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Abstract—Recent accurate measurements [1, 2] of the static potentials between sources in various SU(3) rep-
resentations provide a crucial test of the QCD vacuum and of different theoretical approaches to the confine-
ment. In particular, the Casimir scaling of static potentials found for all measured distances implies strong sup-
pression of higher cumulants and a high accuracy of the Gaussian stochastic vacuum. Most popular models are
in conflict with these measurements. © 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 12.38.Aw; 02.20.Qs
1  Recent accurate measurements of the static poten-
tials between sources in the eight different representa-
tions of the SU(3) group [1] reveal a new quantitative
picture of QCD vacuum and provide a crucial test of
existing theoretical models. Other measurements of
static interaction [2] are in general agreement with [1].

The most convenient way of writing static potentials
VD(r) in the representations D = 3, 8, 6, 15a, 10, 27, 24,
and 15s is to express them through a complete set of
field correlators in the framework of the Field Correla-
tor Method (FCM) [3]:

(1)

where the Wilson loop W(C) for the rectangular contour
C = r × T in the (34) plane is written as a cumulant
expansion

(2)

Here F(k)dσ(k) = F34(u(k), x0)dσ34(k) and the compo-
nent F34(u, x0) ≡ E3(u, x0) = φ(x0, u)E3(u)φ(u, x0), where
φ is the parallel transporter and x0 is an arbitrary point

on the surface S inside the contour C; TrD  = 1.

Equation (2) depends on D through the generators

Ta, because F(k) = Fa(k)Ta (a = 1, …,  – 1) and the

quadratic Casimir operator CD, TaTa = CD, is the main
characteristic of D, so that the invariant square of color
charge in the representation D is g2CD.

1 This article was submitted by the author in English.
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One can now express the connected correlators
(cumulants) in (2) via CD and D-independent averages
as follows (for more details, see the last reference in [3]
and [4]):

(3)

(4)

Note that the arguments of F(k) in (4) and in (2) are
ordered [e.g., clockwise, u(1) < u(2) < u(3) < u(4)] and,
therefore, only the vacuum insertion is possible in the
first term on the rhs of (4), leading to the mutual cancel-
lation of the first and the third terms; hence, (4) is a
connected correlator vanishing at large distances |u(1) +
u(2) – u(3) – u(4)|  ∞.

In a similar manner, one can show that the nth

cumulant in (2) contributes proportionally to . As a
result, the static potential VD(r) can be expanded as

(5)

where [1] dD = CD/CF and CF is the fundamental

Casimir operator CF = (  – 1)/2Nc. The fundamental
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static potential contains a perturbative Coulomb part
VCoul, confining linear and constant terms.

The Coulomb part, which can be obtained from the
perturbative contribution to FC, is known up to two
loops [5] and is proportional to CD. Therefore, one may

expect quartic contributions proportional to  ~ ,
to the constant and linear terms, writing (5) as

(6)

Here,  and  measure the contribution of the quar-
tic cumulants to the constant term and string tension,
respectively.

The measurements in [1] allow one to find  and

 from all eight data sets. To this end, one forms seven

combinations ζD ≡ VD(r) – dDVF(r) = dD(dD – 1)(  +

r). As a typical example, take fundamental and
adjoint potentials at distances r in the interval between
0.05 and 1.1 fm from the data [1] and the χ2 fit yields
for , :

(7)

(8)

The quality of the fit is reasonable: χ2/N = 0.45,
N = 43. One obtains similar results for D = 6, 15a, and
10 (while three higher representations do not provide

additional information), suggesting that  is nega-

tive and is compatible with zero, confirming in this
way parametrization (6).

This analysis demonstrates the phenomenon of
Casimir scaling, i.e., proportionality of the static poten-
tial VD(r) to the Casimir operator CD with an accuracy
better than one percent.

Physical consequences of the Casimir scaling are
numerous and important.

First of all, the sign and magnitude of quartic cor-
rection (7), (8) can be understood in the framework of
the FCM. Indeed, the quartic term enters the potential
VD with the factor (–g4), as compared to +g2 for the qua-

dratic (Gaussian) term. Second, estimate the 〈 〉  term
from the standard gluonic condensate as follows:

(9)

and take into account that the cumulant expansion in
(2) is actually in powers of the parameter

(10)
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Here, Tg is the correlation length of the QCD vacuum;
for bilocal correlator it was measured on the lattice [6]

 ~ 1 GeV–1. With the use of (10), one could expect

that  would be from 4 to 10% of the standard string

tension, σ = 0.2 GeV2 provided Tg = . The value of

 calculated in (8) is at least six times smaller and

suggests that the quartic correlation length  may be

smaller than the Gaussian one,  ~ 0.2 fm.

This result means that the Gaussian Stochastic
Model (GSM), suggested in [3] and successfully used
heretofore in many applications [7], can be more accu-
rate than was even expected, at least in the processes
where string tension plays the most important role. On
the other hand, the smallness of quartic and higher con-
tributions implies a very specific picture of vacuum
correlations.

Indeed, the smallness of  implies that color
fields tend to form compact white bilocal combinations
Fa(1)Fa(2) which are almost noninteracting between
themselves and therefore not contributing to the higher
connected correlators. This looks like the picture of
small white dipoles made of fields FF (or of vector
potentials AµAµ connected to FF in the Fock–
Schwinger or contour gauge).

One can also understand qualitatively the difference

between  and , since  measures correlation

length between adjoint fields (x) and (y) in the

Gaussian correlator 〈 (x) (y)〉 , while  refers to
the correlation of two white complexes and should be
connected to the lowest glueball mass MG ≈ 2 GeV;

hence,  ~ 1/MG ~ 0.1 fm < .

Finally, the Casimir scaling imposes severe restric-
tions on the existing models of QCD vacuum. For
example, the center-symmetry flux model was tested
and ruled out in [1], since in the original formulation it
predicts vanishing adjoint string tension, whereas in the
later modification, the fat vertex model [9], it is still far
from the accurate data [1].

Next, one should mention models of the Abelian
projected vacuum which fail to provide Casimir scaling
[11], at least in the simplest version [12].

Consider now a dilute instanton gas model and the
SU(2) group. The instantons may be present in the con-
fining vacuum as an important source of chiral symme-
try breaking. Then the Casimir scaling [1] imposes a
strict bound on the admixture of instantons in the QCD
vacuum. Indeed, insertion in (2) and (4) of the instanton

field strength g (x, z) = 4δa3ρ2/[(x – z)2 + ρ2]2, (ρ is
the instanton size and z is its position; the contribution
of the parallel transporters is neglected for simplicity,
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since it gives a reduction of 20–30% for bilocal corre-
lators, see [11] for details) yields the following expres-
sion for the quartic contribution to the potential gener-
ated by instantons at small distances r ≤ ρ [in the SU(2)
group]:

, (11)

where N/V is the instanton density in the vacuum. With

the limit (8) on  and taking the distance r = ρ =
0.3 fm, one obtains an upper bound for density of
instantons:

N/V ≤ 0.2 fm–4, (12)

which is much smaller than the normal instanton den-
sity of 1 fm–4.

With such density, the role of instantons in chiral
symmetry breaking and other effects would be rather
small. Even more stringent bounds can be obtained
from the quartic string tension; however, the nonzero
value of  for instantons does not imply confinement.
One should take into account that at large distances the

sum of all partial string tensions  for the
dilute instanton gas vanishes [12, 13].

In the previous discussion, we ignored the fact that
at large enough distances the adjoint charges are
screened by the vacuum gluons, and the limiting value
of the adjoint potential is equal to the doubled gluelump
mass 2Mgl. This leads to an estimate of the screening
distance r0 from the relation Vadj(r0) = 2Mgl, where Mgl

from [4] is around 1.4 GeV and, therefore, r0 ≈ 1.4 fm,
which is beyond the distance where Casimir scaling
was measured in [1].

Thus, the Casimir scaling is a stringent test for all
models considered and displays a strong suppression of
quartic and higher correlators and, hence, supports a
good accuracy of the GSM. At this point one may won-
der how, with negligibly small higher FCs one can have
a screening regime at r > r0. The answer was suggested
in [14], where it was demonstrated that screening terms
appear as an additive contribution to the Wilson loop,
which is not included in the cumulant expansion (2)

and has a small coefficient O( ). Therefore, the tran-
sition from the Casimir scaling regime to the screening
regime occurs sharply at large T and r = r0 due to the
definition of the static potential (1) and cannot be seen
in the one-loop cumulant expansion in (2). For details,
the reader is referred to [4] and subsequent papers.
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ATOMS, SPECTRA, 
RADIATIONS

        
Self-Reconstruction of an Optical Vortex
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Abstract—The results of experiments devoted to the diffraction of a light beam with an axial optical vortex
from the edge of an opaque screen are presented. The reconstruction of an optical vortex in the transmitted beam
is observed under conditions when the screen cuts off the central part of the incident beam. © 2000 MAIK
“Nauka/Interperiodica”.

PACS numbers: 42.25.Fx
Currently, optical vortices (OVs), i.e., areas of circu-
lar motion of energy flow in an electromagnetic wave,
are being actively studied in optics. Optical vortices can
be divided into longitudinal OVs, where the axis of cir-
cular motion coincides with the direction of wave prop-
agation (or is slightly tilted with respect to this direc-
tion), and transverse OVs, where the axis is perpendic-
ular to the wave propagation. Laguerre–Gauss

doughnut L  modes of a laser cavity [1] are typical
examples of longitudinal OVs. Airy rings in the focal
plane of a lens [2] may serve as an example of trans-
verse OVs. In both cases, the OV axis coincides with
the line where the field amplitude is equal to zero.
Going around the OV axis along any closed contour not
enclosing another OV, we find that the phase is changed
by 2π or 2mπ in the case of an m-fold vortex. For a lon-
gitudinal OV, the integer mπ is called the topological
charge of the vortex. Due to the mπ jump, the phase is
assumed to be uncertain, or singular, along the OV axis.

In the case of a longitudinal OV, a combination of
circular and translational motion of energy in the elec-
tromagnetic wave gives rise to the formation of a heli-
coidal surface of equal phase (helical wave-front dislo-
cation) [3, 4]. The surface of the wave front under these
conditions is smooth everywhere except for the heli-
coid axis. In the case of coaxial interference with a
plane wave, the wave surface with such a shape gives
rise to spiral interference fringes and a “fork” of inter-
ference fringes for oblique-incidence waves. The
appearance of such a fork unambiguously indicates the
presence of an OV [4]. An important specific feature of
longitudinal OVs is that a light beam may have a non-
zero orbital angular momentum, which can be trans-
ferred to particles trapped inside the beam, leading to
the rotation of such particles [5, 6].

As shown earlier [7], the screening of the peripheral
part of the beam does not suppress an OV in the trans-
mitted beam but shifts the OV with respect to the beam
center due to the existence of partial sources with a

G0
1–
0021-3640/00/7104- $20.00 © 20130
π-shifted phase. However, it is not clear whether an OV
can survive in the case when the central part of the
beam is cut off, since, in such a situation, there are no
reasons for destructive interference of partial sources
on the wave front, which is necessary for the appear-
ance of a zero point of the field amplitude.

The purpose of this letter is to describe the regener-
ation of a longitudinal OV, i.e., the reconstruction of an
OV with a phase-singularity point from the smooth part
of the wave front. The main idea of our experimental
and numerical studies was to cut off the central part of
a beam including the axis of an axial OV with an
opaque screen.

Figure 1 presents the results of numerical simula-
tions of OV regeneration in a beam represented in the

z = 0 plane as the waist of an L  mode of a beam
where the central part is cut off with a screen,

(1)

Here, r0 is the transverse size parameter; ϕ is the azi-
muthal angle, which is equal to ; y = y0 is
the cutoff line of the beam transmitted through an

opaque screen; and y0 = r0. The fact that formula (1)

involves the phase factor exp(iϕ) implies that we are
dealing with an axial OV with the charge m = 1. As can
be seen from (1), a beam diaphragmed by a half-plane
with y0 > 0 (the dashed line in Fig. 1 shows the edge of
the screen blocking the lower part of the beam) con-
tains only the peripheral part, which involves no phase
singularity. However, the phase of such a beam varies
in its cross section in accordance with (1). The images
presented at the left of Fig. 1 display intensity distribu-
tions in the cross section of the beam. The dashed circle

G0
1

E x y,( )

=  
0, y y0≤

x2 y2+( ) x2 y2+( )/r0
2– iϕ+[ ] , y y0.>exp




x y⁄( )arctan

1
3
---
000 MAIK “Nauka/Interperiodica”



        

SELF-RECONSTRUCTION OF AN OPTICAL VORTEX 131

                                        
z = 0

z = 0.2LR

z = LR

z = 2LR

z = 5LR

Fig. 1. Results of calculations for (left) intensity distributions in the transverse section of a beam with an axial OV with  m = –1 at
different distances behind the screen cutting off the dashed part of the beam at z = 0 (upper row), (center) the corresponding phase
distributions, and (right) patterns of interference with a plane wave. The transverse size of an unperturbed beam for the same dis-
tances is shown with a dashed circle.
shows the current size of a freely propagating beam.
The wave phase is represented by levels of gray scale in
the central part of Fig. 1 (with black corresponding to a
zero phase and white corresponding to the phase equal
to 2π). The patterns corresponding to interference with
an off-axis plane wave are shown at the right of Fig. 1.

As the beam propagates behind the screen, the light
is diffracted to the area of geometric shadow, which is
accompanied by the rotation of the light spot as a
whole. The direction of this rotation is determined by
JETP LETTERS      Vol. 71      No. 4      2000
the sign of the OV charge [4]. The phase structure in the
cross section of the beam in the near-field zone changes
considerably under these conditions (the distance along
the z-axis is normalized to the Rayleigh length of an

unperturbed beam, LR = π /λ, where λ is the wave-
length). For distances less than the Rayleigh wave-
length, diffraction bands arise and the light asymmetri-
cally penetrates into the area of geometric shadow. The
latter effect was described in [7] as the rotation of a
light beam around the z-axis. Optical vortices are not

r0
2
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x

1 2

3
4
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Fig. 2. Optical scheme of experiments: (1) optical axial vor-

tex (the L  mode), (2) opaque screen cutting off the center

of the vortex, (3) diffraction in the near-field zone contain-
ing no singularities, and (4) vortex reconstruction in the far-
field zone. The dashed line shows the phase step of the vor-
tex front preceding vortex formation.

G0
1

observed in the field of view in this case. Within the
interval from one to two Rayleigh lengths, we observe
the formation of a phase step, which subsequently gives
rise to a unit OV with the same sign as the initial beam.
For z = 5LR, the interference fringe is split, which indi-
cates the appearance of an OV. Note that, in contrast to
intermediate states, the final result, i.e., the reconstruc-
tion of a unit vortex in the far-field zone, is independent
of the degree of beam screening.

The regeneration of an optical vortex from some
part of the initial beam was experimentally imple-
mented in the optical scheme shown in Fig. 2. A beam
of a He–Ne laser (λ = 633 nm) was directed to a synthe-
sized diffraction grating, and a beam with an axial OV
was produced in the first order of diffraction [8].

The beam thus produced was focused by a lens with
a focal length of 50 cm. The beam waist diameter was
equal to r0 ≈ 0.25 mm. An opaque screen cutting off

some part of the beam at the level y0 ≈ r0 was placed
1
4
---
(Â) (f)

(a) (b)
(c) (d)

Fig. 3. Intensity distribution in the axial unit OV at different distances behind a diaphragming screen cutting off the dashed part of
the beam: (a) intensity distribution in the plane of an opaque screen, (b) the part of OV behind the screen containing no zero point
of field amplitude, (c) intensity distribution at z = LR, (d) the corresponding pattern of interference with a plane wave, and (e, f)
intensity distribution and interference pattern in the far-field zone.
JETP LETTERS      Vol. 71      No. 4      2000
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in the plane of the beam waist. The degree of beam
screening was visualized with the use of an auxiliary
lens, which imaged the edge of the screen.

Intensity distributions in the light beam and the pat-
tern of interference of the beam with a reference plane
wave exactly coincided with the results of simulations.
Figure 3 shows the results of experiments obtained in
the near- and far-field zones. Interference analysis
reveals a fork to the left of the bright spot, which indi-
cates the appearance of an OV.

Thus, the results of our study demonstrate the recon-
struction of an optical vortex, i.e., an optical beam with
a helicoidal wave front, from some part of this beam
that does not contain the vortex axis. In our opinion,
this effect can be accounted for by the redistribution of
the orbital angular momentum in the cross section of
the beam propagating behind the screen. The existence
of a residual orbital angular momentum leads to the for-
mation of an OV carrying this momentum. The shift of
the OV center with respect to the beam axis is due to the
presence of a dislocation-free component [9].
JETP LETTERS      Vol. 71      No. 4      2000
REFERENCES
1. Yu. A. Anan’ev, Optical Cavities and the Divergence of

Laser Radiation (Nauka, Moscow, 1979).
2. A. Boivin, J. Dow, and E. Wolf, J. Opt. Soc. Am. 57,

1171 (1967).
3. J. F. Nye and M. V. Berry, Proc. R. Soc. London A 336,

165 (1973).
4. Optical Vortices, Ed. by M. Vasnetsov and K. Staliunas

(Nova Science, New York, 1999).
5. L. Allen, M. W. Beijersbergen, R. J. Spreeuw, and

J. P. Woerdman, Phys. Rev. A 45, 8185 (1992).
6. H. He, M. E. J. Friese, N. R. Heckenberg, et al., Phys.

Rev. Lett. 75, 826 (1995).
7. M. V. Vasnetsov, I. V. Basistiy, L. V. Kreminskaya, et al.,

Proc. SPIE 3487, 34 (1998).
8. V. Yu. Bazhenov, M. V. Vasnetsov, and M. S. Soskin,

Pis’ma Zh. Éksp. Teor. Fiz. 52, 1037 (1990) [JETP Lett.
52, 429 (1990)].

9. M. S. Soskin, V. N. Gorshkov, M. V. Vasnetsov, et al.,
Phys. Rev. A 56, 4064 (1997).

Translated by A. Zheltikov



  

JETP Letters, Vol. 71, No. 4, 2000, pp. 134–137. Translated from Pis’ma v Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 71, No. 4, 2000, pp. 197–201.
Original Russian Text Copyright © 2000 by Kamzin, Stahl, Gellert, Muller, Kankeleit, Vcherashni

 

œ

 

.

                                           

CONDENSED 
MATTER

                                                         
Lowering of Magnetic Field Intensity at the Surfaces 
of a-Fe2O3 and FeBO3 Single Crystals
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Abstract—Depth-selective conversion electron Mössbauer spectroscopy was used to study magnetic proper-
ties of the thin surface layers of the α-Fe2O3 and FeBO3 single crystals. An analysis of the experimental spectra
indicates that the magnetic properties of the layers at a depth of more than ~100 nm from the surface are similar
to the properties of crystal bulk, and the corresponding spectra consist of narrow lines. The lines gradually
broaden as the crystal surface is approached. The spectra of the ~10-nm-thick surface layers consist of broad
lines, indicating a wide distribution δ = 2.1 T of the effective magnetic field about its mean value of 32.2(4) T.
The experimental spectra were used to determine the effective magnetic fields (Heff) for the iron ions situated
in the surface layers of thickness ~100 nm. The effective fields in these layers were found to gradually decrease
at room temperature (291 K) as the crystal surface was approached. The Heff values in the 2.4(9)-nm-thick sur-
face layer of the α-Fe2O3 crystal and 4.9(9)-nm layer of FeBO3 are 0.7(2) and 1.2(3)%, respectively, smaller
than for the nuclei of the ions in the bulk of these crystals. © 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 75.70.Ak; 76.80.+y
The elaboration of theoretical methods for the
description of surface magnetism and the development
of new experimental methods for studying the proper-
ties of thin surface layers have stimulated much work
devoted to the study of surface magnetic properties.

The ground-state magnetic moment (T = 0 K), the
magnetic moment at nonzero temperatures, and its tem-
perature dependence are among the most important
parameters of the theory of surface magnetism. Theo-
retical calculations suggest that the zero-temperature
mean magnetic moment increases, compared to its bulk
value at a depth of four monolayers beneath the surface,
by 20% in the surface layer of Ni (001) and by 34% for
Fe (001) [1].

Mössbauer spectroscopy is widely used in studying
the bulk and surface magnetic properties on the micro-
scopic or local level, because the measured Heff value is
directly related to the local moment and is determined
without applying an external magnetic field, inde-
pendently of the orientation of the local spin moment.
In [2, 3], Mössbauer spectroscopy was used for measur-
ing the effective magnetic field as a function of the
layer depth. The measurements were made for the films
consisting of a certain number of layers of Fe56 atoms
and a layer of Fe57 deposited at a distance of d from the
surface. It was found for a series of films with 0 < d <
dn, where n is the number of layers in the sample [3, 4],
that the effective magnetic field increased as the surface
0021-3640/00/7104- $20.00 © 20134
was approached at T = 0 K and decreased at room tem-
perature. The depth-selective conversion electron
Mössbauer spectroscopy (DSCEMS) studies of a thin
film of α-Fe2O3 also suggested that at room tempera-
ture the Heff value in a thin surface layer is 2% smaller
than in the bulk of the sample [3]. It was experimentally
found in [4] that the surface effective field at T = 4.2 K
is weaker than in the bulk. On the assumption that
Heff(T) and Ms(T) are proportional to each other both in
the bulk and at the sample surface, the results [4] are
similar to the conclusions of the theory presented in [5].
However, the experimental data for other materials
show much worse agreement with the theory.

Measurements of the spin dependence for the polar-
ized electrons scattered from the Fe (110) surface have
shown that the magnetic moment at the sample surface
is 30% larger than in its bulk [6]. This is a somewhat
unexpected result, because the measurements in [4]
were carried out at room temperature, when the surface
magnetization is expected to be reduced owing to the
surface spin waves.

Thus, the influence of a surface on the magnetic
properties of a surface layer calls for further investiga-
tion. This should be done with the use of experimental
methods that allow the surface data to be directly com-
pared with the bulk data. In addition, almost all studies
of the surface properties were carried out for metallic
000 MAIK “Nauka/Interperiodica”
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Fig. 1. Mössbauer spectra recorded for the (a) FeBO3 and (b) α-Fe2O3 single crystals at temperature 291 K by detecting electrons
at energies 6.71 and 6.82 keV, respectively. The wave vector of gamma quanta is parallel to the crystallographic C-axis. The exper-
imental and theoretical spectra are shown by dots and lines, respectively. Above the spectra are shown the curves corresponding to
the difference between the spectra recorded for the crystal bulk and by detecting electrons with energies of 7.29 and 6.71 keV for
α-Fe2O3 and 7.29 and 6.82 keV for FeBO3.
films whose surfaces may be easily oxidized, thereby
introducing errors in the experimental results.

This work presents the results of experimental
investigations of the effective magnetic field as a func-
tion of the layer depth from the surfaces of the α-Fe2O3
and FeBO3 crystals. Below the Neél temperature
(~961 K for α-Fe2O3 and ~348 K for FeBO3), these
compounds are antiferromagnets with weak ferromag-
netic moments. The layer-by-layer studies of the sur-
face layers were carried out by the DSCEMS method
first suggested and developed in [7]. This method is
based on the recording of Mössbauer spectra by detect-
ing electrons ejected from the crystal in a narrow
energy interval. To accomplish energy selection for
electrons, a high-resolution magnetostatic electron
analyzer was designed and constructed with a transmis-
sion capacity of 21% of 4π and energy resolution of
0.2−2%, depending on the sample size [8, 9]. The use
of calibration samples in the form of films composed of
the deposited Fe56–Fe57–Fe56 layers has shown that the
resolution of such spectrometers is equal to 5–10 Å
from the sample surface [3]. The thickness of a layer
under study and its depth were calculated by the Monte
Carlo method [9, 10].

The α-Fe2O3 and FeBO3 antiferromagnets with
weak ferromagnetic moments were chosen for the stud-
ies, because the iron ions occupy a single crystallo-
graphic position in these crystals, so that their room-
temperature Mössbauer spectra consist of a single well-
resolved Zeeman sextet. In addition, the bulk properties
of these crystals are well known [11], allowing the
results of our bulk experiments to be compared with the
published data.

The α-Fe2O3 and FeBO3 single crystals were syn-
thesized from solutions in melts. The Fe57 isotope con-
tent in the compounds was 100%. Slabs ~5 mm in
JETP LETTERS      Vol. 71      No. 4      2000
diameter were selected from single crystals. X-ray
measurements suggested that the crystallographic
C-axis was perpendicular to the slab planes. When pre-
paring the crystals, particular attention was given to the
quality of the surfaces under study. Preliminary experi-
ments have shown [12] that high-quality surface can be
obtained by chemical polishing in orthophosphoric
acid at a temperature of 90°C for 1 min.

The DSCEMS method was used to obtain experi-
mental spectra of α-Fe2O3 and FeBO3 in the energy
range from 6.6 to 7.8 keV at room temperature. The
gamma-ray beam was parallel to the crystallographic
C-axis. Figure 1 shows the experimental spectra (dots)
of FeBO3 and α-Fe2O3 recorded for electrons with
energies 6.71 and 6.82 keV. The results of mathemati-
cal processing of these spectra in the form of theoretical
spectra and as difference curves are also shown in
Fig. 1. One can see from the difference curve marked
6.71 keV in Fig. 1a that the FeBO3 spectrum recorded
for electrons with energy 6.71 keV is nicely described
by the bulk parameters of the sample. The use of the
same parameters for the mathematical description of
the spectrum obtained for the electron energy of
7.29 keV brings about a sizable divergence between the
theoretical and experimental spectra. This is clearly
seen from the 7.29-keV difference curve obtained for
FeBO3 (Fig. 1a). A similar situation occurs for α-
Fe2O3, as is seen from the difference curves in Fig. 1b.

The following new experimental fact is noteworthy.
The spectra in Fig. 1 show noticeable asymmetry in the
intensities of the outer and inner line pairs correspond-
ing to the ∆m = 1 transitions. An analysis of the causes
for this effect has led to the following conclusion. The
electric field gradient in the crystals of interest is
aligned with the crystallographic C-axis, whereas the
effective magnetic field is perpendicular to the C-axis.
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Fig. 2. Effective magnetic fields in (a) α-Fe2O3 and (b) FeBO3 as functions of electron energy. The energy change from 6.71 to
7.29 keV corresponds to the change in the layer depth from 100 to 2.4(9) nm in α-Fe2O3 and from 100 to 4.9(9) nm in FeBO3.
We assume [13] that, because of the interaction
between these hyperfine fields, the absorption line
intensities depend on the angle between them. The
orthogonal orientation results in the asymmetry of the
resonance lines, although the total intensity is retained.

The intensity ratio calculated from the experimental
spectra for the lines of the Zeeman sextet was found to
be 3 : 4 : 1. This provides additional support for the
X-ray structural data indicating that the magnetic
moments of the Fe atoms are oriented parallel to the
crystal surface and perpendicular to the crystallo-
graphic C-axis. The effective magnetic fields calculated
from the experimental spectra of electrons with ener-
gies ranging from 6.6 to 7.8 keV are presented in Fig. 2
as functions of the electron energy.

To explain the dependences obtained for the effec-
tive fields (Fig. 2), the electron yields were analyzed. It
was found that the electrons with energies lower than
6.9 keV were ejected from a depth of more than 100 nm
from the surface, whereas electrons with energy of
7.25 keV carry information from a 2- to 4-nm-thick
surface layer. The Mössbauer spectra in the energy
range from 6.9 to 7.25 keV carry information from the
near-surface layers lying at a depth from 100 to ~2 nm.
An analysis also showed that the electrons with ener-
gies ranging from 7.3 keV and higher relate to the L
electrons that lose most of their energy because they are
ejected from the surface layers lying at a depth deeper
than 100 nm. This explains the shape of Mössbauer
spectra recorded in this range, namely, the fact that the
line widths are considerably larger than in the spectra
obtained for the electrons with energies from 6.9 to
7.21 keV. Because of this, the accuracy of determining
the effective magnetic fields from the data for electrons
with energies higher than 7.3 keV also decreases
(Fig. 2).

One can see from Fig. 2 that the effective magnetic
fields at the nuclei of iron ions situated at a depth of
more than 100 nm from the crystal surface (in Fig. 2,
this corresponds to the electron energies of 6.9 keV and
lower) are equal to 51.83 T for α-Fe2O3 and 34.72 T for
FeBO3. These values coincide with the ones obtained in
studying the bulk properties of the crystals [11, 12]. As
is seen from Fig. 2, the effective magnetic fields
decrease with increasing electron energy (i.e., on
approaching the crystal surface). For the electron
energy of 7.21 keV, the effective fields are equal to
51.69 T for α-Fe2O3 and 34.42 T for FeBO3. Thus, the
effective fields in the α-Fe2O3 crystal at the ion nuclei
located in a surface layer of thickness 2.4(9) nm are
0.14 T lower than their bulk values. With FeBO3, the
effective fields decrease by 0.3 T upon approaching a
surface layer of thickness 4.9 nm. In percentage terms,
the effective fields in the surface layers decrease by
0.7(2)% for α-Fe2O3 and 1.2(3)% for FeBO3. The dif-
ference in the extents of decrease of the effective fields
in these crystals can be explained by the fact that the
measurements were carried out at T = 291 K. This cor-
responds to the reduced temperatures ((T/TN) of 0.30
for α-Fe2O3 and 0.84 for FeBO3. It is conceivable that
the effective magnetic fields at the surface of the
α-Fe2O3 crystals are less subject to thermal perturba-
tions because the experiments for α-Fe2O3 were carried
out at temperatures well below its Neél point.

The Mössbauer spectra recorded for the crystals of
interest using conversion electron Mössbauer spectros-
copy (CEMS) provide further support for the above-
mentioned finding. In this case, both the conversion and
the Auger electrons ejected from the sample are
detected, thus providing information on the state of a
surface layer of thickness ca. 300 nm. The experimental
spectra recorded using the CEMS method for the sur-
faces of the α-Fe2O3 and FeBO3 crystals can be most
satisfactorily described mathematically with the use of
a set of spectra corresponding to the effective fields
graphically presented in Fig. 2.

Thus, it is experimentally demonstrated in this work
that the effective magnetic field (or magnetization)
gradually decreases within a surface layer of thickness
~100 nm as the crystal surface is approached.
JETP LETTERS      Vol. 71      No. 4      2000
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Abstract—For ferromagnet/superconductor (F/S) layered structures, new 3D Larkin–Ovchinnikov–Fulde–
Ferrell (LOFF) states are predicted. In most cases, these states are characterized by a higher critical temperature
Tc than the known 1D LOFF states. It is shown that the nonmonotonic behavior of Tc is determined by the oscil-
lations of the Cooper pair flux through the F/S boundary, which occur as a result of the 3D–1D–3D phase tran-
sitions at the Lifshits triple points. The appearance of the new 3D LOFF states and the presence of nonmagnetic
impurities leads to a strong damping of the 1D oscillations of the LOFF pair amplitude and to a considerable
smoothing of the dependence of Tc on the F layer thickness df. An interpretation of the behavior of the experi-
mental dependences Tc(df) obtained for F/S structures is proposed. © 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 74.80.Dm; 75.30.Kz; 74.62.-c
The competition between the superconducting and
magnetic states in ferromagnetic metal/superconductor
(F/S) layered structures gives rise to a number of non-
trivial phenomena, which in many cases cannot be
simultaneously observed in homogeneous materials.
Specifically, in some experiments on Fe/V [1] and
Gd/Nb [2] systems, the dependence of Tc on the ferro-
magnetic layer thickness df exhibited a rapid initial
decrease followed by a plateau, while in other experi-
ments on these systems ([3] and [4, 5], respectively),
the plateau was preceded by an oscillatory behavior of
the dependence Tc(df). The first theoretical interpreta-
tions of the nonmonotonic behavior of Tc(df) were
based on the change of type of superconductivity from
the conventional 0-phase to the π-phase, with the order
parameter ∆ changing sign in passing through the F lay-
ers [6, 7]. However, these theories are restricted to the
case of a highly transparent F/S boundary and an
extremely dirty ferromagnetic metal, and they cannot
provide a generalized description of the two different
types of behavior observed for the dependence Tc(df).
Moreover, it was found that oscillations of Tc(df) also
occur in Fe/Nb/Fe trilayer structures [8] in which the
π-phase superconductivity is impossible. Therefore, we
(Proshin and Khusainov) [9–11] developed a theory for
describing the proximity effect without the aforemen-
tioned limitations. We attributed the oscillations of
Tc(df) to the oscillations of the Cooper pair flux, which
occur at the F/S boundary because of the one-dimen-
sional (1D) oscillations of the pair amplitude across the
0021-3640/00/7104- $20.00 © 20138
F layer; the latter oscillations, in their turn, lead to a
quantum coupling between the F layer boundaries. This
theory allowed us not only to find an explanation for the
qualitative difference in the behavior of Tc observed in
different experiments [1–5, 8], but also to predict some
new effects, such as pronounced oscillations of Tc(df)
and periodically recurrent superconductivity. However,
these effects have not yet been confirmed by experi-
ments [12–15], except for the single publication [16]
reporting on damped oscillations of Tc(df) in Co/Nb and
Co/V systems.

In reality, for both bilayers and multilayers of the
F/S type, only one local maximum can be observed in
the dependence Tc(df). In our opinion, the reason is that
the previous theories [6, 7, 9–11] are valid only for F/S
structures with F layers that are quasi-one-dimensional
ferromagnets in which the spatial variations of the pair
amplitude along the F/S boundaries can be neglected.
In real three-dimensional (3D) F/S systems, the pair
correlations induced by the S layers in the F layers (to
the extent allowed by the transparency of the bound-
aries) should be three-dimensional and be described by
a 3D pair wave vector k, according to the Larkin–
Ovchinnikov–Fulde–Ferrell (LOFF) theory [17, 18] for
isotropic ferromagnetic superconductors. In fact, the
large exchange splitting 2I @ πTc of the conduction
zone changes the pairing conditions and, in the ferro-
magnet, pairing will occur between the quasi-particles
from the isoenergetic states p, ↑  and –p + k, ↓  with
momenta that differ in magnitude, where k ~ 2I/vf for
000 MAIK “Nauka/Interperiodica”
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2I ! Ef, and Ef and vf are the Fermi velocity and energy,
respectively. The scattering by nonmagnetic impurities
at a rate  does not affect the BCS pairing with the
zero pair momentum, and this scattering will impede
the formation of the LOFF phase in the F layers. There-
fore, in relatively pure ferromagnetic layers with 2Iτf > 1,
the pair amplitude should exhibit oscillations which
have the period af = vf /2I ~ k–1 and decay within the
mean free path lf = vfτ f from the F/S boundary. At the
same time, the wave function of Cooper pairs in the S
layers has a constant sign but an arbitrary phase. Thus,
in F/S systems, the superconductivity is a combination
of the BKS pairing in the S layers and LOFF pairing in
the F layers. The study of the mutual adjustment of
these two competing types of pairings is the subject of
this paper.

An adequate theoretical description of the proximity
effect in F/S structures should allow for the spatial vari-
ations of the pair amplitude not only across the F and S
layers, but also in the F/S boundary plane. For this pur-
pose, it is necessary to solve a 3D boundary-value prob-
lem for the Usadel function F(r, ω), rather than the 1D
problem considered in the cited publications [6, 7,
9−11]. The microscopic derivation of this boundary-
value problem for a planar contact between an F layer
occupying the region –df < z < 0 and an S layer occupy-
ing the region 0 < z < ds is similar to the corresponding
derivation for the 1D function F(z, ω) (see [11]). For
brevity, we omit this derivation. However, unlike the
aforementioned case [11], we use the translational
invariance of the system in the x – y plane and formu-
late the boundary-value problem for a contact between
dirty metals F and S in terms of a two-dimensional Fou-
rier transform of the Usadel function F(q, z, ω), where
q is a 2D wave vector. The diffusion-type differential
equations for the S and F layers have the form

(1)

Here, ω = πT(2n + 1) is the Matsubara frequency
(ω > 0) and Ds(f) = vs(f)ls(f) /3 and ∆s(f) are the electron
diffusion coefficients and the superconducting order
parameters, respectively, in S and F layers. The com-
plex diffusion coefficient Df (I) allows for the competi-
tion between different types of the quasi-particle
motion in the F layer [9–11]: the diffusion-type motion
(2Iτf < 1), where Df (I) = Df/(1 + i2Iτf), and the spin-
wave-type one (2Iτf > 1), where Df (I) ≈ 3Df/(1 + i2Iτf).
The two-dimensional wave vectors qs(f) are responsible
for the spatial variations of F(r, ω) in the plane of con-

τ f
1–

ω
Ds

2
------ qs

2 ∂2

∂z2
-------– 

 + Fs qs z ω, ,( ) ∆s qs z,( ),=

ω iI
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2
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2 ∂2

∂z2
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 + + F f qf z ω, ,( ) ∆ f q f z,( ).=
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tact. The boundary conditions corresponding to equa-
tions (1) at the boundary z = 0 have the form

(2)

These conditions relate the pair amplitude flux to the pair
amplitude drop at the F/S boundary. In expression (2),
σs(f) are the boundary transmissivities from the side of
the S and F metals; these quantities satisfy the detailed
balance relation σsvsNs = σfvf Nf [9–11], where Ns and
Nf are the densities of states. The boundary-value prob-
lem (1), (2) obtained for the proximity effect in the F/S
contact differs from the previously considered prob-
lems [6, 7] in three aspects. First, the boundary condi-
tions used in [6, 7], Fs(+0, ω) = Ff (–0, ω), are a partic-
ular case of equations (2) and correspond to the high
transmissivity limit σs(f)  ∞, i.e., to the neglect of the
F(r, ω) flux through the F/S boundary. Second, in the
ferromagnet, the quasi-particle motion is of a mixed
diffusion-wave nature and is described by an effective
complex diffusion coefficient Df (I) instead of the real
one Df used in [6, 7]. Third, the system of equations (1),
(2) allows not only 1D solutions for the pair amplitude
F(r, ω), but also 3D ones, unlike all other problems
considered earlier [6, 7, 9–11]. Below, we will show
that it is precisely the competition between the previ-
ously known 1D and new 3D LOFF states that radically
changes the dependence Tc(df) from that obtained in the
previous theories [6, 7, 9–11].

To calculate the dependences of the critical temper-
ature Tc of an F/S contact on the transmissivity of the
F/S boundary, the layer thickness, the parameter 2Iτf,
etc, we solve the system of equations (1), (2) in combi-
nation with the Gor’kov self-consistent equations (see
[9–11])

(3)

where λs(f) are the electron–electron interaction con-
stants in the S and F layers.

We seek the solutions to equations (1)–(3) in the
form that excludes the electron flux through the outer
boundaries of the F/S contact: Fs(qs, z, ω) ∝  cosks(z – ds),
Ff (qf , z, ω) ∝  coskf (z + df). Here, ks(f) are the wave vec-
tor components that are independent of frequency ω
(ω ! I) and describe the spatial variations of the pair
amplitude F(r, ω) across the layers (along the z-axis).
As a result, for the reduced superconducting transition
temperature of the F/S contact t = Tc/Tcs, we obtain an

4Ds

σsv s

-----------∂Fs qs z ω, ,( )
∂z

------------------------------
z +0=

4D f I( )
σ fv f
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∆s qs z,( ) 2λ sπTRe Fs qs z ω, ,( ),
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equation similar to that obtained by Abrikosov and
Gor’kov:

(4)

where Tcs is the critical temperature of an isolated S
layer, Ψ(x) is the digamma function, and the pair-

breaking parameter Ds  is a solution to another tran-
scendental equation

(5)

For 2Iτf < 1 and I @ πTcs, the wave number kf involved
in equation (5) is determined by the expression

(6)

From the condition of minimum free energy (maxi-
mum Tc), it follows that qs is exactly equal to zero. This
is no surprise, since in the case of the BCS pairing with
the zero pair momentum, the pair amplitude Fs(r, ω)
should have a constant sign in the S layer. In the F
layer, the LOFF pairing takes place with a nonzero
three-dimensional coherent pair momentum k = (qf , kf)
and an oscillating pair amplitude Ff (r, ω). From equa-
tions (4)–(6), it follows that the value of the 2D wave
vector qf remains arbitrary and should be determined
by way of optimization, i.e., from the condition of
maximum Tc.

From boundary conditions (2), it follows that the
left-hand member of equality (5), which determines the

pair-breaking parameter Ds  in equation (4) for Tc, is
proportional to the Cooper pair flux from the S layer to
the F layer. The resonance denominator of the right-
hand member of equality (5) is inversely proportional
to the pair amplitude drop at the F/S boundary and
determines the periodic variations of the aforemen-
tioned pair flux with increasing F layer thickness owing
to the function . However, in contrast to the
previously obtained 1D solutions with qf = 0 [9–11], the
presence of new 3D solutions with real qf ≠ 0 consider-
ably reduces Rekf according to equation (6). This leads
to an increase in the period of the pair amplitude
Ff (r, ω) oscillations along the z-axis. As this period
becomes greater than the depth of pair penetration in
the F layer (Imkf > Rekf), the coherent coupling of the
two boundaries of the F layer is disrupted. As a result,
the observation of the oscillations of Tc(df) becomes
difficult (except perhaps for the first peak).

The other mechanism that works in parallel with the
mechanism described above and produces a similar
effect, i.e., the disruption of the quantum coupling
between the two boundaries of the F layer and a notice-
able suppression of the oscillations of Tc(df), is related
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to the presence of nonmagnetic impurities [9–11]. As
the concentration of the latter increases, the quasi-par-
ticle motion in the F layer will change from the wave-
type motion characteristic of pure ferromagnets with
2Iτf > 1 to a diffusion-type motion corresponding to
2Iτf < 1. The transverse pair momentum kf will become
a poor quantum number, and the oscillations of the
LOFF pair amplitude will be strongly damped (Imkf >
Rekf). As a result, they will no longer provide coherent
coupling between the boundaries of the F layer. Recall
that, in the case of a pure F layer with 2Iτf > 1, the sub-
stitution Df  3Df should be performed in formulas
(5) and (6) (see [11]).

The results of the numerical analysis of the depen-
dences Tc(df) are shown in Figs. 1a–1f for different val-
ues of the parameters σs, 2Iτf , nsf = Nsvs/Nfvf, ls, and ds.
In Fig. 1a, the thick solid line shows the behavior of
Tc(df) optimized with allowance for the competition
between the 1D and 3D LOFF states. The periodically
recurrent superconductivity, which was predicted ear-
lier in the framework of the 1D theory [9–11], is shown
by thin dashed lines and is completely spanned by the
almost monotonically decreasing dependence Tc(df).
The only small rise in Tc(df), as in the experiment [8] on
Fe/Nb/Fe trilayers, is caused by a series of 3D–1D–3D
alternating phase transitions. At the top of Fig. 1a, we
present the magnitude of the two-dimensional wave
vector qf versus df. The region corresponding to the 1D
LOFF phase (qf = 0) is marked by shading, and the
remaining part of the plot corresponds to the 3D LOFF
phase (qf > 0). The specific feature of the presented
phase diagram Tc(df) is that it contains Lifshits triple
points (the intersections of the solid and dashed lines)
at which three phases come together: two supercon-
ducting phases (the 1D commensurate phase with qf = 0
and the 3D incommensurate one with qf ≠ 0) and one
normal phase.

Figures 1b–1f present the dependences Tc(df) opti-
mized with respect to the quantity qf with allowance for
the competition between the 1D and 3D LOFF states.
The dependences were obtained for different values of
all main parameters of the theory. In each of the five fig-
ures, one can see all qualitatively different versions of
the behavior of Tc(df): from the monotonic decrease
down to zero, which was taken as the initial version and
was observed in many experiments [3, 13], to the recur-
rent superconductivity and a subsequent flattening,
both through a single small rise [8] and without any
nonmonotonic features [2]. We note that the regions
corresponding to the recurrent superconductivity,
which was predicted earlier [9–11] for the 1D case, are
bounded in the 3D case by quite a narrow range of
parameter values. This explains why the aforemen-
tioned phenomenon has not yet been observed experi-
mentally in real F/S systems.

The derivation of the equations for Tc of an F/S
superlattice formed by alternating F and S layers with
JETP LETTERS      Vol. 71      No. 4      2000
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Fig. 1. Dependence of the reduced critical temperature of an F/S contact on the reduced F layer thickness for different values of five
main parameters of the theory. (a) Optimized solutions t(df/af) and qf af(df /af) are represented by thick solid lines; thin dashed lines
correspond to proper 1D solutions; full circles show the Lifshits triple points; ξs0 is the BCS coherence length. (b)–(f) Only one
parameter indicated at the top is varied, while other parameters remain fixed; the main curve is the dependence corresponding to
2Iτf = 3, σs = 3, ls/ξs0 = 0.25, ds/ξs0 = 0.625, and nsf = 0.25. The optimized curve in Fig. 1a corresponds to curve 4 in Fig. 1b.
the thicknesses df and ds, respectively, is similar to the
corresponding derivation described in our previous
paper (see [11]). However, we note that, in contrast to
the F/S contacts, two stable LOFF states are possible
JETP LETTERS      Vol. 71      No. 4      2000
for a unit cell of an F/S superlattice. The difference
between these states lies in the type of symmetry of the
pair amplitude with respect to the center of the F layer: for
the 0-phase state, we have Ff (qf, z, ω) ∝  coskf(z + df /2);
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are the same as in Fig. 1a. Thin dashed lines represent the proper 1D 0-phase solutions, and the dotted lines correspond to the 1D
π-phase ones. The regions of the realization of optimized 0- and π-phase states are separated by vertical dash-and-dot lines.
and for the π-phase state, we have Ff (qf , z, ω) ∝
sinkf (z + df/2). For the 0-phase case, the equations for
Tc are obtained from formulas (4)–(6), with di being
replaced by di/2. To determine Tc in the π-phase case,
the same procedure should be used with the additional
substitution of the function –tanx for cotx in the right-
hand member of equality (5).

The phase diagrams Tc(df) obtained for F/S superlat-
tices are shown in Figs. 2a–2d. The 0-phase and
π-phase 1D solutions obtained earlier [9–11] are repre-
sented by thin dashed and dotted lines, respectively.
The thick solid lines show the results of the optimiza-
tion of the dependence Tc(df) determined by the compe-
tition between the 1D and 3D solutions for both
0-phase and π-phase LOFF states. According to Fig. 2c,
at some values of the superlattice parameters, the func-
tion Tc(df) exhibits a single small rise caused by the
3D(0)–1D(π)–3D(π) transition. Such behavior of the
critical temperature was observed experimentally for
Gd/Nb multilayers [4, 5] and for Co/Nb and Co/V
superlattices [16]. At lower values of σs and 2Iτf, the
rise feature is suppressed and the monotonic decrease
in Tc(df) is immediately followed by a plateau (Fig. 2a).
Such behavior of Tc(df)) was observed for Fe/V [1],
Gd/Nb [2], and V1 – xFex/V [13] superlattices. In addi-
tion, we predict new versions of the nonmonotonic
behavior of Tc(df) that are characteristic only of F/S
superlattices: the recurrent superconductivity in the
form of a single 1D–3D(π) peak (Fig. 2b) and an oscil-
latory decrease in Tc down to zero as a result of the
3D(0)–1D(π)–3D(π) transitions (Fig. 2d). The points of
the phase transitions at which the period of the 2D mod-
ulation of the pair amplitude along the F/S boundaries
becomes infinite (qf = 0) correspond to the Lifshits tri-
ple points. Thus, the seemingly simple (as in Fig. 2a)
behavior of Tc(df), which was observed in many exper-
JETP LETTERS      Vol. 71      No. 4      2000
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iments, may be determined by the nontrivial physics of
F/S systems, namely, by the combined (BCS + LOFF)
mechanism of superconductivity and by the competi-
tion between the 1D and 3D LOFF states in the F
layers.

The 1D LOFF states with pronounced oscillations
of Tc(df), which are shown in Figs. 1a and 2a–2d by thin
dashed lines, presumably could be realized in pure state
in F/S structures, in which the F layers are quasi-one-
dimensional ferromagnets with conducting filaments
oriented normally to the F/S boundary. Another possi-
bility for the realization of only 1D LOFF states con-
sists in the replacement of the F layers by quasi-one-
dimensional ferromagnetic bridges (whiskers). In these
cases, the appearance of 3D states with spatial varia-
tions of the pair amplitude along the F/S boundaries can
be neglected.

It is significant that, for both F/S bilayers and F/S
superlattices, the appearance of new 3D LOFF states in
addition to the 1D states prevents Tc from rapidly
becoming zero with increasing df and leads to an
increase in the area of the superconducting regions in
the phase diagrams in Figs. 1 and 2. Moreover, the
competition between the 1D and 3D states, which leads
to the multicritical behavior of the phase diagrams, is
the factor that is responsible for the nonmonotonic
behavior of Tc(df) at some thicknesses of the F layer and
for the absence of oscillations in the case of large df.
Our analysis shows that the difference in the depen-
dences Tc(df) obtained from different experiments for
F/S multilayers of identical composition is presumably
explained by the differences in the values of the param-
eters σs, 2Iτf , ls, and ds, i.e., in the transparency of the
F/S boundaries and the purity of the F and S layers. In
their turn, these differences may be caused the varia-
tions in the methods and conditions of the sample prep-
aration.
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ć



  

JETP Letters, Vol. 71, No. 4, 2000, pp. 144–147. Translated from Pis’ma v Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 71, No. 4, 2000, pp. 210–214.
Original Russian Text Copyright © 2000 by Petrakovski

 

œ

 

, Volkov, Vasil’ev, Sablina.

                                                                       

CONDENSED 
MATTER
Magnetic Resonance Spectrum of a Two-Phase State in Single 
Crystals of La0.7Pb0.3MnO3 Lanthanum Manganite

G. A. Petrakovskiœ*, N. V. Volkov, V. N. Vasil’ev, and K. A. Sablina
Kirenskiœ Institute of Physics, Siberian Division, Russian Academy of Sciences, Akademgorodok, 

Krasnoyarsk, 660036 Russia
*e-mail: gap@cc.krascience.rssi.ru

Received January 10, 2000

Abstract—Two absorption lines are observed over a wide temperature range below Tc in the magnetic reso-
nance spectrum of an La0.7Pb0.3MnO3 single crystal. These lines correspond to two magnetic phases in the sam-
ple. The frequency–field dependence of spectra obtained in the range of microwave radiation frequencies
10−77 GHz allows these phases to be interpreted as ferromagnetic and paramagnetic phases. The phase vol-
ume ratio depends on the temperature and the magnitude of the external magnetic field. Features in the tem-
perature behavior of parameters of the magnetic absorption line are observed in the region of the highest mag-
netic resistance of the sample. The results are interpreted within the mechanism of electronic phase separation.
© 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 76.50.+g; 72.20.My
At present, the mechanism of electronic phase sep-
aration is one of the most widely discussed mecha-
nisms of colossal magnetic resistance in ferromagnetic
manganites with the perovskite structure [1]. Direct
evidence for the coexistence in the material bulk of a
ferromagnetic metallic phase and a phase with local-
ized charge carriers was obtained in experiments on
studying NMR [2], optical properties [3], electron dif-
fraction [4], and neutron scattering [5]. It is evident that
such a mixed two-phase state must be manifested in an
investigation by the magnetic resonance method, which
is rather sensitive to the magnetic inhomogeneity of
materials. Moreover, because the two-phase state in
electronic separation is controlled by the external mag-
netic field, magnetic resonance spectra recorded at dif-
ferent frequencies of microwave radiation can differ
significantly. The few previous investigations of mag-
netic resonance in lanthanum manganite materials were
ambiguous, and the problem was stated differently in
these works. At the same time, the results of almost all
works gave evidence of the magnetic inhomogeneity of
the materials under study, although these materials were
homogeneous in the crystallographic respect [6, 7].

In this work, we report the results of investigating
the magnetic resonance spectra of La0.7Pb0.3MnO3 sin-
gle crystals, which exhibit the effect of colossal mag-
netic resistance. Measurements were carried out on spec-
trometers with (1) the working frequency ν = 10 GHz
and a constant magnetic field and (2) a tunable fre-
quency in the range ν = 37–77 GHz and a pulsed mag-
netic field. Single crystals of La0.7Pb0.3MnO3 were
grown by spontaneous crystallization from a molten
mixture [8]. The samples under study were shaped like
0021-3640/00/7104- $20.00 © 20144
thin plates (4 × 2 × 0.1 mm) whose plane coincided
with one of the main crystal planes. The magnetic field
was applied along the plane of the sample.

The main feature of the magnetic resonance spectra
in the crystals under study is the occurrence of two
well-resolved lines of magnetic absorption in a wide
temperature range. The temperature behavior of the
parameters of absorption lines for the frequency ν =
10 GHz is shown in Fig. 1. We believe that the line des-
ignated in Fig. 1 as F corresponds to a resonance from
the crystal domains that occur in the ferromagnetic
state. Line F appears only below the Curie point Tc ≈
360 K; and its intensity increases with decreasing tem-
perature, which may be associated with an increase in
crystal magnetization M0 and also with an increase in
the volume of the ferromagnetic phase in the sample. A

decrease in the resonance field  with decreasing
temperature is associated with anisotropic interactions,
that is, with a rise in magnetic crystallographic anisot-
ropy and with sample shape anisotropy. Additional ori-
entational investigations of the magnetic resonance in
samples of spherical shape showed that the effective
field of magnetic crystallographic anisotropy HA does

not exceed 100 Oe. Variations of  are mainly asso-
ciated with a rise in degaussing fields, which are pro-
portional to the magnetic moment. The following equa-
tion may be written for the geometry in which our
experiment was carried out (H0|| is parallel to the sam-
ple plane):

(1)

Hr
F

Hr
F

ω/γ H0 4πMeff+( )1/2,=
000 MAIK “Nauka/Interperiodica”
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Fig. 1. Temperature dependence of the parameters of lines F and P in the magnetic resonance spectrum of an La0.7Pb0.3MnO3 single
crystal (ν = 10 GHz): (a) resonance field, (b) line width, and (c) line intensity; (d) temperature dependence of the resistivity ρ0 and
the magnetic resistance ∆ρ/ρ0 in the field H = 7 kOe.
where ω = 2πν is the angular frequency, γ = (gµB/") is
the gyromagnetic ratio, H0 is the resonance field, and
Meff is the effective magnetization. In the general case,
Meff will differ from M0 because of the effect of crystal-
lographic anisotropy, which is neglected in (1), and also
because of possible magnetic inhomogeneity of the
crystal (which, as will be shown below, does occur). At
the same time, the temperature behavior of the quantity
4πMeff(T) determined from (1) qualitatively repeats the
behavior of the quantity 4πM0(T) obtained from static
measurements.

Line P, which is observed in the paramagnetic state
of the sample (T > Tc), virtually retains its position as
the temperature decreases below Tc, and its resonance

field  does not depend on the sample shape and the
orientation of H0 in the crystal. The insignificant

increase in  in the temperature range 340–350 K
may be associated with the change in the g-factor due
to local distortions of the crystal lattice. Such distor-
tions arising from strong electron–phonon coupling
were revealed for a number of compositions of impu-
rity manganese perovskites in the temperature range
corresponding to the transition to the ferromagnetic
state [9]. The decrease in the intensity of line P with
decreasing temperature indicates that the fraction of the
paramagnetic phase in the sample decreases.

A significant broadening of the ferromagnetic reso-

nance line d  with decreasing temperature has also
been observed previously by various authors in study-
ing crystalline and film manganite samples. However, a
thorough analysis of the mechanisms leading to an

Hr
P

Hr
P

Hr
F
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increase in d  has not been presented yet. From our
point of view, the electrical conductivity of the samples

is the main factor that affects d . Actually, the resis-
tivity ρ of the crystals rapidly drops below Tc (Fig. 1).
This means an increase in either the mobility or the
concentration of charge carriers, which, in its turn,
exerts a significant effect on dynamic magnetic phe-
nomena. The contribution of charge carriers to dissipa-
tion processes can have several mechanisms as its basis
[10]. An inhomogeneous two-phase magnetic state

must also exert a significant effect on d . This state
will lead to nonuniform magnetization of ferromag-
netic domains and, consequently, to a broadening of the
ferromagnetic resonance line.

The features in the behavior of magnetic absorption
line intensities and widths at a temperature T ~ 325 K
engage the attention. It is interesting that the maximum
in the temperature dependence of ∆ρ/ρ corresponds to
just the same temperature (Fig. 1).

Undoubtedly, the behavior of the frequency–field
dependence for the absorption lines (Fig. 2) is an
important argument in favor of the statement that the
observed lines P and F correspond to resonance absorp-
tion from paramagnetic and ferromagnetic domains,
respectively. An extrapolation of the experimental
points in the frequency–field dependence for line P
indicates that the dependence is linear and passes
through the origin of the coordinates. This pattern is
observed for any orientation of the external magnetic
field H0. This fact confirms that line P is associated with
the domains in the crystal that occur in the paramag-
netic state even below Tc. The behavior of the fre-

Hr
F

Hr
F

Hr
F
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quency–field dependence for line F is characteristic of
uniform magnetic oscillations in a ferromagnetic mate-
rial. The shift of the dependence with respect to the ori-
gin is determined in our case mainly by the anisotropy
of the sample shape (see (1)). 

3020100
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20

30

ω/γ, kOe

H0, kOe

T = 320 K

Fig. 2. Frequency–field dependence of lines F and P in the
magnetic resonance spectrum of an La0.7Pb0.3MnO3 crys-
tal, T = 320 K. Solid line represents dependence (1) (see
text), and dashed lines are linear extrapolations of experi-
mental points.
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Fig. 3. Magnetic resonance absorption spectra of an
La0.7Pb0.3MnO3 crystal recorded at various microwave
radiation frequencies ν (42, 60, and 77 GHz); T = 320 K.
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The dependence of the intensities of lines P and F
on the microwave radiation frequency at which the
magnetic resonance spectrum has been recorded is
another important experimental result in addition to the
demonstration of the two-phase paramagnetic–ferro-
magnetic state (Fig. 3). If the frequency ν and, hence,
the magnitude of the external magnetic field H0 were
increased at a fixed temperature, the intensity of line F
increased and that of line P decreased. This fact can be
interpreted as control of the ratio between the phase
volumes by the external magnetic field. An increase in
H0 gives rise to an increase in the volume of the ferro-
magnetic phase and to a decrease in the volume of the
paramagnetic phase in the sample. It should be noted
that some other factors, for example, a change in the
value of magnetization M0, can also contribute to the
intensity of the ferromagnetic resonance absorption
line. However, the frequency–field dependence for line
F is described well by equation (1) with a constant
value 4πMeff ≈ 2 kOe (see Fig. 2). Hence, the ferromag-
netic domains in the crystal in magnetic fields used for
measurements were magnetized to saturation.

As noted above, the mechanism of electronic phase
separation is considered one of the possible mecha-
nisms responsible for colossal magnetic resistance in
lanthanum manganites. In this case, domains with var-
ious concentrations of carriers form in a crystal homo-
geneous in the crystallographic (chemical) sense.
These domains differ in their conductivity and mag-
netic state. This heterophase state of the crystal corre-
sponds to the state with minimal energy, that is, to the
ground state. The inhomogeneous two-phase state must
be very sensitive to the action of external parameters,
for example, temperature, and the external magnetic
field, which provides an explanation for the high value
of magnetic resistance.

The occurrence of features in the width and inten-
sity of magnetic resonance lines in the region of the
highest magnetic resistance confirms that the two-
phase magnetic state observed in this work is connected
with anomalous magnetoresistive properties in
La0.7Pb0.3MnO3 single crystals (Fig. 1).

The situation when magnetic impurity phase separa-
tion is accomplished because the impurity is nonuni-
formly distributed in the process of synthesis of the
crystals cannot be excluded. However, strong effects of
the external magnetic field can hardly be expected in
this case.

Thus, a two-phase magnetic (paramagnetic–ferro-
magnetic) state controlled by the magnitude of the
external magnetic field was observed in La0.7Pb0.3MnO3
single crystals by the magnetic resonance method.
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of AlGaAs Solid Solutions
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Abstract—An additional polariton emission line caused by a change in the polariton energy distribution func-
tion owing to the exciton–exciton scattering is observed experimentally. The energy shift of this line and the
variation in its intensity with increasing excitation power agree well with the results of calculations performed
in the framework of the theoretical model proposed by Bisti [Fiz. Tverd. Tela 18, 1056 (1976)]. © 2000 MAIK
“Nauka/Interperiodica”.

PACS numbers: 78.55.Cr; 71.36.+c
It is well known that the exciton–photon interaction
leads to the formation of new excitations in a crystal—
polaritons [1]. The shape of the polariton emission spec-
trum is determined by the distribution of polaritons in
energy and in space [2–7]. At high excitation levels, an
important factor in the formation of the polariton energy
distribution and, hence, of the polariton spectrum is the
exciton–exciton scattering. According to Bisti [7], at
sufficiently high exciton concentrations, an additional
polariton emission line should appear near the exciton
resonance. So far, no experimental observations of such
a line have been reported in the literature. The main
obstacle to the experimental observation of the addi-
tional polariton emission line has been that the exciton
photoluminescence spectra contain the lines associated
with the excitons bound to background impurities
and/or defects, which mask the possible features of the
photoluminescence spectra near the exciton resonance.
In our previous publications [8, 9], we reported on the
fabrication of high-purity layers of direct-gap AlGaAs
solid solutions. Near the exciton resonance, these layers
exhibit a dominant spectral line with an intensity
exceeding the intensities of the lines of bound and/or
defect excitons by one or two orders of magnitude.

In this paper, we report on the experimental obser-
vation of the additional polariton emission line that
appears in the low-temperature photoluminescence
spectra of high-purity layers of AlGaAs solid solutions
as a result of the exciton–exciton scattering. The polari-
ton emission line occurs in the exciton resonance
region and is strongly shifted (by up to 9 meV) toward
the low-energy part of the spectrum with increasing
excitation intensity.

We studied deliberately undoped AlxGa1 – xAs layers
obtained by molecular-beam epitaxy with AlAs con-
tents x = 0.21 and 0.27. The details of the layer growth
0021-3640/00/7104- $20.00 © 20148
process and the system used for recording the photolu-
minescence spectra were described in our previous
paper [9]. Photoluminescence was excited by an Ar+

laser with the wavelength 488 nm. The excitation
power density could be varied from 3 × 10–4 to 900 W
cm–2 with the use of neutral filters. The diameter of the
laser spot focused on the sample was 200 µm.

Figure 1 presents the photoluminescence spectra of
AlxGa1 – xAs with x = 0.21. The spectra were measured
with different excitation power densities at a tempera-
ture of 4.2 K. One can see that, at all excitation powers,
the spectra have a dominant X line whose position on
the energy axis does not depend on the excitation power
density. In our previous paper [9], it was shown that the
position of the maximum of the X line coincides with
the minimum in the transmission spectrum, which
allows us to associate this line with the lower polariton
branch (LPB) luminescence [10, 11]. As the excitation
power density increases up to 1 W cm–2, a new Y line
appears on the low-energy side of the X line; with a fur-
ther increase in the excitation power density, this new
line shifts to lower energies. From the literature, we
know that the appearance of photoluminescence lines
on the low-energy side of the exciton resonance can be
caused by several factors: (1) annihilation of excitons
bound to shallow-level background impurities and/or
defects [12]; (2) formation of biexcitons and exciton
molecules [13, 14]; (3) radiative recombination of free
excitons scattered from phonons and/or plasmons
[15, 16]; and, finally, (4) in high-purity materials, the
appearance of additional lines near the exciton reso-
nance may be caused by the interaction of excitons with
light [3, 4, 7].

To identify the Y line, we studied the dependence of
its spectroscopic parameters on the excitation power
density. Figure 2 shows the energy shift of the Y line
000 MAIK “Nauka/Interperiodica”
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relative to the X line versus the excitation intensity for
AlAs layers with x = 0.21 and 0.27. The displacement
of the Y line in energy with increasing excitation power
density unambiguously testifies that this line is unre-
lated to either the recombination of excitons localized
at impurities and defects or to the radiative recombina-
tion of phonon-scattered free excitons, because the
positions of lines related to these processes should not
depend on the excitation intensity. In addition, the dis-
placement of the Y line is much greater than that
expected for the biexciton line (1–2 meV) [14, 17]. At
the same time, the direction and the nonlinear character
of the displacement of the Y line with increasing pump
intensity coincide with those expected for the line
caused by the radiative recombination of free plasmon-
scattered excitons, as well as for the additional line
caused by the LPB luminescence. To select one of these
versions, we compared the experimental dependences
with the calculated values of the position of the plas-
mon replica of the X line and the position of the addi-
tional line of LPB luminescence. The plasmon fre-
quency ωpl is determined by the expression [15]

where e is the electron charge, ρ is the electron–hole
plasma density, ε∞ is the high-frequency permittivity,

and µ is the reduced mass (µ–1 =  + , where me

and mh are the effective masses of electrons and holes).
The plasmon frequency increases with increasing con-
centration of electrons and holes. To calculate the value
of ωpl, we used the values of ε∞ and µ presented in the
literature [12] for AlGaAs with the corresponding AlAs
content; we also estimated the variation in the concen-
tration of nonequilibrium electrons and holes with
increasing excitation power density by using the diffu-
sion length (1 µm) and the lifetime (10–9 s) that are typ-
ical of nonequilibrium charge carriers in GaAs [12].
The calculated dependence of the plasmon energy "ωpl

on the excitation power density is represented by the
dashed line in Fig. 2. From this figure, one can see that
the experimental positions of the Y line deviate widely
from the calculated dependence. As for the additional
LPB emission line, according to the calculations per-
formed by Bisti [7], the dependence of the energy posi-
tion of this line on the excitation intensity should obey
a logarithmic law. The approximation of the experi-
mental data by a function of the type f(n) = β ,
where n is the exciton concentration and β is a constant
factor, is represented in Fig. 2 by the solid line. One can
see that this curve agrees well with the experimental
data.

Bisti [7] also calculated the dependence of the inten-
sity of the additional LPB emission line on the pump
power. The calculations show that the intensity of this
line increases faster than by the linear law, but some-
what slower than by the n3/2 law. Since the intensity of
the X line linearly increases with the excitation power

ωpl 4πρe2/ ε∞µ( )[ ]0.5
,=

me
1– mh

1–

n( )log
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density [9], it is convenient to analyze the behavior of
the intensity of the polariton emission line for layers
with different AlAs contents by considering the ratio of
the intensities of the Y and X lines (IY /IX). The depen-
dences of the quantity IY /IX on the excitation power for
layers with x = 0.21 and 0.27 are shown in Fig. 3. One
can see that the relative intensity of the Y line slightly
increases with the pump intensity as the latter grows
from 0.1 to 10 mW; with a further increase in the pump
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power, the Y line intensity decreases. The behavior of
the relative intensity of the Y line differs from that pre-
dicted by Bisti [7]. However, it should be noted that an
increase in the pump power leads to an increase not
only in the concentration of excitons, but also in their
temperature (T), which causes a decrease in the inten-
sity of the additional polariton emission line in propor-
tion to T 5/4 [7]. To determine the values of the exciton
temperature for different excitation power densities, we
used the approximation of the high-energy wing of the
X line by a function of the type bexp(–"ω/kT), where b
is a constant, "ω is the photon energy, and k is the Bolt-
zmann constant; the resulting values are presented in
Fig. 3. Taking into account that the intensity of the X
line linearly increases with increasing excitation power
density [9], we approximated the experimental depen-
dence of the intensity ratio of the X and Y lines on the
excitation power by the formula IY /IX = na – 1T(n)–5/4.
The result of this approximation is shown by the solid
line in Fig. 3. One can see that only qualitative agree-
ment is achieved between the experimental data and the
calculations; this occurs for the value of the adjustable
parameter a = 1.09, which is less than the expected
value a = 3/2 [9]. The discrepancy between the experi-
mental and the calculated dependences can be
explained, first, by the deviation of the spatial polariton
distribution from the uniform one used by Bisti [7] and,
second, by the deviation of the polariton energy distri-
bution in the layers under study from that calculated by
Bisti [7] because of the presence of the additional mech-
anism of polariton scattering, namely, the scattering
from the inhomogeneities of the spatial distribution of
Ga and Al atoms in the AlGaAs solid solutions; the con-
tribution of this mechanism to the formation of the
polariton energy distribution was neglected by Bisti [7].

Thus, in our experiments, we studied the polariton
photoluminescence in high-purity AlGaAs layers. It
was found that, when the excitation power density
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Fig. 3. Dependences of the intensity ratio of the X and Y
lines for AlxGa1 – xAs layers with x = (j) 0.21 and (m) 0.27
(the left vertical axis) and (s) the dependence of the exciton
temperature (the right vertical axis) on the excitation power.
The solid line represents the approximation of the ratio IY/IX
by a function of the type f(n) = na – 1T(n)–5/4.
exceeds 1 W cm–2, a new line appears in the exciton res-
onance region of the photoluminescence spectra. With
increasing excitation intensity, the maximum of this
line shifts toward the low-energy part of the spectrum
in proportion to the logarithm of the excitation inten-
sity. The experimental results are explained on the basis
of the assumption that the appearance of the new line is
related to the change produced by the exciton–exciton
scattering in the energy distribution of polaritons
belonging to the lower polariton branch.
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Elastic and Inelastic Tunneling of Photoelectrons
from the Dimensional Quantization Band 

at a p+-GaAs-(Cs,O) Interface into Vacuum
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Abstract—The photoemission of electrons from a p+-GaAs surface with negative electron affinity was studied
experimentally at 4.2 K. A narrow peak and its phonon replicas were observed in the distribution of emitted
electrons over the energies of longitudinal motion. These replicas are caused by elastic and inelastic electron
tunneling from the bottom of the dimensional quantization band in the near-surface spatial-charge region
through the potential barrier of the (Cs,O) activating coverage with emission of LO phonons. The measured
position of the peak corresponding to elastically tunneling electrons is close to the calculated one. © 2000
MAIK “Nauka/Interperiodica”.

PACS numbers: 73.40.Gk; 79.60.Jv.
More than 30 years ago, it was found [1] that an
atomically clean p+-GaAs surface covered with cesium
and oxygen occurs in the state that is characterized by
negative electron affinity (NEA). In this state, the vac-
uum level in the near-surface region is below the bot-
tom of the conduction band in the semiconductor bulk.
A remarkable property of GaAs with negative electron
affinity is a high probability of the egress of thermal-
ized photoelectrons into vacuum. This property of the
p+-GaAs-(Cs,O) surface is widely used for creating
light-sensitive devices, sources of spin-polarized elec-
trons, and sources of electrons with a small spread in
kinetic energies. In spite of the long history of investi-
gations, the electronic processes at a surface with neg-
ative electron affinity that determine the emission prob-
ability, the distribution of emitted electrons over
energy, and the angular distributions of these electrons
are still not understood. For example, the theoretical
predictions that the dimensional quantization of the
electronic spectrum and electron–phonon interaction in
the near-surface spatial-charge region is important in
photoemission from semiconductors with negative
electron affinity have not received theoretical corrobo-
ration so far. Finding the corresponding features of the
energy distribution (spectrum) of photoemitted elec-
trons can serve as such corroboration. However, weak
features in the derivative spectra of photoemitted elec-
trons measured at 293 and 77 K were interpreted as the
results of emission of an LO phonon by an electron in
the near-surface spatial-charge region in only one of the
previously published works [2]. The lack of reliable
experimental data obtained at helium temperatures,
when the thermal broadening does not prevent observ-
0021-3640/00/7104- $20.00 © 20151
ing the features in the energy distributions of emitted
electrons associated with dimensional quantization lev-
els and with the processes of single-phonon emission
by photoelectrons, hinders the development of a
detailed picture of photoemission from semiconductors
with negative electron affinity.

In this work, spectra of electrons Ne(ε) photoemitted
from GaAs with NEA into vacuum were measured at a
temperature of 4.2 K. The position of features observed
in the spectra indicated that these features are due to the
elastic and inelastic tunneling of electrons from the bot-
tom of the dimensional quantization band in the near-
surface region of the semiconductor into vacuum
through the surface potential barrier of the (Cs,O) acti-
vating coverage with emission of LO phonons of gal-
lium arsenide.

Vacuum photodiodes were made for the experi-
ments. These photodiodes consisted of a semitranspar-
ent GaAs photocathode on a glass [3] and a flat metallic
anode; both electrodes were hermetically fixed with an
indium gasket on the opposite ends of a cylindrical case
made of alumina-based ceramics. The diameters of the
photocathode and anode were 18 mm, and the distance
between them was 0.5 mm. Photocathodes were made
of epitaxial GaAs layers with the (100) surface orienta-
tion doped with zinc to a concentration of 7 × 1018 cm–3,
which provided the highest value of the quantum yield
[3]. The procedure used for preparing an atomically
clean GaAs surface, its atomic structure, and electronic
properties were described in [4]. The activation of
GaAs and the encapsulation of photodiodes were car-
ried out in a vacuum of 10–9 Pa. For measurements,
000 MAIK “Nauka/Interperiodica”
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photodiodes were placed in an optical cryostat with liq-
uid helium. The photocathode was illuminated from the
glass side by monochromatic light in a spot 1 mm in
diameter. The measurement of the spectrum of photoe-
mitted electrons was performed by the retarding poten-
tial method with the use of modulation of the retarding
field between the photocathode and anode. The variable
component of the photocurrent proportional to Ne(ε)
was recorded by the synchronous detection method. It
is evident that a parallel-plate analyzer with a uniform
retarding field integrates the angular distribution of
electrons and allows the distribution to be measured
only along the longitudinal component of the kinetic

energy ε|| = /2m0, where p|| is the electron momentum
component parallel to the photocurrent vector. Because
of angular averaging, the analyzer with a uniform
retarding field measures a wide energy distribution over
the longitudinal energy even in the case of emission of
monoenergetic electrons if their angular distribution is
smeared over a solid angle of 2π.

Figure 1 displays a spectrum of photoelectrons mea-
sured at 4.2 K. The energy of exciting photons was
1.70 eV. It is evident in the figure that the main part of
the spectrum represents a wide band lying in the range
of energies from the bottom of the conduction band εc

in the semiconductor bulk to the vacuum level εvac. A
high-energy wing due to the emission of ballistic and
hot electrons is observed at energies larger than εc. The
observed emission of nonthermalized electrons is
caused by the small thickness (0.2 µm) of the p+-GaAs
layer in the given photocathode at which a significant
part of the primary photoelectrons are excited at small
distances from the emitting surface. These distances are
smaller than the length of electron thermalization in p+-
GaAs [5]. The features due to emission into vacuum of
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Fig. 1. Low-temperature spectrum of photoelectrons and
derivative spectrum of photoemitted electrons measured at
the energy of photons equal to 1.7 eV.
ballistic photoelectrons excited by light from the band
of light and heavy holes to the conduction band (lh  c
and hh  c transitions, respectively) are evident in
the ∂Ne/∂ε|| spectrum in Fig. 1. A comparison of the cal-
culated and measured energies of ballistic electrons
was used for calibrating the energy scale of the energy
analyzer. The accuracy of calibration was ±10 meV or
better.

The most interesting features of the spectrum of
photoelectrons in Fig. 1 are designated as I0–I2. The I0
peak is located 25 ± 5 meV below the bottom of the
conduction band in the semiconductor bulk. The shape
of this peak in the vicinity of its maximum and in the
high-energy wing is described well by the Gaussian
profile with a half-width of 30 meV. Weaker features I1
and I2 are observed on the low-energy side of the I0
peak. The occurrence of these features becomes quite
evident after computing the derivative ∂Ne/∂ε||, which is
also shown in Fig. 1. The energy gaps I0–I1 and I1–I2
between the features turned out to be approximately the
same and equal to 38 ± 3 meV. This value coincides,
within the accuracy of the experiment, with the energy
of longitudinal long-wave optical phonons "ωLO =
36.7 meV in GaAs. 

In order to determine the origin of the line I0, the
position of quasistationary levels of dimensional quan-
tization for electrons in the near-surface region of band
bend was calculated. The general view of the potential
at the surface of p-GaAs with negative electron affinity
shown in Fig. 2 includes the potential Vbb(z) in the spa-
tial-charge region in GaAs, the Coulomb potential
Vm(z) of mirror image forces in vacuum, and also a thin
potential barrier of a triangular shape Vbar(z) due to the
electrostatic potential of the (Cs,O) dipole layer. The
height of the triangular barrier was assumed in calcula-
tions to be equal to the electron affinity 4.0 eV at the
initial Ga-stabilized GaAs(100)c(8 × 2) reconstructed
surface. The barrier width at the base was taken coinci-
dent with the thickness of the activating (Cs,O) layer,
which, according to the estimate [6], approximately
equals 0.7 nm. The band bend ϕ0 at the GaAs surface
with negative electron affinity was assumed to be uni-
form along the surface and equal to 0.5 eV. The screen-
ing of the surface charge by both the ionized acceptors
and free holes was taken into account in the calculation
of the Vbb(z) potential in the semiconductor. In spite of
the low temperature, it was suggested that the acceptors
are fully ionized, because the ionization energy of Zn in
GaAs decreases to zero at the given doping level [7].
The discreteness of charges and fluctuations in their
spatial distribution were not taken into account. The
Poisson and Schrödinger equations were solved numer-
ically. The results of calculations are displayed in
Fig. 2. It is evident in the figure that two dimensional
quantization bands—ε1 and ε2—occur in the spatial-
charge region at the given doping level. Their minima
are located 20 and 100 meV below the bottom of the
JETP LETTERS      Vol. 71      No. 4      2000
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conduction band εc in the semiconductor bulk. It is also
evident that the wave function ψ(z) of an electron resid-
ing at the level ε1 has a maximum in the vicinity of the
boundary of the spatial-charge region and a tail
extended into the semiconductor bulk. The results
obtained suggest the following interpretation of the
spectrum of electrons shown in Fig. 1. Nonequilibrium
electrons thermalized in the semiconductor bulk and
reaching the surface through diffusion are captured at
the upper dimensional quantization band. The probabil-
ity of such a capture is rather high because of the small
value of εc – ε1 and the tail |ψ|2 extended into the semi-
conductor bulk. Part of the captured electrons tunnel
into vacuum. The I0 peak corresponds to elastic and the
I1 and I2 peaks, to inelastic tunneling of electrons with
emission of one and two LO phonons, respectively. The
small width (δε = 30 meV) of the I0 peak as compared
to the total kinetic energy (ε0 = 220 meV) of electrons
in this peak means that elastic tunneling proceeds
within a small angle θ relative to the normal to the sur-
face. If it is supposed that the peak width is determined
by a small broadening of the angular distribution of

electrons, then the value of θ, equal to , does

not exceed 7°.

The broadening of the I0 peak can be caused both by
the angular distribution of the emitted electrons and by
fluctuations in the position of the bottom of the dimen-
sional quantization band. These fluctuations are caused
by fluctuations of the potential in the spatial-charge
region due to the random nature of the spatial distribu-
tion of surface states and acceptors. In order to eluci-
date the effect of band bottom smearing on the broad-
ening of the I0 peak, the spectra of photoelectrons were
measured at various energies of exciting photons. The
results of measurements are shown in Fig. 3. Note that
these measurements were performed on another photo-
diode in which the I0–I2 features were considerably
weaker. The I1 feature at the threshold of LO phonon
emission manifested itself as a weak bend in the spec-
trum, and the I2 feature was observed only in the deriv-
ative spectrum of photoemitted electrons. Figure 3
demonstrates that the I0 peak was observed under exci-
tation of electrons by light with the energy of photons
equal to 1.52 eV, which is close to the band gap width
of GaAs. However, this peak virtually disappeared on
decreasing the "ω by as little as 30 meV. The half-
width of the level determined from this experiment was
approximately equal to 30 meV, which, within the
accuracy of the experiment, coincides with the half-
width of the I0 peak in the spectrum of photoelectrons.
Hence, the half-width of the I0 peak is mainly deter-
mined by the broadening of the dimensional quantiza-
tion level near the semiconductor surface with negative
electron affinity. The angular distribution of electrons
emitted in the I0 peak is apparently considerably

1
2
--- δε/2ε0
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smaller than 7°, which indicates that the tangential
component of the electron momentum is conserved.

In addition to elastic tunneling with the conserva-
tion of the momentum component parallel to the sur-
face, which explains the small angular broadening of
the I0 peak, diffuse tunneling of electrons is possible
without conservation of the momentum component
parallel to the surface. This diffuse tunneling is caused
by the elastic scattering of the electron momentum by
the structurally disordered surface and activating cover-
age. As was noted previously, if the angular distribution
of electrons is close to isotropic, the Ne(ε||) measured by
a parallel-plate analyzer with a uniform retarding field
is broadened. We believe that this mechanism is respon-
sible for the monotonic part of the spectrum of photoe-
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Fig. 2. Energy diagram of the near-surface region of GaAs
with negative electron affinity. The |ψ(z)|2 function that cor-
responds to the stationary solution of the Schrödinger equa-
tion with the energy ε1 in GaAs is given in the figure.

Fig. 3. Low-temperature spectra of photoelectrons mea-
sured at the energies of photons equal to (a) 1.52, (b) 1.50,
and (c) 1.49 eV. The initial energies of photoelectrons are
marked with crosses. The maximums of spectra a–c are nor-
malized.
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mitted electrons extending from the bottom of the con-
duction band to the vacuum level. Experimental evi-
dence for the validity of this statement was obtained in
[8].

Thus, the emission of electrons from a semiconduc-
tor with negative electron affinity represents their tun-
neling from the upper subband of dimensional quanti-
zation in the near-surface potential well into vacuum.
Elastic tunneling of electrons with conservation of the
tangential momentum component, inelastic tunneling
of electrons with emission of LO phonons, and also
tunneling without conservation of the tangential
momentum component due to electron scattering by
surface defects and fluctuations of the potential near the
surface exert a significant effect on the spectrum of
emitted electrons. The role of the lower band of dimen-
sional quantization calls for further investigation.
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Abstract—The optical-phonon Green’s function averaged over the positions of defects—both point and line—
is calculated with allowance for possible localized states near the boundary of the continuous spectrum and for
their intrinsic damping. The frequency-transfer dependence of the cross section for Raman scattering is calcu-
lated with the aid of this Green’s function. © 2000 MAIK “Nauka/Interperiodica”.
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1. Interest in studying the effect of defects on the
dynamical properties of crystals has been rekindled in
recent years (see, for example, [1]). This is explained
by a few factors. First, the desire to work with high-
purity samples, samples of small dimensions, and sam-
ples subjected to external pressures calls for studying
the effect of impurities or boundaries, in particular,
strain fluctuations that exist near heterointerfaces
owing, for example, to interfacial lattice mismatch.
Second, inelastic light scattering seems the most appro-
priate method of investigation in the case being dis-
cussed, since the positions and shapes of Raman lines
of optical phonons are highly sensitive to the effect of
defects [2]. At the same time, the present-day micro-
Raman procedure, which employs a focused laser spot
about 1 µ in diameter, makes it possible to explore spa-
tial changes in defect or strain concentrations with a
high spatial resolution.

It should be noted—to the best of my knowledge, it
was I.M. Lifshits [3] who was the first to indicate this—
that the problem of the effect of defects on phonon
spectra is very similar to the corresponding problem of
electron interaction with impurities in a metal or a
semiconductor. In either case, defects reduce the mean
free path of band particles, electrons, or phonons.
Moreover, there can arise localized states. For semicon-
ductors, this situation is treated in terms of tails that the
density of states develops in the forbidden band (it is
the problem that was considered in greatest detail in the
studies of I.M. Lifshits; see also [4]). Owing to the
presence of defects, some states in the conduction band
(in some neighborhood of its boundary in general and
everywhere in the one- and two-dimensional cases)
may also prove to be localized (more precisely, non-
propagating). Localization in electron systems still
remains one of the hot points in mesoscopic physics;
for the system of acoustic phonons, it was considered in
[5–7].

There are, however, some important distinctions
between the cases electrons and phonons, and two of
these are drastic—the type of statistics and the fact that
0021-3640/00/7104- $20.00 © 20155
there is no long-range Coulomb interaction for phonons
(at least in nonpolar dielectrics). Further, it should be
recalled that, even in perfect crystals, optical phonons
have an intrinsic damping Γintr, which is associated with
their decay into a pair of acoustic or optical phonons
and which is proportional to the mean square of the dis-
placement of atoms; that is, it is on the order of 10–2 of
the natural frequency ω0, amounting to a few Kelvin
degrees, a value that determines the intrinsic width of a
given Raman line. This entails yet another important
distinction: the mean free path of optical phonons can-

not be very large on the atomic scale, l . a .
Finally, impurity states in a semiconductor are shallow
because of a large dielectric permittivity and because of
a small (as a rule) effective mass. In the case of a weak
interaction with a defect, there are no phonon states
localized near a point defect. Such states arise only if
the potential of the above interaction exceeds some crit-
ical value. Weak interaction can result, however, in a
localization of phonon states near an extended defect
like a line dislocation or a crystallite boundary, which
exemplifies a planar type of defect.

So far, the effect of intrinsic damping on the interac-
tion of band and localized states has not been consid-
ered. In the present study, we will compare the effect of
point and line defects, considering that localized states
can be formed near the boundary of the optical phonon
branch and taking into account their intrinsic damping.
We will see that, owing to intrinsic damping, localized
states contribute even in the linear approximation in the
defect concentration.

2. Let us consider the optical branch of the phonon
spectrum near its extremum. For the sake of definite-
ness, we assume that this extremum is a maximum and
that it occurs at the center of the Brillouin zone. Under
the conditions of a Raman experiment, the important
values of the wave vector are those that are determined
by the wavelength of incident light. Since these values
are much smaller than the dimensions of the Brillouin

ω0/Γ intr
000 MAIK “Nauka/Interperiodica”



 

156

        

FALKOVSKY

                                                                                                                                           
zone, it is quite legitimate to make use of an expansion
of the spectrum near the extremum,

In this representation of the spectrum, it is considered
that the equations of lattice dynamics are invariant
under time reversal. If we disregard the possible degen-
eracy of the branches, there exists only one dispersion
parameter s, its value being on the order of the speed of
sound s . ω0a/π . 106 cm/s.

The interactions of phonons with defects can be
represented as the sum over defects situated at the
points rn,

For line defects, (r – rn) is a two-dimensional vector in
the plane orthogonal to the defect axis z, while u(q) is
independent of qz.

At present, distances at which the potential of a
defect must decrease cannot be determined from exper-
imental data. The scheme where the non-Coulomb part
of the atom interaction can be taken into account in the
approximation of a few nearest neighbors is appropri-
ate for calculating phonon spectra. This is equivalent to
the assumption that the interaction is short-range. In
addition, the opinion that a significant part of the per-
turbation that is caused by lattice mismatch at hetero-
interfaces also relaxes at atomic distances from the
interface is prevalent among the physics community.
For this reason, we will consider short-range defects;
that is, we assume that their radius r0 is much smaller

than the mean free path r0 ! a  and that the
Fourier component of the interaction potential can be
set to a constant u(q) = u0. For an isotopic defect, this
statement is rigorous; in this case, the quantity u0 is pro-
portional to the mass difference between the defect and

the host atom, u0 = (m0 – m) ω2/m0, m and m0 being
the masses of the defect atom and the host atom,
respectively.

3. The cross section for single-phonon Raman scat-
tering, a quantity that can be directly measured in
experiments, is proportional to the imaginary part of
the retarded Green’s function for phonons. It must be
averaged over defect positions. An appropriate method
for this is represented by a version of the well-known
diagram technique for impurities [8]; a detailed account
of this version is given in [9]. Expanding the equation
for the Green’s function in the interaction with defects,
performing averaging over their positions, and sum-
ming the resulting series of leading nonintersecting dia-
grams, we arrive at the Dyson equation for the Fourier

ω2 ω0
2 s2k2– iωΓ intr.–=

U r( ) u r rn–( )
n

∑ u q( )e
iq r rn–( )

.
n q,
∑= =

ω0/Γ intr

r0
3

component of the averaged Green’s function in the
form

(1)

where

is the Green’s function in the absence of defects, while
c is the concentration of defects. Summation (integra-
tion) is performed with respect to the three-dimensional
vector q for point defects and with respect to the two-
dimensional vector q⊥  in the case of line defects, the
third component qz being coincident, in the latter case,
with the corresponding component of the vector k on
the left-hand side of equation (1). The condition that
makes it possible to disregard diagrams with intersec-
tions can be represented as ω0/Γ @ 1 for point defects
and as ln/(ω0/Γ) @ 1 for line defects.

Instead of D(k, ω), we introduce an unknown func-
tion ζ via the relation D(k, ω)–1 = ζ – s2k2 and an inde-

pendent complex variable ζ0 =  – iωΓintr – ω2. Sub-
stituting these quantities into equation (1) and perform-
ing relevant integrations, we arrive at an algebraic
equation for ζ instead of the above integral equation.
Specifically, we have

(2)

for point defects and

(3)

for line defects. The dimensionless coupling constant
for interactions with defects λ (it can be negative) and
the number of defects nc in the region of atomic dimen-
sions are related to the original quantities u0 and c as

λ = u0κ/6π2s3, u0 ~ a3, and nc = 6π2cs3/  for point

defects and as λ = u0/4πs2, u0 ~ a2, and nc =

4πcs2/  for line defects, where the cutoff parameter κ
has the scale of the frequency ω0. The cutoff parameter
for the integrals that are divergent at the upper limit is
determined by the fact that integration with respect to q
is actually performed over the Brillouin zone. For the

region |ω2 – | !  ~ κ2 (and this is precisely the
region of our interest), where the peak of Raman scat-
tering occurs (that is, under the condition |ζ| ! κ), the
use of this cutoff is quite legitimate, since, for such ζ
values, only the analytic properties of the spectrum in
the vicinity of its boundary are of importance. In this
case, the resulting dependences on κ can, of course, be

D k ω,( ) 1– D0 k ω,( ) 1– cu0 1 u0 D q ω,( )
q
∑+ 

  –1
,+=

D0 k ω,( ) ω0
2 s2k2– iωΓ intr– ω2–( ) 1–
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considered only as qualitative ones. Finally, we must
specify the choice of the branches of the logarithm and
the squared root: in equations (2) and (3), we imply
their values in the upper complex half-plane. As a mat-
ter of fact, each of these equations appears to be a pair
of equations for the real and imaginary parts.

4. In Figs. 1–4, we present the cross section for the
Raman scattering [apart from the Bose factor 1 –
exp(−ω/T)], namely, Im(1/ζ), as a function of fre-
quency transfer ω at k = 0. These results were obtained
by solving equations (2) and (3). For the sake of defi-
niteness, the calculations were performed with the val-
ues of ω0 = 520 cm–1 and Γintr = 3.2 cm–1, which corre-
spond to pure silicon; the results for this case are illus-
trated by dotted curves. Here, the Raman spectrum
shows the Lorentzian frequency-transfer dependence

with a width equal to Γintr at half-maximum.

For a first approximation, a qualitative analysis of
equations (2) and (3) at small nc can be performed by
substituting ζ0 instead of ζ into the expressions on the
right-hand sides of these equations and by separating

Im
1
ζ
--- ωΓ intr/ ω0

2 ω2–( )2 ωΓ intr( )2
+[ ]=
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the real and imaginary parts. This approximation—it
will be referred to as the unrenormalized one—corre-
sponds to substituting D0(k, ω) for D(k, ω) in the
expression on the right-hand side of (1). The unrenor-
malized approximation was analyzed in detail else-
where [9], the corresponding dependences being shown
in Figs. 1, 3, and 4 by dashed curves.

It is obvious from equations (2) and (3) that the cou-
pling constant for phonon interaction with defects and
the cutoff parameter appear only in the combination
1/λ* = (λ–1 – 1)κ for point defects and in the combina-
tion 1/λ* = λ–1 – ln(κ2/ω0Γintr) for line defects. For the
sake of definiteness, the graphs were plotted for the cut-
off parameter κ set to ω0.

There are no localized states for point defects when
λ < 1 and for line defects when λ < 1/ln(κ2/ω0Γintr). In
those cases, defects manifest themselves only in the
fact that phonons of the continuous spectrum are elasti-
cally scattered on them, whereby the phonon line shifts
toward higher frequencies and broadens. The contribu-
tion of scattering to the phonon width increases with

increasing distance from the boundary (ω2 < ),
because the number of final states for scattered
phonons increases. The curve ceases to be of a Lorent-
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zian shape and becomes flatter on the low-frequency
side (Figs. 1, 2). This effect was observed for longitudi-
nal optical phonons in SiC [2] (see Fig. 2 in the first
article quoted in [2]).

The behavior of the cross section changes signifi-
cantly when the quantity 1/λ* passes through zero.
Localized states appear to the right of the boundary of
the continuous spectrum for λ > 1 in the case of point
defects and for λ > 1/ln(κ2/ω0Γintr) in the case of line
defects (see Figs. 3, 4); this corresponds to the vanish-
ing of the real parts of the denominators in (2) and (3).
It should be emphasized that the results are qualita-
tively different for different dimensionalities of defects.
At point defects, localized states arise only if the cou-
pling constant exceeds a finite critical value. At line
defects, localized states can emerge in the case of weak
coupling owing to a large value of κ2/ω0Γintr . ω0/Γintr;
for this, it is sufficient that the radius of the emerging
bound state is less than the mean free path of phonons
that belong to some neighborhood of the boundary of
the continuous spectrum. The above distinction is in
accord with the well-known statement in quantum
mechanics that there is a bound state in a shallow two-
dimensional potential well.
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The data in Figs. 3 and 4 reveal that the accurate
result represented by solid curves differs considerably
from that obtained in the unrenormalized approxima-
tion and shown by dashed curves in the region where
localized states contribute. In the accurate calculation,
the maximum that was found in the unrenormalized
approximation is washed out, transforming into a pla-
teau extending to the boundary of the continuous spec-
trum. As a matter of fact, this effect represents reso-
nance interaction between states of the continuous
spectrum and localized states. In interpreting experi-
mental data, it is often stated that, due to the effect of
defects, the line shape seems to develop a shoulder sim-
ilar to that depicted in Figs. 3 and 4.

One of the most intriguing examples, however, is
provided by diamond-like substances, which show a
line at 1600 cm–1, as in the case of graphite, or a line at
1300 cm–1, as in the case of diamond. When defects are
added to graphite, the low-frequency wing of the line at
1600 cm–1 flattens (see Figs. 1 and 2 in [10]) in just the
same way as depicted in Figs. 1 and 2 of the present
study. But if it is diamond samples that are impaired, a
similar change is suffered by the high-frequency wing
of the line at 1300 cm–1—it becomes more gently slop-
ing (see Fig. 7 in [10] and Fig. 2 in [11]). The explana-
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tion is based on the fact that quite an atypical situation
is realized in diamond—in the optical-phonon band,
there is a minimum at the center of the Brillouin zone
[12]. So far, we have assumed in this study that the opti-
cal-phonon branch has a maximum at the center of the
Brillouin zone. For the case of a minimum, the sign of

ω2 –  must be reversed in all the above statements,
which leads to results explaining the diamond anomaly.

In conclusion, it is worth noting that all the features
considered in the present study emerge even in the lin-
ear approximation in the defect concentration and are
due to the finiteness of the intrinsic lifetime of optical
phonons. As to fluctuations in the defect distribution
(cluster corrections), they contribute only in the next
(quadratic) approximation.
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Abstract—We studied the magnetic field–tuned superconductor–insulator transition (SIT) in amorphous In–O
films with different oxygen contents and, hence, different electron densities. Whereas the two-dimensional scal-
ing behavior was confirmed for the states of the film near the zero-field SIT, the SIT scenario changed for the
deeper states in the superconducting phase; in addition to the scaling function describing the conductivity of the
fluctuation-induced Cooper pairs, the temperature-dependent contribution to the film resistance emerged. This
contribution can originate from the conductivity of normal electrons. © 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 74.20.Mn; 74.25.Dw
1 Scaling analysis is an important experimental tool
for studying quantum phase transitions. For the two-
dimensional (2D) disordered superconductors, along
with the zero-field superconductor–insulator transition
(SIT) driven by the disorder change in a film, a SIT
induced by the normal magnetic field also occurs. The
scenario of the field-induced 2D quantum SIT was pro-
posed in [1]: at zero temperature, the normal magnetic
field alters the state of a disordered film from supercon-
ducting at low fields to metallic at the critical field B =
Bc, with the universal sheet resistance Rc close to h/4e2

. 6.4 kΩ , and to the insulating state at fields B > Bc.
The SIT was supposed to be continuous, with the cor-
relation length of quantum fluctuations ξ diverging as ξ
∝  (B – Bc)–ν, where the critical index ν > 1. At nonzero
temperatures, the size of quantum fluctuations is
restricted by the dephasing length Lφ ∝  T–1/z, where the
dynamical critical index z determines the characteristic
energy U ~ ξ–z and is expected to be equal to z = 1 for
SIT. The ratio of these two length parameters defines
the scaling variable u such that near the transition point
(T = 0, Bc) all R(T, B) data should fall on a curve for a
universal function of u

(1)

Although small in the scaling region, temperature-
dependent corrections with a leading quadratic term are
expected to the critical resistance Rc [1, 2].

The above theoretical description is based on the
electron-pair localization concept supported by a recent
publication [3]. In that paper, it was shown for the 2D
superconducting films with sufficiently strong disorder

1 This article was submitted by the authors in English.

R T B,( ) Rcr u( ), u≡ B Bc–( )/T1/zν.=
0021-3640/00/7104- $20.00 © 20160
that the region of fluctuation superconductivity, where
the localized electron pairs (also called bosons [1] and
cooperons [3]) occur, should extend down to zero tem-
perature. In this region, the unpaired electrons are
supposed to be localized because of the disorder in
the film.

The theory of field-driven 3D quantum SIT has not
been developed so far. The idea of considering quantum
SIT for the disordered 3D systems in zero magnetic
field in terms of charged boson localization [4] was at
first not accepted, because the region of fluctuation
superconductivity was assumed to be small. In fact, as
was shown later in [5], the fluctuation region enlarges
as the edge of single-electron localization is
approached. This provides an opportunity to apply the
scaling relation deduced for the 3D boson localization
[6] to the field-induced SIT description

(2)

where (u) is a universal function and the scaling vari-
able u is assumed to have the same form as defined by
(1). From (1) and (2), it follows that in the vicinity of Bc

the R(B) isotherms are straight lines with slopes

(3)

where d is the system dimensionality. Since the resis-
tance behaves in (1) and (2) in very different fashions,
the problem of film dimensionality is of major impor-
tance.

The data obtained in the experimental studies of a-
In–O [7], a-Mo–Ge [8], and a-Mo–Si [9] films followed
by 2D scaling relation (1), except for the universality of
the Rc value, and thus confirmed the existence of quan-

R T u,( ) T 1/z– r u( ),∼

r

∂R
∂B
------ T d 2– 1/ν+( )/z– ,∝
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tum SIT. The resistance drop observed for a-In–O films
at high fields was also explained in the framework of
localized bosons [10, 11]. On the other hand, the scal-
ing was found to fail for the ultrathin Bi films. This was
interpreted as evidence for the crossover between dif-
ferent flux–flow regimes [12].

In this work, we carried out a detailed study of the
scaling relations near the field-induced SIT for differ-
ent states of an amorphous In–O film. We have found
that 2D scaling relation (1) holds for the film states near
the zero-field SIT but progressively fails upon depar-
ture from it. This failure is manifested by the appear-
ance of the extra temperature-dependent term in the
film resistance.

The experiments were performed with 200-Å-thick
a-In–O films grown by electron-gun evaporation of a
high-purity In2O3 target onto a glass substrate.2 This
material proved to be very useful for investigations of
the transport properties near the SIT [7, 10, 13–15].
Oxygen deficiency with respect to the fully stoichio-
metric insulating In2O3 compound causes the film con-
ductivity. By changing the oxygen content, one can
cover the range from a superconducting material to an
insulator with activated conductance [14]. The methods
for the reversible change of the film state are described
in detail in [10]. To reinforce the superconducting prop-
erties of our films, we used heating in vacuum to a tem-
perature of 70–110°C until the sample resistance
became saturated. To shift the state in the opposite
direction, the film was exposed to air at room tempera-
ture. Since the film remains amorphous during these
manipulations, it is natural to assume that the treatment
used results mainly in a change in the total carrier con-
centration n and that there is a certain critical concen-
tration nc corresponding to the zero-field SIT.

The low-temperature measurements were carried
out using a four-terminal lock-in technique at a fre-
quency of 10 Hz on two experimental setups: a
He3-cryostat down to 0.35 K or an Oxford TLM-400 dilu-
tion refrigerator in the temperature range 1.2 K–30 mK.
The ac current was equal to 1 nA and corresponded to
the linear response regime. The aspect ratio for the
samples was close to unity.

We investigated three different homogeneous states
of the same a-In–O film.3 We characterize the sample
state by its room-temperature resistance Rr . Assuming
that the disorder is approximately the same for all
states, we have for the carrier density n ∝  1/Rr; i.e., the

2 The films were kindly presented by A. Frydman and Z. Ovadyahu
from Jerusalem University.

3 Observation of the so-called quasi-reentrant states for the field-
driven SIT was reported in [7, 15, 16] and explained by the inho-
mogeneities and single-particle tunneling between superconduct-
ing grains [16]. This interpretation was supported in our experi-
ments by the fact that the quasi-reentrant behavior observed for
some film states disappeared upon the annealing of the sample in
vacuum for several additional hours after its resistance had been
saturated. We do not discuss quasi-reentrant states in this paper.
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smaller Rr, the deeper the state in the superconducting
phase and, hence, the larger the value of Bc. The param-
eters of the states investigated are listed in the table.
State 1 is closest to the zero-field SIT, and state 3 is the
deepest in the superconducting phase.

The sets of isomagnetic curves R(T) for all states
studied are depicted in Fig. 1. For each set, the curves
can be roughly divided into two groups according to the
sign of the second derivative: the positive (negative)
sign corresponds to the insulating (superconducting)
behavior. In what follows, the isomagnetic curve Rc(T)
designating the boundary between superconductor and
insulator and corresponding to the boundary metallic
state at T = 0 is referred to as the separatrix. Whereas it
is easy to identify a horizontal separatrix for state 1 in
accordance with (1), the fan and separatrix are “tilted”
for states 2 and 3; i.e., each of the curves in the lower
part of the fan has a maximum at a temperature Tmax
that shifts with B. To determine the separatrix Rc(T),
one should extrapolate the maximum position to T = 0.
To do this, it is desirable to know the extrapolation law,
because the accessible temperature range is restricted.

The absence of a horizontal separatrix for states 2
and 3 can also be established from the behavior of iso-
therms R(B) (Fig. 2). As seen from Fig. 2, the isotherms
for state 1 intersect at the same point (Bc, Rc), whereas
those for state 3 form an envelope.

To determine Bc and Rc for states 2 and 3, we use the
simplest linear extrapolation to T = 0 for the functions
R(Tmax) and B(Tmax) (see Fig. 4). The open symbols cor-
respond to the maximum positions on the isomagnetic
curves (Fig. 1), and the filled symbols represent the
data obtained from the intersections of the consecutive
isotherms4 (Fig. 2); if two consecutive isotherms for
close temperatures T1 and T2 intersect at a point (Bi , Ri),
the isomagnetic curve for the field Bi reaches its maxi-
mum ≈Ri at Tmax ≈ (T1 + T2)/2. As seen from Fig. 4, the
B(Tmax) dependence is weak, so we believe that the lin-
ear extrapolation would suffice to determine Bc. By
contrast, the accuracy of determination of Rc is poor.

The derivative ∂R/∂B near Bc is shown as a function
of temperature in Fig. 3. Within the experimental accu-
racy, the exponents turned out to be identical for the
film states 1 and 3, in agreement with the results

4 A similar extrapolation procedure for determining Rc was
employed in [17], where the metal–insulator transition in a 2D
electron system was studied and the carrier density was used as a
driving parameter.

Parameters of the states studied for the sample

State Rr, kΩ Rc, kΩ Bc, T α, K–1

1 3.4 7.8 2.2 0

2 3.1 8 5.3 –0.1

3 3.0 9.2 7.2 –0.6
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Fig. 1. Temperature-dependent resistances for the states studied at different magnetic fields. The separatrices Rc(T) are shown by
solid lines. For state 2, a close-up view of the critical region is displayed in the inset.
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obtained in [7, 8], where the authors claimed observa-
tion of the field-induced 2D SIT for the states close to
the zero-field SIT. This fact counts in favor of the 2D
SIT scenario for the deeper film states of the supercon-
ducting phase as well.

Knowing Bc and the scaling exponent, we can replot
the experimental data as a function of scaling variable
u (Fig. 5). As seen from Figs. 5a and 5b, the data for
state 1 collapse onto a single curve, whereas for state 3
we obtain a set of similar curves shifted along the ver-
tical axis. Subtracting the linear temperature term RcαT
(where α is a factor) formally from R(T, B), we reveal
the 2D scaling behavior for state 3 (Fig. 5c). Note that
the procedure of dividing the experimental data in
JETP LETTERS      Vol. 71      No. 4      2000
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Fig. 5b by Rc(T), which corresponds to formula (2) for
the 3D scaling, has not met with success.

Thus, we find that the 2D scaling holds for the states
near the zero-field SIT, while the data for the deeper
states of the superconducting phase are best described
by relation (1) with an additive temperature-dependent
correction f(T):

(4)

To get a basis for the formal analysis of the expe-
rimental data, one should answer two questions:

R T B,( ) Rc r u( ) f T( )+[ ] .≡
(i) whether our film is really 2D, and (ii) what is the
physical origin for the temperature dependence of
Rc(T). In the first case, we need to compare film thick-
ness h with the characteristic lengths. These are the
coherence length ξsc = c"/2eBc2l (where l is the mean
free path in the normal state) in the superconducting
state and the dephasing length Lφ(T) . "2/mξscT [1, 2]
that restricts the diverging correlation length ξ in the
vicinity of quantum SIT. Knowing the film resistance R
≈ 5 kΩ in the normal state at T ≈ 4 K and assuming that
we deal with an amorphous 3D metal in which the
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mean free path is normally close to the lowest possible
value l ≈ 1/kF, we estimate the length l ≈ 8 Å. If we
roughly estimate the field Bc2 at Bc = 7.2 T, as was found
for state 3, we get the upper limit for ξsc ~ 500 Å and
the value Lφ ~ 400 Å at T = 0.5 K. This confirms the 2D
scenario of quantum SIT, although in the normal state
the film turns out to be 3D.

As to the temperature-dependent Rc(T), the conduc-
tivity of the film near Bc at finite temperatures should
include a contribution from the localized normal elec-
trons, in addition to the conductivity caused by the dif-
fusion of the fluctuation-induced Cooper pairs [3, 8]. It
is the normal electron conductivity that explains the
nonuniversality of the critical resistance [8] and the
additional term in (4). We write this term in the general
form, because the linear extrapolation used is likely to
break in the vicinity of T = 0.

Thus, all the experimental observations can be rec-
onciled with the 2D scaling scenario. Curiously, the
same scaling behavior was established for a parallel
magnetic field [18]. Although not in favor of the 2D
concept, this fact can also indicate that the restrictions
imposed by the theory [1] are too severe.

It is worth mentioning an alternative way of con-
structing the f(T) term in (4): introduction of the tem-
perature-dependent field Bc(T) defined through the con-
stancy of Rc. Formally, both ways are equivalent and
correspond to shifting the isotherms in Fig. 2 either
along the R-axis or along the B-axis, so that a common
crossing point is attained in the vicinity of the transi-
tion. Unlike the normal behavior of the critical fields in
superconductors, the Bc(T) thus defined increases with
temperature. This can be interpreted in terms of the
temperature-induced boson delocalization.

In summary, in the experiments with a-In–O films
with different oxygen contents, a change of the field-
driven 2D SIT scenario was observed as the film state
departed from the zero-field SIT. For the deep film
states in the superconducting phase, the temperature-
dependent contribution to the film resistance emerges,
in addition to the universal function of a scaling vari-
able that describes the conductivity of fluctuation-
induced Cooper pairs. This contribution can be attrib-
uted to the conductivity of normal electrons.
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Transition in FeBO3 at High Pressures

V. P. Glazkov, V. V. Kvardakov*, and V. A. Somenkov
Russian Research Centre Kurchatov Institute, pl. Kurchatova 1, Moscow, 123182 Russia

*e-mail: kvardako@isssph.kiae.ru
Received January 27, 2000

Abstract—The spin-reorientational transition from the state with “easy-plane” anisotropy to the state with
“easy-axis” anisotropy—a pressure analogue of the Morin temperature transition in hematite—was detected in
iron borate at a pressure of P ~ 17 kbar at room temperature by the neutron diffraction method. © 2000 MAIK
“Nauka/Interperiodica”.

PACS numbers: 75.30.Kz; 61.12.Ex; 75.25.+z
At temperatures below the Neél point TN ≅  348 K,
iron borate FeBO3 is a weak ferromagnet with anisot-
ropy of the “easy-plane” type [1]. The magnetic
moments of its sublattices lie in the crystallographic
(111) plane and are almost mutually antiparallel. The
noncollinearity of these moments is caused by weak
relativistic (spin–lattice and magnetic dipole) interac-
tions and by specific features of magnetic symmetry of
the crystal [2] and gives rise to a small nonzero ferro-
magnetic moment.

Hematite (α-Fe2O3) is isomorphous with iron borate
at room temperature and is also a weak ferromagnet
with anisotropy of the easy-plane type, but it undergoes
spin-reorientational transition (Morin transition [3])
upon cooling below the TM ≅  250 K temperature, as a
result of which the magnetic moments of sublattices are
aligned with the crystallographic [111] axis, so that the
crystal becomes an antiferromagnet with anisotropy of
the easy-axis type [4]. The phenomenological theory
suggests [2] that the Morin transition is due to the
change in sign of the uniaxial magnetic anisotropy con-
stant.

It has been established that the hydrostatic pressure
raises the Morin transition temperature [5, 6]. It was
predicted that pressure could induce the transition even
at room temperature [7]: the θ angle between the mag-
netic moments and the [111] axis should decrease with
the buildup of pressure up to a certain critical value,
after which the angle should jumpwise turn to zero.
However, although the θ angle was found to experi-
mentally decrease with pressure [8], no complete tran-
sition to the easy-axis phase was observed up to a pres-
sure of 100 kbar.

Considering that the magnetic structures of iron
borate and hematite are similar, we assumed that exter-
nal pressure could induce the Morin-type spin-reorien-
tational transition in FeBO3 as well, where such a tran-
0021-3640/00/7104- $20.00 © 20165
sition was not observed in the absence of pressure. It
was thus the purpose of this work to investigate the
pressure effect on the magnetic structure of iron borate.

To determine magnetic structure, neutron diffrac-
tion (λ = 2.343 Å) was measured on a DISK diffracto-
meter [9] on an IR-8 reactor at the Russian Research
Centre Kurchatov Institute. The experiment was con-
ducted with a powder of FeBO3 at pressures up to
50 kbar. Pressure was produced with the use of sap-
phire anvils [10] and measured from the shift of a ruby
fluorescence line. The sample volume between the
anvils was ~1 mm3. The characteristic time of measur-
ing the diffraction curve was 24 h at a reactor power of
about 5 MW.

The diffraction curve exhibits peaks corresponding
to the scattering from the magnetic and nuclear sublat-
tices and from both sublattices simultaneously (mixed
reflections). No new diffraction peaks appear with pres-
sure buildup, but the intensities of the magnetic peaks
change appreciably. For example, the intensity of the
magnetic reflection (100) increased with pressure by
~1.7 times, whereas the intensity of the magnetic
reflection (111) became virtually zero at a pressure of
~17 kbar (figure).

As is known, the intensity of magnetic reflection is
proportional to the square of the sine of the angle
between the atomic magnetic moment and the scatter-
ing vector [11]. Denoting the angle between the [111]
axis and the magnetic moments of the sublattices by θ
and the angle between the scattering vector and the
[111] axis by ∆, one obtains the following expression
for the intensity of magnetic reflections from the pow-
der sample:

Taking into account that the ∆ angles for the reflections
(111) and (100) are equal to 0° and 72.4°, respectively,

I 1 ∆ θsinsin( )2/2– ∆ θcoscos( )2–( ).∼
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Neutron diffraction patterns for iron borate at different pressures.
one can estimate that the intensity of reflection (111)
should turn to zero upon the reorientation of magnetic
moments from easy plane (θ = 90°) to easy axis (θ = 0)
(the magnetic moments become parallel to the scatter-
ing vector), while the intensity of reflection (100)
should increase by a factor of 2sin2∆/(2 – sin2∆) ≈ 1.66,
which is close to the experimentally measured value
(table). The changes in intensities of other magnetic
reflections are also in compliance with this transition
model.

Thus, the experiment gives evidence for the occur-
rence of the pressure-induced spin-reorientational
easy-plane–easy-axis transition in iron borate at room
temperature, similar to the Morin transition in hematite.
The phenomenological approach suggests that the
magnetic anisotropy constant can change its sign not
only under the action of temperature but also upon
changing pressure. One can expect that the analogous
pressure-induced spin-reorientational transitions can
occur in other weak ferromagnets as well (MnCO3,
CoCO3, CsMnF3, etc.), whose atomic and magnetic
structures are similar to those of iron borate and
hematite.

Pressure-induced changes in the relative intensities of mag-
netic reflections (111) and (100) [I(211) is the intensity of the
nuclear reflection]

P, kbar I(111)/I(211) I(100)/I(211)

0 0.22 0.19

17 ≈0 0.29

30 ≈0 0.32
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Abstract—The expansion of an instantly heated planar layer of condensed matter into a vacuum is investi-
gated. It is shown that, as the result of a phase transition, a liquid shell characterized by a constant density and
filled with matter in a two-phase state is formed in a rarefaction wave. By measuring the velocity of the shell
and its density and mass, it is possible to obtain important information about the behavior of matter in the near-
critical region of the phase diagram, where both experimental and theoretical investigations are complicated.
Problems associated with the kinetics of the phase transition in rarefaction waves are investigated in detail. This
investigation is based on a direct computer simulation of the dynamics of atoms and is free from any assump-
tions usually used in phenomenologically describing the fluctuation kinetics of the liquid–vapor transition.
© 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 47.40.-x; 62.50.+p; 64.70.Fx; 65.70.+y
The effect of femtosecond laser pulses on metal,
semiconductor, and dielectric targets was studied
experimentally in [1–3]. In those experiments, laser
irradiation resulted in the heating of the surface layer.
In metals, radiation is absorbed in a skin layer. Owing
to the smallness of the electron heat capacity and a slow
energy exchange between the electrons and the crystal
lattice, overheating of the electron subsystem occurs
[4–6]. Relaxation processes and electron thermal con-
ductivity determine the temperature and the thickness
of the layer that has been heated at the onset of hydro-
dynamic motion. The motion begins after a lapse of
time τh since the propagation of the laser pulse. Under
the conditions of the experiments reported in [1–3],
τh @ τl, where τl is the laser-pulse duration. Therefore,
we can adopt the approximation where the motion
begins at the instant t = 0, the matter in question being
therefore at rest for t < 0 in this approximation. The ini-
tial density of the heated layer is equal to the normal
density ρ0 of condensed matter. In the cases of interest,
the temperature T0 is such that the adiabatic curve of
relaxation intersects the liquid–pair equilibrium curve
between the critical and triple points.

The ratio l0/c0 provides a natural time scale over
which the sound wave traverses the heated layer. For t <
l0/c0, the density ρ(x, t) decreases monotonically in x
toward a vacuum. In a medium capable of undergoing
a phase transition, the interaction of rarefaction waves
results in this profile gradually becoming nonmono-
tonic over a time interval of about l0/c0. Concurrently,
0021-3640/00/7104- $20.00 © 20167
there arises a structure featuring a liquid shell that con-
tains matter in a two-phase state [7–9]. A solution to the
important problem of the Newton’s rings that are
observed in the experiments reported in [1–3] may be
associated with interference at precisely this structure.

It should be emphasized that not only in experi-
ments with femtosecond laser pulses can a liquid shell
split off the expanding matter—this situation is quite
general. In many other experiments, thermal or shock-
wave loads result in the target acquiring such an
amount of entropy that the adiabatic curve of relaxation
intersects a binodal above the triple point but below the
critical point. That part of matter which occurs within
the liquid shell remains on the binodal for a time inter-
val much greater than the acoustic time scale calculated
by using the initial (large) speed of sound c0. This offers
the possibility of obtaining macroscopic volumes of
matter (for example, metals) at an arbitrary point of the
binodal.

Let us dwell on the problem of the interaction of rar-
efaction waves in a medium capable of undergoing a
phase transition. This is necessary for explaining the
results of a molecular-dynamics simulation. A typical
phase diagram is shown in Fig. 1. Here, the equilibrium
curve Vcbti0 bounds the two-phase liquid–vapor
region; the state V (ρ = 0, p = 0) represents a vacuum; c
is the critical point; b is the point where the isentrope a
intersects the binodal; the segment t corresponds to the
triple point on the (T, p) plane; and i0 is the initial state
(ρ = ρ0, p = 0) on the equilibrium curve. The physical
000 MAIK “Nauka/Interperiodica”



 

168

        

ZHAKHOVSKIŒ 

 

et al

 

.

                                                                                                      
region is bounded from below by the zero isotherm z;
h is the Hugoniot adiabatic curve issuing from the point
i0, which corresponds to a normal state. In the case of
instantaneous (isochoric) heating, matter goes over
from the point i0 to the point i whose position on the
isochore ρ0 is determined by the heating temperature.
The i0  s transition occurs in the case of a shock
compression.
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Fig. 1. (a) Phase diagram showing the binodal (dotted
curve); two-phase melting region bounded by the curves ms
and mf (dashed curves) on the sides of the solid and the liq-
uid phase, respectively; and one curve (sibV) belonging to
the one-parameter family of adiabatic curves covering the
(ρ, p) plane above the curve z. (b) Decrease in the pressure
as the result of adiabatic expansion [s, i, and b label points
where the isentrope a intersects (s) the Hugoniot adiabatic
curve, (i) the isochore ρ0, and (b) the binodal].
The reasons behind the separation of a liquid shell
are clarified by Fig. 2, which shows the symmetric part
of the flow process. The Lagrange coordinate m is reck-
oned from the symmetry plane. At t = 0, the matter
being considered is at rest and the density and pressure
are constant. At the first stage of expansion, the flow is
self-similar over the entire region. In Fig. 2a, the seg-
ment sb1 of the centered wave sb1b2M refers to the seg-
ment ib or sb of the isentrope a in Fig. 1. The cusp b is
stretched into the segment b1b2 of the uniform flow
(plateau). At stages 1 and 2, the points b1 and b2 are the
limiting points on the sides of the single- and the two-
phase medium, respectively. The tail b2M at all stages
and the region 0b1 of the two-phase flow at stage 3 cor-
respond to the two-phase segment of the isentrope a. If
the point b on the binodal (Fig. 2a) occurs at a pressure
much less than its critical value, the mass of matter in
the tail b2M (evaporated mass) constitutes only a small
fraction of the total mass.

At the second stage, the wave 0R reflected from the
symmetry plane m = 0 propagates through the matter.
Now the flow is self-similar only for m > mR(t), where
mR is the coordinate of the first characteristic of the
reflected wave. At the instant tf, the points R and b1
merge and the third stage begins.

Figure 2b displays the graphs of the acceleration of
Lagrange particles. If we disregard evaporated parti-
cles, which constitute the tail, the remaining particles
can be broken down into two groups—that which com-
prises particles with Lagrange coordinates in the range
0 < m < mlw and that which comprises particles with
Lagrange coordinates in the range mlw < m < M (the
subscript “lw” labels the coordinate referring to a liquid
wall). Particles belonging to the m > mlw group form the
ρ ρ ρ ρ
1 2 tf 3

0 m M 0 0 0m M m M Mm

(a)

(b)

mlw mb

u

ub

0 s t 0 s t

u

ub

uF

b1

m* > mlw m* < mlwR
F

s
b1 b2

R
b1 b2

R
b1 b2 b1 b2

Fig. 2. (a) Three stages of expansion (m is the Lagrange coordinate, while M is the boundary with a vacuum). (b) Stages of the accel-
eration of matter particles belonging to (left panel) the liquid shell and (right panel) the internal liquid–vapor region.
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liquid shell over the time interval 0 < t < tf. Particles
from the m < mlw group do not reach the liquid shell. At
the third stage, they occur in the region 0b1, which is
characterized by a reduced density and is filled with a
two-phase liquid–vapor mixture. Let us consider a par-
ticle with a coordinate m∗  greater than mlw. For 0 < t <
ts(m∗ ), it is at rest (Fig. 2b). For t > ts, this particle is
captured by the sb1 wave shown in Fig. 2a. Over the
time interval ts < t < tb1, the m∗  particle is accelerated
by the pressure gradient ∂p(m∗ , t)/∂m. At the instant tb1,
it reaches the point b1 on the profile in Fig. 2a, its image
reaching the point b on the phase diagram (Fig. 1a).
After that, the gradient ∂p/∂m decreases sharply and the
particle is no longer accelerated. Over the time of accel-
eration, the particle acquires the velocity ub, entering
the region of constant flow, b1b2 (Fig. 2a).

In the course of time, matter with coordinates m < mlw
occurs in the two-phase region. It is at rest for t < ts and
is accelerated by the sb1 wave over the time interval
ts(m) < t < tR(m); for tR(m) < t < tf (m), this matter has a
smaller acceleration, but it is still pushed forward by
the concerted effect of the incident and reflected rar-
efaction waves acting to the right and to the left, respec-
tively. The pressure gradient is smaller in the region of
two 0R waves than in the region of one Rb1 wave. Con-
currently, the velocity gradient ∂u/∂m is greater in the
region of two waves. This gradient determines the rate
of the decrease in the density with time. At the instant
tf , the image of the relevant particle on the phase dia-
gram intersects the binodal, the pressure gradient
decreases sharply, and the velocity at which this parti-
cle flies away reaches a maximum value uF(m). It is
important that, because of the reduction in the acceler-
ation due to the reflected wave, uF < ub (Fig. 2b, right
panel); therefore, all m < mlw particles cannot overtake
the liquid layer.

All particles constituting the liquid shell move at a
constant velocity ub, and the density ρb of the shell
remains constant in time. At the third stage, the velocity
of particles with coordinates 0 < m < mlw depends on the
coordinate m, u(0) = 0 and u(m)  ub for m  mlw.
It follows that, for m < mlw, the density continues
decreasing for t > tf. This is the reason behind the for-
mation of the dip 0b1, a two-phase region where the
density is reduced (Fig. 2a).

The above structure of the flow was obtained by
solving the equations of gas dynamics. In doing this, it
was assumed that the medium under study is in local
thermodynamic equilibrium and that kinetic effects are
inoperative. The validity of these assumptions is not
quite obvious. A numerical experiment performed by
the method of molecular dynamics provides an interest-
ing possibility for testing the correctness of the gas-
dynamics solution. Computational procedures on the
basis of molecular dynamics are described in detail
JETP LETTERS      Vol. 71      No. 4      2000
elsewhere [10, 11]. For this reason, we immediately
proceed to formulate the problem and to describe the
results of our simulation.

The results of a typical version of our calculations
employing the Lennard-Jones potential of interaction
between atoms U(r) = 4e[(σ/r)12 – (σ/r)6] are displayed
in Figs. 3–8. The equation of state of this medium is
well known (see, for example, [12, 13]). In particular,
the critical parameters are nc ≈ 0.36/σ3, Tc ≈ 1.36e, and
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Fig. 3. Stages of rarefaction-wave motion toward the center
(l0 stands for the initial position of the boundary with a vac-
uum). Dashes indicate the positions of the basic details of
the distributions calculated with the aid of the Ree polyno-
mial equation of state [12] and with the aid of the Riemann
invariant [8, 9]; s stands for the position of the first charac-
teristic; b1 and b2 represent the boundaries of the plateau
(Fig. 2a); and ub and nb are the velocity and density in the
region of a uniform flow (plateau), respectively. We can see
that the results of gas-dynamics calculations are in good
agreement with the results of our simulation performed by
the method of molecular dynamics.

806040200

0

0.5

1.0

1.5
n, T, V

12

8

4

0

P*

z

Vz

s

γ

p*z

ub

nb
n

R b1 b2l0

Tz

Tx

Time = 40 (MD units)

Fig. 4. Profiles of relevant quantities at the second stage of
expansion at the instant t = 0.7tf . The dash R indicates the
position of the reflected characteristic (compare with
Fig. 2a); the rest of the notation is identical to that in Fig. 3.



170 ZHAKHOVSKIŒ et al.
pc ≈ 0.15e/σ3. The phase diagram of the model is qual-
itatively similar to that in Fig. 1a. We simulated the
expansion of a planar layer into a vacuum. In the
present calculation, the initial density and temperature
were set to n0 = 1.05/σ3 and T0 = 1.8e. The initial thick-
ness of the layer 2l0 was taken to be 76σ. The initial
number of atomic layers was then 2l0/lat0 = 77 (lat0 =

). In the coordinates x and y, which are transversen0
1/3–
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Fig. 5. Third stage of expansion (t/tf = 12.5). The evolution
of the cloud upon the instant of boiling tf  manifests itself
in that the difference in the density between the liquid shell
and the dip increases.

0 z b1 b2l0

Fig. 6. Onset of a phase separation in the region of the
would-be reduction in the density (t/tf = 1.16). Points repre-
sent atoms. The arrow z indicates the direction of expansion.
The figure was obtained by a repetition of three periods λ in
the coordinate x, which is orthogonal to z. In this version of
the calculation, the parameters n0, T0, and Nat were taken to
have the same values as those in the main body of the text,
but the geometric parameter was set to the different value of
2l0/λ = 131σ/65.5σ. The dashes indicate the position of the
plateau according to the gas-dynamics calculation.

4

with respect to the direction of expansion (z axis), we
imposed periodic boundary conditions with period
λx = λy = λ = 86σ (see Fig. 8). In our calculations, we
varied, first, the values of n0 and T0; second, the geo-
metric ratio 2l0/λ within the range 0.5–4 (in order to
estimate the effect of the side boundary conditions);
and, third, the number of atoms Nat within the range
105–106. In the present version of the calculation, Nat is
sufficiently large (Nat = 590 000).

The objective of our simulation was to test the
results of the gas-dynamic calculations reported in [7–
9]. In particular, we aimed at clarifying the possible
effect of metastable states on the dynamics of expan-
sion. With this in view, we chose the initial values n0
and T0 in such a way as to ensure that (i) n0 corre-
sponded to the normal state of matter, (ii) the initial
state was above the region of melting (Fig. 1a), (iii) the
ratio p0/pc had a value close to those in the calculations
from [7–9], and (iv) the adiabatic curve of relaxation
intersected the binodal below the critical point but
above the triple point.

Figures 3–5 show the evolution of distributions of
hydrodynamic variables in the symmetric half of an
expanding cloud. Figure 3 displays these data for the
first stage illustrated in Fig. 2a. The rarefaction wave
travels to the center, t < l0/c0; in the present version of
the calculation, l0/c0 = 25 MD units (all values are pre-
sented here in MD units). Hereafter, Vz is the velocity at

which matter flies away; n is the density;  is the virial

component of the longitudinal pressure; pz =  + nTz

is the pressure along the z axis; γ =  – ; and Tz and
Tx are, respectively, the longitudinal and the transverse
temperature. The plateau b1b2 (Fig. 2a) clearly mani-
fests itself in the profile of Vz in Fig. 3. It can be seen

that the plateau corresponds to a liquid state (  < 0)
and that, in the tail b2M (Fig. 2a), atoms fly away in a
free molecular regime.

Figure 4 corresponds to the instant preceding tf (for
our choice of n0, T0, and l0, we have tf = 60 MD units).
The plateau is clearly seen in the distributions of n, Vz,

and  as well. At the instant tf, the first characteristic
R of the reflected wave reaches the plateau edge b1
(Fig. 2a). As soon as this occurs, the matter boils over
the entire region 0b1 of the would-be dip in the density
(Fig. 6) and the third (last) stage begins. During its ini-
tial period (t/tf ≈ 1), the density nh in the region of the
would-be dip is virtually identical to the density nb of
the liquid shell. However, the ratio nb/nh increases with
time. As a result, there arises a structure featuring a
clear-cut shell (Fig. 5, profile of n, t/tf = 12.5).

From an analysis of the results, it follows that, at all
three stages, the density nb and the temperature Tb in the
region b1b2 remain constant and coincide with the val-
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ues obtained by calculating the point at which the adia-
batic curve intersects the binodal. At the values chosen
in this calculation for n0 and T0, the temperature Tb only
slightly exceeds the temperature Tt at the triple point
(Tb = 0.75, Tt = 0.68). At this temperature, the density
of the saturated vapor is much less than the density of
the condensed matter. Over the entire time of integra-
tion (tfin = 1500 MD units; see Figs. 7, 8), the tail
remains nonequilibrium, featuring different longitudi-
nal and transverse temperatures. The evaporated mass
grows slowly, and the temperatures Tz and Tx gradually
approach each other (compare Figs. 3 and 4 with

0
x

z
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900

1100

1300

1500

Fig. 7. Transformation of the two-phase mixture over a wide
time interval. The time changes from top to bottom between
t = 600 and 1500 MD units with a step of 100 MD units (10
< t/tf < 25). The (x, z) plane is shown, and the expansion
occurs along the z axis. Two periods λ along the x axis are
repeated on each frame.
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Fig. 5). The temperature Tx proved to be higher than
the temperature Tb at early times, because a small frac-
tion of atoms were evaporated over a short time inter-
val from the commencement of integration to equili-
bration, when the temperature of the condensed matter
was high (the initial temperature was higher than the
critical one).

λ x

λ y

700 1200

900 1400

Fig. 8. Transverse (orthogonal to the z axis) cross section of
the two-phase region. The square x × y = λ × λ, λ = 86σ, rep-
resents one period of the flow. The figure shows atoms
occurring at a given instant of time in the gap –40σ < z <
−20σ indicated by two arrows in Fig. 7. Large round light
spots are the cross sections of liquid fragments. Rare indi-
vidual small points in the dark space between the fragments
correspond to evaporated atoms. Time grows from top to
bottom with a step of 100 MD units from t = 600 to
1000 MD units along the left column of the frames and then
from 1100 to 1500 MD units along the right column in just
the same way.
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The initial stage of vapor-phase formation in the
would-be low-density region 0b1 (Fig. 2a) is illustrated
in Fig. 6. Over the entire time of integration, the matter
of the liquid shell is free of vapor bubbles. Gradually,
the fraction of the liquid phase in the two-phase layer
0b1 decreases and a liquid featuring bubbles (Fig. 6)
breaks up into liquid fragments stretched in the direc-
tion of the motion. The impressive sequence of frames
in Fig. 7 illustrates the process. The topology of frag-
mentation is clarified by Fig. 8. The two-phase mixture
is bounded from the left and from the right by the walls
of the liquid shell (Fig. 7). In the present calculation,
the relative wall thickness was ∆zlw/l0 = 0.73. It is deter-
mined by the quantities n0 and T0. The mass of the two
walls constitutes 54% of the total mass. The width and
the mass do not change with time.

Here, it is appropriate to mention the study of Tox-
vaerd [14], who used the method of molecular dynam-
ics to simulate the microstructure of a two-phase
medium in the case of a uniform expansion. There, the
mean-velocity profile linear in coordinates was speci-
fied even at t = 0. In the present study, the expansion of
the layer begins from the state at rest. The velocity field
is then formed self-consistently under the effect of rar-
efaction waves.

In the experiments reported in [1–3], the thickness
of the heated layer amounted to a few hundred inter-
atomic spacings, while the expansion time was a few
nanoseconds. In the numerical experiment based on the
method of molecular dynamics, the analogous quanti-
ties were an order of magnitude smaller. An analysis of
the results of our simulation revealed, however, that the
pattern following from gas-dynamic calculation can be
formed even at such small scales.
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