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Abstract—The factors determining the self-organization of the electron system of an atom at different levels
of the periodic table are considered. Specifically, these factors are the isotropy and three-dimensional nature of
space and the indistinguishability of electrons. The concept of a simplex is used, whose vertices correspond to
a regular system of particles (minimum in number for a given space) in the state of the global minimum of the
system’s potential. These factors implement the principle of simplicity (small number of particles) and hierar-
chy in the periodic table of elements. The global minimum of the potential of s, p, d, and f shells is reached in
odd-dimensional spaces. In a three-dimensional space, such a minimum is reached for d and f shells, in contrast
to s and p shells, through shell mixing. © 2005 Pleiades Publishing, Inc.
STATEMENT OF THE PROBLEM

In was shown in [1] that the maxima of the electron-
density probability in the l shells of an atom (s, p, d, and
f shells, well-known in quantum mechanics) are mod-
eled by vertices of antiprisms. This result made it pos-
sible to explain a number of structural and physical
properties of crystals [2]. Furthermore, we will use for
brevity the term “electron” instead of “maximum of
electron-density probability.” In this study, we consider
the factors implementing in the periodic table the prin-
ciple of simplicity (minimum number of particles) and
hierarchy in self-organization of electrons at different
levels of the periodic table: l shells, periods, and the
number of periods of different types. The specific fea-
tures of antiprisms are analyzed in the context of the
principle of simplicity and the existence of a global
minimum in the most stable systems of particles (which
are listed in the periodic table). To describe the crystal-
lographic model of electron shells in more detail, we
compare it with the quantum model and the structures
of coordination polyhedra and clusters.

STABLE SYSTEMS OF COULOMB PARTICLES 
IN THE PERIODIC TABLE

The difference in the numbers of elements in the
periods of the periodic table indicates the existence of
stable groups of discrete particles and gives their num-
bers in groups. The first period contains two elements.
The difference between the first and second (third) peri-
ods is eight elements. The difference between the sec-
1063-7745/05/5005- $26.00 ©0715
ond (third) and fourth (fifth) periods is ten elements.
The difference between the fourth (fifth) and sixth (sev-
enth) periods is 14 elements. The number of elements
in the first period suggests that the formation of groups
of particles begins with the simplest group consisting of
two particles.

In the three-dimensional (3D) isotropic space, the
centrosymmetrical potential U(r), invariant with
respect to all rotations around fixed axes and inversion,
is the most symmetrical. From regular closed systems
{Ai, N}, where N is the number of indistinguishable
Coulomb particles, the simplest stable system in the
field of the potential U(r) is apparently a dimer {A1, N =
2}, where N is exactly the number of elements in the
first period. Groups with a small number of particles
remain in the attractive field at larger radii r than the
groups with a large number of particles. Therefore, the
systems {Ai} with different N will be spatially sepa-
rated.

The equivalent vertices of a regular simplex—the
simplest polyhedron in space [3]—correspond to the
simplest regular system of particles and the global min-
imum of its potential. The number of points equal to the
number of simplex fix a sphere in this space. Therefore,
the number of particles in the system {Ai + 1} will be
equal to the number of particles in the system {Ai} plus
four particles fixing a new sphere. The sequence of val-
ues of N in these systems forms an infinite series: 2, 6,
10, 14, …. The periodic table limits this series to the
first four terms.
 2005 Pleiades Publishing, Inc.
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Fig. 1. Antiprisms in 3D space (octahedra in (a) 1-, (b) 3-, (c) 5-, and (d) 7-dimensional spaces), whose vertices model stable systems
of 2, 6, 10, and 14 equivalent electrons of l shells in the periodic table.

(b)(a) (c) (d)
We can suggest that the limitation of the number of
the most stable systems {Ai} to four is also related to
the dimension factor. The ends of the radii of the
spheres of the l shells in this set in 3D space fix the total
sphere of 32 particles—the simplest and the most stable
sum of the l shells. The number of shells limits also the
number of types of periods in the periodic table: the
first period corresponds to the filling of the s shell; the
second and third periods correspond to the filling of the
s and p shells; the fourth and fifth periods correspond to
the filling of the s, p, and d shells; and the sixth and sev-
enth periods correspond to the filling of the s, p, d, and
f shells.

Owing to the central symmetry of the potential U(r)
and the correspondence of the minimum of repulsion of
identical Coulomb particles to inversion (the latter gen-
erally leads to larger distances between particles than a
reflection in plane or a rotation around a twofold axis),
the systems {Ai} should be centrosymmetric.

From the bodies whose vertices correspond to stable
systems {Ai} on a sphere, i.e., 5 regular Platonic bodies
(all faces, edges, and vertices are identical) and three
groups of semiregular bodies (equivalent vertices and
edges but not all faces identical), specifically, a set of
14 Archimedean bodies and 2 infinite series of prisms
and antiprisms [4, 5], it is the series of antiprisms that
exhibit central symmetry and satisfy the conditions
{A1, N = 2}, {Ai + 1, Ni + 1 = Ni + 4} [1] (Fig. 1).

If the arrangement of particles somewhere corre-
sponds to the lowest energy, they will be arranged in the
same way in another place [6]. Thus, {Ai} systems and
their sequence will be repeated with an increase in the
number of particles N and the radius r.

The arrangement of particles in a regular system of
points is related to the optimization of their potential
and implemented under the action of the potential gra-
dient since the gradient becomes zero only at points of
a regular system [7].

In the quantum model of atom, the potential of its
many-electron system is constructed in the 2(2l + 1)-
dimensional space since each value of the potential cor-
responds to a certain distribution of electrons over 2l +
1 vectors of coordinate space and two vectors (±1/2) of
spin space. Here, l is the orbital momentum of an elec-
C

tron, which is an integer in h units. Therefore, a definite
value of the projection of l on an isolated axis m1 = 2l + 1
is juxtaposed to each vertex of the antiprism base. One
of the antiprism bases is juxtaposed to the spin-up space
and the other base is juxtaposed to the spin-down space
[1]. The antiprisms are composed of N/2 dimers, which
are transformed into each other in inversion, rotation,
and inversion rotation operations. Therefore, another
analogy can be used: as well as a dimer, an electron pair
with a compensated spin serves as a forming pair
(closed or ESR pair in quantum theory [8, 9]).

EQUIVALENCE OF PARTICLES IN l SHELLS 
AND OCTAHEDRA OF ODD-DIMENSIONAL 

SPACES

The bases of a dimer and of trigonal, pentagonal,
and heptagonal antiprisms are regular simplices of
zero-, two-, four-, and six-dimensional spaces. Anti-
prisms, as pairs of regular simplices sharing an inver-
sion center, are at the same time octahedra of odd-
dimensional spaces with dimensions of 1, 3, 5, and 7.

The odd dimensionality of the octahedra is caused
by the fact that inversion performed k times is equiva-
lent to unit operation at even k and single inversion at
odd k. Therefore, if a straight line is an odd-fold inver-
sion axis, it is simultaneously a rotary axis of the same
order and its singularity is an inversion center. For
example, the presence of a fivefold axis and a center of
symmetry in a pentagonal antiprism is a necessary and
sufficient condition for the existence of a fivefold inver-
sion axis. However, the reverse statement is valid only
for odd-fold axes [10]. Thus, absolute indistinguish-
ability of all particles occurs when the number of verti-
ces in antiprism bases is odd.

In the quantum model l shells, the coordinate space
is odd-dimensional since at integer l the value of m1 =
2l + 1 is odd. Even dimension of m1 corresponds to the
j coupling, at which the spin–orbit interaction in a par-
ticle is stronger than the interaction of the particle with
the centrosymmetric field. Then, the total momentum
of the particle j = l + 1/2 and the number of equivalent
particles N = 2j + 1 acquire the values of the entire
series of even numbers. It can be seen easily that the
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 5      2005
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Fig. 2. Examples of combinations of antiprisms: (a) icosahedron—a combination of a dimer (points 1, 2) and a pentagonal antiprism
(other points)—and (b) 20-vertex polyhedron—a combination of a trigonal antiprism (points 1–3, vertices of the same base) and a
heptagonal antiprism (points 4–10, vertices of the same base).
momentum j and the momenta l and s can be trans-
formed differently in symmetry operations. For exam-
ple, a given value of j may arise from the states with l =
j – 1/2 or l = j + 1/2. However, the states with these val-
ues of l, differing in parity (–1)l, are differently trans-
formed at inversion.

Pure j coupling is not implemented in an unexcited
atom. However, upon strong excitation and filling of nl
shells with high values n and l, which are located at
large distances from the atomic core [11], a j electron
retains its momentum in such a shell. This type of j cou-
pling characterizes the relationship between interac-
tions in the nucleons of an atom. Indeed, some nuclear
shells are composed of 8, 12, 32, … nucleons. Such
states (for example, 1f7/2, which contains 8 nucleons)
are singled out into a separate stable group [12]. Owing
to the different signs of the forces acting between parti-
cles of different types (attraction between nucleons and
repulsion between electrons), their shells model differ-
ent polyhedra: prisms and antiprisms in the first and
second cases, respectively. Note that the projections of
the prisms on the plane coincide with the orbits of
nucleons in the semiclassical theory [13].

OPTIMAL POLYHEDRA
OF d AND f SHELLS IN 3D SPACE

Let us consider the arrangement of particles in the
vertices of the regular and semiregular polyhedra listed
above. Obviously, the locations in the vertices of regu-
lar Platonic bodies correspond to the deepest minima of
the potential of {Ai} systems in 3D space. For example,
the vertices of antiprisms in general satisfy the condi-
tion of global minimum. This condition is necessary but
not sufficient since the edges of antiprisms are not nec-
essarily equal to each other. However, a dimer and a
trigonal antiprism coincide with regular octahedra of
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 5      2005
one-dimensional (1D) and 3D spaces, respectively, and
the potential minimum has a global character in plane
and in the volume of 3D space. In contrast, pentagonal
and heptagonal antiprisms are only projections of the
octahedra of five- and seven-dimensional spaces onto
this space.

Thus, according to the crystallographic model, the
minimum of the potential of d and f shells in 3D space
is less stable than that of s and p shells, which provides
an opportunity for additional minimization of the
potential in this space [14]. The electrons of d and f
shells can be included into a system of points of higher
symmetry that is common with another shell—the sys-
tem of vertices of one of centrosymmetrical Platonic
bodies. Another possible way is to include these elec-
trons into the system of vertices of a polyhedron with a
large number of stabilizing bonds but only similar to a
sphere in shape, as in the case of cluster structures [15].
Indeed, inclusion of ten electrons of the d shell into the
system of vertices of an icosahedron, which is common
with two electrons of the s shell (Fig. 2a), will increase
the stability of the d shell in 3D space. Note that the
icosahedron itself is a combination of a dimer and a
pentagonal antiprism [2]. An example of a stabilizing
polyhedron in the case of d and f shells is a convex poly-
hedron with 24 vertices, which is constructed in the
same way as the polyhedron 20A in [15] (Fig. 2b), i.e.,
by aligning the N/2-fold rotary axes of pentagonal and
heptagonal antiprisms.

According to the periodic table, the smaller depth of
the potential minimum of d shells is explained by the
fact that not only the np shell but also the (n + 1)s shell
are filled before the nd shell, where n is the principal
quantum number. Similarly, the np and (n + 1)s shells
are filled before the (n – 1)f shell. The optimization of
the potential of d and f shells is confirmed by the equal-
ity or close values of the energies of s and d shells in the
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fourth and fifth periods and d and f shells in the sixth
and seventh periods. For example, instead of the
sequence of dNs2 configurations, we have the dN + 1s or
dN + 2 configurations with a transition of an electron
from an s to a d shell. Generally, the experimental spec-
tra of atoms suggest that the energies of the ndN,
ndN − 1(n + 1)s, and ndN – 2(n + 1)s2 configurations are
close to each other and, in the case of some groups of
elements or the spectra of singly ionized atoms, almost
degenerate; furthermore, these groups of states can be
assigned to the same shell: n(d + s)N. The same viola-
tions of the filling regularity, as well as an electron tran-
sition, occur also in the case of (n + 1)d and nf shells
[12, 16]. Thus, the stability of d and f shells in the elec-
tron layer increases by the shell mixing. This mixing
also facilitates the stabilization of the s shell, whose
potential has a minimum only in a plane of 3D space.

The gradient of the potential, which results in mix-
ing, is related to the weak noncentrosymmetric pertur-
bation of the potential [16]. Note that this effect occurs
in half-filled (d5, f 7), filled (d10, f 14), and related shells,
for which the fivefold and sevenfold symmetries are
maximally pronounced [2]. The approximate equality
of the energies of s and d shells is clearly demonstrated
in Fig. 3. This equality suggests that the above relation-
ship can be retained in clusters at another type of pair
interaction and the density of the medium.

STABILITY OF OCTAHEDRA

Only the vertices of a regular simplex, as the sim-
plest polyhedron of 2l-dimensional space, correspond
to the simplest regular system and the global minimum
of its potential. Therefore, the octahedron composed of
a pair of simplices sharing an inversion center corre-
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Fig. 3. Changes in the differences in the energy of electrons
in clusters with N + 1 and N particles, depending on the
number of particles (the mass-spectrometry data on clusters
of Na ions [17]).
C

sponds to the same characteristics in the centrosymmet-
ric field of (2l + 1)-dimensional space.

For example, the simplex of two-dimensional (2D)
space is a triangle, and, in the case of a three-atom clus-
ter, the planar triangular structure with the D3h symme-
try is the most stable [18]. In 3D space, the octahe-
dron—the simplest polyhedron of the centrosymmetric
nonprimitive Platonic bodies, that is, the octahedron
and icosahedron—is characterized by stability at a
change in the parameters of the potential. The average
number of bonds K = E/N, where E is the number of
bonds (edges) converging to the same vertex (pairwise
compensated for the octahedron), is maximum for non-
primitive polyhedra, that is, antiprisms (K = 2) and
icosahedron (K = 2.5), and minimum for primitive
polyhedra, that is, tetrahedron, cube, and dodecahedron
(K = 1.5).

The fact that the potential minimum in the case of
the octahedron is deeper than, for example, that in the
case of the cube (next in N, centrosymmetrical but
primitive polyhedron), is confirmed by theoretical and
experimental data on the coordination polyhedra in
crystals and structures of clusters of metals and inert
gases [5, 15, 17–20]. The octahedral structure is so sta-
ble that a change in the parameters of the potential does
not lead to isomerization. However, even at N = 7, the
structure of the optimal isomer exhibits this depen-
dence. Note that the global minimum of the potential in
the case of the octahedron is implemented in two com-
ponents of the potential. For l electrons, the main com-
ponent is the summary field formed by the charge of the
nucleus and the distributed charge of other electrons. In
the next approximation, the potential is determined also
by the repulsion between electrons. The existence of
the global minimum of the first component follows, for
example, from the relationship between the quantities
Dq—the crystal-field components formed by octahe-
drally, cubically, or tetrahedrally coordinated ligands at
the center of the polyhedron: |Dqoct| > |Dqcub| > |Dqtet|.
The existence of the global repulsion minimum follows
from the fact that the distances between the vertices of
a polyhedron inscribed in a sphere are maximum when
all polyhedron faces are triangular. For example, the
repulsion potential for particles located in the vertices
of a cube is so high that cubic polyhedra (in contrast to
octahedral ones) rarely occur in coordination com-
pounds [5, 21].

DISCUSSION

Obviously, other discrete systems should have a
shell structure in a centrosymmetric potential field.
They include conglomerates in the intermediate state
between individual atoms and crystals. The shell struc-
ture of these conglomerates manifests itself in the peri-
odicity of their stability: clusters, containing a small
number of particles, are followed by nanoparticles
(large aggregates of atoms). Moreover, attempts have
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 5      2005
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Fig. 4. Examples of structures of clusters composed of (a) 8, (b) 9, and (c) 18 particles [15].
been made to construct electronic and structural tables
of clusters and nanoparticles of chemical elements by
analogy with the periodic table [13]. However, the 3D
nature of space maximally manifests itself in the sub-
levels of the periodic table, including the shell struc-
ture, since in this case particles are not localized at the
center of polyhedra and the medium has zero viscosity.
In these characteristics, an electron cloud corresponds
to an electron gas in a spherical cavity with rigid walls,
whereas a nucleus corresponds to a liquid. Clusters and
nanoparticles correspond to systems of particles in a
jellylike medium [13]. The limited length of the parti-
cle–particle attraction and the high density of space fill-
ing leads in the case of clusters or nanoparticles to the
localization of particles not only in the vertices and the
center but also on the faces and edges of polyhedra
[22]. This arrangement does not correspond to the sim-
plest systems {A} related to space simplices. Moreover,
the same numbers of particles can form different shells
of clusters, corresponding to the vertices of different
polyhedra [23]. For these reasons, the properties of our
real 3D space do not manifest themselves in the struc-
tures of clusters and nanoparticles as clearly as in the
case of l shells of atoms.

The crystallographic model of l shells supplemented
the quantum model for explanation of a number of
structural and physical properties of crystals and non-
crystalline media [2, 14]. A striking example is the effi-
ciency of laser crystals activated by d and f ions. The
existence of long-lived metastable states and the simi-
larity of the absorption spectra of unexcited and excited
crystals activated by d2, d3, and f 3 ions was explained
by the fact that the ground state of an activator and its
excited states with spin flip of one electron are spatially
equivalent in the crystal field [14]. High-quality crys-
tals with these activators can be more easily obtained
since the shells of the activators are also characterized
by the maximum matching between the intrinsic “non-
crystallographic” symmetry (five- and sevenfold axes)
and the translational symmetry of a crystal. Indeed, the
first crystals in which tunable narrow-band lasing was
obtained were activated by only such ions [14].

Apparently, the results of this study are not only of
methodological interest. As an example, we can point
to the structures of clusters and nanocrystals. The struc-
tures of small clusters cannot be investigated directly
RAPHY REPORTS      Vol. 50      No. 5      2005
and are thus calculated. The presence of 1D, 2D, and
3D octahedra in the calculated optimal structures of
small clusters and combinations of these octahedra
with pentagonal and heptagonal antiprisms in larger
clusters (Figs. 2, 4) results from the fact that antiprisms
correspond to the most stable groups with small num-
bers of particles. The occurrence of noncentrosymmet-
ric and centrosymmetric forms of nanocrystals of cop-
per and other metals (Fig. 5) [24, 25] can be explained
by the manifestation of different relationships between
the interaction in the Cu2+(d9)–Cu+(d10) pair (for Cu
nanocrystals) and the interaction with the self-consis-
tent field. This difference is due to different crystalliza-
tion conditions.

Note, for structural units sharing an oriented bond,
the spatial factor manifests itself in repeated orbitals in
the form of a helical structure, as in protein macromol-
ecules (filamentary, rodlike, tubular). In addition, the
principle of hierarchy and small number of elements is
also valid in living systems. Molecular biostructures are
also characterized by four levels of structural organiza-
tion [25]. This number is equal to the number of periods
of different types in the periodic table. The structures of
protomolecules (the first level) form only two types
(biological “dimer”). In the structures of the first type
(amino acids), a carbon atom is tetrahedrally coordi-
nated (over four vertices of the simplex of 3D space) by
hydrogen atoms and hydrogen-containing groups. In
the structures of the second type (nucleotides), the
same “magic” number is the number of types of pyrim-
idine or purine bases entering nucleotides.

5 µm5 µm

(a) (b)

Fig. 5. Copper nanocrystals shaped as (a) a double-capped
pentagonal prism and (b) an icosahedron [25].
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CONCLUSIONS

In the crystallographic model, the dimension and
isotropy of real 3D space and the indistinguishability of
electrons manifest themselves in the formation of sub-
levels of the periodic table (in particular, in the mini-
mum number of components in each sublevel) and in
the principle of hierarchy. These manifestations follow
from the properties of a simplex—the simplest space
polyhedron. The number of simplex vertices also fixes
a sphere in space.

In 3D space, the spherical surface is fixed by four
points. Owing to this circumstance, the number of elec-
trons in each member of the series of l shells is equal to
their number in the previous shell plus four electrons
fixing a new sphere. Thus, the dimension of real 3D
space determines the increment in the number of elec-
trons in l shells, which is equal to four electrons. Appar-
ently, the dimension factor limits the number of l shells
in the periodic table to four. This number of l shells also
limits the number of types of periods in the periodic
table to four.

A series of simplices of 2l-dimensional spaces (i.e.,
with dimensions of 0, 2, 4, and 6) is juxtaposed to the
series of l shells. Since simplices correspond to the sim-
plest systems of equivalent particles in 2l-dimensional
spaces and the global minimum of their potential, octa-
hedra, as well as pairs of simplices sharing an inversion
center, have the same properties in (2l + 1)-dimensional
spaces. Owing to the central symmetry of the potential,
the simplest and initially stable system is a dimer. For
shells with a large number of electrons, owing to the
periodicity of four electrons, only odd-dimensional
octahedra are implemented. Thus, finally, the odd
dimensionality of octahedra is also the result of the isot-
ropy and three-dimensional nature of space and the
indistinguishability of electrons.

In contrast to octahedra of s and p shells, whose ver-
tices correspond to the global minima of the potential of
particles in plane and volume of 3D space, d and f shells
are modeled by octahedra of high-dimensional spaces.
Optimization of the spatial arrangement of electrons of
d and f shells in 3D space occurs through shell mixing.

Thus, the beginning of each period corresponds to
the global minimum of the potential of the regular sys-
tem of electrons in the plane of 3D space (s shells), the
middle of the period corresponds to the expansion of
the potential minimum to the volume of 3D space (d
and f shells), and the end of the period corresponds to
the global minimum in the volume of 3D space (p
shells). These features manifest themselves in the prop-
erties of chemical elements.

The dimension of our space also manifests itself in
the organization of molecular biostructures.
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Abstract—A method of representation of a crystal structure as a set of its constituent Bravais sublattices is
developed. The conditions for compatibility of sublattices related to the same or different systems are formu-
lated and the connection matrices for primitive parallel-translation vectors of the crystal lattice and the sublat-
tices are determined. A method of alignment of the first Brillouin zones of the sublattices with the first Brillouin
zone of the crystal is described. It is shown that alignment may lead to quasi-degeneration of the energy levels
in the case of weak hybridization of the sublattice states. A relationship between the sublattice method and the
method of an extended unit cell is established. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

In any complex crystalline compound, parallel-
translation sublattices corresponding to the Bravais lat-
tices can be selected. Each of these sublattices contains
equivalent atoms of the same chemical element in its
sites. It is expedient to select sublattices with minimum
periods. It is obvious that in this case the number of
sublattices will not be smaller than the number of
chemical elements entering the crystal composition,
since identical atoms may occupy symmetrically non-
equivalent positions and enter different sublattices.
Selection of sublattices is reasonable because their
number and combination determine the physicochemi-
cal properties of crystals. For example, the donor and
acceptor conductivities are related to different sublat-
tices. The ionic conduction, chemical reactions, and
many other processes are often due to a particular sub-
lattice, whereas the other sublattices play the role of a
framework or a catalyst.

In [1, 2], a new approach to the study of chemical
bonding and electronic structure in predominantly ionic
and ionic–molecular crystals was developed on the
basis of the sublattice method and radically new fea-
tures of chemical bonding related to the translational
and point symmetry of sublattices were established. If
the same Bravais lattice corresponds to the cation and
anion sublattices, the chemical bonding between them
is formed via the ionic mechanism. If Bravais lattices of
different types correspond to the cation and anion sub-
lattices, their alignment of the sublattices leads to the
occurrence of maxima of valence electron density in
interstitial sites and, as a result, to the formation of a
covalently bonded anionic framework [3]. The role of
the sublattices of noble metals in the formation of
chemical bonding has also been established. In particu-
lar, it was shown that the charge transferred by a cation
to an anionic plane in silver nitrite is so high that it man-
ifests itself as an individual maximum. This circum-
1063-7745/05/5005- $26.00 ©0721
stance allows us to speak about the formation of the
anionic framework due to the cationic states [4]. To
study the hybridization of sublattices, the concept of
difference density (the result of the subtraction of the
valence electron densities of the sublattices from the
valence electron density of the crystal) was introduced.
It was shown that the difference density is qualitatively
similar to the traditionally used deformation density
[4].

This study is organized as follows. In Section 2, the
rules of the representation of crystal structures by par-
allel-translation sublattices corresponding to Bravais
lattices are formulated. The conditions for the transla-
tional compatibility of the sublattices with the crystal
lattice and the connection matrices for the primitive
parallel-translation vectors of the crystal and those of
the sublattices are found. The spatial arrangement of
sublattices satisfies the requirements of invariance with
respect to the crystallographic symmetry elements. In
Section 3, the conditions for alignment of the first Bril-
louin zone of the crystal with the first Brillouin zones of
the sublattices and the physical consequences caused
by the difference between these Brillouin zones are dis-
cussed. In Section 4, the method developed is applied to
crystals with the fluorite structure.

2. CONSTRUCTION OF CRYSTALS 
FROM SUBLATTICES

Let us denote the sets of primitive parallel-transla-
tion vectors of the crystal lattice ΓL and the sublattice
related to the Bravais lattice ΓS, ai(ΓL) (i = 1, 2, 3) and
bj(ΓS) ( j = 1, 2, 3), respectively. These vectors can be
related to each other as follows:

(1)ai Γ L( ) Γ L ΓS( )ijb j ΓS( ).
j 1=

3

∑=
 2005 Pleiades Publishing, Inc.
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We will refer to the matrix (ΓL |ΓS) as the connection
matrix for the primitive parallel-translation vectors of
the lattice ΓL and those of the sublattice ΓS. For a sub-
lattice to be invariant with respect to all elements of the
group of parallel lattice translations, it is necessary and
sufficient that all elements of the matrix (ΓL |ΓS) be inte-
gers. Only in this case will a parallel lattice translation
by any vector n equal to an integer linear combination
of primitive parallel-translation vectors of the lattice,
ai(ΓL), lead to the parallel translation of the sublattice
by the same vector n (now equal to an integer linear
combination of primitive parallel-translation vectors of
the sublattice, bj(ΓS)). This circumstance actually has
the meaning of the invariance of the sublattice with
respect to all elements of groups of parallel translations
of both the lattice and sublattices.

Each type of Bravais lattices has its own set of prim-
itive parallel-translation vectors. It is necessary to ana-
lyze all types of Bravais lattices in order to reveal all
possible sublattices satisfying the translational symme-
try of a given lattice. Note that the sublattices and the
crystal lattice may belong either to the same or to dif-
ferent systems.

Let us introduce the matrices (ΓL) and (ΓS) con-
sisting of the components of the primitive parallel-
translation vectors of the lattice and sublattice, respec-
tively. The first and second indices denote the number
of the vector and the component of this vector, respec-
tively:

(2)

Using these matrices, we can rewrite relation (1) in the
form

(3)

to obtain the expression for the matrix (ΓL |ΓS):

(4)

where (ΓS) is the matrix inverse to the matrix (ΓS).
Thus, to solve the problem stated, we have to spec-

ify sets of primitive parallel-translation vectors of the
lattice and the sublattice, write matrices (2), and derive
the matrix (ΓL |ΓS) from (4). Then, all elements of the
matrix (ΓL |ΓS) should be integers, which will impose
limitations on the components of the primitive parallel-
translation vectors bj(ΓS) of the sublattice. Thus, we
will find the sublattices compatible with the transla-
tional symmetry of the given lattice.

A set of constituent sublattices of the crystal should
also satisfy the requirements of point symmetry. The
reference point of each sublattice is shifted by vector

â b̂

â Γ L( ) = 
a1x a1y a1z

a2x a2y a2z

a3x a3y a3z 
 
 
 
 

, b̂ ΓS( ) = 
b1x b1y b1z

b2x b2y b2z

b3x b3y b3z 
 
 
 
 

.

â Γ L( ) Γ L ΓS( )b̂ ΓS( )=

Γ L ΓS( ) â Γ L( )b̂
1– ΓS( ),=

b̂
1–

b̂

C

c(ΓS) from the common center of the crystal. Under the
action of the elements of the symmetry space group of
the crystal, these vectors should pass to equivalent posi-
tions:

(5)

where  is the αth point element of the symmetry
space group of the crystal, which is composed of N ele-
ments; tα is the corresponding fractional parallel trans-

lation for a nonsymmorphic group; and  is a set of
integers corresponding to each αth element. The term
c'(ΓS) coincides with either c(ΓS) or the reference point
of a symmetrically equivalent sublattice. Successively
analyzing all elements of the symmetry group of the
crystal in relation (5), we determine the spatial arrange-
ment of the sublattices that is compatible with this sym-
metry. The technique described makes it possible to
find for any crystallographic symmetry group a set of
compatible sublattices and determine their spatial
arrangement.

When finding the matrices (ΓL |ΓS), one has to take
into account the symmetry hierarchy of the systems. A
system  is referred to as subordinated to the system

G0 (G0  ) if the symmetry group  is a sub-

group of the group G0 (  ⊂  G0) and any (of all possi-
ble) lattices of the system G0 can be transformed by a
small distortion into one of the lattices of the system

. The hierarchy of systems can be schematically
written as [5]

(6)

Actually, the conditions for the translational com-
patibility of sublattices imply the multiplicity of their
periods to the periods of a given lattice. The formally
written connection matrixes, with limitations imposed
on the sublattice parameters, include, in particular,
cases of transfer of a sublattice to a higher system in
scheme (6). Analysis of all situations, according to the
hierarchical scheme (6), is somewhat cumbersome and
is the subject of another of our papers, which is being
prepared for deposition.

In the Appendix, we give as an example the connec-
tion matrices providing the translational compatibility
of crystals having simple and body-centered tetragonal
lattices with sublattices of other systems. The designa-
tions of the Bravais lattices and the primitive parallel-

ĥαc ΓS( ) tα+ c' ΓS( ) n j
α( )b j ΓS( ),

j 1=

3

∑+=

α 1 2 … N ,, , ,=

ĥα

n j
α( )

G0'

G0' G0'

G0'

G0'

Oh D4h D2h C2h S2.

D6h

D3d
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translation vectors used to calculate the matrices are
chosen according to [6]. The quantities a and az are the
spatial lattice periods; b, bx , by , bz, and β are the geo-
metric parameters of the sublattices; and n, m, l, and k
are integers.

3. FIRST BRILLOUIN ZONES OF THE CRYSTAL 
LATTICE AND SUBLATTICES

The Wigner–Seitz cell of a crystal lattice includes
the Wigner–Seitz cells of all sublattices; therefore, the
volume of its first Brillouin zone of the crystal lattice is
either smaller or equal to the total volume of the first
Brillouin zones of all sublattices. In this case, the larg-
est is the first Brillouin zone of the sublattice with the
smallest volume of the Wigner–Seitz cell. Let us denote
the sets of primitive parallel-translation vectors of the
crystal and the sublattices as Ai(ΓL) (i = 1, 2, 3) and
Bj(ΓS) ( j = 1, 2, 3), respectively. The vectors of these sets
are related to each other by the expressions of type (1).
Since the reciprocal lattices are represented by the same
14 Bravais lattices, the connection matrices for Ai(ΓL)
and Bj(ΓS) turn out to be similar to (ΓL |ΓS). The only
thing that should be taken into account is the correspon-
dence between the direct and reciprocal lattices (for
example, for a fcc lattice, the Wigner–Seitz cell is a
rhombododecahedron and the first Brillouin zone is a
Fedorov cuboctahedron). Since all sublattices are trans-
lationally compatible with the crystal lattice, their first
Brillouin zones can be transformed into the first Bril-
louin zone of the crystal. The wave vectors kj(ΓS), lying
in the first Brillouin zones of the sublattices, are trans-
formed into the vectors kj(ΓL) of the first Brillouin zone
of the crystal according to the relation

(7)

where ni(ΓL,ΓS) are integers.
When the first Brillouin zones of the sublattices are

transformed into the first Brillouin zone of the crystal,
one has to take into account the point symmetry, which
may be higher for a sublattice than for the crystal. In
this case, the combinatorial symmetry classification of
the first Brillouin zones [7] turns out to be very useful.
Furthermore, the irreducible representations of the sub-
lattice symmetry groups are expanded in irreducible
representations of the crystal symmetry group. The
starting point in this procedure is the establishment
(using relation (7)) of the correspondence between the
irreducible stars of the lattice and sublattice representa-
tions. Then, the irreducible representations of the
groups of wave vectors are expanded. If the method
developed here is applied to the band theory, the calcu-
lated energy spectrum of a sublattice is assigned to the
first Brillouin zone of the crystal. In this case, the fol-
lowing situations may occur. When the point symmetry
group of a sublattice is higher than that of the crystal,

k Γ L( ) k ΓS( ) ni Γ L ΓS,( )Ai Γ L( ),
i 1=

3

∑+=
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the energy spectrum of the sublattice may contain
degeneracies that are absent in the crystal lattice.
Allowance for the hybridization between sublattices
removes all these degeneracies. However, if the sublat-
tice hybridization is small, the splittings are also small
and we can speak about quasi-degeneration caused by
the highest point symmetry of a particular sublattice.
Quasi-degeneration may also occur when the crystal
and a sublattice have identical point but different trans-
lational symmetries. Since the group of parallel transla-
tions of the crystal lattice is generally a subgroup of the
group of parallel sublattice translations, the reconstruc-
tion of the first Brillouin zones leads to the convolution
of the sublattice energy spectrum to the first Brillouin
zone of the crystal. This circumstance leads to degener-
acies, which are also removed owing to the sublattice
hybridization.

Let us compare the sublattice method formulated by
us with the method of an extended unit cell [8], which
is used to simulate periodic point defects. The analogy
between these methods is that the construction of an
extended unit cell is in fact similar to the method of
construction of a crystal from sublattices. However,
there is a significant difference: extended unit cells are
constructed only within one system, whereas sublat-
tices may belong to different systems. A method of gen-
eration of special points, based on the method of an
extended unit cell, was developed in [8]. Note that such
a procedure can also be used within the sublattice
method, not only to generate sets of special points but
also to determine the relations between special points
of different systems.

4. CRYSTALS WITH THE FLUORITE 
STRUCTURE

In the simplest cases, crystals can be constructed
from identical Bravais sublattices. Examples are the
well known crystals diamond and sphalerite, which are
composed of two fcc sublattices shifted with respect to
each other by a quarter of the body diagonal of the
cube; crystals with the NaCl structure, composed of
two fcc sublattices shifted by a half edge of the cube;
and crystals with the CsCl structure, formed by two
primitive cubic sublattices, one of which has a sublat-
tice coinciding with the centers of cubes of the other
sublattice.

A more complicated situation occurs in AB2 crys-
tals, for example, in compounds with the fluorite and
antifluorite structures. For example, a crystal with the
fluorite structure has an fcc lattice. In this case, cations
occupy sites of the fcc sublattice with the parameter a:
a1 = (0, a/2, a/2), a2 = (a/2, 0, a/2), and a3 = (a/2, a/2,
0). Anions are located in the sites b1 = (a/2, 0, 0), b2 =
(0, a/2, 0), and b3 = (0, 0, a/2) of the primitive cubic
sublattice with the parameter a/2, which is shifted with
respect to the cation sublattice by a quarter of the body
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diagonal of the cube: c = (a/4, a/4, a/4). Thus, a crystal
with this structure can be considered to be constructed
from two different Bravais sublattices: fcc and primi-
tive cubic sublattices.

Kz

XZ

W

L

X
Ky

Kx

Z0 Z

∆

Λ

Γ

Σ

Λ0

Λ
∆

T

M
S

The first Brillouin zone of a crystal with the fluorite struc-
ture, located in the first Brillouin zone of the anion sublat-
tice. 

R

CR
The connection matrix for the primitive parallel-
translation vectors of the sublattices has the form

(8)

The anion sublattice can also be represented by two fcc
sublattices, similar to the cation sublattice, with refer-
ence points shifted by 1/4 and 3/4 of the body diagonal.
Thus, it can be seen that the choice of sublattices in
crystals is not always an unambiguous procedure. A
particular representation can be convenient, depending
on the problem to be solved. On the basis of the princi-
ple of the minimum number of sublattices, it is expedi-
ent to consider the lattice of a crystal with the fluorite
structure as composed of an fcc cation sublattice and a
primitive cubic anion sublattice.

Let us now consider the first Brillouin zones of the
cation and anion sublattices of the crystals under con-
sideration. The primitive parallel-translation vectors of
the lattice reciprocal to the crystal lattice (in 2π/a)
units) will be written as A1 = (–1, 1, 1), A2 = (1, –1, 1),
and A3 = (1, 1, –1). The primitive parallel-translation
vectors of the lattice reciprocal to the anion sublattice
(in the same units) have the form B1 = (2, 0, 0), B2 = (0,
2, 0), and B3 = (0, 0, 2). The volume of the first Bril-
louin zone of a crystal with the fluorite structure is
smaller by a factor of 2 than the volume of first Bril-
louin zone of the anion sublattice. Figure shows both

Γ c
f Γ c( )

0 1 1

1 0 1

1 1 0 
 
 
 
 

.=
Expansion of irreducible stars of the anion sublattice in irreducible stars of a crystal with the fluorite structure

Crystal lattice Anion sublattice

type of star vectors of the star (in 2π/a) type of star vectors of the star (in 2π/a)

Γ (0, 0, 0) Γ
R

(0, 0, 0)
(1, 1, 1)

X (0, 1, 0) X
M

(0, 1, 0)
(1, 1, 0)

L (1/2, 1/2, 1/2) Λ0 (1/2, 1/2, 1/2)

W (1/2, 1, 0) Z0 (1/2, 1, 0)

Z (2µ, 1, 0), –1/4 < µ < 1/4 Z (2µ, 1, 0), –1/4 < µ < 1/4
(–1 + 2µ, 0, 1), 1/4 < µ < 1/2
(1 + 2µ, 0, 1), –1/2 < µ < –1/4

∆ (0, 2µ, 0), –1/2 < µ < 1/2 ∆
T

(0, 2µ, 0), –1/2 < µ < 1/2
(1, 1, 2µ), –1/2 < µ < 1/2

Λ (µ, µ, µ), –1/2 < µ < 1/2 Λ (2µ, 2µ, 2µ), –1/4 < µ < 1/4
(–1 + 2µ, –1 + 2µ, –1 + 2µ), 1/4 < µ < 1/2
(1 + 2µ, 1 + 2µ, 1 + 2µ), –1/2 < µ < –1/4

Σ (2µ, 2µ, 0), –3/8 < µ < 3/8 Σ

S

(2µ, 2µ, 0), –3/8 < µ < 3/8
(–1 + 2µ, –1 + 2µ, 1), 3/8 < µ < 1/2
(1 + 2µ, 1 + 2µ, 1), –1/2 < µ < –3/8
(2µ, 1, 2µ), –1/8 < µ < 1/8
(–1 + 2µ, 0, –1 + 2µ), 1/8 < µ < 1/2
(1 + 2µ, 0, 1 + 2µ), –1/2 < µ < –1/8
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these Brillouin zones with the symmetric points and
lines denoted according to [6]. Now we have to transfer
the vectors of the Brillouin zone of the anion sublattice
to the first Brillouin zone of the crystal using formula
(7) or expand the irreducible stars of the wave vectors
of the anion sublattice in irreducible stars of the wave
vectors of the crystal. The results of this expansion are
listed in the table.

It can be seen from the table that translational
degeneracies, caused by the convolution of the band-
energy spectrum of the anion sublattice, arise at the
symmetric points and lines of the first Brillouin zone of
the crystal. Indeed, the calculated valence-band energy
spectrum of fluorite [9] consists of two closely located
s bands and six weakly split p bands of fluorine, which
were formed owing to the convolution of the valence
states of fluorine from the Brillouin zone of the primi-
tive cubic sublattice to the Brillouin zone of the fcc lat-
tice.

APPENDIX

Connection matrices for the tetragonal lattices and
sublattices of other systems:

Simple tetragonal lattice (Γq)

Γq Γ c( )
n 0 0

0 n 0

0 0 m 
 
 
 
 

, Γq Γ c
f( )

n– n n

n n– n

m m m– 
 
 
 
 

,= =

Γq Γ c
v( )

0 n n

n 0 n

m m 0 
 
 
 
 

,
n a/b=

m az/b.=



=

Γq Γq( )
n 0 0

0 n 0

0 0 m 
 
 
 
 

,=

Γq Γq
v( )

0 n n

n 0 n

m m 0 
 
 
 
 

,
n a/b=

m az/bz.=



=

Γq Γ0( )
n 0 0

0 m 0

0 0 l 
 
 
 
 

, Γq Γ0
b( )

n n– 0

m m 0

0 0 l 
 
 
 
 

,= =

Γq Γ0
f( )

n– n n

m m– m

l l l– 
 
 
 
 

,=
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Body-centered tetragonal lattice ( )

Γq Γ0
v( )

0 n n

m 0 m

l l 0 
 
 
 
 

,

n a/bx=

m a/by=

l az/bz.=





=

Γq Γm( )
n k– 0

0 m 0

0 0 l 
 
 
 
 

,=

Γq Γm
b( )

n k– k–

0 m m

0 l– l 
 
 
 
 

,

n a/ bx βcos( )=

m a/by=

l az/bz=

k a β/by.tan=







=

Γq
v

Γq
v Γ c( )

n– n m

n n– m

n n m– 
 
 
 
 

,
n a/ 2b( )=

m az/ 2b( ).=



=

Γq
v Γ c

f( ) = 
n m+ m n– m–

m n– n m+ m–

m– m– n m+ 
 
 
 
 

,
n a/b=

m az/ 2b( ).=



Γq
v Γ c

v( ) = 
m m n– 0

m n– m 0

n m– n m– n 
 
 
 
 

,
n = a/b

m = a az+( )/ 2b( ).



Γq
v Γq( )

n– n m

n n– m

n n m– 
 
 
 
 

,
n a/ 2b( )=

m az/ 2bz( ).=



=

Γq
v Γq

v( ) = 
m m n– 0

m n– m 0

n m– n m– n 
 
 
 
 

,

n = a/b

m = a/ 2b( ) az/ 2bz( ).+



Γq
v Γ0( )

n– m l

n m– l

n m l– 
 
 
 
 

,

n a/ 2bx( )=

m a/ 2by( )=

l az/ 2bz( ).=





=
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Γq
v Γ0

b( )
n– m+ m l

n m– m– l

m n– m+ l– 
 
 
 
 

,=

n a/bx=

m a/ 2bx( ) a/ 2by( )+=

l az/ 2bz( ).=





Γq
v Γ0

f( )
l l n– m– m l–

l n– m– l n l–

m l– n l– l 
 
 
 
 

,=

n a/bx=

m a/by=

l a/ 2bx( ) a/ 2by( ) az/ 2bz( ).+ +=





Γq
v Γ0

v( )
l l m– m n–

n 2m– l+ n m– l+ n m–

2m n– l– m l– m 
 
 
 
 

,=

n a/bx=

m a/ 2bx( ) a/ 2by( )+=

l a/ 2by( ) az/ 2bz( ).+=





Γq
v Γm( )

n– k l

n k– l

n m k– l– 
 
 
 
 

,=

n a/ 2bx βcos( )=

m a/by=

l az/ 2bz( )=

k a 1 βtan+( )/ 2by( ).=
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Abstract—Within the method of discrete modeling of packings, an algorithm of generation of possible crystal
structures of heteromolecular compounds containing two or three molecules in the primitive unit cell, one of
which has an arbitrary shape and the other (two others) has a shape close to spherical, is proposed. On the basis
of this algorithm, a software package for personal computers is developed. This package has been approved for
a number of compounds, investigated previously by X-ray diffraction analysis. The results of generation of
structures of five compounds—four organic salts (with one or two spherical anions) and one solvate—are rep-
resented. © 2005 Pleiades Publishing, Inc.
Much attention has been given to the problem of
predicting (generation) of structures of molecular crys-
tals. The reasons for this are as follows. First, the inter-
est in such phenomena as crystalline polymorphism [1]
and phase transitions [2, 3], whose occurrence directly
depends on the possibility of existence of different
crystal structures of the same chemical compound, is
constantly increasing. Second, powder methods for
studying crystal structures, which have been intensively
developed in recent years [4], impose specific require-
ments on the methods of their interpretation, a phenom-
enon which is related to limited experimental data and,
as a result, insufficient efficiency of the conventional
methods for determining structures (the direct and
Patterson methods). Among the actively developed new
interpretation techniques, the methods of a priori search
of possible crystal structures take a particular position.

Conventional algorithms for predicting crystal
structures include three main stages: (i) generation of a
large number of initial structures, (ii) rough rejection of
unlikely structures, and (iii) final refinement of the
remaining ones. The first stage is generally reduced to
the introduction of some hypothetical space, each point
of which determines a particular crystal structure. Then
this space is either passed through with some step or is
randomly and more or less uniformly filled; for exam-
ple, by the Monte Carlo method. In this case, the main
problems are as follows: first, determination of the
independent region of this hypothetical space and, sec-
ond, the development of rules for the most uniform fill-
ing of this region. The second stage is based either on
the estimation of the energy of intermolecular interac-
tion (the structures with energies exceeding some criti-
cal value are rejected) or on geometric analysis of the
mutual arrangement of molecules (the structures with
overly short intermolecular contacts are rejected). In
the third stage, the energy refinement of the lattice
1063-7745/05/5005- $26.00 ©0727
parameters and of the position and orientation of mole-
cules in the structure is performed (as rule, by the
method of atom–atom potentials).

Previously, we proposed a new approach to the
implementation of the two first stages of generation of
crystal structures, which is based on the use of the
method of discrete modeling of packings [5]. Within
this approach, the algorithm of generation and initial
rejection of models of crystal structures contains only
integer calculations and does not consume much mem-
ory, which makes it possible to reduce the computa-
tional time at the first two stages significantly. In addi-
tion, this approach does not imply a priori setting of the
unit-cell parameter and the symmetry space group. On
the basis of this approach, algorithms of generation of
homomolecular Bravais structures, containing mole-
cules of the same orientation, and the structures with
molecules of two orientations, linked by an inversion
center, were considered in [6, 7].

However, many molecular crystals are heteromolec-
ular, i.e., contain two or more symmetrically indepen-
dent (not necessarily chemically identical) molecules.
In this study, we propose an algorithm of generation of
heteromolecular compounds containing two or three
molecules in the primitive unit cell, one of which has an
arbitrary shape, while the other molecule (two other
molecules) has a shape close to spherical. The require-
ment for an approximately spherical shape of one or
two molecules is related to the fact that the orientation
of this molecule (these molecules) remains uncertain in
the algorithm proposed. We can assign to such struc-
tures, for example, cation–anion and cation–dianion
complexes with halogen, tetrafluoroborate, and
hexafluoroborate anions (or solvate compounds with
one or two solvent molecules) with a shape close to
spherical, in the structural classes of types P1, ZC =
 2005 Pleiades Publishing, Inc.
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1(1), ZA = 1(1); , ZC = 1( ), ZA = 1( ); , ZC =

1( ), ZA = 2(1); and P1, ZC = 1(1), ZA = 2(1,1). Here, ZC

and ZA are, respectively, the numbers of cations and
anions (for solvates, of main solvate molecules and sol-
vent molecules) in the unit cell. The position occupied
by an ion (molecule) is indicated in parenthesis. In what
follows, describing the generation algorithm, we will
refer to the main solvate molecule and the solvent mol-
ecule as a cation and an anion, respectively.

The algorithm proposed includes four main stages:
(i) approximation of organic cations and anions by dis-
crete models—polycubes; (ii) calculation of all possi-
ble translational packings of polycubes of the cation
and the anion (anions) with a given packing factor;
(iii) reduction of the cell parameters to the conventional
form and calculation of the atomic coordinates from the
obtained packings of polycubes; and (iv) optimization
of the translational-lattice parameters, the orientation
of the cation, and the position of the anion (anions). 

Let us consider each of these stages in more detail.

APPROXIMATION OF A MOLECULAR CATION 
AND ANION BY DISCRETE MODELS

According to the close-packing principle, the dis-
tance between two atoms of neighboring molecules in
molecular crystals [8] cannot be smaller than some
value (for example, equal to the sum of van der Waals
radii of these atoms), which is determined by the geo-
metric characteristics of the atoms. On the basis of this
principle, the geometric model of a molecule consisting

of n atoms is a geometric figure M = , where
Sj is a sphere of radius Rj (the van der Waals radius of
the jth atom) with a center at the point rj (the coordi-
nates of the jth atom in some basis). A polycube of a
molecular cation, which consists of p cubes, can be set
by integer coordinates of the centers of these cubes {li,
i = 1, 2, …, p} in the basis whose vectors have the same
length and are parallel to the three perpendicular edges
of a cube. Then, the cation polycube is a geometric fig-

ure P = , where Ci  is a cube with a center at
the point with coordinates li. If an anion is a single
atom, it should be considered as a sphere of radius R,
where R is the ionic or van der Waals radius of the atom.
In the case of a molecular anion (or a solvent molecule),
in the first-order approximation, it can also be assumed
to be a sphere, whose radius is determined as the short-
est possible distance from the center of the molecule to
the geometric models approximating the neighboring
molecules. The anion polycube composed of q cubes
can be specified by the set {mf , f = 1, 2, …, q}; in this
case, the size of the cube of the anion polycube is the
same as that of the cube of the cation polycube. The dis-
crete model of the anion is a geometric figure Q =

P1 1 1 P1

1

S jj 1=
n∪

Cii 1=
p∪
C

, where Cf  is a cube with a center at the
point mf.

CALCULATION OF ALL POSSIBLE 
TRANSLATIONAL PACKINGS OF CATION 

AND ANION POLYCUBES WITH A SPECIFIED 
PACKING FACTOR

The necessary and sufficient criterion for the possi-
bility of translational packing of polyminos (polycubes
in the three-dimensional case) composed of p cubes,
with the packing factor k = p/N, where N is the packing-
space order, was reported in [9]. The criterion for the
possibility of translational packing of two polycubes
linked by an inversion center, with the packing factor
k = 2p/N, was given in [7]. Similarly to the above-men-
tioned criteria, let us formulate the criterion for packing
of two independent polycubes.

The packing space is a lattice whose every site is
denoted by a weight (index, number) in such a way that
any sets of lattice sites with identical weights form
identical (accurate to shift) sublattices of the initial lat-
tice [5, 9]. The coordinate columns of the vectors of one
of the bases of such a sublattice form the integer matrix
(in the basis of the initial lattice)

where 0 ≤ x2 < x1, 0 ≤ x3 < x1, 0 ≤ y3 < y2, and z3 > 0. The
matrix Y is referred to as the packing-space matrix. The
packing-space order is equal to the product of the diag-
onal elements of the matrix Y: N = x1y2z3.

To provide the existence of the translational packing
of two polycubes {li , i = 1, 2, …, p} and {mf , f = 1,
2, …, q} with the packing factor k = (p + q)/N, it is nec-
essary and sufficient that all points {li , i = 1, 2, …, p} ∪
{r + mf , f = 1, 2, …, q} of at least one Nth-order pack-
ing space have pairwise different weights. The vector r
is one of the vectors of the fundamental region of the
sublattice of translations, specified by the packing

space; for example, the vector in the form , where

u, v, and w are integers in the ranges 0 ≤ u < x1, 0 ≤ v  <
y2 , and 0 ≤ w < z3 .

Assuming the cation and anion polycubes and the
packing factor k to be specified, we first calculate the
packing-space order N as the simple natural number
nearest to the fraction (p + q)/k. The choice of a simple
packing-space order makes it possible to significantly
reduce the time of calculation of the weight of a pack-

C ff 1=
q∪

Y
x1 x2 x3

0 y2 y3

0 0 z3 
 
 
 
 

,=

u

v

w 
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ing-space point and decrease the number of packing
spaces.

For each packing space, the criterion is checked in
two stages. First, the criterion for the cation polycube is
checked and, if this criterion is satisfied, the criterion
for the anion polycube is checked for all possible values
of the vector r.

The criterion for packing of the cation polycube and
the two anion polycubes is formulated similarly. In this
case, for each packing space, the criterion for packing
of polycubes is first checked for the cation polycube
and, if the criterion is satisfied, the criteria for the poly-
cubes of the first and second anion are checked succes-
sively.

CALCULATION OF THE CRYSTAL 
STRUCTURES CORRESPONDING 

TO THE OBTAINED PACKINGS OF POLYCUBES

Each obtained packing of polycubes of the cation
and the anion (anions) is described by the packing-
space matrix Y and one or two displacement vectors of
the anion polycubes with respect to the origin of coor-
dinates. The packing space determines the lattice of
translations of the polycube packing; the column vec-
tors of the packing-space matrix Y set the basis of this
lattice of translations:

where s is the approximation step. In addition, we can
assume that the coordinates of the cation atoms {rKj , j =
1, 2, …, n}, where n is the number of cation atoms, are
known in the orthonormal basis used. When the anion
polycube is calculated, its position is taken arbitrarily,
for example, at the origin of coordinates. Then, the
coordinates of the anion (anions) in the structure corre-
sponding to the packing will be determined by the vec-
tor r (vectors r1 and r2). Since in a packing prime-order
space the fundamental region is covered by the vectors

, where u = 0, 1, …, N – 1, the coordinates of the

anion (anions) in the basis a, b, c will be equal to 

(and ). For convenience of further calculations,

this basis should be reduced to the conventional crystal-
lographic basis an, bn, cn (for example, using the Delone
algorithm), in which for all atoms of the structure, the

a s

N

0

0 
 
 
 

, b s

x1

1

0 
 
 
 

, c s

x1

0

1 
 
 
 

,= = =

u

0
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s

u1

0
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s

u2

0
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coordinates are written in fractions of the unit-cell vec-
tors:

where Yn is the matrix of the column vectors an, bn, cn

in the basis a, b, c.
In the algorithm considered here, the coordinates of

individual atoms of molecular anions are not deter-
mined. For further optimization and comparative anal-
ysis, the coordinates of the geometric center (centers)
of the anion (anions) are calculated by the above formu-
las. The determination of possible orientations of
molecular anions in the crystal is a separate problem.
Possible approaches to its solution will be published
elsewhere.

OPTIMIZATION OF THE PARAMETERS
OF THE LATTICE OF TRANSLATIONS, 

OF THE ORIENTATION OF THE CATION, AND 
OF THE POSITION OF THE ANION (ANIONS) 

The models of crystal structures obtained in the pre-
vious stage are fairly rough. This roughness creates
additional difficulties in further comparative analysis of
the structures obtained. Therefore, if possible, these
models should be refined. One of the refinement proce-
dures that can be used here is the minimization of the
intermolecular-interaction energy, for example, using
the method of atom–atom potentials.

If molecules are assumed to be rigid, in the case of
a crystalline salt, composed of one molecular cation
and a spherical anion, the intermolecular-interaction
energy is a function of the following parameters: six
geometric values determining the lattice of translations
of the crystal (for example, the unit cell parameters a,
b, c, α, β, and γ); the parameters determining the cation
orientation in the lattice (three Euler angles θ, ϕ, and
ψ); and the anion coordinates xA, yA, and zA.

When the unit cell contains one molecular cation
and two spherical anions, the number of variable
parameters increases, and the function of the energy of
the crystal structure takes the form U(a, b, c, α, β, γ, θ,
ϕ, ψ, xA1, yA1, zA1, xA2, yA2, zA2), where xA1, yA1, and zA1
are the coordinates of first anion and xA2, yA2, and zA2 are
the coordinates of the second anion in the unit cell.

In the algorithm proposed, when anions (or solvent
molecules) consist of several atoms, only the positions
of their geometric centers are determined. Therefore, in
the energy refinement, anions were replaced with vir-
tual atoms, whose parameters were determined from
minimum possible intermolecular contacts of these
anions.

APPROVAL OF THE ALGORITHM 
AND VERIFICATION OF ITS ADEQUACY
On the basis of the algorithm considered here, a

software package for IBM PCs has been developed.

r j' Yn
1– r j,=



730 MALEEV et al.
Table 1.  Basic crystallographic data on the crystal structures investigated by XRD and some parameters of their generation
by the discrete modeling method

Name in the CSD 
classification,

reference
SIVZIG, [11] AZSTBG, [12] FIDYIA, [13] ACIDIZ, [14] ECIZAR, [15]

Gross formula C18H27N2O3S
+ · Cl– C14H16  · 2I– C19H27N2S

+ · 2CH3S C34H28N4O4 · C4H8O2 C48H50  · 2(B )

Structural class P1, ZC = 1(1),
ZA = 1(1)

P , ZC = 1( ),
ZA = 2(1)

P1, ZC = 1(1),
ZA = 1(1)

P , ZC = 1( ),
ZA = 1( )

P , ZC = 1( ),
ZA = 2(1)

Anion or solvent chlorine,
Cl–

iodine,
I–

methanesulfonate,
CH3S

1,4-dioxane,
C4H8O2

tetrafluoroborate,
B

Effective anion radius 
R, Å

1.8 2.0 2.5 2.5 2.0

Criterion of noncoin-
cidence between mo-
lecular structures σ, Å

0.32 0.13 0.08 0.25 0.30

Approximation step
s, Å

0.37–0.72 0.43–0.73 0.38–0.69 0.41–0.79 0.42–0.75

Packing factor of 
polycubes k

0.58–0.64 0.67–0.72 0.60–0.64 0.56–0.60 0.56–0.61

Number of calculated 
structures

249 318 347 223 1002

Number of structures 
corresponding to the 
XRD data

30 17 123 11 16

Criterion for difference 
between structures
∆, Å

30 20 27 19 15

N2
2+ O3

– N4
2+ F4

–

1 1 1 1
1

1 1

O3
–

F4
–

This package was approved for a number of crystal
structures investigated previously by X-ray diffraction
(XRD). The crystallographic data on these structures
were taken from the Cambridge Structural Database
(CSD) [10]. The table contains some results of the gen-
eration of crystal structures of five heteromolecular
compounds, differing by the number or shape of anions
or the structural class.

The first four rows contain brief data on the crystal
structures: the CSD name of a structure and a reference
to the source of the XRD data, the gross formula, the
structural class with indication of the symmetry of the
cation and anion positions, and the name and the gross
formula of the anion or the solvent molecule. The
SIVZIG and AZSTBG compounds contain one-atom
halogen anions, which, from the point of view of
molecular packing, can be assumed to be ideally spher-
ical. The three other compounds contain molecular
anions and solvent molecules composed of several
atoms; therefore, their shape can be considered spheri-
cal only in the first-order approximation. The AZSTBG
and ECIZAR structures contain two anions per unit
cell; the other structures contain one anion per unit cell.

Next, the anion effective radius is indicated. For sin-
gle-atom anions, this is equal to the van der Waals
radius of the corresponding atom. For molecular anions
and solvent molecules, the effective radius is deter-
C

mined by the intermolecular contacts of the anion. For
example, it can be estimated as the minimum difference
between the distance from the anion center to an atom
of the neighboring molecule and the van der Waals
radius of this atom. Estimation was performed on the
basis of the analysis of several (previously investigated
by XRD) structures containing the same anion or sol-
vent molecule as the generated structure. The value of
the effective radius was used to calculate the anion
polycube and fit the energy parameters of the virtual
atom, which was placed in the structure instead of the
molecular anion or the solvent molecule during the
optimization.

The coordinates of the cation atoms were calculated
by the molecular-mechanics method [16]. The degree
of the difference between the calculated model of the
cation and the experimentally determined model was

estimated using the Zorkiœ criterion σ = ((1/n)  –

)2)1/2, where ri and  are the radius vectors of the ith
atoms of the molecules under comparison [17]. The
value of σ was minimized by the steepest descent
method, while varying the orientation of one of the
molecules with aligned geometric centers. The simula-
tion quality is much better for cations of the FIDYIA
and AZSTBG compounds; for cations of the SIVZIG
and ESIZAR compounds, the results are poorer.

(rii 1=
n∑

ri' ri'
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Table 2.  Lattice parameters of the experimental and related model crystal structures

Name in the 
CSD classi-

fication

a, Å b, Å c, Å α, deg β, deg γ, deg

XRD DMM* XRD DMM XRD DMM XRD DMM XRD DMM XRD DMM

SIVZIG 6.059 5.94 7.970 8.73 11.134 11.01 109.31 110.4 93.90 94.2 107.89 110.2

AZSTBG 8.190 8.26 7.017 7.32 7.743 7.67 84.19 80.3 61.56 63.0 80.26 76.4

FIDYIA 6.841 7.12 9.319 9.42 9.678 9.10 64.42 68.2 69.67 68.8 76.74 79.3

ACIDIZ 5.995 5.98 10.242 10.46 14.292 13.94 93.370 94.1 90.595 91.2 103.557 99.8

ECIZAR 9.0324 9.11 10.5874 10.78 12.5495 13.00 93.64 92.7 106.299 109.1 110.788 109.7

* Discrete modeling method.
For each structure, discrete models (polycubes) of
the cation were calculated for nine random orientations
of the molecule with the approximation steps (side of a
cube in the polycube) s = 0.35, 0.36, …, 0.80 Å. In
accordance with the approximation-quality criterion
described in [6], five to eight polycubes were selected
in each case. The minimum and maximum approxima-
tion steps for the selected polycubes, for which possible
packings were then calculated, are listed in the 7th row
of Table 1. Note that approximation steps exceeding
0.8 Å should not be used because the error in the calcu-
lations of generated crystal structures is unwarrantedly
high in this case. There is also no point in using approx-
imation steps much smaller than 0.3 Å, since the com-
putational time significantly increases in this case with-
out a radical decrease in error.

For each selected polycube of the cation and poly-
cube (polycubes) of the anion (anions), we calculated
all possible packings with different packing factors in
the intervals indicated in the 8th row of Table 1. The
upper limit of the interval is determined by the value of
the packing factor at which there are no possible pack-
ing for the polycubes under consideration. The lower
limit was chosen so that the number of calculated pack-
ings would not exceed several hundred.

The next row of Table 1 contains the total number of
found packings of polycubes, and, therefore, the num-
ber of crystal structures calculated for each compound
on the basis of these packings. After optimization of the
structures, comparative analysis of the crystal lattices
and molecular packings was performed. This analysis
allowed us to separate the entire set of model crystal
structures into nonintersecting classes, in which the
geometry of the lattices of translations and the mutual
arrangement of the molecules turned out to be almost
identical. Each of such classes determines a structure
that can be a polymorphic modification of this com-
pound. One of the criteria of the adequacy of the calcu-
lations performed is that, for each compound, the struc-
ture of one of such polymorphs turned out to be similar
to a crystal structure investigated by XRD and taken by
us from the CSD. The numbers of calculated crystal
structures entering the classes corresponding to the
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 5      2005
structures investigated by XRD are listed in the 10th
row of Table 1 for each compound.

To quantitatively estimate the degree of difference
between similar crystal structures, a special criterion ∆
was proposed in the form of the convergent series

where rimpq and  are the radius vectors of the ith
atoms of the structures under comparison, obtained
from the initial atoms by the translations (m, p, q), and
f(R) is a function of the distance R from the origin of
coordinates to the middle of the segment connecting
these atoms: R = 0.5|rimpq + |. Minimization of the
criterion ∆ is performed by varying the spatial orienta-
tion of one of the structures using the steepest descent
method. In our calculations, we used the function f(R) =
exp(–R/λ), where λ is the constant determining how
rapidly the series converges. Since the series is conver-
gent, its summation should be terminated at a certain
value of R. (We used λ = 7 Å and R = 70 Å.)

Our estimation shows that the values of the criterion
∆ in the range 1–2 Å correspond to identical (within the
conventional XRD error) crystal structures; the values
from 2 to 20 Å correspond to models fairly close to
each other; in the range 20–40 Å, the coincidence
between structures is satisfactory; and the values above
40 Å generally indicate significant differences in the
crystal structures under comparison. The values of the
criterion ∆ characterizing the difference between an
experimental model and a similar model of crystal
structures for each compound are listed in the last row
of Table 1.

Figures 1–5 show the projections of the crystal
structures of all compounds under study along one of
the principal crystallographic directions. Atoms of
molecular anions or solvent molecules in the experi-
mental structures are shown as spheres with radii corre-
sponding to the van der Waals radii. The positions of
the anions and solvent molecules in the model struc-
tures are shown by dotted lines. (Molecular anions are
replaced by spheres with corresponding effective radii.)

∆ rimpq rimpq'–( )
2

f R( )
i 1=

n

∑
q ∞–=

+∞

∑
p ∞–=

+∞

∑
m ∞–=

+∞

∑ 
 
 

1/2

,=

rimpq'

rimpq'
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0

b

c

Fig. 1. Structure of the hydrochloride of (8aR,12aS,13aS)-5,8,8a,9,10,11,12,12a,13,13a-decahydro-3-methoxy-12-methylsulfonyl-
6H-isoquino(2,1-g)(1,6)naphthyridine (SIVZIG). Projection along the a axis.
a

c0

Fig. 2. Structure of the diiodide of (E)-6,6'-dimethyl-6,6'-diazoniastilbene (AZSTBG). Projection along the b axis.
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 5      2005
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0 c

b

Fig. 3. Structure of the methanesulfonate of (8β)-8-((methylthio)methyl)-6-propylergoline (FIDYIA). Projection along the a axis.
0

b

c

Fig. 4. Structure of the 1,4-dioxane solvate of 1,3-bis(4-methoxyphenyl)-2,4-bis(5-phenyl-1,3,4-oxadiazole-2-yl)cyclobutane
(ACIDIZ). Projection along the a axis.
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 5      2005
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a

c

Fig. 5. Structure of bis(tetrafluoroborate) of (1,4,13,16-tetrabenzyl-1,4,13,16-tetra-aza-cyclotetracosa-8,20-dien-6,10,18,22-tet-
rain) (ECIZAR). Projection along the b axis.
The position and orientation of the main molecules of
the model and experimental structures are almost the
same; for this reason, Figs. 1–5 show only the main
molecules of the experimental structures. Table 2 con-
tains the lattice parameters of the experimental and
model (similar to experimental) crystal structures.

Thus, we believe that the main result of the investi-
gation carried out here is that the algorithm of genera-
tion of crystal structures developed within the method
of discrete modeling makes it possible to calculate all
possible crystal structures of heteromolecular com-
pounds whose primitive unit cell contains one molecule
with an arbitrary shape and one or two molecules with
a shape similar to spherical. 
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Abstract—Solutions of fullerene C60 in toluene and p-xylene were investigated by small-angle X-ray diffrac-
tion. In all small-angle scattering curves, the scattering intensity decreases to constant value IC with an increase
in the scattering angle. The value of IC nonmonotonically depends on the fullerene concentration. The radii of
gyration of scattering elements were determined by constructing small-angle X-ray diffraction patterns in
Guinier coordinates. © 2005 Pleiades Publishing, Inc.
Toluene, xylenes, and other benzene derivatives are
good solvents for fullerenes [1]. In this paper, we report
the results of the investigation of solutions of fullerene
C60 in toluene and p-xylene by small-angle X-ray scat-
tering.

The intensity of small-angle scattering curves was
measured on a KRM-1 setup with slit collimation of a
primary X-ray beam; the beam half-width was 2.5 min.
The investigated scattering angles were in the range
from 15′ to 2°. The error in measuring the intensity did
not exceed ±0.2 pulse/s in the entire range of scattering
angles.

Rectangular cells were made of a thin (7.5–10 µm)
polymer film. The thickness of the cells containing
samples was 1.0–1.5 mm. The cells were filled with the
solutions studied and hermetically sealed. Measure-
ments in transmission were performed: a cell with a
solution was installed at the center of a goniometer per-
pendicular to the primary beam and a scattering curve
(1) was recorded; then the sample was placed in front
of the first slit and the profile of the primary beam (2)
was measured taking into account its absorption in the
sample. Furthermore, curve 2 was subtracted from
curve 1; the thus obtained difference diffraction pat-
terns are given below as the experimental curves I(s),
where s = 4πθ/λ, 2θ is the scattering angle, and λ is the
X-ray wavelength. Note that the scattering intensity in
curves 2 at the minimum angle, from which the mea-
surement began, was the same for a solvent and the
solutions of C60 in the entire concentration range within
the experimental error. Therefore, the curves were not
normalized to the same intensity of the primary beam.
1063-7745/05/5005- $26.00 ©0735
All measurements were performed at 25°C using Ni-fil-
tered  radiation.

Fullerene C60 with a purity level of 99.7%, obtained
by the Huffman–Krätschmer method, was used to pre-
pare solutions of C60 in toluene with concentrations of
0.001, 0.01, 0.1, and 0.2% and in p-xylene with concen-
trations of 0.001, 0.01, 0.1, and 0.5%. Reagent grade
solvents were used.

Figure 1 shows the small-angle diffraction patterns
of the samples. In all curves, the scattering intensity
monotonically decreases with an increase in the scatter-
ing angle, then reaches constant value IC at angles of
~70′ for toluene (Fig. 1a) and ~80′ for p-xylene
(Fig. 1b).

According to the data in the literature, the tendency
of small-angle scattering intensity toward a constant
value is characteristic of homogeneous liquids and
glasses [2]. The value of IC generally increases with an
increase in temperature. Thermal density fluctuations
are considered the main reason for scattering.

In the case of fullerene solutions, the dependence of
IC on the concentration of fullerene C60 is nonmono-
tonic. At a concentration of 0.001%, the scattering
curves are almost the same for both solvents; their
shape is similar to that of the scattering curve for a pure
solvent, but the intensity is somewhat higher.

Radical changes are observed at a concentration of
0.01% (curves 3 in Figs. 1a, 1b): almost the entire
small-angle scattering curve of the solution in toluene
and the entire curve of the solution in p-xylene lie
below the scattering curve of the solvent. Such changes
in IC can be explained by the structurization of the sol-
vent under the action of fullerene. (The structurization

CuKα
 2005 Pleiades Publishing, Inc.
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Fig. 1. Small-angle scattering curves (  radiation) for solutions of fullerene C60 (a) in toluene with fullerene concentrations of

(1) 0 (pure toluene), (2) 0.001, (3) 0.01, (4) 0.1, and (5) 0.2% and (b) in p-xylene with fullerene concentrations of (1) 0 (pure
p-xylene), (2) 0.001, (3) 0.01, (4) 0.1, and (5) 0.5%.

CuKα
is meant to suppress thermal density fluctuations.)
Apparently, this process is accompanied by an increase
in the density and the degree of solvent ordering.

Indeed, there are data in the literature indicating that
the density of a C60 solution in toluene nonmonotoni-
cally changes with an increase in the fullerene concen-
tration: it first decreases to reach a minimum and then
increases again [3]; i.e., the dependence observed is
qualitatively similar to that for IC.

Solvent structurization may result in heat release
and a negative entropy decrement, which was observed
by calorimetric methods during the dissolution of the
fullerene in toluene [4].

After IC reaches its minimum value (at concentra-
tions CFR = 0.1% for toluene and 0.01% for p-xylene),
a further increase in the fullerene concentration leads to
an increase in IC. The reasons for this phenomenon are
C

still unclear. A possible reason is that the value of the
fullerene concentration approaches that for a saturated
solution [1].

Figure 2 shows the small-angle diffraction patterns
reconstructed in Guinier coordinates [5]. The values of
IC and the radii of gyration Rg for the systems under
study are listed in the table.

Let us compare the obtained radii of gyration with
the sizes of the C60 molecule. According to the calcu-
lated and experimental data, the C60 fullerene molecule
is a truncated icosahedron with an internal cavity with
zero electron density [6]; the cavity diameter is 0.4 nm.
The external diameter of the C60 molecule is 0.714 nm
[7]. Taking into account these sizes, one can model the
C60 molecule in the first-order approximation by a
spherical shell with a uniform density distribution. The
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 5      2005
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Fig. 2. The same X-ray diffraction patterns as in Fig. 1, reconstructed in Guinier coordinates.
radius of gyration for this shell can be written as

where C = Ri/Re. Then, the radius of gyration of the C60
molecule is 0.30 nm, which is much smaller than even
the smallest experimentally obtained radius.

Different models of the supramolecular structure
can be proposed to explain this difference in the radii of
gyration. The simplest model considers associates of
fullerene molecules. The table contains the sizes of
associates calculated within the model of spheres with
homogeneous density for the experimental radii of
gyration. The largest sphere, with a radius of 2.8 nm,
can contain ~90C60 molecules (in the case of hexagonal
close packing). In fact, this value should be somewhat
smaller because the packing is unlikely to be similar to
crystalline.

It was noted in [1] that fractal clusters (with dimen-
sions close to that of associates in sample 2) are formed
in solutions of fullerenes. Apparently, it is the forma-
tion of fractal structures, along with the long-range
effect of fullerene on the solvent structure, that leads to
the suppression of thermal fluctuations in solutions.

Rg 3/5( )1/2
Re 1 C

5
–( )/ 1 C

3
–( )[ ]

1/2
,=
APHY REPORTS      Vol. 50      No. 5      2005
Sizes of scattering elements in the samples

Sample 
no. Solvents and solutions Rg, nm R0, nm

1 toluene 1.2 1.5

2 toluene + 0.001% C60 1.0 1.3

3 toluene + 0.01% C60 2.1 2.7

4 toluene + 0.1% C60 2.2 2.8

5 toluene+ 0.2% C60 1.3 1.7

6 p-xylene 1.25 1.6

7 p-xylene + 0.001% C60 1.25 1.6

8 p-xylene + 0.01% C60 1.55 2.0

9 p-xylene + 0.1% C60 1.25 1.6

10 p-xylene + 0.5% C60 1.0 1.3

Note: Rg is the radius of gyration and R0 is the radius of a homo-
geneous sphere.
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Abstract—The structural properties of multilayer AlxGa1 – xAs/GaAs/AlxGa1 – xAs systems (x ≈ 0.2) grown on
GaAs(001) substrates are studied by the methods of double-crystal X-ray diffractometry and reflectometry. The
depth profiles of deformation, amorphization, and density of the layers are obtained. It is shown that despite
small differences (5–7%) in the densities of the AlxGa1 – xAs layers and the substrate and the small thickness of
the AlAs layer (1–2 nm) separating the GaAs quantum well, it is possible to reconstruct the heterostructure
model by the method of X-ray reflectometry and to determine the thickness of the transitional layers at a reso-
lution of 0.1–0.2 nm. It is also established that the reflectometry data obtained complement the X-ray diffraction
data considerably and allow one to estimate the roughness and the character of the aluminum distribution at the
interfaces. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

The method of double-crystal X-ray diffractometry
[1–4] holds a firm place in modern diagnostics of low-
dimensional semiconductor heterostructures because it
allows one to evaluate parameters of individual layers
and their interfaces by solving the inverse problem.
Although the solution of this problem is far from trivial,
the recent development of computational methods
made the restoration of the thickness, deformation,
composition, and static Debye–Waller factor of epitax-
ial layers from double-crystal diffractometry curves a
routine procedure [3, 5]. However, the nonuniqueness
of the solution obtained does not allow one to deter-
mine these parameters with the necessary accuracy and
depth resolution. Therefore, the most important prob-
lem here is the selection of an adequate model of the
structure from all the possible variants. The solution of
this problem is associated, first and foremost, with the
development of high technologies in modern micro-
and optoelectronics such that they would allow one to
obtain sufficiently narrow and deep quantum wells [6].
The quantum-dimensional effects in such structures
associated with the limitations imposed on the electron
gas are strongly dependent on the structural details of
the quantum wells and their boundaries. The precision
analysis of the structure of such objects can be solved
only on the basis of mathematically justified processing
1063-7745/05/5005- $26.00 0739
of the precise experimental data. In fact, simultaneous
processing of the double-crystal diffractometry curves
obtained from different crystallographic planes of the
structure solves the problem of nonuniqueness of the
structure model [7]. However, despite a high sensitivity,
the method of double-crystal X-ray diffractometry (as
any other method) fails to give exhaustive detailed
information on the structure. For example, analysis of
buried thin (about an angstrom thick) layers allows one
to determine only the phase increment of the reflected
wave, ∆Φh = Kh × ∆u [8], where Kh is the magnitude of
the reciprocal-lattice vector and ∆u is the displacement
introduced by a thin layer. In this case, the layer thick-
ness li and its deformation ∆di/d are related. Moreover,
X-ray diffraction methods based on the analysis of the
hth Fourier component of crystal polarizability have a
low sensitivity to the strongly amorphized layers
formed, e.g., as a result of oxidation processes at the
surface. These layers considerably influence the elec-
trophysical characteristics of the heterostructures.

The above circumstances dictate the use of some
other methods such as photoluminescence [9] and
reflection spectroscopy [10], secondary-ion mass spec-
trometry [11], total external reflection fluorescence
spectroscopy [12], etc. One of such methods is high-
resolution X-ray reflectometry (HRXR) [13]. This
method allows one to independently determine the dis-
© 2005 Pleiades Publishing, Inc.
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tribution of electron density over the crystal depth and
also distortion and roughness of surfaces and interfaces
[14, 15]. The use of the density data and the data on thin
layers obtained by double-crystal X-ray diffractometry
provides additional possibilities for thorough analysis
of layers, e.g., allows one to check the validity of Veg-
ard’s law in these layers. High-resolution X-ray reflec-
tometry has some advantages in comparison with many
other methods because it allows one to use the same
equipment as in double-crystal X-ray diffractometry
experiments.

Recently, the interest in multilayer
AlxGa1 − xAs/GaAs/AlxGa1 – xAs systems has increased
considerably because of their widespread use in opto-
electronics and powerful UHF transistors. These sys-
tems consist of a GaAs quantum well enclosed between
two AlxGa1 – xAs barrier layers. It should be noted that
doping of the external sides of the barrier layers consid-
erably increases the power of transistors prepared on
their basis and the introduction of a thin separating
AlAs layer into the quantum changes the phonon and
energy spectra of electrons. Then, it is assumed that the

GaAs protective cap layer, l1 ~ 8 nm

AlxGa1 – xAs barrier layer, x = 0.22, l2 ~ 16.5 nm

AlxGa1 – xAs barrier layer, x = 0.22, l3 ~ 16.5 nm

GaAs quantum well, l4 ~ 13 nm

GaAs separating layer, l5 ~ 1.8 nm

GaAs quantum well, l6 ~ 13 nm

AlxGa1 – xAs barrier layer, x = 0.22, l7 ~ 16.5 nm

AlxGa1 – xAs barrier layer, x = 0.22, l8 ~ 16.5 nm

GaAs buffer layer, l9 ~ 0.5 µm

GaAs (001) substrate, l10 ~ 500 µm

n-GaAs protective cap layer, l1 ~ 4–8 nm

First n-type AlxGa1 – xAs barrier layer with 
c(Si) = 1018 cm–3, l2 = 65 nm

Second n-type AlxGa1 – xAs barrier layer with 
c(Si) = 1018 cm–3, l3 = 150 nm

GaAs buffer layer, l4 = 0.2 µm

GaAs (001) substrate, l5 = 500 µm

Fig. 1. Structure of the (a) 46m and 5p and (b) G24 and
G681 samples set by the growth technology.

(a)

(b)
C

velocity of the intrasubband scattering would consider-
ably decrease and, therefore, the mobility of electrons
would increase [16]. The state and the sharpness of the
interfaces in this model play an essential role. Thus, the
study of such structures is of great scientific and applied
importance.

The present work is dedicated to the study of quantum-
well boundaries and separating AlAs layer depending on
the doping of the external parts of the AlxGa1 – xAs barrier
layers of AlxGa1 – xAs/GaAs/AlxGa1 – xAs/GaAs(001)
heterostructure and analysis of possible structural dis-
tortions of the barrier layers with and without a protec-
tive GaAs subsurface layer. The data obtained are com-
pared with the corresponding atomic-force-microscopy
(AFM) and photoluminescence data.

SAMPLE PREPARATION AND MEASUREMENT 
METHODS

Two groups of samples were grown by molecular-
beam epitaxy (MBE) on semi-insulating GaAs(001)
substrates misoriented along the [110] direction by 3°
on a TsNA-24 setup. The technological structures of the
samples 46m and 5p (group I) and G24 and G681
(group II) are schematically shown in Figs. 1a and 1b,
respectively. To prevent spreading of substrate defects
into the heterostructure, the substrates were preliminar-
ily coated with ~0.5-µm-thick GaAs buffer layers in the
samples of both groups.

Next, the samples of group I were obtained in the
following sequence: first, an AlxGa1 – xAs barrier layer
with a thickness of l7 + l8 = 16.5 × 2 nm; then, a GaAs
quantum well (QW) with a thickness of l4 + l6 = 13 ×
2 nm and a thin (l5 ≈ 1.8 nm) separating layer in the
middle of the quantum layer; and, finally, the upper
AlxGa1 – xAs barrier layer with the thickness l2 + l3 =
16.5 × 2 nm. The process was completed with over-
growth of a GaAs protective cap layer with the thick-
ness l1 ~ 8 nm. The aluminum concentration in the bar-
rier layers was x ~ 0.22 . The specific growth character-
istic of the sample 5p in comparison with the growth
characteristic of the sample 46m was Si doping of the
external parts (l8 = 16.5 nm) of the AlxGa1 – xAs barrier
layers to a Si concentration of n = 1018 cm–3. The total
thickness of the AlxGa1 – xAs barriers was the same in
all the structures and was equal to 33 nm. The growth
temperature was 600°C for the GaAs and AlAs layers
and 640°C for the AlxGa1 – xAs layers. The ratio of the
arsenic and gallium fluxes in the growth zone was equal
to 30.

Figure 1b schematically shows a sample of group II.
The internal structure of all the samples was the same
with only one exception—sample G681 had no protec-
tive cap layer. The AlxGa1 – xAs barrier layers (x ≈ 0.22)
were doped with Si to concentrations of ~1018 and
~6 × 1017 cm–3 for the layers with the thicknesses l2 and
l3, respectively, with the total layer thickness being L =
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 5      2005
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l2 + l3 ≈ 0.2–0.3 µm. The growth conditions were as fol-
lows: the ratio of the arsenic and gallium fluxes in the
growth zone was 30 and 60 for G24 and G681 samples,
respectively. The growth temperatures of the GaAs and
AlxGa1 − xAs layers were 600 and 630°C for sample
G681 and 585 and 615°C for sample G24.

X-ray diffraction and X-ray reflectometry measure-
ments were performed on a TRS-1 triple-crystal X-ray
spectrometer. The incident X-ray radiation from a
1.2 kW tube with a copper anode was formed by a slit
Ge(001) monochromator (thrice reflected 004 reflec-
tion). The double-crystal X-ray diffractometry curves
were recorded in the quasidispersionless (n, –m) crystal
geometry. We studied the 004 reflection for all the sam-
ples. The double-crystal X-ray diffractometry curves
were recorded in the mode of the set statistics (5–10%).
The step of angular scanning was 10 arc sec far from
the exact Bragg angle and 1 arc sec in the vicinity of
this angle. To decrease the contribution of the diffuse
and background components to the recorded signal, we
used a horizontal slit with a width of 5 arc min placed
in front of the detector. The reflectometry curves were
recorded in the θ/2θ and θ modes with the use of a slit
with a width of 2 arc min placed in front of the detector.
The scanning step ranged within 10′′–20′′ . Depending
on the signal intensity, the measurement time at each
point ranged from 2 to 100 s with the average statistics
being equal to 5%.

Photoluminescence spectra were measured by the
standard method. Photoluminescence was excited by a
continuous argon laser with a wavelength of 488 nm.
The excitation density varied within 10–102 W/cm2. A
sample was placed into an optical cryostat, which
allowed us to vary the sample temperature from liquid
nitrogen temperatures to room temperature.

EFFECT OF BARRIER-LAYER DOPING
ON THE STRUCTURES OF THE SEPARATING 

LAYER AND THE QUANTUM-WELL 
BOUNDARIES

Diffractometry. The double-crystal X-ray diffrac-
tometry curves of samples 46m and 5p are shown by
vertical bars in Figs. 2a and 2b with due regard for the
statistical errors. The curves calculated for the final
models are shown by solid lines. Figure 2b also shows
the double-crystal X-ray diffractometry curves calcu-
lated on the basis of the growth model shown in Fig. 1a
(1) with an AlAs separating layer and (2) without such
a layer. It is seen that the tails of all the curves for all the
samples show characteristic oscillations, with their
number on the right from the Bragg maximum being
considerably larger than on the left of it. This effect is
associated with the influence of the main Bragg maxi-
mum from the substrate on interference. For simple
models of layers (single layers on the surface of crystal-
line substrates, superlattices, etc.), the oscillation
period allows one to calculate the layer thickness and
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 5      2005
the average deformation is determined from the posi-
tion of the central Bragg maximum of the layer [17].
The double-crystal diffractometry curve from hetero-
structures with layers of different thicknesses and com-
positions has a more complicated shape. Therefore, in
this case, the reconstruction of the parameters of multi-
layer heterostructures is possible only by mathematical
fitting of the experimental data [2–5, 17] with due
regard for the diffuse-scattering contribution to the
recorded intensity.

Double-crystal X-ray diffractometry curves were
analyzed on the basis of the χ2 criterion within the
framework of the dynamical theory of X-ray scattering
using the following procedure [2]:

. (1)

Here, m is the number of points on the experimental
curves, N is the number of parameters to be determined
(thickness, deformation, static Debye–Waller factor for

each layer, diffuse-scattering intensity),  and  are
the theoretically calculated and experimentally mea-
sured intensities, and si are the measurement errors at
each point.

For all the structures studied, as an initial approxi-
mation, we used the models with the parameters corre-
sponding to the growth conditions (Fig. 1). In fact, we
assumed that the layers were uniform over the whole
thickness and had sharp interfaces. A curve calculated
for the sample 5p is shown in Fig. 2b (curve 1). It is
seen that the positions and the amplitudes of the calcu-
lated oscillations differ considerably from the experi-
mentally observed positions and amplitudes. In order to
obtain the reliable structure parameters we fitted the
theoretically calculated double-crystal diffractometry
curves to the experimentally measured ones. We varied
the following parameters: layer thickness lj in the het-
erostructure (j is the layer number); the perpendicular
components of the relative change in the crystal-lattice
parameter, ∆aj⊥ /a (depending, in particular, on the Al
concentration in the AlxGa1 – xAs layers); and the static
Debye–Waller factors fj (0 ≤ f ≤ 1), which describe the
degree of disorder and imperfection in the layers. Dif-
fraction scattering from a thin AlAs separating layer
was very weak. Therefore, we assumed in fitting that
the thickness of this layer was equal to the technologi-
cally set one and, thus, varied only the crystal-lattice
parameter ∆a⊥ /a (corresponding to the average alumi-
num concentration in this layer) and the static Debye–
Waller factor f. When analyzing the double-crystal X-
ray diffractometry curves, we took into account diffuse
scattering, which, unlike diffractive scattering, in the
general case, is incoherent and has an angular depen-
dence that shows no oscillations. It should also be noted
that, in the case of multilayer superlattices, the rough-
ness replication at the interfaces or the formation of a
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Fig. 2. Double-crystal X-ray diffractometry curves (vertical bars) and theoretically calculated curves (solid lines) for two samples:
(a) 46m and (b) 5p. Curve 1 is calculated by the parameters set by technology for the sample 5p. Curve 2 is similar but calculated
without the AlAs layer.
long-range order of scatterers along the surface can
give rise to partly coherent diffuse scattering [18, 19].
However, in our case, this effect was practically absent
and the diffuse scattering could be described by a piece-
wise smooth function [20]. In our case, the validity of
this approach was confirmed by additional experimen-
tal measurements with the use of slits having various
angular widths and different scanning modes (θ +
θ0)/(1 + β)θ, where β is the factor of reflection asym-
metry and θ0 is the constant angular displacement of the
sample.

The double-crystal X-ray diffractometry curves cal-
culated for the final models are shown by solid lines in
Figs. 2a and 2b for the samples 46m (undoped) and 5p
(doped with silicon), respectively. For a more detailed
description of the experimental double-crystal X-ray
diffractometry curves we introduced into the initial
models two additional transitional layers above and
below the GaAs quantum well (sublayers Sl1 and Sl4)
(Fig. 1a) (see table). The introduction of these sublay-
ers at the fixed thickness of the separating layer did not
give rise to any new physical result. The calculations
C

showed that even thin sublayers have parameters close
to those of the barrier layers in both doped and undoped
samples. An increase in the sublayer thickness is equiv-
alent to the division of the barrier layers into sublayers
with the same characteristics and, therefore, cannot
give any new physical solution. However, the data
obtained indicate the formation of sharp interfaces
(with thickness not exceeding 1–2 nm) between the
AlıGa1 – ıAs barrier layers and the separated GaAs
quantum well (Fig. 1a).

The layer parameters (thickness; relative density ν =
ρ(ı)/ρ0 , where ρ0 is the density of the single-crystal
substrate; and the static Debye–Waller factor f) recon-
structed from the diffraction data are indicated in the
table. The calculations show that the fitting curves for
all the samples (χ2 ≤ 1.5) describe the experimental
curves well. Thus, Figs. 2a and 2b show that the number
of oscillations, their angular positions, and the intensity
values on the experimental and resulting curves practi-
cally completely coincide. The static Debye–Waller
factor for all the layers is close to unity, which indicates
a very high perfection of the layers. The value of the
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 5      2005
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Layer parameters obtained by double-crystal X-ray diffractometry (DCXD) and high-resolution X-ray reflectometry (HRXR)

Layer Parameters
G46m G5p

DCXD HRXR DCXD HRXR

GaAs, GaAs cap layer
l1

l, nm 2.8(3) 9.5 9.4(4) 13.0

ρ/ρ0 1.000(1) 1.00(4) 1.000(1) 1.03(7)

f 0.65(5) – 0.80(2) –

AlxGa1 − xAs
l2 + l3

l, nm 35.5(4) 31.9 35.5(2) 35.2

ρ/ρ0 0.94(1) 0.93(3) 0.96(1) 0.98(8)

f 0.90(2) – 0.99(1) –

Sl1, sublayer l, nm 1.5(5) ~1.5 1.5(5) ~1.5

ρ/ρ0 0.8(1) 0.96(4) 0.92(4) 0.9(1)

f 0.79(3) – 0.95(1) –

GaAs, GaAs quantum well
l4

l, nm 16.2(2) 14.2 15.6(3) 14.8

ρ/ρ0 0.993(3) 0.98(4) 0.996(2) 1.0(1)

f 0.91(1) – 1.00(0) –

Sl2, sublayer l, nm – ~0.2 – ~0.8

ρ/ρ0 – 0.94(7) – 1.0(1)

AlAs,
l5

l, nm 1.8 1.4 1.8 1.6

ρ/ρ0 0.66(5) 0.68(6) 0.76(4) 0.81(9)

f 0.61(2) – 0.85(1) –

Sl3, sublayer l, nm – ~0.2 – ~1.2

ρ/ρ0 – 0.94(9) – 0.88(8)

GaAs, GaAs quantum well
l6

l, nm 15.3(9) 17.9 15.4(8) 17.5

ρ/ρ0 0.994(2) 0.97(5) 0.971(2) 0.98(8)

f 0.90(1) – 0.932(9) –

Sl4, sublayer l, nm 1.5(5) ~1.5 1.5(5) ~1.5

ρ/ρ0 0.93(2) 0.96(4) 0.90(1) 0.95(8)

f 0.84(4) – 0.87(4) –

AlxGa1 − xAs
l7 + l8

l, nm 30.3(9) 29.0 34.5(8) 31.9

ρ/ρ0 0.91(2) 0.95(2) 0.90(2) 0.96(8)

f 0.829(7) – 0.81(1) –

GaAs, buffer layer
l9

l, nm 494(2) – 521(4) –

ρ/ρ0 0.997(1) – 0.999(1) –

f 0.919(8) – 0.89(1) –

GaAs, GaAs substrate
l10

l, nm 500 – 500 –

ρ/ρ0 1.000(1) – 1.000(1) –

f 0.906(9) – 0.89(1) –
parameter f for a thin AlAs separating layer ranges
within ~0.6–0.8. Therefore, this layer may also be con-
sidered a single-crystal one. However, the diffractomet-
ric data do not allow one to establish the cause of the
lower reflectivity of the AlAs layer. It may be associ-
ated with a large number of lattice defects and inhomo-
geneity or spreading of the layer boundaries. It is nec-
essary to indicate that any X-ray diffraction experi-
ments is undertaken, first of all, with the aim to
determine the lattice parameters, the changes in the
interplanar spacings, etc. The data on impurity concen-
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tration, composition of solid solutions, and their conti-
nuity or porosity are determined on the basis of chosen
model representations. The relative density ν was cal-
culated with due regard for possible tetragonal distor-
tions in thin deformed layers under the assumption that
Vegard’s law is fulfilled [1]. To confirm the adequacy of
the layer models, determine the thickness of the sepa-
rating layer, and refine the interface structure, we
recorded the respective high-resolution X-ray reflecto-
metry curves.
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Fig. 3. Specular reflection curves (vertical bars) for two samples 46m (above) and 5p (below; ×10–3). (a) curve 1 is calculated by
the parameters set by technology for the sample 5p; 2 is the analogous curve 1 calculated without the AlAs layer; curves 3 and 4
illustrate fitting to the multilayer model for samples 46m and 5p, respectively; curve 5 is analogous to curve 3 but for the case of
rough boundaries around the AlAs layer (the roughness parameter σ = 0.5 nm). (b) Density-distribution profiles for a multilayer
model and the error intervals for the parameters of the samples 46m (curve 1) and 5p (curve 2), respectively.
Reflectometry. The experimental curves for the
samples 46m (above) and 5p (below, ×10–3) are indi-
cated by vertical bars in Fig. 3a. One can see a large
number of pronounced oscillations at large grazing
angles. It should be noted that we managed to measure
the intensity of specular reflection in a considerably
larger angular range (0′′–7200′′ ) than in the double-
crystal X-ray diffractometry experiment despite a lower
(by an order of magnitude) intensity of the incident
radiation and a small difference in the layer densities in
the heterostructure studied (Fig. 1a).
C

The model was reconstructed by the method
described in [15]. The initial model consisted of six
independent layers (Fig. 1a) with rough interfaces. The
correspondent model curve for the sample 5p is shown
by a dashed line (1) in Fig. 3a. The oscillations on this
curve are quite similar to those observed on the experi-
mental curve. Despite a relatively good agreement of
the angular positions, the amplitudes of the oscillations
on the model curve differ from the experimentally mea-
sured amplitudes considerably. Thus, high-resolution
X-ray reflectometry data show that, on the whole, the
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 5      2005
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grown structure corresponds to the structure set by the
growth technology. However, the density distributions
along the layer depth are different. These smallest devi-
ations are established quite reliably because of the high
sensitivity of the method of high-resolution X-ray
reflectometry. The intensity measurements in the range
exceeding the range of recording of double-crystal X-
ray diffractometry curves allow one to determine the
structure parameters with a higher depth resolution and
refine the diffractometric data.

One of the main tasks of the present study was to
determine the structure of the AlAs separating layer. It
was shown [15] that high-resolution X-ray reflectome-
try is very sensitive to the presence of thin layers at the
structure interfaces with slight density variations.
Curve 2 in Fig. 3a corresponds to the model of the sam-
ple 5p without the separating AlAs layer. It is seen that
the oscillation amplitude considerably decreases. The
curve is inconsistent with the experimental results,
which shows that the model having no thin layers inside
the structures is inadequate. Different experimental
curves from samples 46m and 5p indicate different
internal compositions of the layers forming the hetero-
structure (Fig. 1a).

High-resolution X-ray reflectometry curves were
fitted on the basis of the model of an arbitrary number
of sublayers with independent densities. Fitting of the
reflectometry curves on the basis of the χ2 criterion (1)
is associated with a much larger number of experimen-
tal factors than in the diffractometric curves and is dif-
ficult to take into account. This model can lead to phys-
ically unjustified solutions, e.g., the solution with pro-
nounced density beatings in neighboring thin
sublayers. Therefore, the most appropriate solution was
selected under certain constraints: the density variation
in neighboring sublayers of each layer and in the inter-
layer boundaries were limited to 5–10%. Layer thick-
nesses were also varied. The calculated X-ray reflecto-
metry curves for the resulting model of the samples
46m (curve 3) and 5p (curve 4) are shown in Fig. 3a. We
managed to attain the minimum χ2 values for the sam-
ples 46m and 5p equal to 9 and 15, respectively. For the
sample 46m, the solution was determined on the basis
of the model consisting of 19 layers, whereas for the
sample 5p, the number N of the sublayers in the fitting
procedure was increased to 52. The introduction of a
large number of parameters yields better fitting results,
but, at the same time, increases the errors of their deter-
mination (20%) considerably. This general problem is
associated with the limited volume of the experimental
information contained in the experimentally measured
curve. The reduction of the number of sublayers to 41
allows one to reduce the errors to the ≤12% (Fig. 3b,
dashed lines around curve 2). The worse quality of fit-
ting of the X-ray reflectometry curve for the sample 5p
than of that for the undoped sample 46m is explained by
its complex morphology, primarily, in the vicinity of
the quantum well.
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The fitted models of the density profiles ν(z)
(curves 1 and 2) for the samples 46m and 5p, respec-
tively, are shown in Fig. 3b. It is seen that the layer
structure is consistent with the diffractometry data. The
qualitative and quantitative differences revealed are
associated mainly with the thickness and the bound-
aries Sl2 and Sl3 of the AlAs separating layer and the
boundaries between the AlxGa1 – xAs barrier layers and
GaAs quantum well. For the sample 46m, the thickness
of the AlAs layer is ~1.4 nm along the interlayer bound-
ary width Sl2 and Sl3 ranging within 0.1–0.2 nm (see
table). The corresponding thicknesses for the sample 5p
are 1.6 and ≈0.8–1.2 nm. In order to control the model
sensitivity to the thickness of the boundaries Sl2 and Sl3
of the sample 46m, we performed the calculations at
boundary thicknesses ranging within 0.3–0.5 nm.
Curve 5 corresponding to these calculations is shown in
Fig. 3a. The behavior of the curve tails show that, at
large grazing angles, the discrepancy between curves 3
and 5 considerably exceeds the measurement error.

The thicknesses and densities of the layers deter-
mined by the method of X-ray reflectometry after aver-
aging over thicknesses of the layers forming the hetero-
structure (Fig. 1a) and with due regard for the error
intervals (Fig. 3b) are indicated in the table. It is seen
from the table that the average densities in the layers
and sublayers Sl1–4 obtained on the basis of the X-ray
reflectometry data agree satisfactorily with the results
obtained by the double-crystal X-ray diffractometry
with due regard for Vegard’s law. The thicknesses of the
barrier layers, quantum wells, and sublayers are within
the experimental accuracy and agree with the double-
crystal X-ray diffractometry data. Analysis of the table
leads to the following conclusions. The X-ray reflecto-
metry confirms the formation of the interface between
the barrier-layer and the quantum well with a thickness
ranging within 1–2 nm for both doped and undoped
samples. Second, the structure of the barrier layers and
quantum-well layers after doping become less homoge-
neous. Third, doping also results in an increase in the
thickness of the boundaries separating the AlAs Sl2, 3
layer up to ~1 nm. Finally, the X-ray reflectometry data
confirm the existence of a thin protective cap layer at
the heterostructure surface revealed by double-crystal
X-ray diffractometry. The two methods give somewhat
different (by a factor of 1.5–3.0) thickness of the cap
layer, which seems to be associated with the existence
on the surface of an additional strongly amorphized
layer making no contribution to the diffraction scatter-
ing and, therefore, revealed only by high-resolution X-
ray reflectometry. This result confirms the necessity of
combined use of high-resolution X-ray reflectometry
and double-crystal X-ray diffractometry for more
detailed characterization of multilayer heterostructures.

It is also important to note that because of the lack
of experimental data it is very difficult to extract similar
detailed information on the thin-layer boundaries from
double-crystal X-ray diffractometry data alone under
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Fig. 4. Double-crystal X-ray diffractometry curves (vertical bars) and the corresponding theoretically calculated curves (solid lines)
for the samples (a) G24 and (b) G681.
laboratory conditions. This is explained by the fact that
1- to 2-nm-thick layers influence mainly the tails of
double-crystal X-ray diffractometry curves [2, 3]. It is
difficult to record these curves in a large angular range
because of an increasing contribution of diffuse scatter-
ing from heterostructure and substrate defects. Diffuse
scattering is distributed around the reciprocal-lattice
point hkl and a considerable part of diffuse scattering is
recorded together with the useful signal. Conversely,
when measuring high-resolution X-ray reflectometry
curves, diffuse scattering, an analogue of small angle
scattering, is concentrated in close to the incident but
not the reflected beam. The use of narrow slits in front
of the detector in high-resolution X-ray reflectometry
experiments makes it possible to considerably reduce
the diffuse-scattering contribution to the recorded
intensity. Note also that the use of a crystal analyzer
instead of the slit may help to suppress diffuse scatter-
ing also in the double-crystal X-ray diffractometry
experiments. However, the use of a crystal analyzer
makes the experiment and the subsequent processing of
the results much more difficult. Moreover, the use of
C

small grazing angles increases the contribution of scat-
tering from thin layers with respect to the total scatter-
ing. For example, in the experiment illustrated by
Fig. 2, at deviation angles of 2000 arc sec, the intensity
of Bragg scattering decreases by more than five orders
of magnitude, whereas in the high-resolution X-ray
reflectometry method, such a decrease in intensity is
observed at angles exceeding 7200 arc sec.

INFLUENCE OF THE PROTECTIVE CAP LAYER 
ON THE STABILITY OF THE STRUCTURE 
OF ALUMINUM-CONTAINING BARRIER 

LAYERS

Diffractometry. Experimental double-crystal
X-ray diffractometry curves from samples G24 and
G681 after their keeping for a year under laboratory
conditions are shown in Fig. 4a and Fig. 4b, respec-
tively. Despite some obvious differences, on the whole,
the curves are similar and indicate the formation of het-
erostructures (Fig. 1b) in both samples. The absence of
a cap layer on sample G681 practically does not affect
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 5      2005
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the shape of the respective double-crystal X-ray diffrac-
tometry curve. The “classical shape” of double-crystal
X-ray diffractometry curves corresponds to the curves
obtained from the samples coated with a thin epitaxial
film [17]. It is seen that, in addition to the main diffrac-
tion maximum at ∆θ = 0, the tails of the double-crystal
X-ray diffractometry curves have an additional maxi-
mum at ∆θ ≈ –90′′  and small oscillations on both sides
of the main Bragg maximum. The estimates based on
the kinematical theory show that the surface of each
sample is coated with a 0.2- to 0.3-µm-thick single-
crystal layer with a lattice parameter somewhat larger
than the lattice parameter of the GaAs substrate
(∆a⊥ /a ≈ 6.7 × 10–4). In accordance with Vegard’s law
and with due regard for possible tetragonal distortions,
the average content of Al in the AlxGa1 – xAs layers
(Fig. 1b) amounts to x ~ 0.25 in both samples. These
data show that, on the whole, the layers grown on the
surface of G24 and G681 samples correspond to the
heterostructure set by technology. Note also that the
additional oscillations on double-crystal X-ray diffrac-
tometry curves from sample G681 are somewhat
weaker. Taking into account the total thickness of the
heterostructure, we see that this phenomenon cannot be
explained by the absence of a ~4–8-nm-thick protective
layer on sample G681 (Fig. 1b). Later, it will be shown
that this indicates the presence of some local structural
distortions of the subsurface layers of this sample. The
theoretical treatment of the experimental curves based
on the χ2 model showed the following. The heterostruc-
ture of sample G681 (χ2 = 1.56) consists of two layers;
counted from the buffer layer: the Al0.22Ga0.78As (l =
236.7(1) nm layer, f = 0.98(1)) and the GaAs, layer (l =
6.2(1) nm, f = 0.474). The heterostructure of sample
G24 (χ2 = 2.7) consists of three layers: Al0.22Ga0.78As
(l = 149.6(1) nm, f = 0.92(1)), Al0.22Ga0.78As (l =
53.7(1) nm, f = 0.95(1), and GaAs (l = 5.0(1) nm, f =
0.80(2)). These data show that both samples are coated
with weakly reflecting layers with thicknesses ranging
within 5–6 nm and not containing Al. Under these lay-
ers, the perfect barrier layers are located.

Reflectometry. Figure 5a shows high-resolution
X-ray reflectometry curves (vertical bars) for samples
G24 (up to 3600 arc sec) and G681 (up to 1500′′ )
obtained by θ/2θ scanning. It is seen that these curves
differ from one another considerably, whereas the
experimental double-crystal X-ray diffractometry
curves recorded from the same samples are similar
(Fig. 4). Thus, for the sample G24, considerable specu-
lar reflection with weak oscillations is observed in the
whole angular range studied. The theoretical treatment
of this curve by the method suggested in [15] yielded a
model curve with χ2 = 3 shown in Fig. 5a (curve 1). The
corresponding theoretical density-distribution profile
over depth is shown in Fig. 5b (curve 1, dashed lines
show the error interval for density). It is seen that the
structure consists of three layers with a total thickness
of ~220 nm, which is also confirmed by the double-
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crystal X-ray diffractometry data and is consistent with
the growth model (Fig. 1b). The absence of the sharp
upper boundary of the protective cap layer indicates, in
particular, its degradation during sample storage and
also presence of some adsorbed atoms.

Conversely, for the sample G681, no specular reflec-
tion is observed immediately after the attainment of the
critical angle of total external reflection, θc = 1080′′ .
This result shows that, in this case, the heterostructure
of the sample G681 has no protective cap layer and,
after storage under the laboratory conditions, the sam-
ple surface is strongly distorted. The respective calcula-
tion was performed on the basis of the Gaussian model
[15] of the transitional layer of thickness t = 9 nm on
the sample surface (curve 2 in Fig. 5a). The correspond-
ing density profile is shown by curve 2 in Fig. 5b.

To confirm the pronounced surface roughness of the
sample G681 (in comparison with the surface of the
sample G24) we recorded the diffuse-scattering distri-
bution in the vicinity of the 000 reciprocal-lattice point
by θ scanning. Analysis of its sections showed that the
G24 sample shows only specular reflection without any
noticeable diffuse maximum. At the same time, the dif-
fuse-scattering sections of the sample G681 showed no
specular-reflection maximum immediately after the
attainment of scattering angles exceeding θc. At the
same time, these sections show only an intense Yoneda
peak, which indicates the considerable surface rough-
ness and density inhomogeneities in the main layers
[21]. The reflectometry data confirm the formation of
heterosystems in both G24 and G681 samples and show
that the subsurface layers of these samples differ both
quantitatively and qualitatively. This difference is
caused by considerable structural changes in the sub-
surface layers of the sample G681 in the process of its
storage. As a result, the surface morphology and the
parameters of the subsurface layers of the samples of
group II are considerably different. In order to confirm
the conclusion about the surface distortion, these sam-
ples were studied by atomic force microscopy. The sur-
face images of the samples G24 and G681 are shown in
Figs. 6a and 6b, respectively. Their analysis shows that
the surface roughness of the samples G24 and G681
attains the values ~3 and ~10 nm, respectively. These
results are consistent with the models of vacuum/crys-
tal interfaces illustrated for samples of group II in
Fig. 5b.

Photoluminescence. The experimental photolumi-
nescence spectra of the samples G24 and G681 mea-
sured at T = 77 K are shown in Figs. 6c and 6d, respec-
tively. The spectra of as-grown samples have an intense
band at λ = 735 nm corresponding to the transitions
between the ground states of electrons and holes in the
quantum well. The higher intensity of the main band on
the photoluminescence spectrum of the as-grown sam-
ple G681 in comparison with the analogous intensity of
the spectrum from the G24 sample is explained by a
strong dependence of the increase in the photolumines-
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cence yield on the temperature of growth of the GaAs
and AlGaAs layers in the G681 sample [22]. To verify
the sensitivity of the double-crystal X-ray diffractome-
try to the presence of a protective cap layer on the sur-
face and stability of the structure of the barrier layers of
samples G24 and G681, we recorded the spectra of the
same samples after one year of storage in air (open cir-
cles in Figs. 6c and 6d). It is seen that the intensities of
photoluminescence bands of the sample G24 (Fig. 6c)
remained unchanged, whereas the intensity of the main
band of the sample G681 (Fig. 6d) having no GaAs pro-
tective cap layer decreased by more than an order of
magnitude. This result shows that the surface distortion
C

seems to be associated with the high chemical activity
of aluminum atoms. This is confirmed by pronounced
surface roughness of the sample G681. The residual
photoluminescence of the sample G681 becomes clear
after comparative analysis of the photoluminescence
spectra and the double-crystal X-ray diffractometry and
high-resolution X-ray reflectometry data.

Indeed, the high-resolution X-ray reflectometry data
show that degradation of the sharp vacuum/crystal
interface on the surface of the G881 sample resulted in
the formation of ~9-nm-high roughness. The roughness
and other structural defects in the subsurface layers of
this sample became the centers of photoluminescence
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 5      2005
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Fig. 6. (a, b) AFM images of the surfaces and (c, d) the photoluminescence spectra of the samples G24 and G681. Closed circles
are the data obtained for as-grown samples; open circles, for samples kept in air for a year.
quenching and disappearance of the photolumines-
cence yield. At the same time, the diffraction data show
that the heterostructure of the sample G681 was pre-
served despite surface degradation during sample stor-
age and that the individual layers of this heterostructure
may be considered as single crystal layers with volume
defects in the subsurface layer, whereas the remaining
crystalline parts determined the photoluminescence
yield observed.

CONCLUSIONS

Our study showed that the exhaustive characteriza-
tion of a multilayer heterosystem with thin (several
nanometers) deeply located layers requires the use of
the high-resolution X-ray reflectometry method along
with double-crystal X-ray diffractometry. The use of
the former is especially important for the determination
of the thickness and composition of the layers with the
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lattice parameters that only slightly differ from the lat-
tice parameter of the substrate.

The combined use of double-crystal X-ray diffracto-
metry and high-resolution X-ray reflectometry in the
studies of the nanodimensional
AlxGa1 − xAs/GaAs/AlxGa1 – xAs system allowed us to
determine the thickness and the composition of the
AlAs layer separating the quantum well at a resolution
ranging within 0.1–1.2 nm and also to evaluate the
widths of its interfaces. Analysis of the density-distri-
bution profiles of these structures allowed us to estab-
lish the influence of doping of the barrier layers on their
homogeneity, determine the size of the quantum wells,
and confirm and refine the data obtained by double-
crystal X-ray diffractometry.

A higher depth resolution in the high-resolution
X-ray reflectometry (in comparison with the double-
crystal X-ray diffractometry) was attained by using
small grazing angles and considerably reducing the
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intensity of the background component in the total sig-
nal. This also allowed us to record high-resolution
X-ray reflectometry curves in a wider angular interval,
0°–2°, in comparison with the angular interval of 0.5°
in double-crystal X-ray diffractometry.

Comparison of the densities of binary layers of the
known chemical compositions obtained by the X-ray
diffraction method with the data obtained by X-ray
reflectometry allowed us not only to verify the validity
of Vegard’s law for very thin elastically stressed layers
but showed that a similar approach may also be applied
to ternary and quaternary solid solutions.

Finally, it should be noted that the insufficient sensi-
tivity of the double-crystal X-ray diffractometry to
roughness and surface morphology of the samples
made the combined use of double-crystal X-ray diffrac-
tometry and high-resolution X-ray reflectometry neces-
sary for the successful construction of adequate models
of individual layers, especially in the studies of their
aging.
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Abstract—The absolute structure of La3Ga5SiO14 piezoelectric crystals (a = 8.1746(6) Å, c = 5.1022(4) Å,
space group P321, Z = 1) with the positive sense of rotation of the plane of polarization is refined using X-ray
diffraction analysis (R = 1.37%, Rw = 1.71%, 2413 unique reflections, maxsinθ/λ = 1.15 Å–1). The contribu-
tions from the anharmonicity of thermal vibrations of lanthanum atoms are calculated with the use of the com-
ponents of the third- and fourth-rank tensors. It is demonstrated that these contributions can have a significant
effect. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

Crystals of the La3Ga5SiO14 langasite family
(Ca3Ga2Ge4O14 structural type, space group P321) are
promising piezoelectric materials. In this respect, large-
sized crystals of La3Ga5SiO14, La3Nb0.5Ga5.5O14, and
La3Ta0.5Ga5.5O14, which are of great practical interest,
have been industrially produced by the Czochralski
method in a number of countries [1–3]. Moreover, a
rather large number of other crystals of related compo-
sitions, including solid solutions, have been grown and
their elastic, dielectric, electromechanical [1], spectro-
scopic [4], and crystal optical (in particular, gyrotropic)
characteristics [5, 6] have been investigated.

As regards the gyrotropic characteristics, it should
be noted that, in the symmetry class 32 involving the
space group P321, there can exist two chiral modifica-
tions that differ from each other as an image differs
from its centrosymmetrical mapping. Specifically, such
chiral modifications differ in the sense of rotation of the
plane of light polarization. Knowing the sense of rota-
tion of the plane of light polarization, it is possible to
determine the elastic constants of the crystals under
investigation. Depending on the sign, the so-called
oblique cut in the yz plane is chosen with a clockwise
or counterclockwise rotation with respect to the optic
axis 3. Ignoring this circumstance can lead to incorrect
determination of some important physical constants of
the crystals. As a rule, the sense of rotation of the plane
of polarization is determined using polarization-optical
methods. The sense is considered as clockwise (posi-
tive optical activity) and counterclockwise (negative
optical activity) for dextrorotation and levorotation,
respectively [7].
1063-7745/05/5005- $26.00 ©0751
Sil’vestrova et al. [8, 9] were the first to determine
the sign of the optical activity of the La3Ga5SiO14 and
La3Nb0.5Ga5.5O14 crystals, which turned out to be right-
handed crystals. Heimann et al. [6] also established that
the La3Ga5SiO14, La3Nb0.5Ga5.5O14, La3Ta0.5Ga5.5O14,
and Si3NbGa3Si2O14 crystals have the positive sign of
the optical activity. As far as we know, data for crystals
of the langasite family with the experimentally found
negative sign of the optical activity are not available in
the literature. The rotatory powers (but without signs of
the optical activity) for the La3Ga5SiO14,
La3Nb0.5Ga5.5O14, La3Ga5GeO14, Ca3Ga2Ge4O14, and
Sr3Ga2Ge4O14 crystals were reported by Baturina et al.
[5]. Two enantiomorphic forms in crystals of the lan-
gasite family were first compared during determination
of the absolute structures of the Sr3Ga2Ge4O14 and
La3Nb0.5Ga5.5O14 crystals [10].

The refinement of the structure of La3Ga5SiO14 crys-
tals was described in four papers [11–14]. Kuz’micheva
et al. [14] determined the absolute structure and con-
firmed its correctness in accordance with the univer-
sally accepted criteria [15]. Since the studied crystals
had a different origin and their structures differed as an
image [11–13] and its centrosymmetrical mapping
[14], we once again determined the absolute structure
of the langasite crystal, which is “genetically” identical
to the crystal studied in [11, 12].

The purpose of this study was to refine precisely the
structural parameters of the La3Ga5SiO14 compound, to
determine the absolute structure, and to investigate spe-
cific features of the electron density and thermal vibra-
tions of the atoms involved.
 2005 Pleiades Publishing, Inc.
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SAMPLE PREPARATION AND EXPERIMENTAL 
TECHNIQUE

The sample to be studied was prepared from an
La3Ga5SiO14 single crystal grown by the Czochralski
method from a melt of stoichiometric composition. The
crystal weighing as much as 265 g was characterized by
constant lattice parameters over the bulk in contrast to
the crystal described in [14], whose lattice parameters
varied significantly (up to 0.075 and 0.05 Å for the unit
cell parameters a and c, respectively).

A spherical crystal 0.16 mm in diameter was used in
X-ray diffraction analysis. The measurements were
performed on a CAD-4F diffractometer (filtered MoKα
radiation). The diffraction reflections obtained during
automatic searching and their subsequent indexing con-
firmed the hexagonal type of the lattice previously
known for langasite with lattice parameters close to
those determined in [12]. A total of 15777 diffraction
reflections with maxsinθ/λ = 1.15 Å–1 were collected
within a full sphere of the reciprocal lattice. The stabil-
ity of the primary beam was controlled periodically
(every three hours) by measuring the intensities of three
noncoplanar reflections. The maximum deviations of
the intensities of the control reflections did not exceed
0.7% of their mean intensities (the total time of the
experiment was approximately equal to 240 h). The
intensities were corrected for the Lorentz and polariza-
tion factors. Correction for absorption was also intro-
duced. After selecting the reflections with I > 3σ(I) and
averaging the symmetry-equivalent reflections, a total
of 2413 unique reflections F2(hkl) were obtained for
crystallographic calculations. Note that the Friedel
equivalent reflections were not averaged. This was nec-
essary for determining the absolute structure. The
experimental reflections F2(hkl) were corrected for

0.02

0.20 0.4 0.6 0.8 1.0 1.2
sinθ/λ, Å–1

0.04

0.06

0.08

0.10
α, arb. units

Fig. 1. Correction for thermal diffuse scattering as a func-
tion of the parameter sinθ/λ.
C

thermal diffusion scattering with the use of the elastic
constants (taken from [16]) according to the procedure
described in [17]. The dependence of the correction for
thermal diffuse scattering on the parameter sinθ/λ is
plotted in Fig. 1. The main crystal data, data collection,
and refinement parameters for the structure under
investigation are presented in Table 1. The processing
of the experimental data and all crystallographic calcu-
lations were performed with the JANA-2000 software
package [18].

CRYSTAL STRUCTURE REFINEMENT

The Ca3Ga2Ge4O14 structure can be described as a
mixed framework consisting of oxygen tetrahedra of
two types, namely, small-sized tetrahedra in the posi-
tions 2d (cation positions with symmetry 3) and large-
sized tetrahedra in the positions 3f (symmetry 2), and
octahedra in the positions 1a (symmetry 32). The coor-
dination polyhedron of large-sized cations occupying
holes (the positions 3e with symmetry 2) in the frame-
work has eight oxygen vertices and can be represented
as a distorted dodecahedron with trigonal faces [19].
The structure is layered: along the c axis, tetrahedral
layers alternate with layers composed of octahedra and
dodecahedra.

In the La3Ga5SiO14 crystal structure, La3+ ions
occupy the positions 3e, Ga3+ ions are located in the
positions 1a and 3f, and Ga3+ and Si4+ ions (in a ratio of
1 : 1) are situated at the positions 2d. This cation distri-
bution with positional parameters taken from [12] and
transformed using the matrix (1, 0, 0/0, 1, 0/0, 0, –1)
served as the initial model for the structure under inves-
tigation. The above transformation corresponds to rota-
tion about the [001] direction through 180° and to the
changeover to the structural model inverted with
respect to the model described in [11, 12]: (1, 0, 0/0, 1,
0/0, 0, –1) = (–1, 0, 0/0, –1, 0/0, 0, 1) ⋅ (–1, 0, 0/0, –1,
0/0, 0, –1).

The transformation (–1, 0, 0/0, –1, 0/0, 0, 1) elimi-
nates the differences associated with the choice of the
coordinate axes in the diffraction experiments
described in [11–14] and in our work. The axis orienta-
tion and chirality chosen correspond to the absolute
structure of the La3Nb0.5Ga5.5O14 compound [10]. As in
[12], we note that the published structural data for crys-
tals of the langasite family should be analyzed with due
regard for the ambiguity in the choice of the reciprocal
lattice axes, which, in the (001) basal plane, can be
rotated with respect to each other through an angle of
60° · (2n + 1).

The structure was refined by the least-squares
method using the atomic curves for neutral atoms with
allowance made for the dispersion corrections. The
analysis of different extinction models on the basis of
the Becker–Coppens formalism led to approximately
identical results. Preference (with a minimum advan-
tage) was given to the second type of extinction model
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 5      2005
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Table 1.  Main crystal data, data collection, and refinement
parameters for the structure of the La3Ga5SiO14 compound

Chemical formula La3Ga5SiO14

Space group, Z P321, 1

a, Å 8.1746(6)

c, Å 5.1022(4)

V, Å3 295.27(5)

ρcalcd, g/cm3 5.720(1)

Crystal radius, mm 0.08

µMo, mm–1 21.99

Diffractometer CAD-4F

Radiation, Å MoKα, 0.71073

Monochromator Graphite

Index ranges –18 ≤ (h, k) ≤ 18; –11 ≤ l ≤ 11

Scan mode ω/2θ

(sinθ/λ)max, Å–1 1.15

Number of reflections measured 15777

Number of unique reflections 2520

R(I)av, % 3.14

Number of reflections in the
refinement with I > 3σ(I)

2413

Number of parameters refined 53

Weighting scheme 1/[σ(F)2 + 0.0002F2]

Extinction coefficient 0.60(1) × 104

∆ρ, e/Å3 –0.65 ≤ ∆ρ ≤ 0.60

R/Rw 1.37/1.71

S 1.21

Flack parameter 0.043
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 5      2005
characterized by a Lorentzian distribution of mosaic
blocks over sizes.

When thermal motion of atoms is taken into account
in the isotropic approximation (R/Rw = 4.54/5.61%, S =
3.64), the residual electron densities ∆ρ in the vicinity
of the lanthanum atom in the x0z plane considerably
exceed the background densities and can be as high as
±10 e/Å3 at a distance of ~0.4 Å (Fig. 2a). The inclusion
of thermal vibrations of all atoms in the structure in the
anisotropic approximation results in a substantial
decrease both in the reliability factors R to 1.51% and
Rw to 2.04% (S = 1.28) and in the extreme values of the
residual electron densities. However, the difference dis-
tribution ∆ρ in the vicinity of the lanthanum atom
involves the region that has a positive density with an
extreme value of ~2 e/Å3 and is shifted along the two-
fold axis 2 to the right of the subtracted lanthanum atom
by a distance of ~0.4 Å (Fig. 2b). We believe that this
effect is associated with the anharmonicity of thermal
vibrations of the lanthanum atom. The inclusion of the
anharmonicity with the use of the components of the
tensors up to the fourth-rank tensor almost completely
eliminates the residual electron density in the vicinity
of the lanthanum atom in the difference synthesis
(Fig. 2c) and leads to a decrease in the factors R to
1.37%, Rw to 1.71%, and S to 1.21. The advisability of
accounting for the anharmonicity of thermal vibrations
of the lanthanum atom was checked against to the
Hamilton criterion [20], which yields a high signifi-
cance level (99.5%) of the decrease in the factor R. In
this case, peaks exceeding the background values are
virtually absent in the three-dimensional distribution of
the residual electron density. For the other atoms, the
anharmonic contributions from the thermal motion are
less significant. Although the use of the tensors up to
the fourth-rank tensor for all the atoms in the structure
decreases the factors R to 1.24%, Rw to 1.53%, and S to
1.1, it virtually does not affect the residual electron den-
sity map. Therefore, only the anharmonicity of thermal
motion of the lanthanum atom was taken into account
in the final refinement. The thermal motion of the other
Table 2.  Fractional coordinates and thermal parameters of the basis atoms

Atom Wyckoff position x/a y/b z/c Beq, Å2

La 3e 0.41895(3) 0 0 0.76(1)

Ga(1) 1a 0 0 0 0.90(1)

Ga(2), Si* 2d 1/3 2/3 0.53207(7) 0.61(1)

Ga(3) 3f 0.76526(3) 0 1/2 0.72(1)

O(1) 2d 1/3 2/3 0.1951(5) 1.18(3)

O(2) 6g 0.4649(2) 0.3110(2) 0.3157(3) 1.48(3)

O(3) 6g 0.2221(2) 0.0812(3) 0.7643(3) 1.69(4)

* Site occupation: 0.5Ga + 0.5Si.
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atoms was refined in the anisotropic harmonic approx-
imation.

At the final stage, we attempted to refine the quanti-
tative composition of atoms in the unit cell of the
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Fig. 2. Sections x0z of the residual electron density ∆ρ
through the La basis atom at different stages of the refine-
ment of the La3Ga5SiO14 structure. The closed circle indi-
cates the position of the subtracted La atom. Numbers along
the horizontal and vertical axes are the fractional coordi-
nates. The positive and negative regions are shown by solid
and dotted lines, respectively. The zero contour is depicted by
dashed lines. Contour interval: (a) 1.0 and (b, c) 0.2 e/Å3.

(b)
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La3Ga5SiO14 crystal by the step-scan method [21]. This
procedure did not reveal noticeable deviations from the
La3Ga5SiO14 stoichiometric composition for com-
pletely occupied crystallographic positions.

The initial choice of the absolute structure was made
reasoning from the relative volume of the inverted twin
component that was determined in the course of the
refinement and corresponded to the Flack parameter in
terms of the concept developed in [15]. The final choice
was based on a comparison of the results obtained by
the least-squares calculations in the anisotropic har-
monic approximation of thermal vibrations of all atoms
for two possible modifications that differ as an image
(initial model, R = 1.51%, Rw = 2.04%, S = 1.28) and its
centrosymmetrical mapping (R = 2.95%, Rw = 4.09%,
S = 2.15). Therefore, it was shown that the absolute
structure of the La3Ga5SiO14 crystal under investigation
differs from the initial model [12] and corresponds to
the structure determined in [14].

The coordinates and thermal parameters of the basis
atoms are presented in Table 2. The parameters of the
thermal vibrations in the anisotropic harmonic (Uij) and
anharmonic (Cijk, Dijkl) approximations are listed in
Tables 3 and 4, respectively. The sizes and orientation
of thermal ellipsoids are given in Table 5. The selected
interatomic distances are presented in Table 6.

RESULTS AND DISCUSSION

The parameters of the anharmonic thermal vibra-
tions can be interpreted using the probability density
functions for atomic displacements from equilibrium
positions. In order to analyze the possible displace-
ments of the lanthanum atom along the 2 axis coincid-
ing with the principal axis of its thermal ellipsoid
(Table 5), we constructed the x0z sections of the proba-
bility density functions (Fig. 3). The total probability
density function calculated with the use of the compo-
nents of the second-, third-, and fourth-rank tensors
(Fig. 3a) is slightly increased in the direction of domi-
nant vibrations of the lanthanum atom (along the 2
axis). Figure 3b illustrates the combined contribution
made by the anharmonicity of thermal vibrations with
the inclusion of the components of the third- and
fourth-rank tensors. The anharmonic contributions
associated with the fourth-rank tensor most strongly
affect the probability density function and lead to its
increase in the central part (Fig. 3d). The anharmonic
terms determined by the components of the third-rank
tensor also make a considerable contribution (Fig. 3c).
As a result, an increase in the total probability density
function along the direction of dominant vibrations is
equal in magnitude to its decrease in the opposite direc-
tion. A comparison of Figs. 3c and 3d shows that the
inclusion of the anharmonicity governed by the third-
rank tensor results in an increase in the probability den-
sity function in the antibonding direction.
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 5      2005
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Table 3.  Anisotropic thermal parameters of atoms (Uij, Å
2)

Atom U11 U22 U33 U12 U13 U23

La 0.00997(3) 0.00913(3) 0.00674(3) 0.00457(2) 0.00022(1) 0.00043(2)
Ga(1) 0.01435(8) 0.01435(8) 0.0055(1) 0.00718(4) 0 0
Ga(2), Si* 0.00851(9) 0.00851(9) 0.0061(1) 0.00425(4) 0 0
Ga(3) 0.00880(5) 0.01001(6) 0.00881(6) 0.00500(3) 0.00172(2) 0.00345(5)
O(1) 0.0123(4) 0.0123(4) 0.0202(8) 0.0062(2) 0 0
O(2) 0.0161(4) 0.0214(5) 0.0206(5) 0.0106(4) 0.0098(4) 0.0094(4)
O(3) 0.0215(5) 0.0338(7) 0.0163(4) 0.0194(5) 0.0088(4) 0.0165(5)

* Site occupation: 0.5Ga + 0.5Si.

Table 4.  Anharmonic parameters of the thermal motion of lanthanum atoms (C × 103, Å; D × 104, Å)

C111
0.00037(2)

C112
–0.000003(9)

C113
0.00004(1)

C122
–0.000003(9)

C123
0.00004(1)

C133
0.00019(2)

D1111
0.00023(2)

D1112
0.00011(1)

D1113
0.00006(1)

D1122
0.00012(1)

D1123
0.00003(1)

D1133
0.00006(1)

D1222
0.00013(2)

D1223
–0.00002(4)

D1233
0.000037(8)

D1333
0.000005(9)

D2222
0.00027(8)

D2223
–0.00005(7)

D2233
0.00007(2)

D2333
0.00003(3)

D3333
–0.00034(7)

Note: C222 = C223 = C233 = C333 = 0.
C122 = C112.
C123 = C113.
D1222 = 3*D1122–2*D1112.
D1223 = 3*D1123–2*D1113.
D2222 = 6*D1122–4*D1112.
D2223 = 6*D1123–4*D1113.
D2233 = 2*D1233.
D2333 = 2*D1333.

Table 5.  Sizes and orientation of the thermal ellipsoids of the basis atoms

Atom and point symmetry
of the atomic position Semiaxis length, Å

Angles between the thermal ellipsoid axes and the crystallographic axes, deg

a b c

La 0.07890 90 134.95 54.66
2 0.08185 90 120.06 144.66

0.09609 0 120 90
Ga(1) 0.08876 90 90 0
32 0.09070 150 90 90

0.09073 30 90 90
Ga(2), Si 0.07570 90 90 0
3 0.08626 141.16 98.84 90

0.08626 141.16 98.84 90
Ga(3) 0.07802 90 43.85 56.38
2 0.08931 180 60 90

0.11463 90 118.65 33.62
O(1) 0.07398 90 90 0 
3 0.10317 142.21 97.79 90

0.10317 142.21 97.79 90
O(2) 0.08579 128.35 93.80 49.25
1 0.10374 138.25 64.27 131.46

0.12408 103.99 26.05 68.40
O(3) 0.07713 98.43 118.22 40.34
1 0.09236 171.57 55.08 96.66

0.15094 90.26 47.94 50.44
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 5      2005
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Table 6.  Interatomic distances (Å) in the crystal structure of the La3Ga5SiO14 compound

La polyhedron Ga(1) octahedron Ga(2), Si tetrahedron Ga(3) tetrahedron

La–O(1) × 2 2.646(1) Ga(1)–O(3) × 6 1.994(2) Ga(2), Si–O(1) 1.719(3) Ga(3)–O(2) × 2 1.908(1)

O(2) × 2 2.506(2) O(3)–O(3') × 6 2.756(3) O(2') × 3 1.748(2) O(3') × 2 1.810(2)

O(2') × 2 2.870(2) O(3'') × 3 3.124(3) O(1)–O(2) × 3 2.947(3) O(2)–O(2') 2.879(3)

O(3) × 2 2.352(2) O(3''') × 3 2.665(2) O(2)–O(2') × 3 2.712(3) O(3) × 2 2.873(2)

O(2')–O(3') × 2 2.995(2)

O(3)–O(3') 3.355(3)
In [11, 12], the structural model of the La3Ga5SiO14

crystal was refined without determining the absolute
structure. The analysis of the experimental data
obtained in [12] allows us to make the inference that
C

they can be used to determine the absolute structure.
The structural model was refined according to the
JANA-2000 software package without regard for the
twin component inverted with respect to the initial
0.4
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Fig. 3. Anharmonic contributions of the thermal motion to the probability density function for the La atom in the x0z sections. The
length of the section edge is 1.0 Å. The section centers coincide with the position of the La atom. The positive and negative regions
are shown by solid and dotted lines, respectively. The zero contour is depicted by dashed lines. Contour interval: (a) five relative
units (total probability density function), (b) two relative units (anharmonic contributions of the third- and fourth-rank tensors),
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third-rank tensor).
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component (R = 3.32%, Rw = 3.51%, S = 3.33). The
inclusion of the inverted component demonstrated that
the relative volume of this component is equal to 96%
at R = 2.53%, Rw = 2.91%, and S = 2.79. The results
obtained suggest that the crystals studied in this work
and in [11, 12] have identical absolute structures. This
confirms our assumption that the La3Ga5SiO14 crystals
grown from related seed materials have the same abso-
lute structure.

Therefore, the crystals studied in [11, 12, 14] and in
this work are identical in the absolute structure. The
structural model proposed in [13] is inverted with
respect to the other model. The authors of [13] (like the
authors of [11, 12]) did not seek to determine the abso-
lute structure. As a consequence, the data obtained in
[13] do not provide a way to make a conclusive infer-
ence regarding the chirality of the crystal under investi-
gation.

Considering the configuration of the absolute struc-
tures, we should note that, in 1980, we grew the crystals
of the langasite family from two different seed crystals.
The Ca3Ga2Ge4O14 crystal was grown by the Czochral-
ski method through crystallization of a melt of the cor-
responding composition on a platinum wire. The first
crystals of Sr3Ga2Ge4O14 and Na2CaGe6O14 were
grown from Ca3Ga2Ge4O14 seeds. Single crystals of this
group should belong to the same enantiomorphic form.
Crystals of the second group were grown from lan-
gasite. The La3Ga5SiO14 seeds were used to grow the
first crystals of La3Nb0.5Ga5.5O14, La3Ta0.5Ga5.5O14,
La3Ga5GeO14, Nd3Ga5SiO14, Pr3Ga5SiO14,
Sr3TaGa3Si2O14, Ca3TaGa3SiO14, Ca3Ga2Ge4O14, and
Sr3Ga2Ge4O14, which, according to our concept, belong
to another enantiomorphic form.

The existence of crystals of the langasite family
with different senses of rotation of the plane of polar-
ization is confirmed by the results obtained in the study
of the optical activity for a number of crystals prepared
from two different seed materials. These data demon-
strate that crystals of the langasite family can be grown
in a controlled fashion with a required sense of rotation
of the plane of polarization. The enantiomorphic forms
with different senses of rotation of the plane of polar-
ization can coexist in crystals with grown twins.

The results of the precise refinement of the posi-
tional and thermal parameters of atoms and the deter-
mined absolute structure of the La3Ga5SiO14 crystal
with the positive sign of the optical activity can be use-
ful for in-depth understanding of the structure–property
relationships for crystals of the langasite family.
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 5      2005
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Abstract—New orthophosphates K2Mg0.5Zr1.5(PO4)3, Rb2Mg0.5Zr1.5(PO4)3 , and Cs2Mg0.5Zr1.5(PO4)3 are syn-
thesized and characterized by X-ray powder diffraction and IR spectroscopy. These orthophosphates crystallize
in the structure type of the mineral langbeinite (cubic system, sp. gr. P213, Z = 4). The structure of phosphate
Cs2Mg0.5Zr1.5(PO4)3 is refined by the Rietveld method using neutron powder diffraction data (a DN-2 time-of-
flight diffractometer, the Joint Institute for Nuclear Research, Dubna, Russia) in the temperature range 15–
600°C. The structure of this compound is characterized by the mixed [Mg0.5Zr1.5(PO4)3]2– framework, whose
large cavities are occupied by cesium atoms. Mg2+ and Zr4+ cations randomly occupy two crystallographically
independent positions. The influence of the temperature factor on distortions of the framework polyhedra is ana-
lyzed. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

Phosphates, which are characterized by framework
structures containing mixed [T2(PO4)3]n– anionic
groups, where n is the framework charge varying from
0 to 4 and T are elements in oxidation states from +1 to
+5, form a large group of inorganic compounds. All
possible formula types of the frameworks of such com-
pounds were described in [1]. Calculations revealed
24 possible types. Such frameworks can exist in several
structural modifications [2], one of which is the lang-
beinite structure type. This, like the NaZr2(PO4)3 (NZP)
structure type, contains the topological unit [T2(PO4)3]
consisting of two TO6 octahedra and three PO4 tetrahe-
dra linked to each other by shared oxygen atoms. Large
cavities in the langbeinite structure can be occupied
(two positions) by charge-compensating cations. For
the langbeinite framework, 2 ≤ n ≤ 4. The extraframe-
work positions can be occupied by cations in oxidation
states of +1 and +1 if n = 2, +1 and +2 if n = 3, and +1
and +3 or +2 and +2 if n = 4. Phosphates with the
[T2(PO4)3]2– framework have been studied in most
detail and are well described in the literature. In these
compounds, T2 = RM, where R are trivalent Ti, V, Cr,
Fe, Ga, Y, Er, Yb, and Bi cations, and M are tetravalent
Ti, Zr, Sn, and Hf cations. Sodium and potassium ions
serve as cations compensating for the framework
charge n = 2. These compounds are Na2RTi(PO4)3, R =
1063-7745/05/5005- $26.00 0759
Fe or Cr [3]; K2RTi(PO4)3, R = Ti [4], V [5], Y, Er, or Yb
[6]; K2RZr(PO4)3, R = Fe [7], Y, or Gd [8];
K2RHf(PO4)3, R = Ga, Fe, Cr [9], or Bi [10]; and
K2RSn(PO4)3, R = Ga, Fe, or Cr [9]. All these com-
pounds crystallize in the cubic system within the sp. gr.
P213.

It should be noted that most of these compounds
contain potassium in cavities. At the same time, no
compounds with NZP-type frameworks of the compo-
sition [RM(PO4)3]2– containing either potassium or
larger alkali cations are known. Presumably, the cavi-
ties in the framework of the langbeinite modification
are more favorable to be occupied by larger charge-
compensating cations as compared to the NZP-type
modification.

The aim of this study was to verify the validity of the
prediction [1] of the possible existence of phosphates
having [B0.5M1.5(PO4)3]2–-type frameworks with n = 2,
where B is an element in the oxidation state of +2. We
also examined whether it is possible to crystallize com-
pounds that are characterized by this framework; have
the langbeinite structure; and contain potassium, rubid-
ium, or cesium cations in cavities. To this end, we syn-
thesized and characterized phosphates
K2Mg0.5Zr1.5(PO4)3, Rb2Mg0.5Zr1.5(PO4)3 , and
Cs2Mg0.5Zr1.5(PO4)3.
© 2005 Pleiades Publishing, Inc.
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In addition to scientific interest, these compounds
have drawn attention for solving certain practical prob-
lems, in particular, in nuclear technologies producing
wastes containing alkali elements (Na, K, Rb, Cs) with
high concentrations. Framework phosphates hold
promise for developing procedures for isolation of
these elements from the biosphere. The presence of
cesium in wastes excludes the possibility of extracting
radioactive cesium from them. Owing to the geometric
restrictions on the diffusion of extraframework cations,
the langbeinite structure can trap these cations and pre-
vent hazardous radionuclides from contaminating the
environment.

EXPERIMENTAL

Samples were synthesized by the sol-gel method
using 1-M aqueous solutions of the alkali chlorides

I, rel. units

11
1 21

0
21

1

22
1

31
0

31
1

32
0

32
1

32
2

33
1

42
1

33
2

42
2

43
0 43

1
51

1
52

0
52

1 52
2

53
0

(a)

(b)

(c)

20 30 40 50 60
2θ, deg

Fig. 1. X-ray diffraction patterns of the phosphates
(a) K2Mg0.5Zr1.5(PO4)3 , (b) Rb2Mg0.5Zr1.5(PO4)3 , and
(c) Cs2Mg0.5Zr1.5(PO4)3 .
CR
MgCl2 and ZrOCl2 and H3PO4 as the starting reagents.
A 1-M H3PO4 solution was added with stirring to aque-
ous solutions of the starting salts taken in a stoichiomet-
ric ratio. The resulting gel was dried at 90°C for one to
two days and then successively heated at 600, 800, and
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Fig. 4. Experimental (h) and theoretical (solid line) neutron-diffraction profiles of Cs2Mg0.5Zr1.5(PO4)3 and the difference curve
(experiment minus calculation) normalized to the rms deviation at a point. The calculated positions of the diffraction peaks are indi-
cated by vertical bars.
1000°C for one day at each temperature, the heating
being alternated with fine grinding in an agate mortar.

Samples were studied by X-ray powder diffraction,
IR spectroscopy, and neutron powder diffraction. X-ray
diffraction study was carried out on a DRON-3M dif-
fractometer using filtered ëuKα radiation (Ni filter, λ =
1.54056 Å) in the 2θ-angle range from 14° to 60°. The
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 5      2005
IR spectra were recorded on a SPECORD 75IR spec-
trophotometer in the wavenumber range from 1400 to
400 cm–1 (samples were prepared as thin films on KBr
substrates).

The neutron diffraction patterns of the phosphate
Cs2Mg0.5Zr1.5(PO4)3, which was placed in a cylindrical
container (d = 10 mm), were recorded at 15, 150, 300,
Table 1.  Results of refinement of the crystal structure of Cs2Mg0.5Zr1.5(PO4)3

Characteristic
t, °C

15 150 300 450 600 

Space group P213

a, Å 10.2624(5) 10.2657(9) 10.2735(9) 10.2835(9) 10.2886(9)

V, Å3 1080.804 1081.847 1084.315 1087.484 1089.103 

Z 4

Color white

d spacing, Å 0.73–3.53

Number of reflections 303 322 315 323 317

Rexp 1.69 2.62 2.58 2.56 2.37

Rwp 3.75 4.89 4.52 4.45 4.39

Rp 4.17 5.65 5.38 5.21 4.89

χ2 6.94 5.78 4.02 3.58 5.03

Number of parameters in refinement 39
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Table 2.  Occupancies of positions (w), atomic coordinates, and temperature factors Biso in the Cs2Mg0.5Zr1.5(PO4)3 structure

Atom Position w
t = 15°C t = 600°C

x y z Biso x y z Biso

Cs(1) 4a 1 0.0638(5) 0.0638(5) 0.0638(5) 3.5 0.0668(6) 0.0668(6) 0.0668(6) 3.0

Cs(2) 4a 1 0.2872(4) 0.2872(4) 0.2872(4) 2.3 0.2939(6) 0.2939(6) 0.2939(6) 3.1

(Mg/Zr)(1) 4a 0.50(5) 0.8579(3) 0.8579(3) 0.8579(3) 1.6 0.8500(5) 0.8500(5) 0.8500(5) 3.0

Zr(2) 4a 1.00(5) 0.5829(3) 0.5829(3) 0.5829(3) 3.0 0.5853(6) 0.5853(6) 0.5853(6) 3.2

P 12b 1 0.6250(3) 0.4607(3) 0.2753(4) 0.5 0.6266(6) 0.4511(5) 0.2717(6) 1.8

O(1) 12b 1 0.6364(4) 0.5003(3) 0.4163(4) 2.4 0.6329(6) 0.5040(5) 0.4237(5) 2.6

O(2) 12b 1 0.7462(4) 0.4767(3) 0.2001(4) 1.3 0.7463(5) 0.4817(4) 0.2043(4) 1.2

O(3) 12b 1 0.5880(4) 0.3168(3) 0.2715(3) 1.5 0.5975(4) 0.3081(4) 0.2775(5) 1.5

O(4) 12b 1 0.5258(4) 0.5364(4) 0.1944(4) 3.3 0.5167(6) 0.5216(6) 0.1900(6) 3.2
450, and 600°C on a DN-2 time-of-flight diffractometer
installed on an IBR-2 fast pulsed reactor (Joint Institute
for Nuclear Research, Dubna, Russia) [11]. The struc-
ture was refined by the Rietveld method using the
MRIA program [12].

Table 3.  Selected interatomic distances (Å) and bond angles
(deg) in the structure of phosphate Cs2Mg0.5Zr1.5(PO4)3

Temperature, °C 15 600

Cs(1)O9 polyhedron

Cs(1)–O(2) 3.16(5) 3.18(6)

Cs(1)–O(3) 3.06(6) 3.08(5)

Cs(1)–O(4) 2.83(5) 3.36(5)

Cs(2)O9 polyhedron

Cs(2)–O(1) 3.11(6) 3.11(4) 

Cs(2)–O(2) 3.19(5) 3.11(6)

Cs(2)–O(4) 2.83(5) 2.79(5)

MO6 octahedron

Zr–O(1) 1.95(5) 1.89(5)

Zr–O(2) 2.18(5) 2.19(5)

Mg/Zr–O(3) 2.05(5) 1.84(5)

Mg/Zr–O(4) 2.07(6) 2.17(5)

êé4 tetrahedron

P–O(1) 1.48(5) 1.63(4)

P–O(2) 1.45(5) 1.42(5)

P–O(3) 1.50(4) 1.48(5)

P–O(4) 1.50(6) 1.56(6)

O(1)–P–O(2) 113.9(4) 110.3(5)

O(1)–P–O(3) 107.7(5) 107.0(5)

O(1)–P–O(4) 115.9(5) 112.2(5)

O(2)–P–O(3) 107.8(4) 113.7(4)

O(2)–P–O(4) 102.8(5) 104.7(4)

O(3)–P–O(4) 108.3(5) 109.0(4)
C

RESULTS AND DISCUSSION

The X-ray diffraction patterns of the
K2Mg0.5Zr1.5(PO4)3, Rb2Mg0.5Zr1.5(PO4)3 , and
Cs2Mg0.5Zr1.5(PO4)3 samples (Fig. 1) show reflections
with the hkl Miller indices 111, 210, 211, 300, 310,
311, 320, 321, etc., of the cubic lattice. Such reflections
are characteristic of phosphates of the langbeinite
structure type. The X-ray patterns were indexed in the
langbeinite structure type (K2Mg2(SO4)3 is the syn-
thetic analog, sp. gr. P213). The calculated unit-cell
parameters of the cubic lattice for the phosphates stud-
ied are a = 10.105(2), 10.172(2), and 10.270(2) Å and
V = 1047.4(5), 1051.4(5), and 1083.6(5) Å3, respec-
tively. The unit-cell parameter a linearly depends on the
radius of the alkali cation (Fig. 2). The picnometric
density ρexp of phosphate K2Mg0.5Zr1.5(PO4)3 was
determined to be 3.26 g/cm3, which is close to the
X-ray density (ρcalcd = 3.27 g/cm3).

The IR spectra of the phosphates are shown in
Fig. 3. The local symmetry of the PO4 tetrahedron in
the langbeinite structure is C1. The factor-group analy-
sis of internal vibrations of the phosphorus tetrahedron
allowed us to determine the following normal-vibration
modes in the crystal field (crystal symmetry P213, fac-
tor group T):

ν1  A1  A(C1)  F(T),

ν2  E  2A(C1)  2F(T),

ν3, ν4  F2  3A(C1)  3F(T).

The IR spectra of the phosphates A2Mg0.5Zr1.5(PO4)3
show bands predicted by the group theory. Three bands
at 990, 1040, and 1080 (sh) cm–1 are due to P–O asym-
metric stretching vibrations ν3, and the band at 930 cm–1

is due to asymmetric stretching vibrations ν1 . The
range 640–550 cm–1 contains bands due to three of the
predicted vibrations corresponding to the bending
vibrations ν4 at 645, 595, and 555 cm–1 and ν2 at
450 cm–1. The bands show a general tendency to shift to
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 5      2005
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low frequencies with an increase in the weight of the
alkali cation.

We used the atomic coordinates of phosphate
K2YZr(PO4)3 [8] as the starting model for the refine-
ment of the Cs2Mg0.5Zr1.5(PO4)3 structure. The results
of the refinement are listed in Table 1. The experimental
and theoretical neutron-diffraction profiles of the sam-
ple (t = 15°C) and the difference curve (experiment

(Mg/Zr)O6

PO4

Cs

c

b

a

Fig. 5. Fragment of the Cs2Mg0.5Zr1.5(PO4)3 structure.
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 5      2005
minus calculation) normalized to the rms deviation at a
point are shown in Fig. 4. The calculated positional and
thermal parameters (t = 15 and 600°C) are given in
Table 2. The corresponding interatomic distances and
bond angles are listed in Table 3.

A fragment of the structure of the phosphate
Cs2Mg0.5Zr1.5(PO4)3 is shown in Fig. 5. This structure is
based on the mixed anionic framework
[Mg0.5Zr1.5(PO4)3]2– composed of discrete MgO6,
ZrO6, and PO4 polyhedra. The group (dimer) consisting
of two octahedra and three tetrahedra linked to each
other by shared oxygen atoms is a characteristic frag-
ment of this framework.

In the Cs2Mg0.5Zr1.5(PO4)3 compound, zirconium
and magnesium cations are randomly distributed over
two nonequivalent 4a positions in the anionic frame-
work. This result can be attributed to the fact that these
elements have equal ionic radii (r = 0.72 Å).

Distortions of the framework polyhedra character-
ized by the maximum dispersion ∆ of the bond lengths
vary with temperature. At 15°C, phosphorus tetrahedra
are only slightly distorted (∆ = 0.05 Å), and the O–P–O
bond angles are close to the calculated value for the
ideal tetrahedron (109.5°). The bond lengths vary with
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Fig. 6. Distortions of the framework polyhedra upon heat-
ing.
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Fig. 7. Temperature dependences of the (a) unit-cell parameter a (p = 1 × 10–8T2 + 4 × 10–5T + 10.261) and (b) the unit-cell volume
V (p = 4 × 10–6T2 + 1 × 10–2T + 1080.3).
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Fig. 8. Temperature dependences of the thermal-expansion coefficients (a) αa and (b) αV .
temperature. At 600°C, ∆ for the phosphorus tetrahe-
dron is 0.21 Å. Somewhat smaller distortions are
observed in the metal–oxygen MgO6 and ZrO6 octahe-
dra (∆ = 0.23 and 0.35 Å at 15 and 600°C, respectively).
In addition, the polyhedra are rotated with an increase
in temperature (see Fig. 6).

The temperature dependences of the of the unit-cell
parameters a and V shown in Fig. 7 are described by the
second-degree polynomial. The polynomial parameters
of thermal expansion were calculated using Eqs. (1)
and (2):

p = p2T 2 + p1T + p0, (1)

α = (p1 + 2p2T)/p. (2)

Here, α is the thermal-expansion coefficient: α = 1/p ×
dp/dT.

Table 4.  Experimental polynomial parameters

Unit-cell 
parameters Polynomial parameters

p2 p1 p0

a 1 × 10–8 4 × 10–5 10.261

V 4 × 10–6 1 × 10–2 1080.3

Table 5.  Thermal expansion coefficients for the phosphate
Cs2Mg0.5Zr1.5(PO4)3

t, °C αa, ×106 °C–1 αV, ×106 °C–1

15 3.93 11.76

150 4.18 11.85

300 4.48 11.93

450 4.76 11.20

600 5.05 12.10
C

The polynomial parameters p2, p1, and p0 are given
in Table 4. The thermal-expansion coefficients αa and
αV are listed in Table 5.

The temperature dependences of the thermal-expan-
sion coefficients are shown in Fig. 8. It can be seen that
αa and αV increase with an increase in temperature. At
t = 600°C, αa and αV are 5.05 × 10–6 and 12.10 × 10–6°ë–1,
respectively.

CONCLUSIONS

In this study, we confirmed the prediction of the
existence of phosphates with the [B0.5M1.5(PO4)3]2–

frameworks. The new compounds K2Mg0.5Zr1.5(PO4)3,
Rb2Mg0.5Zr1.5(PO4)3, and Cs2Mg0.5Zr1.5(PO4)3 were
synthesized and characterized. We demonstrated for the
first time that rubidium and cesium cations are involved
in phosphates with the [T2(PO4)3]2– frameworks. These
phosphates were found to crystallize in the structure
type of the mineral langbeinite. Therefore, we con-
firmed the hypothesis that phosphates having the
[T2(PO4)3]2– frameworks and containing large alkali
cations in cavities crystallize in the langbeinite struc-
ture type (cubic system, sp. gr. P213). The influence of
the temperature factor on the unit-cell parameters and
distortions of the framework polyhedra was analyzed.
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Abstract—A calcium analog of strontioborite, namely, Ca[B8O11(OH)4], is synthesized under hydrothermal
conditions (T = 270°C, P = 20 atm) within the framework of the study of the phase formation in the CaCl2 ·
Rb2CO3 · B2O3 system. The crystal structure of the synthetic calcium borate [a = 7.4480(5) Å, b = 8.2627(5) Å,
c = 9.8102(6) Å, β = 108.331(1)°, V = 573.09(6) Å3, space group P21, Z = 2, ρcalcd = 2.15 g/cm3; Brucker
SMART CCD automated diffractometer, 5506 reflections, λMoKα] is refined by the least-squares procedure in
the anisotropic approximation of thermal atomic vibrations to R1 = 0.050. The calcium borate studied has a
crystal structure identical to the structure of the natural strontium borate (strontioborite) Sr[B8O11(OH)4] and
its calcium analog synthesized earlier. The crystal structure is built up of stacks consisting of skeleton layers
(formed by boron–oxygen polyanions) and isolated strontium (calcium) polyhedra located in trigonal holes of
the skeleton layers. Through channels that can contain H2O molecules are formed between the stacks. The
structure refinement and analysis of the IR spectrum of the synthetic calcium analog of strontioborite do not
confirm the previously proposed hypothesis that water molecules are involved in the channels of the structure.
A comparative crystal chemical analysis of the calcium borate under investigation and its formula analog,
namely, the lead borate Pb[B8O11(OH)4], is performed. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

When studying the phase formation in the CaCl2 :
Rb2CO3 : B2O3 system, colorless transparent crystals
with a planar prismatic habit were synthesized under
hydrothermal conditions at a 1 : 1 : 2 ratio of the com-
ponents. Crystallization was performed with an excess
of boron at temperature T = 270°C and pressure P =
20 atm. The crystals grown were examined using qual-
itative X-ray microanalysis on a CamScan 4DV scan-
ning electron microscope equipped with a Link energy-
dispersive spectrometer (analyst E.V. Guseva). It was
found that, among the metal atoms, only calcium atoms
enter into the composition of the crystal sample. The
identification of the X-ray powder diffraction pattern of
the sample synthesized revealed that this compound is
structurally similar to the natural strontium borate
(strontioborite) Sr[B8O11(OH)4] (a = 9.909 Å, b =
8.130 Å, c = 7.623 Å, β = 108.4°, space group P21, Z =
2) and the synthetic calcium borate Ca[B8O11(OH)4] (a =
9.814 Å, b = 8.261 Å, c = 7.619 Å, β = 108.5°, space
group P21, Z = 2). In 1960, Lobanova [1] was the first
to describe strontioborite as an Mg,Sr borate of the
composition 4(Sr0.75Ca0.25)O · 2MgO · 12B2O3 · 9H2O.
More recent investigations of strontioborite [2] and a
synthetic calcium borate [3] established that these com-
pounds have identical crystal structures. The structures
of both compounds are built up of stacks consisting of
skeleton layers (formed by boron–oxygen polyanions)
1063-7745/05/5005- $26.00 0766
and isolated strontium (calcium) polyhedra located in
trigonal holes of these skeleton layers. Through chan-
nels that can contain H2O molecules are formed
between the stacks. It should be noted that, by that time,
only the O2– ions and (OH)– groups were revealed in the
anionic moieties of the structures of strontioborite and
its calcium analog. However, the investigation into the
thermal properties and the analysis of the IR spectra of
the synthetic calcium borate [4, 5] demonstrated that
the composition of this compound involves one water
molecule of the zeolite type. This water molecule can
be desorbed upon heating of the compound from 70 to
500°C and absorbed upon cooling in an atmosphere sat-
urated with water vapor. On this basis, it was assumed
that the composition of the synthetic calcium borate
corresponds to the formula Ca[B4O6(OH)]2 · H2O. Zay-
akina and Brovkin [3] compared the results of chemi-
cal, thermal, and X-ray diffraction analyses and sug-
gested that channels in the structure of the borate under
investigation can contain water molecules. In this case,
the composition of the synthetic calcium borate should
correspond to the formula Ca[B8O11(OH)4] · nH2O,
where n varies from 0 to 1 depending on the synthesis
conditions. Since the structural investigations of stron-
tioborite and its calcium analog (the structural models
of both compounds were refined to large values of the
discrepancy factors Rhkl = 11 and 12%, respectively)
failed to answer the question as to what is the form of
water incorporation into the structure, it was expedient
© 2005 Pleiades Publishing, Inc.
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Fig. 1. IR spectrum of the Sr[B8O11(OH)4] strontioborite.
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Fig. 2. IR spectrum of the Ca[B8O11(OH)4] synthetic calcium borate.
to refine the crystal structure of the synthetic calcium
analog of strontioborite.

At the first stage, the synthetic crystals and the
strontioborite samples (Chelkar deposit, North Caspian
Region), which were kindly supplied by I.V. Pekov,
were studied using IR spectroscopy on a Specord 75 IR
spectrophotometer by N.V. Chukanov at the Institute of
Problems of Chemical Physics (Chernogolovka, Mos-
cow oblast, Russia). The analysis of the absorption
HY REPORTS      Vol. 50      No. 5      2005
bands in the IR spectrum of the strontioborite sample
(Fig. 1) revealed that the structure contains molecular
water (the absorption bands observed at frequencies of
3483 and 3417 cm–1 are attributed to the stretching
vibrations of water molecules, whereas the band
observed at a frequency of 1694 cm–1 corresponds to
the bending vibrations of water molecules). However,
the IR spectrum of the synthetic calcium borate (Fig. 2)
does not exhibit bands associated with stretching or
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bending vibrations of water molecules. In the fre-
quency range 3800–3200 cm–1, the IR spectra of the
strontioborite and synthetic calcium borate samples
also differ from each other. The IR spectrum of the
former compound (Fig. 1) does not contain three bands
of the OH vibrations (at frequencies of 3320, 3165, and
2990 cm–1), which manifest themselves in the spectrum
of the latter compound (Fig. 2). A comparison of the
two spectra showed that these spectra are similar to
each other in the frequency range 1440–1260 cm–1,
which corresponds to the BO3 vibrations. Furthermore,
the IR spectrum of the strontioborite sample exhibits
bands at frequencies of 1160–930 cm–1, which are
attributed to the stretching vibrations of BO4 tetrahedra,
whereas the IR spectrum of the synthetic calcium
borate involves a medium-intensity band at a frequency
of 1180 cm–1, which is assigned to the bending vibra-
tions of B–OH bonds.

Table 1.  Main crystal data, data collection, and refinement
parameters for the structure of the Ca[B8O11(OH)4] compound

Characteristics Parameters

Crystal system Monoclinic

Space group, Z P21, 2

Unit cell parameters

a, Å 7.4480 (5)

b, Å 8.2627 (5)

c, Å 9.8102 (6)

β, deg 108.331 (1)

V, Å3 573.09(6)

ρcalcd, g/cm3 2.15

µ, mm–1 0.64

Crystal size, mm 0.50 × 0.30 × 0.05

sinθ/λmax 0.768

Index ranges –11 ≤ h ≤ 11, –12 ≤ k ≤ 9,
–14 ≤ l ≤ 15

Number of reflections measured 5506

Number of unique reflections with 
I ≥ 2σ(I) [Rint]

2663 [0.043]

Final discrepancy factors R1/wR2
[I ≥ 2σ(I)]

0.050/0.091

S 0.860

∆ρmax/∆ρmin, e Å–3 1.36/–0.79

Number of parameters refined 229

Flack parameter 0.07(4)
C

EXPERIMENTAL TECHNIQUE. THE MODEL 
AND REFINEMENT OF THE STRUCTURE

The experimental intensities of X-ray diffraction
reflections for the calcium borate synthesized were col-
lected on a Brucker SMART CCD automated single-
crystal diffractometer (λMoKα) (Laboratory of Crystal
Chemistry and X-ray Diffraction Analysis, China Uni-
versity of Geosciences, Beijing, China). The main crys-
tal data, data collection, and refinement parameters for
the structure of the Ca[B8O11(OH)4] compound are pre-
sented in Table 1. According to the analysis of the
X-ray diffraction pattern, the crystal structure of the
synthetic calcium borate has space group P21.

The crystal structure was solved by direct methods
with the SHELX97 program package [6]. The struc-
tural model proposed was refined in the full-matrix
anisotropic approximation for the non-hydrogen atoms.
The hydrogen atoms were located from the difference
electron-density map. The absence of significant addi-
tional maxima in the difference electron-density map
confirmed the validity of the structural model. The
compound with the formula Ca[B8O11(OH)4] (Z = 2,
ρcalcd = 2.15 g/cm3) corresponds to the final discrepancy
factor (Table 1). The anionic moiety of the structure
was separated into O2– ions and (OH)– groups on the
basis of the calculated local balance of the bond
valences at the anions with allowance made for both the
cation–oxygen distances (according to [7]) and the con-
tributions of hydrogen atoms (according to [8])
(Table 2). The geometric parameters of hydrogen bonds
in the structure of the Ca[B8O11(OH)4] compound are
listed in Table 3. The crystallographic data for the struc-
ture studied (CIF file) have been deposited with the
Inorganic Crystal Structure Database ICSD (deposit
no. 415082).

DESCRIPTION OF THE STRUCTURE
AND DISCUSSION OF THE RESULTS

The solution of the structure confirmed the assump-
tion that the compound under investigation is isostruc-
tural to both the strontioborite mineral and the calcium
borate synthesized earlier. The structural framework is
formed by layers of polymerized boron–oxygen polya-
nions and isolated calcium cations. A polyanion of the
composition [B8O11(OH)4]2– involves a

[ O10(OH)]3– ring group and a dimer bonded to the

ring and composed of [ O(OH)3]1+ boron triangles
(Fig. 3). The ring hexaborate radical, which was first
found in the structure of the natural tunellite
Sr[B6O9(OH)2] · 3H2O [9] and then revealed in the
structures of more than ten natural and synthetic
borates, is built up of three vertex-shared tetrahedra and
three triangles completed through two free vertices of
the tetrahedra. The dimer composed of boron triangles
(a suanite-like radical) and the hexaborate radical are

B3
t
B3

∆

B2
∆
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Table 2.  Local balance of the bond valences at anions in the structure of the Ca[B8O11(OH)4] compound

Cation
Anion Ca B(1) B(2) B(3) B(4) B(5) B(6) B(7) B(8) H(1) H(2) H(3) H(4) ΣVij

O(1) 0.20 0.80 1.04 2.04

O(2) 0.23 0.81 1.02 2.06

O(3) 0.69 0.68 0.65 2.02

O(4) 0.25 1.04 0.80 2.09

O(5) 0.17 0.80 1.04 2.01

O(6) 0.18 0.81 1.05 2.04

O(7)* 0.17 1.00 0.83 2.00

O(8) 0.80 1.05 0.15 2.00

O(9) 0.18 0.81 1.02 2.01

O(10) 0.77 1.06 0.22 2.05

O(11) 0.80 1.04 0.26 2.10

O(12) 1.02 1.03 2.05

O(13)* 0.23 1.01 0.78 2.02

O(14)* 1.00 0.17 0.85 2.02

O(15)* 0.18 1.02 0.74 1.94

Note: Oxygen atoms of the (OH)–1 groups are marked with an asterisk.
linked together through a free oxygen vertex of one of
the tetrahedra. The mean boron–anion distances in the
boron tetrahedra and in the boron triangles involved in
the hexaborate radical and those in the trigonal dimer
fall in the standard ranges and are equal to 1.466, 1.469,
and 1.473 Å in the tetrahedra; 1.361, 1.356, and
1.359 Å in the triangles; and 1.362 and 1.365 Å in the
dimer. As in the other borates with tunellite-like radi-
cals, the B–O distances for the oxygen atom bonded to
three boron tetrahedra are somewhat larger than the
mean distances (1.508, 1.513, and 1.533 Å). The

[ O10(OH)] · [ O(OH)3] polyanions related by
the 21 screw axes are joined together into layers perpen-
dicular to the a axis of the unit cell (Fig. 3a). The con-
gruent layers, which are adjacent to each other along
the a axis, are also related by the 21 screw axes. This
configuration specifies the unit cell parameter a ~
7.4 Å, which is commensurate to the thickness of one
layer (Fig. 4a). The calcium cations located at the cen-
ters of the trigonal holes formed by the boron–oxygen
radicals (Fig. 3a) are surrounded by nine nearest neigh-
bor ligands, which, in turn, form isolated polyhedra.
The Ca[B8O11(OH)4] neutral layers are linked into a
single structure through nine-vertex calcium polyhedra
in which six oxygen vertices lie in the layer, one OH
vertex belongs to the boron triangle of the dimer in the
same layer, and the other two vertices belong to the
dimer of the adjacent layer (Fig. 4a). Moreover, the lay-
ers are also linked by the hydrogen bonds between the
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(OH)– groups and the O2– ions of the adjacent layers
(Fig. 4a).

Similar boron–oxygen polyanions joined together
into layers form the framework of the structure of the
synthetic lead borate Pb[B6O10(OH) · B2O(OH)3] (a =
7.911 Å, b = 9.979 Å, c = 14.03 Å, γ = 90.36°, space
group P21/n) [10], which is a formula analog of the syn-
thetic calcium borate and, correspondingly, stron-
tioborite. The differences lie both in the configuration
of the layer as a whole and in the mutual arrangement
of individual layers. In the structure of the synthetic
lead borate, the boron–oxygen layers are also com-

posed of the tunellite-like radicals [ O10(OH)]3–

and suanite dimers [ O(OH)3]1+. However, in the
structures of the synthetic calcium borate and stron-

B3
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∆

Table 3.  Geometric parameters of hydrogen bonds in the
structure of the Ca[B8O11(OH)4] compound

D–H···A D–H,
Å

H···A,
Å

D–A,
Å

DHA
angle, 
deg

O(15)–H(1)···O(11) 0.89(3) 1.70(3) 2.582(4) 171.1(2)

O(7)–H(2)···O(14i) 0.83(3) 1.98(3) 2.805(4) 171.1(3)

O(13)–H(3)···O(10) 0.85(3) 1.85(3) 2.685(4) 170.2(2)

O(14)–H(4)···O(8ii) 0.81(3) 2.13(4) 2.917(4) 163.5(3)

Note: Symmetry codes: (i) (x, y, z – 1), (ii) (–x, 1/2 + y, –z).
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Fig. 3. Boron–oxygen layers in the structures of (a) the Ca[B8O11(OH)4] calcium borate and (b) the Pb[B8O11(OH)4] lead borate.
Solid lines indicate the cation–anion bonds.
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Fig. 4. Projections of the structures of (a) the Ca[B8O11(OH)4] calcium borate and (b) the Pb[B8O11(OH)4] lead borate onto the xz
and yz planes, respectively. Solid lines indicate the cation–anion bonds, and dashed lines represent the hydrogen bonds.
tioborite, the dimers are oriented in opposite directions
along the c axis of the unit cell (Figs. 3a, 4a), because
they are related by the 21 screw axis lying in the layer
plane. By contrast, in the structure of the synthetic lead
borate, the [B2O(OH)3]1+ dimers are oriented in the
same direction along the b axis of the unit cell, because
the neighboring polyanions are related by the inclined
plane lying in the layer plane n (Figs. 3b, 4b). Further-
more, in the structure of the synthetic lead borate, the
boron–oxygen layers adjacent to each other along the c
axis are related through the center of inversion and,
hence, are enantiomorphic (Fig. 4b), whereas the corre-
sponding layers in the structures of the synthetic cal-
C

cium borate and strontioborite are congruent. This cir-
cumstance accounts for the fact that the unit cell param-
eter c for the lead borate (c ~ 14 Å) is approximately
two times larger than the unit cell parameter a ~ 7.4 Å
for the calcium borate. The central part of the layer in
the structure of the synthetic calcium borate consists of
hexaborate groups and is similar to the corresponding
layer in the structure of the Sr[B6O9(OH)2] · 3H2O tun-
ellite. In both structures, the hexaborate polyanions are
related by the 21 screw axes in the layers and the dou-
bling of the unit cell parameter a ~ 14 Å in the tunellite
structure as compared to the corresponding unit cell
parameter in the calcium borate structure (as is the case
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 5      2005
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Fig. 5. Arrangement of the polyhedra around the calcium and lead cations in the structures of (a) the Ca[B8O11(OH)4] calcium
borate and (b) the Pb[B8O11(OH)4] lead borate. Dashed lines indicate edges of the boron tetrahedra and boron triangles in the
boron–oxygen polyanions.
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Fig. 6. Projections of the structures of (a) the Ca[B8O11(OH)4] calcium borate and (b) the Pb[B8O11(OH)4] lead borate onto the xy
and xz planes, respectively.
in the lead borate structure) is caused by the presence of
the center of inversion between the adjacent layers.

Although the structural motifs in the arrangement of
large-sized cations in trigonal holes of the boron–oxy-
gen skeleton layer in the structures of the synthetic cal-
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 5      2005
cium borate and synthetic lead borate are similar to
each other (Figs. 3a, 3b), the isolated nine-vertex poly-
hedra around the calcium cations in the adjacent layers
turn out to be congruent, whereas the corresponding
polyhedra around the lead cations are enantiomorphic
(Figs. 5a, 5b). Moreover, the Ca–O and O–O distances
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in the calcium polyhedra lie in the standard ranges and
are equal to 2.478–2.630 Å (mean distance, 2.572 Å)
and 2.267–4.480 Å (mean distance, 3.130 Å), respec-
tively. In the lead polyhedra, there is a larger spread in
Pb–O and O–O distances, which are equal to 2.540–
2.939 Å (mean distance, 2.726 Å) and 2.295–5.310 Å
(mean distance, 3.306 Å), respectively. Such an asym-
metric coordination, which is characteristic of many
divalent lead compounds, arises from the specific fea-
tures in the configuration of the electron shell of diva-
lent lead, for example, with the manifestation of a lone
pair of 6s electrons.

As was noted above, the zeolite properties exhibited
by the calcium analog of strontioborite are associated
with the presence of through channels in the structure
(Fig. 6a). Similar channels also exist in the structure of
the synthetic lead borate (Fig. 6b). However, the syn-
thetic calcium borate is characterized by channels with
identical cross sections. By contrast, in the structure of
the lead borate, the channels with different shapes of
the cross sections alternate in a staggered order along
the a and c axes of the unit cell. This can be explained
both by the asymmetry of the lead polyhedra (the
lengths of the edges bounding the channels fall in the
range 3.122–5.130 Å in the lead borate and in the range
3.106–4.480 Å in the calcium borate) and by the fact
that, in the lead borate, the suanite groups belonging to
the same boron–oxygen layer have different orienta-
tions along the diagonals of the (010) face of the unit
cell (Fig. 6b). In the structure of the synthetic calcium
borate (Fig. 6a), the suanite groups are oriented along
the a axis of the unit cell. These differences are also
responsible for the approximately twofold increase in
the unit cell parameter c in the lead borate structure as
compared to the corresponding unit cell parameter in
the calcium borate structure.

According to Belokoneva et al. [10], the structures
of strontioborite Sr[B8O11(OH)4], synthetic lead borate
Pb[B8O11(OH)4], tunellite Sr[B6O9(OH)2] · 3H2O,
strontioginorite SrCa[B14O20(OH)6] · 5H2O, aristarain-
ite Na2Mg[B6O8(OH)4]2 · 4H2O, and macallisterite
Mg2[B6O7(OH)6]2 · 9H2O belong to the OD family in
which all the representatives are formed by identical
fragments, i.e., hexaborate blocks. The structural diver-
sity of this family can be explained by the symmetry of
the ribbons and layers composed of hexaborate blocks,
on the one hand, and by the presence of different sym-
C

metry elements relating the adjacent layers in the struc-
tures considered in [10], on the other hand.

The structure refinement and the analysis of the IR
spectrum of the synthetic calcium analog of stron-
tioborite did not confirm the assumption made earlier
by Zayakina and Brovkin [3], according to which the
structural channels can contain water molecules. How-
ever, the results of the IR spectroscopic investigations
indicate that this possibility must not be ruled out in
natural strontioborite. The validity of the hypothesis
proposed by those authors can be verified by refining
the mineral structure.
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Abstract—The crystal structures of alkali metal and ammonium bifluorides MHF2 (M = Na, NH4, or Rb) are

refined using single-crystal X-ray diffraction. In all the crystals of acid fluorides studied,  anions have a
linear structure with F···F distances ranging from 2.277 to 2.281 Å. The crystal structures of the Rb5F4(HF2) ·
2H2O and RbF · H2O compounds are determined. It is established that, in these structures, the O–H···F hydro-
gen bonds whose lengths are equal to 2.55–2.57 and 2.63 Å participate in the formation of trinuclear bent anions
and zigzag anionic chains, respectively. © 2005 Pleiades Publishing, Inc.

HF2
–

INTRODUCTION

Monoacid salts of hydrofluoric acid are important
inorganic compounds that have found extensive use in
laboratory inorganic synthesis and engineering, for
example, in the production of fluorine and hydrogen

fluoride [1]. These compounds contain  bifluoride
anions, which are characterized by the shortest hydro-
gen bond known to date. Investigation into the crystal

structure of bifluorides and other salts with Hn

anions is of particular importance in elucidating the
nature of strong hydrogen bonding. In this respect, the
structures of acid fluorides of the general formula
åHnFn + 1 have been studied using X-ray and neutron
diffraction analyses. It should be noted that the struc-
tures of acid fluorides of potassium (n = 1–4) [2–4] and
ammonium (n = 1, 3, 4, 7) [5, 6] are best understood.
However, data on the crystal structure of lithium, rubid-
ium, and cesium bifluorides were obtained more than
forty years ago with the use of insufficiently reliable
experimental techniques. For some of these structures,
the data available in the literature on the length of F···F
hydrogen bonds have been given without experimental
errors and discrepancy factors (R1). Kruh et al. [7]
determined the crystal structure of the RbHF2 com-
pound with a large value of the final R factor (0.12,
X-ray powder diffraction analysis). McDonald [5]
examined the electron density distribution for NH4HF2
crystals and simultaneously refined the scattering
curves for fluorine and sodium atoms. As a result, the
author of [5] obtained very flattened maxima in the
electron density distribution for positions of hydrogen
atoms in the bifluoride anions and, moreover, revealed
an additional uninterpretable maximum in the differ-

HF2
–

Fn 1+
–

1063-7745/05/5005- $26.00 ©0773
ence Fourier synthesis. (The data presented for the
NH4HF2 compound in the Inorganic Crystal Structure
Database (ICSD no. 14140) contain substantial mis-
takes: the errors in the determination of the atomic
coordinates are ten times overestimated; furthermore,
the discrepancy factors are given as 0.03(!), whereas
the R factors obtained in [5] amount to 0.050 and
0.077.) McGaw and Ibers [8] carried out X-ray and
neutron diffraction investigations of sodium bifluoride
single crystals. However, the X-ray diffraction intensi-
ties were estimated by the photomethod and the number
of reflections collected in neutron diffraction experi-
ments was relatively small, which somewhat limited
the accuracy of the results obtained using the least-
squares procedure.

In the present study, we obtained reliable crystal
data for three bifluorides, namely, NaHF2, NH4HF2,
and RbHF2, and determined the crystal structures of a
rubidium fluoride monohydrate and a mixed rubidium
“fluoride–bifluoride” hydrate. Moreover, the data
obtained for the structure of the bifluoride anions were
compared with those available in the literature.

SAMPLE PREPARATION AND EXPERIMENTAL 
TECHNIQUE

The simplest procedure for preparing crystalline bif-
luorides involves the reaction of the relevant fluorides
(or carbonates) with hydrofluoric acid and the subse-
quent concentration of the resultant solutions. This pro-
cedure was used for synthesizing the RbHF2 salt. The
ammonium and sodium bifluorides studied in this work
were prepared in the course of crystallization from
solutions of other salts, for example, sodium selenate or
 2005 Pleiades Publishing, Inc.
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Table 1.  Crystal data, data collection, and refinement parameters of the structures under investigation

Empirical formula NaHF2 NH4HF2 RbHF2 Rb5F4(HF2) · 2H2O RbF · H2O

Molecular weight M 62.00 57.05 124.48 578.39 122.49

Crystal system Trigonal Orthorhombic Tetragonal Orthorhombic Orthorhombic

Space group, Z R m, 3 Pmna, 4 I4/mcm, 4 Pccn, 4 Pnma, 4

a, Å 3.444(1) 8.396(2) 5.875(1) 11.978(3) 8.045(3)

b, Å 3.444(1) 3.630(1) 5.875(1) 13.484(4) 4.187(1)

c, Å 13.767(4) 8.172(2) 7.184(1) 7.084(2) 8.328(3)

V, Å3 141.42(7) 249.1(1) 246.44(7) 1144.1(5) 280.5(2)

ρcalcd, g/cm3 2.184 1.521 3.355 3.358 2.900

Crystal size, mm 0.7 × 0.4 × 0.3 0.9 × 0.9 × 0.15 0.5 × 0.4 × 0.05 0.6 × 0.18 × 0.16 0.4 × 0.32 × 0.1

µ(MoKα), cm–1; Tmin/Tmax 4.7; 0.782/0.846 2.0; 0.743/0.970 198.1; 0.077/0.997 212.8; 0.019/0.105 173.8; 0.031/0.280

Temperature, K 140 160 150 170 170

θmax, deg 34.6 29.9 32.3 26.4 26.7

Number of reflections
measured/Number of 
unique reflections

296/100 1397/393 1528/137 4643/1157 1637/340

Number of reflections with 
F2 > 2σ(F2)

86 354 105 608 248

Number of reflections in
the refinement/Number
of parameters refined in
the least-squares procedure

88/8 373/28 112/10 1147/68 333/24

R1/wR2 0.016/0.039 0.023/0.059 0.016/0.031 0.042/0.080 0.033/0.067

∆ρmax/∆ρmin, e/Å3 0.12/–0.21 0.27/–0.14 0.58/–0.56 0.99/–1.07 1.08/–1.14

3

Table 2.  Selected interatomic distances in the crystal structures of the MHF2, Rb5F4(HF2) · 2H2O, and RbF · H2O compounds

Structure 〈M–F(O)〉 F···H···F F···H N(O)–H···F

NaHF2 2.3001(6) 2.277(1) 1.1383(5)

NH4HF2 2.281(1) 1.1404(5) 2.8094(7)*

2.278(1) 1.1388(5) 2.7964(6)*

RbHF2 2.8949(7) 2.280(4) 0.7(1)

Rb5F4(HF2) · 2H2O 2.898 2.280(15) 1.15(2) 2.567(10)**

3.066*** 2.549(11)**

RbF · H2O 2.858 2.627(5)**

3.123***

    * Hydrogen bond N–H···F.
  ** Hydrogen bond O–H···F.
*** Averaged Rb–O distance.
ammonium sulfate. Prior to crystallization, hydrofluo-
ric acid was added to these solutions and then they were
evaporated at temperatures of 70–90°C. In the reaction
mixture used to prepare rubidium bifluoride crystals,
other salts precipitated in the form of platelike and nee-
dle-shaped crystals after hydrofluoric acid was partially
removed. According to the X-ray diffraction analysis,
the salts obtained correspond to the compositions
Rb5F4(HF2) · 2H2O and RbF · H2O.
C

The experimental intensities of X-ray diffraction
reflections were collected at low temperatures on a Stoe
STADI4 four-circle diffractometer for MHF2 crystals or
on a Stoe IPDS diffractometer equipped with an area
detector for crystals of rubidium salt hydrates with the
use of MoKα monochromatic radiation (λ = 0.71073 Å).
The unit cell parameters were additionally refined with
a large number of high-angle reflections scanned at
positive and negative θ angles. This made it possible to
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 5      2005
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eliminate the errors introduced by both the absorption
and the inaccuracy of the crystal alignment. The inten-
sities of reflections measured were corrected for
adsorption by using either the empirical method on the
basis of ψ scans of several reflections or the numerical
method with allowance made for the real crystal shape.
The absorption correction was particularly important
for the crystals of rubidium salts, which are character-
ized by very large linear absorption coefficients. In this
case, the crystal shape was additionally refined with the
X-SHAPE program package [9]. The crystallographic
parameters and details of the structure refinement are
summarized in Table 1.

The crystal structures were solved by direct meth-
ods with the SHELXS97 program package [10] and the
subsequent Fourier syntheses. All the non-hydrogen
atoms were refined in the anisotropic approximation,
whereas the hydrogen atoms were refined in the isotro-

F'

H

F

Na

c

ab 0

Fig. 1. Projection of the crystal structure of the NaHF2 com-
pound along the [110] direction. Thermal ellipsoids of non-
hydrogen atoms are drawn at the 50% probability level.
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 5      2005
pic approximation with the SHELXL97 program
package [11]. The complete list of crystallographic
data for the structures of the five compounds studied in
this work have been deposited with the Inorganic
Crystal Structure Database (FIZ, Karlsruhe, CSD
nos. 415006–415010). The selected interatomic dis-
tances in the crystal structures of the rubidium salt
hydrates are given in Table 2.

RESULTS AND DISCUSSION

The crystal structures of the NaHF2, NH4HF2, and
RbHF2 compounds, on the whole, were determined
with a high accuracy. This allowed us to obtain the reli-
able data on the structure of hydrogen bifluoride anions

 in these crystals. Crystalline bifluorides of alkali
metals and ammonium differ in their structural types
depending on the nature and size of the cations. Crys-
tals with small-sized cations, for example, Li+ [12] and

Na+ [7], have a trigonal structure (space group ),
whereas crystals with large-sized cations, for example,
K+ [2], Rb+ [8], and Cs+ [8], have a tetragonal structure
(space group I4/mcm). The ammonium bifluoride crys-
tals are characterized by a specific structural type [5]
due to the formation of hydrogen bonds between cat-
ions and anions.

HF2
–

R3m

F(1)

H(1)

F(1')

H(3)

H(4)

H(3')

H(4')N

0 a

c

F(2)F(2')

H(2)

Fig. 2. Projection of the crystal structure of the NH4HF2
compound along the x axis. Thermal ellipsoids of non-
hydrogen atoms are drawn at the 50% probability level.
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Our structural data for the NaHF2 compound made
it possible to refine the results obtained in the X-ray and
neutron diffraction experiments performed earlier by
McGaw and Ibers [8] for sodium bifluoride single crys-
tals. The F···H···F distance is equal to 2.277(1) Å, and
the hydrogen atom is located at the center of inversion.
This corresponds to a single-minimum symmetric
hydrogen bond. According to [8], the hydrogen bond is
also symmetric in shape but the F···H···F distance is
somewhat shorter (2.264–2.266 Å) in both the proto-
nated and deuterated compounds. It is interesting to
note that the F···F distance determined in the present
work coincides with the F···F distance found in the
structures of bifluorides of both potassium [2] and lith-
ium [12], even though Frevel and Rinn [12] used the
intensities obtained from the photometric measure-
ments of the X-ray powder diffraction pattern (R factors
are not reported in their paper).

In the structure of the NaHF2 compound, the sodium
atoms are located in a trigonally distorted octahedral
environment in which the Na–F bond lengths are equal
to 2.300 Å. These distances are somewhat shorter than
the Na–F bond lengths (2.318 Å) determined in [8].
Since the sodium atoms occupy positions with fixed
coordinates, this insignificant discrepancy is most
likely associated with the fact that the temperatures of
the diffraction measurements in our work and in [8] dif-

c

b0

Rb

F H
F'

a

Fig. 3. A general view of the crystal structure of the RbHF2
compound along the x axis. Thermal ellipsoids of non-
hydrogen atoms are drawn at the 50% probability level. Dis-
ordered hydrogen atoms are shown in only one of the two
positions.
CR
fer by 150 K. Figure 1 shows the packing in the crystal
structure of the sodium bifluoride in the projection

along the [110] direction. All the  anions with a
linear structure are aligned parallel to each other. The
sodium atoms are involved in the coordination of the
fluorine atoms of six different anions, whereas each flu-
orine atom is bonded not only to the hydrogen atom but
also to six sodium atoms.

In this work, the crystal structure of the ammonium
bifluoride was determined with a considerably higher
accuracy as compared to the results published earlier in
[5]. In our case, the standard deviations of the atomic
coordinates decreased by a factor of four or five. The
structure contains linear symmetric bifluoride anions of
two types, whose axes are perpendicular to each other
(Fig. 2). The F(1)···H(1)···F(1') anions are somewhat
inclined with respect to the x0z plane, whereas all the
F(2)···H(2)···F(2') anions are aligned parallel to the
a axis. The F···H···F distances are actually equal to each
other [2.281(1) and 2.278(1) Å]. Each fluorine atom is
involved in the hydrogen bond in the bifluoride anion
and, moreover, acts as an acceptor in two hydrogen

HF2
–

F(3')

H(3)Rb(3)

Rb(2)

0 c

F(3)

H(2)
H(1)

F(1)

O
Rb(1)

F(2)

b

Fig. 4. Projection of the crystal structure of the Rb5F4(HF2) ·
2H2O compound along the x axis.
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bonds of the N–H···F type with distances of 2.809 and
2.796 Å. The directionality of the four hydrogen bonds
with the participation of the nitrogen atom leads to a
substantial difference between the topologies of this
crystal structure and the structures of the bifluorides
containing singly charged metal cations with approxi-
mately identical sizes (K, Rb). However, this specific
feature virtually does not affect the length of the hydro-
gen bond in the bifluoride anion.

According to the X-ray powder diffraction data
obtained by Kruh et al. [7], the crystal structure of the
RbHF2 compound belongs to the structural type of
potassium bifluoride. Note that cesium bifluoride also
crystallizes in the same structural type. In these struc-
tures, the cation is located in a square–antiprismatic
environment of eight fluorine atoms, each involved in

one of the eight different  anions (Fig. 3). By virtue
of the structural similarity of the bifluorides under
investigation, it would be reasonable to assume that, in
the structure of the rubidium bifluoride, the bifluoride
anion should also have a single-minimum linear sym-
metric structure. However, the refinement of the struc-
ture with a hydrogen atom at the center of inversion
(i.e., at the midpoint of the F···F hydrogen bond) led to
a very large isotropic thermal parameter UH = 0.15 Å2.
Furthermore, the difference Fourier syntheses always
revealed a peak shifted from the center. The refinement
of the symmetrically disordered hydrogen atom gave a
reasonable value of the thermal parameter (UH =
0.04 Å2). In this case, the hydrogen atom appears to be
at a short distance (0.7 Å) from one of the fluorine
atoms, even though it lies on the F···F line. In both vari-
ants of the hydrogen atom position, the F···F distance
remains unchanged [2.280(4) Å] and is actually equal
to that in the structure of the KHF2 compound
[2.277(6) Å] [2] and other bifluorides. The revealed
disordering of the hydrogen atom in the structure of the
rubidium bifluoride cannot be considered the final
result, because the small final R factor was obtained
only after the very large correction for absorption in the
crystal was introduced in the calculation. The existence
of asymmetric bifluoride anions was reliably estab-
lished by the neutron diffraction method for a number
of salts, for example, p-toluidinium bifluoride [13].
Therefore, in order to reliably determine the proton
location in the structure of the RbHF2 bifluoride, it is
necessary to use neutron diffraction methods.

Crystals of the mixed rubidium fluoride–bifluoride
hydrate Rb5F4(HF2) · 2H2O and rubidium fluoride
monohydrate RbF · H2O were revealed together with
RbHF2 bifluoride crystals in the reaction mixture a few
months after the synthesis of the rubidium bifluoride. It
seems likely that these hydrates formed in the course of
gradual removal of the hydrogen fluoride from the sys-
tem. Both these compounds had not been known ear-
lier. Apart from rubidium cations, the crystal structure
of the Rb5F4(HF2) · 2H2O hydrate contains bifluoride

HF2
–
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anions and hydrated fluoride anions F···H–O–H···F
(Fig. 4). The bifluoride anions with a F···F distance of
2.280(15) Å are somewhat bent. However, the positions
of the hydrogen atoms in this structure are determined
highly unreliably. The hydrated trinuclear anions have
a bent structure (owing to the directionality of the
bonds in the water molecule) with relatively strong
hydrogen bonds O–H···F, whose length lies in the range
2.55–2.57 Å (Table 2).

The crystal structure of the rubidium fluoride mono-
hydrate has no analogs among the alkali metal fluoride
hydrates known to date, because only potassium fluo-
ride dihydrate and potassium fluoride tetrahydrate have
hitherto been characterized structurally. The O−H···F
hydrogen bonds [2.627(5) Å] in this structure are
longer than those in the rubidium fluoride–bifluoride
hydrate. This difference is explained by the fact that the
fluorine atom acts as an acceptor not in one but in two
hydrogen bonds, which, in turn, leads to the formation
of infinite zigzag chains aligned parallel to the b axis in
the structure (Fig. 5).

CONCLUSIONS

Thus, we refined three crystal structures of the pre-
viously studied bifluorides. The result obtained for the
structure of the RbHF2 bifluoride was rather unex-
pected because the hydrogen atom involved in the

c

b0

a

O H

F

Rb

Fig. 5. A general view of the crystal structure of the RbF ·
H2O compound along the z axis. Thermal ellipsoids of non-
hydrogen atoms are drawn at the 50% probability level.
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hydrogen bond turned out to be disordered. It was dem-
onstrated that, in all the studied crystal structures with
bifluoride anions, the hydrogen bond length lies in the
range 2.277–2.281 Å. In the crystal structures of the
rubidium fluoride hydrates, the O–H···F hydrogen
bonds lead to the formation of trinuclear bent anions or
zigzag anionic chains.
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Abstract—The magnetic susceptibility χ(T) at 4.2 K < T < 293 K; the dependence of the magnetic moment on
the magnetic field strength, M(H), at 4.2, 77, and 293 K; and the electrical resistivity ρ(T) at 4.2 K < T < 293 K

are studied for samples of perovskite-phase KTaO3 obtained by both solid-phase synthesis (KTa ) and dep-

osition on a cathode during electrolysis of melts (KTa ). Yellowish white KTa  powders are diamagnetic

and reveal dielectric properties. Dark polycrystalline KTa  samples with metallic luster are characterized by
the dependence ρ(T) typical of metals and additional paramagnetic contribution to the paramagnetic suscepti-

bility as compared with KTa . Changes in the properties of KTaO3 during electrocrystallization are attributed

to partial reduction of tantalum. They are revealed in the structural features of KTa  (excess of tantalum as

compared to the stoichiometric composition of KTa , deficiency of the oxygen sublattice, and clearly pro-
nounced anharmonicity of atomic vibrations). A change of the cation–anion–cation interactions, occurring
owing to the overlapping of oxygen p orbitals with tantalum t2g orbitals and the formation of impurity levels
near the conduction band, leads to the generation of free carriers, which make a paramagnetic contribution to
the magnetic susceptibility. © 2005 Pleiades Publishing, Inc.
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INTRODUCTION

It was reported previously that the properties of
complex tantalum and niobium oxides obtained by dep-
osition on a cathode during electrolysis of melts differ
significantly from those of their analogs produced by
conventional synthesis [1, 2]. These crystals are non-
transparent and have intense black color with metallic
luster and semiconductor or metallic conductivity.
Their physical properties and structural motif are simi-
lar to those of oxide bronzes formed by other transition
metals.

Interest in oxide bronzes is mainly due to their
metallic properties, which are uncommon for oxides
[3, 4]. The crystal structures of bronzes are formed by
B(O, F)6 octahedra, where B are atoms of the transition
metals W, V, Ti, Nb, and Ta. These octahedra are linked
by shared vertices into frameworks of different types,
within which atoms of alkali and alkaline earth metals
(A atoms) are located. The transition metals in bronzes
are in a reduced oxidation state, and their complete oxi-
dation with retention of the structural type leads to the
loss of the properties characteristic of bronzes. Thus,
the K0.5W5.5+O3 compound with perovskite structure is
a bronze in its properties but the isostructural
1063-7745/05/5005- $26.00 ©0779
K0.5 O3 compound does not belong to this
group.

The perovskite-like structure ABO3, to which
KTaO3 also belongs, is one of the most widely spread
types among oxide bronzes, which are being inten-
sively studied in view of the need for new ferroelectric
materials [5]. The perovskite structure can be regarded
as a framework formed by BO6 octahedra with shared
vertices. Cavities between cotahedra are occupied by A
atoms in the cubooctahedral environment of oxygen
atoms. It is assumed in some studies considering the
ferroelectrical properties of bronzes with perovskite
structure that B cations can occupy positions displaced
from the center of the oxygen octahedron [5, 6]. Thus,
there is a nonequivalence of B–O bonds, which results
in the occurrence of permanent pseudodipoles.

The KTaO3 compound is a dielectric retaining its
cubic structure up to liquid-helium temperatures. Dis-
tinguishing features of the KTaO3 crystal structure
obtained by electrocrystallization on a cathode are as
follows: K cations are partially replaced by Ta–
Ta dumbbells, the anharmonicity of vibrations of Ta
atoms is more clearly pronounced, and there is a defi-
ciency of the oxygen sublattice [7]. The structural for-

W0.5
6+

Ta0.5
5+
 2005 Pleiades Publishing, Inc.
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mula, reflecting these specific features, can be written
as KTa1 + zO3 , where z . 0.11.

In this work, we compared the magnetic properties
of polycrystalline samples of the perovskite phase of
KTaO3 obtained by electrolysis from melts with poly-
crystalline KTaO3 samples obtained by solid-phase
synthesis.

EXPERIMENTAL

Dark polycrystalline KTaO3 samples with metallic
luster were obtained by electrolysis using the ternary
eutectic LiF–NaF–KF as a solvent and K2TaF7 or
K2TaOF5 as tantalum-containing components. Electrol-
ysis was carried out at temperatures 900 K < T < 1200 K
with the cathode current density Jc in the range from 0.1
to 0.3 A/cm2. The electrolysis product on the cathode,
apart from the main component KTaO3 (hereafter,

KTa ), contained inclusions of α Ta and the tetrago-
nal phase of K0.4TaO2.4F0.6.

Transparent yellowish white polycrystalline sam-
ples of the stoichiometric compound KTaO3 (hereafter,

KTa ) were obtained by solid-phase synthesis with
repeated sintering in the temperature range 800 K < T <
1100 K.

The presence of ferromagnetic impurities (Fe, Co,
Ni) in the samples was checked by the atomic-emission
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s
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Fig. 1. Temperature dependence of the magnetic suscepti-

bility of the KTa  sample.O3
e

C

method with induction plasma. No impurities were
found accurate to 0.002 wt %.

X-ray diffraction analysis was performed on a
URD6 diffractometer (CuKα radiation, scan in the
range 15° < 2θ < 100°, an exposure time at each point
of 10 s). K0.4TaO2.4F0.6 and α-Ta were present in the

KTa  sample as the main impurities. The KTa
sample contained an impurity phase of K0.4TaO3. The
total content of impurity phases did not exceed 10% in
both cases. The KTaO3 phase was identified using the
SIMREF program [8]; the atomic parameters from [7]
were not refined. The Bragg reliability factor RB was

9.6 and 6.4% for KTa  and KTa , respectively, and
the corresponding lattice periods were 3.992 and
3.987 Å.

The magnetic properties were measured in the range
4.2 K < T < 293 K by the Faraday method on a magnetic
balance with a sensitivity of 0.03 dyn in magnetic fields
up to 6.25 kOe. During the measurements, the temper-
ature was measured with an accuracy of 1 K.

The electrical resistivity ρ of pressed samples 8 mm
long was measured in the temperature range 4.2 K <
T < 293 K by the four-probe method. The distance
between the voltage probes was ~5 mm. The current–
voltage characteristics of the samples were linear
within experimental error as the measured current den-
sity changed by two orders of magnitude (from 0.5 to
50 A/cm2).

RESULTS

The dependence χ(T) for KTa  samples at tem-
peratures decreasing from room to liquid-helium tem-
perature is characteristic of paramagnets (Fig. 1). The
dependence of the magnetic moment on the magnetic
field strength, M(H), significantly differs from linear at
liquid-helium temperature, as well as at liquid-nitrogen
and room temperatures (Fig. 2). The magnetic proper-

ties of the KTa  compound are typical of diamagnets

(Figs. 3, 4). The magnetic susceptibility χ of the KTa
sample is negative and almost constant in the tempera-
ture range 77 K < T < 273 K (Fig. 3). At these temper-
atures, the diamagnetic signal increases almost linearly
with an increase in the magnetic field H (Fig. 4b). The
magnetic susceptibility increases abruptly with a
decrease in temperature in the range 4.2 K < T < 77 K

for both KTa  and KTa  samples. (Figs. 1, 3). At
the same time, the character of the dependence M(H) at
liquid-helium temperature is significantly different for
these two samples (Figs. 2a, 4a).

The unusually sharp dependence χ(T) in the range

4.2 K < T < 20 K observed for KTa  (Fig. 3) is char-
acteristic of ferromagnetic impurities present in the

O3
e

O3
s

O3
e

O3
s

O3
e

O3
s

O3
s

O3
s

O3
e

O3
s

RYSTALLOGRAPHY REPORTS      Vol. 50      No. 5      2005



SPECIFIC FEATURES OF THE CRYSTAL STRUCTURE 781
material. In this context, the dependence M(H) for the
KTa  compound (Fig. 4a) was approximated by the
Brillouin equation on the assumption that the paramag-
netic contribution caused by the presence of iron impu-
rity is nonzero:

(1)
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s
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Fig. 2. Dependences of the magnetic moment on the mag-

netic field strength, M(H), for the KTa  sample at T =

(a) 4.2 and (b) 291 K.
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where N is Avogadro’s number, n is the parameter
determining the number of magnetic moments, J is the
cation magnetic moment, g is the Lande factor, β is the
Bohr magneton, and kB is the Boltzmann constant.

The calculations were performed for the Fe3+ and
Fe2+ ions. (Their electronic configurations are 6S3/2 and
5D4, respectively.) The obtained values of n are 0.00117
and 0.00109, respectively. Recalculation to the atomic
concentration yields ~0.02 at %, which greatly exceeds
the sensitivity of chemical analysis showing no iron
impurities.

Approximation of the dependence M(H), which was
obtained by measuring the magnetic moment of the

KTa  sample at 4.2 K (Fig. 2a), by the Langevin
equation,

(2)

where N, n, and β are the same parameters as in (1) and
m is the magnetic moment, gives n = 2 × 10–6 and m =
55. This result suggests a possibility of forming rather
large clusters with localized magnetic moments m ≅
50 µB.

The temperature dependence of the electrical resis-

tivity for the KTa  samples has a clearly pronounced
metallic character (Fig. 5). At the same time, it is note-
worthy that the resistivity is high: evaluation of its value
at liquid-helium temperature gives ρ . 0.28 Ω cm; i.e.,
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the electrical conductivity σ . 3.6 Ω−1 cm–1. The

KTa  samples revealed dielectric properties.

DISCUSSION

The main difference between the KTa  crystals
obtained by electrolysis of melts and conventional

KTa  crystals is in the existence of electrical conduc-
tivity and additional paramagnetic contribution to the

susceptibility of KTa  samples. Evidently, this differ-
ence is primarily related to the degree of oxidation of
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netic field strength, M(H), for the KTa  sample at T =

(a) 4.2 and (b) 291 K.
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tantalum and the defects in the structure of the perovs-

kite phase of KTa .

According to the data of [7], the central potassium

atom in many unit cells in the KTa  lattice is replaced
by Ta–Ta dumbbells with extremely short distances
dTa−Ta = 2.72 Å. The presence of Ta–Ta dumbbells with
short distances is a characteristic feature of crystal
structures of tantalum-containing oxides crystallized
by electrolysis of melts on the cathode [9, 10]. These

dumbbells are statistically distributed over the KTa

lattice. Moreover, the oxygen sublattice in KTa  is
deficient (the occupation number of the (1/2, 0, 0) posi-
tion p = 0.95) and the anharmonicity of vibrations of Ta
atoms located at the unit cell vertices is much more pro-

nounced than in KTa  [7, 11]. The question of distri-
bution of vacancies in the oxygen sublattice and Ta–Ta
dumbbells remains open. In the first approximation,
two situations are possible: either oxygen vacancies are
distributed randomly or their distribution is correlated
with Ta–Ta dumbbells. In the case of the correlated dis-
tribution, it can be suggested that there are some unit
cells whose positions are occupied by only Ta atoms
(Fig. 6). With due regard to the structure refinement
carried out in [7], the formula of such a compound can
be written as K1 − xTazO3(1 – x), where x = z/2 and z .
0.11. Evidently, these specific features of the crystal
structure may significantly noticeably affect the cation–
anion–cation interactions in the lattice; the band struc-
ture; and, correspondingly, the magnetic properties and

the electrical conductivity of KTa .
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The kinetic and magnetic properties of transition
metal oxides with perovskite structure are often consid-
ered assuming that the cation–anion–cation interac-
tions via oxygen ions are the decisive factor for these
compounds. In undistorted cubic perovskites, such as
KTaO3, where the angle of the B–O–B bond is 180°ë,
the overlapping of eg orbitals of B cations with oxygen
p orbitals and the oxygen p orbitals with t2g orbitals of
B cations with the formation of σ and π bonds, respec-
tively, is energetically favorable. Oxygen p orbitals
forming π bonds with t2g orbitals of B cations are pσ
orbitals with respect to A cations. Thus, A–O σ bonds
compete with B–O π bonds.

In KTa , the B cation is tantalum, whose outer
electronic configuration does not contain eg electrons,
and the A component is an alkali metal. Therefore, the
main cation–anion–cation interactions are realized in
the B–O–B chain via π bonds. According to [12], the
cation–anion–cation interactions between cations via

 electronsare considered to be weak and the
behavior of such electrons is described in the close-
coupling approximation. The Fermi level in the band
structure of KTaO3 is located between the occupied
bonding π band and the antibonding π* band; as a con-
sequence, electronic conductivity and the Pauli contri-
bution to the magnetic susceptibility are absent in this
compound.

As one would expect, the conventional KTa  sam-
ples are diamagnetic insulators. A specific feature of
their magnetic behavior is the abrupt increase in the
magnetic susceptibility with a decrease in temperature
in the liquid-helium temperature range, a phenomenon
which indicates the presence of paramagnetic centers.
According to the above evaluations, this contribution to
the magnetic susceptibility cannot be attributed to iron
impurities. It is most likely that this contribution is
related to paramagnetic centers formed at the lattice
defects. Vacancies in the oxygen or potassium sublat-
tices, as well as extended defects, such as dislocations
and stacking faults, may serve as such centers in poly-

crystalline KTa . Similar dependences χ(T), con-
trolled by the paramagnetic contribution of lattice
defects, obtained previously by measuring magnetic
susceptibility of ZnO crystals, were discussed in [13].

As noted above, the KTa  crystals have both an
oxygen deficit relative to the ABO3 stoichiometry (defi-
ciency of the 1/2,0,0 positions) and an excess of tanta-
lum, whose atoms form dumbbells replacing potassium
and are randomly distributed over the structure. It is
well known that Ta3+ cations located near oxygen
vacancies in the perovskite structure can form impurity
levels near the conduction band [14]. Small distances
between Ta atoms belonging to dumbbells and Ta
atoms located in the (000) positions, whose length is
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close to the shortest Ta–Ta distances in bcc tantalum,
dTa–Ta = 2.86 Å, indicate a possibility of strong interac-
tions of dumbbells with the main lattice, which weaken
the main cation–anion–cation B–O–B interactions. This

means that for KTa , along with the formation of
impurity levels, one would expect diffusion of the π
band and a change in its occupancy. This should result
in the generation of free carriers and, hence, occurrence
of electrical conductivity and the Pauli contribution to
the magnetic susceptibility.

The measurements of the magnetic properties of the

KTa  samples indicate the existence of rather exten-
sive regions of cluster type, which are characterized by
a large magnetic moment (~50 µB) and, apparently, an
excess electron concentration. The occurrence of these
regions may be related to the existence of regions
depleted and enriched with oxygen, a condition which
seems to be highly probable in the case of the formation
of cells centered by Ta–Ta dumbbells and free of oxy-
gen (Fig. 6). This phenomenon is related to the reduc-

tion processes at the cathode during the KTa  crystal-
lization, which result in different degrees of oxidation
of tantalum. It is likely that tantalum atoms are com-
pletely reduced in randomly isolated clusters (Fig. 6).
This assumption is confirmed by the fact that each such
cluster is similar to the unit cell of bcc α-tantalum. The
difference is in the splitting of the central position in the
bcc unit cell, which is caused by the retention of inter-
atomic Ta–Ta distances (2.86 Å) from both positions of
the center to the cell vertices when the cell edge
increases (3.30 Å in α Ta and 3.98 Å in a cluster). The
behavior of the electrical conductivity becomes clear
within this concept.

Apparently, the presence of vacancies in the oxygen

sublattice of KTa  violates the symmetry of the crys-
tal field in the TaO6 octahedra, thus leading to the non-
equivalence of Ta–O bonds within the octahedron. This
is confirmed by large values of the components of the
thermal vibration tensor, which determine the anhar-
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e

(a) (b)

Fig. 6. (a) Unit cell of KTaO3. (b) Model of a tantalum clus-
ter formed at the replacement of K atoms with Ta–Ta dumb-
bells and oxygen elimination.
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monicity of thermal vibrations. (The values of
F112233 × 106 and F111122 × 106 for tantalum and
oxygen are –0.0002, –0.0003 and 0.0005, 0.0003,
respectively.) Since the anharmonicity of thermal
vibrations in perovskites is often considered in the con-
text of their ferroelectrical properties [15], it seems rea-

sonable to study them in the KTa  samples.

In conclusion, it should be noted that there are diffi-
culties in evaluation of the contributions to the mag-
netic susceptibility of the materials studied, which are
related not only to the ambiguity of their separation
(evaluation of the diamagnetic contribution χdia and the
Van Vleck contribution χvV). The measurements were
carried out on polycrystalline samples. Therefore, the
state of the substructure of a material, second phase
inclusions, and other factors may affect the results.
Nevertheless, the results obtained here allow us to
attribute the occurrence of electrical conductivity in

KTa  and the larger values of its magnetic suscepti-

bility as compared to KTa , synthesized by conven-
tional methods, to the generation of free carriers due to
the partial reduction of tantalum at the cathode.
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Abstract—The compound Ca[(Nta)Cr(µ-OH)2Cr(Nta)] · 6H2O is synthesized, and its X-ray structure analysis
is performed [R1 = 0.0285, wR2 = 0.0766 for 4330 reflections with I > 2σ(I)]. The crystals are built of cen-
trosymmetric dimeric anionic complexes {[Cr(Nta)(µ-OH)]2}2–, cationic [Ca(H2O)3]2+ fragments, and crystal-
lization water molecules, which are linked into a three-dimensional framework. Two independent anionic com-
plexes have similar structures but differ in the mode of binding with Ca atoms, water molecules, and adjacent
anions. Distorted octahedral environments of the Cr atoms are formed by four atoms (N + 3O) of the Nta3– tet-
radentate chelate ligand and two oxygen atoms of the bridging OH– ligands. The Cr–O–Cr bridges have sym-
metric structures [Cr–O, 1.944–1.961(2) Å]. The Ca environment includes seven oxygen atoms of three water
molecules and four anionic complexes [Ca–O, 2.397–2.430(3) Å]. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

As a part of our systematic structural investigations
of transition metal complexes with aminopolycarboxy-
licic acids, a compound of Cr(III) with nitrilotriacetic
acid (H3Nta), Ca[Cr2(OH)2(Nta)2] · 6H2O (I), was syn-
thesized and its crystal structure was determined by
X-ray diffraction.

The first Cr(III) complexes with H3Nta and related
ligands were obtained almost forty years ago on the rise
of interest in complexonates [1–4]. In the first study [1],
it was found that the ammonium salt of the chromium
complex with Nta (presumably, having the
[Cr(Nta)(OH)(H2O)2]– composition) is isolated in the
form of dark violet and green crystals, whose aqueous
solutions are characterized by identical absorption
spectra. As far as we know, this fact has not been
explained to date. In a subsequent 2H NMR study of a
similar deuterated solution, the composition and struc-
ture of the complex were corrected [5]. It was estab-
lished that bridging OH groups link CrNta complexes
into [(Nta)Cr(µ-OH)2Cr(Nta)]2– dimers. The dimeric
structure of the anionic complex in the crystal state was
confirmed recently by the examples of the tetragonal (II)
and monoclinic (III) modifications of the cesium salt
Cs2[Cr2(OH)2(Nta)2] · 4H2O [6] and the potassium salt
K2[Cr2(OH)2(Nta)2] · 6H2O (IV) [7]. Crystals II–IV
refer to the dark violet form. This study shows that
1063-7745/05/5005- $26.00 ©0785
black crystals I obtained by us are also related to the
dark violet form.

EXPERIMENTAL

Synthesis

An aqueous solution containing equivalent amounts
of CrCl3 · 6H2O and H3Nta was neutralized with an
excess of calcium carbonate upon prolonged heating on
a boiling water bath. The hot solution was filtered off
and allowed to stand in a Dewar vessel for crystalliza-
tion. Black prismatic crystals I precipitated during slow
cooling.

X-ray Diffraction Study

Crystals I (C12H26CaCr2N2O20) are triclinic; a =
9.699(3) Å, b = 10.562(3) Å, c = 13.064(4) Å, α =
88.66(3)°, β = 75.17(3)°, γ = 64.26(2)°, V =
1159.4(6) Å3 , Z = 2, M = 662.43, ρcalcd = 1.898 g/cm3,

µ = 1.258 mm–1, F(000) = 680, and space group .

The experimental data were obtained at room tem-
perature on an Enraf–Nonius CAD4 diffractometer
from a single crystal 0.24 × 0.30 × 0.36 mm in size
(λMoKα, graphite monochromator, θmax = 28°, ω scan
mode). A total of 5833 reflections were collected, of
which 5532 were unique reflections (Rint = 0.0123) used

P1
 2005 Pleiades Publishing, Inc.
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Table 1.  Selected bond lengths d (Å) and angles ω (deg) in structure I

Bond d Bond d

Cr(1)–O(13) 1.9462(16) Ca(1)–O(2w) 2.419(2)

Cr(1)–O(13)i 1.9612(18) Ca(1)–O(2) 2.4203(19)

Cr(1)–O(3) 1.9845(17) Ca(1)–O(10)iv 2.4299(19)

Cr(1)–O(5) 1.9853(18) O(1)–C(2) 1.279(3)

Cr(1)–O(1) 1.9875(16) O(2)–C(2) 1.235(3)

Cr(1)–N(1) 2.0623(18) O(3)–C(4) 1.278(3)

Cr(2)–O(14) 1.9443(18) O(4)–C(4) 1.229(3)

Cr(2)–O(14)ii 1.9509(19) O(5)–C(6) 1.274(3)

Cr(2)–O(7) 1.9622(16) O(6)–C(6) 1.239(3)

Cr(2)–O(11) 1.992(2) O(7)–C(8) 1.283(3)

Cr(2)–O(9) 2.0165(19) O(8)–C(8) 1.230(3)

Cr(2)–N(2) 2.0667(19) O(9)–C(10) 1.279(3)

Ca(1)–O(4)iii 2.397(2) O(10)–C(10) 1.241(3)

Ca(1)–O(1w) 2.407(2) O(11)–C(12) 1.295(3)

Ca(1)–O(3w) 2.408(3) O(12)–C(12) 1.226(3)

Ca(1)–O(8) 2.4126(18)

Angle ω Angle ω

O(13)–Cr(1)–O(13)i 82.61(7) O(14)–Cr(2)–O(14)ii 78.73(8)

O(13)–Cr(1)–O(3) 98.03(7) O(14)–Cr(2)–O(7) 95.97(7)

O(13)i–Cr(1)–O(3) 88.91(8) O(14)ii–Cr(2)–O(7) 174.55(7)

O(13)–Cr(1)–O(5) 95.91(7) O(14)–Cr(2)–O(11) 97.01(8)

O(13)i–Cr(1)–O(5) 178.15(7) O(14)ii–Cr(2)–O(11) 91.52(9)

O(3)–Cr(1)–O(5) 90.18(8) O(7)–Cr(2)–O(11) 90.38(8)

O(13)–Cr(1)–O(1) 98.30(7) O(14)–Cr(2)–O(9) 101.63(8)

O(13)i–Cr(1)–O(1) 91.72(8) O(14)ii–Cr(2)–O(9) 91.54(8)

O(3)–Cr(1)–O(1) 163.61(7) O(7)–Cr(2)–O(9) 88.27(8)

O(5)–Cr(1)–O(1) 89.60(8) O(11)–Cr(2)–O(9) 161.35(7)

O(13)–Cr(1)–N(1) 179.75(7) O(14)–Cr(2)–N(2) 177.55(8)

O(13)*–Cr(1)–N(1) 97.16(7) O(14)ii–Cr(2)–N(2) 100.59(7)

O(3)–Cr(1)–N(1) 82.07(7) O(7)–Cr(2)–N(2) 84.76(7)

O(5)–Cr(1)–N(1) 84.32(7) O(11)–Cr(2)–N(2) 80.64(8)

O(1)–Cr(1)–N(1) 81.59(7) O(9)–Cr(2)–N(2) 80.71(7)

Symmetry transformations: (i) –x, –y + 1, –z + 2; (ii) –x – 2, –y + 2, –z + 1; (iii) x – 1, y + 1, z; (iv) x + 1, y, z.
in the calculations. The data were corrected for absorp-
tion by the azimuthal-scan method [8].

The structure was solved by the direct method
(SHELXS97 [9]). The hydrogen atoms were located
from difference Fourier maps. The structure was
refined by the least-squares procedure on F2 in the
approximation of anisotropic thermal vibrations of the
non-hydrogen atoms and isotropic vibrations of the
hydrogen atoms (SHELXL97 [9]). The H atoms of the
w(5) and w(6) water molecules were refined within a
riding model with Uiso = 1.2Ueq for the O(5w) and
C

O(6w) atoms. The refinement converged to the follow-
ing estimates: R1 = 0.0285 and wR2 = 0.0766 for 4330
reflections with I > 2σ(I); R1 = 0.0477 and wR2 = 0.0842
for all the unique reflections; GOOF = 1.054;
∆ρmin/∆ρmax = –0.612/0.754 e/Å3.

The selected bond lengths and angles are listed in
Table 1. A fragment of structure I is shown in the figure.

The crystal data for compound I have been depos-
ited with the Cambridge Structural Database (CCDC
no. 260719).
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 5      2005
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RESULTS AND DISCUSSION

Crystal I is built of {[Cr(Nta)(µ-OH)]2}2– cen-
trosymmetric dimeric anionic complexes, [Ca(H2O)3]2+

cationic fragments, and crystallization water mole-
cules. The unit cell contains two independent anionic
complexes, which have similar structures and close
geometric parameters but differ in the mode of binding
with Ca atoms. The coordination polyhedra of the Cr(1)
and Cr(2) atoms in complexes A and B, respectively, are
distorted octahedra with four atoms (N + 3O) of the
Nta3– tetradentate chelate ligand and two oxygen atoms
of the bridging hydroxo ligands at the vertices. The
Cr−N bond lengths in complexes A and B are almost
identical [1.962(2), 1.967(2) Å]. The lengths of three
Cr–O(Nta) bonds are identical in complex A [1.985–
1.988(2) Å] but differ significantly in complex B
[1.962–2.017(2) Å]. In both complexes, the lengths of
the bridging Cr–O bonds have close values [1.944–
1.961(2) Å] and the Cr–O–Cr bridges have symmetric
structures. The central planar four-membered Cr2O2
rings in the two complexes somewhat differ in shape.
Compared to complex A, the ring in complex B is elon-
gated along the Cr···Cr axis [3.012, 2.935(1) Å] and
contracted along the O···O axis [2.471(3), 2.579(2) Å],
which is reflected also in the endocyclic CrOCr and
OCrO angles [97.39(7)° and 82.61(7)° in A; 101.27(8)°
and 78.73(8)° in B]. One of the glycine cycles closed by
the Nta3– ligand is substantially flattened and approxi-
mately coplanar to the central fragment. The mean
atomic deviations (∆av) from the planes of the
Cr(1)N(1)C(5)C(6)O(5) and Cr(2)N(2)C(7)C(8)O(7)
rings are 0.003 and 0.029 Å and the dihedral angles
formed with the corresponding Cr2O2 planes are 1.1°
and 3.8°, respectively. Two other glycine cycles are cor-
APHY REPORTS      Vol. 50      No. 5      2005
rugated to an identical degree (∆av = 0.148–0.157 Å),
and their mean planes are approximately perpendicular
to the planes of the central fragments.

In the previously studied compounds II–IV with
alkali metal cations, the structure of the {[Cr(Nta)(µ-
OH)]2}2– anionic complex is the same as in I. The
anionic complex can exist in two isomer forms with the
cis or trans position of the N atoms relative to the
Cr···Cr axis. In compounds I–IV, the trans isomers are
formed. In an analogous cobalt(III) compound,
Cs2[Co(Nta)(µ-OH)]2 · 4H2O [10], the anionic complex
has a similar structure. The closeness of the geometric
parameters of the {[Cr(Nta)(µ-OH]2}2– anionic com-
plex in different compounds is quite natural, and the
observed differences apparently result from the interac-
tion of the anion with the outer sphere, that is, cations,
water molecules, and ligands of the neighboring com-
plexes. Each of compounds I–IV is characterized by its
own model of these interactions. In compound I, the
environment of Ca2+ cations includes two carbonyl O
atoms of each Nta3– ligand. In complex A, these are the
O(2) and O(4) atoms of the two glycine groups located
perpendicular to the central fragment. In complex B,
these are the O(10) and O(8) atoms of the glycine
groups, of which one is perpendicular and the other is
coplanar to the central fragment.

Six independent water molecules and two hydroxide
ions in the unit cell of crystal I form an extended hydro-
gen bond system (Table 2). The hydroxo groups form
strong linear O(13)–H(13)···O(4w) and O(14)–
H(14)···O(6) hydrogen bonds. Complexes A and B are
involved in the hydrogen bonds as proton acceptors to
a different degree. Of six oxygen atoms of the Nta3–

ligand, three and five atoms participate in hydrogen
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Table 2.  Characteristics of the hydrogen bonds in structure I

X–H···Y bond Symmetry transforma-
tion for atom Y

Distance, Å
XHY angle, deg

H···Y X···Y

O(13)–H(13)···O(4w) x, y, z 1.93(3) 2.635(3) 178(4)

O(14)–H(14)···O(6) x – 1, y + 1, z 2.14(4) 2.767(3) 179(5)

O(1w)–H(1w1)···O(10) –x – 2, –y + 2, –z + 2 2.42(5) 3.144(3) 165(5)

O(1w)–H(2w1)···O(3) –x, –y + 1, –z + 2 2.18(5) 2.959(3) 170(4)

O(2w)–H(1w2)···O(5w) x – 1, y + 1, z 2.04(4) 2.831(4) 160(4)

O(2w)–H(2w2)···O(7) x, y, z 2.51(4) 2.930(3) 118(4)

O(2w)–H(2w2)···O(6w) –x, –y + 1, –z + 1 2.55(4) 3.154(6) 142(4)

O(3w)–H(1w3)···O(12) –x – 1, –y + 1, –z + 1 1.95(4) 2.761(3) 174(4)

O(3w)–H(2w3)···O(6w) –x, –y + 1, –z + 1 1.97(3) 2.697(5) 175(3)

O(4w)–H(1w4)···O(5w) x, y, z 1.91(3) 2.738(4) 172(3)

O(4w)–H(2w4)···O(2) x + 1, y, z 2.21(5) 2.832(3) 145(5)

O(5w)–H(1w5)*···O(9) x + 2, y – 1, z 1.94 2.999(4) 148

O(5w)–H(1w5)*···O(10) x + 2, y – 1, z 2.05 3.011(4) 136

O(5w)–H(2w5)*···O(11) –x, –y + 1, –z + 1 1.80 2.806(3) 174

O(6w)–H(1w6)*···O(6) x, y, z 1.78 2.840(5) 166

Note: The asterisked H atoms were refined within the riding model.
bonding in complexes A and B, respectively. The carbo-
nyl O(6) and O(12) atoms, which are not bound to the
Ca2+ cation, serve as acceptors of two and one hydrogen
bonds, respectively.

The Ca2+ environment is formed by seven oxygen
atoms belonging to three water molecules [O(1w),
O(2w), O(3w)] and four Nta3– ligands [O(2), O(4),
O(8), O(10)], two atoms of complexes A and B each.
The {[Cr(Nta)(µ-OH)]2}2– anionic complexes and
hydrated Ca2+ cations form a three-dimensional frame-
work. Hydrogen bonds involving water molecules addi-
tionally stabilize the framework.
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Abstract—Deuterated and protonated tetragonal lysozyme crystals are grown using the hanging-drop vapor-
diffusion method. The size of the lysozyme crystals grown is determined as a function of the concentration of
sodium chloride used as a precipitant. It is found that crystallization leads to the formation of lysozyme crystals
with three different habits. Morphological and X-ray diffraction analyses of the deuterated and protonated
lysozyme crystals demonstrate that, despite the different habits, all the crystals grown belong to the tetragonal
crystal system. The simple forms of lysozyme crystals are revealed. It is shown that the habits of the lysozyme
crystals are determined by the specific combinations of simple forms. The mechanisms responsible for the for-
mation of lysozyme crystals with different habits are discussed. © 2005 Pleiades Publishing, Inc.
† INTRODUCTION
Since the mid-1950s, the structure of protein mole-

cules has been investigated using X-ray diffraction
methods [1], as just this structure that may offer a clue
to the understanding of the protein functions. The pos-
sibility of preparing proteins in the crystalline form has
been widely used for performing X-ray diffraction
analysis. Hen egg-white lysozyme is one of the proteins
whose crystals can be grown in the simplest way. That
is the reason why lysozyme crystals have served as con-
venient model objects for studying both the crystalliza-
tion of macromolecules and the physical properties of
proteins.

The influence of different factors on the growth of
lysozyme crystals has been thoroughly investigated
over the last thirty years (see [2] and references
therein). It has been demonstrated that the temperature,
the pH, and the ionic strength of the solution used for
growing crystals, as well as the concentrations of the
protein and the precipitant in the crystallization solu-
tion, are the controlling factors in crystallization of
lysozyme [3]. A change in the acidity of the crystalliza-
tion solution leads to a variation in the charge of the
protein molecule due to the protonation or deprotona-
tion of amino acid residues in a polypeptide chain of the
lysozyme molecule. This brings about a change in the
intermolecular interaction forces and, consequently,
affects the product of protein crystallization [4]. More-
over, magnetic and electric fields can also exert an
effect on the protein crystallization; in particular, strong
magnetic fields with a strength of approximately 10 T

† Deceased.
1063-7745/05/5005- $26.00 ©0789
are favorable for the growth of high-quality large-sized
lysozyme crystals [5–7]. There exist other factors (such
as the earth gravity, ultrasonic wave fields, etc.) that
also affect the growth of protein crystals and, therefore,
must be taken into account in the preparation of special-
purity large-sized protein crystals.

A large number of works concerned with the study
of lysozyme crystallization have dealt with analyzing
the conditions of crystal growth from solutions pre-
pared with ordinary water. However, the question as to
how the isotopic exchange of hydrogen with deuterium
affects the growth and physical properties of lysozyme
crystals remains an open question. The purpose of this
work was to prepare deuterated crystals of hen egg-
white lysozyme and to analyze the crystallization con-
ditions.

SAMPLE PREPARATION AND EXPERIMENTAL 
TECHNIQUE

Deuterated crystals of lysozyme (Fluka, United
States) were grown using the hanging-drop vapor-dif-
fusion method at a temperature of 18°C. The crystalli-
zation solution (pH 4.6) was prepared with heavy water
(D2O) and contained the protein (20 mg/ml), sodium
acetate (0.1 M; Ékros, Russia), and sodium azide
(0.01 M; Fluka, United States). Sodium chloride
(Ékros, Russia) was used as a precipitant. The sodium
chloride concentration in the crystallization solution
was varied from 2 to 4%. The counter solution (pH 4.6),
which was also prepared with heavy water, contained
sodium acetate (0.1 M) and sodium azide (0.01 M). The
 2005 Pleiades Publishing, Inc.
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sodium chloride concentration in the counter solution
was twice as high as that in the crystallization solution.

A similar procedure was used to grow lysozyme
crystals from solutions prepared with ordinary water.
The growth temperature was equal to 10°C. The crys-
tallization solution (pH 4.6) contained the protein
(20 mg/ml), sodium acetate (0.1 M), and sodium azide
(0.01 M). The sodium chloride concentration in the
crystallization solution was varied from 0.5 to 3.5%.
The counter solution (pH 4.6) contained sodium acetate
(0.1 M), sodium azide (0.01 M), and sodium chloride
whose concentration was twice as high as that in the
crystallization solution. The aforementioned crystalli-
zation conditions were chosen from analyzing the data
available in the literature. It was assumed that these
conditions are optimum for growing lysozyme crystals.

The deuterated and protonated lysozyme crystals
were subjected to morphological analysis. The angles
between the crystal faces and the crystal sizes were

Fig. 1. Dependences of the size of (a) deuterated and
(b) protonated tetragonal lysozyme crystals (grown by the
hanging-drop vapor-diffusion method) on the sodium chlo-
ride concentration. The crystals were grown in a 0.1 M
CH3CO2Na solution containing the protein (20 mg/ml) at
pH 4.6. Designation: S (mm2) is the surface area visible
under a microscope for the largest crystal.

4
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determined using an MP-3 polarizing microscope. In
what follows, the crystals grown from the solutions pre-
pared with ordinary water and those grown from the
solutions prepared with heavy water (D2O) will be
referred to as the protonated and deuterated crystals,
respectively.

The crystal structure was determined by X-ray dif-
fraction analysis on a MAR 345 diffractometer (Shub-
nikov Institute of Crystallography, Russian Academy of
Sciences, Moscow, Russia) at a wavelength λ =
1.5417 Å. It was established that the protonated and
deuterated lysozyme crystals belong to space group
P43212. The unit cell parameters are as follows: a = b =
79.535 Å and c = 38.118 Å for the protonated crystals
and a = b = 79.551 Å and c = 38.017 Å for the deuter-
ated crystals. The degree of deuteration of the lysozyme
crystals grown from the solutions prepared with heavy
water was not determined.

EXPERIMENTAL RESULTS 
AND DISCUSSION

Dependences of the Size and Amount of Deuterated 
Lysozyme Crystals on the Precipitant Concentration

The preparation of deuterated analogs of the
lysozyme crystals and the investigation into their prop-
erties involve an analysis of the influence of different
factors on the growth of lysozyme crystals from solu-
tions prepared with heavy water (D2O). We assumed
that the isotopic exchange of hydrogen with deuterium
should not lead to substantial changes in the growth
conditions, except for a decrease in the solubility of
lysozyme [8]. Therefore, the optimum conditions for
growing deuterated lysozyme crystals can be chosen
from analyzing the data available in the literature on the
growth of protonated lysozyme crystals.

During growth of deuterated lysozyme crystals, we
varied only one parameter, namely, the concentration of
the precipitant (sodium chloride) in the crystallization
solution. The other growth conditions described in the
preceding section were not varied under the assumption
that they are optimum for growing tetragonal lysozyme
crystals. As a result, we obtained the dependences of
the size of deuterated crystals on the precipitant con-
centration (Fig. 1a). A similar procedure was used to
determine the dependence of the size of protonated
crystals on the precipitant concentration (Fig. 1b). As is
clearly seen from Fig. 1, the dependences of the sizes of
deuterated and protonated lysozyme crystals on the
concentration of sodium chloride in the crystallization
solution are similar to each other and exhibit a maxi-
mum. At a low precipitant concentration, the crystalli-
zation leads to the formation of small-sized lysozyme
crystals due to the low supersaturation of the solution.
An increase in the salt concentration brings about the
formation of relatively large-sized lysozyme crystals of
good quality. The sizes of these crystals reach a maxi-
mum at a sodium chloride concentration of 6% (Fig. 1).
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 5      2005
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This made it possible to obtain deuterated tetragonal
lysozyme crystals whose sizes (i.e., distances between
the opposite {110} faces) could be as large as 0.62 ±
0.01 mm. It should be noted that an excess content of
the precipitant exerts an adverse effect on the crystalli-
zation due to the formation of a great number of small-
sized crystals and the appearance of crystalline aggre-
gates and twins.

The results of the experiments performed in this
work demonstrate that the conditions used for growing
lysozyme crystals from the solutions prepared with
heavy and ordinary water differ from each other only
slightly. However, the sizes of the deuterated lysozyme
crystals, on the average, are smaller than those of the
lysozyme crystals grown from the solutions prepared
with ordinary water. Most probably, this can be associ-
ated with the changes in both the strength of intermo-
lecular hydrogen bonds and the permittivity of the solu-
tion in the case when the crystals are grown from the
solutions prepared with heavy water.

The influence of quite different factors on the nucle-
ation of protein crystals in the crystallization solution
and on their subsequent growth considerably compli-
cates the precise reproducibility of the results obtained.
Changes in the temperature, the protein and salt con-
centrations, and the pH of the solutions from experi-
ment to experiment lead to variations in the growth con-
ditions. Consequently, the experimental dependence of
the surface area of the lysozyme crystals on the precip-
itant concentration S(CNaCl) (Fig. 1) can vary signifi-
cantly; however, the general trend of this dependence
remains unaltered.

Morphology of Tetragonal Lysozyme Crystals

In the course of optimizing the growth conditions of
lysozyme crystals, it was found that crystals with dif-
ferent habits can be grown under the same initial condi-
tions. Moreover, it is possible to distinguish three repet-
itive habits of lysozyme crystals, which radically differ
from each other. These habits are represented by “bulk”
crystals (Fig. 2a); “platelike” crystals (Fig. 2b), which
are well known from previous investigations; and
“pyramidal” crystals (Fig. 2c). Since crystals with these
three habits have rather often formed in our experi-
ments, it can be assumed that we are dealing here with
regularities of the lysozyme crystal growth. Reasoning
from the data available in the literature, we can argue
that the given conditions (see the section Sample Prep-
aration and Experimental Technique) provide the
growth of tetragonal lysozyme crystals. However, the
natural question arises as to whether crystals with dif-
ferent habits have the same symmetry, or, to put it dif-
ferently, whether lysozyme crystals with all the three
habits belong to the tetragonal crystal system.

The study of any crystal primarily involves X-ray
diffraction and (or) morphological analyses. In the
early stage of crystallography, morphological analysis
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 5      2005
was an efficient tool for determining the crystal symme-
try. However, this approach lost its initial significance
due to the development of X-ray diffraction analysis.
The determination of the symmetry from the habit of a
protein crystal is extremely important because this
method permits one to avoid destruction of the sample
in the course of X-ray diffraction measurements. In our
case, we used the potentialities of the classical crystal-
lography for analyzing the crystal structure and then
refined the results with the use of X-ray diffraction
analysis.

The experiments performed in this work revealed
that the crystallization leads to the formation of deuter-
ated (and protonated) lysozyme crystals characterized
by three different habits. The micrographs of the crys-
tals and the schematic drawings of the structures,
including all the crystal faces and all the angles
between the edges, are given for each habit in Figs. 2
and 3. Since the crystal habit corresponds to a particular
crystal structure, the morphological analysis enables us
to judge the symmetry of the lysozyme crystals. It is
clearly seen from Fig. 3 that the lysozyme crystals
belong to the tetragonal crystal system, because the
projection of each of the three crystal structures onto
the ab plane is a tetragon and the angles between the
corresponding crystal edges for all the three habits are
equal to each other.

(a)

(b)

(c)

Fig. 2. Micrographs of (a) bulk, (b) platelike, and (c) pyra-
midal deuterated lysozyme crystals (Carl Zeiss NU 2F
microscope).
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Fig. 3. Habits of (a) bulk, (b) platelike, and (c) pyramidal deuterated lysozyme crystals. The insets show (a–c) the projections of the
crystal structure onto the bc (at the left) and ab planes and (c) the bottom view of the projection of the crystal structure onto the ab
plane (at the right).
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The analysis of the habit of the deuterated lysozyme
crystals demonstrated that the faces of these crystals
belong to three simple forms, namely, a tetragonal
prism, a tetragonal bipyramid, and a tetragonal pyra-
mid. Examination of the crystal habits revealed that, for
deuterated lysozyme crystals, the first habit, i.e., bulk
crystals (Figs. 2a, 3a), can be represented as a convex
polyhedron formed by a combination of two simple
forms, such as a tetragonal prism and a tetragonal
bipyramid. The intersection of these simple forms
determines the general view of the polyhedron corre-
sponding to this habit (Fig. 4a). The second habit, i.e.,
platelike crystals (Figs. 2b, 3b), can be described as a
polyhedron formed by a combination of the same sim-
ple forms as the first habit, but, in this case, the tetrag-
onal bipyramid is truncated along the diagonal
(Fig. 4b). The third habit, i.e., pyramidal crystals
(Figs. 2c, 3c), is a polyhedron formed by a combination
of the tetragonal prism and the tetragonal pyramid
(Fig. 4c). It is worth noting that all three habits can
transform into each other through the truncation of par-
ticular faces with a change in the linear dimensions of
the simple forms in the combination.

The formation of lysozyme crystals with three dif-
ferent habits is associated with the manifestation of par-
ticular faces on the crystal surface. In turn, the appear-
ance of a specific face on the crystal surface depends on
its growth rate: the crystal surface has faces with the
lowest growth rates [9]. Therefore, the lysozyme crys-
tals grown under different conditions can have different
habits. The opposite statement also holds true: different
crystal habits suggest different conditions of the crystal
growth.

The possible mechanisms of the growth of different
tetragonal lysozyme crystal faces were considered in
detail in [10, 11]. There are no grounds to believe that
the mechanisms responsible for the growth of the
lysozyme crystals, which are formed from solutions
prepared with heavy water, and those for the growth of
conventional lysozyme crystals studied in [10, 11] can
substantially differ from each other. The maximum
growth rates of the {110} and {101} faces correspond
to different protein concentrations in the crystallization
solution [10, 11]. This is associated with the different
growth mechanisms of these faces. The (110) face is
formed through the sequential attachment of octamers
consisting of eight lysozyme molecules, whereas the
(101) face grows via the attachment of tetramers. At
higher protein concentrations, there arise conditions
favorable for the growth of the (110) face. However,
during crystallization, the protein concentration in a
drop of the crystallization solution progressively
decreases because the lysozyme molecules are
adsorbed on the surface of growing crystals. This leads
to the predominant formation of tetramers in the solu-
tion and, hence, to an increase in the growth rate of the
{101} face. Therefore, at different protein concentra-
tions in the crystallization solution, there arise condi-
tions favorable for the growth of different faces and
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 5      2005
responsible for the formation of lysozyme crystals with
three different habits in the same drop.

The X-ray diffraction data indicate that all deuter-
ated lysozyme crystals with three different habits have
space group P43212 and are characterized by the unit
cell parameters a = b = 79.551 Å and c = 38.017 Å.

On the Problem of Structural Phase Transitions 
in Lysozyme Crystals

In the mid-1970s, there appeared publications
[12, 13] which argued that orthorhombic lysozyme

(a)

(b)

(c)

Fig. 4. Schematic diagram illustrating the formation of
combinations of the following simple forms: (a) a tetrago-
nal prism and a tetragonal bipyramid, (b) a tetragonal prism
and a tetragonal bipyramid truncated along the diagonal,
and (c) a tetragonal prism and a tetragonal pyramid.
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crystals (space group P212121) grown at a temperature
of 313 K undergo a phase transition. It was shown that,
upon cooling of orthorhombic lysozyme crystals, their
symmetry at a temperature of 298 K becomes tetrago-
nal with space group P43212. At present, these papers
have been cited in discussions of the physical properties
of lysozyme crystals and the possible structural trans-
formations in them.

However, more recently, Kobayashi et al. [14]
investigated optical properties (such as the optical
activity and birefringence) of tetragonal lysozyme crys-
tals and determined the gyration tensor components for
these crystals. In [14], the authors obtained a tempera-
ture dependence of the phase difference ∆ between two
elliptically polarized components into which a linearly
polarized wave incident on a plane-parallel crystal plate
is decomposed. For these components, the normal to
the crystal plate coincides with the wave normal. The
phase difference between these two waves after they
have traveled a distance d in the crystal is given by the
relationship ∆ = (2π/λ) ∗ ∆ n ∗ d, where ∆n is the differ-
ence between the refractive indices for the elliptically
polarized components. With knowledge of the phase
difference ∆, it is possible to judge the birefringence of
the lysozyme crystal. The dependence obtained in [14]
is plotted in Fig. 5. It can be seen from this figure that
the phase difference ∆ exhibits a steplike anomaly at a
temperature of 306.5 K. In [14], this feature was
explained by the denaturation of the sample. However,
the anomaly observed in the aforementioned tempera-
ture dependence most likely indicates a first-order
structural transition.

Although the above results are obviously inconsis-
tent with each other, their analysis leads us to the infer-
ence that the structural phase transition actually occurs
in tetragonal lysozyme crystals at a temperature of
306.5 K. The observed contradiction calls for further
investigation into the physical properties and structure

5.8

303 304 305 306 307 308

6.0

6.2

6.4

T, K

∆, rad

Fig. 5. Temperature dependence of the index of birefrin-
gence for the lysozyme crystal [15].
C

of lysozyme crystals at temperatures close to the hypo-
thetical phase transition.

CONCLUSIONS

Thus, we elucidated the influence of the growth con-
ditions of lysozyme crystals on their sizes and analyzed
the morphology of deuterated crystals of hen egg-white
lysozyme.

The main conclusions drawn in this study can be
summarized as follows:

(i) The growth of tetragonal lysozyme crystals from
solutions prepared with heavy and ordinary water
obeys the same regularities.

(ii) During growth of lysozyme crystals through the
hanging-drop vapor diffusion, the crystallization condi-
tions change in such a way that the crystals grown
exhibit three different habits corresponding to tetrago-
nal symmetry.

(iii) Each of the three crystal habits is determined by
a specific combination of the simplest forms.

The performed analysis of the data available in the
literature revealed a number of contradictions regarding
the problem of the structural phase transition in
lysozyme crystals. The inference was made that
lysozyme crystals undergo a first-order structural phase
transition at a temperature of 306.5 K.
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Abstract—Formate dehydrogenase (FDG) from methylotrophic bacteria Pseudomonas sp. 101 catalyzes the
reaction of oxidation of the formate ion to carbon dioxide, which is accompanied by the reduction of nicotina-
mid adenine dinucleotide (NAD+). The structures of the apo and holo (enzyme-NAD-azide triple complex)
forms of the enzyme were determined earlier. In an attempt to prepare a complex of FDG with the product of
the enzymatic reaction (NADH), a new crystal modification of FDG is obtained (space group P42212, a = b =
93.3 Å, c = 103.05 Å). The FDG structure is solved by the molecular replacement method and refined to R =
20.7%. The asymmetric part of the unit cell contains one FDG molecule. In contrast to the previously studied
FDG structures, the biologically active dimer is formed by the crystallographic rotation axis. A comparative
structural analysis of the studied form with the apo and holo forms of the enzyme is performed. The influence
of the molecular structure on the environment in the crystal is investigated. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

Formate dehydrogenase (FDG) from methy-
lotrophic bacteria Pseudomonas sp. 101 catalyzes the
reaction of oxidation of the formate ion to carbon diox-
ide, which is accompanied by the reduction of NAD+ to
NADH. The NAD-dependent formate dehydrogenase
belongs to the family of D-specific dehydrogenases of
2-hydroxy acids [1]. Enzymes of this family form the
class of α/β proteins and have a similar structure of the
peptide chain. By now, three-dimensional structures of
the following representatives of this family have been
determined: formate dehydrogenase [2], D-3-glycero-
phosphate dehydrogenase [3], D-glycerate dehydroge-
nase [4], D-lactate dehydrogenase and its complex with
NADH [5, 6], and dehydrogenase of 2-hydroxyisocap-
roic acid [7]. For FDG from the Pseudomonas sp. 101
bacterium, the structures of the apo (native protein) and
holo (FDG-NAD-azide triple complex) forms of the
enzyme have been determined with resolutions of 1.8
and 2.05 Å, respectively [2]. The asymmetric parts of
the unit cells of both structures contain similar dimers
in which the protein subunits are related by the non-
crystallographic twofold rotation axis. The FDG mole-
cule consists of two domains, namely, the coenzyme-
binding and catalytic domains. The structures of the
apo and holo forms of FDG differ in the position of the
catalytic domain. The apo form of FDG has an open
conformation, whereas the holo form of FDG has a
1063-7745/05/5005- $26.00 ©0796
closed conformation [2]. In this paper, we report the
structure of a new crystal modification of FDG from
Pseudomonas sp. 101 with a resolution of 2.1 Å, which
was determined in an attempt to obtain crystals of the
FDG complex with the product of the enzymatic reac-
tion NADH. The conformational changes in the mole-
cule were analyzed, and the structure were compared
with those of the apo and holo forms of the enzyme.

EXPERIMENTAL

Crystals were prepared by diffusion through a gas-
eous phase in hanging and sessile drops at a tempera-
ture of 16–17°C. A reservoir (1 ml) contained a solution
of ammonium sulfate (48% saturated) and 2-methyl-
2,4-pentanediol (MPD, 8 vol %) in a 0.1 M HEPES
buffer (pH 7.3). Drops (10 µl) contained a protein solu-
tion (9.6 mg/ml), ammonium sulfate (24% saturated),
4% MPD, and NADH (2 mM) in a 0.1 M HEPES buffer
(pH 7.3). The crystals belong to space group P42212
with the unit cell parameters a = b = 93.3 Å and c =
103.05 Å. The diffraction data were obtained with a
resolution of 2.1 Å at 20°C from one crystal with the
use of a CCD detector installed on a DORIS XII storage
ring of the DEZY synchrotron (Hamburg) at a wave-
length of 1.009 Å. The data were processed with the
DENZO and SCALEPACK program packages [8]. The
 2005 Pleiades Publishing, Inc.



        

STRUCTURE OF A NEW CRYSTAL MODIFICATION 797

                                                      
statistical characteristics of the diffraction data set are
listed in Table 1.

The FDG structure was solved by the molecular
replacement method with the MOLREP program pack-
age [9]. The structure of a subunit of the molecule of the
apo form of the enzyme (the PDB code is 2NAC)
served as the starting model. The molecular replace-
ment based on the data at 3.5 Å resolution allowed us to
obtain a model corresponding to R = 34.8% with a cor-
relation coefficient of 0.682. The asymmetric part of the
unit cell contains one protein molecule. The crystallo-
graphic refinement of the structure was performed with
the REFMAC program package [10]. The O program
[11] was used to exercise visual control over the refine-
ment process, to introduce significant changes into the
atomic model of the structure, and to localize water
molecules. The statistical characteristics of the struc-
tural refinement and the atomic model are listed in
Table 1. The NADH molecule was not found in the
crystal structure of FDG.

RESULTS AND DISCUSSION

The schematic drawing of the polypeptide chain of
the FDG molecule is given in Fig. 1. The polypeptide
chain of the molecule has a globular two-domain struc-
ture. The first domain, which is responsible for the
NAD+ binding, is formed by residues 147–333, and the
second domain, which determines the catalytic proper-
ties of the enzyme, is formed by the residues 1–147 and
333–374. Both domains in FDG have a similar struc-
ture [12] and consist of a parallel left-twisted β-sheet
surrounded by α-helices. The coenzyme-binding
domain has a β-sheet of seven parallel β-chains (192–
198, 216–220, 236–238, 249–254, 278–281, 304–307,
326–330), which are linked together by α-helices (146–
163, 200–214, 226–234, 258–262, 266–273, 289–300,
319–324). The catalytic domain has a β-sheet consist-
ing of five parallel β-chains (1–7, 69–73, 91–95, 115–
120, 138–140), which are surrounded by four α-helices
(59–67, 81–87, 104–111, 128–136), and a disordered
loop (9–59). The C-terminal part of this domain is
formed by an α-helix (337–258) and a β-hairpin (367–
369, 372–374).

The atomic model of FDG obtained in this study
contains 374 amino acid residues. Twenty six C-termi-
nal residues were not located from the electron density
maps. A sulfate ion was found in the model in a region
corresponding to the region of binding of the pyrophos-
phate part of the NAD molecule in the structure of the
FDG holo form. Similarly, the sulfate ion is bound in
the structure of the apo form. In the studied structure, as
well as in the structures of the apo and holo forms of
FDG, the Ala198 residue is located outside the allowed
region on the Ramachandran plot. An exhaustive expla-
nation of the unusual conformation of this residue was
offered in [2].
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 5      2005
In contrast to the structures of the apo and holo
forms, the asymmetric part of the unit cell of the studied
structure contains one enzyme molecule. Two protein
molecules related by the diagonal rotation axis (sym-
metry operation: y, x, –z) form a biologically active
dimer. The packing of FDG molecules in the unit cell is
shown in Fig. 2. The FDG molecule has six nearest

Fig. 1. Secondary structure of the FDG molecule.

Table 1.  Diffraction data set, structural refinement, and
atomic-model statistics (data for a layer with a resolution of
2.13–2.10 Å are given in parentheses)

Resolution, Å 69.01–2.10 

Total number of reflections measured 115593

Number of unique reflections 29590

Recurrence 3.9

Completeness, % 94.3(91.3)

Rmerge, % 7.8(49.5) 

Temperature factor from the Wilson plot, Å2 38.2

R factor, % 20.7

Rfree, % 25.0

rms deviations of bond lengths, Å 0.020

rms deviations of bond angles, deg 1.881

Number of atoms in the protein molecule 2923

Number of sulfate ions 1

Number of water molecules 181

Average B factor, Å2 32.6

Number of residues in the most favorable 
regions of the Ramachandran plot*

277

Number of residues in the allowed regions 
of the Ramachandran plot*

42

Number of residues outside the allowed
regions of the Ramachandran plot*

1

* Except for the Gly and Pro residues.
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Fig. 2. Stereodiagram of the packing of FDG molecules in the unit cell.
neighbors. The areas of the contact zones between sym-
metry-related molecules are presented in Table 2. The
contacts between the molecules within the dimer are
substantially stronger than the other contacts. For this
pair of molecules, the area of the contact surface is
equal to 3891 Å2 and the molecules in a dimer are
linked by 27 hydrogen bonds. Similar dimer structures
were found in the apo and holo forms of the enzyme
[2], in which the dimers are formed between the mole-
cules related by noncrystallographic twofold rotation
axes. The interactions between the molecules in the
dimer are predominantly due to the residues belonging
to the coenzyme-binding domain (146–163, 165–175,
200–214, 319–324, 326–330).

The structure obtained was compared with the struc-
tures of the apo and holo forms of FDG with the use of
the LSQCAB program package [13]. The root-mean-
square (rms) deviations of the coordinates of all the ëα
atoms in the studied structure from those in the mole-
cules of the apo and holo forms of FDG are equal to 0.4
and 1.2 Å, respectively. A comparison of the individual
domains of the studied molecule with the A and B sub-
units of the holo form of FDG showed that, for the ëα
C

atoms, the root-mean-square deviation is equal to
0.6 Å. Thus, the studied structure has an open confor-
mation and is similar to the structure of the apo form of
the enzyme. The deviation of the positions of the corre-
sponding ëα atoms in the studied structure upon the
superposition with the A and B subunits of the apo form
as a function of the residue number is plotted in Fig. 3
[the data for the C-terminal region of the molecule (res-
idues 370–374) are omitted because the rms deviations
of the corresponding ëα atoms exceed 10 Å]. The devi-
ations larger than 0.7 Å were revealed in the following
parts of the chain: 59–68, 76–87, 104–111, 128–134,
226–234, and 299–301. The differences between the
structures can be explained as resulting from both the
different environments in the crystal and the mobility of
individual structural elements (large B factors). Note
also that, similar to the structure of the apo form of
FDG, in all these regions (except for 299–301) of the
studied structure, the temperature factors have the larg-
est values.

Analysis of the contacts and hydrogen bonds
between the symmetrically equivalent molecules in this
structure and the apo form of FDG was performed with
Table 2.  Characteristics of the intermolecular contacts in the FDG structure

Symmetry operation Translation
Area of the contact surface for mole-
cules related by different symmetry

operations, Å2

Number of hydrogen bonds
inside the contact zone

–x + 1/2, y + 1/2, –z + 1/2 299 5

–x, –y, z +a +b 134

x + 1/2, –y + 1/2, –z + 1/2 –a 188 1

–x + 1/2, y + 1/2, –z + 1/2 –b 315 5

x + 1/2, –y + 1/2, –z + 1/2 195 1

y, x, –z 3891 27
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 5      2005
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Fig. 3. Deviation of the coordinates of the ëα atoms in the studied structure from those of the apo form of FDG as a function of the
residue number: (a) comparison of subunit A and (b) comparison of subunit B. The structures are compared by the superposition of
the coordinates of the corresponding ëα atoms of residues 1–369.
the CONTACT program package [13]. The interatomic
contacts shorter than 5.5 Å and the hydrogen bonds
shorter than 3.3 Å were taken into account. None of the
contacts between symmetrically equivalent molecules
in the structure of the monomer (space group P42212)
were found to be similar to those in the apo form of the
enzyme (space group P21).

The differences between the structures in the
regions 128–134 and 299–301 are due to the contacts of
the A and B subunits of the apo form with symmetri-
cally equivalent molecules. In the studied structure, no
contacts are found in this region. On the contrary, the
structural differences in the region 226–234 are
explained by the formation of intermolecular contacts
only in the studied structure. In the region 76–87, the
contacts are found in all the molecules. In the region
59–68, the intermolecular contacts are observed in the
studied molecule and in the B subunit of the apo form
of FDG.
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 5      2005
The largest structural differences were revealed in
the regions of residues 123 and 370–374. The atoms of
the main chain of residues Ile122 and Gly123 partici-
pate in the binding of the formate ion by the enzyme
[2]. In the studied structure, the conformation of the
loop 122–125 changes with respect to that in the struc-
tures of the apo and holo forms because of the rotation
of the carboxyl group of the Gly123 residue (Fig. 4).
This conformation of the loop is stabilized as a result of
the formation of the hydrogen bond between the atoms
O Gly123 and OG1 Thr119. In the structures of the apo
and holo forms, the position of the loop is stabilized by
the hydrogen bond between the atoms OG Ser124 and
OG1 Thr119. Stereodiagrams of the loop 122–125 in
the studied structure and the structure of the apo form
of the enzyme are shown in Fig. 4.

Large deviations of the ëα atoms of the C-terminal
part (residues 370–374) in the studied structure from
the corresponding positions in the structures of the apo
and holo forms result from the rotation of these residues
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in opposite directions. The position of the C-terminal
part of the chain in the structures of the apo and holo
forms of the enzyme is stabilized by the N Glu369···é
Ala372 and O Ile367···N Glu374 hydrogen bonds
between the atoms of the main chain. The C-terminal
part of the chain is directed toward the interdomain cav-
ity. In the holo form, residues 374–391 shield the active
center from the solvent and additionally fix the position
of the coenzyme at the active center by forming three
hydrogen bonds with the NAD+ molecule [2]. In the
studied structure, the conformation of the 370–374 sec-
tion of the chain is stabilized as a result of the formation
of the N Ile361···é Leu373, OG1 Thr138···N Gly370,
and OE1 Glu369···é Ala372 hydrogen bonds. In this
case, the C-terminal part of the chain is oriented in the
direction opposite to the interdomain cavity. It is this
position of the C-terminal fragment that can be respon-
sible for the failure in obtaining the complex of FDG
with NADH in the crystal state.

Fig. 4. Stereodiagram of the loop 122–125 in the studied
structure (the ball-and-stick model) and in the apo form of
FDG (thin lines).
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Abstract—The influence of impurities on the kinetics of split-dislocation cross slip caused by a change in the
stacking-fault energy is studied theoretically. It is shown that the fluctuations in the impurity composition of a
crystal make a considerable contribution to the kinetics of dislocation cross slip. The activation-energy spec-
trum and the average frequency of the processes of dislocation cross slip are calculated for a model of random
impurity distribution in a crystal. The calculation shows that the fluctuations in impurity concentration, reduc-
ing the stacking-fault energy, play an important role in the low-temperature region. © 2005 Pleiades Publish-
ing, Inc.
INTRODUCTION

Alloying of crystalline materials is an efficient
method of improving their mechanical properties and,
in particular, their plasticity. Therefore, the study of the
mechanisms of the influence of impurities on the dislo-
cation dynamics is very important. Plastic deformation
of crystals proceeds via dislocation motion, usually,
along certain slip planes dictated by the crystal struc-
ture. The role of slip planes is often played by closely
packed planes of a crystal in which the dislocations are
split into pairs of partial dislocation separated by a strip
of a stacking fault. The configuration energy of a split
dislocation is lower than the energy of a linear configu-
ration. This planar structure ensures an easy motion of
a dislocation in the main plane and hinders its transition
into the transverse planes. However, in some particular
cases, the effect of directional internal or external
stresses can also stimulate the transition of a dislocation
into a transverse plane.

The change of the slip plane or the so-called dislo-
cation cross slip gives rise to a number of new interest-
ing phenomena playing an important role in the pro-
cesses of deformation hardening of materials, self-
organization of dislocation ensembles, texture forma-
tion, etc. [1–3]. Dislocation cross slip in ordered alloys
gives rise to an anomalous increase in deforming
stresses with temperature [4, 5] and, thus, makes these
alloys very promising materials for various high-tem-
perature applications.

Prior to the dislocation incorporation into a trans-
verse plane, it should acquire a constricted configura-
tion at the site of the intersection of the main and trans-
verse planes. The change in the dislocation configura-
tion results in an increase of the dislocation energy and,
therefore, is associated with overcoming a certain
energy barrier. The barrier height or the activation
1063-7745/05/5005- $26.00 ©0801
energy of cross slip depends on the splitting width,
which, in turn, is determined by the energy of a stack-
ing fault located between the partial dislocations. As is
well known, the stacking-fault energy may consider-
ably be changed by alloying the material. This allows
one to control the rate of cross-slip processes. Up to
now, the effect of impurities has been discussed in
terms of the changes in the average stacking-fault
energy due to alloying. This effect is associated either
with a decrease in the splitting width (which increases
the probability of recombination of two partial disloca-
tions) or with the changes in the average stacking-fault
energies in the main and transverse planes (which mod-
ifies the driving force necessary for the change of the
slip plane). However, the second factor takes place only
in some particular mechanisms of cross slip. The cross-
slip driving force depends on the state of the dislocation
core in the secondary plane, which may lead to different
scenarios of the process [3]. In particular, a dislocation
built into a transverse plane can be split again in this
plane if it is a closely packed plane or, otherwise, can
be split again in the plane neighboring the initial one.
The second variant of dislocation emergence into a new
plane suggested in [6] is illustrated in Fig. 1.

Since a crystal is periodic, the change in the average
energy of a split-dislocation configuration does not
make any contribution to the driving force of the pro-
cess of dislocation transition between the neighboring
planes of a crystal. At first sight, this fact closes the
most important channel of influence of alloying associ-
ated with the change in the stacking-fault energy. How-
ever, in actual fact, this is not true. Below, we suggest a
new mechanism of such an influence. The main concept
of this mechanism is based on the fact that a fluctuation
in the impurity composition breaks the transnational
periodicity of the crystal. This results in the formation
of a fluctuating contribution to the difference between
 2005 Pleiades Publishing, Inc.
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the energies of the dislocation configurations in neigh-
boring crystal planes, i.e., to random variations of the
height of the barrier that should be overcome by a dis-
location prior to cross slip. Statistical calculation has
shown that this contribution has a strong influence on
the whole scheme of the process.

First, let us consider in brief the kinetics of the sce-
nario of dislocation cross slip in a pure crystal and then
extend this consideration to a crystal with impurities.
The split parts of a dislocation located in parallel planes
are related in the transverse planes by so-called jogs.
An increase in the length of the dislocation segment in
a new plane (growth of a nucleus) proceeds via jog
glide along the intersection line of the main and trans-
verse planes. This type of dislocation cross slip is anal-
ogous to the dislocation motion in a periodic relief of
the crystal lattice via formation of kink pairs and it is
called the mechanism of jog pairs [3]. This mechanism
plays an important role during dislocation immobiliza-
tion in intermetallic compounds by way of the forma-
tion of so-called incomplete Kear–Wilsdorf locking [4]
and in many other instances.

The activation energy E of cross slip of a dislocation
segment of length l in a homogeneous material is the
sum of the energies E2J of two jogs, the energy of their
elastic attraction (inversely proportional to the distance
between these jogs the –α/l, and the change in the
energy of the segment displaced in the field of the stress
τ, –τbhl:

E = E2J – α/l – τbhl. (1)

Here, b is the length of the Burgers vector of a disloca-
tion and h is the distance between the neighboring
planes. It is assumed that the length l exceeds the jog
size, so the jogs may be considered as point objects.
The quantity F0 = τbh plays the part of the driving force
of jogs which ensures their motion in the opposite
directions and growth of the displaced segment. For
ordered alloys during the formation of incomplete
Kear–Wilsdorf locking induced by cross slip of the
leading superpartial dislocation, the quantity F0 con-
tains a considerable contribution from the elastic inter-
action with the trailed superpartial dislocation [5, 7].
The barrier height is determined by the maximum

l

d

h

Fig. 1. Nucleus of cross slip of a split dislocation according
to the jog-pair mechanism: d is the distance between the
partial dislocations (stacking-fault width), h is the distance
between the neighboring planes (cross-slip step), and l is the
nucleus length approximately corresponding to the distance
between jogs in the transverse plane.
C

potential in Eq. (1), E = E2J – 2 , attained at the

critical nucleus length l0 = . The frequency of
elementary cross-slip events per unit time is given by
the Arrhenius equation

I = I0exp(–E/kT), (2)

where k is the Boltzmann constant, T is the temperature,
and I0 is a constant preexponential factor.

EFFECT OF ALLOYING 
ON RECOMBINATION ENERGY

Dislocation cross slip, being a thermally activated
process, is very sensitive to relatively small variations
in the sample composition. Impurities affect the cross-
slip kinetics by modifying the barrier that should be
overcome by dislocations. In principle, all three terms
in Eq. (1) may be modified, but the mechanisms respon-
sible for their modification are different and, to a certain
extent, may be considered separately. This is caused by
essentially different spatial scale of impurity interac-
tions with dislocations corresponding to different terms
in Eq. (1). Jogs are the localized objects and have small
volumes. At a low impurity concentration (~1%), each
individual jog interacts with rare impurity atoms. A
stacking fault, being a two-dimensional object, has a
larger space for interaction. In this case, the number of
impurities participating in the interactions is propor-
tional to the splitting width of a split dislocation, d,
which often considerably exceeds the lattice period a
(i.e., d @ a) and the length l of the nucleus of the dis-
placed portion (Fig. 1). In this case, the interaction of
impurities with dislocation is of a collective nature.
Therefore, the main channel of impurity influence is
usually considered to be the modification of a stacking-
fault energy and the corresponding change in the
recombination energy ∆Er . The present study considers
low-doped crystals and diluted solid solutions with the
slight variation of elastic moduli and the parameters
determined by these moduli being ignored.

In a homogeneous material, the elastic-repulsion
force of a partial dislocation per unit length, Kel /d, com-
petes with the attraction force equal to the energy stack-
ing fault per unit area, γ [1–3]. At equilibrium, Kel /d =
γ, which allows one to determine the equilibrium split-
ting width as d = Kel /γ. The recombination energy per
dislocation unit length is the integral of the force of dis-
location interaction,

(3)

Here, dc ! d is the critical minimum distance, after the
attainment of which the dislocation is said to be recom-
bined back into a complete dislocation. If the number of
impurities is small, the change in the stacking-fault
energy density in comparison with its value in a pure

αF0

α /F0

∆Er Kel/x γ–( ) xd

dc

d

∫ Kel

Kel

γdc

-------- 
 ln γ d dc–( ).–= =
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crystal, γ0 , can be considered as a linear function of
concentration c; i.e., γ ≈ γ0 + cu/S0. Here, S0 is the stack-
ing-fault area per unit cell; u is the energy of the inter-
action of this defect with one impurity atom, which is
considered below as a phenomenological parameter;
and γ0 is the energy density of a stacking fault. Depend-
ing on the chemical nature of an impurity, both attrac-
tion (u < 0) and repulsion (u > 0) can take place. Impu-
rities modify the width of dislocation splitting into par-
tial dislocations in a pure crystal, d0, as d = d0/[1 +
cu/(γ0S0)] and, thus, change the energy of partial-dislo-
cation recombination, ∆Er. We consider the case of a
rather fast dislocation motion and, therefore, the mobil-
ity of impurities may be ignored so that they are consid-
ered to be “frozen” into a crystal.

Since the initial and final (with respect to dislocation
motion) crystal-lattice planes are equivalent, the
changes in the recombination energy in the uniform
impurity distribution in these planes are also equivalent
and make no contributions to the cross-slip driving
force in the mechanism under study. However, since the
impurity distribution is not rigorously uniform and has
some fluctuations, the impurity concentrations in the
neighboring planes can be different. This modifies the
recombination energy of partial dislocations given by
Eq. (3) in different planes. The difference in the recom-
bination energies in different planes gives rise to an
additional fluctuating contribution to the driving force
of gliding jogs, which can be described as

(4)

Here, c1 and c2 are the impurity concentrations at the
site of transition in the initial and secondary planes,
respectively. Equation (4) shows that the conditions of
cross slip may be different at different sites of the dis-
location line. Although the spectrum of fluctuations is
large, the fluctuations we are interested in are those
whose characteristic size is not less than the splitting
width d. We shall describe such fluctuations by Eq. (4)
that is valid for a sufficiently smooth spatial variation of
concentrations c1 and c2 averaged over the scale d.

If the impurities are randomly distributed over the
material and give rise to the fluctuating contribution to
the driving force described by Eq. (4), the nucleus
energy of a moving dislocation is also a random quan-
tity, which is determined by the equation

E{c} = E2J – , (5)

where F is set by Eq. (4) and the integral is calculated
along the length of a displaced segment. The cross-slip
rate in this situation is determined by the frequency of
thermally activated transitions of a dislocation into the
transverse plane averaged along the dislocation. At a

F F0 Kel

γ0 c1u/S0+
γ0 c2u/S0+
--------------------------.ln+=

F α /l
2

–( ) ld∫
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sufficient dislocation length, averaging of frequencies
along the dislocation is equivalent to averaging over the
spectrum of all the impurity configurations in accor-
dance with the equation

(6)

Here, P{c} symbolizes the probability density of the
implementation of a random impurity distribution in a
certain interval d{c} of the configurational space.
(Eq. (6) will be considered in detail later.) The quantity
P{c} decreases with the deviation of impurity concen-
trations from the average value c0. At the same time, the
frequency of thermally activated transitions dependent
on the fluctuation form may either decrease or expo-
nentially increase with an increase in the deviation of
the concentration from its average value in the sample.
This is associated with either a higher stacking-fault
energy in the secondary plane and a negative contribu-
tion to the driving force given by Eq. (4) or a decrease
in the stacking-fault energy and a positive contribution
to the driving force. In the former case, the integrand in
Eq. (6) decreases because of fluctuations which, thus,
make no considerable contribution to the average fre-
quency determined by Eq. (6). In the latter case, con-
versely, the integrand first increases with an increase in
fluctuations, and then starts decreasing because of a
more dramatic decrease in the probability of formation
of more pronounced fluctuations. As a result, the inte-
grand passes through the maximum at a certain impu-
rity configuration c = copt ≠ c0 and, therefore, the aver-
age frequency given by Eq. (6) is determined mainly by
a certain optimum fluctuation in the impurity distribu-
tion. It should be noted that a similar approach is widely
used in the calculations of the characteristics of disor-
dered systems (see, e.g., [8]). Earlier, this approach was
also used to determine the impurity effect on the dislo-
cation motion by the kink mechanism [9, 10].

To avoid any misunderstanding, we have to state
that the optimum fluctuations are specific for each con-
crete problem and depend considerably on the condi-
tions of each problem and, therefore, have nothing in
common with the intuitively expected “typical” fluctu-
ations. When considering the application of the theory
to an ideal solution of impurities, we ignore possible
limitations imposed onto the form of optimum fluctua-
tions associated with the interaction of impurity atoms
with one another. A favorable fluctuation, which
increases the transition frequency, would have been the
fluctuation increasing the energy of a dislocation seg-
ment in the initial plane and reducing it in the second-
ary plane. However, because a dislocation can travel in
the initial plane and relax to the position with the
energy minimum within the expectation time being
located in front of the barrier, the fluctuations, which
increase the dislocation energy in the initial plane, may
be avoided and, therefore, may be ignored. Thus, we

I〈 〉 I0 E c{ } /kT–[ ]exp〈 〉=

=  I0 E c{ } /kT–[ ] P c{ } c{ } .dexp∫
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assume that c1 = c0 . In the secondary plane, we are
interested in the change of the impurity concentration
within a distance equal to the critical nucleus size. i.e.,
within a strip of the width d = Kel /(γ0 + c2u/S0). Within
such a width (which varies with the change in the impu-
rity concentration and which should be determined by
a self-consisted method), we assume that the impurity
distribution is uniform. The characteristic size along
the longitudinal direction is assumed to be much larger
than d, and the optimum impurity distribution along the
critical nucleus is sought for as a function of the longi-
tudinal coordinate, c2 = c2(l). Our next problem is the
search for the most probable impurity fluctuation corre-
sponding to the given activation energy of cross slip.

FUNCTION OF BARRIER-HEIGHT 
DISTRIBUTION

The height of a barrier that should be overcome by a
dislocation in the vicinity of the impurity fluctuation is
determined by the maximum potential in Eq. (5) and is
evaluated from this equation at different impurity distri-
butions along the nucleus. The solution of the corre-
sponding variational problem shows that the optimum
fluctuation corresponding to the required lowering of
the barrier reduces to the uniform impurity distribution
c2 = const along the central interval (–l1/2, l1/2) and an
nonuniform distribution resulting in the constant
nucleus energy (plateau) at the peripheral intervals
(−l0/2, –l1/2) and (l1/2, l0/2). The length l1 is related to

c2 as l1 = . This formula generalizes the anal-
ogous condition for the extremum potential in a pure

material, l0 = . The impurity concentration at the

α /F c2( )

α /F0

0.5
2I/I0

1.0 1.5I1/I00

5

10

15

c2/c0

c/c0

c2(I)/c0

Fig. 2. Distribution of impurities in the optimum fluctuation
at the parameter values c0u/γ0S0 = –0.01 and ε = 0.5.
C

central portion of the nucleus, c2 , is uniquely related to
the barrier height by the following equation

(7)

The impurity distribution at the peripheral portion of
c2(l) is determined from the condition of equal force of
jog attraction α/4l2 and the driving force F(c2) which
sets the potential constancy in Eq. (5):

(8)

Note that, because of the symmetry of the optimum
function, we limited ourselves to the description only of
its right-hand side at positive l.

Figure 2 illustrates the form of the optimum fluctu-
ation at the following parameter values: c0u/γ0S0 =

−0.01 and ε ≡ (E0 – E)/(2 ) = 0.5.

Now, let us determine the probability of encounter-
ing the impurity fluctuation that would lead to the
required barrier height. In other words, let us determine
the function of the barrier-height distribution. For this
we have to determine the statistical weight of the impu-
rity configurations of the given type. We consider a ran-
dom impurity distribution over the sample or an ideal
solid solution. Then, the probability we are interested in
is the product of the probabilities of the uniform distri-
bution along the central portion P1 and an nonuniform
distribution corresponding to the condition (8) at the
peripheral portion P2. In accordance with the Poisson
ratio, the probability of encountering N1 = c2dl1/S0
impurities at the average value N0 = c0dl1/S0 is equal to

P1 = exp(–N0)/(N1!). At N1 @ 1, we arrive at the
approximate relationship P1 = expS1, where the entropy
S1 is

(9)

Here, e is the base of natural logarithms (e = 2.72…).

In a similar way, the probability P2 of impurity dis-
tribution c2(l) between l1 and l0 is written as P2 = expS2,
where the entropy S2 is given by the integral

(10)

E E2 j 2 α F0 Kel

γ0 c0u/S0+
γ0 c2u/S0+
-------------------------- 
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u
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----------+ 
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4l
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which sums up the contributions of type (9) from small
sections of length dl (which substitutes l1 in Eq. (9))
within which the impurity concentration and the split-
ting width are taken to be constant.

Thus, the probability of encountering the required
barrier height E is

P = exp(S1 + S2), (11)

where S1 and S2 are set by Eqs. (9) and (10) and the
impurity concentrations c2 and c2(l) at the center of the
optimum fluctuation and at its periphery are determined
by Eqs. (7) and (8), respectively.

In the important case of c2 |u |/(γ0S0) < 1, the
Eqs. (9)–(11) are simplified. The distribution function
of the barrier-height is obtained as

(12)

Here, ε ≡ (E0 – E)/(2 ). We also introduce here a
new parameter F1 = Kelc0u/(γ0S0), which characterizes
the average influence of impurities on the recombina-
tion energy of partial dislocations.

AVERAGE FREQUENCY OF DISLOCATION 
TRANSITIONS

By use of the data on the barrier-height distribution
obtained, it is possible to calculate in an explicit form
the average frequency of transitions, 〈I〉 . Averaging can
be performed either over the spectrum of barrier heights
E or over any other parameter uniquely related to E. In
particular, impurity fluctuations of the type we are
interested in are uniquely characterized by the impurity
concentration at the central part of the nucleus, c2. The
frequency of transitions in the vicinity of a concrete
fluctuation is I = I0exp{–[E2J – 2 ]/kT}. The
probability of encountering such a fluctuation is P(E) =
exp[S1(c2) + S2(c2)]. The weighted frequency of a tran-

P E( )
2 αF0

u
----------------- ε 1 1 F1/F0+–+( ) ---





exp=

× 1 ε ε 2+( )F0/F1–( )ln 2ε–

+ 2 1 F1/F0+ 1 ε
1 1 F1/F0++
------------------------------------+ 

 ln




.

αF0

αF c2( )
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sition is given by the equation

(13)

The average frequency is obtained by summing up the
particular contributions in Eq. (13), but the main contri-
bution to the sum comes from the term with the maxi-
mum exponent. One can readily see when differentiat-
ing the exponent that the maximum value corresponds
to c2, which is related to temperature as

(14)

Equation (14) is shown in the graphical form in Fig. 3.
One can clearly see the evolution of the impurity fluc-
tuations important for cross slip as a function of tem-
perature. Determining the optimum c2 value from
Eq. (14) (usually by its numerical solution) and substi-
tuting the result into Eq. (13), we arrive at the estimate
of the average transition frequency. In the limiting case
c2|u|/(γ0S0) < 1, one can also obtain the analytical solu-
tion in the form

(15)

Substituting the above result into Eq. (13), we arrive at
the average transition frequency in the explicit form

I p = I0 –
E2J 2 αF c2( )–

kT
--------------------------------------- S1 c2( ) S2 c2( )+ + .exp

kT
u

------
1 c2u/γ0S0+

c2/c0( )ln c2 c0–( )u/ γ0S0( )+
----------------------------------------------------------------------.–=

c2opt c0
u

kT
------– .exp≈

c2/c0

1
kT/|u|
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Fig. 3. Evolution of the impurity concentration at the center
of the optimum fluctuation as a function of temperature in
the case of their attraction to (u < 0) and repulsion from (u >
0) a stacking fault (c0|u|/(γ0S0) = 0.01 and F0/Kel = 0.1).
(16)
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The effect of impurities strongly depends on the
nature of impurity interactions with a stacking fault (the
sign of the parameter u).

The impurities attracted to the stacking fault (u < 0)
reduce the stacking-fault energy and, therefore, their
elevated concentration in the secondary plane ensures
dislocation cross slip, which is reflected in Eqs. (15)
and (16). A dramatic increase in the concentration of
impurities at considerable fluctuations with lowering of
the temperature (Eq. (15)) results in the driving force of
the fluctuation nature in the low-temperature region
exceeding the driving force caused by external stresses.
In the case of repulsive impurities (u > 0), characterized
by strong repulsion (u > kT), Eq. (15) dictates their van-
ishing concentration at the secondary-plane sites favor-
able for the dislocation transition. Figure 4 illustrates
the temperature dependence of the average transition
frequency for various types of impurities.

CONCLUSIONS
The conventional discussion of the effect of material

alloying on the kinetics of dislocation cross slip in
terms of the change in the average stacking-fault energy
is inapplicable to the case of the jog-pair mechanism.
We suggested a somewhat modified model based on
fluctuations in impurity composition. Because of a high
sensitivity of thermally activated processes to the acti-
vation energy, the sites with locally reduced barrier
height considerably increase the average frequency of
elementary cross-slip events.

It should be emphasized that the effects of the
homogeneous modification of the material parameter
are proportionally to c0, whereas the fluctuation effects
are shown to be proportional to c0exp(–u/kT). In other
words, the fluctuation effects are anomalously high in
the case of attracting impurities at |u | > kT. This makes

u < 0

u > 0

kT/|u|

2

4

6

8

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

M

Fig. 4. Temperature dependence of the factor M =

ln(〈I 〉/I)|u |/(4 ) characterizing the change in the fre-

quency of the cross-slip events. The parameter values are
c0 |u |/(γ0S0) = 0.01 and F0/Kel = 0.1.

αF0
C

the fluctuation mechanism of the effect of impurities in
the low-temperature region more efficient than the con-
ventionally considered homogeneous mechanisms.
This qualitative conclusion is valid not only for jog
pairs but also for other cross-slip scenarios.

One of the possible implementation of the jog-pair
mechanism is, in particular, the formation of incom-
plete Kear–Wilsdorf locking in ordered alloys. As a
result, dislocations lose their mobility. According to
various observations [11, 12], the replacement of Ni
atoms by Fe atoms in the Ni3 − xFexGe solid solutions in
the low-temperature region (~77 K) results in a dra-
matic hardening of the initial Ni3Ge. Analysis of the
microscopic observations of dislocation structures
shows that the frequency of the cross-slip events after
the replacement of 15% of the Ni atoms by Fe increases
considerably. This may cause hardening, which
exceeds the hardening characteristic of direct disloca-
tion deceleration by local impurity barriers consider-
ably [12]. These experimental findings are consistent
with the fluctuation mechanism of the influence of solu-
tion atoms on the cross-slip kinetics of dislocations
suggested in the present study.

Finally, we would like to indicate the following.
Recently, the cross-slip energy of dislocations in cop-
per or nickel was obtained by direct computer simula-
tion of the process at the atomic level [13, 14]. One of
the important problems of such computer simulation is
the choice of the minimum but sufficiently large com-
putational cell. Such a cell in a homogeneous material
sufficient for the consideration of a nucleus of an ele-
mentary cross-slip event consists of l0/a ~ 102 crystal-
lattice periods. In the solution of a similar problem for
a solid solution, the minimum unit cell should exceed at
least the repetition period L of pronounced impurity
fluctuations, which is inversely proportional to the
probability of encountering the optimum impurity fluc-
tuation; i.e., L ~ l0exp[–S1(c2) – S2(c2)], where c2 is
determined by Eqs. (14) or (15). Such fluctuations are
rare, and the average distance between such fluctua-
tions is large. Thus, the constraints imposed on the
computational-cell size in simulation of dislocation
cross slip in solid solutions are much more rigid, espe-
cially in the low-temperature region. This makes the
analytical approaches to the problem similar to the one
developed above much more valuable.
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Abstract—The directions of an external electric field at which extreme changes occur in the difference in the
velocities of elastic waves propagating along the initial acoustic axis in a piezoelectric medium of arbitrary
symmetry are theoretically determined. The problem of degeneracy in an external electric field is considered
for elastic waves propagating in a given direction from the vicinity of an initial acoustic axis. The extreme elec-
tric fields and corresponding changes in the characteristics of transverse waves are calculated by the example
of the behavior of acoustic axes in Bi12GeO20, Bi12SiO20, La3Ga5SiO14, and LiNbO3 crystals. © 2005 Pleiades
Publishing, Inc.
INTRODUCTION

The effect of external electrical and mechanical
forces on the properties of elastic waves propagating
near acoustic axes in crystals has long attracted the
attention of researchers. Classification of acoustic axes
according to the type of the contact geometry of the
velocity surfaces of elastic waves and the features of the
polarization vector fields in the vicinity of degeneracy
points was given for nonpiezoelectric crystals in [1–4]
and generalized for piezoelectrics in [5]. Alshits et al.
[3, 4] investigated the behavior of degeneracies of dif-
ferent types (shift, splitting, or disappearance) under
small perturbations of the elastic properties of crystals,
which are described by symmetric material tensors. In
[6], on the basis of the perturbation theory, solutions for
the phase velocities and polarization vectors of elastic
waves in the vicinity of acoustic axes were found as
functions of an arbitrarily oriented electric field. Ana-
lytical expressions were obtained, which make it possi-
ble to determine angles of shifts and splitting of acous-
tic axes directed along the crystal symmetry axes in the
absence of external forces. Equations of acoustic axes
were obtained in [7] for a centrosymmetric cubic crys-
tal in an external electric field. It was shown that the
electric field, as a result of the reduction of the crystal
symmetry, causes splitting and shift of acoustic axes of
an unperturbed crystal.

The behavior of acoustic axes in cubic crystals of
Bi12SiO20 and SrTiO3 and trigonal crystals of LiNbO3
and La3Ga5SiO14 in external electric fields of particular
directions and under a uniaxial mechanical load was
considered in [8–11]. It was shown in [8] that an elec-
tric field directed along the twofold symmetry axis,
1063-7745/05/5005- $26.00 0808
owing to the reduction of the crystal symmetry, splits
the acoustic axis [001] in the cubic piezoelectric
Bi12SiO20. The behavior of acoustic axes in mechani-
cally pressed and mechanically free LiNbO3 and
SrTiO3 crystals in an external static electric field was
analyzed in [9]. It was shown that the numerically
obtained dependences of the angles of splitting and
shift of acoustic axes on the external electric field are in
agreement with the results of [6] up to the fields E ≤
107 V/m, a result which is consistent with the corre-
sponding data on LiNbO3 [10]. The behavior of the
acoustic axis directed along the threefold symmetry
axis in a La3Ga5SiO14 crystal under homogeneous static
stresses was considered in [11].

At the same time, the following extreme problems
are of both theoretical and practical interest: (i) deter-
mination of the directions of an external force at which
either the initial direction n0 of the acoustic axis is
retained or the difference in the elastic wave velocities
is maximum for the n0 direction and (ii) determination
of external forces inducing an acoustic axis1 in a given
direction n near the initial acoustic axis.

We plan to report the solution of the above-stated
problems in a series of three papers. In the first paper,
we consider extreme electric fields for acoustic axes in
piezoelectric crystals. The second paper will deal with
extreme electric fields for acoustic axes in centrosym-
metric crystals. The third paper will be devoted to

1 We will use the term “induced acoustic axis” for the direction
along which the phase velocities of at least two elastic waves
become degenerate under the action of an external force.
© 2005 Pleiades Publishing, Inc.
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extreme mechanical forces for acoustic axes in crystals
of arbitrary symmetry.

INITIAL EQUATIONS FOR ELASTIC WAVES 
PROPAGATING NEAR ACOUSTIC AXES 

IN A PIEZOELECTRIC CRYSTAL

The phase velocities vα and the polarization vectors
U(α) of elastic waves propagating in a piezoelectric
crystal in a dc electric field E are described by the
Green–Christoffel equation, linearized with respect to
the magnitude of the external force [6, 12]:

(1)

where

for a mechanically free crystal and

for a mechanically pressed crystal. Here,  is the
Christoffel tensor of a piezoelectric medium at E = 0;

 is the tensor describing the perturbation of the ten-

sor  by the electric field; ei = eqirnqnr; ε = εqrnqnr;

ρ is the density at E = 0; cijkl, cijklpq, drpq, epkl, erijkl, εqr,
εuv r, and frpij are the linear and nonlinear elastic, piezo-
electric, dielectric, and electrostriction tensors, deter-
mined according to [12, 13]; nj are the components of
the unit vector of the wave normal at E = 0; and Er are
the components of the vector of the external electric
field.
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The solution to Eq. (1) for the phase velocities of
elastic waves propagating near an acoustic axis is the
approximate expression2 [6]

(2)

where3 (n0, E) =  (α, β = 1, 2) and
Dk(∆n) (k = 1, 2, 3) are the coefficients determined by
the type of the initial acoustic axis [3, 5]. Here, we take
as the zero-order approximation the solutions to Eq. (1)
at E = 0 along n0: the phase velocities vα(n0)|E = 0 ≡ v 0α
(v 01 = v 02 ≠ v 03) and the polarization vectors
U(α)(n0)|E = 0 ≡ U(0α), where U(01) and U(02) are arbitrary
unit vectors forming a right-handed triad with the vec-
tor U(03). One of the perturbation parameters is the devi-
ation of the wave normal |∆n| = |n – n0| ! 1; the other

parameter is the perturbation  ! 1, intro-
duced by the external force.

For a given propagation direction n of elastic waves,

the components  can be represented as [14]

(3)

where

for a mechanically free crystal,

for a mechanically pressed crystal, and v 0α ≡ vα(n)|E = 0

and U(0α) ≡ U(α)(n)|E = 0 are the solutions to Eq. (1) for
the direction n at E = 0. Substituting (3) into (2), we
obtain the following expression for the phase velocities
of elastic waves propagating near an acoustic axis in a
piezoelectric crystal in an external electric field:

2 In what follows, we will speak about the twofold degeneracy of
the phase velocities of elastic waves, while using the index α = 3
for an nondegenerate wave, and assume that v1 ≤ v2 and ∆v  =
v2 – v1 ≥ 0 for any n.

3 In this study, Latin indices are used to denote the components of
vectors and tensors in an arbitrary basis and Greek indices are
used in the basis {U(01), U(02), U(03)}.
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Here, (n0) = G(11)  G(22) and f(n0) = 2G(12) = 2G(21).
Then, the difference in the phase velocities of elastic
waves can be written as

(4)

where Fij(n0) =  + fi fj , R+(∆n) = D1h– + D2f, and

D(∆n) =  + . Relation (4) is initial for solving the
above-stated (see Introduction) extreme problems for a
piezoelectric in an electric field.

EXTREME DIRECTIONS OF AN ELECTRIC 
FIELD FOR ELASTIC WAVES PROPAGATING 

IN THE DIRECTION OF THE INITIAL ACOUSTIC 
AXIS IN A PIEZOELECTRIC CRYSTAL

According to (4), the determination of the directions
m of an external electric field (E = const) corresponding
to the extreme difference in the velocities of elastic
waves propagating along the initial acoustic axis at E =
0 is reduced to the problem4 of determining the direc-

tions m at which the quadratic form  reaches
extreme values. Solution of problems of this type is

well known: the quadratic form , and, therefore,
∆v (m) , reaches extreme values if the field E

is directed along the eigenvectors of the tensor . Note
that these extreme values are equal to the corresponding

eigenvalues λ ~ (∆v (m) )2 of the tensor .
Hence, the directions m of the external electric field
that retain the initial acoustic axis will correspond to the
eigenvalues λ = 0. It should be noted that the field E,
retaining the acoustic axis in the direction n0 , changes
the velocities of elastic waves by ∆v 1, 2 = (h+ × E)/4v 01
for all n near the degeneracy direction, including the
direction n0 .5 

Let us find the extreme directions of the external
electric field for different geometries of the vectors h–

and f in which they are not equal to zero simulta-
neously:6 

(i) f ≠ 0, h– = µf7.
7 Let us introduce the Cartesian

coordinate system with the unit vector e3 directed along

4 For the direction of the initial acoustic axis, D1 = D2 ≡ 0.
5  h+ ≡ 0 for the directions n0 with the types of symmetry 32, ,

, 422, , , 622, and 222 (class 23) at E = 0.
6 h– = f ≡ 0 for the directions n0 with the types of symmetry 4, 422,

4 mm, 6, 622, 6 mm at E = 0.
7 It can be proved that, in this geometry of the vectors h– and f,

there is always a pair of vectors U(01), U(02) for which f ≠ 0.

h+− +−

∆v n E,( ) v 2 n E,( ) v 1 n E,( )–=

=  D1 h– E×( )+( )
2

D2 f E×( )+( )2
+ /2v 01

=  EF̂E 2 R+ E×( ) D+ + /2v 01,

hi
–
h j

–

D1
2

D2
2

mF̂m

mF̂m
|n0 E, const=

F̂

|n0 E, const= F̂

4

42m 6 6m2
C

the vector f. In this system, h– = µf3e3, f = f3e3 , and

The tensor  has the eigenvalues λ1 = λ2 = 0, which
corresponds to the eigenvector plane perpendicular to
the vector f, and λ3 > 0, which corresponds to the eigen-
vector parallel to the vector f. Thus, the field E ⊥ f
retains the initial acoustic axis. At E || f, the value of
∆v (m) , will be maximum.

(ii) w = [h– × f] ≠ 0. Let us introduce the Cartesian
coordinate system with the unit vectors e1 and e3

directed along the vectors h– and w, respectively. In this
system, h− = h1e1, f = f1e1 + f2e2, w = h1f2e3 = ω3e3 , and

One of the eigenvalues of the tensor  is λ3 = 0 corre-
sponding to the eigenvector parallel to the vector w.

Two other eigenvalues λ1, 2 > 0 of the tensor  corre-
spond to a pair of mutually orthogonal eigenvectors
lying in the plane of the vectors h– and f. Thus, at E || w,
the acoustic axis in the direction n0 is retained. The
value of ∆v (m)  will be extreme when the
field E coincides with one of the main directions of the

tensor  in the plane of the vectors h– and f. In the case
h– ⊥ f, the quantity ∆v (m)  reaches extreme

values if the field E is directed along the vector h– or f.
Under the additional condition |h– | = |f |, the value of
∆v (m)  is maximum at any E ⊥ w.

THE PROBLEM OF EXISTENCE 
OF AN INDUCED ACOUSTIC AXIS IN A GIVEN 

DIRECTION IN A PIEZOELECTRIC CRYSTAL

To determine the external electric field inducing an
acoustic axis in a given direction n near the initial
acoustic axis consists in finding the external force at
which ∆v (E)  = 0. According to (4), this prob-
lem reduces to the solution of the following system of
equations:

(5)

Let us consider the solutions to this system of equations
for different geometries of the vectors h– and f.
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(i) f ≠ 0, h– = µf. In the Cartesian coordinate system
with the unit vector e3 directed along the vector f, sys-
tem of equations (5) takes the form

This system has the solution

(6)

provided that

(7)

According to (4), the field E ⊥ f does not affect the
value of ∆v (E)|n = const. Therefore, expression (6) deter-
mines the minimum electric field

inducing an acoustic axis in the direction n, for which
condition (7) is satisfied.

At E > Emin, an acoustic axis will be induced in the
direction n if the field E makes angles θE =

 with the vector f at D2 < 0 and θE = π –

 at D2 > 0. For a given E, the angle θE

sets a cone of directions of the field E.

(ii) w = [h– × f] ≠ 0. In the Cartesian coordinate sys-
tem with the unit vectors e1 and e3 directed along the
vectors h– and w, respectively, system of equations (5)
takes the form

The solution to this system is

(8)

As follows from (4), the field E || w does not affect the
value of ∆v (E)|n = const. Therefore, expression (8) deter-
mines the minimum electric field inducing an acoustic
axis in the given direction n.

Formula (8) can be written as

(9)
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or

(10)

where R– = D2h– – D1f. In particular, it follows from (9)
that, when h– ⊥ f and |h– | = |f |, an acoustic axis is
induced in the given direction n at Emin = –R+/ |h– |2.

It can be proved that if the initial acoustic axis cor-
responds to conical or tangential degeneracy, the direc-
tion of the field Emin depends only on the azimuthal
angle of the direction n.

With the consideration that  ≠ 0 for all n in the
vicinity of the initial acoustic axis, it follows from (9)
and (10) that an acoustic axis may be induced in any
direction n. Note that for all n the field Emin will lie in
the plane of the vectors h– and f.

For E > Emin, an acoustic axis will be induced in the

direction n at E = Emin ± . For a given
E, we will have a pair of directions of the field E, sym-
metric with respect to the plane of the vectors h– and f.

ACOUSTIC AXES IN THE PIEZOELECTRIC 
CRYSTALS Bi12GeO20, Bi12SiO20, La3Gi5SiO14, 
AND LiNbO3 IN AN EXTERNAL ELECTRIC 

FIELD

The most complete experimental data on the nonlin-
ear electromechanical properties were obtained for
crystals of Bi12GeO20 and Bi12SiO20 (class 23) [13],
La3Ga5SiO14 (class 32) [15], and LiNbO3 (class 3m)
[16]. Let us consider the acoustic axes in these crystals.
The vectors n and E, unless otherwise noted, are set in
the crystallophysical coordinate system Xi by the Carte-
sian coordinates ni and Ei or spherical angles (ϕ, θ) and
(ϕE, θE). (The angles θ and θE are counted from the X3
axis.) All calculations were performed for the field E =
107 V/m. For convenience of comparison of the values
of ∆v (n0, E) for different crystals, we introduced the

coefficient α∆v = ∆ε  0.

Let us first consider the acoustic axis of tangential
degeneracy with the Poincaré index n = 1, directed
along the [001] axis in Bi12GeO20 and Bi12SiO20 crys-

tals. For this acoustic axis,  = 0 and f || [001]. The
electric field E ⊥ [001] retains the initial acoustic axis;
in this case, ∆v 1, 2 ≡ 0. The difference in the velocities
of transverse waves propagating along the [001] axis is
maximum at E || [001]. The field E || [001] leads to the
splitting of the initial degeneracy into a pair of conical
degeneracies with n = 1/2, whose azimuthal angles are
ϕ = {±} π/4 + πn. The angle θ between the initial and
induced acoustic axes is related to the field Emin as fol-
lows: Emin = (0, 0, { } E0sin2θ). The calculated values
of E0 , of half-angle of splitting θ, and of coefficient α∆v

Emin R– w×[ ] / w 2
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v 01
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Table 1.  Acoustic axes with the Poincaré index n = 1 in Bi12GeO20 and Bi12SiO20 crystals in an external electric field

Crystal Mechanical state E0, 109 V/m θ, deg α∆v , 10–10 m/V

Bi12GeO20 mechanically free 4.14 5.64 1.76

mechanically pressed 1.26 10.22 5.76

Bi12SiO20 mechanically free 3.15 6.46 2.58

mechanically pressed 4.34 5.5 1.88
Table 2.  Acoustic axes with the Poincaré index n = –1/2 in LiNbO3, La3Ga5SiO14, Bi12GeO20, and Bi12SiO20 crystals in an
external electric field

Crystal Mechanical state E0, 109 V/m β, deg θ, deg |∆v1, 2|, m/V α∆v , 10–10 m/V

LiNbO3 mechanically free 1.38 0.41 2.08 2.17

mechanically pressed 0.89 0.65 3.04 3.38

La3Ga5SiO14 mechanically free 63.5 0.01 0 0.08

mechanically pressed 16.6 0.03 0 0.32

Bi12SiO20 mechanically free 8.84 –76.16 0.06 0.02 0.65

mechanically pressed 12.5 –86.33 0.05 0.64 0.46

Bi12GeO20 mechanically free 8.3 –67.44 0.07 0.28 0.66

mechanically pressed 5.61 –27.1 0.1 0.87 0.97
are listed in Table 1. Note that the mechanical state of a
Bi12GeO20 crystal significantly affects the behavior of
the acoustic axes of tangential degeneracy in an exter-
nal electric field.

Let us consider conically degenerate acoustic axes
with the Poincaré index n = –1/2, directed at E = 0 along
the axes 3 in LiNbO3, La3Ga5SiO14, Bi12GeO20, and
Bi12SiO20 crystals. For these axes, the vectors n0, h–,
and f are mutually orthogonal and |h– | = |f |; note that
h+ ≡ 0 in La3Ga5SiO14 and h+ || 3 in other crystals. The
field E || 3 retains the initial acoustic axis; in this case,
the difference ∆v 1, 2 in the velocities of transverse
waves remains constant only in La3Ga5SiO14. The dif-
ference in the velocities of transverse waves propagat-
ing along the axis 3 is maximum at E ⊥  3. The field
E ⊥ 3 also causes maximum deviation of the acoustic
axis from its initial position. The direction of the field
Emin and the azimuthal angle of the induced acoustic
axis are related as follows:8 ϕE = ϕ in LiNbO3, ϕE = ϕ +
π/2 in La3Ga5SiO14, and ϕE = ϕ + β + π in Bi12SiO20 and
Bi12GeO20. The magnitude of the field Emin is deter-
mined by the relation Emin = E0sinθ for all crystals. The
calculated values of E0 , the angle β, the angle of dis-
placement θ, the quantity |∆v 1, 2 |, and the coefficient
α∆v are listed in Table 2. It should be noted that the
mechanical state of a Bi12GeO20 crystal affects the ori-
entation of the field Emin. However, the displacement of

8 Here, the coordinate system x1 || [110], x3 || [111] (x3 || n0) is
introduced for Bi12SiO20 and Bi12GeO20 crystals.
C

acoustic axes is small in all crystals. The above calcula-
tions are in agreement with the data of [6, 8, 13].

Finally, let us consider the behavior of the conically
degenerate acoustic axes with the Poincaré index n =
1/2 in LiNbO3 crystals (n0 || m: ϕ = 90° and θ = 69.77°)
and La3Ga5SiO14 crystals (n0 ⊥  2: ϕ = 90° and θ =

132.71°). For these axes, h– ⊥ f and |h– | ≠ |f |;  || m
and f ⊥ m in LiNbO3 and  || 2 and f ⊥ 2 in
La3Ga5SiO14. The electric field E || [h– × f] retains the
initial acoustic axis, changing the velocities of trans-
verse waves only in LiNbO3, (|∆v 1, 2 | = 2.04 and
1.75 m/s in mechanically free and mechanically
pressed crystals, respectively.) The maximum differ-
ence in the velocities of transverse waves propagating
in the direction n0 is reached at E || f in both crystals.
The field Emin is described as follows:9 E1 = E01n1 and
E2 = E02n2 for LiNbO3, E1 = E02n2 and E2 = E01n1 for
La3Ga5SiO14, and

(11)

for both crystals. It follows from (11) that, for a given
value of a external force, the extrema of the angle of
displacement of the initial acoustic axis will be
observed in the directions set by the azimuthal angles
ϕ = πn at E || f (the angle θ1) and ϕ = π/2 + πn at E || h–

9 Here, the coordinates of the vector n are set in the coordinate sys-
tems x1 || X1, x3 || n0, whereas the coordinates of the vector Emin

are set in the two-dimensional coordinate systems  || X1 ,  ||
h– (in LiNbO3) and  || f (in La3Ga5SiO14).

h+−

h+−

x1' x2'

x2'

Emin E01
2 ϕcos

2
E02

2 ϕsin
2

+ θsin=
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Table 3.  Acoustic axes with the Poincaré index n = 1/2 in LiNbO3 and La3Ga5SiO14 crystals in an external electric field

Crystal Mechanical
state

E01,
109 V/m

E02,
109 V/m

θ1,
deg

θ2,
deg h– f

α∆v ,
10–10 m/V

LiNbO3 mechanically 
free

–1.13 4.86 0.51 0.12 ϕ = 90°
θ = 95.3°

1.54

mechanically 
pressed

–1.81 2.29 0.32 0.25 ϕ = 90°
θ = 90.55°

ϕ = 0°
θ = 90°

0.96

La3Ga5SiO14 mechanically 
free

5.42 –118 0.11 ~0 ϕ = 0°
θ = 90°

ϕ = –90°
θ = 117.88°

0.82

mechanically 
pressed

4.67 87.2 0.12 0.01 ϕ = 180°
θ = 90°

ϕ = –90°
θ = 113.72°

0.95
(the angle θ2). The calculated values of E01 and E02 , the
directions of the vectors h– and f, the angles θ1 and θ2 ,
and the coefficient α∆v are listed in Table 3.

CONCLUSIONS

The approach developed here on the basis of sepa-
rate description of nonlinear electromechanical proper-
ties of a piezoelectric medium in a specified direction
and the external force made it possible to obtain a num-
ber of general results describing the behavior of an arbi-
trary acoustic axis in an external electric field.

Within an approximation that is linear in the magni-
tude of an external force, some directions of an external
electric field retaining the initial acoustic axis always
exist. The occurrence of an induced acoustic axis is
possible in any direction near the initial acoustic axis if
[h– × f] ≠ 0 and in the directions satisfying condition (7)
if h– = µf. Note that the field E at which an acoustic axis
is induced in a given direction has a single value pro-
vided that the external force (the field Emin) is mini-
mum.

It should also be noted that the geometry of the vec-
tors h– and f is independent of the type of the initial
acoustic axis. For example, the geometry of the vectors

h– and f is the same for the axes 3 and ; however, the
initial acoustic axes are conically and tangentially
degenerate in the former and latter cases, respectively.
The geometry h– = µf is implemented for the acoustic
axes having the symmetries of the direction 222 (class

23), , and  at E = 0.
The results of the calculations show (Tables 1–3)

that the acoustic axes of tangential degeneracy are more
sensitive to an electric field in comparison with the axes
of conical degeneracy.
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Abstract—A complete set of possible improper phase transitions leading to polarization and magnetization of
crystals is found from tensor bases of representations of the black-and-white point group of crystal symmetry
by using the multiplication table of irreducible representations. The dependences of the secondary order param-
eter on the primary order parameter are presented for different classes of the symmetry group. © 2005 Pleiades
Publishing, Inc.
The concept of improper phase transitions was
introduced in study of ferroelectric crystals. Indenbom
was the first to point out to the possibility of occurrence
of polarization as a result of a phase transition with
enlargement of the crystal unit cell [1]. The term
improper phase transitions was introduced in [2].
A great number of studies are devoted to the experi-
mental and theoretical study of regularities of improper
phase transitions (see, for example, [3–7]). As a result,
in the 1970s, the physics of improper phase transitions
became a kind of a narrow-range field in ferroelectric-
ity.

In most crystals undergoing improper phase transi-
tions, the amplitude of some optical mode of atomic
vibrations serves as the primary order parameter. The
secondary order parameter is the polarization vector.
However, as shown in [8], there are crystal classes of
the white group, in which macroscopic characteristics,
such as components of the deformation tensor, the
polarization vector, or the angles of rotation of atomic
groups in a crystal cell, are the primary order parame-
ters. Such improper phase transitions occur without
changing the number of atoms in the unit cell. Possible
directions of the vector of spontaneous polarization
after such improper phase transitions were shown in
[9]. To study the symmetry properties of the electrical
and magnetic characteristics, it is necessary to use the
black-and-white crystal group [10]. The crystallo-
graphic classes of black-and-white point groups, allow-
ing the simultaneous occurrence of macroscopic mag-
netic and electrical moments, were noted by Shuvalov
and Belov [11]. The question of possible improper
phase transitions has not been raised because of the evi-
dent absence in the gray group of the invariant repre-
sented by the product of a component of the t-odd axial
magnetization vector and the square of some other
order parameter. As will be shown below, invariants of
this type are possible in a black-and-white group. This
fact suggests the existence of improper phase transi-
1063-7745/05/5005- $26.00 ©0814
tions in crystals. In this study, we will point to the crys-
tal classes of the black-and-white group in which tran-
sitions leading to the occurrence of polarization and
magnetization in crystals are possible.

We have considered all crystallographic classes of
the black-and-white symmetry group. For each class,
the tensor bases of representations are indicated and the
representations with bases containing the components
of the polar polarization vector and the axial magneti-
zation vector are selected. Using the multiplication
table of representations, we obtained the invariants
responsible for the occurrence of improper phase tran-
sitions. The results are listed in the table.

The first column of the table contains the standard
notation of groups and representations (in italics) in
which magnetoelectric phase transitions are possible.
In the second column, the components of the primary
order parameter are listed. If this basis contains polar-
ization components, one has to take into account that
near the phase-transition point these components
should obey the linear relations

(1)

The coefficients Cij in these relations are the tabular
characteristics of a crystal, similar to the components of
the dielectric permittivity or elastic moduli. In the third
column, the invariants that make improper phase tran-
sitions possible are listed. The fourth column contains
the components of the secondary order parameter. Pi

and Mi are the components of the polarization and mag-
netization vectors, respectively.

The table shows that the vector of the primary order
parameter in crystals belonging to the tetragonal sys-
tem lies in the xy plane, and the secondary components
of the order parameter are vectors directed along the
fourfold axis. The primary order parameter contains
electric and magnetic components for all classes of the
tetragonal system, except for the D4h(D2h) group. The

Pi CijM j.=
 2005 Pleiades Publishing, Inc.
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Primary and secondary order parameters for improper phase transitions in crystals with the symmetry of the black-and-white
point group

Group
Representation Primary order parameter Invariants Components of the secondary 

order parameter

Tetragonal system
C4(C2)
4'
E

(P1, P2),
(M1, M2)

M3P1P2, M3( ) M3

S4(C2)

E

(P1, P2),
(M1, M2)

M3( ),

P3

M3, P3

C4h(C2h)
4'/m
Eu

(P1, P2),
(M1, M2)

M3( ) M3

D4(D2)
4'22'
E

(P1, P2),
(M1, M2)

P3P1P2,
M3M1M2

P3, M3

C4v(C2v)
4'mm'
E

(P1, P2),
(M1, M2)

M3P1P2 M3

D2d(D2)

2m'
E

(P1, P2),
(M1, M2)

M3P1P2,
P3M1M2

P3, M3

D2d(C2v)

2'm
E

(P1, P2),
(M1, M2)

M3P1P2,
P3M1M2

P3, M3

D2d(S4)

2'm'
E

(P1, P2),
(M1, M2)

P3M1M2 P3

D4h(D2h)
4'/mmm'
Eu

(P1, P2) M3P1P2 M3

Trigonal system
D3(C3)
32'
E

(P1, P2),
(M1, M2)

P3 ( ) P3

Hexagonal system
C6(C3)
6'
E1

(P1, P2) 2M1P1P2 + M2( ),

M1( ) – M2P1P2,

M3( ), M3( )

M1, M2, M3

D6(D3)
6'22'
E1

(P1, P2) M3( ) M3

D6(D3)
6'22'
E2

(M1, M2) ,

P3( )

P3

C6v(C3v)
6'mm'
E1

(P1, P2) M3( ) M3

Cubic system
O(T)
4'32'
T1

(P1, P2, P3) M3P1P2 + M2P1P3 + M1P2P3 M1, M2, M3

Oh(Th)
m3m'
T1u

(P1, P2, P3) M3P1P2 + M2P1P3 + M1P2P3 M1, M2, M3

Td(T)
4'3m'
T2

(P1, P2, P3),
(M1, M2, M3)

M3P1P2 + M2P1P3 + M1P2P3,
P3M1M2 + P2M1M3 + P1M2M3

M1, M2, M3,
P1, P2, P3

P1
2 P2

2–

4'

P1
2 P2

2–

M1
2 M2

2–

P1
2 P2

2–

4'

4'

4

M1
3 3M1M2

2–

P1
2 P2

2–

P1
2 P2

2–

P1
3 3P1P2

2– 3P1
2P2 P2

3–
3P1

2P2 P2
3–

M1
3 3M1M2

2–

3M1
2M2 M2

3–
P1

3 3P1P2
2–
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secondary order parameter may be one- or two-compo-
nent, depending on the crystallographic class. The sym-
metry limitations in crystals of the D4h(D2h) group lead
to accompaniment of the purely ferroelectric phase
transition by the occurrence of magnetization through
the mechanism of improper phase transitions. For all
groups of the tetragonal system, a usual quadratic
dependence of the secondary order parameter on the
components of the primary order parameter is fulfilled,
which, as is well known, leads to the linear temperature
dependence of the secondary order parameter.

In crystals of the hexagonal system, the third com-
ponent of the secondary order parameter has a cubic
dependence on the components of the primary order
parameter. This circumstance leads to a power temper-
ature dependence of the secondary order parameter
with an exponent of 3/2. There is the C6(C3) group, for
which the magnetic components M1 and M2 of the sec-
ondary order parameter obey a quadratic dependence
on similar components of the polarization vector, which
is the primary order parameter. The third magnetic
component in the same crystals has a cubic dependence
on the same components. The phase transitions in the
D6(D3) and C6v (C3v ) groups are ferroelectric with
respect to the primary order parameter and magnetic
with respect to the secondary order parameter. An
opposite situation occurs in the other representation of
the D6(D3) group: the primary order parameter proves
to be magnetic and the secondary order parameter is
electrical.

There are three classes of crystals belonging to the
cubic system, in which improper magnetic phase tran-
sitions are possible. The first two groups of this system,
listed in the table, allow improper magnetic phase tran-
sitions, in which the primary and secondary order
parameters are the components of the polarization and
magnetization vectors, respectively. The secondary
order parameter shows a usual quadratic dependence on
the components of the primary order parameter. We
should note a specific feature of these phase transitions.
If a polarization vector directed along any crystallo-
graphic axis arises as a result of the main ferroelectric
phase transition, the secondary component is zero. For
other directions of the spontaneous-polarization vector,
a magnetic effect occurs. Symmetry analysis shows that
ferroelectric second-order phase transitions may lead to
the occurrence of spontaneous-polarization vectors
directed along the sides or body diagonals of the unit
cell. In the first case, a crystal is not magnetized. In the
second case, magnetization directed along the body
diagonal occurs. If a crystal undergoes a first-order
C

phase transition with the formation of a polarization
vector directed along a cube face diagonal, the magne-
tization vector is directed along the edge normal to this
face.

In conclusion, let us state the main results of this
study. Crystals with the symmetry of the point black-
and-white group allow improper phase transitions
involving the components of the polarization and mag-
netization vectors as the primary and secondary order
parameters. Improper phase transitions are allowable in
all systems with high-order symmetry axes. In crystals
belonging to the tetragonal symmetry, the dependence
of the third component of the secondary order parame-
ter on the components of the primary order parameter is
quadratic. In crystals of the hexagonal and trigonal sys-
tems, this dependence is cubic. Evidently, the same
dependence will be retained for the corresponding
space groups. A similar dependence for the components
in the xy plane is quadratic.
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Abstract—The polymorphic transformations in alkali halide crystals at temperatures above absolute zero are
numerically simulated using the proposed method. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

Under normal conditions, alkali halides have a crys-
tal lattice of the NaCl type (structure B1). In all such
compounds, an increase in the pressure leads to recon-
structive first-order phase transitions to phases with the
CsCl-type structure (structure B2) [1–3]. The relative
simplicity of experimental investigations has made it
possible to gain a deeper insight into the dynamics of
these transitions and to reveal the origin of the cluster
structures of both phases [4–6]. At present, investiga-
tion into the structural phase transitions (including the
B1–B2 transitions) has been a very important problem.
However, the majority of theoretical studies have been
concerned with analyzing the properties of similar
transformations in infinite crystals at absolute zero [7–
10]. The validity of this approach is supported prima-
rily by the small surface contribution to the thermody-
namic potential of the crystal. However, the inclusion
of the surface effects provides a means for revealing
more subtle phenomena that accompany phase transi-
tions between allotropic modifications of the com-
pound. It is this size effect that manifests itself in B1–
B2 transformations in ionic compounds of the compo-
sition M+X–. The B1–B2 transition in small-sized sam-
ples of alkali halide compounds was considered in
detail in our earlier works [11, 12]. The purpose of this
study was to examine the B1–B2 transformation in
ionic crystals at temperatures different from 0 K. Spe-
cial attention was focused on the construction of the
temperature dependences of the phase transition pres-
sure.

FORMULATION OF THE PROBLEM

Let us consider polymorphic transformations in
ionic crystals at temperatures different from 0 K. In this
case, the thermodynamic potential obtain in our previ-
1063-7745/05/5005- $26.00 0817
ous study [11] for an infinite crystal,

should be complemented by the term GS = –TS describ-
ing the contribution of the configurational entropy. In
the above expression, the index i numbers the phases
B1 and B2. Note that the energy of the non-Coulomb
interaction of ions with the pair potential U(R) is virtu-
ally independent of the temperature, because the elec-
tron gas is degenerate at the temperatures T < Tm under
consideration. The temperature contributions to the
thermodynamic potential can be taken into account
through the replacement of the Madelung constant in
the Coulomb energy of the lattice by the parameter K
(hereafter, this parameter will be referred to as the tem-
perature parameter of the Coulomb interaction) that
characterizes the Coulomb energy and depends on the
temperature: K = K(T). Note that K  αµ at T  0 K.
Therefore, the Coulomb contribution to the thermody-
namic potential of the crystal is governed by the Made-

lung constant of the structure G(Coulomb) = –  at T =

0 K and G(Coulomb)
 = −  at temperatures different

from absolute zero.

The temperature parameter of the Coulomb interac-
tion as a function of the temperature is calculated by the
molecular dynamics method. Now, we consider the
specific features of the application of this method to the
investigation of structural phase transformations in
ionic crystals.
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APPLICATION OF THE MOLECULAR 
DYNAMICS METHOD TO THE INVESTIGATION 

OF THE B1–B2 TRANSITION

The molecular dynamics method is based on the
assumption that the atomic motion obeys the classical
laws in condensed matter. This assumption is quite jus-
tified for describing liquids and solids, in which the de
Broglie wavelength of atoms is considerably shorter
than the characteristic interatomic distance in the sys-
tem, and, hence, wave effects can be ignored. More-
over, the M+X– alkali halide crystals studied in the
present work have filled electron shells, i.e., have an
electronic structure characteristic of noble-gas crystals.
This circumstance also confirms the validity of the clas-
sical approach to the description of the properties of
similar systems.

By definition, the Madelung constant αµ is repre-
sented by the formula [13]

(1)

where the quantities p are written as

(2)

R0 is the distance between the nearest neighbors, and rij

is the distance between the ith and jth ions. With due
regard for relationship (2), formula (1) can be rewritten
in the following form:

(3)

where rij is the distance between the jth ion and the ion
chosen as a reference point. Note that, when the initial
ion is negative, the plus and minus signs in expression
(3) correspond to positive and negative ions, respec-
tively. Generally speaking, the numerator of the right-
hand side of expression (3) should involve the ion
charge qj; however, we have |qj | = 1 for the M+X– alkali
halide crystals under consideration.

Therefore, from expression (3) with the use of the
Ewald method [14] for calculating lattice sums, we can
determine the Madelung constant, which, in turn, deter-
mines the energy of the Coulomb interaction between
ions in the lattice at 0 K. For crystal temperatures T >
0 K, we can write the following relationship:

(4)

where  is the interionic distance at a given temper-
ature and KT is the temperature parameter of the Cou-
lomb interaction.

As a result, the problem is reduced to the summation
of the reciprocals of the distances between the ion cho-

αµ pij
1–
,±

j i≠
∑=

rij pijR0,=

αµ

R0
------

1±
rij

------,
j i≠
∑=

KT R0
T( ) 1±

rij

------,
j i≠
∑=

R0
T( )
CR
sen as the reference point (the initial ion) and surround-
ing ions. The problem can be solved using the molecu-
lar dynamics method. At the first stage, a set of coordi-
nates of ions located at sites of the crystal lattice at the
initial instant of time is generated. Then, the system
relaxes to an equilibrium state and the reciprocals of the
ion coordinates are summed up with allowance made
for ion signs. The calculated sum is used to determine
the temperature parameter of the Coulomb interaction
KT at a temperature T. Then, the calculations are per-
formed at different temperatures up to the melting point
of the crystal. Let us consider in more detail the formu-
lated problem in terms of the molecular dynamics
method [15].

The Hamiltonian describing the interaction of N
particles can be represented in the form

where rij is the distance between the ith and jth parti-
cles. We assume that the number of particles in the sys-
tem is constant and their total momentum is equal to
zero. The particle motion is described by the Newton
equations

(5)

The system of the second-order differential equations is
analytically solved by double integration over the time
from 0 to t. The first and second integrations give the
velocities of particles and their coordinates, respec-
tively. Integration requires the knowledge of the initial
coordinates of particles and their initial velocities.
Under specified initial conditions, the system moves
along the trajectory with a constant energy in the phase
space.

Equations (5) are numerically solved by discretizing
the second-order differential operator on the left-hand
side of these equations. This leads to the explicit equa-
tion in central differences; that is,

(6)

Equation (6) permits one to determine the particle coor-
dinates at the time step t + h through the coordinates at
the preceding steps t and t – h and the force acting on
the particle at the step t. The coordinates at the time step
t + h are written in the form

(7)

It is assumed that tn = nh, ri(tn) = , and  = Fi(tn).
Then, Eq. (7) takes the form

(8)

H
pi

2

2m
-------

i

∑ U rij( ),
i j<
∑+=

d
2ri t( )

dt
2

----------------

Fi rij( )
i j<
∑

m
-----------------------.=

d
2ri

dt
2

--------- h
2– ri t h+( ) 2ri t( )– ri t h–( )+[ ]

Fi t( )
m

-----------.= =

ri t h+( ) 2ri t( ) ri t h–( )– Fi t( )h
2
/m.+=

ri
n Fi

n

ri
n 1+

2ri
n ri

n 1–
– Fi

n
h

2
/m.+=
YSTALLOGRAPHY REPORTS      Vol. 50      No. 5      2005



POLYMORPHIC TRANSFORMATIONS IN ALKALI HALIDE CRYSTALS 819
By specifying  and , all the subsequent positions
of particles can be determined from the recursive rela-
tionship (8). The particle positions at the (n + 1)st time
step are extrapolated from the particle positions at two
preceding steps (two-step method).

In order to calculate the kinetic energy, it is neces-
sary to know the particle velocities. The velocities are
calculated in the following approximation:

Note that the velocities calculated at the (n + 1)st step
are the velocities at the preceding step, i.e., at the nth
step. This means that the kinetic energy is calculated
with a one-step delay as compared to the potential
energy.

Equations (6) and (8) with specified initial coordi-
nates of particles correspond to the Verlet algorithm
[16]. The advantage of this algorithm is the time revers-
ibility: the calculation of the system reversed in time
results in the same equations. This holds true only in
principle. In view of the inevitable rounding errors
upon arithmetic operations performed with a limited
accuracy, the calculated trajectories of the particles do
not coincide with true trajectories. The algorithm is not
self-starting. In order to initiate this algorithm, it is nec-
essary to specify a set of particle positions not only at
the initial instant of time but also at the next step. It is
considerably more convenient when the initial particle
positions are specified at the lattice sites. If the posi-
tions and velocities of particles are specified by the ini-

tial conditions, the positions  can be calculated from
the relationship

(9)

Then, the algorithm starts with the second step.
We reformulated the Verlet algorithm in such a way

as to obtain a more stable numerical scheme [15]. Let
us introduce the designation

(10)

The equations

(11)

are mathematically equivalent to Eqs. (8) and are
referred to as the additive equations. Further reformula-
tion leads to the Verlet algorithm in the velocity form
with

(i) specifying the positions  at the first step,

(ii) specifying the velocities  at the first step,

(iii) calculating the positions at the (n + 1)st time
step and
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(iv) calculating the velocities at the (n + 1)st time
step

It is essential that the positions and velocities of parti-
cles are calculated at the same time step. Furthermore,
an increase in the stability of the algorithm is extremely
important when simulating the system for a long time.

In general, exact initial conditions corresponding to
a given energy of the system are unknown. In order for
the system to attain a required energy, reasonable initial
conditions are specified. Then, the energy is either
removed from the system or introduced into it. The pro-
cedure is performed until the system reaches the
required state. For an equilibrium phase within the Ver-
let algorithm, this is provided by the normalization of
particle velocities [16]. Such a normalization can lead
to large changes in the particle velocities. In order to
eliminate undesirable effects that can arise in this case,
the system after normalization is again brought to equi-
librium. The equilibrium phase can be obtained using
the following algorithm:

(1) Integration of the equations of motion at a given
time step.

(2) Calculation of the total energy of the system.
(3) Normalization of the particle velocities when the

total energy differs from the required energy.
(4) Repetition of the procedure beginning with the

first step until the system attains equilibrium.
The initial positions of particles in the crystal are

specified at sites of a face-centered cubic or body-cen-
tered cubic lattice, and the particle velocities are speci-
fied by the corresponding Maxwell distribution at a
given temperature. The time step is taken to be h =
10−14 s, and the total time of the evolution of the system
is t = 10–8 s. The equations of motion enable one to cal-
culate the behavior of the system only on the surface of
a constant energy. However, in our case, it is necessary
to calculate the properties of the system along an iso-
therm, i.e., it is necessary to modify the equations of
motion. The modification should be such that the sys-
tem is conceptually coupled to the thermal reservoir,
which can introduce the energy fluctuations required
for reaching the given temperature of the system [17].

One way of ensuring fluctuations at T = const con-
sists in complementing the equations of motion by the
coupling equation [17]. Such a coupling can be pro-
vided by fixing the kinetic energy in the course of the
computer experiment. Note that the coupling can be
nonholonomic. This leads to the so-called isokinetic
molecular dynamics scheme

(12)

When the system has a constant temperature, the total
kinetic energy can be taken proportional to the time
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with a very small proportionality factor (Gaussian iso-
kinetic molecular dynamics) [17]; that is,

Now, we formulate the algorithm of the isokinetic
molecular dynamics. In this case, only the average tem-
perature is fixed. The algorithm is as follows:

Start of the time cycle.
(1) Calculation of the forces.
(2) Calculation of the positions rn + 1 = g1(rn, vn, Fn).

(3) Calculation of the velocities vn + 1 = g2(vn, Fn,
Fn + 1).

(4) Calculation of the kinetic energy Ek.

(5) Normalization of the velocities vn + 1  βvn + 1.
End of the time cycle.
The functions g1 and g2 are represented by the recur-

sive relationships. Note that the function g2 should pro-
vide an additional dependence on the force at the (n +
1)st step. For this purpose, the first step of the cycle is
introduced between the second and third steps. After
attaining equilibrium of the system, the fifth step of the
cycle is ignored.

The question arises as to the magnitude of the nor-
malization factor β. The system has 3N degrees of free-
dom. However, since the total momentum of the system is
equal to zero, the number of degrees of freedom becomes
smaller by three. Moreover, the constancy of the kinetic
energy results in a decrease in the number of degrees of
freedom by unity. As a consequence, we have

(13)

1
2
--- mv i
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Fig. 1. Temperature dependences of the Coulomb interac-
tion parameter for (1) the NaCl-type structure and (2) the
CsCl-type structure.
C

After normalization, we obtain the expression

Therefore, the molecular dynamics algorithm for
the NVE ensemble can be formulated in the following
final form:

Start of the time cycle.

(1) Specification of the initial positions  at sites of
the corresponding crystal lattice.

(2) Specification of the initial velocities  with the
use of the Maxwell distribution.

(3) Calculations of the particle positions at the (n +
1)st time step

(4) Calculations of the particle velocities at the (n +
1)st time step

(5) Calculation of the sum  and the nor-
malization factor β.

(6) Normalization of all the velocities  

.

End of the time cycle.
As a result of the simulation, we obtain a set of coor-

dinates of chosen particles ri(t) as a function of the
time.

TEMPERATURE DEPENDENCE 
OF THE PRESSURE OF THE POLYMORPHIC 

TRANSFORMATION

The calculated particle coordinates ri(t) were used
to calculate the sum in relationship (4) (with allowance
made for the aforementioned sign rule) and then the
temperature parameter of the Coulomb interaction KT.
Figure 1 depicts the dependences KT(T) for ionic crys-
tals with the NaCl- and CsCl-type lattice structures.
The analysis of the dependences KT(T) in Fig. 1 permits
us to make a number of very important inferences.
First, the parameter KT for both the B1 (NaCl-type) and
B2 (CsCl-type) structures only slightly and almost lin-
early varies up to temperatures of the order of 1/2Tm.
However, in the temperature range 0.7Tm–Tm, the
behavior of the dependence drastically changes and the
temperature parameter of the Coulomb interaction

 at temperatures of the order of the melting tem-
perature appears to be considerably smaller than the
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Madelung constant of the corresponding crystal struc-
ture. In this case, the change in the parameter KT for
crystals with the B1 structure turns out to be substan-
tially larger than that for the B2 structure:

 = 1.432998,  = 1.551149,

 = 1.747558,  = 1.762670.

Therefore, the temperature parameter of the Cou-
lomb interaction KT(T) at temperatures of the order of
the melting temperature is smaller than the Madelung
constant by 18% for crystals with the NaCl-type lattice
and by 12% for crystals with the CsCl-type lattice:

It should be noted that the difference between the
Madelung constants of the B1 and B2 structures at T =
0 K is approximately equal to 1%, whereas the differ-

ence between the parameters  and  at T ~ Tm is
approximately 7.5%. This suggests that the change in
the energy of the Coulomb interaction of particles with
an increase in the temperature for compounds with the
CsCl-type structure is smaller than the corresponding
change for compounds with the NaCl-type structure.
Consequently, we can predict that the temperatures and
heats of melting for ionic crystals with the B2-type lat-
tice should be, on average, higher than those for ionic
crystals with the B1-type lattice. The analysis of the
data available in the literature on the heats of melting of
alkali halide crystals [18] demonstrates that the above
ratio is valid for all the compounds studied in the
present work. Therefore, the proposed model qualita-
tively and quantitatively describes the temperature
effects of the polymorphic transformations in ionic
crystals.

Kmin
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Kmin
B2

αµ
B1 αµ

B2

∆ B1( ) Kmin
B1 αµ

B1
– 0.31456,= =

∆ B2( ) Kmin
B2 αµ
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– 0.211521.= =

KT
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Fig. 2. Temperature dependences of the pressure of the
polymorphic transformation for the lithium halide com-
pounds (1) LiF, (2) LiCl, and (3) LiBr.
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Fig. 3. Temperature dependences of the pressure of the
polymorphic transformation for the sodium halide com-
pounds (1) NaF, (2) NaCl, and (3) NaBr.
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Fig. 4. Temperature dependences of the pressure of the
polymorphic transformation for the potassium halide com-
pounds (1) KF, (2) KCl, and (3) KBr.

10

0

20

30

40

200
T, K
1000800600400

2

3

1

P0, kbar

5

15

25

35
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The thermodynamic potential of a crystal at T ≠ 0 K
can be written in the form

(14)

The temperature T in expression (14) is a parameter.
For chosen temperature Tf, the temperature parameter
of the Coulomb interaction  is calculated for crys-
tals with the B1 and B2 structures. Then, the pressure of
the polymorphic transformation is calculated with the
use of the thermodynamic potential (14) according to
the procedure described above. The calculations are
performed at different temperatures  of the system
up to temperatures of the order of the melting point of
the crystal.

The temperature dependences of the pressure of the
polymorphic transformation for lithium, sodium, potas-
sium, and rubidium halides are plotted in Figs. 2–5,
respectively. The pressure of the polymorphic transfor-
mation for the lithium and sodium compounds, potas-
sium and rubidium fluorides, and rubidium chloride
increases weakly with an increase in the temperature
(∆P/∆T > 0), whereas the inequality ∆P/∆T < 0 is
observed for the KCl, KBr, and RbBr crystals over the
entire range of temperatures under investigation. The
theoretical calculations predicted that the dependences
P0(T) for three compounds exhibit maxima at the fol-
lowing critical temperatures Tcr: Tcr(KCl) = 491 K,
Tcr(KBr) = 337 K, and Tcr(RbBr) = 393 K. Conse-
quently, we can make the inference that, at T = Tcr, the
entropy jump is absent upon the B1–B2 phase transi-
tion: ∆SB1–B2(Tcr) = 0. Unfortunately, the experimental
data on the pressure of the polymorphic transformation
at high temperatures are very unreliable. However,
these data do not exclude the possibility of maxima in
the dependences P(T) of the B1–B2 phase transition for
the potassium chloride and potassium bromide in the
temperature range T ~ 150–350 K [19]. This is in good
agreement with the critical temperatures Tcr calculated
in the present study. Therefore, for the KCl, KBr, and
RbBr crystals, there can exist isotherms whose inter-
section leads to a change in the sign of the thermal
effect accompanying the B1–B2 phase transformation.
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Abstract—The effect of excess W and La3+, Y3+, and Mo6+ impurities on the luminescence spectra and the ther-
mally stimulated luminescence of PbWO4 crystals is studied. A high tungsten content (up to 1 at %) in the
charge mixture results in a high luminescence intensity in the green spectral region. Lanthanum impurity
decreases the transmission in the short-wavelength (k > 29 000 cm–1) spectral region. Lanthanum and yttrium
impurities decrease the luminescence intensity. At low (102 ppm) concentrations, Mo impurity can somewhat
increase the light yield. However, the presence of Mo in PbWO4 shifts the absorption-band edge to longer wave-
lengths, while an increase in the Mo concentration above 102 ppm decreases the luminescence intensity. © 2005
Pleiades Publishing, Inc.
INTRODUCTION

Doping of PbWO4 (PWO) crystals was previously
used [1–4] to eliminate coloration and increase the light
yield and radiation resistance. A charge change occur-
ring when a matrix ion is substituted by a heterovalent
impurity ion leads to rearrangement of intrinsic point
defects and affects the change in the optical properties
of the crystals.

Hole centers (Pb3+, O–) negatively affect the optical
properties of PWO [3, 4]. To compensate for these
defects, trivalent impurities were used [1, 2, 5–7]. It
was shown [2, 5, 7] that the trivalent impurities (La, Y,
Lu), substituting lead, increase the transmission in the
short-wavelength (320–420 nm) spectral region and the
radiation resistance of PWO.

One of the most important problems is the effect of
the Mo impurity, which is difficult to eliminate in tung-
state crystals. There is evidence that molybdenum pro-
duces electron traps and negatively affects the scintilla-
tion properties of tungstate crystals, while suppressing
the fast luminescence component [8–11].

EXPERIMENTAL RESULTS

In this study, we consider the effect of Y, La, and Mo
impurities and an excess of W on the transmission and
luminescence spectra and the integrated thermally
stimulated luminescence (TSL) of PWO crystals. The
transmission spectra of 10-mm-thick crystal plates
were recorded on a SPECORD spectrophotometer.
Luminescence was excited by X-ray CuKα radiation.
The luminescence spectra were measured in reflection
on a DMR-23 spectrometer and registered in the photon
counting mode by a FÉU-100 photomultiplier. The
1063-7745/05/5005- $26.00 ©0823
spectral sensitivity of the FÉU-100 is constant with an
accuracy to a value within 10% in the wavelength range
250–650 nm.

Crystals 1–5 (Table 1) were grown in a nitrogen
atmosphere at the Bogoroditsk Plant of Technochemi-
cal Products (BPTCP). Crystals 6 and 7 were grown at
the same plant within the ALICE project. Molybde-
num-doped crystals 8 and 9 were grown at the All-Rus-
sia Research Institute for the Synthesis of Materials
(VNIISIMS).

The impurities were analyzed by spark mass spec-
trometry on a JEOL JMS-01-BM2 mass spectrometer
(Japan). The molybdenum content was determined by
X-ray fluorescent energy-dispersive spectrometry on a
PHILIPS PW95000 system. The random error in deter-
mining the concentration is characterized by a relative

Table 1.  Impurity content in PWO crystals

Crystal Impurity Impurity content, ppm

1 La 200

Y 90

2 W excess 0.5% in charge mixture

3 W excess 0.5% in charge mixture

Mo 500

4 La 400

5 Mo 9

6 Mo 20

7 Mo 100

8 Mo 700

9 Mo 5000
 2005 Pleiades Publishing, Inc.
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standard deviation. The latter ranged from 0.15 to 0.30
for the spark mass spectrometry and was 0.05 for X-ray
fluorescent energy-dispersive spectrometry. The values
obtained by the analysis are listed in Table 1 in particles
per million (1 ppm = 0.0001 at %). Table 1 presents
only the concentrations of basic impurities; the concen-
tration of other impurities is no more than 10 ppm.
Crystals 2 and 3 were grown with a higher (up to 1 at %
in the charge mixture) tungsten content as compared
with the stoichiometric composition. Since W is the
main component in PWO crystals, its content was not
analyzed.

A distinguishing feature of the crystals grown from
a charge mixture with a higher tungsten content is a
high luminescence intensity J in the green spectral
region (Fig. 1, curves 2, 3). At the same time, the trans-
mission spectra of these crystals (Fig. 2) are quite dif-
ferent. In crystal 3, containing molybdenum, the
absorption band edge is shifted to longer wavelengths
(curve 3), while crystal 2 (with excess W but without
Mo) exhibits the shortest-wavelength absorption-band
edge (curve 2).

The transmission T of La-doped crystals 1 and 4 is
somewhat lower in the short-wavelength (k >

1

350300 400 450 500 550 600 650
λ, nm

0

2

3

4

5

6

7
J, arb. units

1

2

3

4

5

Fig. 1. Luminescence spectra of doped PbWO4 crystals
with impurity contents of (1) 200 ppm La and 90 ppm Y,
(2) 0.5 at % of excess W, (3) 500 ppm Mo and 0.5 at % of
excess W, and (4) 400 ppm La and for (5) an undoped crys-
tal.

Table 2.  Temperatures corresponding to the TSL peaks of a
PWO crystal with W excess (1 at % in charge mixture)

TSL peak Temperature, K Trapping-center 
level, eV

1 110 0.22

2 172 0.34

3 190 0.38

4 208 0.40

5 220 0.44

6 242 0.48
C

29000 cm–1) spectral region (Fig. 2, curves 1, 4). These
crystals exhibit the lowest total luminescence intensity,
which is especially low in the green spectral region
(Fig. 1, curves 1, 4).

Crystal 5 was not intentionally doped and was con-
sidered nominally pure.

A general feature of the TSL curves for PWO is a
peak at 100–120 K (Fig. 3). The presence of this peak
in the crystals grown in a nitrogen atmosphere
(BPTCP) and its enhancement as a result of vacuum
annealing give grounds to relate it to oxygen vacancies
[10, 11]. Other authors relate this peak to the presence
of Pb3+-type hole centers [12]. We believe that the TSL
peak observed at 100–120 K can hardly be attributed to
Pb3+-type centers because this peak can be clearly seen
in the spectra of pure crystals grown in a neutral
medium (BPTCP) and annealed in vacuum.

The TSL spectrum of crystal 2 (with excess W) con-
tains the most complete set of peaks. Therefore, it is
reasonable to decompose the TSL spectrum of this
crystal into Gaussian components and list their temper-
atures as most typical for PWO (Table 2).

The peak temperatures listed in Table 2 can be sub-
divided into three groups: (I) the low-temperature
(100–115 K) group, (II) the medium-temperature (170–
190 K) group, and (III) the high-temperature (210–
240 K) group. It should be noted that, in the crystals
with excess W grown in air (VNIISIMS), the deep trap
levels, responsible for the peaks of type III, are most
pronounced (Fig. 4, curve 1). Annealing (in argon)
results in a general decrease in the TSL light sum
(Fig. 4, curve 2) and in a relative decrease in the TSL
intensity associated with deep trap centers.

In the Mo-doped crystals, the absorption-band edge
is shifted to longer wavelengths. The luminescence
spectra of the Mo-doped crystals that were at our dis-
posal are shown in Fig. 5. The presence of Mo sup-

10

2.92.7 3.1 3.3 3.5 3.7 3.9
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Fig. 2. Transmission spectra of doped PbWO4 crystals with
the impurity contents of (1) 200 ppm La and 90 ppm Y,
(2) 0.5 at % of excess W, (3) 500 ppm Mo and 0.5 at % of
excess W, and (4) 400 ppm La and for (5) an undoped crys-
tal.
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presses the blue luminescence. At low (up to 500 ppm)
Mo concentrations, the intensity of the long-wave-
length (green) luminescence increases with an increase
in the concentration. However, with a further increase
in the Mo concentration, the intensity of the green lumi-
nescence decreases. It should be noted that the con-
struction of a joint concentration dependence by com-
paring curves 1, 2, and 3, on the one hand, and curves 4
and 5, on the other hand, is not quite correct, since sam-
ples 1, 2, and 3 were obtained at BPTCP, while samples 4
and 5, were prepared at VNIISIMS (i.e., under different
conditions). However the shift of the luminescence
peaks to the green region with an increase in the Mo
concentration allows a qualitative comparison of the
TSL intensity for all these crystals. It is likely that this
comparison can explain the difference in the behavior
of the luminescence intensity, depending on the Mo
presence, for the crystals from different sources.

DISCUSSION

It is believed that a deficit of tungsten arises during
the growth of PWO crystals. This deficit is compen-
sated for by the appearance of the lead ions in the Pb3+

state. The addition of WO3 to the charge mixture plays
a positive role, increasing the transmission in the spec-
tral region containing an absorption band at 420 nm
(k = 24000 cm–1), which is attributed to Pb3+ ions. An
excess of tungsten facilitates the formation of lead

vacancies [ ] and compensating oxygen vacanciesVPb
2–

50

100
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150 200 250 300
T, K

100

150

200

250

300

350

400
J, arb. units

1

2

Fig. 4. TSL spectra of the PbWO4 crystals with 0.5 at % of
excess W: (1) the unannealed sample and (2) the sample
annealed in argon at 800 K.

Fig. 3. TSL spectra of PbWO4 crystals. The impurity con-
tents are (a) 200 ppm La and 90 ppm Y, (b) 0.5 at % of
excess W, (c) 500 ppm Mo and 0.5 at % of excess W, (d)
400 ppm La. The spectrum in panel (e) is for an undoped
crystal. Curves (1–6) in panel (b) (crystal 2 in Table 1) dem-
onstrate the decomposition of the TSL spectrum into Gaus-
sian components.
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[ ]. [ ] defects may give rise to hole centers,
which are responsible for the increase in the lumines-

cence intensity. [ ] defects and their associations can
be related to the increase in the stored light sum and the
formation of relatively deep trap centers responsible for
the TSL peaks of group III.

The TSL light sum in PWO : La3+ crystals is two
orders of magnitude lower than that in PWO:W crystals
(compare Figs. 3a and 3d and Fig. 3b). The impurities
(La3+, Y3+), which increase the positive charge by sub-

stituting Pb2+, compete with [ ]-based centers and
decrease the stored light sum. This fact again supports
the assumption that the TSL peaks in the temperature

range 200–250 K are due to [ ]-based centers.

The effect of Mo6+ on the PWO transmission spec-
trum is explained by a higher polarizability of
[åÓé4]2– ions with respect to [WO4]2– ions. Therefore,
the substitution of W6+ by Mo6+ in the scheelite-type
lattice leads to the formation of tetrahedra, in which é2–

is more easily ionized. It is possible that at low Mo6+

concentrations this phenomenon increases the number
of excited states, thus enhancing the luminescence
intensity, without significantly affecting the decrease in
transmission. Such an effect can be observed if the
dependence of the luminescence intensity on the Mo6+

concentration is linear, while absorption exponentially
depends on the Mo6+ concentration.

A possible explanation of the luminescence sup-
pression in highly doped PWO4:Mo crystals is the sig-
nificant increase in the light absorption in the short-
wavelength spectral region associated with the shift of
the absorption edge in the PWO:Mo crystals to the
spectral region 350–360 nm, as compared to the begin-
ning of the absorption band (λ < 380 nm), which is typ-
ical of blue-luminescent crystals. However, this shift is
not so large that it directly suppresses the luminescence
at λ > 400–420 nm. Apparently, the presence of Mo in
high concentrations leads to additional quenching of

VO
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VO
2+

1

350300 400 450 500 550 600 650
0

λ, nm

2
3

4
5

6

7
J, arb. units

1

2

3

4
5

Fig. 5. Luminescence spectra of Mo-doped PbWO4 crys-
tals. The impurity contents are (1) 20, (2) 100, (3) 500,
(4) 700, and (5) 5000 ppm.
C

blue luminescence due to the suppression of excitation
processes at λ < 350–360 nm, which, owing to the
Stokes shift, give rise to the luminescence in the range
400–420 nm.

CONCLUSIONS

An increase in the W concentration in PWO crystals
leads to the suppression of Me3+-type hole centers and
enhances the luminescence intensity of these crystals.
At the same time, an increase in the W concentration
results in the increase in the number of relatively deep
trap centers and the stored TSL light sum.

Doping of PbWO4 by La3+ impurities decreases the
TSL efficiency and the luminescence intensity. This
effect can be related to a decrease in the efficiency of
the formation of Pb3+ and O– hole centers.

The presence of small amounts (102 ppm) of a Mo
impurity in PbWO4 crystals can somewhat increase the
light yield. However, the presence of Mo results in the
shift of the luminescence spectrum to longer wave-
lengths, and the luminescence intensity decreases as the
Mo concentration increases.
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Abstract—The EPR spectra of Fe3+ impurity ions in NaZr2(PO4)3 single crystals at 300 K are investigated, and
the spin Hamiltonian of these ions is determined. A comparative analysis of the spin-Hamiltonian and crystal-
field tensors is performed using the maximum invariant component method. It is demonstrated that Fe3+ impu-
rity ions substitute for Zr4+ ions with local compensator ions located in cavities of the B type. It is revealed that

the invariant of the spin-Hamiltonian tensor B4 and the crystal-field tensor  depend substantially on the
mutual arrangement of ions in the first and second coordination spheres. The corresponding dependences are
analyzed. © 2005 Pleiades Publishing, Inc.
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INTRODUCTION

Sodium zirconium phosphate NaZr2(PO4)3 has a
mixed framework M2(TO4)3 [1] of the rhombohedral
type [2]. This material is promising for use as an ionic
conductor [3] and a ceramic matrix for immobilization
of radioactive wastes for their long-term storage [4].
The NaZr2(PO4)3 compound is the end member of the
continuous series of Na1 + xZr2SixP3 – xO12 (x = 0–3)
solid solutions, in which the heterovalent substitution
of impurity ions for host ions leads to a redistribution of
filling cations in the structure [5] and to a change in the
crystal field in the substitution region. Structural inves-
tigations by the EPR method allow one to elucidate the
influence of impurity ions on the distribution of mobile
ions in the structure.

When studying the crystals by the EPR method, the
location of an impurity ion in the ground state with spin
S ≥ 5/2 in the case of nonlocal charge compensation can
be reliably determined from the topological parameters
of the spin-Hamiltonian tensor B4 and the irreducible

quadratic tensor product {V4 ⊗ V4}4 =  of the crys-
tal-field tensor V4 [6, 7]. A comparative analysis of the
spin-Hamiltonian and crystal-field tensors is performed
using the point-charge model by ignoring the distur-
bance of the field in the substitution region of the cen-
tral ion. The presence of a charge compensator in the
substitution region substantially changes the spin-
Hamiltonian tensor B2. Hence, the location of the com-
pensator ion, as a rule, is determined from a compara-
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tive analysis of the tensor B2 and the second-rank irre-

ducible quadratic tensor product {V4 ⊗ V4}2 =  of
the crystal-field tensor V4 [6, 7].

In order to justify the correctness of these approxi-
mations as applied to point defects in the crystal, it is
necessary to extend the classes of objects and to ana-
lyze objects belonging to different classes. For this pur-
pose, dielectric crystals with ionic conductivity seem to
be appropriate systems in which the locations of filling
cations are governed by the framework structure and
have been determined by diffraction methods.

The purpose of this work was to investigate in detail
the angular dependence of the Fe3+ EPR spectra of
NaZr2(PO4)3 single crystals and to calculate and ana-
lyze their spin-Hamiltonian and crystal-field tensors
comparatively.1 

The spin-Hamiltonian and crystal-field irreducible
tensors AL of rank L are analyzed using the maximum
invariant component (MIC) method [8], which is based
on the examination of the part SL(GS) of the invariant SL

1 The preliminary results were reported at the International Confer-
ence “Spectroscopy, X-ray Diffraction, and Crystal Chemistry of
Minerals” (Kazan, 1997); the International Conference on
Growth and Physics of Crystals, Dedicated to the Memory of
M.P. Shaskolskaya (Moscow, 1998); the France–Spain Confer-
ence on Chemistry and Physics of Solids (Carcans–Buisson,
2000); and the 4th National Conference on Application of X-ray,
Synchrotron, Neutron, and Electron Radiation to Investigation of
Materials (Shubnikov Institute of Crystallography, Russian Acad-
emy of Sciences, Moscow, 2003).
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of the tensor AL in the unitary group U upon rotation of
the coordinate system. It should be noted that SL(GS) is
the invariant of the subgroup GS of the group U. Unlike
the conventional use of the invariant combinations of
the internal-field parameters for describing low-sym-
metry activator centers in crystals and glasses [9], the
invariants used in the MIC method are applied to the
determination of the spatial orientation of the tensors.
In order to elucidate the role played by the invariants in
analyzing the intrinsic and orientational properties of
the tensors, in this paper, we discuss an analogue of the
MIC method and the method of the transformation of
the quadratic forms and equations of second-order sur-
faces into their canonical forms. We also consider the
dependence of the invariants of the spin-Hamiltonian
and crystal-field tensors on the mutual arrangement of
the first and second coordination spheres of a paramag-
netic ion.

THE CANONICAL FORM OF THE SPIN 
HAMILTONIAN

The location of an impurity paramagnetic ion in a
single crystal is determined by analyzing the tensors BL

of the spin Hamiltonian  with the MIC and topologi-

cal methods [10]. The spin Hamiltonian  can be writ-
ten in the form

where

(1)

By using the second-rank tensor B2 as an example, we
will demonstrate that these methods, as applied to the
EPR method, are similar to the methods used to inves-
tigate polynomials and hypersurfaces in analytic geom-
etry [11].

Let X0Y0Z0 be the Cartesian coordinate system in
which the tensors of the spin Hamiltonian (1) are
defined. The indicating surface of the tensor of rank L = 2
[7, 10] can be expressed through the Euler angles (α, β,

γ = 0): B20(αβ) = (B22cos2α – B2–2sin2α)sin2β –

(B21cosα – B2–1sinα)sinβcosβ + (1/2)B20(3cos2β – 1).
By using the designations x = sinβcosα, y = sinβsinα,
and z = cosβ, this surface is rearranged into the form
B20(x, y, z) = a11x2 + a22y2 + a33z2 + 2a12xy + 2a13xz +

2a23yz + a44, where a11 = B22, a22 = − B22,

a33 = (3/2)B20, a44 = −B20/2, a12 = − B2–2, a13 =

− B21, and a23 = B2–1. The surface B20(x, y, z)
is defined on a unit sphere x2 + y2 + z2 = 1.

Ĥ

Ĥ

Ĥ βŜgH ĤL,
L

∑+=

ĤL T LM Ŝ( )ALM

M L–=

L

∑ BLMT LM Ŝ( )
M L–=

L

∑= =

and  L  =  even number.

3/2

6

3/2 3/2

3/2

3/2 3/2
C

By rotating the X0Y0Z0 coordinate system, it is pos-
sible to find the X 'Y 'Z ' coordinate system in which the
indicating surface B20(x, y, z) has the canonical form

[11]: B20(x', y', z') =  +  +  + ,

where  = ,  = – ,  = 3/2 ,

and  = –1/2 . Depending on the sign of the ratio
/ , the function B20(x', y', z') can be represented

in the following form: B20(x', y', z') = 1/2 (±x '2/a2 

y '2/a2 + z '2/c2 – 1), where 1/a2 = , η = | / |,
and 1/c2 = 3. It can be seen that the indicating surface
of the tensor B2 has the external symmetry group D2h =
3L23PC [12], whose twofold axes are parallel to the
axes of the X 'Y 'Z ' coordinate system and are principal.

The topology of the indicating surface of the tensor
B2 is determined by the characteristic equation B20(x, y,
z) = 0, which, in the X 'Y 'Z ' coordinate system, has the
form B20(x', y', z') = 0 or ±x '2/a2  y '2/a2 + z '2/c2 = 1.
This equation coincides with the canonical equation for
a one-sheeted hyperboloid. The indicating and charac-
teristic surfaces have identical symmetries and princi-
pal axes. The intersection of a one-sheeted hyperboloid
with a sphere of radius R = 1 separates the sphere into
three parts: one part differs from the other parts by the
sign of B20(x', y', z').

At η = 0, the zeros of the function B20(x', y', z') are
represented by the circles x '2 + y '2 = 2/3 at the height
z' = ± . At /  > 0 and 0 < η ≤ 1/ , we have
a2 ≥ 1 and a throat ellipse (y ' = 0) intersects the unit
sphere at the points x '2 = 2a2/(3a2 – 1) and z '2 = (a2 –
1)/(3a2 – 1). In this case, the lines of the zero level are
symmetrically located with respect to the plane z' = 0.
At η > 1/ , we have a2 < 1 and the throat ellipse does
not intersect the unit sphere; i.e., the intersection lines
of the sphere and the hyperboloid are located on differ-
ent sides of the plane y' = 0.

In order to determine the system of the principal
axes of the tensor B2 by the MIC method, the invariant

S2 = (B20)2 + 2  + (B2 – M)2] in any coordi-
nate system XYZ obtained through rotation of the coor-
dinate system X0Y0Z0 is represented as the sum S2 =
S2(D2h) + S2r, where S2(D2h) = (B20)2 + 2(B22)2. The XYZ
axes coincide with the 3L2 axes of the group D2h. The
coordinate system in which the quantity S2(D2h) takes
the maximum value, maxS2(D2h) = S2 = ( )2 +
2( )2, represents the system of the principal axes.
The system of the principal axes can also be determined
by diagonalizing the corresponding second-rank Carte-
sian tensor.

However, there exist a number of problems that can
be solved only using the MIC method. Let us determine
the measure of deviation of the tensor B2 from symme-
try D∞h. When the tensor B2 has symmetry D∞h, the Z '

a11' x '
2

a22' y '
2

a33' z '
2

a44'

a11' 3/2B22
' a22' 3/2B22

' a33' B20
'

a44' B20
'

B22
' B20

'

B20
' +−

6η B22
' B20

'

+−

1/3 B22
' B20

' 6

6

[(B2M)
2

M 1=
2∑

B20
'

B22
'
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axis of the X 'Y 'Z ' coordinate system in which S2 = (B20)2

is the axis ∞ of the group D∞h. If the symmetry is dis-
torted with respect to the symmetry group D∞h, the
invariant S2 in the XYZ coordinate system is represented
as the sum S2 = S2(D∞h) + S2r, where S2(D∞h) = (B20)2. By
rotating the XYZ coordinate system, we find the coordi-
nate system (XYZ, D∞h) in which the term S2(D∞h) takes
the maximum value, max S2(D∞h). The quantity d =
[S2 – max S2(D∞h)]/S2 is the measure of deviation of the
tensor B2 from symmetry D∞h.

The MIC method appears to be indispensable in a
comparative analysis of tensors BL of rank L ≥ 4 that are
irreducible with respect to the group of continuous rota-
tions. The characteristic equation BL0(α, β) = 0 at L ≥ 4
that determines the zero level of the indicating surface
corresponds to a more complex topology [7].

SAMPLE PREPARATION AND EXPERIMENTAL 
TECHNIQUE

Single crystals of NaZr2(PO4)3 were grown by the
solution–melt method with the use of the initial
reagents Na2CO3, ZrO2, NH4H2PO4, NaF, and V2O5
taken in the ratio (mol %) 0.07Na2O : 0.07ZrO2 :
0.32P2O5 : 0.47NaF : 0.07V2O5 [13]. Crystallization
was performed by cooling the system at a rate of
0.5 K/h in the temperature range 950–800°C. After
completing the process, the platinum bar was removed
from the solution and cooled to room temperature at a
rate of 50 K/h. The crystals grown had the form of indi-
vidual rhombohedra. Moreover, the single crystals were
grown with the use of the initial batch containing MoO2.

The EPR spectra were recorded at a frequency ν =
9.4 GHz and a temperature of 300 K on a DX 70-02
EPR spectrometer (SKB Analitpribor, Belarussian
State University, Minsk). The sensitivity of the spec-
trometer to impurities was equal to 1014 spins/G. In
order to investigate the spectra of the single-crystal
samples in detail, the spectrometer was equipped with
a specially designed goniometer. The high-quality
spectra were obtained by their prolonged accumulation.

ELECTRON PARAMAGNETIC RESONANCE 
OF Fe3+ IONS IN A NaZr2(PO4)3 SINGLE CRYSTAL

The EPR study was performed using isometric crys-
tals ~2 mm in size with rhombohedral faces of the

[ ] type. The samples grown from the melt con-
taining the molybdenum dopant are characterized by
the narrowest and most intense lines (Fig. 1). The EPR
spectra involve lines of Cr3+, Mn2+ (~10–5 wt %), and
Fe3+ (~n × 10–4 wt %) impurities. In the present work,
we thoroughly examined only the Fe3+ EPR spectra.
The preliminary investigation into the angular depen-
dence of the EPR spectra revealed that, at H || [0001],
six symmetry-related Fe3+ EPR spectra (KM = 6) are

1124
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merged together (Fig. 1a). According to the space

group −  of the NaZr2(PO4)3 structure [1], the
multiplicity KM = 6 corresponds to the position with the
Laue symmetry group Ci. On this basis, the spin Hamil-
tonian (1) with symmetry Ci was chosen for describing
one symmetry-related spectrum.

The direction of the field H in the spin Hamiltonian
(1) is described by the unit vector n[sinθcosϕ,
sinθsinϕ, cosθ] in the coordinate system with the axes
X0 || L2, Y0 || P, and Z0 || L3 . The L2 and L3 axes and the P
plane are the symmetry elements in the group D3d of the
crystal. The coordinate systems for each six symmetry-
related positions of Fe3+ ions are related by the symme-
try elements of the group D3 ⊂ D3d, which are repre-
sented by the Euler angles (α, β, γ): E  (0, 0, 0),
31  (2π/3, 0, 0), 32  (–2π/3, 0, 0) 2x  (0, π, π),
2xy  (0, π, π/3), and   (–π/3, π, 0). In these
local coordinate systems, the unit vector n has the coor-
dinates [sinθcosϕ, sinθsinϕ, cosθ], [−sinθcos(ϕ + 60),
−sinθsin(ϕ + 60), cosθ], [−sinθcos(ϕ – 60),
−sinθsin(ϕ – 60), cosθ], [sinθcosϕ, –sinθsinϕ,
−cosθ], [–sinθcos(ϕ + 60), sinθsin(ϕ + 60), −cosθ],
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 EPR spectra of NaZr

 

2

 

(PO4)3 crystals at a fre-
quency ν = 9.4 GHz and at a temperature of 300 K in mag-

netic fields (a) H || [0001] and (b) H || [ ]. The identi-
fication of the transitions corresponds to the energy-level
diagram in Fig. 3.
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Fig. 2. Angular dependences of the Fe3+ EPR spectrum for the NaZr2(PO4)3 crystal in the (a) (1210) and (b) (0001) crystallogarphic
planes. Open and closed circles indicate the measured resonance fields H for the transitions at ∆M = 1 and ∆M ≠ 1, respectively.
Lines represent the resonance fields H calculated from the spin-Hamiltonian parameters. The identification of the transitions corre-
sponds to the energy-level diagram in Fig. 3.
       
and [−sinθcos(ϕ – 60), sinθsin(ϕ – 60), –cosθ],
respectively.

In order to choose the planes for detailed measure-
ments of the spectra, we analyzed the dependences of
the tensors B2 and B4 of the spin Hamiltonian (1) on the
Euler angles (α = ϕ, β = θ, γ = 0) [7] within the exact
independent domain of the group D3d [14]. In this
domain, we restricted ourselves to two forms repre-
sented by the dihedral angle between the ( ) and
( ) planes [14] and the trihedral angle with the
( ), ( ), and (0001) faces [15]. The bound-
aries of these forms can be set and controlled using the
arrangement of the symmetry-related EPR spectra.
When the Zeeman energy is comparable or larger than
the initial splittings, the angular dependence of the EPR
spectrum is predominantly governed by the diagonal
elements B20(ϕ, θ) and B40(ϕ, θ) of the spin Hamilto-
nian, i.e., by indicating surfaces of the tensors. Conse-
quently, with the aim of increasing the accuracy of the
determination of the spin-Hamiltonian parameters, the
planes for measurements of the spectra within the exact
independent domain should be chosen so that all the

0110
1210
1210 2110
C

tensor elements contribute to the dependences B20(ϕ, θ)
and B40(ϕ, θ). In EPR studies, when the spin-Hamilto-
nian matrix is numerically diagonalized, the planes for
measurements are chosen taking into account the
requirements for the minimization of the time of spec-
trum recording. In our experiments, the angular depen-
dences were measured in the ( ) and (0001) planes
(Figs. 2a, 2b). The angular dependence of three doubly
degenerate symmetry-related EPR spectra in the
( ) plane (Fig. 2a) permits us to determine reliably
all the spin-Hamiltonian parameters, except the ele-
ment B43.

In order to determine the element B43, we measured
the angular dependence of all six symmetry-related
EPR spectra in the (0001) plane at 0° ≤ ϕ ≤ 30° (Fig. 2).
These data make it possible to construct the depen-
dence of any symmetry-related EPR spectrum in the
range 0° ≤ ϕ ≤ 180° in the (0001) plane.

By using the components of the vector H in the local
coordinate systems, the spin-Hamiltonian parameters
(table) were calculated according to a program similar
to that described in [16]. The dependence of the energy

1210

1210
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levels and their differences on the external magnetic
field H is shown in Fig. 3.

ANALYSIS OF THE SPIN-HAMILTONIAN 
AND CRYSTAL-FIELD TENSORS

The structure of the NaZr2(PO4)3 crystal [1] was
analyzed in order to determine the location of Fe3+

impurity ions in this crystal. The NaZr2(PO4)3 frame-

work has the space group –  and can be repre-
sented as a rhombohedral unit cell whose vertices and
center are occupied by lanterns. The structure of the
central lantern turns out to be inverted with respect to
the structure of the lanterns located at the vertices, and
this lantern serves as a bridge between the latter lan-
terns [2]. The M2T3 lantern is composed of two M octa-
hedra [ZrO6] with a common triple axis and three T tet-
rahedra [PO4] (Fig. 4). The parallel edges of this linking
tetrahedra form an empty trigonal prism with symmetry
D3 between octahedra. In this framework, the M2T3 lan-
terns alternate along the triple axis and form octahedral
cavities of the A type. Between columns, there are B-
type cavities formed by ten O2– ions (Fig. 4).

In the NaZr2(PO4)3 structure, the ions of the frame-
work occupy the following positions with the symme-

R3c D3d
6

B4 X0 Y0 Z0

ξ 118.68 47.3 123.82
η 143.44 94.85 53.87
ζ 69.34 43.11 54.18

Good agreement between the direction angles of the
ξ, η, and ζ principal axes (the differences do not exceed
1.5°) for these tensors and the insignificant deviation
from cubic symmetry d4(B4, Oh) = 0.57 × 10–2,

d4( , Oh) = 0.38 × 10–2 confirm that Fe3+ ions occupy
the Zr4+ positions in the NaZr2(PO4)3 structure. The
existence of six symmetry-related spectra is associated
with the fact that the compensator ion is not located on
the triple axis of the substituted position. The mobility
of the Na+ compensator ion suggests that similar ions
are located in the B cavities in the structure. The coor-
dinates of the compensator ions in the B cavities were
refined by minimizing the sum of the squares of the
deviations of the corresponding elements of the nor-

V4
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B2 X0 Y0 Z0

X' 44.03 134.0 90.33
Y' 46.28 44.44 83.54
Z' 94.25 94.87 6.47
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 5      2005
try groups Gα: Zr4+, 12c (Gα = C3); P5+, 18e (Gα = C2);
OI, 36f (Gα = C1); and OII, 36f (Gα = C1). The Na+ ions
compensate for the framework charge, fill all cavities of
the A type, and occupy the 6b positions (Gα = C3i). The
B cavities correspond to the 18e positions (Gα = C2) and
alternate with the P5+ ions.

We can assume that Fe3+ impurity ions in the
NaZr2(PO4)3 structure occupy the Zr4+ positions
arranged similarly to the Fe3+ ions in the Na3Fe2(PO4)3

structure [3]. In the NaZr2(PO4)3 structure (Fig. 4),
there are two magnetically related Zr4+ positions with the
coordinates (x = 0, y = 0, z = 0.64568) and (x = 0, y = 0,
z = 0.85432). In order to assign the spin-Hamiltonian
tensor to one of these positions, the crystal-field tensor

 was calculated using the point-charge model for the
[ZrO6] octahedron. In the coordinate system (X0 || L2, Y0

|| P, Z0 || L3), the ξ, η, and ζ principal axes of the cubic
components of the fourth-rank spin-Hamiltonian tensor

B4 and the fourth-rank crystal-field tensor  for the
Zr4+ position with the coordinates (x = 0, y = 0, z =
0.64568) are determined by the following matrices of
the direction angles.

V4
44

V4
44

(2)

X0 Y0 Z0

ξ 117.91 48.01 125.26
η 144.43 94.06 54.74
ζ 69.80 42.28 54.74

V4
44

malized crystal-field tensor  from the elements of
the spin-Hamiltonian tensor B2: σ2 =  –

(SL(BL)/SL( ))1/2]2. The crystal-field elements
were calculated with due regard for the contribution
from the ions in the coordination sphere 35 Å in radius.
The elements of the spin-Hamiltonian tensor corre-
spond to the compensator ion with the coordinates (x =
–0.3062, y = –0.2336, z = 0.7319) in the B cavity with
the center (x = –0.30736, y = –0.30736, z = 3/4). In this
case, the discrepancy factor was determined to be
σ2/S2(B2) = 0.01 and the matrices of the direction angles
of the X, Y, and Z principal axes of the spin-Hamiltonian

tensor B2 and the crystal-field tensor  are in reason-
able agreement:

V2
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L∑

V LM
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V L
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V2
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X0 Y0 Z0

X' 44.95 134.44 95.44
Y' 45.07 45.79 82.98
Z' 91.12 98.82 8.89

V2
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The local compensator ion only weakly disturbs the
crystal field at the Zr4+ position. In order to confirm this
assumption, we calculated the direction angles of the L3
principal axes of the maximum invariant components
with symmetry GS = C3 (α, β, γ = 0) and the parameters

B4 α, deg β, deg γ, deg d4 × 10–2

L3 124.87 68.94 0 0.48

L3 135.46 1.56 0 0.03

L3 65.49 108.97 0 0.52

L3 184.56 108.48 0 0.54

It can be seen from these data that the L3 principal
axes of the maximum invariant components with sym-
metry GS = C3 for the spin-Hamiltonian tensor B4 and

the crystal-field tensor  only slightly deviate from
the [0001] axis in the crystal and are characterized by
insignificant deviation from symmetry C3.

DISCUSSION OF THE RESULTS 
AND CONCLUSIONS

Analysis of the spin-Hamiltonian and the crystal-
field tensors conclusively demonstrates that Fe3+ impu-
rity ions substitute for Zr4+ ions with local charge com-
pensation and lowering of position symmetry. The Na+

compensator ions are located in cavities of the B type
and weakly disturb the crystal field in the substitution
region. Since Fe3+ impurity ions are randomly distrib-
uted in the structure, we can make the inference that
compensator ions are mobile under the crystal-growth

V4
44
C

d4 characterizing the deviation from symmetry C3 of the
spin-Hamiltonian tensor B4 and the crystal-field tensor

. The results of calculations are presented in the fol-
lowing tables:
V4

44

α, deg β, deg γ, deg d4 × 10–2

L3 125.22 70.67 0 0.30

L3 145.68 0.15 0 0.01

L3 65.15 109.53 0 0.25

L3 185.23 109.61 0 0.27

V4
44

conditions. The fact that Fe3+ impurity ions occupy
positions of one regular system of points indicates the
absence of a statistical distribution of Na+ ions in B cav-
ities at a low concentration of Fe3+ ions. The multiplic-
ity KM = 6 and the arrangement of symmetry-related

Fe3+ EPR spectra correspond to the space group –

 of the NaZr2(PO4)3 crystal and confirm that
Na1 + xFexZr2 − x(PO4)3 solid solutions at low concentra-
tions x have a structure similar to the NaZr2(PO4)3

structure [18].

According to the intersection of the groups C3 ∩
C2 = C1 of the Zr4+ positions and B cavities, the substi-
tution region Fe3+ + Na+  Zr4+ has symmetry C1.
Therefore, it can be expected that the Na+ compensator
ion should be displaced from the symmetry axis and the
B cavity center (determined as the center of gravity of
the ten O2– ions forming the cavity). This displacement
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Fig. 3. Energy levels Ei and their differences (Ei – Ej) as functions of the magnetic field for the NaZr2(PO4)3 crystal: (a) H || Z0 and
(b) H || Y0. The line corresponds to the operating frequency ν = 9.4 GHz.
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Fe3+ → Zr4+
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b

Fig. 4. Positions of the ions forming the crystal framework and the cavities in the NaZr2(PO4)3 structure. Shaded octahedra and
tetrahedra make up an M2T3 lantern. Closed circles indicate the O2– ions forming the cavity B.
is 0.77 Å in the direction of the Fe3+ impurity ion. The
displacement direction forms an angle of 10.3° with the
vector connecting the B cavity center and the Zr4+ posi-
tion (Fig. 4).

The distance between the Na+ compensator ion and
the Fe3+ impurity ion (3.13 Å) is considerably smaller
than the distance from the Zr4+ position to the B cavity
center (3.60 Å). This finding is in agreement with the fact
that the distances between the dopant and Na+ ions in the
Na3Zr0.5Co0.5FeP3O12 and Na3Zr0.5Fe(II)0.5Fe(III)P3O12

compounds are shorter than the Zr4+–Na+ distance in
the NaZr2(PO4)3 crystal [19].

However, the distance between the Na+ compensa-
tor ion and the nearest vertex of the [ZrO6] octahedron
(1.85 Å) differs substantially from the sum of the Na+

and Zr4+ radii (2.34 Å). Such a shortened distance is
most likely associated with disregarding the displace-
ment of other ions in the substitution region.

As follows from the direction angle matrices (2), the
coordination polyhedron of the impurity ion can be
determined using the model of point charges corre-
sponding to the first coordination sphere. However, a
comparative analysis of the invariant sums of the B4 and

 tensors for different structures, as well as of the
systems of principal axes and the ratios of the principal

components of the B2 and  tensors, requires the
inclusion of the contributions from more distant
charges and the compensator ion. In ZnSeO4 · H2O
crystals, the inclusion of the contribution from hydro-
gen ions of the [Zn(H2O)6] octahedron to the tensor V4
leads to satisfactory agreement of the aforementioned
topological characteristics of the Mn2+ spin-Hamilto-

nian tensor B2 and the crystal-field tensor  [6]. The
heterovalent substitution Fe3+  Ge4+ in Li2Ge7O15
crystals [7] is accompanied by the local compensation
OH–  O2–, and good agreement between the sys-

V4
44

V4
44

V2
44
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tems of the principal axes of the tensors B2 and  can
be achieved only when the contribution of H+ compen-
sator ions is taken into account. By generalizing these
data, we can argue that the point-charge model for the
crystal field adequately describes the main orientational
properties of the crystal structure and the spin-Hamilto-
nian tensors B2 and B4 depend quadratically on the crystal-
field tensor V4. At the same time, the tensor B2 depends
linearly on the noncubic elements of the tensor V4.

V2
44

Parameters BLM of spin Hamiltonian (1), initial splittings ∆i
(×104 cm–1) of the ground state of Fe3+ ions, and quantities
SL (×108 cm–2) in the coordinate system (X0||L2, Y0||P, Z0||L3)
for the NaZr2(PO4)3 single crystal

M, q B2M B4M

0 –486.597 –595.957 –4.025 –14.432

1 –55.055 330.330 0.204 –6.543

–1 60.834 365.004 0.227 7.280

2 –3.547 –10.641 0.163 3.696

–2 –118.682 356.046 –0.188 4.263

3 5.571 –472.715

–3 –1.487 –126.176

4 –0.174 –5.220

–4 –0.155 4.650

∆1 = 2336.5 S2 = 278423.7 ε* = 7.7 (mT)

∆2 = 1581.7 S4 = 83.02 N = 139 k = 20

g tensor gij = gji

2.00593 0.00102 –0.00034

2.00539 –0.00019

2.00512

* ε =  is the root-mean-square deviation, and

 stands for the Stevens notation [17].

b2
q b4

q

∆Hi
2

i 1=

N

∑ / N k–( )

b2
q
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The invariant S4 of the spin-Hamiltonian tensor B4

for Fe3+ ions in the NaZr2(PO4)3 crystal (table) appears
to be unexpectedly close to values characteristic of the
tetrahedral environment [7]. Such a small difference
cannot be explained only by the Zr–O distances
(2.0472, 2.0681 Å) in the [ZrO6] octahedron in the
NaZr2(PO4)3 structure. In the CaCO3 calcite, an [CaO6]
octahedron with a Ca–O distance of 2.3598 Å is char-
acterized by the invariant S4 = 325 × 10–8 cm–2 [8]. An
increase in the value of S4 with an increase in the Me−O
distance is inconsistent with the concept regarding the
decrease in the crystal field with an increase in the dis-
tance from a field source. A similar contradiction is
observed when the invariant S4 = 369 × 10–8 cm–2 [20]
for [TiO6] octahedra characterized by the mean dis-
tance 〈Ti–O〉 = 1.977 Å in KTiOPO4 crystals is com-
pared with the invariant S4 = 448 × 10–8 cm–2 [8] for
Fe3+ ions in [MgO6] octahedra having the distance Mg–
O = 2.0839 Å in the CaMg(CO3)2 dolomite structure. In
order to resolve this contradiction, we examined the
mutual arrangement of anion and cation coordination
polyhedra with respect to central ions.

The maximum invariant S4 = 4735 × 10–8 cm–2 [21]
is observed upon substitution of Fe3+ ions for Al3+ ions
in [AlO6] octahedra with the mean distance 〈Al–O〉 =
1.9109 Å in YAlO3 crystals having the perovskite-type
structure. In these crystals, O2– and Y3+ ions comprise
the three-layer closest packing; form octahedral and
cubic environments of the substitution position, respec-
tively; and make contributions of the same sign to the
tensor V4. The octahedral anion and cubic cation envi-
ronments are dual. In Y3Al5O12 garnet, the spin Hamil-
tonian of Fe3+ ions substituting for Al3+ ions in [AlO6]
octahedra with an Al–O distance of 1.937 Å is charac-
terized by the invariant S4 = 1266 × 10–8 cm–2. The sub-
stitution octahedron appears to be inside the strongly
contracted and substantially elongated octahedra,
whose vertices are occupied by Al3+ and Y3+ ions,
respectively. Such an arrangement of cations and
anions around the substitution position leads to a
decrease in the invariant S4 as compared to that for
YAlO3 crystals. In the NaZr2(PO4)3 crystal, the second
coordination sphere is formed by the octahedron com-
posed of P5+ pentavalent ions. This results in a consid-
erable weakening of the crystal field at the substitution
position.

In the KTiOPO4 structure, four vertices of the [TiO6]
octahedron are represented by vertices of four [PO4]
tetrahedra and the other vertices are occupied by “free”
O2– ions. In the NaZr2(PO4)3 structure, the vertices of
the [ZrO6] octahedron are formed by vertices of six
[PO4] tetrahedra. The calculation of the crystal field
with allowance made for the contribution from all the

surrounding tetrahedra leads to the ratio S4( ,V4
44
CR
äíiOêO4)/S4( , NaZr2(PO4)3) = 4.6, which virtu-
ally coincides with the ratio between the invariant sums
S4(äíiOêO4)/S4(NaZr2(PO4)3) = 4.4 for the spin-
Hamiltonian tensors B4. For the YAlO3 and Y3Al5O12
compounds, similar calculations result in the ratio

S4( , YAlO3)/S4( , Y3Al5O12) = 4.4, which is close
to the experimental ratio S4(YAlO3)/S4(Y3Al5O12) = 3.7.

The point charges identical in sign at the vertices of
a regular cube and a dual octahedron make the contri-
butions opposite in sign to the tensor V4. When the
charges at the vertices of the cube differ in sign from
those of the octahedron, the contributions from the
fields of these environments to the tensor V4 coincide in
sign. It is known [22] that, in BaF2 crystals, an F– com-
pensator ion located on the triple axis of the [GdF8]
cube with an impurity ion Gd3+  Ba2+ leads to an
increase in the invariant S4 of the Gd3+ spin-Hamilto-
nian tensor as compared to a similar invariant without
local charge compensation. In CaF2 crystals, the F–

compensator ion in an [GdF8] cube neighboring along
the quadruple axis results in a considerable decrease in
the invariant S4. A comparison of the above data makes
it possible to draw the conclusion that the invariant sum
S4 is governed not only by the effective charges and
Me–O distances in the first coordination sphere but also
by the mutual arrangement of the first and second coor-
dination spheres.
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Abstract—The temperature behavior of the spontaneous polarization of lead tetragermanate, a uniaxial ferro-
electric, is studied in the range from 4.2 to 300 K. The results obtained along with the data from the literature
make it possible to reconstruct a complete pattern of the behavior of Ps(T) both in the vicinity of the phase tran-
sition and at lower temperatures. In the range from 290 K to TC, the crystal behavior is found to change from
the dipole type (β = 1/2) to the pseudoquadrupole type (β = 1/4). This specific crossover manifests itself in the

change in the behavior of  as a function of (TC–T). In the low-temperature range, weak anomalies in the
dependence Ps(T) are found, which point to the occurrence of contributions from the dipole moments of sepa-
rate structural fragments of Ge2O7 and GeO4, which have internal degrees of freedom and are weakly bound to
the dynamics of the crystal lattice. © 2005 Pleiades Publishing, Inc.

Ps
1/β
INTRODUCTION

In the most general form, the spontaneous polariza-
tion in noncentrosymmetric crystals was considered for
the first time in [1–3]. Unfortunately, the results of the
theoretical calculations for such a complex dynamic
system as pyroelectric do not allow one to indicate
unambiguously the directions of experimental investi-
gations. Some advances have been made within the
framework of the crystallophysical approach [4], which
allows one to single out individual macrofragments
responsible for the appearance of spontaneous polariza-
tion in the most general sense of this term. These mac-
rofragments are mesotetrahedra, which are built from
individual structural elements and obey the symmetry
conditions of the object as a whole. It is beyond ques-
tion that this approach makes it possible to pass from
the consideration of the displacements of individual
atoms to the analysis of the distortion of mesoscopic
formations upon phase transitions and to the estimation
of their contribution to the total spontaneous polariza-
tion. In connection with this, experimental investiga-
tions of the spontaneous polarization in the entire range
of occurrence of the polar state and interpretation of
these investigations in an effort to determine the contri-
butions from multipole moments are moved to the fore-
front.

The experimental data available so far point to a
considerable scatter in the spontaneous polarization Ps

from ~1 C/m2 (e.g., in LiNbO3 and LiJO3) to 10–4 C/m2

(in Li2Ge7O15), thus allowing one to doubt the universal
1063-7745/05/5005- $26.00 ©0836
character of the appearance of the polar state in crys-
tals. Therefore, the investigation of the particular fea-
tures of the spontaneous polarization in both proper and
improper ferroelectrics (or pseudoproper ferroelectrics)
is an important problem.

In our opinion, α-Pb5Ge3O11 (PGO) single crystals
exemplify a rare crystalline medium whose transition to
the polar phase is accompanied by interesting
gyroanisotropic phenomena [5–10]. Such an unusual
combination of physical effects have given impetus to
numerous experimental investigations of the physical
properties of PGO [10–17] and its structural features
[18–22]. Analysis of experimental data on the tempera-
ture behavior of the spontaneous polarization [4, 5, 10–
14, 23], as well as on gyrotropic [7, 10, 14], piezoelec-
tric [12], nonlinear optical [11, 13], pyroelectric
[28, 31], and dielectric [24–27] properties, indicates
that, within measurement error, no marked anomalies
occur in the range from 300 K to the phase-transition
temperature. Virtually no data on low-temperature
investigations are available.

The authors of [23] attempted to attribute the partic-
ular feature in the temperature behavior of the square of
the spontaneous polarization at 420 K to a structural
phase transformation. In our opinion, these attempts do
not stand up under scrutiny since any monotonic depen-
dence (which Ps(T) usually is) can be approximated
with confidence in a finite temperature range by a chain
function. There are no data about the structure of this
crystal both above and below 420 K that can cast doubt
 2005 Pleiades Publishing, Inc.
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on this statement. The occurrence of anomalies in the
dependence Ps(T) in the range of lower temperatures is
equally controversial.

In our opinion, two circumstances determine perma-
nent interest in PGO. The first one is purely cognitive
and consists in that the rather small spontaneous polar-
ization of PGO (about 0.05 C/m2) does not fit in with
the empirical rule for oxygen–tetrahedral ferroelectrics

[32]: Ps ~ . The second circumstance is purely
practical and determined by high values of the pyro-
electric coefficient at room temperatures [9, 33]. Such
an unusual combination of relatively low values of the
spontaneous polarization and record-high values of the
pyroelectric coefficient stimulates further experimental
investigations on the elucidation of the nature of spon-
taneous polarization in lead tetragermanate. Therefore,
the experimental investigation of the particular features
of the spontaneous polarization in the entire range of
occurrence of the polar state in PGO is moved to the
forefront. A quasi-static method [34], which allows one
to study changes in the spontaneous polarization in a
wide temperature range, is most appropriate for these
investigations.

This paper is devoted to the study of the temperature
dependence of the spontaneous polarization of PGO
crystals of high perfection in the range from 4.2 to
300 K and to the elucidation of the particular features
of the structure of these crystals by the modified quasi-
static method and with consideration for all known data
on the spontaneous polarization (in the range above
300 K). The mesoscopic formations in the form of tet-
rahedra built from Pb atoms and coordinated GeO4 tet-
rahedra that we singled out in the motif of the PGO
structure allow us to assign lead tetragermanate to the
class of so-called pseudoproper ferroelectrics, whose
spontaneous polarization results from multipole inter-
actions.

CRYSTALLOPHYSICAL 
(NONCENTROSYMMETRIC) PARAMETERS 

AND PGO STRUCTURE

It is agreed [22] that PGO crystals belong to the
class of uniaxial ferroelectrics, undergoing a phase
transition from the polar (P3) to the nonpolar (P3/m)
phase at 450 K. Both crystalline phases are described
by noncentrosymmetric point groups and, therefore,
one can define a polar tensor of the third rank for this
class of compounds. According to the symmetry condi-
tions, this tensor can be decomposed into tensor sub-
spaces of vectors (L = 1), pseudodeviators (L = 2), and
septors (L = 3) (according to Schouten’s notation [35]),
where L is the tensor rank. Then, it is easy to verify that,
for all the crystals with point symmetry group 3, the
components of the two-vector (P3(I), –P3(II)),

pseudodeviator (  =  = –1/2 ), and septor
(S121, S212, S131) subspaces differ from zero, whereas, for

TC
1/2

Q11* Q22* Q33*
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the high-temperature phase, only the components of the
septor S121 and S212 are nonzero. Consequently, the
phase transition at TC = 450 K should be characterized
by a multipole order parameter when it is necessary to
take into account multipole interactions. Considering
the tensor quantities introduced as crystallophysical
parameters determining the deviation of PGO from the
nonpolar phase [4], we can describe the properties of
the nonpolar phase in terms of the invariants intro-
duced. Therefore, it is not surprising that only the crys-
tallophysical parameters that are transformed as tensor
quantities with the weights L = 2.3 will contribute to the
spontaneous polarization. This gives rise to a very dif-
ficult problem concerning the experimental detection of
the contributions from multipole moments to the total
polarization.

It is obvious that the problem of separation of the
contributions to Ps from the multipole moments can be
solved either if these contributions are comparable with
the value of the spontaneous polarization itself or if one
can choose an appropriate sample orientation.

In [32], an empirical rule has been established for
polar oxygen-containing crystals that relates the spon-
taneous polarization and the phase-transition tempera-
ture. Lead tetragermanate with Ps = 4.8 × 10–2 C/m2

does not fit into this Procrustean bed, thus forcing us to
search for reasons for such a deviation in the particular
features of its structure (Fig. 1).

In such a complex dynamic system as a crystalline
medium, it is not surprising that the multipole moments
will contribute to the total spontaneous polarization of
all the pyroelectrics. Thus, the expression for the total
spontaneous polarization in PGO,

(1)

does not contradict the symmetry considerations and
reflects also the contributions from pseudoquadrupole
and octupole moments of the crystalline structure.
Here, Ps = P3(I) – P3(II). The proportionality coeffi-
cients in (1) are tensor quantities of the 3/m point group
of the nonpolar phase:  is the pseudotensor of the

third rank, symmetrical with respect to the permutation
of the last two indices, and g3113 is the coefficient of the
tensor of the fourth rank, symmetrical with respect to
the permutation of the last three indices. In some cases,
e.g., in pseudoferroelectric Li2GÂ7O15  [36], the main
contribution is made by the multipole moments, a phe-
nomenon which does not contradict the results of the
structural studies.

Since the spontaneous polarization in PGO is rela-
tively low as compared to other oxygen-containing
compounds, it seems that an explanation for this devia-
tion (because clear theories are unavailable) can be
found by analyzing the structural features of PGO. In
both the polar and the nonpolar phases of this com-
pound, one can single out macroscopic fragments in the
form of mesotetrahedra formed by two Pb atoms and

Ps
Σ

Ps m333* : Q33* g3113: S113 o ε( ),+ + +=

mi jk( )*
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three single GeO4 tetrahedra. In the nonpolar phase,
both mesotetrahedra are completely equivalent
(Fig. 1a). According to the data of diffraction experi-
ments, upon transition to the polar phase, the bases of
the mesotetrahedra are rotated with respect to each
other in the (0001) plane, which induces a dipole
moment along the third-order symmetry axis. Such a
deformation of the PGO structure arises owing to
anomalous behavior of oxygen atoms from single tetra-
hedra, as is revealed in [21]. The contribution from the
lead atoms, the nonequivalence of the positions of
which can be attributed only to a change in their nearest
oxygen environment, should be very small. The validity
of this statement (see Fig. 2) follows from comparison
of the particular features of mesotetrahedra in PGO and
LiTaO3 [37], whose Ps, equal to about 0.5 C/m2, is one

c

(a)

(b)

Ä

Ç

Fig. 1. (a) Fragment of the PGO structure combined from
mesotetrahedra of the A and B types and (b) its projection
onto the (0001) plane. The turns of the bases of the mesotet-
rahedra in the course of the crystal repolarization are shown
schematically by the dashed lines.
C

of the record-high values of this parameter. Thus, we
can assume that the multipole moments of the main
motif of the PGO structure make the major contribution
to the spontaneous polarization of this crystal. It is also
not improbable that, under these conditions, the contri-
butions to Ps from the local dipole moments of both sin-
gle GeO4 and twinned Ge2O7 tetrahedra can manifest
themselves with decreasing temperature. It follows
from the structural studies [21] that such single and
twinned GeO4 tetrahedra have their own internal
degrees of freedom, which are characterized by the
ordering of oxygen atoms with decreasing temperature
and all the consequences ensuing from this.

EXPERIMENTAL

Single PGO crystals were grown by the method of
solution–melt crystallization [38]. The phase composi-
tion of the samples and their orientation with respect to
the polar axis were determined with a DRON-4 X-ray
diffractometer and a POLAM L-213M polarization
microscope. The powder diffractogram of the single
crystals grown and the parameters of a trigonal unit cell
(a = 10.224(3) Å, c = 10.664(3) Å) calculated with this
diffractogram agree sufficiently well with the data of
[15–18]. An examination of the optical homogeneity of
the samples in polarized light showed that some sam-
ples were perfect. From these samples, we chose a sin-
gle crystalline plate with an area of 13.4 mm2 and a
thickness of 0.62 mm, which was oriented with respect
to the c axis with an accuracy of ~30′. The sample was
poled at room temperature with a field of ±2 × 103 V/cm,
created by a Keithly 222 current power supply. The
electrodes were made of a current-conducting silver
paste, and the current leads were fixed with the same
paste. According to the measurements, the resistivity at
295 K exceeded 1011 Ohm cm. The hysteresis loop,
studied at an electric-field frequency of 0.01 Hz, was
practically rectangular in shape (Fig. 3). This result
indicates that the PGO sample chosen for the measure-
ments was of high quality.

3 Ps Pb(I)

Pb(II)

Ta

Li

Ta

Pb(I)

Fig. 2. A and B mesotetrahedra in the LiTaO3 and
Pb5Ge3O11 structures.
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The temperature dependence of Ps(T) in the range
from 4.2 to 300 K was measured using a continuous-
flow helium cryostat. The sample was clamped in a
crystal holder placed at the end of a coaxial line. A
Cemox-1050CD thermometer was fixed to the crystal
holder at a middle level of the sample. To control the
temperature of the sample, a coil was wound on the
crystal holder, which was connected to a stabilized
power supply of the type mentioned above. In the
course of the measurements, the temperature was main-
tained with an accuracy of ±0.001 K. The charge arising
on the surface of the sample with a change in the tem-
perature was measured by a Keithly 617 universal elec-
trometer. The presence of a digital output in the elec-
trometer significantly simplified the experimental data
processing. The temperature dependences of the charge
of the monodomain PGO sample experimentally deter-
mined for the two opposite polarities of the electric
field are shown in Fig. 4.

As the temperature of the sample was decreased to
4.2 K, the sample was short-circuited and then con-
nected to the electrometer input to monitor the zero
drift of the measuring system for some period of time.
The time interval during which the sample was main-
tained at helium temperature was determined by the
possibility of approximating the zero drift of the system
with a linear relationship. In the course of the experi-
ment, the temperature of the sample was varied accord-
ing to the same time relationship. For our sample con-
nected to the electrometer input through the coaxial
line, the zero drift of the entire measuring system was
less than 10–14 A m/s.

2.5

3.5 7.0

5.0

E, 103 V/cm

P, 10–2 C/m2

Fig. 3. Hysteresis loop of Pb5Ge3O11 in a quasi-static elec-
tric field.
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All the measurements were performed in the course
of increasing the temperature of the sample and using
two opposite polarities of the field. The results obtained
were independent of the polarity of the sample (within
the measurement error of ±10% and corresponded to its
mechanically free state. The whole measurement cycle,
including the cooling of the sample, holding at liquid
helium temperature, and the measurement process
itself, took 4–5 h.

The exit of the sample from liquid helium is a very
delicate process and is accompanied by generation of
an additional charge due to a temperature gradient. This
introduces the major measurement error, which distorts
the real temperature dependence of the spontaneous
polarization mainly in the range up to 10 K.

RESULTS AND DISCUSSION

The results of the processing of the experimental
data that describe the temperature dependence of the
change in the spontaneous polarization in PGO crys-
tals,

(2)

with respect to  at T ~ 0 K are shown in Fig. 5. In this
dependence, one should distinguish three characteristic
temperature ranges: from 4.2 to 30 K, between 30 and
120 K, and from 120 to 250 K. In the first range, the
behavior of ∆Ps is typical of all the pyroelectrics; i.e., it
can be approximated within the framework of the
Debye–Einstein model. The temperature changes of
∆Ps in the other two ranges are very similar, though not

∆Ps T( ) Ps T( ) Ps
0

–=

Ps
0

200

20

10

0

–10

–20

100 300

‡

b

∆Q, 10–9 C

T, K

Fig. 4. Temperature dependence of the charge of a PGO
sample polarized by electric fields of the two opposite
polarities: (a) +E and (b) –E.
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quite usual. The data on the dielectric hysteresis mea-
sured at a field frequency of 0.01 Hz (see Fig. 3) make
it possible to determine the spontaneous polarization of
PGO at T = 300 K, which proved to be equal to (4.8 ±
0.5) × 10–2 C/m2. This estimate is consistent with the
measurement data of other authors [10, 14, 23], thereby
allowing us to plot the dependence Ps(T) describing the
behavior of the spontaneous polarization of PGO in the
entire range of occurrence of the polar state (Fig. 6).
Since this dependence (shown by the solid curve) is
very atypical for classical ferroelectrics, we performed
control measurements of ∆Ps using the same sample but
applying a different poling scheme: the sample was
heated to T > TC, the field of the above-specified
strength was applied, and then the sample was cooled
(Fig. 6, curve 2). A different behavior observed at T <
270 K indicates that the thermodynamic state of the
sample changes owing to multiple repolarizations after
recording the hysteresis loop.

The smallness of the spontaneous polarization and
the unusual temperature dependence give grounds to
believe that physically this difference is associated with
the smallness of dipole–dipole interactions in compari-
son with the characteristic energy responsible for the
phase transition in lead tetragermanate. Something
similar was also observed in other polar compounds of
complex composition [36, 39, 40].

The small contribution from dipole–dipole interac-
tions to the order parameter of such compounds can be
associated both with insignificant structural distortions
of the initial phase and with an anomalously small
charge of the soft mode. Turning again to the analysis
of the PGO structure, we note that the closeness of the
dipole-moment magnitudes in both separated mesotet-
rahedra A and B is determined only by the distribution

4

2

0 50 100 150 200 250 300

∆Ps, 10–4 C/m2

T, K

∆Ps, 1

∆Ps, 2

Fig. 5. Temperature dependence of the change in the spon-
taneous polarization of PGO. ∆Ps, 1 and ∆Ps, 2 are the con-
tributions from relaxors of the two types.
CR
anisotropy of the valence electrons of the lead atoms
Pb(I) and Pb(II) due to the different oxygen environ-
ment [21]. In this situation, it is not excluded that the
phase transition is initiated by multipole interactions;
i.e., the contribution to the total spontaneous polariza-
tion from the last two terms in (1) considerably exceeds
that from the first term. If this assumption holds true,
then, upon approximation of the temperature depen-
dence of the order parameter (here, Ps), the critical
index β should change. Figure 7 shows the results of
treatment of the data on the temperature dependence of
the spontaneous polarization in PGO obtained in [10]
(which, in our opinion, are the most reliable) in the

coordinate system  – (TC – T), where β = 1/2 and
1/4. In the temperature range from TC to (TC – 50) K, the

dependence  obeys a linear relationship:

(Ps)4 ~ (TC – T). (3)

One can show that later measurement data on Ps [14],
as well as the coefficients of the gyration tensor g33 [10,
14] and of the nonlinear optical susceptibility d333 [13],
obey the same law in this temperature range. With a fur-
ther increase in the temperature, the multipole behavior
of PGO changes to the dipole one with β = 1/2 (Fig. 6).
The occurrence of the crossover indicates above all
that, under conditions of a sharp decrease in the inten-
sity of the multipole interactions, the Lorentz compo-
nent of the dipole–dipole interaction plays an increas-

Ps
1/β

Ps
1/β

200100 400

1

2

3

4

5

6

0 300

Ps, 10–2  C/m2

T, K

1

2

3

Fig. 6. Temperature dependence of the spontaneous polar-
ization in PGO obtained by normalization of ∆Ps to P for
the measurement data obtained: (1) in the charge mode and
(2) in the current mode. For comparison, curve 3 shows the
data of [10] on direct measurements of the spontaneous
polarization.
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ingly important role. Therefore, there is reason to
believe that the critical index β = 1/4 corresponds to the
two-dimensional order parameter, described by the
coefficients of the second-rank pseudotensor .

As was already noted, the experimental technique
that we modified allows detection of several anomalies
in the behavior of the spontaneous polarization of lead
tetragermanate in the low-temperature range. Thus, in
the range of helium temperatures below 30 K, the
behavior of ∆Ps (Fig. 8) obeys a T3 power relationship,
which disagrees with the theory of [1], predicting that,
under the approximation of a continuous anisotropic
medium, this dependence should be of the T4 type. This
discrepancy can be primarily associated both with the
strong anisotropy in PGO and with the contribution (in
terms of the Einstein–Born model) from the Einstein
term with the low-frequency characteristic mode νE =
32.5 cm–1 [41].

The two other particular features are identical and
differ only in the value of the contributions: 4.2 and
13.0 (in units of 10–5 C/m2). In the first approximation,
their behavior with temperature can be described by the
Langevin function

(4)

Consequently, we can state here that there are some
physical mechanisms that are in no way related to the
dynamics of the noncentrosymmetric lattice. It seems
that the main motif of the PGO structure contains struc-
tural formations of two different types, which have
dipole moments and are weakly bound to the lattice.
These formations can be considered as certain relaxors
of the Debye type. Then, in formula (4), Ni , di , and Ei

are, respectively, the concentration, dipole moment,

Q33*

∆Ps Nidi diEi
1
/kTicoth kTi/diEi

1
–( ).∑=

150

Ps
4, rel. units

(Të–T), K

8

100

16

50

2

4

Ps
2, rel. units

Fig. 7. Approximation of the dependence P1/β(T) (β = 1/2,
1/4) as a function of (TC – T).
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and local field of the ith relaxor. According to the data
of [24–27], the temperature dependence of the dielec-
tric permittivity in the above-mentioned ranges is also
somewhat relaxed in character, with the maximal val-
ues of ε33 being observed at 106 and 243 K. Therefore,
in PGO, there are two ranges of the Debye relaxation
with corresponding relaxation times, which should be
taken into account in experimental study of the pyro-
electric effect by dynamic methods.

For structural elements acting as relaxors, the for-
mations GeO4 and Ge2O7 should be taken. Having
dipole moments (the tetrahedra are distorted [21]),
these structural elements can align along local fields.
Under the condition that the thermodynamic potential
of PGO should be minimum, the contribution to the
spontaneous polarization from the relaxors is opposite
in sign to that of Ps. The first feature, Ps, 1 should be
attributed to the contribution from the twinned Ge2O7
tetrahedra, whose dipole moments are directed oppo-
site to each other and, therefore, should be partially
compensated. The second feature, Ps, 2 is determined by
the contribution from the single GeO4 tetrahedra. Upon
transition to the polar phase, these tetrahedra are strongly
distorted, which is accompanied by a change in their ori-
entation along the third-order axis [21]. As the tempera-
ture decreases, the dipole moments of these tetrahedra
align along the polar direction in such a way as to satisfy
the condition of the minimum of the thermodynamic
potential of the mechanically free PGO crystal.

CONCLUSIONS

Our investigation of the spontaneous polarization in
PGO, along with the data previously obtained in [5, 9,

0
0 10

∆Ps, 10–5 C/m2

T, K

5

20

020

∆Ps/T
2, rel. units

10

4

3

1

2

30 40 50

(a)

(b)

Fig. 8. Temperature dependence of the change in the spon-
taneous polarization of PGO in the low-temperature range:
(a) ∆Ps is plotted as a function of T and (b) ∆Ps/T2 is nor-
malized to T2.



842 SHALDIN et al.
12, 13], allowed us to restore the pattern of behavior of
this physical quantity in the entire range of occurrence
of the ferroelectric state of this crystal. From the crys-
tallophysical point of view, the analysis of the PGO
structure indicates that, along the polar direction, there
occur continuous chains consisting of mutually bound
mesotetrahedra of the two types, which ensure the fer-
roelectric ordering of lead tetragermanate. The small-
ness of the dipole moments of the mesotetrahedra,
which results from the smallness of the effective charge
of the bond Pb(I) and Pb(II), determines all the specif-
ics of the transition from the dipole behavior (β = 1/2)
to the pseudoquadrupole one (β = 1/4) against the back-
ground of considerable multipole moments. The occur-
rence of such a crossover is a very nontrivial result,
indicating that there are still unknown possibilities for
the behavior of complex polar crystals.
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Abstract—The spatially periodic structure arising in a homeotropic nematic-liquid-crystal (NLC) layer in low-
frequency Couette flow is described theoretically. The analysis of this phenomenon is based on the hydrody-
namic equations for NLCs, from which a self-consistent system of equations is selected for perturbations of
hydrodynamic variables: the steady-state angle of the molecule rotation, the liquid flow, and the velocity of
oscillating vortex flows. The formation of the periodic structure is explained by the phase delay of the velocities
of the vortex oscillating flows forming in the deformed structure with respect to the shear velocity in the Couette
flow. It is shown that at low frequencies this difference in the velocities is caused by the orientational waves
near the layer boundaries. In the case of fixed orientation of molecules at the boundaries, the dependence of the
threshold shear amplitude on the frequency and layer thickness is given by the relation uth ~ (ωh2)−1/4. The influ-
ence of the conditions for the molecule orientation at the layer boundaries on the above phenomenon is ana-
lyzed. © 2005 Pleiades Publishing, Inc.
The deformation of a nematic liquid crystal (NLC)
under periodic shear results in a change in its optical
properties. This effect can serve as a basis for the devel-
opment of acousto-optic sensors, laser modulators, etc.
[1, 2]. The response of liquid-crystal layers to periodic
shear is quite diverse and requires adequate theoretical
description. At low shear amplitudes, NLC molecules
oscillate about their initial equilibrium positions. An
increase in the amplitude may lead to the formation of
a spatially modulated structure, observed optically as
domains. In this case, vortex motions of the liquid arise in
the layer, while the molecules oscillate about a new equi-
librium direction, which changes periodically along the
layer. The geometry and the threshold characteristics of
the domains are diverse. They depend on the initial ori-
entation of the sample and the polarization and fre-
quency of the shear and are sensitive to electric and
magnetic fields. For elliptical in-plane motion of the
boundary plates, roll domains are formed [3–6]. Their
orientation and the threshold of their formation depend
on the ellipticity of the plate motion. Theoretically, the
phenomenon disappears when switching to plane shear.
The influence of viscous waves on a homeotropic NLC
layer subjected to a perpendicular applied electric field
results in the formation of a cellular domain structure.
In each cell, the director, deflected from the initial orienta-
tion, slowly rotates. This rotation gives rise to the forma-
tion and growth of disclinations [7].

An effect of plane periodic shear on homeotropic
and planar nematic layers in the absence of fields may
also produce a domain structure [8–16]. Attempts to
analyze this phenomenon theoretically were made in a
number of studies.
1063-7745/05/5005- $26.00 ©0843
The formation of a spatially modulated structure in
a homeotropic NLC layer under periodic shear at high
and low frequencies was considered in [17, 18] on the
basis of the multimode analysis. However, excessive
simplifications of the initial equations in these studies
lead to a theoretical picture of the effect that is incon-
sistent with experimental results. The formation of the
domain structure in a homeotropic NLC layer under
periodic shear produced by the in-plane motion of one
boundary plate was described theoretically in [19]. The
appearance of the domain structure is explained by the
phase delay of the liquid velocity in the vortex flows
with respect to the shear velocity in Couette flow; the
delay due to the inertia of the medium is also consid-
ered. The results obtained in [19] for frequencies higher
than 200 Hz agree with the experimental data [8–10]. In
particular, the theory predicts the dependence of the
threshold shear amplitude Uth on the frequency ω and
the layer thickness h in the form Uth ~ (ωh2)–1. How-
ever, at lower frequencies the theory disagrees with
experimental results. The calculation [11] of the thresh-
old of the phenomenon for the planar orientation
involves the same simplifications as in [19] and yields
comparable results. At low frequencies, these results
also disagree quantitatively with experimental data.

Experimental study of the domain structure in the
NLC layer at frequencies <200 Hz [12, 13] showed
both qualitative (the dependence of the threshold on the
frequency and the layer thickness) and quantitative dis-
crepancy with the results of the theoretical analysis pre-
sented in [11, 19]. In these studies, a computer simula-
tion of the domain structure was performed using the
multimode Galerkin method. The threshold of the for-
 2005 Pleiades Publishing, Inc.
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mation of domains and their spatial period were deter-
mined numerically. Inertial effects were neglected. A
relation was found between the threshold amplitude of
the shear gradient in the layer uth = Uth /h and the shear
frequency and the layer thickness in terms of the scal-
ing combination ωτ, where τ = γ1h2/K33. It was also
shown that the dependence uth(ωτ) is described in plane
by a curve common for NLC layers of any thickness.
This result contradicts the experimental data reported in
the same publications [12, 13], which indicate that the
curves uth(ωτ) in plane are significantly displaced with
a change in the layer thickness. The calculated curve
does not fit any individual experiment carried out at a
fixed layer thickness. Therefore, the result of the com-
puter simulation of the domain structure in the NLC
layer in a low-frequency Couette flow is inconsistent
with experimental results. The physical mechanism of
the domain formation was not analyzed in the above
studies.

Thus, the nature of the domain structure formed in a
homeotropic NLC by low-frequency shear remains
unclear and the corresponding theoretical description
of this phenomenon is lacking. In this study, we con-
sider the processes leading to the formation of a spa-
tially modulated structure in an NLC layer in low-fre-
quency Couette flow. This phenomenon is analyzed on
the basis of the hydrodynamic equations in which the
quadratic terms proportional to the product of the mol-
ecule rotation angle and the liquid velocity are retained.
The occurrence of the domain structure is shown to be
due to the delay of the vortex flows in the layer with
respect to shear in Couette flow. At low frequencies the
delay is determined by the action of elastic torques in
the orientational waves near the boundary plates. The
influence of the boundary conditions for the molecule
orientation on the phenomenon under study is taken
into account.

Let us calculate the effect in the case of a finite ori-
entation energy of molecules at the NLC layer bound-
aries, restricting ourselves to the one-constant approxi-
mation for the Frank elastic energy. The equations
describing the rotation of molecules and their motion in
an NLC have the form [20, 21]

.

Here, n is the director specifying the direction of the

molecule alignment, V is the liquid velocity,  is the

deformation-rate tensor, N =  – (curlV · n) is the

rotational velocity of molecules relative to the sur-
rounding liquid, ρ is the density, P is pressure,  is the
viscous-stress tensor, γ is the rotational-viscosity coef-

γ N V̂– n V̂n n⋅( )n+⋅[ ] h h n⋅( )n–[ ]– 0,=

ρV̇ ∇ P– ∇σˆ+=

V̂

ṅ
1
2
---

σ̂

C

ficient, and h is the Frank elastic force

Here, g is the bulk density of the Frank elastic energy.
In the one-constant approximation, g has the form

where K33 is the Frank elastic constant. Setting small
viscosity coefficients α3 and α1 to zero, we get γ = α5 –
α6. In this case, the components of the viscous-stress
tensor take the form

Let us consider now the domain formation in the
shear plane, which is specified by the shear direction
(X axis) and the normal to the layer (Z axis). Assuming
that molecules rotate in the XZ plane and all variables
are independent of the coordinate Y, we find that Vy = 0.
Such a distribution of the molecule orientation in
domains follows from the estimations of the structure
stability with respect to the random deviation of mole-
cules from the shear plane [19]. We assume that the
shear deformation in the layer is produced by the in-
plane motion of the upper (Z = h/2) boundary plate with
the frequency ω and the shear amplitude U0, while
keeping the lower (Z = –h/2) boundary plate at rest:

Here u0 = Ux/h |Z = h/2 is the dimensionless shear defor-
mation of the NLC layer and T is time.

We assume that the shear amplitudes are small: u0 =
Ux/h |Z = h/2 < 1. Then, the angles θ of the deviation of
molecules from the z axis are also small. This allows us
to linearize the equations of motion with respect to the
angles and set the director components to be nx ≈ θ,
nz ≈ 1.

In what follows, we go over to the dimensionless
coordinates x = X/h, z = Z/h, time t = ωT, and the dimen-
sionless velocities v k = Vk/(ωh). Retaining the terms
proportional to the product of the angle θ and the veloc-
ity v in the equations of motion, we obtain the follow-

h ∇ i
∂g

∂ ∇ in( )
----------------- ∂g

∂n
------.–=

g
1
2
---K33 ∇ ni( )2

, i
i

∑ x y z;, ,= =

σij α4v ij α6 v iknkn j v jknkni+( )+=

+ γv kmnknmnin j hin j.–

Ux Z h/2= u0h ωT ,sin=

Ux Z h/2–= Uz Z h/2–= Uz Z h/2= 0.= = =
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ing system of equations for θ, v x, and v z:

(1)

where  is the differential operator

ε and σ are the dimensionless parameters that deter-
mine the dependence of the effect under study on the
NLC layer thickness h and the shear frequency ω in
terms of the scaling parameter ωh2

and η = (a4 + a6)/γ is the dimensionless viscosity in the
viscous wave propagating along the crystal axis.

The hydrodynamic variables will be represented by
the expansions

where the subscript 1 indicates the hydrodynamic vari-
ables characterizing the external action, the subscript 2
indicates the steady-state part of the perturbations, and
the prime stands for the oscillating part. The appear-
ance of the nonzero steady-state angle θ2 in the solution
to the hydrodynamic equations implies the crystal tran-
sition into a new orientation state.

Further, we extract from system (1) the equations
for the external action

(2)

the equations for the oscillating variables

(3)

∂tθ ε∆θ– v x z,– θxv x– θzv z– 2θv zz,–=

ησ2∆∂t D̂–( )v x ε∆∂z
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2 ∂x
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–( ) v z z, θ( ) 2∂x∂z

2
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and the equations for the steady-state variables

(4)

Here, δ = K33/Wh, W is the density of the surface orient-
ing energy, and the angle brackets denote averaging
over the oscillation period. With respect to the steady-
state rotation angle θ2 , which varies slowly throughout
the layer thickness, the molecules are assumed to be
strongly oriented at the layer boundaries. (This corre-
sponds to the actual inequality δ ! 1.) The oscillating
angles θ1 and θ' contain terms that vary rapidly in ori-
entational waves. Thus, the orienting energy is assumed
to be finite in the boundary conditions for these quanti-
ties.

Steady-state stresses and torques, which destabilize
the initial structure, contain averaged terms of the form

 =  and are nonzero if the liquid

velocity  in the oscillating flows is phase-delayed
with respect to the liquid velocity v 1x in Couette flow.
This delay is related to the inertial properties of the
medium, the effect of elastic torques on the director in
thin (of the order of magnitude of the wavelength of the
orientational wave) boundary layers, and the effect of
bulk elastic torques. Simple estimations of the thresh-
old shear amplitude in these cases yield, respectively,

the following dependences: u0 ~ /σ ~ ω–1, u0 ~ ε1/4 ~
ω–1/4, and u0 ~ 1. Thus, the inertia of the medium and
the elastic torques manifest themselves at higher and
lower frequencies, respectively. We restrict ourselves to
the frequencies

(in this case, σ4 < ε) and ignore inertial terms in the
equations of motion. Oscillating perturbations contain
both smooth (slowly varying throughout the layer
thickness) terms and terms rapidly varying throughout
the length of the orientational wave. In the equations for
smooth variables, the quantities of the order of magni-
tude ε1/2 ! 1 are retained, while the terms of higher-
order smallness are neglected. In the steady-state equa-

ε
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tions, we will only consider a smooth dependence of
perturbations on the z coordinate because the consider-
ation of rapid changes in the steady-state variables in
the boundary layers only slightly affects the result.

In the above approximation, the solution to Eqs. (2)
for an external action takes the form

Assuming the perturbations to be periodic along the
layer, we set θ2, v 2x ,  ~ coskx, and θ' ~ sinkx. The

complex velocity of the oscillating vortex flows  is

represented in the form  = v *coskx, where v * =
(v c + iv s + v (i))exp(–it), v c, and v s are real smooth
functions of z and v (i) is a rapid function of z generated
by the orientational waves near the layer boundaries.

Let us transform the equations for the steady-state
variables by eliminating the angles θ' and θ1 and their
time derivatives. Neglecting the terms of the order of
smallness ε, we obtain the following equation for the
steady-state angle of molecule rotation

Introducing the function w = v 2x – ∂z 〈Re u1x 〉 , we
recast this equation into the form

(5)

Because of the boundary conditions for  and v 2x

in systems (3) and (4), the function w satisfies the con-
ditions

(6)

and can be regarded as the reduced flow velocity.
In the equation for the steady-state flow in system

(4), we transform the convective term using the second
equation of system (3):

Then, discarding the inertial terms containing pow-
ers of σ and the terms of the order of ε, we extract the
following equation for w:

(7)

In the case under consideration, the phenomenon is
determined by the right-hand side of Eq. (7) and occurs

v 1x z 1/2+( ) t, θ1cos t.sin= =
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ε
u0

2
-----∆θ2 v 2x z,+ ∂z

2
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v z'
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2
-----∆θ2 wz+ 0.=

v z'

w z 1/2±= 0; w zd

1/2–

1/2

∫ 0= =

ησ2∂z ∆v z'v 1x〈 〉– ∂z ησ2∆∂tv z'( )u1x〈 〉=

=  ∂z u1xD̂v z'〈 〉 ε u1x∆∂z
2θ x,'〈 〉 ∂ x

2∂z θ2v 1x( )u1x〈 〉 .+ +

D̂ ∂z
4

+( )w 4η 1+( )∂z
4

4η∂ x
2∂z

2
+[ ] v z'u1x z,〈 〉–=

=  –
1
2
--- 4η 1+( )∂z

4
4η∂ x

2∂z
2

+[ ] v s kx.cos
C

only at v s ≠ 0, i.e., when the velocities in the vortex
flows are delayed from the velocity of the boundary
plate displacement.

Neglecting first the boundary effects, we find from
the first equation of system (3) the angle θ' = (uz, zz/k +
ikθ2u0)exp(–it) slowly varying with the z coordinate. On
supplementing θ' with the term θ(i) generated by orien-
tational waves, the complex angle θ* can be repre-
sented in the form θ* = (uz, zz/k + ikθ2u0 + θ(i))exp(–it).

Let us extract from system (3) the equations for the
rapid perturbations θ(i) and v (i)

(8)

In solving Eqs. (8), the constants of integration are
determined from the boundary conditions for the total
angle θ* of the molecule rotation. After appropriate
transformations, the velocity v *, required for further
calculations, takes the form

(9)

Here, q =  is the wave vector in the ori-
entational waves.

The velocity v * and its derivatives with respect to z
become zero at the layer boundaries.

Substituting expression (9) for v * into these condi-
tions and neglecting the terms of the order of q–2 ~ ε, we
bring the boundary conditions for the functions v c and
v s to the form

where

∂tθ
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–

1
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---∂z
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v
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+ +( )
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The slow velocity is then represented by the sum

(10)

in which the functions  and  vanish at the layer
boundaries together with their derivatives.

Substituting v * from (10) into the second equation
of system (3), separating the real and imaginary parts in
this equation, and neglecting the terms of the order of
q–2, we obtain the following equations for  and :

(11)

The function v s, entering Eq. (7) for w, is deter-
mined by solving system (11)

(12)

It follows from Eqs. (5), (7), and (11) and expression
(12) that

(13)

In this relation, the constant and the period of the
domain structure are determined by the solution to this
system. The solution was found numerically using the
Galerkin method. To this end, the z-dependence of the
angle θ2 was represented by a sum of the trigonometric
functions sin(2jπz) and cos(2j – 1)πz (j = 1, 2, 3, …,
N), while the z dependence of the velocities w, v c, and
v s was represented by a sum of the Chandrasekhar
functions

in which the numbers lj and mj correspond to zero val-
ues of the derivatives at z = ±1/2. The threshold ampli-
tude u0 = u0(k) was found from the solvability condition
for the system of equations for the coefficients in the
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expansions of θ2, w, , and ; the wave vector k at
the effect threshold minimizes the value of u0 . The
number of terms in the expansions was chosen taking
into account the specified calculation accuracy: at N ≥
4 the calculation error became less than 5%. The vis-
cosity η was set equal to that of MBBA liquid crystals:
η = 0.4 [21]. The calculated value of the wave vector
was k = 4.4, which gives the domain width d ≈ 0.7h.
This value is independent of the frequency and the layer
thickness and changes only slightly with the crystal vis-
cosity. At k = 4.4, the constant in formula (13) is 4.7.
Then, the dimensionless threshold shear amplitude uth
is given by the formula

(14)

At large values of the energy W and the layer thick-
ness or at sufficiently low frequencies, when the condi-
tion of strong orientation of molecules at the layer
boundary (qδ ! 1) is valid, the threshold amplitude is
uth = 4.7q–1/2, while its dependence on the frequency
and the layer thickness is determined by the relation
uth ~ (ωτ)–1/4, where τ = γh2/K33 is the characteristic
time of the distortion relaxation in NLC layers. In this
case, the calculation shows that the dependence of the
threshold amplitude on the frequency and the layer
thickness is expressed in terms of the scaling combina-
tion ωτ. On going from the strong orientation of NLC
molecules at the boundaries to the weak orientation, the
scaling in the dependence of the threshold amplitude on
ωτ disappears. Indeed, a decrease in the orienting
energy and the layer thickness or an increase in the fre-
quency up to the values at which δq @ 1 result in the
frequency-independent threshold amplitude uth =

ṽ c ṽ s

uth 4.7
1 2δq 2δ2

q
2

+ +
q 1 2δq+( )

---------------------------------------
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4.7 . When the value of ωτ is fixed, the thresh-
old shear amplitude must decrease with an increase in
the layer thickness, approaching a minimum at δq ! 1.
The condition of the scaling violation in the form δq ≈

 ≥ 1 is independent of the NLC layer
thickness and is only determined by the frequency ω of
the plate displacement. For a MBBA nematic crystal
(K33 ≈ 10–6 dyn, η = 0.4, γ = 0.78 P [20, 21]) and a typ-
ical value of the orienting energy W ~ 10–3 erg cm–2, the
scaling is violated at frequencies f > 1 Hz. The results
obtained shown in Fig. 1, where the dependences uth =
uth(ωτ), plotted according to (14) for different values of
δ = K33/Wh, demonstrate the scaling violation with an
increase in the frequency.

It is worth noting that the dimensionless hydrody-
namic equations for NLCs, describing the effect of the
oscillatory Couette flow on a nematic layer (and being,
generally, nonlinear in θ and v), contain the frequency
ω and the layer thickness h expressed only in terms of
the parameters ε = 1/ωτ and σ2 = λωτ. For a strong ori-
entation of molecules at the layer boundaries, when δ =
0, the structure of the equations ensures the scaling
dependence of the threshold shear amplitude on the fre-
quency and the layer thickness (uth = uth(ωτ)) for all fre-
quencies and threshold amplitudes, including the val-
ues uth @ 1 at low frequencies. The scaling violation in
the experiment should indicate either a weak orienta-
tion of the molecules at the layer boundary or the dif-
ference between the configuration of the initial flows
and the Couette flow configuration.

Let us compare the calculation results with the
experimental data of [12, 13]. The latter show no scal-
ing in the formation of the domain structure. Thus,
along with the oscillatory shear, an additional external
factor must be present in the experiment. This factor
was ignored in the interpretation of the data obtained in
[12, 13]. The increase in the experimental threshold
shear amplitude with an increase in the layer thickness
at a fixed value of ωτ indicates that the scaling violation
in the experiment carried out in [12, 13] is not related
to weak anchoring energy and requires separate consid-
eration.

The adequacy of the theory developed is qualita-
tively confirmed by the fact that the experimental
dependence of the threshold amplitude on ω disappears
with an increase in frequency for small layer thick-
nesses (30–50 µm) [12, 13], for which this dependence
is close to the calculated one. The domain dimension
d = 0.7h, found above, is somewhat less than the exper-
imental value dexp ≈ h. At frequencies satisfying the
condition ωτ > 5 × 103, the theoretical values of the
threshold amplitude, provided that the orientation of
molecules at the boundaries is strong, are close to the
values of uth obtained by computer simulation in the
cited publications. At lower frequencies, formula (14)
predicts a smaller value of the threshold amplitude as

K33/Wh

ωηγ2
K33/W

2

C

compared with the numerical and experimental results
of [12, 13]. This difference is caused by the lineariza-
tion of the hydrodynamic equations with respect to the
angle θ1 performed in our study. However, this linear-
ization is allowed only for small displacement ampli-
tudes and cannot be used at ωτ < 5 × 103. Nonlinear
effects at low frequencies and the inertia of the medium
at high frequencies, as well as additional factors affect-
ing the domain formation, require a separate analysis,
which is beyond the scope of this study.
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Abstract—Comparative analysis of the specific features of the formation of a dislocation structure in the sin-
gle-layer epitaxial heterostructures Si1 – xGex/Si and Ge1 – ySiy/Ge is performed. It is ascertained that, at a rela-
tively low lattice mismatch between an epitaxial layer and a substrate, the sign of misfit strain at the interface
significantly affects the processes of defect formation. The most probable reasons for the observed phenomena
are analyzed with allowance for the specific features of the state of the ensemble of intrinsic point defects in
epitaxial layers subjected to elastic strains of a different sign. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

The effect of the sign of misfit strain on the pro-
cesses of formation of a dislocation structure in epitax-
ial heterostructures was first revealed in the study of
highly lattice-matched heterostructures of quaternary
III–V solid solutions grown on substrates of corre-
sponding binary compounds [1, 2]. It was found that, at
a deviation from isoperiodicity at the interface (at low
misfit strains) when tensile stresses are present in the
epitaxial layer, the generation of misfit dislocations
begins at a lower misfit strain as compared to the case
of compressive stresses in the epitaxial layer [1–3].

An attempt was made in [4] to realate this phenom-
enon to the effect of the sign of misfit strain on the
motion of 30° and 90° partial dislocations formed as a
result of the dissociation of 60° misfit dislocations.
However, this approach has not been developed.

To investigate this phenomenon in more detail, we
used epitaxial heterostructures based on SiGe solid
solutions grown on Si and Ge substrates. The tetrahe-
dral radius of the Ge atom greatly exceeds that of the Si
atom (1.58 and 1.17 nm, respectively). Therefore, intro-
duction of Ge atoms into Si leads to an increase in the
lattice constant of the epitaxial layer of the solid solu-
tion in comparison with the lattice constant of the Si
substrate; i.e., Si1 – xGex/Si epitaxial layers grow under
the conditions of compression. In contrast, introduction
of Si atoms into Ge leads to a decrease in the lattice
constant of the epitaxial layer in comparison with the
Ge substrate; i.e., Ge1 − ySiy/Ge epitaxial layers are sub-
jected to tensile stresses.
1063-7745/05/5005- $26.00 ©0849
Much attention has been given to the regularities of
formation of a dislocation structure in SiGe epitaxial
heterostructures (see, for example, [5–16]).
Si1 − xGex/Si heterostructures have been studied most
thoroughly. Unfortunately, comparative analysis of the
specific features of defect formation in Si1 – xGex/Si and
Ge1 – ySiy/Ge heterostructures aimed at establishing a
possible effect of the sign of misfit strain at the interface
and the substrate plasticity on the formation of a dislo-
cation structure has not been carried out. In this study,
we tried to some extent to gain insight into this prob-
lem.

EXPERIMENTAL

Layers of Si1 – xGex  solid solutions were grown on
Si(100) substrates by molecular-beam epitaxy with a
solid Si source and a gaseous Ge source at 700°C. Lay-
ers of Ge1 – ySiy solid solutions were grown on Ge sub-
strates by hydride vapor-phase epitaxy at 600°C. These
growth techniques were described in [5, 7], respec-
tively. The Si substrates were dislocation-free, and the
dislocation density in Ge substrates did not exceed
103 cm–2. The epitaxial layers were grown at a relatively
low layer/substrate lattice mismatch (|f | ≤ 10–2).

Fairly high growth temperatures and relatively large
thicknesses of grown layers (which, under the given
growth conditions, significantly exceed not only the
critical thickness hcr of misfit-dislocation generation
but also the critical thickness hFR of misfit-dislocation
multiplication by the Frank–Read mechanism) make it
 2005 Pleiades Publishing, Inc.
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possible to perform comparative analysis of the results
obtained for the heterostructures under consideration.

Structural investigations were performed by chemi-
cal etching of angle laps of heterostructures in combi-
nation with interference optical microscopy and trans-
mission electron microscopy (TEM). We studied the
regularities of changes in the linear densities of misfit
and threading dislocations in the epitaxial layer and dis-
locations in the near-interface substrate region (sub-
strate dislocations) at a change in the solid-solution
composition. The dislocation densities in the epilayers
and substrates was determined from the density of dis-
location etch pits revealed in Si1 – xGex/Si heterostruc-
tures in an etchant based on HF and CrO3 and in
Ge1 − ySiy/Ge heterostructures in an etchant based on
K3Fe(CN)6 and KOH. The linear density of misfit dis-
locations was measured from TEM images of longitu-
dinal cuts of heterostructures in the interface region.

RESULTS AND DISCUSSION

We reported the results of our previous investiga-
tions of the structural features of Si1 – xGex/Si and
Ge1 − ySiy/Ge heterostructures in [5, 7], respectively.
Comparison of these results shows that general regular-
ities in the formation of a dislocation structure in both
cases are observed. These regularities manifest them-
selves in the presence of characteristic extreme points
on the experimental dependences of the densities of
misfit, threading, and substrate dislocations on the solid
solution composition, reflecting the specificity of the
processes of nucleation, motion, and multiplication of
dislocations in the heterostructures under study as the
lattice mismatch between the substrate and epitaxial
layer increases. At the same time, the heterostructures
under study show some quantitative differences in the
observed concentration dependences.

Establishing these differences, it should be taken
into account that, in the case we are considering,
Si1 − xGex epitaxial layers were grown on Si(100) sub-
strates, whereas Ge1 – ySiy layers were grown on
Ge(111) substrates. Under these conditions, at the same
lattice mismatch at the interface, the effective shear
stresses acting in the easiest slip planes and determin-
ing the regularities of the nucleation and motion of dis-
locations in the heterostructures, τeff, are significantly
different. The value of τeff is found from the expression
[17]

τeff = cosλ cosϕε2µ(1 + ν)/(1 – ν), (1)

where µ and ν are, respectively, the shear modulus and
the Poisson ratio in an isotropic solid; ε is the two-
dimensional elastic strain in the film, arising because of
the difference in the lattice constants of the substrate
(as) and the layer (al), which is determined by the com-
position of the solid solution (the parameter x or y),

f = (al – as)/as; (2)
C

λ is the angle between the Burgers vector and the per-
pendicular (lying in the interface plane) to the line of
intersection of the dislocation-slip plane and the sub-
strate surface; and ϕ is the angle between the slip plane
and the normal to the interface. The quantity cosλcosϕ
is referred to as the Schmid factor, which is equal to
0.418 and 0.27 for the substrate orientations (100) and
(111), respectively. Therefore, to reveal the specific fea-
tures of the dislocation-structure formation, one has to
compare the dependences of the densities of misfit,
threading, and substrate dislocations on τeff. The corre-
sponding results are shown in Figs. 1–3.

The data shown in Figs. 1 and 2 indicate that the
generation of misfit dislocations and, genetically
related to them, threading dislocations in the epitaxial
layer in a Si1 – xGex/Si heterostructure, in which the epi-
taxial layer is subjected to compression strains, begins
at much larger values of τeff than in Ge1 – ySiy/Ge hetero-
structures, where the epitaxial layer is tensile strained.
A similar regularity is also observed for the dislocation
multiplication by the Frank–Read mechanism: in
Si1 − xGex/Si heterostructures this process begins at val-
ues of τeff exceeding those for the Ge1 – ySiy/Ge hetero-
structures by almost a factor of 2 (Figs. 2, 3). At the
same time, the density of threading and substrate dislo-
cations at extreme points of Si1 – xGex/Si heterostruc-
tures is higher in comparison with Ge1 – ySiy/Ge hetero-
structures (Figs. 2, 3).

As follows from our previous data [6, 8], at a small
layer/substrate lattice mismatch (| f | ≤ 1.5 × 10–3), the
specific features of the dislocation structure of the het-
erostructures under study are mainly determined by the
generation of misfit dislocations at heterogeneous
sources. With a further increase in the mismatch (1.5 ×
10–3 ≤ | f | ≤ 10–2), the dislocation-structure formation is
determined to a large extent by the misfit-dislocation
multiplication by the modified Frank–Read mecha-
nism, whose intensity first increases and then decreases
with an increase in x and y. At sufficiently large mis-
matches (| f | > 10–2), the features of the dislocation
structure are determined by the change in the mecha-
nism of epitaxial growth, i.e., the passage from the
layer to the island mechanism of crystallization.

The results of our investigations [6, 8] and the data
of [18] suggest that the main centers of heterogeneous
dislocation nucleation in SiGe epitaxial layers are fine
precipitates formed as a result of spinodal decomposi-
tion of the solid solution. Spinodal decomposition
occurs on the surface of a growing layer and is accom-
panied by the formation and subsequent in-growth of
microprecipitates enriched in Ge (Si1 – xGex/Si) or Si
(Ge1 – ySiy/Ge) into the layer matrix. The presence of
misfit strains facilitates the process of spinodal decom-
position. As was shown in [18] by the example of
microprecipitates enriched in Ge in Si1 – xGex/Si hetero-
structures, the microprecipitates formed are platelike.
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 5      2005
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It is known (see, for example, [19]) that the presence
of elastic stresses in a crystal lattice leads to a change in
the enthalpy of formation of intrinsic point defects
(vacancies and interstitials). Elastic compressive
stresses decrease the vacancy-formation enthalpy,
whereas tensile stresses decrease the interstitial-forma-
tion enthalpy. As a result, the equilibrium concentra-
tions of the corresponding defects in an elastically
strained lattice increase. In Si1 – xGex/Si heterostruc-
tures, the epitaxial layer is compressively strained;
therefore, the dominant intrinsic point defects in it are
vacancies. In Ge1 – ySiy/Ge heterostructures, where the
epitaxial layer is tensile-strained, interstitials are domi-
nant in the layer.

Germanium-enriched microprecipitates formed in
Si1 – xGex/Si have a larger lattice constant in comparison
with the solid-solution matrix. In Ge1 – ySiy/Ge hetero-
structures, where microprecipitates are enriched with
Si, the situation is opposite. In both cases, microprecip-
itates are strained, and additional misfit strains arise at
the precipitate/matrix interface, which may lead to the
redistribution of intrinsic point defects.

In relatively thick epitaxial layers, when micropre-
cipitates with a lattice constant smaller than that of the
matrix are formed, the hydrostatic (dilatation) compo-
nent of the stress fields should be tensile in precipitates
and zero in the surrounding matrix. The situation radi-
cally changes when a microprecipitate is located in the
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Fig. 1. Dependences of the density of misfit dislocations at
the interface in (1) Si1 – xGex/Si and (2) Ge1 – ySiy/Ge het-
erostructures on the effective shear stress.
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immediate vicinity of the free surface of the epitaxial
layer (when the distance between the microprecipitate
and the surface is either smaller or of the same order of
magnitude as the microprecipitate size). Then, owing to
the strong screening of the normal component of the
microprecipitate stress field by the free surface, the
hydrostatic component may become negative in the gap
between the microprecipitate and the free surface and
positive at the lateral faces of the platelike microprecip-
itate. Intrinsic interstitials may migrate into these lat-
eral zones. This process is accompanied by the forma-
tion of interstitial dislocation loops [20].

Apparently, it is this situation that is implemented in
Ge1 – ySiy/Ge heterostructures, since the formation of
microprecipitates, as noted above, occurs on the surface
of an elastically strained growing layer, and the corre-
sponding migration of intrinsic interstitials, which are
dominant in the epitaxial layer, occurs during the sub-
sequent in-growth of microprecipitates into the matrix.
In Si1 – xGex/Si heterostructures, where the epitaxial
layers are compressively strained and Ge-enriched
microprecipitates have a larger lattice constant than the
matrix solid solution, the opposite situation should be
observed. In this case, as a result of the directed migra-
tion of vacancies (which are dominant in the epitaxial
layer), vacancy dislocation loops are formed at the
boundaries between the lateral faces of platelike micro-
precipitates and the matrix. This is the fundamental dif-
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Fig. 2. Dependences of the density of threading dislocations
in the epitaxial layers of (1) Si1 – xGex/Si and (2)
Ge1 − ySiy/Ge heterostructures on the effective shear stress.
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ference in the processes occurring in the heterostruc-
tures under consideration.

Within the microscopic theory of dislocation forma-
tion in heterostructures [18], when the lattice mismatch
at the interface is small and sources of heterogeneous
dislocation nucleation in the form of strained micro-
scopic precipitates, coherent with the matrix, are
present in the epitaxial layer, the defect formation
occurs as follows. When a strained precipitate reaches
some critical size, the loss of its coherence with the for-
mation of a stable dislocation loop in its vicinity
becomes energetically favorable. The subsequent
expansion of the dislocation loop to the critical size and
passage to the easiest slip plane lead to the formation of
misfit dislocations at the interface. The processes of
formation of a stable dislocation loop and its subse-
quent expansion to the critical size involve intrinsic
point defects present in the epitaxial layer. These
defects are vacancies in Si1 – xGex/Si heterostructures,
where the epitaxial layers are compressively strained,
and interstitials in Ge1 – ySiy/Ge heterostructures, where
the epitaxial layers are tensile-strained. In both cases,
owing to the decrease in the enthalpy of formation of
corresponding intrinsic point defects in the elastically
strained epitaxial layers, the equilibrium concentrations
of these defects are fairly high. Under these conditions,
these processes are controlled by the diffusion mobility
of the dominant intrinsic point defects. In the Si and Ge
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Fig. 3. Dependences of the density of dislocations in the
near-interface substrate region in (1) Si1 – xGex/Si and (2)
Ge1 – ySiy/Ge heterostructures on the effective shear stress.
C

lattices, the diffusion mobility of interstitials greatly
exceeds that of vacancies. For this reason, at compara-
ble values of the lattice mismatch at the interface, the
generation of misfit dislocations in the tensile-strained
epitaxial layers in Ge1 – ySiy/Ge heterostructures occurs
at a much higher rate. This circumstance seems to be
the main reason that the generation of misfit disloca-
tions in Si1 − xGex/Si heterostructures, where the epitax-
ial layers are compressively strained, begins at larger
values of τeff and their multiplication by the modified
Frank–Read mechanism (at comparable misfit strains at
the interface) is less intense.

As noted above, the densities of threading and sub-
strate dislocations at the extreme points on their depen-
dences on τeff for Si1 – xGex/Si heterostructures exceeds
that for Ge1 – ySiy/Ge heterostructures. At first glance,
this fact contradicts the above-considered phenomena.
However, one should take into account that the forma-
tion of misfit dislocations, as well as their subsequent,
fairly intense multiplication by the Frank–Read mech-
anism in Si1 – xGex/Si heterostructures occurs at signifi-
cantly higher actual misfit strains. It is known (see, for
example, [13, 18]) that in both Ge and Si, as well as in
epitaxial layers of SiGe solid solutions, the velocity of

dislocation motion depends strongly on τeff: Vdisl ~ ,
where the exponent m, according to the data of different
authors, changes in the range 1 ≤ m ≤ 2. Thus, the pro-
cesses of plastic relaxation of misfit strains in
Si1 − xGex /Si heterostructures occur when the velocity
of dislocation motion in them exceeds that in
Ge1 − ySiy/Ge heterostructures. This circumstance is the
most likely reason for the high dislocation density at the
extreme points of the dependence of the dislocation
density on τeff. The effect of the velocity of dislocation
motion also manifests itself in the misfit-dislocation
multiplication by the Frank–Read mechanism, which
leads to the penetration of dislocations into the near-
interface substrate region. In Si1 − xGex/Si heterostruc-
tures, this process is more effective, which leads to
deeper penetration of dislocations into the substrate and
the formation of slip bands in it [21]. In Ge1 – ySiy/Ge
heterostructures, slip bands are not observed.

CONCLUSIONS

Comparative analysis of the specific features of for-
mation of a dislocation structure in the single-layer epi-
taxial heterostructures Si1 – xGex/Si and Ge1 – ySiy/Ge is
performed. The effect of the sign of misfit strain on the
generation and multiplication of misfit dislocations is
established. At a relatively small lattice mismatch
between the epitaxial layer and the substrate (|f | ≤ 10–2),
the generation of misfit dislocations in Si1 – xGex/Si het-
erostructures, where the epitaxial layer is compres-
sively strained, begins at higher misfit strains as com-
pared to Ge1 – ySiy/Ge heterostructures, where the epi-
taxial layer is tensile strained. A similar regularity is

τeff
m
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observed for the dislocation multiplication by the mod-
ified Frank–Read mechanism: in Si1 – xGex/Si hetero-
structures, this process begins at a value of τeff almost
two times higher than in Ge1 – ySiy/Ge heterostructures.
At the same time, the densities of threading disloca-
tions in the epitaxial layer and the near-interface sub-
strate region at the extreme points of their dependences
on τeff are higher for Si1 – xGex/Si than for Ge1 – ySiy/Ge
heterostructures.

The observed differences in the dislocation-struc-
ture formation in heterostructures based on SiGe solid
solutions are explained with allowance for the specific
features of the state of the ensemble of intrinsic point
defects in the layers subjected to elastic strains of dif-
ferent signs and for the dependence of the velocity of
dislocation motion on the level of actual shear stresses
in the system.
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Abstract—Langmuir–Blodgett films are prepared from lead, cadmium, and copper salts of carboxylic acids,
namely, 23-tetracosynoic acid HC≡C(CH2)21COOH (with the terminal triple bond) and 2-docosynoic acid
CH3(CH2)18C≡CCOOH (with the internal triple bond). The structural transformations in the films during poly-
merization under exposure to UV radiation are investigated using X-ray reflectomertry. It is found that the X-ray
reflectograms of the initial films prepared from salts of both acids exhibit no less than four or five pronounced
intense Bragg reflections. This suggests that the initial films have good layer ordering. The bilayer periods for
all the films are determined, and the influence of the salt type on the bilayer period is analyzed. It is established
that, under exposure to UV radiation, the structural transformations in the films prepared from the salts of
23-tetracosynoic acid occur without substantial disturbances and defects, as can be judged from the absence
of significant changes in the location and intensity of the Bragg reflections. An increase in the time of irradiation
of the films prepared from the salts of 2-docosynoic acid leads to an increase in the bilayer period. This
effect is especially pronounced for the lead and copper salts. However, upon long-term exposure to UV radia-
tion, the salts undergo photolysis, the bilayer period decreases, and the structure of the film begins to break
down. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

Langmuir–Blodgett films are layered structures
formed by amphiphilic molecules with different
degrees of ordering. Hydrocarbon chains in molecules
forming a film can be differently oriented with respect
to the normal to the layer plane, depending on the type
of molecules and on the preparation technique. Long-
chain acetylene derivatives can be formed as ordered
multilayers by using the Langmuir–Blodgett method.
This provides conditions favorable for topochemical
polymerization. In our earlier work [1], the kinetics of
photopolymerization in Langmuir–Blodgett films pre-
pared from lead, cadmium, and copper salts of acety-
lenic acids was investigated using IR spectroscopy and
ellipsometry. It was revealed that photopolymerization
is accompanied by two competing processes, namely,
polymerization (with breaking of triple bonds followed
by the formation of a polyene chain) and photolysis of
the salt. The character of the polymerization process
depends on both the acid and salt types.

The structure of Langmuir–Blodgett films has been
studied in a large number of works [2–6]. One of the
methods for investigating the structure of multilayer
Langmuir–Blodgett films with long periods is small-
angle X-ray reflectometry. This method makes it possi-
ble to determine the period of layer packing and to con-
1063-7745/05/5005- $26.00 ©0854
struct the electron density profile in the projection onto
the normal to the substrate plane.

In this work, we studied the structure of Langmuir–
Blodgett films prepared from lead, cadmium, and cop-
per salts of carboxylic acids, namely, 23-tetracosynoic
acid HC≡C(CH2)21COOH (with the terminal triple
bond) and 2-docosynoic acid CH3(CH2)18C≡CCOOH
(with the internal triple bond). Moreover, we investi-
gated the transformation of the film structure during
polymerization under exposure to UV radiation.

SAMPLE PREPARATION AND EXPERIMENTAL 
TECHNIQUE

Films were prepared from lead, copper, and cad-
mium salts of 23-tetracosynoic acid and 2-docosynoic
acid according to the Langmuir–Blodgett method. For
this purpose, monolayers formed on the surface of an
aqueous subphase containing solutions of the lead, cop-
per, and cadmium salts were transferred onto a sub-
strate. Silicon(100) single-crystal wafers served as sub-
strates. The Y-type monolayers were prepared on the
substrates under a pressure of 30 mN/m and at a tem-
perature of 18 ± 1°C. The samples under investigation
contained 20 to 50 monolayers. Photopolymerization
of the Langmuir–Blodgett films was performed in a
vacuum chamber with the use of a low-pressure mer-
 2005 Pleiades Publishing, Inc.
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Fig. 1. X-ray scattering curves for films prepared from lead salts of (a) 23-tetracosynoic acid and (b) 2-docosynoic acid: (1) the
initial film and (2, 3) films exposed to UV radiation for (a) (2) 5 min, (3) 85 min and (b) (2) 80 s, (3) 25 min.
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2θ, deg
cury lamp (radiation power, 1.7 mW/cm2). The tech-
niques for preparation and photopolymerization of
films were described in detail in our previous paper [1].

Before and after polymerization, the film structure
was investigated on an AMUR-K small-angle X-ray
diffractometer equipped with a linear-response posi-
tion-sensitive detector. For this purpose, the X-ray
intensity distributions upon reflection from the film sur-
face were measured and analyzed according to the spe-
cial standardized technique [7]. The scattering intensity
curves for the samples were measured using CuKα radi-
ation at a wavelength λ = 1.542 Å for different glancing
angles. The positions of the Bragg maxima in the X-ray
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 5      2005
reflectrograms obtained were determined with a
graphic interface of the CAMAC controlling program.

The layer period D in the film was calculated from
the formula

or (1)

where λ is the wavelength of radiation incident on the
sample, n is the reflection order (the number of the cho-
sen Bragg reflection), θn is the glancing angle corre-
sponding to the n-order Bragg reflection (the acute
angle between the sample plane and the beam incident

D
nλ
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Fig. 2. X-ray scattering curves for films prepared from copper salts of (a) 23-tetracosynoic acid and (b) 2-docosynoic acid: (1) the
initial film and (2, 3) films exposed to UV radiation for (a) (2) 17 min, (3) 85 min and (b) (2) 70 min, (3) 280 min.
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on the sample), and qz = (4πsinθ)/λ is the magnitude of
the wave vector expressed in inverse angstroms. This
quantity has often been used in reflectometry instead of
the angle θn and allows one to eliminate the radiation
wavelength in formula (1).

Depending on the quality of the film surface and the
total film thickness, the measured reflectometric curve
can exhibit intensity oscillations due to interference of
monochromatic waves scattered from the upper and
lower film boundaries (Kiessig oscillations). In the
C

presence of Kiessig oscillations in the X-ray reflectro-
gram, the total film thickness can be estimated from the
relationship

(2)

In the case where the positions of Kiessig oscilla-
tions in the reflectrogram could not be determined, the
total film thickness was estimated from the number of
transferred monolayers.

L Ln≅ λ
2 θn 1+sin θnsin–( )
---------------------------------------------- λ

2 θn 1+ θn–( )
------------------------------.≅=
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RESULTS AND DISCUSSION

The X-ray scattering curve for the initial Langmuir–
Blodgett film prepared from the lead salt of 23-tetraco-
synoic acid (Fig. 1a, curve 1) exhibits Kiessig oscilla-
tions and two sets, I and II, each composed of five
Bragg reflections with the periods DI = 64–66 Å and
DII = 60 Å, respectively. The intensity of the reflections
of set I is higher, and, hence, the corresponding molec-
ular packing in the layer occupies a larger region in the
film. Set II of reflections in the scattering curve for the
film can be associated either with the presence of acid
molecules unreacted with the metal or with two differ-
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 5      2005
ent conformations of the same molecules. As is known,
acid molecules form tilted bilayers and, therefore, their
periods are somewhat shorter than those of their
salts [8].

Upon exposure to UV radiation for 5 min, the film is
polymerized by approximately 80%. As a result, the
X-ray scattering curve (Fig. 1a, curve 2) involves one
set of reflections (rather than two sets) with a period
D = 61–63 Å. After exposure to UV radiation for
85 min, only two weak broad reflections corresponding
to the layer period D = 55–57 Å can be distinguished in
the X-ray scattering curve (Fig. 1a, curve 3). In this
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case, the polymerization and photolysis processes are
completed and the layered structure of the film begins
to break down.

In the X-ray scattering curve for the initial Lang-
muir–Blodgett film prepared from the lead salt of
2-docosynoic acid (Fig. 1b, curve 1), there are four or
five pronounced Bragg reflections with a high intensity.
The observed Kiessig oscillations indicate that the sur-
face involves sufficiently large flat regions and is char-
acterized by a small roughness parameter. Under expo-
sure to radiation, the intensities of the Bragg reflections
do not change significantly and the transformation
occurs without substantial disturbances and defects in
the film structure and leads to an increase in the layer
period. The bilayer period D is equal to 51 Å for the ini-
tial sample, 53 Å for the sample exposed for 80 s

(a) (b)

Fig. 4. Spatial structures of (a) 23-tetracosynoic and
(b) 2-docosynoic acids.
CR
(Fig. 1b, curve 2), and 56 Å for the sample exposed for
25 min (Fig. 1b, curve 3).

The X-ray scattering curves for the initial and irra-
diated Langmuir–Blodgett film prepared from the cop-
per salt of 23-tetracosynoic acid exhibit pronounced
Bragg reflections up to the fifth order. The layer period
D for the initial sample is equal to 60 Å (Fig. 2a, curve 1).
After exposure for 70 min, when the film is only half-
polymerized, the period increases slightly (Fig. 2a,
curve 2). However, an increase in the exposure time
results in a decrease in the period (Fig. 2a, curve 3).
Note that these changes are within the limits of experi-
mental error and, therefore, there is little sense in ana-
lyzing the numerical values. It should be noted there is
a tendency toward a change in the layer size under
exposure to radiation, because, although these changes
do not manifest themselves in the first-order reflections,
the shifts in the positions of the fifth-order reflections
are quite noticeable. Most likely, exposure to UV radi-
ation initially leads to a small increase in the molecular
mobility; as a result, the layers are slightly swelled.
Long-term exposure leads to the molecular ordering.
This, in turn, results in an insignificant shrinkage of lay-
ers and is possibly accompanied by the formation of a
number of defects, which lead to a smearing of the
high-order Bragg reflections.

One more consequence of polymerization consists
in redistributing the intensity of the Bragg reflections of
different orders. After polymerization for 70 min, the
intensities of the odd reflections decrease considerably,
whereas the intensities of the even reflections remain
identical to those for the initial sample. The redistribu-
tion of the reflection intensities can be associated with
the change in the electron density in the direction per-
pendicular to the layer plane, which actually should
occur in the course of polymerization. At long exposure
times, when the polymerization and photolysis pro-
cesses are completed, this becomes immaterial because
the intensity of the high-order Bragg reflections
decreases substantially due to the disturbance of the
long-range order.

In the case of the copper salt of 2-docosynoic acid,
exposure to radiation leads first to a slight decrease in
the bilayer thickness and then to its increase. The
bilayer period D is equal to 54 Å for the initial film
(Fig. 2b, curve 1), 52.4 Å for the film exposed for
17 min (Fig. 2b, curve 2), and 53.2 Å for the film
exposed for 85 min (Fig. 2b, curve 3).

For the Langmuir–Blodgett film prepared from the
cadmium salt of 23-tetracosynoic acid, the bilayer
period is equal to 60.2 Å for the initial sample (Fig. 3a,
curve 1) and 60.5 Å for the sample exposed for 195 min
(Fig. 3a, curve 2). Note that, after exposure for 60 min,
when the degree of polymerization is no more than 0.2,
the intensities of the Bragg reflections are close in mag-
nitude and the film structure remains virtually
unchanged. Only long-term exposure (for 195 min)
results in an increase in the roughness of interlayer
YSTALLOGRAPHY REPORTS      Vol. 50      No. 5      2005
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(‡1) (b1) (‡2) (b2)

Fig. 5. (1) Top and (2) side views of two variants of the packing of 2-docosynoic acid molecules around cadmium in a bilayer from
the cadmium salt of 2-docosynoic acid according to the computer simulation: (a) the tilted packing and (b) the twisted packing.
boundaries and the deterioration of the long-range
order of the layered packing (which leads to a broaden-
ing of the Bragg reflections and a considerable decrease
in their intensity).

The X-ray scattering curve for the initial Langmuir–
Blodgett film prepared from the cadmium salt of 2-doc-
osynoic acid (Fig. 3b, curve 1) clearly exhibits two dif-
ferent sets of reflections. Set I contains four high-inten-
sity reflections corresponding to the layer period D =
54–55 Å. In set II, the intensities of the Bragg reflec-
tions are substantially lower. The positions of the
reflections indicate that they should correspond to the
double layer period D = 110 Å. In this case, the first
reflection is not observed and all the even reflections
coincide with the reflections of set I. Therefore, we
really observe only the odd reflections (beginning with
the third reflection). Exposure of the film to radiation
results in a broadening and a shift in the reflections of
set I, whereas the reflections of set II do not shift,
decrease in intensity, and gradually disappear (Fig. 3b,
curves 2, 3).
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Since both sets of reflections in the X-ray scattering
curve correspond to the layer periods that are multiples
of the bilayer size of 55 Å, we can assume the following
model of the layer packing. By virtue of steric hin-
drances, bilayers are packed in the film so that their
thickness remains unchanged, whereas layers whose
specific features of the structural packing lead to the
difference between the electron density profiles alter-
nate with each other. This manifests itself in doubling
of the layer period. Let us assume that the structure in
which molecules are packed in bilayers in two different
ways (for example, one bilayer is vertically located and
another bilayer is tilted, or two acetylene tails are
extended with respect to the cadmium atom in one
bilayer and twisted around this atom in another layer) is
energetically favorable. As a consequence, these struc-
tural differences lead to a small variations in the layer
parameters. In this case, the polymerization under
exposure to radiation should enhance the intermolecu-
lar interaction in layers as compared to the interlayer
interaction of the molecules. In turn, this should lead to
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Fig. 6. (a) Model of the electron density profile and (b) the calculated scattering intensity curve (solid line), which reflects the spe-
cific features of the Bragg reflections in the experimental scattering curve (dotted line) for the unirradiated sample of the cadmium
salt of 2-docosynoic acid.
the equalization of the layer parameters and, hence, to
the disappearance of the reflections of set II.

In order to verify the proposed hypothesis, the spa-
tial structures of 23-tetracosynoic and 2-docosynoic
acids (Fig. 4) were constructed using the molecular
dynamics simulation with special computer programs
[9]. Furthermore, the possible molecular conformations
of the cadmium salt of 2-docosynoic acid were deter-
mined by the computer simulation. It was revealed that
there are, at least, two allowable variants for the pack-
ing of oxygen atoms around the cadmium atoms
(Fig. 5). These variants of the packing differ insignifi-
cantly in bilayer thickness and electron density. Our sit-
uation can occur under the assumption that, after the
formation of one bilayer with molecules in the most
favorable conformation during the preparation of the
Langmuir–Blodgett film, the formation of the next
bilayer with molecules in the same conformation is
energetically unfavorable.

In addition to the molecular dynamics simulation, in
order to confirm the above hypothesis, we attempted to
choose the parameters of the model of molecular pack-
ing in the layered film so that the scattering intensity
curve for this model should qualitatively describe the
C

behavior of the Bragg reflections in the experimental
scattering curve. The obtained model (Fig. 6a) and the
corresponding scattering intensity curve (Fig. 6b), in
our opinion, adequately describe the change in the
intensities of the Bragg reflections in the experimental
scattering curve and, thus, confirm our assumption
regarding the possible molecular packing in the real
film.

Analysis of the X-ray reflectograms of the Lang-
muir–Blodgett films prepared from the salts of acety-
lenic acids shows that the initial films have a rather
good layer ordering and the bilayer periods determined
from the small-angle X-ray scattering curves depend on
the salt type. The bilayer periods for the Langmuir–
Blodgett films prepared from the salts of 23-tetracosyn-
oic acid are almost identical, whereas the period for the
films produced from the lead salt of 2-docosynoic acid
is smaller than those for the films prepared from the
cadmium and copper salts of this acid. 

It can be seen from Fig. 4 that the acetylenic acid
molecules have different spatial structures. The 23-tet-
racosynoic acid molecule is represented by the polym-
ethylene chain in which the carbon atoms are bound by
single bonds and the carbon atoms bound by the triple
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 5      2005
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bond lie at an angle to the chain axis. In the 2-docosyn-
oic acid molecule, four carbon atoms at the carboxyl
end lie in one straight line and the polymethylene chain
forms an angle with this rodlike molecular fragment.
The molecules of salts of these acids have the same
configuration. In the bilayer packing, spatial structures
of molecules are retained.

In the 2-docosynoic acid molecule, the triple bond at
the end of the hydrocarbon chain in the α position with
the carboxyl group affects the coordination of carboxyl
groups by metal ions. It was shown in our earlier work
[1] that, in Langmuir–Blodgett films, the lead ion is
bonded to two carboxyl groups of neighboring mono-
layers. However, in films prepared from the cadmium
and copper salts, each ion can be bonded to oxygen
atoms of four carboxyl groups with the formation of a
more symmetric and stable structure as compared to the
structure of the lead salt. As a result, the tilt of mole-
cules of the lead salt of 2-docosynoic acid in the layer
is larger and the thickness of the monolayer formed by
the lead salt is smaller than those in the case of the cad-
mium and copper salts. Such a molecular configuration
can be responsible for the anisotropic optical character-
istics of films. This is confirmed by the results obtained
in our previous work [10], in which the optical param-
eters of the films under investigation were determined
using ellipsometry at different angles within the model
of a biaxial anisotropic film. It was demonstrated that
the Langmuir–Blodgett films prepared from the lead
salt of 2-docosynoic acid should be considered biaxial,
whereas similar films prepared from the cadmium salt
of this acid and also the lead and cadmium salts of
23-tetracosynoic acid exhibit a nearly uniaxial anisot-
ropy. The monolayer thicknesses determined from the
X-ray data for the salts of 23-tetracosynoic and 2-doc-
osynoic acids are in good agreement with the results of
the ellipsometric measurements performed with due
regard for the anisotropy of these films [10].

The change in the film thickness during the poly-
merization is associated with the structural transforma-
tions in the layer. Under UV irradiation of the films pre-
pared from the salts of 23-tetracosynoic acid, the inten-
sities of the Bragg reflections change only
insignificantly, the transformation occurs without sub-
stantial disturbances and defects in the film structure,
and the bilayer period remains virtually constant. We
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can assume that the triple bond at the end of the hydro-
carbon chain does not affect the molecular packing in
the layer both before and after polymerization. The
polymerization of the Langmuir–Blodgett films pre-
pared from the salts of 2-docosynoic acid leads to a
change in the tilt angle of polymethylene chains and,
hence, to an increase in the bilayer period. Only upon
long-term exposure to UV radiation, when the salts
undergo photolysis, does the structure of the film begin
to break down and the bilayer period decrease.
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Abstract—The existence of surface states of nonrelativistic particles at the interface between a vacuum and a
layer of a material on a reflecting substrate, which are caused by the absorption in the layer rather than the pres-
ence of discrete levels, is established. The wave functions of such states (surface matter waves) are found and
the domains of their existence in the complex plane of the “optical” potential (both attractive and repulsive) of
the layer are determined. Threshold effects of the count of microparticles at the intersection of the boundaries
of these domains are revealed. The spatial characteristics of the surface matter waves are calculated. An exam-
ple of the layer composition providing the existence of such waves is given for ultracold neutrons. The increase
in the loss of trapped ultracold neutrons owing to the excitation of the surface matter waves of these particles
in the trap walls is discussed. © 2005 Pleiades Publishing, Inc.
† INTRODUCTION

The localization of an electromagnetic field near
surfaces or interfaces in the form of surface electromag-
netic waves has been quite thoroughly studied in a wide
frequency range (including optical frequencies) in the
general case of absorbing media with complex permit-
tivity [1, 2]. At the same time, the generally known data
on the surface localization of the wave functions of
nonrelativistic particles, which are related mainly to the
electronic surface states, were obtained for nonabsorb-
ing media with a real potential of interaction between a
microparticle and a medium [3, 4]. Therefore, when a
medium is absorbing, a question arises about the condi-
tions of existence and specific features of the surface
states of microparticles localized at the vac-
uum/medium interface. In the general case of an
absorbing medium, the wave functions of the surface
states of quantum-mechanical particles or, for brevity,
surface matter waves, should satisfy the Schrödinger
equation with a complex interaction potential in the
medium.

The solution to this problem is important in the
study of the surface of condensed media using corpus-
cular radiation effectively absorbed in these media (for
example, positrons and slow electrons). The interaction
of such particles with a medium can be described by a
complex optical potential [5]. This potential is also
used for other low-energy particles, in particular,
positroniums [6]. In all such cases, consideration of the
surface matter waves caused by the absorption may be
important. There is much interest in the existence of
surface matter waves during the storage of ultracold

† Deceased.
1063-7745/05/5005- $26.00 ©0862
neutrons (UCNs) in traps. In this case, a constant com-
plex potential can also be applied [7]. The method of
storage of UCNs is very promising for various applica-
tions in surface physics because UCNs interact only
with a thin surface layer of the trap walls. This method
has already been experimentally implemented [8]. At
the same time, the fact that the measured times of stor-
age of UCNs in traps are much shorter than the calcu-
lated values [8, 9] has not been explained yet. This phe-
nomenon may be related to the excitation of surface
matter waves of UCNs, which exist only owing to the
absorption in the trap walls. 

The general conditions of existence of surface elec-
tromagnetic waves both at the interface between two
media and in layered structures consisting of more than
two different media, including absorbing ones, are well
known [1, 2]. These conditions can be satisfied, for
example, at the vacuum/medium interface, where sur-
face electromagnetic waves generally exist both in the
absence of absorption in the medium (Fano modes) and
in the presence of absorption (Zenneck modes). Note
that the phase velocities of the Fano and Zenneck
modes in the interface plane are, respectively, smaller
and larger than the speed of light in a vacuum. There-
fore, the fields of surface and bulk electromagnetic
waves cannot serve as sources for one another in the
case of a uniform interface between two media in view
of the difference in the components of the wave vectors
of these waves in the interface plane. The mutual trans-
formation of surface and bulk electromagnetic waves
should also remain forbidden for quantum-mechanical
wave functions in the corresponding situation, for
example, in planar geometry, where both these waves
are formally described by identical equations [10].
 2005 Pleiades Publishing, Inc.



        

SURFACE MATTER WAVES CAUSED BY THE ABSORPTION 863

                                                                                                                                                            
Detailed consideration shows that in the planar
geometry the Schrödinger equation and the boundary
conditions for the wave functions of particles have the
same form as in the case of electromagnetic waves of
the magnetic type with a transverse electric field. How-
ever, it is known that in the case of only two media with
a planar interface the fields of transverse electrical
waves cannot satisfy the boundary conditions at the
interface and do not form surface electromagnetic
waves [10]. Hence, surface matter waves do not exist in
this case.

In this study, we consider the simplest case of three
media (which, however, allows for the existence of sur-
face matter waves): a semi-infinite medium, which
completely reflects incident microparticles, is separated
from a vacuum by a homogeneous absorbing layer of
some thickness. The absorbing layer can be regarded
here as a simplified model of a surface transition layer
between the vacuum and the bulk structure of the mat-
ter (in particular, crystal). In this case, absorption in the
layer can be related to the thickness-averaged concen-
tration of impurities absorbing microparticles near the
surface. In the case of UCNs, the main absorbing impu-
rity is hydrogen, which is dissolved predominantly near
the surface of the trap walls [7]. Previously, we consid-
ered an absorbing crystal on a nonabsorbing substrate
(without a transition layer) modeled by a one-dimen-
sional (1D) Kronig–Penney lattice potential composed
of δ functions [3, 7] with complex coefficients. It was
shown in [11] that in this case absorption in the crystal
leads to the occurrence of surface waves analogous to
Zenneck modes, including substrates with a negative
potential, which do not allow for Tamm surface states
in a nonabsorbing crystal [3].

In this study, we obtained a solution to the quantum-
mechanical problem with a constant complex potential
of the layer in the above-described three-media geome-
try: surface matter waves of a microparticle. The
boundaries of the domains of existence of the surface
matter waves in the plane of the complex interaction
potential for a microparticle having a nonzero mass m
and a layer, normalized to "2/2ma2 = E∞/π2, are deter-
mined. (E∞ is the energy of the ground level of the par-
ticle in the infinitely deep potential well of width a
equal to the layer thickness counted from the well bot-
tom [12]; E∞/π2 = 2.1 × 10–11 eV at a = 1 µm.) It is noted
that some methods of excitation and observation of sur-
face electromagnetic waves can be applied to surface
matter waves. It is shown by the example of UCNs that
the conditions for the existence of surface matter waves
can be implemented in the case of a layer containing
isotopes absorbing UCNs, which have already been
used in experiments with UCNs [13]. The specificity of
the excitation and observation of surface matter waves
of UCNs is discussed, as well as the possibility of
increasing additional (anomalous) loss during UCN
storage due to the excitation of surface matter waves of
UCNs in the absorbing surface layer of the trap walls.
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SURFACE MATTER WAVES IN THE CASE 
OF ABSORPTION OF MICROPARTICLES 

IN A LAYER

Let us consider the problem of the surface localiza-
tion of the wave function of a nonrelativistic particle
during its interaction with a planar absorbing layer on a
totally reflecting substrate. In this geometry (Fig. 1),
the Schrödinger equation for the wave function Ψ(x, z)
of the particle has the form

(1)

Here, z is a coordinate along the outward normal to the
surface of the absorbing layer with a thickness a; within
the layer (a < z < 0), the constant complex potential V
with real (V ') and imaginary (V '' < 0) components (the
latter is responsible for the absorption) act on the parti-
cle; z ≥ 0 corresponds to the vacuum; z ≤ –a corre-
sponds to the totally reflecting medium with an infinite
potential; and x is a coordinate along an arbitrarily cho-
sen straight line on the layer surface. Thus, the potential
V(z) has the form

(2)

The boundary conditions for the Schrödinger equa-
tion (1) with the potential (2) are as follows: the func-
tion Ψ(x, z) and its derivative with respect to z are con-
tinuous at z = 0 and Ψ(x, –a) = 0 owing to the infinite
substrate potential. Separating the variables for the lon-
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Fig. 1. Surface localization of the probability density
|Ψ||(x)Ψ⊥ (z)|2 in the geometry of an absorbing layer on an

reflecting substrate: |Ψ⊥ (z)|2 (1) in the vacuum at the local-
ization height L⊥  = 1.19 and (2) in the layer with a maxi-

mum at zM = –0.41, plotted on the x axis, and (3) |Ψ||(x)|2
plotted on the z axis with the decay length L|| = 16.1 at x ≥ 0.

The values of |Ψ⊥ (z)|2 and |Ψ||(x)|2 at the characteristic

points are given in parenthesis (in µm–1); all calculations
were performed for the potential v0 in Fig. 2 and a = 1.
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gitudinal and transverse (along the x and z axes, respec-
tively) motions of the particle, we obtain a steady-state
solution to Eq. (1) with the potential (2) in the form

(3)

In formula (3), k is the wave number of the longitudinal
motion and κ0 and κ are the wave numbers of the trans-
verse motion in the vacuum and layer, respectively.
Note that in the presence of absorption (V '' ≠ 0) all these
wave numbers are complex. For separable variables x
and z, the solution Ψ(x, z) is a product of the wave func-
tions of the longitudinal (Ψ||(x)) and transverse (Ψ⊥ (z))
motions. In what follows, each of these functions is
assumed to be normalized to unity. The function Ψ||(x)
is normalized at the ray 0 ≤ x < ∞, where x = 0 is the
plane in which a surface wave is excited along the
x axis, and the function Ψ⊥ (z) is normalized at the ray
−a ≤ z < ∞ in view of the fact that Ψ⊥ (z ≤ –a) ≡ 0 in the
substrate with an infinite potential.

If Ψ(x, z) is a surface matter wave, the conditions of
its surface localization in the vacuum imply two signif-
icant limitations on κ0: Reκ0 ≤ 0 and Imκ0 > 0. The first
inequality ensures the absence of a transverse probabil-
ity flow into the vacuum from the layer containing no
sources of particles and the second inequality provides
the exponential falloff of the surface matter wave in the
vacuum. In contrast to the surface electromagnetic
waves at an interface between two media, the surface
matter waves considered here decay only at one side
from the layer surface: in the vacuum rather than in the
layer. Hence, there are no limitations for κ similar to
those imposed on κ0.

After the separation of variables, the Schrödinger
equation (1) yields dispersion equations relating the
sum of the squared wave numbers in the vacuum and in
the layer with the energy E of the particle:

(4)

where m is the particle mass and " is Planck’s constant.
The homogeneity of the above-stated boundary condi-
tions leads to a uniform linear system of equations for
the coefficients A, B, and C in (3). The determinant of
this system should be zero if nonzero solutions to the
system exist. This requirement gives the following rela-
tion between κ0 and κ at the noted limitations:

(5)

The system of equations (4) and (5) with a given poten-
tial V of the layer and the energy E of the particle allows
one to find the transverse wave numbers κ and κ0 and
the longitudinal wave number k.
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It is noteworthy that the two-dimensional (2D)
Eq. (1) with the complex potential V(z) from (2) at V '' ≠
0 has a steady-state solution Ψ(x, z) from (3) for the
continuous spectrum of real energies E (see below). In
contrast, the 1D equation for Ψ⊥ (z) obtained from (1)
with the same potential (2) and the boundary conditions
in the case Ψ||(x) ≡ 1 (for k = 0) at V '' ≠ 0 has no steady-
state (with real energies E) solutions. Indeed, in the 1D
case, assuming that k = 0 in dispersion equations (4)

with V '' ≠ 0, we obtain at real E a real value of  from
the first equation and a complex value of κ2 from the
second equation. It turns out that under the condition
Imκ0 > 0 these values cannot be related by Eq. (5), thus
indicating the absence of steady-state solutions to this
1D equation. If the potential V(z) in (2) is real (V '' = 0),
the 1D equation for Ψ⊥ (z) is reduced by replacing the
variable z – r – a in the equation for the function X(r) =
rR0(r) of the spherical coordinate r ≥ 0 (the length of the
radius vector); here, R0(r) is the radial part of the wave
function of a particle with a zero orbital momentum in
the centrally symmetric field of the short-range poten-
tial ("2/2m)V(r – a) with the cutoff radius equal to the
layer thickness a in (2). As a result of this replacement,
the boundary conditions for Ψ⊥ (z) are transformed into
the conventional conditions for X(r) in the case of the
above-mentioned potential. The steady-state solutions
to X(r) and the conditions for their existence for the real
potential V(r – a) are well-known [14]. These condi-
tions imply that the corresponding solutions Ψ⊥ (z) to
the 1D equation, localized near the interface between
the nonabsorbing layer and the vacuum, exist only
when the particle has bound states with a discrete spec-
trum of real energies E for the attractive potential of the
layer, in contrast to the 2D case (1) at k ≠ 0. In the 2D
case (k ≠ 0), it can be seen from Eqs. (4) that k, κ0, and

κ may take complex values at which Im(k2 + ) = 0
and Im(k2 + κ2) = –2mV ''/"2 ≠ 0. Thus, steady-state
solutions (with real E) to the Schrödinger equation (1)
with a continuous spectrum of energies E can exist for
the absorbing layer (with V '' ≠ 0).

However, it is obvious that the conditions Reκ0 ≤ 0
and Imκ0 > 0 from (5) are not satisfied at each value of
the complex potential V. Equations (4) and (5) allow
one to find directly the domains in the plane of the
dimensionless complex parameter κa in which these
conditions are satisfied. These equations imply the
mapping of the complex plane κa to the plane of the
normalized complex potential v :

(6)

where V is the potential of the layer with a thickness a
from (2). It follows from expressions (5) and (6), which
do not contain E, that the domains of existence of sur-
face matter waves in the complex plane v  are indepen-
dent of the energy E of the particle.
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The boundaries of the domains of existence of sur-
face matter waves in the complex plane κa, where the
above-mentioned physical limitations on κ0 are satis-
fied, were found by numerical solution of Eq. (5). In
view of the periodicity of the function , the
number of such domains is infinite. They are not over-
lapped and have closed boundaries, which contain, in
particular, straight-line half-intervals κna ≤ Reκ a <
κna + π/2, where κna = (2n – 1)π/2 and Reκ0 = 0. The
boundaries of different domains of existence of surface
matter waves, denoted by the numbers n = 1, 2, … of
the half-intervals they contain, are closed in the half-
plane Imκa > 0 by convex curves at which Imκ0 = 0.
These curves, including the finite points of the above-
defined half-intervals, do not belong to the domains of
existence of the surface matter waves. When mapping
(6) is performed, the domains of existence of the sur-
face matter waves in the plane κa pass into different
domains in the plane v  (see Fig. 2). These domains are
unlimited in the plane v  and are partially overlapped, so
that the nth domain in the plane v, obtained by mapping
of the nth domain in the plane κa, contains all domains
with higher numbers. In the absence of absorption
(Imv  = 0), the nth domain is degenerated into a ray
−∞ < Rev  ≤ –(κna)2 on the semiaxis Rev  < 0, into
which the nth half-interval in the κa plane is trans-
formed. Convex segments of the boundaries of the
domains of existence in the plane κa pass as a result of
mapping (6) to the plane v  into curves going to infinity,
asymptotically approaching the semiaxis 0 < Rev  < +∞.
Figure 2 shows the asymptotics of this segment of the
boundary of the first domain (n = 1) at Rev   +∞
(curve A). In the general case, at n ≥ 1, this asymptotic
curve has an analytical form

(7)

κa( )cot

Im v n 4 nπ( )2
2 nπ( )3/2

4–+[ ] / Re v n,–=
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Fig. 2. Domains of existence of n ≥ 1 surface matter waves
below the nth boundary (including the rays –∞ < Rev  ≤
−(2n – 1)2π2/4) in the plane of the potential v ; v0 =  +

i = 13.35 – 7.46i; A is the asymptotics (7) for n = 1.
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where v n are the points of this curve for the nth domain
at Rev n > 0.

In experiments with quantum-mechanical particles,
counts of the particle detector are generally measured,
which gives the value of |Ψ(x, z)|2 from (3) for surface
matter waves. Therefore, the calculated values of the
factors of this quantity are given in Fig. 1. All noted val-
ues were numerically calculated for the dimensionless
complex potential v 0 lying in the first domain of exist-
ence of surface matter waves (see Figs. 2, 3).

SPECIFIC FEATURES AND PARAMETERS 
OF THE SURFACE MATTER WAVES 

OF MICROPARTICLES

The main specific feature of the surface matter
waves revealed by solving the problem under consider-
ation is that they exist, according to Fig. 2, both when
the layer potential is attractive, at Rev  < 0, and when
the potential is repulsive, at any value Rev  > 0. In the
latter case, the absorption in the layer, which is propor-
tional to |Imv |, should be sufficiently strong to ensure
the fall of the potential v  at a specified value of Rev  at
least into the first (n = 1) domain of existence of surface
matter waves. The physical explanation of the existence
of surface matter waves in the case of the absorbing
layer potential (Imv  < 0) at arbitrary values of Rev  is as
follows. The absorption in a layer with Imv  < 0 causes
a flow of the probability of finding the particle in the
vacuum. This flow is directed from the vacuum to the
layer through the layer surface at z = 0. (This corre-
sponds to problem 7.9 in [12].) At Rev  < 0, the layer
attracts the particle and does not counteract the proba-
bility flow, which is proportional to |Imv |. In this case,
surface matter waves exist independently of absorption
(i.e., including the case when the absorption is absent)
in the range –∞ < Rev  ≤ –π2/4, which includes the
bound states of the particle in the potential well of the
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0.7
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v0''

Rev

q = 0
p = 0
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Fig. 3. Isolines of the specified parameters p and q, which
determine the characteristics of the surface matter waves in
the vacuum in the first domain of existence; p0 = 0.74 and
q0 = 0.42 at the point v0 .
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layer [14]. When Rev  > 0, the layer rejects the particle
and counteracts the probability flow from the vacuum.
Then, the existence of surface matter waves becomes
possible only at sufficiently large values of the proba-
bility flow ~|Imv |, as in the interval −π2/4 < Rev  ≤ 0,
where, owing to the smallness of Rev, a discrete level
is absent in the potential well of the layer.

Another specific feature of surface matter waves is
the large number of domains of their existence in the
plane of the potential v  (n = 1, 2, … in Fig. 2). In the
domain with n ≥ 1, n different surface matter waves
exist, which correspond to the first n roots κj(v) (j = 1,
2, …, n) of transcendental Eq. (6) at a specified value of
the dimensionless potential v  = v ' + iv '' (where v ' =
Rev  and v '' = Imv). Each dependence κj(v) and the
dependence κ0j(v ) related to it by Eq. (5) differ from
the dependences with j ' ≠ j and determine the same
behavior of the jth surface matter wave in all domains
with n ≥ j at all points (with the coordinates v ' and v '')
of the plane v. When the absorption ~|v ''| is changed
(for example, in the case of surface matter waves of
UCNs, by varying the isotopic composition of the sur-
face layer), the boundary of the domain of existence of
the nth surface matter wave can be intersected. Each
such intersection may lead to the threshold effect: a step
in the probability of UCN trapping from a bulk to sur-
face state upon excitation (or quenching) of the nth sur-
face matter wave. This step can be detected by a change
in the count of UCNs at changes in the coordinates v ''
and v ' corresponding to the intersection of this bound-
ary, which can be implemented for all boundaries
shown in Fig. 2.

Figure 4 shows the curves on which the phase veloc-
ity E/"Rek of the surface wave along the x axis coin-

Imv

Rev
π2

4
-----– 100

–75

N = 3 N = 2 N = 1

N = 0

N = –1
N = –2

Fig. 4. Boundaries (at specified N) between the domains of
existence of fast (to the right of and above the boundaries)
and slow surface matter waves with energies EN = 10N

(E∞/π2) in the first domain of existence (the bold bound-
ary).
C

cides with the phase velocity  of the plane de
Broglie wave of the particle in free space with the same
energy E, specified for each of these curves as EN =
10N(E∞/π2). (The powers N = –2, –1, 0, 1, 2, and 3 are
indicated at the corresponding curves.) Here, Re k is
obtained for the first surface matter wave in the domain
with n = 1 from the second equation in (4) after numer-
ical calculation of the root κ1(v) of Eq. (6) as a function
of v. The curvilinear boundary of the first domain in
Fig. 4 is marked bold. The physical meaning of the
curves in Fig. 4 is as follows. In the part of the domain
of existence of the first surface matter wave, which is
concluded between the bold line and this curve with a
definite energy EN, the phase velocity of this surface
matter wave is larger than in the case of a free particle
with the same energy. Thus, the surface matter wave is
an analogue of the fast surface Zenneck mode in this
case. In the rest part of the same domain, the phase
velocity of this surface matter wave is smaller than for
a free particle with an energy E. Hence, the surface mat-
ter wave is an analogue of the slow Fano mode for sur-
face electromagnetic waves.

Let us consider the quantitative characteristics of
surface matter waves in the domains of their existence
in the complex plane v. The wave numbers in the vac-
uum κ0 and k are more accessible for measurements
than the wave number κj(v) in the layer. We find the
values of κ0 and k for the jth surface matter wave by
numerical calculations of the jth root κj(v) of Eq. (6) at
specified values of v. Dispersion equations (4) yield

(v) = (v) + v /a2 , where the values of κ0j(v) sat-
isfy the inequalities in (5) at the values of v  from the
domains of existence of the jth surface matter wave
with n ≥ j. Then, the values of Reκ0j(v) and Imκ0j(v)
are determined. For the first surface matter wave, the
dimensionless parameters p(v) ≡ –Reκ01(v)a/2π and
q(v) ≡ Imκ01(v)a are introduced, which determine the
wavelength λ⊥ (v ) = a/p(v) of the wave function Ψ⊥ (z)
from (3) and the localization height L⊥ (v) = a/2q(v) of
the probability density |Ψ⊥ (z)|2 in the vacuum for this
surface matter wave. The parameters p(v) and q(v) give
the same wavelength of the wave function Ψ||(x) and the
decay length of the probability density |Ψ||(x)|2 along
the layer surface after the calculation of k from the first
equation in (4) at known values of κ01(v) and the energy
E of the first surface matter wave. With accuracy up to
the terms of the order of magnitude of

|Re (v)a2|/(π2E/E∞) ! 1, the longitudinal wave-
length coincides with the Broglie wavelength λ0 =

π"  for a particle with a mass m and the same
energy E and the longitudinal decay length is equal to
L||(v) = a2/2λ0p(v)q(v). Figure 3 shows the isolines
p(v) = p = const and q(v) = q = const and the values of
p and q calculated numerically for the first surface mat-

E/2m

κ0 j
2 κ j

2

κ01
2

2/mE
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ter wave. The data in Fig. 3 make it possible to estimate
p(v) and q(v) and the corresponding values of λ⊥ (v),
L⊥ (v), and L||(v) at a chosen potential v  of the layer. The
specific values of L⊥  = L⊥ (v0) = 1.19 µm and L|| =
L||(v0) = 16.1 µm at a = 1 µm are indicated in Fig. 1 for
the point v0 with the parameters p(v0) = p0 and q(v0) =
q0 from Fig. 3. In this case, λ⊥ (v0) = 1.35 µm and the
longitudinal wavelength of Ψ||(x) at the energy E = 8.2 ×
10–8 eV coincides (accurate to ~0.3%) with the de Bro-
glie wavelength λ0 = 0.1 µm, which corresponds to this
value of E. The obtained values of the spatial character-
istics of the surface matter wave are close to the charac-
teristics of optical surface electromagnetic waves.
Therefore, such surface matter waves can be excited
and observed by the methods developed for surface
electromagnetic waves in the optical range, which use,
for example, the frustrated total internal reflection and
the diffraction or aperture transformation of bulk waves
into surface ones [2].

The interaction of UCNs with a matter is adequately
described by the complex potential under any absorp-
tion conditions, including the case when the imaginary
part of the potential greatly exceeds the real part (as
showed experiments with efficient absorbents [13]).
Let us show by the example of UCNs, whose minimum
wavelengths are close to optical, that the conditions for
the existence of surface matter waves of these particles
in the geometry under consideration can be imple-
mented by choosing appropriate elemental and isotopic
compositions of the absorbing layer and the substrate.
We will take for estimation an absorbing layer com-
posed of a mixture of the samarium isotopes 152Sm and
154Sm with natural samarium Smnat in any ratio and a
substrate consisting of the pure isotope 154Sm. The
coherent scattering lengths of UCNs by nuclei of iso-
topes in the mixture will be taken the same as in [13].
The area in the complex plane of the potential v  (which
is proportional to the scattering length in the mixture)
that can be covered by varying a given isotopic compo-
sition at a = 1 µm is a triangle with vertices at the points
v 152 = –1.9 × 103, v 154 = 3.03 × 103, and v nat = (1.64 –
3.73i) × 103. These points correspond to 100% contents
of 152Sm, 154Sm, and Smnat, respectively. The noted tri-
angle covers parts of at least 10 domains in which from
one to ten surface matter waves of UCNs may exist. As
an example, we give the isotopic composition of the
layer at the point v 0 in Figs. 2 and 3, where only the first
surface matter wave of UCNs may exist: 152Sm
(61.1%), 154Sm (38.7%), and Smnat (0.2%). The sub-
strate potential v 154 exceeds the layer potential |v 0 | =
15.3 by a factor of almost 200, which justifies the
model of potential (2), infinite in the substrate, in any
case, for the layer potential v  in the domains with small
n ≥ 1 in Fig. 2, where no more than n surface matter
waves can exist.
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 5      2005
CONCLUSIONS

The solutions to the 2D Schrödinger equation for
microparticles interacting with a complex optical
potential of an absorbing layer located on a totally
reflecting substrate are analyzed. It is shown that the
solutions to this problem in the form of the surface
wave functions of the stationary states of the continu-
ous spectrum (surface matter waves localized near the
layer/vacuum interface) exist only when absorption
occurs in the layer. These waves are an analogue of fast
Zenneck modes in the case of surface electromagnetic
waves. The boundaries of the domains of existence of
different numbers of surface matter waves in the com-
plex plane of the normalized layer potential v  are deter-
mined. Intersection of each boundary at a variation in
the factors determining the values of v  may cause a
threshold effect: a step of the probability of excitation
of surface matter waves at this boundary. This threshold
effect primarily makes it possible to establish the exist-
ence of surface matter waves in the simplest way: by a
sharp change in the count of microparticles. In addition,
detecting individual steps at known values of the poten-
tial, one can determine the corresponding values of the
factors determining the layer potential. For example, in
the case of surface matter waves of UCNs, this method
can be used to obtain data on the hydrogen concentra-
tion in the surface layer (for which only estimates exist
[7]) and to solve the general problem of determining the
elemental and isotopic composition of a matter near
the surface [8], as well as other problems of surface
physics [9].

Let us discuss the possibility of occurrence of addi-
tional (anomalous) loss of trapped UCNs in the case of
excitation of surface matter waves of UCNs in the pres-
ence of absorption in the surface layer of the trap walls
(without specification of the layer origin). The exist-
ence of surface matter waves of UCNs, allowable in the
model under consideration, would be an example of the
experimentally observed mechanism of localization in
the trap walls, which is of great interest for UCN phys-
ics [15]. In principle, a surface matter wave of UCNs
can be directly observed by measuring the spatial dis-
tribution of its density |Ψ(x, z)|2 by a neutron detector
with a positional resolution of ~1 µm, which was
recently tested in similar measurements of UCNs in the
gravitational field of the Earth [16].

Mutual transformations of bulk and surface waves
are impossible in the case of a uniform interface
between media. However, excitation of surface matter
waves of UCNs will occur with a low probability upon
scattering of a bulk neutron wave by irregularities
(roughness) on the surface of the trap walls, as in exper-
iments with excitation of surface electromagnetic
waves [2]. The probability of a subsequent reverse tran-
sition of a UCN from a surface to the bulk state upon
such scattering will be lower than the probability of
excitation of a surface wave because of its decay along
the wall caused by the absorption. For this reason, the
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excitation of a surface matter wave of a UCN can be
considered in the single-scattering approximation with-
out taking into account the reverse transition of the
UCN to the bulk state. In this approximation, the exci-
tation of a surface matter wave of a UCN is equivalent
to its leakage from the trap bulk with some probability
of excitation of a surface matter wave. Thus, the excita-
tion of surface matter waves of UCNs as a result of the
absorption, which were not previously taken into
account in the consideration of the UCN storage, can
make a significant contribution to the additional (anom-
alous) loss of UCNs in the trap walls. It is noteworthy
that surface matter waves of UCNs may exist, as can be
seen in Fig. 2, at any real part of the potential of the
absorbing surface layer in traps, including the negative
real part for a repulsive potential. Hence, the proposed
correlation between the anomalous loss of UCNs and
the irreversible excitation of surface matter waves,
which has a low threshold with respect to the absorp-
tion of UCNs in the trap walls, is in agreement with the
main experimental data: the generality of manifestation
and the weak temperature dependence of the anoma-
lous loss [8, 9].
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Abstract—The microhardness and fracture toughness of laser nanocrystalline ceramics based on the cubic
oxides Y2O3 and Y3Al5O12 are determined experimentally. It is shown by comparative measurements that the
fracture toughness and microhardness of Y2O3 ceramics exceed the corresponding parameters of Y2O3 single
crystals by factors of 2.5 and 1.3, respectively. The fine morphology of grains and grain boundaries in fractures
is investigated. It is ascertained that changes in the mechanical properties of the nanocrystalline ceramics under
study are related to both the sizes and structure of grains and the structure of grain boundaries. It is suggested
that twinning processes determine the mechanisms of formation of nanocrystalline ceramics. © 2005 Pleiades
Publishing, Inc.
One of the most important recent achievements in
modern laser materials science is the development of
highly transparent nanocrystalline ceramics based on
the cubic oxides Y3Al5O12 and RE2O3 (RE = Y, Sc, Gd,
or Lu), containing ions of trivalent lanthanides (Ln3+)
that are responsible for stimulated emission. For a rela-
tively short time, the use of Y3Al5O12:Nd3+ ceramics in
lasers operating in the modes of practical importance at
different levels of output power showed that these
ceramics have begun to compete to a certain extent with
Y3Al5O12:Nd3+ single crystals, which are most widely
used in quantum electronics and laser engineering (see,
for example [1]). Concerning RE2O3:Lu3+ compounds,
we should note that the recently patented ceramic tech-
nology [2] also makes it possible to fabricate these laser
crystalline materials of high optical perfection and
almost any required size on the basis of these com-
pounds. Unfortunately, the known methods of flux
growth of RE2O3 in the form of large single crystals of
laser quality have proven to be inconsistent.

Table 1 shows that the range of known laser VSN
(i.e., produced by vacuum sintering and nanotechno-
logical techniques) [2, 3] crystalline ceramics Y3Al5O12
and RE2O3 is sufficiently wide both in the number of
different types of ceramics and in the variety of spectral
lasing possibilities. Here, it is pertinent to note the main
stages in the previous investigations of laser ceramics:
1966 (CaF2:Dy2+ [15]), 1973 (Y2O3–ThO2:Nd3+ [16]),
and 1995 (Y3Al5O12:Nd3+ [17]). In all these studies, dif-
ferent modifications of the high-pressure sintering
1063-7745/05/5005- $26.00 ©0869
method were used, which made it impossible to obtain
ceramics with good lasing characteristics.

This study continues our previous investigations of
the microhardness and fracture toughness of highly
transparent VSN nanoceramics (see, for example,
[18]). The purpose is to obtain data that could be used
both to estimate the limiting lasing characteristics of
VSN nanoceramics and to optimize the process of prep-
aration of nanoceramics with improved optical proper-
ties. Here, we also start a detailed study of the fine mor-
phology of grains in VSN nanoceramics. The objects of
study are Y2O3 ceramics, as well as Y3Al5O12 ceramics
with much smaller grain sizes as compared to the
Y3Al5O12 ceramics investigated in [18].

Microhardness methods (indentation and sclerome-
try) are widely used to analyze the mechanical proper-
ties of crystals, especially brittle ones. Owing to the fast
decrease in stress with an increase in the distance from
the point of load application and to the presence of a
large hydrostatic component, these methods make it
possible to induce very high stresses under the indenter
tip (of the same order of magnitude as the shear modu-
lus) without catastrophic fracture of a sample, a result
which is difficult to obtain by conventional methods
(extension, compression, bending, and so on). The use
of the indentation and sclerometry methods allowed us
to determine the microhardness H and the fracture
toughness K1C and to investigate the mechanisms of
fracture of the samples under study. The microhardness
 2005 Pleiades Publishing, Inc.
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Table 1.  Laser VSN ceramics and the channels of their spontaneous emission

Ceramics Sp. gr.(1) SRS(2)
Ln3+ ions and the channels of spontaneous emission

Nd3+ Er3+ Yb3+

Y2O3 [4] 4F3/2  4I11/2 [5] 2F5/2  2F7/2 [6, 7](3)

Y3Al5O12 [4]
4F3/2  4I11/2 [1](4)

4F3/2  4I13/2 [8](5)
4I11/2  4I13/2 [9](6) 2F5/2  2F7/2 [10] 

YGd 4F3/2  4I11/2 [11]

Sc2O3 [9] 2F5/2  2F7/2 [12] 

Lu2O3
4F3/2  4I11/2 [13] 2F5/2  2F7/2 [14]

1 Grains are micron-size crystallites.
2 Stimulated Raman scattering.
3 Femtosecond lasing with a pulse width of ~430 fs was obtained in [7].
4 An output power of ~1.5 kW was obtained in [1].
5 An output power of ~35 W was obtained in [8].
6 Lasing at a wavelength of 3 µm was excited by Xe-lamp pumping.
7 YGdO3 = (Y0.5Gd0.5)2O3.
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h
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h
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was estimated by the generally accepted formula

where P is the load on the indenter; d is the indentation
diagonal; and K is the shape factor of the indenter,
which is equal to 1.854 for a Vickers pyramid.

The fracture toughness was experimentally deter-
mined from the linear sizes of radial cracks (C) arising
near the point of load application and estimated by the
known formula taking into account the elastic and
strength characteristic of a material under study [19].
For the Vickers indenter,

where E is the Young modulus. In calculations, we used
the Young moduli of single crystals of yttrium oxide in
the [110] direction (E = 170 GPa) and yttrium alumi-
num garnet in the [110] direction (E = 300 GPa) (i.e., in
the directions of maximum hardness).

Mechanical tests of yttrium oxide single crystals
were performed in the [111] cleavage plane. Other sam-
ples were cut by a diamond saw and then ground and
mechanically polished to class 14. Deformation was
performed at room temperature by a diamond Vickers
pyramid, applying loads in the range 0.1–1 N. Indenta-
tion was performed on a PMT-3 microhardness meter
and sclerometric tests were carried out on a Martens
sclerometer. The load on the indenter was chosen to
reliably fix not only indentations but also radial cracks
from them. In single crystals, radial cracks can be
clearly seen at P = 0.1–0.2 N, whereas in Y3Al5O12- and
Y2O3-based ceramics, fracture processes can be reli-
ably fixed only at P ≥ 1 and ≥0.5 N, respectively. There-

H K
P

d
2

-----,=

K1C 0.016 E/H( )1/2
P/C

3/2
,=
CR
fore, the microhardness and the fracture toughness of
Y3Al5O12 single crystals and the corresponding ceram-
ics were measured at P = 1 N, whereas the measure-
ments on Y2O3 single crystals and the corresponding
ceramics were carried out at P = 0.5 N. Taking into
account the sufficiently high homogeneity of the
ceramics, 50 indentations were made in each sample in
them, as well as in the single crystals. Note that the
diagonals of indentations in single crystals were ori-
ented in the [110] direction, i.e., in the direction of
maximum hardness. The measurement error did not
exceed 3%.

The morphology of fracture surfaces of the samples
was investigated by atomic force microscopy (AFM) in
the contact mode. A Solver P47 (NT-MDT, Moscow)
atomic-force microscope and CSC 37 silicon cantile-
vers (Mikromasch, Estonia) were used. The samples
were fractured as follows: a scratch (stress concentra-
tor) of necessary length was made on the sample sur-
face and then the sample was subjected to three-point
bending.

Figure 1 shows the images of indentations on the
(111) cleavage plane of an Y2O3 single crystal (Fig. 1a)
and on the mechanically polished surface of Y2O3
ceramics (Fig. 1b), which were made by a diamond
Vickers pyramid at room temperature under a load of
P = 0.5 N. The indentation-induced cracks in single
crystals are much longer and more straight, especially
the cracks propagating in the cleavage plane. Appar-
ently, the reason for this phenomenon is that grain
boundaries in ceramics serve as stoppers for crack
propagation. 

The investigations performed showed that the
microhardness of Y2O3 ceramic samples exceeds that of
corresponding single crystals by 30–35%. The crack
YSTALLOGRAPHY REPORTS      Vol. 50      No. 5      2005
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(a) (b)10 µm 10 µm

Fig. 1. Microscopic images of indentations in the cleavage planes of (a) Y2O3 single crystal and (b) mechanically polished Y2O3
ceramics; P = 0.5 N.
resistance also significantly increases: the fracture
toughness K1C of ceramics exceeds that of single crys-
tals by a factor of about 2.5.

Comparative tests of the ceramics based on yttrium
aluminum garnet, with grain sizes of 10–15 µm (sam-
ples Y3Al5O12-1) and 1–2 µm (samples Y3Al5O12-2),
showed that the microhardness of Y3Al5O12-2 is only
slightly higher than that of Y3Al5O12-1 (by 5–7%),
whereas the fracture toughness of Y3Al3O12-2 is lower
than that of Y3Al5O12-1 by a factor of about 2. Introduc-
tion of isomorphically substituting Nd ions into these
ceramics somewhat decreases their hardness and the
value of K1C (Table 2).

The increase in the microhardness of the ceramic
samples with a decrease in the grain size, as well as
their higher microhardness in comparison with single
crystals, can be explained as follows. It is known that
the hardness of crystals is determined by the dispersion
work [20, 21]. Relaxation of very high stresses (of the
same order of magnitude as the shear modulus) under
the indenter tip leads to the decomposition of the crystal
structure into nanoblocks. Note that, the harder a mate-
rial, the smaller the size of the nanocrystallites (grains)
formed. It is also known that, with a decrease in the size
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 5      2005
of crystals (an example is filamentary crystals), their
structure becomes more perfect (it is energetically
unfavorable for defects to nucleate and exist in small
volumes) and their mechanical properties are
improved. Therefore, with a decrease in the grain size
during conservation of the structure and properties of
boundaries, the microhardness of a material increases,
a phenomenon which is generally observed in nanoc-
rystalline materials (an analogy of the Petch–Hall
effect) [22]. Investigation of the mechanisms of plastic
deformation of yttrium oxide single crystals and ceram-
ics showed that, in contrast to garnet samples, in which
plastic deformation at room temperature occurs mainly
owing to the collective motion of point defects, disloca-
tion slip (mainly in the 〈110〉  {100} system) plays an
important role in Y2O3 [23].

The decrease in the crack resistance of Y3Al5O12-2,
in comparison with Y3Al5O12-1, can be explained by the
fact that the mechanism of intergranular fracture
becomes dominant in this case. In Y3Al5O12-1, cracks
nucleate mainly in grains, and boundaries serve as stop-
pers for their propagation, whereas in Y3Al5O12-2
cracks predominantly nucleate near boundaries and
propagate along them. Figure 2a shows the contact-
Table 2.  Microhardness H and fracture toughness K1C of the VSN nanocrystalline ceramics Y2O3 and Y3Al5O12 and the cor-
responding single crystals

Sample no. Material Grain size, µm H, GPa K1C, MPa m1/2

1 Y2O3 ceramics 1–2 ~10 ~2.5

2 Y2O3 single crystal ~7.6 ~1.0

3 Y3Al5O12-1 ceramics 10–15 ~16* ~8.7*

4 Y3Al5O12-2 ceramics 1–2 ~16.8 ~4.3

5 Y3Al5O12 : Nd3+ ceramics 10–15 ~15.0* ~5.2*

6 Y3Al5O12 : Nd3+ ceramics 1–2 ~16.8 ~4.3

7 Y3Al5O12 single crystal ~14.5* ~1.8*

* Data of [18].
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1 µm
(b)(a)

2 µm

Fig. 2. AFM images of fractures in the Y3Al5O12 ceramics with grain sizes of (a) 1–2 and (b) 10–15 µm.
mode AFM image of a fracture in an Y3Al5O12-2 sam-
ple. It can be seen that fracture occurs mainly along the
grain boundaries (grain relief on the right), although
fracture of grains is also sometimes observed (the rela-
tively smooth relief on the left). At the same time, frac-
ture of grains occurs in the Y3Al5O12-1 ceramics
(Fig. 2b). In Y2O3-based ceramics, the main fracture
mechanism, as in Y3Al5O12-2, is of the intergranular
type. Most grains have a stripe (layered) structure (Fig. 3).

In our opinion, the reason for the decrease in the
crack resistance of the ceramics studied with a decrease
in the grain size is as follows. The smaller the size of
grains, the more perfect their structure is. In addition, as
the grain size decreases, stress concentrators are
located at grain boundaries, which serve as sinks for
point defects. It should be noted that, with an increase
in the grain size in ceramics based on yttrium aluminum
garnet, the structure of grain boundaries also somewhat
changes. They become less uniform and exhibit a stripe
structure. Figure 4 shows the AFM image of a triple
joint in a fracture in Y3Al5O12-1. (An enlarged joint
image is shown in Fig. 2b, left.) The boundaries show
pronounced stripes 100–300-nm wide and 10–15 nm in
height; i.e., the boundaries themselves are composites,
which impedes their fracture. It should also be noted
that triple joints of grains have approximately the same
angles (~120°). This indicates grain matching in the

1 µm

Fig. 3. AFM image of fractures in Y2O3 ceramics.
C

(111) planes; i.e., we can speak about the presence of a
threefold axis. The minor decrease in the microhard-
ness and crack resistance of the samples doped with Nd
ions can be related to the fact that these ions introduce
additional stresses into the lattice since their radius
exceeds that of isomorphously substituted Y ions.

Sclerometric tests of ceramic samples (scratches
were made in radial directions from the center of a cir-
cle with a step of 15°) did not reveal the hardness
anisotropy, whereas in Y3Al5O12 single crystals the
hardness is maximum in the [112] and [110] directions
and in Y2O3 single crystals [110] is the direction of
maximum hardness [23, 24].

Thus, the investigations performed here showed that
a change in the structure of grain boundaries may sig-
nificantly affect the mechanical properties of the
ceramics under consideration, especially the crack
resistance. The structure of grain boundaries is of par-
ticular interest since most researchers believe that it is
the grain boundaries that determine the unique proper-
ties (mechanical, optical, electrical, magnetic, and so
on) of nanocrystalline materials [22, 25]. We can sug-
gest that the stripe structure of grain boundaries
revealed here is related to the twinning processes,
which are responsible for the plastic deformation dur-
ing the ceramic preparation. This suggestion is con-
firmed by our finding of the existence of a threefold

0.4 µm

Fig. 4. AFM image of a triple joint in a fracture in the
Y3Al5O12 ceramics with a grain size of 10–15 µm.
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 5      2005



MICROHARDNESS AND FRACTURE TOUGHNESS 873
axis in triple joints (Fig. 4) (since twinning of the cubic
crystals Y3Al5O12 and Y2O3 is performed predomi-
nantly in the plane (111)). Another confirmation is that
twin interlayers do not scatter light beams and improve
mechanical properties of some crystals [26, 27]. It
should be noted that the observed stripe structure of
grain boundaries requires further investigation using
high-resolution methods of structural analysis.
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Abstract—Single crystals of the anionic conductor La2Mo2O9 are grown by crystallization from a nonstoichi-
ometric melt. Their polymorphism and domain structure, as well as the temperature dependences of conductiv-
ity and dielectric permittivity, are studied. In the temperature range 750–600°C, the conductivity of these crys-
tals is as high as 10–1–10–2 Ω–1 cm–1. © 2005 Pleiades Publishing, Inc.
INTRODUCTION
Crystalline materials with high conductivity, related

to abnormally high mobility of oxygen anions, are of
considerable interest from both scientific and practical
points of view. In particular, these materials can be used
in fuel cells and similar devices. Such materials are few
in number [1]. These are compounds with fluorite
(yttrium- and calcium-stabilized ZrO2 and δ-Bi2O3),
perovskite (doped LaGaO3), and pyrochlore
(Gd2Zr2O7, Gd2Ti2O7, etc.) structures; bismuth-con-
taining layered perovskite-like compounds (Bi2WO6,
Bi2MoO6, and Bi2VO5.5); and a series of solid solutions
based on the latter compound (the BIMEVOX family).
Recently, it was demonstrated that lanthanum dimolyb-
date La2Mo2O9 (LM), which was synthesized more
than 30 years ago [2–4], also belongs to above-men-
tioned materials. This compound was recently used to
prepare a series of solid solutions with high anionic
conductivity (the so-called LAMOX family) by various
substitutions [5]. Fournier et al. [3] demonstrated that
lanthanum dimolybdate has a cubic structure with the
unit-cell parameter a = 7.155 Å and undergoes an irre-
versible phase transition at 572°C. In contrast, Rode
et al. [4] found that this phase transition is reversible
and occurs at 560°C. More recently, Lacorre et al. [5]
demonstrated that the transformation of the low-tem-
perature α phase to the high-temperature β phase
occurs at 580°C, is a first-order phase transition, and is
accompanied by an increase in the conductivity by
approximately two orders of magnitude. The low-tem-
perature α phase was studied on a high-resolution dif-
fractometer [5, 6]. It was shown that this phase has a
monoclinic symmetry described by sp. gr. P21. Mea-
surements of the temperature dependence of the sec-
ond-harmonic generation (SHG) intensity [7] con-
firmed that this phase is noncentrosymmetric. The unit-
cell parameter of the cubic phase, determined by Gout-
enoire et al. [6] at 617°C, is 7.2014 Å, sp. gr. P213. The
1063-7745/05/5005- $26.00 0874
unit-cell parameters of the low-temperature monoclinic
phase are a = 7.1426 Å, b = 7.1544 Å, c = 7.1618 Å, and
β = 89.538°. A complex superstructure with the param-
eters 2a × 3a × 4a was also established. Data on the
preparation of LM single crystals and their properties
are lacking in the literature.

The aim of this study was to grow La2Mo2O9 single
crystals and measure the temperature dependences of
their conductivity, dielectric permittivity, and some
other characteristics.

SINGLE-CRYSTAL GROWTH 
AND EXPERIMENTAL TECHNIQUE

The La2Mo2O9 compound melts incongruently at
1350–1400°C and shows a narrow crystallization field
(3–4 mol % [3] or about 10 mol % [4]). In this study we
grew single crystals of this compound by spontaneous
crystallization from a nonstoichiometric melt in the
La2O3–MoO3 binary system. Our results confirmed the
phase diagram of this system that was proposed in [3].

LM single crystals were grown from a melt contain-
ing 31 mol % of La2O3 and 69 mol % of MoO3 in accor-
dance with the system studied in [3]. The mixture of the
starting reagents of high purity grade was stirred in an
agate mortar, placed in platinum or corundum cruci-
bles, heated in a furnace with silicon carbide rods to
1200°C, kept at this temperature for one day, and
cooled to 1020°C at a rate of 1 K/h. Next the melt was
poured off, and the crucible containing crystals was
either cooled at a rate of 50 K/h to room temperature or
quenched in air. The LM crystals grew at the bottom of
the crucibles. The crystals were then mechanically
purified from the residual solvent. The La2(MoO4)3
phase generally crystallized in the upper part of the cru-
cibles.
© 2005 Pleiades Publishing, Inc.
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Fig. 1. Domain structure of the La2Mo2O9 crystals at (a) room temperature and (b) at a temperature close to that of the monoclinic-
to-cubic phase transition.
X-ray powder diffraction analysis of the crystals
was carried out on a DRON-2.0 diffractometer (ëuKα
radiation). The unit-cell parameters were measured
accurate to 10%. Differential thermal analysis (DTA)
was performed on a Rigaku Thermoflex scanning calo-
rimeter. The heating and cooling rates were 20 K/min.
A piezoelectric test was performed at room temperature
by the static method [8, p. 124]. The temperature
dependences of the dielectric permittivity and conduc-
tivity were measured in the range 25–800°C using a
TESLA BM 431E bridge at a frequency of 1 MHz.
Polymorphism of the crystals was studied under a
MIN-8 polarizing microscope equipped with a heating
stage.

RESULTS AND DISCUSSION

The LM crystals obtained by the above-described
procedure were transparent, slightly yellowish, and had
dimensions about 1–4 mm. X-ray powder diffraction
analysis demonstrated that the crystals have cubic sym-
metry with a unit-cell parameter of approximately
7.17 Å. However, examinations under polarized light
showed that the slowly cooled crystals are in fact opti-
cally anisotropic and divided into domains in the form
of mutually perpendicular stripes (Fig. 1a). The crystals
that were quenched from temperatures close to 1000°C
remained optically isotropic, which indicates that the
high-temperature cubic phase can exist as a metastable
phase at room temperature for a long time. Upon heat-
ing of polydomain samples on the filament of the heat-
ing stage to 580°C, domains disappeared and the crys-
tals became optically isotropic. The boundary between
the anisotropic and isotropic phases of one crystal
heated to a temperature close to the phase-transition
point can be seen in Fig. 1b. These results confirm that
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 5      2005
the symmetry of the high-temperature phase of LM is
cubic, whereas the low-temperature phase has lower
symmetry and, according to the results of [6], is crys-
tallized in the monoclinic system. This is a pronounced
first-order phase transition, which is apparently associ-
ated with substantial structural rearrangements despite
that distortions of the crystal lattice of the low-temper-
ature phase are insignificant. DTA study of the crystals
showed that the transition is accompanied by a notice-
able thermal effect and a substantial temperature hys-
teresis (as high as 30–40 K).

Figure 2 shows the temperature dependences of the
conductivity of an LM single crystal measured at heat-
ing and cooling rates of 2 K/min. At 800°C, the conduc-
tivity is about 0.1 Ω–1 cm–1. At 550°C, the conductivity
is about 3 × 10–3 Ω–1 cm–1. The activation energy in the
high-temperature range is approximately 0.9 eV. The
phase transition is accompanied by a diffuse conductivity
jump by approximately two orders of magnitude. Mea-
surements of the conductivity for other crystals at 550°C
demonstrated that it can be as high as 10–2 Ω–1 cm–1. These
results are in good agreement with those for ceramic
samples [5]. However, the phase-transition temperature
(580°C) determined in [5] was higher.

Measurements of the temperature dependence of the
dielectric permittivity (Fig. 3) confirmed that the LM
crystals undergo a phase transition at 500–550°C. This
transition is accompanied by a sharp increase in the
dielectric permittivity up to 7000, a result which is typ-
ical of transitions associated with electric ordering. A
further increase in the dielectric permittivity may be
related to the increase in the concentration of mobile
charge carriers (oxygen anions in the LM crystals).
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Piezoelectric tests gave positive results for LM crys-
tals, thus confirming the polarity of their low-tempera-
ture phase.

CONCLUSIONS

The study of lanthanum dimolybdate La2Mo2O9 sin-
gle crystals that were prepared by crystallization from
a nonstoichiometric melt confirmed the existence of the
first-order phase transition from the high-temperature
nonpolar cubic phase to the low-temperature polar
monoclinic phase at 500–550°C for these crystals.
Although this transition is reversible, it is associated
with a substantial rearrangement of the atomic struc-
ture. This is a pronounced first-order phase transition.
The crystals are characterized by high conductivity (up
to 10–2 Ω–1 cm–1 at 550°C) due to the anomalously high
mobility of oxygen anions in the high-temperature
phase. Hence, lanthanum dimolybdate can be consid-
ered as a new representative of a specific class of crys-
talline materials, the so-called ferroelectric–superionic
conductors [9].
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Fig. 3. Temperature dependences of the dielectric permittiv-
ity of a La2Mo2O9 crystal measured upon (1) heating and
(2) cooling at a rate of 2 K/min.
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Abstract—The high-rate growth of nickel sulfate hexahydrate NiSO4 · 6H2O (α-NSH) crystals up to 120 ×
120 × 65 mm3 in size is described for the first time. The data on the distribution of related impurities in the
{011} and {001} growth sectors of α-NSH crystals grown at different rates are reported. The transmission spec-
tra of both growth sectors of these crystals are obtained. The structural quality and the optical properties of rap-
idly and slowly grown α-NSH crystals are compared. It is established that the {011} growth sector of crystals
grown at rates exceeding 5 mm/day shows the best characteristics for application in UV filters. © 2005 Pleiades
Publishing, Inc.
INTRODUCTION

Crystals of nickel sulfate hexahydrate NiSO4 · 6H2O
(α-NSH) are widely used in optics. These crystals
exhibit optical rotatory dispersion in the wavelength
range 200–2500 nm [1] and circular dichroism in the
visible spectral range [1, 2]. In addition, inversion of
the sign of the rotatory power is observed in α-NSH at
a wavelength of 503 µm [4]. Crystals of the α-NSH
phase are one of the most effective band filters in the
solar blind spectral range. Their effectiveness is related
to their unusual bandlike absorption spectrum in the
range 200–1200 nm, which contains only three trans-
mission bands (peaked at 250, 490, and 880 nm). At the
same time, the transmission in the UV region exceeds
80% [4].

The NiSO4 · 6H2O compound has two polymorphic
modifications: α-NSH and β-NSH. Crystals of α-nickel
sulfate hexahydrate NiSO4 · 6H2O have a saturated
blue-green color. They belong to the tetragonal system
with the sp. gr. P41212 and unit-cell parameters a = b =
6.780 Å and c = 18.285 Å [4]. Figure 1 shows the habit
of α-NSH crystals.

Crystals of the β-NSH modification are bright
green; they belong to the monoclinic system with the
sp. gr. C2/c and unit-cell parameters a = 9.880 Å, b =
7.228 Å, c = 24.130 Å, β = 9.88°, and Z = 8 [4]. Crystals
of the α-NSH phase decompose in air, losing water,
even at room temperature [5].

Figure 2 shows three portions of the solubility
curves corresponding to the solid phases NiSO4 · 7H2O,
α-NiSO4 · 6H2O, and β-NiSO4 · 6H2O [5, 6]. The point
X at a temperature of 31.5°C is the point of the NiSO4 ·
7H2O  α-NiSO4 · 6H2O + H2Oliq phase transition
[7], and the point Y at 53.3°C is the point of the
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α-NiSO4 · 6H2O  NiSO4 · 6H2O phase transition.
The phase β-NiSO4 · 6H2O is stable at temperatures up
to 118°C [5].

A number of studies are devoted to the growth of
α-NSH crystals from aqueous solutions [4, 8, 9]. Both
six-water nickel sulfate NiSO4 · 6H2O [4, 9] and seven-
water nickel sulfate NiSO4 · 7H2O were used as initial
raw material for crystal growth [8]. In [4, 9], crystals
were grown from solutions of NiSO4 · 6H2O of stoichi-
ometric composition. Crystals 65 × 85 × 74 mm3 in size
were grown by the method of decreasing temperature.
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In [8], on the basis of the analysis of the NiSO4–

H2SO4–H2O system, the solution composition corre-
sponding to the point A in Fig. 3 (in wt %: NiSO4,
28.00; H2SO4, 13.00; H2O, 59.00) was chosen for the
crystal growth. It was shown previously [10] that, to
grow crystals of complex compounds, it is reasonable
to use mother liquors whose compositions (in wt %) lie
on the solubility curve at the maximum distance from
the points of invariant equilibria. The composition used
in [8] was chosen according to this principle. Crystals
up to 53 × 48 × 30 mm3 in size were grown by the
method of decreasing temperature.

In the above-mentioned studies, the crystal growth
was performed in the dynamic mode at temperatures
from 53 to 32°C; the rate of decrease in temperature of
the solutions did not exceed 1 K/day, and the growth
rate of α-NSH crystals in the [001] direction was no
more than 1 mm/day.

The purpose of this study is to develop a method of
rapid growth of large α-NSH single crystals of good
optical quality and investigate the transmission spectra,
the content of related impurities, and the actual defect
structure of the crystals grown.

EXPERIMENTAL

To grow α-NSH crystals, we used hermetically
sealed crystallizers with volumes from 1 to 5 l equipped
with an automatic cooling system. The temperature in
the growth crystallizers was controlled by microcon-
trollers, which provided an accuracy of maintaining
temperature of ±0.02 K. Solutions prepared from
seven-water nickel sulfate NiSO4 · 7H2O of reagent
grade, sulfuric acid H2SO4 of high purity grade, and tri-
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Fig. 2. Solubility of NiSO4 hydrates in water [5].
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ply distilled H2O (taken in different ratios) were used as
mother liquors. The saturation temperature of the solu-
tions was 48–50°C. Immediately before filtration, the
solutions were superheated by 10–15 K above the satu-
ration temperature.

Crystals were grown from aqueous solutions by
cooling. The seed crystals (plates in the (001) cut, 8.0 ×
8.0 × 1.5 mm3 in size, cleaved in the (001) cleavage
plane) were installed either on immobile platforms (in
this case, solutions were stirred by agitators) or on
rotating platforms. Stirring of solutions was reversible;
the stirring rate ranged from 30 to 60 rpm.

The concentrations of impurities in α-NSH crystals
were analyzed by spark mass spectrometry on a JMS-
01-BM2 double-focusing mass spectrometer (JEOL,
Japan). The mass spectra were recorded on UV-4 pho-
tographic plates.
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20 40 NiSO4, wt %80NiSO4· 6H2OH2O
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Fig. 3. Phase solubility diagram of the NiSO4–H2SO4–H2O
system at 50°C [11].

Fig. 4. Rapidly grown α-NSH crystals.
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Table 1.  Growth parameters for α-NSH crystals grown in different temperature regimes

Crystal
Saturation

temperature of 
solution, °C

Rate of solution 
stirring, rpm

Average cool-
ing rate, K/d

R[001],
mm/d

Growth dura-
tion, d

Crystal mass, 
g

Crystal sizes
x × y × z, mm3

1 50.5 50 0.6 1.3 27 185 65 × 51 × 35

2 49.5 60 5 5.5 4 125 52 × 52 × 22

3 49.0 60 5.5 7 4 190 63 × 60 × 28
To measure the transmission spectra of the samples
studied, we used a SPECORD UV VIS automatic dou-
ble-beam spectrophotometer, which makes it possible
to measure transmission spectra in the range from 185
to 800 nm.

The structure of the crystals grown was analyzed by
Lang X-ray topography in MoKα1 radiation using P-50
photographic plates intended for nuclear study.

RESULTS AND DISCUSSION

Figure 3 shows the 50°C isotherm for the ternary
system NiSO4–H2SO4–H2O [12]. Initially, α-NSH
crystals were grown from solutions of the same compo-
sition as in [8] (in wt %): NiSO4, 28.00; H2SO4, 13.00;
and H2O, 59.00 (Fig. 3, point A on the solubility iso-
therm).

However, when attempts were made to increase the
rate of growth of α-NSH crystals from the noted solu-
tions by increasing the solution supercooling from 0.3
to 1.6 K (which corresponds to the change in the super-
saturation from 0.4 to 1.9%), the crystals grown con-
tained microcracks and inclusions of mother liquor.
The supersaturation was calculated by the formula

where c0(T) and cr(T) are, respectively, the equilibrium
and real concentrations of a solution in molar fractions
at temperature T.

With a further increase in supersaturation, spontane-
ous crystallization from solution occurs.

In this context, we carried out a series of experi-
ments aimed at determining the solution composition
applicable for rapid growth of α-NSH crystals. As a
result, a solution composition was determined that
made it possible to reach the supersaturation σ = 4–
5.5% without intense nucleation. A series of α-NSH
crystals up to 120 × 120 × 65 mm3 in size (Fig. 4) were
grown from solutions of this composition in different
temperature regimes. The average cooling rates during
rapid growth and slow growth were 5–7 and 0.5–
1.5 K/day, respectively. The normal growth rate of
faces R in the direction [001], R[001], was 5–7 and 1–
1.5 mm/day during rapid and slow growth, respec-
tively. Table 1 contains the growth parameters for three
crystals grown in 1-l crystallization vessels.

σ
cr T( ) c0 T( )–

c0 T( )
--------------------------------,=
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We compared the structural quality and optical
properties of rapidly and slowly grown crystals. From
the point of view of application of the crystals under
study as filters in the mid-UV range, they should have
maximum transmission in this wavelength range and
minimum transmission in the visible spectral range. To
compare the efficiency of UV transmission of different
growth sectors of α-NSH crystals, we measured the
optical transmission spectra of samples cut from the
{011} and {001} growth sectors of the crystals grown
at different rates (Fig. 5). (These sectors occupy the
major part of a crystal.) All samples were 5-mm-thick
plates cleaved in the (001) cleavage plane.

It was found that the {011} growth sector of rapidly
grown crystals has the best optical characteristics: its
transmittance T is 85–86% at λ = 200–370 nm (short-
range UV) and relatively low in the visible range. The
UV transmittance of the {001} sector of rapidly grown
crystals is comparable in magnitude with that of the
{011} and {001} growth sectors of slowly grown crys-
tals (T ~ 75–77%). In the visible spectral range, the
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Fig. 5. Spectral characteristics of the {011} and {001}
growth sectors of α-NSH crystals grown at different rates:
the {001} sector of rapidly (dashed line) and slowly (dash–
dotted line) grown crystals and the {011} sector of rapidly
(solid line) and slowly (dotted line) grown crystals.
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Fig. 6. The X-ray projection topographs of (100) cuts of (a, b) slowly and (c, d) rapidly grown α-NSH crystals. Designations:
(S) seed, (SB) sectorial boundaries, (D) dislocations, (ZI) zonal inhomogeneities, (VSB) vicinal sectorial boundary; g is the diffrac-
tion vector.
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transmittances of both growth sectors of slowly grown
crystals exceed that of the rapidly grown crystals.

One of possible factors affecting the optical charac-
teristics of crystals is the presence of unintentional
impurities. Therefore, we analyzed their content in the
crystals grown. The concentrations of most studied
impurities, such as Be, Na, P, Sc, Ti, V, Cr, Mn, Ga, Ge,
As, Se, Br, Rb, Sr, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd,
In, Sn, Sb, Te, Cs, Ba, Hf, W, Re, Os, Ir, Pt, Au, Hg, Tl,
Pb, Bi, Th, U, and all lanthanides, were below the
detection limit (<1 × 10–4 wt %). Table 2 contains the
data on the distribution of impurities whose concentra-
tion exceeds 1 × 10–4 wt %. Mass-spectrometric analy-
sis shows that the major impurities in the crystals under
study are Zn, Co, Cu, I, F, and Cl (>1 × 10–3 wt %).
Impurities of Mg, Ca, Fe, Al, Si, and B are present in
smaller amounts. The high content of Zn, Co, Cu, Fe,
CR
and Mg may be related to the large values of the distri-
bution coefficients of these impurities, which are very
likely to exceed unity.

The impurity distributions in α-NSH crystals grown
at different rates are different. The data of Table 2 indi-
cate that the maximum content of Zn, Co, Cu, Al, Mg,
I, and B is found in rapidly grown crystals; note that in
the {001} growth sector the concentrations of Zn, Cu,
Al, and B are several times higher than in the {011}
sector. For Mg and Co impurities, the situation is
directly opposite: their concentrations in the {001}
growth sector of the rapidly grown crystals are lower by
a factor of 1.5–2.

In slowly grown crystals, the content of related
impurities is the same in both growth sectors. Higher
concentrations of the halogens Cl and F are observed in
YSTALLOGRAPHY REPORTS      Vol. 50      No. 5      2005
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these crystals in comparison with the rapidly grown
ones.

Such a complex redistribution of unintentional
impurities in the growth sectors of α-NSH crystals
grown at different rates makes it impossible to draw
unambiguous conclusions about the effect of specific
impurities on the transmission spectra of these crystals.

It is well known that the optical properties of crys-
tals are also significantly affected by their internal
defect structure. To compare the quality of rapidly and
slowly grown α-NSH crystals, we obtained a series of
X-ray projection topographs. The topographs in Fig. 6
demonstrate the typical structure of crystals grown at
different rates.

The {011} growth sector of a slowly grown crystal
contains distinct stripes of zonal inhomogeneity
(Fig. 6b), which may be responsible for the decrease in
the transmission of this sector in the visible spectral
range in comparison with the {001} sector. A large
number of growth dislocations directed from the seed
region perpendicular to the (001) face are observed in
the {001} growth sector of a slowly grown crystal
(Fig. 6b). The presence of one vicinal–sectorial bound-
ary in this sector suggests the presence of only one
growth hillock on the surface of the (001) face and, on
the whole, is indicative of rather high homogeneity of
this sector. Sectorial boundaries, dividing different
growth sectors, can be seen in both topographs.

Table 2.  Distribution of impurities in α-NSH crystals
grown by different methods

Element

Concentration, ×104 wt %

rapidly grown α-NSH slowly grown α-NSH

{011}
sector

{001}
sector

{001} and {011}
sectors

Li <0.01 <0.01 0.08

B 0.4 1 0.05

Be <0.005 <0.005 <0.005

F 20 20 30

Mg 10 6 3

Al 0.2 1 <0.07

Si 6 6 3

Cl 7 10 30

K <0.1 <0.1 3

Ca 0.9 1 0.6

Fe 1 1 1

Co 50 20 10

Cu 10 20 <0.1

Zn 1000 2000 8

I 90 100 3
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Figures 6c and 6d show the defect structure of the
rapidly grown crystals. The image of the sectorial
boundary between the {011} and {001} growth sectors
has a brighter contrast. On the basis of the change in the
contrast at the sectorial boundaries, we may conclude
that the lattice parameters in the {011} growth sector
are smaller than in the {001} sector. In the {011} sec-
tor, there are no growth defects for both reflection vec-
tors. In the {001} sector of a rapidly grown crystal, the
concentration of growth dislocations is much higher
than in the same sector of a crystal grown at a lower
rate. The broken line, corresponding to the vicinal sec-
torial boundaries, indicates the presence of competing
growth hillocks. Under these conditions, the formation
of inclusions of the solution [12], which lead to higher
scattering of radiation, is very likely. We believe this
mechanism to be the most likely reason for the decrease
in the transmission of the samples cut from the {001}
growth sector. Analysis of the topographs showed that
the {011} growth sector of the rapidly grown crystal is
more uniform (also compared to the sectors of the
slowly grown crystal). This circumstance is, in turn, in
good agreement with the obtained maximum values of
the transmittance of the {011} sector of the rapidly
grown crystals.

CONCLUSIONS

Transparent α-NSH single crystals up to 120 ×
120 × 65 mm3 in size were grown at high rates. (The
normal growth rate is up to 7 mm/day.) The transmis-
sion spectra of the {011} and {001} growth sectors of
crystals grown at different rates were measured. It is
shown that the {011} sector in the crystals grown at
rates above 5 mm/day has the best characteristics to be
used in UV filters. This conclusion is in agreement with
the results of the analysis of X-ray projection topo-
graphs, which showed a high degree of structural qual-
ity of this sector of rapidly grown crystals. A difference
in trapping of impurities by {001} and {011} faces dur-
ing rapid growth is revealed.
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Abstract—The effect of microgravity on the growth of bulk InP:S single crystals from a melt with an initial
equilibrium composition (84 at % In, 16 at % P, and ~2.2 × 1018 at cm–3 of S) on board the Foton-11 satellite
was investigated. The growth of crystals on board the satellite and on Earth (a reference crystal) was carried out
by the traveling heater method. The samples of the grown crystals were investigated by metallography, double-
crystal X-ray diffractometry, single- and double-crystal X-ray topography, and secondary-ion mass spectrom-
etry. It is shown that the mass transfer in the melt in microgravity is similar to the diffusion mode. Hence, the
mass transfer in the melt results in the following: the formation of a nonstationary boundary layer, depleted in
phosphorus; the constitutional supercooling at the crystallization front accompanied with the development of a
cellular substructure in the early growth stage; and the hypothetical phase structurization of the transition layer
with the formation of In-based associates (clusters), which were found in the grown crystals in the form of
spherical defects 10–20 µm in diameter. The coefficients of sulfur distribution k0 = 0.274 and keff = 0.43, the
sulfur diffusivity in the melt DS = 4.2 × 10–7 cm2/s, and the effective thickness of the transition layer δ = 0.07
cm in terrestrial gravity are determined. The data obtained are necessary to develop a mathematical model of
crystallization in zero gravity. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

The growth of active layers of III–V compounds
from nonstoichiometric melt solutions based on the
intrinsic low-melting metal component III (III ≡ In, Ga)
is successfully used to produce semiconductor devices
and optoelectronic structures. Not long ago the princi-
ples of liquid-phase homoepitaxy were used to grow
bulk single crystals suitable for preparation of high-
quality substrates for ion implantation [1]. The potenti-
alities of the traveling heater method (THM) developed
for this purpose have a fundamental thermodynamic
character and are primarily associated with the rela-
tively low crystallization temperature [1, 2].

At the same time, in comparison with the processes
of crystal growth from stoichiometric melts, the crys-
tallization from melt–solution is more difficult and less
stable from the point of view of controlling and moni-
toring. The large slope of the liquidus curves in the tem-
perature–composition phase diagrams indicates the
strong dependence of the equilibrium crystallization
temperature on the concentration of the component V in
the melt. For example, the slope of the liquidus curve
dT/dC in the In–InP phase diagram reaches 25–30 K/at %
[3]. The component V is crystal-forming, but its con-
centration in the liquid phase is relatively small (gener-
ally ~10–25 at %). During the crystal growth, this com-
ponent behaves as an impurity with a distribution coef-
ficient k > 1, forming a depleted transition layer of
melt–solution with a lowered equilibrium crystalliza-
1063-7745/05/5005- $26.00 ©0883
tion temperature near the phase boundary. Thus, the
actual growth kinetics, the structural perfection, and the
compositional inhomogeneity of the crystals grown are
determined in many respects by the presence of a tran-
sition (boundary) layer, the stability of its thickness, the
degree of its structural order, and its phase composition.

Since the thickness of the boundary layer and the
concentration profile in it are determined in many
respects by the intensity of diffusion and/or the convec-
tive transport in the bulk of the liquid phase, the pro-
cesses of crystallization of III–V compounds from
melt–solution are extremely sensitive to gravity [4–6].
Along with the dopant inhomogeneity (when a doped
melt is used), this sensitivity manifests itself also in the
structural perfection of crystals. Therefore, such sys-
tems can serve as promising model objects for study of
the fundamental regularities of the crystal growth in
microgravity (µg) [7–10].

In this paper, we report the results of the investiga-
tion of the low-temperature (1143 K) crystallization
and doping of InP with sulfur from the liquid phase (In–
InP–S melt–solution) carried out on the board of the
Foton-11 satellite. The possibilities of active in situ of
the crystallization process on board the satellite are
extremely limited. Therefore, the main experimental
approach to the solution of the above-stated problem
can be the complex investigation of the single crystal
samples in order to extract information on the mecha-
nisms of crystallization and the hydrodynamical pro-
 2005 Pleiades Publishing, Inc.
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cesses in the liquid phase, which accompany the crystal
growth. Particular attention was given to the detection
of objective differences between the terrestrial and
space samples from the point of view of the uniformity
of sulfur distribution and the crystallographic perfec-
tion.

EXPERIMENTAL GROWTH CONDITIONS

The objects of study were two InP single crystals
grown by the THM in microgravity (samples 1 and 2)
and the reference crystal 3 grown horizontally under
the same external thermal conditions on Earth. All crys-
tals were obtained using the Zona-4 spaceborn growth
facility [11]. The samples processed are shown in
Figs. 1a–1c. Each of them is a longitudinal, oriented in
the (110) plane, axial cut of the solidified crystallized
compound extracted from a hermetic cylindrical quartz

1 0 1 2 1 3 1 4

(a)

(b)

(c)

Fig. 1. (a, b) InP samples 1 and 2, respectively, grown in
orbit in the Zona-4 growth facility and (c) the terrestrial InP
sample 3.
C

cell with an inner diameter of 15 mm. The crystals were
doped with sulfur during the growth. An InP:S single
crystal (the feed) dissolving in indium melt served as a
feed of phosphorus and sulfur. For all samples, a seed
with an epitaxial layer (the grown crystal) is on the left
and the feed crystal is on the right. In the central part,
the region of the indium melt–solution with a metallic
luster is pronounced. When ampoules were assembled,
a cylinder 8 mm long made of 99.9999% pure indium
was placed between the seed and feed crystals. Both
these crystals were prepared from InP single crystals
grown by the Czochralski method. To unify the bound-
ary conditions and simplify subsequent numerical sim-
ulation, all seeds and initial feed crystals were doped
with sulfur to the same level: 6.5 × 1018 cm–3.

During the crystallization, the liquid zone moved
from the seed to the source (from left to right in Fig. 1),
solving the latter. The orientation of the growth plane
during the crystallization on the seed was (111)B ± 0.2°
in all cases. As can be seen, the geometry and the ther-
mophysical conditions of the THM are analogous to the
conventional floating-zone crystallization in a cell and
the physicochemical mechanism of crystallization is
similar to the liquid-phase homoepitaxy of very thick
layers from a semi-infinite melt–solution with continu-
ous feeding.

The experimental growth conditions were chosen so
as to support the melt–crystal system in the state of sta-
tionary crystallization with minimum external pertur-
bations. These conditions were facilitated by the low
growth rate; small axial temperature gradients (5–
10 K/cm); and a low residual gravity (about (3–6) ×
10−6 of Earth’s gravity [12]), which sharply decreased
the intensity of convective flows in the melt on board
the satellite. The cyclograms (temperature–time depen-
dences) of the crystallization processes, strictly sup-
ported by the programmable unit of Zona furnace, were
identical. They can be described as follows:

(i) two-step heating of the indium zone to 1090 K
for 1 h and then to the specified crystallization temper-
ature 1143 ± 0.5 K at a rate of 100 K/h;

(ii) isothermal exposure, initial source dissolution,
and melt homogenization, all of which occurred over 1 h;

(iii) growth of a crystal (epitaxial layer) during the
cell motion through the heater zone with a minimal pos-
sible instrumental rate of 0.15 mm/h for 50 h;

(iv) controlled heater cooling to 1040 K at a rate of
100 K/h; and

(v) switching off the heater supply and fast uncon-
trolled cooling.

Thus, the main difference in the experiments was
the difference in the mechanisms of heat and mass
transfer in the melt–solution: natural convection is
present during the horizontal floating-zone growth
under the terrestrial conditions (sample 3), while for the
samples 1 and 2, which were grown on board the satel-
lite, the gravitational convection was significantly
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 5      2005
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reduced and the mass transfer was presumably deter-
mined by the prevailing diffusion processes.

The In–InP phase diagram shows that the thermody-
namically equilibrium melt–solution contains 84 at %
In and 16 at % P (68 at % pure In and 32 at % InP) at
the growth temperature [3].

METHODS FOR STUDYING 
THE GROWN CRYSTALS

To carry out further investigations, each sample was
cut in the indium zone, as a result of which the source
crystal was separated from the seed part with the grown
layer. Furthermore, only the seed parts were treated and
analyzed. Residual indium was removed by etching in
HNO3. The crystals were characterized using the fol-
lowing techniques: optical microscopy combined with
selective chemical etching; analysis of the rocking
curves; single- and double-crystal X-ray topography;
and measurement of the sulfur distribution by second-
ary-ion mass spectrometry (SIMS).

Analysis of the morphology of projection-etch pat-
terns and their microphotographing in polarized light
was performed by a Polyvar optical microscope. The
metallographic examination of the samples was per-
formed in order to determine the thicknesses of the
grown epitaxial layers (crystals) and the sizes of the
regions that are of interest for subsequent X-ray and
mass spectrometric characterization.

Double-crystal rocking curves were measured on a
UARPP-80 X-ray diffractometer in the dispersion
mode (n; m) using MoKα1 radiation with the wave-
length λ = 0.07093 nm. A perfect Ge(110) crystal was
used as a monochromator. The rocking curves were
measured for the (440) reflection with a step of 1.5 mm
(the distance between the neighboring irradiation spots)
along the growth axis.

Single-crystal X-ray topography was carried out
using CuKα1 radiation with λ = 0.15406 nm. The topo-
graphs have negative contrast (defects are brighter).
Shaped macroscopic inclusions of the In second phase,
which yield no reflections, are dark. The kinematic con-
trast in the single-crystal mode is formed by structural
defects, such as dislocations or In-based microprecipi-
tates, which form elastic stress fields approximately
several micrometers in size in the matrix.

Double-crystal X-ray topography was performed
for the asymmetric (511) reflection using a perfect
Ge(111) crystal as a monochromator and CuKα1 radia-
tion with λ = 0.15406 nm. In the double-crystal mode,
nonuniform contrast corresponds to areas with different
diffraction conditions (different orientations or inter-
planar spacings). Topographs can also demonstrate
extensive matrix areas differing in the magnitude
and/or direction of the vector of prevailing elastic
stresses.

The axial distribution of sulfur in the samples was
determined by SIMS on a PHI-6600 Perkin Elmer spec-
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 5      2005
trometer with a step of 200 µm. A beam of Cs+ ions was
used as a primary one. The size of a single crater
formed by ion etching was 1500 × 50 µm2. To increase
the relative measurement accuracy, the amplitude of the
S signal was normalized to the amplitude of the P signal
(used as a reference).

RESULTS AND DISCUSSION

The criterion for choosing the growth rate f was the
estimate of its maximum allowable (critical) value in
the absence of constitutional supercooling at the crys-
tallization front. According to the data of [13], the fol-
lowing approximate estimate can be used:

(1)f cr

D0 grad T∆H Dp/D0( )

R K0 1–( )T
2

----------------------------------------------------,≈

1 mm

1

1 mm

(a)

(b)

Fig. 2. Central fragments of the panoramic photographs of
the epitaxial layers (crystals) after treatment of the samples
in the Abrahams–Buiocchi projection etchant (H2O : CrO3 :
HF = 1 : 1 : 1): (a) sample 3 (1 is the dopant channel occur-
ring owing to the facet effect) and (b) sample 1 (seeds are
on the left).
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Fig. 3. X-ray topographs of the terrestrial sample 3 measured in the (a) single-crystal and (b) double-crystal modes. The areas of
correspondence of the (a) negative and (b) positive contrast, related to the presence of intrinsic microdefects and changes in the
lattice constant, respectively, are framed.
where D0 and Dp are, respectively, the diffusivities of
indium and phosphorus in a melt; R is the gas constant;
ä0 ~ 50/16 = 3.1 is the ratio of the atomic fractions of
phosphorus in the solid and liquid phases; ∆H is the
enthalpy of phosphorus mixing in the indium melt; the
temperature gradient grad T ~ 10 K/cm at the crystalli-
zation front; and T = 1143 K is the equilibrium temper-
ature of the melt solidification. Using the reference data
on D0, Dp, and ∆H [3], we find that fcr . 0.25–
0.30 mm/h for the stationary diffusion-controlled
growth. Similar values were obtained experimentally in
[14] on an analogous growth system using the tech-
nique of local growth markers.

According to preliminary estimates, the thickness of
the grown single-crystal layer in the samples at f =
0.15 mm/h should be about 7.5 mm. However, the por-
tion of the grown layer with relatively high structural
perfection turned out to be much thinner (Fig. 2). On
the left, one can clearly see the metallurgical boundary
of the initial crystallization seeding front, which is con-
vex towards the melt–solution. Growth (doping) stria-
tions are observed in the seed part. The thickness of the
perfect portion of the grown single-crystal layer can be
easily estimated: it is ~4 mm in the terrestrial sample
(Fig. 2a) and 2–2.5 mm in the µg samples (Fig. 2b). The
subsequent morphological instability of the smooth
crystallization front leads to the nucleation and devel-
opment of a cellular substructure. This substructure has
a classical form in the µg samples and is indicative of
significant constitutional supercooling of the melt–
solution as a result of the misbalance of the growth rate
and the rate of effective liquid-phase diffusion of phos-
C

phorus under the thermal conditions applied. The con-
stitutional supercooling indicates the existence of a
boundary layer in the melt, which is depleted in phos-
phorus and is more pronounced in the µg samples. Fur-
ther development of the cellular substructure leads to
the break of the single-crystal growth. The final portion
of the grown layer in the samples has a porous poly-
crystalline structure with macroscopic second-phase
grains based on the solvent (In) captured from the solu-
tion. Polycrystalline portions with metallic inclusions
can be clearly seen in the longitudinal cuts of all crys-
tallizing systems (to the left of the indium zone in
Figs. 1a–1c).

Deterioration of the structural quality of the layers
with further growth is confirmed by rocking-curve
analysis. The smallest half-widths of the rocking curves
(5.3′′–7.4′′ ) are observed for single-crystalline seeds.
The half-widths obtained for the epitaxial layers in the
µg and terrestrial samples are 18′′–24′′  and 15′′–17′′ ,
respectively. In the final growth stage, the broadening
of the rocking curves rapidly increases with growth
time. Thus, there is a significant inhomogeneity in the
lattice parameter, which is observed even in the most per-
fect regions of the layers grown during the first 5–10 h.

Analysis of the X-ray topographs supplements the
above data. The topographs obtained in the single-crys-
tal mode demonstrate areas with negative contrast in
the form of fairly uniformly distributed bulky clouds.
Such areas manifest themselves near the seeding front
in the terrestrial sample (Fig. 3a) and, with the largest
contrast, in the µg samples (Figs. 4a, 5a). In the double-
crystal topographs, they correlate with the positive-
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 5      2005
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1 mm(a) (b)

Fig. 4. X-ray topographs of the µg sample 2 measured in the (a) single-crystal and (b) double-crystal modes. The areas of corre-
spondence of the (a) negative and (b) positive contrast, related to the presence of intrinsic microdefects and changes in the lattice
constant, respectively, are framed.
1 mm 100 µm(a) (b)

Fig. 5. X-ray topographs of sample 1 measured in the single-crystal mode: (a) general view (the dark crack in the seed was formed
at the sample removing from the cell) and (b) “giant” spherical In microdefects revealed near the seeding front.
contrast areas (framed in Figs. 3b, 4b), where the lattice
constant differs from that of the matrix. Using ultimate
magnification, we managed to resolve the fine structure
of such a defect area in sample 1. Along with the fine-
grain background, observed also in the terrestrial sam-
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 5      2005
ple 3, very large (~10–20 µm) microdefects of spherical
shape with a density of ~4 × 104 cm–2 in the layer cut
were found in the µg sample (Fig. 5b). Similar micro-
defect structures were found in GaSb single crystals
grown in orbit, which were heavily doped with Te [15].
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The similar genesis suggests that we are dealing with
specific cluster associates, formed in the stagnant zone
of the melt (solution) in the vicinity of the crystalliza-
tion front under the conditions of strong supersatura-
tion with respect to one of the components (dopants).
As can be seen in Fig. 5b, defects tend to form vertical
“chains” parallel to the crystallization front; i.e., they
are concentrated mainly within the (111) plane. This
feature may be in favor of the cluster mechanism of the
formation of defects and their incorporation into the
crystal lattice immediately during the crystal/melt
interface motion. Another possible mechanism of the
formation of associates is the decomposition of a super-
saturated solid solution and the solid-state diffusion of
In atoms to nucleation centers in the absence of effec-
tive sinks [16]. However, in this case, a radial depletion
region (dark halo) should be observed around each
defect serving as a sink, which is inconsistent (Fig. 5b).

Quantitative estimates, which are valuable for sub-
sequent numerical simulation, can be obtained using
the axial sulfur concentration (CS) profiles as additional
indicators (tracers) of the mass transfer intensity in the
regions of the melt located near the crystallization front.
According to the SIMS data, the integral distributions
of sulfur within the layers grown on-ground and in the
absence of gravity are indeed different. The doping pro-
file in the µg sample 1 (Fig. 6, curve 1) is adequately
described by the pure diffusion Tiller distribution [17]

(2)

where β =  and L is the thickness of

the crystallized layer. The initial sulfur concentration in
the liquid zone C0 can be estimated as 2.2 × 1018 cm–3 on

CS x( ) C0 1 1 k0–( ) βx–( )exp–[ ] ,=

k0 f /DS( )
1 fL/DS–( )exp–
------------------------------------------

1.0

0 2 4 6 x, mm

1.5

2.0

6.5

CS, 1018 at/cm3

~~

2

1

Fig. 6. Axial profiles of sulfur distribution in the epitaxial
crystals: (1) the distribution in the µg sample 1 and its inter-
polation by the Tiller diffusion curve and (2) the distribution
in the terrestrial sample 3 and its interpolation by the Pfann
curve.
C

the basis of the seed/source doping level and the ratio
of the volumes of the initial indium load and the sta-
tionary melt–solution zone (Fig. 1). The interpolation
parameters for the Tiller curve show the best correlation
with the values of the equilibrium coefficient of sulfur
distribution k0 = 0.274 and the sulfur diffusivity in the
liquid phase DS = 4.2 × 10–7 cm2/s, an observation
which is in agreement with the data in the literature that
were obtained by processing the data obtained in simi-
lar experiments in orbit: k0 = 0.26 ± 0.04 and DS = (5 ±
2) × 10–7 cm2/s [6, 8, 18]. The possibility of interpolat-
ing the experimental datapoints by diffusion curve sug-
gests that the effect of residual gravitational convection
on board the Foton-11 satellite on the processes of crys-
tallization and doping was indeed negligible. The pro-
file of CS in the terrestrial sample 3 (Fig. 6, curve 2) cor-
responds to the case of partial convective melt stirring
according to the classical Pfann theory for the floating-
zone method [19]:

(3)

where l is the length of the molten zone. Interpolation
of the experimental curve by formula (3) makes it pos-
sible to determine the effective coefficient of sulfur dis-
tribution at terrestrial crystallization: keff = 0.43
(beyond the dopant channel). Thus, it is easy to esti-
mate the thickness δ of the boundary (transition) layer,
enriched in the dopant, within the Burton–Prim–Slich-
ter theory [20]:

(4)

CONCLUSIONS

The fundamental regularities of the effect of micro-
gravity on the crystallization and doping of InP:S single
crystals from a nonstoichiometric melt–solution are
investigated. It is shown that the mode of mass transfer
in the melt on board the Foton-11 satellite is close to the
diffusion mode. The following conclusions can be
drawn: (i) a boundary layer depleted in phosphorus is
formed; (ii) constitutional supercooling occurs at the
crystallization front, which leads to the morphological
instability of the smooth phase boundary and early
development of a cellular substructure in the grown
crystal; and (iii) hypothetical phase structurization of
the transition layer occurs with the formation of
ordered In-based associates (clusters), observed as
spherical defects 10–20 µm in diameter. The following
parameters are determined: the sulfur distribution coef-
ficients k0 = 0.274 and keff = 0.43 for InP doping from
indium liquid phase, the sulfur diffusivity in the melt
DS = 4.2 × 10–7 cm2/s, and the effective thickness of the
transition layer δ = 0.07 cm under the terrestrial gravity
conditions. The experimental data obtained and the
numerical estimates will be used for verification and
development of the mathematical model of the crystal-

CS x( ) C0 1 1 keff–( ) keffx/l–( )exp–[ ] ,=

δ
DS

l
------

k0 1 keff–( )
keff 1 k0–( )
--------------------------ln– 0.07 cm.≈=
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lization processes with consideration for the cluster
structure of the boundary layer, proposed in [21, 22].
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Vladimir Aleksandrovich Koptsik
(February 26, 1924–April 2, 2005)
Vladimir Aleksandrovich Koptsik, a leading Rus-
sian crystallographer and an expert in symmetry and
physics of crystals, died on April 2, 2005.

Koptsik was born on February 26, 1924, in Ivanovo
into a family of students. His mother, Aleksandra
Ignat’evna Shaposhnikova, was attending Higher
Women’s Courses at that time. His father, Aleksandr
Nikolaevich, a former village teacher in Byelorussia,
studied at the Moscow Mining Academy. After gradu-
ating, Koptsik’s mother worked as a teacher and his
father worked as an engineer at an electric-bulb plant in
Moscow.

In June 1941, Koptsik finished ninth grade at high
school 281 in Moscow. In October and November
1941, he worked on a Komsomol assignment digging
antitank ditches near Moscow. From December 1941 to
October 1944, he worked as a turner and an operator at
a facility for sintering hard alloys at defense plant 632
MPSS in Moscow. In May 1942, he passed examina-
1063-7745/05/5005- $26.00 ©0890
tions for the tenth grade at the Teaching and Consulta-
tion Center in Moscow. Then, while working at the
plant, he studied by correspondence at the Faculty of
Physics of Moscow State University. After finishing
three years of study at the Faculty of Physics, in Octo-
ber 1944, Koptsik entered the Department of Geophys-
ics of the Faculty of Geology, Moscow State University,
on a full-time basis. He graduated with distinction from
the Department of Crystallography and Crystal Chem-
istry in 1949 and was appointed to the postgraduate
course at this department. Koptsik’s choice of special-
ization was affected to a large extent by the lectures of
Professor G.B. Bokiœ on the fundamentals of structural
crystallography; the lectures of Professor A.I. Kitaigor-
odsky on X-ray diffraction analysis of crystals, and,
especially, the comprehensive course of lectures on all
aspects of crystallography (geometric, physical, and
chemical) of Academician A.V. Shubnikov, who super-
vised Koptsik’s diploma work and candidate’s thesis.

In 1953, Koptsik was hired at the Faculty of Physics
of Moscow State University. Being the closest student
and assistant of Shubnikov, he made great efforts to
organize the new Department of Crystallography and
Crystal Physics (later called the Department of Crystal
Physics). He successively worked as an instrumenta-
tion assistant, a junior researcher, an associate profes-
sor, and a professor. From 1968 to 1974, Koptsik
headed the Department of Crystal Physics.

Koptsik began his scientific career in his third and
fourth years of University with the investigation of the
morphology and the conditions of growth of pyrite and
quartz crystals. For this he used the data obtained dur-
ing his practical training in 1947 and 1948 at the middle
Asia and Ural deposits of crystals. In 1949, he defended
his diploma on the growth kinetics and physical prop-
erties of piezoelectric ammonium dihydrophosphate
crystals. With this study, Koptsik began extended
research aimed at finding and analyzing new piezoelec-
tric and pyroelectric crystals. The search of new crys-
tals was based on the structural-symmetry criteria for-
mulated by him. As a result, in February 1953, he
defended his candidate’s dissertation on the growth of
resorcin crystals and analysis of their electrical and
elastic properties at the Scientific Council of the Insti-
tute of Crystallography, USSR Academy of Sciences.

In the 1960s, Koptsik began a cycle of studies on
generalized theory of symmetry. He was the first to
derive all possible Shubnikov antisymmetry space
groups. In December 1963, Koptsik presented this
 2005 Pleiades Publishing, Inc.
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study at the Scientific Council of the Faculty of Phys-
ics, Moscow State University, and defended it as his
doctoral dissertation in physics and mathematics. In
1966, his monograph Shubnikov Groups was pub-
lished.

Continuing his studies on symmetry, Koptsik and
his students derived point and space groups of colored
symmetry and developed their magnetic interpretation.
These results were included in the monograph Symme-
try in Science and Art, published by him and Shubni-
kov. This cycle of studies was awarded the Fedorov
Prize of the Russian Academy of Sciences.

In 1974, Koptsik proposed a new effective approach
to the theoretical simulation of the structure and physi-
cal properties of real crystals, based on tangling of
internal-symmetry groups of structural units (describ-
ing their possible physical states) with external-sym-
metry groups, which describes the short- and long-
range order in crystals on the whole. These studies
made a significant contribution to the crystal physics of
electrically and magnetically ordered crystals and the
theory of generalized (colored) symmetry of material
(geometrical–physical) spaces having a crystal struc-
ture.

What should be noted particularly are Koptsik’s
studies on the generalization of the Curie principle to
the Shubnikov–Curie principle, which supposes a sys-
tem-stochastic relationship between reasons and conse-
quences, and on the establishment of the principle of
nondecreasing symmetry and its transformation into
generalized forms of symmetry at phase transitions in
crystals.

These and some other new results were included in
the second edition of the book Symmetry in Science and
Art by Shubnikov and Koptsik, published in 2004.

In recent years, Koptsik paid much attention to the
problem of inclusion of art analysis in the unified sys-
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 5      2005
tem of natural science knowledge. His considerations
on this subject were reported in the large chapter
Approaches of Natural Sciences and Liberal Arts in
Culture, Science, and Art in the monograph Essays on
the Theory of Arts, written by him, V.P. Ryzhov, and
V.M. Petrov and published in 2004.

Koptsik’s studies have been highly appreciated by
many crystallographers. In 1966, Koptsik was elected a
member of the Committee on International Crystallo-
graphic Tables of the International Union of Crystallog-
raphers and, in 1983, a member of the subcommittee of
this union on nomenclature in n-dimensional (n > 3)
crystallography. In 1996, he was elected a member of
the Council of the International Interbranch Associa-
tion for the Study of Symmetry. Since 1989, he was a
member of the editorial board of the international jour-
nal Symmetry: Science and Culture. Since 1973,
Koptsik was a member of the editorial board of the sci-
entific journal Kristallografiya (Crystallography
Reports).

In 1996, Koptsik was awarded the title of Honored
Professor of Moscow University and, in 1999, the title
of Honored Scientist of the Russian Federation.

Koptsik was the author of more than 300 publica-
tions, including four monographs and several text-
books. He edited proceedings of two international con-
ferences. Koptsik supervised 25 candidate’s and several
doctoral dissertations.

Koptsik devoted his life to science. His name and his
deeds will remain in the history of crystallography.
Vladimir Aleksandrovich Koptsik, a prominent scien-
tist and a kind, responsive man, will be remembered in
the hearts of his students and colleagues.

Translated by Yu. Sin’kov
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ERRATA
Erratum: “Growth and Defect Crystal Structure of CdF2 
and Nonstoichiometric Cd1 – xRxF2 + x Phases 
(R = Rare Earth Elements and In). Part 3. 
Crystal Structure of As-Grown Cd0.90R0.10F2.10 
(R = Sm–Lu, Y) Single Crystals” 
[Crystallogr. Rep. 50, 203 (2005)]

E. A. Sul’yanova, A. P. Shcherbakov, V. N. Molchanov, 
V. I. Simonov, and B. P. Sobolev

On page 205, Table 1, the 9th row from the bottom in the column R should read “Diameter of spherical
sample, µm” instead of “Radius of spherical sample, µm.”

On page 209, the bottom part of Table 2 (for the elements Y, Er, Tm, and Lu), in the second subcolumn
of column R, the 2nd row should read “B11 × 103, Å2” instead of “B11 × 108, Å2” and the 4th row should read
“D1122 × 108, Å2” instead of “D1122 × 104, Å2.”

On page 209, Table 2, in the second subcolumn of column R, the 6th row should read “C123 × 106, Å2”
instead of “C123 × 103, Å2.”
1063-7745/05/5005- $26.00 © 2005 Pleiades Publishing, Inc.0892
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