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Abstract—The regularities of changes in the temperature dependence of the helical pitch P and the parameter
dP/dt are analyzed for induced cholesteric liquid-crystal systems based on nematic 4-pentyl-4'-cyanobiphenyl,
including chiral arylidene derivatives of (S)-1-phenylethylamine and (1R),(4R)-isomenthone. In the molecules
of these compounds, the length of the π-electron arylidene fragment, the nature of the bridge group between its
benzene rings and of the lateral substitution in the cyclohexanone ring, and the length of the terminal alkyl or
oxyalkyl substituent are varied. The statistical molecular anisometry of the chiral dopants is calculated using
the density functional method and the semiempirical AM1 method. It is shown that the temperature dependence
of the induced helical pitch and, correspondingly, its quantitative characteristic dP/dt and the parameter dti/dC,
characterizing the effect of a chiral dopant on the thermal stability of the mesophase, are determined by the
molecular anisometry of the chiral component. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

The development of display technologies based on
nematic liquid crystals (LCs) doped with chiral com-
pounds has increased the urgency of studying the tem-
perature dependence of the induced helical pitch, its
changes with a change in the nature of chiral compo-
nents, and the possibilities of predicting the character
of this dependence, which is necessary to implement
specific physical effects. Chiral dopants in such sys-
tems not only provide a uniform twist structure of LC
elements but are also used to control the temperature
dependence of threshold voltages, thus ensuring stable
device operation. To this end, according to [1, 2], it is
preferable to use chiral dopants inducing a helix with a
large negative temperature gradient within the helical
pitch P (dP/dt < 0). In recent years, the design of sys-
tems with a temperature-independent helical pitch for
the development of data mapping tools with intrinsic
memory based on texture transitions in induced choles-
teric liquid crystals (CLCs) have become of particular
importance [3].

Despite a large amount of data on the effect of chiral
components on the macroscopic properties of induced
cholesteric mesophases [4, 5], the questions related to
the temperature dependence of the induced helical
pitch and the influence of the structure of impurity mol-
ecules on the degree of order of the mesophase are still
to be clarified. The existing theoretical models describe
some dependences P(t) quite adequately [6–8]; how-
ever, they do not demonstrate convincing predictive
possibilities.
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The purpose of this study is to reveal the relation-
ship between the molecular structure of chiral compo-
nents and the macroscopic parameters of LC systems
and to develop approaches to intentional preparation of
induced CLCs with a specified type and quantitative
characteristics of the temperature dependence of the
helical pitch. In the systems based on the nematic 4-
pentyl-4'-cyanobiphenyl (5CB), we investigated the
behavior of chiral arylidene derivatives of (S)-1-phe-
nylethylamine (1–20) and (1R),(4R)-isomenthone (21–
31) with the successively varied molecular structure
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(27); OC6H13 (28); Y = Br: R = H (29); OCH3 (30); and
OC5H11 (31).

The temperature dependence of the helical pitch in
the systems under study was quantitatively character-
ized by the parameter dP/dt. Taking into account the
theoretical prerequisites concerning the temperature
dependence of P as a function of the order parameter of
LC systems [6, 7], we also studied the regularities of
the effect of chiral dopants on the thermal stability and,
accordingly, the degree of order in induced CLCs. This
effect was characterized quantitatively by the parame-
ter AN* = dti/dC, where ti is the temperature of the phase
transition from the induced cholesteric N* to the isotro-
pic liquid I, and C is the chiral dopant concentration. It
is reasonable to analyze experimental changes in the
parameters dP/dt and dti/dC on the assumption that they
are related to the generalized characteristic of the
molecular structure of chiral dopants (molecular
shape)—anisometry, which was determined on the
basis of conformational analysis [9].

EXPERIMENTAL

The synthesis of the chiral dopants under study was
described in [10–12]. The measurements of the induced
helical pitch P were performed, as in [13], by the
Grandjean–Cano method; the concentration of chiral
dopants in LC solutions was 0.01–0.02 mol fr. The
parameter dP/dt was calculated as the slope of the mea-
sured dependences P(t) in a linear approximation (with
a correlation coefficient of 0.95–0.99).

The parameter AN* was determined as the slope of
the linear function ti(C) with a correlation coefficient of
0.98–0.99 in most cases, where ti is the clearing temper-
ature measured by the capillary method using a device
intended for determining melting temperatures accu-
rate to 0.1°C.

Conformational analysis of the chiral compounds
was performed by the semiempirical methods AM1
[14] and PM3 [15] using the MOPAC 6.0 software and
by the quantum-chemical method based on the density-
functional theory (DFT) using the NWChem software
[16]. The hybrid gradient-corrected density functional
B3LYP [17] and the atomic basis set cc-pVDZ [18]
were used. The relaxed potential-energy surface was
scanned within the torsion angles, which determine the
molecular conformations. For the minima found on the
dependence of the energy on the reaction coordinate,
we performed complete optimization of the geometric
parameters and calculated the harmonic frequencies of
normal vibrations, on the basis of which the thermal
corrections to the electronic energy were determined in
the rigid-rotator approximation. The positive definite-
ness of the Hessian matrix in all cases confirms the
assignment of the stationary point on the potential-
energy surface to minimum.
C

RESULTS AND DISCUSSION

Specific Features of the Spatial Structure 
of Chiral Dopants

The behavior of the induced helical pitch is often
interpreted on the basis of the possibility of conforma-
tional equilibria for chiral dopants [19, 20]. To establish
a possible effect of this factor in the 5CB–chiral-dopant
systems under consideration, we analyzed the spatial
structure of the (S)-1-phenylethylamine derivatives.
These chiral compounds are trans-isomers with respect
to the double bond ë=N [21]. The compounds 2–17,
containing a phenyl benzoate fragment, are character-
ized additionally by the s-cis-conformation with
respect to the partial double bond C–O. (The torsion
angle C(Ar)C(=O)OC(Ar), according to the AM1 and
PM3 calculations, is close to 180°.) These data are con-
sistent with the DFT data [22] and the X-ray diffraction
(XRD) data [23] for the compounds with a phenyl ben-
zoate fragment.

We believe the conformational changes related to
the internal rotation with respect to the N–C* bond (the
torsion angle ϕ1) to be the most important. Calculations
by the AM1 and PM3 methods revealed significant dif-
ferences in the description of the relative stability, and,
hence, the population of alternative conformers with
respect to this bond, which stimulated calculations by
the quantum-chemical DFT method. To save computa-
tional time, simulation was performed for the simplest
compound 1m—the model structure of all chiral
dopants 1–20 under consideration:

.

The internal rotation in this model molecule around the
N–C* bond is characterized by the presence of three
energy minima, the deepest of which corresponds to the
anticlinal conformation (–ac, ϕ1 = –122.2°, Fig. 1). The
energy of the higher energy synperiplanar form (sp,
ϕ1 = –6.8°) exceeds the energy of the preferential con-
former by 2.4 kcal/mol (∆G is 2.45 and 2.51 kcal/mol
at 0 and 298 K, respectively). The preferential –ac-con-
formation of the molecule studied is characterized by
the eclipsed orientation of the C=N and C*–H bonds at
the chiral center (the torsion angle C=NC*H), which is
similar to that for the most stable conformation of the
ethylene compounds R1R2CH=CHCH2CH3 (with
respect to the (=)CH–CH2) bond) [24]. The relative sta-
bilization of this conformation is, apparently, caused by
unfavorable steric interactions in alternative conforma-
tions. On the one hand, between π electrons of the ë=N
bond, the unshared electron pair of the N atom, and, on
the other hand, the bulk methyl or phenyl groups.

The DFT data are in good agreement with the XRD
data for one of the (S)-1-phenylethylamine arylidene

ϕ1

N *
B

C 1m
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derivatives, in crystals of which specifically an ac con-
formation with respect to the N–C* bond is imple-
mented [10]. The dominance of the ac conformation in
a wide temperature range for the compounds contain-
ing the N-arylidenephenylethylamine group determines
the conformational homogeneity of such compounds
with respect to this fragment.

To estimate the characteristics of the molecular
shape of chiral dopants (specifically, the molecular ani-
sometry), the geometry of the chiral-dopant molecules
2–17 with an ester group was optimized by the AM1
and PM3 methods with a fixed –ac conformation (ϕ1 =
–122.2°), which was established in the DFT calculation
for the model 1m. 

Conformational analysis for the compounds with
the bridge group OCH2 (18–20) was performed by the
example of compound 18, also with a fixed value of
ϕ1 = –122.2°. Both methods give similar results for
compound 18 and show the existence of two conform-
ers of the synclinal type (the arrangement of benzene
rings with respect to the O–C(H2) bond) (Figs. 2a, 2b)
and the antiperiplanar conformation (Fig. 2c, Table 1,
ϕ2). The conformers of the synclinal type are almost
equiprobable. They dominate significantly over the
antiperiplanar form in the entire temperature range.
Note that, for all conformers, the –CH=N group and the
C–O bond are almost coplanar with the central benzene
ring, as in the compounds with an ester bridge group.

The spatial structure of chiral unsaturated ketones
(chiral dopants 21–31), which are isomenthone deriva-
tives, is characterized by the E-configuration of substi-
tution at the double bond and the preferential chair con-
formation of the cyclohexanone ring with cis-oriented
axial methyl and equatorial isopropyl groups [25–27].
Therefore, these chiral dopants can be considered con-
formationally homogeneous [4]. When the H atom at
C-4 is substituted by a methyl group (chiral dopants
25–28) or a Br atom (chiral dopants 29–31), these sub-
stituents take the axial orientation preferentially [4] and
the conformational homogeneity of molecules of chiral
dopants is retained.

Effect of the Nature of Chiral Dopants 
on the Quantitative Characteristics of the Temperature 

Dependence of the Induced Helical Pitch

For chiral dopants from the same series ((S)-1-phe-
nylethylamines), we observed three possible types of
the temperature dependence of the helical pitch:
(i) untwisting (P increases with temperature, dP/dt >
0), (ii) enhanced twisting (dP/dt < 0), and (iii) temper-
ature independence.

In our opinion, when analyzing the effect of the
molecular structure of chiral dopants on the behavior of
the temperature dependence of the helical pitch and the
quantitative parameter dP/dt, one should take into
account the following main factors: (i) conformational
features of the molecules and the possibility of temper-
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 6      2005
ature dependence of the concentration ratios of con-
formers with presumably different helical twisting
power; (ii) the geometric parameters of molecules of
chiral dopants (molecular anisometry) and, generally
changing simbatically (in the systematic series of com-
pounds), polarization characteristics (anisotropy of the
molecular polarizability); and (iii) possible influence of
chiral dopants on the degree of ordering and elastic
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Fig. 1. (a) Preferential –ac conformation of N-benzylidene-
phenylethylamine 1m and (b) the Newman projection along
the N–C*-sp3 bond for this conformation.
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Fig. 2. Alternative synclinal –sc- (a) and +sc- (b) and anti-
periplanar ap- (c) conformations of compound 18.
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Table 1.  Results of the conformational analysis for model compound 18 (the AM1 method, fixed ϕ1 = –122.2°)

Conformer ∆∆Η, kcal/mol ϕ2, deg
Conformer content, mol %

∆, % Anisometry, 
ξ*290 K 313 K 333 K

a (–sc) 0 –81 45.4 44.9 44.5 –0.9 2.39

b (+sc) 0.016 81 44.2 43.8 43.4 –0.8 2.09

c (ap) 0.857 179 10.4 11.3 12.1 1.7 2.51

* The effective weighted mean molecular anisometry ξ = 2.27.

H3C
O

N *

ϕ1
ϕ2

A
B

C

Table 2.  Some characteristics of the N* 5CB–chiral-dopant systems (1–20)

Chiral 
dopant R dP/dt × 104,

µm/K
AN*,

K/mol %
Chiral 
dopant R dP/dt × 104,

µm/K
AN*,

K/mol %

1 – +440 ± 60 – 11 OC10H21 –130 ± 20 –0.71 ± 0.15

2 H +121 ± 14 –1.88 ± 0.14 12 H –230 ± 5 –0.16 ± 0.10

3 CH3 +18.7 ± 8.6 –1.38 ± 0.03 13 CH3 –263 ± 20 +0.48 ± 0.14

4 C2H5 +74.0 ± 9.6 –1.42 ± 0.02 14 C7H15 –354 ± 26 +0.78 ± 0.06

5 C3H7 +52.1 ± 11 – 15 C8H17 –371 ± 45 –

6 C4H9 +24.6 ± 2.8 –1.60 ± 0.02 16 C9H19 –330 ± 27 +0.66 ± 0.09

7 OCH3 +28.2 ± 6.8 –1.18 ± 0.04 17 C10H21 –346 ± 34 –

8 OC2H5 –47.3 ± 9.4 – 18 CH3 +198 ± 31 –

9 OC3H7 –34.2 ± 9.4 – 19 C4H9 +227 ± 25 –1.91 ± 0.03

10 OC5H11 –115 ± 12 – 20 OCH3 +82 ± 18 –1.42 ± 0.01
properties of the nematic phase (which is related to the
differences in the molecular geometry.)

As noted above, the (S)-1-phenylethylamine deriva-
tives with a benzoate fragment are almost homoge-
neous conformationally; therefore, the influence of the
conformational effects on the change in the helical
pitch with temperature can be excluded.

Experimental data indicate that the effect of the
length of the π-electron fragment of molecules of chiral
dopants on the parameter dP/dt is the most important.
The elongation of this fragment with successive intro-
duction of benzene rings decreases the value of dP/dt
significantly and makes it negative (Table 2). In going
from the acetyloxy substituted (chiral dopant 1) to ben-
zoyloxy substituted imine (chiral dopant 2), dP/dt
decreases significantly (by more than a factor of 3).
Introduction of the second benzene ring (chiral dopants
12–17) changes the behavior of the temperature depen-
dence of the helical pitch. With an increase in the num-
ber of carbon atoms in the terminal alkyl (or oxyalkyl)
C

substituent, the parameter dP/dt tends to decrease
(Table 2).

Since chiral dopants 1–17 are conformationally
homogeneous, the above data suggest that the parame-
ter dP/dt is related to the molecular anisometry of chiral
dopants, which depends on the molecular polarizability
and, accordingly, on the efficiency of intermolecular
interaction in the mesophase. Figure 3a shows the
change in the parameter dP/dt with a change in the
molecular anisometry ξ of chiral dopants (which was
determined from the results of molecular simulation as
the ratio of the maximum length a molecule to its max-
imum width) for the systems containing (S)-1-phenyl-
ethylamine derivatives with an ester group (1–17). It
can be seen that dP/dt decreases with an increase in the
calculated value of ξ of chiral dopants. Sharp jumps of
dP/dt are observed in going from the acetyloxy substi-
tuted chiral dopant 1 with one benzene ring in the
arylidene fragment to the chiral dopants with two (2–
11) and three (12–17) benzene rings. This phenomenon
indicates the significant effect of the polarization factor
on the change in twisting, including the temperature
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 6      2005
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Fig. 3. Dependences of the parameter dP/dt on the molecular anisometry ξ of chiral dopants for the 5CB-based systems containing
derivatives of (a) (S)-1-phenylethylamine with chiral dopants (1) 1–11 and (2) 12–17 and (b) isomenthone with chiral dopants (j)
21–24, (d) 25–28, and (m) 29–31; I is the measurement error.

dP/dt × 104, µm/K
change. This circumstance, in turn, reflects the depen-
dence of the parameters of helical twisting on the effi-
ciency of intermolecular interaction in the mesophase.

The systems containing chiral dopants with the
bridge group CH2O (18–20) show significantly larger
positive values of dP/dt in comparison with chiral
dopants 2–17, which contain the bridge group COO
with the same terminal substituents (compare chiral
dopants 18 and 3, 19 and 6, and 20 and 7 in Table 2).
The chiral dopants of this type are conformationally
labile; however, the insignificant increase in the frac-
tion of the minor antiperiplanar conformer with an
increase in temperature (Table 1) cannot be considered
responsible for the temperature behavior of the induced
helical pitch.

The established differences in the parameter dP/dt
for ether (18–20) and ester (2–17) chiral dopants are in
agreement with the estimates of their different molecu-
lar anisometry, which, in the case of conformationally
labile compounds 18–20, was evaluated as the effective
weighted mean, according to the ratio of conformers
with different molecular anisometries, as shown by the
example of compound 18 (Table 1). For chiral dopants
18–20, this value is much smaller in comparison with
the similar conformationally homogeneous ester chiral
dopants 2–17. The parameter dP/dt increases simbati-
cally with a decrease in the weighted mean of the
molecular anisometry of these chiral dopants.

For the systems containing isomenthone derivatives
(21–31), we can also point to the three above-noted
types of the temperature dependence of the helical
pitch. The curve dP/dt(ξ) (Fig. 3b) for these systems
shows that the parameter dP/dt tends to decrease with
an increase in the molecular anisometry of chiral
dopants. This behavior is similar to that of the corre-
sponding dependences for the (S)-1-phenylethylamine
derivative (Fig. 3a). At the same time, the spread of
points in Fig. 3b (the unified plot for all chiral dopants
21–31 with the variable substituent Y) may be due to the
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fact that the parameter dP/dt actually depends on the
anisotropy of molecular polarizability. (The molecular
anisometry is only a qualitative manifestation of its
changes in the series of related compounds.) It is likely
that different degrees of planarity of the enone fragment
in the compounds with different Y [4] affects the mani-
festation of this polarization factor.

In accordance with the theoretical concepts [28, 29]
and the experimental data [7], the dependence P(t) is
determined generally by the temperature changes in the
orientational order parameter S(t) and the related tem-
perature dependences of the elastic constants Kii, pri-
marily, K22. The observed effect of the nature of chiral
dopants on the behavior of the dependence P(t) may
serve as an argument in favor of the conclusion that
doping affects the noted physical properties of a nem-
atic solvent significantly. We suggest two significantly
different types of the behavior of a dopant in the nem-
atic mesophase, i.e., two possible mechanisms of the
effect on the macroscopic parameters of the systems
under study. The molecules of chiral dopants with a rel-
atively low anisometry (in the limit, quasi-spherical
ones, for example, 1 and 2) cannot be ordered effec-
tively orientationally in a nematic medium. These
chiral dopants may disturb the local order significantly
in the mesophase in the vicinity of an introduced chiral
molecule. The ability of a nematic to transfer static dis-
tortions of local order at large distances, in turn, leads
to a decrease, on the whole, in the long-range orienta-
tional order in the mesophase (“the anomalous decrease
in S” in the terminology of [30]) and thus impedes the
effective formation of a helical supramolecular struc-
ture. The low helical twisting power of such dopants
(see, for example, β for chiral dopant 1 [10]) is in agree-
ment with this suggestion. With an increase in temper-
ature, this effect may be stronger than the trivial
decrease in the order parameter of a nematic and the
decrease in its elastic properties, which facilitates twist-
ing.
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The noted effect decreases with an increase in the
molecular anisometry of a chiral dopant and, therefore,
with an increase in the anisotropy of its polarizability.
Another limiting situation occurs in systems containing
chiral dopants with a high molecular anisometry (and,
accordingly, with enhanced anisotropy of polarizabil-
ity, for example, chiral dopants 12–17). Owing to the
effective intermolecular interaction with the nematic,
such chiral dopants are incorporated optimally into the
mesophase without significant disturbance of ordering
and change in the physical parameters of the
mesophase. In accordance with the temperature behav-
ior of the elastic constant K22 of the nematic, these LC
compositions are characterized by the negative param-
eter dP/dt, which changes only weakly with further
variation in the terminal alkyl or oxyalkyl substituents.
However, this parameter exhibits some trend toward
more negative values with the elongation of the substit-
uent. It is not inconceivable that the decrease of the
order parameter with an increase in temperature in the
systems containing highly anisometric dopants, espe-
cially with the elongating terminal alkyl chain, may
manifest itself somewhat stronger than for an individ-
ual nematic.

Thus, the effect of chiral dopants on the degree of
ordering of a doped nematic manifests itself in two
ways. At a relatively weak decrease in the order param-
eter and the corresponding decrease in the elastic con-
stants of a nematic, an increase in temperature leads to
enhanced twisting (dP/dt < 0). This behavior corre-
sponds to the theoretical concepts, according to which
the ability of a nematic to be twisted by chiral dopants
increases with a decrease in its elastic constants [5].
The opposite is the situation when a dopant causes a
very significant disturbance of local order in the
mesophase, especially with an increase in temperature,
which hinders the effective formation of a helical
supramolecular structure (dP/dt > 0). Obviously,
between these limiting cases, there are intermediate sit-
uations with respect to the change in the order parame-
ter and the elastic constants of a doped nematic (the
parameter dP/dt ≈ 0 or has positive or negative values,
small in magnitude).

The investigation of the effect of chiral dopants on
the thermal stability of the N* mesophase, related to the
degree of its order, confirms these suggestions some-
what. The parameter AN* = dti/dC, which characterizes
the change in the thermal stability of the doped
mesophase and, accordingly, its degree of ordering,
changes regularly with the molecular anisometry of
chiral dopants (Table 2). The low-anisometry chiral
dopants with a positive parameter dP/dt cause a disor-
dering effect in the mesophase (AN* < 0; see Table 2,
chiral dopants 2–4, 6, and 7). In contrast, high-anisom-
etry dopants with dP/dt < 0 result in a weaker negative
effect on the thermal stability of the mesophase and
may even lead to thermal stabilization (Table 2, chiral
dopants 11–14 and 16).
C

We believe that experimental data on the dual effect
of dopants on the degree of ordering in doped nematics
can be obtained by studying the small-angle X-ray scat-
tering in the LC compositions containing chiral dopants
with significantly different molecular anisometry. Fur-
ther experiments in this field are being carried out; the
results will be published elsewhere.

Thus, the most important characteristics of the
behavior of chiral compounds in induced cholesteric
systems—the temperature gradient of the helical pitch
and the concentration gradient of the cholesteric–iso-
tropic transition temperature—change consistently
with a variation in the structure of chiral dopants, espe-
cially their molecular anisometry. This experimental
phenomenon reflects the dependence of the noted
parameters on the energy of intermolecular interaction
between the components.

CONCLUSIONS

Chiral N-arylidene derivatives of (S)-1-phenylethyl-
amine, depending on their molecular structure, induce
in the nematic 4-pentyl-4'-cyanobiphenyl a helical
supramolecular ordering with three types of tempera-
ture changes in the helical pitch: temperature indepen-
dence (dP/dt ≈ 0), helix untwisting with an increase in
temperature (dP/dt > 0), and enhanced helix twisting
with an increase in temperature (dP/dt < 0).

Two mechanisms of the effect of chiral dopants on
the macroscopic parameters of induced cholesteric
mesophases have been established. Low-anisometry
chiral dopants (statistically quasi-spherical) in the sys-
tems based on a cyanophenyl nematic cause a strong
disturbance of local order in the mesophase, providing
untwisting of the cholesteric helix with an increase in
temperature. Highly anisometric chiral molecules are
incorporated optimally into an orientationally ordered
medium, causing no significant changes in the order
parameter and elastic constants of the LC system. The
enhancement of twisting with an increase in tempera-
ture in such systems is determined mainly by the
change in the noted physical parameters of the nematic.

The degree of molecular anisometry determines also
the effect of chiral dopants on the thermal stability of
the induced cholesteric mesophase. It is found that the
parameters dti/dC and dP/dt change antibatically in the
series of LC systems containing dopants from the same
series.
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Abstract—The evolution of the formation of a structure in high-temperature superconducting Bi2Sr2CaCu2O8
films obtained from organometallic aerosols is investigated by atomic force microscopy and scanning electron
microscopy. Nanoscale granular supramolecular structures were found for the first time in the liquid-phase and
pyrolytic stages. It is shown that pyrolytic processes occur within individual nanogranules. The minimum sizes
of a nanogranule are 30–50 nm in base and 5 nm in height. In the high-order crystallization stage, epitaxial
recrystallization occurs, as a result of which platelike crystallites are formed. They are 15–20 nm thick, have
growth steps 1–5 nm in height, and are parallel to the substrate. The nonoriented morphological forms are indi-
vidual three-dimensional crystallites up to 100 nm in size. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

The functional properties of films of high-tempera-
ture superconductors (HTSCs) are determined by their
structure, which is determined by all stages of its for-
mation. Therefore, the study of the formation of the
structure of HTSC films is an important problem that
must be solved to optimize film technologies.

Among many methods for fabricating HTSC films,
the techniques based on the deposition of solutions on
a substrate with subsequent annealing of dried precipi-
tates are spread widely [1]. The advantages of these
methods are as follows: simple equipment, requiring no
vacuum degassing; high homogeneity of the chemical
composition of the film obtained; the possibility of
obtaining coatings on substrates of large area and com-
plex shape; and good controllability of the growth pro-
cesses. Organometallic solutions are promising as start-
ing reagents. They are sufficiently stable and can be
purified relatively easily. Alcoholates, acetylacetonates,
formates, naphthenates, stearates, and laurates are used
to obtain HTSC films [2] under the condition that
molecular aggregates formed in the solution do not tend
to crystallize upon drying. As a result, pasty precipi-
tates of homogeneous composition are formed from the
salts of organic acids. The components of these precip-
itates are mixed at the molecular level with conserva-
tion of local stoichiometry. Solutions of carboxylates
have some advantages: they are nontoxic, relatively
inexpensive, moisture-resistant, and can be purified
easily [3].

The significant drawback of these methods for film
preparation is their multistage character: the formation
of the crystal structure includes a liquid-phase stage,
related to the preparation of initial solutions, evapora-
1063-7745/05/5006- $26.00 1012
tion of the solvent, and drying of the precipitates; the
pyrolytic stage, in which decomposition of organome-
tallic complexes occurs with the formation of target-
phase nuclei as a result of chemical reactions; and the
high-order crystallization stage, in which the film struc-
ture is formed finally. It is difficult to investigate both
the atomic structure and the microstructure of precipi-
tates in all stages, especially in the initial stage, because
they have either an amorphous or a nanocrystalline
structure. Therefore, the overwhelming majority of the
corresponding studies are devoted only to the last stage
of the structure formation, whereas there is almost no
information about the processes occurring in the initial
stage. Hence, the data on the final microstructure of
such films can be very contradictory. For example,
according to [4, 5], Bi–Sr–Ca–Cu–O films have scaly
or needlelike morphology, whereas, according to [6, 7],
these films have platelike morphology.

In this study, we investigated in detail the processes
of structure formation in HTSC films by the example of
the Bi–Sr–Ca–Cu–O system, which, along with the Y–
Ba–Cu–O system, is most promising for technical
applications. Particular attention has been given to the
analysis of nanostructural forms in all stages of the film
preparation from organometallic aerosols.

METHODS

Film Preparation

The initial solution for fabrication of
Bi2Sr2CaCu2O8 (2212) HTSC films was prepared from
a mixture of bismuth and copper acetates and calcium
and strontium carbonates, taken in the amounts
required to obtain the stoichiometric cation ratio. Meth-
© 2005 Pleiades Publishing, Inc.
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acrylic acid was added to the mixture obtained, after
which the mixture was stirred upon heating until the
precipitate was dissolved completely. A working solu-
tion with a methacrylate content of 0.5% for deposition
onto a substrate was prepared by diluting the initial
solution in dimethylacetamide. These processes were
described in detail in [8, 9].

Solutions were deposited onto substrates by pneu-
matic aerosol spraying. The aerosol was formed in a
glass setup using air as a carrier gas. The setup provided
trapping of the largest (above 100 µm) aerosol particles.
The deposition rate of the working solution was 10–
15 ml/h, the distance from the outlet to the substrate
was about 3 cm, and the substrate temperature was in
the range 120–150°C. The deposition of the solution on
a substrate included two cycles. In each cycle, 10 ml of
the working solution was deposited, and, after drying,
the deposition was repeated. To perform pyrolysis of
the precipitates from the methacrylate mixture, anneal-
ing at 200–500°C for 1–15 h is required. High-temper-
ature annealing was performed at 600–800°C for 3–5 h
with a preliminary annealing at 500°C for 1 h.

The above-mentioned annealings were performed in
a Nabertherm L31S programmable furnace with an
automatic control system, which makes it possible to
maintain and change temperature with time by a linear
law with an error of ±1 K. The sample heating rate was
1.6 K/min; the samples were cooled in the furnace.

Preparation of Substrates

LaAlO3 single-crystal wafers were cut in the (001)
plane and polished. Mechanical impurities were
removed from the substrate surface with a UZDN-A
disperser using ultrasound. A water–alcohol (1 : 1) mix-
ture was used as a dispersion medium. Further purifica-
tion of the substrates was performed in ether and then
in hexane, after which they were washed by distilled
water.

Sample Characterization

The preliminary information about the morphology
and quality of the sample surface was obtained on an
MBS-9 optical stereomicroscope. The microstructure
was investigated in a JSM-35 CF scanning electron
microscope (SEM) at an accelerating voltage of 20 kV
and magnifications from 200 to 10000.

The nanostructure was analyzed in a Solver 47
atomic force microscope (AFM). The resolution for the
objects of our study was several nanometers in the X–Y
plane and several tenths of a nanometer along the verti-
cal Z axis. Contact and semicontact scanning tech-
niques were used, applying, respectively, CSG10/10
and NSG10/20 silicon cantilevers (produced by NT-
MDT). The scanner was calibrated both in the X–Y
plane and along the Z axis using test objects, shaped as
periodic grooves, and the independent SEM data. In the
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 6      2005
Z direction, the scanner was calibrated in different
height ranges: 500–300 nm, 200–100 nm with an error
of 20%, and 50–0 nm with an error of 10%.

The elemental composition of the samples was
determined quantitatively with an error of about 5% in
the SEM using a LINK attachment, designed for carry-
ing out electron-probe X-ray microanalysis.

The phase composition of the samples was deter-
mined by X-ray diffraction analysis on a DRON-4-07
diffractometer (CuKα radiation) at a scan rate of
2 deg/min.

The coating thickness was estimated from the AFM
profile of the film/substrate interface and the SEM
image of the film cross section.

EXPERIMENTAL

Liquid-Phase Stage

Optical-microscopy analysis showed that the dried
precipitates from the mixture of Bi, Sr, Ca, and Cu
methacrylates form a homogeneous greenish coating
after two cycles of deposition of the working solution.
Observation of the precipitate surface at high magnifi-
cation in SEM and AFM revealed that the precipitates
consist of planar aggregates with a round or elliptical
base, from several to several tens of micrometers in
size. With a further increase in the magnification, inho-
mogeneities shaped as planar rounded granules with a
base 50–100 nm in size and a large volume of the inter-
granular space are revealed in the precipitates (Fig. 1).
The granules look sufficiently loose and do not exhibit
a fine structure.

In addition to the main granular morphology of the
coating, various three-dimensional (3D) defects are
observed: individual rounded particles, dome-shaped
aggregates rising above the surface, microcracks, and
pores.

Careful observation shows that individual particles
are either incorporated into the coating at different
depths or lie on the surface. The particles are several
tenths of a micrometer in size and their surface exhibits
a fine structure: a layer with a thickness of several
nanometers with a violated continuity. The particles
have a flattened shape with a base-to-height ratio of
8−10. Some particles have excresences of the same
shape in the peripheral region. The cation composition
of the particles is identical to the coating composition.
The domes are flattened hemispheres with a base of
several tenths of a micrometer in size. It can be seen
that, in some cases, they are formed owing to the encap-
sulation of the incorporated particles by the coating; in
other cases, domes form a local swelling of the coating
with cracks and discontinuities on the surface of the
dome.
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Some regions of the precipitates contain micro-
cracks and pores of irregular shape with an average
depth of about 0.5 µm. This value can be used as an
additional estimate of the coating thickness.

X-ray diffraction study of the precipitates shows the
absence of diffraction maxima. Note that scattering
increases monotonically to smaller angles (Fig. 2,
curve 1).

Pyrolytic Stage

The subsequent experiments were performed with
the precipitates subjected to pyrolytic annealing. After
the annealings, the coating thickness decreased approx-
imately by an order of magnitude and was estimated to
be several tens of nanometers. However, it was difficult
to determine the thickness exactly owing to the com-
plex relief caused by the supramolecular granular
micrometric and nanometric morphology found by us.
The SEM and, especially, AFM analysis shows struc-
tural inhomogeneities of at least two types.

The inhomogeneities of the first type are planar
microgranules with a large spread of sizes: from several
tenths of a micrometer to several micrometers in base
and from several hundreds to several tenths of a
micrometer in height (Fig. 3). With an increase in the
annealing temperature, microgranules tend to form a
chain structure.

The inhomogeneities of the second type are closely
packed planar rounded nanogranules forming a scaly
surface (Figs. 4a–4d). The bases of the nanogranules
are 30–70 nm in size and their height is 5–10 nm. These

100
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200 300 nm400

200

300

400

500

0

nm

Fig. 1. AFM image of the nanogranular structure in the liq-
uid-phase stage; semicontact scanning.
C

values almost do not change in the entire range of the
pyrolytic annealing.

Morphologically, nanogranules enter the structure
of microgranules (Fig. 5). The high-resolution images
of the nanogranule structure show that the width of
their boundaries is about several nanometers (Fig. 6).
All the above-described 3D defects observed in the liq-
uid-phase stage (individual particles, domes, etc.) are
present in this stage.

All structural inhomogeneities exhibit no visual
high-order crystalline faceted forms. X-ray diffraction
analysis revealed no diffraction maxima and the dif-
fraction patterns, as before, have an X-ray amorphous
character and demonstrate scattering that increases
monotonically to smaller angles (Fig. 2, curves 2–4).
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2q, deg

1

2

3

4

5

6

7

8

Fig. 2. X-ray diffraction patterns (CuKα radiation) of the
precipitates and films in the (1) liquid-phase, (2–6) pyro-
lytic, and (7, 8) high-order crystallization stages of the
structure formation: annealing (2) at 300°C for 1 h, (3) at
400°C for 1 h, (4) at 500°C for 1 h, (5) at 400°C for 10 h,
(6) at 500°C for 10 h, (7) at 700°C for 3 h, and (8) at 800°C
for 5 h. The lines of the LaAlO3 substrate are excluded. The
indices of the diffraction peaks correspond to the primary
phase HTSC 2212 and the sign + denotes the peaks of the
trace phase HTSC 2223.
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Changes can be observed in the X-ray diffraction
patterns after annealing of the precipitates at 400°C for
10 h: a small diffuse peak arises, which cannot be
assigned to either simple oxides or known cuprate
phases (Fig. 2, curve 5). A similar but more pronounced
peak arises after annealing at 500°C for 10 h (Fig. 2,
curve 6). Analysis showed that these peaks correspond
to the strong maximum (0 0 12) of the 2212 phase.

High-Order Crystallization Stage

After annealings at 600–700°C, isotropic and chain
microgranules composed of nanogranules are observed
in this stage, as well as in the pyrolytic stage. The char-
acteristic morphological features arising after these
annealings are ribbonlike structures with a width of
about several nm present in some regions of the films at
the crystallite boundaries (Fig. 7). In addition, the sta-
bility of the nanogranule boundaries is violated: nan-
ogranules increase in size, transforming into faceted
crystallites; the latter are unoriented with respect to the
substrate (Fig. 8). The number of these crystallites
increases with increasing annealing time. At the same
time, there is still some amount of rounded nanogran-
ules 50–100 nm in size, which are distributed randomly
among faceted forms. Along with the isotropic forms
and the forms with a slightly extended base, needle-
shaped forms with a cross section from several tens of
to several hundred nanometers and a length up to 5 µm
are also observed in small amounts in some regions. We
failed to reveal any differences in the cation composi-
tion of these forms with respect to the main coating.
The diffraction patterns of the films in the beginning of
the high-order crystallization stage are similar to those
obtained in the previous stages and are characteristic of
the amorphous or nanocrystalline states. Then, sharp
peaks, related to the HTSC 2212 phase ((0 0 8), (0 0
10), and (0 0 12) maxima) arise against the continuous
scattering background (Fig. 2, curve 7). In addition,
small peaks, related to the HTSC 2223 phase, can be
observed. No other phases were revealed by X-ray dif-
fraction analysis.

A radical change in the film morphology is observed
after annealing at 800°C (Fig. 9), which leads to the for-
mation of well-oriented platelike rectangular crystals,
growing in layers parallel to the substrate. Separate
platelets are inclined with respect to the substrate. The
lateral sizes of the platelets reach several micrometers,
their thickness is 15–20 nm, and the height of the
growth terraces is 1–5 nm. In addition to the dominant
platelike form, there are also faceted particles up to
100 nm in size, located on terraces. The diffraction pat-
terns of these films show the presence of high-order ori-
ented structure with a texture of the [0 0 1] type (Fig. 2,
curve 8). X-ray phase analysis showed that the films
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 6      2005
contain the target HTSC 2212 phase and a small
amount of another HTSC phase (2223). The HTSC
transition begins at T ~ 108 K, and zero resistance is
observed at T = 75 K.

RESULTS AND DISCUSSION

Classification of the data obtained and analysis of
the structural evolution make it possible to suggest a
mechanism of the formation of the structure of HTSC
films prepared from organometallic aerosols.

The microgranular structure is formed in the liquid-
phase stage as a result of the deposition and drying of
aerosol drops, whose sizes and dispersion distribution
depend on the type of the aerosol generator, the concen-
tration and viscosity of the working solution, and the
flow velocity. For example, the pneumatic and ultra-
sound methods of aerosol generation give significantly
different dispersion distributions [10]. Morphologi-
cally, the precipitate consists of overlapping planar
microgranules. The size of the microgranules depends
on the drop size, while their shape is determined by a
number of factors: the drying conditions, the physical
and chemical properties of the substrate, and the distri-
bution and type of the substrate defects. In the case
under consideration, in the liquid-phase stage, we have
flattened forms with a round or oval base, which are
typical of drops drying on a substrate. In the pyrolytic
stage, because of the local inhomogeneity of the pyro-
lytic process, the boundaries of some microgranules
may diffuse. In this case, chain microgranules are
formed with a chain width corresponding to the isotro-
pic form, characteristic of the beginning of the pyro-
lytic stage. The shape of microgranule ensembles
becomes complicated as a result of their mutual over-
lapping and the effect of the substrate microinhomoge-
neities: polishing bands, 3D defects, etc. All other fac-
tors being equal, small aerosol drops can form struc-
tures differing from those produced by large drops. For
example, individual rounded particles with a size of
several tenths of a micrometer are formed from drops
several tens of micrometers in size as a result of the sub-

10 U

Fig. 3. SEM image of the microgranular structure in the
pyrolytic stage; the accelerating voltage is 20 kV.
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Fig. 4. AFM image of the nanogranular structure in the pyrolytic stage after annealing (a) at 300°C for 15 h, (b) at 400°C for 10 h,
(c) at 500°C for 5 h, and (d) at 500°C for 15 h: (a) semicontact and (b–d) contact scanning.
strate heating. In this case, a drop loses a large part of
the solvent when it approaches the substrate, whereas
the main part of the aerosol dries only after the drop
arrives at the substrate. During the pyrolysis, some par-
ticles on the substrate exhibit a thin surface layer, which
indicates the thickness inhomogeneity of the particle
composition. The reason for this phenomenon is that
the pyrolytic decomposition occurs nonsimultaneously
over depth.

The flattened shape of all structures (including indi-
vidual particles) arising upon drying of the solution on
the substrate confirms their liquid-phase nature. The
excresences on the particle surface can be explained by
the residual viscosity, which manifests itself during
final drying on an oblique substrate.

There are different mechanisms of the dome forma-
tion. The presence of a particle incorporated into the
precipitate causes the dome formation due to the layer
covering this particle. Another mechanism is related to
C

the local pressure of solvent-vapor bubbles from inside
on the surface of the solidifying matrix. In this case, the
vapor goes out either through open pores or as a result
of a partial dome fracture [11]. It should be noted that
the role of 3D defects (individual particles, domes, and
pores) in thin coatings is much less important than in
thick coatings, where their concentration may be
high [11].

We believe that nanogranules, as the main supramo-
lecular element of the coating morphology in the liq-
uid-phase and pyrolytic stages, nucleate even in the
solution, where the mobility of large methacrylate mol-
ecules is, naturally, higher than in the subsequent solid-
phase coatings. A nanogranule seems to be formed
from a molecular cluster, similar to that described for
organometallic solutions [12]. After drying, the precip-
itate consists of nanogranules entering the microgran-
ule composition. The space between nanogranules con-
tains solvent residues and interboundary methacrylate
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 6      2005
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molecules that did not enter the clusters. Pyrolytic
annealing removes solvent residues from the intergran-
ular space, as a result of which the nanogranule packing
becomes dense and the coating becomes scaly. Thus,
the main difference between the configurations of nan-
ogranules in the liquid-phase and pyrolytic stages is in
the character of boundaries.

The size of a nanogranule is determined by the bind-
ing energy; the structure of methacrylate molecules;
and, probably, the solvent nature. The relative stability
of the shape and sizes of nanogranules (30–70 nm in the
base) indicates that pyrolysis occurs in each nanogran-
ule. Concerning the shape of nanogranules, it should be
approximately isotropic, as well as the shape of a clus-
ter in the solution. However, nanogranules decrease in
size owing to the substrate effect in the liquid-phase
stage (for example, through the value of wetting). Thus,
the nanogranules are flattened, as well as other
supramolecular morphological forms. This situation is
retained until the bulk recrystallization starts.

Despite the pronounced boundaries; the similarity
to crystalline grains in shape; and the sizes, which in
some case exceed the size of the X-ray coherent-scat-
tering region (about 50 nm), nanogranules, according to
the diffraction patterns, have an amorphous structure at
the molecular level up to the decomposition of meth-
acrylates and a nanocrystalline structure after the disso-
ciation of methacrylate molecules and the beginning of
synthesis reactions. The amorphous structure is related
to the coordination features of the structure of complex
methacrylate molecules, whose ordering in the solid
phase is impeded significantly. At the same time, the
amorphous structure of the precipitates does not
decrease the chemical activity since the internal energy
of this state is high [13]. The difference in the dissocia-
tion temperatures of metal–oxygen bonds in methacry-
lates (according to the scheme Cu–O > Bi–O > Sr–O >
Ca–O [11]) leads to the conservation of the nanogran-
ule framework as a result of the existence of stronger
bonds. In addition, the formation of oxides caused by
the decomposition of methacrylate molecules increases

0
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15001000500
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Fig. 5. AFM image showing the morphological relationship
between nano- and microgranules in the pyrolytic stage
(annealing at 400°C); semicontact scanning.
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the diffusion mobility of the components. This circum-
stance facilitates the solid-phase reactions and allows
the crystalline ordering and the formation of nuclei of
high-order crystalline phases, including the target
phase. The growth of nuclei and the formation of
nanocrystallites lead to a gradual change in the mor-
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Fig. 6. High-resolution AFM image of the nanogranule
boundaries in the pyrolytic stage (annealing at 300°C for
15 h); semicontact scanning.
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Fig. 7. AFM image of boundary ribbon forms revealed in
the high-order crystallization stage in some regions of the
nanocrystalline structure (annealing at 500°C for 1 h +
600°C for 5 h); semicontact scanning.
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phology, which evolves from dense scaly packing of
nanogranules to close-packed crystalline nanoparticles,
exceeding amorphous nanogranules in size. With a fur-
ther increase in the annealing temperature, epitaxial
recrystallization occurs with active participation of the
substrate, which orients the growing crystallites with a
platelike habit parallel to the substrate plane. In this
case, the additional phases, such as the HTSC 2223
phase in the form of ribbonlike structures, are pushed
out first into the intergranular space (in the end of the
pyrolytic stage); then, into the intercrystallite space (in
the beginning of the high-order crystallization stage);
and, finally, to the periphery of the oriented plates. This

100
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200 300 400

200

300

400

0 nm

nm

Fig. 8. AFM image of the structure after the primary crys-
tallization in the high-order crystallization stage (annealing
at 500°C for 1 h + 700°C for 5 h); semicontact scanning.

1 U

Fig. 9. SEM image of the structure after the epitaxial recrys-
tallization in the high-order crystallization stage; the accel-
erating voltage is 20 kV.
C

behavior is consistent with the data on the grain mor-
phology in 2212 ceramics, where grains of the primary
phase 2212 are surrounded by thin shells of the impu-
rity HTSC 2223 phase [14].

Thus, scaly crystallites arise in the beginning of the
high-order crystallization stage. With an increase in the
annealing temperature, they are transformed into ori-
ented platelike forms. The degree of epitaxial orienta-
tion (the [0 0 1] texture) is determined by the ratio of the
number of crystallographically ordered platelike forms
to the number of 3D structural forms remaining unori-
ented.

The 3D defects (domes and pores) are healed
actively during the recrystallization in the high-order
crystallization stage. Individual particles of the dried
aerosol, after the solid-phase synthesis and crystalliza-
tion reactions, may be involved in the recrystallization
processes and produce high-order crystalline forms,
including isolated nanocrystallites.

CONCLUSIONS

Nanoscale granular forms of supramolecular struc-
ture with stable boundaries, arising in the liquid-phase
and pyrolytic stages during the formation of the struc-
ture of HTSC films prepared from organometallic aero-
sols, are established for the first time.

The minimum sizes of the nanogranules are 30–
50 nm in base and 5 nm in height. The width of the
boundaries between nanogranules is about 1 nm. In the
case of the formation of additional phases, the bound-
ary width may increase up to several tens of nanome-
ters. The pyrolytic processes occur within individual
nanogranules.

In the high-order crystallization stage, as a result of
the oriented helical growth, platelike crystallites are
formed, which are predominantly parallel to the sub-
strate and have a thickness of 15–20 nm and a height of
growth steps of 1–5 nm. Unoriented morphological
forms remain as isolated 3D crystallites up to 100 nm
in size.
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Abstract—The regularities of the defect formation in Si1 − xGex/Si heterostructures (x = 0.15 and 0.30), con-
sisting of a low-temperature Si buffer layer and a SiGe solid solution, during their growth and subsequent
annealings at temperatures 550–650°C are investigated by the methods of optical and transmission electron
microscopy and X-ray diffraction. It is shown that the misfit-strain relaxation by plastic deformation under the
conditions studied occurs most intensively in heterostructures with low-temperature SiGe buffer layers. The
maximum degree of misfit-strain relaxation (no higher than 45%) is observed in the heterostructures with x =
0.30 after annealing at 650°C. The results obtained are explained by the effect of the nature and concentration
of dislocation-nucleation centers, existing in low-temperature buffer layers, on the characteristics of the forma-
tion of a dislocation structure in the heterostructures under consideration. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

The problem of fabrication of effectively relaxing
SiGe epitaxial heterostructures with a low dislocation
density to be used as substrates for subsequent growth
of high-quality strained silicon layers has recently
attracted considerable attention from researchers. The
fundamental difficulties occurring in this case are
caused primarily by the large lattice mismatch between
Si and Ge (~4.2%). During the growth of SiGe struc-
tures on silicon substrates, even at small thicknesses of
the solid-solution layers, a dense network of misfit dis-
locations is formed at the SiGe/Si interface. Threading
dislocations, arising during this process, grow through
the buffer layer into the active region of the device
structure. The high density of threading dislocations in
strained silicon layers leads to a significant deteriora-
tion of their electrical characteristics and makes it
impossible to use such structures in practice (to design
high-quality high-frequency transistors and integrated
circuits on their basis) [1, 2]. To decrease the disloca-
tion density in active strained Si layers, different proce-
dures are used: formation of a depth concentration gra-
dient in the SiGe buffer layer [3], growth on compliant
substrates [4], low-temperature growth of Si and SiGe
buffer layers [5, 6], etc.

It was shown in [5, 6] that the growth of low-temper-
ature (LT) Si buffer layers decreases the density of
threading dislocations in SiGe heterostructures. It was
suggested that the introduction of an LT Si buffer layer,
1063-7745/05/5006- $26.00 ©1020
owing to the supersaturation of intrinsic point defects,
not only provides the formation of low-energy disloca-
tion-nucleation sources and decreases their mobility
but also decreases the level of stresses in heterostruc-
tures since this layer is tensile-strained [7]. Postgrowth
annealing of heterostructures with LT buffer layers
leads to the effective misfit-strain relaxation [8].

Several models were proposed to explain the nature
of the phenomena responsible for the defect formation
in heterostructures with LT buffer layers [9–13]. Unfor-
tunately, none of these models can describe the com-
plex process of defect formation completely, which is
related to the nucleation, propagation, multiplication,
and annihilation of dislocations during the misfit-
strains relaxation [14–16]. It is suggested that the non-
equilibrium point defects present in LT buffer layers are
actively involved in the formation of dislocation nucle-
ation centers and affect their kinetic characteristics sig-
nificantly, while leading to the occurrence of specific
features in the generation of misfit-dislocation net-
works as compared to the conventional high-tempera-
ture (HT) heterostructures. It was suggested in [16] that
the nonequilibrium point defects formed during the LT
growth of buffer layers cause dislocation climb. This
process leads to a decrease in the activation energy of
misfit-strain relaxation and the annihilation of thread-
ing dislocations with opposite Burgers vectors [15, 16].
 2005 Pleiades Publishing, Inc.
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Table 1.  Characteristics of the Si1 − xGex/Si(001) heterostructures

LT Si heterostructures LT SiGe heterostructures HT SiGe heterostructures

Si cap, 5 nm, 500°C Si cap, 5 nm, 500°C Si cap, 5 nm, 500°C

HT SiGe layer,
x = 0.15

200 nm, 500°C

HT SiGe layer,
x = 0.30

80 nm, 500°C

HT SiGe layer,
x = 0.15

200 nm, 500°C

HT SiGe layer,
x = 0.30

80 nm, 500°C

HT SiGe layer
x = 0.15

200 nm, 500°C

HT SiGe layer,
x = 0.30

80 nm, 500°C

LT Si buffer, 50 nm, 400°C LT SiGe buffer, 50 nm, 250°C

HT Si buffer, 100 nm, 750°C HT Si buffer, 100 nm, 750°C HT Si buffer, 100 nm, 750°C

Si(001) substrate Si(001) substrate Si(001) substrate
The purpose of this study is to obtain additional data
for clarification of the nature of the defect formation in
SiGe/Si heterostructures with LT buffer layers. In this
context, we investigated the effect of the buffer layer
type (LT Si and LT SiGe layers of different composi-
tion) on the kinetics of the thermally stimulated misfit-
strain relaxation in such systems.

EXPERIMENTAL TECHNIQUE

Si1 − xGex/Si(100) heterostructures were grown by
molecular-beam epitaxy on a Riber Siva 45 system
using solid sources. Before the epitaxial growth, sub-
strates were treated chemically using a conventional
RCA procedure and annealed in the growth chamber at
1035°C for 15 min to remove the oxide layer from the
surface. Then, an undoped Si buffer layer 100-nm-thick
was grown at a temperature of 750°C, after which either
an LT Si buffer layer was epitaxially grown at 400°C or
an LT SiGe buffer layer with a Ge content x = 0.15 or
0.30 was grown at 250°C. In all cases, the thickness of
the LT layers was 50 nm. At this buffer-layer thickness,
according to the data of [17], only partial misfit-strain
relaxation occurs during the growth of multilayer het-
erostructures. Then, an HT SiGe active layer with a Ge
content x = 0.15 or 0.30 and a thickness of 200 or
80 nm, respectively, was grown at 500°C. The thick-
nesses of the HT SiGe layers were chosen such that
they, significantly exceeding the critical depth hcr of
generation of misfit dislocations at the growth temper-
ature (calculated on the basis of the approach suggested
in [18]), would also exceed the critical depth at which
the misfit-dislocation multiplication by the modified
Frank–Read mechanism begins (hFR ≈ 10hcr) [19]. In
the final stage of the epitaxial growth, a 5-nm-thick Si
cap was grown at a temperature of 500°C. For compar-
ison, reference heterostructures of the same composi-
tion but without LT buffer layers were grown. The char-
acteristics of the heterostructures under study are listed
in Table 1.

Postgrowth annealing was carried out in hydrogen at
550, 600, and 650°C for 3–10 min.

The layer composition and the degree of misfit-
strain relaxation were determined on a double-crystal
diffractometer with a Si(004) monochromator in sym-
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 6      200
metric (400) and asymmetric (115) reflections using
CuKα1 radiation.

The structural features of the heterostructures were
investigated by transmission electron microscopy and
optical microscopy using patterns of selective chemical
etching of angle laps, thus allowing monitoring of the
distribution of defects over the total heterostructure
depth and revealment of dislocations in the near-inter-
face substrate region. The selective-etch patterns were
investigated on an interference optical microscope with
Nomarsky contrast. Analysis of dark-field images of
the etch patterns was also performed. Since the thick-
nesses of the HT SiGe layers under study were suffi-
ciently small, the etching time was about 1 s. The dis-
location etch pits formed during this time were so small
that they could be observed only in dark field

We analyzed the regularities of changes in the linear
density of etch lines related to the misfit dislocations at
the layer/substrate interface (NL), the threading-dislo-
cation density in the layer (NTD), and the dislocation
density in the near-interface substrate regions (substrate
dislocations) (NSD), depending on the temperature and
time of heterostructure annealing.

The dislocation density in the layers and substrates
were determined by calculating the density of disloca-
tion etch pits revealed using a CrO3-based etchant.
Since the linear density of etch lines ranged from 0 to
2 × 104 cm–1, the measurements were performed at dif-
ferent magnifications. By analogy with [16], at a den-
sity of etch lines lower than 50 cm–1, the total line
length per unit area was measured at a magnification of
×200. At high densities of etch lines, the average dis-
tance between lines (number of lines per unit length)
was measured in two orthogonal directions at a magni-
fication of ×2000. It should be noted that the density of
etch lines is always lower by a factor of 3–5 than the
actual density of misfit dislocations.

Hereinafter, the structures under consideration,
depending on the buffer layer type, will be denoted as
LT Si, LT SiGe, and HT SiGe (without an LT buffer
layer).
5
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EXPERIMENTAL RESULTS

The results of the electron microscopy study of the
heterostructures were described in detail in our previ-
ous studies [20, 21]. In this study, we focused on the
optical microscopy and X-ray diffraction data.

Surface Morphology

The growth surface of the as-grown LT SiGe hetero-
structures exhibits either separate characteristic mor-
phological lines or a characteristic morphological net-
work (in the structures with x = 0.15 or 0.30, respec-
tively). During annealing, a morphological network is
also formed in the LT SiGe heterostructure with x =
0.15, the density of lines in which increases with an
increase in time and temperature. In the heterostructure
with x = 0.30, the density of morphological-network
lines also increases with an increase in the annealing
time and temperature.

In the as-grown LT Si and HT SiGe heterostruc-
tures, morphological defects are absent on the layer
surface. However, during subsequent annealing, sepa-
rate cross-shaped morphological defects arise first on
the layer surface and then a morphological network of
orthogonal lines is formed. The density of the network
lines increases with an increase in the annealing time
and temperature.
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Fig. 1. Dependences of the density of etch lines on the sur-
face of the Si1 − xGex/Si(100) heterostructures with differ-
ent buffer layers on the time of annealing at 550°C: x = (1–
3) 0.15 and (4–6) 0.30; (1, 4) LT Si buffer layer, (2, 5) LT
SiGe buffer layer, and (3, 6) no LT buffer layer.
C

Density of Etch Lines

The changes in the density of etch lines (NL) during
isothermal annealing at 550°C are shown in Fig. 1. The
line density first increases sharply and then approaches
a constant value slowly. In this case, the maximum den-
sity of etch lines depends not only on the composition
but also on the type of the buffer layer. A weak depen-
dence of NL on the annealing time is observed only for
the LT SiGe heterostructures with x = 0.30 (curve 5), in
which a high density of lines is observed even in the as-
grown state (the point t = 0).

It should be noted that the line density in the layers
with x = 0.30 is always higher than in the layers with
x = 0.15. In addition, the highest line density is
observed in the LT SiGe heterostructures. The HT SiGe
heterostructures show the lowest line density.

Isochronous annealing was carried out at 550, 600,
and 650°C for 6 min. The obtained dependences of the
density of etch lines on the annealing temperature are
shown in Fig. 2. The curves for all heterostructures
demonstrate a kink near 600°C. This kink is most pro-
nounced for the LT Si and HT SiGe heterostructures
with x = 0.15.

Density of Threading Dislocations 
in the HT SiGe Layer

The data on the density of threading dislocations in
the HT SiGe layers of the heterostructures under study,
annealed at 550°C, are listed in Table 2. For the LT Si
and HT SiGe heterostructures with x = 0.15, we failed
to calculate the dislocation densities reliably because of
the low density of dislocation etch pits, which, in addi-
tion, were distributed nonuniformly. For all other het-
erostructures, the dislocation density increases some-
what with an increase in the annealing time but does not
exceed 2.5 × 105 cm–2. Comparison of these data with
the results shown in Figs. 1 and 2 indicates their fairly
good agreement: the higher the density of etch lines, the
higher the density of threading dislocations in the HT
SiGe layer.

The results of the investigation of the dependence of
NTD in the HT SiGe layers on annealing temperature are
listed in Table 3. These data show that threading dislo-
cations are observed in all the heterostructures under
study at sufficiently high annealing temperatures. The
maximum value of NTD in the HT SiGe layers is
observed after annealing at 600°C. The heterostructures
annealed at a temperature of 650°C are characterized
by the absence of clear correlation between the densi-
ties of threading dislocations and etch lines.

Dislocation Density in the Near-Interface 
Substrate Region

It was shown previously [22, 23] that dislocations
arise in the near-interface substrate region only when
multiplication of misfit dislocations by the modified
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 6      2005
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Frank–Read mechanism occurs. The obtained depen-
dences of the substrate-dislocation density NSD on
annealing time at 550°C are shown in Fig. 3. The mul-
tiplication of misfit dislocations is observed only in the
LT SiGe heterostructures of both compositions and the
HT SiGe heterostructure with x = 0.30. This process is
more intense in the LT SiGe heterostructures.

The dependences of NSD on annealing temperature
are shown in Fig. 4. In the LT SiGe heterostructures of
both compositions and the HT SiGe heterostructure
with x = 0.30, the temperature dependence of NSD is
close to linear in the entire range of annealing temper-
atures under consideration. In the three other hetero-
structures, dislocations arise in the substrate only after
annealing at 600 and 650°C. It is noteworthy that the
dislocation multiplication is more intense in the LT Si
and HT SiGe heterostructures with x = 0.15 than in the
corresponding heterostructures with x = 0.30. The mul-
tiplication of misfit dislocations is most intense in the
LT SiGe heterostructures.

X-ray Diffraction Data

X-ray diffraction investigations showed that, in the
as-grown state, only the LT SiGe heterostructure with
x = 0.30 shows more or less significant (~30%) misfit-
strain relaxation. Signs of weak relaxation are observed
also in the LT Si heterostructure with x = 0.15. All other
heterostructures are strained completely elastically.
Figure 5 shows as an example the rocking curves for the
LT Si and LT SiGe heterostructures with x = 0.30. It can
be seen clearly that, for the LT Si heterostructure
(Fig. 5, curve 1), the peak from the SiGe layer is pro-
nounced with a thickness oscillation around it, which is
indicative of a high structural quality of this layer. For
the LT SiGe heterostructure, the peak from the SiGe
layer is wider and shifted to larger angles; the thickness
oscillations are absent. This structure of the rocking
curve indicates partial misfit-strain relaxation in this
heterostructure. This is confirmed by the optical-
microscopy data: the density of misfit dislocations in
this heterostructure was found to be ~104 cm–1.

The degree of relaxation R was determined from the
expression R = (a|| – as)/(al – as) × 100%, where a|| is the
lattice parameter of the layer in the interface plane and
a1 and as are, respectively, the lattice parameters of the
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 6      2005
unstrained layer and substrate. In Fig. 5, arrows indi-
cate the calculated position of the reflection peak from
the SiGe layer for the cases of pseudomorphic (R = 0)
and completely plastically relaxed (R = 100%) layers.

During the annealing, partial misfit-strain relaxation
is observed in all heterostructures. However, the degree
of relaxation is different for structures of different
types. The highest degree of relaxation (~45%) is
observed in the LT SiGe heterostructure with x = 0.30
after the annealing at 650°C for 6 min. In the LT Si het-
erostructure with x = 0.30, the degree of misfit-strain
relaxation after annealing under the same conditions
does not exceed 15%. The relaxation is minimum in the
heterostructures without an LT buffer layer.

DISCUSSION

The experimental data indicate convincingly that
the degree of misfit-strain relaxation in the heterostruc-
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Fig. 2. Dependences of the density of etch lines on the sur-
face of the Si1 – xGex/Si(100) heterostructures on the tem-
perature of isochronous annealing. Designations are the
same as in Fig. 1.
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Table 2.  Threading-dislocation density in the HT SiGe layers of the heterostructures annealed at 550°C

Annealing time, 
min

Threading-dislocation density, cm–2

x = 0.15 x = 0.30

LT Si LT SiGe HT SiGe LT Si LT SiGe HT SiGe

3 1.4 × 105 7 × 104 1.6 × 105 5 × 104

6 1.3 × 105 9 × 104 2.2 × 105 8 × 104

10 2.0 × 105 1.2 × 105 2.3 × 105 1 × 105
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tures under study depends directly on the presence and
composition of an LT buffer layer. The relaxation by
plastic deformation is most intense in the heterostruc-
tures containing an LT SiGe buffer layer. In these het-
erostructures, partial misfit-strain relaxation is
observed even in the growth stage and is accompanied
by the formation of a regular planar misfit-dislocation
network at the interface [20]. The surface of such het-
erostructures contains characteristic morphological
defects (linear or network profile). Selective etching of
an LT SiGe layer reveals characteristic etch lines and
threading dislocations. The relaxation continues during
subsequent annealings: the misfit-dislocation density at
the interface increases and the planar dislocation net-
works formed in the initial stages of plastic relaxation
are transformed gradually into three-dimensional net-
works. This process is accompanied by intense genera-
tion of dislocation half-loops in the near-interface
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Fig. 3. Dependences of the dislocation density in the near-
interface substrate region on the time of annealing at 550°C
for the LT SiGe heterostructures with x = (1) 0.15 and
(2) 0.30 and (3) the HT SiGe heterostructure with x = 0.30.
C

region of the silicon substrate. Such a transformation
indicates that, in this stage of stress relaxation, multipli-
cation of the misfit dislocations (forming a planar net-
work) by the modified Frank–Read mechanism occurs
in the heterostructures [22, 23]. In the annealed hetero-
structures, a gradual increase in the densities of etch
lines and threading dislocations is observed in the LT
SiGe layer with an increase in the annealing tempera-
ture and time. However, for the annealing temperatures
and times considered here, the maximum degree of
misfit-strain relaxation in the heterostructures with an
LT SiGe buffer layer does not exceed 45%.

In the heterostructures with an LT Si buffer layer,
the misfit-strain relaxation is much less intense; it is
observed only after subsequent annealings of as-grown
structures. As a result, the above-described processes of
defect formation, accompanying the plastic misfit-
strain relaxation, occur in these heterostructures at a
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Fig. 4. Dependences of the dislocation density in the near-
interface substrate region of the heterostructures on the tem-
perature of annealing at 6 min. Designations are the same as
in Fig. 1.
Table 3.  Threading-dislocation density in the HT SiGe layers of the heterostructures annealed at different temperatures for 6 min

Annealing
temperature, °C

Threading-dislocation density, cm–2

x = 0.15 x = 0.30

LT Si LT SiGe HT SiGe LT Si LT SiGe HT SiGe

500 1.3 × 105 9 × 104 2.2 × 105 8 × 104

600 2.4 × 105 2.2 × 105 2.7 × 105 1.9 × 105 2.4 × 105 1.9 × 105

650 1.3 × 105 1.9 × 105 1.3 × 105 1.3 × 105 1.3 × 105 1.5 × 105
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 6      2005
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much lower rate. This phenomenon manifests itself in
the smaller values of the misfit-dislocation density at
the interface and the densities of etch lines and thread-
ing dislocations in the HT SiGe layer. The maximum
degree of misfit-strain relaxation in such heterostruc-
tures (for the annealing conditions we used) does not
exceed 15%. The misfit-strain relaxation rate is the low-
est in the heterostructures without an LT buffer layer.

All other factors being equal, the misfit-strain relax-
ation rate in all three types of heterostructures under
study increases with an increase in the Ge content in the
solid solution: in the structures with x = 0.30, the dislo-
cation density is always higher than in the structures
with x = 0.15. The most likely reason for this effect is
that both the nucleation rate of dislocations and their
velocity increase with an increase in the misfit strain
caused by the increase in the Ge content in the solid
solution [18].

It is noteworthy that, despite the significantly differ-
ent degrees of misfit-strain relaxation in the hetero-
structures under study, the threading-dislocation densi-
ties in the HT SiGe layer in the heterostructures of all
three types are comparable with each other and do not
exceed 2.5 × 105 cm–2. This circumstance suggests that
the plastic misfit-strain relaxation in such heterostruc-
tures occurs most likely through a mechanism different
from the conventional mechanism of nucleation of dis-
location half-loops on the free heterostructure surface.
Apparently, it is pertinent to speak in this case about the
presence of internal dislocation-nucleation sources in
the heterostructures. Such internal sources in LT Si
buffer layers are associates of nonequilibrium intrinsic
point defects (vacancies and self-interstitials) [24, 25].
In the layers grown at fairly low temperatures, the con-
centration of nonequilibrium intrinsic point defects can
reach the values sufficient for formation, along with
clusters of corresponding defects, of dislocation
microloops in the volume of the corresponding super-
saturated solid solutions during their decomposition.
Under the action of misfit strain, these dislocation loops
expand, move, and interact with each other to form a
dislocation structure.

In LT SiGe buffer layers, along with associates of
nonequilibrium intrinsic point defects, composition
microinhomogeneities and microprecipitates that
formed as a result of spinodal decomposition of SiGe
can also play the role of internal sources of dislocation-
loop nucleation [26, 27]. In this case, the presence of
nonequilibrium intrinsic point defects in high concen-
trations in the LT buffer layer of the solid solution is a
high-power catalyst of its spinodal decomposition. In
this context, it is expected that, all other factors being
equal, the concentration of dislocation-nucleation cen-
ters in the LT SiGe buffer layer should be much higher
than in the LT Si buffer layers and the SiGe layers of the
same composition grown at higher temperatures.

According to the well-justified model of defect for-
mation, proposed in [26], the misfit-strain relaxation by
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plastic deformation occurs in three stages. In the first
stage, the degree of relaxation in an elastically strained
film is controlled by the dislocation nucleation in the
film. Sufficiently high velocities of dislocation motion
in the initial stage of relaxation [28, 29] make it possi-
ble to exclude this kinetic factor from consideration as
a limiting factor. In this stage, the degree of misfit-
strain relaxation is determined by the concentration and
nature of the dislocation-nucleation centers present in
the heterostructure. With an increase in the misfit-dislo-
cation density in a relaxing heterostructure, the impor-
tance of the interaction between dislocations increases.
This interaction decreases the velocity of dislocation
motion, which thus becomes a determining factor grad-
ually. During the defect formation, the misfit-disloca-
tion density in a heterostructure continues to increase in
this relaxation stage, a result which is caused by the dis-
location multiplication by the modified Frank–Read
mechanism. Since the multiplication of misfit disloca-
tions by this mechanism begins only at a certain value
of their density, the nature and the concentration of dis-
location-nucleation centers continues to affect
(although to a smaller extent in comparison with the
first stage) the relaxation rate. In the final relaxation
stage, the misfit-dislocation density in a heterostructure
becomes so high that the interaction between disloca-
tions almost stops the plastic deformation.

The experimental data obtained here indicate that
the misfit-strain relaxation in the heterostructures under
consideration stops either in the first stage or at the
beginning of the second stage. The maximum degree of
relaxation does not exceed 45% and is much below this
value in most heterostructures. Under these conditions,
the main factors determining the relaxation rate are the
concentration and nature of dislocation-nucleation cen-
ters. Apparently, the concentration of active disloca-
tion-nucleation centers is much higher in LT SiGe
buffer layers than in LT Si buffer layers. This seems to
be the main reason for the higher degree of relaxation
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Fig. 5. X-ray rocking curves in the (004) reflection (CuKα1
radiation) for the as-grown (1) LT Si and (2) LT SiGe het-
erostructures with x = 0.30.
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in the heterostructures containing an LT SiGe buffer
layer.

CONCLUSIONS
The regularities of the defect formation in

Si1 − xGex/Si heterostructures (x = 0.15 or 0.30) contain-
ing low-temperature Si and SiGe buffer layers during
their growth and subsequent annealings at 550–650°C
are investigated by the methods of optical and transmis-
sion electron microscopy and X-ray diffraction. It is
shown that, under such conditions, the misfit-strain
relaxation by plastic deformation is most intense in the
heterostructures with an LT SiGe buffer layer. The
maximum degree of relaxation (no higher than 45%) is
observed in the heterostructures with x = 0.30 after
annealing at 650°C.

It is suggested and substantiated that the nature and
concentration of internal dislocation-nucleation
sources in LT buffer layers determine the specific fea-
tures of the dislocation-structure formation in the het-
erostructures under consideration. In LT Si layers, such
centers are associates of nonequilibrium intrinsic point
defects (including dislocation microloops), which
formed as a result of the decomposition of solid solu-
tions supersaturated with these defects. In LT SiGe
buffer layers, along with the associates of nonequilib-
rium intrinsic point defects, composition microinho-
mogeneities and microprecipitates that formed as a
result of the spinodal decomposition of SiGe also serve
as internal dislocation-nucleation sources. In this case,
nonequilibrium intrinsic point defects present in these
layers are catalysts of the spinodal decomposition.

Apparently, in LT SiGe buffer layers, the concentra-
tion of active dislocation-nucleation centers is much
higher than in LT Si buffer layers. This seems to be the
main reason for the higher degree of relaxation in the
heterostructures with an LT SiGe buffer layer.
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Abstract—The evolution of the crystallization front of transparent crystals of succinonitrile and pivalic acid in
the course of directional solidification in the field of a temperature gradient (Bridgman method) is investigated
experimentally. The influence of crystalline anisotropy is examined using single crystals of different orienta-
tions. Bulk (cylindrical) and planar single crystals of the materials under investigation are studied and compared
for the first time. It is established that the crystallographic direction of growth plays an important role and deter-
mines the structure of the crystallization front at different stages of its evolution. New manifestations of the
dynamic effects responsible for the development of the nonstationary periodic structure are revealed. © 2005
Pleiades Publishing, Inc.
INTRODUCTION

When crystals grow from melt through a conven-
tional mechanism, the anisotropy of both the surface
energy and the kinetic coefficient (hereafter, for brevity,
it will be referred to as crystalline anisotropy) is insig-
nificant. This can be judged from the rounded shape of
the crystals growing in a melt and from the weak depen-
dence of the growth rate on the orientation. Moreover,
the weak anisotropy is responsible for the direction of
growth of a dendrite trunk and for the stability of the
parabolic shape of the dendrite tip. It is known that the
orientation affects the morphology of the crystalliza-
tion front during crystal growth in the field of a temper-
ature gradient. Morris and Winegard [1] studied Pb–Sb
single crystals and revealed the formation of elongated
cells for the 〈110〉  orientation and equiaxial cells for
〈100〉  orientation. The mechanism of this process is
illustrated by the scheme depicted in Fig. 1 [1]. A hill
arising on a flat surface differently grows in different
directions. For a cubic lattice structure and the 〈100〉
1063-7745/05/5006- $26.00 1027
direction of the growth, hills on the surface have four
symmetrically arranged growth planes with the {111}
orientation. The growth rate of these closest packed
planes is minimum; hence, the perturbation is equiaxial
in shape. For the 〈110〉  direction of the growth, the hill
on the surface has two (rather than four) slowly grow-
ing planes. In this case, an elongated perturbation (an
elongated cell) arises. It should be noted that there are
experimental data inconsistent with the above scheme.
For example, Chernov [2] considered elongated cells as
a stage in the development of an unstable structure of
the crystallization front (nodes, elongated cells, equiax-
ial cells), irrespective of the growth direction. Kauerauf
et al. [3] believed that elongated cells in succinonitrile
crystals are associated with the disturbing effect of the
grain boundaries.

Investigations of transparent crystals in planar sam-
ples have demonstrated that the growth direction affects
the structure of the crystallization front [4]. At specific
growth orientations, the growth of crystals with an
Liquid

Crystal

Liquid

Crystal

(a) (b)

〈110〉 〈100〉

Fig. 1. Schematic drawings of the developing hills for two growth orientations: (a) elongated cells formed for the 〈110〉  direction of
the growth and (b) a nodular (equiaxial) structure formed for the 〈100〉  direction of the growth (short arrows indicate the {111}
planes in the hills).
© 2005 Pleiades Publishing, Inc.
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anisotropic columnar structure gives way to the growth
of crystals with a continuously branching isotropic
structure due to the weak anisotropy in the 〈110〉  and
〈111〉  crystallographic directions [5]. This means that
the orientation is an important factor governing the
structure. Furthermore, according to [6], the anisotropy
is not a sole factor responsible for the formation of a
tilted structure and for splitting of the cells. Similar
effects have been observed for isotropic phase bound-
aries in “liquid–gas” and “liquid crystal–gas” systems.

A comparison of the results obtained by different
researchers gives no grounds to believe that particular
data are accurate, whereas other data are erroneous.
The aforementioned differences can be associated with
the growth conditions (a variable pulling rate, a nonuni-
form distribution of impurities ahead of the crystalliza-
tion front, varying thermal conditions). These circum-
stances should be taken into account in the elucidation
of the role played by both the instability of external
conditions (instrumental factors) and the dynamic
effects caused by the processes occurring at the growth
front (nucleation and splitting of cells, variations in the
cell parameters during growth).

The above factors provided the basis for the experi-
mental approach proposed in the present paper. The
purpose of this study was to elucidate how the weak
crystalline anisotropy (characteristic of the conven-
tional mechanism of crystal growth) affects the evolu-
tion of the morphology of the crystallization front. We
used single-crystal seeds of different crystallographic
orientations and also materials differing in anisotropy
of the surface parameters. Long-term observations of
the crystallization fronts were performed under con-
trolled steady-state conditions.

EXPERIMENTAL TECHNIQUE 
AND RESULTS

The experiments were performed with transparent
substances, namely, succinonitrile and pivalic acid,
which are characterized by a conventional mechanism
of crystal growth from melt and different crystalline
anisotropies [7, 8]. The initial compounds (Aldrich)
were additionally purified through vacuum distillation.
The degree of purification was determined by measur-
ing the liquidus temperatures of the references samples.
The content of uncontrollable impurities did not exceed
0.15% (predominantly, in the form of water) in succi-
nonitrile and 0.1% in pivalic acid.

The experiments with planar samples were carried
out in a standard apparatus [9], which provided growth
of crystals at rates in the range 0.5–2.0 µm/s with an
accuracy of 5% and at a constant temperature gradient
of 20 K/cm. A technique was developed for preparing
single crystals in planar samples. The orientation of the
single crystals was determined from the symmetry of
branches of the dendrites grown at a high rate.
C

The crystallization in cylindrical samples was inves-
tigated using an apparatus described in detail in [10].
The crystals were grown by the Bridgman method,
according to which the sample was moved with respect
to the fixed heater and the fixed refrigerator. The work-
ing rates varied in the range from 1 to 30 µm/s, the tem-
perature gradient was equal to 20 K/cm, and the sample
diameter was 12 mm. The design of the apparatus
ensured (i) continuous videorecording of the growth
process through a layer of the molten material and (ii)
automatic adjustment of the image of the crystallization
front for sharpness in the course of the front displace-
ment. The technique for preparing single-crystal sam-
ples was based on the use of a shaped adapter unit that
made it possible to grow a single crystal deviated from
the initial direction by a specified angle.

The front images obtained in the digital form were
used for subsequent processing. The intercellular spac-
ing λ was calculated by averaging the spacings between
the geometric centers of the cells at a chosen instant of
time. The degree of order in the arrangement of struc-
tural elements (nodes, cells) was determined by the
minimal spanning tree (MST) method proposed in [11].

The sequential images of unstable structures formed
at different growth rates of the 〈100〉  succinonitrile
crystal are displayed in Fig. 2. It can be seen from this
figure that perturbations of the flat front manifest them-
selves in the formation of nodes, i.e., shallow hollows
enriched with impurities at the front. This can be
judged from the melting (the process inverse to growth)
during which the regions adjacent to nodes are melted
first. An increase in the growth rate leads to the appear-
ance of ridges, which, for the most part, are initiated by
the nodes. However, we clearly observed the formation
of ridges not related to the nodes. With the passage of
time, the ridges form an almost regular cellular struc-
ture, which is characteristic of equiaxial cells (Fig. 2c).
At the next stage, dendrites are formed from these cells.
Note that, in our experiments, nodes clearly manifest
themselves in the bulk and planar succinonitrile single
crystals (Fig. 2d).

Figure 3 presents the time τ of appearance of nodes
and cells as a function of the growth rate V for the 〈100〉
succinonitrile single crystal. The appearance time τ was
determined as the time interval between the beginning
of pulling at a given rate and the instant of time at which
the specified number of structural units was recorded at
the surface of the crystallization front. As can be seen
from Fig. 3, the appearance times and their depen-
dences on the growth rate for nodes and cells differ sig-
nificantly over a rather wide range of growth rates. The
dependence of the appearance time on the growth rate
has the form τ = V–2.4 ± 0.2 for nodes and τ = V–3.9 ± 0.2 for
cells. These dependences almost coincide with each
other in the range of growth rates (2 µm/s and higher) at
which the dendritic growth occurs at the final stage.
Note that there is a considerable spread of the experi-
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 6      2005
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(a)

(c)

(b)

(d)

(f)

(e)

Fig. 2. Sequential images of the unstable structures in (a–c) bulk (V = 1.1 µm/s) and (d–f) planar (V = 0.68 µm/s) succinonitrile
samples 〈100〉 .
mental values obtained for the same sample under sim-
ilar experimental conditions.

The characteristic time dependences of the intercel-
lular spacing λ are plotted in Fig. 4. It can be seen from
this figure that the times of appearance of the cellular
structure under identical growth conditions can differ
significantly. Moreover, the time dependences of the
intercellular spacing λ exhibited oscillations in all the
experiments performed. This effect is caused by the two
competing periodic processes observed in planar and
bulk samples: the suppression of cells by neighbors and
the splitting of growing cells. The maximum in curve 1
(Fig. 4) corresponds to an increase in the total number
of cells at the growth front by 10% with respect to the
average value. The analysis of the obtained curves did
not reveal regularities of the time variations in the
amplitude and frequency of oscillations of the intercel-
lular spacing λ. Note also that there is a tendency
toward an increase in the average intercellular spacing
λ in particular curves in the range of long times (Fig. 4,
curves 2, 3).
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 6      200
The dependences shown in Fig. 4 indirectly indicate
a change in the impurity concentration ahead of the
crystallization front in the course of the growth. Indeed,
at the steady-state stage, the impurity concentration
ahead of the flat front is characterized by an exponential
time-independent profile [12]:

(1)

where C is the impurity concentration in the liquid
phase, C0 is the initial impurity concentration in the
alloy, V is the velocity of movement of the interface, z
is the distance from the interface, k is the equilibrium
distribution coefficient, and D is the diffusion coeffi-
cient of the solute in the liquid phase.

During growth, the concentration distribution
described by relationship (1) is attained after a transient
period. When the concentration profile is a function of
the time C = C(z, τ), the position of the isotherm corre-
sponding to the equilibrium melting temperature

C z( ) C0 1
1 k–

k
----------- V /D( )z–( )exp+ ,=
5
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should change with time. In this case, the drift velocity
of the front z0(τ) should be determined by the slope of
the liquidus line of the system under investigation and
the growth rate [13]. This assumption was verified by
direct measurements of the location of the crystalliza-
tion front z0(τ) in planar succinonitrile samples in the

10

1 10

100

1000

1
0.1

lnτ, 103 s

lnV [µm/s]

1
2

3

Fig. 3. Dependences of the appearance time of (1) nodes
(rhombuses) (τ = V–2.4) and (2) cells (triangles) (τ = V–3.9)
on the growth rate V for the bulk succinonitrile sample with
the 〈100〉  orientation. (3) Calculated dependence of the
appearance time of perturbations arising through the diffu-
sion mechanism [18] (τ = V–2).
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0.24
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0.28

0.20
40

τ, 103 s

λ, mm
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Fig. 4. (1–3) Dependences of the intercellular spacing λ on
the time τ for the bulk succinonitrile sample with the 〈100〉
orientation. V = 1.0 µm/s. Numerals near the symbols indi-
cate the run number.
C

fixed system of coordinates. In a series of test experi-
ments, we did not reveal any effect of the instability of
the temperature in the operating unit on the location of
the crystallization front z0(τ).

Figure 5 presents the data for the characteristic
growth rates corresponding to the flat, cellular, and den-
dritic fronts. For the flat front, the front location z0(τ)
drifts at a constant velocity. It is worth noting that the
higher the growth rate, the higher the drift velocity. In
the case of dendritic growth, the drift is absent. The cel-
lular front is characterized by a pronounced (even if
weak) effect. It should be noted that the data for the pla-
nar sample are in qualitative agreement with similar
observations for bulk samples [14].

The evolution of the microstructure of the crystalli-
zation front in the 〈100〉  direction for succinonitrile
(Fig. 3) is qualitatively similar to that for pivalic acid
(Fig. 6a). However, in the case of pivalic acid, indica-
tion of nodes is absent at the initial stage of stability
loss. Subsequently, ridges are formed at the front in
both cases. The initial arrangement of ridges seems
chaotic. Then, the structure of ridges becomes ordered,
but regular hexagons are observed rarely. Indications of
elongated cells were found in none of the experiments
with the 〈100〉  single crystals. It should be noted that the
subboundaries (and grain boundaries in polycrystals)
observed in a number of cases initiate the formation of
ridges extended along the subboundaries. These cell
boundaries can be mistaken for elongated cells. How-
ever, similar effects are not observed in perfect single
crystals.

A quite different situation occurs during formation
of the cellular structure of the 〈110〉  single crystals:

0.4

100 20 30 40

0.8

1.2

1.6

2.0

τ, 103 s

z0, mm

1

2

3

Fig. 5. (1–3) Dependences of the displacement z0 of the
location of different crystallization fronts on the time τ for
the planar succinonitrile sample with the 〈100〉  orientation
at growth rates V = 0.9 (triangles) and 1.1 (rhombuses)
µm/s. Front type: (1) flat, (2) cellular, and (3) dendritic.
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ridges arises and, with time, form boundaries of elon-
gated cells (Fig. 6b). Furthermore, the elongated cells
are not completely ordered or geometrically regular for
both succinonitrile and pivalic acid. The boundaries
between the cells are represented by sinuous lines, and
their extension along one direction for pivalic acid is
substantially more pronounced. Under identical growth
conditions, the elongated cells transform into equiaxial
cells to form the front with a structure that differs only
slightly from the corresponding structure of the front
for the 〈100〉  direction. During long-term growth, inside
the elongated cells, there arise necks that separate these
cells into sections and then become indistinguishable
from the cell boundaries. Therefore, the formation of
elongated cells can be treated as a stage of the develop-
ment of the unstable front structure at specific growth
rates. In this case, the higher the growth rate, the shorter
this stage. Elongated cells are not observed altogether
at growth rates higher than 1.3 µm/s for succinonitrile
and at rates higher than 0.7 µm/s for pivalic acid.

The sequence of morphological transformations for
the 〈111〉  succinonitrile single crystals and the single
crystals with orientations that deviate from the 〈111〉
orientation by angles up to 10° is identical to the
sequence of morphological transformations observed
for the 〈110〉  single crystals. The difference lies in the
degree of manifestation of elongated cells, which, in
the case of high-index directions, appear as a geometric
motif rather than as clear-cut structural elements.

The results of analyzing the degree of order in the
arrangement of nodes and cells for the 〈100〉  crystallo-
graphic orientation are presented in the MST diagram
(Fig. 7). The initially formed nodes become somewhat
more ordered with time (the corresponding points in the
diagram shift toward smaller values of σ), and the sym-
metry of their arrangement becomes identical to the
symmetry of the centers of the growing cells. This
implies that the nodes and cells are ordered in different
manners. In turn, the arrangement of the cells does not
change with time and remains similar in symmetry to
regular hexagons. No effect of the crystallographic ori-
entation on the symmetry of the node arrangement is
observed.

DISCUSSION

Let us consider the initial stages of stability loss.
The formation of nodes at the flat surface of the crystal-
lization front was noted by different authors who were
studying metal alloys and bulk succinonitrile samples.
It follows from the above data that nodes appear as the
first stage of stability loss of the flat front in the succi-
nonitrile single crystals for all the orientations under
investigation (〈100〉 , 〈110〉 , 〈111〉). Moreover, shallow
chaotic hollows that initiate the subsequent develop-
ment of sinusoidal perturbations at the front are
observed in the planar succinonitrile sample. Similar
results were obtained by other authors [15]. However,
in those works, the onset of the stability loss of the flat
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 6      2005
front was assigned to the appearance of sinusoidal per-
turbations. A comparison of the results obtained allows
us to propose the following interpretation of the initial
stage of the stability loss.

As can be seen from Fig. 7, the arrangement of
nodes is very similar to that of the centers of the equi-
axial cells (Fig. 1); i.e., nodes are sinusoidal perturba-
tions with an amplitude close to zero. Symmetry of the
arrangement cannot be revealed in the planar sample
(this is evident from Fig. 2a in which a planar plate can
be cut mentally). Furthermore, shallow chaotic hollows
are also formed by grain boundaries of polycrystals
(which have been predominantly investigated up to
now). Therefore, when studying planar samples, the
stability loss was determined from the appearance of a
wavelike perturbation at the front. Taking into account

1 mm 1 mm

Fig. 6. Images of (a) equiaxial cells for the 〈100〉  orientation
and (b) elongated cells for the 〈110〉  orientation of the piv-
alic acid sample.

Random distribution

Trigonal

Tetragonal

symmetry

symmetry

0.4

0.3

0.2

0.1

0
0.6 0.7 0.8 0.9 1.0

m

σ

1.1

Fig. 7. MST diagrams illustrating the degree of ordering of
the nodes (rhombuses) and centers of cells (triangles) for
the bulk succinonitrile sample with the 〈100〉  orientation (in
the case of trigonal symmetry of the centers, the cells are
hexagonal in shape).

(a) (b)
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this circumstance, we believe that it is justified to treat
the node stage as the first stage of stability loss. It
should be noted that, in the framework of the Mullins–
Sekerka theory [16], perturbations with an infinitesimal
amplitude are considered the initial stage of the insta-
bility development. The calculated rates of stability loss
of the flat front (i.e., a wavelike perturbation) are sever-
alfold less than the experimental rates. It is significant
that the appearance of sinusoidal perturbations with a
small amplitude depends on the surface properties of
the phase boundary (this stage exists for succinonitrile
and does not exist for pivalic acid). This result is impor-
tant for the subsequent analysis of the bifurcation dia-
grams for different materials.

The crystallographic orientation of the single crys-
tals characterized by the conventional mechanism of
growth from melts has a strong effect on the micro-
structure of the crystallization front. Qualitatively, the
front morphology can be correctly described within the
scheme proposed by Morris and Winegard [1] (Fig. 1);
i.e., equiaxial and elongated cells are formed in the case
of the 〈100〉  and 〈110〉  orientations, respectively. How-
ever, the dynamic effects change this scheme substan-
tially. First, elongated cells arise at specific growth
parameters and then give way to equiaxial cells identi-
cal to cells at the front of the 〈100〉  single crystal. Sec-
ond, elongated cells are irregular in shape due to the
periodic events of splitting and suppression.

In their study of succinonitrile, Kauerauf et al. [3]
made the inference that, in 〈100〉  single crystals, elon-
gated cells can be formed through the mechanism asso-
ciated with the grain boundaries. Indeed, cells initiated
by defects, i.e., boundaries and subboundaries, are
formed in polycrystals and single crystals containing
subgrains. These cells arise for any growth direction
and have a random orientation. Elongated cells in the

[110] single crystals are aligned parallel to the [ ]
direction and are not related to the grain structure of the
seed crystal. The “true” and “random” elongated cells
differ not only in the formation mechanism and crystal-
lographic features. It is important that specific types of
true cells can find practical applications. In our earlier
work [17], we studied Al-based single crystals and
demonstrated that elongated cells interact with defects
in crystals and substantially affect their structural per-
fection. In particular, we observed the displacement of
defects by cell boundaries in the course of growth. By
choosing the growth direction (and, thus, by changing
the direction of the development of the elongated cells
with respect to the crystallization front), it is possible to
remove large-sized defects completely from the crys-
tals. Therefore, random cells are irregular perturbations
of the front due to the defect structure of the seed crys-
tal. The true elongated cells are front perturbations that
are independent of the defect structure and can serve to
modify the structure and the degree of structural perfec-
tion of the single crystals.

110
C

Since the elongated cells are observed in a limited
time interval and at a constant rate, there are experi-
mental conditions under which these cells are not
observed at all. Moreover, when studying the polycrys-
tals, random elongated cells can be observed for differ-
ent grains. In this respect, contradictory sequences of
morphological transformations of the crystallization
front can be found in the literature [18].

The known dynamic effects (the splitting and sup-
pression of cells, the formation of tilted and doublet
structures) can be supplemented by the results made in
the present study. These are the oscillations observed in
the time dependences of the intercellular spacing λ and
variations in the appearance time of the perturbations
(Figs. 3, 4). It seems to be established that many effects
can be explained in terms of the nonstationary accumu-
lation of impurities under steady-state external condi-
tions. Note that this effect is associated with the low
content of uncontrollable impurities that are always
contained in organic materials.

The morphological data obtained in this study indi-
cate that different types of perturbations can arise as a
result of the stability loss of the flat front. Specifically,
nodes are small-amplitude long-wavelength perturba-
tions whose evolution with time is controlled by the dif-
fusion (Fig. 3) and whose shape and amplitude do not
depend on the crystallographic orientation. The wave-
length of cells is comparable to their amplitude, the cell
shape depends on the crystallographic orientation, and
the evolution of the cells with time differs significantly
from the diffusion law. These perturbations develop
concurrently and interact with each other. Note that one
type of perturbations, namely, nodes, is absent alto-
gether (for pivalic acid) at particular parameters of the
crystallization front.
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Abstract—A new mathematical macroscopic model is proposed to describe the nonstationary process of fac-
eted crystal growth by the methods of directional crystallization with a slow change in external thermal condi-
tions and low pulling rate of a cell through the growth system. The facet-growth rate is determined by the Stefan
condition, integral over the face. Two boundary conditions are set for temperature: the continuity condition and
the relation between the heat-flux jump and the supercooling at the facet points. The supercooling is determined
by solving the entire heat problem. A facet is selected as a planar part of the phase boundary. The kinetic coef-
ficient at the facet may depend on the supercooling. The energy conservation law is valid within the model
developed. Examples of calculations of some model problems are presented. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

In this study, we consider the crystal-growth pro-
cesses both in the case of normal growth and under the
formation of a planar crystal surface: a face. The math-
ematical model of faceted growth, proposed here, is
based on determining the face-growth rate using the
integral Stefan condition (or an equivalent one) and set-
ting two conditions at the phase boundary: the temper-
ature continuity condition and the relation between the
heat-flux jump and the supercooling at the surface point
under consideration. The supercooling at phase bound-
ary points is determined by solving the entire heat prob-
lem. The same model is also obtained on the basis of the
mechanism of layer-by-layer faceted crystal growth.
The model of faceted growth reported here was previ-
ously described briefly in [1].

The calculations were performed for the simplest
case of the crystal growth of Ge in the crystallographic
direction [001] in a cylindrical ampoule under the con-
ditions of cylindrical symmetry. It was assumed that a
facet is a circle centered on the ampoule axis and
orthogonal to the crystal axis. A facet can be formed on
the part of the phase surface convex to the melt and suf-
ficiently planar. Such a geometry is determined by the
external boundary conditions.

The process of faceted growth is considered below
for the conditions of axial heat processing (AHP) [2, 3].
This method was described in more detail in [4]. The
algorithm of calculation of the processes of faceted
growth (see below) was introduced into the KARMA1
software package [5].

In the absence of a facet on the crystal surface, we
will consider three conditions: the Stefan condition, the
temperature continuity condition, and the condition
1063-7745/05/5006- $26.00 ©1034
determining the normal crystal-growth rate vn as a
function of supercooling ∆T = T∗  – T. Here, T∗  is the
crystallization temperature and T is the temperature at
the points of phase boundary. The function vn(∆T) can
be linear: vn = β(T∗  – T), where β is the proportionality
factor referred to as the kinetic coefficient. Beyond the
face, this coefficient (β = β0) is much larger than at the
face. The value of the step of an arbitrary function Q
(for example, temperature or temperature gradient) at

the phase boundary will be denoted as  = Q(L) –
Q(S), where Q(L) and Q(S) are the limiting values of
the function Q at the phase boundary from the sides of
the liquid (L) and solid (S) phases.

Thus, in the absence of a face, we have at the phase
boundary

(1)

Hereinafter, κ, cP, and ρ are the thermal-conductivity
coefficient, specific heat, and density, respectively; ρS is
the density in the solid phase; and γ is the latent heat of
the phase transition. References on the normal and fac-
eted crystal growth can be found in [6–9].

During the crystal growth, faces are formed at that
part of the phase boundary whose normal is close to the
normal of a crystallographic close-packing plane. The
coefficient β depends on the angle between these nor-
mals. When this angle at a crystal facet is small, β
depends on supercooling and, for semiconductors,
turns out to be 2 to 3 orders of magnitude smaller than
at the other part of the phase boundary—the region of
normal crystal growth. If the crystallization rate along

Q[ ] S
L

κ∂T /∂n–[ ] S
L γρSv n, v n β0 T* T–( ),= =

T[ ] S
L

0.=
 2005 Pleiades Publishing, Inc.
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the facet is determined by the advance of steps, whose
density on the facet is independent of supercooling,

vn = (T∗  – T)m. In this case, we assume that β = β∗ .
Actually, it is generally the process of generation of
steps that limits the face-growth rate; hence, the coeffi-
cient β depends on temperature: β = β∗ (T). In this case,

we will write vN = (T∗  – T)n or v n = β(T∗  – T), where

β = (T∗  – T)m – 1. If steps are generated by screw dis-
locations, m is assumed equal to 2. These dependences
were reported in [8–18].

Numerical simulation of the growth of Ge crystals
by the AHP method was performed using the power law

with m = 1.65 and  = 0.0274 cm/(s K1.65) [14] and the

linear law with n = 1 and  = 0.001389 cm/(s K) (pri-
vate communication with Golyshev).

The macroscopic model of faceted growth consid-
ered below is based on two conditions. One of these is
obtained by excluding the rate v n from the first two con-
ditions in (1). The second condition is the temperature
continuity at the phase boundary. These two conditions
are used at the phase boundary in the problem for tem-
perature for the case of normal growth. We will use the
same conditions in the region of faceted growth.

A facet is determined as a planar part of the phase-
boundary surface. Faceted crystal growth occurs with a
time-dependent rate v n, constant over the face. During
the crystallization, the facet moves parallel to itself
with a possible variation in size, depending on changes
in the external conditions.

The crystal growth rate at a facet is determined from
the heat-balance equation for the entire face, i.e., from
the integral Stefan (or equivalent) condition. The prob-
lem is to find the shape of the crystal-growth surface
and the evolution of the growth-surface shape with
time, with allowance for the growth rate depending on
supercooling and for different velocities of motion of
the crucible with melt and the crystal through the region
with a temperature gradient (which can also change
with time). This problem will be solved in both the
presence and the absence of convection.

There are other approaches to the solution of this
problem [11, 12]. In these approaches, the facet diame-

ter b is determined by the formula b = ,
where R is the radius of curvature of a convex isotherm;
G is the averaged local temperature gradient; and ∆Tkin
is the maximum supercooling at the face, which is the
input parameter, as well as the kinetic coefficient [6, 8,
9]. The approach [11, 12] is applied to quasi-stationary
problems, in which the crystallization rate is assumed
equal to the pulling rate or the cooling rate of the sys-
tem. The value of ∆Tkin is determined by these parame-
ters. To determine the crystallization isotherm, the

β

β

β

β
β

8∆TkinR/G
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quasi-stationary classical Stefan problem should be
solved beforehand.

NORMAL CRYSTAL GROWTH

Since the crystal growth rates are determined by the
supercooling at the phase boundary, we will find the
temperature distribution first of all. Let us exclude v n

from the first two conditions in (1) and add the third
condition in (1) to the condition obtained. At the phase
boundary, we impose the following two conditions on
temperature:

(2)

At other boundaries of the melt and the crystal with the
ampoule, we impose the natural conditions of the tem-
perature and heat flux continuity. At the external bound-
ary of the ampoule, the boundary conditions are deter-
mined by the crystal growth technique. These are often
the conditions of radiative heat exchange. In the AHP
method, the temperature at the external surface of the
ampoule is set equal to the value determined by linear
interpolation between the points of location of thermo-
couples measuring temperature during the experiment.
For solid phases, the heat-conduction equation is con-
sidered. For the liquid phase, convective heat-conduc-
tion and diffusion equations, as well as the Navier–
Stokes equations in the Boussinesq approximation with
the natural conditions at boundaries, are solved [4, 5].

It is sufficient to set conditions (2) to determine the
temperature in the entire region at a specified position
of the phase boundary. The quantity γρSβ(T∗  – T) sets
the amount of heat released per surface unit. The first
condition in (2) can be taken into account as a heat
source in the equation for temperature

(3)

Here, z = zf(r, t) is the desired function, determining the
position of the phase boundary; δ is the Dirac delta
function; θ is the angle between normal to the phase
boundary and the z axis; and cosθ > 0. The parameter v
in (3) is the velocity of the melt motion. For the solid
phase, the second term on the left-hand side of (3)
should be omitted.

Let us clarify the method for solving the problem.
We introduce a time grid tj = j∆t, j = 0, 1, …, where ∆t
is a sufficiently small time step. Let T j = T(r, z, tj), β j,
and v j be the temperature, kinetic coefficient, and
velocity at the instant of time tj. Replacing only deriva-
tives with respect to time by difference relations, we
obtain the expression

κ∂T /∂n–[ ] S
L γρSβ T* T–( ), T[ ] S

L
0.= =

cPρ ∂T /∂t v ∇,( )T+( )
=  div κ grad T( ) γρSβ T* T–( )δ z z f–( )/ θ.cos+

cPρ T
j 1+

T
j

–( )/∆t v
j ∇,( )T

j 1+
+( )

=  div κ grad T
j 1+( ).
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For the solid phase, the second term on the left-hand
side of this equality, as well as in equality (3), is absent.
Let us add the boundary conditions to this equation. At

the phase boundary ,

At the other part of the phase boundary, we set the nec-
essary boundary or matching conditions. At a known
value of T j, the value of T j + 1 is found. Furthermore, in
the absence of faceted growth, we determine the veloc-
ity

(4)

and the new position of the phase-transition boundary

(5)

Thus, finding the temperature distribution, the velocity
of the motion of the phase boundary, and its new posi-
tion, we pass to a new time layer.

This problem was solved by the method of finite dif-
ferences.

FACETED CRYSTAL GROWTH

It is unknown beforehand whether a facet is formed
at the time tj + 1 = tj + ∆t; if it did not exist at the moment
tj; or, vice versa, whether the facet existing at the instant
tj remains at the instant tj + 1. We will assume that super-
cooling occurs at the phase boundary; hence, in any

case, the function (r) can be determined from (5)
at the instant tj + 1. If we find that faceted crystal growth

occurs, the obtained values of  should be changed
in the facet region.

Let us calculate the derivative /∂r at t = tj + 1.
The requirement for the existence of a planar part of the
phase surface is reduced to the validity of the condition

 < ε at 0 < r < r0, where ε is a sufficiently small

number. If, in addition,  < 0, the region 0 < r <
r0 can be considered to be a face. At small values of ε,
the surface cannot be strongly concave.

For stable calculation of the faceted-growth prob-
lem, the value of ε should be chosen neither too small
nor too large. A series of calculations of this problem
we performed at different values of ε showed that the
calculation is stable at ε about 0.015–0.02 (θ ~ 1°) [1].
An example of the influence of the value of ε on the
facet size will be given below.

Let us now find the crystal-growth rate at the facet at
0 < r < r0 and change condition (5) at the face. At the
phase boundary points, the heat balance is written as

[−κ∂T/∂n  = v nρS[h , where h is the enthalpy. Let us

z f
j

κ∂T
j 1+

/∂n–[ ] S
L
 = γρSβ

j
T* T

j 1+
–( ), T

j 1+[ ] S
L
 = 0.

v n
j 1+ β j

T* T
j 1+

–( )=

z f
j 1+

z f
j ∆tβ j

T* T
j 1+

–( )/ θ j
.cos+=

z f
j 1+

z f
j 1+

∂z f
j 1+

dz f
j 1+

/dr

dz f
j 1+

/dr

]S
L

]S
L

C

perform facet averaging of the latter equality. We
assume that the velocity v n is constant at the facet and
the average enthalpy at the facet is equal to the latent
heat of the phase transition. In this case, the total
amount of heat is independent of the character of the
crystal growth and the presence or absence of a face.

As a result, we obtain the integral Stefan condition

(6)

Integrating the first condition in (2) over the facet
region and comparing the result with (6), we find the
condition for determining the rate v n, which is equiva-
lent to (6):

(7)

Let us write the approximate heat-balance equation for
the entire face:

(8)

Here,  is the facet-average (in the interval 0 < r <

) value of :

The value of  in (8) is independent of r. If the facet

existed at the instant tj, the values of  determined
by formulas (5) and (8) are close to each other both over

the entire facet and at the point .

Thus, the phase surface at t = tj + 1 has been found. It

is determined by the function  according to formu-
las (5) and (8). A region, referred to as a prefacet, can
be introduced into consideration. Analyzing the curve

(r), we can find on it the point  at which the
above-introduced angle θ = θ0 . Let us choose θ0 to be

equal to 2° and assume the region  < r <  to be
a preface. Then, we determine the kinetic coefficient at

the instant tj + 1, assuming that βj + 1 =  at 0 ≤ r ≤

, βj + 1 = β0 at  < r < R (R is the radius of the

κ∂T /∂n–[ ] S
L
r rd

0

r0

∫ γρSv nr0
2
/2.=

v n
2

r0
2

---- β T* T–( )r r.d

0

r0

∫=

z f
j 1+

z f
j ∆t

2

r0
j 1+( )

2
----------------- β jT* T

j 1+
–

θ j
cos

------------------------r r,d

0

r0
j 1+

∫+=

0 r r0
j 1+

.< <

z f
j

r0
j 1+

z f
j

z f
j 2

r0
j 1+( )

2
----------------- z f

j
r r.d

0

r0
j 1+
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z f
j 1+

z f
j 1+

r0
j 1+

z f
j 1+

z f
j 1+

r1
j 1+

r0
j 1+

r1
j 1+

β*
j 1+

r0
j 1+

r1
j 1+
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Fig. 1. (a) Schematic of the AHP method; W1 and W2 are the regions in the melt below and above the AHP heater, respectively;
(b) the calculation region.
crystal), and βj + 1 =  + (β0 – ) /  at

 ≤ r ≤ .

Thus, we changed from T j, (r), , , β j(r) at t =

tj to T j + 1, (r), , , β j + 1(r) at tj + 1 = tj + ∆t.
At n = 1 (nucleation growth), the kinetic coefficient

 = β∗  is constant.

To determine the crystallization rate, we used for-
mulas (4) and (7). The kinetic coefficient in the prefacet

region  < r <  was determined by interpolation
between the values of β∗  and β0 . In the prefacet region,
the kinetic coefficient can be found by interpolating the
crystallization rate between its values at the facet and
beyond the preface. For example, the following interpo-
lation formula can be used:

The values of ( ) and ( ) are determined
by formulas (7) and (4), respectively. The kinetic coef-

ficient at the prefacet is βj + 1 = /(T∗  – T j + 1). In this
case, the continuity of the crystallization rate along the
phase boundary is guaranteed. However, both these
approaches gave almost identical results. All above
considerations were implemented in the KARMA1
software package.

The model considered here can be modified in dif-
ferent ways. The above-described approach is general-
ized to the general case of faceted crystal growth. In

β*
j 1+ β*

j 1+ θ j 1+
tan θ0tan

r0
j 1+

r1
j 1+

z f
j

r0
j

r1
j

z f
j 1+

r0
j 1+

r1
j 1+

β*
j 1+

r0
j 1+

r1
j 1+

v n
j 1+ θ j 1+

tan θ j 1+
r0

j 1+( )tan–( )v n
j 1+

r1
j 1+( )(=

+ v n
j 1+

r0
j 1+

( ) θ0tan θ j 1+
tan–( ) )/

θ0tan θ j 1+
r0
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formulas (7) and (8), /2 should be replaced by |Sf |
(the facet surface area), rdr should be replaced by dSf

(element of the facet surface), and the integration
should be carried out over the total facet surface. Dissi-
pative thermal terms should written in the general form,
with a tensor instead of the thermal-conductivity coef-
ficient. The facet is to be determined as a part of the
phase surface with close directions of normals at all
points.

RESULTS OF NUMERICAL SIMULATION

Boundary Conditions in the AHP Method

Numerical simulation of faceted growth will be per-
formed for the problem of AHP crystal growth. The
schematic diagram of the AHP method and the calcula-
tion region are shown in Figs. 1a and 1b, respectively.
An AHP heater is submerged into in a cylindrical cruci-
ble. The melt is below and above the heater (bottom and
top zones, respectively). A seed is located on the inter-
nal crucible bottom. As crucible moves downward to
the cold zone, crystal growth occurs on the seed. The
melt is fed into the bottom zone from the top zone
through the gap between the AHP heater and the lateral
crucible wall.

Thermocouples are located on the external crucible
wall at the points T1–T7 (Fig. 1). We will use the same
designations for the values of temperature at these
points. The thermocouples T1 and T2 were located in the
AHP heater at r = 0 and 15.8 mm. The thickness of the
heater wall is 2.5 mm. The thermocouples T3 and T4
were located on the external crucible bottom at r = 0
and r = R = 19.05 mm. The thermocouples T5–T7 were
located on the external surface of the lateral crucible
wall. The thermocouple T7 was at the same level as the
thermocouples T1 and T2, the thermocouple T6 was

r0
2
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12.5 mm below the thermocouple T7, and the thermo-
couple T5 was 10 mm below the thermocouple T6. The
relative position of the thermocouples T1, T2, and T5–T7
was not changed with time. This situation is typical of
the AHP method, as well as the setting of correspond-
ing temperatures. We assumed that T6 = T∗ , T1 = T2 =
T7 = T6 + HgL. The temperature gradient gL = 10 K/cm
and H = 10 mm. The temperature gradient along the lat-
eral crucible wall below the thermocouple T6 was gS =
2.294gL = 22.94 K/cm. At such a choice of gS and gL, the
heat fluxes at the internal crucible wall in the melt and
in the crystal are equal to each other. The temperature
T3 = T4 was calculated using the value of the gradient
gS. The crucible wall thickness was 6.6 mm and the ini-
tial height of the liquid zone was H = 10 mm. The tem-
perature at the external crucible wall between the points
of location of the thermocouples was determined by
linear interpolation in gS and gL.

The pulling rates (velocities of the crucible motion)
were V = 1 and 5 mm/h. The Sb impurity concentration
in the liquid zone W1 at the initial instant and in the melt
arriving from the top zone W2 (Fig. 1a) was 1.5 ×
1019 atoms/cm–3. In the seed, the Sb concentration was
4.5 × 1016 atoms/cm–3. At the chosen boundary condi-
tions and a constant pulling rate, the solution to this
problem was steady-state: the crystallization rate at all
points of the phase boundary was equal to the pulling
rate, including the vicinity of the point r0; the size of the
liquid zone, the melt flow, and the temperature field in
the melt did not change. The chosen values of the gra-
dients gS and gL were previously used in actual experi-
ments.

Calculation Grid

The faceted growth problems were calculated by the
method [5] using fine grids. Two grids were chosen:
with 30 and 46 radial points. In the facet region, the
grids always turned out to be uniform. In both cases,
54 points along the z axis were chosen; 30 of them fell
in the liquid zone. The grids thickened when approach-
ing the boundaries. Near the axis, the grid size was
either 0.01 or 0.005. In the gap and at the crucible walls,
there were three intervals with different grid sizes. The
results of the calculation using the grids with 30 and
46 points in radius turned out to be close to each other.

Choice of the Value of ε
The value of ε was chosen for the pure heat problem

using the nonlinear law β = (T∗  – T)0.65 at  =

0.0274 cm/(s K1.65) and the pulling rate V = 1 mm/h.
The radius of the facet formed was about 3.5 mm at the
beginning of the process and then became equal to
approximately 2.7 mm. The change in the facet size is
related to the dynamics of reaching the steady-state

β β
C

solution. In the initial stage of the process, the crystal-
lization rate in the central part is lower than at the
periphery, the phase boundary is slightly concave to the
crystal, and the facet is absent. Then the phase bound-
ary becomes convex to the melt. A facet arises in the
calculation. At a larger value of ε, the facet size is some-
what larger.

At ε = 0.005, the facet formation is unstable. The
facet appears and disappears randomly. Temporal insta-
bility occurs also at ε = 0.01 but only at the beginning
of the crystallization process. With an increase in ε to
0.02, the facet becomes stable in the calculation
(Fig. 2a). The facet radius r0 = 3.5 mm. Figure 2 shows
the change in the facet size r0 (Fig. 2a), the face-aver-
aged supercooling (Fig. 2b, curve 1), and the supercool-
ing at the axis (r = 0) (Fig. 2b, curve 2).

An increase in ε leads to an increase in the number
of points on the face. In the problem under consider-
ation, the phase boundary is sufficiently planar and a
further increase in ε to 0.05 leads to the facet expansion
and occurrence of a new instability: the points in the
range 4.2 < r < 6 mm are included in the facet region
and excluded from it alternately. At ε = 0.06, the facet
includes almost the entire region of the phase boundary,
except for the region near the lateral surface, where the
phase boundary sharply rises in view of the specified
boundary conditions. Such large values of ε should be
excluded from consideration. For ε = 0.01 and 0.02,
supercooling at the axis is the same as the face-aver-
aged supercooling; the values of r0 differ only slightly.

Linear and Power Laws

Let us now consider the results of calculation of the
same problem using a linear law with β∗  =
0.001389 cm/(s K) (private communication with Goly-
shev), also for the pure heat problem at ε = 0.01. The
value of r0 is the same for both linear and power laws.
Figure 3a shows the time dependences of the super-
cooling at the axis (curve 2) and the face-averaged
supercooling (curve 1) for the linear law. The difference
between the linear and power laws (Figs. 3a and 2b,
respectively) can be clearly seen. Figure 3b shows the
radial distributions of the difference T – T∗ . The top and
bottom curves correspond to the power and linear laws,
respectively.

Dependence of the Faceted Growth 
on the Pulling Rate

We solved the problem for the pulling rate V =
5 mm/h and ε = 0.02 numerically using the power law
in the absence of convection. First, the facet radius was
6.4 mm; then it decreased to 4 mm (Fig. 4a). The super-
cooling at the facet (Fig. 4b) was almost two times
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 6      2005
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higher in comparison with the case for V = 1 mm/h
(Fig. 2b).

Effect of Convection on the Faceted Growth

Let us now consider the results of the calculations of
the faceted growth with allowance for the convection in
the melt at ε = 0.02, the power dependence of v n on
T∗  – T, and the pulling rate V = 1 mm/h.
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 6      2005
The allowance for the convection did not change the
facet size in the problem under consideration. The
supercooling at r = 0 and the face-averaged supercool-
ing also remained the same. However, convection may
radically change the situation: at the pulling rate V =
5 mm/h, the facet disappears.

Figure 5a shows the facet positions (curves 1, 2) and
the crystallization isotherms (curves 3, 4) calculated
with and without allowance for the thermal convection.
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cross sections: r = (1) 0, (2) 17.33, and (3) 18.55 mm.
The isotherm beyond the facet region almost coincides
with the phase-transition boundary. Allowance for the
convection made both the phase boundary and the iso-
therm flatter.

Figure 5b shows the dependences of the impurity
concentration on z in a grown crystal at different r. The
concentration is maximum at the axis. The reason for
this phenomenon is that the segregation coefficient in
the facet region was taken as 30% larger than that in the
case of simple supercooling.

The results of the calculation of the classical Stefan
problem and the faceted-growth problem (the power
C

law) under the same boundary conditions are presented
in Fig. 6. Figure 6a shows the crystallization isotherm
(curve 1) and the phase boundary with a facet (curve 3),
obtained with allowance for the faceted growth, and the
phase boundary, which is the crystallization isotherm
for the classical Stefan problem (curve 2). It can be seen
that the crystallization isotherm in the faceted problem
is close to the crystallization isotherm (phase-transition
boundary) for the classical Stefan problem. The solu-
tion to the classical Stefan problem beyond the facet
region can be replaced by the solution to the supercool-
ing problem at a small value of V/β0 . The motion of the
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 6      2005
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Fig. 6. (a) Crystallization isotherm (1) and the phase boundary with a facet (3), obtained taking into account the faceted growth, and
the crystallization isotherm for the classical Stefan problem (2). (b) The change in the Sb concentration over the crystal length for
three radial cross sections: r = (1) 0, (2) 17.33, and (3) 18.55 mm.
melt is the same in both cases. The melt flows from the
axis to the lateral surface of the crucible along the phase
surface and in the opposite direction along the AHP
heater. There is a small oppositely directed vortex at the
lateral wall of the ampoule and the phase boundary. The
concentrations shown in Fig. 6b for the solution to the
classical Stefan problem change monotonically with a
change in r. Comparison of Figs. 5b and 6b shows a
strong effect of a facet on the concentration distribution
in the crystal.

In summary, we should make some remarks. A
change in the size of a facet (at small ε) during its for-
mation does not affect the melt flow. Only in the case of
very weak flows in the stagnation zones do the forma-
tion of a facet and temperature drops at the facet lead to
enhanced convection. The presence of a facet affects
only the change in the radial distribution of the impurity
concentration significantly as a result of the change in
the impurity segregation coefficient of the crystal. In
this study, the melt supercooling turned out to be low
because the process of germanium crystallization was
considered. For other materials, for example, semi-
transparent oxides (such as bismuth orthogermanate),
supercooling is higher (above 1°).

Determination of the character of the crystal growth
is a complex crystallographic problem. The determina-
tion of the facet size by the algorithm proposed here
with the use of the parameter ε makes it possible to
select a planar part of the phase boundary even for crys-
tallization isotherms weakly convex to the melt. When
the radius of curvature is very large, it is quite difficult
to use the criterion of [6].
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Abstract—The self-assembly of the crystal structures of the K2Ba[ O9]2, ä2 O9 , and

Ça O9 germanates formed in the K–Ba–Ge–O system is modeled on a subpolyhedral level. In three
topologically different three-dimensional MT frameworks (the M octahedra GeO6 and the T tetrahedra GeO4),
the equivalent two-dimensional net 6464 + 664 (M : 2T) is separated, and its two-color decomposition into pri-
mary MT contours (characterizing the structure of the cluster precursor) and secondary contours (reflecting the
bonds between the clusters) is performed. The structural invariant of the MT frameworks is determined in the
form of an M2T4 cyclic hexapolyhedral cluster. It is demonstrated that these stable cyclic precursors of compo-
sitions K2M2T4 and BaM2T4 control all processes of the subsequent evolution of the MT crystal-forming com-
plex and provide the formation of substructural units of a higher level with the participation of additional tetra-
hedra GeO4. © 2005 Pleiades Publishing, Inc.
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1. INTRODUCTION

Crystallization is a complex physicochemical phe-
nomenon that occurs as a result of the spontaneous
development of self-organizing processes in a chemical
system [1–7]. In this case, there arises a long-range
order in the arrangement of structural units of arbitrary
nature (molecules, clusters) that initially exist in the
form of a chaotic mixture [4–8].

Modeling of self-organizing processes in nonequi-
librium systems and, eventually, the elucidation of the
mechanisms of these processes on the microscopic
cluster level within the model of complementary highly
selective assembly of crystal structures from microma-
trices (precursors) is an important problem in the phys-
ics of condensed matter [4–8].

The identification of the type of substructural unit
(SSU) precursors and the elucidation of the mechanism
of their structural evolution are the most important
problems in geometric–topological modeling of self-
organizing processes [5–11] in complex multicompo-
nent silicate and germanate systems.

The determination of the atomic structure of a crys-
tal by diffraction methods makes it possible, in princi-
ple, to read the symmetric–topological code of the pro-
cesses of the structure assembly and to draw an infer-
ence regarding the nature and properties of the crystal-
forming cluster precursors.
1063-7745/05/5006- $26.00 1043
The currently available methods for analyzing com-
plex structures (local crystal-structure intersection of
symmetry groups [5–8], two-color decomposition of
structural graphs into primary and secondary contours
[6–8], determination of equivalent coordination
sequences [8–11]) provide a means for identifying the
geometric–topological code of substructural unit pre-
cursors. The algorithm (used in this study) for self-
assembling a three-dimensional structure through the
universal mechanism of maximum bonding of sub-
structural unit precursors when changing over to a
higher level of the structural self-organization of the
system was considered in detail in [5–8].

There exists a large crystal-chemical family of alkali
[A(1+)] and alkaline-earth [B(2+)] germanates [12]
with structures typical of germanates alone. Examples
of such structures are provided by six Li,Ge[6] ger-
manates. The topological analysis and modeling of the
self-assembly of the crystal structures of the ger-
manates from SSU precursors containing the M octahe-
dra GeO6 and the T tetrahedra GeO4 were carried out in
[13, 14]. Other examples are provided by the
K2Ba[ O9]2 compound that crystallizes in the
K−Ba−Ge−O quaternary system [15], as well as by the
K2 O9 [16] and Ça O9 [17] com-
pounds formed in the corresponding ternary sub-
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Ge
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Ge3
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© 2005 Pleiades Publishing, Inc.
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systems. All three structural types are represented in a
large number of systems, such as A–B–Ge–O [15], A–
Ge–O [16], and B–Ge–O [17, 18]. Their topologically
different frameworks have the same composition
(MT3O9), as is the case with a number of structures of
the A,Zr and B,Zr silicates and their analogs, which
were thoroughly considered in [10].

In this work, the topological analysis and modeling
of self-assembly on a subpolyhedral level was carried
out for the K2Ba[ O9]2, K2 O9 , and

Ça O9 compounds, which are typical repre-
sentatives of the aforementioned three structural types.
It is assumed that SSU precursors of types identified in
the K and Ba germanates with a simpler chemical com-
position remain unchanged in mixed K,Ba germanates.
In this case, it becomes possible to determine the level
of structural self-organization of the system at which
there arise bifurcations of the evolution paths of the
SSU precursors (i.e., points of structural branching)
upon the formation of topologically different MT struc-
tures.

This study is a continuation of the investigations
into the geometric and topological features of the crys-
tal structures and modeling of the self-organizing pro-
cesses on a subpolyhedral level in silicate and ger-
manate systems [5–11, 13, 14].

2. BASIC NOTIONS AND DESIGNATIONS 
USED IN THIS INVESTIGATION

The structural (primary) unit of an MT framework
is an M octahedron or a T tetrahedron.

The substructural unit precursor is one of the eight
types of cluster precursors having topological symme-
try [5] and can be identified as an invariant fragment of
topologically different MT frameworks.

The subpolyhedral structural unit is a high-level
cluster that contains complementary-bonded substruc-
tural unit precursors in the integrated form.

The connectivity index (in a forming microensem-
ble) is the number of shared vertices of structural units
on the complementary surfaces of a substructural unit
of a lower level upon the formation of a substructural
unit of a higher level.

The stereon is the fundamental (independent) region
of space group G in a unit cell [19].

The MTO net is the topological representation of an
MT framework in the form of nets (graphs) composed
of vertices (nodes—atoms M, T, O) and edges (bonds)
between them [7, 8, 10].

The coordination sequence is the set of numbers
{Nk}, where Nk is the number of nodes of the MTO net
in the kth coordination sphere of the atom chosen as the
central atom [20–22].

Ge
6[ ]

Ge3
4[ ]

Ge
6[ ]

Ge3
4[ ]

Ge
6[ ]

Ge3
4[ ]
C

3. TOPOLOGICAL ANALYSIS 
OF THE GERMANATE STRUCTURES

The stereons of the unit cells in the crystal structures
under investigation involve a large number of atoms:
10 positions in the K and Ba germanates [16, 17] and
18 positions in the K,Ba germanate [15].

Since the crystallographic structure of the ger-
manates is very complex, the geometric–topological
analysis is performed using the method of coordination
sequences [21–23]. This method enables one to reveal
the highest possible topological symmetry and the
functional equivalence of the M Ge[6], T Ge[4], or O
atoms in the MT frameworks represented in the form of
nets (graphs) [10].

As in [10, 11], the algorithm used for analyzing the
germanate structures with the TOPOS.3.2 program
package [23, 24] includes the following stages:

(1) the creation of the database for the A2MGe3O9
and BMGe3O9 compounds whose structures are com-
pletely determined (ICSD-2002 [18]) (Table 1),

(2) the calculation of the adjacency matrix for nodes
(atoms) (the AutoCN program), and

(3) the calculation of the coordination sequences
{Nk} for all topological representations of the structures
(the IsoTest program).

In order to determine the individual topological
characteristics of the nodes in the MT frameworks in
calculations of the sequences {Nk}, the K and (or) Ba
atoms are removed from the structure and the calcula-
tion is performed only for the M, T, and O atoms of the
framework. The topology of the bonds in the K and (or)
Ba sublattices is calculated after all the M, T, and O
atoms of the framework are removed [10, 23].

The coordination sequences for the M, T, and O
framework-forming atoms in the K2 O9,

Ça O9, and K2Ba[ O9]2 germanates
are presented in Tables 2–4. It should be noted that the
composition of the coordination spheres with the
sequentially alternating atoms Ge and O is differenti-
ated.

The hierarchical ordering of the MT frameworks of
the germanates according to the coordination
sequences for the T atoms is illustrated by the data pre-
sented in Table 5. The differences in the values of {Nk}
manifest themselves only beginning with the seventh
coordination sphere. As follows from the results
obtained (Table 5), the MT framework of the K,Ba ger-
manate with N = 73 is a superposition of local substruc-
tures of the MT frameworks of the K and Ba germanates
with N = 72 and 74, respectively.

The symmetries of the M and T positions occupied
by germanium atoms (whose atomic numbering corre-
sponds to the structural data obtained in [15–17]) are
given in Table 6.
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Table 1.  Crystallographic data for germanate structures

Germanate Space group Unit cell parameters
a and c, Å V, Å3 CC code in ICSD-

2002 [18]

A–(M)–Ge–O

Na2Ge[6] O9 P c1 11.323, 9.681 1075.1 51106

K2Ge[6] O9 P c1 11.840, 9.800 1189.8 31969

K2Ti[6] O9 P c1 11.916, 10.018 1231.9 19032

Rb2Ge[6] O9 P c1 12.080, 9.860 1246.1 91

K2Sn[6] O9 P c1 12.082, 10.181 1287.1 19034

Rb2Ti[6] O9 P c1 12.195, 10.148 1307.0 19033

Rb2Sn[6] O9 P c1 12.305, 10.205 1338.2 19035

Tl2Sn[6] O9 P c1 12.351, 10.134 1338.8 19036

B–Ge–O

Sr Ge[6] O9 P321 11.344, 4.750 529.4 82393

Pb Ge[6] O9 P321 11.420, 4.753 536.8 64910

Ba Ge[6] O9 P321 11.608, 4.768 556.4 83734

A–B–Ge–O

K2Ba[Ge[6] O9]2 P c1 11.729, 19.278 2296.8 100439

Ge3
4[ ]

3

Ge3
4[ ]

3

Ge3
4[ ]

3
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3
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Table 2.  Coordination sequences for the framework-forming atoms in the structure of the K2Ge[6] O9 germanate

Framework-
forming atoms

Coordination sequence Nk (k = 1–11)

1 2 3 4 5 6 7 8 9 10 11

O(1), O(3) 2 6 5 22 18 52 34 82 50 180 99

O(2), O(4), O(5) 2 8 8 23 18 55 36 113 68 159 92

Ge(1), Ge(2) 6 6 18 14 36 24 102 62 132 78 198

Ge(3), Ge(4) 4 4 15 12 42 30 72 44 142 80 217

Ge3
4[ ]

Table 3.  Coordination sequences for the framework-forming atoms in the structure of the BaGe[6] O9 germanate

Framework-
forming atoms

Coordination sequence Nk (k = 1–11)

1 2 3 4 5 6 7 8 9 10 11

O(1), O(4) 2 6 5 22 18 52 36 90 54 178 93

O(2), O(3), O(5) 2 8 8 23 18 55 36 115 70 161 90

Ge(1), Ge(2) 6 6 18 14 36 24 102 62 132 78 198

Ge(3), Ge(4) 4 4 15 12 42 30 74 50 150 76 207

Ge3
4[ ]
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Table 4.  Coordination sequences for the framework-forming atoms in the structure of the K2Ba[Ge[6] O9]2 germanate

Framework-
forming atoms

Coordination sequence Nk (k = 1–11)

1 2 3 4 5 6 7 8 9 10 11

O(1)–O(6) 2 8 8 23 18 55 36 114 69 160 91

O(7)–O(9) 2 6 5 22 18 52 35 86 52 179 96

Ge(1)–Ge(4) 6 6 18 14 36 24 102 62 132 78 198

Ge(5)–Ge(7) 4 4 15 12 42 30 73 47 146 78 212

Ge3
4[ ]

Table 5.  Hierarchical ordering of MT frameworks according to the coordination sequences Nk (k = 7) for the T atoms

Germanate
Coordination sequence Nk (k = 1–11)

1 2 3 4 5 6 7 8 9 10 11

K2Ge[6] O9 4 4 15 12 42 30 72 44 142 80 217

K2Ba [Ge[6] O9]2 4 4 15 12 42 30 73 47 146 78 212

BaGe[6] O9 4 4 15 12 42 30 74 50 150 76 207

Ge3
4[ ]

Ge3
4[ ]

Ge3
4[ ]

Table 6.  Crystallographic symmetry of the M and T atoms in the germanate structures

K2Ba[GeGe3O9]2 K2GeGe3O9 BaGeGe3O9

atom symmetry
of position

position
code atom symmetry

of position
position

code atom symmetry
of position

position
code

Ge(1)  2b Ge(1) 2b – – –

Ge(2) 32 2a – – – Ge(1) 32 1a

Ge(3) 3 4d Ge(2) 3 4d Ge(2) 3 2d

Ge(4) 3 4d – – – – – –

Ge(5) 1 12g Ge(3) 2 6f Ge(3) 2 3f

Ge(6) 1 12g Ge(4) 1 12g Ge(4) 1 6g

Ge(7) 1 12g – – – – – –

K 1 12g K 1 12g – – –

Ba 2 6f – – – Ba 2 3e

3 3
The results that should be taken into account when
performing the geometric–topological modeling of the
assembly of germanate crystal structures from subpoly-
hedral clusters can be summarized as follows [15–17].

According to the equivalent sets of the calculated
coordination sequences, the Ge and O framework-
forming atoms in all structures have topological sym-
metry.

All the Ge and O atoms in the MT3O9 structures can
be separated into four types of topologically different
nodes in three-dimensional nets, namely, the M Ge[6]

atoms, the T Ge[4] atoms, the O atoms in the T–O–T
bridges, and the O atoms in the T–O–M bridges. The
numbers of atoms in these four groups in the structures
are different. The largest number of equivalent atoms
C

(four M Ge[6], three T Ge[4]) are revealed in the K,Ba
germanate. Two equivalent Ge[6] atoms and two equiv-
alent Ge[4] atoms are found in the K and Ba germanates.

The results obtained indicate that the crystallo-
graphic symmetry of the germanates is substantially
lower than the topologically possible symmetry. In the
germanates, the atomic bonds both in the polyhedra and
in the M and T polyhedra in three-dimensional MT
frameworks are characterized by different degrees of
asymmetry. According to the data presented in Table 6,
the Ge atoms with the equivalent sequences {Nk}
(Table 5) in the framework of the K,Ba germanate are
crystallographically different: the Ge[6] atoms occupy

the positions 32, 3, and , whereas the Ge[4] atoms
occupy the positions 2 and 1 (Table 6).

3
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Fig. 1. Two-dimensional MT layers separated in the crystal structures of (a) K2 O9 , (b) Ç‡ O9 , and

(c) K2Ba[ O9]2 germanates.
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Thus, the subsequently separated topologically
equivalent SSU precursors contain Ge polyhedra with a
different degree of asymmetry.

4. SELF-ASSEMBLY OF GERMANATE CRYSTAL 
STRUCTURES FROM SUBPOLYHEDRAL 

CLUSTERS

4.1. Self-Assembly of the K2 O9 Structure

4.1.1. General features of the structure. The
framework of the structure of the K germanate (a = b =

11.840 Å, c = 9.800 Å, space group /c1 [16]) is

Ge
6[ ]

Ge3
4[ ]

P32
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formed by the M octahedra linked by three-membered
rings composed of the T tetrahedra. The K sublattice is
a three-dimensional network of bound K atoms with a
structure of the lonsdaleite type (the bilayer polytype of
the C diamond lattice). The formation of the MT layer
passing through the vector c and the diagonal of the unit
cell (Fig. 1a) is a characteristic feature of the structure
of the K germanate.

4.1.2. Cluster substructure (identification of sub-
structural units). In order to determine the topological
type of SSU precursor [5], it is necessary to elucidate
5
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the mechanism (type) of bonding of two M octahedra to
the T tetrahedra in local regions of the MT framework.

The cluster substructure of the two-dimensional MT
layer was determined using the two-color decomposi-
tion of nets into elementary cycles [6, 8].

In the framework of this method, the planar nets
consisting of nodes (structural units of any nature) are
considered packings of equivalent N-membered cyclic
substructural units (clusters), where N is the number of
structural units. The planar net can be represented as a
packing of cyclic clusters if any of its nodes belongs to
one and only one substructural unit.

If the net (chemical graph) is completely decom-
posed into equivalent elementary cycles, these painted
cycles can be represented by isolated islands (the main
contours or net generators). The combinatorially possi-
ble variants (a total of 16) for two-color decomposition
of eleven simple (uninodal) Shubnikov nets with equiv-
alent (symmetrically related) nodes were examined in
[6–8]. It was revealed that five semiregular nets each
have two variants of an elementary cyclic monomer
(subgraph). They are characterized by different models
of assembly (types of net generators and connectivity
indices).

In order to simplify the primary structural analysis
of the MT layer of the germanate, the O atoms located
in the lines connecting the Ge atoms are removed with
retention of these lines. As a result, the layer transforms
into a planar Ge net (Fig. 2a).

The use of the two-color decomposition made it
possible to reveal the following structural features of
the planar two-dimensional MT net.

The planar two-dimensional net composed of bound
Ge nodes contains only two types of topologically dif-
ferent nodes; therefore, it is a binodal net.

As in the three-dimensional net (see the calculated
coordination sequences {Nk} in Table 2), in the two-
dimensional net, the crystallographically different
atoms [M = Ge(1), Ge(2); T = Ge(3), Ge(4)] are topo-
logically equivalent.

The two-dimensional net is characterized by the
Schläfli symbols 6464 for the M nodes and +664 for the
T nodes, the node ratio M : T = 1 : 2, and the stoichio-
metric composition MT2.

The two-dimensional net 6464 + 664 (1 : 2) contains
two different cyclic clusters in the form of tetragons
and hexagons. The above notation of the net nodes
means that there exist four and three polygons forming
the M and T net nodes.

Only one of the three or four polygons, which
formed the T node 664 or the M node 6464 in the net,
can act as the main polygon (the net generator). All the
other polygons of the net are secondary [6–8]. It is
found that the type of the two-dimensional net can be
reproduced in the course of assembly only from clus-
ters in the form of hexagons. Therefore, hexagons are
generators of the net 6464 + 664 (1 : 2). The two K
C

atoms each are located above and below the centers of
these clusters (Fig. 2a).

The topology of the node links in the secondary
contours of a net characterizes the mechanism of pack-
ing of primary contours in a layer. These contours in the
form of squares and hexagons (Fig. 2) reflect the spe-
cific features of the short-range (pair) and long-range
intercluster interactions responsible for the net forma-
tion. The local environment of each K2M2T4 cluster
involves four equivalent K2M2T4 clusters; i.e., the clus-
ter coordination number in the layer is 4. The layer sep-
arated in the crystal structure has the composition
K2MT2.

Therefore, the cluster substructure, namely, the
cycle composed of the Ge nodes M–T–T–M–T–T, is
separated in the MT net (Fig. 2a). Of special note is the
uniqueness of the separation of the SSU cluster: cyclic
contours in the form of squares cannot be separated as
primary contours in the net.

The revealed type of the net 6464 + 664 (1 : 2) of the
composition MT2 is reproduced in the framework struc-

ture of the Li2 O6(OH)2 germanate [25],
which has the same polyhedral composition MT2. This
type of the net (Fig. 2b) was found by modeling the
assembly of a layer from Li2M2T4 cyclic clusters [13].

4.1.3. Polyhedral structure of substructural
units. After the reconstruction of the O polyhedra (i.e.,
the GeO6 octahedra and the GeO4 tetrahedra) in the net
of the M and T nodes (atoms), the hexatomic cycle
transforms into a cluster consisting of six polyhedra
shared by their vertices. In the cluster, two GeO6 octa-
hedra are linked together through the Ge2O7 diortho
groups. According to the topological classification [5],
the identified precursor with the diortho group corre-
sponds to the D type. The K atoms in the SSU precursor
are located above and below the plane of the six-mem-
bered cycle.

In the unit cell of the germanate, the centers of the
SSU precursors occupy symmetrically different crys-
tallographic positions with the coordinates (1/2, 1/2,
1/2) (the 6e position with local symmetry ) and (–
0.16, 0.83, –0.01) (the 12g general position) (Fig. 3).

The stable cyclic clusters of the composition
K2M2T4 control all processes of the subsequent evolu-
tion of the MT crystal-forming complex and provide the
formation of substructural units of a higher level with
the participation of the additional T tetrahedra, which
play the role of tetrahedra linking free vertices of the
polyhedra [5, 13] during formation of the primary MT
chain and the MT layer.

4.1.4. Structural mechanism of self-assembly.
The three-dimensional topology of the structure is
reconstructed from the local structural region according
to the universal mechanism of maximum bonding of
substructural units when changing over to a higher level
of structural self-organization of the system.
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1
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Fig. 2. Planar binodal nets in the crystal structures of (a) K2 O9 and (b) Li2 O6(OH)2 germanates. Two potas-
sium or two lithium atoms are located above the centers of the M2T4 cyclic cluster precursors.
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4.1.4.1. The primary MT chain. The one-dimen-
sional periodic structures (MT chains) are assembled by
bonding the SSU precursors through two shared verti-

ces along the diagonal lying in the (1 0) plane (Fig. 3).
The index of the complementary bonding of substruc-
tural units is equal to 2.

Free vertices of the tetrahedra (in different substruc-
tural units) are located close to each other (Fig. 3). This
leads to their additional polymerization through the
GeO4 tetrahedron links, and the connectivity index of

1
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substructural units in the primary chain increases to 4
(the maximum possible index).

4.1.4.2. Assembly of the MT layer. The condensation
of short MT chains (consisting of two substructural
units) results in the formation of the MT layer (Fig. 3).
The connectivity index of chains is equal to 4. Two ster-
ically accessible (to condensation) vertices of the T
polyhedra in different MT chains are additionally poly-
merized through the tetrahedron links [the Ge(3) and
Ge(4) central atoms in the GeO4 tetrahedra in Fig. 3].
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Fig. 3. Structure of the K2 O9 germanate: assembly of the layer from two short chains.Ge
6[ ]

Ge3
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The connectivity index of chains in the layer increases
to 8 (the maximum possible index).

The layer involves Ge radicals of two types, namely,
Ge2O7 diortho groups and GeO4 tetrahedron links
(above and below the plane). This mechanism of poly-
merization of the MT layer leads to a change in the layer
composition from MT2 to MT3, which corresponds to
the MT composition of the K germanate framework.
The projection of the MT3 layer is depicted in Fig. 1a.

The distance between the centers of the SSU precur-
sors in the parallel MT chains corresponds to the trans-
lation c = 9.800 Å (Fig. 3).

4.1.4.3. Assembly of the MT framework. The con-
densation of germanate layers (Fig. 3) leads to the for-
mation of the three-dimensional MT framework. In this
case, the GeO4 tetrahedra and the Ge2O7 diortho groups
from different layers are joined together with the for-
mation of Ge3O9 rings.

All the MT layers (Fig. 1a) in the germanate struc-
ture are translationally equivalent. The germanate
structure is represented by the 1L-type structure, where
the designation 1L indicates that the simple transla-
tional multiplication of one layer completely deter-
mines the topological structure of the three-dimen-
sional MT framework [9]. The distance between the
centers of the geometrically equivalent SSU precursors
of different MT layers corresponds to the translation a =
11.840 Å.
C

4.2. Self-Assembly of the Ça O9 Structure

4.2.1. General features of the structure. The
framework of the structure of the Ba germanate (a = b =
11.61 Å, c = 4.74 Å, space group P321 [17]) is formed
by the M octahedra linked together by three-membered
rings composed of the T tetrahedra. The Ba sublattice
consists of chains formed by translationally related
atoms along the c axis (Fig. 1b).

4.2.2. Cluster substructure (identification of sub-
structural units). The cluster substructure of the two-
dimensional MT layers (passing through the vector c
and the diagonal of the unit cell, Fig. 1b) was deter-
mined using the two-color decomposition into elemen-
tary cycles. It was reveled that the Ba germanate, like
the K germanate, is characterized by the planar net
6464 + 664 (1 : 2) and the cyclic substructural unit of
the composition BaM2T4.

4.2.3. Polyhedral structure of substructural
units. After the reconstruction of the O polyhedra in the
net of the M and T nodes (atoms), the hexatomic cycle
transforms into a cluster consisting of six linked poly-
hedra. In the cluster, two GeO6 octahedra are linked
together through the Ge2O7 groups. The Ba atoms are
arranged in a polar manner and located only below the
plane of the six-membered polyhedral ring. In the unit
cell, the centers of the SSU precursors are located at
symmetrically different crystallographic positions with
the coordinates (0.55, 0.55, 1.00) (the 3e position with
local symmetry 2) and (0.22, 0.88, –0.04) (the 6g gen-
eral position) (Fig. 4).

4.2.4. Structural mechanism of self-assembly.
4.2.4.1. The primary MT chain. The one-dimensional

Ge
6[ ]

Ge3
4[ ]
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Fig. 4. Structure of the Ç‡ O9 germanate: assembly of the layer from two short chains.Ge
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periodic structures (chains) are assembled by bonding
the substructural units through common vertices.
The connectivity index of the substructural units is
equal to 2.

The tetrahedron links [Ge(4) atoms] are located
only above the plane of the MT chain (in the local envi-
ronment of the Ba atoms) in contrast to the alternating
arrangement of the tetrahedra above and below the
plane of the MT chain in the K germanate. After the
additional polymerization of the chain through tetrahe-
dra, the connectivity index of the substructural units in
the primary chain increases to 4 (Fig. 4).

4.2.4.2. Assembly of the MT layer. The condensation
of parallel MT chains results in the formation of the
layer. The index of complementary bonding of the
chains composed of substructural units is equal to 4.
After the additional polymerization through tetrahedra,
the connectivity index of the chains increases to 8
(Fig. 4). The polymerization of the layer leads to a
change in the layer composition from MT2 to MT3,
which corresponds to the MT composition of the Ba
germanate framework.

The two-dimensional MT layer contains Ge radicals
of two types, namely, the Ge2O7 groups and the GeO4
tetrahedra. The difference in the topology of the bonds
between the tetrahedra in the MT layers of the K and Ba
germanates lies in the different arrangements of the
T links, which are located above and below the layer
plane in the former case and only above the layer plane
LOGRAPHY REPORTS      Vol. 50      No. 6      200
in the latter case. The cluster coordination number in
the layer is 4.

4.2.4.3. Assembly of the MT framework. The con-
densation of layers leads to the formation of a three-
dimensional framework. In this case, as in the K ger-
manate, the GeO4 tetrahedra and the Ge2O7 groups are
joined together with the formation of Ge3O9 rings.

All the MT layers in the germanate structure are
translationally equivalent. The germanate structure is
represented by the 1L-type structure. The distance
between the centers of the SSU precursors of different
MT layers corresponds to the translation a = 11.608 Å
(Fig. 1b) in the direction of layer packing.

4.3. Self-Assembly of the K2Ba[ O9]2 
Structure

4.3.1. General features of the structure. The struc-
ture of the K,Ba germanate is characterized by the fol-
lowing specific features. The K,Ba germanate, like the

K germanate, crystallizes in the space group /c
[15]. The unit cell parameter c = 19.278 Å for the K,Ba
germanate is twice as large as that for the K germanate
(c = 9.80 Å). The unit cell parameter a = 11.729 Å for
the K,Ba germanate is close to the unit cell parameter
a = 11.8400 Å for the K germanate.

The framework of the structure is formed by the M
octahedra linked together by three-membered rings

Ge
6[ ]

Ge3
4[ ]

P32
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Fig. 5. Structure of the K2Ba[ O9]2 germanate: assembly of the layer from two short chains.Ge
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composed of the T tetrahedra. The MT holes are occu-
pied by K and Ba atoms in an ordered manner (Fig. 1c).

4.3.2. Cluster substructure (identification of sub-
structural units). It was revealed that the K,Ba ger-
manate, like the K and Ba germanates, is characterized
by the planar net 6464 + 664 (1 : 2) of the Ge nodes
(atoms). The equivalent cluster substructure was identi-
fied. Two K atoms (in K substructural units) are located
above and below the centers of the cyclic SSU precur-
sors (clusters). The Ba atoms (in the Ba substructural
units) are located in a polar manner with respect to the
centers of the cyclic SSU precursors (clusters).

4.3.3. Polyhedral structure of substructural
units. As in the K germanate (Fig. 3), the K substruc-
tural units in the structure of the K,Ba germanate
(Fig. 5) occupy the centers of the unit cells, i.e., the 6e
centrosymmetric positions (1/2, 1/2, 1/2). The struc-
tures of both germanates also involve asymmetric
K-containing SSU precursors. In the K,Ba germanate,
the centers of the K substructural units are located at the
positions with the coordinates (0.15, 0.82, 0.01)
(Fig. 5). Upon the formation of the MT chain and the
MT layer, all the K substructural units remain isolated
from each other. The environment of each K precursor
involves four Ba precursors; i.e., the cluster coordina-
tion number in the layer is 4.

The Ba substructural units are located on the 2 axes.
The centers of the clusters are located at the positions
with the coordinates (0.45, 0.45, 1/4) (Fig. 5). In the
cluster, two GeO6 octahedra are linked together through
C

the Ge2O7 diortho groups. The Ba atoms are located
above (or below) the plane of the MT ring.

4.3.4. Structural mechanism of self-assembly.
4.3.4.1. The primary MT chain. The one-dimensional
periodic structures (chains) are assembled by bonding
the K and Ba substructural units through common ver-
tices (Fig. 5). The connectivity index of the substruc-
tural units is equal to 2. The differences between the
topological structures of the MT chains in the K ger-
manate, the Ba germanate, and the K,Ba germanate lie
in the positions of the T tetrahedra linking the SSU pre-
cursors. In the structure of the Ba germanate, all the T
tetrahedra are located above the plane of the MT chain
(Fig. 4). In the structure of the K germanate, the corre-
sponding tetrahedra are arranged above and below the
plane of the MT chain (Fig. 3). In the structure of the
K,Ba germanate, two T tetrahedra (in the local environ-
ment of the Ba atom) are arranged both above and
below the plane of the MT chain (Fig. 5). This leads to
the doubling of the translation along the chain and to
the aforementioned increase in the unit cell parameter
c. After the additional polymerization of the chain
through tetrahedra, the connectivity index of substruc-
tural units in the primary chain increases to 4 (Fig. 5).

Therefore, among the two possible variants of the
formation of primary chains, i.e., when either (as in the
K and Ba structures) the chains are formed by identical
substructural units (and these K,Ge and Ba,Ge chains
are linked into a layer) or the chains are formed by the
K and Ba substructural units, the primary chains in the
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 6      2005
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structure of the mixed K,Ba germanate are formed
according to the second variant.

4.3.4.2. Assembly of the MT layer. The condensation
of modified MT chains results in the formation of the
layer shown in Fig. 1c. The connectivity index of the
chains composed of substructural units is equal to 4.
After the additional polymerization through the tetrahe-
dra, the connectivity index of the chains increases to 8
(Fig. 5). The polymerization of the layer leads to a
change in the layer composition from MT2 to MT3,
which corresponds to the MT composition of the K,Ba
germanate framework.

The two-dimensional MT layer in the structure of
the K,Ba germanate, as in the structures of the K and Ba
germanates, contains Ge radicals, namely, the GeO4
ortho tetrahedron links and Ge2O7 groups.

4.3.4.3. Assembly of the MT framework. In the K,Ba
germanate, the condensation of the layers leads to the
formation of a three-dimensional framework. In this
case, as in the K and Ba germanates, the GeO4 tetrahe-
dra and the Ge2O7 groups form radicals, i.e., the three-
membered rings GeO4 + Ge2O7 = Ge3O9.

The layers in the three-dimensional structure of the
germanate are translationally equivalent. The structure
of the germanate is represented by the 1L-type structure
and has the translation a = 11.729 Å in the direction of
layer packing.

5. CONCLUSIONS

Thus, the SSU precursors in the form of M2T4 cyclic
hexapolyhedral clusters were revealed for the MT

frameworks of the K2Ba[ O9]2,

ä2 O9 , and Ça O9 germanates. In
the structures of the K and Ba germanates, the primary
MT chains are formed by the K2M2T4 and BaM2T4 clus-
ters joined together by tetrahedron links. The structure
of the K,Ba germanate is assembled so that the K2M2T4
and BaM2T4 substructural units, which are also joined
together by tetrahedron links, alternate in primary MT
chains. In the MT layer, each of the K2M2T4 substruc-
tural units is bonded to four BaM2T4 substructural units.

It was established that the mechanisms of assembly
of the germanate structures from substructural units are
different at the initial stage of the evolution of the sys-
tem when the primary MT chain is assembled so that
the tetrahedron links alternate with respect to the chain
plane in each structure of the K2Ba[ O9]2,

ä2 O9 , and Ça O9 germanates.
This made it possible to determine the level of struc-
tural self-organization of the system at which there
arise bifurcations of the evolution paths of the SSU pre-
cursors upon the formation of topologically different
MT structures.
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In all the stages of assembly, the crystal structures of
the three germanates are characterized by the topologi-
cally equivalent algorithms because the indices of com-
plementary bonding of the K2M2T4 and BaM2T4 precur-
sors into clusters of higher levels appear to be identical.

The revealed type of the binodal net MT2 with the
Schläfli symbols 6464 (for the M nodes) and +664 (for
the T nodes) accounts for the universality of the topo-
logical mechanism of self-assembly through the mech-
anism of doubly bonded interactions of the SSU precur-
sors. The Li2 O6(OH)2 germanate has the sim-
plest algorithm for assembling chains and layers from
Li2M2T4 precursors (without participation of tetrahe-
dron links), and the three-dimensional structure of the
germanate is formed according to the mechanism of
direct condensation of MT layers. The structures of the
A2MT3O9 family are formed by the A2M2T4 cyclic clus-
ters containing atoms A = Na, K, or Rb (for the A, Ge[6]

germanates) and A = K, Rb, or Tl (for germanates with
atoms M = Ti, Sn). The structures of the BMT3O9 family
are formed on the basis of the BM2T4 clusters (B = Sr,
Ba, Pb). In the case of both families, the increase in the
connectivity index of the A2M2T4 and BM2T4 clusters is
provided by the additional participation of tetrahedron
links in the assembly.

Thus, the modeling of the self-assembly of crystal
structures of germanates with a complex chemical
structure (as in the case of silicates [7]) made it possible
to establish that their structure is governed by a partic-
ular spatial organization of specific components of two
types.

Basic structural components. At this level of self-
organization of a chemical system, the Ge polyhedra,
together with alkali and alkaline-earth metal atoms,
form the stable cyclic SSU precursors A2M2T4 and
BM2T4, which are the building block for assembly of
the three-dimensional suprapolyhedral architecture of
the individual compound as a whole.

Additional structural components. The following
two situations are possible in the case of SSU precur-
sors whose evolution is accompanied by the formation
of substructural units of a higher level:

(1) Substructural unit precursors can be directly
incorporated (integrated) into a cluster of a higher level.
In this case, the evolution of SSU precursors with the
formation of superprecursors [7] of the
Li2 O6(OH)2 compound proceeds at the high-
est rate. 

(2) Substructural unit precursors can be bound into
high-level clusters through additional polyhedral parti-
cle links. This situation is typical of the
K2Ba[ O9]2, ä2 O9 , and

Ça O9 germanates under consideration and
all four representatives of the homological series based
on the Li2 O6(OH)2 compound.
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The modification through additional structural com-
ponents corresponds to complementary (bonded) inter-
actions of polyhedral particles with basic structural
components, i.e., SSU precursors. According to [7],
these interactions always complicate the algorithm of
self-assembly and the sequence of correlation events
becomes longer. Additional structural components
bring about a local modification of an SSU precursor
and (or) additionally join SSU precursors (into chains,
layers, framework). The assembly of superprecursors
of a three-dimensional structure is provided by the
sequential performance of elementary operations with
the participation of individual complementary compo-
nents.
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Abstract—A mechanism and the corresponding mathematical model of the formation of the crystallization
potential of water, based on protons and orientational defects, are considered. On the basis of the comparison
with the known model based on impurity ions, it is shown that it is orientational defects that are responsible for
the formation of the crystallization potential of diluted solutions at a crystallization rate of 10–5 m/s. © 2005
Pleiades Publishing, Inc.
INTRODUCTION

The effect of separation of electric charges at the
crystallization front of water has been known for more
than 50 years. This phenomenon is often referred to
when the nature of atmospheric and lightning electric-
ity is explained [1, 2]. The mechanism of charge sepa-
ration was also used successfully for experimental
diagnostics of nucleation and growth of ice [3, 4].

The following experimental facts have been estab-
lished in numerous studies: (i) ice is positively charged
during the growth from pure water or weak solutions
[5]; (ii) ice is negatively charged during the crystalliza-
tion of concentrated solutions of some materials [6];
(iii) the difference between the electrical potentials of
ice and water (the crystallization potential) is maxi-
mum (up to 400 V [7]) in pure water and weak solu-
tions; (iv) the crystallization potential depends on the
linear growth rate of ice and, in pure water and weak
solutions, reaches a maximum at a growth rate of about
10–5 m/s [5]; and (v) the permittivity of the medium at
the crystallization front is hundreds of times higher
than the equilibrium value of permittivity for water and
ice [8].

The most widely spread model used to explain the
phenomenon of charge separation is the ionic model
[9–11], which relates this effect to the difference in the
diffusivities and the distribution coefficients of anions
and cations of the solution. This model has a number of
drawbacks [9]. For example, positively charged ammo-
nium ions and negatively charged chlorine ions have
relatively high trapping coefficients. Depending on
which of these ions are present in the solution, the
growing ice should acquire either a positive or negative
charge. Experiment does not give this dependence.
During freezing of weak solutions, ice has a positive
1063-7745/05/5006- $26.00 1055
charge. However, the charge exchange in ice, in going
from weak to concentrated solutions, is due likely to the
ionic mechanism.

We believe intrinsic charge carriers, whose content
is equilibrium in water and ice (for example, protons
and hydroxyl ions), to be responsible for the charge
separation during crystallization in pure water and
weak solutions. A model based on these carriers was
proposed by Kachurin [12]. In accordance with this
model, for example, protons arrive from water to the
crystal, penetrate the crystal freely, and remain in it. As
a result, the proton concentration decreases sharply
before the crystallization front and, hence, an electrical
potential arises in water. Estimation gave the values of
the potential in the range 10–100 V. A drawback of this
model is the assumption of free penetration of protons
from water into crystal, excluding their return to water.
Such behavior would be possible if the potential energy
of protons in ice was lower than in water. This picture
contradicts the fact that the actual proton concentration
in ice is a thousand times lower than in water [13].

Protons and hydroxyl ions are not the only intrinsic
charge carriers in aqueous systems. Far more numerous
are orientational defects. Their concentration in ice is
higher than the proton concentration by a factor of 104

[13]. This difference is even larger in water. Until now,
the role of orientational defects in the occurrence of
electrical phenomena at the crystallization front has
remained unclear.

Note that the concept of orientational defects is not
conventional for water (it was first applied to ice). How-
ever, this concept is applicable to water since it does not
require the material structure to be crystalline. There
are two types of orientational defects: L and D [14].
They arise, move, and annihilate during rotations of
© 2005 Pleiades Publishing, Inc.
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water molecules. The D defect (positively charged) cor-
responds to such an orientation of molecules at which
two protons are located on the line connecting the two
nearest oxygen atoms. The L defect (negatively
charged) corresponds to the case when there are no pro-
tons on this line. One proton on the line corresponds to
the defect-free state. The existence of orientational
defects in water has been confirmed indirectly in exper-
iments. For example, the high value (~80) of the low-
frequency permittivity of water can be explained by the
presence of orientational defects in it by analogy with
the interpretation of the high (~100) low-frequency per-
mittivity of ice [14].

PROTON-BASED MODEL

To formulate the charge-separation problem based
on protons and hydroxyl ions, let us construct the
energy diagram of these particles. To this end, we will
use the data on the low-frequency conductivities of pure
water (σ2 ~ 10–4 Ω–1 m–1) and ice (σ1 ~ 10–8 Ω–1 m–1)
[14]. (The conductivity of water and ice, according to
[14], is provided equally by orientational defects and
protons (hydroxyl ions).) For the proton mobility in ice,
bp1 = 8 × 10–7 m2 V–1 s–1 [13], and approximately the
same value of the proton mobility in water, bp2 = 8 ×
10−7 m2 V–1 s–1, we obtain the equilibrium proton con-
centrations in ice and water n1 = σ1/(ebp1) = 1017 m–3

and n2 = σ2/(ebp2) = 1021 m–3, respectively. The differ-
ence in these concentrations is related to the fact that
the energy of formation of a proton–hydroxyl pair in ice

Ice Water

t1

E1
1

E2
1

E2

E1

tn12 tn21

t2

tp12 tp21

F

Fig. 1. Energy-level diagram for protons and hydroxyl ions.
E1 and E2 are the energies of hydroxyl ions in ice and water,

respectively;  and  are the energies of protons in ice

and water, respectively; F is the chemical potential of carri-
ers; tn12, tn21, tp12, and tp21 are the times of relaxation and
thermal excitation of hydroxyl ions and protons, respec-
tively; and t1 and t2 are the recombination times of carriers
in ice and water, respectively.

E1
1

E2
1

C

(E1– ) is higher than that in water (E2– ) (Fig. 1)
[15, 16]. Thus, to transfer a proton (hydroxyl ion) from
water into ice, some energy should be spent to over-
come the potential barrier ∆W = kT ln(n2/n1) = 0.21 eV.
The reverse transfer is accompanied by the release of
energy. At such a profile of the potential energy, protons
(hydroxyl ions) are rejected by the phase front during
the crystallization. The rejection occurs as follows. At
the instant of crystallization, the potential energy of, for
example, hydroxyl ions increases owing to the change
in the crystal field and they occupy the level E1 in ice.
Some carriers, remaining at the E1 level, diffuse back-
ward into water and then relax to the ground state with
the energy E2. The carriers cannot return from water to
ice via the diffusion mechanism since the diffusion is
hindered by the potential barrier. Protons are rejected in
a similar way.

Let us write a system of equations for protons and
hydroxyl ions. For water (x > 0), in the steady state, we
have

(1)

(2)

(3)

where n and p are the nonequilibrium concentrations of
hydroxyl ions and protons, respectively; n2 is their
equilibrium concentration; Dn2 and Dp2, and bn2  and bp2
are their diffusivities and mobilities, respectively; E is
the electric-field strength; ε is the permittivity; ε0 is the
dielectric constant; and v  is the crystallization rate. The
last terms in (1) and (2) describe the carrier recombina-
tion [17]. In these terms, t2 = (svT n2)–1 is the recombi-
nation time, s is the recombination cross section, and vT

is the thermal velocity.
For ice (x < 0), similar equations are valid with sub-

script 1 instead of 2.
The boundary conditions have the form:

(4)
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dE
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-------
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εε0
------- n p–( ),–=
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(5)

(6)

(7)

(8)

where yn2 and yp2 are the roots of the characteristic
equations for hydroxyl ions at the E1 level and for pro-

tons at the  level, both in water (see clarifications
below).

Boundary condition (4) is derived from the condi-
tion of equality of the flux of hydroxyl ions on the left
of the crystallization front jn|x = –0 to the sum of four
fluxes: (i) the trapping flux –v (n |x = +0 + n2) from the E2
level in water to the E1 level in ice; (ii) the trapping flux
–v (i |x = +0 + n1) from the E1 level in water to an excited
level (for simplicity, to the E1 level) in ice, where
(i|x = +0 + n1) is the total (nonequilibrium and equilib-
rium) concentration at the E1 level in water); (iii) diffu-
sion flux –Dn2(di/dx) at the E1 level in water; and
(iv) electric-drift flux –(i |x = +0 + n1)bn2E |x = +0:

(9)

where  = –  – (v  +

)(  + n1).

The three last terms in Eq. (9) constitute the total
flux  at the E1 level in water; i.e.,

The continuity equation at the E1 level in water has
the form

(10)

The two last terms in (10) describe, respectively, the
decrease and increase in the carrier concentration at the
E1 level owing to the processes of relaxation to the E2
level and reverse thermal excitation from the E2 level.

Dp1
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di
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i
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Integrating (10) over the interval [0, ∞), we obtain

(11)

where i |x = +0 = n |x = –0 owing to the free diffusion
through the boundary at the E1 level.

The quantity yn2 = –  –  is the

root of the characteristic equation D2n(yn2)2 + v yn2 –
1/tn12 = 0, obtained from (10) under the assumption
(natural for this problem) that the relaxation at the E1
level in water dominates over the thermal excitation
from the E2 level, i.e., i/tn12 @ n/tn21, and the solution for
the concentration has the form i ~ exp(ynx). The term
describing the carrier drift in the electric field (equal in
order of magnitude to i/θn2, θn2 = εε0/(ebn2n2)) was
neglected in comparison with i/tn12 since θn2 @ tn12.

Substituting (11) into (9), we obtain (4). Boundary
condition (5) is obtained similarly. In (5), yp2 is the root

of the characteristic equation for protons at the  level
in water: Dp2(yp2)2 + v yp2 – 1/tp12 = 0.

Condition (6) follows from the assumption that the
flux of hydroxyl ions in water at the E2 level is equal to
the trapping flux of these ions to the E1 level in ice; i.e.,

Equation (7) is the electroneutrality condition and
equality (8) is the boundedness condition for solutions
at infinity.

For numerical calculation of the crystallization
potential, we used the following values of the parame-
ters: n1 = 1017 m–3, n2 = 1021 m–3, bp1 = bp2 = 8 ×
10−7 m2 V–1 s–1, Dp1 = Dp2 = 1.8 × 10–8 m2/s, bn1 = bn2 =
bp1/10 = 8 × 10–8 m2 V–1 s–1, Dn1 = Dn2 = Dp1/10 = 1.8 ×
10–9 m2/s [13], tp12 = 1/(sv T N) = 10–13 s (at s = 10–19 m2,
the thermal velocity of protons vT = 2 × 103 m/s and the
concentration of water molecules N = 3 × 1028 m–3),
tn12 = 1/(svT N) = 2 × 10–12 s (at s = 10–19 m2 and the
thermal velocity of hydroxyl ions vT = 102 m/s (the dif-
ference in the thermal velocities of carriers of opposite
sign was chosen according to the difference in their
mobilities)), tp21 = tp12(n2/n1) = 10–9 s, and tn21 =
tn12(n2/n1) = 2 × 10–8 s. The recombination time t1 =
10−3 s was calculated using the known value of the
recombination constant for ice, Kd = 3 × 10–9 s–1, in the
formula t1 = 1/(Krn1) = n1/(KdN), where Kr = KdN/(n1)2

is the recombination-rate constant and N is the concen-
tration of water molecules [14]. The recombination
time in water is t2 = t1(n1/n2) = 10–7 s.
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v
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2

4Dn2
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1

Dn2
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Figure 2 (curve 1) shows the dependence of the dis-
tribution coefficient of protons on the crystallization
rate. The distribution coefficient is minimum at low
rates, kp = n1/n2 , and increases to unity at high rates
when the diffusion lags behind the crystallization front
and the mechanism of rejection of protons does not
work.

Figure 3 (curve 1) demonstrates the results of calcu-
lation of the crystallization potential for the linearized
problem. The problem is linearized by neglecting the
term containing the products nE, pE, and np in the sys-
tem of equations (1)–(8). This procedure is equivalent
to the weak-field approximation and small concentra-
tion perturbation: |E | ! v /bn1, n2; p1, p2, |n |, |p | ! n1, 2.
Though solutions to the linear problem are less exact,
they, in the case under consideration, can be obtained
technically many times faster than solutions to the non-
linear problem. (The solution of the nonlinear problem
will be considered below also.)

The potential (Fig. 3, curve 1) reaches a maximum
value of 100 V at crystallization rates in the range 0.01–
0.1 m/s. At a rate of 10–5 m/s, the potential is 10–6 V. Ice
is charged negatively in this case. Thus, the protonic
mechanism can explain neither the positive sign of the
ice charge nor the high potential observed experimen-
tally at a crystallization rate of 10–5 m/s.

It can be seen from Fig. 3 that, at a high crystalliza-
tion rate (more than 10 m/s), the sign of the potential in
the model becomes opposite. The change in the sign of
the potential is related, one the one hand, to the
decrease in the charge separation at the phase boundary
since the efficiency of the rejection of carriers by the
crystallization front decreases sharply with an increase
in its velocity and, on the other hand, to the increase in
the contribution of the charge separation in ice to the

10–9

Distribution coefficient

Crystallization rate, m/s

10–3

10–3 10–1 101 103 10510–510–710–11
10–6

10–5

10–4

10–2

10–1

100

1

2

Fig. 2. Dependences of the distribution coefficients of
(1) protons and (2) orientational L defects on the crystalli-
zation rate.
C

potential. Charge separation in ice occurs for the fol-
lowing reason: owing to their high mobility, nonequi-
librium protons faster than hydroxyl ions move away
from the crystallization front into the bulk of the solid
phase; therefore, deep ice layers become charged posi-
tively with respect to the layers adjacent to the front.

MODEL BASED ON ORIENTATIONAL 
DEFECTS

Let us construct the energy diagram of orientational
defects in the vicinity of the crystallization front. To
this end, we will compare the concentrations of orien-
tational defects in ice and in water. In ice, the concen-
tration of these defects is n1 = 1022 m–3 [13]. Their con-
centration in water, n2, will be estimated from the val-
ues of the dielectric relaxation time: 2 × 10–5 s in ice and
2 × 10–11 s in water [14]. Let us identify these times with
the recombination times of orientational defects t1 and
t2: t1 = 1/(svT n1) = 2 × 10–5 s and t2 = 1/(svT n2) = 2 ×
10−11 s. Dividing t1 by t2, we find that n2 = n1(t1/t2) =
1028 m–3. The high concentration of orientational
defects in water (in comparison with ice) corresponds
to the low potential energy of carriers in water, whereas
this parameter is higher in ice. Thus, the energy dia-
gram, similar to that for protons and hydroxyl ions
(Fig. 1), is quite appropriate for orientational defects,
with all the consequences. Similar to protons and
hydroxyl ions, orientational defects are rejected by the
phase front during the crystallization.

The process of charge separation based on orienta-
tional defects can be described by the system of equa-
tions (1)–(3) with boundary conditions (4)–(8). To
carry out numerical calculations, we will refine the val-

10–11 10–8 10–5 10–2 101 104

Crystallization rate, m/s

10–8

10–6

10–4

10–2

100

102

104

106

108
Potential difference, V
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2(–)

1(+)3(+)
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Fig. 3. Crystallization potentials for (1) the protonic mech-
anism, (2) the mechanism based on orientational defects,
(3) the mechanism based on orientational defects in the non-
linear case, and (4) the ionic mechanism in the nonlinear
case. The sign of the ice potential with respect to water is
indicated in parentheses.
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ues of mobilities, diffusivities, and relaxation times of
orientational defects. Let us assume, according to the
conclusions drawn in [14], that the mobility of L
defects exceeds that of D defects by a factor of 3. The
mobility bn1 of L defects in ice will be estimated on the
basis of the known features of the motion of orienta-
tional defects [14]. Passing along a chain of water mol-
ecules, an L defect reorients them in such a way that the
next L defect cannot pass the same path until it is passed
by a hydroxyl ion or (in the reverse direction) a proton,
as a result of which the chain molecules returns to the
initial state. Thus, the conductivities of protons and L
defects are equal to each other: ebcc1 = ebn1n1 , where
bc = 8 × 10–7 m2 V–1 s–1 and c1 = 1017 m–3 are, respec-
tively, the mobility and the concentration of protons in ice
[13]. Hence, we have bn1 = bcc1/n1 = 8 × 10–12 m2 V–1 s–1

and Dn1 = bn1kT/e = 1.6 × 10–13 m2/s. The value of bn1
can be estimated in another way: using the experimen-
tal values of the high- and low-frequency conductivities
of ice. The high-frequency conduction is implemented
by the motion of orientational defects, which is not hin-
dered by the proton subsystem (defects execute recipro-
cating motion with a small amplitude and the motion
paths are not in contact), whereas the low-frequency
conduction, as noted above, is related closely to the
proton subsystem. Therefore, the value of bn1 can be
determined using the relation bn1(lf)/bn1(hf) =
σ(lf)/σ(hf). We find that bn1(lf) = bn1(hf)σ(lf)/σ(hf),
where σ(lf) = 2 × 10−8 Ω–1 m–1 and σ(hf) = 2 ×
10−5 Ω−1 m–1 are the low- and high-frequency conductivi-
ties of ice, respectively, and bn1(hf) = 2 × 10–8 m2 V–1 s–1 is
the high-frequency mobility of L defects [13]. The for-
mula gives the value bn1(lf) = 2 × 10–11 m2 V–1 s–1, which
is close to the above estimation.

In water, the mobility of L defects is bn2 =
bc2(c2/n2) = 8 × 10−14 m2 V–1 s–1 according to the follow-
ing values of the parameters: the concentration of ori-
entational defects n2 = 1028 m–3, the proton concentra-
tion c2 = 1021 m–3, and the proton mobility bc2 = 8 ×
10−7 m2 V–1 s–1. Dn2 = (kT/e)bn2 = 1.6 × 10–15 m2/s. The
relaxation time of L defects tn12 = 1/(svT N) = 6 × 10–13 s
(at s = 10–19 m2 and vT = 500 m/s) and tn21 = tn12(n2/n1) =
6 × 10–7 s. Similarly, for D defects, we have bp2 =
bn2/3 = 2.7 × 10−14 m2 V–1 s–1, Dn2 = 0.5 × 10–15 m2/s,
tp12 = 2 × 10–12 s (at s = 10–19 m2 and vT = 170 m/s (the
ratio of the thermal velocities of L and D defects in the
same as the ratio of their diffusivities)), and tp21 = 2 ×
10–6 s.

Figure 2 (curve 2) shows the results of calculation of
the distribution coefficient of orientational defects and
Fig. 3 (curve 2) demonstrates the calculated crystalliza-
tion potential for the linearized problem. According to
the calculation, ice is charged positively with respect to
water at low crystallization rates. This result corre-
sponds to the sign of the ice charge observed experi-
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 6      200
mentally. The potential difference reaches a maximum
value of about 100 V at crystallization rates in the range
10–5–10–4 m/s, which is also in agreement with experi-
mental results. At crystallization rates exceeding 3 ×
10–4 m/s, the potential difference becomes opposite, as
in the proton model, owing to the decrease in the charge
separation between the phases and the increase in the
charge separation in ice.

Furthermore, we will solve the nonlinear problem of
charge separation involving orientational defects. This
approach makes it possible to describe more exactly, in
comparison with the linear problem, the electrokinetic
processes in real aqueous systems. We will use the sys-
tem of equations (1)–(8). The result of calculation of
the potential difference by the Runge–Kutta method is
shown in Fig. 3 (curve 3).

It can be seen from Fig. 3 that the crystallization
potential in the nonlinear problem is much higher than
in the linear one in the range of crystallization rates
10−8–10–4 m/s. A potential of about 100 V is obtained in
the nonlinear case at lower crystallization rates (specif-
ically, at 10–6–10–5 m/s). This difference is related to the
phenomenon of charge-carrier exclusion in ice (extrac-
tion of carriers by an electrical field), which can be
revealed only by solving the nonlinear problem. The
exclusion is illustrated by the concentration distribution
near the crystallization front (Fig. 4). It can be seen that,
at a low rate (10–8 m/s), the total concentration of the
most mobile charge carriers in ice—L defects—almost
does not differ from the equilibrium concentration
(exclusion is absent still). At a rate of 10–7 m/s, the total
concentration at a distance of 0.1 µm from the front
becomes lower than the equilibrium concentration by a
factor of almost 100 (exclusion occurs). With a further
increase in the growth rate, exclusion decreases gradu-
ally. The increase in the potential difference U under
exclusion is caused, according to the relation U = ELs,
by the increase in the length Ls of screening of the elec-
tric field E by charge carriers due to the decrease in
their concentration.

As the concentration of more mobile charge carriers
in ice (L defects) decreases under exclusion, the con-
centration of less mobile carriers (D defects) increases.
For example, at a rate of 10–7 m/s, the total concentra-
tion of D defects at a distance of 0.1 µm from the crys-
tallization front exceeds the equilibrium concentration
by a factor of almost 100 (Fig. 4). This circumstance
should lead to high values of the ice permittivity behind
the crystallization front because, according to [14], it is
D defects that are responsible for the ice permittivity.
Recall that the experimental values of the permittivity
in the vicinity of the crystallization front are tens and
even hundreds times larger than the equilibrium
value [8].

Figure 3 (curve 4) shows for comparison the crystal-
lization potential calculated by us for the nonlinear
model based on impurity anions and cations. In this
5
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model, in contrast to that considered in [10, 11], the
electric field in ice is screened by orientational L
defects rather than protons and hydroxyl ions. The fol-
lowing values of the parameters were chosen: the con-
centration of the initial solution 1022 m–3 [5], the anion
diffusivity 10–9 m2/s, the cation diffusivity 2 ×
10−9 m2/s, the distribution coefficient of anions 10–3,
and the distribution coefficient of cations 10–4 [10, 11].
The concentration of L defects in ice is 1022 m–3 [13]
and their diffusivity is 1.6 × 10–13 m2/s

Comparison of the curves in Fig. 3 shows that the
mechanism of charge separation at the crystallization
front in water, involving orientational defects, is the
most appropriate to describe experimental data at a
crystallization rate of about 10–5 m/s as compared to the
mechanisms based on other charge carriers. The ionic
model is valid for concentrated solutions.
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Abstract—Original data on the periodic formation of crack systems in growing crystals are obtained in exper-
iments on growing isomorphously mixed potassium–rubidium biphthalate crystals with a continuously varying
impurity concentration during crystal growth. The origin and conditions of the periodic formation of growth cracks
in crystals are explained using the previously developed computer model for calculating heterometry-induced inter-
nal stresses in isomorphously mixed crystals during their growth. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

In our earlier work [1], we developed an original
growth technique and performed experiments on grow-
ing large-sized potassium–rubidium biphthalate crys-
tals with the required properties for the purpose of pre-
paring crystals with continuously varying lattice
parameters, i.e., the so-called delta crystals, which are
of great interest for solving applied problems of X-ray
diffractometry. It was established that, in the majority
of growing crystals with a continuously varying com-
position, crack systems developed predominantly
either along the (001) plane in the second cleavage sys-
tem [2, 3] or along arbitrary directions in all growth
sectors. Continuous monitoring of the crystal growth
revealed specific features of the crack formation in
these crystals. It was found that, for the majority of the
growing crystals, the crack formation proceeded in sev-
eral (two or, more rarely, three) stages (Fig. 1). At the
first stage, i.e., within 4.0–4.5 h after the onset of the
crystal growth, individual cracks developed in different
growth sectors of the crystal over a short period of time.
Then, the crystal continued to grow and, after a certain
time (2–3 h), there occurred the second stage of the
crystal growth, during which a considerably larger
amount of cracks grew and propagated throughout the
crystal (Fig. 1). In the course of further growth of the
crystal, some of the propagating cracks reached grow-
ing faces and broke the uniformity of their structure,
thus initiating the splitting of the crystal during its
growth [4]. As a result, the growing individual ceased
to be monocrystalline: small subindividuals began to
grow on the faces, which resulted in a transition to the
polycrystalline growth. At this stage, the growth of
large-sized crystals, as a rule, stopped [1].
1063-7745/05/5006- $26.00 1061
RESULTS AND DISCUSSION

The computer model, which we previously devel-
oped for calculating heterometry-induced internal
stresses (arising both at the growth front and at an arbi-
trary point inside the growth sector of the face) in crys-
tals with a continuously varying composition during
their growth [5], makes it possible (in the elastic
approximation) to elucidate how the changes in the
composition of the growing faces, for example, in crys-
tal 3, affect the stresses in the course of the crystal
growth (Fig. 1). As can be seen from Fig. 2, the magni-
tudes of the maximum normal stresses σn (which are
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Fig. 1. Changes in the rubidium impurity content r (mol %)
with time τ (h) in each of the five potassium–rubidium biph-
thalate crystals 1–5 during their growth and the (1) first,
(2) second, and (3) third stages of crack formation.
© 2005 Pleiades Publishing, Inc.



 

1062

        

KUZ’MINA, BOLDYREVA

                                                                                  
responsible for the brittle strains in the crystal [6, 7])
and the stress intensities σi (which are responsible for
the plastic strains in the crystals [6, 7]) at the growth
front of the faces in all simple forms of isomorphously
mixed potassium–rubidium biphthalate crystal 3 pro-
gressively increase. For the crystal under consideration,
the maximum (in magnitude (modulus)) stresses are the
compressive normal stresses at the pinacoidal face,
which have negative values down to –1.0 × 108 N/m2.
When analyzing the processes of brittle deformation, it
is expedient to use the magnitude of normal stresses
arising in the crystal [6, 7] (unlike the magnitude of the
stress intensity, which is proportional to the cleavage
stress); in this case, the dominant role in the crack for-
mation is played by the tensile normal stresses [7, 8].
The specific feature of the heterometry-induced inter-
nal stresses in the crystals grown by us under conditions

0

4

10
τ, h
20

2

0

–2

–4

–6

–8

–10

6

8

10

σn

σi

(010)

(110)

(111)

σ, 107 N/m2

Fig. 2. Calculated (within the model of elastic stresses)
changes in the principal normal stress σn and in the stress
intensity σi at the growth front of the faces in all simple
forms of potassium–rubidium biphthalate crystal 3 (Fig. 1)
during its growth.
C

of progressive increase in the rubidium impurity con-
centration [1] resides in the fact that, initially, compres-
sive stresses arise at the growth front of the crystal faces
and, then, when the growth layers become internal for
the sector of the growing face, gradually decrease, go to
zero, and become tensile [5]. Figure 3 illustrates the
changes in the principal normal stresses arising in dif-
ferent domains of the growth sector of the (010) pina-
coidal face of crystal 3 during the growth of this face
(layers of the (010) pinacoidal face sequentially grow in
a direction parallel to the seed plate). Curves 1–4 in
Fig. 3 correspond to four growth layers formed in dif-
ferent times inside the growth sector of the pinacoidal
face of crystal 3 as this face grows. More precisely,
curve 1 corresponds to the stresses in the layer formed
near the seed plate (at a distance of 0.04 mm from the
seed), curve 2 indicates the stresses in the layer formed
within 4.4 h after the onset of the growth of the pinacoi-
dal face (at a distance of 0.61 mm from the seed),
curve 3 refers to the stresses in the layer formed within
7 h after the onset of the growth of the face (at a dis-
tance of 1.02 mm from the seed), and curve 4 shows the
stresses in the layer formed within 9.5 h after the onset
of the growth of the face (at a distance of 1.35 mm from
the seed). All these curves emerge from the points cor-
responding to the normal stresses at the growth front of
the pinacoidal face at the instant when the given layer
of the growing face is formed (Fig. 2). The normal
stresses at these points of the crystal change with time,
as is shown by curves 1–4 in Fig. 3. (According to the
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Fig. 3. Changes in the principal normal stress σn (within the
model of elastic stresses) in (1–4) four different growth lay-
ers inside the growth sector of the (010) pinacoidal face of
mixed potassium–rubidium biphthalate crystal 3 during
growth of this face and the hypothetical changes in the nor-
mal internal stresses after the (5) first and (6) second stages
of crack formation in the crystal (the horizontal dotted line
indicates the level of the actual ultimate stress of the potas-
sium biphthalate crystal under tensile stresses).
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estimates made by the researchers who grew crystals of
different compounds [9], the actual ultimate stress of
the crystals is found to be (1–5) × 10–4 E, which differs
from the theoretical ultimate stress estimated at 1.0 ×
10–1 E [8], where E is the Young’s modulus for a given
crystal. Therefore, the actual ultimate stress of potas-
sium biphthalate crystals does not exceed 1.0 × 10–3 E
and is approximately equal to 1.0 × 107 N/m2 [2].) The
heterometry-induced internal stresses arising in the
crystal near the seed plate (curve 1) transform rather
rapidly from compressive stresses into tensile stresses
and reach the actual ultimate stress within 4.5 h after
the onset of the growth of the crystal under consider-
ation (Fig. 3). It is in this time interval that the first stage
of the crack formation is observed in crystals with a
continuously varying composition (Fig. 1). At this stage
of the crack formation, all the cracks develop in the
vicinity of the seed plate in the inner domains of the
growing crystals. If the cracks do not reach growing
faces, the growth of the crystal is not upset but is even
accelerated (according to the measurements of the
growth rates of the crystals faces [1]) as a result of the
decrease in the total level of stresses in the crystal.

Then, it was assumed that, after the first stage of the
crack formation in the crystal under consideration, the
total level of stresses at the growth front of the pinacoi-
dal face decreases to zero. Under this assumption, we
introduced the corresponding parameters into the
model used for calculating the stresses. The results of
these calculations demonstrated that the changes in the
stresses in this domain of crystal 3 during its further
growth should correspond to curve 5 in Fig. 3. Subse-
quently, the stresses in this domain of crystal 3 changed
and reached the actual ultimate stress in approximately
2.5 h (curve 5 in Fig. 3). (Note that the total time of
crystal growth was equal to 7 h.) This time corresponds
to the onset of the second stage of the crack formation
in crystal 3 (Fig. 1). (In the case of incomplete weaken-
ing of stresses at the growth front of the pinacoidal face
due to the formation of cracks, the onset of the next
stage of their formation should be observed at a later
time as compared to that obtained in the calculation.)
Similarly, we assumed once more that the total level of
stresses at the growth front of the pinacoidal face
decreases to zero after the second stage of the crack for-
mation and, under this assumption, calculated the
changes in the stresses in this domain (formed in the
course of 7.0- to 7.5-h growth of the pinacoidal face) of
the crystal during its further growth (curve 6 in Fig. 3).
It turned out that these stresses change in the same man-
ner as in the preceding case and, after 2.5–3.0 h, reach
the actual ultimate stress. (The total time of crystal
growth was equal to 9–10 h.) It is at this instant of time
that the onset of the third stage of the crack formation
is observed in crystal 3 (Fig. 1). It was revealed that, at
this stage of the crack formation in crystal 3, a large
crack developed in the seed plate along the (010) plane
in the first cleavage system [2] in such a way that it vir-
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 6      200
tually separated the crystal into two independent
halves. Since the configuration of the seed plate and the
layer grown changed, the use of the model proposed in
[5] for calculating the stresses became impossible.
However, the experimentally observed appreciable
acceleration of the growth of the pinacoidal face [1]
indicates that the stresses at the growth front of this face
decrease significantly.

CONCLUSIONS
Thus, the observed periodic formation of intracrys-

talline cracks in growing isomorphously mixed potas-
sium–rubidium biphthalate single crystals with a con-
tinuously varying composition during the crystal
growth can be explained almost completely in terms of
the behavior of the heterometry-induced internal
stresses. These stresses initially arise at the growth
front of crystal faces and then gradually transform from
compressive stresses into tensile stresses inside the
crystal in the course of its growth. After the stresses
have reached the actual ultimate stress of the given
crystal, individual cracks or their systems are formed in
it. Since the crystals with a continuously varying com-
position during their growth are characterized by regu-
lar changes in the stresses both at the growth front and
inside the crystal, the tensile stresses in the inner
domains of the growing crystal reach the actual ulti-
mate stress at regular intervals, which results in the
periodic formation of cracks or their systems.
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Abstract—The influence of precursors on the single-crystal growth of BaCrO4 in the controlled reactions of
BaCl2 with K2Cr2O7, (NH4)2Cr2O7, and K2CrO4 in aqueous solutions is studied. The conditions of the reaction
of BaCl2 with K2Cr2O7 are found to be most favorable for single-crystal growth. A growth texture is observed
in the (011) and (100) planes in the samples prepared by the reactions with K2Cr2O7 and K2CrO4, respectively.
A more complex type of growth preference was observed in the reaction with (NH4)2Cr2O7. © 2005 Pleiades
Publishing, Inc.
INTRODUCTION

The ions with the 3d2 configuration (Cr4+, Mn5+, and
Fe6+) act as active luminescence centers in various crys-

tals [1]. In particular, Fe -containing systems have
properties of infrared laser materials [2]. Crystals of

chromates (Cr ) are suitable for doping with Fe
ions because they are isostructural with the correspond-
ing ferrates [2]. One of the problems related to applica-

tion of these materials is the growth of large Fe -
doped crystals of good optical quality.

The growth of BaCrO4 crystals by chemical reac-
tions in aqueous solutions was investigated in [3–6]. In
these studies, the influence of various factors on the
growth and structure of BaCrO4 crystals was examined.
For example, the effect of pH [4] and the influence of
organic admixtures modifying the crystal shape [3, 6]
were considered.

In this study we examined the specific features of
the growth of BaCrO4 crystals using different starting
components.

EXPERIMENTAL

Samples of BaCrO4 were prepared by spontaneous
crystallization in the chemical reactions of BaCl2 with
K2Cr2O7 (A), (NH4)2Cr2O7 (B), and K2CrO4 (C) in an
aqueous solution. The reactions were carried out by the
consecutive portionwise addition of the reagents to the
reaction volume [7]. The concentrations of the corre-
sponding components of reagent-grade purity (0.003–
0.0067 g/l for BaCl2 · 2H2O and 0.4 g/l for K2Cr2O7,
(NH4)2Cr2O7, and K2CrO4) and the volume of the
BaCl2 solution (0.05 ml), which was added at 30–300-s

O4
2–

O4
2–

O4
2–

O4
2–
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intervals, were the same in all three reactions. The start-
ing solutions had pH values of 4.2, 3.6, and 7.5 for
K2Cr2O7, (NH4)2Cr2O7, and K2CrO4, respectively.

The crystals grown were ground in an agate mortar
and their X-ray diffraction analysis was carried out on
a Siemens D5000 powder diffractometer using CuKα
radiation. The quality of the crystals was estimated
from their morphological features. This method
allowed us to visualize the process of the crystal
growth.

RESULTS AND DISCUSSION

It is known that the chromate form of soluble Cr

compounds is transformed into the Cr2  bichromate

form in an acidic medium, and, vice versa, the Cr2

bichromate form is transformed into the Cr  chro-
mate form in an alkaline medium. Solutions of chro-
mates and bichromates always contain certain amounts
of ions of another form. The solubility of BaCrO4 is
much lower than that of BaCr2O7. Hence, BaCrO4 pre-
cipitates in the reactions of Ba2+ with both chromate
and bichromate. The precipitation of BaCrO4 from

Cr2 -containing solutions leads to a shift of the equi-
librium

Cr2   Cr (1)

to the right, i.e., to the formation of Cr  ions.

The results of the pH measurements suggest that the

concentration of Cr  ions increases in the following
series of precursors: (NH4)2Cr2O7  K2Cr2O7 

O4
2–

O7
2–

O7
2–

O4
2–

O7
2–

O7
2–

O4
2–

O4
2–

O4
2–
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(a) (b)

(c) (d)

(e) (f)

(g)

Fig. 1. Crystals of BaCrO4 grown by chemical reactions from aqueous solutions at room temperature using various precursors:
(a) (NH4)2Cr2O7, (b, c, d) K2Cr2O7, and (e, f) K2CrO4. The latter gave (e) dendrites and (f) bulk crystals. (g) BaCrO4 crystals
grown by the gel method [4].
K2CrO4 . In turn, the rate of reaction (1) with potassium
bichromate may differ from the rate of the reaction with
ammonium bichromate. Therefore, the rate of the for-
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 6      200
mation of the Cr  chromate ion can be considered as
one of the limiting factors of the BaCrO4 crystalliza-
tion.

O4
2–
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Fig. 2. X-ray diffraction patterns of crystalline BaCrO4 precipitates obtained in the reactions of aqueous solutions of BaCl2 with
K2Cr2O7 (A), (NH4)2Cr2O7 (B), and K2CrO4 (C).
The crystal growth occurs differently depending on
the reagents used. The reaction of BaCl2 with the
reagent (NH4)2Cr2O7, having the highest acidity,
afforded predominantly a precipitate of druses of small
single crystals. When BaCl2 was added at a rate of 3.4 ×
10–7 g/min or slower, only a few millimeter-size crys-
tals grew (Fig. 1a), even at long-term growth (more
than 10 days).

The reaction of BaCl2 with K2Cr2O7 under the same
conditions yielded crystals after three to five days, and,
after ten days, the linear sizes of the crystals were as
large as several millimeters. These crystals were better
faceted and had well-developed prismatic planar faces
C

(Figs. 1b–1d). Precipitation of BaCrO4 crystals
occurred most rapidly (within one–two days) in the
reaction of BaCl2 with K2CrO4, but the precipitate con-
tained predominantly dendrites, which often formed
quasi-two-dimensional symmetric particles. Generally,
no further crystal growth occurred (Fig. 1e) and only
individual crystallites were observed (Fig. 1f). The
highest growth rate of BaCrO4 crystals in K2CrO4 solu-
tions and the specific morphology of these crystals can
be related to the highest concentration of chromate ions
in K2CrO4 solutions and, hence, the highest supersatu-
ration. This suggestion is also supported by the
observed fact that the growth of dendritic crystallites
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 6      2005
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was accompanied by the extensive spontaneous forma-
tion of new crystal seeds (nucleation).

The crystalline precipitates formed from different
precursors differ in color (greenish yellow, brownish
yellow, and golden yellow precipitates were obtained
from the precursors A, B, and C, respectively), which is
likely to be associated with the dimensions of single-
crystal precipitates and the presence of a growth tex-
ture. The single crystals obtained were semitransparent.

The X-ray diffraction spectra of the precipitates cor-
respond to the BaCrO4 compound (ICSD 62560)
(Fig. 2). At the same time, there are some differences in
the sample growth. The samples prepared from the pre-
cursors A and C are characterized by the presence of a
growth texture in the (011) and (100) planes, respec-
tively, whereas the sample prepared from the precursor B
is characterized by a more complex growth texture.

It should also be noted that the shape of these crys-
tals (Fig. 1d) differs from that of the crystals prepared
by the gel method [4, 5], where the same reagents were

used, whereas the Cr  to Cr2  ratio in solution
was varied by changing the pH (Fig. 1g). In addition, it
was established [4] that the crystal formation in the
reactions of BaCl2 with K2Cr2O7 and (NH4)2Cr2O7 at
pH 3 occurred in the same way. Prismatic nanocrystals
were obtained by using organic modifying agents
[3, 6].

CONCLUSIONS

The conditions for the growth of BaCrO4 single
crystals by chemical reactions in aqueous solutions of

O4
2–

O7
2–
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 6      200
the K2Cr2O7, (NH4)2Cr2O7, and K2CrO4 salts were
established.

In the studied ranges of reagent concentrations and
rates at which these reagents were added to each other,
K2Cr2O7 was found to be the most favourable precursor
for the crystal growth. (BaCl2 was added at a rate of
3.4 × 10−7 g/min.) BaCrO4 crystals grew also in a
(NH4)2Cr2O7 solution at a slower addition of BaCl2, but
they did not grow in K2CrO4 solutions under the condi-
tions examined in this study.
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Abstract—An approach to the refinement of crystal structures by reduced experimental data is developed. The
anisotropic method of intermeasurement minimization is used to refine the parameters determining the absorp-
tion of radiation in the cases when some factors are not known with sufficient accuracy: the specimen sizes, the
orientation of ellipsoidal specimens, the degree of perfection of spherical specimens, the elemental composition
of the unit cell, etc. Spherical and ellipsoidal crystals and crystals in the form of convex polyhedra are consid-
ered. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

As is well known, most methods for refining the
crystal structure are based on the kinematic diffraction
model. Various corrections are introduced to reduce the
measurement data to the corresponding scale. In this
study, we consider the problem of introduction of a cor-
rection for the absorption of radiation by a single-crys-
tal specimen bathing in the primary beam during a dif-
fractometric measurement.

In this approximation, the process of absorption can
be mathematically described quite exactly.1 The value
of the correction depends on the following factors: the
shape and orientation of a specimen and the value of the
linear absorption coefficient (atomic cross sections and
the unit-cell chemical composition).

The methods for taking into account the specimen
shape can be divided arbitrarily into two groups: calcu-
lations and empirical methods. Calculation methods are
based on the use of a priori known geometric character-
istics of a specimen, while empirical methods use the
measured values of integrated intensities. The empiri-
cal methods in which the shape of a crystal is described
by a model whose parameters are refined by minimiza-
tion of some functional should be selected into a sepa-
rate group. The calculation methods are divided into
numerical and analytical ones. In this study, elements
of both calculation and empirical methods are used.

Calculation methods are proposed for specimens
having shapes of a cylinder, sphere, ellipsoid, or convex
polyhedron, with known exact external sizes.

1 The complete literary review and references are accessible from
the author.
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For cylindrical and spherical specimens, the tech-
niques proposed in [1–4] are used. The corresponding
reference information can be found in the International
Tables for Crystallography [5]. It was proposed in [6] to
use Gaussian integration to calculate corrections for
polyhedral specimens. The use of the Gauss method for
ellipsoidal specimens was considered in [7] and this
method was developed in [8, 9]. Analytical methods
based on the partition of the crystal volume into ele-
mentary polyhedra (Howells polyhedra [10, 11]) were
applied in [12–17]. The most exact calculation algo-
rithm for the analytical method was found in [18, 19].

In empirical methods, the transmission surfaces are
constructed on the basis of different expressions, which
relate the integrated intensities and their average val-
ues. The azimuthal-scan data can be used in diffracto-
meters of different types: equiinclination (proposed by
Furnas [20, 21]), Weissenberg [22], and equatorial
[23, 24]. Equivalent reflections were taken into account
in [25].

The method proposed in [26] describes the model of
the specimen shape by Fourier series. In this method,
the corresponding coefficients are refined to decrease
differences between the integrated intensities of sym-
metrically related reflections. However, for mathemati-
cal convenience, it was proposed in [27] to replace Fou-
rier series by surface harmonics. To this end, normal-
ized spherical harmonics were used in [28]. The
harmonic coefficients are refined as parameters in min-
imization of differences between equivalent reflections,
obtained, in particular, by azimuthal scan.

If the shape parameters are refined in minimization
of differences between the symmetrically related
© 2005 Pleiades Publishing, Inc.
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reflections, the reduction to the absolute scale is per-
formed by introduction of an “equivalent” spherical
crystal. This is an evident drawback of minimization
methods since it is difficult to determine exactly the
radius of such a “crystal” (especially for polyhedral
specimens).

Another difficulty is that any method should be sta-
ble to correlations between the parameters of all aniso-
tropic effects occurring during the experiment. For
example, effects of anisotropic extinction, thermal dif-
fuse scattering (TDS), or simultaneous reflections may
compete with the effect of absorption on the reflection
intensities. Since the kinematic approximation is con-
sidered, the parameters determining all the above-men-
tioned effects also may undergo correlation distortions.
Note that this drawback is most characteristic of purely
empirical methods.

The first difficulty can be overcome easily if the
shape parameters are optimized in the conventional
refinement of a structural model. Such a method, based
on the use of Fourier series, was proposed in [29]. This
approach was implemented in the DIFABS program
[30, 31]. The AREN software also includes the corre-
sponding problem [32]. Unfortunately, in this calcula-
tion scheme, along with the extinction parameters,
some other parameters (primarily, the scale factor and
the thermal parameters) may be involved in the process
of correlation distortion. To reduce this negative effect,
a particular refinement procedure was proposed how-
ever, the efficiency of this procedure has not been estab-
lished.

The second difficulty, related to the correlations
between the parameters of all anisotropic effects, is
likely to have no solution (at least, when series are used
to describe the specimen shape and one data set).

Generally, the linear absorption coefficient, which is
necessary for calculations by any of the above-men-
tioned methods, is derived from the absorption cross
sections of the atoms entering the crystal unit cell. The
tables of theoretical cross sections can be found in
[5, p. 189]. It was noted in [5] that the differences
between the tabular data and the corresponding experi-
mental values are very large. The average value of these
differences can be estimated as 2–5%; some deviations
may exceed 30%. Therefore, the statement of the prob-
lem of refining the values of the cross sections on the
basis of the diffraction data seems to be quite justified.

One of the ways to decrease errors in correction of
the absorption effect is the method for refining the
anisotropic linear absorption coefficient by the experi-
mental azimuthal-rotation data [33]. However, in the
kinematic approximation, it is difficult to give a physi-
cal interpretation of the anisotropic absorption coeffi-
cient.

In some cases, some crystallographic positions are
characterized by mixed occupancies. The absorption
correction is generally introduced before the exact ele-
mental composition becomes known. Therefore, it is
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 6      2005
necessary to perform several processing cycles to fit the
absorption coefficient to the refined elemental compo-
sition. It would be useful to automate the calculations in
this scheme.

The use of different methods for taking into account
the radiation absorption showed that the most appropri-
ate structural results can be obtained when the speci-
men is a sphere or convex polyhedron. In this case, the
geometric characteristics of the specimen should be
known. The accuracy of empirical methods is insuffi-
cient for precise investigations. The methods based on
the construction of a multiparameter model of the trans-
mission surface using analytic functions may lead to
systematic errors. Thus, the existing methods for taking
into account the absorption in a wide range of experi-
mental situations have certain limitations.

It is noteworthy that, when an absorption correction
is introduced, it is necessary either to take into account
the effect of other anisotropic effects or to establish the
absence of the corresponding correlation distortions of
the shape parameters of the specimens [34]. The possi-
bility of such an analysis must be provided for the
investigation technique itself.

METHOD

The principle of intermeasurement minimization
[35] makes it possible to consider the question from
more general methodical positions. If some effect
(absorption in our case) leads to a difference in the
intensities of equivalent reflections, the parameters of
the model describing the effect anisotropy should be
sought for by minimizing the differences between
equivalent reflections. When the model must be
reduced to the absolute (kinematic) scale, one has to
minimize the conventional model–experiment func-
tional. If some parameters (for example, the specimen
sizes, extinction, and the scale factor) reveal a correla-
tion exceeding the allowable level, these parameters
must be refined using different experimental data sets.
In this case, both the experiment and its processing
should be planned so as to provide different data sets.
Fortunately, this condition is generally satisfied even in
routine investigations. To this end, it is sufficient to
carry out measurements in several symmetrically
related regions of the reciprocal space. The exception is
the crystals with the sp. gr. P1.

In this study, we undertook additional measures
aimed at decreasing the negative effect of the correla-
tion between parameters in minimization. This con-
cerns both the choice of a model for describing the
specimen shape and the choice of the calculation tech-
nique. The calculation method based on Gaussian inte-
gration [6, 9] is used. On the one hand, this approach
makes it possible to process specimens of all three basic
forms (sphere, ellipsoid, and polyhedron) in the same
way. On the other hand, the models using simple func-
tions (linear or quadratic) to describe the specimen
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shape are less flexible than the models using Fourier
series or spherical harmonics. This circumstance makes
the chosen models inertial and impedes correlations
with the parameters of other anisotropic effects. In
addition, there arises a unique possibility of visual con-
trol of the occurrence of correlation distortions of the
shape parameters.

The method is designed to refine the parameters
determining the radiation absorption in spherical and
ellipsoidal specimens and in specimens shaped as con-
vex polyhedra, when it is desirable to refine some fac-
tors determining the radiation absorption: the specimen
sizes, the orientation of ellipsoidal specimens, the
degree of perfection of spherical specimens, the chem-
ical composition of the unit cell, etc. The software is
based on the autonomous version of the program [9],
which was introduced into the ASTRA package [36].

As is known [5], the transmission factor A and the
inverse quantity—absorption factor A*—can be written
as

Integration is performed over the specimen volume V,
which depends on the shape parameters s. The linear
absorption coefficient µ depends on the atomic scatter-
ing cross sections σ and the chemical composition of
the cell. In other words, only the occupancies q of the
atoms in mixed positions can be varied. The sum of the
paths of the incident and diffracted rays T before enter-
ing and after passing an elementary scattering volume,
respectively, depends on the shape parameters s of the
specimen and the specimen orientation o. Separation of
the parameters describing the specimen orientation into
an individual group gives certain advantages in refining
the absorption parameters for specimens shaped as
ellipsoids or rectangular parallelepipeds. One can fix
the sizes of such specimens and refine only their orien-
tation (see APPENDIX).

Let the unaveraged data set (the index nAν) contain
Nn reflections (n = 1, …, Nn), the averaged data set (the
index Aνe) contain Na reflections (a = 1, …, Na), and
the number of equivalent reflections in group a be Ma.
We assume that Lorentz and polarization corrections,
TDS corrections, and multiple diffraction corrections
were introduced into the integrated intensities I. Then,
the expression relating the partially corrected measured
values Inobs and the calculated kinematic structure fac-
tors Fn has the form

where A is the transmission correction; k is the isotropic
scale factor; y is the extinction correction, which

A
1

A*
-------

1
V
--- µT–[ ] Vdexp∫

V

∫∫= =

=  
1

V s( )
----------- µ σ q,( )T s o,( )–[ ] V .dexp∫∫

V s( )
∫

In obs An s o σ q, , ,( )knAνyn s o σ q, , ,( )=

× Fn q Model,( ) 2 εn,+
C

depends on all parameters determining the absorption;
and ε are errors. The values of |Fn |2 depend on the occu-
pancies q of the atomic positions. All other parameters
of the kinematic model are denoted as Model.

Thus, in the problem under consideration, we can
determine three functionals, which will make it possi-
ble to separate the above parameters and avoid very
large correlations between them (anisotropic MMM
[37]):

where Iobs are the observed (measured) values; Fcalcd are
the corresponding calculated values; w are the weights
of unaveraged reflections; wa are the weights of aver-
aged reflections; wna are the weights taking into account
errors both in the averaged and unaveraged data; and α,
γ, and δ are the Lagrange multipliers. The averaged
integrated intensity is calculated from the data reduced
to absorption:

The number of independent values of  is equal
to Na; however, the δ functional contains Nn such values
since any unaveraged integrated intensity has a corre-
sponding averaged value. The weights of averaged
reflections can be calculated by both the conventional
technique used in averaging equivalent reflections and
taking into account the Abrahams–Keve test [38]. The
functionals Φα and Φcross are classical functionals for
the unaveraged and averaged data and Φδ is a δ func-
tional. The functionals Φα and Φδ depend on the same
set of parameters and experimental data. Therefore,
these functionals can be combined during the refine-
ment.

Calculation of the extinction from Φcross is per-
formed at fixed shape parameters of the specimen, i.e.,
at fixed values of its weighted mean absorption lengths,
but during variation of the linear absorption coefficient
µ(σ, q). If one has to determine if the extinction effect

Φα s o σ, ,( ) α wn

An* s o σ, ,( )In obs
nAν

knAν
--------------------------------------- Fn calcd

nAν 2
– 

 
2

,
n 1=

Nn

∑=

knAν kAνe const; q Model, const,= = =

Φδ s o σ, ,( ) δ wna An* s o σ, ,( )In obs
nAν

In obs
Aνe

–( )
2
,

n 1=

Nn

∑=

knAν 1; q Model,≡ const,=

Φcross Model kAνe q, ,( )

=  γ wa

Ia obs
Aνe

kAνeya q( )
----------------------- Fa calcd

Aνe
q Model,( )

2
– 

 
2

,
a 1=

Na

∑
s o, const,=

In obs
Aνe 1

Ma

------- Ak*Ik obs
nAν

.
k 1=

Ma

∑=

Ia obs
Aνe
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or the scale factor are anisotropic [34], their parameters
should be refined from the δ functional. In the latter
case, minimization of Φcross will be performed at kAνe =
1 and ya = 1 since the extinction contribution from the
data will be reduced and the data will be reduced to the
absolute scale.

The simplest way is to perform the classical full-
matrix refinement of all parameters using an unaver-
aged data set. As was noted in the Introduction, we are
not guaranteed in this case against the negative effect of
correlations in the chain shape–extinction–scale–ther-
mal vibrations. The advantages of using the averaged
data are also lost. (The relative accuracy of the results
is deteriorated.)

The number of calculation schemes arising in the
anisotropic intermeasurement minimization is very
large even when one data set is used. In this study, we
used the following MMM scheme. The sum of the func-
tionals Φα + Φδ of dimension 2Nn was used to refine the
shape parameters at fixed parameters of the kinematic
model. The data reduced to absorption were averaged
and only the kinematic model was refined by Φcross.
Then, the procedure was repeated automatically to
reach convergence (2–5 cycles). The δ functional Φδ is
most sensitive to the presence of anisotropy in the inte-
grated intensities of the unaveraged data set. The func-
tional Φcross provides the highest relative accuracy
owing to the averaging of measurements over the
ignored factors.

To determine the specimen shape by this method, it
is sufficient to have a preliminary structural model and
repeat calculations if the model composition changes.

CONCLUSIONS
The method proposed can be used to refine the

parameters of any anisotropic effects using a symme-
try-averaged data set. The results of the experimental
verification will be published in the second part of [34],
where, along with the absorption effect, the interdepen-
dent effect of anisotropic extinction will be considered
briefly.

APPENDIX

REFINEMENT OF THE ORIENTATION 
OF ELLIPSOIDAL SPECIMENS

The detailed description of the mathematical aspects
of the consideration of absorption was given in [9].
There may be a difficulty with determining the matrix
of the specimen orientation. Let the specimen be ellip-
soidal because the anisotropy of his mechanical proper-
ties impedes its shaping into an ideal sphere. In most
cases, the ellipsoid axes will be close to the axes of the
orthogonal coordinate system of the reciprocal unit
cell, determined in [39]. Then, the basic specimen-ori-
entation matrix will coincide with the inverse cell-ori-
entation matrix U–1 [40]. Otherwise, the additional rota-
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 6      2005
tion should be taken into account. It is proposed to
refine the angles of rotation of the ellipsoid axes with
respect to the axes of the reciprocal cell, αx, αy, and αz,
as parameters since the basic rotation of the cell with
respect to the laboratory coordinate system is known
exactly. If matrices of separate rotations are set in the
form

the general rotation of the specimen shape with respect
to the reciprocal cell will be M = MzMyMx. The rotation
of the ellipsoid with respect to the laboratory coordi-
nate system will be expressed in terms of the matrix
Mell = MU –1.

The direction cosines of the primary (Spri) and dif-
fracted (Sdfr) beams in the laboratory coordinate system
can be calculated before the beginning of the minimiza-
tion. Then, the desired cosines of the beams in the spec-
imen coordinate system will be

Thus, the initial data can be set in the form αx = αy =
αz = 0 with subsequent refinement of the angles αx, αy ,
and αz.
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Abstract—Electrons in each atomic orbital (s, p, d, f, and so on) form regular systems on a sphere, which can
be easily revealed when constructing Mendeleev’s periodic table. Electrons in orbitals (including hybrid orbit-
als) can be located only at the vertices of isogons: Platonic bodies; Archimedean bodies; and two infinite series
of prisms and antiprisms and their affine transforms, which retain the vertex transitivity. Electrons in crystal
structures are distributed over isogonal three-dimensional regular systems that are vertices of partitions com-
posed of isogons. © 2005 Pleiades Publishing, Inc.
WHAT DID MENDELEEV DO?
The series of 118 chemical elements with their

atomic numbers written in ascending order can be
unambiguously divided into seven periods of four dif-
ferent lengths (2, 8, 8, 18, 18, 32, and 32), each of
which ends with an inert gas and begins (except for the
first period) with an alkali metal. Writing the two last
periods one under another, we can see that this double
series can be divided into four subperiods with lengths
of 2, 14, 10, and 6 elements. In each such subperiod, the
elements with related chemical properties will be one
under another. These sets of elements are referred to as
s, f, d, and p elements, respectively.

The other five periods, on the basis of the chemical
relationship with the elements of the last two periods,
can be written unambiguously above them and the thus
obtained table turns out to be composed of rectangular
blocks: s (7 rows, 2 columns), f (2 rows, 14 columns), d
(4 rows, 10 columns), and p (6 rows, 6 columns).
Apparently, this is all we can say strictly about the peri-
odic table of elements presented on March 1, 1869, by
Dmitriœ Ivanovich Mendeleev (1834–1907), a young
professor of chemistry at St. Petersburg University. At
that time, only 64 atoms were known, the relationship
between atomic numbers and atomic weights had to be
violated twice (in the cases of Co, Ni and Te, I), and
some numbers (21, 31, 32) had to be omitted. In addi-
tion, inert gases and isotopes were unknown then.
Indeed, the periodic table of chemical elements could
only be seen in a dream at that time. However, the fun-
damental principle was found: seven periods divided
into four blocks with widths of 2, 6, 10, and (later) 14
elements (see table).

These data are quite sufficient to determine the sym-
metry of an atom. Free atoms in each of these blocks at
the lowest energy level are represented, respectively, by
1063-7745/05/5006- $26.00 0893
a circle, heptagonal antiprism, pentagonal antiprism,
and octahedron. The symmetries of the second and
third polyhedra are inconsistent with the symmetries of
Euclidean crystals and, in order to enter a crystal, poly-
hedra should either break the valence electron shells or
be crystallized with a non-Euclidean metric. The latter
case leads to the formation of nanocrystals.

SHOULD THE TABLE BE DIVIDED 
INTO GROUPS (8, 18, 32)?

Thus, Mendeleev’s periodic table began with the
version that is now referred to as superlong. Then, its
complication began, which some researchers (for
example, [1]) believe not to be justified always. There-
fore, in 1989, the International Union of Pure and
Applied Chemistry excluded the short form of the peri-
odic table from the educational literature, replacing it
by the long form, in which the f block is excluded from
the table framework, whereas the table is divided into
18 groups (in the literature published in Russia, the
periodic table is still divided into 8 groups). Indeed,
many problems related to the periodic table do not
require such detailed division of the elements (into 8,
18, and, all the more, 32 groups) at the first stages of
working with the table. It is much more important and
simpler to divide the table into four blocks (s, p, d, and
f), which is generally done by coloring the table in four
colors.

In addition, the atomic weight of an element can be
replaced by a number of neutrons in the most wide-
spread stable isotope of this element [2], which, in the
overwhelming majority of cases, simplifies calculation
significantly and makes it absolutely exact for the
22 elements that have only one stable isotope: Be, Al, P,
Na, Sc, Ti, Mn, Co, As, Nb, Rh, I, Cs, La, Pr, Tb, Ho,
© 2005 Pleiades Publishing, Inc.
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f107s2 5f117s2 5f127s2 5f137s2 5f147s2

t

Crystallographic version of Mendeleev’s periodic table

1 2
Elements with spherical symmetry

I H He
1s1 1s2

0 2

3 4

II Li Be
2s1 2s2

4 5

11 12

III Na Mg
3s1 3s2

12 12

19 20

IV K Ca
4s1 4s2

20 20

37 38

Elements with sevenfold symmetry
V Rb Sr

5s1 5s2

49 50

55 56 57 58 59 60 61 62 63 64 65 66

VI Cs Ba La Ce Pr Nd Pm Sm Eu Gd Tb
6s1 6s2 5d16s2 4f15d16s2 4f36s2 4f46s2 4f56s2 4f66s2 4f76s2 4f75d16s2 4f96s2 4

78 82 82 82 82 82 90 90 94 94

87 88 89 90 91 92 93 94 95 96 97 98

VII Fr Ra Ac Th Pa U Np Pu Am Cm Bk
7s1 7s2 6d17s2 6d27s2 5f26d17s2 5f36d17s2 5f46d17s2 5f67s2 5f76s2 5f76d17s2 5f86d17s2 5

Mn

25

3d54s2

30

number of protons

symbol of chemical element

electronic formula

number of neutrons in the mos

wide-spread natural isotope
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7 8 9 10

N O F Ne
2 2s22p3 2s22p4 2s22p5 2s22p6

6 7 8 10 10

15 16 17 18

P S Cl Ar
2 3s23p3 3s23p4 3s23p5 3s23p6

14 16 16 18 22

33 34 35 36

As Se Br Kr
2 4s24p3 4s24p4 4s24p5 4s24p6

42 42 46 46 48

51 52 53 54

Sb Te I Xe
2 5s25p3 5s25p4 5s25p5 5s25p6

70 70 74 74 78

83 84 85 86

Bi Po At Rn
2 6s26p3 6s26p4 6s26p5 6s26p6

26 126

115 116 117 118
C
R

Y
STA

L
L
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G

R
A

PH
Y

 R
E
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R

T
S      V
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Table (Contd.)

Elem

5 6

B C
2s22p1 2s22p

6

13 14

Elements with fivefold symmetry

Al Si
3s23p1 3s23p

14

21 22 23 24 25 26 27 28 29 30 31 32

Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge
3d14s2 3d24s2 3d34s2 3d54s1 3d54s2 3d64s2 3d74s2 3d84s2 3d104s1 3d104s2 4s24p1 4s24p

24 26 28 28 30 30 32 32 34 34 38

39 40 41 42 43 44 45 46 47 48 49 50

Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn
4d15s2 4d25s2 4d45s1 4d55s1 4d55s2 4d75s1 4d85s1 4d105s0 4d105s1 4d105s2 5s25p1 5s25p

50 50 52 56 58 58 60 60 66

71 72 73 74 75 76 77 78 79 80 81 82

Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb
4f145d16s2 5d26s2 5d36s2 5d46s2 5d56s2 5d66s2 5d76s2 5d96s1 5d106s1 5d106s2 6s26p1 6s26p

104 104 108 110 110 112 116 116 118 122 124 1

103 104 105 106 107 108 109 110 111 112 113 114

Lr Rf Db Sg Bh Hs Mt Fl
5f146d17s2 6d27s2 6d37s2 6d47s2 6d57s2 6d67s2 6d77s2
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Tm, Lu, Ta, Au, and Bi. Some problems can now be
solved at the level of integers (the mass number of an
element as the sum of protons and neutrons of its
nucleus) and, what is more, at the more/less level (the
rank formula of the composition [3]). The order of fill-
ing of orbitals by electrons is completely set by their
electronic formula, which is also given for each ele-
ment of the table. This approach removes the ambiguity
that arises in determining the position of lanthanum
(d or f) [4, 5]. However, the main essence of this
replacement is that Mendeleev’s periodic table, owing
to the indication of the number of neutrons in the stable
isotope, becomes more attractive for studying the crys-
tallography of the atomic nucleus [6]. This is a direct
way to the investigation of atomic nuclei. For this rea-
son, in the table proposed, the atomic masses of ele-
ments are replaced by the numbers of neutrons in the
corresponding isotopes that are the most widespread in
nature. 

The division of Mendeleev’s periodic table into four
blocks, which was carried out at the very beginning of
spectroscopic investigations [7], reveals a very deep
physical concept related to the representation of an
electron as a particle and the relationship between this
representation and the wave approach. An electron in
an atom forms a standing wave, which can be modeled
by the edge grid of an antiprism (Fig. 1) with equal
edges and an oddfold axis: (1, 3, 5, 7, …) [8]. For s, p,
d, and f electrons, this model will be, respectively, a
segment (Fig. 2a), an octahedron (Fig. 2b), a pentago-
nal antiprism (Fig. 2c), and a heptagonal antiprism

Fig. 1. Relationship between a de Broglie wave and an anti-
prism.
C

(Fig. 2d). Such representation of orbitals leads to
Fedorov isogons.

FEDOROV’S SUGGESTION

In 1880, the manuscript by Evgraf Stepanovich
Fedorov, a prominent crystallographer and geometer,
under the title “An Attempt to Describe Atomic Weights
by a General Law” was given to Mendeleev. (History is
silent about this event.) Seventy five years later, this
manuscript was found by Shchukarev and Dobrotin in
Mendeleev’s archives and published in the collected
works devoted to the 100th anniversary of the birth of
Academician Fedorov (1853–1919) [9]. Commenting
on this paper, Shchukarev and Dobrotin are inclined to
believe that Fedorov’s concept about the existence of
close packing of particles in an atom is related to
atomic nuclei rather than atoms themselves [10], hav-
ing focused their attention on the idea of closest pack-
ings, which was developed in detail by the prominent
crystallographer Belov (1891–1982) [11]. However,
Fedorov’s paper begins with the words “mankind seeks
regularity always and everywhere,” which could be a
leading idea for all his creative activity [12]. The well-
known Fedorov groups (not “so-called” [13] but dis-
crete groups of motions of the Euclidean space with a
finite independent region) are the brightest example of
regularity which nature obeyed by arranging atoms in
crystal structures according to the laws of these groups.
Fedorov groups became a strict criterion for distin-
guishing crystal structures from all other atomic aggre-
gates.

However, regular closest packings are a particular
case of the manifestation of regularity. Let us cite some
passages from Fedorov’s work, which show that his
understanding of regularity was wider and included the
regularity of individual atoms [9]:

“Atoms, in turn, consist of particles even more ele-
mentary (and, at the same time, identical) …, the sur-
face of an atom is the most important chemical agent,
determining the proceeding of a chemical reaction …,
small bodies forming an atom are spaced, like planets,
at rather large distances rather than close to each other …,
(a) (b) (c) (d)

Fig. 2. Figures representing the s, p, d, and f orbitals: (a) segment, (b) octahedron, (c) pentagonal antiprism, and (d) heptagonal
antiprism.
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a system can be sufficiently stable not at any number of
such small bodies ….”

Hence, the discovery of an electron could be attrib-
uted to Fedorov, actually, in accordance with his claim
[14].

Adding Fedorov’s supreme understanding of regu-
larity to the above-said, it can be concluded easily that
electrons should be arranged regularly. If it is asked
whether it is possible to derive the regularity of electron
arrangement from Mendeleev’s periodic table, we
should say yes. The above-noted isogons are specifi-
cally regular representations of atomic orbitals.

ELECTRON ORBITALS—REGULAR SYSTEMS 
OF POINTS ON A SPHERE

The main specific feature of atoms in each of four
blocks is that their electron shells contain the same
number of vacancies: 2, 6, 10, and 14 (in the s, p, d, and
f orbitals, respectively). The vacancies are identical in
each of these orbitals. Therefore, they form regular sys-
tems on a sphere. Each such regular system is a set of
the vertices of an isogon—polyhedron, all vertices of
which are equivalent in the group of its symmetry. Such
polyhedra are Platonic bodies; Archimedean bodies;
two infinite series of prisms and antiprisms; and their
affine transforms, retaining transitivity of the vertices.
Figure 3 contains all combinatorially different isogons,
which are presented by their most symmetric represen-
tatives. Electrons on a sphere can reach a stable state
being located only at the vertices of these polyhedra
[15] (in contrast to [16]). Generally, a system of identi-
cal particles will be stable only when these particles
form a regular system of points (on a sphere, in Euclid-
ean space, and in Lobachevsky space, i.e., in all spaces
of constant curvature). All vertices of these isogons are
occupied equiprobably by electrons, independent of
their number in this orbital. The configuration of these
orbitals can be repeated in molecules.

An individual atom or an aggregate of atoms is most
stable when all its orbitals are filled (filled orbitals are
closed into compact locally Euclidean varieties, which
are self-sufficient and, in the ideal case, do not affect
other orbitals) and the p orbital is the last one. Such
properties are typical of inert gases. Hybridization
(aggregation) of orbitals and their decay are also shown
in Fig. 3. For example, association of an s orbital with
a d orbital gives rise to an icosahedral orbital, while a d
orbital may decay into a p orbital (a regular octahedron)
and a regular tetrahedron [17].

At the atomic level, this model can be justified phys-
ically by the words of the prominent physicist Richard
Feynman (1918–1988): “if the arrangement of atoms in
some place corresponds to the lowest energy, this
arrangement will be repeated by atoms in some other
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 6      2005
place” [18]. However, the existence of groups cannot be
derived directly from this consideration. To implement
them physically, these finite arrangements must have
the property of the so-called unambiguous reconstruc-
tion [19].

The orbitals of Rydberg atoms (i.e., atoms with
excited electron shells [20]) of large periods can only
be prisms and antiprisms with a large number of verti-
ces (Fig. 4).

NONCRYSTALLOGRAPHIC ORBITALS

Note that the polyhedra modeling d and f orbitals
have noncrystallographic symmetry. Therefore, atoms
with unfilled d and f orbitals cannot directly enter a
crystal. For this reason, the corresponding chemical
elements are rare and trace. To enter a crystal growing
in Euclidean space, such atoms must reconstruct or
destroy the electron shells with noncrystallographic
symmetry. (There may be even two such shells, for
example, in the uranium atom.) At the same time, other
spaces of constant curvature (spherical and hyperbolic)
allow for the existence of crystals with such atomic
symmetry. A striking example is fullerene C60—a
spherical crystal shaped as a truncated icosahedron (see
Fig. 3). However, fullerene is a slightly deformed
Archimedean body since it has bonds of two types: sin-
gle and double. All three geometries of the spaces of
constant curvature are Euclidean in small scale. There-
fore, nanocrystals can have any geometry. For example,
carbon can form not only regular hexagonal nets
(graphite) but also heptagonal ones [21]. The latter reg-
ularly divide the Lobachevsky plane, which cannot be
inserted into a 3D Euclidean space [22]. Therefore,
when such a net becomes sufficiently large in size, it is
divided into nanocrystals. For example, dolomite pow-
der arises [23].

In this year, we celebrate the 100th anniversary of
the theory of relativity. The essence of this theory is that
as a result of some physical phenomena space acquires
negative curvature (becomes a hyperbolic space, which
was discovered in 1826 by N.I. Lobachevsky (1792–
1856)). The growth of crystals from f atoms can be con-
sidered a possible reason for the occurrence of negative
curvature. “During the growth, crystals change the cur-
vature of space,” was noted by the discoverer of long-
range order in plasma, A.A. Vlasov (1908–1975) [24].

THE FUNDAMENTAL THEOREM OF DISCRETE 
PLANE GEOMETRY

To derive all different isogons (regular graphs on a
sphere), as well as regular graphs and regular tilings on
a plane, the generalized Euler’s formula is used. Let a
graph be located on a plane or on a sphere. We will
define the face formed by the graph on the plane
(sphere) as follows: a set of all points of the plane
(sphere) that can be reached from a particular point of
this plane (sphere), which does not coincide with any
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Platonic bodies

Archimedean bodies

Tetrahedron
413m–24

Cube (hexahedron)
m3m–48

Octahedron
m3m–48

Icosahedron
53m–120

Dodecahedron
53m–120

Truncated

413m–24
tetrahedron

Truncated

m3m–48
cube

Truncated

m3m–48
octahedron

Cubo-

m3m–48
octahedron

Rhombocubo-

m3m–48
octahedron

Snub

432–24
cube

Truncated

m3m–48
cubooctahedron

Truncated

53m–120
dodecahedron

Truncated

53m–120
icosahedron

Icosido-

53m–120
decahedron

Rhomboicosi-

53m–120
dodecahedron

Snub

53m–60
dodecahedron

Truncated

53m–120

icosido-
decahedron

Prisms

Antiprisms

Fig. 3. Isogons representing all allowable orbitals and all their hybridizations.
graph vertex and does not lie on any graph edge, by the
path lying in the plane (on the sphere) and passing
through neither vertex and intersecting neither edge.

Formulation of the Fundamental Theorem 
of Discrete Plane Geometry

If a graph has F faces, V vertices, E edges and C
components, the following relation holds true: V – E +
F = C + 1 [25].

Proof. Let us remove edges of the graph one by one,
leaving vertices at its ends. The formula is retained. In
the end, we have only vertices (components) and one
face; i.e., the entire plane excluding these vertices.
Therefore, V + 1 = C + 1, which is true because V = C.
C

Restoring all edges in reverse order one by one, we find
that the initial parts are also equal to each other.

If we project a convex polyhedron on a sphere with
a center lying in the polyhedron, the set of its vertices
and edges will yield a graph on the sphere, composed
of one component; i.e., V – E + F = 2. For isohedra,
Euler’s formula can be written as

F – F*k/2 + F(1/α1 + 1/α2 + …+ 1/αk) = 2, 

where k is the number of edges in a face (each edge
belongs to two faces); α1, α2, …, αk are the numbers of
edges convergent in each vertex; and 1 – k/2 + 1/α1 +
1/α2 + … + 1/αk = 2/F, 2 < k < 6.

All solutions to Euler’s formula for isogons

V – V *k/2 + V(1/α1 + 1/α2 + … + 1/αk) = 2, 
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where k is the number of edges corresponding to a ver-
tex; α1, α2, …, αk are the numbers of vertices in each of
the k faces convergent in one vertex; and 3 ≤ k ≤ 6, are
represented in the form of polyhedra (see Fig. 3).

Euler’s formula for regular tilings on a Euclidean
plane can be written as

1/α1 + 1/α2 + … + 1/αk = k/2 – 1,

where k is the number of sides of a polygon; α1, α2, …,
αk are the numbers of polygons convergent in each of k
vertices of a polygon (tile); and 3 ≤ k ≤ 6.

Euler’s formula for regular isogonal nets has the
form

(1/α1 + 1/α2 + … + 1/αk) = k/2 – 1, 

where k is the number of edges convergent in one ver-
tex; α1, α2, …, αk are the numbers of edges in each of k
polygons convergent in one vertex; and 3 ≤ k ≤ 6. There
are 11 such combinatorially different nets [Fig. 1 in 12].
They were introduced for the first time by the founder
of the Institute of Crystallography, A.V. Shubnikov
(1887–1970), for simulation of crystal growth. Euler’s
formula for a hyperbolic plane has the form V – E + F <
0. It can be easily seen from this formula that the num-
ber of Fuchsian groups is infinitely large since a hyper-
bolic plane can be partitioned regularly by any regular
polygon, even by an infinite number of different ways.
The generalized Euler’s formula for spheres with holes
is V – E + F ≥ 2.

Three-dimensional (although incomplete) analogs
of Shubnikov nets are Andreini partitions [26, table].
Atoms arranged in a regular Andreini system can be
considered an infinite orbital for electrons (band). A
filled band is a plasma crystal composed of electrons
[27]. The rules for filling such bands were reported in
[28]. The fundamental importance of Mendeleev’s
diagonal rows in studying isomorphism was also shown
in [28]. The probabilistic methods for studying isomor-
phism were described in [29].

NANOCRYSTALS

Matching of equivalent points at the boundaries of
independent regions of Fedorov groups leads to com-
pact locally Euclidean varieties (torus, Klein bottle,
Mobius band, etc.). This matching has not only mathe-
matical [30, 31] but also physical meaning [32]. The
above-considered atomic orbitals have such a nature.
Hence, each atom can be represented by compact
locally Euclidean varieties of those Fedorov groups in
which it can be crystallized. When an object is closed
into a compact locally Euclidean variety, it is no more
related to the entire surrounding world, becomes self-
sufficient, and has no surface; i.e., in some sense, it dis-
appears. Filled atomic orbitals do not interact with each
other. Such orbitals exist in nanocrystals [33], and the
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 6      2005
absence of interaction is the reason for their superfluid-
ity. Note that, if the groups generated by reflections, are
excluded an independent region of a group can be cho-
sen by many different ways. However, the variety is
recovered unambiguously from the independent region,
no matter how it was chosen.

The formation of nanocrystals satisfies the tendency
of atoms to be regular and form finite sets. Linear
atomic chains (one-dimensional (1D) linear crystals)
always tend to decay into rings (1D spherical crystals).

Fig. 4. Rydberg atoms.

He

Ne

K

H

F

Ar Cl S

Y Si
Rb

Kr Br Se

Ir
Ba

Ce Xe
I Te

Ra
Rn

Po

Elementarium

Fig. 5. Spiral Mendeleev’s periodic table.
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For example, soot is formed from carbines in such a
way. Nanocrystals obey both the Shubnikov topologi-
cal theorem [34] and the Shubnikov crystallochemical
law [35, 36].

THE HEURISTIC ROLE OF CRYSTALLOGRAPHY 
IN MODERN SCIENCE

The model of the universe in the form of a crystallo-
graphic variety was proposed by Poincaré [37]. It is
possible that this idea, as well as some others (Fuchsian
groups, Lorentz groups, etc.) came to Poincaré owing
to the comprehensive crystallographic education he
received at the Mining Institute [38]. The prominent
geometer B.N. Delone (1890–1980) also studied a
complete course of crystallography (including labora-
tory practice and expeditions) in the Mining Institute,
while he was a professor of mathematics at Leningrad
University. His pupil D.K. Faddeev (1908–1989), a
well-known expert in algebra, gave a special course of
mathematical crystallography for many years at the
same institute. Faddeev’s tables of representations of
Fedorov groups [39] are most appropriate for the prob-
lems related to the prediction of structures of crystals
from given electron formulas of the atoms entering
these crystals. Note that the spiral form of Mendeleev’s
periodic table [40] (Fig. 5) was proposed by the profes-
sor of mechanics N.B. Delone, father of B.N. Delone.

Contemporaries of the great scientist Louis Pasteur
(1822–1895) believed crystallography to be science of
all sciences. Therefore, the relationship between crys-
tallography and Mendeleev’s periodic table is not acci-
dental. B.N. Delone in his paper “Fedorov as a Geom-
eter” [41] noted that the greatest representatives of
exact natural sciences in Russia were Lobachevsky,
Mendeleev, and Fedorov. Mendeleev’s periodic table is
a kind of synthesis of prominent achievements of not
only these researchers but all mankind.
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Abstract—The crystal structure of the dioctahedral celadonite mica 1M (space group C2/m; R, 2.98%;
184 unique reflections) is refined from the oblique-texture electron diffraction patterns obtained with the use of
imaging plates. The maximum characterizing the location and potential of the hydrogen atom of the hydroxyl
group oriented into the unoccupied trans octahedron at an angle of 4.4° with respect to the ab plane is revealed
from the difference Fourier-potential syntheses. The O–H interatomic distance is equal to 0.98 Å. The super-
structure reflections observed in the selected-area electron diffraction patterns for a number of particles arise
from the superposition of two cells, namely, the main cell with a broken base-centered symmetry and the base-
centered supercell with the triple parameter a. These reflections are caused by the ordered distribution of the
trivalent and divalent cations Fe and Mg over the octahedral cis positions. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

Celadonites belong to dioctahedral potassium micas
in which the octahedral positions 2 : 1 in layers are
almost equally occupied by trivalent and divalent cat-
ions with a predominance of the Fe3+ cations among the
octahedral cations. Celadonite has the ideal crystal
chemical formula K(Fe3+,Al)(Mg,Fe2+)Si4O10(OH)2 .
Upon limited replacements of Si by Al in the tetrahedra,
the layer charge is determined by the content of divalent
cations in the octahedra.

Structural investigations of celadonite have been
carried out only by electron diffraction methods
because of the finely dispersed form of the celadonite
samples. Zvyagin [1] was the first to perform an
electron diffraction study of celadonite of the polytypic
modification 1M (Pobuzh’e, Ukraine). More accurate
structural data were obtained for the celadonite
1M from the Krivorozhskiœ iron-ore basin (Ukraine)
[2]. The parameters of the base-centered monoclinic
cell of   celadonite with the crystal chemical for-

mula (K0.83Na0.01Ca0.04)( Mg0.41Al0.05)Ti0.01 ·
(Si3.94Al0.06)O10(OH)2 are as follows: a = 5.23 Å, b =
9.055 Å, c = 10.15 Å, and β = 100°35′. According to the
ratio Mg/(Mg + Fe2+) = 0.53, the sample studied is sim-
ilar to ferroceladonite [3]. The use of the oblique-tex-
ture electron diffraction patterns recorded with a high-
voltage electron diffraction camera, as well as the
visual evaluation of the intensities in micrographs with
multiple exposures, made it possible to determine the
statistical distribution of the octahedral cations over the
cis positions in the celadonite structure (space group
C2/m, R = 10.8%); the average interatomic distances

Fe1.15
3+

Fe0.36
2+
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M–O = 2.045 Å, T–O = 1.635 Å, and K–O = 3.075 Å;
and the angles of ditrigonal rotation of the octahedron
bases ϕ = 2.3° and tetrahedron bases ψ = 1.3° [2].

Using the electrometric recording of the intensities
of reflections in the oblique-texture electron diffraction
patterns, Tsipurskiœ and Drits [4] refined the structure of
the celadonite 1M from Zaval’e (Pobuzh’e, Ukraine).
It was found that this celadonite has a structure with the
parameters of the base-centered monoclinic cell
a = 5.223 Å, b = 9.047 Å, c = 10.197 Å, and β = 100.43°
and the crystal chemical formula

(K0.89Ca0.10)( Mg0.73Al0.05)(Si3.94Al0.06)O10(OH)2

(R = 5.1%). The revealed lowering of the symmetry to
C2 was explained by the predominant location of Fe3+

cations in one of the two nonequivalent cis octahedra.
The average interatomic distances are as follows:
M−O = 2.027 and 2.060 Å, T–O = 1.616 and 1.618 Å,
and K–O = 3.103 Å. The angle of ditrigonal rotation of
the octahedron bases is equal to 0.54°, and the angles of
ditrigonal rotation of the tetrahedron bases are 3.9° and
1.3°. The hydrogen atom inside the empty trans octahe-
dron (the angle between the O–H bond and the layer
plane is 14°) was located from the difference Fourier-
potential syntheses. The O–H interatomic distance is
0.8 Å.

In this respect, it was of special interest to refine the
celadonite structure from the oblique-texture electron
diffraction patterns obtained with imaging plates.
Experience on the application of digital imaging plates
(DITABIS, Germany) in the study of layered minerals
has opened up strong possibilities for their use in elec-
tron diffraction investigations. Owing to the wide
dynamic range and the linearity of signal transmission,

Fe0.90
3+

Fe0.32
2+
© 2005 Pleiades Publishing, Inc.
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all intensities of the reflections observed in the oblique-
texture electron diffraction pattern can be recorded with
the use of only one imaging plate [5]. The refinement of
the crystal structure of brucite Mg(OH)2 (R = 3.4%)
from the oblique-texture electron diffraction patterns
made it possible to reveal fine features in the brucite
structure, such as the statistical distribution of hydro-
gen atoms over three positions located around the
threefold axes, and clearly demonstrated the efficiency
of using imaging plates in electron diffraction structure
analysis, specifically in the study of hydroxyl-contain-
ing minerals [5].

EXPERIMENTAL TECHNIQUE

The structure of the previously studied celadonite
sample from Krivoœ Rog [2] was refined from the digital
oblique-texture electron diffraction patterns measured
using a high-voltage electron diffraction camera with
imaging plates (resolution, 25 µm) and a DITABIS
laser scanner. The intensities of diffraction reflections
were estimated from the radial intensity distribution
profiles obtained with the MICRON program package
(DITABIS) [5]. The reflection profiles were approxi-
mated according to the Gaussian–Lorentzian Sum
(Area) formula after subtracting the background (the
PeakFit program). The intensities of the diffraction
reflections were determined as the areas under the
approximating curves. Partially overlapped or closely
spaced reflections were separated using the profile
analysis. The intensities of the reflections coinciding in
the oblique-texture electron diffraction patterns were
determined under the assumption that they are propor-
tional to the corresponding values IFtheorI2. The struc-
ture amplitudes were calculated from the intensities
according to the following formula for local intensities:

IFhklIexp = , where the indices hk0
refer to the reflections of the same ellipsis as the reflec-
tions with the indices hkl and p is the multiplicity factor
[6]. The structural calculations were performed with
the AREN-90 program package [7] and the electron
atomic scattering factors for neutral atoms. We used
184 unique reflections with the maximum indices l = 12
in 12 ellipses up to sinθ/λ = 0.69 Å–1. The parameters
of the base-centered monoclinic cell [a = 5.227(2) Å,
b = 9.053(2) Å, c = 10.153(3) Å, and β = 100.53(3)°]
were calculated from the electron diffraction patterns
measured with TlCl as an internal standard. The analy-
sis of the intensities demonstrated that scattering for the
majority of the reflections occurs according to the kine-
matic law. The intensities of eight strong reflections
were corrected for primary extinction in the Blackman
two-wave approximation [8] for the calculated average
effective thickness of crystallites tav = 490 Å.

The celadonite structure was refined in the space
group C2/m and also in the space group C2 in order to
reveal the possible ordering of octahedral cations. As
the starting models, we used the atomic coordinates

Ihklexp/dhkldhk0 p
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taken from [4] for the celadonite structure refined in the
space group C2; the atomic coordinates in the space
group C2/m, which were determined by averaging the
coordinates of the atoms related by the m pseudoplane
in the space group C2 [4]; and the atomic coordinates
obtained in [2]. It should be noted that, in the starting
models with space group C2, we varied the distribu-
tions of octahedral cations over two nonequivalent cis
positions. It turned out that, when refining the models
in the space group C2, the standard deviations of the
coordinates of the atoms located in the vicinity of the m
pseudoplane are considerably larger than those of the
other atoms. Moreover, the average T–O distances in
two tetrahedra also differ from each other. Crystal
chemically, this is not justified in terms of the insignif-
icant substitution of Al atoms for Si atoms in tetrahedra
of the celadonite structure. For this reason, further
refinement of the celadonite structure was carried out in
the space group C2/m. A similar situation was consid-
ered in detail when refining the structure of the musco-
vite 1M [9].

After the least-squares refinement of the non-hydro-
gen atoms and their thermal parameters in the anisotro-
pic approximation, the maximum associated with the
hydrogen atom of the hydroxyl group was revealed
from the difference Fourier-potential syntheses (Fig. 1).
The final refinement of the celadonite structure was
performed in the anisotropic approximations for all the
atoms to R = 2.98%. The atomic coordinates and the
anisotropic thermal parameters are presented in
Table 1. The interatomic distances are given in Table 2.
The projection of the structure onto the ab plane is
depicted in Fig. 2.

RESULTS AND DISCUSSION

It is established that celadonite from Krivoœ Rog is
characterized by a statistical distribution of octahedral
cations with the average interatomic distance M–O =
2.042 Å and the shortest distance M–OH = 2.025 Å.
The octahedra are slightly oblate; the average distances
(O–O)base and (O–O)side are equal to 2.945 and 2.831 Å,
respectively; and the height of the octahedral sheet is
2.263 Å. The octahedron bases are rotated through the
angle ϕ = 2.56°.

The tetrahedra are elongated along the normal to the
layers. The average distances (O–O)base and (O–O)side
are equal to 2.613 and 2.665 Å, respectively. The tetra-
hedral cations are displaced to the Oapex atom shared by
the octahedral and tetrahedral sheets. The T–Oapex and
(T–Obase)av distances are equal to 1.598 and 1.623 Å,
respectively. The average T–O distance is 1.617 Å. The
surface of the basal tetrahedral oxygen atoms is puck-
ered. The Obase atom lying in the m plane is located
0.032 Å closer to the octahedral sheet as compared to
the other Obase atom.

For a small angle of ditrigonal rotation of the tetra-
hedron bases (ψ = 0.5°) and a small interlayer displace-
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ment (t = 0.003), the interlayer cations K are located in
a nearly regular hexagonal prism with average (K–
O)inner and (K–O)outer distances equal to 3.084 and
3.107 Å, respectively [(K–O)av = 3.096 Å]. For a small
interlayer displacement t, the value of –ccosβ/a =

0.3

0.2

0.1

0

x

–0.15 –0.05 0.05 0.15
y

z = 0.095
(a)

57

(b)
x = 0.195

0.25

0.15

0.05

–0.05
–0.1 0 0.1

y

z

Fig. 1. Difference Fourier synthesis sections passing
through the hydrogen atom and parallel to (a) the ab plane
and (b) the bc plane of the celadonite structure. The con-
tours are drawn at an interval of 10 V. Numbers indicate the
potential at the maximum.

57
C

0.355 (the ideal value is 1/3) is provided by the intra-
layer displacement s = 0.321.

Compared to our earlier work [2], this study of the
celadonite structure with modern digital methods used
for recording the diffraction patterns made it possible to
substantially refine a number of fine features in the
celadonite structure. In particular, it should be noted
that the data obtained in our present work confirmed
neither the increase in the average T–O distance nor the
ratio between the T–Oapex and (T–Obase)av distances,
which were found in [2].

The fact that we succeeded in determining the loca-
tion and specific features of the hydrogen atom of the
OH hydroxyl group is of particular importance. As can
be seen from the difference Fourier-potential syntheses
(Fig. 1), the maximum attributed to the hydrogen atom
has an anisotropic shape and is extended in the ac
plane. This agrees with the established anisotropy of

O(2)

O(1)

T

M

b

a

O(4)

K

H

O(3)

Fig. 2. Schematic drawing of the celadonite structure in the
normal projection onto the ab plane. Heavy solid lines indi-
cate the upper bases of the octahedra, heavy dashed lines
correspond to the lower bases of the octahedra, thin solid
lines represent the upper bases of the tetrahedra, and thin
dashed lines show the lower bases of the tetrahedra.
Table 1.  Atomic coordinates and anisotropic thermal parameters (Å2 × 10–4) for the celadonite structure

Atom x/a y/b z/c B11 B22 B33 B12 B13 B23

K 0.5 0 0.5 48(14) 18(5) 34(5) 0 12(11) 0

M 0.5 0.1663(2) 0 44(7) 16(3) 18(3) 0 8(7) 0

T 0.4139(3) 0.3329(2) 0.2736(1) 53(8) 19(3) 18(3) 4(9) 16(7) 0

O(1) 0.1879(6) 0.2507(3) 0.3348(3) 81(16) 36(6) 24(4) –18(11) 7(11) 5(6)

O(2) 0.4426(7) 0.5 0.3315(3) 108(19) 20(7) 34(6) 0 11(17) 0

O(3) 0.3684(5) 0.3257(3) 0.1137(3) 115(16) 28(5) 32(4) 22(13) 22(12) –13(7)

O(4) 0.3954(7) 0 0.1126(4) 56(20) 21(6) 30(6) 0 13(18) 0

H 0.204(6) 0 0.105(3) 579(141) 54(39) 137(46) 0 19(114) 0
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 6      2005
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Table 2.  Interatomic distances (Å) in the celadonite structure

Octahedron

M–O(3) × 2 2.044(3) Base edges Side edges

–O(3') × 2 2.057(3) O(3)–O(3') × 2 2.951(4) O(3)–O(3') 2.895(4)

–O(4) × 2 2.025(3) O(3')–O(4) × 2 2.931(4) O(3')–O(4) × 2 2.917(4)

Average 2.042 O(4)–O(3) × 2 2.952(3) O(4')–O(4) 2.708(5)

Average 2.945 O(3)–O(3') × 2 2.774(3)

O(4)–H 0.98(2) Average 2.831

Tetrahedron

T–O(1) 1.613(4) Base edges Side edges

–O(1') 1.638(3) O(1)–O(1') 2.163(4) O(3)–O(2) 2.686(4)

–O(2) 1.619(2) –O(2) 2.603(3) –O(1') 2.633(4)

–O(3) 1.598(3) O(2)–O(1') 2.623(3) –O(1) 2.674(4)

Average 1.617 Average 2.613 Average 2.665

Interlayer spacing

K–O(1') × 4 3.077(3)

–O(2') × 2 2.097(3)

–O(1) × 4 3.102(3)

–O(2) × 2 3.118(4)

Mean 3.096

Note: O and O' are the oxygen atoms related by the symmetry elements.
thermal vibrations of the hydrogen atom and reflects
different configurations of the Fe and Mg trivalent and
divalent cations distributed statistically over the cis
positions in the nearest environment of the hydrogen
atom. The O–H bond is oriented toward the empty octa-
hedron and forms an angle of 4.4° with the ab plane
(the hydrogen atom is slightly displaced inside the
empty octahedron). The O–H interatomic distance is
equal to 0.98(2) Å.

It should be noted that, among the dioctahedral
micas, only the celadonite structure is characterized by
the displacement of the hydrogen atom of the hydroxyl
group inside the empty octahedron. In muscovites, the
hydroxyl group is oriented toward the empty octahe-
dron at an acute angle (15°–17°) with respect to the
plane of the layer from the octahedral sheet [10]. The
orientation of the hydroxyl group into the empty octa-
hedron in the celadonite structure favors the interaction
of the interlayer K cation with the oxygen atom of the
hydroxyl group (the interatomic distance K–OH =
3.870 Å is the shortest among those observed in the
mica structures). In the mica structures, this is the only
oxygen atom that is located in the octahedral sheet at a
sufficiently short distance from the interlayer cation
and, moreover, is not shielded by the basal oxygen
atoms. For a relatively weak interaction of the K cation
with the basal oxygen atoms due to an insignificant
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 6      2005
substitution of Al atoms for Si atoms in the tetrahedra,
the interaction of the K cation with the oxygen atom of
the hydroxyl group is an important factor stabilizing the
celadonite structure. This can be judged, in particular,
from the small interlayer spacing (3.325 Å as compared
to c ≈ 3.40 Å in muscovites), which is observed when
the basal oxygen atoms of the adjacent tetrahedral
sheets are superposed in the projection onto the ab
plane. This superposition is favored by the small nega-
tive charge of the Obase atoms. In the present work, the
angle of deviation of the O–H bond from the plane of
the layer into the empty trans octahedron is smaller
than that obtained in [4]. It seems likely that this devia-
tion is associated both with the high content of trivalent
cations in the octahedral sheet and with the deficit of
interlayer cations in the structure of the celadonite from
Krivoœ Rog.

An interesting feature of the celadonite from Krivoœ
Rog is that the selected-area electron diffraction pat-
terns of a number of band-shaped single-crystal parti-
cles extended along the a axis exhibit triads of weak
additional reflections between strong reflections attrib-
uted to the main base-centered cell (Fig. 3). Similar
electron diffraction patterns were also observed earlier
[11]. The intensity ratio of reflections in triads (Fig. 3)
varies both for different particles and within a single
particle (the intensity of central reflections can be either
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higher or lower than that of the extreme reflections, and
the former reflection are always more smeared than the
latter reflections). This indicates that the appearance of
additional reflections is caused by the superposition of
two cells. In triads, the extreme reflections correspond
to the base-centered supercell with the triple parameter
a, whereas the central reflections are attributed to the
main cell with a broken base-centered symmetry. This
feature of the celadonite apparently can be associated
with the ordered distribution of trivalent and divalent
cations Fe and Mg over the cis positions. The two mod-
els proposed for cation ordering are consistent with the
observed intensity distribution. According to these
models, when the octahedral cations are in the ratio
Fe3+ : Fe2+ : Mg = 2 : 1 : 1, the Fe3+ cations occupy one
system of octahedral cis positions (related by the C
translation in the main cell), whereas the Fe2+, Mg, and
(Fe2+, Mg) cations (the base-centered cell with as = 3a0

and bs = b0) or the Fe2+ and Mg cations (the main cell
with a broken base-centered symmetry) alternate in an
ordered manner along the a axis in the other system of
cis positions.

Fig. 3. Selected-area electron diffraction pattern of a single
celadonite particle (the ab plane is oriented perpendicular to
the incident beam). Triads of weak reflections extended
along the a axis are seen. The central reflections in triads are
attributed to the main cell with a broken base-centered sym-
metry. The extreme reflections correspond to the base-cen-
tered supercell with as = 3a0 and bs = b0.
C

CONCLUSIONS

Thus, the above analysis of the selected-area elec-
tron diffraction patterns of single crystals confirmed the
tendency (revealed from the oblique-texture electron
diffraction patterns in [4]) toward ordered distribution
of trivalent and divalent octahedral cations in celado-
nite and demonstrated that the Fe2+ and Mg2+ divalent
cations are also ordered. The superstructure reflections
observed only for particular particles most likely indi-
cate that, in the vast majority of the celadonite particles,
regions with ordered cations are characterized by inco-
herent scattering. This leads to an averaged structure
with a statistical distribution of octahedral cations, as
was established in the refinement of the celadonite
structure from the oblique-texture electron diffraction
patterns obtained with the use of imaging plates.
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Abstract—The crystal structures of three Li–Al natural tourmalines (elbaites) containing 0.88–1.39 wt % F are
refined to R = 0.0294, 0.0308, and 0.0417. It is revealed that the W threefold anion site is split into two sites,
namely, the W1 threefold site and W2 ninefold site (W1–W2 ~ 0.4 Å, Y–W1 ≥ 1.94 Å, Y–W2 ≥ 1.75 Å). The
following hypothesis is proposed and justified: the W1 and W2 sites are partially occupied by OH groups and
fluorine anions, respectively. The ratio of the [YO4(OH)2] octahedra to the [YO4(OH)F] octahedra depends on
the fluorine content and varies from structure to structure. The fact that the W site is more than 50% occupied
by fluorine in the structures of two tourmalines under investigation allows the conclusion that fluor-elbaite with
the ideal formula Na(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3F is a new mineral species and that elbaite can be con-
sidered a superspecies. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

Natural borosilicates of complex composition,
namely, minerals of the tourmaline group, are stable
over a wide range of thermodynamic conditions and,
consequently, have been widely used by geologists in
prospecting and evaluation [1–3]. Tourmalines are
characterized by a great variety of compositions due to
their specific crystal structure [4–6]. Owing to their
unique crystal physical properties, including pyroelec-
tric and piezoelectric effects, and also the presence of
boron, tourmalines can be used for the design of mea-
suring devices that operate over a wide range of temper-
atures and pressures (including corrosive media) and
for manufacturing of structural materials providing bio-
logical protection against neutron radiation. Transpar-
ent brightly colored tourmaline species have found
applications in jewelry.

Taking into account the results of numerous struc-
tural investigations [7–10], Hawthorne and Henry [11]
proposed to represent the crystal chemical formula of
tourmaline (space group R3m) in the form

[ O18][B
IIIO3]3V3W. The sites in the tour-

maline structure can be occupied by the following ele-
ments: X = Ca2+, Na+, K+, and h (vacancy); Y = Li+,
Mg2+, Fe2+, Mn2+, Al3+, Cr3+, V3+, Fe3+, and, possibly,
Ti4+; Z = Mg2+, Al3+, Fe3+, V3+, and Cr3+; T = Si4+, Al3+,
and B3+; B = B3+ and, possibly, h; and V [O(3) site] and
W [O(1) site] = OH–, F–, and O2–. The distribution of
OH–, F–, and O2– anions over the V and W sites remains
questionable. First and foremost, this is associated with
the fact that such a distribution is difficult to determine
directly from X-ray structure refinement of mixed

XIXY3
VI

Z6
VI

T6
IV
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occupancies of crystallographic sites because of to the
closer scattering powers of oxygen and fluorine atoms
(having eight and nine electrons, respectively).

In this study, we succeeded in deriving new infor-
mation on the distribution of univalent anions in the
structures of three Li–Al tourmalines (elbaites) with the
ideal formula Na(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH,F)4.

CHEMICAL COMPOSITION OF TOURMALINE 
UNDER INVESTIGATION

For our investigations, we chose three jewelry tour-
malines (described in detail in [12]) from miarolitic
pegmatites (Eastern Pamirs) with different fluorine
contents: rose rubellite (sample T-17), blue indicolite
(sample T-14), and green verdelite (sample T-7).

The chemical composition of tourmalines (Table 1)
was determined by electron microprobe analysis on a
JEOL SXA-8600S microanalyzer (analysts A.N. Zait-
sev and R. Wilson, University of Lester, UK). More-
over, the Li2O and B2O3 contents in samples T-14 and
T-17 were also determined by plasma emission spec-
troscopy and titration (variant 1 in Table 1) (analyst
S.V. Zimina, OOO MEKHANOBR INZHINIRING
ANALIT). The B2O3 content was additionally mea-
sured by potentiometric titration (variant 2 in Table 1)
(analyst M.P. Semenov, Laboratory of Analytic and
Inorganic Chemistry, Grebenshchikov Institute of Sili-
cate Chemistry, Russian Academy of Sciences). In view
of the complex isomorphism of tourmalines and possi-
ble errors in the chemical analysis, the chemical formu-
las of the samples were calculated in different ways: per
31 anions (O + F + OH); per 29 and 24.5 oxygen atoms;
© 2005 Pleiades Publishing, Inc.
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per 19, 18, 16, or 15 cations; and per 6 silicon atoms.
The data on the B2O3 content obtained for the same
samples at different laboratories differ substantially.
According to the calculations from these data by differ-
ent methods, the numbers of boron atoms in the formu-
las of samples T-14 and T-17 differ significantly from
three and, hence, are unjustified structurally. The calcu-

Table 1.  Chemical composition of the studied tourmalines
(wt %)

Component
Samples

T-17 T-14 T-7

SiO2 37.16 35.68 37.11

TiO2 0.10 0.04 0.05

Al2O3 40.17 36.16 36.81

Cr2O3 0.00 0.00 0.03

FeO* 0.02 6.93 3.50

B2O3, variant 1 11.61 14.52 Not determined

B2O3, variant 2 9.43 9.09 Not determined

MnO 0.47 0.07 2.66

MgO 0.00 0.00 0.01

CaO 1.26 0.17 0.11

Na2O 1.65 2.75 2.97

K2O 0.00 0.03 0.02

Li2O 1.63 0.96 Not determined

F 0.88 1.16 1.39

Total 94.95 98.51 84.66

–O=F2 0.37 0.49 0.58

Total 94.58 98.02 84.08

* FeO (the total iron content).
C

lations of the coefficients in the tourmaline formulas
from the experimentally determined Li2O content (per
15 cations or 24.5 oxygen atoms) require the appear-
ance of vacancies at the Y site. As follows from previ-
ous structural investigations, this is not typical of tour-
malines. Consequently, the obtained experimental data
on the boron and lithium contents are not reliable and
cannot be used to calculate the formulas for the tourma-
lines under investigation.

In this respect, the preliminary crystal chemical for-
mulas for the studied solid solutions (Table 2, variant 1)
were calculated from the data of the electron micro-
probe analysis per six silicon atoms under the assump-
tion that the number of boron atoms in the formula is
equal to three. The number of lithium atoms was calcu-
lated by assuming that the Y site is fully occupied. The
distribution of cations (including bivalent and trivalent
iron cations) over octahedral sites was examined
according to the technique proposed by Gorskaya et al.
[5] with the use of the unit cell parameters (Table 3).
The distribution of iron cations in the structure of sam-
ple T-14 was analyzed by Mössbauer spectroscopy
[13]. Anions over the V and W sites were not separated.
The amounts of OH groups and oxygen anions were
estimated from the charge balance.

CRYSTAL STRUCTURE REFINEMENT

The intensities of the diffraction reflections were
measured in an area equal to one-sixth of the reciprocal
space on four-circle single-crystal diffractometers
(graphite monochromator, MoKα radiation, ω scan
mode) (Table 3). The measurements at angles up to
2θ = 30° were performed without regard for the R-cen-
tering (characteristic of tourmalines) for a hexagonal
unit cell. Since no distortions of the R cell were found
at this stage, only diffraction reflections satisfying the
Table 2.  Crystal chemical formulas XY3Z6(Si6O18)(BO3)3(OH)3(O,OH,F) of the studied tourmalines (space group R3m, Z = 3)

Sample Variant Formula

T-17 1 (Na0.52Ca0.22□0.26)(Al1.65Li1.28 Ti0.01)Al6.00

(Si6O18)(BO3)3(OH3.20F0.45O0.35)

2 (Na0.68Ca0.22□0.10)(Li1.56Al1.44)(Al5.82 )

(Si6O18)(BO3)3(OH)3(OH0.64F0.36)

T-14 1 (Na0.90Ca0.03K0.01□0.06)(Al1.23 Li0.85 Mn0.01)

(Al5.94 )(Si6O18)(BO3)3(OH3.04F0.62O0.34)

2 (Na0.89Ca0.03K0.01□0.07)(Al1.09Li1.05 )

(Al5.94 (Si6O18)(BO3)3(OH)3(F0.57OH0.43)

T-7 1 (Na0.93Ca0.02□0.02)(Li1.14Al1.02 Ti0.01)

Al6(Si6O18)(BO3)3(OH3.29F0.71)

2 (Na0.97Ca0.03)(Li1.14Al1.02 )

Al6(Si6O18)(BO3)3(OH)3(F0.60OH0.40)

Mn0.06
2+

Mn0.18
3+

Fe0.86
2+ Fe0.05

3+

Fe0.06
2+

Fe0.82
2+ Fe0.04

3+

Fe0.06
2+

Mn0.36
2+ Fe0.33

2+ Fe0.14
3+

Fe0.45
2+ Mn0.30

2+ Fe0.09
3+
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Table 3.  Characteristics of the samples and X-ray diffraction experiment

Characteristics
Samples

T-17 T-14 T-7

Fluorine content, wt % 0.88 1.16 1.39

Diffractometer Nicolett R3 Nicolett R3 SYNTEX P21

a, Å 15.833(4) 15.902(5) 15.905(6)

15.826(3)* 15.916(3)* 15.931(2)*

c, Å 7.101(1) 7.127(2) 7.121(2)

7.098(1)* 7.119(1)* 7.123(1)*

V, Å3 1542(1) 1561(1) 1560(2)

1539.7(1)* 1561.8(1)* 1565.6(1)*

ρcalcd, g/cm3 3.046(2) 3.104(2) 3.096(3)

µ, cm–1 10.73 15.21 14.57

Weighting scheme 1/(  + 0.001 ) 1/(  + 0.0018 ) 1/(  + 0.002 )

Number of reflections measured (I > 2σI) 2162 2223 1746

Number of unique reflections (F > 4σF) 1148 1164 986

R(F)** 0.0306 0.0335 0.0429

R(F)final 0.0294 0.0308 0.0417

Rw 0.0302 0.0359 0.0405

  * Parameters determined by X-ray powder diffraction analysis.
** Before introducing the hydrogen atoms into the structural model and splitting of the site O(1) (W).

σF
2 Fexp

2 σF
2 Fexp

2 σF
2 Fexp

2

condition –h + k + l = 3n were measured at the subse-
quent stages. The intensities were corrected for the
Lorentz and polarization factors, fluctuations of the pri-
mary beam, and absorption according to the DIFABS
program package [7].

The crystal structures were refined by alternating
the least-squares procedure (in the anisotropic approx-
imation of thermal atomic vibrations) and the analysis
of the difference Fourier syntheses with the CSD soft-
ware package [14]. The atomic coordinates in the struc-
ture of aluminum elbaite [15] served as the initial data.
Aluminum atoms were placed at the Y and Z octahedral
sites, and sodium atoms were positioned at the alkali
cation site. In order to weaken correlations between the
occupancies and other (primarily, thermal) structural
parameters, the occupancies at the initial stage were
refined using the reflections with sinθ/λ < 0.5. The
positions of the hydrogen atoms and the splitting of the
O(1) (W) site were determined from a detailed analysis
of the difference Fourier synthesis maps after the R fac-
tors reached ~3–4%. The final R factors are presented
in Table 3. The fractional atomic coordinates, isotropic
thermal parameters of atoms, and site occupancies are
listed in Table 4. The bond lengths in the main polyhe-
dra of the tourmalines structures are given in Table 6.

RESULTS AND DISCUSSION

The refinement of the occupancies of the crystallo-
graphic sites (Table 4) revealed that the Li+/Al3+ cation
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 6      200
ratio for the Y site is close to unity and the site occu-
pancy for these cations is no less than 70%. The mean
lengths of the Y–O bonds (2.022–2.053 Å) (Table 6)
increase with an increase in the Fe and Mn cation con-
tents and are close to those in the structures of previ-
ously studied elbaites [9, 15–19]. The occupancies of
the Z octahedra and the mean lengths of the Z−O bonds
(1.907–1.909 Å) (Table 6) confirm that these octahedra
in all the structures are fully (or almost fully) occupied
by aluminum cations. The X sites in all the structures
are predominantly occupied by sodium cations. The
mean length of the X–O bonds varies from 2.655 Å in
sample T-17, to 2.670 Å in sample T-14, and to 2.673 Å
in sample T-7 (Table 6). Therefore, an increase in the
size of the Y octahedra is accompanied by an increase
in the size of the X nine-vertex polyhedra. This is well
explained by the specific features of chemical deforma-
tions of the tourmaline structure [6]. The refinement of
the occupancies of the tetrahedral sites confirmed that,
in all the cases, these sites are almost fully occupied by
Si4+ cations. The mean tetrahedral distances are equal
to 1.618–1.620 Å, and the mean O–Si–O angle is equal
to 109.44°.

It is known that protons in the tourmaline structure
are located in the symmetry plane near the O(3) (V)
sites and on the threefold axis near the O(1) (W1) sites
[16, 20]. The detailed analysis of the difference Fourier
syntheses revealed the hydrogen atoms only near the
O(3) (V) sites in the structures under investigation
(Table 4). The parameters of the O(3)–H···O(5) hydro-
5
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Table 4.  Fractional atomic coordinates, thermal parameters, and site occupation in the structures of the tourmalines under
investigation

Sample Site Occupation, au* x/a y/b z/c  × 100, Å–2

T-17 X 3a Na0.68Ca0.22□0.10 0 0 0.2358(4) 1.37(5)
T-14 Na0.89Ca0.03K0.01□0.07 0 0 0.2344(5) 2.12(8)
T-7 Na0.97Ca0.03 0 0 0.2357(8) 2.40(1)
T-17 Y 9b Li0.52Al0.48 0.1230(1) 1/2x 0.6362(3) 0.42(4)
T-14 Al0.36Li0.35Fe0.29 0.12417(8) 1/2x 0.6284(2) 1.02(3)
T-7 Li0.38Al0.34(Fe + Mn)0.28 0.1241(1) 1/2x 0.6275(3) 0.69(4)
T-17 Z 18c Al0.97Mn0.03 0.29677(5) 0.25990(5) 0.6102(1) 0.57(2)
T-14 Al0.99Fe0.01 0.29778(6) 0.26092(6) 0.6114(1) 0.83(2)
T-7 Al1.0 0.29751(8) 0.26082(8) 0.6116(2) 0.46(3)
T-17 B 9b B 0.1090(1) 2x 0.4546(4) 0.60(7)
T-14 B 0.1097(1) 2x 0.4561(5) 0.98(9)
T-7 B 0.1090(2) 2x 0.4550(8) 0.44(1)
T-17 Si 18c Si 0.19186(4) 0.18986(4) 0 0.43(2)
T-14 Si 0.19195(5) 0.18998(5) 0 0.75(2)
T-7 Si 0.19191(7) 0.18997(7) 0 0.38(3)
T-17 O(1) (W1) 3a OH0.64 0 0 0.772(3) 2.0(3)
T-14 OH0.43 0 0 0.784(5) 3.9(1)
T-7 OH0.40 0 0 0.762(1) 2.1(5)
T-17 F(W2) 9b F0.12□0.88 0.022(1) 1/2x 0.801(3) 0.5(5)
T-14 F0.19□0.81 0.028(2) 1/2x 0.787(3) 0.7(2)
T-7 F0.20□0.80 0.024(1) 1/2x 0.798(2) 0.5(5)
T-17 O(2) 9b O 0.06012(9) 2x 0.4870(4) 1.43(7)
T-14 O 0.0607(1) 2x 0.4848(5) 1.98(9)
T-7 O 0.0610(2) 2x 0.4850(7) 1.7(1)
T-17 O(3) (V) 9b OH*** 0.2659(2) 1/2x 0.5086(3) 1.22(7)
T-14 OH*** 0.2690(2) 1/2x 0.5096(4) 1.19(7)
T-7 OH*** 0.2698(2) 1/2x 0.5100(6) 0.9(1)
T-17 O(4) 9b O 0.09310(9) 2x 0.0744(3) 0.86(6)
T-14 O 0.0929(1) 2x 0.0718(4) 1.09(7)
T-7 O 0.0931(2) 2x 0.0714(5) 0.7(1)
T-17 O(5) 9b O 0.1860(2) 1/2x 0.0964(3) 0.88(6)
T-14 O 0.1865(2) 1/2x 0.0948(4) 1.05(7)
T-7 O 0.1859(3) 1/2x 0.0932(6) 0.7(1)
T-17 O(6) 18c O 0.1951(1) 0.1847(1) 0.7751(2) 0.69(5)
T-14 O 0.1970(1) 0.1868(1) 0.7758(3) 0.96(5)
T-7 O 0.1973(2) 0.1867(2) 0.7759(4) 0.58(8)
T-17 O(7) 18c O 0.2862(1) 0.2857(1) 0.0793(2) 0.59(4)
T-14 O 0.2854(1) 0.2856(1) 0.0809(3) 0.89(5)
T-7 O 0.2857(2) 0.2858(2) 0.0805(4) 0.54(8)
T-17 O(8) 18c O 0.2096(1) 0.2702(1) 0.4398(2) 0.72(4)
T-14 O 0.2097(1) 0.2703(1) 0.4416(3) 1.00(6)
T-7 O 0.2097(2) 0.2703(2) 0.4412(4) 0.68(8)
T-17 H 9b H 0.251 1/2x 0.398 5.4(7)
T-14 H 0.274(5) 1/2x 0.386(9) 4.2(9)
T-7 H 0.281 1/2x 0.395 3.5(2)

    * The standard error in the determination of the site occupancy for an element is less than or equal to 0.01 au.
  ** Ueq = 1/3[U11(a*)2a2 + … + 2U23b*c*bccosα].
*** The occupation of the sites V and W by univalent anions is confirmed by the analysis of the valence balance (Table 5).

Ueq/iso**

□0.36***
□0.57***
□0.60***
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 6      2005



REFINEMENT OF THE CRYSTAL STRUCTURES 911
Table 5.  Calculated bond valences for anions in the structures of the tourmalines under investigation

Sample Variant
Anion site

O(1) F O(1) + F O(2) O(3) O(4) O(5) O(6) O(7) O(8)

T-17 1 0.657 0.303 0.960 1.851 1.107 2.040 1.911 1.959 2.027 1.995

2 1.179 0.303 1.482 1.851 1.998 2.040 2.010 1.959 2.027 1.995

T-14 1 0.372 0.560 0.932 1.858 1.101 2.038 1.890 1.953 2.024 1.994

2 0.704 0.560 1.264 1.858 1.982 2.038 2.008 1.953 2.024 1.994

T-7 1 0.435 0.479 0.914 1.893 1.092 2.043 1.920 1.947 2.005 1.948

2 0.755 0.479 1.234 1.893 1.994 2.043 2.018 1.947 2.005 1.948

Note: The calculations were performed without (variant 1) and with (variant 2) inclusion of the hydrogen atoms.
gen bonds between the Y octahedra and the tetrahedral
rings of the neighboring (in height) antigorite frag-
ments (Table 7) are close to those determined in the
structures of other elbaites. The occurrence of protons
in the vicinity of the O(1) (W1) sites, which are partially
occupied in our structures, is supported by the results of
the valence balance analysis performed by Pyatenko
[21] with allowance made for the occupancies of the
cation and anion sites.

According to the scarce data available in the litera-
ture on the crystal structures of Li–Al fluorine-contain-
ing tourmalines [17, 18, 22], the Y–O(1) bond lengths
(1.790–2.126 Å) are smaller than the Y–O(3) bond
lengths (2.153–2.186 Å). In the structures studied in
our work, the Y–O(1) bond lengths (1.94–2.04 Å) are
also somewhat smaller than the Y–O(3) bond lengths
(2.16–2.17 Å). Such a ratio between these bond lengths
is also typical of hydroxyl-containing tourmalines [16]
and results from the presence of two strong bonds
between the O(3) anions and cations of two neighbor-
ing Z octahedra. In the crystal structures of elbaites
from the Eastern Pamirs, the W [O(1)] site is split into
two partially occupied sites, namely, the W1 threefold
site and W2 ninefold site (Table 4). Each atom
(vacancy) at the W1 site (on the threefold axis) is sur-
rounded by three corresponding structural units at the
W2 sites (Fig. 1). The total occupancy of this grouping
is equal to unity. As consequence, the following short-
ened forbidden distances appear in the structures: W1–
W2 = 0.36(2), 0.38(2), and 0.42(5) Å and W2–W2 =
0.52(3), 0.66(4), and 0.57(2) Å for samples T-17, T-14,
and T-7, respectively. In all the structures, the Y–W2
bond lengths are approximately equal to 1.8 Å
(Table 6). This can suggest that the W2 sites are statis-
tically occupied by fluorine anions. The above assump-
tion is confirmed by the fact that the fluorine contents
determined by the chemical analysis in samples T-17,
T-14, and T-7 (0.45, 0.62, and 0.71 au per formula) are
close to those calculated from the occupancies of the
W2 site (0.36, 0.57, and 0.60 au per formula). The anal-
ysis of the valence balance in the elbaite structures
(Table 5) demonstrates that the O(1) (W1) and O(3) (V)
sites are occupied only by univalent anions, i.e., with
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Table 6.  Bond lengths (Å) in the Y, Z, and X polyhedra of
the tourmaline structures under investigation

Sample Bond, length Bond, length Bond, length

Y–O(1) Z–O(6) X–O(2) × 3

T-17 1.94(1) 1.862(4) 2.429(4)

T-14 2.04(2) 1.855(5) 2.446(5)

T-7 1.96(4) 1.848(6) 2.444(7)

Y–O(6) × 2 Z–O(8) X–O(4) × 3

T-17 1.963(4) 1.884(4) 2.799(4)

T-14 2.020(5) 1.886(5) 2.809(5)

T-7 2.026(7) 1.886(6) 2.820(7)

Y–O(2) × 2 Z–O(7) X–O(5) × 3

T-17 1.976(4) 1.953(4) 2.736(5)

T-14 1.977(5) 1.959(4) 2.755(5)

T-7 1.975(7) 1.954(6) 2.755(8)

Y–O(3) Z–O(3) X–Omean

T-17 2.158(6) 1.954(5) 2.655

T-14 2.167(6) 1.964(5) 2.670

T-7 2.171(7) 1.962(6) 2.673

Y–Omean Z–O(8)

T-17 2.022 1.903(4)

T-14 2.033 1.912(5)

T-7 2.053 1.912(6)

Y–F Z–O(7)

T-17 1.82(3) 
[2.20(3)] × 2

1.886(3)

T-14 1.75(3) 
[2.24(2)] × 2

1.878(4)

T-7 1.84(4) 
[2.25(4)] × 2

1.882(6)

Y–Fmean Z–Omean

T-17 2.07 1.907

T-14 2.08 1.909

T-7 2.11 1.907
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Table 7.  Parameters of the O(3)–H···O(5) hydrogen bonds in the elbaite structures

Tourmaline
Distance, Å Angle, deg

H–O(3) H···O(5) O(3)···O(5) O(3)–H···O(5)

T-17 0.81 2.32 3.125(4) 172

T-14 0.88 2.40 3.167(5) 145

T-7 0.83 2.51 3.184(6) 138

Al elbaite [15] 0.940(2) 2.070(2) 2.993(5) 170(1)

Fe elbaite [16] 0.820(4) 2.340(3) 3.154(4) 169(3)
due regard for the aforesaid, by OH groups. An ordered
distribution of fluorine anions and OH groups leads to
a positional disorder and is characteristic, for example,
of the crystal structure of hydroxyfluoroapatite [23].
Hence, there are strong grounds to believe that the split-
ting of the W site in the tourmaline structures under
investigation is associated with the tendency toward
ordering of fluorine anions and OH groups.

The crystal chemical formulas obtained for elbaites
from the results of the structural analysis (Table 2, vari-
ant 2), on the whole, agree well with those calculated
from the data of the electron microprobe analysis
(Table 2, variant 1). The main difference consists in
refining the occupancies of the W and V sites. Further-
more, it is found that, in the structure of sample T-17,
the contribution of vacancies to the occupancy of the X
sites appears to be smaller than the previously assumed
contribution and the manganese cation impurity is
located at the Z site. The results obtained show that the
incorporation of iron and manganese bivalent cations
into the Y octahedra in elbaites predominantly proceeds
according to the scheme Li+ + Al3+ ⇐  2(Fe2+,Mn2+) and
does not lead to the appearance of additional vacancies
at the X sites or bivalent anions at the V or W sites.

The ordered distribution of OH groups and fluorine
anions over the W1 and W2 sites indicates that the tour-
maline structures involve octahedra of two types:
C

[YO4(OH)2] and [YO4(OH)F] (Fig. 1). Their ratio
depends on the fluorine content and varies from struc-
ture to structure. These ratios in samples T-17, T-14, and
T-7 are equal to 1.78, 0.75, and 0.67, respectively. The
[YO4(OH)2] octahedra located at the center of XY3T6O18

antigorite islands are joined together into triads
through a common vertex W1 lying on the threefold
axis (Fig. 1a) and, hence, are equivalent to each other.
With rare exceptions [18], similar triads composed of
equivalent Y octahedra are observed in the majority of
tourmaline structures. The fluorine anions are dis-
placed from the threefold axis. Therefore, the
[YO4(OH)F] octahedra are linked together into triads
that are statistically distributed with respect to this
axis (Fig. 1b). In each triad, the Y–F bond length in
one octahedron (1.75–1.84 Å) is considerably smaller
than those in the two other octahedra (2.20–2.25 Å).
Similar triads consisting of nonequivalent Y octahe-
dra were found in the structure of elbaite from Brazil
with the crystal chemical formula
(Na0.66Ca0.30h0.31)(Al1.53Li1.03Mn0.41Fe0.03)Al6(Bé3)3 ×
(Si5.82B0.18é18)(OH)3(F0.62OH0.34O0.04) [18]. However,
in the structure of this mineral, unlike the structures
studied in the present work, no splitting of the W site
was revealed. The displacement of this site from the
threefold axis leads to the formation of the Y octahedra
in a ratio of 1 : 2 in which the Y–W bond lengths are
Y

F O(1)

O(6)

O(3) O(6)

O(6)

O(6)

O(6)

O(6)

O(3)

O(3)

O(2)

O(2)

O(2)

F

F

Y

Y

2.
2 

Å

2.2 Å

1.8 Å

(a) (b)

Fig. 1. Triads composed of (a) [YO4(OH)2] and (b) [YO4(OH)F] octahedra in the structures of the elbaites under investigation.
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equal to 1.790 and 2.126 Å, respectively. We can
assume that a substantial anisotropy of the Y–W bond
lengths in the crystal structures of tourmalines in which
the W sites are displaced from the threefold axis may be
due to the symmetry lowering. This lowering is so
insignificant that it virtually does not affect the trigonal
lattice parameters measured at room temperature. A
similar effect in the crystal structure of the
K(Al0.95Cr0.05)(SO4)2 · 12H2O alum was revealed in our
earlier work [24].

CONCLUSIONS

Interrelated isomorphous substitutions at different
sites in tourmaline structures suggest a certain conven-
tion in the separation of independent mineral species
among them [11, 25]. Hawthorne and Henry [11]
attempted to revise the nomenclature of minerals in the
tourmaline group and proposed to recognize the fluor-,
hydroxy-, and oxy-species on the basis of different
occupancies of the V and W sites by the corresponding
anions. The aforementioned results of the refinement of
the crystal structures for three Li–Al natural fluorine-
containing tourmalines (elbaites) confirm the validity
of this classification.

The revealed splitting of the W threefold anion site
into two sites, the refinement of their occupancies, and
the analysis of the corresponding bond lengths allowed
us to conclude that fluorine anions occupy the W sites
in a regular way. There are grounds to believe that such
a distribution of fluorine anions is a general feature of
Li–Al tourmalines and, hence, can be used for deter-
mining their crystal chemical formulas from the chem-
ical analysis data.

In the structures of two tourmalines under investiga-
tion (samples T-14, T-7), fluorine anions make a dominant
contribution to the occupancy of the W site. This enables
us to make the inference that fluor-elbaite with the ideal
formula Na(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3F is a
new mineral species. Elbaites in which the W sites are
occupied predominantly by OH groups (including sample
T-17) can be referred to as hydroxy-elbaites with the ideal
formula Na(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3OH.
Therefore, elbaite is a superspecies involving no less
than two mineral species.
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Abstract—Single crystals of cobalt uranyl sulfate are grown. The crystal structure is established by X-ray dif-
fraction: the orthorhombic system, sp. gr. Pmc21, a = 6.452(2) Å, b = 8.295(2) Å, c = 11.288(3) Å, R1 = 0.0303,
wR2 = 0.0735 for reflections with I > 2σ(I). The structure of CoUO2(SO4)2 ⋅ 5H2O consists of infinite two-
dimensional uncharged [CoUO2(SO4)2H2O]2∞ layers, which are linked to each other by hydrogen bonds.
© 2005 Pleiades Publishing, Inc.
INTRODUCTION

Complex studies of metal uranyl sulfates have been
carried out over many decades. Interest in these com-
pounds is related to the development of technologies
for conversion of uranium ore. Study of the compounds
with the general formula AIIUO2(SO4)2 ⋅ 5H2O [1] dem-
onstrated that the replacement of such AII atoms as Mn
or Cd with Mg, Fe, Co, Ni, Cu, or Zn results in a mor-
photropic phase transition. In the former case, com-
pounds crystallize in the monoclinic system with the
angle β of about 91°. The structural features of the rep-
resentatives of this structure type were considered in [2]
for manganese compounds. The main difference of ura-
nyl sulfates of the second structure type is that they
crystallize in the crystal system of higher symmetry
(orthorhombic). It is of interest to investigate the crystal
structures of compounds of this class in more detail.

EXPERIMENTAL

Single crystals of cobalt uranyl sulfate pentahydrate
CoUO2(SO4)2 ⋅ 5H2O were grown by isothermal evap-
oration of an aqueous solution of a 1 : 1 mixture of
cobalt sulfate and uranyl sulfate. The resulting ruby-
colored crystals were prismatic in shape.

X-ray diffraction data were collected from a crystal
0.28 × 0.14 × 0.06 mm3 in size. (The crystal was not
spherically ground because of its fragility.) X-ray dif-
fraction study was carried out on a Smart Apex
(Bruker) diffractometer equipped with an area detector.
The unit-cell parameters were determined from
900 reflections using the Saint Plus program package. The
calculations showed that the monoclinic (β ~ 90.1°) and
orthorhombic crystal systems are possible. The refine-
ment of the unit-cell parameters using all X-ray diffrac-
tion data demonstrated that the orthorhombic system is
1063-7745/05/5006- $26.00 ©0914
more likely. The equivalent reflections were merged
and the semiempirical absorption correction was
applied using the Sadabs program, as a result of which
the factor Rint reduced from 21 to 4.5%.

Table 1.  Details of X-ray diffraction study and crystallo-
graphic characteristics of CoUO2(SO4)2 · 5H2O

Formula CoUO2(SO4)2 · 5H2O
M 611.16
T, K 293(2)
Sp. gr., Z Pmc21, 2
a, Å 6.452(2)
b, Å 8.295(2)
c, Å 11.288(3)
V, Å3 604.1(3)
ρcalcd, g/cm3 3.360
µ, mm–1 15.185
F(000) 562
Diffractometer Smart Apex (Bruker)
Radiation MoKα
Crystal dimensions, mm3 0.28 × 0.14 × 0.06
Scanning mode φ–ω
Scan range –8 < h < 8; –11 < k < 11; 

−15 < l < 15
Number of measured/inde-
pendent reflections

5722/1695 Rint = 0.045

Number of reflections with
I >2σ(I)

1659

Program for structure
calculations

SHELXTL

S on F2 1.115
R [I >2σ(I)] R1 = 0.0303, wR2 = 0.0735
R (total data set) R1 = 0.0309, wR2 = 0.0738
 2005 Pleiades Publishing, Inc.
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Table 2.  Atomic coordinates and equivalent thermal parameters in the structure of CoUO2(SO4)2 · 5H2O

Atom x/a y/b z/c Occupancy factor Ueq, Å2

U(1) 0.5 –0.38695(2) –0.88020(8) 1 0.00686(5)

S(1) 0.5 –0.7574(3) –0.6920(1) 1 0.0097(4)

S(2) 0.5 –0.2611(4) –0.5732(2) 1 0.056(1)

Co(1) 0 –0.8309(2) –0.7103(2) 1 0.0318(4)

O(1) 0.243(1) –0.432(1) –0.9133(8) 0.5 0.020(2)

O(2) 0.242(2) –0.341(2) –0.8456(9) 0.5 0.026(3)

O(3) 0.5 –0.603(1) –0.751(1) 1 0.053(3)

O(4) 0.321(1) –0.854(1) –0.724(1) 1 0.052(2)

O(5) 0.5 –0.723(2) –0.568(1) 1 0.043(4)

O(6) 0.386(1) –0.280(1) –0.6945(6) 0.5 0.045(2)

O(7) 0.292(1) –0.248(1) –0.571(1) 0.5 0.053(4)

O(8) 0.355(2) –0.121(2) –0.524(1) 0.5 0.032(3)

O(9) 0.385(2) –0.402(1) –0.504(1) 0.5 0.022(2)

O(10) 0.420(2) –0.0932(9) –0.895(1) 0.5 0.024(3)

O(11) 0 –0.790(1) –0.888(2) 1 0.053(3)

O(12) 0 –0.859(1) –0.530(1) 1 0.046(3)

O(13) 0 0.084(1) 0.727(1) 1 0.041(3)

O(14) 0 –0.581(1) –0.670(1) 1 0.049(3)

Note: The O(1) and O(2) atoms belong to uranyl groups UO2, the O(3)–O(5) atoms belong to the S(1)O4 tetrahedron, the O(6)–O(9) atoms
belong to the S(2)O4 tetrahedron, the O(10) atom belongs to the water molecule in the UO7 polyhedron, and the O(11)–O(14) atoms
belong to the water molecules located between the layers.

Table 3.  Selected interatomic distances (Å) and bond angles (deg) in the structure of CoUO2(SO4)2 · 5H2O

U–O, Å S(1)–O, Å S(2)–O, Å Co–O, Å

U–O(1) 1.745(9) S(1)–O(3) 1.447(9) S(2)–O(6) 1.563(7) Co–2 · O(4) 2.087(6)

O(2) 1.75(1) 2 · O(4) 1.450(7) O(7) 1.349(7) O(11) 2.03(2) 

O(3) 2.307(9) O(5) 1.42(2) O(8) 1.59(1) O(12) 2.05(1)

O(5) 2.31(2) O(9) 1.59(1) O(13) 2.11(1) 

O(6) 2.393(6) O(14) 2.123(9)

O(9) 2.35(1)

O(10) 2.496(8)

Angle Angle

O(1)–U–O(2) 179.5(5) O(4)–Co–O(4) 166.5(5)
The statistics of the normalized structure-factor
amplitudes provided evidence that the most probable
space group is noncentrosymmetric. Systematic
absences indicated that the most probable space group
is Pmc21. The crystal structure was solved by the direct
method using the SHELXTL program package and
refined by the least-squares method with anisotropic
displacement parameters for all atoms. In the course of
structure solution, some oxygen atoms were located in
general positions with an occupancy of 0.5. The details
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 6      200
of X-ray diffraction study and crystallographic charac-
teristics are given in Table 1. The atomic coordinates
and equivalent thermal parameters are listed in Table 2.
The principal interatomic distances and bond angles are
given in Table 3.

RESULTS AND DISCUSSION

On the whole, the structure of CoUO2(SO4)2 ⋅ 5H2O
is similar to the structure of MnUO2(SO4)2 ⋅ 5H2O [2].
5
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–UO7

–S(1)O4

–S(2)O4

–CoO6

Possible conformations of adjacent ribbons in the [CoUO2(SO4)2H2O]2∞ layers parallel to the (010) plane.
The crystal structure contains ribbons running along
the z axis, which are formed by UO7 pentagonal bipyr-
amids and SO4 tetrahedra (figure). The vertices of the
pentagonal bipyramid are occupied by the oxygen

atoms of the uranyl group ( ), which is approxi-
mately perpendicular to the ribbon plane. The equato-
rial plane of the bipyramid is formed by one oxygen
atom of a water molecule [O(10)] and four oxygen
atoms of four sulfate groups [S(1)–O(3), S(1)–O(5),
S(2)–O(6), and S(2)–O(9)], two O atoms of each sul-
fate group being involved in two adjacent bipyramids.
Two other oxygen atoms of the sulfate group are coor-
dinated to the Co atoms with the result that the ribbons
are linked to each other along the x axis and form elec-
troneutral [CoUO2(SO4)2H2O]2∞ layers parallel to the
xz plane. As opposed to numerous uranyl compounds,
the low-charged cations in the structure under consider-
ation are involved in the layers. The layers are linked to
each other by the hydrogen bonds between the O(8)
atom of the S(2)O4 group and the water molecule
involved in the UO7 polyhedron. The coordination
environment of the cobalt ion is formed by two O(4)
atoms of SO4 groups and four molecules of crystalliza-
tion water [O(11)–O(14)]. The CoO6 polyhedron is a
distorted octahedron (figure).

The difference between the structure of
CoUO2(SO4)2 ⋅ 5H2O and that of MnUO2(SO4)2 ⋅ 5H2O,
established previously [2], is that some crystallographic
positions in the former structure are randomly occupied

UO2
2+
C

(Table 2). In our opinion, this phenomenon can be
explained by two factors: a coherent intergrowth of
microdomains rotated with respect to each other by
180° (i.e., microtwinning), which is responsible for the
observed X-ray diffraction pattern, or the existence of
two possible conformations of uranyl sulfate chains in
one layer. As can be seen from Table 2, the positions of
S(1)O4 tetrahedra, CoO6 octahedra, and S(2) atoms
(figure) are fixed. Two different arrangements of a par-
ticular uranyl group can be specified, which automati-
cally determines the conformation of the ribbon as a
whole. However, the UO2 groups serving as the starting
elements for the ribbon construction have arbitrary
positions in the adjacent ribbons of the same layer. Tak-
ing into account this fact, the figure shows two different
structures of two adjacent ribbons within one
[CoUO2(SO4)2H2O]2∞ layer. It should be noted that
S(2)O4 tetrahedra can take different positions. This is
also evidenced by the rather high thermal parameters of
S(2) atoms, which are indicative of particular random
disorder within the crystal structure as a whole.

Two different arrangements of two neighboring rib-
bons from adjacent layers are theoretically possible. In
one configuration, the O(10)–O(7) distance corre-
sponding to the hydrogen bond between the water mol-
ecule and the terminal oxygen atom of the sulfate tetra-
hedron is 2.72(2) Å. In the other configuration, the
O(10)–O(7) distance is 2.34(2) Å, which is highly
improbable [3]. Hence, when specifying a particular
position of the uranyl group in one ribbon, we automat-
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 6      2005
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ically determine the configurations of all parallel rib-
bons in the adjacent layers. However, as mentioned
above, the adjacent ribbons in the same layer can be
arranged arbitrarily.

In our opinion, the above facts suggest that it is the
presence of different conformations that is responsible
for the higher symmetry of the structure of
CoUO2(SO4)2 ⋅ 5H2O in comparison with that of man-
ganese uranyl sulfate.

CONCLUSIONS

In summary, we demonstrated that ribbons in layers
of the structure of cobalt uranyl sulfate can adopt two
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 6      2005
conformations with equal statistical probability, as evi-
denced by the statistics of the occupancies of some oxy-
gen atoms of sulfate tetrahedra.
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Abstract—Cadmium cerium orthophosphate Cd0.5Ce2(PO4)3 is synthesized by precipitation from aqueous
solutions. The structure refinement from powder X-ray diffraction data is preceded by the sample preparation
and structure solution. The refinement is carried out by the Rietveld method (ADP-2 diffractometer, CuKα radi-
ation, Ni filter, 15° < 2θ < 120°, 2θ-scan step 0.02°, counting time 10 s per step). All calculations are carried
out using the WYRIET program (version 3.3) within the sp. gr. P21/n. The structure is refined with anisotropic
displacement parameters for cations and isotropic displacement parameters for oxygen atoms. © 2005 Pleiades
Publishing, Inc.
INTRODUCTION

Among the crystalline materials used to immobilize
wastes from nuclear power plants, compounds with a
structure of the natural mineral monazite
(Ce,La,Y,Ca,Th)PO4 have attracted attention as prom-
ising materials. Cerium(III) phosphate CePO4 (mono-
clinic system, sp. gr. P21/n) [1–3] is a synthetic analog
of monazite. The latter occurs as an accessory mineral
in many granitoids. Relatively large crystals are com-
monly found in pegmatites. Monazite is present in
black-sand placer deposits as one of the heaviest and
most stable components. In some cases it occurs as
intergrowths with radioactive black (metamict miner-
als) formed owing to the presence of natural long-lived
alpha-radioactive elements (thorium, uranium, transu-
ranium elements). Monazite-like compounds have high
stability under extreme conditions (high temperature,
high pressure, radiation, aggressive chemical environ-
ment) [4]. In passing from simple to complex composi-
tions, the phase homogeneity of phosphates is retained
over wide concentration and temperature ranges [4–9].

Cerium(IV) generally serves as a chemical analog
of plutonium in the design of crystalline (ceramic)
materials for immobilization of plutonium-containing
wastes. The presence of neutron-capture elements
(such as Cd, Gd, and other rare earth metals) in cured
products, necessary to provide a high safety barrier to
radioactivity, must be taken into account.

Previously, we have synthesized cerium(IV) double
phosphate of the composition Cd0.5Ce2(PO4)3 and char-
acterized it by powder X-ray diffraction and IR spec-
troscopy [6]. This compound was found to belong to the
monazite structure type.
1063-7745/05/5006- $26.00 0918
The aim of this study was to synthesize cerium(IV)
orthophosphate of the composition Cd0.5Ce2(PO4)3,
examine the conditions of phase formation, refine the
structure, and perform a comparative analysis of the
changes in the structural parameters in a series of phos-
phates of the general formula B0.5Ce2(PO4)3, where B is
an alkaline earth metal or cadmium.

EXPERIMENTAL

Cadmium cerium double orthophosphate was syn-
thesized by precipitation followed by heating of the
precipitates. A 1 M H3PO4 solution (reagent grade),
(NH4)2Ce(NO3)6 (reagent grade), and Cd(NO3)2 ⋅ 4H2O
(reagent grade) were used as starting components. A
specified amount of H3PO4 was added dropwise to stoi-
chiometric mixtures of aqueous solutions of
cerium(IV) and cadmium nitrates. Continuous stirring
of the suspension was accompanied by the formation of
a yellowish precipitate, which was dried at 80°C until
the moisture evaporated. The powder was ground in an
agate mortar and subjected to isothermal annealing in
air and in oxygen in the temperature range 600–
1100°C. The time of thermal treatment was 24 h per
step.

The reaction product was studied by IR spectros-
copy, powder X-ray diffraction, and single-crystal
X-ray diffraction. The IR absorption spectra were
recorded on a Specord-75 IR spectrophotometer in the
frequency range from 1800 to 400 cm–1. A sample was
prepared as a fine-grain film on a KBr substrate. The
X-ray diffraction spectrum was measured on an ADP-2
diffractometer (CuKα radiation, Ni filter) using the
© 2005 Pleiades Publishing, Inc.
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2θ-scan technique with a step of 0.02°; the counting
time was 10 s per step. The structure was refined using
the WYRIET program (version 3.3) [10]. The crystal
structure of cheralite [7] served as the starting model.
The peak profiles were approximated by the Pearson
VII function. The asymmetry was refined at 2θ ≤ 60°.
Ionic scattering curves were used in the refinement. The
crystal structure was refined by successively adding the
parameters under refinement and graphically modeling
the background until the R factors ceased to change.

RESULTS AND DISCUSSION

The samples (several series) were prepared as gray-
greenish polycrystalline powders.

The features of the IR spectrum indicate that the
compound under study belongs to orthophosphates
(Fig. 1). The synthesis was completed at 800°C. The
compound was obtained as a powder upon heating to
1000°C. At higher temperatures (up to 1600°C), a
dense sintered substance was obtained.

Powder X-ray diffraction analysis demonstrated that
the compound synthesized belongs to the monazite
structure type.

The results of the Rietveld refinement are shown in
Fig. 2 (dotted and solid lines for the calculated and
experimental data, respectively) and given in Table 1.
The atomic coordinates and displacement parameters
are listed in Table 2.

The fragment of the structure (Fig. 3) was con-
structed on the basis of the refined data. The refined
crystal-chemical formula is Cd0.17Ce0.68h0.32P0.99O4.

The refinement demonstrated that the phosphate
Cd0.5Ce2(PO4)3 , like its analog CePO4, has a framework
structure. The structure consists of nine-vertex polyhe-
dra and tetrahedra, which are linked to each other to
form a three-dimensional network. Oxygen atoms form
bridging bonds with either two or (one-fourth of the
oxygen atoms) three metal atoms. Phosphorus atoms
occupy the centers of tetrahedra. Cadmium and
cerium(IV) atoms occupy the centers of nine-vertex
polyhedra. The monazite structure has one type of posi-
tions that can be occupied by metal cations. Hence,
according to the chosen model, the cadmium and
cerium atoms in the structure of the compound under
consideration randomly substitute each other. The com-
pound can be considered as a solid solution described
by the crystal-chemical formula Cd1/6h1/6Ce2/3PO4 .
The crystal-chemical model of cation substitutions in
going from the analog ëÂIIIêé4 to cadmium
cerium(IV) phosphate is described by the formula
ëe3+  1/6Cd2+ + 1/6h + 2/3Ce4+.

The occupancies of the metal position by cadmium
and cerium are 0.168(2) and 0.684(1), respectively. The
total occupancy is 0.852(2). The uncertainty was evalu-
ated according to [11].
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The bond distances and bond angles in the polyhe-
dra (tetrahedron and nine-vertex polyhedron) of the
phosphate Cd0.5Ce2(PO4)3 were compared with the cor-
responding parameters of magnesium phosphate
Mg0.5Ce2(PO4)3 and calcium phosphate Ca0.5Ce2(PO4)3
[7], which are described by the same general formula,
and the phosphate analog CePO4 [12] (Fig. 4).

In magnesium, calcium, and cadmium phosphates,
the average P–O distances in the PO4 tetrahedron have
similar values (1.59, 1.57, and 1.57 Å, respectively),
which are slightly larger than the average P–O distance
in the phosphate CePO4 (1.527 Å). The longest dis-
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Fig. 1. IR spectrum of phosphate ëd0.5Ce2(PO4)3.

Table 1.  Unit-cell parameters and results of the Rietveld re-
finement of the crystal structure of Cd0.17Ce0.68h0.32P0.99O4

a, Å 6.7909(1)

b, Å 7.0163(1)

c, Å 6.4662(1)

β, deg 103.49(1)

V, Å3 299.60(1)

Sp. gr. P21/n

2θ-angle range, deg 15.00–120

Number of reflections (α1 + α2) 960

Number of parameters in refinement 53

Rwp 3.98

RB 3.37

RF 3.23 

DWD*

 

1.55

 

S

 

1.18

 

* The Durbin–Watson statistics [10].
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Fig. 2. X-ray diffraction spectrum of phosphate ëd0.5Ce2(PO4)3. The theoretical and experimental data are shown by asterisks and
a solid line, respectively.
tances in these four compounds are 1.61, 1.60, 1.60,
and 1.53 Å, respectively. The maximum differences in
the distances in the tetrahedra of these compounds are
0.06, 0.07, 0.07, and 0.014 Å, respectively. The average
O–P–O angles vary within a narrow range (109.4°–
109.5°), although the maximum difference in the O−P–
C

O angles (20.2°) is observed in cadmium phosphates.
For magnesium and calcium phosphates and CePO4,
these differences are 14.4°, 12.7°, and 9.3°, respec-
tively. Analysis of the above data demonstrated that the
phosphate groups in the phosphate CePO4 are least dis-
torted. The distortions in the phosphates B0.5Ce2(PO4)3
         
                                                       

Table 2. 
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/
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in the structure of phos-
phate Cd

 

0.168

 

Ce

 

0.684

 

h

 

0.316

 

P

 

0.979
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Position

 

Q x y z B

 

aniso
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B

 

iso

 

[Cd/Ce] 0.852(25) 0.2167(5) 0.1577(5) 0.3986(5)

 

β

 

11

 

 0.0056(6), 

 

β

 

12

 

 0.0002(13), 

 

β

 

13

 

 0.0011(5),

 

β

 

22

 

 0.0069(6), 

 

β

 

23

 

 0.0016(13), 

 

β

 

33

 

 0.0079(7)

P 0.979(7) 0.201(1) 0.160(2) 0.889(2)

 

β

 

11

 

 0.011(3), 

 

β

 

12

 

 –0.001(5), 

 

β

 

13

 

 0.002(2),
β22 0.010(2), β23 –0.002(5), β33 0.011(3)

O(1) 1 0.249(3) 0.496(3) 0.441(3) 0.9(5)

O(2) 1 0.014(2) 0.133(3) 0.694(2) 2.0(5)

O(3) 1 0.376(2) 0.213(3) 0.787(6) 1.3(5)

O(4) 1 0.121(2) 0.343(3) –0.008(3) 1.8(4)
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depend weakly on the nature of the B cation (Mg, Ca,
Cd).

In the nine-vertex polyhedra of all compounds, one
bond is longer than others: 2.86 Å (Mg/Ce–O), 2.87 Å
(Ca/Ce–O, Cd/Ce–O), and 2.78 Å (ëÂ3+–O). The aver-
age interatomic distances have similar values (2.55–
2.56 Å). In phosphates of divalent metals and Ce(IV),
the maximum differences in the distances in polyhedra,
which characterize the degree of polyhedron distortion,
have similar values. The difference between them is
even smaller in cerium(III) phosphate. Therefore, the
polyhedron in the analog CePO4, like the nine-vertex
polyhedron in the compound under study, is less dis-
torted. Hence, the replacement of one type of cations
(ëÂ3+) with pairs of cations, which differ in charge and
size (B2+ = Mg, Cd, or Ca, and Ce4+), leads to distor-
tions in both types of the polyhedra and, consequently,
in the B0.5Ce2(PO4)3 structures on the whole as com-
pared to CePO4 owing to a more complex chemical
composition resulting from the heterovalent replace-
ment of Ce(III) with a divalent metal and Ce(IV).

Nevertheless, it should be noted that distortions in
the structure of synthetic monazite CePO4 caused by
the introduction of divalent metals and cerium(IV) into
phosphates are insignificant. The changes in the unit-
cell volumes are no larger than 1%. This is a prerequi-
site for the formation of complex monazite-type solid
solutions in technogenic processes, in particular, in the
processing of radioactive wastes. Moreover, it is known
that actinide-containing analogs (i.e., containing ura-
nium, neptunium, plutonium) of the compounds under
consideration also crystallize in this structure type. The
compounds Mg0.5Np2(PO4)3, Ca0.5Np2(PO4)3,
Sr0.5Np2(PO4)3 [13], and Ca0.5Pu2(PO4)3 [8] form mon-

z

y

Fig. 3. Fragment of the structure of phosphate
ëd0.5Ce2(PO4)3 projected onto the yz plane.
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azite-type phases at 1000–1200°C, have similar crystal-
lographic parameters, and form (together with cerium
phosphates) a large group of isostoichiometric isostruc-
tural monazite-like phases, which can, under corre-
sponding process conditions crystallize as multicompo-
nent multiphase products.
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Abstract—The crystal structure of a supramolecular system consisting of indole-2,3-dione 1-(2-oxopropyl)-3-
ethylene ketal (I) and indole-2,3-dione 1-(2-oxopropyl)-3-ethylene ketal thiosemicarbazone (II) molecules that
are linked together by hydrogen bonds is determined using X-ray diffraction. The crystal is monoclinic, and the
unit cell parameters are as follows: a = 12.8360(3) Å, b = 10.7330(3) Å, c = 19.4610(3) Å, β = 99.566(1)°, space
group P21/c, and Z = 4 (C27H29N5O7S). In molecules I and II, the indole-2,3-dione 3-ethylene ketal fragments
have a virtually identical structure. The pyrrole and dioxolane fragments are spiro-linked through the carbon
atom with a dihedral angle close to 90°. The adjacent pyrrole and benzene rings are coplanar to within 4.4°. In
molecule II, the oxygen atom of the dioxolane fragment and the terminal nitrogen atom of the thiosemicarba-
zide fragment are involved in the N–H⋅⋅⋅O intramolecular hydrogen bond [3.294(2) Å]. The key role in the for-
mation of the crystal structure is played by intermolecular hydrogen bonds of the N–H⋅⋅⋅O, C–H⋅⋅⋅O, C–H⋅⋅⋅N,
and N–H⋅⋅⋅S types. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

The considerable interest expressed in the structure
of the products formed upon the interaction of carbonyl
compounds with thioacylhydrazines and thiosemicar-
bazides is associated with their biological activity and
1063-7745/05/5006- $26.00 0923
the possible manifestation of ring–chain isomerism [1–
3]. It is known that linear thiosemicarbazone molecules
can transform into cyclic 1,3,4-thiadiazoles [4, 5]. We
investigated the condensation reaction of a previously
known compound, namely, N-acetylisatin β-ethylene
ketal (I) [6], with thiosemicarbazide (see scheme).
Scheme
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O
O
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N
H
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S

NH2

NH2 NH C
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Et3N, EtOH, H2O

I III II
However, the results of the elemental analysis and
1H NMR investigation of the compound synthesized
disagreed with the predicted structure of thiosemicar-
bazone II. In this respect, we carried out a complete
X-ray diffraction analysis of the compound under con-
sideration.
EXPERIMENTAL TECHNIQUE

Synthesis. A mixture of N-acetylisatin β-ethylene
ketal (1.23 g, 0.005 mol), thiosemicarbazide (0.45 g,
0.005 mol), and thriethylamine (0.5 g, 0.005 mol) was
boiled in a water–alcohol solution (1 : 5, 30 ml) for
© 2005 Pleiades Publishing, Inc.
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10 h. The precipitate (0.58 g) was subjected to frac-
tional crystallization from an alcohol solution. The sin-
gle crystals thus prepared were examined using X-ray
diffraction.

X-ray diffraction analysis. The experimental set of
intensities of X-ray reflections was collected on a
KM4-CCD diffractometer (ω scan mode). The main
crystal data and the data-collection and refinement
parameters are presented in Table 1. The structure was
solved by direct methods and refined with the
SHELXS97 and SHELXL97 program packages [7].
The non-hydrogen atoms were refined in the anisotro-
pic approximation. The hydrogen atoms were located
from the difference Fourier synthesis and refined in the
isotropic approximation. The coordinates of the non-
hydrogen atoms are listed in Table 2.

RESULTS AND DISCUSSION

The crystal structure of the supramolecular complex
synthesized is shown in Fig. 1. The crystal is built up of
indole-2,3-dione 1-(2-oxopropyl)-3-ethylene ketal (I)
and indole-2,3-dione 1-(2-oxopropyl)-3-ethylene ketal

Table 1.  Main crystal data, data collection, and refinement
parameters for the structure under investigation 

Empirical formula C27H29N5O7S

Molecular weight 567.61 

Temperature, K 223(2)

Wavelength, Å 0.71073

Crystal system Monoclinic

Space group, Z P21/c, 4

a, Å 12.8360(3)

b, Å 10.7330(3) 

c, Å 19.4610(3) 

β, deg 99.566(1) 

V, Å3 2643.8(1)

ρcalcd, g/cm3 1.426

F(000) 1192

Crystal shape, mm 0.30 × 0.25 × 0.15

µ, mm–1 0.179

θ range, deg 2.17–27.47

Index ranges –16 ≤ h ≤ 16, –10 ≤ k ≤ 13,
–25 ≤ l ≤ 24 

Number of reflections measured 8584

Number of unique reflections 6035 

Number of reflections observed 3274 [Rint = 0.0190]

Number of parameters refined 479

S for F2 1.036

Final R factor [I > 4σ(I)] R1 = 0.0406, wR2 = 0.093

R factor
(for all reflections measured)

R1 = 0.0616, wR2 = 0.0985
C

Table 2.  Coordinates of the non-hydrogen atoms (×104) and
their equivalent isotropic thermal parameters Ueq (×103) for
the structure under investigation 

Atom x y z Ueq

S(1) 1127(1) 8676(1) 494(1) 17(1)

N(1A) –2821(1) 4917(1) –35(1) 16(1)

N(2A) –957(1) 5979(1) 357(1) 15(1)

N(3A) –23(1) 6647(1) 525(1) 16(1)

N(4A) –818(1) 8222(2) –167(1) 21(1)

O(1A) –2100(1) 4545(1) –1027(1) 19(1)

O(2A) –2901(1) 7148(1) –1219(1) 18(1)

O(3A) –4177(1) 5711(1) –1620(1) 19(1)

C(2A) –2720(1) 5082(2) –715(1) 15(1)

C(3A) –3494(1) 6132(2) –1019(1) 16(1)

C(4A) –4866(1) 7252(2) –373(1) 19(1)

C(5A) –5270(1) 7293(2) 253(1) 23(1)

C(6A) –4831(1) 6556(2) 812(1) 23(1)

C(7A) –3994(1) 5749(2) 777(1) 19(1)

C(8A) –3613(1) 5710(2) 151(1) 15(1)

C(9A) –4037(1) 6455(2) –412(1) 15(1)

C(10A) –4011(1) 6495(2) –2194(1) 19(1)

C(11A) –2910(1) 6981(2) –1960(1) 21(1)

C(12A) –2057(1) 4225(2) 452(1) 17(1)

C(13A) –1033(1) 4933(2) 661(1) 15(1)

C(14A) –222(1) 4325(2) 1198(1) 20(1)

C(15A) 23(1) 7809(2) 264(1) 15(1)

N(1B) 2554(1) 6977(1) 2567(1) 16(1)

O(1B) 4139(1) 6205(1) 3128(1) 22(1)

O(2B) 2744(1) 5926(1) 4208(1) 23(1)

O(3B) 2594(1) 4308(1) 3433(1) 24(1)

O(4B) 2813(1) 9531(1) 2685(1) 30(1)

C(2B) 3180(1) 6285(2) 3053(1) 16(1)

C(3B) 2455(1) 5606(2) 3496(1) 18(1)

C(4B) 391(1) 5766(2) 3330(1) 22(1)

C(5B) –495(1) 6293(2) 2922(1) 24(1)

C(6B) –384(1) 7110(2) 2386(1) 22(1)

C(7B) 611(1) 7414(2) 2231(1) 19(1)

C(8B) 1472(1) 6862(2) 2631(1) 16(1)

C(9B) 1373(1) 6060(2) 3179(1) 17(1)

C(10B) 3196(2) 4845(2) 4566(1) 28(1)

C(11B) 2684(2) 3792(2) 4110(1) 27(1)

C(11K) 3288(13) 3911(12) 4046(6) 27(4)

C(12B) 2964(1) 7673(2) 2037(1) 17(1)

C(13B) 3084(1) 9050(2) 2181(1) 18(1)

C(14B) 3548(2) 9774(2) 1645(1) 27(1)
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 6      2005
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Fig. 1. Structures of molecules I and II.
thiosemicarbazone (II) molecules that are linked
together into a noncentrosymmetric dimer through the
intermolecular hydrogen bonds C(12B)–
H(12e)···O(1A) and C(10A)–H(10b)···O(1B) [the H···O
distances are 2.54(2) and 2.53(2) Å], for which the

graph set can be written in the form (11) [8]. The
geometric parameters of the hydrogen bonds are pre-
sented in Table 3.

The structures and configurations of the indole frag-
ments of indole-2,3-dione 3-ethylene ketal in mole-
cules I and II are nearly identical to each other and dif-
fer only slightly from those described in [9]. In both
cases, the pyrrole and dioxolane rings in the indole

R2
2

APHY REPORTS      Vol. 50      No. 6      2005
fragment of the structure are spiro-linked through the
C(3) carbon atom and form dihedral angles of 84.5(1)°
and 82.7(1)° in molecules I and II, respectively. The
pyrrole and benzene rings lie in virtually the same plane
to within 1.8(1)° in molecule I and 4.4(1)° in molecule
II. The considerable acoplanarity of the indole frag-
ments can be associated with the fact that molecule II
is stabilized by the intramolecular hydrogen bond
N(4A)–H⋅⋅⋅O(2A) [3.294(2) Å], which is described by
the graph set S(11) and formed by the terminal nitrogen
atom of the thiosemicarbazide fragment and the oxygen
atom of the dioxolane fragment. In molecules I and II,
the dioxolane fragment adopts an envelope conforma-
tion, which is characteristic of this class of compounds
Table 3.  Geometric parameters of the hydrogen bonds in the structure under investigation

D–H…A D–H, Å H···A, Å D···A, Å DHA angle, deg

N(3A)–H(3a)···O(1A)#1 0.85(2) 2.20(2) 3.022(2) 161(2)

N(4A)–H(4a)···S(1)#5 0.93(3) 2.49(3) 3.400(2) 168(2)

N(4A)–H(4b)···O(2A) 0.88(2) 2.53(2) 3.294(2) 145(2)

C(4A)–H(4c)···O(1B)#2 0.97(2) 2.45(2) 3.413(2) 170(2)

C(10A)–H(10b)···O(1B) 0.98(2) 2.53(2) 3.411(2) 148(2)

C(10A)–H(10a)···O(1B)#2 0.97(2) 2.64(2) 3.553(2) 159(1)

C(11B)–H(11c)···N(4A)#3 0.98(3) 2.10(3) 3.035(3) 159(2) 

C(12B)–H(12e)···O(1A) 0.96(2) 2.54(2) 3.167(2) 123(1)

C(14A)–H(14c)···O(1A)#1 0.94(3) 2.51(3) 3.286(2) 140(2)

C(14B)–H(14i)···O(1bB)#4 0.93(3) 2.48(3) 3.307(2) 147(2)

Note: Symmetry operations: #1 –x, –y + 1, –z; #2 –x – 1, y + 0.5, –0.5 – z; #3 x, 1.5 – y, –0.5 – z; #4 –1 – x, –0.5 + y, –0.5 – z; #5 –x, –y + 2, –z. 
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[10]. In molecule II, the C(11A) atom deviates by
−0.578(2) Å from the root-mean-square plane formed
by the O(2A), C(3A), O(3A), and C(10A) atoms. The
dioxolane fragment in molecule I exists in the form of
two conformers due to the statistical disordering of the
C(11) atoms over two positions, C(11B) and C(11K),
with occupancies of 0.834 and 0.166, respectively. The
C(11B) and C(11K) atoms deviate by 0.508(4) and
−0.31(2) Å, respectively, from the root-mean-square
plane formed by the O(2B), C(3B), O(3B), and C(10B)
atoms. Since the occupancy of the position of the

S(1A)

N(4AA)

S(1C)

O(1AB)

N(4AB)

S(1B)

N(3AB)
C(14B)

C(14C)

N(3AC)

O(1AC)

Fig. 2. A fragment of the chain formed by molecules I.

N(4AC)
C

C(11K) atom is not very high and, consequently, the
hydrogen atoms cannot be located at this position, we
do not analyze the role played by the C(11K) atom in
the formation of the crystal structure.

The structure and configuration of the thiosemicar-
bazide fragment in molecule II differ only slightly both
from those observed for the free molecule [11] and
from the structure of the thiosemicarbazide fragment
attached to the carbon atom through the N=C double
bond [12], as in the case under consideration. The
N(2A)–C(13A) bond length is equal to 1.280(2) Å, and
the N(2A)–N(3A)–C(15A)–N(4A) torsion angle is
3.1(2)°. The S(1)–C(15A) distance [1.692(2) Å] sug-
gests that the thiosemicarbazide fragment of the mole-
cule has the thione form. Molecules I and II have a sub-
stantially nonplanar structure. The dihedral angles
between the planar indole fragment and the acetonitrile
group in molecule I and the thiosemicarbazide frag-
ment in molecule II are equal to 79.4(1)° and 78.5(1)°,
respectively.

In the crystal, molecules II form infinite chains with
centrosymmetric motifs through the hydrogen bonds
N(3A)–H(3a)···O(1A)#1 [3.022(2) Å], ë(14A)–
H(14c)···O(1A)#1 [3.286(2) Å], and N(4A)–
H(4a)···S(1)#5 [3.400(2) Å] (Table 3). It is worth noting
that the first two hydrogen bonds are responsible for the
centrosymmetric motif with two different centrosym-

metric fragments, namely, (16) and (14), whereas
the third hydrogen bond leads to the formation of the

fragment (8) (Fig. 2). The criteria for the formation
of these bonds were considered in [13–15]. Molecules I
are joined by the intermolecular hydrogen bonds
ë(14B)–H(14f)···O(1B)#4 [3.307(2) Å] with the graph
set C(7) and form zigzag chains parallel to the [010]
direction (Fig. 3), as is the case with molecules II. In

R2
2 R2

2

R2
2

O(1BC)

C(14A)

O(1BA)

C(14D)

O(1BD)

C(14B)

0

c

b

a

Fig. 3. A fragment of the chain formed by molecules II.
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turn, the formation of the hydrogen bonds C(4A)–
H(4c)···O(1B)#2 [3.413(2) Å] and C(11B)–
H(11b)···N(4A)#3 [3.035(3) Å] between molecules I and
II is responsible for the centrosymmetric motif with the

graph set (34) (Fig. 4).

CONCLUSIONS

Thus, the results of the X-ray diffraction analysis
performed in this study demonstrated that the reaction

R4
4

c

b

a

S(1A)

N(4AA)

C(11B)

O(1BB)

C(4AB)

C(11A)

N(4AB)

O(1BA)

C(4AA)

S(1B)

Fig. 4. A centrosymmetric fragment of the crystal structure
formed by molecules I and II.
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 6      2005
shown in the scheme actually leads to the formation of
thiosemicarbazone II; however, this compound crystal-
lizes in the form of a complex with the initial ketal I.
The crystal structure formed by two molecules, I and
II, which have different compositions, can be consid-
ered a three-dimensional supramolecular system.
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Abstract—The stable metal β''-(DOEO)2HSeO4 ⋅ H2O (I) based on a new donor compound, 3,4-(1,4-diox-
anediyl-2,3-dithio)-3',4'-ethylenedioxo-2,5,2',5'-tetrathiafulvalene] (DOEO), is synthesized and structurally
characterized for the first time. The synthesis is performed by the electrocrystallization technique (direct current
density j = 2 × 10–6 A/cm2). The crystals are triclinic, and the unit cell parameters are as follows: a = 5.495(1) Å,

b = 9.715(2) Å, c = 16.878(3) Å, α = 83.52(3)°, β = 82.54(3)°, γ = 73.51(3)°, Z = 1, and space group . The
salt has a layered structure. The DOEO1/2+ radical cation layers are aligned parallel to the ab planes. The

HSe  · H2O solvated anions are located in channels along the a axis and are disordered over two positions
near the center of symmetry (1/2 0 0) with a probability of 50%. The conductivity of the salt is equal to 300–
400 Ω–1 cm–1 at room temperature and increases upon cooling to the boiling point of liquid helium (4.2 K) by
a factor of 100–200 depending on the sample. © 2005 Pleiades Publishing, Inc.

P1

O4
–

INTRODUCTION

Radical cation salts based on a new donor com-
pound, 3,4-(1,4-dioxanediyl-2,3-dithio)-3',4'-ethylene-
dioxo-2,5,2',5'-tetrathiafulvalene (DOEO), are poorly
known. At present, there are data on the structure of
only one of such salts, namely, (DOEO)2BF4 [1] (how-
ever, these data have not been deposited with the Cam-
bridge Crystallographic Data Center). The data avail-
able in the literature on the structure of the DOEO salts
are very scarce because the preparation of this donor
presents considerable difficulties and the anion sub-
system of these salts is strongly disordered [2]. Investi-
gation into the crystal structure of β''-(DOEO)2HSeO4 ⋅
H2O (I) is necessary both for subsequent calculations of
the electronic structure of the crystal and for the deter-
mination of the structure–property correlations, in par-
ticular, with the aim of elucidating the nature of high
conduction of this salt.

EXPERIMENTAL TECHNIQUE

Synthesis. Compound I was prepared through elec-
trocrystallization under direct current conditions [3].
3,4-(1,4-Dioxanediyl-2,3-dithio)-3',4'-ethylenedioxo-
2,5,2',5'-tetrathiafulvalene (10 mg, 24 µmol), 18-
crown-6 (100 mg, 378 µmol), and CsHSeO4 (50 mg,
180 µmol) were placed in an electrochemical cell and
dissolved in chlorobenzene (20 ml) with an additive of
1063-7745/05/5006- $26.00 0928
dehydrated ethanol (2 ml). The electrochemical cell
was filled with argon. Platinum electrodes with an
anode area of ≈0.3 cm2 were placed in the cell. Then,
the cell was sealed. The electrosynthesis was performed
in a thermostat at a temperature of 20°C. At an initial
current of 0.1 µA, nucleation was not observed. Then,
the current was sequentially increased to 0.2, 0.3, 0.4,
0.5, and 0.6 µA. At the last value of the current, needle-
shaped crystals began to grow. In this case, the voltage
was varied in the range from 0.5 V (0.1 µA) to 1.2 V
(0.6 µA). Single crystals suitable for X-ray diffraction
analysis precipitated on the anode for two weeks.

Conductivity measurements. The electrical con-
ductivity of crystals I was measured in the ab plane by
the standard four-point probe method on an automated
setup. The electrical conductivity in the ab plane at
room temperature σ||294 was equal to 300–400 Ω–1 cm–1.
The samples were slowly cooled from room tempera-
ture to the boiling point of liquid helium (4.2 K) at a
rate of ≈1 K/min. The temperature dependence of the
electrical conductivity exhibits a metallic behavior over
the entire temperature range. During cooling, the elec-
trical conductivity gradually increases by a factor of
100–200 (at 4.2 K) depending on the sample (Fig. 1).

X-ray diffraction analysis. The crystals
C24H23O13S12Se [M = 983.18(4)] are triclinic, a =
5.495(1) Å, b = 9.715(2) Å, c = 16.878(3) Å, α =
83.52(3)°, β = 82.54(3)°, γ = 73.51(3)°, V = 853.9(3) Å3,
© 2005 Pleiades Publishing, Inc.
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Fig. 1. Temperature dependence of the resistance for crystals of compound I.
Z = 1, space group , ρcalcd = 1.910 g/cm3, and
µ(Mo) = 1.898 mm–1.

The experimental set of diffraction reflections was
collected on a KUMA DIFFRACTION KM-4 auto-
mated diffractometer (λ MoKα, ω/2θ scan mode,
1.22° < θ < 25.94°) for a single crystal 1.00 × 0.25 ×
0.04 mm in size. The structure was solved by direct
methods with the SHELXS97 program package [4].
The hydrogen atoms of the DOEO radical cation were
placed in the calculated positions and refined within a
riding model. The positions of the hydrogen atoms of
the solvated water molecule were located from the dif-
ference synthesis and refined with fixed values Uiso =
0.05 Å2. The positions of the non-hydrogen atoms were
refined by the least-squares method in the anisotropic
approximation with the SHELXL97 program package [5].

The structure was refined to R1 = 0.0440 and wR2 =
0.1200 for 2048 reflections with I > 4σ(I), R1 = 0.0898
and wR2 = 0.1308 for all 2959 unique reflections, and
S = 0.979. The residual electron density lies in the
range 0.652 > ∆ρ > –0.689 e/Å3. The calculations and
data processing were performed with the WinGX and
ORTEP program packages [6, 7]. The crystallographic
data for the structure of compound I have been depos-
ited with the Cambridge Crystallographic Data Center
(CCDC no. 280707).
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RESULTS AND DISCUSSION

In compound I, the asymmetric part of the unit cell

involves one DOEO radical cation (A) and the HSe  ·
H2O solvated anion disordered over two positions. The
occupancy of the anion positions is equal to 0.5.
According to the electroneutrality condition, the formal
charge of the DOEO radical cation is +0.5. The crystal
structure of compound I is formed by layers consisting
of DOEO radical cations (Fig. 2).

The dioxane rings of the DOEO radical cations
deviate from the radical cation layers and form walls of
channels that are aligned parallel to the a axis and in

which the HSe  · H2O solvated anions are located.

The disordered anions HSe  have a tetrahedral
structure (Fig. 3). Both of the disordered anion posi-
tions are arranged in the same cavity in the immediate
vicinity of the center of symmetry (1/2 0 0). The dis-
tance between the central selenium atoms in the anions
occupying two disordered positions is short and equal
to 1.415(5) Å. The Se–O bond lengths are close to those

in the structures with ordered solvated anions HSe  ·
H2O, for example, in the structure of (APA)HSeO4 ⋅
H2O [8], where APA is 9-azaphenanthrene.
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Fig. 2. Crystal structure of compound I. Dashed lines represent shortened intermolecular contacts, parallelograms indicate the diox-
ane rings, and the circle shows the anion channel.
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Fig. 3. Two variants for the location of the HSe  · H2O solvated anion. Thin and dashed lines indicate hydrogen bonds.O4
–

The distances (corresponding to hydrogen bonds)
between the oxygen atoms of the anion and those of the
solvated water molecule in the anion sublattice of the
structure of compound I are equal to 2.278 Å [O(2)–O'']
and 2.641 Å [O(3)–O]. The anomalously small value of
the former distance is most likely associated with the
disordering of the anion. In the (APA)HSeO4 ⋅ H2O
compound, the relevant distances are equal to 2.528 and
C

2.776 Å [8]. In the structure of the DABCOH2 com-
pound (DABCOH2 is 1,4-diazabicy-
clo[2.2.2]octaneH2), which involves disordered anions

HSe  but does not contain water molecules, the dis-
tances between the oxygen atoms bonded by hydrogen
bonds in the anion are equal to 2.57(1) and 2.60(1) Å
[9]. Therefore, in the anion sublattice of the structure of

O4
–

RYSTALLOGRAPHY REPORTS      Vol. 50      No. 6      2005



C

SYNTHESIS, CONDUCTIVITY, AND THE CRYSTAL STRUCTURE 931
O(5)

S(8)

S(1)

C(7)

C(8) C(4)

C(3)

C(1)

C(2)

O(6) S(2) S(4)

S(3)

O(10)

C(5)

C(6) C(10)

C(9)
C(11)

C(12)

S(7)

O(9)

Fig. 4. Atomic numbering in the DOEO radical cation.

Fig. 5. A fragment of the radical cation layer in the structure of compound I.
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compound I, there exists a chain of strong hydrogen
bonds aligned parallel to the a axis (Fig. 3). The fact
that the hydrogen atoms of the disordered solvated
water molecule are revealed from the difference synthe-
sis (see Experimental Technique) can indicate the for-
mation of hydrogen bonds with the anion.

The intramolecular conjugated system of the
DOEO1/2+ radical cation contains two groups of atoms.
One group involves the C(1)–C(4), S(1)–S(4), O(5),
and O(6) atoms, and the other group includes the C(5),
C(6), S(3), S(4), S(7), and S(8) atoms. The atoms are
coplanar accurate to within ±0.028 Å in the former
group and ±0.015 Å in the latter group. The mean
planes of both groups form a small angle. The
S(1)S(3)S(4)S(8) torsion angle is equal to 173°. There-
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 6      200
fore, all the above atoms can be considered approxi-
mately coplanar (to within ±0.076 Å) (Fig. 4).

The dioxane ring [the C(9)–C(12), O(9), and O(10)
atoms] has a typical chair conformation: the C(9)–
C(12) atoms are coplanar to within ±0.031 Å, and the
O(9) and O(10) atoms deviate from the corresponding
plane by –0.579 and 0.654 Å, respectively. In the
DOEO1/2+ radical cation, the plane of the conjugated
atoms and the plane of the C(9)–C(12) atoms are nearly
perpendicular to each other. The angle between these
planes is equal to 94.9°.

The ethylene carbon atoms C(7) and C(8) deviate
from the mean plane of the DOEO1/2+ radical cation by
0.530(7) and 0.036(8) Å, respectively. This means that
the C(8) atom lies virtually in the plane. Consequently,
the C(3)C(4)O(5)O(6)C(7)C(8) ring adopts a sofa con-
5
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Fig. 6. Types of overlap of the DOEO1/2+ radical cations (a) inside the dimer and (b) between the dimers. Symmetry operations for
the DOEO1/2+ radical cations are as follows: x, y, z (A); 1 – x, 1 – y, 1 – z (A'); and 2 – x, –y, 1 – z (A'').
formation. The C(9) and C(10) ethyne atoms deviate
from the mean plane of the DOEO1/2+ radical cation by
–0.293(4) and –0.890(4) Å, respectively. The consider-
able deviation of the C(10) atom is caused by the steric

Shortened intermolecular contacts in the radical cation layer
of compound I (the corrections are introduced according
to [12])*

Contact Distance, 
Å Direction Contact 

type

S(1)···S(1)1 3.522(2) [110] Sin···Sin

S(1)···S(3)1, S(3)···S(1)1 3.437(2) [110] Sin···Sin

S(2)···S(4)2, S(4)···S(2)2 3.440(2) [110] Sin···Sin

S(2)···S(8)2, S(8)···S(2)2 3.447(2) [110] Sin···Sex

S(2)···S(8)3, S(8)···S(2)3 3.595(2) [1 0] Sin···Sex

S(3)···O(5)1, O(5)···S(3)1 3.301(4) [110] Sin···Oex

S(4)···S(7)4, S(7)···S(4)4 3.533(2) [100] Sin···Sex

O(5)···S(7)1, S(7)···O(5)1 3.322(4) [110] Sex···Oex

O(6)···S(8)2, S(8)···O(6)2 3.247(4) [110] Sex···Oex

* Symmetry operations for the atoms are as follows: 1 1 – x, –y, 1 – z;
2 2 – x, 1 – y, 1 – z; 3 1 – x, 1 – y, 1 – z; 4 1 + x, y, z; 5 –1 + x, y, z. 

1

C

effect of the bulky dioxane ring. The ethylene and
ethyne groups exhibit an eclipsed mutual conformation.

The DOEO1/2+ radical cations form layers aligned
parallel to the ab plane. In a layer, the cations form
pseudostacks along the [1 0] direction (Fig. 5). The dif-
ference between the pseudostacks and the stacks lies in
the fact that the neighboring radical cations in the pseu-
dostacks are displaced along the short axis of the radi-
cal cation. This displacement in the structure of com-
pound I is equal to 1.88 Å; i.e., it is approximately half
the width of the DOEO1/2+ radical cation. In the pseu-
dostacks, the DOEO1/2+ radical cations are weakly
dimerized. The interplanar distance (the mean plane
passes through all the conjugated atoms) inside the
A−A' centrosymmetric dimer is equal to 3.429(5) Å,
and the A–A'' interdimer distance is 3.637(3) Å (Fig. 6).
In the dimer, the arrangement of the radical cations cor-
responds to a head-to-tail configuration.

In the pseudostacks, the DOEO1/2+ radical cations
are also displaced along their long axis by 2.63 Å, i.e.,
by approximately 1/5 of the whole length of the
DOEO1/2+ radical cation. This displacement is caused
by the steric effect of the dioxane ring. Although the
planar structure of the DOEO1/2+ radical cation is con-
siderably distorted by the dioxane rings, their effect is
virtually canceled by the specific features of the pack-

1
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ing: the dioxane rings appear to be located outside the
radical cation layer, thus forming walls of the anion
channels, and the overlap of radical cations in pseu-
dostacks inside the dimers and between them is nearly
identical.

Apart from the pseudostacks with a plane-to-plane
arrangement of the DOEO1/2+ radical cations, the struc-
ture of compound I involves the radical cation chains
lying along the [110] direction, in which the DOEO1/2+

radical cations are arranged in a side-to-side manner,
and even all the more distorted stacks parallel to the
[100] direction. In these distorted stacks, the radical
cations are arranged in a manner similar to that
observed in the pseudostacks, but the displacement
along the short axis of the DOEO1/2+ radical cations is
equal to the DOEO1/2+ radical cation width and the
mutual arrangement of the radical cations corresponds
to a tail-to-tail configuration (Fig. 5). According to the
above features, the packing in the structure of com-
pound I can be assigned to the β'' type in the nomencla-
ture proposed in [10].

The structure of compound I is characterized by a
large number of shortened intermolecular contacts S⋅⋅⋅S
(less than 3.65 Å) and S⋅⋅⋅O (less than 3.37 Å) (table).
It is worth noting that the network of interchalcogenide
contacts in the structure of compound I has a high den-
sity: the total number of contacts per radical cation can
be as large as 17.

Unlike the DOET salts [where DOET is 3,4-(1,4-
dioxanediyl-2,3-dithio)-3',4'-ethylenedithio-2,5,2',5'-tet-
rathiafulvalene] [11], the structure of compound I con-
tains not only the Sex⋅⋅⋅Sex and Sin⋅⋅⋅Sex contacts [where
Sin are the internal atoms S(1)–S(4), Sex are the external
atoms S(7) and S(8), and Oex are the external atoms
O(5) and O(6)] but also the Sin⋅⋅⋅Sin contacts. This is
associated with the replacement of two external sulfur
atoms in the donor molecule by two oxygen atoms,
which provides an easier access to the internal sulfur
atoms. The shortened contacts Sin⋅⋅⋅Oex and Sex⋅⋅⋅Oex are
also revealed in the structure. This suggests a rather
close packing of radical cations in the layer. The short-
ened contacts in the structure of compound I are pre-
dominantly formed along the chains (the [110] direc-
tion), and each radical cation has contacts with all the
DOEO1/2+ radical cations in the nearest environment
(table).

In conclusion, it should be noted that, among the
known metal salts (DOEO)2Au(CN)2, (DOEO)2PF6,
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 6      2005
and (DOEO)2BF4 [1, 2], the structure was determined
only for the last salt. However, the available data on the
crystal structure of this salt in [1] are very scarce and
the accuracy of the structure determination is unknown.

Thus, compound I is the first structurally character-
ized stable metal based on the new donor DOEO.
According to its conducting properties, this compound
belongs to the best quasi-two-dimensional molecular
metals.

The high conductivity of the salt under investigation
can be associated with the formation of a dense network
of S⋅⋅⋅S and S⋅⋅⋅O contacts, among which the Sin⋅⋅⋅Sex

contacts are large in number. The low degree of dimer-
ization of radical cations in stacks can be responsible
for the stabilization of the metallic state down to low
temperatures.
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Abstract—The conditions of the formation of suborientation states in multidomain and single-domain
Pb3(PO4)2 crystals are analyzed. It is shown that suborientation states belong to sets of two structurally different
types of domains differing in the angle sign and the orientation of the axis of rotation with respect to the coor-
dinate system of the paraelastic phase. These structural differences are proposed to be described by the Gibbs
vector. It is concluded that this macroscopic parameter corresponds to cooperative displacement of some groups
of atoms with respect to other groups, with the crystal matrix being at rest. It is found that the modulus of the
Gibbs vector is proportional to the spontaneous-strain components and depends linearly on the crystallographic
parameter c in the ferroelastic phase. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

It is known that, with an increase in spontaneous
strain, rotations (in opposite directions) of the crystal-
lographic axes in adjacent domains, separated by a
domain wall, are observed in ferroelastics [1, 2] and
multiaxial ferroelectrics [3–5]. This phenomenon leads
to the formation of similar orientation (suborientation)
states in crystals. In this context, the question arises as
to whether the difference in the suborientation states is
due to only their spatial orientation or if there are cer-
tain structural differences between them.

Therefore, it is of interest to perform comprehensive
analysis of the conditions of formation and the proper-
ties of suborientation states in the most studied fer-
roelastic: lead orthophosphate.

Lead orthophosphate Pb3(PO4)2 is a pure improper
ferroelastic, in which a first-order phase transition from

the rhombohedral β-phase ( ) to the monoclinic α-
phase (C2/c) is observed [6]. In the ferroelastic phase,
without allowance for small distinctions (~2°), three
orientation states (C1, C2, C3) and two types of domain
walls (W ', W) are possible [7, 8]. At room temperature,
domains separated by a W ' domain wall have coplanar
(100) planes and the angle α between the b axes is 118°.
When a W domain wall is formed, the angle γ between
the (100) planes is 178.6° ± 0.1° and the angle α is 58°
[1]. In this domain geometry, two suborientation states
correspond to each Ci .

In the coordinate system with the X1 and X2 axes
parallel to the c and b axes, respectively, the spontane-

R3m
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ous-strain tensor has the form [9]

(1)

where  = /2b and  = .

Hereinafter, we will denote the orthogonal coordi-
nate axes in the β-phase as X0i and in the α-phase as Xji

(j = 1, 2, 3, according to the number of Cj). The domain

walls separating Ci and Cj will be denoted as Wij or .

FORMATION OF SUBORIENTATION STATES 
IN A MULTIDOMAIN CRYSTAL

Previously [10, 11], we proposed a model of a fer-
roelastic domain wall consisting of an induced phase
(interlayer). This interlayer matches the crystal lattices
of the adjacent domains. There are two possible struc-
tures corresponding to the W ' and W walls. In the case
of the W ' wall (P type of twinning), the interlayer has
the symmetry of the paraelastic phase. To match the lat-
tices of the α-phase and the interlayer, it is necessary to
rotate the crystallographic axes of the α-phase with
respect to the coordinate system of the β-phase. The
magnitude of the rotation depends on the value of the
spontaneous strain. It was shown in [11] that the orien-
tation state, for example, C1, which is separated from

C2 and C3 by W ' domain walls ( , ), is described
by the following matrices of coordinate-system trans-

S
e11

s
0 e13

s

 e11
s

– 0

  0 
 
 
 
 
 

,=

e11
s c

3
------- b– 

  e13
s c 3a βcos+

6a βsin
---------------------------

Wij'

W12' W13'
© 2005 Pleiades Publishing, Inc.
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formation from the β- to the α-phase: 

(2)

where, for t = 20°C, a11 = 0.99984, a12 = –0.01756,
a13 = –0.0019, a21 = 0.01753, a22 = 0.99976, a23 =
−0.0134, a31 = 0.00213, a32 = 0.01338, and a33 =
0.99991.

The structure of a W wall (F type of twinning)
includes two interlayers in which only the main sponta-
neous-strain components are zero. This circumstance
results in two types of rotations: ϕ1 , corresponding to
the lattice matching between the ferroelectric phase and
the nearest interlayer, and ϕ2 , corresponding to the lat-
tice matching between two interlayers. Rotation of the
latter type leads to the formation of a relief on the crys-
tal surface. If the orientation state C1 is separated from
C2 and C3 by W domain walls (W12, W13), almost similar
W ' walls correspond to them but the sequence of the
transformation matrices is reversed:

(3)

where b11 = 0.99978, b12 = –0.0186, b13 = –0.0096,
b21 = 0.01854, b22 = 0.99981, b23 = –0.0056, b31 =
0.00969, b32 = 0.00548, and b33 = 0.99994.

As can be seen, the components of the matrices A1i

and B1j almost coincide; insignificant differences seem
to be due to the rotation ϕ2. Therefore, without allow-
ance for these small differences, each orientation state
in a multidomain lead orthophosphate crystal can have
two similar orientations corresponding to the matrices
A12 and A13. We will denote these orientations as C1 and

, C2 and , and C3 and .

FORMATION OF SUBORIENTATION STATES 
AT A PHASE TRANSITION

A model of a thin phase boundary separating two
monoclinic phases was proposed in [12]. The term
“thin phase boundary” corresponds to the direct contact
between two phases, at which the phase boundary is
shared by two different crystal lattices. To match the
lattices of two phases separated by a thin phase bound-
ary, the crystallographic axes should also be rotated. It
was shown in [12, 13] that two types of thin planar
phase boundaries (PB1 and PB2) exist in Pb3(PO4)2.
They form similar orientation states corresponding to
the following coordinate-transformation matrices from

A12 = 
a11 a12 a13

a21 a22 a23

a31 a32 a33 
 
 
 
 

, A13 = 
a11 a12– a13

a21– a22 a23–

a31 a32– a33 
 
 
 
 

,

B12 = 
b11 b12– b13

b21– b22 b23–

b31 b32– b33 
 
 
 
 

,  B13 = 
b11 b12 b13

b21 b22 b23

b31 b32 b33 
 
 
 
 

,

C1' C2' C3'
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the β- to the α-phase:

(4)

where c11 = 0.9999943, c12 = –0.00335, c13 = 0.000148;
c21 = 0.00335, c22 = 0.9999942; c23 = 0.00056, c31 =
0.000146, c32 = –0.0005638, and c33 = 0.9999998.

As can be seen, the coordinate-transformation
matrices obtained from the model of the thin phase
boundary and the model of the ferroelastic domain wall
have the same form. Hence, the formation of two sub-
orientation states is also possible at the formation of a
single-domain crystal. It should be noted that, if a spe-
cific suborientation state was formed in a single-
domain crystal at the β  α phase transition by a def-
inite phase boundary (for example, PB1), the phase
boundary of this type is always formed at α  β tran-
sitions. This phenomenon can be explained only by the
structural differences of the two possible suborientation
states from the paraelastic phase.

ETCH PATTERNS OF THE SURFACE 
OF A Pb3(PO4)2 CRYSTAL

In view of the above considerations, it is of interest
to establish the mechanism of rotation of crystallo-
graphic axes, specifically, to find out if this rotation is
due to the rotation of a domain as a whole or results
from cooperative displacement of some groups of
atoms with respect to other groups, the domain matrix
being at rest. To solve this problem, we studied experi-
mentally the etch patterns obtained at room tempera-
ture on the top (A) surface of a single-domain (100)
sample formed by the phase boundary PB1. Then the
etch patterns on the bottom (B) surface were investi-
gated after the second suborientation state was formed
by the phase boundary PB2. Analysis of the etch pat-
terns was performed using an optical microscope
focused on the top or bottom crystal surfaces. A special
acid etchant was used to obtain etch patterns with a pro-
nounced plane of symmetry (Fig. 1). The angle α1
between the planes of symmetry of the etch patterns on
the surfaces A and B is 2.3° ± 0.5° (Fig. 1).

Hence, the difference in the orientations of the C1

and  states is caused by the rotation of the crystallo-
graphic axes with respect to the crystal matrix at rest.
As was shown in [14, 15], displacements of Pb(1) and
Pb(2) atoms, as well as distortions and rotations of PO4
tetrahedra, are observed in the ferroelastic phase of lead
orthophosphate. Apparently, it is these factors that
determine the rotation of the crystallographic axes dur-
ing a change in spontaneous strain. According to the
symmetry of the paraelastic phase, a reversible dis-
placement (–∆z) of a Pb(2) atom along the threefold

D01 = 
c11 c12 c13

c21 c22 c23

c31 c32 c33 
 
 
 
 

, D02 = 
c11 c12– c13

c21– c22 c23–

c31 c32– c33 
 
 
 
 

,

C1'
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(a) (b)

Fig. 1. Etch patterns of the (100) face of a single-domain Pb3(PO4)2 crystal: (a) the surface A (C1) and (b) the surface B ( ).C1'
axis may occur, which leads to changes in the position
of all lattice atoms corresponding to the second subori-
entation state.

RESULTS AND DISCUSSION

The analysis performed showed that two types
(classes) of structural domains (C1, C2, C3 and , ,

) are formed in lead orthophosphate, which differ by
the sign of the angle of rotation and the orientation of
the axis of rotation of the crystallographic axes of
domains with respect to the paraelastic phase. This cir-
cumstance determines their different roles in the forma-
tion of the domain structure. According to [13], equilib-
rium domain walls are formed at the intersection of
domains of different types; for example, intersection of
C1 and  yields  and intersection of  and C2

yields W12. Nonequilibrium domain walls are formed at
intersection of domains of the same type (Ci and Cj or

 and ). The difference in the operations of align-
ment of different pairs of orientation states is also
related to this factor.

If two domains belong the same type, their orienta-
tion states can be aligned by the operation of F symme-
try of the paraelastic phase 

(5)

where Bij is the rotation matrix around the X03 axis by
an angle of ±120°.

It was shown in [11] that, for domains of different
types, the matrix K corresponds to the alignment oper-
ation:

(6)

where  is the matrix transposed to A12.

C1' C2'

C3'

C1' W12' C1'

Ci' C j'

X1i Bij X2 j,=

K A12
T

BA13,=

A12
T

C

The suborientation states Ci and  are aligned by
the matrix

(7)

The components of the K and D matrices are tem-
perature-dependent. This is their significant difference
from B.

Thus, we can speak about a number n of possible
orientation states in a crystal for a domain of certain
type. Within this approach, n is equal to the ratio of the
orders of groups of the initial and ferroelastic phases, a
result which is consistent with the data of [16].

The value of the angle and the orientation of the axis
of rotation of crystallographic axes represent a macro-
scopic parameter of cooperative displacement of some
groups of atoms with respect to other groups in a crys-
tal. It is convenient to describe this parameter by the
Gibbs vector

G = g1e1 + g2e2 + g3e3, (8)

where g1 = c1 , g2 = c2 , and g3 =
c3 . δ is the angle of rotation, and ci are the
direction cosines of the positive rotation axis. 

On the basis of the matrix A12 (2), we can obtain the
parameters of the Gibbs vector G1 (corresponding to
C1) by the formulas

(9)

G1 = (6.7 × 10–3; –1.01 × 10–3; 8.77 × 10–3). Similarly,
from the matrix A13 (2), we determine the parameters of
the vector  corresponding to :  = (–6.7 × 10−3;
–1.01 × 10–3; –8.77 × 10–3). The angle α3 between the
vectors G1 and  is 169.6°. With an increase in tem-
perature, the angle α3 increases and becomes close to
180° near the phase-transition point.

Ci'

D A12
T

A13.=

δ/2( )tan δ/2( )tan
δ/2( )tan

δcos 0.5 a11 a22 a33 1–+ +( );=

c1 a32 a23–( )/ 2 δsin( );=

c2 = a13 a31–( )/ 2 δsin( ); c3 = a21 a12–( )/ 2 δsin( ),

G1' C1' G1'

G1'
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The following equations of equilibrium W and W '
domain walls in the coordinate system of the ferroelas-
tic phase were obtained in [17]:

(10)

(11)

where a = –  and c =  are the components of the
spontaneous-strain tensor.

Since the equations of these domain walls in the
coordinate system of the paraelastic phase are known
[18], we can determine the matrices A12 and A13 and,
therefore, the Gibbs vector in the α-phase at any tem-
perature.

Figure 2 shows the dependence of the modulus of
the vector G and the spontaneous-strain components –

 and  on the crystallographic parameter c. Cir-

cles correspond to the values of – , , and |G |
obtained from (1), (8), and (9) using the data on the
temperature dependence of the lattice parameters [19].
Straight lines correspond to linear regressions. As can
be seen from Fig. 2, |G | is proportional to spontaneous
strain and depends linearly on the parameter c; i.e., the
Gibbs vector accounts for certain structural changes in
a crystal. Apparently, suborientation states in lead
orthophosphate are electrically neutral analogs of
domains with almost antiparallel (179.4° [5]) directions
of the spontaneous polarization vector in the tetragonal
phase of BaTiO3.

X1
31 a c

2
––( )

3 1 a+( )
-----------------------------------X2± cX3– 0,=

X1
3a c

2
1– a+( )

1 a+( ) 2c
2

a+( )
---------------------------------------X2± 2c 1 a/2–( )

2c
2

a+( )
----------------------------X3– 0,=

e11
s

e13
s

e11
s

e13
s

e11
s

e13
s

0.005

9.459.40 9.50 9.55 9.60 c, Å

0.010

0.015

0.020
1

2

3

–es
11, es

13, |G|

Fig. 2. Dependences of the spontaneous-strain components

(1) –  and (3)  and (2) the modulus of the vector G
on the crystallographic parameter c.

e11
s

e13
s
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CONCLUSIONS
Thus, two types of structurally different domains

exist in lead orthophosphate, which are formed by
phase boundaries of certain types. According to the
symmetry of the paraelastic phase, three allowable ori-
entation states correspond to each type of domains. The
rotation of the crystallographic axes of the ferroelastic
phase is caused by cooperative displacement of some
groups of atoms with respect to other groups, with the
crystal matrix being at rest. Suborientation states differ
in the direction of the Gibbs vector and belong to dif-
ferent types of domains. The modulus of the Gibbs vec-
tor is proportional to spontaneous strain and depends
linearly on the crystallographic parameter c. Equilib-
rium domain walls separate only structurally different
domains. Nonequilibrium walls separate domains of
the same type. If the alignment matrix of two orienta-
tion states is temperature-dependent, domains of differ-
ent type correspond to these orientation states.
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Abstract—The percolation thresholds of a three-dimensional Penrose tiling with icosahedral symmetry are
determined using the cubic approximant method. The percolation thresholds of the three-dimensional Penrose
tiling for the site problem and the bond problem are calculated with an accuracy of 0.001. © 2005 Pleiades Pub-
lishing, Inc.
INTRODUCTION

The percolation theory is one of the theoretical
approaches that have long been in use for predicting a
great variety of properties of materials [1, 2]. This the-
ory has found wide application in many fields of
research, specifically in the growth phenomena [3] and
conduction processes [4], strength of materials, theory
of phase transitions, etc. Applications of the percolation
theory for solving problems in the physics of partially
ordered and disordered media, as well as in the soft-
matter physics, are of special interest.

The percolation theory and appropriate numerical
methods have been developed continuously: available
data on the percolation thresholds for even very simple
structures, such as simple cubic, face-centered cubic,
body-centered cubic, and other lattices, have been
refined and complemented using calculations per-
formed within the percolation theory under different
conditions [5]. The percolation theory is an efficient
tool for studying disordered structures [6]. In recent
years, publications have appeared that are concerned
with the percolation in structures of a new type, namely,
quasi-periodic tilings. The first numerical experiments
for two-dimensional decagonal Penrose tilings were
carried out by Ziff and Babalievski [7]. However, there
is an appreciable gap in the calculations of the percola-
tion thresholds for three-dimensional quasi-periodic
structures, which is associated primarily with the con-
siderable difficulties encountered in performing com-
puter experiments.

The purpose of this study was to calculate the perco-
lation thresholds for the three-dimensional icosahedral
Penrose tiling, which is of interest as a model object of
investigation for several reasons. The three-dimen-
sional Penrose tiling, like random disordered struc-
tures, is locally inhomogeneous but exhibits a long-
1063-7745/05/5006- $26.00 0938
range quasi-periodic order. This tiling has an exact
mathematical description. In particular, the coordina-
tion numbers of all sites and the mean coordination
number can be determined exactly. Special interest
expressed by researchers in the three-dimensional Pen-
rose tiling is associated with the discovery of icosahe-
dral quasicrystals whose structures have much in com-
mon with the tiling structure [8, 9].

ICOSAHEDRAL SYMMETRY 
AND ICOSAHEDRAL LOCAL ORDER

The point symmetry inherent in periodic crystals
imposes specific requirements on the internal structure
of the crystal, specifically on the local atomic order. In
this case, the local order is considered to be understood
as the nearest environment of each atom within one or
several coordination spheres. The natural constraint
placed on the structure is that, for any local atomic con-
figuration and an arbitrary element of the symmetry
point group, it is possible to find another atomic config-
uration related to the initial configuration by the given
symmetry element. Consequently, a set of possible
bonds between atoms in the structure can be described
by a finite set of vectors whose point symmetry is no
lower than the point symmetry of the crystal itself.

Unlike periodic crystals, in quasicrystals, as well as
in amorphous materials, each atom has a unique nearest
environment. Therefore, a set of possible bonds
between the nearest atoms is an infinite set of vectors.
This set of vectors in amorphous materials possesses
spherical symmetry, whereas the symmetry of the set of
interatomic distances in quasicrystals coincides with
the point symmetry of the quasicrystal itself. It should
be noted that the density of the set of interatomic dis-
tances reaches maxima at specific points that can be
associated with particular ideal positions of the bonds.
© 2005 Pleiades Publishing, Inc.
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This allows one to construct an idealized model of the
quasicrystal in which the set of possible interatomic
bonds, as in the crystal, is reduced to a finite set of vec-
tors. It is worth noting that the smaller the number of
vectors in the set, the more effective the model. It is
obvious that the reduced set of interatomic distances
should retain the symmetry of the quasicrystal.

Let us consider an idealized structure of an icosahe-
dral quasicrystal. A set of bonds between the nearest
neighbors forms a set of vectors that has icosahedral
symmetry. An arbitrary vector related by the elements
of the icosahedral symmetry group gives a set consist-
ing of 120 vectors. This set seems too cumbersome. It
is much more convenient to use specific vectors aligned
parallel to the symmetry axes of the icosahedron. Ear-
lier, it was established that the experimental data
obtained for structures of icosahedral quasicrystals are
in excellent agreement with the local order at which the
nearest neighbor atoms are spaced at r3, r5, and r2 inter-
vals along the twofold, fivefold, and twofold axes,
respectively [10, 11]. The ratios between these dis-

tances are as follows: r3 : r5 : r2 =  :  : 2, where

τ =  ≈ 1.618 is the golden mean. In the particular

case, the bonds r3 are absent. Hence, the local order is
referred to as the icosahedral order. Generally speak-
ing, the icosahedral order can be described by introduc-
ing only the distances r5. In this case, the distances r2

appear automatically as sums of the vectors r5. Exam-
ples of the icosahedral local order are provided by
structures of an Al12Mn crystal and three-dimensional
Penrose tiling [12].

Expressions for the vectors r5 have the simplest
form in the coordinate system in which the Cartesian
axes coincide with three mutually perpendicular two-
fold axes of the icosahedron. These 12 vectors, which
are directed from the center to the vertices of the icosa-
hedron, can be written in the form (±1, ±τ, 0) to within
a scale factor. This formula accounts for the cyclic per-
mutations of the coordinates, and the plus and minus
signs can be chosen for each of the coordinates inde-
pendently. In essence, the icosahedral local order is as
follows: by going from neighbor to neighbor and using
only the vectors r5, any two atoms of the structure can
be connected by a chain of steps. If an arbitrary atom is
placed at the origin of the coordinates, the coordinates
of any other atom can be represented as a linear combi-
nation of the vectors r5 with integral coefficients. How-
ever, proper allowance must be made for the fact that
the vectors directed to opposite vertices of the icosahe-
dron differ only in sign and, hence, the number of inde-
pendent vectors is reduced to six (Fig. 1). Therefore, the
coordinates of an arbitrary atom in the structure with

3 τ 2+

5 1+
2

----------------
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icosahedral local order can be written in the form

(1)

By changing over to the matrix form, relationship (1)
can rewritten as

(2)

where Eph is the matrix specifying the projection of sites
n of the six-dimensional hypercubic lattice onto the
three-dimensional physical space and n and r  are col-
umn vectors. In such a manner, we introduced the mul-
tidimensional formalism typical of the theory of quasi-
crystals [12–14].

In the framework of the multidimensional formal-
ism, the physical space, i.e., the space in which the
structure and its physical properties are determined, is
treated as a subspace of the space of higher dimension
(in our case, it is the six-dimensional space). The three-
dimensional subspace complementary to the physical

r n1
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τ
0 

 
 
 
 

n2

0

1

τ 
 
 
 
 

n3

τ
0

1 
 
 
 
 

+ +=

+ n4

1

τ–

0 
 
 
 
 

n5

0

1

τ– 
 
 
 
 

n6

τ–

0

1 
 
 
 
 

.+ +

r Ephn, Eph

1 0 τ 1 0 τ–

τ 1 0 τ– 1 0

0 τ 1 0 τ– 1 
 
 
 
 

,= =

Fig. 1. Six basis vectors (dotted lines) of the structure with
an icosahedral local order connect the icosahedron center
with its vertices.
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subspace is defined by the projection

(3)

This complementary subspace is called the perpendic-
ular space of the icosahedral quasicrystal.

All the sites of the six-dimensional hypercubic lat-
tice projected by the matrix Eph densely occupy the
physical space, much as all the sites projected by the
matrix E⊥  densely occupy the perpendicular space. In
order to simulate structures with physically realistic
atomic densities, it is necessary to decrease the number
of sites of the six-dimensional lattice projected onto the
physical space. A characteristic feature of icosahedral
quasicrystals is that their projection onto the perpendic-
ular space is a set with limited linear sizes. It is com-
mon practice to consider a bounded domain (or several
disconnected domains) in the perpendicular space such
that only those sites of the six-dimensional lattice
whose projections r⊥  lie in this bounded domain belong
to the structure. This domain is referred to as the accep-
tance domain. Therefore, the acceptance domain in the
perpendicular space completely determines the atomic
structure in the physical space. It should be noted that
the acceptance domain of the structure with icosahedral
symmetry should also have icosahedral symmetry.

THE THREE-DIMENSIONAL 
PENROSE TILING

A three-dimensional Penrose tiling has icosahedral
symmetry. By analogy with the two-dimensional Pen-
rose tiling composed of rhombi of two types (with acute

angles of  and ) [15, 16], the three-dimensional

Penrose tiling consists of elementary polyhedra of two
types, namely, the so-called Ammann rhombohedra
[12]. The oblate and prolate Ammann rhombohedra are

r⊥ E⊥ n, E⊥

τ 0 1– τ 0 1

1– τ 0 1 τ 0

0 1– τ 0 1 τ 
 
 
 
 

.= =

2π
5

------ 2π
10
------

Fig. 2. Oblate (at the left) and prolate (at the right) Ammann
rhombohedra. Thin solid lines indicate the threefold sym-
metry axes. The rhombohedron edges are the vectors r5.
Dotted lines represent the short diagonals r2 of the visible
faces and the short internal diagonal r3/τ of the oblate rhom-
bohedron.
C

parallelepipeds whose faces each are represented by

identical rhombi with the acute angle α =  ≈

63.4° (Fig. 2). Each of the Ammann rhombohedra can
be represented as a cube that is either oblate or prolate
along one of the internal diagonals (with retention of
the edge size), which explains their names. The volume
of the prolate rhombohedron is larger than that of the
oblate rhombohedron by a factor of τ.

Inside the tiling, the edges of the rhombohedra are
aligned parallel to the fivefold axes of the icosahedron
and, hence, can be related to the vectors r5. For exam-
ple, the parallelepiped constructed by the vectors (τ, 0,
1), (1, τ, 0), and (0, 1, τ) is a prolate Ammann rhombo-
hedron, whereas the parallelepiped constructed by the
vectors (τ, 0, –1), (–1, τ, 0), and (0, –1, τ) is an oblate
Ammann rhombohedron. Therefore, the three-dimen-
sional Penrose tiling can be treated as a structure with
icosahedral local order in which atoms are located at
vertices of the rhombohedra.

The three-dimensional Penrose tiling is conve-
niently described in terms of the aforementioned multi-
dimensional formalism. In this case, the acceptance
domain has the form of a rhombic triacontahedron,
which, in turn, can be represented by the projection of
the six-dimensional hypercubic unit cell onto the per-
pendicular space (Fig. 3). The rhombic triacontahedron
possess the required icosahedral symmetry. This poly-
hedron contains 30 rhombic faces perpendicular to the
twofold axes of the icosahedron. If the center of the tri-
acontahedron is placed at the origin of the coordinates,
its 32 vertices are specified by vectors of the type (±τ2,
±τ, 0), (±τ, ±τ, ±τ), and (±τ2, 0, ±1). These relationships
take into account the cyclic permutations of the coordi-
nates, and the plus and minus signs can be chosen for
each coordinate independently.

Special attention should be focused on the boundary
of the acceptance domain. When the projection of a par-
ticular site of the six-dimensional lattice onto the per-
pendicular space lies on one of the faces of the triacon-
tahedron, the projection of another site should also be
located at the corresponding position on the opposite
face. For example, we consider two opposite rhombic
faces of the triacontahedron in the planes z⊥  = –τ2 and
z⊥  = τ2. (It is assumed that the center of the triacontahe-
dron coincides with the origin of the coordinates.) In
this case, the distance between the faces is determined
by the vector (0, 0, 2τ2) in the perpendicular space to
which the vector ∆n = (0, –1, 1, 0, 1, 1) corresponds in
the six-dimensional space. Consequently, if the projec-
tion of the site nb lies on the lower rhombus, the site nt =
nb + ∆n is projected onto the upper rhombus. The pro-
jections of these sites onto the physical space are sepa-

rated by the distance 0, 0, – , which is not typical of

three-dimensional Penrose tilings.

1

5
-------arccos

-
 2

τ
---
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In order to exclude the appearance of surplus sites in
the tiling, it is necessary to take into account the portion
of the boundary belonging to the acceptance domain.
However, there exists another method frequently used
for eliminating frustrations: the triacontahedron as a
whole can be shifted in such a way that its faces will not
contain projections of the sites. In actual fact, although
the projections of the sites of the six-dimensional lattice
completely occupy the perpendicular space, their coor-
dinates have the special form iτ + j, where i and j are
integral numbers. If the center of the acceptance
domain is displaced from the origin of the coordinates,

for example, to the point (π, e, ), it is obvious that
none of the sites will be projected onto the triacontahe-
dron boundary.

In the general case, different positions of the tria-
contahedron center correspond to different tilings. In
this respect, it is customary to speak about Penrose til-
ings in plural. However, without a loss in generality, we
can speak about the Penrose tiling as a single structure
if we consider that all the possible tilings are locally
isomorphic to each other. The meaning of the term
“local isomorphism” can be briefly explained as fol-
lows [17]. Two infinite structures are said to be locally
isomorphic if any finite fragment of one structure can
be found in another structure. When we are dealing
with Penrose tilings, any fragment containing in one til-
ing is repeated an infinite number of times in each tiling
and the distance from an arbitrary point of the tiling to
the nearest repetition of the given fragment does not
exceed its several linear sizes.

The local isomorphism plays an important role in
the definition of the concept of point symmetry of
quasi-periodic structures. Indeed, the lack of transla-
tional symmetry, which is characteristic of these struc-
tures, can explained by the fact that their point groups
involve elements, in particular, fivefold axes, which are
incompatible with the periodicity. Such axes can be
encountered in the structure only once for each of the
possible directions. For example, the structure with
icosahedral point symmetry can be characterized by no
more than six fivefold axes aligned parallel to the six
different directions. Furthermore, symmetry elements
that transform the quasi-periodic structure into itself
can be absent altogether. The question arises as to
which argument counts in favor of the hypothesis that
this structure has a symmetry point group. For mathe-
matical rigor, the point symmetry element can be
defined as follows: a structure has a point symmetry
element if the related structure is locally isomorphic to
the initial structure. It is in this sense that any three-
dimensional Penrose tiling has icosahedral point sym-
metry.

SITES AND BONDS

Investigation into the structural properties within the
percolation theory requires knowledge of the topology

2
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of the bonds between sites (atoms). In this case, other
structural features, such as precise coordinates of sites,
symmetry, or curvature of the enclosing space, are
immaterial. For the three-dimensional Penrose tiling
under consideration, the vertices of Ammann rhombo-
hedra are naturally chosen as sites. Bonds between the
sites can be chosen using different variants; however, in
any case, the set of all bonds should include the set of
all edges of the rhombohedra.

In the first variant, the bonds can be reduced to the
edges of the Ammann rhombohedra. Then, the coordi-
nation numbers of specific sites vary from 4 to 12
(except for 11). The mean coordination number is 6.
This holds true for any structures constructed from par-
allelepipeds when the edges are chosen as bonds. Actu-
ally, for one parallelepiped in the structure, there are
one vertex and three edges. (This becomes evident if
vertices and edges of the parallelepiped are represented
in a “volume” form, i.e., vertices in the form of spheres
and edges in the form of cylinders. The sum of internal
solid angles at vertices of any parallelepiped is equal to
4π, which corresponds to one full sphere. At the same
time, the sum of internal angles between the adjacent
faces of the parallelepiped is equal to 6π, which corre-
sponds to three circles in the bases of the cylinders.)
Consequently, for one site in the structure, there are
three bonds. Taking into account that each bond con-
nects two sites, the desired mean coordination number
can be determined as 〈z〉  = 6.

In the initially chosen length units [see relationships
(1), (2)], the edges of the Ammann rhombohedra have

the length r5 =  ≈ 1.902. However, in the three-
dimensional Penrose tiling, there are considerably
shorter distances between a number of sites. These are
vertices located at opposite ends of the short diagonal
in the oblate Ammann rhombohedron (Fig. 2). The
short internal diagonals of the oblate rhombohedra are
parallel to the threefold axes and have the length r3/τ =

τ 2+

Fig. 3. Acceptance domain in the form of a rhombic triacon-
tahedron for the three-dimensional Penrose tiling in the per-
pendicular space (at the left). The prolate (at the upper right)
and oblate (at the lower right) Ammann rhombohedra are
the respective projections of the oblate and prolate Ammann
rhombohedra in the physical space onto the perpendicular
space.
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 ≈ 1.070; i.e., they are equal to almost half the

edges. Therefore, it is reasonable to include these diag-
onals in the set of bonds and to consider such a set of
sites and bonds as the second variant. In this case, the
coordination numbers of specific sites vary from 6 to 12
(except for 11). In order to determine the change in the
coordination number, it is necessary to calculate the
ratio between the oblate and prolate Ammann rhombo-
hedra.

There exists a general method for determining the
frequency of occurrence of a particular fragment in a
structure. First, it is necessary to construct the projec-
tion of this fragment onto the perpendicular space. In
order for this fragment to be involved in the structure,
the projection of the fragment should be located in the
acceptance domain. The set of all possible displace-
ments in the perpendicular space that form the projec-
tion of the fragment in the acceptance domain deter-
mines a specific region of finite volume Vfr. It is clear
that the frequency of occurrence of the given fragment
in the structure is proportional to the volume Vfr. Con-
sequently, the problem of determining the frequency of
occurrence of a particular fragment is reduced to a
purely geometric problem.

The projection of the oblate Ammann rhombohe-
dron onto the perpendicular space is a prolate Ammann
rhombohedron and vice versa (Fig. 3). By displacing
the projections inside the triacontahedron, it is possible
to determine the volumes corresponding to the oblate
(Vfr, o) and prolate (Vfr, p) rhombohedra. The ratio of
these volumes is equal to the ratio between the numbers
of prolate and oblate rhombohedra in the three-dimen-
sional Penrose tiling νp/νo = Vfr, p/Vfr, o. This ratio is
given by

(4)

Therefore, the frequency of occurrence of prolate
rhombohedra is higher than that of oblate rhombohedra
by a factor of τ. Hence, it follows that the fraction of

oblate rhombohedra is νo/(νo + νp) = . Note that each

of the oblate rhombohedra has only one short diagonal
r3/τ connecting two vertices. As a result, the change in

the coordination number of sites is equal to  and,

therefore, we have 〈z〉  = 6 +  = (10 – 2τ) ≈ 6.764.

The set of bonds can be complemented by short
diagonals of the rhombic faces of the Ammann rhom-
bohedra (the third variant). These diagonals are aligned
parallel to the twofold axes and have the length r2 = 2
(Fig. 2); i.e., they are only slightly longer than the
edges: r2/r5 ≈ 1.051. For one rhombohedron in the
structure, there are three rhombic faces and, hence,

3
τ

-------

ν p/νo τ .=

1

τ2
----

2

τ2
----

-
 2

τ2
----



C

three diagonals r2. Consequently, the mean coordina-
tion number increases by 6: 〈z〉 = (16 – 2τ) ≈ 12.764.
Note that the coordination numbers of specific sites
take on values from 11 to 19.

Two oblate Ammann rhombohedra can share a face.
In this case, they share a vertex from which two short
internal diagonals r3/τ of these rhombohedra emerge.
The distance between the other two ends of these diag-
onals is also equal to r2. The inclusion of these dis-
tances in the set of bonds is not justified physically
because one more site is located at the midpoint
between two sites almost in the same line with them:
the angle between the short diagonals of the adjacent
oblate Ammann rhombohedra is equal to

 ≈ 138.2°. In general, among the three

aforementioned sets of bonds, the first variant is of for-
mal mathematical interest, whereas the last variant is
most justified physically.

CUBIC APPROXIMANTS

The irrational number τ can be approximated by
rational relationships. In this situation, the best approx-
imation can be achieved with natural numbers of the
Fibonacci series. This number sequence, which was
originally derived as the solution of the rabbit reproduc-
tion problem, is determined by the recurrent relation

(5)

where f1 = f2 = 1. The first terms of this series of natural
numbers are as follows:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, … .

The nth Fibonacci number is given by the formula

(6)

This formula immediately leads to the limiting relation-
ship

(7)

The relationship between the Fibonacci numbers and
the golden mean

(8)

turned out to be very useful and has often been used to
simplify mathematical calculations. Note that, if the
Fibonacci series of natural numbers is complemented
by the terms f0 = 0 and f–n = (–1)n + 1fn, relationship (8)
will be valid for all integral exponents of the number τ.
It is interesting to note that the new terms of the
extended Fibonacci series also satisfy the recurrent
relation (5) and expression (6) for the nth term.

5
3

-------– 
 arccos

f n 1+ f n f n 1– ,+=

f n
1

5
------- τn 1

τ
---– 

  n

– .=

f n

f n 1–
-----------

n ∞→
lim τ .=

τn
f nτ f n 1–+=
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Another important property of the Fibonacci num-
bers is associated with their parity. The greatest com-
mon divisor of two sequential Fibonacci numbers is
equal to unity. This can be easily demonstrated by
reductio ad absurdum. Indeed, let us assume that two
sequential terms of the series fn and fn – 1 have a com-
mon divisor k ≥ 2. Hence, it follows from the recurrent
relation (5) that any Fibonacci number can be divided
by k, which is obviously not true. In particular, the
given property implies that two sequential Fibonacci
numbers cannot be even simultaneously. It can be
readily seen that even (e) and odd (o) Fibonacci num-
bers alternate with a period of 3 (ooe). As will be shown
below, the parity of the Fibonacci numbers affects the
symmetry of cubic approximants.

The noncrystallographic point symmetry of the
quasicrystals can be achieved by specially choosing the
perpendicular space E⊥ . By changing the space E⊥ , one
can obtain structures with other symmetries, including
periodic structures. The main constraint, as before, is
that the projection of the structure onto the perpendicu-
lar space should have limited linear sizes. Note that the
physical space remains the same. This ensures retention
of the initial icosahedral local order.

The situation in which a new perpendicular space is
obtained from projection (3) through a simple replace-
ment of the number τ by the rational fraction fn/fn – 1 is
of particular interest. After this replacement, the projec-
tion of the sites of the six-dimensional hypercubic lat-
tice onto the new perpendicular space can be defined by
the matrix

(9)

The three-dimensional space  determines a cubic
periodic structure, the so-called Fibonacci crystal of the
nth order. The Fibonacci crystals are often referred to as
cubic approximants of icosahedral quasicrystals. Many
cubic approximants of low orders have been revealed in
alloys similar in composition to quasicrystals. In the
largest known approximants, the number of atoms in a
unit cell can be as large as several hundreds. The basic
symmetry properties of the Fibonacci crystals [18, 19]
are given below without proof.

Projection of a Six-Dimensional Lattice 

onto the Space 

In the case of icosahedral symmetry, the projections
of the sites of the six-dimensional hypercubic lattice
completely occupy the space E⊥ . A different situation
occurs with Fibonacci crystals. Actually, it follows
from matrix (9) that the sites of the six-dimensional lat-

E⊥
n
 = 

1
f n 1–
-----------

f n 0 f n 1–– f n 0 f n 1–

f n 1–– f n 0 f n 1– f n 0

0 f n 1–– f n 0 f n 1– f n 
 
 
 
 

.

E⊥
n

E⊥
n
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tice are projected onto the space  into sites of a sim-

ple cubic lattice with spacing . However, this does

not necessarily mean that all sites of the simple cubic
three-dimensional lattice are the projections of the sites
of the six-dimensional lattice. In this situation, an
important role is played by the parity of the Fibonacci
numbers fn and fn – 1 corresponding to the nth order of
the approximant. If one of the numbers fn and fn – 1 is an
even number (the cases of e/o and o/e), the projection
of the six-dimensional hypercubic lattice onto the space

 occupies all the sites of the simple cubic lattice with

spacing . However, when both fn and fn – 1 are odd

numbers (the case of o/o), the projection of the six-

dimensional hypercubic lattice onto the space 
occupies one face-centered cubic sublattice of the sim-
ple cubic lattice or, to put it differently, form a face-cen-

tered cubic lattice with spacing .

Periodicity

The projection of the six-dimensional hypercubic

lattice onto the space  is degenerate: to each point of
the projection there corresponds an infinite set of the
sites of the six-dimensional lattice. The criterion that a
particular site belongs to the structure is the location of
its projection in the acceptance domain. Therefore, all
the sites projected into the same point either belong to
the structure or do not belong to it (in principle, it is
possible to analyze the exceptions from the formulated
rule: this leads to the formation of Fibonacci crystals
with double, triple, and similar unit cells). In order for
two sites n1 and n2 of the six-dimensional lattice to be

projected into the same point of the space , they
should obey the obvious equation

(10)

Here, we introduced the designation ∆n = (n2 – n1). In
the cases of e/o and o/e, the solution of Eq. (10) has the
form

(11)

Here, mx , my, and mz are integral numbers and nx , ny,
and nz are six-dimensional vectors with the following
integral coordinates:

(12)

E⊥
n

1
f n 1–
-----------
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n

1
f n 1–
-----------

E⊥
n
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f n 1–
-----------

E⊥
n

E⊥
n

E⊥
n ∆n 0.=

∆n mxnx myny mznz.+ +=

nx f n 1– 0 f n f n 1– 0 f n–, , , , ,( ),=

ny f n f n 1– 0 f n– f n 1– 0, , , , ,( ),=

nz 0 f n f n 1– 0 f n– f n 1–, , , , ,( ).=
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Therefore, the vectors nx, ny, and nz can be treated as
spacings of the Fibonacci crystals in the six-dimen-
sional space and their projections onto the physical
space pi = Ephni, where i ∈  {x, y, z}, can be treated as
spacings of the Fibonacci crystals in the physical space.
From relationships (2) and (12) with the use of equal-
ity (8), it is easy to find that px = (2τn, 0, 0), py = (0, 2τn,
0), and pz = (0, 0, 2τn); i.e., the Fibonacci crystals in the
cases e/o and o/e have a primitive cubic structure with
spacing 2τn. In the case of o/o, there arise an additional

spacing (nx + ny + nz) in the six-dimensional space

and the corresponding spacing (τn, τn, τn) in the physi-
cal space; i.e., the Fibonacci crystals have a body-
centered cubic structure with the cubic unit cell param-
eter 2τn.

Acceptance Domain

In contrast to the case of icosahedral quasicrystals
for which the acceptance domain is completely occu-
pied by projection points, the Fibonacci crystals are
characterized by the acceptance domain with a finite
number of projection points; more precisely, the num-
ber of points in the acceptance domain is equal to the
number of atoms in the unit cell of the Fibonacci crys-
tal. In principle, this circumstance makes it possible to
do without an acceptance domain: in order to determine
the structure completely, it is sufficient to specify a par-
ticular number of points on a cubic (simple or face-cen-

tered) lattice in the space . Nonetheless, the accep-
tance-domain formalism remains useful for a number
of reasons. First, high-order approximants can contain
a very large number of atoms in the unit cell whose sim-
ple enumeration is always extremely tedious and useful
only rarely. Second, the Fibonacci crystals can bear a
closer structural resemblance to the icosahedral crystal
only in the case where their projection onto the perpen-

dicular space  will also resemble the projection of
the quasicrystal onto the space E⊥ . In this respect, it is
desirable to adapt the acceptance domain of the ideal
quasicrystal to the Fibonacci crystals. Actually, for
cubic approximants of the three-dimensional Penrose
tiling, the role of the acceptance domain is played by a
distorted rhombic triacontahedron whose 32 vertices

are specified by the vectors , , 0 , ,

, , and , 0, ±1  drawn from the

center of the polyhedron. Unlike the coordinates of the
vertices of the ideal rhombic triacontahedron, these
coordinates are obtained with the replacements τ 

 and τ2  .

1
2
---

E⊥
n

E⊥
n

f n 1+

f n 1–
-----------±

 f n

f n 1–
-----------± 

 f n

f n 1–
-----------±



f n

f n 1–
-----------±

f n

f n 1–
-----------± 

 f n 1+

f n 1–
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f n

f n 1–
-----------

f n 1+

f n 1–
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C

Point Symmetry

The cubic approximants of icosahedral quasicrys-
tals belong to the tetrahedral class T rather than to the
cubic class O. In actual fact, unlike the cube, the icosa-
hedron has no fourfold axes. As a result, the tetrahedral
group rather than the cubic group is the icosahedral
symmetry subgroup. In order for the Fibonacci crystal
to possess tetrahedral symmetry, the projection of the

crystal onto the perpendicular space  should also
have tetrahedral symmetry. Since this projection con-
sists of a finite number of points that belong to the sim-
ple cubic or face-centered cubic lattice in the perpen-

dicular space , it is clear that the center of the pro-
jection and, hence, the center of the acceptance domain
can be located only at points of a special type. These
points for the simple cubic lattice (cases e/o, o/e) are
represented by the origin of the cell (0, 0, 0) and the

center of the cell , , , whereas the correspond-

ing points for the face-centered lattices (case o/o) have

the coordinates (0, 0, 0), , , , and , , 

(here, for convenience, the spacings of the cubic lattices
are taken to be equal to unity, as is customary in crys-
tallography). All the other special points are equivalent
to the above points; i.e., they are related to them by the
symmetry operations of the cubic lattices.

Spatial Symmetry

The symmetry space group of the nth-order
Fibonacci crystal depends on the parity of the
Fibonacci numbers fn and fn – 1 and also on the location
of the center of the crystal projection in the perpendic-
ular space. All the possible space groups of the
Fibonacci crystals were determined earlier. The groups
with the highest symmetry for all the cases under con-

sideration are as follows:  [cases e/o, o/e; the cen-
ter of the projection is located at the point (0, 0, 0)],

 [cases e/o, o/e; the center of the projection is

located at the point , , ],  [case o/o, the

center of the projection is located at the point (0, 0, 0)

or the point , , )], and I213 [case o/o, the center

of the projection is located at the point , , ]. The

other possible groups with lower symmetry for the
Fibonacci crystals are subgroups of the aforementioned
groups.
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Approximation of the Quasicrystal Structure 
by Approximants

In the case where the order n of the cubic approxi-
mant increases by unity, the unit cell parameter
increases by a factor of τ and the unit cell volume
increases by a factor of τ3 ≈ 4.236. Hence, the number
of atoms in the unit cell increases by a factor of more 4.
Note that, on a scale of the order of one unit cell, the
structure of the approximant coincides with the struc-
ture of the ideal quasicrystal. As a result, the quasicrys-
tal can be considered the limit of the sequence of cubic
approximants at n  ∞. The approximants, as if,
approach the quasicrystal (approximate the quasicrys-
tal) in the structure and physical properties, which
explains their names. For example, the diffraction pat-
tern of the approximants with an increase in the order n
becomes similar in relative intensities and positions of
the Bragg reflections to the diffraction pattern of the
quasicrystal. Beginning with a specific value of n,
which is associated with the experimental error, the
approximants become virtually identical to the quasic-
rystals [20].

The structural relation to icosahedral quasicrystals,
on the one hand, and the periodicity, on the other hand,
make the Fibonacci crystals convenient model objects
for use in investigating the properties of the quasicrys-
tals themselves. Specifically, the local atomic structure
of quasicrystals can be more easily understood and
described when the low-order cubic approximants
whose atomic structures are determined exactly are
known. Moreover, many mathematical statements
regarding the ideal quasicrystals can be more readily
proved first for approximants and then can be general-
ized with the use of the limit n  ∞.

For example, let us prove relationship (4) for the
three-dimensional Penrose tiling by using the
Fibonacci crystals. The unit cell volume for the nth-
order Fibonacci crystal can be written as Vcell = (2τn)3 =
8τ3n. We assume that the Fibonacci crystal is composed
of structural units identical to the structural units of the
Penrose tiling, i.e., oblate and prolate Ammann rhom-
bohedra. The volume of the prolate Ammann rhombo-
hedron constructed using the vectors (τ, 0, 1), (1, τ, 0),
and (0, 1, τ) and the volume of the oblate Ammann
rhombohedron constructed using the vectors (τ, 0, –1),
(–1, τ, 0), and (0, –1, τ) are as follows:

and

.

V p

τ 0 1

1 τ 0

0 1 τ

τ3
1+ 2τ 2+ 2τ2

= = = =

Vo

τ 0 1–

1– τ 0

0 1– τ

τ3
1– 2τ= = =
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The volume ratio is equal to the irrational number
Vp/Vo = τ. As a result of this incommensurability, the
unit cell volume of the Fibonacci crystal can be
uniquely determined by the volumes of the oblate and
prolate Ammann rhombohedra. Actually, we have

By changing over to the three-dimensional Penrose til-
ing at n  ∞, we obtain relationship (4); that is,

DETAILS OF THE COMPUTER
EXPERIMENT

The percolation thresholds of the three-dimensional
Penrose tiling were determined using computer simula-
tion of the percolation in unit cells of the cubic approx-
imants of the Penrose tiling. The Fibonacci crystals of
the sixth, seventh, ninth, and tenth orders with space

group  were chosen as the objects of investigation.
Table 1 presents the main characteristics of the unit
cells in these crystals, such as the total number of sites
in the cell, the number of sites on each face, and the
numbers of prolate (np) and oblate (no) Ammann rhom-
bohedra per unit cell. It can be seen from this table that
the total number of rhombohedra (np + no) coincides
with the number of sites. The ratio np/no is given for
comparison with the ratio νp/νo = τ in order to illustrate
the degree of similarity of the structure of the approxi-
mant to the ideal structure of the three-dimensional
Penrose tiling.

In the percolation theory, there exist two different
problems, namely, the site problem and the bond prob-
lem. In the site problem, each site either can be occu-
pied (with probability p) or can be empty (with proba-
bility 1 – p). If the site is empty, all bonds of this site are
assumed to be dangling. In the bond problem, all sites
are considered to be occupied, whereas the bonds either
can connect the sites (with probability p) or can be dan-
gling (with probability 1 – p). A criterion for percola-
tion in an infinite structure is the existence of an infinite
cluster consisting of occupied sites that are connected
to each other. Computer simulation experiments have
been performed with bounded structural regions for
which, historically, the natural criterion for percolation
is the existence of a connected path between the oppo-
site boundaries of the region under consideration.

In our case, we assumed that the cell of the cubic
approximant percolates if there exists a connected path
between any occupied site belonging to one of the faces
(for example, the upper face) and any occupied site
belonging to the opposite (lower) face. The periodic
boundary conditions were imposed on the other (four)
faces. The site of the cell was considered to belong to

Vcell 8τ3n
4 f 3n 1– 2τ2

4 f 3n 2– 2τ×+×= =

=  4 f 3n 1– V p 4 f 3n 2– Vo.+

ν p/νo

4 f 3n 1–

4 f 3n 2–
----------------

n ∞→
lim τ .= =
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Table 1.  Characteristics of the unit cells of the cubic approximants of the three-dimensional Penrose tiling with space group Pa

n fn/fn − 1 
Number of sites Number of Ammann rhombohedra

(np/no) – τ
in the cell on the face prolate (np) oblate (no)

6 8/5 10336 466 6388 3948 4.6 × 10–7

7 13/8 43784 1220 27060 16724 –2.6 × 10–8

9 34/21 785672 8362 485572 300100 –7.9 × 10–11

10 55/34 3328160 21892 2056916 1271244 4.4 × 10–12

3

the face when this site had at least one bond that
emerged from the cell and intersected the given face.

Let P(p) be the statistical probability that the struc-
ture percolates at a specified occupation number p. It is
evident that the statistical probability satisfies the con-
ditions P(0) = 0 and P(1) = 1. For a bounded structural
region, P(p) is a smooth function, which gradually
increases when the occupation number p takes on val-
ues from 0 to 1. By contrast, for an infinite structure, the
function P(p) has a specific feature: the interval [0, 1]
can be separated into the two subintervals [0, pc) and
(pc, 1] in such a way that P(p ∈  [0, pc)) = 0 and P(p ∈
(pc, 1]) = 1 and, at the point pc, which is referred to as
the percolation threshold, the value of P(p) changes
jumpwise from 0 to 1. For a number of simple two-
dimensional structures, the percolation threshold can
be determined by analytical methods. However, for the
majority of structures, it is necessary to perform numer-
ical experiments by the Monte Carlo method. The
experimentally obtained functions P(p) for bounded
structural regions depend substantially on the region
size. As the linear sizes of the cells under investigation
increase, the graph P(p) becomes more and more simi-
lar in appearance to a step, thus approaching the depen-
dence P(p) for an infinite structure. A comparison of the
dependences P(p) for cells of different sizes makes it
possible to reveal the general regularities and to deter-
mine the percolation threshed with a required accuracy. 

Now, we describe a direct algorithm for calculating
the statistical probability P at a specified occupation
number p for the site problem. Since any site either can
be occupied or can be empty, for an arbitrary cell with
N sites, there exist 2N possible configurations with the
probability pk(1 – p)N – k, where k is the number of occu-
pied sites. Then, the percolation probability can be cal-
culated from the relationship

(13)

where the prime on the sum sign denotes that the sum-
mation is performed only over the configurations for
which the cell percolates.

Direct calculation of sum (13) cannot be accom-
plished in practice because of the very large number of
configurations involved. In rare cases, it has been pos-
sible to apply some mathematical tricks to the calcula-

P p( ) ' p
k

1 p–( )N k–
,∑=
C

tion of the percolation probability P(p) without direct
summation. However, for the vast majority of systems,
it is necessary to use the Monte Carlo method and to
determine the percolation probability P(p) with a small
random sample from the total number of configura-
tions.

Let p ∈ (0, 1) be a specified value of the occupation
number. The configuration is constructed as follows:
for each site of the cell, we determine in a random man-
ner (using a random number generator) whether this
site is occupied (with probability p) or is empty (with
probability 1 – p). This configuration either percolates
or does not percolate. Similarly, we construct M config-
urations, among which m configurations turn out to per-
colate. At M  ∞, the ratio m/M tends toward the per-
colation probability; that is,

(14)

Moreover, it is advisable to know the root-mean-square
deviation ∆P(p) of the percolation probability calcu-
lated according to relationship (14) from its true value
determined from expression (13). The integral number
m can take on values from 0 to M; the probability that
the integer m will take on a particular value, apparently,

can be found from the formula (1 – P)M – m,

where  =  is the number of combina-

tions of M things taken m at a time. Therefore, the mean
error of the computer experiment can be determined
from the relationship

or, after simple mathematical transformations, from the
expression

(15)
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ANALYSIS OF THE RESULTS 
OF THE COMPUTER SIMULATION 

AND THE PERCOLATION THRESHOLDS

The computer simulation of the percolation was car-
ried out for six cases: the number of bonds sequentially
included the edges of the Ammann rhombohedra
(case I), the short internal diagonals of the oblate
Ammann rhombohedra (case II), and the short diago-
nals of the faces of the Ammann rhombohedra
(case III); moreover, the site problem and the bond
problem were considered separately. In each case, the
occupation number p took on specified values in suc-
cessive steps ∆p = 0.001 and the number of experiments
performed at each point was M = 1000.

Figure 4 shows the characteristic dependences P(p)
obtained from the computer experiments. Four graphs
in this figure correspond to Fibonacci crystals of the
sixth, seventh, ninth, and tenth orders. It can be seen
that, as the order n of the cubic approximant increases,
the graph P(p) becomes more and more similar in
appearance to a step. It is also worth noting that points
of pairwise intersections of all four graphs fall in a nar-
row range both along the abscissa axis and along the
ordinate axis. Visually, it seems that all these graphs
“meet” at a point in the vicinity of a particular value of
the occupation number p. At n  ∞, the percolation
probability P at the given point remains unchanged,
tends toward zero to the left of this point, and tends
toward unity to the right of it. Now, it is not difficult to
understand that this value of the occupation number is
the percolation threshold pc.

Of course, it is not to be expected that, with an
increase in the accuracy of the experiment, all the
graphs should actually intersect at the same point. Most
likely, the pairwise intersections of the graphs will form
a set of points S(n, m) in the graph plane, where n and
m are the orders of Fibonacci crystals (n ≠ m). In this
case, the percolation threshold will be determined as
the abscissa of the limiting point of this set of points
S(n, m) with the quantities n and m tending toward
infinity.

Nonetheless, even from these graphs, the percola-
tion threshold can be determined with a certain accu-
racy dictated by the error of the experiment itself.
Indeed, the points of intersections are arranged inside a
rectangle whose base has a length close to the experi-
mental step ∆p = 0.001 and whose height is less than
6∆P. Here, ∆P ≈ 0.0158 is the root-mean-square devia-
tion of the percolation probability, which was calcu-
lated from relationship (15) for P = 1/2. (In this case,
we can use the closeness of the discrete binominal dis-

tribution (1 – P)M – m to the continuous normal

distribution exp  of the quantity

(m/M) with a mean value P and a root-mean-square
deviation σ = ∆P. For a normal distribution, there exists

CM
m

P
m

1

σ 2π
-------------- m/M P–( )2

2σ2
----------------------------– 
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a nonformal rule, the so-called three-sigma estimate,
according to which the great bulk of the distribution is
concentrated inside the domain [P – 3σ, P + 3σ].) Thus,
it is evident that the discrepancy between the points S(n,
m) does not exceed the experimental error and, hence,
the percolation threshold can be considered to be deter-
mined accurate to within ∆p = 0.001.

The percolation thresholds determined accurate to
within ∆p = 0.001 for the aforementioned six cases
under investigation are presented in Table 2. These
results are justified logically. It can be seen that an
increase in the number of bonds in the structure leads to
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Fig. 4. Dependences of the percolation probability P on the
occupation number p according to the computer simulation
of the percolation for case III and the site problem (the
graphs correspond to Fibonacci crystals of the sixth, sev-
enth, ninth, and tenth orders): (a) the general view of the
dependences and (b) the region of intersection of the
graphs. The dashed rectangle of size ∆P × 6∆P corresponds
to the experimental error (it can be seen that the scatter of
intersection points is of the order of the experimental error).
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Table 2.  Percolation thresholds of the three-dimensional Penrose tiling

Included bonds Mean coordination number Site problem Bond problem

Case I: Edges (r5) of the Ammann rhombohedra 6 0.285 0.225 

Case II: Edges of the Ammann rhombohedra and 
short internal diagonals (r3/τ) of the oblate Ammann 
rhombohedra

6 +  ≈ 6.764 0.271 0.207 

Case III: Edges of the Ammann rhombohedra, short
internal diagonals (r3/τ) of the oblate Ammann 
rhombohedra, and short diagonals (r2) of the faces of 
the Ammann rhombohedra

12 +  ≈ 12.764
0.188 0.111

2

τ2
----

2

τ2
----
a decrease in the percolation threshold. On the other
hand, the local inhomogeneity in the given case also
brings about a decrease in the percolation threshold. In
particular, for case I, as well as for a simple cubic lat-
tice, the mean coordination number is 6. However, the
percolation thresholds in the three-dimensional Pen-
rose tiling appear to be substantially lower: 0.285 for
the site problem (0.312 for the cubic lattice) and 0.225
for the bond problem (0.249 for the cubic lattice).
Moreover, the following approximate relationship
holds for the bond problem: 〈z〉pc ≈ const, where 〈z〉pc is
equal to 1.35 for case I, 1.40 for case II and 1.42 for
case III.
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Abstract—The unit-cell parameters of [NH2(CH3)2]MnCl3 ⋅ 2H2O crystals are determined by X-ray diffraction
analysis and the velocities of longitudinal ultrasonic waves in these crystals are measured by the echo-pulse
method in the temperature range 100–315 K. The coefficients of thermal expansion along the principal crystal-
lographic axes are derived from the temperature dependences of the unit-cell parameters. The temperature
dependences of the characteristics studied reveal kink anomalies at temperatures of ~125, 179, 203, 260, and
303 K. These anomalies are indicative of structural transformations in the [NH2(CH3)2]MnCl3 ⋅ 2H2O crystals,
which may be related to the dynamics of dimethylammonium cations. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

Crystals of the [NH2(CH3)2]MnCl3 ⋅ 2H2O (DMA ·
MnCl3) compound belong to the family of organome-
tallic compounds of transition metals, which have a
number of interesting physical properties (in particular,
unusual magnetic resonance behavior [1, 2]). In addi-
tion, DMA ⋅ MnCl3 crystals are characterized by a sig-
nificant anisotropy of proton conductivity [3] and
belong to the monoclinic system (sp. gr. C2/c) with the
unit-cell parameters a = 17.154 ± 0.006 Å, b = 11.992 ±
0.003 Å, c = 9.321 ± 0.002 Å, and β = 90.09° at room
temperature [2]. The structure of this crystal at room
temperature was investigated previously [4] and
assigned to the orthorhombic system with the unit-cell
parameters a = 17.156 ± 0.009 Å, b = 12.000 ± 0.006 Å,
and c = 9.313 ± 0.004 Å. This discrepancy may be
related to the existence of a phase transition at 302 K
(i.e., close to room temperature).

Kapustianik [3] carried out dilatometric study and
measurements of the dielectric properties of a DMA ⋅
MnCl3 crystal at low temperatures and showed the
existence of a sequence of second-order phase transi-
tions in this crystal at T1 = 300 K, T2 = 235 K, and T3 =
180 K.

The optical properties of [NH2(CH3)2]2MnCl4 ⋅
3.5H2O crystals were investigated in [5] and phase tran-
sitions were revealed at T1 = 302 K and T2 = 230 K, i.e.,
at approximately the same temperatures as in DMA ⋅
MnCl3 crystals [3]. This circumstance indicates a pos-
sible identity of the chemical compositions of the crys-
tals studied by different researchers. It is possible that
1063-7745/05/5006- $26.00 0949
the crystals of manganese dimethylaminotrichloride,
investigated in [5], also had the chemical formula
[NH2(CH3)2]MnCl3 ⋅ 2H2O.

In this paper, we report the results of studying the
temperature changes in the unit-cell parameters and the
coefficients of thermal expansion (CTEs) of DMA ⋅
MnCl3 crystals and ultrasonic wave velocities in these
crystals in a wide temperature range.

EXPERIMENTAL

[NH2(CH3)2]MnCl3 ⋅ 2H2O crystals were grown by
slow evaporation of the solvent from an aqueous solu-
tion of chlorides of dimethylamine ([NH2(CH3)2]Cl)
and manganese (MnCl2) taken in a stoichiometric ratio.
The crystal growth was implemented at room tempera-
ture both by spontaneous crystallization and using a
seed rotating at a speed of 2 rpm. Growth for 2 to 3
weeks resulted in light pink transparent crystals 30 ×
15 × 10 mm3 in size. They showed good optical quality
and pronounced faceting. The habit of the crystals
obtained was a slightly distorted hexagonal prism. The
natural growth faces of the crystal coincided with the
crystallographic planes (100), (001), and (110). In addi-
tion, the (101) and (111) planes were sometimes
observed on the crystal surface.

It should be noted that DMA ⋅ MnCl3 crystals
become nontransparent and may fracture in vacuum, as
well as upon long-term annealing. Such behavior seems
to be related to the presence of crystallization water in
the structure of the crystals, which emerges from them
upon annealing.
© 2005 Pleiades Publishing, Inc.
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Fig. 1. Temperature dependences of the velocities of longitudinal ultrasonic waves in the DMA ⋅ MnCl3 crystal in the (a) [100],
(b) [010], and (c) [001] crystallographic directions.
The velocities of longitudinal ultrasonic waves were
measured by the echo-pulse method on an IS-3 ultra-
sonic-velocity meter. The time between the reflected
signals was determined using calibration marks. Longi-
tudinal ultrasonic waves were excited by a piezoelectric
quartz plate cut in the X plane. Polyorganosilicon
hydrophobizing liquid of the 136-157 grade was used
as an acoustic lubricant. The measurements were per-
formed in the temperature range 100–315 K at a fre-
quency of 11 kHz. The experimental samples were cut
in the form of parallelepipeds and were 5–7 mm in size
in the directions in which the velocities of ultrasonic
waves were determined. The samples were oriented in
C

such a way that the crystallophysic axis X was parallel
to the a axis, the Y axis was oriented accurate to 1°
along the twofold symmetry axis b, and the Z axis coin-
cided with the c axis. Temperature was measured by a
Chromel–Copel thermocouple, whose junction was in
direct contact with the sample located in the measuring
line. The temperature dependence of the ultrasonic
wave velocity was recorded under the conditions of
quasi-stationary heating of samples at a rate of
~0.4 K/min. The samples were preliminary cooled in
liquid nitrogen vapor. Heating was performed by a
heater mounted on a thermostat shield covering the
measuring line.
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 6      2005



DILATOMETRIC AND ULTRASOUND STUDY 951
Fig. 2. Temperature dependence of the unit-cell parameter a of the DMA · MnCl3 crystal: (1) experiment (circles), (2) approxima-
tion (dashed line), and (3) the CTE αa (solid line).
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Fig. 3. Temperature dependence of the unit-cell parameter b of the DMA · MnCl3 crystal: (1) experiment (circles), (2) approxima-
tion (dashed line), and (3) the CTE αb (solid line).
X-ray diffraction study of the unit-cell parameters
was performed on a TUR-M62 diffractometer (CuKα
radiation) in the temperature range 100–315 K, using a
low-temperature X-ray camera (Rigaku). The samples
were single-crystal DMA ⋅ MnCl3 plates ~4 × 4 ×
3 mm3 in size, cut in such a way that their faces coin-
cided with the (100), (001), and (010) planes. The (100)
and (001) planes were the growth planes and the (010)
plane was extracted to the surface accurate to ~7′ by the
X-ray diffraction method. Since DMA ⋅ MnCl3 crystals
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 6      2005
break in vacuum, the samples prepared for X-ray anal-
ysis were covered by a thin layer of the vacuum com-
pound G9647. Before each measurement, the sample
was thermostated at a given temperature for 10–15 min.
The reflection intensity profiles were recorded every 2–
3 K at a counter rate of 1/4 K/min in the mode of con-
tinuous θ–2θ scanning. The diffraction angles were
determined from the positions of the centroids of the
(18.00), (0.12.0), and (00.10) reflection profiles with an
error of 0.2′–0.4′. The experimental values of the inter-
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Fig. 4. Temperature dependence of the unit-cell parameter c of the DMA · MnCl3 crystal: (1) experiment (circles), (2) approxima-
tion (dashed line), and (3) the CTE αc (solid line).
planar spacings d18.00 = f(T), d0.12.0 = f(T), and d00.10 =
f(T) were used to determine the temperature depen-
dences of the parameters a = f(T), b = f(T), and c = f(T).
The CTEs were determined by the technique described
in [6].

RESULTS AND DISCUSSION

Figure 1 shows the temperature dependences of the
velocities v xx, v yy, and v zz of longitudinal ultrasonic
waves propagating along the principal crystallographic
axes [100], [010], and [001], respectively. As can be
seen from Fig. 1, the velocities of the waves propagat-
ing along all three principal directions decrease with an
increase in temperature. However, it should be noted
that all the curves—v xx = f(T), v yy = f(T), and v zz =
f(T)—show anomalies in the form of a kink at T1 =
303 K, thus confirming the existence of phase transi-
tions in the crystal at this temperature. Unusual behav-
ior of the temperature dependence of the velocity v zz is
observed at low temperatures (in the range 80–130 K),
where there is a decrease in the ultrasonic wave velocity
with an increase in temperature in nonlinear, while,
upon further heating, the dependence v zz = f(T) become
linear. As can be seen from Fig. 1c, a kink anomaly is
observed at T = 130 K on the curve v zz = f(T), which is
typical of organic crystals of such type at temperatures
close to the phase transition. In addition, an anomaly in
the form of small step is observed at T2 ~ 203 K on this
dependence.

It should be noted that the elastic properties of the
DMA ⋅ MnCl3 crystal exhibit an anisotropy: v zz > v yy >
v xx. Such an anisotropy of the elastic wave velocities is
related to the specific structural features of this crystal
[4]. The unit cell of DMA · MnCl3 consist of chains of
C

inorganic complexes MnCl3, alligned along the c axis.
The chains are located in the plane perpendicular to the
a axis and are bound to each other by hydrogen bonds
along the b axis. Between these planes, [NH2(CH3)2]+

ions are located. Stronger chemical bonds (similar to
covalent) are observed between Mn and Cl atoms along
the chains (the c axis) and the weakest (hydrogen)
bonds are observed along the b axis and between the
planes containing chains, i.e., along the a axis. Such a
structure of the crystal determines its mechanical prop-
erties: it can be cleaved easily in the {100} planes, it is
more difficult to cleave it in the {001} planes, and the
crystal almost cannot be cleaved in the {001} planes.

The unit-cell parameters of the DMA ⋅ MnCl3 crys-
tal, determined by us at room temperature, are a =
17.132 ± 0.002 Å, b = 11.976 ± 0.002 Å, and c =
9.335 ± 0.001 Å. If we take into account that the prop-
erties of DMA ⋅ MnCl3 crystals depend strongly on the
presence of impurities, the degree of lattice perfection,
and the growth conditions, our data on the unit-cell
parameters of this crystal at room temperature are in
agreement with the results of [2, 4].

The temperature dependences of the unit-cell
parameters a, b, and c of the DMA ⋅ MnCl3 crystal in
the temperature range 100–315 K are shown in Figs. 2–
4. As can be seen, all the parameters increase gradually
with an increase in temperature.

Small kink anomalies are observed on the curve b =
f(T) (Fig. 3) at temperatures T1 ~ 125 K, T2 ~ 202 K, T3 ~
260 K, and T4 ~ 300 K, which is indicative of the exist-
ence of phase transformations in the DMA · MnCl3
crystal at these temperatures. Similar anomalies at T1 ~

129 K,  ~ 179 K, T2 ~ 203 K, and T4 ~ 303 K are
observed on the curve c = f(T) (Fig. 4). On the temper-

T1'
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ature dependence of the parameter a = f(T) (Fig. 2),
phase transformations manifest themselves only at T1 ~
123 K. It can be seen from these data that the tempera-
tures at which the anomalies are observed are some-
what different for different crystallographic directions.
It is known that the crystals with hydrogen bonds are
extremely sensitive to external effects of different types
and the presence of inhomogeneities and lattice defects.
In addition, the DMA ⋅ MnCl3 crystals contain crystal-
lization water, which, upon heating and vacuum degas-
sing, easily emerges from the crystals, i.e., makes them
unstable. Apparently, this is the reason for some spread
in the temperatures at which anomalies are observed on
the temperature dependences of the different parame-
ters of the crystals.

The temperature dependences of the CTEs αa, αb,
and αc for the crystallographic directions [100], [010],
and [001], respectively, are shown in Figs. 2–4 (solid
lines). The curves αa = f(T), αb = f(T), and αc = f(T)
demonstrate pronounced anomalies at the phase-transi-
tion temperatures. It is noteworthy that the CTEs are
almost temperature-independent in all three crystallo-
graphic directions in the temperature range under study.
It should be noted that an CTE anisotropy is observed
in the DMA ⋅ MnCl3 crystal: αa > αb > αc, which is in
agreement with the data on the elastic properties: v xx <
v yy < v zz. The ultrasonic wave velocity is higher in the
crystallographic directions that are characterized by a
larger hardness of chemical bonds and, accordingly,
smaller values of CTEs.

Thus, the investigation of the elastic properties and
crystallographic characteristics of DMA ⋅ MnCl3 con-
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 6      2005
firmed the existence of phase transitions in this crystal
at  = 179 K and T4 = 303 K and revealed new transi-
tions at T1 ~ 125 K, T2 ~ 203 K, and T3 ~ 260 K.

The sequence of the phase transitions in the crystals
containing dimethylamine ions is determined to a great
extent by the change in the dynamics of dimethylam-
monium ions and their ordering with a change in tem-
perature [7, 8].
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Abstract—The absorption and circular-dichroism spectra of neodymium-doped crystals of langasite
La3Ga5SiO14 and the compounds La3Ga5.5Nb0.5O14 and Pb3Ga2Ge3.92Si0.08O14, isostructural with langasite, are
investigated in the wavelength range 320–940 nm. Electronic transitions in Nd atoms, which substitute the main
cation of the salts (La or Pb) in the positions with the local symmetry C2 , are observed in the spectra. All tran-
sitions observed in the absorption spectrum are also active in the circular-dichroism spectrum. Detailed analysis
is performed for several (well separated) bands: Dipole strengths Dok, rotation strengths Rok, and the anisotropy
factors Gok are calculated. Some specific features of the spectra obtained are noted and their possible relation-
ship with the structure of impurity centers of neodymium and effect on the intensity of the Stark components
are discussed. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

Synthesis of crystals of the Ca3Ga2Ge4O14 com-
pound—the parent compound of the langasite family—
and interpretation of their crystal structure were carried
out for the first time 25 years ago [1]. Further complex
investigations (see review [2]) made it possible to
obtain a number of single crystals with this structure
and reveal some piezoelectric, laser, and optical proper-
ties of these crystals that are of interest for practical
application.

Currently, crystals with langasite structure serve as
commercial piezoelectric materials [3]. Therefore,
researchers pay attention to the fabrication of these
crystals [4], their piezoelectric properties [5], and
refinement of their structure [6, 7].

Concerning the optical properties, an interesting
feature of these crystals is that they have the axial sym-
metry 32; exist in two enantiomorphic modifications;
and, showing significant optical activity, contain no
helical elements in the structure. The gyrotropy of crys-
tals with langasite structure was investigated in [8].
(The circular-dichroism method was applied to crystals
containing ions of 3d metals.) Analysis of the nature of
intrinsic and impurity optical centers in these crystals
by the circular-dichroism method turned out to be very
effective.

In this study, the circular-dichroism method is used
to investigate a number of crystals with langasite struc-
1063-7745/05/5006- $26.00 ©0954
ture doped with Nd3+ ions: La3Ga5SiO14 (LGS),
La3Ga5.5Nb0.5O14 (LGN), and Pb3Ga2Ge3.92Si0.08O14
(PGGO). The lattice constants (a, c) are (8.162,
5.087 Å), (8.218, 5.122 Å), and (8.419, 5.015 Å) for the
LGS, LGN, and PGGO compounds, respectively.
According to the structural data [2, 6, 7], La and Pb
atoms occupy equivalent positions at the center of the
polyhedron with the coordination number 8 (distorted
Thompson cube) and have the point symmetry C2. Each
unit cell contains three La and three Pb atoms. When La
and Pb atoms are substituted by impurity Nd ions, the
chiral crystal field of the matrix induces circular dichro-
ism in the electronic transitions in Nd3+ ions. This phe-
nomenon is the subject of the present study.

LGS and LGN crystals were grown from melt by the
Czochralski method. The PGGO crystal was grown
from flux by the Kiropulos method and doped with
neodymium and silicon in equal proportions. Introduc-
tion of Si4+ ions was used to increase the incorporation
coefficient of neodymium in the crystals. It is most
likely that silicon substitutes germanium isomor-
phously in this case.

EXPERIMENTAL

The absorption and circular-dichroism spectra of the
noted crystals were studied in the range 10638–
31250 cm–1 (320–940 nm). The Nd concentration in
 2005 Pleiades Publishing, Inc.
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Fig. 1. Entire absorption spectrum of the crystals doped with Nd3+ ions: (a) LGN, (b) LGS, and (c) PGGO. The ground state of the
Nd3+ ion is 4I9/2. Numbers denote the excited states to which a transition occurs: (1) 2I11/2; (2) 2D5/2; (3) 4G11/2, 4G9/2, and 2K15/2;

(4) 2K13/2; (5) 4G7/2; (6) 4G5/2 and 2G7/2; (7) 4F9/2; (8) 4F7/2; (9) 4F5/2 and 2H9/2; and (10) 4F3/2.
the LGS, LGN, and PGGO samples, measured by laser
mass spectrometry, was 0.168, 0.79, and 0.7 mol/l,
respectively. The absorption spectra were recorded on a
Specord M40 spectrophotometer and the circular-
dichroism spectra were measured on a Mark-3S (Jobin
Yvon) dichrograph. The measurements were per-
formed at room temperature.

All transitions in the Nd3+ ion are active in the circu-
lar-dichroism spectrum and manifest themselves as
bands of both positive and negative signs. However, for
most transitions, the corresponding spectral lines are
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 6      2005
overlapped at room temperature, which hinders their
study significantly. In such cases, the spectra were pro-
cessed and analyzed only for the transitions with
clearly separated bands.

RESULTS

Figure 1 shows the absorption spectra of the crystals
under study. Figures near the spectral bands are the
indices of the excited states to which the corresponding
transitions occur. To interpret the spectra, we used the
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results of the numerical simulation of the spectrum of
neodymium [9, 10].

Detailed analysis of the experimental data was per-
formed for four transitions: 4I9/2  2D5/2 (I), 4I9/2 
4F9/2 (II), 4I9/2  4F7/2 (III), and 4I9/2  4F3/2 (IV).
The corresponding absorption bands are located in the
wavelength ranges around 430, 680, 740, and 870 nm.

Figures 2–5 show the absorption and circular-
dichroism spectra in these wavelength ranges for all the
samples under consideration.

The expressions for the dipole strength (Dok), the
rotation strength (Rok), and the anisotropy factor (Gok)
of the transitions from a low-lying state of the ground
multiplet to the Stark components of excited states have
the form [11]

(1)
Dok 0〈 | p k| 〉2

0〈 |m k| 〉2
,+=

Rok Im 0〈 | p k| 〉 0〈 |m k| 〉[ ] , Gok 4Rok/Dok.= =
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Fig. 2. Absorption spectra ε(λ) and circular-dichroism spec-
tra ∆ε(λ) in the range 420–450 nm (transition I) of the crys-
tals doped with Nd3+ ions: (1) LGN, (2) LGS, and
(3) PGGO.
C

Here, 〈0 |p |k〉 is the matrix element of the electric
dipole moment and 〈0 |m |k〉  is the matrix element of the
magnetic dipole moment, which are related to the
0  k transition. These expressions are written with-
out consideration for the quadrupole terms.

The generally accepted relations used to determine
Dok and Rok in processing of experimental data have the
form [12]

(2)

Here, ε is the decimal molar extinction coefficient, ∆ε
is the decimal molar dichroism coefficient, n is the
refractive index, β = (n2 + 2)/3 is the Lorentz factor, g1
is the degeneracy factor of the ground state, and Nf is

Dok 91.8
g1

N f

------ ε ν( )
β2

/n( )ν
------------------- ν D

2( ),d∫=

Rok = 22.97
g1

N f

------ ∆ε
βν
------ ν D Bohr magneton( ).d∫
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Fig. 3. Absorption spectra ε(λ) and circular-dichroism spec-
tra ∆ε(λ) in the range 650–710 nm (transition II) of the crys-
tals doped with Nd3+ ions: (1) LGN, (2) LGS, and
(3) PGGO.
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the ground-state population (normalized to unity) at a
measurement temperature.

In the crystal field of symmetry C2, all Stark compo-
nents for f elements with a half-integer spin are Kram-
ers doublets and, therefore, their degeneracy factor g1 =
2. Since we have no spectroscopic data on the values of
splitting of the ground multiplet in the crystals under
consideration, we can use the values of splitting of the
excited states derived from the absorption spectra
obtained (Figs. 2–5) to estimate the population Nf

approximately. Assuming the distribution of electrons
over the Stark components to be of the Boltzmann type,
we will calculate the estimates for Nf and, using the
refractive indices from [2, 13], determine the values of
β. The calculated values of the average splitting q, the
population of the ground state Nf, the refractive index n,
and the Lorentz factor β for all crystals and bands stud-
ied here are listed in Table 1.
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Fig. 4. Absorption spectra ε(λ) and circular-dichroism spec-
tra ∆ε(λ) in the range 720–780 nm (transition III) of the
crystals doped with Nd3+ ions: (1) LGN, (2) LGS, and
(3) PGGO.
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Taking into account narrow bandwidths in the spec-
tra and applying the mean-value theorem to the inte-
grals, we derive the final formulas for data processing:

(3)

where νmax is the frequency corresponding to the center
(maximum) of a given band. The calculated coefficients
KD and KR for the LGS, LGN, and PGGO crystals are
given in Table 1.

DISCUSSION

The results of the processing of the absorption and
circular-dichroism spectra are listed in Table 2. The
maximum values of ε and ∆ε, the wavelengths at which
they are observed, the dipole and rotation strengths, and
the anisotropy factors are indicated for each band pro-
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--------- ε ν( ) ν , Rokd∫
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Fig. 5. Absorption spectra ε(λ) and circular-dichroism spec-
tra ∆ε(λ) in the range 840–920 nm (transition IV) of the
crystals doped with Nd3+ ions: (1) LGN, (2) LGS, and
(3) PGGO.
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cessed. The calculated values of Rok are in good agree-
ment with the data of [10, 12, 14, 15], whereas the val-
ues of Dok and Gok differ significantly.

On the basis of the data obtained, we can draw some
conclusions. Primarily, we should note that, when an
impurity is incorporated into a crystal nonstructurally,
circular dichroism is not observed generally. The point
is that the averaging of the contributions of disordered
atoms into circular dichroism over the symmetry oper-
ations of the point group of the crystal yields zero. In
this case, the circular dichroism of all bands is nonzero;
therefore, Nd3+ should substitute a particular atom in
the crystal lattice isomorphously. Obviously, in this
case, the only atoms with the appropriate coordination
ability are La3+ (for LGN and LGS) and Pb2+ (for
PGGO).

Applying the selection rules for the f–f transitions in
the electric-dipole and electric-quadrupole approxima-
tions and the magnetic-dipole approximation [16] to

Table 1.  Values of the average splitting q, the ground-state
population Nf, the refractive index n, the Lorentz factor β,
and the coefficients KD and KR in formulas (2, 3) for process-
ing experimental data for the Nd-doped LGS, LGN, and
PGGO samples in the vicinity of the transitions investigated

Calculated 
values

Crystals with langasite structure
doped with Nd3+ ions

LGS LGN PGGO

q, cm–1 140 145 160

Nf 0.48 0.50 0.53

Transition I, 430 nm

n 1.94 2.01 2.10

β 1.92 2.01 2.14

KD × 1040 193 187 158

KR × 1040 47.8 46.8 40.2

Transition II, 680 nm

n 1.9 1.95 2.02

β 1.87 1.93 2.03

KD × 1040 200 197 168

KR × 1040 49 49 42

Transition III, 740 nm

n 1.90 1.95 2.01

β 1.87 1.93 2.01

KD × 1040 199 197 171

KR × 1040 49 49 43

Transition IV, 870 nm

n 1.89 1.94 2

β 1.86 1.92 2

KD × 1040 201 198 172

KR × 1040 49 49 43
C

the transitions under consideration, we find that transi-
tion I is allowed in the electric-quadrupole approxima-
tion and transitions II and III are allowed in the mag-
netic-dipole approximation, whereas transition IV is
forbidden in these approximations. In this case, transi-
tion III is the strongest in the absorption spectra, the
forbidden transition IV is weaker, and transitions I and
II (which are allowed in the electric-quadrupole and
magnetic-dipole approximations, respectively) have
approximately the same, very low dipole strengths.
Therefore, it is obvious that it is the electric dipole
moment that makes the main contribution to the inten-
sity of the above-mentioned transitions, whereas the
contributions of other components are insignificant.

This statement is also confirmed by the relation
between the anisotropy factors of the transitions. The
largest value of this factor is observed for transition II,
which is allowed in the magnetic-dipole approxima-
tion. However, transition III, also allowed in this
approximation, has the smallest value of Gok from all
values obtained. The anisotropy of transition I, allowed
in the electric-quadrupole approximation, is almost the
same as that of transition IV, which is forbidden in the
magnetic-dipole and electric-quadrupole approxima-
tions. Thus, on the average, the anisotropy factor is
independent of the contributions of the magnetic-dipole
and electric-quadrupole modes.

Hence, the intensity and dichroism of the spectral
lines are determined completely by the efficiency of the
mechanisms of involvement of both the electric and
magnetic dipole moments.

The selection rules with respect to the change in the
projection of the angular momentum ∆MJ are deter-
mined by the specific symmetry of an object studied.
Since the local symmetry of Nd ions in the crystals
under consideration is C2, all transitions between the
first Stark component of the ground state and the Stark
components of excited states are allowed in symmetry.
Nevertheless, as the results obtained show, the intensity
of the transitions to different Stark components within
one multiplet change very significantly: by one or two
orders of magnitude.

Obviously, in LGN and LGS crystals doped with
neodymium, the latter substitutes lanthanum isomor-
phously. This is confirmed by the strong similarity of
the dichroism spectra of these crystals both in shape
and the values of the parameters Dok and Rok. In the
PGGO compound, trivalent Nd3+ substitutes the diva-
lent ion Pb2+. In this case, the charge compensation
occurs owing to the redistribution of Ge4+ and Ga3+ ions
in the second coordination sphere.

A change in the crystal field affects the circular-
dichroism spectrum. Indeed, the circular-dichroism
spectrum of PGGO differs radically from those of LGN
and LGS. Primarily, the rotation strength and the
anisotropy factor of PGGO are lower by 1–2 orders of
magnitude. In addition, some circular-dichroism bands
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 6      2005
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Table 2.  Values of the energies, intensities, dipole strengths, rotation strengths, and anisotropy factors of the transitions in the
Nd3+ ion from the first Stark component of the ground state 4I9/2 to the Stark components of the excited states 5D5/2, 

4F9/2, 
4F7/2,

and 4F3/2

No. λ, nm ν, cm–1 εmax,
mol l–1 cm–1

∆εmax,
mol l–1 cm–1

Dipole strength
Dok × 1044, D2

Rotation strength
Rok × 1044,

D × (Bohr magneton)
Gok =  ×104

Transition I, 4I9/2  5D5/2, ∆J = 2
PGGO

1 429 23310 0.262 –2.98 × 10–5 1850 –0.035 –0.76
2 432 23140 0.127 –2.17 × 10–5 1010 –0.027 –1.07
3 435 22990 0.137 –1.29 × 10–5 929 –0.018 –0.77

LGN
1 431 23200 1.219 1.99 × 10–3 8520 3.15 14.8
2 435 22990 0.274 –9.94 × 10–4 1800 –2.15 –47.8

LGS
1 431 23200 0.749 4.96 × 10–4 7380 1.15 6.25
2 435 22990 0.123 –3.09 × 10–4 1040 –0.80 –30.9

Transition II,  4I9/2  4F9/2, ∆J = 0
PGGO

1 670 14930 0.176 1.31 × 10–5 2270 0.062 1.10
2 677 14760 0.368 9.92 × 10–6 4140 0.017 0.16
3 682 14650 0.761 –2.20 × 10–5 9120 –0.057 –0.25

LGN
1 665 15040 0.007 3.17 × 10–4 140 0.764 218
2 670 14930 0.020 –1.01 × 10–3 860 –3.91 –183
3 680 14700 0.460 –8.36 × 10–4 5500 –1.46 –10.6
4 683.5 14630 0.540 1.30 × 10–3 8320 3.15 15.2
5 690 14490 0.339 –5.19 × 10–4 5550 –1.41 –10.1

LGS
1 662.5 15090 0.011 2.27 × 10–4 120 0.628 218
2 668 14970 0.031 –2.57 × 10–4 410 –1.04 –102
3 679.5 14720 0.297 –3.09 × 10–4 4710 –0.494 –4.19
4 682.5 14650 0.337 4.78 × 10–4 2840 0.978 13.8
5 690 14490 0.346 –3.47 × 10–4 6050 –1.27 –8.38

Transition III, 4I9/2  4F7/2, ∆J = 1
PGGO

1 734 13620 3.235 –7.59 × 10–5 42500 –0.248 –0.233
2 741 13490 5.087 –2.07 × 10–4 73570 –0.624 –0.340
3 750 13330 10.148 –2.57 × 10–4 168200 –0.124 –0.030

LGN
1 739 13530 5.835 –5.32 × 10–3 74000 –17.0 –9.2
2 744 13440 7.817 1.29 × 10–3 89600 1.67 0.74

LGS
1 739 13530 3.326 –3.35 × 10–3 41400 –11.1 –10.7
2 744 13440 4.523 1.34 × 10–3 60100 2.64 1.8

Transition IV, 4I9/2  4F3/2, ∆J = 3
LGN

1 869 11510 2.09 –6.96 × 10–4 32200 –2.81 –3.4
2 878 11390 2.011 1.10 × 10–3 28800 5.03 7.0

LGS
1 864 11530 1.027 –2.10 × 10–3 19400 –10.7 –22.0
2 877 11380 1.599 3.67 × 10–3 22100 17.4 31.6

4Rok

Dok
-----------
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in multiplets even change their sign. Note that this
effect generally never occurs in isostructural crystals.
The parameters of circular-dichroism bands are of the
same order of magnitude even for different compounds
[12, 14, 15, 17].

An unusual circumstance should be noted: all these
changes occur almost without any changes in the
absorption spectra and the dipole strengths. In our opin-
ion, the most likely explanation is that several different
Nd impurity centers may exist in PGGO crystals. When
the difference in the energies of the transitions in these
centers is small, the values of the circular dichroism of
the corresponding bands may differ both in magnitude
and in sign. In this case, the populations of the positions
are not quite equivalent, which explains the residual cir-
cular dichroism observed.

CONCLUSIONS

To conclude, let us formulate some problems arising
in the context of the investigation performed here,
which can be the subject of further spectral study of
Nd-doped langasites.

Primarily, as indicated above, the circular dichroism
in the electronic transitions in rare earth impurity ions
is related to the existence of an effective mechanism of
involvement of the electric and magnetic dipole
moments. To determine the mechanism of this involve-
ment (static or dynamic) and its source, it is necessary
to perform numerical calculations using the experimen-
tal data on the absorption and circular-dichroism spec-
tra in a maximally wide spectral range.

At present, the technique of numerical simulation of
absorption spectra has been developed extensively and
gives good results. Calculation of circular-dichroism
spectra has been developed much less and is restricted
mainly to the studies considering a very narrow range
of crystals [17]. Further development of such numerical
calculations can answer many important questions.
From this point of view, the experimental data on the
absorption and circular-dichroism spectra of the crys-
tals that were not investigated previously can serve as a
basis for further development of the methods of numer-
ical simulation of circular dichroism.

The structure of the Nd impurity center in PGGO is
also of interest. However, the structural identification of
an impurity center is a difficult problem, the solution of
which requires additional investigations by special
methods, in particular, measurements of the electron-
spin resonance spectrum.

If the above suggestion about the existence of Nd3+

impurity centers of different types in lead galloger-
manate is valid, it can also hold true for other crystals
of this family. Therefore, a possible method to verify it
is measurement of the absorption and circular-dichro-
C

ism spectra for a group of gallogermanates of other
divalent elements (currently, the technique of growing
large single crystals of calcium and strontium galloger-
manates is being developed) with subsequent compari-
son of the data obtained with the results of this study.
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Abstract—The unit-cell parameters and the spatial symmetry of RbKSO4 crystals are determined. The temper-
ature and spectral dependences of the refractive indices and birefringence of these crystals are measured. Two
first-order phase transitions are found to occur at 116 and 820 K, and the occurrence of isotropic points for three
crystallophysical directions is established. The effect of uniaxial stresses on the optical properties of the crystal
is studied. Both the birefringence and the birefringence-sign inversion points are found to be rather sensitive to
the action of uniaxial mechanical stresses. The temperature–spectral and spectral–baric diagrams of the isotro-
pic state of the RbKSO4 crystal, as well as the baric shifts of the phase-transition temperatures, are determined.
© 2005 Pleiades Publishing, Inc.
INTRODUCTION

The study of the temperature and spectral depen-
dences of the refractive indices ni and the birefringence
∆ni of crystals of the group ABSO4 (A, B = Li, Rb, K,
NH4) showed that the replacement of atoms in the crys-
tal space lattice has a significant effect on these param-
eters, as well as on the birefringence-sign inversion
(BSI). Furthermore, it was found that, upon such
replacement, the optical properties of these crystals
exhibit nonstandard behavior near the phase transition.

In K2SO4, Rb2SO4 and LiKSO4 crystals, BSI points
were found, which occur in wide spectral and tempera-
ture ranges. It was found that, the isotropic point of the
LiKSO4 crystal shifts toward the long-wavelength
spectral range upon cooling, the temperature depen-
dence of this point changes at a temperature of 255 K,
and this point vanishes at a temperature of the first-
order phase transition (185 K) [1, 2]. These data differ
considerably from the characteristics of the isotropic
point of the isomorphic K2SO4 crystal [3], for which
dλ0/dT  ∞. A similar behavior of the isotropic point
was observed for the X direction of the Rb2SO4
crystal [4].

It should be noted that BSI points are observed in
most known compounds of the ABSO4 type. Therefore,
the search for new isomorphic compounds aimed at
detecting isotropic states in them, which can extend the
temperature and spectral ranges of occurrence of BSI
points, is, in our opinion, of undeniable interest. For
this purpose, we chose the crystal RbKSO4 as an iso-
morphic compound. The objectives of this study are to
determine the spatial symmetry of this crystal and study
the spectral and temperature behavior of its refractive
indices ni and birefringence ∆ni in order to reveal the
1063-7745/05/5006- $26.00 ©0961
effect of cation replacement on these characteristics, as
well as on BSI points and on their baric dependence.

EXPERIMENTAL

RbKSO4 crystals were grown by slow evaporation
from an aqueous stoichiometric salt solution: Rb2SO4 +
K2SO4  2RbKSO4 . The crystals grown consisted of
three clearly pronounced pseudoorthorhombic blocks;
the axes made an angle of 120°. The setting was per-
formed as in the case of the LiRbSO4 crystal, whose
pseudohexagonal axis was taken as the c axis, while the
axes of the crystal block perpendicular to the c axis cor-
responded to the a and b axes.

To determine the parameters of the crystal structure
of this compound (the unit-cell periods, atomic coordi-
nates, thermal parameters, etc.), we used a profile
obtained by discrete scanning on an HZG-4a diffracto-
meter (CuKα radiation). The crystal structure of the
sample was determined by the powder method. All the
calculations related to the identification and refinement
of the structure of the compounds by the powder
method were performed using the software package
CSD [5]. The atomic coordinates, temperature correc-
tions and occupancies of regular sets of points were
refined by the least-squares method in the isotropic and
anisotropic approximations.

The reliability of the model chosen was checked by
the value of the R factor:

(1)

where Iobs and Icalcd are the observed and calculated
intensities, respectively.

R
ΣIobs Icalcd–

ΣIobs
----------------------------,=
 2005 Pleiades Publishing, Inc.
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The temperature–spectral dependences of the
refractive indices of the crystal under study were mea-
sured by the Obreimov photographic and immersion
methods, while the birefringence was determined by
the interference method. The uniaxial mechanical pres-
sure was created using a special attachment providing
pressures up to ~200 bar. The change in the birefrin-
gence of a crystal under the action of a mechanical field
is determined by the expression

(2)

where ∆ni is the birefringence, k is the interference-
fringe order, λ is the light wavelength, di is the crystal
thickness along the light-propagation direction, and i,
m = X, Y, Z are the crystallophysical axes. (Different
values of i and m indicate that, in these experiments, the
pressure was always applied along a direction perpen-
dicular to that of the light propagation in the sample.)
Under the simultaneous action of thermal and mechan-
ical fields, the birefringence is determined as

(3)

Changing one of the parameters (T or σm) with the
other parameter fixed, one can unambiguously deter-
mine the temperature or baric dependence of ∆ni from
the shift of the order of interference fringes.

RESULTS AND DISCUSSION

A Mechanically Free Crystal

The RbKSO4 crystal was found to belong to the
rhombic crystal system (sp. gr.) Pnma and had the fol-
lowing unit-cell parameters: a = 7.5526(4) Å, b =
5.8048(3) Å, and c = 10.1156(6) Å. The distribution of
the atoms is as follows: O1 in 8(d) x y z (x = 0.3080, y =
0.0430, z = 0.1530); O2 in 4(c) x 1/4 z (x = 0.0450, z =
0.0830); Rb in 4(c) x 1/4 z (x = 0.1728, z = 0.4100); S in
4(c) x 1/4 z (x = 0.2324, z = 0.0815); K in 4(c) x 1/4 z (x =
0.4895, z = 0.7048); and O3 in 4(c) z 1/4 z (x = 0.7930,
z = 0.5580). The reliability factor is R = 0.09.

∆ni σm( ) k σm( )λ /di σm( ),=

∆ni T σm,( ) k T σm,( )λ /di T σm,( ).=

Table 1.  Dispersion and parameters of the Sellmeier formula
for RbKSO4 crystals

Axis λ01, nm λ02, nm Bi, 10–6 
nm–2

, 10–9 
nm–2

X 97.118 8225.82 128.91 15.31

Y 94.708 9120.13 134.03 6.96

Z 84.198 11230.4 172.20 3.69

λ = 500 nm ∂ni/∂λ , 10–5 nm–1 αi , 10–24 cm3 Ri , cm3

X –4.5 8.99 21.15

Y –5.0 8.93 21.19

Z –5.1 8.97 21.09

Bi'
C

It was established that, in the spectral range 300–
800 nm, the dispersion of the refractive indices ni(λ)
(i = X, Y, Z) of the RbKSO4 crystal is normal and can be
well described by the two-term Sellmeier formula. The
refractive indices nx and nz tend to converge in the near
UV range, which allows us to assume that a BSI point
should exist in this range. Using relation (2), the param-
eters λ01 , λ02 , Bi, and  of the two-term Sellmeier for-
mula were determined from the experimental depen-
dences ni(λ) (Table 1). Comparison of the refractive
characteristics of the crystals RbKSO4, K2SO4 [6–8],
and Rb2SO4 showed the following. The replacement
Rb+  K+ does not lead to substantial changes in ni

(an increase amounts to ~10–3), with the centers of
gravity of UV oscillators being shifted toward both
longer (λ0x ~ 4–6 nm) and shorter (λ0z ~ 5–6 nm) wave-
lengths. The shift λ0i is accompanied by different
changes in the strength of effective UV oscillators: Bx

decreases by 20 × 10–6 nm2, while Bz increases by 22 ×
10–6 nm2.

Upon replacement K+  Rb+, the refractive indi-
ces ni decrease by (4–7) × 10–3, λ0x shifts toward longer
wavelengths by ~3 nm, and λ0z shifts toward shorter
wavelengths by ~4 nm. In accordance with this, the spe-
cific refraction decreases by ~1–2 cm3 and the elec-
tronic polarizability decreases by ~(0.1–0.2) ×
10−24 cm3.

In turn, comparison of the parameters of the optical
indicatrix of the RbNH4SO4 and RbKSO4 crystals
showed that their refractive indices differ fairly consid-
erably in magnitude (~(18.7–22.0) × 10–3). This is
caused by a significant difference between the specific
refractions of these compounds (~2 cm3), as well as by
the fact that the centers of the UV absorption bands
observed along the X axis shift toward longer wave-
lengths by ~10 nm, while the centers of the bands mea-
sured along the Z axis shift toward shorter wavelengths
by ~13 nm.

The calculated total refraction of the RbKSO4 crys-
tal agrees well with the sum of individual refractions,

   +  +  

= 5.0 + 3.5 + 14.5 = 23 cm3.

It is seen from this relation that the contributions from
the K+ and Rb+ cations to the total refraction of this
crystal amount to 15 and 21%, respectively.

Analysis of the temperature and spectral depen-
dences of the refractive indices and birefringence of the
RbKSO4 crystal suggests the occurrence of isotropic
points. Figure 1 shows the temperature–spectral dia-
gram of the isotropic state of the RbKSO4 crystal for
the X and Z directions. It is seen from this figure that, in
very large temperature (150–800 K) and spectral (300–

Bi'

RRbKSO4
R

Rb
+ R

K
+ R

SO4
2–
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700 nm) ranges, λ0x and λ0z decrease nonlinearly with
temperature.

We found that, in the temperature range 116–820 K,
the dependence λ0y(T) is virtually linear, with the pro-
portionality coefficient ∂λ0y/∂T = –0.007 Å/K being
considerably smaller than that for the LiKSO4 crystal.

Taking into account that the crystals K2SO4,
RbKSO4, and LiKSO4 exhibit the occurrence of BSI
points in wide temperature and spectral ranges, the
comparison of the parameters of the optical indicatrix
of isomorphic crystals can serve as a basis for the
method of search for crystals with BSI points. Since the
replacement of cations causes insignificant changes in
the parameters of the optical indicatrix, one can expect
that, depending on the percentage ratio of the compo-
nents in a mixture, this replacement will cause the spec-
tral and/or the temperature ranges of occurrence of the
isotropic state to either change in size or shift along the
corresponding scales.

A Mechanically Compressed Crystal

Our investigation of the effect of uniaxial stress on
the birefringence of the RbKSO4 crystal showed that
the action of stresses σx , σy, and σz ~ 200 bar leads to
changes in the birefringence ∆ni, which differ both in
sign and in magnitude. Table 2 shows the increments
∆ni induced by mechanical stresses applied along the
crystallophysical axes of RbKSO4 at room temperature.

In Fig. 2, the dispersion ∆ni of this crystal is pre-
sented for different directions of application of the
stress at room temperature. The uniaxial pressure was
found not to affect the character and value of each
∆ni(λ) significantly. As is seen, the X direction is the

200

λ0, nm

T, K

400

400

600

600 800

X

Z

Fig. 1. Temperature and spectral diagram of the isotropic
state of a RbKSO4 crystal.
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 6      2005
most sensitive to the action of uniaxial stresses. It is
also seen from this figure that the dispersion ∆ny is
anomalous (d∆n/dλ > 0), and that an isotropic point
occurs in the crystal at λ0 ~ 235 nm. It was found that,
under the action of a uniaxial pressure σx, this point
shifts toward shorter wavelengths, with the rate dλ/dσ =

0.09 nm bar–1, and, for σx = 200 bar, it is located at 
~ 217 nm. Conversely, under the action of σz, this point
shifts toward longer wavelengths, with the rate dλ/dσ =
0.04 nm bar–1, and, for σz = 200 bar, it is located at

 ~ 247 nm. Since the values of ∆nx and ∆nz are sim-
ilar, the pressure σy leads to their equality near λ =
348 nm, and, in this case, ∆nx = ∆nz = 3.35 × 10–3.
Since, for the RbKSO4 crystal, ny > nx > nz, this equality
will take place provided that nx = nz, which corresponds
to a BSI point. That is, the uniaxial mechanical stress
not only shifts existing BSI points along the tempera-
ture and wavelength scales but also creates new such
points.

As for most crystals, uniaxial pressures were found
not to affect the character of the curves ∆nx(T) signifi-
cantly: in the temperature range 120–800 K, the deriv-

λ0y
x

λ0y
z

0

400

∆ni, 10–3

λ, nm

2

600

4 X

Z

Y

Fig. 2. Birefringence dispersion of a RbKSO4 crystal at
room temperature for different directions of an applied
pressure (200 bar): (×) σx, (n) σy, (d) σz, and (s) σ = 0.

Table 2.  Birefringence increments δ∆ni × 10–4 for RbKSO4
crystals subjected to uniaxial stresses σm ~ 200 bar

Pressure
Light

X Y Z

X –5.1 4.2

Y 1.5 –1.2

Z –1.6 3.1
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ative d∆nx/dT varies from 9.1 × 10–6 to 9.5 × 10–6 for the
mechanically free and compressed crystals, respec-
tively. By drawing the straight line ∆nx = 0, one can esti-
mate the value and the sign of the baric shift of the BSI
point λ0x: the uniaxial pressures σx and σy shift this
point toward lower temperatures, whereas the pressure
σz shifts it toward higher temperatures.

Figure 3 presents the effect of a uniaxial stress on
the isotropic points of the RbKSO4 crystal. The follow-
ing coefficients of the baric shift of the BSI point are
determined: ∂T0 /∂σz = 0.245 and ∂T0 /∂σy =
−0.251 K/bar (for the X direction) and ∂T0/∂σx =
−0.115 and ∂T0/∂σy = 0.135 K/bar (for the Z direction).
Comparison of Figs. 1 and 3 shows that the isotropic
points of this crystal cover favorable and fairly large
spectral and temperature intervals; therefore, RbKSO4
can be added to the list of already-known isomorphic
crystals for crystal optical temperature transducers.

Figure 4 shows the temperature behavior of ∆nz in
the vicinity of the phase transition at 116 K for different
directions of the uniaxial stress σm = 200 bar. As is seen
from this figure, the uniaxial stresses along the X and Y
directions shift the phase-transition point toward lower
temperatures. (Under these stresses, the phase transi-
tion occurs at TY = 114 K and at TX = 113 K, respec-
tively.) Analysis of the baric dependence of ∆nz showed
that the stress σz shifts the phase-transition point toward
higher temperatures (TZ = 119.5 K). The baric coeffi-
cients of the shift of the phase transition point are deter-
mined to be dTi/dσm = –0.015, –0.01, and 0.0175 K/bar.
The sum coefficient of the baric shift (an analogue of
the hydrostatic pressure) of the phase-transition point
amounts to  = dTi/dσx + dTi/dσy +
dTi/dσz = −0.0085 K/bar.

Ti/ σmdd
im
3∑

600

50

T, K

σ, bar

700

100

650

0 150 200

Z

Y
Y

X

550

Fig. 3. Temperature–baric diagram of the isotropic state of
a RbKSO4 crystal at λ = 500 nm for different directions of
a uniaxial pressure.
C

On the basis of our experimental results and by anal-
ogy with the known data on the crystals LiKSO4,
LiRbSO4, and (NH4)2BeF4 [9–11], we can conclude
that the phase transition in the RbKSO4 crystal is asso-

ciated with rotation of tetrahedral groups .
Indeed, since the stresses σx and σy shift the phase-tran-
sition point toward lower temperatures, they hinder the
rotation of tetrahedra that should rotate around the X
and Y axes. The pressure σz increases TC, i.e., facilitates
the rotation of tetrahedral groups. Different numerical
values of the coefficients ∂TC/∂σ can point to different

orientations of the axes of rotation of the  tetrahe-
dra around the crystallophysic axes.

CONCLUSIONS

We determined the spatial symmetry of the crystal
RbKSO4, which was synthesized for the first time. The
temperature and spectral dependences of the refractive
indices and birefringence, as well as the baric depen-
dences of the principal values of ∆ni, are measured.
Two first-order phase transitions were detected at T1 =
116 K and T2 = 820 K, and three BSI points, which
cover wide temperature (200–820 K) and spectral
(300–700 nm) ranges, were observed. It is found that
the birefringence of this crystal is rather sensitive to the
action of uniaxial pressures applied along the principal
crystallophysical directions. These experiments con-
firmed a regular feature that was previously observed
for crystals isomorphic with RbKSO4 and that consists
in the fact that the uniaxial mechanical pressures σk, j
applied along the principal crystallophysical axes lead
to changes in ∆ni (i, j, k = 1, 2, 3) different both in value
and in sign. It is found that the action of uniaxial

SO4
2–

SO4
2–

3.2

112

∆nz, 10–3

T, K

3.4

116 120

3.8

4.0

4.2

TX
i

TY
i

T0
i

Fig. 4. Temperature dependences of the birefringence ∆nz
of RbKSO4 crystal in the phase-transition vicinity for dif-
ferent directions of an applied pressure.
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stresses extends the temperature and spectral ranges of
occurrence of BSI points and induces a new BSI point.
The point of the low-temperature phase transition was
found to exhibit a baric shift toward higher or lower
temperatures depending on the direction of compres-
sion of the sample. This gives grounds to assume that
this phase transition is caused by the rotation of tetrahe-
dral groups around the crystallophysical axes. In this
case, the sign of the baric shift of the phase-transition
point depends on whether the signs of the temperature
and baric deformations of the crystal structure are the
same or opposite.
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Abstract—The dielectric properties of a series of yttrium–iron garnet single crystals of different structural and
optical quality are investigated in the IR range (400–1000 cm–1). Some regularities of the dependence of the
permittivity ε∞ of the garnet samples on the charge-carrier fraction (the parameter k/nk) are revealed. The max-
imum values of ε∞ are found for the samples containing magnetoactive Sm and Mn ions as dominant impurities,
which increase the concentration of conduction electrons and, therefore, provide large values of k/nk. A corre-
lation between ε∞ of the Y3Fe5O12 samples and the concentration of oxygen ions is established. © 2005 Pleiades
Publishing, Inc.
INTRODUCTION

The crystal structure of yttrium–iron garnet
Y3Fe5O12 (YIG) is unique from the point of view of
possibilities for different ions to be incorporated into
three nonequivalent cationic sublattices. As the investi-
gations of the structural and kinetic characteristics of
YIGs show, the growth of YIG crystals is inevitably
accompanied by the formation of defects and deviation
from stoichiometry. These effects are caused by the
growth and morphological anisotropies [1, 2].

The effect of the deviation from stoichiometry and
the competing character of the interaction of impurities
(Ba, Mn, and Sm ions) on the structural properties and
the IR absorption were studied in [1].

The purpose of this study is to reveal regularities of
the dielectric properties of real YIG crystals caused by
the incorporation of ions of dominant impurities and
structural defects. To this end, a unified approach is
used.

EXPERIMENTAL

The objects of study were YIG single crystals grown
by the flux technique based on the PbO–PbF2–B2O3
solvents. The samples studied were plates 6 × 7 × (1.5–
2.6) mm3 in size, cut parallel to the crystallographic
planes (110), (111), and (100). To reveal regularities of
the physical properties on the basis of a unified mecha-
nism, we chose YIG samples of different optical qual-
ity: high (the IR absorption coefficient α < 3 cm–1),
intermediate (3 < α < 7.5 cm–1), and poor (α > 7.5 cm–1)
[3]. The samples with (110) orientation can be divided
into two groups. Group I contains samples of high
(nos. 7 and 41) and partially intermediate (nos. 43-3
1063-7745/05/5006- $26.00 0966
and 52) quality. Samples of group II (oriented samples
50", 51, and 50 and an unoriented sample 32-UO) are
plates with α > 7 cm–1. The samples with (111) orienta-
tion have different optical quality: α = 1.1 and 6.16 cm–1

for samples 44 and 34, respectively. For sample 3 (100),
α = 2.3 cm–1.

The optical reflection spectra were recorded from a
sample surface area of about 40 mm2 at room tempera-
ture on SPECORD 75IR and SPECORD 61NIR spec-
trophotometers using unpolarized light. When recon-
structing the magnitudes of the energy reflection coef-
ficient R, an Al mirror with R = 97% and a single-
crystal Si plate were used as references. The incident
light beam made an angle of 20° with the reflecting sur-
face. To reconstruct the real and imaginary components
of the permittivity (ε1 and ε2, respectively) from the R
spectra near the lattice resonance, a program based on
the subtractive Kramers–Kronig method [4] was used.
The frequencies of longitudinal (νLO) and transverse
(νTO) optical phonons for the three resonance modes ν1,
ν2, and ν3 and the electronic contribution ε∞ to the per-
mittivity at ν = 1000 cm–1 (λ = 10 µm) were calculated
for 11 YIG samples. The values of the dielectric con-
stant ε0 for all three modes νi were determined from the
Lyddane–Sachs–Teller relation, which links the fre-
quencies of the longitudinal and transverse optical
modes, taking into account the value of ε∞ for a partic-
ular sample.

The quantitative content of impurities in the YIG
samples under study was determined by X-ray radio-
metric analysis [3]. The same method was used to find
the ratio of the intensities of coherent and incoherent
X-ray scattering (k/nk) [5]. The value of k/nk character-
izes the fraction of charge carriers for each YIG sample
© 2005 Pleiades Publishing, Inc.
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with consideration for an individual ensemble of impu-
rity ions of different valence (Ba, Mn, Sm, Pt, and V),
the oxygen vacancies, and other structural defects. The
scattering of conduction electrons, caused by the ionic
disorder in a crystal, is one of the factors determining
the kinetic properties of the crystal. Along with doping,
defects and impurities scatter charge carriers and
phonons, while significantly affecting the conductivity
[6]. The lattice distortion caused by the presence of
impurity centers, which demonstrate competing char-
acter of interaction, is determined by the specificity of
their nature.

In [7], where the lattice reflection spectra of single
crystals of Y3Fe5 – xGaxO12 solid solutions were investi-
gated, the peaks of bands were compared with the val-
ues of the unit-cell volume at variation in from 0 to 5.

In this paper, we report the results of studying of
Y3Fe5O12 crystals, whose growth is accompanied by the
incorporation of both inevitable process impurities (Ba
ions from the solvent) and Mn and V ions (Fe2O3 impu-
rity in very small amounts) and Sm ions (Y2O3 impurity
in very small amounts), with different concentrations
and in unpredictable combinations due to the compet-
ing character of their interaction in real samples. There-
fore, the value of the lattice parameter, which ranges
from 12.370 to 12.377 Å, cannot be used to estimate the
quality of the YIG samples. (This point of view was dis-
cussed in detail in [1].) The series of YIG samples
(11 in total) was investigated by different techniques
[1, 2, 4, 5]. Neutron activation analysis made it possible
to reveal a quality criterion: the ratio of the total con-
centration of Y and Fe cations to the concentration of O
anions, (Y + Fe)/O (wt %). The parameters characteriz-
ing the quality of the YIG samples under study change
in wide ranges: 0.4 < α < 13.2 cm–1 and k/nk = 0.038–
0.053.

In this study, we propose to interpret the changes in
the dielectric properties of the YIG samples by compar-
ing these properties with the parameter k/nk and the
concentration of oxygen ions (O) in real crystals by tak-
ing into account their crystallographic orientation.

DIELECTRIC PROPERTIES 
OF YIG CRYSTALS

The dielectric properties of YIG single crystals in
the IR range are similar to the properties of ionic com-
pounds, which are characterized by high resistivity. The
group-theoretical analysis of the garnet structure pre-
dicts 17 frequencies of the same symmetry, active in the
IR spectra [8]. In the frequency range from 400 to
1000 cm–1 (25–10 µm), the reflection spectra R(ν) of
the YIG samples contain high-energy bands in the
range 550–650 cm–1. Within these bands, three peaks
can be distinguished for each sample. The experimental
data on the lattice vibrations in similar compounds
[9−11] make it possible to attribute the modes observed
in the spectra with displacements of Fe cations located
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 6      2005
in tetrahedral complexes formed by oxygen ions. The
low-energy bands, due to the cations in octahedral and
dodecahedral positions, were not investigated because
of the limited operating frequency range (400–
1000 cm–1) of the 75IR spectrophotometer.

Figure 1 shows the spectra of the real component of
the permittivity of the YIG samples, ε1 , near the lattice
resonance. The spectra ε1 = f(ν) of samples 7, 41, and
52 (110) are characterized by small values of α
(<5.2 cm–1) (Fig. 1a). Sample 7, having the best trans-
parency (α = 0.4 cm–1), takes the place of the “golden
mean” in the spectrum, whereas sample 52, with the
maximum content of Sm ions in the dodecahedral sub-
lattice, demonstrates the largest values of ε1 for the
mode ν1 . The latter circumstance is most likely to be
related to the incorporation of V ions of different
valence into the tetrahedral sublattice of sample 52 [1].
Sample 41, containing many Ba ions and Sm and Mn
ions in very small amounts, has the largest values of ε1
for the modes ν2 and ν3. It is known that Ba ions in the
garnet structure are the inevitable process impurity,
which substitutes yttrium in the dodecahedral sublattice
[1]. Barium ions have a stable valence of +2 and serve
as acceptors in YIG crystals.

Some samples of the series under study (50, 32-UO,
52, 50", 41, 34, and 44) contain a large number of Ba
ions (Ba/Y ≥ 1 wt %). The electrical neutrality of YIG
crystals containing divalent ions can be retained by the
formation of tetravalent Sm, Mn, and Fe ions. Partial
compensation of charges may be caused by the pres-
ence of impurity V ions (samples 32-UO and 52). Note
that V3+ ions (r = 0.7 Å) are located in the octahedral
sublattice and V5+ ions (r = 0.35 Å) occupy the tetrahe-
dral sublattice. When V ions are substituted in the tetra-
hedral position, their number should be smaller by a
factor of 2 than the number of Ba ions in the dodecahe-
dral lattice. In sample 50, incomplete compensation of
Ba2+ ions may be caused by the presence of Pt4+ ions.

When YIG samples contain a high concentration of
Ba2+ ions and no (or very few) ions of variable valence
(Sm, Mn, V), electrical neutrality is provided by the
formation of Fe4+ ions in the tetrahedral position and/or
oxygen anion vacancies.

The ε1 spectra of sample 50" (110) (intermediate
optical quality; α = 6.91 cm–1) and sample 51 (poor
optical quality; α = 12 cm–1) are shown in Fig. 1b.
These samples are characterized by a small value of
k/nk (0.038 and 0.042 for 50" and 51, respectively). The
resonance peaks corresponding to the mode ν2 in the
spectra of these samples have large amplitudes, compa-
rable with the corresponding amplitude for sample 41,
which has the minimum value of k/nk (0.0427) among
the samples represented in Fig. 1a.

Figure 1c shows the spectra of ε1 for the samples
with different orientations: 3 (100), 44 (111), and 32-
UO. The ε1 spectrum for sample 32-UO has a more
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Fig. 1. Spectra of the real component ε1 of the permittivity of the YIG samples near the lattice resonance (500–700 cm–1): (a) sam-
ples 7, 41, and 52, orientation (110); (b) samples 50'' and 51, orientation (110); and (c) ε1 spectra of samples 3 (100), 44 (111), and
32-UO.
complex structure and contains seven local peaks. Such
a shape of the ε1 spectrum of sample 32-UO is related
to the absence of a pronounced crystallographic orien-
tation.

Note that negative values of ε1 are observed in the
vicinity of the peak at ν1 ≈ 650 cm–1 for all YIG sam-
ples. When the illumination frequency is in the range
between the frequencies of the longitudinal (νLO) and
transverse (νTO) optical phonons, the real component ε1
takes negative values [9], which indicates that an inci-
C

dent electromagnetic wave with such a frequency
undergoes reflection and thus cannot propagate in the
crystal.

The frequencies of the longitudinal (νLO) and trans-
verse (νTO) phonons for the three peaks and the value of
the electronic contribution to the permittivity, ε∞, for
the YIG samples under study are listed in the table. As
can be seen, the values of the optical permittivity ε∞
range from 3.70 to 4.40.
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Frequencies of the longitudinal and transverse optical phonons in the YIG crystals and the values of the electronic permittivity
ε∞ and the imaginary part of the permittivity ε2 (in parenthesis) at λ = 10 µm

ν1, cm–1 ν2, cm–1 ν3, cm–1
ε∞(ε2)

at 1000 cm–1
νTO νLO νTO νLO νTO νLO

43-3 655.58 723.47 595.28 645.65 564.48 573.64 3.80 (2.65)

34 (111) 652.92 722.90 600.33 675.34 570.94 593.84 4.40 (2.97)

41 664.33 714.36 596.2 645.20 556.69 564.97 4.20 (2.56)

3 (100) 664.74 714.42 609.30 631.69 562.92 571.94 4.12 (2.11)

32-HO 654.40 719.93 602.39 643.44 566.21 568.46 3.90 (2.45)

44 (111) 663.44 718.23 605.78 634.26 565.08 571.86 3.85 (2.20)

50 (first side) 652.14 721.02 618.22 630.55 560.23 564.47 3.89 (2.50)

50 (second side) 648.49 686.54 598.48 627.09 549.29 558.69 3.94 (2.15)

50 (average) 650.31 703.78 607.16 628.82 554.76 561.58 3.915 (2.32)

51 652.17 711.29 605.91 635.36 565.17 569.12 4.02 (2.49)

52 650.29 714.58 593.98 635.36 557.78 564.12 4.14 (2.29)

50'' 652.29 714.24 592.33 640.17 562.92 568.18 3.70 (2.62)

7 650.44 715.34 595.60 641.65 558.29 587.34 4.22 (2.48)
In Fig. 2, the values of ε∞ are compared with the
value of k/nk for the samples with different orientation,
including sample 32-UO. Curve 1 shows the data for
the (110) and (111) YIG samples, which generally have
small values of α and the highest values of the permit-
tivity ε∞. All three curves exhibit a general trend: the
values of ε∞ increase with an increase in the parameter
k/nk. This result is quite justified from the physical
point of view: with an increase in the number of charge
carriers in a specific sample, the electronic permittivity
also increases. Note that the maximum values of ε∞ are
observed in samples 34, 52, and 3 (curves 1, 2, and 3,
respectively), which contain Sm ions as a dominant
impurity. We believe that sample 34 has the maximum
value of ε∞ (4.40) not only as a result of the incorpora-
tion of Sm ions but also because its crystallographic
orientation is (111).

In the previous studies considering the mechanism
of charge transfer in YIG samples, it was concluded that
the charge transfer along the crystallographic [111] axis
occurs through the bond chains with the highest con-
centration of defects, along which the easy-magnetiza-
tion axis, dislocations, and domain boundaries are ori-
ented [2, 3]. Sample 7, whose permittivity is ε∞ = 4.22
(curve 1), contains microinclusions of Mn ions (the
dominant impurity in this sample).

The magnetic ordering of spins occurs in YIGs
through the superexchange interaction of iron cations in
tetrahedral and octahedral complexes, which are the
main magnetooptical active centers. This interaction is
indirect; it is implemented through ligands: oxygen
ions O2–. As a result of this interaction, O2– ions become
polarized, and the electromagnetically induced electric
dipole moment, corresponding to the vibrations of ions
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 6      2005
along the ligand–central-cation bond of the complexes,
will be higher than for other mode vibrations. This
effect should increase the intensity of the correspond-
ing peaks both in the reflectance spectra and in the
spectra of the permittivity components.

In view of the strong effect of oxygen ions on the
dielectric properties of the YIG samples, we will con-

ε∞

k/nk

4.4

4.2

4.0

3.8

0.036 0.040 0.044 0.048 0.052

1

2

3

Fig. 2. Correlation between the electronic permittivity ε∞ of
the YIG samples and the parameter k/nk: (1) samples 51, 41
and 7 (110) and sample 34 (111) (in ascending order of the
permittivity ε∞); (2) samples 32-UO, 50 (110), and 52
(110); and (3) samples 50", 43-3 (110), and 3 (100).
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sider the dependence of ε∞ on the oxygen content
(Fig. 3). The oxygen content in the samples was calcu-
lated as a difference between the sample weight and the
total weight of Y and Fe cations. These data were
obtained by neutron activation analysis. Table 1 in [5]
contains the results of the calculation for the main YIG
components: Y and Fe ions (in wt %). Curves 1, 1', and
2 show the data for the samples with (110) orientation:
curves 1 and 1' are for the samples of group I and
curve 2 is for the samples of group II. Curves 1 and 1',
representing the data for the samples containing Sm,
Mn, and Pt ions as dominant impurities, make an angle
of ≈123° with the abscissa axis. Curve 2 is for the sam-
ples with minimum values of ε∞. In these samples, the
dominant impurities are passive Ba and V (32-UO, 50")
ions or Ba ions with a low concentration (sample 43-3).
Curve 2 makes an angle of 118° with the abscissa axis.
Curve 3 represents the data for the samples with (111)
orientation, 34 (with the highest permittivity ε∞) and
44, and for sample 3 (100). The top of Fig. 3 shows the
data for the YIG samples with the largest values of ε∞,
which are related to the incorporation of Sm ions with
variable valence into these samples. Curve 3 makes an
angle of ≈122° with the abscissa axis. A general regu-
larity can be seen in Fig. 3: the lower the concentration
of oxygen ions in a given YIG sample (the data for
which lie in one of the four curves), the higher the per-
mittivity ε∞ of this sample. Comparing Figs. 2 and 3, we
can conclude that the maximum values of ε∞ are
observed in the YIG samples characterized by the larg-

ε∞

O, wt %

4.4

4.2

4.0
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Fig. 3. Correlation between the electronic permittivity ε∞ of
the YIG samples and the concentration O of oxygen ions
(wt %) in the samples: (1) samples 7 and 50 (110); (1') sam-
ples 41 and 52 (110) (in descending order of the permittiv-
ity); (2) samples 32-UO, 43 (110), and 50" (110); and
(3) samples 34 and 44 (111) and sample 3 (100).
C

est values of k/nk (samples 34 (111), 7, 52 (110), and 3
(100)) or the lowest concentration of oxygen ions.

Analyzing the data in Figs. 2 and 3, one should take
into account the following. Samples 7 and 41 with
(110) orientation, having small values of α (0.4 and
1.27 cm–1, respectively), contain inclusions of Mn, Ba,
and Sm in very small amounts. Sample 52 has the value
of α = 5.15 cm–1 (the intermediate transparency) and
contains Sm ions as a dominant impurity, which are dis-
tributed very nonuniformly over the sample thickness
[2]. Sample 50 (100) contains Pt4+ ions as the dominant
impurity. This impurity, in view of its small ionic
radius, is located in tetrahedral positions. Its influence
on the spectra of the imaginary component of the per-
mittivity, ε2, is demonstrated in Fig. 4, which shows the
reflection and ε2 spectra recorded from both sides of
sample 50. The differences between these spectra are
large, a phenomenon which is caused by both the large
gradient of the distribution of Pt ions over the sample
thickness and their incorporation specifically into tetra-
hedral sites, which is revealed in the IR spectral range
under study. The amplitudes of the peaks in the ε2 spec-
trum for both sides of sample 50 change by more than
a factor of 2 in the vicinity of the mode ν2 . 

According to the data of [8], the presence of mag-
netic interactions in the system of imperfect impurity
YIG crystals leads to some broadening of the reflection
bands. In the spectrum of sample 34 (111), the reflec-
tion band is narrower (81.98 cm–1) as compared to sam-
ples 43-3 and 41 (91.1 and 91.64 cm–1, respectively).

The value of splitting (νLO–νTO) = ∆ν1 in sample 34
(111) (69.98 cm–1 for the mode ν1) exceeds the corre-
sponding values for samples 43-3 (67.89 cm–1) and 41
(50.03 cm–1). The values obtained are close to the data
reported in [8], which were reconstructed by the Kram-
ers–Kronig method from the reflection spectra of a pol-
ished unoriented single-crystal sample (32-UO). The
minimum values of ∆ν1 are observed for samples 44
(111) (about 55 cm–1) and 3 (110) (49.68 cm–1).

Figure 5 shows the dependences of ∆ν2 on the
parameter k/nk for a set of YIG samples. For the
YIG(110) samples (curves 1 and 1'), the value of ∆ν2
linearly decreases with an increase in the argument
k/nk. Curves 1 and 1' correspond to the YIG samples
with α < 7 cm–1 and have approximately the same
slope, whereas the slope of curve 2 is significantly dif-
ferent. For samples 44 and 34 with the (111) orienta-
tion, ∆ν2 increases with an increase in k/nk (curve 3).
The anomalous behavior of the YIG(111) samples was
revealed previously during study of their electrical
properties [2, 3]. The YIG(111) samples have the low-
est resistivity because the charge transfer occurs in
them through the periodic chains with the highest con-
tent of defects (including Fe ions located in the octahe-
dral sublattice, O anions, and Y ions in dodecahedral
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 6      2005
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sites), which are aligned along the easy-magnetization
axis. 

The value of splitting ∆ν2 for the YIG samples is
shown in Fig. 6 as a function of the ratio of the elec-
tronic permittivity ε∞ to ε0(ν2). The dependences shown
are not only linear but almost parallel. The larger the
electronic contribution ε∞ to the dielectric constant ε0
for the YIG samples, the smaller the splitting they
exhibit. This regularity is observed for all samples
under consideration. Samples 3 (110), 50, and 51 (110)
have the smallest values of ∆ν2: 22–29 cm–1. In this
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600 800700 900
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ε2 (b)

ν, cm–1

Fig. 4. Reflection spectra R (a) and the spectra of the imag-
inary component of the permittivity, ε2 , (b) for the two sides
of sample 50 (110) near the lattice resonances (400–
900 cm–1). The open circles in the R and ε2 spectra corre-
spond to the side of sample 50 with a higher concentration
of Pt4+ ions.
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case, the ratio ε∞/ε0 ranges from 90.5 to 93%. The max-
imum values of ∆ν2 (≈52.5 cm–1) are observed for sam-
ples 43, 41, and 50 with (110) orientation. The ratio
ε∞/ε0 for these samples is 85–86%. The data for sam-
ples 34 and 44 with (111) orientation, as well as sam-
ples 51 (110) and 3 (100), are represented by curve 2.

For the mode ν1 , the dependences ∆ν1 = f(ε∞/ε0) are
similar. The value of ∆ν1 ranges from 50 to 70 cm–1

(samples 3 and 34, respectively), while the argument
monotonically decreases from 87 to 81.5%. The data
for the nine samples of three orientations lie in the same
straight line in the following sequence: 34, 43, 7, 52,
50", 51, 44, 50, and 3. The data corresponding to sam-
ples 41 (110) and 32-UO are beyond this line.

For the mode ν3 , the values of splitting ∆ν3 are small
(29–2.25 cm–1) and the ratio ε∞/ε0 is in the range 90–
99%. The maximum values of splitting ∆ν3 are
observed for samples 7 and 34 (29 and 22 cm–1, respec-
tively); for other samples, ∆ν3 < 7 cm–1. Note that it is
only the mode ν3 for which the maximum value of ∆ν3

corresponds to sample 7 (110) containing Mn2+ ions as
the dominant impurity. Incorporation of magnetoactive
Mn2+ ions into the dodecahedral sublattice is accompa-
nied by the competing interaction with neutral Ba ions

∆ν2, cm–1
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Fig. 5. Dependence of the splitting ∆ν2 (cm–1) on the
parameter k/nk: (1) samples of group I (43, 7, and 52 (110)),
(1') samples 41 and 50" (110) and sample 3 (100) (in
descending order of the splitting ∆ν2), (2) samples of group II
(51 and 50 (110)), and (3) samples 34 and 44 (111).



972 LOMAKO et al.
[1, 3]. The following correlation was revealed: sample
7 with the maximum Mn concentration (Mn/Fe =
0.21 wt %) has the lowest content of Ba ions (Y/Ba =
0.023 wt %) (see [5], Tables 1 and 2). The (110) face,
characterized by a low growth rate, has a significant
advantage in the uniform filling of tetrahedral positions
alternating with dodecahedral ones. We assume the
electrical neutrality of sample 7 to be caused by the
incorporation of Fe4+ ions into the tetrahedral sublattice
and the formation of oxygen anion vacancies.

It is of interest to compare the values of the dielec-
tric constant ε0 of the YIG samples for the three modes
with the concentration of oxygen ions corresponding to
an actual sample. Figure 7 shows the dependence
ε0(ν3) = f(O, wt %) for the samples under study. Curve 1
represents the data for samples 3 (100), 7, and 50 (110);
curve 2 corresponds to the samples with (110) orienta-
tion of group II: 51, 43, and 50". Since these two curves
correspond to the samples of group II (except for sam-
ples 3 (100) and 7), they are linear and make angles of
115° and 117° with the abscissa axis, respectively.
Curve 3 represents the data for the four samples of two
orientations: 44 and 34 (111) and 41 and 52 (110). Sam-
ples 34, 3, and 52 have a fairly high concentration of
Sm ions. An analogy between Fig. 7 and Fig. 3 can be
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Fig. 6. Dependence of the splitting ∆ν2 (cm–1) on the ratio
ε∞/ε0: (1) samples 43, 41, 50", 7, 52 (110), 32-UO and 50
(in descending order of the splitting ∆ν2) and (2) samples
34, 51, 44, and 3 (100).
C

seen since these figures represent dependences of the
same parameter: the concentration of oxygen ions,
including anion vacancies. The data for curve 1' (sam-
ples 41 and 52) in Fig. 3 are absent in Fig. 7, where they
are obscured by curve 3. A general regularity manifests
itself in all curves: the lower the concentration of oxy-
gen ions in a sample, the larger the value of ε0(ν3) of this
sample.

CONCLUSIONS
We investigated the dielectric properties of YIG sin-

gle crystals with different degrees of structural and
optical perfection as functions of the character of the
incorporated dominant impurities (Sm, Mn, Ba, and V)
and the crystallographic orientation of the sample. On
the basis of the previously obtained data on the elemen-
tal composition, the finding of the dominant impurities
in the samples, and the use of the parameter k/nk, a new
approach is suggested to determine the regularities in
the dielectric properties.

In this study, we restricted our consideration to the
relationship between the main dielectric properties
(optical permittivity ε∞, the dielectric constant ε0 , and

ε0(ν3)
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Fig. 7. Dependences of the dielectric constant ε0(ν) for the
mode ν3 in the YIG samples on the concentration of oxygen
ions: (1) samples 3 (100), 7 (110), and 50 (110); (2) samp-
les 51, 43-3, and 50" (110) (in descending order of ε0); and
(3) samples of group I (34 (111) (with the maximum value
of ε0), 44 (111), 41 (110), and 52 (110).
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the splitting ∆ν1) and the parameter k/nk, the concentra-
tion of oxygen ions in the YIG samples, and the ratio
ε∞ /ε0 . 

For the YIG crystals with different crystallographic
orientation, regularities in the dependences of compo-
nents ε1, ε∞, and ε0 of the permittivity on the fraction of
the charge carriers k/nk and the concentration of oxy-
gen ions are revealed. The optical permittivity ε∞ of the
samples under study ranges from 3.70 (sample 50") to
4.40 (sample 34 (111)). In samples 34, 3, and 52, the
dominant impurities are Sm ions, which have a mag-
netic moment and a variable valence, and Mn ions,
which are incorporated inhomogeneously into sample 7
with a maximum concentration. The YIG samples that
contain no (sample 51) or very few (sample 43-3) Ba
ions are characterized by small values of ε∞. The mini-
mum values of ε∞ are typical of the samples containing
many passive Ba and V ions (samples 50" and 32-UO)
or Pt4+ ions (sample 50). We believe that, in the case of
high concentrations of Ba2+ ions in the YIG samples
containing no (or very few) Sm, Mn, and V ions with a
variable valence, the charge can be compensated owing
to the incorporation of Fe4+ ions into the tetrahedral
sublattice or the formation of oxygen anion vacancies.

In the YIG samples oriented parallel to the (111)
plane, which is perpendicular to the easy-magnetiza-
tion axis, the band in the reflection spectrum related to
the interaction of radiation with tetrahedral complexes
is 1.2–1.8% wider than for the (110) samples. The
YIG(111) samples demonstrate anomalous dependence
of the splitting ∆ν2 (as well as the splitting ∆ν1) on the
parameter k/nk: with an increase in the argument, the
values of ∆ν2 increase sharply. For other YIG samples
(with (110) and (100) orientations), the splitting ∆ν2
decreases monotonically with an increase in the charge-
carrier concentration.

The linear character of the splitting ∆ν2 differently
manifests itself in the YIG samples, depending on the
ratio of the electronic permittivity ε∞ to ε0(ν2). This
dependence is represented for all YIG samples by two
almost parallel straight lines. The following regularity
is revealed for the YIG samples: the larger the ratio
ε∞/ε0(νi), the smaller value of the splitting ∆νi is
observed in this sample. This holds true for all three
modes: ν1, ν2 , and ν3 . For the mode ν1, the exception is
two samples: 41 (110) and 32-UO, which disobey this
regularity.
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 6      2005
A change in the shape and intensity of the lattice-
reflection spectra and the spectra of the imaginary part
of the permittivity ε2 is found experimentally. The
effect of the concentration gradient of dominant impu-
rities (Pt4+) on the character of the spectra recorded
from two sides of sample 50 is revealed. The differ-
ences in the spectra are due to both the nonuniform dis-
tribution of Pt ions over the sample thickness and their
incorporation into tetrahedral sites, which is observed
in the IR spectral range under study. The amplitudes of
the peaks in the spectra of the imaginary part of permit-
tivity ε2 recorded from the two sides of sample 50
change by more than a factor of 2 in the vicinity of ν2 .
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Abstract—The electron-spin resonance spectra of Mn2+ ions and nuclear-quadrupole resonance spectra of
175Lu are investigated to find out the possibility of implementing the technique of dynamic alignment of nuclei
using LuNbO4 single crystals doped with Mn2+. An estimate for the electron-spin resonance frequency of Mn2+

ions is obtained, and the temperature dependences of the quadrupole coupling constant eQq and the anisotropy
parameter that characterizes the asymmetry of the electric field gradient at 175Lu nuclei are studied. It is dem-
onstrated that LuNbO4 single crystals doped with Mn2+ ions can be used as working media in experiments on
dynamic alignment of nuclei. © 2005 Pleiades Publishing, Inc.
Targets with oriented nuclei are widely used in
nuclear and high-energy physics. Both polarized and
aligned nuclear targets are applied. In the former case,
the dynamic polarization of nuclei is usually imple-
mented. This technique is based on introduction of a
paramagnetic impurity into a system of nuclei (a work-
ing medium). The impurity ions have a free unpaired
electron at one of their outer shells. Since the magnetic
moment of an electron exceeds that of a nucleus by
about three orders of magnitude, a system of electron
spins should have a degree of polarization close to
100% at 0.5 K in a magnetic field of about 2.5 T. Then,
this high degree of polarization attained by the system
of electron spins is transferred to nuclear spins using
microwave radiation, thus increasing their polarization
up to about 100%. In this study, we consider the possi-
bility of implementing the technique of dynamic align-
ment of nuclei, proposed in [1]. In this technique, para-
magnetic impurities are also introduced into a working
medium. The ground state of paramagnetic ions with
the electron spin S > 1/2 is split by the crystal field,
thereby allowing us to observe electron-spin resonance
(ESR) in a zero magnetic field. At sufficiently high ESR
frequencies (exceeding 30 GHz) and at temperatures T
of about 0.5 K, the system of electron spins of para-
magnetic impurities is characterized by nearly 100%
alignment. Then, this high degree of alignment attained
by the system of electron spins is transferred to nuclear
spins using microwave radiation, thus increasing the
alignment of nuclear spins up to about 100%.

This study is a continuation of [2, 3], where lutetium
niobate was proposed as a model substance for a work-
1063-7745/05/5006- $26.00 0974
ing medium in such nuclear-quadrupole resonance
(NQR) experiments. Working media should meet the
following requirements: the nuclei resonating in the
single crystal should have NQR frequencies of several
tens of MHz, whereas the paramagnetic impurity cen-
ters in the working crystal should exhibit (as mentioned
above) a sufficiently high degree of splitting of ESR
levels in the absence of an external magnetic field.

In this paper, we report the ESR data obtained on a
single crystal of manganese-doped lutetium niobate
grown by crucibleless zone melting using a stoichio-
metric mixture of lutetium and niobium oxides with the
addition of 0.5 mol % Mn2O3. The single-crystal sam-
ple for the ESR measurements was 0.1 × 0.1 × 0.5 mm3

in size. X-ray phase analysis performed on a DRON-4
diffractometer showed that the crystals grown belong to
the LuNbO4 phase.

The ESR spectra consisted of separate groups,
determined by the position of the paramagnetic center
in the crystal structure of lutetium niobate. The splitting
of spectral lines within a group allowed us to estimate
the values of ESR frequencies in a zero magnetic field,
which turned out to be about 10 GHz, i.e., of the same
order of magnitude as the frequencies observed for a Cr
impurity in lutetium niobate single crystals [2].

For the experiments with dynamic alignment of
nuclei, we need to know the NQR spectra at tempera-
tures of several Kelvin. The entire NQR spectrum of
175Lu was first measured on ceramic samples of lute-
tium niobate in liquid nitrogen temperature range [4].
The spectrum consists of three NQR lines correspond-
© 2005 Pleiades Publishing, Inc.
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175Lu NQR data for LuNbO4 at different temperatures

T, K

NQR frequencies (linewidths), MHz

η eQq, MHzTransition (|m |  |m + ∆m |)

1/2  3/2* 3/2  5/2 5/2  7/2

12**, 20*** 80.4 69.7 (1.3)** 108.8(1.1)*** 0.715 ± 0.014 536.8 ± 5.0

30 80.4 69.7 (1.2) 108.7 (1.0) 0.715 ± 0.014 536.4 ± 5.0

50 80.2 69.5 (1.0) 108.5 (1.0) 0.715 ± 0.014 535.3 ± 5.0

77 80.6 69.5 (1.2) 108.3 (1.3) 0.720 ± 0.014 535.4 ± 5.0

160 – 68.5 (1.0) – – –

    * The data in this column are calculated from the middle and upper frequencies.
  ** The middle resonance frequency in the first row was measured at 12 K.
*** The upper resonance frequency in the first row was measured at 20 K.

     

               
ing to the single crystallographically inequivalent posi-
tion of lutetium in the niobate structure. The 175Lu
nucleus has the nuclear spin I = 7/2. Hence, any crystal-
lographically nonequivalent position of the 175Lu
nucleus in the crystal structure gives rise to three reso-
nance lines corresponding to the changes in the abso-
lute value of the magnetic quantum number |m | 
|m + ∆m |, where ∆m = 1 for the allowed transitions.

In this paper, we report for the first time the data on
the 175Lu NQR spectra of a lutetium niobate single crys-
tal recorded at temperatures different from those in the
liquid nitrogen temperature range (see table). This sin-
gle crystal with a volume of about 1 cm3 was grown by
us previously and was already used in the ESR experi-
ments reported in [2]. The low-temperature experimen-
tal NQR data were obtained for the middle and upper
NQR lines corresponding to the 3/2  5/2 and
5/2  7/2 transitions, respectively. Using the experi-
mental data for these lines, we calculated the lower fre-
quency corresponding to the 1/2  3/2 transition, the
quadrupole coupling constant eQq, and the anisotropy
parameter characterizing the asymmetry of the electric-
field gradient in the crystal, η = (qxx – qyy)/qzz. All these
results are listed in the table. The NQR data obtained
demonstrate that the NQR frequencies remain nearly
constant below 50 K. This result indicates the absence
of any significant anharmonicity at low temperatures
and instabilities of the crystal structure with respect to
phase transformations.

Thus, sufficiently high (>10 GHz) ESR frequencies
in a zero magnetic field and high (about 100 MHz) and
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nearly temperature-independent NQR frequencies for
175Lu demonstrate the possibility of using LuNbO4

crystals doped with Mn2+ ions as a working medium in
experiments with dynamic alignment of nuclei.
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Abstract—The range of possible combinations of the components of the electronic-polarizability tensors of
oxygen and iodine ions and the effective charges of these ions is established on the basis of the experimental
study of the parameters of the electric-field gradient tensor at 7Li nuclei in an α-LiIO3 crystal and the calculation
of the electric-field gradient from the classical electrostatic model. The I–O bonds in α-LiIO3 are shown to be
mixed ionic-covalent bonds with low ionicity. Spontaneous polarization of the crystal is estimated. © 2005 Ple-
iades Publishing, Inc.
INTRODUCTION

The hexagonal modification of lithium iodate
(α-LiIO3) shows a specific set of electrical, thermal,
and optical properties, which makes it possible to use
α-LiIO3 crystals in acoustoelectronic and nonlinear
optical devices [1]. A peculiarity of this crystal is the
high ionic conductivity along the polar axis at T =
293 K, which results in a fast internal screening of the
spontaneous polarization and makes it impossible to
measure this characteristic exactly [2]. It has been
found that high ionic conductivity greatly affects not
only electrical but also some optical properties of lith-
ium iodate [3]. In view of these circumstances, α-LiIO3

is an interesting object for the computer simulation of
its physical properties and the specific features of its
structure.

Computer simulation of the structure and specific
features of various compounds, based on either quan-
tum-mechanical [4] or electrostatic [5] approaches, has
become widespread in recent years. The simulation
based on the electrostatic approach requires complete
information about the electrical characteristics of the
ions entering into the composition of the crystal under
study and the parameters of the ion–ion repulsion
potential. In the case of α-LiIO3, this information is
contradictory and incomplete [6].

The objective of this study is to establish the range
of possible effective charges of ions in α-LiIO3 crystals
and their dipole electronic polarizabilities with consid-
eration of the anisotropy of the electronic polarizability
of iodine ions. The criteria for testing the results were
(i) agreement between the experimental (found by the
NMR method) and calculated principal components of
the electric-field gradient (EFG) tensor Vzz, at the 7Li
nuclei [7] and (ii) analysis of the stability of Li+ ions.
1063-7745/05/5006- $26.00 0976
CALCULATION OF THE ELECTRONIC 
POLARIZABILITY OF IONS IN α-LiIO3

To calculate the electronic polarizabilities of ions in
an α-LiIO3 crystal, we used the method based on the
analysis of the refractive indices of optically uniaxial
crystals, which makes it possible to take into account
the anisotropy of the electronic polarizability of ions
[8]. This method applies the modified Lorentz–Lorenz
equation

where nk is the refractive index of the crystal for the
light wave with the electric field oriented in the k direc-
tion, (αeff)ik is the effective electronic polarizability of
an ion of type i, and S is the number of structurally non-
equivalent ions in the unit cell of the crystal. When the
vector E is parallel to the x axis of the crystal, the
expression for (αeff)ix has the form

(1)

where (αll)i are the components of the electronic-polar-
izability tensor of an ion of type i in the system of
eigenaxes and θlfj are the angles between the lth princi-
pal axis of the electronic-polarizability tensor and the
direction f, where f = x, y, z. The structural sums (Tijx)x,

nk
2

1–

nk
2

2+
--------------

1
3ε0
-------- Ni α eff( )ik,

i 1=

S

∑=

α eff( )ix α ll( )i θlxi 1 Tijx( )x

j 1=

S

∑+cos
2

l 1=

3

∑=

+ α ll( )i θlxi θlyi Tijx( )y

j 1=

S

∑coscos
l 1=

3

∑

+ α ll( )i θlxi θlzi T ijx( )z,
j 1=

S

∑coscos
l 1=

3

∑

© 2005 Pleiades Publishing, Inc.
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(Tijx)y, and (Tijx)z are defined as

(2)

where g = x, y, z; Rijm is the distance between a selected
i-type ion and the mth j-type ion; Gijm and Fijm  are the
projections of the Rijm vector on the g and f directions;
and δgf is the Kronecker delta. A similar expression for
(αeff)iz is obtained from (1) by the index permutation
(x  z).

As for LiNbO3, the electronic polarizability was
calculated within the approximation of independent ion
polarizability and within the bond-polarizability
approximation [8]. In the first case, the induced dipole
electric moments of the ions are considered to be inde-
pendent, which is correct for purely ionic bonding.
When the bond-polarizability approximation is used,
the electronic polarizability of short bonds (I–O) is con-
sidered. This polarizability is the sum of the indepen-
dently determined electronic polarizabilities of I and O
ions. During calculation of the structural sums (2), the
dipole interaction of ions in the short bonds I–O is
neglected.

In the calculations, we used the data on the α-LiIO3
structure obtained in [9] and the following values of the
ordinary (nÓ) and extraordinary (ne) refractive indices
of the crystal: nÓ = 1.860 and ne = 1.719 (λ = 1060 nm)
[10]. The electronic polarizability of Li+ ions (αLi) was
taken to be 0.032 × 10–24 cm3.

The first attempt to determine the range of possible
values of effective charges of the ions and their elec-
tronic polarizabilities in lithium iodate, performed
under the assumption of isotropic electronic polariz-
ability of I ions [6], was unsuccessful. Calculation of
the EFG at 7Li nuclei using the results [6] showed that,
for all sets of the electrical characteristics of the ions,
the value of the principal component of the EFG tensor
Vzz is several times larger than the experimental value.
A possible reason for this difference is the ionic–cova-
lent character of the bond between oxygen and iodine
ions, which leads to the anisotropy of the electronic
polarizability of iodine ions owing to the developed
electron shell of the I ion.

On the basis of the symmetry of the  group
(Fig. 1), one can assume that the principal axis “3” of
the EP tensor of é2– ions is directed along the I–O
bond, while the principal axis of the EP tensor of I ions
is directed along the polar axis c of the crystal. The cor-
responding EP tensors were assumed to be axially sym-
metric. The sets of possible combinations of the princi-
pal components of the EP tensors calculated in the

Tijx( )g
1

4πε0
----------- α ll( ) j θlxj θlfjcoscos

f

∑
l 3=

3

∑=

×
3GijmFijm δgf Rijm

2
–

Rijm
5

----------------------------------------------
m 1=

M j

∑ ,

     

IO3
–
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bond-polarizability approximation for oxygen and
iodine ions are listed in the table. Further analysis
showed that the electronic polarizabilities of ions calcu-
lated in the independent-ion polarizability approxima-
tion do not satisfy simultaneously the conditions for the
stability of Li+ ions and the agreement between the cal-
culated and experimental values of the EFG tensor at
7Li nuclei.

EXPERIMENTAL STUDY 
OF THE ELECTRIC-FIELD GRADIENT AT 7Li 

NUCLEI IN α-LiIO3

Experimental NMR study of 7Li (with spin I = 3/2)
in a nominally pure α-LiIO3 single crystal was per-
formed on a continuous NMR spectrometer with an
autodyne detector. It is known that the NMR spectrum
of 7Li in α-LiIO3 has a complex structure [11]. There-
fore, the emphasis was on the study of the orientation
dependence of the quadrupole splitting of the NMR
spectrum, which generally yields unambiguous infor-
mation about the EFG tensor at the nuclei under study.
The 7Li NMR spectrum at θ = 0° (θ is the angle between
the crystallographic axis c and an external magnetic
field B0) is shown in Fig. 2.

The fine structure of the spectrum may result from
the existence of several local minima of the potential
energy of the Li+ ion in the LiO6 octahedron, which are
related to the symmetry axis c of the crystal or located
along this axis. These minima are occupied by Li+ ions
with different probabilities. If the potential barrier is
not high, the disordering of Li+ ions will be dynamical
[12] and the NMR spectrum will correspond to the axial
symmetry of the EFG tensor. As a result, the NMR
spectrum will be a superposition of several quadrupole
triplets with different splittings, obeying the (3cos2θ – 1)
law. This is precisely what is observed experimentally.

Ps

a

c

IO3
–

IO3
–

IO3
–

Li+

Li+

Li+ Li+

Li+

Li+

Fig. 1. Orientation of  groups in the α-LiIO3 structure

(projection on the (101) plane).

IO3
–
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Relationship between the principal components of the electronic-polarizability tensors of O2– ions, α11 and α33, and I ions,
αxx(I) and αzz(I). The data are given in 10–24 cm3

α11(I)
α33(I)

0.125 0.187 0.25 0.375 0.5 0.75 1.00 1.25 1.5

0.125 2.100 2.063 2.025 1.955 1.888

2.500 2.528 2.568 2.642 2.712

0.187 2.110 2.073 2.035 1.963 1.895

2.441 2.481 2.521 2.599 2.670

0.250 2.123 2.084 2.045 1.972 1.903

2.388 2.430 2.472 2.551 2.624

0.375 2.149 2.108 2.068 1.991 1.918 1.783 1.657

2.280 2.327 2.371 2.455 2.536 2.683 2.819

0.50 2.180 2.136 2.094 2.013 1.937 1.797 1.667 1.546 1.434

2.163 2.215 2.263 2.352 2.440 2.596 2.741 2.873 2.996

0.75 2.261 2.210 2.160 2.068 1.984 1.830 1.691 1.563 1.451

1.895 1.957 2.019 2.128 2.227 2.409 2.570 2.716 2.827

1.00 2.395 2.324 2.260 2.148 2.048 1.874 1.722 1.587 1.461

1.537 1.628 1.712 1.852 1.978 2.196 2.383 2.547 2.697

1.25 2.145 1.935 1.764 1.615 1.482

1.669 1.947 2.168 2.360 2.528

1.5 2.028 1.822 1.655 1.509

1.633 1.917 2.145 2.340

1.75 2.222 1.913 1.711 1.546

1.133 1.595 1.894 2.125

2.00 2.097 1.798 1.600

1.100 1.569 1.873

* Top and bottom values in the table cells correspond to α11 and α33, respectively.
If this model is taken as a basis, one can determine
the principal value of the EFG tensor Vzz at 7Li nuclei
from the maximum splitting ∆ν((51 ± 1) kHz) of the
quadrupole satellites at θ = 0°: 

where h is Planck’s constant, eQ is the quadrupole
moment of 7Li nuclei, (1 – γ∞) is the antiscreening fac-
tor, and the z axis coincides with the c axis of the crys-
tal. Using the values eQ = 0.036 |e | × 10–24 cm2 [13] and
(1 – γ∞) = 0.740 [14], we find that |Vzz| = (0.784 ±
0.016) × 1020 V/m2.

Vzz ∆νh( ) eQ( ) 1–
1 γ∞–( ) 1–

,=
C

CALCULATION OF THE ELECTRIC-FIELD 
GRADIENT AT 7Li NUCLEI AND ANALYSIS 
OF THE STABILITY OF Li+ IONS IN α-LiIO3

In the case of the mixed ionic–covalent character of
the I–O bond, the effective charges of iodine and oxy-
gen ions differ from their formal values. The effective
charge of Li+ ions was taken to be 0.98|e | (|e | is the
absolute value of the electron charge), while that of the
iodine ion (qI) was varied in the range (1.0–4.0)|e | pro-
vided that the electroneutrality of the unit cell is main-
tained. The ionic contribution to the local electric field
and the electric-field gradient at the ions of the α-LiIO3

crystal lattice were calculated by the transient-region
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 6      2005
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method [15]; the dipole contribution, by the standard
iterative procedure.

It was found that, at qI > 1.6|e|, the calculated values
of Vzz are much higher than the experimental ones (at
reasonable values of the electronic polarizability of
iodine ions). Therefore, further analysis was carried out
for 1.00 |e | ≤ qI ≤ 1.60 |e |. The calculated values of EFG
at 7Li nuclei for one of the sets of effective charges are
shown in Fig. 3.

Using these results, one can select the sets of the
electronic polarizabilities of iodine and oxygen ions for
which the calculated and experimental values of the
EFG at 7Li nuclei are equal. The data obtained can be
represented as the dependence of one component of the
EP tensor of iodine ions (αxx) on qI at fixed values of
αzz. These dependences are shown in Fig. 4.

For further analysis of these results, it is necessary
to take into consideration some fundamental features of
the anisotropy of the electronic polarizability of the
ions forming mixed ionic–covalent bonds. On the basis
of the configuration of the (IO3)– complex, we may con-
clude that, by analogy with the LiNbO3 crystal [8], the
relation α33 > α11 for the components of the EP tensor
of oxygen ions must hold true. Taking into account the
deformation of the outer electron shells of iodine ions,
which is caused by their overlap with the outer electron
shells of oxygen ions, we may suggest that the condi-
tion αzz ≥ αxx for the principal components of the EP
tensor of iodine ions must be satisfied. The region in
which this condition is met is located in Fig. 4 below
the dotted line. Note that, in the same region (see table),
the condition α33 ≥ α11 is also satisfied.

As can be seen from Fig. 4, the region of the combi-
nations of the effective charges of the ions and the sets
of the electric polarizabilities of oxygen and iodine
ions, in which the calculated and experimentally found

1 mT

Fig. 2. NMR spectrum of 7Li in an undoped α-LiIO3 crystal
at θ = 0°.
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values of Vzz at 7Li nuclei are in agreement, corresponds
to a low (lower than 1.25 |e |) effective charge of the
iodine ions. This is consistent with the essentially cova-
lent character of the I–O bond and was initially
assumed in the model used.

The results obtained were additionally verified by
considering the stability of the Li+ ion in the LiO6 octa-
hedron. The balance equation for the forces acting on
the Li+ ion has the form

(3)

where Ez(Li) is the z component of the field Eloc at the
Li+ ion, pz(Li) is the z component of its dipole moment,
and Fz(Li) is the resultant repulsive force determined by
the distortion and overlap of the electron shells of the

qLiEz Li( ) pz Li( )Vzz Li( ) Fz Li( )+ + 0,=

1.0

0.8

0.6

0.5 1.0 1.5 2.0

αzz = 0.375
0.50

0.75
1.00

1.25
1.50

Vzz, 1020 W/m2

αxx, 10–24 cm3

Fig. 3. Dependences of the principal component of the ten-
sor of EFG at 7Li nuclei in an α-LiIO3 crystal on αxx at qI  =
1.15 |e | for some values of αzz (shown in the figure). The
dotted line shows the experimental value of Vzz.

1.0

2.0

0.5

1.0 1.2 1.6

αxx, 10–24 cm3

1.4

1.5

αzz =1.25

1.00

0.75

0.50

0.375

qI, |e|

0

Fig. 4. Dependences of αxx on qI for some values of αzz,
provided that the experimental and calculated values of Vzz

at 7Li nuclei are equivalent. The dotted line connects the
points with αxx = αzz.
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ions in the LiO6 octahedron. The repulsive force Fr

between the Li+ and O2– ions was assumed to have the
Born-Mayer form:

(4)

where A and ρ are the parameters of the repulsive
potential and r is the distance between the centers of the
outer electron shells of the ions. For evaluation, we
used the following parameters of the repulsive poten-
tial: A = 816 eV and ρ = 26.0 pm, which are character-
istic of the Li+–O2– interaction in the LiNbO3 crystal
[16]. It was found that, for the set of the electrical
parameters of the ions satisfying the equivalence of the
parameters of the EFG tensor at 7Li nuclei, condition
(3) is satisfied with an error no larger than 15% of the
maximal term.

ESTIMATION OF THE SPONTANEOUS 
POLARIZATION OF α-LiIO3 CRYSTALS

To determine the relationship between the possible
combinations of the sets of effective charges and elec-
tronic polarizibilities of ions in an α-LiIO3 crystal, we
only used three experimentally determined parameters:
the ordinary and extraordinary refractive indices and
the EFG at 7Li nuclei. If the spontaneous polarization Ps

of this crystal were known, one would be able to narrow
the set of possible combinations of effective charges
and electric polarizabilities of the ions additionally [7].
Discussion on the value of Ps for α-LiIO3 crystals has
been underway for a long time already. Various esti-
mates of Ps are in the range (0.17–1.2) C/m2 [17, 18,
19]. Using the data obtained in this study, it is easy to
estimate the range of the values of Ps corresponding to
the sets of electronic polarizabilities and qeff of the ions
shown in Fig. 4. The calculation was performed by the

Fr Aρ 1–
rρ 1–

–( ),exp–=

0.20

0.18

0.16

1.0 1.2 1.4 1.6

αzz = 1.50

0.75

1.00

1.25

Ps, K/m2

qI, |e|

0.50

0.375

Fig. 5. Dependences of the spontaneous polarization of an
α-LiIO3 crystal on the effective charge of I ions for different
sets of the components of the electronic-polarizability ten-
sors of oxygen and iodine ions.
C

standard formula [20]

where V is the unit-cell volume, N is the number of ions
in the unit cell, qi is the effective charge of the ith ion,
di is the displacement of the ith ion along the polar axis
with respect to the nonpolar position, and pi is the pro-
jection of the induced dipole moment of the ith ion on
the polar axis.

The calculation results are shown in Fig. 5. It is
worth noting that the ionic and dipole contributions to
Ps have opposite signs, the dipole contribution being
dominant. As can be seen from Fig. 5, the calculated
values of Ps are in the range 0.14–0.20 C/m2. However,
with regard to the analysis of possible relations
between αxx and αzz (see above), this range must be nar-
rowed to 0.14–0.17 C/m2.

CONCLUSIONS

One of the main results of this study is the calcula-
tion of the sets of the components of the tensors of
dipole electronic polarizability of oxygen ions (α11 and
α33) and iodine ions (αzz and  αxx) that are responsible
for the optical properties of α-LiIO3 crystals. On the
basis of the experimental NMR study of 7Li in an
undoped α-LiIO3 single crystal, we refined the value of
the principal component of the EFG tensor at 7Li nuclei
and calculated the EFG from the structural data using
the sets of the components of the EP tensors of oxygen
and iodine ions. Comparison of the calculated and
experimental data revealed that the effective charge of
iodine ions is low (lower than 1.25 |e|) and, thus, the I–
O bond is essentially covalent.

The results obtained can be used, in particular, in
computer simulation of the crystal potential relief and
analysis of the dynamics of 7Li ions, as well as in study
of some optical properties of α-LiIO3 single crystals.
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Abstract—The structure of single crystals of the double lithium–yttrium borate Li6YB3O9 is investigated. It is
shown that the cleavage planes are parallel to the layers that are located at the largest distance from each other
and characterized by the weakest electrostatic interaction. Thus, cleavage of a crystal occurs through the longest
Li–O bonds in the lithium five-vertex polyhedra and the bridge Y–O bonds. It is ascertained that slip in
Li6YB3O9 occurs in the planes that are most close packed with respect to oxygen ions, while the reason for the

absence of plastic deformation at room temperature is that ( ) B triangles impede the motion of ( ) B
triangles. © 2005 Pleiades Publishing, Inc.
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Crystals of complex borates of alkali and rare earth
metals, which are promising scintillation materials for
detection of thermal neutrons, have been described pre-
viously [1]. However, these crystals are characterized
by high sensitivity to gamma radiation. Since neutron
diffraction investigations are performed near a reactor
under the conditions of intense background gamma
radiation, the quality of neutron diffraction images is
deteriorated. Single crystals of the double alkali–rare-
earth borate, Li6YB3O9 (LYBO), were successfully
grown in [2]. These crystals are free of the above-men-
tioned drawback since they have a lower density and an
almost twice lower atomic weight in comparison with
the known alkali–rare-earth borates and are character-
ized by a lower sensitivity to gamma radiation. The
optical and scintillation parameters of this crystal have
been studied in detail [1–3]. However, the existing data
on its crystallographic characteristics and real structure
are insufficient.

In this study, we investigated the internal structure
of a LYBO single crystal grown by the Czochralski
method and considered the relationship between its
crystallographic features with such characteristics as
cleavage and slip.

Crystals of lithium–yttrium borate are isostructural
to the crystals of the double alkali–rare-earth borates
that are being studied at present: lithium–ytterbium
(Li6YbB3O9), lithium–holmium (Li6HoB3O9), and lith-
ium–gadolinium (Li6GdB3O9) borates [4–7].

X-ray diffraction study of the LYBO crystal was
performed on a Siemens D500 powder diffractometer
(CuKα radiation, Ni filter, λ = 1.540629 Å, 2θ/θ scan in
the range 3° < 2θ < 120°). The basic crystallographic
data for Li6YB3O9 are Mr = 306.98, T = 290(2) K, mono-
clinic system, sp. gr. P 21/c, a = 7.1819(4) Å, b =
16.4247(10) Å, c = 6.6419(3) Å, β = 105.286(4)°, V =
757.77(7) Å3, Z = 4, F(000) = 576, dcalcd = 2.698 g/cm3,
1063-7745/05/5006- $26.00 0982
and µ(CuKα) = 11.218 mm–1. Rietveld refinement of
the unit-cell parameters was performed by the FullProf
program [8–10] using the model structure proposed in
[11]. Structural analysis was carried out using the PLA-
TON program [12]. The illustrations were made in the
Ball&Stick program [13, 14].

The specificity of the crystal structure of the double
lithium–yttrium borate LYBO, as well as the known
double alkali–rare-earth borates, is the complex struc-
ture of the unit cell, which contains four formula units.
This circumstance suggests a large number of different
ways of formation of interatomic bonds. Yttrium atoms
are located in eight-vertex polyhedra. Lithium atoms
occupy six independent positions, four of which are
surrounded by five oxygen atoms and two are coordi-
nated by four oxygen atoms. Yttrium and lithium poly-
hedra are linked into a three-dimensional framework by
three boron triangles occupying independent positions.

Two thirds of B triangles are parallel to the ( ) plane

and one third are parallel to the ( ) plane.
The interatomic Y–O distances in eight-vertex poly-

hedra range from 2.306 to 2.527 Å. The interatomic
distances in Li tetrahedra and Li five-vertex polyhedra
range within 1.865–2.133 Å and 1.892–2.562 Å,
respectively. The average value of the B–O bond
lengths in B triangles is 1.375 Å.

Subjected to an impact, crystals were cleaved along

the atomic layers parallel to the ( ), (010), and (121)
planes. Observation of the cleavage surfaces with an
optical microscope revealed portions with almost per-
fect cleavage for all three planes. As is known, the
cleavage phenomenon is related to the specific features
of the internal structure of crystals: the cleavage planes
are parallel to the most weakly bound atomic layers.
Analysis of the LYBO structure showed that neighbor-
ing atoms in the layers parallel to the cleavage planes

102

301

102
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are bound by the longest Li–O bonds in five-vertex Li
polyhedra: Li(3)–O (2.268 Å) and Li(4)–O (2.418 Å).
In the case of each of the three cleavage planes, cleav-
age occurs along the atomic layers spaced from each
other at anomalously large distances.

Each Y atom is surrounded by eight O atoms from
five B triangles. The six coordination sites of yttrium
are occupied by three B triangles, in each of which two
O atoms are bound to the Y ion. The remaining two of
eight positions are occupied by B triangles, in which
the O atom serves as a bridge between the two nearest
Y ions. These bonds between yttrium and bridge oxy-
gen are perpendicular to the atomic layers parallel to
the cleavage planes. Cleavage occurs specifically
through these bridge bonds, being facilitated by the
electrostatic repulsion of two similarly charged Y ions.

Isostructural Li6GdB3O9 single crystals are charac-
terized by a similar cleavage system. The nature of
cleavage in these crystals was studied in detail in [7]; it
is the same as in the crystal under study.

As in the case of cleavage, slip of separate regions
of a crystal with respect to each other without its break
also occurs in the planes of most weakly bound layers.
Such atomic layers are generally most closely packed.
It is known that the plastic deformation of a crystal can
be investigated by observing the dislocation motion
[15–17].

The dislocation structure of the crystals studied was
revealed by etching them in a 10% HNO3 solution for
1.5 min. After the etching, contrast etch pits, pointed at
the bottom in the form of parallelograms were observed
in the (010) plane. The geometry of the etch pits com-
pletely corresponded to the crystallographic character-
istics of the monoclinic (010) plane. In the case of iso-
structural Li6GdB3O9 crystals, etch pits in the mono-
clinic plane had the same morphology and their
correspondence with dislocations was established by
comparison of the etching patterns in paired cleaved
faces [18]. Therefore, we can state that the etching fig-
ures obtained in the monoclinic plane of the LYBO sin-
gle crystal corresponded to dislocations.

The figures in the etching patterns form polygonal
boundaries in the form of dislocation pile-ups,
extended along the [100], [001], and [103] directions
(Fig. 1). The etch pits in the rows parallel to the [100]
and [001] directions are symmetric, whereas the apexes
of the etch pits located in the rows aligned along the
[103] direction are off-centered. These irregular etch pit
rows may result from the dislocation slip in the (001)
and (100) planes, which are perpendicular to the face

under consideration and in the ( ) plane, which is
inclined to the monoclinic plane. The inclined face

( ) crosses the monoclinic plane in such a way as the

face ( ) perpendicular to the (010) plane in the [103]
direction.

331

331

301
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Etching figures can be used to trace the motion of
dislocations in a plastically deformed region. It is
known that selective etching near an indentation on a
crystal face reveals a characteristic etching rosette,
which corresponds to the traces of dislocations propa-
gating in the slip planes to the crystal surface [15, 16].
After indentation of the LYBO crystal at room temper-
ature and subsequent etching, characteristic dislocation
rosettes were not observed and only the indenter
impression was etched by the etchant. The dislocations
formed under the action of a concentrated load, are
localized only in a small volume near the indenter
impression and are not revealed by etching. The
absence of plastic deformation at room temperature
seems to be a characteristic feature of double borates,
whose structure includes the BO3 group with covalent
bonds. Indeed, it is known that in the crystal lattice of
compounds with directed bonds, the Peierls force,
which must be overcome to implement dislocation slip,
is high and, hence, the dislocation mobility is low. To
make it possible for dislocations to overcome high
Peierls barriers, it is necessary to anneal the crystal to
relax elastic stress near the indenter impression. At an
annealing temperature of 700°C, dislocations begin to
move in the slip planes. As a result, subsequent etching
reveals dislocation regions in the form of rows of etch-
ing figures, forming rosette wings. The wings of the
rosettes formed in the indentation are parallel to the
[100], [001], and [103] directions and coincide with the
orientation of polygonal boundaries. The above direc-
tions correspond to the intersections of the (001), (100),

and ( ) planes with the monoclinic plane. Since the
shape of the rosette (Fig. 2) is determined only by the
symmetry of the slip planes in the crystal, we can say
that the slip system in LYBO single crystals is as fol-

lows: {100}〈001〉, {001}〈100〉, and { }〈103〉.
The etching-rosette wings have the same length; i.e.,

the mean free path of dislocations near the indentation
is the same in all three directions. Therefore, the dislo-
cation mobilities are the same in all slip planes. We can
conclude that a preferred slip direction is absent in the
crystal under study. The electrostatic attraction between
the atomic layers parallel to the three cleavage planes is

331

331

100 µm

[100]

[103]
[001]

Fig. 1. Rows of etching figures in a Li6YB3O9 crystal.
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the same: at translation, similarly charged Li and Y
atoms coincide with each other every second period.
Therefore, the motion of one part of the crystal with
respect to the other under the action of a concentrated
load in the same in all slip directions.

The dislocations, whose motion leads to plastic
deformation, move in strictly certain crystallographic
planes and only in some crystallographic directions,
depending on the internal structure of the crystal. The
slip parameters are determined by the character of
interatomic bonds and the positions of atoms in the
crystal lattice. Since the largest ion in the LYBO struc-
ture is the oxygen ion, whose ionic radius is 1.36 Å (for

100 µm

[001]

[103]

[100]

Fig. 2. Etching rosette at an indentation on the (010) face of
a Li6YB3O9 single crystal.
C

comparison,  = 0.68 Å,  = 0.97 Å, and  =
0.20 Å) [17], we can suggest that it is the translation of
oxygen ions that determines the slip system in the crys-
tal under consideration. Figure 3 shows that the (001),

(100), and ( ) planes in LYBO are most close

R
Li

+ R
Y

3+ R
B

3+

331

(331)
–

x

y

z

Fig. 3. Structure of Li6YB3O9 along the ( ) plane: ( )

Li, ( ) Y, ( ) B, and ( ) O.

331
x

z

y

Fig. 4. Structure of Li6YB3O9. The bonds between Li and Y atoms are not shown.
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packed with respect to oxygen ions, and the plastic
deformation of this crystal is specifically the result of
the displacement of atomic layers parallel to these
planes with respect to each other. The highest reticular
density of oxygen atoms is also observed in the [100],
[001], and [103] directions (Fig. 4).

The distinctive feature of LYBO crystals is that the
plastic deformation occurs in them only during high-
temperature annealing. At room temperature, the slip of
atomic layers can be impeded by B triangles, whose
rigid directed bonds allow for the motion of a B triangle
only as an inseparable undistorted unit.

Figure 5 shows the location of B triangles in the

atomic layers parallel to the ( ) slip plane. The oxy-

gen atoms from the B triangles parallel to the ( )
face of one of the layers are located in voids between
the oxygen atoms belonging to the B triangles parallel

to the ( ) face of the neighboring layer. Therefore,

during the slip in the ( ) plane, the ( ) B triangles

of one layer will impede the motion of the ( ) B tri-
angles of the neighboring layer and vice versa. Thus,
the BO3 groups from neighboring atomic layers,

located in different crystallographic planes, i.e. ( )

and ( ), impede each other’s motion and, as a result,
hinder slip in the crystal. A similar situation is observed

331

102

301

331 301

102

301

102

(331)
–

(301)
–

(102)
–

x y

z

Fig. 5. Fragment of the crystal structure of Li6YB3O9 show-
ing the location of BO3 groups in neighboring atomic layers

parallel to the ( ) and ( ) planes. Lithium and
yttrium atoms are not shown. For clearness, the radii of O
atoms are diminished.

102 301
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for the atomic layers parallel to the (100) and (001)
planes. Thus, the slip of one part of an LYBO crystal
with respect to another part cannot occur without sig-
nificant distortion of B triangles, which is possible only
at high temperatures.
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Abstract—The basic equations describing the conditions for reflection and refraction of bulk acoustic wave at
the interface between acentric crystals subjected to the action of a uniform external electric field are reported.
Numerical analysis of the effect of this field on the reflection and refraction anisotropy of bulk acoustic waves
at the crystal/vacuum and piezoelectric/elastic-isotropic-medium interfaces is performed. © 2005 Pleiades
Publishing, Inc.
INTRODUCTION

The theory of reflection and refraction of bulk
acoustic waves (BAWs) at an interface between two
nonpiezoelectric crystals was reported in [1, 2]. This
theory was used, for example, to design polygonal
ultrasonic delay lines. Further development of this the-
ory is related to the consideration of the specific fea-
tures of wave propagation in piezoelectrics [3]. The the-
ory of propagation of bulk acoustic waves in piezoelec-
tric crystals subjected to the action of a external electric
field and stress was described in detail in [4, 5]. The
effect of a uniform external electric field E on the prop-
agation of surface acoustic waves (SAWs) in piezoelec-
tric crystals was considered in [6]. In the first-order per-
turbation theory, the effect of E is determined by
changes in the conditions for BAW and SAW propaga-
tion, which are related to the nonlinearity of elastic,
piezoelectric, and dielectric properties and the electros-
triction. Therefore, the effect of E can be calculated if
the material constants of the nonlinear electromechani-
cal properties are known. By date, complete sets of the
coefficients of the nonlinear electromechanical proper-
ties have been investigated for some piezoelectric crys-
tals (lithium niobate, crystals with sillenite structure,
and langasite) [5, 7, 8].

REFLECTION AND REFRACTION OF ELASTIC 
WAVES AT THE INTERFACE 

BETWEEN PIEZOELECTRIC CRYSTALS 
UNDER THE ACTION OF A DC ELECTRIC FIELD

Using the results of [5], we will derive necessary
equations describing the effect of E on the conditions
1063-7745/05/5006- $26.00 0986
for the BAW reflection and refraction at an interface
between two media. In the initial coordinate system, the
wave equations for waves with small amplitudes in
homogeneously deformed acentric media and the equa-
tion of electrostatics have the form [5]

(1)

where ρ0 is the density of a unstrained crystal (initial

state),  is the vector of dynamic elastic displace-
ments (hereinafter, the sign ~ denotes the time-depen-
dent quantities), τAB is the tensor of thermodynamic
stresses, and DM is the electric-displacement vector. A
comma after an index denotes a spatial derivative and
two periods above a variable denote the second deriva-
tive with respect to time. Latin coordinate indices run
from 1 to 3. In what follows, summation over double
indices is implied.

When the effect of E is taken into account, the state
equation for the dynamic components of thermody-
namic stresses and the electric displacement have the
form

(2)

where ηCD is the strain tensor and the effective elastic,
piezoelectric, and dielectric constants are determined

ρ0Ũ
˙̇

A τ̃ AB B, ,=

D̃M M, 0,=

ŨA

τ̃ AB CABCD
* η̃CD eNAB* ẼN ,–=

D̃N eNAB* η̃ AB εNM* ẼM,+=
© 2005 Pleiades Publishing, Inc.
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by the relations

(3)

Here, dNQR is the tensor of “linear” piezoelectric coeffi-

cients; , eNABKL, , and HNPAB are the nonlin-
ear elastic, piezoelectric, dielectric, and electrostriction
material tensors, respectively; MN is the unit vector of
the external electric field, and E is the magnitude of the
external electric field.

To consider the problem of the BAW reflection and
refraction at an interface of two acentric media, let us
choose the orthogonal coordinate system with the 

axis directed normally to the interface and the  axis
lying in the interface plane. It is assumed that an elastic
wave is incident on the interface from the crystal occu-
pying the half-space  < 0. Solutions to the wave
equation will be sought for in the form of plane waves.
It is convenient to consider the conditions for the wave
reflection and refraction using the expressions for a
plane elastic harmonic wave and a wave of electrical
potential, written in terms of the refraction vectors m =
N/v  (N is the unit vector of the wave normal, and v  is
the phase velocity of a BAW):

(4)

where αC and α4 are the amplitudes of the elastic dis-
placement and electrical potential, respectively.

Substituting expressions (4) into (1) and leaving
only the terms linear in E, we obtain the system of four
homogeneous equations [6]:

(5)

where the components of the modified Green–Christof-
fel tensor have the form

(6)

The determinant of system (5) is a polynomial of
power 8 with respect to the component m3 of the refrac-
tion vectors of the reflected and refracted BAWs at a

CABKL
* CABKL

E
CABKLQR

E
dNQR eNABKL–( )EMN ,+=

eNAB* eNAB eNABKLdPKL HNPAB+( )EMP,+=

εNM* εNM
η

HNMABdPAB εNMP
η

+( )EMP.+=

CABKLQR
E εNMP

η

X3
'

X1
'

X3
'

ŨC αC iω t m jx j–( )[ ] ,exp=

ϕ̃ α4 iω t m jx j–( )[ ] ,exp=

Γ11 ρ0– Γ12 Γ13 Γ14

Γ21 Γ22 ρ0– Γ23 Γ24

Γ31 Γ32 Γ33 ρ0– Γ34

Γ41 Γ42 Γ43 Γ44 
 
 
 
 
 
  α1

α2

α3

α4 
 
 
 
 
 
 

0,=

Γ BC CABCD
* 2CABFD

E
dJFCMJE+( )mAmD,=

Γ B4 eIAB* mImA,=

Γ4B Γ B4 2ePFDdJDCmPmFMJE,+=

Γ44 εKL
η

mKmL.–=
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given direction of an incident elastic wave. Generally,
the values of m3 may be complex due to the effect of
total internal reflection [2]. In this case, the values of m3
should have a negative imaginary part for the crystal
occupying the lower half-space  < 0 (reflected
waves), and a positive imaginary part for the crystal in
the upper half-space  > 0 (refracted waves). As a
result, the condition for the decay of reflected and
refracted waves in the bulk of the corresponding crys-
tals will be satisfied.

Determination of the refraction vectors m makes it
possible to obtain the values of the angles of reflection
and refraction of BAWs and the corresponding phase
velocities. However, the most important energy charac-
teristics of reflection and refraction are the amplitude
coefficients of the reflected and refracted waves, which
characterize the distribution of the incident-wave
energy between the reflected and refracted waves. To
determine these coefficients, the boundary conditions
should be formulated. In the case of a rigid acoustic
contact between two crystals, the boundary conditions
for the thermodynamic-stress tensor are reduced to the
requirement for the continuity of the normal compo-
nents of the stress tensors of reflected and refracted
waves and the continuity of the elastic-displacement
vectors [2]:

(7)

where nJ is the normal unit vector on the interface. Tak-
ing into account the piezoelectric properties of the crys-
tals, we have to formulate the boundary conditions for
the electric-field characteristics. The conditions for the
continuity of the tangential components of the electric
field vector at the interface and the continuity of the
normal components of the electric-displacement vector
in the quasi-static limit can be written as

(8)

Substituting solutions (4) into Eqs. (7) and (8) and
leaving only the terms linear in E, we obtain finally a
system of linear equations with respect to the eight
amplitude coefficients of the reflected and refracted
waves:

(9)

X3
'

X3
'

τ IJ
1( )

nJ τ IJ
2( )

nJ ,=

U 1( ) U 2( )
,=

ϕ 1( ) ϕ 2( )
,=

D 1( ) n,( ) D 2( ) n,( ).=

bµGµB
1( )

aµGµB
2( )

–( )
µ 1=

4

∑ G0B
2( )

,=

ŨB
µ( )

bµ ŨB
µ( )

aµ–( )
µ 1=

4

∑ ŨB
0
,=

bµDµ
1( )

aµDµ
2( )

–( )
µ 1=

4

∑ D0
2( )

,=
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where aµ are the amplitude reflection coefficients and
bµ are the amplitudes of the refractive indices. In addi-
tion, the following designations are used:

(10)

In (9) and (10), the superscript 1 corresponds to the
crystal occupying the half-space  > 0, the superscript

2 corresponds to the half-space  < 0, the index 0
denotes the incident elastic wave, and the index µ
denotes the types of the reflected and refracted elastic
waves: a longitudinal (L) wave (1), a fast shear (FS)
wave (2), and a slow shear (SS) wave (3).

When only the reflection of a wave from the crystal–
vacuum interface is considered, it is necessary to
change the boundary conditions. In this case, the
stresses on the crystal surface should absent; i.e.,

 = . The boundary conditions include

also the requirement for continuity of the normal com-
ponents of the electric displacement at the crystal–vac-
uum interface and the validity of the Laplace equation
for the potential wave in a vacuum. The system of linear
equations for the four amplitude coefficients can be
written as

(11)

(12)

where ε0 is the dielectric constant.
Note that these expressions for the boundary condi-

tions are obtained for the case when a uniform external
electric field is applied to the crystal and the edge

GµB
1 2,( )

CB3KL
1 2,( )* 2dAKF

1 2,( )
C3 IFL

1 2,( )E
MAE+( )mL

µ( )αK
µ( )

=

+ eP3B
1 2,( )*mP

µ( )α4
µ( )

,

Dµ
1 2,( )

e3KL
1 2,( )*

2dJKP
1 2,( )

e3PL
1 2,( )

MJE+( )mL
µ( )αK

µ( )
=

– ε3K
1 2,( )*

mK
µ( )α4

µ( )
,

G0B
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2dAKF
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C3 IFL
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MAE+( )mL
0 αK

0
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0
,
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0 ε3K
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0 α4

0
.–=

X3
'
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'

τ3J
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3

∑ 0 X3 0=

–aµ C3KPI
* αP
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2dAKFC3KFI

E
MAE+( )mK

µ( ){
µ 1=

3

∑
– a4eK3 I* mK

µ( )α4
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=  C3KPI
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0
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E
MAE+( )mK

0
eK3 I* mK

0 α4
0
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–aµ e3KL* 2dJKPe3PLMJE+( )mL
µ( )αK
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µ 1=

3

∑
– a4 ε3K* mK

µ( )
iε0–( )α4

µ( ) }

=  e3KL* 2dJKPe3PLMJE+( )mL
0 αK

0 εK3* mK
0 α4

0
,–
C

effects are neglected. The equations obtained take into
account all changes in the configuration of the anisotro-
pic continuous medium related to its static strain and, in
particular, the changes in the crystal shape: extensions
and rotations of elementary lines parallel to the sample
edges [5].

CALCULATION OF THE EFFECT 
OF A DC ELECTRIC FIELD 

ON THE REFLECTION OF BAWS 
FROM THE FREE BOUNDARY 

OF A PIEZOELECTRIC CRYSTAL

As an example, we will consider the effect of an uni-
form external electric field on the reflection of BAWs
from a free boundary of a cubic piezoelectric with sym-
metry 23. Let a wave be incident in the (010) plane (the
sagittal plane). The normal to the interface coincides
with the [001] direction. The dispersion equation for
reflected BAWs (at E = 0) in the case of incidence of an
L wave or an FS wave on the interface can be written
as [3]

(13)

When a slow shear (SS) wave is incident on the
interface, which is piezoelectrically active in the given
sagittal plane and has a polarization directed along the
[010] axis, i.e., orthogonally to the plane of incidence,
the dispersion equation has the form

(14)

Therefore, in the case of the incidence of an L wave of
a FS wave (polarized in the plane of incidence), only L
(quasi-longitudinal (QL)) and FS (fast quasi-shear
(FQS)) waves will be reflected. In the case of incidence
of a slow quasi-shear (SQS) wave, only an SQS wave is
reflected, whose amplitude coefficient is very close to
unity. However, owing to the piezoelectric activity of
this wave, along with the elastic SQS wave, there is also
a potential wave. Therefore, taking into account that the
refraction vector of the reflected SQS wave is real, the
amplitude coefficient for this wave is complex and its
imaginary part characterizes the phase shift between
the incident and reflected waves [3].

Application of an electric field to a crystal in the
[001] direction, according to the Curie principle,
decreases the crystal symmetry to the monoclinic class 2,
in which the twofold symmetry axis is also directed
along the [001] axis. As a result, new effective material
constants (equal to zero in the absence of a field) are
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Fig. 1. Real parts of the amplitude reflection coefficients of BAWs reflecting from the germanosillenite-crystal/vacuum interface for
the incidence in the plane (010).
induced:

(15)

Thus, dispersion equations (13) and (14) become

C̃16 = C166d14 e124–( )E, C̃36 = C144d14 e114–( )E,

C̃45 = C456d14 e154–( )E, ẽ15 = e156d14 H44+( )E,

ẽ33 = e114d14 H11+( )E, ẽ31 = e124d14 H12+( )E.
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polynomials of power 8 with respect to the components
m3 of the reflected waves. Figure 1 shows the real part
of the amplitude reflection coefficients of BAWs in a
Bi12GeO20 crystal at E || [001] in the plane of incidence
(010) for BAWs of the QL, FQS, and SQS types. When
a QL wave is incident at an angle of 60°, transformation
of reflected elastic waves occurs and only the FQS
wave is reflected. In the case of incidence of an FQS
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wave, for the reflected QL wave, beginning with an
angle of incidence of 38°, the phenomenon of total
internal reflection is observed. (The refraction vector of
the elastic wave becomes complex.)

In the case of incidence of an SQS wave, application
of an external electric field, which decreases the crystal
symmetry, generates all three types of reflected waves.
In the absence of a field directed along the normal to the
free surface, there is an tangential acoustic axis [9].
Application of an electric field E || [001], as discussed
previously [10, 11], removes the degeneracy of shear
waves in the [001] direction. In this case, the initial
acoustic axis is split into two conical axes lying in the
(110) plane. Therefore, even normal incidence of an
SQS wave leads to the generation of reflected shear
waves of both types with real parts of the amplitude
coefficients of 0.78 and 0.71 for the FS and SS waves,
respectively. Note that, when an electric field is applied,
the amplitude coefficients of reflected waves are always
complex. 
C

EFFECT OF A DC ELECTRIC FIELD 
ON THE REFLECTION AND REFRACTION 

OF BAWS AT THE INTERFACE 
BETWEEN AN ISOTROPIC ELASTIC MEDIUM 

AND A PIEZOELECTRIC CRYSTAL

Figure 2 shows the results of the calculation of the
real parts of the amplitude reflection coefficients and
amplitude refractive indices of BAWs in a system com-
posed of fused quartz and germanosillenite Bi12GeO20
for the case when an external electric field is applied
only to the Bi12GeO20 crystal along the twofold axis
[001], i.e., normally to the interface between these
media. The cases of incidence of L and shear waves
polarized either in the plane of incidence or normally to
it are investigated. When E = 0, for an incident L wave,
there are only a reflected L wave and a shear wave
(polarized in the plane of incidence) and a refracted L
wave and an FS wave (polarized in the plane of inci-
dence). A characteristic feature of this case is the trans-
formation of the type of refracted waves since, at an
angle of incidence of 58°, only the FS wave exists (from
all refracted waves).
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A similar situation occurs when a shear wave polar-
ized in the plane of incidence is incident on the inter-
face. In this case, at an angle of incidence of 32°, there
is only a refracted L wave. However, at an angle of inci-
dence of 40°, the total internal reflection of this wave is
observed.

When a shear wave polarized orthogonally to the
plane of incidence is incident on the interface, the wave
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 6      2005
of the same type is reflected. However, concerning
refracted waves, there is only an SS wave in ger-
manosillenite, which has a longitudinal piezoelectric
activity. The piezoelectric activity of the SS wave leads
to the generation of an electrostatic potential wave at
the piezoelectric-crystal/isotropic-medium interface.
This wave is not related to elastic vibrations in the iso-
tropic medium and decays exponentially with an
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increase in the distance from the interface. As a result
of the presence of a potential wave, the amplitude coef-
ficient of the reflected elastic wave is a complex value
and its refraction vector is real.

Application of an electric field E || [001] to a
Bi12GeO20 crystal, owing to the reduction in the crystal
symmetry, leads to that the incidence of an elastic wave
C

of any type from an isotropic medium generates all
three types of refracted and reflected waves. An inter-
esting example is the incidence of a shear wave polar-
ized normally to the plane of incidence. In this case, it
appears as two reflected shear waves arise in the isotro-
pic medium, one of which is polarized in the plane of
incidence and the other is polarized normally to it. Nat-
urally, shear waves of only one type can exist in an iso-
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 6      2005
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tropic medium. Nevertheless, the change in the bound-
ary conditions caused by the application of an external
electric field to a Bi12GeO20 crystal leads also to the
change in the direction of the polarization vector of the
incident SQS wave, which turns out to be directed at
some angle to the plane of incidence. This circumstance
allows for the existence of a reflected shear wave, also
polarized at some angle to the plane of incidence.

CONCLUSIONS

The software package developed here makes it pos-
sible to investigate the processes of reflection and
refraction of BAWs at interfaces between crystals of
arbitrary symmetry and obtain results in the form of
cross sections of refraction cavities. If the coefficients
of the nonlinear electromechanical properties are
known, this calculation can be supplemented by the
consideration of the effect of an external electric field.
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Abstract—Discrete electromagnetic emission caused by a jump of plastic deformation and fracture of single-
crystal and polycrystalline ice is revealed and investigated. An album of electromagnetic signals is compiled,
which makes it possible, on the basis of the electromagnetic-signal shape, to identify and study the kinetics of
mesoscopic events of structural relaxation that are related to the dynamics of dislocation pile-ups and cracks.
© 2005 Pleiades Publishing, Inc.
INTRODUCTION

It was shown in [1–13] that the intrinsic electromag-
netic emission in the frequency range ~102–106 Hz of a
crystal with predominantly ionic bonds subjected to a
mechanical and/or thermal load characterizes the devi-
ation of the crystal from equilibrium under test condi-
tions and is indicative of the processes of structural
relaxation (plastic deformation and fracture) occurring
in the crystal. It has been found that the dynamics of
dislocation slip bands and cracks in A1B7 [3–10] and
A2B6 [12] compounds is accompanied by characteristic
electromagnetic-emission (EME) signals. This phe-
nomenon makes it possible to identify in situ these
events in more complex processes of structural relax-
ation (for example, during multiple slip [3], at indenta-
tion [9], under laser puncture of surface [10], etc.),
establish correlation between them, perform statistical
and multifractal analysis [11], estimate the growth rate
of the leading group of dislocations, the area swept by
a pile-up, and volume of the crack cavity [3, 4], etc. In
ice, as well as in AxB8 – x compounds, dislocations trans-
fer electric charge, while the edges of a fast crack are
electrically active. Therefore, the nonstationary motion
of dislocation pile-ups and micro- and macrocracks
should cause generation of not only acoustic [14] but
also electromagnetic emission. Indeed, propagation of
a single crack arising under bending [15], uniaxial
compression [15–17], an impact of a point load [16],
and freezing of water [18] is accompanied by a charac-
teristic EME signal in the frequency range ~103–
105 Hz. The EME caused by the motion of dislocations
in ice has not been studied yet.
1063-7745/05/5006- $26.00 0994
Investigation of the nature of electromagnetic phe-
nomena accompanying dynamic processes in ice is of
great applied importance, primariy, in view of the prob-
lems of navigation in northern latitudes. In addition, it
is well known that, during the fall of glaciers and ava-
lanches, propagation of cracks in frozen soils and ice
covering water reservoirs, and even before these cata-
strophic events, bursts of electromagnetic emission
arise in the middle radio-frequency range [19–21].
Therefore, along with the navigation problems, there is
practical interest in continuous electromagnetic moni-
toring of the environment containing frozen soils and
large masses of ice and snow, which are prone to cata-
strophic shifts. To analyze the problem of identification
using electromagnetic signals, of different processes of
structural relaxation (plastic deformation; fracture;
friction; and regelation, i.e., melting under pressure
with subsequent crystallization) and estimation of their
contributions to the complex natural phenomenon, it is
necessary to create experimental conditions under
which one of the above-mentioned processes is domi-
nant.

In this paper, we report the results of studying the
characteristics of EME signals produced under the
motion of single slip bands and cracks and under mul-
tiple slip and fracture. On the basis of the results
obtained, an album of EME maps of nonstationary
mesoscopic processes of structural relaxation in single-
crystal and polycrystalline ice is compiled.

EXPERIMENTAL

In macroscopic experiments, plastic properties of
ice are investigated generally by analyzing the defor-
© 2005 Pleiades Publishing, Inc.



        

ELECTROMAGNETIC EMISSION UNDER UNIAXIAL COMPRESSION 995

                                                                                                                        
1

2
3

4

5

8

9

7

5

6

10 11 12

Fig. 1. Schematic of the experimental setup for studying the plastic deformation jump and fracture of ice by polarization optical,
acoustic, and electromagnetic methods: (1) sample, (2) rod of the soft testing machine, (3) strain-measuring unit containing a
mechanical indicator and a capacitance displacement sensor, (4) collimated light source, (5) polaroids, (6) digital video camera,
(7) piezoelectric sensor, (8) capacitance probe, (9) high-resistivity preamplifier, (10) commutator, (11) ADC, and (12) computer.
mation curves obtained in a rigid testing machine
[22, 23] or from creep curves [24]. It is preferable to
study the plastic-flow instability under the conditions of
active deformation of a crystal in a soft testing machine
when the loading law is set in the form σ = σ(t) and the
measured response function is the strain ε(t) itself. In
this study, samples of single-crystal and polycrystalline
ice 12 × 18 × 30 mm3 in size were subjected to uniaxial
compression in a soft testing machine with a constant
stress rate  = 5 × 10−3 MPa/s at the temperature T =
250 K in a soft testing machine. The samples were cut
by a wire saw from blocks of freshwater (river) ice with
an average grain size ranging from ~1 to ~100 mm. Sin-
gle-crystal samples were cut from large grains to be
deformed in the basal slip system: the c axis made an
angle of ~40–50° with the compression axis. To study
the effect of grain boundaries on the formation and
immobilization of dislocations and cracks, we prepared
bicrystals: samples composed of two grains, i.e., having
one grain boundary. The grain size in the polycrystal-
line samples ranged from 2 to 4.5 mm. To stabilize the
ice structure, all samples were subjected to isothermal
annealing at T = 263 K for ~103 h.

During the sample deformation, we performed
video recording in transmitted polarized light to detect
the instants of formation of slip bands and cracks from
the evolution of their photoelastic pattern. The defor-
mation curve ε = ε(t) was recorded using a mechanical
motion sensor accurate to 1 µm. To measure small
jumps of plastic deformation, we used a highly sensi-
tive capacitance displacement sensor, which makes it

σ̇
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possible to fix deformation jumps in a sample with sen-
sitivity to ~10 nm in the frequency range ~1–300 Hz.
The potential of the nonstationary electric field (EME
signal) was measured using a plane capacitance sensor
20 × 30 mm2 in size, located at a distance of 5 mm from
the sample surface. With allowance for the fact that the
characteristic evolution times of cracks and dislocation
slip bands in crystals are in the range ∆t ~ 10–6–100 s,
the bandwidth of the measurement channel was chosen
to be in the range from 1 Hz to 3 MHz. The measure-
ment channel included a high-resistivity broadband
preamplifier (Rin = 1012 Ω , Cin = 20 pF), an analog-to-
digital converter (ADC) with a clock frequency up to
500 kHz, and a computer. In some experiments, an
acoustic-emission (AE) signal from a piezoelectric sen-
sor located in the bottom support of samples (Fig. 1)
was recorded synchronously with measurement of an
EME signal.

RESULTS AND DISCUSSION

Load Curves of Single-Crystal 
and Polycrystalline Ice

Figure 2a shows the typical load curves obtained
with a constant stress rate for single-crystal ice (curve 1)
and polycrystalline ice with the average grain size  ~
3 mm (curve 2). It can be seen that the hardening coef-
ficient θ = dσ/dε and the compression strength σmax of
single-crystal ice significantly exceed the correspond-
ing values for polycrystalline ice. In addition, the defor-
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mation curve of the latter is nonlinear in the entire
range of applied stress and demonstrates at least three
portions corresponding to the following main stages of
the deformation process: the easy-glide stage I, which
is not characteristic of polycrystals and is apparently
due to the presence of large grains; the strain hardening
stage II; and the dynamic recovery stage III, which is
observed at σ > 1.6 MPa (Fig. 2b). It is reasonable to
suggest that the higher nonlinearity of the deformation
behavior of polycrystalline ice in comparison with sin-
gle crystals is caused by the significant effect of grain
boundaries on the multiplication and immobilization of
dislocations.

Role of Grain Boundaries

The photoelasticity and optical activity of ice make
it possible to investigate the distribution of internal
elastic stress fields in situ; reveal grain boundaries; and
estimate the role of the latter in the nucleation and
deceleration of dislocation pile-ups with an excess of
dislocations of the same mechanical sign (mechanical
charges). These pile-ups are the main sources of long-
range stress fields in plastically deformed crystals. As
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Fig. 2. (a) Load curves σ(ε) for (1) single-crystal and
(2) polycrystalline ice deformed in a soft testing machine
with a constant stress rate  = 5 kPa/s at T = 250 K.
(b) Stress dependence of the hardening coefficient θ =
dσ/dε of polycrystalline ice. Roman numerals I, II and III
denote the stages of easy glide, strain hardening, and
dynamic recovery, respectively.

σ̇

C

an example of excellent photoelasticity of ice, Fig. 3a
shows the classical stress-distribution pattern observed
upon indentation of a small ball into the surface of a
single-crystal sample. Such photoelastic rosettes,
observed along the macroscopically planar grain
boundary in a deformed bicrystal, decorate concentra-
tors of internal stresses near microscopic irregularities
of the boundary (Fig. 3b). Relaxation of these stresses
may occur through different channels, depending on
the stress level, strain rate, and temperature. Specifi-
cally, these channels are the formation of dislocation
slip bands and microcracks; slip along the grain bound-
ary, involving regelation processes; and migration of
the grain boundary as a result of the ice recrystallization
at high-temperature plastic deformation (T = 0.94Tm,
where Tm is the melting temperature). Figure 3c shows
the slip-band formation from a stress concentrator at
the grain boundary.

In some experiments, stress concentrators were
formed artificially by making scratches or notches with
the use of a wire saw. Slip bands were formed generally
by local sources near the intersection of a scratch or
notch with a crystal edge, passed through the grain in
the basal plane, and were locked by the grain boundary
to form new stress concentrators in the head of the
retarded pile-up (Fig. 3d). The new stress concentra-
tors, in turn, serve as sources of slip bands and/or
cracks (Figs. 3e, 3f) and set the stage for the relay-race
transfer of shear or fracture to neighboring grains of the
polycrystal. Figure 3g shows a crack growing along the
grain boundary in a bicrystal. Video recording shows
that this crack grows in steps and may suddenly, having
changed the growth direction, pass into the grain vol-
ume (Fig. 3h). A deformed polycrystal is characterized
by spontaneous formation (for ~1 s) of a random net of
noncontacting mesocracks, whose size is of the same
order of magnitude as the grain size. These mesocracks
are located mainly along grain boundaries and, more
rarely, intersect individual grains (Fig. 3i). The charac-
teristic scale of this net, i.e., the distance between the
most distant mesocracks, may be macroscopic (~1 cm),
i.e., comparable with the sample size. Despite the large
total fracture area, a sample is not fractured macroscop-
ically and is not softened.

EME and AE Signals

If has been found that the process of plastic defor-
mation of single-crystal and polycrystalline ice samples
is accompanied by the generation of discrete EME and
AE signals (Fig. 4). In all stages of deformation, AE
signals have the form of damping harmonics with a
shape, according to calibration, corresponding to the
ballistic reaction of the machine–sample system. For
this reason, the identification of dynamic processes of
structural relaxation by the shape of AE signals meets
significant difficulties, which limit the application of
the AE method in physical investigations [25]. At the
same time, EME signals are very diverse in shape. In
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 6      2005
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10 mm

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 3. Typical polarized-light images of deformed single-crystal and polycrystalline ice samples: (a) a photoelastic rosette obtained
by indentation of a small ball into the surface of single-crystal ice (the ball was previously partially melted into the surface by rege-
lation); (b) stress concentration near the grain boundary in a bicrystal subjected to uniaxial compression, σ = 1.5 MPa; (c) formation
and propagation of a slip band (noted by an arrow) from the stress concentrator near the grain boundary, σ = 2.3 MPa; (d) a slip
band blocked by the grain boundary in a bicrystal (the source of the band, noted by an arrow, is the region of intersection of a notch
with the edge of the crystal), σ = 2.5 MPa; (e) formation and propagation of mesocracks in the grain volume from the concentrators
located near the grain boundary, σ = 9 MPa; (f) the same at σ = 9.7 MPa; (g) propagation of a crack along the grain boundary in a
bicrystal, σ = 10.3 MPa; (h) a macrocrack in a bicrystal, σ = 11.2 MPa; and (i) a fractal network of mesocracks propagating mainly
along the grain boundaries in a polycrystalline sample (multiple subcritical fracture, σ = 2.3 MPa).
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Fig. 4. Electromagnetic and acoustic emission during ice deformation: (1) the load curve recorded with a constant stress rate  =
5 kPa/s; (2) an EME signal; and (3) an AE signal. The insets show typical EME and AE signals in the initial and final stages of
deformation.
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Album of EME maps

EME signal
Schematic of a process Comment

no. shape

1 Formation and propagation of a slip band

2 Breakdown of a pile-up through a barrier (a low-angle 
boundary with an impurity atmosphere)

3 Generation, propagation, and blocking of a slip band

4 Secondary formation of a slip band by the crystal surface

5 Relay-race transfer of shear into neighboring grains

6 Development of a single microcrack

7 Development and stopping of a crack with plastic relax-
ation in the tip

2 ms

Ä

0.5 ms

1 ms
Ä

100 ms Ä

5 ms

100 µs

2 ms
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Table.  (Contd.)

EME signal
Schematic of a process Comment

No. Shape

8
A propagating slip band initiates a microcrack source
(of the type of stress concentrator A) by the elastic field 
of the pile-up head

9 Successive formation of two microcracks

10 A blocked band initiates a microcrack source

11 Relay-race (in time and space) transfer of shear involv-
ing many slip bands in different grains

12 Multiple subcritical fracture of a polycrystal

Note: The point A denotes the source of a mesoscopic defect (slip band or crack).

5 ms Ä

5 ms

10 ms

Ä

1 s

0.5 s

0 5 10 15 t, ms
principle, synchronous video recording in polarized
light and measurement of plastic deformation jumps by
a highly sensitive displacement sensor makes it possi-
ble to identify jump processes of plastic deformation
and fracture by EME signals.

In spite of the large variety of shapes of EME sig-
nals, they can be represented as a sequence of pulses of
almost triangular shape, which are characterized by
three main parameters: front width tfr; amplitude ϕm;
and the decay time τd (Fig. 5a), which is comparable
with the Maxwellian relaxation time for ice τM in the
range of mid and low frequencies [26, 27]. The quantity
tfr, which is determined by the characteristic time of the
C

crystal polarization caused by the evolution of an elec-
trically active structural–kinetic element, turned out to
be the most informative characteristic of EME signals.
Depending on the value of tfr, EME pulses can be
divided into two groups: (i) pulses of type I with tfr ~
3 × 10–3–6 × 10–1 s, which are accompanied by the gen-
eration of an AE signal but without appearance of visi-
ble microcracks, and (ii) pulses of type II with tfr ~
10−5–3 × 10–4 s, which are caused, according to the
video recording data, by the formation and propagation
of cracks with sizes greater than ~100 µm.

In a series of experiments, a signal of the highly sen-
sitive sensor of the displacement of the machine’s rod
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 6      2005
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Fig. 5. (a) Schematic image of an EME pulse: ϕm is the amplitude, tfr is the front width, and τd is the dielectric relaxation time.
(b) Histogram of the front widths tfr of EME pulses. EME pulses II, related to the development of micro- and macrocracks, are col-

ored black; EME pulses I (described by the power function ϕ(t) ~ t1/n), which are related to the dynamics of conservative dislocation
pile-ups, are colored gray; and EME pulses I with a sigmoid front shape, related to the formation of slip bands (see table), are uncol-
ored. The inset shows the distribution function D(s) for EME pulses II (see text). The dashed line indicates the time resolution of
the method (8 µs) corresponding to the maximum clock frequency of the ADC (500 kHz).
was recorded synchronously with the sample video
recording in polarized light and the EME measurement.
It was found that the development of a single slip band
in a single-crystal sample in the initial stage of defor-
mation (ε ~ 0.5–1%) is accompanied by a deformation
jump ∆h ~ 0.1–1 µm and simultaneous generation of an
EME pulse of type I (Fig. 6a). At the same time, the
development of internal cracks with lengths Lcr >
100 µm in the stage of developed deformation (ε > 3%)
causes generation of EME signals of type II but does
not lead to a significant (within the sensitivity limits)
deformation jump (Fig. 6b).

Thus, two groups of EME signals (pulses I and II)
account for two main nonstationary (in the frequency
range ~101–105 Hz) processes in a deformed crystal:
plastic-deformation jump and fracture. Owing to the
significant difference between the instantaneous rates
of plastic shear and propagation of microcracks and,
therefore, the characteristic times of these processes,
the histogram of the front widths tfr of EME pulses is
saddle-shaped (Fig. 5b). The range of forbidden values
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of tfr (the saddle region of the histogram) can be used
for more exact separation of signals into pulses I and II
and is important, for example, in carrying out statistical
analysis of jumps of plastic deformation and fracture.

It can be seen from Fig. 5 that the histogram of the
front widths of EME pulses I, related to plastic-defor-
mation jumps, is bell-shaped, whereas the histogram of
the front widths of EME pulses II, which are due to the
formation and development of micro- and macrocracks
in a sample, is described by power statistics: D(s) ~ s–α

(see inset in Fig. 5b), where D(s) = N−1δN(s)/δs is the
normalized statistical distribution function of the quan-
tity s = tfr, δN(s) is the number of events (EME pulses)
falling in the range from s – δs to s + δs, and N is the
statistical sampling size. For all single-crystal and poly-
crystalline ice samples under study, the exponent α is in
the range from 1.2 to 1.6. Thus, EME pulses I and II are
characterized by not only different front widths tfr, but
also significantly different statistical distribution func-
tions of this quantity.
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Fig. 6. Synchronous measurement data on the evolution of a slip band and a crack by the optical and electromagnetic methods:
(a) synchronous recording of (1) the deformation jump ∆h and (2) the EME signal ϕ of type I, which are caused by the development
of a slip band (the time shift between the signal of the rod-displacement sensor and the EME signal is due to the inertia of the testing
machine), and (b) synchronous video recording of (1) the jump in the length Lcr of a crack along the compression axis, (2) an EME
signal II, and (3) a signal from the displacement sensor.
Another important characteristic of an EME signal
is its front’s shape, which reflects the kinetics of the
corresponding processes of structural relaxation: jumps
of plastic deformation and fracture. Concerning the
shape, the observed single EME pulses I can be divided
into at least two main groups: (i) sigmoid signals (table,
signal 1), which were observed in all stages of plastic
deformation, mainly in the range 0.5 < ε < 2%, and (ii)
signals described by the power function ϕ(t) ~ t 1/n,
where n = 2.1, …, 2.5 (table, signal 2). The signals of
the second group arise in the stage of developed defor-
mation, when the applied stress σ is as high as ≈1 MPa
in the polycrystalline ice samples and ≈3–4 MPa in the
single-crystal samples. These signals are characterized
by the shortest front widths (tfr ≈ 3–10 ms) and, hence,
are caused by the fastest plastic-deformation jumps.
(The corresponding range of tfr in the histogram in
Fig. 5b is shaded gray.) As will be shown in our next
paper, the signals of the first group, related to mesos-
copic growth processes, are mainly due to the forma-
tion and propagation of slip bands, whereas the signals
of the second group are related to sudden detachment of
a large number of dislocations, for example, breakdown
of a dislocation pile-up through a barrier.
C

Album of EME Maps

The table compiles the main types and combinations
of EME signals, reflecting nonstationary mesoscopic
events of plastic deformation and fracture of single-
crystal and polycrystalline ice, which are related to the
dynamics of dislocation pile-ups and cracks:

(i) Sigmoid signal I, according to the synchronous
EME measurement and video recording of the photo-
elastic pattern, is caused by the formation and propaga-
tion of a single slip band.

(ii) The signal of type I in the form of a power func-
tion t1/n is caused, as will be shown in our next study, by
the breakdown of a blocked dislocation pile-up or the
drift of a pile-up to a cavity, or grain boundary, or out-
side the crystal surface.

(iii) The sigmoid signal with a sudden sharp
decrease in the growth rate is the result of the develop-
ment of a slip band with its subsequent blocking by the
grain boundary (Fig. 3d).

(iv) The signal in the form of a sequence of sigmoid
signals I of opposite signs accounts for the process of
secondary formation of a slip band by the crystal sur-
face. The surface source of the secondary band is initi-
ated by the elastic field of the leading group of disloca-
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 6      2005
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tions in the primary pile-up. This process leads to the
relaxation of the bending moment formed by the pri-
mary band with an excess of dislocations of the same
mechanical sign and to a decrease in the total Burgers
vector of the system of pile-ups.

(v) The signal in the form of a sequence of sigmoid
signals I of the same sign is caused by the relay-race
transfer of shear to neighboring grains.

(vi) EME signal II is caused by the development of
a single microcrack.

(vii) The sequence of signals I and II reflects the
development of a crack with plastic relaxation in the tip
owing to the emergence of a dislocation pile-up from
the tip of the crack that was stopped.

(viii) The superposition of signals I and II reflects
the process in which the source of a microcrack is initi-
ated in the stage of maximum growth rate of the slip
band.

(ix) The sequence of two signals II is caused by the
successive formation of two microcracks in neighbor-
ing grains of a polycrystal. 

(x) The sequence of signals I and II accounts for the
sequence of a mesoscopic event—slip—and subse-
quent formation of a microcrack. Specifically, propaga-
tion and blocking of a slip band initiate the formation of
a microcrack along the grain boundary.

(xi) The sequence of a large number of signals I is,
apparently, related to the relay-race transfer of slip
bands into neighboring grains and similar to (v).

(xii) The fractal packet of signals of type II reflects
the multiple cracking of polycrystalline ice, which is
related to the spontaneous formation of a fractal net-
work of cracks, mainly along the grain boundaries
(Fig. 3i).

CONCLUSIONS
In this study, using a complex of in situ methods,

including the methods of electromagnetic and acoustic
emission in combination with the conventional tech-
nique of measuring deformation jumps and the polar-
ization optical method, we investigated the plastic-
deformation jump and the fracture of single-crystal and
polycrystalline ice under uniaxial compression in a soft
testing machine. It was found that the deformation of
ice is accompanied by the generation of discrete pulses
of the potential ϕ of the nonstationary electric field near
the sample surface (EME signals). This phenomenon is
indicative of thermodynamic deviation of a plastically
deformed crystal from equilibrium and gives informa-
tion about the kinetics of the structural relaxation of the
crystal to a more equilibrium state (predominantly at
the mesoscopic structural level). It was shown that mea-
surement of EME signals makes it possible to map the
complex process of formation of a structure of mesos-
copic defects in a crystal to one degree of freedom—the
time series ϕ(t). It was established that an EME signal
is a superposition of elementary pulses I and II, which
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reflect the dynamics of different processes of structural
relaxation at the mesoscopic level—behavior of dislo-
cation pile-ups and cracks, which play an important
role in the general pattern of plastic deformation of a
crystal. It is shown that analysis of the shape of the
fronts of EME signals I makes it possible to distinguish
the dynamics of slip bands (sigmoid signals, reflecting
predominantly the processes of multiplication of dislo-
cations in an ensemble) and conservative pile-ups (sig-
nals in the form ϕ ~ t1/n, which reflect the breakdown of
a pile-up through the barrier). An album of EME maps
was compiled, which allows one to identify in situ from
the EME signal the most important events in a plasti-
cally deformed ice crystal, involving dislocation pile-
ups and cracks (see table). This album, a sort of an
“electromagnetic language” for the processes of struc-
tural relaxation, makes it possible to monitor the evolu-
tion of ensembles of defects of certain type (slip bands,
conservative pile-ups, micro- and macrocracks)
directly during the deformation; find correlation
between them; perform statistical, multifractal, and
dynamic analysis of the corresponding time series; and
investigate, on the basis of EME analysis, the phenom-
ena of self-organization, dynamic chaos, self-organiz-
ing criticality, and the evolution of a system toward a
global catastrophe: macroscopic fracture.
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