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One of the most interesting and still unresolved
problems is the structure of a (nonperturbative) vacuum
in QCD and a confinement mechanism.

At present, we have a number of different compet-
ing scenarios of confinement. One of the most promis-
ing approaches is a quasiclassical approach promoted
by Polyakov [1], which assumes that in the treatment of
infrared problems certain classical field configurations
are of paramount importance. These classical field con-
figurations (“pseudoparticles”) are supposed to be sta-
ble; i.e., they correspond to local minima of the action,
and the interaction of these pseudoparticles creates a
correlation length which corresponds to a new scale-
confinement scale. This approach gives a clear field-
theoretical prescription of how to calculate analytically
nonperturbative observables in the weak coupling
region. In principle, this approach can be extended to
the case of “quasi-stable” solutions.

Another very attractive approach is a topological (or
monopole) mechanism of confinement [2]. This mech-
anism suggests that the QCD vacuum state behaves like
a magnetic (dual) superconductor, abelian magnetic
monopoles playing the role of Cooper pairs, at least for
the specially chosen (“maximally abelian”) gauge [3].
For the time being, this approach remains the most pop-
ular one in numerical studies in lattice QCD.

It is rather tempting to try to interpret lattice (abe-
lian) monopoles as pseudoparticles (stable or quasi-sta-
ble). Recently, classical solutions have been found
which correspond to Dirac sheet (i.e., flux tube) config-
urations [4]. It is the aim of this note to study the mono-
pole-like (M ) abelian solutions of classical equations
of motion in SU(2) and U(1) lattice gauge theories in
d = 3 and d = 4 dimensions.
In what follows, periodic boundary conditions are pre-

sumed. Lattice derivatives are ∂µfx = fx + µ – fx , fx =

M

∂µ

1This article was submitted by the author in English.
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fx – fx – µ, and fx = fx – fx – µUx – µ; µ . ∆ =

− , and the lattice spacing is chosen to be unity.

ABELIAN CLASSICAL SOLUTIONS

Iterative procedure. Classical equations of motion
are

(1)

where Uxµν ∈  SU(2). For abelian solutions Uxµν =
exp(iσ3θxµν), Eq. (1) becomes

(2)

Let us represent the plaquette angle θxµν in the form

(3)

and nxµν = –nxνµ are integer numbers. The classical
equations of motion (2) can be represented in the form

(4)

where

(5)

and  = 0. For any given configuration {nxµν},
these equations can be solved iteratively:

    …    …, (6)

∇ µ U( ) Ux µ– ; µ
†

∂µ∂µµ∑

ImTr σa∇ µUxµν{ }
µ
∑ 0,=

∂ν θxµνsin
ν
∑ 0.=

θxµν θ̃xµν 2πnxµν; π θ̃xµν π,≤<–+=

∂νθxµν

ν
∑ Fxµ θ( ),=

Fxµ θ( ) ∂ν θxµν θxµνsin–( )
ν
∑≡

∂µFxµµ∑

θxµ
1( ) θxµ

2( ) θxµ
k( )
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Fig. 1. Iterative solution of the classical equations.
where

(7)

and

(8)

In the Lorentz gauge  = 0, Eqs. (7), (8) are
equivalent to

(9)

where  = 2π  and  = Fxµ(θ(k)) at k ≥ 1.
Evidently,

(10)

Defining the propagator

(11)

one can easily find solutions of Eq. (9):

(12)

(13)

and  = 0.

The results of the iterative solution can be summa-
rized as follows.

1. The convergence of this iterative procedure is
very fast and becomes even faster with increasing dis-
tance between the monopole and antimonopole. As an
example, the dependence of the action on the number of
iterations on the 84 lattice, where R1 and R2 are posi-
tions of the static monopole and antimonopole, respec-
tively, is shown in Fig. 1a. In fact, the first approxima-
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x∑
tion , as given in Eq. (12), is a very good approxi-
mation to the exact solution.

2. There are no solutions if the monopole and anti-
monopole are too close to each other. As an example, in
Fig. 1b, one can see the dependence of the action on the
number of iteration steps for R2 – R1 = (0, 0, 2).

3. In four dimensions, only static (i.e., three-dimen-
sional) solutions have been found.

STABILITY

The question of stability of the classical solution

 is the question of the eigenvalues λj of the matrix

, where

(14)

where Scl = S(Ucl) and  are infinitesimal variations

of the gauge field. A solution  is stable if all λj ≥ 0.
However, a solution can be unstable but quasi-stable if,
say, only one eigenvalue is negative: λ1 < 0, λj ≥ 0, j ≠ 1.
A cooling history of such a configuration might dem-
onstrate an approximate plateau. If it were the case, one
could extend, in principle, Polyakov’s approach to the
case of quasistable solutions.

It is rather easy to show that in the case of U(1) theory
M  solutions are stable; i.e., they correspond to local min-
ima of the action. Therefore, Polyakov’s approach based
on the M  classical solutions is expected to describe con-
finement, and pseudoparticles are (anti)monopoles.

The stability of M  classical solutions in SU(2)
theory was studied numerically. For this purpose, every
classical M -configuration was (slightly) heated and
then a (soft) cooling procedure was used. In Fig. 2, one
can see a typical cooling history of such a configura-
tion. The classical action Scl corresponding to the M -

configuration is ~130. Therefore, the M  classical
solution looks absolutely unstable.
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It is interesting to compare the stability of monopole
classical solutions with that of Dirac sheet (flux tube)
solutions. In Fig. 3, one can see a typical cooling of a
heated single Dirac sheet (SDS) [4] in SU(2) theory.
Parameters of the cooling were chosen to be the same
for all configurations. In fact, it is also unstable. How-
ever, a strong plateau permits this configuration to be
defined as quasi-stable.

Fig. 2.

Fig. 3.

4d SU(2); Cooling procedure

Monopole–antimonopole configuration

4d SU(2); Cooling procedure
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SUMMARY AND DISCUSSIONS
Classical solutions corresponding to monopole–

antimonopole pairs in 3d and 4d SU(2) and (compact)
U(1) lattice gauge theories have been found.

In the case of 3d and 4d U(1) theories, these mono-
pole–antimonopole classical solutions (M  pseudoparti-
cles) are stable; i.e., they correspond to local minima of
the action. Therefore, the quasiclassical approach has a
chance to be successful.

In contrast, in SU(2) theory (d = 3 and d = 4),
M  classical solutions are completely unstable. At the
moment, it is not clear whether Polyakov’s (quasiclassi-
cal) approach can be applied to nonabelian theories (at
least, with monopoles as pseudoparticles). It is very
probable that the vacuum in the (compact) U(1) theory
is a rather poor model of the vacuum in SU(2) theory.

It is interesting to note that the Dirac sheet (i.e., flux
tube) solutions are quasi-stable in SU(2) theories (for
d = 3 and d = 4). This observation could be interesting
in view of the famous spaghetti vacuum picture where
the color magnetic quantum liquid state is a superposi-
tion of flux-tube states (Copenhagen vacuum) [5].
However, the relevance of this scenario still needs fur-
ther confirmation.

This work was supported by the INTAS (grant
no. 96-370), the Russian Foundation for Basic Research
(project no. 99-01-01230), and the JINR Dubna Heisen-
berg–Landau program.
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Gas breakdown in nitrogen, air, and oxygen in a dc electric field at various interelectrode distances L is studied
experimentally. A scaling law for a low-pressure gas breakdown Udc = f(pL, L/R) is deduced. According to this
scaling law, the breakdown voltage Udc is a function not only of the product of the gas pressure p and the gap
length L, but also of the ratio of the gap length L to the chamber radius R. It is shown that, for any dimensions
of the cylindrical discharge chamber (in the range of L/R under investigation), the ratio of the breakdown elec-
tric field to the gas pressure p at the minimum of the ignition curve remains constant: (Edc/p)min ≈ const. A
method for calculating the ignition curve in a cylindrical discharge chamber with arbitrary values of L and R is
proposed. © 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 51.50.+v; 52.80.Hc
As is known [1–7], the ignition curves of a glow dis-
charge are described by the Paschen law Udc = f(pL);
i.e., the breakdown voltage Udc is a function of the
product of the gas pressure p and the interelectrode dis-
tance L. The Paschen law implies that the ignition
curves Udc(p) measured for various distances L must
coincide if they are drawn as the function Udc(pL).
However, the measurements of the ignition curves of a
glow discharge in neon [8] showed that, with equal val-
ues of the product pL, the breakdown voltage for a long
discharge gap with planar electrodes is significantly
higher than that for a short gap. More recent studies [9–14]
confirmed this conclusion for some other gases (neon,
argon, nitrogen, hydrogen, etc.). In spite of a great
number of experimental and theoretical papers devoted
to low-pressure gas breakdown in a dc electric field, a
method for calculating the ignition curve at arbitrary
values of the interelectrode distance L and the radius of
the discharge chamber R is still lacking.

This paper is devoted to the experimental study of a
breakdown in nitrogen, air, and oxygen in a dc electric
field in a discharge chamber with a variable interelec-
trode distance L. It is shown that, in the range of the
ratio L/R under study, the ignition curves shift toward
high values of the product pL and discharge voltage Udc
as the gap length L increases. In this case, for any val-
ues of the gap length L, the ratio of the breakdown elec-
tric field to the gas pressure (Edc/p)min at the minimum
of the ignition curve remains constant. A generalized
scaling law for the low-pressure gas breakdown Udc =
f(pL, L/R) is deduced. A method allowing one to calcu-
late the ignition curve for a glow discharge in a cylin-
0021-3640/00/7202- $20.00 © 20034
drical chamber with arbitrary dimensions from the
known ignition curve for a narrow discharge gap (for
L/R  0), i.e., from the usual Paschen curve, is
described.

We measured the ignition curves for a glow dis-
charge in the range of dc voltages Udc ≤ 1000 V and
pressures of p ≈ 10–2–10 torr. A discharge tube with an
inner diameter of 63 mm was used. The interelectrode
distance L was varied in the range 0.5–10 cm; conse-
quently, the studies were conducted in the range L/R =
0.16–3.2. Planar parallel electrodes spanned the entire
cross section of the discharge tube. Both the anode and
the cathode were made from stainless steel. The break-
down voltage was measured accurate to ±2 V. When
determining the ignition voltage, the growth rate of the
discharge voltage did not exceed 1 V/s. In all cases, our
procedure for measuring the ignition curves was as fol-
lows. We fixed a certain distance L between the elec-
trodes and then, for various gas pressures p, measured
the breakdown voltage Udc . Below, we explain why
only this way of measuring the ignition curves of a
glow discharge is correct.

Figure 1 shows the ignition curves measured by us
in nitrogen for different distances L between the elec-
trodes. It is seen from the figure that, as L increases, the
ignition curves shift not only toward higher ignition
voltages Udc (as was obtained in [9–14]), but also
toward higher values of pL. Apparently, such a shift of
the ignition curves toward higher values of Udc and pL
with increasing interelectrode distance L may be attrib-
uted to an increase in losses of charged particles on the
000 MAIK “Nauka/Interperiodica”
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Fig. 1. (a) Experimental ignition curves of a glow discharge in nitrogen for the interelectrode distances  L = (1) 0.5, (2) 2, (3) 4, (4) 6,
and (5) 8 cm. (b) Dependences of  and Edc /p on (pL)* obtained from curves (1)–(5) in Fig. 1a and the data from (6) [11],

(7) [15], (8) [16], and (9) [18].

Udc*

(a) (b)

pL (torr cm) (torr cm)

(V
/(

cm
 to

rr
))
cylindrical wall of the discharge tube due to diffusion
across the electric field.

Figure 2 shows the dependences of Umin and
(Edc /p)min on the value of (pL)min obtained from our
experimental ignition curves measured in a nitrogen
discharge by varying the distance L. The solid line
Umin = 407(pL)min and the dashed line (Edc /p)min = 407 ±
5 V/(cm torr) describe the results obtained fairly well.
Hence, for any distance L between the electrodes, the
ratio (Edc /p)min at the minimum of the ignition curve
remains constant. This is also true if we change the
value of the ion–electron emission coefficient γ of the
cathode material (as was noted in [2, 3]).

Note that, by properly choosing the reference axes,
we can make all of the obtained ignition curves almost
coincide. For example, if we take

(1)

(2)

as the abscissa and ordinate, respectively, where a ≈ 0.12
for nitrogen, then the ignition curves presented in
Fig. 1a coincide accurate to ±5 V (Fig. 1b). It is evident
that, for L/R  0, we have the usual Paschen curve
Udc = f(pL). It follows from Eqs. (1) and (2) that

/(pL)* = Udc/pL = Edc /p; i.e., the dependences
Edc /p = f((pL)*) for different ignition curves must also
coincide (which is seen in Fig. 1b). Here, we also see a
reasonable agreement between our results and data
from [11, 15–18]. For air, we have a ≈ 0.09 (Fig. 3) and
for hydrogen, we have a ≈ 0.03 (Fig. 4). Note that, in
Figs. 3 and 4, the dependences Edc /p = f((pL)*)
obtained from experimental results [2, 9, 15, 16, 19]
agree satisfactorily with our data. From our results, it
follows that the scaling law for the gas breakdown can
be written in the form Udc = f(pL, L/R)) or  =
f((pL)*).

pL( )∗ pL 1 L R⁄( )2
+( )

a
,⁄=

Udc* Udc 1 L R⁄( )2+( )a
,⁄=

Udc*

Udc*
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Based on Eqs. (1) and (2) and the values of break-
down voltage given in the figures, we can calculate, to
a high accuracy, the ignition curves for any cylindrical
discharge chamber for arbitrary values of the distance

Fig. 2. Dependences of Umin and (Edc/p)min on (pL)min for
nitrogen. The solid line corresponds to Umin = 407(pL)min, and
the dashed line corresponds to (Edc/p)min = 407 V/(cm torr).

Fig. 3. Dependences of  and Edc/p on (pL)* for a glow

discharge in air for the interelectrode distances L = (1) 0.5,
(2) 1, (3) 2, (4) 5, and (5) 10 cm and the data from (6) [15],
(7) [19], (8) [16], and (9) [20], and (10) [21].
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L and radius R. As an example, we find the position of
the minimum in the ignition curve for a nitrogen dis-
charge for R = 3.15 cm, L = 5 cm, and a stainless-steel
cathode. From Fig. 1b, it is seen that  ≈ 280 V and

 ≈ 0.6 torr cm. From (1) and (2), we obtain

(3)

(4)

For L/R = 1.59, we have Umin ≈ 323 V and (pL)min ≈
0.7 torr cm. From our experimental results, it follows
that Umin ≈ 320 V and (pL)min ≈ 0.73 torr cm; i.e., there
is a good agreement between the coordinates of the
maximum in the ignition curve obtained experimen-
tally and those calculated using Eqs. (1)–(4). To calcu-
late any other point on the ignition curve  and

, we use the same procedure. In the general case,
to calculate the ignition curve in a cylindrical discharge
chamber with arbitrary dimensions, one should have
the Paschen curve (i.e., the ignition curve measured in
a discharge chamber such that L/R  0 and with the
same cathode material). Then, from Eqs. (1) and (2),
one can determine the values of Udc and pL. If the initial
ignition curve has been measured in a discharge cham-
ber with L0 and R0, such that the condition L0/R0  0
does not hold, one should first calculate the dependence

 = f((pL)*) using Eqs. (1) and (2) and then, from the
same relations, calculate the ignition curve for a dis-
charge chamber with the given dimensions L1 and R1.
This may be written more concisely in the following
form:

(5)

Umin*

pL( )min*

pL( )min pL( )min* 1 L R⁄( )2+[ ]0.12
,=

Umin Umin* 1 L R⁄( )2+[ ]0.12
.=

U1*

pL( )1*

Udc*

pL( )1 pL0

1 L1 R1⁄( )2+

1 L0 R0⁄( )2+
-------------------------------

a

,=

Fig. 4. Dependences of  and Edc/p on (pL)* for a glow

discharge in oxygen for the interelectrode distances L = (1) 0.5,
(2) 3, (3) 6, (4) 8 cm and (5) the data from [15].

Udc*

(V
/(

cm
 to

rr
))

(torr cm)
(6)

where the index “1” stands for the ignition curve to be
sought and the index “0” stands for the initially known
ignition curve.

The ignition curve of a glow discharge is usually
measured by two methods: (i) the distance L is fixed,
and the breakdown voltage Udc is measured at different
values of the gas pressure p; and (ii) the value of p is
fixed, and the breakdown voltage Udc is measured at
different values of the distance L. However, the results
obtained in this study show that the latter method of
measuring the ignition curve (at a fixed value of p and
variable L) is incorrect. The ignition curves obtained in
this way are close to the Paschen curve only at small
values of L but shift toward higher breakdown voltages
with increasing L. Hence, the ignition curve of a glow
discharge must be measured by varying the gas pres-
sure p, the distance L between the electrodes being
fixed.

In summary, the ignition of a glow discharge in
nitrogen, air, and oxygen at a variable interelectrode
distance L have been studied experimentally. It is
shown that, at any interelectrode distance L, the ratio
(Edc /p)min at the minimum of the ignition curve remains
constant. In the range of L/R under study, the scaling
law for gas breakdown Udc = f(pL, L/R) holds; i.e., the
breakdown voltage Udc is a function not only of the
product of the gas pressure p and the gap length L, but
also of the ratio L/R. A method for calculating the igni-
tion curve in a cylindrical discharge chamber with arbi-
trary values of L and R is proposed.
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The interaction of a 60-fs laser pulse with argon clusters was experimentally studied. It is shown that cluster
heating by an intense femtosecond pulse preceded by a picosecond prepulse can produce plasma whose ioniza-
tion state is determined by the prepulse properties, while the mean energy of hot electrons is determined by the
main pulse intensity. A simple model of cluster plasma evolution is suggested, allowing an adequate description
of its X-ray emission. © 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 52.50.Jm; 52.25.Nr; 32.30.Rj
1. In recent years, investigations into the interaction
of high-power ultrashort (femtosecond) laser pulses
with solid and gas targets have become particularly top-
ical. On the one hand, these investigations provide
information on the fundamental properties of a sub-
stance in extreme conditions and, on the other, they
allow the use of new approaches to solving applied prob-
lems such as initiation of nuclear reactions, heavy particle
acceleration, and the design of a luminous X-ray source
for medicobiological and lithographic applications
(see, e.g., [1–6]).

2. Evidently, the properties of plasma produced by
an ultrashort laser pulse should primarily depend on the
aggregate state of the target material. For example, the
use of solid targets allows the production of a super-
dense hot (with a temperature of hundreds of electron
volts) plasma whose ionization state is formed by virtue
of electron–ion collisions. In the opposite case of gas
targets, the temperature of the resulting relatively rar-
efied plasma is appreciably lower (tens of electron
volts), while its ionization state is determined by the
processes of multiphoton or tunnel ionization.

However, the original experiments with solid targets
showed that there is one more very important parameter
that determines the character of the interaction of
ultrashort laser pulses with a substance, namely, the
pulse contrast, i.e., the ratio of laser power in the max-
imum of the femtosecond pulse to the prepulse power.
In particular, it turned out that a superdense plasma
could be formed only if exceedingly high-contrast
(~1010) pulses were used, when the heating prepulse
radiation flux density was insufficient for producing
preplasma, so that the energy of the main pulse was
absorbed directly in the solid (see, e.g., [7–11]).
0021-3640/00/7202- $20.00 © 20038
3. In recent years, a new type of cluster targets has
appeared. They represent a gas containing clusters, i.e.,
large atomic or molecular conglomerates that are
formed upon the flow of a cooled gas through a high-
pressure nozzle. The cluster size Lcl and the number Ncl
of particles in the cluster are determined both by the gas
used and its parameters (temperature and density) and
by the nozzle construction and can be as large as Lcl ≈
100–1000 Å and Ncl ≈ 104–6 atom/cluster, the particle
density in the cluster being comparable with the solid-
state density (see, e.g., reviews [1, 12]).

The character of the interaction of a femtosecond
pulse with clusters depends on the pulse contrast to an
even greater extent than in the case of a solid target. The
situation becomes even more complicated, because the
interaction is governed by another two highly impor-
tant parameters, namely, the prepulse duration tprepulse
and the cluster size. Indeed, if the intensity of a femto-
second pulse is high enough (the typical experimental
flux density is qlas ≈ 1017–1018 W/cm2), then the
prepulse flux density is 1013–1014 W/cm2 even for a suf-
ficiently high contrast of 104–105 (typical values for
femtosecond lasers), which is quite sufficient for clus-
ter destruction and the production of a preplasma with
electron temperature Te of the order of 100–300 eV. The
expansion of cluster plasma in time,

, (1)

(Zn and mi are the nuclear charge and the ion mass,
respectively, and Ncr is the critical density for the heat-
ing laser) results in a decrease in the electron density

τexpansion Lcl mi ZnkTe⁄( )1/2 1023 Ncr⁄( )1/3∼
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below its critical value [1]. This means that, if the
prepulse duration satisfies the condition

τprepulse @ τexpansion, (2)

then the main femtosecond pulse interacts not with
clusters but with a rarefied plasma, so that the character
of the interaction is, in fact, the same as in the heating
of a gas target (weak absorption of laser radiation and
the almost total absence of collisional ionization).

One can see from Eq. (1) that for the typical values
kTe ~ 100 eV, Ncr ~ 1021 cm–3, and Lcl ~ 100–1000 Å the
τexpansion value is ~1–10 ps, so that, in the previous
experiments [1] with a nanosecond prepulse, condition
(2) was fulfilled with assurance. In this work, the oppo-
site situation of a comparatively short prepulse τprepulse ≤
τexpansion is experimentally studied for the case where
the cluster preplasma formed after the prepulse con-
tains dense areas efficiently absorbing the main pulse.

4. Experiments were carried out on a UHI10 setup
(Saclay, France) consisting of a Ti : Sa laser with a
wavelength of 800 nm and output of 10 TW. The laser
beam was focused onto a cluster target with the use of
an off-axis parabolic mirror; the beam diameter in the
focal plane was ~25 µm. The duration of the main pulse
was ~60 fs and its energy ~0.6 J, allowing the flux den-
sity on the target to be ~1018 W/cm2. The prepulse dura-
tion was ~1 ps. Since the contrast was ~105, the
prepulse flux density was ~1013 W/cm2.

An argon cluster target was formed upon adiabatic
free expansion through a high-pressure pulsed, conical
nozzle (inlet and outlet diameters 1 and 8 mm, respec-
tively, and length 20 mm).

Plasma diagnostics was performed by X-ray spectros-
copy. Two X-ray spectrographs with spherically bent mica
crystals were arranged in the FSPR-2D scheme [13–15]
and tuned to the spectral ranges 3.9–4.2 Å and 3.35–
3.45 Å, which include the Heα and Heβ lines of the He-
like Ar XVII ion. In some experiments, one of the spec-
trographs was tuned to the 3.72–3.82 Å range, which
included the resonance Lyα line of the H-like Ar XVIII
ion, although this line was failed to be recorded.

5. An example of a spectrum in the range 3.9–4.2 Å
is presented in Fig. 1. For comparison, analogous spec-
tra obtained previously for an argon target heated by a
nanosecond laser pulse [16] and on a plasma focus
setup [17] are also shown in the same figure. It is
clearly seen that the emission spectra of (b) the femto-
second laser plasma and (c) the plasma focus are quite
similar and differ drastically from the emission spectrum
of (a) a nanosecond laser plasma. The main distinctions
are, first, that in cases (b) and (c) the lower multiplicity
ions are present (Ar XV, XIV, XIII, …) and, second,
that the intensities of the Li-like Ar XVI satellites have
different structures. Both distinctions can be easily
explained if one assumes that the plasma ionized state
corresponds to the electron temperature of the order of
100–200 eV, while the spectra are excited by the ener-
getic (with energies ~5–10 keV) electrons. With the
JETP LETTERS      Vol. 72      No. 2      2000
plasma focus, where the plasma temperature is compar-
atively low and high-velocity electron beams are
present, this assumption seems to be quite natural, and
it was used in [17] to explain the experimental results.
Below, we show that if the condition

τprepulse ≤ τexpansion (3)

is fulfilled, then a similar situation may occur for the
femtosecond cluster plasma as well.

6. Let us consider how the ionization state would
form in the femtosecond laser cluster plasma in the
presence of a sufficiently intense picosecond prepulse.

Inasmuch as, in our experiments, the heating radia-
tion flux density in the prepulse was ~1013 W/cm2, one
would expect cluster preheating up to temperatures
Tprepulse of the order of 200 eV. The ionization processes
in such a preplasma would proceed at a nearly solid-
state electron density, and the ionization times for all
argon ions containing m ≥ 3 electrons would be longer
than 1 ps [18]. This means that the He-, Li-, Be-, … like
argon ions would form in the preplasma during the
prepulse, so that the ionization state would be nearly
stationary with the electron temperature Tprepulse . Note
that, since the ionization rate for the 1s shell at such
temperatures is several orders of magnitudes lower than
for the nl (n > 1) shells, the H-like Ar XVIII ions are not
expected to form at the stage of heating by the prepulse.

By the time of the main pulse arrival, the heated
clusters have time to expand slightly, but, if condi-
tion (3) is fulfilled, plasma areas with above-critical
density are retained around each cluster. A femtosec-
ond pulse with flux density ~1018 W/cm2 would be effi-
ciently absorbed in these areas and, according to calcu-

Fig. 1. Emission spectra of argon plasma produced on different
plasma setups: (a) nanosecond laser plasma [16], (b) femtosec-
ond laser plasma (this work), and (c) plasma focus [17].
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lations [12, 19], would heat them up to the temperature
Thot of the order of several kiloelectron volts. Since, in
this case, the plasma density is two orders of magnitude
lower than the solid-state density, the collisional ioniza-
tion times are of the order of hundreds of picoseconds,
even with allowance made for a dramatic increase in
the electron temperature. This implies that the main
pulse would not strongly alter the plasma ionization
state.

Thus, we are led to conclude that the combined
action of the femtosecond pulse and the picosecond
prepulse on the clusters would result in a plasma whose
ionization state is determined by the prepulse flux den-
sity and corresponds to rather low electron tempera-
tures Tprepulse ~ 200 eV and which would contain hot
(kiloelectron-volt) electrons produced by the main
pulse.

7. The above qualitative pattern of cluster heating
dynamics and the equations of quasi-stationary radia-
tion–collisional kinetics were used in this work to cal-
culate plasma luminosity in the experimentally studied
spectral ranges. All argon ions containing m = 1–4 elec-
trons were taken into account and all electronic config-
urations with the principal quantum numbers n < 6

Fig. 2. Emission of argon plasma (1) before and (2) after
arrival of the main femtosecond laser pulse.
were considered, including the autoionizing states of
the He-, Li-, and Be-like ions (a total of 1606 levels
were included). Inasmuch as the thermalization time
for the kiloelectron-volt electrons in a plasma with den-
sity ≤1021 cm–3 is sizably longer than the plasma life-
time, they were considered as a monoenergetic beam
with energy E0, which was set equal to 5 keV in the cal-
culations. The computational results are presented in
Figs. 2 and 3.

The plasma luminosity in the chosen spectral range
is shown in Fig. 2 for two time intervals before the main
pulse (curve 1) and after arrival of the main pulse
(curve 2). One can see that the preplasma heating stage 1
makes a material contribution to the intensities of satel-
lites due to the transitions from the autoionizing levels
of comparatively weakly ionized Be-like Ar XV. For
the Li-like Ar XVI transitions, this stage manifests
itself only in the k, j satellites that are most strongly
excited in the two-electron capture, while the He-like
Ar XVII lines are mostly emitted after heating by the
main pulse.

The calculated time-integrated luminosity is com-
pared with the experimental spectrum in Fig. 3. One
can see that our simple model of cluster plasma dynam-
ics not only qualitatively, but also quantitatively, ade-
quately describes the experimental results. A minor dis-
crepancy between the experimental and theoretical
spectra shown in Fig. 3a is caused by recording the Heγ
Ar XVII (λ = 3.1996 Å) line that corresponds to the
other-order reflection from the mica crystal.

8. In summary, one can see that cluster heating by an
intense femtosecond pulse preceded by a picosecond
prepulse allows the production of plasma whose ioniza-
tion state is governed by the prepulse properties, while
the temperature (or, more precisely, the characteristic
energy) of hot electrons is determined by the intensity
of the main pulse. It follows that the extent of plasma
nonstationarity can be rather simply controlled by
changing the intensity ratio for the pulse and prepulse.
Fig. 3. Comparison of the emission spectra of the femtosecond argon cluster plasma with the model calculations for the spectral
regions including Ar XVII (a) Heα and (b) Heβ lines. The theoretical spectra are calculated for Ne = 1021 cm–3, Tpreplasma = 190 eV,
and E0 = 5 keV.
JETP LETTERS      Vol. 72      No. 2      2000
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Such a plasma is of special interest primarily for the
problems of atomic spectroscopy, because it provides a
possibility of investigating the ion levels that are effec-
tively populated in the collisional excitation or inner-shell
ionization of many-electron, multiply charged ions. At the
same time, plasma with such properties may find some
practical use, e.g., in the problem of designing X-ray
lasers on the Ne- and Ni-like ion transitions, because in
this case the optimum conditions for achieving large
population inversions are naturally realized (see, e.g.,
[20–23]).

This work was supported in part by the INTAS,
grant no. 97-2090.
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A new integral relationship between the fluctuations b(r, t) of a magnetic field and its mean B0(r, t) is derived
for the steady-state magnetic field in a turbulent medium. This formula provides the estimate 〈b · curlb〉  =
−B0 · curlB0. Simultaneously, the coefficient of amplification of the mean magnetic field (α effect) is obtained:

α = (η + β)B0 · curlB0/ . The formula for α allows for a decrease in this coefficient owing to the back action

of the magnetic field on the turbulent velocity field. It is shown that the Zel’dovich’s estimate 〈b2〉  . β/η  for

two-dimensional turbulence holds for magnetic fields at the instant the fluctuations 〈a2〉  of the vector potential,
rather than 〈b2〉 , reach a maximum. Here, η and β are the ohmic (molecular) and turbulent diffusion coefficients,
respectively. This estimate is refined with allowance made for the fact that the condition for diffusion approxi-
mation itself relates the β, b, and B0 quantities to each other. © 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 47.65.+a; 91.25.Cw

B0
2

B0
2

Because of the complexity of a joint analysis of the
Navier– Stokes equation and the induction equation for
the magnetic field

, (1)

estimates of the mean field 〈B〉 ≡ B0 and magnetic fluc-
tuations 〈b2〉  in various limiting cases are of great
importance. In Eq. (1), U0 and u stand for the regular
and stochastic (turbulent) parts of the Eulerian velocity
in a conducting medium, respectively. The magnetic
field B and the vector potential A can be represented as
the sums of their mean and fluctuating parts: B = B0 + b
and A = A0 + a, with 〈b〉  = 0 and 〈a〉  = 0.

Zel’dovich’s paper [1] was among the first works of
this kind where it was shown that a magnetic dynamo
cannot occur for a two-dimensional flow of a conduct-
ing liquid. Zel’dovich also showed that, by the time td ≈

/β, the initial magnetic field B0(r, 0) transforms into
a purely fluctuating field b(r, t) with mean-square

amplitude 〈b2(r, td)〉  ≈ Rm (r, 0). In these expressions,
L0 is the length scale of the initial potential A0 (B0(r, 0)
= curlA0). According to Zel’dovich, the fluctuations
also eventually disappear in the characteristic time ~td .

In interplanetary space, the magnetic Reynolds
number Rm ≈ β/η ≈ u0R0/η is enormously large: Rm ~

∂B
∂t
------- curlU0 B× curlu B× η∇ 2B+ +=

L0
2

B0
2
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109–1014 (u0 and R0 are the characteristic velocity and the
scale of turbulent motions, respectively). Zel’dovich’s

estimate 〈b2〉  ≈ Rm  also came into use for real three-
dimensional turbulence [2–4] to give the α ≈ u0/Rm esti-
mate. It is known [5, 6] that in order to explain the gen-
eration of cosmic magnetic fields it is necessary that α
≈ u0. Therefore, the estimate α ≈ u0/Rm fully rules out
the conventional mechanism of magnetic amplification
(α effect).

It is shown below that the estimate for the 3D turbu-
lence has a different form, namely, α = (η + β)B0 ·

curlB0/  ~ u0. High estimates for the fluctuations
imply that the back action of the magnetic field on the
turbulence is determined by the energy of the fluctua-
tions, rather than by the mean-field energy [3].

To derive new estimates and refine the meaning of
Zel’dovich’s estimate, the method suggested in [7] is
used in this work for an analysis of the pairs of coupled

equations for the A0 · B0 and 〈a · b〉 ,  and 〈a2〉 , and

 and 〈b2〉  quantities. With these systems of equa-
tions, the fluctuation rise dynamics can be traced more
clearly than by considering the means 〈A · B〉 , 〈A2〉 , and
〈B2〉 . Following Zel’dovich, the analysis will be carried
out for the volume-integrated quantities, so that the flux
terms containing divergences disappear owing to the
divergence theorem.

B0
2

B0
2

A0
2

B0
2
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Analysis of the main equations. Seehafer [7] has
derived a system of two exact equations for the evolu-
tion of magnetic helicity 〈A · B〉  = A0 · B0 + 〈a · b〉:

(2)

(3)

Here, E = E0 + e, 〈e〉  = 0 is the electric field strength and
c is the speed of light. One has from [8]

(4)

The electromotive force is F = F0 + f = u × B + U0 × B.
Its mean is F0 = 〈u × b〉  + U0 × B0. In the diffusion
approximation [9, 10], one usually sets

(5)

where the α coefficient describes the amplification of
the mean magnetic field and β is the turbulent diffusion
coefficient. It is assumed in the magnetic dynamo theo-
ries [5, 6, 9, 10] that α ≈ u0 and β ≈ u0R0. The coefficient
α is zero for a mirror-symmetric turbulence, where the
velocity helicity 〈u · curlu〉  = 0. For 2D turbulence,
A · B ≡ 0 and α ≡ 0. It is seen from Eqs. (2) and (3) that
the α effect (more precisely, the term with F0) enhances
(or reduces) the large-scale magnetic helicity and
reduces (or enhances) to the same extent its small-scale
fluctuating part. This statement is the main conclusion
of [7]. It is worth noting that both Eqs. (2) and (3)
should be equally taken into account when considering
the influence of the α effect on the evolution of mag-
netic fluctuations. However, it is more suitable to use
Eq. (4) and the Maxwell equation ∂B0/∂t = –ccurlE0
instead of Eq. (2).

Let us consider a steady-state magnetic field in a
medium. In this case, ∂〈a · b〉/∂t = 0 and B0(r, t) = B0(r)
and, hence, ccurlE0 = –∂B0/∂t = 0; i.e., cE0 = ∇φ 0(r).
Averaging Eq. (4) gives

(6)

Substituting Eq. (6) in Eq. (3) and volume integra-
tion yields the exact relationship

(7)

The term with the potential B0∇φ 0 = div(B0φ0) disap-
pears after applying the divergence theorem. Therefore,
the exact Eq. (7) gives the estimate

(8)

or

(9)

∂A0 B0⋅
∂t

--------------------

=  2ηB0 curlB0 2B0 F0 div cE0 A0×( ),–⋅+⋅–

∂ a b⋅〈 〉
∂t

-------------------

=  2η b curlb⋅〈 〉– 2B0 F0 div c e a×〈 〉( ).–⋅–

cE r t,( ) ηcurlB u B×– U0 B.×–=

u b×〈 〉 α r t,( )B0 r t,( ) β r t,( )curlB0 r t,( ),–≅

F0 ηcurlB0 r( ) ∇ φ0 r( ).–=

Vd b curlb⋅〈 〉 B0 curlB0⋅+[ ]∫ 0.=

b curlb⋅〈 〉 B0 curlB0⋅–≈

b2 r( )〈 〉 l0 L0B0
2 r( ).⁄≈
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Here, l0 is the scale of magnetic fluctuations and L0 is the
scale of the mean magnetic field B0(r). Clearly, l0 < L0
and the energy of magnetic fluctuations is lower than
the energy of the mean magnetic field.

The stationary state of a conducting liquid and a
steady-state magnetic field can be determined by
matching the above components, i.e., with allowance
made for the back action of the magnetic field on the
turbulence. Therefore, Eq. (7) allows for this back reac-
tion, although it is derived without using the Navier–
Stokes equation. The exact integral relationship (7)
may be used as an additional criterion for the correct-
ness of numerical computations of the evolution of a
magnetic field on its way to the stationary state.

In the diffusion approximation (5), the exact Eq. (6)
takes the form

(10)

Making use of the well-known [11] expression for a
curl-free field through its divergence, the following
explicit formula can be written from Eq. (4) for φ0(r):

(11)

This expression is purely formal, because the integrand
contains unknown functions. The diffusion approxima-
tion (5) implies that B0(r) and U0(r) are smooth on the tur-
bulence scale, ~R0. In this case, the term divB0(r)φ0(r)
containing double differentiation of a smooth function is
smaller than the first term in Eq. (10). This yields the
following estimate:

(12)

In the stationary state, the magnetic amplification
caused by the turbulent motion of a conducting liquid
or gas should be in exact balance with the field weak-
ening through ohmic dissipation. This balance cannot
be properly described in the diffusion approximation
(5). Because of this, the substitution of B0 · F0 does not
lead to the exact Eq. (7) in this approximation; instead,
it gives

(13)

Interestingly, this formula also leads to estimate (12),
provided that the exact relationship (7) is used.

The steady-state condition (6) plays a crucial role in
obtaining estimates (7)–(9). Insofar as the term with the
potential disappears upon integration, this condition
implies that it is ohmic dissipation which determines
the relative fluctuation level in the stationary state. In
what follows, the amplitude of nonstationary fluctua-
tions will be estimated for the instant tb or ta when 〈b2〉
or 〈a2〉 , respectively, reaches its maximum value. For
these instants of time, condition (6) is not fulfilled, and
most likely it is the turbulent motions which determine
the fluctuation level, provided that the times tb and ta are

α r( )B0
2 η β+( )B0 curlB0 divB0φ0 r( ).–⋅=

φ0 r( ) = div V' u b×〈 〉 U0 B0×+[ ] r r'– 1– 4π.⁄d∫

α r( ) η β r( )+( )B0 curlB0 B0
2.⁄⋅≈

V η b curlb⋅〈 〉 β r( )B0 curlB0 α r( )B0
2+⋅–[ ]d∫ 0.=
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shorter than the characteristic time for establishing the
stationary state. Evidently, the estimates for these three
characteristic times depend on the particular type of
turbulence. Since the stationary fluctuations (9) are
small, these estimates can be considered as upper
bounds on the fluctuations at times tb and ta .

The Seehafer-type equation for magnetic helicity

can be written directly for the  and 〈b2〉 quantities:

(14)

(15)

These equations are written in the diffusion approxima-
tion, where they pictorially demonstrate the energy
evolution for both the mean magnetic field and mag-
netic fluctuations. The new coefficient γ is of the order

of ≈β/ . The terms with ∇ 2 disappear upon volume
integration, and they will be ignored in the subsequent
estimates. First and foremost, these equations suggest
that the α effect enhances the large-scale magnetic field
and reduces the fluctuations. In the stationary state, the
balance between the enhancement of the large-scale
part and its weakening is mainly provided by the self-
consistency of the coefficients α and β: α ~ β/L0. The
same estimate follows from Eq. (12).

To estimate the mean-square fluctuation 〈b2〉  at
the instant tb reaches its possible maximum, it is
most profitable to use the exact nondiffusional form of
Eq. (15). The corresponding estimate of the expression
−2η〈∇ ibj)2〉 + 2〈(u × B0) · curlb〉 + 2〈(u × b) · curlb〉  = 0
shows that the balance between the enhancement and
weakening of the magnetic field is achieved in two
steps. The main balance is fulfilled at the level of
adjusting the turbulent motions without inclusion of the

ohmic dissipation. This yields 〈b2〉  ~ . The remaining
disbalance of the order of η/u0l0 of the main energy
level is eliminated by the ohmic diffusion. The 〈b2〉  ~

 estimate also persists for the maximum value
η/u0l0 ~ 1 as well. Note that this estimate is valid for the
two-dimensional turbulence as well.

Two-dimensional turbulence. The equations for

 and 〈a2〉  in a 2D turbulence considered by Zel’dov-
ich in [1] have the form

(16)

B0
2

∂B0
2

∂t
--------- 2αB0 curlB0 2 η β+( ) ∇ iB0 j( )2–⋅=

+ η β+( )∇ 2B0
2,

∂ b2〈 〉
∂t

-------------- 2αB0 curlB0 2η ∇ ib j( )2〈 〉–⋅–=

+ 2β ∇ iB0 j( )2 γB0
2 2 b curl u b×( )⋅〈 〉 η ∇ 2 b2〈 〉 .+ + +

R0
2

B0
2

B0
2

A0
2

∂A0
2

∂t
--------- 2ηB0

2– 2A0F0 η∇ 2A0
2,+ +=
(17)

In these equations, the vector potential A = ez[A0(x, y, t) +
a(x, y, t)], while the magnetic field and the turbulent
velocity are perpendicular to the z axis with unit vector ez.
All quantities depend only on the coordinates x, y and
the time t. The electromotive force is directed along the
z axis and equals F0 = –div〈ua〉 . In the diffusion approx-
imation, F0 ≅ β∇ 2A0.

Zel’dovich considered only one volume-integrated

equation for the 〈A2〉  =  + 〈a2〉 quantity:

(18)

He neglected the term with 〈a2〉  on the left-hand side

and the  term on the right-hand side and set d /dt ~

b /  ~ β  to arrive at the estimate 〈b2〉max ~ β/η .
By B0 was meant the initial magnetic field.

Apart from the terms with ∇ 2 and div disappearing
after volume integration, the system of Eqs. (16) and
(17) has a clear physical meaning. The square of the
mean potential monotonically decreases with the char-

acteristic time td ~ /β of turbulent mixing. The mean-
square fluctuation 〈a2〉  of the potential increases from
the initial zero value with the same characteristic time
td, reaches its maximum value 〈a2〉max, and then tends to

zero with the characteristic time tη ~ /η. The system
eventually reaches the stationary state, for which both
the mean magnetic field and its fluctuations disappear,
in accordance with the Zel’dovich dynamo-suppression
theorem.

At the instant ta, when 〈a2〉  reaches its maximum, the
derivative ∂〈a2〉/∂t = 0, and the following estimate holds
in the diffusion approximation:

(19)

This estimate relates the magnetic fluctuations 〈b2〉  to
the mean (not the initial!) magnetic field at the instant
of time when the potential fluctuations reach a maxi-
mum. Therein lies the refinement of Zel’dovich’s esti-
mate. The time corresponding to the maximum of 〈b2〉
fluctuations does not coincide with the time corre-
sponding to the maximum of potential fluctuations 〈a2〉 .
The l0 scale strongly depends on the turbulence struc-
ture and, hence, estimate (19) can apply to the situation
ta @ td for which the mean field B0(ta) is so small that
the fluctuation level 〈b2〉  may be lower than the initial
magnetic field.

Nevertheless, estimate (19) is invalid, because the
diffusion approximation F0 = –div〈ua〉 ≅ β∇ 2A0 itself

∂ a2〈 〉
∂t

-------------- 2η b2〈 〉 2A0F0––=

+ η∇ 2 a2〈 〉 div u 2A0a a2+( )〈 〉 .–

A0
2

td
d

V A0
2 a2〈 〉+[ ]d∫ 2η V B0

2 b2〈 〉+[ ] .d∫–=

B0
2 A0

2

A0
2 L0

2 B0
2 B0

2

L0
2

l0
2

b2 ta( )〈 〉 β ηB0
2

ta( ) . RmB0
2

ta( ).⁄≈
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implies the relationship β ≈ u0l0b/B0. Substitution of
this β value into Eq. (19) gives the final estimate:

(20)

This estimate also directly follows from the exact
Eq. (17) without recourse to the β value. According to
Eq. (20), one has b(ta) ≈ B0(ta) for the Kolmogorov-type
spectra with u0l0 ≈ η. For the spectra with l0 ~ R0, the
fluctuation decay time ta @ td . In this time, B0 virtually
disappears, so that the relative fluctuation level becomes
very high. This example demonstrates that it is more con-
venient to make estimates by using, from the outset, the
exact equations, as was done in the 3D case.

As was already pointed out, the diffusion approxi-
mation cannot be used in determining the stationary
state. In the 2D case considered, divE0 ≡ 0 and the
steady-state condition curlE0 = 0 means that E0 = 0;
i.e., F0 = –η∇ 2A0. Substitution of this expression into
Eq. (17) and volume integration gives

(21)

This means that B0 = 0 and b = 0, as one would expect
according to the Zel’dovich dynamo-suppression theo-
rem. The derivation of Eq. (21) is a somewhat alterna-
tive proof of this theorem.

To summarize, the estimates made in this work for
the stationary 3D case and for a possible 〈b2〉  maximum
before reaching the stationary state indicate that the
magnetic fluctuations are smaller than, or of the same
order as, the energy of the mean magnetic field. This
signifies that the amplification coefficient α can be
large enough, ~u0, for the magnetic dynamo to be real-
ized in interplanetary space.

The estimate 〈b · curlb〉  . –B0 · curlB0 obtained in
this work strongly reduces the estimate for a decrease
in the α coefficient owing to the back action of the mag-
netic field on the turbulence, compared to the results of
[4]. In that work, an approximate analytical theory was
suggested for this effect. The authors did not take into
account the steady-state condition (6) and used the dif-
fusion approximation (5) in the case B0 = const to obtain

from Eq. (13) the relationship 〈b · curlb〉 = –α /η for
the stationary state. They also used the approximate lin-
earized relationship α = –τ0〈u · curlu〉/3 + τ0〈b ·
curlb〉/12πρ to obtain

(22)

where α0 = –τ0〈u · curlu〉/3, ρ is the density of a liquid
or gas, and τ0 is the characteristic time of turbulent

b2 ta( )〈 〉 u0l0 η⁄( )2B0
2 ta( ).≈

V B0
2 b2〈 〉+( )d∫ 0.=

B0
2

α
α0

1 τ0RmB0
2 12πρβ⁄+

------------------------------------------------,=
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velocities. It follows from above that the steady-state
condition (6) should necessarily be taken into account
when considering the stationary case. That is why
Eq. (22) is invalid. However, if the steady-state condi-

tion, i.e., the relationship 〈b · curlb〉  = –α /(η + β)
had been taken into account in [4], then the enormous
Reynolds number Rm would not have appeared in
Eq. (22). Thus, the decrease in α is, in fact, small; it is
only halved if the magnetic and kinetic energies are
equal to one another. This fact is in qualitative agree-
ment with the results of numerical computations [12].
However, it should be pointed out that Eq. (22) was
derived using the Navier–Stokes and magnetic induc-
tion equations linearized in u and b; i.e., it applies only
to relatively weak fluctuations. The estimates obtained
for the fluctuations in this work, to some extent, justify
this approach.
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We suggest a procedure of how to prepare a vortex with N = 1/2 winding number—a counterpart of the Alice
string—in Bose–Einstein condensates. © 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 03.75.Fi; 67.57.Fg
Vortices with a fractional winding number can exist in
different condensed matter systems; see review paper [1].
Observation of atomic Bose condensates with a multi-
component order parameter in laser manipulated traps
opens the possibility to create half-quantum vortices
there. We discuss N = 1/2 vortices in a Bose condensate
with the hyperfine spin F = 1 and also in a mixture of
two Bose condensates.

The order parameter of an F = 1 Bose condensate
consists of three complex components, according to the
number of projections M = (+1, 0, –1). These compo-
nents can be organized to form the complex vector a:

(1)

There are two symmetrically distinct phases of the F = 1
Bose condensates:

(i) The chiral or ferromagnetic state occurs when the
scattering length a2 in the scattering channel of two
atoms with the total spin 2 is less than that with the total
spin zero, a2 < a0 [2, 3]. It is described by the complex
vector

(2)

where  and  are mutually orthogonal unit vectors,

with  =  ×  being the direction of the spontaneous
momentum F of the Bose condensate, which violates
the parity and time-reversal symmetry; f is the ampli-
tude of the order parameter.

Ψν
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m̂ n̂

l̂ m̂ n̂

1This article was submitted by the authors in English.
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(ii) The polar or superfluid nematic state, which
occurs for a2 > a0, is described up to the phase factor by
the real vector 

(3)

where  is a real unit vector. The direction of the vector

 can be inverted by a change in phase Φ  Φ + π.
That is why phase-insensitive properties of the polar

state are also insensitive to the reversal of the  direc-

tion. In this respect,  is similar to the director in nem-
atic liquid crystals.

The chiral state (i) corresponds to the orbital part of
the matrix order parameter in superfluid 3He-A, while
the nematic state (ii) corresponds to the spin part of the
same 3He-A order parameter. The order parameter
matrix of 3He-A is the product of two vector order

parameters: Aαk ∝  . That is why each of the
two states shares some definite properties of superfluid
3He-A.

In particular the chiral state (i) displays continuous
vorticity [2, 3], which was extensively investigated in
superfluid 3He-A (see [4] and reviews [5, 6]). An iso-
lated continuous vortex is the so-called Anderson–Tou-
louse–Chechetkin vortex. The smooth core of the vor-

tex represents the skyrmion, in which the -vector
sweeps the whole unit sphere. Outside the soft core, the

-vector is uniform, while the order parameter phase
has finite winding. In 3He-A and, thus, also in the F = 1
Bose condensate, it is the 4π winding around the soft
core; i.e., the continuous vortex has winding number
N = 2. This continuous vortex can also be represented
[6, 5] as a pair of the so-called continuous Mermin–Ho
vortices [7], each having the winding number N = 1.

a f d̂eiΦ,=

d̂

d̂

d̂
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aα
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chiral
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The -vector in the Mermin–Ho vortex covers only half
of a unit sphere and thus is not uniform outside the soft
core. Such a half-skyrmion is also called a meron. An
optical method to create the meron—the Mermin–Ho
vortex—in the F = 1 Bose condensate has been recently
discussed in [8].

For the spin-1/2 Bose condensates, the order param-
eter is a spinor, which represents “half of the vector”.
That is why the continuous Anderson–Toulouse–
Chechetkin vortex (in which  sweeps the whole unit
sphere) has a winding number that is two times less in
such condensates; i.e., the skyrmion is the N = 1 contin-
uous vortex [9]. The spinorial order parameter is the
counterpart of the order parameter in the Standard
Model of the electroweak interactions, which is the
spinor Higgs field transforming under the SU(2) sym-
metry group. That is why the N = 1 continuous vortex
in the spin-1/2 Bose condensates simulates the contin-
uous electroweak string in the Standard Model. The
Higgs field in the continuous electroweak string (and
thus the N = 1 continuous vortex in the spin-1/2 Bose
condensate) has the following distribution of the order
parameter [10, 11]:

(4)

Here, (z, r, φ) are coordinates of a cylindrical system,
θ(0) = π, and θ(∞) = 0. Note that the meron configura-
tion in such a system, with θ(0) = π and θ(∞) = π/2,
would have an N = 1/2 winding number.

The N = 1 vortices with the order parameter
described by Eq. (4), have recently been generated in a
Bose condensate with two internal levels [12], follow-
ing the proposal elaborated in [13]. Though these two
internal levels are not related by an exact SU(2) sym-
metry, under some conditions there is an approximate
SU(2) symmetry and the N = 1 vortex does represent a
skyrmion. This vortex has a smooth (soft) core, whose
size is essentially larger than that of the conventional
vortex core, which has a dimension of the order of the
coherence length. Such enhancement of the core size
allowed the observation of the N = 1 vortex-skyrmion
by optical methods [12]. From Eq. (4), it follows that
this continuous N = 1 vortex can also be represented as
a vortex in the |↑〉  component, whose core is filled by
the |↓〉  component.

The nematic state (ii) may contain a no less exotic
topological object—the topologically stable N = 1/2
vortex [14]—which has still eluded experimental iden-
tification in superfluid 3He-A. The N = 1/2 vortex is a

l̂
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combination of the π-vortex in the phase Φ and the

π-disclination in the nematic order parameter vector :

(5)

A change in the sign of the vector  when circumscrib-
ing around the core is compensated by a change in sign
of the exponent eiΦ = eiφ/2, so that the whole order param-
eter is smoothly connected after circumnavigating.

This N = 1/2 vortex is the counterpart of the
so-called Alice string considered in particle physics
[15]: a particle which moves around an Alice string
flips its charge or parity. In a similar manner, a quasi-
particle moving adiabatically around the vortex in
3He-A or in a Bose condensate with F = 1 in nematic
state (ii) finds its spin or its momentum projection M
reversed with respect to the fixed environment. This is

because the  vector, which plays the role of quantiza-
tion axis for the spin of a quasiparticle, rotates by π
about the vortex. As a consequence, several phenomena
(e.g., the global Aharonov–Bohm effect) discussed in
the particle physics literature [16, 17] correspond to
effects in 3He-A physics [6, 18], which can be extended
to the atomic Bose condensates.

In high Tc superconductors with a nontrivial order
parameter, the half-quantum vortex was identified as
being attached to the intersection line of three grain
boundaries [19], as suggested in [20]. This N = 1/2 vor-
tex has been observed via the fractional magnetic flux
it generates.

In the spin projection representation, the asymptotic
form of the order parameter in the N = 1/2 vortex in the
nematic phase is

(6)

This means that the N = 1/2 vortex can be represented
as a vortex in the spin-up component |↑〉 , while the
spin-down component |↓〉  is vortex-free. Such a repre-
sentation of the half-quantum vortex in terms of the
regular N = 1 vortex in one of the components of the
order parameter also occurs in 3He-A. The general form
of the order parameter in the half-quantum vortex,
which also includes the core structure, is

(7)

d̂

a f r( ) x̂ φ
2
--- ŷ φ
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Note that, since the M = 0 component in Eq. (6) is
zero, the half-quantum vortex can also be generated in
the Bose condensate with two internal degrees of free-
dom explored in [12]. The necessary condition for this
is that in the equilibrium state of such condensate both
components must be equally populated. This is
required by the asymptotic form of Eq. (7), where both
components have the same amplitude. If the amplitudes
are not exactly equal, the half-quantum vortex acquires
a tail in the form of a domain wall terminating on the
vortex. The same happens in 3He-A, where the half-
quantum vortex is the termination line of the topologi-
cal soliton.

Equation (6) may suggest a way to generate a half-
quantum vortex in an alkali Bose–Einstein condensate
simply by combining the successful idea [12, 13] for
producing skyrmions with proposal [21] for making
scalar vortices by the effect of light forces. Let us start
from the homogeneous state

(8)

which corresponds to the phase Φ = (α + β)/2 and the

nematic vector  = cos(α – β)/2 + sin(α – β)/2.
A light spot will illuminate the condensate with an
intensity distribution I that draws a half-quantized vortex

The light should be a short pulse and it should be non-
resonant with the atomic transition frequencies. Simul-
taneously, uniform microwave radiation will penetrate
the condensate. The radiation should be detuned far
from the transition frequency between the spin compo-
nents |↑〉  and |↓〉  of the condensate, such that it only
causes shifts in the relative phases between |↑〉  and |↓〉
and no population transfer. The light spot will imprint
an optical mask onto the homogeneous microwave field
due to the optical Stark effect. Therefore, the generated
relative phase shift will follow the half-quantum vortex
drawn by the light spot. Simultaneously, the condensate
gains an overall scalar phase factor caused by the intensity
kick of the light. This factor should exactly compensate
for the phase mismatch between the components, which is
left from the optically assisted microwave effect. Of
course, the intensities of light and microwave radiation
should be properly adjusted, but this could be arranged.
In this simple way, an Alice string can be created in a
multicomponent Bose–Einstein condensate of alkali
atoms.
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It is shown that the mixed character of spheroidal vibrational modes of semiconductor quantum dots of spher-
ical shape may lead to the appearance of a line in the low-frequency Raman spectra of nanocrystals whose spec-
tral position is independent of the average radius of nanocrystals in the sample over a wide range of sizes. This
effect is associated with the rapid saturation of the dispersion dependence for transversal acoustic phonons in
the bulk semiconductor. The maximum radius of quantum dots at which the line indicated above is observed in
the spectrum has been estimated. © 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 63.20.Dj; 78.30.Hv; 78.66.Li
In recent years, the physics of semiconductor nano-
heterostructures has developed into an independent
field of investigation in solid-state physics. Quasi-two-
dimensional structures (quantum wells) based on cubic
semiconductors, which possess lower symmetry than
the bulk crystal, are the best understood objects in this
field. The reduction of symmetry in low-dimensional
systems results in the degenerate states of heavy and
light holes at the top of the valence band (the Γ point of
the Brillouin zone) becoming split upon size quantiza-
tion. As a consequence, two sets of size-quantization lev-
els (and related subbands) arise, which correspond to
heavy and light holes at the wave vector in the plane of
layers equal to zero. A different situation is observed in
quantum dots of spherical shape (nanocrystals). These
objects possess the same symmetry as the bulk semicon-
ductor. Therefore, the size-quantization levels generally
correspond to mixed states with contributions from both
heavy and light holes [1, 2]. The spatial confinement
similarly affects acoustic phonons as well: so-called
spheroidal vibrational modes arise, which are neither
longitudinal nor transversal, but have a mixed character
(see [3] and references therein). At first glance, it seems
that this should not strongly affect the experimentally
observed properties of the system. In fact, the mixed
character of size-quantization hole levels in spherical
nanocrystals affects their energy position, but their
dependence on the nanocrystal radius remains propor-
tional to R–2. Analogously, the eigenfrequencies of the
spheroidal vibrational modes of a spherical quantum
dot, as well as the frequencies of the purely longitudi-
nal, totally symmetric mode and the purely transversal,
torsional modes, are inversely proportional to the
radius of the quantum dot. Therefore, the manifestation
of the mixed character of holes and acoustic phonons is
of a quantitative, rather than qualitative, nature. How-
ever, it is not difficult to imagine a situation when the
mixed character of size-quantized particles is of princi-
0021-3640/00/7202- $20.00 © 20049
pal importance. It is this situation that is accomplished
in nature for acoustic phonons in spherical CuCl nanoc-
rystals. In this case, the transversal component of sphe-
roidal vibrations ensures the high density of size-quan-
tized states at the frequency of the boundary bulk TA
phonons, and the contribution of the longitudinal com-
ponent leads to efficient exciton–phonon interaction.
As a result, an intense line is observed in the low-fre-
quency Raman spectra at the frequency of the boundary
bulk TA phonons, whose energy position does not
depend on the radius of the quantum dot.1 Below, we
will first discuss the peculiarities of the quantization of
acoustic phonons in nanocrystals and the selection
rules for low-frequency Raman scattering, and then we
will pass to the consideration of the situation character-
istic of CuCl.

Raman scattering by acoustic phonons in nano-
crystals. Low-frequency Raman scattering in semicon-
ductor nanocrystals has been extensively studied in
recent years [3–10]. Generally, one or several narrow
peaks are observed in Raman spectra, whose energy posi-
tion is inversely proportional to the average radius of
nanocrystals in the sample. This fact, as was mentioned
above, is a consequence of the size quantization of acous-
tic phonons. Actually, if a nanocrystal is considered as a
homogeneous elastic sphere, each vibrational mode can
be associated with a discrete set of eigenfrequencies, the
distance between which is inversely proportional to the
sphere radius. A vibration of the sphere is characterized
by the values of the angular momentum (the total angu-
lar momentum of the phonon) and its projection, and,
additionally, it belongs to one of the two types. The tor-
sional vibrations relate to the first type. These vibrations
are purely transversal; that is, the divergence of the dis-
placement vector for these vibrations equals zero. The
vibrations of the second type have come to be known as

1 A.I. Ekimov, private communication.
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spheroidal. These vibrations are of a mixed nature; that
is, in general, neither the divergence nor the rotor of the
displacement vector for such vibrations vanishes. Note
that there also exists a degenerate case of spheroidal
vibrations corresponding to the total angular momentum
of the phonon F = 0. These are so-called breathing or
totally symmetric vibrations, which are purely longitu-
dinal.

The selection rules for low-frequency Raman scat-
tering in nanocrystals were discussed in a number of
works [3, 11]. In [3], the processes were considered in
which a quasi-zero-dimensional exciton in the ground
state interacting with acoustic phonons through the
deformation potential served as an intermediate state
for light scattering. It was shown that only scattering
processes with the participation of totally symmetric
phonons are possible when the exciton is formed by an
electron and a hole from simple (twofold spin degener-
ate) bands (Γ6 × Γ7 exciton in crystals of the Td class).
If the hole forming the exciton is characterized by the
spin J = 3/2 (Γ6 × Γ8 exciton in crystals of the Td class),
processes with the participation of spheroidal phonons
with the total angular momentum F = 2 are also
allowed. Note that piezoelectric interaction must be
taken into account in polar crystals along with exciton–
phonon interaction through the deformation potential.
However, only the removal of forbiddenness for the
interaction with spheroidal vibrations with the angular
momentum F = 2 will be important in the subsequent
discussion. It has been mentioned above that the suffi-
cient condition for this removal is the occurrence of
interaction through the deformation potential and a
complex structure of the valence band. Therefore, we
will not compare the efficiency of these two mecha-
nisms of exciton–phonon interaction.

Because the intermediate state through which Raman
scattering is carried out (quasi-zero-dimensional exciton)
is localized within a length of the order of the nanocrystal
radius, phonons with a wavelength of the same order of
magnitude will most efficiently interact with this state.
Therefore, only a small number of features correspond-
ing to vibrations of a certain symmetry can be observed
in low-frequency Raman spectra.

Thus, narrow lines corresponding to scattering by
spheroidal phonons with the total angular momentum
F = 0 and F = 2 at frequencies inversely proportional to
the average radius of nanocrystals in the sample must
be observed in low-frequency Raman spectra of semi-
conductor nanocrystals for excitation at a frequency
close to the absorption line associated with the excita-
tion of an exciton with a hole with the spin J = 3/2. Such
spectra were observed in a number of works in which
CdS, CdSe, and CdSxSe1 – x dispersed in various glass
matrices were studied [4, 5, 7–10].

The aforesaid is related in full measure only to the
situation when the acoustic phonons in a bulk semicon-
ductor are described by a linear dispersion law. A char-
acteristic feature of bulk CuCl is the fact that the frequen-
cies of longitudinal acoustic phonons at the boundaries of
the Brillouin zone significantly exceed the frequencies of
transversal acoustic phonons. Thus, at the point X of the
Brillouin zone at T = 4.2 K, ΩTA(X) = 38.6 ± 4 cm–1 and
ΩLA(X) = 123 ± 6 cm–1 [12]. Moreover, the dispersion
branches of transversal acoustic phonons are saturated
rapidly. In this case, the dispersion dependence for the
LA phonons may be considered linear to a great degree
of accuracy in the region where the dispersion law for
the bulk TA phonons is strongly nonlinear. The disper-
sion law of the bulk acoustic phonons in CuCl for the
[100], [110], and [111] directions is given in [12]. The
dispersion branch corresponding to the TA phonons for
the [100] direction is twofold degenerate and goes to
saturation at the point [ξ00] where ξ ≈ 0.4. Below, we
will consider that the phonon spectrum is isotropic and
coincides with the spectrum for the [100] direction.

Quantization of acoustic phonons in CuCl
nanocrystals. Consider how the above peculiarity of
bulk CuCl is formally manifested in the quantization of
phonons in a nanocrystal. The displacement of points
inside a spherical nanocrystal for a spheroidal vibra-
tional mode with the total angular momentum F and its
projection Fz can be written as a linear combination of the

longitudinal  and the transversal 
solutions [3]:

(1)

where Ω is the phonon energy, ql and qt are the wave
numbers of the longitudinal and the transversal bulk

phonons with the energy Ω ,  are spherical

vectors, and jL(x) are Bessel spherical functions. The
coefficients a and b in this linear combination are deter-
mined from the boundary conditions at r = R. We will
neglect the probability of phonon passage from the
nanocrystal to the surrounding matrix. Then, the vibra-
tional spectrum is discrete and the eigenfrequencies are
obtained from the dispersion equation that follows
from the boundary conditions at r = R. From the form
of the displacement given by Eq. (1), it is clear that the
dispersion equation will take the form

(2)

where e(x), f(x), g(x), and h(x) are functions that depend
on the specific form of the boundary conditions and
oscillate with the characteristic distance between its
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zeros of the order of several π. For the boundary condi-
tions corresponding to a sphere with a free surface,
these functions in the explicit form are given, for exam-
ple, in [6]. If, in some region of frequencies, the depen-
dence ql(Ω) is linear and the dependence qt(Ω) is super-
linear, it is clear that f(qtR) and h(qtR), as functions of
the frequency Ω, will oscillate much more frequently
than e(qlR) and g(qlR), determining the characteristic
distance between the roots of Eq. (2) and, consequently,
between the eigenfrequencies of vibrations. Therefore,
a large number of vibrational levels corresponding to
spheroidal acoustic phonons, in particular, with the
total angular momentum F = 2, will crowd together at
the frequency of the boundary bulk TA phonons. The
number of these levels is determined by the number of
roots of the dispersion equation (2) that fall within the
saturation region of the dispersion branch of bulk TA
phonons and is approximately equal to N ≈ (1 – ξ)R/a,
where a is the lattice constant. Hence, a line must be
observed at this frequency in low-frequency Raman
spectra of nanocrystals for excitation at the absorption
line associated with a Γ6 × Γ8 exciton (Z1, 2 line), and its
intensity must be N times higher compared to the case
of the linear dispersion of bulk TA phonons.

According to [3], the matrix element of the exciton–
phonon interaction through the deformation potential
between the vibrations of the form given by Eq. (1)
(with F = 2) and a quasi-zero-dimensional Γ6 × Γ8 exci-
ton in the spherical approximation is proportional to the

quantity aqlBv(qlR) – bqtCv(qtR), where Bv(x) and
Cv(x) are functions determined in [3]. These functions
differ significantly from zero at the values of x smaller
than, or of the order of, several π. The last circumstance
reflects the fact that phonons with a wavelength of the
order of the diameter of the quantum dot interact with
an exciton localized within the quantum dot most effi-
ciently. At the frequency of the boundary bulk TA
phonons Ω0, qt ~ π/a. Therefore, qtR ~ πR/a @ π and the
contribution from the transversal component of the
spheroidal vibration to the exciton–phonon interaction
can be neglected. In this case, ql ~ Ω0/cl , where cl is the
longitudinal sound velocity. Therefore, the value of R0
at which the value of Ω0R0/cl becomes of the order of
several π determines the maximum radius of the nano-
crystal for which the line at the frequency Ω0 is still
present in the low-frequency Raman spectrum. An esti-
mation gives R0 ~ 50 Å.

It is important to note that the existence of a line in
the low-frequency Raman spectra that does not depend
on the average radius of nanocrystals is due to the
mixed character of spheroidal vibrations with the angu-
lar momentum F = 2. Actually, if these vibrations had
no longitudinal component, they would scarcely inter-
act with a quasi-zero-dimensional exciton and would
not be observed in Raman scattering. At the same time,
the absence of the longitudinal component would lead
to the fact that the lines at frequencies in the vicinity of

6
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Ω0 could not be distinguished from the lines corre-
sponding to size-quantized vibrations with frequen-
cies inversely proportional to the average radius of
nanocrystals in the sample.

Thus, we showed that, because of the mixed charac-
ter of spheroidal vibrations, an intense line must be
observed in the low-frequency Raman spectra of spher-
ical CuCl nanocrystals. This line is located at the satura-
tion frequency of the dispersion dependence of transversal
acoustic phonons in the bulk semiconductor. The longitu-
dinal component of spheroidal vibrations ensures the effi-
ciency of exciton–phonon interaction, and the transversal
component provides for the large density of states at the
saturation frequency. We emphasize that the occurrence
of a line in the spectrum whose position does not
depend on the average radius of nanocrystals over a
wide size range is rather untypical for quasi-zero-
dimensional systems. Actually, the size-quantization
effect is usually manifested as a strong dependence of
all the characteristic energies of the system on the size
of the object. Thus, the dependence E ∝  R–1 is observed
for the eigenfrequencies of acoustic vibrations in spher-
ical nanocrystals, the dependence E ∝  R–2 is observed
for the size-quantization levels of carriers (excitons),
and even the dependence E ∝  R–3 is observed for the
exchange splitting of excitonic levels [13, 14]. We note
in conclusion that, along with the line described above,
lines from unmixed phonon modes with F = 0 and from
mixed phonon modes with F = 2 can be observed
experimentally at frequencies at which both the dis-
persion branches of acoustic phonons in the bulk semi-
conductor are linear. The position of all these lines must
be inversely proportional to the average radius of
nanocrystals in the sample.
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The integral electron density of states at the Fermi level in carbon multilayer nanotubes, which belong to quasi-one-
dimensional systems, has been calculated within the tight-binding approximation. It is shown that the density-of-state
functions for nanotubes with 20 or more layers and for quasi-two-dimensional graphites virtually coincide. This
agreement explains the successful application of the band theory of quasi-two-dimensional graphite to the description
of magnetic properties of nanotubes over a wide temperature range. © 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 73.20.–r; 71.24.+q
Carbon nanotubes consist of coiled graphene layers
and represent hollow seamless cylinders of nanometer
diameter and several micrometers in length [1]. The
symmetry type, diameter, and electronic structure of
one-layer nanotubes are almost fully characterized by
integer indices (n, m) uniquely related to the unit cell
parameters of the tube [2–4]. It was shown by theoreti-
cal calculations that, depending on the indices (n, m),
one-layer nanotubes can be both metals and semicon-
ductors. If the value of q in the relationship 2n + m = 3q
equals an integer number, the one-layer nanotubes
belong to metals; otherwise, the tubes are semiconduc-
tors [5–7]. With increasing n and m, the diameter of a
one-layer nanotube grows and the band gap decreases
in inverse proportion to its diameter. At the same time,
having virtually equal diameters (dt ≈ 1.36 nm), an (11, 9)
tube has an interband gap of 0.62 eV, whereas a (10, 10)
tube is a metal.

Recently, considerable progress has been achieved
in obtaining and experimentally studying one-layer
nanotubes. However, the majority of the nanotubes
obtained in amounts sufficient for their investigation
and application belong to multilayer nanotubes. In mul-
tilayer nanotubes, the cylinders are coaxially inserted
into each other, three-dimensional order is lacking
because of the steric constraints on the neighboring lay-
ers, and the interlayer distance (≈0.344 nm) is larger
than in the graphite crystal (0.3354 nm). Extensive
investigations of multilayer nanotubes showed that they
possess interesting electrical and magnetic properties
promising for applications. In particular, it was experi-
mentally shown in [8–12] that the orientationally aver-
aged magnetic susceptibility of some multilayer nano-
tubes is no lower than that of graphite and is exceeded
only by that of superconductors. At the same time, a
satisfactory explanation was provided neither for the
absolute value nor for the temperature dependence of
the diamagnetic susceptibility of the multilayer nano-
0021-3640/00/7202- $20.00 © 20053
tubes studied [8–12]. This was evidently due to difficul-
ties associated with choosing a suitable band model.

The first theoretical estimates of the magnetic sus-
ceptibility were made for one-layer nanotubes [13, 14].
It was found that their susceptibility depends intricately
on the diameter and chirality and on the magnetic field
strength. However, the main conclusion of [13, 14] was
that one-layer nanotubes must be diamagnets, and the dia-
magnetic susceptibility perpendicular to the tube axis
must be higher than that along the axis. However, it was
stated in [15] that the diamagnetic susceptibility compo-
nent along a nanotube could be dominant because of ring
currents around the belts of the one-layer nanotube.
Unfortunately, in order to compare particular estimates
with experimental data, the number of one-layer nano-
tubes with the same structure must be sufficient for
measurements, which cannot as yet be accomplished in
practice.

As to multilayer nanotubes, it was shown only
rather recently in [16–18] that the quasi-two-dimen-
sional graphite band model [19], which had been devel-
oped previously to explain the electronic properties of
graphites with a turbostratic structure, could be formally
used for the description of diamagnetism, g factor, and
spin paramagnetic susceptibility of current carriers in
multilayer nanotubes over a wide temperature range.
This model also turned out to be useful both for treating
the magnetic properties of graphite clusters [20] and for
understanding the published measurements of the dia-
magnetic susceptibility of multilayer nanotubes [8–12].

As a rule, the band theory of quasi-two-dimensional
graphite was successfully used for treating the elec-
tronic properties of many carbon materials with a distinct
two-dimensional graphite structure of a planar type.
Because typical multilayer nanotubes 10–30 nm in diam-
eter are considered to be quasi-one-dimensional objects,
the applicability of the quasi-two-dimensional graphite
model to these systems must be confirmed by relatively
independent theoretical estimates. In this connection,
000 MAIK “Nauka/Interperiodica”
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Fig. 1. Density of states ρ(E) for (a) 5-layer and (b) 20-layer nanotubes in comparison with the function ρ(E) for two-dimensional
graphite (dashed lines).
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this work was devoted to calculations of the integral
electron density of states for multilayer nanotubes at the
Fermi level, which coincides with the region where the
valence and conduction bands touch each other. The tight-
binding approximation, which was repeatedly applied
to studying one-layer nanotubes [5–7], was used in the
calculations.

The energy spectrum of π electrons of a one-layer
(n, m) nanotube without regard to the curvature of the
surface takes the form [7]

(1)

where the y and x axes are directed, respectively,
along the axis and the perimeter of the tube. The
quasi-continuous wave vector ky scans the values ky ≤

π/a0  in the first Brillouin zone, and

the discrete wave vector kx = 2πJ/a0
numbers the branches of the spectrum. Here, J = 1,
2, …N/2, N is the number of atoms in the unit cell and
a0 is the distance between the neighboring atoms in the
layer (0.142 nm). The parameters (p, q) of the primitive
translation vector along the tube axis are found as the
least integer numbers obeying the condition p(2n + m) +
q(2m + n) = 0. The parameter γ0 is defined by the inter-
action of π electrons of the nearest neighboring atoms
in the layer (≈3 eV). The angle θ characterizes the
chirality of a one-layer nanotube and is found from the

relationship θ = .

Because one-layer nanotubes are quasi-one-dimen-
sional objects, their density of states has singularities in
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the form of peaks 1/(E – EN)1/2 and the number of these
singularities equals the number of spectrum branches.
If the interlayer interaction is neglected, the density of
states for a multilayer nanotube is a sum of the density
of states over all the tubes taken with the corresponding
normalization factors. The neglect of the interlayer
interaction is fully justified, because it is two orders of
magnitude smaller than γ0 and only slightly changes the
electronic spectrum of each tube. This is confirmed by
the results of numerical calculations of the electronic
spectrum for two- and three-layer tubes with allowance
made for the interlayer interaction [5, 21]. Then, the
total density of states will be a function with a quasi-
random distribution of peaks. In real experiments, a
sample consists of a great number of tubes, and the den-
sity of states is averaged over the tubes differing in
diameter and chirality.

Numerical calculations of the density of states were
performed for multilayer nanotubes differing in the
number of layers. The radius of the smallest tube was
taken to be 0.678 nm, which corresponded to a (10, 10)
or (11, 9) tube, and the radius of each subsequent tube
was increased by 0.344 ± 0.002 nm. In the calculations,
tubes of any chirality that obeyed this condition were
taken into account. The density of states was calculated
from its definition ρ(E, ∆E) = (∆N/∆E)/N, where ∆N is
the number of states within the energy interval ∆E and
N is the total number of states. For each tube, the vector
ky scans a discrete set of values in the first Brillouin
zone and the corresponding energy levels are calculated
by Eq. (1). The energy interval under consideration is
divided into intervals ∆E, and the number of states
within this interval is ρ(E)N∆E. Generally speaking,
∆E should be set zero, but the numerical calculation
were performed with ∆E = 10 meV. The density of
states obtained was the average over the energy interval
∆E, and density fluctuations on a smaller scale were not
considered. However, if kT > ∆E, the fine details of
ρ(E) are insignificant.

Figure 1 displays the energy dependence of the den-
sity of states in the vicinity of the band touch region for
JETP LETTERS      Vol. 72      No. 2      2000
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a multilayer nanotube with (a) 5 and (b) 20 cylinders. It
is evident that, in the case of 20-layer tubes (dt ≈ 14 nm),
it virtually coincides with ρ(E) for two-dimensional
graphite. That is, whereas ρ(E) of an isolated tube has
one-dimensional singularities, ρ(E) of a multilayer
nanotube with a large number of layers is an almost
smooth linear function near the band center. As for
quasi-two-dimensional graphite, the density-of-state
function for a multilayer nanotube in the vicinity of a
conical point is approximated well by the linear rela-
tionship ρ(E) = 0.041|E| eV–1 atom–1. This approxima-
tion is good over a rather wide energy interval (–0.5,
+0.5 eV).

In perfect quasi-two-dimensional graphites and multi-
layer nanotubes, the valence band at a temperature T = 0
is fully filled and the conduction band is empty; that is,
the Fermi level coincides with the zeroth conical point.
However, similar to impurity boron atoms, the struc-
tural defects inherent in these materials are acceptors
and shift the Fermi level deep into the valence band,
creating extrinsic holes in the graphene layer with a
concentration on the order of 1010–1012 cm–2 (depend-
ing on the layer imperfection or the degree of doping).
As a rule, the concentrations of holes and defects coin-
cide in these materials, and the defects serve as effec-
tive scattering centers for current carriers and lead to
the broadening of the density of states in the vicinity of
the conical point and the Fermi level. In the calculation
of magnetic and electrical properties, this broadening is
formally taken into account by introducing an effective
temperature Te = T + δ, where the additional parameter
δ is connected with the extrinsic carrier degeneracy
temperature T0 by the relationship δ ≈ 0.5T0 in the case
of linear defects or δ ≈ (0.1–0.15)T0 if ionized point
defects are predominant [16–19].

As an example, Fig. 2 shows a comparison between
the measured diamagnetic susceptibilities for multi-
layer nanotubes at 70–900 K and the values calculated
within the quasi-two-dimensional graphite band model.
Nanotubes with an average diameter of ≈15 nm were
chosen for this study. The multilayer nanotubes were
prepared and characterized by the methods described in
[18]. The diamagnetic susceptibility measurements
were performed at a magnetic field strength of 2–9 kOe
with the use of an electronic microbalance. The mea-
surement error did not exceed 10–8 emu/g.

It is known that the diamagnetic susceptibility along
a multilayer nanotube, as well as along the graphite lay-
ers, is small and coincides with the atomic susceptibil-
ity of carbon χa = –0.3 × 10–6 emu/g. The large diamagne-
tism of quasi-two-dimensional graphites and multilayer
nanotubes is related to the diamagnetic susceptibility
component in the direction perpendicular to the carbon
layers (χ3) and is determined by the interband contribu-
tion to the diamagnetic susceptibility of current carri-
ers, which equals χ3 – χa . It is important to note that the
diamagnetic susceptibility perpendicular to the axis of
a multilayer nanotube equals (χ3 + χa)/2; that is, at the
JETP LETTERS      Vol. 72      No. 2      2000
same value of χ3, the anisotropy of a multilayer nano-
tube is two times smaller than the anisotropy of quasi-
two-dimensional graphite. Independent of the material
type, the experimental value of χ3 – χa is found from the
relationship χ3 – χa = 3〈χ〉  – 3χa, where 〈χ〉  is the orienta-
tionally averaged magnetic susceptibility of the sample.

For the chosen tubes, the measured values of χ3 – χa
are presented in Fig. 2 by points. It is evident that the
experimental data are actually approximated well by
the calculated curve obtained within the quasi-two-
dimensional graphite band model with the use of equa-
tions and methods presented in [16, 18, 19]. As for
quasi-two-dimensional graphite, it was assumed in the
calculations of the diamagnetic susceptibility of multi-
layer nanotubes that γ0 = 3 eV. The extrinsic carrier
degeneracy temperature T0 and δ were the only fitting
parameters. The value of T0 (220 K) corresponds to a
hole concentration of 2.7 × 1010 cm–2. The value of
0.5T0 found for δ points to the linear character of the
layer defects [16–19]. For the same type of defects, the
diamagnetic susceptibility of multilayer nanotubes is
proportional to 1/T0. At low concentrations of defects,
the diamagnetic susceptibility of nanotubes may be
higher than that of quasi-two-dimensional graphite and
can be several times higher than the diamagnetic sus-
ceptibility of a single crystal of graphite at low temper-
atures. For high imperfection of the carbon layers, the
diamagnetism of multilayer nanotubes can drop down
to the value of χa . If the number of layers in multilayer
nanotubes decreases to 5–7, the diamagnetism of nano-
tubes decreases and quantitative analysis with the use
of the quasi-two-dimensional graphite model becomes
impossible, as it is seen in Fig. 1a. Moreover, the ρ(E)
function essentially depends on the diameter and
chirality of tubes composing the small-diameter multi-
layer nanotubes.

At the same time, the successful application of the
quasi-two-dimensional graphite band model to multi-

Fig. 2. Temperature dependence of the diamagnetic suscep-
tibility of current carriers in multilayer nanotubes; the points
are for the experimental data, and the solid line is for the cal-
culation within the framework of the quasi-two-dimensional
graphite band model.
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layer nanotubes with an average diameter of ≥14 nm for
the explanation of diamagnetic susceptibility in this
work and in the works [16, 18], as well as for the expla-
nation of the spin paramagnetism and g factor of cur-
rent carriers in [17], allows the suggestion that the inte-
gral density of states for all the layers actually predeter-
mines the magnetic properties of these quasi-one-
dimensional objects. The justified use of the quasi-two-
dimensional graphite model significantly facilitates the
process of quantitative description and explanation of
experimental data obtained for multilayer nanotubes.

This work was supported by the Russian Foundation
for Basic Research (project nos. 99-03-32382 and
99-03-33208) and the program “Fullerenes and Atomic
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A novel theoretical approach is suggested for the description of phase transitions and structures observed in
antiferroelectric smectic liquid crystals. Allowance is made for two possible types of ordering: short-pitch and
long-pitch helical modes. The thermodynamic behavior of the material is treated as a result of the competition
between these two modes. The formulated theory reproduces the main features of the experimentally observed
phase sequences and structures, thus explaining their physical nature. © 2000 MAIK “Nauka/Interperiodica”.
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1. The main features of phase transitions and macro-
scopic properties of antiferroelectric smectic liquid crys-
tals have been intensively studied during the last decade.
A huge amount of experimental data was recently contrib-
uted by the information on the structural details
obtained in the experiments on resonance X-ray scat-
tering [1, 2]. At the same time, there was no theoretical
model, until now, which could describe both phase
sequences and observed structures. Thus, e.g., the so-
called “Ising-like” model [3] appears to explain the
main features of the phase diagrams, but the predicted
structures of the phases are in great discrepancy with the
X-ray data [4, 5]. Another well-developed model, which is
usually referred to as the “XY-model” [6], involves the
short-pitch helical order, which is much more consistent
with the X-ray data, but the theory seems to be unable to
describe the corresponding phase transitions. There-
fore, a great necessity for an appropriate theory still
exists.

While creating such a theory, one should hope to
explain the main features of the antiferroelectric smec-
tics behavior in the temperature interval between the
high-temperature nontilted smectic-A* phase and the
low-temperature antiferroelectric phase (AF, where the
neighboring layers are tilted in opposite directions),
which can be formulated as the following:

—In the racemic mixtures, the phase sequence is
quite simple, and by decreasing the temperature, the A
phase transits to the nontwisted synclinic C phase (all
the molecules there are tilted in the same direction),
while the latter transits to the anticlinic phase (which is

1This article was submitted by the authors in English.
0021-3640/00/7202- $20.00 © 0057
the nonchiral analogue of the AF phase) at some lower
temperature.

—In the chiral materials, more phases are observable.
They arise in between the phases mentioned above and,
according to the last experimental data, all have helical
structures with an extremely short pitch [2].

—The phase that arises between the A* and C*
phases, called usually the  phase, has a pitch that
sufficiently changes with temperature, being much
smaller than in the C* phase.

The ferrielectric phases that are located between the
C* and AF phases have a pitch very close to some inte-
ger number of smectic layers. By decreasing the tem-
perature, these phases change each other, so that the
pitch decreases discretely (from 4 layers to 3 layers and
finally to almost 2 layers in the twisted AF phase in the
case observed in [1, 2]).

Below, we present a new approach that seems to
account for all these main features, reproducing the
observed phase sequences and structures. The main idea
is to allow the substance to form two types of helical
structures: a long-pitch helix with optical pitch and a
short-pitch one with a pitch comparable to the smectic
layer thickness. The idea of such an approach was first
formulated in a semiphenomenological way in [4, 5, 7].
Here, we develop the idea in a different manner, taking
into account that the physical background of these two
modes can be connected, e.g., with the fact that inter-
layer interactions, which lead to the appearance of anti-
ferroelectric order, are likely to be determined by the
interaction between chiral tails of the molecules [8].
Then, the molecules in neighboring layers, which are

Cα*
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arranged tail-to-tail, should tend to form a short-pitch
structure, while the others are likely to form a long-
pitch helix.

2. In general, the free energy density of the medium
which is able to form both types of order, can be written
with two order parameters: 

(1)

where θL and θS are the amplitudes (tilt angles) of the
long-pitch and short-pitch modes, respectively; FL and
FS are the free energies of the related individual modes;
and FLS is the contribution from the interaction of the
modes. The phases of the system should posses the val-
ues θL and θS that minimize Eq. (1), and we can divide
them into four classes: smectic-A phase, where both
amplitudes are zero; L phases, where only θL is non-
zero; S-phases, where θS is nonzero; and LS phases, in
which both types of ordering are present simulta-
neously.

It is clear from the physical point of view that the LS
phase is hardly probable in our case, at least when the
pitches differ by a few orders of magnitude. Actually, it
can take place, e.g., if the helices unwind each other,
thus forming a common helix. The corresponding elas-
tic energy of this unwinding should make such coexist-
ence thermodynamically unprofitable. In the other
hypothetical case, different areas of the substance can
arrange structures with different pitches, but it would
disturb the orientation (nematic) order within the lay-
ers, thus also being strongly unprofitable.

Therefore, the behavior of the system can be
reduced to the competition between the L and S phases
and the A phase. Then, at a given temperature the phase
with the lowest free energy is stabilized. At tempera-
tures when FL = FS, the first-order transitions between L
and S phases occur. The closeness of the free energies
should lead to the fluctuative appearance of the absent
order parameter, which will be significant for our fur-
ther consideration.

All intermolecular interactions in smectics can be
divided into two parts: in-layer interactions between
the molecules within the same layer and interlayer
interactions between the molecules from different lay-
ers. We suppose the first ones to be mainly responsible
for the tilting amplitude of the molecules and the
appearance of ferroelectric polarization, while the
interlayer interactions define the orientation of the tilt-
ing in different layers and the formation of the helices.
It is established that the tilting amplitude is not affected
by the transitions from one helical phase to another.
Thus it is reasonable to assume that L and S modes dif-
fer only by interlayer contributions, and the in-layer
part for both modes is the same.

In analyzing the interlayer contribution, we will fol-
low the general approach of the XY-model [6],
accounting only for the nearest neighbor interactions. It
is convenient to present the director of the kth layer in

F θL θS,( ) FL θL( ) FS θS( ) FLS θL θS,( ),+ +=
the form nk = nz + ck , where nz (the same for all layers)
is parallel to crystalline axis z, and ck is the transversal
part (C-director). Then the nonchiral quadratic in the θ
part of the interaction between some nth and (n + 1)th
layers is proportional to

(2)

where Ψ is the angle between the C-director of the lay-
ers and the minus sign reflects the fact that the synclinic
ordering is preferable for this term. The chiral part
should have the form

(3)

where the unit vector e points along the z axis in the
direction of increasing layer number.

In addition to this, the specific anticlinic interaction
responsible for the antiferroelectric ordering should be
added. Following the results for the dipole–dipole
interactions between the chiral tails [8], we assume it to
have the form θ4cosΨ, with some positive factor for the
anticlinic order preferable here. Some chiral interaction
like θ4sinΨ also should exist. We omit the possible
terms with cos2Ψ and sin2Ψ, because accounting for
them will complicate further calculations but will bring
nothing qualitatively new. Then the free energy of the
short-pitch mode can be written as

(4)

where we introduce phenomenological parameters of
the interlayer interaction: V and U for the nonchiral
interaction and α and β for the chiral one. The in-layer
part (the first pair of terms) is written in the ordinary
form, the coefficient b being constant, and t = A(T – T0)
is the only temperature-dependent coefficient.

In the free energy of the long pitch mode, which can
be constructed in the same way, the anticlinic term
should be absent. Unless a large value of the pitch
means small values of the chiral parameters, we can
neglect them and obtain

(5)

putting the same parameter of the synclinic interaction V.
3. Minimizing Eq. (5) with respect to θL, we obtain

that the long-pitch phase can appear when t < V and
then

(6)

Minimizing the free energy (4) with respect to Ψ, we
obtain the condition

(7)

nz
2 cn cn 1+⋅( )– θ2 Ψ,cos–≈

nz
2 cn cn 1+×( ) e⋅( ) θ2 Ψ,sin–≈

FS tθS
2 1

2
---bθS
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2–+=
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FL 1 2bθL
4 t V–( )θL
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and with such Ψ, the free energy of the S-mode equals

(8)

In the vicinity of the phase transition from the A*
phase, the tilt angle is small and can be neglected under
the square root. Then we obtain the temperature of the
transition from A* phase to S phase, the short-pitch
mode tilt angle, and the free energy of the S phase as

(9)

Comparison of Eqs. (6) and (9) gives that in this
temperature range the S phase has lower free energy
and appears first. So far, as one decreases the tempera-
ture, the transition from the A* phase to the S phase
should be observed. We believe this corresponds to the
so-called A*-Cα transition. It has second order, and its
temperature tA → S depends on chirality. According to
Eq. (7), the pitch of the S phase decreases with decreas-

ing temperature (with increasing ), which is consis-
tent with the results of the X-ray measurements [2].

Thus, in the closest vicinity of the transition point
from the A* phase, the interlayer interactions signifi-
cantly change the behavior of the tilt angle of the
modes, shifting the transition point. With a further
decrease in temperature, one reaches the temperature
range |t | @ V. Here, this interlayer contribution to tilting

becomes small. Then we can set  = –t/b in Eq. (8)
and obtain the free energy of the S phase as

(10)

In the same approximation, the free energy of the
L-phase equals

(11)

To analyze the phase transitions between the L and S
phases, one should find the temperatures where these
free energies are equal. It happens at temperatures

(12)

the minus sign before the square root corresponding to
S  L transition and the plus sign corresponding to
the L  S transition, as far as the temperature
decreases. Therefore the L phase appears in the interval
between the temperatures (12). We believe this L phase

FS 1/2bθS
4 tθS

2+=

– θS
2 V UθS

2–( )2 α βθS
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tA S→ V2 α 2
+ , θS

2 1
b
--- t V2 α2+–( ),–= =

FS
1

2b
------ t V2 α2+–( )

2
.–=

θS
2

θS
2

FS
t2

2b
------–

t
b
--- V U

t
b
---+ 

 
2

α β t
b
---– 

 
2

+ .+=

FL
t2

2b
------– V

t
b
---.+=

tS L→←
b

U2 β2+
------------------–=

× UV αβ– UV αβ–( )2 α2 U2 β2+( )–±[ ] ,
JETP LETTERS      Vol. 72      No. 2      2000
describes the C* phase in the observed phase
sequences. The condition for C* phase appearance can
be obtained as a requirement of the square root’s pres-
ence in Eq. (12), and it takes the form

(13)

As a consequence of Eqs. (12) and (13), we see so far
that the C* phase interval becomes narrower when the
chirality increases and even disappears at large values
of the chiral parameters.

As a result, we find that, by starting from the A*
phase and decreasing the temperature, the transition to
the Cα phase at point tA → S takes place first. Afterwards,
the transition to the C* phase appears at temperature
given by Eq. (12) with the minus sign. Finally, the tran-
sition back to some S phase occurs at temperature (12)
with the plus sign.

4. To analyze the S phase, which occurs below the
C* phase, one should account for the fact that the free
energies of both types of order are very close, differing
only by the contributions from the interlayer interac-
tions. Then the L-order can appear fluctuatively in the
S phase. If the characteristic times of such fluctuations
are longer than the short-pitch helix relaxation times,
then this phenomena is locally similar to the action of
some external vectorlike field on the short-pitch helix
perpendicular to the helical axis.

The free energy of the short-pitch mode (4) under
the action of the external vector field L should include
the field-dependent terms. The interaction of some nth
layer with the field can be represented as a sum of terms
proportional to the powers of the product (L · cn). The
corresponding contribution from all layers to the free
energy density can be reduced to

(14)

where ϕ is the azimuth angle of the field, ε is the phase
of the short-pitch helix, and N is a macroscopic number

of smectic layers. The coefficients uk ∝  Lk  phenom-
enologically characterize the interaction energy.

After the summation over n, Eq. (14) appears to
have a singular dependence on Ψ, being nonzero only if
Ψ = 2πs/k with integer s and k. After minimization over
the phase ε, we obtain it to be equal to ϕ or ϕ + π/k,
depending on the sign of the corresponding constant uk

and therefore providing the negative sign of the contri-
bution to the free energy. Then the free energy contains
“locking” terms that make the commensurate structure
profitable. The corresponding full energies of such
commensurate states are, for instance,

(15)
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for the 4-layered structure and

(16)

for the 3-layered one. The interaction parameters of the
lowest order are presented here, since uk should
decrease as k increases. It is also clear that these parame-
ters have sufficient temperature dependence, since the
amplitude of L-fluctuations decreases vastly as the differ-
ence (FL – FS) increases. These locking terms make the
commensurate structure profitable compared to the
incommensurate one, as free energies (15) and (16) are
less than incommensurate energy (10) in certain tempera-
ture intervals near the points at which Ψ defined by Eq. (7)
is close to the values π/2 and 2π/3, respectively.

We can suggest that the ferrielectric-like electroop-
tic behavior occurs as a result of L-order induction by
the electric field. Thus, following the notations con-
firmed in the literature, we denote our 4-layered phase
as FI1 and the 3-layered one as FI2. Obviously, in gen-
eral, such locking occurs every time the ratio Ψ/2π
equals any rational number s/k. The value of the corre-
sponding locking energy then equals |uk|, which is com-
parably small at large k, so that the phases with small k
have a much wider temperature range.

At temperatures below the regions of the commen-
surate phases, the incommensurate pitch of the S-struc-
ture is slightly larger than 2-layers, what means that it
corresponds to the twisted antiferroelectric phase. With
a further temperature decrease, the short pitch also
decreases, approaching 2-layers asymptotically. This
means that, effectively, the pitch of the AF phase twist-

F2π 3⁄
t2

2b
------–=

t
2b
------ t

b
--- U β 3+( ) V α 3–( )+– u3–

Reduced free energies of the long-pitch state ( fL), incom-
mensurate short-pitch state ( fS), and commensurate states
( fπ/2 and f2π/3) as functions of the dimensionless tempera-
ture τ. Phase transitions occur at the intersections of the low-
est curves. Corresponding phases are indicated underneath.
ing increases as the temperature goes down, which was
clearly seen experimentally by means of optical selec-
tive reflections [9, 10]. The twisting sign of the antifer-
roelectric helix is opposite compared to the ferroelec-
tric one.

To analyze the phase sequence, it is convenient to com-
pare the reduced dimensionless free energies f = (F +
t2/2b)/Vθ2. Thus, for the L phase this reduced energy
equals fL = –1; the reduced energies of the commensu-
rate states fπ/2 and f2π/3, according to Eqs. (15), (16),
possess almost linear temperature dependence, as only
the locking terms give small nonlinear contributions.
The corresponding analysis of the phase sequence is
illustrated in the figure, where the typical reduced free
energies of the states are presented as functions of the
dimensionless temperature τ = tU/bV. The system fol-
lows the lowest possible curve, and the transitions
occur at intersection points. The arising phases are indi-
cated underneath.

The small incommensurability of the FI phases that
was observed in the X-ray experiments can arise due to
the twisting of the L-field. The finite size of the fluctu-
ating areas should widen the δ-function-like depen-
dence of the Eq. (14), making it Lorentzian-like. This
can also give rise to the incommensurability, which will
be temperature-dependent in this case.

5. Our approach reproduces the main features of
phase sequences and structures observed in antiferro-
electric smectics. It can also be used for the description
of nonchiral (racemic) mixtures. As we set α and β to
zero values, the S-state describes synclinic order above
the temperature t = –bV/U and anticlinic order below it.
From Eqs. (9), (12), it follows that in a racemate the
temperature range of the Cα phase vanishes completely
and the A phase transits directly to the C phase. The
transition to the S phase given by Eq. (12) then happens
at the point t = –2bV/U, i.e., at the point where the S
mode already forms an anticlinic structure. So far, the
last transition corresponds to the C–AF one in the race-
mate.

As a conclusion, we can make some estimations of the
involved parameters for the substance 10OTBBB1M7,
which was thoroughly studied by both X-ray [2] and opti-
cal [11] techniques. As was found, the S-pitch in the Cα
phase in this compound varies monotonically from
about 8 layers close to the A* phase up to 5 layers near
the C* phase. The 8-layer periodicity means the value
Ψ ≈ π/4 when θS  0, and according to Eq. (7), it
yields V ≈ α. So far, for the S-mode the chiral interlayer
interactions in this case are of the same order as the
nonchiral ones. Certainly, it does not necessarily mean
that the substance possesses anomalously high chiral-
ity. It is more likely to be the consequence of the low
value of the parameter V, which can be treated as a result
of some anticlinic contribution to the corresponding
quadratic in θ term in Eq. (4).

For V ≈ α, our approach predicts the narrow temper-
ature range of the C* phase, which is consistent with the
JETP LETTERS      Vol. 72      No. 2      2000
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observed phase sequence [2, 11], where this range is
only about 1°C. From its low temperature side, the C*
phase bounds the 4-layered FI1-phase. Unless the latter
appears near the temperature for which the incommen-
surate S-pitch equals 4 layers, above the upper edge of
the C* phase this pitch should be slightly larger, i.e., about
5 layers. This is consistent with the 5-layer structure of the
Cα phase observed before the transition to C*.

Obviously, to fit the whole phase sequence one must
know the temperature behavior of the locking parame-
ters uk. These parameters must decrease strongly as the
difference (FL – FS) grows, being larger near the L–S-tran-
sition point. This means that the locking in the FI1 phase,
which neighbors the L-phase, is stronger than that in
the FI2 phase. That is why the temperature interval of
the FI2 phase is smaller. This can also explain why the
structure of the FI1 phase is rather well stabilized com-
pared to the FI2 structure, which is quite unstable, giv-
ing the low-accuracy experimental data.
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Low-frequency (3–120 cm–1) Raman scattering in the orientationally disordered phase and the photopolymer-
ized state of fullerite was investigated. Experimental data suggest that, by analogy with scattering in disordered
media (glasses), the low-frequency spectra can be described in terms of scattering by the localized vibrational
states. © 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 61.48.+c; 78.30.Na; 63.20.–e
A molecular crystal composed of fullerene mole-
cules C60 (fullerite) is a rather unusual object for solid-
state physics. At room temperature, fullerite is a special
case of plastic crystals. The fullerene molecules
undergo rotation in the fcc lattice sites. The sphericity
of the molecule and the weak intermolecular interac-
tion differentiate fullerite from the majority of other
plastic crystals, where the molecules tend to be planar
and the intermolecular interaction is strongly anisotro-
pic. The specific features of fullerite have generated
great scientific interest in it, both as an object for fun-
damental research and in the search for unusual proper-
ties that can find technological uses.

Raman scattering is widely used in studying fuller-
ite. However, most Raman studies were aimed at inves-
tigating the intramolecular vibrations with frequencies
higher than 100 cm–1 (see e.g., [1, 2]). The works
devoted to low-frequency (<100 cm–1) Raman studies
of fullerite are, in fact, lacking. The study of low-fre-
quency Raman scattering in plastic crystals with unusual
properties, to which fullerite belongs, is a highly topical
problem and of interest for the understanding of its vibra-
tional and relaxation dynamics. In [3], the low-frequency
Raman spectra of crystalline C60 were examined to reveal
the librational modes in the orientationally ordered fuller-
ite phase (T < 260 K). The spectrum of orientationally
disordered fullerite was treated in [3] as a “Lorentzian
background, indicative of scattering due to the isotropic
rotation of the C60 molecules.” However, it is shown
below that this interpretation of the Raman spectra is
contradictory to the NMR data.

It is the purpose of this work to elucidate the origin
of the low-frequency Raman spectrum of a high-tem-
perature fullerite phase. Low-frequency (3–120 cm–1)
0021-3640/00/7202- $20.00 © 0062
Raman scattering in fullerite is experimentally studied
for the orientationally disordered phase and the photo-
polymerized state. The low-frequency Raman spectrum
is interpreted as a spectrum caused by scattering from
the localized vibrational states, by analogy with the
scattering in disordered media; and it is shown that this
spectrum is not associated with scattering by the rota-
tions of the C60 molecules.

We studied polycrystalline C60 films with surfaces
of good optical quality fabricated at the Institute of
Organic Chemistry, Siberian Division, Russian Acad-
emy of Sciences. The Raman spectra were measured
for samples placed in a vacuum chamber. The spectra
were recorded on a U1000 spectrometer with excitation
by the 514-nm argon laser line. The spectra were
recorded in a 90°-scattering scheme (for exterior
angle), and the electric field vector lay in the plane of
incidence. Grazing incidence of laser radiation on the
films was used (~80° from the normal to the surface).
The typical slit width of the spectrometer was 1.5 cm–1.
The spectral ranges 3–120 cm–1 and 1100–1600 cm–1

were examined.

It is known that illumination of the C60 crystal by a
wavelength shorter than 650 nm can induce photopoly-
merization in a sample. The photopolymerization rate
strongly depends on the intensity of the irradiating
light. In the Raman scattering experiments, the sample
state can be monitored by the Raman spectra in the
range 1400–1500 cm–1, because the initial C60 is char-
acterized by a peak at 1470 cm–1, while the photopoly-
merized sample shows a maximum at 1460 cm–1 [4].
Possible photopolymerization during the course of the
experiment was monitored by recording the high-fre-
quency spectra (1440–1480 cm–1) before and after the
2000 MAIK “Nauka/Interperiodica”
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Fig. 1. (a) Low-frequency and (b) high-frequency spectra. Solid line is for the fullerite, and circles are for the PP fullerite. The thin
line in Fig. 1a corresponds to the instrumental contour of elastic light scattering.

(b)
low-frequency Raman spectra were measured. We
found that no detectable phototransformation occurs
while measuring the low-frequency spectra at a low
excitation level (~1 W/cm2). In what follows, by the
term “fullerite” we mean a sample measured at low
laser intensity, as distinct from the photopolymerized
(PP) fullerites, i.e., samples obtained after prolonged
illumination with intensity > 10 W/cm2.

Figure 1 shows the low- and high-frequency spectra
of the fullerite and the PP fullerite. The spectrometer
background caused by elastic scattering of laser radia-
tion from a rough surface is shown in the same figure.
The spectra are normalized to the scattering intensity at
3 cm–1, where the contribution from the instrumental
wing of the elastic line dominates in all spectra. It is
seen from a comparison of the “spectrum” of the elastic
line with the film spectra that the experimental data are
trustworthy starting at frequencies near 5 cm–1. Fig. 1
allows the conclusion to be drawn that, in addition to
the changes in the high-frequency Raman spectrum,
photopolymerization also induces changes in the low-
frequency spectrum. (This fact was also used for mon-
itoring the absence of photopolymerization during the
accumulation of the low-frequency spectra).

The photopolymerization process is accompanied
by linking of the fullerene molecules by covalent bonds
in random directions. Because of the disorder in the
polymerizing covalent bonds between the fullerene
molecules, one can expect that the low-frequency spec-
trum of the PP fullerite resembles, in many respects, the
spectra of amorphous polymers.
JETP LETTERS      Vol. 72      No. 2      2000
The low-frequency Raman spectra in Fig. 2 are
given in the so- called reduced representation as func-
tions of the reduced intensity IR = I/(n + 1), where I is
the Raman intensity, n = 1/exp(hω/kT) is the Bose fac-
tor, and ω is the change in the scattered light frequency.
For comparison, the spectrum of poly(methyl meth-
acrylate) (PMMA, taken from [5]) is also shown in Fig. 2.
This spectrum was normalized to the frequency of a
maximum in the spectrum of the PP fullerite, for which
reason it was compressed by a factor of 3.2. The spectra
of the amorphous polymer and the PP fullerite show a
good qualitative similarity. The maximum in the
reduced spectrum of a polymer usually corresponds to
the edge of its acoustic spectrum. The edge of the
acoustic spectrum of a polymer is determined by the
localization of vibrational excitations on the mono-
mers. When the spectrum of the PP fullerite is consid-
ered as a full analogue to the spectra of classical poly-
mers, an independent estimate can be obtained of how
many times the experimental spectrum of PMMA
should be compressed for the maxima of the reduced
PMMA spectra and the spectrum of the PP fullerene to
coincide. The size of a monomer in the PP fullerite can
be estimated as a distance of ~1 nm to the nearest
neighbor in the fcc lattice, while the size of the PMMA
monomer along the polymer chain is ~0.31 nm; the lon-
gitudinal and transverse sound velocities in fullerite are
3.3 and 1.7 km/s, respectively [6], and coincide with the
sound velocity in PMMA. From these data, it is
expected that the compression factor is approximately 3,
in nice agreement with the factor used in Fig. 2. There-
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fore, apart from the qualitative correlation between the
spectra, there is a good quantitative agreement between
the edge of the acoustic spectrum in the PP fullerite and
a conventional polymer. This result is nontrivial, because
conventional polymers are amorphous, whereas the cen-
ters of the molecules in the PP fullerite are positioned in
the lattice sites.

Whereas the interpretation of the low-frequency
Raman spectrum of PP fullerite has a good intuitive
basis, the origin of the low-frequency spectrum in ful-
lerite is less clear. It was suggested in [3] that the low-
frequency Raman spectrum of fullerite is due to scatter-
ing by the isotropically rotating C60 molecules. In this
case, the intensity maximum is determined by the
molecular rotation time. In [7], the reorientation
dynamics of molecules in the fullerite were measured
by the NMR technique. The value of τ = 12 ps obtained
for the reorientation time [in the expression F(t) ∝
exp(t/τ) for the reorientational correlation function] at
room temperature corresponds to an intensity maxi-
mum at 0.44 cm–1. A comparison of the intensity max-
imum in Fig. 2 with the NMR data indicates that molec-
ular rotation cannot be responsible for the low-fre-
quency spectrum in the frequency range of interest.
Additional information can be obtained from an analy-
sis of the spectral shape for the reduced intensity. For
scattering by rotating molecules, the spectrum should
be described by the reduced Lorentzian contour IR ∝
ω/(1 + (ω/γ)2) with a maximum at γ. The experimental
spectrum is compared with the Lorentzian contour in
Fig. 3. The discrepancy between the experimental spec-
trum and the analytical curve is clearly seen. The spec-
trum measured in [3] at a temperature of 259 K is also
shown in Fig. 3 (for convenience, it is normalized to the
maximum frequency). It is clear from Fig. 3 that the
data in [3] are also contradictory to the Lorentzian
description of the spectrum. Moreover, the fact that the
high-frequency portion of the spectrum in Fig. 3
decreases faster than the Lorentzian curve allows the

Fig. 2. Reduced low-frequency spectrum IR = I/(n + 1).
Solid line is for the fullerite, and circles are for the PP ful-
lerite. Dotted line corresponds to the PMMA spectrum com-
pressed by a factor of 3.2.
conclusion to be drawn that the experimental spectrum
can be described by none of the relaxation time distri-
butions. This follows from the fact that each relaxation
time generates a Lorentzian contour, while their sum
cannot decrease with frequency faster than each one of
them.

An alternative explanation for the low-frequency
spectrum consists in its interpretation as a vibrational
spectrum of a disordered medium (the so-called boson
peak [8]). The low-frequency spectra of disordered
media are characterized by an excess of the density of
vibrational states. Raman scattering from acoustic
modes is allowed in disordered media because of vibra-
tion localization on a nanometer scale [8]. The Shuker–
Gammon formula [9] relates the density g(ω) of vibra-
tional states in a disordered medium to the Raman
intensity through the coupling coefficient C(ω):

The frequency dependence of C(ω) can be deter-
mined from a comparison of the density of vibrational
states with the Raman spectra. For the vibrational states
in glasses, it depends linearly on frequency [10].

The coupling coefficient C(ω) for fullerite is illus-
trated in Fig. 4. It was obtained from the comparison of
the Raman spectra with the data on the density of vibra-
tional states measured in [11] by inelastic neutron scat-
tering. One can see in Fig. 4 that the coupling coeffi-
cient is far from being constant, as is expected for the
relaxational spectrum (see, e.g., [12]), but can be fitted
by a linear law, as in ordinary glasses [10]. Thus, the
frequency behavior of C(ω) is also evidence that the
low-frequency Raman spectra observed for fullerite are
due to scattering by vibrational excitations following
the pattern seen in inelastic light scattering in disor-
dered media (glasses).

Let us now discuss the origin of the low-frequency
Raman spectrum in fullerite. It is formed in circum-

I ω( ) C ω( )g ω( )
n 1+

ω
------------.=

Fig. 3. Reduced low-frequency spectrum of the fullerite at
room temperature (solid line). Triangles are for the spec-
trum at T = 259 K (from [3]). Dotted line is for the reduced
Lorentzian contour.
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stances where the characteristic times of molecular
rotation are appreciably longer than the period of
acoustic vibrations (as follows from the NMR data; see
above). In such a situation, an acoustic phonon propa-
gates through a medium with the “frozen” random
mutual orientations of fullerene molecules. The inter-
action energy of the neighboring molecules strongly
depends on the mutual orientation, leading to large
local fluctuations of the elastic constants. It was
recently shown [13] by numerical simulation that the
scatter of the elastic constants of intermolecular inter-
action gives rise to a boson peak even if the atomic
positions are ordered in a crystal. Our data can be con-
sidered as an experimental implementation of such a
possibility. The distinguishing feature of fullerite is that
the fluctuations of the elastic constants are dynamic and
disappear upon time averaging.

In summary, the low-frequency Raman spectra of
fullerite in its orientationally disordered phase and the
photopolymerized state are experimentally studied in
this work. The analysis has shown that these spectra are
not purely relaxational and, moreover, cannot be ratio-
nalized in terms of light scattering by isotropic molec-
ular rotations. The low-frequency spectra are inter-
preted as being due to scattering by the vibrational
states in media that are inhomogeneous on the nanom-
eter scale, by analogy with the low-frequency scatter-
ing in glasses. The spectrum of the photopolymerized
fullerite is shown to qualitatively correspond to the

Fig. 4. The C(ω) coefficient and its linear approximation.
JETP LETTERS      Vol. 72      No. 2      2000
spectra of conventional polymers, and quantitative
agreement is obtained between the positions of the
edges of acoustic spectra in these media.
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The Ginzburg–Landau theory is used to calculate perturbatively the influence of stochastic inhomogeneities on
the smearing of the specific heat jump in three-dimensional superconductors. The small-scale and large-scale
(compared to the correlation length) inhomogeneities are simultaneously taken into account to derive a finite
and continuous (in the vicinity of Tc) expression for the temperature dependence of the superconductor specific
heat. © 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 74.25.Bt; 74.70.Tx; 74.62.Dh
1. The transition of ideal homogeneous metals to the
superconducting state is accompanied by a sharp [ver-
tical in the C(T) graph] jump in specific heat. In the
presence of inhomogeneities, the jump is smeared out
[1, 2]. The investigations of strongly anisotropic and
unconventional high-Tc and heavy-fermion supercon-
ductors have renewed interest in the description of
jump smearing [3, 4]. This work was stimulated by the
experimental study of the influence of defects on the
sharpness of the superconducting transition in the
heavy-fermion UPt3 compound [5, 6]. The magnetic
and nonmagnetic impurities both reduce the supercon-
ducting transition temperature Tc in compounds with
unconventional pairing, with the Tc decrease being pro-
portional to the impurity concentration [7]. The spatial
fluctuations of the impurity concentration give rise to a
change in the local transition temperature Tc(r). The
influence of these fluctuations on the temperature depen-
dence of the specific heat near Tc depends on whether the
fluctuations of Tc(r) are large- or small-scale compared
to the correlation length ξ(T). As T  Tc, the correla-
tion length ξ  ∞. The temperature fluctuation
amplitude δT is the natural cutoff parameter, and the
fluctuations can be considered large-scale if their spa-
tial scale is larger than ξ(δT). The large-scale variations
may be due, in particular, to the macroscopic inhomo-
geneity of a sample. In what follows, it is assumed that
there are no such inhomogeneities in the samples.

The small-scale fluctuations introduce a correction
term into the expression for specific heat at T < Tc.
Since this term diverges as T  Tc [1], the formula
derived in [1] can only account for the “tail” of the fluc-
tuation correction to the specific heat at T < Tc.
Although the asymptotic form of the correction at T >
Tc was found in [2], the formula describing the behavior
of the specific heat in the vicinity of Tc and matching
both asymptotic expressions is as yet lacking. In this
work, the influence of both large- and small-scale Tc(r)
0021-3640/00/7202- $20.00 © 0066
fluctuations on the specific heat near Tc is taken into
account for the case when the fluctuations are small.
The C(T) dependence in the three-dimensional case is
described by a finite and continuous function depend-
ing on the stochastic properties of a random function
Tc(r). Note that by Tc is meant the average transition
temperature, in the vicinity of which the specific heat
suffers major changes. The true transition temperature
corresponding to the formation, for the first time, of an
infinite cluster of superconducting domains falls within
the “high-temperature tail” (see [2]). The singularity of
the specific heat at this temperature cannot be described
within the framework of perturbation theory.

2. To simplify the treatment, let us consider a super-
conductor with a one-component order parameter. The
starting mathematics for this case is a slightly modified
copy of an appropriate part of [1]. The Ginzburg–Lan-
dau functional is written as

(1)

where ν is the density of states. The jump in specific
heat per unit volume is expressed through the derivative
of the average order parameter

(2)

The smearing of the specific heat jump is mainly due to
the fluctuations of the coefficient of |ψ|2 in expansion
(1). This coefficient can conveniently be written as

(3)

where 〈Tc〉  is the mean transition temperature and ζ(r)
is a random function belonging to the ensemble with
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〈ζ (r)〉  = 0 and the correlation function

(4)

In this equation and in what follows, the angular brack-
ets stand for the ensemble averages. In the notations
adopted, the Ginzburg–Landau equation for the func-
tional (1) is written as

(5)

The ψ function is assumed to be real in the absence of
a magnetic field. The spatially inhomogeneous solution
arises because of the random field ζ(r), which is taken
to be a small perturbation (the appropriate criterion will
be formulated later). The spatial scale of the ζ(r) field
is on the order of ξ0 = "vf /Tc. To first order in ζ(r), the
scale of the additional term in the expression for the
order parameter is the same. The spectral density of the
ζ(r) fluctuation in the k space rapidly decreases with a
decrease in k (increase in the spatial scale). Simple esti-
mation shows that the first-order corrections can be
considered small-scale over the whole temperature
range, except in a negligibly small vicinity of Tc. The
second-order corrections contain a sizable large-scale
component because of the compensation for the spatial
dependence in the products of Fourier components with
opposite wave vectors. With these large-scale correc-
tions in mind, let us introduce the characteristic scale θ
for jump smearing caused by large-scale corrections

and the corresponding spatial scale ξθ = ξ0/ . The
sample size L is assumed to be large enough for the
condition ξ0 ! ξθ ! L to be satisfied. The relation of θ
to the properties of the ζ(r) function will be clarified in
the course of the calculations. Let us seek the solution
of Eq. (5) in the form ψ = (1 + χ), where the ampli-
tude  is a smooth function, while the addition χ
accounts for the small-scale variations. To make the
separation unequivocal, let us require that  = 0. The
bar stands for averaging over the scale of order ξθ. To
second order in ζ(r) and χ, Eq. (5) takes the form

(6)

Averaging of Eq. (6) over the ~ξθ scale yields

(7)

The local transition temperature, defined as the temper-
ature for which  = 0, is shifted from its average posi-
tion by (cf. [1])

(8)

Setting t = τ – τ0 in Eq. (7), one can recast it as

(9)

φ r r'–( ) ζ r( )ζ r'( )〈 〉 .=

τψ Bψ ψ 2 ∇ c∇ ψ( )–+ ζ r( )ψ.–=

θ
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To evaluate  and , the equation for the rapidly
varying terms linear in ζ(r) and χ(r),

, (10)

should be solved for χ(r). This can be done, e.g., by
taking Fourier transforms:

The result is

(11)

To connect τ0 with the stochastic properties of the
ζ(r) ensemble, let us consider the Schrödinger equation
for a particle with mass m = "2/2c moving in the poten-
tial ζ(r),

(12)

and assume that ζ(r) is a perturbation [8]. The τ0 shift
coincides, to a sign, with the leading correction ε0 to the
ε = 0 eigenvalue. The potential ensemble ζ(r) generates
“shift density” g(ε0) which, by definition, is connected
with the density of states ρ(ε) on the dε interval by the
relationship

(13)

This is a standard integral equation for g(ε0) ≡ g(x). Its
solution can be written in the form

(14)

where the prime denotes differentiation. At present, an
extensive literature is devoted to studying the density of
states for the Schrödinger equation with a random
potential (for bibliography, see [9]). Expression (14)
allows the desired shift density g(x) to be determined
from the known density of states ρ(ε). The ∆τ0 interval,
in which the function g(–τ0) is essentially nonzero, is
precisely the one that plays the role of jump smearing θ
introduced above. For the other averages in Eq. (9), one
has

(15)

As in [1], one can take advantage of the fast conver-

gence of the integrals to replace ζkζ–k by φ0 = ,

after which the integrals on the right-hand sides can be
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evaluated. For t independent of coordinates, Eq. (9) has
the steady-state solution  = 0 and

at t < 0. For changes in t on a scale much larger than ξθ,
one can neglect the contribution from the “roundings”

occurring for  at the t = 0 surfaces, and the

solution to Eq. (9) can almost always be approximated
by the indicated steady-state solutions:

(16)

To calculate the specific heat, one must know  = 

(1 + ). Combining Eqs. (15) and (16), one gets

(17)

The solution for t < 0 coincides with the one previously
obtained by Larkin and Ovchinnikov, with the only dif-
ference that the temperature is now measured from the
local transition temperature τ0. The final averaging over
the ensemble or the sample volume is performed with
the g(–τ0) density:

(18)

After evaluation of the ∂〈ψ2〉/∂τ derivative and standard
manipulations, one arrives at the following expression
for the specific heat in the jump smearing zone vs.
reduced temperature τ:

(19)

The integration with weight g(–τ – u) eliminates the
root singularity in the second term under the integral
and makes the expression finite. Equation (19) is the
solution of the stated problem. It expresses the specific
heat as a function of temperature near Tc through the
zero Fourier transform φ0 of correlation function (4) and
the g(τ) function connected with the density of states
ρ(ε) for random potential ζ(r) by relationship (14).

3. When deriving Eq. (19), the random function ζ(r)
was assumed to be a small perturbation. For this reason,
the condition for applicability of this formula is
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φ0/c3/2  ! 1. With the rough estimate θ ~ τ0, this con-

dition reduces to (φ0/ )1/2 ! 1. For randomly distrib-
uted impurities, one has

where dTc/dn is the derivative of the critical tempera-
ture with respect to the concentration of impurities that
suppress superconductivity. As a result, the applicabil-
ity criterion can be written as

Here, ∆Tc is the impurity-induced decrease in the mean
transition temperature. This criterion is always fulfilled
for unconventional superconductors. The behavior of
the specific heat in the vicinity of Tc is mainly governed
by the g(τ) function. At T < Tc and in the |τ| @ θ limit,
Eq. (19) transforms into Eq. (13) from [1]. The asymp-
totic expression for |τ| @ θ at T > Tc differs from the one

obtained in [2] by the absence of the /  multi-
plier. This distinction arises because the jump smearing
in the close vicinity of Tc is governed by the large-scale
fluctuations. The order parameter for such fluctuations
is close to a constant value, while the indicated multi-
plier is close to unity. The main role in the tail of jump
smearing belongs to fluctuations on the ~ξ scale, so that

/  is different from unity. Note, however, that
the case in point is only a preexponential factor of the
order of unity.

The generalization of Eq. (19) to the multicompo-
nent order parameter is straightforward, provided that
either there is only a single superconducting phase or
the transitions in different phases are well separated in
temperature. For UPt3, two closely-spaced transitions
are observed, which merge as the concentration of
defects increases. To describe both jumps self-consis-
tently, it is necessary to include the terms of order |ψ|6
in functional (1). The lack of such computations ham-
pers the comparison of the formulas obtained in this
work with the available UPt3 data.
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Giant Magnetoresistance 
of MexMn1 – xS (Me = Fe, Cr) Sulfides
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The structural, electrical, and magnetic properties, as well as the magnetoresistance of polycrystalline
MexMn1 – xS (Me = Fe and Cr) sulfides were investigated in longitudinal magnetic fields of up to 50 kOe over
the temperature range 4.2–300 K. The ferromagnetic compound FexMn1 – xS (x = 0.29) exhibits the giant mag-
netoresistance (GMR) effect with magnitude δH = –450% in a field of 30 kOe at 50 K. Antiferromagnetic
CrxMn1 – xS (x = 0.5) sulfide undergoes a transition to the GMR state (δH ~ –25% in a field of 30 kOe at 4.2 K)
in the region of antiferromagnet–ferromagnet transition (Tc ~ 66 K). A mechanism of the GMR in these com-
pounds is discussed. © 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 75.70.Pa; 71.30.+h; 72.80.–r
In spite of a great body of experimental data on the
giant magnetoresistance (GMR) phenomenon in man-
ganese lanthanide oxides with the perovskite structure,
the mechanism of the GMR effect still remains to be
clarified [1]. That is why a search for, and the study of,
new compounds exhibiting the GMR effect and having
a non-perovskite structure is a topical problem. Earlier [2],
we revealed the GMR effect in FexMn1 – xS sulfides
derived from manganese monosulfide. The greatest effect
(δH ~ –83%) in a transverse magnetic field of 10 kOe was
observed for x = 0.29. This work reports the results of
studying the structural, electrical, magnetic, and magne-
toelectric properties of FexMn1 – xS (x = 0.29) and
CrxMn1 – xS (x = 0.5) sulfides at temperatures of 4.2–
300 K in longitudinal magnetic fields of up to 50 kOe.

Polycrystalline samples of MexMn1 – xS (Me = Fe
and Cr) were synthesized from pure elemental chro-
mium, iron, manganese, and sulfur in evacuated quartz
tubes by high-temperature annealing for a week [2]. X-
ray structural analysis was performed on a DRON-2.0
diffractometer with monochromatic Cu Kα radiation in
the temperature range 100–300 K. Electrical resistance
was measured potentiometrically on a direct current
over the temperature range of 4.2–300 K in longitudi-
nal fields H = 0, 2, 10, 30, and 50 kOe. The magnetic
properties were measured on a vibrating-coil magne-
tometer with a superconducting solenoid in magnetic
fields of up to 30 kOe in the range 77–300 K.

According to the X-ray data, the synthesized sam-
ples of Fe0.29Mn0.71S and Cr0.5Mn0.5S are solid solutions
with the NaCl fcc lattice typical of manganese mono-
sulfide [2, 3]. The X-ray patterns of the samples show
0021-3640/00/7202- $20.00 © 20070
three extra lines with 5% relative intensity, indicating
the presence of a possible impurity phase. The fcc lat-
tice parameter of FexMn1 – xS (x = 0.29) is a = 5.186 Å
at room temperature. The compound undergoes a struc-
tural transition at Ts ~ 147 K, similar to that observed

Fig. 1. Temperature-dependent (a) lattice parameter,
(b) magnetization, and (c) resistivity of Fe0.29Mn0.71S.
000 MAIK “Nauka/Interperiodica”
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for manganese monosulfide at 150 K [3]. As the tem-
perature decreases, the lattice parameter first decreases,
next is almost independent of temperature at 120–140 K,
and then shows a tendency to increase below 120 K
(Fig. 1a). An analogous structural transition also occurs
in the CrxMn1 – xS (x = 0.5) sulfide near 160 K.

Magnetic measurements showed that the samples
are ferromagnets at temperatures T < 300 K (Me = Fe)
and T < Tc = 66 K (Me = Cr). The saturation magneti-
zation (H ~ 7–10 kOe) for FexMn1 – xS (x = 0.29) is
6.24 emu/g at 300 K. The temperature curves for the
magnetization of the sulfides under study are shown in
Figs. 1b and 3a. The value of ρ77 K ~ 102 Ω cm found for
the resistivity of the samples at 77 K is five orders of
magnitude lower than for α-MnS. The conduction in
the samples is of the semiconductor type with a thermal
hysteresis in zero magnetic field at temperatures below
250 K (Fig. 1c).

Figure 2 demonstrates the temperature curves for
the magnetoresistance δH of FexMn1 – xS (x = 0.29) in
longitudinal magnetic fields of 10, 30, and 50 kOe. It
was pointed out in [2] that the negative magnetoresis-
tance δH for this sulfide increases on lowering the tem-
perature below 250 K in a field of 10 kOe and reaches
its maximum value at ~ 160 K. Below 120 K, where the
NaCl structure is distorted, the magnetoresistance
changes sign. It was established that the change in sign
of magnetoresistance disappears upon repeated mea-
surements with the same sample at 120 K. This is likely
caused by the hysteresis effects and the magnetic-
induced changes in the state of the samples. After field
removal, the magnetoresistance is lower than its initial
(prior to the experiment) value at T = 170 K (T > Ts) and
higher at 110 K (T < Ts). The resulting δH value calcu-
lated for fields of 0 and 10 kOe at 170 K is equal to
−70% for the field buildup and to –50% for the field
removal; at 110 K, the corresponding values are +15%
and –127%.

As the magnetic field increases to 50 kOe, the nega-
tive magnetoresistance peak shifts to lower tempera-
tures (Fig. 2). At 30 kOe, the negative magnetoresis-
tance δH reaches a value of –450% for FexMn1 – xS (x =
0.29) at ~50 K. At 50 kOe, this value is –87%.

Figure 3 shows the temperature curves for the mag-
netization (Fig. 3a) and magnetoresistance (Fig. 3b) of
CrxMn1 – xS (x = 0.5). At 66 K, this sulfide undergoes
the antiferromagnet–ferromagnet transition, whose
nature is caused by the orbital degeneracy of the chro-
mium ions and by the cooperative Jahn–Teller effect.
One can see from Fig. 3 that the transition to the nega-
tive magnetoresistance state occurs in the range of
magnetic transition. The δH value increases with lower-
ing temperature and reaches a value of ~ –25% at 4.2 K
in a field of 30 kOe.

An analysis of the experimental data obtained ear-
lier in [2, 5] indicates that the concentration depen-
dences of the electrical and magnetic properties of the
JETP LETTERS      Vol. 72      No. 2      2000
solid solutions MexMn1 – xS are in many respects simi-
lar to those observed for manganese lanthanides.
Namely, the ferromagnetic properties emerge simulta-
neously with the metallization of the samples; that is,
the MexMn1 – xS samples with low concentration x < 0.2
are antiferromagnetic semiconductors, whereas the
samples with x ~ 0.4–0.6 are ferromagnetic metals. The
GMR effect is most pronounced in the intermediate
compositions preceding the concentration transition to

Fig. 2. Temperature-dependent magnetoresistances in a lon-
gitudinal magnetic field.

Fig. 3. Temperature-dependent (a) magnetization and
(b) magnetoresistance of Cr0.5Mn0.5S in a longitudinal
magnetic field of 30 kOe.



 

72

        

 PETRAKOVSKIŒ 

 

et al

 

.

           
the metallic state. It was assumed in [2] that among the
possible GMR mechanisms in iron–manganese sul-
fides, there is a separation of magnetic and electronic
phases, namely, the formation of a system in which the
regions of antiferromagnetic semiconductor and ferro-
magnetic metal coexist. It is established in this work
that the behavior of resistivity and magnetoresistance
of the samples exhibits not only the temperature hyster-
esis but also the magnetic hysteresis. It is well known
that the probability for the hysteretic effects to occur in
the polycrystalline samples increases because of the
presence of grain boundaries. However, the polycrys-
talline version of the hysteretic effects cannot explain
the strong temperature shift of the magnetoresistance
peak from 160 to 50 K in FexMn1 – xS. Since the GMR
effect in MexMn1 – xS sulfides is observed in the region
where the cubic lattice is distorted, a more thorough
study of the crystal structure and the nature of the struc-
tural transition is necessary for the elucidation of the
GMR mechanism. It is not improbable that the crystal
structure of sulfides alters under the action of a mag-
netic field and thermocycling, as, e.g., it occurs in the
RbDy(WO4)2 compound exhibiting the Jahn–Teller
structural transition [6]. It should also be pointed out
that the nature of the structural transition in manganese
monosulfide remains to be explored.
We thank N.V. Volkov for providing an opportunity
to perform experimental measurements. This work was
supported by the Federal program “Integratsiya”
(project no. 69) and the Russian Foundation for Basic
Research–BRFFI (project no. 00-02-81059 Bel2000a).
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Anisotropy of Normal Resistivity in Oxygen-Deficient 
YBa2Cu3O7 – x Single Crystals
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Temperature dependences of the resistivity tensor components ρab and ρc were measured for YBa2Cu3O7 – x sin-
gle crystals with different oxygen contents. The resistivity anisotropy ρc/ρab was found to grow exponentially
with decreasing temperature. The results are compared with the predictions of different models describing trans-
verse transport in the normal state of cuprate high-Tc superconductors. © 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 74.25.Fy; 74.72.Bk
Cuprate high-Tc superconductors are strongly aniso-
tropic materials with a clearly defined laminated struc-
ture. The presence of cuprate CuO2 planes, which are
responsible, as is customarily believed, for supercon-
ductivity, is the common feature of these compounds.
Although the normal conductivity of cuprate high-Tc
superconductors has been intensively studied both
experimentally and theoretically since the very discov-
ery of high-Tc superconductivity (HTSC), there is still
much debate over the mechanism of normal conductiv-
ity of these materials.

Within the CuO2 layers, the conductivity of the
cuprate HTSC compounds is metallic, with the resistiv-
ity ρab linearly decreasing with a decrease in tempera-
ture over a wide temperature range. To explain such a
dependence, new particles—holons and spinons—were
introduced into the RVB model [1] and the theory of
marginal Fermi liquid was suggested in [2]. This
dependence can also be successfully explained by the
usual electron–phonon scattering [3].

In the direction perpendicular to the CuO2 layers,
the resistivity of YBa2Cu3O7 – x may increase with
decreasing temperature even in the optimally doped
(x ≈ 0) samples [4]. As the oxygen concentration
decreases, the ρc(T) dependence becomes progressively
steeper with a negative slope over the whole range from
room temperature to Tc. Such behavior was originally
explained by the crystal imperfections, namely, by the
effect of semiconducting interlayers or by the disorder
and localization effects in the transverse motion [5].
More recently, several theoretical models were sug-
gested that explained such behavior for perfect crystals.
In the theory of Anderson and Zou [1], the linear term
in the temperature dependence is supplemented by a
contribution proportional to 1/T. The theory of Alexan-
drov and Mott predicts a considerably steeper exponen-
tial growth [6, 7]. In their theory, the transverse conduc-
0021-3640/00/7202- $20.00 © 0073
tivity is mediated by polarons, whose concentration
exponentially decreases with decreasing temperature
because of polaron binding into bipolarons.

Recently, Abrikosov [8] proposed a new mechanism
for carrier transport along the c axis in the HTSC mate-
rials, namely, resonance electron tunneling between the
CuO2 planes through the localized states in the CuO
chains. It should be stressed that the Abrikosov theory
assumes that the centers mediating the resonance tun-
neling are positioned exactly halfway in between the
neighboring CuO2 planes. This situation is automati-
cally realized in YBa2Cu3O7 – x single crystals with
reduced oxygen content, where the role of such reso-
nance levels may be played by the fragments of broken
CuO chains. The applicability of the Abrikosov model
to other cuprate HTSC compounds is unclear. It follows
from the calculations in [8] that the temperature depen-
dence of the resistivity anisotropy in the tunneling
mechanism should have the form

(1)

where A is a constant dependent on the parameters of
the electron spectrum and the doping level, and T0 is the
characteristic activation energy specified by the energy
levels mediating resonance tunneling. Equation (1) is
expected to hold for the samples with oxygen concen-
tration lower than optimal, where the CuO chains are
broken, while the lower bound for the oxygen concentra-
tion is near the metal–insulator transition because of the
competition with direct carrier tunneling between the
CuO2 planes. To our knowledge, no works devoted to
the experimental verification of this model were pub-
lished after appearance of the theory [8].

The purpose of this work is to experimentally study
the temperature dependence of resistivity anisotropy
for perfect YBa2Cu3O7 – x single crystals with different
carrier concentrations and to compare the results with

ρc ρab⁄ AT T0 T⁄( )cosh
2

,=
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the theory. In these studies, it is necessary to measure
the resistivity tensor components ρab and ρc for the
same sample with different doping levels. To this end,
we used the dc flux transformer method [9], allowing
these components to be calculated from the measured
potential differences arising at the opposite surfaces in
the central part of the sample upon passing a current
though the contacts at the edges of one of the surfaces.
These measurements require at least six contacts (two
current and four potential). We made measurements for
samples with eight contacts, four at each of the surfaces
(Fig. 1). This made it possible to pass current both
through the upper pair of current contacts (1, 4) and
through the lower pair (contacts 5, 8) and each time
measure voltages V2, 3 and V6, 7 followed by averaging
the measurement results. This minimized the error
caused by the inaccurate positioning of the contacts.

The results of this work were obtained for a
YBa2Cu3O7 – x single crystal shaped like a rectangular
plate 1.5 × 0.2 × 0.05 mm in size, with the crystallo-
graphic c axis coinciding with the normal to the plate
plane. The contacts were made from 30-µm-diameter
gold wires glued by silver paste to the surfaces perpendic-
ular to the c axis. The sizes of the contact areas were no
greater than 0.15 mm, and the resistance of the fired con-
tacts was on the order of 1 Ω. The initial YBa2Cu3O7 – x
single crystals were grown in a ZrO2 crucible by the
method described in [10]. After annealing at 500°C in
oxygen, the samples showed a narrow (of width less
than 0.5 K) superconducting transition and critical tem-
perature Tc ≈ 91 K (Fig. 1). The desired decrease in the
oxygen concentration was achieved by choosing an
appropriate temperature of annealing in air at atmo-
spheric pressure followed by quenching in liquid argon,
according to the data reported in [11–13].

When annealing, the samples were dusted with a
powder of YBa2Cu3O7 – x to preserve the high quality of
the surfaces.

For measuring the temperature dependences of
resistivity, the sample and nearby thermometer and
heater were placed inside a glass Dewar vessel, which

Fig. 1. Temperature dependence of the resistivity compo-
nents ρab and ρc for an initial single crystal of YBa2Cu3O7 – x.
The geometry of contacts is shown in the inset.
was immersed upside down in liquid helium. To
enhance temperature homogeneity, the sample was
placed in a sapphire container.

The temperature dependences ρab(T) and ρc(T) of
the initial optimally doped single crystal are presented
in Fig. 1. One can see that the ρab(T) dependence is lin-
ear over almost the whole temperature range except for
a region near Tc, where the deviations from linearity are
caused by fluctuative superconductivity. By contrast,
the ρc(T) curve is nonlinear and has a portion with a
negative slope near Tc. The characteristic values of the
resistivity tensor components and their temperature
behavior correspond to the ones typically observed for
high-quality single crystals [4].

It is seen from Fig. 2 that the ρc(T) curve is linear-
ized when the product ρcT is plotted as a function of T 2.
This fact suggests that the temperature dependence
ρc(T) has the form

(2)

Expression (2) was used in a series of works as an argu-
ment in support of the RVB model, which predicts such
a temperature behavior for both resistivity tensor com-
ponents [1]. We would like to call attention to the fact
that, for a doping level lower than optimal, the temper-
ature dependences ρab(T) and ρc(T) are no longer
described by the function of type (2), as is demon-
strated by the curves corresponding to the samples with
Tc < 91 K (Fig. 2).

Let now turn to the results obtained for the resis-
tance anisotropy. The temperature dependence ρc/ρab
for a sample with reduced oxygen content (Tc = 77 K,
x ≈ 6.77) is shown in Fig. 3. The approximation of the
experimental results by Eq. (1) is shown by the dashed
line with optimal parameters A = 0.178 K–1 and T0 =
223 K. For comparison, the exponential approximation

(3)

is also shown in Fig. 3 by the solid line. It is seen that
Eq. (1), although satisfactorily describing the experi-
mental data, makes it noticeably worse that does the
activation exponent in Eq. (3). The log–1/T plots of
resistivity anisotropy are shown in Fig. 4 for several
levels of doping with oxygen. In these coordinates, the
experimental curves are seemingly linearized, whereas
the dependence corresponding to Eq. (1) (dashed lines)
is at variance with the experiment. Note that the optimi-
zation by Eqs. (1) and (3) was carried out in the same
temperature range for each of the sample states. The
temperature dependence is saturated at high values of
resistivity anisotropy ρc/ρab > 103; the saturation is
most pronounced for the upper curve. This is likely
caused by shunting of the conduction along the c axis,
e.g., by virtue of direct carrier tunneling between the
CuO2 layers or through conduction along the disloca-
tions or any other imperfections in the sample. The sat-
uration of temperature dependence ρc(T) narrows the
interval where the temperature dependence can be

ρc Ac T⁄ BcT .+=

ρc ρab⁄ A1 ∆ T⁄( )exp=
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Fig. 2. Plots of ρabT and ρcT as functions of T 2 for the samples with different oxygen content. Dashed lines are drawn through the
rectilinear portions of the experimental curves.
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rationalized by one of the discussed theoretical models.
In the upper curve, this interval is narrowed to 150 <
T < 280 K, within which the distinction between
Eqs. (1) and (3) becomes insignificant.

The rectilinear portions in the curves shown in Fig. 4
correspond to the activation energies ∆ increasing with
a decrease in Tc; they are equal to 146, 295, 356, and
665 K for the four curves shown in the figure. The pre-
exponential factor A1 virtually does not change and lies
in the range 20–30. The exponential dependence of the
anisotropy may be due to the fact that either the carriers
are forced to overcome an energy barrier in moving
across the CuO2 planes or the concentration of carriers
involved in transverse transport depends exponentially
on temperature at T > Tc. The latter is possible, e.g., if
the normal transport is preceded by the thermal decay

Fig. 3. Temperature dependence of the resistivity anisotropy
for the sample with Tc = 77 K. The dashed and the solid
curves are the interpolations by Eqs. (1) and (3), respec-
tively.
JETP LETTERS      Vol. 72      No. 2      2000
of somehow “preprepared” electron pairs. Among the
models providing the temperature exponent for the con-
centration of normal excitations, the bipolaron model of
Alexandrov and Mott [6, 7], in which conduction along
the c axis is accomplished by thermally excited polarons,
is noteworthy. This should result in the temperature depen-
dence of type (3) with an activation energy of half the
bipolaron binding energy. The latter is independent of
temperature but increases with decreasing carrier con-
centration. Note that exponential temperature behavior
was previously observed for the resistivity anisotropy
in Bi2Sr2CaCu2O8 + δ single crystals with different oxy-
gen content [14] and interpreted within the framework
of this model.

To summarize, it is established that the temperature
dependence of the resistivity anisotropy in oxygen-

Fig. 4. Temperature dependences of the resistivity anisot-
ropy for the samples with different doping level. Dashed
lines are the interpolations by Eq. (1).
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deficient YBa2Cu3O7 – x single crystals with 0 < x < 0.5
is best described by an exponential function. The Abri-
kosov theory qualitatively fits the experiment but yields
steeper temperature dependences. The RVB theory
does not describe the experimental results for samples
with oxygen concentrations below the optimal.

We are grateful to V.F. Gantmakher, V.V. Ryazanov,
and M.R. Trunin for valuable remarks and to
G.A. Emel’chenko and I.G. Naumenko for providing
the YBa2Cu3O7 – x single crystals. This work was sup-
ported by the Russian Foundation for Basic Research
(project no. 98-02-16636) and the program “Supercon-
ductivity” (project no. 96-060).
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The conditions for the occurrence of ferromagnetism in 3d metals of cubic symmetry are obtained based on the
concept of strong interaction in a single unit cell. The Hubbard model with infinitely strong repulsion is invoked
for a quantitative description. The calculations are carried out in the zero-loop and one-loop approximations.
The reasons for the occurrence of ferromagnetism in nickel and α-iron and its absence in Pd, Pt, and γ-iron are
analyzed. © 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 75.10.Jm; 75.50.Bb
Ferromagnetism of iron, cobalt, and nickel is caused
by strong intraatomic interactions. According to calcu-
lations [1], this energy (Hubbard energy) for the Ni, Co,
and Fe d electrons is 18.96, 17.77, and 16.54 eV,
respectively, and far exceeds the transition energy
t i, k(r) between the nearest neighboring atoms, for
which reason the Hubbard energy is assumed to be infi-
nite in what follows. The major part of the Hamiltonian
has the form

(1)

The (i, k) indices take five possible values correspond-
ing to different crystallographic indices of d electrons.
The matrix elements for the transition to the 4s states
are not taken into account, because they are irrelevant
to ferromagnetism. Band calculations indicate (see,
e.g., [2]) that the energy of cubic anisotropy is slightly
smaller than the energy of nearest neighbor hopping.
For this reason, all one-particle energies, for simplicity,
are set equal to the chemical potential taken with the
opposite sign: ek = –µ. The matrix of tunnel transitions
is assumed to be diagonal with respect to the crystallo-
graphic indices, and the corresponding density of one-
particle states is replaced by the semielliptical density
of states:

(2)

Ĥ ti k, r r'–( )âi σ,
+ r( )âk σ, r'( )

r r' σ, ,
∑=

+ ek σH–( )âi σ,
+ r( )âi σ, r( ).

r σ k, ,
∑

e ipr– ti k, r( )
r

∑ δi k, t p( ),=

δ e tp–( )
p

∑ 2
π
--- 1 e

2– .=
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The  and  operators are the creation and
annihilation operators for the hole d states, respectively.
The product of these operators defines the hole density
hd, which is related to the s-electron density ns (not
exceeding unity) by the electroneutrality requirement.

Therefore, the problem is to examine hole-shell fill-
ing 0 < hd < 1 for the fcc nickel lattice and 2 < hd < 3 for
the bcc and fcc iron lattices and to find the ferromag-
netic instability regions. The 1 < hd < 2 range is not con-
sidered, because it corresponds to the fcc cobalt lattice,
which does not exist at temperatures below 723 K.

After the diagonalization of the zeroth Hamiltonian
corresponding to the nonoverlapping atomic states, the
creation and annihilation operators are represented as
expansions in terms of all possible transitions between
the N and N + 1 hole states (cf. [3]):

(3)

Here, the indices α and β correspond to the back and
forth s  p transitions; i.e., β(p, s) = –α(s, p). The

genealogical coefficients  are evaluated below. The
equations for the mean occupation numbers nm are
derived from the definition of the temperature Green’s
function calculated for each pair of conjugated X oper-
ators (cf. [4]):

To calculate the one-particle Green’s function, let us
use the simplest one-loop self-consistent-field approxi-

âi σ,
+ r( ) âk σ, r'( )

â m σ,( )
+ r( ) gα

m σ, X̂r
α
,

α
∑=

â n σ,( ) r( ) gβ
n σ, X̂r

β
.

β
∑=

gα
m σ,

Dα β, r τ ; r τ',,( ) Θ τ τ'–( ) Xr
α τ( )rXr'

β τ'( )〈 〉–=

+ Θ τ' τ–( ) Xr'
β τ'( )rXr

α τ( )〈 〉 .
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mation. In this approximation, the Fourier transform

(p) of the one-particle Green’s function differs

from the so-called virtual Green’s function 
only by the factor fβ. The virtual Green’s function, in
turn, satisfies the Dyson-type equation

(4)

where em – es is the energy corresponding to the αth
transition, and ω = T(2n + 1)π.

For a given one-particle transition β(m, s), each end
multiplier fβ, by definition, is equal to the sum of the
mean occupation numbers for the initial and final
states. At the same time, the self-energy part is equal, in
the approximation adopted, to the sum of a product of
the end multiplier times the generalized hopping matrix
and a one-loop correction that depends neither on fre-
quency nor on momentum:

(5)

The mean occupation numbers  for the final states
m are found from the diagonal component with β = –α:

(6)

Equations (6) and (7) define all end multipliers
f(α(s, m)) = ns + nm that appear in the expression for the
diagonal components of the one-particle Green’s func-
tion which, in turn, is expressed through all possible
end multipliers and the one-loop self-energy parts Σα, β.

The simplest equations for the determination of end
multipliers can be obtained upon averaging the T-prod-
uct of the annihilation operator times the linear combi-
nation of the conjugated X operators with arbitrary

coefficients :

In this expression, use is made of the expansion of anni-
hilation operator (3) with the known genealogical coef-

ficients . By going to the limit τ'  τ, τ' > τ, one

Dω
α β,

Gω
α β, p( )

Dω
α β, p( ) Gω

α β, p( ) f β;=

Ĝω
1–

p( ){ } β
α

iω em– es+{ } δ α β+( ) Σω
α β, p( ),–=

f α s m,( ) ns nm,+=

Σα β, p( ) f α tβ
α p( ) Σα β, ,+=

tβ
α p( ) gα

k σ, ts
k p( )gβ

s σ, .=

nN 1+
m

Dα β, r τ ; r τ δ+,,( )
δ 0+→
lim

=  T Dω
α β, p( ) iωδ( )exp

ω p,
∑δ 0+→

lim

=  Xr
β m s,( )

Xr
α s m,( )〈 〉 Xr

m s, Xr
s m,〈 〉 Xr

m m,〈 〉 nN 1+
m .= = =

γα
m σ,

T̂ â n σ,( ) r τ,( )Ŷ m σ,( ) r' τ',( ){ }〈 〉–

=  gα
n σ, γβ

m σ, T̂ X̂r τ,
α

X̂r τ',
β{ }〈 〉 .

α β,
∑–

gβ
n σ,
obtains the following equations for all (N + 1)-particle

occupation numbers :

(7)

The equation of state is obtained by setting  =

 in this relationship.

Restricting oneself to the transitions between the
N- and (N + 1)-hole states with degeneracy multiplici-
ties R– and R+, respectively, one arrives at the following
equation of state for any integer-valued interval [hd] <
hd < [hd] + 1 of mean hole numbers:

(8)

The square brackets stand for the integral part.

The temperature dependence of the mean occupa-
tion numbers is expressed through the number κ of
orbital states and the Fermi distribution function nF(e)
of the eigenvalues of the virtual Green’s function (4):

(9)

Here,  are the eigenvalues of transition matrix (1),
which coincide with the energies in the tight-binding
approximation, and g2 is the sum of the squares of the
genealogical coefficients entering expansion (2).

The coefficients Dn appear in the variation of the
equation of state with respect to the external magnetic
field δH:

(10)

To derive the remaining equations for the variations δns

of occupation numbers in the (N + 1)-hole states, let us

nN 1+
s

gα m s,( )
k σ,( ) nN 1+

s γα s m,( )
k σ,( )

α
∑

=  T gα m s,( )
k σ,( ) γβ s m,( )

k σ,( ) Dω
α β, p( ) iωδ( ).exp

ω p,
∑δ 0+→

lim
α β,
∑

γβ s m,( )
k σ,( )

gβ s m,( )
k σ,( )

hd hd[ ] R+ fK ,+=

f
hd hd[ ]–
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------------------------------+
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---------------------------------------.= =
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∑
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∑
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Fig. 1. (a) Zero-loop, (b) one-loop, and (c) self-energy parts.
invoke all possible sets of auxiliary coefficients orthog-
onal to a given set of genealogical coefficients:

(11)

Making use of these conditions, let us take a variation
of Eq. (7) to deduce the relationships independent of
the magnetic-field variation:

(12)

where the new coefficient A for H = 0 is expressed

through the tight-binding energies :

(13)

It is straightforward to obtain the equations for 
from their definition in terms of the integrals of Green’s
functions (the so-called one-loop approximation):

(14)

The components of the Rα vector and the Wα, β and Uα, β
matrices are expressed through the numerical values of
the S matrix constructed in accordance with the defini-
tion of the self-energy matrix [see Eq. (5) and the fig-
ure]:

(15)
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∑

=  K gα m s,( )
k σ,( ) γα s m,( )
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β
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-----,= =
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g2 gγ
2.

γ
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The coefficient Q can be related to the K quantity
appearing in the equation of state (9) with H = 0:

(16)

With nickel, for which the empty and one-hole states
are in resonance, all genealogical coefficients are unity,
while the variations of the end multipliers coincide with
the variations of the single-hole occupation numbers:

(17)

On substituting these relationships into basic Eqs. (10),
(12), and (14), one can determine variations for the end
multipliers and the occupation numbers.

The condition for ferromagnetism can be found
from the requirement that the appropriate system of
homogeneous equations be resolvable at zero mag-
netic-field variation:

(18)

In the T = 0 limit, all coefficients are expressed in terms
of the integrals of density of states:

(19)

In the model of semielliptical density of states ρ(e) =

2 /π, the following condition holds:

(20)

For a given degeneracy multiplicity 2κ, the last equa-
tion determines the critical Kc value corresponding to
the critical concentration

Q
1
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------------ nF f g2

ep
λ( ) µ–( ) nF µ–( )–[ ]
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σ δ f σ, Ŝ Û 1, Ŵ 0.= = = =

1 K– f D1 D1 1 K–( ) f D0D2 D1
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For κ = 5, two critical points are obtained: Kc1 =
0.1161, i.e., hc1 = 0.5671, and Kc2 = 0.295, i.e., hc2 =
0.8071. (These results are in qualitative agreement with
the results obtained in [5]).

With iron, where the two-hole states are in reso-
nance with the three-hole states, one has three indepen-

dent genealogical coefficients g = (1, , 1/ ), so

that γ1 = (1, 0, – ) and γ2 = ( , –2 , 1) can be
chosen as two independent, mutually orthogonal vec-
tors.

The variations for three-hole states with four differ-
ent spin projections Sz = ±3/2 and Sz = ±1/2 can be
expressed through the variations of three end multipli-
ers:

(21)

One can see that the end multipliers are independent of
the number k of the orbital state.

It is straightforward to evaluate the one-loop self-
energy parts in Figs. 1b and 1c and express them
through three independent integrals, each proportional
to the square of one of the genealogical coefficients. As
a result, matrices (15) appearing in Eq. (14) are found
to be

(22)

Substituting these relations and matrices into basic
Eqs. (10) and (14), one can determine variations for the
end multipliers and the occupation numbers.

This system of equations can be resolved at zero
magnetic-field variation only if the corresponding
determinant is zero:

(23)
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3 3 2
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Ŝ
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  K 1 K–( )D1+=

+ f g2 2
3
--- K+ 

  D2D0 D1
2–( ).
In our case, g2 = 12, R– = 30, and R+ = 40. The inverse
of the end multiplier is a linear function of K:

(24)

Substitution of these relations into Eq. (23) allows its
right-hand side to be expressed as a function of K and
α, which are related to each other by equation of state
(24). The solution of these equations gives the α and K
parameters corresponding to the critical number of
holes, above which the ferromagnetic instability does
not arise. Note that the singularities associated with the
poles at Q = 1/3, Q = 1/2, and K = 1 are irrelevant to the
ferromagnetic instability, because the corresponding
eigenvectors are orthogonal to the vector perturbations
of a uniform magnetic field.

The numerical solution of Eq. (23), together with
the equation of state at T = 0, gives only a single root:
for the semielliptical density of states (3) αc = 2.6938
and Kc = 0.3583, so that the ferromagnetic instability
occurs in a limited concentration range 2 < hd < hc1 =
2.428. This interval is slightly larger than the one given
by the zero-loop approximation: 2 < hd < hc0= 2.3388.

This result is pertinent to the ferromagnetism of the
bcc α-iron lattice, for which the saturation magnetic
moment is 2.2 µB. As to the nonferromagnetic phase of
γ-iron, measurements suggest that the number of d
electrons in fcc iron is approximately 7.5, so that the
number of holes is 2.5.

Thus, α-iron is a ferromagnet, because the number
of hole states (≈2.2) falls within the ferromagnetic
instability interval. The absence of ferromagnetism in
γ-iron is explained by the fact that the number of holes
in the 3d shell, ≈2.5, exceeds the critical value calcu-
lated in both zero-loop and one-loop approximations.

General Eqs. (10)–(14) can also be applied to
cobalt, for which the number of holes ranges from unity
to two. As a result, the ferromagnetism region is found
to be 1 < hc < 1.585. However, the resulting critical hc
value is obtained for T = 0. It cannot be experimentally
verified for Co, because its fcc crystal phase exists at
temperatures T > T* = 723 K, while the ferromag-
netism disappears at T = Tc = 1440 K.

The theory suggested in this work qualitatively
explains the magnetic properties of the Ni, Pd, and Pt
metals. All of them have a cubic unit cell of the fcc type.
The total number of conduction electrons is 10, and the
number of electrons in the unfilled s shell does not
exceed unity. Band calculations suggest [2] that the
number of s electrons in the unfilled s shell is 0.81,
0.59, and 0.94 for Ni, Pd, and Pt, respectively. One can
thus infer that the number hd of d-hole states is also
equal to 0.81, 0.59, and 0.94. The number of hole states
for nickel is intermediate between hd in palladium and

1
f
--- 30 10K , K+

α αsin–
2π

---------------------,= =

f g2D1
αsin

π
-----------, hd 6

1 K+
3 K+
-------------.= =
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platinum, so that the hole concentrations in Pd and Pt
are beyond the ferromagnetic instability range, whereas
the intermediate hole concentration in Ni falls within
this range. The critical values hc1 = 0.567 and hc2 =
0.807 obtained by the theory suggested in this work are
slightly smaller than those given by the band calcula-
tions. Nevertheless, the value of µB = 0.6, commonly
accepted for the saturation magnetic moment of Ni, is
not contradictory to the calculations of this work and
falls within the calculated magnetic ordering range.

This work was supported by the Russian Foundation
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We proposed several 1D and 2D electronic models with the exact ground state. The ground-state wave function
of these models is represented in terms of “singlet bond” functions consisting of homopolar and ionic configu-
rations. The Hamiltonians of these models include correlated hopping of electrons, pair hopping terms, and spin
interactions. © 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 71.10.–w; 75.10.Jm
The study of strongly correlated electron systems
has been an important subject in theoretical condensed
matter physics. In general, the Hamiltonians of these
systems include many types of interactions, and they
are difficult to solve. The integrable models provided us
with a very good understanding of correlation effects in
many-body systems. Unfortunately, the construction of
such models is difficult due to the strict conditions for
the integrability. In recent years, there has been increas-
ing interest in studying models where at least the
ground state can be found exactly [1–4]. The most pop-
ular methods for the construction of an exact ground
state are the so-called optimal ground state (OGS)
approach [2] and the matrix-product (MP) method [3, 4].
The ground-state wave function in the MP method is
represented by Trace of a product of matrices describ-
ing one-site states. This ground state is “optimum” in
the sense that it is the ground state of each local inter-
action. This method allows the construction of a large
class of spin models. A similar approach has been used
in the OGS method for the construction of the elec-
tronic models with the special ground states.

In this paper, we propose new 1D and 2D models of
interacting electrons with an exact ground state. We
note that our models have ground states that are very
different from those constructed in the OGS approach.
The ground-state wave function of our models is
expressed in terms of the two-particle “singlet bond”
(SB) function located on sites i and j of the lattice:

(1)

where , ci, σ are the Fermi operators and x is an arbi-
trary coefficient. The SB function is the generalization
of the Resonating Valence Bond (RVB) function [5]
including ionic states. The presence of the ionic states
is very important from the physical point of view

1 This article was submitted by the authors in English.

i j,[ ]  = ci ↑,
+ c j ↓,

+ ci ↓,
+ c j ↑,

+– x ci ↑,
+ ci ↓,

+ c j ↑,
+ c j ↓,

++( ) 0| 〉 ,+

ci σ,
+
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because, as a rule, the bond functions contain definite
amounts of the ionic states as well.

A series of 1D and 2D quantum spin models, for
which the exact ground state can be represented in the
RVB form, are considered in [6–10]. It is natural to try
to find electronic models with an exact ground state at
half-filling formed by SB functions in the same manner
as for the above-mentioned spin models. The electronic
models of these types include the correlated hopping of
electrons, as well as the spin interactions and pair hop-
ping terms.

The model with dimerization. As the first exam-
ple, we consider the 1D electronic model with a two-
fold degenerate ground state in the form of a simple
product of SB dimers, similar to the ground state of the
well-known spin-1/2 Majumdar–Ghosh model [6]. For
the half-filling case, the proposed ground-state wave
functions are

(2)

and

(3)

In order to find the Hamiltonian for which the wave
functions (2) and (3) are the exact ground-state wave
functions, we represent the Hamiltonian as a sum of
local Hamiltonians hi defined on three neighboring
sites (periodic boundary conditions are supposed):

(4)

The basis of three-site local Hamiltonians hi con-
sists of 64 states, while only 8 of them are present in Ψ1
and Ψ2. These 8 states are

(5)

where ϕi is one of the four possible electronic states in
the ith site: |0〉 i, |↑〉 i, |↓〉 i, |2〉 i.

Ψ1 1 2,[ ] 3 4,[ ]… N 1– N,[ ]=

Ψ2 2 3,[ ] 4 5,[ ]… N 1,[ ] .=

H hi.
i 1=

N

∑=

i i 1+,[ ]ϕ i 2+ , ϕ i i 1+ i 2+,[ ] ,
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The local Hamiltonian hi, for which all functions (5)
are the exact ground-state wave functions, can be writ-
ten as the sum of the projectors onto the other 56 states
|χk〉:

(6)

where λk are arbitrary positive coefficients. This means
that the wave functions Ψ1 and Ψ2 are the ground states
of each local Hamiltonian with zero energy. Hence, Ψ1
and Ψ2 are the optimum ground-state wave functions of
the total Hamiltonian H with zero energy, similar to the
models in [2–4]. In the general case, the local Hamilto-
nian hi is multiparameter and depends on the parame-
ters λk and x. We consider one of the simplest forms of
hi including the correlated hopping of electrons of dif-
ferent types and spin interactions between nearest- and
next-to-nearest neighbor sites:

(7)

where

and Si is the SU(2) spin operator.
Each local Hamiltonian hi is a nonnegatively

defined operator at |x| ≤ 1. The following statements
related to the Hamiltonian (7) are valid.

1. The functions (2) and (3) are the only two ground-
state wave functions of the Hamiltonian (7) at Ne = N
(Ne is the total number of electrons). They are not
orthogonal, but their overlap is ~e–N at N @ 1.

2. The ground state energy E0(Ne/N) is a symmetric
function with respect to the point Ne/N = 1 and has a
global minimum E0 = 0 at Ne/N = 1.

3. The translational symmetry of (7) is spontane-
ously broken in the ground state, leading to the dimer-
ization

The excited states of the model cannot be calculated
exactly, but we expect that there has to be a gap,
because the ground state is formed by the ultrashort-
range SB functions. If it is the case, the function
E0(Ne/N) has a cusp at Ne/N = 1.

Actually, this model is the fermion version of the
Majumdar–Ghosh spin model. Moreover, it reduces to

hi λ k χk| 〉 χk〈 |,
k

∑=

hi 2 x ti i 1+, ti 1+ i 2+,+( )–=

+ x2 1 x2+( ) 1 ni 1+–( )2–( )Ti i 2+,

+ 8
1 x2–

3
------------- Si Si 1+⋅ Si 1+ Si 2+⋅ Si Si 2+⋅+ +( ),

Ti j, ci σ,
+ c j σ, c j σ,

+ ci σ,+( ) 1 ni σ–, n j σ–,––( ),
σ
∑=

ti j, ci σ,
+ c j σ, c j σ,

+ ci σ,+( ) ni σ–, n j σ–,–( )2,
σ
∑=

ti i 1+, ti 1+ i 2+,–〈 〉 2.=
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the Majumdar–Ghosh model at x = 0 and in the sub-
space with ni = 1.

For x = 1, Hamiltonian (7) is simplified and takes the
form:

(8)

The 2D model. We can easily construct the 2D elec-
tronic model with the exact ground state which is anal-
ogous to the Shastry–Sutherland model [7] (Fig. 1).
The Hamiltonian of this model is

(9)

where the sum is over all triangles {i, j, k}, one of which
is shown in Fig. 1. Thus, each diagonal line belongs to two

different triangles. The local Hamiltonians  acting on
the diagonal of the triangle {i, j, k} and hi, j, hi, k have the
form (for the sake of simplicity, we put x = 1)

It is easy to check that

All other states of the local Hamiltonian hi, j + hi, k +
 have higher energies. Therefore, the ground-state

wave function in the half-filling case is the product of
the SB functions located on the diagonals shown by
dashed lines in Fig. 1. This model has a nondegenerate
singlet ground state with ultrashort-range correlations.

The ladder model. Let us now consider electronic
models with a more complicated ground state including
different configurations of short-range SB functions.
The form of these ground states is similar to that for
spin models proposed in [8] and generalized in [9].

H 2 t j j 1+, 1–( )
j

∑– e
iπn j 1+ T j j 2+, .

j

∑–=

H hi j, hi k, h j k,
d ,+ +

i j k, ,{ }
∑=

h j k,
d

h j k,
d 2t j k,– 4,+=

hi j, ti j,– e
iπnkTi j, ,–=

hi k, ti k,– e
iπn jTi k, .–=

h j k,
d ϕ i j k,[ ]| 〉 hi j, hi k,+( ) ϕ i j k,[ ]| 〉 0.= =

h j k,
d

Fig. 1. The lattice in the Shastry–Sutherland model.
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In the 1D case, our model describes the two-leg ladder
model (Fig. 2). Its ground state is a superposition of the
SB functions, where each pair of nearest neighbor
rungs of the ladder is connected by one SB. One possi-
ble configuration of singlet bonds is shown in Fig. 2.

The wave function of this ground state can be writ-
ten as 

(10)

A wave function of this type for spin models has
been proposed in [8]. The functions ψλµ(i) describe the
ith rung of the ladder:

, (11)

with

.

It is easy to see that

Therefore, the function Ψs is a singlet wave function
depending on two parameters x and c1/c2. Actually, this
form of Ψs is equivalent to the MP form with 4 × 4
matrices Aλν(i) = gλµψµν(i). Moreover, at x = 0 and
c1/c2 = –1 the function Ψs reduces to the wave function
of the well-known AKLT (Affleck–Kennedy–Lieb–
Tasaki) spin-1 model [8].

In order to find the Hamiltonian for which the wave
function (10) is the exact ground-state wave function, it
is necessary to consider which states are present on the
two nearest rungs in Ψs. It turns out that there are only
16 states from a total of 256 in the product
ψλµ(i)gµνψνρ(i + 1). The local Hamiltonian hi acting on
the two nearest rungs i and i + 1 can be written in the
form of Eq. (6) with the projectors onto the 240 missing
states. The total Hamiltonian is the sum of the local
ones (4). The explicit form of this Hamiltonian is very
cumbersome and therefore is not given here.

The correlation functions for the ground state (10)
can be calculated in exactly the same manner as was
done for spin models [8]. It can be shown that all corre-

Ψs ψλµ 1( )gµνψ
νρ 2( )gρκ…ψστ N( )gτλ .=

ψλµ i( ) c1ϕ2i 1–
λ ϕ2i

µ c2ϕ2i
λ ϕ2i 1–

µ+=

ϕk
λ

↑| 〉 k

↓| 〉 k

2| 〉 k

0| 〉 k 
 
 
 
 
 
 

, gλµ

0 1 0 0

1– 0 0 0

0 0 0 x

0 0 x 0 
 
 
 
 
 

= =

gλµϕ i
λϕ j

µ i j,[ ] .=

Fig. 2. The two-leg ladder model.
lations exponentially decay in the ground state. We also
expect that this model has a gap.

This method of constructing the exact ground state
can also be generalized to 2D and 3D lattices [9]. Fol-
lowing [9], one can rigorously prove that the ground
state of these models is always a nondegenerate singlet.

1D models with the giant spiral order. There is
one more spin-1/2 model with an exact ground state of
the RVB type [10]. Its Hamiltonian has the form

. (12)

This model describes the ferromagnet–antiferromagnet
transition point. The exact singlet ground state can be
expressed by the combinations of the RVB functions
(i, j) distributed uniformly over the lattice points:

(13)

where the summation goes over all combinations of
sites, under the condition that i < j, k < l, m < n …. The
spin correlations in the singlet ground state show a
giant spiral structure [10].

The analogue of the wave function (13) in the SB
terms is:

(14)

where P = (i, j, k, l, …) is the permutation of numbers
(1, 2, …, N). It is interesting to note that the singlet
wave function (14) can also be written in the MP form
but with an infinite-size matrices [11]. The Hamilto-
nian, for which the wave function (14) is the exact
ground-state wave function, has the form

(15)

where

This model describes the transition point where the sin-
glet ground state (14) is degenerate with the ferromag-
netic state. The spin–spin correlations in the singlet
ground state (14) have a giant spiral form, as in the spin
model (12), while other correlations vanish in the ther-
modynamic limit [11].

In summary, we have constructed electronic models
with an exact ground state. The ground-state wave
function of these models is built from SB functions in
the same manner as are the well-known RVB ground
states of spin models. We have considered three types
of SB ground states. All electronic models considered

H Si Si 1+⋅
i

∑–
1
4
--- Si Si 2+⋅

i

∑+=

Φ0 i j,( ) k l,( ) m n,( )…,∑=

Ψ0 1–( )P i j,[ ] k l,[ ] m n,[ ]…,
i j…<
∑=

H Ti i 1+,
2
x
---ti i 1+,– 4Si Si 1+⋅–


i 1=

N

∑=

+
4

x2
-----η i η i 1+⋅ 4

x2 3–

x2
-------------η i

zη i 1+
z+ 

 ,

η i
+ ci ↓,

+ ci ↑,
+ , η i

– ci ↑, ci ↓, , η i
z 1 ni–( ) 2.⁄= = =
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have physical properties similar to those of the original
spin models. We note that the proposed approach can
be generalized for the construction of other models
with the ground states of more complicated SB forms.

We are grateful to the Max-Planck-Institut fur Physik
Komplexer Systeme for kind hospitality. This work was
supported by the Russian Foundation for Basic Research
(project nos. 00-03-32981 and 00-15-97334).
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from a Semi-Infinite Crystal1
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Secondary emission from a semi-infinite crystal is considered. The contribution to the emission amplitude orig-
inating from structural factor singularities is analyzed. Poles of the structural factor determine the main contri-
bution to the emission amplitude. The energy and angular distributions of the emission depend on the crystal-
lographic orientation of the crystal surface and are characterized by a set of allowed vectors of the reciprocal
lattice. It is shown that emission anisotropy related to the crystallographic directions is due to the coherent char-
acter of the photoabsorption process, and diffraction scattering leads only to relative change in the emission
intensity in allowed low-index directions. The concrete calculations are performed for (100) and (111) surfaces
of a diamond-like lattice. © 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 61.14.–x; 78.70.–g
Photo-, Auger and fluorescence emissions from
X-ray irradiated crystals are intensively used for struc-
ture reconstruction on a crystal surface. Development
of experimental facilities in this field allows one to
obtain information concerning the surface structure of
irradiated crystals [1–5]. Application of these emis-
sions for crystal holography is also widely discussed
[6–11]. Characteristic features of the angular distribu-
tion of the emission investigated in the papers cited
above are interpreted as a result of diffraction scatter-
ing. Several authors tried to analyze interference
between direct and scattered emissions from individual
atoms (see [12] and ref. therein). Mathematical meth-
ods of structure reconstruction were also developed.
Parallel with new holographic schemes, some refined
methods, such as a Patterson-like scheme were pro-
posed [13]. Discussed schemes of structure reconstruc-
tion based on measuring the angular and energy distri-
butions of emission take into account scattering by
individual atoms as independent scatterers and do not
take into account the periodic nature of the scattering
potential. Correct determination of the positions of dis-
placement atoms near a crystal surface makes it desir-
able to have for comparison emission scattered by the
periodic potential of a semi-infinite perfect crystal. In
this paper, analysis of anisotropy of the secondary
emission from a single semi-infinite crystal under X-
ray irradiation is proposed.

During emission registration experiments, it is not
possible to distinguish between the atom emitter and
atom scatterer. Therefore, in the case of identical
atoms, it is convenient to consider an amplitude of the
emission probability which depends only on the emis-
sion wave vector k, which determines the energy and

1 This article was submitted by the authors in English.
0021-3640/00/7202- $20.00 © 20086
direction of the measured emission. It is known that the
scattering potential acting on the electrons in a crystal
is a sum of all atomic potentials. A Fourier transform of
this potential U(q), which determines the scattering
with transferred momentum q, is given by

(1)

Here, V(q) is the atomic factor; S(q) = 
is the structural factor (SF) of a semi-infinite crystal; rn
is an atomic position; and the summation is taken over
all atomic positions with zn ≤ 0, where the z axis of a
Cartesian coordination system is directed along the
external normal to the irradiated surface. Equation (1)
does not take into account thermal atomic motion
which leads to the Debye–Waller factor in this equa-
tion. The finite summation limit over zn ≤ 0 in SF deter-
mines the influence of crystallographic orientation of
the surface. The explicit form of the q-dependence of
SF can be obtained through the layer-by-layer summa-
tion for the investigated lattice and given surface orien-
tation. It is known that V(q) does not have singularities,
and a change in the wave vector k' in the scattering is
determined by the poles qjlm of S(q), which are a subset
of the total set of vectors of the reciprocal lattice. This
set depends strongly on the crystallographic orientation
of the crystal surface. Below, the diamond-like lattice is
taken as an example to demonstrate the dependence of
the set on the surface crystallography.

The concrete calculations fulfilled for the important
case of the (100) surface of the diamond-like lattice
allow one to obtain the explicit form of SF. It has the
following form:

(2)

U q( ) V q( )S q( ).=

i qrn( )( )exp
n∑

S100 q( ) 4
qxa
4

--------
qya
4

--------
qza
4

--------coscoscos 
 

1–

.=
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Here, a is the size of a unit cell of the diamond-like lat-
tice. This equality shows the presence of poles at

(3)

where j, l, m are integers. In the case of a weakly scat-
tering potential, Us ! E, where E is the electron energy,
the pole singularities of SF (2) allow the calculation of
emission amplitude accounting for elastic scattering by
the periodic potential in the Born approximation (BA)
[14]. Let F(k) be the probability amplitude of nonscat-
tered emission. Then taking account of scattering leads
to the following form of the emission amplitude:

(4)

where

has the meaning of the effective scattering potential of
the semi-infinite crystal, which takes into account the
momentum transfer multiple for all allowed qjlm. Calcu-
lation of the first two coefficients in the BA gives

(5)

Here,

(6)

 = Ry(πaB/a)2, Ry is Rydberg’s energy and aB is the
Bohr radius, and me is the electron mass. The second
term on the right hand side of Eq. (4) describes multiple
scattering as a series expansion in the scattering
potential. The summation in W(k) goes over all poles
of SF, which satisfy the conditions (k – qjlm)2 = k2 and
(k – 2qjlm)2 = k2 in the first and second orders of BA,
respectively. In particular, it means that the emission
amplitude with the wave vectors k = qjlm is preserved
during scattering in the first order of BA. Equations (4)
and (5) show that in the case of an isotropic form of the
amplitude F(k), elastic scattering preserves the isot-
ropy in the emission intensity |G(k)|2. This leads to the
conclusion that anisotropy appearing in experimental
data and related to the crystal structure [15] is formed
in the process of photoabsorption and not in the diffrac-
tion scattering. There are two possible causes of this
anisotropy. The first one is the coherent character of the

q jlm 2 j 1+ 2l 1+ 2m 1+, ,( )2π a⁄ ,=

G k( ) F k( ) W k( ) E⁄ ,+=

W k( ) b jlm
1( ) F k q jlm–( )

jlm

∑=

+ b jlm
2( ) F k 2q jlm–( )

jlm

∑ …+

b jlm
1( ) 32 π

ea
3

------------- 1–( ) j l m+ + V q jlm( ),=

b jlm
2( ) i

512 π
3ea6

----------------
V2 q jlm( )

E jlm

-------------------.=

E j l m, ,
"

2q jlm
2

2me

---------------=

=  2Es
e 2 j 1+( )2 2l 1+( )2 2m 1+( )2+ +[ ] ,

Es
e

JETP LETTERS      Vol. 72      No. 2      2000
photoabsorption related to the crystal atomic structure.
The second cause of the anisotropy of F(k) is due to
anisotropy of the photoprocess in an individual atom
and can be due to the polarization of the X-ray beam
and to the initial electron state in an individual atom.
This second cause is in no way related to the crystalline
structure. Thus, the experimental data of [15] can be
considered as an indication of the coherent character of
the photoabsorption process. It is possible to show that
in the case of coherent photoabsorption, when F(k) ~
S(k) and all Fourier transforms of the amplitude F(k)
correspond to the poles of SF, the first order of BA does
not contribute to the elastic scattering and the second
order of BA leads only to a relative change in emission
intensity in allowed low-index directions.

The positions of the poles of SF in the k space are
determined by the crystal symmetry and surface orien-
tation. Let [2j + 1, 2l + 1, 2m + 1] designate a multiplet
of reciprocal vectors corresponding to equal energy (6).
In the general case, it corresponds to 48 different poles
in the k space. These poles form a 48-et with six differ-
ent wave vectors in each octant of the k space. In the
case when, e.g., qα = qβ ≠ qγ, the poles form a 24-et with
three different wave vectors in each octant of the k
space. The spatial diagonals of the octants are threefold
axes for this wave-vector system. In the case when
F(k) ~ S(k), the poles form an octet with wave vectors
directed along the spatial diagonals. The lowest energy

octet of such states has energy E[1, 1, 1] = 6  (~18 eV
in the case of Si). The next energy state is a 24-et and

has the energy E[1, 1, 3] = 22  (~66 eV in the case of Si).

The lowest energy 48-et has the energy E[1, 3, 5] = 70
(~210 eV in the case of Si).

In the case of the diamond-like lattice, a normal to a
(111) surface is the threefold symmetry axis. In this
case, layer-by-layer calculation of SF leads to the fol-
lowing expression:

(7)

Here, a0 = a/4 is the minimum distance between
atoms in the diamond-like lattice with the size of a unit
cell equal to a. Note that the summation over any
monolayer, which is parallel to a (111) surface, gives
the same result, equal to 0, for all directions except for
the normal one. In this case, the diffraction scattering
changes only the z component of the wave vector.

The presence of this single direction of q is the
result of interference. The poles at

(8)

Es
e

Es
e

Es
e

S111 q( ) i
iqa0
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× 4
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lead to a sharp increase in the scattering along the nor-
mal direction to the (111) surface for these wave-
lengths. The electrons with energies

(9)

give the main contribution to the emission. In this case,
all poles form doublets. The characteristic distance
between two lowest levels for the (111) surface of Si is
~36 eV.

In the case of fluorescence emission from the (100)
surface, the main contribution can be expected to be
from energies

(10)

and, in the case of the (111) surface,

(11)

Here,  = 2πα Ry(aB/a) determines the energy scale

for the fluorescence emission and α = c"/  = 137. The

characteristic value of  equals ~2300 eV, while

 ~ 3 eV.

Thus, we see that the influence of diffraction scatter-
ing on the emission anisotropy depends on the crystal-
lographic orientation of the crystal surface. Equations
(4) and (5) allow one to estimate the contribution of dif-
fraction scattering to the electron emission. The contri-
butions of inelastic processes, in particular plasmon
excitations, can be easily estimated by experimental
data from [15]. Similar angle dependences of the elec-
tron emission measured in [15] for elastic and satellite
plasmon peaks indicate that they are related to the same
poles of SF. Relatively small energy losses of the elec-
trons due to the excitation of plasma oscillations are
considerably smaller then the energy intervals between

E j 96 j2Es
e, El 6 2l 1+( )2Es

e,= =

E j l m, ,
f Es

f 2 j 1+( )2 2l 1+( )2 2m 1+( )2+ +[ ]1/2
,=

E j
f 4 3 jEs

f , El
f 3 2l 1+( )Es

f .= =

Es
f

e0
2

Es
f

Es
f

neighboring multiplets (6), and angular distributions of
electrons, both excited and unexcited plasmons, are
formed by the same multiplet of reciprocal vectors.

This work was supported by the Russian Foundation
for Basic Research, project no. 00-02-17693.
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The novel stable “soliton islands” in a “sea of solitary waves” of the nonlinear Schrödinger equation model with
varying dispersion, nonlinearity, and gain or absorption are discovered. Different soliton management regimes
are predicted. © 2000 MAIK “Nauka/Interperiodica”.
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The nonlinear Schrödinger equation model (NLSE)
is one of the most important and “universal” nonlinear
models of modern science. NLSE appears in many
branches of physics and applied mathematics, includ-
ing condensed matter and plasma physics, nonlinear
optics and quantum electronics, fluid mechanics, the-
ory of turbulence and phase transitions, biophysics, and
star formation. The best known solutions of the NLSE
are those for solitary waves, or solitons. The theory of
NLSE solitons was developed for the first time in 1971
by Zakharov and Shabat [1]. Zakharov and Shabat were
the first to apply the inverse scattering transform
method to this equation and derived a more general
form for its bright, dark, and multisoliton solutions [1, 2].
Over the years, not only was experimental verification
of the existence of NLSE solitons in many branches of
modern science demonstrated, but also various properties
of solitons derivable from the result of the inverse scatter-
ing transform theory were identified. Hasegawa and Tap-
pert [3] were the first to show theoretically that an optical
pulse in a dielectric fiber forms a solitary wave, based on
the fact that the wave envelope satisfies the NLSE. Optical
solitons were discovered experimentally in 1980 by Mol-
lenauer, Stolen, and Gordon [4]. Today, optical solitons
are regarded as the natural data bits and as an important
alternative to the next generation of ultrahigh-speed opti-
cal telecommunication systems [5]. Picosecond optical
soliton theory, developed in the framework of the NLSE
model, has produced an excellent agreement between the-
ory and experiment [6, 7].

The problem of soliton management in the nonlin-
ear systems described by the NLSE model with varying
coefficients is a new and important one (see, e.g., the
review of optical soliton dispersion management prin-
ciples and research as it currently stands in [8–10], and

1 This article was submitted by the authors in English.
0021-3640/00/7202- $20.00 © 0089
references therein). We would also note the fact that the
first soliton dispersion management experiment in a
fiber with hyperbolically decreasing group velocity dis-
persion was realized as early as in 1991 by Dianov’s
group at the General Physics Institute [11].

In this letter, we predict the existence of a new type
of temporal and spatial solitary waves for the NLSE
model with varying dispersion, nonlinearity, and gain
or absorption. We will then turn our attention to finding
solutions for specified soliton management conditions.
Different soliton management regimes are predicted.

Our starting point is the NLSE model with varying
coefficients:

(1)

NLSE (1) is written here in standard soliton units, as
they are commonly known. There it is assumed that the
perturbations to the dispersion parameter D2(Z), non-
linearity N2(Z), and to the amplification or absorption
coefficient Γ(Z) are not limited to the regime where
they are smooth and small. Due to the well-known spa-
tiotemporal analogy [1], both temporal and spatial soli-
tons are described by Eq. (1). In the case of temporal
solitons, T is the dimensionless time in the retarded
frame associated with the group velocity of wave pack-
ets at a particular optical carrier frequency. In the case
of two-dimensional spatial solitons, T = X represents a
transverse coordinate.

Theorem 1. Consider the NLSE model (1) with
varying dispersion, nonlinearity, and gain or absorp-
tion. Suppose that the Wronskian W{N2, D2} of the
functions N2(Z) and D2(Z) does not vanish; the two func-
tions N2(Z) and D2(Z) are thus linearly independent.
Then there is an infinite number of solitary-wave

i
∂q±

∂Z
--------- 1

2
---D2 Z( )∂

2q±

∂T2
----------- N2 Z( ) q± 2

q+± iΓ Z( )q± .=
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solutions for Eq. (1) written in the following form:

(2)

where the real function Q+(S) describes the canonical
functional form of bright [sgn = +1, Q+(S) =
η ] or dark [sgn = –1, Q–(S) =
η ] NLSE solitons [1–3], and the real
functions D2(Z), N2(Z), Γ(Z), and P(Z) satisfy the sys-
tem of equations

(3)

Theorem 2. Consider the NLSE model (1) with
varying dispersion, nonlinearity, and gain or absorp-
tion. Suppose that the Wronskian W{N2, D2} vanishes;
the two functions N2(Z) and D2(Z) are thus linearly
dependent. Then there is an infinite number of solitary-
wave solutions conserving the pulse area for Eq. (1):

(4)

where the real functions Q±(S) describe a canonical
form of bright (Q+(S)) or dark (Q–(S)) NLSE solitons,
and the real functions P(Z), D2(Z), N2(Z) and Γ(Z) sat-
isfy the system of equations

(5)

The explicit solutions for the traveling solitary waves
can easily be constructed by applying the Galileian
transformations and by using the equation for the “soli-
ton center” Tsol(Z) given by

(6)

where V is the soliton group velocity (in the case of a
spatial soliton,  and θ is the angle of propa-
gation in the XZ plane).

By applying Theorems 1 and 2, we develop a sys-
tematic analytical approach to find the fundamental set
of the different NLSE soliton management regimes.

Case 1. Soliton dispersion management. In this
case, the dispersion management function D2(Z) is

q± Z T,( )
D2 Z( )
N2 Z( )
--------------P Z( )Q± P Z( )T[ ]=

× i
P Z( )

2
-----------T2 i K± Z '( ) Z 'd

0

Z

∫+± ,exp

ηP Z( )T( )sech
ηP Z( )T( )tanh

∂P Z( )
∂Z

-------------- P2 Z( )D2 Z( )+ 0;=

W N2 Z( ) D2 Z( ),{ }
D2 Z( )N2 Z( )

------------------------------------------- D2 Z( )P Z( )– 2Γ Z( ).=

q± Z T,( ) CP Z( )Q± P Z( )T[ ]=

× i
P Z( )

2
-----------T2 i K± Z '( ) Z 'd

0

Z

∫+± ,exp

2Γ Z( )
1
P
---∂P Z( )

∂Z
--------------;=

C2N2 Z( ) D2 Z( )
1

P2 Z( )
-------------∂P Z( )

∂Z
--------------.–= =

∂Tsol Z( ) ∂Z⁄ V D2 Z( ),–=

V θtan=
assumed to be given: D2(Z) = Φ(Z) (we call it the con-
trol function). The function Φ(Z) is only required to be
once differentiable and once integrable, but is an other-
wise arbitrary function; there are no restrictions. Then
there is an infinite number of solutions for Eq. (1) of the
form of bright and dark dispersion-managed solitons
represented by Eq. (2), where the main functions P(Z)
and Γ(Z) are given by

(7)

In the limit N(Z) = const, Eq. (7) reduces to

(8)

where C is the constant of integration.

Case 2. Soliton energy control. In this case, the soli-
ton energy-control function E(Z) = 2D2(Z)P(Z)/N2(Z) is
assumed to be given. The function E(Z) is only required
to be once differentiable and once integrable, but is an
otherwise arbitrary function; there are no restrictions.
Then there is an infinite number of solutions for Eq. (1)
of the form of bright and dark solitons represented by
Eq. (2), where the main functions D2(Z), P(Z), and Γ(Z)
are given by

(9)

(10)

Case 3. Soliton intensity management. In this case,
the soliton pulse intensity (peak power) is assumed to
be controlled by the function Θ(Z) = D2(Z)P2(Z)/N2(Z),
where the control function Θ(Z) is only required to be
once differentiable and once integrable. Then there is
an infinite number of solutions for Eq. (1) of the form
of bright and dark solitons represented by Eq. (2),
where the main functions D2(Z), P(Z), and Γ(Z) are
given by quadratures:

(11)

P Z( )
1

C Φ Z( ) Zd∫–[ ]
-------------------------------------,–=

Γ Z( )
1
2
---

Z∂
∂ P Z( )Φ Z( )

N2 Z( )
----------------------- 

  .ln=

Γ Z( )
1
2
--- Φ Z( )

C Φ Z( ) Zd∫–[ ]
------------------------------------- 1

2
--- 1

Φ Z( )
------------∂Φ Z( )

∂Z
---------------,+=

D2 Z( )
E Z( )N2 Z( )

2P Z( )
-------------------------=

2Γ Z( )
Z∂
∂

E Z( ) 2⁄( ),ln=

P Z( )
1
2
--- E Z( )N2 Z( ) Z C+d∫– .exp±=

D2 Z( )
Θ Z( )

C Θ Z( ) Zd∫–[ ]
2

---------------------------------------;=

P Z( ) Θ Z( ) Z C,+d∫–=

2Γ Z( ) Θ Z( )

C Θ Z( ) Zd∫–[ ]
-------------------------------------

1
Θ Z( )
------------∂Θ Zd

∂Z
--------------,+=
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and the nonlinearity is assumed to be a constant
[N2(Z) ≡ 1].

Case 4. Soliton pulse width management and the
problem of optimal soliton compression. In this case,
the soliton pulse width control function is assumed to
be given: ϒ(Z) = P–1(Z). The real function ϒ(Z) is only
required to be twice differentiable, but is an otherwise
arbitrary function; there are no restrictions. Then there
is an infinite number of solutions for Eq. (1) of the form
of bright and dark solitons represented by Eq. (2),
where the main coefficients of the NLSE model D2(Z)
and Γ(Z) are given by

(12)

Case 5. Soliton amplification management and the
problem of optimal soliton amplification. In this case,
the gain (or loss) function Γ(Z) is assumed to be given:
Γ(Z) = Λ(Z). The gain control function Λ(Z) is only
required to be once integrable. Then there is an infinite
number of solutions for Eq. (1) of the form of bright
and dark solitons represented by Eq. (2), where the
main functions D2(Z) and P(Z) are given by quadra-
tures:

(13)

(14)

where the integration constants C1, 2 are determined by
the initial conditions.

Case 6. Combined nonlinear and dispersion soliton
management regimes. In this case, the Wronskian
W{N2, D2} is assumed to vanish, which means that the
nonlinearity and dispersion are linearly dependent
functions. The main feature of soliton solutions given
by Theorem 2 consists in the fact that the soliton pulse
area is conserved during propagation. Suppose that the
dispersion management function D2(Z) is determined
by the known control function D2(Z) = Ξ(Z), where the
function Ξ(Z) is only required to be once integrable.
Then there is an infinite number of solutions for Eq. (1)
of the form of bright and dark conserving pulse area
dispersion-managed solitons represented by Eq. (4),
where the main functions D2(Z), P(Z), N2(Z), and Γ(Z)
are given by quadratures:

(15)

(16)

The interested reader can take different control
functions Φ(Z) [Eqs. (7), (8)]; E(Z) [Eqs. (9), (10)];
Θ(Z) [Eq. (11)]; ϒ(Z) [Eq. (12)]; Λ(Z) [Eqs. (13), (14)];
and Ξ(Z) [Eqs. (15), (16)] to find the novel “soliton
islands” in a “sea of solitary waves” for the NLSE

D2
∂ϒ
∂Z
-------; 2Γ Z( )

1
ϒ
---∂ϒ

∂Z
-------–

∂ϒ
∂Z
------- 

 
1– ∂2ϒ
∂Z2
---------.+= =

P Z( ) D2 Z( ) 2Λ Z( ) Z C1+d∫[ ] ,exp=

D2 2Λ Z( ) P Z( ) D2 Z( )±[ ] Z C2+d∫{ } ,exp=

P Z( ) 1 C Ξ Z( ) Zd∫–[ ]⁄–=

N2 Z( ) D2 Z( ) C2,⁄=

2Γ Z( ) Ξ Z( ) C Ξ Z( ) Zd∫–[ ] .⁄=
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model (1) by using algorithms developed in this work.
The soliton management scenario is determined by the
indefinite integrals in Eqs. (7)–(16), which are elemen-
tary for practically any of the best known elementary
functions [considered here as a probe control or man-
agement functions Φ(Z)…Ξ(Z): rational, algebraic,
exponential and hyperbolic, trigonometric and loga-
rithmic, and their combinations. We will present the
most interesting (from the application point of view)
examples in a separate publication.

The main soliton features of the predicted analytical
solutions were investigated by using direct computer
simulations with an accuracy as high as 10–9. In future
publications, we will show that the predicted managed
solitary waves not only interact elastically, but they can
also form the bound states, and these bound states split
under weak perturbations.

Recently, Zakharov and Manakov [12] showed that,
in the strong dispersion-managed nonlinear system, the
leading nonlinear effect is the formation of a collective
average dispersion which is a result of the interaction of
all soliton pulses propagating along the optical fiber
communication line, and, in the leading order, the sys-
tem is described by an integrable Hamiltonian system
with a plethora of soliton solutions. It was shown that,
due to the formation of an additional collective disper-
sion, each pulse in the line generates long tails that
influence the shapes of the other pulses, and the pulses
feel each other when separated by an arbitrary long dis-
tance [12].

The methodology developed in this letter (Theo-
rems 1, 2) provides a systematic way to discover and
investigate another class of managed solitons with
canonical bright and dark soliton pulse profiles. The
surprising aspect is that analytical solutions are
obtained here in quadratures. Their pure soliton-like
features are confirmed by accurate direct computer
simulations. We should also note that solitary waves for
the NLSE model (1) must be of a rather more general
character than canonical solitons for the standard
NLSE model with constant coefficients, because the
generalized model (1) takes into account arbitrary vari-
ations of group velocity dispersion D2(Z), nonlinearity
N2(Z), and gain (or absorption) Γ(Z). The results
obtained in this letter are of general physics interest and
should be readily experimentally verified.

We would like to express special gratitude to Prof.
V.E. Zakharov for reading and commenting on the
entire manuscript and fruitful suggestions. Special
thanks are due to Prof T.H. Tieman for careful checking
of the manuscript.
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A new formalism for calculation of the spin correlation magnitude is developed. In this approach, the mean
value of an operator acting in the four-dimensional space of two-particle spin states has the form of a scalar
product of vectors defined in the three-dimensional direction space. A complete description of the two-particle
spin states satisfying Bell inequalities is given in this formalism. It is shown that these states include both fac-
torable and entangled states. © 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 03.65.Bz
The Einstein–Podolsky–Rosen (EPR) paradox [1, 2] is
often formulated in terms of Bell inequalities [3, 4] which
are verified by the comparison of theory with experi-
ment. In connection with Bell inequalities, much atten-
tion is given to two-particle quantum states and to the
question as to for which of them the Bell inequalities
are fulfilled and for which they are not [5–14]. The
class of specific “entangled” states was distinguished
which are essentially quantum objects and are precisely
those for which the Bell inequalities were expected to
be violated.

In this work, a complete description is given for the
two-particle spin states for which the Bell inequalities
are fulfilled. It is shown that the entangled states also
belong to these states. We employ the standard formu-
lation of quantum mechanics and specify quantum
states in terms of wave functions and density matrices.
The tomographic description of one-particle spin states
was given in [15, 16]; for the two-particle states, a sim-
ilar problem was solved in [17]; and the EPR paradox
was discussed in terms of quantum tomography in [18].

Let there be only one spin, for which the “up” and
“down” spin directions along the Z axis are denoted by
|+〉  and Z – |–〉 , respectively. Spin operators are specified
on these vectors by the relationships
0021-3640/00/7202- $20.00 © 20093
(1)

The  operator of a doubled spin projection onto the
direction specified by vector a = (ax, ay, az) has the form

(2)

For the two-particle states, one can introduce the
operator [4]

(3)

defined in a four-dimensional linear space with basis
vectors

(4)

Operator (3) corresponds to the observable called
the spin correlation. Let us study its properties. In basis
(4), operator (3) has the following matrix form:

Sx +| 〉 1
2
--- –| 〉 , Sx –| 〉 1

2
--- +| 〉 ,= =

Sy +| 〉 i
2
--- –| 〉 , Sy –| 〉 i

2
---– +| 〉 ,= =

Sz +| 〉 1
2
--- +| 〉 , Sz –| 〉 1

2
---– –| 〉 .= =

â

â 2 a S,( ) 2 axSx aySy azSz+ +( ).= =

â b̂⊗ 4 a S 1( ),( ) b S 2( ),( ),⊗=

Ψ++ 1( )+| 〉 2( )+| 〉 , Ψ+ – 1( )+| 〉 2( )–| 〉 ,= =

Ψ– + 1( )–| 〉 2( )+| 〉 , Ψ–– 1( )–| 〉 2( )–| 〉 .= =
(5)â b̂⊗

azbz az bx iby–( ) ax iay–( )bz ax iay–( ) bx iby–( )

az bx iby+( ) azbz– ax iay–( ) bx iby+( ) ax iay–( )bz–

ax iay+( )bz ax iay+( ) bx iby–( ) azbz– az bx iby–( )–

ax iay+( ) bx iby+( ) ax iay+( )bz– az bx iby+( )– azbz 
 
 
 
 
 
 

.=
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If the two-particle spin state in basis (4) is described
by the density matrix

(6)

then the spin correlation can be represented as

ρ ρij , i j, 1 2 3 4,, , ,= =

(7)

where P is the 3 × 3 matrix

E a b,( ) Sp â b̂ρ⊗( )=

=  ax ay az
( )P

bx

by

bz 
 
 
 
 

a Pb,( ),=
(8)P Pij

ρ14 ρ23 ρ32 ρ41+ + +( ) i ρ14 ρ23– ρ32 ρ41–+( ) ρ13 ρ31 ρ24– ρ42–+( )
i ρ14 ρ23 ρ32– ρ41–+( ) ρ14– ρ23 ρ32 ρ41–+ +( ) i ρ13 ρ31– ρ24– ρ42+( )

ρ12 ρ21 ρ34– ρ43–+( ) i ρ12 ρ21– ρ34– ρ43+( ) ρ11 ρ22– ρ33– ρ44+( ) 
 
 
 
 

.= =
In analyzing the many-particle states, it is often
worthwhile to divide them into three classes: factor-
able, separable, and entangled. The factorable states are
the states whose density matrix ρf can be represented as
a tensor product of the density matrices of its sub-
systems:

(9)

The states whose density matrix ρΣf can be represented
as a sum of factorable density matrices are called sepa-
rable:

(10)

The entangled states are the states whose density
matrices ρe can be represented neither as (9) nor as
(10). In the case of two-particle systems, ρα and ρβ are
the density matrices of one and the other particles,
respectively. The states ρf, ρα, and ρβ, as well as the ρe
states, may be both pure and mixed. For the factorable
states, Eq. (7) for spin correlation can be simplified. Let

(11)

Then, matrix (8) can be represented as a product of two
matrices:

(12)

ρ f ρα ρβ.⊗=

ρΣf ρi
α ρi

β.⊗
i

n

∑=

ρf ρα ρβ⊗ ρ11
α ρ12

α

ρ21
α ρ22

α
 
 
 
  ρ11

β ρ12
β

ρ21
β ρ22

β
 
 
 
 

.⊗= =

P Pα( )T
Pβ

ρ12
α ρ21

α+( ) 0 0

i ρ12
α ρ21

α–( ) 0 0

ρ11
α ρ22

α–( ) 0 0 
 
 
 
 
 

= =

×
ρ12

β ρ21
β+( ) i ρ12

β ρ21
β–( ) ρ11

β ρ22
β–( )

0 0 0

0 0 0 
 
 
 
 

.

For such ρf matrices, the mean (7) takes the form

(13)

where

It follows from Eq. (8) that the matrix correspond-
ing to state (10) is

(14)

where  and  are matrices of the form (12).

Let there be a source emitting pairs of particles
forming a certain two-particle state and let a, b, c, and
d be four arbitrarily chosen directions. The Bell ine-
quality for the two-particle spin states has the form

(15)

One can readily see that the Bell inequality is fulfilled
for the ρΣf states.

Statement 1. If matrix P is representable as a sum
(14) with n terms, it cannot be represented as an analo-
gous sum with a different number of terms.

This statement follows from the fact that there are
only three linearly independent matrices of the form
(12).

Thus, we have found that all matrices P are divided
into four nonintersecting classes: those irrepresentable
in the form of sum (14) and those representable in the
form of such sums containing one, two, and three
terms.

Let us now study the relationship between the matri-
ces ρ and P and find out which ρ matrices correspond
to the same matrix P.

E a b,( ) Sp â b̂ρ⊗( )=

=  Pαa Pβb,( ) rα a,( ) rβ b,( ),=

rα ρ12
α ρ21

α+( ) i ρ12
α ρ21

α–( ) ρ11
α ρ22

α–( ), ,( ).=

PΣf Pi

i

n

∑ Pi
α( )T

Pi
β,

i

n

∑= =

Pi
α( )T

Pi
β

E a b,( ) E a c,( ) E d b,( ) E d c,( )–+ + 2.≤
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Statement 2. For every matrix P there is a six-
parameter set of ρ matrices. Their elements are

(16)

(17)

(18)

(19)

Here,

A1, A2, A12, B12, A13, B13 (20)

are arbitrary real parameters.
This result is consistent with the fact that the matri-

ces P and ρ are described by 9 and 15 parameters,
respectively. The ranges of parameters (20) are deter-
mined by the following constraints on the density
matrix elements (6):

(21)

To this point, no assumptions were made about the
structure of the P and ρ matrices. Now let the matrix ρ
be factorable, i.e., representable in the form (9). It is in
correspondence with a factorable P matrix of the form
(12). According to Statement 2, there is a six-parameter
set of matrices ρ that are also in correspondence with P.
Let us clarify what restrictions should be imposed on
parameters (20) for the factorable matrices to be sepa-
rated from this set.

Statement 3. For every matrix P representable in
the form (12) there is a one-parameter set of factorable
matrices ρ. Their elements are determined by Eqs. (16)–
(19) with the following additional constraints on
parameters (20):

(22)

We have found that parameters (20) must satisfy
relations (22) in order for the matrix ρ reconstructed
from the matrix P to be factorable. If these conditions
are not fulfilled, the matrix ρ is irrepresentable in the
form (9). It is also irrepresentable as a sum (10)
because, according to Statement 1, in this case its
matrix P could not be written in the form (12). Never-

ρ14 1/4 P11 P22 i P12 P21+( )––[ ] ,=

ρ23 1/4 P11 P22 i P12 P21–( )+ +[ ] ,=

ρ11 1/4 1 P33 A1 A2+ + +( ),=

ρ22 1/4 1 P33 A1– A2+–( ),=

ρ33 1/4 1 P33 A1 A2–+–( ),=

ρ44 1/4 1 P33 A1– A2–+( ),=

ρ13 1/4 P13 iP23–( ) A13 iB13+( )+[ ] ,=

ρ24 1/4 P13 iP23–( )– A13 iB13+( )+[ ] ,=

ρ12 1/4 P31 iP32–( ) A12 iB12+( )+[ ] ,=

ρ34 1/4 P31 iP32–( )– A12 iB12+( )+[ ] .=

ρii 1, ρiiρ jj ρijρ ji.≤≤

A1A2 P33, P13B13 P23A13,–= =

P31B12 P32A12.–=

A1 A13 iB13+( ) P13 iP23,–=

A2 A12 iB12+( ) P31 iP32.–=
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theless, the Bell inequality is fulfilled for the states with
such a density matrix.

Thus, we have found a six-parameter set of states
whose density matrices are not factorized and are not
separable, but which satisfy the Bell inequality. In a
more general case, they should be supplemented by the
states whose P matrix is representable as sum (14) with
two and three terms.

The states possessing factorable P matrices (12) will
be called the P-factorable states; similarly, the P-sepa-
rable states possess P matrices (14); and P matrices of
the P-entangled states cannot be represented in the
form (14).

Using the P-matrix technique, one can refine the
Bell inequalities by expressing their right-hand sides
through the parameters of the P matrices of the respec-
tive state. Note, first of all, that Bell inequality (15) is
fulfilled for pure factorable states and there are sets of
vectors for which this inequality transforms to an
equality. Indeed, Eq. (13) is valid for factorable states.
It is easy to see that, if the state ρα is pure, the vector rα

has unit length:

(23)

If this state is mixed, then |rα| < 1. Therefore, for factor-
able states (9), taking Eq. (13) into account, one can
obtain the inequality

(24)

It is also seen from Eq. (13) that the Bell inequality
can transform to an equality for the pure states and the
specific choice of vectors a, b, c, and d; as to the mixed
states, they satisfy inequality (24), which is stronger
than the initial inequality (15). Such inequalities will be
referred to as the generalized Bell inequalities. The
right-hand side of this inequality can be as small as
desired.

To this point, the two-particle P-factorable states
were considered. These states satisfy inequality (24). If
the state is P-separable, then each term in Eq. (14) sat-
isfies inequality (24) multiplied by the respective coef-
ficient. For the whole state, the inequality may be stron-
ger than the sum of individual inequalities.

Let us now consider the P-entangled state ΨE
formed by the states Ψ1 and Ψ2 with probabilities w1
and w2:

(25)

The corresponding P matrix is

rα 1.=

E a b,( ) E a c,( ) E d b,( ) E d c,( )–+ + 2 rα rβ .≤

Ψ1 αΨ++ βΨ––, Ψ2+ γΨ+– δΨ+–,+= =

α 2 β 2+ 1,=

γ 2 δ 2+ 1, w1 w2+ 1.= =
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(26)PE

γδ∗ γ∗ δ+( )w2 αβ∗ α∗ β+( )w1+ 0 0

0 γδ∗ γ∗ δ+( )w2 αβ∗ α∗ β+( )w1– 0

0 0 w1 w2– 
 
 
 
 

.=
Selecting α, β, γ, and δ so as to satisfy the condition

(27)

one obtains that state (26) satisfies the generalized Bell
inequality

(28)

It is seen that, depending on the probabilities of the
pure states in the mixed state, the right-hand side of ine-
quality (28) can be both as small as desired and large
enough to violate the standard Bell inequality (15).

In the general case, the generalized Bell inequality
has the form

(29)

where sup is taken over all pairs of vectors n1, n2 satis-
fying the conditions

It immediately follows from the definition (7) of oper-
ator P that ||P|| ≤ 1; therefore, the maximum value of the

right-hand side of inequality (29) is . As is seen
from Eq. (28), this value is attained for the pure entan-
gled states.

The above analysis demonstrates that, from the fact
that a certain state satisfies Bell inequality (15), one
cannot draw any definite conclusion about the nature of
this state. It may be both entangled and factorable. If
inequality (15) is violated, the corresponding state is
necessarily entangled.

An alternative conclusion is the following: for every
state there is a more rigorous generalized inequality
whose right-hand side is determined by the norm of the
P matrix of this state. For the pure factorable states, this
norm is unity and they satisfy the usual inequality (15);

αβ∗ α∗ β+( )w1 0,=

γδ∗ γ∗ δ+( )w2 w1 w2–( ),=

E a b,( ) E a c,( ) E d b,( ) E d c,( )–+ +

≤ 2 2 w1 w2– .

E a b,( ) E a c,( ) E d b,( ) E d c,( )–+ +

≤ 2 P n1( ) P n2( )+( )
n1 n2,
sup ,

n1 n2,( ) 0, n1 n2 1.= = =

2 2
for the separable and mixed factorable states, the norm
of the P matrix is strictly less than unity and they satisfy
the generalized Bell inequality (24). The entangled
states satisfy generalized inequalities (29).
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