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The probability of spontaneous magnetic dipole emission in a transparent dielectric medium with refractive index
n is shown to be n3 times higher than in vacuum. The decay of a low-lying nuclear 229mTh(3/2+, 3.5 ± 1.0 eV) level
in the 229ThO2 dielectric is discussed. © 2000 MAIK “Nauka/Interperiodica”.
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An infinite dielectric medium influences the proba-
bility of spontaneous emission in the optical region
(see, e.g., [1–3] and references therein). The probability

 of electric dipole transition in a medium with
dielectric constant e at an emission frequency ω (sys-
tem of units c = " = 1) can be expressed through the

probability  of spontaneous decay in a vacuum by
the relationship [1–3]

(1)

Here, the function f(e) relates the electric component
Em of a macroscopic electromagnetic field in a medium
to the local electric field Eloc at the point where dipole
is located. This function depends on the microscopic
structure of the medium surrounding the emitting
object, e.g., an atom. If the atom is placed in a sphere of
small radius R ! λ = 2π/ω inside which eloc = 1, then
f(e) = 3e/(2e +1) (the corresponding problem is solved
in [4], chap. II; see also [1]). Other expressions for f(e)
can be found elsewhere [2, 5].

The factor e1/2 in Eq. (1) arises as follows. Let us
consider the following expression for the probability of
electric dipole transition:

(2)

where  is the dipole moment operator of the emitting

system and  is the electric-field creation operator
related to the operator for the field in a medium via the

expression  = f(e) . The field operator  and
the density ρm(ω) of photon final states are renormal-
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ized from the vacuum values according to the formu-
las [3]

(3)

The first of these relations immediately follows from
the quantization rules for the electromagnetic field in a
medium. For the gauge divA = 0, the equation

(4)

for the vector potential A follows from the Maxwell
equations in a uniform dielectric medium with perme-
ability equal to 1 in the absence of extrinsic currents
and charges: curlE = –∂tH, divH = 0, curl H = ∂tD, and
divD = 0, where the electric and magnetic fields are
defined via A in the standard way:

(5)

In the Maxwell equations, the electric induction is D =
eE. We assume throughout this paper that the emission
wavelength is much greater than the interatomic dis-
tances in the substance and that the e value is indepen-
dent of the coordinates.

The quantization of the electromagnetic field in a
medium is carried out similarly to the quantization in
vacuum. The vector potential can be written as an
expansion in plane waves

(6)

where

(7)

|k| = e1/2ω [this immediately follows from Eq. (4)], ek, λ
is the unit vector of plane wave polarization, and
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+
, ρm ω( ) e

3 2/ ρvac ω( ).= =

∆A e∂t
2A– 0=

E ∂tA, H– curlA.= =
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 denotes the summation over two photon polar-
izations. The normalization volume is taken to be unity.
The operators of photon creation and annihilation in
Eq. (6) obey the ordinary commutation relations

 =  = 0 and  = δkk'δλλ ',
and the field energy and momentum operators are
expressed in terms of the creation and annihilation opera-

tors in the standard form  = (  +

1/2) and  = .

As follows from Eqs. (6) and (7) and definition (5)
of the electric field through the vector potential, the
explicit form of the creation operator for an electric
field with momentum k and energy ω in a medium is

(8)

This expression confirms the first of Eqs. (3).
The renormalization of phase volume is evident

because, as mentioned above, k2 = eω2 in matter. The
k2dk/dω value increases in a medium by a factor of e3/2.
In Eq. (2) for the probability, this factor not only com-
pensates for a decrease in the electric field but also
brings about e1/2-type dependence of the emission prob-
ability on the dielectric constant, as indicated in Eq. (1).

The probability of magnetic dipole emission is cal-
culated by the formula

(9)

where  is the magnetic dipole moment operator of the

emitting system. The operator  of a local magnetic

field obviously coincides with the field operator ,
because we consider a nonmagnetic medium (see [4],
chap. IV and [1]). Using Eqs. (5)–(7), one can easily
obtain

(10)

where nk is the unit vector directed along the momen-
tum k.

Substituting  from Eq. (10) and ρm(ω) from
Eq. (3) into Eq. (9), we immediately obtain for the mag-
netic dipole emission

(11)

Since the refractive index n = e1/2 [4], the probability of
M1 emission increases in a medium by a factor of n3.
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Ĥm

+

Ĥmk λ,

+
i k Ak λ,*×[ ] âk λ,

+
–=

=  i nk ek λ,*×[ ] 2πωe
ikr–
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A comparison of Eqs. (8) and (10) for the operators

 and , respectively, indicates that the well-
known relationship e1/2Em = [Hm × nk] for the electric
and magnetic components is fulfilled (see [4],
chap. IX). Thus, it is not surprising that Eq. (11) relat-
ing the probability of magnetic dipole emission in a
medium to the probability of transition in vacuum dif-
fers noticeably from analogous Eq. (1) for electric
dipole emission. This point has received special atten-
tion in this study. The result expressed by Eq. (11) is
inconsistent with the conclusions drawn in [1], where
Eq. (6.24), an analogue of Eq. (11) in this work,
includes the factor e1/2 instead of e3/2. This misunder-
standing is associated with the fact that one should
substitute |k| = e1/2ω for the momentum in the formula

[∇  × fk(0)]diel = k × /  presented on p. 486 in
[1] for the magnetic field amplitude. Indeed, the first
terms in the expansion of the field fk(r) (an analogue
of the vector potential Ak, λ), viz., the functions

exp(ikr)/(eV)1/2 in Eqs. (6.17) and (6.20) in [1] are,
as the authors of [1] state themselves, the solutions of
Eq. (6.15) without the nonhomogeneous part. In other
words, the indicated functions are the solutions of the
homogeneous equation e(ω2/c2)fk(r) – ∇  × [∇  × fk(r)] =
0. For this equation, k2 = eω2. As a result, the magnetic-
field magnitude is not renormalized. Accordingly, the
factor e1/2 in Eq. (6.24) for the emission probability is
replaced by e3/2. It should be noted that this inaccuracy
in a particular example of M1 transition does not belit-
tle the merits of [1] as a whole.

Result (11) can also be obtained by a different
method based on the properties of the retarded Green
function.1 It is known (see, e.g., [2]) that the probabilities
of spontaneous E1 and M1 emissions can be expressed
through the spectral functions of electric- and magnetic-
field fluctuations 〈E(r1)E(r2)〉ω and 〈H(r1)H(r2)〉ω,
respectively, taken at r1 = r2. At a temperature well below
ω, these functions have the form ([6], chap. VIII)

(12)

Since [2]

Eqs. (12) evidently confirm the above conclusion about
the n3 dependence of the probability of spontaneous
magnetic dipole emission on the refractive index.

This conclusion may be of crucial importance for
estimating the lifetime of the anomalously low-lying
3/2+(3.5 ± 1.0 eV) level of the 229Th nucleus [7]. This
level decays into the ground 5/2+ state via the M1 tran-

1 In this approach, the local-field effects are not considered; i.e., we
set f(e) = 1.

Êm
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sition. In the isolated Th atom, the process of the third
order in the electromagnetic coupling constant (the
electronic bridge) should be the most probable decay
channel [8]. However, thorium is a chemically active
element. Its dioxide is the most abundant and stable
chemical compound. ThO2 is a dielectric with an
energy gap of ca. 6 eV and refractive index n . 2 for
photons with energy 3.1 eV [9].

The energy gap of the ideal dielectric contains no
electronic states. For this reason, the continuous states of
the conduction band of 229ThO2 should serve as interme-
diate states in the decay of the low-lying nuclear isomer
through the electronic bridge. The mismatch of the cor-
responding nuclear and electronic transition energies
exceeds 1 eV. Moreover, only the elastic electronic
bridge, i.e., the M1 emission in the “second” electronic
transition should be taken into consideration. The proba-
bility of such an electronic bridge is negligibly small [8].

As the result, a direct nuclear emission in the optical
range may be the main decay channel for the low-lying
3/2+ (3.5 ± 1.0 eV) level in 229ThO2. The decay proba-
bility for the isolated nucleus in a vacuum is given by
the formula [10]

where L is the multipolarity and B(E(M)L) is the
reduced probability of the nuclear transition. The
B(M1; 3/2+  5/2+) value for the isomeric 229Th tran-
sition of interest was obtained in [11]. Taking into
account the Coriolis interaction between the rotational
bands related to the isomeric and ground states, it was

found in [11] that B(M1; 3/2+  5/2+) . 0.086  .
4.8 × 10–2 Wu, where Wu stands for the Weisskopf
units, µN = e/2mp is the nuclear magneton, and mp is the
proton mass. Without regard for the medium effect, one
has T1/2 = ln2/Wγ . 80 min–8 h in the energy range ω =
4.5–2.5 eV. If the effect of a dielectric medium is taken
into account, the decay probability in thorium dioxide
should be modified according to Eq. (11). As a result,
the most probable lifetime of the 3/2+ (3.5 ± 1.0 eV)
state in 229ThO2 will lie in the range 10 min–1 h. Note
that this estimation is made under the assumption that
n . 2 not only for ω = 3.1 eV, as in [9], but also over the
entire energy range of 2.5–4.5 eV. The corresponding
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numerical result can be refined with allowance made
for the actual n value.

It is quite difficult to check the effect of an infinite
dielectric medium on atomic emission. In this respect,
the above analysis of the 3/2+ (3.5 ± 1.0 eV) level decay
in 229ThO2 may be useful for the experimental corrobo-
ration (or refutation) of the relationship between the
decay in a vacuum and in a medium in the form of
Eqs. (1) and (11).

I am grateful to A. M. Dykhne, A. N. Zherikhin,
M. A. Listengarten, Yu. E. Lozovik, and N. P. Yudin
for helpful discussions and interest in the study. This
work was supported in part by the Russian Foundation
for Basic Research (project no. 98-02-16070a) and by
the Support of Leading Scientific Schools (grant
no. 00-15-96651).
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The equilibrium of a toroidally rotating plasma in an axisymmetric tokamak-like system is considered. The
equilibrium equation is represented in the form of the Grad–Shafranov equation in which, in contrast to the
static case (with no plasma rotation), the plasma pressure depends on both the flux surface label and major
radius. It is shown that the dependence of the pressure on the major radius makes it possible to choose the profile
of the plasma rotation velocity so as to minimize the effect of the plasma pressure on the shift of the flux sur-
faces, in which case it might be anticipated that the maximum pressure of the confined plasma will be higher.
This result was derived analytically and tested numerically for a number of typical tokamak configurations with
a fixed plasma boundary. © 2000 MAIK “Nauka/Interperiodica”.
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At present, the most advanced devices for magnetic
confinement of high-temperature plasmas are tokamaks,
which are axisymmetric (∂/∂ξ  0 in cylindrical coor-
dinates {r, z, ξ}) systems with toroidally nested magnetic
flux surfaces Ψ(r, z) = const such that B · ∇Ψ  = 0.
Although the theory of static (with the mean plasma
mass velocity v = 0) plasma equilibrium in tokamaks is
well developed (see, e.g., the well-known reviews [1,
2]), in order to adequately model tokamak experiments,
it should be supplemented by attention to plasma rota-
tion, which is routinely observed in large tokamaks,
especially in operating modes with high-power neutral
beam injection. The plasma rotation velocity can be on
the order of sonic speed; near the magnetic axis, the
plasma rotates preferentially in the toroidal direction.

That plasma rotation is an important issue in
describing toroidal plasma states was recognized a long
time ago (see, e.g., [3–5] and the literature cited
therein). During the 1980s and 1990s, the problem of
the equilibrium of a rotating plasma was treated in a
fairly large number of papers (see, e.g., [6–9] and the
literature cited therein). The interest in this problem is
attributable in part to the circumstance that plasma rota-
tion plays a key role in achieving regimes with
enhanced plasma confinement.

The equilibrium configuration of an arbitrarily
rotating plasma is governed by five flux-surface func-
tions, in contrast to the static case, in which only two
functions are required: the plasma pressure p = p(Ψ)
and poloidal current I = I(Ψ). In this paper, in order to
minimize the plasma pressure–induced shift of the
magnetic flux surfaces with respect to the magnetic axis
(the so-called Shafranov shift n) [10], we use freedom
0021-3640/00/7108- $20.00 © 20314
in the choice of the flux-surface functions, specifically,
the velocity profile of the toroidal plasma rotation.

The Shafranov shift results from the well-known
ballooning effect: an increase in the plasma pressure
inside the plasma column causes the plasma to extend
preferentially outward from the major axis of the torus.
In tokamaks, the maximum achievable values of the
parameter β (the ratio of the plasma pressure to the
magnetic field pressure) are limited by the condition
n & ab (where ab is the characteristic minor radius of
the plasma column) imposed by the effect of the
Shafranov shift. In actuality, the equilibrium beta limit
is even lower: it is achieved when the Shafranov shift n,
which is associated with finite plasma pressure,
becomes so significant that a separatrix appears in the
plasma column and the nested structure of the magnetic
surfaces is broken. Consequently, we may expect that
suppressing the Shafranov shift will raise the maximum
possible β-values, which is a very important issue for
controlled fusion research.

We consider the time-independent MHD equations
in the form

(1)

(2)

(3)

(4)

(5)

For

, (6)

ρ v ∇⋅( )v ∇ p B curlB×[ ]+ + 0,=

curl v B×[ ] 0,=
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v ∇ S⋅ 0.=

S p/ργ=
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Eq. (5) is an adiabatic equation with the adiabatic index
γ. The axisymmetric magnetic field that generates a
family of nested toroidal flux surfaces Ψ(r, z) = const
and satisfies Eq. (3) can generally be represented as

. (7)

The quantity Ψ in (7) has the meaning of the poloidal
magnetic flux. Equation (2) implies that the plasma
streamlines should also lie on the flux surfaces, so that,
according to (5), the entropy function S depends on the
flux surface label S = S(Ψ).

We restrict ourselves to considering purely toroidal
plasma rotation,

(8)

in which case the scalar equilibrium equation has the
form

(9)

where

(10)

We can see that I, ω, and H are flux-surface functions,
i.e., I(r, z) = I(Ψ(r, z)), etc. Applying the thermody-
namic approach and using Eq. (6), we can express p and 
ρ as functions of the enthalpy h in (10):

(11)

Thus, the MHD equilibrium of a toroidally rotating
plasma is determined by the four independent flux-sur-
face functions I = I(Ψ), ω = ω(Ψ), H = H(Ψ), and S =
S(Ψ), where the flux function Ψ(r, z) satisfies Eq. (9),
which can be represented in the form of the conven-
tional Grad–Shafranov equation:

(12)

In accordance with (10) and (11), we have
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for the temperature to be constant along the magnetic
field lines, T = T(Ψ). In this case, we have [7]

(15)

so that the equilibrium equation again reduces to
Eq. (12).

The sole difference between Eq. (12) and the con-
ventional Grad–Shafranov equation is that it contains
the partial (rather than ordinary) derivative with respect
to Ψ, because the pressure of a rotating plasma depends
explicitly not only on the flux surface label but also,
according to (13) and (15), on the radial coordinate r.
We will use this circumstance in further analysis.

We turn to Eq. (12) to consider the structure of the
flux surfaces near the magnetic axis (r = R, z = 0),
assuming that the aspect ratio is large, R/a @ 1. Follow-
ing Zakharov and Shafranov [2], we work in the
approximation of nearly circular flux surfaces deter-
mined by

(16)

and specify the hierarchy n(a) ~ a2/R, ε(a) ~ a(a/R)2,
etc. In this approach, the left-hand side of the equilib-
rium equation (12) contains the full set of harmonics of
the poloidal angle θ. The coefficients in front of each of
the poloidal harmonics should be equated to zero inde-
pendently. To leading order in a/R, the lowest harmon-
ics satisfy the equations
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determines the shift n(a), Eq. (19) determines the ellip-
ticity ε(a), and so on.
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Integrating Eq. (18) for the Shafranov shift by anal-
ogy with [2], we obtain

(20)

where

(21)

We can readily see that, according to (20), the
Shafranov shift, as a function of pressure, is determined

by the parameter . When there is no rotation, we
have (∂/∂r2)(r2∂p/∂Ψ)  p' and

This quantity is definitely nonzero for any pressure pro-
file with a maximum in the center and decreasing
towards the plasma edge [formally, we have βJ = 0 for
p(a) = const, in which case, however, the plasma equi-
librium is ensured by a current layer that forms at the
plasma edge and makes a comparable integral contribu-
tion to the shift (20)]. For a rotating plasma, the param-

eter  can be made small by holding the quantity

fixed, in which case the plasma pressure p(Ψ, r) defined
by (13) should satisfy the condition
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For definiteness, we assume a fixed plasma boundary
Ψ(r, z) = Ψb. This approximation is quite suitable for
modeling real experiments and can be applied not only
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divertor-equipped tokamak, the position of the bound-
ary flux surface (the separatrix) is effectively controlled
by varying the external poloidal field. If the plasma
pressure vanishes at the boundary, p(Ψb , r) ≈ 0, then
condition (22) clearly cannot be satisfied for any Ψ.
However, this is not required, because the position of
the boundary surface is prescribed a priori and the
velocity at which the edge plasma rotates is of no
importance. It is desirable to satisfy condition (22) in
the region where the Shafranov shift is maximum,
namely, in the central plasma region. Expanding condi-
tion (22) in powers of a, we can use the pressure profile
or the H(Ψ) profile in order to find such a profile of the
angular velocity of toroidal plasma rotation that would
minimize the Shafranov shift. Using the zero subscript
to denote the values of the quantities at a = 0, we obtain
the relationship

(23)

We can see that the absolute value of the plasma rota-
tion velocity at the center of the plasma column is
unimportant. Condition (23) can even be satisfied when
the plasma at the magnetic axis does not rotate, i.e.,
when ^20 = 0, in which case the radial derivative of the
plasma rotation velocity is determined by the universal
relationship

(24)

i.e., there is no dependence on either ^10 or α.
Condition (22) can also be interpreted in a different

manner. Let us address the question of how high the tor-
oidal rotation velocity of the plasma at a radius r = r1(at
which the plasma pressure is p ≈ p1) should be in order
to minimize the Shafranov shift, provided that the
plasma does not rotate at the magnetic axis. To answer
this question requires insignificant algebra:

(25)

where cS is the speed of sound at the radius denoted by
the subscript 1.

We checked the above conclusions numerically by
running a fixed-boundary code capable of calculating
equilibrium magnetic and plasma configurations in
tokamaks from Eqs. (12) and (13). To save space, we
omit the details of the computations and note only that
an essentially complete suppression of the Shafranov
shift (or a significant reduction—by a factor of 6 to 8—
in configurations with a highly elliptical plasma bound-
ary) was reliably captured by the code even at an aspect
ratio of about 3, i.e., even when the asymptotic expan-
sion in powers of a/R may lead to significant errors. We
also found that the maximum possible β values were
higher than those in the static case by a factor of 1.6 to
2.5. Hence, we can conclude that the effect under dis-

^20' R2 ^10'
^10 α R2^20+

2^10 α 1+( )R2^20+
----------------------------------------------------.–≈

^20' R2 ^10' /2;–≈

v 1 ωr( )1 cS
2
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cussion is pronounced enough to be not only captured
numerically but also observed experimentally.

On the other hand, we emphasize that this effect
cannot in principle be described by the familiar analytic
solutions to the equilibrium equation (9), e.g., by the
Maschke–Perrin solution [7], which is often cited in the
literature. In [7], the flux-surface functions H(Ψ) and
ω(Ψ) for which ^1/^2 = const and ^1, 2 ~ Ψ1/α were
chosen in such a way that the derivative ∂p/∂Ψ depends
only on r. Although this choice makes it possible to
solve Eq. (12) analytically, it contradicts our condition

and its consequences (23) and (24). This circumstance
explains why the plasma rotation in the Maschke–Per-
rin solution and in analogous solutions, as a rule, has an
unfavorable effect on the parameters of the confined
plasma.

In conclusion, we summarize the main results of our
study.

In the case of purely toroidal plasma rotation, the
MHD equilibrium equation can be written in the form
of the Grad–Shafranov equation in which the total
derivative dp/dΨ should be replaced with the partial
derivative ∂p/∂Ψ.

The shift of the flux surfaces is described by a for-
mula similar to that for the Shafranov shift.

In contrast to the static case, the plasma pressure–
induced shift of the flux surfaces can be substantially
suppressed (and, in some cases, even eliminated com-
pletely) by an appropriate choice of the toroidal veloc-
ity profile, no matter how high the absolute value of the
rotation velocity.

In order to minimize the Shafranov shift of the flux
surfaces in the case of a pressure profile with a maxi-
mum in the center and decreasing towards the plasma

r2∂
∂

r2

Ψ∂
∂p

 
  0≈
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edge, it is necessary to ensure that the toroidal plasma
rotation velocity increases with distance from the mag-
netic axis.

The operating modes with a reduced shift of the flux
surfaces make it possible to achieve higher equilibrium
β values.

This work was supported in part by the Russian
Foundation for Basic Research, project no. 00-15-96526
(under the program “Leading Scientific Schools”).
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The influence of nonequilibrium electrons on the domain structure and switching of ferroelectrics
(photodomain effect) has been investigated in ferroelectric crystals and ceramics. In the present paper, this
effect is observed and explained as a result of the domain walls screening in frame of Yshibashi–Takagi theory.
© 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 77.80.Dj
1 The influence of intrinsic light on the equilibrium
domain structure, on the kinetics of its switching, and
on the properties directly related to the domain struc-
ture (e.g., the pyroelectric charge, electromechanical
hysteresis, etc.) was called the photodomain effect [1].
The photodomain (PD) effect was first observed in
SbSI crystals [2]. The first observations of the PD were
performed by indirect methods, such as the influence of
illumination on the pyroelectric current and
Barkhausen discontinuity [3, 4]. Later, the PD effect
was observed by direct observations of the intrinsic
illumination on domain structure in SbSI and BaTiO3
crystals [5, 6]. In [7–10], the PD effect was observed in
PZT and PZLT ferroelectric films and explained by the
mechanism of the screening of 90° domain walls (or the
walls with a boundary which is not parallel to the exter-
nal fields) by nonequilibrium carriers. It was shown
that illumination of PZT or PZLT films in the intrinsic
optical region leads to suppression of the switchable
polarization in the external field. In the present paper,
we show that the Yshibashi–Takagi model (YT model)
[11] permits one to explain the PD effect by the mech-
anism of domain-wall screening.

In the YT model, four parameters are required to
describe the polarization reversal. The probability of
nucleation per unit volume and unit time is given by R;
the initial radius of a nucleus, by rc; the domain-wall
velocity, by ν; and the dimensionality of growth, by d.

The fraction of switched volume to total volume is
given by Q(t) = 1 – q(t), where q(t) is suppression. The
switching current is then found by

(1)

where Ps is the spontaneous polarization per unit

1 This article was submitted by the authors in English.

i t( ) 2Ps
dQ t( )

dt
-------------- 2Ps

dq t( )
dt

-------------,–= =
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volume. Thus,

(2)

The YT model gives the following expression for q(t)
[11]:

(3)

where Cd = 2, π, and 4π/3 for d = 1, 2, and 3, respec-
tively. The switching current is given by

(4)

If the size of a nucleus is negligibly small on the
scale of the system, as is usually the case, then Eqs. (3)
and (4) have the form

(5)

(6)

where θ = CdRνd.
This model was successfully applied to thin ferro-

electric films [12, 13].
Upon illumination of the ferroelectric crystal (or

film), the nonequilibrium electrons influence the kinet-
ics of the ferroelectric switching. Within the framework
of the YT model, the illumination, in principle, changes
R, rc, and ν. The change in rc is evident, because the free
surface energy of the domain depends on the concentra-
tion of photoelectrons (due to the screening). The illu-
mination may also increase the nucleation rate R due to
the trapping of photoelectrons. The velocity of the wall
ν also depends on the concentration of photoelectrons.

Ps t( )/Ps 0( ) 1 q t( ).–=

q t( )ln
Cd R

ν d 1+( )
-------------------- rc ν t⋅+( )d 1+ rc

d 1+–[ ] ,–=

i t( ) 2PsCd R rc νt+( )d=

×
Cd R

ν d 1+( )
-------------------- rc νt+( )d 1+ rc

d 1+–[ ]– .exp

q t( )ln
θ

d 1+
------------td 1+ ,–=

i t( ) Psθ td θ
d 1+
------------td 1+– ,exp⋅=
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We shall suppose that at t = τm, where τm = ε/4πσ is
Maxwellian time, the switching is finished due to the
screening of the walls (see Fig. 1). Thus, we can obtain
from Eq. (3) the value q(t = τm), which characterizes the
unswitched volume of the crystal or film, see Eq. (2).
We shall consider the value of q(t = τm) as the degree of
photoinduced hysteresis suppression (or PD effect).

Substituting t = τm in Eq. (3), we obtain

(7)

where τm = ε/4πσph = ε/4π  · I (I is light intensity in
the case of the linear dependence σph = σph(I), σph @ σd;
σph is photoconductivity; and σd is dark conductivity).

We can see from Eqs. (3) and (7) that at t = 0 q(0) = 1
and Ps(t) = Ps(0). At t = τm, q(τm) < 1 and, correspond-
ingly, Ps(τm) < Ps(0). Thus, we obtain the PD effect. It
is seen from Eq. (7), that the PD effect increases with
the light intensity. Eq. (7) does not describe the kinetics
of this effect, because we did not take into account the
dependence of R, rc, and ν on the light intensity. If we
neglect this dependence, Eq. (7) will describe the
dependence of photoinduced hysteresis suppression on
the time of illumination. Of course, this approach is
valid if the Maxwellian time is comparable with the
switching time.

If the size of a nucleus is negligibly small in com-
parison with grown and screened domains (rc ! ντm),
the photoinduced hysteresis suppression is given by
Eq. (8):

(8)

It is seen from Eq. (8) that q(τm) ~ exp[–constant ·

] and the effect increases with light intensity.
From the dependence q(τm) = q(I), we can determine, in
principle, the dimensionality of the domain growth d.

The effect of photoinduced hysteresis suppression is
determined by q(τm). The dependence of q on the light
intensity I is given by Eq. (8), if we substitute in Eq. (8)
the value τm:

If the photoconductivity σph linearly depends on the
light intensity I, i.e.,

the dependence q = q(I) is given by Eq. (9),

(9)

q t( )
Cd R
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 
 
 

,exp=
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d 1+

τm ε/4πσph I( ).=

σph σph
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q
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d 1+
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4πσph
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It is seen from Eq. (9) that the effect of the photoin-
duced hysteresis suppression q increases with light
intensity I.

The experimental data [9, 10] show that the illumi-
nation of PZT and PZLT ferroelectric ceramics in the
intrinsic optical region leads to an increase in q. This
effect of hysteresis suppression may be explained qual-
itatively by the model developed. For the numerical
comparison, we need the experimental investigation of
q as a function of the light intensity.

We investigated PZT thin films of thickness l ≅  3µ,
which were prepared using the sol–gel deposition tech-
nique [14, 15]. This technology provides a single-phase
perovskite structure. As a semitransparent electrode,
we used Pt (150 Å) sputter-deposited on the film. As a
second electrode, we used Pt sputter-deposited on an
oxidized silicon wafer. The illumination of the film was
performed through the semitransparent electrode. The
illumination of the films was performed with a Xe lamp
and a ZMR monochromator in the spectral region of
300–800 nm. The low-frequency Sawyer–Tower sys-
tem was used for the measurements of the dielectric
hysteresis loops (f = 70 Hz).

The effect of photoinduced hysteresis suppression is
shown in Fig. 2. The initial hysteresis loop is shown by
curve 1, the photoinduced hysteresis loop is shown by
curve 2, and the effect of the photoinduced hysteresis
suppression q is determined by Eq. (2). In accordance

Fig. 1. Screening of the domain walls by nonequilibrium
carriers.

Fig. 2. The effect of photoinduced hysteresis suppression in
PZT: (1) the initial hysteresis loop; (2) the suppressed hyster-
esis loop; λ ≅  368 mm, I = 4.5 mW cm–2, V = 3 V.
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with [9, 10], we used the following measurement
sequence. We applied the external voltage V = 1, 3, or
9 V to the electrodes for 100 s with simultaneous illu-
mination of the film by the band-gap light λ ≅  368 nm.
The external electric field was less than the coercive
field [9, 10]. After switching off the external field and
illumination, the photoinduced hysteresis loop was
measured. Then the hysteresis loop was restored by the
band-gap illumination in the external low-frequency
voltage ≅ 80 V. The measurement of q was performed
for different band-gap light intensities I.

Figure 3 shows the experimental dependence of q on
the light intensity I for different values of V. The satu-
ration of the curves in Fig. 3 at q ! 1 and the deviation
of the experimental curves from the theoretical depen-
dence |lnq| = aI–3 obtained for two-dimensional domain
growth may be connected with many factors. The main
possible cause of this deviation is the dependence of the
domain-wall velocity ν on the screening; the velocity ν
in Eq. (9) is a function of light intensity I, and ν = ν(I)
decreases with I. A more common reason for this devi-
ation is the infinite-grain approximation that was used
in Eq. (3). In any case, Eq. (8) describes the main fea-
ture of the phenomenon: an increase in photoinduced
hysteresis suppression with light intensity.

The dependence of the domain-wall velocity ν on
the electric field follows from the behavior of the exper-
imental curves in Fig. 3 at small values of I. It is seen
from Eqs. (5) and (9) that dq/dI ~ qνdI–(d + 2) and, there-
fore, at the initial part q = q(I) (far from saturation) the
initial value of dq/dI increases with voltage V. The
curves in Fig. 3 confirm this conclusion.

The proposed mechanism of photoinduced hystere-
sis suppression is fulfilled under the condition

(10)

where t1 = t1(E) is the effective time of switching polar-
ization; E is the external electric field; and τm is the

τm t1,≤

Fig. 3. Experimental dependence of q on the light intensity I
for different voltages.
Maxwellian relaxation time

(11)

where σph and σd are the photoconductivity and dark
conductivity, respectively. The dependence of the pho-
toconductivity of the investigated PZT films is shown
in Fig. 4 (λ ≅  368 nm). It shows that in the interval I ≅
10–1–0.5 mW cm–2 the photoconductivity σph = 10–7–
10–6 Ω–1 cm–1 (σph @ σd). Therefore, for ε ≅  103–104,
the relaxation time τm = 10–1–10–3 s.

The time t1 = t1(E) depends on the external electric
field E. The values of E ≤ 3 × 104 V cm–1 used are
much smaller than the coercive field in PZT films
Ec ≥ 105 V cm–1 [16]. Therefore, t1 is much larger than
the real switching time t1 @ tSW. We can suppose, there-
fore, that condition (10) is fulfilled. Nevertheless, the
value of q depends on the external electric field E. At
small values of the field, t1 @ τm but the domain struc-
ture change is very small. At high values of the field,
t1 ≤ τm and the screening is not effective. It explains
the nonmonotonic behavior of the saturation values of
q = q(V) in Fig. 3.

Thus, photoinduced hysteresis suppression in ferro-
electric PZT films may be explained as a result of the
screening of the domain walls by the photocarriers. The
YT infinite-grain model switching kinetics permits one
to explain the increase in this effect with light intensity.
The description of the kinetics of this effect must take
into account the dependence of the domain-wall veloc-
ity and nucleation rate on the concentration of the pho-
tocarriers. It does not mean that the screening of the
domain walls is a common mechanism of the PD effect
in ferroelectrics.

REFERENCES

1. V. M. Fridkin, Ferroelectric Semiconductors (Nauka,
Moscow, 1976; Consultants Bureau, New York, 1980).

τm
ε

4π σph σd+( )
--------------------------------,=

Fig. 4. The linear dependence of the photoconductivity σph
on the light intensity in PZT; λ ≅  368 mm.
JETP LETTERS      Vol. 71      No. 8      2000



ON THE MECHANISM OF THE PHOTODOMAIN EFFECT IN FERROELECTRICS 321
2. V. M. Fridkin and I. I. Groshik, Appl. Phys. Lett. 10, 354
(1967).

3. B. P. Grigas, Fiz. Tverd. Tela (Leningrad) 13, 614 (1971)
[Sov. Phys. Solid State 13, 501 (1971)].

4. V. M. Rudyak and A. A. Bogomolov, Fiz. Tverd. Tela
(Leningrad) 9, 3336 (1967) [Sov. Phys. Solid State 9,
2624 (1967)].

5. V. P. Bender and V. M. Fridkin, Fiz. Tverd. Tela (Lenin-
grad) 13, 614 (1971) [Sov. Phys. Solid State 13, 501
(1971)].

6. V. M. Fridkin, A. A. Grekov, N. A. Kosonogov, et al.,
Ferroelectrics 4, 169 (1972).

7. C. E. Land and W. D. Smith, Appl. Phys. Lett. 23, 57
(1973).

8. C. E. Land and P. S. Peercy, Ferroelectrics 45, 25 (1982).
JETP LETTERS      Vol. 71      No. 8      2000
9. D. Dimos, W. L. Warren, M. B. Sinclair, et al., Appl.
Phys. 76, 4305 (1994).

10. W. L. Warren and D. Dimos, Appl. Phys. Lett. 64, 866
(1994).

11. Y. Yshibashi and Y. Takagi, J. Phys. Soc. Jpn. 31, 506
(1971).

12. K. Dimmler, M. Parris, D. Butler, et al., J. Appl. Phys.
61, 5467 (1987).

13. H. M. Duiker, P. D. Beale, J. F. Scott, et al., J. Appl.
Phys. 68, 5783 (1990).

14. W. L. Warren, D. Dimos, B. A. Tuttle, et al., Appl. Phys.
Lett. 65, 1018 (1994).

15. L. M. Sheppard, Ceram. Bull. 71, 85 (1992).
16. S. K. Dey and R. Zuleeg, Ferroelectrics 108, 37 (1990).



  

JETP Letters, Vol. 71, No. 8, 2000, pp. 322–326. Translated from Pis’ma v Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 71, No. 8, 2000, pp. 465–471.
Original Russian Text Copyright © 2000 by Volkov, Kukushkin, Kulakovski

 

œ

 

, Klitzing, Eberl.

                       

CONDENSED MATTER

            
Bistable Charge States in a Photoexcited 
Quasi-Two-Dimensional Electron–Hole System

O. V. Volkov*, I. V. Kukushkin*, D. V. Kulakovskiœ*, K. von Klitzing**, and K. Eberl**
* Institute of Solid-State Physics, Russian Academy of Sciences, Chernogolovka, Moscow region, 142432 Russia

e-mail: volkov@issp.ac.ru
** Max-Planck Institut für Festkörperforshung, 70569 Stuttgart, Germany

Received March 10, 2000

The luminescence spectra of GaAs/AlGaAs quantum wells (QWs) with low-density quasi-two-dimensional
electron and hole channels were studied. It was demonstrated that, at temperatures below some critical value
(Tc ~ 30 K) and for an excitation power lying in a certain temperature-dependent range, two metastable charge
states with two-dimensional charge densities differing in both magnitude and sign can occur in the system under
the same conditions. The obtained experimental data agree well with the mathematical model allowing for the
transfer of photoexcited carriers to the barrier followed by their tunneling into QW. © 2000 MAIK “Nauka/Inter-
periodica”.

PACS numbers: 73.20.Dx; 33.50.Dq; 78.66.-w
1. Quantum wells (QWs) GaAs/AlGaAs with low-
density quasi-two-dimensional (2D) electron and hole
channels under photoexcitation are of interest because
they allow one to trace the carrier concentration transi-
tion from the Fermi system of interacting particles to a
system of noninteracting exciton complexes (trions)
localized in the Coulomb field of distant impurities [1].
To change the concentration in such systems, one ordi-
narily uses additional illumination by photons with
energy higher than the band gap of the barrier material
(AlGaAs) [2]. In this work, we have found that under-
barrier excitation (with photon energy lower than the
band gap of AlGaAs but higher than that of GaAs) can
induce not only dramatic changes in the carrier concen-
tration in QW but also a change in the carrier sign.
Moreover, two metastable charge states exhibiting hys-
teretic behavior upon changing the excitation power
can occur in a certain range of temperatures and photo-
excitation power densities. We have shown that this phe-
nomenon is of a fundamental nature and is associated
with the photoinduced charge transfer in the barrier.

2. We investigated an undoped GaAs QW with
Al0.3Ga0.7As barriers grown by molecular-beam epitaxy
on an undoped GaAs substrate according to the follow-
ing scheme: a 1000-Å-wide GaAs buffer layer; an
undoped GaAs–AlGaAs superlattice (30 Å–100 Å)
with a total thickness of 10 400 Å; a 300-Å AlGaAs
barrier; a 200-Å GaAs QW; a 900-Å AlGaAs barrier;
and a 100-Å GaAs protective layer. The system was
photoexcited by a Ti : sapphire laser with photon
energy of 1.61 eV through an optical window in a cry-
ostat or through an 0.8-mm-diameter waveguide. A
Ramanor U-1000 double monochromator was used as
a spectral instrument, which, in conjunction with a
0021-3640/00/7108- $20.00 © 20322
semiconductor charge-coupled detector, provided a
resolution of 0.03 meV. Measurements were made over
the temperature range 1.5–40 K.

3. Figure 1a shows the luminescence spectrum mea-
sured at a temperature of 3 K and an excitation power
density of 50 mW/cm2. It consists of two major lines
corresponding to the free exciton (X) and the exciton
complex (trion). The Zeeman-splitting [2] and zero-
magnetic-field optical-orientation (see below) studies
allowed the second line to be unambiguously assigned
to the emission of a negatively charged exciton com-
plex (X–). This implies that the QW contains a low-den-
sity (~1010 cm–2) 2D electronic system due to electron
tunneling into the QW from the residual donor impuri-
ties in the barrier. It turned out that the spectrum shape,
although independent of the excitation power over a
wide range, changed jumpwise upon an increase in the
excitation power density above 270 mW/cm2; the
changes persisted upon the subsequent decrease in the
excitation power back to its initial level. The spectrum
measured under the same conditions as the spectrum in
Fig. 1a, although for this new metastable state of the
system, is shown in Fig. 1b. To establish the cause of
such a dramatic change in the spectrum shape, we used
the optical orientation method consisting of measuring
the degree of circular polarization of the spectral lines
upon excitation by circularly polarized light [2]. The
difference in the luminescence spectra measured by
this method for two polarizations is shown in Fig. 1 by
the dashed lines. The essence of the method is that, due
to the strong spin–orbit coupling, the photoexcited
holes undergo rapid spin relaxation, so that a detectable
degree of spin orientation is retained only for the pho-
toexcited electrons. One can see from Fig. 1a that the
000 MAIK “Nauka/Interperiodica”
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Fig. 1. (a, b) Luminescence spectra (solid lines) and the differences between the spectra measured for two circular polarizations
(dashed lines). The spectra are obtained under the same conditions for the two charge states in the bistability region at temperature
3 K. (a) Electronic 2D system obtained upon excitation by light of below-critical intensity. (b) Hole 2D system obtained upon a short-
duration increase in the excitation power above the critical value. (c) Normalized luminescence spectra measured at different exci-
tation densities at temperature 17 K. The solid and dashed lines correspond to the spectra measured upon an increase and a decrease
in the excitation power, respectively.
X– line is not polarized, because the spins of the two
electrons are oppositely aligned in the X– singlet, so
that its Zeeman components only differ in the hole spin
projections. At the same time, the line observed in the
same position in the spectrum of another metastable
state is strongly polarized. This signifies that it corre-
sponds to the recombination of a complex containing a
single electron, i.e., X+. This conclusion is also sup-
ported by studying the Zeeman splitting of the X+ line
in a magnetic field [2]. Therefore, at excitation densi-
ties below a certain critical value, the 2D system can
exist, depending on the system prehistory, in two differ-
ent charge states corresponding to the electron and hole
channels and realized under the same conditions.

At temperatures below 15 K, the reverse transition
from the hole (Fig. 1b) to the electronic (Fig. 1a) state is
possible only after switching off the light excitation for a
long time (several hours) or upon laser illumination with
a photon energy higher than the band gap of AlGaAs.
However, the situation changes at T > 15 K. The transi-
tion from the electronic to the hole state again occurs at
a certain excitation power density W2, while the reverse
transition occurs at a power density W1 < W2. As an
example, Fig. 1c displays the luminescence spectra mea-
sured at temperature 17 K and different values of excita-
tion density in the regimes of its increase (solid lines)
and decrease (dashed lines). One can see that the spec-
JETP LETTERS      Vol. 71      No. 8      2000
trum exhibits hysteretic behavior upon varying the exci-
tation power in the range W1 < W < W2 (for the indicated
temperature, W1 = 0.53 W/cm2 and W2 = 4.6 W/cm2).
The boundary values W1 and W2 of the bistability
region depend on the temperature. This dependence
(phase diagram) is shown in Fig. 2. The AC curve cor-
responds to the measured W2 values; and the BC curve,
to the W1 values. The inset in Fig. 2 demonstrates the
method of measuring the W1 and W2 values. In the inset,
the ratio of the excitonic (X) emission line intensity to
the excitation power W is presented as a function of W,
measured under the same conditions as the spectra
shown in Fig. 1c. Since the increase in the carrier con-
centration gives rise to screening of the Coulomb inter-
action and, hence, to exciton dissociation, the IX/W
ratio is closely related to the concentration of the 2D
carriers [1]. The range of existence of the bistability
manifests itself in the hysteresis of the IX/W function of
W, while the W1 and W2 values bound the hysteresis
loop upon a decrease and an increase in W, respectively
(see Fig. 2). The bistability range narrows upon a fur-
ther increase in temperature. At the critical point C cor-
responding to the temperature Tc = 33 K, the bistability
disappears. At T > Tc, the spectrum and, hence, the con-
centration of 2D carriers, smoothly change with the
photoexcitation power.
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4. The observed changes in the concentration of 2D
carriers upon photoexcitation can be caused solely by
their redistribution in the sample. We checked experi-
mentally that, upon illumination of the whole sample
area, the transitions between the charge states occur
uniformly over the whole surface of the sample. This
suggests that a change in the carrier concentration in

Fig. 2. Phase diagram. The bistability region is bounded by
the ACB curve, on which the transitions between the charge
states occur. The dependence of photocurrent on the con-
centration of 2D carriers in the QW and the corresponding
photocurrent values (dashed lines) in different regions of
phase diagram are also shown. The ratio of the exciton (X)
emission line intensity to the excitation power W, measured
as a function of W at temperature 17 K, is shown in the inset.
The W1 and W2 values bound the hysteresis range upon a
decrease and an increase in W, respectively.
the QW is caused by charge redistribution among the
QW and the barrier. Let us consider a typical structure
of a QW with the 2D electron channel and the adjacent
barrier (Fig. 3a; for simplicity, only the conduction
band profile is shown). The quantum well shown at the
left of Fig. 3a contains the 2D electron-density channel
ne formed by virtue of the carriers transferred from the
donors distributed with density Nd in the barrier. One
can see from Fig. 3a that the electrons in the barrier
conduction band are driven by the electric field arising
from the charge redistribution, thus creating the current
j = enµ%, where n is the electron concentration, µ is the
electron mobility, and % is the electric field. One can
propose several mechanisms of carrier transfer from the
QW to the barrier upon excitation by photons with
energy lower than the band gap of the barrier material.
These may be, e.g., electron–hole recombination
umklapp processes in the QW or inelastic light scatter-
ing by the QW carriers and their transition to the
strongly excited state. Leaving aside the question of a
particular phototransfer mechanism, we focus on what
further happens to the charge carriers. Clearly, the total
current j(0) flowing from the QW into the barrier
through the well boundary (x = 0) must be equal to the
current of the reverse carrier tunneling into the well, jt,
integrated across the whole barrier width. It is this con-
dition which determines the steady-state electron con-
centration ne in the well. At low temperatures in the
absence of photoexcitation, the under-barrier tunneling
has an extremely small amplitude, because the electron
wave function exponentially decays in the barrier even
at distances of several tens of Å. Under these condi-
tions, the electrons transferred into the barrier can be
left there for a very long time [3]. In our experiments,
Fig. 3. (a) Schematic representation of current flow in the barrier upon photoexcitation. The photoexcited-carrier current j flowing
into the barrier is compensated by the current jt due to the reverse under-barrier tunneling. The tunnel current is proportional to the
effective density D(ϕ) of final states, shown at the left by the dashed line. At the bottom, the dashed line indicates the carrier con-
centration n in the barrier. (b) The photoexcited-carrier current as a function of the concentration of 2D electrons in the QW, calcu-
lated for α = 0.7. (c) The dimensionless photoexcited-carrier current normalized to α vs. the concentration of 2D carriers in the QW,
calculated for different α values.

ne/n0

ne/n0
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this results in long relaxation times of transition from
the hole to the electronic state at low (< 15 K) temper-
atures in the absence of photoexcitation. At the same
time, it is known that thermodynamic equilibrium in
the sample under light excitation is established in times
on the order of a fraction of a second [4]. The time of
the photoinduced switching from the electronic to the
hole state turned out to be of the same order. In this
case, a different tunneling mechanism becomes opera-
tive, viz., a hopping conduction through the in-gap
impurity states. Both the accidental dopant atoms (Si)
in AlGaAs and the configuration defects [5] that are
invariably present in the alloy can serve as impurities.
The excited impurity states with large-radius wave
functions are the most active in the tunneling process.
Because of this, the tunnel current increases with the
excitation power or the temperature [6]. As the barrier
width increases, the tunnel current decreases in inverse
proportion to the width because of a mere increase in
the number of impurities involved in the process. In
addition, the tunnel current is proportional to the den-
sity of final states in the QW, i.e., to the density of size-
quantization subbands. Inasmuch as the subband ener-
gies in a well of width W with infinitely high walls are
equal to ϕn = E0n2, where E0 = (π"/W)2/2m, the density-
of-final-state factor can be represented in the dimen-
sionless form as D(ϕn) = ϕ0/(ϕn + 1 – ϕn), i.e., D(ϕ) =

(2  + 1)–1. Therefore, the tunnel current per unit
barrier width can be represented as jt = enσD(ϕ)/x,
where σ is the barrier “penetrability” dependent on the
excitation power and the temperature. The j, %, and ϕ
quantities are related to each other by the following
equations: j' = –jt; %' = –4πe(Nd – n); and ϕ' = –%. The
boundary conditions have the form j(0) = J; %(0) =
4πene; ϕ(0) = Eb; and %(L) = 0, where Eb is the potential
barrier height for the carriers, J is the total current of
photoexcited particles, and L is the barrier width
(Fig. 3a). Let us pass to the dimensionless quantities by
substituting x/L  x; j · L/(eµEbNd)  i; %L/Eb 
e; and ϕ /Eb  ϕ and introducing the dimensionless
parameters α = σL/µEb; β = NdL/nx; and γ = Eb/E0,
where nx = Eb/4πeL. The set of equations in the dimen-
sionless variables has the form

(1)

where f(ϕ) = (2  + 1)–1 if ϕ ≥ 0 and f(ϕ) = 0 if ϕ < 0.
The boundary conditions are i(0) = I; e(0) = ne/nx;
ϕ(0) = 1; and e(1) = 0. The system of Eqs. (1) has a
physically meaningful solution at 0 < ne ≤ n0, where

n0 = nx  is the equilibrium concentration in the
absence of illumination, when ne = n0, I = 0, and ϕ(1) =
0. Hereafter, the barrier is assumed to be “wide,” such
that β > 2. The solutions at ne < n0 correspond to the
nonzero photocurrent I > 0 and can only be numerically

ϕ /E0

i'
α
x
--- i

e
-- f ϕ( ), e'– β 1 i

e
--– 

  , ϕ'– e,–= = =

γϕ

2β
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obtained. We have solved the system of Eqs. (1) with a
set of parameters close to those of the examined sam-
ple: W = 200 Å, L = 10 000 Å, Nd = 6 × 1014 cm–3, and
Eb = 250 MeV, so that n0 = 1.3 × 1010 cm–2, β = 43.4,
and γ = 17.9. The result for α = 0.7 is shown in Fig. 3a.
One can distinguish between two domains in the poten-
tial profile shown in Fig. 3a for ne = 0.71n0. In the first
one, 0 < x < ne/Nd, the carrier density (shown by the
dashed curve at the bottom) is small. In the second
domain, ne/Nd < x < L, it is close to Nd, and % ≈ 0 and
ϕ ≈ ϕL = const. Since the tunnel current mainly flows
from the second domain, the I(ne) dependence is prima-
rily determined by the density-of-states factor D(ϕL)
(shown by the dashed line at the left in Fig. 3a). This
gives rise to a peak in the I(ne) dependence in the vicin-
ity of n0 (Fig. 3b). The resulting ascending portion of
the I(ne) curve forms the bistability region. If the exci-
tation power density is such that I1 < I < I2, the system
can occur in three different charge states n1 < n2 < n3
(Fig. 3b), with only n1 and n3 being stable. The I(ne)
dependence is primarily governed by the α parameter.
As it increases, the stepped n(x) profile is blurred,
resulting in the disappearance of the bistability region
in the I(ne) dependence at α > αc ≈ 5. The set of solu-
tions I(ne) obtained for different α values is presented
in Fig. 3c. Conversely, a decrease in α brings about
peak sharpening. In the α  0 limit, one arrives at a
θ-function-like n(x) profile and a solution of the form

I(ne) = α ln((β/2)1/2(n0/n))/(2(γ(1 – n2/ ))1/2 + 1). A
change in the β parameter weakly affects the I(ne)
dependence, while the γ parameter determines the peak
height and, correspondingly, the bistability range.

A comparison of the model described above with
our experimental results brings up two questions. First,
it was found that not only the carrier concentrations but
also the carrier signs changed in the experiment. A
plausible explanation may be that the QW is confined
by two barriers grown using different technologies. For
simplicity, we omitted from consideration the barrier
grown over the QW, because it is more than an order of
magnitude thinner than the barrier on the substrate side.
However, the impurities in this barrier create an addi-
tional carrier concentration (which may even be of the
opposite sign) in the well, thereby shifting the I(ne)
curve along the ne-axis. Second, the calculated range of
I(ne) bistability (I2/I1 in Fig. 3b) is tangibly narrower
than the experimentally observed W2/W1 ratio (Fig. 2)
up to a temperature of 25 K, while at temperatures
lower than 15 K W1, it defies measurement at all. The
reason is that the decrease in the excitation power gives
rise not only to a linear decrease in the photoinduced
current I but also to a decrease in the barrier penetrabil-
ity σ. Insofar as the hopping conductivity through the
impurities in the barrier has a photo- and thermally acti-
vated nature, σ and, hence, α also linearly depend on
the excitation power W over a certain range. For this

n0
2
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reason, one can escape the I/α bistability region
(Fig. 3c) only upon saturation of the linear σ(W) depen-
dence. The lower limit σ(W) for the saturation corre-
sponds to the barrier penetrability in the absence of
photoexcitation. At low temperatures, this quantity is
exceedingly small, while the characteristic times for
establishing equilibrium in the system are long. This
renders the W1 value practically unmeasurable in a rea-
sonable time. At the same time, the barrier dark pene-
trability increases with temperature and the linear por-
tion of the σ(W) curve narrows. With a rise in tempera-
ture, the σ value increases by itself at a fixed excitation
power, resulting in an increase in W1 and W2 (Fig. 2).
The α parameter also increases in proportion to σ. This
is accompanied by the narrowing of the bistability
range at a fixed excitation power; and the bistability
fully disappears at α = αc, which corresponds to the C
point in the phase diagram (Fig. 2). To illustrate the
interrelation between the phase diagram and the form
of the I(ne) dependence, the corresponding I(ne) func-
tions are shown in Fig. 2 in different regions of the
phase plane and the I values are denoted by the dashed
lines. Curiously, the resulting phase diagram resembles
the liquid–gas phase diagram, while the I(ne) depen-
dence resembles the Van der Waals isotherm.
5. We are grateful to V.B. Timofeev for helpful dis-
cussions. This work was supported by the Russian
Foundation for Basic Research and by the program
“Physics of Solid-State Nanostructures.”
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Theory of Vortex Lattice Effects on STM Spectra 
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The theory of scanning tunneling spectroscopy of low-energy quasiparticle (QP) states in vortex lattices of
d-wave superconductors is developed taking account of the effects caused by an extremely large extension of
QP wavefunctions in the nodal directions and the band structure in the QP spectrum. The oscillatory structures
in STM spectra, which correspond to van Hove singularities, are analyzed. Theoretical calculations carried out
for finite temperatures and scattering rates are compared with recent experimental data for high-Tc cuprates. ©
2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 74.20.-z; 74.25.Jb; 74.60.-w; 74.72.-h
1 The electronic structure of the mixed state in d-wave
superconductors reveals a number of fundamentally
new features (see [1–9] and references therein), as
compared to the case of s-wave compounds, where
low-lying quasiparticle (QP) states are bound to the
vortex core and weakly perturbed by the presence of
neighboring vortices at magnetic fields H ! Hc2. The
vanishing pair potential in the nodal directions results
in the extremely large extension of QP wavefunctions,
which are sensitive to the superfluid velocity (Vs) fields
of all vortices; and, thus, the electronic structure is
influenced by the vortex lattice geometry. The resulting
peculiarities of the local density of states (DOS) can be
detected, e.g., by a scanning tunneling microscope
(STM). In this paper, we focus on the theory of scan-
ning tunneling spectroscopy of low-energy QP states in
vortex lattices of d-wave superconductors and compare
the theoretical calculations with recent experimental
data [10, 11] for high-Tc cuprates, where the dominat-
ing order parameter is believed to be of d-wave symme-
try. Hereafter, we assume the Fermi surface (FS) to be
two-dimensional (2D) and take the gap function in the

form ∆k = 2∆0kxky/  (the x-axis makes an angle of π/4
with the a axis of the CuO2 planes). Let us orient H along
the c axis (Hc1 ! H ! Hc2) and consider two types of vor-
tex lattices: (I) rectangular lattice with primitive transla-
tions a1 = ax0 and a2 = σay0 and (II) centered rectangular
lattice with a1 = ax0 and a2 = a(x0/2 – σy0), where Hσa2 =
φ0 is the flux quantum and x0, y0, and z0 are the unit vec-
tors of the coordinate system.

Van Hove singularities. Our consideration is based
on the analysis of the Bogolubov–de Gennes (BdG)
equations for low-energy excitations with momenta

1 This article was submitted by the author in English.

kF
2

0021-3640/00/7108- $20.00 © 20327
close to a certain gap node direction (e.g., k1 = kFx0):

(  + )  = ε , where  = (u, v) is the QP wave-

function;  = VF  + V∆ ;  and  are the

Pauli matrices;  = MVFVsx(1 + ) + MV∆Vsy ; M

is the electron effective mass;  = –i"∇  – eA/c; VF =
"kF/M; V∆ = 2∆0/("kF); H = –Hz0; A = Hyx0; and Vs =

(Vsx , Vsy). The spectrum of the Dirac Hamiltonian 
can be obtained using the usual quantization rule for a
cyclotron orbit (CO) area [4, 5]. The periodic potential

 removes the degeneracy of the discrete energy lev-
els with respect to the CO center and induces a band
structure in the spectrum [3, 6–8]. The general solution
can be written in the form of a magnetic Bloch wave:

(1)

where n is an integer and q is the quasi-momentum
lying within the first magnetic Brillouin zone (MBZ):
−π/(2a) < qx < π/(2a), –π/(2σa) < qy < π/(2σa). The

wavefunction (y, q) is localized in the domain with
the size L determined by q and energy values. The

potential  results in the splitting of the CO near the
MBZ boundaries (see Fig. 1), and the spectrum consists
of branches which correspond to the split portions of
the CO. For large Dirac cone anisotropy α = VF/V∆ @ 1

(α = kFξ0/2) and ε < 0.5ε* (ε* = π"VF/a ~ ∆0 ),
the harmonics in Eq. (1) do not overlap (L < 2σa) and

one can replace  by the potential  averaged in

Ĥ0 H'ˆ ĝ ĝ ĝ

Ĥ0 σ̂z p̂x σ̂x p̂y σ̂x σ̂z

H'ˆ σ̂z σ̂x

p̂

Ĥ0

H'ˆ

ĝ ix qx 2πn a⁄+( ) 2inσqya+{ }exp
n

∑=

× Ĝ y 2nσa– q,( ),

Ĝ

H'ˆ

H Hc2⁄

H'ˆ H'ˆ〈 〉 x
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the x direction (see [3]). Such a simplification is a nat-
ural consequence of the small size of the cyclotron orbit
(CO1 in Fig. 1) in the nodal direction, as compared to
the size of the MBZ. The energy spectrum consists of
branches εn(qx = πQ/a) = ε*En(Q, σα), which are dis-
played in Fig. 2 in the first MBZ for πσα = 50 and
πσα = 100. The number of energy branches which
cross the Fermi level can be determined as follows: N ~

2 /δq|| ~ 2 , where  is the minimum possi-
ble size of the CO in the q|| direction and δq|| is the dis-
tance between MBZ boundaries. Each energy branch
has an extremum as a function of the momentum qx

near the MBZ boundary at a certain  (here we neglect
additional extrema which appear due to the exponen-
tially small splitting of energy levels near the points of
intersection of the branches in the E–Q plane). Due to
the one-dimensional (1D) nature of the low-energy
spectrum, the divergent contributions to the DOS take
the form δN(ε) ~ |ε – |–1/2 (ε >  for energy minima

and ε <  for maxima). The distance between these
peaks δε ~ ε*/(2σα) coincides with a characteristic
energy scale corresponding to the van Hove singulari-
ties, which occur when the CO intersects MBZ bound-
aries in the qy direction (see Fig. 1). The crossover
between 1D and 2D regimes in the band spectrum
occurs at εc ~ 0.5ε*, when the CO size in the q⊥  direc-
tion becomes larger than the size of the first MBZ (CO2
in Fig. 1). For ε * εc, the qy-dependence of energy
becomes essential and results in the appearance of 2D
critical points, i.e., 2D local maxima (or minima) and
saddle points. Thus, instead of square-root van Hove sin-
gularities, we obtain a set of discontinuities and logarith-
mic features (δN(ε) ~ – ) in the DOS, respec-
tively. Obviously, these 2D singularities are more sensi-
tive to temperature and finite-lifetime effects and,
consequently, the suppression of the corresponding
oscillatory structure in the DOS should be stronger in
the high-energy regime. The above analysis can be
generalized for gap nodes at k = ±kFy0; the corre-
sponding energy scales take the form δε ~ 0.5ε*/α and
εc ~ 0.5ε*/σ.

q||* πσα q||*

ε̃n

ε̃n ε̃n

ε̃n

1 ε ε̃n⁄–ln

Fig. 1. Cyclotron orbits (CO1, CO2) and MBZ boundaries
for a square lattice. (q||, q⊥ ) defines a coordinate system
whose origin is at the node, with q⊥  (q||) normal (tangential)
to the FS.
Even in the low-energy regime, the DOS oscilla-
tions with the energy scale δε are surely smeared due to
a finite scattering rate Γ and temperature and can be
observed only for a moderate Dirac cone anisotropy
and rather large magnetic fields. Comparing our results
with a numerical solution [7] of the BdG equations for
σ = 1 and α = 5/2, we find that the above mechanism
gives a good estimate of the energy scale of the double-
peak structure in the tunneling conductance at the core
center at H/Hc2 = 0.3 (δε ~ 0.1∆0) and can explain the
absence of this structure at low fields H/Hc2 = 0.05 by
temperature broadening (T = 0.1Tc > δε ~ 0.05∆0). In
principle, the van Hove singularities may account for
peaks with the large energy gap ~∆0 /4 observed
experimentally at the vortex centers in YBaCuO [10]
at H . 6 T, provided we assume α ~ 1. Unfortunately,
the latter assumption is not consistent with the results
of thermal conductivity measurements [12] (α ~ 14);
and, thus, the nature of the experimentally observed
peaks is still unclear. It is also necessary to stress here
that the critical points in the DOS are a direct conse-
quence of perfect periodicity, so that the introduction of
rather strong disorder surely removes these singularities.

Zero-bias conductance. Hereafter, we neglect the
DOS oscillations discussed above and consider the
peculiarities of the zero-bias tunneling conductance
g(r) starting with a modified semiclassical model pro-
posed in [3]. According to this approach, the Doppler
shift of the QP energy, which plays an important role

for ε & ∆0 , appears to be averaged in the nodal
direction due to the extremely large size of a semiclas-
sical wave packet in this energy interval. Within such an
approximation, a diagonal (retarded) Green function
can be written in the form

(2)

where ek is the normal-state electron dispersion and
Vav = 〈Vs〉x + 〈Vs〉y. The scattering rate Γ should be deter-
mined self-consistently: Γ = N(Γ, ε)/2NFτ (Born limit)
and Γ = NFΓu/N(Γ, ε) (unitary limit), where 2τ and NF are
the relaxation time and DOS at the Fermi level in the nor-

H Hc2⁄

G
R k ε r, ,( )

ε iΓ "kFVav– ek+ +

ε iΓ "kFVav–+( )2 ∆k
2

– ek
2

–
----------------------------------------------------------------------,=

Fig. 2. Energy branches for (a) πσα = 50 and (b) πσα = 100.
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Fig. 3. Contour plots of the functions (a) F1 and (b) F2, which determine the spatial variation of the zero-bias tunneling conductance
for a square lattice (x' = x/a, y' = y/a).
mal state; Γu = nimp/πNF; nimp is the concentration of point

potential scatterers; and N(Γ, ε) = –Im d2k/(2π3) is

the local DOS. Let us first consider the effect of finite
temperature on the zero-bias conductance in the clean
limit (Γ  0). The expression for the normalized con-
ductance reads

(3)

Here, gN is the normal-state conductance, Φx = Φ(x/Rx),
Φy = Φ(y/Ry), Φ(z) = 2z – (2m + 1) for m < z < m + 1 (m
is an integer), Ry (Rx) is the distance between the lines
parallel to the x(y)-axis and passing through the vortex
centers,  = π"VFHRx/φ0, and  = π"VFσ/Ry. For
type I (II) lattices we have Rx = a and Ry = σa (Rx = a/2,
Ry = σa). One can separate two qualitatively different
regimes in the behavior of the conductance:

(i) Superflow-dominated regime T ! ,

(4)

(ii) Temperature-dominated regime T @ ,

(5)

where F1(x, y) = |Φx |(Rx/Ry) + |Φy | and F2(x, y) =

(Rx/Ry)2 + . In Fig. 3, we display the contour
plots of the functions F1(x, y) and F2(x, y) for a square
lattice of type I (which is close to the one observed
experimentally in YBaCuO [10]). There are two conse-
quences of an increase in temperature: (i) First, the spa-
tial dimensions of peaks in the local DOS become
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rather small, compared to the intervortex distance, only

for T > T* ~ ∆0 . (ii) Second, the amplitude of
the peaks proves to be essentially suppressed in the
limit T @ T*. For magnetic fields H ~ 6 T (which is typ-
ically the field of STM experiments [10, 11]), one
obtains T* ~ 20 K. Thus, we conclude that the finite-
temperature effects can explain neither the narrow
zero-bias conductance peaks observed in YBaCuO nor
the absence of these peaks in BiSrCaCuO at T = 4.2 K.
To explain these experimental facts, it is necessary to
take account of the finite-lifetime effects, which can
strongly influence the behavior of the DOS, as follows
from the results of [13–15] obtained on the basis of the
usual semiclassical approach with a local Doppler shift.
Starting with the modified semiclassical model (2), we
obtain the following expression for the tunneling con-
ductance at T = 0:

(6)

Obviously, Born scatterers result only in a moderate
change in the DOS (see [13]), since the corresponding Γ
value for ∆0τ @ 1 is very small compared to  and the
conductance is given by Eq. (4). In contrast, in the uni-
tary limit, Eq. (4) is valid only in the clean case Γu !

 ~ 0.1 /∆0 (for a square lattice  ~ 0.1∆0H/Hc2).

In the dirty limit Γu @ , we obtain

(7)

where (H = 0) . 0.5 . In the vicinity of each
vortex center, the local DOS exhibits a fourfold sym-
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metry with maxima along the nodal directions, in good
agreement with numerical calculations based on the
Eilenberger theory [16]. For H = 6 T, the finite-lifetime
effects become substantial if we assume Γu * 10–2∆0.
Thus, our approach allows one to explain the rather nar-
row conductance peaks (see Fig. 3b) observed near vor-
tex centers in YBaCuO [10], even without taking
account of the nontrivial structure of the tunneling
matrix element discussed in [15]. With a further increase
in the Γu value, the amplitude of the peaks at the vortex

centers vanishes: δ  ~ (H/Hc2). Such a high

sensitivity of the δ  value to the finite-lifetime effects
can probably explain the difficulties in the observation
of these peaks in the mixed state of BiSrCaCuO [11].
Note in conclusion that, according to Eq. (7), the spa-
tially averaged DOS in the dirty limit varies as H rather
than HlnH (the latter dependence was predicted in
[13, 14] within the semiclassical approach allowing for
the local Vs value).
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A novel phenomenon of photon hole-current drag in hole semiconductors was observed for the first time. The
effect was observed in p-Ge and consisted in the appearance of a difference in refractive indices for light prop-
agating along an electric current and in the opposite direction. The effect was observed at a wavelength of
10.6 µm. It can be explained in terms of virtual intersubband transitions of hot holes. © 2000 MAIK
“Nauka/Interperiodica”.

PACS numbers: 72.40.+w
According to Onsager’s principle of microscopic
reversibility, in crystals with an inversion center [1],

(1)

where χ is the wavenumber and ω is the light fre-
quency.

Therefore, the expansion of the dielectric constant
tensor contains only even powers of χ, so that a change
in the direction of light propagation does not change the
refractive index. Electric field or current j breaks the
symmetry of a system, leading to the appearance of lin-
ear terms in the expansion of e in powers of χ:

(2)

In other words, the current in a semiconductor gives rise
to a current-direction-dependent increment ∆e(j, c) in
the dielectric constant.

A change in the real part of the dielectric constant
results in a change in the refractive index, i.e., the light
velocity in a crystal. Therefore, an electric current
induces a “photon drag.”

A light electron drag (current-induced change in the
refractive index of a crystal) was observed for n-InAs in
[2]. The authors of that work attributed this effect to a
Fresnel light electron drag, which appears in semicon-
ductors as a result of the relativistic velocity summation
in a system where light propagates through a moving
medium. The phenomenological theory of Fresnel light
drag was developed in [2] with allowance made for the
Doppler effect. This drag effect was presented as the
first solid-state relativistic effect produced by slowly
moving electrons.

The drag effect in electron semiconductors was
explored in a number of theoretical works [3–5]. In
these works, the results obtained in [2] were explained
by the fact that the directed electron motion introduces
asymmetry into the process of momentum redistribu-

e c ω,( ) e c ω,–( ),=

eik c( ) eik 0( ) Biklm jlχm.+=
0021-3640/00/7108- $20.00 © 20331
tion among the electron and photon subsystems. A lin-
ear response of an electron gas with an isotropic disper-
sion law to the perturbation introduced by an electro-
magnetic wave was considered, and it was shown that
this effect arises because of the nonparabolic form of
the conduction band. It was theoretically demonstrated
in [6] that, owing to the more complicated structure of
the valence band, as compared to the conduction band,
the photon-drag effect in p-type semiconductors may
be 4–6 orders of magnitude more pronounced than the
electron effect observed in [2]. This result becomes
understandable when comparing the effect under dis-
cussion with the charge-carrier light drag effect, which
is most pronounced in p-type semiconductors [7]. Both
these phenomena have a common microscopic mecha-
nism of momentum redistribution between the hole and
photon subsystems. The use of a simplified theory for
obtaining a lower estimate for the magnitude of the
effect allowed the following expression to be derived
for the linear contribution of current j to the real part of
the dielectric constant [6]:

(3)

where γ, γ1, and k are the Luttinger parameters of the
isotropic approximation and m0 is the free-electron
mass. Since ∆e is small, the corresponding change in
the refractive index is ∆n = ∆e/2n.

Model of the phenomenon. Let us invoke the opti-
cal intersubband hole transitions to qualitatively
explain how the photon hole-current drag effect arises.
It may be assumed that, owing to the Kramers–Kronig
relation, the hole-controlled refractive index of a hole
semiconductor in the infrared region of the spectrum is
due to virtual intersubband hole transitions (Fig. 1).
The overall effect is obtained by summing up all possi-

∆e j c,( ) 4πe

ω3m0

------------- c j⋅( ) 6γ
γ1 2γ–
----------------- 14

5
------γ k+ 

  ,=
000 MAIK “Nauka/Interperiodica”



 

332

        

VOROB’EV 

 

et al

 

.

                                                                                   
Fig. 1. Schematic representation of the light hole-current
drag effect in diamond-like semiconductors. The dotted line
indicates subband filling in the absence of current, and the
dashed line illustrates the asymmetric distribution function
in the presence of current.

Fig. 2. Method of measuring the linear contribution of an
electric field to the refractive index. (1, 1') Two identical Ge
samples; (2, 2') nontransmitting mirrors; (3, 3') semitrans-
parent mirrors; and (4) phase-shifting plate made from
BaF2.

Fig. 3. Plot of the linear contribution to the refractive index
of p-Ge vs. current density. The points are for the experi-
ment, and the dashed straight line is the linear extrapolation
from the weak-field region. The solid line corresponds to the
lower estimate made by Eq. (3) for the magnitude of the
effect. Temperature T = 80 K; the hole concentration is Nh =

1.2 × 1015 cm–3; the sample length along the light direction
is L = 13 mm; and E||v∂p|| [111].
ble transitions with regard to the hole momentum dis-
tribution.

With allowance made for the light wave vector, the
intersubband transitions are nonvertical and occur, for
the same photon energy, from the different initial
energy states of holes with opposite wave-vector direc-
tions: k1 ≠ k2 (Fig. 1). In the absence of a current, the
total transition probabilities are identical for both direc-
tions, because the distribution function is symmetric. In
the presence of hole drift, the hole distribution in k
space becomes asymmetric and the transition probabil-
ities for the photons with wave vectors c and −c
become different, so that, owing to the Kramers– Kro-
nig relation, the term depending linearly on the hole-
current vector j and the light wave vector c appears in
the expression for the refractive index n: ∆n ∝  (j · c).

Experimental results and discussion. A hole-type
germanium was chosen as a model p-type semiconduc-
tor suitable for investigation. In strong electric fields,
germanium exhibits a quadratic electrooptical Kerr
effect [8]. To eliminate the influence of the quadratic
electric-field corrections to the refractive index and
other side effects on the experimental results, the con-
figuration of the experiment was that shown in Fig. 2.

Two identical p-Ge samples were placed in each
arm of a two-beam Mach–Zehnder interferometer. The
samples were connected in such a way that the current
and light directions were parallel in one of them and
antiparallel in the other. The current pulse duration was
equal to 0.2 ms. Therefore, the change ∆n in the refrac-
tive index induces a phase shift between the waves
passed through the different interferometer arms:

(4)

A CO2 laser was used as a radiation source (λ =
10.6 µm). The intensity of polarized radiation passed
through the interferometer was proportional to
cos2(δ/2). To improve the sensitivity of the method, the
operating point (initial phase shift) was chosen at the
steepest portion of the characteristic by turning a trans-
parent phase plate placed in one of the interferometer
arms. An attendant and effect-masking radiation-inten-
sity modulation caused by an electric-field-induced
change in the intersubband absorption was allowed for
by the supplementary measurements of transmittances
in each of the interferometer channels.

A linear part of the experimentally measured change
in refractive index is displayed in Fig. 3 as a function of
the current density. The results of a simplified calcula-
tion by Eq. (3) yielding a lower estimate for the magni-
tude of the effect are presented for comparison in the
same figure.

Only qualitative agreement between the calculation
and experiment is observed. In our opinion, such is the
case because the theory [6] used a number of simplified
assumptions. Among these was the high-frequency
approximation, according to which the energy of hot

δ 4πL
λ

----------∆n.=
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holes was ignored, as compared to the photon energy
hν, and the denominators of the %1 – %2 ± hν type (%1

and %2 are the energies of heavy and light holes, respec-
tively) were replaced by the photon energy hν. This
assumption works poorly in weak fields and not at all in
strong fields. This is likely the reason why the magni-
tude of the effect increases with field superlinearly in
the current. The superlinearity should also arise
because of the nonparabolicity of the light-hole sub-
band, which was ignored in the calculation [6].

Although photon hole-current drag was investigated
in this work for hole-type germanium, it is clear that the
mechanism described above is common to the majority
of p-type semiconductors.
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The conductivities of hybrid NS structures of the intermediate state of type I Pb and Sn superconductors with
large electron elastic mean free path were studied at helium temperatures. With changing temperature and crit-
ical magnetic field, the resistances of singly connected samples of these metals in the indicated state oscillate
with a period corresponding to a change of a single quantum hc/2e in the magnetic flux inside the normal region
of an area on the order of 1 µm2. The proposed quantum-interference scattering mechanism explains the nature
and characteristic features of these oscillations. © 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 72.15.-v; 74.80.Fp
Most of the experimental evidence for the occur-
rence of a quantum-interference contribution of coher-
ent electrons to the kinetic properties of normal metals
has been obtained for systems with weak electron
localization, when coherent transport is only a small
correction to diffusional transport (in mesoscopic sam-
ples with small electron elastic mean free path). Under
these conditions, the oscillatory phenomena in a mag-
netic field can only be observed for samples with dou-
bly connected geometry which allows the separation of
coherent transport [1, 2]. In a hybrid “normal metal–
type I superconductor” system (NS system), the contri-
bution of the coherent excitations to the normal con-
ductivity dominates on the distance scale on the order
of a ballistic path from the NS boundary, irrespective of
the system size, its connectivity, and, generally, the
electron mean free path; due to Andreev reflection, the
spectrum of coherent excitations is always resolved on
this scale. If the scattering from elastic centers domi-
nates and the metal is sufficiently pure, the scale
becomes macroscopic. Studies of such systems have
revealed an unusual behavior of the normal conductiv-
ity [3, 4], in line with the fundamental predictions about
the specific features of coherent-excitation scattering in
the vicinity of the NS boundaries [5–7]. This work pre-
sents new experimental data on these features. Studies
of intermediate-state NS structures of singly connected
type I superconductors with large electron elastic mean
free path lel revealed resistance quantum oscillations of
a type similar to the Aharonov–Bohm effect.

The temperature-dependent resistances of Pb
plates and Sn constriction were studied. The interme-
diate state was maintained by applying a weak exter-
nal transverse magnetic field Be to the plates and by a
self-current field BI in the constriction. The Pb plate sizes
were x × y × z = L × w × t = 3 mm × (0.23–1.5) mm ×
0021-3640/00/7108- $20.00 © 20334
(≈20 µm), with a separation of Lm ≈ 250 µm between
the measuring probes in the middle part of the sam-
ples. Be = [0,0,480 G], [0,0,550 G], and [0,0,–520 G].
The tin constriction was t ≈ 20 µm in diameter and
L ≈ 50 µm in length, with Lm ≈ 100 µm. At the con-
striction surface, BI ≈ 100 G at I ≈ 1 A. The samples
are schematically represented in Figs. 1 and 2. The
bulk elastic mean free path in the workpieces from
which the samples were fabricated was lel ~ 100 µm.
It virtually did not change in the Pb plates and
decreased by approximately an order of magnitude in
the Sn constriction (the estimates were made with
allowance for the size and magnetoresistive effects).

The deviation ∆U of the potential difference from its
mean (monotonic) value  was taken into account

only in the temperature range where (∆U)max/
exceeded the total measurement error δm = δU/U + δΣ
by no less than an order of magnitude. δU/U and δΣ are
the relative measurement errors, respectively, for the
bias voltage and all other attendant parameters: temper-
ature, currents, and external magnetic field. This condi-
tion was confidently satisfied below ca. 3 K for the
plates and 3.5 K for the constriction at a  resolution
of up to the δU = (10–11–10–12) V level [8]. For instance,
in the Pb plate for which the results are presented,
(∆U)max/  = 2%, δm ≈ 0.2% (≈δU/U > δΣ ≈ 0.03%),

 = 5.87 × 10–8 V at 3 K and (∆U)max/  = 200%, δm ≈
10% (≈δU/U @ δΣ), and  = 3.24 × 10–10 V at 2 K; I =

1 A. For the Sn constriction, (∆U)max/  = 0.1%, δm ≈
0.03% (≈δU/U = δΣ ≈ 0.01%),  = 4.3402 × 10–6 V at

3.5 K and ∆U/ = 1%, δm ≈ 0.1% (≈δΣ @ δU/U ≈

U

U

U

U

U U

U

U

U

U
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0.01%), and  = 4.0029 × 10–6 V at 2 K; I = 1 A. One

can see that (∆U)max/  ≥ 10δm in the respective tem-
perature ranges.

The typical features of the resistance R of the Pb
plates are demonstrated in Fig. 1, where the tempera-
ture derivative of R is shown for one of the plates (w =
0.23 mm). The temperature dependence of the resis-
tance of the Sn constriction is shown in Fig. 2. It fol-
lows from these graphs that the resistances of the sam-
ples oscillate with temperature in the fields maintaining
the intermediate state. The oscillating resistance com-
ponents ∆R ≡ ∆U/I = R –  (hereafter, R-oscillations)
are shown separately in the insets in Fig. 2 for the Sn
constriction and in Fig. 3 for the Pb plate. As is seen,
the oscillation amplitude (∆R)max weakly depends on
the temperature and the external magnetic field
(although the monotonic resistance components vary
over no less than two orders of magnitude). The char-
acter of oscillations in the Pb plate at various Be values
(Fig. 3) is evidence that the oscillation phase φ depends
on the strength and sense of the external magnetic field:
φ480 G is shifted from φ550 G by approximately π, while
φ520 G and φ550 G coincide.

Constructing the critical-field scale for the oscillation
region according to the Bc(T) . Bc(0){1 – [T/Tc(0)]2}
equation (Tc is the superconducting transition critical

temperature, (0) = 803 G, and (0) = 305 G [9]),
one finds that ∆B is constant for any pair of points one
period apart and is equal to the difference in the abso-
lute values of the critical field (see Fig. 3 and the inset
in Fig. 2) for each of the samples. This suggests that the
∆B(Bc) period is a function of the direct, rather than the
reversed, field. The temperature T0 corresponding to the
onset of R-oscillations in the Sn constriction is equal to

the temperature for which (T0) = BI (≈100 G), i.e.,
the temperature of the appearance of the intermediate
state (recall that the conditions for the confident resolu-
tion of the oscillations were fully satisfied for this sam-
ple up to 3.5 K). With Be used for the Pb plate, T0
should lie outside the range of helium temperatures.

The dependence of the magnitude of the effect on
the critical field in the intermediate state, first, provides
direct evidence for the presence of a laminar domain
NS structure and, second, indicates that the mechanism
responsible for the R-oscillations occurs in the normal
areas of domains, where, as is known, the magnetic
field is equal to the superconductor critical field Bc(T)
[10]. The use of the phenomenological theory of super-
conductivity [10, 11] for estimating the number of
domains between the measuring probes brought about
the values of approximately 12 at 3 K and 16 at 1.5 K
for the Pb plate, 1 or 2 for the Sn constriction, and the
value of 15–22 µm for the distance dn between the NS
boundaries in the oscillation region of interest. These
data suggest the lack of any correlation between the

U

U

R
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Pb Bc
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Bc
Sn
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Fig. 1. Temperature derivative of the effective resistance
R = U/I of the intermediate-state Pb plate in external mag-
netic fields of different strengths (curves 2 and 3 are shifted
relative to curve 1).

Fig. 2. Temperature dependence of the effective resistance
of the intermediate-state Sn constriction in a self-current
magnetic field. Inset: hc/2e oscillations of the effective
resistance; arrows indicate 50-G intervals.
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indicated numbers and the number of observed oscilla-
tion periods.

As is known, the direct dependence of the oscilla-
tion phase on the field strength arises when the quanti-
zation is associated with a real-space “geometric” fac-
tor, i.e., with the interference of coherent excitations on
the geometrically specified closed dissipative trajecto-
ries in a magnetic vector-potential field [12, 13]. At dis-
tances on the order of the thermal length λT ≈ "vF/kBT
from the NS boundary, where lel @ λT, those coherent
trajectories on which the elastic-scattering center
(impurity) interacts simultaneously with the coherent e
(usual) and h (Andreev) excitations, are the main type
of dissipative trajectories [5, 6]. It was demonstrated in
[5] that, owing to the doubled probability of the h exci-
tations being scattered by the impurity, the interference
on these trajectories generates the R-oscillations. In the
presence of an electric field alone, neither the impurity
nor the relevant coherent-trajectory size are set off, so
that the oscillations do not arise [6, 7].

Since the e and h trajectories spatially diverge in a
magnetic field, the distance r from the impurity to the
outermost boundary point, from which the particle can

Fig. 3. The hc/2e oscillations of the effective resistance of a
Pb plate in the intermediate state.

Ω

return to the same impurity after the Andreev reflection,
is bounded, according to the simple classical geometric
considerations, by the value

(1)

In Eq. (1), RL is the Larmor radius and q is the parameter
(on the order of a shielding radius) characterizing the
impurity size. For instance, in fields of several hun-
dred Gauss, RL ≈ 1.5 × 10–2 cm and r does not exceed
(1–2) µm at q ≈ (2–5) × 10–8 cm; i.e., ξ0 < r ≤ λT ~ 10–2lel

(lel @ dn, λT; λT ≈ 3 µm). Therefore, for every impurity
with coordinate z, the magnetic field specifies in the
z = const plane a finite region of possible coherent tra-
jectories passing through the impurity and closing two
arbitrary reflection points on the NS boundary between
the two most distant points whose positions are deter-
mined by Eq. (1). After averaging over all impurities,
only a single trajectory (or a group of identical trajecto-
ries) specified by the edge of integration over the quan-
tization area A makes an uncompensated contribution
to the wave-function phase. The integration edge

Aedge =  corresponds to the area bounded by the

trajectory passing through the most efficient (with

) impurity situated at a maximum distance from
the boundary, as allowed by criterion (1). One can eas-
ily verify that, in our samples with lel ≤ 0.1 mm, every
layer of impurity-size thickness parallel to the NS
boundary comprises no less than 103 impurities; i.e.,
the coherent trajectories corresponding to the integra-
tion edge continuously resume upon shifting or the for-
mation of new NS boundaries, so that Aedge is a contin-
uously defined constant accurate to qmax/  ~ 10–4.

According to [2, 4], the wave-function phase for the
excitations with energy E = eU in the field B should
change on a coherent trajectory of length Λ as

(2)

where Φ0 = hc/e = 4.14 × 10–7 G cm2. The first term in
Eq. (2) can be ignored because, in our samples, it does
not exceed 10–5 at U ≤ 10–8 V. One can thus expect that
the interference contribution coming from the elastic-
scattering centers to the conductivity and caused by the
difference in the scattering probabilities for e and h [2]
will oscillate in the range B ≡ Bc(T) – Bc(T0) as
∆Rosccosφ, where

(3)

with the amplitude ∆Rosc depending on the concentra-
tion of the most efficient scattering centers and, hence,
proportional to the total concentration c.

r 2 qRL( )1/2.≈

1
2
--- rqmax

2

qmax
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rqmax

φ φe φh+ 2π 1/π( ) E/"v F( )Λ BA
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------------+ ,= =

φ 2π
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From the ∆BAedge = Φ0/2 condition and ∆B ≈ (45; 50)
G, one obtains r ≈ 1 µm, in accordance with the above
independent estimate. The ratio of the oscillation
amplitudes also conforms to its expected value:

[(∆Rosc)Sn/(∆Rosc)Pb] ~ (cSn/cPb) ~ ( / ) ~ 10. One
can expect that a change in the number of domains in
the plate from 12 to 16 will alter the oscillation ampli-
tude by no more than 40%; i.e., it will only modify the
oscillations but not break the overall periodicity pattern
(Fig. 3). It also follows from Eq. (3) that the number of
periods between the point T0 of oscillation onset and
the arbitrary temperature depends on the Bc(T0) = Be

value. This makes understandable the ratio of phase
oscillations observed for the Pb plate in different fields:
φ550 G – φ480 G ≈ 3π and φ520 G – φ480 G + π ≈ 3π (it is taken
into account that B[520 G] = –B[480 G]).

In conclusion, let us formulate the main results of
the work. The conductivities of hybrid NS structures of
the intermediate state of type I Pb and Sn superconduc-
tors with large electron elastic mean free paths were
experimentally measured. In this state, the resistances
of singly connected samples of the cited metals oscil-
late with changing temperature and critical magnetic
field. The phase and period of R-oscillations are func-
tions of the direct values of this field. The oscillation
period corresponds to a change of a single flux quantum
hc/2e in the magnetic flux inside the region of area on
the order of 1 µm2. The oscillation phase is sensitive to
the sense and strength of an external magnetic field.
The oscillation amplitude weakly depends on tempera-
ture, as opposed to the monotonic component, which
varies over several orders of magnitude. The proposed
quantum-interference mechanism of scattering by elas-
tic centers explains the nature and the above-mentioned
features observed for the resistance oscillations. The

lel
Pb lel

Sn
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mechanism is based on the criterion for spatial con-
straints on the interaction of coherent excitations with
the elastic-scattering centers in magnetic field.

I am grateful to D. Rainer and A. Kadigrobov for
fruitful discussions of the theoretical aspects of the
work.
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Overlap Integral for Quantum Skyrmions1
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Making use of the method of spin coherent states, we obtained an analytical form of the overlap integral for
quantum skyrmions. © 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 75.10.Jm; 03.65.Sq
1 Skyrmions are general static solutions of 2D
Heisenberg ferromagnets obtained by Belavin and
Polyakov [1] from the classical nonlinear sigma model.
A renewed interest in these unconventional spin tex-
tures is stimulated by the high-Tc problem in doped
quasi-2D cuprates and the quantum Hall effect.

The spin distribution within classical skyrmions of
topological charge q = 1 is given as follows:

(1)

In terms of the stereographic variables, a skyrmion with
radius λ and phase ϕ0 centered at a point z0 is identified
with spin distribution w(z) = Λ(z – z0), where z = x + iy =
reiϕ is a point in the complex plane Λ = λeiθ and is char-
acterized by three modes: translational z0-mode, “rota-
tional” θ-mode, and “dilatational” λ-mode. Each of
them relates to a certain symmetry of the classical skyr-
mion configuration. For instance, θ-mode corresponds
to a combination of rotational symmetry and internal
U(1) transformation.

The simplest wave function of the spin system,
which corresponds to a classical skyrmion, is a product
of spin coherent states [2]. In the case of spin s = 1/2,

(2)

where θi = arccos(  – λ2)/(  + λ2). Coherent state
implies a maximum equivalence to the classical state
with minimal uncertainty of spin components. In this
connection, we should note that such a state was used

1 This article was submitted by the authors in English.
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in [3] by Schliemann and Mertens, where an expression
for the square variance of the Heisenberg Hamiltonian
was obtained.

Classical skyrmions with different phases and radii
have equal energy. Nevertheless, the stationary state of
a quantum skyrmion of topological charge q = 1 is not
a superposition of states with different phases and radii
[4] but has a certain distinct value of λ.

In this paper [5], we consider some features of the
quasiparticle behavior for the quantum skyrmion. First
of all, it implies the calculation of the overlap and
“resonance” integrals S12 = 〈Ψsk(R1)|Ψsk(R2)〉, H12 =

〈Ψsk(R1)| |Ψsk(R2)〉 .
As a helpful illustration to the calculation of the

overlap integral for quantum topological defects, it is
worth presenting some known results concerning the
overlap of vortices in a 2D superconducting condensate
[6]. Phenomenologically, such vortices were described
as pointlike quasiparticles moving under the action of
the transverse Magnus force. The coherent state of a
vortex with a center in R0 was taken in the form [6]

(3)

where ρ0 is the density of the 2D condensate, l = (2πρ0)−1/2

is the average distance between particles in the conden-
sate, and z is unit vector normal to the plane of the con-
densate. The overlap integral for two coherent states is
then easily calculated as

(4)

where

Ĥ

Ψsk R0( )| 〉 1
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--------------
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--------------------–
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It contains a Gaussian factor reflecting the localization
of the coherent state and also a specific phase factor ∆12,
being the area of a sector the topological defect covers
while moving in the plane. This factor originates from
the phase factor in function (3), typical for a charged
particle moving in a magnetic field or, in general, for a
particle which experiences the Magnus force. The cor-
rect form of such a Magnus force for an out-of-plane

magnetic vortex with the topological charge  (“half-

skyrmion”) was derived by Nikiforov and Sonin [7],
the Magnus force acting on the classical skyrmion
being simply twice as large [8].

As is seen, Eq. (4) reflects two common features of
the overlap integral for the topological defects in a 2D
system, namely, the Gaussian dependence on R12 and
the presence of the Berry phase. One should note that
in a recent paper by Thang [9], it is shown that wave
function (3) does not provide a correct description of
the transition to the infinite system, when the overlap
integral turns to zero. Nevertheless, Eqs. (3) and (4) for
the wave function and overlap integral allow one to elu-
cidate many generic features of the corresponding
quantities for the topological defects.

To reveal some features of the quantum quasiparti-
cle behavior for skyrmions, we consider the overlap
integral for a simple quantum state, like (2), of spin sys-

tem with skyrmion λ/(z – R1) at the point R1 = |R1|
with the state λ/(z – R2), which corresponds to the skyr-
mion shifted to an arbitrary distance

into the point R2 = |R2| . The overlap of the single
spin coherent states characterized by two different
points in the complex plane ς and µ is [2]

(5)

Thus, the overlap integral for the skyrmion states is
given by

(6)
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It should be noted that for displacements R ≥ 2λ in the
continuous complex plane the overlap integral turns to
zero, since in this case there exist two such points for
which the initial and the final spin states are orthogonal.
For example, in the case of R1 = 0, R2 = R, where R is

real, 1 + λ2/z(z – R) = 0 when z = R/2 ± .
However, the overlap of the skyrmion on the lattice
turns to zero only at certain values of R, which form a
certain discrete set of values. In particular, for the dis-
placement along the direction of the elementary vector
of the lattice, the overlap is identically zero at the points
R = (λ2 + k2)/k given integer k.

To consider the skyrmions of large radius, we turn
the sum in the exponent of Eq. (6) into an integral. The
quantity c/λ for large skyrmions is small and we virtu-
ally need to keep the terms of zero order in c/λ, with c
being the lattice constant. Spin density, that is, the num-
ber of spins in the unit cell of the plane, is simply 1/c2.
Theory will be invariant with respect to the scale trans-
formations, that is, to the variations of c and simulta-
neous equivalent variations of λ and R. In addition, we
consider the size L of the system to be much larger than
the skyrmion size and virtually keep only the terms of
zero order in λ/L. To this end, we may merely set L = ∞.
Thus, the result is

(7)

where

(8)

In order to perform the angular integration in A(r, R1, R2),
we introduce the complex variable z = e+iϕ, so that

(9)

where the integration is taken on a circle of unit radius.
This integral turns out to be nonzero due to the pole in
z = 0 and the nonanaliticity area associated with the
existence of a cut in the space of values of the complex
logarithm when its argument is negative. While cross-
ing the axis of negative values of the argument the
phase jumps from –π to π. In the plane of z nonanalitic-
ity, the area is the curve given by the equation
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For R > 2, there exists an interval of r values for which
the end of the cut lies on the border of the unit circle,
resulting in a purely imaginary contribution to the inte-

Im λ2 r2 R1R2 rR1z 1– rR2z––+ +( ) 0,=

Re λ2 r2 R1R2 rR1z 1– rR2z––+ +( ) 0.<
gral A(r, R1, R2). The range of r in which this occurs is
given by the interval [r1, r2], where

As a result of the existence of the cut, we have the fol-
lowing expression for the integral:
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with f being the phase difference between R1 and .
Similar expressions exist for A(r, R1, R1) and A(r, R2, R2).
With allowance made for the obvious identity

and integration in Eq. (7), we finally obtain for the
overlap integral

(10)

if R12 < 2λ or

(11)

if R12 > 2λ. As above in Eq. (3), here ∆12 is the area of the
sector the skyrmion covers while moving in the plane.
Having wandered along a closed contour on the plane,
the skyrmion acquires the phase 4πS(∆12/c2); that is, the
skyrmion accumulates a phase of 4πS for every spin it
encircles. Thus, its quantum motion looks like that of
either a charged particle with unit charge in a uniform
magnetic field of strength 4π"S/c2 [10] or a particle
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which experiences the transverse Magnus force [b × v],
where b = 4π"Sz/c2 and v is velocity, so that the corre-
sponding length scale is (4πS/c2)–1/2, which is similar to
the magnetic length. This is the same Magnus force that
acts on the classical skyrmion [8] and that is simply
twice as large as the one acting on the out-of-plane mag-

netic vortex with the topological charge  (“half-skyr-

mion”) [7].
One should note the specific dependence of the

overlap integral on the spin-site density (1/c2) and the
number of spin deviations (2S), similar to the density
dependence in Eq. (3).

When R  ∞, the R-dependence of the overlap
integral obeys the power law

The expressions for the overlap of skyrmions were
obtained in a continuous approximation, which is gen-
erally not correct in the vicinity of those values of dis-
placements R12 > 2λ at which the overlap of the distinct
spin states is zero. Nonetheless, direct numerical calcu-
lation for sufficiently large 2D lattices shows that the
logarithm of the skyrmion overlap integral is “almost
everywhere” satisfactorily described by the continuous
Eq. (11), except for a discrete set of R12 values in which
the logarithm goes to –∞.

We considered throughout the overlap of the skyr-
mions with equal λ, that is, with equal global phases
and radii. It is easy to see that the skyrmion states with

different λ and phases are orthogonal:  ∝  δλλ’δϕϕ ',
which agrees with the “conservation law” for the quan-
tity λ and phase in the skyrmion [4].

In conclusion, we used a simplified form for the
quantum skyrmion wave function to obtain the analyti-
cal expression for the appropriate overlap integral
whose form confirms the known statement [7, 8, 10]
that the skyrmion moves like a particle in a uniform

1
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magnetic field or a particle which experiences the Mag-
nus force. We hope that making use of a more realistic
wave function will keep the principal features of the
result derived above.

We would like to thank G. Volovik and J. Schlie-
mann for helpful comments and N. Mikushina for use-
ful collaboration.
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Band structure in the conductivity of 4-barrier Nb/Al–AlOx–Al–AlOx–Al–AlOx–Al–AlOx–Nb (SINININIS)
tunnel junctions is observed at low temperatures. This structure is explained in terms of the interference of qua-
siparticle waves in a periodic barrier. © 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 74.50.+r; 74.80.Dm; 71.20.-b
1 Until recently, it was thought that the phase-coher-
ent effects between the external S electrodes are negli-
gibly small at nonzero voltage in SINIS-type junctions
(here, N is either a normal metal or a superconductor
with an energy gap ∆N considerably smaller than that in
S; I is an insulator) not having high-transparency barri-
ers [1]. Later, it was shown experimentally and theoret-
ically that such effects may be observed in the current–
voltage characteristics (CVC) of SINIS junctions due
to the interference of quasiparticle waves which are
Andreev- and normally reflected at the tunnel barriers
[2, 3]. However, the coherent effects observed so far in
the CVC of double-barrier junctions consisting of a
metallic thin-film N electrode manifest themselves
either as a zero-voltage supercurrent enhancement [2]
or as an increase in the conductivity at nonzero voltages
[3]. At the same time, the minima in the conductivity
were reported for mesoscopic S–Sm–S junctions in the
subgap voltage region (here Sm denotes a doped semi-
conductor) [4] and, very recently, in the conductivity of
HTSC-based junctions [5].

In this letter, we present experimental data showing
that coherent coupling exists between S electrodes in
multibarrier SINININIS junctions involving low-Tc

superconductors. As a result, a band structure in the
conductivity appears, with minima nearly periodically
positioned in voltage.

We have fabricated and investigated 4-barrier
Nb/Al–AlOx–Al–AlOx–Al–AlOx–Al–AlOx–Nb junc-
tions. We used the fabrication procedure that is now
standard for Nb/Al–AlOx–Al–AlOx–Nb junctions, but
included a slight deliberate contamination of part of the
internal Al layers by oxygen [6]. The thickness of the
external Nb electrodes was approximately 100 nm,
whereas the thickness of the Al layers was 7 nm. The

1 This article was submitted by the authors in English.
0021-3640/00/7108- $20.00 © 20342
junctions were patterned in a two-terminal configuration,
so that the CVC could be measured only between the
bottom and top S electrodes. The CVCs of a 10 × 10-µm
device (sample 1) measured at T = 4.2 K and T = 1.8 K
are shown in Fig. 1 (curves a and b, respectively). The
overall shape of the curves is similar to that of a
SIN-junction; i.e., the current rise begins at a voltage
V = ∆Nb/e and not at the voltage V = 2∆Nb/e (here, ∆Nb

is the superconducting energy gap of Nb), as might
intuitively be expected. We also observed this behavior
in SINIS junctions involving a thick middle N layer
(with the thickness dN exceeding the electron mean free
path). The nature of this feature will be considered else-
where. Here we only note that the shape of the CVC
does not correspond to the simple series connection of
the junctions that are involved in the system; i.e., the
SINININIS system behaves like a single junction of a
new type.

The CVC measured at T = 4.2 K is smooth, while
that measured at T = 1.8 K reveals steplike features
accompanied by voltage “jumps.” The features are
nearly periodically spaced at a voltage of V . 1.2 mV
and persist up to V ≈ 6 mV, which is higher than the gap
sum voltage (even if a reasonable gap ∆Al ≈ 0.2 meV is
assigned to the Al N-layers [6]). The first feature
appears near zero voltage as a high-conductivity resis-
tive branch (see Fig. 1). This nearly periodical structure
will be referred to as the band structure.

The band structure can be more clearly seen from
the first derivative dI/dV(V) of the CVC (see Fig. 2).
The derivative was numerically calculated from a
branch of the CVC recorded for increasing current (at
T = 1.8 K) for a sample 2 identical to sample 1 (cf.
Fig. 1). One can see that, below the deep minima, there
are maxima in the conductivity. This is evidence that
the features appear in the density of electronic states;
000 MAIK “Nauka/Interperiodica”
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Fig. 1. Typical CVC of the Nb/Al–AlOx–Al–AlOx–Al–
AlOx–Al–AlOx–Nb junction (sample 1) at a, T = 4.2 K and
b, T = 1.8 K.
JETP LETTERS      Vol. 71      No. 8      2000
Fig. 2. First derivative dI/dV(V) of the CVC measured for
the 4-barrier junction (sample 2) at T = 1.8 K. The derivative
was numerically calculated from the branch of the CVC
recorded for increasing current.
Fig. 3. Initial part of the CVC of sample 2 at T = 1.8 K show-
ing two features (A and B). Currents I1 and I2 denote the
onset of the forward and backward voltage “jumps,” respec-
tively, for feature A. The inset shows the field dependence of
currents I1 and I2 (solid and open circles, respectively).
Fig. 4. Initial part of the CVC of sample 2 at T = 1.8 K in
parallel applied magnetic field H = 95 G. Two additional
features (C and D) are displayed (cf. Fig. 3).
i.e., some states are displaced from the minigaps to the
maxima.

The new features are sensitive to a parallel applied
magnetic field. They are significantly smeared at a field
of H ~ 300 G. The voltage and the current at the posi-
tions of the voltage “jumps” also depend on the mag-
netic field. Figure 3 shows two of the features: A (at
V ≈ 2 mV) and B (at V ≈ 1.2 mV) on an expanded scale
for sample 2. Currents I1 and I2 denote the onset of the
forward and backward voltage “jumps,” respectively,
associated with feature A. The inset in Fig. 3 shows
field dependences of the currents I1 and I2, which have
a minimum at H = 0 and resemble the field dependence
of the height of the Fiske steps in ordinary SIS Joseph-
son junctions [7]. This dependence is typical of the fea-
tures under consideration. In fact, the magnetic field
shifts the band structure along the V axis, so that, at
some value of H, a new feature (C) appears at a low
voltage V ≈ 1 mV (see Fig. 4). Also, the resistive branch
D near zero voltage is clearly seen. This resistive
branch is often masked by the Josephson current in the
absence of an applied magnetic field (cf. Fig. 3).

Sensitivity to a weak magnetic field is strong evi-
dence that the effect is related to the phase-coherent
current. On first sight, it may be taken for the Tomash
or Rowell–MacMillan effect [8–10]. However, these
effects should be ruled out as possible explanations of
the observed band structure due to the following major
reasons: (i) We fabricated and measured many double-
barrier SINIS devices with the same geometry of the S
and N electrodes, but the effect was not present for such
junctions. Therefore, it is apparently associated with
the multiple-barrier structures. (ii) Both the Tomash
and Rowell–McMillan effects produce oscillations of
the junction conductance above the gap energy ∆S of
the S electrode and the conductance peaks due to bound
states below that energy (the last statement is for the
Rowell–McMillan effect only, because the Tomash
oscillations are not present at the subgap energy).
Unlike these effects, we observe a band structure that is
a sequence of narrow conductivity hollows rather than
peaks or nearly harmonic oscillations and has essen-
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tially the same shape both below and above the ∆S
energy.

We suppose that the band structure is due to coher-
ent transport between the external S electrodes through
the INININI barrier and suggest the following interpre-
tation of the new effect. It is known that a band struc-
ture may appear in the conductivity of systems involv-
ing a periodic potential [11]. In practical normal-
metal–insulator multilayers, this structure, to our
knowledge, has not been observed experimentally so
far. Probably, this is due to the fact that it is difficult to
fabricate homogeneous multilayers with very thin (a
few atomic planes) films and perfect (on the atomic
scale) interfaces to satisfy the interference conditions
for the very short wavelength λN ~ 1/pF of the normal
electrons (here, pF is the Fermi momentum). In
SINI…NIS structure with a not too low transparency of
the insulating barriers, there is a finite probability of
Andreev reflection at the SIN and NIS interfaces. For
Andreev reflection, one may introduce a wavelength
λs . 2π/qs with qs = pe – ph ! pF (where pe and ph are
the quasielectron and quasihole momenta, respectively)
[2] The value of λs is of the order of the coherence
length in the superconductor, ξ, and is much longer
than the wavelength of normal electrons. Therefore,
quasiparticle interference is possible in N films with a
thickness of order ξ. This condition is satisfied in our
experiments. For similar SINIS devices, we have
observed coherent effects that may be associated with
quasiparticle interference [3]. It is important (for the
case described in [3] and the case considered here) that
the tunnel barriers in the system are of “intermediate”
strength, so that both Andreev and normal reflections
take place. These two types of reflections give rise to
constructive interference effects that may increase the
conductivity of the devices at certain energies. How-
ever, even for a simple SINIS case, the electron spec-
trum of the system strongly depends on the particular
setup and, in general, cannot be derived analytically.
The situation is more complicated for a multiple
INI..NI barrier. Numerical calculations for the INININI
barrier were carried out recently by Shafranjuk [12]. It
was found that the interference in this case may be
destructive [12] and result in a band structure similar to
that observed in our experiment. An optical analogue of
this phenomenon may be found in stacks of alternating
layers of semitransparent metal films and a dielectric
material, where photonic band gaps were recently
observed in transmittance [13].

The authors acknowledge stimulating discussions
with J.M. Rowell and S.E. Shafranjuk. This research
was supported by the Office of Naval Research (grant
N00014-00-1-0025) and the Northwestern Materials
Research Center under the National Science Founda-
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The phase diagram of a bilayer heterostructure at integer filling factors was established using the hidden sym-
metry method. Three phases, namely, ferromagnetic, canted antiferromagnetic (CAP), and spin-singlet, were
found. We confirm early results of Das Sarma et al. Each phase violates the SU(4) hidden symmetry and is sta-
bilized by anisotropy interactions. A charged excitation in the bilayer, i.e., a skyrmion, was found and its aniso-
tropic energy gap was calculated. The gap has a prominent minimum in the CAP. © 2000 MAIK “Nauka/Inter-
periodica”.

PACS numbers: 75.70.Cn; 75.10.-b
1 Integer filling factors ν of the Landau level (LL) in
heterostructure 2D electron gas (2DEG) are of special
interest. Here, the ground state is nondegenerate and
the Hartree–Fock approximation (HFA) can be applied
with the accuracy limited only by a small ratio of the
Coulomb interaction energy to the energy of cyclotron
resonance. The ground state of a single layer at ν = 1 is
a ferromagnet with the elementary excitations being
spin excitons or spin waves. These are gapless [1] in the
exchange approximation and do not interact with each
other for vanishing momenta [2]. Both are conse-
quences of exact symmetry under spin rotation. In [3],
a special spin texture in a 2DEG ferromagnet, the skyr-
mion [4], was predicted as an elementary charged exci-
tation. The energy of a neutral skyrmion–antiskyrmion
pair is just a half of the spin exciton energy.

In a bilayer 2DEG, the HFA applies only in two
cases. The first one corresponds to well-separated lay-
ers, which is a common setup in the experiment [5, 6].
Here, one starts from two single-layer ferromagnets
and makes a perturbation expansion in powers of inter-
layer interactions [7]. The second one is the symmetric
case, where the bilayer Hamiltonian is invariant under
SU(4) rotations in both layer and spin spaces. Here, all
symmetry-breaking fields, like the Zeeman, must be
negligible. The first attempt in this direction dealt with
the case ν = 1 and spin-polarized electrons [8, 9].
Recent works [10, 11] that specialize to the bilayer case
ν = 2 employ the HFA and predict three distinct phases:
ferromagnetic, CAP, and a spin-singlet phase. Our
approach is similar to that of [11], but we show explic-
itly that the HFA is exact in the SU(4) symmetric
bilayer. Anisotropy terms reduce the symmetry to
SU(2) ⊕  SU(2) and lift the eigenstate degeneracy. But

1 This article was submitted by the authors in English.
0021-3640/00/7108- $20.00 © 20345
there are no Fermi-liquid type renormalizations of the
anisotropy Hamiltonian due to the symmetric Hamilto-
nian. We prove the stability of all phases with respect to
long-range spatial perturbations. Our work was moti-
vated by recent measurement of the diagonal conduc-
tivity activation energy in a bilayer [6], which we iden-
tify with the energy gap of a topological excitation, the
skyrmion, in an SU(4) Sigma model. The skyrmion’s
energy gap calculated in this letter has a profound min-
imum in the CAP, in line with the findings of [6].

The Hamiltonian of a 2DEG in a confining potential
V(r) and in an external magnetic field N has the form

(1)

where κ is the dielectric constant, α, β = ± are spin indi-
ces, and thereafter a sum over repeated indices is
implied. We use the " = 1, e = c, and H = B = 1 units and
the distances are expressed in terms of the magnetic

length lH =  = 1. We split r into a coordinate ξ
perpendicular to the layer and two in-plane coordinates
r = (z, ) and assume the confining potential to be uni-
form over the plane V(r) = V(ξ), with the two wells being
separated by a distance d. Two eigenfunctions, the low-
est-energy symmetric and the lowest-energy antisymmet-
ric, can be rotated into χ1, 2(ξ) eigenfunctions localized in
one layer. We expand the electron operator in terms of
these two eigenfunctions, ψα(r) = χτ(ξ)φp(r)cατp, where

H ψ∫ α

+
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 and cατp are electron creation and annihilation

operators and φp(z ) is the lowest LL wave function
number p, the index τ = 1, 2 being the layer index. We
assume the case of a sufficiently strong magnetic field
with the cyclotron energy 1/m dominating over the
Coulomb, Zeeman, and the level splitting (t = EA – ES)
energies.

The Coulomb interaction matrix can be projected
onto χ1, 2(ξ):

(2)

We use notations τ0 for the unit matrix; τx, τy, and τz for
the Pauli matrices in the layer space; and σx, σy, and σz

for the Pauli matrices in the spin space. Coulomb
energy (2) is invariant under transformations τ1  τ4,
τ2  τ3, as well as (τ1τ4)  (τ2τ3). Hence, Vµν is a
3 × 3 symmetric matrix with indices µ, ν running over a
set (0, z, x). If there is a symmetry of the Coulomb inter-
action under an exchange of layers, (ξ, ξ')  (–ξ, –ξ')
and 1  2, then it restricts further values of the inter-
action matrix: V0z = 0 and Vzx = 0. We note also that
V0x ~ t, Vxx ~ t2 and we neglect it thereafter, whereas
Vzz ~ d2/ |z |3 as |z |  ∞.

We split total Hamiltonian (1) into two parts. The
first one is invariant under uniform rotations from the
SU(4) Lee group in the combined spin and layer space:

(3)

where (see, e.g., [9])

(4)

Its eigenlevels are hugely degenerate. Given any eigen-
state |Ψ〉0, a set of related eigenstates can be generated
by applying rotations |Ψ〉 = U|Ψ〉0, where U ∈  SU(4).
For ν = 1, 2, 3, we assume that the ground state is uni-
form over p orbitals:

(5)

Wave function (5) is an eigenfunction of Hsym (3). The
second anisotropic part of Hamiltonian (1) is treated

cατp
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like a perturbation:

(6)

Here,

 

 t

 

 is the hopping constant. The electrostatic poten-
tial 

 

µ

 

z

 

, which is the difference between chemical poten-
tials in the two layers, breaks down the symmetry
between the two wells of the 

 

V

 

(

 

ξ

 

) potential. We assume
that the energy of a capacitor formed by the two layers
is much lower than the characteristic Coulomb energy

 

e

 

2
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. The Coulomb energy constants are

(7)

where the last approximation holds for (
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) 

 

≠

 

 (00) in
the limit 

 

d
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.
First, we specialize to the 

 

SU

 

(4)-symmetric part of
the bilayer 2DEG Hamiltonian (3). A weakly nonho-
mogeneous state is generated by a rotation matrix

 c  ατ   = (  t  ,  r  )  c  βτ  '  , which adds a gauge matrix field 
Ω

 

µ

 
 = –

 
iU

 
+

 
∂

 

µ

 
U

 
 in the kinetic energy. An effective low-

energy Goldstone action has an expansion in powers
of 

 

Ω

 

. We calculated this action following [12] step by
step for 

 

ν

 

 = 1, 2, 3 at once:

(8)

where 

 

E

 

1

 

 = 

 

E

 

00

 

/2. The insertion matrices in Eq. (8) are
nonnegative diagonal ones; and they represent the
occupation number for the electron states

(9)

where diagonal blocks are 1 

 

×

 

 1 and 3 

 

×

 

 3 in the case
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 = 1, 3 and 2 

 

×

 

 2 in the case 
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 = 2. It can be proved that
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The matrices 

 

N

 

 and 1 – 

 

N

 

 are projector operators that
allow only physical rotations in Hamiltonian (8) which
do change the ground state. The vector field 

 

Ω

 

µ

 

 can be
expanded in the basis of 15 generators of the 

 

SU

 

(4) Lee
group. We subdivide them into two complementary sets:
the first one includes generators that commute with N,
constitute an algebra itself, and we called it a stabilizer
subgroup S, whereas the remaining physical rotations
constitute a coset 

 

U

 

(4)/

 

U

 

(

 

ν

 

) 

 

⊗

 

 

 

U

 

(4 – 

 

ν

 

) with dimension
8 in the case 

 

ν

 

 = 2 and 6 in the case 

 

ν = 1, 3.
Hamiltonian (8) is invariant under the time reversal

symmetry, which can be chosen as a complex conjugate
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operator U  U*. It follows that Ωµ  . Thus,
the time reversal changes the sign of the trace and the
sign of the magnetic field Bz in the second term of
Eq. (8).

The first term in HG (8) is the gradient energy,
whereas the second term is proportional to the topolog-
ical index of a nonhomogeneous state:

(10)

where Z is the set of integer numbers. The case 4 = ±1
corresponds to the simplest spin skyrmion in the first
layer, being rotated by an SU(4) matrix to become a
general bilayer skyrmion. The energy constant in HG

(8) coincides identically with that of the one-layer case
[12], which means that the bilayer skyrmion energy is
the same as that found for a single layer.

We introduce a local bilayer order parameter Q(r) =
U(r)NU+(r), much like the magnetization in the theory
of magnetism. Rotations from the denominator sub-
group S leave Q intact. The total bilayer Hamiltonian in
terms of this order parameter has the form

(11)

In this representation, the index selection rule (10) is a
consequence of the homotopy group identity. Finally,
we include the direct Coulomb energy of the charge
inside a skyrmion core,

(12)

We can recast the anisotropic part of the bilayer
Hamiltonian (6) in terms of the order parameter matrix
Q as well:

(13)

where 1 is the degree of degeneracy of the LL; τµ acts
on the four-spinor as τµ ⊗  σ0. Eqs. (11)–(13) define the
effective long-range Hamiltonian of a bilayer for inte-
ger ν.

The order parameter can be parametrized by six or
eight angles in the case ν = 1, 3 or ν = 2. Actually, not all
of these rotations correspond to a physically distinct
eigenstate. The total bilayer energy is given by the real
diagonal matrix elements. One generates all real eigen-
states from a reference state by the rotations from the
SO(4) subgroup of the SU(4) group. This group has six
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parameters, with two of them being from the stabilizer.
Thus, only four global rotations change the total
bilayer energy. We start with the case ν = 2 and use a
set of trial many-electron wave functions parame-
trized by the three angles of rotation relevant in our
case, i.e., θ± and ϑ :

(14)

where the ± spin components of the electron are first
rotated by angles θ± in the layer space and then the
spins in the layer 1,2 are rotated by angles ±ϑ . Intro-
ducing Q = URNR+U+ into Eq. (13), we find

(15)

The minimum of this energy corresponds to three
phases: a) ferromagnetic at ϑ  = π/2, θ+ = θ– = 0; b) spin
singlet at ϑ  = 0, θ+ = π – θ– = θ; and c) CAP otherwise,
as is shown in Fig. 1. A line of continuous phase transi-
tions between the ferromagnetic phase and CAP is
given by

(16)

In the spin-singlet phase, the mixing phase θ is deter-
mined by the equation

(17)

A line of continuous phase transition between the spin-
singlet phase and CAP is given parametrically by the
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Fig. 1. Phase diagram in the ν = 2 gate-symmetric case.
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equation

(18)

with θ being determined from Eq. (17). In the case ν =
1, 3, there is only one phase which is ferromagnetic in
both spin and layer spaces.

Next, we find the skyrmion energy. The skyrmion’s
order parameter is given by the Belavin–Polyakov (BP)
solution for |4| = 1 [4]

(19)

with only a single free parameter, the radius of the skyr-
mion core R. We omit the unessential rotation angle
between spin and orbital frames, arbitrary in the
absence of spin–orbit interaction. This Q has to be
rotated by a homogeneous matrix RU (see above) in
order to minimize the anisotropy energy away from the
core. In addition, we allow all homogeneous rotations
W from the stabilizer S that transform the BP skyrmion
solution (19): Q(r) = RUWQBP(z )W+U+R+.

We retain only logarithmically divergent spatial
integrals and numerically calculate the minimum of the
skyrmion anisotropy energy over the seven free param-

eters of matrix W, . Then, we add the direct Cou-
lomb energy (12) and minimize the total skyrmion
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Fig. 2. Total anisotropic anti skyrmion gap energy in the ν =
2 gate-symmetric case.
energy with respect to R:

(20)

In the case of an antiskyrmion 4 = – |4|, the gap con-
sists only of a relatively small anisotropic energy. The
total anisotropic skyrmion gap is shown in Fig. 2 for the
gate-symmetric case µz + E0z = 0. Note that the two
cusplike lines coincide with the two phase-transition
lines in Fig. 1. A skyrmion in the ferromagnetic phase
is a spin skyrmion, with spin rotations being localized
in one layer, whereas a skyrmion in the spin-singlet
phase is a layer skyrmion, with the electron density
being rotated into the other layer.

In the case ν = 1, 3, we find the minimum of skyr-
mion’s energy to be

(21)
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Russian, as well as the editing of manuscripts submit-
ted in English, is performed by the International Aca-
demic Publishing Company (IAPC) “Nauka/Interperi-
odica.”

The total length of any paper should not exceed six
journal pages in the Russian edition. This length
approximately corresponds to 20 KB in LATeX format,
including 1 KB for each figure. You can estimate the
manuscript length more accurately by preparing it
according to an example that is available on the Web
server for the journal (http://kapitza.ras.ru/jour-
nals/jetpl) by using the style file (jetpl.sty) available on
the same server.

Manuscripts may be submitted to the Editorial
Board in the following ways:

(1) Conventional mail to the following address:
Pis’ma Zh. Éksp. Teor. Fiz., ul. Kosygina 2, Moscow,
117334 Russia. The manuscript should be submitted in
duplicate with figures on separate sheets (for half-tone
figures, one additional copy should be submitted).
Please append the e-mail and postal addresses (includ-
ing the postal code), the office and home phone num-
bers, and the complete name and patronymic of the
author to whom correspondence should be addressed.
The authors of English manuscripts should also submit
a floppy disk containing the text in the LATeX format. 

(2) Electronic mail to the e-mail address let-
ters@kapitza.ras.ru. In this case, each figure should be
submitted in the form of an individual file in PostScript
(*.ps), EncapsulatedPostScript (*.eps), or PaintBrush
(*.pcx) formats.

Acceptance or rejection of a paper for publication is
decided by the Editorial Board with a proposal from the
Editorial Board member specialized in the appropriate
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section. A manuscript can be rejected if it is not topical
enough, does not provide considerable development as
compared to other publications in this field, considers a
too specific subject, etc. As a rule, the referee reports on
rejected papers are not sent. The authors may resubmit
a rejected manuscript, appending it with an explanatory
letter. In this case, the manuscript will be put under
additional review.

The Editorial Board sends (or hand delivers if the
authors live in Moscow) five reprints of the papers pub-
lished in the Russian edition. The English version is
sent to the authors in electronic mode by IAPC
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Initials and Surnames of the Authors
Institutions where the authors work, including city

and postal code (the e-mail address 
of one of the authors is desirable)
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Scheme, see Pis’ma Zh. Éksp. Teor. Fiz. 58 (7 and 9),
(1993) [JETP Lett. 58 (7 and 9), (1993)]).

Then, after one empty line, the main text follows.
Because abstracts may now be distributed sepa-

rately from the papers (data bases, online systems,
etc.), the abstract text should be self-contained with no
references or abbreviations but with understandable
notation.

Abbreviations must be given in capital letters with
no points and should be explained as they are first intro-
duced. Footnotes in the main text must be numbered
consecutively in the order of their appearance.

Cited references must be given in a general list at the
end of a manuscript and should be numbered with an
ordinal number (e.g., [1]) consecutively as they are
mentioned in the main text. The reference to a journal
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tials and surnames of the authors, the complete book
title, and year and place of publication (in the case of
translated books, give the information for the original
in parentheses).

Use decimal points instead of commas. Three-vec-
tors and dyadics with no arrow above them must be
underlined with blue pencil.

We recommend that authors preparing figures elec-
tronically adhere to the following rules: prepare figures
in the frame; direct dashes on the axes inside the figure;
when possible, use Arial font; use numerals (including
those on the axes in an insert) and lower case letters
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author for agreement for a span of five days. If the
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no criticisms, he should inform the publisher about his
agreement.
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