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The possibility that “combined” levels with splitting considerably smaller than the natural width exist in slightly
deformed nuclei with odd mass numbers is considered within the framework of the shell model. Such a struc-
ture of Mössbauer levels does not contradict the available spectroscopic data but, rather, explains large time
delays and conversion coefficients for their decay. Experimental verification of the hypothesis is discussed.
© 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 23.20.Nx; 21.10.Tg; 21.60.Cs
Recently, new aspects have arisen in experimental
[1–3] and theoretical [4–7] investigations of the funda-
mental nuclear process of resonance gamma quanta
scattering. Experimental data on the frequency spectra
of Mössbauer gamma radiation scattered by the 14.4 keV

level of the  nucleus [1, 2] indicate that the spec-
trum of scattered radiation is appreciably narrower than
is predicted by theoretical estimates. These estimates
[4–7] were made under the assumption that the scatter-
ing of gamma quanta does not depend on the presence
of an incoherent decay channel through internal conver-
sion for the 14.4 keV level. Note that the inelastic scat-
tering of gamma quanta through the conversion channel
differs in character from the elastic scattering, as imme-
diately follows from the calculations [4]. In contrast, it
is assumed in [7] (where the results for frequency spec-
tra coincide with the ones obtained in [4, 6]) that the
dynamics of the processes in the coherent and incoher-
ent channels should be identical. The results obtained
in [4] indicate the necessity of including the structure of
an excited nuclear level if it decays through many chan-
nels. The necessity of such an inclusion also follows
from experiment [3], where radioactive decay retarda-

tion was observed for the  isomer, below which
the Mössbauer 23.87 keV level lies.

Isomerism and lifetimes of Mössbauer levels in
odd-A nuclei. It is known that retardation of the decay
of classical nuclear isomers by 18–20 orders of magni-
tude, as compared to the characteristic nuclear times
tN ~ 10–14–10–15 s, is due to the large (~3–4) angular
momenta carried away by the gamma quantum upon
level de-excitation.

The available spectroscopic data on Mössbauer lev-
els (MLs) (E ~ 100 keV) [8] demonstrate the following
features. First, MLs concentrate in odd-A nuclei. Sec-
ond, the gamma transition to the ground state proceeds
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with parity conservation and is accompanied by a
change in spin of unity in the majority of cases, and
only ~10% of transitions proceed either with a change
in spin of two units or with parity change. Third, the
states with energies ~10–60 keV decay predominantly
through internal conversion. Experimental values of the
conversion coefficients ac in the energy range below
30 keV exceed the calculated values [9] by a factor
from several units to several tens. These facts allow one
to conclude that the majority of MLs do not satisfy the
generally accepted definition of isomers. Nevertheless,
the lifetimes of these states vary from 1 ns to hundreds
of nanoseconds and, therefore, are ~6–8 orders of mag-
nitude longer than tN.

Possible structure of low-lying levels of some
odd-A nuclei in the shell model. The decay retardation
and the large ac values may probably be explained by
the structure of MLs. Let us choose the MLs with E ~
30 keV for a detailed analysis and use the well-known
positions of the nuclear shell model [10, 11], together
with Fig. 1, for describing the structure of the ground
(|n0〉) and the first excited states. The analysis was per-
formed for all nuclei presented in the table. Let us con-
sider some cases.

The 14.4 keV level in . The number of neu-
trons is N = 31, and the number of protons is Z = 26
(Fig. 2). Twenty-eight neutrons completely fill the first
and second oscillator levels (OLs) and the 1f7/2 subshell
of the third OL. The last three neutrons are at the
2p3/2 subshell of the third OL. Here, 7/2 and 3/2 are the
total angular momenta j of the indicated subshells.
According to the tight jj-coupling rule, the total nuclear
angular momentum J and the spin I0 in the ground state
|n0〉  are determined by the j value of the last odd
nucleon and should be equal to 3/2, and parity should
be negative. The experiment gives evidence for spin
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I0 = 1/2 and negative parity, i.e., for the 1/2– state. If
there are several neutrons or protons at the last subshell,
the shell model does not exclude the larger number of
different J values satisfying the Pauli exclusion princi-
ple (see Table 6 in [10]) and treats them as anomalous
from the viewpoint of classical positions of the shell
model. In the case under consideration, the angular
momenta of three neutrons can give J = 1/2 in the com-
bination 3/2 ⊕  3/2 ⊕  3/2 ∝  1/2, where ⊕  means the
composition of angular momenta. The first excited state
(3/2–) also cannot be treated as a strictly one-particle
state. It can be constructed in two ways: (1) from one
neutron in the {1f5/2–}–1 configuration and two neu-
trons in the {2p3/2–}2 configuration, 3/2 ⊕  3/2 ⊕  5/2 ∝
3/2, and (2) from three neutrons in the {2p3/2–}3 config-
uration, 3/2 ⊕  3/2 ⊕  3/2 ∝  3/2. Denote this state by
(|n1〉, E1). Therefore, one more excited state can be con-
structed as 3/2 ⊕  3/2 ⊕  5/2 ∝  1/2. Let us call this state

Fig. 1. The level scheme in the shell model [11]. The neu-
tron and proton schemes are identical up to N = 50. The
dashed lines show the neutron shells for N > 50.

Fig. 2. Low-lying levels of  [12].Fe
57
26 31

EL, MeV T1/2, ns

M1 + 1.4%E2
“zombie” and denote it by (|n2〉, E2). The shell model
does not determine energy splitting for the states |n1〉
and |n2〉 , but it is obviously small. It is quite possible
that δE = |E1 – E2| ! Γ (Γ is the natural width of the
E1 level), because |n1〉  and |n2〉  are degenerate in the
tight-coupling limit.

The configuration {1f5/2–}–1 of the last odd neutron,
with two neutrons completely paired in the {2p3/2–}2

configuration, is likely to be the first purely one-particle
excited state. This state is denoted by (|n3〉, E3). All neu-

tron transitions in  occur within one OL and with
close values of the total angular momentum J. This is
apparently the reason why the classical isomeric state is
absent for this nucleus. The experiment gives the fol-

lowing level ordering in : (1/2–, |n0〉); (3/2–,
14.4 keV, T1/2 = 97 ns, |n1〉); (5/2–, 136.4 keV, T1/2 = 8.6 ns,
|n3〉). The multipolarities of the gamma transitions
|n3〉   |n1〉 , |n1〉   |n0〉 , and |n3〉   |n0〉  are
M1 + 1.4%E2, M1 + ~0.0005%E2, and E2, respec-
tively. The ratio of gamma intensities is B(|n3〉  
|n0〉)/B(|n3〉   |n1〉) ~ 10%.

The assumption about the combined 14 keV level
does not contradict the above spectroscopic data but,
rather, is invoked to explain these data. According to
the selection rules, the gamma transition |n2〉   |n0〉
between two states with identical spins and parities can
be of the E0, M1, or E2 type [10]. Because of the trans-
verse character of electromagnetic field, the matrix ele-
ment for E0 radiation is zero, so that de-excitation
occurs through conversion. The population of the |n2〉
state due to the cascade transition from the |n3〉  state
(122 keV, M1 + 1.4%E2 type) is low, but the presence
of the |n2〉  state may be evident from the presence of
weak quadrupolal 122 keV radiation, the decay retarda-
tion of the combined |n1〉  ⊕  |n2〉  level, and the large
experimental ac value. The time delay for the |n3〉  state
is much shorter than for the |n1〉  ⊕  |n2〉  state but is con-
siderable compared to tN; it can be explained by the
“mild” selection rules for the orbital quantum number l
in the shell model. According to [10], magnetic dipole
radiation is possible only for the transitions satisfying
the condition |li – lk| < |Ii – lk| – 1; i.e., the ∆l = 0 transitions
are allowed: p1/2  p3/2, d3/2  d5/2, f5/2  f7/2.
The transitions s1/2  d3/2, p3/2  f5/2, etc. are l-for-
bidden; the 122-keV transition is among the latter.

The 23 keV level in the  nucleus. The
nucleus contains 69 neutrons. The experiment indicates
the following level ordering (Fig. 3): (1/2+, |n0〉); (3/2+,
23 keV, T1/2 = 17.8 ns, |n1〉); (11/2–, 89 keV, T1/2 =
293 days, |n3〉). According to Fig. 1, the neutron config-
uration is {2d3/2+}3 above the closed subshell {3s1/2+}2.
However, the |n0〉  state is “anomalous” and not purely
one-particle. It can be constructed either as the
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{2d3/2+}4 ⊕  {3s1/2+}1 configurations or by forming the
nuclear 1/2+ state through the combination 3/2 ⊕  3/2 ⊕
3/2 ∝  1/2. The first excited 3/2+ state |n1〉  may result
from the one-particle state 3/2 ⊕  3/2 ⊕  3/2 ∝  3/2 (|n1〉)
or from the interaction of one unpaired neutron with
two neutrons of the lower subshell: 3/2 ⊕  1/2 ⊕  1/2 ∝
3/2 (|n1〉). In the latter case, this interaction may result
in 3/2 ⊕  1/2 ⊕  1/2 ∝  1/2 (|n2〉), which affords the com-
bined level |n1〉  ⊕  |n2〉  and, hence, the large time delay
and the ac value for the transition |n1〉  ⊕  |n2〉   |n0〉 .
A normal, purely one-particle excited state forms upon
the transition of one neutron from the 3s1/2+ subshell to
the 1h11/2– subshell to give the nuclear (11/2–, |n3〉)
state. The 11/2– state is a classical isomer manifesting
itself in the |n3〉   |n1〉  ⊕  |n2〉  transition.

The table demonstrates the existence of a possible
combined level in other nuclei. Below, a detailed
description of the level structure for the relevant mirror
nuclei is omitted and only the basic results are pre-
sented.

The |n0〉 state of the  nucleus is one-particle.
The combination of the configurations {1f5/2}1 ⊕  {2p3/2}2

determines the spin of the |n1〉  state. The (3/2–, |n2〉)
state is constructed from the same combination and
likely does not form the combined level. The T1/2 value
for the first excited state is small (<0.07 ps), as also is
ac ~ 5 × 10–2.

The  nucleus has a one-particle ground
state 1/2+ |n0〉 . The combination of configurations
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{3s1/2}1 ⊕  {2d3/2}2 can determine spins of the |n1〉  and
|n2〉  states. A combined level with energy E1 = 8 keV is
possible. Note that this nucleus is not described by the
shell model, because the 11/2– isomer is absent, in con-

trast to the  nucleus.

Discussion. The following regularities of formation
of the first excited levels are noteworthy. Whenever
three nucleons are at the unfilled subshell or a one-par-
ticle state is near the 1s1/2, 2s1/2, 3s1/2, and 2p1/2 states,
three nucleons can probably be combined in such a way
as to form “split” states with different J values. Accord-
ing to the Pauli exclusion principle, these combinations
correspond to different nuclear eigenfunctions provid-
ing different nuclear characteristics. In the tight-cou-
pling approximation, the states described by these com-
binations are degenerate. In a real nucleus, the pairing
effect and interaction between all pairs of particles
remove the degeneracy. Since this interaction cannot be
taken into account in terms of the meson field, the shell
model fails to give the splitting values.

A qualitative estimate can be obtained from the
experimental data on the hyperfine interaction for the
magnetic dipole transitions involving the 14.4 keV

level of the  nucleus. Knowing the maximum
magnetic splitting of ~80Γ for iron in a magnetic field
of ~106 Oe induced by electrons and taking into
account that the nuclear magneton is ~2 × 103 times
smaller than the Bohr magneton, we obtain the electro-
magnetically induced energy splitting δE ~ 0.04Γ for
the combined level.
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Table

Mössbauer 
nucleus

E1, keV 14.4 13.3 9.4 27.8 21.5 23.9 12.3 22.5 25.7

ac 8.5 1095 19.6 5.1 28.6 5.1 110 50 2.9

T1/2, ns 97.8 2953 147 16.8 9.4 17.9 8.1 5.1 28.2

Combined 
level

+ + + + + + + + –

Remarks

Mirror 
nucleus

E1, keV 320 30 ~100 108 8.4 82 2.3

ac 0.01 Beta-active 
nucleus

29.1 ~1 Beta-active 
nucleus

0.2

T1/2, ns ~0.07 13.6 y ~3 0.23 4.0 4 1.4

Combined 
level

– – + – – + + – –

Remarks Anoma-
lous level

Isomer + Anoma-
lous level

ML ML

Note: Sign  indicates that the first levels cannot be constructed in the shell model.

Fe
57
26 Ge

73
32 Kr

83
36 I

129
53 Eur

191
63 Sn

119
50 Ba

133
56 Sm

149
62 Dy

161
66

SM

Ga
69
31 Nb

93
41 Ag

107.9
47 Ru

97
44 In

112
49 Tm

169
69 Ir

191
77 Fr

225
87 Am

243
95

SM SM SM

SM
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To describe the ground and low-lying excited states
of nuclei, the possible combinations (pairing and jj cou-
pling of three nucleons) are considered for the distribu-
tion of nucleons among two 2d3/2+ and 3s1/2+ subshells
of the fourth OL and the 1h11/2– subshell of the fifth OL.
The occurrence of splitting and, as a consequence, a
large time delay and ac value can be assumed for the
Mössbauer level, although it is difficult to explain this
within the framework of the classical shell model
because of the highly nonspherical shape of nuclei [10].
The closeness of the next OL with a high J value is
responsible for the existence of classical isomeric states
in these nuclei. When nucleon transitions occur within
the same OL and for close values of the total angular
momenta J, the classical isomeric states are not real-

ized, as in the case of . A comparison of the mir-
ror nuclei shows that the odd-N nuclei are less
deformed and the shell model is more suitable than for
the odd-Z nuclei, which are neutron-excessive and
more deformed.

The possibility of the combined levels existing is
presented in the table, but the following remarks should
be made. (i) In most cases, the combined level occurs if
the |n1〉  level can be considered not only as purely one-
particle, but also as anomalous. The splitting of anom-
alous states mixes in the one-particle state. (ii) If the
excited state can only be anomalous, not all variants
may be possible for the composition of angular
momenta j, so that the combined level does not occur,

as in the  nucleus. (iii) The pairing effect is more
preferable for one odd nucleon with high J ≥ 5/2 and
can determine the spin of the first excited state, as takes

place for the isomeric 1/2– state of the  nucleus,
thereby preventing the formation of the combined level.
Under the assumption that δE ! Γ, the splitting does
not contradict the spectroscopic data (spin ordering,
transition multipolarity) for the levels of interest (this is

illustrated in detail for ) but rather explains the
large time delays and ac coefficients for the first excited
states. The currently available nuclear spectroscopic
methods of determining the spin, parity, multipolarity,
and ac cannot identify the combined state |n1〉  ⊕  |n2〉 .
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Fig. 3. Low-lying levels of  [12].Sn
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The Mössbauer methods that use scattered radiation
are more preferable, because the nuclear and solid-state
origins of the line shifts and shapes often cannot be dif-
ferentiated in the conventional transmission mode.
According to the theoretical estimates taking into
account a combined structure of the 14 keV radiation

from  [13], the line shape of Mössbauer radiation
from a source is rather informative. In this case, the
scattered radiation line not only loses the Breit–Wigner
shape, but also tangibly narrows in direct proportion to
the contribution of the conversion channel to the
excited-state decay. These preliminary estimates [13]
explain most important result obtained in experiments
[1, 2]. Experiments on the line shapes of the Mössbauer

radiation scattered from the , , ,

, , , , and  nuclei
are also of interest. The experiments on the line shapes
should be carried out using a source, scatterer, and ana-
lyzer with a line width close to natural.

Recent observation of an increase in T1/2 of the |n3〉
(our notation) level in the  nucleus in the pres-
ence of resonance nuclei can be explained if one
assumes the existence of a combined |n1〉  ⊕  |n2〉  level.
Indeed, if the population of the |n1〉  state in a system of
quantum states |n1〉 , |n2〉 , and |n3〉  somehow increases,
the gamma transition |n3〉   |n1〉  ⊕  |n2〉  will be more
retarded. On additional population of the |n1〉  state
(3/2+), the |n3〉   |n1〉  ⊕  |n2〉  transition proceeds only
through the |n3〉   |n2〉  channel, which is clearly more
retarded. For example, if the decay of the Mössbauer
source 119mSn leads to the accumulation of additional

 nuclei, the back resonance scattering of the
23 keV quanta will result in an increase in the popula-
tion of the |n1〉  state in the source. This process may be
responsible for the increase in T1/2 of the |n3〉  level
observed in [3] for “old” tin Mössbauer sources. As far
as I know, an experiment with non-Mössbauer 119mSn
sources was not performed. The system of low-lying
levels considered allows one to propose a number of

experiments of the “[3] type”: , , ,

, , , and . An analy-
sis of the effect of excitation on the T1/2 values of the
|n3〉  levels of these nuclei can serve as an experimental
verification of the existence of combined levels. The
excitation may be provided not only by Mössbauer
scattering, but also by the bremsstrahlung with a band
edge slightly above the first excited state.

I am grateful to K.A. Ter-Martirosyan, correspond-
ing member of the Russian Academy of Sciences, for
constant interest in this work and acknowledge useful
remarks by R.B. Nevzorov and participants of the col-
loquium of Professor Yu.D. Perfil’ev at the Center for

Co57
27 30

Fe57
26 31 Ge73

32 41 Kr83
36 47

I129
53 76 Sn119

50 69 Tm169
69 100 Ba133

56 77 Ir191
77 114

Sn119
50 69

Sn119
50 69

Fe57
26 31 Ge73

32 41 Kr83
36 47

Ag107 109,
47 60 62, Sn119

50 69 Ba133
56 77 Eu151

63 88
JETP LETTERS      Vol. 72      No. 5      2000



RETARDED DECAYS 233
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The effect of excitation of an atom in an initially photon-free nonstationary cavity is predicted. Two excitation
mechanisms are considered, both different from the trivial absorption of photons created due to the nonstation-
ary Casimir effect. The first one is based on the fact that the photon states appear simultaneously with atomic
excitation if the characteristic time of cavity nonstationarity is of the same order as the atomic transition time.
The second one is associated with the “shake-up” effect caused by the modulation of the atomic ground-state
Lamb shift upon a fast change in the cavity parameters. The presence of an atom in the nonstationary cavity
affects the photon creation process. In particular, it changes the average number of generated photons and
removes the constraint (inherent in the nonstationary Casimir effect) that only an even number of photons can
be created. In addition, a new mechanism of photon generation associated with the shake-up effect appears.
© 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 31.30.Jv; 32.80.–t
In this work, we consider the effect of atomic exci-
tation in an initially photon-free nonstationary cavity.
An atom may either be confined in the cavity due to a
trap formed by external fields or fly through the cavity
in a cold rarefied beam. It turns out that atomic excita-
tion, generally, is not restricted to the absorption of
photons created as a result of the nonstationary Casimir
effect (NCE). In particular, there is a new mechanism
that is associated with a change in the electron self-
energy part upon a fast change in the cavity size, i.e.,
the “shake-up” effect. In addition, the presence of atom
affects the photon creation process in a nonstationary
cavity, in particular, by changing the average number of
created photons and removing the constraint (inherent
in the NCE) that only an even number of photons can
be created. We will also discuss a new mechanism of
photon generation associated with an abrupt change in
the dressed states of atom upon shake-up in a nonsta-
tionary cavity.

Our consideration is based on a simple model of a
two-level atom interacting with a single nonstationary
mode of a quantized electromagnetic field. The Hamil-
tonian of such a two-level system has the form

(1)

where E0 is the transition frequency of the system;1

1 The system of units used in this work is " = 1.

H E0

1 σ3+
2

--------------- ω t( )a†a i
ω̇ t( )

4ω t( )
------------- a2 a†2

–( )+ +=

+ λ σ+ σ–+( ) a a†+( ),
0021-3640/00/7205- $20.00 © 20234
ω(t) is the time-dependent (through the cavity parame-
ters) frequency of the field mode; σ3 = 2σ+σ– – 1 and σ±
are the Pauli matrices acting in the space of states of the
two-level atom; a and a† are the annihilation and cre-
ation operators of the photon mode; and λ is the cou-
pling constant. Recall that the nonresonance part
λ(σ−a + σ+a†) of the interaction between atom and field
can be omitted in the vicinity of the resonance, after
which the model reduces to the so-called generalized
Janes–Cummings model [1] or, at ω = const, to the
exactly integrable standard Janes–Cummings model
[2, 3]. Finally, at λ = 0, our Hamiltonian reduces to the
Hamiltonian modeling the NCE for the chosen field
mode [4]. Clearly, as distinct from the analogous prob-
lem with a stationary cavity, quantitatively correct
results cannot, generally, be obtained in the one-mode
approximation, even in the vicinity of the resonance.
The reason is that the field modes strongly interact with
each other in the nonstationary cavity, so that the prop-
erties of a “dressed” resonance mode may differ appre-
ciably from an oscillator. Nevertheless, we use a one-
mode approximation, because such a simple model
allows one to reveal the main qualitative features of the
interaction between an atom and a nonstationary quan-
tized electromagnetic field in the cavity.

Let the frequency of the mode change from ω1 to ω2

in a finite time τ. Since Hamiltonian (1) is time-inde-
pendent at t  ±∞, one can introduce the stationary
in- and out-states of the system. In the absence of the
interaction between atom and field, i.e., at λ = 0, the rel-
000 MAIK “Nauka/Interperiodica”
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evant operators of photon creation and annihilation are
related by the Bogoliubov transformation

At β∞ ≠ 0, the out- and in-states do not coincide with
each other. This signifies that photons are created from
vacuum in the nonstationary cavity, i.e., that the NCE
occurs. If the initial state |0, ↓〉  corresponds to the
atomic ground state and the absence of photons in the
cavity, then the average number of created photons is

 = |β∞|2. It is worth noting that the NCE is fully
caused by the third term, proportional to , in Hamil-
tonian (1).

At λ ≠ 0, the atom interacts with the nonstationary
field in the cavity and is capable of being excited. Let
us first consider this effect within the framework of the
generalized Janes–Cummings model [i.e., without tak-
ing into account the off-resonance terms in Eq. (1)],
assuming that the characteristic time τ of changing the
frequency ω(t) is much shorter than all remaining char-

acteristic times of the problem; i.e., τ ! , , 
(sudden approximation). Under these assumptions, the
problem allows an exact solution and does not require the
use of perturbation theory for the coupling constant λ.
According to the general rules of the theory of sudden
perturbations, the probability of a transition with
atomic excitation and creation of n photons is equal to
the square of the modulus of excitation amplitude:

(2)

where the operator W of “sudden” action caused by the
Casimir term in Hamiltonian (1) has the form

and  is the exact (dressed) stationary state of
the standard Janes–Cummings model (see [2]). Note
that the ground state |0, ↓〉  of the system cannot be
dressed and cannot suffer the Lamb shift (an artefact of
the model).

One can show that amplitude (2) is nonzero only for
the odd values n = 2j + 1; the corresponding total prob-
ability of atomic excitation is

(3)
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N
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where ξ = λ/∆2 and ∆2 = E0 – ω2. In the weak coupling
limit ξ ! 1, one has

(4)

Here,  has the meaning of the average number of
Casimir photons that would be created in the absence of
atom. It is seen from Eq. (4) that in the weak coupling
limit the probability of atomic excitation is a simple
product of the probability (λ/∆2)2 of photon absorption

by atom and the average number  of photons created
due to the NCE. This signifies that the atom in this
model is excited only through the trivial process of
absorption of the created Casimir photons. This conclu-
sion is not specific solely to the weak coupling limit,
because the e–iW|0, ↓〉  state appearing in amplitude (2)
exactly coincides with the state that would be initial if
the atom were placed in the cavity after the latter had
again become stationary and the NCE had already
occurred. Thus, in the sudden approximation of the
generalized Janes–Cummings model, the interaction of
the unexcited atom amounts to the absorption of
Casimir photons. This inference is also confirmed by
the fact that, as one can readily verify, the average num-
ber of photons created in the presence of atom is equal,
for any λ, to

(5)

where the amplitude An↓ of creation of n photons with-
out atomic excitation is given by the expression analo-
gous to Eq. (2). The fact that in the resonance approxi-
mation the atomic excitation in an initially empty and
instantaneously nonstationary cavity amounts to the
absorption of Casimir photons is physically explained

by the fact that at τ !  the atom can “feel” nonsta-
tionarity only after the cavity has become stationary
and the photon out-states have been formed. However,
beyond the framework of this model, basically new
effects arise.

The model ceases to be exactly integrable after
inclusion of the terms λ(σ–a + σ+a†) in Hamiltonian (1),
so that the analysis of the nonresonance effects can
only be carried out if the coupling constant λ is consid-
ered as a perturbation. At ω = const, the stationary
states of the system are dressed in the first order, while
the shift of the corresponding energy levels appears in
the second order in λ. It is essential that, contrary to the
Janes–Cummings model, the ground state |0, ↓〉 λω in
the presence of nonresonance interaction is also
dressed and acquires the Lamb shift δEL = –λ2/(ω + E0).

The calculation of the probability of atomic excita-
tion in the sudden approximation is performed along
the same lines as in the preceding case. In doing so, the

w↑ ξ2N , N≈ ρ 1–( )2/4ρ.=

N

N

n n An↓
2 An↑

2+( )
n 0=

∞

∑ NNCE w↑ ,–= =

E0
1–
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amplitude An↑ of atomic excitation and creation of n
photons can be conveniently divided into two parts:

Clearly, the nonresonance effects contribute to both
terms in the excitation amplitude. However, whereas
the contribution to the second term can be regarded as
a correction, the first term is fully determined by the
nonresonance effects and, for this reason, is absent in
the Janes–Cummings model. This is formally
explained by the fact that the |0, ↓〉  state is the exact
dressed state for any frequency of the photon mode and
hence is orthogonal in the resonance approximation to

all excited states. Moreover, the  term is deter-

mined by the NCE-induced change 
of the ground state of the system and disappears if the
Casimir term proportional to  is omitted in Hamilto-
nian (1), which is formally equivalent to replacing the
operator of sudden perturbation W by zero. At the same

time, this procedure does not affect the  term.
Hence it follows that this term is responsible for a new
physical effect, viz., the dynamic Lamb shift analogous
to Migdal’s shake-up effect and having no relevance to
the NCE. Of course, the probability of atomic excita-
tion includes the contributions both from this effect and
the NCE separately and from the interference of these
effects.

In the leading order of perturbation theory, the con-
tribution of the shake-up effect to the excitation proba-
bility is

(6)

where δEL is the change in the atomic ground-state
Lamb shift. One can see from Eq. (6) that the excitation
due to the shake-up effect is accompanied by the cre-
ation of one photon (or more, but necessarily an odd
number of photons, in the higher orders of perturbation
theory) as a result of the modulation of the ground-state
Lamb shift. Note that the quadratic dependence of the
excitation probability on a (small) change in the Lamb
shift is specific not only to the simple model considered
but is also inherent in the realistic three-dimensional
problem of a real atom confined in a nonstationary cav-
ity. This is due to the fact that, upon a small change in
any parameter of the cavity, the Lamb shift will change
in proportion to the first power of this parameter. In this
case, the overlap amplitude between the new and previ-
ous stationary states will also be proportional to the first
power of this parameter, while the excitation probabil-

An↑ An↑
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,= =
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e iW– 1–( ) 0 ↓,| 〉 λω1

ω̇
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L( )

w↑
L( ) An↑

L( ) 2

n 0=

∞

∑=

=  λ2 1
ω2 E0+
------------------ 1

ω1 E0+
------------------– 

  2 δEL

λ
--------- 

 
2

,=
ity is determined by the amplitude squared. As for our
model, these speculations allow reproduction of
Eq. (6), at least to a constant factor. Indeed, in the first
order of perturbation theory, the excitation probability

 is proportional to the coupling constant λ squared.

Considering that  ~ δ , while the Lamb shift

δEL ~ λ2, one immediately obtains  ~ (δEL/λ)2, in
accordance with Eq. (6). These arguments also explain
why the non-Casimir excitation channel is absent in the
Janes–Cummings model, where the ground-state Lamb
shift is absent.

To reveal how the finite time of nonstationarity τ
influences the excitation probability, let us turn again to
the generalized Janes–Cummings model. Using the
standard time-dependent perturbation theory, one can
show that the probability of atomic excitation, to first
order, is equal to

(7)

where the dimensionless function F(τ) characterizes
the relative efficiency of atomic excitation during the
cavity nonstationarity time τ, as compared to excitation
through the absorption of  = |β∞|2 photons. Insofar
as F(0) = 1, Eqs. (4) and (7) are consistent with each
other.

Physically, F ≈ 1 corresponds to atomic excitation
predominantly through the absorption of Casimir pho-
tons, while the F values well above unity correspond to
excitation in a time &τ during the transient process,
when the final photon states have not yet formed.
Numerical analysis shows that the function F(τ) mono-
tonically increases with τ, so that the estimate F(τ) > 1
holds for τ > 0. Moreover, for certain values of the
parameters, the excitation efficiency F may be as high

as several tens or even hundreds at τ ~ . As a result,

the excitation probability at τ ~  may be appreciably
higher than in the sudden limit τ = 0, despite the fast
decrease in the number of created photons, which sup-
presses the F(τ) growth for very small and large τ.

The second-order effects in coupling constant λ also
influence the number of photons created in the cavity,
thereby evidencing the back action of an atom in the
cavity on the NCE. Since the number of photons cre-
ated due to the fast Lamb-shift modulation in the weak
coupling limit is on the order of (δEL/λ)2 and hence far
smaller than unity, we turn our attention to the stronger
finite-time effects and analyze them within the frame-

w↑
L( )

w↑
L( ) EL

2

w↑
L( )

w↑
λ2

∆2
2

----- β∞ τ( ) 2F τ( ),=

F τ( ) t'e
i∆2t'

d
t'd

d β t'( )
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iω2t'
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work of the generalized Janes–Cummings model. As is
known, the operator

is the integral of motion in the standard Janes–Cum-
mings model [3]. For the nonstationary cavity, it
depends on time; one can show by the standard meth-
ods that, to first order in the coupling constant λ, the
average value  is equal to

(8)

At the same time, using equality  =  + w↑, where
 = 〈a†a〉  is the average number of photons, one finds

that the average number of photons created in the pres-
ence of an atom is determined by Eq. (5), i.e., at first
glance, by the number of photons created in the absence
of the atom minus the average number of absorbed pho-
tons (provided that the atom absorbs a photon with
probability w↑). In reality, as was already shown, the
atomic excitation at τ ≠ 0 is generally not the mere
absorption of a photon, and, hence, the probability w↑
does not coincide with the probability of photon
absorption.

Furthermore, the second-order perturbation theory
gives a correction to Eq. (8). An important fact is that
the corresponding correction  to the right-hand
side of Eq. (5) is of the same order in λ as the w↑ term,
so that both are comparable in magnitude. This implies
that the correction to the average number of created
photons in the leading order of perturbation theory dif-
fers from the average number of absorbed photons
taken with the minus sign or, in other words, that the
influence of an atom on the NCE extends further than
the mere atomic absorption of photons, even if one dis-
regards the shake-up effect.

N a†a
1
2
--- 1 σ3+( )+=

N ∞( ) 0 ↓ N 0 ↓,,〈 〉∞ ∞=

N∞ N +∞( ) β∞
2 o λ( )+ N o λ( ).+= = =

N∞ n
n

δN∞
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To focus only on that part of the effect which is asso-
ciated with the correction , we write

(9)

The dimensionless parameter η(τ) characterizes the
level of back action of an atom on the NCE. This action
was studied by numerical methods. It turns out that the

η(τ) function is quadratic at τ ~  and linear at τ @

. This effect will be discussed elsewhere in more
detail.

Note in conclusion that the effects considered in this
work can be experimentally implemented, e.g., by
passing an atomic beam though a microcavity whose
optical walls change rapidly upon illumination by
ultrashort laser pulses. The situation where the charac-
teristic time of changing the optical properties of the
cavity walls coincides, in order of magnitude, with the
characteristic time of atomic transition can easily be
attained (the quasi-static case was considered in [5]).

We are grateful to V.D. Mur for helpful discussions.
This work was supported by the Russian Foundation
for Basic Research, project no. 00-02-16354.
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A system of equations is suggested for the interaction of an atom with an electromagnetic field of arbitrary
intensity. The distinctive feature of the equations is that, in the absence of the field, the electron density in the
atom is determined by the Schrödinger equation and, in the presence of the field, by the equation resembling
the classical equation for an electron in the Lorentz force field. © 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 32.80.–t
1. Recent investigations into atomic and molecular
interactions with ultrastrong laser fields have shown
[1–5] that standard perturbative approaches, although
adequate in describing the atomic interactions with
moderately strong fields, become inapplicable if the
intensity of the external field is comparable with the
intensity of the intraatomic field. The approaches based
on the two- or any-finite-level atomic models also lose
their generality. The fundamental cause is that the ratio
of the interaction Hamiltonian to the Hamiltonian H0 of
a free atom ceases to be a small parameter [6]. The clas-
sical approach based on the use of equations for a point-
like electron subjected simultaneously to the external
and intraatomic fields is an alternative to the quantum-
mechanical approach. One may anticipate that this
approach applies when the atom is ionized or the elec-
tron is in a highly excited state. However, it is clear that
one should not count on quantitative agreement when
using this approach for the calculation of atomic ion-
ization rates or atomic response to moderately strong
fields.

In this work, an attempt is undertaken to join the
simplicity of the classical approach and the accuracy of
the quantum-mechanical approach in the description of
atomic interaction with an external field. A closed sys-
tem of self-consistent equations is derived for the
atomic charge densities and transitional currents. It is
shown that in limiting cases the equations coincide with
the Schrödinger equation or with the equation of a clas-
sical electron in the Lorentz force field.

2. Analysis of the interaction of a nonrelativistic
atom with an external electromagnetic field can be car-
ried out on the basis of a joint solution of the equations
for the vector A(r, t) and scalar ϕ(r, t) field potentials
and the Schrödinger equation for the atomic wave func-
tion ψ(r, t):

(1a)∆A
1

c2
----∂2A

∂t2
---------–

4π
c2
------J r t,( )–

1
c
---—∂ϕ

∂t
------,+=
0021-3640/00/7205- $20.00 © 20238
(1b)

(1c)

where ρ(r, t) = eψ+(r, t)ψ(r, t) is the electron charge
density and ρz(r, t) is the nuclear charge density. In
Eqs. (1), the Coulomb gauge is used for the field,

divA = 0, (2)

and the generalized transitional current density J(r, t) is
introduced. It is related to the quantum-mechanical
electron current density

(3)

by the expression

(4)

The Hamiltonian of an atom in an external field has the
well-known form

(5)

A standard approach to the analysis of atomic interac-
tion with a field amounts to solving the Schrödinger
equation for an isolated atom H0 = H(A = 0), with the
object of determining the eigenfunctions of an unper-
turbed atom, followed by the calculation of the popula-
tion probability amplitudes for different atomic levels
in the presence of an external field. However, if the
external field strength is comparable with that of the
intraatomic field, the wave function becomes so heavily
distorted that decomposition into the unperturbed wave
functions includes a wealth of terms, whose number
tends to infinity as the field increases. This renders the
use of the indicated classical procedure highly inconve-
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nient for the analysis of the atomic interactions with
ultrastrong laser fields.

One can see from Eqs. (1a) and (1b) that only the
generalized current density J(r, t) and the charge den-
sity ρ(r, t) need to be known for calculation of the
atomic response. These quantities can be determined
from the solution of Schrödinger equation (1c). How-
ever, the respective solution for an arbitrary atom sub-
jected to an external field involves well-known prob-
lems. For this reason, an approach based on the analysis
of a closed system of equations including only the
above-mentioned atomic variables and the field poten-
tials seems to be more rational. Such an approach
would allow one to develop various iterative proce-
dures for calculating the atomic response to a field of
arbitrary strength.

3. Using Schrödinger equation (1c) with Hamilto-
nian (5), it is straightforward to obtain the following
equations for the charge density and the generalized
current density:

(6a)

(6b)

One can see that Eq. (6a) is a continuity equation and
the first term on the right-hand side of Eq. (6b) has a
simple classical analogy, because it formally coincides
with the classical Lorentz force. The last three terms in
this equation are unusual. It is also clear that system of
equations (6) is not closed, because Eq. (6b) incorpo-

rates the new variable qαβ = 
containing products of the wave-function derivatives.

Let us show that this variable can be expressed
through the known quantities. This can be done with
the use of the equalities

Hence, one gets

(7)
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Substituting Eq. (7) into Eq. (6b), one finally arrives at

(8)

where E = –(1/c)(∂A/∂t) is the strength of the trans-
verse component of the electric field and H = curlA.

Therefore, Eqs. (1a), (1b), (6a), and (8) form a
closed system of equations for the variables A(r, t),
ϕ(r, t), J(r, t), and ρ(r, t).

4. Note that, in the formalism of secondary quanti-
zation of the Schrödinger equation, the last two terms
on the right-hand side of Eq. (6b) stem from the com-
mutator [j, H0] of the current density operator j and the
intraatomic Hamiltonian H0, while the second term is
due to the nonpointlike character of the electron. To
simplify the comparison with the classical equation for
a pointlike electron, it is convenient to introduce the
local electron current

(9)

Inserting Eq. (9) into Eq. (8), one obtains

(10a)

(10b)

System of equations (10) has the form of a system of
equations of plasma hydrodynamics and differs from it
only by the presence of terms depending on the charge
density on the right-hand side of Eq. (10b).

5. To elucidate the meaning of the additional terms
on the right-hand side of Eq. (10b), let us solve
Eqs. (10) in the stationary case

(11)

Eqs. (11) are fulfilled if

(12)

where C is a constant. Let us introduce the following
notations: ρ = en and n = f 2. Then Eq. (12) can be recast
in the form

(13)

where the C constant is denoted by E to achieve anal-
ogy with the Schrödinger equation.
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Therefore, one can see that in the stationary case the
charge density in an atom is determined by the
Schrödinger equation for a real wave function f(r). This
is not surprising, because one has for the wave-function
representation ψ(r, t) = f(r, t)exp[iΦ(r, t)]: ρ = ef 2 and
n = j/ρ = ("/m)—Φ.

6. Thus, the stationary charge distribution in an
atom obeys the Schrödinger equation. Now let the ini-
tial atomic state be different from stationary and the
external field be absent. Let us determine the dynamics
of the charge density and current in an atom. Introduc-
ing substantive derivative d/dt = ∂/∂t + (V—), one can
rewrite Eqs. (10) as

(14)

The charge density and the generalized current den-
sity can be represented in the following general form:

where P and M are the polarization and magnetization
vectors, respectively. The density ρ0(r) is caused by
inner-shell electrons tightly coupled to the nucleus, and
the ρ(r, t) – ρ0(r) part is due to the outer-shell atomic
electrons. Accordingly, the electron density can be rep-
resented in the form

(15)

Substituting Eq. (15) into Eq. (14) and taking into
account that

one obtains

(16)

Therefore, for η(r, t) = η(t) and |η| ! 1 one has

(17)
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Hence, a weakly perturbed electron density oscillates
with plasma frequency

where r0 is the radius of the inner electronic shells. In
the general case where η is not small and depends on
the coordinate, the terms depending on the η gradient
in Eq. (16) play a role analogous to the viscous terms in
the equations of hydrodynamics.

7. In conclusion, Eqs. (8) and (10) combine the clas-
sical and quantum descriptions of electron motion in
the self-consistent field of the intraatomic potential and
the field of an external wave. The calculations have
shown that the stationary electron density in an atom is
determined from the solution of the Schrödinger equa-
tion, while the weak perturbations of the electron den-
sity oscillate with a plasma frequency depending on the
density for a given equipotential. Because of an
increase in the electron density near the atomic center,
the motion of inner-shell electrons is screened from
long-wavelength (e.g., optical) radiation but can be per-
turbed by X-ray radiation. The qualitative distinction of
the suggested equations from the fundamental equa-
tions of classical and quantum mechanics is that they
are nonlinear. The nonlinearity arises because of the
elimination of the second derivatives from the bilinear
combinations of wave functions [the term qαβ in
Eq. (6b)]. In principle, system of equations (6) can be
continued ad infinitum by introducing terms with
higher order derivatives while retaining the linearity in
atomic variables ρ, jα, qαβ, … . Consequently, it seems
likely that the effects of nonlocal atomic response are
mainly responsible for the nonlinearity.

This work was supported in part by the Russian
Foundation for Basic Research (project no. 99-02-
16093) and the program “Russian Universities.”
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It is shown that penetration of relativistically intense laser light into an overdense plasma, accessible by self-
induced transparency, occurs over a finite length only. The penetration length depends crucially on the over-
dense plasma parameter and increases with increasing incident intensity after exceeding the threshold for self-
induced transparency. Exact analytical solutions describing the plasma-field distributions are presented. © 2000
MAIK “Nauka/Interperiodica”.

PACS numbers: 52.40.Nk; 52.35.Mw; 52.60.+h
In the past few years, there has been much research
devoted to the nonlinear interaction of superintense
laser pulses with plasmas [1]. At intensities where elec-
trons quiver with relativistic velocities, the interaction
can be characterized as nonlinear optics in relativistic
plasmas and new regimes, not evident at nonrelativistic
intensities, may appear. As was previously shown,
superintense electromagnetic radiation can propagate
through a classically overdense plasma due to the rela-
tivistic correction to the electron mass, the so-called
induced transparency effect, [2–10]. This work has
resulted in the identification of a new fundamental pro-
cess in the relativistic laser overdense plasma interaction.

In order to understand the nonlinear regime of the
interaction of superintense laser light with an over-
dense plasma, it is enough, without loss of generality,
to consider a stationary model. We present here a new
class of exact analytical solutions describing the pene-
tration of an electromagnetic wave normally incident
onto a cold, overdense plasma with a sharp boundary.
In particular, we show that, when the incident intensity
exceeds the threshold for self-induced transparency, the
laser energy penetrates into the dense plasma without
any losses, but over a finite length only. At the same
time, the electron density distribution becomes struc-
tured as a sequence of electron layers separated by
depleted regions about half a wavelength wide, so that
this strongly nonlinear plasma structure acts as a dis-
tributed Bragg reflector.

The ultrahigh intensity laser–plasma interaction is
described by the relativistic equation of motion and the
equation of continuity for the electrons, together with
Maxwell’s equations. Ions are treated as a uniform neu-
tralizing background. We will consider circularly polar-
ized laser radiation with normalized amplitude of the

1 This article was submitted by the authors in English.
0021-3640/00/7205- $20.00 © 20241
vector potential eA/mc2 = (a/ )Re[(y + iz)exp(iωt)]
normally incident from vacuum (x < 0) onto a semi-
infinite plasma (x ≥ 0). Assuming a stationary regime,
the basic equations may be written in the form

(1)

(2)

(3)

(where the variables are normalized as x  ωx/c,

n  n/no, no = /ω2; ω is the carrier frequency of
the laser radiation; ωp is the plasma frequency of the
initial unperturbed plasma; γ = (1 + a2)1/2 is the relativ-
istic factor; and n and φ are the normalized electron
density and scalar potential of the plasma, respec-
tively). Equation (3) indicates that only in the region
where the electron density n(x) ≠ 0 must the ponderomo-
tive force γ'(x) be compensated by the force of a longitu-
dinal field. This statement will be important for con-
structing solutions of interest in the present analysis.

For homogeneous ion density, the system has the
following Hamiltonian:

, (4)

which was analyzed in [5].

As we are interested in a semi-infinite plasma, we
first consider the case when n(x)  1 and both a(x)
and a'(x) vanish as x  ∞. In this case, the integral of
motion equals

(5)

2

φ'' no n 1–( ),=

a'' 1
no

γ
-----n– 

  a+ 0,=

φ' γ' if and only if n x( ) 0≠=

ωp
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1
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Equation (4) can then be easily integrated to yield the
following single-parameter solitary solution:

, (6)

where ε0 = 1 – no is the dielectric permittivity of the
plasma and the parameter x(0) defines the position of the
maximum of function (6), which is given by Am =
2[no(no – 1)]1/2.

For no > 1.5, this solution contains a region where
the electron density is negative, which is clearly
unphysical. Requiring the minimum electron density
nm = 1 – 4(no – 1)2 to be positive, i.e., nm ≥ 0, we obtain
a condition on the background plasma density and an
argument in favor of the depletion region: for no > 1.5,
we have to take into account only that part of the solu-
tion where the corresponding electron density is posi-
tive, n(x) ≥ 0. By using the part of solution (6) corre-
sponding to a ponderomotive force that pushes elec-
trons into the plasma and matching it to the vacuum
solution, an exact expression for the intensity threshold
of self-induced transparency was found [11]. It should
be noted that Hamiltonian (5) corresponds to a zero
energy flux, but there are solutions with nonzero flux as
well [2, 6]. They can arise even in correspondence with
incident amplitudes smaller than the penetration
threshold. However, for the realization of such nonlin-
ear hysteresis-like solutions [10,12], preliminary mod-
ifications of the plasma must be induced by extremely
intense fields. For the description of the steady-state of

a x( )
Am ε0

1/2 x x 0( )–( )[ ]cosh

no ε0
1/2 x x 0( )–( )[ ] ε0–cosh

2
------------------------------------------------------------------------=

Fig. 1. Phase portrait of the system for no = 1.6 and homo-
geneous ion density, according to Eqs. (4) and (8); see also
Fig. 2. The dashed lines stand for vacuum regions; the con-
tinuous lines stand for plasma regions; the actual trajectory
is given by the thick line, and it runs clockwise. The large
dashed line denotes the regions where the electron density is
negative.
a problem involving laser radiation with a turn-on
shape, it is natural to choose the zero-flux approach.

The left side of function (6) gives rise to an unbal-
anced ponderomotive force pulling electrons out of the
plasma towards the incident wave, and, at first glance,
it seems that the charge quasineutrality condition can-
not be satisfied. However, after a length of about half a
wavelength, these electrons will be stopped by the pon-
deromotive force acting in the opposite direction. Thus,
in the general case, we may expect that the full plasma
field structure will consist of a sequence of alternating
depletion and nondepletion regions.

This can be understood from Fig. 1, where the phase
portraits described by Eqs. (1)–(3) and by the corre-
sponding equation for the depletion (vacuum) region
are presented. For a half-space plasma, the limiting
case corresponds to motion with an infinite period
along the separatrix determined by Eq. (5), i.e., an
exponentially decreasing field inside the overdense
plasma. Going backwards toward the initial vacuum–
plasma boundary, before the last semi-infinite electron
layer, there must exist a depletion region. Here, the
amplitude of the field corresponds to a forward-going
wave along the incident direction, with an intensity
below the threshold value (corresponding to the motion
along the first circular trajectory in phase space, com-
ing from the vacuum Hamiltonian). Then, in front of this
layer, we have to put another electron layer, where the
solution for the field a(x) follows from Hamiltonian (4)
with a magnitude * > –no (corresponding to an oscilla-
tory motion about zero). This construction is repeated
until the initial plasma boundary is reached. At the
boundary between each depletion and nondepletion
region, the solution for the field must satisfy continuity
conditions for both a and its derivative a'. It is also clear
that there exists a family of stationary solutions that dif-
fer from each other by the number of electron density
layers and their shapes. When the incident amplitude is
increased, the number of layers will increase as well, as
follows from the phase portraits in Fig. 1.

In order to quantify the above discussion, we
present a more rigorous analytical description. Starting
at the inside of the plasma region, the solution for the
field is an exponentially decreasing function of the spa-
tial coordinate, in fact, a part of the localized solution
given by Eq. (6) with *E = *0 for x0 ≤ x < ∞. The point
x = x0 can be determined self-consistently from the glo-
bal solution and the boundary conditions

(7)

The next region (x1 < x < x0) must be a depletion
layer where n(x) = 0. The second boundary position of
this depletion layer, x1, must also be determined self-

a x x0=( ) a0, a' x x0=( ) a0' .= =
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consistently. The Hamiltonian here is the vacuum one
and reads

, (8)

where we have taken into account the boundary condi-
tions for the field and its first derivative. The solution of
the field in this depletion region reads

(9)

Using Eq. (7), we have A1 =  = (2*1)1/2,

ψ1 = –  – x0. The boundary position x1 can
be calculated by integrating Poisson’s equation in the
interval x1 < x < x0:

(10)

which, together with relation (3), leads to a transcen-
dental equation for ξ = x0 – x1:

(11)

where

(12)

Since the left-hand side of Eq. (11) is a linear function,
while its right-hand side is a periodic function of ξ, this
equation has a nontrivial solution only if g'(ξ = –ξ1) > 1;
i.e.,

(13)

However, if no ≤ 1.5, this condition is never satisfied,
because its maximum value reaches unity at no = 1.5.
Consequently, for plasma densities no < 1.5, we con-
clude that there are no stationary regimes of anomalous
penetration: there can only exist dynamical solutions.
For no > 1.5, Eq. (11) always has nontrivial solutions,
which can be found numerically. Formally, Eq. (11)
admits several roots but we have to consider only those
corresponding to a positive electron density.

Having solved Eq. (11), we know  = a(x1) and

 = a'(x1). The next region must again be an electron
layer. Denoting this region as x2 ≤ x ≤ x1, Hamiltonian
(4) will be

(14)

*V
1
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with the corresponding field solution written in terms
of two-parameter elliptic functions for the field strength
as

(15)

Two parameters ε2 and x(2) are determined by the

boundary conditions at x = x1. Here, ε2 = (  + 1 +

2*2)1/2, q = [(ε2 + no)2 – 1]1/2 and  = [(ε2 + no + 1)/(ε2 +

no – 1)]1/2, k = [(  – (ε2 – 1)2)/4ε2]1/2 and  = [((ε2 –

1)2 – )/((ε2 + 1)2 – )]1/2 are the moduli of the ellip-
tic integrals of the first kind, respectively, for the two
cases. This solution is realized over about a quarter of a
period, where the electron density is positive and is
given by

(16)

The second boundary position of this layer can now
be defined with a certain arbitrariness; namely, it can be
taken within the whole interval x* ≤ x2 ≤ x**; where x*
is such that n(x*) = 0, while x** is defined by the exist-
ence of a solution of transcendental Eq. (11). This prob-
lem comes up for every layer; therefore, the global
solution for a given incident amplitude, in general, may
not be unique, because the thickness of each plasma
layer is not uniquely fixed, with the realization of each
specific solution depending on the prehistory of the
process. This is also confirmed by our preliminary sim-
ulations based on a hydrodynamics approach, where, at
fixed incident amplitude, the thickness of various elec-
tron layers in the quasi-stationary stage is quite differ-
ent, depending on the turn-on shape of the incident
radiation. The appearance of nonunique solutions is
typical of phenomena involving nonlinear media (see,
e.g., [12]).

For the sake of concreteness, in what follows, we
choose the next boundary position x2 as the point where
the electron density vanishes; i.e., n(x2) = 0. In this case,
transcendental Eq. (11) always has nontrivial solutions,
because, if the condition given by Eq. (13) is satisfied
for the semi-infinite layer, it will automatically be sat-
isfied for all the preceding electron layers, for the point
where the electron density vanishes. As follows from
Eq. (16), the field at this boundary is such that

(17)

a x( )
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and, making use of the equation for Hamiltonian (14),
we can calculate the first derivative of the field. Thus,
for the next depletion layer located within x3 < x < x2,
we know the boundary values of a2 and  that are
required to generate a solution by using the same pro-
cedure as before for x1 < x < x0. This procedure is
repeated for every layer xi + 1 < x < xi up to the final
layer; and, if *i > no, the field solution has to be taken
as in the second expression of Eq. (15). The last layer
will be a depletion region 0 < x < xN, where x = 0 is the
real plasma–vacuum boundary. At this point, the elec-
tric field due to charge separation must vanish. Integrat-
ing Poisson’s equation over the plasma interval, the
plasma neutrality condition gives

, (18)

which defines the last free parameter. Thus, matching
the solution for the field to the vacuum solution at the
electron layer boundary x = xN, we can relate the
obtained plasma-field distribution to the incident elec-
tromagnetic wave. In this way, we can construct an
exact stationary solution for the anomalous penetration
regime. An example of such a solution is presented in
Fig. 2. Notice that the maximum of the electron density
in a layer increases from layer to layer, reaching an
absolute maximum in the last layer nearest to the vac-
uum boundary, while the width of the layers becomes
more and more narrow. This may be easily understood
from Fig. 1: higher lying trajectories have higher values
of the integrals of motion. It also means that, at higher
incident wave amplitudes, there are more layers, so that
the penetration length will increase with increasing
incident intensity. These solutions can naturally be
extended to cover the case of plasma slabs with finite

a2'

x0
1
n0
-----

aNaN'

1 aN
2+

-------------------=

Fig. 2. The continuous line represents the plasma-field
structures in a semi-infinite plasma initially occupying the
region x ≥ 0 for no = 1.6, the unperturbed electron density
being represented by the dashed line. The dotted line repre-
sents the resulting electron density distribution. All quanti-
ties are dimensionless.
thickness, if the penetration length is smaller than the
slab thickness.

The following consequence of the previous analysis
should be emphasized: for a fixed amplitude, the laser
field penetrates only a finite length into the overdense
plasma. Consequently, if the incident laser pulse has a
finite duration, the electromagnetic energy deposited in
the plasma will be reflected back into the vacuum after
the laser field has vanished. Evidently, the transient
regime will be more complicated if vacuum (depletion)
regions surrounded by electron layers show a resona-
tor-like behavior, with the electromagnetic energy
excited by the incident pulse. We expect this field struc-
ture to evolve and be slowly reflected back into the vac-
uum region.

In conclusion, we have presented a new class of
exact analytical stationary solutions describing a new
feature of the interaction between a superintense laser
and an overdense plasma. This analysis shows how,
depending on the initial plasma density, the interaction
can result in the generation of a new plasma field struc-
ture consisting of alternating electron and “vacuum”
regions, with the electromagnetic energy penetrating
into the overdense plasma over a finite length deter-
mined by the incident intensity.
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17015 and 98-02-17013. One of the authors (F.C.)
acknowledges support from the European Community
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A novel path-integral representation of the many-particle density operator is presented which makes direct Fer-
mionic path-integral Monte Carlo simulations feasible over a wide range of parameters. The method is applied
to compute the pressure, energy, and pair distribution functions of a hydrogen plasma in the region of strong
coupling and strong degeneracy. Our numerical results allow one to analyze the atom and molecule formation
and breakup and predict, at high density, proton ordering and pairing of electrons. © 2000 MAIK “Nauka/Inter-
periodica”.

PACS numbers: 52.25.Kn; 52.65.Pp
Coulomb systems continue to attract the interest of
researchers in many fields, including plasmas, astro-
physics and solids; see [1, 2] for an overview. The most
interesting phenomena, such as metallic hydrogen,
plasma phase transition, bound states, etc., occur in sit-
uations where the plasma is both strongly coupled and
strongly degenerate. However, in this region, the ther-
modynamic properties of the plasma are only poorly
known. The need for the simultaneous account of
strong Coulomb and quantum effects makes a theoreti-
cal treatment very difficult. Among the most promising
theoretical approaches to these systems are path-inte-
gral quantum Monte Carlo (PIMC) techniques; see,
e.g., [3, 4].

In this letter, we demonstrate that for many current
problems in dense warm plasmas (kBT > 0.1 Ry), direct
PIMC simulations can, in fact, be carried out with
acceptable efficiency. We report results for the internal
energy, equation of state, and pair distribution functions
of partially ionized hydrogen in a wide range of coupling
and degeneracy parameters, Γ = (4πne/3)1/3e2/4πe0kBT

and χ = ne  (λe is the electron thermal wave length

 = 2π"2β/me). Furthermore, our calculations predict
ordering of protons, as well as pairing of electrons, at
high density.

As is well known, the thermodynamic properties of
a quantum system are fully determined by the partition
function Z. For a binary mixture of Ne electrons and Ni

1 This article was submitted by the authors in English.

λ e
3

λ e
2

0021-3640/00/7205- $20.00 © 20245
protons, Z is conveniently written as

(1)

Here, q ≡ {q1, q2, …, } comprises the coordinates of

the protons and σ = {σ1, …, } and r ≡ {r1, …, }
are the electron spins and coordinates, respectively. The
density matrix ρ in Eq. (1) is represented in the stan-
dard way by a path integral [5]:

(2)

where ∆β ≡ β/(n + 1) and  = 2π"2∆β/me. Further,
r(n + 1) ≡ r and σ' = σ; i.e., the particles are represented
by fermionic loops with the coordinates (beads) [r] ≡
[r, r(1), …, r(n), r]. The electron spin gives rise to the spin
part of the density matrix 6, whereas exchange effects

are accounted for by the permutation operator  and
the sum over the permutations with parity κP . Follow-
ing [3, 6, 7], we use a modified representation (3) of the
high-temperature density matrices on the r.h.s. of
Eq. (2), which is suitable for efficient direct fermionic
PIMC simulations of plasmas. With the error of order
e ~ (βRy)2χ/(n + 1) vanishing with a growing number of
beads, we obtain the approximation
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(3)

where Ui, , and  denote the sum of the binary
interaction Kelbg potentials Φab [8] between protons,
electrons at vertex l, and electrons (vertex l) and pro-
tons, respectively.

In Eq. (3),  ≡ exp[–π ] arises from the
kinetic energy density matrix of the electron with index
p, and we introduced dimensionless distances between
neighboring vertices on the loop, ξ(1), …, ξ(n). Thus,
explicitly, [r] ≡ [r; r + λ∆ξ(1); r + λ∆(ξ(1) + ξ(2)); …]. The
exchange matrix is given by

(4)

As a result of the spin summation, the matrix carries a
subscript s denoting the number of electrons having the
same spin projection.

As an example, we present the equation of state
βp = ∂lnQ/∂V = [α/3V∂lnQ/∂α]α = 1:
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Fig. 1. Energy E of an ideal plasma of degenerate electrons
and classical protons in excess of the classical energy. PIMC
simulation results with varied particle number are shown:
N = 32 (triangles), N = 50 (squares), and N = 90 (circles) are
compared to the exact analytical result (dashed line).
(5)

Here, α is a length scaling; α = L/L0, 〈…|…〉  denotes
the scalar product; and qpt, rpt, and xpt are the differences
of two coordinate vectors: qpt ≡ qp – qt, rpt ≡ rp – rt, xpt ≡
rp – qt,  = rpt + ,  ≡ xpt + ,  = ,

and  ≡  – . Other thermodynamic quantities
have an analogous form.

We demonstrate our numerical scheme for a two-
component electron–proton plasma. In the simulations,
we used Ne = Np = 50. To test the MC procedure, we
first consider a mixture of ideal electrons and protons
for which the thermodynamic quantities are known
analytically, e.g., [9]. Figure 1 shows our numerical
results for the pressure, together with the theoretical
curve. The agreement, up to the degeneracy parameter
χ as large as 10, is evident and improves with increas-
ing particle number. This clearly proves that our
method correctly samples the fermionic permutations.
Note that for fast generation of a MC sequence of
N-particle configurations it is necessary to efficiently
compute the acceptance probability of new configura-
tions, which is proportional to the absolute value of the
ratio of the exchange determinants of two subsequent
configurations, while the sign of the determinants is
included in the weight function of each configuration.

Let us now turn to the case of interacting electrons
and protons. We performed a series of calculations in
which the classical coupling parameter Γ was kept con-
stant while the degeneracy parameter χ was varied, cf.
Fig. 2. One can see that, for weak coupling (Γ = 0.4)
and small degeneracy parameters χ < 0.5, there is good
agreement with analytical theories and quantum MC
simulations without exchange [10]. However, as
expected, with increasing χ and Γ, the deviations grow
rapidly. Figure 2 also contains a comparison with
restricted path-integral results of Militzer et al. [11]
(the large triangles) corresponding to values of the cou-
pling parameter in the range of 0.17, … , 0.672. Evi-
dently, the agreement, in particular, of the energies, is
very good. The deviations in the pressure are appar-
ently related to the fixed-node approximation used in
[11] and need further investigation.
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Fig. 2. (a) Pressure P and (b) energy E of the nonideal plasma as functions of the quantum parameter χ. Curves correspond to dif-
ferent values of the coupling parameter Γ given in the inset of the right figure. Large circle denotes quantum MC simulations without
exchange (QMCNE), and large asterisk denotes the weak coupling model of Riemann et al. (RSDWK), using data from [10]. The
large triangles are recent restricted PIMC results of Militzer et al. [11], which are compared to our results (large squares) for three
values of Γ, from top to bottom: Γ = 0.169, 0.338, and 0.672.
Fig. 3. Electron–electron (gee, full line), ion–ion (gii, dashed line) and electron–ion (gei, dash–dotted line) pair distribution functions
for dense hydrogen. The line styles in (b) and (c) are the same as in (a). Notice the varying scalings of the curves. The values for the
coupling, degeneracy, and Brueckner parameters are (a) Γ = 2.9, χ = 1.46, rs = 5.44; (b) Γ = 1.16, χ = 0.37, rs = 5.44; (c) Γ = 19.8,
χ = 1848, rs = 0.318; and (d) Γ = 53.8, χ = 37.000, rs = 0.117.

n = 5 × 1025 cm–3
A very interesting result is that the energy curves in
Fig. 2 become almost parallel as the degeneracy
increases. In contrast, for Γ > 0.6, reduction of χ leads
to a rapid decrease in the energy, which is due to the
JETP LETTERS      Vol. 72      No. 5      2000
formation of atoms and molecules, as will be shown
below.

The main advantage of the presented method is that
it allows one to investigate dense plasmas in a variety
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of physical situations which are very difficult to
describe reliably by other approaches. This includes
partial ionization and dissociation, Mott effect, and
ionic ordering at high densities. To investigate these
phenomena, we show, in Fig. 3, the pair distribution
functions for the four most interesting physical situa-
tions. Figure 3a clearly shows the existence of hydro-
gen molecules (cf. the peaks of the proton–proton and
electron–electron pair distribution functions at a sepa-
ration of about 1.4aB) and atoms. We note that the peak
of the electron–proton function (multiplied by r2) in
our calculations appears at r = 1aB if no molecules are
present (e.g., at lower density). But for the situation of
Fig. 3a, the presence of molecules leads to a shift of the
peak to larger distances. Figure 3b shows that, with
increasing temperature, atoms and molecules break up,
which is clearly seen by the drastic lowering of the
mentioned peaks in the pair distribution functions.

Let us now consider the case of higher densities, but
keep the temperature constant. Here, our calculations
predict interesting physical phenomena. In Figs. 3b–3d,
one clearly sees increased ordering of protons from a
partially ionized plasma (3b, Γ ≈ 1.2), to liquidlike
(3c, Γ ≈ 20) and solidlike (3d, Γ ≈ 54) behavior, cf. the
proton–proton pair distribution functions.

Notice further a qualitative change in the electron–
electron function upon a density increase from Fig. 3b
to 3d: gee in Fig. 3b is typical of partially ionized plas-
mas, whereas in Fig. 3c a strong peak at small distances
is observed. A further increase in the density leads to an
almost uniform electron distribution in Fig. 3d. For bet-
ter understanding of the electron behavior, we also
included in Fig. 3c the functions r2gee and r2gii. The
shoulders in these curves indicate that the most proba-
ble interelectronic distance is almost two times smaller
than the average distance between two protons. The
reason for the behavior in Fig. 3c is pairing of electrons
with opposite spin projections. An analysis of the elec-
tronic bead distribution allows us to conclude that the
“extension” of the electrons is of the order of the inte-
rion distance and that there is partial overlap of individ-
ual electrons. Under these conditions, pairing of (part
of) the electrons minimizes the total energy of the sys-
tem. This effect vanishes with increasing density due to
the growing wave function overlap.
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It is established that application of the model of a continuous medium with distributed internal angular
momenta (angular-momentum medium) to the description of real flows in Ranque vortex tubes allows the rev-
elation of a physical effect that is responsible for the experimentally observed separation of temperatures and
for some other flow properties. Simplified relations describing changes in the total enthalpy are deduced in the
approximations of equilibrium and nonequilibrium thermodynamics. The inhomogeneity of temperature is
explained by the properties of a complex (three-parameter) thermodynamic system; its increase is caused by
the strengthening of the angular momentum field M under the action of angular velocity Ω in the vortex tube,
while its decrease is due to the destruction of this field because of a rapid decrease in vorticity in the near-axial
region of the tube. Both these processes provide additional entropy production 2γt(Ω – λ–2M)2/T, where γt is the
coefficient of rotatory viscosity of the angular-momentum medium. The same mechanism is operative in incom-
pressible flows. © 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 47.60.+i; 47.32.Cc; 05.70.Ln
The vortex effect [1] lies in the fact that, upon tan-
gential gas inlet into a vortex tube (Fig. 1), the gas flow
is separated into two flows: a peripheral flow with total
temperature higher than the total temperature of the
inlet gas and a central flow with total temperature lower
than the total temperature of the inlet gas. Technically,
cooling by ∆T ≈ 50 K can easily be attained, and, for the
best tube constructions, this value may be as high as
200 K. The unusual properties of a gas whirled in
Ranque vortex tubes were observed in a great variety of
more recent experiments. Among these observations
are a sizable increase in flow turbulence in the near-
axial region of the tube; an additional abrupt (by ~5 K)
decrease in the temperature of the tube wall at the outlet
of a cooled gas upon a sharp pressure release at the
inlet; the observation of temperature separation in
incompressible flows [2]; and the observation of large-
scale structures [3].

To explain the main cooling effect, several interpre-
tations were suggested, each based on considering a
certain attendant physical factor, such as turbulence,
compressibility, and acoustics, or on the “description of
a gas (or fluid) flow as a collection of microvolumes
with different translational velocities” [2]. The fact that
such an “extreme” requirement as the violation of the
principle of entropy increase was discussed in connec-
tion with this phenomenon, in particular, in the scien-
tific literature [4, 5], is evidence of serious problems in
the understanding of its physical origin.

It is established in this work that application of the
model of a continuous medium with distributed internal
0021-3640/00/7205- $20.00 © 20249
angular momenta [6] to real flows in Ranque tubes
allows at least a qualitative description of the literature
experimental data and a quantitative estimation of the
main (cooling) effect without violating the laws of ther-
modynamics.

One of the principal features of the dynamic pro-
cesses occurring in the Ranque tubes is that the resi-
dence time (0.05–0.1 s) of an elementary volume of gas
in the tube is much shorter than the characteristic times
of ordinary thermodynamic processes. This time
should be compared with the characteristic time of
establishing dynamic equilibrium for sufficiently large-
scale (on the order of λ) vortices (including those of
turbulence origin) at the inlet of the Ranque vortex
tube. The relaxation time τ of the angular momenta of
these vortices in the course of their involvement in the
vortex field W of the main (circular) flow in the tube is on
the order of λ2/γt, where γt is the effective rotatory viscos-
ity. According to [7], the ργt value for the turbulent flows
in tubes is on the order of (1.0–0.5) × 10–2 kg/(m s). Using
this estimate for the rotatory viscosity in the vortex tube
and setting λ ~ R0 (where R0 is the tube radius), one
arrives at a value of τ ~ 0.05 s for the relaxation time,
which is comparable to the time of residence of an ele-
mentary volume of gas in the Ranque tube. Because of
this, the excess angular momenta arising in volumes of
the order of λ, in contrast to rigid rotation, have no time
to relax, as a result of which a field of internal angular
momenta M with zero volume average is retained in the
flow. For such systems, the moment of external forces
is equal to the increment (per unit time) in the gas angu-
000 MAIK “Nauka/Interperiodica”
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Fig. 1. Principal schemes of the Ranque vortex tube: (a) counterflow and (b) direct-flow.
lar momentum plus the angular momentum transferred
to the internal degrees of freedom. In each volume unit,
the angular momentum transferred to the internal
degrees of freedom is ~γt—v. In the classical case, γt =
0, so that this quantity is zero. In the simplest case of
linear relationships, a change in the internal angular
momentum is estimated as (see also [8])

(1)

i.e., the internal angular momentum increases in pro-

portion to the angular velocity W = —v of the fluid at

a given point and decreases in proportion to its magni-
tude. In Eq. (1), τ = λ2/γt is the relaxation time of the
internal angular momentum.

As distinct from ordinary viscous fluids, the stress
tensor in a medium with distributed internal angular
momenta (angular-momentum medium) has a nonzero
antisymmetric component, so that the equation of con-
servation of angular momentum is not a trivial conse-
quence of the fact that the cross tangential stresses are
equal to one another, because πij ≠ πji. The thermody-
namic relations additionally include the work of chang-
ing the internal angular momentum under the action of
the external rotation field W; i.e., the system is three-
parametric [9].

It is known from experiment that the rotation of a
gas in the Ranque tube at r0 ≤ r ≤ 0.3R0 is close to rigid
rotation v/r = const, where v is the circular component
of the velocity, R0 is the tube radius, and r0 is a certain
(small) radius. At r ≥ 0.5R0, the flow is close to a poten-
tial vortex vr = const, and near the axis it approxi-
mately obeys the vr–2 = const law; i.e., the angular
velocity near the axis is close to zero.

Let us consider the following model flow in a circu-
lar section tube. Gas rotates with an angular velocity
whose projection onto the tube axis is Ω , with Ω = 0
near the axis.

The internal energy per unit mass of a medium with
distributed internal angular momenta M (angular-
momentum medium) in a coordinate frame rotating
with angular velocity Ω can be written, according to
[10, 11], in the following model form:

DM/Dt γtW M/τ ;–=

1
2
---

u u00
1
2
---λ 2– M2 W M.⋅–+=
This approach is valid because of the well-known fact
that the main fraction of the energy of turbulent motion
is concentrated in the vortices of maximum size.

Let, for some ideal angular-momentum medium
(equilibrium for M),

The energy conservation law is then written as

For the adiabatic conditions δq = 0, one has 0 = di00 –
λ–2MdM, where i00 is the stagnation enthalpy. For equi-
librious M, di00 = λ2WdW . It is seen that the total
enthalpy increases with increasing absolute value of the
M (or W) field and vice versa. Integrating between the
states at the inlet (+) and outlet (–) of the Ranque tube,
one gets

(2)

A quantitative estimate with the characteristic angular
velocities and sizes λ = R+ (R+ is the inlet pipe radius)
yields a value of –∆t = –(30–50) K coinciding with the
experimentally observed temperature decrease. If one
draws the curves for the entropy change without
applied rotation field in the T–S diagram (Fig. 2),

,

together with

(it is assumed that cM, p ≈ cp), then the cooling effect can
be described as a consequence of two equilibrium pro-
cesses: an isothermal increase in the internal angular
momenta M under the action of the orienting W field at
the periphery of the Ranque tube and an adiabatic
decrease in the M field under the action of a reorienting
factor of turbulent chaos arising on the λ scale because
of a rapid decrease in the W field near the tube axis. The
process is isothermal because the released heat is
removed due to turbulent transfer, while the gas flows
out through the peripheral discharge channel. It should
be emphasized that the thermodynamic processes of
increase and decrease in the M field in a three-parame-

∂u/∂M 0, i.e., λ 2– M W– 0,= =

u u00
1
2
---λ 2– M2.–=

δq d u00 p/ρ v 2/2+ +( ) λ 2– MdM.–=

i00
– i00

+–
1
2
---λ2 Ω–

2 Ω+
2–( ) 1

2
---λ2Ω+

2 Ω– 0≈( ).–≈=

S0 cM p, T00 p00
1 γ–( )/γ( ) const+ln=

SM cM p, T00 p00
1 γ–( )/γ λ2Ω2/T00–( ) const+ln=
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ter system are, in a sense, analogous to the processes
occurring in other three-parameter systems, e.g., to the
processes of magnetization and demagnetization
known in the physics of paramagnets.

The real variations of the M and W fields in the
Ranque tube and in the corresponding model flow are
due to inhomogeneous processes. In this work, an
attempt is undertaken to carry out thermodynamic anal-
ysis for a gas microvolume.

The energy conservation law for a microvolume of
an ideal angular-momentum medium is written as

(3)

It is convenient to divide the problem into two sim-
pler partial problems: (a) an increase in the M field in a
stationary angular velocity field Ω0 and (b) a decrease
in the M field upon an abrupt decrease in the angular
velocity field to a small (ω0) level.

Integrating the set of Eqs. (1) and (2) for the first
problem, one gets for the increasing M field

(4)

where Ω0 = Ωz and m0 is the initial internal angular
momentum at the tube inlet. On the one hand, the m0
value can be specified from the roughness of the inlet
nozzle walls as a new boundary condition formulated
within the framework of the adopted continuum model.
On the other hand, the tangential gas inlet into the tube
gives rise to a shear layer in the region where a high-
velocity inlet flow contacts the lower velocity flow in
the Ranque tube. The axes of the vortices originating in
this region are predominantly aligned with the angular
velocity vector of the main vortex. These vortices can
more greatly contribute to m0, thus diminishing unde-
sirable gas heating, e.g., while achieving the cooling
effect. Note that this assumption is confirmed by the
optimum inlet shape—planar and extended along the
axis of the Ranque tube—that was empirically deter-
mined for technical devices.

With the second problem, for the near-axial M field
one has

(5)

where ω0 is the low angular velocity in the near-axial
region.
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JETP LETTERS      Vol. 72      No. 5      2000
It is seen from Eqs. (4) and (5) that (a) the increase
in M is accompanied by the release of heat, which must
be removed from the working zone, and (b) both pro-
cesses can be efficient only if the time τ0 = λ2/γt is
shorter than the time of residence of a microvolume in
the Ranque tube, i.e., if the sizes of the vortices, whose
angular momenta undergo, respectively, orientation
and reorientation, are small enough. This condition
competes with the requirement that the λ2 value be
large enough for the cooling effect to be achieved in the
steady-state regime [see Eq. (5) for t  ∞ and
Eq. (2)]. This may serve as a plausible explanation of
the fact that the Ranque tube has optimum sizes.

Both the increase and decrease in the M field are
accompanied by considerable entropy production. The
expression for the latter includes the 2γt(Ω – λ−2M)2/T > 0
term (the entire expression for the entropy production
in a viscous fluid with internal rotations is given in
[12]). Therefore, the temperature separation (ordering)
in a vortex flow proceeds via the above-mentioned pro-
cesses, in full conformity with the principle of entropy
increase.

The intensification of the flow turbulence near the
Ranque tube axis is explained by the fact that the
mechanical energy of the ordered M motion converts
into turbulent chaos on the λ scale. An additional abrupt
decrease in the temperature of the outlet tube wall,
which was observed in [13] upon a sharp release in the
input pressure, can be caused by an additional decrease
in the angular velocity ω0 [see Eq. (5)] in the near-axial
region.

The right-hand side of the equations of motion of
the angular-momentum medium contains a term propor-
tional to — × (λ–2M – W) (angular-momentum stresses),
which may change sign near the tube axis, thereby
explaining the experimentally observed [13] counterro-
tation of a thin rod placed at the tube axis. Note that,
within the framework of the thermodynamic system of
interest, the counterrotation may be dictated in itself by
the Le Chatelier principle, when it is considered that
the angular velocity field W , being the external factor
with respect to this thermodynamic system, sharply
changes its magnitude near the Ranque tube axis.

Fig. 2. T–S diagram; (1) adiabatic decrease and (2) isother-
mal increase in the M field.
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One can readily verify that the dynamics of internal
angular momenta lead to temperature separation in the
incompressible fluids as well, which was also experi-
mentally observed in [2].
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A weak polarization response of the photoexcited states of a conjugated π-electron chain is investigated by cw
photoinduced polarimetry. The experiments are carried out with films and solutions of isotropic nano-poly(acet-
ylene) at room temperature. It is found that the polarization response is caused by a weak linear dichroism of
the long-lived excited state of nano-trans-poly(acetylene) with a ratio of ≈0.6 between the absorption coeffi-
cients of light polarized transverse to and along the polymer chain. It is suggested that the π electrons in long-
lived states of nano-trans-poly(acetylene) are localized at several C–C bond lengths. © 2000 MAIK
“Nauka/Interperiodica”.
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In recent decades, the physics of elementary excita-
tions in polymer chains containing a π-conjugated sys-
tem has attracted the particular attention of researchers.
The π-conjugated chains are characterized by strong
coupling between electronic and lattice degrees of free-
dom, for which reason a considerable fraction of the
excited electronic energy relaxes nonradiatively. The
relaxation results in long-lived states, which are com-
monly related to excitations of the excitonic and/or
polaronic types. In particular, it was found for the
chemically simplest conjugated poly(acetylene) poly-
mer (CH)x that the lowest lying excitations do not bear
charge (are neutral) [1] and show a photoinduced
absorption band slightly below the main dipolar
|1Ag〉   |1Bu〉  transition [2].

The delocalization of the π electrons along the poly-
mer chain leads to a strong anisotropy of the optical
properties of conjugated polymers. One should expect
that the anisotropy will also be seen in the transitions
from excited states. The degree of this anisotropy is
characterized by the dichroism, i.e., the ratio of absorp-
tion coefficients for the probe beams polarized along
and transverse to the direction of the excited chains.
The data on such an anisotropy allows one to draw con-
clusions about the degree of localization of π electrons
in the excited states of conjugated polymers. We are
interested in the relaxed excited states of the neutral
type for (CH)x, i.e., on the time scale for which the lat-
tice has time to follow the excitation of the electronic
subsystem. Information on the dichroism of the excited
chains can be obtained from experiments with nonori-
ented samples by measuring the absorption coefficients
δα|| and δα⊥ for a probe beam polarized parallel and
perpendicular to the polarization of the pump beam,
0021-3640/00/7205- $20.00 © 20253
respectively. Such measurements, including those with
high time resolution, were carried out for (CH)x in
[3−5]. However, the depolarization signal in these mea-
surements might have been contributed, aside from the
dichroism of the excited polymer chain, by other
effects, e.g., by excitation diffusion along the chaoti-
cally bent polymer chains [3] or by rotation of the axes
of the polarizability tensor in the excited state [6].
Moreover, the depolarization signal from the neutral
excitations of nonoriented (CH)x samples lost memory
of the polarization of exciting light in hundreds of pico-
seconds after excitation [4]. An isotropic response to
the cw excitation was also observed for oriented (CH)x

samples [7]. At the same time, a high-sensitivity pola-
rimetry technique [8] allowed one to gain information
on a weak optical anisotropy that is not seen in the
depolarization signal from the excited states. A time-
resolution version of this technique was previously
used for probing a hidden excited-state anisotropy in
inorganic semiconductors [9, 10]. In this work, data on
the degree of localization of π electrons in the long-
lived neutral excited states of trans-(CH)x were
obtained. The experiments were performed by the
method of cw photoinduced polarimetry for isotropic
samples of nano-poly(acetylene).

Nano-(CH)x consists of (CH)x particles of sizes
<30 nm dispersed in a transparent matrix of poly(vinyl
butyral) with a mass content of 1–2% [11]. The (CH)x

nanoparticles are globule-shaped and formed from the
structurally organized π-conjugated chains. The
absorption spectrum of nano-(CH)x shows a sharp edge
and a pronounced vibronic structure with zero- phonon
line of trans isomer at a wavelength of 730 nm. The
concentration of the trans isomer was higher than the
000 MAIK “Nauka/Interperiodica”
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Fig. 1. Scheme of a polarimeter. P is the polarizer; A is the analyzer; Epump and Eprobe( ) are the polarizations of the pump and

probe beams, respectively; and δβ = ∠ (Eprobe, ) is the angle of rotation of the polarization of the probe beam after the inter-

action with the (CH)x sample. The vectors of interacting fields are shown in the inset; the magnitudes of photoinduced absorption
and dichroism are strongly exaggerated.

Eprobe'

Eprobe'

Epump Eprobe

Eprobe'

Epump Eprobe'Eprobe
concentration of the cis isomer, as was estimated from
the absorption spectra of the samples. The experiments
were conducted at room temperature with nonoriented
samples of optical density ≈1 in the form of
≈5-µm-thick films on glass substrates and with solu-
tions of (CH)x nanoparticles in a butanol–poly(vinyl
butyral) composition.

The experiments were carried out in a quasi-col-
linear pump–probe scheme, in which the linearly polar-
ized probe beam changed its intensity and polarization
parameters (polarization direction and ellipticity) upon
the interaction with the pump beam. Slight changes in
the polarization parameters were transformed into
changes in the probe beam intensity (Fig. 1) using a
polarimeter tuned to the dark position by a specially
developed technique [8, 12]. The cw radiation of a
semiconductor laser at a wavelength of 835 nm lying
within the photoinduced absorption band of nano-
trans-(CH)x was used as a probe beam. The excitation
was accomplished by the radiation of a He–Ne laser
with a power of .10 mW at a wavelength of 633 nm
corresponding to the strong absorption band of nano-
trans-(CH)x. The pump and probe beams were focused
onto the sample as spots of size .50 µm. The pump
beam was modulated by a mechanical chopper with fre-
quency .800 Hz, and the corresponding changes in the
polarimeter transmittance δT/T were recorded by a sil-
icon photodetector using the lock-in detection tech-
nique.

The linearly polarized pump beam produces an
anisotropic distribution of photoinduced states in the
isotropic nano-(CH)x, because the chains directed
along the beam polarization are excited with higher
probability. Since the conjugated chains are strongly
anisotropic, one would expect that the absorption from
the excited state would also be anisotropic; i.e., the
absorption coefficients δα|| and δα⊥  of the probe beams
polarized, respectively, along and transverse to the
pump beam would be different. A weak photoinduced
dichroism can be measured by polarimetric methods.
Indeed, upon passing through a dichroic sample, a lin-
ear polarization differing from the eigen one rotates
toward the eigen polarization corresponding to the min-
imum absorption (inset in Fig. 1), e.g., as in a film polar-
izer. The polarization rotation angle δβ and the relative
change δT/T in the transmittance for φ = π/4 can easily
be determined for weak photoinduced absorption in a
sample of thickness l (δα||l, δα⊥ l ! 1) [12]:

(1)

(2)

Equations (1) and (2) can be used to obtain the relation-
ship between the photoinduced dichroism ξ and the
experimentally measured δβ and δT/T quantities:

(3)

Figure 2a shows the signal δT/T from the polarime-
ter with a nano-(CH)x film, measured at the output of
the lock-in detector as a function of the angle β of
detuning the analyzer from the dark position. It is seen
that the δT/T signal has different signs for detunings of
different signs, whence it follows that the polarimeter
signal is mainly due to the pump-induced polarization
rotation (Fig. 1). Indeed, if the probe beam polarization

δβ
δα|| δα⊥–

4
------------------------l,=

δT /T–
δα|| δα⊥+

2
-------------------------l.=

ξ
δα|| δα⊥–

δα|| δα⊥+( )/2
----------------------------------

4δβ
δT /T–
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Fig. 2. Transmission signal of a polarimeter with a nano-(CH)x film vs. (a) the angle β of analyzer detuning from the dark position
for |φ| = π/4 and (b) the angle φ between the polarizations of the pump and probe beams at β ≈ –0.01 rad. The pump polarization was
adjusted using a half-wave plate.

104δT/T 104δT/T
turns through a small angle δβ after the interaction with
the excited sample, the polarimeter transmission mini-
mum shifts slightly, so that the signals on different
sides of the dark position have different signs; i.e.,
according to Fig. 2a, the polarimeter would “lighten” at
β < 0 and “darken” at β > 0. It was found that the probe
polarization rotated away from the pump polarization,
as shown in the inset in Fig. 1. Figure 2b shows the
maximum polarimeter signal as a function of the angle
φ between the pump and probe polarizations. It is seen
that the absolute value of the signal is maximum at φ =
±π/4 and minimum at φ = 0, π/2. Therefore, the results
of polarization measurements are consistent with the
above-mentioned picture of interaction between the
polarized light and the dichroic medium. The angle of
rotation of the probe polarization in the nano-(CH)x

film was found to be δβ ≈ 20 µrad at φ = ±π/4 at the
pump intensity ≈0.3 kW/cm2. The polarization rotation
and the photoinduced absorption signals depended lin-
early on the pump intensity. Note that analogous polariza-
tion signals were obtained for solutions of nano-(CH)x.
Consequently, the measured photoinduced dichroism is
not associated with the effect of a matrix surrounding
the (CH)x nanoparticles.

For large polarimeter detunings from the dark posi-
tion (β ~ π/2), the measured signal –δT/T ≈ 4 × 10–4 is
mainly due to photoinduced absorption of the (CH)x

film. It does not depend on the orientations of the pump
and probe polarizations. Thus, the polarimetric method
allows us to observe a weak dichroism of the nano-
trans-(CH)x chains in the photoinduced state. The
dichroism can be characterized by the parameter ξ ≈ 0.2,
as defined in Eq. (3).

The coefficients δα|| and δα⊥  of photoinduced
absorption may be related to the susceptibility tensor 
in the excited state of nano-(CH)x:

(4)

where the pump polarization is directed along the
Z axis and the pump and probe beams propagate along
the Y axis. We assume that the polarizability tensor has
a single component γzz in the chain-fixed system of

χ̃

δα|| Imχ̃ZZ∝ , δα⊥ Imχ̃XX,∝
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coordinates. Let us also assume that the excited-state 
tensor is diagonal in this coordinate frame. Then, after
averaging over the isotropically oriented polymer
chains, one obtains the following expressions in the
laboratory frame XYZ:

(5)

Note that neglect of the possible excitation-induced
rotation of the polarizability tensor of a polymer chain
is quite justified. Indeed, if the principal axes of the
polarizability tensor γ turn through some angle α upon
excitation, then, after angular averaging, this effect will
result in the depolarization signal ~α2 for α ! π rather
than in the experimentally observed polarization rota-
tion of the probe beam. Therefore, Eqs. (3)–(5) can be
used to obtain the relation between the measured
parameter ξ of photoinduced dichroism and the param-
eter  characterizing the ratio of the transverse and
longitudinal absorption coefficients for the trans-(CH)x

chain in the photoinduced state:

(6)

It is known that long π-conjugated polymer chains
have a strongly anisotropic polarizability tensor γ char-
acterizing the dipolar transition |1Ag〉   |1Bu〉  from
the ground state with µ ! 1. In particular, the high
anisotropy of nano-(CH)x is evident from the results of
previous electroabsorption spectroscopy experiments
[13, 14]. One usually associates such a strong anisot-
ropy with the delocalization of π electrons over the
polymer chain. Indeed, the π-electron motion trans-
verse to the chains is strongly hampered in (CH)x ,
because the distances between the chains are ≈4 Å,
while between the carbon atoms in a chain, they are
≈1.4 Å. At the same time, the polarization experiments
performed in this work are evidence that the absorption
anisotropy in the long-lived photoinduced |2Ag〉  state is
tangibly smaller (  . 0.6) than in the ground |1Ag〉

γ̃

χ̃ZZ 3γ̃zz γ̃xx γ̃yy+ +( )/15,∝

χ̃XX γ̃zz 2γ̃xx 2γ̃yy+ +( )/15.∝

µ̃

µ̃ Im γ̃xx γ̃yy+( )
2Imγ̃zz

--------------------------------
1 ξ–

1 1.5ξ+
-------------------- . 0.6.= =
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state (µ ! 1). Note that the isotropic polarizability cor-
responds to  = 1. It is reasonable to explain the weak
anisotropy of the |2Ag〉  state by the fact that the degree
of localization of π electrons in this state of the polymer
chain is appreciably higher than in the ground state.
This inference is consistent with the results of calcula-
tions of the chain geometry in trans-(CH)x using the
models of the Su–Schrieffer–Heeger–Hubbard type,
which suggest (see, e.g., [15]) that the low-lying
excited states of the trans-(CH)x chain are character-
ized by strong local lattice distortions caused by a
change in the alternation of the C=C and C–C bond
lengths. However, the typical size of the region of local
distortion given by these models is on the order of
10−20 C–C bond lengths. If one assumes that the range
of local distortion of the trans-(CH)x chain defines the
localization range for π electrons in the excited state,
then our experimental data give evidence for a consid-
erably higher degree of localization, likely, within a
few C–C bond lengths.

In summary, the photoinduced polarimetry method
has been used to observe a weak dichroism for the opti-
cal transitions from the long-lived photoinduced states
of nano-trans-(CH)x. According to the suggested inter-
pretation, the observed dichroism is caused by a con-
siderably weaker delocalization of π electrons over the
conjugated chain in the photoinduced state, as com-
pared to the ground state.

We thank N.I. Zheludev, N.V. Chigarev, and
I.V. Golovnin for the discussion of results of the polar-
ization experiments. This work was supported by the
Russian Foundation for Basic Research, project no. 99-
02-17785.
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Tungsten specimens subjected to intense plastic strains up to the true logarithmic deformation of e = 7 were
studied. Transmission electron microscopy revealed a decrease in the mean size of crystal grains down to
100 nm. The field ion- and field electron-emission studies revealed considerable distinctions between the
energy distributions for electrons in submicron-grained tungsten and in a coarse-grained metal. © 2000 MAIK
“Nauka/Interperiodica”.

PACS numbers: 79.70.+q
In recent years, considerable interest has been
attracted to ultrafine-grained materials, which include
nanocrystalline materials with a mean size of crystal
grains of about 10 nm and submicron-grained (SMG)
materials with a mean grain size of about 100 nm (both
these types are sometimes referred to as nanocrystal-
line) [1–4]. The interest is due to the fact that the phys-
ical properties of these materials noticeably differ from
those of conventional coarse-grained materials. This
opens up new possibilities for obtaining materials with
prescribed and even record properties. An important
role in the formation of the unusual properties of
ultrafine-grained materials is played by the high con-
tent of grain boundaries in the material volume and by
the specific nonequilibrium state of these boundaries
[5]. However, the physical nature of the unusual behav-
ior of such materials is still not fully understood. To
solve this problem, it seems expedient to study the elec-
tronic structure of these materials. At the same time,
such studies are of interest by themselves. The changes
observed in the physical properties of nanocrystalline
and SMG materials allow one to expect that their elec-
tronic structure would also exhibit some specific fea-
tures.

In our previous study [6], we used the method of
field electron spectroscopy to study an SMG metal
(nickel). We observed qualitative and quantitative
changes that occurred in the electron energy distribu-
tions as a result of the formation of the SMG structure
in this metal. Two types of distributions were revealed
for different parts of the emitting surface of the tip.
However, analysis of the results of this study was hin-
dered by the lack of experimental data as to where in
the microstructure (from the grain bulk or from the
vicinity of the grain boundaries) the energy spectra
were obtained.
0021-3640/00/7205- $20.00 © 20257
Ultrafine-grained materials are produced by powder
techniques, ball grinding, fast cooling of the melt, and
by applying heavy plastic strain. The last method [7, 8]
provides SMG specimens without pores and impurities.
Such specimens are most suitable for studying the
physical nature of ultrafine-grained materials.

In the study described in this paper, we obtained
SMG metal specimens by the method of intense plastic
strains and studied the microstructure and electronic
structure of this metal by transmission electron micros-
copy and by the methods of field ion and field electron
emissions.

The material selected for the study was a refractory
metal suitable for emission studies, namely, tungsten
(99.99% pure). The SMG structure of the specimens
was obtained by subjecting them to intense plastic tor-
sional strains under quasistatic pressure in a Bridgman
anvil setup until the true logarithmic deformation of
e = 7 was achieved. To study the microstructure of the
SMG specimens, we used a JEM-2000EX transmission
electron microscope [9].

Specimens intended for microstructural studies in a
field ion microscope were prepared as SMG tungsten
needle emitters by electrochemical etching. The curva-
ture radius of the tip of such a needle was ~30–50 nm.
The needle was welded to a nickel arc. The field ion
microscope was supplied with a microchannel ion–
electron converter, which increased the brightness of
micrographs by a factor of 104. The cooling agent was
liquid nitrogen (T = 78 K), and the imaging gas was
spectrally pure neon.

The field emitters approved for the field emission
studies had tips with an atomically smooth surface
close to a hemisphere, which was prepared in situ by
field evaporation of surface atoms. The controlled elim-
000 MAIK “Nauka/Interperiodica”
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ination of atomic layers from the specimen surface con-
tinued until an intercrystalline boundary appeared in
the field ion image. The resulting tip with the grain
boundary in the emitting area was used as a cathode in
the field electron spectrometer to study the electronic
structure of the material. Experimental studies were
performed in high vacuum (<10–8 Pa). The spectrome-
ter contained a field-emission microscope for continu-
ous observation of the emission pattern and a disper-
sion electrostatic energy analyzer with a resolution of
30 meV or higher [10]. The emission current at the ana-
lyzer output was recorded by a secondary-electron mul-
tiplier operating in the counting mode. The selection of
the emission direction and the tuning to the optical axis
of the energy analyzer was performed by a special-pur-
pose manipulator. The size of the probing area of the tip
surface was limited by the dimensions of the opening in
the screen anode and was about 10 nm. The measure-
ments and the data processing were controlled by using
original software and a PC interfaced to a CAMAC sys-
tem. Immediately before the measurements, the tip was
cleaned by the field-desorption method.

To perform a comparative analysis, we studied the
tip after it was annealed in situ at a temperature near
800°C for 20 min by passing a current through the
nickel arc.

As a result of the strain treatment of tungsten, we
obtained SMG specimens with a homogeneous granu-
lar structure characterized by a mean grain size of about

1

2

Fig. 1. Field ion image of the surface of SMG tungsten (V =
12.6 kV) with a grain boundary (indicated by arrows). Cir-
cles 1 and 2 indicate the surface areas corresponding to the
distributions of emitted electrons in the total energy, which
are obtained with the field electron spectrometer and shown
in Figs. 2a and 2b.
100 nm [9]. This microstructure was retained in the tips
made from SMG tungsten by electrochemical etching.

Figure 1 shows the field ion image of the surface of
SMG tungsten with a grain boundary. Such a micro-
graph of the surface was obtained as a result of evapo-
ration of about 106 atomic layers relative to the {110}
face, and the atomic structure of intercrystalline bound-
aries was studied in the course of eliminating 43 atomic
layers. For the subsequent field-emission studies, we
selected a high-angle boundary (indicated by arrows in
Fig. 1). The analysis of the boundary structure in the
volume by means of controlled sequential elimination
of surface atoms showed that the crystal structure of
this boundary differed from the structure of grain
boundaries observed in tungsten not subjected to
intense plastic strains. According to our estimates made
from the field ion images of the surface, the thickness
of the boundary region (the boundary width) does not
exceed 0.6–0.8 nm. In undeformed tungsten, the
boundary width is 0.3–0.4 nm.

At the next step of our studies, the atomically
smooth surface formed for the emitter tip in the field
ion microscope was studied in the field electron spec-
trometer. The energy distributions of field-emission
electrons were measured for different areas of the emit-
ting surface of the tip while monitoring the position of
each area by the emission image. Although the field
electron image visually represented a micrograph
whose resolution was an order of magnitude lower than
that of the field ion image, the comparison of these two
emission images provided the possibility to uniquely
identify the microstructure of the areas from which the
energy distributions of electrons were obtained. The
distributions were measured for 13 areas of the tip by
moving the cathode tip in two mutually perpendicular
directions with the help of the manipulator.

Two characteristic types of energy distributions
were observed for the distribution of field-emission
electrons in the total energy, these types being deter-
mined by the choice of the emission area on the cathode
surface. The spectra obtained from an area containing
the grain boundary (Fig. 2a) exhibit an additional max-
imum in the low-energy region, and this maximum
grows with increasing emission voltage.

For the areas that lie away from the grain boundary,
the distributions are similar in form to the classical dis-
tribution (Fig. 2b). However, the full width at half-
height of the spectrum obtained in our experiments siz-
ably (by ~0.4 eV) exceeds the corresponding value for
the classical spectrum [11], reaching 0.58–0.64 eV.

As shown in our previous publications [3, 4], the
annealing of SMG specimens leads to recovery of their
original physical properties. This recovery correlates
with the restoration of the microstructure. An in-situ
annealing of the tip at a temperature of about 800°C for
20 min resulted in a partial recovery of the energy dis-
tribution of the emitted electrons (Fig. 3). In our mea-
surements, we observed only one-peak spectra, and,
JETP LETTERS      Vol. 72      No. 5      2000
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Fig. 2. Distributions of emitted electrons in the total energy at different emission voltages for two areas of emission imaging: (a) area
1 (Fig. 1) containing a grain boundary and (b) area 2 (Fig. 1) lying away from the grain boundary.
after annealing, their full width at half-height decreased
to 0.45–0.60 eV.

The measurements of the aforementioned energy
distributions with a time lag (30 min) and the same
emission voltage did not lead to any changes in the
form of the distributions.

Thus, significant differences are revealed between
the energy characteristics of electrons emitted from
SMG metal and those of electrons emitted from coarse-
grained metal. These differences can be caused by the
specific features of the microstructure, in particular, by
the increased content of grain boundaries in the mate-
rial structure and by the specific nonequilibrium state of
these boundaries. In our previous publications [12–14],
it was shown that these boundaries have an effective
physical width of about 10 nm, which greatly exceeds
the crystallographic width of the grain boundaries, and

Fig. 3. Distributions of emitted electrons in the total energy
at different field emission voltages for a tip annealed at
800°C in vacuum.
JETP LETTERS      Vol. 72      No. 5      2000
the atoms within this width are characterized by a lower
Debye temperature and a higher energy [4].
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The development of mechanical instability of a neutral fluid film (liquid helium or hydrogen) under inversion
conditions (it does not lie on a solid substrate but hangs from a ceiling) is discussed. Critical parameters of such
an instability and the character of surface reconstruction under the action of van der Waals forces, bubble pres-
sure, and gravitational forces are determined. The interrelation with the well-known Frenkel problem of a drop
on a solid substrate is pointed out. An electrostatic mechanism is proposed for the stimulation of instability of
a thin helium film. This mechanism is promising for the problem of superfluid helium leakage. © 2000 MAIK
“Nauka/Interperiodica”.

PACS numbers: 68.45.Kg; 67.70.+n
A fluid film hanging from a solid ceiling (inversed
film) belongs to the interesting neutral two-dimen-
sional systems demonstrating mechanical instability.
Such film can be formed in a variety of ways. The most
popular of them is condensation of a given portion of
gas on the cooled walls of a closed reservoir, in partic-
ular, on its ceiling. This program was implemented for
cryogenic fluids in [1]. Precise control of the admitted
gas volume allows the thickness d of a film on the ceil-
ing to be varied over a wide range, starting from
micrometers.

A purely gravitational behavior of an inversed film
is absolutely unstable. In the presence of the van der
Waals forces, the mechanical equilibrium of a homoge-
neous film becomes possible in a finite range of its
thicknesses. As the thickness increases, mechanical sta-
bility is lost in the vicinity of some critical value d*. As
in other known cases (e.g., in the problem of a charged
thin fluid film [2–4]), this process is developed prima-
rily for small wave numbers.

By analogy with the problem of a massive fluid, one
may anticipate that there is a certain inhomogeneous
(reconstructed) state of a film in the supercritical region
where it is attached to the ceiling by a combination of
forces, including bubble pressure. However, the sce-
nario of reconstruction of an inversed film is as yet
unclear. Whereas the observed periodic reconstruction
of a massive fluid is mainly associated with the instabil-
ity of finite wave numbers in the vicinity of the so-
called capillary length [5–7], there are no such guiding
arguments for films (the long-wavelength perturbations
are unstable).

A variant of the stable homogeneous state of a fluid
under inversion conditions was suggested in the well-
known work by Frenkel [8], where the properties of
drops on a solid surface tilted at an arbitrary angle to
0021-3640/00/7205- $20.00 © 20260
the horizon were discussed. For both incomplete and
complete wettings, the drop hangs from a solid ceiling
(the gravitational force detaches fluid from the sub-
strate) to achieve the desired inhomogeneous state.
However, the statement of the problem in [8] excluded
the limiting transition to a homogeneous fluid film,
because the van der Waals forces were not taken into
account and, hence, the problem of reconstruction did
not arise.

In this work, the properties of a neutral liquid
helium (hydrogen) film under inversion conditions are
considered with the aim of determining the criterion for
its stability and elucidating the reconstruction details.

1. Let us first consider a flat thin fluid film of thick-
ness d condensed on a solid ceiling. The equilibrium
mechanical properties of the film are determined by
two factors: the attraction to the ceiling by the van der
Waals forces, which are capable of holding the film on
a solid substrate in the flat state, and the gravitation
responsible for the possible film instability.

In the standard geometry (a film on a solid sub-
strate), the van der Waals pressure, together with grav-
itation, produces a monotonic potential

which holds atoms of the fluid near the substrate and
has a positive derivative ∂P/∂d > 0. In this expression,
ρ is the volume density of the fluid, g is the acceleration
of gravity, and f is the van der Waals interaction con-
stant (the retardation effects are omitted).

If the f constant has the opposite sign (a film on a
ceiling), the combination

P ρgd f /d3,–=

P ρgd f /d3+=
000 MAIK “Nauka/Interperiodica”



        

INSTABILITY AND RECONSTRUCTION OF A THIN FLUID FILM 261

                                                                              
becomes nonmonotonic and passes through a maxi-
mum at the point d*:

(1)

If d > d*, the van der Waals forces are insufficient
for holding a flat inversed film on the ceiling, so that the
problem becomes unstable. However, if a film with d >
d* ceases to be flat,

(2)

(2L are the horizontal dimensions of the film), one can
expect that mechanical equilibrium persists in some
range of the δ values, where

(3)

This situation is possible because the force balance in
this case includes bubble pressure, which also stabilizes
the film shape d(x) at d > d*.

It should be noted that all types of fluid films on the
ceiling are unstable at nonzero temperatures T ≠ 0.
Nevertheless, if T ! To, where To is the boiling temper-
ature of a given fluid, one may speak about the metasta-
ble (existing for a finite but rather long time) mechani-
cal equilibrium or its absence in a liquid layer with
δ > 0. Similar arguments were used in [8] when stating
the problem of a drop on a tilted substrate.

The inhomogeneous part of the deformation ξ(x)
obeys the equation

(4)

where α is the surface tension and the z axis is aligned
with the direction of the gravitational force. The term
f /d3 is set off from const for the sake of convenience.
The limitation (ξ')2 < 1 is not crucial and is used below
to simplify the calculations. In addition, it will be
shown that the domain of δ > 1 values where the
approximation of small gradients applies is sufficient
for making qualitative conclusions about the problem
of interest.

In the linear approximation ξ/d ! 1, Eq. (4) reduces
to

(5)

The behavior of Eq. (5) depends on the sign of combi-
nation γ, indicating once more that there is a certain
critical thickness d*, as defined in Eq. (1).

In the limit γ  1, Eq. (5) transforms to the Fren-
kel problem [8]. The van der Waals forces drop out of
this formalism [at f  0, the constant part d automat-
ically drops out of the d(x) definition in Eq. (2)]. The
influence of the substrate on the properties of a fluid

∂P/∂d |d*
0, d*

4 3 f /ρg.= =

d x( ) d ξ x( ), x( )d xd

L–

+L

∫+ 2Ld= =

δ d d*–( )/d*.=

αξ'' ρgξ f

d ξ+( )3
------------------- f

d3
-----–+ + const, ξ'( )2 1,<=

a2ξ'' γξ+  = a2λ , γ = 1 3 f /ρgd4, a2–  = α /ρg.
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drop was taken into account in [8] through the bound-
ary conditions (by specifying wetting angle θ)

(6)

where ±l is the point at which the drop profile contacts
the substrate.

For a hanging drop with zero wetting angle, one has

(7)

Here, S is the drop volume per unit length. The αλ  com-
bination has a meaning of pressure in the drop.

It is also instructive to introduce the energy W of the
Frenkel drop. Using Eq. (7), one has

(8)

where S is given by Eq. (6). The negative sign of energy
W in Eq. (8) needs comments. Let us begin with nor-
malization (6) signifying that the whole fluid mass is
assembled as a single drop. However, problem (5), (6)
allows an alternative setting: the fluid volume may be
distributed among several (for simplicity, identical)
drops. Let the number of these drops be equal to N,
each having a mass of S/N. The total energy W* of this
complex is

(8a)

If energies (8) and (8a) are positive, the drops will split
up at a fixed S to form, in the limit, a homogeneous fluid
film. Such behavior is typical of drops with zero wet-
ting angle on a solid substrate. The same conclusion
was also drawn in [8]. However, in the inversion case,
drop splitting and the formation of a homogeneous film
is unnatural (a homogeneous inversed film of macro-
scopic thickness is absolutely unstable). There is only
one way to overcome this paradox: the energies W in
Eq. (8) and W* in Eq. (8a) should be negative (relative
to the corresponding energies of a drop on a substrate)
in the inversion case, which is stated in Eq. (8). Then,
according to Eq. (8a), it is energetically advantageous
for the Frenkel drops to coalesce instead of splitting;
normalization per drop (6) becomes justified, and the
situation becomes quite pictorial: in the problem of
transformation of N drops with a fixed S into a single
drop, the latter has the “lowest” center of gravity with
respect to the ceiling.

ξ l±( ) 0, ξ' l±( ) θ, ξ x( ) xd

l–

+l

∫tan S,= = =

ξ x( ) λa2 2A x/a( ),cos+=

l πa, 2A λa2, 2λa2l S.= = =

W
α
2
--- ∇ ξ( )2 ξ2/a2–[ ] xd

πa–

+πa

∫– α
2πa3
------------– S2,= =

W* NWN , WN
α

2πa3
------------ S/N( )2,–= =

W* N 1– , W* W .<∝
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2. Let us now turn to the reconstruction problem. In
the z(x) = d(x)/d* terms, the first integral of Eq. (4) is

(9)

The condition for periodicity of the z(x) function,

, (10)

relates the extreme points of the inhomogeneous drop
profile to each other. For given Λ and zmax, Eq. (10) is
algebraic (of third degree) with respect to zmin. An anal-
ysis of the roots of this equation, in conjunction with
requirement (2), leads to the conclusion that the solito-
nic solution is impossible [formally, such a solution
does not contradict Eq. (10) and corresponds to an infi-
nite period]. Leaving out the cumbersome general
details of this proof, note that the possible solitonic
solution in the limit δ ! 1 gives

(11)

and should describe a single hill of height 1 + ξmax > 0
gradually transforming into asymptotic form (11) upon
moving away from the hill top. This is precisely the
solution which we wish to find for the reconstruction
problem with the aim of substantiating the boundary
conditions (6) from [8] for the hanging drop. However,
solitonic solution (11) contradicts normalization
requirement (2) for an arbitrary length L. This statement
is also valid in the general case of arbitrary δ values.

The following alternative occurs in the absence of
solitons: either the film reconstruction has a periodic
character or it is deformed in an aperiodic (not solito-
nic) fashion. The first assumption is not valid, at least
for a massive film, where the reconstruction results in a
system of Frenkel drops (7). The coalescence of a
group of individual drops is energetically favorable
[see Eq. (8a)] but is not necessary. However, if the
drops are connected by liquid bridges, the situation
changes. The energetic factors and the inevitable fluc-
tuations of drop sizes lead to hydrodynamic growth of
large drops at the sacrifice of their smaller neighbors.
This process develops relatively slowly (according to
the throughput of narrow van der Waals bridges
between the drops), so that the use of the term “drop” is
especially convenient at the final stages of coalescence.
With time, all intermediate drops are “eaten up” by the
one which initially had the largest size. The fluid redis-
tribution among different channels resembles the prob-
lem of coalescence in a system of pores exchanging
vacancies [9].

Considering that soliton (11) cannot appear and tak-
ing into account qualitative considerations concerning
the instability of a periodic system of drops, it remains
to assume that the deformation of an unstable inverted

z'( )2 p z( ) const,+=

p z( ) κ2d*
2 z2– 1/ 3z2( ) Λz+ +[ ] ,=

Λ a2λ /d*, κ 2 a 2– .= =

zmax zmin+( ) zmax zmin+( )/3zmax
2 zmin

2 Λ–+ 0=

z x( ) 1 ξ x( ), 2ξmin+ ξmax–= =
fluid film evolves up to the formation of a single hill
(forced soliton) with profile z(x) and characteristic
points at zmin and zmax determined by the expressions

(12)

Here, p(z) is defined in Eq. (9), zmax and zmin are related
by Eq. (10), and parameter Λ is defined by require-
ment (2).

The conclusion about the formation of a single hill
(12) in the course of the reconstruction of an inverted
fluid film is qualitatively confirmed by experiment [1].

Some analytical estimates of the characteristic
parameters of the problem can be obtained for rela-
tively small L values such that L ≥ a and δ @ 1. This can
be done using perturbation theory with δ–1 as a small
parameter.

In zero approximation, the fluid is mainly placed in
the gravitational part of the deformed film (i.e., in the
region where the thickness d > d*), where the Frenkel

profile z(x) (7) is shifted from zero by . Therefore,

the definitions of  and Λo are straightforward:

(13)

The next step consists in the estimation of the 
value with the help of Eq. (10). A qualitative distinction
between the Frenkel problem and a more consistent
theory with the van der Waals forces becomes evident

at this step. With the known  and Λo values [see

Eq. (13)] and taking into account that  ! 1, one has
from Eq. (10)

(14)

With this definition of , it is easy to continue the
refining and estimate the domain of applicability of the
suggested perturbation theory. The theory is valid if

(15)

Requirement (15) is readily fulfilled for L > πa if

 ! , i.e., if δ @ 1.

Let us discuss the assumption ξ' < 1 from Eq. 4. This
requirement is fulfilled if

(16)

ξd

p ξ( ) p zmax( )–
-------------------------------------

zmax

z ζ( )

∫ ζ , ζ x
d*
------,= =

ξd

p ξ( ) p zmax( )–
-------------------------------------

zmax

zmin

∫ L
d*
------.=

zmin
o

zmax
o

zmax
o Λo zmin

o , Λo– 2 δ 1+( ), δ @ 1.= =

zmin
o

zmax
o

zmin
o

zmin
o( )3

 . 1/3zmax
o or dmin

o( )3
 . d*

4 /3dmax
o .
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o

L πa–( )dmin
o

 ! πadmax
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o

ξmax πa or Ld* δ 1+( ) π2a2,<<
JETP LETTERS      Vol. 72      No. 5      2000



INSTABILITY AND RECONSTRUCTION OF A THIN FLUID FILM 263
where ξ(x) is defined by Eq. (7). If d* ! a or, which is
the same, κd* ! 1, the domain with δ > 1, where con-
dition (16) and, hence, Eq. (4) holds, is extensive
enough. For helium, κ2 . 397 cm–2. As to the van der
Waals constant, its typical value for glass substrates is
f . 10–14 erg. As a result, the d* value in Eq. (1) is d* .

1.2 × 10–4 cm and the combination κd* . 2.5 × 10–3;
i.e., the smallness of κd* ! 1, necessary for Eq. (16),
holds.

To conclude, the gravitational instability of an
inverted fluid film and its possible stationary recon-
struction are discussed in this work. It is shown (in the
one-dimensional approximation) that reconstruction is
possible and is aperiodic.

Note also that the stability threshold of an inverted
film can be shifted by an electric field, which can easily
be introduced into the problem (a film between capaci-
tor plates). The elaboration of this scenario may be
helpful in preventing the leakage of superfluid helium
through the walls of a Dewar vessel. The results
[10−17] on the dynamics of a gravitationally unstable
liquid layer may be helpful in studying this problem.

This work was supported by the Russian Foundation
for Basic Research (project no. 98-02-16640) and the
INTAS Network (grant no. 97-1643).
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of Inelastic Tunneling
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It is found that single-electron current oscillations in the drain–gate characteristics of a single-electron transistor
fabricated by the step-edge cutoff process, as compared to a conventional single-electron transistor, are damped
several times slower and do not change their phase by π as the source–drain voltage increases. This is explained
by the strong nonlinearity of the current–voltage characteristics of tunnel junctions, which is caused by the
inelastic character of tunneling. © 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 73.23.Hk; 73.40.Gk; 73.40.Rw
Single-electron effects were discovered for tunnel
junctions with a direct elastic character of tunneling
[1−3]. The Coulomb blockade effect in this case is well
understood, and, for example, the current–voltage char-
acteristics of a structure with two sequentially con-
nected tunnel junctions can be calculated numerically.
At the same time, it follows from the orthodox theory
of Coulomb blockade that single-electron effects exist
in structures with any conduction mechanism providing
a sufficiently high junction resistance (@h/e2 ≈ 26 kΩ)
[1, 4]. Nevertheless, Coulomb blockade has not been
studied beyond the conditions of elastic tunneling. In
this work, the case of inelastic tunneling in tunnel junc-
tions of a single-electron transistor has been experi-
mentally realized and analyzed.

As the thickness of the insulator interlayer (Si) in a
tunnel junction of small area (S ≤ µm2) increased from
1.3 to 8.3 nm, the following succession of tunneling
regimes was observed in [5]: (i) direct tunneling,
(ii) resonance and inelastic resonance tunneling, and
(iii) a regime resulting in a power law of the corre-
sponding current–voltage characteristic. Based on the
theory of inelastic tunneling developed in [6], the last
regime can be qualified with confidence as inelastic
tunneling through channels containing pairs of local-
ized states. At a certain low temperature, inelastic tun-
neling is completely suppressed and gives way to elas-
tic (direct and resonance) tunneling. However, when a
source–drain voltage is applied, the inelastic channels
again become effective because of the excitation of car-
riers by the field. In this case, two conduction channels,
elastic and inelastic, will coexist in the sample.
0021-3640/00/7205- $20.00 © 0264
Lateral tunnel junctions in a Ti nanowire were fab-
ricated by the through oxidation of thin sites that form
when the nanowire crosses a step previously etched in
the dielectric Si3N4 substrate (Fig. 1) [7]. This is one
variety of the step-edge cutoff method. The degree of
oxidation under atmospheric conditions was controlled
by the thickness of a thin (4–20 nm) high-resistance
Ge film deposited over Ti in a single vacuum cycle. The
nanowire was about 100 nm in width and 4−9 nm in
thickness; it crossed two steps obtained by plasma etch-
ing of Si3N4 through a metal mask to a depth of about
15 nm. The steps were spaced at about 100 nm and
formed a Coulomb island (about 100 × 100 nm) in the
nanowire. The side gate was arranged at a distance of
150 nm from the Coulomb island. The starting metal
Ti–Ge films had a resistance of 0.6−1 kΩ/h, which
increased by 10–20% upon cooling the sample down to
4.2 K. Simultaneously with the evaporation of the step-
crossing nanowires (lift-off technique), plain nanowires
of the same sizes were deposited. This was done in
order to separate the contributions to the structure resis-
tance from the tunnel junctions themselves and from
the nanowire with leads at room temperature. The junc-
tion resistance was varied from tens of kiloohms to
hundreds of megaohms by selecting the thickness of the
Ti and Ge layers, and its value strongly depended on
temperature. The results reported in this paper were
obtained for samples with a resistance of 50–300 kΩ at
room temperature. Three samples of the 34 prepared
exhibited periodic single-electron oscillations in the
I(UG) functions of the gate voltage, which was reported
in [7, 9]. This means that the resistance of each of the
two tunnel junctions in these samples was @h/e2. This
2000 MAIK “Nauka/Interperiodica”
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is a rather rare event because of random processes
(thinning, oxidation, etc.) that participate in the forma-
tion of a tunnel junction and mesoscopic fluctuations of
the junction resistance. In samples without single-elec-
tron oscillations, either one of the tunnel junctions was
short-circuited or its resistance was less than h/e2. To
sufficient accuracy, the I−V curve of such a sample is
the characteristic of a single tunnel junction under the
condition that the sample resistance is @h/e2.

The dependence of the current on the source–drain
voltage I(USD) for single tunnel junctions at T = 4.2 K
was nonlinear at the applied voltages |USD| ≤ 40 mV.
The characteristics can be conventionally divided into
two groups: high-symmetry (we will call them
symmetric) and asymmetric (Fig. 2a, curves 1, 2,
respectively). Symmetric I−V curves predominantly
occur in low-resistance junctions with resistance R =

 ≤ 3 MΩ at T = 4.2 K, whereas
asymmetric characteristics are inherent in high-resis-
tance junctions with R ≥ 10 MΩ . The plots of the resis-
tance as a function of temperature for junctions of both
types mainly consist of regions described by the power
law R–1 ∝  T4/3 (Fig. 2b). This law is typical for inelastic
tunneling through chains containing pairs of localized
states [6]. For this conduction mechanism, the I−V
curve of a tunnel junction is described by the function
I(U) ∝  U7/3 [6] under the condition that the tunnel-junc-
tion area is sufficiently large, for which reason the con-
tributions of separate channels are averaged. In experi-
ments, one of the two branches of the I−V curve (at
USD < 0 or at USD > 0) is approximated well by a power
function with an exponent close to 7/3; for example,
curve 2 in Fig. 2a has an exponent of 2.01 at USD < 0,
whereas the opposite branch corresponds to a more
intricate dependence with a kink. With regard to the
small area of a tunnel junction, which equals the prod-
uct of the width of the Ti strip (100 nm) by the thickness
of Ti on the step slope (≈3 nm), and the fixed density of
localized states in a dielectric, it is unlikely that two
localized states in a conducting chain are energetically
close to each other. Hence, the condition |Ei – Ej | > kT,
where Ei and Ej are the energies of localized states (the
sources of localized states are the structural defects and
interfaces), is most probable at the temperature T =
4.2 K. Under these conditions, tunneling with phonon
emission, which is possible for only one of the applied
voltage polarities, becomes more energetically profit-
able [10]. For the opposite polarity of the applied volt-
age, the growth of the current through a given two-
impurity chain will be hindered. Therefore, it is likely
that the conducting chain will change with increasing
voltage, and, hence, a kink will appear in the I−V curve
[11]. The occurrence of symmetric I−V curves (Fig. 2a,
curve 1) is easily explained by the resistance RS(USD) =
const connected in series with the junction: the tangents
drawn from both ends of I−V curve 1 in Fig. 2a are par-

dI/dUSD( ) 1–
USD 0=
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allel to each other (RS = 621 kΩ at T = 4.2 K). The
weakening of the R(T) dependence with increasing
temperature for junction 1 (Fig. 2b, curve 1) can be
explained in the same way. Because R(293 K) ≈ 100 kΩ
for junction 1, it is likely that the resistance RS depends
on temperature. The resistance of the transition region
between the metal and the dielectric can serve as RS,
because the TiOx crystal is a semiconductor with a
bandgap of 0.1, 0.02, and 3 eV for x = 1, 1.5, and 2,
respectively [12]. In our opinion, the weakening of the
R(T) dependence at T  4.2 K (curves 1, 2 in Fig. 2b)
is a consequence of the suppression of inelastic tunnel-
ing with decreasing temperature. Note that the gate
functions I(UG) for two tunnel junctions whose volt–
ampere characteristics are depicted in Fig. 2a exhibit a
very weak dependence, and it may be assumed that
I(UG) = const to within 10%. The experimental results
described above suggest the conclusion that tunneling
in the fabricated tunnel junctions is of an inelastic char-
acter.

In the samples with two tunnel junctions, the I(USD)
and I(UG) curves (Fig. 3) differ significantly from the
analogous curves obtained by modeling based on the
orthodox theory of Coulomb blockade (inset in Fig. 3a,
dashed lines in Fig. 3b). The source–drain I−V curves
corresponding to the polarization charges Q0 = 0 and
Q0 = e/2 (Fig. 3a) do not cross each other at USD =
11 mV (the voltage determined by the specific set of
parameters that ensures agreement between the model
and experimental curves) as in the case of elastic tun-
neling (inset in Fig. 3a). The maxima in the drain–gate

500 nm

1

2

3

Fig. 1. Image of a single-electron transistor in a transmis-
sion electron microscope: (1) bulge at the Si3N4 surface,
(2) Ti nanowire protected by a Ge layer, and (3) gate.
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Fig. 2. (a) Two types of I–V curves occurring in single tunnel junctions demonstrated by the examples of junctions 1 and 2. (b) Resis-
tances of tunnel junctions 1 and 2 as functions of temperature (plots 2 and 2' were recorded in succession and are displaced relative
to each other as a result of switching).
current–voltage characteristics assume a sharpened shape
(compare the dashed and solid curves in Fig. 3b). Single-
electron oscillations in the current I(UG) are observed
over a wide range of source–drain voltages USD without
changing their phases by π at USD = 11 mV (Fig. 4).

Consider the effect of inelastic tunneling on Cou-
lomb blockade. In the orthodox theory of Coulomb
blockade [13], it is considered that an electron is ther-
malized after each act of tunneling. Therefore, the cases
of elastic and inelastic tunneling in this theory are not
distinguished. Note also that the presence of localized
states inside the tunneling barrier does not affect the
capacitance of the created structure and, hence, the
energy characteristics of the single-electron transistor.
An increase in the barrier penetrability with increasing
applied voltage is the most significant consequence of
inelastic tunneling that is exhibited in experiments.
From here, it follows that the characteristics of a single-
electron transistor under conditions of inelastic tunnel-
ing can be modeled within the orthodox theory by
introducing USD-dependent resistances of tunnel junc-

tions. Power laws 〈Gn〉  =  ∝  Un – 2/(n + 1), where n
is the number of localized electronic states in the chain
and U is the voltage applied across the junction, are
typical of inelastic tunneling [6]. The current I in a
single-electron transistor at a fixed USD is summed over
several states of the Coulomb island, which are deter-
mined by the number of electrons on the island. There-
fore, it is reasonable to use the gain in the electron
energy ∆E upon tunneling through each state as eU.
This method was previously used for single-electron tran-
sistors with nonlinear I−V curves of the tunnel junctions
[14]. We described the junction resistances Ri (i = 1, 2)

by the function Ri = R0i/[1 + (∆Ei/∆E0i ]. Here,
∆Ei = 0 if tunneling is energetically unprofitable. The
two addends in the denominator reflect the two compo-

Rn
1–〈 〉

)
γi
nents of the current through the junction: elastic and
inelastic. The physical meaning of ∆E0i is that the elas-
tic channel dominates at voltages lower than ∆E0i/e and
the inelastic channel dominates at voltages higher than
∆E0i/e. The results of modeling are presented in Fig. 3
by solid lines and demonstrate a good agreement with
experiment. The experimental curves in Fig. 4 cannot
be modeled with the same high accuracy as those in
Fig. 3b, because the I(USD) characteristics of the junc-
tions in this sample exhibit strong mesoscopic distor-
tions that are not described by a simple power law. The
periods of single-electron oscillations in Figs. 3b and 4
differ by a factor of 1.5, probably because of the scatter
in the lithographic width of the nanowires from 80 to
150 nm.

The phase of single-electron oscillations in the
I(UG) plot in a conventional single-electron transistor
differs by π on different sides of the crossing point of
the two I(USD) current–voltage characteristics corre-
sponding to the closed and open states of a single-elec-
tron transistor. The crossing of the I−V curves at USD =
11 mV (inset in Fig. 3a) is due to the fact that conduc-
tion proceeds through one of the two equally possible
states of the Coulomb island in the open state and
through two of the three possible states in the closed
state of a single-electron transistor. As USD grows, the
total number of states involved in the conduction pro-
cess increases in both closed and open states of a sin-
gle-electron transistor; therefore, the difference
between one state and another becomes less and less
significant, and single-electron current oscillations are
damped. The voltage dependence of the tunnel junction
resistance results in narrowing of the distribution of the
probability pn for n excessive electrons to exist on the
Coulomb island. Thus, in the closed state of a single-
electron transistor for USD = 11 mV and for the other
parameters indicated in the caption to Fig. 3, the prob-
abilities of the states n = –1, 0, and 1 in the case of R1 =
JETP LETTERS      Vol. 72      No. 5      2000
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Fig. 3. Experimental (points) and calculated (solid lines) I–V curves of a single-electron transistor under conditions of inelastic tun-
neling with parameters T = 4.2 K, R01 = 5 MΩ , R02 = 3.3 MΩ , C1 = C2 = 11 aF, Cg = 0.0105 aF, ∆E01 = ∆E02 = 2.3 meV, and γ1 =
γ2 = 2. (a) Source–drain characteristics; occasional switching of the polarization charge from Q0 = 0 to Q0 = e/2 occurred for the
experimental volt–ampere characteristic (white points) at USD > 0; model curves are presented for Q0 = 0 and Q0 = e/2. (b) Gate
characteristics; source–drain voltages are shown in the figure, and Q0 = –0.21e. Model I–V curves of a single-electron transistor with
elastic tunneling (R1, R2 = const) are shown in the inset in Fig. 2a and in dashed lines in Fig. 2b at the same parameters.
R2 = const are 1/7, 5/7, and 1/7, respectively. In the case
of R1 = R2 = R(∆E), these probabilities are 1/50, 48/50,
and 1/50, respectively. It is evident that one state, n = 0,
plays the main role in the latter case, and the addition
of the second current channel (through the state n = –1
or n = 1) is insignificant. Therefore, the intersection of
the I(USD) curves measured at various UG disappears at
USD = 11 mV, and the phase of single-electron oscilla-
tions in the I(UG) plot becomes independent of USD. In
addition, the narrowing of the distribution pn prevents
equalization of the currents through the open and
closed states of a single-electron transistor upon USD

growth due to an increase in the total number of current
channels (n) in each of the two states of a single-elec-

Fig. 4. single-electron oscillations in experimental I(UG)
plots depicted over a wide range of source–drain voltages.
The junction capacitances determined from the size of the
Coulomb gap in the I(USD) plots are C1 = C2 = 10 aF [7].
JETP LETTERS      Vol. 72      No. 5      2000
tron transistor. This fact leads to deeper penetration of
single-electron oscillations into the region of high USD.

Thus, inelastic tunneling qualitatively changes the
manifestation of Coulomb blockade in a single-elec-
tron transistor under the condition that the resistances
of both tunnel junctions are close to each other (R01 ≈
R02). The region of the occurrence of single-electron
oscillations extends several times in the source–drain
voltage, and the oscillations change their shape. Any
other nonlinearities of tunnel junctions, for example,
nonlinearities due to the low height of the tunneling
barrier, will lead to the same result if they provide a sig-
nificant increase in the current through the junction at
voltages of about a half-width of the Coulomb gap.

The authors are grateful to Professors Z.D. Kvon
and A.I. Yakimov for useful discussions of this work.

This work was supported by the Siberian Division
of the Russian Academy of Sciences as a youth
research grant; by the scientific program “Physics of
Solid-State Nanostructures,” project no. 98-1102; by
the program “Universities of Russia—Basic Research,”
project no. 1994; and by the scientific program “Micro-
and Nanoelectronics,” project no. 02.04.5.1.

REFERENCES

1. D. V. Averin and K. K. Likharev, Zh. Éksp. Teor. Fiz. 90,
733 (1986) [Sov. Phys. JETP 63, 427 (1986)].

2. L. S. Kuz’min and K. K. Likharev, Pis’ma Zh. Éksp.
Teor. Fiz. 45, 389 (1987) [JETP Lett. 45, 495 (1987)].

3. T. A. Fulton and G. J. Dolan, Phys. Rev. Lett. 59, 109
(1987).

4. K. K. Likharev, NATO ASI Ser., Ser. B 251, 371 (1991).
5. M. Naito and M. R. Beasley, Phys. Rev. B 35, 2548

(1987).



268 LITVIN et al.
6. L. I. Glazman and K. A. Matveev, Zh. Éksp. Teor. Fiz.
94, 332 (1988) [Sov. Phys. JETP 67, 1276 (1988)].

7. L. V. Litvin, V. A. Kolosanov, K. P. Mogil’nikov, et al.,
Mikroélektronika 29, 189 (2000).

8. S. Altmeyer, B. Spangenberg, and H. Kurz, Appl. Phys.
Lett. 67, 569 (1995).

9. Z. D. Kvon, L. V. Litvin, V. A. Tkachenko, and
A. L. Aseev, Usp. Fiz. Nauk 169, 471 (1999).

10. B. I. Shklovskiœ, Fiz. Tekh. Poluprovodn. (Leningrad)
10, 1440 (1976) [Sov. Phys. Semicond. 10, 855 (1976)].
11. A. O. Orlov and A. K. Savchenko, Pis’ma Zh. Éksp.
Teor. Fiz. 47, 393 (1988) [JETP Lett. 47, 470 (1988)].

12. Physical Constants: Handbook, Ed. by I. S. Grigor’ev
and E. Z. Meilikhova (Énergoizdat, Moscow, 1991).

13. K. K. Likharev, IBM J. Res. Dev. 32, 144 (1988).

14. A. N. Korotkov and Yu. V. Nazarov, Physica B (Amster-
dam) 173, 217 (1991).

Translated by A. Bagatur’yants
JETP LETTERS      Vol. 72      No. 5      2000



  

JETP Letters, Vol. 72, No. 5, 2000, pp. 269–273. Translated from Pis’ma v Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 72, No. 5, 2000, pp. 394–400.
Original Russian Text Copyright © 2000 by Shpatakovskaya.

                                                                                     
Orbits in Large Aluminum Clusters: Five-Pointed Stars
G. V. Shpatakovskaya

Institute of Mathematical Modeling, Russian Academy of Sciences, Miusskaya pl. 4a, Moscow, 125047 Russia
e-mail: shpat@imamod.ru

Received August 2, 2000

The distinctions in the mass spectra of large sodium NaN and aluminum AlN clusters are discussed. A semiclas-
sical method is used to describe the shell effects within a spherical jellium model. It allows one to analyze the
relative role of different classical trajectories in the formation of electronic supershells in clusters of various
sizes at zero and finite temperatures. A criterion for the hardness of the self-consistent potential is formulated.
The conjecture that the five-point-star trajectories make the main contribution to the spectral oscillations for
large soft-potential AlN (250 < N < 900) clusters is substantiated. The computational results are in agreement
with the mass spectra of the AlN clusters at T . 300 K. © 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 71.24.+q
1. The oscillations in the mass spectra of metal clus-
ters may be caused by both the shell structure of elec-
tronic spectra and the positioning of ions in lattice sites
[1]. Experiments show that the oscillations in the mass
spectra of large aluminum AlN [2–4] and sodium NaN

[5] clusters (N is the number of atoms in a cluster) differ
significantly in shape. Whereas the oscillations for
sodium proceed with beats, the aluminum clusters with
N > 250 exhibit sinusoidal behavior with a frequency
approximately twice that for sodium. The spectra of the
AlN clusters of smaller sizes represent an intricate pat-
tern without any distinct period. In the literature, the
cause of this distinction is discussed in terms of classi-
cal trajectories of electron motion in a self-consistent
potential (the number of electrons in a cluster is Ne =
wN, where w is the valence of a metal).

In [3], an attempt was undertaken to explain the
experiment by invoking a spherical jellium model and
the quasiclassical theory [6–9]. It was conjectured that,
contrary to a hard potential of NaN clusters, in which a
triangular trajectory and a square trajectory of a close
frequency dominate (the oscillations with beats result
from the interference of the relevant contributions), in
a soft potential of AlN clusters with 250 < N < 900, the
main contribution comes from a single trajectory
shaped like a five-pointed star. According to this theory,
the clusters of larger size should have triangular and,
later, square trajectories (this is confirmed by the self-
consistent computation [2] of the density of states for
Ne = 4940), leading to a change in the oscillation fre-
quency.

An alternative explanation was suggested in [4],
where the mass spectra of “cold” (T = 100 K) AlN clus-
ters were experimentally measured and analyzed over a
very wide range of N values (250 < N < 10000). An
analysis of the spectra showed that the oscillation max-
0021-3640/00/7205- $20.00 © 20269
ima, numbered sequentially by the index k (k > 25),
appeared with a constant frequency over the entire
range studied and fitted the law N . 0.0104k3, which is
readily explained by the atomic positioning in an octa-
hedral lattice. Accordingly, the cluster shape is not a
sphere but an octahedron, so that the shell filling corre-
sponds to the assembling of one of its faces. Evidently,
the spherical jellium model with uniformly distributed
ions inside the sphere is not adequate in this case.

In [10], the assumption about the dominant contri-
bution from a five-point-star orbit in the aluminum
clusters was ruled out by the quantum-mechanical cal-
culation of the density of states for Ne = 1000 electrons
in the Saxon–Woods potential.

Nevertheless, the positions of the maxima observed
in [2] for 250 < N < 430 at T = 295 K agree well with
the results of self-consistent calculations carried out in
the same work with the jellium model, while the com-
parison of the mass spectra of AlN observed at T =
110 K and T = 295 K for N < 250 reveals that the tem-
perature has an appreciable effect on the shapes of the
corresponding curves, indicating that the lattice melts
upon temperature elevation and manifesting the elec-
tronic shell structure.

Therefore, although the contribution of the ion lat-
tice to the oscillations in mass spectra likely dominates
in aluminum at low temperatures and, hence, the spher-
ical jellium model is inadequate in this temperature
range, the role of the lattice diminishes with increasing
temperature, rendering the jellium model more applica-
ble. It is assumed in this work that the electronic struc-
ture reveals itself upon melting the lattice of “hot” clus-
ters and that the melting temperature can be experimen-
tally determined from the changes in the mass spectra
at N ~ 1000. However, whereas the jellium calculations
were carried out for sodium clusters over a wide range
000 MAIK “Nauka/Interperiodica”
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of N values and for different temperatures [11], the
respective calculations for aluminum are still lacking.

In this work, this gap is filled by studying the depen-
dence of the oscillating part of the electronic free
energy of an aluminum cluster on its size and tempera-
ture, and the assumption about the dominant role of a
five-point-star orbit in the oscillations of AlN spectra at
T . 300 K is confirmed for the N numbers experimen-
tally observed in [3].

2. The semiclassical approach [12, 13] used in this
work is based on the spherical jellium model and the
extended Thomas–Fermi (ETF; see references in [14])
model, whose solution, namely, the electron density
n(r), the chemical potential µ, the self-consistent poten-
tial U(r), and the corresponding electronic free energy
F(Ne,T), are assumed to be known. The ETF model well
describes the average characteristics of a system, while
the shell effects of interest will be studied using the fol-
lowing expression for the correction to the free energy
(in atomic units) [13, 15]:

(1)

Here, the operator  = –iπT∂/∂µ and ∆Nsh(µ, 0) is
the shell correction to the number of states with ener-
gies below µ without regard for explicit temperature
dependence. In the semiclassical approximation

(2)

where summation over k and s goes from –∞ to +∞; the
prime over the sum sign indicates that the nonoscillat-
ing term with k = s = 0 is omitted; Sµλ = πνµ(λ) is the
radial action between the turning points of the electron
motion with energy µ and orbital angular momentum λ
in the potential U(r); λµ = pµ(r0)r0 is the maximum
orbital angular momentum for energy µ; r0 is the point
at which the pµ(r)r function is maximum; and pµ(r) =

.

In the semiclassical theory, the integral in Eq. (2) is
calculated by the saddle-point method and the sum of

contributions from the saddle points  has the form

(3)

∆Fsh µ'
X̂µ' T( )

X̂µ' T( )( )sinh
------------------------------∆Nsh µ' 0,( ).d

∞–

µ

∫–=

X̂µ T( )

∆Nsh µ 0,( ) ∆Nsh µ( )=

=  
2
π
--- 1–( )k s+

k
------------------ λλ 2π kνµ λ( ) sλ+( )[ ] ,sind

0

λµ

∫
k s,

'
∑

2 µ U r( )–( )

λ j

∆Nsh µ( )
2λ j

π νµ'' λ j( )
----------------------

j

∑=

×
2π kνµ λ j( ) sλ j+( ) π k s+( )– π/4+[ ]sin

k3/2
------------------------------------------------------------------------------------------------.

k s,

'∑
Here,  = ∂2νµ(λ)/  and the  value is
determined from the relationship

(4)

The prime at the sum sign in Eq. (3) indicates that only
the leading terms are taken into account in the sums
over s and k.

Differentiation of Eq. (3) with respect to µ gives the
shell correction to the density of states,1 

(5)

while integration in Eq. (1) yields the shell correction
to the free energy,

(6)

The following notations are introduced in these expres-
sions:

The derivative on the left-hand side of Eq. (4) is
equal to the ratio of the frequencies of the angular and
radial motions of a particle with energy µ and orbital

angular momentum  [16]. The requirement that this
frequency ratio be a ratio of integers is the condition for
closure of the trajectory of this motion.

Equation (5) exactly coincides with the result
obtained for the central potential in [17], where it was
derived by using the semiclassical approximation for
the Green’s function. The combination of the semiclas-
sical approach and Eq. (1) for the correction to the free
energy results in a simple expression for the directly
measurable quantities [Eq. (6)]. It turns out that only
those electron trajectories whose energies are equal to
the chemical potential of the system should be taken
into account, while the condition (4) and Eq. (1),
respectively, allow one to select the main trajectories
and correctly include the temperature effect.

Note that the analytical approach presented in this
work is much simpler and more pictorial, especially for
large complexes, than the Strutinsky method of shell

1 In the semiclassical approximation, only the rapidly varying func-
tion sin[…] should be differentiated.
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correction, which was applied to clusters in [14] and
used earlier in nuclear physics [18, 19] and which is
also based on the ETF model.

3. For a fixed saddle point , the leading contribu-
tion to the sums over k and s in Eq. (3) comes from the
minimum values k =  and s =  that form the fraction

/  in Eq. (4). Let us refer to the corresponding
smallest length trajectory as the jth orbit; then the

π  and  quantities have the meaning,
respectively, of the radial action and the time of elec-
tron movement between the turning points along the jth
orbit. Multiplying the numerator and denominator in

/  by an integer m = 1, 2, 3, …, one obtains the tra-
jectories with m periods for the movement along the jth
orbit. One can thus replace the primed sum over s and k
in Eqs. (3), (5), and (6) by the sum over m:  =

, where k = m and s = m.

For attractive potentials that are finite at the zero
coordinate, the derivative (0) = –1/2 [20]. For hard
self-consistent potentials, the derivative monotonically
increases with λ from –1/2 to (λµ) for any number of
particles. For soft potentials, the situation depends on
the system size; in small clusters, this derivative may
decrease or be a nonmonotonic function with a mini-
mum, while in large clusters it is an increasing func-
tion. Consequently, the sign of the second derivative

(0) at the zero coordinate may serve as a criterion for

the potential’s hardness: (0) > 0 for a hard potential
for any cluster size.

The difference between the hard and soft potentials
is illustrated in Fig. 1, where the behavior of the (λ)
derivative is demonstrated for sodium and aluminum
clusters containing different numbers of electrons Ne.
The chemical and self-consistent ETF potentials were
approximated by the Saxon–Woods model potential2 

(7)

with the parameters of the aluminum (V0 = 0.5319, a =

2.7, rs =  = 2.07, and µ = –0.1053) and sodium (V0 =

0.22, a = 1.4, rs =  = 3.93, and µ = –0.1015) clusters
taken from [3].

Let us consider sufficiently large aluminum clusters
with Ne > 250, for which the (λ) derivative monoton-
ically increases with λ (Fig. 1). This implies that the

2 The difference between potential (7) and the self-consistent ETF
potential is discussed in [9].

λ j
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rational fractions s/k satisfying condition (4) lie in the
range

(8)

It then immediately follows that  ≥ 1 and  ≥ 2. The

fractions with  = 1 (1/2, 1/3, 1/4, …) correspond to
linear, triangular, square, etc. orbits. The fractions of
the type n/(2n + 1), with n = 2, 3, 4, …, lie between 1/3
and 1/2 and correspond to (2n + 1)-pointed stars.

The solution /  = 1/2 always exists and corre-
sponds to an electron moving with zero orbital angular

momentum  = 0 along a linear orbit through the cen-
ter. The corresponding contribution is small for large
clusters (see [12, 13]). A circular orbit with radius r0
and maximum orbital angular momentum λµ [the con-
tribution from the upper limit of integration in Eq. (2)]
is also unimportant in this case.

One can see in Fig. 1 that, for a hard sodium potential,
there is a contribution from the triangular orbit (  = 1,

 = 3) in a cluster with Ne = 100 and, in addition, from

the square (  = 1,  = 4) and pentagonal (  = 1,  =
5) trajectories in a cluster with Ne = 1000. On this back-
ground, the contribution from the five-pointed star

/  = 2/5 to Eq. (6) is small due to the /  factor.3 

A completely different situation occurs for alumi-
num (Fig. 1). Because of the weak λ dependence of the
derivative in a soft potential, the triangular orbit
appears only in very large clusters with Ne ~ 3000,

3 This is the reason why these secondary trajectories were not dis-
cussed in [12, 13], where only hard potentials were considered.
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Fig. 1. Derivative (λ) of the radial action with respect to

the orbital angular momentum λ for hard (Na) and soft (Al)
potentials and different numbers of particles in the cluster.
Calculated using potential (7) with parameters taken
from [3].

νµ'
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while the smaller clusters, e.g., with Ne = 1000, are
dominated by an orbit shaped like a five-pointed star.
However, it is seen from a comparison of Eqs. (5) and
(6) that the dominance of this orbit in Eq. (5) for the
correction to the density of states is not as apparent as
in Eq. (6); the calculations show that the oscillation
amplitudes for the five-pointed and seven-pointed stars
differ in Eq. (5) by only a factor of 1.36, whereas the
contribution from the five-pointed star in Eq. (6) is
3.3 times greater than that from the seven-pointed star.
Because of this, it is difficult to distinguish a well-
defined period near the Fermi surface when considering
the sum over trajectories in Eq. (5) as a function of µ at
a fixed Ne = 1000. This might be the reason why the
conclusions drawn in [10] were negative.

Fig. 2. Plots of the derivative (λµ) of radial action at the

maximum orbital angular momentum vs. aluminum cluster

size , as calculated using potential (7) with different

parameters rs and a.

νµ'

Ne
1/3

Fig. 3. (a) Shell correction to the total electronic energy of

the aluminum cluster at T = 0 vs. cluster size , as cal-

culated by Eq. (6) without taking into account the triangular
trajectory. (b) Oscillations in the ion signal in the mass spec-
tra of AlN clusters [3].

Ne
1/3
4. It is seen from Eq. (8) and Fig. 1 that the cluster

sizes  for which new saddle points  arise can be

estimated from the condition (λµ; ) = – / . To
do this, it is sufficient to know the dependence of

(λµ) on the cluster size Ne. The relevant function cal-

culated for aluminum by the formula (λµ) = [3 +

U''(r0) / ]–1/2 [13] is shown in Fig. 2 for various
values of parameters rs and a. One can see in Fig. 2 that
a decrease in rs is equivalent to an increase in a, i.e., to
the softening of the potential.

Self-consistent calculations suggest [9] that rs

depends weakly on Ne. Hence, as Ne increases, the
curves corresponding to large rs should gradually trans-

form into a curve corresponding to the radius rs =  of
the Wigner–Zeits cell in bulk metal. To account for this
effect, the calculations were carried out first for the
shell correction (6) to the total electronic energy of AlN at

T = 0 using potential (7) with rs = 2.17 > . Figure 3 pre-
sents (a) the results of calculations without inclusion of
the triangular trajectories and (b) the measured oscilla-
tions in the mass spectra of aluminum clusters. The
dashed line in the calculated curve (Fig. 3a) indicates
the contribution from the five-point-star trajectory. It

dominates at Ne > 250 (  > 9.1), while the contribu-
tions from other star-shaped trajectories are small in
this mass range. The cosine argument for the five-point-

star trajectory depends linearly on :

(9)

resulting in a periodic dependence on this variable. At
Ne > 250, curve (a) fits curve (b) well, both structurally
and in period. Note also that the chaotic portions of the
calculated and experimental spectra exhibit similar
behavior at Ne < 250 (calculations show that it is caused
by the contributions from the star-shaped trajectories
with /  = 3/7, 4/9, 5/11, and 6/13).

A triangular trajectory with rs = 2.17 is expected to

appear at  = 2450 (  . 13.5). Since the corre-
sponding oscillation amplitude is ~3.3 eV, this trajec-
tory immediately becomes dominant; it oscillates with
almost halved frequency. The relevant term in the

cosine argument depends linearly on : 3νµ( ) +

 = –3.2568 + 1.7605 . However, when consider-
ing the above-mentioned rs(Ne) dependence, one
should use a smaller rs value for the self-consistent
potential in approximation (7) in this range of Ne val-
ues. This is indirectly confirmed by a small (although
distinguishable in Fig. 3b) change in the frequency of
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experimental oscillations at  > 13. We note paren-
thetically that the frequency would not change if the
spectrum were determined by the ion lattice.

Setting rs =  = 2.07, one obtains for the five-

pointed star the 5νµ( ) + 2  = –2.9435 +

3.0249  dependence instead of Eq. (9); i.e., the

period indeed increases slightly. The  value for this

rs value is equal to 2750 (  ≥ 14), and the spectra
should be rearranged at N > 900.

To estimate the temperature-induced decay of the
electronic shell oscillations, the temperature multiplier
in Eq. (6) should be evaluated for the five-pointed star.
The calculations show that the characteristic reciprocal
temperature 2π tµ(λj) increases for this orbit from 900
to 1350 upon increasing Ne from 750 to 3000. It follows
that the temperature multiplier differs (for m = 1) only
slightly from unity at T = 300 K . 0.001 au and
decreases, respectively, from 0.88 to 0.75. For the trian-
gular trajectory, the characteristic reciprocal tempera-
ture is on the order of 600 at Ne ~ 3000 and the corre-
sponding multiplier is 0.95. Therefore, if the lattice is
molten at T = 300 K, the oscillations due to electronic
shells should manifest themselves in full measure.

This work was supported in part by the Russian
Foundation for Basic Research, project no. 00-01-
00397.
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Two-Dimensional Electron Gas: Exchange/Correlation

and Strong Disorder Effects1
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The conductivity of a spin-polarized two-dimensional electron gas is calculated and compared with the conduc-
tivity of the unpolarized electron gas. Disorder effects are considered within the self-consistent current relax-
ation theory, which gives rise to a crossover point from metallic to insulating behavior. Many-body effects due
to exchange and correlation are taken into account and are described by a local-field correction. Our calcula-
tions are in good agreement with recent experimental results on the magnetoresistance of silicon inversion lay-
ers. © 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 73.50.–h; 71.30.+h 
In recent experiments, the transport properties of a
two-dimensional electron gas (2DEG), as realized in Si
inversion layers and GaAs heterostructures, have been
studied by applying a parallel magnetic field [1–13].
The term “parallel magnetic field” means that the mag-
netic field is in the plane of the electron gas. The
renewed interest in the metal–insulator transition
(MIT) [14–19] in a 2DEG initiated much interest in
transport measurements. In the metallic phase, a strong
positive magnetoresistance was found. The experimen-
tal fact that the magnetoresistance saturates above the
magnetic field Bc, corresponding to a totally polarized
electron system, was interpreted as a manifestation of
the importance of spin polarization [8, 9].

In a recent paper [20], we compared the transport
properties of an unpolarized and a polarized 2DEG and
found a positive magnetoresistance. Our calculation
was made for weak disorder, and the screening behav-
ior was treated within the random phase approxima-
tion. The random phase approximation is valid if the
Wigner–Seitz parameter rs = (πNa*2)–1/2 is small, which
is not the case in the experiments; a* = 22.9 Å is the
effective Bohr radius, defined with the effective mass
m* and the background dielectric constant eL, and N is the
electron density. Moreover, at a low electron density, the
disorder effects in Si inversion layers are large, because
the MIT takes place around N = Nc ≈ 1 × 1011 cm–2 (rs =
7.8). For a relatively high density N > 2Nc, our theory
was in fair agreement with experimental results [8, 9].

Very recent experiments [10, 13] concerning the
magnetoresistance showed that our theory [20] failed to
describe experiments for N < 2Nc. Therefore, in this
paper, we take into account exchange correlation

1 This article was submitted by the author in English.
0021-3640/00/7205- $20.00 © 20274
effects, which are important for large rs, and we con-
sider multiple scattering effects, which lead to a MIT at
low carrier density.

We assume that the 2DEG electron gas has zero
width in the direction perpendicular to the interface and
consider only charged impurity scattering. Screening
effects are taken into account within the random phase
approximation and include exchange/correlation
effects (many-body effects) described by the local-field
correction (LFC) [21]. Such a theory is also valid in the
dilute limit where rs is large. Multiple scattering effects
are treated within the self-consistent current relaxation
theory [22–26]. In this paper we apply the transport the-
ory for an interacting electron gas in two dimensions
[22, 26] and screening effects, including exchange and
correlation, are taken into account by using an analyti-
cal expression for the LFC [27].

The electron density defines the Fermi wave number

kF of the 2DEG via N = gsgv /2π. Here, gv and gs are
the valley and the spin degeneracy factors, respectively.
For Si inversion layers and Si quantum wells, we use
gv = 2. For zero field, the spin degeneracy is gs = 2,
while for large magnetic fields the degeneracy factor is
given by gs = 1. We assume that the disorder is due to
charged impurities of density Ni located in the plane of
the electron gas and the random potential for wave
number q is given by 〈|U(q)|2〉  = Ni(2πe2/eLq)2 [28]. A
magnetic field applied parallel to the 2DEG plane leads
to a Zeeman energy ∆E = ±g*µBB/2; g* is the effective
Landé g factor. The system is totally spin polarized if
∆E is larger than the Fermi energy eF. This condition
defines a critical magnetic field Bc for complete spin
polarization, which is given by Bc = 2eF/g*µB. In the
following, we discuss the conductivity for the unpolar-

kF
2
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ized electron gas (B = 0) and for the fully polarized
electron gas (B ≥ Bc).

The LFC G(q) for wave number q takes into account
corrections to the random-phase approximation due to
exchange and correlations. The LFC is important for small
distances and for small electron densities [29]. We use the-
ory [27], where the LFC is written in a Hubbard form with
three coefficients Ci(rs), which are calculated self-consis-
tently by using the Singwi–Tosi–Land–Sjölander

approach [21]: G(q) = 1.402 q/[2.644 C1(rs)2 +

q2(C2(rs)2 – qq0C3(r3)]1/2 with q0 = 2/ a*. The LFC
reduces the screening properties of an electron gas
compared to the random phase approximation—the
Coulomb interaction potential V(q) = 2πe2/q in the
screening function is replaced by [1 – G(q)]V(q).

In the self-consistent current relaxation theory [23],
the dynamical conductivity is expressed in terms of the
current relaxation kernel. The current relaxation kernel
represents a generalized inverse scattering time. The
current modes decay into density modes, and the cur-
rent relaxation kernel is expressed by the golden rule
expression with the squared coupling matrix element
qU(q) (the gradient of the random potential) and the
density of final states (the density correlation function).
The density correlation function depends on the current
relaxation kernel, and this gives rise to a self-consistent
theory for the conductivity of the 2DEG. For details, we
refer the reader to [22]. We note that mobility measure-
ments of the 2DEG in strongly disordered remote
doped GaAs/AlxGa1 – xAs heterostructures have suc-
cessfully been described by our theory [25, 26].

In our approach, quantum interference effects for
noninteracting electrons [30], which lead to weak
localization effects, are ignored. We have argued before
that the “relevance of interference effects for the
strongly disordered interacting 2DEG is not under-
stood” [22]. We claim that the recent measurements
[17] of the temperature-dependent conductivity of Si
inversion layers near the MIT reinforce our argument.

In the transport theory [22] for the strongly disor-
dered 2DEG with Coulomb interaction effects, the con-
ductivity σ at zero temperature is given by [24, 26]

(1a)

where σ0 = Ne2τ0/m* and τ0 is the scattering time at
zero temperature calculated in the Born approximation
[28]; 1/τ0 is proportional to the impurity density Ni and
is expressed by [22]

(1b)

Φ0(q, ω) is the density–density correlation function of
the free 2DEG for wave number q and frequency ω, and
X0(q) is the Lindhard function in two dimensions [28].

rs
2/3 q0

2

rs
2/3

σ σ0 1 A–( ),=

1
τ0
----

1
4πm∗ N
------------------- qq3 U q( ) 2〈 〉 Φ0'' q ω 0=,( )

1 V q( ) 1 G q( )–[ ] X0 q( )+[ ]2
------------------------------------------------------------------.d

0

∞

∫=
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The parameter A describes multiple scattering effects
and is given by [22]

(1c)

For small impurity concentration and (or) high elec-
tron density, the parameter A is small and can be
neglected. In this limit, the theory is described by the
lowest order result σ0. The conductivity becomes zero
for A = 1, which means that for a fixed impurity density,
a critical electron concentration Nc exists and the con-
ductivity is zero for N ≤ Nc. The condition A = 1
describes the MIT. For Nc ≈ 1011 cm–2, we find A =
(Nc/N)1.7 and we conclude that A becomes small for
N @ Nc.

We have calculated A numerically by taking into
account exchange and correlation via the LFC. For
1010 cm–2 < Nc < 1012 cm–2, we find, for the nonpolar-
ized 2DEG,

(2a)

and, for the fully polarized 2DEG,

(2b)

From Eq. (2) we conclude that for Nc ≈ 1011 cm–2, as
found in experiments [19], one impurity localizes about
11 electrons. This shows that the localized electrons are
not bound to impurities, as in the hydrogen atom—
localized states are different from bound states, and the
physics of an impurity band is not appropriate in this case.
If we neglect correlation effects and only take into account
exchange effects, we find Nc/Ni ≈ 2.3[1011 cm–2/Nc]0.33 for
the unpolarized 2DEG. We conclude that correlation
effects are important in order to get realistic numbers
for Nc.

In Fig. 1, we show Ni versus Nc for the unpolarized
system and the fully polarized system. We see that, for
a given Ni, the critical electron density Nc for the polar-
ized system is larger than for the unpolarized electron
gas, in agreement with experiments, and we find
numerically Nc(B ≥ Bc) ≈ 1.1Nc(B = 0). This relation
means that a magnetic field can suppress metallic
behavior. From experiment it was deduced that
Nc(B ≥ Bc) ≈ 1.4Nc(B = 0) [1]. We believe that finite
extension effects (orbital effects), which lead to a larger
effective mass for the 2DEG when a parallel magnetic
field is applied [28], will increase Nc(B ≥ Bc).

The impurity density is not known from experiment.
We determine Ni by the conductivity at high electron
density N @ Nc using σ ≈ σ0. With Ni determined, the
critical density Nc is defined by A = 1. In Fig. 2, we show
the conductivity versus density for Ni = 4 × 109 cm–2 in
comparison with recent experimental results from [10].

A
1

4πN2
------------- qq

U q( ) 2〈 〉 X0 q( )2

1 V q( ) 1 G q( )–[ ] X0 q( )+[ ]2
------------------------------------------------------------------.d

0

∞

∫=
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At high electron densities (N > 1.5 × 1011 cm–2),
there is a good agreement, and even at lower densities
good qualitative agreement is obtained. The conductiv-
ity scale for the unpolarized system is larger by about a
factor of 4 than for the polarized system due to σ0 [20].
The discrepancies between theory and experiment seen
in Fig. 2 for N < 1.5Nc are due to the fact that our theory
is not able to predict the critical electron density for the
MIT in perfect agreement with the experiment. The
experimental data [10] can be fitted by σ(B = 0) =
10.5(e2/h)(N – Nc)/Nc with Nc = 7.2 × 1010 cm–2 and by
σ(B ≥ Bc) = 4.8(e2/h)[N – Nc]/Nc with Nc = 9.8 × 1010 cm–2;
see Fig. 2. We conclude that Nc(B ≥ Bc)/Nc(B = 0) =
1.36, in reasonable agreement with earlier experimen-
tal results [1].

From our numerical results for A and σ0 and N <
1.5Nc (see Fig. 2), we get for the unpolarized electron
gas (B = 0)

(3a)σ e2

h
----0.53

Nc

Ni

------
Nc

1011 cm 2–
-----------------------

0.44 N Nc–
Nc

---------------- 
 =

Fig. 1. Critical electron density Nc for a given impurity den-
sity Ni of a 2DEG in Si with no spin polarization (solid line)
and with full spin polarization (dashed line).

Fig. 2. Conductivity σ in units of e2/h as a function of the
electron density N for an impurity density Ni = 4 × 109 cm–2

as solid lines. The unpolarized electron gas (B = 0) shows a
higher conductivity than the polarized electron gas (B ≥ Bc).
The solid circles are experimental results [10] for inversion
Si layers for B = 0 and B ≥ Bc. The dashed lines represent
our fits to the experimental data; see the text.
and for the polarized electron gas (B ≥ Bc), we find

(3b)

These results are in qualitative agreement with the con-
ductivity near the MIT, as observed in the hole system
of GaAs/AlxGa1 – xAs [18].

In Fig. 3, we show the resistivity ratio ρ(B ≥
Bc)/ρ(B = 0) versus electron density. The lowest order
result within the random phase approximation is shown
by the dotted line. Exchange/correlation effects are
taken into account for the dash–dotted line, where mul-
tiple scattering effects are neglected; and, in this
approximation, the ratio ρ(B ≥ Bc)/ρ(B = 0) does not
depend on the impurity density. Multiple scattering
effects, which lead to a MIT, are taken into account for
the solid lines. Experimental results [8, 10, 13] are in
good agreement with the theory if we compare them
with the solid line for Ni ≈ 1 × 1010 cm–2. The strong
enhancement ρ(B ≥ Bc)/ρ(B = 0)  ∞, seen in Fig. 3,
is due to the MIT at Nc in the fully polarized 2DEG. It
would be interesting to study inversion Si layers with
an impurity density Ni ≈ 1 × 109 cm–2. For such struc-
tures, the exchange correlation enhancement of
ρ(B ≥ Bc)/ρ(B = 0) could be better observed than in the
samples of [10] and [13]; see Fig. 3. We believe that the
2DEG in Si/Si1 – xGex, where disorder effects are
reduced by remote doping, is an ideal system for testing
separately the interaction and disorder effects.

σ e2

h
----0.10

Nc

Ni

------
Nc

1011 cm 2–
-----------------------

0.79 N Nc–
Nc

---------------- 
  .=

Fig. 3. Resistivity ratio ρ(B ≥ Bc)/ρ(B = 0) as a function of
the electron density N for parameters corresponding to
inversion Si layers. The dotted line represents the calcula-
tion within the random phase approximation. The dash–dot-
ted line includes many-body effects (exchange and correla-
tion) via the LFC. The solid lines include multiple scattering
effects (the MIT), and the results for different impurity den-
sities Ni are shown. The solid points represent experimental
results for three different inversion Si layers: solid squares
from Okamoto et al. [8], solid triangles from Pudalov et al.
[10], and solid circles from Shashkin et al. [13].
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It was argued that finite width effects are important
in GaAs/AlxGa1 – xAs heterostructures [12] and lead to
orbital effects, which are neglected in our model.
Orbital effects have recently been discussed for a non-
interacting 2DEG [31].

In conclusion, we have shown that our theory of the
transport properties of an unpolarized and a polarized
2DEG, where strong disorder and interaction effects
are taken into account, is in astonishing agreement with
very recent experimental data on inversion Si layers.

I acknowledge many stimulating discussions with
V.T. Dolgopolov. He also made very useful suggestions
concerning the representation of the manuscript.
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