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Abstract—An analysis of a five-parameter family of cosmological models in a spatially flat Friedmann Uni-
verse with a zero Λ term is presented. The five parameters are (1) σ8, the dispersion of the mass fluctuations in
a sphere with radius 8h–1 Mpc, where h = H0/100 km s–1 Mpc–1 and H0 is the Hubble constant; (2) n, the slope
of the density-perturbation spectrum; (3) Ων, the normalized energy density of hot dark matter; (4) Ωb, the
baryon density; and (5) h, the normalized Hubble constant. The density of cold dark matter is determined from
the condition Ωcdm = 1 – Ων – Ωb. Analysis of the models is based on comparison of computational results with
observational data for: (1) the number density and mass function of galaxy clusters (a so-called Press–Schechter
formalism) and (2) the cosmic microwave background anisotropy. The first method enabled us to determine the
value σ8 = 0.52 ± 0.01 with high accuracy. Using the resulting normalization of the density-perturbation spec-
trum, we calculated a model for the anisotropy of the cosmic microwave background radiation on large scales
(l . 10, where l is the harmonic number) and the required contribution of cosmological gravitational waves,
characterized by the parameter T/S. The restrictions on T/S become weaker as Ων increases. Nevertheless, even
when Ων ≤ 0.4, models with h + n ≥ 1.5 require a considerable contribution from gravitational waves: T/S * 0.3. On
the other hand, in models with Ων ≤ 0.4 and a scale-invariant density-perturbation spectrum (n = 1), we
find T/S * 10(h – 0.47). The minimization of T/S is possible only for the family of models with red spectra
(n < 1) and small h (<0.6). The value of Ων is determined most accurately by the data on ∆T/T near the first
acoustic peak (l . 200). By imposing a general restriction on the amplitude of gravitational waves T/S ∈  [0, 3]
and taking into account the available observational data on the amplitude of the acoustic peak of Sakharov oscil-
lations, ranges of possible values n and Ων are derived. If the baryon number is constrained by nucleosynthesis
data, the models under consideration can have both moderately red and blue power spectra n ∈  [0.9, 1.2] with
a rather high concentration of hot particles Ων ∈  [0.2, 0.4]. The conditions that n < 0.9 and/or Ων < 0.2 decrease
the relative amplitude of the acoustic peak by over 30% compared to its value in the standard cold-dark-matter
(CDM) model normalized using COBE data. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The vigorous development of the observational
basis for cosmological studies in the 1990s has made it
possible to progress from theoretical investigations of
cosmological models to direct testing of them. The
most important result has been the rejection of the stan-
dard CDM model,1 following the discovery of large-
scale anisotropy of the cosmic microwave background
radiation (CMBR) in 1992 [2–4], whose amplitude on
scales of 10° turned out to be appreciably greater than
predicted by theory.

Since the simplest cosmological models could not
give an adequate description of the large-scale structure

1 The standard CDM (cold dark matter) model has energy density
of ordinary matter in the Universe in units of the critical density
Wm = Wcdm + Wb = 1, where Wcdm and Wb are the normalized
energy densities of dark matter and baryons respectively, Wb =
0.05 [1], h = H0/100 km s–1 Mpc–1 = 0.5, H0 is the Hubble constant,
the slope of the density-perturbation spectrum is n = 1, the amplitude
of cosmological gravitational waves is zero, and the spectrum of den-
sity perturbations is normalized by the COBE data. Note also that,
with this normalization, σ8 > 1; where σ8 is the dispersion of the
mass fluctuations in a sphere with radius 8h–1 Mpc.
1063-7729/01/4503- $21.00 © 20163
of the Universe, it was clear these models needed to be
modified. Obviously, this could be done in several
ways: by changing the model for the dark matter (i.e.,
using mixed instead of cold dark matter) and/or introduc-
ing a non-zero Λ term ([5] and references therein; [6]), by
abandoning spatially flat models of the Universe in favor
of open models [7], by modifying the primordial spectrum
of density perturbations and cosmological gravitational
waves [8–17], etc. (see the review [19]).

The most successful modern theory of the early
Universe—inflation—pays special attention to cosmo-
logical models whose total energy density is equal to
the critical density; i.e., models in which the comoving
three-dimensional space is Euclidean. In the simplest
versions of this type of model, the cosmological con-
stant is zero. We will investigate this type of model,
using the following quantities as free parameters:

(1) σ8, the dispersion of mass fluctuations in a sphere
with radius 8h–1 Mpc (σ8 ∈  [0.47, 0.61], 15 models with
step 0.01), which is linearly related to the amplitude of the
density-perturbation spectrum;
001 MAIK “Nauka/Interperiodica”
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(2) n, the slope of the density-perturbation spectrum
(n ∈  [0.8, 1.4], seven models with step 0.1);

(3) Ων, the energy density of hot dark matter in units
of the critical density (Ων ∈  [0, 0.4], five models with
step 0.1);

(4) Ωb, the baryon energy density in the Universe in
the same units (Ωb ∈  [0.01, 0.11], six models with step
0.02); and

(5) the Hubble constant H0 = 100h km s–1 Mpc–1

(h ∈  [0.45, 0.70], six models with step 0.05).
Combining the various values of these parameters,

we obtain 18900 distinct cosmological models to be
investigated.

The amount of cold matter is not a free parameter,
and is determined by the condition Ωcdm = 1 – Ων – Ωb.
The amplitude of the tensor mode is expressed by the
parameter T/S (representing the relative contribution of
gravitational waves to the large-scale anisotropy of the
CMBR), which is calculated for models that reproduce
the observed mass function of galaxy clusters by com-
paring them with COBE data. We restrict the range of
allowed values of T/S to the interval 0 ≤ T/S ≤ 3.

The main aim of our study is to put useful limits on
these five model parameters, allowing for a cosmological
background of gravitational waves, based on the observed
mass function of galaxy clusters and the CMBR anisot-
ropy on both large (l ~ 10) and small (l ~ 200) angular
scales. (Here, l is the harmonic number in an expansion
of the CMBR fluctuations ∆T/T in spherical functions.)
We shall restrict our consideration to these most impor-
tant tests, and address the question of the adequacy and
sensitivity of the model parameters to the observational
data. The basic problem is to determine the importance
of hot matter in cosmological models with gravitational
waves (without a Λ term). The results will be used to
optimize the step choice and the allowed intervals of
the parameters in more complex models (in particular,
with cosmological constant Λ > 0), which will require
a more careful analysis, taking into account data on the
Lyα forest, the power spectrum of galaxy clusters, etc.

The first parameter—σ8—gives a more accurate
normalization of the density-perturbation spectrum
than the COBE data, because of the possible contribu-
tion of primordial gravitational waves to the large-scale
CMBR anisotropy.

The second parameter—n—generalizes a flat den-
sity-perturbation spectrum (Harrison–Zeldovich spec-
trum) in the most natural and simple way. Power-law
spectra are predicted by many inflationary models, for
example, by chaotic inflation based on scalar field theory
with a power-law potential [19]. The spectra of other infla-
tionary models can be both “red” (n < 1; i.e., the spec-
tral power at large wavelengths is increased over
smaller scales) [20] and “blue” (n > 1), and non-power-
law spectra are also possible [8–17, 21, 22].

The introduction of hot dark matter is partially asso-
ciated with the recent discovery of atmospheric neu-
trino oscillations [23–26], which imply a non-zero rest
mass for at least one kind of neutrino. The masses of all
kinds of neutrinos remain unknown, so that we can con-
sider Ων a free parameter of the models (we shall
assume later that only one kind of neutrino has a mass).

The fourth parameter—the number of baryons in the
Universe—affects the evolution of density perturba-
tions only slightly. It is evident that neither the mass func-
tion of galaxy clusters nor the large-scale CMBR anisot-
ropy can be used to estimate this parameter with high sta-
tistical significance. Nevertheless, the value of Ωb is
extremely important for the amplitude of the CMBR
anisotropy on moderate (θ ~ 1°) and small (θ ! 1°)
angular scales (Sakharov oscillations). The range of Ωb

chosen in our study is in accordance with modern data
on primordial nucleosynthesis [1].

Finally, the fifth free parameter is the Hubble con-
stant. There is currently a discrepancy of about ~20%
in estimates of h obtained using different methods,
based on observations of type Ia supernovae, Cepheid
variables, etc. (see, for example, [27–30]). It is clear
that h cannot be less than 0.45. On the other hand, if h
were too high, we would be forced to introduce a posi-
tive ΩΛ, in accordance with the ages of old globular
clusters. Precisely these reasons determined our choice
of the range of this parameter in our studies.

Our subsequent presentation will be organized as
follows. In Section 2, based on observational data on
numbers of galaxy clusters, we calculate a χ2 for each
model and determine the most probable values of the
parameters. The highest level of statistical confidence
can be attained for σ8. We consider the anisotropy of the
CMBR in Section 3. By normalizing the density-per-
turbation spectra by the obtained value of σ8, we calcu-
late T/S using data on large-scale CMBR anisotropy.
By imposing the constraint T/S ∈  [0, 3], we separate
out models satisfying this criterion. Further, we select
preferred models based on observational data in the
region of the first acoustic peak. Our final results are
formulated and discussed in Sections 4 and 5.

2. THE MASS FUNCTION
OF GALAXY CLUSTERS

The Press–Schechter method [31] enables deriva-
tion in explicit form of the mass function of gravitation-
ally bound, virialized objects. This method is based on
two main assumptions:

(1) the field of density fluctuations δ ≡ δρ/ρ in a lin-
ear approximation can be described by a Gaussian dis-
tribution;

(2) the gravitational collapse of regions of enhanced
density isolated from the Hubble expansion (massive
halos) can be described using a spherically symmetric
approximation.

Although the second assumption is a rather crude
idealization of the real evolution of density peaks, stud-
ASTRONOMY REPORTS      Vol. 45      No. 3      2001



CURRENT STATUS OF MODELS WITH HOT AND COLD DARK MATTER 165
ies carried out over 20 years have shown that the main
result of such an approach—the integral mass func-
tion—is stable and in good agreement with numerical
simulations of the N-body problem ([32] and references
therein). Unfortunately, the basic formalism does not con-
tain a mechanism for the merging of several objects,
resulting in the formation of a more massive object. There-
fore, as a rule, the Press–Schechter method is applied to
analyses of spatial distributions of objects with large
masses (such as galaxy clusters), when the effects of
merging are negligible.

In accordance with the Press–Schechter formalism,
the spatial density of virialized halos with masses
exceeding some value M is determined by the expres-
sion

(1)

where

(2)

is the differential mass function, M = ρ0R3, ρ0 is the

matter density in the Universe, δc the threshold density
contrast for the formation of a halo (δc =1.686 [33]),
and σR the dispersion of linear mass perturbations in a
sphere with radius R (a “top-hat” filter), which is an
integral function of the power spectrum of the density
perturbations:

(3)

Here,  = P(k)T2(k) is the dimensionless power

spectrum; P(k) = Akn + 3 the primordial density-pertur-
bation spectrum; A a normalization constant; T(k) the
transition function, which describes the evolution of
density perturbations in the Universe and depends on
Ων, Ωb, and h; and W(kR) the Fourier transform of a

“top-hat” smoothing function, W(x) = (sinx – xcosx).

We can see from Eqs. (1) and (2) that the integral
curve is determined primarily by the normalization of
the perturbation spectrum, and consequently can be
used to calculate this normalization. The dependence of
N (>M) on σ8 for fixed values of the other parameters is
illustrated in Fig. 1, and the dependence on Ων is shown
in Fig. 2. The ten observational points were taken from
[34] and are listed in the table. Similar plots can be
drawn for the other model parameters, however, the
dependence of N (>M) on n, Ωb, and h is less pro-
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nounced. For example, when n is varied, the change in
the shape of the curves has an opposite character than
in the case of Ων. The curves have a constant amplitude
of M . 1014.8M(; their slopes vary, but the discrepancy
between the curves for the limiting values n = 0.8 and 1.4
is approximately half that for the corresponding limiting
values Ων = 0.4 and 0 in Fig. 2. The functions N (>M) for
various values of Ωb and h virtually coincide.
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Fig. 1. Dependence of N(>M) on σ8 (n = 1, Ων = 0, Ωb =
0.05, h = 0.5). The upper curve corresponds to the model
with σ8 = 0.61, the middle curve to σ8 = 0.52, and the lower
curve to σ8 = 0.47. The observational data are marked by
dots.
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Fig. 2. Dependence of N(>M) on Ων (σ8 = 0.52, n = 1, Ωb =
0.05, h = 0.5). The solid curve corresponds to the model
with Ων = 0, the dashed curve to Ων = 0.2, and the dotted
curve to Ων = 0.4. The observational data are marked by
dots.
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We used a χ2 criterion for our statistical analysis.
This distribution describes the sum of the squares of
independent quantities characterized by a normal dis-
tribution with zero mathematical expectation and unit

dispersion. The model with minimum χ2 (  = 1.43)
has σ8 = 0.52, n = 1.3, Ων = 0.3, Ωb = 0.01, and h = 0.7.
Yet, what is the statistical significance of this result?

A statistical analysis of the cosmological models
under investigation is illustrated in Fig. 3, which shows

the distribution function ∆ (a) =  – , where

a = σ8 and  is the minimum χ2 at the hypersurface

χmin
2

χ1
2 χa

2 χmin
2

χa
2

0.46
σ8

0.50 0.54 0.58 0.62
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40

30
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0

–10

∆χ2
1
 = χ2 – χ2

min

5σ

4σ
3σ
2σ

1σ

Fig. 3. ∆  ≡ χ2 –  as a function of σ8. The curve

marked by right-angle crosses corresponds to the approxi-
mation for the transition function from [36], while the curve
marked by oblique crosses corresponds to the approxima-
tion from [35]. The confidence levels are shown by horizon-
tal lines.

χ1
2 χmin

2

Observational data on the number density of galaxy clusters
[16]: N(>M) = A × 10–B (h / Mpc)3, M = C  × 1015 M(/h

A B C

13.5 6 ± 0.18 0.18

7.5 6 ± 0.23 0.264

6.0 6 ± 0.18 0.30

3.5 6 ± 0.23 0.34

1.2 6 ± 0.18 0.48

6.9 6 ± 0.23 0.50

3.7 6 ± 0.23 0.60

2.0 6 ± 0.23 0.70

1.5 7 ± 0.3 0.78

1.5 8 ± 0.3 1.20

Note: Statistical errors are 1σ.
(a = const) in the five-parameter model space. The 1σ,

2σ, and 3σ levels correspond to the values ∆  = 1, 4, and
9, respectively. We can see that a high level of statistical
significance (3σ or more) was achieved in the determi-
nation of σ8. Using only the Press–Schechter method
does not enable the specification of the values of the
other model parameters, even with a lower statistical
significance (for example, 1σ), and any values of these
parameters within the intervals under consideration are
allowed.

To estimate deviations associated with the accuracy
of our approximation of the transition function, we cal-
culated cosmological models based on two different
approximations. The first (the curve is marked by
oblique crosses in Fig. 3) was taken from [35], whereas
the second (marked by right-angle crosses) was taken
from [36]. Figure 3 shows that the two analytical approx-
imations do not contradict each other, and lead to similar
results for σ8. Our conclusion about the large statistical
uncertainty of the other model parameters remains valid,
and does not depend on the chosen approximation.

Thus, the Press–Schechter method enables us to
determine a range of allowed values only for the single
parameter σ8, but with very high accuracy: the 1σ sta-
tistical error is 0.01. Taking into account systematic
experimental errors and the accuracy of the Press–
Schechter approximation increases somewhat the total
error in σ8 (see, for example, [37, 38], where the total
error was estimated to be 0.04).

3. ANISOTROPY OF THE COSMIC MICROWAVE 
BACKGROUND RADIATION

3.1. Large-Scale CMBR Anisotropy

Large-scale CMBR anisotropy ∆T/T is intrinsically
associated with metric perturbations due to the Sachs–
Wolfe effect [39]:

(4)

where E and R are the times of the emission and recep-
tion of a photon, hik is the metric perturbation tensor,
∂/∂η is the derivative with respect to conformal time,
the integration is carried out along the line of sight, and
ei = (1, e).

As is known, perturbations of the metric can be sep-
arated into three classes: scalar (responsible for density
perturbations and the potential velocity field), vector
(associated with the vortex velocity field), and tensor
(describing gravitational waves) [40]. In inflationary
theory, based on the existence of a scalar field in the
early Universe, only perturbations of the first and third
types are created. Inflation does not discriminate
against any type of perturbation, but the absence of vec-
tor and spinor fields in the linear approximation leads
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to the absence of a vortex mode in first-order perturba-
tion theory.

The relation between the amplitudes of the scalar
and tensor modes depends on the shape of the inflaton
potential; the relative amplitude of gravitational waves
in some inflationary models is small, whereas in other
models it approaches the amplitude of the scalar mode
[15–17, 21, 22, 41–44]. As a rule, gravitational waves
are intensively created if the density-perturbation spec-
trum produced in the course of inflation differs consid-
erably from a flat spectrum, or is not a power-law at all
(as in the cases of power-law [20] or Λ inflation [21, 22],
respectively). The energetic scale of such inflation
should be of the order of the Grand Unification energy
(Hinf * 1013 GeV).

Despite the large amount of observational data that
has been obtained, the available information remains
insufficient to draw unambiguous conclusions about
the amplitude of the gravitational-wave mode of the
metric perturbations. This will become possible only in
several years, when high-precision measurements of
the polarization properties of the CMBR anisotropy
and the spatial distribution of galaxies on scales to
~1000 Mpc will be carried out. Such polarization mea-
surements are scheduled for the largest Russian radio
telescope RATAN-600 and other ground-based tele-
scopes, as well as satellites associated with future space
missions; measurements of the spatial distribution of
galaxies will be conducted as part of the SDSS (Sloan
Digital Sky Survey) and other projects. Thus, due to the
absence of data on the amplitude of gravitational
waves, we will treat this as an extra parameter to be cal-
culated in the model.

From a quantitative point of view, the amplitude of
gravitational waves can conveniently be expressed in
terms of the relative contribution of gravitational waves
to the large-scale CMBR anisotropy T/S:

(5)

In all reasonable models, the value of T/S does not
exceed several units. Our subsequent analysis will be
restricted to models with T/S ∈  [0, 3].

Using an expansion of ∆T/T in spherical functions
and several well known relations, we can write the con-
tribution of density perturbations in the form

(6)

where

(7)
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Here,

(8)

is the instrumental function of DMR COBE. The quan-
tities Sl were calculated in a large-scale approximation
(T(k) = 1), whose accuracy is somewhat different for
different harmonics, but is always &3%. The main con-
tribution to S is obviously produced by harmonics with
l & 10. The results of calculating T/S for Ωb = 0.05 and
h = 0.5 and 0.6 are shown in Figs. 4 and 5, respectively.

We can see in these figures that the CDM model nor-
malized to σ8 = 0.52 is inconsistent with the observa-

Wl
2l 1+

27
-------------- 
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2
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Fig. 4. The required contribution from cosmological gravi-
tational waves to the CMBR anisotropy T/S as a function of
n and Ων (σ8 = 0.52, Ωb = 0.05) when h = 0.5. The dashed
curve corresponds to the model with Ων = 0, the dotted curve
to Ων = 0.1, the dot–dash curve to Ων = 0.2, the double-dot–
dash curve to Ων = 0.3, and the solid curve to Ων = 0.4. The
thick line shows the relation T/S = (1 – n).
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Fig. 5. Same dependences as in Fig. 4 for h = 0.6.



168 MIKHEEVA et al.
tions. Imposing a restriction on the contribution of
gravitational waves (T/S < 0.5) and requiring that devi-
ations from a flat spectrum be small (0.92 ≤ n ≤ 1.02),
we obtain a lower limit for the density of hot particles
Ων > 0.1 and an upper limit for the Hubble constant
h < 0.6. If we consider a stronger restriction T/S ≤ 0.3,
only models with h . 0.5 and n < 1 are consistent with
the observational data. Therefore, small values of T/S
are allowed only in the region of red spectra (n < 1) and
small h (<0.6). The violation of these conditions leads
to large values of T/S (*1).

As Ων increases, the constraints on T/S become
weaker; however, even when Ων ≤ 0.4, cosmological
models with h + n ≥ 1.5 require a considerable contri-
bution from gravitational waves:

(9)

On the other hand, if the scale-invariant spectrum (n = 1)
is fixed, and T/S varies over a wide range of values, the
observational data are consistent with any value of Ων
when h & 0.6.

Models satisfying the relation T/S = 6(1 – n), which
is well known for power-law inflation (see, for exam-
ple, [41–44]), are denoted in Figs. 4 and 5 by the thick
straight lines. If the density-perturbation spectrum was
formed in the course of power-law inflation, the
allowed region of parameter values is the segment of
this line delimited by the dashed (Ων = 0) and solid
(Ων = 0.4) curves. In this case, for various values of Ων
and h, the slope of the density-perturbation spectrum
can vary from 0.87 to 0.97 (and T/S, respectively, from
0.8 to 0.2) when h = 0.5 and from 0.82 to 0.92 (and T/S
from 1.1 to 0.5) when h = 0.6.

T
S
--- * 0.3.

n
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T/S
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h = 0.55
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T/S = 6(1 – n)

1.20

Fig. 6. The required contribution from cosmological gravi-
tational waves to the CMBR anisotropy T/S as a function of
n and h (σ8 = 0.52, Ωb = 0.05) when Ων = 0.4. The dashed
curve corresponds to the model with h = 0.70, the dotted
curve to h = 0.65, the dot–dash curve to h = 0.60, the double-
dot–dash curve to h = 0.55, and the solid curve to h = 0.50.
The thick line shows the relation T/S = 6(1 – n).
In general, T/S increases linearly with h (with the
other parameters fixed), as we can see in Fig. 6. There-
fore, the T/S curves with the highest Ων = 0.4 can be
used to find the minimum allowed values of T/S. In par-
ticular, we have for the models with n = 1 the following
estimate of the concentration of primordial gravita-
tional waves:

(10)

For the family of models with Ωb = 0.05 and h = 0.5,
we were able to obtain a simple approximation of T/S
as a function of n and Ων, which reproduces ∆T/T to
better than 11% in the interval 0.1 ≤ T/S ≤ 3:

(11)

3.2. The Acoustic Peak in ∆T/T
The position and amplitude of the first acoustic

(Doppler) peak of Sakharov oscillations in the CMBR
anisotropy represent a sensitive test of many key cos-
mological parameters. Although the current measure-
ment accuracy does not enable us to draw firm conclu-
sions about allowed cosmological models, the data
from numerous measurements of ∆T/T near the acous-
tic peak indicate that its characteristics are approxi-
mately the same as in the standard CDM model without
gravitational waves, normalized to the amplitude of the
large-scale CMBR anisotropy [45–47]. Despite the
inexact nature of this conclusion, associated with the
appreciable systematic and statistical errors of the
observations at 1 ~ l ~ 200, it is reasonable to ask the
following question: Can any of the models described
above imitate the corresponding behavior of the coeffi-
cients Sl of the standard CDM model normalized to the
COBE data? We list below the models possessing pre-
cisely this property—a rather powerful acoustic peak;
however, we delay attempts to estimate the parameters
of this peak more exactly until data from future experi-
ments become available.

The number density of galaxy clusters and the large-
scale CMBR anisotropy impose a certain relation on pos-
sible values of cosmological parameters. After excluding
from consideration models that do not satisfy the above
two tests, let us turn to the amplitude of the acoustic peak
in the allowed models. It is obvious that the position of the
acoustic peak (which depends primrily on the curvature
of the Universe) will be approximately the same in all
the models under consideration (i.e., lp . 200, corre-
sponding to a three-dimensional scale ~100h–1 Mpc). We
computed Sl using the CMBFAST numerical code [48],
whose accuracy is sufficient for our estimates.

The computational results obtained with the
CMBFAST code can be conveniently presented in the
form of the functions Rl ≡ l(l + 1)Sl/(l + 0.5) and the cor-
responding quantities for the primordial gravitational
waves. Since the sum of the contributions from both

T/S * 10 h 0.47–( ).

T
S
--- 30 n 0.7–( )2

10Ων 1+
----------------------------- 10Ων n3/2 1.06–( ).+=
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types of perturbations (scalar and tensor) was already
normalized to the COBE signal, and the contribution
from the gravitational-wave mode is negligible on the
scale of the first Sakharov-oscillation peak, we will call
R ≡ Rl = 200/1.1 × 10–10 the relative amplitude of the
acoustic peak. In the standard model, R = 5.1. We will
use this number as a reference point in our subsequent
analysis of the models (it corresponds to a first acoustic
peak with amplitude ~70 µK).

Let us now estimate factors affecting the value of R
in the selected models. (Recall that these models corre-
spond to σ8 = 0.52 and T/S ∈  [0, 3].) An increase in T/S
(with other model parameters fixed) obviously leads to
a decrease in R. If Ων = 0, and n, Ωb, and h are near
their values for the standard model, the relative ampli-
tude of the acoustic peak decreases by a factor of
.T/S + 1 . 4; i.e., this peak is virtually absent. To increase
the peak amplitude to its standard value, we need a very
large baryon density Ωb . 0.35, which contradicts data on
primordial nucleosynthesis (see also [49]).

Another way to increase the acoustic peak is to con-
sider a red density-perturbation spectrum and/or
increase the fraction of hot dark matter, since both these
factors will flatten the dimensionless power spectrum
in the range 10–100h–1 Mpc. On the other hand, when
Ων is appreciably increased, blue spectra begin to play
an important role, since red spectra become incompati-
ble with the condition T/S ≥ 0. We can judge the influ-
ence of a slope in the density-perturbation spectrum
with n > 1 only through numerical analysis.

Our computations show that the relative amplitude of
the acoustic peak R when Ωb = 0.05 and h = 0.5 for mod-
els with n ≥ 0.9 and Ων ≥ 0.2 is slightly smaller than the
value of R in the standard model (Figs. 7 and 8). Either of
these conditions—n < 0.9 and/or Ων < 0.2—decrease the
relative amplitude of the acoustic peak by over 30% (i.e.,
R < 3.5). In CDM models (Ων = 0), the acoustic peak
is virtually absent.

Such a strong relation between the amplitude of the
acoustic peak and the value of Ων can be explained by
the fact that all the models considered here were nor-
malized to the observed mass function of galaxy clus-
ters (i.e., to σ8 = 0.52; see Section 2). Therefore, the
height of the acoustic peak, which is determined by the
power spectrum on scales ~100h−1 Mpc, depends
directly on Ων (since it is responsible for the shape of
the transition function). When Ωb is increased to 0.1
(see the right-hand vertical axis in Figs. 7 and 8), the
amplitude of the acoustic peak coincides with its stan-
dard value (R = 5.1) to better than 10% in all the mod-
els with blue spectra (n ∈  [1, 1.2]) and Ων ≥ 0.3, as well
as in models with moderately red spectra (n ∈  [0.9, 1])
and Ων ≥ 0.2.

Thus, the presence of a high acoustic peak in ∆T/T
(at the level of R * 4) can be satisfied in the group of
standard power-law spectra (n ∈  [0.9, 1.2]), but
ASTRONOMY REPORTS      Vol. 45      No. 3      2001
requires a considerable concentration of hot dark mat-
ter (Ων ∈  [0.2, 0.4]) in the class of cosmological models
studied here.

4. DISCUSSION

As observational data on the large-scale structure of
the Universe are accumulated, the requirements for the-
oretical cosmology grow. One manifestation of this ten-
dency is the increase in the number of parameters
required in models of the Universe.
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Fig. 7. Dependence of the relative height of the Doppler
peak R on n for five values of Ων (0.4 to 0, from top to bot-
tom, respectively), h = 0.5, and σ8 = 0.52. The numbers
along the left-hand vertical axis correspond to Ωb = 0.05,
and those along the right-hand vertical axis to Ωb = 0.1. The
unshaded region corresponds to T/S ∈  [0, 3].

Fig. 8. Dependence of the relative height of the Doppler
peak R on Ων for four values of n (0.9 to 1.2, from top to
bottom and from left to right), h = 0.5, and σ8 = 0.52. The
numbers along the left-hand vertical axis correspond to
Ωb = 0.05, and those along the right-hand vertical axis to
Ωb = 0.1.
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There are several paths for the development of the
theory, depending on the adopted assumptions about
the nature of dark matter in the Universe. In particular,
cosmological models with stable particles (of both cold
and hot dark matter) include both spatially flat models
with a Λ term and the parameter T/S and open models
(κ = –1). The recent BOOMERanG and MAXIMA
experiments testify that the Universe is flat (κ . 0).
Modern observations of supernovae at large distances
demonstrate that models with Λ > 0 are promising;
however, it will not be possible to draw final conclu-
sions for quite some time [50].

To formulate the problem of estimating the parame-
ters of cosmological models most correctly, all these
quantities should be initially treated as free parameters.
Next, based on observational data, a range of allowed val-
ues can be specified for each of the parameters. (These
intervals will obviously depend on the amount and quality
of observational information available.) Of course, this
formulation is idealized and far from realization, pri-
marily because the accuracy and uniqueness of the
observational data are insufficient for the solution of
multi-parameter problems.

In the present paper, we have studied cosmological
models with mixed dark matter and primordial gravita-
tional waves, and shown that there is a family of models
satisfying three structural tests: the large-scale CMBR
anisotropy (on scales ~1000h–1 Mpc), the first acoustic
peak in ∆T/T (on scales ~100h–1 Mpc), and the number
density of galaxy clusters (on scales ~10h–1 Mpc). Our
analysis has revealed no substantial constraints on
either the slope of the density-perturbation spectrum or
the baryon density in the Universe (n ∈  [0.9, 1.2], Ωb ∈
[0.3, 0.11]). Larger values of the Hubble constant
require larger values of T/S, but moderate values of h
(≤0.6) are compatible with fairly small values of T/S
(≤1). We have derived significant constraints only on the
parameter Ων ∈ [0.2, 0.4]: generation of the observed
acoustic peak requires a considerable contribution to the
total density of the Universe from hot dark matter.
Thus, inclusion of hot dark matter solves the problem
of matter-dominated models with a moderate number
of baryons (i.e., consistent with the observations and
standard nucleosynthesis theory).

The requirement that there be an appreciable contri-
bution from hot dark matter could be decisive for the
class of models considered here if we take into account
other observational information (Lyα clouds; early gal-
axies; quasars; the power spectra of spatial distributions
of galaxies and their groups and clusters; the large-
scale velocity field), as well as the results of future
experiments on determination of the Hubble constant,
the age of the Universe, the deceleration parameter
(using type Ia supernovae), and neutrino rest masses.
On the other hand, the introduction of a non-zero Λ
term in cosmological models could lead to less restrictive
constraints on Ων. Therefore, in the next stage of investi-
gations, it seems reasonable to use additional tests already
available to “fine tune” more general models (i.e., incor-
porating such parameters as Λ, κ, and so on).

5. CONCLUSIONS

Our analysis of a five-parameter family of cosmo-
logical models (with Λ = κ = 0) has led to the following
results.

(1) Using the Press–Schechter method has enabled
us to calculate the dispersion of the mass fluctuations
on scales 8h–1 Mpc to high accuracy. After analyzing
the observational data [34], we obtain σ8 = 0.52 ± 0.01.

(2) Using only a Press–Schechter formalism and
data on the number density of galaxy clusters does not
enable us to draw conclusions about other parameters
of the cosmological models (such as n, Ων, Ωb, and h)
with sufficiently high statistical significance.

(3) None of the models with mixed dark matter, n = 1,
and T/S = 0 satisfies the observational data on the num-
ber density of galaxy clusters and the amplitude of the
large-scale CMBR anisotropy. Therefore, in the frame-
work of the family of cosmological models considered,
we must either abandon a flat density-perturbation spec-
trum or introduce a non-zero amplitude for the primordial
gravitational waves (or both simultaneously).

(4) Small values of T/S are allowed only in the
region of red spectra (n < 1) and small h (<0.6). Viola-
tion of these conditions leads to large values of T/S
(*1).

(5) As Ων increases, constraints on T/S become less
restrictive. However, even when Ων ≤ 0.4, the cosmo-
logical models with h + n ≥ 1.5 require a considerable
contribution from gravitational waves: T/S * 0.3.

(6) We estimate for the concentration of primordial
gravitational waves in the models with n = 1 and Ων ≤ 0.4,
T/S ≥ 10(h – 0.47).

(7) An analytic approximation for T/S as a function
of n and Ων was derived for the models with Ωb = 0.05
and h = 0.5 [see formula (11)].

(8) Due to the requirement that both normalizations

(σ8 = 0.52 and (∆T/T  = 1.1 × 10–10) be satisfied
simultaneously via the introduction of the additional
parameter T/S, the relative height of the acoustic peak
R turns out to be lower than in the standard model.
R is decreased to < 30% of the standard value (R = 5.1)
in models with a large concentration of hot particles
Ων ∈  [0.2, 0.4] for a wide range of power spectra—
from moderately red to blue (n ∈  [0.9, 1.2]). Either of
the conditions Ων < 0.2 or n < 0.9 decreases the relative
height of the acoustic peak by over 30% (i.e., R < 3.5
in the models with Ωb = 0.05 and h = 0.5). The acoustic
peak is virtually absent in CDM models.

(9) The discrepancy in R for the models considered
here and for the standard model decreases when the
baryon density is increased. When Ωb is increased to

)10°
2

ASTRONOMY REPORTS      Vol. 45      No. 3      2001



CURRENT STATUS OF MODELS WITH HOT AND COLD DARK MATTER 171
0.1, the amplitude of the acoustic peak coincides with
its standard value (R = 5.1) to better than 10% in all
models with blue spectra (n ∈  [1, 1.2]) and Ων ≥ 0.3, as
well as in models with moderately red spectra (n ∈
[0.9, 1]) and Ων ≥ 0.2.

(10) Thus, increasing Ων to values in the interval
[0.2, 0.4] is an effective way to solve the problem of the
first acoustic peak in the CMBR anisotropy for spa-
tially flat models with a zero Λ term, since the corre-
sponding baryon density remains within the constraints
imposed by data on primordial nucleosynthesis.

Therefore, if we introduce a cosmological gravita-
tional-wave background that contributes to the large-
scale CMBR anisotropy, models dominated by mixed
dark matter are quite reasonable. However, reproduc-
tion of the high acoustic peak in ∆T/T on angular scales
θ . 1° observed in the BOOMERanG, MAXIMA,
VSA, MAP, and other experiments requires a consider-
able fraction of hot dark matter in these models (Ων * 0.2).
This makes observational tests on galactic scales and con-
sideration of more general models even more urgent.
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Abstract—The mutual arrangement of very rich Abell clusters of galaxies influences the radio properties of
these clusters, making it possible to explain certain peculiarities of their radio correlation functions. © 2001
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

According to our current understanding, the large-
scale structure of the Universe arose during an early
stage in the development of nonlinear perturbations.
Quantitative estimates of the parameters of this large-
scale structure have relied primarily on statistical analy-
ses of catalogs of galaxies and clusters of galaxies. Char-
acteristic scales for the distribution of matter in the Uni-
verse have been identified using widespread correlation-
analysis methods. The largest scales have been derived
from correlation-function calculations for samples of
galactic clusters. Analysis of the two-point correlation
function for all clusters in the catalog of Abell [1] reveals
a characteristic scale r0, 1 ~ 20h–1 Mpc [2–4], where h =
H0/100 km s–1 Mpc–1 and H0 is the Hubble constant.
Together with this scale, another, larger scale was iden-
tified, r0, 2 ~ 125h–1 Mpc, associated with the distribu-
tion of the richest clusters. In 1974, Sokolov and
Shvartsman [5] proposed to use the richest Abell clus-
ters as tracers of large-scale structure. The scale r0, 2
was first derived in 1984 using the 6-m telescope of the
Special Astrophysical Observatory as part of the
“Northern Cone” program [6], based on optical obser-
vations of Abell clusters with richness RA ≥ 2, listed as
compact by Zwicky et al. [7]. Kopylov et al. [6] consid-
ered clusters within a conical surface with opening
angle 60° and its axis oriented toward the Northern
Galactic pole.

There are several independent pieces of evidence for
the existence of inhomogeneities in the distribution of
emitting matter on scales of the order of 100–150 h–1 Mpc.
These include studies of one-dimensional slices to red-
shifts of z = 0.3 [8]; the Great Attractor [9]; clustering
of galactic clusters, such as Shapley concentrations [10];
and the tendency for groups and clusters of galaxies to be
concentrated in comparatively thin surfaces, filaments,
and nodes of the large-scale structure that are bounded
by large, relatively empty regions (voids) [11]. Note that,
based on upper limits to the temperature fluctuations
∆T/T on the corresponding angular scales ~1° [12, 13],
1063-7729/01/4503- $21.00 © 20173
the inhomogeneity in the distribution of matter on these
scales (which is apparently primarily dark; i.e., non-emit-
ting) must be small, with mass fluctuations δM/M < 0.05.
Pariœskiœ [14] identifies excess blackbody noise detected at
7.6 cm in the “Kholod” experiment and the “Large Trio”
Project (based on the RATAN-600 telescope, VLA, and
6-m SAO telescope) with Sakharov oscillations arising in
the multi-component (photon, electron, baryon) plasma
long before recombination.

The results of correlation analyses distinguish large-
scale structure in the spatial distribution of the richest
clusters—the most massive and concentrated formations
(in terms of both emitting and dark matter)—while the
poorest clusters display a Poisson distribution on these
scales. On the other hand, it is known that radio sources
tend to be located in regions with enhanced galaxy den-
sities. For example, Shaver and Pierre [15] and Zhurav-
lev and Fetisova [16] note anisotropy in the distribution
of radio sources on the sky in the direction of the super-
galactic plane. The data of Ledlow and Owen [17] indi-
cate that clusters with bright optical galaxies (see the
classifications of Bautz and Morgan [18] and Rood and
Sastry [19]) contain radio sources appreciably more
often than do clusters without dominant bright mem-
bers. These radio sources are usually identified with
giant cD galaxies, which possess massive halos and
often have multiple nuclei. Recall that, according to the
classification of Fanaroff and Riley [20], extragalactic
radio sources can be divided into two types, called FRI
and FRII, based on their radio power and the morphol-
ogy of their extended radio structures. Note that any
relation between radio luminosity Pr and radio size lr is
likely subject to cosmological evolution. This is proba-
bly why a study of 540 radio sources from the 3CR and
4C catalogs [21] did not confirm the existence at large

z of two sequences—a “main sequence” with Pr ~ ,
corresponding to FRI objects, and a “giant sequence” with

Pr ~ , corresponding to FRII objects—as proposed
earlier by Shkovskiœ based on data for about three dozen
nearby radio galaxies.
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The evolution of a radio source in the dense medium
of a cluster could differ appreciably from the evolution
of a source in a low-density medium. It is noted in [23]
that the probability of a galaxy becoming a radio source
increases if it has a nearby neighbor. Isolated close
pairs have a higher probability of containing radio
sources than do wide pairs. Recently, the characteristics
of radio sources have been investigated based on much
richer statistical material from a deep survey by the
RATAN-600 radio telescope [24]. According to [25],
the Pr values for galaxies in clusters lies in a substan-
tially narrower interval than do those for field galaxies.
Ledlow and Owen [17, 26] found that the radio sources
associated with 747 Abell clusters were usually located
within 0.1° of the cluster centers, with the number of
radio sources growing with the richness of the cluster.

If radio sources are associated with rich clusters, we
should expect the distribution of radio sources to have
a scale equal to the clustering scale characteristic of
rich clusters. However, according to analyses of the
spatial distribution on the sky of 329 radio sources with
flux densities S (1.4 GHz) > 0.5 Jy, redshifts 0.01 < z < 0.1,
and Galactic latitudes |b| > 15° [27], and also of 21490
radio sources with S (4.85 GHz) ≥ 35 mJy, 20° < δ < 74°,
0h < α < 24h, and |b | ≥ 10° from the 87GB survey [28],
the scale r0, 2 characterizing the richest clusters is not
displayed by these samples of radio sources.

In addition, Kooiman et al. [28] note certain peculiari-
ties in the behavior of the correlation function as a func-
tion of flux on modest angular scales. Figure 1 of [28]
presents two-point correlation functions for four samples
of radio sources with limiting fluxes S (4.85 GHz) > 300,
60, 45, and 35 mJy. This figure shows that the ampli-
tude of the correlation function becomes negative for
angular distances θ = 0 2–0 4 for the sample with
S (4.85 GHz) ≥ 300 mJy and for θ = 0 8–1 0 for all
four samples. Does this occur by chance, or is it the
result of some factors acting on the correlation between
radio sources?

In order to elucidate the possible factors capable of
masking intrinsic correlation scales, we considered the
radio emission from VLA surveys associated with the
richest Abell clusters. We posed the question: how does
a quasi-structure with a characteristic scale for inhomo-
geneity influence the radio emission of the brightest
members of galactic clusters? The current paper ana-
lyzes the radio emission of very rich Abell clusters for
various distances to the nearest massive cluster and var-
ious redshifts.

2. OBSERVATIONAL DATA

We investigated a sample of the richest Abell clus-
ters with the most powerful radio emission. We selected
clusters with richness NA ≥ 70 according to the defini-
tion of Abell et al. [29]. The radio data for the nearest
Abell clusters were taken from the VLA survey [30],
which includes clusters with Abell distance classes to

.° .°
.° .°
D ≤ 3. We supplemented this sample with more distant
objects from the surveys [31, 32]. The observations for
these surveys were carried out at 1.4 GHz in the A, B,
C, and D configurations of the VLA [33]; the angular
resolution achieved varies from 1 2 in the A configura-
tion to 50″ in the D configuration. The sample is com-
plete to S ≥ 10 mJy for z < 0.09 and S ≥ 200 mJy for
more distant objects (0.09 < z ~ 0.25) [17].

The final sample contains 54 rich Abell clusters,
listed in the Table. The first six columns present (1) the
Abell cluster number, (2)–(3) the right ascension α and
declination δ of the cluster centers at epoch B1950, (4) the
cluster richness NA, (5) the redshift z (the redshifts for the
three clusters A1234, A1650, and A1763 were measured
using the 6-m SAO telescope as part of the “Northern
Cone” program [6]), and (6) the distance r in Mpc to the
nearest neighbor of the same richness NA ≥ 70. For close
pairs with small differences in redshift between the ith
cluster, which contains a radio source, and the jth
neighbor (|zi – zj | ! 1), the distance i was determined
from the condition

where

is the distance to the cluster in a comoving coordinate
system. All data in the table are presented for H0 =
50 km s–1 Mpc–1 and q0 = 0.5. Column 7 gives the angu-
lar distance θ to the nearest neighbor in degrees, and
column 8 gives the logarithm of the 1.4-GHz radio
luminosity Pr in W/Hz, where

and S is the flux density. Column 9 presents the loga-
rithm of the X-ray luminosity LX in erg/s. We took the
X-ray data from the complete ROSAT sample [34],
which includes all 242 X-ray-bright Abell clusters over
the entire sky at |b | ≥ 20°. The sample of X-ray clusters
was limited to those with |b | ≥ 20° nad fluxes exceeding
5.0 × 10–12 erg cm–2 s–1 in the 0.1–2.4 keV band.

To estimate the completeness of the sample of radio
sources in the table, let us consider the sample of rich
Abell clusters. In any catalog, there are selection effects
due to distance; i.e., objects begin to be lost starting at
some distance z. Rich galactic clusters are not numer-
ous, so that it is very important not to lose any; a guar-
antee of completeness can be obtained by limiting the
region under study. For this reason, we must establish
the distance to which selection effects can be avoided
as accurately as possible, in order not to lose distant
objects from the sample.

We analyzed the completeness of the sample using
the procedure applied in the “Northern Cone” program
[35], and investigated the dependence depicted in Fig. 1.

.″

r di d j– ,
j i≠

min=

d
cz

H0 1 z+( )
----------------------- 1

z 1 q0–( )
1 q0z 2q0z 1++ +
------------------------------------------------+ 
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Pr 4πdi
2S 1 z+( )2,=
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Rich Abell Clusters

No. Abell α (1950) δ(1950) NA z r, Mpc θ logPr
[W/Hz]

logLX
[erg/s]

1 2 3 4 5 6 7 8 9

24 0h19 9 23° 1′ 127 0.1338 69.2 5 26 25.23
69 0 35.0 18  4 106 0.1448 41.8 0.93 25.30
84 0 39.2 21  8 76 0.1030 18.6 1.41 25.51 44.45
98 0  43.8 20 13 185 0.1053 18.6 1.41 25.45

115 0  53.3 26  3 174 0.1971 154.7 8.61 26.38 45.16
224 1 35.8 –7 12 75 0.1617 133.1 3.23 25.35
286 1  55.9 –2  1 93 0.0791 22.8 2.87 23.81
401 2 56.2 13 23 90 0.0748 112.5 9.86 25.18 44.99
423 3  8.9 –12 18 89 0.0796 143.2 16.01 23.73
426 3  15.3 41 20 88 0.0179 179.9 101.17 25.20 45.10
478 4  10.6 10 21 104 0.0881 102.5 11.82 24.59 45.11
514 4 45.5 –20 31 78 0.0734 183.2 22.72 24.71 44.16
526 4 57.2 5 22 71 0.0541 162.9 4.37 24.76
562 6  46.5 69 20 70 0.1100 86.1 6.11 25.64
618 8  4.1 67 42 76 0.1193 93.1 7.26 25.49
629 8 10.3 66 35 78 0.1380 94.9 1.27 25.37
754 9 6.4 –9 26 92 0.0534 190.6 25.98 23.82 44.90

1190 11   9.0 41  7 87 0.0794 5.4 0.69 25.41 44.17
1203 11 11.2 40 34 75 0.0795 5.4 0.69 24.65
1234 11 19.8 21 40 88 0.1663 54.8 3.50 25.84
1307 11 30.2 14 48 71 0.0834 39.2 4.15 24.72
1356 11 39.9 10 43 77 0.0698 81.3 4.72 24.44
1367 11 41.9 20  7 117 0.0214 44.4 19.00 25.04 44.21
1412 11  53.1 73 45 86 0.0836 61.2 5.38 24.30
1446 11 59.3 58 18 85 0.1035 76.3 7.49 25.57
1455 12  1.3 28 16 91 0.1390 37.9 2.45 25.28
1552 12 27.3 12  1 75 0.0843 116.8 14.15 25.82
1562 12 31.8 41 27 77 0.1910 152.9 8.63 26.07
1650 12 56.2 –1 29 114 0.0845 20.3 2.44 24.60 44.89
1656 12  57.4 28 15 106 0.0231 44.4 19.00 24.19 44.86
1667 13 0.9 32 5 98 0.1648 26.6 0.70 25.61
1674 13 1.7 67 46 165 0.1055 28.8 1.68 25.18
1731 13 20.8 58 26 92 0.1932 133.2 4.63 25.76
1761 13 30.9 57 54 114 0.2272 149.2 7.09 25.73
1763 13 33.1 41 13 152 0.2279 95.5 3.35 26.29 45.17
1775 13  39.6 26 37 92 0.0724 56.5 1.61 24.88 44.46
1790 13  44.4 54 17 73 0.1210 61.9 4.65 25.22
1795 13 46.7 26 50 115 0.0622 56.5 1.61 25.20 45.05
1940 14 33.9 55 22 130 0.1396 6.9 0.36 25.60
1942 14 36.1 3 53 138 0.2240 236.4 9.95 26.28
2029 15 8.5 5 57 82 0.0767 95.6 1.75 25.11 45.19
2061 15 19.2 30 50 71 0.0777 35.7 3.63 24.28 44.59
2089 15 30.6 28 11 70 0.0734 17.2 2.22 24.93
2141 15 55.9 35 36 74 0.1579 73.8 4.82 25.40
2142 15 56.2 27 22 89 0.0896 96.1 8.79 24.67 45.32
2198 16 26.5 43 56 85 0.0798 136.1 11.86 23.93
2219 16 38.9 46 47 159 0.2070 287.1 7.17 25.63 45.30
2255 17  12.2 64  9 102 0.0808 112.7 10.95 25.25 44.68
2256 17 6.6 78 47 88 0.0581 133.1 15.07 24.63 44.85
2345 21 24.4 –12 21 107 0.1760 137.6 7.59 25.56 45.00
2365 21  40.2 –18 55 94 0.1873 137.6 7.59 25.74
2538 23 6.0 –20  9 72 0.0829 53.3 6.28 24.79
2617 23 30.8 9 12 95 0.1623 98.0 3.89 25.42
2672 23  52.6 26 10 70 0.2404 329.3 13.62 25.93

.m .°
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As a first step, we chose the outer boundary for the sam-
ple to be obviously further than the distance at which
the luminosity function begins to fall off. We then
divided the sample into “nearby” and “distant” parts
and calculated their mean fluxes. We used a χ2 criterion
to test for the statistical equivalence of the two subsam-
ples. If the two sample fluxes were found to be signifi-
cantly different, we moved the boundary slightly closer
and repeated the analysis. After several trials, the “dis-
tant” sample was found to be free of distance selection

5 10 15 20 25

10

8

6

4

2

0

z

z = 0.24
K

Fig. 1. Number density of clusters as a function of distance.
When constructing this relation, the volume of a cone was
divided by concentric spherical surfaces into layers with
equal volume. The number of clusters falling within each of
these layers of volume 26 × 106 Mpc3 was calculated. The
horizontal axis shows the number of equal volumes K.
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Fig. 2. Distribution of angular distances θ to the nearest
neighbor as a function of r.
effects, and the corresponding boundary was adopted
as that for the sample as a whole. By excluding distance
selection effects in this way, we ensure that we do not
lose any clusters from the sample studied. Our data
indicate that the richest Abell clusters (RA ≥ 2) are com-
plete to z = 0.24 with probability P = 0.95.

The resulting sample can thus be considered com-
plete to z = 0.24. We adopted a spherical surface with
this radius as the outer boundary of the region to be
studied. In order to avoid possible distance selection
effects influencing the classification of cluster richness
and compactness, we also introduced an inner bound-
ary to the study region, z = 0.015. We can see that all
clusters from the Table with the exception of A2672
(z = 0.2404) fall within these two spherical surfaces;
since A2672 lies very near the outer boundary, we have
also included it in our analysis.

3. DISCUSSION OF RESULTS

Let us consider the radio luminosity Pr on the two
scales r0, 1 and r0, 2, having initially determined two sub-
samples with z greater than and less than z' = 0.09.
The first subsample, with z > z', contains 27 clusters.
The flux densities of the radio sources in this subsample
are limited to values S ≥ 200 mJy, or radio luminosi-
ties Pr ≥ 1024.98 W/Hz. The second subsample, with z < z',
also contains 27 clusters. Its radio sources have S ≥ 10 mJy
and Pr ≥ 1023.55 W/Hz.

Further, to elucidate the dependence of Pr on the
scales r0, 1 and r0, 2, each of the two subsamples was
divided into two groups according to the distance r to the
nearest neighbor larger and smaller than r'. We chose the
boundary between these subsamples to be r' = 120 Mpc,
between r0, 1 = 40 Mpc and r0, 2 = 250 Mpc. This made it
possible to distinguish clusters according to the two clus-
tering scales r0, 2 and r0, 1. The first subgroup contained
clusters with relatively distant neighbors (r > r') from
both z subsamples, and included rich clusters responsi-
ble for clustering on the scale r0, 2. The second subgroup
contained clusters with closer neighbors r < r' (with clus-
tering on the scale r0, 1). The subgroups obtained in this
way contain the following numbers of clusters Ncl:

Figure 2 shows the distribution of angular distances
to the nearest neighbors for 16 wide pairs (upper),
excluding the large angular distance θ = 101 17 for the
wide pair with r = 179.9 Mpc, which includes the near-
est cluster, in Perseus A426. We constructed the same
dependence for 37 close pairs (lower). The histograms
representing these angular distributions on the sky are

z r Ncl

>z' >r' 10

>z' <r' 17

<z' >r' 7

<z' <r' 20

.°
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very different. The maximum for wide pairs is observed
at θ = 6°–9°, while the maximum for close pairs is
shifted toward zero, θ = 0°–3°. Fewer than 30% of the
close pairs have an angular distance larger than 6°, and
separations exceeding 20° are absent. The probability that
these clusters are distributed randomly according to a χ2

criterion is less than 0.05.

To further analyze the luminosities of the radio
sources in rich clusters, we compare in Fig. 3 N(Pr) for
the four subgroups: the subsamples of distant (z > z')
and nearby (z < z') clusters and of wide (r > r') and close
(r < r') pairs. We can see that, among the wide pairs
(r > r'), sources with the highest radio luminosities are
concentrated in the distant clusters (z > z'), while wide
pairs with z < z' have weaker radio sources (Figs. 3a
and 3d). The distant (z > z') and nearby (z < z') subsam-
ples for the close pairs (r < r') have less different radio
luminosities (Figs. 3b and 3c). Thus, it appears that the
influence of the surrounding medium on the evolution
of radio sources that has been discussed in the literature
(see the Introduction) extends to the characteristic
scales for the distribution of rich clusters. We do not
exclude the possibility of gravitational action of the
rich clusters on the evolution of their associated radio
sources. This suggestion is based on the sizes of gravi-
tationally bound systems indicated by model computa-
tions. The estimates of [36] indicate that Abell clusters
gravitationally interact to distances r = 50 Mpc (~r0, 1),
while gravitational interactions are virtually absent at
larger distances r ≥ 100 Mpc (~r0, 2). The different tidal
perturbations exerted by nearby and distant clusters
apparently influence the evolution of a radio source dif-
ferently. For our sample, the mean radio luminosities

 for clusters with nearby neighbors lie in a narrower

interval, (r < r') = 1024.79–1025.49 W/Hz, than do the

mean  for clusters with distant neighbors, (r > r') =

1024.40–1025.84 W/Hz. The lower ends of the  intervals
correspond to z < z', and the upper ends to z > z'.

Together with the variation of Pr in the evolution of
clusters, we expect appreciable variations of the corre-
sponding X-ray luminosities LX. Figure 4 shows a diagram
of the luminosity in the –  plane. Below are
the number of clusters NX with X-ray fluxes above a
threshold of 5.0 × 10–12 erg cm–2 s–1 and the percent of
detected X-ray clusters in the total number of clusters
in each subgroup:

Pr

Pr

Pr Pr

Pr

Prlog LXlog

z r NX %

>z' >r' 3 30

>z' <r' 2 12

<z' >r' 4 57

<z' <r' 12 60
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We can see from Fig. 4 that there is no strong corre-
lation between Pr and LX. This is consistent with the
results of [37], but we note the following peculiarity.
The relative number of rich clusters with X-ray emis-
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Fig. 3. Comparison of the distributions of radio luminosities
Pr for four subgroups of Abell clusters with richness NA ≥ 70
as a function of z and r.
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Fig. 4. Luminosity diagram –  for Abell clus-

ters: the region z > z', r > r' is shown by fill circles; z > z',
r < r' by hollow circles, z < z', r > r' by filled stars, and z < z',
r < r' by hollow stars.

Prlog LXlog
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sion grows in the transition to smaller z, fivefold for
close pairs and twofold for wide pairs. This can affect
the morphology of the jets in radio sources.

It is interesting that, as a rule, the morphologies of
these radio sources classify them as FRI objects, and
only strong sources have FRII properties. Such FRI
radio sources are usually located in the central regions
of rich clusters, where there is much X-ray gas, and
where powerful cooling flows directed toward the cen-
ter form. These cooling flows can act against the devel-
opment of extended radio lobes by hindering their
expansion and possibly even forcing them backward,
which should decrease their extent and radio luminos-
ity with time. It would therefore not be surprising if,
with time, FRII radio sources could be transformed into
FRI sources. This should be accompanied by a decrease
in the radio brightness at the source’s outer edge and an
increase in the radio brightness closer to the center, in
the direction of the host galaxy. Taking into account the
lower mean radio luminosities of FRI sources, this
could explain the different positions of FRI and FRII
sources in the –  plane [21, 38].

The difference in the properties of radio sources
could also be associated with different rates of release
of gravitational energy, or different rotational angular
momenta for the central black holes brought about by
the accretion of gas onto them [39]. Other differences
in the properties of radio sources will come about due
to the propagation of relativistic particles into sur-
rounding media with different densities. As pointed out
by Gopal-Krishna and Wiita [40], the efficiency of
transforming the kinetic energy of the jets emerging
from the active galactic nucleus into radio emission is
enhanced in a dense medium, due to lower energy
losses to adiabatic expansion in the extended radio
structures.

We thus can see that the properties of radio sources
depend on many factors, but the dependence of Pr on z
is probably directly connected to the nearness of neigh-
boring rich clusters. The correlation between Pr and the
clustering scale supports this connection.

4. CONCLUSION

The rich galactic clusters whose radio luminosities
Pr we have analyzed are exclusively Abell clusters for
which redshifts, VLA maps, and X-ray fluxes have
been measured. The need to take into account the geo-
metrical characteristics of the Universe, the spatial dis-
tribution of the radio sources, and possible evolution of
their properties complicated the interpretation of the
observational data from the start. The situation is made
more difficult by the fact that the radio sources have a
range of spectral indices. However, some of the proper-
ties of radio sources in relatively nearby Abell clusters
may be more general, and be manifest in more distant
radio sources as well.

Prlog lrlog
First, the presence of negative correlation-function
amplitudes in the two angular-distance intervals θ =
0 2–0 4 and θ = 0 8–1 0 (see Fig. 1 in [28]) is easy
to understand if the dependence of Pr on the clustering
scale is preserved on these scales. Therefore, we can
expect the appearance of selection effects associated
with the restriction of the sample from the side of
strong fluxes. The loss of a statistically significant peak
in the correlation function on large scales should be
manifest at low fluxes due to the wide interval of Pr on
these scales. Indeed, as can be seen in Fig. 1 from [28],
the negative correlation-function amplitudes on large
angular scales θ = 0 8–1 0 are observed for low fluxes
S (4.85 GHz) = 35 mJy, while negative amplitudes are
present only to S (4.85 GHz) = 300 mJy on the smaller
angular scales θ = 0 2–0 4. For samples with limiting
fluxes S (4.85 GHz) ≥ 300, 60, 45, and 35 mJy, the ampli-
tudes of the correlation function on scales θ = 0 8–1 0
increasingly grow, becoming positive and then exiting
onto a plateau at S (1.4 GHz) ≅ 5 mJy (from FIRST VLA
survey data [41], Fig. 1). This indicates that the ampli-
tude of the correlation function on these scales is not
random, and the limiting fluxes at which an excess
number of pairs forms on the two angular intervals dis-
tinguished reflects variations in Pr as a function of the
clustering scale.

Second, modeling the spatial distribution of radio
sources with limiting flux S (4.85 GHz) = 35 mJy from
the 87GB survey reveals a clustering scale of 25h–1 Mpc
[28], similar to r0, 1. On the other hand, analysis of the
spatial distribution of radio sources with higher limit-
ing flux S (1.4 GHz) = 0.5 Jy indicates a smaller clus-
tering scale bounded by the value 11h–1 Mpc [27].
Turning again to our hypothesis of a dependence of Pr

on clustering scale, we obtain direct evidence for an
increase in the fraction of radio sources on the scale r0, 1
as the limiting flux decreases from S (1.4 GHz) = 0.5 Jy
to S (4.85 GHz) = 35 mJy. In deeper surveys, we can
expect a decrease in the deficit of radio sources on the
larger scale r0, 2 due to the wider interval of Pr .

The relations we have detected between the evolu-
tion of radio sources and the spatial distribution of rich
clusters do not enable us to judge unambiguously
whether the evolution of radio sources in distant (z < 5)
clusters is fully analogous to that in more nearby clus-
ters. However, we point out that such an analogy is pos-
sible. More accurate estimates require detailed studies
of radio luminosity functions and further analysis of
radio correlation relations.
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Abstract—A series of numerical N-body simulations is performed in order to dynamically model the proper-
ties of four galaxies (NGC 5603, NGC 3198, NGC 891, and NGC 1566) with known rotation curves, radial disk
scales L, and velocity dispersions of old disk stars at various galactocentric distances r. Each model includes a
three-dimensional collisionless disk and rigid spherical components, whose relative mass µ was treated as a free
parameter that differed from simulation to simulation. The observed disk stellar velocity dispersions were
assumed to be equal to or (in the general case) greater than the corresponding line-of-sight projections of the
simulated values for the adopted µ after the initially unstable disk is heated and arrives at a steady state. A com-
parison of the simulated and observed rotational velocities and velocity dispersions provides evidence for
“light” disks with µ ≥ 2 in the disk (r < 4L). © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The analysis of mass distributions in disk galaxies is
based on studies of their rotation curves V(r), which are
usually derived from measurements of the Doppler gas
velocities. Knowledge of the disk rotational velocity
enables the rough estimation of the galactic mass
within some radius without performing simulations,
while the shape of the galactic rotation curve reflects
the density distribution of its main components. How-
ever, the decomposition of a galactic rotation curve into
the contributions due to various components is not
unique, necessitating the incorporation of additional
information about the radial scales of the individual
components, which can be derived from surface pho-
tometry of the disk and bulge. This approach could pro-
vide full information about the relative masses of the
disk and bulge if it weren’t for the unseen component
(dark halo) of a priori unknown mass and poorly
known density distribution, which complicates the prob-
lem substantially. Interpretations of rotation curves are
usually limited either to the so-called maximum-disk
solution (i.e., determining the maximum mass of a flat
component with known radial density distribution that
is consistent with the observed rotation curve) or the
best-fit solution (when model parameters are selected
to minimize the difference between the computed and
observed rotation curves). In the general case, model-
ing results are not unique, and the shape of the rotation
curve can be satisfactorily interpreted in terms of vari-
ous ratios of the disk and spherical component masses.
At the same time, the relative masses of its components
are very important parameters determining a galaxy’s
dynamic and photometric evolution, and their estima-
tion is very important.
1063-7729/01/4503- $21.00 © 20180
Different approaches to estimating the masses of flat
and spherical galaxy components can yield contradic-
tory results. According to some studies, the disk masses
in luminous galaxies are close to those inferred for
maximum-disk solutions, suggesting that the disk dom-
inates inside a large fraction of the optical radius of the
galaxy [1–3]. Other studies suggest that the masses of
galaxy disks are much smaller than those for maxi-
mum-disk solutions, so that the disks are much less
massive than the corresponding spherical components
inside the optical radius [4–7]. However, given the vari-
ety of observed shapes of galactic rotation curves, there
is every reason to believe that the relative masses of
disks can differ, even among galaxies of similar lumi-
nosity. Therefore, the rotation curve of each galaxy
must be decomposed individually.

2. USING STELLAR VELOCITY DISPERSIONS 
TO ESTIMATE DISK SURFACE BRIGHTNESSES

The number of galaxies for which both the rotation
curve and velocity dispersion in the old stellar disk are
known has increased in recent years. Velocity disper-
sion analyses can be used to narrow the range of possi-
ble galaxy models fitting the observed rotation curve.
The principal objective of this paper is to apply an addi-
tional constraint when modeling galactic mass distribu-
tions, formulated as follows: the observed velocity disper-
sion of old disk stars at various galactocentric distances
cannot be lower than the corresponding computed values
that are established in an initially gravitationally unstable
model disk after it enters its steady state (the two values
should coincide in the case of marginally stable disks).

Attempts to use the velocity dispersions for the old
stars of a disk to compute its surface brightness some dis-
001 MAIK “Nauka/Interperiodica”
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tance from the galactic center are far from new; combined
with rotation-curve data, such analyses enable estimation
of the masses of individual components. Such studies
have usually assumed that the stellar disks are margin-
ally stable against local gravitational or warping pertur-
bations, or made assumptions about the thickness of the
stellar disk at various distances from the center r [7–12].
The criteria for stability against spiral- or bar-forming
modes can be applied to this same end [12–14, 25].
Bottema and Gerritsen [5] used numerical simulations
varying the disk masses to explain the observed velocity
dispersions in the disk NGC 6503. Their approach is very
similar to our own treatment of this galaxy, although the
computational schemes differ.

The problem with using stellar velocity dispersions
is that no well-defined disk stability criteria are known
(available analytical criteria have been derived in terms
of oversimplified models), and the mechanisms respon-
sible for heating collisionless disks are poorly known,
even for numerical models. It nevertheless seems qual-
itatively clear that sufficiently massive disks must be
“heated” to some steady state due to the development of
gravitational instability.

Local stability against local radial perturbations in
an infinitely thin disk is determined by the criterion of
Toomre [15]:

where cT = 3.36Gσ/κ, cr is the radial velocity disper-
sion, σ the local disk surface brightness, and κ the epi-
cycle frequency, which is a function of V(r) and its
radial derivative. It is well known that non-axisymmetric
waves in a nonuniformly rotating disk are more unstable,
and numerical simulations indicate that a steady-state disk
should have QT ≈ 2–3, with this parameter possibly vary-
ing with radius (see, e.g., [5, 11, 16–18]). This last cir-
cumstance makes it rather difficult to determine the
critical parameter in a simple analytical form for any
realistic model.

Polyachenko et al. [19] derived a stability criterion
in the limiting case of extremely non-axisymmetric
perturbations in an infinitely thin disk, which corre-
sponds to Toomre parameter QT ≈ 3 and a flat rotation
curve n = –rdΩ/Ωdr = 1 (without allowance for sur-
face-brightness and velocity-dispersion inhomogene-
ities). The effect of the radial inhomogeneity of the disk
density and velocity-dispersion profiles on the gravita-
tional instability of the disk has been analyzed only for
weakly non-axisymmetric perturbations [20]. Note that
stability criteria have been derived in a local epicyclic
approximation cr ! V, where the disk parameter scales
substantially exceed the wavelengths of the most unsta-
ble waves. Furthermore, the stability criterion can
depend critically on the transition from two- to three-
dimensional disk models (see Appendix II of the book
of Fridman and Gor’kavyœ [21]).

In the current paper, we use an approach based not
on analytical gravitational-instability criteria, but on

QT cr/cT 1,≥=
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numerical simulations of the dynamical evolution of a
three-dimensional disk made up of a large number N of
gravitationally interacting particles that is initially unsta-
ble against gravitational perturbations. Such a disk should
evolve into an equilibrium marginally stable state, which
we can compare to the dynamical properties of real galax-
ies. The main simplifying assumptions in this approach
are: (1) restricting the analysis to rigid axisymmetric mod-
els for the spherical components, (2) assuming an axisym-
metric and circular pattern (up to noise fluctuations) for
the initial stellar disk rotation, and (3) neglecting the mass
of the dynamically cool layer of gas and young stars. The
galaxies studied do not include any with pronounced
bars, high gas contents, or intensive star formation.

The principal aim of our numerical simulations is to
determine the ratio of the masses of the disk and spher-
ical components required to explain the observed rota-
tional velocities and velocity dispersions of the old
stars at various galactocentric distances.

The dynamical model constructed yields the spatial
distributions of various dynamical parameters of the
disk after it enters the steady state. We selected the
parameters to fit the model circular-velocity curve to
the observed rotation curve of the gaseous disk of the
galaxy. At the end of each numerical simulation, the
disk is taken to be marginally stable and to have the
lowest possible velocity dispersion.

Note that disks can possess excess stability, so that
marginal estimates are in effect only limits. For exam-
ple, when it is sufficiently high to ensure gravitational
stability, the stellar velocity dispersion in the disk plane
can continue to increase due to a number of processes,
such as scattering by massive disk or halo objects, the
accretion of companions or star formation in the gas
accreted by the disk, and bar disruption or tidal effects in
interacting systems. Therefore, verifying whether the
observed velocity dispersion of the stars making up
most of the disk mass satisfies the marginal gravita-
tional stability criterion is of interest in its own right.1 

Obviously, the condition csim & cobs must be satisfied
throughout the disk. Here, csim and cobs are the simu-
lated and observed velocity dispersions, respectively.
We refer to the disk as being “overheated” in regions
where csim < cobs, which is possible in the presence of
additional factors, ignored by the model, that increase
the velocity dispersion.

We considered four galaxies, whose integrated param-
eters are summarized in Table 1. We adopted velocity-dis-
persion estimates for a wide range of galactocentric dis-
tances r and photometric scales from [11] (see also refer-
ences therein). The shapes of the rotation curves differ
from galaxy to galaxy. The sizes of the rigid-rotation
portions in NGC 6503 and NGC 3198 exceed the cor-
responding photometric scales L, and the rotation
curves exhibit a plateau at r > 2L extending to at least 4L.
The rotation curve of NGC 1566 shows a conspicuous

1 We plan to consider this issue in a future paper.
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maximum at r . L and an extended rigid-rotation por-
tion, whereas that of NGC 891 has two maxima and a
rigid-rotation portion that does not exceed 0.1L.

3. NUMERICAL MODEL
AND SIMULATION CONDITIONS

The models considered in this paper include the fol-
lowing components.

(1) A stellar disk with a specified initial surface-
brightness distribution σ(r) and total mass Md. We
adopted the following exponential law as a first approx-
imation:

(1)

where the radial disk scale is taken to be equal to the pho-
tometric scale and R . 4L is the outer disk boundary.

(2) A “rigid” halo with volume density distribution

(2)

core radius a, and total mass Mh within a sphere of con-
stant radius r.

(3) A “rigid” bulge and nucleus (the dense inner-
most part of the bulge) with density distributions
approximated by the formulas

(3)

where B, n refer to the bulge and nucleus, respectively.
We determined the parameters of these components for
each model by minimizing the residuals between the
model circular velocity and the observed rotation curve
in the central region of the galaxy. Here and below, we
refer to the sum of components (2) and (3) as the spher-
ical subsystem.
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Table 1.  Galaxy parameters and µ estimates

Galaxy Type L, kpc D, Mpc R25, kpc µ

NGC 891 Sb 4.6 9.4 18.4 1.8

NGC 1566 Sc 2.25 15.0 18.14 1.7

NGC 3198 Sc 2.6 8.8 10.9 2.1

NGC 6503 Sc 1.16 5.9 6.2 2.0

Note: Galaxy—NGC number; Type—morphological type; L—expo-
nential disk scale according to [11]; D—distance to the galaxy
(H0 = 75 km s–1 Mpc–1); R25—isophotal radius according to
[38]; µ—optimum ratio of the masses of the spherical sub-
system (nucleus + bulge + halo) and disk from this paper.
In the case of the disk component, we must distin-
guish between the rotational velocity V and the circular
velocity Vc, determined by the equation

(4)

where Ψ is the total potential produced by all compo-
nents of the galaxy.

The difference between the stellar-disk rotation
curve V and Vc can roughly be estimated from force bal-
ance, with allowance for the components of the disper-
sion of the residual stellar velocities cr and cϕ :

(5)

In our simulations, we followed the evolution of both
the velocity dispersion and the velocities Vc and V.

Our numerical simulations are based on a direct
N-body method that provides high spatial resolution
(although it is rather computationally intensive), which
reduces to solving the equations of motion for a three-
dimensional system of N gravitationally interacting
particles (the disk). In this approach, all particles inter-
act with each other. The disk is immersed in the exter-
nal fixed gravitational field of the spherical subsystem
(nucleus + bulge + halo), which is determined by the
three-dimensional potential ΨS(r, z). The procedures
we used to construct our equilibrium disks and per-
form the numerical simulations are standard and
described in detail elsewhere [22–24]. Each particle i
with mass m = 1/N at a point with coordinates (xi , yi , zi)
creates the potential

(6)

where the smoothing radius rc ensures collisionless
behavior for a system in which the total force acting on
a particle due to all other disk particles exceeds sub-
stantially the force of interaction with its closest neigh-
bor. In addition, rc is small compared to the vertical disk
scale height h, as is required for correct simulation of
collective processes responsible for the density distri-
bution in the disk.

Our initial data for modeling each galaxy were its
observed rotation curve and photometric disk scale. We
set the total disk mass to be Md = 1 in all models. The
initial radial-velocity dispersion at t = 0 corresponded to a
dynamically unstable state for the disk (QT . 1–1.5),
ensuring its rapid dynamical heating. The initial ratio
cz(r, t = 0)/cr(r, t = 0) was set to a value in the interval
0.3–0.5, and all simulations showed both cr and cz to
increase with time. The relation between the initial radial
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and azimuthal components of the velocity dispersion was

specified by the condition cϕ = cr, which is valid in the

epicyclic approximation for an axisymmetric, steady-state
disk. We determined the rotational velocities of the stellar
disk from the equilibrium condition (5). We treated the
ratio of the masses of the spherical and disk subsystems
µ = Ms/Md as a free parameter that was varied when fit-
ting the models for each galaxy.

We specified certain masses and radial scales (in
units of the disk mass and radius) for the spherical com-
ponents, which we took to remain constant in time. In
this process, we checked that the total contribution of
the above components to the circular velocity was in
agreement with the observed rotation curve of the gal-
axy. We selected the component parameters for a spec-
ified µ so as to minimize the deviation of the simulated
curve Vc(r) from the observed curve V(r) in the region
r < 4L.

At time t = 0, all the disk mass is contained within
r ≤ R = 4L. In the process of evolution, a small fraction
of the mass can leave this region, and the simulations
continued to include the motions of these particles and
their contribution to the gravitational field. However,
the disk parameters (density, velocity, dispersions, etc.)
were computed only for r < 4L.

Figure 1 illustrates the evolution of the macroscopic
parameters r & R (velocity dispersion, surface bright-
ness, rotational velocity, and cz/cr ratio) for about ten
revolutions of the outer disk boundary using the model
for NGC 6503 as an example. In the adopted units, the
rotational period of the outer disk boundary is equal to
π, and therefore the total time covered by the simula-
tions is t ≈ 32. The dependences shown in the figure
demonstrate that the disk parameters remain virtually
unchanged after three to five revolutions. Since the ini-
tial state is unstable, the system is heated, which mani-
fests as an increase of the velocity dispersion. In the
course of evolution of the system, the parameter β =

 was equal to unity with very good accuracy (to

several per cent) in all the simulations.
Figure 2 shows the particle distributions in the plane

of the disk and in the perpendicular direction. The disk
develops spiral waves, which persist for several revolu-
tions; their amplitudes are substantial, and they are
responsible for collective heating processes. Sellwood
and Carlberg [16] were the first to point out the effi-
ciency of stellar-disk heating by short-lived spirals. The
amplitudes of these spirals decrease rapidly with time,
and virtually disappear after three to four rotation peri-
ods. As expected, the stellar velocity dispersion ceases
to increase at the same time. Under the initial condi-
tions used, the spiral waves begin to develop at the cen-
ter, and this is the disk region that is heated first (see
Figs. 2a and 2b and also [16]). Only by the end of the
third rotation period (at the outer boundary) do the per-

κ
2Ω
-------

κ
2Ω
-------

cr

cϕ
-----
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turbations begin to affect the peripheral regions. The
waves at the disk periphery are more persistent, increasing
the time for the heating processes by factors of two to
three over that for the center of the system.

The radial profiles of various parameters shown here
for a disk that has been heated to a steady state are the
result of averaging over the last two to three revolu-
tions, when the azimuthally averaged parameter varia-
tions resemble noise rather than a systematic pattern.
Note, however, that, as shown below, models with
“loose” halos can show a slower approach to the steady
state, requiring that the computations be continued for
several dozen revolutions.

To make sure that the simulations do not lead to unre-
alistically strong disk heating due to the limited number
of massive particles representing the disk, we compared
several models with identical dynamical parameters that
differed only in the number of point masses used,
which we varied from N = 10000 to N = 80000. The
models with N * 18000–20000 yielded virtually iden-
tical results for both the disk-heating rates and the final
parameter values. This leads us to conclude that our
simulation results can be used to model stellar disks in
flat galaxies. To illustrate this point, we show in Fig. 3
the temporal behavior of cr as a function of the number
of particles for various galactocentric distances, with the
other model parameters fixed. Note that the volume densi-
ties of the interacting particles at r = 0.5L and r = 3L differ
by more than an order of magnitude, whereas the final cr

value for each disk zone depends only slightly on N pro-
vided that the number of particles is large enough.

Our testing of the dynamical model indicates that a
system of N * 15000 particles is collisionless when the
ratio of the potential smoothing radius to the exponential
disk scale is rc/L = 0.004/0.25. This enables an adequate
description of collective processes in both the plane of the
disk and in the vertical direction.

Due to the instability of the initial state, some simu-
lations involved mass redistribution, with the density at
the disk center increasing and that at r . L somewhat
decreasing. This led to a surface-density distribution
that differed appreciably from an exponential law (see
Fig. 1b). We used an iterative approach to ensure that the
final radial disk scales corresponded to the observed
scales: we increased the initial QT in each subsequent sim-
ulation by half the total amount by which it changed, so
that the system started evolving from a state that was
closer to a steady state. In this way, we were able to
bring the final density distribution close to the observed
(exponential) disk brightness distribution after several
iterations.

We varied the final velocity dispersion at the end of
the simulation via selection of the parameters of the
spherical subsystem, first and foremost the mass of the
dark halo. The changes in the nucleus and bulge param-
eters had a weaker effect on the results when the size of
the region where these components dominate the disk
gravitationally does not exceed L.
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Fig. 1. Dynamical evolution of the stellar disk illustrated by the case of NGC 6503 (model SG2): (a) radial-velocity dispersion  cr(t)
at ten different radii (ri = 0.1i, i = 1, …, 10), (b) disk surface brightness σ(t), (c) disk rotational velocity V(t), and (d) cz/cr(t). All
quantities are expressed in the units adopted in this paper: G = 1, R = 1, and M = 1. In these units, the period of revolution at the outer
disk boundary is 2πR/V ~ 3.
We followed the ratio of the vertical and radial
velocity dispersions cz/cr in the course of the simula-
tions (Fig. 1d). All the simulations showed an initial
increase of cz, probably due to the instability of small-
scale warping modes [36]. An increase of the vertical
velocity dispersion increases the disk thickness (see
Figs. 2b and 1d). The vertical velocity dispersion cz(t)
increases more slowly than the velocity dispersion in the
plane of the disk, explaining the initial decrease of the cz/cr

ratio (Fig. 1d). That is why, in some cases, the final ratio
cz/cr was smaller than its initial value at t = 0, although
both parameters increased during their evolution.
We now turn to a description of the models for indi-
vidual galaxies. We adopted all observed velocity dis-
persions and radial scales from [11].

NGC 6503

We now describe in more detail the technique for
matching the observed and simulated radial profiles of
the rotational velocity and velocity dispersion. This galaxy
has a small exponential disk scale (L = 1.16 kpc), and the
estimates of the velocity dispersions correspond to r ≤ 2L.
We took the rotation curve V(r) from [26]. The observed
ASTRONOMY REPORTS      Vol. 45      No. 3      2001
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V(r) can be interpreted in terms of models with different
ratios of the spherical and disk subsystem masses
µ = Ms/Md = 0.8–4.4 (see Table 2 and Fig. 4). We esti-
mated the disk mass within 4L of the center (which cor-
responds to 4.6 kpc in the case of NGC 6503). All mod-
els for this galaxy (Table 2) can explain the observed
rotation curve satisfactorily without the contribution of
the nucleus.

The final radial dependence cr(r) is determined by
the parameters of the spherical subsystem and the expo-
nential disk scale, and is independent of the initial disk
velocity dispersion, provided this dispersion corre-
sponds to an unstable state (QT = 1–1.5). If we wish to
compare our results with the observed velocity disper-
sions, we must take into account the inclination i of the
galaxy relative to the plane of the sky.
S      Vol. 45      No. 3      2001
Taking into account projection effects and the line-
of-sight velocity dispersion, we obtain

(7)

where α is the angle between the slit direction and the
major axis projected on the plane of the galaxy. Follow-
ing [5], we adopt 6503 i = 74° for NGC 6503. We
aligned the spectrograph slit along the major axis of the
galaxy (α = 0) and took the ratios of the cz, cϕ, and cr

velocity-dispersion components from the simulations.
The system was unstable for models with low-mass

spherical subsystems (SF0 and SA2) with µ ≤ 1.0 and
initial radial velocity-dispersion profiles cr(r, t = 0) that
are close to those observed, and there was strong disk
heating. Because of this, the final velocity dispersions
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Fig. 2. (a) Evolution of the computed spatial particle distribution for the same model as in Fig. 1 (SG2). Half of all the particles
included in the computations are shown. The numbers indicate time in units of the period of revolution at the outer disk boundary.
(b) Temporal dependence of the velocity dispersion cr at the initial stage of instability development in model NN9 with N = 80000.
The velocity dispersions (in the adopted units) at various r are shown: from the central region (1) to the disk periphery (10).
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Fig. 3. (a) Radial velocity dispersion cr (in the adopted units) for various r at the end of the simulation as a function of the number
of model particles N. (b) Evolution of the radial velocity dispersion in NGC 6503 (at r = 2L) for models with differing numbers of
test particles (10, 20, 30, and 40 thousand particles).
exceeded substantially the observed values (Fig. 5a).
Model SF0 corresponds to the maximum-disk solution.
In the two models considered, the spherical and disk
subsystems have similar masses, and the inner part of
the disk develops a bar (Fig. 6). This is apparently due
to the large core radius of the halo (the so-called “loose
halo” case), which implies that the disk mass dominates
over the spherical component when r & 2L. As a result,
a bar mode has already developed by the end of the sec-
ond galactic revolution. The final cr value at the disk
ASTRONOMY REPORTS      Vol. 45      No. 3      2001
periphery at the end of the simulation is about twice the
observational estimates (Fig. 5a). The discrepancy is less
pronounced in the central region; however, csim > cobs

throughout the entire disk.

In the maximum-disk model (SF0), the observed
circular velocity curve can be best reproduced when
Mb = 1.9 × 107M(, Md = 7.1 × 109M(, and Mh = 5.6 ×
109M(, which correspond to µ = 0.8. These results indi-
cate that a dynamical model with these parameters
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Table 2.  Parameters of numerical models

Model Galaxy N µ Mh ah Mb ab Mn an

SF6 6503 18000 1.62 1.60 0.25 0.02 0.05 0.17 – – –
SF0 6503 18000 0.80 0.80 0.70 0.003 0.02 0.06 – – –
SA2 6503 18000 1.03 1.01 0.49 0.02 0.11 0.22 – – –
SF8 6503 18000 2.38 2.33 0.25 0.05 0.05 0.17 – – –
SG1 6503 40000 3.18 3.00 0.26 0.18 0.11 0.22 – – –
SG2 6503 30000 3.18 3.00 0.26 0.18 0.11 0.22 – – –
NN9 6503 80000 3.18 3.00 0.26 0.18 0.11 0.22 – – –
SF9 6503 18000 4.40 4.18 0.25 0.22 0.11 0.25 – – –
JF0 3198 18000 0.78 0.77 0.60 0.01 0.03 0.10 – – –
JF3 3198 18000 1.78 1.74 0.28 0.04 0.11 0.25 – – –
JF5 3198 18000 3.15 3.01 0.28 0.14 0.11 0.25 – – –
JF7 3198 18000 2.15 2.11 0.27 0.04 0.09 0.25 – – –
PP1 1566 18000 2.00 0.64 0.74 1.23 0.09 0.31 0.13 0.10 0.28
PP2 1566 18000 2.72 1.08 0.26 1.51 0.09 0.31 0.13 0.10 0.28
PP6 1566 25000 1.33 0.41 0.74 0.57 0.13 0.22 0.35 0.19 0.28
PP7 1566 25000 1.73 0.46 0.74 0.88 0.28 0.13 0.39 0.19 0.28
PF0 1566 18000 1.03 0.59 1.02 0.44 0.10 0.18 – – –
PF1 1566 18000 0.84 0.17 1.22 0.67 0.11 0.25 – – –
WF4 891 18000 1.77 1.44 0.25 0.23 0.03 0.08 0.10 0.11 0.03
WF0 891 18000 0.16 0.02 0.52 0.14 0.01 0.05 – – –
WF5 891 18000 3.21 2.67 0.25 0.19 0.04 0.01 0.35 0.01 0.01
WH9 891 18000 1.77 1.38 0.25 0.28 0.05 0.22 0.11 0.01 0.09
WX6 891 18000 4.66 3.98 0.25 0.24 0.04 0.01 0.44 0.01 0.09

Note: Model—simulation number; Galaxy—NGC number; N—number of particles in the simulation; µ—spherical system-to-disk mass ratio;
Mh, Mb, and Mn are the halo, bulge, and nucleus masses; ah, ab, an, , and —parameters describing the density distribution

in the halo (h), bulge (b), and nucleus (n) (see text).

Rmaxb
Rmaxn

Rmaxn
Rmaxb
should develop a strongly heated disk (cr/V . 0.3), in
contradiction with the observations (Fig. 5a). Thus,
although the computed rotation curve is in good agree-
ment with the observations, a realistic model requires a
more massive spherical subsystem (Fig. 5a).

The simulated circular velocity curve Vc(r) can also
be brought into satisfactory agreement with the
observed rotation curve V(r) by adopting an even
higher mass for the spherical component. However,
dynamical models with very massive spherical sub-
systems (µ ≥ 4) yield velocity dispersions for which
csim < cobs throughout the galaxy (Fig. 5a, model SF9).
Such a model can be consistent with the observations of
NGC 6503 only if the entire stellar disk of the galaxy is
strongly overheated and has a large margin of gravita-
tional stability. In this case, in the ring 0.2 < r/L < 0.5,
the stability margin in terms of cr reaches a factor two
or higher. If, on the other hand, the stellar disk is close
to the gravitational stability limit, models with µ * 3.5
must clearly be rejected. The results of the dynamical
simulations are consistent with the observational data if
µ = 1.6–3.5. Of all the models considered, SF6 and SF8
are most consistent with observations. They imply a
mass ratio for the spherical and disk subsystems of at
least 1.6 for NGC 6503. The bulge’s contribution to the
mass of the spherical subsystem remains negligible.

One distinctive feature of the observed radial veloc-
ity-dispersion profile of NGC 6503 is the presence of a
maximum at r . 0.3L: at the very center of the galaxy,
cr decreases sharply, to as low as 25 km/s. One way to
quantitatively fit the observational data in this region is
to suppose the presence of a concentrated, kinemati-
cally distinct nucleus with a low velocity dispersion, as
proposed by Bottema and Gerritsen [5]. However, we
cannot rule out the possibility that the decrease in the
velocity dispersion noted above could be due to a rap-
idly rotating disk in the region dominated by the mass
of the spherical component.

The conclusion that the mass of the disk in NGC
6503 is small is consistent with the modeling results of
Bottema and Gerristen [5] for this galaxy. However,
their model velocity dispersions, which are consistent
ASTRONOMY REPORTS      Vol. 45      No. 3      2001
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with the observations for r < 2.3 kpc, decrease rapidly
at large distances from the center, becoming smaller
than 10 km/s at r > 3 kpc, which seems unlikely for an
old stellar population. We do not find any such low
velocities in our dynamical models: cr > 14 km/s
throughout the disk.

The ratio cz/cr in this galaxy depends only weakly on
the radial coordinate, although it increases slightly
towards the disk center. The resulting ratios (cz/cr =
0.5–0.75) are consistent with data for the Milky Way
Galaxy [27] and other galaxies [28].

NGC 3198

The shape of the rotation curve of this galaxy is sim-
ilar to that of NGC 6503, although the rotational veloc-
ity in the flat part of NGC 3198 is about 40 km/s higher
than in NGC 6503 [26].

The model corresponding to the maximum-disk
solution (JF0) is not able to simultaneously describe the
radial profiles of both cobs(r) and Vc(r): the model veloc-
ity dispersions are appreciably higher than the observed
values (Fig. 5b).

The dynamical model can be brought in agreement
with the observational data using the same µ values as
for NGC 6503. A mass ratio of µ . 3 (JF5) would imply
that the disk possesses some margin of stability. We
obtain a steady-state system whose velocity dispersion
is most consistent with the observations when µ = 2.1.
This model, which we consider to be optimum, implies
a stellar disk mass of about 1.75 × 1010M(, a factor of
four higher that in NGC 6503.

NGC 891

This galaxy is viewed at an angle of i = 89° [30], and
its rotation curve differs from those considered above.
The inner maximum of V(r) is close to the center, imply-
ing a very small rigidly rotating portion (r < 0.08L). NGC
891 has the highest rotational velocity and largest pho-
tometric scale among the four galaxies considered.

Bottema [11] reports velocity dispersions for NGC
891 only within r < 1.2L, where L = 4.6 kpc. Through
the appropriate fitting of parameters, the observed rota-
tion curve can be explained over a wide interval of µ. In
accordance with (9), we adopt csim = cϕ for this galaxy.
However, since the galaxy is viewed nearly edge-on,
formula (9) can lead to appreciable errors if it is used to
compare the model and observed velocity dispersions,
since the line of sight crosses regions located at differ-
ent r. We therefore averaged the model velocity disper-
sion along the line of sight prior to comparing it with
the observational estimates:

(8)

where  is the volume density of the simulation parti-
cles and dl is a distance element along the line of sight.

ĉsim csim l/ l,d∫d∫= ζρ ζρ

ζρ
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In the maximum-disk model (WF0 with µ = 0.16),
the system is strongly heated, so that the observed
velocity dispersions are below the threshold required
for gravitational stability throughout the galaxy (Fig. 7a),
enabling us to reject models with low µ.

µ must be increased to ensure gravitational stability
of the disk of the galaxy. Models with 1 & µ & 3 yield
velocity dispersions that are consistent with the obser-
vational data. The model WF4 with µ = 1.77 is in best
agreement with the observations (Fig. 7a). The disk mass
in this model is Md . 7 × 1010M(, whereas the nucleus
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Fig. 4. Radial profiles of the model rotation velocity (solid
curve) and observed rotation curve (dots) for the case of
NGC 6503 for various µ. Also shown are the contributions
of individual subsystems to the model rotation curve: bulge
(dotted line), disk (dashed line), and halo (dashed and dotted
line).
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Fig. 5. Radial profiles of circular rotation velocity and line-of-sight velocity dispersion for various models for (a) NGC 6503 and (b)
NGC 3198. The circles show the observational data [11].
and the bulge account for about one-fifth of the mass of
the spherical subsystem.

NGC 1566

The rotation curve of this galaxy differs from those
considered above: like NGC 891, its V(r) curve shows
a conspicuous maximum (Fig. 7a), however, its rigid-
rotation portion extends to 2 kpc, which is close to the
photometric scale L = 2.25 kpc. In contrast to the gal-
axies considered above, NGC 1566 is viewed almost
face-on, at i = 30°. The slit used to measure the velocity
dispersions was not aligned along the major axis of the
galaxy image (α = 22°) [32], so that the observed velocity
dispersion includes contributions from all three compo-
nents cr, cϕ, and cz.
ASTRONOMY REPORTS      Vol. 45      No. 3      2001



ESTIMATING THE MASSES OF THE SPHERICAL AND DISK COMPONENTS 191
Figure 7b shows the radial profiles of the rotational
velocity and velocity dispersion for the observations
and simulations. The galaxy possesses a prominent spi-
ral structure, which is apparently responsible for the
complex shape of the observed rotation curve, which
has several local maxima. The galaxy displays substan-
tial non-circular gas motions [39] with amplitudes reach-
ing 20 km/s, implying that the observed V(r) curve
reflects the circular velocity only approximately.

For models PF1 and PF0, we chose the mass of the
spherical subsystem to be no greater than that of the
disk. Although the two models (PF1, PF0) satisfy the
condition csim * cobs, neither they nor PP6, with µ = 1.33,
fit the data for NGC 1566. In all three cases, the dynam-
ical modeling leads to a pronounced long-lived bar,
which appears to be absent from the real galaxy. Intense
heating and the development of a bar are accompanied
by a substantial mass redistribution, which results in a
very non-exponential surface-brightness profile, which
is not observed. We must therefore consider models
with more massive spherical subsystems (PP7 and
PP1), which have different evolution for the velocity

SA2
t = 20

PP6
t = 20

PP7
t = 10

PP7
t = 40

PP7
t = 20

PP7
t = 60

PP7
t = 30

PP7
t = 70

Fig. 6. Particle distributions in the plane of the disk for various
dynamical models: SA2 (NGC 6503), PP6 (NGC 1566), and
PP7 (NGC 1566). The numbers indicate time in units of the
period of revolution at the outer disk boundary.
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dispersion cr . In the initial stage, which lasts three to
four rotation periods, the system undergoes rapid heat-
ing similar to that shown in Fig. 1. However, instead of
arriving at a steady state, the velocity dispersion contin-
ues to slowly increase in the inner part of the galaxy
over at least 25 disk rotation periods (more than 5.5 ×
109 years on the scale of the galaxy). This is clearly asso-
ciated with the development of a long-lived asymmetric
bar-like feature at the very center of the disk (Fig. 6),
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Fig. 7. Radial profiles of rotation velocity and line-of-sight
velocity dispersion for models for (a) NGC 891 and
(b) NGC 1566. The observed velocity dispersion in the cen-
tral region of NGC 1566 is higher than the corresponding
model velocity dispersions. The circles show the observa-
tional data [11].
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which could be responsible for slow heating of the disk—
a mechanism that, naturally, is more efficient at the center
of the galaxy. After 30 revolutions, models PP1 and PP7
are in satisfactory agreement with the observed distri-
bution of the velocity dispersion for r = 0.2–0.4.

No central non-axisymmetric feature develops in
model PP2, which has a more massive spherical com-
ponent (µ * 2.5); however, this solution underestimates
the velocity dispersion in the inner part of the disk by a
factor of two. The absence of secular heating in such
models, which become axisymmetric after five revolu-
tions, clearly demonstrates that the long-term heating is
due to a small, bar-like feature. Although photometric
observations have not detected the bar in this galaxy,
Pence et al. [39] point out that such a feature could be
responsible for the shape of the rotation curve in the
central region. Model PP7, with µ = 1.74, was in the
best agreement with the observed velocity dispersions.
This model implies a bulge-to-halo mass ratio of nearly
three within r < 4L. The halo is “loose” (a/L = 3), so
that the rotation curve is determined by the bulge
throughout most of the disk. The mass of the disk in this
model exceeds those of both the bulge and halo,
although it remains less than the total mass of the spher-
ical components.
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Fig. 8. Velocity dispersion ratio cr/Vc as a function of the
relative mass of the spherical subsystem µ at r = 2L for mod-
els constructed in this paper.
4. DISCUSSION AND CONCLUSIONS

Our simulation results have yielded dynamical mod-
els for the galactic disks that agree simultaneously with
the photometric disk scales, rotation curves, and esti-
mated stellar-velocity dispersions of the galaxies stud-
ied. Similar patterns of the disk dynamical evolution
computed with different numbers of particles (with
fixed total disk mass), development of short-lived (tran-
sient) spirals during dynamic heating, and subsequent
disk heating to a quasi-steady-state suggest that the
increase of the velocity dispersion in axisymmetric disk
models in the initial stage of their evolution is due to
collective processes rather than particle scattering. In
the latter case, comparing the numerical models with
data for real galaxies would be problematic.

The numerical simulations enable us to estimate a
lower limit to the mass of the spherical components that
allows the galactic disks to remain in a stable state. If a
disk is marginally stable, these estimates should corre-
spond to the real component masses. Table 1 summa-
rizes the µ values for the optimum models for the four
galaxies considered. In all four galaxies, the minimum
total halo and bulge mass in a sphere of radius R = 4L
is about twice the disk mass, although the disk-to-bulge
mass ratios differ widely from one galaxy to another.

A comparison of the disk rotational velocities at r = 2L,
where the disk contribution to the rotation curve is most
significant, with model estimates of the disk compo-
nent velocities shows that the maximum-disk solution
overestimates the disk rotational velocity by 20–30%
(see the last two columns in the table). Therefore, this
model overestimates the disk mass by a factor of about
1.5 and underestimates the mass of the spherical compo-
nents by about the same factor, providing further evidence
for massive spherical components in these galaxies.

In the computed models, the ratio of the velocity
dispersion to the rotational velocity cr/Vc at a fixed r
decreases as the relative mass of the spherical sub-
system increases.2 This pattern is clearly illustrated in
Fig. 8, which compares model estimates of cr/Vc at r = 2L
to the relative mass of the spherical components.

Figure 8 is based on the results of 35 simulations
performed to search for optimum models for the galax-
ies considered (indicated by the large symbols). The
strong differences of the halo and bulge concentrations
of the models gives rise to the scatter of cr/Vc values at
a fixed µ. Since the systems analyzed had different maxi-
mum rotational velocities and rotation-curve shapes, this
relation should be universal enough to allow coarse esti-
mation of the masses of the spherical subsystems from the
observed cr/Vc ratios, without directly constructing
dynamical models for objects studied. The form of this
relation shows that the resulting µ values are most certain
for galaxies with low relative masses for their spherical
subsystems. Note, however, that the accuracies of local

2 This relation was first pointed put by Morozov [37].
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stellar velocity dispersions measured in old disks at
fixed r are fairly low, so that the available data are con-
sistent with a wide range of µ within the quoted errors.
In this respect, our interpretations of the functional
relations c(r) yield more trustworthy results.

For three of the four galaxies, we succeeded in con-
structing dynamical models that are in good agreement
with the assumption that their stellar disks are close to
the gravitational stability limit. The discrepancy
between the observed and modeled c(r) and Vc(r) rela-
tions are largest for NGC 1566, and cannot be elimi-
nated by adjusting the parameters of the spherical sub-
system. In any case, the central part of the stellar disk
(r < 0.75L) in NGC 1566 is “overheated,” and possesses
some stability margin. This may be partially due to the
prominent spiral pattern of this galaxy, which provides an
additional source of heating and distorts the observed stel-
lar rotation curve and velocity dispersions. The results of
dynamical modeling do not rule out the presence of a cen-
tral bar-like feature in this galaxy, which could be respon-
sible for additional heating of the stellar disk.

Our simulations indicate that galaxy models that
neglect the stellar velocity dispersion can yield appre-
ciably underestimated masses for the spherical compo-
nents for maximum-disk solutions. All dynamical mod-
els based on the maximum-disk solutions develop bars,
and yield velocity dispersions that are in poor agree-
ment with the observational data.

The model bulge masses are consistent with the
photometric data: the bulges in NGC 6503 and NGC
3198 have both lower relative masses and lower relative
luminosities compared to NGC 1563 and NGC 891.

The fact that our simulations yield rather thin mod-
els with h/L & 0.2 provides further evidence for a mas-
sive spherical subsystem in NGC 891. As first shown by
Zasov et al. [4], the stellar-disk scale height h should
decrease with increasing relative mass of the halo. The
observational data yield h/L . 0.11 for NGC 891 [33],
which, according to the results of Zasov et al. [4], gives
a similar estimate: µ * 2. The dynamical models of all
four galaxies have velocity dispersion ratios cz/cr rang-
ing from 0.4 to 0.7. This agrees well with available esti-
mates for other spirals, and is somewhat higher than the
value of 0.37 obtained from an analysis of the develop-
ment of warping perturbations in the framework of a
simple gravitating disk model [34].
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Abstract—The effects of the modulation of radio waves during their passage through turbulent interstellar
plasma on measurements of the structure of radio sources made with ultrahigh angular resolution using space
radio interferometers are considered. Typical scattering angles θscat, pl for an extragalactic radio source at vari-
ous wavelengths are estimated from scattering observations for pulsars and extragalactic sources. The (ϕ0λ)
plane, where ϕ0 is the source size and λ is the wavelength of the radio emission, can be divided into five regions,
in which different regimes of radio-wave modulation and image reconstruction are realized. Possibilities for
image reconstruction in each of these regions are investigated. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In 1968, shortly after the discovery of pulsars,
Scheuer [1] proposed that the fine structure in the fluc-
tuations of the pulsar emission on timescales of a few
minutes and with a characteristic frequency scale of
about 1 MHz is due to strong scintillations of the radio
emission on inhomogeneities in the interstellar plasma.
In 1969, Rickett [2] showed that the characteristic fre-
quency scale for pulsar flux fluctuations decreases with
increasing dispersion measure, demonstrating the inter-
stellar nature of these fluctuations. According to Sieber
[3], the parameters of pulsar flux fluctuations on times-
cales of days and months also correlate with the disper-
sion measure. In 1983, Rickett et al. [4] showed that
short-period and long-period scintillations of pulsars
correspond to refractive-index inhomogeneities with a
single Kolmogorov power-law turbulence spectrum.

Over the 30 years of studying the interstellar scintil-
lations of radio sources, extensive series of observa-
tional data have been accumulated, and we now know a
fair bit about the properties of the turbulent interstellar
plasma responsible for modulating the radio signals. In
particular, it has been established that the turbulent
plasma is concentrated in individual clouds, and the
distribution of these clouds in the Galaxy has been
studied [5–7]. The most important result of these stud-
ies from the point of view of very high angular resolu-
tion is that the radio signals of sources in all directions
show modulation by turbulent plasma, so that the inter-
stellar medium could impose restrictions on observa-
tions with high angular resolution. At the same time,
these data are not sufficient to construct a complete and
reliable model of the turbulence structure and distribu-
tion of turbulent plasma clouds in the Galaxy, and fur-
ther measurements and analysis are required.
1063-7729/01/4503- $21.00 © 20195
The most important parameter describing the mod-
ulation properties of a medium is the scattering angle
θ0. It is usually assumed that scattering on inhomoge-
neities of the interstellar medium simply increases the
source angular size, and the angle θ0 limits the attainable
angular resolution. However, in some cases, the scattered
emission partially maintains coherent properties associ-
ated with modulation by the turbulent medium, and we
can separate the intrinsic angular size of a source from the
component introduced by the turbulent medium [8, 9].
Below, we discuss in more detail the fluctuation prop-
erties of radio signals that have passed through a turbulent
interstellar medium and probable restrictions imposed by
the interstellar medium on the limiting angular resolu-
tion attainable in radio astronomy.

2. PARAMETERS OF CLOUDS
OF TURBULENT INTERSTELLAR PLASMA

The modulation of radio waves that occurs during
their passage through the interstellar medium is due to
inhomogeneities of the refractive index. For a plasma,
the refractive index at frequencies much higher than the
plasma frequency ωp is [10, 11]

(1)

where ω is the cyclic frequency, λ the wavelength, re the
classical electron radius, and Ne the electron number den-
sity. We can see that the refractive index depends only on
the electron density. The electron-density inhomogene-
ities are described by the square-law Fourier spectrum
of the fluctuations of Ne:

(2)

µ 1 ω/ωp( )2/2–≈ reλ
2Ne/4π,=

FNe
q( ) d3q iqr–( )Ne r( )exp∫[ ]

2
〈 〉 .=
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Analysis of extensive observational material on refrac-
tive and diffractive scintillations has shown that the
square-law spatial spectrum of the electron-density
fluctuations is close to a power law over a wide range
of scales:

(3)

where L and l are the outer and inner scales of the tur-
bulence, respectively. Observational data indicate that
L > 1016 cm. Based on a combined analysis of diffrac-
tive and refractive scintillations of a large sample of
pulsars, we showed in [12] that two kinds of spectra are
realized in the interstellar plasma: type I—purely
power-law Kolmogorov spectra—and type II—Kol-
mogorov spectra with inner scale l ≈ 1011 cm. Type I
spectra are realized in dense, compact regions, while
type II spectra occur in more uniformly distributed tur-
bulent clouds. For both types of spectra, the exponent n
is close to that of a Kolmogorov spectrum:

n ≈ 3.67. (4)

Large series of data have been accumulated on the
scattering of radio signals on inhomogeneities of the
interstellar plasma and interstellar scintillation of radio
sources in various directions and at various distances.
A statistical analysis of these data has established that
the turbulent interstellar plasma is concentrated in
clouds, which occupy approximately 20% of the total
volume of the interstellar medium. To zeroth approxi-
mation, the distribution of turbulent plasma in the Gal-
axy has a three-component structure [5–7].

Component A is the name given to the turbulent
interstellar plasma outside the spiral arms of the Gal-
axy. It has a statistically uniform distribution and con-
sists of diffuse clouds with diameter <26 pc, electron
density 0.1–0.3 cm–3, cloud number density >10–5 pc–5,
and scale height of the cloud distribution above the
Galactic plane ≅ 0.9 kpc [6]. Component BI consists of
diffuse turbulent clouds within the Galactic spiral arms.
These have electron density 0.2–1 cm–3, size <50 pc,
cloud number density >10–6 pc–3, and a scale height
above the Galactic plane of about 200 pc [7]. Compo-
nent BII is made up of dense, compactly arranged
clouds associated with H II regions around O stars.
These have sizes of about 10–50 pc, electron density
1–10 cm–3, cloud number density of about 10–8 pc–3, and a
scale height above the Galactic plane of about 100 pc [7].

The interstellar medium near the Galactic plane
modulates the radio signals of distant sources much
more strongly than the medium at high Galactic lati-
tudes, and, accordingly, the highest angular resolution
can be achieved only at sufficiently high Galactic lati-
tudes. We will based our further estimates on the
parameters of component A of the turbulent interstellar
plasma, and assume that the observations are carried
out high above the Galactic plane.

FNe
q( ) CNe

qn, 1/L q 1/l,< <=
3. REGIMES FOR MODULATION
OF RADIO SIGNALS BY THE TURBULENT 

INTERSTELLAR PLASMA

Depending on the observing technique used, we can
measure the following effects of the modulation of
radio waves by a turbulent medium [13]:

(1) Effects of scattering:
(a) increase of source angular size,
(b) pulse broadening.
(2) Effects of fluctuations:
(a) scintillations, flux fluctuations,
(b) phase fluctuations, wandering of the source posi-

tion.
The simplest characteristic of the field of a wave mod-

ulated by a turbulent medium is its second moment, which
is measured by the mean response of an interferometer.
The second moment corresponds to observations of scat-
tering effects alone. For an infinitely distant source, the
second moment of the wave field can be written [13]

(5)

where BE, 0 is the intrinsic coherence function of the
field (visibility function) unperturbed by the turbulent
medium, and ρ is a two-dimensional vector in the plane
perpendicular to the line of sight. Angular brackets
denote averaging over the statistics of the turbulent
medium. An overline designates averaging over the sta-
tistics of the source. The factor exp[–DS(ρ)/2] describes
scattering effects. The function DS(ρ) corresponds to the
structure function of the phase fluctuations calculated in a
linear approximation; it is determined by the power spec-
trum of the electron-density fluctuations (2) [14]:

(6)

where q|| is the line-of-sight component of the spatial
frequency vector q, q⊥  is the component normal to the
line of sight, and the z axis is aligned with the line of
sight. For a power-law power spectrum (3), the function
DS(ρ) can be written [13]

(7)

where θ0 is the characteristic scattering angle. In a sta-
tistically uniform medium [12],

(8)

where R is the total depth of the medium. For a spec-
trum with inner scale l and ρ < l, the n – 2 in (7) should
be replaced with 2; the relationship for the factor A is
also somewhat different.

BE ρ( ) E ρ1( )E ρ1 ρ+( )〈 〉=

=  BE 0, ρ( ) D ρ( )/2[ ] ,exp

DS ρ( ) 4πλ2re
2 z d

2
q||∫d∫=

× 1 qρ( )cos–[ ]ΦNe
q⊥ q||,( ),

DS ρ( ) kθ0ρ
n 2– ,=

θ0 1/k( ) A n( )λ2re
2CNe

R[ ]1/ n 2–( )
,=

A n( ) 24 n– π3/Γ n/2( ) πn/2( ),sin=
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Measuring only the mean value of BE, we cannot
separate the brightness distribution intrinsic to the
source from the contribution due to the propagation of
the radio signals through the turbulent medium. How-
ever, the situation changes if we can measure the fluc-
tuations of the received signal. The measured interfer-
ometer response can be represented

(9)

where τ0 is the integration time. Below, we will show
that measurements of the fluctuations of I can, in some
cases, separate out the components corresponding to
the source and the turbulent medium. The properties of
the fluctuations of the interferometer response depend
on the scintillation index m, defined as [13]

(10)

where I(0, t) is the received radiation flux. Scintillation
theory distinguishes two scintillation regimes. In the
weak-scintillation regime, the scintillation index m < 1,
and we have for a spectrum of the form (3) [13]

(11)

where K(n) is a numerical factor of order unity and 1,
k = 2π/λ is the wave number. The characteristic spatial
scale of the flux fluctuations is

(12)

With increasing m0, the scintillation index m grows
only to m0 = 1. When

m0 > 1, (13)

the scintillation index saturates at a level near unity [13].
The corresponding regime is that of strong, or saturated,
scintillations. In the saturated-scintillation regime, the dif-
fraction pattern consists of two components: small-
scale (or diffractive) and large-scale (or refractive) [13].

The squared scintillation index for the diffractive com-
ponent is

(14)

and the spatial and temporal scales are [13]

(15)

Here, V is the velocity of the medium with respect to
the line of sight. One distinctive feature of diffractive
scintillations is the presence of fine structure in the inten-
sity fluctuations as the carrier frequency of the radio sig-
nals change. The characteristic frequency scale is

(16)

where c is the velocity of light and A is a factor that
depends on the model for the medium and the form of
the turbulence spectrum. For a statistically uniform
medium and a Kolmogorov spectrum, A ≅  3.67 [12].

I ρ t,( ) 1/τ0( ) t1E ρ1 t1,( )E* ρ1 ρ t1,+( ),d∫=

m2 I 0 t,( ) I 0 t,( )〈 〉–[ ]2〈 〉 / I 0 t,( )〈 〉 2,=

m2 m0
2≈ K n( )DS R/k( ) K n( ) kRθ0

2( ) n 2–( )/2
,= =

b 1/2( ) R/k( ).=

mdif
2 1,≈

bdif 1/kθ0,≈
Tdif bdif/V 1/kθ0V .≈ ≈

∆ f dif Ac/πRθ0
2,=
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The squared scintillation index of the refractive
component is [12]

(17)

and the spatial and temporal scales are [12]

(18)

4. EFFECT OF THE TURBULENT 
INTERSTELLAR PLASMA

ON AN INTERFEROMETER RESPONSE

Below, we consider in more detail the processes of
averaging over the statistics of the source and the turbu-
lent medium. In the absence of a turbulent medium and
with

(19)

where ∆f is the frequency band, the interferometer
response I determined by (9) is close to the theoretical
value of the field coherence function:

(20)

Here, the overline denotes averaging over the source
statistics.

In the presence of a turbulent medium with

τ0 < tdif , (21)

the quantity I fluctuates with characteristic timescales
Tdif and Tref . The actual values of these timescales will
be discussed later. In this case, we will call I the quasi-
instantaneous interferometer response.

The process of averaging over the statistics of the
turbulent medium corresponds to temporal integration
with a long integration time T. We introduce two types of
averaging over the statistics of the turbulent medium. If

(22)

then the averaging is partial. We will designate such
partial averaging by angular brackets with the subscript
“dif.” For example,

(23)

Full averaging will be denoted by angular brackets with
no subscript [see Eq. (5)]. Full averaging corresponds
to a very long integration time

T @ Tref. (24)

mref
2 DS R/k( )[ ] 2 4 n–( )/ n 2–( )–≈

≈ m0
4 4 n–( )/ n 2–( )– 1/kRθ0

2( )4 n–
,≈

bref Rθ0,≈
T ref bref/V Rθ0/V .≈ ≈

τ0∆f  @ 1,

I0 ρ t,( ) BE 0, ρ t,( )≅ E0 ρ1 t,( )E0 ρ1 ρ t,+( ).=

Tdif T T ref,< <

I ρ t,( )〈 〉 dif 1/T( ) t1I ρ t1,( ).d

t

t T+

∫=
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4.1. Fluctuations
of a Partially Averaged Interferometer Response

The mean value of 〈I 〉dif is

(25)

The coherence function BE was considered above, and
is defined by (5).

For strong or saturated scintillations, we can obtain
for the second moment of 〈I 〉dif [15]

(26)

where mref is the refractive scintillation index. Function
K(ρ) is determined by the intrinsic brightness distribu-
tion of the source and scattering effects; it has the char-
acteristic scale ρK

(27)

Here, ϕ0 is the intrinsic angular size of the source. For
ρ = 0,

K(ρ) = 1. (28)

When ϕ0 ! θ0, the refractive scintillation index mref is
determined by (17), and when ϕ0 @ θ0, we should
replace θ0 in this relationship with ϕ0.

We can see that the fluctuations of the partially aver-
aged interferometer response 〈I〉dif can be used to distin-
guish between the intrinsic angular source size ϕ0 and
the scattering angle θ0. This separation of the intrinsic
and scattering sizes works well if these quantities are
fairly close to each other. Note also that function K(ρ) is
not equal to I(ρ); hence, the structure of the partially
averaged interferometer response 〈I(ρ)〉dif also fluctu-
ates.

4.2. Fluctuations
of the Quasi-instantaneous Interferometer Response

The fluctuation parameters of I(ρ) depend on the
scintillation regime [13]. In the case of weak scintilla-
tions, the fluctuations of the amplitude of an interfer-
ometer response are small:

(29)

However, the phase fluctuations can be large:

(30)

This means that the turbulent medium makes the source
position wander, without changing its brightness distri-
bution. We can neglect the phase fluctuations as well if

(31)

Iρ〈 〉 dif〈 〉 I ρ( )〈 〉 BE ρ( ).= =

I ρ( )〈 〉 dif
2〈 〉 I ρ( )〈 〉 2 mref

2 K ρ( ) I 0( )〈 〉 2,+=

ρK 1/kθ0, ϕ0 ! θ0,≈
ρK 1/kϕ0, ϕ0 @ θ0.≈

∆I ρ( ) 2〈 〉 I ρ( ) I ρ( )〈 〉– 2〈 〉=

! I ρ( ) 2〈 〉 BE 0, ρ( ) 2.≅

I ρ( )2〈 〉 BE 0,
2 ρ( ) DS ρ( )–[ ] .exp≅

ρ ρ0< 1/kθ0.=
In the case of strong or saturated scintillations, we can
obtain for the second moment of I(ρ) [16, 17]

(32)

where

(33)

(34)

(35)

For a source with small angular size

(36)

we approximately have [8, 17]

(37)

Hence, in this case, we can reconstruct the intrinsic
brightness distribution of the source. It is obvious that
we can also do this for sources with large angular sizes

(38)

Here, θscat, pl is the apparent half-power angular size of
an infinitely distant pointlike source. When the source
has an intermediate angular size

(39)

we lose information and cannot reconstruct the intrinsic
brightness distribution.

Integration over angle θ in (32) corresponds to
preaveraging the turbulent field fluctuations over the
intrinsic brightness distribution of the source. This results
in a loss of the possibility of separating the intrinsic bright-
ness distribution from the modulation perturbation con-
tributed by the turbulent medium.

The fluctuations of I(ρ) have fine structure in the
radio frequency, with the characteristic scale ∆fdif deter-
mined by (16). If the receiver frequency band ∆f is
broad, the interferometer response is preaveraged over
fluctuations with a turbulent nature. In this case, we
likewise cannot distinguish the intrinsic brightness dis-
tribution of the source from the modulation perturba-
tion due to the turbulent medium. In order to preserve
the diffractive fluctuations, the inequality

(40)

must be satisfied.

5. OBSERVATIONAL ESTIMATES
OF SCATTERING

AND SCINTILLATION PARAMETERS
In our recalculation and comparison of the observa-

tional data, we will use a model with a statistically uni-
form medium with a purely power-law Kolmogorov

I ρ( ) 2〈 〉 I ρ( )〈 〉 2=

+ d2θ ik ρθ( )[ ] J1 θ( ) rD rθ( )d∫–[ ] ,expexp∫

D ρ( ) dDs ρ( )( )/dr,=

J1 θ( ) d2θ1J0 θ1( )J0 θ1 θ+( ),∫=

J0 θ( ) 1/2π( )2 d2ρ ik ρθ( )–[ ] BE 0, ρ( ).exp∫=

ϕ θdif< 2/kRθ0=

I ρ( ) 2〈 〉 I ρ( )〈 〉 2 BE 0, ρ( ) 2.+≅

ϕ0 2θ0> θscat pl, .=

θdif ϕ0 2θ0,< <

∆ f ∆ f dif<
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turbulence spectrum, determined by (3) and (4). Our
reasons for using this model are the following. It was
shown in [6] that the spatial distribution of the turbulent
interstellar plasma outside the spiral arms (component A)
is close to statistically uniform. In Section 2, we cited
two types of spectra for the interstellar plasma turbu-
lence [12]. In our case of a medium with a statistically
uniform distribution, we must use a type I spectrum.

The scattering angle is an important parameter
describing the modulation properties of the turbulent
interstellar plasma. This parameter has been estimated
using several independent methods. In the first, the
apparent angular sizes of a number of pulsars were
measured [18]. Since the intrinsic angular sizes of pul-
sars are negligible, their apparent angular sizes corre-
spond to the scattering angles in the directions toward
these pulsars. The measurements were carried out at
f ≅  300 MHz, and the observational data can be repre-
sented by the relationship

(41)

where θscat, sph is the scattering angle of a spherical wave
and the apparent angular size corresponds to the half-
power diameter of the source. Recall that θ0 is the scat-
tering angle of a plane wave corresponding to the half-
power radius of the brightness distribution. Of primary
importance for us are the conditions for the observation
of extragalactic sources; therefore, we use the quantity
θscat, pl defined above, which corresponds to the appar-
ent half-power angular size of an infinitely distant
pointlike source.

In the above model for the medium, the scattering
angles of plane and spherical waves are related by the
expression

(42)

Using the wavelength dependence of θ0, according to (8),
we obtain for the scattering angle of a plane wave

(43)

In [6], we presented a plot of the measured disper-
sion measures DM of pulsars as a function of Galactic
latitude b. At latitudes >10°, the maximum dispersion
measures, which correspond to the most distant pulsars
and probe the entire depth of the medium, can be repre-
sented by the approximate relationship

(44)

The DMs measured for pulsars in globular clusters also
fit relationship (44) [19]. Substituting (44) into (43), we
obtain

(45)

θscat sph, 8 DM/DM0( ) mas,≅

DM0 25 pc/cm3,=

θscat pl, n 1–( )1/2θscat sph, 1.6θscat spl, .= =

θscat pl, 2θ0=

≅ 80 λ /10 cm( )2.2 DM/DM0( )1/2 µas.

DMmax 25 bsin( ) 1–  pc/cm3.≅

θscat pl, 80 λ /10 cm( )2.2 bsin( ) 1/2– .≅
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Note that this relationship reflects only the mean lati-
tude dependence of the scattering angle, and there can
be deviations toward either larger or smaller values
against the background of this mean dependence.

The second method for estimation of the scattering
angle uses measurements of pulsar pulse broadening τ and
the frequency correlation scales of scintillations ∆fdif.
In [6], we presented the dependence of τ on Galactic
latitude b. The maximum values of τ for b > 10° can be
approximated by

. (46)

Using (16) for a statistically uniform medium [12], we
obtain

(47)

A similar relationship can be derived from a direct
comparison of the τ and θscat, sph values measured for the
same pulsars. Substituting (47) to (46), we obtain

(48)

Similar estimates of θscat, pl based on the model of Tay-
lor and Cordes [21] are presented in [20].

The third method for estimation of the scattering
angle is measurement of the angular sizes of extraga-
lactic sources. It was shown in [22] that the minimum
angular sizes of extragalactic sources depend on the
emission measure ME, and increase with growing ME.
However, such data are quite scarce at high Galactic
latitudes. These data, derived from measurements at
meter wavelengths and presented in [23, 24], can be
approximated by

(49)

This estimate of the scattering angle is considerably
lower than the estimates (45) and (47). This discrep-
ancy is quite understandable. The pulsar estimates are
based on a selection of maximum values at a given lat-
itude, and accordingly refer to denser regions of the
interstellar medium. The estimates based on extraga-
lactic sources are based on minimum values, so that
they reflect more rarefied regions. Below, we will use
the estimate (49) of the scattering angle in our analysis.
The numerical values of the scattering angle toward the
Galactic pole at the frequencies for the Radio Astron
project are given in the table.

The second important parameter is the critical
wavelength λcr at which scintillations pass from the
weak to the strong scintillation regime. The observed
dependence of λcr on distance R is studied in [25]. This
dependence can be approximated by

(50)

τ 300 MHz( ) 10 bsin( ) 2–  µs≈

θscat pl, 2θ0 12 τ /10 µs( )1/2 mas.≈=

θscat pl, 75 λ /10 cm( )2.2 bsin( ) 1–  µas.≅

θscat pl, 20 λ /10 cm( )2.2 bsin( ) 0.6–  µas.≅

λ cr sph, 15 R/1 kpc( )0.73 cm, R 1 kpc.≥≅



200 SHISHOV
Within the observational errors, the exponent in (50)
coincides with the theoretical exponent for a Kolmog-
orov spectrum:

(51)

Relationship (50) has been derived for a spherical
wave. For a plane wave, assuming that R = 0.9 kpc
toward the Galactic pole [6], we obtain

(52)

A similar estimate of λcr, pl is given in [20].

The next important modulation parameters are the
scintillation timescales. Based on our analysis of the
existing data carried out in [17], we can derive the fol-

λcr Rn/ n 2+( )∝ R0.65.=

λ cr pl, 10 bsin( ) 0.65–  cm.≅

Estimated scattering angle θscat, pl toward the Galactic pole at
the Radio Astron frequencies

λ, cm θscat, pl, µas

1.35 0.24
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10 20

18 72

92 2600

1 mm 1 cm 10 cm 1 m

300 GHz 30 GHz 3 GHz 300 MHz f

λ

1000

100

10

1

0.1

ϕ 0
, µ

as

1

2
3

4

5

c

d

Â

a

b1

b2

ϕFr

λcr
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Domains with difference regimes for source-image recon-
struction. The horizontal axis plots wavelength λ and the
vertical axis the source angular size ϕ. The dashed lines cor-
respond to the values of θscat, pl, ϕdif , ϕFr, and λcr. The solid
lines show the angular resolutions of space interferometers
with baselines (a) B = 2 × 104 km (the VSOP project),
(b1) B = 7 × 104 km (previous working orbit for the Radio
Astron project), (b2) B = 3 × 105 km (proposed higher orbit
for the Radio Astron project), (c) B = 7 × 105 km, (d) B =
7 × 106 km, (e) B = 1 AU.
lowing approximate relationships for the timescales for
diffractive and refractive scintillations:

(53)

(54)

Note that the temporal variations of pulsar scintillations
are determined by the motions of the pulsars themselves;
the typical velocity of a pulsar is Vpuls ≅  150 km/s. For an
extragalactic source, the velocity of the line of sight
with respect to the interstellar medium will be deter-
mined by the Earth’s orbital motion with velocity V ≅
30 km/s and by fluctuation motions in the interstellar
medium. Taking into account this difference in the veloci-
ties and the fact that, for extragalactic sources, we must
pass from a spherical wave to a plane wave approxima-
tion, we obtain

(55)

(56)

All the observational data on the frequency correla-
tions of scintillations can be approximated by the rela-
tionship [17]

(57)

The parameter ∆fdif determines the limiting frequency
band for which diffractive scintillations are not sup-
pressed.

To conclude, we estimate a very important parame-
ter: the diffraction angle. Assuming R = 0.9 kpc and
using (48), we obtain

(58)

The diffraction angle restricts the limiting intrinsic
source size for which diffractive scintillations are not
suppressed.

6. REGIMES FOR THE RECONSTRUCTION
OF THE SOURCE IMAGE

Our final results on the restrictions imposed by the
turbulent interstellar plasma on source-image recon-
struction using an interferometric array with maximum
baseline D and angular resolution ϕres = λ/D are shown
in the figure. The horizontal axis plots wavelength λ,
and the vertical axis plots the intrinsic source angular
size ϕ0. The dashed lines show the scattering angle
θscat, pl and diffraction angle θdif, as well as the angular
size of the first Fresnel zone

(59)

In addition, the vertical dashed line separates the weak
and strong scintillation regimes. The dashed lines
divide the plane of the figure into five regions (we will

Tdif puls, 0.75 10 cm/λ( )1.2 bsin( )0.6 h,≈

T ref puls, 0.7 λ /10 cm( )2.2 bsin( )1.6 h.≈

Tdif 2.2 10 cm/λ( )1.2 bsin( )0.6 h,≅

T ref 6.3 λ /10 cm( )2.2 bsin( )1.6 h.≅

∆ f dif 1/2πτ 9 f /1 GHz( )4.4 bsin( )2.2 MHz.≅≅

ϕdif 2θdif 2bdif/R 4/kθscat pl, R= = =

≈ 5 λ /10 cm( ) 2.2– bsin( )1.6 µas.

ϕFr kR( ) 1/2– .=
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call them domains) with different regimes for the
reconstruction of the initial source image. The first
domain is defined by the inequalities

(60)

Here, the source angular size is larger than the scatter-
ing angle. In the left-hand part of this domain, at λ < λcr,
fluctuations of the modulated emission intensity are
small, and are additionally suppressed by the large
angular size of the source. Here, we can neglect the
effect of the turbulent interstellar plasma on the appar-
ent source image. In the right-hand part of the domain,
at λ > λcr , the strong-scintillation regime is realized, but
the modulation fluctuations of the intensity are small,
since they are suppressed by the large intrinsic size of
the source ϕ0. Since, ϕ0 > θscat, pl in this zone, we can
neglect the effect of the turbulent interstellar medium.
One exception is the zone adjacent to the line ϕ0 =
θscat, pl. Here, we will observe refractive scintillations,
which are manifest as modulation of the total flux of the
source without significant distortion of its brightness
distribution.

The second domain is defined by the inequalities

(61)

In this domain, there are weak intensity fluctuations
whose level is determined by the scintillation index m0
[see Eq. (11)]. In addition, there are weak phase fluctua-
tions whose level depends on the interferometer baseline
and is determined by the magnitude of DS(ρ) [see Eq. (7)].
Here, the effect of turbulent interstellar plasma is man-
ifested as additional weak sidelobes that vary randomly
with the timescale of the weak scintillations.

The third domain is defined by the inequalities

(62)

In this domain, there are no significant fluctuations of
the flux or distortions of the brightness distribution. At
the same time, there are fluctuations of the phase of the
visibility function, which correspond to wandering of
the source position. Here, we can separate out the
intrinsic angular size of the source ϕ0 and the angle
θscat, pl describing the wandering of the position of the
source barycenter. The observed response of the inter-
ferometer is given by (29) and (30).

The fourth domain is defined by the inequalities

(63)

Here, the scintillations are strong, and the turbulent
medium models the amplitude and phase of the visibility
function. Since the intrinsic source size is small, there is
no suppression of diffractive scintillations due to the
intrinsic size of the source. The condition for preservation
of the diffractive scintillations is also given by the ine-
qualities

. (64)

ϕ0 ϕFr, ϕ0 θscat pl, .> >

θscat pl, ϕ0 ϕFr.< <

ϕ0 θscat pl, , λ λ cr.< <

λ λ cr, ϕ0 ϕdif.<>

t0 tdif, ∆ f 0 ∆ f dif< <
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According to (32), we can reconstruct the amplitude of
the initial visibility function.

The fifth domain is defined by the inequalities

(65)

Under these conditions, diffractive scintillations are
efficiently suppressed by the intrinsic source size, but
refractive scintillations are preserved. As a rule, in this
domain, we measure 〈I 〉dif . However, when

(66)

the influence of the intrinsic source size on the fluctuation
properties of a partially averaged interferometer response
is insignificant, and we lose information about the intrinsic
brightness distribution. However, as the angular size of the
source approaches the scattering angle,

Æ ϕ0  θscat, pl, (67)

〈I 〉dif begins to appreciably depend on the intrinsic bright-
ness distribution. This dependence is complicated and
remains poorly studied [15]. In this boundary zone, we
can partially reconstruct the intrinsic brightness distri-
bution.

The solid lines in the figure show the limiting reso-
lutions of instruments with baseline B. In particular,
line a corresponds to the baseline of the VSOP space
radio interferometer [26], line b to the baseline of the
Radio Astron space interferometer for the previous
working orbit [27], and line c to the baseline of Radio
Astron for a proposed larger orbit. For baselines a and b,
we can neglect the effect of the interstellar medium. In
the case of baseline c, the effect of the interstellar
medium will be appreciable only at long decimeter and
meter wavelengths; we can recover the intrinsic brightness
distribution by measuring the fluctuations of the interfer-
ometer response up to wavelengths as long as 1 m.

On the whole, our analysis shows that, at centimeter
wavelengths, we can neglect the effect of the turbulent
interstellar plasma for sources with angular sizes of the
order of microarcseconds and larger. There are two
regimes in the decimeter band. For sources with mil-
liarcsecond angular sizes, we can neglect the influence
of the interstellar medium; for sources with sizes of the
order of microarcseconds and smaller, we must take the
effect of the interstellar medium into account, though
we are still able to reconstruct the intrinsic brightness
distribution. For sources with such small angular sizes,
measurements with baselines as long as B = 1 AU are
plausible (line e in the figure).

Note that the most compact known extragalactic
radio sources are those displaying flux variations on
timescales shorter than one day (Intra Day Variation),
whose sizes lie near the line ϕ = ϕFr [27]. The most
compact known Galactic sources are pulsars, whose
sizes lie within domains three and four.

ϕdif ϕ0 θscat pl, .< <

ϕ0 ! θscat pl,
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7. CONCLUSIONS

(1) Turbulent interstellar plasma can seriously affect
radio astronomical measurements with very high angu-
lar resolution. Its effect depends on the relationship
between the intrinsic angular source size ϕ0 and four
parameters of the interstellar medium: the scattering
angle θscat, diffraction angle ϕdif , angular size of the first
Fresnel zone ϕFr, and critical wavelength λcr separating
the weak- and saturated-scintillation regimes.

(2) The (ϕ0, λ) plane can be divided into five
domains, in which different regimes for the modulation
of radio signals and for source-image reconstruction
are realized. The interstellar medium leads to an irre-
coverable loss of information about the intrinsic bright-
ness distribution only in the fifth domain, which is
described by the inequalities ϕdif < ϕ0 < θscat, pl.

(3) At high Galactic latitudes, at centimeter and
short-decimeter wavelengths, the angular sizes of
sources resolved by VSOP and Radio Astron fall in the
first domain, which is described by the inequalities
ϕ0 > ϕFr , θscat, pl . In this domain, the effect of the inter-
stellar medium on the apparent image of a source can
be neglected.
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Abstract—The formation of cyclotron maser emission lines in a non-uniform (regular or random) magnetic
field is studied. In the presence of sufficiently small inhomogeneity, the line shape can be described by a broad-
ened Gaussian profile. In the case of stronger inhomogeneity, the initial Gaussian profile splits into two Gaus-
sian components, which could be observationally perceived as “harmonics.” A relation between the distribution
of local magnetic trap sizes and the distribution of the spectral widths of solar radio spikes is derived. Possible
applications of the results to the interpretation of solar radio spikes and related problems are discussed. © 2001
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It is currently accepted that electron cyclotron maser
emission (CME) is responsible for many types of
intense radio emission generated in the magneto-
spheres of planets and in the atmospheres of the Sun
and stars [1–3]. As shown in review [4], the millisecond
solar radio spikes that sometimes appear during solar
flares are due to CME. Radio spikes represent one type
of hyperfine temporal structure in the solar radio emis-
sion; they have the shortest durations and narrowest rel-
ative spectral widths, as well as the highest brightness
temperatures and circular polarizations, among all
known kinds of solar electromagnetic radiation (see [4]).

According to the model for radio-spike sources pro-
posed in [4], a cluster of radio spikes (event) is gener-
ated by energetic electrons with an anisotropic distribu-
tion via the cyclotron maser mechanism acting in a
large-scale magnetic trap (arch, loop). Each individual
spike forms in its own local trap.

These small-scale traps are due to fluctuations of the
magnetic field in a large-scale trap, associated with the
primary energy release of a solar flare. Obviously, the
properties of the CME generated in such a non-uniform
medium differ from those for the case of a uniform
medium. Intuitively, it is clear that inhomogeneity will
first and foremost affect the spectral properties of the
pulses of emission.

The spectral halfwidths of radio spikes have been
considered in a number of studies [5–7]. Currently, it is
known that the ratio ∆f/f is about a few per cent, and
has a wide scatter for each event. Within a single event,
∆f/f is not correlated with frequency, and the number of
spikes is often distributed in a power law in halfwidth
(over a limited range of ∆f/f). Sometimes, a tendency
for the spike halfwidth to decrease with growth of spike
intensity is observed. The absence of well-defined cor-
1063-7729/01/4503- $21.00 © 20203
relations of the halfwidth with other measurable param-
eters of radio spikes was interpreted in [6] as an effect
of the non-uniform medium in which the spikes are
generated.

In this paper, we study the role of both regular and
stochastic non-uniformity of the magnetic field in an
individual spike source, and derive a relationship
between the distributions of radio-spike halfwidths and
of microtrap sizes. Our results are consistent with the
observations, and the predicted correlations can be ver-
ified via appropriate statistical analysis of already avail-
able observational data.

2. RADIATION TRANSFER IN A NON-UNIFORM 
MEDIUM (BASIC EQUATIONS)

Let us consider the propagation of transverse modes
[8] in a plasma with either regular or random inhomo-
geneities of the magnetic field and/or density. In a lin-
ear approximation for the field intensity, the equation
for the electric field has the standard form

(1)

where the dielectric constant eij(r – r', r) takes into
account spatial dispersion (argument r – r') and non-
uniformity of the medium (argument r). In a randomly
non-uniform medium, e is also a random function.
Under natural conditions, the inhomogeneity scale usu-
ally far exceeds the emission wavelength. This enables
us to use an eikonal approximation for (1):

(2)

∆Ei ∇ iE j–
2πf( )2

c2
---------------- r'eij r r'– r,( )E j r'( )d∫+ 0,=

Ei r( ) E0i iχ r( )( ).exp=
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The eikonal equation corresponding to (1) is [9]

(3)

where  is the Fourier transform of eij with respect
to r – r'. We neglect the effects of spatial dispersion,
since the thermal velocity of the background plasma
electrons is much less than the velocity of light. We
choose the direction of propagation of the electromag-
netic wave to be along the z axis. Using the solution
of (3), the field (2) can be written

(4)

where nσ is the refractive index of the mode with super-
script σ. In the case of maser amplification, nσ includes
an imaginary part, which leads to (in a linear approxi-
mation) exponential growth of the field amplitude.
Denoting the growth increment as κ(r), we obtain the
intensity of the emission from a magnetic trap along the
z axis

(5)

where I0 is the initial flux density of the intensity. In the
exponential growth regime, the highest intensity will be
emitted at those frequencies f where κ(f, r) has a local
maximum. Expanding κ(f, r) in a series about the peak
frequency f0 (f0 is obviously a function of r) and retain-
ing up to second-order terms, we obtain the profile of a
radio-spike emission line in the form of a collection
(integral of) local Gaussians:

(6)

For the random functions κ(r) and f0(r), (6) must also
be averaged over the inhomogeneities. This procedure
will be carried out in Section 5.

Thus, taking into account the inhomogeneities of
the density and magnetic field can be reduced to deter-
mining the coordinate dependence of quantities in (6),
subsequent averaging, and integrating (6) over the mag-
netic trap volume.

3. APPROXIMATION
OF THE WAVE AMPLIFICATION INCREMENTS

The increments (both temporal and spatial) of
CME-generated electromagnetic waves have been calcu-
lated in many previous studies [10–20]. The correspond-

∇ χ( )2δij ∇ iχ∇ jχ–
2πf( )2

c2
----------------eij

~ —χ r,( )– 0,=

e
~

Ei r( ) E0i i z
2πf

c
---------nσ r( )d∫ ,exp=

I I0 r⊥ 2 zκ r( )d

z

∫ ,expd∫=

I r( )

=  I0 2 z κ f 0 r,( ) ∂2κ r( )
∂ f 0

2
---------------- f f 0 r( )–( )2–

 
 
 

d

z

∫ .exp
ing frequency dependences are fairly smooth func-
tions [21], which admit the parabolic approximation

(7)

near their maxima, where s = f/fB, s0 = f0/fB, and fB is the
gyrofrequency. The factor A does not depend on fre-
quency; however, it is proportional to the gyrofre-
quency fB, has an approximately power-law depen-
dence on the ratio of the plasma frequency to the gyrof-
requency Y = ωp/ωB = fp/fB (the index of this power law
is different for different eigenmodes and cyclotron har-
monics), and is proportional to the relative number den-
sity of fast electrons nb/n0 [18, 19]. The parabolic-approx-
imation parameter α (which determines the intrinsic half-
width of the emission pulse in a uniform medium)
depends mainly on the form and parameters of the fast-
electron distribution function (degree of anisotropy,
energy spectrum index, characteristic electron energies,
etc.). Note that, in the case of a narrow emission line,

α @ 1. (8)

The dependence of the spatial increment κ on the
magnetic-field intensity includes the explicit depen-
dences A(fB) and s(fB) = f/fB, and can also include
implicit dependences if Y changes as the magnetic field
in the source changes. We assume variations of the
magnetic field B in the source to be small (specific cri-
teria for this smallness will be obtained below), and
approximate the dependences Y(B) and s0(B) as power-
law functions with different indices:

(9)

where κ0, λ, and ε are constants and, if Y = const, then
λ = 1 and ε = 0. B is the mean magnetic field in the
source, fB is the gyrofrequency, s0 = f0/fB is the fre-
quency of the emission maximum in a uniform field B,
and δB(r) is the variation of the magnetic field in the
source.

If the relative magnitude of the magnetic-field fluc-
tuations is small,

δB/B ! 1, (10)

we can restrict our treatment to an expansion of κ in
powers of δB/B, retaining up to second-order terms:

(11)

κ A f B Y nb/n0, ,( ) 1 α s s0–( )2–( ),=

κ κ0 f B 1 δB/B+( )λ=

× 1 α f
f B 1 δB/B+( )
--------------------------------- s0 1 δB/B+( )ε–

2

–
 
 
 

,

κ κ0 f B 1 α s s0–( )2–[ ]




≈

+ λ 2αs0 1 ε+( ) s s0–( ) 2α 2 λ–( ) s s0–( )2+ +[ ] δB
B

------

+ λ λ 1–( )/2 αs0
2 1 ε+( )

2
–[
ASTRONOMY REPORTS      Vol. 45      No. 3      2001



BROADENING OF ELECTRON CYCLOTRON MASER EMISSION LINES 205
Taking into account (6) and (8), s – s0 ! 1, so that

(12)

We can then neglect terms that do not contain α in the
coefficient of (δB/B)2:

(13)

4. LINE BROADENING IN THE PRESENCE
OF SMALL, REGULAR INHOMOGENEITY

We first consider the case where the inhomogeneity
of the magnetic field can be described by a single sine
wave

(14)

where z is the coordinate along the line of sight, x is one
of the coordinates transverse to the line of sight, and the
dimensionless quantity δ is small enough that we can
restrict our treatment to linear terms in δ in the expan-
sion of κ (7).

According to (5), we have for the emission intensity

(15)

where L is the source size along the line of sight. Sub-
stituting (13) and (14) into (15), we obtain

(16)

and, after integrating over dz in the exponent, we find

+ αs0 1 ε+( ) 1 ε+( ) ε 2 2 λ–( )–( ) s s0–( )

– α λ 2–( ) λ 3–( ) s s0–( )2/2 ] δB
B

------ 
 

2





.

α s s0–( )2 1.≤

κ κ0 f B 1 α s s0–( )2–[ ]{≈

+ λ 2αs0 1 ε+( ) s s0–( ) 2α 2 λ–( ) s s0–( )2+ +[ ] δB
B

------

– αs0
2 1 ε+( )2[

– αs0 1 ε+( ) ε 2 2 λ–( )–( ) s s0–( )[ ] δB
B

------ 
 

2





.

δB/B δ kxx kzz+( ),sin=

I I0 r⊥ 2 κ z( ) zd

L/2–

L/2

∫ ,expd∫=

I I0 r⊥ 2κ0 f B z 1 α s s0–( )2–[d

L/2–

L/2

∫



expd∫=

+ δ kxx kzz+( ) λ 2αs0 1 ε+( ) s s0–( )+(sin

+ 2α 2 λ–( ) s s0–( )2 ) ]




I I0 r⊥ 2κ0 f BL 1 α s s0–( )2 -–




expd∫=
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After integrating (17) over dr⊥ , the exponent, which
determines the emission-line profile, can be found
using the saddle-point method [22]. In the exponent,
terms that depend on x are proportional to sin(kxx). The
roots of the exponent derivative satisfy the equation
sin(kxx) = ±1. It can readily be shown that the desired
saddle point is provided by the positive root of this
equation, which determines the asymptotic representa-
tion of integral (17) if sin(kxx) is equal to unity in the
integration region. In this case, it is even easier to find
the solution when kxL ! 1. Then, we can assume that
sin(kxx) ≈ kxx in (17). Further, the integration is trivial,
and yields

(18)

We assume here that the source sizes along and trans-
verse to the line of sight are the same, and equal to L. If
this is not the case, only the absolute value of the emis-
sion intensity will change, not the line profile in which
we are interested here.

Isolating the perfect square in (18) and explicitly
separating the contributions that do and do not depend
on frequency, we find

(19)

where

(20)

(21)

is the optical depth of the emission source when δ = 0,

(22)

–
2α λ 2–( )

kzL
------------------------δ kzL/2( ) kxx( ) s s0–( )2sinsin

+
4αδs0 ε 1+( )

kzL
-------------------------------- kzL/2( ) kxx( ) s s0–( )sinsin

+
2λδ
kzL
--------- kzL/2( ) kxx( )sinsin





.

I I0 r⊥ 2κ0 f BL 1 α s s0–( )2 -–




expd∫=

+
kxL
2

-------- 2α 2 λ–( )
kzL

------------------------δ kzL/2( ) s s0–( )2sin


+
4αδs0

kzL
--------------- kzL/2( ) s s0–( )sin

2δλ
kzL
--------- kzL/2( )sin+ 






.

I Im 1 ∆–( ) s s0– ∆s0–( )2/2Γ0
2–[ ] ,exp=

Im Ĩ0 τ0 1 2δλ
kxL
2

--------
kzL/2( )sin
kzL

--------------------------+
 ,exp=

τ0 2κ0 f BL=

Γ0
1

2ατ0

---------------- 1

2 κ0 f BLα
---------------------------= =
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is the unperturbed halfwidth of the emission pulse, and

(23)

is the shift of the central line frequency due to the inho-
mogeneity of the magnetic field (the second of equali-
ties (23) is valid if, together with kxL ! 1, kzL ! 1). The
quantity

(24)

describes CME line broadening due to inhomogeneity
of the magnetic field. When kxL > 1, we must replace
kxL with 1 in (23) and (24). If we introduce the Gaussian
halfwidth Γ of the broadened line, it can be expressed in
terms of Γ0 as

(25)

Note the following results of the calculations (Fig. 1).
(1) In the case of small field inhomogeneity, the line

retains a Gaussian profile.
(2) The shift of the central pulse frequency is pro-

portional to the magnitude of the field inhomogeneity.
(3) The change in the line halfwidth is small, and is

described by (25).
Note that, for estimates of Γ in a non-uniform

medium in the literature, it is usually assumed that Γ ~ δ,
which would be valid in the absence of the maser effect.
In the presence of the maser effect, the quantity that is

∆s0 2δs0 1 ε+( )
kxL
2

--------
kzL/2( )sin
kzL

--------------------------=

≈ δs0 1 ε+( ) kxL( ) ! 1

∆ δ 2 λ–( )
kzL

--------------------kxL kzL/2( )sin=

≈ 2 λ–( )δ
kxL
2

--------  ! 1

Γ Γ0 1 ∆/2+( ).=

1.0

0.8

0.6

0.4

0.2

0

Intensity

Γ0 Γ1

S0 S0 + ∆S0

Frequency

Fig. 1. CME lines in uniform and non-uniform magnetic
fields. The linewidths in regularly non-uniform and random
fields are determined by formulas (25) and (41), respec-
tively. The intrinsic linewidth is determined by (22).
of the order of δ is not the pulse halfwidth Γ, but its
variation Γ – Γ0 ~ δ.

5. LINE BROADENING IN A RANDOM FIELD

Now let the quantity δB/B be a random function
with zero mean. In this case, the emission intensity is
represented as the ensemble mean of (15):

(26)

As in Section 4, we restrict our treatment to linear
terms in δB/B in the expansion of κ(r) (13):

(27)

Assuming the random process is Gaussian, we use the
relation

(28)

Then, the emission intensity is

(29)

Thus, the CME intensity is expressed as a double
integral over the coordinates of the pair correlator of the
amplitudes of the random magnetic field 〈δB(r)δB(r')〉 .
To calculate these integrals, we assume that the mag-
netic turbulence is statistically uniform and isotropic
(i.e., the value of the correlator depends only on the dis-
tance between points):

(30)

where 〈δB2〉  is the rms value of the random magnetic
field and T(x) is the dimensionless pair correlation

I I0 r⊥ 2 κ z( ) zd

L/2–

L/2

∫ 
 
 

expd∫ .=

I I0 r⊥ 2κ0 f BL[1 α s s0–( )]2 ∫–




expd∫=

+ 2κ0 f B λ α 2 λ–( ) s s0–( )2+[

+ 2α s s0–( )s0 1 ε+( )] z
δB r( )

B
--------------d

L/2–

L/2

∫ 



.

AX( )exp〈 〉 A2 X2〈 〉 /2( ).exp=

I I0 r⊥ 2κ0 f BL 1 α s s0–( )2–[ ]{ }expd∫=

× 2κ0
2 f B

2 [λ α 2 λ–( ) s s0–( )2 ∫+




exp

+ 2α s s0–( )s0 1 ε+( ) ]2

× z z'
δB r( )δB r'( )〈 〉

B2
------------------------------------d

L/2–

L/2

∫d

L/2–

L/2

∫ 



.

δB r( )δB r'( )〈 〉 ∆B2〈 〉 T r r'–( ),=
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function of the magnetic field. The integral of the cor-
relation function is

(31)

where Lc is, by definition, the correlation length of the
random field. If we make a change of variable from z
and z' to their difference and half-sum when integrat-
ing (29), the quantity

(32)

will enter the exponent if the correlation length Lc is
less than the source size L. Calculation of the second
integral yields simply the factor L, so that

(33)

where

I1 = I0S, (34)

and S is the source cross section. Let us expand the square
in the last exponent, retaining terms up to (s – s0)2. Higher-
order terms describe asymmetry of the line wings, and
can readily be derived from (33) if required for the
analysis of observed line profiles. Introducing the opti-
cal depth of a uniform source τ0 (21) and neglecting
small terms (keeping in mind that α @ 1), we find

(35)

(36)

As in the previous section, isolating the perfect square
in the exponent, we finally obtain

(37)

T x( ) xd

0

∞

∫ Lc,=

T x( ) xd

0

L

∫ Lc≈

I I1 2κ0 f BL 1 α s s0–( )2–[ ]{ }exp=

× 2κ 0
2 f B

2 [λ α 2 λ–( ) s s0–( )2 ∫+




exp

+ 2α s s0–( )s0 1 ε+( ) ]2LLc
∆B2〈 〉
B2

---------------




,

I Im τ0α 1 2 1 ε+( )2s0
2ατ0

∆B2〈 〉
B2

---------------
Lc

L
-----– 

 –




exp=

× s s0–( )2 2λ 1 ε+( )s0τ0
∆B2〈 〉
B2

---------------
Lc

L
----- s s0–( )–





,

Im I1 τ0 1 λ2τ0
∆B2〈 〉
B2

---------------
Lc

L
-----+ 

  .exp=

I Im 1 ∆st–( ) s s0– ∆s0–( )2/2Γ0
2–[ ] ,exp=
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where, as before, Γ0 is the intrinsic linewidth (22),

(38)

(39)

We have derived the expression for I (37) under the
assumption that δB/B ! 1. However, the value of ∆st
may not be small compared to unity, since α @ 1 and
τ0 @ 1. Nevertheless, if

(40)

the amplified line still has a Gaussian profile (Fig. 1),
with halfwidth

(41)

If ∆st is sufficiently close to unity, so that |∆s0 | ≥ s0, the
line profile will be very different from the initial Gaus-
sian (for large deviations of s from s0, the parabolic
approximation for the increment κ (13) may not be valid).
In particular, when (1 – ∆st) = 0, quadratic terms of the
form (s – s0)2 are completely absent from the exponent.
Finally, if

(42)

this analysis is valid near s0, but the coefficient of (s – s0)2

in the exponent is now positive, so that we have a local
minimum in the emission at s ≈ s0, not a maximum. This
means that, in a medium with sufficiently strong inho-
mogeneities, the initial Gaussian profile is divided into
two (or more) profiles; i.e., the CME line splits. To
describe this effect quantitatively, we need more informa-
tion about the statistical properties of the random field
than is contained in the pair correlator (30). Nevertheless,
we can obtain a quantitative description of line splitting
in a regular field if we include second-order terms in
δB/B in (13).

6. CME LINE SPLITTING
IN A REGULARLY NON-UNIFORM

MAGNETIC FIELD

In the previous section, we showed that the change
in the CME line profile in the presence of sufficiently
strong (though small compared to unity) fluctuations of
the magnetic field can be quite considerable. In partic-
ular, a single Gaussian line can be split into several
lines. Let us consider this effect quantitatively in the
case of regular inhomogeneity of the magnetic field,
described by (14). We will take into account quadratic
(in δ) corrections to the expansion of κ (13). The CME

∆s0

λ 1 ε+( )s0τ0
∆B2〈 〉
B2

---------------
Lc

L
-----

1 ∆st–
----------------------------------------------------,=

∆st 2 1 ε+( )2s0
2ατ0

∆B2〈 〉
B2

---------------
Lc

L
-----.=

1 ∆st–( ) 0, ∆s0 ! s0,>

Γ
Γ0

1 ∆st–
------------------- Γ0 1 ∆st/2+( ).≈=

1 ∆st–( ) 0, ∆s0 ! s0,<
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intensity after integration over dz in the exponent is
[analogous to (17)]

(43)

It is easy to see that, when

αδ2 ≥ 1 (44)

the term proportional to δ2 is not small compared to the
term that is linear in δ. Note that, since α @ 1, con-
dition (36) is consistent with the condition that δ be
small.

To find the resulting line profile, we must correctly
calculate the exponent after integration over dr⊥ . This

I I0 2κ0 f BL 1 α s s0–( )2 -–




exp=

–
δ2

2
----- 1

kzL( )sin
kzL

---------------------– 
  αs0

2 1 ε+( )2(

---+ 2α 2 λ–( )s0 1 ε+( ) s s0–( ))




× r⊥ 2κ0 f BL
δ2

2
-----

kzL( )sin
kzL

--------------------- kxx( )sin
2

–




expd∫

× αs0
2 1 ε+( )2 2α 2 λ–( )s0 1 ε+( ) s s0–( )+( )

+ δ
kzL/2( )sin

kzL/2
-------------------------- kxx( )sin

--× λ 2αs0 1 ε+( ) s s0–( ) α 2 λ–( ) s s0–( )2+ +( )




.

1.0

0.8

0.6

0.4

0.2

0

Intensity

Γ1 Γ2

S1

Frequency
S0 S2

Fig. 2. Splitting of a CME line in a sufficiently strong, reg-
ularly non-uniform magnetic field.
can be done using the saddle-point method [22]. The x-
dependent terms in the exponent are

(45)

To find the saddle points, we must set the derivative of
this quantity equal to zero. The roots of (45) are deter-
mined by the equations

(46)

(47)

It can readily be shown that (46) corresponds to a min-
imum of the exponent curve and (47) to a maximum.
Therefore, the result of integrating over dr is the sum of
two contributions corresponding to these roots:

(48)

When deriving (48), we have omitted some small
terms, set sin(kzL)/kzL = 1 [this does not affect the func-
tional form of (48)], and included terms that do not
depend on s in Im1, 2. Introducing the central frequencies
of the doublet components

(49)

and the corresponding halfwidths

(50)

where Γ0 is the unperturbed halfwidth of the spectral
line (22), we obtain for the doublet components

(51)

In the model considered, the absolute value of the
intensity Im2 of the high-frequency component of the dou-
blet is greater than Im1, so that Im2/Im1 = exp(2τ0δλ). How-
ever, we emphasize that this result is very model-depen-
dent: even small changes in the functional relation B(r)
can appreciably affect the intensity ratio, since they enter
the exponent of (43). In spite of the fact that the total
broadening of the CME line ∆s+ = 2(1 + ε)s0δ @ Γ0, the
resulting emission is not described by a single Gaussian
with width ∆s+, but is instead divided into two profiles
with widths Γ1, 2 that are close to Γ0 and central frequen-
cies separated by ∆s+ (Fig. 2). Note that, in this case, the
low-frequency component (s ≈ s1) has a smaller spectral
halfwidth (Γ1 < Γ2).

7. WIDTH DISTRIBUTION AND DEPENDENCE
ON PHYSICAL PARAMETERS

According to the model for radio-spike generation
proposed in [4], the radio spikes that make up a cluster
in a dynamic spectrum form in local magnetic traps

A kxx( )sin
2

B kxx( ).sin+

kxx( )sin B/2A,–=

kxx( )sin 1.±=

I1 2, Im1 2, 2κ0 f BLα 1 δ 2 λ–( )±[ ]–{exp=

× s s0– 1 ε+( )δs0±[ ]2 } .

s1 2, s0 1   1 ε+( )δ[ ]= ±

Γ1 2,
1

2 κ 0 f BLα 1 δ 2 λ–( )±( )
--------------------------------------------------------------=

≈ Γ0 1 δ 2 λ–( )/2+−( ),

I1 2, Im1 2, s s1 2,–( )2/2Γ1 2,
2–[ ] .exp=
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arising in a large-scale (global) magnetic loop due to
fluctuations of the magnetic field. In this model, there
should be a connection between the spike width distri-
bution and the size distribution for the local traps.

Let us first consider the case where line broadening
due to field inhomogeneity is small, so that the spike
halfwidth Γ is related to the source size L as

(52)

Since there exists a simple linear relationship between
the optical depth τ and source size L, we will analyze
dependences on τ rather than on L.

Let the distribution of optical depths τ for the local
sources be given by function ϕ, such that

(53)

where Ns(∆τ) is the number of local sources with opti-
cal depths in the interval from τ0 to τ0 + ∆τ and, accord-
ingly,

(54)

where Ns is the total number of local sources.
Let the distribution of the widths Γ for the radio

spikes be described by the distribution function ψ(Γ):

(55)

where Nr is the total number of radio spikes in a cluster.
It is natural to assume that each local source emits,

on average, the same number of spikes; i.e.,

(56)

For the sake of definiteness, we assume that a = 1
(this does not affect the functional relation); i.e., each
local source emits precisely one spike (Nr = Ns). Then,

(57)

Accordingly, we have for the distribution of source
sizes L

(58)

If the function ψ(Γ) is known from observations, (58)
can be used to determine the size distribution for the

Γ 1

2 κ 0 f BLα
---------------------------

1

2ατ
--------------.= =

ϕ τ( ) τd

τ0

τ0 ∆τ+

∫ Ns ∆τ( ),=

ϕ τ( ) τd

0

∞

∫ Ns,=

ψ Γ( ) Γd

0

∞

∫ Nr,=

Nr aNs, a 1.≥=

ϕ τ( ) ψ Γ τ( )( ) dΓ
dτ
------- τ 3/2– ψ Γ τ( )( )∝=

=  τ 3/2– ψ 1

2ατ
-------------- 

  .

ϕ L( ) L 3/2– ψ 1

2 ακ 0 f BL
--------------------------- 

  .∝
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local sources. For example, if we have in some interval
of Γ

(59)

then

(60)

We now take into account line broadening in a ran-
dom magnetic field (41):

(61)

where

(62)

and we adopt β = const. Then,

(63)

and

(64)

When βτ ! 1, we have our previous result, and, when
τ > 1/2β, the spectral width of the pulse increases with
τ, rather than decreasing, as earlier [see (52)]. In this
case, the spectral width Γ as a function of τ reaches the
minimum value

(65)

when
τ = 1/2β. (66)

We cannot use (64) for such τ values, since the rep-
resentation of the discrete quantities Nr and Ns by the
continuous functions ψ and ϕ is no longer correct. For-
mula (64) is applicable when τ < 1/β, since the line pro-
file is strongly modified at large values of τ (see Sec-
tion 5). Together with the spectral halfwidth of the
pulse, the optical depth is also determined by the pulse
intensity [in accordance with (34)]. However, in general,
the Γ(τ) dependence is non-monotonic: Γ can either
increase or decrease as the emission intensity grows, and
weak correlation (or absence of a correlation) is also pos-
sible.

We have for small inhomogeneity of the magnetic
field

(67)

therefore,

(68)

The values of Γ can show some scatter about this cor-
relation dependence due to variations of α from one

ψ Γ( ) Γ ν– ,∝

ϕ L( ) L
ν 3–

2
------------

.∝

Γ 1

2ατ 1 βτ–( )
----------------------------------,=

β 2 1 ε+( )2s0α
∆B2〈 〉
B2

---------------
Lc

L
-----,=

dΓ
dτ
------- α 1 2βτ–( )

2ατ 1 βτ–( )[ ]3/2
----------------------------------------=

ϕ τ( ) 1 2βτ–( )
2ατ 1 βτ–( )[ ]3/2

----------------------------------------ψ Γ τ( )( ).∝

Γmin 1/ ατ 2β/α= =

I eτ , Γ τ 1/2– ,∝ ∝

Γ Iln( ) 1/2– .∝
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local source to another. In general, when τ is related to
Γ by (61), we have the more complicated dependence

(69)

Note that we should now expect a wider scatter of Γ
values, since both α and β can vary from one local
source to another. In spite of the fact that Γ(I) has a
minimum, we cannot expect a correlation with minima
in the analysis of any individual event, since the range
for the variation of τ in each event is small (the flux var-
ies by a factor of a few). We now make a transformation
from the dimensionless quantities s and Γ to the dimen-
sional ones f and γ. Then, expression (69) for Γ
becomes

(70)

i.e., in the presence of small field inhomogeneities, the
dimensional pulse halfwidth is proportional to the
square root of the magnetic-field intensity.

8. APPLICATION TO ANALYSIS
OF SPECTRAL DATA ON SOLAR RADIO SPIKES

The spectral properties of radio spikes detected at
decimeter and centimeter wavelengths have been ana-
lyzed in a number of studies [5–7, 23, 24]. The consid-
erable scatter of the spike spectral widths and lack of
any clear dependence of Γ on other measurable param-
eters of radio spikes were interpreted in [6] as a reflec-
tion of the non-uniformity of the source medium. In
their review [4], Fleishman and Mel’nikov note that, in
general, the width of an observed spike consists of three
different contributions:

(1) The intrinsic linewidth.
(2) Broadening due to non-uniformity of the source

parameters.
(3) Broadening due to line-of-sight scattering of the

waves between the source and observer.
Note that, in the case of CME (in contrast to, e.g.,

atomic line emission), the intrinsic width is not “funda-
mental”; on the contrary, it depends on many parame-
ters (the characteristic energies of the emitting elec-
trons, their energy and angular distributions, the source
size, etc.). Therefore, the intrinsic width of a CME line
can vary rather strongly from event to event, as well as
from spike to spike within a single event. In our analy-
sis, the dependence on the fast-electron distribution is
described by the parameter α. We have not considered
the role of the third factor (line-of-sight scattering). The
relationships obtained for the CME linewidths depend
on the parameters of the fast-electron distribution
(through α), the type and magnitude of the magnetic-
field fluctuations, the gyrofrequency, and the source
size (through the optical depth τ).

Γ 1

2α I/I0( ) 1 β I/I0( )ln–( )ln
--------------------------------------------------------------------.=

γ
f B

α 1 A f B–( )
----------------------------;∝
Let us consider the application of our theoretical
results to the analysis of observational data on radio
spikes. Csillaghy and Benz [6] found no significant cor-
relation between the dimensional halfwidth γ and the
central frequency f0 of the spikes for any individual
event. We can understand this negative result, since our
theory predicts a weaker than linear dependence
between these quantities:

(71)

Taking into consideration the limited variation of f0
within an individual event (values of fmax/fmin < 1.4 are
typical), it becomes clear that the considerable scatter of
the “intrinsic” CME linewidths could easily mask the cor-
relation (71). When analyzing observational data, we
should seek a dependence similar to (71), instead of a
linear correlation between γ and f0.

Csillaghy and Benz [6] also investigated the corre-
lation between the spike widths and radio fluxes. In
four of the eight events studied, there is a significant
correlation between Γ and I; Γ decreases with growing
flux I in three cases and increases with growing I in one
case. In the previous section, we showed that the Γ(I)
dependence is not monotonic. Therefore, our theory
admits both decreases and increases of Γ with growing I.
In the case of small broadening, the most intense CME
lines are the narrowest, so that the strongest correlation
should be observed between Γ and (lnI)–1/2; this can be
readily verified using available observations of radio
spikes.

Karlicky et al. [7] obtained dependences of the
power spectra of spike radio emission on (2π/∆f) for
two events. These dependences could be fit with power
laws, with the spectral index in each case close to 5/3.
This was interpreted as evidence for a relation between
radio-spike generation and MHD turbulence. The the-
ory we have developed here establishes a connection
between the distributions of radio-spike widths and of
spike source (local magnetic-trap) sizes. This latter dis-
tribution cannot in general be represented in terms of a
turbulence spectrum (pair correlator), and this requires
additional statistical information on the properties of
the random magnetic field. Therefore, the spectral
index of 5/3 obtained in [7] should not be considered
special from a theoretical point of view. On the con-
trary, our theory admits a variety of spectral indices, as
well as a variety of forms for this distribution.

In Section 6, we described the effect of CME line
splitting in a non-uniform field. In observations, the
components of this doublet would be manifest as “har-
monics” with a frequency ratio close to unity (in any
case, smaller than 2):

(72)

It is clear that these “harmonics” will have similar
intensities and degrees of circular polarization (with the
same sign). The model developed in Section 6 predicts
a rather simple relation between the central frequencies

γ f 0
1/2 f 0 f B∝( ).∝

1 f 2/ f 1 2.<<
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and spectral widths of the doublet components. Indeed,
using (49),

(73)

and we find from (50)

(74)

therefore,

(75)

The harmonic ratios of radio spikes were analyzed
in detail in [24], where it was shown that the observed
harmonic ratios f2 : f1 are not described by ratios of
small integers, and, on the contrary, fill the interval of
values

(76)

For example, in the event of April 6, 1980, f2 : f1 is 1.06.
If this corresponds to the splitting of the CME line con-
sidered above, this implies that

(77)

Widths Γ1 and Γ2 should be close to the intrinsic width
Γ0, and their difference should be of order a few per
cent, in accordance with (74). Although it is quite
tempting to interpret the observed distribution of non-
integer harmonic ratios in clusters of spikes as an effect
of splitting of the CME lines in non-uniform magnetic
fields, it will be possible to draw firm conclusions only
after a detailed analysis of the observational data for
events with harmonic structure, since non-integer har-
monic ratios could also arise from the generation of
CME in a uniform source [21].

9. CONCLUSION

We have considered effects accompanying the gen-
eration of CME in a non-uniform medium. Typical
CME lines can be described by Gaussian profiles. If
inhomogeneities (both regular and random) in the mag-
netic field are not too strong, the Gaussian line shape is
retained, but the linewidth Γ increases. As the field
inhomogeneity grows further, the line is split into two
Gaussian components that form a doublet. We have dis-
cussed the relevance of our theoretical results for solar
radio spikes, as well as directions for future analysis of
the observational data.

s2 s1–
s2 s1+
--------------- 1 ε+( )δ,=

Γ2 Γ1–
Γ2 Γ1+
----------------- δ 2 λ–( )/2;=

s2 s1–
s2 s1+
---------------

2 1 ε+( )
2 λ–

--------------------
Γ2 Γ1–
Γ2 Γ1+
-----------------.=

1.06 f 2 : f 1 1.5.<<

δB/B 3 10 2– .×∼
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Abstract—We estimate the extent to which there is an evolutionary relationship between detached main-
sequence binaries and ~KW, KW, and KP contact binaries in the first mass-exchange phase. The current and
initial distributions of close binaries of these types are calculated per unit volume of space in the vicinity of the
Sun and used to demonstrate evolutionary transitions from low-mass, short-period, detached systems to contact
binaries. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In the current paper, we estimate the degree to
which there is an evolutionary relationship between
~KW, KW, and KP close binary systems on the main
sequence and in the first phase of mass exchange. The
following abbreviations are adopted according to the
classification introduced by Svechnikov et al. [1]:

DMS—detached main-sequence systems—close
binaries in which both components are on the main
sequence.

KW—W UMa contact systems—close binaries in
which both components are comparatively close to fill-
ing their inner critical surfaces, and the primary compo-

nents have periods ≤0 5 and spectral types Sp1 later
then ≈F0.

~KW—KW-like systems—low-mass close binaries
of spectral types F–K that are not in contact, but are
closer to each other than DMS systems with the same
mass and have many parameters similar to those of KW
systems.

KP—early spectral-type contact binaries—close
binaries in which the sizes of both components are
close to those of the corresponding inner critical sur-

faces, with periods exceeding 0 5 and Sp1 no later then
≈F0.

Our study is based on the “Catalog of Approximate
Photometric and Absolute Elements of Eclipsing Vari-
able Stars” of Svechnikov and Kuznetsova [2]. The cat-
alog contains data for 437 DMS, 153 ~KW, 215 KW,
and 392 KP systems whose spectra are known or esti-
mated from the mass–spectrum relation. The spectra of
the primary components are known for 273 DMS,
67 ~KW, 66 KW, and 121 KP systems.

In this paper, we study the current and initial distri-
butions of these systems per unit volume of space in the
vicinity of the Sun. This makes it possible to determine
qualitatively how closely areas of these distributions

.d

.d
1063-7729/01/4503- $21.00 © 20212
overlap, and to describe the DMS ⇒  ~KW ⇒  KW and
KP ⇒  KW evolutionary transitions and the conditions
under which they occur.

2. CURRENT DISTRIBUTIONS OF DMS,
~KW, KW, AND KP CLOSE BINARIES

Figure 1 presents the current distributions of DMS,
~KW, KW, and KP systems—the spatial density of
these systems per pc3 in the vicinity of the Sun as a
function of primary mass and the rotation period of the
system. The spatial density is derived from the
observed close-binary distribution corrected for the
geometric and photometric probability of detecting
these types of close binaries as eclipsing variables and
for the volume occupied by these systems. For DMS
and ~KW systems, we derived the total detection prob-
ability W(M1, A, q, i) as a function of the primary mass
M1, the semimajor axis of the system A, the mass ratio q,
and the orbital inclination i; for KW and KP systems,
A is unambiguously determined by M1 and q, so that the
probability of their detection as eclipsing variables was
calculated as a function of the three parameters M1, q, and
i. We calculated the detection probability W*(M1, A, q, i)
for each system independently via sequential linear inter-
polation between known table probabilities from [3, 4]
for fixed M1, A, q, and i and specific values of the pri-
mary mass, semimajor axis, mass ratio, and orbital
inclination.

Estimating the spatial density of the systems is
related to calculating the individual volumes occupied
by stars of a given type per pc3 in the vicinity of the
Sun. For this purpose, we calculated the distance ri

from the observer to each (ith) system using the relation

 =  + ∆  + 5 – 5  – ri, where  =

 – ∆m' is the absolute bolometric magnitude of the

system at maximum brightness, and ∆m' = 0 48 is the

Mb
i mv

i mb
i rilog A Mb

i

Mb1
i

.m
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Fig. 1. Map of the current distributions of DMS, ~KW, KW and KP systems in the –  diagram. Shaded areas correspond

to regions of overlap for the distributions for different types of systems.

M1log Plog
correction for the translation from the absolute bolom-

etric magnitude of the primary  to that of the sys-
tem [5]. Due to the sharp peak in the q distribution for
DMS systems and the small scatter in q [6], the correc-
tions ∆m' for different DMS systems differ very little,
and their mean value is quite suitable for statistical
studies.  = 0.0019 pc–1 is the mean interstellar

absorption [7],  the apparent magnitude of the sys-
tem at maximum brightness taken from the General

Catalogue of Variable Stars (GCVS), and ∆  the
bolometric correction [8]. For each system, we esti-
mated the volume Vi to be that of a spherical layer with
outer radius ri and thickness h = 180 pc [9].

The effects of observational selection for faint sys-
tems must be taken into account; in other words, a sam-

ple incompleteness factor f i must be introduced. As 
increases, the number of close binaries of a given type
should increase in proportion to the volume of the
Galactic layer containing the systems. However, in
reality, due to observational selection effects, the num-
ber of detected systems increases more slowly than the

layer volume. It was found for DMS systems that 

(f i = 1) ≤ 10 5 [10]. This is also valid for ~KW sys-
tems, since they are detached binaries. We calculated

Mb1
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individual sample incompleteness factors for KW and
KP systems, which correspond to variations of the
number of a given type of system per unit primary mass
interval per unit volume of space as a function of the
limiting apparent magnitude mv lim. These graphs

showed that  (f i = 1) ≤ 11 5 for KW and KP sys-
tems.

The density distributions of close binaries of the types
considered can be graphically presented as “maps” of the
current and initial distributions in a –  dia-
gram. These maps display non-monotonic behavior in the
M1 and P distributions for DMS systems, as well as indi-
vidual peaks and valleys. Such non-monotonic behavior
has been studied by numerous authors using various
observational data [6, 11, 17–20], and we confirm its
existence here.

As the period increases from 1 27 to 10d, there is a
pronounced increase in the density distribution for
DMS systems with primary masses in the intervals
1–1.6M( and 2–2.5M( (Fig. 1). We can clearly see max-

ima in the distribution at (M1 = 1.1å(, P = 4 5), (M1 =

1.1M(, P = 7d), (M1 = 1.4M(, P = 5 6), (M1 = 1.4M(,

P = 10d), and (M1 = 2.2M(, P = 4 5). The diagram indi-
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Fig. 2. Same as Fig. 1 for the initial distributions.
cates a decrease in the distribution for M1 ≥ 5M( and

P ≥ 1 5.

Dips in the current distribution for DMS systems are
also present in the areas (M1 = 1.8M(, P = 5d–8d),

(M1 = 3.5M(, P = 4 5 and P = 10d), (M1 = 5.6M(, P ≥ 3d),

(M1 ≥ 3M(, P = 10d). A dip at M1 ≤ 1.6M(, P ≤ 1 27 is
quite characteristic and expected, corresponding to the
maximum of the current distribution for ~KW systems
with masses from 0.8 to 1M( and periods from 1d to

1 27. The map for the current distribution of KW sys-
tems appears to continue the distribution for ~KW sys-
tems (Fig. 1); we can see a maximum for masses from

0.8 to 1M( and periods of 0 27, and a constant level for

masses from 0.8 to 0.5M( and periods of 0 25–0 2.

The map for the current distribution of KP systems
(Fig. 1) for masses from 1.5 to 6M( and periods of

≤1 2 clearly reflects the increase in the number of sys-
tems of this type with decreasing mass and period. For
example, the maximum of this distribution lies in the

mass interval 1.6–2M( and the period interval 0 4–

0 8, and the minima are concentrated in the intervals

.d

.d

.d

.d

.d

.d .d

.d

.d

.d
(2–2.5M(, 0 3–0 4), (2.5–6M(, 0 5–0 8), (5–6.3M(,

0 63–1 26).

3. INITIAL DISTRIBUTIONS OF DMS, ~KW, KW,
AND KP CLOSE BINARIES

We can derive the initial distribution from the cur-
rent spatial distribution of DMS and ~KW systems

F( , Pk) = f i by separating it into the time

τi a star with mass  and radius  spends on the
main sequence. We determined τi individually for each
DMS and ~KW star using isochrones constructed on
the basis of evolutionary tracks obtained by Maeder
and Meynet [12] with (X, Y, Z) = 0.70, 0.28, 0.02 for
Population-I stars, taking into account convective pen-
etration and mass loss by the components. The isoch-
rone method is described in detail in [13].

The initial distribution of DMS systems (Fig. 2) is a
sort of “negative image” of the corresponding current
distribution, since the positions of local maxima and
minima are interchanged. For example, in the initial
distribution of DMS systems, maxima are concentrated
in the area of large masses and periods: (M1 = 2.8M(,

P = 5 6), (M1 = 3.5M(, P = 7d), (M1 = 4.5M(, P =

5 6), (M1 = 7M(, P = 5d–8d), and (M1 = 15M(, P = 10d).
Minima in the initial distribution of DMS systems

.d .d .d .d

.d .d

M1
j 1

WiVi
------------

i 1=
n∑

M*
i R*

i

.d

.d
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are located in areas of small masses and periods: (M1 =

1–4M(, P = 1d–1 6) and (M1 = 1–2M(, P= 1d – 4d).
There remain dips in the initial distribution of DMS
systems, due to the absence of these system in these
intervals in the apparent distribution.

The initial distribution of DMS systems indicates
that the formation of systems with masses M1 ≥ 2.5M(

and periods ≥4d is predominant; for masses larger than
8M(, periods can be around 2d. Lucy and Ricco [14]
concluded that most close binaries with initial periods
P ≥ 25d and total masses of the components from ≈0.5
to 10M( form via a mechanism that creates compo-
nents with similar masses—the fragmentation of a
rotating protostar at the last stage of its dynamical col-
lapse before its entry onto the main sequence. Depend-
ing on the thermal energy of the cloud, the fragmenta-
tion can occur either directly or via an intermediate
stage of ring formation. The binary mode of fragmenta-
tion dominates [15, 16].

The initial distribution of ~KW systems (Fig. 2) dis-
plays levels close to zero, with the exception of the

interval (M1 = 0.8–1M(, P = 1d–1 27), where, as before,
there is a maximum. This agrees with our current under-
standing of the evolutionary origin of ~KW systems. The

maximum at (M1 = 0.8–1.5M(, P = 1d–1 5), in the area
where the current distributions of DMS and ~KW sys-
tems overlap, should probably be taken into account
when interpreting the current distribution of DMS sys-
tems. In other words, ~KW systems form as a result of
the evolution of DMS systems. Therefore, the initial
distribution of ~KW systems can be derived from the
current distribution of DMS systems with masses of
≤1.5M(, in which the components approach each other
as a result of magnetic deceleration, virtually without
filling their inner critical surfaces.

Thus, the location of ~KW systems in Fig. 1 can be
interpreted as the initial distribution of ~KW systems,
while the location of KW systems simultaneously
reflects the current distribution of ~KW systems and
the initial distribution of KW systems; i.e., the result of
the transformation of ~KW systems as their compo-
nents approaches due to a loss of mass and orbital angu-
lar momentum.

It follows that ~KW and KW systems, respectively,
represent initial and current stages of evolution for
the same class of contact binary system. Thus, based
on the distributions analyzed, the evolutionary transi-
tion DMS ⇒  ~KW ⇒  KW is obvious.

4. CONCLUSIONS

Figure 1 presents the current distributions of all the
types of systems we have considered. In overlapping
areas, an evolutionary “migration” of systems due to
loss of mass and orbital momentum, from the area of
DMS stars to the area of KW systems via the stage of
~KW systems, can clearly be seen. The area of KP stars

.d

.d

.d
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overlaps that of DMS systems, and seems to extend the
boundaries of the DMS-system area to orbital periods

of about 7.5h (≈0 32).
No apparent intersection of areas for the KP and

KW systems can be seen in Fig. 1. However, the prox-
imity of these areas suggests a KP ⇒  KW evolutionary
transition via the same mechanism as for the DMS ⇒
~KW ⇒  KW transition; i.e., loss of orbital angular
momentum.
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Abstract—We study the development of a complex rotation law in the magnetized convective and isothermal
zones of stars and planetary atmospheres through the decomposition of vector quantities in terms of orthogonal
vector spherical harmonics. In the case of a solar-type extended convective zone, it is assumed that (a) the trans-
formation of thermal into magnetic energy is favorable from the viewpoint of energy balance, (b) the state that
is supported with minimum energy loss is realized, and (c) the condition of minimum entropy production con-
sistent with the two previous requirements is satisfied. To find the rotation law of a zone, weak interaction
between variations in the rotation and magnetic-field distributions is assumed. Two possible zones of generation
of the solar magnetic field are considered. The first is located in the lower half of the solar convective zone and
possesses a latitude dependence of the rotational velocity similar to that observed. The second zone is located
just below the surface, and has a rotational velocity that decreases sharply with height and depends only weakly
on latitude. We also study simple equilibrium structures, in particular, those describing the super-rotation of the
medium in a convective or isothermal zone. Realization of such super-rotation in an isothermal zone is associ-
ated with the outflow of matter and fields toward upper layers. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Observational data show that complex rotation pat-
terns are often formed in the convective zones of stellar
and planetary atmospheres. For example, the entire
solar convective zone exhibits differential rotation (see,
for example, [1]), along with cyclic magnetic-field gen-
eration processes. The differential rotation of the con-
vective zone is associated with the excitation of strong
turbulent viscosity, which is a strong source of entropy
production (or energy dissipation). On the other hand,
the entropy production for a system near equilibrium
should be minimum [2], leading to the establishment of
rigid-body rotation of the medium.

This paradox can be resolved if there is some addi-
tional constraint preventing the equalization of the
angular velocities of different layers. In the case of the
Sun, the huge size of the convective zone (whose thick-
ness exceeds 100000 km) seems to be important, since
it strongly increases the energy dissipation required to
transport thermal flux via the excitation of convective
motions. Recently, we suggested that the transforma-
tion of the energy of this thermal flux to magnetic-field
energy is favorable from an energetic point of view [3].
In other words, this implies the formation of a state
with minimum energy loss. In this case, the established
rotation of the medium should correspond to the maxi-
mum conversion of thermal to magnetic energy. In
addition, all modes preventing field generation must be
suppressed. This leads to the excitation of strong turbu-
lent viscosity, although probably somewhat less than
that needed for direct support of the observed rotation
(see the estimates in Section 3). As noted above, the
1063-7729/01/4503- $21.00 © 20216
direct support of differential rotation is in contradiction
with the conclusions of irreversible thermodynamics.

Since any redistribution of the rotational velocity is
quite difficult, we expect that the transformation of
thermal to magnetic energy will be facilitated if the
field variations are not accompanied by substantial
changes in the rotational velocity. This is also con-
firmed by the small amplitude of variations in the solar
rotation in the course of the solar activity cycle [4]. The
condition of weak inter-dependence between variations
in the magnetic field and the average rotational-velocity
can be used to find the most probable rotation law for
the medium. This approach was applied in [3] using an
axially-symmetric model. It was established that, in the
case of maximum extent of the zone of weak inter-
dependence between the field and rotational variations,
this layer will cover approximately the entire lower half
of the solar convective zone, with the calculated lati-
tude dependence of the rotational velocity similar to
that observed for the Sun.

Nevertheless, it remains unclear how important the
restriction on the character of the magnetic field
assumed in [3] actually is, since the observed field does
not possess axial symmetry. In addition, the possible
existence of several regions of magnetic-field genera-
tion in the solar convective zone is of considerable
interest. This problem is currently being widely dis-
cussed [5–7]. In particular, it has been proposed that,
along with the main generation zone, located at a con-
siderable depth and characterized by the 22-year
period, there is also a subsurface zone characterized by
quasi-two-year periods [6]. In standard dynamo theory,
001 MAIK “Nauka/Interperiodica”
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the locations of the zones of generation of magnetic
field are usually associated with zones having large
angular-velocity gradients, assuming these gradients
are formed by some other processes [6]. In our study,
such gradients are determined in the process of finding
the desired solution (see [3] and Section 3 below), so
that the above-mentioned relation is not necessary.
However, the existence of a zone with a sharp decrease
in the rotational velocity in subsurface solar layers has
been confirmed observationally (see, for example, [1]).
Therefore, theoretical description of this phenomenon
is very relevant. Some models describing rotation of a
medium that strongly decelerates with height are stud-
ied in Section 4, although the latitude dependence for
their rotational velocity differs from that observed for
the Sun. We also discuss the possibility of realizing the
structures obtained.

The supplementary condition mentioned above
(preventing the establishment of rigid-body rotation of
the convective zone) in not the only one possible.
Effects facilitating convective heat transfer often play
an important role. For example, in the case of the Venu-
sian atmosphere, the planet rotates very slowly (a factor
of 243 more slowly than the Earth), and convection is
excited by large horizontal temperature gradients (see
the reviews [8–10]). Under these conditions, the devel-
opment of more rapid rotation of an atmosphere with
meridional circulation of matter could strengthen hori-
zontal heat transfer. Observations have demonstrated
that the atmosphere is characterized by four-day circula-
tion in both its lower and upper layers. The numerical
model for the lower atmosphere of Young and Pollack [11]
confirmed the possibility of spontaneous formation of
such circulation. We will argue below that, in the presence
of a magnetic field, structures whose rotational velocity
increases rapidly with height can also form in isothermal
upper atmospheric layers (see Section 5).

Mathematical difficulties associated with finding
the equilibrium state of a rotating magnetized medium
are due, first and foremost, to the presence of nonlinear
forces. We present the vector fields of the hydrodynam-
ical velocity v and magnetic induction B in the form of
expansions in a complete set of orthogonal vector spheri-
cal harmonics (see Sections 2 and 3). This approach
enables us to perform a separation of variables using exact
relations, even in the presence of nonlinear forces. We also
take into account the requirements for regular spatial
behavior of the fields.

As illustrated by specific examples, the use of exact
equations is quite important, since the most serious dif-
ficulties are often associated precisely with the non-
existence of a solution. Namely, the structure of the
equations after the separation of variables is such that
any transition from a given to a higher approximation is
accompanied by an increase in the number of terms in
the series representing the nonlinear force that is more
rapid than the increase in the number of new coeffi-
cients of higher order (one such example will be
described in Section 5). As a result, the number of coef-
ASTRONOMY REPORTS      Vol. 45      No. 3      2001
ficients may be insufficient to satisfy the equilibrium
equations. This problem was analyzed in [12, 13] for
the case of an axially-symmetric, non-rotating mag-
netic model. It was established that thermal equilibrium
can be satisfied in the zone of radiative equilibrium
only if the magnetic field is dipolar. This led to the
hypothesis (put forward in [13]) that the formation of
spots with different chemical compositions in magnetic
stars is associated with deviations of their field geome-
try from dipolar.

The formation of complex rotational structures in
stellar convective zones indicated by observations obvi-
ously points toward a truncation of the above-men-
tioned series due to suppression of higher-order rota-
tional modes by convective motions. We will call
modes that are not suppressed principal (or main)
modes. The parameters of these modes can be deter-
mined by minimizing the total entropy production sub-
ject to the supplementary condition indicated above. In
the case of a solar-type convective zone, we must find a
configuration with maximum efficiency for transforma-
tion of thermal to magnetic energy and minimum total
entropy production, with the first condition being more
important. Our calculations testify that the conditions
listed above are sufficient for unambiguous determina-
tion of both the location and parameters of the solar
zones of magnetic-field generation.

Of particular interest are configurations with vector
hydrodynamical-velocity and magnetic-induction fields
described by finite series of vector spherical harmonics.
The establishment of force balance is considerably simpli-
fied in this case, since no higher-order modes should be
suppressed. We will show in Section 5 that truncation of
this harmonics series is possible not only for rigid-body
rotation of the medium. The general expressions involve
both an azimuth-dependent component of the angular
velocity and meridional circulation of the medium; the
angular dependence of the magnetic field corresponds to
a rotated dipole.

The equilibrium condition can also be satisfied in
the case of an isothermal zone and an angular velocity
that grows rapidly with height (see Section 5). Mag-
netic-field generation still takes place in such a model,
so that the field and matter frozen into it must be carried
to upper layers to satisfy the condition of a steady state.
This process is facilitated if the increase in angular
velocity with height is quite sharp. Note that observa-
tional data indicate the presence of super-rotating lay-
ers in the upper atmospheres of the Earth and Venus, as
well as strong outflows of matter from the Sun. These
problems are discussed in Section 5. A short summary
is given in the last section.

2. BASIC EQUATIONS

The equilibrium equations in the case of a viscous
magnetized medium can be written

(1)
1
2
---— v v⋅( ) Q

1
ρ
---— p —Φ+ + + F,=
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where

(2)

v is the hydrodynamical velocity, B the magnetic field,
F the viscous force, p the pressure, ρ the density, and Φ
the gravitational potential. In addition, a complete sys-
tem of equations includes the relations

(3)

and equations for the field and energy. The last equation
in the problems considered below expresses the main-
tenance of either convective or isothermal structure of
the zone. In addition, in an ideal magnetohydrody-
namic approximation, the field is stationary if the vec-
tor curl (v × B) is zero.

Note that the action of the rot operation on (1) yields

(4)

where

(5)

We shall consider below an approximation in which
the density in the formula for the magnetic force is
assumed to be spherically symmetric. In addition, in
studying equilibrium in the convective zone, we shall
assume that the medium is close to a neutral convective
state, so that the second term on the left-hand side of (4)
can be neglected.

We perform a separation of variables in the above
equations by writing any vector f (or scalar p) as an
expansion in the orthogonal vector spherical harmonics

 (or the spherical functions YJM):

(6)

(7)

where  = (r), YJM = YJM(ϑ , ϕ), ir , iϑ, and iϕ are
unit vectors of the spherical coordinate system (r, ϑ , ϕ);
subscript J is an integer non-negative number; M = –J,

–J + 1, …, J; and λ = –1, 0, or +1. The coefficients 

and  describe the poloidal and toroidal compo-
nents, respectively. In particular, when f = v, the coeffi-

cients  describe rotation of the medium. For exam-

Q curl v( ) v× curl B( ) B/ 4πρ( ),×–=

div ρv( ) 0, div B 0= =

R — p —ρ×( )/ρ2+ curl F,=

R curl Q.=

YJM
λ( )

f ir f JM
1–( )Y JM iϑ

1

J J 1+( )[ ]1/2
------------------------------+





JM

∑=

× f JM
+1( )∂Y JM
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------------ M

ϑsin
----------- f JM

0( ) Y JM– iϕ
i

J J 1+( )[ ]1/2
------------------------------+

× M
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----------- f JM
+1( )Y JM f JM

0( ) ∂Y JM
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------------–


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,

p pJMY JM,
JM

∑=

f JM
λ( ) f JM

λ( )

f JM
1±( )

f JM
0( )

v J0
0( )
ple, if only the term with J = 1 is significant, then the
rotation will not depend on latitude, and

(8)

where Ω is the angular velocity. In the case of an axi-
ally-symmetric dipole magnetic field, f = B, and only

the coefficient  will be non-zero.

The formulas for the representation of some nonlin-
ear vector fields in terms of the expansions considered
here were derived in [12], and additional results are
given in the Appendix. When the vector Q in (2) is non-

linear, the general expressions for  are given by
Eqs. (22)–(24) from [12]. These equations were studied
in more detail in [3] under the assumption that the mag-
netic field and hydrodynamical velocity do not depend
on the azimuth (i.e., M = 0).

In the present paper, we shall consider arbitrary tor-
oidal vector fields. In this case, the vectors v and B have

only the components  and . In particular, the
expressions for the components of the vector R = curlQ
have the form

(9)

(10)

(11)

where

(12)

M2 = M – M1,  is a Clebsch–Gordan coeffi-

cient, and  and  are expressed in terms of
the analogous Clebsch–Gordan coefficients using for-
mulas (10) and (11) from [12] (see also (59) from the

v 10
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Appendix). We use these equations to study various
numerical models in the next section.

3. THE LOWER ZONE
OF SOLAR MAGNETIC-FIELD GENERATION

The generation of the solar magnetic field obviously
involves transport of field to upper layers. If we wish to
use the condition of weak inter-dependence between
variations in the rotational velocity and field formu-
lated above to determine the most probable distribution
for the zone’s rotation, we must compare the rotation
laws for equilibrium models with various fields. In [3],
we studied pairs of axially-symmetric models, one con-
taining a toroidal field (the superscript of the field coef-
ficients λ = 0) and the other containing a poloidal field
(λ = ±1). We assumed that all modes with dimensions
of velocity have the same radial dependence. More pre-
cisely, we took these dependences and the radial depen-
dence of the equilibrium density to have the form

(13)

where s and α are constant coefficients, and the sub-
script M was assumed to be 0 for the models from [3].
Only rotation laws that were symmetric with respect to
the equatorial plane were considered, and the parame-
ter s was specified.

The coefficients  and  for the principal
modes (i.e., those not suppressed by convection) were
determined in [3] by the equilibrium condition in the

absence of viscosity. The coefficient  was taken to
be unity, and the parameter α was varied instead of this
coefficient. Note that the coefficients responsible for
meridional motions turned out to be negligible. The
main problem was to find those conditions, listed in
(a)–(d) below, under which there were two models with
approximately the same latitude distributions for the
rotational velocity. To characterize the similarity of the
rotation laws, we used the parameter σ—the rms differ-
ence between the relative angular velocities ωa =
(Ω/Ωe)a at latitudes a = 5°, 10°, …, 90°, where Ωe is the
equatorial angular velocity of rotation. When σ is suffi-
ciently small, the two models are characterized by
approximately the same total angular momentum.

It was found that the extent of the zone of weak
inter-dependence between variations in the field and
rotation distributions is maximum when:

(a) the magnetic field is antisymmetric with respect
to the equatorial plane,

(b) the lower half the solar convective zone (in radius)
is considered,

(c) the number N of main modes with various values
of the subscript J in (6) is four for both the rotational
velocity and the field, and

ρ const r s– , v JM
λ( ) const rα ,= =

BJM
λ( ) / 4πρ( ) const rα ,=

v J0
λ( ) BJ0

λ( )

v 10
0( )
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(d) the parameter α in (13) is close to or slightly less
than 1.3.

The calculated latitude dependence of the rotational
velocity proved to be close to that observed for the Sun
(see, for example, the thick solid and sparsely dotted
curves in Fig. 3 from [3], which describe the latitude
dependence of the angular velocities in models with
toroidal and poloidal fields in the layer s = 10, which is
located approximately in the middle of the solar con-
vective zone). Note that σ begins to increase sharply
toward the region s > 10 (where the relative radius r/R( >
0.85), and the rotation laws for the two models of a pair
become appreciably different.

However, it remains unknown if the parameters of
the zone under investigation vary significantly when we
consider the non-axially-symmetric magnetic field,
which plays an important role in the solar cycle. We
will study this problem below for the particular case of
a toroidal magnetic field whose azimuth dependence is
characterized by the first main harmonic. Namely, we
shall compare parameters of a pair of models, one with
an axially-symmetric toroidal magnetic field and the
other with a field defined by a series of the form (6),

containing the coefficients  and . We assume
that modes with subscripts J > 2N and |M | > 1 are sup-
pressed by turbulent viscous forces. On the contrary,
the viscosity should be negligible for principal modes,
so that we obtain from (4) for a medium that is close to
a neutral convective state

(14)

where J ≤ 2N and |M | ≤ 1.

Taking into account  = 0, we obtain for the
coefficients in (14):

(15)
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(16)

(17)

where

(18)

Substituting these relations into (14), we obtain a

system of equations for coefficients  and ,
where J < (2N + 1) and M equals 0 or ±1. We assume
here, as above, that the radial dependences of the equi-
librium density and all modes under consideration are
specified by expressions (13). However, in the present
case of nonlinear equations, we encounter several very
difficult problems, such as non-existence of solutions,
multivalued solutions, achievement of the required
accuracy, and so on. Therefore, it is more expedient to
formulate the problem of finding the solution of (14) in
terms of the minimization of the following dimension-
less functional, which is a sum of positive terms:

(19)

where an asterisk denotes complex conjugation and the
summation limits are defined in agreement with the
restrictions introduced above. Note that the term with
subscript J = 0 in (19) vanishes.

The minimum of the functional (19) also corre-
sponds to the minimum of the entropy production due
to the principal modes in Eqs. (15)–(17). Investigation
of models with large values of s and α showed that it is
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often impossible to choose  and  so that the
minimum value of e is negligible (our calculations were
carried out to nine significant digits). We can assume
that the comparatively small residuals can be compen-
sated by excitation of the corresponding turbulent vis-
cous forces (as mentioned above, such forces are nec-
essary to suppress high-order modes). However, the
problem of the validity of solutions for which e is not
negligible must still be justified in more detail.

Note that the vector field f under consideration
(where f is either v or B) can be written in the form

(20)

Here, WJ1 = YJ1e–iϕ is a function only of ϑ , and we have

taken into account the relation  = .

Let us restrict our consideration to toroidal magnetic
fields that are antisymmetric with respect to the equato-
rial plane and layers of the solar convective zone that
are distant from the surface. We shall assume that the
rotational velocity is symmetric with respect to the
equatorial plane. It turns out that minimization of the
functional (19) under the conditions formulated above
leads to negligible values of the non-axially-symmetric
velocity component; i.e., vJ1 ≈ 0. For the other compo-
nents, it is expedient to introduce the real dimension-
less coefficients uJ, bJ, and qJ via the relations

(21)

where k = 1, 2, …, N; J is expressed through k; and
u1 = 1. Because of this normalization, the average

equatorial angular velocity is (i /r)[3/(8π)]1/2d,
where d = const.

We construct a model with a non-axially-symmetric
(ns) magnetic field by adjusting the coefficients (uJ)J > 1,
qJ, and α so that the right-hand side of (19) is negligible
(e ~ 10–9) when the minimum is attained. The only dif-
ference when finding a model with an axially-symmet-
ric (si) field is that the coefficients qJ are replaced by bJ.
We consider models where N = 4 and the value of α is
close to 1.3. In the case of the main models, s is in the
interval 5 ≤ s ≤ 10, which corresponds to the lower half
of the solar convective zone. Next, we find pairs of
models whose magnetic fields possess different azi-
muthal symmetry, taking either α or d to be approxi-
mately equal to each other in the two models. In other
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Table 1.  Characteristics of the axially-symmetric (si) and non-axially-symmetric (ns) models

Number Type s α d Amax ω30 ω50 ω70 ω90

1 ns 5 1.29781 1.04259 0.124 0.957 0.872 0.717 0.624

2 si 5 1.29782 1.04136 0.072 0.958 0.874 0.738 0.661

3 si 5 1.30630 1.04250 0.073 0.957 0.871 0.729 0.647

4 ns 8 1.29755 1.04269 0.121 0.956 0.871 0.731 0.651

5 si 8 1.29736 1.04184 0.063 0.958 0.873 0.729 0.645

6 si 8 1.30515 1.04278 0.061 0.957 0.870 0.721 0.634

7 ns 10 1.29591 1.04253 0.121 0.956 0.871 0.739 0.665

8 si 10 1.29591 1.04077 0.074 0.959 0.877 0.731 0.644

9 si 10 1.30262 1.04254 0.054 0.957 0.870 0.722 0.635

10 ns 20 1.28664 1.04153 0.119 0.955 0.872 0.776 0.732

11 si 20 1.29098 1.04218 0.043 0.958 0.872 0.726 0.640
words, this condition implies that either the radial gra-
dients of all modes for the two models of the pair are
similar, or that they have the same average equatorial
velocities. Using more than one method for comparison
could be useful, since the process for the generation of
solar magnetic field remains to a large extent unclear.

The results of our study are summarized in Tables 1–3,
which present the basic parameters of the models,
including Amax, which is the largest Alfven velocity
divided by the average equatorial rotational velocity
Ωe. The tables also present the relative angular veloci-
ties ωa = (Ω/Ωe)a at several latitudes a (Table 1), and the
rms differences σ between the relative angular veloci-
ties for the two models from each pair (Table 2). These
differences are calculated at latitudes 5°, 10°, …, 90°.
For the sake of comparison, Table 1 also presents mod-
els 10 and 11, for which s = 20; i.e., r/R( ≈ 0.92.
Finally, Table 3 gives the coefficients uJ and qJ for mod-
els 1, 4, and 7 from Table 1, which have a non-axially-
symmetric magnetic field.

Figure 1 shows distributions of the relative angular
velocities for the three models noted above and for
model 10 from the same table (lower to upper curves,
respectively). The crosses denote the results of Doppler
observations [4] and the bars, helioseismology data
[14]. Analogous angular-velocity distributions for all
the other models from Table 1 (except model 10) are
located in Fig. 1 inside the region bounded by the solid
curves; i.e., these curves represent envelopes for all
variations in angular velocity for the models under con-
sideration. We can see that these variations are small for
5 ≤ s ≤ 10, and are concentrated at high latitudes. This indi-
cates that the conclusions formulated above for models
with axially-symmetric fields remain valid for zones for
which the rotational variations are small when the equilib-
rium axially-symmetric toroidal magnetic fields are
exchanged with non-axially-symmetric fields or vice
versa. In the models discussed here, whose rotation is
fairly close to rigid-body, it is not important which of
ASTRONOMY REPORTS      Vol. 45      No. 3      2001
the two criteria for comparison formulated above we
use for the calculations.

Note also that, as follows from (20), the relative
Alfven velocity in the case without axial symmetry can
be written

(22)

Figure 2 shows the distribution of the Aj components
for this relative Alfven velocity in the case of models 1 and
7 from Table 1 (solid/dashed curves and densely/sparsely
dotted curves, respectively). The absolute values of the
fields averaged over the azimuth are quite close to those
considered in [3].

We also estimated eJ in (19). Recall that the four first
eJ (with the lowest values of J) correspond to the prin-
cipal modes, and all higher modes are assumed to be
suppressed by turbulent viscous forces. Modes with the
largest scales are most important among these. In the
case of the model 7 from Table 1, which has a non-axi-
ally-symmetric magnetic field, we obtained for the first
five eJ the values 4.7 × 10–10, 5.4 × 10–10, 1.5 × 10–11,
1.1 × 10–9, and 3.8 × 10–2. We can see that the principal
modes are approximately non-viscous, and the last of
the eJ values can be used to estimate the turbulent vis-
cosity of the medium. When we consider models with
axially-symmetric magnetic fields and approximately
the same basic parameters, the turbulent viscosity usu-
ally becomes appreciably lower.

A B/ 4πρ( )1/2[ ] / rΩe( )=

=  A1iϕ ϕ A2iϑ ϕ .cos+sin

Table 2.  Rms differences between the relative angular velo-
cities for models from Table 1

Pair 1–2 1–3 4–5 4–6 7–8 7–9 10–11

σ 0.0172 0.0103 0.0027 0.0079 0.0093 0.0142 0.044
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4. THE UPPER ZONE OF FIELD GENERATION

In the convective-zone layers that are close to the
surface, the parameter s (the ratio of the radius to the
characteristic radial density scale) becomes large. In
connection with the sharp decrease in the angular
velocity of the solar rotation observed in this zone (see,

1.0

0.9

0.8

0.7

0.6

Ω/Ωe

0 20 40 60 80
Latitude, deg

Fig. 1. Latitude dependence of the angular velocity Ω nor-
malized to the average angular velocity at the equator Ωe for
models 1, 4, 7, and 10 from Table 1 (lower solid, densely
dotted, upper solid, and sparsely dotted curves, respec-
tively). Doppler data [4] are marked by crosses and heli-
oseismology data [14] by vertical bars, whose length char-
acterizes the data scatter.

Table 3.  Parameters of models 1, 4, and 7 from Table 1

Number 1 4 7

s 5 8 10

α 1.297809 1.297546 1.295991

d 1.042592 1.042688 1.042529

u3 –0.054386 –0.053666 –0.053039

u5 –0.013068 –0.011237 –0.010330

u7 –0.004146 –0.003142 –0.002641

q1 0.010670 0.011812 0.010724

q3 0.012449 0.005680 0.003552

q5 0.053827 0.053847 0.053875

q7 –0.018673 –0.017655 –0.016087
for example, [1]), it is of interest to consider equilib-
rium configurations with large and negative α in equa-
tions (13). As noted in Section 1, the possibility of real-
ization of a magnetic-field generation zone under such
conditions is an important question. We shall restrict
our consideration to the case of toroidal magnetic
fields, when equations (13) and (15)–(21) are satisfied.
As in the previous section, we shall find the model
parameters by minimizing the functional (19) for a
fixed value of s imposing the normalization u1 = 1. It
became clear that this minimum is reached at small val-
ues of N; therefore, we shall take N = 2 below.

The parameters of the resulting models are given in
Table 4, which does not contain the non-axially-sym-
metric velocity components, since they turned out to be
negligible. As above, we identify two models as a pair
if they have sufficiently similar rotational-velocity dis-
tributions, with one of them having a non-axially-sym-
metric (ns) and the other an axially-symmetric (si)
field. We consider toroidal magnetic fields that are anti-
symmetric with respect to the equatorial plane. The eJ

defined by (19) are also presented in Table 4, where the
parameter k is equal to (J + 1)/2 if J is odd or J/2 if J is
even. The values of eJ presented in the last line charac-
terize the amplitude of the turbulent viscosity that is
necessary to suppress higher-order modes. We can see
that the modes under consideration are not completely
free of viscosity, but the turbulent viscosity required to

0 20 40 60 80
Latitude, deg

–0.10

–0.05

0

0.05

0.10

Aj

A2

A1

Fig. 2. Latitude distributions of the relative Alfven veloci-
ties A1 and A2 for model 1 (solid and dashed lines, respec-
tively) and model 7 (densely and sparsely dotted curves,
respectively) from Table 1.
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Fig. 3. Latitude dependences of (a) the relative angular velocity Ω normalized to the average angular velocity at the equator Ωe and
(b) the relative Alfven velocities A1 and A2 for model 1 from Table 4.
compensate these small residuals is over three orders of
magnitude lower than the total viscosity. All other nota-
tion in Table 4 is the same as that used previously. Note
also that the chosen value of s = 50 approximately cor-
responds to the relative radius r/R( ≈ 0.96. Realization
of the models under consideration seems unlikely if s is
appreciably less than 50.

Figure 3 presents distributions of the relative angular
velocity and components of the relative Alfven velocity
for model 1 from Table 4. The rotation obtained is quite
close to rigid-body, and deviations from rigid-body rota-
tion are even smaller for the other models in Table 4.
Therefore, the latitude dependence of the rotational
velocities for the modes under consideration does not
coincide with the behavior observed for the Sun. Obser-
vations of the rotation of solar zones in which the mag-
netic field is carried to the surface reveal a more com-
plex pattern for the solar rotation [15]. Namely, the
magnetic field rotates slightly faster than the ambient
medium at latitudes below approximately 45°, and the
corresponding difference in rotational velocity
becomes larger at higher latitudes, so that the angular
velocity increases with latitude.

Since we are considering a rather thin subsurface
layer, we cannot exclude the possibility that it is present
inside a differentially-rotating medium. We can also
consider a generation zone located only at latitudes
above 45°. We can see in Fig. 3a that the latitude depen-
ASTRONOMY REPORTS      Vol. 45      No. 3      2001
dence of the angular velocity in this region is in quali-
tative agreement with that obtained by Stenflo (see Fig. 4
in [15]). Note also that realization of this theoretical
model for the generation zone could result in a sharp
deceleration of the rotation of matter in the subsurface
layers of the solar convective. The characteristic ampli-
tude of the magnetic field corresponding to the curves
in Fig. 3b is several tens of kG.

Table 4.  Models for the upper field-generation zone

Number 1 2 3 4

Type ns si ns si

N 2 2 2 2

s 50 50 50 50

α –34.0043 –33.9826 –50.0000 –50.4109

d 0.98992 1.00014 1.00259 1.00001

Amax 2.4875 0.67400 1.7243 0.72023

u3 0.01078 –0.00014 –0.00277 –0.00001

q1 –1.73609 0.58078 1.20893 0.64626

q3 0.01328 0.04636 –0.03532 –0.00670

(eJ)k = 1 2 × 10–6 2 × 10–8 2 × 10–7 9 × 10–9

(eJ)k = 2 1 × 10–8 9 × 10–11 6 × 10–9 1 × 10–10

(eJ)k = 3 6 × 10–3 7 × 10–1 2 × 10–2 7 × 10–2
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5. EQUILIBRIUM MODELS
WITHOUT VISCOSITY

When we consider the general nonlinear system of
differential equations for the equilibrium state of a
rotating, magnetized, non-viscous medium under the
action of gravity, serious problems arise due to the fact
that, in many cases, there is no solution of this system.
This can be illustrated using the example of a non-mag-
netized, rotating, isothermal medium possessing axial
symmetry with respect to the equatorial plane. In this

case, we obtain for the coefficients  with odd J a
system of Eqs. (14)–(17) where only the coefficient

 is not identically equal to zero, and the second term
in braces in Eq. (15) is absent. Note that, in these equa-

tions, J1 and J2 are odd, but J is even; in addition,  = 0
when J = 0.

We can see that the number of equations corre-

sponding to the number of non-zero coefficients 
is determined by the well-known triangle rule, |J1 – J2| ≤
J ≤ J1 + J2. When only coefficients with subscripts J1 =

J2 = 1 are not equal to zero in the equation for —
i.e., the number of modes N = 1—there is only one
equation (15) when J = 2 for the quantity α. We assume
here that equations (13) are valid, and that the normal-

ization with fixed  is used. On the other hand, if the
coefficients J1 and J2 are equal to either 1 or 3—i.e.,
N = 2—then (15) reduces to three equations (for J = 2,

4, and 6) for the two unknowns α and . Therefore,
in this case, there is a discrepancy between the number
of equations and the number of unknowns. Moreover,
as can easily be shown, this discrepancy increases with N.
Thus, the system of equations under consideration
becomes unsolvable if N > 1. The same is true for more
general conditions. For example, in the case of a rotat-
ing, magnetized configuration in the radiative zone, the
second term on the left-hand side of (4), which depends
on the temperature distribution, can play a substantial
role. The variables appearing in the additional term
under discussion are governed by other equations, so
that the conclusion formulated above remains valid.

Thus, the single-mode model (where α = 1 and the
rotation is rigid-body) is distinguished from the other

models by the fact that the series for  is truncated
right at the beginning. It is interesting to study more
general models of this kind, since the construction of
such models is not associated with the suppression of
high-order harmonics by some additional forces. In this
section, we shall consider a particular solution of the
equilibrium equations for a magnetized, rotating

medium (  ≠ 0) assuming that the first subscript J = 1

for all coefficients  and  (if this subscript
equals two, the series will not be truncated).
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In general, the coefficients of the nonlinear force

 in (2) under these conditions can have J = 0, 1, and
2, with λ = 0 or ±1 and |M | ≤ J. Explicit expressions for
these coefficients are given by formulas (22)–(24) from
[12]. It turns out that, when the conditions

(23)

(24)

(25)

are satisfied, all the  will be identically equal to

zero apart from  and , where λ = 0, ±1 and
M ≤ J [16]. In this case, the problem of finding the equi-
librium condition reduces to the standard form, in
which the vector fields v and B have the form

(26)

(27)

Here, the right-hand sides are real if  =  and

 = – ; i  and  are real; and an aster-
isk denotes complex conjugation. In addition, we find

from the relation divB = 0 that  = 1/{r[J(J +

1)]1/2}(∂/∂r) [r2 ]. In the case of field v, we have
divρv = 0.

Equations (24) and (25) are satisfied if the radial
dependences of all magnetic modes in (27) are the
same; i.e., if we consider a single field with dipolar
geometry, whose axis can be inclined at some angle to
the rotational axis. In this case, the field is represented
in a rotated (primed) coordinate system as the sum over

M' of the quantities (ϑ ', ϕ'), where the coeffi-

cients  are given and λ = ±1. If we denote the Euler
rotation angles αe, βe, and γe, then, using the formulas
presented by Varshalovich et al. [17], we find that the

QJM
λ( )

v 10
1–( ) 0, v 1 1±

1–( ) 0, v 10
+1( ) 0,= = =

v 1 1±
+1( ) 0, B10

0( ) 0, B1 1±
0( ) 0,= = =

B1 1–
1–( ) ∂2

∂r2
-------r2B11

1–( ) B11
1–( ) ∂2

∂r2
-------r2B1 1–

1–( )– 0,=

B10
1–( ) ∂2

∂r2
-------r2B1 1±

1–( ) B1 1±
1–( ) ∂2

∂r2
-------r2B10

1–( )– 0=

QJM
λ( )

Q00
1–( ) Q2M

1±( )

v
1
4
--- 3

π
--- 

 
1/2

iϑ v 11
0( )eiϕ v 1 1–

0( ) e iϕ–+( ){=

+ iiϕ 21/2v 10
0( ) ϑ v 11

0( )eiϕ v 1 1–
0( ) e iϕ––( ) ϑcos+sin[ ] } ,

B
1
4
--- 3

π
--- 

 
1/2

ir 2B10
1–( ) ϑcos[{=

– 21/2 B11
1–( )eiϕ B1 1–

1–( ) e iϕ––( ) ϑ ]sin

– iϑ 21/2B10
+1( ) ϑsin B11

+1( )eiϕ B1 1–
+1( ) e iϕ––( ) ϑcos+[ ]

– iiϕ B11
+1( )eiϕ B1 1–

+1( ) e iϕ–+( ) } .

v 1 1–
0( ) v 11

0( )*

B1 1–
1±( ) B11

1±( )* v 10
0( ) B10

1–( )

BJM
+1( )

BJM
1–( )

B1M'
λ( ) Y1M'

λ( )

B1M'
λ( )
ASTRONOMY REPORTS      Vol. 45      No. 3      2001



FORMATION OF COMPLEX ROTATIONAL STRUCTURES 225

                
sum over M' of the aMM'  can be substituted into

Eqs. (24), (25), and (27) in place of , where

(28)

δab = 1 if a = b, and δab = 0 if a ≠ b.
It follows from (26) that velocity can possess a com-

ponent with a harmonic dependence on the azimuth
angle. In this case, the meridional velocity, which is anti-
symmetric with respect to the equatorial plane, does not
depend on latitude ϑ. The second term in the expression
for the zonal velocity (in contrast to the first term) is also
antisymmetric with respect to the equatorial plane. In
the case of a magnetic field described by (27), the com-
ponents that are dependent on and independent of the
azimuth angle also have different symmetries with
respect to the equatorial plane, with the axially-sym-
metric field being antisymmetric with respect to this
plane. Note that (27) coincides with (26) from [13] in
the case of a non-rotating medium and axially-symmet-
ric dipolar magnetic field.

It can be shown that, in the absence of a magnetic

field, the coefficients  in (26) are proportional to r.

If the rotational velocity is negligible, then the  are
either constant or proportional to r–3 [16]. In general,
the radial dependence is determined by the equilibrium
conditions. We present an as example the solution for
some isothermal, non-viscous layer in which

R = curlQ = 0, (29)

and we assumed that radial dependences of the equilib-
rium density and any modes with dimensions of veloc-
ity are approximately the same as in (13). Then, the

coefficients  and  in Eqs. (26) and (27) are
determined by the two relations [16]

(30)

where M = 0 or 1. We can see that the equations for the
components with and without axial symmetry are sep-
arated. In the case M = 0, in accordance with (8), we

obtain  = (8π/3)(rΩ)2. In addition,

(31)

Of course, relations (30) and (31) must be considered
together with the field equation. However, it is obvious
that there is no steady-state solution of this system of equa-
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tions in a medium whose rotation differs from rigid-body.
For example, if the fields (26) and (27) do not depend on
longitude, the vector 
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i.e., it differs from zero if the ratio 
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r

 

 is not con-
stant. Therefore, in the case of non-rigid-body rotation,
we expect the generation of an azimuthal magnetic field
that is proportional to 

 
sin2

 
ϑ

 
.

From this point of view, it is interesting to consider
structures whose angular velocity of rotation sharply
increases with height, since the probability for the out-
flow of the generated magnetic field together with fro-
zen-in charged particles toward the upper layers is
increased in this case. We have in mind here structures
formed in the upper isothermal layers of stellar and plan-
etary atmospheres. These layers are usually partially or
even completely ionized. The outflow of field and mat-
ter from the atmosphere corresponds to a decrease in
the order (or an increase in the disorder) of the system;
i.e., the total entropy increases. Consequently, the self-
organization of this outflow of the field and frozen-in
matter is in agreement with the laws of irreversible
thermodynamics. It is not ruled out that the field out-
flow will be accompanied by the excitation of some
irregular wave processes.

Taking into account the above, we shall consider
models for which

 

(32)

 

i.e., the ratio of the characteristic radial scale of the
equilibrium density to the radius of a star or planet must
be small and the amplitudes of all modes with dimen-
sions of velocity must sharply increase with height. If,
for example, the difference 

 

α

 

 – 

 

s

 

/2

 

 is not very large,
then the magnetic-field intensity will be close to uni-
form. In addition, we can see that equations (30) lead to
the condition (

 

α – s/2)(α – s/2 + 3) > 0 if the inequali-
ties (32) are satisfied.

One characteristic feature of the isothermal models
under consideration is super-rotation of the upper lay-
ers. In the case of the Earth’s atmosphere, the presence
of super-rotation at heights from 150 km to 400 km has
been confirmed by observations of variations in the
inclinations of satellite orbits [18]. On average, the
angular velocity of rotation can reach a factor of 1.3
higher than its normal value. If the height of the lower
boundary of the super-rotation zone is taken to be about
200 km, then the corresponding density will be of the
order of 10–12.5 g/cm3 [19]. In this case, in accordance
with (30) and (31), the magnetic field will be about 10–1 G.
The isothermal condition is apparently approximately
satisfied in this zone. The resulting field amplitude is
quite close to that expected for such heights.

Relations (30) and (32) can be satisfied if the extent
of the zone of super-rotation is sufficiently small. For
example, for a 30-km zone with s ~ 100, α ~ s/2 (but
α – s/2 and α – s/2 + 3 not close to zero), the angular
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velocity of the upper layers of the zone should be
approximately a factor of 1.4 higher than the velocity in
lower layers. The variation in density of the medium
within the zone is less than a factor of two. Therefore,
the equations derived can be used to describe the com-
paratively moderate super-rotation observed in the
Earth’s atmosphere, which is characterized by a small
angle of inclination of the dipolar magnetic field.

A strong zone of super-rotation forms in the Venu-
sian atmosphere at heights above approximately 50 km
(see the reviews [8–10]). In this case, the planet itself
and its upper atmosphere rotate factors of 243 and four
more slowly than the Earth, respectively, and at least
the lower atmosphere is convective. A solution describ-
ing rapid rotation with circulation in the main convec-
tive zone (at heights below 64 km) was obtained by
Young and Pollack [11], but the mechanism for global
zonal (four-day) circulation in the upper atmosphere
remains unclear [10]. Note in this connection that the
symmetry of the circulation in our model differs from
that chosen by Young and Pollack in [11].

In the Venusian atmosphere, there is apparently an
isothermal zone at a height of about 100 km or slightly
higher [9]. If the density in this zone is of the order of
10–9 g/cm3, then, in accordance with (30) and (31), we
find B ~ 1 G. This field will be lower if we consider either
higher layers or a configuration in which, in accordance
with (32), the ratio α/s is small. Moreover, if the super-
rotation zone is sufficiently wide, the increase in the angu-
lar velocity will be substantial. Therefore, our sugges-
tion that our solution can describe the strong super-
rotation observed in the upper atmosphere of Venus
seems quite reasonable. Meridional circulation of mat-
ter can also be excited in this case. The observational
data indicate that the characteristic velocity of this cir-
culation is only an order of magnitude lower than the
main zonal velocity. This circulation facilitates heat
transfer between the equatorial and polar regions.

It is known that strong outflows of matter are observed
on the Sun. If a super-rotation regime is formed in some
very high layers of the solar atmosphere, the associated
increase in the outflow of matter could be appreciable.
This problem requires more careful study.

6. DISCUSSION

Our theoretical studies indicate an important role for
nonlinear interactions between various modes in rotat-
ing, magnetized stellar and atmospheric zones. It is also
important that using expansions of vector fields in
orthogonal vector spherical harmonics makes it possi-
ble to separate the variables in the framework of exact
equations. The above-mentioned harmonics are charac-
terized by very complex behavior near the poles, so that
the accuracy required when solving these nonlinear
equations using approximate methods can be high.

Our results show that the conditions for the forma-
tion of complex rotational patterns are substantially dif-
ferent in convective and non-convective zones. We do
not consider here structures whose asymmetry is pro-
duced by chemical irregularities in the form of spots
and so on. Our studies indicate that the formation of a
differentially rotating configuration (for example, of
the type observed for the Sun) is impossible in the case
of a non-convective zone with a non-dipolar magnetic-
field geometry, if the series describing the distributions
of the rotational velocity and field are not truncated. We
considered this problem assuming that the series are
truncated right at the beginning. Of course, we have not
obtained a rigorous proof that this type of truncation is
unique. Nevertheless, it seems most probable that other
types of truncation of the series are not possible.

In the non-magnetic case, the solution obtained is a
sum of axially-symmetric and non-axially-symmetric
components of the rotational velocity [see (26)]. Since,

in this equation, i (r) is real and the coefficient

(r) can also be taken to be real, we obtain for the
hydrodynamical velocity

(33)

Note also that the vortex component of the Coriolis
force equals zero if the radial dependence of the veloc-
ity v is linear.

If a magnetic field is present, its geometry is dipolar,
and an azimuth-dependent component can exist. This
solution is described by Eq. (27). It is important that the
angle between the rotation and field axes can be arbi-
trary. The existence of magnetic stars whose field axes
are rotated with respect to their rotational axes has been
confirmed by observations (see the reviews [20, 21]).
The observed strong field variations can be explained
by the presence of a large longitude-dependent field
component [see Eq. (27)].

In the case of an isothermal zone with uniform
chemical composition, the equilibrium equations for
the vortex and potential forces do not depend on each
other if the density in the expression for the magnetic
force is approximately spherically symmetric. Consid-
ering the equation for the vortex forces, we see that an
equilibrium can be achieved, but the condition that the
magnetic field be stationary will be violated. Neverthe-
less, we believe that, in the case of upper atmospheric
layers and structures whose rotational velocity sharply
increases with height, motions carrying the additional
field together with frozen-in matter toward layers
located at greater heights can be excited. The formation
of such quasi-equilibrium structures, which results in a
decrease in their order (or an increase in their disorder;
i.e., an increase of the total entropy), is in agreement with
the laws of irreversible thermodynamics. A steady-state
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magnetic field in the structures under consideration pos-
sesses an inclined dipolar geometry, so that azimuth-
dependent components of the field and angular velocity
can be present.

Observations show that the quasi-equilibrium struc-
tures discussed here are often realized in stellar and
planetary atmospheres. For example, in Section 5, we
presented data indicating the formation of such struc-
tures in the upper atmospheres of Earth, Venus, and the
Sun. It is not ruled out that the formation of stellar
winds is based on the same phenomenon.

The models described in this section seem to repre-
sent the entire (very limited) set of rotating, magnetized
configurations whose formation is allowed by the equi-
librium equations when the viscosity of the medium is
negligible. The fact that considerably more complex
rotational structures are often observed in convective
zones suggests a substantial role for turbulent convec-
tive viscosity in the formation of these structures. The
differential rotation of a medium cannot be directly sup-
ported by convection from the viewpoint of irreversible
thermodynamics; therefore, we are forced to conclude that
the role of convective viscosity is to suppress certain
higher-order rotational modes, whose presence would pre-
vent the realization of some additional conditions associ-
ated with facilitating heat transfer or decreasing energy
losses that support the convective zone itself. This sug-
gests that this last condition is satisfied in the case of the
solar convective zone, where the state with maximum effi-
ciency of transformation of the input energy to mag-
netic-field energy seems to be realized.

To determine the parameters of the solar magnetic-
field generation zone, we use the condition that the angu-
lar velocity of rotation be only weakly sensitive to any
variations in the magnetic field. In the case of axially-sym-
metric magnetic fields, the most extensive layer where this
condition is satisfied corresponds to the entire lower half
of the solar convective zone [3]. The results in Section 3
testify that the conclusions of [3] for this lower region
remain valid if we exchange the axially-symmetric
field with a toroidal field characterized by a sinϕ azi-
muth dependence. The upward motion of this field
could result in the formation of sunspots.

Of course, it would be desirable to study the dimen-
sions of the generation zone under consideration by
comparing models with various fields without axial
symmetry. The upper boundary of this zone seems to be
located in or above the middle of the solar convective
zone, and the amplitude of the asymmetric magnetic
field has the same order of magnitude as in [3]. In this
case, the conclusion of [3, 22] that approximately 0.1%
of the total energy entering the zone is transformed into
magnetic-field energy is valid. The fact that this effi-
ciency for the energy transformation is consistent with
the observational estimate cited in [23] was already
noted in [3, 22]. It is also important that the latitude dis-
tribution of the rotational velocity obtained in our study
ASTRONOMY REPORTS      Vol. 45      No. 3      2001
(without introducing any fitting parameters) is quite
close to that actually observed for the Sun.

At the same time, many important details of the field
generation in our model remain unclear. In particular,
there are large uncertainties in connection with the
radial gradient of the rotational velocity, as well as the
possible latitude dependence of this gradient. These
questions, along with the problem of the cyclic varia-
tions in the direction of the rising field, should be clar-
ified in the course of subsequent studies.

It is also unclear if a second subsurface zone of solar
magnetic-field generation can exist in the region of large,
negative, radial gradients of the rotational velocity. Sec-
tion 4 considered equilibrium models whose realization
was made possible by the presence of a thin zone where
the rotational velocity sharply decreases with height. This
zone could be self-supported if there is a transforma-
tion of thermal to magnetic energy in it. Here, we
assume that this is a realization of the state that requires
minimum energy loss for its support, as discussed
above. However, the models obtained are characterized by
angular velocities that differ from those observed for the
Sun. On the other hand, if only some high-latitude zone of
field generation is considered, then the rising magnetic
fields could have nearly rigid-body rotation, as detected
by Stenflo [15]. However, the question of how to realize
such a model remains rather controversial.

Attention should be also given to the problem of
super-rotation of the lower non-magnetized convective
atmosphere of Venus. Neglecting high-order rotational
modes, Young and Pollack [11] obtained a solution that
is consistent with the observations, but the discarding
of some modes was not justified [24, 25]. Note in con-
nection with this that the suppression of high-order
rotational modes by convection follows directly from
the analysis of non-rigid-body rotation of the convec-
tive zones we presented above. In general, this problem
requires further more detailed study.

APPENDIX

A representation of the vector curl v1 × v2 as an
expansion in the vector spherical harmonics was con-
sidered in [12]. In the case of the product of two arbi-
trary vectors, we obtain

(34)

where
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Here, the coefficients  and  are determined

by formulas (10) and (11) from [12], and the last coef-
ficient can also be written
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The following expression represents a generaliza-
tion of formula (25) from [12]:

(39)

Finally, a few words about misprints. The term

 [ ] should be inserted after the brace in
Eq. (22) from [12], and all quantities in Eq. (1) of [12]
should be scalar. The superscripts of ξ in the denomina-
tor of the second formula from the Appendix to [12]
should be LJ. Expressions (46) from [12] and (30) from
[13] are very rough, and should be replaced by the exact
Eq. (29) of [13]. In addition, the superscript of the coef-
ficient Z in the third and fourth lines of the Table 2 A4
from [12] should be J (instead of J2). The numbers
0.6894 and 0.7485 in columns 9 and 10 in the seventh
line of Table 5 from [3] should be interchanged. In
addition, the numbers 0, 8, and 1 in the 17th line from
the bottom of the right column on p. 874 should be
replaced by 20, 8, and 1. Finally, Fig. 1 in [21] should
be replaced by Fig. 3 from [3].
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Abstract—The evolution of stars with mass 5M( with an initially cool neutron core (Thorne–Zytkow objects) is
computed numerically, taking into account the heating of the neutron star by flows of heat released during the
accretion of a surrounding envelope. The temperature of the neutron core does not rise to values at which the sys-
tem could become unstable to rapid increases in the neutrino luminosity. In other words, the heating of the neutron
core does not lead to a rapid collapse of the initial configuration. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Calculations of the evolution of close binary sys-
tems [1] suggest the possibility of scenarios in which a
neutron star could be absorbed by a more massive com-
panion, ending up at its center [2, 3]. Since detailed
computations describing the penetration of the neutron
star into the bulk of the normal star are very compli-
cated, it is of independent interest to elucidate how the
final state—a star with a neutron core—will appear
after the relaxation of the various transitional processes.

The first attempt to construct a model in which a
neutron star is surrounded by an optically thick and rel-
atively massive envelope was made by Zel’dovich et al.
[4], who formulated the problem as follows. They
assumed that a cool neutron star was surrounded by a
cloud with an arbitrary, specified density distribution at
time t = 0 and considered the evolution of the system in
the framework of one-dimensional hydrodynamics.
These computations showed that, immediately after the
onset of accretion, a shock wave forms and moves from
the surface of the neutron star to the outer boundary of
the cloud. The material behind the shock front is decel-
erated and heated to T ≈ 1010 K, leading to the genera-
tion of powerful neutrino emission, greatly exceeding
the photon luminosity. The further evolution of the gas
envelope consists of quasi-static (Kelvin) compression
in a high-neutrino-luminosity regime.

In 1975, the work of Thorne and Zytkow [5]
appeared (for more detail, see [6]), in which they con-
struct models for stars with cool (T ≤ 109 K) neutron
cores surrounded by massive (Menv > MNS = 1M() enve-
lopes. Their model for a star with Mtot = 5 M( out-
wardly resembles a red supergiant with L ≈ 4 × 104L(,
Teff ≈ 2600 K, and R∗  ≈ 1000R(. An important charac-
teristic property of this model is its low neutron lumi-
nosity relative to the photon luminosity: Lν/Lph ≈10–5.
In contrast to [4], where a hydrostatic-equilibrium
model was obtained as the result of the evolution of an
initial cloud, Thorne and Zytkow [5, 6], having made a
1063-7729/01/4503- $21.00 © 20230
number of assumptions, were able to construct a self-
consistent hydrostatic model without considering the
processes leading to its formation. Their equilibrium
model consisted of the following regions.

(1) The envelope (104 km = rom ≤ r ≤ R∗  ≈ 1000R()—
a region absent of energy sources, in which it is
assumed that L(r) = constant. This zone contains most
of the mass of the star Menv = 4M(, and serves as a res-
ervoir of material that gradually settles onto the surface
of the neutron star.

(2) The neutron core (0 ≤ r ≤ RNS ≈ 11 km)—a cool
neutron star with M = 1M(. The computations of [6]
adopted the radius corresponding to a density ρ = 2 ×
108 g/cm3 in the envelope of the neutron star as the
inner boundary for the model. The boundary conditions
M(r) = 1M(, ρ(r) = 2 × 108 g/cm3, and L(r) = 0 when
r = RNS were imposed at this boundary.

(3) The transition region rNS < r < rom—a zone con-
taining 10–8M( of matter and located at the neutron-star
surface.

It was assumed that accretion occurs in a quasi-
steady-state regime; i.e., the Euler time derivatives of
any quantity except for the mass were required to be
zero. In this case, from the identity

flows the relation
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and the relation

follows from the continuity equation. The assumption
of the quasi-stationarity of the evolution of the star
enabled Thorne and Zytkow [5, 6] to exclude partial
derivatives in time from the stellar-structure equations,
and reduce the problem of constructing the desired
model to the integration of a system of ordinary differ-
ential equations.

Using the example of a star with Mtot = 5M(, Bisno-
vatyœ-Kogan and Lamzin [7] investigated the depen-
dence of the structure of Thorne–Zytkow (T–Z) objects
on the indicated initial assumptions. The evolution of
the star’s envelope was first computed, with a gradual
movement of the lower boundary of the region with

Lr = const and  = 0 higher and higher and simulta-

neously a rejection of the condition  = const in
lower-lying layers, but, as before, assuming that Lr = 0
at the neutron-star surface. It turned out that the struc-
ture of the inner regions remains virtually unchanged in
this case, and the envelope begins to expand, probably
flowing outward in the form of a stellar wind with a
mass-loss rate of about 2 × 10−6M(/yr.

It was then verified in [7] how sensitive the structure
of the star was to the value of ρin corresponding to the
boundary condition Lr = 0. Several models were com-
puted, identical to the models of T–Z but with succes-
sively increasing values of ρin. It turned out that it was
not possible to construct a model with zero luminosity
at the base when ρin > 7 × 109 g/cm3, since the temper-
ature of the gas at the neutron-star surface becomes
higher than 109 K, and the intensity of the neutrino out-
flow sharply increases. This was interpreted as evi-
dence that the initial model was thermally unstable;
however, is this really the case? In order to answer this
question, it is necessary to include the thermal evolu-
tion of the neutron star in the computations, moving the
boundary condition Lr = 0 to the only physical base in
the problem—the center of the neutron star. A qualita-
tive discussion of the instability of T–Z models is car-
ried out in [8].

In the current paper, we present the results of com-
putations of the thermal evolution of T–Z models tak-
ing into account the heating of the neutron core of the
star by flows of heat released during accretion of the
external envelope.

2. INITIAL MODEL
FOR THE EVOLUTIONARY COMPUTATIONS

As an initial model for our evolutionary computa-
tions, we adopted a T–Z model with mass Mtot = 5M( and
chemical composition for the envelope X = 0.7, Y = 0.28.
We computed this model by solving the same equations

Ṁ r( ) const Ṁ,= =

Ṁ

Ṁ
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as in [6], allowing for general relativistic effects, adopt-
ing the three conditions listed above for the structure of
the model.

Our method for computing the outer regions of the
star, where L(r) = const, is nearly the same as that
described in detail in [9]. The main differences are as
follows: (1) the ionization balance for ç2, H, and He
was determined via solution of a full system of the cor-
responding equations using a Newton method, and (2)
numerical integration of the differential equations was
carried out using a 4th-order Runge–Kutta method with
automatic step selection.

When T < 108 K, we took into account the contribu-
tions of electrons, atoms, ions, molecules, and black-
body radiation in the equation of state. At higher tem-
peratures, we considered a mixture of blackbody radia-
tion and fully ionized plasma consisting of non-
degenerate, non-relativistic atomic nuclei and electron–
positron gas. All components make an additive contri-
bution to the equation of state, and only the lepton gas
must be treated in a non-trivial way; when  < 10,
its thermodynamic functions were computed using the
code of Blinnikov et al. [10].

When  > 11, the equation of the state of cool
matter (T = 0) can be described by the approximation
formula of [11], but with allowance for thermal correc-
tions for the non-degenerate nuclei and degenerate
electrons. We assumed that the chemical composition
of the matter corresponded to so-called non-equilib-
rium neutronization occurring during compression of
the cool material [12]. We used the later results [13] for
a specified chemical composition with non-equilibrium
neutronization. We matched the equations of state in
the regions with  < 10 and  > 11 using a
spline interpolation method.

Opacity coefficients in the range 3 ≤   ≤ 8 and
–12 ≤  ≤ 12 were interpolated from the table from
[14] for the adopted envelope chemical composition.
Beyond the range covered by this table, for tempera-
tures above 108 K in the non-degenerate gas, the opac-
ity is determined by Thomson scattering with a Kline–
Nishina correction factor [15].

When the lepton gas becomes degenerate (  ≥ 6),
the main role in the transfer of heat begins to be played
by the electron thermal conductivity [16]. We allowed
for the possibility of crystallization of the matter, in
which case the coefficient of thermal conductivity was
computed in a self-consistent way [17]. In the transition
region between the crystallization phase and the gas,
we interpolated the thermal conductivity. When  >
12, we took into account the contribution of the degen-
erate neutron gas to the thermal conductivity in accor-
dance with the method of [18]. We computed the con-
vective gradient ∇ conv in accordance with mixing-length
theory, with the characteristic length equal to α on the
pressure height scale. The corresponding equations are

ρlog
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Tlog
ρlog
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presented in [19]; the general relativistic effects reduce to
correction factors in the expressions for the height scale
HP and the free-fall acceleration.

The computations took into account thermonuclear
burning via 4H  He, 3He  C, and 2C  Mg
[20]. Neutrino losses to pair annihilation and free–free,
plasma, and Urca processes in free nucleons were com-
puted using formulas from [21].

The only information about the neutron star needed
to construct the initial model for the evolutionary com-
putations is the radius rNS for ρin = 108 g/cm3 and a mass
MNS = 1M(. We computed the value of rNS by solving
the Oppenheimer–Volkov equation. Note that, for a
mass of MNS = 1M(, the values of rNS for isothermal
neutron stars with T = 0 K and T = 109 K differ by less
than 3 m. In the thermal evolution computations, we
assume that such variations of the radius will not influ-
ence the overall structure of the model, and can be
neglected. This means that the radial temperature distri-
bution of the neutron star can be chosen arbitrarily if
Tmax < 109 K.

We constructed the initial model as follows. We first
chose trial values Ltot and Teff and integrated the system
of equations to a depth rom = 0.2R( for the conditions

L(r) = Ltot and  = 0. The evolutionary computations
of [7] showed that, for this value of rom L(r) in the enve-

lope and  in the lower-lying layers can indeed be
considered virtually constant. We then chose a trial

value of  and continued the integration to r = rNS. In
this way, construction of the model was reduced to the

Ṁ

Ṁ

Ṁ

5

0

–5

–10

logρ [g/cm3]

4 5 6 7 8 9
logT [K]

Fig. 1. Variation of the density as a function of temperature
in the model with α = 1. Ltot = 36972.8L(, Rnr = 1282.36R(,

and  = 2.3172544 × 10–8M(/yr.Ṁ
selection of values Ltot, Teff, and  for which the
boundary condition Lr = 0 was satisfied.

When using the new opacities of [14] with convec-
tion parameter α = 1 (as did Thorne and Zytkow [6] and
Bisnovatyœ-Kogan and Lamzin [7]), the gas tempera-
ture exceeds 109 K at a radius of about 1000 km for
comparatively small trial values Ltot. This leads to a
high neutrino luminosity, making it impossible to sat-
isfy the boundary conditions Lr = 0 at ρ = ρin [7].
Increasing Ltot decreases the growth in temperature, but
leads to a density inversion near  = 5.5 (Fig. 1).
With further increase in Ltot, the amplitude of the
inverse becomes anomalously large, which is clearly
not physical. Thus, we were not able to construct a T–Z
model using the new opacities and α = 1: convection is
not able to compensate the outflow of heat. However, if
we adopt α = 1.5 (i.e., we make the convection more
efficient), it becomes possible to construct a model that
satisfies the structure of the object described by the
three conditions indicated above.

The integrated characteristics of the model with M =
5M( and α = 1.5 are Ltot = 53842.64L(, Rnr = 1229.6R(,

 = 2.5359 × 10–8M(/yr, rNS = 11.455 km, and TNS =
T(rNS) = 9.3085 × 108 K. Figure 2 presents the depen-
dence of  on , and Fig. 3 shows L as a func-
tion of  along the star. Since a detailed qualitative
analysis of the structure of the star is presented in [6],
we do not present this here.
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Fig. 2. Variation of the temperature as a function of density
in the initial model for the evolutionary computations (α =

1.5, Ltot = 53842.64L(, Rnr = 1229.6R(, and  = 2.5359 ×
10–8M(/yr).
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3. THERMAL EVOLUTION
OF THE NEUTRON STAR

To describe the thermal evolution of the neutron
star, we used the energy-generation equation re-written
in the form

The heat capacity of the neutron-star matter took
into account the corresponding contributions from the
degenerate relativistic electrons, degenerate neutrons,
and non-degenerate atomic nuclei. In the computations,
the time derivatives were replaced by finite differences.
ET and PT are thermal corrections to the internal energy
and pressure, respectively.

We computed the envelope using the method described

above assuming (r) = const, with a convection
parameter α = 1.5. When the luminosity Lin at the inner
boundary of the envelope (i.e., where ρ = 108 g/cm3) var-
ies from –100L( to 100L(, the envelope mass varies by
less than 10–8M(, the radius by less than 3 m, and the
temperature by no more than 60%. On the other hand,
it became clear during the computations of the thermal
evolution of the neutron core that the absolute value of
the luminosity at the outer boundary of the neutron star
does not exceed 100L(. This made it possible to avoid
calculating all the envelope parameters at each time
step, and to compute a priori a grid of envelope models
and determine the values of Lin and Tin needed to match
with the core via interpolation.

We computed the evolution of the neutron star using
the method of Schwarzschild and a numerical scheme
that is stable against the presence of various character-
istic times [15]. The initial temperature distribution in
the star was chosen from the condition that the heat flux
inside the neutron star be zero: without allowing for
general relativistic effects, this would imply an iso-
therm with T(r) = 9.31 × 108 K. Taking general relativ-
ity into account raises somewhat the temperature at the
center of the neutron star: Tc = 1.1 × 109 K. Further, we
chose the value of Tc so that the temperatures and lumi-
nosities at the matching point coincided within 1%. The
time step was chosen so that Tc varied by no more than
10% over one step.

Figure 4a shows how the temperature distribution
inside the neutron star varies with time. The cooling of
the neutron star is associated with volume neutrino
losses as a consequence of the modified Urca process.
Due to the high thermal conductivity of the Coulomb
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crystals and degenerate neutrons, the temperature when
 > 11.5 is nearly constant, although the heat flux

reaches 3 × 104L( near the center (Figs. 4b and 4c). The
strong thermal isolation of the outer layers from the
envelope prevents intense heating of the neutron star, so
that the hot neutron star cools in the same way it would
if it didn’t have an envelope. Differences begin to be
visible when the temperature at the center is decreased
to T ≈ 4 × 108 K. Then, the heat flux from the envelope
and the neutrino losses Lν ≈ 8 × 1034 erg/s are compara-
ble, and the neutron star makes a transition to a steady
state (Fig. 4c).

During the time when this steady state is being
established, the temperature at the matching point var-
ies within 20% (Fig. 5), and the luminosity at some
times is reduced to –70 L(. At the same time, the value

of  in the envelope differs from the å in the initial
model by less than 0.1%. This suggests that the enve-
lope essentially does not feel the variations in the ther-
mal structure of the neutron core.

We can see in Fig. 4c that, in all cases, the luminos-
ity becomes zero at densities lower than 108 g/cm3;
then, with the exception of the first time step, it remains
everywhere negative, reaching zero only at the center.
Bisnovatyœ-Kogan and Lamzin [7], like Thorne and
Zytkow [6], only sought solutions for which the lumi-
nosity reached zero when ρ = ρin, remaining every-
where positive. Thus, the fact that they were not able to
construct a model with Lr = 0 at sufficiently high densi-
ties in [7] does not mean that stars with cool neutron
cores cannot exist.

To elucidate how strongly the computation results
depend on the initial temperature distribution, we car-
ried out evolutionary computations for initial models
with neutron stars with Tc = 5.76 × 108, 4.5 × 108, and
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Fig. 3. Dependence of the luminosity on the density in the
initial model for the evolutionary computations.
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2.0 × 108 K. When Tc was higher than 4 × 108 K, the
neutron star cooled, and it was heated when Tc was
lower than 4 × 108 K; however, in both cases, it arrived
at a steady state. The fact that the initial model had a
temperature discontinuity at the neutron-star boundary
in these cases did not affect the subsequent evolution,
since, in the following time step, the temperature distri-
bution in the neutron star took on the same form as that
for the same Tc in the computations without a tempera-
ture jump in the initial model.

4. CONCLUSION

It follows from our analysis that, if the structure of
the outer layers (  < 8) is treated under the assump-
tions of Thorne and Zytkow [5, 6] and moving the
boundary condition Lr = 0 to the center of the star, the
evolution of the star is such that the initial cool neutron
core remains cool, although its neutrino luminosity
during the cooling process may even exceed the photon
luminosity of the T–Z object as a whole (Fig. 6). In par-
ticular, the low temperature of the neutron core means
that the computations of the envelope evolution beyond
the region of energy generation performed in [7] are
correct. It follows that the maximum lifetime of a T–Z
object is determined by the rate of mass loss via the

stellar wind, and is Mtot/  ~106 yr.
However, the method used in [7], and here as well,

is not entirely correct for evolutionary computations of
the zone of energy generation. The point here is that
this region has a mass ~10–14M(, and the accreted mate-
rial passes through it in less than 1 s, while the mini-
mum time step for the evolutionary computations was
one year; clearly, this makes it impossible to study non-
steady-state processes that could, in principle, occur in
the zone of energy generation and lead to instability of
the model. However, since the precision of the mantissa
is only 15 significant digits, even in double-precision
computations, it is not feasible to decrease the time step
while using this type of algorithm. In other words, a
special approach must be developed to investigate
instabilities in the energy-generation zone, and we can-
not currently consider the question of the instability of
the models to rapid heating and sharp growth in the
neutrino luminosity [4] to be definitively resolved.
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V. M. Lipunov1, 2, K. A. Postnov1, 2, and M. E. Prokhorov1

1Sternberg Astronomical Institute, Universitetskiœ pr. 13, Moscow, 119899 Russia
2Moscow State University, Moscow, Russia

Received September 14, 1999

Abstract—The distribution of observed energies for gamma-ray bursts with known redshifts can be explained
as a consequence of events releasing a standard energy of E0 = 5 × 1051 erg. Two situations are possible: the
degree of collimation could vary from burst to burst, or there could be a universal radiation pattern for all bursts,
with the observed differences being due to differences in the orientation of this pattern relative to the line of
sight to the Earth.
1. INTRODUCTION

Events that release a standard amount of energy are
a widespread phenomenon in astrophysics associated
with sources whose masses are fixed (to within some
accuracy). The best example is the collapse of the core
of a massive star accompanied by a supernova explo-
sion. When a neutron star forms as a result of such a
collapse, its binding energy ∆E = 0.15M(c2 is radiated
in the form of neutrinos. The four most accurately mea-
sured neutron-star masses lie within a narrow interval
near 1.4M( [1], although the theoretically allowed
range of masses is quite wide (from 0.1 to 3M().
Another example is type Ia supernovae, which occur as
a result of the thermonuclear explosion of a white
dwarf with the Chandrasekhar mass. Similarly, a stan-
dard energy should be released during the merger of
two neutron stars, in the form of gravitational waves
(about 90% of the radiated energy) and neutrinos (the
remaining 10%), as indicated by numerical computa-
tions [2].

Could cosmic gamma-ray bursts (GRBs) belong to
such a class? Currently, their nature has not yet been
firmly established (see the review [3]), although the
most likely models involve the merger of two neutron
stars (first proposed by Blinnikov et al. [4]) or the col-
lapse of a very massive star (see, for example, Woos-
ley [5] and Paczynski´ [6]). Note that considering
GRBs to be standard candles enabled prediction of the
redshift of GRB 970228 (the first GRB for which an
optical afterglow was detected), z = 0.7 ± 0.1, based on
its position on the –  diagram; this predic-
tion was made immediately after its discovery, before
the first measurement of the redshift of the optical after-
glow of the GRB registered by BeppoSax [7, 8]. This
prediction proved to be in excellent agreement with the
redshift of the GRB host galaxy obtained two years
later, z = 0.695 [9]. This may not be a simple coinci-
dence.

Nlog Slog
1063-7729/01/4503- $21.00 © 20236
Intensive optical studies of the afterglows of GRBs
have led to a rapid growth in the number of objects with
measured redshifts. Currently, the redshifts of eight
bursts are known (table), so that we can calculate the
distances to these GRBs and the effective energy
releases in gamma-rays Eγ of each of them (assuming
their emission is isotropic). As we can see from the
Table, these energies range over a wide interval from
~5 × 1051 to ~2 × 1054 erg. The real energy release E0
could be appreciably lower than Eγ if the gamma-ray
radiation is directed. If the half-opening angle of the
cone into which the radiation is emitted is θ ! 1, the

real energy released can be estimated as E0 . Eγ .

In fact, high “apparent” energies of GRBs are not
unexpected in models with merging neutron stars. The
allowed theoretical merging rate, Rns . 1–3 × 10–4/yr
per galaxy [7, 12–14], derived from first principles
appreciably exceeds the observed rate of gamma-ray
bursts, RGRB . 10–6/yr per galaxy [15]. We have inter-

θ2

4
-----

Parameters of GRBs

GRB z Eγ/E0 Directivity

970228 0.695(b) 5.2 × 1051 ~1 No

970508 0.835 5.3 × 1051 ~1 No

971214 3.418 2.5 × 1053 ~50

980329 ~5? ~2 × 1054 ~500

980613 1.096 5 × 1051 ~1

980703 0.966 9 × 1052 ~20

990123 1.60 1.6 × 1054 ~300 Yes

990510 1.62(c) 1.4 × 1053 ~30 Yes
(a) Data taken from Briggs et al. [10].
(b) Djorgovski et al. [9].
(c) Vreesvijk et al. [11].
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preted this large discrepancy as convincing evidence
that the hard radiation of GRBs is collimated. The solid
angle into which the energy is emitted is proportional to
the ratio of the characteristic rates

It is thought that the maximum energy release in the
form of gamma rays during the merging of two neutron
stars can reach 10% of the rest energy (due to the anni-
hilation of neutrinos and anti-neutrinos). Hence we
obtain the following estimate for the maximum appar-
ent energy release:

where γ < 1 is the coefficient for the conversion of the
burst energy into gamma-rays.

In the general case, both the distribution of the real
energy release f(E0) and the distribution of the direc-
tional pattern for the radiation f(θ) influence the distri-
bution Eγ. Here, we will show that the existing observa-
tions of GRBs are consistent with the hypothesis that
they have a standard intrinsic energy release E0 , and
that the scatter in the effective burst energies can be
explained purely by collimation E0/Eγ. In this case, the
observed distribution of GRBs in burst energy can be
explained either by variation of the directional beam
from object to object, or by the presence of a universal
GRB directional beam made up of multiple compo-
nents with appreciably different intensities.

2. THREE GROUPS OF OBSERVED
GAMMA-RAY BURSTS

The Table presents the eight GRBs with measured
redshifts. We have excluded GRB 980425, which was
identified (probably mistakenly) with the supernova
SN 1998bw in a nearby galaxy (at a distance of about
40 Mpc). On the other hand, the Table includes
GRB 980329, which has a large redshift ~5 that was
derived indirectly [16, 17]. Leaving this GRB out of our
analysis does not appreciably affect our final conclusions.

Three of the eight events (GRB 970228, GRB 970508,
and GRB 980613) have virtually identical effective
energy releases, (4.2–5.3) × 1051 erg. They also form
the group of weakest GRBs. Three other bursts
(GRB 971214, GRB 980703, and GRB 990510) form
an intermediate group with effective energy releases in
the range 9 × 1052–2.5 × 1053 erg; i.e., they are factors
of 20–50 brighter than the bursts in the first group. The
remaining two GRBs (GRB 980319 and GRB 990123)
are the brightest of those presented in the Table, with
effective energies of 2.4 × 1054 and 1.6 × 1054 erg, respec-
tively (factors of 500 and 300 brighter than the bursts of
the first group). Note that the scatter in the effective
energy release for the GRBs of the first group is much

Ω
RGRB

Rns

------------.∝

Eγ max( ) . γ
Rns

RGRB
------------ 0.1Mc2 & γ 1056 erg,××
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smaller than that for the other two groups. The mean
redshifts for the three groups show a tendency to grow
with increase in Eγ: 〈z1〉 = 0.875, 〈z2〉 = 2.0, and 〈z3〉 = 3.3.
This correlation follows naturally from the hypothesis
that the bursts in the different groups experience differ-
ent collimation: narrower directional beams correspond
to higher observed GRB energies, and such objects will
be observed more rarely (in a fixed volume of space)
but will be visible from larger distances, so that they
will, on average, have larger redshifts z.

The observations of GRB 990123 show indications
of substantial collimation of the radiation, θ ~ 0.1 [18],
as follows from the break in the light curve of the opti-
cal afterglow. A similar break should appear when the
Lorentz factor Γ for the relativistically expanding shell
is comparable to the inverse of the half-opening angle
of the directional beam of the radiation, Γ ~ 1/θ [19].
The real energy release for GRB 990123 turns out to be
E0 . 4 × 1051 erg, which is very close to the values for
the first (weakest) group of GRBs. This could indicate
that the gamma-ray bursts of the weakest group radiate
spherically symmetrically, so that, for them, E0 = Eγ,
and an energy release of approximately 5 × 1051 erg is a
fundamental value for all gamma-ray bursts.

A gradual variation in the slope of the light curve
over a wide range of wavelength was detected in the opti-
cal afterglow of GRB 990510; this could also be explained
by collimation. Consequently, the real energy release for
this burst is lower than its effective energy release. On the
other hand, there is currently no evidence for collimation
in the afterglows of GRB 970508 and GRB 970228,
which have been observed over the longest times; their
energy releases are roughly the same, Eγ, ~5 × 1051 erg.

3. STANDARD ENERGY RELEASE 
IN GAMMA-RAY BURSTS

Let us postulate that the real energy releases are the
same for all GRBs, and are equal to E0 = 5 × 1051 erg.
The three groups of GRBs with differing ratios Eγ/E0
are shown schematically in Fig. 1. This distribution is
nearly flat, and can be interpreted in two different ways.
It could reflect scatter in the collimation of the individ-
ual bursts, or it could be explained by a universal radi-
ation pattern for all bursts (with a fairly complex form)
together with a standard energy release.

3.1. Variable Collimation Angle

We will first consider the distribution of GRBs in
collimation angle. Here, we suppose that the standard
energy E0 = 5 × 1051 erg is emitted into a cone whose
half-opening angle θ is different for each of the three
groups of GRBs. For the sake of simplicity, we will
assume a Euclidean space. Then, the observed energy
for each of the groups will be

(1)Eγ i, E0/ Ωi/4π( ), i 1 2 3,, ,= =
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and consequently,

(2)

(the second group of GRBs is a factor of 30 and the
third group a factor of 300 brighter than the first group).

Ω1

4π
------ 1,

Ω2

4π
------ 1

30
------,

Ω3

4π
------ 1

300
---------= = =

980613
z = 1.096
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z = 0.695
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z = 3.418

990123
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980329
z ~ 5

100 1000101

3

2

1

N

〈z1〉 = 0.875 〈z2〉  = 2.0 〈z3〉  ~ 3.3
Eγ/E0

82%

15%

3%

15°

3°

Fig. 1. Distribution of GRBs with known redshifts in the
ratio Eγ/E0. Individual and group-average redshifts are indi-
cated.

Fig. 2. Distribution of half-opening angles for the directional
beams of GRBs θ assuming a standard energy E0 = 5 ×
1051 erg, derived from the observational statistics. The frac-
tions of events with corresponding angles θ are indicated.
Let n0 be the space density of GRB sources and ni be the
fraction of sources with collimation Ωi , normalized to
unity:

(3)

The limiting distance at which a GRB of the ith group
can be detected is Ri = R1(Eγ, i/E0)1/2, since the number
of observed events in the ith group is

(4)

Solving Eqs. (1)–(4), we obtain n1 = 82%, n2 = 15%,
and n3 = 3%, with the corresponding cone half-opening
angles θ2 = 15° and θ3 = 3° (we used the relation θi ≈

, which is valid for Ωi ! 4π). This distribution
is schematically depicted in Fig. 2.

3.2. A Universal Directional Beam for the Radiation
of Gamma-Ray Bursts

Here, we suppose that all GRBs have both a stan-
dard energy release E0 and identical (complex) direc-
tional beams for their radiation. The differences in the
observed energies and numbers of events occur because
different bursts are viewed at different angles (relative
to the beam symmetry axis; Fig. 3). In this case, Eq. (1)
takes the form

(5)

where ei characterizes the fraction of the total burst
energy radiated into a cone with solid angle Ωi.
Accordingly, formulas (2) can be written as

(6)

Taking into account the normalization

(7)

(here, we have neglected overlapping of the radiation
cones making up the overall directional beam, but this
will contribute only a small error, since Ω1 @ Ω2 @ Ω3),
Eq. (4) takes the form

(8)

Solving system (6)–(8), we find that the energy frac-
tions e1 = 74%, e2 = 21%, and e3 = 5% are emitted into
cones with half-opening angles θ1 = 90° (isotropic radi-
ation), θ2 = 20°, and θ3 = 3°, respectively. Note that, in
this case, the total energy release of the GRBs will be
approximately 22% higher, ~6 × 1051 erg. Figure 3 pro-
vides an illustration of this scenario.
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4. CONCLUSION

We have shown that the observed distribution of
energies for GRBs can be explained by the hypothesis
that GRBs have a standard energy release E0 = 5 ×
1051 erg. Two situations are possible here: either the
collimation angle varies from burst to burst, or there is
a universal multi-component radiation directional
beam for all GRBs (and we view bursts with different
strengths at different angles to the beam axis). At this
stage, we have not discussed physical models for the
beam pattern. It is possible that GRBs viewed at different
angles (belonging, accordingly, to groups with different
brightnesses) could have different physical properties
(for example, spectral or temporal behavior).

There also exists the opposite point of view that the
energy release of GRBs varies over orders of magnitude,

3° 5%

20° 21%

74%

Fig. 3. The proposed universal radiation pattern for GRBs
can be roughly divided into three parts: a (quasi-)spherically
symmetrical part into which 74% of the total radiation is
emitted and two narrower cones with half-opening angles of
20° and 3° into which 21 and 5% of the total energy is emitted,
respectively. The total energy released is 6 × 1051 erg.
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and the radiation is not significantly collimated [21]. Cur-
rently, we cannot distinguish between these two possi-
bilities (namely, whether the observed GRB energy
release Eγ varies due to differences in collimation or
due to differences in the real energy release E0). The
increase in the statistics of GRB observations expected
in the near future with the launch of the specialized sat-
ellites HETE-2 and SWIFT may help determine which
of these two points of view is correct.

However, the increase in observational statistics
cannot help distinguish between the two hypotheses
considered in this article, since both a distribution of
GRBs in collimation angle and a universal directional
beam could describe equally well any number of
groups of GRBs with arbitrary numbers and bright-
nesses. We can also name several criteria for verifica-
tion of the hypothesis of standard energy release in
GRBs:

(a) there should be no GRBs with Eγ significantly
lower than E0;

(b) our theoretical predictions of the cone widths θ
should coincide with those derived from observations;

(c) the mean redshifts of GRB groups should grow
with growth in Eγ.

With the exception of GRB 980425, which was
identified with SN 1998bw, there are no known bursts
with observed energy releases below 1051 erg. Estimates
of the opening angles for the GRB ejecta based on obser-
vations of the light curves of their optical afterglows are
currently very inaccurate (for more detail, see [22]). The
mean redshifts in the three groups of bursts we have
identified increase with Eγ (Fig. 1).
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Abstract—Neutrino transfer via convective flow to the surface of a proto-neutron star is numerically simulated.
The evolution of the neutrino distribution in a heated region rising from the center of the proto-neutron star to
its surface is simulated using a kinetic equation with a Uehling–Uhlenbeck collision integral in a uniform, iso-
tropic approximation. The composition of the matter in the region under consideration changes due to the
“burning” of electrons and protons by beta processes. The simulation results enable the estimation of the char-
acteristic time required for the rising medium to become optically thin to neutrinos and the characteristic spec-
trum of the neutrinos that are emitted. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

One of main problems in the theory of supernova
explosions is the development of a scenario for the
ejection of the envelope based on modern physical con-
cepts. In particular, the source of the energy transfered
to the ejected envelope must be identified and the
mechanism for this energy transfer described. The
gravitational energy of the collapsing core of the super-
nova progenitor when it reaches densities of the order
of 1014 g/cm3 could be the required energy source, but
the mechanism for transferring this energy is unclear.

In the classical paper by Colgate and White [1], neu-
trino transport provides the needed energy-transfer
mechanism, assuming that the matter is optically thin to
neutrinos. However, as shown in [2], the propagation of
neutrinos through matter with densities exceeding
1012 g/cm3 is strongly affected by the opacity of the
material, so that the characteristic time for neutrino dif-
fusion considerably exceeds the lifetime of the enve-
lope. Therefore, it is not surprising that numerous stud-
ies of mechanisms for type-II supernova explosions
based on collapse of the supernova progenitor’s core
into a neutron star have not led to appreciable progress.
The aim of the present work is to investigate the possi-
bility that the mechanism for the supernova explosion
is appreciably non-spherically symmetric.

Suslin et al. [3] showed that, for their chosen col-
lapse scenario, non-equilibrium neutronization of the
protostar leads to a substantial entropy increase, even
on times of the order of 2 × 10–4 s, first and foremost in
the central region of the star with dimensions of about
106 cm. The shortness of the characteristic time for
entropy increase is due to the high rate of energy trans-
port from ultra-relativistic, strongly-degenerate elec-
trons to high-energy neutrinos at densities of the order
of 1014 g/cm3; the size of the primary region of entropy
increase is determined by the extent of the central
1063-7729/01/4503- $21.00 © 20241
region with such densities. Consequently, hydrodynamic
instability based on the buoyancy force can develop in this
region. Our three-dimensional model calculations with a
specified entropy excess in the central region of a star
demonstrate the onset of large-scale instability in the form
of bubbles rising toward the stellar surface on timescales
considerably less than the characteristic neutrino-diffu-
sion time. The dimensions of the bubbles produced are
such that their optical depth to high-energy neutrinos
exceeds unity [4]. Therefore, the neutrinos inside a
bubble can be partially trapped, and rise to the surface
until the bubble becomes fully optically thin.

We wish to determine the time required for the bub-
bles to become fully optically thin and the characteris-
tic spectrum of the neutrinos at this time, and also to
trace the evolution of some parameters of the bubble
matter and the neutrinos that travel with it.

2. FORMULATION OF THE PROBLEM
Let us consider a bubble corresponding to a bounded

region in the central part of a star about 6 × 105 cm in size,
with a density of about 2 × 1014 g/cm3; the density of
the surrounding medium is approximately the same,
while the bubble temperature substantially exceeds the
temperature of the surrounding medium. A bubble ris-
ing due to the action of the buoyancy force expands,
changing its size and density. We shall adopt the time
dependence for the bubble density obtained in [4],
based on numerical modeling of the onset of an initial
entropy perturbation against the background of an equi-
librium rotating configuration for a proto-neutron star.
At the initial time, we specified a central region with
perturbations using a Gaussian profile for the entropy
and density variations. Next, the boundaries of the
region occupied by the evolving perturbation were
determined at each moment in time by comparing the
initial background constant entropy with the entropy
001 MAIK “Nauka/Interperiodica”
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inside the region. The mean bubble density was deter-
mined by averaging over all computational cells inside
the bubble. Since we are primarily interested in rela-
tively rough estimates, we shall consider a model that
describes the matter in the perturbed region and rele-
vant neutrino processes only approximately, but retains
the features we consider to be most important.

To simplify the model, we assume that, at the initial
time, the bubble is composed of iron nuclei (A = 56,
Z = 26) and free ultrarelativistic electrons. At densities
of 2 × 1014 g/cm3, such a medium is characterized by
intense beta processes, which are a source of neutrinos:

Inverse processes that absorb neutrinos also occur:

Both direct and inverse beta processes produce new ele-
ments, complicating the model for the medium. To
avoid this, we introduce a neutron component and do
not distinguish between different types of nuclei. Along
with inelastic processes, neutrinos also participate in
elastic interactions with electrons and nuclei:

We emphasize that, due to the large difference between
the masses of electrons and nuclei, neutrinos lose sub-
stantially greater energy in collisions with electrons.
Since our treatment will be limited to a uniform and
isotropic approximation for the neutrino distribution
function (whereas scattering by nuclei contributes
appreciably only to the anisotropic component of the
distribution function), we can neglect scattering by
nuclei in the collision integral. However, since scatter-
ing by nuclei appreciably affects the rate of escape of
neutrinos through the bubble boundary, we will taken it
into account in this process. We neglect all other pro-
cesses involving neutrinos. In contrast to [5], we shall
take into account the fact that there is also some distri-
bution of neutrinos outside the bubble. Therefore, neu-
trinos can both leave and enter the region under consid-
eration. The electron distribution function will be inter-
polated by a Fermi step function, which is obviously
applicable only when EF @ 1.5kT (i.e., when the Fermi
energy of the electrons is considerably greater than
their thermal energy).

3. THE MATHEMATICAL MODEL

In a uniform, isotropic approximation, the kinetic
equation describing the evolution of the neutrino distri-
bution in a bounded region whose characteristic size d,

A Z,( ) e A Z 1–,( )⇒ ν .+ +

A Z 1+,( ) e+        A Z,( ) ν .+⇐

A Z,( ) ν+ A Z,( )' ν',+⇒

e ν+ e' ν'.+⇒
density, and partial concentrations of components vary
with time can be written in the form

(1)

Here, the functions Kin(p, p' t) and Kout(p, p', t) depend
on details of the process of neutrino scattering by elec-
trons, and S(p, t) and Y(p, t) are sources and sinks of
neutrinos, determined by the direct and inverse beta
processes. The term containing the logarithmic deriva-
tive of the density is responsible for variations in the
neutrino distribution due to the changing dimensions of
the region where the neutrinos are concentrated. The
last term describes neutrino escape through the bound-
ary. (The value γ = 0 corresponds to the case of free
propagation.) We normalized the distribution function
as follows:

(2)

This equation for the neutrino distribution function
must be supplemented by an equation describing evolu-
tion of the electron number density

(3)

and also by a relation between the densities of the elec-
trons and neutrons, on the one hand, and the density of
the medium, on the other:

(4)

In deriving (4), we have assumed that electrons make a
negligible contribution to the density of the medium,
and that the medium is electrically neutral.

To facilitate use of the above equations as a basis
for numerical simulations, we introduce dimensionless
variables, constructed using the following parameters:
characteristic length 3 × 107 cm, characteristic time 10–3 s,
characteristic density 2 × 1014 g/cm3, characteristic
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momentum pF(0) = s–1 EF(0) (the Fermi-momentum of the
electrons, where EF(0) = 219 MeV), and characteristic
number density of the particles ne(0) = 4.63 × 1037 cm–3.
The dimensionless characteristic size d(t) at the initial
time is d(0) = 2.13 × 10–2.

We shall not introduce special notation for the
dimensionless quantities (apart from p  x, p'  y,
and PF  u). The required dimensionless system of
equations will then take the form

(5)

(6)

(7)

The time dependence of the characteristic size d is
given by the expression

(8)

The normalization of the neutrino distribution function
becomes

(9)

Formulas for S(x, t) and Y(x, t) are presented in [6].
We shall write here only the corresponding dimension-
less relations:

(10)
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(11)

(In addition, the relation ne(t) = u3(t) is valid in the
dimensionless notation.)

We used the following expressions for γ in the sim-
ulations:

(12)

and

(13)

The function Kn(x, y, t) describes scattering by nuclei:

(14)

Let us write also the quantities r(x, y, t) = r(x, y, u(t)),
taken from [6]:

(1) For 0 ≤ x ≤ u(t):
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(16)

(2) For x > u(t):
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Fig. 1. Time dependence of the number density of neutrinos
(marked curve) and electrons (unmarked curve).
(18)

We solved the system of equations (5)–(18) numer-
ically on a uniform grid in x containing 101 points. The
integrals were approximated by trapezoidal formulas.
The time evolution was described by an implicit, second-
order, two-layer scheme. We solved the implicit difference
system using a successive-approximation method.

The time dependence of the bubble density com-
puted in this way and used in the numerical simulations
is described well by the formula

(19)

4. SIMULATION RESULTS

The results of our numerical solution of system (5)–
(18) are presented in Figs. 1–7 for two cases: in the first
(Figs. 1–4), we used formula (12) for the function γ(x, t),
and, in the second (Figs. 5–7), we used formula (13).
The neutrino distribution function outside the specified
region was taken to be zero in both cases. The number

+ θ 2u x–( )θ u y–( )θ y x– u+( ) x u–( )
15

----------------

× 4y5 10 u x+( )y4 40
3
------ x2 ux u2+ +( )y3+ +

+ 10 u x–( ) u2 2ux 3x2+ +( )y2

+ 4 u x–( )2 u2 3ux 6x2+ +( )y

+
2
3
--- u x–( )3 u2 4ux 10x2+ +( )

+ θ x 2u–( )θ y u–( )θ x u– y–( )

× u4

15
------ 2

3
---u2 4ux 10x2+ + 

 

+ θ 2u x–( )θ y u–( ) θ x 2u–( )θ y x– u+( )+[ ]

× θ x y–( )
1
15
------ 2

3
---y6– 4uy5– 10u2y4– 40

3
------ u3 x3–( )y3–

– 10 u x–( )2 u2 2ux 3x2+ +( )y2

– 4 u x–( )3 u2 3ux 6x2+ +( )y
2
3
--- u x–( )4–

× u2 4ux 10x2+ +( ) 2
3
---u4 u2 6ux 15x2+ +( )+

+ θ u y–( )y3 22
45
------y3–

8
5
---u

4
3
---x+ 

  y2+

– 2u2 4ux
8
3
---x2+ + 

  y
8
9
--- u x+( )3 x3–( )+ .

ρ t( ) 167.14
1 0.3 t 5.5–( )exp+
----------------------------------------------.=
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of neutrinos emitted per unit volume per unit time in an
interval dp is given in our model by the formula

(20)

The quantities I(x, t) are presented in Figs. 4 and 7.
Although the difference between the two cases from

the viewpoint of physical conditions seems negligible, the
results of the numerical simulations are radically different.

dI p t,( ) 4πc

d t( ) 1 γ p t,( )+[ ] 2π"( )3
----------------------------------------------------------=

× f p t,( ) f g p pg,( )–[ ] p2dp ne 0( )I x t,( )dx.=

160
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80

40

〈E〉 , MeV

4 8 12
t, ms

0

Fig. 2. Time dependence of the average energies of the neu-
trinos (marked curve) and electrons (unmarked curve).
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In the first case, the bubble is optically thin to the neutrino
radiation from the very onset of the process. The emission
maximum corresponds to time t ≈ 0.5 ms, which is
roughly equal to the characteristic time for the action of
the source. The transparency of the bubble results from
the substantial decrease in neutrino scattering due to
the factor (1 – f) in (12), when the neutrino distribution
function is close to a Fermi step function.

However, under real conditions, the distribution
function can be considerably different from a Fermi
step distribution, for example, due to the heating of the
electron component by neutrino scattering processes.
Since the model we have used cannot be applied to the
case of non-zero temperature for the medium, we sim-
ulated the influence of non-degeneracy of the neutrino
distribution on the emission by neglecting the suppres-
sion factor (1 – f) when describing scattering by nuclei.
Since the neutrino energy remains virtually unchanged
during scattering by nuclei (as compared to scattering by
electrons), this should not affect the evolution of the neu-
trino distribution in momentum space, and should change
only the optical depth of the boundary [see Eq. (13)].

Indeed, in this case, appreciable neutrino radiation
appears only after t ≈ 10 ms, and reaches its maximum
at t ≈ 12 ms. In accordance with (19), such times corre-
spond to densities that are two orders of magnitude
lower than the initial density. Therefore, in the second
case, the bubble becomes optically thin to neutrinos
only after it rises to the upper layers of the supernova
core, which are characterized by considerably lower
density. At earlier times, the rising bubble acts as an
opaque neutrino trap. In this case (Fig. 6), the mean
energies of the neutrino and electron components are
equal from t ≈ 0.5 ms (the characteristic time required
for production of the neutrino component by beta pro-
1.0

2

f(E, t)

0.5

0

4

6

8

10

t, ms

12
1

0

E/219 MeV

Fig. 3. Neutrino distribution function f(E, t).
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2000

0

0

0 1

x = E/219 MeV

Fig. 4. The function I(x, t).
cesses) to t ≈ 10 ms (when the medium becomes opti-
cally thin). In the first case (Fig. 2), the average neu-
trino energy is less than the average electron energy, due
to the emission of some of the neutrinos before the onset
of the stage of “classical” transparency. Later, the mean
neutrino energy exceeds the mean electron energy in both
cases, since the degradation of neutrinos in ve processes is
substantially decreased, while the Fermi energy of the

1.0

0.8

0.6

0.4

0.2

n/4.63 × 1037 cm–3

4 8 12
t, ms

0

ne

nν

Fig. 5. Time dependence of the number density of neutrinos
(marked curve) and electrons (unmarked curve).
electrons (and, consequently, their average energy) con-
tinues to decrease as the bubble expands.

In conclusion, let us estimate the spectrum of the
neutrinos emitted from a supernova in the adopted sce-
nario. In the second case, the spectra of the neutrino
emission from the bubble and from the entire super-
nova should coincide to high accuracy, since the bubble
radiation is emitted in the optically thin region of the

160
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40

〈E〉 , MeV

4 8 12
t, ms

0

Fig. 6. Time dependence of the average energies of the neu-
trinos (marked curve) and electrons (unmarked curve).
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Fig. 7. Function I(x, t).
star (Fig. 8c). It is impossible to accurately estimate the
neutrino spectrum emitted by the supernova in the first
case, since the neutrinos leave the bubble in the region of
“classical” opacity, and we must simulate the neutrino
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Case 2
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Fig. 8. Spectra of the emitted neutrinos I(x).
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processes over the entire stellar zone in order to obtain a
correct description. We can only present here the hardest
(Fig. 8a) and softest (Fig. 8b) possible spectra.
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