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We suggest that supersonic linewidths inferred from recent measurements of magnetic fields toward the core
position in dark interstellar molecular clouds may be due to transverse waves of magnetization propagating in
a poorly ionized, magnetically ordered gas–dust medium composed of tiny ferromagnetic dusty grains sus-
pended in a cold gaseous cloud of molecular hydrogen. © 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 98.38.Dq
1 The physical nature of supersonic OH linewidths
detected in recent Zeeman measurements from dark
molecular clouds [1–3] is the objective of intense cur-
rent debate [4–7] (see also references therein), prima-
rily around the seminal suggestion of Arons and Max
[8] to identify the supersonic velocity dispersion with
the speed of transverse Alfvénic waves in gas–dust
interstellar mediums (ISM). While the assumptions
underlying the hydromagnetic mechanism of wave
motions ((i) the presence of regular magnetic field and
(ii) the perfect conductivity of gas–dust ISM) leave a
little doubt at the conditions typical of the giant molec-
ular clouds and peripheral regions of dark star-forming
clouds well ionized by ultraviolet photons, this may be
quite different in highly obscured inner regions of dark
molecular clouds where the ionizing UV is totally
excluded [9]. In this letter we point out that an alterna-
tive mechanism of large-scale wave motions of ISM
may also be worthy of consideration, particularly in
connection with new measurements of magnetic fields
toward cores in magnetically supported dark interstel-
lar clouds [1]. Specifically, we present arguments that
the supersonic internal velocity dispersion inferred on
the basis of recent data [1, 2] may be due to sub-
Alfvénic transverse waves of magnetization traveling
in poorly ionized gas–dust mediums capable of sustain-
ing, in the presence of a regular magnetic field, the
long-range magnetic ordering.

The physical motivation underlying our consider-
ation is based on the well-known Jones and Spitzer
arguments [10] regarding the existence of gas–dust
interstellar mediums with a highly pronounced prop-
erty of magnetic polarizability, which can be thought of
as a superparamagnetic dispersion of fine ferromag-

1 This article was submitted by the authors in English.
0021-3640/00/7110- $20.00 © 20395
netic grains suspended in a gaseous cloud of molecular
hydrogen. The regular galactic magnetic field threading
such a medium introduces anisotropy in the orientation
of permanently magnetized solid particles tending to
align their magnetic moments. According to [10], the
alignment of magnetic grains can be accompanied by
filamentary agglomeration of dusty particles (presum-
ably by means of dipole–dipole interaction between
magnetic moments of ferrograins) in the form of long-
range magnetic chains extending along the direction of
the regular magnetic field. A similar mechanism of lin-
ear, chainlike magnetic ordering is known in the phys-
ics of superparamagnetic ferrocolloidal suspensions
placed in a uniform magnetic field, which is due to De
Gennes and Pincus [11]. From the standpoint of the
condensed matter physics, the filamentary ordering of
permanently magnetized dusty particles in the presence
of a regular magnetic field can be regarded as an effect
of soft magnetic solidification of gas–dust matter
imparting to gas–dust ISM the magnetoelastic proper-
ties generic to soft materials like uniformly magnetized
ferronematic liquid crystals [12, 13] and magnetically
saturated elastic insulators [14]. Therefore, it is reason-
able to expect that large-scale fluctuations of noncon-
ducting magnetically polarized gas–dust ISM should
manifest magnetomechanical behavior typical of the
above magnetoelastic materials.

Following this line of argument, we consider a
model of a magnetically supported cloud by identifying
the two-component gas–dust intercloud medium with
single-component superparamagnetic soft matter of
equivalent density whose continuum mechanics is
described in terms of the velocity of elastic displace-
ments u(r, t), the bulk density ρ(r, t), and the field of
magnetization m(r, t) (magnetic moment per unit vol-
ume). These three quantities are considered on equal
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footing as independent dynamical variables of dissipa-
tive-free motions governed by coupled equations

(1)

which have been derived in [14] by means of system-
atic application of the conservation laws of the contin-
uum physics. In Eq. (1), d/dt = ∂/∂t + u∇  is the convec-
tive derivative and w(r, t) = (1/2)[∇ ×  u(r, t)] stands for
the vorticity. Notice that for both paramagnets and
superparamagnets the linear constitutive equation
holds [15]: M = χB, where χ is the magnetic suscepti-
bility, essentially a positive dimensionless constant.
The difference is that for superparamagnets this param-
eter is 5–6 orders of magnitude greater than that for
normal paramagnets; that is, for superparamagnets χ ~
0.1–1. The most important point to be stressed regard-
ing the governing equations of magnetoelastodynamics
(1) is that the bulk force originates from interaction
between the magnetic field and the field of magnetiza-
tion which is not direct but is mediated by rotational
deformations of an elastic medium, resulting in preces-
sion motions of the magnetization under which the
direction of m changes but the magnitude does not. To
see that the magnetoelastic bulk force (inherently
related to the body–torque density m × B) provides sta-
ble oscillatory behavior of magnetically polarized gas–
dust mediums, we consider long-wavelength, nonradial
oscillations of a spherical uniformly magnetized cloud.
From electrodynamics of continuous media [16] it is
known that in a homogeneous spherical mass of para-
magnetic matter with constant magnetization M inside,
the internal magnetic field is uniform and is expressed
by the equations B + 2H = 0 and B – H = 4πM, from
which follows

(2)

With above reservations in mind, it would not be incon-
sistent to consider Eq. (2) as a constitutive equation of
a superparamagnetic continuum with χ = 3/8π ≈ 0.1.
The advantage of this model is that it allows one to
avoid uncertainty in the magnitude of χ.

Making use of the standard procedure of lineariza-
tion u  u0 + δu(r, t) and m  m0 + δm(r, t), where
u0 = 0 and m0 = M, we arrive at equations

(3)

(4)

(5)

describing small-amplitude fluctuations of a magneti-
cally saturated, incompressible elastic continuum

dρ
dt
------ ρ∇ u+ 0, ρdu

dt
------ 1

2
--- ∇ m B×[ ] ,×= =

dm
dt

-------- w m×[ ] ,=

B
8π
3

------M.=

∇ δu r t,( ) 0, ∇ δm r t,( ) 0,= =

ρ∂δu r t,( )
∂t

--------------------- 4π
3

------ ∇ δm r t,( ) M×[ ] ,×=

∂δm r t,( )
∂t

----------------------
1
2
--- ∇ δu r t,( )×[ ] M×[ ] ,=
which are not accompanied by the appearance of den-
sity of magnetic poles [right of Eqs. (3)]. In Eq. (4) we
have used Eq. (2). The period of magnetoelastic oscil-
lations can be evaluated on the basis of the energy vari-
ational principle, which is particularly efficient in stud-
ies of long-wavelength nonradial vibrations of spheri-
cal masses of incompressible stellar material
possessing elastic properties. In particular, this method
has been utilized in [17, 18] to compute periods of
Alfvén hydromagnetic vibrations of neutron stars and,
in [19, 20], the periods of their nonradial gravitational
pulsations. The procedure is the following. Scalar mul-
tiplication of Eq. (4) with δu and integration over the
cloud volume lead to the equation of energy balance

(6)

The surface integral has been omitted, since in the outer
region, the superparamagnetic state should be, most
likely, disordered by ambient ionizing ultraviolet radia-
tion. The next step is to represent the velocity of elastic
displacements in the following separable form:

(7)

where x(r) is the field of instantaneous elastic displace-
ments and α(t) is the harmonic in time amplitude. The
expression for fluctuating vorticity in Eq. (7) is a con-
sequence of separable representation of the fluctuating
field of velocity. Inserting Eq. (7) into Eq. (5) and elim-
inating the time derivative, we obtain

(8)

After substituting Eqs. (7) and (8) into Eq. (6), this lat-
ter is reduced to the equation of normal vibrations

(9)

with the inertia M and the stiffness K given by

(10)

Thus, to compute the frequency ω2 = K/M, it is neces-
sary to specify the field of instantaneous displacements
x, which is, as follows from above, of an essentially
rotational character. With this in mind, we consider tor-
sional long-wavelength vibrations around the polar axis
x of a spherical cloud with the constant magnetization
inside pointing in the same direction: M = [Mx = 0,
My = 0, Mz = M]. The kinematics of elastic torsional
deformations of a spherical mass is described in detail
in [19, 20], and we take advantage of the explicit form

t∂
∂ ρδu2

2
------------ Vd∫

=  
8π
3

------ δm M×[ ]δw Vd∫ 8π
3

------ δm2 V .d∫–=

δu r t,( ) x r( )α̇ t( ), δw r t,( )
1
2
--- ∇ x r( )×[ ] α̇ t( ),= =

δm r t,( )
1
2
--- ∇ x r( )×[ ] M×[ ]α t( ).=

dH
dt
------- 0, H

Mα̇2

2
-----------

Kα2

2
---------- M α̇̇ Kα+ + 0,= = =

M ρx2 V , Kd∫ 2π
3

------ ∇ x×[ ] M×[ ]2 V .d∫= =
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for the velocity given in these papers

(11)

Hereafter, PL(µ) stands for the Legendre polynomial of
the multipole degree L. The corresponding field of
instantaneous torsional displacements has the form of
the toroidal vector field

(12)

Inserting Eq. (12) in Eq. (10), we obtain

(13)

and the eigenfrequency is given by

(14)

where ωM is the natural unit of frequency of torsional
magnetomechanical vibrations, so that the correspond-
ing period is evaluated according to tM = 2π/ωM.

Let us consider propagation of plane-wave magne-
toelastic perturbations in the cloud bulk. Substitution
into Eqs. (3)–(5) of the plane-wave form of fluctuating
variables

(15)

with u' and m' being some small constant vectors, after
some algebra, leads to

(16)

The method of obtaining of these equations is very sim-
ilar to that utilized in [12] to derive the dispersion rela-
tionship of magnetotorsion waves in uniformly magne-
tized liquid crystals (see also [13]). By eliminating
(kM) from Eqs. (16), one finds that magnetoelastic
oscillatory motions satisfy the principle of energy equi-
partition

(17)

δu r t,( )
1
2
--- δw r t,( ) r×[ ] ,=

δw r t,( ) Nt∇ rLPL µ( )α̇ t( ),=

Nt
1

RL 1–
------------, µ θ.cos= =

x r( ) Nt∇ rrLPL µ( )[ ] .×=

M 4πρR5 L L 1+( )
2L 1+( ) 2L 3+( )

-----------------------------------------,=

K
8π2

3
--------M2R3 L L 1–( ) L 1+( )2

4L2 1–( )
-----------------------------------------,=

ω2 ωM
2 L2 1–( ) 2L 3+( )

2L 1–( )
---------------------,=

ωM
2 2π

3
------ M2

ρR2
--------- 3

32π
--------- B2

ρR2
---------,= =

δu u' iωt ikr–( ),exp=

δm m' iωt ikr–( ),exp=

ωρδu
4π
3

------ kM( )δm+ 0,=

ωδm
1
2
--- kM( )δu+ 0.=

ρδu2

2
------------

4π
3

------δm2,=
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which states that in a magnetoelastic wave the kinetic
energy of fluctuating elastic displacements equals the
mean potential energy of fluctuating magnetization.
From Eq. (16) it follows that 

(18)

where θ is the angle between k and M. The wave is
transmitted most efficiently when k || M. The disper-
sion relation (18) describes a transverse wave of mag-
netization in which the vectors of magnetization and
velocity undergo coupled oscillations in the plane per-
pendicular to the axis of magnetic anisotropy directed
along M. Both directions M and –M are energetically
equivalent for this wave. On the other hand, oscillatory
motions in a magnetoelastic wave bear a strong resem-
blance to that for the oscillations of incompressible
flow in a perfectly conducting fluid transmitting Alfvén
waves in the presence of a uniform magnetic field.
Thus, magnetoelastodynamics provides consistent
mathematical treatment and physical insight into the
nature of waves capable of propagating in the magneti-
cally saturated nonconducting ISM, which can be
regarded as a counterpart of Alfvén waves in magneto-
active plasma. However, the very existence of hydro-
magnetic waves is attributed to the perfect conductivity
of cosmic dusty plasma, whereas the considered mag-
netoelastic waves owe their existence to the magnetic
polarizability of nonconducting interstellar mediums.

To show that the presented model can provide
proper account of the recent 43-m Green Bank tele-
scope data, reported by Crutcher [1], first, we notice
that from analytic estimate for vM, Eq. (18), it follows
that, at equal B and ρ, the considered wave motions are
sub-Alfvénic: vM ≈ 0.6vA, where vA = B/(4πρ)1/2 is the
speed of Alfvén waves. This prediction is in line with
data summarized in [2]. Taking the bulk density ρ =
n  ≈ 3.9 × 10–21 g/cm3 (where n = 103 cm–3 and 
is the mass of the hydrogen molecule [1]) and the mag-
netic field B = 10 µG [1], one finds that the speed of the
wave of magnetization vM ≈ 0.28 km/s; that is, it
exceeds the isothermal sound speed cs = (kBT/ )1/2 ≈
0.19 km/s at the average intercloud temperature T ≈ 10 K
[1]. So, under conditions typical of inner regions of
dark star-forming molecular clouds, the waves of mag-
netization are, most likely, supersonic. The characteris-
tic time (period) of long-wavelength oscillations of a
magnetic cloud is estimated (in seconds) to be tM =
2π/ωM = 2πR/vM = 22.4 × 10–5R, where R is the cloud
radius. The fact that the above predictions are not
inconsistent with available data (Crutcher et al., 1996;
Crutcher, 1999) suggests that supersonic motions
observed toward the core of dark molecular clouds

ω2 kM( )2

4χρ
---------------- vM

2 k2 θ2 ,cos= =

vM
2 2π

3
------M2

ρ
------- MB

4ρ
---------

3
32π
---------B2

ρ
-----,= = =

µH2
µH2

µH2
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poorly ionized by ultraviolet photons may be due to
wave motions considered here.
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the Korean Research Foundation, grant 1999-015-
DI0021, and (S.B.) from the Asia Pacific Center for
Theoretical Physics.
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Selective molecular IR multiphoton dissociation (SF6 was taken as an example) was studied under the nonequi-
librium conditions of a cold shock wave (pressure shock) formed upon the interaction of a pulsed gas-dynami-
cally cooled molecular flow with a solid surface. An anomalously large gain (by more than an order of magni-
tude) in the product yield (compared to the molecular excitation in an unperturbed flow) with a minor selectivity
loss (less than 25–30%) was observed. © 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 33.80.-b; 42.62.Fi; 82.40.Fp; 82.50.Fv
1. The use of gas-dynamic cooling of molecular jets
and flows [1] for enhancing selectivity of laser-induced
processes, including selective molecular IR multipho-
ton dissociation [2–4], is well known. Strong gas cool-
ing leads to a sharp narrowing of molecular absorption
bands and an ensuing increase in the selectivity of exci-
tation and dissociation processes. However, photo-
chemical processes in jets and flows are inefficient.
Because of low concentration of molecules and low gas
temperature, the rates of chemical reactions, including
those yielding target products, are low. This paper
reports the results of the experiment on studying iso-
tope-selective molecular IR multiphoton dissociation
(SF6 was taken as an example) under the nonequilib-
rium conditions of a cold shock wave (pressure shock)
formed upon the interaction of a pulsed gas-dynami-
cally cooled molecular flow with a solid surface. An
anomalously large increase (by 10–20 times) in the
product yield, as compared to the molecular excitation
in an unperturbed flow, was observed with a minor
selectivity loss.

2. The scheme of the experiment is shown in Fig. 1.
Molecular flow was produced by a pulsed nozzle of the
“current loop” type [5] with a hole diameter of
0.75 mm. The duration of the nozzle-gating pulse was
≅ 100 µs. Gas pressure over the nozzle could be varied
in the range 0.1–3 atm. Two thin metallic strips
attached to the nozzle exit cone formed a molecular
flow [4] in a vacuum chamber evacuated to a pressure
of (1−2) × 10–6 torr. The number of molecules flowing
out of the nozzle in one pulse depended on the pressure
over the nozzle and varied from ≅ 1016 to ≅ 1017 mole-
cules/pulse in the experiments. Mean velocity of the
flow molecules was measured by the time-of-flight
technique [6, 7] and found to be 420 ± 20 m/s.
0021-3640/00/7110- $20.00 © 20399
At a distance of ≅ 50–150 mm from the nozzle, a
solid surface (plates made from KBr or CaF2 crystal)
was installed perpendicularly to the flow. The super-
sonic molecular flow interacted with the surface to pro-
duce a pressure shock (shock wave) ahead of it [8–11]
under the strongly nonuniform, nonstationary, and non-
equilibrium conditions. The characteristic wave front
size (on the order of a molecular mean free path [8, 9])
was equal to 0.2–5 mm in our experiments.

The molecules were excited near the surface at a
distance of ∆x = 1.5–3 mm from it. Laser radiation was
focused into this region by a cylindrical lens with focal
distance of 12 cm. The lens axis was parallel to the sur-
face. The laser beam cross section in the lens focus was
≅ 0.18 × 12 mm.

The molecular dissociation was studied in a normal
shock and in the unperturbed flow (without a surface in
the path of the flow). The experiments consisted of
measuring the intensity of HF* luminescence (λ ≅
2.5 µm) accompanying the SF6 dissociation in the pres-
ence of H2 or CH4, so that it was taken as a measure of
the SF6 dissociation yield [3]. The SF4 product yield
and its enrichment with the 34S isotope were also mea-
sured. The HF* luminescence was recorded on a PbS
IR detector with detecting area 1 × 1 cm. The enrich-
ment factor for SF4 was defined as

where  is the concentration ratio of the
molecules (indicated in brackets) in the SF4 product
and ζ = 34S/32S ≅  0.044 is the percentage ratio of sulfur
isotopes in the initial SF6 gas. The ratio of 34SF4 and
32SF4 concentrations in the product was determined

K34
prod S34 F4[ ] S32 F4[ ]ζ ,⁄=

S34 F4[ ] S32 F4[ ]⁄
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from the IR spectra in the ν6 range (728 cm–1), where
the isotope shift for 32SF4 and 34SF4 is equal to
≅ 12.3 cm–1 [12].

3. The HF* luminescence intensity is shown in
Fig. 2 as a function of the time delay τd between the
nozzle and the TEA CO2 laser pulses for the cases when

Fig. 1. Scheme of experimental setup (the section in the
xz-plane; laser beam is directed along the y-axis). (1) Pulsed
nozzle, (2) laser beam, (3) surface (KBr or CaF2), (4) con-
denser, (5) window, (6) IR detector, and (7) strips forming
molecular flow.

Fig. 2. The HF* luminescence intensity as a function of time
delay τd between the nozzle and the TEA CO2 laser pulses
exciting SF6 in a mixture with CH4 (SF6/CH4 = 10/1) in
(curve 1) the unperturbed flow and (curve 2) the flow inter-
acting with the surface.
SF6 is excited in a mixture with CH4 (SF6/CH4 = 10/1)
in an unperturbed flow (curve 1) and in a flow interact-
ing with the surface (curve 2). The total gas pressure
over the nozzle was 1 atm. The separation between the
nozzle and surface was 51 mm, and ∆x = 2.5 mm. It is
seen that the maximum of the HF* luminescence inten-
sity in the case of SF6 excitation in the flow interacting
with the surface is almost an order of magnitude greater
than in the case of the unperturbed flow. A sharp shock
front appears in the zone of molecular excitation (at a
distance of ∆x = 2.5 mm from the surface) at τd = 370
µs. For smaller distances ∆x between the surface and
the excitation zone, the HF* luminescence emission
peak was observed at smaller time delays τd, while its
intensity increased. For example, the shock front for ∆x
= 1.6 mm was observed at τd = 310 µs, while the HF*
intensity in the shock was approximately 20 times
higher than in the unperturbed flow.

In Fig. 3, the HF* luminescence intensity is shown
as a function of the gas pressure over the nozzle for the
cases when SF6 is excited in a mixture with CH4
(SF6/CH4 = 1/1) in the unperturbed flow (curve 1) and
in the shock (curve 2). The distance from the nozzle to
the surface was 102 mm, and ∆x = 2.5 mm. It is seen
that, over the whole pressure range studied, the HF*
luminescence in the shock is appreciably (more than
20-fold) stronger than in the unperturbed flow.

We also directly measured the yield of the final SF4
product formed upon the excitation of molecules in the
shock and in the unperturbed flow. The measuring tech-
nique was described in [4, 13]. The SF4 yield was mea-
sured for the unperturbed flow at τd = 260 µs and, for
the flow interacting with surface, at τd = 260 and

Fig. 3. The HF* luminescence intensity as a function of gas
pressure over the nozzle for the excitation of SF6 in a mix-
ture with CH4 (SF6/CH4 = 1/1) in (curve 1) the unperturbed
flow and (curve 2) the shock.

(atm)
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370 µs. These time delays corresponded to the maxima
in the time-of-flight spectra (cf. Fig. 2). The distance
from the nozzle to the surface was 51 mm, and ∆x =
2.5 mm. The SF6 pressure over the nozzle was
1.25 atm. It was found that, for the molecules excited in
the flow interacting with surface, the SF4 yield at τd =
260 µs was 2.5 times higher, while, in the shock (at τd =
370 µs), it was approximately 12 times higher than in
the unperturbed flow. Note that similar results were
also obtained for the CF3I molecule. The yield of the
C2F6 product in the shock was approximately 16 times
higher than in the unperturbed flow.

To study the selectivity of the process, the enrich-
ment factor was measured for the 34S isotope in SF4
arising upon SF6 excitation both in the shock and in the
unperturbed flow. The molecules were excited at a fre-
quency of 929 cm–1 [the 10P(36) line of the CO2 laser]
coinciding with the ν3 mode of 34SF6 [14]. At the energy
density of ≅ 12 J/cm2, the enrichment factor was found

to be  = 17 ± 4 for the molecules excited in the

unperturbed flow and  = 14 ± 3 for the molecules
excited in the shock. Therefore, the product yield in the
shock is more than an order of magnitude higher than
in the incident flow, whereas the loss in selectivity is
quite small.

The product yield increases in the shock because of
an increase in (1) gas density, (2) rate of chemical reac-
tion, and (3) dissociation yield. The latter occurs
because (i) the excitation in the shock is more efficient
and (ii) the molecules excited by the IR pulse below the
dissociation threshold and, hence, not dissociating in
the collision-deficient unperturbed flow, undergo colli-
sional dissociation in the shock. The limiting increase
in the gas density in a normal shock is determined by
the formula [8–10] ρ2/ρ1 = (γ + 1)/(γ – 1), where ρ1 and
ρ2 are the gas densities in the incident flow and the
shock, respectively, and γ = cp/cv is the ratio of specific
heats. For SF6, γ ≅  1.1, so that ρ2/ρ1 ≅  21. Note that the
limiting density was not achieved at a distance of ∆x =
2.5 mm from the surface in these experiments (the HF*
emission was more intense at shorter ∆x distances), so
that the increase in the SF4 yield in the shock was likely
caused not only by the increase in the gas density but
also by the other factors discussed above.

The selectivity in the shock is rather high, because
the molecular vibrational and, possibly, rotational tem-
peratures in the flow interacting with the surface are
low. As a rule, the gas-dynamically cooled molecular
flow is nonequilibrium: T1, tr ≤ T1, rot ≤ T1, vib (T1, tr, T1, rot,
and T1, vib are the translational, rotational, and vibra-
tional temperatures of molecules, respectively).
Because of the different translational, rotational, and
vibrational relaxation rates [11], “inverse” nonequilib-
rium conditions may be realized in the shock: T2, tr ≥
T2, rot ≥ T2, vib. In the case of a pulsed flow of low-density

K34
prod

K34
prod
JETP LETTERS      Vol. 71      No. 10      2000
gas, the vibrational temperature in the shock may
almost coincide with the vibrational temperature in the
incident flow (T2, vib ≅  T1, vib), because the vibrational–
translational relaxation time is long (for SF6, pτV – T ≅
150 µs torr [15]). However, T2, tr > T1, trand T2, rot > T1, rot.
The deceleration-induced gas heating in the shock can

be estimated as [8, 10] ∆T = , where v0 is the
flow rate and cp is the gas specific heat. Substituting the
corresponding values for SF6 (v0 ≅  420 m/s and cp ≅
665 J/(kg K), one obtains ∆T ≅  130 K. With the transla-
tional temperature of T1, tr ≤ 40 K for SF6 in the incident
flow [7], T2, tr ≤170 K in the shock. It is worth noting
that, insofar as the specific heat of SF6 in the gas-
dynamically cooled flow is probably smaller than the
value used above for T ≅  300 K, the translational tem-
perature T2, tr may also be higher than the above esti-
mate. The rotational and translational temperatures are
likely close to each other, while the vibrational temper-
ature T2, vib ≅  T1, vib ≤ 150 K [7]. For this reason, if the
vibrational temperature of molecules dominates the
selectivity, then the dissociation selectivity in the shock
should not strongly differ from that in the incident flow,
just as was observed in our experiments. Note also that
the heating-induced selectivity decrease in the shock in
some cases may be compensated by its increase caused
by an increase in the concentration of illuminated mol-
ecules [16].

We are grateful to V.N. Lokhman and S.A. Mocha-
lov for assistance in preparing the manuscript. This
work was supported in part by the Russian Foundation
for Basic Research, project no. 00-03-33003a.
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The method of generation of cluster beams is analyzed in the regime when large clusters grow in a flow of a
dense afterglow plasma and clusters are formed in a narrow region near the axis of this flow. This method gives
a high intensity of the cluster beam in comparison with standard methods of cluster generation. Numerical
parameters are evaluated for processes involving iridium clusters in an argon plasma. © 2000 MAIK
“Nauka/Interperiodica”.

PACS numbers: 36.40.Wa; 61.46.+w; 52.20.-j 
1 The method of generation of clusters from a plasma
[1] deals with growing clusters in a dense plasma. This
method is profitable for metals with a not low boiling
temperature when the standard method of transforma-
tion of a vapor into clusters [2–6] is useless because of
low pressures of metallic vapors and the laser method
of cluster generation [7–10] gives a low intensity and
small cluster sizes. The afterglow plasma in which clus-
ters grow consists of a dense buffer gas and a small
admixture of a metal which is inserted in the plasma in
the form of a gaseous compound and exists in this form
in a cold plasma region. In a hot region, this compound
is decomposed into an atomic vapor and metallic clus-
ters grow in the plasma. These clusters reach large sizes
because of the large time of the cluster growth process.
Since clusters are charged, they can be separated from
a plasma, and this method provides intense cluster
beams. The analysis of these processes was made
recently [1]. Now we focus on the regime of plasma
evolution when clusters are formed near the center of
the plasma flow and analyze the processes during evo-
lution of this cluster plasma.

Gasdynamics and heat processes in plasma flow.
The generator of cluster beams under consideration
consists of three basic elements. The first one is a
plasma generator of low power (below 1 kW), and in
the second part of this generator a narrow beam of mol-
ecules containing metallic atoms is inserted near the
axis of the flowing afterglow plasma. Molecules are
decomposed in this region, and forming metallic atoms,
join in clusters or attach to clusters. As a result, all the
metal is collected near the flow axis in the form of clus-
ters. After this stage, the central flow part is directed
into a vacuum through a nozzle where atoms of a buffer
gas are removed by pumping and the beam of charged
clusters is governed by external electric fields.

1 This article was submitted by the author in English.
0021-3640/00/7110- $20.00 © 20403
When a gaseous compound of a heat-resistant metal
is inserted in a flow of a buffer gas, molecules of the
compound are mixed with the gas and are decomposed
into atoms in hot regions in which temperatures exceed
the boundary temperature T1 of their decay. An atomic
vapor of a heat-resistant metal may be transformed into
a gas of clusters in regions in which temperatures are
below the boundary temperature T2 of existence of
these clusters. In the second part of the cluster genera-
tor, where clusters are formed, the flow temperature at
the center varies from T2 up to T1. For definiteness,
below we will guided by the compound IrF6 inserted
with concentration of 10–3 in argon at a pressure of
100 torr, so that the forming iridium clusters can be
used for fabrication of rhodium–iridium thermocou-
ples. In this case, we have T1 = 1300 K, T2 = 3200 K
with the accuracy 100–200 K.

Because of a small concentration, the metallic com-
pound does not influence the gasdynamical and thermal
properties of a plasma flow. We take a simple parabolic
temperature distribution over the flow cross section.
Introducing an effective temperature Teff of the flow, we
have for the flow rate

(1)

where ρ is the distance from the tube center and r0 is the
tube radius. Under the argon pressure of p = 100 torr,
the center flow temperature T0 = 3000 K, the tube radius
r0 = 1 cm, and the average flow speed uz = 6 × 103 cm/s,
we have for the effective flow temperature Teff = 1800 K,
and the flow rate is Q = 1 × 1022 s–1 = 0.7 g/s. Then the
Reynolds number is Re = uzr0maNa(Teff)/η(Teff) ~ 300,
where ma is the atom mass, η(Teff) is a typical gas vis-
cosity, and the gas flow is laminar. Next, from the
Navier–Stokes equation it follows for the pressure gra-

Q Nauz2πρ ρd∫ Na Tef( )uzπr0
2,= =
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dient dp/dz = 2 × 10–3 torr/cm under the above parame-
ters. This means that we have p = const along the flow.

Cooling of this plasma is determined in part by heat
transport to the walls due to the gas thermal conductiv-
ity, and the heat balance equation for the afterglow
plasma has the form

(2)

Here, H = T(ρ)Na2πρdρ ≈ cpQ(Teff – Tw)/uz is the

enthalpy per unit length of the flow, cp is the specific
heat capacity per atom of a buffer gas, and κ(Tw) is the
thermal conductivity coefficient of a buffer gas near the
walls. In particular, under the above flow conditions,
we have uzH = 400 W and 4πκ∆T = 7 W/cm. At labora-
tory tube lengths l ≈ 30–40 cm, the flow cooling from
T2 up to T1 can be attained additionally by a tube expan-
sion.

The basic condition for the flow parameters is such
that, on the one hand, decay of molecules at the flow
center proceeds rapidly, and, on the other hand, nucle-
ation of a forming metallic vapor is possible there. The
rate constant of detachment of halogen atoms in colli-
sions of a molecule with argon atoms can be repre-
sented in the form kdet = kgexp(–εch/T), where in the iri-
dium case at T = 3000 K, the gas-kinetic rate constant
is kg = 2 × 10–10 cm3/s and εch is the binding energy of
halogen atoms in the molecule (εch ≈ 2.5 eV for the IrF6
molecule). Under the conditions considered, the decay
of molecules proceeds during a time τch ~ 10–4 s at T =
3000 K. This process leads to cooling of the buffer gas,
and at the concentration 10–3 of the IrF6 molecules the
temperature decrease is δT = 60–70 K on average. In
reality, the cooling is stronger, because decay of mole-
cules proceeds rapidly and heat is taken from a
restricted central region of the flow. This effect is com-
pensated particularly by heat release resulting from for-
mation of metallic clusters. The optimal temperature at
the center can be operated by the initial plasma temper-
ature.

Nucleation and charging processes in afterglow
plasma. The character of the nucleation process in this
plasma is similar to that in the case when an atomic
vapor is transformed in a gas of clusters in a buffer gas
[11]. Indeed, the first stage of the nucleation process is
the formation of diatomic metallic molecules in three-
body collisions of metallic atoms and atoms of the
buffer gas, and then diatomic molecules are nuclei of
condensation for cluster growth. Therefore, clusters are
large at the end of the growth process and a typical time
τ of transformation of metallic atoms into clusters and
the average cluster size n (the number of cluster atoms)
are given by [11]

(3)

uzH 2πr0κ
dT
dρ
------ r0( ) 4πκ Tw( )∆T .= =

cp∫

τ 1
k0N
---------

k0

K3Na

------------- 
 

1/4

, n k0Nτ( )3 k0

K3Na

------------- 
 

3/4

.∼ ∼∼
Here, k0 is the specific rate constant of atom attachment to
a cluster (k0 = 3 × 10–11 cm3/s for iridium at T = 3000 K),
K3 ~ 10–33 cm6/s is the three-body rate constant of for-
mation of diatomic molecules in three-body collisions,
Na is the number density of atoms of a buffer gas, and
N is the number density of free and bound metallic
atoms. In particular, in the iridium case under consider-
ation, the transformation time is τ ~ 10–4 s and the mean
cluster size is n ≈ 7 × 103.

The nucleation process proceeds in a narrow region
near the axis. In particular, the way ∆x which atoms
pass into a buffer gas during the transformation process

is ∆x ~  ~ 0.1 cm, where D ≈ 50 cm2/s is the dif-
fusion coefficient of metallic atoms in a buffer gas at
the tube axis. As a result of the nucleation and diffusion
processes, the effective radius of the region occupied
by clusters is ρ0 = 0.2 cm in the iridium case and is
smaller than the tube radius. Thus, the formed clusters
are located in a narrow region near the axis and do not
change their positions during the flight time because of
a large mass. The subsequent cluster growth results
from coagulation of clusters, but during the flight time
at the axis τfl ~ 3 × 10–3 s this process virtually does not
change the mean cluster size in this case.

Charging of clusters proceeds simultaneously with
cluster growth. When clusters are forming, the charging
process results from the equilibrium

(4)

where e, M, A are an electron, a metallic atom, and a
buffer gas atom, respectively, and the cluster charge Z
for iridium clusters in argon is equal in electron
charges to

(5)

where the temperature T is expressed in K and we
assume Ar+ to be the basic ion in argon. Similar values
of the charge correspond to other metals. In particular,
averaging over 18 heat-resistant metals gives for the
numerical coefficient in Eq. (5) 0.080 ± 0.005, if the
clusters are located in argon.

Processes (4) also determine the rate of recombina-
tion of this plasma. The rate of attachment of electrons
and ions to clusters is

(6)

The rate constant is k1 ~ 10–10 cm3/s, Nb is the number
density of bound atoms in clusters, and in the iridium
case we have 1/τat ~ 105 s–1. As a result of processes (4),
the number density of electrons and ions drops rapidly
in the region occupied by clusters. One can neglect the
thermoemission of electrons from the cluster surface if
the following criterion is valid:

(7)

Dτ

e Mn
Z– Mn

Z– 1– , A+ Mn
Z– A Mn

Z– 1+ ,+ + +

Z n1/3⁄ 0.08 T 1000⁄( ),=

1 τat⁄ k1Nb n1/3⁄ .=

1 τ rel⁄   !  dT dt ⁄( ) W T 
2 ⁄( ) ,
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Table

Ne , cm–3 108 1010 1012 1014

T*, 103 K 1.85 2.19 2.69 3.47

νem/n2/3, s–1 1.2 170 2.6 × 104 4.2 × 106
      
where τrel is a typical time of a decrease in the plasma
density and W is the metal work function, which is the
ionization potential of a large cluster. In the iridium
case the right-hand side of this relation is equal to ~4 ×
103 s–1, so that at the first stage of cluster evolution, the
criterion (7) is not fulfilled. Hence, through a time ~τat,
when the plasma number density drops significantly,
thermoemission of electrons becomes responsible for
the charge equilibrium of clusters. The table lists the
temperatures T* at which the cluster charge is zero at a
given number density Ne of electrons and the rates
νem(T*) of thermoemission of electrons for iridium
clusters. If the thermoemission process is dominant in
cluster charging and released electrons remain in the
cluster region, the positive charge of clusters is close to
zero because of a high number density of clusters.

At low temperatures the cluster charge is deter-
mined by transport of electrons and ions to the cluster
region from regions where clusters are absent. We have
the following balance equation for the plasma density:

(8)

Here, ρ0 the radius of a region containing clusters, 
is the electron number density in this region, Ne is the
electron number density in neighboring regions where
clusters are absent, and Da is the coefficient of ambipo-
lar diffusion of the plasma. In particular, in the iridium
case at the flow exit (T = 1500 K near the axis), we have
Ne = 3 × 1012 cm–3 and  ~ 1 × 1010 cm–3. A typical
relaxation time due to transport of electrons and ions to
walls is τrel ~ 0.1 s. Hence, the criterion (7) holds true
now, and clusters get a negative charge which is lower
than that according to Eq. (5) because of the large time
of establishment of equilibrium (4). As a result, clusters
are charged negatively and equilibrium (4) may be par-
tially restored at low temperatures.

Processes in an expanding afterglow plasma. At
the last stage of plasma evolution, the central part of a
plasma flow which contains clusters passes through a
nozzle in a vacuum. Then, atoms of a buffer gas are
extracted by pumping and the beam of clusters is
crossed by an electron beam, so that the clusters obtain
a negative charge. This cluster beam can be governed
by external transverse and longitudinal electric fields
when the buffer gas pressure becomes small. In partic-
ular, the mobility of charged iridium clusters reduced
to the normal density of argon atoms under equilib-

ρ0
2 Ne'

τa

------ DaNe.∼

Ne'

Ne'
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rium (4) is K = K0n–1/3, where K0 = 0.47 cm2(V s) at T =
1000 K. From this it follows that transport of charged
clusters in an external field is negligible in a plasma
flow and can be remarkable in a vacuum chamber when
the gas pressure becomes small. Then the cluster beam
can be focused and accelerated.out of 

When the afterglow plasma with clusters flows after
a nozzle and expands in a vacuum, atomic particles are
scattered and pumped from the plasma flow, while col-
lisions of clusters with atoms of a buffer gas do not cre-
ate a remarkable transverse momentum of an individual
cluster because of the large cluster mass. Pumping
allows one to remove the scattered atoms which move
towards the walls. As a result, after a while, the plasma
flow is transformed into a beam of clusters. Collection
of clusters near the center of the plasma flow allows us
to use only the central flow part for generation of a clus-
ter beam.

Above, we neglect the presence of halogen atoms in
the plasma flow. Indeed, at high temperatures T > T1,
the halogen atoms do not react with clusters, and at low
temperatures, these atoms are pumped out. Neverthe-
less, halogen atoms can partake in some processes; in
particular, attachment of electrons to halogen atoms
can change the plasma properties and the character of
cluster charging. In addition, the presence of halogen
atoms in a buffer gas requires a certain wall material
and a special purification of the pumped buffer gas.
Hence, this problem demands an additional analysis.

Thus, generation of a cluster beam from a plasma is
determined by competition of some processes and is
possible in a certain range of plasma parameters. In par-
ticular, at the first stage of the process, on the one hand,
a fast decomposition of molecules is required with for-
mation of metallic atoms at the flow axis and, on the
other hand, a fast nucleation of metallic atoms must
proceed in this region. Although due to competition of
various processes, this method requires a special anal-
ysis for each specific case, it can be used for generation
of cluster beams of various heat-resistant metals.

As follows from the above analysis, generation of a
cluster beam from a plasma includes a variety of compet-
ing processes and provides a high intensity of the output
cluster beam. In particular, the maximum specific inten-
sity of clusters is 80 µg/(cm2 s) [12] for the standard
method and silver clusters. In the iridium case under con-
sideration, we have for this value 20 mg/(cm2 s) and
3 mg/s for the total rate of clusters. Note the importance
of chemical regeneration [13] in this method, which
provides a high number density of metallic atoms. If
metallic atoms result from metal vaporization, the num-
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ber density of atoms cannot exceed that at the saturated
vapor pressure. In particular, for iridium, this value at
the melting point is 3 × 1013 cm–3, while using decom-
position of IrF6 molecules allows one to increase this
value by two to three orders of magnitude. In addition,
collection of clusters near the flow axis simplifies
extraction of clusters from the plasma flow and
increases the specific intensity of the beam of metallic
clusters. Because all the metal is transformed into clus-
ters, this method of generation of cluster beams can
provide the same rate of metal deposition on targets as
that in the case of beams of atoms or atomic ions. But
intense beams of charged clusters are governed better
than intense beams of atomic ions. Therefore, the clus-
ter technology of deposition of films of heat-resistant
metals has advantages with respect to use atomic beams
and atomic ion beams.

This study was supported in part by the Russian
Foundation for Basic Research, project no. 99-02-
16094.
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A method is proposed for generating collimated beams of fast ions in laser–plasma interactions. Two-dimen-
sional and three-dimensional particle-in-cell simulations show that the ponderomotive force expels electrons
from the plasma region irradiated by a laser pulse. The ions with unneutralized electric charge that remain in
this region are accelerated by Coulomb repulsive forces. The ions are focused by tailoring the target and also
as a result of pinching in the magnetic field produced by the electric current of fast ions. © 2000 MAIK
“Nauka/Interperiodica”.

PACS numbers: 52.40.Nk
The study of the mechanisms for ion acceleration in
the interaction of high-power laser pulses with matter is
very important for further development of the theory of
nonlinear plasma dynamics in superstrong electric
fields [1] and also for practical applications in con-
trolled fusion research [2, 3] and hadron therapy in
oncology [4]. In the experiments on laser–plasma inter-
action carried out by Krushelnik et al. [5], the ions were
observed to be accelerated to energies of several tens of
megaelectronvolts. In [6, 7], the mechanism for ion
acceleration was interpreted as resulting from the so-
called “Coulomb explosion.” According to those
papers, the Coulomb explosion is associated with the
break of plasma quasineutrality inside the self-focusing
channel. The plasma quasineutrality breaks, because
the ponderomotive force and/or the quasistatic mag-
netic field pressure [7] expel electrons from the channel
and the ions are accelerated in the radial direction by
the charge-separation electric field. In the nonquasineu-
tral plasma approximation, the energy of fast ions is
proportional to the ponderomotive potential; i.e., in the
limit a @ 1, it is a linear function of the laser-pulse
amplitude mec2a, where a = eE/meωc is the dimension-
less pulse amplitude.
0021-3640/00/7110- $20.00 © 20407
As was pointed out in [8–10], the ion acceleration is
more efficient in the field of a petawatt laser pulse, in
which case the ion energy is proportional to the squared
laser-pulse amplitude mec2a2. The ions are accelerated
preferentially in the propagation direction of the pulse.
The intensity of petawatt laser pulses reaches
≈1022 W/cm2, in which case the inequality a >
(mi/me)1/2 holds for a hydrogen plasma.

Here, we study the mechanism for generating well-
collimated ion beams with energies of several hundred
megaelectronvolts in overdense and underdense plas-
mas.

In order to study ion acceleration in an underdense
plasma, we carried out a two-dimensional particle-in-
cell (PIC) simulation of the interaction between a short
laser pulse and a plasma slab of length 150λ, the ion-to-
electron mass ratio being mi/me = 1840. We modeled a
circularly polarized Gaussian laser pulse of length
l|| = 20λ, width l⊥  = 10λ, and amplitude a = 50, assum-
ing that the plasma density corresponds to the ratio
ωpe/ω = 0.45 of the plasma frequency to the laser fre-
quency.

The results of two-dimensional simulations are
illustrated in Figs. 1 and 2. In Figs. 1a and 1b respec-
000 MAIK “Nauka/Interperiodica”
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tively, we plot the distributions of the electron and ion
densities in the (x, y) plane at the time t = 230(2π/ω).
By this time, the laser pulse has propagated through the
plasma slab and, as is seen from both the electron and
ion density distributions, has formed a channel from
which the electrons and ions are expelled preferentially
in the radial direction. However, the channel is not
empty: a dense plasma filament forms on the channel
axis. The mechanism for the formation of a plasma fil-
ament is associated with the phenomenon of the
“inverted corona,” which was discussed in [11]. In our
problem, the inverted corona arises because, in the
interaction with the channel walls, the laser radiation
not only expels the plasma from the channel but also
effectively heats the plasma and drives a hot plasma
flow converging to the channel axis. At later times, the
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Fig. 1. Distributions of the (a) electron and (b) ion densities
in the (x, y) plane and (c) the ion phase plane (pxi, x) at the
time t = 230(2π/ω).
filament is maintained by plasma pinching in a self-
consistent quasistatic magnetic field of the electric cur-
rent flowing inside the channel [12]. At the exit from
the channel, the electrons escape from the filament and
the ions that remain in the channel and form a cloud
with an unneutralized electric charge expand preferen-
tially in the longitudinal direction. As a result, the ions
acquire a kinetic energy corresponding to the electro-
static potential of the filament. From Fig. 1c, which dis-
plays the ion phase plane (pxi, x), we can see that the
maximum momentum acquired by the ions is px =
0.8mic.

At the exit from the channel, the ions form a colli-
mated high-density beam. Figure 2 shows the electron
(dashed curve) and ion (dashed-and-dotted curve) den-
sities and the z-component of the magnetic field (solid
curve) as functions of the y-coordinate at x = 155.5
(Fig. 2a) and x = 168.5 (Fig. 2b). From Fig. 2a, we can
see that, in the region immediately at the exit from the
channel (at x = 155.5), the filament plasma is quasineu-
tral, because the electron and ion densities are the same.
The plasma density inside the filament is higher than
the initial plasma density by a factor of 6. The y-profile
of the magnetic field, which is seen to vanish at the
channel axis, implies that the electric current in the
plasma is carried by the electrons (the magnetic field
gradient is negative). In the region where fast ions are
concentrated (at x = 168.5 in Fig. 2b), the profiles of the
electron and ion densities and magnetic field are radi-
cally different: the ion density exceeds the electron
density by a factor of 10. Nevertheless, a high-density
ion beam remains strongly localized: the beam radius is
as small as several microns. This effect is attributed to
the pinching of ions in the magnetic field of the ion
electric current. That the magnetic field in the vicinity
of the beam axis is produced by the ion current is clear
from Fig. 2b, in which the magnetic field gradient is
seen to be positive.

Ion acceleration in the interaction between a laser
pulse and a thin dense plasma slab (a foil) of overcriti-
cal density was discussed by Esirkepov et al. [9]. They
also explained the mechanism for ion acceleration in
Fig. 2. The y-profiles of the electron (dashed curve) and ion (dashed-and-dotted curve) densities and of the  z-component of the mag-
netic field (solid curve) at x = (a) 155.5 and (b) 168.5.
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Fig. 3. Distributions of the (a) electron and (b) ion densities in the (x, y) plane and (c) profiles of the ion energy density (dashed
curve) and of the quasistatic magnetic field (solid curve) inside the ion beam (c) at the time  t = 15(2π/ω).
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terms of the Coulomb explosion of an irradiated foil
site, from which the electrons are expelled by the pon-
deromotive pressure of laser light. They demonstrated
that the expansion of a cloud of accelerated ions is
accompanied by the onset of an electromagnetic insta-
bility, which gives rise to filamentation. Here, we pro-
pose to intensify the tendency toward filamentation by
using a target tailored in the desired fashion. Specifi-
cally, we model the following situation: A dense
plasma slab with a thickness of 2λ initially occupies the
region 5λ < x < 7λ; the central part of the slab is para-
bolic in shape and is convex toward the incident laser
light. The plasma density inside the slab is n = 30ncr,
and the ion-to-electron mass ratio is 1840. A laser pulse
with the amplitude a = 89 is p-polarized.

The tailoring of the target foil makes ion accelera-
tion more efficient and leads to enhanced focusing of
both the penetrating laser radiation and the plasma
flows expanding in the propagation direction of the
laser pulse. Note that the focusing of plasma flows in
the interaction between a moderate-power laser pulse
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12
z

Ion density t = 18.6

(‡)

Fig. 5. (a) Fast ion beam at the axis, (b) the phase plane
(pxi, x), and (c) the phase plane (p⊥ , x).
and a semicylindrical foil was studied by Askar’yan
et al. [13].

We assume that a laser pulse propagates along the
x-axis and is Gaussian in shape in both the transverse
and longitudinal directions, the pulse length and width
being 5.5λ and R = 5λ, respectively. With the parame-
ters adopted here, the plasma slab is opaque to laser
radiation. In the course of interaction between the pulse
and the target, the electrons are expelled from the
plasma slab, thereby giving rise to a strong charge-sep-
aration electric field. The energy of fast electrons can
be as high as 200 MeV, and the ions are accelerated
mainly in the propagation direction of the pulse. Fast
ions moving along the x-axis form a thin dense fila-
ment. In Figs. 3a and 3b, respectively, we plot the elec-
tron and ion density distributions in the (x, y) plane at
the time t = 15(2π/ω). A thin ion beam is clearly seen in
Fig. 3b. Figure 3c shows y-profiles of the ion energy
density (dashed curve) and of the quasistatic magnetic
field (solid curve) inside the ion beam for x = 4.65 at the
time t = 12(2π/ω). We can see that the magnetic field is
produced by the ion electric current. The peak momen-
tum of the fast ions equals pxi/mic ~ 1. In this case, the
acceleration mechanism can also be explained in terms
of the Coulomb explosion, and the quasistatic magnetic
field lowers the rate at which the beam expands in the
radial direction. The thickness of the ion beam is equal
to 0.2λ; and the beam density, which substantially
exceeds the local electron density, is as high as 1022 cm–3.

The two-dimensional simulation presented above
gives a qualitatively correct description of ion acceler-
ation but overestimates the energy of fast particles,
because, in the two-dimensional approximation, the
Coulomb potential of the charged cloud diverges loga-
rithmically at large distances. For this reason, we car-
ried out three-dimensional simulations of the interac-
tion of a laser pulse with both underdense and over-
dense plasmas. The results of a three-dimensional
numerical analysis of ion acceleration by the PIC
method are illustrated in Figs. 4 and 5.

In the case of an underdense plasma, a circularly
polarized laser pulse of length 20λ, diameter R = 10λ,
and amplitude a = 50 interacts with a plasma slab with
a length of 15λ and a density corresponding to ωpe/ω =
0.45. The formation of an ion channel with a dense fil-
ament at the axis is illustrated in Figs. 4a and 4b, which
show the cross section z = 0 in the (x, y) plane and the
cross section x = 15λ in the (y, z) plane, respectively, at
the time t = 30 (2π/ω) A circularly polarized pulse
scrapes off a thin plasma layer from the channel walls.
When scraped off, the plasma layer inside the channel
becomes spiral-shaped. Such a modulation of the
plasma density results in a nonlinear modulation of the
laser pulse: the pulse also assumes the shape of a spiral
(Fig. 4c). In the three-dimensional case, the density of
fast ions inside the beam is higher (Fig. 4d) and their
energy is lower than those in the two-dimensional case.
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According to the three-dimensional analysis, the
momentum of fast ions is equal to pxi = 0.61mic.

The results of three-dimensional simulations of the
interaction between a linearly polarized laser pulse and
a tailored target (a paraboloid of revolution) are illus-
trated in Fig. 5 for a plasma density of n = 25ncr and a
slab thickness of 0.5λ and for a semiinfinite pulse with
a waist diameter of 5λ and an amplitude of a = 25.
Laser radiation causes the formation of a thin ion beam
at the channel axis (Fig. 5a). From Figs. 5b and 5c, we
can see that the longitudinal component of the ion
momentum pxi = 0.8mic is significantly higher than the
transverse momentum component p⊥  = 0.2mic.

We conclude that a petawatt laser pulse interacting
with a plasma generates thin collimated beams of fast
ions with energies of several hundred megaelectron-
volts and a relatively small divergence. The number of
ions accelerated per pulse is about 1012.
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The renormalization-group functions governing the critical behavior of the three-dimensional weakly-disor-
dered Ising model are calculated in the five-loop approximation. The random fixed point location and critical
exponents for impure Ising systems are estimated by means of the Padé–Borel–Leroy resummation of the renor-
malization-group expansions derived. The asymptotic critical exponents are found to be γ = 1.325 ± 0.003,
η = 0.025 ± 0.01, ν = 0.671 ± 0.005, α = –0.0125 ± 0.008, β = 0.344 ± 0.006, while for the correction-to-scaling
exponent, a less accurate estimate ω = 0.32 ± 0.06 is obtained. © 2000 MAIK “Nauka/Interperiodica”.
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1 Today, two regular field-theoretical methods exist to
evaluate the universal critical quantities of uniaxial
impure magnets described by the three-dimensional

(3D) random Ising model: the -expansion invented
by Harris and Lubensky [1, 2] and Khmelnitskiœ [3] and
the renormalization-group (RG) approach in three
dimensions. The former technique, being well devel-
oped [4, 5], was recently shown to have limited numer-

ical power, since -expansions for critical exponents,
calculated starting from the five-loop series [6] up to

the  and  terms [7], exhibit an irregular struc-
ture making them unsuitable for subsequent resumma-
tion and extracting numerical estimates [8].

On the contrary, the field-theoretical RG approach
in three dimensions proved to be very effective when
used to estimate the critical exponents and other uni-
versal characteristics of the O(n)-symmetric systems
[9–19]. The weakly disordered Ising model at critical-
ity is known to be described by the n-vector ϕ4 field
theory with the quartic self-interaction having a hyper-
cubic symmetry, provided n  0 (the replica limit)
and the coupling constants have proper signs. In the
1980s, the RG expansions for 3D cubic and impure
Ising models were calculated in the two-loop [20],
three-loop [21, 22], and four-loop [23, 24] approxima-
tions, paving the way for estimating the universal crit-
ical quantities [20–33]. The four-loop 3D RG expan-
sions, however, resummed by the generalized Padé–
Borel–Leroy method, do not allow one to optimize the
resummation procedure, since there is the only approx-
imant ([3/1]) that does not suffer from positive axis
poles. Moreover, accounting for the four-loop terms in
the 3D RG series shifts the random fixed point coordi-

1 This article was submitted by the authors in English.
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nates and the correction-to-scaling exponent ω appre-
ciably with respect to the three-loop estimates, indicat-
ing that at this step the RG based iterations still do not
achieve their asymptote.

In such a situation a calculation of the higher order
contributions to the RG functions looks very desirable.
In this Letter, the five-loop RG expansions for the 3D
impure Ising model are obtained and the numerical
estimates for the critical exponents are found.

We start from the Landau–Wilson Hamiltonian of
the 3D n-vector cubic model:

(1)

where ϕ is an n-component real order parameter, 
being the reduced deviation from the mean-field transi-
tion temperature. In the replica limit, this Hamiltonian
describes the impure Ising model provided u0 < 0 and
v0 > 0.

The RG functions for the Hamiltonian (1) are found
within a massive theory. To extend known four-loop
RG series [23, 24] to the five-loop order, we calculate
the tensor (field) factors generated by the cubic interac-
tion. Taking then the values of 3D integrals from [34],
we arrive, under n = 0, at the following expansions:

(2)

H
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(3)

(4)

(5)

The five-loop RG series for generic n are presented in
[35].

Numerical values of critical exponents are deter-
mined by the coordinates of the random fixed point. To
find its location, the Padé–Borel–Leroy resummation
technique is applied, which demonstrated high effec-
tiveness both for O(n)-symmetric models [9, 11, 15]
and for anisotropic systems preserving their internal
symmetries (see, e.g., [36]). Since the RG functions
depend on two variables, the Borel–Leroy transforma-
tion is taken in a generalized form:

– 20770.177u5 89807.670u4v 130340.91u3v 2––
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– 407119.31u2v 3 170403.12uv 4– 29261.585v 5.–
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– 162.35405u4v 382.02381u3v 2–

– 389.99671u2v 3 193.00269uv 4– 38.600539v 5.–
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To perform an analytical continuation, the resolvent
series

(7)

is constructed with coefficients that are uniform poly-
nomials in u, v and then Padé approximants [L/M] in λ
at λ = 1 are used.

For the resummation of the five-loop RG expan-
sions, we employ three different Padé approximants:
[4/1], [3/2], and [2/3]. The first of them, being pole-
free, is known to give good numerical results for basic
3D models of phase transitions, while the others are
near-diagonal and should reveal, in general, the best
approximating properties. The coordinates of the ran-
dom fixed point resulting from the series (2) and (3)
under b = 0 and b = 1 are presented in Table 1, where
superscript “p” stands to mark that the Padé approxi-
mant has a “nondangerous” positive axis pole.

Table 1, where the widely accepted variables U = 8u
and V = 8v are used instead of u and v, also contains the
four-loop estimates. The four-loop series were pro-
cessed on the base of the Padé approximant [3/1], since
use of the diagonal approximant [2/2] leads to an inte-
grand in Eq. (6) that has a dangerous pole near the
random fixed point both for βu and βv .2 The fixed point
location given by the approximant [2/3] is presented for
b = 0 only, because for b = 1 this approximation pre-
dicts no random fixed point.

As is seen from Table 1, Padé approximants [4/1]
and [3/2] yield numerical values of Uc and Vc which are
very close to each other. Moreover, for b = 0 they are
also close to those given by the approximant [3/1]: the
largest difference between the five-loop and four-loop
estimates does not exceed 0.03. With increasing b, cor-
responding numbers diverge, indicating that b = 0 is an
optimal value of the shift parameter. On the contrary,
Padé approximant [2/3] gives a random fixed point
location which deviates appreciably from those pre-
dicted by approximants [4/1], [3/2], and [3/1]. This
approximant, however, leads to poor numerical results
even for simpler systems. Indeed, when used to evalu-
ate the coordinate of the Ising fixed point, it results in
Vc = 1.475 (under b = 0), while the best estimate today

2 In fact, under b = 1 the approximant [3/2] generates the expres-
sion for βv that is also spoiled by a positive axis pole at the ran-
dom fixed point. This pole, however, being well removed from the
origin (t = 40.12), turns out not to be dangerous; i.e., it does not
influence, in practice, the evaluation of the Borel integral.
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Table 1

b [4/1] [3/2] [2/3] [3/1]

Uc 0 –0.7200 –0.7148 –0.6871 –0.6991

1 –0.7445 –0.7385p –0.6839

Vc 0 2.0182 2.0125 2.0571 1.9922

1 2.0296 2.0236p 1.9877

ω 0 0.266 0.303 0.462c 0.376

1 0.263 0.325p 0.361

Table 2

b 0 1 2 3 5 10 15

(γ–1)–1 [4/1] 1.3236 1.3244 1.3250 1.3254 1.3260 1.3268 1.3272

[3/2] – – – 1.3253p 1.3260 1.3265 1.3267

γ [4/1] 1.3245 1.3248 1.3250 1.3252 1.3254 1.3257 1.3259

[3/2] 1.3246p 1.3251p 1.3254p 1.3257p 1.3261p 1.3267p 1.3270p

η [4/1] 0.0312 0.0276 0.0251 0.0231 0.0204 0.0166 0.0148

(via η2) [3/2] – – – 0.0287p 0.0217p 0.0167p 0.0149
is Vc = 1.411 [14]. This forces us to reject the data given
by the approximant [2/3].

To finally determine the coordinates Uc and Vc, we
average the numerical data given by three working
Padé approximants at b = 0. This procedure yields the
values

(8)

which are claimed to be the results of our search of the
random fixed point location. To estimate their apparent
accuracy, we accept that deviations of these numbers
from the exact ones will not exceed the differences
between them and the four-loop results, since, among
all proper estimates, the four-loop ones most strongly
differ from the averaged values. Hence, the error
bounds for Uc and Vc are believed to be no greater than
±0.02. Another way to estimate the apparent accuracy
is to trace how the averaged values of the random fixed
point coordinates vary with the variation of b. We cal-
culate Uc and Vc using the pole-free approximants [4/1]
and [3/1] for b lying between 0 and 15. Running
through this interval, the averaged coordinates change
their values by about 0.02, indicating that an accuracy
of the estimates found is of the order of a few per cent.

Let us evaluate further the critical exponents. The
exponent γ is estimated by the Padé–Borel–Leroy sum-
mation of the series (4) for γ–1 and of the analogous RG
expansion for γ, with approximants [4/1] and [3/2]
being employed. The numerical value of the Fisher
exponent is also found in two different ways: via the
estimation of the critical exponent η2 = (2 – η)(γ–1 – 1)
having the RG expansion which exhibits a good sum-
mability and by direct substitution of the fixed point

Uc 0.71, Vc– 2.01,= =
coordinates into the series (5) with rapidly diminishing
coefficients. Direct summation of the RG expansion for
η gives η = 0.027; numerical results obtained by mak-
ing use of the resummation procedures just described
are collected in Table 2.

In this table, symbol (γ–1)–1 means that the RG series
for γ–1 was resummed. The empty cells are due to the
dangerous poles spoiling corresponding approxima-
tions. The estimates for η standing in the 5th and 6th
lines were obtained under γ = 1.325 by the resumma-
tion of the RG series for η2.

As is seen, two methods of evaluating γ lead to
remarkably close numerical results which very weakly
depend on the tune parameter. Indeed, with increasing
b from 0 to 15, the estimates for γ obtained by the
resummation of the RG series for γ and γ–1 on the base
of the pole-free approximant [4/1] vary by less than
0.0036, while the difference between them never
exceeds 0.0013. Under the same variation of b, the
value of γ averaged over these two most reliable
approximations remains within the segment [1.3240,
1.3266]. On the other hand, the accuracy of determina-
tion of the critical exponents depends not only on the
quality of the resummation procedure but also on the
accuracy achieved in the course of locating of the ran-
dom fixed point. That is why we investigated to what
extent the estimates for γ vary when the coordinates of
the random fixed point run through their error bars. It
was found that γ calculated at the optimal value of tune
parameter b = 2 (see Table 2) does not leave the seg-
ment [1.3228, 1.3263]. Hence, the error bounds for the
value of γ are believed to be about ±0.003.
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Less stable numerical results are found for the
Fisher exponent η. As is seen from Table 2, the values
of η given by the RG series for η2 and the pole-free
Padé approximant [4/1] spread from 0.0148 to 0.0312.
The average over this interval is equal to 0.023, while
the direct summation of the series (5) gives 0.027.
Hence, 0.025 should play the role of the most likely
value of exponent η. Since the estimates for η found via
the evaluation of η2 are sensitive to the accepted value
of γ, the apparent accuracy achieved in this case is not
believed to be better than ±0.01.

Having estimated γ and η, we evaluate other critical
exponents using well-known scaling relations. The
final results of our five-loop RG analysis are as follows:

(9)

It is interesting to compare these numbers with those
obtained earlier within the lower order RG approxima-
tions. For the exponent γ previous 3D RG calculations
gave the values 1.337 [20, 25] (two-loop), 1.328 [22]
(three-loop), 1.326 [23] (four-loop), and 1.321 [24]
(four-loop). Being found by means of different resum-
mation procedures, they are, nevertheless, centered
around our estimate, which is thus argued to be close to
the exact value of γ or, more precisely, to the true
asymptote of the RG iterations.

In conclusion, we evaluate the correction-to-scaling
exponent ω. This exponent is known to be equal to the
eigenvalue of the stability matrix

(10)

that has a minimal modulus. The derivatives entering
this matrix are evaluated numerically at the random
fixed point on the base of the resummed RG expansions
for βu and βv and then the matrix eigenvalues are found.
Such a procedure leads to the estimates for ω presented
in Table 1 (lower lines); the superscript “c” denotes that
ω is complex within the corresponding approximation
and its real part is presented. The numerical values
obtained are seen to be considerably scattered and sen-
sitive to the tune parameter. The average over three
working Padé approximants, however, being equal to
0.315 at b = 0 and to 0.316 at b = 1, turns out to be sta-
ble under the variation of b unless b becomes large. It
is natural, therefore, to accept that

(11)

This number is smaller by 0.05–0.07 than its counter-
parts given by recent Monte Carlo simulations [37] and
the alternative RG analysis [32], but their central values

γ 1.325 0.003, η± 0.025 0.01,±= =

ν 0.671 0.005± ,=

α 0.0125– 0.008, β± 0.344 0.006.±= =

∂βu

∂u
--------

∂βu

∂v
--------

∂βv

∂u
---------

∂βv

∂v
--------- 

 
 
 
 
 

ω 0.32 0.06.±=
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lie within the declared error bounds (11). Hence, an
agreement between the results discussed exists. On the
other hand, the estimate just found needs to be refined,
along with the estimates for η and α also exhibiting
appreciable uncertainties. Hopefully, a proper process-
ing of the six-loop expansions obtained very recently
[38] would enable one to further improve the accuracy
of the predictions given by the field-theoretical RG
approach.
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tion of the Russian Federation, grant no. 97-14.2-16.
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The formation of regions of compressible and incompressible phases in the quantum Hall effect regime has
been considered for a two-dimensional (2D) electron system that is created in a field-effect transistor. This
effect arises from long-period fluctuations of the density of ionized donors supplying electrons to the 2D sys-
tem. It is shown that the motion of these regions caused by variations of the average electron density gives rise
to minima in the capacitance of the capacitor formed by the 2D electron system and the transistor gate. When
the corrections to the capacitance are small, the shape of the minima reproduces the donor density distribution
function. Experimental data are presented that demonstrate good agreement with the predictions of the model.
© 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 73.40.Hm; 85.30.Tv
The occurrence of a discrete energy spectrum with a
high degree of Landau level degeneracy in two-dimen-
sional (2D) electron systems in quantizing magnetic
fields results in a nontrivial behavior of screening prop-
erties of such systems. Namely, within the Thomas–
Fermi approximation, the system perfectly screens the
random potential when one of the Landau levels is only
partially filled and does not screen it at all in the case of
fully filled levels. Conventionally, the corresponding
states are referred to as compressible and incompress-
ible, respectively. Given a long-period (as compared to
the magnetic length) random nucleation potential of
sufficiently large amplitude, this property of a 2D elec-
tron system must lead [1] to its separation into alternate
regions of the compressible and incompressible phases.
The widths of the corresponding strips of different
phases were calculated in [2], provided that the poten-
tial is regular, the 2D electron density monotonically
varies near the edge of the sample, and the sample is
homogeneous along the other direction (see also [3–
8]). In this case, a strip of the incompressible phase sep-
arates the regions in which successive Landau levels
are partially filled. A voltage difference arises across
the strip, which is compensated for by a chemical
potential jump equal to the distance between the levels.
In samples with a metal electrode (gate) parallel to the
2D electron system, the width of these strips must
undergo a change when the distance between the 2D
system and the gate becomes smaller than, or compara-
ble with, the width of the incompressible strips [7]. In
this paper, we will describe the formation of regions of
the incompressible phase in samples with a gate and a
smoothly varying density of donors supplying elec-
trons to the 2D system in real semiconductors. Our
approach is based on the capacitor approximation that
0021-3640/00/7110- $20.00 © 20417
was previously used in [9] to describe a nonequilibrium
state with a current flowing through the 2D system. The
approximation employed can be simply generalized to
the case when the chemical potential of 2D electrons is
described by a more complicated function of electron
density that differs from the corresponding dependence
for noninteracting electrons at zero temperature, which
was suggested in [2–7]. In particular, our model is eas-
ily adapted to the consideration of nonuniform states in
the case of the fractional quantum Hall effect. In addi-
tion, we will describe effects associated with the
motion of incompressible regions over a sample upon
variation of the gate voltage.

Consider the structure described in the inset in Fig. 1.
Assume that the 2D electron system is created by
means of size quantization in a narrow potential well
whose shape does not depend on the electric field in the
structure. Equating the change in the free energy of the
system of charges in the structure to the work done by
a source of direct-current voltage to separate the
charges, we obtain the following relationship:

(1)

Here, ns and nd are the surface densities of electrons and
ionized donors, respectively; e0 is the position of the
two-dimensional subband bottom, from which the
chemical potential µ of the 2D electron system is mea-
sured; µg is the chemical potential of the gate electron
system; κ is the dielectric constant; and Vg is the volt-
age applied across the gate and the 2D system. In a
quantizing magnetic field H at zero temperature and in
the absence of correlation effects, the dependence of
the chemical potential µ on ns is described by a step

4πe2nsd
κ

--------------------
4πe2ndd1

κ
---------------------- e0 µ µg–+ +– eVg.=
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function of ns with steps at ns = iN0 (that is, when an
integer number i of levels are filled and the number of
electronic states on each of them per unit surface area
is equal to N0 = eH/hc). The step height ∆µ (see Fig. 1)
is determined by the values of the cyclotron and Zee-
man splittings. Next, we will assume that Eq. (1) also
remains valid in the case when the donor density
depends on the (x, y) coordinates in the plane of the
δ-layer of donors but weakly varies on the scale equal
to d (this assumption is equivalent to neglect of the edge
effects in a plane capacitor). In this case, the values of
nd, ns, and µ become dependent on these coordinates. In
accordance with Eq. (1), the electron density at given
values of nd and Vg is found as the intersection point of
the dependence y = µ(ns) and the straight line y = eVg +
µg – ε0 + λndd1 – λnsd1, where λ = 4πe2/κ (solid line 1
and the two dotted lines parallel to 1 in Fig. 1 corre-
sponding to values nd = nd0 and nd = nd0 ± δnd/2, respec-
tively). For the step dependence µ(ns) under consider-
ation, the intersection point falls on either the vertical
(ns = iN0) or one of the horizontal portions of this
dependence. Each type of obtained solution is accom-
plished for a finite range of the density of ionized

donors (δ  = ∆µ/λd1 and δ  = N0d/d1, respec-
tively). A set of points on the (x, y) plane that corre-
sponds to the first of the above ranges forms a region
occupied by the incompressible electron phase. On the

contrary, the second range (δ ) corresponds to the
region of the perfect compressibility of the electron
system. In the case when the jump ∆µ equals the cyclo-
tron splitting value, it is easy to verify that the ratio

δ /δ  = κ"2/2m*e2d = aB/2d, where aB is the Bohr

nd
1( ) nd

2( )

nd
2( )

nd
1( ) nd

2( )

Fig. 1. Schematic diagram demonstrating the behavior of
solutions of Eq. (1) for a step dependence of the chemical
potential µ on the electron density ns. The inset shows a cir-
cuit of a sample with a gate and a delta-layer (δ) of donors
supplying electrons to the 2D electron system.

D

radius in the given material. For samples with 2D elec-
tron systems occurring near a GaAs/AlGaAs hetero-
junction, m* = 0.07me, κ ≈ 12, and the value of d has a

scale of 1000 Å, so that the ratio δ /δ  is much
less than one. The behavior of the system under consid-
eration depends on the relation between the values of

δ  and δ  and the limits of variations of the donor

density in the sample δnd =  – . At δnd < δ ,
depending on Vg (or on the average value of electron

density , which is the same) the electron system can
be both found in either a uniform incompressible or
compressible state and subdivided into regions in
which one of these states is accomplished. In the case
when incompressible regions with a constant electron
density peculiar to these regions form in the sample, the
change in the donor density at the (x, y) coordinates is
compensated for by the change of the charge density in

the gate. At δ  < δnd < δ , uniform states in the
sample can be formed only by the compressible phase.

Finally, at δnd > δ , the uniform states cannot exist.

It is easy to see from Eq. (1) that a change in the gate
voltage Vg leads to a change in the values of nd, which
determine the limits of the ranges corresponding to dif-
ferent types of compressibility of the electron system,
that is, to motion of the compressible and incompress-
ible regions. Here, we consider the motion of these

regions in the case of δ  ! δnd < δ . If these ine-
qualities are fulfilled and the donor density is character-
ized by long-period fluctuations (compared to d), the
incompressible phase occupies only a small part of the
sample surface area and mainly separates regions with
partially filled Landau levels. First, we consider a very
simple geometry when the donor density depends only
on the x coordinate (Fig. 2). The width of the strip of the
incompressible phase arising in this case equals w =

δ /(dnd/dx)  = ∆µ/λd1(dnd/dx) , and the

velocity of its motion is dx0/dVg = –e/λd1(dnd/dx)

(here, x0 is the coordinate of the point at which the
chemical potential falls in the middle of the band gap).
Note that the expression obtained for the width of the
strip of the incompressible phase differs in its structure
and by the linear dependence on the value of ∆µ from
the expression obtained in [2] for structures without a

gate, where w ~ . It is natural that our consider-
ation is valid only at w @ d. Let us calculate the change
in the charge Q of a plane capacitor formed by the layer
of 2D electrons and the gate (see the inset in Fig. 1)
upon a small change in the gate voltage ∆Vg. We will
consider in this case that the charge of donors is frozen
and does not vary upon variation of Vg, as usually
occurs in real samples. From Eq. (1), it is evident that
the change in the surface electron density in the com-

nd
1( ) nd

2( )

nd
1( ) nd

2( )

nd
max nd

min nd
1( )

ns

nd
1( ) nd

2( )

nd
2( )

nd
1( ) nd

2( )

nd
1( )

x x0= x x0=

x x0=

∆µ
JETP LETTERS      Vol. 71      No. 10      2000



INCOMPRESSIBLE ELECTRON PHASE IN FIELD-EFFECT TRANSISTORS 419
Fig. 2. Dependence of the electron density ns on the x coordinate in the region of a sample near the strip of the incompressible phase
for two values of the gate voltage (solid and dashed lines) differing by the ∆Vg value. Panels (a) and (b) refer to the cases of d ! w
and d @ w, respectively. The values of the electric potential (ϕ, etc.) in regions separated by an incompressible strip are indicated
near the curves.
pressible regions equals ∆ns = κ∆Vg/4πed. Moreover, it
is easy to see in Fig. 2a that the capacitor at w @ d is
charged as though a strip of width w in the sample sim-
ply does not takes a charge. As a result, the measured
capacitance C ≡ dQ/dVg must be smaller than the geo-
metrical capacitance Cg = κS/4πd (here, S is the area of
the capacitor plates) because of the decrease in the
effective area of the plates by the quantity δS propor-
tional to w. This result can be easily generalized to the
case of smooth fluctuations of the donor density in both
coordinates defined by the distribution function f(nd,

) (here,  is the average value of nd). At the chosen

relation δ  ! δnd, the wanted equation for the
change in the capacitor charge takes the form ∆Q =

κ(S – δS)∆Vg/4πd = κS∆Vg(1 – f(nd0, )δ )/4πd,
where nd0 is the donor density corresponding to the
position of the chemical potential in the middle of the
band gap. Thereby, we showed that the measured
capacitance of the capacitor in the case under consider-
ation is smaller than the geometrical capacitance Cg by

the value |∆C| = Cg∆µf(nd0, )/λd1 = ∆µf(nd0,

)d/Se2d1. This expression can be reduced to the
expression for the correction to the capacitance [11].
This correction can be derived from Eq. (34) in [10]
obtained by neglecting the sizes of the regions of the
incompressible phase and phenomenologically intro-
ducing a Gaussian distribution function for the electron
density in the 2D system. For this purpose, it should be
assumed that the donor density is described by a Gaus-
sian distribution and the electron density is described
by the distribution function induced by the distribution
chosen for donors in the case of perfect screening. It is
easy to notice that this distribution is also described by
a Gaussian function with a distribution width for elec-
trons σ that differs from the corresponding value for the
donor density σd by the geometrical factor σ = d1σd /d.

nd nd

nd
1( )

nd nd
1( )

nd Cg
2

nd
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As a result, we obtain the following equation for the
correction to the capacitance caused by the chemical
potential jump:

(2)

The consideration presented above is related to the
case when the width of the incompressible strip is sig-
nificantly larger than the distance to the gate d. At the
same time, it is evident that the width of incompressible
strips can be much smaller than d when the distance
between the donor layer and the 2D system is much
smaller than the distance to the gate. In this case, the
formation of strips proceeds through a mechanism sim-
ilar to that considered in [2]. If, at the same time, the
distance between strips is much larger than d, the
capacitor approximation used above is applicable at
large distances from the strip. Let us find in this case the
change in the capacitor charge upon a change in the
gate voltage by a value of ∆Vg @ ∆µ/e, accompanied by
displacement of narrow strips of the incompressible
phase (Fig. 2b). In the presence of only one strip, the
capacitor is naturally subdivided into three regions:
region I with ns < iN0 is separated from region III with
ns > iN0 by region II through which the incompressible
strip has passed, as a result of which the relation
between ns and iN0 in this region has changed. It is eas-
ily seen that the change in the voltage difference (and,
respectively, in the electron density) with respect to the
gate in region II differs from the corresponding value in
regions I and III by a value of ∆µ/e. Then, the change
in the capacitor charge is ∆Q = κ((S – ∆S)∆Vg +
∆S(∆Vg – ∆µ/|e|))/4πd. Here, ∆S is the value by which
the area of the region with ns < iN0 has changed upon
the change in the gate voltage. If the electron density
distribution in a sample is described by the function

f(ns, ), then ∆S ≈ Sf(iN0, )Cg∆Vg/|e|S and, in the

∆C
Cg

2

S
------∆µ

e2
------- 1

πσ
-----------

iN0 ns–( )2

σ2
--------------------------–

 
 
 

.exp–=

ns ns
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Fig. 3. Comparison of the shapes of the minima in the capacitance corresponding to chemical potential jumps in states of the integer
and fractional quantum Hall effects. The procedure of comparison is described in the text.
case of the Gaussian distribution, we obtain an equation
for the capacitance that coincides with Eq. (2).

The consideration given above indicates that the
shape and the width of the peculiarity in the capaci-
tance of a field-effect transistor corresponding to a
chemical potential jump are determined by the density
distribution function of ionized donors (which, in the
case when the incompressible phase occupies a small
part of the sample area, leads to an electron distribution
function of the same shape); therefore, these features
should depend neither on the magnitude of the jump ∆µ
(that is, in particular, on the magnetic field) nor on the
nature of this jump. It is this behavior that was observed
for the peculiarity in the capacitance of a field-effect
transistor based on a single GaAs/AlGaAs heterojunc-
tion with the following architecture of layers above the
heterojunction: AlGaAs layer (70 nm)–delta-layer of
donors (Si)–AlGaAs layer (500 nm)–delta-layer of
donors (Si)–GaAs layer (10 nm). The structure surface
was coated with a metal layer that formed a Schottky
barrier with the heterojunction. The size of the rectan-
gular gate was 0.4 × 2.3 mm. A layer of 2D electrons
was formed near the heterojunction on the GaAs side.
The absolute value of the capacitance between the gate
and the 2D system was found equal to approximately
165 pF. The experimental data for the shape of the min-
ima in the capacitance presented in Fig. 3 turned out to
be coincident for all samples made of the same plate of
the material. The shapes of the various minima were
compared using their parallel translation without
changing the scale of the horizontal axis ns and also
using a change of the scale of the vertical axis by mul-
tiplying the signal by a factor k. This factor is given in
the figures together with the values of the filling factors
corresponding to the minima and with the values of the
magnetic field at which the corresponding curves were
measured. It is evident in Fig. 3 that the peculiarities in
the capacitance have near-Gaussian shape. The min-
ima have similar widths for the even filling factors
(Figs. 3a, 3b) when the chemical potential jump is
determined mainly by the cyclotron splitting; for the
odd factors (Fig. 3c), when the Coulomb effects are
dominant and significantly increase the splitting com-
pared to the seed Zeeman value; and for the fractional
filling factor of 1/3, when the fractional quantum Hall
effect is observed and the energy gap is fully deter-
mined by the electron–electron interaction. It should
be mentioned that the observed behavior of the width
of the capacitance peculiarity fully contradicts the
behavior expected in the case of short-range scatterers
[12], when the broadening of the Landau levels
depends on the magnetic field magnitude and the level
number.

The authors are grateful to the Russian Foundation
for Basic Research, INTAS, and Russian MNTP “Phys-
ics of Solid-State Nanostructures.”
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A new class of collective states, which are assumed to be due to the spontaneous formation of a charge density
wave (“striped” phase) upon filling high Landau levels, was recently observed in a 2D electron system based
on GaAs/AlGaAs(001). The following unsolved problem is considered in the work: what is the reason for stripe
pinning along the crystallographic direction [110]? It is shown that the effective mass of 2D electrons is aniso-
tropic for a single heterojunction (001) A3B5. This natural anisotropy is due to the C2v symmetry of the hetero-
interface and, even being weak (0.1%), can govern the stripe direction. A magnetic field parallel to the interface
induces “magnetic” anisotropy of effective mass. The competition of these two types of anisotropy (natural and
magnetic) provides a quantitative description of the experiment. © 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 73.20.Dx; 73.40.Hm; 71.45.Lr
1. Introduction. Even before the discovery of the
quantum Hall effect, it had been assumed [1] that a uni-
form 2D electron system in strong magnetic fields cor-
responding to the filling of the lowest Landau level,
N = 0 (filling factor ν < 1), can be unstable against the
formation of a 1D charge density wave with a period on
the order of magnetic length. This instability is due to
the exchange interaction resulting in the effective
attraction between electrons. The analysis was carried
out in the Hartree–Fock approximation, which overes-
timates the exchange interaction and ignores electron–
electron correlations. After the discovery of the frac-
tional quantum Hall effect, it became clear that, for ν < 1,
it is the correlation interaction that leads to the forma-
tion of a uniform state of the Laughlin liquid type. Nev-
ertheless, the role of correlations diminishes with fill-
ing a large number of Landau levels and, in principle,
one can expect the indicated instability to appear. It was
predicted in 1996 [2] that a 1D charge density wave
may appear near the half-filling of Landau levels,
beginning with N = 2 [3]. Such a striped phase with a
period of the order of the Larmor diameter should be
energetically more favorable than the Laughlin liquid
and the Wigner crystal [2, 4].

How should this phase be manifested in the trans-
port measurements if it is really formed and pinned for
some reason? Such a problem was considered, proba-
bly, for the first time in a series of old papers [5–7],
where the anisotropic conductivity was calculated [5]
and the high-frequency [6] and heating [7] effects were
studied. In the presence of a periodic 1D potential U(x)
induced by the charge density wave, each Landau level
transforms into a narrow 1D band. At the edges of this
band, the density of states has a power divergence,
0021-3640/00/7110- $20.00 © 20422
which is cut off upon including weak scattering. As a
result, the density of states S(Ef) at the Fermi level has
the shape of a two-toothed fork: a minimum in the cen-
ter of the band and two peaks at the band edges; the
lower the density nim of scatterers, the higher the peaks.
Incomplete filling of this band results in the formation of
stripes differing in the ν value [of the type ν/(ν – 1)/ν/…]
and aligned with the y-axis. The transverse (σxx) and
longitudinal (σyy) conductivities obey different mecha-
nisms and qualitatively differently depend on ν: the σyy

conductivity is high, has a band character, and is
inversely proportional to nim and S2(Ef), while σxx is low,
has a hopping character, and is proportional to nim and
S2(Ef), with the product σxxσyy being independent of
scattering. These results were confirmed and general-
ized in [8, 9]. What did the experiment actually reveal?

In 1999, the conductivity of an electron system with
ultrahigh mobility in the GaAs/AlGaAs(001)-based
structures was studied at very low temperatures near
half-integer ν ≥ 9/2, and a new state was revealed [10–
13] which was assumed to be just the one associated
with the formation of a striped phase predicted in [2].
This assumption was primarily based on the observa-
tion of a giant resistance anisotropy in this system. The
ratio of resistances along the crystallographic direc-

tions [1 0] and [110] reaches the values of Rxx/Ryy ~ 5–
3500, depending on the sample geometry, where [110]
is the “easy” conductivity direction. Moreover, the
behavior of all conductivity tensor components qualita-
tively agrees with the theory [5, 8, 9]. The predicted
behavior of the σxxσyy product near the half-filling of
the upper Landau level numerically agrees with the
experiment [14]. It was also shown in [12, 13] that the

1
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magnetic field B|| ~ 1 T parallel to the interface can
change the direction of easy conductivity. The authors
of [12] concluded that, at high enough B||, the direction
of easy conductivity is perpendicular to the B|| direc-
tion. A similar result was obtained in [13] for B|| || [110]

near all half-integer ν ≥ 9/2 and for B|| || [1 0] near ν =
11/2 and ν = 15/2. The theoretical analysis [15, 16] of
the influence of B||, carried out in the Hartree–Fock
approximation in the model of a parabolic quantum
well, partially explained the results. All this is strong
evidence for the formation of a striped phase. However,
the mechanism responsible for the orientation of the
charge density stripes along a certain preferred direc-
tion in a macroscopic sample (orientational pinning) at
B|| = 0 remains to be clarified. This is one of the funda-
mental unsolved problems.

In this work, Kroemer’s assumption [17] that the
reduced (C2v) symmetry of the potential in a hetero-
structure based on semiconductors without an inversion
center can cause an appearance of a preferred direction
for the conductivity is justified. Symmetry reduction
means that the cubic axis normal to the interface is
transformed from the fourfold mirror–rotational axis
(S4) to the twofold axis (C2). We demonstrate below
that, owing to the asymmetry of the potential of an
atomically abrupt heterojunction, the effective mass
(EM) of 2D electrons is anisotropic (natural anisot-
ropy). At the same time, the presence of B|| also gives
rise to the EM anisotropy (magnetic anisotropy) [18].
Therefore, it is natural to treat (to the lowest order in

) the results of many-particle numerical calculations
of the B|| effect on the orientation of the striped phase
[15, 16] as a manifestation of the magnetic anisotropy of
EM. Thus, the many-particle problem of orientational
pinning of the striped phase reduces to a one-particle
problem of determining the EM anisotropy. We derive
below analytical expressions for both types of EM
anisotropy (natural and magnetic) and demonstrate that
they can compete with each other. At a certain magni-
tude and direction of B||, these two types of anisotropy
exactly cancel, leading to the disappearance of resis-
tance anisotropy, in agreement with the experiment.

2. Natural anisotropy. Before proceeding to the
many-particle problem, it is necessary to construct a
one-particle Hamiltonian for the conduction band in a
(001) III–V heterostructure. As was shown in [19], the
correctly constructed multiband set of equations for the
envelope functions retains information on the hetero-
structure symmetry C2v, which is lower than the sym-
metry Td of the constituent materials. This symmetry
reduction is described, in particular, by certain short-
range potentials localized at the heterointerface. Mix-

1

B||
2
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ing of heavy and light holes at the center of the 2D Bril-
louin zone is one of the consequences of symmetry
reduction [19, 20]. This mixing explains the giant opti-
cal anisotropy (with the same principal axes [110] and

[1 0]) that was discovered in [21] for the quantum
wells based on semiconductors with different cations
and anions. Evidently, low symmetry should also man-
ifest itself in the equation for the envelope functions in
the conduction band. Nevertheless, a single-band equa-
tion obtained in [19] carries no information on the C2v
symmetry, because the corresponding small contribu-
tions were neglected. We must now take them into
account. Since the terms with the symmetry higher than
C2v are of no interest here, the effective Hamiltonian
can include only the operators of kinetic and potential
energies used in the standard EM approximation, as
well as the anisotropic contribution of C2v symmetry,
which will be obtained below.

A single-band Hamiltonian of the C2v symmetry can
be obtained by the method of invariants. Leaving aside
spin–orbit interaction, one can conclude that the C2v
symmetry should manifest itself in the kinetic energy
operator. Let us direct the 2D quasi-momentum compo-
nents along the cubic axes: px || [100] and py || [010].
Then the part of the kinetic energy operator quadratic in
the generalized 2D momentum (Px, Py) should be

(1)

Here, m* is the EM of the conduction band and the quan-
tity ! (which may depend on z) accounts for the natural
anisotropy of EM in the plane of 2D electron gas. Let us
obtain an explicit expression for ! by using a multiband
matrix Hamiltonian [19] acting on the column of enve-
lope functions. In the k representation, it takes the form

(2)

where n and n' are the band indices. The first term in
Eq. (2) includes the contributions from the smooth
potentials and kp interaction and has the standard form.
The second term in Eq. (2) is a contribution from the
atomically abrupt heterointerface potential taken to first
order in the small parameter , where 1/  is the char-
acteristic length of changing the envelope functions and
a is the lattice constant. One can pass to the single-band
variant of envelope-function calculations by applying
the perturbation theory, with the kp and D0 operators as
small perturbation. The second order in the kp interac-
tion gives the first (standard) term in Eq. (1). The third
order (second order in kp and first in D0) provides the
second term of Eq. (1), with !(z) = αδ(z) and
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Here, δ(z) is the Dirac delta function, z = 0 defines the
heterointerface position, 〈n|pi|n'〉  is the ith component
of the interband momentum matrix element, c is the
index of conduction band, m0 is the mass of free elec-
tron, and en is the energy of the nth band edge in one
of the structure materials. In the simplest model, the
key parameters D0nn' of the theory have the form

(4)

The functions G(z) and δU(r) are so defined that the
crystal potential of the heterostructure has the form
U(r) = U1(r) + G(z)δU(r), where U1 and U2 = U1 + δU
are the crystal potentials of both structure materials.
Note that the D0XY parameter accounts for the mixing of
the heavy and light holes at the center of the 2D Bril-
louin zone, with X and Y being the indices of the Bloch
functions corresponding to the edge of the Γ15 valence
band and transforming as x and y under symmetry oper-
ations of the Td group [19, 20].

3. Inclusion of the “magnetic” anisotropy. Reduc-
ing the tensor of reciprocal effective mass to the princi-

pal axes, so that x || [1 0] and y || [110] in the new coor-
dinates, and introducing magnetic field B in the vector-
potential gauge A = (Byz, –Bxz + Bzx, 0), one obtains for
the orbital part of the 3D Hamiltonian of conduction
band

(5)

Here, V(z) is the effective potential of the conduction
band edge, e is the elementary charge, and c is the light
speed. For a finite thickness of the 2D layer, the mag-
netic field component parallel to the heterointerface can
be treated perturbatively [18]. To second order in B||,
this procedure brings about a diamagnetic shift of the
dimensional-quantization subbands and an increase
(for the lowest subband) in EM in the direction perpen-
dicular to B||. The natural EM anisotropy can also be
treated perturbatively. For simplicity, we assume that

B|| is parallel to either [1 0] or [110], so that BxBy = 0.
Collecting all terms second-order in B|| and first-order
in α, one obtains the following expression for the 2D
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Hamiltonian of the lowest subband:

(6)

The parameters of the natural EM anisotropy and the
EM anisotropy induced by the magnetic field are

(7)

where Em is the energy of the bottom of the mth sub-
band at B = 0. The expression for ∆B in Eq. (7) is valid
to the terms second-order in the parameter "ωc/(E2 –
E1), where ωc = eBz/m*c. For the field Bz = 2.5 T (in the
experiment [13], this field corresponds to the filling
factor ν = 9/2), one can neglect this correction in the
estimation of ∆B, because "ωc ≈ 4 meV, while the gap
E2 – E1 should exceed the Fermi energy Ef measured
from the lowest subband; one has Ef ≈ 10 meV for the
2D electron concentration Ns = 2.7 × 1011 cm–2.

4. Estimates. Based on the experimental data [13],
we estimate ∆nat and ∆B for B|| = 0.5 T (if B|| || [110], this
magnetic field converts the resistance from anisotropic
to isotropic; at larger B||, the direction of “easy” con-
ductivity rotates by 90°). Since the information on the
samples is incomplete, we carried out a series of self-
consistent calculations by varying the concentration Na

of residual acceptors in GaAs. At Na = 1014 cm–3 and Ns

taken from [13], the results are

(8)

For other Na values (from 1013 to 1015 cm–3), the results
differ from Eq. (8) by a factor less than two. Equations (7)
and (8) yield the following value for the EM anisotropy
induced by magnetic field B|| = 0.5 T:

(9)

The parameter α can be determined from the equality
∆nat = ∆B to give
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The two-band approximation with energy gap Eg yields
the following estimate for Eq. (3):

(11)

Thus, it follows from the experimental data [13] and
Eqs. (10) and (11) that D0XY ~ 0.4 × 10–8 eV cm. Let us
compare this value with the literature data.

It was found in [20] that different estimates carried
out for the GaAs/AlAs heterostructures either on the
basis of pseudopotential and tight-binding calculations
or from the comparison with the experiment on the
anisotropic exchange splitting of exciton levels in the
II-type superlattices GaAs/AlAs lead to a sizable scat-
ter of the D0XY parameter. The value obtained in [20]
lies in the range (0.35, 0.99) × 10–8 eV cm. Using linear
interpolation, one obtains the upper bound D0XY = 0.3 ×
10–8 eV cm for the GaAs/Al0.3Ga0.7As heterostructure.
This value is in fair agreement with the value obtained
above.

5. Discussion. We can now conclude that the natural
anisotropy of EM is likely the mechanism that pins the
stripe directions at B|| = 0 (see also the end of Section
1). It follows from this conclusion that the parameter α
entering Eq. (1) is negative, α < 0. The competition
between the natural anisotropy ∆nat and anisotropy ∆B

induced by the magnetic field B|| = (0, By) makes the 2D
electron spectrum at B|| = 0.5 T isotropic. As a result,
the stripe directions are randomized and the resistance
becomes isotropic. On further increase in B||, the mag-
netic anisotropy prevails and the stripes rotate at 90°.
The role of EM anisotropy in the formation of many-
electron anisotropic states can be understood as fol-
lows. A 2D electron system with anisotropic EM and
isotropic Coulomb interaction is, obviously, equivalent
to a 2D electron system with isotropic (cyclotron) mass
and anisotropic Coulomb interaction. One can expect
that this effective anisotropic interaction is precisely
the one which pins the orientation of the striped phase
to ensure its observation in the magnetotransport.

For holes, the heterointerface contribution of sym-
metry C2v (and, hence, responsible for the pinning of
the striped phase) is greater than for the conduction
band, because it appears in the first-order perturbation
treatment [19], whereas the anisotropic EM in Eq. (1)
was obtained in the third order. For this reason, one
would expect that the hole striped phase is more stable
and can form upon filling the lower Landau levels (cf.
[22]).
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The magnetic structure of an isolated two-dimensional Pearl vortex uniformly moving in a thin magnetic super-
conductor film is studied. The moving process and the magnetic subsystem sizably renormalize the Pearl vortex
field and induce the formation of an “inversion wake” behind the vortex at a large distance on the order of 10λeff
from its center. The effect can be observed in the magneto-optical experiments. © 2000 MAIK “Nauka/Inter-
periodica”.

PACS numbers: 74.76.-w; 74.60.-w
1. At present, a great many magnetic superconduc-
tors with new unique properties are known [1–3]. In
addition to the ternary compounds [4], magnetism and
superconductivity was found to coexist in HTSC com-
pounds of the REBaCuO, RECuO, etc. types, where
RE stands for the rare-earth ion. Strong antiferromag-
netic correlation of copper spins within the CuO2
planes in the superconducting state is among the crucial
features of the HTSC materials [5].

An external magnetic field enters bulky type II mag-
netic superconductors in the form of Abrikosov vortices
[6] to induce magnetization of a magnetic subsystem
around the normal vortex core at a distance of at least
the order of the London penetration depth λ. A rather
intense transport electric current flowing through a
superconductor in a rarefied mixed state suppresses
pinning and causes the near-isolated Abrikosov vorti-
ces to move with a constant velocity [7].

In studying the magnetic structure of an isolated
Abrikosov vortex slowly and uniformly moving in a
bulky (three-dimensional) magnetic superconductor, it
was predicted in [8] that an “inversion wake” should
appear at large distances (of order 10λ) behind the vor-
tex. Note that if the distance between the vortices d0 @ λ,
the transport current in the bulk of a superconductor is
absent (because of the Meissner effect) and the current
flows only in a near-surface skin layer. For this reason,
this phenomenon, strictly speaking, cannot be reduced to
a two-dimensional problem (as it was done in [8]),
because the system is nonuniform along the core axis Z.

Therefore, the solution obtained in [8] for the two-
dimensional case and the properties of this solution are
valid only in the superconductor bulk, namely, in the
regions at distances h0 @ λ from the interfaces, where
the system can approximately be regarded as two-
dimensional. As the interface between superconductor
and vacuum is approached, the solution will alter, and it
0021-3640/00/7110- $20.00 © 20426
is not at all evident whether the inversion wake phenom-
enon will persist in the exact solution of the three-
dimensional problem. Another important point is that
the inversion wake behind the Abrikosov vortex is very
difficult, if ever, to observe experimentally in the super-
conductor bulk. It will be seen below that this problem
does not arise in the case of a thin superconducting film.

The external magnetic field enters the thin magnetic
superconductor films of thickness d ! λ in the form of
two-dimensional Pearl vortices [9–11] and induces the
magnetization of a magnetic subsystem around the nor-
mal vortex core at distances on the order of the effective
Pearl penetration depth λeff = λ2/d @ λ. A rather intense
transport current flowing through the superconducting
film in a rarefied mixed state suppresses pinning and
causes the near-isolated Pearl vortices to move with a
constant velocity v. It is known that the vortex moves
with the velocity proportional to the transport current,
which also creates a magnetic field. Note that, due to
the linearity of the Maxwell equations (because of the
superposition principle), the constant additive correc-
tion from the magnetic field of the transport current to
the total magnetic field of the Pearl vortex is propor-
tional to the vortex speed v and does not affect the final
solution. Moreover, owing to the inequality v/c ! 1,
this correction is negligibly small even compared to the
magnetic field of the inversion wake and, thus, can be
ignored.

It is clear from the above that the study carried out
in this work on the magnetic structure of an isolated
Pearl vortex uniformly moving in an ultrathin magnetic
superconductor film of thickness d ! λ is a topical
problem. This problem is reduced to that of an infinitely
thin two-dimensional plane, for which all physical
characteristics (field, current, etc.) of the vortex can be
regarded as independent of the z-coordinate perpendic-
ular to the plate plane.
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We assume that the system of interest is two-dimen-
sional regarding not only its superconducting but also
magnetic properties, so that the film permeability can
be written as µ(r – r', t – t') = µ(r – r', t – t')δ(z – z'),
where r = (x, y, z), r = (x, y) and δ(z) is the Dirac delta
function.

The geometry of the problem is as follows: the film
plane coincides with the XY-plane, while the vortex
field is aligned with the Z-axis.

We also assume that the conduction electrons inter-
act with the spin subsystem through the electromag-
netic (dipole) interaction, while the exchange spin–spin
interaction is neglected.

As usual, the structure of the vortex core is ignored
in the London approximation, in accordance with the
condition λ @ ξ and, hence, λeff @ ξ (ξ is the correlation
length). When considering the isolated vortices in a thin
film, one assumes implicitly that the distances between
them d0 @ λeff in the strongly rarefied mixed state in the
range of magnetic fields Hc1 < B ! Hc2. Nevertheless,
owing to the inequality d ! λ, the transport current
flows across the whole width of the film.

It was first pointed out in [12] that the vortex motion
is driven by the Lorentz force from the superfluid cur-
rent component.

We use the kinematic approach and assume that the
dynamic equations allowing for the “pinning” and
other dissipation mechanisms [7, 13] are already solved
for the Pearl vortex and the class of solutions chosen
corresponds to the uniform movement of the isolated
vortex line.

It should be noted that the vortex distortion in the
mixed superconducting state, in principle, should also
be taken into account [14]. However, in the strongly
rarefied mixed state assumed in this work, the distor-
tion is insignificant because of the low vortex concen-
tration and does not affect quantitatively, or even qual-
itatively, the “inversion wake” phenomenon for a mov-
ing Pearl vortex.

2. Following [15–17], we start from the Maxwell
equation for the flux density B(r, t) = rotA(r, t) [A(r, t)
is the vector potential] created by the undamped current
j(r, t) and magnetization vector M(r, t):

(1)

With the London gauge divA(r, t) = 0 for the potential,
the relationship between current, potential, and phase
Θ(r, t) of the order parameter takes the form [15]

(2)

where vector function S(r, t) is related to the phase gra-
dient by the condition

(3)

rotB r t,( ) 4π c⁄( ) j r t,( ) 4πrotM r t,( ).+=
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2π
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with Φ0 being the magnetic flux quantum. With regard
to Eq. (3), the phase of order parameter satisfies the
equation with source

(4)

where  is unit vector (directed along the Z-axis) of the
vortex line at point r0(t).

For a thin magnetic superconductor film, Eq. (2) for
the current density can be written as

(5)

The magnetic field H(r, t) is related to the flux density
B(r, t) by the integral expression

(6)

From Eqs. (1)–(6) one obtains an equation for the vec-
tor potential

(7)

in which it is expressed through the source field S(r, t).
It follows from Eq. (2) and equality divj(r, t) = 0

that divS(r, t) = 0. Applying the curl operation to
Eq. (4), one arrives at the following equation for the
source field S(r, t):

(8)

where r0(t) = vt for a vortex uniformly moving with
velocity v.

Defining the flux density through the vector poten-
tial and making use of the relationship between the
magnetic field, the flux density, and the film permeabil-
ity, one obtains from the set of Eqs. (7) and (8) the fol-
lowing expression for the time-dependent Fourier com-
ponent of the vortex magnetic field:

(9)

where the vector q = (qx, qy), and q = (  + . This
formula is valid for any type of ordering in the mag-
netic subsystem, i.e., for any functional form of the per-
meability dispersion µ(q, ω).

The following distinctions between Eq. (9) for the
Pearl vortex in a two-dimensional superconductor and
the corresponding Eq. (6) in [8] for the Fourier compo-
nent of the magnetic field of the Abrikosov vortex in a
three-dimensional superconductor are noteworthy.
First, the functional dependence on the two-dimen-

rotS r t,( ) ẑΦ0δ r r0 t( )–( ),=

ẑ

j r t,( ) I r t,( )δ z( ) j r t,( )dδ z( )= =

=  
cd

4πλ2
------------ S r t,( ) A r t,( )–[ ]δ z( ).

H r z t, ,( ) t'd r'µ 1– r r'– t t'–,( )B r' z t', ,( ).d

∞–

∞

∫
∞–

t

∫=

rot t'd r'µ 1– r r'– t t'–,( )rotA r' z t', ,( )d

∞–

∞

∫
∞–

t

∫ 
 
 

=  λ eff
1– S r t,( ) A r z t, ,( )–[ ]δ z( ),

rotrotS r t,( ) ∆S r t,( )– Φ0rot ẑδ r vt–( )[ ] ,= =

H q t,( ) ẑΦ0
iqvt–( )exp

µ q qv,( ) 2qλ eff+
-----------------------------------------,=

qx
2 qy

2 )1/2
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sional wave vector q is other than in the three-dimen-
sional case and, second, the characteristic spatial scales
of field variation are different: λ in the three-dimen-
sional superconductor and λeff @ λ in the two-dimen-
sional superconductor.

Since λ @ a (a is the lattice constant), it is natural to
apply a hydrodynamic description to the magnetic sub-
system. Restricting ourselves to the paramagnetic tem-
peratures, we can write for the permeability of the two-
dimensional film [18]

(10)

where χ0 is the static magnetic susceptibility, and the coef-
ficient of spin diffusion for the two-dimensional Heisen-
berg magnetics is [19] D = (1/3)(2π)1/2Ja2[s(s + 1)]1/2 (J is
the intralayer exchange parameter, and s is the spin
value).

Strictly speaking, the superconducting currents
screen the long-wavelength portions of the exchange
and electromagnetic interactions, thereby renormaliz-
ing the parameters of magnetic subsystem [20]. How-
ever, we will not take this into account, because we
consider the paramagnetic range of temperatures and
are interested only in the order-of-magnitude estimates.

Using Eq. (10) for the magnetic permeability, the
Fourier component of vortex field (9) can be repre-
sented as

(11)

where

(12)

(13)

(14)

In these expressions, the following dimensionless vari-

ables are introduced: p = (  +  = qλeff; px =
qxλeff; py = qyλeff; τ = vt/λeff; and η = v/v0, where the
characteristic velocity v0 = D/λeff; and the vortex is
assumed to move in the positive direction of the X-axis.

Making use of Eqs. (11)–(14) and applying the
inverse Fourier transform, we obtain the integral repre-
sentation for the magnetic-field distribution in the iso-

µ q ω,( ) µ1 q ω,( ) iµ2 q ω,( )+ 1
i4πχ0Dq2

ω iDq2+
------------------------,+= =

H px py τ, ,( )

=  ẑΦ0 HRe px py τ, ,( ) iHIm px py τ, ,( )–[ ] ,

HRe px py τ, ,( )

=  µ1 p η px,( ) 2 p+[ ]2 µ2
2 p η px,( )+{ }

–1

× µ1 p η px,( ) 2 p+[ ] pxτ( )cos µ2 p η px,( ) pxτsin–{ } ,

HIm px py τ, ,( )

=  µ1 p η px,( ) 2 p+[ ]2 µ2
2 p η px,( )+{ }

1–

× µ1 p η px,( ) 2 p+[ ] pxτ( )sin µ2 p η px,( ) pxτ( )cos+{ } ,

µ1 p η px,( ) 1 4πχ0 p4 p4 η2 px
2+( )⁄ ,+=

µ2 p η px,( ) 4πχ0η px p2 p4 η2 px
2+( )⁄ .=

px
2 py

2 )1/2
lated two-dimensional Pearl vortex uniformly moving
in a thin magnetic superconductor film,

(15)

In this expression, the HS(x, y, t) function is symmetric
about the X- and Y-axes, whereas the HA(x, y, t) function
is symmetric about the Y-axis but antisymmetric about
the X-axis. The formation of a region of inverted mag-
netic field (inversion wake) in the direction of Pearl
vortex movement (X-axis) can be explained as follows.
The positive contribution to the vortex magnetic field is
dominated by the superposition of two positive maxima
of functions HS and HA, whereas the inversion wake is
formed by the superposition of the positive maximum
of function HS and the negative minimum of function
HA.

The value of χ0 ∝  10–3–10–5 is typical of antiferro-
magnetics. The characteristic velocity v0 ∝  Jsa(a/λeff)
is lower than the spin-wave velocity vs ∝  Jsa by a factor
of (λeff/a) ∝  103–104. The spin-wave velocity in the
CuO2 layers is rather high because of a strong intralayer
exchange: vs ∝  (0.5–1.3) × 107 cm/s [3]; i.e., v0 ∝  103–
104 cm/s. Note that the highest velocity experimentally
observed for the moving Abrikosov vortices in bulky
superconductors is of the same order: vA ≈ 6.6 ×
103 cm/s [21].

Numerical analysis showed that for χ0 ≈ 10–3–10–4

(this is comparable with the susceptibility of the copper
subsystem in HTSC materials) and η = 1, the minimum
of the magnetic-field distribution (inversion wake) at an
arbitrary instant of time τ is situated on the X-axis at a
distance of x0/λeff ∝  5–7 behind the vortex and is of the
order of |Hmin(x0/λeff, 0, τ)|(πλeff)2/Φ0 ∝  10–3–10–4.

For χ0 ∝  10–2 (which is typical of the RE-containing
ternary and HTSC compounds at temperatures near the
magnetic ordering temperature TN ∝  1 K) and η = 1, the
inversion wake is also observed in the stationary mag-
netic-field distribution behind the moving Pearl vortex.
Its minimum at y = 0 is of the order of |Hmin(x0/λeff, 0,
τ)|(πλeff)2/Φ0 ∝  10–2 and is situated on the X-axis at a
distance of x0/λeff ∝  5 from the vortex center. A typical
distribution of the reduced magnetic field H(x/λeff, 0,

H x y t, ,( ) HS x y t, ,( ) HA x y t, ,( )+=

=  
ẑΦ0

πλ eff( )2
------------------- pxd

0

∞

∫ pyHRe px py τ, ,( )d

0

∞
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


× pxx λ eff⁄( ) pyy λ eff⁄( )coscos

+ pxd

0

∞

∫ pyHIm px py τ, ,( )d

0

∞

∫

× pxx λ eff⁄( ) pyy λ eff⁄( )cossin


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.
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τ = 1)(πλeff)2/Φ0 over the X = x/λeff variable is shown in
the figure for y = 0, time τ = 1, and the parameters listed
above. In this figure, the dimensionless field in the
maximum of distribution is of order 10. Note that the
vortex is oblate along the Y-axis.

The vortex velocity v is much lower than the relax-
ation rate ~vs of the magnetic subsystem. Consequently,
the magnetic subsystem almost instantly follows the
field of the moving vortex and renormalizes it by virtue
of the time and spatial dispersion of magnetic permeabil-
ity, giving rise to the inversion wake behind the vortex at
large distances of the order of tens of λeff from its center.

The inversion of the magnetic field behind the vor-
tex (inversion wake) is due to the spin-wave diffusion
accompanying the process of medium (magnetic sub-
system) polarization induced by the field of a uniformly
moving solitary two-dimensional Pearl vortex.

It is known [22, 23] that the inversion of the longi-
tudinal component of the magnetic field generates
attractive forces between the vortices. For this reason,
the vortices moving in thin films of magnetic supercon-
ductors will line up in chains. This phenomenon may
have a drastic effect on the operation of the switching
or memory devices based on the Pearl vortices.

The stationary or nonstationary domain structure,
the cylindrical magnetic domain structure, the labyrinth
structure of Bloch lines, and the structures of a moving
vortex lattice or a moving solitary vortex are usually
visualized at the surface of a specimen, e.g., in the mag-
neto-optical experiments. For this reason, one may
expect that, as distinct from the inversion wake of the
Abrikosov vortex moving in a 3D magnetic supercon-
ductor (see [8]), the inversion wake phenomenon pre-
dicted in this work for the two-dimensional surface
Pearl vortex moving in a 2D magnetic superconductor
can easily be observed in the magneto-optical experi-
ments with thin magnetic superconductor films.

I sincerely acknowledge Yu.E. Kuzovlev for stimu-
lating discussions and assistance in numerical compu-
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tations and A.N. Artemov and Yu.V. Medvedev for dis-
cussion of the results, attention, and assistance.
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It is found that the magnetization reversal of an array of superthin Co films coupled by the ferromagnetic
exchange interaction through the Ag layers may result in a domain structure of an unexpected new type. Due
to the incoherent different-sense spin rotation upon lowering the field perpendicular to the easy axis, the specific
macrodomains first form in a sample. They are separated not by the Neél domain wall but by a wide transition
region containing high-density microdomains of sizes correlating with the grain sizes in the films. Further mag-
netization reversal proceeds through the formation of standard domain walls in the macrodomain in a magne-
tostatic field at the plate edge and through their shifting toward the transition region. These processes are
explained with taking into account the character of the revealed magnetic anisotropy dispersion. © 2000 MAIK
“Nauka/Interperiodica”.

PACS numbers: 75.70.Cn; 75.60.Ch
It is known that real magnetics inevitably contain
lattice defects generating internal microstresses and
microdisorientations in samples. They may combine to
form macrostresses in equilibrium at distances on the
order of the sample size or to form disoriented macro-
scopic crystal domains, such as diversified grain
boundaries, textures, etc. In layered systems, macros-
tresses and crystallographic disorientations often arise
because of a mismatch between the lattice parameters
of the neighboring layers. This all produces disorienta-
tion of the easy magnetic axes (EMAs) in different
crystal regions and gives rise to the anisotropy disper-
sion on different scales. The influence of the dispersion
on the characteristics of hysteresis loops began to be
studied long ago [1].

In recent years, increased interest has been demon-
strated in multilayer films composed of alternating lay-
ers with different magnetic order. They exhibit a num-
ber of unique properties (giant magnetoresistance, uni-
directional anisotropy, etc.) that can be used in solving
problems of great practical importance and that are
largely caused by the unusual behavior of the domain
structure in such materials [2–4]. This behavior is
strongly governed by the character of the anisotropy
field. For this reason, gaining information about the
influence of anisotropy dispersion on the elementary
events of magnetization processes in multilayer struc-
tures is among the most important problems of this
intensively developing field of fundamental and applied
investigations. The results of such investigations are
presented below.
0021-3640/00/7110- $20.00 © 20430
A one-dimensional superlattice of 150 alternating
Co and Ag layers, each 9 Å thick, was grown on an
ALCATEL setup at a pressure of 7 × 10–5 mbar (Ar) by
magnetron (Co) and cathode (Ag) sputtering onto a
SiO2/Si substrate at 77 K. The domain structure was
studied using the magneto-optical indicator film tech-
nique [5]. A single-crystal garnet ferrite film with mag-
netization lying in its plane was used as an indicator
film. It was placed immediately on a sample under
study. The stray fields at its edges, the domain walls,
and the lattice defects induced local deviations of mag-
netization from the indicator film plane. The deviations
were detected using the double Faraday effect in the
polarized light reflected from the aluminum-coated
bottom surface of the film.

The magnetization reversal in different directions
showed that the Co/Ag superlattice possesses an
unusual, though well-defined, uniaxial anisotropy: its
dispersion is responsible for the small-angle (~2°) ran-
dom EMA deviations in micrograins and for an addi-
tional smooth easy-axis rotation (within 14°) across the
whole superlattice sample of size 2 mm studied. The
sample magnetized to saturation in the EMA direction
remained single-domain after switching off the external
field. On a subsequent change in the sign of external
field (H), the domain walls arose at the sample edges in
the region of maximum magnetostatic fields (Fig. 1a).
The displacement of the walls brought about magneti-
zation reversal of the whole sample. Due to the macro-
scopic anisotropy dispersion, the domain walls were
curvilinear. As H departed from the EMA, the magne-
000 MAIK “Nauka/Interperiodica”
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200 µm

(a) (b)

Fig. 1. Domain structures arising in the Co/Ag superlattice upon the magnetization reversal in the inverted field (a) directed along
the EMA (H = –40 Oe) and (b) forming an angle of 45° with the EMA (H = –45 Oe). The white arrows indicate the direction of the
inverted field, and the black arrows indicate the magnetization direction.

200 µm

(a) (b)

(c) (d)

(e) (f)

Fig. 2. Magneto-optical images of the Co/Ag superlattice magnetized along the mean HMA direction (a, d) to saturation at  H =
(a) 200 and (d) –200 Oe, (b) in a weak field of H = 40 Oe, and (c) after switching off the field; (e, f) photographs obtained after
switching off the field (H = –200 Oe) preliminarily turned through an angle of (e) –1° and (f) +1° from the mean HMA.
tization rotation processes began to play an increas-
ingly important role, causing a gradual change in the
mutual arrangement of magnetization in the domains
(Fig. 1b). The sense of elongation of tapered domains
and the curvature of domain walls between them also
markedly changed.

A different type of domain structure was observed
in the Co/Ag superlattice upon magnetization reversal
in the direction of a hard magnetic axis (HMA) perpen-
dicular to the EMA. This process is imaged in Figs. 2a–
2c for one of the superlattice corners. Figure 2a is its
magneto-optical image under the conditions of magne-
tization to saturation in the HMA direction, which is
JETP LETTERS      Vol. 71      No. 10      2000
parallel to the vertical frame of the picture. The hori-
zontal dark stripe is due to the magnetostatic fields that
arose at the sample edge perpendicular to the magneti-
zation M and were exposed by Faraday rotation with
slightly uncrossed nicols of a microscope. The vertical
edge (parallel to M) of the superlattice is not seen in
Fig. 1a. The changes occurring in the magnetostatic
field contrast at the edges of the sample and its center
upon decreasing H (Fig. 2b) give evidence for the pro-
cess of incoherent rotation of the M vectors. It resulted
in a microdomain structure (Fig. 2c) drastically differ-
ent from the aforementioned standard structure with the
edge domains separated by the domain walls, as exem-
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200 µm(a) (b)

(c)(d)

Fig. 3. Photographs of the superlattice with a gradient of the EMA “skew” angle: (a) system is magnetized along the mean HMA at
H = 800 Oe and (b) after switching off the field; (c) change in the magnetization distribution after switching off the field preliminarily
turned through an angle of +1° from its initial direction; (d) domain structure after the subsequent change in sign of the field (H =
−60 Oe).
plified in Fig. 1. The sizes of the resulting micro-
domains correlate with the grain sizes in the superlat-
tice cell substructure, which is easily exposed in the
light reflected from the superlattice surface. On a sub-
sequent change in the sign of H and its increase, the
magneto-optical contrast associated with the micro-
domains gradually faded. The image of the superlattice
magnetized in the direction opposite to that in Fig. 2a is
shown in Fig. 2d.

When the field H deviated from the HMA by an
angle larger than ±1°, the decrease in its magnitude
induced coherent rotation of magnetization clockwise
or counterclockwise in this region of the sample, giving
rise to stray fields and intensifying a uniform magneto-
optical contrast at the vertical edge of the superlattice.
Such a uniform rotation of M upon reducing H to zero
resulted in a homogeneous magnetization of the system
parallel to the EMA (Figs. 2e, 2f).

A small-scale anisotropy dispersion caused by weak
(within one degree) random deviations of the EMAs in
the grains of the multilayer system from the mean
direction specified by the growth-induced anisotropy
has a crucial effect on the formation of the above-men-
tioned microdomain structure in the course of magneti-
zation reversal along the HMA of the superlattice. With
H parallel to HMA, the magnetization reversal was
accounted for by the different-sense rotations of M in
the grains whose EMAs were oppositely directed rela-
tive to the direction of the external magnetic field. This
gave rise to the microdomains.
A smooth and appreciable (up to 14°) change in the
easy-axis orientation across the whole sample in the
direction of mean EMA resulted, upon magnetization
reversal in the perpendicular direction, in a quite
unusual, and as yet theoretically not considered,
domain structure. Apart from the microdomain struc-
ture in the crystal regions where the local HMA devi-
ated from H by small angles (less than 1°) of opposite
signs, the macroscopic domains were also formed in
the neighboring large crystal volumes as a result of the
quasi-uniform different-sense rotations of M (Fig. 3b).
The deviations of the local HMAs in these macro-
domains were of the same sign, but the farther the mac-
rodomain from the microdomain region the larger the
deviation. The macrodomains were separated not by
the usual domain wall but by a wide transition region
with a high concentration of microdomains (Fig. 3b)
identical to those shown in Fig. 2c. Upon the rotation of
H in the film plane and its subsequent decrease from
saturation, the transition region was exposed in a new
region of the sublattice (Fig. 3c), where the mean HMA
direction was parallel to the new H direction.1 

1 Hence, not only the EMA “skew” angle can be measured but the
arrangement of the EMA directions in the superlattice plane can
also be determined by monitoring the angle of H rotation. In par-
ticular, a gradual movement of the transition region between the
macrodomains across the sample (2 mm in size) corresponded to
the H rotation through 14°. The angle between the mean EMA
directions in the portions of neighboring macrodomains shown in
Figs. 3b and 3c is equal to 176°.
JETP LETTERS      Vol. 71      No. 10      2000
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After a change in the H sign, the magnetization
reversal of the macrodomains in a slowly increasing
field of opposite polarity was caused not only by the M
rotation but also by the creation and growth of the stan-
dard tapered domains separated by charged domain
walls. These tapered domains arose in the magneto-
static field at the sample edges after the preliminary
spin rotation through a large angle in the macrodomain
and merged to form a single new macrodomain with the
same longitudinal magnetization as in the initial mac-
rodomain but opposite transverse magnetization
(Fig. 3d).

The reason for the formation of a macroscopic
domain structure upon magnetization reversal in a field
perpendicular to the easy axis of a particular superlat-
tice region is associated with the dispersion of the
growth-induced anisotropy, which causes a smooth
change in the EMA orientation across the whole sam-
ple. In the case considered, the angles measured
between the easy axes in the center of the sample and at
its edges were found to be ±7°. As the departure of H
from the average HMA direction exceeded ±7°, macro-
domains with an unusual transition region between
them did not arise. The whole sample was remagne-
tized as a result of the M rotation and the appearance
and growth of the domains separated by the standard
domain walls (see Fig. 1).

It is known that spins necessarily rotate upon a
decrease in the field that preliminarily magnetized a
uniaxial magnetic parallel to the HMA. In a perfect
magnetic, these processes may proceed coherently in
either of the senses: clockwise or counterclockwise.
The anisotropy dispersion at micro- and macroscopic
distances removed this degeneracy in the sample stud-
ied. The random scatter of the small-angle (±1°) EMA
deviations from the H direction resulted in incoherent
JETP LETTERS      Vol. 71      No. 10      2000
spin rotation in the grains to form microdomains. The
macroscopic dispersion dictated the opposite senses of
spin rotation in the macroscopic volumes adjacent to
the region with microdomains. As the result, the mac-
rodomains were separated not by the Neél domain wall
but by the transition region with a high concentration of
microdomains.

Thus, macrodomains separated by a fixed transition
region with a high concentration of microdomains
arose at the stage of H decrease every half-period of an
alternating field (pulsed, sinusoidal, or arbitrarily vary-
ing with time) with a sufficiently large amplitude. After
changing sign of the field and a rise in its magnitude, a
mobile domain wall grew in the macrodomain. The
subsequent displacement of the wall to the transition
region up to their annihilation resulted in magnetization
reversal of the macrodomain. The magnetization rever-
sal of the whole sample was completed by adjusting the
M vectors to the H direction across the whole sample.
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The transport properties of GaAs/AlGaAs submicron rings with split gates in the conditions corresponding to
the ring resistance RSD > h/e2 are studied. Oscillations of RSD as a function of the gate voltage VG are experi-
mentally observed. The oscillations are caused by the single-electron charging of two triangular conducting
regions into which the ring is divided in the tunneling regime. © 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 73.23.-b; 73.40.Gk
Although the first fundamental experiments aimed
at studying the charge carrier transport processes in
mesoscopic systems were performed on submicron
metal cylinders [1] and rings [2–4], a considerable part
of the experimental data in this area of research were
obtained from the studies of the coherent properties of
electron interferometers fabricated on the basis of
GaAs/AlGaAs heterojunctions [5–13]. By now, the
coherent transport processes in such interferometers
have been well studied for rings in the metallic conduc-
tion regime, while the transport properties of semicon-
ductor rings in the tunneling regime remain poorly
understood. The main distinction between the
GaAs/AlGaAs and the metal rings consists in the fact
that the dimensions of the conducting regions of a
semiconductor interferometer are determined not only
by the lithography but also by the depletion regions that
are formed along the boundaries of the conducting
channels, while, in metal ring interferometers, such
depletion regions are absent. Figure 1 schematically
represents a ring with a split gate (G1 and G2) and the
depletion regions. The dashed lines show the geometry
of the conducting regions of the interferometer in the
metallic conduction regime [14]. This geometry is sup-
ported by the self-consistent calculations of the electro-
static potential and the electron density for a similar
interferometer [15]. As the conduction regime in a
GaAs/AlGaAs ring changes from metallic (the ring
resistance is RSD < h/e2) to the tunneling regime (RSD >
h/e2), the depletion regions belonging to the opposite
sides of the conducting regions merge in the narrowest
conducting areas, resulting in the formation of noncon-
ducting bridges. One can see that, in this case, the ring
0021-3640/00/7110- $20.00 © 20434
is divided by four tunneling gaps into two triangular
conducting regions located at the ring splitting points.
The role of these regions in the interference processes
that occur in the conditions of the tunneling-coupled
edge current states was mentioned earlier [16], but no
reliable experimental proof has been obtained for the
conducting region geometry presented in Fig. 1. This
paper reports the observation of single-electron oscilla-
tions in the resistance of GaAs/AlGaAs rings, which
experimentally confirms the fact that, in the tunneling
regime, the ring is divided into two conducting regions
whose area is an order of magnitude less than the effec-
tive area of the ring interferometer.

The rings studied in the experiment were fabricated
on the basis of a GaAs/AlGaAs heterojunction with the
use of electron-beam lithography and dry etching. The
2D electron gas that was formed in the initial
GaAs/AlGaAs heterojunction grown by molecular
beam epitaxy had the following parameters after illu-
mination at T = 4.2 K: the electron concentration ns =
1.45 × 1012 cm–2 and the mobility µ = 3.4 × 104 cm2/(V s)
(the spacer thickness was 3 nm). A ring with the effec-
tive radius reff = 0.12 µm, which was determined from
the period of h/e oscillations, was studied in detail. For
a ring with reff = 0.2 µm, a qualitatively similar behav-
ior was observed. The experiments were performed at
temperatures from 0.1 to 40 K in magnetic fields up to
15 T. The two-terminal resistance of the rings was mea-
sured by a phase-sensitive amplifier at alternating cur-
rent frequencies from 7 to 800 Hz, with the source–
drain voltage not exceeding kT/e. The experimental
data presented below were obtained for the ring with
000 MAIK “Nauka/Interperiodica”
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the smaller radius whose schematic view is presented in
Fig. 1.

Figure 2a shows the characteristic dependences of
the ring resistance RSD on the gate voltage VG simulta-
neously applied to both parts of the gate. The depen-
dence RSD(VG) exhibits large-scale oscillations with a
quasi-period of 40–60 mV and small-scale oscillations
with the characteristic period ∆VG = 5–6 mV. The large-
scale oscillations were observed up to the temperatures
30–40 K, and their position and amplitude depended on
the magnetic field strength. The small-scale oscillations
disappeared at temperatures above 10 K, and their
period remained constant in magnetic fields up to 15 T.

In the tunneling regime, as well as in the metallic
conduction regime, the magnetoresistance of the ring
(Fig. 2b) exhibits h/e oscillations whose period corre-
sponds to a single-quantum variation in the magnetic

Fig. 1. Schematic diagram of a GaAs/AlGaAs ring with a
split gate in the tunneling regime. The dark areas represent
the 2D electron gas, the gray areas show the depletion
regions, and the white areas are the etch regions. The dashed
lines show the ring geometry in the metallic conduction
regime.
JETP LETTERS      Vol. 71      No. 10      2000
flux through a circular area of radius reff = 0.12 µm. The
observation of the Aharonov–Bohm oscillations testi-
fies that, in the conditions RSD > h/e2, the electron trans-
port in the ring possesses an interference component, as
was observed earlier for an electron interferometer with
a quantum dot in one of its channels [11].

One of the possible mechanisms that may be
responsible for the periodic oscillations observed in the
RSD(VG) dependences is the resonance tunneling of
charge carriers through the one-dimensional levels of a
ring which is weakly coupled to the source and the
drain [17]. In this case, for two-terminal resistance, one
should observe the effect of the gate voltage VG on the
amplitude of the h/e oscillations within a half-period
equal to ∆VG/2 = 2.5–3 mV. Figure 3 presents the
dependences RSD(VG) and RSD(B) on the intervals of VG

and B on which the oscillation amplitudes are compa-
rable. These dependences show that the aforemen-
tioned effect is absent. For different gate voltages, the
dependences of the resistance on magnetic field are
only shifted relative to each other without any changes
in the amplitude of the h/e oscillations. This result
allows us to conclude that, in the GaAs/AlGaAs inter-
ferometers under study, the model of a ring weakly cou-
pled to the source and the drain [17] is not realized. If
we assume that, in the regime RSD > h/e2, the ring is
divided in two conducting regions (lakes) coupled by
tunneling with each other, as well as with the source
and the drain (according to the geometry of the system),
the observed periodic oscillations of the ring resistance
as a function of the gate voltage can be explained by a
single-electron charging of these lakes. This assump-
tion is confirmed by the observation of spontaneous
switching of the ring resistance with the accompanying
jumplike phase shifts in the oscillations of RSD(VG).
Such behavior is characteristic of single-electron oscil-
lations and is related to the fluctuations of the “tele-
graph noise” type in the polarization of the Coulomb
islands. In our case, the switching may occur as a result
of the uncontrolled recharging of an impurity atom in
the doping layer separated from the conducting channel
by a relatively thin spacer. In contrast to such behavior,
Fig. 2. The RSD(VG) and RSD(B) dependences at T = 1.3 K. (a) B = 0; (b) VG = –254 mV.
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Fig. 3. The RSD(VG) and RSD(B) dependences at T = 1.3 K. (a) The thin and thick lines correspond to different directions of the VG
sweep at B = 0. (b) The upper curve is for VG = 114.6 mV, and the lower curve is for VG = 111.6 mV. The thin lines correspond to
the experimental dependences, and the thick lines correspond to the dependences with the subtracted monotonic component.

Fig. 4. (a) The RSD(VG) dependences at T = 4.2 K for different values of VG2. (b) The thin lines show the dependences of the Fourier
amplitude on 1/∆VG1 for the experimental curves presented in plot (a); the thick line shows the average dependence.

Fig. 5. (a) The RSD(B) dependence in the conditions of tunneling-coupled edge current states at T = 0.1 K. (b) Dependence of the
Fourier amplitude on 1/∆B. The inset schematically represents the edge current states.
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for insignificant switchings of the ring states, the ampli-
tude of the h/e oscillations remained constant within
the experimental error.

Figure 4a presents the dependences of RSD on the
voltage VG1 applied to one part of the gate, with differ-
ent voltages VG2 applied to the other part. As one would
expect, in this case, the period of the single-electron
oscillations increased by a factor of two as compared to
the situation with the same voltage simultaneously
applied to both parts of the gate. The geometry of Fig. 1
for the conducting regions of the ring in the tunneling
regime is experimentally supported by the results of the
Fourier analysis of single-electron oscillations. These
results are presented in Fig. 4b. Two pronounced peaks
corresponding to single-electron charging of each of
the two electron lakes are observed. In the framework
of this model, the aperiodic fluctuations in the RSD(VG)
dependences can be caused by the resonance tunneling
of charge carriers through the localized states of the
electron lakes. However, for an unambiguous interpre-
tation of these fluctuations, additional experimental
studies and their comparison with the theory are neces-
sary.

Figure 5a displays the dependence of RSD on mag-
netic field in the conditions of tunneling-coupled edge
current states. The Fourier analysis of this dependence
yields two peaks (Fig. 5b), one of which corresponds to
the period of the h/2e oscillations, and the other corre-
sponds to a period that is an order of magnitude greater.
Although qualitatively similar dependences of the
resistance on magnetic field in the conditions of tunnel-
ing-coupled edge current states were observed earlier
[16], no convincing interpretation of the experimental
data was provided. The inset in Fig. 5b schematically
represents the current states that correspond to the
topology of the conducting regions of the ring. Four
regions of the exchange between the edge current states
are present, and they are located in the narrowest areas
of the interferometer. In the framework of this model,
the appearance of h/2e oscillations is related to the tun-
neling of electrons with different spins through the
internal closed state of the ring [18, 19], and the greater
period oscillations can only be attributed to the area of
the triangular conducting regions located at the ring
splitting points. Then, the area of these regions should
be a factor of 5–10 less than the effective area of the
interferometer, which is quite admissible with allow-
ance for the fabrication tolerances of electron lithogra-
phy and correlates well with the ring micrographs
obtained by a scanning electron microscope.

Thus, it is experimentally established that the trans-
port properties of GaAs/AlGaAs rings in the tunneling
regime are determined by two triangular conducting
regions located at the splitting points of the electron
channels of the interferometer. It is shown that, in the
JETP LETTERS      Vol. 71      No. 10      2000
conditions RSD > h/e2, the Aharonov–Bohm oscillations
coexist with single-electron oscillations of the ring con-
ductivity.
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Temperature-dependent remanent polarization of negative muons in a silicon crystal doped with phosphorus
(3.2 × 1012, 2.3 × 1015, and 4.5 × 1018 cm–3) and aluminum (2 × 1014 and 2.4 × 1018 cm–3) was examined. Mea-
surements were made over the temperature range 4–300 K in a magnetic field of 2000 G perpendicular to the
muon spin. Temperature dependence of the relaxation rate was determined for the magnetic moment of a shal-
low Al acceptor center in a nondeformed silicon sample, and the hyperfine interaction constant was estimated
for the interaction between the magnetic moments of muon and electron shell of the muonic µAl atom in silicon.
© 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 76.75.+i
Unlike shallow donor centers, shallow acceptors in
semiconductor crystals with diamond structure have been
adequately studied neither theoretically nor experimen-
tally [1]. For instance, different theoretical calculations
predict different ground-state energies for the shallow
acceptors in Si, GaP, or InP semiconductors (see [2–4]).
Only a few experimental works are known in which the
shallow acceptor centers in silicon were studied by elec-
tron paramagnetic resonance (EPR) [5–8].

It was demonstrated both theoretically [9] and exper-
imentally [10–13] that the negative-muon spin rotation
(µ–SR) method is suitable for studying the behavior of
acceptor centers in semiconductors and that the results
of these studies can materially supplement the data
obtained by the other nuclear physical methods.

The behavior of the polarization of a negative muon
in silicon depends on the charge state of an acceptor
center formed through muon capture by the silicon
atom. Since silicon is a diamagnetic substance (the
influence of the nonzero nuclear magnetic moment of
the Si29 isotope is negligible), the polarization vector of
the ionized (diamagnetic) acceptor center placed in an
external magnetic field perpendicular to the muon spin
should execute undamped precession at a free-spin fre-
quency. In the neutral (paramagnetic) state, the preces-
sion may relax and its frequency may shift due to the
interaction between the magnetic moments of muon
0021-3640/00/7110- $20.00 © 20438
and acceptor electron shell. The magnetic moment of a
shallow acceptor in silicon is specified by the quantum
number j = 3/2 [14]. Analytic expressions for the polar-
ization of the negative muon were derived by Gorelkin
et al. in [15] for the j ≥ 1 case. On the assumption that
the relaxation rate (ν) of the electronic magnetic
moment far exceeds the hyperfine interaction constant
(Ahf) for the interaction between the magnetic moments
of muon and electron shell, the frequency shift (∆ω and
the relaxation rate (λ) of muon spin depend on Ahf and
ν as [15]

(1)

(2)

where ∆ω = ω(T) – ω0 (ω0 is the angular frequency of
muon precession in the diamagnetic state of a muonic
atom); h = 2π" is the Planck constant; kB is the Boltz-
mann constant; µB and µµ are the Bohr and muonic
magnetons, respectively; g is the acceptor g factor; and
ωe = gµBB/" is the angular frequency of the precession
executed by the electronic magnetic moment in the
external magnetic field B.
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Fig. 1. Temperature-dependent (a) relaxation rate of muon spin and (b) frequency shift of muon spin precession in silicon samples
with different concentrations of aluminum impurity: (s) 2 × 1014 cm–3 and (n) 2.4 × 1018 cm–3.
With j = 1/2, Eqs. (1) and (2) coincide with the well-
known formulas for a positive muon in a muonium
atom (see, e.g., [16]).

This work reports results of the µ–SR studies for five
silicon single-crystal samples [three n-type samples
doped with phosphorus (3.2 × 1012, 2.3 × 1015, and
4.5 × 1018 cm–3) and two p-type samples doped with
aluminum (2 × 1014 and 2.4 × 1018 cm–3)].

Measurements were performed on a “Stuttgart µSR
Spectrometer” apparatus [17] placed at the µE4 muon
channel of the proton accelerator of the Paul Scherrer
Institut (Switzerland). A spin-transverse external mag-
netic field of 2000 G was created in the samples by
Helmholtz coils. The sample temperature was main-
tained to within 0.1 K in the range 4.2–300 K. The
time-channel width of the spectrometer was 0.625 ns,
and the total number of channels in the spectrum was
16000.

The procedure of reconstructing the polarization
function for negative muons from the experimental
µ−SR spectra is described in detail in [13]. The experi-
mental data were used to determine the temperature
dependences of the muon spin relaxation rate and fre-
quency shift for the relaxing polarization component.
In the case that both relaxing and nonrelaxing compo-
nents were observed, their relative amplitudes and the
acceptor ionization (µAl0  µAl– transition) rate were
also determined.

The experimentally measured temperature depen-
dences of the muon spin relaxation rate are presented in
Figs. 1 and 2 for two aluminum-doped silicon samples
and one phosphorus-doped sample (4.5 × 1018 cm–3),
respectively. Both relaxing and nonrelaxing compo-
nents were observed for the muon spin precession at
T & 30 K in silicon with a high concentration of phos-
phorus impurities (4.5 × 1018 cm–3), as was observed
earlier [13] for an antimony-doped (2 × 1018 cm–3) sam-
ple. Accordingly, in addition to ∆ω and λ, the acceptor
JETP LETTERS      Vol. 71      No. 10      2000
ionization rate νtr was also determined from the exper-
imental data for this sample. The resulting temperature-
dependent νtr is shown in Fig. 2. For all remaining sam-
ples, including those with a high concentration of alu-
minum impurities (2 × 1018 cm–3), only the relaxing
polarization component was observed for the muon
spin at T < 50 K. In this case, the zero-time precession
amplitude corresponded to its room-temperature value.

The temperature dependence of the frequency shift
is not contradictory to the Curie law 1/T for any of the
samples studied (see, e.g., Fig. 1). This implies that the
second term in Eq. (1) for the frequency shift is small
compared to the first paramagnetic term. Ignoring the
second term in Eq. (1), one can estimate the Ahf value
from the experimental data for ∆ω/ω0 (the g factor is
equal to 1.07 [8]). The resulting Ahf /2π values were
found to be approximately the same and equal to ≈3 ×
107 s–1 for all samples. It should be noted that this

Λ
, v

tr
(µ

s–
1 )

Fig. 2. Temperature-dependent (s) relaxation rate λ of
muon spin in the paramagnetic state of the acceptor center
and (n) transition rate νtr from the paramagnetic to the dia-
magnetic state of the acceptor center.
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Summary table of the C and q parameters for different acceptor centers (n is the impurity concentration)

Si : Al Si : Al Si : P Si : P Si : P

n, cm–3 2 × 1014 2.4 × 1018 3.2 × 1012 2.3 × 1015 4.5 × 1018

C × 10–7, s–1 0.2 ± 0.1 7.3 ± 1.7 0.27 ± 0.09 0.45 ± 0.16 22.0 ± 11.0

q 3.10 ± 0.2 2.1 ± 0.1 3.1 ± 0.1 2.9 ± 0.10 1.8 ± 0.2

ν (T = 4 K), s–1 1.5 × 108 1.3 × 109 2.0 × 108 2.5 × 108 2.6 × 109
Ahf /2π value is approximately 20 times smaller than the
muon spin oscillation frequency derived earlier from
the experiment carried out for a silicon sample with
intrinsic conductivity in zero external magnetic field at
6 K [18]. The observation of zero-field muon spin oscil-
lations is the most reliable and direct method of deter-
mining Ahf. Unfortunately, the results of work [18] have
not been confirmed in further experiments. The reason
for such a substantial discrepancy between our esti-
mates of the hyperfine interaction constant and the
results of [18] is yet to be clarified.

In our recent work [13], we have shown that the
muon spin relaxation in silicon is governed by the spin–
lattice relaxation of the acceptor center. The Tq-type
(1 ≤ q ≤ 9) temperature dependence of the spin–lattice
relaxation rate was observed by the EPR method in var-
ious materials (see, e.g., [19]). To our knowledge, there
is only one theoretical work [20] in which the tempera-
ture dependence was calculated for the rate of spin–lat-
tice relaxation of an acceptor center in a perfect silicon
crystal. According to [20], the spin–lattice relaxation in
the temperature range 10–100 K is dominated by the
phonon Raman scattering and the relaxation rate varies
with temperature as T5.

The temperature dependence obtained in this work
for the muon spin relaxation rate in silicon fits Eq. (2)
if one assumes that the relaxation rate of the acceptor
magnetic moment varies with temperature as

(3)

The experimental data were processed with j = 3/2
and Ahf/2π = 3 × 107 s–1. The values of the C and q
parameters obtained for different samples are given in
the table. Note that, unlike the C parameter, q is virtu-
ally independent of Ahf . One can see in the table that the
power-law exponent q varies from 2 to 3 for different
samples. Therefore, the temperature dependences
obtained in this work for the relaxation rates of accep-
tor magnetic moment markedly deviate from the T5 law
expected for a perfect crystal [20]. The cause for the
discrepancy between the experimental results and the-
oretical predictions may be that the calculations [20]
did not take into account the phonon lifetime, although
it varies as 1/T2 or, in some cases, even more steeply
below the Debye temperature [21]. The weakening of
the temperature dependence (decrease in the q parame-
ter) at impurity concentrations above ~1018 cm–3 may

ν T( ) CTq.=
be caused by impurity-induced crystal deformations
and the ensuing distortion of the phonon spectrum [22].

The last row in the table presents the acceptor relax-
ation rates ν at 4 K. Although these values do not con-
tradict the EPR data for uniaxially compressed silicon
samples [5–7], the EPR data on the magnetic relaxation
rates of shallow acceptors in nondeformed silicon sam-
ples are lacking.

The acceptor ionization at T & 30 K (see Fig. 2) can
be caused by electron capture from the conduction
band or by the interaction with the nearest lying donor
impurity resulting in the transition of both impurity
centers from the neutral to the ionized state (A0D0 
A–D+) [23]. It follows from the EPR experiments [24]
that n-type silicon becomes a degenerate semiconduc-
tor at an impurity concentration of ~3 × 1018 cm–3 (only
a single line due to conduction band electrons is
observed in the EPR spectrum). For degenerate n-type
silicon, both ionization mechanisms can be regarded as
the capture of a conduction band electron by an accep-
tor. Accordingly, the rate of electron capture by the neu-
tral acceptor is determined as (see, e.g., [25]) νtr = βne,
where β is the capture coefficient and ne is the concen-
tration of free electrons. Taking ne = nD = 4.5 × 1018 cm–3

and using the values of νtr given in Fig. 2, one obtains
approximately the 2 × 10–13 cm3 s–1 and 7 × 10–14 cm3 s–1

values for the β(Al0) coefficient in the temperature
ranges 4.5 ≤ T ≥ 10 K and 12 ≤ T ≤ 30 K, respectively.
To our knowledge, there is only one work [26] where
the β(Al0) value (determined by the photoexcitation
method) was equal to 4 × 10–8 cm3 s–1. However, it is
worth noting (see, e.g., [27]) that the experimental data
on electron capture by neutral acceptors (B, In, or Ga)
in silicon show a wide (up to 5 orders) scatter in the
capture coefficient, while the β values obtained in [26]
are in a systematic excess over the data measured by the
other methods. Our estimate obtained for β(Al0) at T =
30 K lies between the β(In0) = 8 × 10–15 cm3 s–1 and
β(In0) = 2 × 10–12 cm3 s–1 values determined by the pho-
toconduction relaxation method in [25] and [28],
respectively.

In summary, the experimental data obtained in this
work and the analytic expressions [15] for the muon
spin relaxation rate and precession frequency shift in
the atom with j = 3/2 were used to estimate the hyper-
fine interaction constant for the interaction between the
magnetic moments of muon and electron shell of a
JETP LETTERS      Vol. 71      No. 10      2000
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muonic µAl atom and to determine the temperature
dependence of the relaxation rate for the magnetic
moment of a shallow acceptor center in a nondeformed
silicon sample. Estimations are also carried out for the
coefficient of electron capture by neutral aluminum and
silicon atoms.
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ported in part by the Bundesministerium für Bildung
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The behavior of the surface and near-surface layers of macroscopic FeBO3 single crystals is studied over the
temperature range from 291 K to Neél temperature (TN) using depth-selective conversion-electron Mössbauer
spectroscopy. Three different phases or states, namely, an antiferromagnetically ordered phase (similar to the
crystal bulk state), a surface phase, and a transition layer between them coexist near the Neél point in a surface
layer ~500 nm thick. The critical parameters found for the bulk phase agree well with the theoretical critical
index νth ≅  0.63 predicted by the 3D Ising model. As the crystal surface is approached, the critical parameter β
increases to 0.51(2) but remains smaller than the value of β = 0.8 for the surface of a semi-infinite Heisenberg
model. Therefore, the effective dimensionality of the system, being equal to 3 in the bulk, decreases at the crys-
tal surface. © 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 75.30.Kz; 75.40.-s; 68.35.Rh
Critical behavior of surfaces has attracted consider-
able attention of researchers since the 1970s [1, 2]. A
great many theoretical works on this problem have
been published to date (see references in [3–7]). The
first experimental studies of the surface properties were
carried out for thin powders and films [8–10], because
the methods for gaining information about the surface
states of macroscopic crystals and its direct comparison
with the bulk data were lacking. Although the interpre-
tation of experimental data is a challenge, the investiga-
tions of thin powders and films were helpful in eluci-
dating some surface properties. A unique interpretation
of surface phenomena calls for studies of the surfaces
of macroscopic crystals by the experimental methods
which can be used not only for measuring the magnetic
characteristics but also for a layer-by-layer analysis of
a near-surface layer at depths from 1 to 100 nm with an
appropriate depth resolution.

Of fundamental interest is the behavior of a thin sur-
face layer in the region of bulk critical temperature, as
well as a change in the critical parameters upon
approaching the surface. The first Mössbauer studies of
macroscopic samples [10–12] revealed distinctions in
the bulk and surface behaviors near the critical point.
The relaxation effects absent in the bulk but occurring
in the surface layers of FeBO3 macrocrystals near the
Neél temperature were observed in [11]. It was shown
in [10, 12] that the magnetic ordering temperature in a
thin surface layer is lower than in the bulk of the sam-
ple. It was also found that the Neél temperature in
FeBO3 crystals gradually decreases within a surface
layer of thickness 300 nm [12].
0021-3640/00/7110- $20.00 © 20442
The use of a method allowing the surface layer to be
analyzed with an accuracy of a few nanometers enabled
the authors of [13] to observe the lowering of the effec-
tive magnetic field (or magnetization) as the surface of
an FeBO3 crystal was approached at 2.4(9) nm. Though
consistent with the data in [9, 14], this result was not
observed in [10–12], probably because of a low depth
resolution (no higher than ~200 nm) in works [10–12].

Thus, an analysis of the available experimental data
indicates that these data are not nearly numerous
enough for them to be compared with the theoretical
predictions.

In this work, the critical behavior of a surface layer
is experimentally studied for a bulky FeBO3 crystal in
the region of phase transition to a disordered state at the
Neél temperature (TN). Measurements were carried out
using depth-selective conversion-electron Mössbauer
spectroscopy (DSCEMS). In the past decade, the
DSCEMS method was intensively elaborated, and now
it can be used for analysis of the nanometer scale-thick
layers [15]. We used computer simulation to refine the
magnetostatic electronic analyzer in a DSCEM spec-
trometer, with the aim of enhancing luminosity and
improving the accuracy of electron energy resolution
[16]. The use of a refined DSCEM spectrometer in
studying the surface properties of various macroscopic
crystals [13, 17] made it possible to obtain new data
which are consistent with the theoretical predictions.

Mössbauer studies of critical behavior present diffi-
culties because the effective magnetic fields are low, so
that the Zeeman levels are not resolved in the spectrum.
This sizably impairs the accuracy of determination of
000 MAIK “Nauka/Interperiodica”
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the critical parameters. However, if the iron ions
occupy equivalent positions in a crystal, an analysis of
the spectra is greatly simplified in the region of critical
temperature. Because of this, the studies were carried
out with one of the simplest rhombohedral FeBO3 crys-
tals belonging to the orthorhombic system [18]. The
magnetic structure of FeBO3 is formed from two sub-
lattices of iron ions occupying two equivalent octahe-
dral positions antiferromagnetically coupled at temper-
atures below the bulk TN = 348.3 K. Crystal symmetry

(space group ) allows for a weak ferromagnetic
moment in the basal plane perpendicular to the three-
fold axis C, as was confirmed in [18, 19]. The bulk crit-
ical behavior of FeBO3 crystals is well known [18–21].

FeBO3 crystals were synthesized by spontaneous
crystallization from a melt containing iron oxide 96%
enriched with the 57Fe isotope. Plates ~7 mm in diame-
ter and ~150-µm thick were chosen for Mössbauer
measurements. The plate planes coincided with the
basal (111) plane. The sample surfaces were processed
in two steps: (1) by mechanical polishing with fine pol-
ishing powders and light etchants and (2) by chemical
polishing for ~50 h at room temperature in a 1 : 1 mix-
ture of H3PO4 and H2SO4 acids. It should be empha-
sized that the experimental results were reproduced
only for the chemically polished samples. As a result,
the magnetic structure of surface layers as thin as 2 nm
did not differ from the structure of crystal bulk, as was
justified by the DSCEMS measurements of isomer
shifts and quadrupole splittings in the range of para-
magnetic temperatures. The Mössbauer spectra
recorded with a DSCEM spectrometer for different
electron energies in the range of the 57Fe K-conversion
line are shown in Fig. 1. It is seen from the electron-
yield functions at the bottom of Fig. 1 that electrons
with energies 7.25 keV mainly escape from the 20-nm
layer, whereas electrons with energy 6.5 keV escape
from the layer ~120 nm thick. The experimental spectra
were normalized, and their residuals are shown at the
right of Fig. 1.

One can see from Fig. 1 that at temperatures below
TN the spectra consist of a single well-resolved Zeeman
sextet. The ratio 3 : 4 : 1 observed at 300 K for the pairs
of its components suggests that the crystals were prop-
erly oriented. Below ~341 K, the spectra are virtually
identical for both electron energies. At 341.25 K, the
lines of the 7.25 keV spectrum are appreciably broad-
ened. On a further rise in temperature, a line similar to
the paramagnetic line appears on the background of the
Zeeman sextet in the spectrum of electrons with energy
7.25 keV. The intensity of this line increases with tem-
perature, while the lines of the sextet come close
together and become less intense. Thus, the lines corre-
sponding to the magnetically ordered and paramagnetic
states coexist in the spectra of electrons with energy
7.25 keV in the TN region.

D3D
6
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The spectra of electrons with energy 6.8 keV suffer
the following transformations upon passing through the
Neél point of FeBO3. The separation between the com-
ponents of the Zeeman sextet gradually deceases,
whereupon the sextet collapses into a paramagnetic
doublet. This transformation is clearly seen in Fig. 1. At
348.25 K, i.e., only 0.1 K below TN, the Mössbauer
spectra look virtually identical for the electrons of both
energies (Fig. 1). This strongly suggests that the thick-
ness of a magnetically distinctive surface layer
increased to ~200 nm. The exact thickness of this layer
can be determined upon detection of the 57Fe L elec-
trons, which allow an analysis of surface layers as thick
as 600 nm [15].

An analysis of the Mössbauer spectra for different
electron energies and different temperatures showed
that they can be described adequately only upon
decomposition into three components or phases: CI,
CII, and CIII. The magnetic characteristics of the CI
state are similar to those of the FeBO3 bulk and agree
well with the data in [12, 18–21]. The CII phase is sim-

Fig. 1. Mössbauer spectra recorded using the DSCEMS
method by detecting 57Fe K-conversion electrons of two
energies. The electron-yield functions are presented at the
bottom. The residuals of the spectra are shown at the right.
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ilar to CI, but is characterized by a slight lowering and
scatter of the effective magnetic field (Bhf). The degree
of lowering and scatter of Bhf is considerable for the
CIII component (at 300 K, the field decreases by 15%).
The validity of such a decomposition into three phases
was confirmed by the results of decomposition of the
DSCEMS data according to the depth of the layer ana-
lyzed. The matter is that the other possible ways of
decomposition (within the statistical experimental
error) bring about results incompatible with the theory
of electron transport.

The log–log plots of the temperature-dependent
effective magnetic fields (Bhf) calculated for these three
states are shown in Fig. 2. It is seen from Fig. 2 that the
effective fields at the nuclei of iron ions located in a
layer situated closer to the crystal surface (the CIII
phase) decrease with increasing temperature faster than
the fields at the iron nuclei situated farther below the

Fig. 2. Log–log plots of the effective magnetic field (Bhf) vs.
t = TN – T for the CI, CII, and CIII states.

Fig. 3. Temperature-dependent layer thicknesses DII and
DIII for the CII and CIII states, respectively. The solid lines
correspond to the calculations by Eq. (2). The errors of
determination are within the symbols.

CI
CII
CIII

CII
CIII
surface (the CI phase). To check the reproducibility of
the results obtained for a given temperature, the spectra
were recorded repeatedly and with different sequences
of temperature. An analysis of these data showed that
the results are reproducible. The critical indices for the
CI and CII states coincide, within the statistical error, at
temperatures below 346 K, while the distinctions at T >
346 K may be explained by the statistical correlation
arising in the course of mathematical processing of the
spectra. The critical index β1 = 0.348(4) obtained from
the relationship

(1)

is in compliance with the data in [18–21]. The use of
Eq. (1) for calculating the critical index of the CII state
gave β2 = 0.353(7), whereas the corresponding value
for the CIII state was found to be β2 = 0.51(2). One can
see from Fig. 2 that the experimental data agree well
with the results of extrapolating by Eq. (1) (shown in
Fig. 2 by solid lines).

As mentioned above, the volume (or thickness) of
the CIII phase increases in the region of the Neél point.
To determine the temperature dependences for the
thicknesses DII and DIII of the CII and CIII phases,
respectively, the Mössbauer spectra were analyzed. The
resulting data for DII and DIII are presented in Fig. 3 as
functions of effective magnetic field (Bhf) in the CI state
closest to the crystal bulk. For Bhf ≥ 10 T, i.e., t ≥ 2 K,
the DII and DIII values obey the power law

(2)

as follows from the coincidence of the experimental
points with the solid lines displaying this power law in
Fig. 3. Using the relationship ν3/β1 = 1.7(1) for DIII and
the value of β1 = 0.348(4) determined above for the crit-
ical index, one gets ν3 = 0.59(4). The temperature
dependence of DII is weaker and gives a value of 0.5(1)
for the ν2/β1 ratio. At temperatures above 346.5 K, the
thicknesses of the DII and DIII phases increase much
faster, in contradiction to the results obtained by the
extrapolation of Eq. (2), shown in Fig. 3 by solid lines.
It is conceivable that, starting at this temperature, the
pattern of transition of the system to the paramagnetic
state becomes more complicated. This is also con-
firmed by the appearance of a paramagnetic CIII com-
ponent in the Mössbauer spectra and an increase in its
intensity with temperature starting at 346.5 K.

Thus, the behavior of the surface and near-surface
layers of macroscopic FeBO3 single crystals was stud-
ied in the region of bulk critical temperatures. It is
shown experimentally that three different states occur
within the surface layer of thickness ~500 nm near the
Neél temperature: the antiferromagnetically ordered
phase (similar to the crystal bulk state) lying deep
below the surface, the surface phase, and the transition
layer between them. The characteristic ν3 value for the
thickness of the surface phase at t ≥ 2 K agrees well

Bhf T( ) Bhf 0( ) 1 T T N⁄–( )β,=

D Bhf( ) D0Bhf
ν β1⁄– ,=
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with the theoretical critical index νth ≅  0.63 obtained for
the correlation length ξbulk in the 3D Ising model [22].
The surface correlation length ξsurface of a semi-infinite
system should be the same [3, 6]. In the t = 0.65 region,
the critical fluctuations become comparable with the
Larmor precession of the Mössbauer nucleus (10–8 s) as
t  0 K, manifesting themselves by the paramagnetic
contribution to the spectra in this temperature range.
Consequently, the appearance of the superparamag-
netic-type spectra near the Neél point is explained by
the spin-wave excitation at lower temperatures and the
critical fluctuations in the vicinity of TN. One can con-
clude from the intensity ratio of the Mössbauer lines
that the magnetic moments relax in the basal plane, i.e.,
perpendicularly to the C-axis.

The critical index β3 = 0.51(2) lies between the bulk
value and the value corresponding to the surface of a
semi-infinite Heisenberg model, for which β = 0.8 [7,
22]. The ν3 and νth values coincide because an increase
in the D and ξ parameters with temperature competes
with the magnetocrystalline anisotropy. The effective
dimensionality of the system likely equals 3. A steeper
increase in D at t < 1 K is indicative of a lower dimen-
sionality.

The Russian authors are grateful to the PROMT
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with software. The German authors thank the German
Science Foundation for support in the design of the
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Russian Foundation for Basic Research, project no. 98-
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