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1 At present, unconventional, from the point of view
of the chiral pion dynamics, sources of soft pions are
feasible. Indeed, the progress in increasing the lumi-
nosity of low-energy e+e– colliders (φ factories) [1]
could offer naturally controlled sources of soft pions.
Other possible source of such pions could be intense
photon beams [2], provided sufficiently low invariant
mass regions of the many-pion systems are isolated.
The yield of pions is considerably enhanced when they
are produced through proper vector resonance states.
Then, choosing the many-pion decays of sufficiently
low lying resonances, one can obtain soft pions in
quantities sufficient for testing the predictions of chiral
models that include vector mesons.

The decay ω(782)  5π whose final-state pions
possess the momenta |qπ| . 74 MeV, is just of this kind.
The latter value is sufficiently small to expect the man-
ifestation of chiral dynamics in the cleanest form. By
this we mean that the higher derivative and loop terms
in the effective Lagrangian are severely suppressed.
The present paper is devoted to the evaluation of the
partial width of this decay and plotting its excitation
curve in e+e– annihilation.

The ρπ sector is considered here on the basis of the
Weinberg Lagrangian [3] revived later as the
Lagrangian of hidden local symmetry (HLS) [4]. The
former looks like
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1 This article was submitted by the authors in English.
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where p, mπ and rµ, mρ stand for the isovector fields of
π and ρ mesons and their masses, respectively, and fπ =
92.4 MeV is the pion decay constant. The cross stands
for the vector product of the isovector quantities
defined on the isotopic space. The ρρρ coupling con-
stant g and the ρππ coupling constant gρππ are related to
the ρ mass and pion decay constant fπ via the parameter
of hidden local symmetry a as [4]

(2)

Note that a = 2 if one demands that the universality con-
dition g = gρππ be satisfied. Then the so-called Kawa-
rabayashi–Suzuki–Riazzuddin–Fayyazuddin relation

 = 1 [5] arises, which beautifully agrees
with experiment. The ρππ coupling constant resulting
from this relation is gρππ = 5.89. The inclusion of the
interaction of the ω(782) with the ρπ state is achieved
upon adding the term induced by the anomalous
Lagrangian of Wess and Zumino [4, 6],

(3)

where ων stands for the ω meson field and Nc = 3 is the
number of colors.

One may convince oneself that the ω  ρπ 
5π decay amplitude unambiguously results from the
Weinberg Lagrangian (1) and the anomaly-induced
Lagrangian (3). This amplitude is represented by the
diagrams shown in Fig. 1. Its general expression is
expected to be cumbersome. However, it can be consid-
erably simplified upon noting that the small pion
momenta permit one to use the nonrelativistic expres-
sions
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Fig. 1. The diagrams describing the amplitudes of the decay ω  π+π–π+π–π0. The shaded circles in set (a) refer to the whole
ρ  4π amplitudes Eq. (5). The shaded circles in set (b) refer to the effective π  3π vertices given by Eq. (6). The symme-
trization over momenta of identical pions is meant. The diagrams for the decay ω  π+π–π0π0π0 are obtained from those shown
upon the evident replacements.
(4)

for the ρ  4π decay amplitudes in the diagrams of
Fig. 1a. Here ε, qA (A = 1, 2, 3, 4) stand for the ρ meson
polarization and pion momentum four-vectors.2 The
above expressions are valid with an accuracy of 5% in
the 4π mass range relevant for the present purpose.
Likewise, the expression for the combination

M(π  3π) standing in the expression for the dia-
grams in Fig. 1b can be replaced, with the same accu-

racy, by –  times the nonrelativistic π  3π
amplitudes. The latter look like 

(5)

Note that, in the nonrelativistic limit, the ρ  4π
decay amplitudes depend on the HLS parameter a only

2 Our notation for the scalar product of two-vectors a and b is
(a, b) = a0b0 – ab.
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through an overall factor gρππ/  = mρ/2 ,
whereas the π  3π amplitudes do not depend on it
at all.

Yet even the simplified expressions for the ω  5π
amplitudes are not easy to use for evaluation of the
branching ratios. To go further, one should note the fol-
lowing. The invariant mass of the 4π system, on which
the contribution of the diagrams shown in Fig. 1a
depends, changes in very narrow range 558 MeV <
m4π < 642 MeV. Hence, one can set it in all the ρ prop-
agators, to an accuracy of 20% in width, to the equilib-

rium value  = 620 MeV evaluated for the pion
energy Eπ = mω/5, which gives the dominant contribu-
tion. The same is true for the invariant mass of the pion
pairs, on which the ρ propagators entering the diagrams
Fig. 1b depend. This mass varies in the narrow range
280 MeV < m2π < 360 MeV. With the same accuracy,

one can set it to  = 295 MeV in all relevant prop-
agators. On the other hand, the amplitude of the process
ω  ρ0π0  (2π+2π–)π0 corresponding to the first
diagram in Fig. 1a is

(6)

where the momentum assignment is π+(q1)π+(q2)π–

(q3)π–(q5)π0(q4). Hereafter, qµ, eµstand for the four-vec-
tors of momentum and polarization, respectively, of the
ω(782) and

(7)

is the inverse propagator of the ρ(770). The other rele-
vant amplitude corresponding to the first diagram in
Fig. 1b is

f π
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(8)

where Pij interchanges the momenta qi and qj. Then,
taking into account the above consideration concerning
the invariant masses, one can show that

(9)

The same treatment shows that

(10)

where

(11)

and the momentum assignment is π+(q1)π–

(q2)π0(q3)π0(q4)π0(q5). The second term in square
brackets of Eqs. (9) and (10) approximates the contri-
bution of the diagrams shown in Fig. 1b. The numerical

values of  and  found above are such that
the correction factor in parentheses of Eqs. (9) and (10)
amounts to 20% in magnitude. In what follows, the
above correction will be taken into account as an over-
all factor of 0.64 in front of the branching ratios of the
decays ω  5π. When making this estimate, the
imaginary part of the ρ propagators in square brackets
of Eqs. (9) and (10) is neglected. This assumption is
valid to an accuracy better than 1% in width.

The evaluation of the partial widths valid to an accu-
racy of 20% can be obtained upon taking the amplitude
of each considered decay as 5/2 times the ρπ produc-
tion state amplitude with the subsequent decay ρ 
4π, and calculate the partial width of the latter with the
help of Eq. (5). One obtains
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where  = q3(mω, m, )/12π and

 = Ncg2/8π2fπ = 14.3 GeV–1. Note also the a–1

dependence of the ω  5π width on the HLS param-
eter a. The branching ratio  is obtained from

Eq. (12) upon inserting the lower integration limit to
 + 3 ,    in the expression for the

momentum q and substitution of the ρ+  π+3π0

decay width corrected for the mass difference of
charged and neutral pions. Of course, the main correc-
tion of this sort comes from the phase-space volume of
the final 4π state. One obtains

 = 8.5 × 10–10. (13)

As is pointed out in [4], the inclusion of the direct
ω  π+π–π0 vertex reduces the 3π decay width of ω
by 33%. This implies that one should use the suppres-
sion factor .0.75 instead of 0.64, which results in the
increase of the above branching ratios by a factor of
1.17.

The numerical value of the ω  5π decay width
changes by a factor of two when varying the energy
within ±Γω/2 around the ω mass. In other words, the
dependence of this partial width on energy is very
strong. This is illustrated in Fig. 2, where the ω  5π
excitation curves in e+e– annihilation are plotted. The
mentioned strong energy dependence of the partial
width results in the asymmetric shape of the ω reso-
nance and the shifting of its peak by +0.7 MeV. As is
seen from Fig. 2, the peak value of the 5π-state produc-

Γ
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Fig. 2. The ω  5π excitation curves in e+e– annihilation
in the vicinity of the ω resonance.
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tion cross section is about 1.5–2.0 femtobarns. Yet the
decays ω  5π can be observable on e+e– colliders.
Indeed, with the luminosity L = 1033 c–2 s–1 near the ω
peak, which seems to be feasible, one may expect about
two events per week for the considered decays to be
detected at these colliders.

The strong energy dependence of the five-pion par-
tial width of ω implies that the branching ratio at the ω
mass Bω → 5π = Γω → 5π/Γω, evaluated above is slightly
different from that determined by the expression

(14)

Taking E1 = 772 MeV and E2 = 792 MeV, one finds

 = 9.0 × 10–10 and

 = 6.7 × 10–10 to be compared to

Eqs. (12) and (13), respectively. In particular, the quan-

tity  is the relevant characteristic of

this specific decay mode in photoproduction experi-
ments. The Jefferson Lab “photon factory” [2] could
also be suitable for detecting five-pion decays of ω.
However, in view of the suppression of the ω photopro-
duction cross section by a factor of 1/9, as compared
with the ρ one, the total number of ω mesons will
amount to 7 × 108 per nucleon. Hence, an increase in
the intensity of this machine by a factor of 50 is highly
desirable in order to observe the decay ω  5π and
measure its branching ratio. Evidently, ω photoproduc-
tion on heavy nuclei is preferable in view of the depen-

Bω 5π→
aver E1 E2,( )

2
π
--- E

E2ΓωBω 5π→ E( )

E2 mω
2–( )

2
mωΓω( )2

+
-----------------------------------------------------.d

E1

E2

∫=

B
ω 2π+2π–π0→
aver E1 E2,( )

B
ω π+π–3π0→
aver E1 E2,( )

B
ω 2π+2π–π0→
aver E1 E2,( )
dence of the cross section on the atomic weight A grow-
ing as A0.8–0.95 [7].

Together with the e+e– annihilation experiments, the
study of the photoproduction of the five-pion states on
heavy nuclei would also allow one to measure the cor-
responding partial width of ω(782). The comparison
with theoretical expectations presented here would give
the possibility of testing the predictions of chiral mod-
els in the situation where the decay amplitudes are
determined by very low pion momenta.
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Changes in the spectra of femtosecond laser pulses propagating through fibers with a cladding having the struc-
ture of a two-dimensional photonic crystal are experimentally investigated. It is demonstrated that the
waveguide properties of defect modes of photonic-crystal fibers provide an opportunity to considerably
increase the efficiency of spectral broadening of short laser pulses as compared with conventional fibers.
© 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 42.65.Wi; 42.70.Qs
Fibers with a photonic-crystal cladding [1–4] are a
new type of optical waveguides whose unique proper-
ties are of special interest in the context of the possibil-
ity of solving many urgent problems of modern optics.
The cladding in fibers of this type has the structure of a
two-dimensional (2D) photonic crystal (PC); i.e., it
consists of a 2D periodic array of closely packed hol-
low silica fibers. Due to the periodic arrangement of air
holes in a silica fiber, the transmission spectrum of such
a structure displays photonic band gaps (PBGs), i.e.,
frequency ranges where radiation with certain direc-
tions of the wave vector cannot penetrate into the fiber
cladding. If a fiber without a hole is used to make the
core of such a structure, then the missing hole can be
considered as a defect in a 2D photonic-crystal lattice.
Such fibers seem to offer much promise for extending
many ideas of the physics of photonic crystals [5–7] to
the optical range.

Knight et al. [1] were the first to fabricate fibers with
a PBG cladding (which were later called holey fibers)
and to investigate the properties of such fibers. These
studies have shown that fibers of this type support a sin-
gle-mode propagation regime within a broad spectral
range, allowing radiation energy losses to be consider-
ably reduced in the single-mode regime and the effec-
tive area of the waveguide mode to be substantially
increased. These properties of PBG fibers seem to hold
much promise for enhancing the efficiency of nonlin-
ear-optical interactions. Some nonlinear-optical appli-
cations of such fibers have recently been discussed by
Broderick et al. [4].

In this letter, we present the results of experimental
studies devoted to the propagation of femtosecond laser
0021-3640/00/7107- $20.00 © 20281
pulses in holey fibers. Our experiments demonstrate
that the use of such fibers allows the efficiency of spec-
tral broadening of femtosecond pulses to be consider-
ably increased as compared with conventional fibers.
This finding may have important implications in pulse
compression and creation of new efficient broadband
radiation sources. Furthermore, the results of our
experiments confirm the possibility of enhancing the
efficiency of nonlinear-optical interactions of ultrashort
light pulses in defect modes of PC structures.

The technology employed to fabricate holey fibers
was similar to the procedure described by Knight et al.
[1, 2]. Holey fibers were fabricated by repeating a pro-
cedure of stacking thin glass capillaries into a periodic
array and then fusing the stack and drawing this struc-
ture at high temperatures. The initial inner diameter of
the glass capillaries used in this process was about
1 mm. The above-described procedure allowed us to
fabricate fibers where the cladding had the structure of
a 2D photonic crystal with periodically arranged air
holes. By changing the conditions of the fabrication
process, we were able to vary the final inner diameter
of air holes in the PBG cladding from 0.56 to 12.8 µm.
A defect was introduced into a 2D PC lattice by replac-
ing one of the capillaries by a conventional fiber, which
was made of different glass in our case. This central
fiber served as a core in a holey fiber (Fig. 1). The pitch
of the PBG structure in the cladding of fibers employed
in our experiments ranged from 1.4 to 32 µm.

The idea of enhancing the efficiency of nonlinear-
optical interactions and, consequently, the efficiency of
spectral broadening and supercontinuum generation in
holey fibers with respect to conventional fibers is based
000 MAIK “Nauka/Interperiodica”
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on robust low-loss single-mode waveguiding, which is
supported, as demonstrated by Knight et al. [1, 2], by
holey fibers within a broad frequency range, and local-
field enhancement, which is characteristic of defect
modes of PBG structures [6–8]. Although the wave-
length of laser radiation lay relatively far from the pho-
tonic band gap of the PBG cladding in our experiments,
the light-field confinement in the fiber core, as indi-
cated by the results of our measurements, resulted in a
detectable increase in the efficiency of spectral broad-
ening of short laser pulses as compared with conven-
tional fibers.

Experiments on spectral broadening in holey fibers
were carried out with the use of a laser system consist-
ing of a Ti : sapphire laser, an eight-pass preamplifier,
and a four-pass final amplifier. This laser system gener-
ated 150-fs pulses with a repetition rate of 10 Hz. The
maximum energy of these pulses was as high as

Fig. 1. A microscope image of a cut of a holey fiber with a
pitch of the PBG cladding equal to 32 µm.
100 mJ. In holey-fiber experiments, the energy of laser
pulses was varied within the range from 1 to 15 µJ. The
contrast ratio of femtosecond pulses measured at 1 ps
from the pulse maximum was estimated as 10–4.

The laser beam was focused on the entrance end of
a holey fiber with a lens L1 (Fig. 2). Measurements
were performed with lenses with different focal
lengths. In particular, to be able to compare spectral
broadening in holey and conventional supercontinuum-
generating fibers, we carried out measurements using a
10-cm-focal-length lens L1, which focused a light
beam into a 100-µm spot. For holey fibers with core
sizes ranging from 0.56 to 1.28 µm, this regime of
focusing corresponded to excitation of the waveguide
mode in a nearly plane wave (this regime of excitation
of defect modes in photonic crystals was theoretically
investigated in [8]). Only a small fraction of light
energy was coupled into the waveguide mode under
these conditions, while a considerable part of the light
beam was scattered due to the roughness of the fiber
end. The spectra of light pulses at the output of the
holey fiber were analyzed with the use of a monochro-
mator and a CCD camera, which was used to image the
output slit of the monochromator (Fig. 2).

Analysis of the spectra of light coming out of the
fiber reveals considerable spectral broadening of fem-
tosecond pulses in a PBG waveguide. Starting with a
transform-limited 150-fs pulse of a Ti : sapphire laser
with an energy of 1.5 µJ (Fig. 3a), we observed spectral
broadening of the pulse at the output of the fiber, allow-
ing a spectral width of about 40 nm at the level of 0.3
of the maximum intensity to be achieved for pulses
with a moderate intensity. Note that a considerable
fraction of the radiation energy was contained in the
wings of the spectrum under these conditions (Fig. 3b).
The insets in Figs. 3a and 3b show the CCD images of
a laser beam at the output of the monochromator, with
the horizontal direction corresponding to the spatial
beam profile and the vertical direction corresponding to
Fig. 2. Diagram of the experimental setup employed to investigate the spectral broadening of femtosecond pulses in holey fibers:
L1–L3, lenses; M1, M2, mirrors.

CCD
Spectro-

meter

L3 L2

Photonic-crystal fiber

L1

M2

Femtosecond laser system

Ti : Sapphire M1

E = 1–10 µJ

τ = 150 fs
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the spectral profile of a laser pulse. The spectral broad-
ening of femtosecond pulses coming out of a holey
fiber is manifested as the increase in the vertical sizes
of CCD images. The image shown in the inset in Fig.
3b also indicates the presence of irregular modulation
in the spectrum of a femtosecond pulse at the output of
a holey fiber.

The main features of spectral broadening of femto-
second pulses observed in our experiments are similar
to the features of the spectral broadening of short pulses
in conventional fibers. The properties of such phenom-
ena are well understood now and are described in detail
in the extensive literature (e.g., see [9]). Importantly,
even with considerable losses due to scattering, spectral
broadening of femtosecond pulses in a holey fiber was
much more efficient than in a conventional silica fiber
with a much higher quality of the entrance end.

The results of our experiments allow us to conclude
that, in accordance with our expectations, PBG-clad-
ding fibers allow the efficiency of nonlinear-optical
interactions to be considerably increased. The fact that
holey fibers can be employed to increase the efficiency
of supercontinuum generation seems to be very impor-
tant for practical applications. Supercontinuum-gener-
ating sources are currently employed more and more
extensively for various spectroscopic applications [10].
Since supercontinuum generation involves nonlinear-
optical processes, high intensities of incident light are
usually required to ensure supercontinuum emission
with sufficient spectral brightness. The results pre-
sented in this paper demonstrate that an efficient way of
generating supercontinuum is to use optical fibers with
a PBG cladding, which ensure large propagation
lengths due to robust waveguiding within a broad fre-
quency range and may considerably reduce the require-
ments for the intensity of incident radiation in super-
continuum generation.

The experiments described above demonstrate effi-
cient spectral broadening of 150-fs pulses of a Ti : sap-
phire laser in optical fibers with PBG cladding. This
effect can be employed for pulse compression and the
creation of new sources of broadband radiation. While
the advantages of using holey fibers for improving the
efficiency of nonlinear-optical interactions have been
demonstrated by our experiments quite clearly, the effi-
ciency of nonlinear-optical processes in holey fibers
can be further improved by using wavelengths lying
closer to the photonic band gap of the PC cladding,
employing materials with higher nonlinearities for the
fabrication of PBG structures, and improving phase
matching by separately controlling different compo-
nents of PBG-fiber dispersion [11].
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Under the assumption of slow evolution of the cluster structure of walker positions, the kinetic equation is
derived, according to which the Lévy law is fulfilled on the mesoscopic time-scale, while the system tends to
the generalized Tsallis distribution on the macroscopic time-scale. The asymptotics are found for the time
dependences of the hierarchy characteristic scale and the probability distribution over the hierarchical levels.
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As is known, stochastic transfer processes are the
generalization of the diffusion process [1]. They are
characterized by the transition from the ordinary
square-root law to the relation

(1)

with the dynamic exponent z ≠ 2 (r is the coordinate of
a walking particle and t is time). For subdiffusion in the
presence of traps, the jump mean waiting time diverges,
〈t〉  = ∞, as a result of which the jumps occur discretely
in space and the transfer process is decelerated (z > 2).
It accelerates (z < 2) in the presence of Lévy flights
when the particle executes jumps of arbitrary length
with the divergent mean square displacement 〈x2〉  = ∞
at discrete time instants.

A remarkable feature of the superdiffusion process
is that the successive positions of the walking particle
form a cluster structure representing a fractal set with
the dimension of exponent z [2]. Since the fractal is
formed by the hierarchical construction, one can
assume that the behavior of the stochastic system is
determined not only by the particle displacement in the
real space but also by a much slower evolution of the
clusters of its successive positions. This evolution is
known to amount to diffusion over the sites of a hierar-
chical tree in the ultrametric space.

This study is devoted to the description of superdif-
fusion as a random walk in the real and ultrametric
spaces. The generalized Fokker–Planck equation will
be used to show that the particle positions conform to
the Lévy distribution on the mesoscopic time-scale,
where the cluster structure does not undergo noticeable
changes. Similar to the slow relaxation of spin glasses,
it should be expected that on the macroscopic time-
scale the cluster structure would undergo noticeable
changes on the way to the stationary distribution of par-
ticle positions. Such behavior results in the Tsallis form
of asymptotic distribution, which, in turn, corresponds

r2〈 〉 t2/z,∝
0021-3640/00/7107- $20.00 © 20285
to the highest level of the particle-position cluster dis-
tribution [3].

Let us first present the information necessary for the
description of superdiffusion in the case when the clus-
ter structure is ignored [4]. The initial kinetic equation
has the form

(2)

where τ0 is the jump time and f(r, r') is the probability
of transition from point r' to point r. At t @ τ0, the left-
hand side of Eq. (2) amounts to the time derivative

, and it is convenient, under the assumption of
spatial homogeneity, to pass over to integration with
respect to the displacement x ≡ r – r' on the right-hand
side. Then, using the detailed balancing principle f(x) =
f(–x), one can recast the kinetic equation in the form

Taking into account the normalization condition

 = 1 for the space Fourier transforms, one

obtains τ0  = –(1 – fk)Pk(t), where k  0 is the
wave vector multiplied by the real-space characteristic
scale. In superdiffusion processes, of crucial impor-
tance is the behavior of the transition probability at
large distances, f(x) ~ |x|–(d + z), where d is the space
dimensionality. In the corresponding k  0 limit, the
1 – fk factor is reduced to Dz|k|z, where Dzis the effective
diffusion coefficient whose explicit expression is deter-
mined by the f(x) function (in particular, for d = 1, it
was found that Dz = 2–zΓ(1 – z/2)/Γ(1 + z/2), where Γ(ξ)

P r t τ0+,( ) P r t,( )–

=  f r r',( )P r' t,( ) f r' r,( )P r t,( )–[ ] r',d∫

Ṗ r t,( )

τ0Ṗ r t,( ) P r x+ t,( ) P r t,( )–[ ] f x( ) x.d∫=

f x( ) xd
∞–

∞∫
Ṗk t( )
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is the gamma function [4]). As a result, one arrives at
the Lévy distribution

(3)

characterized by the mesoscopic time τk @ τ0. The cor-
responding kinetic equation in the real space contains a
fractional derivative of order z.

When the cluster structure is taken into account, the
probability density Pu(r, t) and the transition intensities
fuu'(r, r') in kinetic equation (2) become dependent on
the ultrametric coordinate u [5]. To reveal this depen-
dence, let us consider a regular hierarchical tree charac-
terized by a fixed branching ratio s > 1 and the number
n @ 1 of hierarchy levels. In this case, the ultrametric
coordinate u is an n-valued number in the s-digit num-
ber system: u ≡ u0u1…um…un – 1, um = 0, 1, …, s – 1 (an
example is shown in Fig. 1a). Accordingly, the transi-
tion intensity is written as a power series

where the first term (m = 0) corresponds to the highest
hierarchy level governing the behavior of the whole
system, while the last term (m = n) corresponds to the
lowest level representing the smallest clusters. By defi-
nition, the distance between the points u and u' is 0 ≤
l ≤ n if the conditions um =  are fulfilled for m = 0, 1,

Pk t( ) Pk 0( ) t– τk⁄( ), τk Dz
1– k z– τ0,≡exp=

f uu' f um um'–( )sn m– ,
m 0=

n

∑=

um'

--------------------------------------------

--------------------------------------------

--------------------------------------------

(a)

m = 0

m = 1

m = 2

0 1 2

00 01 02 10 11 12 20 21 22

--------------------------------------------

--------------------------------------------

--------------------------------------------

(b)

m < n

m > n
--------------------------------------------

n

l

Fig. 1. Simplest hierarchical trees: (a) tree parametrization
with the branching ratio s = 3 and (b) bifurcation tree, s = 2.
…, n – (l + 1) but um ≠  for m = n – 1, n – l + 1, …,
n [6]. For this reason, at a fixed distance l, the first n – l
terms of the above series are zero by definition, while
the last l terms contain the sn – m multiplier, which, in the
continuous limit s @ 1, is much smaller than the sl mul-
tiplier in the first of the remaining terms. As a result, the
term corresponding to m = n – l: fuu' ~ sl = sn – m is the
only leading term of the power series under consider-
ation. Similarly, one can show that the probability den-
sity Pu ~ sn – l = sm. Upon passing from the regular to the
arbitrary tree [7], the branching ratio s becomes the
variable quantity and, according to the above estimates,
the transition intensities fuu'  f(n – m) and the prob-
ability density Pku  Pk(m) take the form of a Mellin
transform:

(4)

where f(s) and P(s) are the respective weight functions.

The kinetic equation allowing for the cluster struc-
ture has the form

(5)

Here, the first term on the right-hand side allows for the
hierarchical interrelation between the nodes of the
lower levels m > n through a given n, while the sub-
tracted term allows for the interrelation of a given level
n through the upper levels m < n (see Fig. 1b). In deriv-
ing Eq. (5), the adiabatic approximation was used
because, the particle walks occur much more rapidly
than do the cluster structure changes on a macroscopic
time-scale τ (see below). Expanding Pk(m, t) in n – m
to the quadratic term, one obtains the following equa-
tion in the continuous limit n @ 1:

(6)

where the moments

um'

f n m–( ) f s( )sn m– s, Pk m( ) Pk s( )sm s,d

0

∞

∫≡d

0

∞

∫≡

τkṖk n t,( ) f m n–( )Pk n t,( )
m n>
∑=

– f n m–( )Pk m t,( ).
m n<
∑

τkṖk n t,( )
n∂

∂
F n( )Pk n t,( )

n∂
∂

D n( )Pk n t,( )–=

+ $Pk n t,( ),

F n( ) n m–( ) f n m–( ),
m n<
∑≡

2D n( ) n m–( )2 f n m–( )
m n<
∑≡
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and the quantity

(7)

specifying the difference between the rates of establish-
ing hierarchical interrelation through the upper and
lower levels are introduced.

The restrictions m > n and m < n are usually absent
in the summation over the system states in Eq. (7), so
that $ = 0 [8]. However, it is beyond reason to formu-
late such a condition for hierarchical systems, where
the rate of establishing the interrelation essentially
depends on the levels (upper or lower) mediating this
process. Such is the case because the ultrametric space
is inhomogeneous, as is evident from its geometric
imaging (Fig. 1). For this reason, the following ansatz
(the basic assumption) is adopted in this work:

(8)

where q and e are positive parameters. This ansatz is

formally justified by the fact that the integral 

is reduced within a factor of –e(q – 1) to the Jackson
derivative with exponent αq = (q – 1)lnP/lnq [9]. As
distinct from the ordinary derivative corresponding to
the q  1 limit, the Jackson derivative determines the
rate of changing the P(n) function not upon the argu-
ment shift dn  0 but upon its dilatation qn and,
therefore, provides the basis for an analysis of self-sim-
ilar systems. From the physical point of view, the fact
that the difference $ between the rates of establishing
the hierarchical interrelation depends on the probability
density Pk(n, t) implies the existence of a nonlinear
feedback, which, as is seen from what follows, is
responsible for the nonadditivity. Substitution of
Eq. (8) in Eq. (6) results in the following kinetic equa-
tion of superdiffusion:

(9)

Compared to the ordinary systems [8], the opposite
signs of the diffusion and linear-drift terms are note-
worthy; this is caused by the choice of the opposite
signs in initial Eq. (5). This sign difference is due to the
fact that the autonomous hierarchical (e.g., bureau-
cratic) systems are not decomposed but spontaneously
reproduced [7]. Note also that the nonlinearity of
Eq. (9) does not allow one to use Mellin transform (4),
as was done for the Fourier transform of Eq. (2).

Turning to an analysis of Eq. (9), let us first consider
the case F(n) = 0 and D(n) = const, when the nonlinear

$ f m n–( )
m n>
∑ f n m–( )

m n<
∑–≡

$ eqPk
q 1– n t,( )

n∂
∂

,–≡

$P nd∫

τkṖk n t,( )
n∂

∂=

× F n( )Pk n t,( ) ePk
q n t,( )–[ ]

n∂
∂

D n( )Pk n t,( )–
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drift term dominates. The respective stationary proba-
bility distribution

(10)

increases monotonically with decreasing n, i.e., with
growth of the cluster of walker positions, and trans-
forms to the Tsallis distribution at the highest level n =
0 corresponding to the whole system [3]. Using the
generalized definition of entropy, it is easy to show that
distribution (10) at q ≠ 1 corresponds to the nonadditive
statistical system for which the q < 1 and q > 1 cases are
equivalent [9]. As will be seen below, the first case cor-
responds to the infinitely growing asymptotic of the
probability density, and therefore it will be assumed
that q > 1.

In the nonstationary case, the analytical description
can be carried out in the self-similar regime, when the
system behavior is determined by the time dependence
nc(t) of the characteristic hierarchy scale, while the
probability distribution is represented by a homoge-

neous function P(n, t) = , ν ≡ n/nc [10]. If the
normalization condition

is satisfied, the leading contribution comes from the
drift term caused by the inhomogeneity of the ultramet-
ric space. Then, the exponent α = –1, and the self-sim-

ilar regime is established if the condition  =
const ≡ C/τk and the equation (eqπq – 1 – Cν)π' – Cπ = 0
are satisfied (hereafter, the prime means differentiation
with respect to the corresponding argument). The solu-
tion has the form πq – 1 = (C/e)ν and is valid for times
t ! τd, where τd ≡ (eq – 2/Dq – 1)nqτk. When the drift and
the diffusion contributions are of the same order
(t ~ τd), the normalization of the distribution over hier-
archical levels breaks down [2] and the conditions
α(q – 1) + 1 = 0,  = C/τk and the equation Dπ'' +
(eqπq – 1 – Cν)π' + αCπ = 0 must be satisfied to ensure
the self-similar regime. The corresponding solution has
asymptotics πq – 1  (q – 1)–1(D/e)ν–1 at ν  0 and
πq – 1  (2C/qe)ν at ν  ∞. The first asymptotic
occurs at large times t @ τ, τ ≡ (n2/C)τk and the second
one occurs at small times t ! τ.

Thus, for F(n) = 0 and D(n) = const, the contribution
of the diffusion term at the initial stage t ! τd is negli-
gibly small, so that the distribution over the levels is
normalized by the ordinary condition. In this case, the
characteristic hierarchy scale increases with time fol-

P n( ) A
D
e
---- q 1–( ) n 1+( )+ 

  1/ q 1–( )–

,=

A 2 q–( ) D
e
---- q 1–( )+ 

  2 q–( ) q 1–( )⁄
≡

nc
α t( )π ν( )

P n t,( ) nd

0

∞

∫ 1,=

nc
q 1– ṅc

ncṅc
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lowing the power law  = qC(t/τk) (the lower levels
become increasingly substantial), while the probability
density decreases hyperbolically, Pq – 1(n, t) =
(n/qe)(t/τk)–1: the lower the level, the more rapid the
decrease (it also follows from this that q > 1). The tran-
sition to the diffusion stage proceeds rapidly for higher
levels and results in the modification of the time depen-
dence nc(t) to the ordinary square-root form nc =

 at τd ~ t ! τ, but the probability density
decreases hyperbolically as at the initial stage. With
further time increase to macroscopic values t @ τ, the
nc(t) dependence remains unchanged and the proba-
bility distribution assumes the asymptotic form
Pq − 1(n)  (q – 1)–1(D/e)n–1 corresponding to the sta-
tionary distribution (10) at n @ D/e.

In the presence of an external force F(n) = const and
the multiplicative noise [D(n) ≠ const], the above-men-
tioned behavior is realized only at small times t ! n(F –
D')–1τk. If the opposite condition n + (F – D')(t/τk) @
[e/(F – D')]1/(q – 1) is fulfilled, the characteristic scale
increases linearly, nc = C(t/τk), and the probability
decreases as P(n, t) = [n + (F – D')(t/τk)]–1. The station-
ary distribution takes the exponential form P(n) ∝
D−1exp , which, however, does not mean

the presence of additivity. Indeed, since the same
dependence D(n) governs the diffusion process for both
the whole system and its parts, the condition of multi-
plicativity of probabilities breaks down: P1, 2(n) =
D(n)P1(n)P2(n), where the subscripts indicate the mac-
roscopic components. Therefore, the system with the
multiplicative noise is nonadditive even with the Boltz-
mann definition of entropy.1 

1 Note that the term “multiplicative noise” bears no relation to the
property of multiplicativity of the corresponding probabilities but
reflects the fact that the noise originates from the fluctuation of
the kinetic coefficient of the force acting on the system.

nc
q

2C t τk⁄( )

F D⁄( ) nd∫{ }
The above analysis demonstrates that superdiffu-
sion of a hierarchical system free of external action
(F = 0) proceeds nonadditively. An assumption of this
sort is at the basis of the works of Tsallis et al. [see 9],
where the nonadditivity is postulated in the definition
of the transition probabilities f(x) and, moreover, the
Fokker–Planck equation is assumed to be nonlinear.
With the approach proposed in this paper, both nonlin-
earity and nonlinearity-induced nonadditivity result
from the hierarchical structure. This allows the conclu-
sion to be drawn that free hierarchical systems are
invariably nonadditive.

I am grateful to C. Tsallis for kindly placing the
results on nonadditive systems at my disposal.
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Spectroscopic studies of the silver–optimum-doped Bi2223 contacts show that the temperature dependence of
the parameter ∆ follows the BCS curve. However, the tunnel measurements performed for the same series of
specimens did not reveal any temperature dependence of the energy gap ∆. The feature observed in the tunnel
density of states was retained at temperatures T > Tc, manifesting the presence of the temperature-independent
pseudogap Ep. The difference between the data obtained with tunnel spectroscopy and Andreev reflection spec-
troscopy is explained by the fact that the latter measures the true superconducting energy gap ∆s(T), whereas
the peaks of the tunneling conductivity are related to the total energy gap ∆ of cuprates, which includes both

the parameter ∆s and the pseudogap Ep: ∆ ≈ . © 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 74.20.-z; 74.50.+r

∆s
2

Ep
2

+

One of the most interesting properties of metal
oxide superconductors is the possibility of the forma-
tion of a gaplike structure at eV = Ep in the spectrum of
the normal excitations of cuprates [1–6]. The absence
of a universally accepted theoretical model of the
pseudogap Ep [1, 7, 8], as well as the possibility of an
ambiguous interpretation of the optical [1, 6] and pho-
toemission data [1, 3–5], call for new experiments that
would clarify the relationship between Ep and the
superconducting energy gap ∆s in cuprates. For such
experimental studies, contact spectroscopic methods
(tunnel spectroscopy and Andreev reflection spectros-
copy) offer considerable promise.

Tunneling spectroscopy is sensitive to any gap in the
spectrum of quasiparticle excitations [9], whereas
Andreev reflection [10] occurs only at the supercon-
ducting energy gap ∆s. This fact stimulated our studies
with tunneling and Andreev contacts made on identical
Bi2223 cuprate specimens. The tunnel measurements
revealed no temperature dependence of the ∆ gap for
T  Tc. Above Tc, the “tunnel” gap ∆ was spread over
a wide region, which can be interpreted as a manifesta-
tion of the pseudogap Ep [11]. At the same time, the
Andreev contact measurements showed that the energy
gap ∆s(T) of cuprates exhibits a temperature depen-
dence close to the BCS curve. The difference in the
temperature behavior of the tunnel and Andreev spectra
allows certain conclusions to be drawn about the Fermi
surface topology and the pseudogap anisotropy in
cuprate superconductors.
0021-3640/00/7107- $20.00 © 20289
The experiments were performed on both optimum-
doped and underdoped Bi2223 cuprate specimens. To
prepare tunneling and Andreev contacts of the “break
junction” type, highly textured ceramic plates were
used [12]. The initial ceramics (95% of the
Bi1.6Pb0.4Sr1.8Ca2.2Cu3Ox phase, Tc ≈ 113 K) was
obtained by solid-phase synthesis from chemically
pure oxides. In one experimental cycle, ten plates of
dimensions 1 × 0.1 × 12 mm were fabricated with silver
current and voltage leads sealed in. To obtain oxygen-
deficient specimens, half of the plates were heated in an
oven to a temperature of 845°C and held at this temper-
ature for two hours. Then the plates were rapidly
(within ±3 min) cooled to room temperature. As a result
of such quenching, the resistance of the specimens
increased and the critical temperature decreased to Tc ≈
107 K, while the transition curve was shifted parallel to
the R(T) dependence for the optimum-doped metal
oxide.

To obtain a contact of the break junction type, a
plate lying on a flexible steel substrate was covered
with lacquer. Then the substrate was bent until a micro-
crack was formed in the ceramics, which was moni-
tored by the change in the specimen’s resistance.
Depending on the uncontrolled factors, either an SIS
tunneling microcontact (rn ~ 50–100 Ω) or an SNS
Andreev microcontact (rn ~ 1–5 Ω) was formed. Here,
S, N, and I denote the superconductor, the normal con-
striction, and the insulator, respectively. For high bias
voltages V, a metallic conductivity was observed for the
Andreev contacts, whereas the conductivity of the SIS
000 MAIK “Nauka/Interperiodica”
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contacts exhibited a parabolic behavior typical of elec-
tron tunneling.

Figure 1 presents the conductivity of a symmetric
SIS contact of the break junction type at different tem-
peratures. At a low bias voltage V = 5 mV, the resistance
of the tunneling contact rapidly increased with decreas-
ing temperature below the critical temperature Tc of the
cuprate, indicating the opening of the energy gap ∆s.
The critical temperature Tc of metal oxide was deter-
mined from the center of its transition curve R(T). The
ratio of the resistances r(V) of the tunneling contact at
eV = eV0 ! ∆ and eV > ∆ in the temperature range T ~
4.2–20 K was typical of tunneling contacts: r(V0)/r(V >
∆) ~ 102. The characteristic feature of all tunneling con-
tacts was a sharp conductivity peak at zero bias voltage
because of the d-symmetry of the order parameter of
the superconductor under study. As in [12], the value of
4∆ in SIS contacts was taken to be equal to the distance
between the maxima in the dI/dV curves.

From the tunneling spectra shown in Fig. 1, it is dif-
ficult to make any inferences about the temperature
dependence ∆(T) (inset in Fig. 1). According to Fig. 1,
the r(V0)/r(V > ∆) ratio only decreased with increasing
temperature. The gap characteristics of both optimum-
doped (Tc = 131 K) and underdoped (Tc = 107 K)
cuprates showed the same behavior.
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Fig. 1. Conductivity of a Bi2223–insulator–Bi2223 tunnel-
ing contact at different temperatures. The inset shows the
∆(T) dependence obtained for the specimen under study and
the BCS curve.
A qualitatively different temperature dependence of
the energy gap was observed for the SNS contacts that
unambiguously exhibited Andreev reflection. Figure 2
shows the characteristics of such a contact recorded at
different temperatures. One can see that the steplike
feature observed in the conductivity at the voltage Vc

and corresponding to the 2∆s(T) value is markedly
shifted toward lower energies at T  Tc. The inset in
Fig. 2 shows the ∆s(T) values for different SNS con-
tacts. According to these data, the temperature curve
observed for the energy gap ∆s(T) in the Andreev con-
tacts is similar to the BCS curve.

Thus, the ∆s(T) and ∆(T) dependences obtained by
different spectroscopic methods contradict each other
(Figs. 1, 2). This discrepancy is primarily caused by the
fact that Andreev reflection occurs only at the super-
conducting energy gap ∆s(T). In the contacts with a
direct metallic conductivity, the reflection of charge
carriers from the pseudogap has a quasiparticle charac-
ter. In this case, there is no transformation from the
electronlike state to the holelike state, for which a con-
densate of Cooper pairs is necessary. The condensate
does not participate in the reflection from the
pseudogap, the reflection not being specular because of
the fluctuational character of the pseudogap. As a
result, the reflection from the pseudogap contributes to
the ordinary “normal” electron reflection, which is
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Fig. 2. Andreev reflection spectrum displaying the super-
conducting energy gap ∆s for Bi2223 cuprate at different
temperatures. The inset shows the temperature dependence
of ∆s and the BCS dependence.
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Fig. 3. (a) Schematic diagram illustrating the tunneling directivity toward a portion of the Fermi surface of metal oxide. The contact
plane is perpendicular to the basal plane of cuprate. The hatched areas correspond to the “hot spots” of the Fermi surface. The Fermi
surface is centered at the point Y of the Brillouin zone. The butterfly of the  order parameter is centered at the point Γ. (b)

Isotropic structure of Andreev reflection that allows one to detect the energy gap for all parts of the Fermi surface.
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accompanied by a considerable shortening of the qua-
siparticle lifetime (the Dynes parameter Γ increases).

Hence, each of the contact methods considered
above yields objective information on the excitation
spectrum of the superconductor, but this information is
“collected” from different areas of the Brillouin zone.
Figure 3 schematically represents a quarter of the Bril-
louin zone of Bi2223 with a portion of the Fermi sur-
face of metal oxide and the ∆(k) dependence (on the
assumption of dx2–y2 wave pairing). The hatched areas
represent the Fermi surface domains in the vicinity of
which the Van Hove singularity [1] is observed and the
pseudogap [2–4] manifests itself. The angle between
the normal to the tunneling contact plane and the crys-
tallographic a-axis in the ab plane is denoted by θ. As
a rule, the θ angle is small (i.e., the fracture plane of a
Bi2223 microcrystal is normal to the a- or b-axis). The
tunneling occurs at angles within a narrow cone with
cone angle θ0 < 10° because of the increase in the effec-
tive barrier thickness at large θ angles [9]. Therefore,
the gap characteristic of homogeneous tunneling con-
tacts can be observed at the θ angles for which at least
the edge of the Fermi surface falls within the tunneling
cone |θ| < θ0 (Fig. 3a). In such a situation, one should
observe a gap ∆(ϕ) that is smaller than the maximal
possible value ∆0: ∆(ϕ) = ∆0cos(2ϕ).

The ∆0 value can be reflected only in the character-
istics of the Andreev contact, provided that this is not
prevented by a short electron lifetime in the “hot spot”
regions (Fig. 3b) where the pseudogap Ep reaches its
maximum [1, 6]. In reality, for the optimum-doped
specimens (when the pseudogap effect is weaker [4–
6]), the value of ∆ (Bi2223) observed in the Andreev
contacts was 52–55 meV, whereas for the tunneling
contacts, the value of ∆(ϕ) did not exceed 40–44 meV.
JETP LETTERS      Vol. 71      No. 7      2000
Andreev reflection has no limitations in the angle θ,
and the direction of electron motion is determined by
the electron group velocity (Fig. 3b). In this case, all
parts of the Fermi surface in the kx, ky plane are avail-
able for observation, and the energy gap can be mea-
sured for all directions θ. The presence of a clearly
defined edge of the Fermi surface, at least at some
angular interval in the kx, ky plane, is the condition for
the observation of the superconducting energy gap ∆(k)
in the Andreev contacts. Therefore, the appearance of a
sharp step in the characteristics of the Andreev contacts
(Fig. 2) testifies that the Bi2223 phase (with different
degrees of doping) has Fermi surface areas that are not
“spoiled” by the presence of the pseudogap and are
characterized by a temperature dependence ∆s(T) close
to the BCS curve. In other words, the quasiparticle life-
time in these areas is sufficiently long, so that the
Fermi-liquid analysis is applicable.

The situation is very different for the tunneling con-
tact. Because of the narrow directivity of the tunneling
effect, the tunneling cone more often includes the “hot”
areas of the Fermi surface (Fig. 3a, θ < 20°), where the
pseudogap Ep manifests itself. As is known [1, 6], the
pseudogap weakly depends on temperature and, in
addition, the value of Ep far exceeds ∆s in an under-
doped region [2, 7, 11]. This hinders the observation of
the temperature dependence of the effective energy gap

∆ ≈ .

In closing, note that the observation of a sharp
energy-gap edge in the Andreev contacts of metal
oxides (with different degrees of doping) points to the
possibility of applying the Fermi-liquid description to a
major part of the Fermi surface of cuprates (near the
diagonals of the Brillouin zone). In this region, the tem-
perature dependence of the energy gap can be described

∆s
2 Ep

2+
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in terms of the mean-field approximation. However,
such an approach is unacceptable in the vicinity of the
M points of the Brillouin zone, where the pseudogap,
i.e., the energy gap in the spectrum of normal excita-
tions, comes into play.

Today, the most advanced model of high-tempera-
ture superconductors, which includes the stripe struc-
tures and the pseudogap, is the Emery–Kivelson model
of the antiferromagnetic proximity effect [13]. In this
model, the superconducting energy gap and the
pseudogap coincide at T < Tc, which does not agree
with our experimental results.

We are grateful to Prof. K. Mukasa, M. Oda, and
Prof. M. Ido for useful discussions. V.M. Svistunov
acknowledges the support provided to him by the Min-
istry of Education, Science, and Culture of Japan dur-
ing his stay at Hokkaido University.
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Martensitic Transition in Single-Crystalline a-GeO2 
at Compression1
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We present a structural study of single crystalline quartz-like α-GeO2 compressed to pressures up to 12 GPa
and subsequently quenched to ambient conditions. The transition to a new crystalline phase with a distorted
rutile structure, occurring in the pressure interval 8 to 12 GPa, was established. The structure of the new phase
was identified from X-ray and electron diffraction data as P21/c monoclinic. Electron transmission and scan-
ning microscopy provide direct evidence of the martensitic (or displacive) nature of the transition, indicating,
in particular, the lamellar morphology and crystallographic orientation relation between the initial α-quartz and
final new monoclinic phases. Upon heating, the new monoclinic phase transforms to the rutile-type structure
with a similar (and similarly oriented) oxygen structure motif. Finally, we discuss the difference in high-pres-
sure behavior of single-crystalline and polycrystalline samples transforming to the new crystalline and amor-
phous phases, respectively. © 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 61.50.Ks; 81.30.Kf; 81.40.Vw; 64.70.Kb 
1 Polymorphism of silica SiO2 is of great interest for
geophysics, earth and planetary sciences, and glass tech-
nology. Germanium dioxide GeO2 is the closest struc-
tural and polymorphic analogue of silica. In particular,
the α-quartz modification of GeO2 is structurally very
similar to α-quartz SiO2 under pressure (they have a
close intertetrahedral angle) [1]. From this point of view,
the study of GeO2 under pressure could extend our
knowledge about tetrahedrally networked crystalline and
glassy compounds, including silicates and germanates.

α-Quartz SiO2 undergoes gradual pressure-induced
amorphization from 15 to 30 GPa with an intermediate
crystalline-to-crystalline transition (quartz I–II) at
21 GPa [2–4]. Amorphous silica samples quenched to
normal conditions display unusual properties, such as
anisotropy and “memory” effects [5], that may be
described theoretically [6]. In nonhydrostatic condi-
tions, α-quartz transforms to a mixture of amorphous
and new crystalline phases [7], probably based on the
edge-sharing SiO6-octahedra structures. Another low-
pressure polymorph of silica, cristobalite, transforms to
a stishovite-like phase under quasi-hydrostatic com-
pression [8]. A variety of theoretically proposed silica
structures with highly coordinated Si atoms (Z > 4) [9–
12] suggests a complicated picture of metastable high-
pressure polymorphism in silica.

The α-GeO2 phase transforms in the pressure inter-
val 6–8 GPa to the amorphous state with a rutile-like
short-range order structure, the coordination of Ge
atoms being changed from four- to sixfold at high pres-

1 This article was submitted by the authors in English.
0021-3640/00/7107- $20.00 © 20293
sure [13–17]. The low pressure of amorphization for
germania glass gives the opportunity to study large
samples under pressure. Another motivation for this
work is to study the influence of sample morphology
and nonhydrostaticity on the transformation type.
There are indications that the type of high-pressure
transformation in AlPO4 can depend on the initial crys-
tal size [18]. Unfortunately, the α-quartz modification
of GeO2 is metastable under normal conditions [19],
and only polycrystalline specimens with a small grain
size have been used for high-pressure investigations to
date. Here, we present the structural study of a sample
recovered at normal conditions after both hydrostatic
and quasi-hydrostatic compression of large single crys-
tals of α-GeO2. This type of study is of special interest
for understanding more general aspects of the solid
state amorphization phenomenon [20–22].

Experimental. Large α-GeO2 single crystals (sev-
eral millimeters in size) were prepared using a novel
hydrothermal technique described in detail in [23, 24].
The pieces used in our experiments were 4 × 4 × 1 mm
platelets with the crystallographic c-axis perpendicular
to the largest sides. The high structural quality of
α-GeO2 single crystals earlier allowed us to study the
elastic constants of quartz-like GeO2 by Brillouin spec-
troscopy [25].

High pressure up to 12 GPa was generated in the tor-
oid-type chamber [26] with a 4 : 1 methanol–ethanol
mixture and polycrystalline NaCl as the hydrostatic or
quasihydrostatic pressure transmitting media, respec-
tively. The compression and subsequent decompression
of samples were carried out at room temperature with
000 MAIK “Nauka/Interperiodica”
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Fig. 1. Electron diffraction patterns: (a, b) from the monoclinic phase of GeO2 for 101 and 010 zones (reciprocal lattice planes),
respectively; (c) from the rutile phase (010 zone of rutile structure) obtained upon annealing of the monoclinic phase; and (d) from

the partly transformed area revealing both initial α-quartz (001 zone) and new monoclinic modifications (the reflections for 07 and
001 zones can be observed) related transitionally and crystallographically to one another (reflections of the monoclinic phase are
marked by index “m”). The patterns b and c are obtained from the same crystallite before and after annealing, respectively.

1

the pressure change rate of ~0.2 GPa/min. The structure
of the recovered samples was studied by both electron
(a JEM-100C transmission electron microscope, TEM)
and X-ray (the Debye–Sherer method) diffraction tech-
niques. The morphology of the samples was studied by
electron scanning microscopy (Leica S430 and Ste-
reoscan MK-2). The density of the samples was mea-
sured by the picnometric method. The MOM-C Deri-
vatograph (Hungary) was used for the annealing of
samples at ambient pressure.

Results and discussion. In our experiments, we
applied pressure to both polycrystalline (with small
grain size on the order of a micron or less) and single-
crystalline α-GeO2 samples. The polycrystalline sam-
ples recovered from pressures higher than 8 GPa were
completely disordered, in accordance with the pub-
lished data on the pressure-induced amorphization of
α-GeO2. Quite a different picture was revealed for sin-
gle-crystalline α-GeO2. A transition to a new crystal-
line GeO2 polymorph takes place instead of to an amor-
phous phase. The transition occurs in a wide pressure
range starting at 7 to 7.5 GPa and finishing at 11.5 to
12 GPa. At intermediate pressures, we observed a mix-
ture of the new high-pressure phase and the initial
quartz-like polymorph. The transition was found to fol-
low almost identical scenarios under both hydrostatic
and quasi-hydrostatic conditions.

X-ray diffraction data revealed that the new high-
pressure GeO2 phase had a structure fairly similar to
that of rutile-type GeO2, but with a more complicated
X-ray diffraction pattern (see table). In particular,
strong reflections of the new phase with the d-space of
0.240, 0.218, and 0.210 nm coincide with, or are very
close to, the (101), (200), and (111) rutile reflections,
respectively. On the other hand, the strong reflections
with d-spacing of 0.290, 0.261, and 0.230 nm are
absent in the diffraction pattern of the rutile phase.

Electron diffraction on a single crystallite of the
recovered material provides more comprehensive
structural data (table and Fig. 1). Among the known and
theoretically proposed GeO2 (SiO2) structures, the
3 × 2 monoclinic structure with the P21/c space group
[11] was established to agree best with the diffraction
from the new phase (see table). This structure consists
of 3 × 2 kinked edge-sharing GeO6 octahedral chains
and can be regarded as a distorted hexagonal close-
packed (hcp) array of oxygen ions with one-half of the
available octahedral interstices occupied by Ge ions in
a specific zigzag (3 × 2) order [11]. The indexing of dif-
fraction patterns in accordance with this consideration
leads to the following lattice parameters: a = 0.815 nm,
b = 0.436 nm, c = 0.535 nm, α = γ = 90°, and β = 118°.

The new phase annealing at normal pressure dis-
played its metastability, since it gradually transformed
to rutile GeO2 in the temperature interval from 200 to
500°C with a small exothermal effect. When the new
phase transforms to the stable rutile modification dur-
ing annealing, the reflection d = 0.240 nm from the cor-
JETP LETTERS      Vol. 71      No. 7      2000
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Experimental d-spacing and relative intensities (only for X-ray data) for the new GeO2 phase, compared with the d-spacing
of the GeO2 rutile and 3 × 2 monoclinic P21/c structures

New phase
Rutile* P21/c-type**

TEM X-ray

d
(nm)

d
(nm)

I/Imax
(%) hkl dhkl

(nm) h k l dhkl
(nm)

0.473

0.387 0.393 5

0.335 0.336 20 1 1 0.335

0.321 0 1 1 0.320

0.312 10 110 0.311

0.289 0.290 80 2 1 0.289

0.264 1 0 0.264

0.263 1 1 1 0.263

0.262 0.261 60 2 0 0.262

0.240 0.240 100 101 0.240 3 0 0 0.240

0.236 0.235 40 0 0 2 0.236

0.231 0.230 50 3 0 0.231

3 1 0.230

0.218 0.218 30 200 0.220 0 2 0 0.218

0.210 0.210 30 111 0.210 3 1 0 0.210

2 1 1 0.209

0.208 0.207 20 0 1 2 0.208

0.199 1 0 2 0.199

210 0.197

0.193 4 0 0.193

0.168 0.168 10 1 2 0.168

2 2 0.168

0.165 0.164 15 2 0 2 0.165

211 0.162

0.161 3 2 0 0.161

5 0 0.161

0 2 2 0.160

0.159 0.159 80 3 2 0.159

220 0.155

0.150 0.151 10 5 1 0.150

002 0.143

0.139 0.138 40 4 1 1 0.139

3 0 2 0.139

0.136 0.135 10 6 0 0.136

Notes: * Lattice parameters are a = 0.4396 nm and c = 0.2863 nm.
** Lattice parameters are a = 0.815 nm, b = 0.436 nm, c = 0.535 nm, α = γ = 90°, and β = 118°.
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responding part of the sample is the same before and
after the transition (Figs. 1b, 1c). This reflection corre-
sponds to the (101) rutile lattice planes. The transition
of the 3 × 2 monoclinic structure to the rutile one may
be interpreted as a reordering of Ge ions in the distorted
hcp oxygen array, when the oxygen structural motif is
retained. The atomic packings of the (101) planes of the
rutile structure and the (100) planes of the new phase
are similar in this case. The crystallographic density of
the 3 × 2 monoclinic phase (6.22 g/cm3) is slightly
lower than that of the rutile GeO2 (6.28 g/cm3); the
experimentally measured value is (6.1 ± 0.05 g/cm3).

Electron diffraction from the areas containing both
initial α-quartz and the final new phase in the incom-
pletely transformed samples (Fig. 1d) provides direct
evidence of the martensitic (or displacive) mechanism
of the pressure-induced crystalline–crystalline transi-
tion in α-GeO2. The lamellar morphology of the recov-
ered samples, visualized by scanning electron micros-
copy, also proves this conclusion. We have established
the following crystallographic orientational relations

1 mm

Fig. 2

Fig. 3
between the initial quartz-like and new phases, if the
latter is identified as the 3 × 2 monoclinic P21/c
structure: (100)α – quartz nearly || (100)monoclinic and

( 20)α – quartz nearly || (010)monoclinic. There are three pos-
sible orientations for the produced phase with respect
to the initial α-GeO2 crystal, because α-quartz has
three planes equivalent to the (100). The surface mor-
phology pictures observed for the recovered samples
support this statement, the three lamellar sets being rel-
atively located at an angle of 60° to each other.

More careful examination of the experimental data
showed that the agreement between experimental data
and the new-phase identification as a 3 × 2 monoclinic
structure was still not ideal. First, in the experimental
diffraction spectra (table), there are some reflections
forbidden for the P21/c structure; second, there is no
good agreement between the experimental and the cal-
culated reflection intensities (this point is not consid-
ered in detail here). These observations indicate that the
new GeO2 phase, probably based on the 3 × 2 mono-
clinic structure, contains large amounts of the (010)
packing defects of the monoclinic lattice.

The mechanism of pressure-induced crystalline–
crystalline transition demands a special discussion. The
crystallographic relation, as well as the specifically ori-
ented lamellar morphology provide unambiguous evi-
dence of the atomic-cooperative displacive transforma-
tion mode. Clearly, the transition must be governed in
this case by dynamic softening principles. The observa-
tion of a highly coordinated SiO2 phase (obtained under
nonhydrostatic compression) with a structure fairly
similar to the 3 × 2 monoclinic phase [7, 11] indicates
that the transition to such a structure is an ordinary phe-
nomenon for the tetrahedrally networked α-quartz
structure type. The hydrostaticity degree of the high-
pressure environment is an important dynamic factor
affecting the phonon spectrum and, hence, the transi-
tion mode. In contrast to SiO2, the distorted rutile struc-
ture of GeO2 was obtained in both hydrostatic and
quasi-hydrostatic conditions. The difference in the SiO2
and GeO2 behaviors should be associated with specific
features of the lattice dynamics and the corresponding
phonon spectra under pressure. One should note that
dynamic softening principles are now used for under-
standing solid-state amorphization [21, 22], and the
softening of open-packed structures (in particular, tet-
rahedrally coordinated ones) seems to be quite a gen-
eral phenomenon [22].

The α-quartz-to-rutile transition in SiO2 and GeO2
occurring under pressure at high temperatures is gov-
erned by the diffusion reconstruction. At room and
lower temperatures, when diffusion becomes retarded,
the softening of the particular modes in the phonon
spectrum becomes a driving force triggering structural
reconstruction. This gives a key for understanding the
difference between the crystalline-to-crystalline, crys-
talline-to-amorphous, and amorphous-to-amorphous

1
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transformations in quartz-like GeO2. The coordination
transformation in amorphous GeO2 under pressure [14,
15, 27, 28] is determined by a wide spectrum of activa-
tion energies for local coordination reconstructions
[28], the property which seems to be inherent in the dis-
ordered GeO2 network because of the dispersion of
bond lengths and bond–bond angles, as well as the
topological disorder in the arrangement of GeO4 tetra-
hedra. In the opposite case of single-crystalline
α-GeO2, the transition results in a coherent cooperative
atomic motion. Polycrystalline α-GeO2 is an interme-
diate case. When the average grain size is small
enough, the scenario of coherent displacive transition is
destroyed, because the dispersion of stresses in individ-
ual crystallites and a large portion of defective atomic
sites at grain boundaries cause the disorder. These fac-
tors seem to create a great variety of topologically dif-
ferent displacive soft modes for coordination recon-
struction and lead to the formation of the topologically
disordered GeO2 structure, although the different dis-
placive modes may have rather similar geometrical rea-
sons for softening (e.g., like twisting of SiO4 tetrahedra
in the α-quartz near the pressure of amorphization
transformation [29]). One should note that in the amor-
phous samples thus obtained the structural disorder
varies from really amorphous nanoregions to those
with a high degree of rutile-type crystallinity [14]. The
difference between the pressure intervals for solid state
amorphization and the crystalline-to-crystalline transi-
tion in materials with the same atomic structure but dif-
ferent morphology emphasizes the dynamic difference
in the paths of transformation. The properties of high-
pressure amorphous samples obtained from starting
amorphous and polycrystalline quartz-like GeO2 are
also different [13, 14].

Further structural and dynamic investigations of sin-
gle α-GeO2 crystals under pressure, including Raman
and Brillouin spectroscopy studies, are expected to pro-
vide additional understanding of the high-pressure
behavior of tetrahedrally networked GeO2 and SiO2
polymorphs. Computer simulation will be very suitable
for the identification of real displacive modes during
the transition.
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The dynamics of differential transmission and reflectance spectra of porous silicon films was studied using the
femtosecond excitation technique (τ ≈ 50 fs, "ωpump = 2.34 eV) with supercontinuum probing ("ωprobe = 1.6–
3.2 eV) and controlled time delay with a step of ∆t = 7 fs between the pump and probe pulses. A short-lived
region of photoinduced bleaching was observed in the differential transmission spectra at wavelengths shorter
than the pump wavelength. The excitation of coherent phonon states with a spectrum corresponding to nano-
crystalline silicon with an admixture of a disordered phase was observed. The relaxation of electronic excitation
was found to slow down in the spectral region where the amplitude of excited coherent vibrations was maximal.
© 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 78.66.Ob; 63.20.-e
Porous silicon (PS) has been attracting considerable
attention because of the photoluminescence (PL) and
electroluminescence properties recently discovered for
this material in the visible spectral region [1]. However,
up to now, there has been much debate over the nature
and mechanism of PS luminescence. The radiative
hole–electron recombination from the size-quantiza-
tion levels in silicon nanocrystals [1], the radiative
recombination involving surface states [2], and the
radiative transitions in silicon oxide [3] or amorphous
silicon, which can be present in PS films [4], have been
suggested as an explanation.

An analysis of the experimental data on the photo-
luminescence properties and their association with the
PS structure has shown [4] that the vast majority of
these data can be satisfactorily explained by introduc-
ing the size-quantization levels. However, such an
interpretation raises debates, primarily because of the
following two facts: first, there is a large scatter in the
results obtained by different researchers, so that they
can only be qualitatively compared with each other;
second, the size-quantization levels in porous silicon
have not yet been identified with certainty. The first
item is due to a multiparameter dependence of the PS
properties on the preparation, keeping, and investiga-
tion conditions, while the second item is due to a large
dispersion of nanocrystal sizes in PS.

Due to the complexity of interpreting the photolu-
minescence properties of PS, its structural, optical, and
nonlinear optical properties, as well as the mechanisms
of electrochemical etching have been much investi-
gated. Measurements of the linear and nonlinear optical
properties and, in particular, the nonlinear time-
0021-3640/00/7107- $20.00 © 20298
resolved transmission and reflectance spectra can com-
plement the PL data. However, the use of a size-quanti-
zation model alone for the explanation of some of the
experimental facts obtained in the nonlinear optical
investigations of PS, as in the PL experiments [5], also
encounters certain difficulties. Among these are the
presence of several fast (picosecond and subpicosec-
ond) and slow (nanosecond and microsecond) compo-
nents in the nonlinear transmission spectra and the rad-
ical difference in the character of the spectra obtained
using different pump techniques [6, 7]. This suggests
that the photoinduced processes in PS likely have a
rather complicated nature and depend essentially on the
excitation conditions. On the whole, the investigations
into the nonlinear optical and relaxational properties
are as yet inadequate to give a complete picture of pho-
toinduced processes occurring both in PS and in other
silicon-based nanostructures.

The time-resolved pump–probe technique has
become a powerful tool in studying the nature of excited
states, their structure, and relaxation dynamics [6–10].
The use of the pump–probe technique with supercontin-
uum probing and femtosecond time resolution can pro-
vide additional possibilities [8–10]. With an exciting
pulse duration shorter than half the period of phonon
vibrations, one can observe the effects associated, e.g.,
with the excitation of coherent and squeezed phonon
states [11] and trace their spectral and temporal dynam-
ics, thereby substantially facilitating the interpretation
of the excitation relaxation mechanisms in PS.

This work reports the results of studying the dynam-
ics of photoinduced PS spectra recorded by the pump–
supercontinuum probe technique [8–10] with a high
000 MAIK “Nauka/Interperiodica”



        

OBSERVATION OF COHERENT PHONON STATES IN POROUS SILICON FILMS 299

                                                                  
0.06

0.04

0.02

0

0.06

0.04

0.02

0

0.04

0.02

0

0.08

0.04

0

0.06

0.04

0.02

0

0.02

0

0.02

0

0.02

0

–0.02

0 0.5 1.0 1.5 0 0.5 1.0 1.5
t, ps

∆DT ∆DR

Eprobe = 2.05 eV 2.05

2.13 2.13

2.17 2.17

2.50 2.50

t, ps

Fig. 1. Differential optical density ∆DT (left) and ∆DR (right) as functions of the time delay between the pump ("ωpump = 2.34 eV)
and probe ("ωprobe = 2.05, 2.13, 2.15, and 2.5 eV) pulses at room temperature. Circles are for the experimental data, and solid lines
correspond to the biexponential fitting.
time resolution. The excitation of coherent phonon
states was observed in porous silicon. The spectrum of
the coherent phonon states corresponds to nanocrystal-
line silicon with an admixture of a disordered phase.
The relaxation of electronic excitation was found to
slow down in the spectral regions where the amplitude
of coherent vibrations was maximal. The differential
transmission spectra of the femtosecond-excited
porous silicon films showed the presence of a short-
lived photoinduced bleaching region in their short-
wavelength part relative to the pump wavelength.

The PS samples were prepared by anodizing KES
0.01 (111) crystal silicon substrate commercially fabri-
cated for the microelectronics industry. An HF(49%) :
ethanol (1 : 1) electrolyte was used. The anodization
was run for 20 min in a two-compartment fluoroplastic
electrochemical cell in the dark at a current density of
40 mA/cm2, with a step increase to 100 mA/cm2 at the
stage of film separation from the substrate. The sepa-
rated film was washed with ethanol, dried in a flow of
dry air, and fixed at a diaphragm. Measurements were
made after aging the films under ambient conditions for
7–8 months to stabilize their properties.
JETP LETTERS      Vol. 71      No. 7      2000
The samples were excited by optical femtosecond
(τ ≈ 50 fs) pump pulses with photon energy of "ωpump =
2.34 eV and repetition rate of 2 Hz. The pump energy
was varied within 0.4– 2.0 µJ. The pump-beam spot
was 150 µm in diameter. The probing was accom-
plished using a supercontinuum (1.6–3.2 eV) femtosec-
ond pulse formed upon the passage of a portion of the
laser pulse through a fused quartz plate. The resulting
spectrum was recorded in the wavelength range 380–
780 nm ("ωprobe = 1.6–3.2 eV) on a polychromator with
a photodiode array containing 512 elements and pro-
viding a resolution of 1.5 nm. The duration at the half-
height of a pump–probe cross-correlation function was
equal to τcc ≈ 70 fs for all probe wavelengths. The
probe-beam spot was 100 µm in diameter. According to
our estimates, the absolute error of recording ∆DT and
∆DR did not exceed 0.003. All measurements were car-
ried out at room temperature. The steady-state absorp-
tion spectrum was monitored [10] to make sure that no
irreversible changes happened to the samples during
the experiments. The time evolution of the photoin-
duced response was studied by varying the delay time
between the pump and probe pulses up to 2.5 ps with a
step of 7 fs. The resulting signal was averaged over
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Fig. 2. Differential transmittance ∆DT and reflectance ∆DR spectra of the PS film for different delay times.
eight measurements. The necessary time corrections
were applied to the spectra. According to our estimates,
the correction accuracy was 10 fs. A detailed descrip-
tion of the experimental setup and the methods of pro-
cessing experimental results can be found in [8–10].

Specifically, the differential transmission optical
density ∆DT =  and reflectance ∆DR =

 spectra were experimentally measured
for a PS film (T* and R* are the excited-state transmit-
tance and reflectance, respectively, and T0 and R0 are
the same for the ground state). To simplify the analysis,
the experimental information on ∆DT(ω, t) and ∆DR(ω,
t) is represented in the form of time (Fig. 1) and energy
(Fig. 2) dependences at a fixed value of the other of
these parameters. To apply time corrections to the dif-
ferential spectra (∆DT and ∆DR) and determine relax-
ation rates, the experimental signal ∆Dexp(ω, t) was fit-
ted to a biexponential response function, in which the
fast relaxation processes were characterized by the
γ1(ω) rate and the slower processes, by the γ2(ω) rate
[10].

Let us consider the results obtained. Figure 1 shows
the differential optical density ∆DT (left) and ∆DR

(right) as functions of the time delay between the pump
("ωpump = 2.34 eV) and probe ("ωprobe = 2.05, 2.13,
2.15, and 2.5 eV) pulses. The circles correspond to the
experimental data, and the solid lines are for fitting
these data to a biexponential function [10]. The differ-
ential optical-density ∆DT (upper panels) and reflec-
tance ∆DR (lower panels) spectra are displayed in Fig. 2
for different pump–probe time delays. A dip at 2.34 eV

T∗ T0⁄( )log

R∗ R0⁄( )log
corresponds to the energy of pump photons. To obtain
numerical values for the relaxation rates, each of the
512 kinetics was fitted to a biexponential function con-
voluted with the pump–probe cross-correlation func-
tion [10]. The spectrum γ1(ω) of the relaxation rates is
shown in Fig. 3.

The differential transmission spectra ∆DT(ω, t) were
found to exhibit nonmonotonic spectral behavior
(Fig. 2, upper part). One can recognize a low-frequency
induced-absorption region [∆DT(ω, t) > 0] with a max-
imum at "ω ~ 2.5 eV and a high-frequency induced-
transmission region [∆DT(ω, t) < 0] with a maximum
near "ω ~ 3.1 eV. It is seen that the induced transmis-
sion rapidly relaxes and disappears 500 fs after the
excitation. From this time on, only the induced absorp-
tion (∆DT(ω, t) > 0) with a maximum near "ω ~ 2.5 eV
is observed over the entire spectrum.

It is also seen that the reflectance spectra ∆DR(ω, t)
(Fig. 2, bottom part) exhibit nonmonotonic behavior,
with ∆DR(ω, t) > 0 at photon energies lower than "ωpump
and ∆DR(ω, t) < 0 above "ωpump. In the range 3.0–
3.1 eV, the sign of the differential reflectance changes
again and ∆DR(ω, t) slightly exceeds zero. One can also
see that the low-frequency band contains a fast compo-
nent at frequencies "ω < 1.9 eV, which disappears
within 500 fs to give way to a long-lived ∆DR(ω, t) > 0
band with a maximum at 2.1 eV. In the first 100 fs, the
high-frequency ∆DR(ω, t) < 0 band only changes its
amplitude (maximum at 2.5 eV), whereupon it shifts to
higher energies (maximum at 2.8 eV) within 500 fs.
This is accompanied by an increase in the ∆DR(ω, t)
JETP LETTERS      Vol. 71      No. 7      2000



OBSERVATION OF COHERENT PHONON STATES IN POROUS SILICON FILMS 301
amplitude. As a result, a narrow region with ∆DR(ω, t) > 0
in the short-wavelength part of the spectrum disappears
within 500 fs after excitation (or shifts to the shorter
wavelengths beyond the observation region). It is worth
noting that the induced transmittance [∆DR(ω, t) < 0]
observed in the differential optical-density spectrum
occurs precisely in the same spectral region and disap-
pears in the same time period. In this work, only the
most prominent features of the phenomenon will be
considered.

One can also see in Fig. 2 that the relaxation of
induced absorbance slows down near "ωprobe = 1.95 and
2.5 eV, as is also evident from the time-dependent
curves in Fig. 1 and frequency-dependent fast compo-
nent γ1(ω) in Fig. 3 (where the pump region near
2.34 eV is cut off). The relaxation rate γ1(ω) is virtually
constant throughout the whole frequency range (2 ps–1),
except for the regions near 1.95 and 2.5 eV. A plausible
explanation for such behavior is that the induced
absorption, on the whole, proceeds from excited carri-
ers exhibiting a quasicontinuum energy spectrum,
because such a complicated system as porous silicon
possesses a wide variety of allowed energy transitions,
e.g., in silicon nanocrystals, in residual products of
electrochemical reaction, in adsorbate, and surface
localized states. It should also be remembered that
these systems can interact with each other. As to the
"ωprobe regions near 1.95 and 2.5 eV where the relax-
ation slows down, one can assume that they are associ-
ated with the energetically isolated longer lived levels;
e.g., they are due to the contribution of the size-quanti-
zation levels of the selectively excited silicon nanocrys-
tals. It should be noted that the positions of the slow-
relaxation bands coincide with the positions of the
orange–red (1.95 eV) and green–blue (2.5 eV) bands in
the known photoluminescence spectra of PS [5].

On the whole, the time dynamics can be character-
ized by two relaxation times: short time (1 ps in the
range of 1.95 eV and 600 fs in the range of 2.5 eV) and
longer times on the order of tens of picoseconds. The
rate of the longer component was approximately con-
stant and equal to 0.06 ps–1; i.e., the relaxation time was
16 ps, in accordance with the data reported for porous
silicon earlier in [6, 7].

Another important feature is seen in Fig. 1, where
the time dependences are shown for ∆DT(ω, t) and
∆DR(ω, t) at fixed "ωprobe values. In these curves, one
can recognize an additional high-frequency modulation
against the background of the exponential relaxation.
Such a modulation is known to occur upon the excita-
tion of coherent phonon states by femtosecond pulses
[8, 10, 11]. The vibrational spectrum in the entire probe
region was obtained by Fourier analysis of the differen-
tial photoinduced response ∆Dexp(ω, t) – ∆Dfit(ω, t). The
spectra were corrected with allowance made for the
convolution of the observed response and the pump
pulse shape [9, 10]. Figure 4 shows the resulting spec-
JETP LETTERS      Vol. 71      No. 7      2000
trum averaged over the probe range of 1.75–2.15 eV,
where these oscillations are most pronounced. Two
peaks are prominent, of which the major maximum
occurs at a frequency of 518 cm–1, while the minor one
occurs at 480 cm–1. The first peak is shifted to lower fre-
quencies from the position of the Raman line in crystal-
line silicon (521 cm–1); and, hence, it is indicative of the
presence of silicon nanocrystallites [12], while the sec-
ond peak is evidence for the presence of a disordered
silicon phase [13]. These oscillations agree well with
the data obtained earlier in [14, 15]. It should be noted
that the excitation of coherent vibrations is "ω-selec-
tive; namely, they are most intense at frequencies cor-
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responding to the positions of slow-relaxation bands.
This can be regarded as an additional argument in favor
of the assumption that the relaxation slowdown is asso-
ciated with the electronic excitations both in the silicon
nanocrystals (518 cm–1) and in a disordered phase
(480 cm–1).

Thus, the excitation of coherent phonon states was
observed in porous silicon for the first time. The spec-
trum of coherent phonon states corresponds to nanoc-
rystalline silicon with an admixture of a disordered
phase. The relaxation of electronic excitation is found
to slow down at spectral regions where the amplitude of
excited coherent vibrations is maximal, allowing them
to be assigned to the localized levels in silicon nanoc-
rystals present in PS. In the case of femtosecond exci-
tation, the differential transmission spectra of the
porous silicon films show the presence of a short-lived
photoinduced bleaching region at wavelengths shorter
than the pump wavelength. This property is of impor-
tance for optoelectronics, where this material can be
used in ultrafast optical switches. These effects are also
of considerable interest because of their possible use
for optical confinement (slow 15- to 20-ps component).

This work was supported in part by the Russian
Foundation for Basic Research the Program “Physics
of Solid-State Nanostructures.”
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We present systematic magnetic torque studies of the “magnetic field–temperature” phase diagram of the lay-
ered organic conductor α-(BEDT-TTF)2KHg(SCN)4 at fields nearly perpendicular and nearly parallel to the
highly conducting plane. The shape of the phase diagram is compared to that predicted for a charge-density-
wave system in a broad field range. © 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 75.30.Kz; 71.30.+h; 71.45.Lr; 73.61.Tm
1 Organic metals α-(BEDT-TTF)2MHg(SCN)4,
where M = K, Tl, or Rb [1], have attracted much atten-
tion in the last decade due to their exotic low-tempera-
ture electronic state. They are characterized by a lay-
ered crystal structure and a unique coexistence of
quasi-one-dimensional (Q1D) and quasi-two-dimen-
sional (Q2D) conducting bands [1]. The transition into
the low-temperature state is associated with a 2kF nest-
ing instability of the Q1D part of the Fermi surface.
Indeed, experiments on the angle-dependent magne-
toresistance oscillations [2–5] have revealed a signifi-
cant change in the electronic system due to a periodic
potential with the wave vector close to the doubled
Fermi wave vector of the Q1D band. On the other hand,
studies of the magnetization anisotropy [6, 7] and µSR
[8] give evidence for a low amplitude modulation of the
magnetic moment, suggestive of a spin-density wave
(SDW). Many of the striking anomalies displayed by
these compounds in a magnetic field can be fairly well
explained by the density-wave instability, taking into
account the coexistence of the Q1D and Q2D Fermi
surfaces (see, e.g., [3–5, 9, 10]). However, there remain
several questions which can hardly be understood
within the SDW model. One of the important questions
concerns the effect of a magnetic field on the low-tem-
perature state.

It is known that a magnetic field applied perpendic-
ular to the direction of the spin polarization may stim-
ulate SDW formation in systems with imperfectly
nested Fermi surfaces due to effective reduction of the
electron motion to one dimension [11, 12]. This orbital
effect leads to a slight increase in the SDW transition
temperature, as was shown for a Q1D conductor

1 This article was submitted by the authors in English.
0021-3640/00/7107- $20.00 © 20303
(TMTSF)2PF6 [13]. The situation with the α-(BEDT-
TTF)2MHg(SCN)4 salts is rather controversial in this
respect. In agreement with the SDW model, Sasaki
et al. [14] reported that the transition temperature Tp in
α-(BEDT-TTF)2KHg(SCN)4 increased in a magnetic
field perpendicular to the spin polarization plane
(which is the highly conducting ac-plane in this com-
pound [15]). On the contrary, other numerous experi-
ments suggest a reduction of Tp in a magnetic field.
Some authors [16, 17] claim that the low-temperature
state is completely suppressed in this salt and the nor-
mal metallic state is restored above the so-called kink
transition at Bkink . 24 T. On the other hand, several
works suggest that a new phase, different from the nor-
mal one, emerges above Bkink [18, 19]. Based on the
shape of the “magnetic field–temperature” (B–T) phase
diagrams [18, 19], Biskup et al. [19] proposed a phase
transition driven by a charge-density wave (CDW)
rather than SDW instability.

It should be noted, that the studies of the high-field
region of the B–T diagram of the α-(BEDT-
TTF)2MHg(SCN)4 compounds have been mostly done
by use of magnetoresistance technique. Obviously,
such experiments are difficult to interpret unambigu-
ously in terms of phase transitions. Therefore, a
detailed investigation of thermodynamic properties is
necessary in order to establish the phase boundaries. So
far only few magnetization data at fields above 15 T
have been presented in two works [14, 18]. However,
the conclusions made in these works concerning the
field effect on the transition temperature contradict
each other. To elucidate the problem, we have carried
out a systematic study of the B–T phase diagram of
000 MAIK “Nauka/Interperiodica”
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Fig. 1. Torque as a function of a magnetic field applied nearly perpendicular to the ac-plane: (a) steady part of the torque at different
temperatures; the dotted curve represents the total signal from the sample, with the dHvA oscillations at T = 5.0 K; (b) up (dotted
line) and down (solid line) field sweeps of the torque at low temperature.
α-(BEDT-TTF)2KHg(SCN)4 by means of magnetic
torque experiments.

Several high-quality samples chosen for the experi-
ment were grown by the standard electrochemical
method [20] and had a typical mass of 100 to 350 µg. A
cantilever beam magnetometer [7] was used to measure
the torque in fields nearly perpendicular and nearly par-
allel to the highly conducting ac-plane. The measure-
ments were performed at temperatures between 0.4 and
18 K in magnetic fields up to 28 T produced at the High
Magnetic Field Laboratory in Grenoble, France.

We first focus on field directions almost perpendic-
ular to the layers. Typical field dependences of the
steady part of the torque τst(B) are shown in Fig. 1a for
the angle θ between the magnetic field and the normal
to the ac-plane equal to 2.2°. At high temperatures (T ≥
8 K), we find an almost temperature-insensitive qua-
dratic dependence of the torque on magnetic field. On
lowering the temperature below 8 K, the quadratic term
increases at small fields, but above 4 T the dependence
becomes weaker than quadratic, and at high fields the
curves bend to merge with the high-temperature curve.
The field at which the torque returns to its normal
behavior coincides with the kink field Bkink as deter-
mined in other experiments [14, 16–19]. In addition to
the steady part of the torque, de Haas-van Alphen
(dHvA) oscillations were observed. At 10 K these
oscillations were resolved only at the highest fields; but
at 5.0 K their amplitude was already comparable to
τst(B), as shown by a dashed line in Fig. 1a. To extract
τst(B), we used a Fourier filter. In contrast to the mea-
surements at higher temperatures, the curve at 3.2 K
does not return to the high-temperature part at Bkink but
stays below. For temperatures below 3 K, the dHvA
amplitude becomes so strong that the steady torque
cannot be extracted reliably any more. In Fig. 1b we
show a trace of a field sweep from 18 T to 28 T and
back made at 0.4 K. There is a clear transition from a
low-field state (characterized by a splitting of the oscil-
lation amplitude) to a high-field state (characterized by
a higher oscillation amplitude and the absence of split-
ting). This transition shows a strong hysteresis of the
dHvA amplitude in the field interval marked by fat
arrows in Fig. 1b. Furthermore, there is a significant
shift between up and down sweep curves in the high-
field part, indicating a complex magnetic state.

To clarify the latter point, we performed tempera-
ture sweeps at constant fields. For these experiments it
is of crucial importance to suppress the influence of the
oscillatory part [18]. We therefore performed these
sweeps at field values at which the dHvA contribution
to the temperature dependence is nearly zero. The
results are shown in Fig. 2a. Despite a small remanent
dHvA contribution, there is still a clear transition into a
new state even at the highest field.

In order to determine anisotropy effects in the phase
diagram, we performed torque experiments at fields
almost parallel to the layer plane. The phase transition
is clearly seen in temperature sweeps. Typical exam-
ples taken at different fields at θ = 87.5° are given in
Fig. 2b. The field dependence of the torque below 4 K
shows a complex behavior with a strong hysteresis
between up and down field sweeps [21]. This behavior
is drastically different from the feature observed at the
kink transition at low angles. An example of a field
sweep at 1.3 K is shown in the inset in Fig. 2b.

The results of our studies can be summarized by
plotting a B–T phase diagram, as shown in Fig. 3. Here
JETP LETTERS      Vol. 71      No. 7      2000
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Fig. 2. Temperature sweeps of the torque at θ = (a) 2.2° and (b) 87.5° at different fields. The inset shows the field dependence of the
torque at θ = 87.5°, T = 1.3 K.
the data obtained on four samples having slightly dif-
ferent Tp (ranging from 8.0 to 8.4 K) are presented. That
is why the temperature and field are given in reduced
units T/Tp(0) and µBB/kBTp(0), respectively [here, Tp(0)
is the extrapolated critical temperature at zero field].
The definition of the transition points is illustrated in
Figs. 1 and 2.

The low-angle data in Fig. 3 are qualitatively consis-
tent with the B–T diagrams obtained from earlier mag-
netoresistance [18, 19] and torque [18] measurements
in tilted fields. Firstly, the transition temperature con-
tinuously decreases with increasing field; secondly, the
low-temperature state is different from the normal non-
magnetic state even above the kink transition. Quanti-
tatively, our data are in perfect agreement with those
obtained from specific heat measurements at B ≤ 14 T
[22]. These results are obviously in conflict with the
SDW model. On the other hand, they can be compared
to what is expected for a CDW [23]. At low field, the
CDW0 phase with an optimal zero-field wave vector is
stable below Tp. As the field increases, the Zeeman
splitting of the subbands with antiparallel spins leads to
the deterioration of the nesting conditions and, conse-
quently, suppression of Tp [21]. However, when the
Zeeman splitting energy reaches the value of the zero-
temperature energy gap, the formation of a spatially
modulated CDWx state with a longitudinally shifted
wave vector is expected. This state is analogous to the
Fulde–Ferrel–Larkin–Ovchinnikov state predicted for
superconductors [25] and persists to considerably
higher fields than the conventional CDW0. The phase
diagram proposed by Zanchi et al. [23] for a CDW sys-
tem with perfect nesting is shown by dashed lines in
JETP LETTERS      Vol. 71      No. 7      2000
Fig. 3. Apart from different field scales, the phase dia-
grams are remarkably similar to each other.

Assuming the CDW model, the deviation of the
actual phase boundary for fields nearly perpendicular to
the plane to higher temperatures at Tp/Tp(0) > 0.6 can be
ascribed to a significant orbital effect of the magnetic
field. This effect is important for an imperfectly nested
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Fig. 3. Phase diagram of α-(BEDT-TTF)2KHg(SCN)4. Dif-
ferent symbols correspond to the transition points obtained
from the τst(T) sweeps at θ = 2.2° (stars, sample no. 1), 6.5°
(solid diamonds, sample no. 2), 11.8° (solid up-triangles,
sample no. 3), 87.5° (open squares, sample no. 1), and 89.5°
(open up-triangles, sample no. 1); τst(B) sweeps at θ = 2.2°
(crosses, sample no. 1); and characteristic changes in the
dHvA signal at θ = 4.0° (solid down-triangles, sample
no. 4). The dashed lines represent the phase diagram pre-
dicted for a CDW system with a perfectly nested Fermi sur-
face [23].
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Fermi surface and leads to a relative increase in Tp [12,
23]. In our case, when the warping of the open Fermi
surface sheets is much stronger within the ac-plane
than in the interlayer direction, the orbital effect should
be anisotropic: its contribution decreases as the angle θ
approaches 90°. Indeed, the critical temperature of the
transition into the low-temperature low-field state is
found to be systematically lower at θ . 90°, lying per-
fectly on the theoretical line (Fig. 3). This implies that
the orbital effect is absent for the in-plane field direc-
tion.

In the high-field region, the phase lines determined
at different field orientations seem to converge, sug-
gesting an isotropic effect of the magnetic field on the
transition temperature into the low-temperature high-
field state. For a definite conclusion, more detailed
studies at different angles are needed.

The considerable difference between the field scale
in the phase diagram obtained from the experiment and
that predicted by the CDW model is not very surpris-
ing. Indeed, the model calculations [23] are made
within a mean-field approximation neglecting fluctua-
tion effects. The latter may significantly lower Tp(0)
with respect to the mean-field value. Furthermore, the
imperfect nesting which likely occurs in the present
system has a stronger suppressing effect on Tp(0) than
on the critical field [23]. Both these factors lead to an
underestimation of the actual critical fields.

Finally, we note that the field dependence of the
torque at high angles has no simple explanation within
the proposed model. The nonmonotonic torque with a
hysteresis between up and down field sweeps observed
at θ * 60° [21] is reminiscent of multiple phase transi-
tions. As the angle approaches 90°, the features become
less pronounced, although they still persist to angles as
high as 88°–89° (see inset in Fig. 2b). In principle, an
additional phase transition into a CDWy state with a
transversally shifted wave vector may be expected at
high angles at which the orbital effect is sufficiently
suppressed [23]. Still, it cannot account for the whole
structure of the torque at high angles and its compli-
cated angular dependence. Obviously, the applied
model [23] is too oversimplified to explain all the field
effects. For a more adequate description, it seems very
important to include the Q2D band into consideration.
In particular, it was recently shown that oscillations of
the chemical potential due to the quantization of the 2D
orbits have a significant impact on the CDW gap [26].
On the other hand, the magnetization anisotropy itself,
revealing an “easy-plane” spin polarization at low tem-
peratures [15], indicates a nontrivial magnetic structure
linked to the probable CDW.

In conclusion, we have presented a B–T phase dia-
gram of α-(BEDT-TTF)2KHg(SCN)4 built on the basis
of magnetization measurements. The shape of the dia-
gram and the effect of the field orientation are sugges-
tive of a CDW formation accompanied by imperfect
nesting of the Q1D part of the Fermi surface. If this is
true, the high-field phase would represent the first
example of a CDW with a spatially modulated wave
vector.

We thank A. Bjelis for very useful discussions. The work
was supported in part by the TMR Program of the Euro-
pean Community (contract no. ERBFMGECT950077).
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A virtual spin formalism is suggested to demonstrate that a single quantum particle possessing eight suitable
discrete energy levels can be used for storing three information qubits and organizing on them a universal set
of logical operations that are necessary for constructing an arbitrary quantum algorithm. The formalism can be
practically implemented on a nuclear spin 7/2 subjected to resonance rf pulses. A single-pulse realization is
found for all quantum gates of a universal set, including a three-qubit gate. © 2000 MAIK “Nauka/Interperi-
odica”.

PACS numbers: 03.67.Lx; 03.67.Hk; 76.60.-k
It was shown in the theory of computation that a
classical reversible computer can be constructed on a
basis of a universal three-qubit controlled-controlled-
NOT (CCNOT) gate [1]. In quantum informatics, the
CCNOT gate is generalized as a controlled-controlled
unitary transformation (CCUT) gate [2]. The CCUT is
a three-qubit gate, in which the controlled qubit is sub-
jected to an arbitrary unitary rotation if and only if two
controlling qubits are in the |1〉  state. The CCUT gate
transforms into the CCNOT gate upon rotations
through a certain angle [ϕmn = π, see below (4)]. How-
ever, it was found that the CCUT operation is hard to
realize, because three-body interactions do not exist in
nature. An indirect method was found in [3]: it turned
out that the CCUT can be assembled from five two-
qubit gates. This way was realized by a sequence of
several NMR pulses in a system of three spins of 1/2
{equations (38) and (39) in [4]}.

In this work, a virtual spin formalism suggested in
[5] is used to practically implement the CCUT gate in
the simplest way, viz., by means of a single pulse on a
single quantum particle. The advantages of practical
use of such a device are beyond question.

Gate representation by three spins of 1/2 in
quantum informatics. To construct three-qubit gates,
quantum informatics exploits Hilbert space Γ that is
organized as a direct product Γ = ΓQ ⊗ Γ R ⊗ Γ S of Hil-
bert spaces of three real spins of 1/2 Q, R, and S. The
following eight states can be chosen as a basis for the Γ
space:

0| 〉  = 000| 〉 , 1| 〉  = 001| 〉 , 2| 〉  = 010| 〉 , 3| 〉  = 011| 〉 ,

4| 〉  = 100| 〉 , 5| 〉  = 101| 〉 , 6| 〉  = 110| 〉 , 7| 〉  = 111| 〉 ,
0021-3640/00/7107- $20.00 © 20307
where |M〉 = |mQ, mR, mS〉; e.g., |5〉  = |mQ = +1/2, mR =
−1/2, mS = +1/2〉 , etc.

Let us focus upon all possible gates based on the
NOT operation. In a system of three spins, there are
three NOT operations, viz., NOT on each spin with the
unchanged states of the two other spins:

One can next introduce six controlled-NOT opera-
tions CNOT. For example, if the state of spin Q is con-
trolled by the state of spin R, then

In the opposite situation,

The CNOT operations for the RS and QS pairs are con-
structed in a similar manner.

Three CCNOT operations can also be introduced.
For example, when the states of spin S are controlled by
the states of Q and R, then

The CCNOT operations for the Q and R spins are
constructed in a similar manner.

NOTQ 1mRmS| 〉 0mRmS〈 | 0mRmS| 〉 1mRmS〈 | ,+=

NOTR mQ1mS| 〉 mQ0mS〈 | mQ0mS| 〉 mQ1mS〈 | ,+=

NOTS mQmR1| 〉 mQmR0〈 | mQmR0| 〉 mQmR1〈 | .+=

CNOTR Q→ 00mS| 〉 00mS〈 |=

+ 11mS| 〉 01mS〈 | 10mS| 〉 10mS〈 | 01mS| 〉 11mS〈 | .+ +

CNOTQ R→ 00mS| 〉 00mS〈 |=

+ 01mS| 〉 01mS〈 | 11mS| 〉 10mS〈 | 10mS| 〉 11mS〈 | .+ +

CCNOTQ R S→, 000| 〉 000〈 | 001| 〉 001〈 |+=

+ 010| 〉 010〈 | 011| 〉 011〈 | 100| 〉 100〈 |+ +

+ 101| 〉 101〈 | 111| 〉 110〈 | 110| 〉 111〈 | .+ +
000 MAIK “Nauka/Interperiodica”
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Virtual spin formalism. In the presently known
NMR realizations of quantum gates, one-cubit NOT
operation is accomplished through spin rotation by res-
onance rf pulses. Spin dynamics necessary for the two-
qubit CNOT operation necessitates a two-particle spin–
spin interaction [4].

However, quantum dynamics can be realized on a
separate spin of 7/2 without invoking spin–spin interac-
tions. It is also important that the CCNOT operation is
realized by applying a single rf pulse. This can be
implemented through a special information coding on
the states of a spin of 7/2 using a virtual spin formalism
suggested in [5].

A basis of the Hilbert Γ7/2 space can be formed by
the eigenfunctions χm of the Iz operator (m = ±1/2, ±3/2,
±5/2, ±7/2) or by the spin-energy eigenfunctions |ψm〉
defined below. Introducing notations M = 0, 1, 2, 3, 4,
5, 6, and 7 instead of the |ψM〉  = –7/2, –5/2, –3/2, –1/2,
+1/2, +3/2, +5/2, and +7/2 indices, one can set the |M〉 =
|mQ, mR, mS〉  functions of virtual Q, R, and S spins of 1/2
into isomorphous correspondence to the |ψM〉  basis.
Hence, to realize the above-mentioned gates, it is nec-
essary to find a certain external action on a real spin of
7/2 such that the matrix of the evolution operator in the
|ψM〉  basis coincides with the above expressions for the
gates in the |M〉  basis.

Spin 7/2 and physical realization of gates. Let us
consider the NMR spectrum of a nuclear spin I = 7/2
placed in a constant magnetic field H0 and an axially
symmetric crystal electric field:

(1)

where e is the electron charge; Q is the nuclear quadru-
pole moment; Iβ (β = x, y, z) are the spatial components
of the spin vector; 2eq is the absolute value of the elec-
tric field gradient; and θ and ϕ are the polar angles
determining the orientation of its symmetry axis in the
laboratory frame. To be specific, we consider the case
when the quadrupole interaction is weaker than the
Zeeman energy, so that its contribution can be treated
perturbatively. Nevertheless, the quadrupole shifts are
assumed to substantially exceed the widths of spin
energy levels, so that the stationary NMR spectrum
consists of seven well-resolved resonance lines spaced
at frequency intervals on the order of quadrupole inter-
action ωQ.

H Hz HQ, Hz+ "ω0Iz,–= =

HQ 1/2( )"ωQΣα 0, 1 2±,±= Qαq α– ,=

Q0 = Iz
2 I I 1+( )/3, Q 1±–  = IzI 1± I 1± Iz, Q 2±+  = I 1±

2 ,

q0 3 θ2 1, q 1±–cos θ θ iϕ±( ),expcossin= =

q 2± 1/2( ) 2θ i2ϕ±( ),expsin=

ωQ 3e2qQ 4I 2I 1–( )"[ ]⁄ , I 1± Ix iIy,±= =
To a first approximation, the spin energy levels and
eigenfunctions are

(2)

Note that the normalization factor for the |m〉  function
is omitted.

To simplify presentation, we write the spin opera-
tors through the projective operators Pmn, which are
represented by 8 × 8 matrices whose matrix elements
pkl are zero all except the pmn = 1 element. The projec-
tive operators satisfy very simple conditions:

(3)

Spin evolution under the action of an rf pulse inducing
resonance transitions between the energy levels Em and
En (Em > En) is described by the operator [5]

(4)

where it is assumed that the varying magnetic field is
directed along the X-axis; Hrf, f, and Ω = Ωmn ≡ (Em –
En)/" are its amplitude, phase, and frequency, respec-
tively; and 1 is a unit operator in the Γ7/2 space. After
replacing f by f + π/2, expression (4) becomes valid for
the Y-directed rf field.

Let us consider, in order of increasing gate complex-
ity, how the information gates introduced above can be
realized on the physical states of a separate spin of 7/2.

The CCNOT operation requires the application of
one single-frequency pulse. For example, the CCNOTQ,

R → S operation is accomplished by a pulse having fre-
quency Ω67 and producing rotation at an angle of π. In
this case, the evolution operator has the form

Using the above-mentioned isomorphism, one can see,
e.g., that the equality

holds. As a result, the evolution matrix VX(π67, 0) coin-
cides, to a phase coefficient i of the nondiagonal opera-
tors, with the matrix of the CCNOTQ, R → S operation

. (5)

Likewise,

(6)

Note that, unlike the resonance transition at frequency
Ω67, the transitions at frequencies Ω57 and Ω47 between

Em "em≡ "ω0m– "ωQq0 m2 21/4–( ),+=

ψm| 〉 χm Σm k≠ χk〈 |HQ χm| 〉 "ω0 k m–( )χk.⁄+=

PklPmn δlmPkn, Pmn Pnm
+ ,= =

Pmn Ψk| 〉 δnk Ψm| 〉 .=

VX ϕmn f,( ) 1 Pnn Pmm+( ) ϕmn 2⁄( )cos 1–[ ]+=

+ i Pmneif Pnme if–+( ) ϕmn 2⁄( ),sin

ϕmn 2 t t0–( )γHrf n Ix m〈 〉 , 1 ΣmPmm,= =

VX π67 0,( ) 1 P77 P66+( ) i P67 P76+( ).+–=

P67 P76+ 6| 〉 7〈 | 7| 〉 6〈 |+ 110| 〉 111〈 | 111| 〉 110〈 |+= =

VX π67 0,( ) CCNOTQ R S→,=

VX π75 0,( ) CCNOTQ S R→, ,=

VX π73 0,( ) CCNOTR S Q→, .=
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the χM states are allowed only to first order in the ωQ/ω0
parameter. Because of this, to accomplish rotation at an
angle of π, the pulse duration or the rf field amplitude
must be increased in these cases. Numerical calcula-
tions show that if the Zeeman and quadrupole energies
are comparable, all necessary rotation angles involve
matrix elements of the same order of magnitude.

The CNOT operation requires one double-fre-
quency pulse. The corresponding evolution operator is
a product of the following two operators:

(7)

The NOT operation requires one four-frequency
pulse. Its evolution operator is a product of the follow-
ing four operators:

(8)

Physical realizations (5)–(8) of the gates differ from the
forms adopted in quantum informatics in that the non-

VX π23 0,( )VX π67 0,( ) CNOTR S→ ,=

VX π13 0,( )VX π57 0,( ) CNOTS R→ ,=

VX π45 0,( )VX π67 0,( ) CNOTQ S→ ,=

VX π15 0,( )VX π37 0,( ) CNOTS Q→ ,=

VX π46 0,( )VX π57 0,( ) CNOTQ R→ ,=

VX π26 0,( )VX π37 0,( ) CNOTR Q→ .=

VX π04 0,( )VX π15 0,( )VX π26 0,( )VX π37 0,( ) = NOTQ,

VX π02 0,( )VX π13 0,( )VX π46 0,( )VX π57 0,( ) = NOTR,

VX π01 0,( )VX π23 0,( )VX π45 0,( )VX π67 0,( ) = NOTS.
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diagonal projective operators contain phase multiplier
i. This should be taken into account when constructing
complex algorithms.

In the foregoing, the ϕ and f parameters in the for-
mulas for evolution operators are specified in order to
simplify presentation. Expressions (5)–(8) for the
CCNOT, CNOT, and NOT gates can easily be general-
ized to the CCUT, CUT, and UT. For instance, if evolu-
tion operator (4) is taken with arbitrary parameters ϕ
and f, then expression (5) for the CCNOT operator
gives the expression for CCUT. The expressions for
other logical operations can be obtained in a similar
manner.
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