This signifies
that, although the additional dilatation is rather small, it
arises in extended regions because of a considerably
increased wall interaction. It should be emphasized that
the case of weak anisotropy has drawn great interest
because the continuity of the lock-in transition in sys-
tems having no long-range interactions was rigorously
proven [10]. This case is described in detail elsewhere
[4]. Here, we only derive the basic relationships for the
energy of soliton interaction in the vicinity of such a
transition by a somewhat modified method.

In the simplest case, an IC phase is described by a
one-dimensional modulation (along the x axis) of a cer-
tain two-component order parameter (η1 = ρcosϕ and
η2 = ρsinϕ, where ρ is the amplitude and ϕ is the phase
of the order parameter). This order parameter describes
lowering of the symmetry in the transition from the nor-
mal phase to the low-symmetric commensurate

ũ
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C phase. Then, free energy may be represented as

(15)

Here α = αT(T – θ) and m is the anisotropy order
(m ≥ 3).

At the temperature Ti > θ determined by the condi-
tions α0 ≡ αT(Ti – θ) = σ2/4δ, the N phase undergoes a
second-order transition to the IC phase, whose structure
is described by a one-harmonic distribution of the order
parameter (η1 = ρcos(q0x), η2 = ρsin(q0x)) with the
wave vector q0 ≡ σ/(2δ). Because of anisotropy of the
space of order-parameter components, the wave vector
decreases with lowering of temperature, and the struc-
ture of the IC phase is transformed from a harmonic one
into a domain-like one. Therefore, a lock-in (IC–C)
transition undergone at a certain temperature may be
considered as a transition leading to disappearance of
domain walls.

As earlier, solving the elastic problem, we ignore
near-surface distortions formed in a finite sample and
consider, first, an elastically isotropic medium by set-
ting that λijkl = [K – (2/3)µ]δijδkl + µ(δikδjl + δilδjk) and
rij = rδij. In this case, Eqs. (3)–(9) remain valid if we
make the change η  ρ. Then, using the notation
uzz = u1, we obtain instead of Eq. (10) the following
equation:

(16)

where α(u1) = α + r 'u1, r ' and K ' have the same values

as in Eq. (10), β'' = β – r2/(2 ), and  = K + 4µ/3.

At a fixed value u, the distributions of the order
parameter and free energy of the IC phase in the vicin-
ity of the IC–C transition may be represented as the
expansions in the anisotropy parameter εm =
−(mπ2/24)[α0 /αc], where αc = –2β''[σ2/(25γδ)]2/(m – 2)

[10]. In a lower approximation (approximation of a
constant amplitude), the energy of the IC phase, being
a function of the soliton density (n), has the form [1]

(17)

The coefficients in Eq. (17) are expressed in terms of
the squared amplitude of the order parameter, ρ2(u1) =
–α(u1)/(2β''), and the wave number, q0 = σ/(2δ), of the
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IC structure at the point of the N–IC transition as fol-
lows:

(18)

(19)

(20)

In this case, it follows from equations analogous to
Eqs. (6)–(9) that uzz = uyy = u1 = –rρ2(u1)/(3K). Substi-
tuting this relationship into Eq. (16), we see that, in the
approximation of a constant amplitude, strains result
only in the renormalization of the coefficient before ρ4;
i.e., β  β' = β – r2/(2K), and, therefore, u1 =
rα/(6Kβ') = uc/3 and ρ2(uc) = –α/(2β'). Thus, in this
approximation, solitons do not interact. In the next
approximation with respect to the anisotropy parame-
ter, two corrections appear: a spatially inhomogeneous

correction to ρ2(uc) denoted as (x) [1] and the corre-
sponding correction to energy (17). Now, the equations
of elastic equilibrium yield

(21)

where the additional strain ε1 = –r〈 (x)〉/(3K) caused
by appearance of solitons is proportional to the soliton
density n. In the vicinity of the IC–C transition, n ! 1;
therefore, ε1 ! uc. Then, we may expand Eq. (17) and
minimize the result with respect to ε1. As a result, we
have ε = –nr'Eβ''/K'β ' and the free energy of solitons
has the form

(22)

where a1 = E1[α(uc) – αc]; a3 = (r ')2 β'/(2K 'β'); E1 =
(2 − m)πσ/(4mβ''); N = mπq0 /4; and a2 =
−4πσαc /(mβ'') is the energy of an isolated soliton,
which goes to zero at the temperature determined by the
condition α(uc) = αc. The term –a3n2 describes the soli-
ton attraction and gives rise to a jump in the soliton den-
sity at the point of the IC–C transition.

Note that the main term of the soliton-energy expan-
sion in an anisotropy parameter α –  for the case m =
4 was calculated in [10]. In our notation, it has the form

(23)
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The  value was calculated with a higher accuracy
than αc. Introducing the dependence of α on u into
Eq. (23), we may, as earlier, calculate the value of soli-
ton attraction. It turns out that the same (within the
change αc  ) result may also be obtained by min-
imizing Eq. (22) with respect to soliton density with a
subsequent singling out of the main term of expansion
in α – αc in the expression thus obtained.

Now, we show that the expression for free energy in
the vicinity of the IC–C transition for anisotropic sys-
tems has the same form as Eq. (22) and that the coeffi-
cients in this expression may be obtained by the corre-
sponding renormalization. We vary the initial expres-
sions for free energy, Eqs. (15) and (16), with respect to
the elastic degrees of freedom, and then compare the
functionals thus obtained. Equation (15) should be var-
ied separately for homogeneous strains (〈uij 〉) and inho-
mogeneous elastic displacements (ui), which represent
the independent degrees of freedom. It is convenient to
pass to the following Fourier representation

(24)

where, in virtue of one-dimensionality of the problem
under consideration, k = (kx , 0, 0). For simplicity, we
limit our consideration to often-encountered systems
described by the symmetry class D2h. Then, minimizing
Eq. (15) with respect to the elastic degrees of freedom
in the k space, we obtain from the last two terms

(25)

where  is the Fourier component of the function f =

ρ2 and  is the tensor reciprocal to the tensor λijkl.
Returning to the real space in Eq. (25), we obtain

(26)

where 〈…〉 indicates averaging over the bulk. Here, the
last term is understood as the renormalization of the
term β〈ρ4〉  in Eq. (15).

In turn, minimization of the elastic contribution in
the isotropic case yields

(27)

Comparing Eqs. (26) and (27), we see that the free-
energy functionals which are determined by the distri-
bution of the order parameter alone have the same form
in both cases and differ only by their coefficients. It fol-
lows that, minimizing these functionals with respect to
the order-parameter distribution, one arrives at the
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same results for free energy within the accuracy of the
following replacements:

(28)

When considering the IC–C transition in the sys-
tems characterized by weak anisotropy, one has also to
take into account some other interactions [4]. For dis-
placive phase transitions, the most important of which
is described by the dependence of the Lifshitz invariant
on strain. The estimates made in [4] show that if anisot-
ropy is not too weak (10–2 < εm < 1) the striction contri-
bution prevails in attraction. However, in ferroelectric
systems of the order–disorder type, one more mecha-
nism may play an important role: attraction due to ther-
mal domain-wall bending.

As a result of attraction, an IC–C transformation
should be a first-order transition. Expression (22) with
the renormalized coefficients allows one to determine
the basic transition characteristics: the transition tem-
perature, the temperature of maximum supercooling,
the soliton density at the transition point, the latent heat
of transition, and the anomaly in heat capacity. It should
be indicated that the anomalous part of heat capacity
varies according to the Curie–Weiss law and diverges at
the point of maximum supercooling.

In the cases of pronounced anisotropy or an IC
phase of type II (the Lifshitz invariant is forbidden by
the symmetry of the normal phase), the striction-medi-
ated interaction of solitons may be evaluated using the
first term on the right-hand side of Eq. (26). This inter-

action equals n2(r2/ )(∆η2rc)2, where ∆η2 is the
squared change in the amplitude of the order parameter
in a wall of width rc.

MIXED STATE IN A SUPERCONDUCTOR

The effect of striction-mediated attraction on the
properties of vortices in second-order superconductors
was first considered in connection with vortex pinning
at defects. Much later, it was considered in connection
with its influence on the orientation of vortex structures
relative to the crystal lattice (see references in [3, 5]).

As in the studies of the thermodynamics of a vortex
lattice, in general, when analyzing the above effects,
one usually singles out two regions where the external
magnetic field is either close or not too close to the
upper critical field Hc2. To describe the two-dimen-
sional spatial distributions of a complex order parame-
ter Ψ = ρexp(iφ) in these regions, two qualitatively dif-
ferent approximations are used [11]. In the vicinity of
Hc2, the basic periods of the vortex lattice are close to
the correlation radius ξ and the distribution of the
order-parameter modulus in the regions between vorti-
ces is inhomogeneous. In the fields not too close to Hc2,
the distances between vortices considerably exceed ξ.
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In the conventionally used London approximation, it is
assumed that the order-parameter modulus varies only
in the cores of vortices with radii r ~ ξ. Since, in fact,
the variation of the squared modulus of the order
parameter caused by vortex appearance describes the
distribution of the striction-mediated strain sources, it
was assumed that, in the applicability range of the Lon-
don approximation, the role of these strain sources is
played by vortex cores. Following [5], consider the
effects of a long-range elastic action in an approxima-
tion more accurate that the London approximation in
the fields H ! Hc2. In other words, we take into account
the change in the order-parameter modulus not only in
the vortex core but also in the surrounding noncore
region limited by the penetration depth λ much larger
than ξ in superconductors with a pronounced Gin-
zburg–Landau parameter (κ = λ/ξ).

We proceed from the Ginzburg–Landau free-energy
expansion with allowance for its dependence on elastic
strains:

(29)

where Ψ is the order parameter corresponding to the
transition to the superconducting state, A is the vector
potential, and H is the magnetic field.

The equilibrium equations have the form

(30)

(31)

(32)

(33)

where, as earlier, 〈…〉  indicates averaging over the bulk.
Relationship (33) describes the result of free-energy

variation over homogeneous strains and may be
regarded as the necessary condition for absence of any
homogeneous external stresses. As in the case of a reg-
ular soliton structure in an incommensurate phase con-
sidered above, we ignore the near-surface vortex-lattice
distortions propagating into the crystal bulk for dis-
tances comparable with the period of this lattice.

From Eqs. (30) and (33), we obtain the spontaneous
values in the homogeneous superconducting state:

(34)
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where b* = b – rijrkl .

To calculate the vortex interactions induced by elas-
tic strains in an isotropic medium, consider the limit of
an infinite shear modulus. In this limit, only homoge-
neous dilatation u exists, which considerably simplifies
the solution of the elastic problem. Varying Eq. (29)
with respect to the elastic degrees of freedom (homoge-
neous strains and two-dimensional inhomogeneous dis-
placements) of an elastically isotropic medium with a
finite and infinite shear moduli, one can show that all
the data for the finite µ may be obtained from the cor-
responding relationships for the limiting case µ = ∞
after the following renormalization: b  b – r2/

and r2/K  (r2/K)[4µ/(3 )].

In the case µ = ∞, the two last terms of the free-
energy expansion (29) have the form r 2|Ψ|2u + Ku2/2.
Strain u may be regarded as a variation parameter.
Since this parameter modifies the coefficient before
|Ψ|2, we may introduce the notation a(u) = a + rus + rε,
where, in accordance with Eq. (35), us = ra/b*, b* =
(b – r2/K), and ε is the vortex-induced strain. Then,
using the results obtained in [11, 12], we may represent
the free-energy density of the vortex lattice as a func-
tion of magnetic induction B (B = nΦ0, where Φ0 is the
flux quantum and n is the vortex density) in the form

(36)

where Hc1 is the lower critical field. For a triangular lat-
tice (considered for the sake of definiteness), we have
βA = 〈Ψ4〉V/〈Ψ2〉V = 1.16 and 2lnν = 2(γ – 1) +
ln[31/2/(8π)], where γ = 0.577… (Euler constant) [12].
The magnetic induction is B = 2Φ0/(31/2d2), where d is
the distance between the vortices. It should be indicated
that, in the first of relationships (36), we ignored the
contribution due to vortex interactions at short dis-
tances.

In our case, Hc1 in relationships (36) depends on u:

(37)

Moreover, d/ξ also depends on u; i.e., (d/ξ)2 =
d24m|Ψs |2b"–2(1 + rε/a). Minimizing expression (36)
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with respect to ε, we obtain

(38)

Here ∆K/K is a relative jump of the bulk modulus in the
transition from the normal to a superconducting phase
(usually ∆K/K ! 1). The terms proportional to B2 in
Eqs. (38) correspond to the contributions of the noncore
regions to the elastic vortex attraction.

When calculating the contributions due to vortex
cores, the latter are usually considered as normal-phase
cylinders with radii ξ [2, 3]. However, the correspond-
ing contribution and the ratio of this contribution to the
noncore contribution may be determined more exactly.
With this aim one has to determine the strength of a
dilatation source created by an isolated vortex. This
strength is determined by the change in the volume due
to vortex formation. The latter quantity is equal to the
pressure derivative of the vortex energy
(Φ0/4πλ)2(lnκ + 0.08) [11], where Φ0 is a flux quan-
tum; λ depends on pressure; and the terms containing
lnκ correspond to the noncore region, whereas the
remaining terms correspond to the core region. Then, in
the vicinity of Hc1, the ratio of the core to the noncore
contributions to the vortex interactions equals
(0.08/lnκ)2. If Hc1 ! H ! Hc2 (the distance between
vortices becomes less than the penetration depth (1 !
d/ξ ! κ)), the contribution of noncore regions
decreases because of their overlap (see Eq. (38)),
although it remains to be much larger than the core con-
tribution.

Consider the vortex interactions in a finite medium
with elastic anisotropy. As usual [11], we first simplify
the free-energy expression. Integrating the terms with
∇Ψ  in Eq. (29) by parts with the boundary condition

n –i"∇  –  = 0 (where n is the normal to the

surface Σ) and using Eq. (30), we obtain

(39)

Equation (39) is the extension of the well-known Abri-
kosov equation for free energy [11] to a deformable
medium.

At H ! Hc2, it is convenient to single out the vortex

contribution by writing |Ψ|2 = |Ψs |2 – h and uij =  +

, where the quantities |Ψs |2 and  are determined
by Eqs. (34) and (35), respectively. For vortices parallel
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to the z axis, Eqs. (32) and (33) for uij yield

(40)

where Sk(q) = rijqj , Gki(q) = λijklqjql, and q = (qx , qy , 0)
is a two-dimensional wave vector.

Taking into account the smallness of the coefficients
rij in the calculations of h, one may limit oneself to the
first approximation with respect to rij. Then, h ≅ h0 + h1,
where h0 is the solution of Eq. (30) at rij = 0, and h1 =

/b is the first correction to this solution, which, in
the approximation under consideration, arises only in
the noncore regions. Equation (40) also yields

(q) = b'(q)h(q) ≅ b'(q)h0(q), where

(41)

The function b'(q) at q ≠ 0 depends only on the orienta-
tion of the vector q. As a result, one the following
obtains [5] for the free energy described by Eq. (29):

(42)

where fs = –b* |Ψs |4/2 and ζ = 1 + b'(0)/b. The latter term
corresponds to the contribution of elastic strains to the
energy of the vortex lattice, and the term containing q =
0 corresponds to the contribution of homogeneous
strains. Since the elastic constants enter this term in the
invariant combination (see Eq. (41) for b'(0)), this term
is independent of the vortex orientation with respect to
the crystal lattice. Such a dependence may arise only
due to the terms with q ≠ 0 .

In the vicinity of Hc1, the expression for the energy
of vortex interactions may be simplified if one takes
into account that these vortices form a regular lattice.
With this aim, we represent h0(c) as a sum over the

coordinates of the vortex centers, h0(c) = (c –

ci). Then, h0(q) = S–1 (c – ci)e–iqρ =

S−1 (q)  (where S is the area of the sample

section in the x, y plane). Substituting this expression
into Eq. (42), we may single out the interaction energy
by subtracting the terms containing the factors

 at i = j. Then, taking into account that
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sity and Q are the reciprocal-lattice vectors), we obtain
h0(q) = nh01(q)δq, Q. The direct calculation shows that,
with an increase in q, the noncore contribution to h01(q)
dramatically decreases only if q ~ ξ–1. Therefore h01(Q)
may be approximated by its value at small wave vec-
tors. As a result, we obtain for the energy of vortex
interaction

(43)

where 〈b'(Q)〉ϕ = (2π)–1  is the Q value

averaged over the orientations (it should be remem-
bered that b'(Q) is independent of the modulus of the
vector Q). We also used here the relationship

S−1 (q) ≈ (q)dq = 〈b'(q)〉ϕdq ≅

n . An important conclusion following
from the expressions (43) is that the vortex energy (bulk
part) is independent of the sample shape. This follows
from the fact that the spectrum of the wave vectors in
Eq. (43) has no terms with small wave vectors of the
order of the reciprocal of the sample size. The opposite
conclusion about the dependence of the interaction on
a sample shape drawn in [3] was based on the analysis
of only a part of the elastic interactions, i.e., of the sum
of pair interactions, each of which was calculated for an
infinite medium.

The first term in parentheses in Eq. (43) corresponds
to the interactions associated with the finite sample
dimensions, i.e., with the action of imaging forces,
whereas the second term has a nonzero value only in the
presence of elastic anisotropy. In the isotropic case
b'(0) = r2/K and b'(Q ≠ 0) = r2/(K + 4µ/3). Since in the
limit µ = ∞ Eq. (43) should coincide with the first of
Eqs. (38), we have

(44)

where it was taken into account that nHcξ2 = B/(23/2πκ)
and Hc = 21/2κHc1/ lnκ. Equations (43) and (44) allow
one to calculate the energy of the vortex interactions in
a crystal of finite dimensions. However, since the func-
tion b'(Q) depends on vector orientations in a rather
complicated way, the final result may be obtained only
numerically and only for crystals of certain symme-
tries. Evaluating each of two terms in parentheses on
the right-hand side of Eq. (43) as b∆K/K and taking into
account Eq. (44), we obtain the vortex interaction in the
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vicinity of Hc1 as f int ≈ –10–2((lnκ)/κ)2(∆K/K)B2, i.e.,
the value exceeding the core contribution by a factor of
~102ln2(κ).

If Hc1 ! H ! Hc2, the computations are more com-
plicated because one also has to take into account the
dependence of h01 on q in Eq. (42) with h0(q) =

S−1 (q) . A similar calculation shows that in

this case h01(0) = 21/2π|Ψs |2ξ2lnκ. However, now Q >
1/λ and h01(Q) ≈ h01(0)ln(ξ–1Q–1). By using the same
method, it is possible to obtain from Eq. (42), the rela-
tionship for calculating the energy of the vortex interac-
tion for fields Hc1 ! H ! Hc2 having a more general
form than Eq. (43). At the same time, the result
obtained for the isotropic case allows us to conclude
that, in this field as well, the main contribution to the
strain-induced vortex interaction in superconductors
with high κ values comes from the change of the order
parameter in noncore regions.

Thus, the results obtained show that in fields H !
Hc2 the main contribution to the strain-induced vortex
interaction in superconductors with high κ values
comes from the change in the order parameter in non-
core regions. The noncore contribution may exceed the
core contribution by one or even two orders of magni-
tude. This conclusion is very important for studying the
orientations of the vortex structures in crystals. For
example, in the cases where the previous estimates
showed that the difference between the elastic energies
at various orientations of the vortex lattice is less than
the differences of the corresponding London energies,
the refinement of the elastic-interaction value may
change the conclusion about the prevalence of one or
another orientation.

Concluding the article, we would like to indicate
that the method considered above, which is based on
analysis of the case of an isotropic medium with an infi-
nite shear modulus, considerably simplifies the calcula-
tion of the contribution of long-range elastic interaction
to the energy of any one-dimensionally periodic struc-
ture in a finite medium with arbitrary anisotropy. More-
over, this method is also effective in the calculations of

h01i∑ e
iqri–
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the striction contributions to the energy of two- and
three-dimensional regular structures in an isotropic
medium, e.g., for branching domains or systems of
quantum dots. This statement is based on the facts that,
as in the one-dimensional case, one may ignore here the
near-surface distortions of such structures and that the
elastic contribution to the free energy in an isotropic
medium is independent of the orientation of the wave
vectors of the structure with respect to the crystal lat-
tice.
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Abstract—Specific features of the low-frequency response of a phason and an amplitudon in the region of
small wave vectors are considered in incommensurate displacive-type phases at high and low temperatures. The
corresponding anomalies of spin-lattice relaxation (SLR) rate and attenuation of the longitudinal sound in the
vicinity of the normal phase transformation into an incommensurate phase are analyzed. It is shown that the
divergence of the amplitudon response at small wave vectors and low frequencies induced by the interaction
with phasons clearly manifests itself only at low temperatures T and that the pronounced amplitudon contribu-
tion proportional to T3 to the SLR rate is associated with this divergence. The phason-response divergence at
low temperatures leads to the frequency-independent contribution proportional to T to the SLR rate. © 2005
Pleiades Publishing, Inc.
INTRODUCTION

As is well known (see, e.g., [1, 2]), the characteristic
properties of incommensurate (IC) phases are deter-
mined by fluctuations corresponding to the phason
branch of vibrations. The phason branch appears in the
excitation spectrum of the IC phase of a crystal because
of degeneracy typical of incommensurate phases: the
system energy is independent of the phase of a certain
order parameter. As a result, the phason spectrum has
no gap and the corresponding fluctuations diverge at
small wave vectors and low frequencies. However, this
does not signify that the phase fluctuations are critical
over the whole region of the IC phase existence because
their interactions remain finite. This allows one to
develop for IC phases a perturbation theory with
respect to anharmonic interactions which would allow
one to calculate any physical quantity. In this case, the
influence of the diverging phase fluctuations may be
studied within lower orders of the perturbation theory.
Thus, the divergence of the amplitude fluctuations
related to phase fluctuations arises only in the second
order of the interaction between these fluctuations.

Below, we consider the typical features of low-fre-
quency dynamics of the order parameter and its mani-
festation in the anomalies of spin-lattice relaxation and
attenuation of the longitudinal sound in the vicinity of
the transition of the normal N phase to the IC phase in
displacive-type systems. Such anomalies in structural
incommensurate phases were repeatedly studied exper-
imentally [1–3]. However, in most of the cases, the
experimental data obtained were interpreted under
1063-7745/05/5002- $26.00 0270
some simplifying assumptions. Therefore, it seems use-
ful to consider the basic results obtained in this field
within a consistent perturbation theory [4–7].

LOW-FREQUENCY PHONON DYNAMICS

The anomalies observed in the kinetic properties of
crystals in the vicinity of phase transitions are deter-
mined by spectral densities of fluctuations of the order
parameter, which, in turn, may be calculated from the
corresponding dynamic susceptibilities. Therefore, the
most important problem reduces to calculation of these
susceptibilities from the motion equations of the order
parameter.

First, we should like to remind the reader about the
main experimental data on the dynamics of a one-com-
ponent order parameter η in displacive-type systems in
the vicinity of the points of second-order phase transi-
tions [8]. In this case, the motion equation is of the
oscillatory type,

(1)

where fη = Aη2/2 + Bη4/4 with A = AT(T – Tc) and AT ~
d–5, B ~ Tatd–7, and D ~ Tatd–3 (where Tc is the transition
temperature, Tat ~ 104–105 is the atomic temperature,
and d is of the order of an interatomic distance). In a
symmetric phase (ηe = 0), the viscosity coefficient γ (or
the analogous quantity Γ ≡ γ/m) depends on the ratio of
the soft-mode dispersion ((D/m)1/2) and the velocity of

m η̇̇ γ η̇
∂2

f η

∂η2
-----------

 
 
 

ηe

η η e–( ) ∆Dη–+ + 0,=
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sound (v ). If dispersion is weak ((D/m)1/2 < v ), the soft-
mode attenuation is determined by the interaction of the
soft and acoustic modes and the corresponding contri-
bution is estimated as

(2)

where ΩD is the Debye frequency. The quantity Γa only
slightly depends on both temperature and frequency.
For a soft mode with pronounced dispersion ((D/m)1/2 >
v ), the temperature dependences of Γ at high and low
frequencies are substantially different. The major con-
tribution in the high-frequency region comes from the
interaction with acoustic modes, so estimate (1)
remains valid. At the same time, attenuation at low fre-
quencies depends only on soft-mode intrinsic anharmo-
nicity (η4) and has a pronounced temperature anomaly

(3)

where ξ ~ (Tc/Tat)1/2(Tc/ |T – Tc |)1/2 < 1 is the parameter
of the perturbation theory.

In a low-symmetric phase, third-order anharmonic-
ity appears, which results in an additional contribution
(δΓc) to low-frequency attenuation. The quantity δΓc

has a pronounced spatial dispersion at the wave vectors
(q) of the order of γ/(mD)1/2, whose magnitudes are

much less than the reciprocal correlation radius, (  =
(2|A|/D)1/2). In the limit q  0, this contribution
exceeds Γa in the whole applicability range of the Lan-
dau theory and is equal to

  (4)

where ω0 = (2|A |/m)1/2 is the soft-mode frequency. At

the same time, this attenuation at q ≈  may be esti-
mated as

(5)

which is much less than δΓ(0) and is of the same order
of magnitude as Γa [5].

In degenerate phases, third-order anharmonicity
also plays a more important role. Thus, one of the major
manifestations of this anharmonicity, e.g., in Heisen-
berg magnetics, is the divergence of the longitudinal
fluctuations of the magnetic moment at q  0 [9].
Similar divergence in structural IC systems was dis-
cussed in [10]. The dynamic susceptibilities for Heisen-
berg magnetics were calculated elsewhere [11]. How-
ever, the kinetics of the order parameter in degenerate
structural systems has a number of distinctive features
associated mainly with pronounced phason attenuation
at q  0. The corresponding characteristics of
dynamic susceptibilities were studied in [4].

The main characteristic features of the kinetics of
the order parameter in incommensurate phases may be

Γa ΩD T /Tat( ),≈

Γ c ΩD
T
Tat
------ 

  2 Tat

T Tc–
--------------- 

 
1/2

ξΓ a,∼≈

rc
1–

δΓ(q 0) ΩD Tc T–( )1/2
/ Tat( )1/2 ω0,≈ ≈
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1–
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illustrated by the simplest example of an IC phase with
a one-dimensional harmonic distribution of a certain
order parameter,

(6)

It is convenient to introduce an order parameter with the
components η1 and η2. Then, the expansion of the free-
energy density has the form

(7)

where A = AT(T – Ti), Ti is the temperature of the N–IC
transition, and all the coefficients are of the same order
of magnitude as in Eq. (1). Naturally, if one passes to
the polar coordinates η1 = ρcosϕ and η2 = ρsinϕ in
Eq. (7), one arrives at the expression independent of the
phase ϕ. The absence of invariants anisotropic in the η1,
η2 space of reflects that the phase formed is incommen-
surate; i.e., its period is incommensurate with respect to
the lattice periods. Expression (7) may also be consid-
ered as an expansion in the components of the order
parameter which describes lowering of the symmetry in
the N–IC transition. These components are linear com-
binations of the normal system coordinates whose fre-
quency goes to zero at the point of the N–IC transition
at the wave vectors (±k0, 0, 0). In this case, the use of
expansion (7) signifies not only neglect of higher har-
monics of the space distribution of the order parameter
in the IC phase but also neglect of a slight change in the
modulation period with the temperature variation.
However, in the vicinity of the N–IC transition, such
simplifications are quite justified.

It is possible to assume that, in the IC phase, ηe1 ≠ 0
and ηe2 = 0, where ηe1 has to be calculated in each order
of the thermodynamic perturbation theory. However,
we limit our consideration to the zeroth approximation
by setting ηe1 = (–A/B)1/2, which does not considerably
influence the results thus obtained which are consid-
ered below. Then, in the harmonic approximation, the
quantity (r, t) = η1(r, t) – ηe1 (hereafter, we omit the
prime in the fluctuation notation) corresponds to an
amplitudon and η2(r, t) corresponds to phason fluctua-
tions. It should be emphasized that, e.g., in the case of
a two-component Heisenberg magnetic, the free-
energy expansion may also be represented in form (7)
if η1 and η2 are understood as longitudinal and trans-
verse components of the magnetic moment, respec-
tively. Similar to this case, the use of polar coordinates
as components of the order parameter would compli-
cate analysis of nonlinear effects associated with the
phase (ϕ) fluctuations of the order parameter.

In accordance with expression (7), the equations of
motion for η1(r, t) and η2(r, t) have the form

(8)
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(9)

where the coefficient γ is determined by the interaction
of the order parameter with the hard and acoustic
modes and, at high frequencies, may be estimated from
Eq. (2). Passing to the Fourier representation, we may
write Eqs. (8) and (9) in the form

(10)

(11)

where q and k are the wave vectors, Ω and ω are the fre-
quencies, and the fourth-order anharmonicities are
ignored. The most obvious manifestation of such
anharmonicities in terms of the problems considered
here is an additional contribution to attenuation esti-
mated in the same way as in the case of a one-compo-
nent order parameter.

The inverse response functions of a phason and an
amplitudon in the zero approximation are determined
by relationships

(12)

(13)

Consider the fluctuation correction to the reciprocal
phason susceptibility, (Σ2(q, Ω)). Using Eq. (11), we
obtain, in the second order of the perturbation theory,

(14)

where 〈…〉  indicates averaging over fluctuations and
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It follows from Eq. (14) that estimate (5) may be
used to renormalize attenuation (Ω–1m–1ImΣ2(q = 0,
Ω) ≡ δΓ2). In this case, δΓ2 has no considerable disper-
sion in the region of small wave vectors. When calcu-
lating the amplitudon response function, the interaction

B1η1eη1  gives rise to contributions diverging at
q  0. Similar divergences also arise in the next
orders of the perturbation theory. However, this prob-
lem may be avoided if one formulates the perturbation
theory in the direct response functions (and not recipro-
cal ones, as was done in derivation of Eq. (14)). Then,
the motion equations (10) and (11) yield the amplitu-
don susceptibility in the form

(16)

where Σ1(q, Ω) is determined by the following equality:

(17)

with (k) = (2B1  + Dk2)/m and (k) =
(Dk2)/m. Now, divergence of the second term on the
right-hand side of Eq. (17) is real. It reflects the diver-
gence of the longitudinal susceptibility at q  0 and
Ω  0, because the remaining terms of the perturba-
tion series do not diverge within the applicability range
of the Landau theory. This statement is a classical ver-
sion of the well-known statement made in [11] for a
Heisenberg magnetic. In terms of the perturbation the-
ory, the absence of divergence in higher orders of the
perturbation theory signifies their mutual compensa-
tion, which is characteristic of degenerate phases.

Denoting the second term in Eq. (17) by
−4(B1η1e)2Π2(q, Ω) and taking into account renormal-
ization of phason damping described above, we have
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where c = . To single out the main divergence in
Eq. (18), we may assume that m = 0. Then, according to
[4], we have

(19)

At m ≠ 0 , the additional divergence of the imaginary
part ImΠ2(q, Ω) = −Ω (q, Ω) is the most important.
We find from Eq. (18) that

(20)

at q ! Γ2/c and that 

(21)

in the opposite case where q @ Γ2/c. We see that at low
frequencies (Ω ! Γ2) it is possible to ignore the quan-

tity δ (q, Ω) in comparison with the imaginary part
of Eq. (19) if q ! Γ2/c, whereas if q @ Γ2/c, this quan-
tity makes the main contribution. In this case, relation-
ships (16), (17), and (21) show that estimate (5)
remains valid for the damping constant of an amplitu-

don at q ≈ . Thus, the specific softness of the phase
fluctuation influences the low-frequency amplitudon
susceptibility only at q < 0, whereas in the main region
of the q space, this influence results in the same change
of attenuation as in the case of a one-component order
parameter.

Now, consider the specific features of the dynamics
of an order parameter in IC phases at low temperatures.
Low-temperature phonon losses were analyzed in a
number of works (see [12]). As earlier, we consider
here the low-frequency attenuation coefficients (Ω 
0), i.e., the loss fraction proportional to Ω . These losses
are caused by the association processes in which a
phonon under consideration is scattered by a thermal
phonon (with the energy of the order of T) and, thus,
gives rise to two new phonons (in the general case, the
contributions of processes accompanied by appearance
of only one phonon are proportional to higher powers
of Ω and, therefore, may be neglected). No doubt, only
low-energetic acoustic phonons and phonons of the
phason branch may play the role of thermal phonons at
low temperatures. By virtue of the laws of energy con-
servation, only phonons of the same branches with the
energies either of the order of T or lower than T may be
created. Therefore, only phason–phason and phason–
acoustic phonon interactions are important. Because of
a large value of phason attenuation in this case, the
interaction inside the phason branch should be more
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important than the interaction between a phason and
acoustic vibrations.

Phason attenuation at low temperatures was calcu-
lated in [5, 13]. It was shown that one has to take into

account in an effective Hamiltonian not only the B1 /4
interaction but also the interaction between a phason

and an amplitudon B1ηe1η1 . Each of the correspond-
ing anharmonicities gives rise to certain contributions
to reciprocal susceptibility which diverges at small
wave vectors and frequencies; however, these diver-
gences are mutually compensated in each order of the
perturbation theory. The result of this compensation
may be described with the aid of a specially introduced
effective four-phonon interaction in the phason branch.
The value of this interaction is squared with respect to
the wave vectors (ki) and frequencies (ωi) at ki  0
and ωi  0. The phason damping constant at low
temperatures is represented as

(22)

where kT ≈ d–1(T/TD) and ωT ≈ ΩD(T/TD) are the wave
vector and the frequency of a thermal phonon, respec-
tively. It was also assumed that Tc ≈ TD. Equation (22)
shows that at low temperatures and frequencies the con-
stant of phason damping considerably exceeds that of
“ordinary” optical phonons, e.g., damping of polar
modes in a centrosymmetric crystal determining dielec-
tric losses. In the latter case, damping of the optical
modes is caused by their interactions with Piujkulm∇ upq-
type acoustic modes. These interactions are propor-
tional to k4 and result in damping in the second-order of
the perturbation theory, ~T9 [12]. The exception is a
hexagonal crystal with random degeneracy in the acoustic
waves along certain directions in which Piujk∇ ulm-type
interactions result in damping proportional to T5. It was
indicated above that the effective interaction in the pha-
son branch is proportional to k2 (ω2) and that the main
contribution at low temperatures comes from the asso-
ciation processes with the participation of thermal
phonons. Then, phason attenuation is described as

T9/( )2 ~ T5, which corresponds to the result
described by Eq. (22). It should also be indicated that

the -type interaction is unimportant for estimating
Γ2(q ≈ 0, Ω ≈ 0) at the conventional difference between
the sound and phason velocities.
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The amplitudon response function at low tempera-
tures has the form [5]

(23)

where the first term corresponds to the zeroth approxi-
mation in intrinsic anharmonicity of the order parame-
ter and the second term corresponds to the interaction
between an amplitudon and phason. For simplicity, we
first assume that Γ1 = 0 in Eq. (23). If Ω  0, the func-
tion Φ(q, Ω) diverges at small wave vectors. This diver-
gence is weaker that the divergence of χ1(q, Ω) at high
temperatures [5]. If T  0, ReΦ(q, Ω  0) diverges
as lnq. For the imaginary part Φ(q, Ω) we have

  (24)

Now, consider the corrections due to finiteness of
Γ1. It is more difficult to calculate Γ1 than the phason
attenuation, because, generally speaking, the amplitu-
don vibrations are accompanied by a change of temper-
ature. This is explained by the fact that an amplitudon
is a fully symmetric vibration, which makes our prob-
lem somewhat similar to the determination of the atten-
uation of longitudinal sound. However, planning the
further calculation of spin-lattice relaxation rate at the
Larmor-frequency Ω0 ≥ 108 s–1 at temperatures of the
order of several Kelvins (see below), one has to take
into account that such frequencies turn out to exceed
the reciprocal lifetime of thermal phonons responsible
for the phason and acoustic branches. Indeed, the life-
time of thermal acoustic phonons is estimated as [12]

(25)

where ρ is the density. For the reciprocal lifetime of

thermal phasons, , which, along with the acoustic
thermal phonons, determines the value of Γ1, the esti-

mate (22) remains valid; i.e.,  ≈ Γ2(q ≈ 0, Ω ≈ 0). At

T ≅ 1 K, the estimates  and  yield 102–103 s–1,

and at T ≅ 10 ä, we have 107–108 s–1. Thus, Ω0 > ,

. At such frequencies, the temperature concept
becomes inadequate because the thermalization time of
thermal phonons becomes less than the period of the
low-frequency vibrations considered here. Therefore,
both sound and amplitudon attenuation are determined
by the Landau–Rumer multiphonon mechanism.
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In the calculations by Eq. (23), we took into account
the direct interaction between an amplitudon and pha-
son. Now, when calculating Γ1, we have to take into
account only some additional interactions resulting in
scattering of phonons of the amplitudon branch. The
most effective processes here are the four-quantum pro-

cesses corresponding to the ηe1η1 - and ηe1η1 uii-

type interactions (in the symmetric phase, (  + )

and (  + )2uii interactions). The ηe1η1 -type inter-
actions squared with respect to strains give the contri-
bution small with respect to the parameter ("Ω0/T)n

(n ≥ 1) because of the constraints imposed by the laws
of conservation [12]. The calculations made in [5]
showed that Γ1(Ω0) is proportional to T7, which may
readily be seen from the comparison of this attenuation

with phason attenuation. Thus, the interaction ηe1η1

is proportional to k3, whereas the damping constant Γ1
is squared with respect to this interaction; hence, Γ1 ~

 ~ T7. The contribution to Γ1 caused by the inter-
action containing the squared amplitude of the order

parameter ηe1η1((ηe1 + η1)2 + )uii has the same tem-
perature dependence but with a larger multiplier. Nev-
ertheless, the quantity Γ1 has such a low value that the
corresponding corrections to χ1(q, Ω) may be ignored.

SPIN-LATTICE RELAXATION

To reveal the specific features of the anomalies of
the spin-lattice relaxation rate in IC phases, we con-
sider the simplest case, where a perturbed part of the
Hamiltonian may be represented as a product of the
operator A acting on spin variables and the function
F(t) is dependent on the lattice variables. The SLR rate
is expressed as

(26)

where Ω0 is the Larmor frequency,

(27)

Now, we single out from F its dependence on the order
parameter

(28)

and consider only direct processes since the contribu-
tions from all the other processes (in particular, Raman
processes) to the SLR rate in the vicinity of the points
of structural phase transitions in the displacive-type
systems are usually less significant [4, 5]. Then, we
may limit ourselves in the expression for J(Ω0) to the

uii
3 η2

2

η1
2 η2

2
uii

3

η1
2 η2

2
uii

2

uii
3

kT
2 Γ2

η2
2

T1
1–

gJ Ω0( ),=

J ω( ) F t( )F t τ+( )〈 〉 e
iωt τ .d

∞–

+∞

∫=

F F0 a1η1 a2η1
2

b1η2 b2η2
2 …+ + + + +=
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 2      2005



LOW-FREQUENCY PHONON DYNAMICS 275
terms squared with respect to the order parameter,

(29)

The dynamic correlation functions in Eq. (29) may be
calculated on the basis of the fluctuation–dissipation
theorem for the dynamic susceptibilities (response
functions χi(q, Ω0)) defined above.

Equations (13), (14), and (29) yield the following
phason contribution (J1ph) to the SLR rate:

(30)

which coincides with the well-known result obtained in
[14] with the only difference that the coefficient γ2 is
estimated by Eq. (5).

Now consider the contribution of amplitude fluctua-
tions to the SLR rate. Excluding the effect caused by
susceptibility divergence at small q, which will be con-
sidered later, we may calculate this contribution by
redefining the response function (12) in the zeroth
approximation. With this aim, we used instead of γ the
damping constant Γ1/m, which, in accordance with the
first terms on the right-hand side of Eq. (17), is esti-

mated at q ≈  from Eq. (5). Then the quantity

(q, Ω)dq determines the corresponding ampli-
tudon contribution to the SLR rate. This contribution
equals

(31)

It should be noted that the SLR rate in a symmetric
phase is strongly dependent on the soft-mode disper-
sion [4]. At a weak dispersion, the low-frequency
damping of the doubly degenerate soft mode is of the
order of ΩDT/Tat and estimate (31) is valid. At a strong
dispersion, the damping constant is of the same order as
in Eq. (3); therefore, the SLR rate is considerably lower
but has a more pronounced temperature dependence,
(T – Ti)–1.

To calculate the contribution caused by divergence
χ1 at small q, it is sufficient to compare the quantities

(q, Ω)dq and (q, Ω)dq in which the
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second integral is calculated in the region q < Γ2/c and

(32)

The (q, Ω) is determined by relationship (19). Cal-
culating the ratio of the above two integrals, we obtain

(33)

where ξ = BTc/(|A |D3/2) is the parameter of the pertur-
bation theory. Thus, the correction for diverging longi-
tudinal fluctuations is logarithmically dependent on the
Larmor frequency but includes the parameter ξ which
is not small only at the boundary of the applicability
range of the perturbation theory.

It is natural to expect that the specific features of the
lattice dynamics in an IC phase would manifest them-
selves at low temperatures as well. Nonconducting
molecular crystals with low-temperature IC phases
were intensely studied in this temperature range [15–
17] and the respective measurements were made up to
the temperature 1 K. Hereafter, we consider a low-tem-
perature range a region in which the condition "Ω0 !
T ! TD is fulfilled. Since the Larmor frequencies are of
the order of 108 s–1, this condition is also true for T ~
1 K. Furthermore, the effect of a phonon bottle neck is
neglected because the SLR time at T ~ 1 K is usually of
the order of several seconds, whereas the phason life-
time (closely related to the effects we are interested in)
is much shorter (see Eq. (22)).

Since it follows from Eq. (22) that phason damping
is very weak (Γ2 ≡ γ2/2m < Ω0), when calculating the
response function, one has also to take into account the
inertia term. It follows from the condition "Ω0 ! T that
the correlation function at the Larmor frequency may
be written in the classical limit of Eq. (15). Then, the
phason contribution to the SLR rate is [5]

(34)

In other words, the SLR rate is independent of Ω0. It
should be emphasized that the contribution of direct
phason processes described by Eq. (34) to the SLR rate
considerably exceeds the contribution of acoustic
phonons forming the background at low temperatures.
This contribution also includes a small factor (Ω0/ΩD)2

which arises because a spin Hamiltonian depends on
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the strain-tensor component, i.e., on the derivatives of
displacements.

The characteristic temperature Tb separating the

high-temperature region (Jph(Ω0) ~ ) and the low-
temperature region (Jph(Ω0) = const) may be evaluated
from the condition Γ2(Tb) ≈ Ω0, which, in accordance
with Eq. (22) yields

(35)

It follows from expression (35) that Tb may be lower by
an order of magnitude than TD and, therefore, it is quite
possible to observe both “modes” of the SLR rate.

The estimate of the amplitudon contribution is
obtained from Eqs. (23), (24), and (29) as

(36)

where (T ≈ 0) ≈ Ti/Tat. The value of this contribu-
tion is less than Jph from Eq. (34) but considerably
higher than the phason contribution in Raman pro-
cesses [5]. As follows from Eq. (23), the correction to
Eq. (36) due to finiteness of Γ1 (Γ1 ~ T7) is proportional,
at least, to T8; i.e., it is negligible at low temperatures.
Thus, unlike the case of a high temperature, the diver-
gence of χ1(q, Ω) due to the interaction of an amplitu-
don with a phason determines the major contribution
(~T3) of an amplitudon to the SLR rate.

SOUND ATTENUATION

Ultrasonic properties of a medium are described by
a complex frequency-dependent elastic modulus
λ(Ω) = λ'(Ω) – iλ''(Ω) corresponding to the limit of
small wave vectors. The real part λ'(Ω) determines the
sound velocity, whereas its imaginary part determines
sound attenuation. In the low-frequency limit, λ''(Ω) is
a thermodynamic quantity whose temperature anomaly
may be calculated within the framework of the thermo-
dynamic theory of perturbations. This quantity also
determines quite well the sound velocity at ultrasonic
frequencies because the corresponding frequency dis-
persion in this region is usually quite small. Attenuation
is a kinetic effect and to calculate it one has to invoke
the dynamic theory of perturbations.

We consider the specific features of longitudinal-
sound attenuation in an IC phase in an example of elas-
tically isotropic medium. In this case, some additional
terms corresponding to elastic energy should be added
to the expansion of the free-energy density described by
Eq. (7),

(37)
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where K is the bulk modulus and µ is the shear modu-
lus. The complex elasticity modulus may be deter-
mined from the corresponding motion equations of the
order parameter and longitudinal deformation by using
the standard perturbation theory.

For an IC phase, similar to the case of a low-sym-
metric phase in the case of a one-component order
parameter, the effect of fluctuations on longitudinal-
sound attenuation depends not only on the dynamics of
the order parameter but also on the dynamics of the
acoustic subsystem [6]. Therefore, the anomaly of the
sound attenuation cannot be described by an arbitrary
elementary function of temperature even in lower
orders of the perturbation theory. Relatively simple
expressions can be obtained only in two limiting cases
of the zeroth (ρ = 0) or infinite (ρ = ∞) inertia of acous-
tic fluctuations. We consider here the first limiting case.
The elastic modulus of an IC phase for a displacive sys-
tem in the limit ρ = 0 may be represented as [6, 7]

(38)

where B'' = B1 – 2r2/(K + 4µ/3) and γ1 is the low-fre-
quency amplitudon attenuation. The second term on the
right-hand side of Eq. (38) corresponds to the Landau–
Khalatnikov mechanism and is calculated in the mean-
field approximation. The third term corresponds to the
contribution of amplitudon fluctuations and, for displa-
cive systems, we obtain

(39)

where Γ = γ/m is the amplitudon damping constant at
the amplitudon mode frequency. Evaluating γ1 in the
first term using Eqs. (2) or (3), one may readily see that,
in the applicability range of the perturbation theory, the

corresponding attenuation γ1r2/(B ) is considerably
less than the contribution corresponding to the ampli-
tude fluctuations being proportional to ImΠ1(0, Ω).

Since an amplitudon in the harmonic approximation
is analogous to the soft mode in the nonsymmetric
phase, its contribution to sound attenuation has the
same form as in the case of a one-component order
parameter. Thus, the third term in Eq. (38) contains the
fluctuation corrections to r and also the fluctuation con-
tribution to low-frequency amplitudon attenuation eval-
uated by Eq. (4). Similar corrections considerably (by a
factor of 4(B'')2/B2 for ρ = 0) increase the contribution
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of amplitude fluctuations to sound attenuation in the
incommensurate phase. This was usually ignored in the
interpretation of the experimental data [3]. It should
also be noted that in order–disorder transitions the fluc-
tuation correction to sound attenuation is considerably

lower than the value of Ωγr2/(B ); however, it may
have an arbitrary sign [6].

The last term in (38) corresponds to the phason con-
tribution, and Π2(0, Ω) in this contribution is deter-
mined by the Eq. (18) at q = 0. To reveal the major
divergence in Eq. (18), one has to assume, as earlier,
that m = 0. Then

(40)

It is seen from Eqs. (38) and (40) that the phason
contribution to the sound attenuation is negative and
proportional to Ω3/2. It is natural that the total coeffi-
cient of sound attenuation is positive because of the
amplitudon contribution.

To explain the nonanalytical frequency dependence
of the phason contribution to sound attenuation, we
compare it with the contribution corresponding to fluc-
tuations of the elastic displacements. Although the fluc-
tuations of the displacement vector diverge if the wave
vectors and frequencies are small, they do not give rise
to nonanalytical contribution to the attenuation,
because their own attenuation is proportional to k2. (It
is because of this that the attenuation of fluctuations
corresponding to the acoustic branch was neglected in
Eq. (38).) Thus, one may state that it is the finite atten-
uation of diverging phase fluctuations that gives rise to
the nonanalytical contribution to sound attenuation in
an IC phase.

For displacive-type systems at frequencies Ω < Ωr =
2|A|/(mΓ), the ratio of phason and amplitudon contribu-
tions is proportional to (Ω/Ωr)1/2(Γ2m/|A|). Since, in the
applicability range of the perturbation theory,
Γ2m/|A| ! 1, the phason contribution at frequencies
Ω < Ωr is infinitesimal. At the frequencies Ω > Ωr, both
contributions become comparable; however, in the
study of displacive-type systems, this region is of no
interest because Ωr in such regions considerably
exceeds the amplitudon frequency.

It should be noted that, in fact, the last term in
Eq. (38) corresponds to the sum of the contributions,
each of which diverges at Ω  0 [7]. However, these
divergences are compensated both in the approximation
considered above and in higher approximations of the
perturbation theory. This compensation arises because
a phason is not directly related to longitudinal strains
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and influences these strains via amplitudon fluctua-
tions.

In conclusion, we would like to emphasize that, in
all the above cases, we considered ideal crystals. Of
course, defects in real crystals lead to pinning of the
order-parameter phase [1] and, as a result, the phason
spectrum at small wave vectors acquires a gap. How-
ever, the experimental results show that in some occa-
sions (e.g., in extremely pure crystals) this gap is rather
small even in comparison with the Larmor frequencies
[17, 18]. In such cases, the results obtained above may
underlie the interpretation of the corresponding experi-
ments.
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Abstract—A decrease in microhardness along the (010) cleavage in potassium acid phthalate single crystals
by 15–18% after the application of a permanent magnetic field is revealed for the first time.1 It is shown that
the effect revealed is of the volume character. The role of interlayer water in the processes stimulated by a mag-
netic field is studied. Interlayer water does not cause the observed changes; it only plays the part of an indicator
of these changes in potassium acid phthalate crystals in a magnetic field. It is established that microhardness in
the (100) plane of the crystal in an applied a magnetic field first increases by 12–15% and then remains constant
in time within the accuracy of the experiment. The possibility of varying the crystal structure of potassium acid
phthalate crystals by applying magnetic fields inducing rearrangement in the system of hydrogen bonds or in
the defect structure is discussed. © 2005 Pleiades Publishing, Inc.
1 The influence of weak magnetic fields on the
mechanical properties of nonmagnetic crystals (magne-
toplastic effect) is observed in both micro- [1] and mac-
roplasticity [2–9] and is studied by scientists who use
plastic physics methods.

The studies started in 1987 [1] showed that the mag-
netoplastic effect is explained by the action of a mag-
netic field on spin-dependent electron transitions either
in a system dislocation–paramagnetic center [10, 11] or
in magnetosensitive complexes of point defects
[12, 13]. The electron transitions stimulated by mag-
netic fields may change the local energy of the disloca-
tion interaction with a point defect, which results in
plasticization (or hardening [14]) of a number of dia-
magnetic alkali halide, semiconductor, and metal crys-
tals [10, 11]. As was shown earlier, similar processes
may also change the rates of chemical reactions in mag-
netic fields [15, 16]. Up to now, the study of the magne-
toplastic effect has been performed mainly on isotropic
crystals. Interest has arisen in the study of the influence
of a magnetic field on the properties of nonmagnetic
anisotropic crystals with complicated structures widely
used in technology.

We studied a potassium acid phthalate (KAP) crys-
tal of the composition C8H5O4K with ionic, covalent,
and hydrogen bonds [17, 18]. An orthorhombic crystal
is described by the point symmetry group mm2. The
crystal properties are explained by the presence of the
polar 〈001〉 axis and a large distance between the (010)

1 Most of the results obtained in this study were first presented at
the First Russian Conference of Young Scientists on Physical
Material Science in Kaluga, October 4–7, 2001 (M.V. Koldaeva,
Collected Abstracts (Kaluga, Manuskript, 2001), pp. 39–40).
1063-7745/05/5002- $26.00 ©0278
cleavages (~13 Å). Figure 1 shows the structural for-
mula of KAP crystals possessing piezoelectric proper-
ties [19] that are widely used as analyzers in the long-
wavelength range of the X-ray spectrum and as mono-
chromators in various high-resolution X-ray instru-
ments [20]. In the temperature range from 300 to 2 K,
KAP crystals are diamagnetic along all the three main
crystallographic directions.2

SAMPLE PREPARATION AND PROCESSING 
OF RESULTS

The experimental methods used in our study were
selected in accordance with the studies of mechanical
properties of KAP crystals [21–23] and, in particular, of
their microhardness [23]. Motion of dislocations was
not studied in any cited works. In [21, 22], considerable
anisotropy of crystal deformation was observed:
depending on the mutual orientation of the compres-
sion and polar (z) axes, crystals demonstrated brittle
fracture, kink bands, or plastic deformation. To detect
the influence of a magnetic field on the crystals we used
a fast technically simple method of microindentation.

The KAP crystals used in our experiments were
grown from aqueous solution by the method of decreas-
ing temperature [19] at the Institute of Crystallography
of the Russian Academy of Sciences. The samples were
cut from crystalline boules by a wet thread. The faces
were mechanically polished against a smooth wet silk.
Microhardness was measured in the (010) and (100)

2 Magnetic susceptibility of KAP crystals was measured by
Yu.G. Shvedenkov at the International Tomography Center, Sibe-
rian Division, Russian Academy of Sciences, Novosibirsk.
 2005 Pleiades Publishing, Inc.
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faces. To measure microhardness in the (010) plane, we
cleaved thin 3 × 0.3 × 7 mm large plates along the
cleavage. The 3 × 3 × 7 mm samples for measurements
in the (100) face were additionally polished prior to the
experiment first mechanically and then by chemical
polishing to remove a thin (about 0.15 mm) surface
layer. Indentation was made with a Vickers pyramid
under a load of 0.2 N, the impression diagonal was
measured with the aid of a standard attachment to a
Neophot-21 microscope.

Figure 2 (courtesy of N.L. Sizova from the Institute
of Crystallography) shows typical impressions in the
(010) cleavage (Fig. 2a) and in the perpendicular (100)
plane (Fig. 2b) with the singled-out polar direction z
and the diagonal d. Figure 2a shows that the impression
in the (010) cleavage gives rise to cracking characteris-
tic of brittle crystals [24]. Nevertheless the impression
has an obvious faceting which allows one to make mea-
surements. To measure microhardness in the (100)
plane, the crystal was oriented in such a way that the
angle formed by d and z was about 45°. The impression
was almost a square shape; no cracks were recorded
(Fig. 2b).

To avoid any confusion associated with the unique-
ness of each measured surface and possible dependence
of the results obtained on atmospheric conditions, each
experimental point was measured on 3–5 thin plates
sawed from two different bulky samples cut from the
same growth pyramid. The microhardness of these
plates was the same. Figure 3 shows a typical histogram
of the diagonal d of the impression measured on face
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Fig. 1. Structural formula of a potassium acid phthalate
(KAP) crystal.
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(010) of different samples. It is seen that the histogram
is characterized by a normal Gaussian distribution.
Thus, physically, averaging along the impression diag-
onals d measured under the same conditions on differ-
ent cleavages is quite justified. The statistical errors δd
were calculated using 50–100 measurements by the
Microsoft Excel program and ranged within 2–4%.
Microhardness H (in GPa) was calculated by the con-
ventional formula for a Vickers pyramid [24] as

where dst is the statistical average of the impression
diagonals measured in microns and P is the load
applied to an indenter in grams. The measurement error
δH was calculated as

where δd is the statistical error of diagonal averaging
over the sampling.

EXPERIMENTAL RESULTS 
AND DISCUSSION

In the first run of experiments, the samples in the
shape of thin 3 × 7 mm plates with a thickness of ~0.3
mm were cleaved along the cleavage plane of one of the
growth pyramids. One of two as-cleaved mirror-smooth
surfaces was placed for 5 min into a 0.9 T magnetic
field (B || z), whereas the other sample served as a ref-
erence. Then microhardness of the surfaces of both
samples was measured for 7–10 days as a function of
time passed since cleavage. The results of these exper-
iments are shown in Fig. 4a. After keeping the sample
for five minutes in a 0.9 T magnetic field, microhard-
ness decreased by 15–18% (curve 2) in comparison
with the microhardness of the mirror-smooth cleavage
of the reference sample (curve 1). This difference
decreased with time and disappeared after 7–8 days. It
was also interesting to consider microhardness as a
function of time passed since the sample preparation.
Therefore, we studied the surface of the reference sam-
ple (Fig. 4a, curve 1). The removal of interlayer water
from an as-cleaved surface was studied in [25]. Inter-
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Fig. 2. Typical impression of an indenter with the single-out z direction and the diagonal d (a) in the (010) and (b) (100) planes.
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layer water is always present in potassium acid phtha-
late crystals but it is not a structure-forming element.
Possibly softening of the cleavage with time is
explained by such processes.

To clarify the role of interlayer water in magneto-
stimulated processes, we had to diminish the amount of
interlayer water in the bulk of potassium acid phthalate
crystals. With this aim, we annealed the crystals for
six hour at 220°C and then slowly cooled the crystals in
an argon flow. With an increase of the temperature,
water located in interplanar space leaves the crystal but
is absorbed again during subsequent cooling [25]. To
prevent water absorption, the furnace was constantly
blown with a flow of argon both during annealing and
cooling. The magnetostimulated changes of microhard-
ness in annealed crystals were studied according the
same scheme as in unannealed crystals.

The microhardness curve of the as-cleaved surfaces
of annealed reference samples (Fig. 4b, curve 1) is con-
siderably lower than microhardness curve of unan-
nealed samples (Fig. 4a, curve 1). However, in this case
as well, microhardness of annealed samples treated in a
magnetic field (curve 2) decreased by 15–18% in com-
parison with microhardness of the annealed reference
samples.
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Fig. 3. Histogram of diagonals d of indenter impressions for
four samples; the solid curve is the normal distribution of d
calculated from the average dst value and dispersion over
the histogram.
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Comparing the kinetics of surface aging (which
manifests itself in the changes of microhardness with
time) in unannealed and annealed samples (curves 1 in
Figs. 4a, 4b, curves 1), we assumed that surface aging
of potassium acid phthalate crystals is associated with
loss of water after preparation of cleavage and the inter-
action of its surface with atmosphere. After the treat-
ment in a magnetic field, surface aging of unannealed
crystals proceeds much slower than in the samples not
kept in a magnetic field (Fig. 4a). At the same time, the
initial slope of the H(t) curves of the annealed crystals
containing much less interlayer water did not change
after treatment in a magnetic field (Fig. 4b). Thus, inter-
layer water is only an indicator of the changes taking
place in potassium acid phthalate crystals in a magnetic
crystal, and it cannot give rise to these changes.

To establish whether it is only a surface effect or the
magnetic field that gives rise to the changes in the crys-
tal bulk, we broke a bulky sample into two parts. Like
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Fig. 4. Microhardness of the (010) face of a potassium acid
phthalate crystal as a function of time passed since the prep-
aration of mirror-smooth cleavages: (1) reference sample,
(2) sample treated for 5 min in a 0.9 T magnetic field,
(a) unannealed and (b) annealed crystals. In all the cases B || z.
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in the first run of experiments, one part of the crystal
was kept for five min in a 0.9 T magnetic field (B || z),
whereas the other part served as the reference sample.
In this case, before every measurement a new cleavage
was made, which allowed us to follow the possible
changes in the bulk of the crystal subjected to the action
of a magnetic field. To improve statistics, three bulk
samples were used in these experiments.

Within the accuracy of the experiment, no temporal
changes were observed in the reference part of the crys-
tal (Fig. 5a, curve 1). Microhardness of cleavages of the
crystal part subjected to the action of a magnetic field
(Fig. 5a, point 2) decreased after keeping the crystal in
a magnetic field at the same value as in the experiments
of the first run. The influence of the magnetic field in
the crystal bulk decreases with time. However, these
changes have no component due to surface aging. Thus,
the properties of potassium acid phthalate crystals kept
in a magnetic field change not only at the surface but
also in the crystal bulk.

Figure 5b shows the kinetics of microhardness
changes after the application of the magnetic field. The
∆H(t) dependence corresponds to the difference in
microhardness values (Figs. 4a, 4b, 5a; points 1 and 2).
It should be indicated that the ∆H value reflects the
influence of the magnetic field on crystal microhard-
ness. It is seen that the changes in microhardness in all
the above experiments (Fig. 5b) in annealed and unan-
nealed crystals vary with time almost in the same way
and completely disappear after 6–7 days. Thus, this
effect does not depend on the preliminary treatment of
the sample. It should be remembered that, on the con-
trary, the magnetoplastic effect associated with the
influence of a magnetic field on the state of the system
of point defects in a crystal strongly depends on the pre-
liminary thermal treatment of crystals. This is well seen
in an example of alkali halide crystals [13]. Possibly,
the structure of KAP crystals itself is changed under the
action of a magnetic field.

As was mentioned above, potassium acid phthalate
crystals are anisotropic; therefore, possible structural
changes may be different at different faces. Therefore,
in the next run of experiments, we performed indenta-
tion of the (100) face. To remove the defect layers
formed due to sawing and to obtain smooth surfaces,
we treated the crystals by the method considered above
directly before the experiment. Then we broke each
sample into two parts and, as in all the experiments per-
formed, placed one part. into a 0.9 T magnetic field
(B || z) for 5 min, whereas the other part served as a ref-
erence sample. It turned out that microhardness in the
(100) plane treated in a permanent magnetic field
increased by 12–15% (within the experimental accu-
racy) and then remained constant with time (Fig. 6,
curve 2). Microhardness of the reference (100) surface
increased after aging for four–five days by 12–15%
(Fig. 6, curve 1). Thus, the effect of magnetostimulated
changes in microhardness of KAP crystals of the same
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 2      2005
orientation in a magnetic field has opposite signs on the
perpendicular faces (Figs. 4a and 6). It should also be
noted that the magnetic field blocked aging of both
(010) and (100) surfaces of unannealed crystals.

Figure 7 shows a fragment of the model of a potas-
sium acid phthalate crystal constructed on the basis of
data from [18]. It is seen that the perpendicular faces of
the crystal have different structures and face-forming
elements. However, Figs. 4a and 6 show that aging of
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Fig. 5. (a) Microhardness and (b) differences in microhard-
ness of the reference and magnetically treated samples in
the (010) face of a potassium acid phthalate crystal as func-
tions of time passed after 5-min treatment of samples in a
0.9 T magnetic field (B || z); (a) each measurement was
made (1) on an as-cleaved face of the reference sample and
(2) on a sample treated in a magnetic field; (b) on unan-
nealed samples (h), annealed samples (n), and on cleavages
prepared from a bulky sample directly prior to each mea-
surement (s).
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the (010) and (100) faces of unannealed crystals is
blocked by a constant magnetic field.

The effects observed in potassium acid phthalate
crystals may hardly be explained by magnetostimulated
changes in the local energy of interactions in the system
dislocation–paramagnetic impurity center. First, the
character of deformation described above shows that
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Fig. 6. Microhardness of the (100) face of a potassium acid
phthalate crystal as a function of time passed after sample
preparation: (1) for the reference sample, (2) for a sample
treated for 5 min in a 0.9 T magnetic field.
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the main role is played by the displacements of the lay-
ers with respect to one another that are parallel to cleav-
age planes and not to generation and motion of disloca-
tions as in alkali halide crystals. Second, unlike alkali
halide crystals, in potassium acid phthalate crystals, the
relative value of the effect does not depend on thermal
treatment of crystals. Third, the change of microhard-
ness after the equivalent action of a magnetic field has
opposite signs at the perpendicular faces of the crystal.
This may readily be understood if one assumes that the
crystal structure has changed. Then, because of anisot-
ropy, a different reaction of the magnetically treated
perpendicular faces to the indenter may have different
signs. These changes may also hinder the removal of
the interlayer water from the crystal, i.e., influence the
kinetic of surface aging. Of course, the above experi-
mental data are still insufficient for reliable consider-
ation of structural changes in potassium acid phthalate
crystals; however, it seems reasonable to analyze their
structure.

The layers of K+ ions are located in the parallel
(010) planes at different heights, whereas cations form
corrugated layers separated by double layers of anions.
The hydrophobic parts (benzene rings) inside the layers
“look” at one another and are linked by van der Waals
interactions. Hydrophylic groups are attached to cat-
ionic layers and form the chains along the z axis linked
by intermolecular hydrogen bonds [18]. A fragment of
such a chain is shown in the left-hand part of Fig. 7.
Hydrogen bonds are depicted by dashed lines. It is pos-
sible to assume that, initially, some structural elements
z

x
y

K
C
O
H

Fig. 7. Structural model of a potassium acid phthalate crystal and the unit cell and a chain of anions (solid line) linked by hydrogen
bonds (dashed line).
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in a potassium acid phthalate crystal are in the metasta-
ble state but then relax. It seems that, in a magnetic
field, the conditions are created which stimulated their
transition to an energetically more advantageous state.
At this stage of the study, it is difficult to say in what
way a magnetic field affects a KAP crystal and how it
changes its structure. A structural element whose con-
figurational changes may be of a fluctuating nature may
be a hydrogen bond, since the fluctuation may trans-
form an O–H⋅⋅⋅O bond into an O⋅⋅⋅H–O bond [26], and
a magnetic field creates the conditions for such a trans-
formation. Of course, we should not exclude possible
transformation of some defect complexes related to
structural elements under the action of a magnetic field.

The suggested interpretation of experimentally
observed magnetostimulated change of microhardness
in KAP crystals should be considered only as a working
hypothesis. The verification of this hypothesis and the
search for the explanations of such a pronounced effect
of a magnetic field on microhardness of potassium acid
phthalate crystals require further studies with invoca-
tion of spectroscopic and X-ray diffraction methods.
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Abstract—Crystals of divalent tungstates are characterized by two main luminescence spectral ranges: a short-
wavelength (blue) luminescence band in the range 390–420 nm and a group (often two groups) of longer wave-
length (green) bands in the range 480–520 nm. For crystals of calcium, strontium, barium, cadmium, magne-
sium, zinc, and lead tungstates, it is shown that the wavelength corresponding to the maximum of the blue lumi-
nescence band (λmax) correlates with the melting temperature (Tm) of these compounds. The position of the blue
luminescence band is the same (in the range 510–530 nm) for crystals with different divalent cations. Annealing
in vacuum and electron irradiation decrease the intensity of both blue and green luminescence bands but do not
change the ratio of their maximum intensities. This circumstance suggests that vacancies serve as luminescence
quenchers to a greater extent rather than facilitate the formation of emission centers responsible for a particular
luminescence band. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

The high density of crystals of calcium, cadmium,
and zinc tungstates (and especially lead tungstate),
along with their high quantum yield, makes it possible
to use them as phosphors and scintillators to detect both
high-energy particles and low-energy radiation (medi-
cal tomography). Recently, particular attention has
been given to PbWO4 crystals, which are characterized
by very short luminescence lifetimes (~10 ns) [1].
Despite a large number of studies devoted to tungstates,
many questions concerning the mechanisms of forma-
tion and relaxation of excited states in these crystals are
yet to be answered.

The crystals under consideration are characterized
by two main luminescence spectral ranges: short-wave-
length (blue) luminescence in the range from 390 to
420 nm and long-wavelength (green) luminescence in
the range 480–520 nm [2, 3]. This fact indicates the
existence of at least two types of luminescence centers.
Earlier models of the centers (by the example of
CaWO4) relate the luminescence to complexes (WO4)2–

that are distorted by closely located defects [4] or com-
plexes containing W5+ ions [5].

When analyzing the possibility of controlling the
optical properties of crystals, the main problem is to
determine the type of luminescence centers. In particu-
lar, the role of the matrix ions and structural defects in
the formation of optical centers remains unclear for
tungstates. Estimation of the number of blue lumines-
cence centers [6] indicated a low probability of the
1063-7745/05/5002- $26.00 0284
presence of defects with a required concentration and
made it possible to suggest that the blue luminescence
should be assigned to a regular crystal. The blue-green
luminescence of wolframite-related representatives of
tungstates is interpreted in terms of radiative transitions
in octahedral complexes (WO6)6– [7], and the presence
of two luminescence bands is attributed to the existence
of two types of internal centers of a different structure
[8]. It has been noted previously [6, 9] that divalent cat-
ions åÂ2+ (except for lead cations) do not affect the for-
mation of luminescence spectra of scheelites.

These questions have been most fully studied by the
example of lead tungstate PbWO4. According to the
existing concepts, the blue luminescence band of
PbWO4 is due to the 6p6s  6s2 transitions in Pb2+

ions [10, 11] or intracenter transitions in isolated
groups (WO4)2– [12, 13]. In the latter case, the green
luminescence is attributed to the charge transfer from
the ground orbitals of lead ions to the empty orbitals of
the d type in (WO4)2– groups. By taking into account
the polarization of the green radiation (the blue radia-
tion is not polarized), it was suggested [14] that green
luminescence is due to the presence of WO3 groups
containing an oxygen vacancy [(WO4)2–-Vo] or F cen-
ters [(WO4)2–-F] and [(WO4)2–-F+]. The fact that green
luminescence is very sensitive to the crystal history
(oxidizing or reducing action on a crystal during its
growth or annealing) confirms the suggestion that
defects are involved in the formation of green lumines-
© 2005 Pleiades Publishing, Inc.
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cence centers. According to this scheme, the excitation
of a Pb2+ ion is transferred to [(WO4)2–-Vo] or
[(WO4)2−-F] groups. Raspite-like distortions of the
scheelite lattice of PbWO4 [15] and inclusions of the
oxygen-deficient Pb7W8O32 – x phase were also consid-
ered as possible green luminescence centers [16].

In view of the fact that some fraction of lead cations
are in a higher oxidation state, it was suggested [17]
that centers of absorption at 425 nm, which are charac-
teristic of PbWO4, and green luminescence centers are
formed involving Pb3+ cations stabilized by excess
interstitial oxygen.

Despite the difference between the models, it is gen-
erally suggested that excitation centers are formed on
the basis of Pb2+ (or Pb3+) cations with subsequent
energy transfer to tungsten–oxygen complexes, in
which luminescence occurs (in regular WO4 groups in
the blue spectral range and in their various distorted
modifications in the green range). The appearance of
photoconductivity, accompanying the green lumines-
cence in CaWO4 [18] and PbWO4 [20], indicates that
energy can be transferred to luminescence centers
involving charge transfer processes.

Thus, refinement of the concepts about the features
of luminescence of tungstates remains an urgent prob-
lem in view of the synthesis and practical application of
these promising phosphors and scintillators.

The purpose of this study is to verify the effect of
divalent cations on the luminescence of crystals with
scheelite structure by comparing the luminescence
spectra of crystals of lead tungstates and group (II) cat-
ions and to analyze the effect of structural defects due
to vacuum annealing and electron irradiation on the
luminescence spectra of tungstate crystals.

EXPERIMENTAL RESULTS

Crystals of all tungstates, except for the MgWO4,
were grown by the Czochralski method. The MgWO4
crystal was grown by the flux method.

PbWO4 crystals of two types were used:
(i) uncolored crystals grown at the Bogoroditsk

Plant of Techno-Chemical Products (BPTCP), and
(ii) crystals with a yellowish color grown at the All-

Russia Research Institute for Synthesis of Mineral Raw
Materials (ARRISMRM).

Transmission spectra of the crystals were measured
on a SPECORD system and luminescence spectra were
recorded using a DMR-3 monochromator and X-ray
excitation (CuKα radiation). The luminescence inten-
sity was measured in the photon-counting mode. The
thermally stimulated luminescence was measured in
the temperature range from 100 to 300 K.

The crystals were subjected to reducing annealing in
vacuum at 800°C and 6-MeV electron irradiation in an
accelerator.
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Figure 1a shows the luminescence spectra J(λ) of
crystals of calcium, strontium, barium, cadmium, mag-
nesium, zinc, and lead tungstates (in what follows, the
values of J are given in arbitrary units). The spectra
were obtained under the same excitation and measure-
ment conditions. The luminescence spectra of all crys-
tals contain two broad bands. One of them (green) has
maximum λmax in the range 520–530 nm, whose posi-
tion is independent of the type of divalent cations. The
position of the other (blue) band significantly depends
on the cation type and is shifted from the blue-green
(λmax = 480 nm) spectral range for ZnWO4 to the blue
(λmax = 420 nm) range for CaWO4. The wavelength at
which the blue luminescence band is peaked correlates
with the melting temperature (Tm) and, therefore, with
the crystal lattice energy (Fig. 1b). This correlation
gives a linear dependence λmax(Tm) for the crystals with
cations belonging to one subgroup (IIa). The blue lumi-
nescence peaks for the crystals with cations belonging
to the IIb subgroup are somewhat shifted to shorter
waves as compared with the dependence λmax(Tm) for
the subgroup (IIa). The blue luminescence peaks for
PbWO4 crystals are even more shifted to shorter wave-
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Fig. 1. (a) Luminescence spectra J(λ) of tungstates
åÂ2+(WO4)2– with different divalent metal cations (Ca, Cd,
Mg, Zn, Ba, Sr, Pb). (b) Dependence of the luminescence
peak position (λmax) on the melting temperature Tm of a
crystal. Cations and their subgroups are indicated near cor-
responding points and lines.
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lengths, which is in agreement with the general behav-
ior since the Pb2+ ion belongs to group (IV). Obviously,
the dependence λmax(Tm) manifests itself within cations
of the same subgroup and sharply changes in going to a
neighboring group (subgroup).

The effect of hexavalent cations on the lumines-
cence spectra can be seen from the comparison of the
luminescence spectra of PbWO4, PbMoO4, CaWO4,
and CaMoO4 crystals (Figs. 2, 3). The luminescence
spectra of uncolored PbWO4 crystals grown in a nitro-
gen atmosphere (BPTCP) (curve 1) are characterized
by a strong blue band at 420 nm and a very weak green
band at 510 nm. The luminescence spectra of colored
(yellow) PbWO4 crystals grown in air (ARRISMRM)
(curve 2) and PbMoO4 crystals (curve 3) show a wide
band with two maxima at 465 and 520 nm (Fig. 2). The
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Fig. 2. Luminescence spectra of crystals of lead tungstates
and molybdates: (1) uncolored PbWO4 grown in a nitrogen
atmosphere, (2) colored (yellow) PbWO4, and (3) colored
(yellow) PbMoO4.
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Fig. 3. Luminescence spectra of crystals of calcium tung-
states and molybdates: (1) uncolored CaWO4, (2) uncol-
ored CaMoO4, and (3) colored (blue) CaMoO4.
C

luminescence spectrum of a PbWO4 crystal (curve 2)
contains an additional band in the blue spectral region.

The CaWO4 crystal (uncolored) shows strong lumi-
nescence in the blue spectral range and very weak lumi-
nescence in the green range (Fig. 3, curve 1). CaMoO4
crystals, colored (as-grown) and uncolored (annealed in
air at 800°C), have similar luminescence spectra, which
can be resolved into two bands in the green range
(Fig. 3, curves 2, 3). It should be noted that the absorp-
tion edge in the spectra of CaMoO4 crystals is shifted to
longer wavelengths in comparison with the spectra of
CaWO4 crystals (Fig. 4).

The effect of annealing and electron irradiation was
studied mainly for the crystals of lead and calcium
tungstates and molybdates. Vacuum annealing of
PbWO4, CaWO4, and CaMoO4 crystals (Figs. 5–7,
respectively) led to the reduction of their luminescence
intensity. CaWO4 crystals annealed in vacuum had a
violet color and their spectra contained an absorption
band in the range 450–650 nm (Fig. 8).

Electron irradiation decreased the luminescence
intensity for all as-grown crystals (Fig. 9). However, for
the crystals previously annealed in vacuum, the effect
of electron irradiation on the luminescence intensity
was ambiguous. Low-dose electron irradiation of the
CaMoO4 and CaWO4 crystals annealed in vacuum (col-
ored) increased their luminescence. However, with a
further increase in the irradiation dose, the lumines-
cence intensity decreased (Figs. 10, 11).

The existing models of optical centers suggest a dif-
ferent contribution of intrinsic point defects to the for-
mation of blue and green luminescence centers; thus,
oxygen vacancies may play a key role in the formation
of green luminescence centers. Since vacuum anneal-
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Fig. 4. Transmission spectra T(k) (in %, k is the wave num-
ber) of crystals of (1) uncolored CaWO4, (2) uncolored
CaMoO4, and (3) colored (blue) CaMoO4.
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ing and electron irradiation lead to an increase in the
oxygen vacancy concentration, one might expect that
such treatments of scheelite crystals would lead to an
increase in the intensity of green luminescence with
respect to the blue luminescence. As can be seen in
Figs. 6–11, the ratio of the intensities of the maxima of
the green and blue luminescence bands of the crystals
under study almost does not change under the action of
both annealing and electron irradiation. To verify this
observation, the luminescence spectra of all crystals
studied were resolved into Gaussian curves corre-
sponding to the blue and green components by the
ORIGIN program. Figure 12 shows an example of such
resolution for PbWO4 crystals. As can be seen, neither
vacuum annealing (Fig. 12b) nor electron irradiation
(Fig. 12c) increase the intensity of the green lumines-
cence with respect to the blue luminescence in compar-
ison with the initial crystal (Fig. 12a). The ratio of the
intensities of the blue (Jmax for 3.0 eV) and green (Jmax
for 2.3 eV) luminescence bands in the spectrum of the
initial crystal is equal to 16. For the crystals annealed in
vacuum and the crystals irradiated with electrons, this
ratio is 15.6 and 16, respectively. The same effect was
observed for CaWO4 crystals. Therefore, the ratio of
the intensities of the blue and green luminescence
bands, at least in these crystals, is independent of the
concentration of intrinsic point defects formed during
annealing and electron irradiation.

DISCUSSION

The dependence of the position of the blue lumines-
cence band on the divalent cation type and the crystal
binding energy indicates that not only the excitation of
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Fig. 5. Luminescence spectra of PbWO4 crystals: (1) initial
uncolored crystal (before annealing) and (2) crystal
annealed at 800°C for 4 h.
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this band but also the luminescence of tungstates is
determined by the properties of divalent cations. This
circumstance suggests that the blue luminescence of
tungstates is determined by the relaxation of excited
åÂ2+–é2– bonds. The fact that the green luminescence
is independent of the divalent cation type indicates that

the latter may be related to the (åÂ6+ )2– groups.

Generally, crystals of tungstates contain molybde-
num as an impurity. It can be seen in Figs. 2 and 3 that
the blue luminescence of molybdates is suppressed in
comparison with tungstates. The W6+ and Mo6+ ions

O4
2–
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Fig. 6. Luminescence spectra of CaWO4 crystals: (1) initial
crystal (before annealing); (2) annealing at 800°C for 4 h,
(3) additional annealing at 800°C for 4 h, and (4) additional
annealing at 800°C for 4 h.
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Fig. 7. Luminescence spectra of CaMoO4 crystals: (1) ini-
tial crystal (before annealing); (2) annealing at 800°C for
4 h, and (3) additional annealing at 800°C for 4 h.
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have the same charge and the same ionic radii (0.042
and 0.065 nm in the tetrahedral and octahedral coordi-
nations, respectively). The difference between these
ions is that the covalence of the Mo–O bond exceeds
that of the W–O bond owing to the smaller screening of
the nucleus of the Mo6+ ion. This circumstance leads to
a higher polarizability of the [MoO]2– ion as compared
with the [WO]2– ion (in particular, due to this fact the
melting temperatures of molybdates are lower than
those of corresponding tungstates). Therefore, the sub-
stitution of W6+ ions in the scheelite lattice by Mo6+

ions leads to the formation of [MoO]2– octahedra, in
which O2– ions are more easily ionized. As a result, the
absorption edge is shifted to longer wavelengths.
Apparently, the same properties of the Mo6+ ion lead to
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Fig. 8. Transmission spectra T(k) (in %, k is the wave num-
ber) of CaWO4 crystals: (1) initial uncolored crystal,
(2) after vacuum annealing at 800°C for 4 h, and (3) after
additional vacuum annealing at 800°C for 4 h.
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Fig. 10. Luminescence spectra of a CaMoO4 crystal
annealed in vacuum at 800°C for 4 h (colored) before
(1) and after electron irradiation with the dose D = (2) 4 ×
1015, (3) 8 × 1015, and (4) 12 × 1015 cm–2.
C

the decrease in the blue luminescence intensity when
tungsten is replaced with molybdenum and the shift of
the main luminescence band of molybdates to the green
range in comparison with tungstates.

The question of the role of point defects in the for-
mation of green luminescence centers remains open.
Since the vacuum annealing and the electron irradiation
(which lead to the increase in the oxygen vacancy con-
centration) do not enhance the green luminescence with
respect to that of blue, we can suggest that oxygen
vacancies are not involved in the formation of green
luminescence centers. Thus, the green luminescence
should be related directly to the relaxation of excited
åÂ6+–é2– bonds in [åÂé4] groups. There are no rea-
sons to doubt that the green luminescence involves
charge transfer. It is possible that this process occurs
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Fig. 9. Luminescence spectra of an uncolored CaMoO4
crystal (1) in the initial state and after electron irradiation
with the dose D = (2) 4 × 1015, (3) 12 × 1015, and (4) 70 ×
1015 cm–2.
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Fig. 11. Luminescence spectra of a CaWO4 crystal
annealed in vacuum (colored) (1) after annealing at 800°C
for 8 h and after electron irradiation with the dose D = (2)
4 × 1015, (3) 8 × 1015, and (4) 12 × 1015 cm–2.
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according to the following scheme: excitation of a åÂ2+

ion, transfer of the excited charge to a [åÂé4] group,
radiative relaxation of excited åÂ6+–é2– bonds.

In all cases, the increase in the vacancy concentra-
tion due to the annealing reduces the luminescence of
light (uncolored) crystals. Electron irradiation of the
crystals that were preliminary colored by vacuum
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Fig. 12. Luminescence spectrum of a PbWO4 crystal
(1) resolved into Gaussian curves (2, 3); the sample (a) in
the initial state, (b) after annealing in vacuum at 800°C, and
(c) after electron irradiation with the dose D = 4 × 1015 cm–2.
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annealing also reduces their luminescence but only at
significant (>1014 cm–2) doses. Thus, the oxygen vacan-
cies arising as a result of these treatments serve as lumi-
nescence quenchers. The luminescence quenching due
to the annealing can be explained by the fact that the
lattice distortions caused by increasing vacancy con-
centration facilitate the expansion of the phonon spec-
trum and increase the probability of nonradiative
recombination due to the electron–phonon interaction.

It is more difficult to explain the enhancement of
luminescence and the color decay caused by the low-
dose electron irradiation of previously colored crystals.
The treatments leading to the increase in the oxygen
vacancy concentration are reducing ones. We can sug-
gest that, in the crystals previously colored (restored)
by vacuum annealing, the increase in the concentration
of point defects due to the low-dose irradiation is small
in comparison with the concentration of existing
defects. Therefore, the effect of luminescence quench-
ing caused by the irradiation is also small. In this case,
the irradiation, causing ionization, may have an oxidiz-
ing effect and, thus, increase the luminescence inten-
sity.

CONCLUSIONS

The position of the maximum of the blue lumines-
cence band of divalent tungstates is determined by the
divalent ion type.

The shift of the intrinsic absorption edge to longer
wavelengths in the spectra of molybdate crystals is
accompanied by the shift of the luminescence peaks to
the green spectral range in comparison with the lumi-
nescence spectra of tungstates.

The ratio of the intensities of the blue and green
luminescence is not affected by electron irradiation and
vacuum annealing; i.e., this ratio is independent of a
change in the concentration of point defects.

An increase in the concentration of point defects
under the action of electron irradiation and vacuum
annealing leads to luminescence quenching.

Low-dose electron irradiation of CaWO4 and
PbWO4 crystals, previously colored by vacuum anneal-
ing, enhances the luminescence, which can be related to
the reconstruction of luminescence centers rather than
the increase in the defect concentration.
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Abstract—The study is aimed at the establishment of regions of stable (monotonic) and unstable (jumpwise)
plastic flow in bulk amorphous Zr46.8Ti8Cu7.5Ni10Be27.5 alloy under the conditions of local deformation. The
characteristics of the jumpwise plastic flow in bulk amorphous Zr46.8Ti8Cu7.5Ni10Be27.5 alloy are studied by the
method of continuous nanoindentation (depth-sensing testing) in the range of strain rates  from 10–2 to 104 s–1.
The boundaries between the regions of homogeneous and localized plastic strain are established and the fractions of
monotonic and jumpwise plastic strain under the indenter are determined. © 2005 Pleiades Publishing, Inc.

ε̇

INTRODUCTION

Despite the fact that, unlike elastic deformation,
plastic deformation is always inhomogeneous at the
atomic level and manifests itself in a number of strain
jumps ∆εi (i is the number of the strain jump) (Fig. 1a),
in physics of plasticity, one usually distinguishes the
homogeneous and localized flow modes [1–7]. The
conventional boundary between these modes is deter-
mined mainly by the test temperature T, strain rate ,
sample history and its characteristic dimensions, and
the state of its surface [2, 5, 8–14]. To a great extent, the

ε̇

1063-7745/05/5002- $26.00 0291
position of this boundary also depends on the character-
istics of the testing machine and, in particular, its rigid-
ity, inertia, sensitivity to the variations in the deforming
force, and sample dimensions. The equipment tradi-
tionally used in deformation experiments (Instron test-
ing machines) allows one to record not all the possible
flow instabilities (Fig. 1b) but only relatively pro-
nounced jumps of macroscopic strain characterized by
a low frequency arising due to collectivized behavior of
a large number of elementary carriers of plastic defor-
mation. As a result, the statistics of the recorded jumps
t
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Fig. 1. Jumpwise plastic deformation. (a) (1) Temporal curve of the true deformation kinetics at the atomic level (“devil staircase”
of i–x jumps ∆εi; (2, 3) reaction of the testing machine at the (2) moderate and (3) low time and space resolution. (b) Number N and

fraction of jumps α =  in the total strain εΣ as functions ∆εi of their amplitude A and characteristic times τ at different hier-
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is poor and distorted, and their apparent role in the total
accumulated strain is considerably underestimated.

To study the dynamics and correlation of the defor-
mation jumps at a lower hierarchical level (in particular,
mesoscopic one), it is necessary to considerably increase
the space–time resolution of the apparatus and reduce
sample volume. This would allow one to perform subse-
quent analysis of instabilities in plastic flow in terms of the
theory of self-organization in nonequilibrium dissipative
media such as plastically deformable solids, because these
measures would increase the number of the recorded
jumps and establish would make the correlation rela-
tions between these jumps more obvious.

With this aim we used the method of continuous
nanoindentation (depth-sensing testing) in our study
which allowed us to record the deforming force P as a
function of the depth of indenter penetration h (ana-
logue of the σ = f(ε) diagram in uniaxial deformation)
and also time development of P(t) and h(t) for submi-
cron regions. The limiting resolution of modern com-
mercial nanoindentometers in terms of the penetration
depth attains a value of 0.1 nm; in terms of time, a value
of 10–2 s; and in terms of deforming force, several
micronewtons, i.e., the values higher by several orders
of magnitude in traditional testing machines. This
allows one not only to study smaller and faster jumps
but also to increase the range of strain rates in the
region of high  values (up to 104–106 s–1) and to per-
form the whole experiment on one sample. All this, in
addition to the above advantages, allows one to reveal the
boundaries of the scale and velocity invariance of the man-
ifestation of steady and unsteady flow modes and to
study the nanoscale region of sample dimensions.

The first studies of strain jumps by the nanoindenta-
tion method appeared several years ago [15–17]. They

ε̇

C

were directed mainly at the study of the specific fea-
tures of unsteady flow in fcc metals and polycrystalline
aluminum–magnesium alloys studied earlier in detail
by the macrodeformation methods [18, 19]. The related
information for amorphous alloys is scarce and, as far
as we know, is discussed only in a few publication [20–
23], where multiple strain nanojumps were observed in
local deformation of bulk amorphous palladium- and
zirconium-based alloys by the nanoindentation method.
It is well known from the macroscopic experiments
that, at the moderate strain rates (10–5 ≤  ≤ 10–3 s–1) in
the temperature range Tc ≤ 0.65–0.7Tg (here Tg is the
vitrification temperature), the flow is localized,
whereas at higher temperatures, the flow is homoge-
neous. Such a transition is characterized by a decrease

in the relative fraction of jumps α =  in the total

strain εΣ at higher temperatures (Fig. 2a). It is assumed
that this transition takes place due to leveling of the
strain and directional structure-relaxation rates [4, 5,
12, 13]. Obviously, at room temperature, this transition
from homogeneous to localized flow corresponds to a
very low critical deformation rate , which cannot be
attained under conventional conditions of active defor-
mation. On the other hand, it is shown that, at higher
strain rates strain  s–1, a reverse transition from the
jumplike mode to monotonic flow may take place; the
nature of this monotonic flow is not discussed here. It
was shown [24] that such a transition really takes place
in a number of amorphous alloys if  attains a value of
the order of ~0.1 s–1. Both these transitions may be
schematically illustrated by constructing the functional
dependence α = f ( ) (Fig. 2b).
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Our goal was to reveal the regions of steady (mono-
tonic) and unsteady (jumpwise) plastic flow in bulk
amorphous Zr46.8Ti8Cu7.5Ni10Be27.5 alloy under the
conditions of local deformation at different deforma-
tion rates and at different indentation depths. We also
made an attempt to determine the corresponding
parameters and clarify the role of jumps in the total
mass transport of the material from the deformed
region under the indenter.

EXPERIMENTAL

Bulk samples of the amorphous
Zr46.8Ti8Cu7.5Ni10Be27.5 alloy were obtained by the
method of melt quenching. Prior to measurements, the
sample surface was polished with diamond pastes. The
studies were performed on a specially designed and
constructed computer-controlled nanotester [24, 25],
the depth of indentations produced by a Berkovich dia-
mond pyramid ranged from 1 to 10 nm (depending on
the limiting deforming force and the loading rate). The
time resolution (periodicity of discrete readings) was
up to 50 µs, which considerably (by several orders of
magnitude) exceeded the possibilities provided by for-
eign apparatuses and allowed us to resolve the jumps
without integration at their duration at the front
≥100 µs.

Loading was performed by of a triangular force
pulse with an amplitude up to 80 mN and the duration
from 20 ms to 500 s. The P(t) and h(t) or P(h) depen-
dences were recorded simultaneously (Fig. 3). Later,
the recorded data were used to determine more than ten
parameters characterizing mechanical properties of the
material in the subsurface layer. Under the above test-
ing conditions, the maximum indentation depth in the
alloy ranged within 800–900 nm. We observed no
cracks with in an optical microscope. Altogether we
recorded 1000 files of data on individual loading
cycles; i.e., we collected a data set sufficient for quanti-
tative and statistical processing of the jumps.

RESULTS AND DISCUSSION

The first analysis of the data obtained showed that
strain jumps may arise in the course of increasing the
deforming force and in the course of unloading but not
in the whole range of loading parameter variations. The
number of jumps recorded in one indentation cycle at
the given amplitude of the deforming force P = 80 mN
is about 5–7 jumps and was practically independent of

 in the range 0.02–20 s–1 (Fig. 4), where  = (dh/dt)/h
is the rate of the sample deformation averaged over the
whole locally deformed volume. Unlike the jumps
observed in deformation of polycrystalline aluminum–
magnesium alloys [15–17, 26, 27], there was no obvi-
ous regularity in the moments of jump appearance,
whereas the amplitude ∆h varied from 1 to 20 nm and
was not associated with h or . Despite the extremely

ε̇ ε̇

ε̇
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high time resolution of the apparatus used, we failed to
measure duration τ of most of the jumps. In other
words, the jumps were observed for time less than the
discretization time τd = 50 µs. With due regard for the
average jump amplitude ∆hm ~ 10 nm, this allowed us
to estimate the velocity of the indentation surface
motion during a jump from below as 〈υ〉  = ∆hm/∆tm =
20 cm/s. Since we never observed jumps with τ > τd (we
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processed several hundred jumps), we assumed that the
real velocity considerably exceeded our estimate.

For more convenient consideration and comparison
of our results with the data obtained by other authors,
we classified our data (approximately 600 jumps)
according to their amplitudes and constructed the
respective curves in the h–  coordinates (Fig. 5). It is
seen from Fig. 5 that, at low  and high h values, the
experimental points are close to the boundaries of the
region studied in the phase space shown by a solid line.
In other words, we failed to determine the minimum 
values and the maximum h values at which the jump-
wise deformation would have disappeared. On the con-
trary, the clear boundary between the jumpwise and
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strain rate. 
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monotonic flow modes is observed from the side of
high  values (dashed line in Fig. 5). In the range 0 <
h < 130 nm, no characteristic jumps in the  range
studied were observed and the critical depth of the
appearance of the first jump, hc = 130 nm, was indepen-
dent of the  value. There exists a certain critical level
of the strain rate,  ~ 7 ± 1 s–1, after the attainment of
which no jumps are observed at all. This level is almost
independent of h. At h ≥ 130 nm, neither the number
nor the amplitude of the jumps noticeably change
(Fig. 6); therefore, it is possible to assume that their
characteristics start to be determined by the character-
istics of the material state in the zone under the
indenter. At the same time, the role played by the jumps
in the total mass transport from the zone under the
indenter becomes less important with an increase in h
in the range 0 < h < 100 nm (Fig. 7).

The data on the number and the amplitude of the
jumps ∆h allows one to evaluate their role in the mass
transport of the material from the zone under the
indenter during the indentation formation. Figure 8
shows the dependence of the volume fraction of the
material γ =  transported as a result of the

jumpwise deformation from µ (where ∆Vi = kh2∆hi is
the volume of the material displaced as a result of the
ith deformation jump with the amplitude ∆hi, Vmax is the
volume of the indentation thus formed, µ = dP/dt is the
loading rate, and k is the coefficient taking into account
the indenter shape; for a Berkovich indenter, k =
23.969). It is seen that γ varies from 0 to 10–15%
depending on h and .
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tion volume formed by the moment of the completion of the
ith jump.
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The recent phenomenological theories explain the
limited range of  in which the jumpwise mode of plas-
tic deformation is observed with the invocation of the
N-like function of the flow stress dependent on  [28].
The nature of the segment with a negative differential
slope is different depending on the material and the
type of the process analyzed. It may be associated with
different mechanisms such as local heating and defor-
mation aging in plastic flow, a nonmonotonic velocity
dependence of the critical intensity coefficient on 
during crack formation, a hysteresis in pressure-
induced polymorphous phase transformations, etc. In
the situation considered here, all these mechanisms are
unlikely or even impossible. The estimates made by a
number of scientists (see, e.g., [29, 30] show that short
heating in the localized shear band in glass at room
temperature does not exceed several dozens of degrees
even in the adiabatic mode. Moreover, it cannot
decrease with an increase in . The thorough electron
microscopy study of the surface of the indentation and
the region around it showed that the strain jumps in the
amorphous palladium-based alloy under nanoindenta-
tion are caused by localized plastic flow and not by
fracture [23]. Thus, the formation of cracks, if any, can-
not give rise to the transitions observed.

In [29], the formation of nanocrystals was observed
in the regions of localized shear. These nanocrystals
were formed during low-rate nanoindentation of amor-
phous palladium-based alloy at room temperature. The
formation and growth of such nanocrystals at a low
temperature require a long time. In [29], the total load-
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volume of the material displaced as a result of the ith defor-
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the volume of the indentation formed.

∆Vi/Vmaxi∑

∆Vii∑
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 2      200
ing time τ was about 10 s. With a decrease in τ (increase
in  at all the stages of indenter loading), the nucleation
and growth of a new phase may require a long time and,
thus, this mechanism of unsteady flow becomes
blocked. As a result, the fraction of jumpwise strain in
the total volume of the indentation formed decreases
with a decrease in τ up to its complete disappearance at
a certain critical strain rate (Fig. 5).

Thus, the upper limit of the existence of the jump-
wise mode of deformation (with respect to ) may be
determined by the crystallization kinetics of an amor-
phous metal alloy during its nanoindentation.

CONCLUSIONS

The jumpwise modes of plastic flow during contin-
uous local deformation are revealed in the amorphous
Zr46.8Ti8Cu7.5Ni10Be27.5 alloy. The main characteristics
of the strain jumps are determined including their
amplitude, their number, their fraction in the mass
transport from the zone under the indenter, and the
region of jump formation on the P(h) diagram. The
boundaries of the region of the jumpwise flow mode are
established during nanoindentation in the h–  phase
space.
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Abstract—Various approaches to analysis of the characteristics of optically heterogeneous crystals (with the
characteristic thicknesses of layering lamellae exceeding the light wavelength) are considered in the example
of layered two-component heterogeneous structures. In the simplest cases, the quantitative information on the
layering structure may be obtained from analysis of numerical characteristics such as the moments of the
appearance of visible isogyres or the positions of isotropic compensation points. In more complicated cases, it
may be reasonable to use the program specially written by the authors for constructing conoscopic figures of
heterogeneous crystals. Finally, the heterogeneity of complex crystals may be characterized proceeding from
the qualitative estimate of the degree of distortion of their conoscopic figures. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

Natural and synthetic crystals have a large number
of diverse heterogeneous structures which, morpholog-
ically, seem to be single crystals but, in fact, are not sin-
gle crystals. These crystals are more or less regular for-
mations or combinations of various phases. The com-
ponents of these formations may have different
dimensions (from several angstroms to several centi-
meters), different compositions, and different struc-
tures. These include such formations as several poly-
typic modifications, syntactic accretions, polysynthetic
twins, exsolution microstructures, etc. The phases of
such formations may have different dimensionalities,
but the most widespread and interesting in terms of
crystal optics are two-dimensional (layered) heteroge-
neous structures built by alternating plates of different
thicknesses having different compositions, structures,
or orientations. Such heterogeneous crystals are the
objects of the present study.

The nature of such “composites” may readily be
established by X-ray diffraction and electron micros-
copy studies. However, these methods are too intricate
for use on a mass scale. Moreover, in many instances
the X-ray diffraction methods are insufficiently sensi-
tive to a low content of one of the phases. Also, the opti-
cal properties of such objects may vary considerably.
Therefore, when studying “single crystals,” researchers
often encounter various distortions of the optical indic-
atrix caused by crystal heterogeneity.

Considering the optical properties of heterogeneous
crystals, one has to distinguish between two types of
such crystals. If the layering scale or the size of a phase
inclusion is less than the light wavelength, it is impos-
sible to distinguish the object considered from a single
crystal both in terms of morphology and in terms of
crystal optics. The composite structure of such opti-
cally homogeneous systems is indicated by their anom-
1063-7745/05/5002- $26.00 ©0297
alous optical properties, which manifest themselves in
pronounced variations of the shape and orientation of
the optical indicatrix both within single crystals and in
different crystals of an ensemble. The variations of the
optical characteristics are not related (at least, directly)
to the variations of the chemical composition. If the
layer thickness exceeds the light wavelength, a crystal
is optically heterogeneous, which is seen from the
absence of extinction in orthoscopy and distortions of
its conoscopic figures. These two types of systems
often behave quite differently and should be considered
separately. Optically homogeneous systems have been
studied rather well. There are several methods for con-
structing the resulting optical indicatrix of layered crys-
tals. For a number of simple cases, the inverse problem
is also solved; i.e., it is possible to calculate the layering
parameters from the known optical properties of the
crystal [1–4]. The behavior of optically heterogeneous
systems has been studied to a much lesser degree.
Therefore, we undertook this study to better understand
the behavior of the these systems.

If the layer thickness exceeds the visible-light wave-
length, each of the components acts on polarized light
as an independent crystal. Therefore, it is impossible to
construct the total indicatrix for such a system as a
whole. In fact, this is the manifestation of the optical
heterogeneity of such a heterogeneous crystal. If the
system components are oriented arbitrarily, then, in the
general case of orthoscopy, no system extinction takes
place; thus, the orthoscopic method is inapplicable. The
situation with the conoscopic method is quite different.
A conoscopic figure is formed by light waves propagat-
ing in the crystal along different directions. Along some
of these directions, the directions of vibrations in differ-
ent components may coincide; i.e., extinction becomes
possible. Thus, in principle, one may calculate the
mutual orientations of the components. Further on, the
 2005 Pleiades Publishing, Inc.
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intensity of light transmitted along the given system
direction is determined not only by the component ori-
entations but also by the component thicknesses; i.e., it
is also possible to determine the fraction of each com-
ponent in a heterogeneous crystal. This problem is very
complicated, so we consider it only for the simplest
case of a two-component system with the particular
misorientation of the optical indicatrices of the compo-
nents.

Consider a crystal consisting of two components
characterized by indicatrices having different shapes
and misoriented by an arbitrary angle ψ with respect to
the common indicatrix axis (normal to the layering
plane) which is either ng or np (the case of misorienta-
tion around nm is not considered). It should also be
noted that, in this case, each component may represent
an optically homogeneous but structurally heteroge-
neous system. This situation is often encountered in OD
crystals (heterogeneity at several scale levels) [5, 6]. In
particular, this model is applicable to heterogeneous
crystals of micas and some other polytypic compounds.

The optical heterogeneity of a system manifests
itself in distortions of the conoscopic figures of these
crystals. The distorted interference patterns differ from
normal undistorted ones by deformation of interference
bands and unusual behavior of isogyres.

The distorted conoscopic patterns of natural micas
[7, 8], synthetic phlogopite [9, 10], and potassium fer-
rocyanide [11] were repeatedly observed and
described. These patterns were interpreted qualitatively
correctly as a result of the superposition of differently
oriented lamellae and the optical indicatrices. However,
as far as we know, no attempts to quantitatively inter-
pret the anomalous conoscopy were undertaken. Not
claiming an exhaustive analysis of this complex phe-
nomenon, we consider below the main characteristics
of distorted conoscopic figures.

BEHAVIOR OF ISOGYRES

The main characteristics of the isogyre behavior in
optically heterogeneous crystals were discussed in
detail elsewhere [3]; therefore, we consider here only
the most important aspects of isogyre behavior.

An isogyre is the geometric locus of points in the
visual field of a conoscope with the equivalent direc-
tions of the light-wave vibrations [12], whereas a visi-
ble isogyre is the geometric locus of the points with the
vibration directions coinciding with the vibration direc-
tions in polarizers. For most of the light waves propa-
gating in a heterogeneous crystal at different angles, the
directions of vibrations in its two components do not
coincide. Therefore, in the general case, the isogyres
are invisible in the visual field of a conoscope. When
the microscope stage is rotated, the isogyres of the two
components start moving in the visual field with differ-
ent velocities and along different directions. Therefore,
at a certain moment, both isogyres will be located at the
C

same site of the visual field (Fig. 1A); in other words,
the directions of vibrations at the merging points of
both components coincide with the directions of vibra-
tions in polarizers. It is at this moment that the isogyres
become visible (and darkness appears at the coinci-
dence points). At the smallest stage deviation from this
position, the visible isogyres disappear. It is clear that,
within the complete stage rotation, this situation should
be repeated four times. The distance ρ* from the wire-
cross center to a visible isogyre characterizes the
“effective” angle between the optic axes in the crystal
(Fig. 1A (c)). The expression for ρ* as a function of the
angle between the optic axes of the components and
their misorientation is given in [3] as well as the expres-
sion for the angle η* of the stage rotation from the
extinction position of one of the components prior to
the appearance of a visible isogyre. It is clear that the
thickness (volume fraction) ratio of the components
does not affect these characteristics.

In some particular cases, the coincidence (and
appearance) of isogyres takes place in the extinction
position, i.e., at ψ = 0° or 90° (the planes of the optic
axes of the components are either parallel or perpendic-
ular to one another), or if one of the components is
uniaxial. The complete rotation of the stage four times
gives rise to cross appearance in the absence of visible
isogyres in other positions. In orthoscopy, this system
shows complete extinction; i.e., it is undistinguishable
from a single crystal! It is this situation that is charac-
teristic of heterogeneous potassium ferrocyanide crys-
tals [13].

A somewhat more complicated situation is observed
if the components are rotated by a certain angle ψ about
a direction forming a certain small (several degrees)
angle α with acute or obtuse bisectors. This situation
takes place in fluorphlogopite and some lepidolites. In
this case, the rotation of the microscope stage results in
the nonsimultaneous appearance of two visible isogyre
branches in opposite quadrants. This may readily be
seen if one separates the points of emergence of the
acute bisectors of the components (point O in Fig. 1A (c))
to separate by the angle 2α (points O' and O'' in
Fig. 1B (a); for simplicity, the bisectors are rotated
along the diagonal of the visual field). It is clear that in
this case isogyres become invisible. The isogyres of the
components will overlap if one rotates the stage from
this position in any direction. Then, the isogyre
branches coincide either in quadrant I or in quadrant III.
The calculations show that the angle of rotation of the
stage between the moment of appearance of two
branches of the visible isogyre ∆η* at the given α
increases with a decrease in the angle between the optic
axes of the components and with an increase in the
effective angle between the optic axes of the crystal.
The experiments on fluorphlogopite show that ∆η* var-
ies from 0° to 20° [6]. Of course, the value ∆η* depends
only on the optical characteristics and component mis-
orientation and does not depend of the component frac-
tions. The wide range of value ∆η* in fluorphlogopite
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 2      2005
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Fig. 1. Scheme of appearance of isogyres (broad black hyperbolas in Figs. 1A (c) and 1B (b) and 1B (c)) during the rotation of the
microscope stage. (A) Simultaneous appearance of the isogyre branches: (b, c) successive rotations from (a) the extinction position
of one of the components in the direction of a double arrow. Solid and dashed lines are the optic elements of different components
misoriented by the angle ψ; half-bold lines show the direction of the isogyre motion. (B) Alternating appearance of two isogyre
branches: (a) directions of the motion of isogyre branches of different components (solid and dashed crosses are the asymptotic
curves of the corresponding isogyres; the dot-and-dash line indicates the position of the cross wires); (b, c) conoscopic figures
formed at different positions of the stage. For the remaining notation see the text.
is explained by the fact that the components of an opti-
cally heterogeneous crystal are not pure polytypes but
are optically homogeneous stacks with a layering scale
less than the light wavelength.

BEHAVIOR OF INTERFERENCE BANDS

Unlike optically homogeneous systems, the shape
of interference bands cannot be described by the
Cassinian ovals and does not remain constant during
stage rotation, which is quite unusual in conventional
conoscopy. Anomalous conoscopic figures of even one
compound are very diverse (see figures in [8]). Never-
theless, it is possible to indicate a number of common
characteristics of distortion of interference bands.
These are:

deformation of Cassinian ovals, including their
extension and contraction, skewness and local curva-
ture;

disrupture and relative displacement of interference
bands along the common isogyre of the system. The
segments of the interference bands may be closed and
form distorted rings or may roll into spirals;

the appearance of two symmetric dark spots: com-
pensation (isotropic) points. Unlike the first two char-
acteristics continuously varying during rotation of the
stage, the compensation points do not change their
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 2      2005
positions in the reference system of the crystal. These
positions depend on the optical properties of the com-
ponents, their misorientation, and their volume frac-
tions during layering.

It is easy to quantitatively analyze the positions of
the compensation points characterized by the constant
polar distance . Let us consider what factors affect
this distance. It has already been indicated that vibra-
tion directions of two components are different at all
the points of the viewing field of the conoscope except
for the points lying along the coinciding isogyres. The
emergence points of the optic axes of both components
lie at the common isogyre (Fig. 2). At the points of
isogyre branches lying between the emergency points
of the optic axes, the vibration directions of two fast or
two slow waves are mutually perpendicular. At the
external segments of the isogyre branches these direc-
tions are parallel. Thus, two conclusions may be drawn.
First, the points of the common isogyre (and only these
points in the viewing field of the conoscope) preserve
their color during the rotation of the microscope stage.
Second, the path differences between two optic axes of
the components, which are attained by light in each of
the components, are subtracted. Therefore, there should
exist an isotropic compensation point at which the
intensity of the transmitted light equals zero. The posi-
tions of the compensation points may be determined
from the well-known expressions for birefringence at
the arbitrary indicatrix section (see, e.g., [14, 15]) and

ρ̃
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under the condition of the zero total path difference. For
a polar distance between the compensation point and
the emergence point of the common axes of the compo-

nent indicatrices lying in the unit circle  = sinθ (where
θ is the angle between the normal to the section plane
and the given direction of the light-wave propagation),
we arrive at the following equation, which depends
either on the thickness ratio h2/h1 or the volume-frac-

ρ̃

1

2

OO1

OO2

CP

ϕ

ρ~

Fig. 2. Scheme of the position of the compensation point
(CP). OO1 and OO2 are the emergence points of the optic
axes of components 1 and 2, respectively. Numbers 1 and 2
indicate the positions of the common isogyres.
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Fig. 3. Polar distance for the compensation points calcu-
lated for the case of intergrowth of the uniaxial (2V1 = 0)
and biaxial components (angle 2V2 is indicated in figure)
with the same main birefringence values as a function of the
volume–fraction ratio f1/( f1 + f2) of the components. The
lines show the calculation by Eq. (2); the points are deter-
mined from the data of computer simulation.
C

tion ratio f2/f1 of these components:

(1)

Here ρi = sinVi , 2Vi and ng – np are the angle formed by
the optic axes and birefringence of the ith component,
respectively; and ϕ is the angle for which the micro-
scope stage should be rotated from the position of
extinction of the first component in order to bring the
compensation point to the ocular cross wire. In some
particular cases, Eq. (1) may considerably be simpli-
fied. Thus, if layers are formed by two biaxial compo-
nents with the rotation angle ψ = 90° or if a uniaxial
component (2V1 = 0°) alternates with a biaxial compo-
nent, we have ϕ = 0° (i.e., the isotropic point lies in the
plane of the optic axes of one of the components). Then,
expression (1) takes the form

(2)

In this case, the dependence of the compensation-point
position on the thickness ratio of the components or
their angles 2V (Fig. 3) becomes rather simple.

An equation of type (1) may also be obtained for any
other point of the common isogyre if one determines
the path difference at this point with the aid of a quartz
wedge or a compensator. This may be necessary if no
data on the compound under study are known a priori
and one has to determine the optical properties of the
following components from the anomalous interference
figure: 2Vi  and (ng – np)i; the angle of their misorienta-
tion ψ; and the thickness or volume fraction ratio, h2/h1
or f2/f1. In some instances, some data on the compound
are known a priori, e.g., characteristics of its compo-
nents or the misorientation angle. Then, the number of
parameters of the heterogeneous crystal that should be
measured is reduced somewhat.

SIMULATION OF DISTORTED CONOSCOPIC 
FIGURES

It is possible to calculate distorted conoscopic fig-
ures using the known optical properties and misorienta-
tion angles of the components. In principle, this calcu-
lation may be performed for any number of the compo-
nents and for any optical characteristic of each of the
system components. However, we limit our consider-
ation to two-component systems only. The relative
intensity I/I0 of light transmitted through a crystalline
plate located between two crossed polarizers may be
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calculated by the well-known formula [14, 16]

(3)

In Eq. (3), the angle η corresponds to the angle between
the direction of vibrations in one of the polarizers and
the direction of vibrations in the crystal and the phase

difference δ = 2πhl(  – )/λ is determined by the
difference in the refractive indices in the given section

(  – ), the light path in the crystal hl, and the light
wavelength λ. For a plane-parallel plate, the light path
in a crystal is hl = h/cosθ, where h is the plate thickness
and θ is the angle between the plate normal and the
direction of the light incidence. The above formula
allows one to calculate the intensity of the transmitted
light at any point with the polar coordinates χ and ρ =
sinθ in the viewing field of the conoscope; in other
words, it allows one to calculate the conoscopic figure.
When calculating conoscopic figures, one has to intro-
duce the correction for light refraction at the crys-
tal/medium (usually air) interface ρo/ρ = nc/n, where
ρo = sinθo is the observed polar coordinate of the point,
and nc/n is the ratio of the refractive index of the crystal
in the direction normal to the layer plane to the refrac-
tive index of the medium. One may calculate η and δ at
the given point (χ, ρ) either by the equations following
from the Fresnel theorem [16, 17] or, as we have done
in this work, by the direct transformation of the permit-
tivity tensor. The behavior of isogyres in the conoscopic
figure thus obtained is described by varying the first
multiplier in the right-hand side of Eq. (3), i.e., by the
misorientation of the directions of vibrations of the
waves in the crystal and polarizers. The shape of the
interference bands reflects the change in the path differ-
ence; i.e., it is determined by the second multiplier in
the right-hand side of Eq. (3). Fast and accurate simu-
lation of conoscopic figures of crystals became possible
only with the advent of powerful computers and, as far
as we know, the first program for such calculations was
written only in 1980 [18]. Today, the calculation of
conoscopic figures is not a difficult problem any more
and is performed, e.g., for simulating the conoscopic
figures of optically active crystals [19].

For optically heterogeneous two-component sys-
tems with i = 1, 2 and the volume fractions fi = hi/(h1 +
h2), it is possible to calculate ηi and δi at the given point
(χ, ρ) for each component and then to use the following
well-known expression for the intensity of light trans-
mitted through two superimposed plates located
between two crossed polarizers [14, 20]:

(4)
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One can readily see that if the components having
the same optical characteristics are not misoriented
with respect to one another and if η1 = η2, then Eq. (4)
is transformed into Eq. (3).

SOME EXAMPLES OF CALCULATIONS 
OF DISTORTED CONOSCOPIC FIGURES

As we have already indicated, conoscopic figures of
heterogeneous crystals are highly diverse. Therefore, it
is hardly possible to consider all the variants of these
figures. Thus, we discuss here only some particular
cases of their widespread variants. It should also be
noted that the characteristics of distorted conoscopic
figures, such as the positions of the compensation
points or the moments of appearance of visible isogyres
on the calculated figures, agree well with the values cal-
culated by the analytical formulas of type (1) (Fig. 3).
Moreover, in all the cases, the comparison of the model
calculations with the experimental observations shows
that the calculation made at one wavelength reflects
quite well the specific features of the conoscopic fig-
ures obtained at the wavelengths of white light.

Layering of Uniaxial and Biaxial Lamellae

This is the simplest case. Consider a layered hetero-
structure consisting of uniaxial (ng – nm = 1.588, np =
1.552, the optic axis is normal to the layer plane, the
volume fraction of the component is f1) and biaxial
(ng = 1.588, nm = 1.552, 2V = 48°, the acute bisector np

is normal to the layering plane, the volume fraction of
the component is f2) components. The conoscopic fig-
ures differ depending on the ratio of volume fractions
(thicknesses) of the components. If, in the crystal, one
of the components prevails, the conoscopic figure con-
tains more details characteristic of this component and
the figure distortions are not especially noticeable. The
most pronounced distortion takes place if the volume
fractions of the components are equal (or, more exactly,
if the path differences of these components are the
same; in our example this corresponds to the equal
thicknesses of the components). Figure 4 shows the dis-
torted conoscopic figures of such a crystal at different
positions of the biaxial component with respect to the
crossed polarizers η and different ratios of the volume
fractions fi (or thicknesses hi = fi(h1 + h2)) of the com-
ponents. Proceeding from the symmetry consider-
ations, the complete picture of the conoscopic figure
requires the consideration of only one-eighth of the
total rotation of the microscope stage. The total thick-
ness of the heterostructure h1 + h2 was taken to be equal
to 0.3 mm.

The analysis of the figures shows that, in this case,
the dark cross in the visual field appears four times dur-
ing the complete stage rotation. The crystal orientation
at this moment corresponds to the extinction position of
the biaxial component. The compensation points are
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(a) (b)

(c) (d)

(e) (f)

Fig. 4. Calculated conoscopic figures of a heterostructure consisting of uniaxial (2V1 = 0°) and biaxial (2V2 = 48°) components in

monochromatic light with the wavelength 565 nm. The visual field  = 40°; the volume-fraction ratio of the compo-

nents f1/f2 = 1. Four successive figures (a–d) correspond to the rotation of the microscope stage from the position of extinction of
the biaxial component in the counterclockwise direction by an angle η equal to 0°, 15°, 30°, and 45°; (e, f) the same for η = 30° and
f1/f2 = 1/3 and 3, respectively (cf with Fig. 4c).

ρmax( )arcsin
located on one of the cross arms. These points are sur-
rounded with the parts of the interference bands adja-
cent to the interference bands of the next order. When
rotating the stage from this position, we observed the
intensity redistribution at the cross arms such that there
was no extinction in the central part of the viewing field
and, only at the viewing-field periphery, where the
directions of component vibrations were close, was the
extinction preserved. The shape of the interference
bands continuously vary during stage rotation. The fig-
ure looses its two symmetry planes. The asymmetric
junction of the segments of the interference bands of
various orders provides the formation of a helicoidal
C

shape. During rotation by 45°, the conoscopic figure
acquires its two symmetry planes located along the
diagonals with respect to the wire cross. In the quad-
rants to which the points of the emergence of optic axes
of the second component moved, the compensation
point and isolated segments of the interference bands
are located on the diagonals. In two other quadrants, the
segments of the interference rings are also located
along the diagonals. On the whole, the variation of the
thickness ratio of the components affects neither the
structure of the conoscopic figures nor their symmetry.
However, if one type of lamella dominates, it is this
type that makes the major contribution to the resulting
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 5. Calculated conoscopic figures of a heterostructure consisting of two equivalent biaxial components (2V2 = 48°) in mono-

chromatic light with the wavelength 565 nm. The viewing field  = 40°; the volume-fraction ratio of the components

f1/f2 = 1. Four successive figures (a–d) correspond to the rotation of the microscope stage from the position of extinction of the first
component by an angle η equal to 30°, 45°, 60°, and 75°. The four remaining figures (e–h) correspond to the case f1/f2 = 1/3 and
η = 30°, 45°, 60°, and 75°, respectively (cf with Figs. 5a–5d). The rotation angle of the components ψ = 30°.

ρmax( )arcsin
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(a) (b)

(c) (d)

Fig. 6. Calculated conoscopic figures of the heterostructure consisting of two equivalent biaxial components (2V2 = 48°). (a–d) The
volume–fraction ratio of the components f1/f2 = 1; the rotation angle of the components ψ = 90°; and the angle η is 0°, 15°, 30°,
and 45°, respectively. For the remaining notation, see Fig. 5.
conoscopic figure, and the corresponding standard
conoscopic figure is clearly seen against the back-
ground of the more complicated total pattern (Figs. 4e
and 4f).

Layering of Two Types of Equivalent Biaxial Lamellae 
Rotated by Angle ψ Relative to Acute Bisector

In this case, the conoscopic figures are more diverse
since, in addition to the rotation of the heterogeneous
system with respect to crossed polarizers and the ratio
of the volume fractions of the components, one may
also vary the misorientation angle ψ between the com-
ponents. Consider the same heterogeneous system as in
the previous section with only one difference: the
uniaxial component is substituted by the biaxial one
with the crystallographic and optical characteristics of
the second component. The model calculations were
performed at three misorientation angles ψ = 30°, 60°,
and 90° (Fig. 5).

The optical distortions are the most pronounced at
equal volume fractions of the components. The optical
picture acquires two symmetry planes in the two fol-
lowing cases. (1) The position of the crossed polarizers
coincides with the bisectors of the angles formed by the
planes of the optic axes of the components (Fig. 5d). In
this variant, the compensation points lie on one of the
cross wires (vertical in Fig. 5d) and are symmetrically
C

surrounded with the pieces of the lemniscates of the
first and the second components. Along the second
wire, a broad extinction region not touching the center
of the viewing field is located where the directions of
the component vibrations are considerably misoriented.
(2) Bisectors of the angles formed by the planes of the
optic axes of the components coincide with the diago-
nal directions in the position of the crossed polarizers
(Fig. 5a). In this case, the hyperbolic branches of a vis-
ible isogyre appear at the vertices where the compensa-
tion points are located. The interference bands closest
to these points are disrupted, displaced along the
isogyre branches, and closed at the interference bands
of the next order.

If the volume fractions of the crystal components
are not equal, the conoscopic figures lose the symmetry
2mm in the positions considered above. The interfer-
ence bands are skewed with respect to the cross wires
(position 1) or the diagonal (position 2), and the com-
pensation points are displaced along the common
isogyre toward the direction of the emergence of the
optic axis of a “thicker” component. In the other posi-
tions, highly complicated figures having no symmetry
planes are observed irrespective of the thickness ratio
of the components. These figures are characterized by
the considerable change of the intensity along the inter-
ference bands and the asymmetric closure of the frag-
ments of the interference bands of different orders. This
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 2      2005
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(a) (b)

(c) (d)

Fig. 7. Calculated conoscopic figures of the heterostructure consisting of two biaxial components with different angles of the optic
axes (2V1 = 48°, 2V2 = 26°). The volume–fraction ratio of the components f1/f2 = 1, and the angle of the component rotation ψ =
30°. The angle η equals 30°, 45°, 60°, and 75° for (a–d), respectively. For the remaining notation, see Fig. 5.
results in the formation of twisting bands. Similar to the
case of a heterostructure consisting of uniaxial and
biaxial crystals, in the case of the domination of one
type of lamella, it is this type of lamella that makes the
major contribution to the resulting figure clearly seen
against the background of the more complicated total
figure (Figs. 5e–5c). The conoscopic figure becomes
close to the normal one also with a decrease in the mis-
orientation angle ψ and its tendency to zero.

Another very interesting particular case is observed
if the components are misoriented by the angle ψ = 90°.
This is characteristic, e.g., of OD potassium ferrocya-
nide crystals. The conoscopic figure in the case of crys-
tal with equally thick components acquires a fourfold
symmetry axis irrespective of the position of the micro-
scope stage (Fig. 6). It should be indicated that orthos-
copy of this system shows normal extinction (see
above), but the shape of the conoscopic figure allows
direct diagnostics of the optical heterogeneity of the
crystal. The isochromic curves have the characteristic
square shape in the direct and diagonal positions of the
plane of the optic axes of the crystal relative to the wire
cross and have the helical form at all the other posi-
tions. If the component thicknesses are not equal, no
fourfold symmetry is observed.
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Layering of Two Types of Lamellae with Different 
Angles between Optic Axes

In this case, the conoscopic figures are asymmetric
irrespective of the thickness ratio of the components
and the rotation angle of the microscope stage (Fig. 7).
However, in this case, the appearance of visible
isogyres at certain crystal positions with respect to the
cross wires and the presence of isotropic compensation
points can be seen clearly. This situation differs from
the situation for the other interference bands that do not
change their positions in the reference system of the
crystal during the rotation of the microscope stage. It
should also be indicated that even in the case of equal
thicknesses of the components the emergence points of
the optic axes may be seen against the background of
the conoscopic figure. This is also true for the crystals
with the components having the same optical proper-
ties. However, the effect is more pronounced if the
angles of the optic axes are different (Fig. 7).

DISTORTED CONOSCOPY 
AS A CHARACTERISTIC OF CRYSTAL 

HETEROGENEITY

Thus, proceeding from the positions of isogyres and
compensation points, one may calculate the main char-
acteristics of macrolayering. However, these calcula-
tions are very time- and labor-consuming and, thus,
may hardly be used in practice. It is also possible to
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Fig. 8. Effect of the chemical composition on the variation of the angle 2V and degree of distortion of conoscopic figures (I–V) of
lithium–aluminum micas. LiO2 content, %: (a) up to 0.7, (b) 0.7–1.2, (c–e) 1.2–4.0, (f) 4.0–5.8.
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Fig. 9. Distribution of fluorphlogopite crystals over the degree of conoscopy distortion in zones 1–5 of the ingot. (a) Seed, (b) single
crystal, (c) polycrystal. P is the position of the furnace at the moment of its switching off (thermal shock). The degree of crystal
heterogeneity dramatically increases in the transition from zone 1 to zone 3 and then increases more smoothly to zones 4 and 5,
which is explained by the thermal shock and subsequent accumulation of impurities in the ingot during directional crystallization.
The degree of distortion of conoscopic figures changes in accordance with this scheme.
compare the observed conoscopic figures with the sim-
ulated ones. In this case, thorough preliminary work is
necessary for the subsequent calculation of the sets of
standard figures for each concrete system. This corre-
sponds to different variants of layering. It should also
be remembered that the above consideration is valid
only for two-component systems and only for a partic-
ular (although widespread) case of component misori-
entation. As opposed to the optically homogeneous sys-
tems, the general case of macrolayering requires further
development. Nevertheless, the anomalous conoscopy
may successfully be used for qualitative estimation of
the degree of layering heterogeneity. With a decrease in
the thickness of any one or both components, the inten-
sity of the light transmitted through the system along
the given direction tends to the intensity given by Eq.
C

(3), where η and δ determine either a thicker plate (in
the first case) or the resulting optically homogeneous
system (in the second case). The distortion of the shape
of interference bands becomes weaker and the compen-
sation points are displaced to the emergence point of
the optic axes of a thicker component (in the first case)
or are transformed into the emergence points of the
optic axes of the homogeneous system (in the second
case), in full accordance with results of the computer
simulation (Figs. 4 and 5). The total degree of distortion
of the conoscopic figure decreases in comparison with
the standard one. Thus, the degree of distortion of the
conoscopic figure is the characteristic of the degree of
the optical and, therefore, structural heterogeneity of
the crystal.
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Today it is impossible to suggest any rigorous quan-
titative estimates of the degree of conoscopy distortion;
however, it is possible to estimate this distortion quali-
tatively, e.g., on a five-point scale. The advantage of
this method is its simplicity and high efficiency, which
are necessary in the statistical study of a large number
of samples. Comparison of the histograms of crystal
distribution in accordance with the degree of distortion
of their conoscopic figures for various objects (sam-
ples, some regions of deposits and deposits themselves,
etc.) gives the possibility of creating the picture of the
variation of structural heterogeneity depending on the
conditions of crystal formation. Thus, such histograms
were constructed for lithium–aluminum micas from
rare-earth metal pegmatites depending on the mica
compositions (Fig. 8) [4, 21, 22]. The sequence given in
Figs. 8a–8f corresponds to the sequence of the change
of the morphological–chemical types of the micas from
selvages to the axis of the pegmatitic vein (some links
of the chain may be absent in some concrete deposits).
Another example is illustrated by Fig. 9, showing the
change of heterogeneity along the ingot length of fluo-
rphlogopite crystals, which is associated with the
change of the crystallization rate caused by a thermal
shock during the incident in the furnace and the subse-
quent accumulation of the impurities in the course of
directional crystallization [3]. Thus, the usefulness of
the qualitative estimation of the distortion of cono-
scopic figures for the study of the nature and genesis of
heterogeneous crystals is obvious.

CONCLUSIONS

The study of optically heterogeneous crystals con-
sisting of layered lamellae of two types showed that, in
many instances, the characteristics of layering such as the
thickness ratio of the lamellae, their mutual orientation,
and their optical characteristics may be obtained by ana-
lyzing their distorted conoscopic figures.

A special program was written for calculation such
conoscopic figures. The use of this program allows one
to considerably simplify analysis of anomalous conos-
copy of composite crystals and to simulate their possi-
ble optical distortions. The experimental studies of
polytypic accretions of natural and synthesis micas and
potassium ferrocyanide show that the optical picture is
often determined not only by the characteristics of pure
layering polytypes but also by the optically homoge-
neous (but structurally heterogeneous) stacks of such
polytypes possessing their own optical indicatrix. In
this case, the qualitative estimation of the degree of
conoscopic figure distortion on the point scale turns out
to be useful.
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Abstract—The possibility to describe the principal phase transition in lipid systems as a weak orientational
first-order phase transition with characteristics close to those of a second-order phase transition characterized
by pretransition phenomena and rather strong fluctuations has been considered. A first order transition is
explained by interactions between fluctuations of molecule orientations and density fluctuations at a low shear
modulus. The jumpwise behavior of enthalpy, volume, heat capacity, compressibility, sound velocity and
absorption, and the order parameter are analyzed. It is shown that because of molecular van der Waals interac-
tions the shear modulus should give rise to more pronounced jumps of the above quantities with an increase in
molecule lengths. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

Recently, the physical nature of the phase transition
“melting–chain ordering” and its relation to interlayer
interactions in lipid systems have been intensively stud-
ied [1–4]. These problems are of the fundamental
importance both from physical and biological stand-
points. Each bilayer in a membrane is a quasi-two-
dimensional system, which undergoes the so-called
main phase transition (chain ordering), and is similar to
a first-order liquid–solid phase transition characterized
by the jumps of the first derivatives of free energy with
respect to temperature [1, 5]. At the same time, in the
vicinity of the transition temperature TM, the lipid sys-
tems demonstrate the behavior characteristic of second-
order phase transitions, i.e., an increase in the density
fluctuations in the bilayer plane, a jump in the flexural
rigidity, and an anomalous increase in a distance
between bilayers in the film (swelling) [6–8]. The cause
of anomalous swelling and its relation to the nature of
the main transition are the subjects of permanent dis-
cussions. There are two alternative approaches to the
explanation of this phenomenon. The first is based on
the assumption that lipid bilayers are in the state close
to critical [7, 8]. The second is based on the concept that
the main phase transition is a weak first-order transition
and has nothing in common with any critical state [6].
This approach yields the consistent quantitative expla-
nation of such properties of a system of packed lipid
molecules as density fluctuations, compressibility, and
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flexural rigidity. The concept of a weak first-order tran-
sition turned out to be rather fruitful in description of
phase transformations in many solids [9, 10]. There
also exist some approaches to the description of phase
transitions in smectic liquid crystals with two- and
three-dimensional structures which take into account
far- and short-range orientational and positional order-
ing [11, 12].

Below, we consider the possibility of describing the
above main phase transition in lipid systems as a weak
orientational first-order phase transition whose charac-
teristics are close to those of a second-order phase tran-
sition characterized by pretransition phenomena and
pronounced fluctuations. A first order transition in this
case is explained by interactions between the molecule
and density fluctuations at a low shear modulus. It was
assumed [9, 10] that a shear modulus µ has the same
finite value both in the low- and high-temperature
phases. Only the case of a logarithmic temperature
behavior of heat capacity was considered. In the present
study, when studying dipalmitoyl-phosphatidylcholine
(DPPC) and dimyristoyl-phospatidylcholine (DMPC),
we considered the case of the zero µ value in the high-
temperature phase (of the type of smectic A with the
point symmetry group D∞h) and the case of a finite µ
value in the low-temperature phase with the correlation
of tilted molecules in the smectic plane (either of a
smectic C or a smectic G with the point group C2h or
Ci). Moreover, the µ value may be a function of temper-
© 2005 Pleiades Publishing, Inc.
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ature and the temperature dependences of the thermo-
dynamic quantities are described by power laws. We
consider the thermodynamics of a weak phase transi-
tion in this situation for multilayer and one-layer mem-
branes.

GENERAL APPROACH TO THE DESCRIPTION 
OF WEAK FIRST-ORDER PHASE TRANSITION

Earlier [9], it was shown that, in the general case, the
compressibility and interactions between molecules
with different characteristics (electric and magnetic
moments, director orientations, spins, etc.) due to
phonon exchange results in the change of the character
of a phase transition undergone by such a material and
a first-order phase transition takes place in such a mate-
rial in these cases where, in the absence of the above
acoustic effects, a second-order phase transition would
have taken place. At the nonzero shear modulus, the
interaction via phonon exchange cannot fully compen-
sate the compressibility effect giving rise to a first-order
phase transition. When the shear modulus acquires the
zero value, the above compensation takes place, which
results in a second-order phase transition with the cor-
responding fluctuation effects.

Order parameter in a main phase transition. The
order parameter in the phase transition under consider-
ation is of great interest but is still unclear. Unfortu-
nately, no accurate crystallographic data have been
obtained on the low-temperature phase of lipid mem-
branes. One may only state that the membrane consists
of tilted molecules and that there is a certain correlation
in molecular positions. In this study, we assumed that
the main characteristic of this order parameter is the
average molecule tilt (deviation θ from the normal z to
a smectic monolayer (in fact, to a lipid bilayer) or to the
membrane xy plane along a certain direction). Above
the temperature of this transition TM (or Tc, as is usually
considered in the theory of phase transitions), no such
average deviation of molecules exist. The formation of
a certain three-dimensional crystal lattice below TM

would be characterized by the appearance of a low
shear modulus as a result of the above positional corre-
lations of lipid molecules.

It is possible to imagine a zigzag molecule shape,
which is sometimes used as a model in physics of liquid
crystals (Fig. 1). In this case, the thickness of a smectic
monolayer is less than the double length l of a molecule
and is equal to the absolute value of the projection lz.
Then, the system of two-dimensional rotators (ξ1, ξ2) of
the unit length having the tensor nature ξ1 =

, ξ2 =  undergoes the phase

transition to the gel state (low-temperature phase). In
other words, a fixed azimuthal angle in the xy plane
(measured, e.g., from the x axis) and a small deviation
angle θ from the normal to this plane, θ ≈ 〈lx〉/lz ≈ 〈lx〉/l

lzlx

lx
2

ly
2

+( )lz
2

---------------------------
lzly

lx
2

ly
2

+( )lz
2

---------------------------
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are formed if the azimuth angle equals zero. In the
smectic A–smectic C transitions in liquid crystals, the
thickness lz of the smectic layer either remains constant
at the constant length of the molecules or decreases
with lowering of temperature because of an increase in
the tilt θ of the molecules. In first-order phase transi-
tions below TM in lipid systems, the average value of the
order parameter 〈ξ 1, ξ2〉 should change in a jumpwise
manner and increase with an increase in the molecular-
chain length, θ(TM) ~ (TM – T)β ~ µβ/α ~ l2β/α.

It should be noted that it was observed experimen-
tally that the lipid membranes considered here become
thicker as they approach the point TM from the side of
high temperatures (swelling effect) [6–8]. This phe-
nomenon may be associated with a certain ordering
mechanism of molecules which experience both con-
formational changes and fluctuation effects in the vicin-
ity of TM (Fig. 1). Another reason may be thickening of
water interlayers between the smectic layers in a mem-
brane. Experimentally, it is possible to separate such
effects and to separately study the role of each of these
factors. These phenomena will be considered in the sec-
ond part of this work.

Model of a first-order phase transition in a lipid sys-
tem. It was assumed [9] that the character of the transi-
tion is similar to that in a molecular system with the
Hamiltonian H0 in the case where the effective interac-
tions do not lead to singularities at small phonon
momenta k. The interactions via phonon exchange have
no place if k = 0 but have a nonvanishing limit at k  0.
It is possible to single out the tensor of uniform defor-
mation

(1)
∂uα r( )

∂rβ
---------------- uαβ

1
N
---- ikβuα k( ) ikr( ),exp

k 0≠
∑+=

(a) (b)

S1

S1

θ
θ

Fig. 1. Molecular model of a smectic monolayer (lipid
bilayer) which takes into account orientational fluctuations
and conformational changes. (a) Pronounced orientational
disorder and pronounced conformational changes far from
the transition temperature; (b) an increase in the bilayer
thickness in the vicinity of TM due to considerable orienta-
tional correlations and weak conformational changes.
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where N is the number of molecular cells in the unit
volume. To avoid the above singularity and calculate
the free energy F = −T lnΣexp(H/T), we have to add to

the Hamiltonian H the term –(1/2)ν , which
describes the interaction with the zero transferred
momentum. The parameter ν is selected in a way that
the total interaction has no singularity in the Hamilto-

nian  = H – (1/2)ν  at small k. As a result, the
quantity H is written in the form

(2)

where ξ = quαα, ν = q2/(K0 + (4/3)µ)N, uαα is the change
of the volume, q is the striction coefficient, and K0 is the
volume elasticity modulus. The Hamiltonian H0 leads
to the following expression with a singularity

(3)

e.g., f(x) ∝  |x |2 – α, since the second term in Eq. (2) does
not change the character of the singularity but leads to
the change of the transition temperature T0.

To determine F for ν ≠ 0, it is possible to use the
well-known method suggested in [9]. The function F
satisfies the statistical accuracy with the equation

(4)

at the initial condition (3). The solution of this equation
in the parametric form is written as

(5)

Substituting the quantities ν and ξ into Eq. (5) and
expressing uαα in terms of pressure P with the aid of the
equation P = –∂F/∂uαα, we arrive at the thermodynamic
potential Φ.

It was assumed [9, 10] that the shear modulus µ has
the same finite value in high- and low-temperature
phases. Moreover, only the logarithmic behavior of the
function f ''(x), i.e., heat capacity, was considered. Now,
we consider the case where the shear modulus of DPPC
and DMPC has the zero value in the high-temperature
phase (of smectic A type) but has a nonzero finite value
in the low-temperature phase with tilted correlated mol-
ecules in the smectic plane. Moreover, µ may be a func-
tion of x; e.g., µ = µ(x) ∝ | x |ε at x ≤ 0 in accordance with
the singular behavior of the function f(x). Below, we
assume that the exponents α and ε have low positive
values and that ε < α. As a result of the above procedure

H0
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H̃ H0
2

H H̃ ξH0
1
2
---νH0

2 1
2
---K0uαα

2
,+ + +=

F ν  = 0( ) –T0 f
T T0–

T0
--------------- gξ– 

  1
2
---K0uαα

2
;+=

2
∂F
∂ν
------ ∂F

∂ξ
------ 

 
2

=

F = –
1

2νg
2

------------
T T0–

T0
--------------- gξ– x– 

  2

T0 f x( ),
∂F
∂x
------–  = 0.
C

for negative x values, we find from Eq. (5) that

(6)

where 

(7)

the constant c is the derivative of the critical tempera-
ture T0 + cP with respect to pressure P, and Φ0 is the
nonsingular part of the potential. At x > 0, we have

(8)

(9)

POWER DEPENDENCES OF THERMODYNAMIC 
CHARACTERISTICS

Consider in more detail the case, where, in the
absence of acoustic motion, the function f(x), heat
capacity C ∝  f ''(x), susceptibility χ, and correlation
radius rc vary with the temperature according to the
power laws

(10)

It should be remembered that, if µ = const and λ =
const in both phases, Eq. (6) shows that the quantity τ ≡
(T – T0 – cP)/T0 is not a monotonic function of x
(Fig. 2a). Therefore, Φ depends on τ not in the way
illustrated by Fig. 2b, because x, being a function of T,
is not unique and x and Φ have two branches (a singu-
larity point corresponding to the values x = τ = 0 lies in
the region of absolute instability, x– ≤ x ≤ x+). The tem-
perature of a first-order phase transition is found as the
point of intersection of the two branches of Φ.

If the curve which describes the behavior of the
shear modulus µ is not symmetric, we arrive at the
dependence λ = Λ|x |ε for negative x and λ = 0 for posi-
tive x. In this situation, Eqs. (6)–(10) yield the follow-
ing results at low ε values:

at
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τ

x

0 τ+τ– τ

Φ – Φ0
(a) (b)

Fig. 2. Qualitative (a) τ(x) and (b) Φ(τ) dependences at the same values of the shear modulus above and below Tc.
at

(11)

at

Expressions (11) show that low ε values do not qualita-
tively change the above results and yield the effective
index α – ε. Only the dependence τ(x) at very low val-
ues |x | is changed at finite ε, but τ(x) ∝  Aλ|x |1 – α at ε =
0 in the region of absolute instability. Therefore, in
what follows, we consider the case where ε = 0, i.e., the
constant parameters µ and λ at x < 0. It is also assumed
that the quantities Aλ and α are much less than unity.
Qualitatively, the τ(x) and Φ(τ) dependences in the
“nonsymmetric” situation under consideration are
illustrated by Fig. 3.

Under the above assumptions, differentiation of the
potential Φ with respect to temperature and pressure
yields the following expressions for entropy S, the
change in the volume ∆V, heat capacity CP, and hydro-
static compressibility 1/K:

τ 0= x x
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---+ 
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(12)

The temperature of a first-order phase transition Tc is
determined as

(13)

Thus, the coefficient c is equal to the derivative of the
transition temperature with respect to pressure. The
maximum temperature hysteresis (Fig. 2b) is

(14)

The jumps of entropy and volume in a first-order
phase transition are

(15)

(16)

It is seen from Eqs. (11)–(14) that the δT, δS, and δV
values are low because of the smallness of the quanti-
ties Aλ and α, but the hysteresis δT contains an addi-
tional factor small in comparison with δS and δV. An
increase in the shear modulus µ and, thus, in the param-
eter λ results in an increase in the above jumps; i.e., it
becomes more obvious that we are dealing here with a
first-order phase transition. At the transition point T =
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P
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0
x–

Fig. 3. Qualitative (a) τ(x) and (b) Φ(τ) dependences at the zero value of the shear modulus above Tc and the finite value of the
modulus µ below Tc.

τ+
Tc, the quantities CP and 1/K have high but finite values,

(17)

(18)

The results obtained are valid for an elastically iso-
tropic model of a solid. However, it was shown in
[11, 12] that these conclusions are also valid for smec-
tic liquid crystals possessing elastic anisotropy. In such
liquid crystals, elastic isotropy exists in the smectic
plane and the role of the parameter µ may be played by
the shear modulus in this plane.

Earlier [9] it was noticed that in many instances heat
capacity in the presence of acoustic phonons behaves in
the following way. In the region not too close to the
transition point, heat capacity is described by the phe-
nomenological Landau theory and undergoes a jump at
the transition temperature. With an approach to the
transition temperature, an important role is played by
the correlation corrections proportional to |T – Tc |–1/2,
whereas in the direct proximity of the temperature of a
second-order phase transition, heat capacity acquires
very high values and obeys a power or logarithmic law.

The function f ''(x) may be calculated in the first
approximations of the self-consistent field for molecu-
lar systems with a sufficiently large radius of intermo-
lecular interactions. For Ising-type systems with short-
range interactions between the nearest neighbors, the
function f ''(x) has the form –Aln|x | and the Landau
approximation becomes invalid. For multilayer vesicles
considered here, it is possible to assume the existence
of sufficiently long-range intermolecular (van der

CP CP
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C

Waals) interactions and, thus, the existence of a temper-
ature region in which the noticeable correlation correc-
tions would be proportional to |T – Tc |–1/2, which corre-
sponds to a three-dimensional case. In a one-layer
membrane corresponding to a two-dimensional case,
these correlation corrections should be proportional to
(T – Tc)–1.

In general, it is possible to expect [9] that a first-
order phase transition takes place if the following ine-
quality is fulfilled:

(19)

where ∆CP is the anomalous part of heat capacity. If the
left-hand side of the above inequality still exceeds unity
in the phenomenological region, where ∆CP  is the
jump of heat capacity, a first-order phase transition may
be described by the simple Landau approximation
(approximation of a self-consistent field); in this case,
no fluctuation phenomena are observed. This is true,
e.g., for systems with high values of the derivative
∂Tc/∂P and shear modulus µ. Since µ ~ l2, then, because
of van der Waals interactions of lipid molecules with
long chains (l is the molecule length), the fluctuations
become weaker.1 For substances with low values of
these parameters, a first-order phase transition may be
accompanied by noticeable fluctuation phenomena
(pretransition behavior). However, in both cases, the
change of transition enthalpy ∆H = TδS (see Eq. (15))
is proportional to λ1/α ~ l2/α; i.e., it is strongly dependent
on the molecule length l (dramatic increase in ∆H with
an increase in l), which was confirmed experimentally
[13, 14]. In a similar way, the temperature hysteresis δT
should increase as l2/α; therefore, the jump of the orien-

1 This rough estimate corresponds to the assumption that all the
atoms of a molecule interact with all the atoms of another mole-
cule in the same way. In fact, this dependence may be weaker
because such atoms interact differently since they are located at
different interatomic distances.

µ
Tc
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∂P
-------- 

 
2

∆CP 1,≥
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tational order parameter in the θc ∝ | | β transition
should increase as l2β/α.

COMPARISON OF RESULTS 
WITH WELL-KNOWN EXPERIMENTAL DATA

Thermodynamics of nucleation of a solid phase in
liquid lipid films. Consider well-known experimental
data [6] on the thermodynamics of the main phase tran-
sition in multilayer and one-layer lipid films. The char-
acter of the temperature dependences of the specific
heat capacity CP, enthalpy ∆H = T∆S, and volume ∆V
in the vicinity of the transition temperature reminds the
characteristics of a first-order phase transition (Fig. 4):
the function CP(T) has a sharp maximum in the temper-
ature range with the width of about 1 K in the vicinity
of the temperature Tc = 41.2°C. One also sees the char-
acteristic region of fluctuations (from 0.1 K to several
degrees above Tc); the functions ∆H(T) and ∆V(T) rap-
idly change in a narrow temperature interval (about
0.1 K in the vicinity of Tc, with this change being better
seen than for a second-order phase transition, and the
change in ∆V(T) being more steep than the change in
∆H(T)). Thus, it is possible to conclude that specific
enthalpy and volume in this transition would have
jumps TδS ~ 4 × 104 J/mol, ~4 × 103 N/cm2, and δV ~
40 cm3/mol ~ 0.04 at the molecular weight of the order
of 103. These data also lead to the conclusion that the
temperature hysteresis δT may be of the order of 0.1 K.
This low hysteresis was not observed in the experi-
ments under consideration because the transition inter-
val did not exceed 1 K owing to effects induced by
impurities and structural defects smoothening the ther-
modynamic functions. The ratio of the quantities given
by Eqs. (15) and (16) allowed us to estimate the coeffi-
cient as c ~ 3 × 10−3 ä cm2/N ~ 0.03 K/bar, which
agrees with the measured value. Correspondingly,
expressions (14)–(16) allow us to obtain the following
estimates Aλ ~ 2 × 10−2, A ~ 4 × 105 J/(K mol), ~ 4 ×
104 N/(K cm2), and λ ~ 5 × 10–7 K cm2/N at α ≈ 1/2. The
use of expression λ ≈ (µ/T)c2 allowed us to estimate the
shear modulus µ (in gel) as µ ~ 10 N/cm2, a value much
lower than the typical value K ~ 103–104 N/cm2.

Analysis of heat capacities in the fluctuation region
above Tc shows that the change of ∆CP in this tempera-
ture range is about 5 kJ/(K mol) [6]. The use of expres-
sions (10) and (12) for the description of such a change
in one-layer membranes (two-dimensional case) leads
to the conclusion that the index α may be close to unity;
i.e., the correlation corrections are proportional to the
power dependence |τ|–1 and, thus, considerably differ
from the logarithmic dependence –ln |τ| and the depen-
dence |T – Tc |–1/2 (Fig. 5). Similar analysis of the situa-
tion in multilayer membranes (three-dimensional case)
lead to the conclusion that the best approximation here
is the proportionality of the correlation correction to the

xc
–
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dependence |T – Tc |–1/2, in other words, the index α in
this case may be close to the value 1/2 (Fig. 6).

A similar qualitative conclusion may also be drawn
from the experimental data for functions ∆H(T) and
∆V(T) in the same temperature range. It should be indi-
cated that the quantity λ∆CP only slightly differs from
unity in this temperature range, which confirms the
possibility of calculating the function f ''(x) as the first
correlation correction. Thus, the fluctuation phenom-
ena in the thermodynamics of the multi- and one-layer
DPPC vesicles are interpreted within the first approxi-
mations of the theory of a self-consistent field.

Experiments on ultrasound propagation and
absorption. The experimental data on specific ultra-
sound absorption I and the sound velocity U as a func-
tion of temperature in lipid systems were obtained in

[6]. Since U = , where ρ is the material density,
expressions (6) and (12) show that the sound velocity
above the temperature Tc is approximately equal to

(20)
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Fig. 4. Experimental temperature dependence of heat
capacity CP in (a) one-layer and (b) multilayer lipid mem-
branes [6].
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where the correlation corrections are assumed to be
small (which is true at τ ≥ Aλ1/α). Analysis of the exper-
imental data in the region from several tenths of a
degree to several degrees above Tc indicates once again
that the correlation correction in a three-dimensional
case is described by a power law with the index α ~ 1/2.
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Fig. 5. Comparison of the correlation corrections propor-
tional to the (a) –ln |τ|, (b) |T – Tc |–1/2, and (c) |τ|–1 depen-
dences and the experimental CP data for a one-layer dipalm-
itoyl-phosphatidylcholine (DPPC) membrane. The details
of the experiment will be considered in a separate article.
C

Below Tc, the ultrasound velocity can hardly be inter-
preted because of the effects induced by the shear mod-
ulus. Generally speaking, the sound velocities in smec-
tics are characterized by angular dependences and these
phenomena should take place in multilayer lipid vesi-
cles. Moreover, ultrasonic waves are adiabatic rather
than isothermal. We have already discussed the temper-
ature behavior of the isothermal modulus K (see
Eq. (12)); however, it was shown [9] that the adiabatic
Kad value is characterized by a weaker temperature
dependence in the vicinity of Tc.

The measured ultrasound absorption I(T) demon-
strates a pronounced increase in the vicinity of Tc [6]
and even in a interval exceeding the interval for sonic
velocity. This effect was expected because of the rela-
tion of acoustic vibrations and the order parameter, e.g.,
with the average tilt angle of molecules. This is charac-
teristic of all the order–disorder phase transitions
[11, 12]. If the response (susceptibility χ in (10)) of the
lipid systems considered may be described by the clas-
sical Landau theory (with the first correlation correc-
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Fig. 6. Comparison of the correlation corrections propor-
tional to the (a) |T – Tc|–1/2 and (b) |τ|–1 dependences with
the experimental CP data [6] in a multilayer dipalmitoyl-
phosphatidylcholine (DPPC) membrane.
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tions), the main contribution to such a response is
described by the dependence I(T) ~ |T – Tc|–1. Small cor-
relation corrections to this contribution may be of the
order of |T – Tc |–3/2 with the corresponding small coef-
ficient. The experimental data on ultrasonic absorption
are described sufficiently well by the temperature
dependence I(T) ~ |T – Tc |–1. Strictly speaking, I(T) at
the finite frequencies cannot have an infinite value at
the point Tc, and the maximum of the I(T) function
decreases with an increase in the ultrasonic frequency.

CONCLUSIONS
A model of a weak first-order phase transition in

lipid systems has been suggested that takes into account
the low hardness (low shear modulus) of the gel phase
and the average tilt of lipid molecules: the most impor-
tant order parameters of this phase. The power laws
which describe the critical temperature behavior of all
the thermodynamic quantities in a pure orientational
second-order transition are considered. As a result, it
becomes possible to analyze the jumpwise behavior of
enthalpy, volume, heat capacity, compressibility, sound
velocity and absorption, and the order parameter. Since,
according to the model suggested, the molecule orien-
tations play the main part in all the phenomena consid-
ered, the molecular parameters such as the molecule
length pronouncedly influence their characteristics.
Because of intermolecular van der Waals interactions,
the shear modulus dependent on the molecular length
should give rise to an increase in these jumps with an
increase in the molecule length. These conclusions are
in good qualitative agreement with the experimental
data used in estimates of the main model parameters. In
the second part of this study we will show that, because
of the conformational changes in molecules and
appearance of structural defects, the main phase transi-
tion in lipid membranes may become a second-order
transition for rather short molecules and thin lipid
layers.
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 2      2005
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Abstract—Electromechanical effect in various liquid crystalline phases—nematic, smectic A, and smectic C—
is studied. It is shown that a liquid crystal (LC) sample in the nematic phase does not differ from an electrome-
chanical converter containing an isotropic dielectric and exhibits no features characteristic of LCs at electrome-
chanical conversion. A phenomenon similar to the piezoelectric effect may occur in ferroelectric LCs due to
their biaxiality. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

Some studies dealing with electromechanical con-
version in nematic liquid crystals (NLCs) have been
published recently. An ac electric field was applied to
an NLC with a planar alignment and positive dielectric
anisotropy and the sound generated in the LC sample
was recorded [1]. Generally, the sound generation is
attributed to director reorientation. However, no theory
of this phenomenon has been proposed. Electrome-
chanical conversion in ferroelectric liquid crystals
(FLCs) was described in detail in [2–4]. Eber, Bata, and
Jakli proposed a theory of linear electromechanical
effect in FLCs [2, 5]. They showed that cross effects
between the dielectric relaxation and viscous flow are
possible in the SmC* phase owing to its chirality and
biaxiality. Under the action of a field applied to a sam-
ple of such an LC, a flow displacing the cell plates is
generated in it. The field-induced flow in a sample with
a planar alignment is described by the equation

(1)

where ρ is the LC density, v  is the flow velocity, µ(x) is
the effective viscosity coefficient, and γ(x) is the effec-
tive electromechanical-coupling coefficient.

(2)

where ϕ(x) is the azimuthal tilt angle of the director, µ11
and µ5 are the viscosity coefficients, and γ5 and γ2 are
the electromechanical-coupling coefficients. The coef-
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ficients µ(x) and γ(x) depend on the director field con-
figuration along the normal to the sample plates.

According to the theory, LC phase biaxiality is
required for the occurrence of the electromechanical
effect. Therefore, the flows arising in a uniaxial NLC
cannot result in the displacement of the cell plates. To
reveal specific features of the electromechanical con-
version in various LC phases, we studied the parame-
ters of acoustic vibrations in LC samples at different
temperatures.

EXPERIMENTAL

Experiments were performed with three mixtures.
Each consisted of an achiral smectic C (host) and a
chiral dopant (CD).

Mixture I (achiral smectic I, CD content is
10.24 wt %). The phase sequence and transition tem-
peratures are I  120.5  N*  106 
SmA*  66  SmC*  Cr. Spontaneous polar-
ization is 13.5 nC/cm2 at t = 46°C.

Mixture II (achiral smectic II, CD content is 9.93 wt %).
The phase sequence and transition temperatures are
I  83  N*  72  SmC*  Cr. Sponta-
neous polarization is 12 nC/cm2 at t = 46°C.

Mixture III (achiral smectic I, CD content is
17.61 wt %). The phase sequence and transition tem-
peratures are I  106  N*  99  SmA* 
41.5  SmC*  Cr. Spontaneous polarization is
© 2005 Pleiades Publishing, Inc.
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Fig. 1. Temperature dependences of the sound intensity (j) and the sample capacitance (s) for mixture I (cooling).
23.3 nC/cm2 at t = 21°C.

A FLC was placed in a cell consisting of two plane-
parallel glasses coated with transparent ITO electrodes.
The area of the cell plates was no less than 6.6 cm2. The
cell thickness, set by spacers, was 7 µm. Special bound-
ary conditions were chosen to obtain planar alignment
of the cell.

A sinusoidal voltage generated by the audio board
of a personal computer was fed to the LC cell via an
amplifier. The radiated sound was recorded by a micro-
phone, fed to the audio board of another personal com-
puter, and processed. To obtain a “sounding” texture,
the sample in the SmC* phase was subjected to a shear
strain until a sound was generated. First, the mechani-
cal-resonance frequency (determined by the mass of a
movable plate and the viscoelastic properties of the LC)
was found from the amplitude-frequency characteristic
of the FLC sample. Further studies were carried out at
the resonant frequency. Along with the sound intensity,
we also measured the cell capacitance.

n = 5, m = 7, X = F, Y = H – 25%
n = 5, m = 7, X = H, Y = F – 50%
n = 7, m = 5, X = F, Y = H – 25%

Achiral 
smectic I

m = 6, n = 8

Achiral 
smectic II

Chiral 
dopant

H2n + 1Cn CmH2m + 1

X X Y Y

O

O
CnH2n + 1O

OCmH2m + 1

F

C8H17O
O

O
CN

CH3
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RESULTS AND DISCUSSION

As can be seen from Figs. 1 and 2, in the tempera-
ture ranges of the nematic and smectic A phases, the
sound intensity changes little, as well as the capaci-
tance. According to the theory of electrostatic convert-
ers containing an isotropic dielectric [6], the amplitude
of the cell-plate displacement is proportional the con-
verter capacitance, which is actually the case in nematic
and smectic A phases. Apparently, the specificity of
these phases does not manifest itself in electromechan-
ical conversion. In the nematic phase, the electrome-
chanical conversion in our experiments was accompa-
nied by the director reorientation. However, in going
from the nematic to smectic A phase, no director reori-
entation was observed, whereas the radiated-sound
intensity did not change. Therefore, the electromechan-
ical conversion in these phases is not due to the director
reorientation. Near the smectic A–smectic C* phase
transition, the intensity of the radiated sound rises
steeply within the temperature range in which the elec-
troclinic effect manifests itself. Since the character of
the temperature dependence of the capacitance differs
strongly from the temperature dependence of the sound
intensity, the electromechanical conversion in this tem-
perature range seems to be peculiar to liquid crystals.
As was noted previously [2, 4, 5, 7], the electromechan-
ical conversion is due to the electroclinic effect. How-
ever, there is no direct confirmation of this statement. In
other temperature ranges of mesophase existence, the
dependences of the sound intensity and the capacitance
have a similar character. Resemblance of these depen-
dences was also found for mixture II (Fig. 2), in which
no electroclinic effect was observed.

A great number of harmonics were found in the
spectrum of the radiated sound. Thus, the electrome-
chanical response of a FLC to an external field is non-
linear. To reveal the sound generation mechanisms that
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are peculiar to the mesophase, we studied the field
dependences of the first and second harmonics of the
radiated sound.

It is easy to show that the sound generated in the
converters with isotropic dielectrics is the second har-
monic with respect to the excited frequency. The ampli-
tude of the second harmonic must depend quadratically
on the field voltage. The experiment completely con-
firmed this mechanism of sound generation in the
smectic C* phase. As can be seen from Fig. 3, the
amplitude of the second harmonic depends quadrati-
cally on the field voltage. At low voltages, the ampli-
tude of the first harmonic, which is related to the direc-
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Fig. 3. Dependences of the amplitude of the (1) first and
(2) second harmonics of the radiated sound on the electric
field voltage (the frequency of the fed sound is 1500 Hz) for
mixture III at t = 20°C; Ucr is the helix unwinding voltage;
and Ud is the voltage at which the first harmonic amplitude
is maximum.
C

tor reorientation, is larger than that of the second har-
monic; i.e., the mechanism peculiar to LCs is dominant.
The contribution of the second harmonic increases with
an increase in voltage. When the amplitudes of the first
and second harmonics become equal, a further increase
in the voltage suppresses the first harmonic. It is likely
that the linear response of an FLC is accompanied not
only by the shear strain but also by a variation in the
sample thickness. If the change in the sample thickness
related to the linear and nonlinear responses is in
antiphase, this may result in the suppression of one of
the mechanisms of electromechanical conversion. The
mechanism of the phenomenon observed has not been
studied yet; however, one must take it into consider-
ation when studying the nature of the electromechani-
cal response of LCs. The experiments must be per-
formed in the voltage range in which the first harmonic
of the sound dominates. The sensitivity of our experi-
mental setup was not sufficient to investigate the field
dependence of the sound harmonics in the nematic and
smectic A phases. High voltages were used to excite
sound in these phases. In this case, we only observed
the second harmonic. However, it is possible that the
first harmonic was suppressed by the voltage, as in the
smectic C phase. Therefore, the issue remains open on
whether mechanisms of the electromechanical
response that are peculiar to the nematic and smectic A
phases exist.

CONCLUSIONS

Nonlinear properties of a FLC sample were found in
the study of its electromechanical response. It was
shown experimentally that the electroclinic effect is the
main reason for the sound generation in the SmC*-
phase near the phase transition. The observed square
dependence of the amplitude of the second harmonic of
the sound on the field strength is due to the interaction
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 2      2005
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between the electrically charged cell plates rather than
the specificity of the mesomorphic state. An effect of
the suppression of the first harmonic was revealed,
which should be taken into account in study of the
mechanisms of the electromechanical effect.
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Abstract—The structural properties of InxGa1 – xAs/InyAl1 – yAs samples on InP substrates are studied as func-
tions of growth conditions by the method of high-resolution diffractometry. The results obtained and the pho-
toluminescence spectroscopy data are used to optimize the technology of preparation of high-quality hetero-
structures with sharp interfaces. The parameters of the two-dimensional electron gas of such heterostructures
measured at 77 and 300 K are comparable with the best world standards in this field, so these heterostructures
may be used to manufacture transistors and integral amplifiers operating at the frequency 40 GHz and even
higher. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

The InxGa1 – xAs/InyAl1 – yAs heterostructures on
InP substrates possess important physical properties
and are still the objects of detailed scientific studies.
This is explained by enormous advantages provided by
the use of high-electron-mobility (HEM) structures on
InP substrates in devices which require anomalous
high-frequency or low-noise parameters. The pseudo-
morphous HEM structures on GaAs substrates contain
only about 20–30% of In, whereas the channel of HEM
structures on InP substrates admits the use of up to 70%
In and even higher.

An increase in the indium content in a heterostruc-
ture allows one not only to increase the mobility and
concentration of the electron gas in the channel but also
to considerably increase the drift velocity of electrons.
As a result, InP-based HEM devices are the most rapid
of all the devices known at present. The main techno-
logical lines of InP-based HEM devices with 65% In in
the channel provide the attainment of frequencies ft =
300 GHz and fmax = 450 GHz. These samples allow one
to attain considerably higher amplification than
pseudomorphous GaAs-based HEM devices and also
better noise parameters in the whole frequency range. It
has become clear that HEM structures on InP devices
yield the best amplifying parameters with respect to
power at frequencies exceeding 60 GHz.

At present, there exist devices with the output power
of 200 mW at 40% power-added efficiency (PAE) and
1000 mW at 25% PAE [1, 2]. Even at higher frequen-
cies (94 GHz), the output power of HEM structures on
InP substrates reaches 450 mW at 20% PAE. These fast
elements were also used for construction of the fastest
1063-7745/05/5002- $26.00 0320
monolithic coplanar amplifiers operating at frequencies
215 GHz with the amplification coefficient 15 dB [2].

The present study is dedicated to design and optimi-
zation of a Russian technology of preparation of
InxGa1 – xAs/InyAl1 – yAs heterostructures on InP sub-
strates by the method of molecular beam epitaxy
(MBE). To determine the principal parameters of het-
erostructures, we performed the complex studies of the
samples by the methods of high-resolution double-
crystal X-ray diffractometry and photoluminescence
spectroscopy.

SAMPLE PREPARATION

The samples were grown by the MBE method on a
RIBER-32P setup (France). To obtain the (100) ori-
ented InP substrates, we cut the (111) oriented InP
ingots at an angle of 45°. The substrates with the neces-
sary degree of structural perfection were selected with
the aid of X-ray diffractometry diagnostics. As is well
known, the half-width of the rocking curve of a perfect
InP crystal equals W = 9.5'', whereas the percentage of
reflection is PR = 54%. The samples were grown on InP
substrates with the best structural parameters (W =
10.2" and PR = 49%).

The absence of oxides on the surface of InP sub-
strates for epitaxial growth of heterostructures was
checked by the electron diffraction method. Heating of
the substrates in the temperature range 350–400°C
resulted in the appearance of bright reflection from the
crystal structure on the electron diffraction patterns.
This seems to result from partial removal of indium
oxides from the substrate surface. The electron diffrac-
© 2005 Pleiades Publishing, Inc.
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Table 1.  Growth parameters of the heterostructure layers

Chemical
element T, °C Flow pressure,

10–8 torr

Growth rate of In-contain-
ing compounds on InP

substrate, nm/s

Fraction of In in
InxGa1 − xAs

and InyAl1 − yAs

Ga 852 11.5 0.06357 (1 – x) = 0.47

In 757 21.5 0.0713 x = 0.53, y = 0.52

Al 1070 6.43 0.06307 (1 – y) = 0.48

Table 2.  Growth and electrophysical parameters of test HEM structures

Sample
Pressure

of As flow, 
10–6 torr

Annealing 
tempera-
ture, °C

Growth 
tempera-
ture, °C

Channel 
“thickness,”

dc, nm

Hall parameters of structures

300°K 77°K

concentration
Ne, 1012 cm–2

mobility
µe, cm2/V s

concentration
Ne, 1012 cm–2

mobility µe, 
cm2/V s

A 6 470 400 40 3.74 5430 3.28 10630

B 15 540 490 40 3.28 10640 3.2 38000

Ref. [3] – – 500 40 3.3 10657 3.3 39000
tion patterns did not change either during sample cool-
ing or its heating over the large temperature range.

The source temperatures were selected in such a
way that the steady-state flows of Ga, Al, and In corre-
sponded to the selected composition of solid-solution.
The growth parameters of the grown layers are listed in
Table 1.

RESULTS OF MEASUREMENTS AND 
DISCUSSION

The MBE modes of growth
In0.53Ga0.47As/In0.52Al0.48As layers on InP substrates
were selected using conventional HEM structures and
then selectively doped for measurements of the electro-
physical parameters of the two-dimensional gas
(Fig. 1). These structures consist of rather thick layers
of In0.53Ga0.47As channels with two-dimensional elec-
tron gas whose parameters allow one to evaluate the
quality of the structures grown (~36 nm) and a buffer
In0.52Al0.48As layer (500 nm). X-ray diffraction mea-
surements and the study of the photoluminescence
spectra were performed after the completion of the
growth process. The X-ray diffractometric data and
photoluminescence spectra obtained allowed us to
extract the information on the layer composition. More-
over, analysis of the rocking curves allowed us to esti-
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 2      200
mate structural perfection of layers grown and inter-
layer boundaries (interfaces) [4, 5].

We prepared a series of similar structures which dif-
fered by the conditions of the primary annealing and
growth temperature of an epitaxial layer, the thickness
of the In0.53Ga0.47As channel, and different As flows.
Growth of each sample was followed by measurement
of its electrophysical parameters by the Hall method
(rapid control). The results of these measurements
allowed us to refine the growth conditions and struc-
tural parameters.

The procedure of oxide removal from InP surfaces
was tested on the first samples. An electron diffraction
experiment showed that at ~560°C the 2 × 4 surface is
rearranged into the 4 × 2 surface. At the “thickness” of

Undoped 5-nm-thick In0.53Ga0.47As protective layer

Undoped 23-nm-thick In0.52Al0.48As barrier layer

δ-Si: NSi = 7 × 1012 cm–2 donor layer

Undoped In0.52Al0.48As 4-nm-thick spacer layer

Undoped 40 nm In0.53Ga0.47As channel

Undoped 500-nm-thick In0.52Al0.48As buffer layer

Semi-insulating InP (100) substrate

Fig. 1. Schematic of an epitaxial HEM structure.
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the In0.53Ga0.47As channel exceeding 20 nm, intense
reflections appeared on the electron diffraction pattern
which indicated the development of a certain surface
relief.

To reveal the factors giving rise to mismatching of
the heterostructure layers, we grew a number of sam-
ples. We consider here the results obtained from one of
the intermediate samples A and also from the sample B
possessing the best electrophysical parameters. The
growth temperature of all the layers in the sample A
decreased to 410°C, with the flows of all the elements
being preserved. Comparing this result with the data
obtained for previous samples, we established that the
parameters of sample A were much better (the data on
the samples A and B are listed in Table 2). We drew the
conclusion that the main cause of the composition
change of the InxGa1 – xAs channel is the reevaporation
of deposited In atoms, which becomes less intense with
a decrease in the growth temperature. As is seen from
Table 2, the best electrophysical parameters were
obtained for sample B.

X-ray

Sh

Sv

Sh

Sv

M

S
Sh

∆θ

D 2∆θ

Fig. 2. Schematic of a double-crystal X-ray spectrometer.
S—sample, M—crystal–monochromator, Sh, v—horizontal
and vertical slits, D—detector of X-ray radiation.
C

X-ray diffraction study of samples A and B were
performed on a double-crystal X-ray spectrometer
using CuKα1 radiation in the θ–2θ mode over a large
(about 6000 angular seconds) range (Fig. 2). The
monochromator was a perfect Ge(400) single crystal.
The diffuse background was suppressed using the slits
Sh,v. The coherent and diffuse components of scattering
were separated with the aid of a narrow horizontal slit
Sh (the window in front of the detector had an aperture
of 330 angular seconds). The use of the slit consider-
ably limited the diffuse component incident from the
crystal under study onto the detector. The rocking
curves were recorded in the step-by-step mode at a step
of four angular seconds, whereas the central part of the
curve was recorded at a step of 1 angular second. The
intensity was measured in the statistical mode (up to
1000 counts) at each point of the rocking curve. The
minimum recording time was 2 s; the recording maximum
time was 100 s. The accuracy of the X-ray intensities (even
at the rocking-curve tails) was higher than 5%.

To estimate the surface inhomogeneity caused by
the fluctuations of the growth parameters of hetero-
structure, we performed X-ray diffraction measure-
ments of several regions of a relatively narrow angular
range (Fig. 3). The measurements showed the scatter in
the y values for the InyAl1 – yAs solid solution of the
order of 2.5 and 0.5% along two mutually perpendicu-
lar directions. Photoluminescence studies yielded val-
ues y along the surface, which almost exactly coincided
with the values y obtained by X-ray diffraction data.

Now let us consider X-ray diffraction data obtained
for samples A and B (Fig. 4). The rocking curves of
these samples obtained in the wide angular range dra-
matically differ. The rocking curve of sample B is char-
acterized by a large number of oscillations with differ-
100

–500–600 –400 –300 –200 –100 0
10

θ – θB, arcsec

1000

10000

I, pulse/s

InxAl1 – xAs

InP

Fig. 3. Fragment of the rocking curve from sample B. The solid line passes through the sample center, and the dashed lines pass 2
mm above and below the sample center. The difference in the x values along this direction at the sample surface equals 0.5%.
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Fig. 5. Rocking curves of the sample A. (1) 400; (2) 200 reflection.
ent periods, which indicates a high quality of the layers
with relatively sharp interfaces. The rocking curve of
sample B has two pronounced maxima corresponding
to the reflection from the InxGa1 – xAs and InyAl1 – yAs
solid solutions. In addition to the well developed maxi-
mum due to the InP substrate, the rocking curve of the
sample A has only one weak diffraction maximum with
a large half-width W in the region of positive angles.
Practically no thickness oscillations of the heterostruc-
ture as a whole were observed.

To identify the diffraction maxima on the patterns
from samples A and B, we performed some additional
LOGRAPHY REPORTS      Vol. 50      No. 2      200
measurements. We obtained rocking curves for
200 reflections of samples A and B (Figs. 5, 7). The het-
erostructures studied consist of the layers in which
some In atoms in the InAs crystal lattice are replaced by
Ga or Al atoms. The characteristic feature of the
sphalerite structure is a weak intensity of the 200 reflec-
tion in comparison with the 400 reflection. This is asso-
ciated with the fact that the structure factor of the
200 reflection is determined by the difference of scat-
tering powers of the elements located in different struc-
turally equivalent positions in the crystal lattice. The
smaller this difference (in substitutional solid solutions,
5
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Fig. 6. Photoluminescence spectrum of the intermediate HEM structure A at one of the points at the surface (no photoluminescence
peak due to the InxGa1 – xAs quantum well was observed at λ ≅  1540 nm).
the scattering power of the metal sublattice of the struc-
ture is replaced by the scattering factor averaged over
the given composition), the more pronounced the
decreases in the structure factor of the 200 reflection.

As shown in our calculations and the simulated
rocking curves for the structures under study, in the
case of the 200 reflection only the diffraction maxima
from ~500-nm-thick epitaxial layers are seen, whereas
40-nm-thick layers give no noticeable diffraction
peaks. This allows us to state that the additional diffrac-
tion maximum in Fig. 5 should be attributed to a buffer
layer. In this case, the In content in the layer is consid-
erably lower that the value set by the growth technology
(y = 0.432 instead of 0.52). The calculated intensities of
the rocking-curve indicate a low quality of this buffer
layer (the intensity of the respective maximum is lower
by an order of magnitude than the calculated intensity).
It should be indicated that the curves in Fig. 5 practi-
cally do not show the maximum due to the InxGa1 − xAs
channel. This allows us to conclude that the InxGa1 – xAs
layer seems to consist of a number of sublayers with
diffuse boundaries. The weak oscillations seen in Fig. 5
indicate the existence in the heterostructure of a 265-Å-
thick epitaxial layer corresponding to the sum of the
thicknesses of the barrier and spacer InyAl1 – yAs layers
(230 and 40 Å, respectively) (Fig. 2).

The X-ray diffraction data obtained are consistent
with the photoluminescence data. The photolumines-
cence spectra of sample A have low intensities because
of the poor quality of the layers grown (Fig. 6); no max-
imum due to the quantum InxGa1 – xAs dot was
observed at all. The position of the maximum due to the
buffer InyAl1 – yAs layer on the photoluminescence
spectrum was different at different points of sample A
and its value ranged within 1.57–1.65 eV. This indi-
C

cates a low y value in the buffer layer. In this case, the
In content in different regions of the sample was differ-
ent. The calculations show that the y value in the buffer
layer ranges within 0.45–0.47, which may result from
the reevaporation of In atoms because of insufficiently
dense As flow, which also affects the electrophysical
properties of these structures.

The situation is completely different for diffraction
curves of sample B (Fig. 7). The measurements on this
crystal were performed for the symmetric 400 and
200 reflections and also on the 311 reflection. To
exclude the influence of inhomogeneity over the sam-
ple surface, all three rocking curves were obtained
practically for the same illuminated area (the error did
not exceed 5%). Preliminary analysis of all the three
rocking curves allows us to state that sample B corre-
sponds to the technological growth parameters. The
rocking curve of the 400 reflection clearly shows the
maxima due to the buffer InyAl1 − yAs layer and
InxGa1 − xAs channel. The In content in the buffer
InyAl1 – yAs layer is evaluated as y = 0.54 ± 0.02
(instead of 0.52 given by the growth technology). In the
range of positive angles for the 400 reflection, there is
maximum due to InxGa1 – xAs (as was indicated above,
it is essentially weakened in the case of 200 reflection,
but is clearly seen for the 311 reflection). According to
the results of all three measurements, the In content in
InxGa1 – xAs is evaluated as x = 0.516 ± 0.025 (instead
of 0.53 given by the growth technology). A large num-
ber of oscillations with different periods observed on
these rocking curves (Fig. 7) allowed us not only to reli-
ably determine the thicknesses of the layers grown but
also to evaluate the sharpness of the interfaces between
these layers. The angular distances between various
oscillations of the rocking curves of the 400, 200, and
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 2      2005



CRYSTALLOGRAP

STUDY OF STRUCTURAL PROPERTIES 325
–2000–3000 –1000 0 1000 2000 3000
θ – θB, arcsec

(400)

(311)

(200)

I, pulse/s

Fig. 7. Rocking curves from the sample B for the 400, 200, and 311 reflections. 
311 reflections allowed us to evaluate the average thick-
nesses of individual layers of the heterostructure B. The
total thickness of the whole heterostructure on an InP
substrate equals 5500 ± 270 Å, the thickness of the
layer of the InxGa1 – xAs channel is 350 ± 17 Å, and the
total thickness of the spacer and barrier InyAl1 – yAs
layers is 265 ± 13 Å. The heterolayer parameters
obtained are in good accordance with the values given
by the growth technology (Fig. 1).

In turn, the photoluminescence spectra of sample B
with high electrophysical characteristics also notice-
ably differ from the spectra of sample A by high inten-
sities of the peaks and the signal due to the
In0.53Ga0.47As channel (Fig. 8). This indicates a rather
HY REPORTS      Vol. 50      No. 2      200
high structural quality of the corresponding layers,
which is confirmed by analysis of the respective rock-
ing curves.

The calculations based on the position of the maxi-
mum due to the buffer InyAl1 – yAs layer on the photo-
luminescence spectrum show that the average y value
equals 0.535. Such a deviation of the composition
(y value) of the InyAl1 – yAs layers from +3% to –1% set
by the growth technology seems to be quite admissible
and produces no considerable effect on the change in
the mobility in the two-dimensional electron gas.
According to the photoluminescence spectra of this
sample, we have for the InxGa1 – xAs channel x = 0.515
at the admissible deviation of the In content without
5
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Fig. 8. Photoluminescence spectra at different points (1–4) of the surface of the test HEM structure B.
deterioration of the properties of the two-dimensional
gas (±3%).

CONCLUSIONS

Thus, one may state that the above technological
experiments and the diffraction and photoluminescence
measurements allowed us to refine the Russian technol-
ogy for growth of high-quality
In0.53Ga0.47As/In0.52Al0.48As heterostructures on InP
substrates.

The use of the combined X-ray diffractometric data
and photoluminescence spectroscopy data allowed us
to obtain reliable information on the parameters and
quality of heterostructures grown. The rocking curves
allowed us to follow the influence of the growth condi-
tions on the quality of a multilayer structure. The com-
position and layer parameters in high-quality samples B
correspond to those set by the growth technology. The
characteristics of a two-dimensional electron gas in
these samples are at the level of the best characteristics
achieved in the world; therefore, these heterostructures
may be used to prepare fast transistors and integral
amplifiers at the frequencies of 40 GHz and higher.

We had no aim to perform detailed layer-by-layer
analysis of the structural perfection of individual layers
C

and interfaces between them. Such analysis will be con-
sidered in following publications.
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Abstract—In this study, the first of the proposed cycle, the conditions and the mechanism of nucleation and
formation of particles of the Pb2MoO5 phase in PbMoO4 crystals, which are due to the physicochemical fea-
tures of the heating, melting, and solidification of PbMoO4, are considered. It is shown that preferred evapora-
tion of one of the composite components of this compound, MoO3, leads to the violation of the initial stoichi-
ometry and formation of excess PbO in a charge at the synthesis stage and in a melt during the crystal growth.
The formation of the Pb2MoO5 phase in crystals with excess PbO occurs during their postgrowth cooling at
temperatures below 930°C (eutectics between PbMoO4 and Pb2MoO5). The results of the differential thermal
analysis, X-ray diffraction analysis, high-temperature powder diffraction study, and annealing of crystals in
specific media confirm the solid-state mechanism of the formation of the Pb2MoO5 phase in PbMoO4 crystals.
© 2005 Pleiades Publishing, Inc.
INTRODUCTION

The problems inherent in the growth of compounds
with high volatility are complicated by the fact that,
along with the evaporation of the grown compound
from a melt, its components, which also have a high
vapor pressure, evaporate as well. Under the conditions
considered, at a relatively high evaporation of one of
the components, its content in the melt decreases and an
excess of the other component (or components,
depending on the number of components in the system)
is formed. The crystal growth from such systems is
accompanied by the violation of their composition with
respect to the main components and, finally, the forma-
tion of other phases existing in the phase diagrams at
both sides of the compound grown.

The above physicochemical considerations seem to
be especially important as applied to PbMoO4 crystals,
since a characteristic feature of their growth is that it is
accompanied by intensive melt evaporation.

In this study, we consider the conditions and the
mechanism of the nucleation and formation of micro-
nucleation particles of the Pb2MoO5 phase in PbMoO4
crystals caused by the physicochemical features of
heating, melting, and solidification of PbMoO4.
1063-7745/05/5002- $26.00 0327
EXPERIMENTAL METHODS

Solid-phase synthesis of PbMoO4 and Pb2MoO5 was
performed by multistage annealing of mixtures of ini-
tial binary oxides (PbO and MoO3) of specified compo-
sition with a stepwise increase in temperature and inter-
mediate grinding using ethyl alcohol as a dispersive
homogenizing medium.

X-ray phase analysis (XPA) of polycrystalline and
single-crystal samples was carried out on a TUR-M-62
diffractometer in filtered CoKα radiation. Identification
of the nature of the phases formed was carried out in the
range of Bragg angles θ = 26°–60° using the most char-
acteristic lines. The concentration of Pb2MoO5 was
quantitatively estimated by the disappearing-phase
method. For comparison, we used the X-ray diffraction
patterns of artificial mixtures of PbMoO4 with specified
concentrations of the Pb2MoO5 phase (0.3, 0.5, 1.0, 1.5,
and 2.0 wt %). The diffraction patterns were compared
with references obtained for single-phase synthesized
charges of PbMoO4 and Pb2MoO5.

High-temperature powder diffraction study of phase
transformations was performed on a DRON-3 diffrac-
tometer equipped with a KRV-1100 high-temperature
attachment [1].
© 2005 Pleiades Publishing, Inc.



 

328

        

GABRIELYAN 

 

et al

 

.
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Fig. 1. Designs of heating units for crystal growth: (a) a high-frequency heating system; (b) system a supplemented with a dia-
phragm and a screen; and (c) a system with high-frequency heating of the crucible, an upper resistive afterheater, and bottom heating
of the crucible.
For indexing and determining the initial ratio of the
peak intensities, conventional (at room temperature)
XPA of the samples was performed before the high-
temperature powder diffraction study. The samples
were ground in an agate mortar using ethyl alcohol as a
dispersive medium, deposited on a glass disk 25 mm in
diameter, and dried.

The conditions of the X-ray phase analysis, begin-
ning with room temperature and, then, at 100, 200, 300,
350, 400, 450, 500, 550, and 600°C with exposure no
less than 1 h at each of the listed temperatures, were as
follows: ëuKα radiation; the voltage and current in the
tube were 35 kV and 20 mA, respectively; the range of
diffraction angles was 2θ = 10°–70° with marks spaced
at intervals of 0.1°; the velocity of chart tape was
2400 mm/h; the counter speed was 2–4 deg/min; the
range of count rates was 200–1000 count/s; and the
time constant was 5 s.

The phase transformations occurring in the reaction
mixture with a successive increase in temperature were
fixed by changes in the diffraction pattern on the chart
tape: disappearance of old peaks, appearance of new
ones, and redistribution of diffraction maxima due to
changes in the composition.

The diffraction patterns were processed using the
programs DEBAI (indexing), PARAM (calculation of
the unit-cell parameters), and Powder cell 1.8 (simula-
tion of powder diffraction patterns based on structural
data). The X-ray diffraction patterns obtained were
compared with the PDF file data (card nos. 8–475
(PbMoO4), 38–1477 (PbO), 5–508 (MoO3), and 24–
579 (Pb2MoO5)).

Differential thermal analysis (DTA) was used for
qualitative and quantitative determination of the phase
composition of synthesized charges and melts solidi-
fied after long-term exposure and subsequent cooling.
This analysis was performed on an OD-102 derivato-
C

graph under the following conditions: temperature t up
to 1200°C, a linear heating rate of 5–10 K/min, and sen-
sitivities of 1/5 and 1/2. The characteristic peaks of
thermal effects were fixed using the heating curves, and
the melting temperatures of eutectic mixtures were
determined from the positions of the maxima.

Crystal growth was performed by the Czochralski
method on Donets-1 and RUMO-1P systems with high-
frequency (450 and 8 kHz, respectively) heating. The
control system in RUMO-1P provided the possibility of
programmed control of the growth process using a pre-
cise weight sensor to monitor the crystal weight. Differ-
ent variants of crystallization units (see Fig. 1) were
used, depending on the problem stated in each specific
experiment. The constructions of the crystallization
units made it possible to change in a wide range the
axial and radial temperature gradients in the crystal–
melt system by changing the position of the crucible in
the high-frequency inductor; combine induction heat-
ing of the crucible with a melt and resistive heating
using an upper afterheater; or, if necessary, introduce
bottom heating of the crucible. The crucible with a melt
was installed on an alumina ceramic support and a seed
with a crystal to be grown was fixed by a holder on a
water-cooled pulling rod, which was rotated and moved
in the vertical direction by a pulling mechanism. The
latter made it possible to change the pulling and rota-
tion rates of a crystal in the ranges 0.19–10 mm/h and
0–50 rpm, respectively.

Annealing of crystals. The grown crystals were pre-
viously annealed in a muffle furnace at 900–950°C in
air to remove residual stresses. Then, plates 20 × 25 ×
(3–5) mm3 in size, oriented perpendicular to the growth
direction, were cut from the crystals and polished. After
careful scanning in a He–Ne laser beam, the samples
containing second-phase inclusions were chosen. A
platinum box, into which fine powder of either PbO or
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 2      2005
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MoO3 (depending on the problem stated) was poured,
was placed in a zero-gradient zone of a horizontal tube
furnace. The furnace design made it possible to perform
annealing in a specified medium in the filling or flow
modes. The plates were uniformly placed on a platinum
grid, which, in turn, was installed above the platinum
box. The annealing temperature was chosen taking into
account the melting temperature of the oxide, depend-
ing on the problem stated. Disappearance or appear-
ance of a phase in a transmitted laser beam after anneal-
ing allowed us to indirectly estimate and confirm the
occurrence of one of the solid-phase reactions
described here.

Vapor pressures of PbO, MoO3, and PbMoO4. The
results of the investigations aimed at determining the
vapor pressures of PbO and MoO3 by the Knudsen,
Langmuir, flux, boiling point, and mass-spectroscopy
methods performed by different researchers were ana-
lyzed in detail in [2]. From all data reported in [2], we
chose the values of the vapor pressures PPbO and ,
which are most consistent with each other and whose
temperature ranges correspond to the conditions of
solid-phase synthesis of the PbMoO4 charge and the
crystal growth performed here: PPbO = 0.13 Pa and

 = 13 Pa.

RESULTS AND DISCUSSION. PHASE 
FORMATION AT DIFFERENT STAGES

Stage of charge synthesis. It is known [2] that
PbMoO4 is characterized by high vapor pressure of
both binary oxides, PbO and MoO3, even at tempera-
tures close to 700°C. Therefore, it is rather difficult to
obtain crystals of an exact stoichiometric composition.
When an equimolar mechanical mixture of the noted
oxides is melted into the crucible, provided that

 @ PPbO, the solid-phase reaction between the
oxides and further melting of the mixture will occur
with pronounced preferred evaporation of MoO3. This
process may finally lead to uncontrolled violation of the
required melt stoichiometry and, furthermore, the com-
position of the grown crystal. Hence, it is necessary to
carefully analyze the conditions of the solid-phase
charge synthesis at which the combined oxides, inter-
acting at knowingly low temperatures, would provide
in the next stages completeness of the reaction without
significant and, what is especially important, nonuni-
form evaporation of the reacting components. The
above considerations put the problem of determining
the initial interaction temperature and the temperature
range of strong interaction between the reacting com-
ponents. This problem lies in the basis of establishing
conditions of solid-phase charge synthesis.

The data in the literature on the solid-phase reaction
between PbO and MoO3 deal mainly with the condi-
tions of preparing PbMoO4 and disregard the probabil-

PMoO3

PMoO3

PMoO3
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ity of forming the Pb2MoO5 phase [3] and, moreover,
the conditions and kinetics of its synthesis [4–6]. As
was shown in [7], in the PbO : MoO3 mixture in the
temperature range 400–450°C, along with PbMoO4,
the Pb2MoO5 phase is also formed and exists as an
intermediate product. Hence, the character and the
kinetic parameters of the solid-phase interactions
should be assigned, most likely, to the formation of the
total product, PbMoO4 + Pb2MoO5, rather than to the
synthesis of an individual molybdate. Finally, using
XPA, DTA, electrical resistivity measurements, and
high-temperature powder diffraction study, the initial
interaction temperature and the temperature range of
strong interaction were determined and refined in [8–
11] for the reaction mixtures PbO : MoO3 and 2PbO :
MoO3 (XPA, DTA, and high-temperature powder dif-
fraction study were used for powder samples and mea-
surements of electrical resistivity were performed with
pelleted samples). The results obtained made it possible
to formulate the main regularities of the solid-phase
reactions in the mixtures under consideration and opti-
mize the conditions of multistage charge synthesis for
the growth of PbMoO4 crystals.

The set of experimental data obtained by the above-
mentioned methods makes it possible to represent the
processes occurring during the solid-phase synthesis in
mixtures of PbO and MoO3 oxides as the following
sequence:

(i) Independent of the initial composition of the
reaction mixture (1 : 1 or 2 : 1), the primary product of
the interaction is PbMoO4, which is formed at 300°C
by the reaction:

PbO + MoO3 = PbMoO4. (1)

(ii) In the next stage, with a further increase in tem-
perature, the Pb2MoO5 phase is formed starting from
350°C:

PbMoO4 + PbO = Pb2MoO5. (2)

(iii) As temperature increases more, the formation of
the final reaction product is enhanced. It should be
noted that in an equimolar (stoichiometric, 1 : 1) mix-
ture, gradual disappearance of the Pb2MoO5 phase was
observed beginning from 450°C and the single-phase
final product (PbMoO4) was completely formed at
650°C:

Pb2MoO5 + MoO3 = PbMoO4. (3)

At the same time, in a mixture with the 2 : 1 compo-
sition, a decrease in the intensity of diffraction lines of
the intermediate reaction product (PbMoO4) was
observed in the X-ray diffraction patterns beginning
from 600°C and the final product (Pb2MoO5) was com-
pletely formed at 750°C by reaction (2).

As can be seen from the table, the data on the initial
interaction temperature and the temperature range of
strong interaction, obtained by three independent meth-
ods, are in good agreement with each other. Some dif-
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Initial interaction temperatures and the temperature ranges of strong interaction for different PbO : MoO3 mixtures

Initial
mixture

Temperature range 
of the formation of 

an intermediate 
phase, °C (XPA)

Temperature of
the final product

formation, °C 
(XPA)

Initial interaction temperature, °C,
according to the data of

Temperature 
range of 

strong inter-
action, °C 

(XPA)

Referencesresistivity 
measure-

ments
DTA XPA

PbO : MoO3 Pb2MoO5 PbMoO4 210 300 300 350–500 [9, 10]
350–600 650

400–450 600 300 350–500 [8]

450–550 600 350 350–500 [12]

2PbO : MoO3 PbMoO4 Pb2MoO5 240 350 300 400–650 [9, 10]
300–750 800
ferences in the data are related to the methods of inves-
tigation and the modes of isothermal (XPA) and noniso-
thermal (DTA and electrical resistivity measurements)
heating of the mixtures.

Analysis of reactions (1) and (2) and the sequence of
disappearance of the initial and intermediate phases in
different mixtures indicate that the interaction between
oxides has a complex and multistage character. Taking
into account the multiregion character of interaction
and on the basis of the results of more detailed study of
the kinetics and the mechanism of formation of lead
molybdates by the method of contact diffusion anneal-
ing treatments of pelleted samples [8], the sequence of
all crystallochemical transformations can be repre-
sented more exactly by the following schemes:

PbO + MoO3  PbMoO4 + PbO + MoO3 

 Pb2MoO5 + PbMoO4 + PbO + MoO3 

 PbMoO4 + Pb2MoO5 + MoO3 

 PbMoO4 + PbMoO4  PbMoO4

in the synthesis of PbMoO4 and

PbO + MoO3 + PbO 

 PbMoO4 + PbO + MoO3 + PbO 

 PbMoO4 + PbO + Pb2MoO5 

 Pb2MoO5 + Pb2MoO5  Pb2MoO5

in the synthesis of Pb2MoO5.
The diagram in Fig. 2 gives a pictorial representa-

tion of the relations between the initial, intermediate,
and final products in the mixtures of the noted compo-
sitions in different stages of solid-phase synthesis.

Thus, independent of the relations between the ini-
tial components, the primary product of the solid-phase
synthesis is the PbMoO4 lead molybdate, which is more
thermally stable as compared with Pb2MoO5: their
melting temperatures are 1065 and 952°C, respectively.
The latter circumstance is in good agreement with the
Baikov principle [12], according to which the primary
product of the interaction is the compound differing
C

from other possible compounds in the system by the
highest melting temperature. The above-described fea-
tures of the phase formation confirm the Baikov princi-
ple for another related oxide system of the scheelite
group: PbO–WO3 (PbWO4 and Pb2WO5 have tmelt =
1123 and 900°C, respectively).

Stage of crystal growth. Study of the grown
PbMoO4 crystals in a transmitted He–Ne laser beam
(Fig. 3a) and on a JEOL X-ray microanalyzer (Figs. 3b,
3c) showed that the dominant internal defects in these
crystals are gas bubbles and microscopic second-phase
particles. Both these defects cause strong scattering of
laser radiation in crystals, which leads to a significant
decrease in the efficiency of light transformation and, in
fact, make such crystals unfit for use in acoustooptic
devices. At the same time, the crystals containing only
second-phase inclusions, after specific annealing in
dosed media leading to their disappearance, turn out to
be quite appropriate for acoustooptic applications. The
factors responsible for the formation of gas bubbles in
a melt and their capture by a grown crystal, as well as
the ways of their elimination, will be considered in
another study of this cycle. Here, we will consider the
nature of the phase microheterogeneity in the crystals,
which is due to the physicochemical features of heating
a charge; its subsequent melting; crystallization; and,
finally, cooling of the grown crystal.

Even when an absolutely single-phase charge is
used, its melting in a crucible and a rather long-term
process of crystal growth occur with intense melt evap-
oration. Note that, despite the congruent character of
melting of PbMoO4, along with the molybdate, PbO
and MoO3 combined oxides also evaporate from the
melt. At the preferential evaporation of MoO3, long-
term crystal growth should lead to uncontrolled viola-
tion of the initial stoichiometry with the formation of
excess PbO in the melt and, furthermore, in the crystal.
Taking into account that PbMoO4 has a relatively nar-
row and two-sided (daltonide) homogeneity region lim-
ited by the compositions with 49.85–50.50 mol % of
MoO3 [13], a crystal can grow within the noted solubil-
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 2      2005
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(a)

(b)

PbO

MoO3

PbMoO4

Pb2MoO5

Fig. 2. Schematic diagram of the phase relations in the mixtures PbO : MoO3 = (a) 1 : 1 and (b) 2 : 1 in different stages of the solid-
phase synthesis.

(a) (b) (c)
1 mm 25 µm 25 µm

Fig. 3. Inclusions in PbMoO4 crystals: (a) gas bubbles in a transmitted He–Ne laser beam, (b) gas bubbles with the Pb2MoO5 phase;
and (c) a gas bubble in the absence of the Pb2MoO5 phase.
ity range of the components with an excess of one of
them and, respectively, with a deficit of the other com-
ponent. The latter circumstance, in accordance with the
results of studying the kinetics and mechanism of solid-
phase transformations in the PbMoO4–PbO system,
may lead to solid-phase reaction (2) in the grown crys-
tal with the formation of the micronucleus phase
Pb2MoO5. Fine dispersed particles of this phase,
formed in a PbMoO4 crystal during its postgrowth cool-
ing below 930°C (the temperature of the eutectics
between PbMoO4 and Pb2MoO5), are one of the two
above-mentioned types of scattering centers.

The physicochemical justification of the most prob-
able mechanism of the formation of the microheteroge-
neous phase Pb2MoO5 in the PbMoO4 matrix is beyond
doubt, since it is even more difficult to suggest the pos-
sibility of precipitation of MoO3,

1 which is also (as
Pb2MoO5) adjacent to the PbMoO4 phase in the
PbO−MoO3 phase diagram but at the other side. With
preferential evaporation of this component in the stages

1 The presence of the two-sided homogeneity region, provided
there were no preferential evaporation of MoO3, would formally
allow for the coexistence of the noted phases and, accordingly,
the possibility of precipitation of the MoO3 phase when, vice
versa, preferential evaporation of the other oxide (PbO) would
occur.
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of charge synthesis or crystal growth (as repeatedly
noted above), there must be a deficit rather than an
excess of MoO3. However, without an excess of this
component, both phases (PbMoO4 and MoO3) cannot
coexist below the eutectic temperature (670°C). There-
fore, to maintain the composition of the melt close to
equimolar throughout the growth process, an excess
amount (up to 1.0 mol %) of MoO3 must be introduced
to compensate for its loss by evaporation.

The formation of phase inclusions and their distri-
bution in the volume of grown crystals is determined,
primarily, by the growth duration. Figure 4 shows the
photographs of the crystals grown with different expo-
sures of a melt before growth.

The crystals grown from a fresh charging (i.e., with-
out exposure, immediately after the charge melting) do
not contain any inclusions (Fig. 4a, scattering centers
are absent). With additional charging and correspond-
ing growth cycles (the duration of one growth cycle,
including melting, growth, annealing, and cooling of
the crystal, is ~50 h), the total exposure of the melt
increases, due to which aging of the melt and its enrich-
ment with one of the components occur. As a result, the
subsequent crystals may contain phase inclusions
formed in different growth stages. Depending on the
growth stage, these inclusions will be located in the end
region, in the middle (Fig. 4b), or throughout the entire
5
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(a) (b) (c)15 mm 15 mm 15 mm

Fig. 4. PbMoO4 crystals grown with different melt exposures: (a) from a fresh charging directly after the melting (scattering centers
are absent); (b) after four growth cycles with additional chargings (scattering centers arise beginning with the middle of the crystal);
(c) after six growth cycles with additional chargings (scattering centers throughout the crystal volume).
volume (Fig. 4c). In this context, in order to obtain
crystals with reproducible properties, it is more expedi-
ent to use a single charging to grow large (≥70% of the
melt volume in a crucible) crystals rather than multiple
processes with additional chargings to grow several
crystals in a cycle.

The arguments in favor of the probable reasons and
the mechanism of formation of the Pb2MoO5 phase are
quite convincing. Nevertheless, we should note that,
while the identification of Pb2MoO5 in a synthesized
charge containing this phase by XPA was fairly easy,
this method showed only traces of Pb2MoO5 in the
grown crystal containing many scattering particles,
which could be observed visually. However, one or two
highly weak reflections cannot serve as a convincing
indication of the presence of the Pb2MoO5 phase. In
this context, a need arises for carrying out experiments
whose results would make it possible to reliably con-
firm the above-described solid-state mechanism of for-
mation of phase inclusions in PbMoO4 crystals grown
by the Czochralski method.

As was noted above, nonuniform (with respect to
composition) evaporation of a melt leads to the forma-
tion of excess PbO in it. Hence, it is quite obvious that,
owing to the known repulsion mechanism, which acts
during the entire growth process, the PbO content in the
melt will always exceed that in the grown crystal.
Therefore, the solid-phase reaction (2) can and should
occur also in the melt solidified after growth, in which
the amount of the tentative phase (Pb2MoO5) will be
sufficient for its unambiguous identification by XPA
and DTA. Within this problem, identical weights of
synthesized single-phase PbMoO4 charge were melted
in a platinum crucible and kept isothermally in the
growth system for 0, 50, 100, 200, and 300 h at a tem-
perature close to the growth temperature. Then, after a
short-term growth of crystals of the same size (10–
12 mm in diameter and 15–20 mm in length), the melts
were cooled and the presence of the Pb2MoO5 phase
was analyzed.

The crystals grown after isothermal exposures of the
corresponding melts were qualitatively analyzed in a
transmitted laser beam. A pronounced tendency toward
an increase in the relative number of scattering particles
in these crystals was revealed. XPA and DTA unambig-
C

uously showed the presence of the Pb2MoO5 phase in
these crystals.

XPA. The characteristic lines of Pb2MoO5, absent
for the reference (τ = 0 h), arise in the pattern of the
sample exposed for τ = 200 h and their intensity signif-
icantly increases for the sample with τ = 300 h.

DTA. According to the phase diagram [7], PbMoO4
forms two eutectic mixtures in the PbO–MoO3 system:

400 600 800 1000

∆t

900–1000°C

t, °C

1

2

3

Fig. 5. DTA curves (linear heating rate 0.13 K/s) for melts
with different exposures before the growth: τ = (1) 0,
(2) 200, and (3) 300 h. Endothermic peaks (930°C) are
between the reference points 900 and 1000°C (beginning of
the melting of PbMoO4).
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(a) (b) (c)10 mm 10 mm 10 mm

Fig. 6. PbMoO4 plates (a) before annealing and after annealing in (b) MoO3 and (c) PbO powders.
PbMoO4 + MoO3 and PbMoO4 + Pb2MoO5 with soli-
dus temperatures of 670 and 930°C, respectively. Melt-
ing of these mixtures, in contrast to single-phase
PbMoO4, should be accompanied by the endothermic
effect at the noted temperatures. If we take into account
the above considerations concerning the solid-state
genesis of the phase formation in different stages of
PbMoO4 growth, the detection of the endothermic
effect at 930°C is of the most interest.

Figure 5 shows the DTA curves for the melts with
different exposures: τ = 0, 200, and 300 h; the derivato-
grams for the melts exposed for τ = 50 and 100 h are not
shown due to the very low concentration of the
Pb2MoO5 phase in the solidified melts. For τ = 50 h, the
endothermic effect was completely absent and the deri-
vatogram, in fact, was the same as that for the sample
with τ = 0 h. For τ = 100 h, a weak peak was observed.
The endothermic effects observed for the melts
exposed for τ = 200 and 300 h show rather large peaks,
whose distinctive feature is the increase in the area with
increasing exposure of the melt. This is indicative of the
corresponding increase in the Pb2MoO5 content in the
PbMoO4 melt solidified after the long-term exposure.
Quantitative comparison of the XPA and DTA data for
the melts subjected to long-term evaporation and refer-
ence artificial mixtures of PbMoO4 with specified
Pb2MoO5 contents showed that the concentration of the
impurity phase in the melt exposed for τ = 200 h is in
the range 1–2 wt %.

The results of the investigation performed confirm,
although indirectly, the solid-state mechanism of for-
mation of the phase microheterogeneity in a PbMoO4
matrix in the form of micronucleation particles of the
Pb2MoO5 phase, whose presence significantly deterio-
rates the optical homogeneity of crystals used in acous-
tooptics.

Stage of crystal annealing. Recalling the nature and
the solid-state mechanism of formation of the micronu-
cleus phase in PbMoO4 crystals, we should note that,
however justified this assumption is physicochemically,
the convincing argument in its favor is, nevertheless,
the identification of second-phase inclusions as the
Pb2MoO5 phase by other (along with XPA and DTA)
methods.

For the crystal containing a significant amount of
fine-dispersed particles of the tentative Pb2MoO5 phase
GRAPHY REPORTS      Vol. 50      No. 2      200
(which could be visually observed), the detection of
this phase by XPA was almost impossible in view of the
fact that its content in the crystal (<2.5%) was below
the lower limit of XPA sensitivity. In this context, tak-
ing into account the data on the kinetics and mechanism
of solid-phase reactions, we performed a series of
experiments with annealing the grown crystals in spe-
cific media. The results obtained confirmed (indirectly
but with a high degree of confidence) the solid-state
mechanism of the formation of phase inclusions in
PbMoO4 in different growth stages.

Series 1. Plates cut from PbMoO4 crystals with a
high concentration of scattering microinclusions were
annealed in MoO3 powder. If these inclusions are
indeed micronucleation particles of the Pb2MoO5
phase, under the conditions of diffusion mass transfer
due to the solid-phase reaction (3), this phase should
disappear and the PbMoO4 phase should be formed.
Taking into account the melting temperature of MoO3
(795°C), the samples were annealed at 500°C for sev-
eral hours. Figures 6a and 6b show the photographs of
the samples analyzed in a transmitted laser beam before
and after the annealing. These photographs give an idea
of how reaction (3) occurs under the conditions consid-
ered.

Series 2. The nature of the phase inclusions was
established indirectly. Hence, to reliably verify our sug-
gestion, the samples annealed in MoO3 powder and
containing no phase inclusions were annealed anew in
PbO powder in the temperature range 650–700°C
(below the melting temperature of PbO: 886°C). The
appearance of scattering particles in the samples
(Fig. 6c) is a convincing argument in favor of the solid-
phase reaction (2).

CONCLUSIONS

Analysis of the data reported shows that, indepen-
dent of the experimental conditions—either solid-
phase charge synthesis or direct crystal growth—the
initial oxides, PbO and MoO3, have the highest vapor
pressure in the reaction mixture PbO : MoO3 and in the
melt of the final compound PbMoO4. At all tempera-
tures, PPbO @  and significant evaporation of
PbMoO4 begins only near its melting temperature

PMoO3
5
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(1065°C). On the basis of these facts, we can conclude
the following:

(i) The preferential evaporation of MoO3, one of the
components of PbMoO4, leads to uncontrolled viola-
tion of the initial stoichiometry and the formation of
excess PbO in the charge in the stage of its synthesis
and, then, in the melt during the crystal growth.

(ii) The formation of the micronucleus Pb2MoO5

phase in PbMoO4 crystals grown from a melt contain-
ing excess PbO, as a typical result of spontaneous
decomposition of the solid solution, occurs via a solid-
state mechanism, similar to reaction (2), during their
cooling below 930°C (the temperature of the eutectics
between PbMoO4 and Pb2MoO5).

(iii) To decrease the probability of formation of the
Pb2MoO5 phase in PbMoO4 crystals, by taking into
account the preferential evaporation of MoO3, it is
expedient to introduce an excess of MoO3 into the ini-
tial PbMoO4 charge to compensate for the loss of this
component by evaporation.

(iv) The reproducibility of the physical characteris-
tics of crystals depends to a large extent on the number
of crystals grown using one charging of the crucible
with subsequent meltings for each crystal. Under the
conditions considered here, even for the fifth or sixth
crystal grown in such a process cycle, the total exposure
of the melt approaches 200–300 h. Such exposures,
according to the results of this study, are favorable for
the formation of the impurity phase Pb2MoO5.
C
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Abstract—The Data Mining algorithm is used to analyze the information of the Cambridge Structural Data-
base (CSD) with the aim to develop a force field which describes intermolecular interactions. The force-field
parameters obtained are successfully tested in calculations of sublimation energy; in construction of polar crys-
tals; in prediction of crystal packings, including predictions based on X-ray powder diffraction data; and in
prognosis of protein–ligand interactions and stability of polymorphs. The parametrization developed may also
be used in other programs. The parameters are given for all the atomic species encountered in the CSD together
with the instructions for their use. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

Data mining is a powerful technique for extracting
predictive information from large databases [1]. The
automated analysis offered by data mining goes beyond
the retrospective analysis of data. Data mining tools can
answer questions that are too time consuming to
resolve with methods based on the first principles. In
data mining, databases are searched for hidden patterns
to reveal predictive information in patterns that are too
complicated for experts to identify. This Data Mining
method is widely used, e.g., for prognosis of price for-
mation and marketing, quality control of various prod-
ucts, etc. D.W.M. Hofmann suggested the use of the
Data Mining algorithm for analysis of the information
stored in the Cambridge Structural Database (CSD) in
order to develop a force field which would describe
intermolecular interactions [2]. In this approach, a
force field is described by pair atom–atom potential
functions whose shape is not postulated a priori but is
established in the process of their optimization (Trained
Potentials). The force-field parameters thus obtained
are successfully tested in calculations of sublimation
energy and design of polar crystals [3], prediction of
crystal packings [4] (including predictions based on X-
ray powder diffraction data [5]) and protein structures,
and prognosis of protein–ligand interactions [6] and
polymorph stability [7]. All the necessary computations
were performed using the programs ScorCryst and
FlexCryst written by D. Hofmann [8]. The parametriza-
tion used in these programs may also be useful in other
programs. The potential function and the parameters of
the force field developed by Hofmann for a pair of
H···H atoms are indicated in the table and are repre-
1063-7745/05/5002- $26.00 0335
sented graphically in the figure. The complete parame-
trization set for all the atomic species encountered in
the CSD is deposited in VINITI (no. 1596-B2004,
October 13, 2004).1 The description of the potential
functions and the instructions for their use in computa-
tions are given below.

DESCRIPTION OF A FORCE FIELD

The energy of intermolecular interaction between
the two molecules I and J in Hofmann’s force field is
described by a sum of pair atom–atom interactions. If a
pair of molecules consists of nI and nJ atoms, respec-
tively, the energy of their interaction is calculated as

In the table, the atomic species are indicated by the
corresponding atomic numbers. The only exception is
made for hydrogen atoms which are divided into four
subtypes depending on the atomic species linked to the
given hydrogen atom: C–H (type 2), O–H (type 18),
N−H (type 10), and the X–H (type 1) for all the remain-
ing atoms. The use of various types of hydrogen atoms
is very important for correct modeling of hydrogen
bonds. In this case, the m and n values in the table rep-
resent

m = min(type(i), type( j)) (minimum atomic number
in this pair of i and j atoms);

1 To obtain the set of parametrization, one should contact VINITI
at dep@viniti.ru.

EIJ εijrij
.

j 1=

nJ

∑
i 1=

nI

∑=
© 2005 Pleiades Publishing, Inc.
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n = max(type(i), type( j)) (maximum atomic number
in this pair of i and j atoms).

The energy potential  for a pair of i and j atoms
is a function of the distance and atomic species. The
form of the energy potential fij for each pair of i and j
atoms is determined with the aid of the reference points
(k). When choosing the number of the reference points
for the given pair of atoms, one has to maintain the
compromise between the necessary accuracy of the

εijrij

Potential function of a pair of (C)H···H(C) atoms

ε m n k ε m n k

0.0104 2 2 3 2.8963 2 2 31

0.0273 2 2 4 2.8418 2 2 32

0.0162 2 2 5 2.5323 2 2 33

0.0289 2 2 6 3.9187 2 2 34

–0.0100 2 2 7 3.1392 2 2 35

–0.0772 2 2 8 2.1169 2 2 36

–0.0856 2 2 9 2.4206 2 2 37

–0.1075 2 2 10 1.7225 2 2 38

–0.1100 2 2 11 1.7119 2 2 39

–0.0690 2 2 12 2.3694 2 2 40

–0.0087 2 2 13 2.5355 2 2 41

0.0589 2 2 14 0.7463 2 2 42

0.1571 2 2 15 0.6021 2 2 43

0.2919 2 2 16 2.5862 2 2 44

0.4282 2 2 17 3.5320 2 2 45

0.5835 2 2 18 4.2421 2 2 46

0.8825 2 2 19 1.5933 2 2 47

1.1640 2 2 20 1.1476 2 2 48

1.4178 2 2 21 1.2376 2 2 49

1.6440 2 2 22 2.0973 2 2 50

1.9108 2 2 23 2.6430 2 2 51

2.3182 2 2 24 3.1096 2 2 52

2.3050 2 2 25 3.2295 2 2 53

2.5221 2 2 26 2.8449 2 2 54

2.6600 2 2 27 4.4408 2 2 55

2.9927 2 2 28 5.8357 2 2 56

3.8019 2 2 29 7.6392 2 2 58

4.3982 2 2 30 9.2890 2 2 59
C

energy function and the number of the experimental
data which increases with an increase of the number of
atomic species according to a quadratic law. If one
assumes the reciprocal quadratic dependence of the
energy potential f (and, correspondingly, of the refer-
ence point k =  f ) on the distance rij,

f = 100/  [Å]2,

it becomes possible to take into account many more re-
ference points in the region of short interatomic dis-
tances and considerably less points in the region of
large interatomic distances. The selected reference-
point distribution describes the potential in the region
of short distances more accurately than in the region of
large distances. Since in the region of large distances
the potential is smooth, the limited number of reference
points in this case does not lead to loss of the accuracy.
Moreover, the energy εij is calculated for a pair of atoms
the distance rij between which is lower than a certain
threshold value rthreshold = 5.77 Å.2

Now replace the pair potential in the initial formula
for energy to obtain

Interpolating the energy potential between the neigh-
boring reference points linearly, we obtain the continu-
ous potential (figure)

 [kJ/mol] = ( f – k)εmnk + 1 + (k + 1 – f )εmnk.

2 Since the table gives the value kmin = 3, 

.

rij
2

rthreshold 100/kmin 5.77= =

EIJ  kJ/mol[ ] ε mijnijrij
.

j 1=

nJ

∑
i 1=

nI

∑=

εmnrij

3 4 5 6
r, Å

0.2

0.4

0.6

0.8

1.0

0

ε, kJ/mol

Potential function for a pair of (C)H⋅⋅⋅H(C) atoms.
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Since the accuracy of the potential parametrization
directly depends on the number of the crystal structures
determined and their quality (which are constantly
increasing), we hope that Hofmann’s parametrization
will become a useful tool for the direct solution of
many crystallographic problems and molecular design-
ing.
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To the 80th Anniversary 
of the Birth of Boris Nikolaevich Grechushnikov (1925–1993)

T. F. Veremeœchik
Shubnikov Institute of Crystallography, Russian Academy of Sciences, 

Leninskiœ pr. 59, Moscow, 119333 Russia
e-mail: tomver@online.ru

“Wenn du als Jüngling deinen Vater ehrst,
So wirst du gern von ihm empfangen;

Wenn du als Mann die Wissenschaft vermehrst,
So kann dein Sohn zu höhrem Ziel gelangen.”1

J.W. Goethe, Faust, Insel-Verlag, 1958, p. 160
1 Professor Boris Nikolaevich Grechushnikov, honor-
ary Scientist of the Russian Federation and Doctor of
Physics and Mathematics, was an outstanding scientist
of bright and original talent. His works on Fourier spec-
troscopy, optical and resonance spectroscopy, and crys-

1 “Dost thou thy father honor, as a youth?
Then may his teaching cheerfully impel thee:
Dost thou, as man, increase the stores of truth?
Then may thine own son afterwards excel thee.”

“Faust,” Translated by Bayard Taylor, Houghton,
Muffin and Co., Boston and New York, 1898
1063-7745/05/5002- $26.00 0338
tal optics had a strong influence on modern physical
and applied optics, spectroscopy, and laser physics.
Grechushnikov was the author of 6 monographs and
approximately 250 other publications. He also wrote
the chapter “Optical Properties of Crystals” for the
four-volume crystallographic encyclopedia Modern
Crystallography. Grechushnikov prepared more than
twenty candidates of science. He guided or participated
in the fulfillment of a number of important governmen-
tal orders on the creation of new technologies for the
defense industry. For his scientific achievements, he
© 2005 Pleiades Publishing, Inc.
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was decorated with the Order of the October Revolu-
tion and numerous other medals.

In 2005, we will celebrate the 60th anniversary of
the victory in the Great Patriotic War of 1941–1945.
Grechushnikov was a defender of his native country; he
participated in the arduous Battle of Kursk, where he
was badly wounded. He rendered great services to his
country and was awarded the military orders of the Red
Star and the Patriotic War of the First Degree and sev-
eral medals.

Grechushnikov’s attitude to life was remarkable. In
fact, he eschewed materialistic tendencies and cher-
ished the spirit of ethical standards. The essence of his
life comprised constant learning, acquisition of new
knowledge, and thought.

All past events have broadened our knowledge
about human nature. Technological, informational,
democratic, and other kinds of revolutions have
changed our ideas of what is and is not allowed. The
eternal question “to possess or to exist” has received a
global answer: to possess. It seems that all deep human
instincts and especially the individualistic elements
have been awoken. Grechushnikov symbolized the
opposite attitude to life: self-sacrifice and human soli-
darity. His fate fully reflects the fate of his people. His
deeds have made him a hero of Russian history.

ABRIDGED BIOGRAPHICAL DATA

Grechushnikov was born on February 18, 1925, in
the city of Kazan. His father, Nikola@i Grechushnikov,
a senior lecturer at the Department of Mathematics,
Bashkirian Pedagogical Institute, was the author of sev-
eral publications on the theory of nomography. His
mother was a pharmacist. During the Civil War, his
father was an officer in the White Army. Later, in Soviet
times, this fact influenced the life of his family: they
had to move from city to city, so Grechushnikov’s
school years were spent in Kazan, Makhachkala, and
Ufa.

In 1942, Grechushnikov entered the Physical–Math-
ematical Faculty, Kazan State University, but, on Janu-
ary 1, 1943, he was called up to the Red Army. After a
short training at the infantry school in the city of Zhito-
mir, an 18-year-old Grechushnikov arrived at the begin-
ning of summer 1943 to the front. As a soldier, he par-
ticipated in the famous Battle of Kursk. He was
wounded at Belgorod, lost a leg, and long recuperated
in military hospitals. In June 1944, he was discharged
from the army.

Grechushnikov returned to Kazan University in
1945 and graduated with distinction from the Depart-
ment of Theoretical Physics in 1949. In those years,
student groups at the universities consisted of one to
two people. His professors were well known mathema-
ticians and physicists such as E.K. Zavoœskiœ, A.P. Nor-
den, F.D. Gakhov, and others. From his family, Gre-
chushnikov inherited high spirituality, an interest in sci-
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 2      200
ence, and the love to work. In university he developed
his rare talents and excellent memory and added a bril-
liant education to these qualities.

In 1950 Grechushnikov started writing entrance
exams to enter a postgraduate course in Moscow. He
passed the exams on dialectic and historical material-
ism with the mark “good” and on quantum mechanics
and crystallography with the mark “excellent.” The
exams on quantum mechanics and crystallography
were administered by A.V. Shubnikov, N.V. Belov,
M.A. Markov, and Z.G. Pinsker; exams on crystallog-
raphy, by Shubnikov, Belov, G.G. Lemmlein, and
E.E. Flint. It is easy to imagine the excitement and con-
fusion of a young student standing before such distin-
guished commissions. He passed the first exam in quan-
tum mechanics in May 1950, and he passed all the other
exams later in April 1951. This long interval is
explained by the refusal to accept him into the post-
graduate course at the Lebedev Physical Institute,
USSR Academy of Sciences, because his father partic-
ipated in the Civil War on the side of the White Army.

In 1951 Grechushnikov became a postgraduate stu-
dent at the Laboratory of Crystal Optics of the Institute
of Crystallography, USSR Academy of Sciences,
headed then by N.E. Vedeneeva. His scientific supervi-
sor was Shubnikov. In 1953 Grechushnikov defended
his candidate’s dissertation. One of his opponents was
Professor V.L. Ginzburg, a future Nobel Prize winner.

Also in 1951 Grechushnikov started working at the
Institute of Crystallography and continued working
there up to his last days. In 1966, he became head of the
Laboratory of Crystal Optics, which was later reorga-
nized into the Laboratory of Crystal Spectroscopy. In
1980, Grechushnikov defended his doctoral disserta-
tion and, this time, one of his opponents was another
Nobel Prize winner: Academician A.M. Prokhorov.

BASIC SCIENTIFIC ACHIEVEMENTS 
AND ORGANIZING ACTIVITY

One of Grechushnikov’s distinctive qualities was his
brilliant erudition in the theoretical and experimental
general physics, computational methods, and program-
ming. A physicist–theoretician with a broad scope, he
was also an outstanding experimentalist. He was a labo-
rious person and enlivened these around him. It is pos-
sibly these qualities that allowed him to obtain a num-
ber of new results in some fields of theoretical and
applied spectroscopy.

The 1950s–1960s seem to be the period where his
creative scientific activity blossomed. Professor
V.L. Indenbom, an opponent of Grechushnikov’s doc-
toral dissertation wrote, “Looking back, one may only
admire Grechushnikov’s gift for choosing the appropri-
ate directions of research.”

One of his first publications [1] entitled Absorption
Spectra of Ruby Crystals at Various Temperatures, a
constituent part of his candidate’s dissertation, was
5
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dedicated to the first experimental evidence of the inter-
action between a photoinduced transition in an impu-
rity center and crystal-lattice vibrations. It became clear
that this interaction determines crystal colors. Relax-
ation of perturbations in the electronic subsystem is one
of the main processes determining possible generation.
This study formed the basis for the development of
laser physics now widely used in numerous modern
technologies and in medicine.

One of the most impressive achievements of the
Institute of Crystallography during its existence was the
discovery of Fourier spectroscopy by Grechushnikov in
coauthorship with G.I. Distler and I.P. Petrov. Gre-
chushnikov performed his studies independently and
simultaneously with foreign scientists, but these studies
were associated with classified subjects and, therefore,
could not be published at that time. This explains the
fact that foreign publications on this effect, first and
foremost those by Prof. P. Jaquinot and P. J. Fellgett,
appeared somewhat earlier than Grechushnikov’s. Gre-
chushnikov was given a tribute, and his contribution to
Fourier spectroscopy was recognized in Lovenstain’s
review History and State of Fourier Spectroscopy [2]
and in the review Boris Nikolaevich Grechushnikov, an
Outstanding Scientist in Modern Physical and Applied
Optics written by Prokhorov et al. [3]. This new method
of recording spectra of sources allowed one to increase
the threshold sensitivity of the classical methods by a
factor of several hundred. Today Fourier spectroscopy
is widely used to record weakly luminous astronomical
and biological objects, as well as objects whose identi-
fication is important for military and other purposes.

In the classical methods, the spatial resolution of a
radiation into monochromatic fluxes is done with the
aid of various prisms, diffraction gratings, etc. The gain
in the signal-to-noise ratio in Fourier spectroscopy is
obtained because of the simultaneous action on a detec-
tor of all the spectral elements of the radiation and two-
stage processing of the signal. Grechushnikov and his
colleagues developed the optimum models of Fourier
spectrometers based on interference-polarization filters
and a polarization interferometer. The working models
of these devices were used to obtain the unique well-
resolved individual luminosity spectra of Saturn and its
rings and also weak luminescence in laser destruction.
Grechushnikov showed that spectroscopy should be
developed by designing new devices that change the
program of measurements depending on the input
information. It is this principle that underlies the oper-
ation of modern recording units.

At that time Grechushnikov used polarization optics
to solve a number of problems of civil defense, includ-
ing the development of an effective defense for the
advanced naval harbor. Grechushnikov and Distler sug-
gested a solution based on the use of large-scale infra-
red polarization devices supplied having night-vision
devices with special attachments that would allow the
analysis of false and reference sources around
C

advanced navy harbors. The method allowed periodical
(at short periods) recording of the fairway in mine fields
around the harbor. Fourier spectrometry of sea noise
was used to reveal unknown underwater objects, and
polarization optics was used to determine the current
submarine coordinates without surfacing.

Grechushnikov became a coauthor of the method of
infrared flaw detection for solving an important prob-
lem of material quality. The new methods, developed
mainly in cooperation with V.S. Chudakov, allowed
visualization of internal stresses, nonstoichiometry,
inhomogeneity in the impurity distribution, and other
defects by following the changes of their optical char-
acteristics. The devices designed for studying crystal
defects were manufactured and used in industry and in
research and industrial institutions. Grechushnikov’s
capacity for work also allowed him to participate in the
studies on growth of quality crystals for science and
industry performed by the Institute of Crystallography.
Various optical and spectral methods were used in Gre-
chushnikov’s works on quartz piezoelectric plates per-
formed in cooperation with L.G. Chentsova; on sap-
phire with various activators performed in cooperation
with A.A. Popova; and on ruby crystals for enhance-
ment of radiation in the microwave and optical ranges
performed in cooperation with Kh.S. Bagdasarov and
V.Ya. Khaimov-Mal’kov, respectively.

At the same time, Grechushnikov also delivered lec-
tures at Moscow State University and the Institute of
Steel and Alloys. He later lectured at the Institute of
Crystallography.

In 1966, Grechushnikov became head of the Labo-
ratory of Spectroscopy. His erudition allowed him to
perform many-sided complex studies of the optical and
spectral properties of various crystals. Development of
diverse experimental methods was accompanied by
development of the theory of light interaction with a
crystal. New highly educated physicists came to the
laboratory. These were graduates of the Institute of
Physical Problems (G.I. Kosourov, B.K. Sevast’yanov,
I.N. Kalinkina, O.V. Kachalov, and A.Ya. Parshin) and
students from the Faculty of Physics of Moscow State
University and Moscow Physical–Technical Institute.

Fourier spectroscopy was further developed in
cooperation with Parshin (now a corresponding mem-
ber of the Russian Academy of Sciences), Petrov, and
S.V. Koryshev. They designed and constructed new
Fourier spectrometers and described mathematically
and optimized their operation. Grechushnikov, together
with A.F. Konstantinova and V.A. Shamburov, further
developed classical crystal optics and worked out in
detail the modern theory of light propagation and its
transformation in crystals and suggested new experi-
mental methods for measuring parameters of light. Gre-
chushnikov, D.T. Sviridov, and T.F. Veremeœchik stud-
ied promising new crystals. The accuracy of the theory
of the crystal field was increased by taking into account
some fine effects. Impurity-free and activated crystals
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were studied experimentally by the methods of optical
(with Petrov) and EPR spectroscopy (together with
Petrov and V.F. Karyagin, respectively), by NMR spec-
troscopy (together with V.Yu. Galitskiœ, Yu.A. Sokolov,
and V.A. Detinich), and by circular dichroism (together
with Z.B. Perekalina). The spectral methods were also
used for study and quality control of yttrium–aluminum
garnet (YAG) activated by transition elements (in cooper-
ation with Bagdasarov) and study of optical characteristics
of cuprous oxide (in cooperation with L.S. Starostina).

The development of new methods required the
development of an adequate theory and methods for
data processing. The unique results in this field were
obtained by Grechushnikov together with V.V. Volkov,
Kalinkina, and Parshin. By appropriately processing
their experimental data, this group to managed consid-
erably increase the efficiency of the experimental
results. Similar data processing was also performed in
structural crystallography during the development of
new approaches to the Patterson function (in coopera-
tion with Belov and V. V. Ilyukhin).

It should be mentioned that Grechushnikov was one
of the first scientists who widely used computers for
solving scientific problems. He himself wrote many
programs and often performed the computations.

At different times Grechushnikov worked with inde-
pendent groups organized in his laboratory: Kosourov’s
group for nonlinear optics, holography, and amplifica-
tion of radiation frequency (Kalinkina, Kachalov, and
M.P. Goloveœ); Sevast’yanov’s group for spectroscopy
of activated crystals under pumping conditions
(V.P. Orekhova, L.B. Pasternak, S.V. Volkov, et al.);
Sviridov’s group (development of mathematical appa-
ratus of the theory of crystal field which related the
structure and spectra of impurity centers and applied it
to the study of laser crystals (Veremeœchik); and Sham-
burov’s group for transformation of light waves by
crystals and the use of fine effects of this transformation
in various devices (E.A. Evdishchenko and A.I. Vis-
lobokov).

For about twenty-five years, Grechushnikov headed
the joint seminar of the Department of Crystal Proper-
ties at the Institute of Crystallography. Grechushni-
kov’s unselfish activity demonstrated the measure of
his devotedness to science and his encyclopedic knowl-
edge. At this seminar hundreds of doctoral and candi-
date’s dissertations, as well as other works performed at
the Institute of Crystallography and other institutions,
were discussed. Deeply penetrating into the essence of
these studies and showing deep interest in these studies,
Grechushnikov often helped the authors better under-
stand discussed problems, see them as a whole, and
reveal fine theoretical and experimental details.

Grechushnikov also guided the Moscow Seminar on
Electron Paramagnetic Resonance and for many years
participated in the Scientific Council on Radiospectros-
copy of Condensed Media at the Presidium of the
USSR Academy of Sciences. Together with Konstanti-
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nova, he organized annual seminars and conferences on
optics of anisotropic media.

The many-sided nature of Grechushnikov is also
seen from the topics considered at the so-called First-
of-April Seminar, having no analogues at the institu-
tions of the Academy of Sciences. The seminar had the
aim of improving scientific and personal contacts and
broad education. In addition to the members of the
Institute of Crystallography and Grechushnikov him-
self, this seminar was attended by many. The topics dis-
cussed ranged from Dali’s painting, then almost
unknown in the Soviet Union, to prognosis of the peri-
ods of magnetic-field perturbation. A.P. Levanyuk
drank distilled water and stated at the food table the
complete theory of sanitary starvation. Parshin demon-
strated that the 13th day of each month is most often
Friday. Sviridov delivered a lecture on insects. Gre-
chushnikov considered Durer’s magic squares, spoke
about the life of Euler and other scientists, considered
Hippocrates’ Lunar, etc.

SOME MEMOIRS ABOUT GRECHUSNIKOV

Grechushnikov was a man of high inherent culture.
He happily combined composure, thoughtfulness in
communication with other people, self-control and toler-
ance, and respect for his opponents' opinions no matter
their age or rank. All these features attracted people as if
they had joined in something bright and joyous. He was
full of energy and liked to work. Grechushnikov, being a
gifted leader full of energy, was able to stimulate peo-
ple’s curiosity and interest to participate in his work.

Religious people believe that a man may distinguish
in another person only those sins he himself possesses.
A highly moral person, Grechushnikov did not like to
criticize his colleagues as many creative and competi-
tive people do. If he had to criticize someone, he did it
very gently and only in private. He liked people and had
a sense of community. Grechushnikov did not only
advise numerous colleagues and visitors: someone
always stayed at his apartment. Sometimes, these were
people he had never met before: they were brought
home by his wife, who recognized them somewhere
downtown from their Arkhangel’sk accents.

Grechushnikov’s personal qualities attracted special
attraction. V.I. Alshits said at the seminar dedicated to
the 70th anniversary of Grechushnikov’s birth, “Boris
Nikolaevich was the most beloved person at the insti-
tute.” This is also confirmed by many well-known facts.
A Nobel Prize winner offered himself as an opponent of
Grechushnikov’s doctoral dissertation. Grechushni-
kov’s colleagues made a film dedicated to his fiftieth
birthday which was full of love and humor and verses
written by L. Pasternak, a son of a Nobel Prize winner.
The first deed of Sevast’yanov after his appointment to
the directory of the Institute of Crystallography, was to
help Grechushnikov get a new comfortable apartment
as an invalid of the Great Patriotic War. When Gre-
chushnikov became seriously ill, his colleagues Bag-
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dasarov and A.A. Chernov managed to get a very rare
remedy and invite for him the best doctor; they also
helped in the solution of many other problems. Inden-
bom was a friend of our laboratory and, after Grechush-
nikov’s death, a seriously ill Indenbom once again
showed his devotion to Grechushnikov. He suggested
writing a detailed review of Grechushnikov’s publica-
tions, managed to invite Academician Prokhorov and
Director of the Institute of Crystallography Academi-
cian Vainshtein to write such a review, and himself par-
ticipated in this work. Kachalov, who, in fact, partici-
pated in writing of the review article [3], refused to
write his name as a coauthor because the number of
potential coauthors seemed to be too large. Konstanti-
nova for 25 years was a scientific secretary of all the
seminars headed by Grechushnikov.

Grechushnikov was a man of diverse talents and
interests. He was highly sensitive to words and enjoyed
reading unique and elegant books written by Newton
and Euler. He knew Lermontov’s poems by heart and
liked to read Tsvetaeva’s verses. He wrote his articles in
one sitting and practically never introduced any correc-
tions. He spoke plainly, directly, and without affecta-
tion. His language was clear and reserved and, at the
same time, was harmonic and had clear sense.

Grechushnikov had several hobbies. He liked to
repair clocks and watches and did so for everybody. He
especially liked striking clocks. In his apartment he had
several such clocks. He also liked astronomy and had a
small observatory at home. Therefore, nobody ever could
hear from him that the most important thing is health:
how fleeting is that which we deem most important.

Grechushnikov played chess and loved fishing. He
developed his own attitude to nature and never loudly
admired its beauty. It seemed that he tried to penetrate
the essence of natural phenomena. “How can such pow-
erful trees be formed from water and soil?” he used to
ask. He named a beautiful large blue fish in his home
aquarium “Elizaveta Petrovna” after the Russian
empress who liked the color blue.

Grechushnikov’s civic stand was definite and invari-
able. It is impossible to say that he loved Russia
because he simply was one of its inherent parts. Once he
told us about the luckiest moment in his life. He was badly
wounded and lied without a leg on the ground near a med-
ical train; it was then that he realized himself to be
involved in Russian history for the benefit of the people.
Therefore, everything which happened to his country hap-
pened to him as well. He highly regarded perestroika. The
situation was grave for him because, being an invalid, he
could not get to the institute: he did not have enough
money for taking a taxi. He overcame his depression; he
was courageous. No matter when we visited him, he was
always working at the writing table and joked “I am like
a rusty nail in a fence.” The texts and formulas were
always prepared and written on library cards.

The time and place of his death also to seem be sym-
bolic. He died at 2:30 p.m. on October 3, 1993, in the
C

hospital of the Academy of Sciences located behind the
Moscow department store. At that very moment, thou-
sands of people on the nearby October Square rose to
defend the legitimate parliament.

CONCLUDING REMARKS

We would like to say a few words about some pecu-
liar facts related to Grechushnikov.

It seems that Grechushnikov was the only scientist
who had as opponents of his candidate’s and doctoral
dissertations future Nobel Prize winners. The opponent
of his candidate’s dissertation was future Academician
and Nobel Prize winner V.L. Ginzburg. The opponent
of his doctoral dissertation, A.M. Prokhorov, was also
an Academician and a Nobel Prize winner. This fact
shows the commensurate scientific and moral scale of
the competitor and his opponents. We should also men-
tion another person who worked at Grechushnikov’s
laboratory, L.B. Pasternak, a son of Leonid Pasternak,
a Nobel Prize winner in literature. The second peculiar
fact is that of 50 scientists who worked with Grechush-
nikov during his life, 7 people were related to different
pairs of twins. Among the older generation, Chentsova,
Grechushnikov himself, and Volkov had twin siblings;
from the next generation, Kalinkina, Evdishchenko,
and Volkov were parents of twins. In 2004 twin grand-
sons were born in Kachalov’s family. According to the
causality principle, this fact may be interpreted as “Gre-
chushnikov’s rule”: a human being is close to a human
being. Probably it is the way of nature to grant Gre-
chushnikov’s qualities to future generations. This
allows us to believe that the self-sacrifice, love, and tal-
ent inherent in Grechushnikov will be inherited by new
generations.

The inherent right of an individual in modern soci-
ety is to acquire, possess, and obtain income. Gre-
chushnikov was an extremely modest person in life and
modestly estimated his work. In fact, he belonged to
minority, but it is this the minority that forms the basis
of a reasonable life of humanity.
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