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Abstract—The problem of reconstruction of an unknown object by backprojection in a space of arbitrary
dimension p ≥ 2 is considered. Expressions are obtained to solve the problem in the form of series in multidi-
mensional spherical harmonics. Bases of functions applicable to the expansion of radial components of the
series in spherical harmonics are found. © 2005 Pleiades Publishing, Inc.
   
INTRODUCTION

Backprojection is a method of reconstruction of the
structure of an unknown object by its projections [1].
The conditions for the completeness of a set of projec-
tions, i.e., the sufficiency for unambiguous reconstruc-
tion of an object, were formulated for the three-dimen-
sional reconstruction by Orlov in [2]: a set of projec-
tions is complete if the projection directions occupy an
area on the sphere of directions, which is intersected by
all great circles on this sphere. In a p-dimensional
space, the Orlov conditions are reduced to the necessity
of intersection of this area by all great circles on a unit
p-dimensional sphere, i.e., the central cross sections of
this sphere by (p – 1) hyperplanes. More general condi-
tions for the completeness can be found in [3]. In this
study, eigenfunctions of the backprojection operator
will be investigated for the case when the projection
directions occupy the entire sphere of possible direc-
tions in a space of arbitrary dimension p ≥ 2.

BACKPROJECTION INVERSION

As was shown in [4], an arbitrary function of coor-
dinates f(r) in a p-dimensional space and its back-
projection Σ(r) are related to each other by the expres-
sion

(1)

For p > 2, the solution to this equation with respect to
the unknown function f(r) has the form
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the area of the p-dimensional sphere is [5]

(4)

and ∆p is the Laplace operator in a p-dimensional space.
For odd p, a solution was found in [4, 6]. Here, a solu-
tion for even-dimensional spaces will be derived. We
will introduce a coordinate system as follows. Let us
assume that one of the coordinate axes passes through
two singularities of the integrand and go to (p – 1)-
dimensional spherical coordinates in the space of other
coordinates. Then, the integral of the convolution
r (p − 1) r*

(p – 1) will take the form

(5)

In this integral, we will pass to elliptical coordinates

Taking into account that the Jacobian of the transition
to elliptical coordinates is equal to

(6)

we can write the integral (5) as

(7)
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analytic function of ψ, and, after the substitution of
exp(iψ) = z, the integral over ψ is transformed into a
contour integral of a rational function z along a unit cir-
cle |z | = 1 (Fig. 1). The integrand has two poles p± of the
order p – 2 at the points z = exp(±2ξ). At positive ξ, the
pole z = exp(+2ξ), which is located beyond the contour,
does not contribute to the integral. The substitution of
the residue at the pole p– into (7) leads to an integral of
a rational function of the variable ζ = exp(2ξ). This
integral is expressed in terms of elementary functions.

Odd-dimensional spaces were investigated in [6]
(p = 3) and [4] (p = 5, 7, 9, 11). At odd p, the integrand
in formula (5) has four poles at the points y = ±(1 ± ix).
The integral over y can also be taken using the residue
theory. The integration contour is shown in Fig. 2. On
the arc of the circle, the integrand function decreases as
the –(p – 1) power of the arc radius and the integral over
the arc tends to zero at R  ∞. Thus, the integral over
y from formula (5) is equal to the sum of residues at the

Imz

Rez
p– p+

Fig. 1. Calculation procedure for integral (7).

Values of the constant Cp

p Cp p Cp

3 4π4 4 16π4

5 4π6 6

7 π8 8

9 10

11 12

13 14

64
9
------π6

256
225
---------π8

π10

9
-------

1024
11 025
----------------π10

π12

144
---------

4096
893 025
-------------------π12

π14

3600
------------

16 384
108 056 025
-----------------------------π14
C

two poles y = (±1 + ix), which are within the contour. In
this case, we obtain a rational function x, the integral of
which can also be calculated. The values of the constant
Cp for even and odd dimensions are listed in the table.

EIGENFUNCTIONS OF THE BACKPROJECTION 
OPERATOR

Relation (2) can be written in the operator form [4]

(8)

where I is the identity operator and Σ is the backprojec-
tion and summation operator. Therefore, the eigenfunc-
tions of the operator Σ can be found among those eigen-
functions Ψ of the Laplace operator ∆p that satisfy the
Helmholtz equation

(9)

The solutions to this equation have the form [5]

(10)

where Snl are generalized spherical harmonics [5, 7, 8],
Jν(·) are the Bessel functions, and z = kr. Among these
functions, only Ψ+(r) at real positive values of k2 are
limited within the entire positive real axis. The other
solution to the Helmholtz equation, Ψ–(r), which corre-
sponds to the same eigenvalue, is infinite at zero. It can
be shown that the eigenfunctions of the operator Σ must
be linear combinations of the functions Ψ±(r), and the
corresponding eigenvalues can only be equal to λ± =

± . The existence of a positively defined opera-
tor, which is a solution to Eq. (8) with respect to Σ, fol-
lows from the square-root theorem [9]. The convolution
of Ψ+(r) with the kernel of the operator Σ is also finite

Cp
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Rey
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Fig. 2. Calculation procedure for integral (5) at odd p.
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at zero:

(11)

Hence, the function Ψ+(r) is the eigenfunction of the
operator Σ.

Let us investigate the sign of the eigenvalue for an
arbitrary eigenfunction Ψ+(r). Since the integral of the
convolution ΣΨ+ is a homogeneous function with
respect to k, we can assume k to be unity without loss
of generality.

The following integral representation is valid for
Bessel functions [5]:

(12)

where

(13)

With the use of this integral relation and the Funk–
Hecke theorem [5, 8], the convolution integral can be
written as

(14)

where Pn(·) are the polynomials introduced in [5],
which coincide with accuracy to a constant factor with
Gegenbauer polynomials. We will restrict our consider-
ation to a three-dimensional space (p = 3). For polyno-
mials Pn with even numbers n, integration over r can be
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extended to the entire real axis as follows:
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Integrating (18) by parts over t   n times, we obtain

(19)

where (·) are the m–eth derivatives of Legendre
polynomials.

To find the sign of an eigenvalue, it is sufficient to
consider the asymptotics of (19) at ρ  ∞, which is
determined by the term with m = 0. The contribution of
the second term in braces contribution is zero. Indeed,

(20)

for all nonzero even values of n. Taking this fact into
account, the integral of the first term in (19) is equal to

(21)

where z = exp(iθ). The integral is taken over the arc of
a unit circle connecting points 1 and +i. At large ρ, the
asymptotics is determined by the contribution of the
final point of the contour z = 1 [10]:

(22)

Substituting (13) and (4) into formula (22) and compar-
ing the result with the known asymptotics of Bessel
functions [11]
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we find that
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Ψ+ r( )    r 
2–

 4 π c Ω 2 S nl Re P n τ( ) 
p

 
+ 

p
 

+
 

p
 

–
 

–
----------------- 

0

1

 ∫ =  

×

 

i
p

 

+

 

-----

 

 
 

 

m

 

i p

 

+

 

( )

 

P

 

n
m

 

( )

 

1

 

( )

 

exp

 

P

 

n
m

 

( )

 

0

 

( )

 

–

 

{ } τ

 

d

 

m

 

0=

 

n

 

∑

 

,

 *

Pn
m( )

Re iPn 0( ) Pn θcos( ) iθ( ) θdexp

π/2

0

∫–

=  Pn 0( ) Pn τ( ) τd

0

1

∫ 0=

2cΩ2SnlπPn 1( )Re Pn
z z

1–
+
2

--------------- 
  iρz( ) zdexp

1

i

∫ ,

Ψ+ r( )     r 2–
 2 c Ω 2 S nl π P n 

2
 1 ( ) Re 

i ρ( )
 

exp
 

i
 ρ ------------------- ∝  

=  2

 

c

 

Ω

 

2

 

S

 

nl

 

π ρ

 

sin

 

ρ

 

-----------.

 *

Jν z( ) 2
πz
----- z

1
2
---πν– π

4
---– 

  ,cos∝

Ψ+ r( )    r 2–
 + C 3 Ψ + r ( ) = *                                                
C

     

For odd n, the extension of integration over r to the
entire real axis leads to the expression

(25)

The positivity of the sign of the eigenvalue (24) for odd
n is proven similarly.

For the main (spherically symmetric) harmonic
sin(r)/r in a three-dimensional space, the relation

ΣΨ+ =  can be checked directly. Indeed,
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real axis as follows:
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The functions f(r) and Σ(r) can be expanded in
series of spherical harmonics:

(31)

(32)

Let us assume that the radial parts of the terms of
series (31) and (32) belong to the class of functions for
which the Hankel transform is determined [13]:

(33)

Then, it can be shown that Σnl(r) and fnl(r) are
related as follows:
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For a two-dimensional space (p = 2), the relation of
type (34) can be checked directly [14] (note that
C2 = 4π2).
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tion of the type (34) for Σnl(r) and fnl(r) on the basis of
the Yν Hankel transform [13].

BASIS FUNCTIONS OF THE BACKPROJECTION 
OPERATOR

Using the tables of integral transforms [13], one can
find series of functions convenient for expansion of
Σnl(r) and fnl(r):
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relation is valid for the main index n = 0 and for all m ≥ 0:

(35)

Substituting the known value of the integral from the
tables of [15] into relation (35), assuming m to be zero,
and taking into account (4), we obtain the expression
for the constant Cp at an arbitrary value of p:

(36)
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integrand (41). The thus defined functions (r)

will tend to (r) at β  0 in the sense of weak con-
vergence since relation (40) becomes an exact equality

Λnm β,*

Λnm*

1

2

3

4

5

1 2 3 4 r

Λ0  m(r)

1
2

3

0

Fig. 4. Basis functions of the backprojection operator for
p = 2 at m = 0–3.

0.1

0

1 3 5

2 40
0.2

–0.1

–0.2

1 2 3 4 5

βmΛ*
0 m, β(r)

βr

Fig. 5. Conjugate basis functions of the backprojection
operator for p = 2 at m = 0–5.

1

1 2
r

Fig. 6. Reconstruction of a model two-dimensional object.
C

for all Λnm' (r) at β = 0. Using the tables of integral trans-
forms [13], we derive the expression for the conjugate
basis functions:

(42)

where ν = n + p/2 – 1. Substituting the known expres-
sion for generalized Laguerre polynomials in terms of
the confluent hypergeometric function [15]

(43)

into (42) and integrating (42) term by term, we obtain
the final result:

(44)

Figure 4 shows the first four functions Λ0m(r) for a
two-dimensional space (p = 2). In this case, the conju-
gate basis functions (r) with a zero main index
n = 0 have the form

Figure 5 shows the first six conjugate basis func-
tions βm (r) at β = 10–3 for p = 2. The normaliza-
tion to βm is introduced in view of the unlimited increase
in the amplitude of the basis functions at β  0.

Figure 6 shows the reconstruction of the two-dimen-
sional (p = 2) model Gaussian profile f(r) = exp(–σ2r2)
from the first six basis functions (r) (σ = 3/2,
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β = 0.3). The initial Gaussian profile and the recon-
struction are shown by solid and dotted lines, respec-
tively. For comparison, the backprojection normalized
to unity at the origin of coordinates is shown by a dot-
dashed line.

CONCLUSIONS
The problem of reconstruction of an unknown

object from the backprojection in a space of arbitrary
dimension is solved. The solutions are obtained in the
form of expansions in series of multidimensional spher-
ical harmonics. Countable functional bases, convenient
for expansion of radial components in series of spheri-
cal harmonics, are given.
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Abstract—The role played by different factors in the broadening of X-ray diffraction lines is evaluated using
numerical methods. It is demonstrated that, within the kinematical theory of X-ray scattering, the main factors
affecting the linewidth are as follows: the angle of reflection, the number of reflection planes, the focus width,
the material of the anode of the X-ray tube, and the angle of misorientation of coherent scattering regions. It is
established that, in the case where the number of reflection planes is less than 200, the instrumental component
of the linewidth does not exceed 5% of the total linewidth. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

The width of a diffraction line is one of the most
informative parameters of X-ray diffraction analysis.
This parameter is determined by the following factors
[1]:

(i) physical factors responsible for the properties of
materials,

(ii) nonmonochromaticity of X rays, and
(iii) geometrical factors.
At present, there exist different methods for evaluat-

ing the physical factors from the experimental X-ray
diffraction lines, and each of these methods has offered
its own advantages and disadvantages [2].

In this work, the broadening of X-ray diffraction
lines due to the nonmonochromaticity and horizontal
divergence of X rays was estimated using numerical
simulation methods.

THEORETICAL BACKGROUND

In the framework of the kinematical theory [3, 4],
the dependence of the intensity of diffracted radiation
on the angle of reflection (measured on an X-ray dif-
fractometer), without regard for the nonmonochroma-
ticity and geometrical divergence of X rays, can be rep-
resented in the following form:

(1)

Here, I0 is the intensity of incident radiation, ϑ is the
current value of the angle of reflection, F2 is the struc-
ture factor, ϑ0 is the Bragg angle of reflection, N is the
number of reflection planes in the direction of incident

I ϑ( ) I0 f T pF
2
P ϑ( )=

×
N 2ϑ 0π ϑ ϑ0–( ) ϑ 0cotsin[ ]sin

2

π ϑ ϑ0–( ) ϑ 0cot[ ]sin
2

---------------------------------------------------------------------------.
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radiation, fT is the temperature factor, P(ϑ) is the Thom-
son polarization factor, and p is the multiplicity factor.

The theoretical diffraction line, which is calculated
from relationship (1) for N = 600 and ϑ0 = 30°, is shown
in the figure (curve 1).

The effect of the radiation spectrum on the linewidth
can be treated as the convolution of relationship (1)
with the characteristic radiation spectrum, which are
related by the Wulff–Bragg equation. The radiation spec-
trum can be described by the dispersion formula [5]

(2)I I0

λ0
2

λ0
2 λ0/λ 1–( )2

λ0/λ1/2 1–( )2
--------------------------------+

--------------------------------------------,=

29.9
0

30.0 30.1 30.229.8

0.5

1.0

ϑ , deg

I, rel. units

1

2

3

4

Theoretical dependences of the intensity of diffracted X
rays on the angle of reflection ϑ .
© 2005 Pleiades Publishing, Inc.
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where I0 is the maximum intensity, and λ0 and λ1/2 are
the wavelengths corresponding to the maximum inten-
sity and one-half the maximum intensity, respectively.

This convolution can be obtained by combining
relationships (1) for different Bragg angles of reflection
that are discretely changed in accordance with the X-
ray spectrum. The dependence of the intensity of dif-
fracted X rays on the angle of reflection for nonmono-
chromatic FeKβ radiation at N = 600 and ϑ0 = 30° is
depicted in the figure (curve 2). The parameters charac-
terizing the X-ray spectrum are taken from [5]. The
numerical treatment of the constructed convolution has
demonstrated that the broadening of the diffraction line
due to the nonmonochromaticity of radiation depends
on the angle of reflection and on the number of reflec-
tion planes. The greatest broadening of the diffraction
lines is observed at angles of reflection in the range
from 40° to 50°. The increase in the half-width of the
diffraction line does not exceed 2% for N < 200 and is
more than 100% for N > 2000.

NUMERICAL SIMULATION

The instrumental distortion of the diffraction line
due to the X-ray divergence was estimated by the
numerical simulation of the recording of the diffraction
line on an X-ray diffractometer with the Bragg–Bren-
tano focusing scheme. The basic idea of this numerical
simulation is as follows. The focus of an X-ray tube is
considered as a set of point sources. Each of the point
sources emits radiation in the form of a set of discrete
rays. The discrete rays are incident on the sample at
angles of incidence in a certain range. This range is
determined by the distances from the focus to the sam-
ple and the first slit of the detector, the angle of rotation
of the sample with respect to the focus, and the width of
the first slit. By combining the discrete rays transmit-
ting through the first slit for particular points of the tube
focus, it is possible to determine the angular distribu-
tion of the intensities of incident radiation.

Let us assume that the object under investigation is
an ideal mosaic crystal that consists of identical coher-
ent scattering regions rotated with respect to the surface
through small angles. If the angle of incidence of X rays
with respect to the reflection planes of a particular
coherent scattering region corresponds to the Wulff–
Bragg angle, the X rays are diffracted from the crystal.
This radiation will be recorded by a detector only in the
case where it is transmitted through the detector slit
with a specified width. The angular distribution of the
intensities of radiation diffracted from an individual
coherent scattering region can be determined from rela-
tionship (1). It should be noted that, for this angular dis-
tribution, the Bragg angle of reflection is shifted by an
angle of misorientation of the coherent scattering
region with respect to the Bragg angle of reflection of
the total diffraction pattern. The diffraction pattern
itself can be represented as the sum of the angular dis-
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 3      200
tributions of the intensities of radiation diffracted from
all the individual coherent scattering regions involved.

The above model of the recording of the diffraction
pattern of a planar sample on an X-ray diffractometer
was implemented in the Dlinewid software package
intended for the construction of theoretical diffraction
patterns. The Dlinewid software package was used to
simulate the dependences of the intensity of diffracted
X rays on the angle of reflection under the conditions
that corresponded to the geometry of the recording of
diffraction patterns on a DRON-3 X-ray diffractometer
for N = 600 and ϑ0 = 30°. The dependences thus
obtained for monochromatic (curve 3) and nonmono-
chromatic (curve 4) FeKβ radiation are depicted in the
figure.

The results of the numerical treatment carried out
with the Dlinewid software package have demonstrated
that the broadening of the diffraction line due to the
horizontal divergence of the beam depends on a number
of parameters, such as the angle of reflection, the num-
ber of reflection planes, the focus width, and the mate-
rial of the anode of the X-ray tube. It should be noted
that the effect exerted by these factors on the width of
the diffraction line is in qualitative agreement with that
observed in the experiments. In particular, the line
broadening for N = 600 decreases from 86% at ϑ0 = 15°
to 2% at ϑ0 = 75°. When the focus width of the X-ray
tube is equal to 2 mm, the instrumental broadening of
the diffraction lines is as large as 280%. In this case, the
Kα1 and Kα2 diffraction lines merge together. A decrease
in the focus width to 0.1 mm leads to a decrease in the
instrumental broadening of the diffraction lines to 10%.

The angular dependence of the diffraction line
width, with allowance made for the nonmonochroma-
ticity and horizontal divergence of X rays, is repre-
sented by a curve with the maximum corresponding to
the angles of reflection in the range from 25° to 30°. For
parameters ϑ0 < 60° and N > 800, the width of the dif-
fraction line is predominantly determined by the instru-
mental factors. For N < 200, the instrumental compo-
nent of the linewidth at angles of reflection in the range
from 10° to 80° does not exceed 5%. A change in the
material of the anode of the X-ray tube from cobalt to
molybdenum results in a change in the broadening of
the diffraction line by 10%. Moreover, the diffraction
line is broadened by a few percent as the angle of mis-
orientation of the coherent scattering regions increases
from 0.001° to 0.300°.

The numerical simulation methods, as applied to the
determination of the instrumental component of the
error in the X-ray diffraction measurement, provide a
means for solving the problem associated with the
determination of the parameters N and ϑ0 directly from
the experimental diffraction pattern with the use of the
following enumeration procedure. In essence, this pro-
cedure consists in enumerating the parameters N and ϑ0
until the sum of the squares of the deviations of the
experimental values from the theoretical dependence
5
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calculated according to relationship (1), with allowance
made for the instrumental errors, reaches a minimum
value. This procedure is included in the Dlinewid soft-
ware package.

The diffraction patterns measured for carbon steels
on a DRON-3 diffractometer were also processed with
the Dlinewid software package. The results of this pro-
cessing demonstrated that, in the case where the Kα1
and Kα2 lines cannot be resolved against the back-
ground of the second-order lines, the number of reflec-
tion planes N is less than 200.

CONCLUSIONS

Thus, the use of numerical methods for simulating
X-ray diffraction measurements makes it possible to
eliminate the main instrumental errors and to determine
C

the actual characteristics of the controlled properties of
materials from the experimental diffraction patterns.
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Abstract—Two independent methods for calculation of the rocking curves for laterally bounded crystals are
developed. Numerical simulation of diffraction for crystals of different sizes is performed. The results
obtained using the dynamical theory of diffraction are compared to those obtained in the kinematic approxima-
tion. © 2005 Pleiades Publishing, Inc.
INTRODUCTION
Laterally bounded semiconductor crystal structures

are important elements of modern opto-, micro-, and
nanoelectronics. There exist different techniques for
preparing such structures. In particular, the method of
selective epitaxial growth on a profiled substrate is
rather promising. There are only a few X-ray diffraction
studies of laterally bounded crystals since the resolu-
tion available is insufficient, and, thus, analysis of the
diffraction data is very time-consuming [1]. As a rule,
calculations of diffraction spectra are performed in the
kinematic approximation [2, 3] using the finite-element
method [2] or explicit formulas [3].

On the other hand, laterally bound crystals may have
a size comparable to the extinction length or even
exceeding it. The kinematic approximation is no longer
valid for such objects. In addition, to calculate the
reflectivity of laterally bounded X-ray mirrors, such as
grooves of a multilayer diffraction grating, one has to
use the dynamical theory of diffraction owing to the
strong interaction of X rays with the material.

Calculations of rocking curves within the dynamical
theory of diffraction were performed in [4, 5] for per-
fect crystals of rectangular cross section. However, the
rocking curves were calculated in these studies using
the procedure based on the Cauchy–Riemann equa-
tions. This procedure is very complicated, cumber-
some, and, in our opinion, can hardly be applied to pro-
cessing of experimental data. In addition, the gradual
transition from small to semi-infinite lateral crystal
sizes was not shown in [4, 5].

In this study, we develop two new independent
methods for calculation of rocking curves for laterally
bounded crystals of rectangular cross section.

BASIC EQUATIONS
We consider an infinitely long crystal of rectangular

cross section with thickness Lz along the OZ axis and
1063-7745/05/5003- $26.00 ©0357
width Lx along the OX axis. A monochromatic plane
wave is incident onto this crystal. The plane of inci-
dence of the wave is the XOZ plane. For simplicity, we
will consider the reflection from a set of crystallo-
graphic planes perpendicular to the OZ plane (Fig. 1).
Then, in the two-wave approximation for the symmet-
ric Bragg reflection, the Takagi–Taupin equations have
the following form in the Cartesian coordinate system:

(1)

θB
∂
∂x
------cos θB

∂
∂z
-----sin+ 

  T x z,( )

=  i
π
λ
---χoT x z,( ) i

π
λ
---χ g– CR x z,( ),+

θB
∂
∂x
------cos θB

∂
∂z
-----sin– 

  R x z,( )

=  i
π
λ
--- χo α–( )R x z,( ) i

π
λ
---χgCT x z,( ),+

T

0
x

z

R

Lz

Lx

y

Fig. 1. Schematic of the system. Bold line shows the cross
section of the crystal. Dashed lines correspond to the
reflecting planes. T and R are the incident and reflected
waves, respectively.
 2005 Pleiades Publishing, Inc.
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where T(x, z) is the field of the transmitted wave, R(x, z)
is the field of the diffracted wave, α = –2sin2θB∆θ, θB is
the exact value of the Bragg angle for the crystal under
study, ∆θ is the deviation of the X-ray incidence angle
from the Bragg angle, C is the polarization factor, λ is
the X-ray wavelength, and ξo, g, –g are the Fourier com-
ponents of the X-ray polarizability.

Let us specify the boundary conditions for the prob-
lem stated:

We introduce dimensionless spatial variables x' and z':

(2)

Then, Eqs. (1) can be rewritten as

(3)

with the boundary conditions

(4)

Here, the parameters a1, a2, b1, and b2 are defined as
follows:

(5)

Set of Eqs. (3) with boundary conditions (4) was
solved using two methods. The results of numerical cal-
culations by these methods were compared with each
other to reveal possible errors.

NUMERICAL SOLUTION ON A MESH

Let us divide the crystal in the direction of the OZ
axis into Nz layers with thickness ∆z' = 1/Nz and intro-
duce a computational mesh with points  = j∆z' (0 ≤
j ≤ Nz). For the values of amplitudes at mesh points, we
introduce the notation Tj = T(x', ) and Rj = R(x', ).
We substitute the derivatives ∂T/∂z' and ∂R/∂z' by the
symmetric difference derivatives

for 1 ≤ j ≤ Nz – 1. At the boundaries z' = 0 and z' = 1, it
is necessary to use the nonsymmetric difference deriv-

T x = 0 z,( ) 1, R x = 0 z,( ) 0,= =

T x z = 0,( ) 1, R x z = Lz,( ) 0.= =

x'
x
Lz

----- θB, z'tan
z
Lz

-----.= =

∂T
∂x'
------- ∂T

∂z'
------+ a1T b1R,+=

∂R
∂x'
------- ∂R

∂z'
------– a2R b2T+=

T x' = 0 z',( ) 1, R x' = 0 z',( ) 0,= =

T x' z' = 0,( ) 1, R x' z' = 1,( ) 0.= =

a1

iπLz

λ θBsin
-----------------χo, a2

iπLz

λ θBsin
----------------- χo α–( ),= =

b1

iπLz

λ θBsin
-----------------χ g– C, b2

iπLz

λ θBsin
-----------------χgC.= =

z j'

z j' z j'

∂T j

∂z'
--------

T j 1+ T j 1––
2∆z'

----------------------------,
∂R j

∂z'
--------

R j 1+ R j 1––
2∆z'

----------------------------≈ ≈
C

atives:

for j = Nz and

for j = 0.

The values T0 = 1 and  = 0 are determined by
boundary conditions (4). Then, Eqs. (3) take the form

(6)

for 2 ≤ j ≤ Nz – 1, with two additional equations at the
boundaries:

for j = Nz and

(7)

for j = 0.
As a result, we obtain a set of 2Nz ordinary differen-

tial equations with respect to the variable x' with the
boundary conditions Tj(x' = 0) = 1 and Rj(x' = 0) = 0 (for
all values of j).

This set of equations was integrated by the second-
order Runge–Kutta method. The integration step ∆z'
was chosen in the range 10–2–5 × 10–3. It was found
empirically that the integration step along the OX axis
should obey the relation ∆x & ∆z. Thus, using formulas
(2), we find ∆x' & ∆z'  for variables x' and z'.

APPLICATION OF THE LAPLACE 
TRANSFORMATION

Let us apply the Laplace transformation with
respect to the variable x' to Eqs. (3):

(8)

Taking into account the boundary conditions T(x' = 0,
z') = 1 and R(x' = 0, z') = 0, we transform the derivatives

∂T j

∂z'
--------

T j T j 1––
∆z'

----------------------≈

∂R j

∂z'
--------

R j 1+ R j–
∆z'

-----------------------≈

RNz

∂T j

∂x'
-------- a1T j

1
2∆z'
---------- T j 1+ T j 1––( )– b1R j,+=

∂R j

∂x'
-------- a2R j

1
2∆z'
---------- R j 1+ R j 1––( ) b2T j+ +=

∂T j

∂x'
-------- a1

1
∆z'
-------– 

  T j
1

∆z'
-------T j 1– b1R j+ +=

∂R j

∂x'
-------- a2

1
∆z'
-------– 

  R j
1

∆z'
-------R j 1+ b2T j+ +=

θBtan

T s z',( ) + T x' z',( )[ ] T x' z',( )e
sx'–

x',d

0

∞

∫= =

R s z',( ) + R x' z',( )[ ] R x' z',( )e
sx'–

x'.d

0

∞

∫= =
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∂T/∂x' and ∂R/∂x' as

Then, the transformed set of equations takes the form

(9)

with the boundary conditions T(s, z' = 0) = 1/s and
R(s, z' = 1) = 0. Integrating these equations, we find the
solution

(10)

(11)

Here, we introduce the notation

(12)

The amplitudes T(x', z') and R(x', z') are calculated
by the formulas

(13)

where Res[ f(z), zk] is the residue of the function f(z) at
the pole zk.

Analysis of solutions for T(s, z') and R(s, z') shows
that the poles are the point s = 0 and the roots of the
equation (σ + q)eq – (σ – q)e–q = 0. The values of s at
which the denominators in the expressions for t and r
become zero are removable singularities. The pole s = 0
provides a solution for a crystal of infinite length along
the OX axis (Lx = ∞).
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CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 3      2005
To find the roots of the equation (σ + q)eq – (σ –
q)e−q = 0, we rewrite it as e2q = (σ – q)/(σ + q). Then,
we write the equivalent relation

from which the following equations can be easily
found:

(14)

These equations have an infinite number of roots 

and , where the superscripts 1 and 2 correspond to
Eqs. (14) with positive and negative signs, respectively.
The subscript enumerates the roots in the ascending
order of their absolute values. The roots of Eqs. (14)
were determined numerically by the Newton iteration
method. As an initial approximation, it is convenient to
take the values

where b = .

Then, using the previously introduced notation (12),

we find the values of σk = ± . Here, we
choose the sign so as to satisfy the equation (σ + q)eq –
(σ – q)e–q = 0. The values of σk with a positive sign can
be generally absent for sufficiently thin (along the Z
axis) crystals. For thicker crystals, there arise several
values of σk with a positive real part. Several first even
or odd values of k correspond to these values of σk. The
poles s(1, 2) can now be found from the relation s(1, 2) =

(a1 + a2)/2 + .

When calculating the amplitudes T(x', z') and
R(x', z') using formulas (13), it is sufficient to take into
account several hundred pairs of poles for only very
narrow (along the X axis) crystals (Lx/Lz < 0.1), it is
necessary to take a number of poles an order of magni-
tude larger. Note that in the calculation of the rocking
curve, the values of σ(1, 2) are calculated only once since
they are determined by the equation involving only the
parameters b1 and b2 and are independent of the devia-
tion angle ∆θ.

KINEMATIC APPROXIMATION

In the kinematic approximation, we assume the
parameter b1 to be zero. Then, using Eqs. (10) and (11),
we find the following solution:

(15)

e
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(16)

Performing the inverse Laplace transformation, we
obtain the expression for the amplitude T(x', z'):

(17)

where U(t) is the Heaviside step function

The expression for the amplitude R(x', z') can be repre-
sented in the form

where
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RESULTS OF THE CALCULATIONS

A number of problems concerning the choice of sta-
bility criteria for the methods described above still
remain unsolved. Specifically, we do not know the opti-
mum integration step ∆z' in the first method at a given
set of parameters characterizing the diffraction system
and the optimum number of poles in the second method
for the same set of parameters. Therefore, calculation
of rocking curves was performed simultaneously by
both methods. The calculations based on the Laplace
transformation require much less computer time in
comparison to those using the computational mesh,
especially for long (along the OX axis) crystals. The
difference may be as high as several tens of or even sev-
eral hundred times. At the same time, the mesh method
is more flexible: it can be much more easily generalized
for crystal cross sections that are not rectangular, for
example, trapezoidal.

When calculating the rocking curve for a crystal of
thickness Lz and width Lx, we first integrated over the
crystal surfaces z = 0 and x = Lx to find the total reflec-
tion amplitude

where  = Lx/Lz . After that, we calculated the
intensity of the reflected wave I = |5 |2 . In the differ-
ence method, we used numerical integration based on
the Simpson formula, whereas in the method based on
Laplace transformation, this integration was performed
analytically.

In our calculations, we used the parameters corre-
sponding to the (111) reflection of CuKα1 radiation
from a germanium crystal.

In Fig. 2, we compare the rocking curves calculated
using the dynamical and kinematic approximations for
crystals of rectangular cross section with the narrow
side along the OX axis (Lz/Lx @ 1, Fig. 2a) and the
OZ axis (Lz/Lx ! 1, Fig. 2b). With a further narrowing
of the cross section in the corresponding directions, we

5
Lz

θBtan
-------------- R x' 0,( ) x'd

0

Lx'

∫ Lz R Lx' z',( ) z',d

0

1

∫+=

Lx' θBtan
1.0
(a)

0.8

0.6

0.4

0.2

0
–200 –100 0 100 200

(b)

–100 –50 0 50 100

Fig. 2. Rocking curves calculated in the kinematic (dotted curve) and dynamical (solid line) approximations at different ratios of
the cross-section sizes Lx and Lz: (a) Lz = 10 µm, Lx = 1 µm and (b) Lz = 0.5 µm and Lx = 50 µm.
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Fig. 3. Rocking curves for a crystal with Lz = 5 µm at different values of Lx. The dotted line is the rocking curve for an infinite plane-
parallel plate with Lx = (a) 5, (b) 10, (c) 15, (d) 20, (e) 25, and (f) 150 µm.
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Fig. 4. Rocking curves for a crystal with Lz = 10 µm at different values of Lx. The dotted line is the rocking curve for an infinite
plane-parallel plate with Lx = (a) 5, (b) 10, (c) 15, (d) 20, (e) 25, and (f) 150 µm.
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observe a complete coincidence of the rocking curves.
Deviations from the Bragg angle in seconds of arc are
plotted on the abscissa axis and the reflection intensity
in arbitrary units is plotted on the ordinate axis.

In Figs. 3 and 4, we show the rocking curves calcu-
lated by the Laplace transformation method for crystals
5 and 10 µm thick, respectively, with different widths
along the OX axis. In these figures, we also show for
comparison the rocking curves of a plane-parallel plate
of corresponding thickness infinitely extended along
the OX and OY axes. Deviations from the Bragg angle
in seconds of arc are plotted on the abscissa axis. The
reflection intensity in arbitrary units (for each curve, the
maximum value is taken as unity) is plotted on the ordi-
nate axis. It can be seen from Figs. 3 and 4 that, for a
small extension of the crystal along the OX axis
(Lx/Lz & 1), the rocking curves (Figs. 3a, 4a) differ in
shape only slightly from the curves calculated in the
kinematic approximation (Fig. 2). With an increase in
the dimension Lx, the rocking curve shows additional
oscillations caused by the interference of the waves
coming from the lateral (x = 0) and upper (z = 0) sur-
faces of the crystal (Figs. 3b–3e, 4b–4e). With a further
increase in Lx, the contribution of the waves entering
the crystal through the lateral surface becomes smaller
C

in comparison to the contribution of the waves coming
from the upper surface. As a result, the rocking curve
asymptotically approaches the corresponding curve for
the infinite plane-parallel plate (Figs. 3f, 4f).
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Abstract—The formation of moiré fringes in an X-ray interferometer is studied. It is shown experimentally
that the well-known expression for calculating the period of moiré pattern cannot be always used to calculate
the period of moire patterns obtained in an X-ray interferometer. The change in the moiré period caused by the
temperature gradient in the crystal block of an interferometer is calculated. © 2005 Pleiades Publishing, Inc.
It is well known [1] that dilatation (change in inter-
planar spacings) arises owing to the temperature gradi-
ent in a crystalline plate, which may give rise to struc-
tural distortions of the crystal.

It is also well known [2] that the interference pat-
terns obtained in X-ray interferometers are very sensi-
tive to the structural distortions (defects) of single crys-
tals. Measuring the periods of interference patterns, one
may calculate relative deformation (dilatation) with an
accuracy of 10–8 and small rotations in the crystal lat-
tice of the irradiated parts of an interferometer with an
accuracy of 10–3 using the expressions [3]:

(1)

(2)

where d is the lattice period; α is the angle between the
diffracting gratings; and Λ1 and Λ2 are the periods of
parallel (dilatation) and rotational moire, respectively.
The above expressions are widely used to study defor-
mation fields arising around growth dislocations in a
silicon-based interferometer [4] and transverse stresses
caused by ion bombardment of silicon crystals in order
to determine refractive indices of various materials [5],
absolute values of structure factors with a very high
accuracy [6], Burgers vectors [7], etc. Expressions (1)
and (2) are correct only for double crystal systems
[8−10], i.e., in those cases, where an X-ray wave is dif-
fracted successively from two crystals with different
periods or different orientations (Fig. 1). However, the
nature of formation of moiré patterns in an X-ray inter-
ferometer is quite different. First, in an interferometer,
four and not two regions are irradiated (Fig. 2) and, sec-
ond, at the entrance surface of the last block (analyzer
A), coherent waves are superimposed (phenomenon of
interference). Thus, the use of Eqs. (1) and (2) for cal-
culating relative deformations and rotations of crystal
lattices/gratings, yields only the averaged values.

∆d/d d/Λ1,=

α d/Λ2,=
1063-7745/05/5003- $26.00 0363
It was shown experimentally [2] that different com-
ponents (blocks) of an interferometer give different
contributions to the formation of a moiré pattern. If an
interferometer is prepared from a perfect crystal, i.e., a
single crystal having no internal stresses (crystal lat-
tices have the same periods and are parallel to one
another), no moiré fringes are formed because the
phase difference is constant across the whole section of
the superimposing beams. Now, assume that there are
three irradiated regions (1, 2, and 3) having the same
lattice period d0, whereas the lattice period of the fourth
region (4) is d (Fig. 2). In this case, the moire patterns
are formed. Heating of region 4 changes the period of
the moiré pattern (it increases if d < d0 and decreases if
d > d0). Thus, it is obvious that the change of the moiré
patterns (caused by the temperature gradient applied to
the block of an X-ray interferometer) depends only on
the redistribution of the internal stresses in this block.

Proceeding from the above, we decided to study
moiré patterns as functions of the temperature gradient
in the mirror block of an X-ray interferometer and to
study the redistribution of stresses arising in the mirror

α
d1

O

H
d2

Fig. 1. Double-crystal system and X-ray path in it.
© 2005 Pleiades Publishing, Inc.
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Fig. 2. X-ray interferometer according to Laue. X-ray path and location of heaters.
block of this interferometer during its heating.
Although moiré topographs are specific two-dimen-
sional projections of structural distortions in the blocks,
they allow one to study deformations along the whole
depth of the block under consideration.

EXPERIMENTAL

The experiments were performed in an KRS X-ray
diffraction chamber with a scanning device (reciprocat-
ing motion). We used an X-ray tube with a copper
anode and an URS-2 X-ray power unit.

An interferometer was manufactured from a dislo-
cation-free silicon single crystal with the orientation
shown in Fig. 2. The interferometer geometry (block
dimensions and interblock distances) was such that the
limit of scanning (reciprocating motion of interferome-
ter with respect to the incident beam) was 10 mm.

First, we used scanning to obtain a moiré topograph
from the whole working part of the interferometer
(Fig. 3a). Then, we also obtained topographs from the
heated mirror block of the interferometer successively
at the points O and H (Figs. 3b and 3c). It is seen that
with an increase of the current in a heater the moiré pat-
terns (arrangement of moire fringes) remained almost
unchanged, but the periods of the patterns changed.

We studied the changes of the parallel moiré pat-
terns as functions of the temperature gradient applied to
the irradiated portions of the mirror block of the inter-
ferometer. Our studies show that not all the interferom-
eters form moiré patterns, which indicates that the irra-
diated parts of the interferometers are always character-
ized by mutual rotations and certain scatter in
interplanar spacings. This makes it difficult to evaluate
the effect of various external factors such as irradiation,
C

temperature gradient, mechanical stresses, etc., on the
changes in moiré patterns.

It is well known that the nonuniform heating gives
rise to the redistribution of stresses in crystals. It is also
well known [1] that heating of a crystalline plate gives
rise to stresses determined by the equation

(3)

where σ is the internal stress, T is the temperature, α =
2.64 × 10–6 °C–1 is the linear expansion coefficient of
silicon, E is the Young modulus, and ν = 0.262 is the
Poisson ratio [9]. Taking into account that the relative

deformation of the crystal lattice along the [ ] direc-
tion changes the period of the dilatation moiré and
using Eq. (1), we obtain

(4)

where ∆d is the absolute change in the period of reflect-
ing planes. Using Eqs. (3) and (4), we obtain

(5)

As is seen from Eq. (5), the period of the parallel moiré
pattern is inversely proportional to temperature.

To interpret the influence of thermal stresses on the
changes in the moiré pattern we assumed that the initial
moiré pattern (obtained without heating of the interfer-
ometer blocks) is caused by a certain temperature dif-
ference between the irradiated blocks of the interferom-
eter. In other words, we assumed that the interferometer
was manufactured from an ideal single crystal so that it
could not give rise to the formation of a moiré pattern
and that the moiré pattern was formed due to thermal
stresses.

σ αET
1 ν–
------------,=

110

σ/E ∆d/d d/Λ1,= =

T
d 1 ν–( )

αΛ 1
--------------------.=
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Fig. 3. (a) Initial moiré topograph obtained in an interferometer according to Laue geometry (×6). (b) Moiré topographs obtained
in the heated interferometer in the region O (×4); the upper left point is heated. (c) Moiré topographs obtained during heating of
region H of the interferometer (×4); the upper point is heated.
To calculate the changes in the moiré periods we
divided all the topographs into two parts each (Fig. 3)
and determined the periods of the moiré patterns at the
boundaries between these parts. In Fig. 4, we plotted
temperatures along the ordinate axis and the distances
x of the moire pattern from the left part of the topograph
(left edge of the mirror block) along the abscissa. It is
seen from the plot in Fig. 4 that the temperature regu-
larly depends on the current in the heated region only in
the region with x ranging within 0–1.8 mm: with an
increase in the heater current, the temperature of this
region decreases. This is evidence that moiré in this
region (x = 0–1.8 mm) depends on the difference
between the interplanar spacings of the irradiated por-
tions—the mirror and the splitter or the mirror and the
analyzer, with the interplanar spacing of the mirror
block being less that the interplanar spacing of the split-
ter or analyzer. However, the comparison of the experi-
mental data from this region with the initial moiré pat-
tern (no heating) shows that the temperature decreases
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 3      2005
if the mirror block is heated in the region H and
increases if the mirror block is heated in the region O.
For the region x = 2.5–3.0 mm, the heating of the mirror
block in both O and H regions results in an increase of
the moiré period (on the plot, this corresponds to low-
ering of the temperature). In the remaining parts of the
plot, the change of the temperature due to heating of the
mirror block does not obey Eq. (5). For example, heat-
ing of the mirror block in the region O results in an
increase of the moiré period at the distance x = 10 mm
at the heater current 250 mA, whereas at the currents
500 and 750 mA, it decreases. Heating of the region H
at currents 250, 500, and 750 mA results in a decrease
of the moiré period (on the plot, this corresponds to a
lowering of the temperature). At the distances x = 13.5–
14.0 mm, an increase in the heater current gives rise to
an increase of the moiré period (on the plot, this corre-
sponds to lowering of the temperature), and at the
heater current 750 mA in the region H, the moiré period
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remains almost constant (0.0517 mm without heating
and 0.0520 mm during heating).

4
x, mm

0 8 12 16

0.02

0.04

0.06

0.08

0.10 without heating
“O” heater current 250 mÄ
500 mÄ
750 mÄ
“H” heater current 250 mÄ
500 mÄ
750 mÄ

∆t, °C

Fig. 4. Temperature as a function of the distance x of moiré
from the left edge of the mirror block.
C

Thus, the part of the moiré pattern continuously
varying with the change of the temperature may be used
for calculating the changes of the temperature (change
of thermal stress) in the crystal block of the interferom-
eter.
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Abstract—The crystal structures of K- and Cs-exchanged forms of zorite were studied by X-ray diffraction
and IR spectroscopy: K4.75Na1.82[Ti(Ti0.79Nb0.20)4Si12O34(O,OH)5.2] × 10.62 H2O (sp. gr. Cmmm, R = 0.0481 for
516 independent reflections) and Cs4.34Na1.90[Ti(Ti0.80Nb0.18)4Si12O34(é,éç)5] × 5.37 H2O (sp. gr. Cmmm, R =
0.0285 for 621 independent reflections). Both structures retain the mixed polyhedral framework of zorite:
Na6Ti(Ti,Nb)4(Si6O17)2(O,OH)5 × nH2O, where n ~ 11. It is shown that the positions of the atoms located in the
cavities of the frameworks of these compounds differ from those in the structures of zorite and its synthetic ana-
logs. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

Zorite Na6Ti(Ti,Nb)4(Si6O17)2(O,OH)5 × nH2O,
where n ~ 11, is a typical representative of natural
microporous heteropolyhedral-framework silicates
having pronounced zeolite properties. Zorite was
described as a new mineral from the famous Yubilei-
naya pegmatite, a large hyperagpaitic pegmatite mined
at Karnasurt Mountain of the Lovozero alkaline massif
(Kola Peninsula, Russia) [1]. In the Yubileinaya pegma-
tite, zorite involved in the late hydrothermal assem-
blage is very abundant. This mineral is also present in
several pegmatites at Karnasurt Mountain but has not
been found anywhere else in the world. No known min-
erals have structures analogous to the crystal structure
of zorite, which is based on a mixed framework formed
by xonotlite-like [Si6O17] ribbons consisting of eight-
membered tetrahedral rings. The ribbons are extended
along the [001] direction and are linked to each other by
columns of vertex-sharing (Ti,Nb)O6 octahedra and
isolated (Ti,Nb)O5 half-octahedra. The framework
includes two systems of zeolite channels running along
the [010] (the minimum diameter is 4.3 Å) and [001]
(the minimum diameter is 4.6 Å) directions. These
channels are randomly occupied by Na atoms and H2O
molecules. Sodium atoms occupy two nonequivalent
positions and have, correspondingly, octahedral coordi-
nation formed by four O atoms and two H2O molecules
and sevenfold coordination formed by O atoms.

According to [2], the polyhedral framework of
zorite contains two types of rods parallel to the [010]
direction. The rods of the first type contain tilting zig-
zag columns of the (Ti,Nb)O6 octahedra fastened by
1063-7745/05/5003- $26.00 0367
Si(1)O4 tetrahedra. This structural fragment of zorite
corresponds to the 7.238-Å period along the b axis and
resembles those observed in nenadkevichite
(Na,K)2 − x[(Nb,Ti)2(Si4O12)(O,OH)2] × 4H2O [3] and
other minerals of the labuntsovite group. The rods of
the second type are formed by TiO5 half-octahedra and
half-occupied Si(2)O4 tetrahedra. If these tetrahedra
were completely occupied, the adjacent Si(2)O4 tetra-
hedra along the [010] direction would be linked
together by sharing faces. This fragment of the polyhe-
dral framework, as well as the Na atoms and water mol-
ecules located in the channels of the framework, is
responsible for possible doubling of the period along
the b axis. The disordered arrangement of this fragment
results in the absence of periodicity along the a and c
axes and is responsible for the OD character of the
structure as a whole [2].

In 1996, the first data on the synthetic analog of
zorite were published. This analog was called ETS-4
(Engelhard Titanium Silicate-4). The synthesis was car-
ried out under hydrothermal conditions, and the prod-
uct was obtained as thin intergrowths of two titanosili-
cates, which are analogs of zorite (ETS-4) and “Ti-
nenadkevichite” (korobitsynite, an orthorhombic Ti-
dominant member of the labuntsovite group) [4, 5]. The
Rietveld refinement of the ETS-4 structure confirmed
its similarity to the zorite structure [6]. However, in
contrast to zorite, both Ti atoms in ETS-4 have octahe-
dral coordination. Later, the crystal structure of the Sr-
exchanged form of ETS-4 was also studied by powder
X-ray diffraction [7]. This structure was considered as
a result of microintergrowth of four polymorphs, which
© 2005 Pleiades Publishing, Inc.
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differ in the symmetry and packing of the rods of the
first type. In addition, the Ti(2) atom in this structure
[7], in contrast to ETS-4 [6], was described as having
fivefold coordination. In 2001, the crystal structures of
the synthetic analogs of zorite—Na-(ETS-4) and the
Sr-exchanged form of ETS-4—were studied by single-
crystal X-ray diffraction [8]. The results of X-ray dif-
fraction study and IR spectroscopy confirmed that Ti(2)
atoms in these structures, like in zorite, have fivefold
rather than sixfold coordination. It should be empha-
sized that the coordinates of water molecules and the
occupancies of their positions reported in all publica-
tions devoted to zorite and its analogs differ substan-
tially from each other. This fact is indicative of the dis-
ordered arrangement of water molecules in the polyhe-
dral framework.

Nowadays, ETS-4 is considered to be one of the
most promising mixed-framework “zeolites” from a
practical standpoint. Because of its high cation-
exchange properties, this compound was patented as a
sorbent for radioactive Cs and Sr isotopes [9]. In addi-
tion, modified forms of ETS-4 were found to exhibit
catalytic activity in reactions involving organic com-
pounds [10].

Natural zorite forms crystals up to 3 mm in length
suitable for single-crystal X-ray diffraction studies. The
framework density of zorite (the number of Si, Ti, and
Nb framework atoms per 1000 Å3) is 14.5. Hence,
zorite is one of three (along with traskite and seidite-
(Ce)) natural heteropolyhedral-framework silicates
with the widest pores. We found that zorite exhibits

500
ν, cm–1

1000 1500 3000 3500

1

2

3

~~

Fig. 1. IR spectra of the (1) starting, (2) K-exchanged, and
(3) Cs-exchanged zorites.
C

high ion-exchange properties with respect to K, Rb, Cs,
Ca, Sr, and Pb even under room-temperature condi-
tions. This fact gave impetus to studying the structure
of the K- and Cs-exchanged forms of zorite. The results
of this study are discussed below.

EXPERIMENTAL

Ion-exchange experiments were carried out using
prismatic crystals of zorite (0.3–0.8 mm in length and
0.05–0.2 mm in thickness) from the Yubileinaya peg-
matite. The crystals were soaked in 1 M KCl and CsCl
solutions for four months, after which their composi-
tions were determined by examining crystal cuts with
an electron-probe X-ray microanalyzer. Study of the
crystal-cut surface by reflection electron microscopy
demonstrated a uniform distribution of K and Cs
exchange cations throughout the bulk of the crystals.
The starting zorite contained Na2O (15.3 wt %) and
K2O (1.8 wt %) and did not contain Cs in amounts
detectable by electron-probe X-ray microanalysis (i.e.,
<0.05–0.1 wt % of Cs). After soaking in a KCl solution,
the Na2O content in the samples decreased to 3.0–
3.3 wt %, while the K2O content increased to 14.8–
17.2 wt %. After soaking in a CsCl solution, the Na2O
content decreased to 2.7–2.9 wt % and the K2O content
decreased to 0.00 wt %, whereas the Cs2O content
increased to 21.3–21.7 wt %.

Study of samples by IR spectroscopy demonstrated
that different exchange cations differently affect the
framework and water molecules in the zorite structure
(Fig. 1). The wavenumbers of the band maxima in the
IR spectrum of the starting zorite (cm–1, sh is a shoul-
der) are as follows: 3570, 3420, 3260 sh (stretching
vibrations of water molecules and OH groups); 1638
(bending vibrations of the water molecules); 1385
(a weak band that is, apparently, due to vibrations of
H+ ions); 1136 (stretching vibrations of Si–O–Si
bridges); 993, 962, 913 (Si–O-stretching vibrations);
702, 653 (Ti–O-stretching vibrations); and 462, 421
(Si–O–Si-bending vibrations). The replacement of Na
with K does not lead to substantial changes in the IR
spectrum (shifts of most of the bands are no larger than
3 cm–1). A comparison of the IR spectra of the Na- and
K-exchanged zorites allows us to conclude that H2O
molecules form somewhat stronger hydrogen bonds in
the K-exchanged zorite, which manifests itself in red
shifts of the O–H-stretching bands (3570  3500 and
3420  3375 cm –1).

More substantial changes occur when Na is replaced
with Cs. In this case, the absorption bands associated
with the framework broaden and their intensities and
frequencies change. This is indicative of significant dis-
tortions and polarization of the framework. The most
considerable changes in the frequencies (cm–1) are
observed for the bands sensitive to the Si–O–Si and Ti–
O–Ti angles: 1136  1131, 702  696, and
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 3      2005



CRYSTAL STRUCTURES 369
Table 1.  Principal crystallographic characteristics and experimental data for the K- and Cs-exchanged forms of zorite

Phases K-exchanged phase Cs-exchanged phase

Chemical formula K4.75Na1.82[Ti(Ti0.79Nb0.20)4Si12O34 (O, 
OH)5.2] × 10.62H2O 

Cs4.34Na1.90[Ti(Ti0.80Nb0.18)4Si12O34(O, 
OH)5] × 5.37H2O 

M 1659.42 1948.13

Sp. gr., Z Cmmm; 1 Cmmm; 1

a, b, c , Å 23.2620(15), 7.247(5), 6.966(5) 23.189(5), 7.2489(14), 6.9376(14) 

V, Å3 1174.3(12) 1166.2(4)

ρcalcd, g/cm3 2.346 2.774

µ, mm–1 1.744 4.641

F(000) 825 911

θmin, θmax, deg 2.41, 24.68 2.94, 26.28

Scan ranges –26 ≤ h ≤ 27; –8 ≤ k ≤ 8; –8 ≤ l ≤ 8 –27 ≤ h ≤ 28; –8 ≤ k ≤ 9; –8 ≤ l ≤ 8 

Number of independent reflections 
with I > 2σ(I)

516 621

Number of parameters in refinement 112 129

RF 0.0481 0.0285

wR(F2) 0.1224 0.0870 

GOF 1.143 1.098

∆ρmax/∆ρmin, e/Å3 0.546/–0.561 0.539/–0.678
421  407. In the IR spectrum of the Cs-exchanged
sample, the bands of H2O are weaker than those
observed in the IR spectrum of the starting sample. It
should be noted that substantially different water mole-
cules are present in this sample, which contains not
only zorite-type H2O molecules but also strongly polar-
ized water molecules involved in very strong hydrogen
bonds. The latter are characterized by absorption bands
at 3220 and 1615 cm–1 Strong diffusive absorption
observed in the range 1200–1450 cm–1 may be due to
vibrations of H+ ions. However, the characteristic bands
of H3O+ ions are absent in the spectrum of the
Cs-exchanged sample.

X-ray diffraction data were collected from single
crystals of the K- and Cs-exchanged phases, with
dimensions of 0.030 × 0.065 × 0.025 mm3 and 0.025 ×
0.055 × 0.150 mm3, respectively. Three-dimensional
sets of X-ray reflections were measured on a Nonius
Kappa CCD diffractometer (MoKα radiation, λ =
0.71073 Å). The absorption corrections were applied tak-
ing into account the crystal habit. All calculations were
carried out using the SHELX97 program package [11].
The structures were refined using the atomic coordinates
determined in [2] as the starting model within the
sp. gr. Cmmm to R(F) = 0.0481 for 516 reflections with
I > 2σ(I) for the K-exchanged phase and to R(F) = 0.0285
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 3      2005
for 621 reflections with I > 2σ(I) for the Cs-exchanged
phase. The refinement gave the following structural for-
mulas: K4.75Na1.82[Ti(Ti0.79Nb0.20)4Si12O34 (O,OH)5.2] ×
10.62 H2O for the K-exchanged phase and
Cs4.34Na1.90[Ti(Ti0.80Nb0.18)4Si12O34(é,éç)5] × 5.37 H2O
for the Cs-exchanged phase. The cation distributions
were established on the basis of the refinement of the
electron contents of the cation positions and taking into
account the requirements for retaining positive values
of the thermal parameters and electroneutrality of the
chemical formula.

The main characteristics of the crystals and details
of the X-ray diffraction study are listed in Table 1. The
figures were plotted using the ATOMS program [12].

The structure data for the K- and Cs-exchanged
forms of zorite were deposited at the Inorganic Crystal
Structure Database (ICSD) with the reference numbers
415042 and 415041, respectively.

DESCRIPTION AND DISCUSSION 
OF STRUCTURES

Both the structures under study retain the mixed
polyhedral framework of zorite. The arrangement of the
framework cations in the K- and Cs-exchanged forms
of zorite differs from that observed in the zorite struc-
ture primarily in the shift of the O(7)=[O,OH] atom
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Table 2.  Coordinates of the framework atoms, their displacement parameters, and occupancies of the positions (Q) in the
crystal structures of the K- and Cs-exchanged (the second row) forms of zorite

Atom x y z Q

Ti0.7897(1)Nb0.2000
Ti0.7958(9)Nb0.1800

0.25
0.25

0.25
0.25

0
0

0.03474(1)
0.02348(7)

0.9897(1)
0.9759(9)

Ti
Ti

0
0

0.5
0.5

0.03835(3)
0.0558(2)

0.04325(8)
0.0362(6)

0.25
0.25

Si(1)
Si(1)

0.161801(2)
0.161924(13)

0
0

0.269752(7)
0.26908(4)

0.02830(1)
0.01739(8)

1
1

Si(2)
Si(2) 

0.064132(4) 
0.06409(3)

0.093496(15)
0.09722(9)

0
0

0.02777(3)
0.01925(15)

0.50
0.50

O(1)
O(1)

0.154374(9)
0.15431(6)

0
0

0.5
0.5

0.04044(6)
0.0353(4)

1
1

O(2)
O(2)

0.096015(5)
0.09552(4)

0
0

0.18846(2)
0.18922(14)

0.03806(4)
0.0365(3)

1
1

O(3)
O(3)

0.194239(4)
0.19435(3)

0.183702(13)
0.18304(8)

0.201387(13)
0.20108(10)

0.03528(3)
0.03198(17)

1
1

O(4)
O(4)

0.219958(8)
0.28070(5)

0.5
0.5

0
0

0.03061(5)
0.0217(3)

1
1

O(5)
O(5)

0
0

0
0

0
0

0.03247(8)
0.0257(5)

1
1

O(6)
O(6)

0.059797(12)
0.05957(8)

0.31203(4)
0.3166(3)

0
0

0.04517(9)
0.0528(8)

0.50
0.50

O(7)
O(7)

0
0

0.5
0.5

0.30011(13)
0.3067(11)

0.0545(3)
0.058(2)

0.3001(5)
0.254(4)

* The parameters Ueq were calculated from the corresponding anisotropic displacement parameters.

Ueq*

Table 3.  Coordinates, displacement parameters, and occupancies of the positions (Q) of the cations located in cavities of the
framework of the K-exchanged form of zorite

Atom x y z Ueq Q

K 0.372960(5) 0 0.253819(19) 0.07438(4) 0.5934(2)

Na 0.25 0.25 0.5 0.04432(8) 0.4561(3)

W(1) 0.290746(17) 0.05399(4) 0.5 0.05916(13) 0.4478(3)

W(2) 0.05866(6) 0.2979(2) 0.5 0.1317(5) 0.1879(4)

W(3) 0 0.17315(19) 0.5 0.1898(6) 0.4720(7)

W(4) 0.01370(11) 0.11907(19) 0.5 0.0693(8) 0.0797(3)

W(5) 0 0.6983(4) 0.3372(4) 0.1669(10)* 0.1297(5)

W(6) 0.39355(4) 0.05662(13) 0.12988(15) 0.0391(3)* 0.0857(2)

W(7) 0 0.03874(14) 0.5 0.0458(5) 0.1493(4)

* Isotropic displacement parameters.
occupying the fifth (apical) vertex of the Ti half-octahe-
dron to a position in the (100) mirror plane. O(7) atoms
in the structures of Na-(ETS-4) and its Sr-exchanged
form [7, 8], as in the K- and Cs-exchanged analogs, do
not deviate from the (100) symmetry plane. In the zorite
C

structure, as in the structures of the Na- and Sr-
exchanged forms of ETS-4, the Ti–O(7) distance varies
from 1.67 to 1.70 Å. In the K-and Cs-exchanged forms
of zorite, this distance increases to 1.8235(16) and
1.741(8) Å, respectively. The coordinates of the frame-
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 3      2005
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Table 4.  Coordinates, displacement parameters, and occupancies of the positions (Q) of the cations located in cavities of the
framework of the Cs-exchanged form of zorite

Atom x y z Ueq Q

Cs0.2900(4)Na0.2500(1) 0.314817(16) 0 0.5 0.03017(10) 0.5400(4)

Cs0.1289(4)Na0.23000(2) 0.30183(3) 0 0.5 0.0323(2) 0.3589(4)

Cs(3) 0 0.10519(8) 0.5 0.03920(13) 0.2652(4)

Cs(4) 0 0 0.5 0.0381(3) 0.1604(5)

Cs(5) 0 0.1753(2) 0.5 0.0569(6) 0.0807(4)

Cs(6) 0.33894(14) 0 0.5 0.0492(12) 0.0418(4)

Cs(7) 0.40454(10) 0 0.0693(10) 0.118(3) 0.0400(3)

Cs(8) 0.40632(9) 0.0437(3) 0 0.0878(11) 0.0597(3)

W(1) 0.25 0.25 0.5 0.0201(10) 0.301(3)

W(2) 0.3738(4) 0 0.1201(17) 0.043(3) 0.090(2)

W(3) 0.36380(11) 0 0.1977(6) 0.0322(9) 0.317(2)

W(4) 0.4234(5) 0 0.5 0.125(7) 0.225(6)
work atoms, their displacement parameters, and the
occupancies of the positions for the K- and
Cs-exchanged forms of zorite are given in Table 2.

Concerning the atoms occupying the cavities of the
framework, it should be noted that Na atoms in the
structure of the K-exchanged form of zorite occupy the
position corresponding to the Na(1) atom in the zorite
structure and to the Na atom in the ETS-4 structure,
whereas K atoms partially occupy the position corre-
sponding to the Na(2) atom in the zorite structure (and
the Sr position in the Sr-exchanged form of ETS-4). By
analogy with the Sr-exchanged form of ETS-4, the K
atom is in eightfold coordination with seven K–O dis-
tances in the range 2.5984(9)–2.7984(13) Å, and the
eighth apical atom, O(7), located at a distance of
2.9727(2) Å from K, which is in agreement with the
generally accepted K–O distances. The O(7) atom was
not included in either the environment of Na in the
zorite structure or the environment of Sr in the Sr-
exchanged form of ETS-4. However, the Na/Sr–O(7)
distances are very large in both these structures. In
addition, the environment of the K atom in these struc-
tures can also involve the W(6) water molecule. The
position of this molecule is characterized by a low
occupancy (0.09) and is located at a distance of
2.746(2) Å from the K atom. The Na atom in the
K-exchanged form of zorite, as in zorite, occupies an
octahedral position (Na–O distances vary from
2.3983(14) to 2.4981(12) Å).

In addition, the structures of the K- and Cs-
exchanged forms of zorite differ from the structures of
zorite and ETS-4 in the arrangement of water mole-
cules. Only the W(1) water molecule was unambigu-
ously localized in all these structures. On the whole, the
positions of water molecules in the K-exchanged form
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 3      2005
of zorite are characterized by low occupancies and
strong disorder. The W(3) molecule found in zorite [2]
is absent in the K-exchanged form (as in ETS-4). The
coordinates of the Na and K positions and the water
molecules, their occupancies, and atomic displacement
parameters for the K-exchanged form of zorite are
given in Table 3.

The arrangement of Cs and Na cations in the struc-
ture of the Cs-exchanged form of zorite differs signifi-
cantly from that in zorite, its K-exchanged form, and
the synthetic Na analog of ETS-4. In the Cs-exchanged
form of zorite, the position corresponding to the Na
position in the structure of the K analog is occupied by
a water molecule. The position corresponding to the K
position in the K-exchanged form position is substan-
tially shifted and is also occupied by a water molecule.
Cesium atoms, as well as water molecules, are strongly
disordered and partially occupy eight positions, which
have not been revealed previously (H2O molecules
occupy four nonequivalent positions). Two of these
positions (Cs(1) and Cs(2)) are partially occupied by
Na atoms and are located at a very short distance from
each other (0.301 Å). Apparently, the positions occu-
pied by these atoms should be considered as a result of
splitting of the common (Cs,Na) position. The random
substitution of Cs by Na cations in the Cs(1) and Cs(2)
positions accounts for the unreasonably short (from
2.3544(4) Å for Cs,Na(1) and from 2.1746(5) Å for
Cs,Na(2)) cation–water distances in the polyhedra of
these cations. The Cs,Na(1), Cs,Na(2), and Cs(3) posi-
tions are characterized by the highest occupancies. The
cations located in these positions have ninefold coordi-
nation (for the first two positions, the Cs,Na(1)–O dis-
tances are 2.3544(4)–3.1024(8) Å; Cs,Na(2)–O dis-
tances are 2.1746(5)–3.0964(8) Å) and twelvefold
coordination (for the Cs(3) atom, the Cs(3)–O distances
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a

Fig. 2. Crystal structures of the (a) K-exchanged and (b) Cs-exchanged forms of zorite projected onto the (001) plane. The positions
with occupancies higher than 0.20 are shown. The atoms located in the cavities of the framework are shown without consideration
of ordering, unlike the framework groups formed by the Si(2) tetrahedra and Ti five-vertex polyhedra. The Ti polyhedra are shaded
in gray and the Si tetrahedra are open.
are 3.161(3)–3.6585(16) Å). In addition, the W(2)
water molecule with a partial occupancy (0.09) can be
involved in the environment of the Cs,Na(1) and
C

Cs,Na(2) atoms. The distances from the W(2) molecule
to the Cs,Na(1) and Cs,Na(2) atoms are 2.969(12) and
3.120(11) Å, respectively. The coordinates of the Cs
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 3      2005
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and Na positions and the water molecules, their occu-
pancies, and atomic displacement parameters for the
Cs-exchanged form of zorite are given in Table 4.

The crystal structures of the K- and Ce-exchanged
forms of zorite projected onto the (001) plane are
shown in Fig. 2.

In summary, we revealed the difference in the distri-
bution of large K and Cs cations in cavities of the mixed
framework of the zorite structure. New data on the ion
exchange in zorite will provide a deeper insight into the
relationship between the structural disorder and the
chemical nature and properties of the Na cations replac-
ing K and Cs cations.
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Abstract—The crystal structure of the high-temperature β modification of synthetic orthophosphate

KU2(PO4)3 was refined from powder X-ray diffraction data by the Rietveld method: sp. gr. , the unit-cell
parameters a = 9.113(1) Å and c = 24.997(1) Å. The isotropic refinement converged to Rwp = 6.15, RB = 2.14,
RF = 3.52, and S = 0.42. It was confirmed that β-KU2(PO4)3 belongs to the structure type of sodium zirconium
phosphate containing an actinide atom in a sixfold (octahedral) coordination formed by oxygen atoms, which
is unusual for orthophosphates. The principal interatomic distances and bond angles in the structure are
reported. © 2005 Pleiades Publishing, Inc.

R3c
INTRODUCTION

Crystalline anhydrous orthophosphates are consid-
ered to be promising matrices for immobilization of
radioactive wastes of various chemical compositions
[1–5]. Among a vast chemical and structural diversity
of synthetic orthophosphates, several structure types
are characterized by high chemical resistance and ther-
mal and radiation stability, due to which they can be
regarded as potential candidates for ceramic forms for
immobilization of environmentally hazardous radionu-
clides [5]. Orthophosphates with structures of mona-
zite, kosnarite, langbeinite, zircon, and some other min-
erals [6] are of greatest interest in this context. The
structure type of sodium zirconium phosphate
NaZr2(PO4)3 (NZP) has attracted considerable attention
of researchers and experts in waste immobilization. A
natural analog of NZP is the mineral kosnarite with the
idealized formula KZr2(PO4)3 [7]. Due to a wide iso-
morphism, crystals of phosphates with the NZP struc-
ture can incorporate about two thirds of all elements of
the periodic table [1], the phase homogeneity and high
stability characteristics of the resulting compounds
being retained. An analysis of the crystal-chemical
parameters of a large number of orthophosphates with
NZP structure showed that rather large actinide(III) and
actinide(IV) cations are difficult to include in the
1063-7745/05/5003- $26.00 0374
anionic framework of the NZP structure because of the
size factor. Nevertheless, some data have been pub-
lished [8, 9] on the synthesis and identification of the
KZr2 − xUx(PO4)3 (0 ≤ x ≤ 0.2) and NaZr2 − x Anx(PO4)3

limited solid solutions, where An = Np or Pu (0 ≤ x ≤ 0.2
for Np and 0 ≤ x ≤ 0.4 for Pu), with NZP structure.
Moreover, actinide alkali metal orthophosphates of the
MIAn2(PO4)3 series exhibiting high-temperature poly-
morphism were synthesized and described [10, 11]. It
was found that the phosphates KU2(PO4)3 and
MIAn2(PO4)3, where MI = Na or K and An = Np or Pu,
can exist in at least two crystal modifications: a low-
temperature (α) modification and a high-temperature
(β) modification. The α modifications exist in a temper-
ature range of 500–1100°C and crystallize in the struc-
ture type of well-known monoclinic sodium thorium
phosphate NaTh2(PO4)3 (NTP) belonging to a series of
the isostructural MITh2(PO4)3 compounds, where MI =
Li, Na, K, Rb, or Cs [12]. The α  β polymorphic
transformation occurs at 1000–1200°C to form a rhom-
bohedral modification, which was assigned (on the
basis of the powder X-ray diffraction data) to the NZP-
structure type [11]. In the temperature range under
study (up to 1500°C), orthophosphates of this formula
containing other combinations of actinides and alkali
metals form exclusively either the α or β modification
© 2005 Pleiades Publishing, Inc.
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(in some cases, individual γ or β' modifications addi-
tionally exist), but the α  β phase transition is not
observed [11]. The structure of the first coordination
sphere of the central f- or d-metal atom in monoclinic
NZP-type orthophosphates differs substantially from
that in rhombohedral NZP-type phosphates. The coor-
dination polyhedron of an actinide atom in monoclinic
phosphates is a distorted tricapped trigonal prism
formed by nine oxygen atoms [12]. The nearest envi-
ronment of a d-metal atom in an NZP-type structure is
an octahedron formed by six oxygen atoms of six iso-
lated [êé4]3– groups [13]. Therefore, the α  β phase
transition is accompanied by a very interesting phe-
nomenon consisting in a decrease in the coordination
number of an actinide atom from 9 to 6. It is known that
low coordination numbers are untypical of rather large
actinide(III) and actinide(IV) ions. Hawkins et al. [8]
provided direct structural evidence (by the Rietveld
method) that a certain number of uranium atoms are
statistically involved in positions occupied by zirco-
nium atoms (which are in an octahedral oxygen envi-
ronment) in the anionic framework of an NZP-type
structure. It was of obvious interest to obtain analogous
evidence for the β modification of orthophosphate, in
which zirconium is completely replaced with actinide.
For this purpose, we synthesized β-KU2(PO4)3 and
refined its crystal structure by the Rietveld method.

EXPERIMENTAL

The synthesis of β-KU2(PO4)3 was carried out by a
high-temperature treatment of a suspension of stoichi-
ometric amounts of the starting reagents. Electrolyti-
cally pure UO2, KH2PO4 (reagent grade), and a 1 M
H3PO4 (reagent grade) solution were used as the start-
ing compounds. The thermal treatment was performed
stepwise in argon. The steps of the thermal treatment
were alternated with grinding of the resulting powder:
150°C for 10 h, 350°C for 2 h, 800°C for 1 h, 1000°C
for 2 h, and 1250°C for 3 h. After the last annealing
step, the cell containing the powder was rapidly cooled
(the cooling rate was higher than 50 K/min). The inter-
mediates and final annealing products were analyzed
by powder X-ray diffraction using the photographic
method on a Debye–Scherrer camera.

An X-ray diffraction spectrum for the Rietveld
refinement of the crystal structure was measured on an
upgraded DRON-3M diffractometer in the angle range
10.00° ≤ 2θ ≤ 150.00° with a step of 0.02°; the expo-
sure time at each point was 10 s (filtered CuKα radia-
tion). The refinement was carried out using the
WYRIET program (version 3.3) [14]. The peak profiles
were approximated by the Pearson VII function. The
peak asymmetry was refined at 2θ < 60°. The ionic
scattering curves were used for all elements. The crys-
tal structure was refined by successively adding the
parameters to be refined using graphical modeling of
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 3      2005
the background throughout the refinement until the R
factors ceased to change.

The atomic coordinates of KZr2(PO4)3 with sp.

gr.  [13] were used as the starting model for the
refinement of the β-KU2(PO4)3 structure. Selected
details of the X-ray data collection and the results of the
structure refinement are given in Table 1. It should be
noted that a low value of S (goodness of fit) is, appar-
ently, associated with an insufficient exposure time at
each point used in our experiment [15]. The atomic
coordinates and isotropic displacement parameters for
the refined β-KU2(PO4)3 structure are listed in Table 2.

The experimental X-ray diffraction spectrum of
β-KU2(PO4)3 is shown in Fig. 1. Figure 2 shows the
crystal structure of β-KU2(PO4)3 projected onto the
(001) plane, which was drawn using the ATOMS pro-
gram [16].

RESULTS AND DISCUSSION

The results of this study confirmed that the crystal
structure of the phosphate β-KU2(PO4)3 belongs to the

R3c

Table 1.  Unit-cell parameters and results of the Rietveld re-
finement of the crystal structure of β-KU2(PO4)3

a, Å 9.113(1)

c, Å 24.997(1)

V, Å3 1797.94(7)

Space group, Z R c, 6

2θ-scan range, deg 10.00–150.00

Number of reflections 862

Number of parameters in refinement 25

Rwp 6.15

RB 2.14

RF 3.52

S 0.42

Note: Rwp = [Σw|Iobs – Icalcd|2/Σw ]1/2; RB = Σ|  –

|/Σ , where  and  are the observed and

calculated integrated intensities of Bragg reflections, respec-
tively; RF = Σ|Fobs – Fcalcd|/ΣFobs.

3

Iobs
2

Iobs'

Icalcd' Iobs' Iobs' Icalcd'

Table 2.  Coordinates and displacement parameters of the
basis atoms in the β-KU2(PO4)3 structure

Atom x y z Biso

U 0 0 0.1503(1) 0.31(2)

K 0 0 0 3.5(4)

P –0.290(1) 0 0.25 0.9(2)

O(1) 0.318(2) 0.467(2) 0.2594(7) 0.9(4)

O(2) 0.195(2) 0.236(2) 0.1980(5) 1.7(6)
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Fig. 1. Experimental X-ray diffraction spectrum of β-KU2(PO4)3. The vertical bars indicate the positions of reflections of the the-
oretical X-ray diffraction pattern. The difference curve for the intensities of the experimental and theoretical spectra is shown in the
bottom.
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Fig. 2. Crystal structure of β-KU2(PO4)3 projected onto the (001) plane.
NZP-structure type and is characterized by the pres-
ence of the complex three-dimensional anionic
[U2(PO4)3]∞ framework, whose cavities are occupied
by K+ cations. The anionic framework consists of U
octahedra sharing oxygen vertices with P octahedra.
Each uranium atom is surrounded by six oxygen atoms
of six different isolated PO4 groups. Each PO4 group is
coordinated to four uranium atoms. The uranium atoms
are located on threefold axes in a slightly distorted octa-
C

hedral environment characterized by two groups of
somewhat different interatomic distances (U–O(1) ×
3 = 2.269(2) Å and U–O(2) × 3 = 2.320(2) Å). The O–
U–O bond angles vary in the range 84.1(1)°–96.0(1)°.
Therefore, the rms deviation of the UO6 octahedron
from the ideal geometry calculated according to proce-
dures proposed in [17, 18] is 1.007. The potassium
atom lies on an inversion center and is surrounded by
six oxygen atoms occupying the vertices of a trigonal
antiprism with six equivalent K–O bonds (2.907(3) Å).
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 3      2005
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The phosphorus–oxygen distances in the PO4 groups
have nearly standard values: P–O(1) × 2 = 1.523(1) Å
and P–O(2) × 2 = 1.500(3) Å. The O–P–O angles vary
from 103.83(7)° to 126.6(2)°. Therefore, the rms devi-
ation of the PO4 octahedra from the ideal geometry is
1.018.

As expected, the uranium–oxygen interatomic dis-
tances in the β modification of KU2(PO4)3 (2.46 Å) are
shorter than those in the α modification. It was demon-
strated previously [8] that the α  β transformation
is accompanied not only by the rearrangement of the
inner coordination sphere of the uranium atom and
shortening of the U–O bond lengths but also by an
increase in the shortest uranium–uranium distances
from 4.11–4.20 Å in the α modification to 4.984(4) Å
in the β modification. As a result, the packing of the
polyhedral framework becomes looser (but more sym-
metrical), as evidenced by the 29% increase in the vol-
ume per formula unit (V/Z): from 231.5 Å3 in the α
modification to 299.7 Å3 in the β modification.

Orthophosphates of tetravalent d metals (titanium,
zirconium, and hafnium) and alkali metals of the gen-

eral formula M I (PO4)3 [12, 19] are typical repre-
sentatives of the NZP-structural family. The unit-cell
parameters a and c of the hexagonal lattice of these
compounds increase linearly with an increase in the
ionic radius of the d element. Our investigation and the
previous study [20] demonstrated that the lattice
parameters of actinide (U, Np, and Pu) orthophosphates
with the NZP structure follow the same dependence.
This dependence for the compounds of the above-men-
tioned d and f metals with the potassium cation is
graphically shown in Fig. 3. Therefore, a change in the
ionic radius of a tetravalent anion has the same effect on
the lattice parameters in spite of the different chemical
nature of the cations, which is a consequence of the fact
that compounds are isostructural.

The temperature of the phase transition of the mon-
oclinic modification of KU2(PO4)3 to the rhombohedral
modification is 1200°C [11]. It can be expected that at
temperatures above 1200°C the region of existence of
the KZr2 − xUx(PO4)3 solid solution will be larger than
that reported in [8], because both monoclinic
KU2(PO4)3 and solid solutions of zirconium uranium
phosphates were synthesized in [8] at temperatures no
higher than 1100°C. At temperatures above 1200°C,
both end members of this series of solid solutions—
KZr2(PO4)3 and KU2(PO4)3—exist in the rhombohedral
modification. Apparently, one should expect an analo-
gous situation to occur in Zr–Np and Zr–Pu phos-
phates, in which the limits of existence of solid solu-
tions were established also at temperatures below the
phase-transition temperatures of the corresponding
neptunium and plutonium phosphates [9, 11]. The
occurrence of NZP-type crystal modifications for tet-
ravalent actinide (U, Np, Pu) orthophosphates of the

M2
IV
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general formula MI (PO4)3 is a manifestation of the
fact that the crystal chemistry of d and f elements has
certain features in common. In addition to the purely
scientific interest, this phenomenon is also of practical
importance because of the possibility of concentrating
and immobilizing an actinide fraction of radioactive
wastes in homogeneous NZP-type phases. These
phases, in principle, can be constructed on the basis of
either actinide compounds or solid solutions of actinide
zirconium orthophosphates. In the latter case, zirco-
nium plays, apparently, a very important crystal-chem-
ical role as the best stabilizer of NZP-type structures of
all known framework-forming elements.
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Abstract—Analysis of the data on the unit-cell parameters of the chemically characterized minerals of the lam-
prophyllite group showed that the parameter c and the angle β are independent of the cationic composition in
the interlayer position. The value of the parameter b correlates with the Ba content. It is shown that the param-
eter a linearly depends on the average ionic radius of cations in the interlayer position. The Ba and K contents
can be estimated from the equations K + Ba = 2.1431a – 41.091 and Ba = 17.764b – 125.36. © 2005 Pleiades
Publishing, Inc.
Layered titanosilicates (titanosilicate micas) form a
specific group of minerals whose structure incorporates
three-layer packages composed of an octahedral layer
located between two titanium–silicon–oxygen nets.
The thickness of such a package is 7–9 Å. In different
minerals, there are ions, molecules, or even blocks
(structural fragments) of other minerals between these
packages. The width of the interlayer gap varies from 0
to 18 Å.

In the minerals of the lamprophyllite group, the dis-
tance between neighboring packages depends on the
composition of cations filling the interpackage space. A
change in this distance should affect the unit-cell
parameter a since the x axis in the generally accepted
orientation of crystals is nearly perpendicular to the
package plane.

The relationship between the composition of inter-
layer cations in the minerals of the lamprophyllite
group and the unit-cell parameter a was qualitatively
ascertained in [1, 2].

For quantitative estimation of the dependence of the
lattice parameters of lamprophyllite on its composition,
we collected the results obtained by us and the data in
the literature on the composition and unit-cell parame-
ters for 16 samples of minerals of the lamprophyllite
group. These samples include lamprophyllite and bary-
tolamprophyllite polytypes 2M and 2O from the Khib-
ina, Lovozero, and Murunsky massifs, from the White
Sea coast and the Gardiner massif and nabalampro-
phyllite from the Inagli massif. The interlayer cation
composition was determined from the structural inter-
pretations or the data of microprobe and chemical anal-
yses, recalculated per formula units with four Si + Al
atoms [3]. These data were used to calculate the corre-
1063-7745/05/5003- $26.00 © 20379
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Fig. 1. Dependence of the unit-cell parameters a and b on
the K and Ba contents in the minerals of the lamprophyllite
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Coefficients of correlation between the elemental composition in the interlayer position (in formula units) and the unit-cell
parameters of the minerals of the lamprophyllite group (significant coefficients are marked in bold)

Unit-cell
parameter Sr K Ba Na Sr + Ba K + Ba Na + Ba

a –0.81 0.64 0.85 –0.69 0.20 0.95 0.50

b –0.54 0.06 0.67 –0.31 0.37 0.56 0.53

c –0.27 0.13 0.21 –0.17 –0.11 0.23 0.20

β –0.22 0.21 0.24 –0.31 0.07 0.28 0.11
lation coefficients,1 which are listed in the table. It can
be seen that the parameter a depends most strongly on
the sum of the contents of potassium and barium,
whereas the parameter b depends most strongly on the
barium content. These dependences are shown in
Fig. 1. For the parameter c and the angle β, all correla-
tion coefficients are insignificant.

Using the least-squares method, we found the linear
regression equations: K + Ba = 2.1431a – 41.091 and
Ba = 17.764b – 125.36. The corresponding depen-
dences are shown in Fig. 1. The total content of the ele-
ments can be estimated from the first of these formulas,
whereas the barium content can be found from the sec-
ond formula.

As a generalized characteristic of the composition,
the value of the average atomic radius in the position
M1 can be used (for nabalamprophyllite, we took the
average of the two values arising as a result of the posi-
tion splitting). The use of the systems of Goldschmidt,
Pauling, and Belov atomic radii leads to a unified pic-
ture: the dependence of the unit-cell parameter a on the
average atomic radius in the M1 position (Fig. 2) is

1 The correlation coefficient is a measure of linear dependence
between two values. More detailed data on this parameter can be
found in textbooks on the probability theory and mathematical
statistics.
C

clearly linear (for example, for the system of Pauling
radii, the correlation coefficient is 94.8% and the curve
is described by the equation rav = 0.3075a – 4.837). The
deviation is large only for the data of [4]. This could be
explained by incomplete occupation of the interlayer
position. However, the analysis carried out in [4], as
well as the composition obtained by interpretation of
the sample, indicate the absence of vacancies.

The use of the system of Shannon–Prewitt effective
ionic radii [11] causes some difficulties because the
corresponding data for Na, K, Sr, and Ba in the coordi-
nation 11 and Na in the coordination 12 are absent.

The radius of the Na ion in coordination 12 can be
estimated from the interpretation [12] of the lueshite
structure, in which Na occupies the same position. On
the basis of the fact that the value of the ionic radius of
Nb in octahedra is consistent with the value of 0.64 Å
recommended by Shannon and Prewitt, the average
radius of the oxygen ions must be 1.3455 Å and the
radius of the sodium ion must be 1.44 Å. If we assume,
as Shannon and Prewitt recommend, the oxygen radius
in the sixfold coordination to be 1.40 Å, the average
radius of the sodium ions will be 1.38 Å.

The linear approximation of the dependence of the
effective ionic radius on the coordination number
(Fig. 3) yields the following estimates of the ionic radii
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Fig. 2. Dependence of the unit-cell parameter a on the average radius of cations in the interlayer position. Designations are the same
as in Fig. 1.
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of Na, K, Sr, and Ba in coordination 11: 1.36, 1.60,
1.38, and 1.56, respectively. When these values are
used, the deviation from the trend for the data of [4]
decreases. The curve based on these values of the ionic
radii is a straight line described by the equation rav =
0.217a – 2.7805. The correlation coefficient is 95.0%. 

The dependence of the parameter b on the average
ionic radius is as follows: rav = 1.6512b – 10.245. The
correlation coefficient is 50.4%.

The linear dependence of the average atomic radius
in the interlayer position and the unit-cell parameter a,
which is sensitive to the occupation of the interlayer
space, indicates the absence of volume mixing effects
in the quaternary system lamprophyllite–barytolampro-
phyllite–their hypothetical potassium and sodium ana-
logs.
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Abstract—Thiocarbamide hydrochloride single crystals forming a salt with the composition [(NH2)2CSH]+Cl–
are studied by the X-ray diffraction method. The tetragonal crystals have the unit-cell parameters a = 7.556(1) Å
and c = 18.329(3) Å, V = 1046.5 Å3, Z = 8, ρcalcd = 1.436 g/cm3, sp. gr. P41212, and R = 0.050. Each chloride
anion in the crystal forms five hydrogen bonds with thee different cations. © 2005 Pleiades Publishing, Inc.
To study the problems of complex formation of
amides with mineral acids, we determined the crystal
and molecular structure of thiocarbamide hydrochlo-
ride with the composition CS(NH2)2 ⋅ HCl.

The unit-cell parameters and integral intensities of
reflections were measured on a DRON diffractometer
(λåÓKα radiation, graphite monochromator, θ/2θ scan,
369 crystallographically independent nonzero reflec-
tions with θ ≤ 29°). The crystals have tetragonal sym-
metry and the unit-cell parameters a = 7.556(1) Å and
c = 18.329(3) Å, V = 1046.5 Å3, Z = 8, and ρcalcd =
1.436 g/cm3. We selected the group P41212 of two pos-
1063-7745/05/5003- $26.00 0382
sible enantiomorphous space groups P41212 and
P43212. No attempts to determine the absolute configu-
ration were made.

The structure was solved by direct methods. The
coordinates of all the non-hydrogen atoms were deter-
mined from the E syntheses of electron density and
refined by the least-squares method in the full-matrix
approximation. Hydrogen atoms were localized from
the difference electron-density syntheses in the isotro-
pic approximation. The final value of the reliability fac-
tor is R = 0.050. All the computations were made using
the AREN complex of programs [1]. The atomic coor-
Table 1.  Coordinates of non-hydrogen (×104) and hydrogen (×103) atoms in the structure

Atom x/a y/b z/c Atom x/a y/b z/c

Cl 3423(2) 3591(2) 1121(1) H(1) 655(11) 337(12) 125(6)

S 8255(2) 3746(2) 1424(1) H(2) 1102(9) 340(10) 50(4)

N(1) 9890(5) 3037(6) 197(3) H(3) 1000(11) 251(10) –33(6)

N(2) 6857(5) 3040(6) 137(2) H(4) 564(12) 337(12) 39(6)

C 8330(7) 3227(6) 493(2) H(5) 689(12) 270(12) –42(7)

Table 2.  Parameters of hydrogen bonds

Bond D···A, Å D–H, Å A···H, Å ∠ DHA, deg

S–H(1)···Cl (x, y, z) 3.695(3) 1.37(9) 2.37(9) 162(2)

N(1)–H(2)···Cl (x + 1, y, z) 3.188(5) 1.06(8) 2.15(9) 166(3)

N(1)–H(3)···Cl (y + 1/2, –x + 1/2, z – 1/4) 3.245(2) 1.04(9) 2.32(9) 147(3)

N(2)–H(4)···Cl (x, y, z) 3.187(6) 1.05(9) 2.16(8) 165(3)

N(2)–H(5)···Cl (y + 1/2, –x + 1/2, z – 1/4) 3.265(5) 1.04(8) 2.34(9) 147(3)
© 2005 Pleiades Publishing, Inc.
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dinates obtained are listed in Table 1; the parameters of
hydrogen bonds are given in Table 2. The figure shows
the structure projected onto the (010) plane.

It was established that the compound studied is a
salt with the composition [(NH2)2CSH]+Cl– formed
owing to protonation of thiocarbamide molecules with
the hydrogen atoms of hydrochloride. This is also indi-
cated by the bond lengths for the cation: an increase in
the C–S bond length up to 1.751(4) Å and a decrease
(on the average to 1.302(6) Å) in the C–N bond lengths
in comparison with the corresponding values 1.72 and
1.34 Å in nonprotonated thiocarbamide molecules in
the crystal [2].

The molecular packing in the crystal is ensured by a
three-dimensional system of hydrogen bonds with the
participation of all the hydrogen atoms and with each
chloride anion forming hydrogen bonds with three dif-
ferent cations.
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Abstract—Diffuse scattering on the X-ray diffraction pattern of fullerite C60 is analyzed. The characteristics
of the short-range order of the amorphous component of fullerite are determined by the Finbak–Warren method.
It is established that the short-range order of the amorphous component is similar to the short-range order of
lonsdaleite. © 2005 Pleiades Publishing, Inc.
X-ray studies of a powder fullerite C60 sample were
performed on an automated DRON-2 diffractometer
using CuKα radiation monochromitized by a pyrolytic
graphite crystal. The scattering intensities were
recorded at a step of 0.02° on the scale of scattering
angles 2θ.

The X-ray diffraction pattern (Fig. 1) was indexed in
the cubic system with the lattice parameter a = 14.19 ±
0.01 Å, sp. gr. .

The characteristic feature of the diffraction patterns
is the presence of the diffuse background, which indi-
cates the existence of the amorphous component. This
was first noticed in [1]. The present study was under-
taken in order to establish the type of the short-range
order of the amorphous component of a cubic fullerite
C60.

Fm3m
1063-7745/05/5003- $26.00 0384
Full-profile (Rietveld) analysis of the X-ray diffrac-
tion pattern of fullerite C60 showed that the maxima in
the region of the 220–222, 331–511, and 333 reflec-
tions, which could have been considered as a diffuse
background were in fact formed owing to superposition
of the above groups of reflections (Fig. 2).

Nevertheless, we analyzed the background both
with due regard for these maxima and ignoring them.
Figure 3a shows the scattering intensities normalized
by the Warren method for both instances and also, for
comparison, the intensity distributions obtained in
[2, 3] for amorphous carbon (Fig. 3b) and schungite
(Fig. 3c). It is seen that the intensity distribution for the
amorphous component of fullerite C60, amorphous car-
bon, and schungite considerably differ.
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Fig. 1. X-ray diffraction patterns of the cubic fullerite C60 obtained using copper radiation.
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Fig. 2. Solid line is the experimental intensity distribution for fullerite C60; dashed line shows the result of the full-profile Rietveld
analysis.
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Fig. 4. Unit cell and bonding between tetrahedra in the lonsdaleite structure.
Using the normalized diffuse-scattering intensities
of the X-ray diffraction pattern of fullerite C60, we cal-
culated the distribution curves for s, the weighted inter-
ference function H(s) (Fig. 3d), and pair functions D(r)
C

(Fig. 3e), where s = 4πsinθ/λ and λ is the incident-radi-
ation wavelength. The method for calculation and anal-
ysis of the D(r) curves was considered elsewhere [4, 5].
The spurious maxima on the D(r) curve are rather low
Table 1.  Calculated radii rij, spreading σij of the coordination spheres, and coordination numbers Nij for the amorphous com-
ponent of fullerite C60 and the respective data for diamond and lonsdaleite

Hexagonal 
graphite Diamond

Lonsdaleite Amorphous component
of fullerite C60

Schungite [3]

average experiment *

rij, Å Nij rij, Å Nij rij, Å Nij rij, Å Nij rij, Å σij, A Nij ± Nij rij, Å σij, A Nobs Ncalcd

1.42 3 1.54 4 1.544 3 1.54 4 1.53 0.23 4.0 ± 0.1 1.42 0.22 2.52 2.86

1.545 1

2.46 6 2.52 12 2.520 6 2.52 13 2.49 0.39 12.7 ± 0.2 2.46 0.18 5.07 5.5

2.522 6

2.575 1

2.84 3 2.95 12 2.955 3 2.96 9 2.92 0.37 8.2 ± 0.2 2.84 0.11 2.59 2.68

2.956 6

3.35 1 3.56 6 3.565 6 3.58 12 3.56 0.28 11.9 ± 0.2 3.38 0.10 2.25 0.8

3.603 6

3.64 9 3.88 12 3.884 6 3.89 9 3.85 0.23 9.0 ± 0.2 3.76 0.10 4.29 5.0

3.75 6 3.888 3

4.15 6 4.120 2 4.12 2 4.12 0.00 2.1 ± 0.2 3.87 0.28 7.84 6.49

4.25 6 4.36 24 4.365 6 4.37 18 4.35 0.32 18.2 ± 0.2 4.26 0.14 5.24 4.82

4.39 9 4.366 12

4.62 16 4.630 6 4.74 24 4.76 0.47 23.9 ± 0.3 4.50 0.30 12.3 10.1

4.633 3

4.830 12

4.858 3

4.91 6 5.04 12 5.040 6 5.16 30 5.20 0.43 30 ± 1 5.02 0.16 12.4 9.46

5.03 18 5.068 6

5.271 6

5.26 24 5.271 6

5.274 6

Note: ∆σij = ±0.01 Å, ∆rij = ±0.01 Å.
        * Nobs indicates experimental data; Ncalcd indicates the data calculation for a model.
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 3      2005
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Table 2.  Interatomic distances r and the number N of atomic pairs located at the given distance in the configuration 1 × 5 × 5
for lonsdaleite and diamond unit cell

Lonsdaleite

r, Å N r, Å N r, Å N r, Å N r, Å N

1.54 131 7.56 40 10.88 32 13.90 20 17.23 24

2.52 242 7.58 48 10.99 5 14.04 12 17.42 7

2.57 40 7.71 40 10.99 101 14.13 32 18.02 14

2.95 80 7.85 98 11.10 32 14.35 20 18.13 21

3.60 64 7.98 32 11.18 48 14.49 86 18.20 16

3.88 144 8.24 60 11.37 9 14.78 47 18.25 9

4.12 80 8.38 36 11.55 18 14.92 48 18.36 6

4.36 126 8.61 160 11.56 16 14.93 4 18.59 18

4.82 128 8.63 49 11.74 21 15.14 16 18.71 12

4.85 63 8.85 79 11.93 78 15.33 10 18.93 14

5.04 60 8.87 63 12.09 62 15.62 9 19.16 3

5.27 123 9.08 54 12.27 7 15.75 39 19.31 8

5.66 88 9.44 32 12.36 64 15.76 3 19.54 8

6.02 49 9.56 62 12.45 50 15.82 16 19.59 13

6.20 64 9.65 72 12.61 64 15.94 16 20.13 9

6.34 126 9.78 30 12.93 14 16.03 27 20.44 8

6.36 45 9.99 56 12.95 27 16.42 26 20.54 6

6.50 96 10.08 20 13.01 24 16.48 20 20.65 4

6.66 90 10.10 72 13.19 16 16.67 32 21.06 5

6.69 30 10.19 20 13.34 48 16.73 8 21.74 2

7.15 48 10.40 106 13.43 46 16.91 18 21.94 3

7.28 98 10.79 42 13.58 30 17.05 9 23.07 1

7.29 45 10.81 45 13.74 7 17.17 26

Diamond

1.56 7 2.54 12 2.98 6 3.92 3
and correspond to the positions of the peaks appearing
as a result of the termination effect of the experimental
diffraction data at smax = 7.05 Å–1. This indicates the
absence of noticeable experimental errors that could
have been formed when singling out the background
scattering on the experimental diffraction pattern. The
attained high accuracy was ensured by a small scanning
step both in the regions of diffraction reflections and
background scattering and also by high intensity of the
background scattering: from 235 pps in the region of
maxima up to 75 pps at the minimum. The curves of
pair-function distribution calculated for both variants of
the intensity distribution of the diffuse background on
the X-ray diffraction pattern of fullerite C60 coincided
within 2% accuracy.

The position of the first maximum on the D(r) curve
is 1.53 Å, the first coordination number is 4, and the
average electron density equals 1.05 Å–3. These values
correspond to the analogous data for two other crystal-
line modifications of carbon: diamond and lonsdaleite
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 3      200
(often called hexagonal diamond) [6]. The shortest
interatomic distance for fullerene equals 1.41 Å; the
coordination number is 3. Table 1 lists the radii of the
coordination spheres, coordination numbers, and
spreading of the coordination spheres calculated from
the experimental D(r) curve in comparison with the
analogous data for graphite, diamond, lonsdaleite, and
schungite. Both electron density and coordination num-
bers for amorphous carbon are lower than for schung-
ite. The radii of the coordination spheres and the coor-
dination numbers calculated for the amorphous compo-
nent of fullerite C60 correspond well to those calculated
for lonsdaleite (Fig. 4). The coordination spheres show
pronounced spreading; i.e., the configuration is consid-
erably distorted. Almost zeroth spreading of the sphere
with a radius of 4.12 Å may be explained by the fact
that only two atoms are located at this sphere. It should
be noted that, in distinction from liquids, one cannot
always expect for amorphous materials a regular
increase in coordination-sphere spreading with an
5
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increase of the radius. This is confirmed by numerous
experimental data reviewed in [2] and by structure sim-
ulation by the methods of a disordered net for oxide
systems and of curved nets for amorphous carbon mate-
rials [2, 3].

Figure 5 illustrates the calculation of diffraction pat-
terns by the Debye formula (a) for one C60 molecule,
(b) the atomic configuration corresponding to 25 unit
cells of lonsdaleite with the dimensions 1 × 5 × 5, and
(c) the atomic configuration in one unit cell of diamond.
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Fig. 5. Diffuse-scattering intensity distribution on the X-ray
diffraction pattern of fullerite C60 (dashed line) and the data
calculated by the Debye formula (solid curves).
C

The number of atomic pairs and the distances between
these pairs in a fullerite C60 molecule are consistent
with the data in [1]. The corresponding data for lonsda-
leite and diamond are listed in Table 2. It follows from
Fig. 5 that the positions of the diffuse-background max-
ima on the experimental curve correspond to the data
calculated for lonsdaleite. The attempts to fit the calcu-
lated intensity-distribution curves for fullerene frag-
ments in the region of the first two maxima failed.
Moreover, the next two maxima on the calculated
curves for the fragments of fullerite C60 are shifted and
have lower intensities.

Thus, the short-range order of the amorphous com-
ponent of cubic fullerite C60 is of the same type as in
lonsdaleite. This result is consistent with the known
data. Thus, the analysis of the published experimental
data [7] showed that the thermodynamic parameters of
various mechanisms of diamond formation vary within
wide ranges of pressure (from 10–7 to 106 bar) and tem-
perature (from 20 to 4000°C). It is also indicated that
products of synthesis are most often the intergrowth of
diamond and non-diamond carbon. In [8], thin diamond
films were synthesized by deposition during chemical
reaction between H2 and CH4 proceeding under a pres-
sure of 65–85 torr at temperatures of 700–800°C.
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Abstract—The influence of the partial replacement of copper atoms by cadmium atoms on the real structure,
phase formation, and temperatures of the structural transformations in Cu1.75S are studied by high-temperature
X-ray diffractometry. It was shown that Cu1.70Cd0.05S crystals at room temperature, unlike Cu1.75S and
Cu1.70In0.05S crystals, form not only orthorhombic anilite and monoclinic djurleite phases but also the respec-
tive metastable high-temperature fcc1 and fcc2 phases. © 2005 Pleiades Publishing, Inc.
It is shown [1] that a mineral of the composition
Cu1.75S (anilite) is crystallized in the orthorhombic sys-
tem with the lattice parameters a = 7.89 Å, b = 7.84 Å,
and c = 11.01 Å, sp. gr. Pnma, Z = 4. It is established that
the natural and synthetic anilite crystals have close
compositions and are formed together with djurleite
(Cu1.96S), which crystallizes in the monoclinic system
with the lattice parameters a = 26.897 Å, b = 15.745 Å,
c = 13.565 Å, β = 90.13°, sp. gr. P21/n, Z = 8 Cu31S16 [2].
Morimoto, Koto, and Shimazaki [1] failed to separate
the Cu1.75S and Cu1.96S crystals.

A Bridgman-grown Cu1.75S compound was studied
in [3] and it was shown that, at room temperature, this
compound also contains crystals of anilite, its metasta-
ble fcc1 phase with the lattice parameters a = 5.542 Å,
sp. gr. Fm3m, Z = 4, and djurleite. It was revealed that
anilite and djurleite are transformed into the fcc1 phase
at the temperatures 308 ± 1 and 389 ± 1 K, respectively.
Figure 1 shows that the a parameter of the cubic phase
undergoes no jump in the anilite transformation into the
fcc1 phase (in other words, in this case, the cubic phase
plays the role of a ready nucleus), whereas in the djurle-
ite  fcc1 transformation, the parameter a undergoes
some jumps. The reflection diffraction patterns from
the (111), (222), and (333) planes of the fcc1 phase also
have the superimposed reflections from the (202),
(404), and (606) planes of orthorhombic anilite and
from the (333), (666), and (999) planes of monoclinic
djurleite, which indicates that the lattices of these
phases are crystallographically related. The transfor-
mations observed are reversible. However, it is unclear
why djurleite does not undergo transformation into the
respective fcc2 phase.

To answer this question and establish the influence
of the partial replacement of copper atoms in Cu1.75S by
indium, iron, and cadmium atoms on the phase forma-
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tion, stabilization of individual phases, and the mecha-
nism of structural transformations, we studied the
Cu1.70In0.05S, Cu1.70Fe0.05S, and Cu1.70Cd0.05S com-
pounds on a DRON-3M diffractometer (CuKα radia-
tion, Ni filter) with a high-temperature URVT-2000
attachment in a 10–1-Pa vacuum. The angular resolution
was about 0.1°. We used the continuous scanning
mode. The error in the angle determination did not
exceed ∆θ = ±0.02°. The growth method of these single
crystals was described in [3].

Cu1.70In0.05S. The analysis of the diffraction patterns
from a Cu1.70In0.05S crystal recorded at room tempera-
ture in the angular range 10° ≤ 2θ ≤ 100° showed that
the crystal consists of the following phases: orthorhom-
bic (anilite), monoclinic (djurleite), and metastable fcc1
phases with the lattice parameter a = 5.5593 Å [4]. It is
established that at 362 ± 1 K, anilite is transformed into
its fcc1 phase, whereas djurleite is also transformed into
the fcc1 anilite phase at 383 ± 1 K.

Since the ionic radius of an In3+ ion (0.92) is very
close to the ionic radii of mono- and divalent copper
ions (0.98 for Cu1+ and 0.80 for Cu2+), the partial
replacement of copper by indium ions proceeds in such
a way that the indium ions occupy the sites in the cen-
ters of the tetrahedra or triangles formed by sulfur
atoms. In this case, in order to preserve the electrostatic
balance in the crystal lattice, copper ions are replaced
by indium ions, i.e., Cu1+Cu2+  In3+ (heterovalent
isomorphous substitution). An increase in the tempera-
ture of anilite and djurleite transformation into the fcc1
phase in Cu1.70In0.05S in comparison with this transfor-
mation in Cu1.75S seems to be explained by covalent
bonding between indium and sulfur and a decrease in
the number of vacancies in the lattice, where
Cu1+Cu2+  In3+ (i.e., each indium atom is related to
two Cu1+Cu2+ vacancies). As is seen from Fig. 1, in this

                           
© 2005 Pleiades Publishing, Inc.
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Fig. 1. Temperature dependences of the lattice parameter of the fcc1 phase in the Cu1.75S and Cu1.70In0.05S crystals, as well as of
fcc1 and fcc2 phases in Cu1.70Fe0.05S and Cu1.70Cd0.05S crystals.
                        
case, the lattice parameter of the fcc1 phase has jumps
in both transformations.

Cu1.70Fe0.05S. The analysis of the diffraction pat-
terns from a Cu1.70Fe0.05S crystal shows that, unlike
Cu1.75S and Cu1.70In0.05S, the Cu1.70Fe0.05S also
includes the high-temperature metastable fcc2 phase of
djurleite. The fcc1 and fcc2 phases have different unit-
cell parameters (a1 = 5.5473 Å and a2 = 5.6530 Å,
respectively) and, therefore, also different concentra-
tions of metal atoms [4]. It is shown that at 343 ± 1 K
anilite is transformed into its fcc1 phase, whereas
djurleite and its metastable fcc2 phase are transformed
into the fcc1 phase at 385 ± 1 K. In cooling of the
Cu1.70Fe0.05S phase, the diffraction patterns are restored
in the opposite sequence. At several cycles of thermal
C

                                                        

treatment, the number and the width of the diffraction
reflections remain unchanged. The diffraction-maxi-
mum intensities (superimposed reflections of two
phases) either increase or decrease after the transforma-
tion of one of these phases into the fcc phase.

The lattice framework of the fcc phases of
Cu

 

1.70

 

Fe

 

0.05

 

S consists of sulfur atoms with copper
atoms being statistically distributed over the tetrahedral
and triangular voids formed by two neighboring sulfur
atoms lying one above the other. Since the ionic radii of
Fe

 

2+

 

 and Cu

 

2+

 

 coincide (

 

~0.8 

 

Å) with the ionic radius of
divalent copper (80 for Cu

 

2+

 

), the Fe

 

2+

 

 ions may iso-
morphously replace Cu

 

2+

 

 ions in sulfur triangles with
the electrostatic balance in the crystal lattice being
unchanged. However, as was shown by the nuclear
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Fig. 2. Diffraction patterns from Cu1.70Cd0.05S crystal at (a) 293, (b) 323, (c) 373, and (d) 773 K.
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gamma-spectroscopy method, iron atoms enter the lat-
tice in the trivalent state with the ionic radius 0.67 Å,
i.e., less that the ionic radii of Cu1+ and Cu2+. To pre-
serve the electrostatic balance in this case, each Fe3+ ion
YSTALLOGRAPHY REPORTS      Vol. 50      No. 3      200
should bind two vacancies of copper atoms, i.e.,
Fe3+  Cu1+Cu2+, as in a Cu1.70In0.05S crystal. This
results in considerable reduction of the number of
vacancies in the lattice.
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Calculated diffraction patterns from Cu1.70Cd0.05S crystal

Texp,
K

θ I/Io
dexp,

Å

Orthorhombic Monoclinic fcc1 fcc2
Lattice

parameter, Ådcalcd,
Å

hkl dcalcd,
Å

hkl dcalcd,
Å

hkl dcalcd,
Å

hkl

293 6°56′ 50 6.3869 6.3869 011 Orthorhombic

13°17′ 90 3.3561 3.3563 211 3.3561 111 a = 7.9008

13°54′ 100 3.2094 3.2066 202 3.1982 333 3.2090 111 b = 7.8512

16°15′ 12 2.7551 2.7525 004 c = 11.0100

16°40′ 40 2.6879 2.6870 203 2.6897 1000

21°08′ 30 2.1384 2.1372 231 2.1349 072 Monoclinic

23°31′ 10 1.9320 1.9319 716, 107 a = 26.897

26°04′ 70 1.7544 1.7553 240 1.7557 926 1.7524 311 b = 15.745

27°19′ 80 1.6798 1.6723 242 1.6763 475, 292 1.6751 311 1.6780 222 c = 13.565

28°38′ 80 1.6083 1.6033 404 1.5991 666 1.6045 222 β = 90.13°
36°54′ 50 1.2839 1.2820 218 1.2849 397, 088 fcc1

42°43′ 40 1.1363 1.1357 624 1.1348 0126, 4108 1.1368 422 a1 = 5.5654

43°25′ 70 1.1216 1.1210 454, 070 1.1208 0141, 2140 1.1187 333

46°06′ 100 1.0698 1.0689 606 1.0695 999 1.0696 333, 511 fcc2

47°58′ 40 1.0378 1.0379 0119 a2 = 5.8128

323 6°44′ 50 6.5720 6.5731 102 Monoclinic

13°16′ 80 3.3605 1.3619 111 a = 26.9080

13°53′ 100 3.2134 3.2075 333 3.2151 111 b = 15.7720

16°39′ 12 2.6908 2.6909 1000 c = 13.6083

26°03′ 60 1.7552 1.7639 926 1.7558 311 β = 90.13°
27°18′ 80 1.6810 1.6805 475, 292 1.6791 311 1.6810 222

28°37′ 80 1.6093 1.6038 666 1.6076 222

42°42′ 40 1.1409 1.1372 0126, 4108 1.1367 422 a1 = 5.5689

43°24′ 70 1.1220 1.1227 0141, 2140 1.1207 333 fcc2

46°05′ 100 1.0701 1.0691 999 1.0717 333 a2 = 5.8232

373 13°15′ 60 3.3634 3.3637 111

13°52′ 100 3.2174 3.2158 111

26°02′ 50 1.7564 1.7567 311 fcc1

27°18′ 70 1.6809 1.6795 311 1.6819 222 a1 = 5.5701

28°37′ 80 1.6104 1.6080 222 fcc2

42°42′ 40 1.1366 1.1370 422 a2 = 5.8262

43°24′ 60 1.1222 1.1212 333

46°04′ 100 1.0703 1.0714 333

773 13°08′ 60 3.3916 3.3886 111 fcc1

13°46′ 100 3.2404 3.2376 111 a1 = 5.6078

28°26′ 80 1.6192 1.6188 222

43°05′ 60 1.1285 1.1296 333 fcc2

45°39′ 90 1.0780 1.0792 333 a2 = 5.8694

Note: CuKα radiation (λα = 1.5418 Å), Ni filter, mode: 35 kV, 10 mA.
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Fig. 3. Scheme of structural transformation in Cu1.75S and Cu1.70A0.05S crystals (A = In, Fe, Cd).
Cu1.70Cd0.05S. The diffraction patterns of a
Cu1.70Cd0.05S crystal have 15 diffraction reflections in
the angular range 10° ≤ 2θ ≤ 100° at room temperature
(Table 1, Fig. 2a). This also confirms that the crystal
contains anilite, djurleite, and their metastable fcc1 and
fcc2 phases. After recording diffraction reflections from
a Cu1.70Cd0.05S crystal at room temperature, we
switched on a heater and recorded diffraction patterns
after each increase of the temperature by 30 K. At
323 K, we recorded 10 diffraction reflections in the
same angular range. As is seen from the table and
Fig. 2b, the reflections from the (011) and (004) planes
due to the anilite phase disappeared. It was established
that the anilite phase is transformed at 301 ± 0.5 K into
its fcc1 phase. At 373 K, from 10 reflections in the same
angular range, two reflections from the (102) and
(1000) planes of the djurleite phase disappeared. The
remaining eight reflections (table, Fig. 2c) belong
either to the fcc1 phase (111, 311, 222, 422, and 333
reflections) or to the fcc2 phase (111, 311, and 333
reflections). At 352 ± 0.5 K, the monoclinic phase of
djurleite is transformed into its fcc2 phase. The subse-
quent crystal cooling resulted in the complete restora-
tion of the diffraction pattern. The transformations are
reversible and are of the single crystal single crystal
type. After prolong heating, both fcc1 and fcc2 phases
are preserved as individual phases. An increase in the
annealing temperature to 773 K results in disappear-
ance of the 311 and 422 reflections and 311 and 222
GRAPHY REPORTS      Vol. 50      No. 3      200
reflections from the diffraction patterns of the fcc1
phase and fcc2 phase, respectively.

As is seen from Fig. 1, in the phase transformations
of anilite and djurleite, the temperature dependence of
the lattice parameters of the fcc1 and fcc2 phases
remains linear. Each cubic phase continues to grow

5.54

Cu1.75S
Cu1.70Fe0.05S

Cu1.70In0.05S
Cu1.70Cd0.05S

5.55

5.56

300

400

350

a 1
, Å

→
T t

r→

(a)

(b)

1

2

Fig. 4. Composition dependence of (a) the lattice parameter
of the fcc1 phases and (b) phase-transition temperatures in
(1) anilite and (2) djurleite.
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only at the expense of its low-temperature modifica-
tions.

Thus, the results obtained show that the structural
transformations in the samples studied occur at signifi-
cantly low temperatures in comparison with their
growth temperatures. First, the crystals of the high-tem-
perature fcc phase start to grow, which allows one to
vary the number of cations in the unit cell. Cooling of
the crystals to room temperature gives rise to the first
cycle of phase transformations reducing to the forma-
tion of two low-symmetry modifications in Cu1.75S,
Cu1.70In0.05S, and Cu1.70Fe0.05S. As is seen from Fig. 3,
the schemes of phase transformations in Cu1.75S and
Cu1.70In0.05S are the same: cooling of the high-tempera-
ture fcc1 phase of anilite first leads to the formation of
the monoclinic djurleite and then to orthorhombic
anilite, so that, at room temperature, the Cu1.75S and
Cu1.70In0.05S crystals consist of three phases. The
Cu1.70Fe0.05S and Cu1.70Cd0.05S crystals at room temper-
ature consist of four phases because anilite and djurleite
also possess the metastable fcc1 and fcc2 phases. At
385 K, a Cu1.70Fe0.05S crystal consisting of the mixture
of djurleite and fcc2 phase is transformed into the fcc1
phase. The anilite phase in Cu1.70Cd0.05S is transformed,
at 301 K, into its fcc1 phase and, at 352 K, the djurleite
phase is transformed into its fcc2 phase.
C

As is seen from Fig. 4a, at 293 K, the unit-cell
parameters of the metastable fcc1 phases of aniline
grow linearly despite the almost equal radii of cations.
This seems to be associated with the change of chemi-
cal cation–cation and cation–anion bonds, which
affects the temperatures of the structure transforma-
tions in anilite (Fig. 4b, curve 1) in the compounds
Cu1.75S, Cu1.70Fe0.05S, and Cu1.70In0.05S. In djurleite
(Fig. 4b, curve 2), the picture is opposite. Anilite in
Cu1.70Cd0.05S is transformed into its fcc1 phase, and
djurleite is transformed into its fcc2 phase, which
results in a considerable decrease in the phase-transfor-
mation temperature.
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Abstract—The crystal structure of a disaccharide nucleoside, 2'-O-β-D-ribopyranosylcytidine, is studied using
X-ray diffraction (space group P21, a = 6.827(2) Å, b = 12.813(3) Å, c = 9.532(2) Å, β = 92.934(5)°, V =
832.7(4) Å3, Z = 2). The stereochemical features of the molecular structure of 2'-O-β-D-ribopyranosylcytidine
are analyzed, and the structural data are compared with those obtained for the previously studied disaccharide
nucleoside 2'-O-β-D-ribofuranosyluridine. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

Disaccharide nucleosides form an important group
of natural compounds in which, unlike conventional
nucleosides, a disaccharide rather than a monosaccha-
ride is bound to the heterocyclic base. To date, more
than a hundred disaccharide nucleosides and their
derivatives have been isolated from various sources
[1−3]. These compounds exhibit a wide spectrum of
biological activities and possess antibacterial, fungi-
cidal, herbicidal, insecticidal, antitumorigenic, and
antiviral properties. Disaccharide nucleosides are not
only low-molecular compounds but also structural
units of biopolymers, such as poly(ADP-ribose) and
tRNA [3, 4].

Recently [5–7], a convenient general method was
developed for preparing 2'-O-β-D-ribofuranosylnucle-
osides. This method involves the condensation of a tin
tetrachloride–activated 1-O-acetyl-2,3,5-tri-O-ben-
zoyl-β-D-ribofuranose with partially protected ribonu-
cleosides. The proposed approach was also used to pre-
pare 2'-O-α-D-arabinofuranosylnucleosides, 2'-O-β-D-
erythrofuranosylnucleosides, 2'-O-β-D-ribopyranosyl-
nucleosides, and other disaccharide compounds [7, 8].
Based on these compounds, we synthesized oligonucle-
otides and studied the parameters of their complex for-
mation with complementary DNA and RNA. It was
shown that oligonucleotides containing disaccharide
nucleosides form stable complexes with RNA (∆Tm =
0°C), whereas the melting temperatures of the com-
plexes with DNA are somewhat lower than those of the
natural compounds [8].

The effect of a 2'-O-β-D-ribofuranosyladenosine
residue on the stability of the duplex formation was
studied by high-resolution NMR spectroscopy and
1063-7745/05/5003- $26.00 0395
molecular dynamics methods using a fragment of the
double-chain RNA as an example [9]. It was shown that
an additional bulky ribofuranose residue is located in a
minor groove of an RNA double helix and has an insig-
nificant effect on the RNA structure in a solution
(∆Tm = 0°C). The results obtained agree well with the
X-ray diffraction data on the position of the minor
nucleoside 2'-O-β-D-ribofuranosyladenosine in

tRN  [10].

Continuing our investigations into the physico-
chemical properties of disaccharide nucleosides [6], we
performed an X-ray diffraction analysis of 2'-O-β-D-
ribopyranosylcytidine and compared the stereochemi-
cal features of its molecular structure with those of the
2'-O-β-D-ribofuranosyluridine studied earlier in [6].

EXPERIMENTAL

2'-O-β-D-Ribopyranosylcytidine was synthesized
according to the following procedure. A solution of N4-
benzoyl-1-[2-O-(2,3,5-tri-O-acetyl-β-D-ribopyranosyl-
β-D-ribofuranosyl]cytosine (0.350 g, 0.58 mmol) [8] in
5 M ammonium solution (5 ml) in methanol was
allowed to stand for 24 h at 20°C and was then evapo-
rated under vacuum to dryness. The residue was dis-
solved in water (20 ml) and washed with methylene
chloride (2 × 10 ml). The aqueous layer was evaporated
under vacuum. The residue was treated with acetone
and allowed to stand for 3 days at 0°C. The precipitate
was filtered off, washed with acetone and ether, and
dried. The yield was 180 mg (83%). UV, λmax, nm (ε,
M−1 cm–1): 280 (12 200) (pH 1), 270 (8400) (pH 7–13).
1H NMR at 298 K in D2O (400 MHz; J, Hz): 7.66 d

Ai
Met
© 2005 Pleiades Publishing, Inc.
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Fig. 1. Molecular structure of 2'-O-β-D-ribopyranosylcytidine.
(1H, J6, 5 = 7.6, H6), 5.93 d (1H, H5), 5.92 d (1H, J1', 2' =
5.6, H1'), 4.76 d (1H, J1'', 2'' = 4.6, H1''), 4.31 dd (1H,
J2', 3' = 5.4, H2'), 4.22 dd (1H, J3', 4' = 4.5, H3'), 3.99 ddd
(1H, J4', 5'a = 3.1, J4', 5'b = 4.4, H4'), 3.87 dd (1H, J3'', 2'' =
3.3, J3'', 4'' = 3.1, H3''), 3.72 dd (1H, J5'a, 5'b = –12.8,
H5'a), 3.72 dddd (1H, J4'', 5''a = 3.2, J4'', 5''b = 5.9, J4'', 2'' =
1.0, H4''), 3.66 dd (1H, H5'b), 3.61 ddd (1H, H2''), 3.52
dd (1H, J5''a, 5''b = –12.0, H5''a), 3.44 dd (1H, H5'b).

Colorless single crystals of 2'-O-β-D-ribopyrano-
sylcytidine were grown at room temperature through
slow evaporation of the solvent from a saturated water–
alcohol solution of the compound. The crystals belong
to the space group P21, and the unit cell parameters are
as follows: a = 6.827(2) Å, b = 12.813(3) Å, c =
9.532(2) Å, β = 92.934(5)°, V = 832.7(4) Å3, Z = 2,
ρcalcd = 1.497 g/cm3, and M = 375.34. The intensities of
reflections were measured on a SYNTEX P21 four-cir-
cle diffractometer (CuKα radiation, graphite monochro-
mator, θ/2θ scan mode, θmin = 4.64°, θmax = 63.62°). The
correction for absorption was introduced by a semiem-
pirical method in accordance with the absorption curve.
A total of 1548 unique reflections were collected, of
which 1542 reflections with I > 2σ(I) were used for the
solution and refinement of the structure.

The structure was solved by direct methods and
refined in the anisotropic approximation for the non-
hydrogen atoms. All the hydrogen atoms were located
from difference electron-density maps and refined iso-
C

tropically. All the calculations were performed with the
SHELX97 program package [11]. The final value of the
discrepancy factor R is equal to 3.91% for 1542 reflec-
tions with I > 2σ(I).

RESULTS AND DISCUSSION

The molecular structure of 2'-O-β-D-ribopyranosyl-
cytidine with the atomic numbering is shown in Fig. 1.
The N, O, and C atoms are drawn as ellipsoids of ther-
mal vibrations at the 50% probability level, and the
hydrogen atoms are depicted as spheres of arbitrary
radius.

The bond lengths and angles in the nucleoside frag-
ment of the molecule are close to those in the previ-
ously studied structures of the cytidines modified in the
carbohydrate fragment [12–14]. Therefore, we will
dwell primarily on the conformational properties of
2'-O-β-D-ribopyranosylcytidine molecules.

Similar to molecules of many other cytidines modi-
fied in a carbohydrate group, the 2'-O-β-D-ribopyrano-
sylcytidine molecule is characterized by an anti confor-
mation about the N-glycoside bond; in this case, the
χ[O(4')–C(1')–N(1)–C(2)] torsion angle is equal to
−132.3(2)°. The torsion angles about the C(4')–C(5')
exocyclic bond of the nucleoside are γ(O(5')–C(5')–
C(4')–C(3')) = 50.6° and ϕ(O(5')–C(5')–C(4')–O(4')) =
−68.7(3)°, which corresponds to a gauche+ conforma-
tion of the sugar. The furanose ring in the 2'-O-β-D-
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 3      2005
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Table 1.  Bond lengths (d, Å) and angles (ω, deg) in the pyranose fragment of the 2'-O-β-D-ribopyranosylcytidine molecule

Bond d Bond d Angle ω Angle ω

C(1'')–C(2'') 1.530(4) O(6'')–C(1'') 1.400(3) C(1'')C(2'')C(3'') 110.3(2) C(1'')C(2'')O(2'') 109.9(2)

C(2'')–C(3'') 1.523(3) C(2'')–O(2'') 1.428(3) C(2'')C(3'')C(4'') 110.5(2) C(3'')C(2'')O(2'') 112.0(2)

C(3'')–C(4'') 1.523(3) C(3'')–O(3'') 1.413(3) C(3'')C(4'')C(5'') 107.5(2) C(2'')C(3'')O(3'') 112.2(2) 

C(4'')–C(5'') 1.520(4) C(4'')–O(4'') 1.428(4) C(4'')C(5'')O(6'') 110.9(2) C(4'')C(3'')O(3'') 109.8(2) 

C(5'')–O(6'') 1.442(4) C(5'')O(6'')C(1'') 114.4(2) C(3'')C(4'')O(4'') 111.3(2) 

O(6'')C(1'')C(2'') 113.6(2) C(5'')C(4'')O(4'') 108.8(2)

Table 2.  Geometric parameters of hydrogen bonds in the structure of 2'-O-β-D-ribopyranosylcytidine

D–H d(D–H) d(H···A) ∠ DHA d(D···A) A Symmetry

O(2'')–H(O2'') 0.77(4) 2.04(4) 151(4) 2.745(4) O(4'') [x, y, z]

N(4)–H(41) 0.82(3) 2.28(3) 158(2) 3.051(4) O(4'') [–x + 1, y – 1/2, –z + 2]

N(4)–H(41) 0.82(3) 2.50(3) 107(2) 2.845(3) O(6'') [–x + 1, y – 1/2, –z + 2]

N(4)–H(42) 0.85(6) 2.06(6) 165(5) 2.895(4) O(3'') [–x, y – 1/2, –z + 2]

O(3')–H(O3') 0.85(6) 2.14(6) 174(5) 2.982(3) O(2) [–x, y + 1/2, –z + 1]

O(5')–H(O5') 0.92(5) 2.17(5) 153(5) 3.014(3) O(3') [x + 1, y, z]

O(3'')–H(O3'') 0.90(5) 1.89(5) 174(4) 2.787(3) O(4') [–x, y + 1/2, –z + 1]

O(4'')–H(O4'') 0.73(5) 2.07(5) 177(5) 2.793(3) N(3) [–x, y + 1/2, –z + 2]

Note: D is the donor, A is the acceptor, d is the distance (Å), and ∠  is the angle (deg).
ribopyranosylcytidine molecule has an envelope (2E)
conformation. The C(1), C(3'), C(4'), and O(4') atoms
lie in the same root-mean-square plane, and the C(2')
atom deviates from this plane by 0.524(4) Å in the
direction of the base. The phase angle of pseudorotation
P is 157.9°, and the maximum amplitude of pseudoro-
tation (the degree of twisting) Ψm is 34.5°.

The six-membered pyranose ring has a distorted
chair conformation (1C4). The C(2''), C(3''), C(5''), and
O(6'') atoms lie in the same plane; the C(1'') atom devi-
ates from this plane by 0.574(3) Å in the direction of
the base; and the C(4'') atom deviates from the plane by
0.720 (4) Å in the opposite direction. The O(2'')–H and
O(4'') atoms of the pyranose fragment are linked by the
intramolecular hydrogen bond: the O(2'')–H⋅⋅⋅O(4'')
distance is equal to 2.745(4) Å, and the O(2'')–H⋅⋅⋅O(4'')
angle is 151(4)°. The bond lengths and angles in the
pyranose ring are given in Table 1. The C–O bonds in
the hydroxyl groups [C(2'')–O(2'')H, 1.428(4) Å and
C(4'')–O(4'')H, 1.428(4) Å], whose oxygen atoms are
involved in the intramolecular hydrogen bond, are
slightly longer than the C(3'')–O(3'')H bond
[1.413(3) Å], whose O(3'') atom participates only in the
intermolecular hydrogen bonds (Table 2).

In the nucleoside fragment of the disaccharide
nucleoside 2'-O-β-D-ribofuranosyluridine (Fig. 2),
which was studied earlier in [6], the molecule is char-
acterized by an anti conformation about the N-glyco-
side bond, a gauche–anti conformation about the C(4')–
C(5') exocyclic bond, and an 4E conformation of the
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 3      2005
furanose ring (P = 54.6°, Ψm = 36.6°). The additionally
attached 2'-O-ribofuranose fragment has a C(2'')-exo-
C(3'')-endo (2T3) conformation of the sugar ring (P =
344.4°, Ψm = 38.3°; the deviations of the C(2'') and
C(3'') atoms are 0.543 and 0.051 Å, respectively) and a
gauche–trans conformation about the C(4'')–C(5'')
bond.

Comparison of the chemical shifts and spin–spin
coupling constants in the 1H NMR spectra of 2'-O-β-D-
ribofuranosylcytidine [6] and 2'-O-β-D-ribopyranosyl-
cytidine shows that, in water, the conformations of the
nucleoside parts of the molecules are identical to each
other and analogous to that of natural cytidine. It should
be noted that, in the case of 2'-O-β-D-ribopyranosylcy-
tidine, the S  N equilibrium is slightly shifted
toward the S conformer. In a solution, the pyranose part
of 2'-O-β-D-ribopyranosylcytidine, like the molecule
of methyl-β-D-ribopyranoside [15], is in an approxi-
mately equimolar 4C1  1C4 equilibrium.

The lengths of the O-glycoside bonds in the mole-
cules of the disaccharides under investigation coincide
to within the limits of 3σ. In the molecules of 2'-O-β-
D-ribopyranosylcytidine and 2'-O-β-D-ribofuranosylu-
ridine [6], the O(2')–C(1'') bonds are equal to 1.411(3)
and 1.420(4) Å, respectively. However, the O(6'')–
C(1'')–O(2')–C(2') and O(4'')–C(1'')–O(2')–C(2') tor-
sion angles about these bonds slightly differ [–81.6(2)°
and –70.0(3)°, respectively] because of the different
natures of the additional 2'-O-carbohydrate residues.
Accordingly, there is a difference between the torsion
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Fig. 2. Molecular conformations of (a) 2'-O-β-D-ribopyranosylcytidine and (b) 2'-O-β-D-ribofuranosyluridine.
angles characterizing the orientation of the O-glycoside
bonds with respect to the nucleoside fragments. For
example, in the structure of 2'-O-β-D-ribopyranosylcy-
tidine, the C(1'')–O(2')–C(2')–C(3') and C(1'')–O(2')–
C(2')–C(1') torsion angles are equal to –105.7(2)° and
139.7(2)°, respectively. In the structure of 2'-O-β-D-
ribofuranosyluridine, the corresponding angles are
−93.0(3)° and 155.3(3)°.

Nonetheless, as is seen from Figs. 2a and 2b, the
molecules of disaccharide nucleosides have a common
conformational feature; namely, the additional 2'-O-
carbohydrate residues are rotated toward the bases in
C

such a way that they are oriented approximately
(roughly) parallel to the heterocyclic bases in their
proximity. This is especially pronounced in the case of
2'-O-β-D-ribopyranosylcytidine. The angle between
the root-mean-square planes through the heavy (O, N,
C) atoms of the base and the atoms of the planar frag-
ment of the pyranose ring [C(2''), C(3''), C(5''), O(6'')]
is only 22.7(2)°. The C(6)···O(6'') and O(2)···O(6'') dis-
tances are equal to 4.124 and 4.416 Å, respectively. In
the structure of 2'-O-β-D-ribofuranosyluridine, the cor-
responding angle between the base and the additional
furanose ring is equal to 40.0(3)° and the C(6)···O(4'')
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 3      2005
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and O(2)···O(4'') distances are 5.037 and 5.021 Å,
respectively.

Taking into account the general conformational sim-
ilarity of the 2'-O-β-D-ribopyranosylcytidine and 2'-O-
β-D-ribofuranosyluridine molecules, as well as the data
on the stability of the oligonucleotide complexes con-
taining these disaccharide nucleosides with single-
chain RNA and DNA [8, 9], we can assume that there
exists an analogy between the three-dimensional
arrangements of their additional sugar fragments in the
molecular duplexes of RNA and DNA.

In conclusion, we note that the crystal structure of
2'-O-β-D-ribopyranosylcytidine, like the structure of
2'-O-β-D-ribofuranosyluridine, is characterized by a
saturated hydrogen-bond system; i.e., all oxygen and
nitrogen atoms of the molecules are involved in hydro-
gen bonding (Table 2). In the structure of 2'-O-β-D-
ribopyranosylcytidine, one of the hydrogen bonds
[O(2'')–H···O(4'')] is intramolecular.
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Abstract—The crystal and molecular structures of a cyclic β-triketone, namely, trans-2-(4'-dimethylami-
nobenzylideneacetyl)-5,5-dimethylcyclohexane-1,3-dione (I), are determined using X-ray diffraction analysis.
It is established that the compound in the crystalline state exists in a diketo–enol form stabilized by intramolec-
ular hydrogen bonds. The specific features of the structure and the physicochemical and fluorescence properties
of the compound are discussed. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

Organic crystals have found wide application in
nonlinear and laser optics [1]. Considerable attention
has been focused on the search for new nonlinear opti-
cal materials based on organic crystals for use in the
conversion of laser radiation frequency through the
simultaneous absorption of two photons. Compounds
with a high probability of two-photon light absorption
occurring hold much promise because these materials
can be used for visualization of laser IR radiation
(through two-photon excitation fluorescence with a
spectrum in the visible range) [2], optical recording of
information [3], the design of laser devices [4], and
photodynamic therapy [5].

The purpose of this work was to investigate the
molecular and crystal structures of a cyclic β-triketone,
namely, trans-2-(4'-dimethylaminobenzylideneacetyl)-
5,5-dimethylcyclohexane-1,3-dione (I). Crystals of
compound I are characterized by an intense two-photon
excitation fluorescence spectrum in the wavelength
range 550–700 nm upon excitation with the first har-
monic of neodymium laser radiation at a wavelength
λexc = 1.06 µm. The intensity of two-photon excitation
fluorescence of a powdered polycrystalline sample of
compound I is 70 times higher than the intensity of the
second harmonic generated by the well-known nonlin-
ear optical compound, namely, potassium titanyl phos-
phate. Owing to the high efficiency of IR radiation con-
version, compound I can be considered a promising
1063-7745/05/5003- $26.00 0400
nonlinear optical material for use in visualization of
laser radiation at wavelengths up to 1.2 µm.

EXPERIMENTAL
trans-2-(4'-Dimethylaminobenzylideneacetyl)-5,5-

dimethylcyclohexane-1,3-dione (I) was synthesized
from 5,5-dimethylcyclohexane-1,3-dione (dimedone)
in two stages. At the first stage, 2-acetyl-5,5-dimethyl-
cyclohexane-1,3-dione was prepared through acylation
of dimedone with acetic acid according to the proce-
dure described in [6]. At the second stage, compound I
was synthesized by the aldol–crotonic condensation of
2-acetyl-5,5-dimethylcyclohexane-1,3-dione with
para-(dimethylamino)benzaldehyde. Single crystals
were grown through slow evaporation of a saturated
solution of compound I in ethyl alcohol at room tem-
perature for two months.

X-ray diffraction investigations were performed at
room temperature on a Nicolet R3m diffractometer
(MoKα radiation, graphite monochromator, ω/2θ scan
mode) [7]. The unit cell parameters were determined
and refined using 25 reflections in the angle range
θ = 10.0°–15.5°. The structure was solved by direct
methods (SIR97 [8]). The hydrogen atoms were located
from the difference Fourier synthesis. The refinement
of the crystal structure was carried out using the full-
matrix least-squares method with allowance made for
the anisotropic displacement parameters of the non-
hydrogen atoms (SHELX97 [9]). The positions of the
hydrogen atoms of the hydroxyl groups and of the eth-
© 2005 Pleiades Publishing, Inc.
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ylene fragments were refined in the isotropic approxi-
mation, whereas the positions of the remaining hydro-
gen atoms were refined within a riding model. The
main crystallographic data and the parameters of the
structure refinement are presented in Table 1. The fig-
ures were drawn with the PLATON program package
[10]. The crystallographic data for the structure of com-
pound I have been deposited with the Cambridge Struc-
tural Database (CCDC, no. 247719).

The steady-state fluorescence spectra obtained
under one-photon and two-photon excitation were
recorded on a wide-aperture instrument described in
[11]. Two-photon excitation was accomplished using
the first harmonic of a pulsed neodymium laser at a
wavelength of 1.06 µm. The intensity of two-photon
excitation fluorescence of powdered samples was mea-
sured according to the technique described in [12].

RESULTS AND DISCUSSION
Analysis of the structural data has revealed that, in

the crystal, molecule I exists in the diketo–enol form
stabilized by a strong intramolecular hydrogen bond
and is characterized by the trans orientation of the sub-
stituents with respect to the C(8)=C(9) bond (see Fig. 1,
Scheme 1).

In the crystal of compound I, the asymmetric cell
contains two crystallographically independent mole-
cules, which are designated as A and B. The atomic
numbering in these molecules is given in Fig. 1. The
selected geometric parameters of molecules A and B are
listed in Tables 2 and 3. It can be seen from these tables
and Fig. 2 that molecules A and B have very similar

N
Me

Me

OH

O

O

Me

Me

Scheme 1.
I
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structures. For this reason, in what follows, we will
imply that the data presented in this paper refer to both
molecules if the letters A and B are absent in the atomic
notation.

Although the enolization reaction can be accompa-
nied by the formation of O(7)–H or O(1)–H hydroxyl
groups, compound I undergoes enolization according

Table 1.  Crystal data, data collection, and refinement pa-
rameters for the structure of compound I

Empirical formula C19H23NO3

Molecular weight 313.38

Crystal system Monoclinic

Space group and unit cell
parameters

P21/c

a, Å 25.389(5)

b, Å 10.660(2)

c, Å 12.743(3)

β, deg 104.14(2)

V, Å3 3344.4(12)

Z 8

ρcalcd, g/cm3 1.245

µ(MoKα), cm–1 0.84

F(000) 1344

Crystal size, mm 0.48 × 0.36 × 0.14

θmin–θmax, deg 1.65–27.56

Number of reflections
measured/Number of unique
reflections

8002/7648 [R(int) = 0.0377]

Goodness-of-fit (GOOF) on F2 0.974

R1/wR2 [I > 2σ(I)] 0.0685/0.1761

R1/wR2 (all data) 0.1313/0.2242

Extinction coefficient 0.0080(14)

∆ρmax/∆ρmin, e Å–3 0.376/–0.245
C(17A)
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Fig. 1. Structure and atomic numbering of molecule A in the crystal structure of compound I (molecule B has a similar structure
and atomic numbering). Dashed lines indicate hydrogen bonds.
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Table 2.  Selected bond lengths (Å) in molecules of compound I

Bond Molecule A Molecule B Bond Molecule A Molecule B

C(1)–O(1) 1.279(3) 1.282(3) C(7)–C(8) 1.431(4) 1.432(4)

C(1)–C(2) 1.417(4) 1.410(4) C(8)–C(9) 1.348(4) 1.347(4)

C(1)–C(6) 1.483(4) 1.492(4) C(9)–C(10) 1.446(4) 1.437(4)

C(2)–C(7) 1.439(4) 1.439(4) C(10)–C(11) 1.391(4) 1.400(4)

C(2)–C(3) 1.461(4) 1.475(4) C(10)–C(15) 1.399(4) 1.391(4)

C(3)–O(3) 1.220(3) 1.221(3) C(11)–C(12) 1.368(4) 1.361(4)

C(3)–C(4) 1.509(4) 1.499(4) C(12)–C(13) 1.421(4) 1.416(4)

C(4)–C(5) 1.529(4) 1.529(4) C(13)–N(13) 1.357(4) 1.358(4)

C(5)–C(19) 1.516(4) 1.524(4) C(13)–C(14) 1.404(4) 1.397(4)

C(5)–C(6) 1.516(4) 1.526(4) N(13)–C(16) 1.453(4) 1.446(4)

C(5)–C(18) 1.538(4) 1.534(4) N(13)–C(17) 1.440(4) 1.446(4)

C(7)–O(7) 1.301(3) 1.304(4) C(14)–C(15) 1.367(4) 1.371(4)

Table 3.  Selected bond angles (deg) in molecules of compound I

Angle Molecule A Molecule B Angle Molecule A Molecule B

O(1)–C(1)–C(2) 121.7(3) 121.6(3) O(7)–C(7)–C(8) 116.8(3) 117.2(3)

O(1)–C(1)–C(6) 115.4(3) 115.7(3) O(7)–C(7)–C(2) 118.2(3) 117.6(3)

C(2)–C(1)–C(6) 122.9(3) 122.6(3) C(8)–C(7)–C(2) 125.0(3) 125.1(3)

C(1)–C(2)–C(7) 118.1(3) 118.3(3) C(9)–C(8)–C(7) 120.5(3) 120.5(3)

C(1)–C(2)–C(3) 118.7(2) 118.6(3) C(8)–C(9)–C(10) 128.3(3) 127.9(3)

C(7)–C(2)–C(3) 123.2(2) 123.0(2) C(11)–C(10)–C(15) 116.6(3) 115.9(3)

O(3)–C(3)–C(2) 124.0(3) 123.3(3) C(11)–C(10)–C(9) 124.5(3) 124.7(3)

O(3)–C(3)–C(4) 119.4(3) 119.6(3) C(15)–C(10)–C(9) 118.9(3) 119.4(3)

C(2)–C(3)–C(4) 116.6(2) 117.1(2) C(12)–C(11)–C(10) 122.0(3) 122.4(3)

C(3)–C(4)–C(5) 113.5(2) 114.3(2) C(11)–C(12)–C(13) 121.3(3) 121.0(3)

C(19)–C(5)–C(6) 111.0(2) 110.1(3) N(13)–C(13)–C(14) 121.5(3) 122.0(3)

C(19)–C(5)–C(4) 109.8(2) 110.5(3) N(13)–C(13)–C(12) 121.9(3) 121.0(3)

C(6)–C(5)–C(4) 108.1(2) 107.0(2) C(14)–C(13)–C(12) 116.5(3) 117.0(3)

C(19)–C(5)–C(18) 109.4(3) 109.7(3) C(13)–N(13)–C(16) 121.4(3) 121.9(3)

C(6)–C(5)–C(18) 109.4(2) 109.9(2) C(13)–N(13)–C(17) 121.9(3) 121.7(3)

C(4)–C(5)–C(18) 109.1(2) 109.6(3) C(17)–N(13)–C(16) 116.6(3) 116.3(3)

C(1)–C(6)–C(5) 115.9(2) 114.8(2) C(15)–C(14)–C(13) 121.0(3) 120.6(3)

C(14)–C(15)–C(10) 122.6(3) 123.0(3)
Table 4.  Geometric parameters of hydrogen bonds in the
structure of compound I (d, Å; ω, deg)

D–H···A d(D–H) d(H···A) d(D···A) ω(DHA)

O(7A)–H(7A)···O(1A) 1.22(4) 1.25(4) 2.409(3) 155(4)

O(7B)–H(7B)···O(1B) 1.13(4) 1.31(4) 2.396(3) 158(4)

C(8A)–H(8A)···O(3A) 0.97(3) 2.23(3) 2.890(4) 124(2)

C(8B)–H(8B)···O(3B) 0.95(3) 2.21(3) 2.868(4) 125(2)
C

to the first variant. This circumstance will be discussed
below.

The benzene rings have a planar structure. The root-
mean-square deviations of atoms from the planes in
molecules A and B are equal to 0.006(2) and 0.007(2) Å,
respectively. The N(13A) and N(13B) nitrogen atoms
are characterized by a trigonal-planar configuration (for
molecules A and B, the sums of the angles at these
atoms are equal to 359.9°). Such a configuration is
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 3      2005
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Fig. 2. Comparison of the geometries of molecules A and B by their superposition (PLATON program package [10]).
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Fig. 3. (1, 3) Absorption and (2, 4, 5) fluorescence spectra of (3, 4) compound I in an ethanol solution and (1, 2, 5) polycrystals I
upon (1–4) one-photon excitation and (5) two-photon excitation at room temperature. The concentration of compound I in ethanol
is C = 5 × 10–6 mol/l. The positions of the maxima in the spectra are given in nanometers.
associated with the conjugation of the lone electron pair
of the nitrogen atom with the π system of the benzene
ring. The geometric characteristics of the benzene ring
are close to the standard parameters. Nonetheless, there
exist a number of specific features. First, the C(14)–
C(15) and C(11)–C(12) bonds in the benzene fragment
of compound I are slightly shortened (Table 2). Second,
the endocyclic bond angles at the C(10) and C(13) car-
bon atoms are considerably smaller than the standard
values, whereas the other angles of the benzene ring are
somewhat larger (Table 3). This distortion is character-
istic of benzene rings containing π-donor substituents
in the para position [13, 14].
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 3      200
The conformation of the cyclohexane ring is deter-
mined by the system of C(7)=C(2), C(1)=O(1), and
C(3)=O(3) conjugated bonds. This system of bonds is
responsible for the planarity of the C(6)–C(1)–C(2)–
C(3)–C(4) fragment in the cyclohexane ring. In this
case, the root-mean-square deviations of atoms from
the corresponding plane in molecules A and B are equal
to 0.072(2) and 0.047(2) Å, respectively. The folding
angle of the C(4)–C(5)–C(6) fragment from the afore-
mentioned plane is equal to 42.4(2)° for molecule A and
45.0(2)° for molecule B. It should be noted that mole-
cule I has a rather planar structure due to the formation
of the system of conjugated bonds that encompass the
5



404 BONDAREV et al.
entire molecular skeleton (from the benzene ring to the
cyclohexane ring).

The enol form of molecule I is stabilized by strong
intramolecular hydrogen bonds. The geometric param-
eters of these bonds are presented in Table 4. The
C(2)=C(7) and C(1)–C(2) bond lengths in the cycle
formed through the intramolecular hydrogen bond are
very close to each other (Table 2), because the hydro-
gen bond is involved in a single conjugated chain. This
phenomenon is typical of β-diketones and β,β'-trike-
tones and is referred to as resonance-assisted hydrogen
bonding [15, 16]. These hydrogen bonds are relatively
short, with the D–H and H⋅⋅⋅A distances being very
close to each other. However, the proton is not located
precisely at the midpoint between two oxygen atoms.
Apart from the classical hydrogen bonds, intramolecu-
lar hydrogen bonds of the C–H⋅⋅⋅O type [17] also make
a certain contribution to the stabilization of the struc-
ture of molecule I. The geometric parameters of these
intramolecular hydrogen bonds are listed in Table 4.
Thus, the crystal structure of compound I involves
intramolecular hydrogen bonds alone, whereas mole-
cules of this compound are bound through van der
Waals interactions.

The results of analyzing the structural data obtained
for cyclic β-triketones [14] have demonstrated that, as
a rule, the carbonyl group located outside the cycle is
subject to enolization, except for the compounds con-
taining bulky substituents in a side chain when the car-
bonyl group of the cycle undergoes enolization. An
example of the latter compounds is provided by 2-ben-
zoyldimedone [18, 19]. This regularity is confirmed by
the structural data obtained for compound I.

The absorption and fluorescence spectra of com-
pound I in an ethanol solution and in a polycrystalline
film applied to a quartz substrate by rubbing are
depicted in Fig. 3. The absorption spectrum of the poly-
crystalline film (Fig. 3, curve 1) is substantially broad-
ened as compared to the absorption spectrum of the eth-
anol solution of compound I (Fig. 3, curve 3). The half-
widths ∆ν of these spectra are equal to 7500 and
4200 cm–1, respectively. The broadening of the absorp-
tion spectrum of the crystal is associated primarily with
the exciton bands. The formation of these bands is gov-
erned, to a great extent, by the interactions of excitons
with molecular vibrations in the crystal, i.e., with
phonons [20]. Moreover, the absorption spectrum of the
polycrystalline film of compound I can be inhomoge-
neously broadened because of the broad size distribu-
tion of microcrystals in the sample.

The one-photon excitation fluorescence spectrum
(Fig. 3, curve 2; λexc = 450 nm) and the two-photon
excitation fluorescence spectrum (Fig. 3, curve 5; λexc =
1.06 µm) of compound I in the polycrystalline state
almost coincide with each other. These spectra are
bathochromically shifted and broadened as compared
to the one-photon excitation fluorescence spectrum of
the ethanol solution by 35 nm (1015 cm–1) and
C

~400 cm–1, respectively. It should be emphasized that
the two-photon excitation fluorescence spectra of com-
pound I in the single-crystal and polycrystalline states
are identical to each other and that the one-photon exci-
tation fluorescence spectra do not depend on the excita-
tion wavelength.

Since the absorption spectrum of the polycrystalline
film of compound I is significantly broadened, it
becomes possible to visualize laser IR radiation over a
wide spectral range (800–1200 nm) through two-pho-
ton excitation fluorescence with a spectrum in the
wavelength range 550–700 nm. Another important fea-
ture of the broadened absorption spectrum is notewor-
thy. This feature is associated with the increase in the
probability of two-photon absorption. In actual fact, the
probability of two-photon absorption and, accordingly,
the probability of two-photon excitation fluorescence
occurring are proportional to the square of the one-pho-
ton transition dipole moment [21], i.e., to the integral of
the absorption spectrum corresponding to the transition
from the S0 ground state to the S1 excited state. Further-
more, an increase in the probability of two-photon
absorption occurring is also favored by an extended
system of conjugated bonds in the enol form of mole-
cule I. This system is enhanced and stabilized by
intramolecular hydrogen bonds.
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Abstract—A complex of copper(II) with the diethylenetriaminemonopripionate ligand [Cu2(4-Dtmp)2](ClO4)2
(I) is synthesized and characterized using X-ray diffraction. The crystals of compound I are monoclinic, a =
7.740(2) Å, b = 19.199(3) Å, c = 8.449(2) Å, β = 91.61(2)°, Z = 2, and space group P21/n. The structural units

of crystal I are centrosymmetric dimeric cations and statistically disordered Cl  anions. In the cation, the
copper atom is coordinated by three N atoms [mean Cu–N, 2.01(1) Å] and two O atoms [Cu–O, 2.134(6) Å and
1.958(7) Å] of the pentadentate bridging–chelate Dtmp ligand, which occupy vertices of the trigonal bipyramid.
The binuclear cations are linked via centrosymmetric pairs of hydrogen bonds into ribbons aligned parallel to
the a axis of the crystal. The Cl  anions form columns in the same direction. In the crystal, the cationic rib-
bons and anionic columns alternate in a chessboard fashion. © 2005 Pleiades Publishing, Inc.
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INTRODUCTION

Among the so-called tripod ligands, which are
potentially tetradentate, alkylcarboxylate derivatives of
diethylenetriamine of the general formula
(NH2CH2CH2)2N(CH2)n  have attracted particular
research attention. The first three members of this series
are of primary interest for coordination chemistry,
because at n > 3, the closing of the eight-membered or
more extended aminocarboxylate metallocycle is
hardly probable. We designate the ligands with n = 1, 2,
and 3 as L1 = 4-Dtma, L2 = 4-Dtmp, and L3 = 4-Dtmb,
respectively. The structures of a number of copper(II)
complexes with the above ligands were studied earlier.
In the polymeric chain structures Cu(L1)X (X = Cl

[1], NCS– [2], Br– [3], or N  [4]) and dimeric struc-
tures [Cu2(L1)2Im]ClO4 and [ZnCu(L1)2Im]ClO4 [5–7],
the 4-Dtmp ligand is tetradentate with respect to one
copper atom (Im is the deprotonated imidazole anion).
In the [Cu(L3)]ClO4 structure [8], the 4-Dtmb ligand is
coordinated to the metal atom in the same way: in this
case, the seven-membered aminobutyric metallocycle
is closed. However, in the [Cu(L2)NCS] structure [2],
the six-membered aminopropionate ring is not formed
and the 4-Dtmp ligand is coordinated to a copper atom
by three donor nitrogen atoms, whereas two oxygen
atoms of the acetate group are coordinated to the neigh-
boring copper atom. Possibly, the pentadentate bridg-

CO2
–

O4
–

O3
–
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ing–chelate structural function of the 4-Dtmp ligand in
this compound is governed by the coordination of the
NCS– ion to the copper atom.

In this paper, we report the results of the X-ray dif-
fraction study of the crystals of bis[diethylenetriamine-
N'-(3-propionato)-N,N',N",O,O']dicopper(II) diper-
chlorate (I).

EXPERIMENTAL

Synthesis

4-Dtmp– ions were obtained in a solution according
to the procedure described earlier for the synthesis of
the corresponding cobalt(III) complex [9]. First, N,N-
bis(2-carbamoylethyl)aminopropionate was prepared
from aminopropionic acid and acrylamide. Then, the
propionamide groups were transformed into 2-amino-
ethyl groups according to the Hofmann reaction (oxida-
tive destruction with hypobromite). The 4-Dtmp ligand
was not isolated in a free state; instead, Cu2+ ions were
added to the resultant reaction mixture. The [Cu(4-
Dtmp)]+ complexes were isolated using gel filtration on
a Sephadex G10 column and ion-exchange chromatog-
raphy on a Sephadex SP25 cation exchanger. Crystals I
precipitated after the complexes were eluated at the sec-
ond stage with a 0.1 M NaClO4 solution and the eluate
was evaporated.
© 2005 Pleiades Publishing, Inc.
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Bond lengths (d, Å) and angles (ω, deg) in the structure of compound I

Bond d Bond d Angle ω Angle ω

Cu(1)–N(1) 2.02(1) Cu(1)–N(2) 2.020(7) N(1)–Cu(1)–N(2) 85.5(4) N(1)–Cu(1)–N(3) 132.6(4)

Cu(1)–N(3) 2.00(1) Cu(1)–O(1) 2.134(6) N(1)–Cu(1)–O(1) 111.7(4) N(1)–Cu(1)–O(1) 98.0(4)

Cu(1)–O(1) 1.958(7) N(1)–C(1) 1.42(2) N(2)–Cu(1)–N(3) 86.2(4) N(2)–Cu(1)–O(1) 92.0(3)

N(2)–C(2) 1.46(2) N(2)–C(4) 1.48(2) N(2)–Cu(1)–O(1) 169.9(3) N(3)–Cu(1)–O(1) 115.2(4)

N(2)–C(7) 1.51(2) N(3)–C(3) 1.45(2) N(3)–Cu(1)–O(1) 98.2(4) O(1)–Cu(1)–O(1) 77.9(3)

O(1)–C(5) 1.29(1) O(2)–C(5) 1.23(1) Cu(1)–N(1)–C(1) 108.7(8) Cu(1)–N(2)–C(2) 109.0(7)

C(1)–C(2) 1.52(2) C(3)–C(4) 1.48(2) Cu(1)–N(2)–C(4) 104.7(7) Cu(1)–N(2)–C(7) 113.8(7)

C(5)–C(6) 1.51(1) C(6)–C(7) 1.47(2) C(2)–N(2)–C(4) 110.9(9) C(2)–N(2)–C(7) 112(1)

Cl(1)–O(3) 1.47(5) Cl(1)–O(4) 1.44(4) C(4)–N(2)–C(7) 105.8(9) Cu(1)–N(3)–C(3) 110.5(7)

Cl(1)–O(5) 1.38(5) Cl(1)–O(6) 1.41(4) Cu(1)–O(1)–Cu(1) 102.1(3) Cu(1)–O(1)–C(5) 132.0(6)

Cl(1)–O(7) 1.4(1) Cl(1)–O(8) 1.43(3) Cu(1)–O(1)–C(5) 124.9(6) N(1)–C(1)–C(2) 111(1)

Cl(1)–O(9) 1.45(5) Cl(1)–O(10) 1.42(5) N(2)–C(2)–C(1) 112(1) N(3)–C(3)–C(4) 110(1)

Cl(1)–O(11) 1.48(4) Cl(1)–O(12) 1.67(5) N(2)–C(4)–C(3) 113(1) O(1)–C(5)–O(2) 122.7(9)

Cl(1)–O(13) 1.31(5) Cl(1)–O(14) 1.46(4) O(1)–C(5)–C(6) 116.7(9) O(2)–C(5)–C(6) 120.6(9)

Cl(1)–O(15) 1.58(4) Cl(1)–O(16) 1.48(6) C(5)–C(6)–C(7) 118(1) N(2)–C(7)–C(6) 119(1)

Cl(1)–O(17) 1.43(6) Cl(1)–O(18) 1.3(1)
X-ray Diffraction Analysis

Crystals I, [Cu2(C7H12N3O2)2](ClO4)2, are blue in
color and prismatic in shape. The X-ray diffraction
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 3      200
analysis was performed with a sample 0.08 × 0.24 ×
0.30 mm in size. The parameters of the monoclinic unit
cell are a = 7.740(2) Å, b = 19.199(3) Å, c = 8.449(2) Å,
β = 91.61(2)°, and V = 1255.0(5) Å3; F(000) = 692,
Cu(1A)

N(3)
C(3)

C(4)

C(7)

C(2)
C(1)

C(6)
C(5)

N(2)

O(2)
O(1)

Cu(1)

O(8)
O(5)

O(7) O(16)
O(12)

O(3)
O(14)

O(9)

O(18)

O(11)
O(6)

O(10)

O(17)
O(15)

Cl(1)

O(13)

O(4)

N(1)

Fig. 1. Structure of the cation–anion group of compound I (four orientations of the disordered perchlorate anion are shown).
5



408 ANTSYSHKINA et al.
ρcalcd = 1.785 g/cm3, µ = 1.98 mm–1, Z = 2, and space
group P21/n.

The experimental set of intensities of reflections was
collected on an Enraf–Nonius CAD4 diffractometer at
293 K (MoKα radiation, graphite monochromator, ω/2θ
scan mode, θ = 28°). A total of 2967 unique nonzero
reflections were measured.

The structure was solved by direct methods. In the
course of the structure solution, we found that the oxy-
gen atoms of the perchlorate group are disordered. The
structure was refined by the full-matrix least-squares
method in the approximation of anisotropic thermal
vibrations of the non-hydrogen atoms (except for the O
atoms of the ClO4 anion, which were refined isotropi-
cally). The H atoms were refined within a riding model
(N–H, 0.90 Å; C–H, 0.96 Å) with the thermal parame-

b

a 0

Fig. 2. Packing of the cationic ribbons and anionic columns
in crystal I (projection onto the ab plane).
C

ters exceeding the relevant value of UC or UN for the
reference carbon or nitrogen atom by a factor of 1.2.
The final parameters of the refinement are as follows:
R1 = 0.0740 and wR2 = 0.1663 for 1050 reflections with
I > 2σ(I), R1 = 0.2454 and wR2 = 0.2444 for all reflec-
tions, 186 parameters refined, and GOOF = 1.14. The
maximum and minimum residual electron densities are
equal to 1.65 and –0.64 e Å–3, respectively.

All the calculations were performed with the
SHELXS86 [10] and SHELXL93 [11] program pack-
ages. The bond lengths and angles are listed in the
table. The CIF file has been deposited with the Cam-
bridge Structural Database (no. 235797).

RESULTS AND DISCUSSION

Crystal I is built of centrosymmetric dimeric cat-
ionic complexes [Cu2(4-Dtmp)2]2+ and perchlorate
anions in the general position (Fig. 1). In the binuclear
cation, the O(1) oxygen atom of the propionate group
of the 4-Dtmp ligand acts as a bridge. As a result, three
nitrogen atoms [mean Cu–N, 2.01(1) Å] and two oxy-
gen atoms [Cu–O, 2.134(6) Å and 1.958(7) Å] of the
pentadentate bridging–chelate Dtmp ligand are coordi-
nated to the copper atom through vertices of the irregu-
lar trigonal bipyramid.

The Cu and O atoms form a planar CuO2Cu four-
membered ring; the O–Cu–O angle is 77.7°, and the
Cu⋅⋅⋅Cu distance is 3.18 Å. In the absence of additional
ligands, as was expected [8], the 4-Dtmp ligand forms
three metallocycles with the Cu atom, namely, two five-
membered and one six-membered rings.

Other metals also can form dimeric complexes via
the carboxyl group of the amino-3-propionate fragment
of a polydentate ligand. Examples are provided by
[(H2O)2Co2(Npda)2]2+ [12], [(H2O)2Zn2(Npda)2]2+ [12],
[(H2O)4Ni2(Mipa)2] [13], and [(H2O)2Ni2(Heidp)2]
[14], where Npda is nitrilo-3-propionate-diacetate,
Mipa is methyliminoacetate-3-propionate, and Heidp is
2-hydroxyethyliminodi(3-propionate). In these com-
pounds, unlike compound I, metal atoms have an octa-
hedral coordination.

In structure I, the dimeric cationic complexes
related by a translation are linked via centrosymmetric
pairs of the N(3)–H(2N3)⋅⋅⋅O(2) hydrogen bonds into
ribbons aligned parallel to the a axis of the crystal
(Fig. 2). The Cl  anions form columns in the same
direction.

The perchlorate anions are orientationally disor-
dered. Four orientations of the Cl  tetrahedron can be
distinguished, namely, O(3)–O(6), O(7)–O(10), O(11)–
O(14), and O(15)–O(18) (Fig. 1). The hydrogen atoms
of the NH2 groups and the oxygen atoms of the perchlo-
rate anions most probably form labile hydrogen bonds
capable of changing the acceptors, depending on the
orientation of the Cl  anion: the N(3) atom is bonded

O4
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O4
–
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b

Fig. 3. Chessboard motif of the packing of the cationic ribbons and anionic columns (projection onto the bc plane).
to the O(4), O(8), or O(13) atom; and the N(1) atom is
bonded to the O(4), O(7), or O(17) atom (Fig. 1). The
centers of inversion that relate the perchlorate anions
into columns are considered to be statistical. Some
combinations of neighboring Cl  anions are impossi-
ble for geometric reasons; the corresponding unreal
contacts are shown by dashed lines in Fig. 2. The statis-
tical disordering of the Cl  anions allows them to be
more densely packed into columns that fit the cationic
formations: cationic ribbons and anionic columns are
aligned parallel to each other and alternate in the crystal
in a chessboard fashion (Fig. 3).
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Abstract—The crystal structures of two terpene derivatives, 2,4,5,6,7,7a-hexahydro-7a-hydroxy-3,6-dimethyl-
2-benzofuranone (compound I) and β-cyclolavandulic acid (compound II), were determined by single-crystal
diffractometry. Compound I, C10H14O3, crystallizes in the orthorhombic space group P212121 with the unit cell
parameters a = 6.715(1) Å, b = 7.043(1) Å, c = 20.292(3) Å, and Z = 4. The six-membered ring has an ideal
chair conformation. The five-membered ring is planar. Compound II, C10H16O2, crystallizes in the monoclinic
space group P21/n with the unit cell parameters a = 8.446(1) Å, b = 12.156(1) Å, c = 9.901(1) Å, β = 106.29(1)°,
and Z = 4. The cyclohexene ring exhibits a half-chair conformation. Both the crystal structures are stabilized by
intermolecular O–H⋅⋅⋅O hydrogen bonds. © 2005 Pleiades Publishing, Inc.
1 INTRODUCTION

The present study of the compounds 2,4,5,6,7,7a-
hexahydro-7a-hydroxy-3,6-dimethyl-2-benzofuranone
(I) and β-cyclolavandulic acid (II) is part of a series of
investigations on the crystal structures of terpene deriv-
atives [1–4]. Compound I, a monoterpenoid, has been
isolated from the leaves of Mentha piperate. Com-
pound II, also a monoterpenoid, has been isolated from
the seeds of Trachyspermum roxburghianum. Trachys-
permum roxburghianum fruits commonly known as
Ajmoda are widely used in the Indian system of medi-
cines for the treatment of various gastrointestinal and
other ailments [5–9]. The chemical structures assigned
to compounds I and II on the basis of IR, UV, NMR,
and mass spectral data are shown in Fig. 1.

EXPERIMENTAL

The solvent loss technique has been employed for
the growth of single crystals of compounds I and II. For
both compounds, three-dimensional X-ray intensity
data were collected on an Enraf–Nonius CAD4 diffrac-
tometer with CuKα radiation for the values of θ up to
70°. The data were corrected for Lorentz and polariza-
tion effects. Absorption and extinction corrections were
not applied.

For both compounds structure solution was accom-
plished by direct methods using the SHELXS86 pro-
gram [10], the SHELXL93 program used to refine
structure [11], molecular graphics ORTEP-3 [12], and

1 This article was submitted by the authors in English.
1063-7745/05/5003- $26.00 0410
software used to prepare material for publication
PARST [13, 14]. In both compounds, all the hydrogen
atoms were located from a difference Fourier map. The
final refinement cycle converged at R = 0.031,
wR(F2) = 0.092 for compound I and R = 0.047,
wR(F2) = 0.158 for compound II. Atomic scattering
factors were taken from International Tables for X-ray
Crystallography (1992, Vol. C, Tables 4.2.6.8 and
6.1.1.4). The crystallographic data are summarized in
Table 1.

RESULTS AND DISCUSSION

For both compounds, the atomic coordinates and
equivalent isotropic displacement parameters are pre-
sented in Table 2. Selected bond distances, bond angles,
and torsion angles are listed in Table 3. Figure 2 shows
the molecular structure and the atom-labeling scheme

OH

O(1)

O(2)

COOH

I II

23
9

4a
4

5 7
6

8

7a
1

2

35

6

10 94

8

7

3

Fig. 1. Chemical structures of 2,4,5,6,7,7a-hexahydro-7a-
hydroxy-3,6-dimethyl-2-benzofuranone (I) and β-cyclola-
vandulic acid (II).
© 2005 Pleiades Publishing, Inc.
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Table 1.  Crystal data and other experimental details

Compound I Compound II

Crystal description Colorless rectangular Colorless rhombohedral

Chemical formula C10H14O3 C10H16O2

Molecular weight 182.2 168.2

Cell parameters a = 6.715(1) Å, b = 7.043(1) Å,
c = 20.292(3) Å

a = 8.446(1) Å, b = 12.156(1) Å,
c = 9.901(1) Å, β = 106.29°

Unit cell volume, Å3 959.68 975.72

Number of molecules per unit cell, Z 4 4

Crystal system Orthorhombic Monoclinic

Space group P212121 P21/n

Density (calculated), Mg/m3 1.261 1.145

F(000) 392 368

Refinement of unit cell 25 reflections (20° < θ < 30°) 25 reflections (20° < θ < 25°)

Number of measured reflections 1105 2121

Number of unique reflections 1085 1843

Number of observed reflections 1043 [Fo > 4σ(Fo)] 1428 [Fo > 4σ(Fo)]

Number of parameters refined 175 173

Final R-factor 0.031 0.047

wR(F2) 0.092 0.158

Weighting scheme 1/[σ2( ) + (0.0621P)2+ 0.14P],
where P = [  + 2 ]/3

1/[σ2( ) + (0.1316P)2+ 0.06P],
where P = [  + 2 ]/3

GOOF(S) 0.986 0.894

Final residual electron density, e Å–3 –0.12 < ∆ρ < 0.16 –0.18 < ∆ρ < 0.16

(∆/σ)max in the final cycle –0.076 [for z H(3O)] 0.409 [for z H(82)]

Fo
2

Fo
2 Fc

2
Fo

2

Fo
2 Fc

2

for I, and Fig. 3 shows the molecular structure and
atom-labeling scheme for II.

The geometric parameters of the two molecules I
and II are not very different from the values found in
the literature for other terpene derivatives [15–18]. The

O(3)

C(7a)O(1)

O(2)

C(2)

C(3)

C(9)

C(4a)
C(4)

C(5)

C(8)
C(6)

C(7)

Fig. 2. The molecular structure of I with the atom-labeling
scheme and 50% probability displacement ellipsoids.
H atoms are displayed as small spheres of arbitrary radii.
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C=O and C(sp3)–C(sp3) bond lengths in both structures
are comparable with the values found in the literature [19].

O(1)

O(2)

C(7)

C(1)

C(2)

C(8)

C(3)

C(4)

C(10)
C(9)

C(5)

C(6)

Fig. 3. The molecular structure of II with the atom-labeling
scheme and 50% probability displacement ellipsoids.
H atoms are displayed as small spheres of arbitrary radii.



412 GUPTA et al.
Table 2.  Atomic coordinates and equivalent isotropic thermal parameters (Å2) for non-hydrogen atoms (e.s.d.’s are given in
parentheses)

Atom x y z Atom x y z

Compound I Compound II

O(1) 0.8925(2) 0.7717(2) 0.3065(1) 0.0573(5) O(1) 0.2157(2) 0.5038(1) 0.0119(1) 0.0664(5)

O(2) 0.9136(2) 0.8094(3) 0.1979(1) 0.0619(5) O(2) 0.0750(1) 0.5535(1) 0.1584(1) 0.0732(6)

O(3) 1.0030(3) 0.5909(3) 0.3950(1) 0.0660(6) C(1) 0.3699(2) 0.5718(1) 0.2308(1) 0.0415(4)

C(2) 0.9980(3) 0.7940(3) 0.2507(1) 0.0478(5) C(2) 0.3855(2) 0.6491(1) 0.3298(2) 0.0456(5)

C(3) 1.2127(3) 0.7988(3) 0.2655(1) 0.0462(6) C(3) 0.5528(2) 0.6778(2) 0.4275(2) 0.0591(6)

C(4) 1.4046(3) 0.8015(4) 0.3756(1) 0.0572(7) C(4) 0.7031(2) 0.6382(1) 0.3845(2) 0.0483(5)

C(4a) 1.2321(3) 0.7818(3) 0.3302(1) 0.0451(5) C(5) 0.6696(2) 0.5206(1) 0.3314(2) 0.0549(6)

C(5) 1.3616(3) 0.9627(4) 0.4239(1) 0.0572(7) C(6) 0.5155(2) 0.5113(2) 0.2068(2) 0.0573(6)

C(6) 1.1620(3) 0.9415(3) 0.4594(1) 0.0511(6) C(7) 0.2079(2) 0.5435(1) 0.1319(2) 0.0445(5)

C(7a) 1.0307(3) 0.7625(3) 0.3621(1) 0.0491(6) C(8) 0.2480(3) 0.7154(2) 0.3569(3) 0.0710(9)

C(7) 0.9928(3) 0.9224(3) 0.4098(1) 0.0510(6) C(9) 0.7341(3) 0.7119(2) 0.2704(3) 0.0715(7)

C(8) 1.1264(4) 1.1096(3) 0.5056(1) 0.0662(8) C(10) 0.8546(3) 0.6391(2) 0.5131(3) 0.0750(8)

C(9) 1.3644(4) 0.8213(5) 0.2125(1) 0.0645(8)

*Ueq = (1/3)

Ueq* Ueq*

Uj ij∑i ai*a j*aia j.∑
Table 3.  Selected bond distances (Å), bond angles (deg), and torsion angles (deg) for non-hydrogen atoms (e.s.d.’s are given
in parentheses)

Compound I
O(1)–C(2) 1.345(3) C(4)–C(4a) 1.486(3)

O(1)–C(7a) 1.462(3) C(7a)–C(7) 1.507(3)

O(2)–C(2) 1.217(3) C(4a)–C(7a) 1.505(3)

C(3)–C(4a) 1.325(3)

O(3)–C(7a)–C(4a) 113.8(2) O(1)–C(7a)–C(4a) 103.5(1)

O(1)–C(7a)–O(3) 108.9(2) C(4a)–C(7a)–C(7) 111.1(2)

C(3)–C(4a)–C(4) 133.0(2) O(3)–C(7a)–C(7) 108.5(2)

C(4)–C(4a)–C(7a) 116.2(2) O(1)–C(7a)–C(7) 110.8(2)

C(3)–C(4a)–C(7a) 110.2(2)

C(5)–C(4)–C(4a)–C(7a) –52.5(2) C(4a)–C(7a)–C(7)–C(6) –52.8(2)

C(4)–C(5)–C(6)–C(7) –55.5(2) C(4a)–C(4)–C(5)–C(6) 52.8(2)

C(5)–C(6)–C(7)–C(7a) 54.5(2) C(4)–C(4a)–C(7a)–C(7) 53.6(2)

Compound II
O(1)–C(7) 1.301(2) O(2)–C(7) 1.228(2)

C(3)–C(4) 1.526(3) C(1)–C(2) 1.337(2)

C(1)–C(6) 1.508(3) C(1)–C(7) 1.428(2)

C(6)–C(1)–C(7) 115.2(1) C(3)–C(4)–C(5) 107.7(1)

C(2)–C(1)–C(7) 122.0(1) C(9)–C(4)–C(10) 109.6(2)

C(2)–C(1)–C(6) 122.8(1) C(5)–C(4)–C(10) 109.0(1)

C(5)–C(4)–C(9) 110.5(1)

C(1)–C(2)–C(3)–C(4) 15.5(2) C(4)–C(5)–C(6)–C(1) –47.2(2)

C(2)–C(3)–C(4)–C(5) –42.8(2) C(5)–C(6)–C(1)–C(2) 17.7(2)

C(3)–C(4)–C(5)–C(6) 58.9(2) C(6)–C(1)–C(2)–C(3) –1.9(2)
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 3      2005
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a

b

c

Fig. 4. Molecular packing in the unit cell (compound I).
In compound I, the six-membered ring has an ideal
chair conformation with the best rotational axis bisect-
ing C(4a)–C(7a) and C(5)–C(6) bonds and with the
asymmetry parameter ∆C2(C(4a)–C(7a)) = 1.25 [20].
The best mirror plane passes through C(4a) and C(6)
with ∆Cs(C(4a)) = 0.94. The five-membered ring is pla-
nar with a maximum deviation of –0.005(2) Å for C(2).
The dihedral angle between the best least-squares
planes through five- and six-membered rings is
142.9(1)°. In compound II, the cyclohexene ring exhib-
its a half-chair conformation in which the C(6)–C(1)–
C(2)–C(3) group is planar and the other carbon atoms
of the ring (C(4) and C(5)) are displaced on opposite
sides of the plane by 0.328(2) and –0.394(2) Å, respec-
tively. The rotational axis passes through C(1)–C(2)
and C(4)–C(5) bonds with asymmetry parameter
∆C2(C(1)–C(2)) = 3.48.

In compound I, an intermolecular hydrogen bond is
observed between O(3) and O(2). The hydrogen-bond
geometry is O(3)–H(3O) = 0.846, H(3O)···O(2) =

a

b

c

Fig. 5. Molecular packing in the unit cell (compound II). 
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1.953, O(3)···O(2) = 2.793 Å, and O(3)–H(3O)···O(2) =
171.97°, and symmetry code: 2 – x, –0.5 + y, 0.5 – z.
The molecules in the unit cell are forming layers, and
each layer is stacked one above the other giving rise to
molecular sheets (Fig. 4). In compound II, the crystal
structure is stabilized by an intermolecular O–H···O
hydrogen bond [O(1)–H(1O) = 0.998, H(1O)···O(2) =
1.673, O(1)···O(2) = 2.652 Å, and O(1)–H(1O)···O(2) =
166.02°, and symmetry code: –x, 1 – y, –z]. The molec-
ular layers appear to be extending diagonally in the unit
cell (Fig. 5).

REFERENCES

1. V. K. Gupta, Rajnikant, K. N. Goswami, et al., Cryst.
Res. Technol. 28, 359 (1993).

2. V. K. Gupta, K. N. Goswami, and K. K. Bhutani, Cryst.
Res. Technol. 29, 373 (1994).

3. Rajnikant, V. K. Gupta, A. Singh, et al., Mol. Mater. 6,
227 (1996).

4. Rajnikant, V. K. Gupta, V. D. Rangari, et al., Cryst. Res.
Technol. 36, 93 (2001).

5. K. Raghunathan, Pharmacopoeial Standards of Ayurvedic
Formulations (CCRIMH, New Delhi, 1976), p. 7.

6. Pharmacopoeial Standards of Ayurvedic Formulations
(Central Council of Research in Ayurveda and Siddha,
Ministry of Health and Family Welfare, Covt. of India,
New Delhi, 1987), p. 37.

7. Report of the Work Done under the Project Central
Scheme to Develop Pharmacopoeial Standards of ISM
Drugs at RRL (Jammu, 1998–1999), p. 146.

8. Wealth of India (Raw Materials): Publication and Infor-
mation Directorate (CSIR, New Delhi, 1976), Vol. 10,
p. 271.

9. Ayurvedic Formulary of India (Govt. of India, Ministry
of Family Planning, Dep. of Health, New Delhi, 1978),
Part 1.

10. G. M. Sheldrick, SHELX86. Program for Crystal Struc-
tures Determination (Univ. of Göttingen, Germany,
1986).



414 GUPTA et al.
11. G. M. Sheldrick, SHELXL93. Program for the Refine-
ment of Crystal Structures (Univ. of Göttingen, Ger-
many, 1993).

12. L. J. Farrugia, J. Appl. Crystallogr. 30, 565 (1997).

13. M. Nardelli, Comput. Chem. 7, 95 (1983).

14. M. Nardelli, J. Appl. Crystallogr. 28, 659 (1995).

15. E. Diaz, A. F. Benitez, E. V. Villafrance, and C. K. Jan-
kowski, Acta Crystallogr., Sect. C: Cryst. Struct. Com-
mun. 50, 2030 (1994).
C

16. T. Kiyotani, K. Masuda, H. Ageta, et al., Acta Crystal-
logr., Sect. C: Cryst. Struct. Commun. 52, 3216 (1996).

17. E. Bunuel, C. Cativiela, M. D. Diaz-de-Villegas, and
J. A. Gálvez, Acta Crystallogr., Sect. C: Cryst. Struct.
Commun. 52, 1456 (1996).

18. I. K. Larsen and P. Trickey, Acta Crystallogr., Sect. C:
Cryst. Struct. Commun. 51, 125 (1995).

19. F. H. Allen, O. Kennard, D. G. Watson, et al., J. Chem.
Soc., Perkin Trans. 2, S1 (1987).

20. W. L. Duax and D. A. Norton, Atlas of Steroid Structures
(Plenum, New York, 1975), Vol. 1.
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 3      2005



  

Crystallography Reports, Vol. 50, No. 3, 2005, pp. 415–418. Translated from Kristallografiya, Vol. 50, No. 3, 2005, pp. 460–463.
Original Russian Text Copyright © 2005 by A. Polishchuk, I. Polishchuk, Klimusheva, Gridyakina, Bordyug, Grineva.

                                                                         

STRUCTURE
OF ORGANIC COMPOUNDS

                                                     
Electronic Nature of Substituents and the Structure 
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Abstract—The crystal structure of N,N'-di(2-carboxyethyl)-4,4'-dipyridylium diperchlorate, C16H18Cl2N2O12,
is determined using X-ray diffraction analysis at 293 K. The crystals are orthorhombic, a = 20.084(4) Å, b =
8.687(2) Å, c = 11.725(2) Å, space group Pna21, and Z = 4; 1688 reflections measured; and R = 0.056 and Rw =
0.059 for 1244 reflections with I > 3σ(I). It is found that, in the absence of charge transfer or short intramolec-
ular O⋅⋅⋅N contacts, the nucleus of the dication adopts a twist conformation (the angle of rotation between the
planes of the pyridine rings is equal to 23°). © 2005 Pleiades Publishing, Inc.
INTRODUCTION

Quaternary salts of 4,4'-dipyridylium (viologens)
exhibit a great variety of physicochemical properties.
These compounds are finding ever-widening applica-
tion in practice as photosensitive materials for display-
ing and storing information. The photosensitive proper-
ties of viologens were discussed in detail in [1–6].
These properties are based on the ability of viologens to
generate colored radical cations (for which the absorp-
tion spectrum lies in the visible range) under UV radi-
ation or in response to an electric field applied to the
cell [7]. However, the problem concerning the correla-
tion between the structure of viologens and the mecha-
nism of the formation of radical cations remains
unsolved. It is known that the central nucleus of the rad-
ical cation is flattened [8]. It has been established that,
in the crystalline state, charge-transfer complexes are
characterized by a planar structure of the central dipy-
ridylium fragment of the molecules [1–3]. In the
absence of charge-transfer interaction, the dipyridy-
lium skeleton of these molecules adopts a twist confor-
mation, as is observed in N,N'-dimethyl-4,4'-dipyridy-

lium tetrachloropalladate (MD2+Pd ) [9] and N,N'-

diheptyl-4,4'-dipyridylium perchlorate (HD2+2Cl )
[1]. However, our recent structural studies of N,N'-di(2-
dihydroxyethyl)-4,4'-dipyridylium diperchlorate
(HOEtD2+2Cl ; R = (CH2)2OH) [5] and N,N'-di(carb-
ethoxymethyl)-4,4'-dipyridylium diperchlorate
(CEMeD2+2Cl ; R = CH2COOC2H5) [6] have
revealed that the dipyridylium skeleton can have a pla-
nar structure even in the absence of charge transfer but
upon the formation of a short intramolecular O⋅⋅⋅N con-

Cl4
2–

O4
–

O4
–

O4
–

1063-7745/05/5003- $26.00 0415
tact due to the interaction between the π system of the
dication and the lone electron pair of the oxygen atom
involved in either an electron-donating or electron-
withdrawing group.

In order to verify the important role played by the
above interaction in the flattening of the nucleus of the
dication, we performed an X-ray diffraction study of
N,N'-di(2-carboxyethyl)-4,4'-dipyridylium diperchlo-
rate (I) [R = (CH2)2COOH; A = Cl ], which is char-
acterized by both the absence of charge-transfer inter-
action and the inability of oxygen atoms, which are sep-
arated from the nitrogen atoms by three carbon atoms,
to form short intramolecular O⋅⋅⋅N contacts.

EXPERIMENTAL

Compound I was synthesized according to the pro-
cedure described in [2]. Single crystals were grown
through slow evaporation of an isopropanol solution.
Transparent single crystals in the form of thin plates
were obtained in the course of crystallization. The
X-ray experiment was performed on an Enraf–Nonius
CAD4 four-circle automated diffractometer (graphite
monochromator, ω/2θ scan mode) at room temperature.

The structure was solved by direct methods. The
non-hydrogen atoms were refined in the anisotropic
approximation by the full-matrix least-squares proce-
dure. Unfortunately, we failed to reveal the carboxyl
hydrogen atoms objectively because of the poor quality
of the single crystals. The positions of all the other H
atoms were determined geometrically and included in
further refinement with fixed positional and thermal
parameters. All the calculations were performed on an
IBM AT personal computer with the CRYSTALS pro-

O4
–

© 2005 Pleiades Publishing, Inc.
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grams [10]. Correction for absorption in the crystal was
introduced using the azimuthal scan method [11]
(Tmin = 0.65, Tmax = 0.93). The five-parametric (1.68,
1.50, 1.59, 0.408, and 0.367) Chebyshev weighting
scheme [12] was used in the refinement. The main crys-
tallographic and experimental parameters obtained at
room temperature are summarized in Table 1. The
atomic coordinates, interatomic distances, and bond
angles are listed in Tables 2–4.

RESULTS AND DISCUSSION

In the crystal structure of compound I, the molecule
occupies a general position with the characteristic
arrangement of Cl  anions above and below the dipy-
ridylium rings (figure). The structure of molecule I dif-
fers significantly from those of the viologens studied
earlier in [1–3, 5, 6], in which the molecules are located
at the centers of symmetry. The latter molecules are
characterized by a planar structure of the nucleus of the

O4
–

Table 1.  Crystal data, data collection, and refinement pa-
rameters for the structure of compound I

Parameter I

Empirical formula C16H18Cl2N2O12

Molecular weight 499.21

Crystal system Orthorhombic

Space group Pna21

Z 4

a, Å 20.084(4)

b, Å 8.687(2)

c, Å 11.725(2)

α, deg 90

β, deg 90

γ, deg 90

V, Å3 2045.7(7)

ρcalcd, g/cm3 1.621

µ, mm–1 0.382

F(000) 1025

Diffractometer Enraf–Nonius CAD4

λ, Å 0.71069

T, K 293

θmax, deg 24

Number of reflections measured 1688

Number of reflections with
I > 3σ(I)

1244

Refinement on F

R 0.056

Rw 0.059

S 1.1
C

dication. In the structure studied, the dication nucleus
has a twist conformation, with the angle of rotation
between the planes of the pyridine rings being equal to
23° (the atomic deviations from the planes are within
0.02 Å). At the same time, despite the conformational
changes, the bond lengths (Table 3) and angles
(Table 4) in the dipyridylium skeleton of molecule I
actually coincide with the corresponding values
obtained for the planar molecules. In compound I, sim-
ilar to the compounds HOEtD2+2Cl  [5] and

CEMeD2+2Cl  [6], the dication has an S-shaped

O4
–

O4
–

Table 2.  Coordinates (×104) and isotropic thermal parame-
ters (Å2 × 103) of the non-hydrogen atoms in the structure of
compound I

Atom x y z Ueq

Cl(1) 4315(1) 7864(3) 2297(2) 51(1)

Cl(2) 3202(1) –1309(3) 6492(2) 51(1)

O(1) 3682(3) 1445(9) –413(6) 63(5)

O(2) 4194(3) –661(8) –914(6) 60(4)

O(3) 3190(3) 6853(9) 9972(7) 69(5)

O(4) 3767(3) 5122(8) 9040(6) 57(4)

O(5) 4335(4) 6876(11) 1341(7) 95(7)

O(6) 3941(5) 9185(11) 2029(9) 113(8)

O(7) 4972(4) 8405(13) 2505(7) 99(6)

O(8) 4018(5) 7144(11) 3257(7) 97(6)

O(9) 2606(3) –1801(9) 5938(6) 63(4)

O(10) 3595(4) –390(10) 5786(8) 88(6)

O(11) 3049(4) –574(16) 7522(9) 128(8)

O(12) 3580(4) –2692(11) 6740(10) 103(6)

N(1) 4543(3) 3074(8) 1650(6) 38(4)

N(2) 2993(3) 3832(8) 6938(6) 39(4)

C(1) 3967(4) 3530(10) 3747(7) 40(5)

C(2) 3597(4) 3590(11) 2758(7) 42(5)

C(3) 3888(4) 3372(11) 1722(8) 45(5)

C(4) 4926(4) 3064(14) 2606(8) 56(6)

C(5) 4648(4) 3272(14) 3632(8) 59(4)

C(6) 4866(4) 2758(12) 528(7) 45(5)

C(7) 4826(4) 1106(11) 173(7) 42(5)

C(8) 4167(4) 0678(11) –417(7) 44(5)

C(9) 3646(4) 3731(11) 4868(7) 39(5)

C(10) 3021(4) 4458(12) 4989(7) 45(5)

C(11) 2708(4) 4478(12) 6018(8) 47(5)

C(12) 3603(5) 3214(11) 6859(7) 48(5)

C(13) 3931(4) 3159(12) 5855(8) 53(6)

C(14) 2631(4) 3798(12) 8051(8) 47(5)

C(15) 2607(4) 5356(12) 8622(7) 49(6)

C(16) 3247(4) 5738(12) 9226(8) 47(5)
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 3      2005



ELECTRONIC NATURE OF SUBSTITUENTS 417
structure (figure). In this case, however, the shortest
intramolecular distance between the oxygen atoms of
the carbonyl groups and the nitrogen atoms
[O(1)⋅⋅⋅N(1), 3.293 Å; O(4)⋅⋅⋅N(2), 3.122 Å] is substan-
tially larger than the intramolecular O⋅⋅⋅N contacts
equal to 2.847 Å in HOEtD2+2Cl  [5] and 2.780 Å in

CEMeD2+2Cl  [6]. This suggests that the lone elec-

O4
–

O4
–

Table 3.  Bond lengths (Å) in the structure of compound I

Bond d Bond d

Cl(1)–O(5) 1.413(8) N(2)–C(12) 1.341(11)

Cl(1)–O(6) 1.406(9) N(2)–C(14) 1.492(12)

Cl(1)–O(7) 1.422(7) C(1)–C(2) 1.378(12)

Cl(1)–O(8) 1.419(9) C(1)–C(5) 1.394(12)

Cl(2)–O(9) 1.428(6) C(1)–C(9) 1.474(12)

Cl(2)–O(10) 1.397(8) C(2)–C(3) 1.362(12)

Cl(2)–O(11) 1.400(9) C(4)–C(5) 1.339(14)

Cl(2)–O(12) 1.450(9) C(6)–C(7) 1.496(14)

O(1)–C(8) 1.18(1) C(7)–C(8) 1.538(12)

O(2)–C(8) 1.301(11) C(9)–C(10) 1.411(12)

O(3)–C(16) 1.311(11) C(9)–C(13) 1.383(13)

O(4)–C(16) 1.19(1) C(10)–C(11) 1.362(13)

N(1)–C(3) 1.34(1) C(12)–C(13) 1.350(13)

N(1)–C(4) 1.360(11) C(14)–C(15) 1.511(15)

N(1)–C(6) 1.491(12) C(15)–C(16) 1.504(12)

N(2)–C(11) 1.343(11)
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tron pairs of the carbonyl groups in I do not interact
with the electron-deficient π system of the pyridine

Table 4.  Bond angles (deg) in the structure of compound I

Angle ω Angle ω

O(5)–Cl(1)–O(6) 109.5(7) C(1)–C(2)–C(3) 120.9(8)

O(5)–Cl(1)–O(7) 108.0(5) N(1)–C(3)–C(2) 120.3(7)

O(6)–Cl(1)–O(7) 105.3(7) N(1)–C(4)–C(5) 120.2(8)

O(5)–Cl(1)–O(8) 112.0(6) C(1)–C(5)–C(4) 121.2(8)

O(6)–Cl(1)–O(8) 108.2(6) N(1)–C(6)–C(7) 113.5(7)

O(7)–Cl(1)–O(8) 113.6(6) C(6)–C(7)–C(8) 113.8(7)

O(9)–Cl(2)–O(10) 112.1(5) O(1)–C(8)–O(2) 122.7(8)

O(9)–Cl(2)–O(11) 110.2(4) O(1)–C(8)–C(7) 124.8(9)

O(10)–Cl(2)–O(11) 111.9(7) O(2)–C(8)–C(7) 112.5(8)

O(9)–Cl(2)–O(12) 106.4(5) C(1)–C(9)–C(10) 122.0(7)

O(10)–Cl(2)–O(12) 107.4(5) C(1)–C(9)–C(13) 121.6(8)

O(11)–Cl(2)–O(12) 108.7(8) C(10)–C(9)–C(13) 116.4(8)

C(3)–N(1)–C(4) 120.2(8) C(9)–C(10)–C(11) 120.3(8)

C(3)–N(1)–C(6) 121.1(7) N(2)–C(11)–C(10) 120.7(8)

C(4)– N(1)–C(6) 118.7(6) N(2)–C(12)–C(13) 121.3(8)

C(11)–N(2)–C(12) 120.0(8) C(9)–C(13)–C(12) 121.0(8)

C(11)–N(2)–C(14) 120.2(7) N(2)–C(14)–C(15) 112.6(7)

C(12)–N(2)–C(14) 119.8(7) C(14)–C(15)–C(16) 112.3(8)

C(2)–C(1)–C(5) 117.0(8) O(3)–C(16)–O(4) 122.0(8)

C(2)–C(1)–C(9) 120.7(7) O(3)–C(16)–C(15) 113.7(8)

C(5)–C(1)–C(9) 122.3(7) O(4)–C(16)–C(15) 124.2(9)
O(6)

Cl(1) O(7)

O(8)
O(5)
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O(11)
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O(12)

Structure of molecule I and the atomic numbering.
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rings. Taking into account that compound I is charac-
terized by the absence of charge transfer from the coun-
terion (Cl ) to the cation, the electronic effects on the
structure of the dipyridylium nucleus can be considered
to be insignificant. In this case, the twist conformation,
which corresponds to the minimum conformational
energy, is favored by the central part of the dication.

CONCLUSION

Thus, the X-ray diffraction study of compound I,
which does not exhibit charge transfer or short O⋅⋅⋅N
intramolecular contacts, showed that the nucleus of the
dication has a twist conformation (the angle of rotation
between the planes of the pyridine rings is equal to
23°). These data confirm the assumption that, in the
crystals studied earlier (HOEtD2+2Cl ; R =

(CH2)2OH [5] and CEMeD2+2Cl ; R =
CH2COOC2H5 [6]), the electronic effects due to the
O⋅⋅⋅N intramolecular contacts actually play a crucial
role in the stabilization of the planar dipyridylium
nucleus in these molecules.
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Abstract—The molecular structure of cholest-3,5-diene-7-one (C27H42O) is determined by X-ray diffraction.
The compound crystallizes in the orthorhombic crystal system (space group P212121) with unit cell parameters
a = 11.281(5) Å, b = 11.350(5) Å, c = 18.518(5) Å, and Z = 4. The structure is solved by direct methods and
refined to an R-value of 0.054 for 1070 observed reflections [Fo > 4σ(Fo)]. Ring A adopts a distorted half-chair
conformation, ring B exists in sofa conformation, ring C acquires a chair conformation, and the five-membered
ring D occurs in distorted half-chair conformation. The crystal structure is stabilized by van der Waals forces.
© 2005 Pleiades Publishing, Inc.
1 INTRODUCTION

Steroids perform some of the most fundamental bio-
logical functions. They are known to have multifaceted
biological properties [1–3]. In continuation of our work
on the single-crystal growth of X-ray diffraction quality
crystals and crystallographic analysis of steroidal mol-
ecules [4–10], the crystal structure of cholest-3,5-
diene-7-one is reported in this paper.

EXPERIMENTAL

The scheme of preparation for the title compound is
as follows.

A solution of t-butyl chromate [t-butyl alcohol
(60 ml), CrO3 (30 g), acetic acid (84 ml), and acetic
anhydride (10 ml)] was added at 0°C to a solution of
cholest-5-ene (8 g, 21.62 mmol) in CCl4 (150 ml), ace-
tic acid (30 ml), and acetic anhydride (10 ml). The con-
tents were refluxed for 3 h; then they were diluted with
water, and the organic layer was washed with a
NaHCO3 solution (15%), water, and dried Na2SO4.
Evaporation of the solvent under reduced pressure pro-
vided cholest-3,5-diene-7-one as an oil, which was
crystallized from methanol. The solvent loss technique
was then employed for the growth of transparent plate-
shaped crystals (m.p. = 403 K) using acetone as the sol-
vent system. The chemical structure, as shown in
Fig. 1, has been assigned on the basis of IR, UV, NMR,
and mass spectral data [11].

Three-dimensional crystal intensity data of cholest-
3,5-diene-7-one were obtained from a computer-con-
trolled single-crystal X-ray diffractometer (CAD4) [12]
using MoKα radiation (λ = 0.71073 Å), and the ω−2θ
scan mode was employed for data collection. The unit

1 This article was submitted by the authors in English.
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cell parameters were refined from 25 accurately deter-
mined reflections in the range 5.54° to 13.34°. The cell
measurement was carried out at 293(2) K and CAD4
programs were used for cell refinement. A total number
of 2361 reflections were recorded in the θ range from
2.10° to 24.97°. From the number of reflections
recorded, 2361 were found to be unique (with the index
range 0 ≤ h ≤ 13, 0 ≤ k ≤ 13, 0 ≤ l ≤ 22) and 1070 were
treated as observed [Fo > 4σ(Fo)]. Two standard reflec-

tions (0  9 and 0 1 9) were monitored every 100 reflec-
tions to check for crystal deterioration, if any, during
beam exposure to the sample. The data were corrected
for Lorentz and polarization effects. The crystallo-
graphic data are listed in Table 1.

Direct methods have been employed for the struc-
ture determination by using SHELXS software [13].
All non-hydrogen atoms of the molecule were obtained
from the E map. Refinement of the structure was car-
ried out by the full-matrix least-squares method using
the SHELXL93 program [14]. All the non-hydrogen
atoms were refined anisotropically. The hydrogen
atoms were fixed stereochemically. Further refinement
converged the final R-factor to 0.054.
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Fig. 1. Chemical structure of cholest-3,5-diene-7-one.
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Table 1. Crystal data and structure refinement details

Crystal description Transparent rectangular plates

Chemical formula C27H42O

Molecular weight 382.63

Crystal system, space group Orthorhombic, P212121

Unit cell dimensions a = 11.281(5) Å, b = 11.350(5) Å, c = 18.518(5) Å

Volume 2371.0(16) Å3

Z, calculated density 4, 1.077 åg/m3

Radiation, wavelength (λ) MoKα, 0.71073 Å

F(000) 848

Crystal size 0.30 × 0.25 × 0.20 mm

Range θ for data collection 2.10°–24.97°

Limiting indices 0 ≤ h ≤ 13, 0 ≤ k ≤ 13, 0 ≤ l ≤ 22

Reflections collected/unique 2361/2361

Data/restraints/parameters 2361/2/254

Goodness-of-fit on F2 0.847

Final R-factors R1 = 0.054, wR2 = 0.133

Largest diff. peak and hole –0.11 < ∆ρ < 0.23 e Å–3
RESULTS AND DISCUSSION

The final positional and equivalent isotropic dis-
placement parameters for all the non-hydrogen atoms
are listed in Table 2. Bond distances and bond angles
are presented in Table 3. A general view of the molecule
in the atomic numbering scheme (thermal ellipsoids are
drawn at 50% probability) is shown in Fig. 2 [15].

Bond distances and angles are in good agreement
with some analogous structures [4, 9, 16–20] for the
values in which the atoms C(2), C(3), C(13), C(17),
C(20), C(22), C(23) were involved. The disagreement
between some of the bond distances and angles of the
present structure with its analogues could be due to the
difference in the nature and position of substituents.
The mean bond lengths, C(sp3)–C(sp3) = 1.535(7) Å,
C(sp3)–C(sp2) = 1.515(8) Å, C(sp2)–C(sp2) = 1.357(9) Å,
and C(sp2)=O = 1.240(7) Å, are also quite close to the
C

standard values [21, 22]. The double bond character of
C(3)=C(4) and C(5)=C(6) are confirmed by their dis-
tances of 1.317(10) and 1.332(8) Å, respectively. The
endocyclic bond angles in the steroid nucleus fall in the
range from 105.3(4)° to 126.6(5)° [the average value
being 114.4(7)°] for the six-membered rings and from
100.9(3)° to 107.7(4)° [the average value being
103.9(4)°] for the five-membered ring.

The ring A adopts a distorted half-chair conforma-
tion with the asymmetry parameter ∆C2 = 9.32 [23].
Ring B acquires a sofa conformation with ∆Cs = 3.45.
Ring C occupies a chair conformation with ∆C2 = 4.85
and ∆Cs = 1.21 [23]. The five-membered ring D occurs
in a distorted half-chair conformation with asymmetry
parameter ∆C2 = 7.03, phase angle of pseudorotation
∆ = –4.23°, and maximum angle of torsion ϕm = –45.3°
[24]. The methyl carbon C(18) is largely deviated
below the mean plane of rings C and D [the deviation
C(2)
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Fig. 2. General view of cholest-3,5-diene-7-one.
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being –1.763(5) Å], and the methyl carbon C(19) is
deviated above the mean plane of rings A and B [the
deviation being 0.771(5) Å]. Atoms C(18) and C(19)
deviate unidirectionally from the mean ABCD plane.
This is depicted in Figs. 2 and 3, respectively. The A/B
ring junction is quasi-trans, while B/C and C/D are
trans-fused. In view of the nonexistence of any substi-
tution at rings A, B, and C, the magnitude of dihedral
angles between the plane of rings A and B, B and C, and
C and D is not very large. However, the chain of C8H17
atoms at the C(17) position of the five-membered ring
normally does not interfere in the conformation of this
ring. It is because the group of atoms at C(17) is

Table 2. Atomic coordinates and equivalent isotropic thermal
parameters (Å2) for non-hydrogen atoms (e.s.d.’s are given in
parentheses)

Atom X Y Z Ueq

O(1) 0.7075(3) 0.4686(3) 0.1861(2) 0.123(1)

C(1) 0.6873(6) 0.8646(4) 0.3579(2) 0.099(2)

C(2) 0.6933(6) 0.8590(5) 0.4406(3) 0.121(2)

C(3) 0.7487(6) 0.7353(8) 0.4605(3) 0.135(2)

C(4) 0.7544(6) 0.6473(6) 0.4142(4) 0.122(2)

C(5) 0.7067(5) 0.6500(4) 0.3440(3) 0.087(2)

C(6) 0.7252(5) 0.5615(5) 0.2965(4) 0.097(2)

C(7) 0.6834(4) 0.5555(4) 0.2240(4) 0.083(2)

C(8) 0.6092(4) 0.6569(3) 0.1964(3) 0.073(1)

C(9) 0.6375(4) 0.7692(3) 0.2384(2) 0.066(1)

C(10) 0.6325(4) 0.7541(4) 0.3205(3) 0.081(1)

C(11) 0.5666(5) 0.8741(4) 0.2089(2) 0.083(1)

C(12) 0.5712(5) 0.8886(3) 0.1278(2) 0.082(2)

C(13) 0.5361(4) 0.7762(4) 0.0893(2) 0.068(1)

C(14) 0.6168(4) 0.6761(3) 0.1151(2) 0.071(1)

C(15) 0.5939(5) 0.5767(4) 0.0621(3) 0.105(2)

C(16) 0.5713(6) 0.6385(4) –0.0099(3) 0.119(2)

C(17) 0.5607(5) 0.7737(4) 0.0052(3) 0.088(2)

C(18) 0.4041(4) 0.7504(5) 0.1033(3) 0.107(2)

C(19) 0.5034(4) 0.7371(5) 0.3479(3) 0.100(2)

C(20) 0.4765(6) 0.8322(5) –0.0457(3) 0.111(2)

C(21) 0.4646(6) 0.9644(5) –0.0325(3) 0.134(2)

C(22) 0.4925(10) 0.8121(8) –0.1314(5) 0.212(4)

C(23) 0.6044(9) 0.8496(9) –0.1505(5) 0.181(3)

C(24) 0.6395(10) 0.8225(10) –0.2288(6) 0.245(5)

C(25) 0.5812(8) 0.8516(7) –0.2919(4) 0.148(3)

C(26) 0.5647(9) 0.9829(8) –0.2937(5) 0.200(4)

C(27) 0.6215(9) 0.7958(8) –0.3562(5) 0.217(4)
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Table 3. Bond distances (Å) and bond angles (deg) for non-
hydrogen atoms (e.s.d.’s are given in parentheses)

C(1)–C(2) 1.534(6) C(12)–C(13) 1.513(5)

C(1)–C(10) 1.561(6) C(13)–C(14) 1.533(5)

C(2)–C(3) 1.580(8) C(13)–C(18) 1.539(6)

C(3)–C(4) 1.318(8) C(13)–C(17) 1.581(6)

C(4)–C(5) 1.406(7) C(14)–C(15) 1.517(6)

C(5)–C(6) 1.352(6) C(15)–C(16) 1.529(7)

C(5)–C(10) 1.512(6) C(16)–C(17) 1.564(7)

C(6)–C(7) 1.424(7) C(17)–C(20) 1.494(7)

C(7)–O(1) 1.241(5) C(20)–C(21) 1.526(6)

C(7)–C(8) 1.512(6) C(20)–C(22) 1.615(7)

C(8)–C(14) 1.524(6) C(22)–C(23) 1.378(10)

C(8)–C(9) 1.527(5) C(23)–C(24) 1.533(8)

C(9)–C(10) 1.531(6) C(24)–C(25) 1.381(9)

C(9)–C(11) 1.535(5) C(25)–C(27) 1.425(9)

C(10)–C(19) 1.553(6) C(25)–C(26) 1.502(10)

C(11)–C(12) 1.512(5)

C(2)–C(1)–C(10) 115.3(4) C(11)–C(12)–C(13) 111.6(4)

C(1)–C(2)–C(3) 106.7(5) C(12)–C(13)–C(14) 108.8(3)

C(4)–C(3)–C(2) 122.8(5) C(12)–C(13)–C(18) 109.5(4)

C(3)–C(4)–C(5) 124.5(6) C(14)–C(13)–C(18) 112.4(4)

C(6)–C(5)–C(4) 121.7(5) C(12)–C(13)–C(17) 115.7(4)

C(6)–C(5)–C(10) 118.6(5) C(14)–C(13)–C(17) 100.9(4)

C(4)–C(5)–C(10) 119.7(5) C(18)–C(13)–C(17) 109.4(4)

C(5)–C(6)–C(7) 126.7(5) C(15)–C(14)–C(8) 121.5(4)

O(1)–C(7)–C(6) 119.9(5) C(15)–C(14)–C(13) 104.4(4)

O(1)–C(7)–C(8) 122.3(6) C(8)–C(14)–C(13) 112.4(3)

C(6)–C(7)–C(8) 117.8(5) C(14)–C(15)–C(16) 104.5(4)

C(7)–C(8)–C(14) 114.3(4) C(15)–C(16)–C(17) 107.9(4)

C(7)–C(8)–C(9) 110.3(4) C(20)–C(17)–C(16) 111.8(5)

C(14)–C(8)–C(9) 111.8(3) C(20)–C(17)–C(13) 120.0(4)

C(8)–C(9)–C(10) 113.9(3) C(16)–C(17)–C(13) 102.0(4)

C(8)–C(9)–C(11) 111.0(3) C(17)–C(20)–C(21) 113.1(5)

C(10)–C(9)–C(11) 114.9(4) C(17)–C(20)–C(22) 119.1(6)

C(5)–C(10)–C(9) 110.7(4) C(21)–C(20)–C(22) 107.8(6)

C(5)–C(10)–C(19) 109.2(4) C(23)–C(22)–C(20) 108.1(8)

C(9)–C(10)–C(19) 111.9(4) C(22)–C(23)–C(24) 114.7(8)

C(5)–C(10)–C(1) 106.2(4) C(25)–C(24)–C(23) 128.9(9)

C(9)–C(10)–C(1) 109.7(4) C(24)–C(25)–C(27) 116.7(8)

C(19)–C(10)–C(1) 109.0(4) C(24)–C(25)–C(26) 108.4(8)

C(12)–C(11)–C(9) 114.8(4) C(27)–C(25)–C(26) 117.5(8)
5
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arranged in such a way that the atomic deviations of
individual atoms provide some kind of balance to the
chain. The free rotation of methyl groups, i.e., C(26)
and C(27), could also have some kind of steric hin-
drances from the neighboring molecules, which may
allow the C8H17 chain to have a linear kind of character.

The packing of the molecules in the unit cell is
shown in Fig. 3. The molecules in the unit cell have
been plotted down the b axis, and they appear to exist
in reversed orientations. The ring conformations as
demonstrated by individual ring systems are quite dis-
tinctively depicted in the molecular packing. The crys-
tal structure is stabilized by van der Waals interactions.
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Abstract—A method for modeling unit cells of layered structures containing stacking faults is considered by
the example of silicon carbide. A rotating-crystal pattern is calculated by the proposed method for silicon car-
bide with pseudorandom violation of the sequence of close-packed layers. The results of the calculation show
that the intensity and shape of reflections of an X-ray diffraction pattern of a layered structure is determined by
the configuration of stacking faults. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

Methods of computer simulation now find increas-
ing application in X-ray diffraction analysis because
they make it possible to simplify the interpretation and
identification of X-ray diffraction patterns of materials
studied. Varying the lattice parameters, one can calcu-
late the diffraction pattern and directly trace changes in
the diffraction spectrum. For most known inorganic
materials, the unit cell contains from 10 to 100 atoms
and completely identifies the lattice of an ideal crystal.
Stacking faults change the lattice symmetry and make
it impossible to calculate diffraction patterns based on
the unit cell of an ideal structure. Since an individual
crystallite about 0.1 µm in size contains no less than
109 atoms, it will hardly be possible to directly calcu-
late the X-ray diffraction pattern of such a three-dimen-
sional structure in the nearest future. Analytical calcu-
lation of diffraction effects in layered structures with
stacking faults [1, 2] does not give a complete descrip-
tion of changes in the X-ray diffraction pattern. Never-
theless, the high operating speed of modern personal
computers allows one to calculate X-ray diffraction
patterns of such structures using a unit cell comparable
in size with a real crystal. In what follows, we consider
a method for calculating the coordinates of the basis
atoms in the unit cell and the rotating-crystal diffraction
pattern for crystal lattices with different configurations
of stacking faults by the example of silicon carbide.

MODEL OF A UNIT CELL WITH STACKING 
FAULTS

In the crystal structure of SiC-type materials, a
change in the stacking order of atomic layers leads to
the occurrence of many polytype forms and is often
accompanied by the formation of stacking faults, which
impede interpretation of X-ray diffraction patterns.
Presently, more than 100 SiC polytypes are known,
whose crystal structures differ by the sequence of dou-
1063-7745/05/5003- $26.00 0423
ble close-packed layers of Si and C atoms. The coordi-
nation polyhedron for all polytypes is a SiC4 tetrahe-
dron, at the center of which a Si atom is located.

The layers of tetrahedra can be arranged with
respect to each other in two different ways: a and b
(Fig. 1). Any polytype can be represented as a sequence
of layers of such tetrahedra. In the case of the parallel
packing of tetrahedra, the sequence of Si–C layers
aaaaa… forms a cubic lattice. The sequence of the sec-
ond type—abab…—corresponds to the hexagonal
packing. This notation of the stacking order of layers,
proposed by Wells in 1955, is most convenient for mod-
eling a crystal structure with stacking faults, in contrast
to the widely used notation proposed by Ramsdell in
1947.

The numerical values of the atomic coordinates in
the x, y, z basis are determined by the type of packing
(cubic or hexagonal) of close-packed Si–C layers. In
the hexagonal coordinate system, with cubic packing of
layers, the first layer is displaced with respect to the
zero layer by 1/3, 2/3, 1/3; the second layer is displaced
with respect to the zero layer by 2/3, 1/3, 2/3; and the
third layer, located exactly above the zero layer, is dis-
placed by 0, 0, 3/3. When the unit cell contains N close-

(a) (b)

Fig. 1. (a) Cubic and (b) hexagonal packings of layers. The
[0001] direction is perpendicular to the drawing plane.
© 2005 Pleiades Publishing, Inc.
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packed layers, the coordinates x, y of the displacements
of layers with respect to the zero layer will be cyclically
repeated, as was indicated above, and the coordinate z
will be determined by the layer number: k – zK = k/N.
Thus, for the cubic packing of layers, there are three
possible sets of coordinates x, y to describe the dis-
placement of close-packed layers with respect to the
zero layer: (0, 0); (1/3, 2/3); and (2/3, 1/3). Let us
denote the sequence of close-packed layers in the cubic
lattice by the numbers 0, 1, 2, where the coordinates of
the layer displacements are determined as was noted
above. Then, the cubic packing is described by the
cyclic sequence of the 012012… type, in which the
upper and lower neighbors of each layer have different
orientations. In the case of the hexagonal packing of
layers, the coordinates x, y are repeated so that the
upper and lower neighbors of each layer have the same
orientation (for example, 0101… or 1212…). The z
coordinate in the hexagonal packing is determined in
the same way as for the cubic packing. If each layer
contains atoms of the same type, the number of the
basis atoms is equal to the number of layers incorpo-
rated into the unit cell and the atomic coordinates x, y
are determined by the displacement of a layer with
respect to the zero layer.

The silicon carbide lattice is constructed of alternat-
ing close-packed Si and C layers located one above
another. If the stacking order of Si–C layers is set as a
sequence of N Wells symbols, the coordinates of the
basis atoms in the unit cell of silicon carbide can be
found as follows. Let us calculate the displacement of
each layer with respect to the zero close-packed Si–C
layer using the recurrence relation

M0 = 0;

Mk = (Mk – 1 + 1)mod(3) for symbol a;

Mk = (Mk – 1 + 2)mod(3) for symbol b;

where Mk denotes the type of displacement (012) of the
kth layer (k = 0–N–1) with respect to the zero layer.

As a result, instead of a sequence of Wells symbols,
we obtain a sequence of numbers 0, 1, 2, which deter-
mine the coordinates x, y of the displacement of a layer
with respect to the zero layer, as was noted above. For
example, for the SiC 6H polytype (aaabbb), the coordi-
nates of Si atoms can be written as

.

Carbon atoms of the kth layer are displaced with
respect to silicon atoms of the same layer along the

  x
Si

y
Si

z
Si

a 0 0 0 0

a 1 1/3 2/3 1/6

a 2 2/3 1/3 2/6

b 1 1/3 2/3 3/6

b 0 0 0 4/6

b 2 2/3 1/3 5/6
C

z axis by 3/(4N). Therefore, the coordinates of carbon
atoms have the form

Using the above algorithm, one can calculate the
coordinates of the basis atoms in the unit cell of silicon
carbide with an arbitrary packing of Si–C layers. For
ideal structures, any sequence of alternating layers that
does not violate the translational symmetry is allow-
able; i.e., the atomic coordinates x, y of the last layer
should not coincide with the corresponding coordinates
of the zero layer since any neighboring close-packed
layers should be displaced with respect to each other
and such combinations as 00, 11, and 22 are impos-
sible.

The presence of stacking faults changes the
sequence order of Wells symbols characteristic of the
ideal structure. For example, the formation of a twin in
a crystal of cubic silicon carbide will lead to the appear-
ance of b-type layers in the sequence aaaaa…:
aaaabaa…. In this case, a silicon carbide crystal with
stacking faults can be regarded as a regular structure
obtained by the translation along the a and b axes of the
unit cell containing stacking faults and having the same
size as that of the crystal along the c axis (Fig. 2). For a
silicon carbide crystal with a size of 1 µm along the
c axis, the unit cell will contain about 4000 double
close-packed Si–C layers and 8000 Si and C atoms
forming the basis of this cell. The coordinates of the
basis atoms in this structure form a 3 × 8000 matrix,
which makes it possible to calculate the X-ray diffrac-
tion pattern using modern computers.

The subsequent calculation of the diffraction pattern
was performed using the model of stacking faults in
SiC proposed in [3]. This model interprets a change in
the width and intensity of reflections in the rotating-
crystal pattern of cubic silicon carbide as a result of a
displacement of a pair of adjacent layers of the 12 type,
forming a stacking fault, in the (0001) plane. Analytical
calculation of the intensity of diffraction reflections
showed [3] that both diffuse and sharp reflections must
be present in this case in the X-ray diffraction pattern,
which is observed experimentally.

RESULTS OF THE CALCULATION

To calculate the rotating-crystal pattern, we chose a
unit cell containing 2000 close-packed Si–C layers
with cubic packing aaa…. Using the function random
of the C programming language, we pseudorandomly
chose 100 pairs of layers that had changed their orien-
tation, 12 ⇒  21, which signifies the replacement aaa ⇒
bbb in the sequence of Wells symbols. It should be
noted that, according to [3], in the sequence of layers
012012…, only the layers of the 12 type change their
orientation.

To calculate the atomic coordinates in the unit-cell
basis, we used the hexagonal coordinate system. The

xK
C

xK
Si

, yK
C

yK
Si

, zk
C

zK
Si

3/ 4N( ).+= = =
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distance between Si–C layers is 2.517 Å and the unit-
cell parameters in the hexagonal coordinate system are
a = b = 3.078 Å and c = 5034 Å. The method and the
geometric parameters of the calculation correspond to
the measurement of the X-ray diffraction pattern mea-
sured in NiKα radiation on an RKV-86 standard cham-
ber [4] with rotation of the crystal around the [0001]
axis. In the X-ray diffraction pattern shown below, the
reflections are indicated for which the calculated inten-

1

2 3

4

a

c
[0001]

Fig. 2. (1) A crystal, a unit cell of (2) the ideal crystal and
(3) a crystal with stacking faults, and (4) a lattice stacking
fault.
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sity exceeds 0.01% of the maximum intensity for the
reciprocal lattice sites covered by the Ewald sphere.

The calculation shows that the presence of double
stacking faults leads to the appearance of a large num-
ber of weak closely located reflections at the layer lines
of type II (Fig. 3a). The calculated intensity of these
reflections is small (0.01% of the maximum intensity)
and, owing to their mutual superposition in the diffrac-
tion pattern, they manifest themselves as a continuous
weak line serving as a background for the main reflec-
tions. The enlarged fragment of the layer line of type II
(Fig. 3b) shows that additional reflections may lead to

the diffusion of the main reflection (10 ) in the X-ray
diffraction pattern but do not change the size and shape

of the (10 ) reflection, which is in agreement with the
results of [3].

To compare the sensitivity of the size and shape of
reflections to the configuration of stacking faults, a
rotating-crystal pattern of cubic silicon carbide with
another distribution of defects is shown in Fig. 4. In
contrast to the previous case, the orientation of
200 arbitrarily chosen single layers was changed: a ⇒ b.
Such a distribution of defects may be due, for example,
to various fluctuations during the growth of a SiC crys-
tal from the vapor phase. As follows from the results
obtained (Fig. 4b), the main reflections of the (10 )
type are divided into several weaker reflections in this
case, which should lead to their diffusion in the X-ray

1

2

l

(10 1)
–

(10 2)
–

(10 l)
–

I, a.u.

si
n

θ 6
/λ

(a) (b)

Fig. 3. (a) Rotating-crystal pattern of cubic SiC with double stacking faults and (b) a fragment of the layer line 10 .l
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si
n

θ 6
/λ

I, a.u.
(a) (b)

Fig. 4. (a) Rotating-crystal pattern of cubic SiC with single stacking faults and (b) a fragment of the layer line 10 .l
diffraction pattern. A characteristic feature of both dif-
fraction patterns is the absence of additional reflections
near the main reflections of the (113) and (300) types

CONCLUSIONS

The proposed method for modeling stacking faults
in layered structures can simplify the interpretation of
experimentally obtained rotating-crystal patterns. The
shape and size of the reflections in the X-ray diffraction
pattern are determined to a large extent by the condi-
tions and geometry of the pattern measurement. There-
fore, as a reference for estimation of these factors for
silicon carbides, one can use, for example, the (300)
and (113) reflections, which, as can be seen from the
results obtained, do not change.
C
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Abstract—Structure of deformed crystals is modeled by dislocation loops of random size nonuniformly ran-
domly distributed in natural slip planes. This model is used to determine structure parameters from the harmon-
ics of the diffraction line of a polycrystal. Practical analysis of the dislocation structure under real conditions
of the diffraction experiment is performed. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

It was theoretically proved by M.A. Krivoglaz that
there is a fundamental possibility of determining the
dislocation density in any dislocation structure from the
diffraction pattern of a deformed crystal. The purpose
of this study is to analyze the dislocation structures of
the cellular type. Dislocation loops are elements of a
random structure forming upon deformation of crys-
tals. To mathematically describe this structure, disloca-
tion loops of arbitrary shape are considered to be circu-
lar and their collective bonds are replaced by double
bonds. These are necessary simplifications for the
object model, on the basis of which an observation
model of the object—a tool for studying its structure—
is constructed.

MODEL OF DIFFRACTION OBSERVATIONS
FOR DEFORMED CRYSTALS

The theoretical representation of the harmonics of
the diffraction line of a deformed crystal Am = e–T(m)

(m = 1, 2, …) includes the effects of a random disloca-
tion network T0, correlations in the distribution of dis-
locations over the crystal volume T1, and dislocation
ordering with formation of subgrain boundaries T2. In
an explicit form, e–T is the result of averaging over a
large ensemble of random dislocation systems with all
possible arrangements of dislocation loops of specified
type and size, at which the macroscopic parameters—
density, correlation scale, and degree of order—remain
invariable [1].

It is reasonable to suggest that in real crystals each
of p slip systems has a random number Lα (α = 1, …, p)
of dislocation loops with random sizes and coordinates
{ξj, rj} ( j = 1, …, Lα). The loop type eα = (n, b)α, where
n is the unit vector normal to the loop plane and b is the
Burgers’ vector of a dislocation, is completely deter-
mined by the slip system α.
1063-7745/05/5003- $26.00 ©0427
Let us assume that all random variables describing
the statistical ensemble of dislocation systems are
mutually independent. To approach reality, we will
continue to average e–T over the ensemble that received
additional degrees of freedom. First, let us find the
mean 〈e−T〉  over all possible Lα with the total number of

loops in the crystal L = . The next operation

of averaging of 〈e–T〉  over random realizations ξ(r) in
the ensemble will be replaced by averaging over the
distribution of loop sizes ξ in the crystal volume in
accordance with the ergodic hypothesis [2].

At a large number of loops L, fluctuations in their
concentrations and size distributions in random sys-
tems with respect to the ensemble means will be small.
Fluctuations of the quantity T will be small as well;
hence, we can write 〈e–T〉 . e–〈T〉 [3].

Let us assume that dislocation loops can be located
with equal probability in all p slip systems in a crystal
(which is close to reality for bcc crystals and may be
true for fcc crystals with a high energy of stacking
faults). The probability of the event when exactly Lα
(α = 1, …, p) loops from their total number L (obeying
the Poisson distribution) are located in the slip system
α is determined by the Bernoulli distribution B1/p(L, Lα)
[4]. For this distribution law, we have the following
equation for the averaged component T0:

(1)

Here, |q | = (2π/a)QHKL, |R | = ma/QHKL, QHKL = [H2 +
K2 + L2]1/2, {HKL} are the reflection indices, a is the
lattice period, and  = L/N is the average concentration
of loops in a crystal with the number of atoms N. The

Lαα 1=
p∑

T0〈 〉 a/2π( )3
qiq jc 1/ p( ) Γ ij

αβ( ) Φα R ξ,( )〈 〉 ξδαβ,
α 1=

p

∑=

Φα ξ /a( )
J1 kα' ξ( )

kα' ξ
------------------- 

 
2 1

k
2

---- 1 kRcos–( ) k.d

k

4

∫=

c
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tensor  = Γij(eα, eβ) and the cylindrical Bessel

function J1(x) (in its argument,  = ,  is the pro-
jection of the wave vector k onto the plane of a loop of
type α) arise in the description of the distortions in the
crystal caused by circular dislocation loops in the
approximation of elastic isotropy of the crystal [1].

Harmonics of the diffraction line of order 1/κ ≤ m ≤
kmax/κ can be determined experimentally. Here, κ ! 1
is the ratio of the measurement interval of the diffrac-
tion line to the period in the reciprocal space and kmax is
the maximum number of reliable estimates Ak > σk,
where σk is the measurement variance (k = 1, 2, …). In
a limited range of values of m, the exact analytical
expression for 〈T(m)〉 can be replaced by an approxi-
mate one.

For a small magnitude of the vector R, when m !
ξ/a, introducing the designation ηα = (R · nα)/R, we can
write with accuracy to second-order terms

Let us assume that the sizes ξ of all loops in the crys-
tal have the same logarithmically normal distribution.
The averaging of the approximate function Φ(R, ξ)
over ξ is reduced to determining the moments of this
distribution. As a result, we have an approximation of
Eq. (1) in the form

Here, ( /a) and (σξ / ) are the average normalized loop
radius and the coefficient of variance in their sizes,

respectively, and ( , ) are the crystallogeometrical
first- and second-order coefficients, respectively. The

numerical values of the coefficients ( , ) for cal-
culation of scattering from a polycrystal are given
below. For a bcc lattice and the slip set 〈111〉{110},

 = 8.769899 and  ~ 1.2. For a bcc lattice and the

slip set 〈111〉{112},  = 9.493694 and  ~ 1.2. For

a fcc lattice and the slip set 〈110〉{111},  = 6.265519

and  = 0. As can be seen from the expression
obtained for 〈T0〉 , the size inhomogeneity of loops leads
to an additional broadening of the diffraction line.

Let us now consider the correlation component T1.
The number of loops (Lα, Lβ) in the slip systems (α, β)
for their total number L in the crystal is described by
correlated random values obeying the two-dimensional
(2D) Bernoulli distribution [4]. Assuming that the sizes
ξ of all loops in the slip systems (α, β) are mutually
independent random values, for 1 ! L ! N, we obtain

Γ ij
αβ( )

kα' kα' kα'

Φα  . π2
/a( ) ηα R/a( ) ξ /a( )2{

– 1/2( ) 3ηα
2

1–( ) R/a( )2 ξ /a( ) } .

T0〈 〉 c QHKLm ξ /a( )2
1 σξ /ξ( )2

+[ ] C1
p{≅

– m
2 ξ /a( )C2

p } .

ξ ξ

C1
p

C2
p

C1
p

C2
p

C1
p

C2
p

C1
p

C2
p

C1
p

C2
p

C

the equation

(2)

where Fαβ(k) is the Fourier transform of the correlation
function, which depends on the distance r between the
loop centers [1].

The effect of correlation in the slip plane is the most
significant one. Correlation in parallel planes trans-
forms the curve T(m) at values of m close to zero; i.e.,
in the range m < 1/κ, which is inaccessible to measure-
ments. In comparison with the effect of 2D correlation
in the plane, we can neglect the effect of one-dimen-
sional (1D) correlation along the normal to the plane in
the observation model [1]. (The effect of correlation
along the line of intersection of planes is of the same
order of magnitude as that along the normal to the
plane.)

Let us assume that the correlation decreases with an
increase in the distance between the loop centers by the

exponential law1: f(r) ~ δ(r · n). Here, r' is the
projection of the vector r on the loop plane with the
normal n and τ is the correlation radius, within which
the probability of finding a pair of loops (α, β) exceeds
that in the case of their random distribution over the
crystal volume (δ(x) is the Dirac delta function).

The existence of large correlation radii is unrealis-
tic.2 If the diffraction line is observed when the disloca-
tion density in a crystal is about 1010 cm–2, the correla-
tion radius τ cannot exceed ~3b, where b is the inter-
atomic distance (otherwise, the line would be
transformed into a diffuse background [1]).

When (τ/ξ) ! 1,

where (τ/b)2 = (τ1/b)2 + κ(τ2/b)2 is the generalized cor-
relation parameter at nα = nβ; i.e., for the dislocation

1 If β arises at a distance r1 from α with a probability f(r1) and γ
arises at a distance r2 from β with a probability f(r2), as a result
of two independent random events, γ arises at the distance r =
r1 + r2 from α with the probability f(r) = f(r1)f(r2). It is the

function f(r) ~ ehr (h is the coupling parameter) that satisfies this
equation.

2 The correlation radius τ determines the density of local loop clus-
ters. The far range of bonds between loops (and their clusters) in
the elastic stress field corresponds to the stability of the system as
a whole.

T1〈 〉 a/2π( )3
qiq jc 1/ p

2( )=

× Γ ij
αβ( ) Ψαβ R ξ,( )〈 〉 ξ ,

β 1=

p

∑
α 1=

p

∑

Ψαβ ξ /a( )
J1 kα' ξ( )

kα' ξ
-------------------

J1 kβ' ξ( )
kβ' ξ

------------------ 
 

k

4

∫=

× Fαβ k( ) 1

k
2

---- 1 kRcos–( ) k,d

e
r ' /τ–

Ψαβ  . 2π τ/b( )2Φα R ξ,( )δαβ,
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loops with identical and different Burgers’ vectors b in
the same slip plane (κ = 0 and ~0.2 for bcc and fcc lat-
tices, respectively).

Therefore, the correlation component (2) can be
approximately written as

Thus, the deviation from the random distribution of
loops in slip planes is equivalent to the increase in their
concentration by a factor of about [1 + (2π/p)(τ/b)2].

The formation of regular planar dislocation net-
works (as well as the walls of rectilinear dislocations)
causes fluctuations of the diffraction intensity, which
only weakly affect the diffraction line shape in the
range accessible to measurements [1, 5]. Therefore, the
component T2 can be neglected in the analysis of mea-
sured harmonics {Ak}.

In the approximate expression for 〈T0〉 , the compo-
nent nonlinear with respect to m (when it is nonzero) is
smaller than the linear one by an order of magnitude (in

the range of practical interest, m < /a). This compo-
nent can be assigned to the equation error, especially as
real observations contain analogous systematic errors.
The origin of these errors will be considered below.

Harmonic analysis of the X-ray diffraction line,
which is a doublet of –  radiation, yields the Fou-
rier coefficients

Here, µ is the ratio of the interdoublet spacing to the
range of Fourier expansion and w1 and w2 are the
weight fractions of the doublet components, whose pro-

files are described by the harmonics . The expansion
center is chosen, as usual, to correspond to the maxi-
mum intensity. Taking into account that µ ! 1, we have

Hence, the observations made in the analysis of the
physical profile of the diffraction line can be written as

where k = κm. A shift of the expansion center does not
affect the result.

Using the approximate representation 〈T(m)〉 , we
obtain the model of diffraction observations to study
the structure of deformed crystals

(3)

T1〈 〉  . 2π/ p( ) τ /b( )2
T0〈 〉 .

ξ

Kα1
Kα2

Ak
d

Ak
s

w1 w2 kµ( )cos+[ ] ,=

Bk
d

Ak
s

w2 kµ( )sin[ ] .=

Ak
s

Ak
d( )

2
Bk

d( )
2
 . Ak

s( )
2

1 w1w2µ
2( )k

2
–[ ] .+

Ak  . Ak
s
/A0

s( )lnln 1/2( ) w1w2µ
2( )k

2
,–

gk Akln xk θq( )exp
q 1=

4

∏ uk+ + 0.= =
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Here, xk = QHKL(k/κ) is an independent variable and
uk is an auxiliary variable which takes into account the
systematic errors of the model equation. The structural
parameters enter the estimated vector q:

Figure 1 shows by the example of Fe and Al crystals
with specified parameters of dislocation structures the
calculated deviations of the approximate equation from
the exact one. The result of the calculation includes the
error of averaging e–T by the Monte Carlo method. The
larger the variance of the logarithmically normal distri-
bution ξ, the larger this error.

The obtained equation models the normalized har-
monics of the diffraction line of a polycrystal when the
dislocation loop size satisfies the relation kmax/κ ≤
(ξ/a) ≤ 0.1(Ξ/a) (Ξ is the crystal size). The limitation of
(ξ/a) from below is related to the applicability of the
approximate expressions for the model functions. The
limitation of (ξ/a) from above is due to the effect of the
size and shape of crystals, which leads to an asymmetry of
the diffraction line (appearance of sine harmonics) [1].

According to the electron microscopy data, cells
with sizes from 0.5 to 2 µm are observed in deformed
crystals. The thickness of the cell walls is, on average,
smaller by a factor of 5. Hence, dislocation loops in the
walls may have sizes in the range 250 < (ξ/a) < 1000.
The experiment shows that the limiting coefficient of

variance in loop sizes (σξ / ) ≤ 1/3, when random val-
ues of logarithmically normally distributed (ξ/a) may
differ by an order of magnitude.

As follows from the existing estimates of the dislo-
cation density, 108 < ρd < 1013 cm–2, where ρd =

(2π/a2) ( /a), and the average concentrations of loops

in deformed crystals are in the range 10–8( /a)–1 <  <

10−3( /a)–1. Estimation of the minimum of possible
values of the number of loops L in the smallest existing
crystals (Ξ ~ 10 µm) gives Lmin ~ 103. Therefore, the
model assumptions, justified for a large statistical
ensemble, can be applied to the object under consider-
ation.

In practice, the number of reliably estimated har-
monics of the diffraction lines of deformed crystals kmax

remains within one order of magnitude. Thus, one
might expect that the region of real object parameters
belongs to the limitation region of the observation
model.

C1
p

θ1 c ξ /a( )[ ] , θ2ln ξ /a( ),ln= =

θ3 1 σξ /ξ( )2
+[ ] , θ4ln 1 2π/ p( ) τ /b( )2

+[ ] .ln= =

ξ

c ξ
ξ c
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DETERMINATION OF THE PARAMETERS 
OF THE DISLOCATION STRUCTURE 

OF DEFORMED CRYSTALS

The average characteristics of the real crystal struc-

ture form a parameter vector W = (ρd, /a, σξ / , τ/b),
which enters the function gk(Ak, q(W)) of the model (3).
It is necessary to find, based on the observations {Ak},
an estimate of q with minimum error to determine W .
However, the form of the model (3) indicates its global
nonidentifiability: the solution can satisfy an uncount-
able set of allowable vectors q. In this situation, an
unconventional method of statistical estimation of the
parameters is required.

Let us represent the experimental results in a
K-dimensional sample space (K ≡ kmax). An observation
vector A = (A1, …, AK) determines a point in the sample
space. We will assume that there is a set of points {Ar}
(r = 1, …, n) in the sample space and their number n ≥ l,
where l is the dimension of the parameter vector q.
(Independent repeated measurements of harmonics
{Ak} of the same diffraction line {HKL} may serve as
the set elements.) Then the problem of l-dimensional
estimation of q can be reduced to l 1D problems of par-
allel componentwise estimation of {θq} (q = 1, …, l) at
different points of the sample space {Ar}. The estimate
biases θq generated by the sampling can be limited by
applying the randomized strategy: at each step of the

optimizing sequence  =  + (Ar, qi) (i = 0, 1,
…), the point Ar for θq is chosen randomly from the
existing set {Ar} in the sample space.

ξ ξ

θq
i 1+ θq

i ∆θq
i

200
k/κ

–ln A^
k

0

4

1

2

Fig. 1. Predicted harmonics of the diffraction lines of the
model crystals with a specified dislocation structure:

(1) {110} Fe (ρd = 1010 cm–2, /a = 350, σξ /  = 0.1, τ/b =

2) and (2) {111} Al (ρd = 109 cm–2, /a = 500, σξ /  = 0.2,
τ/b = 3). The solid and dotted lines correspond to the theo-
retical and observation model equations, respectively.

ξ ξ

ξ ξ
C

Let us now represent the measurements A = {Ak} as

initial approximations to “true” harmonics  = { },

for which the model equation g( , q) = 0 is valid. Then,
we associate each measurement vector from the set
{Ar} (r = 1, …, n) with a random vector of auxiliary
variables u = {uk}, which should automatically com-
pensate the systematic errors of the model  = { }
when approaching the optimum.

Since the correlation of the variables (A, u) can be
neglected, the solution (which realizes an asymptoti-
cally normal form of likelihood at limitations imposed
on the parameters q) will be a stationary point of the
Lagrange function [6]:

where  are the variances of the measurements Ak,

whose estimates are found from experiment;  are
the variances of the variables uk, which are to be esti-
mated during the optimization; and {λk} are the
Lagrange multipliers. The initial point for searching the
optimum can be chosen using linear regression analysis
of the existing data.

Let us reduce the model (3) to the approximation
equation for the observations Yk = –lnAk:

where zk1 = (k/κ) and zk2 = (k/κ)2 (k = 1, …,
kmax). We neglect the correlation {Yk}. Using the condi-
tion for the minimum of squared deviations

with the weight wk = , we obtain an estimate for

the vector of regression coefficients h* = ( , ) with
the covariance matrix

(If U(h*)/(nK – 2) > 1/(1 – P), there is a discrepancy
between the model and the data with a reliability not
lower than P, which requires critical analysis.)
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Randomly chosen values {θq} from the ranges of

allowable values [ , ] (q = 1, …, 4), such that

form an allowable set of random starting points in the
space of parameters q.

The coefficient  is used to measure the average
deviation from the linear dependence Yk ~ k. Therefore,
this coefficient is applicable for modeling the auxiliary
variables {uk} on the assumption of their normal distri-

bution with the mathematical expectation  ~ zk

and the variance  ~ .

In order not to complicate the target function with
the conditions for the optimization region, let us repre-
sent the model parameters q as a limited function of
some variable w at an infinite interval:

(At q = 3, when θq varies in a very narrow range, ωq

must be reduced to the main values in the interval (–π/2,
π/2).)

To calculate the step of the iterative optimization
process, we obtain the simple formulas

Here, the quantities

are calculated at a random point r of the sample space.

Initially, we take the measured values ( , ) for
(Ak, uk). Then, using the Lagrange multipliers

the current corrections to ( , ),

are calculated for all points of the sample space (r = 1,
…, n). Finally, we have to determine the derivatives of
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Âk ûk
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the model functions:

where

The estimate of the variance  is refined at each

iteration from the standard deviation  at the points of
the sample space :

where

The iteration step (i = 0, 1, …), controlled by the
coefficient 0 < ζ i ≤ 1, is considered to be allowable if at

we have

As a rule, the local minimum of G is obtained using
three or four iterations. If deviations from the condi-
tions for stationarity of the target function Λ in the local
minimum are smaller than the allowable errors

where 0 < ε ! 1, the optimum Λ* = Λ(q*) is likely to
be found. What is left to do is to check that the obtained

values of  lie within the confidence interval of mea-
surements A and that the residual deviations from the

model equation g* = g( , q*) are insignificant.
To perform this check, let us calculate the statistical

criteria
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i
,+= =
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with the correction ζ = 2/(1 – 4/nK), which takes into
account the presence of two inexact variables and four
estimated parameters in the model equation [6]. The
unknown variances  will be estimated by the stan-

dard deviations of the residuals gk from the means  at
n points of the sample space. For any distribution {Ak},
{gk}, the solution is rejected with a reliability not
smaller than P if either η1 or η2 exceeds K/(1 – P).

The successful results of a search from random
starting points can be regarded as independent realiza-
tions of a random vector w* = w(q*). In fact, in a ran-
domized computational experiment, we select a ran-
dom sample { } ( j = 1, …, M) from a completely
unknown distribution (which is assumed to be the same
for all j). Using this sample, confidence intervals for the
parameters of the object model W(q*) must be con-
structed.

For this purpose, we will use bootstrap confidence
intervals, which are more exact than the standard ones
and behave correctly at the transformations [7]:

Here, σ = [µ2/(M – 1)]1/2 is the variance of the sample

mean ; v  = µ3/  is the sampling ratio, which con-

tains the sample moments µγ =  – )γ/M; and
t(P) = t(M – 1), (1 – α/2) are the percent points of the t distri-
bution with (M – 1) degrees of freedom for the given
confidence probability P = 1 – α.

Since no less than 90% of realizations of any distri-
bution y ≡ { } (q = 1, …, l) will be between the
boundary values of the sample (ymin, ymax) with a prob-
ability of ~99 and ~61% at M = 60 and 20, respectively
[3], we can assume M = 60 to be a sufficient sample and
M = 20 to be a minimally necessary sample.

The properties of the obtained estimates W(q*) were
studied by the example of model crystals with bcc and

σgk
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5 P( ) y σt P( )± σv 2t P( )2
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(y jj 1=
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Table 1.  Verification of the reliability of the estimates of the
dislocation structure by the example of model crystals

Model
crystal

Specified exact
values of the struc-

ture parameters

Approximate 90%
confidence interval

of the estimates

bcc-(Fe) ρd = 1010 cm–2

( /a) = 350

(σξ / ) = 0.1

(τ/b) = 2.0

[0.8; 1.2] × 1010 cm–2

[346; 451]

[0.20; 0.24]

[1.5; 2.0]

fcc-(Al) ρd = 109 cm–2

( /a) = 500

(σξ / ) = 0.2

(τ/b) = 3.0

[0.8; 1.4] × 109 cm–2

[477; 672]

[0.23; 0.27]

[2.1; 2.7]

ξ
ξ

ξ
ξ

C

fcc lattices with specified parameters of dislocation
structures. The initial data for the analysis were imita-
tive measurements (of equal accuracy and uncorre-
lated) of the harmonics {Ak}. The normally distributed
Ak with theoretically predicted mathematical expecta-

tions  and accepted variance  were modeled (see
Fig. 1). Depending on a specified structure and the con-
ditions of imitative experiments, different numbers of
statistically significant (with a reliability of 95%) har-
monics kmax were obtained: for bcc (Fe), {110} we have
κ = 0.10,  = 0.01, and kmax = 22 and for fcc (Al),
{111} we have κ = 0.05,  = 0.03, and kmax = 20.

The parameters q were estimated using a minimally
necessary set of measurement vectors {Ar} (r = 1, …,
n); i.e., when n = l = 4. (For the extended set {Ar + r '},
including the vectors Ar ' from the measurements for
{112} Fe or {200} Al, no significant changes in the
quality of the estimates were found.)

Some typical examples of approximate 90% confi-
dence intervals for the structural parameters of the
model crystals are listed in Table 1. The confidence
intervals constructed from independent repeated sam-
ples of the vectors { } ( j = 1, …, 60) mostly included
the specified values of the initial parameters W.

As can be seen from Table 1, the estimates of the
parameters are biased mainly to the center of the allow-
able range for the vector q(W). Note that at the sample
volume M = 20 the estimate biases are smaller, but the
confidence intervals are wider. The accuracy of
approach to the optimum predominantly affected the
bias of the estimate of the average loop size. The esti-
mate of the dislocation density turned out to be most
stable and the least biased one (see Table 1).

The results of the analysis of the imitative experi-
ments with the model crystals show that the method
verified gives acceptable estimates of the object param-
eters if the latter are far from the admissibility limits.

DIFFRACTION INVESTIGATION
OF THE DISLOCATION STRUCTURE 

OF THE 01Kh5 STEEL

Two series of independent measurements of a sam-
ple and a reference are used for optimal estimation of
the harmonics of the physical profile of a diffraction
line. The data obtained provide a regularized solution
for the inverse convolution problem: one sample–refer-
ence pair is used to calculate the harmonic vector A =
{Ak} as a function of the regularization parameter, and
the other pair is used to choose the optimal value of this
parameter according to the measurement accuracy.
Composing all possible sample–reference pairs from
the data available, we obtain four independent esti-
mates {Ar} with the least mean-square errors (which
include squared biases of the estimates) [8].

Âk σ̂

σ̂
σ̂

w j*
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The variances of the harmonics of the physical pro-
file of a diffraction line { } are estimated by the stan-

dard deviations {Ak} from the means { } for n = 4
points in the sample space. The distortions introduced
into the first harmonic by the cutoff of the line tails, as
well as the biases, which increase with increasing k, are
automatically transformed into random errors.

The dislocation structure of a sample of 01Kh5 steel
deformed by 50% was studied on the basis of the har-
monics of the {110} diffraction line measured in FeKα
radiation (an annealed sample was used as a reference).
The technique of the measurement (performed by
Kozlov) was described in [8]. The ratio of the observa-
tion interval to the reciprocal lattice period of Fe was κ
= 0.1224 and the fraction µ of the interdoublet spacing

−  in the observation interval was µ = 0.0118.

To separate the background, we chose 2ν boundary
points of the observation interval, for which the
weighted sum of squared deviations of the measured
diffraction intensities from the line approximating the

background is in the range (1 – P) < ζU < (P)
with the confidence probability P = 0.95 (in the approx-
imation of the asymptotically normal distribution of
primary measurements). Here, the χ2 distribution with
2ν degrees of freedom is used and the correction ζ =
1/(1 – 2/2ν) is taken into account in the estimation of
two regression coefficients from 2ν measurement
points. For various data, we obtained 4 ≤ 2ν ≤ 6.

After adding the errors in the background estima-
tion, which are maximum at the ends of the observation
interval, the statistical weight of the measurement
points for a sample varied approximately by a factor of
2 and 6 for a sample and the reference, respectively.
Therefore, the weight of the measurement points was
taken into account in the harmonic analysis of the dif-
fraction line.

The harmonics of the diffraction line of a sample
were determined in the iterative search for a minimally
necessary length of the Fourier series kmax for an accept-
able approximation of the measurement data preferen-
tially by the smoothest possible curve. Such a proce-
dure of stable statistical estimation of the data consis-
tently minimizes the variances and biases of the
obtained Fourier coefficients of the primary line profile
[9]. (The number of harmonics of the reference line is
limited by the condition for the lack of correlation
between counts [8].)

For normalized measured harmonics of the diffrac-
tion lines of both the sample and reference, the vari-
ances were estimated from the pair differences in two
series of experiments with a correction to the system-
atic deviation in the cases when it is statistically signif-
icant [8].

The sample oscillations of the optimal harmonics of
the physical line profile {Ak}r (r = 1, …, 4) derived from

σAk

Ak

Kα1
Kα2

χ2ν
2 χ2ν

2
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independent experiments can be seen in Fig. 2. The
applicability of the approximation of the observations
Yk = –lnAk in the interval k ≤ kmax = 17 by a second-order
polynomial is not rejected by the statistical check:
U(h*) = 99.77 < 66/(1 – P) at P = 0.5. Figure 2 shows
the deviations of the observations {Yk} from the poly-
nomial regression line.

The data obtained on the physical profile of the mea-
sured diffraction line were used to construct approxi-
mate 90% confidence intervals for the parameters of the
dislocation structure of a sample of 01Kh5 steel
deformed by 50% (see Table 2). The estimation was
performed for the model of bcc crystals, which assumes
the dislocation distributions over two sliding sets to be
equiprobable.

In reality, the shape of the diffraction line of
deformed crystals is affected by other ignored parame-
ters (for example, fluctuations of the dislocation line
curvature). The presence of extra parameters, as well as
deviations of measurement errors from the normal dis-

17

–lnAk

0

22

k

Fig. 2. Regression curve for the measured harmonics of the
physical profile of the diffraction line {110} of 01Kh5 steel
deformed by 50%.

Table 2.  Estimates of the parameters of the dislocation
structure of 01Kh5 steel deformed by 50%

Sa
m

pl
e*

Approximate 90% confidence interval

dislocation 
density

ρd, 109 cm–2

average loop 
radius

( /a)

coefficient 
of variance

(σξ / )

correlation 
radius
(τ/b)

1 [2.2; 2.7] [408; 503] [0.22; 0.26] [1.7; 2.1]

2 [2.2; 2.8] [452; 555] [0.20; 0.25] [1.6; 1.9]

3 [2.3; 3.1] [421; 512] [0.21; 0.25] [1.5; 1.9]

4 [2.4; 3.3] [417; 526] [0.20; 0.25] [1.5; 1.8]

5 [2.5; 3.3] [395; 496] [0.22; 0.26] [1.5; 1.8]

* Repeated series of computational experiments.

ξ ξ
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1 
µm

1 
µm

Fig. 3. Distribution of dislocation loops in a slip band ~0.5 µm thick after 50% deformation. Statistical modeling with parameters
randomly chosen from the confidence intervals of the estimates for 01Kh5 steel.
tribution, naturally increases the sample oscillations of
the confidence intervals for the estimated parameters.

Table 2 contains the values of the intervals obtained
from several series of computational experiments with
the sample volume M = 60, which characterizes the
degree of instability of the parameter estimates. The
estimates are arranged in ascending order of confidence
boundaries for the dislocation density. The random
biases of the intervals are clearly correlated.

According to the data of Table 2 with a reliability of
about 90%, the dislocation density in the sample under
study is ~3 × 109 cm–2. The width of the diffraction line
reconstructed from its harmonics is ρd ~ 1011 cm–2 [10].
In other words, the dislocation density estimated from
the diffraction line width is overestimated approxi-
mately by a factor of 30, which is furthered by the
superposition of the effects of structure inhomogeneity
(and the existing splitting of the −  doublet).

The found estimates of the structural parameters can
be used for statistical modeling of the dislocation distri-
bution. The random number of loops falling into one of
the slip systems, with their average concentration in the
crystal being known, is determined from probabilistic
experiments according to the Bernoulli scheme. The
propagation of loops over the acting slip planes is mod-
eled by the Poisson flow. In this flow, the random dis-
tances between loops arriving one by one obey an expo-
nential distribution law [3]. The smallest distance turns
out to be the most probable one. The average distance
is the quantity inverse to the flow density.

For the identified structure of deformed 01Kh5
steel, a graphical image of the dislocation loop distribu-
tion in a set of parallel slip planes (the distance between
the acting slip planes was assumed to be ~200 Å) was
obtained by statistical modeling. The dislocation struc-
ture pattern is similar to the expected one (Fig. 3).

The generation of Poisson flows of loops with den-
sities corresponding to the parameters of the sample
structure revealed frequent nucleation of extended ran-
dom clusters of loops, randomly dividing pure regions

Kα1
Kα2
C

of the crystal. Figure 3 shows randomly implemented
shapes of boundaries of multiply connected regions,
which are characteristic of cellular structures.

In practice, analysis of the random dislocation sys-
tem in deformed crystals gave a realistic quantitative
description of the dislocation structure of a material
with bcc crystals. In any case, the method provides a
sufficient limitation of the parameters of an inhomoge-
neous structure for reliable estimation of the average
dislocation density in a polycrystalline sample.
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Abstract—A method for determining the strain characteristics of interatomic bonds in crystals of ABX3 com-
pounds with perovskite structure is developed. The bond strain energy ∆Us is estimated. This energy is respon-
sible for the formation of ordered lattice distortions related to the rotation of octahedra and/or the cooperative
displacement of cations. It is shown that ∆Us correlates with the characteristics of ordered distortions and the
temperature of the phase transition of compounds to the cubic structure. It is ascertained that the interatomic-
interaction potential in crystals with strained bonds is a local multiple-well potential, the form of which depends
on the nature of interacting atoms. It is shown that the occurrence of the ferroelectric state in the noted crystals
may be due to the presence of bond strains and the anisotropy of the covalent component of the cation–anion
interaction. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

It is well known that phase transitions in crystals of
ABX3 oxide and halide compounds with perovskite
structure are accompanied by some ordered lattice dis-
tortions, which, depending on the nature of elements in
their composition, may be related to the rotation of BX6
octahedra the displacement of cations, or both these
effects simultaneously. Such phase transitions are
assigned to displacive transitions, the dynamics of
which is characterized by the manifestation of soft
modes, i.e., the softening of some normal vibrations,
which are related to singularities in the Brillouin zone
(see, for example, [1, 2]). It is believed that the high-
temperature (cubic) and low-temperature phases in
crystal systems showing displacive phase transitions
are ordered in the ideal case and are both characterized
by single-well interatomic interaction potentials that
depend on anion–cation displacements.

However, there are some experimental data indicat-
ing that the phase transitions in crystals with perovskite
structure show signs of order–disorder transitions. For
example, the diffuse X-ray scattering [3], neutron scat-
tering [4], and Raman scattering [5] investigations and
the analysis of the X ray absorption fine structure
(XAFS) [6] revealed local distortions, corresponding to
clusters of the low-temperature phase, in the high-tem-
perature cubic phases of some compounds with perovs-
kite structure at temperatures much higher than the
transition temperature Tc. The characteristics of such
clusters were quantitatively estimated on the basis of
the XAFS data and it was shown that macroscopic dis-
tortions in a crystal are determined mainly by the order-
ing of clusters rather than variation in their size.
1063-7745/05/5003- $26.00 0435
The disorder of a system above Tc is a direct sign of
the order–disorder phase transition. This transition
means that the potential energy as a function of atomic
displacements (without requirement for correlation of
displacements in other cells) is a multiple-well (double-
well in the one-dimensional case) temperature-inde-
pendent potential [6]. A question arises about the nature
of the multiple-well potential in such crystals.

The purpose of this work is to study the interatomic-
bond strains and reveal the nature of the multiple-well
potential and the character of ordered lattice distortions
in crystals with perovskite structure. The bond strain
energy is determined and its linear correlation with the
phase transition temperature is established. It is shown
that the occurrence of the multiple-well potential and
ordered distortions, whose type depends on the charac-
ter of interatomic interaction, is related to the bond
strain energy. The relationship between the parameters
of the multiple-well potential and the characteristics of
the strain energy is considered for the case of ordered
distortions related to the rotation of octahedra and dis-
placements of cations.

BOND STRAIN ENERGY

In order to find out if bond strains exist in distorted
perovskite-related structures ABX3 or not, let us analyze
the dependence of the potential energy of interatomic
interaction U on the interionic distances A–X and B–X.
With this purpose, we can restrict our consideration in
the first-order approximation to a cubic structure with
the average parameter of the reduced cell a = (V/p)1/3,
where V is the unit-cell volume of the distorted struc-
ture and p is the number of formula units. The potential
© 2005 Pleiades Publishing, Inc.
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energy of interatomic interaction in this system is
expressed in the two-body approximation in terms of
the sum of the sublattice energies

(1)

which depend on the average distances lAX and lBX,
respectively.

At some values l0AX and l0BX, the components UA

(lAX) and UB (lBX) reach the minimum values, which are
the average unstrained-bond lengths.

Generally, the observed average interatomic dis-
tances

(2)

differ from l0BX and l0AX and correspond to the strained
state of bonds.

To estimate the potential energy of interatomic
interaction for strained bonds, we can expand in series
the components UA and UB, restricting ourselves to the
second order of smallness and taking into account (2):

(3)

where CAX =  and CBX =  are the

force constants of the A–X and B–X bonds, respectively.
The condition dU/da = 0 yields the expression for

the equilibrium parameter of the reduced cell:

(4)

where η = CAX/CBX.
Substituting (4) into (3), we can find the bond strain

energy

(5)

which is the value by which the potential energy of the
system increases owing to the deviation of the average
unstrained-bond lengths l0AX and l0BX from the values
satisfying the condition for the ideal perovskite struc-
ture

(6)

The values of l0AX, l0BX, and η, which enter (4) and
(5), are estimated experimentally from the variation in
the average parameter of the reduced cell in homolo-
gous series of ABX3 compounds [7]. With this purpose,
two type of such series are considered. Compounds
with compositions differing only in the element B are
grouped in homologous series of the first type (I). Each
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series of type I is characterized by a particular element
A. Compounds differing in the chemical element A are
grouped in homologous series of the second type (II).
Each series of type II is characterized by a particular
element B.

It follows from (4) that

(7)

(8)

These relations describe the dependences of 2l0BX –

a on l0BX and a –  on l0AX/  for series I and II
at fixed values of l0AX in (7) and l0BX in (8). For the series
with close values of the parameter η, relations (7) and
(8) are linear.

On the basis of the analysis of relations (7) and (8)
as applied to the above-mentioned homologous series,
the average unstrained-bond lengths l0AX and l0BX and
the parameter η were determined for the following fam-
ilies of compounds with perovskite structure: ABF3,
A1+B5+O3, A2+B4+O3, A3+B3+O3 [7]. The found values of
l0AX and l0BX for most of these compounds turned out to
be in agreement with the interatomic distances in crys-
tals of the corresponding binary compounds. The rela-
tion between them, with rare exceptions, is determined

by the inequality l0AX/ l0BX < 1; i.e., it differs from the
relation for the ideal perovskite structure (6). The dif-

ference between l0AX/  and l0BX is indicative of the
bond strain in crystals with perovskite structure.

As can be seen from Fig. 1, the bond-strain energy
∆Us in expression (5), estimated from the found values
of l0AX and l0BX for the family of the investigated fluo-
rides and oxides, systematically changes within each
homologous series, reaching relatively large values

with an increase in the difference l0BX – l0AX/ .
The character of the change in the bond-strain

energy in the homologous series of compounds corre-
sponds to the character of the change in the phase tran-
sition temperature and the degree of ordered distor-
tions. Let us compare ∆Us with the cubic phase transi-
tion temperature Tc of the compounds. Figure 2 shows
as an example the results of such comparison for a
number of ABF3 and A1+B5+O3 compounds. The value
of ∆Us was estimated in relative units ∆Us/CKF; i.e., the
force constant for the noted compounds was deter-
mined with respect to its value for K–F bonds (CKF) in
the ion model approximation (the Madelung energy). It
can be seen that the phase transition temperature Tc is
proportional to the bond-strain energy or (l0BX –

l0AX/ )2 . The proportionality factor depends on the
nature of the atoms in the composition of the compound
and the character of their interaction. This dependence

2l0BX a–
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a – 2l0AX
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means that the phase transitions observed in crystals
with perovskite structure are related to the bond-strain
energy.

The increase in the bond-strain energy with increas-

ing difference l0BX – l0AX/  can be related to the sta-
bility limit of the perovskite structure for the com-
pounds in which a relatively small ion (for example, Li)
serves as the A cation. Owing to the large value of ∆Us,
the perovskite structure turns out to be energetically
unfavorable for such compounds and they are crystal-
lized into another structure (e.g., LiNbO3). For this rea-
son, ionic compounds of this type, for example,
LiBaF3, have the structure of inverse perovskite, in
which A and B cations change their positions in the lat-
tice, due to which the bond-strain energy decreases.

Expression (5) corresponds to the highest bond-
strain energy since ordered lattice distortions were not
taken into account in the approximation of a reduced
cubic cell (which was used initially). As will be shown
below, these distortions lead to a decrease in ∆Us.

ORDERED STRUCTURAL DISTORTIONS 
AND THE MULTIPLE-WELL POTENTIAL

The cubic perovskite structure is unstable because
of the bond strain. It can be transformed to a more sta-
ble state characterized by a lower energy ∆Us owing to
the occurrence of ordered lattice distortions. The distor-
tion type is determined by the cation nature and the
character of the cation–anion interaction. As was noted
above, two main types of ordered distortions are distin-
guished: the rotation of octahedra and the displacement
of cations.

Ordered distortions due to the rotation of octahedra
occur mainly in ionic crystals with identical unstrained-
bond lengths in the sublattices. In the crystals in which
the interaction of B or (and) A cations with anions is
determined to a large extent by the anisotropic covalent
components, which result in different unstrained-bond
lengths, distortions caused by the ordered displacement
of cations may arise.

The potential energy of a perovskite structure with
strained bonds depends in a certain way on the param-
eters of ordered distortions.

Let us consider the character of this dependence for
the simplest cases of the above-mentioned types of dis-
tortions (the rotation of octahedra around one coordi-
nate axis and the displacement of cations along one
coordinate axis).

Ordered lattice distortions related to the rotation of
octahedra manifest themselves in the cooperative dis-
placement of anions perpendicular to the B–X bond
lines, which lie in the plane perpendicular to the axis of
rotation. At such displacements, the bond lengths
become different in the different sublattices. Hence, the

2
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potential energy of a distorted lattice, in contrast to (3),
can be written as

(9)

where ∆Ur is the contribution due to the ordered dis-
placements of anions in the crystal lattice. Upon rota-
tion of octahedra at some angle ψ around the z coordi-

nate axis, the lengths  and  of the bonds lying in
the xy plane and in the plane perpendicular to it can be
expressed as follows:
for four bonds

(10)

for two bonds

(11)

for four bonds

(12)

and for eight bonds

(13)
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Fig. 3. Dependence of the potential energy of interatomic
interaction in ABF3 crystals with strained bonds on the
angle of rotation of BX6 octahedra around the coordinate
axis.
C

where lBX = a/2 are the lengths of the B–X bonds in the
cubic reduced cell (2) and δx and δz are the relative
changes in lBX in the xy plane and along the z axis,
respectively. These changes are due to the cooperative
displacement of anions.

In view of the smallness of ψ, δx, and δz, expres-
sions (10)–(13) can be represented by power polynomi-
als and ∆Ur can be approximated by the sum

(14)

where αψ, αx, and αz are the approximation parameters.
Analysis of expression (9), taking into account

(10)–(14), shows that the interaction potential, depend-
ing on the angle of rotation of octahedra, is a double-
well one (Fig. 3). The solution of the system of equa-

tions  = 0,  = 0,  = 0 shows that the maxi-

mum of U occurs at ψ = 0 and minima occur at

(15)

(16)

(17)

where α1, α2 , and α3 are coefficients expressed in terms
of αψ, αx , αz, and η. Note that α2 < 0 and α3 > 0

As follows from (9), with allowance for (15)–(17),
the depth of the potential well is proportional to (l0BX –
l0AX/ )2 . The data obtained suggest that, owing to the
ordered distortions related to the rotation of octahedra,
the system passes to a more stable state characterized
by a lower potential energy. When octahedra are rotated
around one coordinate axis (z), the lattice strain has a
tetragonal character. The relation between the axes
(aT < cT), which follows from (16) and (17), corre-
sponds to the observed one [8].

In the general case, the potential (9) is multiple-well
since octahedra can be rotated around any coordinate
axis or simultaneously around several coordinate axes.

In the case of anisotropy of the covalent components
of the anion–cation interaction, the unstrained-bond
lengths in the two sublattices can generally be different.
Let us consider the simplest case when the interaction
between A and X ions is isotropic and the anisotropic
covalent component plays an important role in the
interaction between B and X ions. In this case, all
lengths of unstrained bonds A–X will be identical,
whereas the lengths of B–X bonds will be different. The
bond strain in the crystal lattice affects the character of
manifestation of the covalent components, facilitating
the ordering of the orbitals of interacting atoms. As a
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result, the covalent bond component directed along the
ordering line (for example, along the z axis) increases
owing to the displacement of both ions. The displace-
ment of B cations from the centers of octahedra is due
to the decrease in the bond-strain energy caused by the
increase in the bond lengths in the plane perpendicular
to the displacement direction. In this case, A cations
may undergo some ordered displacement. As a result of
such cooperative displacement of ions, the centers of
gravity of the positive and negative charges in the unit
cell do not coincide in the general case, which leads to
the formation of a dipole moment. The ordering of
bonds gives rise to the ordering of the dipole moments.

In this case, the potential interaction energy has the
form

(18)

where ∆Uc is the covalent component of the orbital
ordering and ∆Up is the dipole ordering energy.

Let us assume that the lengths of four unstrained

bonds in an BX6 octahedron are equal to  and the

lengths of the two other bonds are equal to . Let the
orbitals be ordered along the z axis. At relative displace-
ments of A, B, and X ions along the z axis equal to ∆A ,
∆B, and ∆X, respectively, the expressions for strained
bond lengths can be written as follows:

for four bonds

(19)

for two bonds

(20)

for four bonds

(21)

and for eight bonds

(22)

where δx and δz are, respectively, the relative changes

in  and  or the unit-cell parameters a and c,
which are caused by the ordered distortions.
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At ∆A = ∆B = ∆X = 0, the lengths  and  of the
strained ordered B–X bonds are determined by the fol-
lowing expressions: 

where  =  – .

To reveal the character of the dependence of U (18)
on the distortion parameters, we can restrict ourselves
to the first-order approximation in estimating ∆Uc

and ∆Up:

(23)

(24)

where nA, nB, and nX are the effective charges of the A,
B, and X ions, respectively. ∆Ur is approximated by
polynomials similar to (14).

Analysis of (18), taking into account (23) and (24),
shows that the interatomic interaction potential in the
case under consideration (cooperative displacements)
is a double-well one.

It follows from the solution of the system of equa-
tions 

that the values (∆B)min, (∆A)min, and (∆X)min, correspond-
ing to the minimum of the energy U (18), are propor-
tional to each other and expressed in terms of the
unstrained-bond lengths. 

In the general case, the potential (18), as in the case
of the rotation of octahedra, is a multiple-well potential.

The data presented here suggest that the formation
of the ferroelectric state in crystals with perovskite
structure may be due to the presence of the bond strain
and the anisotropy of the covalent component of the
cation–anion interaction.

CONCLUSIONS

The method developed here for determining the
characteristics of the interatomic bond strain in crystals
of ABX3 compounds with perovskite structure is based
on the analysis of the dependence of the interaction
potential energy on the cation–anion distances using
the observable change in the average parameter of the
reduced cell for different types of homologous series of
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this class of compounds, including halides and oxides.
The average lengths of A–X and B–X unstrained bonds
(l0AX and l0BX, respectively), corresponding to the min-
ima of the potential energy of interatomic interaction in
the sublattices, are determined. It is shown that bonds
are strained in crystals of this type. This strain is due to
the fact that the values l0AX and l0BX do not satisfy the
condition of existence of the ideal cubic structure

(l0AX/ l0BX = 1).
The bond-strain energy ∆Us, which is proportional

to (l0BX – l0AX/ )2, systematically changes within the
homologous series of compounds and can reach large
values, at which the perovskite structure becomes
unstable. This energy is responsible for the formation
of ordered lattice distortions during the phase transi-
tions related to the rotation of octahedra and/or the dis-
placement of cations, since such distortions decrease
the bond-strain energy and the system passes to a more
stable state. 

The value of the bond-strain energy correlates with
the characteristics of ordered distortions. It should be
noted that the temperature of the phase transition of the
compounds to the cubic structure is proportional
to ∆Us.

In crystals with strained bonds, the anion–cation
interaction energy as a function of the parameters of
ordered distortions is a local multiple-well potential,
whose form depends on the nature of interacting atoms.
For the compounds with predominantly isotropic ionic
type of interatomic bonds, ordered distortions are
related to the rotation of octahedra. The position of the
potential wells (the angles of rotation of octahedra) and
their depth are determined by the difference l0BX –

l0AX/ . 
When the covalent bond components are significant

and have a certain anisotropy, cooperative displace-

2

2

2

C

ments of cations occur, leading generally to the forma-
tion of dipole moments in the reduced cells and their
ordering. Therefore, the formation of the ferroelectric
or antiferroelectric state in crystals with perovskite
structure can be due to the presence of bond strain and
anisotropy of the covalent component of the cation–
anion interaction.

The formation of a local multiple-well potential due
to the bond strain makes it possible to explain the
observed conservation of local ordered lattice distor-
tions at temperatures much higher than Tc and to
describe the phase transitions in crystals with perovs-
kite structure.
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Abstract—The influence of replacement of an ammonium ion by rubidium on the x–T phase diagram in the
concentration range 0.50 ≤ x ≤ 1.0 has been studied by X-ray and neutron powder diffraction over a wide tem-
perature range. It is shown that a decrease in the ammonium concentration is accompanied by an increase in the
temperature of the II ⇔ I phase transition and stabilization of phase II up to low temperatures (20 K). The
changes occurring in the dynamics of mixed crystals are studied by inelastic incoherent neutron scattering. The
spectra of the generalized vibrational density of states obtained allowed one to establish the difference in the
phonon modes corresponding to phase III of β-LiNH4SO4 and phase II of β-LiRb1 – x(NH4)xSO4 mixed crystal
with x = 0.91 and x = 0.77 at 20 K. It is shown that a mixed crystal with x = 0.77 at 20 K is in the orientational
glass state. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

The compounds β-LiNH4SO4 (LAS) and LiRbSO4
(LRS) belong to the family of AA'BX4 crystals (A, A' =
Li, Na, K, Rb, NH4, Cs, N(CN3)4, etc.; BX4 = SO4,
1063-7745/05/5003- $26.00 ©0441
SeO4, ZnCl4, ZnBr4, BeF4, MoO4, WO4, etc.) possess-
ing ferroelectric properties [1]. As is well known, LAS
undergo a number of the following phase transitions
[2–4]:
(1)I ⇔ 459.5 K [3] ⇔ II ⇔ 283 K [2] ⇔ III ⇔ 27 K [4] ⇔ IV.
T1 T2 T3
The crystal structure of phase I is orthorhombic,

sp. gr. Pmcn- , Z = 4, with the lattice parameters at
478 K equal to a = 5.299(2), b = 9.199(2), and c =
8.741(3) Å [5]. The crystal structure of phase II is also

orthorhombic, sp. gr. P21cn- , Z = 4 [6, 7] with the
lattice parameters at T = 298 K equal to a = 5.282(1),
b = 9.131(3), and c = 8.780(2) Å [7]. The I ⇔ II phase
transition in LAS is a transition from the paraelectric to
the ferroelectric state analogous to the paraelectric–fer-
roelectric phase transition in ammonium sulfate
(NH4)2SO4. The latter compound and LAS enter a spe-
cial group of ferroelectric crystals named “weak ferro-
electrics” [8, 9].

The crystal structure of ferroelastic phase III [10, 11] is

monoclinic and described by the sp. gr. P21/c- ,

D2h
16

C2v
9

C2h
5

† Deceased.
Z = 8 [7, 12] with the lattice parameters at T = 190 K
equal to a = 5.283(2) Å, b = 9.121(5) Å, c = 17.444(7) Å,
and β = 90.00(4)° [7]. The crystal structures of pha-
ses II and III are shown in Fig. 1. It is seen that they are
close to pseudohexagonal structures. Indeed, the unit
cell of monoclinic phase III only slightly differs from
orthorhombic, because the monoclinicity angle β is
close to 90° and the a/b ratios in phases I–III are close
to 1.73. Three SO4 and three LiO4 tetrahedra form a
pseudohexagonal ring normal to the c axis. The SO4

and LiO4 tetrahedra in phase I occupy two configura-
tional positions with equal probabilities or occupancies
of 0.5. The NH4 ions are located in the cavities of the
rings between layered pseudohexagonal nets.

The crystal structure of phase IV is also monoclinic,
sp. gr. Cc [4], and the phase transition III ⇔ IV may
result from condensation of the mode with the wave
vector k = (a* + b*)/2 [4].
 2005 Pleiades Publishing, Inc.
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Fig. 1. Crystal structure of two phases of LiNH4SO4: (a) phase II and (b) phase III.
The sequence of phase transitions in the compound
LiND4SO4 (DLAS) is the same as in LAS, but the
phase-transition temperatures in DLAS are shifted by
several degrees in comparison with the phase-transition
temperatures in LAS [13]. The DLAS structure was
refined by the neutron powder diffraction (NPD) data
C

[14]. The SO4 and ND4 tetrahedra turned out to be irreg-
ularly distorted.

Similar to LAS, an LRS crystal has a pseudohexag-
onal structure inherent in the AA'BX4 family [6, 15], but
the sequence of phase transitions is somewhat different
[16, 17]:
(2)I ⇔ 477 K ⇔ II ⇔ 475 K ⇔ III ⇔ 458 K ⇔ IV ⇔ 439 K ⇔ V.
T1 T2 T3 T4
Crystal structures of various LRS phases are
described in detail elsewhere [18]. Paraelectric phase I

is orthorhombic, sp. gr. Pmcn- , Z = 4, and the lat-
tice parameters at 483 K are a = 5.335 Å, b = 9.223 Å,
and c = 8.742 Å. Phase II is incommensurate (or almost
commensurately modulated) because the unit-cell
parameter c is almost equal to five unit-cell parameters
c0 of phase I. The LRS phases existing at lower temper-
atures have crystal structures described by different

space groups: phase III, by sp. gr. P21/c- ; ferroelec-

tric phase IV, by sp. gr. Pc- ; and paraelectric pha-

se V, by sp. gr. P1121/n- .

Thus, the crystal structures of LAS and LRS in
phase I are isomorphous and described by the

sp. gr. Pmcn- , whereas the crystal structures of all
the remaining phases show no mutual correspondence.
For example, LRS has phases II and IV with incom-
mensurate structures that are intermediate between
phases I and III and III and V. The first attempt to solve
the problem of the transformation of the sequence of
phase transitions from the side of LRS into the
sequence of the phase transitions from the side of LAS

D2h
16

C2h
5

Cs
2

C2h
5

D2h
16
was made by Kawamura et al. [19] who studied in
detail the x–T phase diagram of a β-LiRb1 – x(NH4)xSO4
mixed crystals (LRAS) by X-ray diffraction. They
obtained data on the influence of low concentrations of
ammonium on the phase transitions in LRAS from the
side of LRS (0.0 ≤ x ≤ 0.2) and the influence of low con-
centrations of rubidium (0.90 ≤ x ≤ 1.0) on the phase
transitions in LRAS from the side of LAS and in the
intermediate concentration region above 180 K.

Our aim was to study the influence of replacement
of ammonium ions by rubidium on the phase transitions
and the dynamics of ammonium ions in
β-LiRb1 − x(NH4)xSO4 mixed crystals in the concentra-
tion region from the side of ammonium 0.50 ≤ x ≤ 1.0
over a large temperature range. The phase transitions
were studied by X-ray and neutron powder diffraction
(XPD and NPD, respectively); the effect of phase tran-
sitions on ammonium dynamics in these mixed crystals
was studied by the method of inelastic incoherent neu-
tron scattering (IINS).

EXPERIMENTAL AND RESULTS
The LAS were prepared by recrystallization of

(NH4)2SO4 and Li2SO4 · H2O at 40°C. Both initial com-
ponents were mixed in an aqueous solution in a stoichi-
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 3      2005
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Fig. 2. (a) X-ray powder diffraction spectra of the I ⇔ II and (b) II ⇔ III phase transitions.
ometric proportion. As is well known, there are two
crystalline modifications of the LAS compound: the α-
and β-phases. The equilibrium between these LAS
modifications is very labile. However, it is possible to
shift the balance between these phases in the desirable
direction by the dynamical method via stirring the solu-
tion during the recrystallization process at a constant
temperature (40°C) [20, 21]. Colorless crystals of the
β-LAS phase were several millimeters in length.

In a similar way, LiRbSO4 crystals were also
obtained from the stoichiometric aqueous solution of
the initial Li2SO4 · H2O and Rb2SO4 components after
recrystallization by evaporation at 40°C.

β-LiRb1 – x(NH4)xSO4 mixed crystals were obtained
from aqueous solutions of Li2SO4 · H2O, (NH4)2SO4,
and Rb2SO4 mixed in stoichiometric ratios with subse-
quent slow evaporation at 40°C. The concentration
composition of the final products of mixed crystals dif-
fered from the initial concentration compositions of the
respective aqueous solutions. The composition of the
grown crystals was determined by chemical analysis.
The nitrogen and hydrogen concentrations were deter-
mined with the aid of a Carlo Erba EA 1108 microana-
lyzer; the concentration of Rb, with the aid of a Philips
PV 9200X atomic absorption spectrophotometer; and
the concentration of sulfur, by ICP analysis with the use
of a Jobin Ybon analyzer.

The X-ray powder diffraction experiments on the
prepared β-LiRb1 − x(NH4)xSO4 mixed crystals were
performed in a D500 automated powder diffractometer
(Siemens) with CuKα radiation and with a secondary
monochromator in the range of 2θ angles 10°–60°. The
diffractometer was calibrated against silicon both
before and after measurements. The temperature mea-
surements were made in two ranges, 243–303 and 433–
503 K. To perform temperature measurements, the
samples were heated at a rate of 5 K/min, then both dif-
fractometer and sample were kept for 10 min at the
attained temperature to bring the system to the thermal
equilibrium prior to the next measurement. The temper-
ature measurements during lowering of the temperature
were performed in a similar way. The X-ray powder
RAPHY REPORTS      Vol. 50      No. 3      200
diffraction spectra thus obtained were indexed and the
lattice parameters were determined using the
AFFMAIL program [22].

The study of phase transitions in LAS and LRAS
with x = 0.91 and 0.77 was performed by neutron pow-
der diffraction in the temperature range from 300 to
20 K. The influence of phase transitions in LAS and
LRAS on the ammonium dynamics was studied by the
IINS method in the same temperature range. The NPD
and IINS spectra in this temperature range at the con-
centrations x = 1.0, 0.91, and 0.77 were obtained on a
NERA-PR multicrystal inverted geometry spectrome-
ter at the IBR-2 pulsed reactor at the Laboratory of
Neutron Physics of the Joint Institute of Nuclear
Research in Dubna [23].

The data obtained by X-ray powder diffraction on
LAS showed that the temperatures T1 and T2 of the
phase transitions turned out to be somewhat higher than
the respective data indicated in literature. We deter-
mined the temperatures of phase transitions at a step of
5 K. The X-ray powder diffraction spectra used for the
determination of the temperatures of the II ⇔ I and
III ⇔ II phase transitions are shown in Figs. 2a and 2b,
respectively. The II ⇔ I phase transition was recorded
from disappearance of the 312 reflection in the X-ray
powder diffraction spectrum of phase II (Fig. 2a), and
the phase transition III ⇔ II was recorded from disap-

pearance of the reflections  and 021 in the X-ray
powder diffraction spectrum of phase III (Fig. 2b).

The study of mixed crystals in the system β-
LiRb1 − x(NH4)xSO4 by X-ray powder diffraction at
room temperature showed that, in the concentration
range of ammonium 0.5 ≤ x ≤ 1.0 , monophase crystals
of the solid solution of the β-modification of LRAS are
formed. It seems that the limited region of the solid
solution in mixed LRAS crystals arises as a result of
solution evaporation at 40°C, the temperature at which
LAS and LRS have different crystal structures. The
study of the influence of the variation of ammonium
concentration on the transition temperature T1 between
phases II and I showed an increase in this temperature
with a decrease in ammonium concentration at a rate of

313
5
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Fig. 3. (a) Concentration dependence of the temperature of the I ⇔ II phase transition in LRAS crystals and (b) concentration depen-
dence of the lattice parameters of phase II of LRAS crystals at room temperature.
0.17 K/at. % (Fig. 3a). The dependence of the lattice
parameters of orthorhombic phase II of LRAS at the
concentrations x = 1.0, 0.91, and 0.77 at room temper-
ature is shown in Fig. 3b.

The NPD spectra of LAS at 294 K (phase II), 260
and 40 K (phase III), and 20 K (phase IV) are shown in
Fig. 4 in the range of interplanar spacings d = 1.9–
2.5 Å. The NPD spectrum at 260 K differs from that at
294 K by the presence of additional reflections indicat-
ing the occurrence of a structural phase transition.
Slight differences between the spectra at 260 and 40 K
reflect the influence of the temperature. The NPD spec-
tra at 40 and 20 K are practically identical, although
they should correspond to different phases. However,
the temperature behavior of these spectra confirms the
specificity of the III ⇔ IV phase transition described in
[4]. The temperature of this transition, T3 = 27 K, also
described in [4], corresponds to the middle point of the
transition diffused over temperature. This phase transi-
tion is completed near 10 K.

The temperature dependence of the NPD spectra of
LRAS crystals at x = 0.91 and 0.77 are shown in Fig. 5
together with the corresponding LAS spectrum at
294 K (phase II). The temperature variation from 260 to
20 K practically does not influence the family of NPD
spectra for LRAS with x = 0.91 in the range of spacing
variation d from 1.9 to 2.5 Å. On the other hand, the
comparison of the NPD spectra of LAS at 294 K and
LRAS with x = 0.91 in the temperature range from 260
to 20 K leads to a conclusion about the stability of
phase II of LRAS (because its spectra are identical to
the LAS spectrum). Thus the replacement of ammo-
nium by 9% Rb in LAS stabilizes phase II down to low
temperatures. The NPD spectrum of LRAS with x =
C

0.77 with 20 K, also shown in Fig. 5, demonstrates that
it is identical to the analogous spectra of LAS and
LRAS at x = 0.91 in phase II. The comparison of these
spectra shows that the mixed LRAS crystals at the
above concentrations preserve phase II down to low
temperatures.

The IINS spectra of LAS measured on a NERA-PR
spectrometer simultaneously with the NPD spectra at
the same temperatures are shown in Fig. 6a. The gener-
alized vibrational densities of states G(E) calculated
from these spectra in the incoherent one-phonon
approximation by the program [24] are shown in
Fig. 6b. The IINS spectra of LAS have some specific
features: the presence of the contribution of a quasielas-
tic incoherent neutron scattering (QINS) at 294 and
260 K, which does not noticeably vary in the II ⇔ III
phase transition. However, cooling in the temperature
interval of phase III is accompanied by reduction of the
QINS contribution up to its complete disappearance at
40 K. The considerable QINS contribution in the vicin-
ity of the II ⇔ III phase transition and its decrease with
lowering of the temperature may be explained by a
decrease in the frequency of ammonium-ion reorienta-
tion.

A decrease in anharmonicity and the QINS contri-
bution with lowering of the temperature results in the
formation of a fine structure of the G(E) spectrum at
40 K. A slight difference between the G(E) spectra at
40 and 20 K indicates the beginning of the III ⇔ IV
phase transition. The fine structure of the G(E) spec-
trum allows one to determine the energy of the transla-
tion and librational modes of LAS in phases III and IV.
The corresponding values and their comparison with
the other known data are listed in the table.
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 3      2005
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The identification of the translation (Σ) and libra-

tional ( ) modes of ammonium ions was made based
on data [25, 26]. The resolution of the Raman scattering
(RS) experiment is higher than the resolution of the
IINS experiments and, therefore, the wide zones of the
G(E) spectra are compared in the table with narrow
lines of the Raman spectra. It should be noted that the
mode with the energy ~260 cm–1 is absent in neutron
scattering data [25]. In accordance with [13, 26], the
librational modes in LAS spectra lie in the energy range
250–400 cm–1. It should also be noted that the libra-
tional modes obtained for phase III satisfactory agree
with the inelastic neutron scattering [25] and Raman
scattering [13] data. The study of the influence of tem-
perature on Raman scattering spectra from phase III of
LAS showed [13] that the librational lines become nar-
rower with cooling below T2, which is explained by a
considerable reorientation amplitude of ammonium
ions. With an approach to the temperature 40 K, the
amplitude of librational vibrations decreases and
ammonium ions are localized, which is accompanied
by splitting and the appearance of well-resolved libra-
tional lines. A similar influence of the temperature on

ν6
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Fig. 4. Fragment of neutron powder diffraction spectra of
β-LiNH4SO4 at various temperatures.
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the G(E) spectra was also observed in the case of inelas-
tic incoherent neutron scattering, as has already been
indicated above (comparison of the G(E) spectra) at the
temperatures 260 and 40 K in the range of existence of
phase III (Fig. 6b).

It is also interesting to compare the identification of
the modes observed by the IINS with the identification
by the Raman scattering data for deuterated LAS, i.e.,
β-LiND4SO4 (DLAS) [27]. Thus, at a low temperature,
the Raman spectra of DLAS showed the lines at 200
and 270 cm–1 [27] which were compared with the lines
at 200 and 370 cm–1 in LAS spectra. Thus, the result
obtained in [27] uniquely identifies the line at 200 cm–1
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Fig. 5. Neutron powder diffraction spectra of
β-LiRb1 − x(NH4)xSO4 mixed crystals with x = 0.77, 0.91,
and 1.0 at various temperatures.
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Fig. 6. β-LiNH4SO4: (a) IINS and (b) G(E) spectra at various temperatures.
as the translation mode and the line at 370 cm–1 as the
librational mode of ammonium ions in LAS.

The temperature evolution of the IINS spectra from
LiRb0.09(NH4)0.91SO4 is illustrated by Fig. 7a; the
respective calculated G(E) spectra are shown in Fig. 7b.
The QINS contributions are observed in the IINS spec-
tra of LiRb0.09(NH4)0.91SO4 at 240 and 200 K, monoton-
ically decrease with lowering of the temperature, and
disappear below 160 K.

The G(E) spectrum from LiRb0.09(NH4)0.91SO4 at
240 K, which reflects the reorientation of ammonium
ions and their anharmonicity, shows a broad maximum
which is split into several maxima with lowering of the
temperature, and at 20 K the G(E) spectrum has a fine
structure corresponding to phase II of the mixed crystal.

Comparison of the IINS and G(E) spectra of mixed
LRAS crystals with the corresponding spectra of LAS
is illustrated by Figs. 8a and 8b at 20 K. It is seen that
the vibrational spectra of LAS in phase III (or phase IV)
and LRAS spectra of phase II are different. Thus, the
mode with the energy in the vicinity of ~200 cm–1

observed in phase III of LAS is not observed in the
vibrational spectrum of phase II of LRAS mixed crys-
tals with the ammonium concentrations x = 0.91 and
0.77. However, the IINS and G(E) spectra of the LRAS
mixed crystals in phase II with the ammonium concen-
tration x = 0.77 at 20 K have broader maxima than the
maxima of the respective spectra of LRAS at x = 0.91.
Such a change in the IINS and G(E) spectra of LRAS
mixed crystals at x = 0.77 shows that, at low tempera-
tures, these mixed crystals may be in the orientational
glass state. In the G(E) spectrum of LRAS crystals with
x = 0.77, one broad librational maximum with the
energy 340 cm–1 is observed. This maximum combines
the zones with the energies 353 and 402 cm–1 of the
C

mixed crystals with x = 0.91 such that the FWHM of the
librational maximum for x = 0.77 considerably exceeds
the FWHM of the crystal with x = 0.91.

The comparison shows that the influence of concen-
tration of rubidium substituting the ammonium ions on
the x–T phase diagram of a LRAS mixed crystal on the
dynamics of ammonium in this crystal is the same as
for the [Rb1 – x(NH4)x]3H(SO4)2 mixed crystal [28]. At
the concentration of rubidium replacing ammonium
ions higher than 10%, phase II is stabilized. At a low
temperature, the maxima of the IINS and G(E) spectra
of phase II become wide, indicating the formation of
the static disorder in orientations of ammonium ions.
This, in turn, indicates the formation of the phase of ori-
entational glass. Indeed, the phase with the orienta-
tional glass state on the x–T phase diagram of
[Rb1 − x(NH4)x]3H(SO4)2 mixed crystals was observed
earlier by the method of dielectric spectroscopy [30].

The comparison of the x–T phase diagram of
β-LiRb1 − x(NH4)xSO4 in the region 0.5 < x < 1.0 deter-
mined in the course of X-ray studies [7] and the neutron
scattering data obtained in the present study is illus-
trated by Fig. 9. It should be noted that the regions of
phases II and III were determined by both X-ray and
neutron powder diffraction methods, whereas the orien-
tational glass state of β-LiRb1 – x(NH4)xSO4 with the
ammonium concentration x = 0.77 was determined only
by the inelastic incoherent neutron scattering.

DISCUSSION OF RESULTS

The results obtained on the behavior of ammonium
ions in the β-LiRb1 − x(NH4)xSO4 mixed crystals are com-
pared with the results obtained by other authors who
studied the crystal structure by X-ray single-crystal dif-
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 3      2005
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Energies (in cm–1) of the modes revealed in several phases of LAS and LRAS crystals (x = 0.91 and 0.77) by different methods

LAS LRAS, x = 0.91 LRAS, x = 0.77 LAS [25] LAS [26]

Modephase IV phase III phase II phase II phase IV phase III phase III

G(E), 20 K G(E), 40 K G(E), 20 K G(E), 20 K NS, 20 K NS, 40 K RS, 40 K

66.8 60 157 166 60 Σ
62

74

79

100 104 96 96 85 Σ
93

97

107

114

118

123

135 136 136 136 127 Σ
137

150 148 Σ
155

168 168 160 168 169 Σ
175

179

208 205 267 255 200 200 202 Σ
210

263 257 230 Σ+

272 272 272 272 270

288 280

353 352 353 340 344 360 342

356

365

369

401.1 391.2 401.6 400 376

390

400

406

ν6
+

ν6
+

ν6
+

ν6
+

fraction and physical properties by nuclear magnetic
resonance NMR.

According to [7], the difference electron-density
Fourier synthesis of phase II of LAS has six (i.e., more
than four) peaks around a nitrogen atom. This fact
formed the basis for the determination of the crystal
structure of this phase with a partly disordered ammo-
nium ion. According to [7], ammonium ions in phase III
of LAS become ordered. The IINS spectra of LAS at
294 and 260 K corresponding to phases II and III,
respectively, show that the QINS contribution to the
IINS spectra is not considerably changed when inter-
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 3      2005
secting the boundary between these phases. Such a
temperature behavior of the IINS spectra may be
explained under the assumption that ammonium ions in
crystal structures of phases II and III may be reoriented
with equal probabilities. In this case, the IINS spectra
obtained are inconsistent with the results of X-ray
structural studies reported in [7] and, therefore, the
II ⇔ III phase transition cannot be interpreted as a dis-
order–order phase transition.

The analysis of the 7Li and 2D NMR spectra of LAS
over a wide temperature range [31] showed that ammo-
nium ions are deformed and possess electric dipole
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Fig. 7. β-LiRb0.09(NH4)0.91SO4: (a) IINS and (b) G(E) spectra at various temperatures.
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Fig. 8. β-LiRb1 – x(NH4)xSO4 (a) IINS and (b) G(E) spectra at low temperatures.
moments. The NMR studies of spin-lattice relaxation
of LAS in the laboratory (T1) and rotating (T1ρ) coordi-
nate systems in the range 400–77 K led Watton et al.
[32] to the conclusion that they observed a phase tran-
sition in the vicinity of 133 K. Two singularities in the
temperature dependence of both T1 and T1ρ observed
at 294 and 133 K indicated the existence of three differ-
ent temperature regions: one from ~400 to 294 K in
the region of phases II, where both T1 and T1ρ decrease
with lowering of the temperature with the activation
C

energy 1.9 ± 0.1 kcal/mol; the region between 294 and
133 K, where both T1 and T1ρ decrease with lowering of
the temperature with the activation energy 2.55 ±
0.05 kcal/mol; and the region below 133 K, where T1ρ
continues decreasing with the activation energy 1.49 ±
0.05 kcal/mol, whereas T1 passes through the minimum
at 115 K.

It was shown [31] that the temperature dependences
of T1 and T1ρ may be explained by the reorientation of
ammonium ions about the molecular axes C2 and C3
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 3      2005
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and it was assumed that the reorientation of ammonium
ions is unimportant in the phase transitions at 284 and
133 K.

Lim et al. [33], studying the effect of temperature on
the protonic magnetic resonance in LAS, confirmed the
anomaly in spin-lattice relaxation at 133 K caused by a
critical decrease in the soft mode, which is usually
observed in structural phase transitions.

The conclusion drawn in [31] on the reorientation of
ammonium ions about the molecular axes in the vicin-
ity of the II ⇔ III phase transition at 284 K is confirmed
by the IINS spectra above and below the temperature of
this phase transition (Fig. 6). However, the anomaly in
LAS observed at 133 K [31] may be interpreted differ-
ently. The specificity of the temperature dependence of
T1 and T1ρ may result from the change in the reorienta-
tion of ammonium ions. A decrease in temperature
gives rise to an increase in some potential barriers in the
LAS crystal lattice, so that ammonium ions can reorient
only about a limited number of molecular axes. A sim-
ilar anomaly in the temperature dependence of the lat-
tice parameters was observed in the monoclinic
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 3      200
NH4SCN phase [34]. The interpretation of the anomaly
in the temperature dependence of T1 and T1ρ at 133 K as
a result of the phase transition is also inconsistent with
the thermodynamic studies [27]. However, the above-
mentioned studies [13] showed that the influence of
reorientation of ammonium ions on the dynamic prop-
erties of LAS varies with lowering of the temperature.
Thus, the detailed study of the influence of the temper-
ature on the Raman spectra of LAS [13] demonstrated
that with lowering of the temperature in the region of
phase III below 200 K it becomes possible to observe
the librational mode of ammonium with the energy
increasing from ~250 cm–1 at T2 to ~275 cm–1 at 40 K.
Another librational mode splits below 200 K, with the
energy increasing from ~300 cm–1 at T2 to ~360 cm–1 at
40 K, although the energy of the doublet ~365 cm–1 is
almost constant in the temperature range from 200 to
40 K. It is possible to assume that both librational
modes are observed in the G(E) spectra at 40 K (table).

Analysis and comparison of the physical properties
of LAS obtained by the above methods allow one to
5
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suggest a model of behavior of an ammonium ion in
β-LiRb1 − x(NH4)xSO4 mixed crystals.

Both the structural [7] and NMR [31] data show that
ammonium ions in phase II reorient. However, it is
indicated in [7] that ammonium ions reorient about
crystallographic axes, while in [31], they reorient about
molecular axes. Possible reorientation of ammonium
ions about crystallographic axes in phase II may give
rise to formation of orientational glass in
β-LiRb1 − x(NH4)xSO4 mixed crystals during their cool-
ing as a result of the rearrangement of the dynamic dis-
order in ammonium ion orientations into the static dis-
order. If ammonium ions are distorted, possess an elec-
tric dipole moment, and may reorient about molecular
axes [31], cooling of the β-LiRb1 – x(NH4)xSO4 mixed
crystals will result in the formation of the state of dipole
orientational glass. Thus, for better understanding of
the nature of the orientational-glass state in
β-LiRb1 − x(NH4)xSO4 mixed crystals, one has to refine
the crystal structure of phase II of LAS by methods of
single-crystal neutron diffraction. X-ray studies of
phase II of LAS showed that the difference Fourier
maps have more than four peaks around the nitrogen
peak, which corresponds to the electron charge-density
distribution. However, only neutron diffraction can
shed the light on the real distribution of nuclear density
of hydrogen and answer the question about possible
reorientation of ammonium ions in the crystal structure
of phase II of LAS.

CONCLUSIONS

The results obtained in the study of the
β-LiRb1 − x(NH4)xSO4 mixed crystals by the methods of
X-ray and neutron powder diffraction and inelastic
incoherent neutron scattering show a considerable
influence of rubidium on the x–T phase diagram. The
X-ray powder diffraction study determined the region
of the solid solution from the side of LiNH4SO4 and the
influence of the rubidium concentration on the temper-
ature of the II ⇔ I phase transition. The powder neutron
diffraction study shows that the replacement of ammo-
nium ions by 9 and 23% of rubidium stabilizes phase II
to a temperature of 20 K.

The inelastic incoherent neutron scattering study
showed that rubidium influences the dynamics of
ammonium ions. Analysis of the spectra of generalized
vibrational density of states G(E) of
β-LiRb1 − x(NH4)xSO4 mixed crystals showed that dop-
ing with rubidium of stabilized phase II results in dis-
appearance of the mode with the energy in the vicinity
of 200 cm–1 in the G(E) spectrum at 20 K in comparison
with the G(E) spectrum of phase III in β-LiNH4SO4 at
the same temperature. Broadening of the librational
peaks in the G(E) spectrum of the
β-LiRb0.23(NH4)0.77SO4 mixed crystal indicates that this
mixed crystal undergoes the transition to the phase of
orientational glass.
C

The sequence of phase transitions in LAS is deter-
mined by the behavior of ammonium ions and their
contribution to the propensity of the crystal lattice of
this compound to rearrangement because of the forma-
tion of hydrogen bonds of ammonium with neighboring
atoms. With lowering of the temperature, the interac-
tion of ammonium ions with their neighbors becomes
more pronounced because of hydrogen bonding, which
hinders the rotational motion of ammonium ions. Dop-
ing of LAS with rubidium, instead of ammonium, is
accompanied by break of the net of hydrogen bonds
formed via ammonium ions. This, in turn, considerably
changes the propensity of the crystals to phase transi-
tions.

Thus, when considering the x–T phase diagram of a
LRAS mixed crystal at low temperature, one has must
take into account the region of orientational glass, the
concentration boundaries of which have not been estab-
lished as yet.

It is also necessary to indicate that the nature of the
state of orientation glass formed in LRAS has not been
reliably established as yet. In order to determine possi-
ble reorientation of ammonium ions around crystallo-
graphic axes, it is necessary to refine the crystal struc-
ture of phase II of the LAS by the single-crystal neu-
tron-diffraction data.
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Abstract—The effect of premelting in silver bromide crystals has been simulated for the first time. It is shown
that at the temperature about 150°C lower than the melting point of silver bromide, a considerable increase in
the mobility in the cationic sublattice is observed, whereas the (self-)diffusion coefficient of silver ions attains
values exceeding 10–6 cm2/s. The assumption about the superionic nature of conductivity in the region of pre-
melting is confirmed by the break of the long-range order in the cationic subsystem, which, in turn, is confirmed
by the comparison of the pair cation–cation correlation functions far from and in the vicinity of the melting
point. It is established that the premelting effect correlates with the experimentally observed effect of a consid-
erable increase in ionic conductivity in the vicinity of the melting point. It is shown that the premelting effect
in AgBr is similar to the diffuse superionic phase transition in anionic conductors of the MF2 family (M = Ca,
Ba, Sr, and Pb). © 2005 Pleiades Publishing, Inc.
COMPUTER SIMULATION

As is well known, silver bromide and silver chloride
demonstrate the so-called premelting effect: at high
temperatures (150–200°C below the melting point), the
conductivity dramatically increases and starts deviating
from the Arrhenius behavior characteristic of ionic
crystals [1–3]. It should be noted that AgBr does not
undergo any structural phase transformations up to the
melting point (Tm = 701 K), but prior crystal melting, its
conductivity attains a value of about 1.3 Ω–1 cm–1, i.e.,
becomes comparable with the conductivity of typical
superionics [4]. This effect is accompanied by a consid-
erable increase in the concentration of mobile intersti-
tial Ag+ ions (up to 2%), which, in turn, gives rise to
high ionic conductivity in AgBr. The premelting effect
is observed in many materials and is characterized by
the anomalous behavior of various physical–chemical
characteristics such as specific heat and surface disor-
dering (surface melting) [5–9].

Silver bromide possessing a simple crystal structure

(fcc lattice, NaCl structure type, sp. gr. ) may
serve as a model system for studying unusual behavior
of ionic transport in solids by computer simulation. The
present article describes the study of the thermody-
namic, transport, and structural characteristics of silver
bromide in the temperature range from 300 to 1500 K,
i.e., over a wide temperature range below and above the
melting point.

Molecular dynamics simulation was performed
using the modified program complex Moldy [10]
designed for computation of characteristics of con-
densed matter in the canonical NPT ensemble, which

Fm3m
1063-7745/05/5003- $26.00 0452
allowed us to study the phase transitions accompanied
by the change of the unit-cell dimensions. Atomic
motion was calculated using the Beeman algorithm.
The electrostatic (Coulomb) interactions were calcu-
lated by the Ewald method [11, 12]. The computational
box consisted of 1000 particles (500 cations and
500 anions), i.e., was a 5 × 5 × 5 supercell, in which the
anions were distributed over the positions of the fcc lat-
tice, and the cations occupied the centers of the unit
cells and the middle points of the their edges. The Ag+

ions were placed into octahedra sharing their edges and
formed by Br– ions.

The model pair-additive potentials Uij(r) were
selected in the form

(1)

where r is the distance between the interacting particles
of species i and j, zi and zj are their effective charges, e

is the electron charge, and (r) is the short-range
(non-Coulomb) component of the potential. The Vash-
ishti–Rahman short-range potential is written in the
form

(2)

where the first term describes the repulsion energy due
to overlapping of electron shells and the second and
third terms describe the attraction energy of van der
Waals interactions (dipole–dipole interactions).
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As was shown in [13], if cation–cation and cation–
anion pairs in simple ionic salts are considered, it is
possible to ignore van der Waals interactions because
these interactions only slightly influence calculated
thermodynamic and some kinetic characteristics. Con-
sidering cation–cation interactions, one may ignore
polarization effects. The set of the parameters of the
pair-interaction potential [14, 15] used in our computa-
tions is indicated in the table.

The effective ion charges were taken to be equal to
z(Ag+) = 0.66 and z(Br–) = – 0.66 e; the cut-off radius
was taken to be equal to a half-side of the computa-
tional block. A time step of 5 × 10–15 s ensured the sta-
bility of the total energy of the computational system
within the accuracy 0.2%. The particle velocities at the
initial moment were assumed to be zero; then, the sys-
tem temperature was brought to the given level using
the thermalization mechanism. The characteristics of
the simulated system were determined from the results
obtained after 2 × 104 iterations (100 ps).

RESULTS AND DISCUSSION

The information on the structural characteristics of
the simulated system may be extracted from the partial
radial distribution functions gij(r). Using these func-
tions, one may characterize the degree of disorder of
one or the other ionic sublattice of the crystal. Figure 1
shows different gij(r) functions calculated for 200 con-
figurations of the simulated thermodynamically stable
system. At low temperatures, all the gij(r) curves show
well-resolved narrow peaks; the curve between these
peaks goes to almost zero, which is characteristic of
conventional solids. The distances between the centers
of the peaks correspond to the respective distances
between the ionic positions in the crystal lattice. With
an increase in the temperature, the peaks broaden
because of the intensification of atomic thermal vibra-
tions around the centers of the atomic positions.

The cation–cation distribution function gAg–Ag
slightly changes with an increase in the temperature, so
that at T > 1000 K, only the first well-pronounced peak
characterizing the arrangement of the nearest neighbors
is observed, whereas all the other peaks are leveled.
Such a form of the pair distribution functions is charac-
teristic of the superionic state in α-AgI [16]. As is seen
from the gBr–Br curves, at T = 1095 K, the long-range
order in the anionic subsystem is also broken; i.e., the
crystal starts melting. The melting temperature is some-
what higher than the real melting point (701 K), which
seems to be associated with insufficiently accurate
selection of the pair potential.

The coefficients of particle self-diffusion can be
determined by analyzing the mean-square displace-
ments of ions 〈 (t )〉  if the following relationship isrk

2
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fulfilled

(3)

where Dk is the diffusion coefficient of a particle of the
k species and Bk is the Debye–Waller factor.

The molecular dynamics computations of the mean-
square displacements of silver cations and bromine

anions are illustrated by Fig. 2. The 〈 (t)〉 curves indi-
cate that, at T ≥ 1000 K, only the Ag+ cations participate
in the translational motion, whereas the Br– anions

rk
2

t( )〈 〉
t ∞→
lim 6Dkt Bk,+=

rk
2

Parameters of ionic interactions

Type of pair i–j

Ag+–Ag+ 0.300 0.0 0.0

Ag+–Br– 7.432 0.9060 0.0

Br––Br– 59.456 1.812 7.785

* In e2/Å (=14.39 eV) units.
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Fig. 1. Radial distribution functions at different tempera-
tures: (a) for cation–cation and (b) for anion–anion pairs.
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oscillate around their equilibrium positions. Only at
elevated temperatures (above 1095 K), the anions leave
their regular sites and are displaced for macroscopic
distances, which corresponds to complete melting of
the crystal. The temperature curves of the diffusion
coefficient DAg of silver cations calculated by Eq. (3)
are shown in Fig. 3. For comparison, Fig. 3 also shows
the experimental values of the diffusion coefficient of
cations obtained by the method of radioactive tracers
[17–20]. It is seen from Fig. 3 that, close to the melting
point, the calculated and experimental DAg values agree
quite well.

Taking into account the above specificity of the
behavior of the pair distribution functions in the vicin-
ity of the melting point of the crystal and high values of
the diffusion coefficient (DAg = 3.34 × 10–6 at 1095 K),
one may draw the conclusion about the correlated
motion of silver cations. The dynamics of disordering
of Ag+ cations indicates melting of the cationic sub-
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Fig. 2. Time dependences of the mean-square displace-

ments of cations 〈 (t)〉  calculated at different temperatures

(a) for Ag+ and Br– ions in the premelting region and (b) for
Ag+ and Br– ions in the melt at 1128 K.

rk
2

C

system, which is analogous to the diffuse phase transi-
tion observed in the MF2 fluorites (M = Ca, Ba, Sr, and
Pb) [4], which results in the formation of a high con-
ducting state. However, it is well known that the supe-
rionic state is characterized by low activation energies
(of the order of 0.1 eV) and, therefore, a high value of
the activation energy of diffusion (1.05 eV) indicates
that the premelting effect in AgBr may be associated
only with the initial stage of the transition to the supe-
rionic state.

ACKNOWLEDGMENTS

This study was supported by the Russian Founda-
tion for Basic research, project no. 02-03-33353.

REFERENCES

1. A. B. Lidiard, Ionic Conductivity (Springer, Berlin,
1957; Inostrannaya Literatura, Moscow, 1962), in Hand-
buch der Physik, Ed. by S. Flugge, p. 246.

2. K. Aboagye and R. J. Friauf, Phys. Rev. B 11, 1654
(1975).

3. P. A. Varotsos and K. Alexopoulus, J. Phys. Chem. Solids
39, 759 (1978).

4. A. K. Ivanov-Schitz and I. V. Murin, Ionics of Solid State
(S.-Peterb. Gos. Univ., St. Petersburg, 2001) [in Rus-
sian].

5. W. Hayes, Contemp. Phys. 27 (6), 519 (1986).
6. J. P. Hamilton, Adv. Phys. 37, 359 (1988).

–10

0.6
–12

0.8 1.0

–8

–6

–4

–2

T/Tm

ED = 1 eV

logD [cm2/s]

Fig. 3. Arrhenius plots of the diffusion coefficient of AgBr
crystals. s Experiment [17–19], d molecular dynamics
computation.
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 3      2005



MOLECULAR DYNAMICS SIMULATION 455
7. B.-E. Mellander and D. Lazarus, Phys. Rev. B 29 (4),
2148 (1984).

8. W. Andreoni and M. P. Tosi, Solid State Ionics 11, 49
(1983).

9. M. A. S. M. Barrera, J. F. Sanz, L. J. Alvarez, and
J. A. Odriozola, Phys. Rev. B 58 (10), 6057 (1998).

10. K. Refson, Moldy Code (Department of Earth Sciences,
Univ. of Oxford, UK).

11. Molecular Dynamics Method in Physical Chemistry, Ed.
by Yu. K. Tovbin (Nauka, Moscow, 1996) [in Russian].

12. D. W. Heermann, Computer Simulation Methods in The-
oretical Physics (Springer, Berlin, 1986; Nauka, Mos-
cow, 1990).

13. M. P. Allen and D. J. Tildesley, Computer Simulation of
Liquids (Clarendon, Oxford, 1987).

14. P. D. Mitev, M. Saito, and Y. Waseda, J. Non-Cryst. Sol-
ids 312–314, 443 (2002).
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 3      2005
15. C. Tasseven, J. Trullas, O. Alcaraz, et al., J. Chem. Phys.
106 (17), 7286 (1997).

16. A. K. Ivanov-Schitz, B. Yu. Mazniker, and E. S. Povo-
lotskaya, Kristallografiya 47 (1), 125 (2002) [Crystal-
logr. Rep. 47, 117 (2002)].

17. A. S. Miller and R. J. Maurer, J. Phys. Chem. Solids 4,
196 (1958).

18. M. D. Weber and R. J. Friauf, J. Phys. Chem. Solids 30,
407 (1969).

19. N. L. Peterson, L. W. Barr, and A. D. Le Claire, J. Phys.
C: Solid State Phys. 6, 2020 (1973).

20. A. P. Batra and L. M. Slifkin, J. Phys. C: Solid State
Phys. 9, 947 (1976).

Translated by L. Man



  

Crystallography Reports, Vol. 50, No. 3, 2005, pp. 456–457. Translated from Kristallografiya, Vol. 50, No. 3, 2005, pp. 502–503.
Original Russian Text Copyright © 2005 by Dudnik, Kolomoets.

                                                  

LATTICE DYNAMICS
AND PHASE TRANSITIONS

                                        
Specific Features of Twinning in Divalent Nitrates
E. F. Dudnik* and A. G. Kolomoets**

* Dnepropetrovsk State University, Dnepropetrovsk, 49050 Ukraine

** Zaporozh’e State University, Zaporozh’e, Ukraine

e-mail: koloms@rambler.ru

Received August 7, 2003

Abstract—The etch patterns similar to those found previously for strontium nitrate Sr(NO3)2 were revealed on
the surface of barium nitrate Ba(NO3)2 and lead nitrate Pb(NO3)2. The geometry of these patterns is studied. It
is suggested that these etch patterns correspond to the translation twins occurring in divalent nitrates at the
Pm3  Pa3 phase transition. © 2005 Pleiades Publishing, Inc.
It has been shown previously [1, 2] that strontium
nitrate Sr(NO3)2, barium nitrate Ba(NO3)2, and lead
nitrate Pb(NO3)2 undergo the Pm3  Pa3 phase tran-
sition at temperatures 588–603, 303–318, and 463–
468 K, respectively. According to [3], crystals undergo-
ing a similar transition are nonferroic, and the order
parameter arising in the asymmetric phase is described
by a macroscopic value. The domain structure of non-
ferroic crystals cannot be observed visually in a polar-
ization microscope but, in some cases, can be visual-
ized by chemical etching.

Etching the (111) surface of Sr(NO3)2 crystals in
dilute solutions of nitric acid, we revealed previously
characteristic patterns in the form of steps [4]. How-
ever, the question of existence of similar etch patterns
for barium and lead nitrates was open at that time and
the geometry of these etch patterns was unknown. We
found using an MII-4 microinterferometer that these
etch patterns are triangular pits with a vertex angle

Fig. 1. Etch patterns on the (111) surface of barium nitrate
Ba(NO3)2 crystals; ×1225.
1063-7745/05/5003- $26.00 0456
ranging from 114° to 117°. We also found similar etch
patterns on the (111) surface of barium nitrate (Fig. 1)
and lead nitrate crystals (Fig. 2).

Distilled water and glycerin were used as etchants
for barium and lead nitrates, respectively. The dimen-
sions of the etch pits increased by an order of magni-
tude in the sequence Ba(NO3)2–Pb(NO3)2–Sr(NO3)2. It
was found that such etch patterns can be reproduced at
any point of the crystal volume, independent of the
crystal thickness. Apparently, these etch patterns may
correspond to translation twins formed owing to the
Pm3  Pa3 phase transition in the divalent nitrates
studied. The shape of etch patterns must be related to
the internal crystal structure and account for the struc-
ture of the high-temperature phase.

It has been established [2, 5] that barium, strontium,
and lead nitrates undergo another transition to the P213
phase at low temperatures. In other words, a sequence

Fig. 2. Etching patterns on the (111) surface of lead nitrate
Pb(NO3)2 crystals; ×360.
© 2005 Pleiades Publishing, Inc.
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of phase transitions Pm3  Pa3  P213 is realized
in these crystals.

At the Pm3  P213 phase transition, a spontane-
ous thermodynamic quantity described by a third-rank
tensor should arise in the asymmetric phase. The piezo-
electric tensor seems to be appropriate (this transition is
characteristic of ferroelastoelectrics). However, we
failed to find the piezoelectric effect in the P213 phase.
It is possible that accumulation of piezoelectric charges
at the transition to the P213 phase occurs on the walls
of translation twins, which already exist in the Pa3
phase. Therefore, the observation of the piezoelectric
effect in the P213 phase becomes impossible.
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 3      2005
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Abstract—Sodium- and silver-ion exchange in single crystals of two polymorphous modifications of the
Na3Sc2(PO4)3 compound has been studied. It is established that in the process of ion exchange, the samples
undergo phase transitions similar to the well-known temperature transformations observed in these systems. It
is shown that the phases with ferroelectric, ionic, and superionic properties may simultaneously coexist in one
sample. © 2005 Pleiades Publishing, Inc.
It is well known that Na3Sc2(PO4)3 single crystals at
room temperature exist in two polymorphous modifica-
tions—ferroelectric monoclinic (α phase) and ionic
rhombohedral (β phase). Being heated, monoclinic
crystals undergo two phase transitions—the α  β
transition at the temperature close to 50°C and the
β  γ transition at the temperature close to 150°C,
where γ is the superionic rhombohedral phase. In terms
of X-ray diffractometry, the difference between the lat-
ter states reduces to disappearance of the superstruc-
tural reflections in the diffraction field in the course of
the β  γ transition [1–8]. The crystals of the rhom-
bohedral modification were reported to undergo only
one transition (β  γ) in the vicinity of 160°C [5].
Later, we revealed one more phase transition in the
rhombohedral phase at about 240 K accompanied by a
small jump in the c period in the hexagonal setting and
disappearance of superstructural reflections in the dif-
fraction field of the single crystals. We also performed
the studies of Ag3Sc2(PO4)3 single crystals at different
temperatures and revealed two phase transitions at
30°C (α  β) and at 180–170 K (β  γ) [9]. The
Ag3Sc2(PO4)3 single crystals were obtained by the
replacement of Na by Ag in Na3Sc2(PO4)3 single crys-
tals in aqueous solution of AgNO3. The Ag3Sc2(PO4)3

single crystals manifest the properties similar to those
of Na3Sc2(PO4)3 single crystals at lower temperatures;
in particular, the β  γ phase transition takes place
practically at room temperature. Therefore, we believe
that the information on the purity of the single crystal
obtained after the ion exchange and on the conditions at
which the samples of necessary quality are obtained
seems to be useful. In the final analysis, all these facts
brought us to the idea to study the processes occurring
in single crystals during ion exchange by the method of
single crystal diffractometry.
1063-7745/05/5003- $26.00 0458
The study was performed on single crystals no
larger than 0.3 mm at 19°ë on a single-crystal KM-4
diffractometer produced by KUMA DIFFRACTION
(Poland) with the use of the monochromatic MoKα
radiation. We studied the unit-cell parameters, intensi-
ties of X-ray diffraction reflections, and symmetry. The
study was performed on specially selected high-quality
Na3Sc2(PO4)3 single crystals. The unit-cell parameters
and the reflection intensities are indicated in the hexag-
onal setting. The study was performed as follows. A
single crystal on a goniometric head was fixed on a dif-
fractometer. The unit-cell parameters and their intensi-
ties were measured and refined using a set of 15 reflec-
tions. Then the single crystal on the goniometric head
was taken away from the diffractometer and placed for
a certain time into an aqueous AgNO3 solution of given
concentration. Then the single crystal was taken away
from the solution and placed back onto the diffractome-
ter. Since we did not remove the crystal from the goni-
ometric head which is rigidly fixed on the diffractome-
ter, the unit-cell was refined by the set of reflections
obtained earlier. When studying phase transformations,
we determined a number of reflections typical of a cer-
tain state of the single crystal. Thus, the α state was
characterized by the (0 1 5), (1 –1 5) and (–1 0 5) reflec-
tions which almost disappeared in the transition to the
β phase irrespective of the crystal composition—
Na3Sc2(PO4)3 or Ag3Sc2(PO4)3. We also considered the
113 reflection and its symmetric equivalents since they
had high intensities and were present in the diffraction
field of Na3Sc2(PO4)3 single crystals both in the α and
β phases. In the α–β phase transition, the intensities of
these reflections slightly increased; however, after the
ion exchange in Ag3Sc2(PO4)3 single crystals of the β
phase, their intensity decreased by more than an order
of magnitude.
© 2005 Pleiades Publishing, Inc.
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Figure 1a shows the dependence of the relative
intensity I/I0 of the (113) reflection on time t of the pres-
ence of a rhombohedral Na3Sc2(PO4)3 crystal in the
AgNO3 aqueous solution with the concentration N =
2.535 g/cm3. Since the intensity of an X-ray diffraction
reflection is proportional to the volume of a scattering
single crystal, I ~ V, the ratio of the current intensity of
a certain reflection to the initial intensity of this reflec-
tion measured prior to ion exchange, I/I0, allows one to
estimate the fraction of the remained initial phase.

We performed our study on a 0.3-mm-long crystal-
line sample with an irregular shape. It is seen from the
plot that the ion exchange was completed within
330 min. The superstructural diffraction reflections dis-
appeared 30 min after the beginning of the exchange
process. It should be indicated that in the course of the
study of the phase transitions in rhombohedral
Na3Sc2(PO4)3 single crystals we established the low-
temperature phase transition at 240 K, which was
accompanied by a small jumplike decrease in the c
parameter and disappearance of the superstructural
reflections. If we take into account that lowering of the
sample temperature is equivalent to an increase in the
external pressure applied to the sample, it is possible to
explain the disappearance of the superstructural reflec-
tions. Indeed, the unit-cell volume of the initial rhom-
bohedral Na3Sc2(PO4)3 crystal is 1533 Å3 and the unit-
cell volume of the Ag3Sc2(PO4)3 crystal is 1573 Å3;
thus, the difference amounts to 40 Å3. Since the ion
exchange proceeds first in the upper blocks of the single
crystal, they create the pressure necessary for the phase
transition in the remaining part of the crystal. Since the
ion exchange in deeper layers of the single crystal
requires overcoming of the pressure caused by the
external parts of the sample, the rate of ion exchange
should decrease with time, which is observed in the
plot.

A somewhat different character of Na and Ag ion
exchange is observed in monoclinic Na3Sc2(PO4)3 crys-
tals. Figure 1b shows the dependence of the I/I0 of the
(1)–(15) (curve 1) and (1 1 3) (curve 2) reflections on t.
The ion exchange was performed in a single crystal
having the shape of a small cube with a 0.15-mm edge
in an AgNO3 aqueous solution of the same concentra-
tion as earlier. Curve 1 illustrates disappearance of the
initial monoclinic phase about 30 min after the begin-
ning of the ion exchange process. Curve 2 at the seg-
ment 0–10 min shows approximately the same rate of
the I/I0 variation as curve 1; in other words, at this seg-
ment, the monoclinic Na3Sc2(PO4)3 modification is
transformed into the rhombohedral Ag3Sc2(PO4)3 mod-
ification. At the segment 10–20 min, the rate of the vari-
ation of curve 1 is higher than the rate of the variation
of curve 2, because in the initial phase, the monoclinic
Na3Sc2(PO4)3 phase is actively transformed into the
rhombohedral Na3Sc2(PO4)3 phase against the back-
ground of Na replacement by Ag. At the segment 20–
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 3      2005
30 min, the transformation of the remaining initial α
phase into the β phase having the same composition
prevails over the exchange process. At the segment 30–
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Fig. 1. Relative intensity I/I0 of reflections as a function of
the time of the presence of the α- and β-Na3Sc2(PO4)3 sin-
gle crystals in AgNO3 aqueous solutions with various con-
centrations N: (a) (1 1 3) reflection, β phase, N = 2.535
g/cm3; (b) (1) (1 –1 5) and (2) (1 1 3) reflections, α phase,
N = 2.536 g/cm3; (c) (1) (1 –1 3) and (2) (1 1 3) reflections,
α phase, N = 5.070 g/cm3; (d) (1) (1 –1 5), (2) (1 1 3) reflec-
tions, and (3) (1 –2 3) reflections, α phase, N = 0.634 g/cm3.
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80 min, the crystalline sample consists of two β phases
with the compositions Ag3Sc2(PO4)3 and Na3Sc2(PO4)3.
At the end of this process, the superstructural reflec-
tions are formed in the diffraction field. During the ion
exchange, the sample undergoes a number of transfor-
mations: from α-Na3Sc2(PO4)3 to β-Ag3Sc2(PO4)3;
from α-Na3Sc2(PO4)3 to β-Na3Sc2(PO4)3 and β-
Ag3Sc2(PO4)3, and from β-Na3Sc2(PO4)3 to β-
Ag3Sc2(PO4)3. As is well known, the α phase is a ferro-
electric, whereas in the β phase the dipole moment dis-
appears and the sample becomes an ionic conductor.
We believe that all these transformations are caused by
the directional effect of the process and different vol-
umes of each of the phases. Ion exchange proceeds
from the external to the internal layers of the single
crystal. The volume of the monoclinic unit cell is about
1555 Å3; the volume of the rhombohedral sodium-con-
taining phase, about 1533 Å3; and the volume of the sil-
ver-containing phase, about 1570 Å3. With an increase
of the amount of the silver-containing phase, the upper
layers of the crystal increase their volume and exert
pressure onto the internal part of the initial sample.
Finally, this gives rise to the α  β phase transition in
the sample. In the first 10 min of the process, the vol-
ume of the effective unit cell increases, in the next
20 min it decreases to the minimum value, and then it
increases again and attains the maximum value. This
dependence of the effective unit-cell volume of the
crystal on the degree of ion exchange is in good accord
with the scheme of the exchange of Na and Ag ions.
The change in the unit-cell parameters during the ion
exchange in the rhombohedral crystal proceeds accord-
ing to the scheme in Fig. 1a—the parameters increase
from the known the unit-cell parameters of β-
Na3Sc2(PO4)3 to the known parameters of
β-Ag3Sc2(PO4)3. We also studied the exchange pro-
cesses in α-Na3Sc2(PO4)3 crystals. Figures 1c and 1d
show the curves that describe the exchange process at a
Ag concentration in the solution lower and higher than
the concentration N. In both cases, all the stages
described above are also observed with the only differ-
ence that at higher concentrations the process proceeds
at a higher rate and an increase in the amount of the
C

rhombohedral Na3Sc2(PO4)3 phase shows no maxi-
mum. In other words, the rate of ion exchange and the
rate of the formation of the sodium-containing β phase
are comparable. It should be noted that at high Ag ion
concentration in aqueous solutions, the rate of ion
exchange may be even higher, but the crystal thus
grown would be of poorer quality and may be fractured
because of the stresses which arise because the blocks
of the single crystal do not have enough time to get
rearranged. If ion exchange takes place in the solutions
of lower concentrations, the process takes more time
and an increase in the amount of the sodium-containing
β phase becomes more obvious.

Thus, the study of the exchange of Na and Ag ions
in Na3Sc2(PO4)3 single crystals in the aqueous solutions
with low AgNO3 concentrations showed that it is possi-
ble to obtain simultaneously within one crystalline
sample the phases possessing the ferroelectric, ionic,
and superionic properties.
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Abstract—The axial circular-dichroism spectrum of a synthetic amethyst crystal has been studied for the first
time. Bands both of the positive and negative signs are revealed. New information on the color centers of ame-
thyst and their electronic structure is obtained. © 2005 Pleiades Publishing, Inc.
INTRODUCTION
Amethyst is a semiprecious stone; it is, in fact,

quartz with color varying from bluish lilac to reddish
violet. Amethyst is widespread in nature. At present,
there are several methods to grow crystals of synthetic
amethyst [1]. Recent exhaustive studies [1, 2] showed
that amethyst acquires its color under the influence of
X-ray or gamma radiation only in the crystals contain-
ing trivalent iron as a structural impurity. The nature of
color centers of amethyst crystals has been repeatedly
discussed in literature on the basis of various suggested
models of color centers [2]. These models were created
proceeding mainly from the experimental EPR data and
optical spectra. However, none of these models could
satisfactorily explain all the sets of experimental data.

The absorption spectra of various oxide matrices
containing tetrahedrally coordinated iron (Fe2+ and
Fe3+) and the absorption spectra of amethyst turned out
to be different [3]. Therefore, it was assumed that,
under the action of the ionizing radiation, the trivalent
iron ions initially present in quartz acquire a higher
degree of oxidation +4. The [FeO4]4– centers thus
formed contribute to amethyst color. The EPR spectra
of irradiated quartz crystals, which, being irradiated,
acquired the amethyst color, contained three lines char-
acteristic of the system with the spin S = 2 [4]. Such
spectra are observed in the case of the 3d6 (Fe2+) and
3d4 (Fe4+) configurations. It is natural that Cox [4] had
to consider the alternative when interpreting the EPR
spectra. Taking into account the results obtained in [3],
he preferred the Fe4+ configuration.

Obviously, the parallel increase in the color inten-
sity and a decrease in the intensity of the primary EPR
spectrum cannot give unique information about the for-
mation in the crystal of the centers of only one type,
namely, [FeO4]4+ centers. Indeed, the attempts to inter-
1063-7745/05/5003- $26.00 0461
pret the amethyst absorption spectra within the frame-
work of [FeO4]4+ color centers gave somewhat ambigu-
ous results [2, 5]. There are no reliable data on the
experimental absorption spectra of the [FeO4]4+ com-
plex either [6], because oxidation degree +4 is quite
unusual for iron ions.

Thus, the only prerequisite indicating the presence
of Fe4+ ions in amethyst are the EPR data. Publication
[4] triggered numerous studies of EPR spectra of ame-
thyst (see, e.g., [2]) and, although these studies gave
some useful information on the fine structure of the
EPR spectra, no other data directly related to the
assumed color centers have been published. This leads
to the assumption that the information obtained by the
EPR methods is insufficient and one has to invoke some
other physical methods to study color centers in ame-
thyst. In particular, the degree of iron oxidation was
studied by X-ray spectral analysis [7]. This study was
dedicated to the X-ray absorption spectrum of amethyst
and revealed the transitions to the 2s and 2p orbitals.
The results obtained were somewhat surprising. No
traces of Fe4+ ions were found in the spectrum; it was
also established that two thirds of iron impurities are in
the Fe2+ state. Another promising method of studying
the iron state is Mössbauer spectroscopy. Synthetic
quartz diffusely doped at high temperature with the
57Co isotope decomposed with the formation of 57Fe
[8]. It was established that most of iron in quartz has the
oxidation degree +2.

The above short review leads to the conclusion that
the problem of the structure of amethyst color centers
in quartz has not been completely solved as yet.

To obtain new information on amethyst color cen-
ters and their electronic structure, we used the method
of circular dichroism spectroscopy.
© 2005 Pleiades Publishing, Inc.
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The absence of published data on the gyrotropic
characteristics of amethyst is explained by the fact that,
in distinction from quartz (uniaxial optically active
crystal), natural amethyst crystals are biaxial. The angle
2V between the optic axes of amethyst (both natural and
synthetic) was determined in [9–11]. The measure-
ments were performed on both colorless and colored
parts of the crystals. Biaxiality was revealed only in the
colored parts of the crystals, and the angle 2V ranged
from 0° to 12° [10]. According to [11], the 2V angles
measured on natural amethyst ranged within 8°–12°. It
is commonly accepted that formation of biaxiality in
amethyst crystals is associated with the nonuniform
arrangement of iron over the equivalent positions of the
unit cell with the symmetry C2 [2]. The nonuniform
iron distribution also gives rise to pleochroism of ame-
thyst crystals [2, 12].

We measured experimental axial absorption spectra
and circular dichroism of the samples of synthetic ame-
thyst crystals grown by the method described elsewhere
[1]. The study of these crystals in polarized light gave
conoscopic figures that revealed no noticeable biaxial-
ity. The measurements were performed on the 0.3–
1.0-mm-thick z-cuts of amethyst crystals. The absorp-
tion spectra were recorded on Specord M-40 and
Lambda spectrophotometers; the circular dichroism
spectra, on a Mark 3S (Jobin Yvon) dichrograph.

RESULTS AND DISCUSSION

The axial absorption spectra (Fig. 1, solid line 1)
showed a number of bands with the maxima in the
vicinity of 930, 540, 400, 350, and 230 nm. The posi-
tions of the band maxima differ from the positions of
the respective bands in orthoaxial absorption spectra
[2, 5, 13]. The maxima of the dichroism spectra
(dashed line 1) also shown in Fig. 1 are considerably
displaced with respect to the absorption maxima. The
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Fig. 1. Axial absorption (solid line) and circular dichroism
(dashed line) spectra of (1) the initial amethyst crystal and
(2) the amethyst crystal annealed in air at T = 400°C.
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spectrum has a band with the maximum at λ1 ~ 920 nm
of the negative sign and the bands of the positive sign
with the maxima at λ2 ~ 560, λ3 ~ 400, λ4 ~ 330, and
λ5 ~ 270 nm.

Naturally, a problem arises—how to interpret these
bands and establish their relation to the respective elec-
tron transitions. If one assumes that the amethyst color
is determined by the electron transitions of tetravalent
iron with the configuration 3d4 , then, according to the
Orgel and Tanabe–Sugano diagrams, there should exist
only one spin-allowed transition in the crystal field
within the framework of the symmetry Td, namely,
5T2  5E. Other transitions are spin-forbidden, and
the corresponding bands should have intensities much
lower than the intensities of the respective absorption
bands. However, the experimental data (Fig. 1) show
that the intensities of the bands in the near IR and visi-
ble range of the spectra have comparable values. It is
assumed [5] that the band with the maximum at λ ~
935 nm in the orthoaxial absorption spectrum is caused
by the transition in the crystal field, or, more exactly, by
the transition from the components of the state T split
by the crystal field to the components of the split E
state, whereas the bands of shorter wavelengths are
caused by the transitions accompanied by charge trans-
fer. In this case, the intensities of the bands caused by
charge transfer are considerably higher than the inten-
sity of the band caused by transition in the crystal field.
Usually, the intensities of the absorption bands caused
by transitions accompanied by charge transfer exceed
the intensities of the bands caused by transitions in the
crystal field by 2–3 orders of magnitude. It should be
noted that sometimes [1] the 5T2  5E transition is
associated with the appearance of the band with the
maximum at λ ~ 540 nm. The intense absorption bands
observed (350, 400, and 930 nm) are attributed to the
centers not related to Fe4+ ions. Thus, the following
scheme was suggested in [11]: a broad absorption band
with the maximum at 930 nm is caused by the transition
from the split levels of the state 5T to the sublevels of
the only quintet state 5E of an interstitial Fe2+ ion (3d6).
These ions (centers I6) may have appeared due to irra-
diation. However, the last statement contradicts the data
obtained from circular dichroism spectra since the non-
structurized impurities cannot give any contribution to
the optical activity of crystals. In turn, the band in the
vicinity of 350 nm is associated with the 6A  4E(4A)
transition of trivalent iron Fe3+(3d5) [14].

If one takes into account that the identification of the
band having the maximum at λ = 930 nm with the
5T2  5E transition of tetravalent iron is correct and
uses the splitting scheme of the Td states and the posi-
tions of their split components, then the behavior of cir-
cular dichroism in the region of this transition becomes
consistent with the interpretation made in [5].

Indeed, the shift of the maximum of the circular
dichroism band with respect to the maximum of the
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 3      2005
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corresponding absorption spectrum band to the region
of shorter wavelengths indicates that the A state pos-
sesses the maximum energy among the split A and two
B components of the excited tetrahedral states. In the
case of the ground state, the picture is opposite; i.e., the
A component possesses the minimum energy. The data
on the quartz structure whose fragment is shown in
Fig. 2 indicates that the C2 axis of a [SiO4] tetrahedron
is directed normally to the C3 axis of the crystal [11]. In
this case, the A–A transitions would give the maximum
contribution to the axial circular dichroism spectrum
because the polar vector of the electric dipole and the
axial vector of the magnetic dipole of the above elec-
tron transition are directed along the C2 axis.

Therefore, the rotation force of the transition (inten-
sity of the circular dichroism band) determined by the
pseudoscalar product of the projections of these vectors
onto the plane normal to the wave vector directed along
the C3 axis has the maximum value. In the case of the
A–B transitions, the electric and magnetic moments lie
in the plane parallel to the C3 axis. These moments are
not determined by the symmetry conditions and may
have arbitrary directions. The maximum value is
attained if the rotation force of these transitions is com-
parable with the rotation force of the A–A transitions
and if these vectors are collinear and orthogonal to the
C3 and C2 axes of the unit cell. Thus, the result obtained
confirms the arrangement of the split component of the
T states suggested in [5].

It should be noted that the band intensities in the cir-
cular dichroism spectrum are very high. Thus, the crude
estimation for the transition in the vicinity of 560 nm
yields the anisotropy factor g = ∆ε/ε = 5 × 10–2. This
result indicates that the centers responsible for ame-
thyst color are incorporated into the crystal lattice.

Heating of an amethyst crystal in air up to 400°C
almost completely discolors the crystal. The long-
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C2

A –
A

Fig. 2. Orientation of a SiO4 tetrahedron in quartz [11].
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wavelength bands in the absorption spectra disappear
(Fig. 1, solid line 2). A dramatic increase in absorption
in the region λ < 300 nm caused by the transitions
accompanied by charge transfer of tetrahedral Fe3+ did
not allow us to perform measurements in the short-
wavelength range of the spectrum. Therefore, we mea-
sured absorption and circular dichroism of nonirradi-
ated plates of synthetic quartz with much lower Fe3+

concentrations. The absorption spectra (Fig. 3, curve 1)
showed the bands with the maxima at  = 240 nm and

 = 195 nm caused by the transitions accompanied by
charge transfer of tetrahedrally coordinated Fe3+,
whereas the circular dichroism spectrum showed the
band with the maximum at λ ~ 237 nm (Fig. 3, curve 2).

It was also assumed [15] that absorption spectra
determining amethyst color are associated with elec-
tron transitions of several centers. This assumption
seems to be quite reasonable if one takes into account
the data on the absorption spectrum of X-ray-irradiated
quartz-like berlinite crystal (AlPO4) [16]. Comparing
the absorption spectra of an irradiated berlinite crystal
with the absorption spectra of an amethyst crystal, one
may see rather good correspondence in the location of
the band maxima in the region 560–310 nm (see table).
Therefore, there are grounds to believe that, similar to
berlinite, absorption in amethyst in this spectrum range
is associated with electron transitions in defects formed
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Fig. 3. (1) Absorption and (2) circular-dichroism spectra of
undoped synthetic quartz crystals.

Positions of the absorption-band maxima (λmax) in spectra of
amethyst and irradiated berlinite crystals

Crystal λmax, nm

Amethyst 936 540 400 350 225–195

Berlinite (irradiated) 520 394 310 220
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due to replacement of a silicon atom by a foreign atom
and a hole at the π orbital of oxygen.

As was indicated above, the transition in the vicinity
of 930 nm in the circular dichroism spectrum manifests
itself as a band of the negative sign, which makes it
unique among other transitions. It is well known that, as
a rule, the bands in the crystal field of the complexes of
3d elements have the same sign determined by the
absolute configuration of the crystal lattice [16]. The
opposite sign of circular dichroism bands with respect
to the sign of the band at ~920 nm in the visible and
near UV range of the spectrum may be an indication of
the fact that the former bands and the band at ~930 nm
are of different nature. It is possible to assume that the
band with the maximum at 930 nm is caused by the
5T2  5E transition of a tetravalent iron in the crystal
field [5], whereas the bands in the visible and near UV
range of the spectra are caused by the transitions with
charge transfer of other centers. The role of such cen-
ters in amethyst may be played by the defects analo-
gous to the defects in an irradiated berlinite crystal; the
models of such centers are suggested in [15].

CONCLUSIONS

The axial circular dichroism spectra of synthetic
amethyst crystals obtained by irradiation of iron-con-
taining quartz crystals and preserving the optical uniax-
iality of pure quartz have been studied for the first time.
The results obtained allowed us to formulate additional
criteria for constructing a model (or, possibly, a set of
models) of the structural color centers in amethyst. The
diversity of these centers characterized by different
concentrations determines the real color of amethyst
crystals.
C
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Abstract—The studies of the media with an open surface of wave vectors (SWV) undertaken by the author in
the 1970s are continued. A number of new specific features of these media are revealed. It is shown, in partic-
ular, that the focusing upon refraction at a plane boundary (a phenomenon that has recently attracted much
attention and is related to the media whose permittivity and permeability are simultaneously negative) can also
be realized in a nonmagnetic medium with an open SWV. The boundary problem for a plate and a semi-infinite
crystal with an open SWV is solved, and the qualitative differences from the media with a closed SWV are
revealed. Biaxial nonmagnetic media and nonmagnetic media in the presence of negative components of the
dielectric and magnetic tensors are briefly considered. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Traditional optics deals with the media for which all
components of the dielectric tensor εij are positive. The
surface of wave vectors (SWV), the Fresnel surface,

and the characteristic surfaces of the tensors εij and 
are all closed [1–3].

The uniaxial media for which one component of the
dielectric tensor εij is negative were considered in [4–
7]. The presence of a negative component does not rule
out the possibility of the wave propagation without
attenuation, but only limits the range of directions in
which an undamped extraordinary wave can propagate.
In this case, the SWV and the two above-mentioned
surfaces are open (namely, they are hyperboloids)
rather than closed, as in traditional optics. In particular,
the Fresnel ellipsoid is transformed into a hyperboloid.
One more feature revealed (to be used in Section 2) is
that the wave vector ke and the Poynting vector Se of a
refracted extraordinary wave are on different sides with
respect to the normal to the boundary.

Recent attention to the development of isotropic
media with simultaneously negative ε and µ [8, 9] is
related, in particular, to the problem of focusing of a
diverging beam upon its refraction at a plane boundary.
The focusing is due to the antiparallel orientation
(ascertained in [10]) of the k and S vectors in these
media [11].

In Section 2 of this study, it is shown that the focus-
ing upon refraction at a plane boundary occurs also in
nonmagnetic uniaxial anisotropic media (considered in
[4]) with one negative component of the εij tensor. The
focusing is possible due to the above-mentioned

εij
1–
1063-7745/05/5003- $26.00 0465
unusual mutual orientation of the wave vector and the
Poynting vector. In Section 3, the anisotropic media for
which both εij and µij tensors have negative components
are briefly considered. At the end of Section 3, the prep-
aration of uniaxial anisotropic structures with such ten-
sors εij and µij is discussed. Section 4 is devoted to brief
consideration of biaxial nonmagnetic media. In Section
5, the boundary problems for the MgF2 crystal, whose
tensor εij has a negative component [12], are consid-
ered. Finally, it is worth noting study [13], which is also
devoted to the specific features of crystals in the pres-
ence of a negative component of the dielectric tensor.

2. UNIAXIAL MEDIA WITH AN OPEN SURFACE 
OF WAVE VECTORS

Consider an optically uniaxial medium. When the
components ε⊥  and ε|| of the tensor εij along the direc-
tions perpendicular (ε||) and parallel (ε⊥ ) to the optical
axis have different signs, the SWV equation for an
extraordinary wave

(1)

describes a hyperboloid rather than the traditional ellip-
soid. Let the z axis be parallel to the optical axis of the
medium. Figure 1 shows the section of the hyperboloid
(1) by the plane y = 0.

Let a plane wave be incident on the medium bound-
ary from vacuum:

(2)

kex
2

key
2

+( )ε||
1–

kez
2 ε⊥

1–
+ ω/c( )2

=

E r t,( ) E i kxx kzz ωt–+( ).exp=
© 2005 Pleiades Publishing, Inc.
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The requirement that the tangential components of the
incident, reflected, and refracted waves should be equal
results in the following expression for the normal com-
ponent kez of the wave vector of the refracted extraordi-
nary wave:

(3)

Two signs in Eq. (3) correspond to two refracted-wave
vectors ke1 and ke2 in Fig. 1. The sign in front of the root
is chosen on the basis of the requirement that the

kez ω/c( )2
kx

2
/ ε||( )+[ ]ε ⊥{ }

1/2
, ε||  = –ε||( ).±=

A M O N A' x

z

Se1

Se2

ke2

ke1k

Fig. 1. SWV shape and the determination of the directions
of the wave vector ke and the Poynting vector Se. The
hyperbolas are the lines of intersection of the surface of
extraordinary-wave vectors by a plane passing through the
optical axis (z axis) of the medium at ε⊥  > 0 and ε|| < 0. k is
the incident-wave vector, and MO = ON = kx is the tangen-
tial component of all wave vectors (of the incident,
reflected, and refracted waves; the reflected-wave vector is
not shown). The z axis is directed into the medium. The
interface is perpendicular to the optical axis. The absorption
is absent.

A

F

P

α

β

1

Se

B

Fig. 2. The incident ray is denoted by 1. The energy of the
refracted ray flows towards the AB normal.
C

refracted-wave energy flow from the boundary into the
medium rather than to the boundary. The wave vector
ke2 complies with this requirement because the Poynt-
ing vector (whose direction is determined as the direc-
tion of the external normal to the SWV surface) is
directed into the medium specifically when ke2 (rather
than ke1) is taken as the refracted-wave vector (see also
formulas (4) below). Hence, the Pointing vector of the
refracted wave is Se2 (rather than Se1). Figure 1 corre-
sponds to the case when the imaginary parts of εij and

ke are absent,  = ε|| < 0, and  = ε⊥  > 0.

The calculation taking into account the imaginary
parts of εij results in the following expression for the
Poynting vector components averaged over the light
wave period (the wave is incident from vacuum,

 = 0):

(4)

where Eex is the amplitude of the tangential component
of the electric field of the refracted wave (single and
double primes indicate the real and imaginary parts of
the corresponding values, respectively). Under the
assumption that  > 0, the requirement that  > 0 is

satisfied at  > 0, i.e., by choosing the vector ke2

(rather than ke1) as the refracted-wave vector. For our

choice of the signs of  (  < 0,  > 0), the tangential

component of the Poynting vector  is, according to
(4), negative.

On the basis of this mutual arrangement of ke and Se

(revealed in [4]), let us consider how a beam diverging
from a point source is focused upon refraction at a
plane boundary.

Since  > 0 and  < 0, the energy of the beam
incident from a point source A (Fig. 2; the index “2” in
Se is omitted) at an angle α on a given point P of the
boundary flows, after refraction, towards the normal AB
to the boundary and the refracted ray intersects the nor-
mal at the point F at a certain angle β.

To make the rays originating from a point source
and incident from vacuum on different points of the
boundary converge at one point (F) upon refraction, the
ratio  must be independent of α. This leads
to the relation

(5)

ε||' ε⊥'

kx''

Sez ε⊥' kez' ε⊥''kez''+( ) f , Sex ε⊥ /ε||
2ε||' kx' f ,= =

f ω 8π kez
2( )

1–
Eex

2
kez'' z–( ),exp=

Sez ε⊥'

kez'

εij' ε||' ε⊥'

Sex

Sez Sex

α / βtantan

1 αsin
2

–( )
1/2–

ε||
2 ε⊥

2–

× ε⊥' ϕcos ε⊥'' ϕsin+( ) ε||'( ) 1–
a

2
b

2
+( )

1/4
const,=
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where

(6)

The constancy of the left-hand side of relation (5)
can be satisfied at small angles of incidence. Figure 3
shows the dependence of the ratio  on the
angle of incidence.

Thus, in the media with an open SWV, focusing
occurs, which is due to specific mutual orientation of
the wave vector and the Poynting vector, this orienta-
tion being, in turn, related to the open character of the
SWV.

When absorption is taken into account (this was
done in the above consideration), the SWV is not a
hyperboloid but is closed near the asymptotes, existing
in the absence of absorption [5]. However, the concave
character inherent in the hyperboloid is retained. There-
fore, a medium will be referred to as a medium with an
open SWV even in the case that the SWV, although
being actually closed, has concave regions. It is the
concavity that results in the specific mutual orientation
of the vectors ke and Se.

3. MEDIA WITH NONZERO MAGNETIC 
SUSCEPTIBILITY

Isotropic media with simultaneously negative scalar
ε and µ were considered in [10]. The properties of such
a medium are identical for any polarization of a wave,
while the wave vector is antiparallel to the Poynting
vector. We showed that the antiparallel orientation of ke

and Se can also be implemented in the media in which
the permittivity and permeability have different signs
along different directions. In this case, the implementa-
tion of the antiparallel orientation of the above two vec-
tors depends on the wave polarization.

In fact, the dispersion equation for the medium with
the tensors εij and µij has the form

(7)

ϕ 1
2
--- b/a( ),arctan=

a 1 ε||
2– ε||' αsin

2
–( )ε⊥' ε||

2– ε||''ε⊥'' αsin
2

–[ ] ,=

b 1 ε||
2– ε||' αsin

2
–( )ε⊥'' ε||

2– ε||''ε⊥' αsin
2

+[ ] .=

β/ αtantan

ω/c( )2 ε3µ3kz
4 ε2µ2ky

4 ε1µ1kx
4

+ +{

+ ε1µ3 ε3µ1+( )kx
2
kz

2 ε3µ2 ε2µ3+( )ky
2
kz

2
+[

+ ε1µ2 ε2µ1+( )kx
2
ky

2 ] }

– ω/c( )4 ε3µ3 ε1µ2 ε2µ1+( )kz
2{

+ ε2µ2 ε1µ3 ε3µ1+( )ky
2 ε1µ1 ε2µ3 ε3µ2+( )kx

2
+ }

+ ω/c( )6ε1ε2ε3µ1µ2µ3 0,=

ε1 εxx, ε2 εyy, ε3 εzz,= = =

µ1 µxx, µ2 µyy, µ3 µzz.= = =
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In the simplest case kx = ky = 0, for two mutually per-
pendicular polarizations, we have for kez

(8)

Let us assume that ε1 < 0, µ2 < 0, ε2 > 0, and µ1 > 0.
Then, both kez1 and kez2 are real. For the wave with
kez = kez1 (Ex ≠ 0, Ey, z = 0, Hy ≠ 0, Hx, z = 0), the wave
vector and the Poynting vector are antiparallel. For the
wave with kez = kez2 (Ex, z = 0, Ey ≠ 0, Hy, z = 0, Hx ≠ 0),
the noted vectors are parallel. Thus, for the same prop-
agation direction, the handedness of the same medium
is different for different wave polarizations.

The medium discussed in this Section can be pre-
pared artificially using artificial media with ε < 0 and
µ < 0 that were developed in [8, 9]. Let us consider
briefly this possibility.

It is known that a structure composed of different
alternating isotropic layers is anisotropic [14]. Let ε1
and ε2 and l1 and l2 be, respectively, the permittivities
and thicknesses of the layers of the first and second
types. Then, the permittivities of the structure along the
direction normal to the layers and along the directions
parallel to them are [14]

(9)

Similar relations are easily obtained for the correspond-
ing permeabilities:

(10)

(µ1 and µ2 are the permeabilities of the layers with the
thicknesses l1 and l2 , respectively). If, for example, ε1 >
0, µ1 > 0, ε2 < 0, µ2 < 0, and l1 = l2 , then ε⊥  < 0 and µ|| <
0 when |ε1| > |ε2 | and |µ1| < |µ2 |. In this case, according
to Section 3, in a wave with the electric field perpendic-

kez1
2 ω/c( )2ε1µ2, kez2

2 ω/c( )2ε2µ1.= =

ε⊥ ε1ε2 l1 l2+( )/ ε1l2 ε2l1+( ),=

ε|| ε1l1 ε2l2+( )/ l1 l2+( ).=

µ⊥ µ1µ2 l1 l2+( )/ µ1l2 µ2l1+( ),=

µ|| µ1l1 µ2l2+( )/ l1 l2+( )=

0.352

0.348

0.346

0.344

0.05 0.10 0.15 0.20
α, rad

tanβ/tanα

Fig. 3. Dependence of the ratio  on the angle of
incidence at ε|| = –7.3 + 0.9982i and ε⊥  = 6.8629 + 0.273i.
In the range 0 ≤ α ≤ 0.1 rad, this ratio is constant accurate
to 0.7%.

β/ αtantan
5
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Fig. 4. (a) SWV shape for an extraordinary wave and (b) the characteristic surface of the tensor εij in the case when εxx < 0 and
εzz > 0.
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Fig. 5. Section of the SWV by coordinate planes for (a) εxx > 0, εyy > 0, and εzz < 0 and (b) εxx > 0, εyy < 0, and εzz < 0. For (a) and
(b), |εxx | > |εyy | > |εzz |.
ular to the layers the wave vector and the Poynting vec-
tor are antiparallel.

For µ1 = µ2 = µ, we obtain an anisotropic structure
with permeability µ and the permittivities (9). Provid-
ing opposite signs of ε⊥  and ε||, we obtain a dielectri-
cally anisotropic medium with an open SWV.

4. BIAXIAL MEDIA

Before considering the SWV and the characteristic
surfaces of biaxial crystals, we present, for complete-
ness, these surfaces for uniaxial crystals. Figure 4
shows the shapes of (a) the SWV and (b) the character-
istic surface of the tensor εij for a uniaxial crystal. The

characteristic surface of  (not shown in Fig. 4) has
the same shape as that of the tensor εij. The characteris-
tic surface of the tensor εij, which is closed at εij > 0,
also proves to be open: the Fresnel ellipsoid is trans-
formed into a hyperboloid.

εij
1–
C

We now turn to biaxial crystals. Let us consider two
cases: (1) εxx > 0, εyy > 0, εzz < 0; (2) εxx > 0, εyy < 0, and
εzz < 0. Figure 5 shows the sections of the SWV by
coordinate planes in the first octant. The letters c, e, and
h denote circle, ellipse, and hyperbola, respectively. As
can be seen from the figures, there are directions along
which only one wave can propagate in the medium. In
Fig. 5a, such a direction lies in the yz plane and passes
through the origin of coordinates and the point A, at
which the circle and the hyperbola intersect. Because of
the symmetry, there is a direction that is symmetrical to
the above-mentioned direction with respect to the xz
plane. In Fig. 5b, only one wave can propagate in any
direction. It is worth noting that a situation when only
one wave can propagate in one direction occurs also in
single-refracting media [1]. However, the physical pic-
tures in single-refracting media and in the media con-
sidered here are different. In single-refracting media,
the phase velocity is independent of the polarization;
therefore, there is no birefringence. In the media under
consideration, the birefringence occurs, but one of the
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 3      2005
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Fig. 6. Dependence of the power reflectivity R on the angle ϕ between the optical axis of the crystalline plate and the normal to its
boundaries: (a) ε|| = 7.3 + 0.9982i and ε⊥  = 6.8629 + 0.2973i (open SWV) and (b) ε|| = 7.3 + 0.9982i and ε⊥  = 6.8629 + 0.2973i

(closed SWV). In both cases, the plate thickness is 10–3 cm.
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Fig. 7. Dependence of the power reflectivity R on the angle ϕ between the optical axis of a semi-infinite crystal and the normal to
its boundary. All parameters (except d) are the same as in Fig. 6.

R(ϕ)
waves is a damped wave. Note also that Fig. 5 corre-
sponds to no absorption.

5. BOUNDARY PROBLEM FOR A PLATE 
AND SEMISPACE

Consider light (electromagnetic wave) propagation
through a layer of an optically uniaxial medium with
different signs of the components of the real part of the
tensor εij in the case of the normal incidence for differ-
ent orientations of the optical axis with respect to the
normal. Specifically, we consider the MgF2 crystal. Let
the plate occupy the region 0 ≤ z ≤ d and the wave

(11)

be incident from the region 0 ≤ z (vacuum) on the
boundary z = 0. The plane of incidence is the xz plane;

Eext
z t,( ) Eext

i ω/c( )z ωt–( )exp=
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the electric field vector of the incident wave and the
optical axis of the crystal lie in the same plane. Thus,
only an extraordinary wave will be excited in the plate;
specifically it is this wave that will exhibit the specific
features discussed above.

For the electric fields of the transmitted and
reflected waves (E t and E r, respectively), we have

(12)

Ex
t

2Ex
ext

A2 A3–( )=

× i kez1 kez2–( )d/ 1 A2+( ) 1 A3–( ) ikez1dexp(exp

– 1 A2–( ) 1 A3+( ) ikez2dexp ),

Ex
r

1 A2–( ) 1 A3+( ) 2 A2 A3–( )( ) 1–
Ex

t
,=

A2 c/ω( )kez2, A3 c/ω( )kez1,= =

kez1 2, ω/c( ) ϕ /ε⊥cos
2( ) ϕ /ε||sin

2( )+( )
1/2–

,+−=
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where ϕ is the angle between the optical axis of the
crystal and the normal to the crystal boundary.

Figure 6 shows the dependences of the power reflec-
tivity R on ϕ for the plates cut from the crystals with the
open and closed SWVs. In going from one crystal to the
other, the quantities  and the magnitudes of  do

not change; what changes is the sign of one of the 
components.

Figure 7 shows the same dependences as in Fig. 6
but for a semi-infinite crystal. Comparison of the curves
shows that the presence of the negative component
(responsible for the SWV concavity) qualitatively
affects the behavior of the R(ϕ) curves. In particular,
when  has a negative component, new extrema
appear in the region of rapid variation in R(ϕ) as com-
pared with the case which all  components are posi-

tive. In the presence of a negative component of , the
quantity R(ϕ) takes values close to unity as ϕ
approaches π/2 (although the incidence is normal). In
this context, it should be noted that, at  = 0,  < 0,
and ϕ = π/2, we would have a complete reflection at
normal incidence: the permittivity at the boundary
would be real and negative for the field of the incident
wave. Note also that for an open SWV R(ϕ) varies
within a much wider range than in the case of the
medium with a closed SWV (compare Figs. 6a, 6b and
Figs. 7a, 7b).
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Abstract—The influence of the finiteness of the anchoring energy of a director and the value of flexoelectric
polarization on the threshold of a spatially periodic reorientation of the director and the period of the arising
structure is considered for a planar nematic cell. The threshold and the period are calculated numerically and
the corresponding analytical expressions are obtained for the case of a strong anchoring of the director. It is
shown that for a finite azimuthal anchoring energy the range of admissible values of the flexoelectric parameter
ν widens, while for a finite polar anchoring energy this range narrows as compared to the case of an absolutely
rigid orientation of the director at the cell surface. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

An interest in the phenomena of the director reori-
entation in nematic liquid crystals (NLCs) under an
external electric field, in particular, in the threshold
reorientation (the Freedericksz effect), is related to
their wide application in various optoelectronic
devices. The theory of these phenomena has been
developed quite well [1–3]. It was shown that in a num-
ber of cases a spatially periodic structure of the director
field is generated at the threshold reorientation in the
plane of an NLC cell. This phenomenon was consid-
ered in [4, 5] for the planar alignment of the director in
an NLC with flexopolarization. It was shown in [6] that
a periodic structure of the director field may occur even
without flexopolarization, provided that the Frank elas-
tic constants differ significantly. The above studies used
the model of an infinitely rigid anchoring of the director
at the cell surface. However, although these orienta-
tional transitions are bulk effects, their characteristics,
such as the threshold field and the degree of the director
reorientation, depend significantly on the interaction
between the nematic and the cell surface. The influence
of the cell surface is so significant that a so-called
“spontaneous” transition, or, more exactly, the Freeder-
icksz transition induced by changing conditions at the
surface, may occur [7–10].

The influence of the surface on the threshold spa-
tially periodic reorientation of the director by an elec-
tric field was considered in [11] for a homeotropically
aligned cell. The threshold field and the spatial period
of the director were found in terms of the anchoring
energy of the director at the surface and flexoelectric
coefficients of NLC. In this study, we consider the
influence of the surface on the threshold spatially peri-
odic director reorientation in a planar flexoelectric
NLC. In this case, the flexoelectric polarization enters
1063-7745/05/5003- $26.00 0471
not only the equations for the director (as in the homeo-
tropic case) but also the boundary conditions for it.

EQUATIONS FOR THE DIRECTOR

Consider a plane–parallel flexoelectric NLC cell
bounded by the planes z = –L/2 and z = L/2 with initial
planar orientation along the 0x axis subjected to an
external dc electric field E = (0, 0, E).

In the one-constant approximation, the free energy
of the NLC cell can be written as

(1)

Here, n is the director; Fel is the Frank elastic energy;
FE and Fd are, respectively, the anisotropic and flexo-
electric contributions to the interaction energy of the
NLC with an electric field; FS is the surface free energy
of the NLC taken in the form of the Rapini potential
[12]; εa = ε|| – ε⊥  > 0 is the static dielectric anisotropy;
e1 and e3 are the flexoelectric coefficients; Wθ and Wϕ
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are, respectively, the polar and azimuthal anchoring
energies of the director at the cell surface; and θ and ϕ
are the deviation angles of the director in the planes xz
and xy, respectively.

In planar geometry, the threshold director reorienta-
tion results in the formation of a spatially periodic
structure along the 0y axis [4, 5]. Hence, the director
will be sought in the form

(2)

where i, j, and k are the unit vectors of the Cartesian
coordinate system.

For small deformations of the director (|ϕ|, |θ| ! 1),
minimization of the free energy (1) with respect to θ
and ϕ yields the following steady-state equations:

(3)

with the boundary conditions

(4)

where e = , e0 = e1 + e3, and e = e1 – e3 ≠ 0.

If we take into account the symmetry of system of
equations (3), the solution to it is sought in the form

(5)

where the functions θ1(z) and ϕ1(z) satisfy the follow-
ing equations:

(6)

Setting

(7)

in (6), we arrive at a homogeneous system of two alge-
braic equations to determine the unknown coefficients
θ10 and ϕ10. The condition for nontrivial solution of this
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system gives the equations for the values of p:

(8)

Solving (8), we obtain p = ±p1, ±ip2, where p1 and p2
are real quantities:

(9)

We also find from (6) that

Then, the general solution to system of equations (6) is

(10)

where

Here, ai and bi (i = 1, 2) are arbitrary constants deter-
mined from the boundary conditions (4).

INFLUENCE OF THE FINITENESS
OF AZIMUTHAL ANCHORING ENERGY

Let us assume that the polar anchoring energy Wθ of
the director at the cell surface is infinitely high (Wθ =
∞), while the azimuthal anchoring energy Wϕ can be
arbitrary. In this case, the boundary conditions (4) take
the form

(11)

Subsituting solution (10) into the boundary condi-
tions (11), we obtain a homogeneous system of four
algebraic equations to determine the coefficients ai and
bi (i = 1, 2). The condition for nontrivial solution of this
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system yields the equation

(12)

Solving this equation together with relations (9), we
obtain the electric field E as a function of the parame-
ter q.

In the limiting case of absolutely rigid anchoring of
the director at the substrate, Wϕ = ∞, we find from

Eq. (12) that p1 =  (the lowest nonzero value of p).

Accordingly, the dispersion dependence E∞(q) is
derived from (9):

(13)

where ν =  > 0.

The instability threshold is determined by the mini-
mum in the curve E∞(q). Minimizing dependence (13),
we obtain

(14)

where the wave number of the forming structure of the
director is

(15)

which coincides with the result of [4]. It can be seen
that in the case of absolutely rigid anchoring of the
director at the cell surface the instability associated
with the formation of the periodic structure of the direc-
tor can arise only when ν < 1.

For strong (but not absolutely rigid) anchoring
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selves in Eq. (12) to the terms linear in , we arrive at

Accordingly, we find from (9) that

(16)

Minimizing the latter expression with respect to q,
we obtain the threshold value of the electric field in the

approximation linear in :

(17)

where the corresponding wave number is

(18)

if ν < 1 and εϕ(1 – ν) @ 1, or

(19)

if |1 – ν| ! 1.
It can be seen that the threshold field always

decreases with a decrease in the azimuthal anchoring
energy εϕ. At the same time, at ν < 1, the wave number
corresponding to this threshold can both decrease (if
0 < ν < 1/3) and increase (if 1/3 < ν < 1) with decreas-
ing εϕ. It is noteworthy that, as can be seen from (19),
at a finite anchoring energy εϕ the periodic structure of
the director appears also at the parameter ν greater than
unity (depending on the anchoring energy εϕ, specifi-

cally, at ν < 1 + ).

To determine the threshold values of Ec and qc for an
arbitrary azimuthal anchoring energy εϕ, one has to
solve Eq. (12) numerically. However, it should be noted
that the condition of the appearance of the threshold
periodic structure of the director field is as follows:
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Then, differentiating Eq. (12) with respect to q at the
point q = 0 and performing some algebraic transforma-

1
εϕ
-----

p1
π
L
--- 1

1
εϕ
-----eE

2
eE

2( )
2

2eEq( )2
+–

eE
2( )

2
2eEq( )2

+
-------------------------------------------------------------+

 
 
 

.=

E q( )

=  E
∞

q( ) 1
2
εϕ
-----

q
2 π

L
--- 

 
2

q
2 π

L
--- 

 
2

+ 
  q

2 ν q
2 π

L
--- 

 
2

+ 
 +

-----------------------------------------------------------------------------–

 
 
 
 
 
 
 

.

1
εϕ
-----

Ec E qc( ) Ec
∞

1 1 ν–
εϕ

------------– 
  ,= =

qc qc
∞

1
1
εϕ
-----3ν 1–

1 ν–
---------------+ 

  ,=

qc
π
2L

----------- 4
εϕ
----- 1 ν–+ ,=

4
εϕ
-----

dE
dq
-------

q 0=

0.<



474 LEDNEI, PINKEVICH
tions, we arrive at the inequality

(21)

which is valid for arbitrary values of the anchoring
energy εϕ. Thus, the range of the flexoelectric parame-
ter ν in which the periodic structure of the director
exists depends strongly on the anchoring energy. At
εϕ  0, the values of ν can be practically arbitrary.

Figure 1 shows the numerically calculated depen-

dences of the threshold field  =  and the cor-

responding wave number Qc = qcL on the azimuthal
anchoring energy εϕ of the director at the cell surface
for different values of the flexoelectric parameter ν. In
numerical calculations, we used the following values of
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Fig. 1. Dependences of (a) the threshold field  and

(b) the wave number Qc on the azimuthal anchoring energy
εϕ for ν = (1) 0.2, (2) 0.5, (3) 0.7, (4) 0.9, (5) 1.2, (6) 1.4,
(7) 1.6, and (8) 1.8.

Ec'
C

the NLC parameters: εa = 0.2 and K = 0.7 × 10–6 d. The
flexoelectric coefficients e1 and e3 were taken from the
range (0.7–2.5) × 10–4 d1/2.

As expected, the threshold electric field Ec increases
with an increase in the anchoring energy εϕ of the direc-
tor at the cell surface and with increasing parameter ν
(Fig. 1a). For the values of the flexoelectric parameter

in the range 0 < ν < 1/3, the period λc =  =  of

the forming spatial structure of the director monotoni-
cally decreases as the anchoring energy εϕ increases
(Fig. 1b). However, for the flexoelectric parameter ν >
1/3, the dependence of the period λc of the spatial struc-
ture of the director on the anchoring energy εϕ becomes
nonmonotonic: as the energy εϕ increases, λc first
decreases to a certain minimal value and then increases.
In the limiting case of absolutely rigid anchoring,
εϕ  ∞, the period approaches (for the values of the
flexoelectric parameter in the range 0 < ν < 1) a certain

constant value  =  specified by expression (15).

It can be seen from Fig. 1b that for each given value
ν > 1 there is a finite critical value of the azimuthal

anchoring energy εϕth =  specified by inequality

(21) (the values of εϕ corresponding to Qc = 0). At εϕ <
εϕth, the Freedericksz transition associated with the for-
mation of a periodic structure occurs, while at εϕ > εϕth

the ordinary Freedericksz transition with a homoge-
neous (along the 0y axis) director field is only possible.

Figure 2 shows the calculated dependences of the
threshold field Ec and the wave number qc on the flexo-
electric parameter ν for different azimuthal anchoring
energies εϕ. The period λc of the forming spatial struc-
ture of the director, as well as the corresponding value
of the threshold electric field Ec, increase with an
increase in the parameter ν. It can be seen from Fig. 2b
that for each given anchoring energy εϕ there is a criti-
cal value of the flexoelectric parameter νth determined
by inequality (21) (the values of ν corresponding to
Qc = 0): at ν < νth the Freedericksz transition with the
formation of a periodic structure of the director occurs,
while at ν > νth the ordinary Freedericksz transition is
observed.

INFLUENCE OF THE FINITENESS OF POLAR 
ANCHORING ENERGY

Now, let us assume that the azimuthal anchoring
energy of the director at the substrate is infinitely high
(Wϕ = ∞), while the polar anchoring energy Wθ is arbi-
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trary. In this case, the boundary conditions (4) take the
form

(22)

Subsituting solution (10) into the boundary condi-
tions (22), we obtain a homogeneous system of four
algebraic equations for the coefficients ai and bi (i = 1,
2). The condition for nontrivial solution of this system
yields the following equation:

(23)
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(b) the wave number Qc on the parameter ν for εϕ = (1) 50,
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where

(24)

In the limiting case of absolutely rigid anchoring

Wθ = ∞, we find from Eq. (23) that p1 =  and the pre-

viously obtained result (14), (15).

In the case of strong anchoring (εθ =  @ 1),

Eq. (23) is solved similarly to the previous case by set-

ting p1 =  – x, where x ! . Restricting ourselves to

the terms linear in , we arrive at
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Accordingly, we find from (9) the dispersion depen-
dence with accuracy up to the first-order terms

(25)

Minimizing expression (25), we obtain the thresh-
old field

(26)
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where the wave number is
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at ν < 1 and εθ(1 – ν) @ 1 or

(28)

at |1 – ν| ! 1.

It can be seen from here that both the threshold field
Ec and the corresponding wave number qc decrease
with a decrease in the polar anchoring energy εθ.
To form the periodic structure of the director, the
flexoelectric parameter ν must satisfy the inequality

ν < 1 – .

For arbitrary values of εθ, we failed to obtain the cri-
terion (20) of the formation of the periodic structure in
an analytical form. The results of the numerical calcu-
lations of the parameter ν as a function of the energy εθ
are shown in Fig. 3 for several values of the parameter

ν0 = . Here, the range ν < νth is the region of exist-

ence of a periodic structure of the director. As can be
seen from Fig. 3, the finiteness of the polar anchoring
energy results in the narrowing of the range of the flex-
oelectric parameter ν in which the periodic structure
exists.

Figure 4 shows the dependences of the threshold
field and the corresponding wave number on the polar
anchoring energy εθ calculated numerically by solving
(23) for several values of the parameter ν. As for the
strong anchoring, the threshold field and the wave num-
ber increase monotonically with an increase in the
anchoring energy εθ for all values of the parameter ν.
The flexoelectric parameter ν0 was set in this case to be
equal to 0.1. The values of ν0 only slightly affect the
obtained dependences Ec(εθ) and qc(εθ).

CONCLUSIONS

Thus, in the case of the initial planar orientation of
the director, the anchoring energy of the director at the
cell surface significantly affects not only the threshold
electric field and the period of the forming structure of
the director field but also the range of admissible values
of the flexoelectric parameter ν. For a finite azimuthal
anchoring energy, the range of admissible values of the
parameter ν widens, while for a finite polar anchoring
energy this range narrows (as compared to the range of
ν in the case of infinitely rigid director anchoring).
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Abstract—The nonstoichiometric Ca1 – xLaxF2 + x phase (x ≥ 0.1) is obtained by mechanochemical synthesis
from CaF2 and LaF3 single crystals. This phase is the first representative of fluorite fluorides obtained by mech-
anochemical synthesis in the MFm–RFn systems (m < n ≤ 4). The average grain size ranges within 10–30 nm.
The temperature dependence of ionic conductivity of the mechanochemically synthesized phase pressurized at
600 MPa (at its high-temperature portion at temperatures exceeding 200–250°C) coincides with the conductiv-
ity of the single crystals of the same composition (Ca0.8La0.2F2.2). The activation energy of ionic conductivity
(0.95 eV) corresponds to migration of interstitial fluoride ions in the crystal bulk. Mechanochemical synthesis
of a multicomponent fluoride material with nanometer grains opens a new chapter in the chemistry of inorganic
fluorides. A decrease of the sintering temperature of the powders with nanometer grains is very important for
preparing dense fluoride ceramics of complicated compositions and other polycrystalline forms of fluoride
materials. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

In its applied aspect, mechanochemistry studying
the influence of mechanical deformation on inorganic
materials and their chemical reactions is closely related
to synthesis of materials with high reactivity. This is
explained by the fact that mechanochemical synthesis
often yields materials with nanometer particles (nano-
particles) which are characterized by the considerable
contribution of the surface layer to their properties and
chemical behavior. Mechanochemical synthesis is one
of the important modern methods for production of
nanomaterials.

Up to now, mechanochemical synthesis has not been
used for obtaining multicomponent materials consist-
ing of inorganic fluorides, of which the most important
for practice are nonstoichiometric fluorite phases of the
composition M1 – xRxF2 + x. These phases form only a
small part of all the known nonstoichiometric phases of
the composition M1 – xRxFm(1 – x) + nx formed in binary
MFm–RFn systems (m < n ≤ 4; M and R are 34 different
metals) [1–5]. However, the physicochemical charac-
teristics of the M1 – xRxF2 + x phase are of great practical
interest. The defect structure of these phases, which
controls the bulk properties, has been studied in good
detail. Therefore, we selected the family of the
M1 − xRxF2 + x phases as the first type of multicomponent
fluoride materials to be obtained by mechanochemical
synthesis.
1063-7745/05/5003- $26.00 0478
We selected as the first object of this family the non-
stoichiometric Ca1 − xLaxF2 + x phase with the fluorite
structure. This phase is a typical representative (with
respect to both its defect structure and the related spe-
cific properties) of a large family of 80 M1 – xRxF2 + x

crystals with varying qualitative (elemental) chemical
composition (M = Ca, Sr, Ba, Cd, Pb; R are rare earth
elements, namely, Sc, Y, La–Lu). The equilibrium
phase diagrams of these phases are characterized by
extended homogeneity regions (up to 50 ± 2 mol % RF3

under standard pressure). These phases are related to
the type of heterovalent solid solutions with a varying
number of atoms in the unit cell [6]. Their formation is
accompanied by unusually high concentrations of
structural defects such as anionic vacancies and inter-
stitial fluoride ions. One of the consequences of high
defect concentration is the appearance of superionic
conductivity of fluoride ions [7, 8] and other properties.

The main structural characteristic of the
M1 − xRxF2 + x phases is grouping of the defects in the
anionic and cationic sublattices into clusters. Single
clusters have nanometer dimensions, which allows one
to consider the M1 − xRxF2 + x crystals as the first nano-
structurized fluorides having their own place in the
classification of the known nanostructurized materials
[9]. The unique properties of the M1 – xRxF2 + x crystals
controllable over a wide range (by varying their compo-
© 2005 Pleiades Publishing, Inc.
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sition and defect structure) make these crystals very
promising for modern technologies [1–5].

As a rule, the M1 – xRxF2 + x fluorides are used in
practice in the form of single crystals synthesized from
melts by various modifications of the method of
directed crystallization [10]. Much less popular are
their ceramic forms, including multicomponent optical
fluoride ceramics [11]. The use of high temperatures in
all the methods of synthesis of the M1 – xRxF2 + x phases
(from 1550°C in growth from melts, up to 700–900°C
in synthesis of ceramics) is accompanied by the fluo-
ride reaction with water vapor (pyrohydrolysis)
observed above 450–500°C [12]. The incorporation of
oxygen into fluorides results in several negative effects
of which the most important is uncontrollable change
of some physical characteristics and, first of all, of crys-
tal transparency.

In addition to pyrohydrolysis, the use of high tem-
peratures also imposes severe limitations on the choice
of fluorides as the components of complex fluoride
materials [5]. These limitations are associated with dif-
ferent melting points of the components, their vapor
pressures, thermal decomposition, and other factors.
Mechanochemical synthesis has some obvious advan-
tages and is characterized, first of all, by relatively low
temperatures increasing the possibilities of synthesis of
multicomponent fluoride materials, including nonsto-
ichiometric ones.

The present study was aimed at the establishment of
the possibility of preparing nonstoichiometric fluoride
phases of the M1 − xRxF2 + x composition from the crys-
talline MF2 and RF3 components by mechanochemical
synthesis of the phase Ca1 − xLaxF2 + x.

EXPERIMENTAL

Choice of the Ca1 - xLaxF2 + x solid solution as the
object of our study was dictated by a number of rea-
sons. This solid solution is formed from the compo-
nents possessing the highest melting points among all
the MF2 and RF3 compounds (1418 ± 5°C for CaF2 and
1500 ± 10°C for LaF3). The CaF2–LaF3 system has the
simplest phase composition among all the MF2–RF3
systems and has no other phases except for the
Ca1 − xLaxF2 + x- and La1 – yCayF3 – y-based solid solu-
tions crystallized in the fluorite (CaF2) and tysonite
(LaF3) structure types, respectively. This system is also
of a simple eutectic type. At the eutectic temperature
(1311°C), the solubility limit of LaF3 in CaF2 is 46 mol %
(x = 0.46) and the solubility limit of CaF2 in LaF3 is
23 mol % (y = 0.23).

The phase diagram of the system is well studied up
to 800°C [13–15]; the subsolidus region extends up to
600°C [16]. Thus, the study of the products of the fluo-
ride reaction in the CaF2–LaF3 system under the condi-
tion of mechanochemical synthesis is facilitated by its
simple and well-studied phase composition in the tem-
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perature range from the melting point up to 600°C. At
the same time, it is also possible to establish to what
extent the phase relationships known for this system
under the equilibrium conditions would be preserved or
change under the a priori nonequilibrium conditions of
mechanochemical synthesis.

Starting materials were CaF2 crystals with an oxy-
gen content of 0.025 wt % (wastes of optical single
crystals produced by the Vavilov State Optical Insti-
tute). Lanthanum trifluoride crystals were grown from
melt in the atmosphere of the products of Teflon pyrol-
ysis with an oxygen content of 0.052 wt % (method of
vacuum melting [17]).

The starting mechanical mixtures, (1) 90 mol %
CaF2 and 10 mol % LaF3 and (2) 80 mol % CaF2 and
20 mol % LaF3 (mixture compositions are indicated in
mol %, whereas formulas indicate molar fractions x),
consisted of single-crystal fragments with a diameter
up to 1 mm. The components were mixed in a planetary
ball mill without preliminary milling.

Mechanochemical synthesis was performed by
milling the mixtures of CaF2 and LaF3 fragments in a
MAPF-2M water-cooled planetary ball mill in a protec-
tive argon atmosphere. The drum and ball were manu-
factured from ShKh-15 steel. The initial loading of the
component mixture was 10 g. The ratio of the ball
weight to the component weight was 6 : 1. The milling
energy estimated by the method suggested in [18] with
due regard for the reagent weights, the number and
diameter of the balls, and the velocity of the drum rota-
tion was 10 W/g.

X-ray phase analysis of the products of mecha-
nochemical synthesis was performed on a KARD-6 dif-
fractometer with a two-dimensional detector based on a
planar proportional camera (reflection geometry, CuKα
radiation, graphite monochromator). Reflection inten-
sity as a function of the diffraction angle, I(2θ), was
calculated over the whole detector area by the method
suggested in [19]. The lattice parameters, the weight
fractions of phases in the mixture, and the percentage of
Ca and La atoms in the fluorite and tysonite phases
were determined by the Rietveld method using the Full-
Prof program [20].

Chemical composition of the Ca1 − xLaxF2 + x solid
solution was evaluated from the linear dependence of
the cubic lattice parameter a = 5.46296 + 0.56333x on
the composition in the whole homogeneity region [21].
In [15, 22], the following equation is given: a = a0 +
0.591x – 0.134x2 . We failed to establish the cause of the
difference in the dependence of the lattice parameter on
composition. In what follows, we use the linear depen-
dence almost coinciding with the nonlinear dependence
in the region with the LaF3 content up to 30 mol %.

The lattice parameter a was calculated by the
Rietveld method. The angular accuracy of the calcu-
lated peak positions was ~0.02°, whence the relative
error in the determined lattice parameter is ~0.0004,
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which considerably exceeds the standard deviations
calculated by the program [20]. The dependence of the
unit-cell parameter on the composition is determined
with a high accuracy in [15, 21]. Therefore, the content
of LaF3 in the solid solution may also be calculated
from the value of the lattice parameter a calculated by
the Rietveld method with a higher accuracy than the
LaF3 content obtained in the direct structure refine-
ment. Both values obtained in our experiment agree
quite well. Below, we refer to the values obtained by the
first method.

Particle shape and size and diffraction from
microcrystals of the products of synthesis were stud-
ied in a JEOL 2000FX electron microscope at an accel-
erating voltage 200 kV. The samples for electron
microscopy studies were obtained by dispersion of the
product of mechanochemical synthesis in n-butanol
with the subsequent application of the suspension onto
a copper grid coated with graphite.

Behavior of the product of mechanochemical
synthesis during its heating to 1000°C was studied in a
Seiko TG/DTA 6300 setup for differential thermal anal-
ysis (DTA) in a platinum crucible in an argon flow
(100 ml/min). The powder was pressurized into tablets
under a pressure of 600 MPa. The heating and cooling
rates were 10°C/min.

Ionic conductivity of the product of mechanochem-
ical synthesis (performed for 1.5 h) of the nominal
composition Ca0.8La0.2F2.2 was studied by the method
of impedance spectroscopy (Tesla BM507 imped-
ancemeter, frequency range 5 to 5 × 105 Hz, resistance
range 1 to 107 Ω). The starting powder was pressed
(600 MPa) into tablets 3 mm in diameter and 1.6- to
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Fig. 1. Content of the fluorite Ca1 – xLaxF2 + x phase in the
products of mechanochemical synthesis as a function of the
milling time.The starting materials: (1) 90 mol % CaF2 +
10 mol % LaF3 and (2) 80 mol % CaF2 + 20 mol % LaF3.
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1.7-mm thick. The tablets were supplied with graphite
electrodes (DAG-580 paste) applied to their end sur-
faces. Electrophysical measurements were performed
in a ~10–1 Pa vacuum in the temperature range 60–
530°C.

EXPERIMENTAL RESULTS

Kinetics of formation of the Ca1 – xLaxF2 + x solid
solution during mechanochemical synthesis. Kinet-
ics of mechanochemical synthesis of the nonstoichio-
metric fluorite phase was studied for two mechanical
mixtures: (1) 90 mol % CaF2 + 10 mol % LaF3 and (2)
80 mol % CaF2 + 20 mol % LaF3. The samples for
quantitative X-ray phase analysis were selected after
30-, 45-, 60-, 90-, and 120-min milling. X-ray diffrac-
tion patterns from the samples were treated by the
Rietveld method to determine the content of each phase
in the products of mechanochemical synthesis. The
content of the Ca1 – xLaxF2 + x solid solution (in mol %)
in the product of mechanochemical synthesis as a func-
tion of the milling time t is shown in Fig. 1. The numer-
als in parentheses correspond to mixtures (1) and (2).

X-ray powder diffraction pattern from the product
of 60-min milling of mixture (1) (diffraction pattern 1)
and 120-min milling of mixture (2) (diffraction pattern 2)
are shown in Fig. 2. For comparison, Fig. 2 also shows
the diffraction pattern of CaF3 (3) milled in a conven-
tional ball mill.

Our studies showed that 30-min milling is not suffi-
cient to initiate the reaction of mechanochemical syn-
thesis (Fig. 1). The lattice parameter of the fluorite
phase is close to that of pure CaF2; however, milling
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Fig. 2. X-ray powder diffraction patterns of the products of
(1) 60-min-milling of the 90 mol % CaF2 + 10 mol % LaF3
mixture, (2) 120-min-milling of the 80 mol % CaF2 +
20 mol % LaF3 mixture, and (3) CaF2; ss indicates solid
solution.
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gives rise to noticeable broadening of the diffraction
reflections.

Figure 2 (curve 1) shows that 60-min milling of
mixture (1) results not only in broadening of the dif-
fraction reflections of the fluorite lattice but also in the
displacement of the reflections to small angles, i.e., in
the formation of the mixture of solid-solution particles
having different compositions.

The 60-min milling of the initial mixture (1) showed
that the solid-solution content in the product of mecha-
nochemical synthesis was equal to 82 mol % for the
phase composition Ca0.9La0.1F2.1. The 90-min milling of
mixture (2) yielded a content equal to 87 mol % for the
phase composition Ca0.84La0.16F2.16 (the compositions
were determined from the unit-cell parameters). Thus,
the yield of the fluorite Ca1 – xLaxF2 + x solid solution is
practically independent of the mixture composition in
the range of LaF3 content 10–20 mol %.

Thus, 120-min mechanochemical synthesis with the
milling energy indicated above shows almost complete
(95 mol % of the fluorite phase) proceeding of the reac-
tion between the mixture of the crystalline 80% CaF2
and 20% LaF3 with the formation of the nonstoichio-
metric Ca0.8La0.2F2.2 phase.

Determination of chemical composition of the
nonstoichiometric fluorite Ca1 – xLaxF2 + x phase
formed in mechanochemical synthesis. As a result of
120-min milling of mixture (2), the Ca1 – xLaxF2 + x solid
solution is formed (diffraction pattern 2 in Fig. 2). Its
composition was determined by two independent meth-
ods. The first one reduced to the calculation of the com-
position from the dependence of the lattice parameter
on composition [15, 21, 22] and the parameter deter-
mined by the Rietveld method. For the mixture indi-
cated above, the lattice parameter was determined as
a = 5.579(2) Å, which corresponds to the LaF3 content
20.6 mol %.

Mixture (2) subjected to 90-min milling yielded the
solid solution with the lattice parameter a = 5.553(2) Å
corresponding to the composition Ca0.84La0.16F2.16
(determined from the dependence of the lattice param-
eter on composition [21]). Assuming the formation of
the Ca1 – xLaxF2 + x solid solution, we obtained the close
composition by the Rietveld method, Ca0.86La0.14F2.14
(RBr = 1.09%). The above data show that the LaF3 con-
tent in the solid solution increases during milling simul-
taneously with an increase of the brutto content of the
fluorite Ca1 – xLaxF2 + x phase.

The composition of the fluorite Ca0.794La0.206F2.206
phase obtained after 120-min milling is close within the
accuracy of its determination from the lattice parameter
(±0.5% LaF3) to the charge composition (20 mol %
LaF3). However, this is insufficient to draw a unique
conclusion on the complete proceeding of the reaction
in mixture (2) subjected to 2 h milling. As is seen from
X-ray diffraction pattern 2 in Fig. 2, some amount of
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the phase with the tysonite structure is also seen on the
respective diffraction pattern. Because of the low inten-
sity of the respective reflections and weak dependence
of the lattice parameters of the tysonite phase on the
composition, it is difficult to come to a decisive conclu-
sion whether the phase obtained is a La1 – yCayF3 – y

solid solution or pure LaF3. In our calculations, we
used the following composition of the tysonite phase
La0.97C0.03F2.97. The amount of this phase determined
by the Rietveld method is ~5.0 mol %.

The presence of unreacted LaF3 (or a solid solution
based on it) may be associated with the design of the
mill drum with a rectangular bottom with dead zones.
The possible capture of large grains into the dead zones
was also facilitated by the fact that we made no prelim-
inary milling of the components, so that the grains
sometimes were 1 mm in diameter. The grains of such
size were also observed in an optical microscope.

Dispersion and homogeneity of the product of
mechanochemical synthesis were studied by the opti-
cal method in a MIN-8 microscope. We observed com-
ponent grains up to 1 mm in diameter. It seems that
some crystalline grains captured into the dead zones
preserved their initial size after milling. This indicates
the necessity of the preliminary milling of the whole
starting mixture of the components and constant stir-
ring of the products of mechanochemical synthesis
instead of manually stirring only every 15 min of mill-
ing.

The product dispersion can be estimated from the
width of the diffraction lines on the powder diffraction
patterns. The dependence of the diffraction-line width
on the diffraction angle for the phases studied is com-
plicated. Line broadening considerably increases with
an increase in the diffraction angle and is determined
not only by dispersion but, probably, also by strong sec-
ond-order lattice distortions. Below, we indicate the
dimensions of the coherent-scattering blocks calculated
from broadening of the diffraction lines with the mini-
mum diffraction angle made as estimated by the
Selykov–Scherrer formula for spherical particles, L =
0.89λ/(cosθ∆(2θ)). We used the Gaussian approxima-
tion for both instrumental function and the recorded
line. Here ∆(2θ) = (B2 – b2)1/2, where B and b are the
measured and standard values of the half-width at the
half-height and λ is the wavelength of the radiation. For
30-min milling of mixture (2), we obtained the compo-
sition CaF2 80 mol % + LaF3 20 mol %, in which no
solid solution has been formed as yet. The CaF2 phase
has the size of a coherent-scattering block, L = ~108 Å.
After 60-min-milling of initial mixture (1) 90 mol %
CaF2 + 10 mol % LaF3, the product of mechanochemi-
cal synthesis Ca0.9La0.1F2.1 was characterized by L =
91 Å. A close value was also obtained after 90-min
milling of mixture (2), L = 81 Å.
5
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After 120-min milling of mixture (2) CaF2 80 mol % +
LaF3 20 mol %, the size of the coherent-scattering
blocks of the fluorite phase was L = 108 Å.

The above data indicate that the intense process of
formation of the Ca1 – xLaxF2 + x solid solution begins (at
the given milling energy) only after 40–50 min of mill-
ing. The rate of formation of the nonstoichiometric flu-
orite phase weakly depends on the initial ratio of the
components (in the range of 10–20 mol % LaF3). The
size of coherent-scattering blocks of the fluorite solid
solution is independent of the initial charge composi-
tion (in the range indicated above) and the milling time
and, according to the estimate made by the Rietveld
method, is about 10 nm.

X-ray estimation of the size of coherent-scattering
blocks of the fluorite solid solution qualitatively agrees
with the electron-microscopy data.

Transmission electron microscopy study showed
that the products of mechanochemical synthesis consist
of particles with the size ranging from 5 to 50 nm, with
the average size ranging within 20–30 nm (Fig. 3a). At
higher magnification it was also seen that large parti-

(a)

(b)

50 nm

10 nm

Fig. 3. (a) Product of mechanochemical synthesis of
Ca0.8La0.2F2.2 and (b) high-resolution micrographs of
Ca0.8La0.2F2.2 nanoparticles.
C

cles are, in fact, the aggregates of smaller ones. Small
particles are mosaic and contain differently oriented
coherent-scattering regions with a well-formed set of
atomic planes (Fig. 3b). Electron diffraction study con-
firmed the crystallinity of the sample, its fluorite struc-
ture, and its rather high stability to electron irradiation.

Changes in the product of mechanochemical syn-
thesis during heating. The Ca0.8La0.2F2.2 solid solution
obtained is metastable under the conditions of mecha-
nochemical synthesis because below 600°C the equilib-
rium solubility of LaF3 in CaF2 is close to zero. Heating
the nonequilibrium Ca0.8La0.2F2.2 product to tempera-
tures giving rise to volume diffusion, one may expect
some phase transformations. In accordance with the
phase diagram, the transformations may be expected in
the high-temperatures range. However, possible non-
equilibrium processes may also give rise to the forma-
tion of metastable phases.

The heating curves of Ca0.8La0.2F2.2 demonstrate
some thermal effects. Heating to 120–180°C is accom-
panied by weight losses slightly exceeding 1 wt %.
Conditionally, this loss may explain a very weak diffuse
endothermic effect. A more obvious but also weak
endothermic effect is observed at 480°C. The corre-
sponding phase transformation takes place against the
background of continuing loss of weight attaining, at
1000°C, a value of about 2.5%.

The loss of weight (0.5%) continues during sample
cooling from 1000 to 400°C. The repeated cooling may
result in further loss of weight within tenths of a per-
cent; then the sample weight is practically stabilized.
The nature of the weight loss observed is still unclear.
Its monotonic character over the wide temperature
range indicates the occurrence of partial hydrolysis
rather than gas desorption from the surface.

At 784°C, the pronounced endothermic effect is
observed. The transformation is irreversible and is not
observed during cooling and repeated heating. The
phase equilibria in the subsolidus region below 800°C
in the CaF2–LaF3 system have been studied insuffi-
ciently. Therefore, the nature of the effect observed at
784°C is still unknown and may only be assumed.

According to [16], this temperature is close to the
temperature of formation of Ca0.8La0.2F2.2 from the
components. In the temperature range 690–917°C, no
experimental points are observed on the solidus curve
and its run in this interval has not been established. If
one assumes that the curve of the formation (decompo-
sition) of the solid solution of the composition indi-
cated above is intersected at 784°C, above this temper-
ature, the remaining unreacted components (CaF2 and
LaF3) should start reacting. As a result, a composition
is formed which is saturated, in the general case, with
the tysonite phase La1 – yCayF3 – y at the maximum
attained temperature (in our case, 1000°C).

X-ray diffraction study of the sample subjected to
DTA showed that at least three processes occurred in
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 3      2005
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the sample: recrystallization of the main compound of
the composition Ca0.8La0.2F2.2 and formation of two flu-
orite phases, Ca0.52La0.48F2.48 and Ca0.94La0.06F2.06 (the
compositions were determined from the dependences
of the lattice parameters [21]). The composition
Ca0.52La0.48F2.48 is close to the composition of the satu-
rated solid solution at the eutectic temperature
(1310°C) in the CaF2–LaF3 system (46 ± 2 mol % [13–
16]). The second composition is close to the composi-
tion of the CaF2 component. The main part of the prod-
uct consists of the recrystallized Ca0.8La0.2F2.2 solid
solution characterized by narrow reflections on the dif-
fraction pattern.

The LaF3 content in the newly formed
Ca0.52La0.48F2.48 phase considerably exceeds its content
in the equilibrium saturated solid solution for the iso-
therm 1008°C studied earlier (~37 mol % LaF3 accord-
ing to [16]). This deviation from the equilibrium solu-
bility may serve as an indication of the fact that the
reaction of nanodispersed phases (components of the
system and the fluorite solid solution) gives rise to the
formation of a metastable product at the reaction tem-
perature under the DTA conditions (at temperatures up
to 1000°C). The formation of metastable states in
mechanochemical synthesis in oxide systems is well
known and is often observed [23, 24]. For fluoride sys-
tems, this problem should be studied separately.

Measurements of ionic conductivity. Up to now,
studying the conductivity of numerous fluorite phases
of the composition M1 − xRxF2 + x (M = Ca, Sr, Ba, Cd,
Pb; R = Sc, Y, La–Lu) [7, 8, 25, 26], we have never
encountered a phase with such a high degree of disper-
sion as Ca0.8La0.2F2.2 obtained by mechanochemical
synthesis. Moreover, studying the ionic transport in
nonstoichiometric fluorides, we always tried to synthe-
size single crystals, which minimized the contribution
of the surface component to the total conductivity and
diminished the probability of sample degradation dur-
ing heating because of the occurrence of the pyrohy-
drolysis reaction.

Analysis of impedance hodographs (complex resis-
tivity) of electrochemical cells with graphite electrodes
allowed us to separate the total bulk resistivity Rb char-
acterizing all the processes of defect migration in the
materials studied. Conductivity was calculated by the
formula σ = h/RbS, where h is the sample thickness and
S is the electrode area. The activation energy Ea deter-
mined by the migration mechanism of charge carriers
was found from the Arrhenius–Frenkel equation σT =
Aexp(–Ea/kT), where A is the preexponential factor of
electrical conductivity.

Temperature dependence of conductivity of one of
the samples of the Ca0.8La0.2F2.2 solid solution obtained
by mechanochemical synthesis is shown in Fig. 4a for
four temperature modes. Figure 4b shows the σ(T)
curves for three samples in the mode of the first cool-
ing. To facilitate comparison of Figs. 4a and 4b, we also
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 3      2005
show the temperature dependence of ionic conductivity
of a Ca0.8La0.2F2.2 single crystal obtained in [8]. The
conductometric data for all the samples were reproduc-
ible in both heating and cooling modes (except for the
first low-temperatures heating), so that the discrepancy
in the data did not exceed ±5%.

Temperature dependences of conductivity of the
solid-solution samples obtained by mechanochemical
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Fig. 4. Temperature curves of conductivity σ of the
Ca0.8La0.2F2.2 solid solution obtained by mechanochemical
synthesis (a) in different thermal modes: ceramic (1) first
heating, (2) first cooling, (3) second heating, (4) second
cooling, and (5) the Ca0.8La0.2F2.2 single crystal grown
from melt; (b) temperature dependence of conductivity σ
for (1, 2, 3) three different ceramic samples obtained in the
mode of the first cooling and (4) the melt-grown
Ca0.8La0.2F2.2 single crystal.
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synthesis have two portions. The high-temperature por-
tions of the σ(T) curves begin at 200–250°C, depending
on the sample, and completely coincide with the ionic
conductivity of the respective single crystal. The activa-
tion energy Ea = 0.95 eV corresponds to migration of
interstitial fluoride ions in the bulk of the fluorite
Ca0.8La0.2F2.2 solid solution.

The transition from the high- to low-temperature
portion of the curves at 200–250°C is accompanied by
a considerable decrease in the activation energy Ea,
which indicates the change of the conductivity mecha-
nism. At the low-temperature portions, the activation
energy has the value Ea = 0.2 eV characteristic of
migration anionic vacancies in the fluoride materials.

Thus, mechanochemical synthesis allowed us to
obtain, for the first time, the nonstoichiometric nanoc-
rystalline fluorite Ca1 – xLaxF2 + x phase with the electro-
physical characteristics not worse than those known for
the single-crystal sample.

CONCLUSIONS

For the first time, mechanochemical synthesis was
used to give rise to the reaction between single-crystal
CaF2 and LaF3 starting materials resulting in the forma-
tion of nonstoichiometric Ca0.8La0.2F2.2 fluoride with
10- to 30-nm-large grains and the defect structure of the
CaF2 type. The starting materials were refractory inor-
ganic fluorides, which opens possibilities for mecha-
nochemical synthesis of other multicomponent fluoride
materials from less refractory fluorides.

A considerable increase in the number of possible
components in mechanochemical synthesis—simple
metal fluorides that may be used to obtain multicompo-
nent fluoride materials—is explained by relatively
“mild” temperature conditions of mechanochemical
synthesis. A number of multicomponent fluoride mate-
rials cannot be obtained by traditional methods (such as
crystallization from melts, solid-phase synthesis, and
hot pressing) because of the high volatility, thermal dis-
sociation, pyrohydrolysis, and other unfavorable char-
acteristics of some initial components, which are diffi-
cult to combine with refractory, nonvolatile, and ther-
mally stable initial components. In mechanochemical
synthesis, similar limitations either completely remove
or influence the result only to a minor degree. Mecha-
nochemical synthesis in application to inorganic fluo-
rides opens a new chapter in the chemistry of fluorides
and the respective field of materials science.

Solid solutions of the fluorides with multicompo-
nent compositions and nanoparticles are characterized
by a reduced sintering temperature and possible forma-
tion of dense polycrystalline materials (ceramics).

Mechanochemical synthesis of fluorite M1 – xRxF2 + x
phases is important for studying structural mechanisms
of nonstoichiometric formation. The characteristics of
the defect (cluster) structure of these phases are usually
C

studied on melt-grown crystals, which inherit the
defects of the real structure formed during growth (non-
equilibrium process) and uncontrollable cooling. Con-
centration of such defects may attain high values,
which can mask the true mechanism of nonstoichio-
metric formation.

As was indicated in [23], the application of mecha-
nochemical synthesis to multicomponent oxide sys-
tems often results in the formation of fluorite and per-
ovskite phases. The estimates made in the present study
may be extended to the MFm−RFn fluoride systems with
m < n ≤ 4, and M and R are 34 metals. In these systems,
the main products of high-temperature chemical reac-
tions between the fluorides of the cations of different
valence are the nonstoichiometric fluorite
M1 − xRxFm(1 − x) + nx phases which amount to about 50%
of all the two-component phases revealed in these sys-
tems [1–5].
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Abstract—The temperature distribution in a melt of PbMoO4 is investigated using a modified thermocouple
and a scanning device. It is shown that the PbMoO4 melt whose thermal field is significantly inhomogeneous
at different depths demonstrates a strong (below the melting temperature) supercooling at the surface due to the
evaporation. The position of the isotherm corresponding to the melting temperature of PbMoO4 in the melt is
determined by the degree of the melt supercooling at different growth parameters. The results obtained show
that the conditions of mass and heat exchange in the melt are mainly determined by convection. The free con-
vection remains dominant even at intense rotation of a crystal and the most thorough thermal isolation of the
crystallization unit. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

The temperature field in the volume of a melt for
growing crystals by the Czochralski method is a com-
plex function of several parameters characterizing and
decisively determining the crystal growth. In addition
to the well-known molecular heat transfer, convective
heat transfer also occurs and plays a key role in melts
(especially melts of oxides). The latter type of heat
transfer is due to various reasons. Nonuniform temper-
ature distribution in the crystallization unit results in an
inhomogeneous field of densities in the melt, whose
interaction with the gravitational field leads to the
occurrence of a convective flow referred to as free con-
vection. For melts with high vapor pressure, free con-
vection is the dominant and, in fact, main mechanism of
heat transfer. No thermal isolation in the crystallization
unit, however effective, can reduce the free convection
due to the evaporation from the melt surface, which
causes, in turn, very large superheating of crucible
walls.

It is well known that melts of most high-temperature
nonvolatile oxides, showing no significant supercool-
ing, are often superheated above the melting point, or,
at least, have a surface temperature close to the melting
point. Therefore, when a seed of a crystallized material
is brought into contact with a melt to choose the growth
conditions, an extended liquid-drop column of melt
(meniscus) is observed in most cases, whose boundary
coincides with the melting point isotherm. The above-
1063-7745/05/5003- $26.00 0486
described conditions are not observed, however, in the
growth of the compounds whose melts have very high
volatility (PbMoO4, PbWO4, CaMoO4, CaWO4,
Al2O3, TeO2, and so on). The most typical situation for
the melts of these compounds is an almost complete
absence of the meniscus under the conditions similar to
the growth conditions. In this case, the crystal tends to
decrease the supercooling caused by the melt evapora-
tion, growing into the melt in the form of a tapered pro-
trusion (Fig. 1). In fact, the latent crystallization heat,
which is generally removed upwards through the grow-
ing crystal in the absence of the direct melt evaporation,
is spent in the case under consideration to compensate
the melt supercooling under the crystal. The depth of
penetration of the crystallization front into the melt can
serve as an indicator of the degree of supercooling,
since the crystal growth below the melt level will cease
at the point where the tip of the tapered protrusion
reaches the melting point isotherm of the compound
grown.

In this paper, we report the results of the investiga-
tion of the temperature distribution in the PbMoO4 melt
and the shape of the crystal–melt interface, which are
related to the melt supercooling. It should be noted that
the thermal supercooling caused by the melt evapora-
tion is meant rather than the constitutional supercooling
which is known to be due to the rejection of impurities
and their accumulation near the crystallization front.
© 2005 Pleiades Publishing, Inc.
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EXPERIMENTAL TECHNIQUES

In order to reduce the measurement inertia to a min-
imum, it is preferable to measure temperature and its
relative distribution in the melt volume with uncovered
thermocouples. However, the following experimental
difficulties may arise in this case:

(i) a chemical reaction is possible between the melt
and the material of a thermocouple (the rhodium ele-
ment of Pt/Pt–Rh thermocouples often reacts with
many melts of oxides, for example, with LiNbO3,
LiTaO3, and others, coloring the melts and the crystals
grown orange-yellow);

(ii) it is difficult to fix the thermojunction at a
required depth and move the thermocouple in the melt
volume without rigid insulating ceramic tubes.

Another important fact is that the use of uncovered
thermocouples is justified mainly in the case of a signif-
icant difference in the conductivities of the melt and the
thermocouple material. At the same time, the use of
thermocouples in protective thermowells also has some
serious drawbacks since thermocouples are not in direct
contact with the melt in this case, which inevitably
results in a high inertia. The latter circumstance hinders
measurements of relative variations in temperature
from point to point and decreases the thermocouple
sensitivity and the measurement accuracy.

A Modified Thermocouple and Scanning Device1

The design of the modified thermocouple fabricated
taking into account the above considerations and being,
in fact, an analog of a conventional Pt/Pt–Rh thermo-
couple, is shown in Fig. 2.

The platinum thermowell 1, which serves simulta-
neously as one of the thermoelectrodes and, with corre-
sponding grounding, a high-frequency shield, is made
in the form of a thin-wall cylindrical tube with conical
narrowing at one of its ends. In accordance with the
experimental conditions, the thermowell length is equal
to or slightly exceeds the maximum depth of immersion
into the melt. The thermowell is connected with the sec-
ond wire Pt–Rh thermoelectrode 2 with the formation
of the working junction in the conical part. With this
purpose, the second thermoelectrode is inserted into the
first one (the platinum thermowell) and, accordingly,
isolated from it by a single-channel ceramic tube 3. The
continuation of the first thermoelectrode (thermowell)
is a platinum wire from a conventional thermocouple,
which is welded to the thermowell basis as a second
free end of the thus modified thermocouple.

In order to move the modified thermocouple and
measure temperature at any point in the melt volume, a
special scanning device with a thermocouple holder
was developed [1].

1 Designed and fabricated by O.A. Arakelov at the Institute for
Physical Research, Ashtarak, Armenia.
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The crucible with molten PbMoO4 is installed on a
ceramic support in the growth chamber. The mecha-
nism of vertical motion is connected with the mobile
part of the scanning device that is rigidly fixed on a

10 mm

1

2

Fig. 1. PbMoO4 crystal: (1) the part grown by pulling and
(2) the tapered protrusion grown by thermal supercooling of
the melt.

1

2
3

4

5
6 7

Fig. 2. Modified thermocouple: (1) platinum thermoelec-
trode (thermowell), (2) Pt–Rh thermoelectrode, (3) ceramic
tube, (4) shaft of the pulling mechanism, (5) collector,
(6) loop contacts, and (7) tightening mechanism.
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Fig. 3. Temperature distributions in the PbMoO4 melt at different rotation speeds of the thermocouple (crystal): ω = (a) 0, (b) 3,
(c) 25, and (d) 50 rpm. The dotted line shows the melt level. The thick solid line is the isotherm tmelt (1065°C). Numbers at the
isotherms (thin solid lines) indicate temperature in °C.
flange joint of the growth chamber. The shaft of the
mechanism of vertical motion 4 is rigidly connected
with the modified thermocouple immersed into the cru-
cible with the melt. The shaft rotates, rotating the ther-
mocouple around its axis; the scanning device shifts the
thermocouple in the horizontal plane of the crucible;
and the vertical mechanism shifts the thermocouple in
the vertical direction. Thus, the modified thermocouple
can move throughout the crucible volume, imitating by
the rotation around its own axis (when the vertical
motion is possible) the rotation of a growing single
crystal with simultaneous measurement of temperature
at any point of the melt. The ends of the modified ther-
mocouple are connected to the collector 5 and brought
out to the tightening mechanism 7 through the loop
contacts 6. A bush and a guide are used to fix the bear-
ing disc.

Measurements

The temperature distribution in the PbMoO4 melt
was studied using the modified thermocouple and the
scanning device under the conditions similar to the
standard crystal growth conditions.

The modified thermocouple is immersed into the
crucible with melt through the pulling mechanism and
the scanning device. First, the temperature on the melt
surface at the center of the crucible was measured.
Then, shifting the thermocouple towards the crucible
wall, temperature was measured with a step of 5 mm.
The thermocouple was stopped and kept at each point
for ~20 min (the relaxation time). Near the crucible
wall, the thermocouple was immersed into the melt by
the pulling mechanism for 5 mm and, after measuring
C

the temperature, was shifted to the center. Thus, repeat-
ing the operations of shift and immersion, we obtained
the values of temperature at different depths in the melt
in the crucible only in one half of the melt volume. Tak-
ing into account the circular symmetry of the thermal
field in the melt and using the data obtained, we plotted
the entire temperature distribution in the melt for a cru-
cible 70 (diameter) × 50 (height) × 3 (wall thickness) mm3

in size at different rotation speeds of the thermocouple.
Crystals 15–20 mm in diameter were grown under the
same conditions. Note that all temperature measure-
ments and growth processes were performed with the
crystallization unit kept open (without upper thermal
shields over the crucible).

RESULTS AND DISCUSSION

Figure 3 shows the distributions of the thermal fields
in the PbMoO4 melt and the positions of the growth iso-
therms at different rotation speeds of the thermocouple
(and, respectively, the crystal). It can be clearly seen
that in the absence of rotation and at low rotation speeds
the surface of the PbMoO4 melt shows a significant
supercooling below the melting point (1060–1070°C)
(Figs. 3a, 3b). The growth isotherms and the crystalli-
zation front of the crystal are at a rather large distance
from the melt surface. With an increase in the rotation
speed, the degree of the melt supercooling decreases as
a result of the transition from the conditions of domi-
nant free convection to the mixed convection mode.
The growth isotherm and the crystallization front
maximally approach the melt surface in this case
(Figs. 3c, 3d).
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 3      2005
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Analysis of the data characterizing the behavior of
the volatile PbMoO4 melt (the temperature distribution
and the position of the growth isotherm) shows that the
melt evaporation caused by the high tension of the melt
vapor and the vapor of the oxide components is accom-
panied by significant supercooling of the melt, which
was described in the literature. It was reported in [2]
that molybdates and tungstates of divalent metals are
prone to supercooling. In this context, when the DTA
method is used, it is recommended to set the position of
the liquidus curve in the phase equilibrium diagram
only under heating conditions. Under the growth condi-
tions, the noted supercooling leads to the formation of
a crystallization front strongly bulged into the melt. As
a result, stresses arise in the grown crystals, often lead-
ing to their plastic deformation. Hence, the search for
possibilities and methods of controlling the shape of the
crystallization front during the crystal growth is impor-
tant from both scientific and practical points of view.

CONCLUSIONS
The PbMoO4 melt, whose thermal field is signifi-

cantly inhomogeneous at different depths, has the fol-
lowing specific features.

(i) Under the experimental conditions similar to the
growth conditions, the PbMoO4 melt shows significant
supercooling, which, depending on the rotation speed,
ranges from 10 to 40°C.

(ii) The position of the melting point isotherm in the
PbMoO4 melt is actually determined by the degree of
melt supercooling under different experimental condi-
tions.
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 3      2005
(iii) An increase in the rotation speed of the thermo-
couple (and, respectively, the crystal) facilitates the for-
mation of a rising flow in the central zone of the cruci-
ble and the corresponding upward shift (closer to the
melt surface) of the melting point isotherm of PbMoO4
and decreases the degree of supercooling of the melt
surface.

(iv) At low rotation speeds of the thermocouple and
crystal (0–3 rpm), the motion in the melt is determined
mainly by free convection; therefore, the rising flow
under the crystal almost does not occur.

(v) The region occupied by the rising flow formed at
high rotation speeds (25–50 rpm) is relatively small; it
is located directly under the growing crystal.

The results of measurements suggest that the condi-
tions of mass and heat exchange in the PbMoO4 melt
are determined mainly by the convection. Free (natural)
convection for this compound is dominant even at suf-
ficiently high rotation speeds. Obviously, it is a difficult
problem to obtain a planar crystallization front even
with the most thorough thermal isolation of the crystal-
lization unit.
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Abstract—Mathematical modeling of the processes of heat and mass transfer during directed crystallization
under terrestrial and space conditions is performed on the basis of experimental data on the temperature distri-
bution (boundary conditions). Convective processes are described by the system of Oberbeck–Boussinesq
equations together with the heat-conduction equation (the Stefan problem). A dependence of the intensity of
thermal gravitational convection on the radial and axial temperature gradients is established. It is shown that
one of the necessary conditions for the growth of homogeneous semiconductor crystals under both terrestrial
and zero-gravity (on board spacecraft) conditions is the absence of the free surface of a melt (the Marangoni
convection) and optimization of the temperature gradients (first of all, the radial gradient). © 2005 Pleiades
Publishing, Inc.
INTRODUCTION

Theoretical description of crystal growth based on
mathematical modeling makes it possible to establish
relationships between the properties of crystals and the
conditions of their growth. In addition, the develop-
ment of a model of a growth process based on a mathe-
matical apparatus of differential equations makes it
possible to independently optimize the process param-
eters of growth systems, which is very difficult to do
experimentally [1, 2].

Processes of heat and mass transfer (HMT) occur-
ring in a melt during its crystallization are one of the
decisive factors for the homogeneity of properties of
the crystal grown. Depending on the structure and
intensity of these processes, the crystal growth is deter-
mined by diffusive, convective, or both of these HMT
processes. The main decisive factor for the occurrence
and intensity of thermal gravitational convection under
terrestrial conditions is the radial temperature gradient
∆Tr in a melt. Under the conditions of microgravity, the
decisive factor is the Marangoni convection [3]. Opti-
mization of HMT processes with velocities of convec-
tive flows approaching the diffusive mode makes it pos-
sible to grow single crystals with highly uniform prop-
erties under both terrestrial and space conditions.
1063-7745/05/5003- $26.00 0490
The convective processes occurring in melts during
the growth of semiconductor crystals by the Bridgman
method under terrestrial and space conditions were
described by us using a system of Navier–Stokes equa-
tions in the Oberbeck–Boussinesq approximation [4].

The purpose of this study is to investigate the pro-
cesses of formation of microinhomogeneities during
the growth of Ge(Ga) crystals by directed crystalliza-
tion under terrestrial and space conditions, depending
on the intensities of thermal gravitational convection
and Marangoni convection.

DETERMINATION OF THERMAL BOUNDARY 
CONDITIONS

Mathematical modeling of HMT processes under
terrestrial and space conditions was carried out for the
real growth of Ge(Ga) single crystals; i.e., we used the
thermal boundary conditions determined by thermo-
stating of the crystal–melt system. Figure 1 schemati-
cally shows a block diagram of the arrangement of tem-
perature-sensitive elements (calibrated Chromel–
Alumel microthermocouples) for the system under
study. The thermocouple readings with a discreteness
of an hour from the beginning to the end of the crystal-
lization process are listed in the table. However, it
should be noted that we fixed and used a continuous
© 2005 Pleiades Publishing, Inc.
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spectrum of measured temperatures in calculations (to
introduce the boundary conditions).

MATHEMATICAL AND COMPUTATIONAL
MODELS

To describe the processes of thermal convection in a
melt during the crystal growth, we used a system of
Oberbeck–Boussinesq equations together with the
heat-conduction equation (the Stefan problem) [5].

The heat-conduction equation (the Stefan problem)
in the dimensionless form with respect to V0 and L in
the (R,Z) geometry can be written as

(1)

∂ρh
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Fig. 1. Schematic block diagram of the arrangement of tem-
perature-sensitive elements: (T1–T7) microthermocouples,
(S) seed, (L) melt, (A) graphite crucible, and (B) crystal
holder.

Readings of microthermocouples during the crystal growth
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where h is the enthalpy, ρ = ρ(h) is the density, T(h) is
temperature, and λ = λ(h) is the thermal conductivity
coefficient.

At the moving phase boundary, the Stefan condition
is satisfied:

(2)

where h0 is the specific heat of the phase transition, Vf

is the velocity of a point at the phase boundary, n is the
unit vector normal to the boundary, Q+ is the normal
heat flow from the phase with a lower specific enthalpy,
and Q– is the normal heat flow to the phase with a
higher specific enthalpy.

To describe the liquid phase, we used the following
equations (in the dimensionless form with respect to V0
and L in the (R,Z) geometry): the momentum equations
in the Boussinesq approximation
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Fig. 2. Model region (dimensions are in mm).
Growth
time, h

Temperature measured by control microthermocouples, °C

T1 T2 T3 T4 T5 T6 T7 T8

0 986 987 961 850 866 900 892 881

1 977 978 952 850 873 900 892 879

2 969 970 944 850 880 900 892 876

3 961 962 936 850 888 900 892 872

4 952 953 927 850 896 900 892 867

5 942 943 917 850 905 900 892 860

6 932 933 906 850 915 900 892 852
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Fig. 3. (a) Temperature isolines and (b) the structure of con-
vective flows in a melt 600 s after the onset of crystallization
(∆Tr = 2 K/cm, Mn = 0).
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(4)

the continuity equation

(5)

and the dopant transport equation

(6)
where Vr is the radial velocity component, Vz is the axial
velocity component, C is the dopant concentration, V0
is the characteristic velocity, L is the characteristic size,
ν is the kinematic viscosity, D is the dopant diffusion

coefficient, Re =  is the Reynolds number, Sc = 

is the Schmidt number, Pr =  is the Prandtl number,

GrT = g L3∆T/ν2 is the Grashof temperature number,

and GrC = gβρC L3C0/ν2 is the Grashof concentrational
number.

The boundary conditions are as follows. At r = 0,

(7)

∂Vz

∂t
-------- –Vr

∂Vz

∂r
-------- Vz

∂Vz

∂z
--------–

∂P
∂z
------–=

+
1

Re
-------

∂2
Vz

∂z
2

-----------
∂2

Vz

∂r
2

-----------
1
r
---

∂Vz

∂r
--------+ +

 
 
  GrT

Re
2

---------T
GrC

Re
2

---------C;+ +

∂Vr

∂r
--------

∂Vz

∂z
--------

Vr

r
-----+ + 0;=

∂C
∂t
------- –Vr

∂C
∂r
------- Vz

∂C
∂z
-------–

1
ReSc
------------- ∂2

C

∂r
2

--------- ∂2
C

∂z
2

---------
1
r
---∂C

∂r
-------+ + 

  ,+=

V0L
ν

--------- ν
D
----

ν
a
---

βρT

∂T
∂r
------ ∂C

∂r
-------

∂Vr

∂r
--------

∂Vz

∂r
-------- 0;= = = =

5

5 10

10

15

20

25

30
(a)

r, mm

z, mm

5 10

(b)

r, mm
0

1.10

2.80 2.80

2.60 2.60

2.00

2.20
2.20

2.00

1.80
1.80

1.60
1.60

1.50

1.50

1.40
1.40

1.30
1.30

1.20

1.10

1.20

Fig. 7. (a) Dopant (Ga) concentration isolines in a crystal
and (b) the structure of convective flows in a melt 14200 s
after the onset of crystallization (∆Tr = 5 K/cm, Mn = 0).

0

CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 3      2005
at r = R0,

(8)∂C
∂r
------- 0, Vr 0, Vz 0, T f z z t,( );= = = =

5

5 10

10

15

20

25

30
(a)

r, mm

z, mm

5 10

(b)

r, mm
0

965 965

960 960

950 950

940 940

937 937
935 935

925 925

Fig. 8. (a) Temperature isolines and (b) the structure of con-
vective flows in a melt 600 s after the onset of crystallization
in the presence of Marangoni convection (∆Tr = 5 K/cm).

0

5

5 10

10

15

20

25

30
(a)

r, mm

z, mm

5 10

(b)

r, mm
0

985

975

965

955

945

Fig. 9. (a) Temperature isolines and (b) the structure of con-
vective flows in a melt 1172 s after the onset of crystalliza-
tion in the presence of Marangoni convection (∆Tr =
15 K/cm).

0



494 STRELOV et al.
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Fig. 10. Micrograph of the surface of a crystal cut parallel to the growth axis 〈111〉 after selective chemical etching (∆Tr = 2 K/cm,
the melt surface is covered): (1) seed, (2) phase boundary, and (3) part of the grown crystal.

(a) (b) 0.2 mm

Fig. 11. Micrograph of the surface of a crystal cut parallel to the growth axis 〈111〉 after selective chemical etching (∆Tr = 5 K/cm):
growth with (a) a covered and (b) a free melt surface.
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1 2 3

Fig. 12. Micrograph of the surface of a crystal cut parallel to the growth axis 〈111〉 after selective chemical etching (∆Tr = 15 K/cm):
(1) seed, (2) phase boundary, and (3) part of the grown crystal.
at z = 0,

(9)

at z = H (at the crystallization front),

(10)

and, at z = Z0,

(11)

where Vfz is the velocity of the crystallization front,

T f r1 r t,( );=

Vz V fz, Vr 0, T Tm,= = =

1
Sc
------∂C
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-------– k0 1–( )RebC;=

Vz 0, T f r2 r t,( ),
∂C
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------- 0,= = =

∂Vr

∂z
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MnT

PrRe
------------∂T

∂r
------,=
C

Reb =  is the Reynolds number with respect to the

crystal growth rate, and MnT =  is the

Marangoni temperature number. For a more detailed
description of the mathematical model, see [5].

The model region for the real process of directed
crystallization is shown in Fig. 2. The crystallization
region has a cylindrical shape with a rotation axis
(T1, T6) and consists of two phases: solid (S) and liquid
(L) (crystal and melt, respectively). The velocity of the
crystallization front is Vf = 5 mm/h. The initial concen-
tration of gallium dopant in germanium in the solid
phase is C = 1019 cm–3. A temperature difference of 3 K
is specified at the crystallization front.

The temperature at the point T1 is determined exper-
imentally. At the initial instant of time, it is 986°C. Dur-

V fzL
ν

-----------

σβσt∆TL
ρνa

----------------------
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ing the growth, T1 changes by the law T1 = T0 – VT t
(T0 is the temperature in the initial stage of the crystal
growth; t is the current time; and VT is the rate of tem-
perature change, which is set by a certain algorithm
according to the results of measurements). At the points
T2, T5, and T6, temperature is determined experimen-
tally. T4 is a point at the crystallization front, which
moves from T6 to T1 at a specified velocity during the
growth. The temperature at the point T3 is determined
by the curvature of the crystallization front, specified
by carrying out calculations or found experimentally.

Calculations were carried out on a grid (22 × 50)
with a logarithmic decrease in the grid step to the
boundaries of the model region. The minimum and
maximum radius steps were 0.0885 and 1 mm, respec-
tively. The minimum and maximum height steps were
0.077 and 0.74 mm, respectively. The maximum time
step was 0.5 s. The minimum time step was chosen
automatically according to the convergence criteria for
the iterative processes; it was no smaller than 0.005 s.

RESULTS AND DISCUSSION

On the basis of the experimental data on the temper-
ature distributions determined above (the boundary
conditions) during the growth of Ge(Ga) single crys-
tals, we first performed mathematical modeling of the
HMT processes in the Bridgman method for different
radial temperature gradients at a fixed axial gradient
(the axial temperature gradient in a melt was assumed
to be ~16 K/cm in the calculations, which corresponded
to the real experiment) for terrestrial and space condi-
tions.

Figures 3–9 show the results of calculations for the
terrestrial conditions (g0): the temperature and dopant
concentration distributions in the crystal and the struc-
ture of convective flows in a melt during the crystalliza-
tion for real (experimental) values of ∆Tr = 2, 5, and
15 K/cm with a covered melt surface (the absence of
Marangoni convection) and with a free melt surface
(the presence of Marangoni convection).

The calculations performed show that in the experi-
ments with ∆Tr = 2 K/cm and ∆Tz  = 16 K/cm at the melt
surface in the absence of Marangoni convection the
conditions of reduced thermal gravitational convection
are implemented during the growth. The velocity of
convective flows is ~0.15 cm/s at the melt surface and
~0.00072 cm/s near the phase boundary (for a planar
isotherm at the crystallization front). In the presence of
Marangoni convection, the velocity of motion at the
melt surface increases to ~0.65 cm/s but still does not
significantly affect the velocity of convective flows at
the crystallization front (~0.006 cm/s). This was also
confirmed experimentally. Analysis of the microhomo-
geneity (by selective chemical etching) of single crys-
tals grown under these conditions showed uniform
(without striations) dopant distribution over the entire
length and diameter of the samples (Fig. 10).
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The increase in the radial temperature gradient to
5 K/cm leads to a significant increase in the intensity of
thermal gravitational convection. In the absence of
Marangoni convection (Fig. 6), the velocity of convec-
tive flows at the melt surface reaches ~1.02 cm/s
(~0.025 cm/s at the crystallization front) and begins to
affect the temperature distribution near the phase
boundary. In the presence of Marangoni convection
(Fig. 8), the flow velocity at the melt surface reaches
~1.76 cm/s and significantly affects the processes
occurring near the crystallization front. This is con-
firmed by the experiments with the crystals grown with
a covered melt surface (Fig. 11a): striations were found
in some samples and, in the case of a free melt surface
(Fig. 11b), striations were always present in all sam-
ples.

Further increase in the radial temperature gradient
to 15 K/cm (which is characteristic of conventional
methods of crystal growth with lateral heat supply)
leads to a significant increase in the intensity of thermal
gravitational convection and the formation of a multi-
vortex structure of flows. In this case, even in the
absence of Marangoni convection (Fig. 9), the velocity
of convective flows at the melt surface becomes as high
as ~2.85 cm/s (~0.34 cm/s at the crystallization front)
and, in the presence of Marangoni convection, the
velocity of flows is ~3.76 cm/s. Investigations of the
microhomogeneity of the dopant distribution in the
crystals grown under these thermal conditions showed
the presence of striations throughout the entire length
of the crystals (Fig. 12). Obviously, during the growth,
with a decrease in the melt level near the crystallization
front, constant rearrangement of the structure of flows
occurs, which leads to variations in temperature at the
C

phase boundary. This, in turn, leads to uncontrolled
variations in the crystallization rate and gives rise to
striations. Calculations showed that the intensity of
thermal gravitational convection depends strongly on
the radial temperature gradient at the melt surface dur-
ing the crystallization. In this case, even under terres-
trial conditions with intense thermal gravitational con-
vection, Marangoni convection makes a significant
contribution to the HMT processes.

Thus, the calculations performed by us showed that
under the conditions of zero-gravity, with a significant
reduction of thermal gravitational convection, the struc-
ture and intensity of convective flows is determined
only by Marangoni convection.

Figures 13 and 14 show the results of calculations
for microgravity conditions (g = 10–5g0). With the radial
and axial temperature gradients ∆Tr = 2 K/cm and ∆Tz =
16 K/cm, respectively, at a covered melt surface, diffu-
sive mass transfer is observed (Fig. 13). The diffusive
mode provides uniform dopant distribution over the
crystal diameter. Quite another picture is observed in
the presence of Marangoni convection (free melt sur-
face). In this case, even at small radial temperature gra-
dients (∆Tr = 2 K/cm), the structure and intensity of
convective flows significantly change (Fig. 14). The
velocity of flows reaches ~1.53 cm/s at the melt surface
and ~0.5 cm/s near the crystallization front and
becomes comparable with the conventional level of
thermal gravitational convection under terrestrial con-
ditions, leading to the violation of the stationary struc-
ture of convective flows and, accordingly, to a nonuni-
form dopant distribution. The calculations also showed
that under the conditions of microgravity the structure
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and velocity of convective flows in a melt is also
affected (although to a lesser extent than in the case of
Marangoni convection) by the radial temperature gradi-
ent at the melt surface. At ∆Tr = 2 K/cm, the velocity of
convective flows at the melt surface and near the phase
boundary is ~3 × 10–5 and ~5 × 10–9 cm/s, respectively.
At ∆Tr = 15 K/cm, these values are ~1.6 × 10–4 and
1.4 × 10–8 cm/s, respectively.

The results obtained allow to conclude that one of
necessary conditions for the growth of homogeneous
semiconductor crystals under zero-gravity conditions
(on board spacecraft) is the absence of the free melt sur-
face (Marangoni convection). 

The calculations performed showed that, along with
the radial temperature gradient, the axial temperature
gradient in the melt also affects the intensity of thermal
gravitational convection. It was established by calcula-
tions that a decrease in the axial temperature gradient
leads to a decrease in the radial temperature gradient
and the radial component of the melt flow velocity near
the crystallization front. However, the penetration
depth of the thermal gravitational convection and the
Marangoni convection into the melt increases in this
case; i.e., the flow from the melt surface comes nearer
to the crystallization front. With an increase in ∆Tz, an
inverse dependence is observed. Figure 15 shows the
results of calculations for the terrestrial conditions (g0)
on the effect of the axial temperature gradient in the
melt at ∆Tz = 7.5, 16 K/cm (this value is used in crystal
growth), and 27.5 K/cm (at the radial temperature gra-
dient ∆Tr = 2 K/cm) on the structure of convective flows
(Marangoni convection was taken into account). It can
be seen that, for example, a decrease in ∆Tz from 27.5
to 7.5 K/cm leads to an increase in the penetration depth
of the Marangoni convection from 5 to 16 mm
(Fig. 15). It should be noted that such a significant
effect occurs even at small radial temperature gradients
(∆Tr = 2 K/cm), i.e., at low convection intensities. How-
ever, the calculations demonstrated that this depen-
dence decreases with a decrease in gravity. Figure 16
shows the results of calculations of the effect of the
axial temperature gradient (disregarding Marangoni
convection) on the structure and intensity of convective
flows at g = g0 , 10–3g0 , and 10–5g0 .
C

CONCLUSIONS

The calculations carried out in this study made it
possible to determine the velocity of convective flows
in the melt volume and near the phase boundary for the
growth of Ge(Ga) single crystals by directed crystalli-
zation as functions of the radial temperature gradient at
the melt surface and the axial temperature gradient
under terrestrial and space conditions.

It is shown theoretically and confirmed experimen-
tally that Marangoni convection significantly affects
the HMT processes under both terrestrial and space
conditions. It is shown that under zero-gravity condi-
tions Marangoni convection is the main factor violating
the diffusive HMT mode, which leads to unregulated
and uncontrolled processes in the melt during the crys-
tal growth.
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Abstract—The hypothesis that allows the interpretation of dendritic growth of a snow crystal in terms of dif-
fusion-limited aggregation is criticized. The results of simulation of growth of quasi-two-dimensional crystals
in two- and three-dimensional media based on the classical two-parametric model of diffusion-limited aggre-
gation are used as an argument in this criticism. It is established that the model dimensionality considerably
influences morphology of the grown crystal. The mechanism of dendritic growth of a snow crystal in which the
main part is played by the surface processes at the ice/water interface is suggested. © 2005 Pleiades Publishing,
Inc.
INTRODUCTION

Dendritic growth of snow (ice) crystals whose
aggregation results in the formation of snow flakes have
long been studied because of their importance for both
physics of the atmosphere (thermal–physical, optical,
etc. properties) and ecology (shape of snow flakes
strongly influences scavenger of atmospheric impuri-
ties) [1–9]. However, despite a large number of experi-
mental and theoretical studies, this problem is still
unclear. In particular, it is still unknown why snow
crystals possess the dendritic (skeletal) structure. The
most widespread standpoint is that dendritic form is
associated with diffusion limitations taking place dur-
ing crystal growth [2–4, 9]. The main arguments sup-
porting this hypothesis are as follows.

It is usually accepted that ice crystals grow in an
atmosphere of saturated (with respect to water) vapor:
a supercooled cloud of droplets [2–4]. Since the pres-
sures of saturated vapors of ice and water are different,
the crystals exist under a considerable supersaturation
(the maximum absolute supersaturation above ice at the
saturation above water is observed at –12°C) [3]. The
estimates [3–7, 10] show that growth of crystals up to a
size of 50–300 µm proceeds mainly by the diffusion
mechanism (in an immobile medium where one may
ignore coagulation of cloud particles). The estimation
according to the dimensionless criterion bR/D (where b
is the kinetic crystallization coefficient, R is the charac-
teristic dimension of the crystal, and D is the diffusion
coefficient of water molecules in air) [11] and data [12,
13] yield a value of the order of 103. Thus, the growth
mode of a snow crystal is limited by diffusion. The loss
of the morphological stability in this growth mode and
dendritic growth have been studied rather well [14].
Qualitatively, these phenomena are explained by the
fact that a ledge formed on the crystal surface is under
1063-7745/05/5003- $26.00 0499
favorable growth conditions (is located in the region
highly supersaturated with water vapor) and, therefore,
develops at a higher rate than its environment. An addi-
tional argument in favor of this mechanism is that den-
dritic growth is observed at temperatures close to
−12°C, i.e., under the maximum possible supersatura-
tion in the cloud with respect to ice.

The experiments performed under laboratory condi-
tions show that ice crystals are morphologically stable
if they grow in a vacuum-processed vessel and become
skeletal or dendritic when air is let into the chamber. In
this case, the critical stability size is inversely propor-
tional to the air pressure, i.e., is proportional to the dif-
fusion coefficient [15].

The results of the numerical calculation [16] and
computer simulation [17, 18] also showed that snow
crystals may have dendritic form during diffusion
growth. The numerical calculation of the stationary dif-
fusion equation in an immobile medium was performed
using the empirically established parameters of the
ice/water/air system. The computer simulation was per-
formed on the basis of a relatively simple model of dif-
fusion-limited aggregation (DLA model).

However, the arguments in favor of the diffusion
mechanism of dendritic growth are far from being
ideal. Consider these arguments critically. The size of
the observed snow dendrites most often exceeds
100 µm and attains lengths of 1 mm or more [1, 2]. In
other words, the prevailing growth mechanism is the
gravitational, turbulent, etc., coagulation [2–7] with
10-µm and even larger water microparticles [5]. Den-
dritic crystals may also be observed during precipita-
tion from convective clouds [1], where a crystal does
not have enough time to grow by the diffusion mecha-
nism to the above size within the time of the cloud
existence [2–4]. It is indicated [2] that the most
branched crystals can grow only in a highly supersatu-
© 2005 Pleiades Publishing, Inc.
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rated water cloud in the presence of numerous drops. It
should also be noted that dendrite growth is most often
observed for the prismatic faces of a snow crystal,
whereas the basal faces are practically always relatively
smooth, even in those cases where mainly these faces
develop (in the temperature ranges from –4 to –10°C
and from –20 to −35°C). This indicates the importance
of the role of surface processes in dendrite formation in
comparison with the role of bulk processes.

The results of the growth experiments in air and in
vacuum show, first of all, that air (the whole mixture, its
individual gaseous components, or present microscopic
impurities) considerably influences the crystal stability.
Obviously, the higher the air pressure, the more pro-
nounced this influence and the sooner the crystal is
transformed into the dendritic form. The possible
mechanism of this influence will be considered later.

The known numerical and model computations of
growth of snow crystals in the atmosphere has only one
essential shortcoming: they are two-dimensional. We
consider growth of snow crystals with the invocation of
the diffusion-limited aggregation model [17, 18]. As
has been already indicated, the formation of the den-
dritic form is explained only by the specificity of diffu-
sion of water vapor from the ambient air to the crystal
surface. In the traditional DLA approach, diffusion is
modeled by multiple launches of randomly moving par-
ticles from the system periphery. A particle that during
its random walk reached the crystal surface, is attached
to this crystal. Naturally, the crystal part close to the
starting position of particles is under the conditions
more favorable for growth because of a strongly inho-
mogeneous concentration field. However, this mecha-
nism may play the leading role only during crystal
growth in a two-dimensional medium. The use of a
three-dimensional model of water-vapor diffusion to an
almost plane snow flake (the ratio of its diameter to its
thickness equals 100 or even more) makes the diffusion
limitations less severe.

The aim of the present study is the demonstration of
this effect.

DESCRIPTION OF MODELS

To simulate growth of a quasi-two-dimensional
crystal corresponding to natural growth in the tempera-
ture range from –10 to –20°C, we used the models of
three types:

(1) the classical two-dimensional (2D) DLA model.
Particles start their motion at a random point on the cir-
cumference described around the net (with the lattice
parameter a = 1) and move along a random broken line
with the length of each rectilinear segment being L. In
order to diminish the stochastic action of individual
particles, a certain averaging critical threshold H is
selected (the number of particles that have to come into
the given boundary cell of the crystal). The attainment
of this threshold indicates the cell of an ambient
C

medium is “transformed” into the cell of the crystal. At
the initial moment of simulation, a crystal is repre-
sented by the unit cell located in the net center (coincid-
ing with the center of the initial circumference). In sim-
ulation, we used a flat hexagonal net.

(2) a three-dimensional (3D) DLA model with
adsorption at the basal face. Unlike the model of the
first type, here particles that started at a random site of
surface randomly move inside a three-dimensional
sphere. The crystal thickness is assumed to be equal to
a. It is also assumed that the basal face of the crystal
adsorbs all the particles reaching this surface, but no
growth along this direction is possible (since the growth
rate of the prismatic face is several times higher than
the growth rate of the basal face [5, 13], this approxima-
tion is quite justified). If a particle enters the boundary
cells of the prismatic (side) faces, growth proceeds in
the same way as in the first model.

(3) a three-dimensional DLA model with the parti-
cle reflection from the basal face. Unlike the second
model, the particles in this model are elastically scat-
tered from the basal plane and not adsorbed.

RESULTS AND DISCUSSION

The computation based on the first model showed
that the snow-flake-like structures correspond to rela-
tively high values of the parameter H (exceeding 10). At
low values of this parameter, more stochastic fractal-
like structures are formed. The parameter L is responsi-
ble for porosity (looseness) of the structure. With an
increase in the parameter L, the structure becomes
denser. More detailed results of the simulation based on
the first model are reported in [19].

Figure 1 illustrates the results of simulation based
on three types of models. It is seen that the transition to
the 3D models with preservation of the remaining
parameters results in formation of more compact clus-
ters. This may be explained by the fact that the particles
that diffuse from the 3D environment to a quasi-two-
dimensional object can always reach the central regions
of the crystal and, thus, the growth defects formed ear-
lier can always be healed, whereas in particle diffusion
in the 2D space, this is principally impossible. An addi-
tional factor that influences the profile of the diffusion
field and, as a consequence, also the morphology of the
cluster formed is the considerable difference of the
fraction of particles participating in growth from the
total number of diffusing particles in the 3D and 2D
cases. Diffusion-imposed limitations are even less
important if the particles are not adsorbed but scattered
by the basal face (model of the third type) and, thus,
increase the effective concentration at the surface. As a
result, the structures of the third type are even more
compact than the aggregates obtained on the basis of
the second model. Figure 2 shows the profile of the con-
centration field obtained in the 2D and 3D simulation.
It is seen that, in the second case, the vapor concentra-
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 3      2005
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Model 1 Model 2 Model 3

L = 1

L = 10

L = 100

Fig. 1. Results of the simulation based on three models at different values of the parameter L. The 301 × 347 net. Each cluster con-
sists of 5000 cells. H = 50.
tion has practically the same value far from the crystal
and close to it, which indicates the absence of the diffu-
sion-imposed limitations during growth.
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Fig. 2. Concentration field C as a function of the distance
from the crystal center, r. At the initial circumference, C =
1 and r = 1 (concentrations are given with respect to the con-
centration at the initial circumference; the distances are
given with respect to the circumference radius): j is the
computation based on the 2D DLA model, m is the compu-
tation based on the 3D DLA model.
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Thus, it is shown that the use of the three-dimen-
sional DLA models yields results which differ from the
results for dendrite-like structures formed in the com-
putations based on the two-dimensional DLA model
[17–19] and from the results of analysis of the real
shape of snow crystals [1, 2]. On the one hand, the latter
fact makes the use of the DLA model for studying for-
mation of snow flakes in atmosphere rather dubious
and, on the other hand, is one more argument against
the diffusion–limited mechanism of formation of snow
dendrites. To solve the problem, it is necessary to create
new three-dimensional DLA models (e.g., with growth
in the basal plane) and also some alternative models,
including those based on other growth mechanisms.

CONCLUSIONS

If one abandons the existing hypothesis, what mech-
anism is responsible for the dendritic growth of a snow
crystal? This growth may be the consequence of the
interaction between the surface of a growing crystal and
various impurities in the mother medium, inclusions,
etc., which are pushed away, are accumulated, and
hinder growth of some sites of the surface. All this
results in the preferable development of crystal angles
and dendrite-like growth (for details see [20, 21]). The
growth mechanism may be represented in the following
way. Because of diffusion, small ice crystals attain a
5
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size of the order of 100 µm. Then, the most important
mechanism of their growth becomes coagulation with
water drops in the cloud. If one assumes that the collid-
ing water particles immediately solidify, this may result
only in the formation of irregular crystalline aggregates
(hail, snow pellets, or grained crystals). Therefore, it is
possible to assume that drops spread over the surface
and cover it with a thin layer (solidification time τsol

considerably exceeds the time of drop spreading, τspr).
The film thus formed has a small thickness, differing by
several times in the center of the crystal and at its ver-
tex. Thus, crystal growth proceeds not via vapor subli-
mation but via solidification of supercooled water (a
hypothesis of a film-growth mechanism is also sug-
gested in [5]). It should be noted that a liquid film on the
ice surface in a cloud may also be formed for some
other reasons, i.e., by too low an impurity content (e.g.,
the content of 10 ppm is sufficient for formation of a
0.009-mm-thick film [22] on an ice particle of 1 mm
radius at a temperature of –10°C) or by the action of
sunlight [22]. Thus, the growth mechanism described
above may explain the appearance of dendrites also at
crystal size less than 100 µm when coagulation is unim-
portant.

A growing crystal creates microinhomogeneities at
the ice/water interface, which give rise to the formation
of a dendrite. Obviously, in this case, the relaxation
time of inhomogeneities τrel should exceed τsol. The
times τsol, τspr, and τrel are determined by the thickness
of a water film and the thermophysical characteristics
of the ambient medium; the relaxation time τrel is also
determined by the nature of the inhomogeneity under
consideration.

What is the nature of the inhomogeneities? It seems
that such an inhomogeneity is not a specific impurity
contained in air or in water vapor. Although it is well
known that even the lowest quantities of some sub-
stances contained in air may considerably influence the
shape of a snow crystal (e.g., butyl alcohol [2]), the
numerous observations and experiments performed
under different conditions [2, 9, 23] do not support this
mechanism (e.g., the results obtained in [23] show that
crystallization in a nitrogen, oxygen, or air atmosphere
do not change the morphology). At present, one can
indicate two obvious reasons for formation of inhomo-
geneities. The first one is air bubbles (or bubbles of a
gas constantly present in the atmosphere) forming at
the ice/water interface (air solubility in ice is approxi-
mately 100 times lower than in water [22, 24]). The
bubbles are accumulated in the central parts of the faces
and hinder their further growth. The second possible
reason of the loss of morphological stability is the
appearance of an electrical potential difference
(amounting to hundreds of volts) in solidification at the
moving ice/water interface (thermodielectric effect)
[24–26]. It was shown [26] that specific electric energy
C

of a double layer formed at the crystallization front is
comparable with the surface energy of the water/ice
interface and, therefore, may considerably affect the
morphological instability of ice. No doubt, these spec-
ulations are only a working hypotheses which should
be verified both theoretically and experimentally.
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Abstract—Formation of germanium dioxide of the composition R–GeO2 (rutile structure type), Zr germanate
of the composition Zr[8]Ge[4]O4 (scheelite structure type), K,Zr[6] germanates of the compositions

K2Zr[6] O9 (wadeite structure type) and K2Zr[6] O7, K,Ge[6] germanate of the composition

K2Ge[6] O9, and the K,Ge[6] hydroxo germanate of the composition K3H O16 · 4H2O is estab-
lished in the KOH–ZrO2(nanocrystalline)–GeO2(quartz structure type)–H2O system under the pressure 0.1 GPa
at the temperature 500°C (the superscripts indicate the coordination numbers of Zr and Ge atoms with respect
to oxygen). It is shown that crystallization of K,Zr germanates under hydrothermal conditions depends on the
molar ZrO2/GeO2 ratio and KOH concentration. The phases synthesized are subjected to crystallochemical
analysis. The specific characteristics of the matrix assembly of the ä2ZrGe2O7 structure from suprapolyhedral
structural units (SSU) are considered. The K2ZrGe2O7 structure having the MT2 framework built by M octahe-
dra of the composition ZrO6 and T tetrahedra of the composition GeO4 is considered as a packing of SSU pre-
cursors of the composition ä2M2T4 . The chemical composition of the SSU precursor of the composition
ä2M2T4 with M : T = 1 : 2 determines the lower boundary of germanium content in the three-dimensional frame-
work structures of K,Zr germanates as Ge/Zr = 2. © 2005 Pleiades Publishing, Inc.
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Earlier, studying hydrothermal crystallization in the
KF–ZrO2–GeO2–H2O system at 500–550°C, we
revealed the formation of K,Zr germanate of the com-
position KxZryGepOg (presumably, of the wadeite struc-
ture type), K germanate of the composition K2Ge4O9,
and K,Zr fluoride of the composition K3ZrF7 [1].

Two new isostructural phases, K2ZrGe2O7 and
K2HfGe2O7, were synthesized hydrothermally from the
concentrated KOH solutions at 500°C [2]. In [3],
K2ZrGe2O7 germanate was synthesized from a 6.6 M
KOH solution at 170°C and its structural determination
was performed. It was assumed [3] that the KxZryGepOg

phase synthesized in [1] is a solid solution with a wide
homogeneity region.

The family of closely related (with respect to their
composition and structure) K,Zr silicates includes the
three dehydrated phases K2ZrSi2O7 [4], K2ZrSi3O9 [5],
and K2ZrSi6O15 [6] and the two hydrated phases
K2ZrSi3O9 · H2O [7] and K4Zr2Si6O18 · 2H2O [8] having
topologically different MT frameworks built by M octa-
hedra of the composition ZrO6 and T tetrahedra of the
composition SiO4 sharing their vertices.
1063-7745/05/5003- $26.00 0504
The conditions of formation of K,Zr silicates were
studied in [9–13]. It was shown [10] that the chemical
composition, structure, and number of crystal-forming
phases in the KOH–ZrSiO4–H2O, KOH–ZrO2(crystal-
line)–SiO2–H2O, and KOH–ZrO2(nanocrystalline)–
SiO2–H2O systems depend on the nature of the Zr com-
ponent.

The present study was undertaken with the aim to
identify the structure types of germanates formed in the
KOH–ZrO2(nanocrystalline)–GeO2–H2O system under
the pressure 0.1 GPa at 500°C and to perform the crys-
tallochemical analysis and model the matrix assembly
of the K2ZrGe2O7 structure from suprapolyhedral struc-
tural units (SSU precursors).

This study continues our previous investigations [2,
7–10, 14–18] dedicated to synthesis, analysis of geo-
metrical–topological characteristics of formation of
crystalline phases, and modeling of the processes of
self-organization in the Aéç–MO2–TO2–H2O systems
(A = Li, Na, and K; M = Zr, Ti, Hf, Si[6], Ge[6], and Sn;
T = Si[4] and Ge[4]) at the suprapolyhedral level.
© 2005 Pleiades Publishing, Inc.
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Table 1.  Experimental data on phase formation in the KOH–ZrO2–GeO2–H2O system at 500°C

Experi-
ments

KOH,
wt %

α = ZrO2 : GeO2,
molar ratio β = KOH : GeO2

Phase composition

K germanates Zr germanates

K2GeGe3O9
K3HGe4Ge3O16 ·

4H2O
ZrGeO4 K2ZrGe3O9 K2ZrGe2O7

1 5 1 : 2 0.48 + + tr * + tr + –

2 10 1 : 2 1.00 – + – + –

3 20 1 : 2 2.19 – – – + –

4 35 1 : 2 4.33 – – – – +

5 5 1 : 3 0.42 + + + + –

6 10 1 : 3 0.88 + + + + –

7 20 1 : 3 1.91 – – – + –

8 35 1 : 3 3.79 – – – – +

9 5 1 : 6 0.34 + + + + –

10 10 1 : 6 0.73 + + + + –

11 20 1 : 6 1.59 – – – + –

12 35 1 : 6 3.14 – – – – +

13 5 1 : 9 0.33 + + + + –

14 10 1 : 9 0.69 + + – + –

15 20 1 : 9 1.49 – – – + –

16 35 1 : 9 2.96 – – – – +

* The abbreviation tr indicates trace amounts.
EXPERIMENTAL

Hydrothermal synthesis of crystals was performed
by the temperature-gradient method [14]. Copper
ampules with a diameter of 8 mm and a working vol-
ume of 15 cm3 were filled with the mixture of the start-
ing components. Then, the sealed ampules were placed
into 170-cm3 autoclaves with cylindrical shutters of the
self-sealing type and annealed in a bottom-heated fur-
nace.

Hydrothermal crystallization in the KOH–ZrO2–
GeO2–H2O system was studied at a temperature in the
dissolution zone of 500°C under the pressure 0.1 GPa
under the condition of the temperature gradient ranging
within 1.5–2.0 K/cm along the vertical axis of the auto-
clave. The pressure was estimated from the p–t diagram
of water given in [19]. The accuracy of the automated
maintaining of the temperature along the external wall
of the autoclave was ±2 K. The charge consisted of
chemically pure components: GeO2 (with quartz struc-
ture), KOH, and quickly dissolving ZrO2 (nanocrystal-
line) obtained by the sol–sol method according to the
technology described in [20]. The experiment duration
was 240 h. Several runs of the experiment (Table 1) dif-
fered by the weight and the ratio of the oxides intro-
duced into solution and the concentrations of the
hydroxide KOH.
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 3      200
Insoluble solid products of high-temperature chem-
ical interaction were washed with hot water, dried, and
then analyzed.

The phases synthesized were identified by X-ray
phase analysis (DRON-2 and Rigaku D-Max 1500 dif-
fractometers, ëuKα radiation) with the invocation of
the data from the ICDD (International Center for Dif-
fraction Data) [21] and ICSD (Inorganic Crystal Struc-
ture Database) [22].

RESULTS

The products of hydrothermal crystallization were
fine powders or colorless transparent single crystals
with the linear dimension ranging within 0.1–2.0 mm.
The phase composition of the crystallization field and
the molar ratio β = KOH : GeO2 are indicated in Table 1.

In the KOH–ZrO2–GeO2–H2O system under
0.1 GPa pressure at 500°C, the compounds of four dif-
ferent crystallochemical groups are crystallized, which
have different coordination numbers (c.n.) of Ge and Zr
atoms, namely, (1) GeO2 dioxide (rutile structure type
with c.n. 6); (2) ZrO2 dioxide (structure of monoclinic
baddeleyite ZrO2 with c.n. 7); (3) ZrGeO4 germanate
(structure built by dodecahedra with c.n. 8 and tetrahe-
dra with c.n. 4); (4) MT structures built by M octahedra
(Zr or Ge) and T tetrahedra (Ge), namely, K,Ge[6] ger-
5
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manate of the composition K2Ge[6] O9, K,Ge[6]

hydroxo germanate of the composition

K3H O16 · 4H2O, and K,Zr[6] germanates of

the compositions K2Zr[6] O9 and K2Zr[6] O7 .

In all the experiments, we obtained the compound
K2ZrGe3O9 corresponding to the phase of an unknown
composition, KxZryGepOg, observed in [1]. This ger-
manate is an analog of the silicate wadeite having the
composition K2ZrGe3O9 [5] with the framework topol-
ogy WAD [17]. Single crystals of the K2ZrGe3O9 ger-
manate are not solid solutions as was assumed in [3],
since our experiments revealed neither shift nor broad-
ening of the respective X-ray diffraction lines. It should
be indicated that up to now no examples of germanate
structures representing the AxMyGepOg solid solutions
are known in which the same A positions (in framework
voids) are occupied by K and Zr atoms or the same
octahedral M positions are occupied with Zr and Ge
atoms. All the structures of such type (zirconium ger-
manates, zirconium silicates, and their analogs [17])
have MT frameworks. The alkali metals A (occupying
the voids of the MT frameworks) and the framework-
forming Zr(M) and Ge(T) atoms perform different
functions. Below we consider the functions of K, Zr,
and Ge atoms by an example of the matrix assembly of
K2ZrGe2O7 and K2ZrGe3O9 structures.

SPECIFIC CHARACTERISTICS OF PHASE 
FORMATION

The variation of the KOH concentration in all the
runs with ZrO2 : GeO2 = 1 : 2 (runs 1–4) resulted in the
change of the phase composition of the crystallization
products. There are four characteristic crystallization

Ge3
4[ ]

Ge4
6[ ]

Ge3
4[ ]

Ge3
4[ ]

Ge2
4[ ]

a

b

c

K1

Fig. 1. Framework of the K2ZrGe2O7 structure consisting
of M octahedra linked by Ge2O7 or diortho groups; MT are
the voids occupied by K atoms (large spheres).
C

fields:

I. ZrGeO4 + K2Zr[6] O9 + K2Ge[6] O9 

+ K3H O16 · 4H2O

(β = 0.48);

II. K2Zr[6] O9 + K3H O16 · 4H2O

(β = 1.00);

III. K2Zr[6] O9 (β = 2.19);

IV. K2Zr[6] O7 (β = 4.33).

At ZrO2 : GeO2 = 1 : 3–1 : 9 (runs 5–16), an increase
in the KOH concentration gave rise to the formation of
the following crystallization fields with different com-
positions: 

I. ZrGeO4 + K2Zr[6] O9 + K2Ge[6] O9 

+ K3H O16 · 4H2O

(β = 0.33–0.88);

II. K2Zr[6] O9 (β = 1.49–1.91);

III. K2Zr[6] O7 (β = 2.96–3.79).

Thus, unlike the KF–ZrO2–GeO2–H2O system [1] in
which only one K,Zr germanate of the composition
KxZryGepOg was formed at 500°C, the replacement of
KF and slowly dissolving crystalline ZrO2 (monoclinic
modification, baddeleyite type) by KOH and quickly
dissolving nanocrystalline ZrO2 (with the surface area
~100 m2/g), respectively, initiated the formation of the
following phases:

Zr-germanate of the compositions ZrGeO4 with the
scheelite structure as the primary Zr,Ge phase formed
at a low KOH concentration, and

two K,Zr[6] germanates of the compositions
K2ZrGe3O9 (Ge wadeite) and K2ZrGe2O7 with the phase
transition from K2ZrGe3O9 to K2ZrGe2O7 with an
increase in the KOH concentration.

Below, we consider the structural mechanism of the

formation of K2Zr[6] O7 within the model of matrix
assembly and interpret the sequence of formation of
K,Zr germanates with an increase in the KOH concen-
tration (Cäéç) at the suprapolyhedral level.

MATRIX ASSEMBLY OF THE STRUCTURE 
OF K2ZrGe2O7 GERMANATE

The method for determining a crystal-forming SSU
precursor from the known structural data and the algo-
rithm of the reconstruction of three-dimensional struc-
tures based on the principle of maximum connectivity
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in the transition to a higher level of the structural self-
organization of the system are considered in detail else-
where [14–16].

General structural characteristics. The mono-
clinic K2ZrGe2O7 structure is described by the sp.
gr. C12/c1 (no. 15 [23]) and has the lattice parameters
a = 9.961 Å, b = 5.557 Å, c = 12.955 Å, and β = 105.17°
[3].The framework of the K2ZrGe2O7 structure is
formed by isolated M octahedra of the composition
ZrO6 linked by Ge2O7 (diortho) groups (Fig. 1); the K
atoms occupy the MT voids. Two atoms of the unit cell
are in the special positions: Zr is located at the center of
inversion (4d Wyckoff position) with the coordinates
(0.25, 0.25, 0.5) [23], and the O(4) atom connecting two
tetrahedra of diortho groups occupies the 4e position on
the twofold axis with the coordinates (0, y, 0.25) [23].
Five remaining atoms occupy the general 8f position.

Polyhedral structure of an SSU. An SSU precursor
of germanate (Fig. 2) is a cyclic-type cluster consisting
of six linked polyhedra (D type, according to the topo-
logical classification of SSU precursors [14]). In this
cluster, two ZrO6 octahedra are linked via the Ge2O7
diortho groups. The K atoms are located above and
under the plane of a six-membered M2T4 ring. The cen-
ter of the SSU precursor is located in the general posi-
tion 8f [23] with the coordinates (0.25, 0.48, 0.25). The
MT fragments of the cyclic SSU precursor (Zr octahe-
dron and Ge2é7 diortho group) are related by the 21 axis
(Fig. 2).

Structural mechanism of assembly. Stable cyclic-
type MT fragments of the composition ä2M2T4 control
all the processes of further development of a crystal-
forming MT complex and ensure the formation of a
SSU of a higher level of the structural self-organization
of the system. The coincidence of the cationic compo-
sition of the SSU precursor with 2ZrO6 : 4GeO4 = 1 : 2
with the composition of the SSU precursor with Zr :
Ge = 1 : 2 in the three-dimensional K2ZrGe2O7 struc-
ture indicates that their packing according to the self-
assembling mechanism most rapidly reconstructs the
topology of the whole structure.

The mechanism of the reconstruction of the global
(three-dimensional) topology proceeding from the
local fragment of the structure via complementary con-
nection of SSU precursors with one another has the fol-
lowing characteristics.

Assembly of primary MT chains of the frame-
work. The one-dimensional periodic MT chains are
formed owing to centrosymmetric connection of SSU
precursors ä2M2T4 sharing two vertices along the short
diagonal of the unit cell in the xz plane (Fig. 2). The
symmetry center is located in the position 4a (1/2, 1/2,
1/2). The index of complementary connectivity of SSU
precursors in the chain is 2.

Assembly of an MT layer. Connected MT chains
form a layer consisting of four ä2M2T4 clusters, which
are shown in Fig. 4. The index of complementary con-
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 3      2005
nectivity of the chains consisting of SSU precursors is
four. The distance between the centers of the SSU pre-
cursors consisting of parallel chains (Fig. 3) determines
two largest translations in the germanate structure: c =
12.955 Å in the direction along which the SSU precur-
sors are connected by Ge2O7 diortho groups of neigh-
boring SSU precursors practically parallel to the z axis
and a = 9.961 Å in the direction along which the SSU

a
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c

Ge1

Ge1

Ge1

Zr1

Ge1

Zr1

K1

K1

K1

K

Ge1
Ge1Zr1

(a)

(b)

Fig. 2. SSU precursor of the K2ZrGe2O7 structure projected
along the (a) b and (b) a axes. The black sphere indicates the
center of the SSU precursor.
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Ge1
Ge1

Zr1 Zr1

K1

K1

K1

K1

Fig. 3. Assembly of a chain of SSU precursors. The black
sphere is the center of the cluster of SSU precursors.
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precursors are connected by the octahedra of the neigh-
boring SSU.

Filling of all the geometrically equivalent voids by
K atoms in a newly formed MT layer changes the layer
composition from ä2M2T4 to ä4M2T4 (2 : 1 : 2), which,
on the whole, corresponds to the chemical composition
of the K2ZrGe2O7 germanate (2 : 1 : 2). Two additional
K atoms occupying the position in the center of the MT
layer are shown in Fig. 4.

Assembly of the MT framework. The linear
dimension of the separated slab (Fig. 4) determines the
value of the third shortest translation b = 5.557 Å in the
direction along which the translation-related SSU pre-
cursors are linked (Fig. 5). As a result, the oxygen
atoms at the slab boundaries are translation-equivalent.
Condensation of germanate layers (Figs. 4 and 5)
results in the assembly of a three-dimensional structure.

The two-dimensional layer-slabs separated in the
process of modeling from the three-dimensional ger-
manate structure are translation-equivalent and, there-
fore, the K2ZrGe2O7 germanate represents the simplest
1L type of the structure, where the notation 1L indicates
that the translation multiplication of the layer recon-
structs the structure of a three-dimensional MT frame-
work [16].

Thus, the K2ZrGe2O7 structure with the MT frame-
work MT2 consisting of M octahedra and T tetrahedra is
represented as packing of the SSU precursors of the
composition ä2M2T4 . The chemical composition of an
SSU precursor of the composition ä2M2T4 with M : T =
1 : 2 determines the lower boundary of germanium con-
tent in structures of K,Zr germanates with three-dimen-
sional frameworks with q = Ge/Zr = 2. Another K,Zr
germanate K2ZrGe3O9 of the composition obtained in
this system is characterized by q = 3.

Structural analogs of K2ZrGe2O7 germanate
among the compounds with MT frameworks. Using

c
b

a

Ge1
Ge1

Ge1
Ge1

Zr1 Zr1

K1

K1

K1

K1

K1

K1

K1

K1

Fig. 4. Assembly of a layer consisting of two chains.
C

the TOPOS 3.2 package of programs [24], we searched
in the ICSD-2002 database for the phases of the
A2MT2é7 composition possessing the MT frameworks
consisting of M and T polyhedra topologically equiva-
lent to the framework of the K2ZrGe2O7 germanate.

As in [7, 18], the algorithms for search and analysis
of the crystal structures consisted of the following
stages:

formation of a database of crystal structure for the
A2MT2é7 compounds (we found 120 such compounds);

calculation of the connectivity matrix of atoms for
each structure using the AutoCN program. We took into
account only the strong interatomic contacts corre-
sponding to the main faces of the Voronoi–Dirichlet
polyhedra with the solid angles Ω > 5% of the total
solid angle equal to 4π steradians. When calculating the
connectivity matrix by the methods of intersecting sec-
tors, we used the Slater atomic radii;

calculation of coordination sequences {Nk} for all
the topological representations of the structures and
their subsequent comparison using the IsoTest pro-
gram. The coordination sequence is a set of numbers
{Nk}, where Nk is the number of network sites in the kth
coordination sphere of the atom selected as the central
one. In order to determine the individual topologic
characteristics of the sites in the MT frameworks in the
calculation of the {Nk} values, we removed the alkali
metal atoms A = Li–Cs from the structure and per-
formed the further calculation only for the atoms form-
ing the M, T, O framework.

We determined three families of structures, which
are described by different symmetry groups: the tri-
clinic parakeldyshite type, Na2ZrSi2O7, described by

the sp. gr.  with group order 2; the monoclinic khib-
inskite type, ä2ZrSi2O7, described by the sp. gr. P
1121/b with group order 4; and the high-pressure mon-

P1

a

b

c

K1

K1

K1

K1

Fig. 5. Assembly of translationally equivalent SSU precur-
sors along the y axis.
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Table 2.  Crystallographic data for various representatives of three crystallochemical families described by the general for-
mula A2MT2O7 with topologically equivalent MT frameworks built by octahedra and tetrahedra

Compound Sp. gr. Z Wyckoff
position

Lattice parameters
a, b, c, Å;

α, β, γ , deg
V, Å3 Code in 

the ICSD R, %

Triclinic modification, parakeldyshite type

Na2ZrSi2O7
palakeldyshite

P 2 i12 6.660, 8.830, 5.420,
92.75, 94.25, 72.33

302.8 24866 0.145

Na2ZrGe2O7 P 2 i12 5.630, 6.677, 9.108,
70.60, 88.85, 87.04

322.5 65808 0.055

Monoclinic modification, khiminskite type

K2MnP2O7 P121/n1 4 e12 12.649, 5.527, 9.571,
90.00, 104.45, 90.00

648.0 74600 0.041

K2ZrSi2O7
khibinskite

P1121/b 4 e12 9.540, 14.260, 5.600,
90.00, 90.00, 116.52

681.7 20100 0.140

K2SrP2O7 P121/c1 4 e12 9.168, 5.712, 14.720,
90.00, 105.79, 90.00

741.8 39468 0.062

K2CaAs2O7 P121/c1 4 e12 9.222, 5.835, 14.698,
90.00, 105.84, 90.00

760.9 12116 0.056

Monoclinic modification, Na2Si[6]Si2O7 type

Na2 Si[6]Si2O7
high pressure phase

C12/c1 4 f5ed 8.922, 4.849, 11.567,
90.00, 102.64, 90.00

488.3 81134 0.020

K2CdP2O7 C12/c1 4 f5ec 9.737, 5.548, 12.766,
90.00, 106.50, 90.00

661.2 12117 0.067

K2ZrGe2O7 C12/c1 4 f5ed 9.962, 5.558, 12.955,
90.00, 105.17, 90.00

692.3 88843 0.037

Rb2SrP2O7 C12/c1 4 f5ed 10.270, 5.867, 14.413,
90.00, 116.48, 90.00

777.3 39506 0.073

Cs2SrP2O7 C12/c1 4 f5ed 10.528, 6.081, 14.766,
90.00, 118.34, 90.00

832.0 39 507 0.088

1

1

oclinic Na2Si[6]Si2O7 phase described by the sp. gr.
C12/c1 with group order 8.

The representatives of these families are alkali sili-
cates (germanates) and phosphates (arsenates) with
M(4+) = Si and Zr, M(2+) = Mn, Cd, Ca, Sr, and Ba, and
A = Na, K, Rb, and Cs (Table 2). It should be noted that
the constant chemical composition A2MT2é7 of all the
phase–analogs allowed us to single out only three of the
above families.

The topological-equivalence condition of the struc-
tures with the MT frameworks in the above three fami-
lies of crystal structures A2MT2é7 results in the equiva-
lence of programs of their assembly from suprapolyhe-
dral cyclic SSU precursors. This is explained by the fact
that the connectivity indices of suprapolyhedral SSU
precursors consisting of M and T polyhedra calculated
for these families based on the same model of assembly
are always the same.

The structure of the K2ZrGe2O7 germanate relates to
the Na2Si[6]Si2O7 family described by the sp. gr. pos-
sessing the maximum order. As was indicated for
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 3      2005
K2ZrGe2O7, the M polyhedra in the crystal structure
preserve the center of inversion while the tetrahedra are
related by a twofold rotational axis. In other families,
all the atoms in structure occupy the general positions:
12i in Na2ZrSi2O7 and e12 in K2ZrSi2O7 (Table 2).

The Na2Si[6]Si2O7 family is more numerous. In addi-
tion to the Na2Si[6]Si2O7 silicate and isostructural
K2MGe2O7 germanates (M = Zr and Hf [2]), it includes
three phosphates with large atoms M (M = Cd and Sr)
and alkali metals A (A = K, Rb, and Cs). The data on the
chemical composition (A, M, and T atoms) of the
A2MT2é7 oxides (Table 2) reflect the dimensional rela-
tionships of the framework-forming M and T polyhe-
dra, which impose some steric hindrances on the alkali
metal atoms. The atoms A should correspond to the
sizes of the MT voids of the framework formed during
structure assembly. For comparison, the volume ratio of
the unit cells of Na2Si[6]Si2O7 silicate with the smallest
Si octahedron (488.3 Å3) and of Cs2SrP2O7 phosphate
with the largest Sr octahedron (832.0 Å3) equals 0.59.
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Table 3.  Coordination sequences Nk of K2ZrGe2O7 [3] and Na2ZrGe2O7 germanates [25]. Topologically equivalent frame-
work-forming atoms are characterized by the equivalent {Nk} sequences

Framework-forming atoms Coordination sequences Nk (k = 1–11)

K2ZrGe2O7 Na2ZrGe2O7 1 2 3 4 5 6 7 8 9 10 11

O(4) O(2) 2 6 6 30 24 60 30 102 68 198 84

O(1)–O(3) O(1)–O(3), O(5)–O(7) 2 8 8 26 19 62 38 114 61 164 89

Ge Ge(1), Ge(2) 4 4 18 15 48 27 78 49 156 76 198

Zr Zr 6 6 18 12 42 30 102 50 122 74 222
The coordination sequences Nk of the framework-
forming atoms in K2ZrGe2O7 and Na2ZrGe2O7 ger-
manates are listed in Table 3. The groups of topologi-
cally equivalent atoms (prevailing in the MT frame-
works with the same sets of Nk) are separated. Oxygen
atoms with different Nk are differentiated into the bridg-
ing atoms (connecting T tetrahedra into diortho groups)
and end atoms (connecting M and T polyhedra). Num-
bering of the atoms in K2ZrGe2O7 and Na2ZrGe2O7 cor-
responds to their numbering in structure determinations
[3, 25]. The equivalent groups of framework-forming O
and T atoms in the germanate structures with different
symmetries perform the equivalent functions in the pro-
cess of structure assembly (i.e., are functionally equiv-
alent).

It should be indicated that the model of khibinskite
K2ZrSi2O7 formation (the second family of structures in
Table 2) based on three-membered polyhedral cluster
consisting of an M octahedron connected to a Si2O7
diortho group was suggested in 1973 [26]. It was sug-
gested in 1985 [27] to use as a fundamental structural
block in parakeldyshite–keldyshite Na2ZrSi2O7 (the
first family of triclinic structures, Table 2) a three-mem-
bered polyhedral cluster consisting of an octahedron
and two tetrahedra in the cis position.

To determine a crystal-forming SSU precursor clus-
ter, one has to consider instead of the M site topology in
MT frameworks [26, 27] the correlation between the M
sites, i.e., to analyze the local regions of the MT frame-
work at higher levels of structural self-organization
[28, 29].

We shall show later that it is possible to establish the
invariance of the structure of an SSU precursor in the
topologically different K2ZrGe2O7 and K2ZrGe3O9
structures and the bifurcation of the paths of their evo-
lution (points of structural branching) in the system
during the formation of three-dimensional periodic
structures.

SEQUENCE OF FORMATION 
OF Zr GERMANATES

In the KOH–ZrO2–GeO2–H2O system studied, a
decrease in CKOH resulted in the successive formation of
C

the following Zr-germanate phases:

K2ZrGe2O7 ⇒ K2ZrGe3O9 ⇒ K2ZrGe3O9 + ZrGeO4.

Consider in more detail the roles played by the
structural and chemical factors in the formation of this
sequence of the Zr,Ge phases in the system and the spe-
cific characteristics of the structural transition from the
K2ZrGe2O7 to K2ZrGe3O9 phase.

Structure factor. The germanate with the
K2ZrGe2O7 structure is the phase formed in the system
with the highest KOH concentration. The matrix
assembly of the K2ZrGe2O7 crystal structure from
cyclic SSU precursors is the fastest because of the coin-
cidence of the MT composition of the SSU precursor,
M2T4 , and of the MT2 framework of the germanate.
Therefore, the packing of SSU precursors according to
the mechanism of self-assembly quickly reproduces the
structure topology. Lowering the KOH concentration,
one may attain a certain threshold concentration (20%
KOH) resulting in the crystallization of K2ZrGe3O9
germanate. Similar to the K2ZrSi3O9 silicate with the
wadeite structure, the isostructural K2ZrGe3O9 ger-
manate has the SSU precursor with the same topology
ä2M2T4 [16] as the K2ZrGe2O7 germanate.

However, the assembly of the K2ZrGe3O9 ger-
manate is more complicated than the assembly of
K2ZrGe2O7 . The K2ZrGe3O9 germanate is character-
ized by an elevated germanium concentration in the MT
framework. The structural transition from K2ZrGe2O7
(MN framework) to K2ZrGe3O9 (MT3 framework) is
ensured in solution by free [Ge(OH)4]0 tetrahedra mod-
ifying the primary MT chain and, thus, increasing the
total number of Ge atoms in the structure.

Such free [Ge(OH)4]0 tetrahedra link the SSU pre-
cursors of ä2M2T4 [16]. The general connectivity index
of SSU in the T-modified MT chain increases from 2
to 4. To modify the chain, the vertices of the M octahe-
dra linking the centers should lie at a distance of ~2.6 Å
comparable with the length of the tetrahedron edge. In
other words, there should exist a geometric correspon-
dence of these fragments to one another or a comple-
mentary equality (Fig. 6a).

The free vertices of M octahedra of various SSU
precursors in the primary MT chain of the structure of
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 3      2005
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the K2ZrGe2O7 germanate (Fig. 6b) show no such com-
plementary equality contrary to the MT chain in
K2ZrGe3O9 (Fig. 6a). This signifies that there exists no
continuous combinatorially topological transformation
such that the vertices of the M octahedra in different
SSU in the MT chain lie at a distance of 2.6 Å.

The symmetry elements relating invariant SSU pre-
cursors in MT chains are different: the center of inver-
sion for K2ZrGe2O7 (Fig. 6b) and the rotation axis for
K2ZrGe3O9 (Fig. 6a).

Thus, the matrix-assembly mechanisms in the
K2ZrGe2O7 and K2ZrGe3O9 structures consisting of the
same invariant SSU precursors are different even at the
early stage of the system evolution, i.e., assembly of the
primary MT chain.

Chemical factor. With lowering of the KOH con-
centration in the system, the fraction of [Ge(OH)4]0 tet-
rahedra linking M octahedra increases, on the one hand,
and, on the other hand, the number of K atoms forming
with M and T polyhedra a cyclic SSU precursor
K2ZrGe3O9 decreases. The latter process results in a
decrease in the total number of K-containing SSU pre-
cursors and the evolution of other SSU precursors spon-
taneously formed in the system. Therefore, in the solu-
tions with 10% KOH, one observes the joint crystalli-
zation of K2ZrGe3O9 and alkali-free ZrGeO4 germanate

x

y

z

Tc

z

x

y

Ge1

Ge1

(a)

(b)

Fig. 6. Topologically different types of MT chains:
(a) K2ZrGe3O9 (TÒ is a tetrahedron linking SSU precursors)
and (b) K2ZrGe2O7.
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formed on the basis of four-membered polyhedral
cyclic SSU precursor [28]. In other words, two topolog-
ically different types of SSU precursors are spontane-
ously formed in the system.

The formation of SSU precursors of the composi-
tion ZrGeO4 proceeds without participation of K atoms
and is accompanied by an increase in the coordination
number of Zr atoms from 6 to 8. Like in K2ZrGe2O7 , the
assembly of the ZrGeO4 structure [28] from SSU pre-
cursors proceeds very quickly because of the same sto-
ichiometric compositions of four polyhedral SSU pre-
cursors with 2[ZrO8] : 2[GeO4] = 1 : 1 and the SSU pre-
cursor with Zr : Ge = 1 : 1 in the three-dimensional
ZrGeO4 structure.

Concluding the article, we would like to note that,
similar to the germanate and silicate AOH–MeO2–TO2–
H2O systems studied earlier [2, 9, 14–16], an increase
in the solvent concentration CAéç in the systems results
in the regular formation of K,Zr and K,Ge germanates
with an increasing alkali metal content corresponding
only to the T component of the crystals

K2Zr
[6]

O9(K/Ge = 0.33) 

⇒  K2ZrGe2O7(K/Ge = 0.50),

K2Ge
[6]

O9(K/Ge[4] = 2/3 = 0.66) 

⇒  K3H O16 · 4H2O(ä/Ge[4] = 3/3 = 1.0).

CONCLUSIONS

It is established that formation of Zr germanates
under hydrothermal conditions depends on the molar
ratio ZrO2/GeO2 and the KOH concentration. The
established sequence of Zr germanates formed with an
increase in KOH concentration has the form ZrGeO4 +
K2ZrGe3O9 ⇒  K2ZrGe3O9 ⇒  K2ZrGe2O7.

The specific features of the matrix assembly of
K2ZrGe2O7 and K2ZrGe3O9 from invariant suprapoly-
hedral structural units of the cyclic type ä2M2T4 with K
atoms being located above and under the plane of the
ring are considered. The ä2ZrGe2O7 structure formed
in the solution with 35% KOH is represented as a pack-
ing of SSU precursors ä2M2T4; the chemical composi-
tion of the SSU precursor ä2M2T4 with M : T = 1 : 2
determines the lower boundary of germanium content
in three-dimensional framework structures of K,Zr ger-
manates: q = Ge/Zr = 2.

Formation of the K2ZrGe3O9 germanate in the solu-
tions with 20% KOH and an elevated content of germa-
nium atoms in the structure (M : T ratio increases from
1 : 2 to 1 : 3) is ensured by free [Ge(OH)4]0 tetrahedra
modifying the MT chain and representing the tetrahedra
linking SSU precursors.

With a decrease in the KOH concentration to 5 and
10%, the joint crystallization of K2ZrGe3O9 and alkali

Ge3
4[ ]

Ge3
4[ ]

Ge4
6[ ]

Ge3
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5
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free ZrGeO4 germanate with a new type of cyclic four-
membered polyhedral SSU precursor takes place (with-
out participation of K atoms and with an increase in the
coordination number of Zr atoms from 6 to 8 and the
preservation of the tetrahedral coordination of Ge
atoms).

The model of the matrix assembly of the crystal
structure of the K2ZrGe2O7 germanate is applicable to
the representatives of three crystallochemical families:
alkali silicates (germanates) and phosphates (arsenates)
with the chemical composition A2MT2é7 and M(4+) =
Si, Zr, Hf, M(2+) = Mn, Cd, Ca, Sr, Ba, and A = Na, K,
Rb, Cs. The complementary assembly of the structures
from cyclic SSU precursors proceeds very quickly
because of the coincidence of the MT composition,
M2T4 , of the SSU precursor and the MT2 framework.
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Abstract—A method of calculation of the transformation kinetics for the geometric probability model with
continuous nucleation and diffusional growth of new-phase precipitates is described. Previously, this method
made it possible to calculate very exactly (with a level of error no greater than 0.00011) the evolution of the
volume fraction of the non-transformed phase. It is shown that the upper bounds for the volume fraction of the
nontransformed phase published recently for this model are much less accurate. The theoretical basis of the pro-
posed calculation method is discussed. © 2005 Pleiades Publishing, Inc.
The geometric probability model of crystallization
was proposed by Kolmogorov [1]. We will refer to it as
the K model. Within this model, Kolmogorov derived a
formula that exactly describes the dependence of the
volume fraction q of the noncrystalline phase on time t.
A rigorous and detailed analysis of the K model is given
in the monograph of Belen’kiœ [2]. This monograph
provides an excellent basis for understanding the geo-
metric probability description of phase transformations
and is frequently cited below.

Let us discuss the geometric probability model with
the diffusional law of crystal growth (we will refer to it
as the D model), which is one of the most important
models of such kind [2, 3]. It is based on the following
assumptions [2]: (i) crystallization occurs in an infinite
medium; (ii) the nucleation of crystals in the noncrys-
tallized region obeys the Poisson law with the nucle-
ation rate α(t) (α(t) = 0 at t < 0); (iii) nuclei have a
spherical shape before they undergo impacts and the
growth cessation occurs in the radial directions passing
through the impact points; and (iv) the radius of grow-
ing crystals follows the diffusional law

(1)

where t1 and t are the times of nucleation and observa-
tion, respectively.

According to Eq. (1), the crystals nucleated at dif-
ferent times have different growth rates at time t. This
is a specific feature of the D model in contrast to the K
model.

Let us treat q(t) as the probability for a randomly
chosen point X to be in the noncrystallized region by a
time t [1]. Using the terminology of [2], we refer to an
aggressor as the crystal nucleated at time t1 (0 ≤ t1 < t)
that is able to crystallize the point X before time t pro-
vided there are no obstacles. The spatial region occu-
pied at a time t by the crystal nucleated at the time t1 at

R t1 t,( ) g t t1–( ),=
1063-7745/05/5003- $26.00 0513
the point X will be denoted as Z(X, t1, t) and the volume
of this region will be denoted as V(t1, t). It was shown
in [2] that the region Z*(X, t1, t) of possible nucleation
of an aggressor at the time t1 is obtained by the inver-
sion of the region Z(X, t1, t) with respect to the point X
and has the volume V(t1, t).

Belen’kiœ demonstrated that the following two state-
ments are valid for the K model. They play the key role
in the derivation of the Kolmogorov formula.

Statement 1. The nucleation of an aggressor inevi-
tably causes the crystallization at a point X before time
t; i.e., a non-aggressor cannot shield the point X from
the aggressor.

Statement 2. It follows from the condition of the
absence of aggressors before the time t1 that the region
of possible nucleation of an aggressor at the time t1 is
not crystallized.

Statement 1 was proved in [2] for the general D
model, in which similarly oriented crystals of a speci-
fied convex shape grow according to the diffusional
law. It was noted in [4] that the proof reported in [2] is
incomplete, and an example was given to demonstrate
the violation of Statement 1 for the general D model.

However, for the D model with spherical crystals
considered here, Statement 1 was proved [4]. The valid-
ity of Statement 1 means that the probability q(t) for the
point X to be noncrystallized by the time t is the proba-
bility of the absence of nucleation for the aggressor. Let
µ(t1, t)dt1 be the conditional probability of nucleation
for the aggressor in the time interval [t1, t1 + dt1] if no
aggressor nucleation occurred before the time t1. Then,
we obtain

(2)q t( ) t1µ t1 t,( )d

0

t

∫– .exp=
© 2005 Pleiades Publishing, Inc.
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In our opinion, the derivation of formula (2) given in [2]
is incorrect (see [5]). Therefore, we used another
method to derive Eq. (2) [5]. 

According to its definition, µ(t1, t) is calculated in
the absence of any aggressors before the time t1. In the
case of the K model, this condition ensures the absence
of crystalline phase in the region of possible nucleation
of an aggressor at the time t1 (Statement 2) and Eq. (2)
transforms into the Kolmogorov formula.

If Statement 2 is invalid, the crystalline phase of
non-aggressors can penetrate the region Z*(X, t1, t) of
possible nucleation of an aggressor. In other words,
there is a certain probability that the points in this
region will fall into the crystalline phase. This reduces
the probability of the nucleation of an aggressor. Let us
introduce an unknown function q1(r1, t1) defined as the
probability that the point r1 of possible nucleation of an
aggressor (r1 ∈ Z*(X, t1, t)) is not crystallized by the
time t1 provided that at previous time points t2 (t2 < t1)
the nucleation of an aggressor, i.e., a crystallite in the
region Z*(X, t2, t), does not occur. The dependence of
q1(r1, t1) on t is implied. Then, the product of the prob-
ability q1(r1, t1) for the point r1 to be in the noncrystal-
lized region and the probability α(t1)d3r1dt1 for the
nucleation of a crystal in a noncrystallized volume ele-
ment d3r1 in the time interval [t1, t1 + dt1] gives the
probability of nucleation of an aggressor in the absence
of aggressors at the previous times. Integrating this
probability over the volume of the region Z*(X, t1, t),
we find the desired conditional probability µ(t1, t)dt1 .
Substituting it into Eq. (2), we obtain the formula

(3)

which is applicable to any model where Statement 1
holds true. In the case of the K model, for which State-
ment 2 is valid, q1(r1, t1) = 1 and the integration over the
region Z*(X, t1, t) gives its volume V(t1, t); i.e., Eq. (3)
reduces to the Kolmogorov formula. If only Statement 1
is fulfilled in a model, Eq. (3) contains an unknown
function q1(r1, t1). Using the D model as an example,
we will demonstrate below that this formula can pro-
vide upper and lower bounds for q(t).

In the D model, the region where the nucleation of
an aggressor is possible at the time t1 is a sphere
S1(X, t1, t) with the radius R(t1, t) (see Eq. (1)) centered
at the point X (see the paragraph where the definition of
an aggressor is given). Any crystal nucleated within this
sphere at the time t1 will crystallize the material at the
point X before the time t. It is easy to show that the max-
imum penetration of the crystalline phase of a non-
aggressor into the sphere S1(X, t1, t) (t1 ∈ [0, t]) occurs
for the non-aggressor that nucleates at t1 = 0 at the sur-
face of the sphere S1(X, 0, t), i.e., at the distance r1 =

q t( ) t1α t1( ) d
3r1q1 r1 t1,( )

Z* X t1 t, ,( )
∫d

0

t

∫– ,exp=
C

 from the point X. The minimum distance from the
point X to the crystallization front (surface) of such a
crystal at the time t1 is equal to

(4)

This means that the crystalline phase of non-aggressors
does not penetrate into the sphere S2(X, t1, t) with the
radius R2(t1, t) and can penetrate into the spherical layer
S3(X, t1, t) = S1(X, t1, t) – S2(X, t1, t); i.e.,

(5)

Using Eq. (5), we can represent Eq. (3) for the D model
in the form

(6)

where V2(t1, t) is the volume of the sphere with the
radius R2(t1, t) given by Eq. (4).

If we replace q1(r1, t1) in Eq. (6) by its upper (lower)
bound, we can find the lower (upper) bound for q(t).
The simplest estimates could be found if we take into
account that 0 ≤ q1(r1, t1) ≤ 1 in accordance with the
probability definition. Replacing in [6] q1(r1, t1) by
unity, we obtain

(7)

The expression for Q1(t) is equivalent to the Kolmog-
orov formula, but in the D model this expression gives
the lower bound for q(t), in contrast to the K model. The
substitution of zero instead of q1(r1, t1) leads to the
upper bound Q2(t) for q(t). Both these bounds were
found by Belen’kiœ [2]. The interval between the two
bounds turns out to be too wide and makes it impossible
to characterize the behavior of q(t) [6].

To refine the upper bound for q(t), we can use the
inequalities

(8)

The left-side inequality is a consequence of the condi-
tional character of the probability q1(r1, t1) and the
right-side one is the bound given by Eq. (7). When
α(t) = const, we can reduce by about a factor of 4 the
uncertainty range for q(t) as compared to the situation
when we use the bound Q2(t). However, the uncertainty
remains significantly large (about 0.12 at q ≈ 0.1).

Let us now give more detailed bounds for q1(r1, t1).
In calculations of q1(r1, t1), it is necessary to take into

gt

R2 t1 t,( ) gt gt1.–=

q1 r1 t1,( ) 1 at r1 S2 X t1 t, ,( )∈=

and   q1 r1 t1,( ) 1 at r1 S3 X t1 t, ,( ).∈≤

q t( ) t1α t1( )d

0

t

∫–




exp=

× V2 t1 t,( ) d
3r1q1 r1 t1,( )

S3 X t1 t, ,( )
∫+





,

q t( ) t1α t1( )V t1 t,( )d

0

t

∫–exp Q1 t( ).≡≥

q1 r1 t1,( ) q t1( ) Q1 t1( ).≥ ≥
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account the possibility of nucleation of crystals in the
region S11(t2) at times t2 (0 ≤ t2 < t1). This region
includes the set of points of the sphere S1(r1, t2, t1) not
belonging to sphere S1(X, t2, t) (according to the defini-
tion of q1(r1, t1)). Following the reasoning similar to
that used in the derivation of Eq. (6), we find

(9)

Here, V21(t2) is the volume of the region S21(t2) includ-
ing the set of points of the sphere S2(r1, t2, t1) not
belonging to the sphere S1(X, t2, t) and S31(t2) is the part
of the spherical layer supplementing the region S21(t2)
to the region S11(t2). The unknown function q2(r2, t2) is
treated as the probability of the absence of crystalliza-
tion at the point r2 at the time t2 provided that crystalli-
zation did not occur at the previous times t3 (0 ≤ t3 < t2)
in the regions S1(X, t3, t) and S11(t3). This condition reli-
ably ensures that the region S21(t2) is not crystallized at
the time t2. It is necessary to take into account that
q2(r2, t2), S11(t2), and so on, also depend on t, t1, and r1.

Let us now find new bounds for q(t) on the basis of
Eqs. (6) and (9). The reasoning similar to that used in
the derivation of Eq. (8) leads to the inequality
q2(r2, t2) ≥ Q1(t2). In the left-hand side of this inequality,
we take the sphere S1(r2, t3, t2) having the volume
V(t3, t2) as the region where a nucleation of a crystal is
possible at the time t3, which leads to the crystallization
at the point r2 by the time t2. It can be shown that the
condition in the definition of q2(r2, t2) makes it possible
to use a two-times smaller volume in the estimation of
this quantity and to find a stronger bound:

(10)

Substitution of the expression from the right-hand side
of inequality (10) into Eq. (9) instead of q2(r2, t2) leads
to a new upper bound for q1(r1, t1). The use of this
bound in Eq. (6) leads to a new lower bound for q(t),
q(t) ≥ Q3(t). Similarly, the bound q2(r2, t2) ≤ 1 leads to
a new upper bound for q(t): q(t) ≤ Q4(t). The problem
of determining Q3(t) and Q4(t) involves the calculation
of some integrals. Note that even in the case of a simple
dependence α(t) it is not possible to avoid the double
numerical integration. Here, we should pay special
attention to the choice of integration steps to obtain suf-
ficiently exact results.

For the most interesting case of the constant nucle-
ation rate, α = const, we performed calculations [6] (see
table) using the dimensionless time t0 = α2/5g3/5t. It can

q1 r1 t1,( )

=  t2α t2( ) V21 t2( ) d
3r2q2 r2 t2,( )

S31 t2( )
∫+d

0

t1

∫–

 
 
 
 
 

.exp

q2 r2 t2,( ) 0.5 t3α t3( )V t3 t2,( )d

0

t2

∫– .exp≥
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 3      2005
be seen from the table that the difference between the
upper and lower bounds Q4(t) – Q3(t) ≤ 2.2 × 10–4; i.e.,
the error of approximation q(t) ≅  (Q4(t) + Q3(t))/2 does
not exceed 1.1 × 10–4. It can also be seen that the error
due to the use of the Kolmogorov formula does not
exceed 0.0077. In addition, it was found in [6] that the
Avrami exponent n [3] decreases during the crystalliza-
tion from n = 2.5 at q = 1 to n ≅  2.37 at q = 0.01. The
results of the calculations [6] yield an almost exact
value of q(t) and agree well with the results of numeri-
cal simulation [7].

Upper bounds for q(t) were recently reported in [8]
for the case when the growth rate of a nucleus decreases
with an increase in the age of nuclei. For the D model
with α = const, the maximum difference between the
determined upper bound and the values calculated
using the Kolmogorov formula (the maximum uncer-
tainty in the determination of q(t)) was 1.4 × 10–2 and
2.2 × 10–2 in two- and three-dimensional cases, respec-
tively. The accuracy of these bounds is much lower than
that of both analytical bounds [6] and the bounds fol-
lowing from the numerical simulation of q(t) performed
for the three- [7] and two-dimensional [9] D models.

To guarantee the rigorous applicability of the meth-
ods considered in [8] and in this paper, Statement 1
should be valid. As far as the models with the diffu-
sional crystal growth are concerned, Statement 1 was
proved only in the case of spherical crystals obeying the

Upper and lower bounds of the noncrystallized volume frac-
tion q(t) for the model with the diffusional growth law (1)
and with the constant nucleation rate α for crystals: Q1(t) ≤
Q3(t) ≤ q(t) ≤ Q4(t) (Q1(t) corresponds to the Kolmogorov
formula)

α2/5g3/5t Q1(t) Q3(t) Q4(t)

0.1 0.99472 0.99472

0.2 0.97047 0.97048

0.3 0.9207 0.92082

0.4 0.8440 0.84440

0.5 0.7436 0.74460

0.6 0.6267 0.62872 0.62873

0.7 0.5031 0.50654 0.50657

0.8 0.3832 0.38825 0.38831

0.9 0.2760 0.28241 0.28252

1.0 0.1872 0.19456 0.19472

1.1 0.1193 0.12676 0.12696

1.2 0.0711 0.07802 0.07824

1.3 0.0396 0.04532 0.04554

1.4 0.0205 0.02483 0.02503

1.5 0.0099 0.01283 0.01299

1.6 0.0044 0.00625 0.00637

1.7 0.0018 0.00287 0.00295
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growth law given by Eq. (1) [4]. This issue was not dis-
cussed in [8], although the applicability range of the
suggested method is considered to be quite wide: from
growth laws more general than Eq. (1) to the case of an
arbitrary shape of crystals.

Putting aside the problem of validity for Statement 1,
we can argue that our model can be applied without any
fundamental changes to the cases when the growth rate
decreases with an increase in the age of the crystal.
Moreover, it was applied to such a model characterized
by a finite size of the critical nucleus [10]. The calcula-
tions demonstrated that the bounds Q3(t) and Q4(t) can
be more or less accurate depending on the parameters
of the model. When the interval between these bounds
is considerably large, the results of numerical simula-
tion for q(t) [11] are close to (Q4(t) + Q3(t))/2.

One of the applications for the results obtained is the
description of the nucleation kinetics for particles dur-
ing the phase separation in glasses [12, 13].

In conclusion, on the basis of the rigorous analysis
of the crystallization model characterized by the diffu-
sional crystal growth, we presented a method which
allowed us to perform nearly exact calculations of the
kinetics of phase transformations within this model.
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Abstract—The algorithms for analysis of shape and size of a cavity in a hydrate framework are considered. As
an example, the framework structure of cubic structure II is analyzed. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

There exists a wide class of clathrate hydrates [1] in
which water molecules linked by hydrogen bonds form
a three-dimensional framework with various cavities
occupied by “guest” molecules. In some hydrate struc-
tures, the atoms of guest molecules may also take part
in framework formation. At present, the following
types of hydrate frameworks are known: cubic struc-
tures I and II; hexagonal structures I, II, and III; tetrag-
onal structures I, II, and III; and the orthorhombic struc-
ture. Analysis of these structures showed the presence
of D, D', T, H, P, and E cavities. All these structures and
the respective cavities are considered in detail in [2].
Recently, tetragonal structure IV with a cavity of an
unknown type has also been discovered [3]. However,
it seems that the structural types are not limited to the
ones mentioned above. Thus, there exist eight com-
pounds with different stoichiometries in the
Bu4NH(CH2)10CO2/H2O system whose structures are
still unknown [4]. The structures have complicated
frameworks and, therefore, the division of these frame-
works into cavities is a rather labor- and time-consum-
ing process. Analysis of hydrate structures is also com-
plicated by ordering of the guest component and possi-
ble formation of superstructures [2]. Since the
discovery of new hydrate structures has not been com-
pleted as yet, one constantly encounters the problem of
their analysis. The present study is aimed at designing
software which would allow one to use the crystallo-
graphic data on the frameworks of hydrate structures
and perform the automatic division of these frame-
works into cavities to facilitate analysis of all types of
cavities in these frameworks.

It should be indicated that all the developed algo-
rithms are valid for a hydrate framework in which each
molecule is linked to four neighboring molecules by
hydrogen bonds. The algorithm becomes invalid for

† Deceased
1063-7745/05/5003- $26.000517
hydrate structures whose frameworks do not possess
this property.1

SOME NECESSARY DATA
FROM THE GRAPH THEORY

The algorithms designed are based on construction
of graphs [5]. Let us introduce some definitions. 

Definition 1. A simple graph—or simply a graph—
is a set of points V and a set of edges E such that each
edge connects two points of the set V. A graph with the
set of vertices V and a set of edges E is denoted as
G(V, E). If V1 ⊂ V and E1 ⊂ E, the graph G(V1, E1) is
called a subgraph of the graph G(V, E). If the edge e ∈
E connects the vertices v 1, v 2 ∈ V, we write that e =
(v 1, v 2).

Definition 2. A path between the vertices v1 and vn

is a set of edges e1, e2, …, en – 1 such that e1 = (v1, v2),
and e2 = (v2, v3), …, en – 1 = (vn – 1, vn). This path is often
denoted as v 1, v 2, …, v n. A path is called simple if all
the vertices entering it are different, the only possible
exception being the first and last vertices. A simple path
in which the first and last vertices coincide is called a
simple cycle. It should be noted that each face of a cer-
tain cavity is a simple cycle. This fact is used in the
algorithms for cavity construction.

Definition 3. A graph with any two vertices that are
connected by a certain path is called a connected graph.
To check the graph connectedness, it is sufficient to
check the possibility of connecting by a path any vertex
of the graph with all the remaining vertices.

Definition 4. If two graph vertices are connected by
an edge, these vertices are called adjacent. For a given
vertex v  ∈ V, the number of vertices adjacent to it is
called the vertex degree. If the degrees of all the graph
vertices are equal, the graph is called regular.

1 The algorithms described here are applicable not only to hydrate
frameworks but also for other frameworks possessing this prop-
erty, for example, for the framework built from SiO2 molecules.
 © 2005 Pleiades Publishing, Inc.
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Definition 5. The maximum connected subgraph of
a certain graph is called a connected graph component.
The subgraph maximality is understood in the sense
that it is impossible to add even a single vertex to the
subgraph without breaking its connectedness.

Definition 6. A graph edge is called a bridge if its
removal increases the number of the connected compo-
nents.

Definition 7. In 1741, the famous mathematician
L. Euler solved the problem formulated as follows. It is
necessary to go out from a certain graph vertex, pass all
its edges once, and return to the initial vertex. This
graph circuit is called Euler’s circuit.

Euler’s theorem. If a graph is to have an Euler’s cir-
cuit, it is necessary and sufficient that this graph is con-
nected and that the degrees of each of its vertices are
even.

Now, consider a hydrate framework and construct
on its basis a graph in such a way. Let the molecules
forming the framework play the role of graph vertices.2

Two graph vertices can be connected by an edge if and
only if the corresponding molecules form a hydrogen
bond. Now, the conditions imposed onto the framework
may be formulated in terms of the graph theory in the
following way:

(1) A framework should form a connected graph.
(2) The degree of each framework vertex should

be 4.
The fulfillment of the above conditions is a neces-

sary but not sufficient condition for constructing cavi-
ties. The sufficient condition is formulated in such a
way: a hydrate framework should be a union of closed
polyhedra.

PROBLEM FORMULATION
The problem of hydrate-framework division into

cavities is formulated in terms of the graph theory in the
following way. There exists a graph with vertices set by
the coordinates of the points in a space and satisfying
conditions (1) and (2). It is necessary to construct all the
closed polyhedra with the vertices located at the given
points.

ALGORITHMS
The problem of framework division into cavities is

solved using the following three algorithms:
(1) an algorithm for constructing edges,
(2) an algorithm for constructing faces,
(3) an algorithm for constructing cavities.
Algorithms (1) and (2) are performed only once.

Algorithm (3) is iterated several times until all the cav-
ities are constructed.

2 For water molecules, the graph vertex is set in the center of the
oxygen atom, and for a monatomic molecule, in the center of the
respective atom.
C

ALGORITHM FOR CONSTRUCTING EDGES

It is well known that, in hydrate structures, the dis-
tance between oxygen atoms forming hydrogen bonds
varies from 2.3 to 3.3 Å [6]. Knowing the coordinates
of the atoms forming the framework, one may calculate
the distances between all the atomic pairs. A pair of
atoms will be connected by an edge if and only if the
distance between these atoms is less than a certain
given value.

ALGORITHM FOR CONSTRUCTING FACES

As was indicated above, each face of a cavity is a
simple cycle. However not every simple cycle of a
framework is a cavity face. One has to bear in mind the
following. Each vertex of the framework is adjacent to
four edges. Each of these four edges belongs to differ-
ent faces of certain cavities. Each pair of adjacent edges
belongs to one and only to one face of a certain cavity.
Now, let us construct a minimum simple cycle contain-
ing these edges for each pair of adjacent edges. To
avoid the construction of the same face several times, it
is necessary to label all the pairs of adjacent edges
which enter the face constructed. Now, consider a still-
unlabeled pair of adjacent edges and construct a new
face on its basis. This process is continued until all the
pairs of adjacent edges become labeled, which signifies
that the process of face construction is completed. We
say that two faces are of the same type if they have the
same number of edges.

ALGORITHM FOR CONSTRUCTING
CAVITIES

Let the algorithm for constructing faces be per-
formed. Two faces are called adjacent if they share one
edge. It should be noted that each face belongs to two
cavities, but any two adjacent faces belong only to one
cavity. Thus, a certain cavity can be constructed on the
basis of two adjacent faces.

Consider two adjacent faces and add to them new
faces to construct a cavity in the following way. Let
several faces be already added. Now add any face still
not considered to the already existing faces if and only
if this face is adjacent to any pair of the already-added
adjacent faces but along different edges. The cavity is
considered to be constructed no more faces can be
added. To check whether the cavity thus constructed is
a closed polygon, it is sufficient to check whether each
edge of the cavity belongs only to two faces. After the
completion of the cavity construction, we have to label
each pair of the adjacent faces of this cavity. Then an
unlabeled pair of adjacent faces is taken to construct a
new cavity. The process is continued until all the pairs
of adjacent faces are labeled. Then the process of
framework division into cavities is considered to be
complete.
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 3      2005
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Fig. 1. Cubic structure II projected onto the (001) plane.

H D

Fig. 2. Cavities H and D in cubic structure II.
CALCULATION OF POSITIONS 
OF HYDROGEN ATOMS

The user may calculate one of the variants of the
arrangement of hydrogen atoms in a hydrate com-
plex. The formulation of the problem reduces to the
following: to calculate positions of hydrogen atoms
in such a way that each oxygen atom is linked with
two hydrogen atoms and each bond has only one
hydrogen atom.
 REPORTS      Vol. 50      No. 3      2005
This problem is solved with the aid of Euler’s circuit
of the graph. When going out of a vertex, we shall
attach to it a hydrogen atom. Using Euler’s circuit, we
go out of each vertex twice and enter this vertex again
also twice. Thus, two hydrogen atoms are attributed to
each oxygen atom. Since in Euler’s circuit all the edges
are passed only once, each bond will be occupied only
by one hydrogen atom.

Euler’s theorem ensures that a hydrate complex sat-
isfying conditions (1) and (2) has Euler’s circuit; how-
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D3H D4 D2H2

Fig. 3. Four-section cavities D3H, D4, and D2H2 in cubic structure II.
ever, it gives no ideas about the algorithm of its imple-
mentation. The algorithm for constructing such a cir-
cuit reduces to the following.

Let us start the circuit with an arbitrary vertex v.
Assume that we have already passed several graph
edges and now are at the vertex u. After the removal
from the graph of the already passed edges, we arrive at
the subgraph G'. Now, let us find for the vertex u in the
graph G' such an adjacent edge e which is not a bridge.
Then continue our motion along the edge e. The algo-
rithm is considered to be complete when all the graph
edges have been passed.

Note. The above algorithm yields a certain random
distribution of hydrogen atoms in a hydrate structure.
This distribution may be modified in such a way that it
will have a certain physical meaning; e.g., that the
dipole moment of the structure will be close to zero. It
is very difficult to sort all the variants of the arrange-
ment of hydrogen atoms. (Theoretically, such a proce-
dure is possible but requires sorting of a large number
of variants. Thus, for a D cavity built by 20 water mol-
ecules, there are 3600000 possible variants of arrange-
ment of hydrogen atoms [7].) However, it is possible to
select a sufficiently large number of such variants and
choose from them the variant with the minimum
dipole-moment modulus.

DESCRIPTION OF THE PROGRAM
The above algorithms underlie the program Cavi-

ties. The program reads the unit-cell parameters a, b, c,
α, β, and γ of a hydrate structure and the coordinates of
the atoms forming the hydrate framework which are
stored in a file in the Shelxs form.

The program divides the hydrate framework into
cavities and outputs following information for each
cavity:

the coordinates of atoms forming the cavity,
the number of faces and vertices in the cavity,
C

the coordinates of the cavity center, the cavity vol-
ume (i.e., the volume of a polyhedron forming the cav-
ity), and 

the free volume of the cavity (i.e., polyhedron vol-
ume minus the volume of the molecules located inside
the cavity).

For each type of face forming the cavity, the pro-
gram outputs the number of edges of each face and the
number of faces of each type.

The possible options are:
output only of the information on the cavities whose

centers are located inside the unit cell of the crystal,
output only of the information about the cavities of

different types,
calculation of the positions of hydrogen atoms for

each cavity,
output of the list of adjacent cavities,
output of the information on the multisection cavi-

ties.3 
The program is appropriated for the operation sys-

tems Windows 95, Windows 98, and Windows NT.
The program was tested on six well-known struc-

tures of clathrate hydrates. These are cubic structures I
and II, tetragonal structures I and II, hexagonal struc-
ture III, and the orthorhombic structure [1].

As an example, we consider here the structure of
cavities in cubic structure II [1, 8]. Figure 1 shows this
structure projected onto the (001) plane. The structure
consists of 8 polyhedra faceted with 16 faces (the so-
called H cavities) and 16 polyhedra faceted with
12 faces (D cavities). An H cavity is formed by 4 regu-
lar hexagons and 12 pentagons, and a D cavity is
formed by 12 pentagons. The volume of the H cavity
equals 308.62 Å3 and the volume of the D cavity equals
156.56 Å3. It is well known that the average volumes of

3 Separation of multisection cavities is important, e.g., for selecting
the “host” framework in hydrates of quaternary ammonium salts.
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 3      2005
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these cavities are 290 and 168 Å3, respectively [2].
Thus, the volume of the H cavity in cubic structure II is
somewhat higher and the volume of the D cavity is
somewhat lower than their average volumes. Figure 2
schematically depicts these cavities. The study of this
structure shows that it contains three types of four-sec-
tion cavities: D3H, D4, and D2H2 cavities (Fig. 3).
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Abstract—The ICA (Intermolecular Contacts Analysis) computer program was developed for statistical anal-
ysis of intermolecular atom–atom contacts in organic crystals. At present, the program allows one to examine
homomolecular crystals belonging to monosystem structural classes. The analysis involves the following steps:
selection of supporting contacts (i.e., contacts sufficient for the formation of a three-dimensional framework of
intermolecular “touches”), construction of their distributions over atom–atom distances, approximation of the
distribution curves by Gaussians, and calculations of the average (most probable) length of the contacts of a
particular type and the variance of the distribution. The van der Waals radii of the most important organogenic
elements were refined on the basis of the data on approximately 7800 crystal structures retrieved from the Cam-
bridge Structural Database. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

According to the theory of close packing of mole-
cules [1, 2], whose first postulate [3], in fact, justifies
the concept of a van der Waals radius (WR) [4], each
molecule in an organic crystal forms supporting con-
tacts, thus providing a stable equilibrium arrangement
of molecules in the space. It should be emphasized that
the sum of the van-der-Waals radii of the corresponding
atoms (RX + RY) or twice the geometric mean of these

radii  has a sense of the most probable inter-
atomic distance, but only for supporting [4] van-der-
Waals atom–atom contacts. Therefore, the correct eval-
uation of WRs requires two necessary conditions to be
met. First, WR can be determined only by averaging
based on statistical processing of experimental crystal-
lographic data for numerous crystal structures. Second,
to determine the optimal WRs, only the distances rij

corresponding to supporting atom–atom contacts must
be used. This requires a thorough selection of only
those contacts that are actually supporting.

However, the first condition was not satisfied in all
early determinations of WRs [1, 2, 5, 6] (optimal WRs
were estimated on the basis of very limited structural
data). Although extensive data retrieved from the Cam-
bridge Structural Database (CSD) were used in [7, 8],
the second condition was ignored in these studies. A
reliable procedure for selecting supporting contacts and
a statistical approach were used in [9], but the crystal-
lographic data on only several tens of structures were
analyzed, which is obviously inadequate to solve this
problem. Thus, in fact, reliable information on the opti-
mal van-der-Waals radii of organogenic elements has
been lacking.

2 RX RY
1063-7745/05/5003- $26.00 0522
In this study, we describe the ICA (Intermolecular
Contacts Analysis) program for analysis of intermolec-
ular contacts in organic crystals (using the CSD data).
The program was used to determine the van der Waals
radii of important organogenic elements (C, H, O, N,
and Cl).

MAIN PRINCIPLES OF THE PROGRAM

The program processes successively a set of crystal
structures, which are retrieved from the CSD and cate-
gorized according to structural classes [10]. Recall that
a structural class is a set of structures belonging to a
particular space group, in which molecules (more pre-
cisely, their centers of mass) occupy one or several par-
ticular systems of equivalent positions (orbits).

A list of structural classes is formed by a user and
introduced as a sequence of folders containing data on
the structures belonging to the chosen structural
classes. Each folder contains characteristics of a partic-
ular structural class and a sequence of files. Each file
corresponds to a particular entry in the SCD, i.e., to a
crystalline compound studied under certain conditions
(in accordance with the data from a particular X-ray
diffraction study), and is characterized by a refcode
[11] and an empirical formula of the chemical com-
pound. A set of folders (together with their content)
formed for an investigation is called the main data
array.

The program consists of several steps, which are
specified by a user and include the following subrou-
tines.

Step 1 involves a test for completeness of the data on
the coordinates of the atoms present in the crystal tak-
© 2005 Pleiades Publishing, Inc.
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ing into account the empirical formula and a test for the
presence (or the absence) of partial disorder in the crys-
tal. This step can also involve checking the files for par-
ticular additional criteria.

Step 2 involves a check for the compliance of the
files with the following characteristic parameters spec-
ified in accordance with the purpose of the investiga-
tion:

(1) elemental compositions of chemical com-
pounds;

(2) a class of chemical compounds and the presence
of particular molecular fragments or functional groups;

(3) exclusion of duplicate data (the corresponding
criteria are specified: for example, analyses performed
at different temperatures, similar results obtained by
different authors, and so on);

(4) selection of files according to the criteria that are
of interest for a particular study (for example, the num-
ber of atoms in molecules), selection of low-tempera-
ture studies, and so on.

In steps 1 and 2, the main data array for the investi-
gation is refined (corrected). The conditions accepted
for the investigation are stored in the starting file, which
also includes selected calculation parameters listed
below.

Step 3 involves calculations of intermolecular
atom–atom distances rij and a search for supporting
(structure-forming) atom–atom contacts. In the case of
a monosystem crystal, i.e., a crystal, in which all mole-
cules are symmetrically related, the ith atom belongs to
the starting molecule denoted I-000, and the jth atom
belongs to one of the molecules involved in the nearest
environment of the starting molecule and denoted N-
HKL.1 For each I-000–N-HKL pair, rij and ∆rij = rij –

 are calculated, where Ri and Rj are the starting
WRs.2 In this study, we used the van-der-Waals radii
proposed in [4, 9] as the starting values. Hereinafter,
these radii are referred to as WR(ZZ). Then the mini-
mum value of ∆rij (∆rmin) is found for each I-000–N-
HKL pair. Finally, m smallest ∆rmin, i.e., m supporting
contacts, are selected for each compound under investi-
gation.

1 The rational symbols N-HKL of molecules have been described
in different publications (see, for example, [10, 12]). In this sym-
bol, the letter N (which, generally, corresponds to a Roman
numeral) denotes the orientation of the molecule, and H, K, L are
integers corresponding to translation shifts along the coordinate
axes. By varying N and the integers H, K, L (within specified lim-
its) permissible for a particular space group, one can consider all
molecules in the vicinity of the starting molecule. The calcula-
tions are performed within a restricted area specified by the limit-
ing values of H, K, L (they are specified as parameters in the start-
ing file).

2 One would expect it to be more reasonable to use the difference
rij – (Ri + Rj) to determine ∆rij. However, it was demonstrated
previously [4, 9] and confirmed here that more self-consistent
data are obtained using twice the geometric mean. Nevertheless,
the ICA program allows for the use of any of the above
approaches.

2 RiR j
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The aim of step 4 is to reveal specific contacts (and,
probably, erroneous atomic coordinates). Each support-
ing contact thus revealed is compared with the lower
limit of the distances AB(min), which are considered to
be allowable for a particular combination of the A and
B elements in the case of a van-der-Waals (nonspecific)
A···B contact. A set of the accepted lower limits for the
lengths of A···B van-der-Waals contacts is specified in
the starting file. If the file contains an rij distance shorter
than rAB(min), this file is excluded from the main data
array (a correction of the data array). The files dis-
carded in this step are stored in a special data array,
which can be used for studying shortened specific inter-
molecular contacts (after testing for the absence of evi-
dent errors in the atomic coordinates).

In step 5, the data array of the supporting contacts is
supplemented with the rij distances for which ∆rij differ
only slightly (by no more than δ, which is specified in
the starting file and generally taken equal to 0.1 Å) from
∆rmin. This step can be excluded at will from the general
sequence of the steps of investigation.

In the final step 6, the chosen supporting contacts
are sorted by AB combinations, i.e., C···C, C···H, H···H,
O···O, C···O, H···O, etc., contacts are distinguished. The
program compiles AB.txt files, which are used to plot
histograms characterizing the distribution of the sup-
porting contacts of a particular AB type and statistically
process these distributions. To follow the course of
investigations and record the results of calculations, a
report.txt file is compiled, in which the starting (speci-
fied) parameters are stored, the calculations are
recorded, and the main results are saved. A correspond-
ing code is assigned to each investigation. This code is
used to label the starting file, the AB.txt file, the
report.txt file, the main and special data arrays, and all
histograms plotted.

In conclusion, note that an analysis of various struc-
tural classes sometimes requires the use of special sub-
routines. For example, an analysis of intermolecular
contacts in crystals containing molecules in special
positions (on inversion centers, on twofold axes, etc.) is
performed with the use of a structural formula deter-
mined by a connectivity matrix. A crystal-chemical
analysis of polysystem crystals also presents certain
problems.

DESCRIPTION OF THE INVESTIGATIONS

In the first investigations carried out using the ICA
program, we used the structural data retrieved from the
Cambridge Structural Database (CSD, release 2001)
and corresponding to the most well studied structural
classes of homomolecular organic crystals: P212121,
Z = 4(1), and P21/c, Z = 4(1). Only structures in which
disorder is absent and which are characterized by the
reliability factor R lower than 0.10 were considered.
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Characterization of the investigations

Investigation
Restrictions on 
the elemental 
composition

Total number 
of structures

Among them

with shortened 
contacts

erroneous or in-
complete data

repeated
data

used in
our study

1 C, H, O 6548 1492 1553 562 2941

2 C, H, O, N 8526 2533 1852 327 3814

3 C, H, O, N, Cl 1662 281 397 48 936
We performed three investigations (1–3) with the
following restrictions imposed on the elemental com-
position:

(1) the necessary presence of C and O atoms; the
presence of H atoms is permissible;

(2) the necessary presence of C and N atoms; the
presence of H and O atoms is permissible;

(3) the necessary presence of C and Cl atoms; the
presence of H, O, and N atoms is permissible.

As mentioned above, the aim of this study was to
obtain information on the distribution of supporting
contacts and the statistical values of WRs for the most
important organogenic elements (C, H, N, O, and Cl).
The van-der-Waals radii determined in these three
investigations are denoted WR(1), WR(2), and WR(3),
respectively. Selected characteristics of the data used in
these investigations are given in the table.

The main aim of investigation 1 was to determine
WRs(1) of carbon, oxygen, and hydrogen (using the ZZ
radii as the initial approximation). In investigation 2,
most attention was concentrated on the determination
of WR(2) of nitrogen. However, if WR(2) of carbon,
oxygen, and hydrogen differ substantially (by more
than 0.01 Å) from the corresponding WR(1), it would
be reasonable to repeat the procedure for choosing the
optimal WRs of carbon, oxygen, and hydrogen. How-
ever, as will be shown below, we did not encounter this
problem. The main aim of investigation 3 was to deter-
mine WR(3) of chlorine. In investigations 2 and 3,
WR(1) were used as the initial approximation. When
selecting the supporting contacts, their minimum num-
ber (m) was assumed to be 6.

The histograms of the length distributions for the
C···C, H···H, C···H, and C···O contacts determined in
investigation 1 are shown in Fig. 1. The length distribu-
tions for all (except for H···H) contacts are approxi-
mately Gaussian. From the distributions of the C···C
and H···H lengths, we obtain RC = 1.735 Å and RH =
1.185 Å. These values are larger than the starting WRs
of carbon and hydrogen by 0.015 Å. It is noteworthy

that the corresponding value of  = 2.87 Å is
exactly equal to the average-statistical length of C···H

contacts. Hence, the formula  =  was valid
as previously [9]. From the distribution of the C···O
lengths, we obtained RO = 1.34 Å assuming that RC =

2 RCRH

r12 2 RCRH
C

1.735 Å. This value of RO is substantially larger than the
starting radius RO(ZZ).

The results of investigation 2 are shown in Fig. 2.
The distributions of the C···C and H···H lengths confirm
the value of RC of 1.735 Å obtained in investigation 1
and give RH = 1.175 Å, which is equal (within 0.01 Å)
to RH determined in investigation 1. The same is true for
the result of the statistical processing of the C···H-
length distribution. The RO radius (1.34 Å) was exactly
reproduced. In addition, the C···N-length distribution
obtained in investigation 2 gave RN = 1.52 Å, which is
somewhat larger than 1.50 Å (WR(ZZ) of nitrogen).

The distribution of the N···H lengths introduces an
uncertainty into the results of the determination of the
RN radius. According to this distribution, RN is 1.46 Å
assuming that RH = 1.185 Å. However, C–H···N hydro-
gen bonds seem to make a particular contribution here.
We believe that the value of RN = 1.52 Å is correct
(although the number of supporting C···N contacts is
smaller than the number of the supporting N···H con-
tacts revealed).

The results of investigation 3 are shown in Fig. 3.
Here, we did not use the distributions of the C···C,
C···H, and H···H lengths because of their low represen-
tativeness and took into account only the van-der-Waals
sizes of Cl atoms. In this case, we obtained different RCl
radii from different distributions: 1.78 Å (from Cl···Cl
contacts), 1.805 Å (from C···Cl contacts), and 1.82 Å
(from Cl···H contacts). This fact may indicate that the
van-der-Waals size of Cl depends on the type of the
supporting contacts formed. However, much more
extensive statistical data are desirable to justify this
conclusion.

Thus, we obtained the following average lengths of
the supporting van-der-Waals contacts:  = 3.47 Å,

 = 2.37 Å,  = 2.87 Å,  = 3.05 Å,  =

3.25 Å,  = 3.54 Å,  = 2.93 Å, and  =
3.54 Å. The following van-der-Waals radii of the most
important organogenic elements were determined from
these contact lengths: RC = 1.735 Å, RH = 1.185 Å, RN =
1.52 Å, RO = 1.34 Å, RCl = 1.78 Å(Cl···Cl), 1.805 Å
(C···Cl), and 1.82 Å (Cl···H); the starting RCl(ZZ) radius
was 1.90 Å. It should be noted that the Cl···Cl and
Cl···H contacts, according to the conventional views,
can be considered as specific interactions, whereas this

rC···C

rH···H rC···H rC···O rC···N

rC···Cl rCl···H rCl···Cl
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Fig. 1. Results of investigation 1: histograms of the length distribution for the supporting C···C, C···H, H···H, and C···O contacts.
Hereinafter, the rij distance (in Å) and the number of contacts are plotted on the abscissa and ordinate, respectively. The reduced
radii  r were calculated (with an accuracy of 0.005 Å) directly from the data on all supporting contacts revealed. The optimal Gaus-
sian and the variance D depend, although weakly, on the step used to plot the histogram.

r

does not seem to be true for C···Cl contacts. However,
the van-der-Waals radius of chlorine was determined
from the latter contacts in [9]. Hence, the average-sta-
tistical value of RCl is somewhat unexpected, although
the RCl radii varying in the narrow range 1.75–1.80 Å
were determined from Cl···Cl contacts in a number of
studies [1, 5, 13].

RESULTS AND DISCUSSION

It is of interest to consider the variances D shown in
Figs. 1–3. Generally, D varies in the range 0.10–0.12 Å.
However, the variances D for the H···H and N···H con-
tacts are 0.13 and 0.14 Å, respectively. The distribution
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 3      2005
of the Cl···Cl lengths is substantially broadened and is
characterized by D = 0.19 Å. The latter fact is consis-
tent with the assumption that there is no universal con-
stant value of RCl.

A similar conclusion was previously drawn in [14],
where a statistical analysis of van-der-Waals Cl···Cl
contacts was carried out. However, the conclusion
drawn in [14] was based on the polymodality of the dis-
tribution of rCl···Cl (three split maxima). In this study, we
also obtained a bimodal distribution of the supporting
Cl···Cl contacts using small samples. However, using a
sample containing more than a thousand of such con-
tacts, we managed to obtain a unimodal distribution.
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On the basis of the above results, we recommend the
following van-der-Waals radii (RW(ZZ) be given for
comparison).

The systematic increase in the van-der-Waals radii
obtained here, as compared to WRs(ZZ), can be
explained by the fact that we assumed the number of
supporting contacts m = 6 to be the optimal value (pro-
viding the stability of the framework of intermolecular
“touches”), whereas four supporting contacts (m = 4)
were considered in [9] for molecules occupying general
positions of the space group. For more detailed investi-
gation of this problem, we plan to consider histograms
plotted at m = 8 in the future.

The above results support, essentially, the theory of
close packing proposed by A.I. Kitaigorodsky: more
strictly, the first and main postulate of this theory about
the existence of invariant van-der-Waals radii of organ-
ogenic elements. It should be noted that a reliable sta-
tistical verification of this postulate became possible
only in the last few years owing to the increase in the
amount of structural data available in the CSD. Our
study of supporting contacts in organic crystals is,
apparently, much more thorough than all previous stud-
ies concerning this problem. Nevertheless, we felt that
in some cases it is desirable to extend the range of com-
pounds under consideration.

There are two possible ways of extending the infor-
mation used for statistical processing. First, one can
examine data on heteromolecular organic crystals and
molecular crystals containing shielded metals and
semimetals with retention of the van-der-Waals charac-
ter of intermolecular contacts. This approach, however,
presents problems because of a vast diversity and a
complex organization of heteromolecular and semior-
ganic crystals, whose structures are stored in the CSD
[15]. Second, one can consider a larger number of
structural classes of homomolecular organic crystals,
which will at least double the volume of data on the
supporting structural contacts.

The use of the ICA program in systematic studies of
specific intermolecular interactions is of considerable
interest. In this study, specific contacts were revealed
and excluded from consideration. However, these con-
tacts can be the focus of attention in solving other prob-

H C O N Cl

WR, Å 1.175 1.735 1.34 1.52 1.78–1.82

WR(ZZ), Å 1.16 1.72 1.29 1.50 1.90
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lems. The ICA program also offers other attractive pos-
sibilities. For example, it is of interest to elucidate
whether WRs depend on the structural class of the crys-
tals. At first glance, such a dependence is unlikely.
However, some preliminary data demonstrate that this
dependence does occur. There is also another evident
problem associated with examination of the tempera-
ture dependence of the van-der-Waals radii.
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Lev Aleksandrovich Shuvalov 
(November 15, 1923–December 6, 2004)
Lev Aleksandrovich Shuvalov, a leading researcher
at the Shubnikov Institute of Crystallography of the
Russian Academy of Sciences, a doctor of physics and
mathematics, a professor, an Honored Scientist of the
Russian Federation, and a winner of the State Prize of
the Soviet Union, died on December 6, 2004.

The scientific career of Shuvalov was preceded by
participation in the Great Patriotic War. Immediately
after graduating from school, he entered the Red Army
on a Komsomol assignment. He took part in the battles
of Moscow, Stalingrad, and Kursk. For his merits in
battle, Shuvalov was awarded the Order of the Red Star
and several medals, including the Medal of Valor.
Guards Sergeant Major Shuvalov’s wartime experience
ended near Prague. After returning to Moscow, he
passed his university entrance exams and, in March
1946, entered the Faculty of Physics of Moscow State
University. He graduated with distinction in 1950. Then
Shuvalov worked for five years at the Hydroproject
Institute while studying as a postgraduate student at the
1063-7745/05/5003- $26.00 ©0528
Institute of Crystallography under the guidance of
A.V. Shubnikov, who greatly influenced the formation
of Shuvalov’s scientific interests.

In 1956, Shuvalov started working at the Institute of
Crystallography. He defended his candidate’s thesis in
1961 and his doctoral thesis in 1971. For 20 years Shu-
valov headed the Laboratory of Phase Transitions. He
had more than 700 scientific publications and 20 inven-
tor’s certificates.

Shuvalov lived a long life full of creative achieve-
ments. He carried out a number of fundamental studies
that played a key role in the development of the symme-
try approach in crystallography and crystal physics of
ferroelectrics. He investigated pulse switching in ferro-
electrics. The results of his investigations had great
importance for the use of this phenomenon in memory
devices.

Shuvalov proposed an elegant solution to the prob-
lems associated with the change in the symmetry at fer-
roelectric, ferroelastic, and ferromagnetic phase transi-
 2005 Pleiades Publishing, Inc.
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tions on the basis of the Curie principle. His works
devoted to the establishment of the general regularities
in the domain structure of ferroelectrics and the domain
structure’s effect on the macroscopic properties of crys-
tals, as well as the crystallophysical classification of
ferroelectrics, have become classics. Shuvalov was one
of the fathers of ferroelectric physics.

Shuvalov was awarded the Fedorov prize of the
Russian Academy of Sciences for his cycle of investi-
gations of the statics and dynamics of domains in col-
linear ferroelectrics based on the use of nematic liquid
crystals and the determination of the most important
regularities of switching in such ferroelectrics. These
investigations formed the basis of practical application
of such crystals in pyroelectric vidicons and other
devices.

Shuvalov discovered and studied in detail a new
large family of ferroelectrics and ferroelastics: alkaline
trihydrosulfates (and selenates), which have unique
physical properties.

Thanks to Shuvalov’s influence in the scientific
community, he organized a body in which scientists
from the Soviet Union and other countries worked in
cooperation studying superprotonic compounds with
anomalously high conductivity.

The scientific enthusiasm and the organizational tal-
ent of Shuvalov enabled him to organize a number of
research groups at Tver State University, Voronezh
State Technical University, the Volgograd State Acad-
emy of Architecture and Building, and Rostov State
University. Shuvalov’s scientific school was formed
and has developed until now. Shuvalov was also
engaged in the scientific and organizational activity in
Russia and abroad. He was a deputy chairman of the
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division “Physics of Ferroelectrics and Insulators” of
the Scientific Council on Condensed Matter Physics of
the Russian Academy of Sciences, the editor in chief of
the journal Kristallografiya (Crystallography Reports),
one of the organizers of national conferences on ferro-
electricity, and the chairman of the organizing commit-
tees of all national seminars on ferroelastics.

Shuvalov was very active in establishing interna-
tional cooperation with scientists from Japan, the
United States, Slovenia, Poland, the Czech Republic,
Lithuania, Ukraine, Germany, and other countries. He
was the organizer of bilateral Russian–American and
Russian–Japanese symposia and a member of the edi-
torial boards of the international journals Ferroelec-
trics, Ferroelectrics Letters, Zeitschrift für Kristallog-
raphie, Crystallography Reviews, and Condensed Mat-
ter News. Shuvalov was an honorary doctor of Martin
Luther University (Germany) and an associate member
of the Jozef Stefan Institute (Slovenia).

Among Shuvalov’s various interests and passions,
which delighted all who knew him, we should note his
love for painting, cinema, literature, poetry, and Rus-
sian history. Shuvalov’s colleagues, friends, and stu-
dents highly appreciated his invariable optimism,
benevolence, straightforwardness, and wisdom. He was
always sincerely glad to hear about scientific success of
his colleagues, friends, and students. 

The name of Lev Aleksandrovich Shuvalov will
remain forever in the history of domestic and world
crystallography. Many people will remember this
remarkable man in their hearts.

Translated by Yu. Sin’kov
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