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Abstract—A nondegenerate four-level N-type scheme was experimentally implemented to observe electro-
magnetically induced transparency (EIT) at the 87Rb D2 line. Radiations of two independent external-cavity
semiconductor lasers were used in the experiment, the current of one of them being modulated at a frequency
equal to the hyperfine-splitting frequency of the excited 5P3/2 level. In this case, apart from the main EIT dip
corresponding to the two-photon Raman resonance in a three-level Λ-scheme, additional dips detuned from the
main dip by a frequency equal to the frequency of the HF generator were observed in the absorption spectrum.
These dips were due to an increase in the medium transparency at frequencies corresponding to the three-pho-
ton Raman resonances in four-level N-type schemes. The resonance shapes are analyzed as functions of gener-
ator frequency and magnetic field.© 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 32.80.Qk; 42.50.Gy
† The nonlinear interference effect [1] underlies
numerous studies on coherent population trapping
[2, 3], inversionless amplification [4], electromagneti-
cally induced transparency [5], atomic laser cooling
and capture [6], phase control of atomic states [7], etc.
Initiation of electromagnetically induced transparency
(EIT) in a medium with coherent pumping is one of the
most prominent interference phenomena and manifests
itself as narrow dips in the absorption spectra of atoms
interacting with multifrequency resonance radiation.

As a rule, the experiments on EIT of alkali-metal
atoms are carried out using the Λ-scheme of transitions
in the laser radiation field modulated at a frequency
equal to the ground-state hyperfine- or Zeeman-split-
ting frequency [8] or in the field of two phase-locked
lasers [9]. The scanning of modulation frequency (or
frequency difference in the case of two lasers) gives rise
to a narrow interference resonance at the point corre-
sponding to the exact two-photon Raman resonance
between two ground-state sublevels coupled to the
same excited state.

The use of the four-level N-type schemes of reso-
nance transitions, for which Zeeman coherence can be
spontaneously transferred from the excited to the
ground level [10], opens up new opportunities for
studying nonlinear phenomena. Such a scheme was
investigated both theoretically [11] and experimentally
[8, 12] for the quasidegenerate upper and lower states

† Deceased.
0021-3640/00/7105- $20.00 © 20175
interacting with a two-frequency laser emission in a
weak magnetic field. It was shown that the coherence
transfer can give rise not only to the EIT but also to the
electromagnetically induced absorption.

This paper reports the results of experimental imple-
mentation of the nondegenerate four-level N-type
scheme for the observation of the EIT in a three-fre-
quency laser radiation field. The experiments were car-
ried out using the radiations of two independent semi-
conductor lasers, one of which was modulated at a fre-
quency equal to the hyperfine-splitting frequency of the
excited 5P3/2 state of the 87Rb atom. Therefore, the
three-photon Raman resonance N-type scheme has
been implemented for initiating EIT.

Experiments were carried out on the optical transi-
tions between the hyperfine-structure components of
the 87Rb D2 absorption line (the 5S1/2  5P3/2 transi-
tion at a wavelength of 780 nm). The experimental
setup is schematically shown in Fig. 1a. Two
HL7851MG diode lasers with external cavities were
used as radiation sources. The generation linewidth did
not exceed 1 MHz. For tuning to different transitions, a
portion of the radiation was diverted into two indepen-
dent saturated-absorption sections 1 and 2 (according
to [13]). The remaining portion of the radiation was
combined in a collinear geometry. The wave fronts
were carefully brought into coincidence by means of a
set of mirrors and diaphragm 3. The polarization plane
of one of the radiations was turned through 90° by a
000 MAIK “Nauka/Interperiodica”
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Fig. 1. (a) Experimental setup. (1 and 2, schemes of saturated absorption spectroscopy; 3, diaphragm; 4, polaroids; PD, photodiodes;
HFG, high-frequency generator). (b) Scheme of the 87Rb D2 line transitions occurring in the presence of HF modulation of laser 1.
                    
half-wave plate for further detection of the separate
absorption signals of the two beams using polaroids 4.
The beams passed through the absorption cell contain-
ing the 87Rb isotope vapor at temperatures from 20 to
40°C. The laser beam intensities were as high as 20 and
30 mW/cm2 for lasers 1 and 2, respectively.

High-frequency modulation of the current of laser 1
was accomplished by an HF generator. Its frequency f
was varied near 156.9 MHz, i.e., near the frequency dif-
ference between the hyperfine-structure sublevels F = 1
and 2 of the excited 5P3/2 state (Fig. 1b). Switching on
the generator resulted in the appearance of side fre-
quencies shifted by ± f from the center frequency of the
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Fig. 2. (a) Absorption of the radiation of laser 1 recorded
upon scanning the frequency of laser 2. (b) The same spec-
trum with the switched-on HF modulation of laser 1. (c)
Positions of additional resonances at different frequencies
of HF generator. (d) Shape of the additional resonance
5S1/2 (F = 1)  5P3/2 (F = 1)  5S1/2 (F = 2) 
5P3/2 (F = 2) (left in Fig. 2b) in a transverse magnetic field
of 10 G. (e) The same for the 5S1/2 (F = 1)  5P3/2
(F = 2)  5S1/2 (F = 2)  5P3/2 (F = 1) resonance
(right in Fig. 2b).

               

     
          
emission spectrum of laser 1. Their intensities were
one-tenth that of the center frequency.

The direction and strength of the constant magnetic
field in the cell were defined by three pairs of Helm-
holtz coils. This made it possible to compensate the lab-
oratory magnetic field, which was equal to 0.7 G and
considerably affected the resonance amplitudes.

Absorption of the radiation from laser 1 was
recorded simultaneously by tuning the frequency ω2 of
laser 2 within the Doppler profile of a group of the
5S1/2(F = 1)  5P3/2(F = 0, 1, 2) transitions (Fig. 1b),
Doppler broadening of individual resonances was
520 MHz. In this case, the center frequency ω1 of laser
1 was fixed and tuned to the center of the Doppler pro-
file of a group of the 5S1/2(F = 2)  5P3/2(F = 1, 2, 3)
transitions. The frequency of laser 2 was computer-
controlled.

The absorption signal ω1 represented the sum of sig-
nals from three groups of atoms with different velocity
projections. Due to the Doppler effect, each of them
was in resonance with one of the three transitions. In
the absence of emission ω2, the absorption at frequency
ω1 was at a certain fixed level (about 10%) determined
by the atomic concentration, saturation parameters,
relaxation rates, etc.

After switching on and scanning frequency ω2, sev-
eral peaks with different amplitudes appeared in the
absorption spectrum ω1 (Fig. 2a). The increase in the
absorption at certain values of frequency ω2 was caused
by an increase in the population of the 5S1/2 (F = 2) level
due to the spontaneous decay of the 5P3/2 (F = 1, 2) levels
excited by radiation ω2. The peak widths (ca. 40 MHz)
were mostly due to the power broadening of the reso-
nances and decreased with decreasing laser radiation
intensity. The frequency spacings between the peaks
were equal to the hyperfine-splitting frequencies of the
excited 5P3/2 state.

In the absence of HF modulation of laser 1, only one
of the peaks had the interference EIT dip at its center
(Fig. 2a). The dip corresponded to the summarized
signal from the two-photon Raman resonances
5S1/2 (F = 1)  5P3/2 (F = 1)  5S1/2 (F = 2) and                                                  
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groups of atoms with different velocity projections.
The dip width fell in the range 2.6–4 MHz and was less
than the natural linewidth (6 MHz). It is known that the
width of EIT resonances depends strongly on the fluc-
tuations of the phase and frequency differences of laser
radiations and can be tangibly reduced upon matching
the phases of two radiations if the depolarizing colli-
sions are absent [10]. In our case, two independent
lasers and a cell with rubidium vapor at low pressure
without buffer gas were used, so that the width of the
interference resonances was mainly determined by the
width of the laser spectra.

The EIT resonance was most contrasting in the case
of orthogonal linear polarizations of radiations 

 

ω

 

1

 

 and

 

ω

 

2

 

. To enhance contrast, it was necessary to compen-
sate the laboratory magnetic field.

Switching on the HF modulation of laser 
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in the appearance of the additional EIT dips at the tops
of the two neighboring absorption peaks detuned by the
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cies in the spectrum of laser 
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F = 1)  5S1/2 (F = 2)  5P3/2 (F = 2) (left
dip in Fig. 2b) and 5S1/2 (F = 1)  5P3/2 (F = 2) 
5S1/2 (F = 2)  5P3/2 (F = 1) (right dip in Fig. 2b) in
two groups of atoms with different velocity projections.
The frequency detuning of the additional dips from the
main EIP resonance was equal to the HF-generator fre-
quency. As the frequency varied over the range 156.9 ±
15 MHz, the dips changed their positions at the tops of
the peaks (Fig. 2c) and disappeared at large detuning.

Note that, at the exact resonance, the radiations at
three frequencies, ω1, ω2, and (ω1 + f) or (ω1 – f), inter-
act simultaneously with each atomic group. This inter-
action generates a coherent superposition of atomic
state, for which the absorption of laser radiations
decreases (dark resonance). The appearance of the dark
resonance underlies the phenomenon of electromagnet-
ically induced transparency.

The additional EIT dips were most contrasting in
the presence of a weak (≤0.5 G) longitudinal (collinear
with the direction of the laser beams) magnetic field but
disappeared at a field strength above 2.5 G. At the same
time, the indicated fields had almost no effect on the
shape and amplitude of the main EIT resonance.

In the case of a transverse magnetic field, the reso-
nances did not disappear, allowing their Zeeman split-
ting to be observed. Figures 2d and 2e show the exper-
imental records of the additional dips in the presence of
a 10-G magnetic field aligned with the polarization vec-
tor of the ω1 wave. A sizably different behavior of the
resonances in Figs. 2d and 2e is noteworthy. Despite the
low contrast, the resonance structure shown in Fig. 2e
allows one to assume that an inverted dip is present at
the center and that its origin is the same as the origin of
the inverted dips observed in [8, 11, 12]; i.e., it is the
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electromagnetically induced absorption. However, an
analysis of the rather complex shape of the resonances
observed in our case requires careful theoretical con-
sideration and numerical calculations with taking into
account the Zeeman splitting of atomic levels.

The effect demonstrated in this work is the imple-
mentation of the nondegenerate four-level N-type
scheme for initiating the EIT in the field of three-fre-
quency laser radiation. At the same time, it can be
treated as a frequency shift of the EIT resonances under
the HF modulation of the laser radiation. This effect
can be applied in a wide variety of problems in the field
of nonlinear laser spectroscopy, in particular, in various
schemes of laser cooling and in the experiments on
inversionless amplification and lasing. Note in conclu-
sion that the observed resonances can have extremely
small widths if the magnetic field is accurately com-
pensated and the laser radiations are closely phase-
locked.
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Dynamically Stable Electron Bunches in Beam Interaction 
with an Electromagnetic Wave Packet1

A. S. Volokitin* and C. Krafft**
* Institute of Terrestrial Magnetism, the Ionosphere, and Radiowave Propagation, Russian Academy of Sciences, 

Troitsk, Moscow oblast, 142092 Russia
** Laboratoire de Physique des Gaz et des Plasmas, Université Paris Sud, 91405 Orsay Cedex, France

Received January 28, 2000

Abstract—Nonlinear interaction of electron beam with a whistler wave packet that effectively dissipates
through collisions or wave leakage is studied. Independently of the dissipation type and nature of waves, self-
organization of the beam structure leads to the formation of bunches continuously decelerated by waves. Strong
dissipation prevents phase mixing required for the quasilinear theory and keeps wave phases in the packet cor-
related. Thus, dynamically stable bunches are present together with a plateau in the velocity distribution;
asymptotically, wave emission by bunches is the main process. © 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 41.60.Bq; 41.75.Fr; 52.35.Hr; 52.40.Mj
1 The study of energetic beam interaction with electro-
magnetic waves in magnetized plasmas is motivated by
many laboratory and space experiments involving beam
injection [1–9] and by observations of natural suprather-
mal particle fluxes traveling in planetary, solar, and astro-
physical plasmas [10–12]. For example, emission of
extremely low-frequency waves by modulated and
pulsed electron beams injected by satellites into the
Earth’s ionosphere and magnetosphere have been
observed in several active space experiments [4–9].

In particular, theoretical investigations of the non-
linear dynamics of electron beam resonant interaction
with whistler waves were mainly devoted to the case of
a single monochromatic wave or to the quasilinear the-
ory of boundless beam relaxation in plasma with a con-
tinuous wave spectrum [13–15]. It was particularly
shown [16–19] that, in the presence of strong dissipa-
tion, the nonlinear interaction of a monoenergetic elec-
tron beam with a single wave differs considerably from
the nondissipative case: the beam–wave system exhib-
its a strong tendency to self-organization. Indeed, the
dissipative effects due to the collisions in plasma or to
the effective wave radiation out of the bounded volume
of a thin beam make the system nonconservative and, as
a result of the irreversible loss of wave momentum and
energy, prevent the periodic energy exchange between
the beam and the wave. At the same time, the nonlinear
evolution of resonant particles is characterized by the
formation of dynamically stable electron bunches that
are continuously decelerated and supply energy to the
wave through the resonant Cherenkov interaction
caused by a self-adjusted nonlinear shift of the parallel
wave number [16–18].

1 This article was submitted by the authors in English.
0021-3640/00/7105- $20.00 © 0178
In this letter, we report and explain, for the first time,
physical effects of this type occurring during the non-
linear interaction of an electron beam with a packet of
whistlers; moreover, it is shown that different types of
dissipative beam–wave interaction can be described by
similar mechanisms. In the case of a wave packet, the
bunched particles exchange energy with several waves,
so that one could expect that the beam–wave system
should evolve according to the quasilinear theory (dif-
fusion to lower velocities and plateau formation). How-
ever, in the presence of strong losses of wave energy,
the phases of all waves can become strongly correlated
and thus prevent the stochastic phase mixing required
for the validity of the quasilinear theory. This letter pre-
sents a theoretical model and relevant numerical simu-
lations explaining the nonlinear evolution of the beam–
wave system in terms of dynamic energy exchange,
particle trapping, slowing down of the beam, self-orga-
nization of complex bunched electron structures, and
quasilinear diffusion.

As an interesting practical example of a dissipative
system, we consider here a nonlinear model developed
to study whistler emission through the Cherenkov res-
onance of a density-modulated thin electron beam. A
beam of small radius rb and cylindrical symmetry is
injected along the ambient magnetic field B0 = B0z with
a fixed modulation frequency. The evolution of a beam-
current modulation is considered self-consistently as
the result of a nonlinear motion of beam particles in the
whistler fields. Wave fields outside the beam are
described in the approximation of a fixed beam radius,
because B0 stabilizes the total perpendicular size of the
beam, although the radial profile of the beam current
can be modified by the action of whistlers. All nonlin-
earity is held in the electron motion; the drift approxi-
2000 MAIK “Nauka/Interperiodica”
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mation is considered for the motion in the direction per-
pendicular to B0. The evolution of the emitted cylindri-
cal whistlers is characterized by slow variations in the
spatial wave structure along the distance z from the
injector or, similarly, by slow changes in the parallel
wave numbers.

A packet of M sheared whistlers with frequencies
ωm below the electron gyrofrequency ωc and well above
the low hybrid frequency ωlh is considered (ωc ! ωp,
where ωp is the electron plasma frequency); the whis-
tler parallel wave number kzm is much smaller than the
perpendicular one, kzm ! k⊥ m. This allows one to
describe electromagnetic wave fields using only the
potentials Az and ϕ; the perpendicular component A⊥  of
the vector potential is small and can be expressed with
the help of Az. At a given ωm, there are two resonant
whistlers with the same kzm (satisfying the Cherenkov
resonance condition kzmvbz = ωm, where vbz is the paral-
lel beam velocity) and with two different perpendicular
wave numbers k1m and k2m. The properties of whistler
dispersion allow the beam to interact simultaneously
with several waves having the same phase velocity but
different ωm and k⊥ m. The situation considered here is
realistic, because spectral analysis of the modulated
current of the beams injected from guns aboard satel-
lites or in vacuum chambers typically exhibits not only
the modulation frequency but also higher harmonics [2,
9]; moreover, modulation at different frequencies can
also be applied simultaneously to the beam density [9].

Since the beam is thin (i.e., k⊥ mrb ! 1), all fields and
potentials inside and outside the beam can be described
in terms of potential amplitudes at the beam center,
Ψm = Θ1m(z)H1m + Θ2m(z)H2m, where Θim(z) are slowly
varying amplitudes of cylindrical waves and Him ≡

(kimrb) are Hankel functions. Then, using Maxwell
equations and matching conditions at the beam bound-
ary with the conditions of free wave propagation to
infinity, one can find M equations describing the self-
consistent nonlinear evolution of whistler amplitudes
along the beam, with a slow modulation of the parallel
beam current jbz as a source term:

(1)

where nb is the initial beam density and e the electron
charge; N is the total number of beam macroparticles;
and θj, m = kzmzj – ωmt ≡ mθj, where θj = kz1zj – ω1t, is the
phase of particle j in the field of the wave harmonic m.
The rb- and k⊥ m-dependent complex factor κm describes
new effects of energy loss through the wave emission
out of the beam to infinity (linear effective damping
process). The analogy with the effective dissipation
through collisions is not full: whereas Re(κm) repre-

H1
i( )

∂Ψm

kzm∂z
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2πv bz

ωp
2

-------------- jbz m,〈 〉–=
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∑ ,
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sents the rate of emission, Im(κm) controls the revers-
ible exchange of the wave-field energy inside the beam
with that of the outside waves. The right-hand side of
(1) describes the nonlinear interaction of the harmonic
m with the resonant electrons; it results from the aver-
aging of the beam current over the beam cross section.
The slow evolution of the current is due to the varia-
tions of the particle phases θj as a result of the parallel
motion of electrons in the field of M waves

(2)

where me is the electron mass; Er, θ, z and Br, θ, z are,
respectively, the total electric and magnetic fields at the
particle position (r, θ, z); and am(r) depends on the
parameters of the beam-plasma system.

A similar model can describe the simple and well-
studied case of electrostatic waves in a collisional
plasma. In the normalized form, the evolution of the
complex amplitude of the wave electric field Ek =

%k  and the motion of beam electrons can be
presented as

(3)

where Ak = η2Ek/  and η = (nb/n0)–1/3; n0 is the

background plasma density; δk = η[νc – i(ωk – vbzk)]/ ,
where νc is a collision frequency; k0 is the Cherenkov
resonance parallel wave number, k' = k/k0; θj = k0zj –

t is the phase of the particle j in the frame moving

with velocity vbz; and τ = ηt. After proper normal-
ization, equations (1), (2), and (3) take a very similar
form characteristic of the dissipative beam–wave
packet system.

The results of numerical calculations (solutions of
the systems of equations) show various stages in the
evolution of both above-mentioned dissipative systems.
During the so-called initial stage, the waves grow
according to the linear instability, saturate in amplitude,
and begin to trap beam particles. During the trapping
process, typical vortices appear in the phase spaces;
some of them evolve further into clumps or electron
bunches localized in space and velocity. Then, in con-
tradiction to the well-known case of a conservative sys-
tem (no dissipation), the energy lost by the beam to the
waves cannot be returned to it because of the irrevers-

d2θ j
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ible loss of wave energy and momentum: no quasi-peri-
odic energy exchange between the waves and the
trapped particles is observed. At the same time, the
phase velocity of waves is self-adjusted owing to a non-
linear shift of their parallel wave number, so that Cher-
enkov resonance with bunched particles holds. The sta-
ble nonlinear structures thus formed, the so-called
bunches, are continuously decelerated (slowing down
of the beam); however, as the rate of energy transfer
from beam to waves decreases, they are damped.

In the case of a single quasi-monochromatic whis-
tler, the continuous bunch-deceleration and Cherenkov
resonance-tuning processes can be explained with the
help of a simple model treating bunches as nonlinear
resonant structures. At the asymptotic stage of the inter-
action, a well-formed bunch can be considered as a sin-
gle particle with weight ntr = Ntr/N proportional to the
number Ntr of particles it contains; the current modula-
tion is only due to the bunched particles. As confirmed
by the numerical solution, the wave and the bunch
remain in phase; i.e., θb + ψ + π/2 = ϕ ≈ const. Then,
the bunch interaction with the dissipating wave follows
from the normalized form of (1), (2)

(4)

where A = |A|eiψ is the normalized wave amplitude and
v . –dψ/dτ is the nonlinear shift of phase velocity.
Even in the case of single wave, not only one but sev-
eral bunches with different velocities can exist; they are
resonant with the waves present in the Fourier spec-
trum. Indeed, slow changes in the main wave character-
istics can be considered as a result of the superposition
of several waves whose wave numbers differ slightly.
The case of the beam–wave packet interaction is much

A  . 
ntr

v
------ ϕ ,

dv
dτ
-------  . 

ntr

v
------ 2ϕ ,sin–sin–

dv 2

dτ
---------  . 2ntr 2ϕ  . const,sin–

–1

0 2

u

θj4 6

0

Fig. 1. Thin beam interaction with a packet of M = 20 whis-
tlers. Electron dynamics in the θj – u phase space, where u
and θj are the normalized parallel velocity of electrons in the
frame moving with the initial beam velocity vbz and their
total phase, respectively. The uniform initial particle distri-
bution, as well as the dimensionless parameters correspond-
ing to active space experiments, are used; M = 20, N = 6000,
and nb/n0 . 0.02.
more complicated, because the different waves can suc-
cessively trap electrons and, as a result, form a wider
variety of bunches (in size, velocity spread, number of
particles, and deceleration); these can be accelerated or
decelerated according to their phase matching with
waves. As the bunch velocity decreases continuously,
the bunched electrons can start to interact with the
waves of smaller phase velocities than the phase veloc-
ity of the initial trapping wave. The bunches can catch
up with each other and merge to form bigger bunches.
Each formed bunch makes a finite contribution to the
amplitude Am of harmonic m, according to the phenom-
enological estimation [derived from (1), with δm stand-
ing for the normalized form of κm]:

(5)

where nl is the relative number of particles inside the
bunch l, Mb is the total number of bunches, and θb is the
phase of bunch l (all particles it contains have roughly the
same phase). If the bunches formed have similar charac-
teristics, their behavior with respect to the waves is
roughly equivalent, and they can all be resonant with
waves. In contrast, if a certain bunch contains many
more electrons than the others do, it dominates the sys-
tem dynamics, because only it interacts strongly with the
waves. The other bunches participate weakly in the radi-
ation process, even though they are in resonance with
waves. But, inasmuch as each Am is the sum of resonance
contributions from all bunches [see (5)], the nonvan-
ishing (on average) resonance deceleration force acting
on the particles in bunch l is Fl = d2θb/dτ2; since the
phases of all waves are well correlated, this force is pro-
portional to the relative number of particles in the bunch:

Fl ∝  Re  ∝  nl.

At the asymptotic stage of the interaction process,
the beam particles are eventually separated into two
distinct groups: the dynamically stable bunches contin-
uously decelerated in resonance with the waves and the
stochastic population of nonresonant electrons, the so-
called bulk executing more or less pronounced diffu-
sion to lower velocities. The number of particles in each
bunch, as well as in the bulk, is established during the
trapping by waves and the subsequent bunch formation;
it depends on the beam parameters and initial condi-
tions. This picture is different from that usually
expected from the quasilinear theory, where the system
evolves asymptotically toward a plateau distribution
through the velocity diffusion; in our case, additional
nonlinear stable structures are present in the velocity
distribution, allowing the beam to radiate energy out of
its volume at a significative distance from the injection
point. Thus, the strong effective dissipation can prevent
the stochastic phase mixing required for the validity of
the quasilinear theory and to keep the phases of all

Am . i
mnle

imθb–

i∂θb/∂τ mδm+( )
----------------------------------------,

l 1=

Mb

∑

iAme
imθb

m∑
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Fig. 2. Thin-beam interaction with a packet of M = 20 whistlers. Variation as a function of the normalized distance τ to the injector
(0 < τ < 125) of (a) the parallel velocity distribution f(u) (τ = 0 for the upper curve); the inset on the left upper corner represents a
zoom of f(u) at the asymptotic stage τ = 125; a diffusion plateau together with bunched structure are seen; (b) the normalized elec-
tromagnetic energy |Am |2 (in logarithmic scale) carried by the M waves m. Parameters are the same as in Fig. 1.
waves well correlated. The sequences of bunches (a
strongly modulated electron beam) propagating
together with the forced electric field perturbations
(modulated wave packet) can be considered as nonlin-
ear van Kampen modes in a plasma including dissipa-
tion.

The main features of the beam–wave system evolu-
tion are shown in Figs. 1 and 2 illustrating the results of
numerical calculations of the interaction of a thin mod-
ulated electron beam with a packet of whistlers in the
presence of dissipative effects (wave radiation out of
the bounded beam volume). Figure 1 shows the elec-
tron phase space at the stage where most bunches are
well formed after trapping by the wave packet and well
separated from the nonresonant bulk. In Fig. 2, one can
see the evolution of the parallel beam velocity distribu-
tion with the distance to the injector, exhibiting bunch
deceleration, bulk heating, velocity diffusion, and the
formation of a plateau with fine bunched structures, as
well as the electromagnetic energy carried by the
waves.

In conclusion, the numerical calculations of the
beam interaction with a finite number of waves in the
presence of effective dissipation have shown that, inde-
pendently of the dissipation type and the nature of the
waves considered, the nonlinear evolution of the parti-
cle distribution has a tendency to self-organization,
leading to the formation of highly concentrated elec-
tron structures. These bunches of resonant particles are
decelerated continuously by the friction on the waves,
and their dynamics shows noticeable stability in the
time range exceeding several characteristic times of
their formation. When the number of waves in the
packet is large and the wave spectrum is continuous, a
quasilinear diffusion of particles in the velocity space
and plateau formation in the velocity distribution are
usually expected to occur during the beam relaxation
JETP LETTERS      Vol. 71      No. 5      2000
stage. In the strongly dissipative case, however, our cal-
culations show the coexistence, in the velocity distribu-
tion, of a wide, very low plateau together with the small
peaks (at lower velocities) corresponding to the stable
electron bunches that typically contain about 1–10% of
the total number of particles. On the other hand, the pla-
teau itself exhibits fine structure consisting of a large
set of small and almost indistinguishable bunches. At
the asymptotic stage of evolution, the deceleration rate
of bunches and, correspondingly, their whistler emis-
sion rate are proportional to the number of particles
they contain. At the same time, each wave is supported
by all bunches, and, on average, the waves in the packet
have almost the same amplitudes, although not the
same emission rates (which in the whistler case are pro-
portional to the wave frequency). If the total number of
particles gathered in bunches is not too small, the whis-
tler energy emitted during the long asymptotic stage of
beam relaxation (and the total loss of beam energy) can
exceed the whistler emission in the initial stage of the
interaction (i.e., near the injector), although the latter is
much more intense. Therefore, it is essential to find the
way to control the amount of particles organized into
bunches in order to increase the emission efficiency.
Our calculations show that one of the possibilities for
achieving this aim is to premodulate the beam at one or
several frequencies.
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Abstract—The results of experimental studies of self-propagating high-temperature synthesis in double-layer
Cu/Au thin-film systems are presented. It is shown that the synthesis initiation temperature for a Cu/Au film is
determined by the order–disorder phase-transition temperature in the Cu–Au system. The order–disorder tran-
sition temperature for thin films is found to be lower than for the bulky samples. It is assumed that the temper-
atures of initiation of solid-phase reactions in thin films can be associated with the structural phase-transition
temperatures. © 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 81.30.Hd; 82.65.-i
Solid-phase reactions in thin films proceed at tem-
peratures considerably lower than the relevant temper-
atures in bulky samples. The majority of solid-phase
reactions occur at the interfaces between thin films at
temperatures as low as 400–800 K (see, e.g., [1, 2]).
However, on long aging, the compounds can form at the
contact surface even at room temperature [3]. It is
believed that diffusion along the grain boundaries is a
dominant mechanism of solid-phase reactions in thin
films, because it is several orders more efficient than
bulk diffusion. Because of this, diffusion along the
grain boundaries and a high defectiveness of thin films
may be responsible for considerable mass transport at
low temperatures [1]. Since the solid-phase reactions in
thin films proceed under nonequilibrium conditions,
the phase diagram, as a rule, is not invoked for an anal-
ysis of the composition of reaction products and the
temperatures of their formation. In practice, it is impor-
tant to know the formation temperatures, because the
thin-film technologies are widely used in microelec-
tronic devices. These devices are often fabricated and
operate at temperatures close to the temperature of ini-
tiation of solid-phase reactions in thin-film elements.
Among the diversity of solid-phase reactions in thin
films, there is a class of reactions that occur during the
course of fast thermal annealing (see, e.g., [4]). Rapid
thermal annealing is part of a rapid isothermal treat-
ment; it amounts to the fast heating of film samples to
a certain temperature followed by annealing for 1–100
s at this temperature and subsequent cooling [5]. It is
shown in [6, 7] that the solid-phase reactions in thin
films can proceed in the self-propagating high-temper-
ature synthesis (SHS) regime. SHS is initiated in dou-
ble-layer films when the sample temperature TS
0021-3640/00/7105- $20.00 © 20183
exceeds the initiation temperature T0 (TS > T0). SHS is
a surface combustion wave propagating along the film
surface. At temperatures near the initiation temperature,
the SHS-front velocity is equal to ~ (2–10) × 10–2 m/s.
Because of this, the traveling time for the SHS wave in
the experimental samples is equal to 5–15 s. This
implies that many solid-phase reactions occurring in
the course of rapid thermal annealing are the SHS reac-
tions. There are two SHS types in thin films. For the
first one, the reaction products contain compounds and
only a single SHS wave occurs, as in the case of SHSs
in powders. For the second SHS type, the passage of the
combustion wave at TS > T0 and the lowering of the film
temperature to a temperature below the initiation tem-
perature TS < T0 is followed by the passage of a second
front that is inverse of the SHS front and results in
phase layering in the sample. In [8, 9], the SHS of the
second type is referred to as multiple SHS (MSHS).
MSHS is a reversible structural phase transition corre-
sponding to the transition through the eutectic temper-
ature  of bulky samples [9]. However, a film ana-
logue  of the  temperature is lower than the eutec-
tic temperature  of the bulky samples (  < ). It
is conceivable that efficient heat removal to a support
reduces the temperature of solid-phase reactions in thin
films. Unexpectedly, multiple SHS occurs in the solid
phase, where it proceeds with an exceedingly low acti-
vation energy [10]. In this case, the compounds are
formed at the temperature T0 =  of SHS initiation. It
is assumed that the mechanism of phase layering
induced by the passage of the front of multiple SHS is
related to the mechanisms of phase layering caused by
eutectic crystallization and eutectoid or spinodal
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decomposition [9]. The result obtained implies that the
compounds can form in thin films upon other reversible
solid-phase transformations, among which the order–
disorder phase transition is most familiar.

This work is devoted to studying SHS in the double-
layer films for which the reaction products can undergo
the order– disorder phase transition. The study was car-
ried out on a Cu–Au system that is classical as regards
the ordering phenomenon. The purpose of this work
was to demonstrate that the temperature T0 of initiation
of the solid-phase reactions between the gold and cop-
per layers is determined by the Kurnakov temperature
TK of a bulky Cu–Au system. The distinctive feature of
the Cu–Au system [11, 12] is that, depending on the
concentration, the ordered CuAu (superstructure L10)
and Cu3Au (superstructure L12) phases form modulated
CuAu|| and Cu3Au|| structures at elevated temperatures
in a narrow interval of 25–80 K. For example, CuAu|| is
a one-dimensional modulated structure composed of
ten oriented tetragonal CuAu| cells arranged along the
b-axis. From the phase diagram [11] it follows that the
Kurnakov temperature TK changes from 510 to 683 K
in the concentration range of 40–60 at. % Au. It is sig-
nificant that the Cu–Au system exhibits no solid-phase
structural transformations other than the ordering phe-
nomenon.

Experimental samples were thin-film systems com-
prised of copper and gold layers sequentially deposited
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Fig. 1. X-ray diffraction patterns of a double-layer
Au(80 nm)/Cu(55 nm)/MgO(001) film sample; (a) initial
sample and (b) after the fast thermal annealing cycle.
on glass mica supports or on a freshly cleaved MgO
(001) surface. To produce single-crystal layers on the
MgO (001) surface, the first layers were deposited at
temperature TS = 500 K. To avoid reaction between the
layers, the second layer was deposited at room tem-
perature. The layer thicknesses were chosen in such a
way that the completely reacted samples contained
40–60 at. % Au. The Au/Cu samples thus obtained were
placed on a heater and heated at a rate of no less than
20 K/s up to the SHS-initiation temperature T0, which
turned out to be equal to 520–540 K. The initiation tem-
perature T0 = 520–540 K did not depend on the layer
thicknesses, which determined the concentration in the
reacted sample. In the samples on glass mica supports,
the SHS reaction exhibited weakly pronounced auto-
wave behavior. The coefficient of reflection from the
sample surface changed, allowing visual observation of
the course of the reaction. For the samples on the MgO
(001) support, the SHS reaction was weakly detectable.
Because of this, the samples were subjected to fast ther-
mal annealing consisting of heating to TS = 570 K > T0,
exposure to this temperature for 15 s (the time required
for the reaction), and slow cooling at a rate of ~ 0.05 K/s.

Figure 1 shows the X-ray diffraction patterns of the
Au(80 nm)/Cu(55 nm)/MgO(001) sample correspond-
ing to an approximately 1 : 1 gold-to-copper atomic
ratio in the reaction products. The initial samples con-
sisted of epitaxial Cu layers with the (001) orientation
parallel to the MgO (001) surface. The upper Au layer
grew in two preferable orientations, (001) and (111)
(Fig. 1a). The reflections from Au and Cu disappeared
after the reaction, suggesting that the layers com-
pletely reacted. The X-ray patterns of the reacted
Au(80 nm)/Cu(55 nm)/MgO(001) samples show reflec-
tions from the ordered tetragonal CuAu| phase having
the (001), (111), (010), and (110) orientations, as well
as the reflections from the orthorhombic CuAu|| phase
with the (100), ( ), ( ), and ( ) orienta-

tions parallel to the MgO (001) surface. The Cu3Au
phase with the (100) orientation can form in the
reaction products (Fig. 1b). On the whole, the com-
pounds formed in this concentration range corre-
sponded to the equilibrium phase diagram [12]. The
relative electrical resistance R(TS) of the double-layer
Au(80 nm)/Cu(55 nm)/MgO(001) sample is shown in
Fig. 2 as a function of the support temperature TS for
three successive cycles of fast thermal annealing.

The measurements of electrical resistance R(TS)
(Fig. 2) showed that the smooth change in R(TS) was
interrupted at TS = T0 ~ 530 K because of SHS onset in
the film sample at n = 1. In subsequent cycles (n > 1),
the smooth R(TS) dependence was again interrupted at
TS ~ 530 K. However, it is caused by the order–disorder
transition in CuAu| and CuAu||. In the SHS and the
order–disorder-transition regions, the resistance exhib-
its a slight hysteretic behavior typical of the order–dis-
order transitions. The slopes of hysteresis branches to

1101 0100 1100
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the TS -axis in the temperature interval ( , ) likely
correspond to the reversible structural CuAu| 
CuAu|| transitions, while the temperature  corre-
sponds to the CuAu||  γ-solid solution transition. It
follows from Fig. 2 that the synthesis temperature T0

for the thin contacting Cu and Au films coincides with
the Kurnakov temperature  of the CuAu films (T0 =

). However, the  temperature for the films of
equiatomic composition studied in this work turned out
to be lower than the Kurnakov temperature of the bulky
samples (  < TK). A plausible explanation is that the
temperature curve for the Kurnakov point in thin films
is independent of the concentration and goes lower than
the pertinent curves for the bulky samples, much as the

 temperature is lower than the eutectic temperature

. An alternative explanation is that synthesis
between the gold and copper layers is initiated at the
temperature corresponding to the minimum order–dis-
order-transition temperature in the phase diagram. The
R(TS) curves shown in Fig. 2 are similar to those for the
temperature-dependent resistance of a support at differ-
ent cycles of initiation of the MSHS fronts [9]. It was
shown in [6, 7] that SHS in the thin double-layer films
is also initiated upon the deposition of one layer upon
the other if the support temperature TS in the course of
deposition of the second layer is higher than the initia-
tion temperature (TS > T0). In this case, the synthesis in
the Au/Cu film systems is initiated at the same temper-
ature T0 = 520–540 K. Note that this method was used
for preparing the samples on a fresh NaCl (001) cleav-
age in the early studies of long-period ordering in
CuAu|| [13]. Nevertheless, the temperature T0 of syn-
thesis initiation between the Au film and Cu film depos-
ited on top of it was found not to correlate with the
ordering temperature. The phase diagrams of the Co–Pt
and Au–Cu systems are similar in the equiatomic com-
position region. In the region of a homogeneous
ordered CoPt phase, the Kurnakov temperature
changes from 750 to 1070 K, with the maximum value
corresponding to the stoichiometric composition. The
solid-phase reactions in the Co/Pt/MgO(001) multilay-
ers are initiated at temperatures T > 750 K and result in
the ordered CoPt phase [14]. It is shown in [15] that the
solid-phase reactions in the double-layer and multi-
layer Co/Pt films proceed in the SHS regime, with the
initiation temperatures T0 = 770–820 K coinciding with
the temperature of phase ordering in CoPt [16]. This
implies that the temperature of initiation of the inter-
layer synthesis in Co/Pt is determined by the Kurnakov
temperature, as in the case of the Au/Cu films. Hence it
follows that the initiation temperatures for the film sys-
tems exhibiting solid-phase reactions can be associated
not only with the order–disorder-transition temperature
in the reaction products but also with the temperatures
of the other structural phase transformations.
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In summary, it is shown that the initiation tempera-
ture of the Au/Cu film systems is determined by the
Kurnakov temperature for the Au–Cu system. This
implies that the chemical mechanisms of ordering and
synthesis are the same and have a long-range nature.
The long-range forces, together with the elastic forces,
may be responsible for the formation of the long-period
modulated phases that appear upon ordering, spinodal
and eutectic decompositions, in the polytypic struc-
tures, etc. The results of this study may be of practical
importance, because the phase diagram can be used to
determine the types of solid-phase reactions and the
corresponding initiation temperatures.
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Abstract—It is shown that a new type of instability of a non-Fermi-liquid state to the interband scattering of
multiparticle excitations can dominate the formation of heavy-fermion states in non-Fermi-liquid metals doped
with unstable-valence f impurities. A new mechanism is proposed for the formation of a small energy scale and
pseudogaps near the Fermi level in a mixed-valent state. © 2000 MAIK “Nauka/Interperiodica”.
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1. Historically, the diluted U compounds
(UxY1 − xPd3, UxTh1 – xRu2Si2, see reviews [1, 2]) were
the first heavy-fermion (HF) systems to exhibit non-
Fermi-liquid (NFL) behavior. The anomalous tempera-
ture dependences of their heat capacity and magnetic
susceptibility, as well as some other characteristics
were successively described by the two-channel quad-
rupolar Kondo model [2]. However, most of the U com-
pounds have mixed-valent nature (recent data in [3, 4]).
It should be noted that the on-site NFL effects can
likely play the important role in the “concentrated” sys-
tems (U1 – xThxBe13 [1], UBe13 [5]).

Bearing this in mind, it was of interest to suggest a
unified mechanism for the explanation of both the NLF
properties generated by the on-site two-channel Kondo
scattering and the possibility of the mixed valence to
exist. It should be emphasized that the role of the NFL-
state instabilities in the mechanisms of formation of
heavy fermions still remains to be studied. Two mech-
anisms of the NFL-state instability in the two-channel
quadrupolar Kondo model were previously known. In
[5], the instability was attributed to the Jahn–Teller dis-
tortions of impurity sites and in [6], to the anisotropy of
scattering channels. It was demonstrated in [7, 8] that
the NFL state may be unstable (i) to the multiparticle-
excitation scattering induced by tunneling in quantum-
dimensional structures [7] and (ii) to the scattering of
NFL excitations with different z-projections of quadru-
pole moment in a metal with deep orbitally degenerate
d or f levels [8].

In this work, a unified mechanism is proposed for
obtaining both mixed- and near-integer-valence HF
states in NFL metals. The mechanism is based on the
on-site NFL effects for a deep orbitally degenerate level
and the new type of NFL-state instability to the scatter-
ing of multiparticle excitations by the electronic states
of the atomic quasicontinuum. The scattering and the
scattering-induced instability are key words in the pro-
posed mechanism. The temperature T = 0 is considered
in this study.

2. It is known that ions with unfilled d or f shells par-
tially hold their atomic properties in a crystal. This is
0021-3640/00/7105- $20.00 © 20187
possible, first, because of the presence of a centrifugal
barrier separating the regions of atomic forces and lat-
tice potential and, second, because the symmetry of the
electronic states of unfilled shells is different from the
conduction-band states. In this work, the unstable-
valence atoms are assumed to have an energy spectrum
with two unfilled shells formed by a deep f level and the
quasicontinuum states under the centrifugal barrier (A-
continuum or A-subband). The latter can form from the

excited  states and the d states resonant with the
Fermi energy of the conduction band (B-band). Such an
impurity model was considered in [9] for a deep level
with the degree of degeneracy much greater than unity.
In this work, a quadrupolar nonmagnetic Γ3 crystal-
field doublet is taken as a deep level. The Γ3 doublet is
the ground state of the U4+ ion. The row numbers of the
irreducible representation of a point group µΛ = ±1,
Λ = Γ3 are the quantum numbers µ of an electron in the
Γ3 level. Two values of the quantum number µΛ corre-
spond to the two projections of the quadrupole moment
on the z-axis. The components of the quadrupole
moment form the pseudospin operator that is responsi-
ble for the scattering of the conduction electrons. In the
U compounds, the Γ3 states are hybridized with the

conduction-band states of the Γ8 and  symmetries.
The hybridization of the deep Γ3 doublet with the con-
duction-band states in combination with a strong Cou-
lomb repulsion in the Γ3 level results, after applying the
Schrieffer–Wolff transformation, in the effective inter-
action between the impurity state and conduction elec-
trons. Two-channel quadrupolar exchange scattering is
the dominant interaction under the following condi-
tions. First, the interaction matrix elements Vµµ'(k, k')
should be spatially nonlocal and be nonzero if µ ≠ µ'.
Both these conditions can be fulfilled if the hybridiza-
tion matrix elements are spatially nonlocal [7, 8]. Sec-
ond, it is known [5] that Kondo scattering changes the
z-projection of the quadrupole moment, but the quan-
tum number α = ± for Γ8 and , respectively, is
retained and specifies the scattering-channel index in

f̃

Γ 8

Γ8
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the two-channel quadrupolar Kondo model. In addition
to two-channel quadrupolar exchange scattering, we
shall take into account potential scattering of the multi-
particle conduction-band states by the A-subband
states. This scattering results in the NFL-state insta-
bility and is crucial in the proposed mechanism. In
terms of the partial states with quantum numbers (Λ,
µ, α, ε), where ε = vFk – εF, k is the wave-vector mag-
nitude and εF is the Fermi energy, the Hamiltonian of
the system under consideration is written in the form

H = H00 + Hsc + Hint + h , where h is the doublet split-
ting caused by the local distortions of the impurity site;

(1)

(2)

where the operators aµαB, A(ε), (ε) describe the
noninteracting states of the conduction band (B) and the

atomic continuum (A);  creates an electron in the Γ3

level with the pseudospin z-projection µ;  are the Pauli

matrices; εF – EΛ ≡ εΛ; and (ε) are the hybridization
matrix elements. The Hubbard repulsion at the impurity
site is assumed to be the largest parameter in the prob-
lem. For simplicity, the terms with µ ≠ µ' are not included
in Hsc. The } and (e) quantities describe the
multiparticle states with quantum numbers {µ}.

The system described by the Hamiltonian H
involves two physical mechanisms generating singular-
ities at or near the Fermi level. The interaction in (1)

with  ≡  is responsible for the appearance of the
NFL resonance at the Fermi level of the B-band. More-
over, scattering (2) of the NFL excitations by the A-sub-
band states results in the new multiparticle Fermi-liq-
uid (FL) resonances near the Fermi level. Using the
results obtained in [7, 8], one can show that, with allow-
ance made for interaction and scattering, the Green’s
function GΛµ(z) = 〈dΛµ|(z – )–1|dΛµ〉  of the resonance
Λ-level near the Fermi surface has the form

(3)

τ̂Λ
z

Hint dε ε'ρB ε( )ρB ε'( )Viα
Λ ε ε',( )d∫∫

i x y z, ,=

∑
µµ'α
∑=
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+ ε( )σµµ'

i aαµ' ε'( )τ̂Λ
i ,

τ̂Λ
i dΛµ

+ σµµ'
i dΛµ' ,

µµ' 1±=

∑=

Viα
Λ ε ε',( )σµµ'

i Vµα
Λ* ε( )Vµ'α

Λ ε'( )
εΛ

----------------------------------,∼
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∞–
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∫
∞–

+∞

∫
µα
∑=

× aAαµ
+ ε( )ãB µ{ } ε'( ),

aµαB A,
+

dΛµ
+

σ̂i

Vµα
Λ

ãB µ{ } ρ̃B

Viα
Λ Vi

Λ

Ĥ

ĜΛµ z( ) ĜΛ
±( )

z( )
1 ΣAµ z( )ΣBµ z( )–

Dµ
AB z( )

-----------------------------------------.=
As mentioned above, this expression contains singular-

ities of two types. The Green’s function (z)
describes the contribution from the NFL resonance.
The second factor in (3) has simple poles that corre-
spond to new FL resonances in the energy range of
interest. As shown in [7, 8], the character of low-lying

excitations depends heavily on the z-component  of

the exchange interaction. At  ≡ 2(  – πvF) @ 
and TK ! h, where TK is the exponential Kondo temper-
ature, the NFL behavior is governed by the “X-ray-
edge” mechanism and the power-law energy depen-
dences of the Green’s functions, so that

(4)

where A(±) are the phase factors for Rez _ 0, respec-
tively (the Fermi energy is taken to be zero); the signs

 in the numerator correspond to j = 1, 2; γΛB =

| |2ρ0B, ρ0B ~ 1/W is the density of states of the non-
interacting conduction electrons, where the cutoff
parameter W, as usual, is of the order of the B-band
width αs = (δs/π)2; and δs is the phase shift in the scat-
tering by the z-component of the exchange interaction.
In (4), the splitting h is assumed to be much smaller
than ΓK (and all other energy scales that appear in what
follows). It should also be noted that the applicability of
a power law imposes a lower bound on the αs values

(see below). At TK @ h, the interaction involving  is
immaterial [2], the Kondo mechanism is operative, and
the NFL behavior in the two-channel model is dictated
by the presence of the impurity degrees of freedom
nonhybridized with the conduction electrons.

The denominator in (3) is determined by the expres-
sion

The self-energy functions Σνµ(z)Γν = A and B are writ-
ten in the form of spectral decompositions of the elec-
tronic Green’s functions for the A and B bands. Their
energy dependences are determined by the respective
densities of states at the Fermi level. In the problem
under consideration, the function ΣAµ(z) has no singu-
larities at the Fermi level, so that ReΣAµ(0) ≈ ρ0A(0) and
ImΣAµ(0) = 0. The singularities of ΣB(z) are caused by

the NFL peaks in the density of states (ε) – ρ0B(ε) =

/πAρImSp (ε)Γε _ 0, Ap ~ γΛBρ0B. At zero tem-

ĜΛ
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Ṽ z
Λ

Vz
Λ V x y,
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perature, the contribution of the resonance level to
ΣBµ(z) is proportional to the expression

(5)

The low-lying poles  =  – i  of the Green’s
function GΛµ are caused by the scattering term Hsc and

are determined from the equation ( ) = 0 (signs ±
correspond to the energies above and below the Fermi
level, respectively). One can easily see that this equa-
tion has solutions of two types: narrow resonances with

| | ! ΓK and “broad” resonances with |  + iΓK| ! ΓK.
The narrow resonances are of particular interest,
because they are responsible for the existence of a small
energy scale near the Fermi level. Two types of FL res-
onances appear because of the existence of the impurity
degrees of freedom that are hybridized and nonhybrid-
ized with conduction electrons. In particular, the nar-
row resonances arise as a result of the interband-scat-
tering-induced broadening and shift of the zero-width
peak in the NFL spectral function [see the second term
in (4)]. The shifts of the narrow resonances from the
Fermi level may also be much greater or much smaller
than their widths. In the first case (|εr| @ γr), clearly
defined pseudogaps appear in the density of states
near the Fermi level (see Fig. 1a). In the second case
(|εr| ! γr), a slightly split narrow resonance occurs at
the Fermi level (Fig. 1b). The dashed lines in the figures
show the NFL resonances.

The FL resonances can appear on condition that the
collective states forming the NFL resonance decay. The
binding energy of collective states is of the order of

εK ~ ΓK(W/ΓK  and increases with αs. For this reason,
the structure of the FL resonances depends substantially
on this parameter. It follows from the solvability condi-

tion for the imaginary part of equation ( ) = 0
that the narrow resonances near the Fermi level appear
at αs ≤ 3/5. If αs ≤ 1/3, the narrow resonance is split into
two components lying above and below the Fermi level.
If αs > 5/7, the FL resonances are absent. Power laws
occur at αs > 1/ln[min(ΓK / γr, W/ΓK)].

The narrow resonances also exist at  = 0. In the
strong-coupling limit, the ΓK value is renormalized to
TK at h = 0. In this case, three peaks with the widths
~ΓK, shown in Fig. 1, merge into a single peak that is
slightly deformed due to scattering and having the
width ~TK. However, the FL resonances with the width
~γr do not disappear (now, γr @ TK), because they arise
from the scattering of the nonhybridized impurity
degrees of freedom.

3. The ratio between the Λ-components ρΛ(ε) =
−(1/π)ImGΛ(ε) of the partial densities of states at the
Fermi level (ρΛ(0)) and at the deep quasilocal level
ρΛ( ), where  is the energy renormalized for

ΣBµ z( ) W /z iΓK+( )
1 α s–

1–( )
α s 1–

.∼

zrµ
±( ) εrµ

±( ) γrµ
±( )

Dµ
AB zrµ

±( )

zr
±( ) zr

±( )

)
α s

Dµ
AB zrµ

±( )

Vz
Λ

ε̃Λ ε̃Λ
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hybridization and interaction] serves as a criterion for
the discrimination between the mixed- and near-inte-
ger-valence HF states. At ρΛ(0) @ ρΛ( ), charged
excitations play the dominant role at the Fermi level
and ensure the mixed-valent state of the system. The
inverse relationship implies that the charge fluctuations
are negligible and the system is in the near-integer-
valence state.

At energies |z| close to the energy of the deep level,
the Green’s function GΛ(z) and the maximum value of
the density of states can be written as

(6)

where ZΛ is the residue at the pole z =  =  + iγΛB.
Note that, in accordance with the above criterion, one
arrives at the well-known exact result [10] that in the
case of single-channel Kondo scattering, the density of
charged excitation on the Fermi level is negligibly
small.

It follows from expressions (3) and (4) that the max-
imum values of the density of states for the NFL and FL
resonances are of the order of magnitude of

(7)

Comparing (6) with (7), one obtains at εΛ ~ W

(8)

and the inequalities

(9)

Inequalities (8) and (9), first, mean that the near-
integer-valence state can exist either at αs > 1/2 in the
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absence of the FL resonances or at αs > 5/7. The latter
condition signifies that the NFL-state instability caused
by the presence of FL resonances tangibly narrows the
range of existence for the near-integer-valence state.
Second, it follows from inequalities (8) and (9) that
there are two sorts of mixed-valent states with qualita-
tively different types of elementary excitations. The
mixed-valent NFL state exists at αs < 1/2 and in the
absence of FL resonances. The NFL state is of the
mixed-valent type, because the collective excitations
forming the NFL resonance are charged. The mixed-
valent FL state is due to the instability of the NFL state
to interband scattering. The conditions imposed on the
parameters for its existence are the same as those
required for the existence of the FL resonances (i.e.,

when the inequalities | | ! ΓK and |  + iΓK| ! ΓK

are fulfilled). The type of the mixed-valent FL state is
determined by the type of the FL resonance (narrow or
broad) that occurs at a given parameter set. Since the
narrow FL resonances occur over the whole range of
existence of the mixed-valent state (αs < 1/2), the
mixed-valent FL state exhibits the following features:
(1) the occurrence of a small energy scale γr ! ΓK and
(2) the presence of a pseudogap in the total density of
states. The pseudogaps appear between the narrow FL
resonances near the Fermi level and the zero-width
NFL peak at the Fermi level (Fig. 1a). The pseudogaps
are well defined at |εr| @ γr. The minimum value of the
density of states in the pseudogap is equal to the corre-
sponding value for the broad resonance |zr + iΓK| ! ΓK.
It should be emphasized that the new physical mecha-
nism of formation of a small energy scale near the
Fermi level in the mixed-valent state is typical of the
unstable-valence impurities (in contrast to the mecha-
nisms considered previously in [4, 11]). Note also that

in both limiting cases,  = 0 and  = 0, the mixed-
valent state exists solely due to the new FL resonances.

The mixed-valent state considered in this work has
a local nature, because it is caused by the on-site fluc-
tuations.

Thus, the proposed mechanism allows the unified
description of both the NFL behavior generated by the
on-site two-channel Kondo scattering and the different
types of HF states. The NFL-state instability to inter-
band scattering qualitatively changes the mechanisms
of formation of the HF states and results in the appear-
ance of mixed-valent states with elementary excitations
of NFL and FL types. It should be particularly empha-
sized that the commonly discussed role of the spin and
charge degrees of freedom in the formation of the HF
states in the NFL impurity systems is determined by the
value of the αs parameter, as is demonstrated above.
The instability of the NFL state sharply narrows the
region dominated by spin fluctuations (i.e., the region
of near-integer valence).

Finally, note that the on-site NFL effects can also be
substantial in concentrated systems where the concen-
tration ci of interacting atoms is of the order of unity.

zr
±( ) zr

±( )

V x
Λ Ṽ z

Λ

The ground state in such systems is determined by the
competition between the intersite interaction, i.e., indi-
rect exchange of the RKKY type for pseudospins and
on-site Kondo scattering. The characteristic energies of
both interactions in the NFL metals exhibit a power-law
dependence on the exchange-interaction constant, but
with different exponents. As indicated above, the char-
acteristic energy εK of on-site two-channel Kondo scat-

tering is determined as εK ~ΓK . The charac-

teristic energy of the RKKY interaction is of the order of

εRKKY ~ ci( /W) ~ ciΓK. Comparing these two energies
at ci ~ 1, one obtains

(10)

Therefore, the on-site NFL effects can play an
important role in the formation of the ground state of
concentrated systems at αs ≠ 0.

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation
for Basic Research (project no. 98-02-16730) and
INTAS (grant no. 11066).

REFERENCES

1. H. V. Löhneysen, Physica B (Amsterdam) 206–207, 101
(1995).

2. M. B. Maple, R. P. Dickey, J. Herrmann, et al., J. Phys.:
Condens. Matter 8, 9773 (1996).

3. A. Schiller, F. B. Anders, and D. L. Cox, Phys. Rev. Lett.
81, 3235 (1998).

4. M. Koga and D. L. Cox, Phys. Rev. Lett. 82, 2575
(1999).

5. D. J. Cox, Phys. Rev. Lett. 59, 1240 (1987).

6. M. Fabrizio, A. O. Gogolin, and Ph. Nozieres, Phys. Rev.
Lett. 74, 4503 (1995).

7. L. A. Manakova, JETP Lett. 67, 1069 (1998); L. A. Mana-
kova, Zh. Éksp. Teor. Fiz. 114, 1466 (1998) [JETP 87, 796
(1998)].

8. L. A. Manakova, JETP Lett. 69, 772 (1999).

9. K. A. Kikoin, Physica B 163, 343 (1990).

10. N. Kawakami and A. Okiji, Phys. Rev. B 42, 2383
(1990).

11. Yu. Kagan and N. V. Prokof’ev, Zh. Éksp. Teor. Fiz. 93,
366 (1987) [Sov. Phys. JETP 66, 211 (1987)].

Translated by R. Tyapaev

W ΓK⁄( )
α s

Vex
2

εK  @ εRKKY for α s 0,≠
εK εRKKY for α s∼ 0.=
JETP LETTERS      Vol. 71      No. 5      2000



  

JETP Letters, Vol. 71, No. 5, 2000, pp. 191–194. From Pis’ma v Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 71, No. 5, 2000, pp. 280–284.
Original English Text Copyright © 2000 by Glavin, Kochelap, Linnik.

                   

CONDENSED MATTER

                 
Current Response of a Superlattice Irradiated 
with Nonequilibrium Phonons1
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Abstract—We studied a biased superlattice and revealed a considerable current response to irradiation by non-
equilibrium acoustic phonons with an effective temperature on the order of a few Kelvins. We discuss two
phonon source–superlattice configurations, for which the current response is caused by either interwell or
intrawell electron transitions. We have shown that the response is sensitive to both direction and spectral distri-
bution of phonons. The results explain recent experiments on the phonon-induced current response and prove
that the superlattices can be used for the characterization of a high-frequency phonon flux. © 2000 MAIK
“Nauka/Interperiodica”.

PACS numbers: 73.20.Dx; 73.50.-h; 73.61.-r
1 Semiconductor superlattices (SLs) demonstrate a
number of interesting electron-transport phenomena,
including Bloch oscillations [1], electron hopping con-
duction [2, 3], and charge domain formation [4]. It is
also established that the electric current in an SL can
change substantially under irradiation with electromag-
netic waves. In particular, intense THz irradiation of a
biased SL can produce extreme effects such as change
of the sign of the electric current (absolute negative
conductance) [5]. Interest in the effects induced by the
irradiation of SLs is stimulated both by the fundamen-
tal character of the phenomena and by the possibility of
their applications. Among such applications are photo-
detection [6] and active control of electric currents in
devices.

During the last decades, significant progress has
been achieved in the development of the methods of
phonon detection, generation, and control [7]. This
makes it possible to irradiate different quantum hetero-
structures by phonon fluxes and study the effects
induced by such an irradiation [8]. The first experimen-
tal observation of a current response (CR) of a phonon-
irradiated SL was reported [9]. In this letter, we analyze
the basic mechanisms of CR to the acoustic phonon
flux. Our results explain the main features observed in
[9] and demonstrate that the CR provides valuable
information on the phonons; i.e., it can be used for
phonon flux characterization. The results also show the
way to control electric current by phonons.

For the hopping transport regime [2, 3], there are
two basic mechanisms through which the acoustic
phonons affect the SL current. First, the phonons make
a direct contribution to the current by initiating inter-

1 This article was submitted by the authors in English.
0021-3640/00/7105- $20.00 © 20191
well electron transitions. Second, the nonequilibrium
phonons induce intrawell electron transitions resulting
in electron heating and, thus, indirectly change the
electric current. It is important that both mechanisms
result in qualitatively different types of CR and, hence,
can easily be discriminated in the experiment.

The scheme of the system under consideration is
shown in Fig. 1. The semiconductor structure is similar
to that used in [9]. The SL is situated on the top of a
substrate of thickness Ls. The sources of nonequilib-
rium phonons are on the opposite side of the substrate.
As a rule, the phonons are generated by thin metallic
films. When heated to temperature Tf by a short laser
pulse or electric current pulse, the metallic film emits
acoustic phonons into the substrate. The emitted
phonons can be characterized by the Planck distribu-
tion with temperature Tf that exceeds the substrate tem-

Source 2 Source 1

2θmax

d

Ls

Superlattice

Fig. 1. Scheme of the system under consideration. The
biased SL is irradiated with nonequilibrium phonons gener-
ated by the phonon sources. The two sources shown in the
figure produce qualitatively different electron transitions
and CRs.
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perature T. At low temperatures Tf and T, the mean free
path of almost all emitted phonons is greater than the
typical substrate thickness Ls ~ 300–500 µm. Because
of this, the phonons propagate from the source through
both substrate and SL almost ballistically. In the SL, the
phonons induce electron transitions and cause changes
in the current.

In the III–V-SLs, the acoustic mismatch is relatively
small and only brings about the modification of the
phonon spectra (phonon folding). These modifications
are significant only near the boundary and the center of
the superlattice Brillouin zone, while the nonequilib-
rium phonons generated by a heat pulse have a rela-
tively broad distribution in q. Thus, for our purposes,
we can treat the nonequilibrium phonons within the
framework of the bulk model and characterize them by
the wave vector q. Let θ be the angle between q and the
SL axis. Since the SL width Lw and thickness D, as well
as the source dimensions, are usually much smaller
than the substrate thickness, the ballistic phonons inci-
dent on the SL have a very narrow distribution in θ. The
characteristic θ value is determined by the position of
the phonon source relative to the SL. In Fig. 1, we show
schematically two different source–superlattice config-
urations. Source 1 is placed exactly under the SL. In
this case, the phonons reaching the SL have small θ
values, θ < θmax ≈ Lw/(2Ls). In contrast, source 2 is situ-
ated clear of the SL, so that the phonons of interest have
θ ≈ π/2. It is shown below that these two sorts of
phonons with θ ! π/2 and θ ~ π/2 have qualitatively
different effects on the electron transitions and bring
about distinct CRs. The experimental setup in [9] was
similar to the source–superlattice configuration I.

We restrict ourselves to the consideration of the SL
in the hopping conduction regime caused by the elec-
tron transitions between the neighboring QWs [2, 3].
This occurs when the Stark splitting ∆ is larger than the
SL miniband width. The electronic states form the
Stark ladder spectrum

(1)

where k is the in-plane wave vector, n is the number of
a quantum well, and E0 is the energy reference. For the
electron wave functions, we use the so-called two-well
model described, e.g., in [2, 10]:

(2)

Here, r = (x, y) is the in-plane electron coordinate,
z-direction is parallel to the SL axis, S is the normaliza-
tion area of the QW layer, χ is the normalized wave
function in the individual QW, and t is the overlap inte-

En k, "
2k2/2m n∆– E0,+=

Ψn k,
1

S
------- ikr( )ψn z( ),exp=

ψn χ z nd–( )=

–
t
∆
--- χ z n 1+( )d–( ) χ z n 1–( )d–( )–( ).
gral t = V0 (z – nd)χ(z – (n + 1)d)dz. Wave functions

(2) describe the Stark ladder states under the condition
t ! ∆ ! V0, where V0 is the barrier height. We assume
that the electron–phonon interaction arises from the
deformation potential and use the standard Hamilto-
nian for this interaction [11, 12].

The intrawell transitions occur between the electronic
states within the same QW, {n, k}  {n, k'}, while the
interwell transitions occur between the electronic states
of the neighboring QWs, {n, k}  {n ± 1, k'}. One can
easily see that, due to the energy and momentum con-
servation laws, the intrawell phonon-assisted transi-
tions occur mainly for the phonons with θ > s/vF, where
s is the sound velocity and vF is the Fermi electron
velocity. Therefore, if the geometry of the system satis-
fies the condition (Lw/2Ls) ≤ (s/vF) for the source–
superlattice configuration I, the phonons mainly induce
the interwell transitions. In this case, the CR can be
written as the sum of contributions from different inter-
well processes:

(3)

where P(q) are the probabilities of phonon emission or
absorption accompanied by the electron transfer “up”
or “down” the Stark ladder and Nq are the occupation
numbers of the nonequilibrium phonons. Expressions
for P have the form

(4)

where M(n, n'|qz) is the matrix element calculated with
the wave functions ψn, ψn'; q|| is the in-plane projection
of q; and ^n, k is the Fermi distribution function for
electrons in the nth – QW, where the upper signs stand
for the emission and the lower signs stand for the
absorption processes. The “down” and “up” transitions
correspond to n' = n ± 1, respectively. The intrawell
transitions can be evaluated in a similar manner.

Below, we discuss CR (3) for the SL with the fol-
lowing parameters. The quantum-well and barrier-layer
thicknesses are taken to be 4.5 nm and 6 nm respec-
tively; Lw = 100 µm; and Ls = 500 µm. The electron
effective mass is m = 0.067m0, and the barrier height
V0= 1 eV, providing the SL miniband width of 0.1 meV.
The electron density is ne = 2 × 1014 m–2. To describe
the phonons interacting with electrons, we set the lon-
gitudinal sound velocity sl = 4800 m/s and material
density ρ = 5300 kg/m3. The deformation potential con-
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stant is taken to be E1 = 7 eV. We also performed calcu-
lations for hopping transport in a GaAs/AlGaAs super-
lattice with different parameters and arrived at results
similar to those discussed below.

Figure 2 shows the partial contributions to the CR as
functions of the Stark splitting ∆ for the source–SL
configuration I. The source temperature is 5 K. The
results correspond to the zero-temperature limit for the
SL.

The dependences obtained can be qualitatively
explained as follows. As seen from (2), the interwell
matrix element |M(n, n ± 1|q)| decreases when ∆
increases (see also [2, 10]). The energy and momentum
conservation laws impose limitations on the possible
electronic states involved in the transitions. Combining
these limitations with the Fermi distribution at T  0,
we find that the up-transitions are entirely forbidden for

the phonon emission (∆  = 0), while the up-transi-
tions with phonon absorption are allowed for the
phonon energy "ω > ∆. The down-processes with
phonon absorption are allowed for any phonons. This

explains the monotonic decrease in functions ∆

and ∆ . The down-transitions with phonon emis-
sion are allowed at "ω < ∆. This limitation on the num-
ber of phonons participating in the down-transitions

results in a decrease in ∆  at small ∆: the function

∆ (∆) becomes nonmonotonic.

The net CR as a function of the Stark splitting is
shown in Fig. 3. Two remarkable features of the CR are
seen in this figure. First, the CR can have both negative
and positive signs. At low ∆ values, the CR is negative,
because the up-absorption processes dominate and,
hence, phonons drive electrons up the Stark stairs. The
negative CR means that the phonons partially suppress
the SL current. The suppression effect increases with
decreasing ∆. This is quite similar to the effect observed
at THz electromagnetic irradiation [5]. At higher ∆, the
down-emission processes prevail and the CR becomes
positive.

The second feature is that the CR is a nonmonotonic
function of ∆. The maximum value of ∆JI increases
with an increase in the temperature Tf of the phonon
source and occurs at larger ∆. The nonmonotonic
behavior of CR at fixed Tf, the increase in the maximum
response, and its shift at higher Tf were observed in
experiments [9]

The above results were obtained for the phonon
source–superlattice configuration I, when the intrawell
phonon processes are excluded and electron heating
does not occur. The insert in Fig. 3 demonstrates the
change in the SL current ∆JII ≡ J(Te) – J(0) caused by
electron heating. The shape of the function ∆JII(∆) and
its sign and magnitude are radically different from
those of ∆JI. Thus, one should expect a different char-
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down( )
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acter of the CR for the source–superlattice configura-
tion II, when the intrawell transitions mostly occur. On
the other hand, a comparison of ∆JI and ∆JII proves
that, in the experiments [9], the interwell phonon-
induced transitions were observed. Note that we used
the isotropic elastic model for the crystal, which pro-
vides the electron–phonon coupling with LA phonons
only. However, the crystal anisotropy and the LA–TA
mixing in the SLs can lead to a nonzero CR for the TA
phonons as well, as was indeed detected in [9].

One more interesting conclusion can be drawn from
the calculations of the partial contributions to the CR
shown in Fig. 2. Let ∆c be a solution to the equation
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Fig. 2. Partial contributions to the CR as functions of Stark
splitting ∆ for the photon source temperature Tf = 5 K.

Fig. 3. CR caused by the interwell electron transitions as a
function of Stark splitting for several temperatures of the
photon source. The vertical lines correspond to the critical
Stark splittings ∆c. Insert: change ∆JII in the current caused
by electron heating for different electron temperatures Te.
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∆ (∆) = ∆ (∆) + ∆ (∆). Then at ∆ > ∆c

the rate of stimulated emission exceeds the total rate of
all absorption processes. This, in fact, corresponds to
the amplification of the phonon flux in the SL. This is
in agreement with the results [13], where we showed
that the phonons with energies below ∆ are amplified in
the case of hopping transport in a biased SL. The values
of ∆c(Tf) are shown in Fig. 3. We see that, indeed,
∆c(Tf) > kBTf; i.e., almost all propagating phonons are
amplified by the SL current.

In conclusion, we studied the irradiation of SL by
nonequilibrium phonons and calculated the CR. We
analyzed different mechanisms of phonon-induced
electron transfer contributing to the CR. We showed
that the character of CR is highly sensitive to the
phonon source–superlattice configuration, as well as to
the phonon temperature. This sensitivity allows one to
use the CR for detecting and characterizing the phonon
fluxes. For the average phonon energy smaller than the
Stark splitting we found that the stimulated emission
processes dominate over the processes with absorption;
i.e., the phonon flux can be amplified upon propagation
through the SL.
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Abstract—The ion-plasma spraying method was used to synthesize new phases of metastable atomic-ordered
layered CuCo single crystals and single crystals of CucCo1 – c solid solutions via epitaxial layer-by-layer crys-
tallization, and some of their physical properties were studied. © 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 68.65.+g; 75.70.-i; 81.15.Rs
The study of layered compositionally modulated
crystal structures exhibiting promising solid-state prop-
erties is one of the “hot” areas of physical metallurgy.
The nature of magnetic ordering and the giant magne-
toresistance of the artificial periodic superlattices com-
prised of alternating magnetic and nonmagnetic layers
generate considerable interest among researchers. At
present, it is generally believed that the transition-metal
layers in multilayer systems are magnetically ordered,
while the interlayer exchange interactions, e.g., of the
RKKY type, can only result in oscillations of the ferro-
or antiferromagnetic ordering, depending on the thick-
ness of the nonmagnetic layers [1, 2]; i.e., the multi-
layer effect on the intralayer exchange interactions is a
priori ignored. The experimental results obtained in our
work [3, 4] allow one to suggest a somewhat different
point of view on the nature of magnetic ordering, at
least in multilayer monatomic polycrystalline (Cu/Co)x

structures.

Unexpected results were obtained when we synthe-
sized artificial epitaxial composite multilayer (Cu/Co)x

crystal superlattices to continue our experiment. The
crystal structures revealed the cooperative atomic order-
ing phenomenon.

Single-crystal multilayer film structures
(n1Cu/n2Co)x, where n1, n2, and x are the number of
monatomic Cu layers, the same for Co, and the number
of bilayers, respectively, were grown via the epitaxial
technique through layer-by-layer crystallization on the
MgO and LiF (001) crystal surfaces obtained by cleav-
ing bulky single crystals along the atomic cleavage
planes. The ion-plasma spraying technique was applied
to deposit metals on supports heated to the epitaxial
temperatures.

The results of the X-ray structural and magnetic
studies carried out in this work can be generalized by
0021-3640/00/7105- $20.00 © 0195
the following epitaxial relation between the MgO, LiF,
Cu, and Co crystal lattices:

(1)

(2)

X-ray structural studies were performed by X-ray
diffractometry on a DRON-4 spectrometer at room
temperature with CuKα radiation.

FCCMgO 001( ) 001[ ] FCCn1Cu 001( ) 001[ ]{
× FCCn2Co 001( ) 001[ ] } x,

FCCLiF 001( ) 001[ ] FCCn1Cu 001( ) 001[ ]{
× FCCn2Co 001( ) 001[ ] } x.

6000

5000

4000

3000

2000

1000

300

250

200

150

100

50

0

0 5 39 49 59 69 79 89

(a)

2 3 4 5 6 7 8

MgO (002)

(a)

Intensity, arb. units

2Θ, deg

Fig. 1. X-ray pattern of a multilayer [Cu(36 Å)/Co(38 Å)]30
single crystal (CuKα, room temperature): (a) is the small-
angle scattering region, and MgO(002) indicates the reflec-
tion from a single-crystal support.
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Fig. 2. Portions of the X-ray patterns of two multilayer single-crystal samples (CuKα, room temperature, large-angle scattering
region): (a) [Cu(36 Å)/Co(38 Å)]30 and (b) [Cu(28 Å)/Co(25 Å)]30. The interfaces between the layers (fragments of computer sim-
ulation) are schematically represented in the insets illustrating the distinctions in X-ray diffraction.
The superstructure composition modulation periods
were determined from the superstructure diffraction
reflections for the small (small-angle scattering) and
large (large-angle scattering) X-ray scattering vectors,
as well as by the X-ray fluorescence method. The posi-
tions of diffraction peaks in the X-ray patterns fit the
following relationships.

Small-angle scattering:

 (principal maxima), (3)

 (subsidiary maxima), (4)

where λ0 is the radiation wavelength, Θ is the Bragg
angle, Λ is the superlattice spacing, and N and n are the
reflection periods.

Large-angle scattering:

 (central maximum), (5)

Θsin
λ0

2Λ
-------N=

Θsin
λ0

2Λ
------- N

2n 1+
x

---------------+ 
 =

Θsin
λ0

2d
------N=

2Θ, deg

Intensity, arb. units
300

250

200

150

100

50

0
46 48 50 52 54 56

Cu (002)

Co (002)

Fig. 3. X-ray diffraction spectrum of a two-layer composite
single crystal Cu(680 Å)/Co(580 Å).
 

(satellites of the central maximum), (6)

 (subsidiary maxima), (7)

where d is the mean interplanar spacing and k is the
order of reflection.

It is customarily believed (theory and experiment)
[5–7] that the position of the central peak in the X-ray
patterns of the multilayer superstructures corresponds
to the mean d value (weighted mean of the number of
individual lattice planes). This rule is violated for the
structures considered in this work. The position of the
central peak corresponds to the interplanar spacing d002
in a pure copper single crystal (Figs. 2, 3). This and
other results of our X-ray measurements, as well as the
results of the magnetic, galvanomagnetic, electrical,
and thermal studies allow the following conclusion to
be drawn. The layered atomic-ordered single-crystal
CuCo structures, metastable at room temperature (on
vacuum heating to 800°C, the metastable phase con-
verts into a stable two-phase structure representing a
mixture of pure copper and cobalt phases, in accor-
dance with the phase diagram for the cobalt–copper
alloy), were grown by the epitaxial technique. We asso-
ciate the metastability of the close-packed FCC crystal
structure of CuCo with a peculiar (excited) electronic
state of the Co atoms, which is experimentally mani-
fested as an increase in the metallic radius of 2%.

We also synthesized and studied the structures with
atomic disorder (single crystals of solid solutions).
Such structures can be prepared by the epitaxial layer-
by-layer crystallization of alternating Cu and Co layers
with effective thicknesses of less than one monatomic
layer. The concentrations of components in the alloy
are experimentally predetermined by the ratio of effec-
tive thicknesses. According to the phase diagram of a
cobalt–copper alloy prepared by cooling (including
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superfast cooling [8]) liquid solutions, the solid solu-
tions synthesized in our work cannot exist. Similar to
the layered single crystals described above, the metallic
radius of Co in the single crystals of CuCo solid solu-
tions is 2% larger than in a pure cobalt phase. The solid
solution is thermodynamically unstable (metastable).
On vacuum heating, the solid solution is layered into
pure Co FCC and Cu FCC phases.

Single crystals of intermediate structures were also
prepared and studied. They can be regarded as partially
disordered layered single crystals or partially ordered
solid solutions. The physical properties of such struc-
tures are widely diversified and can even be quite
unusual.

The general regularity (sequence) of the structural
transformations during the heating  cooling ther-
mal cycle (with the retention of the close-packed sin-
gle-crystal FCC structure) is as follows: the metastable
structure with atomic disorder (CucCo1 – c solid solu-
tion)  metastable atomic-ordered structure [layered
(Cu/Co)x single crystal]  two-phase stable structure
(composite single-crystal Co + Cu).

The layered single crystals are ferromagnetic with
cubic magnetocrystalline anisotropy in the (001) plane.
For the cobalt layers of thickness 15 Å and over, the sat-
uration magnetization Is and the first magnetocrystal-
line anisotropy constant K1 are close to the analogous
values for a pure cobalt FCC single crystal (per the
same cobalt amount in the CuCo structure). For cobalt
layers of thickness less than 15 Å, the ferromagnetic
ordering depends on the thickness of the copper layer
[3].

The room-temperature transverse magnetoresis-
tance anisotropy dρ/ρdH is positive for the layered
CuCo FCC single crystals, whereas the anisotropy of
the Co FCC single crystal has negative sign.

Single crystals of the CucCo1 – c solid solutions are
ferromagnetically ordered and magnetically anisotro-
pic over a wide range of copper concentrations c. The
saturation magnetization Is is a linear function of cop-
per concentration. The atomic magnetic moment µ
changes as

(8)

i.e., the Cu0.86Co0.14 alloy is nonmagnetic at any tem-
perature [expression (8) was obtained by extrapolating

     

dµ/µbdc 2;=
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the experimentally measured dependence of the room-
temperature saturation magnetization Is on the copper
concentration c to the temperature T = 0]. The experi-
mental result (8) agrees well with the theoretical model
of two “hard” bands, one of which is only partially
filled [9].

The magnetocrystalline cubic anisotropy in the
(001) plane depends on the copper concentration, in

accordance with the relation K1 . . The results
obtained in this work for the CucCo1 – c alloys are simi-
lar to those previously obtained for the CucNi1 – c alloys
exhibiting infinite mutual solubility [10].

We plan to systematically study the synthesized new
materials in future works.
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Abstract—Microwave absorption at frequencies from 37 to 85 GHz was studied for a Dy0.3Y2.7Fe5O12 single
crystal in pulsed magnetic fields of up to 30 T at T = 4.2 K. The magnetic field was aligned with the [100] direc-
tion. For the fields above 4 T, several soft magnetic-resonance modes were observed, most of them being caused
by the static phase transitions induced by a strong external magnetic field. The field-independent absorption
lines away from the points of phase transition may be due to the dynamic Jahn–Teller magnetic effect. © 2000
MAIK “Nauka/Interperiodica”.

PACS numbers: 75.50.Gg; 76.30.-v; 75.30.Kz
Recent experimental studies of the static magnetic
properties (magnetization and differential magnetic
susceptibility) of mixed garnet ferrites DyxY3 – xFe5O12
have shown that the low-temperature rearrangement
of their magnetic structures in strong magnetic fields
is accompanied by sharp magnetic-moment jumps,
with the jump magnitude and number depending on
the orientation of the external magnetic field about the
crystallographic axes [1, 2]. The theoretical analysis
of the magnetic-field-induced phase transitions in
DyxY3 − xFe5O12 suggested [3] that satisfactory agree-
ment between the experiment and theory can be
achieved if one assumes that there is a quasi-Ising
ordering of the Dy3+ ions. This implies that at low tem-
peratures the RE-ion ground state can be regarded as an
isolated doublet (Seff = 1/2) with strongly anisotropic g
tensor [3, 4]. Within the framework of a phenomeno-
logical model, the presence of several nonzero compo-
nents of this tensor allows not only 180° rotations of the
RE magnetic moments, as in the pure Ising model [5],
but also the rotation of these moments toward the exter-
nal-field direction.

The detailed low-temperature magnetic-resonance
studies of HoxY3 – xFe5O12 single crystals in strong
magnetic fields [6] provide evidence for the occurrence
of a magnetic analogue not only of the static but also of
the dynamic Jahn–Teller effect in these compounds.
The latter manifests itself in the soft magnetic-reso-
nance modes appearing away from the magnetostruc-
tural phase-transition points, i.e., in the region where
the RE ground state remains unchanged.

Inasmuch as the HoxY3 – xFe5O12 system is the only
one for which the magnetic analogue of the dynamic
Jahn–Teller effect has been observed to date, a search
for other crystals exhibiting analogous resonance char-
0021-3640/00/7105- $20.00 © 20198
acteristics is very important and of interest for studying
the properties of this phenomenon. In this work, mixed
dysprosium garnet ferrites were chosen as the object of
investigation because their magnetization curves
resemble those for HoxY3 – xFe5O12 (in both cases, the
sharp magnetic-moment jumps are observed, with the
jump magnitude and number depending on the orienta-
tion of the external magnetic field) and their ground
state at low temperatures can also be considered as a
quasi-doublet with strongly anisotropic g tensor [7, 8].

This work reports the results of studying micro-
wave absorption for a Dy0.3Y2.7Fe5O12 single crystal in
the frequency range from 37 to 85 GHz and magnetic
fields of up to 30 T at temperature 4.2 K. One of the
samples whose static magnetic characteristics were
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Fig. 1. Absorption signal recorded for a Dy0.3Y2.7Fe5O12
single crystal at T = 4.2 K and H || [100]. Field-dependent
dM/dt is shown for the same sample in the inset.
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examined earlier in [1] was used in the experiments.
The external magnetic field was aligned with the crys-
tal [100] axis, and all measurements were made with
a reflection-type radiospectrometer whose construc-
tion was described in [9].

The analog signal from the detector is fed into a
B3-57 preamplifier and then to one of the channels of a
DF1200 digital single-event recorder, whose second
channel was used for recording voltage proportional to
the external magnetic field. Magnetic-resonance stud-
ies were carried out at fixed frequencies with magnetic-
field sweep.

A typical absorption spectrum of a Dy0.3Y2.7Fe5O12
crystal is shown in Fig. 1. One can identify several
magnetic-resonance branches over the whole range of
external fields used. The inset in Fig. 1 demonstrates
the field-dependent differential magnetic susceptibility
(dM/dt) of the sample studied. A comparison of the
absorption curve in Fig. 1 with the dM/dt curve allows
some of these resonances to be straightforwardly
related to the static magnetic phase transitions in the
H1 < H < H2 range, where the RE ions undergo magne-
tization reversal [3]. In this region, H2, 1 = Hex(1 ±
MR/MFe), where Hex = 21 T [1] is the exchange field
between the RE and iron subsystems and MR and MFe
are their magnetizations. It is shown in [5] that such
transitions in RE garnet ferrites can be treated as mani-
festations of a magnetic analogue of the static Jahn–
Teller effect, which is caused by the field-induced
degeneracy of the ground state of the RE subsystem.

The evolution of absorption lines with changing
microwave frequency in the H1 < H < H2 region is
shown in Fig. 2. An unusual magnetic-resonance fea-
ture, namely, the presence of absorption at all frequen-
cies at a fixed field (soft mode) is typical of all micro-
wave lines in this magnetic-field range, but is most pro-
nounced and clearly defined for the most intense line
(indicated by arrow in Fig. 2).

For each of the microwave frequencies, the absorp-
tion spectrum was processed in such a way that the
magnetic fields corresponding to the absorption max-
ima were treated as magnetic-resonance fields. The res-
onance frequencies thus obtained are plotted in Fig. 3
as functions of the external magnetic field. One can dis-
tinguish several well-separated lines (differently
marked in Fig. 3) in the range of fields used. For
instance, four resonance branches with linearly field-
dependent frequencies are observed at weak fields
below 5 T (open squares and circles in Fig. 3), with
only one of them (open circles) converging to ν = 0 on
the extrapolation to H = 0. This branch is precisely the
one which can logically be assigned to ferromagnetic
resonance, because the corresponding γ = 2πν/H value
is close to the value found for both yttrium iron garnet
and mixed garnet ferrites at the same temperature [10,
11]. The other resonance branches with linearly depen-
dent frequencies (open squares in Fig. 3) correspond to
the dimensional resonances.
JETP LETTERS      Vol. 71      No. 5      2000
As was expected, the soft magnetic-resonance
modes exist in Dy0.3Y2.7Fe5O12 not only at H1 < H < H2

(14 < H < 25 T) but also away from this region, much
as it was previously observed for HoxY3 – xFe5O12 [6].
Only one of them (at H = 10 T) can be related to a mag-
netic anomaly that is not associated with the reorienta-
tion of the RE moments [3]. As to the two other charac-
teristic absorption lines (dark squares and triangles in
Fig. 3), they are observed at the fields where the mag-

Fig. 2. Frequency-dependent magnetic-resonance lines
recorded for a Dy0.3Y2.7Fe5O12 single crystal at T = 4.2 K
and H || [100]: (a) 81, (b) 66.9, (c) 51.62, and (d) 41.16 GHz.
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Fig. 3. Magnetic-resonance pattern for Dy0.3Y2.7Fe5O12 at
T = 4.2 K and H || [100]: h are for the dimensional reso-
nances; , are for the soft modes in the magnetization rever-
sal region of the rare-earth subsystem; n are for the reso-
nance corresponding to the magnetic transition at H = 10 T;
m are for the soft magnetic-resonance modes not associated
with the magnetization reversal of the rare-earth subsystem;
and j are for the ferromagnetic resonance line.
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netic susceptibility does not show any changes (see
inset in Fig. 1).

In our opinion, it is precisely these resonances
which can be assigned to the manifestations of a mag-
netic analogue of the dynamic Jahn–Teller effect that
were observed previously only for yttrium holmium
garnet ferrites [6]. Nevertheless, the ultimate conclu-
sion about the existence of this phenomenon in yttrium
dysprosium garnet ferrites can be drawn only after
studying the dynamic magnetic phase diagrams of
Dy0.3Y2.7Fe5O12 in the “field–temperature” plane and
after comparing the results of these studies with the
static magnetic data. We are planning to implement this
program in the near future.
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Abstract—The isochoric heating of amorphous iron at an average rate of about 6.6 × 1011 K/s was modeled by
the molecular dynamics method using the approximation of Pak–Doyama pair potential. The bcc crystallization
of the model system was found to occur in the temperature range 1100–1180 K. © 2000 MAIK “Nauka/Inter-
periodica”.

PACS numbers: 81.40.Ef; 61.43.Bn
In this work, crystallization in a system of particles
with the Pak–Doyama interatomic potential [1] was
observed. The empirical Pak–Doyama pair potential
has the form of a fourth-order polynomial

(1)

(r is expressed in Å). The potential cutoff radius is rc =
3.44 Å. The parameters of this potential were deter-
mined from data on the elastic properties of α-Fe. Its
use in the modeling of liquid and amorphous iron pro-
vides a good agreement between the calculated and
experimental structural properties [2–4].

The molecular dynamics (MD) model was prelimi-
narily applied at T = 1823 K to liquid iron with a real
density of 7030 kg/m3 [5]. A bcc lattice was used as a
starting structure. The model contained 2000 atoms in
the basic cube with periodic boundary conditions. At
the initial moment, atoms were endowed with veloci-
ties according to the Maxwellian distribution. The
MD calculation procedure consisted of the numerical
integration of equations of motion with time step
∆t = 1.523 × 10–15 s using the Verlet algorithm in the
velocity form [6]. The melting and relaxation of the
system were conducted at the indicated temperature for
2000 time steps. Next, the temperature constraint was
removed, and thermal equilibrium was attained in the
system for 4000 time steps at a constant internal energy
(adiabatic conditions). It should be noted that, even
though the atoms were initially disposed in the bcc lat-
tice sites, this configuration was highly unstable and
almost instantly melted, because the density and tem-
perature of the system corresponded to liquid iron.

The amorphous state was obtained through the instant
quenching (using the static relaxation method) of a
model melt with density preliminarily increased to

φ r( ) 0.188917 r 1.82709–( )4–=

+ 1.70192 r 2.50849–( )2 0.198294 eV–
0021-3640/00/7105- $20.00 © 0201
7800 kg/m3 (because of the lack of experimental data,
the density was chosen according to the data for α-Fe
[7] with a correction of ~1% for amorphization). Next,
the system was subjected to isochronous annealing.
The corresponding cyclic procedure consisted of a
20-K step elevation of temperature, maintenance of this
temperature in the system for 1000 time steps, and the
subsequent annealing under adiabatic conditions for
19000 time steps. Thus, the duration of one cycle com-
prised 20000 time steps or 3.046 × 10–11 s, and the aver-
age heating rate was approximately 6.6 × 1011 K/s.
After each cycle, the system was transferred to the state
with T = 0 using the static relaxation method, so that the
atoms were allowed to occupy equilibrium positions in
the local potential wells.

The following thermodynamic properties were cal-
culated in the course of modeling:

(1) kinetic energy

(2)

(2) potential energy

(3)

(3) total energy

(4)

(4) and pressure

(5)

where N is the number of atoms, m is the atomic mass,
vi is the velocity of the ith atom, rij is the distance
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between the ith and jth atoms, and V is the volume of
the system. The temperature of the system was calcu-
lated from the averaged (over the last 16 000 time steps
of each cycle) value of kinetic energy

(6)

where kB is the Boltzmann constant, and the bar indi-
cates time averaging.

Figure 1 displays the time dependences for the
temperature of the model, the product of pressure vol-
ume, and the potential energy after the static relax-
ation of the model. It is seen that a first-order phase
transition occurs between the 1100000th and
1 160000th time steps (T ≈ 1100–1180 K). In order to
reveal structural changes occurring upon the phase
transition, the atomic pair radial distribution functions
(APRDF) were calculated and statistical-geometrical
analysis based on the Voronoi polyhedra (VP) was car-
ried out, including the calculation of the angular corre-
lation functions (ACF) describing the distribution of
angles between the pairs of nearest neighbors and the
polyhedron center. The positions of the APRDF (Fig. 2)
and ACF (Fig. 3) peaks point to the formation of a crys-
talline phase with the bcc lattice. The same is confirmed
by an analysis of the distribution of VP types. Recall
that an individual VP can be described by a set of num-
bers nq equal to the number of faces having q sides

T 2Ek/3NkB,=
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Fig. 1. Time-dependent temperature, product of pressure and
volume, and potential energy after static relaxation of the iron
model under isochronous annealing conditions. Numbers 1,
2, and 3 correspond to times 1100000 ∆t, 1120000 ∆t, and
1180000 ∆t and to the numbers of plots in Figs. 2 and 3.
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Fig. 2. Atomic pair radial distribution functions g(r) for the
statically relaxed models calculated at times (1) 1100000 ∆t,
(2) 1120000 ∆t, and (3) 1180000 ∆t.
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Fig. 3. Angular correlation functions f(θ) for the statically
relaxed models calculated at times (1) 1100000 ∆t,
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(3) indicate the angular distribution in a perfect bcc lattice
(the right scale).
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(n3 − n4 – n5 – …) [8]. After crystallization, the coordi-
nation of approximately 90% of the atoms of the model
is characterized by the (0-6-0-8) VP (cuboctahedron,
Wigner–Seitz cell of the bcc lattice). Further tempera-
ture elevation leads to the additional ordering of the
crystalline structure, which is completed at T ≈ 1300 K.
In the end, the fraction of atoms characterized by the
(0-6-0-8) VP reaches ~97%.
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Electrooptical Modulation in the Stark-Ladder Regime1
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Abstract—A direct measurement of the in-plane birefringence below the absorption edge of a GaAs/AlAs
superlattice (SL) under electric fields shows a unique type of electrooptical modulation. The SL is sandwiched
between two doped AlGaAs alloy layers, which play the simultaneous role of positive (p+) and negative (n–)
contacts, as well as clad layers, to achieve optical waveguiding. The p–(SL)–n structure is chosen so that, as a
function of the externally applied bias, it displays Stark-ladder localization and the quantum confined Stark
effect at low and high fields, respectively. We show that this results in an electrooptical modulation, in which
the built-in birefringence of the SL initially decreases and shows a crossover to a quadratic increase for larger
fields. © 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 78.20.Jq; 42.79.Hp; 71.70.E; 42.25.Lc
1 Among the diverse electrooptical effects found in
bulk semiconductors and microstructures, those based
on the modification of the absorption by an applied
electric field are most commonly considered for appli-
cation in amplitude modulators. The light beam is
tuned in close resonance with the direct gap absorption
which is, on the other hand, modified by the presence
of an externally applied electric field. Bearing in mind
that moderate changes in absorption may result in dras-
tic amplitude variations of the transmitted/reflected
beam, these devices provide an effective approach to
modulating the light intensity. A myriad of electroopti-
cal devices based on this principle have been con-
structed, including vertical [1] and waveguided modu-
lators [2].

Conversely, changes in the linear optical properties
in the transparency region (below the absorption edge
of the structure) upon application of an external electric
field are also present. A GaAs/AlAs superlattice (SL) or
multiple quantum well (MQW) grown along (  ≡
[001]) has the symmetry of the D2d point group and
looks isotropic for light propagating with klight ||  and
polarization in the ([100])– ([010]) plane. The
reduction in symmetry brought about by an electric
field E along  permits birefringence, which appears as
a phase shift between different polarizations in the
plane ⊥  to  From the symmetry point of view, the S4

and 2  axes of D2d are removed by the electric field

E || , and the two σv planes of the group no longer
belong to the same class. Hence, two different optical
constants appear for polarizations along  ≡ (  + ) ≡

1 This article was submitted by the author in English.
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ẑ
x̂ ŷ
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x'ˆ x̂ ŷ
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[100] and  ≡ (  – ) ≡ [1 0], respectively. A linearly
polarized beam, either along  or , is transformed
into elliptically polarized light upon reflection or trans-
mission along , on account of the phase-shift differ-
ence between - and -polarizations. The magnitude
of this phase shift, however, depends on the product of
the propagation length (which is usually !1 µm along

) and the field-induced birefringence. Accordingly,
only small changes are seen in the conventional geom-
etry of transmission or reflection perpendicular to the
surface (a vertical modulator), and sensitive techniques
based on acoustooptical modulation are required to
observe the in-plane anisotropy produced by E in the
polarization of the light.

A completely different situation takes place for light
propagating along the planes (i.e., klight || [110]) in a
waveguided modulator. In this case, the birefringence
has at least two different origins, namely, (i) the bound-
ary conditions for the electric field of the light at the
clad layers and (ii) the intrinsic birefringence of the
MQWs or SL. The former exists even if the core
waveguide material is isotropic and constitutes a classic
textbook example of the difference between transverse
electric and magnetic (TE- and TM-) modes in a planar
waveguide [3]. The latter, however, is an intrinsic prop-
erty of the bulk waveguide material based on the anisot-
ropy of the electron bands brought about by the pres-
ence of well boundaries. After [4, 5], the effect of the
boundary conditions can be minimized if the sample is
thick enough (as compared to the wavelength λ of the
light), so that the lowest order modes closely resemble
the propagation of a free plane wave in the bulk mate-
rial of the waveguide. In this case, the clad layers
greatly improve the efficiency of the transmission along
the planes and the coupling to the external light source

y'ˆ x̂ ŷ 1
x̂ ŷ

ẑ
x'ˆ y'ˆ

ẑ
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through total internal reflection, but the measured opti-
cal anisotropy is an intrinsic property of the bulk mate-
rial inside the waveguide.

The application of an external E-field through the
doped clad layers results in a modification of the elec-
tron bands. Consequent with this change, there is a
modulation of the built-in birefringence below the gap
for klight ⊥  [110], which depends on the modification of
dipole-allowed virtual transitions from valence- to con-
duction-band states for different polarizations [6]. The
effect of an external electric field on MQWs and SLs
has been extensively studied in the literature [7, 8]. In
an isolated QW, the effect of E ||  on the confined sub-
bands is called the quantum confined Stark effect
(QCSE) [9–12]. An isolated confined state of energy
E0 in a QW of thickness d and depth Vb experiences a
red shift in energy, which is quadratic in the field for
|E| < (Vb – E0) (low fields). If E is further increased, the
red shift is ∝ |E|α, with α < 2; and for even larger fields
the effect is transformed into field-induced tunneling to
the continuum states above the barrier. Still another
possibility exists if, instead of isolated QWs, we have
an SL and minibands for electrons and holes. At low
fields, Stark-ladder localization (SLL) occurs and the
minibands split into a series of equally spaced states sep-
arated by meEd (m = ±1, ±2… etc.) [8] (with E ≡ |E|).
Accordingly, SLL dominates the optical properties
close to the absorption edge at low fields. At larger
fields, the tunneling process among wells is lessened
and the QCSE of isolated excitons in each QW is recov-
ered. SLL can be obtained at room temperature and has
been observed several times with optical techniques
[13, 14]. Bleuse, Bastard, and Voisin [15] calculated the
optical absorption of the Stark ladder in the envelope-
function approximation and obtained for SL the impor-
tant analytic result [15]

(1)

where ∆ = ∆c + ∆v is the total width of the electron and
heavy-hole (hh) minibands and ε = Eg + Eh + Ee, with
Eg the band gap of the well material and Ee, h the con-
finement energies for electrons and holes, respectively.
Equation (1) predicts a blue shift of the absorption edge
[15] for increasing (small) Es. In the limit where the
excitons cannot tunnel to their neighboring wells, the
gap of a collection of isolated excitons is half of the
total miniband width ∆ above the energy of the absorp-
tion edge of the SL. This occurs at fields of the order of
|E| ~ ∆/4ed [15]. Likewise, once the excitons are iso-
lated in each well, they display the quadratic red shift
of the QCSE. In practice, the effect at low fields is less
pronounced than the expected blue shift of ~∆/2. How-
ever, it has been already used for the construction of a
modulator which transmits light close to the gap at
moderate bias [16]. The blue shift of the absorption
edge observed in [16] was smaller than the theoretical

ẑ

α ω( ) Jm
2 ∆/2eEd–( )Y ω ε meEd+( )–( ),

m ∞–=

m +∞=

∑∼
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prediction but in qualitative agreement with the predic-
tions of [15]. The existence of SLL implies a certain
degree of coherence of the wave functions of the exci-
tons among neighboring wells. This coherence can
more easily be lost in samples at room temperature
(RT) and with large inhomogeneous broadening, pro-
ducing the crossover from SLL to the QCSE at even
lower fields than those predicted by (1). Summarizing,
as the field is increased, we can expect a moderate blue
shift of the absorption edge revealing the presence of
SLL, followed by a crossover to an inhomogeneously
broadened collection of localized excitons character-
ized by an absorption edge with a red shift as a qua-
dratic function of E.

We now turn to the effect of the field-dependent
band structure on the birefringence. It is well known
that the dielectric response in the transparency region
close to the absorption edge of a direct gap can be
thought of as coming from a dispersionless contribu-
tion of the average (Penn) gap of high-energy transi-
tions, plus a term resonant with the first direct gap [6].
We shall evaluate the optical response in the transpar-
ency region at energies which are only ~10% below the
gap (ωgap); and, accordingly, the shift of the absorption
edge with the applied E ought to be the leading effect
in the modification of the birefringence [17]. We shall
show that, in our case, a blue (red) shift of the absorp-
tion edge corresponds to a decrease (increase) in the
leading resonance term with the direct gap and, thus, to
a decrease (increase) in the birefringence ∆n(ω) close
to the gap (with ω < ωgap).

In this paper, we measure the birefringence for in-
plane propagation of light (k ⊥  ) in a thick superlat-
tice (to minimize waveguiding effects) using the
method of transmission through crossed polarizers.
The light source is a Ti-Sapphire laser; and the sample
must be properly masked to avoid stray light and
accommodate, at the same time, the electrical con-
tacts. Further details of the experimental setup and
methods were given elsewhere [4, 5]. Measurements are
performed on a 300-period GaAs/AlAs SL (3/0.9 nm)
sandwiched between n–- and p+-Ga0.3Al0.7As layers
doped to 1 × 1018 cm–3, which shows SLL at RT [14].
This sample is entirely equivalent to the one in [14]
(where SLL at RT was reported for the first time),
except for the fact that our sample has more periods to
increase the thickness along . As a characterization
measurement, we show in Fig. 1 the RT photocurrent
spectra at zero bias. Up to six Stark-ladder levels could
be observed, in close resemblance with the results of
[14]. These peaks spread and outline the characteristic
fan chart of SLL for small reverse biases. We shall not
dwell on the details of the photocurrent spectra, which
are already explained elsewhere [14].

Fig. 2 shows the raw in-plane transmission through
crossed polarizers below the gap for a sample with
transmission length l = 1.9 mm. The data were taken for

ẑ

ẑ
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klight || [110] and both incident and output polarizations
at 45° with respect to . The birefringence oscillations
(fringes) in the normalized transmitted intensity are
expected to be given by [4, 5]

(2)

Note that the extinction point, i.e., the energy at
which the oscillations vanish, can be seen with the
naked eye to red-shift for large fields. The blue shift at
low fields is not seen here, because the extinction point
is normally a poor measure of small changes in the gap.
The number of fringes per unit energy increases as the
gap is approached from below, as expected [4, 5] from
the resonant behavior of ∆n(ω). In Fig. 3, we show a
blowup of the fringes in Fig. 2 around ~1.49 eV,
together with their percentage energy change. Accord-
ing to (2), each maximum in Fig. 3a is expected to ful-
fill the condition lω∆n(ω)/2πc = M, where M is a fixed
large integer number. For small perturbations of the
birefringence, a blue (red) shift in the energy position

ẑ

I/I0 πl/λ( )∆n ω( )[ ] .cos
2∼
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Fig. 1. RT photocurrent spectra at zero bias. See the text for
further details.

Fig. 2. Raw in-plane transmission data between crossed
polarizers for different applied fields. Note the red shift of
the extinction point for large fields.
of a particular fringe must be compensated by a corre-
sponding decrease (increase) in ∆n(ω). Since M @ 1
close to the gap, differences between M and M + 1 are
negligible and successive maxima show the same per-
centage energy change as shown in Fig. 3b. Note also
that there is a clear crossover between two distinct
regions around ~35 kV/cm. We take the energy shifts of
specific fringes in Fig. 3a as a clear indication of two
different regimes in the electrooptical modulation of
∆n(ω) below ωgap, to wit, a blue shift of the gap at small
fields followed by a quadratic red shift above
~35 KV/cm. These two regimes correspond to a
decrease in the intrinsic ∆n(ω) followed by a quadratic
increase, respectively.

Very recently [17], we have shown in a systematic
study of the in-plane birefringence of MQW’s that a
good empirical approximation for the ∆n(ω) at energies
below (but close) to the absorption edge is given by

(3)

where ωg corresponds to the average gap of the SL, ∆n0

is a calibration value at ω0(< ωg), and "Ω is an empiri-
cally determined parameter of the order of ~0.02 eV
(depending on the size of the wells). For small percent-
age changes, (3) can be linearized and, in this descrip-
tion, the field-induced changes in ∆n(ω) should have
their counterpart in the position of the average gap. A
possible method for the determination of the average
gap is to evaluate the mean energy (ωg) using the lumi-
nescence profile (LP) I(ω) as a weighting factor. This
determination is qualitative, for the general shape of
I(ω) depends on the product of the joint density of
states and the Boltzmann factor but, nevertheless,
should be consistent with the overall picture. Figure 4a
displays the LP data at RT for different applied elec-
tric fields together with the average gaps calculated as

ωg = I(ω)dω. The LP signals are normally faint in

our experimental conditions simply because the pres-
ence of the mask for the in-plane transmission experi-
ments implies that the data must be excited and col-
lected from the side of the wafer, together with the fact
that data are taken at RT and that low excitation powers
are used in order to leave the internal bias of the device
unaltered. Notwithstanding, it is quite clear that the
qualitative behavior of ωg in Fig. 4b is in excellent
agreement with the data in Fig. 3b. The shift of the aver-
age gap, together with the description given by (3), pro-
duces exactly the sort of modulation in the birefrin-
gence seen in Fig. 3a and reveals the microscopic origin
of this peculiar electrooptical effect, which shows a
crossover between two distinct regimes.

In conclusion, we have shown that a peculiar kind of
electrooptical modulation of ∆n(ω) in the transparency
region (ω < ωgap) exists in p+–SL–n– structures, where
SLL is followed by the QCSE. From the total miniband

∆n ω( ) ∆n0ω0

ω
------ "Ω

"ω
--------

ωg ω0–( )ω
ω0 ωg ω–( )
--------------------------- ,ln+=

ω∫
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Fig. 3. (a) Birefringence fringes around ~1.49 eV which were continuously followed as a function of the externally applied field. In
(b) we show the percentage energy change in the position of three successive fringes. Note a clear crossover between two distinct
regimes around ~35 kV/cm. See the text for further details.

Fig. 4. (a) LP data for different E’s. In (b) we show the position of the average gap for different fields, as obtained from the lumi-
nescence profiles. A picture consistent with the change in the birefringence fringes of Fig. 3 is obtained.
width of our sample (∆ ~ 10 meV) and the period of the
superlattice (d = 4.1 nm), the excitons should be com-
pletely localized at [15] E ~ 250 KV/cm. The crossover
occurs, however, at fields which are about six times
smaller than the theoretical prediction of [15], which
does not take into account disorder (inhomogeneous
broadening) and finite temperature. The blue shift of
the absorption edge at low fields is also much less than
∆/2 (as observed also in [16]). The qualitative agree-
ment with what is expected for the absorption and its
effect on ∆n(ω) below the gap are, however, correct.
Unlike the conventional Pockels or Kerr electrooptical
modulation [3], which are monotonic with the applied
JETP LETTERS      Vol. 71      No. 5      2000
field, there is in this case a crossover in both the sign
and the field-dependence of the modulation in ∆n(ω) as
a function of E. Peculiar electrooptical applications of
this effect could be envisioned.
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Abstract—The conductivity of a magnetic nanocontact with a spin inhomogeneity in the form of a Ginzburg–
Bulaevskiœ domain wall at the center between oppositely magnetized edges is considered. The conductivity of
the nanocontact is calculated in the ballistic approximation for Fe, Co, and Ni in the low-temperature limit, with
allowance made for the spatial major–minor change in the electron spin energy due to exchange splitting in the
edges. The calculations are carried out for the limiting cases of long and short nanocontacts. It is shown that the
domain wall formed in a nanocontact causes considerable quantitative and qualitative changes in the depen-
dence of the conductivity on the channel width. © 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 73.61.-r; 75.60.Ch; 75.70.-i
1. The quantum and mesoscopic properties of
nanowires and nanocontacts are being intensively stud-
ied, both experimentally and theoretically (see [1, 2]
and references therein). Magnetic nanocontacts are of
particular interest, because, in these contacts, a con-
trolled conductivity variation by an external magnetic
field is possible owing to the effect of the giant magne-
toresistance. For example, a detailed study of the mag-
netoresistance of a nanocontact formed by two Ni wires
was performed for the cases of their parallel and anti-
parallel magnetization, and the possibility of a wide
variation (by about 200%) of the quantum resistance of
such a nanocontact in a relatively weak magnetic field
(~100 Oe) was demonstrated [3]. Some micromagnetic
properties of Co magnetic point contacts under magne-
tization reversal in their electrodes were analyzed by
numerically solving the micromagnetic equations [4].
The study of the effect of ferromagnetic microbridges
formed in antiferromagnetically coupled layers on the
hysteretic properties of multilayers [5] is also notewor-
thy. The theory of magnetoresistance of a wide mag-
netic contact containing an insulating interlayer was
developed by Slonczewski [6]. The electrical properties
of a domain wall were studied by Levy and Zhang [7].
A strong effect of domain walls on the conduction
properties of Co and Ni magnetic films was observed in
experiments [8, 9]. It is well known that in narrow
nanocontacts conductivity quantization takes place,
and this phenomenon has some specific features in the
presence of exchange splitting for the conduction elec-
trons. However, with all these studies, there still is no
theory that would adequately describe the conductivity
of magnetic nanocontacts.

In this connection, it is of interest to discuss the the-
ory of a narrow magnetic nanocontact that is formed
0021-3640/00/7105- $20.00 © 20209
between two highly anisotropic oppositely magnetized
edges and contains a domain wall of the “head-to-head”
type. In this paper, we consider such a system in the
framework of a simplified Ginzburg–Bulaevskiœ
domain-wall DW model, in which the magnetization in
the transition region varies in magnitude but the direction
of the spin quantization axis remains unchanged [10].
This simplified model allows one to predict the mag-
netic nanocontact features related to the energy shift for
the conduction electron spins that is caused by
exchange splitting in the bridge edges. In fact, there is
reason to believe that the domain wall formed in a
nanodimensional channel belongs to this very type of
domain wall.

2. We first consider a long axially symmetric nano-
contact that is oriented along the z-axis, has a variable
radius a(z), and is characterized by a curvature radius
R = (d2a(z)/dz2)–1 far exceeding the characteristic size
δ of the domain wall (δ ! R). We assume that the mag-
netization variation between the oppositely magne-
tized contact edges can be represented in the form
M = (0, 0, Mz = M (x – q)/δ]) (δ is the BW width)
[10]. In the ballistic limit, the conductivity of the con-
tact is governed by its tunneling properties and deter-
mined by the Landauer formula [11]

(1)

where e is the electron charge, h is the Planck constant,
fσ(ε) is the electron energy (ε) distribution function
depending on the direction of spin projection σ on the
quantization axis z, and Tσ, n, m(ε) is the probability of
electron transmission through the channel with a given

[tanh

G
e2

h
----

∂ f σ

∂ε
---------– 
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transverse energy depending on two quantum numbers n
and m. In the low-temperature limit T  0, the con-
ductivity of the nanocontact is determined by its trans-
missivity for the electrons at the Fermi level:

(2)

The probability of transmission through the nanocon-
tact channel (bridge) containing the domain wall can be
found by solving the Schrödinger equation with allow-
ance made for the exchange-splitting energy,

(3)

where J(z) = J(0) (z – q)/δ], with zero boundary
conditions for the electron wave function at the lateral
boundary of the bridge; i.e., ψ(|r| = a(z)) = 0, where r is
the radius vector in the cylindrical coordinate system.
This problem is solved through the factorization of the
wave function as ψ(r, z) = Φ(r, ϕ, z)Z(z), where the
radial part of the Φ(r, ϕ, z) function satisfies the
reduced two-dimensional Schrödinger problem

(4)

with the zero boundary condition Φ(r = a(z)) = 0, where

and ϕ is the azimuth angle. The solution to this problem
is given by the function Φ = Jm(γm, nr/a)exp(iϕm),
where Jm(x) is the Bessel function and γm, n correspond
to its zero values; i.e., Jm(γm, n) = 0. The eigenvalues of
the “transverse” electron energy are determined by the

expression εm, n = "2/2ma2. In the limiting case of a
long nanocontact R @ δ, one can neglect the weak
dependence of both the transverse energy εm, n(z) and
the radial part of the wave function Φ(r⊥ , z) on the
z-coordinate (adiabatic approximation). Then, the
remaining part of the wave function Z(z) satisfies the
one-dimensional Schrödinger problem of transmission
through a potential barrier,

(5)

where J(z) = J0 (z – q)/δ] and σ = ±1. This
problem can be solved exactly (see e.g., [12]). In the
latter equation, the terms ~Φ–1(d 2Φ/dr2)(da(z)/dz)2,
(dlnΦ/dr)2(d2a(z)/dz2) are omitted. Evidently, this

approximation is valid when aR and (kFR)2 @ 1 at the
Fermi level. If one assumes that the asymptotics of the
wave function Z(z) away from the barrier at z  –∞
has the form Z(z) = C1[exp(ikn, mz) + Arexp(–ikz)],

G
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h
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where Ar is the relative amplitude of the reflection wave
and k = [(2m/"2)(ε – εm, n – σJ0)]1/2 is the wave number
of the incident wave, then the complete solution to the
problem (see [12]) is determined by the hypergeomet-
ric function

where  = (2m/"2)(ε – εm, n + σJ0). In this case, the
transmissivity T = 1 – |Ar|2 is equal to

(6)

Taking into account that the summation over the ener-
gies with allowance made for the equivalence of the
overbarrier reflection coefficients yields the same result
for the major and minor electrons and using the expres-
sion derived from the Landauer formula (2), one
obtains for zero temperature in the long-wave-length
limit kδ ! 1

(7)

where θ(x) is the Heaviside function. In the absence of
the domain boundary, the transmissivity of the channel
for the electrons above the Fermi level is equal to unity
and, therefore,

(8)

It follows from this formula that the difference in the
Fermi level shifts for the major and minor electrons
leads to the splitting of the conductivity steps that
appear in the cylindrical contact upon variation of the
bridge radius. For the antiparallel magnetization of the
edges, this splitting is absent.

The calculated contact conductivity G(kFa) is shown
in Fig. 1 (in 2e2/h units) as a function of the normalized
channel radius kF a, where kF is the wave number at the
Fermi level. The calculations were performed for iron
with the use of the formulas derived above for the par-
allel and antiparallel magnetizations of the contact
edges (curves 1 and 2, respectively). It follows from
these calculations that, first, the curve for the conduc-
tivity vs. normalized channel width kF a is shifted in
such a way that the conductivity of a contact containing
the domain wall decreases. Second, the shape of the
G(kF a) curve between the conductivity jumps also
changes: in the presence of the domain wall in the chan-
nel, the conductivity steps are smoothed out.

Figure 2 presents the changes ∆G(kF a) = G↑↑  – G↑↓
occurring in the channel conductivity upon the forma-
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tion of a domain wall of the “head-to-head” type inside
the channel. The calculations were performed for Fe,
Co, and Ni with allowance made for the transverse
quantization of the electron states. The parameter
J0/εF = ν was taken equal to ν = 0.74, 0.61, and 0.217,
respectively (according to [6]). For the case under
study, the expected variation in the magnetoresistance
proved to be much higher than that predicted by the
analogous theory for boundless contacts containing an
insulating interlayer [6]. This is due to the fact that the
insulating interlayer strongly reduces the effect of mag-
netization on the contact conductivity.

3. We now consider a contact with a high curvature
of the bridge between the edges; i.e., δ @ R. In this
case, one can expect that the spatial variation of the

“transverse energy” εm, n = "2/2ma2(z) (will play
the governing role and the potential gradient produced
by the domain wall will shift the maximum of the effec-
tive potential barrier and change its height. Indeed, for
the aforementioned second Schrödinger problem,
which determines the probability of electron transmis-
sion, the total potential can be reduced to the following
form:

where  = "2/2ma2 – σJ0q/δ +

( ma2/2 "2)R2/δ2 and z0 = (J0ma2/ "2)R2/δ. By
solving the Schrödinger problem with allowance made
for the barrier, one arrives at the following formula for

γm n,
2
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Fig. 1. Dependence of the conductivity of a long cylindrical
channel on its normalized width for the Fe nanocontact: (1)
in the absence of the domain wall in the channel and (2) for
the antiparallel spin orientations in the edges.
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the electron transmissivity at the Fermi level εF =

"2 /2m:

(9)

From the Landauer formula, one then obtains

(10)

In the short-wavelength limit RkF @ 1, formula (10)
can be approximated by the expression

(11)

One can see from this formula that the presence of a
domain wall in a short contact results in two effects.
First, the jumps in the resistance vs. normalized bridge
width curve are nonuniformly shifted proportionally to

kF
2

Tn m,
1

1 Qm n,–( )exp+
--------------------------------------,=

Qm n, Qm n,
0( ) Qm n,

1( ) σQm n,
2( ) ,+ +=

Qm n,
0( ) πRakF

2 /γm n,( ) 1 γm n, /akF( )2–[ ] ,=

Qm n,
1( ) πRkF( ) J0/εF( )2 akF/γm n,( )3R2/δ2,=

Qm n,
2( ) πRkF( ) J0/εF( ) akF/γm n,( )q/δ.=

G↑ ↓
e2

h
---- 1

1 Qn m,( )exp+
----------------------------------θ εF J0– εm n,–( ).

σ n m, ,
∑=

G↑ ↓ G0
∂G
∂Q
------- 

 
0

Q 1( ) ∂G
∂Q
------- 

 
0

Q 2( )+ +=

+
1
2
--- ∂2G

∂Q2
--------- 

 
0

Q 2( )
2

… G0
∂G
∂Q
------- 

 
0

Q 1( )+≈+

+
1
2
--- ∂2G

∂Q2
--------- 

 
0

Q 2( )
2

.

2

0 2

∆G(2e2/h)

kF a

4

6

8

10

12

14

Fe

Co

Ni

4 6 8 10 12

Fig. 2. Change in the conductivity of a long nanocontact
caused by the repolarization of its edges and appearance of
a domain wall inside the channel: solid curve is for Fe,
dashed curve is for Co, and dotted curve is for Ni.
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the ∆1(akF) ~ (J0/εF)2(akF/γm, n)3R2/δ2 factor. Second, the
displacement of the center of the domain wall also non-
uniformly shifts the jump positions proportionally to
the factor ∆2(akF) ~ (J0/εF)(akF/γm, n)q/δ. The latter
effect can be controlled by the external magnetic field,
owing to the dependence of the DW displacement on
the magnetic field q(H).
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Abstract—It is shown that every function computable in time T(n) and space S(n) on a classical one-dimen-
sional cellular automaton can be computed with certainty in time O(T1/2S) and space n  on a quantum com-
puter with relative diffusion transforms (RDTs) on parts of intermediate products of classical computation.
However, in the general case, RDTs cannot be implemented by the conventional quantum computer even with
oracles for intermediate results. Such a function can be computed only in time O(S4S/2T/T1) on the conventional
quantum computer with oracles for the intermediate results of classical computations with time T1. © 2000
MAIK “Nauka/Interperiodica”.

PACS numbers: 03.67.Lx

T

1 Quantum mechanical computations are different in
nature from the classical ones (see [1–3]). One of the
most intriguing features of quantum computers is
their ability to speed up searching. L. Grover [4] con-
structed a quantum algorithm that for a given function
F: {0, 1}n  {0, 1} finds the unique solution of the

equation F(x) = 1 after O( ) quantum evaluations of
F, whereas every classical computer requires Ω(N) eval-
uations, N = 2n.

With Grover’s algorithm for a search as a good pre-
cedent, it is of interest to elucidate whether it is possible
to speed up the complicated classical algorithms on
quantum computers, transforming classical programs
into quantum ones. Most likely, this cannot be done
without some additional information on the classical
algorithm. Such information in its simplest form is an
oracle testing intermediate results. Let the work of a
classical algorithm on an input word A have the form
x0(A)  x1(A)  …  xT(A). Given T1 < T, the
intermediate result is the {〈A, (A)〉  set. An oracle for
this set is called the verifier.

The following Theorem 1 shows that verifier can
speed up only sufficiently long computations. Theo-
rem 2 exhibits the potentials of the relative diffusion
transform (RDT).

Theorem 1. Every function F: ω*  ω*
(card(ω) = 4), computable on a classical one-dimen-
sional cellular automaton with alphabet ω in time T(n)
and space S(n) can be computed in time Tq =
O(S4S/2T/T1) and space S on a quantum computer with

1 This article was submitted by the authors in English.

N

xT1
0021-3640/00/7105- $20.00 © 20213
a verifier for the intermediate results of F correspond-
ing to time T1.

Theorem 2. Every function F(n) computable in time
T(n) and space S(n) on a classical one-dimensional cel-
lular automaton can be computed in time and space
O(T1/2S) on a quantum computer with RDT on parts of
intermediate results of F corresponding to time T1 =
T1/2S.

Note that, in the general case, RDT cannot be local-
ized (e.g., represented as a tensor product of small
matrices) and cannot be replaced by the computations
on a quantum query machine (see [5] for the definition)
of polynomial time complexity. Therefore, generally
speaking, the speedup by Theorem 2 cannot be
achieved on a quantum query machine.

Quantum computations. We shall use a simple
model of a quantum computer with two parts: the clas-
sical part, which transforms by classical laws (say, as a
cellular automaton), and the quantum part, which trans-
forms by quantum mechanical principles.

Quantum part. It is an % = {ν1, ν2, …, νr} (r even)
set whose elements are called qubits. Each qubit takes
values from the {z00 + z11|z1, z2 ∈  C, |z0 |2 + |z1|2 = 1} set.
Here, 0 and 1 are referred to as the basic states of a
qubit. They form a basis of C2. It is convenient to divide
% into registers of two neighboring qubits, so that any
register takes values from ω = {0, 1, 2, 3}.

The basic state of the quantum part is a function of
the form e: %  {0, 1}. The e state can be encoded as
|e(ν1), e(ν2), …, e(νr)〉  and naturally identified with the
corresponding word in alphabet ω.
000 MAIK “Nauka/Interperiodica”
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Let e0, e1, …, eK – 1 all be basic states taken in some
fixed order and * be a K-dimensional Hilbert space
with orthonormal basis e0, e1, …, eK – 1, 2r = K. This
Hilbert space can be regarded as a tensor product
*1 ⊗  *2 ⊗  … ⊗  *r of two-dimensional spaces,
where *i is generated by the possible values of e(νi),
*i ≅  C2. The (pure) state of the quantum part is an ele-
ment x ∈  * such that |x | = 1. Thus, contrary to the
classical devices, the quantum device may not only be
in the basic state, but also in a coherent state, and this
imparts surprising properties to such devices.

Let _ = {0, 1, …, K – 1}. For elements x =

es, y = es ∈  *, their dot product

 is denoted by 〈x|y〉 , where  means com-

plex conjugation of µ ∈  C; hence 〈x|y〉  = .

Unitary transformations. Let {1, …, r} = ,

 ∩  = ∅  (i ≠ j), and unitary transformation  act on

ej; then Us =  acts on *, s = 1, 2, …, M.

We require that all  belong to a certain finite set of
transformations that are independent of % and can be
easily accomplished by physical devices.

Computation is a sequence of unitary transformations
U1, U2, …, UM. It is applied to some initial state χ0.

Classical part of the computer points to partitions

 and chooses transformations  sequentially for
each s.

Observations. Let χ = es be some fixed

state of the computer, often χ = χM. If A ∈  {0, 1}k is a
list of possible values for the first k qubits, then we put

This observation results in a new state χA = ,

where 

The observation of the first register in state χ is a pro-
cedure which gives a < classical word A, quantum state
χA > pair with probability pA for any possible A ∈  {0, 1}k.
The only way to learn the results of quantum computa-
tions is to obtain such words A.

Diffusion transform. Every unitary transformation
U: *  * can be represented by its matrix U = (uij),

where uij = 〈U(ej)|ei〉 , so that for x = ep and U(x) =

ep we have  = U , where ,  are columns.

λ ss _∈∑ µss _∈∑
λ sµss _∈∑ µ

y x〈 〉

Li
s

i 1=
l∪

Li
s L j

s Ui
s

⊗ j Li
s∈ ⊗ i 1=

l
Ui

s

Ui
s

Li∪ Ui
s

λ ss _∈∑

BA i  ak 1+∃ ak 2+ … ar 0 1,{ } :∈, , ,{=

ei Aak 1+ ak 2+ …ar } .=

λ i

pa

---------ei

i BA∈
∑

pA λ i
2.

i BA∈
∑=

λ p∑
λ p'∑ λ' λ λ λ'
The diffusion transform D is defined by its matrix
D: dij = 2/N if i ≠ j, and dij = –1 + 2/N if i = j. Note that
D = WRW, where R is the phase inversion of e0 and W
is the Walsh–Hadamard transform defined as the tensor
product of n matrices

hence, the diffusion transform can be performed on a
quantum computer.

For any state x = e, the average amplitude

is taken as xav = /N. Hereafter, * denotes the
real Euclidean space.

Proposition 1 [4]. For every state x 〈ep |x〉  – xav =
xav – 〈ep |D(x)〉 .

This means that D is the inversion about the average.
We need to relate this property to a subspace *0 ⊆  *.
Let *0 be a subspace of * with basis e0, …, eM – 1.

Define the relative diffusion transform  by

Given state x = ep, its average amplitude is

taken as  = /M. Proposition 1 can easily be
extended to the RDTs as follows.

Proposition 2. For every p = 0, 1, …, M – 1 λp – 

=  – 〈ep | (x)〉 .
The diffusion transforms and a simple transforma-

tion changing the sign of the target state were sequen-
tially applied in [4] for the fast quantum search. Any
iteration increases the amplitude of the target state (ini-

tially taken as 1/ ) by approximately 1/ . There-

fore, Grover’s algorithm requires O( ) steps for the
target state to be really observable.

Q–M speedup. Suppose that we have a function F:
ω*  ω* computable in time T(n) > n2 and space
S(n) = n on a classical Turing machine or cellular
automaton. Our goal is to compute F faster than
Ω(T(n)) on a quantum computer with RDTs.

Let f: ω*  ω* denote one step of the classical
algorithm for computing F. If F is a one-dimensional
cellular automaton with radius R, the neighborhood of
radius R of each ith letter in  determines the ith letter
in f( ). Without loss of generality, we can assume that
card(ω) = 4, because every cellular automaton can be

1/ 2 1/ 2

1/ 2 1/ 2– 
 
 
 

,

λ pp _∈∑
λ pp _∈∑

D
*0

dij
*0

2/M if i j; i j _,∈,≠
1– 2/M, if i+ j 0 … M 1–, ,{ } ,∈=

δij, in other cases.





=

λ pp 0=
M 1–∑

xav
*0 λ pp 0=

M 1–∑

xav
*0

xav
*0 D

*0

N N

N

a
a
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simulated without slowdown by such a cellular autom-
aton with an appropriate radius. Define for every a ∈
ω* f (0)(a) = a, so that f (m)(a) = f (f (m – 1)(a) is the mth
iteration of f, f (C) =F.

Proof of Theorem 1. We can assume that T > n4n/2,
because otherwise T = O(Tq). Prepare the state

. Now, using an oracle and applying Grover’s

algorithm, we obtain (x0) in time 4n/2n. Then iter-

ate this procedure and obtain sequentially (x0),

(x0), …, f (T)(x0), which requires the time Tq. The-
orem 1 is proved.

Proof of Theorem 2. Fix integers n, T1, T2:
T1T2 = T(n). Let T1 independent processors be given:
P1, P2, …, , every Pi having the quantum part
Bi = {1, 2, …, 3n}. The pure states for all Pi will have
the form |a1, …, a3n〉 , where all ai ∈  ω.

Let us first prepare the state  in each

processor by applying the Walsh–Hadamard transfor-

mation to all states of the form | , 0, …, 0, a, 0, …, 0,

〉 ,  = ( , …, ), where  = 0n,  = ( , …, ).
Then calculate the T2-iteration of f in the last registers

to obtain the state X0 =  in all

processors. This takes O(T2) steps. Then denote the

state | (x0), , ( )〉  by ξi( ).
Then, the processors work in a serial mode to com-

pute sequentially the intermediate results tar1, tar2, …,

, where tari = , x0 is a certain fixed

input word of length n.
Beginning with tari, the processor Pi achieves the

pure state

in time O(n2). Then the state tari + 1 is prepared for the
successive processor Pi + 1 that is initially set to the
state X0. The last passage is quite clear; it takes an
instant, so that we only need to describe the first pas-

sage tari  .

Omitting indices, denote our target state by tar*. Let
*0 be the Euclidean space with orthonormal basis @0

consisting of all vectors of the form ξi( ). We have
tar* = |α1, …, αn, α1, …, αn, β1, …, βn〉 . @s denotes
the set of all vectors of the form |α1, …, αn, α1, …, αs,
γs + 1, …, γ2n – s〉  from @0, s = 0, …, n.

1

4n/2
-------- x| 〉

x∑
f

T1( )

f
2T1( )

f
3T1( )

PT1

1

kn/2
-------- 0 a 0, ,| 〉

a∑

0

0 a ai1
ain

0 a ai1
ain

1

kn/2
-------- 0 a f

T2( )
a( ), ,| 〉

a∑

f
iT2( )

a f
T2( )

a a

tarT1

1

kn/2
-------- ξ ia∑ a( )

tari 1+* f
iT2( )

x0( ) f
iT2( )

x0( ) f
iT2 T2+( )

x0( ),,| 〉=

tari 1+*

a
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Define *s as the subspace of *0 spanned by all vec-
tors from @s. Then,

Now apply the following procedure sequentially for
j = 1, 2, …, n, beginning with tar. (a) Rotation of all

ξ ∈  @j. (b) Ensuring RDT .
Finally, let us observe the quantum part. If k = 4, then

at the instant of observation “tar*” has amplitude 1. To
show this, the following lemma is required. Let χj be the
result of the jth step of our procedure (a), (b), χ0 = tar.

Lemma 1. For all ξ ∈  @j , j = 0, 1, …, n 〈χ j |ξ〉 =
(3 − 4/k)j/kn/2.

Sketch of the proof. Induction on j. Basis follows
from the choice of χ0. Step follows from Proposition 2.
Now put k = 4; Lemma 1 yields 〈χ j |ξ〉 = 2j/kn/2. Conse-
quently, 〈χ n |tar*〉  = 1.

This computation of F requires the time O(T1/2n) if
we put T1 = O(T1/2n). Lemma 1 is proved. Theorem 2 is
proved.

Power of RDT.
Theorem 3. 1) RDTs cannot be implemented on a

quantum query machine in polynomial time.
2) Any device capable of performing RDTs on the

sets localized by arbitrary oracles can find the solution
of equation f(x) = 1 for a given oracle f in polynomial
time with a high probability, provided that this solution
is unique.

Proof of Theorem 3.
Lemma 2. Let f be a one-to-one function ωn  ωn,

Then the value f( ) can be found with certainty in
time O(n2) on a computer with RDTs on all sets of the
form

Proof. Let @j be a set of vectors of the form |f( ), 〉,
such that the first j components of  and  are equal,
and *j be the Euclidean space with the basis @j.

Then {|f( ), 〉} = *n ⊂  *n – 1 ⊂  … ⊂  *0. Apply

rotation of all ξ ∈  @j and RDT  sequentially for
j = 1, 2, …, n. This yields |f( ), 〉  by Lemma 1.
Lemma 2 is proved.

dim *s kn s– ,=

tar{ } *n *n 1– … *1 *0.⊂ ⊂ ⊂ ⊂=

D
* j 1–

k card ω( ) 4,= =

x0 f( ) 1

kn/2
-------- f b( ) b,| 〉 , a ω.∈

b

∑=

a

Nε1…εk

=  f a( ) a,〈 〉  εk 1+∃ … εn: a ε1…εkεk 1+ …εn=, ,{ } .

b b

a b

a a

D
* j 1–

a a
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(1) Consider the computation with RDTs from
Lemma 2, depending on f: x0(f)  x1(f)  … 
xp(f), p = O(n2).

Consider some other function  that differs from f

only in two arguments, including . Then ||x0( ) –

x0(f)|| ≤ 2/ , N = 4n. Assume that RDTs can be imple-
mented in polynomial time with the corresponding ora-

cles for . By the definition of , the correspond-
ing postquery states xm m = 1, 2, …, p for the computa-

tions of f( ) and ( ) differ by mP(n)/ , where
P(n) is a polynomial, as is shown in [5]. But it is impos-
sible, because for the final pure states xp(f) = | , f( )〉 ,
xp( ) = | , ( )〉, we have ||xp(f) – xp( )|| = .
Point 1) is proved.

(2) Consider an oracle for f and find a solution of
equation f(x) = 1 with RDTs. Put @m = {〈x, y〉|y =
f(x)&(y = 1 ∨  ∃ x': x = (0, 0)mx'} (0, 0) ∈  ω. Then we

f̃

a f̃

N

Ne1…ek
f̃

a f̃ a N

a a

f̃ a f̃ a f̃ 2
have: |card(@m) – 4n – m | ≤ 1, because the solution is
unique. Therefore, applying the algorithm from the
proof of Lemma 2, we obtain the desired |card(@m) –
4n – m | ≤ 1 with high probability in time O(n2). Theorem
3 is proved.
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