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Measurements were carried out at the underground low-background laboratory of the Baksan Neutrino Obser-
vatory using a detection system involving four ultrapure germanium detectors made from enriched 76Ge. The
sensitivity of the experiment to the detection of a 76Ge double beta decay to the excited levels of the 76Se nucleus
was determined. As a result of 228-day measurements, the new bound to the time of 76Ge half-decay to the
76Se  excited level is found to be T1/2(2ν2β) ≥ 6.2 × 1021 years (90% confidence level). © 2000 MAIK
“Nauka/Interperiodica”.
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Neutrinoless double beta decay (0νββ) is a unique
process for studying the fundamental properties of neu-
trinos. Observation of this process would give new
insight into elementary particle physics beyond the
standard model of electroweak interactions [1]. Very
important additional information necessary for the cal-
culation of the nuclear matrix elements for both two-
neutrino and neutrinoless double beta decays [2, 3] can
be gained from a search for, and analysis of, a two-neu-
trino mode in double beta decay (2ν2β), which is
allowed within the framework of the standard model of
electroweak interactions. Among the possible modes of
two-neutrino double beta decay there is a decay to the

excited  level of a daughter nucleus. The search for
ββ decay to the ground state of the daughter nucleus
was preferred in the preceding experiments, because
the probability W of two-neutrino double beta decay
strongly depends on the total transition energy Q(W ~
Q11). The experimental study of double beta decay to
the excited level of the daughter nucleus became possi-
ble only recently, when the sensitivity of the measure-
ments was enhanced substantially. The experimental
search for the double beta decay of 76Ge using a system
of four HPGe detectors is being carried out at the
underground low-background laboratory of the Baksan
Neutrino Observatory (BNO), Institute for Nuclear
Research, Russian Academy of Sciences, within the
framework of IGEX collaboration [4]. The laboratory
is situated at a depth of 660 m of water equivalent. Pas-
sive and active shields are used for lowering the detec-
tor background. The detectors are surrounded by a
common shield consisted of a 12-cm copper layer, a
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20-cm lead layer, and an 8-cm layer of borinated poly-
ethylene. All passive shield materials have been kept at
the underground laboratory for more than 20 years,
and, thus, the concentration of cosmogenic radioactive
isotopes inside them has been reduced significantly.
The setup operates in a low-background measuring
chamber made from a 50-cm layer of a low-background
concrete, a 50-cm layer of a low-radioactivity basic
rock, and an 8-mm layer of steel. In sum, this reduces
the detector background by a factor of ≈107 compared
to the unshielded detectors at the same depth. The
detailed description of the low-background chamber
and the detecting setup is given in [5, 6]. The total mass
of each of the four detectors is ≈1 kg. Three are made
of germanium isotopically enriched with 76Ge, and the
fourth is made of nonenriched germanium. The layout
of detectors inside the passive shield in our experiment
differs substantially from those in other long-term
experiments on the search for, and study of, the 76Ge
double beta decay [7, 8]. In these experiments, each
germanium detector is surrounded by an individual
passive lead shield, in addition to the common passive
shield. Hence, the detectors are screened from each
other by several centimeters of lead. Such additional
shielding markedly reduces the efficiency of the mul-
tidetector setup in detecting the double beta decay
modes with transition to the excited levels of the daugh-
ter nucleus. The background level achieved in our
experiment allows one to operate without an individual
shield for each detector, making possible the use of the
described multidetector system in the search for the
76Ge(2ν2β)76Se( ) process. The corresponding decay01
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scheme is given below in Fig. 2. It is seen that the tran-

sition to the excited  level of the 76Se nucleus is fol-
lowed by de-excitation through the sequential emission
of two gamma quanta with energies 563.2 and
559.1 keV. Thus, the observation of the two gamma
quanta in the final state is a specific signature of the
events of the desired process, resulting in additional
appreciable lowering of the background. The detector
in which the 76Ge double beta decay occurs detects
electrons with the total kinetic energy in the range
60−916 keV, while any of the other three detectors can
simultaneously detect one or two gamma quanta. The
energy resolution averaged over the detectors and the
accumulation time was 3.7 keV for energy 1064 keV.
The data accumulated over 228 days of “live” time
were used in searching for the events with the above
signature. To reconstruct the events, the amplitude and
temporal information were recorded for each germa-
nium detector. Two events were considered simulta-
neous and put into a two-dimensional matrix if the time
interval between the operations of any two germanium
detectors did not exceed 20 µs. The rate of such events
was ≈25 events per day over the entire energy range
measured (from 60 to 4096 keV). A two-dimensional
energy distribution of such events accumulated over
228 days is presented in Fig. 1. The domains optimum
for searching for the events corresponding to the
76Ge(2ν2β)76Se( ) process are also shown in Fig. 1.
These domains cover the energy intervals (556–
565) keV × (60–916) keV along the X(E1) and Y(E2)
axes, respectively. The “lines of events” observed in the
two-dimensional experimental spectrum at energies
570 and 1064 keV perpendicular to the axes are due to
the cascade gamma quanta caused by the presence of
the 207Bi isotope in the shielding material. A “diagonal
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Fig. 1. Experimental two-dimensional distribution of
energy release accumulated for the pairs of germanium
detectors over 228 days. The domains of maximum sig-
nal/background ratio are set off by rectangles.
of events” corresponding to the gamma quantum energy
1460 keV due to 40K is also seen in the spectrum.

At the first step of the experiment, special measure-
ment runs were performed without shielding the detec-
tors, with the aim of determining the active detector
volume [9] and the detection efficiency for gamma
quanta from pointlike calibration sources variously
arranged between the detectors. These measurements
and the calculations of the detector response functions
showed that the active volume of the nonenriched
detector corresponds to a mass of 990 g, whereas the
volumes of the 76Ge-enriched detectors correspond to
masses of 700, 700, and 670 g. The natural abundance
of the 76Ge isotope is 7.8%, and the detector material
was enriched to 87%. The GEANT 3.21 package was
used to develop the program for calculating the detector
response functions to different modes of double beta
decay. A comparison of the calculated energy spectra
with the calibration spectra measured at the first step
for different isotopes showed a good reproducibility of
the experimental spectra. The calculated two-dimen-
sional distribution of events corresponding to the
76Ge(2ν2β)76Se( ) process in the detection system
used is shown in Fig. 2. The domains with maximum
signal/background ratios were determined by compar-
ing the experimental and the calculated two-dimen-
sional distributions; they are shown as rectangles in
Fig. 1. In these domains, the detection efficiency for the

events corresponding to the 76Ge(2ν2β)76Se( ) pro-
cess was 1.7%. The counting rate for the events in the
domains of interest was 0.32 ± 0.04 day–1. Inasmuch as
no statistically significant increase in the counting rate
was observed for the desired events in these domains,
one can only determine a new bound to the half-decay
time of the process. The limit to the half-decay time is
calculated by the formula

where N0 is the number of 76Ge nuclei, t is the measure-
ment time, e is the detection efficiency, and Nb is the
number of counts in the energy range studied. Making
use of the background counting rate in the indicated
domains and the calculated detection efficiency, one
obtains the following lower bound to the half-decay

time for 76Ge decay to the  level of the 76Se nucleons:

(90% confidence level).

The best value attained to date was obtained in [10]:

(90% confidence level).

At the first step of the measurements, the prospects for
further enhancement of the sensitivity through lower-
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ing of the background were outlined. The main back-
ground components were found to be caused by the
presence of the 207Bi and 40K isotopes in the materials
of the setup. The analysis of the relative intensities of
the 207Bi and 40K gamma peaks for each of the detectors
enabled one to determine their locations in the setup
rather accurately. This furnishes an opportunity to com-

Fig. 2. Calculated two-dimensional distribution as a func-
tion of the response of the detecting setup to the
76Ge(2ν2β)76Se( ) process. Scheme of ββ decay for the
76Ge isotope.
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pletely eliminate the 207Bi isotope and remove a consid-
erable part of the 40K isotope from the components of
detectors and shield.

This work was supported in part by the Russian
Foundation for Basic Research, project no. 98-02-
17973.
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The e+e–  ηγ  7γ process was studied in the energy range 2E = 600–1060 MeV with an SND detector
on a VEPP-2M e+e– collider. The decay branching ratios B(φ  ηγ) = (1.353 ± 0.011 ± 0.052) × 10–2,
B(ω  ηγ) = (4.62 ± 0.71 ± 0.18) × 10–4, and B(ρ  ηγ) = (2.73 ± 0.31 ± 0.15) × 10–4 were measured.
© 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 13.25.Cq; 14.40.Aq; 13.65.+i
Radiative decays of light vector mesons—ρ, ω, and
φ—are important for understanding the behavior of the
strong interaction at low energies. Although many mea-
surements were carried out for the probabilities of the
radiative decays, the achieved accuracy [1] is insuffi-
cient for reliable determination of the parameters of
phenomenological models [2–4].

We report the results of investigations of the
e+e−  ηγ process followed by the η  3π0  6γ
decay. Since the final state includes seven photons, the
background can be substantially suppressed compared
to that in other channels of η-meson decay and, there-
fore, the systematic error may be reduced.

The experiment [5] was carried out in 1998 at the
VEPP-2M e+e– collider with the SND detector [6]. Two
scans were performed in the energy range 2E0 =
984−1060 MeV (PHI-98 experiment) with an integral
luminosity of 8.0 pb–1 at 16 energy points and with
about 107 produced φ mesons. In addition, a scan
(OME-98 experiment) over 38 points in the energy
range 2E0 = 360–970 MeV was carried out with an inte-
gral luminosity of 3.5 pb–1 and with about 3 × 106 pro-
duced ρ and ω mesons.

The events of the process

(1)

are characterized by the final state with seven photons,
a few of which may not be detected. The extra photons
may also appear due to the splitting of a shower in the
calorimeter, the emission of the photons by the initial
particles at large angles, or the superposition of the

e+e– ηγ , η 3π0, π0 2γ
0021-3640/00/7206- $20.00 © 20282
beam background. The main background process in the
φ-resonance region is the φ  KSKL decay, where KS

decays into two neutral pions and KL, interacting in the
calorimeter, produces extra “photons.” An additional
background is formed by the e+e–  ωπ0 + X process
followed by the ω  π0γ decay, where X are extra
photons. An analysis of the experimental data has dem-
onstrated that the QED process e+e–  3γ, being
superposed with other events, may also result in the
required event configuration.

Taking the above-listed background events into
account, we selected events in two steps. At the first
step, among the events in which six or more photons
and no charged particles were detected, we selected
those satisfying the following conditions imposed on a
total energy release Etot in the calorimeter and the total
momentum Ptot of photons:

For the selected events, we performed a kinematic
reconstruction using the measured angles, the energies
of the photons, and energy–momentum conservation.
As a result, the energies of the photons were deter-
mined more accurately and the χ2 values specifying the
degree of certainty of a process were determined:

χ2 for the assumption of the e+e–  nγ process
with n ≥ 6 or 7;

 for the assumption of the e+e–  2(3)γ + X
process;

Etot/2E0 1.2, Ptot/2E0 0.2/c,< <
Etot/2E0 cPtot/2 0.7.>–

χ3γ
2
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Fig. 1. Recoil mass distribution for the photon with the highest energy in an event. The points are the experimental data, and the
histograms are the simulation: (a) OME-98 experiment (312 events) and (b) PHI-98 experiment (23320 events). The shaded histo-
gram is the sum of the simulation of background processes, which reduces to process (2).
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process.
Further selection was carried out with the restric-

tions

Figure 1 shows the distributions of the selected
events in the recoil mass Mrecγ of the highest energy
photon. It is seen that the desired process prevails in all
scans. The events with Mrecγ > 600 MeV in Fig. 1b are
determined by the process

(2)

Finally, we select the events satisfying the condition
400 < Mrecγ < 600 MeV.

The number N(s) of the observed events at a given
energy is described by the formula

(3)

where L(s) is the integral luminosity, e is the detection
efficiency determined by a simulation, β is the factor
representing the radiative corrections, σb is the cross
section for background processes, and σ is the cross
section for the desired process (1).

When determining the background from process
(2), inaccuracy in the simulation of the interaction of
the KL meson with a substance in the calorimeter is pos-
sible. Figure 1b demonstrates that the contribution of
process (2) dominates for Mrecγ > 600 MeV, while the
contribution of the desired process (1) is negligible. For
this reason, the number of events of process (2) in the
range 400 < Mrecγ < 600 MeV was determined from the
number of experimental events in the interval 600 <
Mrecγ < 800 MeV by taking into account the simulated

χ
ωπ0
2

χ2 30, χ3γ
2 20, χ

ωπ0
2 20.>><

e+e– φ KSKL.

N s( ) L s( ) e s( )β s( )σ s( ) σb s( )+[ ] , s 4E0
2,= =
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ratio of the numbers of the KSKL events that fall into the
mass ranges 400 < Mrecγ < 600 MeV and 600 < Mrecγ <
800 MeV.

The energy dependence of the resulting cross sec-
tion (Fig. 2) was parametrized by the vector-dominance
formulas [7] including the contributions of the ρ, ω,
and φ resonances:

(4)

where F(s) = [(s – )/2 ]3, D(s) =  – s –

i ΓV(s), and the products

are the free parameters of the approximations. The rel-
ative phase shifts of the resonances were fixed at ϕρ =
ϕω = 0, ϕφ = π. The approximation gives the following
results:

(5)

where the first error is statistical and the second, sys-
tematic, error is due to the contributions of errors in the

σ s( ) F s( )
s3/2

----------- 12π
mV

3

F mV
2( )

----------------
BVP

∏ ΓVe
iϕV

DV s( )
---------------

V ρ ω φ, ,=

∑
2

,=

mη
2 s mV

2

s

 = Br
V e

+
e

–→
BrV ηγ→ Br

η 3π0→
Br

π0 2γ→
3

BVP

∏

Br
φ e

+
e

–→
Brφ ηγ→ Br

η 3π0→

=  1.249 0.011 0.035±±( ) 10 6– ,×

Br
ω e

+
e

–→
Brω ηγ→ Br

η 3π0→

=  1.01 0.16 0.03±±( ) 10 8– ,×

Br
ρ e

+
e

–→
Brρ ηγ→ Br

η 3π0→

=  3.77 0.45 0.11±±( ) 10 9– ,×
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Fig. 2. Measured total cross section for the e+e–  ηγ process in the region of (a) ρ and ω mesons (χ2/nd = 30/30) and (b) φ mesons
(χ2/nd = 40/15).
determination of the detection efficiency and the error
in the measurement of the luminosity. The luminosity
was measured from elastic electron–positron scattering
at large angles and from the process of two-quantum
annihilation. The difference in the results of the two
methods does not exceed 1%. The accuracy of the the-
oretical formulas used for the simulation of elastic scat-
tering and experimental conditions provides an esti-
mate of about 2% for the accuracy of the luminosity in
the case under consideration. In order to estimate the
systematic errors in the detection efficiency, the stabil-
ity of the results to a change in the selection conditions
was examined: we added restrictions on the polar angle
of the photons and on the number (Nγ = 7) of particles
and used only the completely reconstructed e+e– 
ηγ  7γ events. As was discussed above, due to the
emission of the initial particles at large angles and
superposition of preceding events, extra spurious pho-
tons appear in the SND calorimeter. For this reason,
one of the tests of the kinematic reconstruction was car-
ried out with the exclusion of photons with energies
lower than 50 MeV and with a polar angle less than 36°.
In addition, two scans of the φ meson were indepen-
dently processed. All tests demonstrated the stability of
the results, and the total systematic error in the effi-
ciency, with the inclusion of all effects, was estimated
at 2%. This estimate is treated as independent of the
systematic error in luminosity.

Using the tabular values of , , and

 from [1], we obtain from Eqs. (5) the values

Br
V e

+
e

–→
Br

η 3π0→

Br
π0 2γ→

Br
φ e

+
e

–→
Brφ ηγ→ 4.049 0.033 0.153±±( ) 10 6– ,×=

Br
ω e

+
e

–→
Brω ηγ→ 3.29 0.50 0.12±±( ) 10 8– ,×=
(6)

where  = 12π /  and the errors

of the tabular values are included in the systematic
errors. Using data (5) obtained above, the results of pre-
vious measurements with the SND detector [8, 9], and
the data on the widths of the ρ and ω mesons [1], we
derive the ratios

(7)

Our results (5)–(7) are in agreement with the data
of other experiments [8–12]. The branching ratios for
the φ, ω  ηγ decays are measured with an accu-
racy close to the tabular one [1], and the branching
ratio for the ρ  ηγ decay is determined with the
doubly improved accuracy. Note that the quantity

 (5) was measured with

noticeably higher accuracy than the branching ratio
Brφ → ηγ (6), because the leptonic width of the φ meson

Br
ρ e

+
e

–→
Brρ ηγ→ 1.22 0.14 0.07±±( ) 10 8– ,×=

Brφ ηγ→ 1.353 0.011 0.052±±( ) 10 2– ,×=

Brω ηγ→ 4.62 0.71 0.18±±( ) 10 4– ,×=

Brρ ηγ→ 2.73 0.31 0.15±±( ) 10 4– ,×=

σφ ηγ→ 57.16 0.46 1.64±±( )nb,=

σω ηγ→ 0.79 0.12 0.02±±( )nb,=

σρ ηγ→ 0.303 0.035 0.009±±( )nb,=

σVηγ
Br

V e
+
e

–→
BrV ηγ→ mV

2

B η π+π–π0( )
B η γγ( ) B η 3π0( )+
----------------------------------------------------------------------- 0.309 0.012,±=

B η 3π0( )/B η γγ( ) 0.796 0.026,±=

Γρ ηγ→ /Γω ηγ→ 10.6 2.2.±=

Br
φ e

+
e

–←
Brφ ηγ→ Br

η 3π0→
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is known with an accuracy of 2.7%, which is noticeably
worse than the statistical accuracy of our measurement.

This work was supported by the “Russian Universi-
ties” Foundation (project no. 3N-339-00) and the Rus-
sian Foundation for Basic Research (project nos. 99-
02-16813, 00-02-17478, and 00-02-17481).
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The formally T-odd triple correlation between the directions of the momenta of α particle and γ quantum and
the polarization pseudovector of a thermal neutron was examined for the 10B + n = 7Li + 4He + γ reaction. Such
T-odd correlations can be directly used for checking time reversal invariance in the elastic scattering of parti-
cles. In more complex reactions, this correlation can occur as a result of particle interactions in the entrance and
exit channels of the reaction and, being a background effect, requires correct theoretical or direct experimental
estimation. Our experiments gave an upper limit of 3.2 × 10–4 (90% confidence level) for the possible T-odd
asymmetry parameter in the reaction under study. © 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 24.80.+y; 25.40.Fq; 24.70.+s; 11.30.Er
In a recent investigation of the correlation between
the directions of the momenta of fission fragments and
long-range α particles and the longitudinal polarization
of cold neutrons inducing triple fission of 233U [1], a
surprisingly large value was found for the average
asymmetry parameter 〈D〉  in the correlation

(1)

where Pf , Pα, and sn are the unit vectors in the respec-
tive directions.

The original idea of such investigations [2, 3] was to
improve the upper limit on the possible violation of time
reversal invariance by using the fact that the correlation
(1) formally changes its sign with time reversal. How-
ever, a closer analysis [4] indicates that T-odd correla-
tions may be directly used for testing T invariance only
in elastic scattering. The nonzero T-odd correlation in
inelastic processes can be associated with T-noninvari-
ance only if the amplitudes of these processes can be
calculated in the first Born approximation. However,
even in this case the inclusion of the next orders of per-
turbation theory, (i.e., interactions in the initial and final
states) may lead to effects simulating T noninvariance.
For this reason, the asymmetry effect observed in [1] is
likely caused by the triple fission mechanism and is not
directly related to the possible violation of T invariance.
Nevertheless, further investigation of the effect
observed in [1] is of considerable interest from at least
two points of view: first, the determination of a mecha-
nism responsible for correlation (1) in triple fission
may provide important information on the dynamics of
this reaction, and, second, the study of the mechanisms
of various T-odd correlations masking the effects of
possible violation of time reversal invariance in nuclear

W θ ϕ,( ) 1 D〈 〉 sn · Pα P f×[ ] ,+=

D〈 〉 2.35 0.05±( ) 10 3– ,×=
0021-3640/00/7206- $20.00 © 20286
reactions may be useful if there is a need to introduce
corrections.

Because of the complexity of the fission reaction,
the correct calculation of these corrections is hardly
probable even with a full understanding of the mecha-
nism responsible for T-odd correlation (1). For this rea-
son, it is worthwhile to find and examine such correla-
tions in simpler reactions, which, as may be hoped,
admit correct theoretical treatment.

In this work, an attempt is made to reveal and ana-
lyze the formally T-odd correlation in one of the sim-
plest nuclear reaction of neutrons:

(2)

Since the first Born approximation can hardly apply
even to this simpler (compared to fission) nuclear reac-
tion, theoretically, one can expect the appearance of the
T-odd correlation in this reaction as well.

After the absorption of a thermal polarized neutron,
the 11B nucleus becomes polarized along or opposite
the neutron spin for two possible values of the total
angular momentum J = (I + 1/2) = 7/2 or J = (I – 1/2) = 5/2,
respectively. For 100% polarization of thermal neu-
trons, the 11B nucleus turns out to be polarized by 50%.
The most probable energy of an α particle is about
1.4 MeV, and the energy of an M1 gamma quantum
with a lifetime of 7.7 × 10–14 s is 480 keV. The well-
known neutron 11B resonances closest to the thermal
point have the following characteristics: –947 keV
(J = 7/2+, l = 0); 170.3 keV (J = 5/2+, l = 0); 370 keV
(J = 7/2+, l = 0); and 530 keV (J = 5/2–, l = 1). An
attempt at revealing parity violation in this reaction was

B10 n+ Li7 He4 γ.+ +=
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made in [5]. The resulting P-odd asymmetry parameter
for α-particle emission was found to be very small:

At the same time, the parameter of left–right asymme-
try

(3)

which arises due to p-wave mixing in neutron capture
by 10B, turned out to be αlr = (0.77 ± 0.06) × 10–4 [6]. In
concluding a brief sketch of the characteristics of reac-
tion (2), it should be emphasized that there is a pro-
nounced cluster nuclear structure at the input and out-
put.

In this work, a T-odd correlation of the following
form was studied:

(4)

In the experiment, gamma quanta and α particles were
detected by two scintillation spectrometers with
NaI(Tl) crystals and two surface barrier silicon detec-
tors, respectively. The directions of the longitudinally
polarized (~90%) beam of thermal neutrons and the
symmetry axes of the detectors of α particles and
gamma quanta were mutually orthogonal. The use of
four spectrometric radiation detectors in the orthogonal
geometry ensured the optimum conditions for measur-
ing the Dαγ coefficient and correctly taking into account
the possible effects of instrumental asymmetry. Exper-
imental values of asymmetry parameters were calcu-
lated by the simple expression

(5)

where N↑↓ (i, k) is the counting rate of α–γ coincidence
in the (i, k) detectors for the two mutually opposite
directions of the longitudinal polarization of the ther-
mal neutrons inducing reaction (2). The resulting
experimental values of the parameters were averaged
taking the sign correlation into account, so that the
same experimental quantities Dexp(i, k) could be used
for obtaining the average values of the T-odd asymme-
try parameter and for estimating the possible instru-
mental asymmetry. In most measurement runs, instru-
mental asymmetry was not observed within the statisti-
cal accuracy.

The first results of the experiments with a polarized
beam (〈λ n〉 ~ 2 Å, Φn ~ 5 × 106 n/cm2 s) from the WWR-M
reactor at the St. Petersburg Nuclear Physics Institute,
Russian Academy of Sciences, were reported in [7].
After completing the measurements and introducing all
necessary corrections, no statistically significant value
was found for the T-odd asymmetry parameter (4):

αnα 1.5 1.0±( ) 10 6– .×–=

W θ ϕ,( ) 1 α lrsn Pn Pα×[ ] ,⋅+=

W θ ϕ,( ) 1 Dαγsn Pα Pγ×[ ] .⋅+=

Dexp i k,( )

=  N↑ i k,( ) N↓ i k,( )–[ ] / N↑ i k,( ) N↓ i k,( )+[ ] ,

Dαγ 0.09 1.9±( ) 10 4– .×–=
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At a 90% confidence level, the possible value of the Dαγ
parameter does not exceed 3.2 × 10–4. This value is
approximately one-tenth of that observed for triple fis-
sion of the 233U nucleus [1] and is the lowest up-to-date
experimental limit to the possible magnitude of T-odd
asymmetry in nuclear reactions with neutrons.

In principle, this result is not surprising because of
the radical distinctions in the mechanisms of the reac-
tions under investigation. Below are listed some of the
distinctions that are most substantial for discussion.

First, in this work we examine the correlation
between the directions of divergence of a charged par-
ticle and a gamma quantum, as distinct from triple fis-
sion, where the same correlation was analyzed for two
charged particles.

Second, according to the modern concepts, excited
massive fragments and long-range α particles are pro-
duced in a triple fission near the scission point of the
fissioning nucleus (in 10–23–10–20 s), whereas the
gamma quanta in the 10B(n, αγ)7Li reaction are emitted
in ~8 × 10–14 s.

Third, due to the focusing of two divergent frag-
ments in a Coulomb field (final-state interaction), the
α particle in the triple decay mostly escapes near the
equatorial plane, while the angular α–γ correlation in
reaction (2) is less pronounced.

Fourth, in contrast to reaction (2), the fission is char-
acterized by a wealth of (up to 1010) final states with
widely diversified properties.

If the T-odd asymmetry in triple fission arises due to
the Coulomb interaction, the first and second items
concerning the distinctions in the correlations of inter-
est will be highly important. Therefore, a search for the
T-odd correlations in a fission involving a neutron or
gamma quantum as a third particle is of considerable
interest. The relevant experiments were proposed in our
work [7] and are now underway.

On the whole, an analysis of the presently available
information leads one to the general assumption that
the large T-odd asymmetry observed in [1] is caused by
the complicated character of the fission reaction and its
pronounced collective nature [8]. To corroborate this
conclusion, the T-odd asymmetry in the escape of light
particles in triple fission [7, 8] should be further inves-
tigated in detail and the T-odd correlations in the sim-
plest neutron reactions should be examined with higher
accuracy.

In conclusion, we are deeply grateful to V.P. Plakhtiœ
and his collaborators, who allowed us to work with the
beam of polarized neutrons from the WWR-M reactor;
to B.G. Peskov for preparation of the thin 10B targets;
and to N.P. Afanas’eva for manufacture of the semicon-
ductor detectors of charged particles.

This work was supported by the Russian Foundation
for Basic Research (project no. 99-02-17275) and the
INTAS (grant no. 99-00229).
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We theoretically investigate the effect of atomic recoil on the propagation of ultraslow light pulses through a
coherently driven Bose–Einstein condensed gas. For a sample at rest, the group velocity of the light pulse is the
sum of the group velocity that one would observe in the absence of mechanical effects (infinite mass limit) and
the velocity of the recoiling atoms (light-dragging effect). We predict that atomic recoil may give rise to a lower
bound for the observable group velocities, as well as to pulse propagation at negative group velocities without
appreciable absorption. © 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 42.50.Vk; 32.80.Qk; 03.75.Fi
Recent experiments [1, 2] have demonstrated a
reduction in the group velocity of light down to values
as low as 17 m/s in coherently driven atomic samples.
This was achieved by tuning the pulse frequency in the
electromagnetically induced transparency (EIT) win-
dow of an optically dressed three-level atomic gas,
where quantum coherence between two lower levels
gives rise to a vanishing absorption along with a very
steep dispersion [3]. Further improvements to the
experimental setup are expected [1] to enable one to
reach group velocities as small as the atomic recoil
velocity. In this regime, recoil is expected to play an
important role in the propagation of the pulse.

In this letter, we provide a detailed derivation of the
group velocity of light pulses in a coherently driven
Bose–Einstein condensed (BEC) atomic sample [4]
when the effect of atomic recoil is taken into account.
Apart from the well-known light-dragging effect in uni-
formly moving dielectrics [5], we show that the group
velocity of slow light in a sample at rest under appro-
priate EIT conditions is given by the group velocity in
the infinite mass approximation plus the velocity of the
atoms which recoil following the optical process itself.
Such a dragging effect imposes a lower bound to the
group velocity that can be observed in typical configu-
rations of experimental interest. For a specific level
scheme and a geometry in which atoms recoil in the
direction opposite to the probe wavevector, light prop-
agation at negative group velocities without apprecia-
ble absorption is also possible. Finally, we show that
the group velocity of a light pulse is not affected by
atom–atom interactions at the mean-field level.

We consider a cloud of BEC atoms [4] in a three-
level Λ-type configuration, as shown in Fig. 1. All atoms

1 This article was submitted by the authors in English.
0021-3640/00/7206- $20.00 © 20289
are initially in the ground state |g〉 , and the optical tran-
sition between the metastable |m〉  and excited state |e〉
is dressed by a nearly resonant coupling cw laser beam
of amplitude Ec(x) and frequency ωc . ωe – ωm. A weak
probe pulse at frequency ωp nearly resonant with the
other optical transition between the ground state |g〉  and
the excited state |e〉  also propagates through the system.
When the decay rate of the metastable level m is much
smaller than the decay rate of the level e, the probe field
experiences EIT with a narrow absorption dip and a
very steep dispersion at frequencies around ωp = ωc +
ωm – ωg [3]. In a second-quantized formalism, the
Hamiltonian of the system can be written as

(1)

The first two terms describe the internal structure of the
atoms and their kinetic and potential energy, while the
last terms describe the coupling of the two laser beams
to the atoms. The effects of the atom–atom interactions
will be discussed later. Both the spontaneous emission
from the excited state |e〉  and the decoherence of the
two lower |m〉  and |g〉  states are responsible for a loss of
atoms from the condensate and can, therefore, be mod-
eled by loss terms in the equations of motion for the
three-component macroscopic wavefunction ψi of the
Bose condensate:

(2)

* d3xψ̂i
† x( ) "ωi Vi x( ) "

2

2m
-------∇ 2–+ 

  ψ̂i x( )∫
i g e b, ,{ }=

∑=

– d pEp x t,( )ψ̂e
† x( )ψ̂g x( ) dcEc x t,( )ψ̂e

† x( )ψ̂m x( ) h.c.+ +( ).

i"
∂
∂t
-----ψg x t,( ) "

2∇ 2

2m
------------– Vg x( ) "ωg++ ψg x t,( )=

– d p*Ep* x t,( )ψe x t,( ),
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Fig. 1. Level scheme and optical processes for (a) copropagating and (b) counterpropagating probe and coupling beams. (c) Pro-
posed arrangement for obtaining negative group velocities. 
(3)

(4)

In the following, we will assume that all atoms are ini-
tially condensed in the ground state and that the probe
pulse is very weak; in this case, the probe will not
essentially affect the (macroscopic) condensate, so that
the optical polarization caused by the noncondensed
atoms generated by incoherent processes can be safely
neglected. The effect of the coupling beam on the con-
densed atoms alone is, in fact, negligible for any value
of its intensity, since its frequency is off-resonance
from any optical transition starting from the ground
level. For small atomic densities No(No/|kp|3 ! 1), we
can also assume that the photonic mode structure inside
the condensed cloud is not strongly modified, com-
pared to the free space one, so that the excited-state
spontaneous emission rate γe can be taken to be the
same as in free space [6]. In the spirit of a semiclassical
local density approximation [4, 7], we will also neglect
the effect of the external trapping potential and con-
sider the probe and coupling beams as monochromatic

plane waves of the form Ep, c(x, t) = 
illuminating a locally homogeneous condensate

described by the field ψg(x, t) = ,

where  = No. For a cloud at rest, kg = 0 and

ψg(x, t) = , while for a cloud that uniformly and
homogeneously moves with a velocity v, kg = mv/".
Due to the energy and momentum conservation, the
amplitudes of the excited and metastable components

i"
∂
∂t
-----ψe x t,( ) = "

2∇ 2

2m
------------– Ve x( ) " ωe iγe–( )+ + ψe x t,( )

– d pEp x t,( )ψg x t,( ) dcEc x t,( )ψm x t,( ),–

i"
∂
∂t
-----ψm x t,( )

=  "
2∇ 2

2m
------------– Vm x( ) " ωm iγm–( )+ + ψm x t,( )

– dc*Ec* x t,( )ψe x t,( ).

Ep c, e
i kp c, x ωp c, t–[ ]

ψge
i kgx ωg kg

2/2m+( )t–[ ]

ψg
2

ψge
iωgt–
of the atomic field have the same plane-wave structure
as for the ground state; i.e.,

(5)

(6)

Inserting these forms into Eq. (4) and then into Eq. (3)
yields

(7)

and

(8)

which generalizes the expression used for describing
EIT in the Λ-type three-level atomic configuration by
including kinetic-energy corrections associated with
the atomic recoil. These appear in the detuning from the
excited level

(9)

and from the metastable level

(10)

where  = (kg) = ωg + " /2m, (kp) =

ωe + "(kp + kg)2/2m, and (kp) = ωm + "(kp – kc +
kg)2/2m. Only the dependence on kp and ωp, which will
be needed in the following, is explicitly indicated,
whereas the dependence on the other setup parameters
ωc, kc, and kg is left implicit. Since the dipole moment
per unit volume at the probe frequency is given by

, Eq. (8) leads to a simple expression for the

ψe x t,( ) ψe i kp kg+( )x ωp ωg
eff( )+( )t–[ ]{ } ,exp=

ψm x t,( )

=  ψm i kp kc– kg+ )x ωp ωc– ωg
eff( )+( )t–[ ]{ } .exp

ψm

dc*Ec*–
" ∆m kp ωp,( ) iγm+( )
-------------------------------------------------ψe=

ψe

= 
d pEp–

" ∆e kp ωp,( ) iγe dcEc
2/ ∆m kp ωp,( ) iγm+( )–+( )

---------------------------------------------------------------------------------------------------------------------ψg,

∆e kp ωp,( ) ωg
eff( ) ωp ωe

eff( ) kp( )–+=

∆m kp ωp,( ) ωg
eff( ) ωp ωc– ωm

eff( ) kp( ),–+=

ωg
eff( ) ωg

eff( ) kg
2 ωe

eff( )

ωm
eff( )

d p*ψg*ψe
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dielectric function e(ωp, kp) of the dressed atomic
cloud,

(11)

where Ωc = |dcEc|/" is the Rabi frequency of the cou-
pling beam. If the spontaneous decay rate γe is much
larger than all other frequency scales and, in particular,
if γe @ ∆e, then the detuning ∆e of the excited state can
be neglected in Eq. (11). If we further assume that the

decoherence rate γm is much smaller than Γ = /γe,
then Eq. (11) simplifies to

(12)

Providing the Rabi frequency Ωc of the coupling beam
is smaller than the excited state linewidth γe, nearly
total transmission occurs within a small bandwidth Γ of

frequencies around  = ( ) + ωc – ,

for which ∆m( , ) = 0; in the same frequency

window, the refractive index, which is unity (  =

c| |) at line center, has a very steep dispersion. This
implies that a narrow-band pulse would propagate with
a very small group velocity without being appreciably
absorbed [1, 2, 8]. Approximating the atomic disper-
sion of the metastable |m〉  state after the absorption of a
photon from the probe beam and its immediate reemis-
sion into the coupling beam as a linear one with the
group velocity

(13)

the detuning in the denominator of Eq. (12) can be

approximated by ∆m(kp, ωp) . (ωp – ) – (kp –

)va, so that e(ωp, kp) acquires the new form

(14)

The dispersion law for a probe propagating in the direc-

tion of the unit vector  = kp/|kp| with a frequency cen-
tered on the EIT transparency window can be obtained
by inserting Eq. (14) into e(ω, k)ω2 = c2k2 and then lin-

earizing around ωp =  and kp = :

(15)

e ωp kp,( ) 1
4πNo d p

2

" Ωc
2/ ∆m iγm+( ) ∆e– iγe–( )

------------------------------------------------------------------------,+=
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ωp
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e ωp kp,( ) . 1
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4πNo d p

2

"γeΓ
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k̂p

ωp
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ωp ωp
o( )–( ) kp kp
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ηva ck̂p+

1 η+
------------------------,=

where η = 2πNo|dp|2 /" . The relevant group

velocity vg = ωp at two-photon resonance can
finally be written as

(16)

For a sample at rest, in the infinite mass limit, va is neg-
ligible and the group velocity has the usual expression

vg = c /(1 + η) [8]. In this case, for values of η much
larger than unity, light speeds much less than c can be
observed as, e.g., in [1], where η ~ 107. However, we
cannot neglect atomic recoil when η is much larger
than unity and is of the order of c/|va|, since vg becomes
comparable in magnitude to va. In this case, the group
velocity can be written as

(17)

While the first term c /η recovers Eq. (1) in [1], the
other term seems to suggest that light is dragged by the
metastable atoms, which recoil at a velocity of va; how-
ever, we stress that, under our conditions, | |2 + | |2 !
| |2 = No and, therefore, the center-of-mass motion of
the atomic cloud is weakly affected by light.

We now proceed to discuss novel and interesting
effects associated with result (17). For an atomic sam-
ple at rest, in which |g〉  and |m〉  are hyperfine sublevels
of the same ground state with energies very close to
each other, kg = 0 and va turns out to be a negligibly
small quantity for copropagating probe and coupling
beams (Fig.1a). Such a situation was examined in [7],
e.g., where recoil is explicitly omitted. On the other
hand, for counterpropagating beams (Fig. 1b), va is
nearly twice the recoil velocity of the |g〉  |e〉  optical
transition and it is directed as the probe wavevector; in
such a geometry, the group velocities are then restricted
by the lower bound |va|. In the case of sodium atoms
(D2 line), this quantity is approximately 6 cm/s, i.e.,
300 times smaller than the lowest group velocity of
17 m/s so far reported in sodium [1]. Since the most
stringent upper bound to η is actually set by the lower

bound to the coupling intensities  > γmγe, which have
to be applied in order for the EIT to be fully developed,
a substantial reduction of γm [1] will lead to much larger
values of η, so that the effect of atomic recoil, as pre-
dicted by Eq. (17), could possibly be observed.

For a sample moving with the uniform velocity v,
our theory recovers the well-known Fresnel–Fizeau
light-drag [5] effect; in the slow-light case, all veloci-
ties involved are nonrelativistic and the Galilean com-
position of velocities is obtained as in Eq. (17). Unlike
the effect of atomic recoil, Fresnel–Fizeau drag occurs
even in the infinite atomic mass limit. Recently, a
related effect was shown to lead to exotic features of

ωp
o( ) Ωc
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light propagation in the more complex situation of non-
uniformly moving media [9], but this is beyond the
scope of this paper.

With copropagating coupling and probe beams and
the appropriate choice of the atomic levels, i.e., the
Λ configuration, in which the level m has an energy
lower than g (see Fig.1c), the recoil velocity va is
directed oppositely with respect to the probe beam even
for a sample initially at rest. In this case, for sufficiently
small values of c/η, the probe wavevector and the group
velocity turn out to be oppositely directed. From a phe-
nomenological point of view, the possibility of attain-
ing such negative group velocities may be exploited to
investigate rather novel effects in the domain of geo-
metrical optics, such as, e.g., negative refraction angles
at the boundary with free space [10]. Recent develop-
ments in coherently prepared atomic media have
revived the interest in the issue of negative group veloc-
ities. With respect to the previous works on the subject
[11, 12], our proposal is characterized by the fact that
both absorption and group velocity dispersion almost
vanish in the frequency range of interest, so that the
shape of the light pulse remains essentially unchanged.
Negative group velocities were also predicted to occur
in an EIT configuration for coupling and probe beams
copropagating in a hot atomic gas [13]: because of the
Doppler effect, light interacts only with a narrow class
of atomic velocities and the sample behaves as an effec-
tively moving one. If the selected atoms move in the
opposite direction with respect to the probe wavevector,
negative group velocities may occur for sufficiently
dense samples, as is also predicted by the present treat-
ment when a nonzero atomic velocity is explicitly
included in Eq. (13).

In actual experiments, a nonzero temperature and
the finite size of the sample may cause a finite velocity
spread for the ground-state atoms. This can be taken
into account by integrating dielectric susceptibility (12)
over the velocity distribution of ground-state atoms.
For a Lorentzian velocity distribution [13], a straight-
forward calculation leads to the same form of suscepti-
bility, where Γ in the denominator is replaced by
(Γ + ΓD), ΓD = |kp – kc|vD being the Doppler width
expressed in terms of the velocity spread vD. In physi-
cal terms, the effect of a Doppler width ΓD comparable
to the subnatural linewidth Γ is similar to the effect of
having a lower level decoherence γm of the order of Γ,
i.e., a broadened absorption dip and a reduced contrast
of the transparency feature, which is no longer com-
plete. From a quantitative point of view, the broadening
due to the finite size of a zero-temperature BEC is gen-
erally smaller than the recoil velocity and thus can be
safely neglected with respect to Γ. For hot samples, ΓD

is negligible only if kp . kc, i.e., for copropagating cou-
pling and probe beams and small lower state energy
splitting. In addition, if the Doppler broadening |kp|vD
of the excited state is comparable to its linewidth γe, the
detuning ∆e can no longer be neglected in Eq. (11) and
a more detailed treatment has to be carried out [13].

The theory described up to now neglected the atom–
atom interactions (collisions). These are commonly
modeled [4] by adding quartic terms to Hamiltonian (1)
and give rise to additional cubic terms of the form

|ψj|2ψi in the mean-field wave Eqs. (2)–(4).

The coupling coefficients Gi, j are proportional to the
s-wave scattering length for collisions between atoms
in the i and j states (i, j = {e, g, m}), respectively. To the
lowest order in the probe intensity, only the Gi, g|ψg|2ψi

terms contribute to the sum causing a mean-field shift
of the e and m level frequencies in Eqs. (9) and (10). The
excited level e is adiabatically eliminated in the present
treatment, while the collisional frequency shift of the
metastable level m gives rise to a small shift of the two-
photon resonance condition in Eq. (12). This means
that the photon dragging effects of interest originate
from the independent recoil of each atom and, thus,

Bogoliubov’s sound velocity vs =  does not
appear to be relevant to the linear propagation of light
pulses in condensed media under EIT. The dispersion of
Bogoliubov’s phonons [4] may, on the other hand, be
crucial in more complex optical processes which involve
the excitation of phonons in the condensate, such as, e.g.,
Brillouin scattering by density fluctuations [14].

In conclusion, we have shown that even in a sample
at rest, under appropriate EIT conditions, light can be
dragged by the atoms which recoil after the absorption
of a photon from the probe beam and the subsequent
emission into the coupling beam. We hope that a feasi-
ble upgrade of the experimental setup commonly used
to study light propagation in EIT configurations [1] will
soon allow the detection of such atomic recoil effects.
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The formalism of complex quasienergies is used for exact calculation of the field-dependent decay rate for a
weakly bound particle (in the model of a three-dimensional zero-range potential) in a strong monochromatic
laser field. It is shown that the adiabatic (quasistationary) stabilization regime in this model occurs at frequen-
cies ω exceeding the binding energy and only in a limited intensity range. A simple estimate is obtained for the
critical field of stabilization breakdown. The effect may be observed for the decay of H– ions in the field of a
neodymium laser of femtosecond duration. © 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 32.80.-t
In spite of the fact that the possibility of the atomic
decay rate decreasing with an increase in laser intensity
at frequencies higher than the ionization potential was
pointed out more than ten years ago [1, 2], the physical
nature of this interesting nonlinear effect and its depen-
dence on the type of atomic potential and field parame-
ters still remain to be clarified. Essentially, the case in
point is a radical modification of the conventional pat-
tern of the photoeffect in a strong field. In [1], the onset
of stabilization was associated with a peculiar kind of
modification of the atomic potential in an intense high-fre-
quency field, as a result of which the level width Γ (imag-
inary part of the complex quasienergy e = Ree – iΓ/2)
decreases infinitely as the intensity increases, to arrive
at the adiabatic (or quasistationary) stabilization (QS).
An alternative interference mechanism of QS was pro-
posed for the Rydberg states, where the decrease in Γ is
caused by destructive interference of the ionization
amplitudes of closely spaced levels mixed by a strong
field and populated via Raman transitions from the ini-
tial state [2]. In recent years, the idea of “dynamic sta-
bilization” (DS) [3] due to the pulsed character of the
field has also been actively discussed. Numerical calcu-
lations indicate that the “stabilization breakdown” may
also occur in ultrastrong pulsed fields [4]. However, the
authors of a recent work [5] used the quasistationary
quasienergy states (QQESs) as an adiabatic basis in a
strong field (see also [6]) to demonstrate that the DS
and QS have the same origin. Finally, it was asserted in
some works that stabilization is in principle impossible,
in particular, QS upon ionization from a short-range
potential [7] and DS in pulsed fields [8]. Clearly, these

1 On leave from Institute for Space Sciences, Bucharest, Romania.
0021-3640/00/7206- $20.00 © 20294
problems arise because the numerical solution of the
initial value problem for the Schrödinger equation in a
strong field is a challenge, while analysis of the prob-
lem is lacking for exactly solvable analytical models. In
this letter, the exactly solvable short-range potential
model is taken as an example to analyze the questions
of whether the QS regime may occur in the decay of a
weakly bound level and, if it does, how large the inten-
sity range for the stabilization is.

We consider quasistationary decay of a bound state
in the field of a strong monochromatic wave with elec-
tric vector

and intensity I = cF2/8π by applying the QQES formal-
ism [9] to the exactly solvable 3D model of a short-
range (δ-) potential having a single bound state with
energy E0 [10]. The exact equation for the complex
quasienergy e contains the degree of linear polarization
l = (1 – η2)/(1 + η2) and the characteristic dimension-
less parameters of the problem: "ω/|E0| and the ratio of
the mean energy of electron oscillations in a field
(eF)2/4mω2 to the photon energy ∆ = (eF)2/4m"ω3 or to
the binding energy %F = (eF)2/4mω2|E0| = ∆("ω/|E0|).
Below, the following dimensionless units are used:
energy and "ω is in units of |E0|, and field intensity is in

units of F0 = /|e|", so that %F = F2/ω2 and ∆ =

F t( ) F

1 η2+
------------------- ωt, η ωt, 0sincos{ } ,=

1 η +1≤ ≤–

4m E0
3
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F2/ω2 (note that the Keldysh parameter γ = ω/eF

in these units is γ = ω/ F).
The equation for e has the simplest form in the case

of circularly polarized F(t) with η = ±1 [11]:

(1)

For elliptic polarization (0 ≤ |η| < 1), e is the eigenvalue
of a 1D integral equation for a periodic function ϕe(t)
[which determines the asymptotic behavior of the exact
QQES function Φe(r, t) at r  0], with a kernel struc-
turally similar to the integrand in Eq. (1) [10]. Insofar
as Ime < 0, the integrals of type (1) formally diverge at
the upper limit and thus should be considered in the
sense of analytical continuation from the upper e half-
plane. We use the following relation for this analytical
continuation:

(2)

where the double integral converges for any α = (%F –
e)/ω. Note that in some works, where the QQES
method was applied to the δ-well model [10], the diver-
gence of the integrals of type (1) was eliminated by
substituting e ≈ E0 = –1, which, clearly, is unjustified
for strong fields. In particular, this led the authors of [7]
to the erroneous results in their Fig. 5 and to the errone-
ous conclusion about the absence of QS for short-range
potentials.

The numerical results obtained for Γ(F) (Figs. 1–3)
clearly demonstrate the presence of the QS regime for
above-threshold frequencies and abrupt stabilization
breakdown, i.e., a sharp increase in Γ(F) starting at
some critical value F = Fcr . The width (in F) of the QS

2m E0

2

%F e– 1=

+ ω
4πi
--------

dτ
τ3/2
-------

i %F e–( )τ–
ω

---------------------------
 
 
 

4i∆ τ /2sin
2

τ
----------------- 1–exp

 
 
 

.exp

0

∞

∫

dτ
τ1/2
-------e iατ– f τ( )

0

∞

∫ 1

4πi
------------ dk

α k+
----------------- dτeikτ f τ( ),

∞–

∞

∫
∞–

∞

∫=

Fig. 1. Γ as a function of F for ω = 0.74 and circular polar-
ization of laser field. Solid line corresponds to the exact
(numerical) calculation according to Eq. (1); dotted line is
the result of perturbation theory (3) for ω; dashed line is
weak-field approximation (5).
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region increases with ω. One can see from Fig. 3 that
the Fcr value does not depend on the polarization type
[see Eq. (7) below], while the Γ(F) decrease in the QS
region is more pronounced for linear polarization.

Since the problem of stabilization breakdown (and
critical field value Fcr) is of crucial importance (in par-
ticular, it argues against the existence of the so-called
“Death Valley,” i.e., a broad and deep minimum in the
F-dependent lifetime of a quasistationary atomic level
[1]), let us make some analytical estimates confirming
the numerical results and allowing their physical inter-
pretation. For circular polarization, e is defined as a
(complex) eigenvalue of the stationary Hamiltonian in
a coordinate frame rotating with frequency ω [9],

,

where  is the orbital angular momentum operator. We

will treat the operator ω  perturbatively and use per-
turbation theory (PT) in the basis of quasistationary
states of a particle in the δ-potential U(r) = 4πδ(r)(∂/∂r)
and a constant field of strength F. The PT for the qua-
sistationary states is developed, e.g., in [12]. A conve-
nient expression for the Green’s function of our prob-
lem can be found in [13], where it is expressed through
the regular and irregular Airy functions Ai(x) and Bi(x)
and where the computational technique is also pre-
sented for second-order PT. With the ~ω2 correction,
the expression for e is

(3)

where the complex energy E of a quasistationary state
in a field F is a root of the transcendent equation {the
E = E(F) function is analyzed in [13]}

(4)

*rot r( ) ∇ r
2– U r( ) Fx ωL̂z±+ +=

L̂

L̂z

e E
ω2

360F2/3
------------------ I 4( ) ξ( )

I ξ( )
---------------, ξ–

E

F2/3
--------,–= =

1 πF1/3J EF 2/3––( )+ 0,=

Fig. 2. Γ as a function of F for above-threshold frequencies
(circular polarization). The ω values are indicated near the
corresponding curves.
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where J(x) = Ai'(x)Ci'(x) – xAi(x)Ci(x), Ci(x) = Bi(x) +
iAi(x), I(x) = Ai(x)Ci(x), and I(4)(x) = d4I(x)/dx4. The
F value in Eqs. (3) and (4) is not assumed to be small.
Using the properties of the Airy functions and Eqs. (3)
and (4), one can easily determine the conditions for

applicability of PT to the ω  operator [i.e., for the
smallness of a correction ~ω2 to the energy E in
Eq. (3)].

In the weak-field limit (F ! 1), one has

(5)

One can see from Eq. (5) that the perturbative treatment

of ω  is only justified if ω is small enough (ω2 < F3 ! 1)
that the frequency-dependent correction to the tunnel-
ing preexponential factor is small. Note that the corre-
sponding Stark shift Ree + 1 exactly coincides with the
two leading terms in the power series expansion of the
known expressions for the dynamic polarizability and
hyperpolarizability of a weakly bound particle [14].
The inapplicability of expansion (5) at ω> 1 is evident,
e.g., from the fact that the F dependence of the level
width follows a power law. In particular, to the lowest

order in F, one has  = (8F2/3ω4)(ω – 1)3/2 for any
polarization of F(t).

In the F @ 1 limit, Eq. (3) takes the form

(6)

and demonstrates that the perturbative treatment of

ω  in ultrastrong fields is justified for any frequencies
ω2 < F3 (curiously, this inequality is the inverse of the
condition for applicability of the PT in F to the complex

L̂z

e 1–
1
16
------F2 1

3
2
---F2 7

24
------ 1 13F2+( )ω2+ +–=

–
i
4
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4
45
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Fig. 3. Γ as a function of F for (solid line) linear and (dotted
line) circular polarization of a laser field with ω = 1.55.
quasienergy [15]: ∆ ≡ F2/ω3 < 1). Although Eq. (6) was
derived using the two-term asymptotic expression for
energy E obtained in [13] for ultrastrong static fields,
result (6) has a fundamental character and confirms
(together with the results of direct numerical computa-
tions) stabilization breakdown, at least in ultrastrong
fields. Note that at ω < 1, Eq. (3) agrees well with the
exact result even in the region where the PT series in
F diverges: starting at F ~ 0.5, the exact Γ(F) curve for
ω = 0.74 (Fig. 1) virtually coincides with the curve cal-
culated from Eq. (3). In other words, the action of a
strong circularly polarized field at ω < 1 is equivalent to
the action of a strong static field of strength F. At ω > 1,

the PT in ω  applies only to ultrastrong fields, so that
in the QS region and at F ≥ Fcr the results can only be
obtained by numerical methods.

The results of numerical and analytical calculations
allow one to determine the main regularities of quasis-
tationary level decay in the light field for different
ratios between |E0|, ω, and F. At ∆ ! 1, multiphoton
decay prevails; i.e., Γ ~ F2N with N = [|E0|/ω] for any F
and ω, including ω ! 1. As F increases, the situation
qualitatively depends on the frequency: for small ω, the
value ∆ ~ 1 is attained in a relatively weak field F and
the perturbative decay regime is smoothly replaced by
tunneling (according to Keldysh). This mechanism is
operative in fields much weaker than the intraatomic
fields [see Eq. (5) and the dashed line in Fig. 1]. It was
considered in detail in [16] for arbitrary values of the
Keldysh parameter γ. At ω > 1, the multiphoton ioniza-
tion mechanism prevails even in fields for which the

lowest order PT ( ) does not apply and the higher

order corrections to , caused by reemission and
direct above-threshold photon absorption, should be
taken into account. However, for these F values, the lin-
ear dependence of Γ on the intensity is replaced by a
smoother dependence (the ~F 2 correction to the width

 is negative [14]) and tunneling is replaced by the
QS regime starting at fields F < ω for which the high-
order PT corrections become significant. Evidently, the
standard PT, with F as a small parameter, does not
apply in the range of “developed” stabilization.

Turning to the stabilization breakdown point Fcr ,
note that it is preceded by a (rather narrow) range of
fields F ≤ Fcr where the width Γ suffers irregular jumps
with relatively small amplitudes (Fig. 2; the exact
numerical calculation of Γ in this region presents con-
siderable difficulty). To perform a more detailed analy-
sis of the level width in the breakdown region, we cal-
culated nonperturbatively the partial widths Γ(n)(F) cor-
responding to the absorption of a fixed number n of
photons. Having no room for a detailed discussion, we
merely point out that the “one-photon” width Γ(1) (corre-
sponding to the photoelectron energy Ep = Ree – %F + ω
and almost completely determining the total width Γ up

L̂z

Γ0
1( )

Γ0
1( )

Γ0
1( )
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to the middle of the QS interval) has a deep minimum
in the breakdown region, so that the contribution to Γ in
the breakdown region comes from a large number of
(interfering) above-threshold n-photon decay channels.
We assume that the irregular Γ(F) dependence in this
narrow range of F values is a quantum manifestation of
the well-known chaotic behavior typical of classical
systems with strong nonlinearity at a certain ratio of
relevant parameters (for the application of the ideas of
dynamic chaos to the stabilization problem, see, e.g.,
[17]). Assuming that the minimum in the one-photon
width Γ(1) is caused by closing the direct photoioniza-
tion channel, one can estimate Fcr from the equality
Ree – %F + ω = 0. Neglecting the Stark shift Ree + 1,
which is small at ω ~ 1, one has

(7)

This estimate agrees nicely with the Fcr value obtained
by numerical calculations for frequencies up to ω ≤ 3;
a slight decrease [compared to Eq. (7)] in Fcr with
increasing ω is due to the neglect of the Stark shift.
Therefore, both the specific behavior of Γ(F) in the QS
region and the occurrence of this region and its break-
down are caused by a profound modification of the
threshold phenomena for the photoeffect in a strong
monochromatic field.

Note in conclusion that the analysis carried out in
this work gives evidence for the presence, in a limited
intensity range, of the QS regime in the quasistationary
decay of a weakly bound state in a strong field with fre-
quency higher than the binding energy and also pro-
vides a simple estimate for the QS breakdown point Fcr .
The δ-potential model adequately describes photopro-
cesses in negative ions, in particular, H– (with |E0| ≈
0.752 eV). For H–, the frequency of the neodymium
laser equals ωNd ≈ 1.55 and stabilization is possible
(Fig. 3) in fields F ~ 1 (I ≈ 3 × 1012 W/cm2). Since the
lifetime of H– in this field is rather short, τ ~ 1/Γ ~ 10 fs,
stabilization can be observed only in experiments with
femtosecond laser pulses.
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sions. This work was supported in part by the INTAS–
RFFI (grant no. 97-673), the Russian Foundation for
Basic Research (project no. 00-02-17843), and the
NSF (grant no. PHY-0070980).
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Our concern here is to present the idea of the ion cyclotron resonator in the planetary magnetosphere and to
discuss briefly the experimental status of the corresponding theory. The resonator confines the ion cyclotron
waves to a thin equatorial zone, so that it keeps the wave field from coming into contact with the ionosphere,
resulting in a decrease in energy losses. The properties of the resonator are illustrated by adopting a plausible
distribution of the magnetic field in the equatorial zone, which yields an expression for the discrete spectrum
of the waves just above the gyrofrequency of heavy ions. We show that the resonator is remarkable for many
reasons, including the frequency dependence of its size and specific structure of the spectrum. © 2000 MAIK
“Nauka/Interperiodica”.

PACS numbers: 94.30.Tz
Important and very much discussed problems center
around the electromagnetic ion cyclotron waves in the
Earth’s magnetosphere. The literature on this subject is
quite voluminous (see [1–3] for references). Consider-
able recent attention has also been focused on the ion
cyclotron waves in the magnetospheres of other planets
[4]. It is generally agreed that the study of ion cyclotron
waves allows us to broaden our conceptions of space
plasma physics [5]. The observation of these waves
provides the basis for useful practical applications [1].

Up to now, attention has been paid only to traveling
ion cyclotron waves (e.g., [6–8]). In this paper, we
would like to discuss standing ion cyclotron waves as
the discrete eigenmodes of the ion cyclotron resonator
(ICR). Our main concern here is to present the idea of
the possible existence of such resonators “suspended”
in the equatorial zones of planetary magnetospheres.
We will show that the physical properties of the ICR are
remarkable for many reasons, including the specific
structure of the spectrum and the frequency depen-
dence of ICR size. One point generates particular inter-
est; namely, the resonator holds the ion cyclotron waves
in the magnetosphere. This keeps the wave field from
coming into contact with the ionosphere, resulting in a
decrease in energy losses. In this regard, the ICR differs
from the familiar Alfvén resonator [5], and it resembles
the toroidal magnetosonic waveguide which exists in the
equatorial zone of the Earth’s magnetosphere [9, 10].

1 This article was submitted by the authors in English.
0021-3640/00/7206- $20.00 © 20298
Let us consider the wave equation

(1)

where  = 1 + /ωBi(ωBi ), describing the
left-hand (E+ = Ex + iEy) and right-hand (E– = Ex – iEy)
circularly polarized, low-frequency (ω ! ωBe) electro-
magnetic waves in the framework of the 1D slab
plasma model with an external magnetic field B which
points in the z direction. Here, ωBe = eB/mec is the elec-
tron gyrofrequency, e is the elementary charge, me is the
mass of the electron, c is the velocity of light, ωBi =
eiB/mic is the ion gyrofrequency, ei and mi are the charge

and mass of the ion, Ωi = (4π Ni/mi)1/2 is the ion plasma
frequency, and Ni is the number density of ions; the sum-
mation is made over the ion species; the upper sign in
Eq. (1) refers to the ion cyclotron waves, and the bottom
sign refers to the helicon waves (or whistlers) [11].

The multicomponent composition of the plasma is
essential to the formation of the ICR. We have
restricted ourselves to the simplest case of a binary
mixture of light (i = 1) and heavy (i = 2) positive ions
for better visualization of the idea. Let us introduce the
designations

(2)

d2E±

dz2
-----------

ω
c
----n± z ω,( )

2

E±+ 0,=

n±
2 Ωi

2∑  ω+−

ei
2

ω× ωB2 1 η /µ+( )/ 1 ηµ+( )[ ] 1/2,=

ω0 ωB2 1 η+( )/ 1 ηµ+( ), ω∞ ωB2,= =
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where µ = m1e2/m2e1, η = ρ2/ρ1, and ρi = miNi. It can be

shown that the function (ω) has a pole at frequency
ω∞, and a zero at frequency ω0. The opaqueness band

(  < 0) is situated between these two singularities.
The crossover frequency ω× is determined by the rela-

tion (ω×) = (ω×). It is easy to check that ω∞ < ω0 <
ω× for µ < 1. Note that the formulas for ω× and ω0 in
Eqs. (2) are appropriate only in the case of dense
plasma in which ρ @ B2/4πc2, where ρ = ρ1 + ρ2.

Suppose that the opaqueness band ω0 – ω∞ is thick
enough. (The physical meaning of this condition will
be discussed below.) In addition, let us assume that
ω∞ < ω < ω× and, furthermore, that the frequencies ω
and ω0 are close together; i.e., ω ~ ω0. In such an event,
the square of the refractive index for the ion cyclotron
waves can be approximated by the equation

(3)

where α = (∂ /∂ω)0. The function ω0(z) will be
assumed to be smoothly slowly varying with a mini-
mum at the point z = 0. For example, this takes place in
the equatorial zone of the Earth’s magnetosphere, since
B(z) has a minimum at the equator. In this case, there
exist the frequencies ω > ω0(0) and the points z– < 0,

z+ > 0 such that (ω, z±) = 0 and (ω, z) > 0 for z– <
z < z+. Then, over the interval z– < z < z+, the nontrivial
solutions of Eq. (1) exist if and only if the frequencies ω
belong to the discrete spectrum ωs with s = 0, 1, 2, … .
The wave field E+(s, z)exp(–iωst) has the form of a
standing ion cyclotron wave with s nodes. In other
words, we are concerned with an ICR “suspended” in
the magnetosphere.

To simplify the treatment, let us use a parabolic
model to approximate the geomagnetic field in the
equatorial zone:

(4)

Here, BE is the magnetic field at the Earth’s surface, RE

is the Earth’s radius, and L is the McIlwain parameter.
Rewriting Eq. (1) in view of Eqs. (3) and (4), we obtain

(5)

where

(6)

n+
2

n+
2

n+
2 n–

2

n+
2 ω( ) α ω ω0–( ),=

n+
2

n+
2 n+

2

B z( )
BE

L3
------ 1

9
2
--- z

REL
---------- 

  2

+ .=

d2E+

dζ2
----------- ξ ω( ) ζ0

2 ω( ) ζ2–[ ]E++ 0,=

ξ 2
η
---

RELω 1 ηµ+( )
3cA 1 µ–( )

------------------------------------
2

,=

ζ0
ω 1 ηµ+( )
ωB2 1 η+( )
--------------------------- 1–

1/2

,=
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and ς = 3z/ REL. The values η, ωB2, and cA =
B/(4πρ)1/2 in Eqs. (6) are taken at the point ζ = 0. The

solutions of Eq. (5) are Ds[(4ξ)1/4ζ] with  = 2s + 1,

where Ds(z) = Hs(z/ )exp(–z2/4) are the functions of
a parabolic cylinder and Hs(z) are the Hermite polyno-
mials. It is natural that E+(s, ζ)  0 at ζ  ±∞ in
our parabolic model of ICR. This leads to the quantiza-
tion condition s = 0, 1, 2, …, so that the equation

(7)

describes the discrete spectrum of ion cyclotron oscil-
lations in the equatorial zone of the magnetosphere.

If ηµ ! 1, the roots of Eq. (7) are

(8)

on the condition that the second term on the right-hand
side of Eq. (8) is small in comparison with the first one.
This condition holds in the oxyhydrogen magneto-
spheric plasma, at least at low values of s. We can see
that the spectrum is equidistant, but the intervals ∆ω =
ωs + 1 – ωs between the adjacent spectral lines

(9)

are much smaller than the frequency ωs = 0 of the funda-
mental harmonic. It is well to bear in mind that this
result has been obtained in the dissipation-free limit.
There can be little doubt that a natural broadening of
the spectral lines in a real plasma causes a flattening of
the ICR spectrum. This has led us to believe that the gap

(10)

between the gyrofrequency of heavy ions ωB2 and the
fundamental frequency ωs = 0 is of greater interest for
the experimental study of ICR than ∆ω. Likewise, the
ICR size

(11)

is of immediate interest to the experimentalist. Here,

∆z = z+ – z–, z± = ±( /3)ζ0REL, η ! 1. We notice that
the size of the resonant region is minimal for the funda-
mental harmonic.

The small size of the ICR is noteworthy. By way of
illustration, let us assume that L = 7.48,  = 0.21ρ, cA =

2 × 107 cm s–1, as measured by the ISEE-1 satellite [12].
Then (∆z)min = 4.6 × 108 cm, which corresponds to the
interval of geomagnetic latitudes between ±2.3° (see
Eq. (11) for s = 0). The ISEE-1 satellite recorded the
ion cyclotron waves in the frequency band from 0.1 to
0.2 Hz just above the O+ cyclotron frequency at a dis-
tance of 6.5° from the geomagnetic equator. According
to Eq. (11), this means that the satellite was liable to
detect the standing waves in ICR if and only if s ≥ 3.
The corresponding gap between the gyrofrequency of

2

ζ0
2 ξ

2

ξ ωs( )[ ]1/2 ζ0 ωs( )[ ]2 2s 1+=

ωs 1 η+( )ωB2= 3 2η cA/REL( ) s 1/2+( ),+

∆ω 3 2ηcA/REL=

δω ηωB2 3 η /2cA/REL+=

∆z 2η1/4 cAREL/ωB2( ) s 1/2+( )[ ]1/2=

2

ρ
O+
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oxygen ions at the equator and the lower boundary of
the wave spectrum equals 28 mHz. It is reasonable to
say that this estimate does not contradict the ISEE-1
observations (see the ion cyclotron wave spectrum in
[12], Fig. 10a).

There are a number of spikes in the spectra observed
by the ISEE-1 and 2 satellites. However, the interval
between adjacent spikes is of the order of 10 mHz,
which is several times greater than follows from
Eq. (9). We have reanalyzed the satellite data and con-
cluded that, in any case, we could not resolve the pre-
dicted line spacing with the 4-mHz spectral resolution
of the ISEE-1 and 2. Thus, while we feel that the idea
of magnetospheric ICR is plausible, we have not yet
confirmed it experimentally in full measure. We urge
other researchers to look for the quasi-discrete structure
of spectra when examining the ion cyclotron waves
near the magnetic equator.

In conclusion, let us take up the applicability of the
theory. Generally, this is a widespread problem, but
here we restrict the discussion to the elementary
aspects, namely, to the foregoing conditions of applica-
bility of Eqs. (3)–(5). It has been assumed that the value
ω0 – ω∞ is large enough, so that the poles and zeros of

(z) are far apart. Physically, this means that we are in
a position to neglect the energy leakage from the ICR
due to tunnelling of the ion cyclotron waves through the
opaqueness bands disposed bilaterally just beyond the
turning points z– and z+. At low latitudes, the tunnel
effect is negligibly small when Ω2 @ c/REL (e.g., see
[2], where the tunnel effect was considered at high lat-
itudes). This sufficient condition holds in the case of the
satellite observations cited above.

One possible mechanism of energy leakage from the
ICR is associated with linear mode conversion. The
essence of this process is that the left-hand ion cyclo-
tron waves may couple to the right-hand whistler waves
due to inhomogeneity of the medium [13]. Without
going into detail, we simply note that the coupling
between the modes is especially strong in vicinity of
the crossover points z×, which are the roots of the equa-
tion n+(z×, ω) = n–(z×, ω). Needless to say, the concept

n+
2

of mode conversion, as applied to ICR, needs further
consideration. For our present purposes, it will suffice
to mention that n+ and n– as functions of z have a max-
imum and minimum at z = 0, respectively, so that in the
ICR the crossover points z× are completely absent if
ω < ω×, since n+(0, ω) < n–(0, ω) under this condition.
It is easy to check that the spectrum described by
Eq. (8) satisfies the condition ωs < ω× at least at low val-
ues of s. The last remark pertains equally to the para-
bolic model for the geomagnetic field, which is appro-
priate in the limit of small ∆z [see Eqs. (4) and (11)].

This work was supported in part by the Russian
Foundations for Basic Research, project no. 00-05-
64546.
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The temperature dependence of kinematic viscosity of liquid cobalt in the range 1490–1700°C and the influence
of the degree of cobalt overheating on its overcooling were studied by viscometry and differential thermal anal-
ysis. It was found that liquid cobalt undergoes a structural transition near 1595°C, which manifests itself as a
sharp change in the viscosity and the activation energy for viscous flow at this temperature and is accompanied
by a considerable increase in crystallization ability. © 2000 MAIK “Nauka/Interperiodica”.
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At present, the problem of possible structural transi-
tions in fluids caused by temperature- or pressure-
induced changes in the short-range order is being
actively discussed [1, 2]. The presence of thermal struc-
tural transitions manifesting themselves as anomalies
in the property polyterms and, to a lesser extent, in the
diffraction data was demonstrated for liquid metals in
works [3–5]. Nevertheless, the mechanism of such tran-
sitions still remains to be clarified [1, 5].

In this work, the possibility of structural transition
in liquid cobalt was studied by viscometry. It is known
that crystalline cobalt undergoes a polymorphic β  α
(fcc  hcp) transformation at 417°C. It relates to the
first-order transition and is accompanied by the volume
(∆V/V)β → α = 0.36% and thermal ∆Qβ → α = 440 J/mol
effects and a jump in physical properties at the transi-
tion point [6]. To date, no anomalies have been
observed in the property polyterms of liquid cobalt.
Nevertheless, the question of its post-melting structure
remains an open question. According to [7], the short-
range order in liquid cobalt is similar to the high-tem-
perature crystalline state and virtually does not change
with a temperature increase. However, the authors of
[8] argue that the structure of Co changes upon melting
to realize a bcc-like atomic ordering in the liquid state.

The kinematic viscosity of liquid type K1 cobalt
was determined by the method of damped torsional
vibrations in BeO crucibles in an atmosphere of puri-
fied helium after preliminary evacuation of the working
volume of the setup to 10–2 Pa and heating of the fur-
nace to 1000°C. Measurements were made in the
regime of stepped temperature change with a step of
10–15 K after isothermic annealing for 30 min. Tem-
perature was determined by a tungsten–rhenium ther-
mocouple with an accuracy of ±10 K and maintained at
a constant level to within ±0.5 K using a VRT-3 instru-
ment. In the measurements, the vibration parameters
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were detected optically using a ruby laser and a preci-
sion photodetector with a time delay no greater than
100 ns. The methodology of the measurements and sta-
tistical–probabilistic processing of the experimental
data is described in detail in [9]. The error analysis indi-
cated that, at a fiducial probability of 0.95, the most
probable error in determining the absolute values of
viscosity in an individual experiment did not exceed
1% at a total error no larger than 1.5%.

The experimental viscosity polyterm of liquid
cobalt is presented in Fig. 1a. An analysis of the tem-
perature dependence suggests that the Co viscosity
undergoes an anomalous sharp decrease (by about
10%) near t* = 1595°C. The character of the tempera-
ture dependence of ν is exponential before and after t*,
but the activation energy for viscous flow changes sig-
nificantly (from 44.5 to 75.1 kJ/mol):

The reliability of the observed anomaly is also evi-
dent from the increased scatter of the experimental
points in the vicinity of t*. The temperature depen-
dence of the parameter ξ, equal to the standard devia-
tion normalized to the mean value (the degree of vis-
cosity instability [10]),

is presented in Fig. 1b. It shows a maximum at 1590°C.
Another feature of the viscosity polyterms of liquid

cobalt is that they show hysteresis upon heating above

ν 3.156 10 8– 5360.7/T[ ] ,exp×=

at  1492 t 1595°C;< <

ν 0.406 10 8– 9034.1/T[ ] ,exp×=

at  1595 t 1700°C.< <

ξ 1
ν
--- ν i ν–( )2/m m 1–( )∑[ ] 1/2

=

000 MAIK “Nauka/Interperiodica”



302 LAD’YANOV et al.
         

t* followed by cooling. The ν(t) curves obtained for
different maximal heating temperatures are shown in
Fig. 2. The samples were heated to a certain tempera-
ture, annealed for 30 min, and then cooled. The viscos-
ity was measured starting from the melting point of the

Fig. 1. Temperature dependence of (a) viscosity and
(b) degree of its instability in liquid cobalt.

Fig. 2. Influence of temperature on the viscosity of liquid
cobalt: (d) heating and (s) cooling.

Fig. 3. Overheating of liquid cobalt as a function of maxi-
mal heating temperature.

(m
2 /s

)
(m

2 /s
)

∆T
 (

de
g)
        

sample down to its crystallization. It is seen in Fig. 2
that if the maximum temperature of liquid cobalt does
not exceed 

 

t

 

*, the heating and cooling curves coincide
(the hysteresis is absent). Heating of the melt above
1595

 

°

 

C (i.e., above the anomaly temperature) gives rise
to a sharp change in the viscosity near 

 

t

 

*. This change
is not reproduced upon cooling even after a slight over-
heating above 

 

t

 

*, bringing about hysteresis in the 

 

ν

 

polyterm for the direct and reverse runs.
Differential thermal analysis showed a significant

overcooling (

 

∆

 

T

 

) of liquid cobalt at a low cooling rate
and a decrease in 

 

∆

 

T

 

 upon an increase in the maximal
heating temperature (Fig. 3). A sample of mass 1 g was
heated to a certain temperature, annealed for 20 min,
and cooled. The rate of changing the temperature was
100 K/min. The melting and crystallization tempera-
tures of cobalt and its overcooling were determined
from the DTA curves. It is seen from Fig. 3 that the 

 

∆

 

T

 

value decreases tangibly upon heating liquid Co higher
than 1610

 

°

 

C, in good agreement with the data obtained
by measuring viscosity for massive samples (~20 g).

The anomalous change in viscosity near 1595

 

°

 

C, as
well as the increased scatter of experimental points and
the increase in crystallization ability (Figs. 1, 3), is evi-
dence for a possible structural transition in liquid cobalt
near this temperature. In character, it is analogous, e.g.,
to the transition in liquid copper [5]. According to the
X-ray structural data [8, 11], the postmelting short-
range order in both cobalt and copper is different from
the atom packing in their crystal phases. A further
increase in temperature only slightly affects the X-ray
pattern, indicating that the basic short-range order per-
sists in the liquid state. One can thus assume that the
structural change in liquid cobalt near 1595 ° C pro-
ceeds, as in copper, through the mechanism of one-
dimensional cluster polymorphism as a result of an
abrupt change in one of the parameters of the lattice of
tetragonal-type clusters [12].

A sharp increase in the viscosity instability of the
melt near the temperature of structural transition can be
explained by the presence of several (at least two) ener-
getically close states that are separated by energy barri-
ers and have different short-range orders at this temper-
ature. When the energy of thermal fluctuations
becomes close to the energy barrier, the number of ran-
dom transition trajectories between these states
increases, leading to the increase in the instability of the
whole system.
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Characteristics of random magnetic anisotropy in ferromagnetic films of amorphous Co90P10 and nanocrystal-
line Ni75C25, Fe80B4C16, and Co80C20 alloys and also in multilayer films [Co93P7(x)/Pd(14 Å)]20 and
[Co90P10(x)/Pd(14 Å)]20 obtained by various technological procedures were studied experimentally. It was
found that the spatial dimensionality (d) of the system of ferromagnetically coupled grains (2Rc) in the materials
under study determined the exponent in the power dependence of the approach of magnetization to saturation

in the region of fields H < 2A/M . The dependence ∆M ~ H–1/2 was observed for nanocrystalline and amor-
phous films with a three-dimensional grain arrangement. The approach to saturation in multilayer films with a
two-dimensional grain arrangement in an individual magnetic layer follows the law ∆M ~ H–1. The main micro-
magnetic characteristics of random anisotropy, such as the ferromagnetic correlation radius Rf and the average
anisotropy 〈K〉  of a ferromagnetic domain with a size of 2Rf , were determined for multilayer Co/Pd films. Cor-
relation was found between the coercive field and these characteristics of random anisotropy. © 2000 MAIK
“Nauka/Interperiodica”.

PACS numbers: 75.70.Ak; 75.30.Gw; 75.50.Kj

Rc
2

Considerable success in understanding the magnetic
structure and soft magnetic properties of amorphous
and nanocrystalline ferromagnets has recently been
achieved based on the notions of random magnetic
anisotropy (RMA). Thus, it was shown experimentally
in [1] that soft magnetic properties of materials with a
grain size 2Rc smaller than the exchange correlation
length δ = (A/K)1/2 depend on Rc as follows: the coer-

cive force Hc ~ , and the initial permeability µ ~ .
These relationships for soft magnetic properties are
conditioned by chaos in the direction of local magnetic
anisotropy K and by the possibility of describing the
magnetic structure of such materials by a set of weakly
coupled magnetic domains with the size 2Rf and the
average domain anisotropy

(1)

Simple theoretical estimates [1–3] give the following
equations for the average anisotropy of a magnetic
domain and the ferromagnetic correlation radius:

(2)

(2')

depending on the spatial dimensionality d of the
arrangement of the grain system 2Rc. For a three-

Rc
6 Rc

6–

K〈 〉 K

N
-------- K

Rc

R f

------ 
 

d /2

.= =

K〈 〉 K Rc/δ( )2d / 4 d–( ),∼

R f δ δ/Rc( )d / 4 d–( )∼
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dimensional arrangement of exchange-coupled grains
(d = 3), according to Eqs. (2) and (2'), we obtain 〈K 〉  ~

, Rf ~ .

The main micromagnetic properties of amorphous
and nanocrystalline ferromagnets 〈K 〉  and Rf , as well as
the local anisotropy characteristics K and Rc, can be
directly determined from magnetization curves in the
region of approach to saturation. The ideas of these
measurements are as follows. The approach of magne-
tization to saturation in sufficiently high magnetic

fields (H > 2A/M ) is described by the Akulov law for
a polycrystal [4]

, (3)

independent of the dimensionality d of the grain
arrangement. Here, D is a numerical symmetry factor
(see [5]), and the condition on the field H is determined
by the inequality Rc > RH, where the magnetic correla-
tion radius RH = (2A/MH)1/2. In fields below the so-

called exchange field Hex = 2A/M , the inequality
RH > Rc is fulfilled. Substituting 〈K 〉  obtained according
to Eq. (1) into the Akulov law, with regard to effective
averaging over grains within the region 2RH, one can

Rc
6 Rc

3–

Rc
2

∆M
MS

---------
2D1/2K
HMS

----------------- 
 

2

=

Rc
2
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obtain the following dependence of magnetic moment
scattering on the field:

(4)

Thus, an analysis of the magnetization curve M(H)
throughout the entire range of magnetic fields allows
the values of K, Rc, Rf , and 〈K 〉  to be measured and the
dimensionality of the system d to be determined.

The law of approach to saturation for isotropic
(three-dimensional) inhomogeneities was theoretically
derived in [5] based on the canonical expansion of ran-
dom functions. The approach to saturation in ferromag-
nets with two-dimensional anisotropy inhomogeneities
was theoretically considered in [6, 7], and Eq. (4) for
inhomogeneities with an arbitrary dimensionality was
actually obtained in [8].

Equations (1), (2), and (4) indicate that the dimen-
sionality of a system of exchange-coupled grains deter-
mines the character of the approach of magnetization to
saturation in the region RH > Rc. Hence, it also deter-
mines the level of soft magnetic properties of amor-
phous and nanocrystalline ferromagnets through 〈K 〉 .
This work is devoted to an experimental study of the
effects considered above.

Experiment. This work reports the results of study-
ing magnetization curves for films of amorphous
Co90P10 (thickness t = 2000 Å) and nanocrystalline
Co80C20 (t = 1200 Å), Fe80B4C16 (t = 500 Å), and
Ni75C25 (t = 600 Å) alloys and also for multilayer films
[Co93P7(x)/Pd(14 Å)]20 (where x = 30 Å, 45 Å, 55 Å,
and 80 Å) and [Co90P10(x)/Pd(14 Å)]20 (where x = 20 Å,
45 Å, 60 Å, 65 Å, and 115 Å) obtained by various tech-
nological procedures [5, 9, 10]. Small additions of
phosphorus in the cobalt layers of Co/Pd multilayer
films were used for obtaining ferromagnetic layers dif-
fering in the short-range structure. In Co(P) layers pre-
pared by the chemical deposition technique, an fcc
structure is obtained at concentrations of 5–8 at. % P
and an amorphous state of Co layers is obtained above
9 at. % P [5].

Magnetic measurements were carried out using a
vibrating-coil magnetometer with a superconducting
solenoid in fields up to 30 kOe and temperatures from
4.2 to 200 K. The film substrate was measured sepa-
rately, and its contribution to the total signal (~1%) was
subtracted.

Results and discussion. Figure 1 shows high-field
regions of magnetization curves M(H) for films of
nanocrystalline and amorphous alloys. The thicknesses
of the films for which these curves were measured con-
siderably exceeded the sizes of the constituent grains or
clusters (2Rc ~ 100 Å). Thus, magnetic domains with a
size of 2Rf were arranged in these films as grains with a
size of 2Rc in a three-dimensional way. In this case,
according to Eq. (4), the approach of magnetization to
saturation in these materials must follow the power

∆M
MS

---------
2D1/2 K〈 〉

HMS

----------------------- 
 

4 d–( )/2 RH

R f

------- 
 

4 d–

.≡=
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dependence ∆M/Ms ~ H–1/2. The rectilinear regions on
the coordinates (∆M/Ms, H–1/2) in Fig. 1 actually indi-
cate that this power dependence of the approach of
magnetization to saturation is actually fulfilled in these
samples within the range of fields of 1–10 kOe.
According to Eq. (4), this fact points to a three-dimen-
sional arrangement of exchange-coupled grains.

Figure 2 displays magnetization curves for multi-
layer Co(P)/Pd films. The sizes of the grains or clusters
that compose individual magnetic layers of these films
are of the order of the thickness of such layers. The fill-
ing of an individual layer along the height of one grain
leads to the formation of a two-dimensional system of
ferromagnetically coupled grains in these films. An
essential point here is the fact that the exchange cou-
pling between grains within an individual layer consid-
erably exceeds the coupling between neighboring indi-
vidual layers (by at least an order of magnitude) studied
in [10]. For the tasks of this work, the multilayer
arrangement was only a way of accumulating the
experimental signal for studying the small effect of
magnetic moment scattering in the vicinity of satura-
tion in ultrathin layers by the induction method.
According to Eq. (4), the approach of magnetization to
saturation in a two-dimensional arrangement of grains
corresponds to the law ∆M/Ms ~ H–1. The rectilinear
regions in the high-field magnetization curves of multi-
layer Co(P)/Pd films with both amorphous and nanocrys-
talline Co layers on the coordinates (∆M/MsH–2, H)
point to the fulfillment of the dependence ∆M/Ms ~ H–1

in the range of fields up to 20–25 kOe.
As was indicated above, the region of fields used for

determining the system dimensionality d from the

Fig. 1. High-field regions of magnetization curves M(H) for
amorphous and nanocrystalline films with d = 3:
(1) Co80C20 (t = 1200 Å), (2) Co90P10 (t = 2000 Å),
(3) Fe80B4C16 (t = 500 Å), and (4) Ni75C25 (t = 600 Å).

10 kOe 1 kOe
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Fig. 2. High-field regions of magnetization curves M(H) for multilayer Co/Pd films: (a) [Co93P7(x)/Pd(14 Å)]20, x = (1) 30, (2) 45,
(3) 55, and (4) 80 Å; (b) [Co90P10(x)/Pd(14 Å)]20, x = (1) 20, (2) 45, (3) 60, (4) 65, and (5) 115 Å.

Fig. 3. Micromagnetic parameters 〈Ha〉  and Rf and coercive force Hc for multilayer Co/Pd films: (a) [Co93P7(x)/Pd(14 Å)]20 and
(b) [Co90P10(x)/Pd(14 Å)]20.
observed dependence of the moment on the external
field has an upper limit equal to the exchange field

Hex = 2A/M . In order to estimate the value of Hex, it
is necessary to find the exchange interaction constant A.
This constant, for the films studied in this work, was
calculated from the measured low-temperature thermo-
magnetic curves (the Bloch law T 3/2 [9]). For the amor-
phous and nanocrystalline films studied in this work,
the values of Hex were found to be ~10–20 kOe. There-
fore, the dependence of ∆M on H for these films also
exhibited a crossover (transition from ∆M ~ H–1/2 to
∆M ~ H–2). This allowed us to measure Hex directly, to
calculate Rc, and to measure the value of K. For multi-
layer films, we estimated Hex ~ 20–30 kOe, which is
close to the value of the maximal fields used in our
experiment.

Note that the law of approach to saturation ∆M/Ms ~
H–1/2 predicted in [5] is well known to magnetologists
and is widely used for interpreting data on the approach
of magnetization to saturation in amorphous and
nanocrystalline alloys [11–15]. Here, a change of the
exponent in the power dependence of the approach to
saturation in nanocrystalline and amorphous materials
with the dimensionality d = 2 was found experimen-
tally. The results presented in Figs. 1 and 2 are

Rc
2

described by Eq. (4). They demonstrate that the expo-
nent in the power dependence of curves describing the
approach of magnetization to saturation is not associ-
ated with the short-range order in the ferromagnetic
material. It is determined only by such a substructure
parameter as the dimensionality d of the arrangement
of exchange-coupled grains. The fundamental possibil-
ity of experimentally determining the spatial dimen-
sionality of the arrangement of a system of ferromag-
netically coupled grains (in the general case, this
dimensionality can be a noninteger number) is of great
importance for the physics and technology of magnetic
materials.

The slopes of the rectilinear regions in Figs. 1 and 2
characterize the mean-square fluctuations of the field of
anisotropy 〈K 〉  averaged over the region within which
the magnetic moments of the grains are exchange-cor-
related: D1/2〈Ha〉  = 2D1/2〈K 〉/M = D1/2Ha/N1/2, where N
is the number of structural units 2Rc incorporated into a
magnetic domain. The magnetic correlation radius Rf

can be estimated from Eq. (2) or from the following
equation: Rf = (AD1/2〈K 〉)1/2. The values of 〈Ha〉  and Rf

calculated in such a way for multilayer Co/Pd films dif-
fering in thickness of the ferromagnetic layer are given
in Fig. 3 (the coefficient D was set equal to 1/15 [5]).
The coercive forces Hc of these films are also given
JETP LETTERS      Vol. 72      No. 6      2000
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here. A detailed analysis of the dependence of the
micromagnetic parameters 〈Ha〉  and Rf in these films on
the magnetic layer thickness is a subject of a separate
comprehensive investigation [the observed variations
of these quantities within a given thickness range are
due to variations of both the magnetic constants (A, K)
and structural parameters (Rc, d), which nonlinearly
enter into Eqs. (1) and (2)]. It is important to emphasize
here the correlation of the coercive force Hc and the
average anisotropy of the magnetic domain 〈Ha〉 .
Because there is no strong interaction between mag-
netic domains, the latter value represents the effective
anisotropy of these materials. The correlation observed
between the effective anisotropy and the coercivity of
nanocrystalline and amorphous ferromagnets with a
two-dimensional arrangement of magnetically coupled
grains indicates that magnetic anisotropy fluctuations
play the main role in the formation of soft magnetic
properties in such systems.

The authors are grateful to V.S. Zhigalov for the
samples of nanocrystalline alloys presented for this
study, to V.A. Ignatchenko for useful discussions and
interest in this work, and to S.A. Karpenko for help
with the work.
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Depolarization of a Neutron Beam in Laue Diffraction
by a Noncentrosymmetric Crystal
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The depolarization of a neutron beam executing Laue diffraction in a thick (~3.5 cm) noncentrosymmetric
α-quartz crystal is observed. This effect was predicted by us earlier and suggested for measuring the electric
dipole moment (EDM) of a neutron. The effect is due to an interaction of the magnetic moment of a moving
neutron with a strong crystal electric field, as a result of which the neutron spin rotates in opposite directions
for waves of two types excited in the crystal. The effect is studied for neutron diffraction by a system of crys-
tallographic (110) planes at Bragg angles close to π/2, up to 87°. It is shown that, for a crystal of thickness L =
3.5 cm, a direct beam initially polarized along the reciprocal lattice vector becomes depolarized upon diffrac-
tion, irrespective of the value of Bragg angle, whereas the beam polarized perpendicular to the diffraction plane
retains its polarization. The Eτ value determining the sensitivity of the method to EDM is experimentally esti-
mated. © 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 14.20.Dh; 13.40.Em; 61.12.Ex
1. In [1], a new method of determining the electric
dipole moment (EDM) of a neutron was proposed. It is
based on the fact that the phase of pendellosung fringes
depends on the orientation of a neutron spin diffracted
by a crystal without a symmetry center. This dependence
arises because the diffracted neutron, when passing a
distance of several centimeters in a noncentrosymmet-
ric crystal, is subjected to a strong crystal electric field
Eg (higher than 108 V/cm), which was predicted and
measured in [2, 3]. The value of (2.1 ± 0.2) × 108 V/cm
[2, 3] experimentally obtained for the crystal field of
α-quartz for the (110) plane coincides, to within exper-
imental error, with its calculated value. Such fields are
more than four orders of magnitude higher than the
fields presently used in the most sensitive magnetic res-
onance method of determining EDM using ultracold
neutrons (the UCN method) [4–6]. However, fields as
high as these are still insufficient for enhancing the
accuracy of EDM measurements. It is essential that the
suggested method allows the neutron residence time τ
in the crystal electric field to be increased for Bragg
angles θB close to π/2.1 The use of such angles may
increase sensitivity by more than an order of magnitude
[1]. The reason is that the EDM effect in Laue diffrac-
tion (e.g., the pendellosung phase shift upon Eg-ori-
ented spin flip) is determined by [1]

(1)

1 The neutron residence time in the crystal was directly measured
in [7].
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Here, D is the EDM of a neutron, v|| = vcosθB is the
mean velocity of neutron propagation along the crystal-
lographic planes, and v is the neutron velocity. For
θB  π/2, cosθB ≈ π/2 – θB. It is also essential that the
interfering effect of Schwinger interaction be indepen-
dent of the Bragg angle:

(2)

Here,  = [Eg × v||]/c, µn = –1.9 is the neutron mag-
netic moment in nuclear magnetons, L is the crystal
thickness, mp is the proton mass, and c is the speed of
light.

However, as the Bragg angle increases and
approaches a right angle, the frequency of pendello-
sung beats increases, so that at a certain value of the
Bragg angle the angular period of pendellosung oscil-
lations becomes smaller than the Bragg diffraction
width. In this situation, the experimental scheme used
in [2, 3] for measuring electric fields becomes inappli-
cable because of the too high frequency of the pendel-
losung oscillations around the Bragg angle. For this
reason, it was first suggested to measure the pendello-
sung phase shifts on a two-crystal setup [1] by a disper-
sionless method without averaging over the pendello-
sung oscillations and, later [8–10], another nonaverag-
ing method was proposed for the observation of the
effects associated with the presence of crystal electric
fields. This is the polarization method, which can be
used for measurements at Bragg angles close to a right
angle. The polarization experiments are particularly
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Fig. 1. Scheme of the experimental setup. (1) Intrachannel neutron guide; (2) multislit polarizing neutron guide; (3) 120-mm thick
BeO filter; (4 and 9) spin-orienting coils; (5 and 8) three-coordinate rotating coils; (6) single crystal of α-quartz of size 14 × 14 ×
3.47 cm; (7) magnetic screen; (10) paired multislit analyzing neutron guide; and (11) neutron detector. A and B are crystal positions
corresponding to the same Bragg angle; g is the reciprocal lattice vector for the (110) plane; and HL is the driving magnetic field.
important, because they are less sensitive to the crystal
perfection, allowing one to sizably extend the range of
crystals suitable for experiments and to greatly simplify
the setup.

The essence of the method is that the wave packets
for the ψ(1) and ψ(2) states, in which a neutron “feels”
the fields equal in magnitude but opposite in sign (and
which are excited with the same amplitude), spatially
overlap if the Bragg conditions for Laue diffraction are
exactly fulfilled. In this case, the neutron spin in the ψ(1)

and equally probable ψ(2) states rotates in opposite
directions, so that the average angle of neutron spin
rotation (in a transparent crystal) caused by the
Schwinger interaction (or EDM) is zero.2 Nevertheless,
the polarization will decrease; i.e., the beam will depo-
larize. The depolarization measurements may be used
for estimating, e.g., the magnitude of the electric field
acting on the neutron.

The rotation angles of a spin initially oriented per-
pendicular to the “Schwinger” magnetic field in the ψ(1)

and ψ(2) states are related to shift (2) as ∆  = ±∆ϕS/2.
As a result, the polarization P of a beam passed through

the crystal depends on the ∆  angle as

(3)

where P0 is the polarization of the incident beam. In

particular, for a spin rotation of π/2 (∆  = ±π/2), the
neutron beam becomes completely unpolarized upon

2 The neutron spin rotation caused by the EDM or the spin–orbit
interaction was considered in [11–13] for the diffraction in a non-
centrosymmetric crystal. The spin–orbit-induced rotation of a
neutron spin near the Bragg direction in the Bragg diffraction
scheme was observed in [14]. However, the possibility of enhanc-
ing the effects was lacking in these works.

φ0
S

φ0
S

P P0 ∆φ0
2cos P0 µneEgL/mpc2( ),cos= =

φ0
S
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passing through the crystal. The calculations for the
(110) plane of α-quartz show that the spin rotates at an
angle of π/2 for a crystal of thickness L0 = 3.6 cm. If the
polarization of the incident neutron beam changes by
π/2, i.e., if it is directed perpendicular to the scattering
plane, the polarization of the diffracted beam does not
change, because the neutron magnetic moment is
directed either along or opposite to the Schwinger mag-
netic field, so that the spin does not rotate.

2. The scheme of the experimental setup for the
observation of the above-mentioned effects is shown in
Fig. 1. Measurements were made for the (110) plane of
an α-quartz crystal of sizes 14.0 × 14.0 × 3.47 cm. After
passing through polarizer 2 and filter 3, the polarization
vector of the neutron beam was adiabatically aligned

with field  in a coil 4, whereupon it was rotated
through angle α in a three-coordinate coil 5. If the crys-
tal did not influence the spin orientation, the polariza-
tion vector, after passing through the crystal, would be

restored in coil 8 to its initial direction along the 
axis. The rotation through angle α can be accomplished

about any axis perpendicular to the  vector. For
clearness, Fig. 2 illustrates the behavior of the polariza-

Hg
S

Hg
S

Hg
S

Fig. 2. Schematic representation of the behavior of a neu-
tron polarization vector upon passing through the experi-
mental setup for α = 90°.
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tion vector for α = 90°. The coordinate system (X, Y, Z)
in Figs. 1 and 2 is the same. To observe the effect of
depolarization of a diffracted neutron beam, the depen-
dence of counting rate on the angle α was measured in
detectors 11 located after analyzer 10, which transmits

only the neutrons polarized along . The described
measurement procedure is analogous to the spin echo
method.

It is known from previous measurements of the
time-of-flight spectrum of a diffracted beam (see [7])
that not only the neutrons diffracted by the system of
planes of interest contribute to the direct diffracted
beam but also the neutrons diffracted by some other
systems with zero average interplanar electric field
(i.e., for which the depolarization effect is absent). To
reduce the corresponding contribution from the back-
ground reflections to the neutron beam, a polycrystal-
line 120-mm-thick BeO filter (3) transmitting only neu-
trons with wavelengths λ > 4.7 Å was placed before the
crystal. With this filter, the contribution of the back-
ground reflections to the direct neutron beam was esti-
mated at .(20 ± 10)% of the intensity of the beam dif-
fracted by a working plane. The uncertainty of this con-
tribution gives rise to a systematic error of the
measured quantities.

If the neutron spin in the ψ(1) and ψ(2) states in a

crystal rotates by angles ±∆ , respectively, the count-
ing rate N in the detector placed after the polarization
analyzer depends on the angle α as

(4)

where

(5)

is the projection of the neutron polarization onto the

 direction after passing through the crystal. One can

see that if the effect is absent, i.e., ∆  = 0, then PZ ≡ P0

and N is independent of α.
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Fig. 3. An example of the intensity (after the analyzer) of
neutrons diffracted by the (110) plane of α-quartz vs. the α°
angle between the Schwinger magnetic field  and the

polarization vector of neutrons incident at a Bragg angle of
θB = 84°.

Hg
S

α (deg)
It was found from the preliminary measurements
that the initial polarization of the direct beam was P0 =
(87 ± 3)%.

Therefore, the ∆  value can be determined from
the N dependence on α. An example of such a depen-
dence is presented in Fig. 3. The polarization PZ is indi-
cated on the left ordinate axis. The curve in Fig. 3 is the
experimental fit to Eqs. (4) and (5).

It follows from Eq. (2) that the effect of the Schwinger
interaction does not depend on the Bragg angle, which
was indeed observed in the experiment (Fig. 4).

Using the experimental value of rotation angle ∆ ,
one can determine the crystal electric field acting on a
diffracting neutron:

(6)

where a systematic error introduced by the uncertainty
of background reflections is indicated in the inner
brackets.

3. The indicated value of the electric field is in agree-
ment, within the experimental error, with the value
measured from the pendellosung phase shift caused by
the spin flip of a neutron incident at Bragg angle θB .
25° [3], thereby confirming that the electric field does
not change, at least up to θB . 87°, i.e., to 1/(π/2 – θB) . 20.
For this diffraction angle, the sensitivity of the method
to the neutron EDM increases (compared to θB . 45°)
by approximately a factor of 20. Using the experimen-
tally measured neutron residence time τ in the crystal
for Bragg angle θB = 87° [7], one obtains the value of
~0.2 × 106 V s/cm for the Eτ quantity determining the
sensitivity of the method.3 This value is comparable
with the corresponding value for the UCN method
(~106 V s/cm [4]) and is appreciably higher than the

3 Note that the absolute error of measuring EDM is σ(D) ∝
1/Eτ , where E is the electric field acting on a neutron and N is
the total number of accumulated events.
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Fig. 4. The angle ∆  of neutron spin rotation due to the

Schwinger interaction vs. the tangent of the Bragg angle.
A and B correspond to two crystal positions (see Fig. 1).

φ0
S

∆φ
S  (

de
g)

0

A
B

tan(θB)
JETP LETTERS      Vol. 72      No. 6      2000



DEPOLARIZATION OF A NEUTRON BEAM IN LAUE DIFFRACTION 311
value of ~0.2 × 103 V s/cm obtained in the well-known
Shull–Nathans diffraction experiment [15].4 

In summary, the effect of depolarization of a neu-
tron beam upon the Laue diffraction in a noncen-
trosymmetric α-quartz crystal was experimentally
observed. The magnitude of the effect (and of the crys-
tal field acting on a neutron) is independent of the
Bragg angle up to θB = 87° and coincides, within the
experimental error, with the theoretical predictions.
This confirms our proposal that the neutron EDM effect
can be enhanced by more than an order of magnitude
for diffraction angles close to 90°.
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Charge-Carrier Separation in Rolled Heterostructures
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The strains in rolled InAs/GaAs heterostructures of nanometer sizes are calculated. It is shown that the strain
distributions in nanotubes (structures with coherently bounded rolls) and nanoscrolls are essentially different,
resulting in different energy spectra of the charge carriers. Photogenerated electrons and holes in nanotubes can
be spatially separated across the wall width. © 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 73.20.Dx
The influence of purely geometrical factors on the
properties of a two-dimensional electron gas confined
to a cylindrical surface was studied in a series of works
[1–4]. A method of preparing micro- and nano- tubes
and scrolls was recently demonstrated in [5, 6]. They
were prepared from thin strained double-layer
InGaAs/GaAs films grown on an InP or GaAs sub-
strate. In the constituent layers, the GaAs layer is
stretched, while the InGaAs layer is compressed
because of a lattice mismatch. After such a strained
double-layer film is detached from the substrate, it rolls
up into a scroll as a result of the elastic relaxation of
mechanical strains. The layers are grown together in a
scroll to form a tube with single-crystal walls. The
walls of such a tube are subjected to tangible elastic
strains. It is known [7] that the strains affect the band
structure of semiconductors and greatly influence the
energy spectrum of charge carriers in quantum-dimen-
sional structures. In this work, we use a simple model
to calculate the strains in the walls of GaAs/InAs nano-
tubes and the energy levels and wave functions of
charge carriers in this structure.

The structure of interest is displayed in Fig. 1. To
simplify the calculations, the following approximations
were adopted. The tube was assumed to be axially sym-
metric; the original film was grown on a (100) sub-
strate; and the tube axis was aligned with the crystallo-
graphic [010] direction. Under these conditions, only
the diagonal strain tensor components are nonzero, i.e.,
the axial component εz, the azimuthal component εθ,
and the radial component εr . The following parameters
were taken for the material: lattice constant a =
0.5653 nm, Young’s modulus E = 85.5 GPa, and Pois-
son’s ratio ν = 0.31 for GaAs and a = 0.6058 nm, E =
51.4 GPa, and ν = 0.35 for InAs. The calculations were
carried out for a four-turn tube formed from a double-
layer film consisting of InAs and GaAs layers each
three monolayers thick. The inner radius R of the tube
was equal to the radius of curvature of the double layer
[8], R = 16.5 nm.
0021-3640/00/7206- $20.00 © 20312
To calculate the strains in the layers forming the
tube walls, let us determine the lattice constants for the
layers. The lattice constant az along the tube axis does
not change upon rolling up and is equal to the lattice
constant in the plane of a free superlattice [7]:

where h1 and h2 are the layer thicknesses and G1(2) =
E1(2)/(1 – ν1(2)). The difference between the lattice con-
stants in the unstrained and strained materials deter-
mines the strain εz = (a – az)/az (Fig. 2a, curve 1).

In a bent monolayer film, the neutral surface
(boundary between the stretched and the compressed
layers) is situated almost in the middle of the film [9].
In a two-layer film, the bending strain is appended by
the lattice-mismatch strain. When calculating the azi-
muthal strain in a multiturn tube, we assumed that the
neutral surface is situated in the middle of the tube wall.
At this surface, the azimuthal lattice constant aθ is equal
to the lattice constant az along the tube axis. This fol-
lows from the fact that, according to our calculations,
the strain energy of the tube is close to minimum at aθ =
az. Evidently, aθ in a single-crystal tube changes lin-
early with radius, so that the dependence of the azi-
muthal strain on the radius can easily be determined
(Fig. 2a, curve 2). The radial strain is found from the
Poisson relation εr = –ν(1 – ν)–1(εθ + εz), which is valid
even for monolayer films [10].

Knowing the strain distribution, one can determine
the band-edge shifts [7]: ∆Ec = acTr(ε) for the conduc-
tion band and

for the valence band (the upper sign refers to the heavy-
hole band and the lower sign to the light-hole band),
where Tr(ε) = εr + εθ + εz and ac, av , and b are the defor-

az
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mation potentials. In GaAs, ac = –7.17 eV, av = 1.16 eV,
and b = –1.6 eV; in InAs, ac = –5.08 eV, av = 1 eV, and
b = –1.6 eV. Since the off-diagonal strain tensor com-
ponents are zero, a piezoelectric field is absent [11].
The calculated band-edge profiles across the tube width
are shown in Fig. 3a for the conduction and heavy-hole
valence bands in an undoped structure (solid lines). It is
taken into account that, in GaAs, the band gap Eg =
1.424 eV and the electron affinity χ = 4.07 eV and, in
InAs, Eg = 0.355 eV and χ = 4.9 eV. One can see that
the band gap changes jumpwise at the layer boundaries;
the band gap in each layer decreases, and the edges of
both bands lower as the outer wall of the tube is
approached. This picture is obtained under the assump-
tion that the near-surface band is not curved and the
Coulomb interaction between the charge carriers is
small, which seems to be justified. Indeed, the near-sur-
face band is only slightly curved in the undoped struc-

Fig. 1. Schematic representation of a nanotube. The crystal-
lographic directions and the axes for calculating the strain
tensor components are shown.
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tures and besides, it may disappear at low temperatures
upon the photogeneration of charge carriers [12], i.e., in
the situation where electrons and holes can simulta-
neously be present. As for the Coulomb interaction
between the photogenerated charge carriers, estima-
tions show that, even for very high electron and hole
charge densities (1012 cm–2) at the opposite surfaces of
the tube, its contribution to the potential is only ~0.1 eV
for the wall thickness considered, which is consider-
ably smaller than the strain-induced contribution.

The energy spectrum and the wave functions of
charge carriers in the structure of interest can be calcu-
lated based on the lineup of band edges. In the effective
mass approximation for the radial part of the ground-
state wave function Ψ (with zero azimuthal quantum
number), the Schrödinger equation has the form

Here, m* is the electron effective mass and U is the
potential energy (the corresponding band edge). It was
assumed that the electron mass m* = 0.067m0 in GaAs
and m* = 0.023m0 in InAs, where m0 is the free electron
mass, and the hole mass is 0.4m0 for both materials.
A one-band effective-mass approximation gives proper
levels for the electrons and the hole ground state [13].
For the excited hole states, mixing of the heavy- and
light-hole bands should be taken into account, because
it reduces the effective hole mass, e.g., in quantum
wires by 30% on decreasing the wire radius from 10 to
2.5 nm [14]. Such mass changes do not appreciably
affect our results. The boundary conditions for the
wave function are that it is zero at the tube walls and the
Ψ and (1/m*)(dΨ/dr) values are continuous at the inter-
faces.

The potential energy in the Schrödinger equation for
our structure is a piecewise linear function of the
radius. In such a situation, the solution to the equation

"
2

2m*
-----------1

r
--- d

dr
----- r

dΨ
dr
-------- 

 – UΨ+ E0Ψ.=
Fig. 2. Distributions of (1) axial and (2) azimuthal strain components across the width of (a) nanotube and (b) nanoscroll.
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Fig. 3. (1) Conduction and (2) valence band edges in (a) nanotube and (b) nanoscroll. (3) Electronic and (4) hole energy levels in
the nanotube.
cannot be expressed in terms of known functions and
can only be obtained by numerical methods. The calcu-
lated electronic and hole energy levels are shown in
Fig. 3a by dotted lines. The electronic level is shown for
the Γ minimum of the conduction band. For the side
minima (L and X), the effective mass is greater than in
the Γ minimum and the respective size-quantization
levels are raised more slowly with decreasing well
sizes; however, calculations show that the electronic
state in the Γ valley remains the lowest for a tube with
an InAs thickness of more than one monolayer, as in the
free GaAs/InAs superlattices [15].

The calculated electron and hole wave functions are
shown in Fig. 4. One can see that the charge carriers of
opposite signs are spatially separated, as can be

Fig. 4. Wave functions of (1) electrons and (2) holes in the
nanotube.
expected from the band-edge lineup (Fig. 3a). The cal-
culations show that charge separation occurs if the
number of turns exceeds two and that the degree of sep-
aration increases with increasing number of turns.

Let us consider, for comparison, the strain distribu-
tion and the lineup of band edges in a nanoscroll, i.e.,
in a rolled heterostructure in which the turns are not
grown together. In this case, the neutral surface is posi-
tioned in the middle of each turn; the respective azi-
muthal lattice constant aθ is equal to the axial constant
az , and aθ changes linearly across the film width. The
distribution of azimuthal strain is shown in Fig. 2b.
A profound distinction from the strain distribution in a
tube is seen. In the scroll, the strain in each turn is
mainly determined by its radius, whereas in the tube, all
interfaces are strained, so that the strains in the turns are
not independent of each other. The axial strain is the
same in the tube and the scroll.

The band edge lineup in a scroll is depicted in
Fig. 3b. It is seen that it changes slightly from turn to
turn. A minimum of the conduction band edge in each
turn occurs at the right boundary of the InAs layer. One
can show that the part of the conduction band shift
depending on the turn radius Rs at this point is equal to

i.e., the minimum of conduction band edge (potential
well for electrons) slightly increases on passing to the
outer turns. The maximum of the valence band edge
does not change on going from turn to turn. The calcu-
lations show that the charge carriers of opposite signs
are not separated in the scroll.

Let us briefly dwell on the maximum strain that is
attained in the tube walls (Fig. 2a). It is seen from
Fig. 2a that the maximum strain in a four-turn tube is
markedly higher than the strain attained in the pseudo-
morphic layers prepared by molecular beam epitaxy

ac
1 2ν–
1 ν–

---------------
az

aInAs
----------

hInAs

Rs

----------,
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(MBE). Four-monolayer-thick GaAs and InAs films
can be grown with a strain of ≈4% on an InP substrate.
In Fig. 2a, the strains in two middle bilayers of the tube
wall are within this range. As to the outer layers, the
strains exceed 10% of the thermodynamical limit for
lattice mismatch in pseudomorphic film growth [16].
Although such strains usually generate dislocations, a
metastable pseudomorphic state may also arise at low
growth temperatures, which are typical for MBE. For
instance, pseudomorphic CdTe monolayers were
grown on a GaAs substrate with a lattice mismatch of
14% [17] and similar Si0.48C0.52 monolayers were pre-
pared in silicon with strains greater than 10% [18]. In
our case, the original films were pseudomorphic and
the process of rolling up into a tube occurred at room
temperature, so that dislocations did not form, as was
confirmed by electron microscopy of such tubes [6].

This work was supported by the Russian Foundation
for Basic Research (project nos. 00-02-16764 and
99-02-16689) and the Russian program “Physics of
Solid-State Structures” (project no. 98-2030).
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The phase composition of nanocrystalline Co(C) films obtained by a new pulsed plasma vaporization technique
was found by studying their atomic structure and magnetic properties. The films deposited at the substrate tem-
perature T = 50°C were of heterophase structure and consisted of a supersaturated solid Co(C) solution and the
metastable Co3C carbide. The films obtained at T = 150°C represented a mechanical mixture of the metastable
Co3C and Co2C carbides. The metastable Co3C and Co2C carbides obtained in a nanocrystalline state were
high-pressure phases (~100 kbar). The thermal stability ranges of these metastable phases were determined.
© 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 75.70.-i; 76.50.+g; 81.30.Bx
It is known that nanocrystalline alloys possess a
high defect density, an excess volume per atom, and
hence an excess Gibbs free energy. This leads to the
formation of new metastable phases in the nanostruc-
tured state. A new pulsed plasma vaporization tech-
nique was developed at the Institute of Physics, Sibe-
rian Division, Russian Academy of Sciences (Krasno-
yarsk). Nanocrystalline Fe, Co, and Ni films containing
from 20 to 30 at. % C can be obtained by this technique
[1]. Nanocrystalline Fe(C) alloy films were studied in
[2]. It was found that a chain of structural transforma-
tions, fcc Fe(C)  hcp Fe(C)  bcc Fe + C, was
carried out in these films as a result of thermal relax-
ation. It is known that a closely packed modification,
hcp Fe, is a high-pressure phase and is stabilized at P ~
50 kbar. The work presented here is devoted to studying
nanocrystalline Co(C) films obtained by the pulsed
plasma vaporization technique. The aim of this work is
to investigate the phase composition of Co(C) films and
to determine the thermal stability ranges of the metasta-
ble structural states found in this work.

Co(C) alloy films 1000 Å thick were obtained by the
pulsed plasma vaporization technique in a vacuum with
the residual gas pressure P0 = 10–6 mm Hg. Glass and
glass ceramic were used as substrates. The films were
synthesized at the following substrate temperatures Ti:
T1 = 50°C, T2 = 100°C, T3 = 150°C, and T4 = 250°C.
Stepped annealing of the Co(C) films was performed
for an hour in a vacuum chamber with the residual gas
pressure P0 = 10–6 mm Hg. The atomic structure of the
initial and annealed nanocrystalline Co(C) films was
studied by transmission electron microscopy and syn-
chrotron radiation X-ray diffraction (Institute of
0021-3640/00/7206- $20.00 © 20316
Nuclear Physics, Siberian Division, Russian Academy
of Sciences, Siberian International Center of Synchro-
tron Radiation). The synchrotron radiation wavelength
was λ = 1.748 Å.

The dynamic magnetic properties of nanocrystalline
Co(C) films were studied on a standard x-band spec-
trometer. The resonant fields of ferromagnetic reso-
nance were measured at room temperature throughout
the entire range of angles between the external field and
the film plane with the aim of determining the effective
magnetization Meff by the equation

where  and  are the fields of ferromagnetic reso-
nance for the corresponding experimental geometry.

Co(C) films obtained at Ti = 50°C. Figure 1 dis-
plays X-ray spectra (λ = 1.748 Å) of Co(C) films
obtained at Ti = 50°C. Curve a in Fig. 1 (initial sample)
is characterized by two peaks: d = 2.07 Å (the region of
coherent scattering estimated from the width of this
peak equals 40 Å) and d = 2.20 Å. The reflection at d =
2.07 Å is considerably shifted towards small angles
with reference to the reflection from the (111) plane of
the fcc Co lattice, which points to an increased value of
the lattice constant a. The C content of the fcc Co solid
solution can be estimated from this shift. This estima-
tion gives ~Co90C10. (Note that the equilibrium solubil-
ity of C in Co at T = 1310°C is only X0 ~ 3 at. %). The
peak at d = 2.20 Å is due to the reflection from the (120)
plane of the metastable Co3C carbide with an orthor-
hombic lattice. Annealing at T = 200°C leads to the for-
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mation of the carbide (additional reflections appear)
and to the appearance of reflections from a solid solu-
tion of hcp Co(C). Annealing at T = 400°C leads to the
dissolution of Co3C (reflections from the carbide disap-
pear in curve c, Fig. 1) and to the formation of a het-
erophase system (hcp + fcc) Co with lattice constants
typical of the phases of pure cobalt.

Electron-diffraction patterns obtained for the initial
samples were characterized by three diffuse rings,
which indicated that the atomic structure of the Co(C)
films was disordered [1]. After annealing for one hour
(T = 140°C), discrete-point diffraction patterns were
observed. Figure 2 shows this microdiffraction pattern
and its interpretation, indicating that a Co3C phase with
an orthorhombic lattice was observed. The lattice
parameters of the metastable Co3C carbide determined
from the diffraction pattern (a = 4.5 Å, b = 5.14 Å, c =
6.72 Å) are in agreement with the results of structural
investigations performed for metastable carbides by
other authors [3].

One ferromagnetic resonance line was observed for
the film under study when it was aligned parallel to the
magnetic field. We measured the angular dependence
of this line throughout the entire range of angles. Using
Eq. (1), we determined the effective magnetization of a
supersaturated solid Co(C) solution (metastable Co3C
carbide was found to be paramagnetic at room temper-
ature). For the films under study, Table 1 presents Meff
of the Co(C) solid solution, the annealing temperatures,
and the phase states found by structural methods. An
increase in magnetization after annealing at T = 250°C
is associated with the fact that the decomposition of the
metastable Co3C carbide results not only in an increase
in the volume fraction of the Co(C) solid solution, but
also in a decrease in the concentration of C in this solid
solution down to X0.

Fig. 1. X-ray diffraction patterns of (a) the initial Co(C) film
obtained at T = 50°C, (b) an annealed film at T = 200°C, and
(c) a film annealed at T = 400°C.
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Nanocrystalline Co(C) films obtained at Ti =
100–150°C. As well as the samples obtained at Ti =
50°C, these films were found to be two-phase systems.
However, the metastable Co3C carbide was the major
matrix phase in this case. Another metastable carbide,
Co2C, was present as inclusions dispersed in this
matrix. Figure 3 shows a photograph of a Co2C carbide
microdiffraction pattern and its interpretation. The
orthorhombic lattice constants of the stoichiometric
Co2C carbide calculated in this work (a = 2.9 Å, b =
4.47 Å, c = 4.43 Å) are in agreement with the results
obtained by other authors [3]. The Co2C carbide has
higher thermal stability than the Co3C phase. It was
observed even in Co(C) films annealed at T = 500°C. It
was possible to determine the decomposition tempera-
ture of metastable carbides by ferromagnetic resonance
measurements carried out for the given sets of samples
after their thermal annealing. Note that these films in
the initial state exhibit no resonance absorption of
microwave radiation energy, because the Co2C carbide,
as well as the Co3C carbide, is paramagnetic at room
temperature. After annealing these films for one hour at
T = 250°C (the decomposition temperature of Co3C), a
ferromagnetic resonance signal appears. From mea-
surements of the angular dependence of the resonant
fields, it was found that a supersaturated Co(C) solid
solution was the ferromagnetic matrix in these

Fig. 2. Microdiffraction pattern obtained from the metasta-

ble Co3C carbide. The axis of the reflection zone is [01 ].2

Table 1.  Co(C) at T = 50°C

Tanneal , °C Meff , Hz Composition

Initial 990 –Co3C + Co90C10

150 1000 –Co3C + Co90C10

250 1280 –Co(C)
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annealed films. Table 2 gives the values of effective
magnetization Meff calculated from the ferromagnetic
resonance curves and the annealing temperatures for
this series of films. From the data presented in Table 2,
it is evident that the metastable Co2C carbide is decom-
posed after annealing for one hour at T = 520°C.

Co films obtained at Ti = 250°C are characterized by
(hcp + fcc) Co reflections. The lattice constants calcu-
lated from these reflections are typical of the phases of
pure cobalt. The measured magnetic characteristics
exhibit the same property.

The structural states occurring in metastable Co(C)
films were analyzed with the use of a metastable Co–C
phase diagram shown in Fig. 4 in the coordinates
(G, C), where G = H – TS (H is enthalpy and S is

Fig. 3. Microdiffraction pattern obtained from the metasta-
ble Co2C carbide. The axis of the reflection zone is [100].
The film was obtained at T = 500°C, and annealing was car-
ried out at a temperature of 300°C.

Table 2.  Co(C) at T = 100–150°C

Tanneal , °C Meff , Hz Composition

Initial – –Co3C + Co2C

250 820 –Co2C + Co(C)

350 850 –Co2C + Co(C)

520 1250 Co(C)
entropy) is the Gibbs energy. Here, the transition
enthalpy ∆Hfcc → hcp = 0.22 kcal/mol [4], and the posi-
tive formation enthalpies of the Co3C and Co2C car-
bides are ~6 kcal/mol and ~4 kcal/mol, respectively
[4]. Co(C) solid solutions that are in equilibrium with
metastable carbides are supersaturated. The highest
concentration of carbon in an equilibrium solid solution
is X0 ~ 3 at. %, which is considerably lower than the con-
centration of carbon in the metastable alloy X ' ~ 10 at. %.
In accordance with the results of studying the structure
and magnetic properties, the initial state of the metasta-
ble Co–C films obtained by pulsed plasma vaporization
at Ti = 50°C is shown by a square in Fig. 4. An increase
in the substrate temperature during deposition to Ti =
100–150°C results in the formation of a mechanical
mixture of the metastable Co3C and Co2C carbides in
the initial state. This state is shown by a triangle in Fig. 4.
The metastable Co3C and Co2C carbides are high-pres-
sure phases and are stabilized in the Co–C alloy at the
pressure P ~ 100 kbar [5]. The occurrence of the meta-
stable phases in the nanocrystalline films under study
was possible for the following reasons. Because of the
small grain size (~40 Å), the specific area Sn of the
nanocrystalline Co(C) alloy is very large. The surface
energy density σn in the metastable Co(C) films
obtained by the pulsed plasma vaporization technique
turned out to be so high that the contribution of the sur-
face energy Sn × σn to the thermodynamic Gibbs poten-
tial ∆G was comparable to the formation enthalpy of
the metastable carbides ∆G ~ σnSn ≥ ∆Hcarbide → Co + C.
Heating a metastable Co(C) film results in an increase
in the grain size of the nanocrystalline alloy; therefore,
the relationship between ∆G and ∆Hcarbide → Co + C

reverses its sign: ∆G < ∆Hcarbide → Co + C. Thus, the
decomposition of metastable phases occurs.

It may be concluded that high-pressure phases occur
in nanocrystalline Co(C) films obtained by the pulsed
plasma vaporization technique at certain substrate tem-
peratures. Films synthesized at Ti = 50°C are het-
erophase systems and consist of a supersaturated Co(C)

Fig. 4. Qualitative phase diagram of a Co–C system on the
(G, X) coordinates.
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solid solution and the stoichiometric Co3C carbide. The
following chain of structural transformations is
observed upon thermal relaxation in the given systems
(see the square in Fig. 4): Co(C) + Co3C  Co + C.
In the case of nanocrystalline Co(C) films obtained by
the pulsed plasma vaporization technique at Ti =
100−150°C, the initial phase composition and the
sequence of structural transformations appear to be dif-
ferent (see Fig. 4, triangle): Co3C + Co2C  Co(C) +
Co2C  Co(C) + C. The decomposition of the meta-
stable Co3C and Co2C carbides proceeds at tempera-
tures of 250°C and 520°C, respectively.
JETP LETTERS      Vol. 72      No. 6      2000
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It is shown that the integrated luminescence intensity of localized excitons in solid solutions ZnSe(1 – c)Tec has
a component slowly decaying with time. After the excitation above the mobility threshold, the long-time inten-
sity decreases exponentially, with a fractional exponent changing from a value corresponding to the critical
index of anomalous diffusion to the index of normal diffusion as the temperature increases from 5 to 80 K. This
change allows estimation of the energy scale for the fluctuation tail of the conduction band. © 2000 MAIK
“Nauka/Interperiodica”.

PACS numbers: 71.23.An; 71.55.Jv
Pulsed optical studies of solid solutions ZnSe(1 – c)Tec
and CdS(1 – c)Sec showed that the luminescence of exci-
tons localized in fluctuation potential wells has a slow
component nonexponentially decaying with time [1, 2].
In this work, we demonstrate that the time behavior of
luminescence intensity depends on the experimental
parameters such as the energy of the exciting photons
and the sample temperature.

Compared to perfect crystals, the excitonic spec-
trum near the band bottom of solid solutions
ZnSe(1 − c)Tec and CdS(1 – c)Sec is strongly modified [1–4].
The composition fluctuations generate random poten-
tial with wells capable of localizing a hole or an exci-
ton. A particularly simple picture, allowing one to ratio-
nalize the luminescence spectrum of a solid solution, is
observed for a ZnSe(1 – c)Tec crystal with a low concen-
tration of the narrow-band component [2, 3]. At c ≤ 0.2,
the fluctuations in a system of randomly distributed
anions of two types are represented by finite Te clusters
in an anionic sublattice. The concentration of not-too-
large clusters and their size distribution are known from
the lattice percolation theory [5]. The deepest localized
states are formed at the isolated clusters, while the shal-
lower states spread over two or several Te clusters to
form superclusters. The mobility threshold, below
which are only the states localized at the isolated clus-
ters and finite superclusters, corresponds to the energy
for which a percolation cluster arise due to the overlap
between the wave functions of localized excitons.
0021-3640/00/7206- $20.00 © 20320
However, the regions where the spatially isolated local-
ized excitonic states occur are also present above the
percolation threshold, although the number of such
states rapidly decreases with a decrease in the localiza-
tion energy. In particular, the absorption and lumines-
cence data for the ZnSe(1 – c)Tec crystal studied in this
work suggest that the mobility threshold at c = 0.13 lies
near the localization energy of a four-atomic Te cluster
[2, 3]. Although this scheme adequately describes the
absorption and luminescence spectra, some unusual
features of luminescence kinetics do not fit in with such
a simple picture and call for a closer inspection of the
disorder effect on electron motion in the conduction
band.

To explain the main features of long-time lumines-
cence decay, we assume that, subsequent to a relatively
fast recombination of the majority of excitons that were
localized as a whole immediately after the exciting
pulse, some of the carriers remain separated. The
appearance of the separated carriers may be imagined
as a result of electron retardation in the relaxation of
excited carriers. The holes in these solid solutions effi-
ciently interact with the lattice and, as a result, rapidly
occupy localized levels appearing in the potential relief
of the valence band. Electrons lose energy far more
slowly and do not always have time to adiabatically fol-
low the holes, provided that the hole localization is
deep and fast enough. A detailed picture depends on the
000 MAIK “Nauka/Interperiodica”
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energy of the exciting photons and the character of the
states in the conduction band.

1. A power law t–δ may be considered as the sim-
plest asymptotic form of slow luminescence decay.
Such a dependence can be expected for a bimolecular
annihilation in the “mean-field” approximation

(1)

where ne ≈ nh are the mean electron and hole concentra-
tions. If the reaction rate constant k is independent of
time, the intensity will decrease following the Bec-
querel law I(t) ~ (1 + t/τ)–2, irrespective of whether the
electrons are mobile or localized. This dependence was
observed in [2] for a CdS(1 – c)Sec crystal upon excita-
tion below the exciton mobility threshold.

If the reaction constant slowly decreases with time,
k ~ (1 + t/τ)–1/2, the intensity should decay as I(t) ~ (1 +
t/τ)–3/2. This dependence was observed for amorphous
silicon and theoretically explained in [6] by the diffu-
sion of electrons and holes in the presence of the Cou-
lomb interaction between them. A similar dependence
was obtained for ne ≈ nh in a different approach [7],
where it was taken into account that in the course of the
annihilation process the particles become nonuni-
formly distributed in space.

In this work, the asymptotic decay of a transient
luminescence excited below the exciton mobility
threshold was studied in a ZnSe–Te solid solution. The
observed dependence is satisfactorily described by the
expression

(2)

over a wide time domain.
The observation of a long-time luminescence com-

ponent suggests that some of the photons absorbed
below the exciton mobility threshold generate spatially
separated immobile carriers captured to the fluctuation
levels. In such a situation, the localized excitons can
radiatively recombine only through tunneling, similar
to the donor–acceptor pairs [8].

2. Although the spectroscopic data do not provide
direct information on the electronic states, one may
assume that anionic substitution disturbs the potential
relief in the conduction band as well. The presence of a
tail of localized states near the conduction band, even if
it is appreciably smaller on the energy scale than the
valence band tail, inevitably adds complexity to the
kinetics of relaxation of the separated electrons and for-
mation of the localized excitons and, hence, to the char-
acter of luminescence decay. If the electronic and hole
perturbations differ substantially on the energy scale,
the shapes of the absorption and luminescence spectra
will be determined by the valence band tail.

If the conduction band has a tail of localized states,
then, depending on the electron energy, it may either be
trapped by an isolated potential well; occupy one of the
states of the complex (supercluster) formed by a finite

dne/dt dnh/dt knenh,–= =

I t( ) 1 t/τ+( )[ ] δ–∼
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number of potential wells; or, finally, occupy one of the
states of a percolation cluster in the conduction band. In
the first case, the electron may be considered immobile
and there is only one possibility for it to form an exci-
ton, namely, through tunneling to the nearest localized
hole. In the second case, the electron can move within
a supercluster to form an exciton. Finally, in the third
case, the electron, in principle, may be considered
immobile, but the character of its motion depends on its
kinetic energy. For high energies, the density of states
is high and the disorder effect amounts to electron scat-
tering. However, if the kinetic energy is low, the elec-
tron occupies the states formed by the overlapping
wave functions of potential wells. In this energy range,
the possible electron trajectories are limited by the
geometry of the percolation cluster, whose nonuniform
sizes may be characterized by the correlation length ξ,
which rapidly decreases on moving away from the
mobility threshold.

One can expect that, if the number of localized
states in the conduction band tail is large, only a rela-
tively small fraction of electrons will occur in the
mobile states after above-threshold excitation. In this
case, the long-time luminescence component acquires
new features that can be described in terms of the the-
ory of diffusion-controlled annihilation [9–11]. In par-
ticular, the luminescence kinetics will follow an expo-
nential law with a fractional power (critical index of
“normal” [9–16] or “anomalous” [9, 11] diffusion) of
the time exponent.

The solution to the equation of normal diffusion
provides the following asymptotic expression for the

Fig. 1. Decay of integrated luminescence intensity of local-
ized excitons (solid line) in ZnSe(1 – c)Tec with c = 0.13 after
excitation below the mobility threshold. The dashed line is
a fit by Eq. (2) with τ = 14.1 ns and δ = 3/2.

Time (ns)
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probability that a mobile electron will survive for a time
t in a sphere of radius R [17]:

(3)

where d is the dimensionality of the space, γd is a con-
stant depending on the dimensionality, and D is the dif-
fusion coefficient. Note that if the electron and hole
concentrations are different, a function of this type is
obtained from Eq. (1).

For a random hole distribution in the crystal, the
probability to find a sphere with radius R free of local-
ized holes is

(4)

where Cd = 2πd/2/dΓ(d/2) and Γ(d/2) is the gamma func-
tion. The averaging of Eq. (4) over all possible domain
sizes using the optimization procedure [17] gives the
following optimum value Ropt for the radius of the sur-
vival domain:

(5)

As a result, the probability for mobile electrons to sur-
vive in the above optimum domains and, hence, the
time-dependent electron concentration is given by the

P R t,( ) γd
Dt

R2
------–

 
 
 

,exp∼

P0 R( ) nhRdCd–{ } ,exp=

Ropt

2γd

dCd

---------Dt
nh

------ 
 

d / d 2+( )
= .

Fig. 2. Integrated luminescence intensity as a function of
t0.33 for ZnSe0.87Te0.13 (solid line) after excitation above the
mobility threshold. The dashed line is a fit by Eq. (8) with

 = 0.74 ns and δ = 0.33. Curves for δ = 0.30 and 0.36 are

labeled 1 and 2, respectively.

τD'
expression of the form

(6)

It follows from Eq. (6) that the logarithm of the
luminescence intensity is proportional to a fractional
power of t:

(7)

giving the normal-diffusion exponent δ = 0.6 for d = 3.
If the sizes of the diffusion domains making the

optimum contribution to the band intensity are smaller
than, or comparable with, the correlation length of the
percolation cluster [11], i.e., if Ropt ≤ ξ, the diffusion
regime becomes anomalous and the dimensionality d in
Eq. (7) should be replaced by the “hyperuniversal”
fraction dimensionality [18, 19], i.e., by the spectral
dimensionality of the percolation cluster ds, which is
deemed almost independent of the dimensionality of
the system [11, 18, 19]:

(8)

where ds = 2df /dw , df is the fraction dimensionality (df ≈
2.51 for three-dimensional space [20]), and dw is the
index of fraction dimensionality of random walk [11]
(dw ≈ 3.8 for d = 3 and δ ≈ 0.4); i.e., the process mark-
edly slows down if, instead of normal diffusion, the
motion proceeds over the states of the percolation clus-
ter.

The process may be further decelerated if diffusion
proceeds partially over the finite superclusters. In this
case, d in Eq. (7) should be replaced by the 2df /

index, where  = dw/(1 – β/2ν) [11] (β and ν are the
critical indices of the order parameter and the correla-
tion length, respectively [20]) and  ≈ 5.01 for
d = 3 [11].

The time-dependent integrated intensity is shown in
Fig. 2 for a ZnSe–Te solid solution excited above the
exciton mobility threshold. This dependence is described
over a wide time interval by an exponential function with
diffusion critical index df /(df + ) ≈ 0.33.

With a rise in temperature, the mobile electrons with
thermal kinetic energy become dominant in the diffu-
sion process. As the electron energy increases, ξ should
decrease and the ratio between Ropt and ξ should
change, leading to the acceleration of diffusion and an
increase in the critical index.

The temperature-induced changes in the lumines-
cence decay kinetics are shown in Fig. 3. The curve fit-
ting procedure suggests that the experimental data are

Popt 1 2/d+( )– γd
d / d 2+( )---





exp=

×
dCd

2
--------- 

 
d / d 2+( )

nh
2/ d 2+( ) Dt( )d / d 2+( )





.

I t( )( )ln– t/τD[ ]d / d 2+( ),∼

I t( )( )ln– t/τD'[ ]
ds/ ds 2+( )

∼ t/τD'[ ]δ,=

dw'

dw'

dw'

dw'
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Fig. 3. Temperature-induced changes in the decay rate for the integrated luminescence intensity of the ZnSe 0.87Te0.13 crystal.

(s)
(,)
(d)
(u)

Time (ns)
described by the function exp(–[t/ ]δ), with the criti-
cal index δ changing from 0.33 to 0.6 as the tempera-
ture changes from 5 to 80 K. A crossover to normal dif-
fusion at T = 80 K indicates that the thermal energy of
electron delocalization is about 5 meV. The tempera-
ture at which the diffusion becomes normal determines
the scale of electron band rearrangement. Considering
that the Uhrbach parameter for ZnSe(1 – c)Tec in the con-
centration range studied is about 25 meV, the scale of
conduction band edge smearing is at least five times
smaller. For such a ratio between parameters, the influ-
ence of the fluctuation potential of the conduction band
on the spectrum of localized excitons is negligible,
although the long-time luminescence kinetics would be
difficult to explain without taking it into account.

This work was supported in part by the Deutsche
Forschungsgemeinschaft, the Russian Foundation for
Basic Research, and the program “Physics of Solid-
State Nanostructures.”
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Screening of excitonic states by a system of 2D electrons (or holes) in GaAs/AlGaAs single quantum wells is
studied. With increasing concentration of 2D charge carriers, a threshold-type disappearance of excitonic states
is observed in both luminescence and reflectance spectra. The higher the quality of the 2D system, the lower
the corresponding threshold concentration. In the best systems, the collapse of excitonic states occurs at unex-
pectedly low electron densities ne = 5 × 109 cm–2, which correspond to the mean dimensionless distance
between the particles rs = 8. This value far exceeds the threshold values observed for 3D systems (rs ≈ 2), as
well as the values obtained for quantum wells in previous studies. The problem of measuring the concentration
of low-density 2D charge carriers in photoexcitation conditions is solved by applying the method of optical
detection of the dimensional magnetoplasma resonance. This method provides reliable measurements of the
density of a 2D system to the values about 109 cm–2. © 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 73.20.Dx; 71.35.Cc
Free charge carriers screen the Coulomb interaction
between photoexcited electrons and holes in a semicon-
ductor, so that at a certain concentration of these carri-
ers, the formation of bound excitonic states in the elec-
tron (hole) plasma becomes impossible. The collapse of
bound excitonic states because of screening of the Cou-
lomb interaction by free charge carriers was studied
experimentally on bulk semiconductors with different
doping levels, as well as under conditions of optical
excitation [1, 2]. From these studies, it followed that the
typical concentration at which the excitonic states col-
lapse corresponds to the mean dimensionless distance
between the particles (expressed in terms of the Bohr
radius of the exciton) rs ≈ 2 [2]. This value of the thresh-
old concentration agrees well with the results of the
theoretical calculations performed for an electron–hole
plasma [3]. Thus, by now it is agreed that, in 3D sys-
tems, the screening of excitonic states occurs at con-
centrations corresponding to the interparticle spacing
rs ≈ 2. However, it should be noted that, in the afore-
mentioned studies, the screening of excitonic states was
caused not by a charged (electron or hole) system, but
by a neutral electron–hole plasma, in which the concen-
trations of electrons and holes are equal.

With the appearance of 2D electron systems, the
question about the specific features of the screening of
excitonic states by 2D electrons has become topical. In
contrast to 3D systems, in single quantum wells, selec-
tive doping of the barrier by impurities makes it possi-
0021-3640/00/7206- $20.00 © 20324
ble to spatially separate positively charged impurities
from electrons, so that a low-density metallic 2D elec-
tron channel can coexist in the well with photoexcited
excitons. It is these systems that allow one to experi-
mentally study the screening of excitonic states as a
function of increasing concentration of 2D electrons in
the quantum well. We note once again that, in this case,
we are dealing with the screening of excitons by a
charged electron system rather than by a neutral elec-
tron–hole plasma, as in the case of 3D objects.

It is common knowledge that in 2D systems the
screening of the Coulomb interaction by free carriers is
less effective than in the 3D case. Specifically, in the 2D
case, the screened Coulomb potential decreases at large
distances according to a power law [4], whereas, in a
3D gas, the screened potential exhibits exponential
decay. Besides, it is known that, in 2D systems, the for-
mation of localized states occurs at potentials as low as
one likes. Based on these considerations, it was
believed that, in quasi-two-dimensional systems, the
screening of the Coulomb potential is much weaker
than in the 3D case, and therefore the collapse of exci-
tonic states in quantum wells should occur at carrier
concentrations corresponding to the interparticle spac-
ing rs < 2 [5].

Just these values were obtained for the threshold
concentration from the first studies of the screening of
excitons by 2D electrons [6]. In the cited experiments,
exciton collapse was observed in GaAs/AlGaAs struc-
000 MAIK “Nauka/Interperiodica”
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tures at electron densities of about 1011 cm–2, which
corresponds to the parameter rs = 1.9. However, the
quantum wells used in these studies were characterized
by very large fluctuations of the random potential, so
that the delocalization of 2D electrons in these struc-
tures occurred at the same high concentrations of 2D
charge carriers as the disappearance of excitonic states
from the spectrum. Thus, it remained unclear whether
the appearance of excitonic states observed with
decreasing electron density was related to the reduced
effect of screening or was a result of the localization of
2D charge carriers in the random potential.

From the results of experiments [7, 8] with
CdTe/CdMgTe and ZnSe/ZnMgSe 2D structures, it fol-
lowed that ionization of free excitons occurs at concen-
trations corresponding to large values of rs. However,
because of the lack of measurements of the carrier con-
centrations in these structures, the values obtained in
these experiments for the threshold concentrations cor-
responding to the screening of excitonic states can only
be considered as estimates.

The purpose of our study was to experimentally
investigate the screening of excitonic states by 2D
charge carriers in high-quality GaAs/AlGaAs single
quantum wells with simultaneous measurements of the
concentration of the 2D system under photoexcitation
conditions. We studied the disappearance of the free
exciton line from the luminescence spectra and the
reflectance spectra; the density of the 2D channel was
determined by the method of dimensional magneto-
plasma resonance, which was optically detected simul-
taneously with the measurements of the luminescence
and reflectance spectra.

The studies were performed on GaAs/AlGaAs sin-
gle quantum wells of width 200–300 Å by using both
selectively doped (with the carrier concentration ne =
1.4 × 1011 cm–2) and undoped structures. The presence
of residual impurities in the undoped structures caused
the formation of low-density 2D channels of either the
electron or hole type (with the charge carrier concentra-
tion of about ne(h) = (1–2) × 1010 cm–2). The carrier con-
centration in the channel was smoothly varied by illu-
minating the structure with the combined radiation
from two sources of light: a semiconductor laser gener-
ating the wavelength λ = 7500 Å (for intrawell photo-
excitation) and a He–Ne laser with λ = 6328 Å (for bar-
rier photoexcitation). The use of a combined photoex-
citation of the barrier and the well provided the
possibility to decrease the density of the 2D channel
from the maximum one (which was different for differ-
ent structures) to 2 × 109 cm–2. In some structures, it
was even possible to change the type of carriers in the
was well from n-type (ne ≈ 1010 cm–2) to p-type (nh ≈
1010 cm–2) by passing through the zero concentration of
the majority carriers.

Optical measurements were performed at T = 1.5 K
by using a three-light-guide technique, which allowed
simultaneous measurements of the reflectance and
JETP LETTERS      Vol. 72      No. 6      2000
luminescence spectra under the same optical excitation
conditions. The charge carrier concentration in the
channel was determined by optical detection of the
dimensional magnetoplasma resonance. For this pur-
pose, mesas in the form of disks 0.1 to 1 mm in diame-
ter were fabricated on the structures under study, and
the samples were placed in an antinode of the micro-
wave electric field in the waveguide. We studied the
dependences of the differential luminescence signal
formed as a result of modulation of the microwave exci-
tation power on the magnetic field for different fixed
frequencies (within 16–40 GHz).

Figure 1 shows the changes that occur in the lumi-
nescence and reflectance spectra of an undoped quan-
tum well with variation of the carrier concentration in
the 2D channel. This particular figure illustrates the
screening of excitons by a hole channel; for the case of
an electron system, the behavior of the spectra was pre-
cisely the same. At high concentrations (Fig. 1a), the
X+ line corresponding to a localized charged trion dom-
inates the luminescence and reflectance spectra [9]. As
the concentration of 2D carriers (holes in the case of
Fig. 1) decreases the intensity of the trion emission line
decreases and the X line corresponding to the free exci-
ton emission appears in the spectrum (Figs. 1b, 1c).
This line dominates the luminescence spectrum
observed for the lowest densities of 2D carriers
(Fig. 1d). A similar behavior is observed for the X– and
X+ lines in the reflectivity spectra. In the case of low
concentrations, the latter exhibit only the free exciton
line X (Fig. 1d), corresponding to the excitonic state of
an electron and a heavy hole. This line abruptly disap-
pears from the reflectance spectra when the concentra-
tion of 2D carriers in the well reaches some threshold
value. Thus, as one can see from Fig. 1, the collapse of
the excitonic state manifests itself as a threshold-type
disappearance of the exciton line from both the lumi-
nescence spectrum and the reflectance spectrum.

One of the most subtle questions that arises in stud-
ies of the optical properties of a 2D electron system is
the determination of the concentration of 2D carriers in
the presence of optical illumination. In the case of an
electron channel with electron concentrations of about
ns = 3 × 1010–3 × 1011 cm–2, the value of ns can be deter-
mined from the magnetoluminescence spectra by the
Landau quantization of the electron energy spectrum
[10]. In samples with high-mobility charge carriers, the
Landau quantization in the luminescence spectra can be
observed in magnetic fields of about 0.2 T. From the
number of fully occupied Landau levels and from the
variation of this number with magnetic field, one can
reliably determine the 2D electron density [10]. How-
ever, this method does not apply in the case of a 2D hole
channel (because of the large hole mass and the com-
plex structure of the valence band) or in the case of a
low-density 2D electron gas with ne < 2 × 1010 cm–2.
For such low concentrations, it is also impossible to use
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Fig. 1. Luminescence and reflectance spectra measured for a GaAs/AlGaAs quantum well with different carrier concentrations in
the 2D channel (the concentration decreases from plot (a) to plot (d)). The arrows indicate the spectral positions of the free exciton X
and the positively charged trion localized by impurities in the barrier X+.
transport measurements because of the appearance of
unsolvable contact problems.

To determine the carrier concentration in low-den-
sity 2D systems under photoexcitation conditions, we
used the method of dimensional magnetoplasma reso-
nance. In a 2D electron system of finite dimensions, a
mixing of cyclotron and plasma modes takes place,
which leads to the dependence of the magnetoplasma
resonance frequency on both the 2D carrier concentra-
tion and the structure dimensions [11, 12]. For a mesa
in the form of a disk with diameter d, the frequencies of
the upper and lower magnetoplasma modes are
described by the expression

(1)ωDMR

ωCR

2
--------- ωp

2 ωCR

2
--------- 

 
2

+ ,+±=

Fig. 2. Experimental magnetic-field dependence of the
dimensional magnetoplasma resonance for mesas of differ-
ent diameters d in the case of a low-density 2D electron sys-
tem. The inset shows the experimental dependence of the
plasma frequency νpl on the mesa diameter d for three val-

ues of the 2D electron density: ne = (1) 3 × 1011, (2) 4 ×
1010, and (3) 6 × 109 cm–2.

d–1/2 (mm–1/2)
where ωCR = eB/m* is the cyclotron frequency and

(2)

is the plasma frequency of 2D charge carriers with the
concentration n2D, where eeff = (1 + e0)/2 is the effective
dielectric constant and m* is the effective mass.

Figure 2 presents the experimental dependence of
the resonance magnetic field (for the upper branch of
the magnetoplasma resonance) on the microwave exci-
tation frequency for mesas with different diameters.
From this figure, one can see that, at a fixed microwave
excitation frequency, a decrease in the mesa diameter
shifts the resonance toward lower magnetic fields,
which corresponds to an increase in the plasma fre-
quency contribution to Eq. (1). Figure 2 also shows the
calculated dependence of the magnetoplasma reso-
nance frequency on the magnetic field; the calculations
were performed by Eq. (1) for mesas of different diam-
eters with a single adjustable parameter ns. One can see
that, from this approximation of the experimental data,
it is possible to determine the plasma frequency ωp as
the value of the resonance frequency in the field B = 0.
The inset of Fig. 2 shows the experimental dependence
of the plasma frequency νpl on the mesa diameter d for
three different concentrations of the 2D electron sys-
tem. From this figure, it follows that the plasma fre-
quency is proportional to d–1/2 [according to Eq. (2)],
and the slope of the linear dependence is governed by
the electron density. The concentration of 2D electrons
that was determined by the method of dimensional
magnetoplasma resonance proved to be coincident with
the results of transport and magnetooptic measure-
ments, which were possible in the presence of a weak
photoexcitation at relatively high 2D electron densities.

Studies of the magnetoplasma resonance not only
allow one to accurately determine the charge carrier
concentration up to values of about ns = 109 cm–2, but
also provide the measurement of the momentum relax-
ation time, which characterizes the quality of the struc-
ture. For the best samples, the half-width of the reso-

ωp
2 3π2nse

2/4m*eeffd=
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Fig. 3. Intensity ratio of the spectral lines corresponding to free and charged excitons (the X and X (+, –)) versus the concentration of
electrons (positive concentration values) and holes (negative concentration values) for the measured (d) luminescence and (s)
reflectance spectra. The insets show the characteristic spectra of the dimensional magnetoplasma resonance for the n-channel (elec-
tron resonance) and the p-channel (hole resonance).

Concentration (1010 cm–2)

nh = 2 × 1010 cm–2

nh = 2 × 1010 cm–2
nance line was less than 0.0025 T, which corresponds
to an electron scattering time of 200 ps. In the case of
very low concentrations, the scattering time decreases
and the resonance peak broadens; nevertheless, for
mesas with a diameter of 0.1 mm, reliable measure-
ments of electron density were possible up to concen-
trations of about 109 cm–2. As the electron density
decreased and the transition from the electron channel
to the hole one occurred, the intensity of the line corre-
sponding to the electron magnetoplasma resonance
decreased and the hole resonance line appeared in the
spectrum, the latter line being observed at noticeably
higher magnetic fields (see the insets of Fig. 3). In the
case of a hole channel, the behavior of the magneto-
plasma resonance can also be adequately described by
Eq. (1) and allows one to determine both the mass and
the concentration of 2D holes.

Figure 3 shows the ratio between the intensities of
the lines corresponding to free and charged excitons
(the X and X(+, –) lines) versus the concentration of elec-
trons (positive concentration values) and holes (nega-
tive concentration values). One can see that the inten-
sity ratios of the X and X(+, –) lines observed for the
reflectance and luminescence spectra exhibit a syn-
chronous sharp drop at the same threshold density of
charge carriers in the 2D channel. The critical concen-
trations at which exciton screening occurred in the best
structures in our experiment proved to be unexpectedly
low: ne = 5 × 109 cm–2 for the electron channel and nh =
7 × 109 cm–2 for the hole channel. Studies of quantum
wells of different quality showed that, as the quality of
the structures became lower (i.e., the resonance peak
became broader at the same charge carrier concentra-
tion), the threshold changes in the exciton spectrum
shifted toward higher densities of the 2D system. For
JETP LETTERS      Vol. 72      No. 6      2000
example, in low-quality structures in which the relax-
ation time decreased by no more than an order of mag-
nitude (down to 10 ps), the threshold density reached
values of about ne = 5 × 1010 cm–2.

The values of the threshold concentration of free
charge carriers at which the collapse of excitonic states
occurs in the best quantum wells studied in our experi-
ment correspond to the dimensionless interparticle
spacing rs = 8. This value noticeably exceeds the criti-
cal value rs = 2 obtained for 3D systems. One possible
explanation for this result may be that, in the 3D case,
it is practically impossible to implement the screening
of a single exciton by a charged electron plasma. On the
other hand, studies of exciton collapse in these systems
have always been performed for an electron–hole
plasma with equal concentrations of electrons and
holes.

Thus, the study of the reflectance and luminescence
spectra showed that the screening of free excitons in a
quantum well occurs in a threshold-type manner and at
unexpectedly low concentrations of free charge carri-
ers. The method of optical detection of the dimensional
magnetoplasma resonance, which was used in our
experiments, allowed us to accurately determine the
charge carrier density (for both electrons and holes) at
which exciton collapse takes place. It was found that
the critical concentration corresponding to the screen-
ing of excitonic states decreases with improving quality
of the structures.

This work was supported by the Russian Foundation
for Basic Research and by the INTAS (project no. 99-
1146).
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Suppression of the Local Jahn–Teller Effect in Nanostructures: 
Self-Trapped Holes and Excitons in AgCl Nanocrystals
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A strong decrease in the g-factor anisotropy was revealed by optically detected magnetic resonance for self-
trapped Jahn–Teller holes (both isolated and forming self-trapped excitons) in AgCl nanocrystals embedded
into the KCl crystal lattice. This is evidence for considerable suppression of the Jahn–Teller effect in nanoob-
jects. The suggested mechanism of suppression of the Jahn–Teller effect in nanocrystals is associated with an
additional deformation field arising in nanocrystals owing to a strong vibronic interaction at the interface.
© 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 71.35.Aa; 71.70.Ej; 76.70.Hb
Semiconductor nanocrystals introduced into solid
matrices (as a rule, glasses or organic materials) are of
particular interest for the development of physics of
low-dimensional structures and the design of new
materials. In recent years, a series of such systems have
been fabricated with the use of various materials and
technologies (see, e.g., [1, 2] and references therein).
The formation of nanocrystals in alkali-halide crystal
matrices was recently reported in [3, 4]. An important
advantage of such systems is that they provide the pos-
sibility of designing systems of oriented nanocrystals.

Silver halides occupy an intermediate position
between ionic and semiconductor crystals and possess
unique properties that are favorable to widespread use
of these materials in photography [5]. Insofar as the
band gap in AgCl (3.237 eV) is much narrower than in
KCl (≈8.7 eV), AgCl nanocrystals in KCl can be con-
sidered as a system of quantum dots. Both large-radius
states [self-trapped excitons (STEs) and shallow elec-
tron centers (SECs)] and strongly localized Jahn–Teller
centers [self-trapped holes (STHs)] in bulk AgCl crys-
tals have been well studied to date [6–8]. An STE rep-
resents a self-trapped hole capturing an electron to a
delocalized 1s orbital (aB = 15 Å), with the hole part of
the STE retaining the STH properties [6]. The Jahn–
Teller effect (JTE) is one of the fundamental local
effects in the solid state, which is quite sensitive to
internal fields and variations in electron–phonon inter-
actions. Because of this, experimental and theoretical
studies of the problem of the influence of nanoparticle
size on the JTE are of great interest.

In this work, the method of optically detected mag-
netic resonance (ODMR) was used to study self-
trapped holes, self-trapped excitons, and shallow elec-
tron centers in AgCl nanocrystals introduced into a KCl
0021-3640/00/7206- $20.00 © 20329
crystal matrix. It was found that the g-factor anisotropy
strongly decreases for self-trapped Jahn–Teller holes
(both isolated and forming self- trapped excitons).
A mechanism of suppression of the Jahn–Teller effect
in nanocrystals is suggested.

KCl:AgCl crystals were grown by the Stockbarger
technique. The silver concentration in the melt was 2%.
ODMR at a frequency of 35 GHz and temperature of
1.6 K was detected from the luminescence excited by
the UV light of an arc deuterium lamp with appropriate
light filters. The microwave power in the cavity of an
ODMR spectrometer was modulated at a sound fre-
quency, and the microwave-induced changes in the
luminescence intensity were detected using a lock-in
detector. Samples were cleaved from different parts of
a grown crystal and represented transparent single crys-
tals without visible inclusions. Contrary to silver
halides, alkali-halide crystals of the NaCl type can eas-
ily be cleaved along the {100} planes, greatly facilitat-
ing sample orientation.

The luminescence spectra (a) and the corresponding
ODMR spectra (b) are shown in Fig. 1 for three sam-
ples cleaved from different parts of a KCl:AgCl crystal
with different silver concentrations. The ODMR spec-
tra were detected from the change in the overall lumi-
nescence intensity in the range 450–600 nm for the
crystal orientation [001] || B and the microwave power
(100 mW) modulated at a frequency of 80 Hz. Curve 1
in Fig. 1b shows the positions of the ODMR lines cor-
responding to the STHs, STEs, and SECs in the AgCl
bulk crystal. Because the tetragonal axes of STH and
STE are aligned with one of the crystallographic axes
〈100〉 , three types of centers are present. The || and ⊥
signs label the ODMR lines of the centers whose Jahn–
Teller distortion axes are parallel and perpendicular to
000 MAIK “Nauka/Interperiodica”
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the magnetic field B, respectively. The ODMR spec-
trum of sample 1 virtually coincides with the spectrum
recorded under the same conditions for bulk AgCl crys-
tals. It shows the same angular dependence and is char-
acterized by the same parameters, g|| = 2.14 and g⊥  =
2.04 for STH and g = 1.88 for SEC; for the triplet state
of STE, g|| and g⊥  are equal to the half-sum of the cor-
responding STH and SEC g factors and D = –730 MHz.
The fact that the ODMR spectra recorded for the
KCl:AgCl crystals with high silver concentration coin-
cide with the spectra of the bulk AgCl crystals allows
one to confidently state that KCl:AgCl contains AgCl
microcrystals that are embedded into the KCl lattice,
exhibit the properties of a bulk material, and are ori-
ented like the matrix crystal.

The ODMR spectrum of sample 2 (curve 2 in
Fig. 1b) shows lines corresponding to the triplet state,
as well as the superimposed, less strong ODMR signals
due to a center with spin S = 1/2 and axial g tensor g|| =
2.015 and g⊥  = 1.973. These signals are more pro-
nounced in the ODMR spectrum of sample 3 (curve 3
in Fig. 1b). To separate the signals from different cen-
ters, the ODMR spectra were recorded at different
modulation frequencies of the microwave power.

The lines of the triplet ODMR spectrum are shown
in Fig. 1b (curve 2) for two orientations of the tetrago-
nal axis of the centers. The angular dependences of

Fig. 1. (a) Luminescence and (b) ODMR spectra of samples
1, 2, and 3 (curves 1, 2, and 3, respectively) cleaved from
different parts of a grown KCl:AgCl crystal (2% AgCl in the
melt). The spectra were detected from the luminescence
intensity under the following conditions: T = 1.6 K, ν =
35.2 GHz, P = 100 mW, fmod = 80 Hz, and B || [001]. The
positions of the ODMR lines corresponding to self-trapped
holes (STH), self-trapped excitons (STE), and shallow elec-
tron centers (SEC) in bulk AgCl crystals are shown in the
lower part of Fig. 1b. For ODMR spectrum (2), the positions
of STE in the AgCl nanocrystals (STE*) are shown. For
ODMR spectrum (3), the lines assigned to the STH in
nanocrystals (STH*) are indicated. The || and ⊥  signs refer
to the centers whose axes are oriented parallel and perpen-
dicular to the magnetic field, respectively.
ODMR spectra of a sample rotated in the (110) plane
suggest axial symmetry with the 〈100〉-type axis and
can be rationalized in terms of a triplet spin Hamilto-
nian with parameters (g|| = 1.99, g⊥  = 1.96, and |D| =
335 MHz) tangibly different from the STE parameters
in bulk AgCl. We succeeded in observing forbidden
transitions ∆m = ±2 for the [111] || B orientation of this
sample, confirming the triplet origin of the spectra. In
[4], the triplet ODMR spectrum with the same parame-
ters was assigned to the triplet STEs in AgCl nanocrys-
tals having, according to atomic force microscopy,
dimensions on the order of 50–70 Å. The distinctions in
the luminescence and ODMR spectra of samples 1 and
2 are likely due to a decrease, from several micrometers
to several nanometers, in the average sizes of the AgCl
crystals embedded into KCl.

The ODMR spectrum of the aforementioned axial
center with S = 1/2 may be assigned to the STHs in
AgCl nanocrystals. Luminescence and ODMR spectra
similar to spectra 3 were also recorded for sample 2
within two months after storing the sample in the dark
at room temperature.

Hence, the g-factor anisotropy decreases for the
STE and STH by more than half upon passing from
bulk AgCl crystals (and large enough AgCl “microcrys-
tals” embedded into the KCl lattice) to nanocrystals.
Indeed, in the bulk AgCl crystals, g|| – g⊥  = 0.107 for the
STH and 0.054 for the STE. In the nanocrystals, these
values are equal to 0.042 and 0.025 for the STH and
STE, respectively.

The g-factor anisotropy of the STH 2E state is deter-
mined by the effective Zeeman interaction of a Jahn–
Teller center and is described by introducing the appro-
priate electron operators in the basis of the 2E state [9]:

As the JTE decreases to zero, the average value of
g factor tends to the value corresponding to the isotro-

pic part of the Zeeman interaction, because 〈 〉   0

and 〈 〉   0. Therefore, a decrease in the anisotropy
of the g factor of the STH (S = 1/2) in AgCl nanocrys-
tals is a direct evidence of JTE suppression.

Let us consider the influence of the nanocrystal
sizes on the JTE for the STH mainly located on the
(AgCl6)4– cluster inside the AgCl nanocrystal incorpo-
rated into the KCl crystal matrix. Due to partial hole
localization on the Ag+ ion, the doubly degenerate 4d9

electronic state of the latter interacts linearly with the
e deformations of the cubic environment. This results
in the E × e JTE.

In large AgCl 3D crystals, such that the boundary
effect can be ignored, the vibronic E × e interaction is
dominated by the ec deformations of the (AgCl6)4– clus-
ter, with the frequency ωc corresponding to the quasi-
local e vibrations. These vibrations appear because of a
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sizable contribution from the high-density short-wave-
length phonon modes.

We consider a change in the energies of electron and
hole states at the nanocrystal interface as a mechanism
governing the JTE in nanocrystals. Let us assume that
the nanocrystal size L|| in some direction is much
shorter than its sizes in the other two orthogonal direc-
tions, i.e., that the nanocrystal is shaped like a platelet.
It is shown below that this limitation is not stringent, so
that this mechanism is valid even for nanocrystals with
a rather small shape anisotropy.

It should be noted that the energy gap jump of ~5 eV
from KCl to AgCl occurs at a distance of ∆L ≈ a, where
a ≈ 3 Å is the mean lattice parameter. This results in a
large vibronic coupling constant at the interface (W ≈
1.7 eV/Å). In the continuous medium approximation,
the corresponding contribution Uint of the interface
potential energy to the potential energy of the nanoc-
rystal can be written as

(1)

where U is the active (in our case, tetragonal) quasi-
uniform lattice deformation in the nanocrystal. This
deformation induces hole state splitting and results in
the transition from the JTE to the Jahn–Teller pseudoef-
fect (JTPE) with ensuing weakening of the vibronic
effect. By adding the elastic part

(2)

of the potential energy associated with the U vibrations
(K0 is the elastic constant of this vibration) to Eq. (1)
and minimizing the sum of Eqs. (1) and (2) with respect
to U, one arrives at the following expression for the
equilibrium lattice displacement Ueq in the nanocrystal:

(3)

Owing to the equilibrium tetragonal lattice distortion,
the hole E state splits:

(4)

where VE is the corresponding E × e vibronic coupling

constant. Note that ∆ ∝  ; i.e., the splitting is a
smooth function of the nanocrystal size. Let us now
take into account that the JTPE (as well as the JTE) is
caused by a bilinear coupling between the quasi-local
microcluster ec vibrations and the quasi-homogeneous
e vibrations of the nanocrystal in the vibronic interac-
tion of interest. The greatest contribution to the JTPE
(JTE) comes from the corresponding difference vibra-
tions with frequency ω– and reduced mass µ. Using the

JTPE suppression criterion ∆µ  ≥ ( )2, where
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 is the effective constant of vibronic interaction
with the active difference vibrations, one obtains the
following formula for the critical size Lc of a nanocrys-
tal:

(5)

The JTPE occurs in crystals with L|| > Lc, whereas in
smaller crystals (L|| < Lc), the effect is suppressed.

It was assumed above that the nanocrystal shape is
essentially noncubic; i.e., the size in the direction of tet-
ragonal deformation is much shorter than the sizes in
the perpendicular plane. This assumption does not
influence the short-range interaction in the STH nearest
surroundings which determines the symmetry of the
spin Hamiltonian in the absence of the JTE. However,
the JTE may be quite sensitive to the long-range inter-
face field.

Let us discuss the more general case of close nanoc-
rystal sizes Lx, Ly, and Lz in different orthogonal direc-
tions. Assume that Lx ≈ Ly ≥ Lz = L||. We will consider
vibronic interaction (1) with the whole quasi-acoustic
phonon spectrum and include not only the quasi-uni-
form deformation, but also the whole spectrum of defor-
mations in the range (π/L||) < kz < (π/a), (π/Lx) < kx <
(π/a), (π/Ly) < ky < (π/a), where a is the lattice parame-
ter. In this case, Eqs. (4) and (5) obtained for the plate-
shaped nanocrystals remain valid upon the substitution

(6)

where µ0 and V are, respectively, the reduced mass and
the mean sound velocity for the quasi-acoustic phonons

in the nanocrystal;  is the vibronic coupling constant
for the interaction between the interfacial electronic
states and the deformation tensor corresponding to the
quasi-acoustic phonons; and L⊥  = Lx ≈ Ly. One can see
that the JTPE suppression effect smoothly (logarithmi-
cally) depends on L||/L⊥  and is absent for cube-shaped
nanocrystals (L|| = L⊥ ).

Thus, vibronic coupling at the interface brings about
weakening or suppression of the JTPE in sufficiently
small-sized nanocrystals. This results in a decrease or
suppression of the anisotropy in the EPR (ODMR)
spectra of STH; i.e., the difference g|| – g⊥  decreases.
Inasmuch as the STE is formed through electron cap-
ture by the STH, the anisotropy of the STE g tensor
should also decrease or be suppressed. It is this
decrease that was observed for the anisotropy of
ODMR spectra in our experiments.

Estimates show that the mechanism considered can
explain the JTE suppression effect for the STHs and
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STEs in AgCl nanocrystals of sizes L < 100 Å. This
seems to be reasonable for the system under study and
is in line with the data of atomic force microscopy [4].

In particular, for ω– ≈ ωD, where ωD is the Debye fre-

quency,  = 5 eV,  ≈ VE = 1 eV/Å, a = 3 Å, ∆L =
6 Å, and Lx ≈ Ly = L⊥  = 125 Å, one obtains L|| ≈ 96 Å for
the critical nanocrystal size in the z direction. A critical
size of the order of 100 Å is retained even at |(L⊥  –
L||)/L||| ≈ 0.1, as follows from Eqs. (5) and (6).

It should be noted that the suggested interfacial
vibronic mechanism of generating inner stress fields in
nanocrystals is quite general and may be operative for
the other nanostructures and thin films.

Note also that the above-described mechanism of
altering the JTE character is not unique. In principle, at
least two mechanisms may compete with it. The first
one is associated with a change in the phonon spectrum
of the nanocrystal. This may result in strengthening of
the JTE because of an increase in the density of the
JTE-active vibrational modes. The second mechanism
leads to the weakening and suppression of the JTE
because of the effect of image fields induced by the
Coulomb and elastic fields of the Jahn–Teller center
(STH in our case). Nevertheless, estimates show that
the effect of the interfacial vibronic field described by
Eqs. (1)–(6) dominates in the case of interest and leads
to the suppression of the JTE.

1
3
---

W̃ VE
eff
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In this paper, we discuss the experimental results of M. Grayson et al. on tunneling I–V characteristics of the
quantum Hall edge. We suggest a two-step tunneling mechanism involving localized electron states near the
edge, which might account for the discrepancy between the experimental data and the predictions of the chiral
Luttinger liquid theory of the quantum Hall edge. © 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 73.40.Hm
Measuring the tunneling current from a normal
metal to a quantum Hall (QH) edge is an attractive way
to observe the Luttinger liquid behavior of QH edge
states. Scaling invariance of the Luttinger liquid should
leave a clear signature in the I−V characteristic of the
tunneling current in the form of a power law depen-
dence of the current on the applied voltage [1]

(1)
Moreover, the value of the tunneling exponent α would
give knowledge of the decay law of the electron
Green’s function at the edge, which would provide a
direct check of the chiral Luttinger liquid theories of
the edge states [1–3].

The predictions of the chiral Luttinger liquid theory
of the QH edge states can be summarized as follows.

(1) If a QH state belongs to the principal (Laughlin)
sequence of filling factors ν = 1/(2p + 1) (p integer), it
supports one gapless chiral edge mode. In this case, the
tunneling exponent is given by

(2)
(2) In a more general case of incompressible QH

states corresponding to Jain filling factors ν = N(2Np +
1), there are |N| edge modes and the calculations [1, 2]
based on the Luttinger liquid picture predict that

(3)

In [4], an alternative theory was developed that was
capable of treating compressible states near the 1/2 fill-
ing. An expression for α(ν) was obtained which, in the
limit of vanishing compressibility, coincides with
Eq. (3) for Jain filling factors. This theory predicts that
the slope of the tunneling exponent dα/dν behaves dis-
continuously as a function of ν at points ν = 1, ν = 1/2.

I Vα .∼

α 1/ν .=

α min 2/ν 1 3,–( ).=

1 This article was submitted by the authors in English.
0021-3640/00/7206- $20.00 © 0333
Recent tunneling experiments [5] gave the follow-
ing results:

(1) At low temperatures, the I−V characteristic
exhibits power law behavior (1) up to several tens in
current. The power law I−V characteristics are observed
independently of whether the 2DEG is in a compress-
ible or an incompressible state.

(2) The tunneling exponent a varies continuously
with the filling factor ν. The dependence of the tunnel-
ing exponent on the filling factor is approximated well
by the linear law α = 1/ν.

One can see that the second item is in obvious con-
tradiction to the predictions of the chiral Luttinger liq-
uid theory.

This disagreement puts in doubt the generally
accepted theories of the fractional QH edge and needs
to be explained either within these theories or by devel-
oping a new theoretical approach. That is why a lot of
attention has been paid to the problem of late [6–11].

In the discussion below, we restrict ourselves to the
incompressible case only. In this case, the QH edge is
believed to be described by a chiral Luttinger liquid
theory. In its standard form, this theory [1, 2] claims
that there are several edge chiral Luttinger modes
which can be separated into one charged mode and a
number of neutral ones. The charged mode is described
by a chiral bosonic field ϕ0, while the neutral modes are
described by bosons ϕ1, …, ϕN and can be both chiral
(propagating along the same direction as the charged
mode) and antichiral (counterpropagating). The disper-
sion of charged and neutral modes determines the
velocities sj(q):

(4)

The anomalous exponent α in I−V characteristic (1) is
simply related to the asymptotic behavior of the single-

ωj q( ) s j q( )q.=
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particle Green’s function of an electron in the QH sys-
tem [12]:

(5)

An attempt to solve the contradiction between the
theory and the experiment was made in [8, 9]. The main
idea of these works is that the experimentally observed
tunneling exponent is consistent with the chiral Lut-
tinger liquid picture under the assumption that the neu-
tral modes are nonpropagating (or their propagation
velocities are negligible). In our opinion, the weakness
of this approach is that its central assumption has no
sufficient physical justification. In the experiment, the
power law I−V characteristic is observed in a broad
(about two tens) voltage range. For the picture of [8, 9],
it implies that the velocities of the neutral edge modes
should differ from the velocity of the charged mode by
a minimum of two orders of magnitude. This difference
is attributed to the Coulomb interaction, whose contri-
bution to the velocity of the charged mode is evidently
larger than to the neutral ones. However, simple analy-
sis shows that, while the neutral modes have linear dis-
persion (4) with sj constant, the velocity of the charged
mode s0 has a logarithmic q-dependence (see [10] and
considerations below)

, (6)

where a is the quantum-well width. The logarithmic
factor on the r.h.s of Eq. (6) evidently cannot account
for the two-tens difference needed for the picture of
[8, 9]. In a real experiment [5], tunneling occurred from
a 3D metal contact separated by a b ~ 100 Å-thick bar-
rier from the edge. Therefore, the Coulomb interaction
must be screened at this distance and ratio (6) saturates
at q < b–1.

Equation (2) corresponds to the shakeup of the
charge relaxation mode at the edge. If one neglects the
contribution of other bosonic modes, the experimen-
tally observed tunneling exponent will be regained.
This is exactly the way the problem is treated in the
framework of the independent boson model (IBM) [6,
11, 12], where a single localized electron electrostati-
cally interacts with the hydrodynamic charged edge
mode in the incompressible case [6] or with the bulk
charge relaxation modes in the compressible case [11].
Although the IBM gives a correct tunneling exponent,
it says nothing about the physical origin of the localized
states and its relevance to the experiments is not clear
unless the nature of these states is specified. In particu-
lar, the understanding of what these states are is impor-
tant, since the results which can be obtained in the
framework of the IBM are very sensitive to the choice
of the energy position of the localized state.

In our opinion, the good agreement between the
observed universality of the I−V characteristics and the
IBM description indicates that, near the edge of the QH
liquid, there exist some low-energy electronic states

G t( ) i Tψ x t,( )ψ† x 0,( )〈 〉 t α– .∼–=

s0

s j

---- 1
qa
------ 

 ln∼
other than the excitations of the chiral Luttinger liquid.
Electrons tunneling from the metal into these states
electrostatically interact with the charged mode of the
edge collective excitations. Below, we suggest a model
of the edge where the tunneling current is transmitted
in a two-step process which involves localized states in
the bulk at the intermediate stage. We show that these
processes give an experimentally observed I−V expo-
nent provided that the intermediate localized states are
spatially separated from the edge and their energy dis-
tribution function decays exponentially in the gap of
the incompressible states, as in the integer quantum
Hall regime [13].

The series of well-established plateaus observed in
the experiment [5] indicate that in the gaps of incom-
pressible QH states there exists a finite density of bulk
localized states g(e) created by the random impurity
potential. An electron may tunnel into the QH edge in a
two-step process: first it tunnels into a localized state,
where it may stay for some time t*, and then decays
into the edge mode due to a finite hybridization
between the edge and bulk states. If the voltage V satis-
fies the condition

then the second step of the tunneling process does not
affect the I−V characteristics.

On the time scale t*, the tunneling process is
described by the IBM model. If the QH system is
incompressible, the only contribution to the polariza-
tion of the QH medium comes from gapless edge
modes. An electron can polarize both charged and neu-
tral modes (because they carry multipole moments).

We first consider the contribution of the charged
mode. The corresponding Hamiltonian reads

(7)

Here, an is the annihilation operator of an electron in
the localized state with energy en and wave function
ψn(r), eρ(x) is the charge density operator of the edge
plasmon, and v(r) = e2/κr is the Coulomb potential with
the dielectric constant κ. The term

(8)

stands for the electrostatic interaction between the edge
plasmon and the electron in the localized state. Here,

(9)

is the potential induced by the localized state at the
edge r = (x, 0). The charge density operator eρ of the
edge plasmon is given by

"/eV  ! t*

H = en wn–( )an
†an

1
2
--- dx x'ρ x( )v x x'–( )ρ x'( ).d∫+

n

∑

wn dxρ x( )Un x( )∫=

Un x( ) d2r'v r r'–( ) ψn r'( ) 2∫=

ρ i
νq

2πL
---------- bqeiqx bq

†e iqx––( ),
q 0>
∑=
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where L is the length of the edge and bq and  satisfy
the canonical commutation relations.

Hamiltonian (7) is diagonalized [12] by the canoni-
cal transformation to the new fermionic operators :

, (10)

where ρ(x, t) is the charge density operator in the inter-
action representation and T is the time ordering opera-
tor. Introducing the field φ, such that ρ = ν/2π∂xφ, and
taking into account that in the interaction representa-
tion its dynamics are given by Eq. (4), we find that the
operators Φn in Eq. (10) are given by

(11)

where the velocity of the charged mode reads

. (12)

Green’s function (5) of an electron in the nth localized
state is given by

(13)

where  is the exact energy of the localized eigenstate
dressed by the charge mode relaxation.

The factor

(14)

is responsible for suppression of the tunneling density
of states due to the interaction of an electron with the
charged mode. At large times, the main contribution to
this factor comes from the long-wavelength limit. In
our case, this limit is defined by qdn ! 1, where dn is the
distance from the edge to the localized state (below, it
will be argued that dn > l). The asymptotic form of this
factor does not depend on n and is given by

In the standard approximation [12], where the
dependence of the tunneling matrix element on the
energy is neglected, we obtain

where µ is the chemical potential of the QH system and
g(e) is the density of the localized states.

The tunneling exponent α is determined by the
behavior of the density of localized states in the vicinity

bq
†

an

an ane
iΦn–

anT i dt'wn t'( )
∞–

t

∫–
 
 
 

exp= =

Φn t( ) ν
2πs0
----------- dxUn x( )φ x t,( ),∫=

s0
e2

κπ"
----------ν 1

qa
------ 

 ln=

Gn t( ) ie
i ẽnt 1 nF ẽ( )–( ) Te

iΦn t( )–
e

iΦn 0( )
〈 〉 ,–=

ẽn

Te
iΦn–

e
iΦn 0( )

〈 〉 = Te

i w t'( )–

0

t'

∫

Te
iΦn t( )–

e
iΦn 0( )

〈 〉 t 1/ν– .∼

I V( ) deg µ e+( ) eV e–( )1/ν,

0

eV

∫∼
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of the Fermi energy. Since we are considering the
incompressible QH liquid, the Fermi level must lie in
the gap of the volume excitations. It looks very natural
to assume that the density of localized states in the gap
decays rapidly with energy (just as in the case of the
integer QH effect). If the energy scale Γ of decay is
smaller than eV, the tunneling current is given by

and α = 1/ν. In the opposite limiting case (Γ > eV), the
tunneling current is given by I ~ V1/ν + 1.

We next discuss the interaction of a tunneling elec-
tron with the multipole moments of the neutral modes.
This has an analogy with the model of a smooth edge
considered in [14], where the tunneling exponent is
much larger than 1/ν due to the contribution of the
modes carrying multipole moments.

The interaction with the mode responsible for the
dipole moment is most important. In contrast to the
case of the charged mode, this interaction depends on a
particular model of the edge, especially, on the trans-
versal structure of the neutral modes. We take this inter-
action into account phenomenologically. The model
Hamiltonian describing the interaction of localized
states with the neutral modes should have the same form
as Eq. (7) with two distinctions. First, one should
replace v(|r – r'|) in Eq. (9) by the dipole interaction
δy∂xv(|r – r'|), where the quantity δy is of the order of
the width of the edge strip and depends on a particular
model of the edge. In what follows, we assume δy ≈ l.
The second distinction is that, in contrast to (12), the
velocity of the dipole mode does not contain the Cou-
lomb logarithm s1 ~ e2ν/κπ". Taking into account the
dipole interaction in the framework of the IBM shows
that factor (14) decreases more rapidly at large t:

For the tunneling exponent at Γ < eV we get

(15)

The tunneling probability decreases as exp(– /l2)
with the tunneling distance, leading to a decrease in the
tunneling current. On the other hand, the larger the
value of dn the smaller the value of α(dn). This leads to
I increasing with dn at small values of the applied volt-
age. As a result, there exist optimum values of the tun-
neling distance dopt > l and of the tunneling exponent
αopt. The values of dopt and αopt can be determined using
the following estimate of the tunneling current related
to the nth localized state:

I V( ) ΓV1/ν∼

T i w t'( )
0

t'

∫–
 
 
 

exp t
1/ν( ) l

2/dn
2( ) 1/ν( )+[ ]–

.∼

α dn( ) 1
ν
---

l2

dn
2

-----1
ν
---.+=

dn
2

In V( ) e
dn

2/l2– eV
E0
------ 

  α dn( )
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Here, E0 is a large energy (E0 @ eV), which is of the
order of the Fermi energy. From this equation we easily
get

It can be seen that, at small voltages, the optimum tun-
neling exponent is close to the experimentally observed
value αopt ≈ ν–1.

We would like to emphasize that this result is related
to the fact that the electron tunnels at a distance larger
than the width of the edge strip l. On the contrary, in the
model used in [14] it was implicitly assumed that dn ~
δy, and the tunneling exponent was found to be much
larger than 1/ν.

We conclude that the tunneling process, as a whole,
looks as follows. First, the electron tunnels in the local-
ized state and during the time dopt/s0 polarizes the
charged mode. As a result, the positive screening
charge e is attracted to the edge in the region of length
dopt and the compensating negative charge –e is carried
away by the charged mode with velocity s0. On time
scale t such that dopt/s0 < t < t*, there exists a dipole
formed by the localized electron and the screening pos-
itive charge. After the time t*, this dipole vanishes due
to tunneling of the electron from the localized state into
the edge.

The authors would like to thank J. Fröhlich for stim-
ulating discussions. V.C. is grateful to B.I. Halperin for
important remarks and hospitality at the Lyman Lab.
We would like to thank L. Levitov and A. Chang for
valuable comments and information about their work.

αopt ν 1– 1
ν

E0/eV( )ln
------------------------- 

  1/2

+ 
  .=
This work was supported by the Russian Foundation
for Basic Research (project nos. 99-02-17093 and 99-
02-17002), the INTAS (grant nos. 97-1342 and 99-
1705), and the Program “Physics of Solid-State Nano-
structures” (grant no. 1001).

REFERENCES
1. C. L. Kane, M. P. A. Fisher, and J. Polchinski, Phys. Rev.

Lett. 72, 4129 (1994); C. L. Kane and M. P. A. Fisher,
Phys. Rev. B 51, 13449 (1995).

2. X. G. Wen, Phys. Rev. B 41, 12838 (1990); Phys. Rev.
Lett. 64, 2206 (1990); Phys. Rev. B 43, 11025 (1991);
ibid. 44, 5708 (1991); Int. J. Mod. Phys. B 6, 1711
(1992); X. G. Wen and A. Zee, Phys. Rev. B 46, 2290
(1992).

3. J. Fröhlich and T. Kerler, Nucl. Phys. B 354, 369 (1991).
4. A. V. Shytov, L. S. Levitov, and B. I. Halperin, Phys.

Rev. Lett. 80, 141 (1998).
5. M. Grayson, D. C. Tsui, L. N. Pfeiffer, et al., Phys. Rev.

Lett. 80, 1062 (1998).
6. S. Conti and G. Vignale, cond-mat/9801318.
7. J. H. Han and D. J. Thouless, Phys. Rev. B 55, 1926

(1997).
8. D. H. Lee and X. G. Wen, cond-mat/9809160.
9. A. López and E. Fradkin, cond-mat/9810168.

10. U. Zülicke and A. H. MacDonald, cond-mat/9802019.
11. D. V. Khveshchenko, cond-mat/9710137.
12. G. D. Mahan, Many-Particle Physics (Plenium, New

York, 1981).
13. F. Wegner, Z. Phys. B 51, 279 (1983).
14. S. Conti and G. Vignale, Phys. Rev. B 54, R14309

(1996). 
JETP LETTERS      Vol. 72      No. 6      2000



  

JETP Letters, Vol. 72, No. 6, 2000, pp. 337–340. From Pis’ma v Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 72, No. 6, 2000, pp. 487–492.
Original English Text Copyright © 2000 by Loison, Sokolov, Delamotte, Antonenko, Schotte, Diep.

                                                                                      
Critical Behavior of Frustrated Systems: Monte Carlo 
Simulations versus Renormalization Group1

D. Loison*, A. I. Sokolov**, B. Delamotte***, S. A. Antonenko**,
K. D. Schotte*, and H. T. Diep****

* Institut für Theoretische Physik, Freie Universitat Berlin, 14195 Berlin, Germany
** St. Petersburg Electrotechnical University, St. Petersburg, 197376 Russia

e-mail: ais@sokol.usr.etu.spb.ru
*** Université Paris 7, 75251 Paris Cedex 05, France

**** Université de Cergy-Pontoise, 95302 Cergy-Pontoise Cedex, France
Received August 28, 2000

We study the critical behavior of frustrated systems by means of the Padé–Borel resummed three-loop renor-
malization-group expansions and numerical Monte Carlo simulations. Amazingly, for six-component spins,
where the transition is second-order, both approaches disagree. This unusual situation is analyzed both from the
point of view of the convergence of the resummed series and from the possible relevance of nonperturbative
effects. © 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 75.10.-b; 64.60.Ak; 64.60.Cn; 05.10.Ln
Frustrated spin systems have been very much stud-
ied in their classical and quantum aspects. In particular,
the critical behavior of 3D stacked triangular antiferro-
magnets (STA) has deserved much attention [1–9]
since, firstly, it has many physical realizations in rare-
earth materials; secondly, it is an archetype for frus-
trated systems; and, thirdly, it is directly related to the
behavior of its 2D zero-temperature quantum counter-
parts. The frustration in such systems comes from the
fact that, for N > 1 component spins, the ground state is
noncollinear and shows the famous 120° structure. It is
thus natural to believe that if the transition is second-
order, they belong to a new universality class. Our
present understanding of these systems comes, as
usual, from the renormalization group (RG) calcula-
tions, from Monte Carlo simulations, and from experi-
ments. The most impressive fact is that more than
twenty years after the first works devoted to their study,
there is still no agreement between these approaches.
For instance, a calculation made in D = 4 – e [3] pre-
dicts no stable fixed point for N in the interval Nc2 =
2.202 – 0.569e + 0.989e2 < N < Nc3 = 21.80 – 23.43e +
7.088e2 and another, made in D = 2 + e, predicts a fixed
point for any N > 2. Some experiments find a second-
order phase transition, and others, a weak first-order
transition. Moreover, the different approaches to finding
a continuous transition do not find the same exponents,
a fact that suggests that the theoretical or numerical
approaches may miss some fundamental points (topo-
logical defects, breakdown of perturbation theory, etc.).

1 This article was submitted by the authors in English.
0021-3640/00/7206- $20.00 © 20337
Our aim in this letter is to shed light on this problem.
We rely on the fact that the three-loop RG calculations
made in D = 4 – e with e = 1 and directly in D = 3 find
a critical value Nc(D = 3) above which the transition is
second-order and equal to 3.39 [3] and 3.91 [4], respec-
tively. A very weak first-order transition is expected for
N = 3—a situation very difficult to test numerically.
Therefore, instead of studying the physical (N = 3) spin
system directly, we choose to study the following ques-
tion: whether there is consensus between the results
given by the RG approach based on the Landau–Wilson
(φ4-like) model and those obtained by Monte Carlo
simulations for the values of D and N, where a fixed
point is found.

Note that the reliability of the RG approach for pre-
dicting 3D critical behaviors is not generic but has been
demonstrated for simplest the universality classes such
as O(N). The discrepancy between the perturbative
results around D = 2 and D = 4 is, in fact, common to a
wide class of systems, among which there are the
dipole-locked phase of 3He, electroweak phase transi-
tion, smectic liquid crystal, etc. Our study is therefore
likely to be relevant to a much wider class of systems
than frustrated magnets.

To tackle our question, we study in D = 3 the largest
possible N compatible with numerical possibilities,
where the usual recipes should work, since in this case
we are far above the line Nc(D), the proximity of which
could be the root of all the problems. Being, in princi-
ple, in the second-order region, we expect to compute
accurately the critical exponents both numerically and
from the resummed 3D RG expansions. The compari-
000 MAIK “Nauka/Interperiodica”
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son between the results obtained by these two methods
should be a test of the most powerful theoretical
approaches in this nonferromagnetic case. We also
choose the value of N such that the corresponding sys-
tem does not show topological defects, in order to elim-
inate a possible reason for the breakdown of perturba-
tion theory. It turns out that N = 6 is the ideal candidate.
Below, we present numerical results for N = 6, as well
as the analytical ones for various N, including N = 6,
and compare them.

Renormalization group analysis. The relevant
Landau–Wilson Hamiltonian reads [3, 16]

(1)

The domain of parameters of interest is u0 > 0 and w0 > 0.
The calculations are based on the three-loop RG expan-
sions obtained earlier for the more complicated
3D model with three quartic coupling constants [4].
The Padé–Borel resummation of the RG series is per-
formed, and Pade approximants [3/1] and [2/1] are used
for analytical extension of the Borel transforms for the
β-functions and critical exponent γ, respectively. The

H
1
2
--- d3x r0

2φαφα* ∇ φα∇ φα*---+∫=

+
u0

2
-----φαφα*φβφβ*

w0

2
------φαφαφβ*φβ*+ .

Fig. 1. The critical exponent ν for N = 6 calculated by the
field-theoretical renormalization-group technique (RGgE),
by Monte Carlo simulations (MC STA), and by some other
methods (see text).
exponent η is evaluated by direct substitution of the
fixed point coordinates into the corresponding expan-
sion.

For N > 7, the fixed point, which controls the chiral
critical behavior, is found to be a stable node; and for
N = 5, 6, 7 it is a stable focus. The latter scenario looks
quite new; i.e., it is observed for the first time in STA
systems, while the former one was already discussed
(see, e.g., [4]). The values of critical exponents γ and η
obtained from the RG series are used to estimate other
exponents via scaling relations. The results of our RG
calculations are collected in Table 1 and presented,
along with others, in Fig. 1 (RGgE). As is seen, critical
exponents as functions of N demonstrate a cusp
between N = 7 and N = 8, which reflects the above-men-
tioned change in the type of fixed point governing the
critical behavior.

Monte Carlo results. We study six-component
spins interacting via the Hamiltonian

(2)

where the sum runs over all neighbors of the stacked
triangular lattice (STA) and the interaction is chosen to
be antiferromagnetic (J > 0). In the ground state, the
spins are planar, with the three spins at the corners of
each triangle forming a 120° structure. We use the stan-
dard Metropolis algorithm in combination with the
overrelaxation algorithm [10]: one overrelaxation step
per one Metropolis step. This reduces the correlation
time and improves the statistics. For each size, we use
several hundred thousand steps to equilibrate our sys-
tem and up to five millions steps to thermalize for the
larger sizes. We have repeated these simulations for dif-
ferent initial configurations (ordered or random) to
make sure that our results do not depend on them. The
histogram MC technique by Ferrenberg and Swendsen
[11] is used to obtain thermodynamic quantities at T
close to T0 from a simulation done at T0. We have stud-
ied our system in the finite-size scaling (FSS) region
[12], with the simulations done at Ts = 0.463. We con-
sider L2(2L/3) systems, where (L)2 is the size of the
planes and 2L/3 is the number of planes. To find the
critical temperature Tc, we use Binder’s cumulant,
defined as U = 1 – 〈M4〉/3〈M2〉2, where the order param-
eter M is calculated by partitioning our lattice into three

H JijSiS j,
ij( )
∑=
Table 1

N 5 6 7 8 9 10 12 16 20 100

α 0.305 0.275 0.303 0.152 –0.055 –0.157 –0.292 –0.451 –0.553 –0.909

β 0.300 0.302 0.295 0.319 0.354 0.370 0.393 0.418 0.434 0.488

γ 1.095 1.121 1.108 1.211 1.348 1.417 1.506 1.616 1.685 1.935

ν 0.565 0.575 0.566 0.616 0.685 0.719 0.764 0.817 0.851 0.970

η 0.063 0.051 0.042 0.035 0.032 0.030 0.027 0.023 0.019 0.005
JETP LETTERS      Vol. 72      No. 6      2000
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sublattices with only collinear spins and by summing
each magnetization. We record the variation of U with
T for various system sizes and then locate Tc at the inter-
section of these curves [13]. In Fig. 2, U is plotted as a
function of the temperature for different sizes from L =
12 up to L = 36. Due to the presence of residual correc-
tions to finite size scaling, one actually needs to extrap-
olate the results of this method for (lnb)–1  0. From
these data, we extrapolate the value of Tc (not shown)
and obtain Tc = 0.4636(2), while the universal quantity
U at Tc is U* = 0.6545(15). Then we calculate the crit-
ical exponents using a log–log fit [12, 14]. The estimate
of 1/ν is extracted from V1 = 〈ME〉/〈M〉  – 〈E〉 , V2 =
〈M2E〉/〈M2〉  – 〈E〉  (Fig. 2), while the data for suscepti-
bility χ = N〈M2〉/kBT and 〈M〉  (not shown) yield the val-
ues of γ/ν and β/ν, which are found to be 1.975(20) and
0.513(12), respectively. All errors are calculated with
the help of the Jackknife procedure [15] and include the
influence of the uncertainty in estimating Tc. The final
results are summarized in Table 2, with η and α evalu-
ated using scaling relations η = 2 – γ/ν and α = 2 – Dν.
Note that, contrary to spins with N = 2 or N = 3, η > 0.
This is due to the fact that, for N = 6, the RG flow is
attracted by a true stable fixed point and not by a local
minimum [6, 8, 9].

Discussion. The predictions of the RG analysis for
six-component spins listed in Table 1 do not agree with
the Monte Carlo results given in Table 2. The general
situation is illustrated by Fig. 1, where our MC and RG
results for ν, along with those given by the Local Poten-
tial Approximation (LPA) [6] and the 1/N expansion
[16], are presented; the six-loop RG estimates for the
ferromagnetic case [17] are also plotted for compari-
son.

Since our numerical results are well converged, it
seems unlikely that a Monte Carlo study of much larger
systems would resolve the discrepancy with the RG
predictions. To clear up the origin of this discrepancy,
we analyze the structure of the RG series employed. Of
prime importance is the vicinity of the chiral fixed point
for N = 5, 6, 7, when this point is a focus. Contrary to
the (unstable) fixed point governing the O(N)-symmet-
ric behavior, the chiral point lies very close to the w
axis, being far from the u axis. For the case N = 6 of
interest, its coordinates are u* = 0.0665 and w* =
1.6025. In this region, the structure of the series of
β-functions turns out to be unexpectedly irregular. As an
example, we present here two “cuts” of the Borel-trans-
formed expansion for βu(u, w) running through the chiral
fixed point, which clearly demonstrate this irregularity:

(3)

(4)

βu
B u 1.6025,( ) 0.3607– 0.7774u+=

– 0.5004u2 0.0339u3 0.0055u4,–+

βu
B 0.0665 w,( ) 0.0643 0.0132w–=

– 0.1960w2 0.0346w3 0.0010w4.+ +
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The coefficients in Eqs. (3) and (4) do not decrease
monotonically with an increase in their numbers, and
expansion (4) has coefficients with irregular signs.
Hence, the RG series for β-functions would not demon-
strate a good summability near the chiral fixed point
and are hardly believed to yield precise numerical
results. Moreover, the Padé–Borel approximant for βu,
taken at the chiral fixed point, as a function of the Borel
variable t, has a pole at t = 61.8, which is not dangerous
in practice but reflects the poor summability of the
series. The difference between numerical results
obtained within the RG and MC approaches may be
caused by an unfavorable structure of the RG expan-
sions. On the other hand, for all N, the chiral fixed point
coordinate u* given by our series remains positive, pre-
venting the RG expansions from losing Borel summa-
bility in the domain of interest. Hence, here we do not
face this problem, as occurs when systems with
quenched disorder are studied [18]. This keeps calcula-
tions of the higher order contributions to the RG func-
tions meaningful and desirable.

Can an account for higher order terms in the RG
expansions significantly improve the situation? In prin-
ciple, yes. Indeed, the true chiral fixed point location
may differ substantially from that given by the three-
loop approximation and lie in the domain of the RG
flow diagram, where the series for β-functions can be
properly resummed. The higher order terms may shift

Fig. 2. Binder’s parameter U as a function of the tempera-
ture for different sizes L (in the left part of the figure from
bottom to top L = 12, 15, 18, 21, 24, 27, 30, 36). The arrows
show the estimated critical temperature Tc and the tempera-
ture of our simulations Ts. In the inset, the values of V1 and
V2 are shown as functions of L in the ln–ln scale at Tc. The
value of the slopes gives 1/ν, and we obtain ν = 0.698(12)
for V1 and 0.702(13) for V2. The smallest size (L = 12) is not
included in our fits.

Table 2

N α β γ ν η

6 –0.100(33) 0.359(14) 1.383(36) 0.700(11) 0.025(20)



340 LOISON et al.
the calculated fixed point coordinates to their exact val-
ues, thus making the RG series better summable at crit-
icality. To clear up whether such a situation really takes
place, higher order RG calculations have to be per-
formed.

Up to now, there is only a single different theoretical
approach that allows quantitative calculations for D =
3: the LPA method based on a truncation of the Wilson
RG equations. Even when missing the field renormal-
ization, this method is nonperturbative, since it is not
based on a weak-coupling expansion. However,
although in our case the results obtained within the LPA
are closer to the MC data than their RG analogues, they
show an unexpected dependence of ν on N at small N.
Moreover, used around D = 2, this approach contradicts
the perturbative results obtained from the Nonlinear
Sigma (NLσ) model, which are, in this dimension, well
confirmed by simulations [19]. They are, in any case,
not accurate enough to draw a conclusion in D = 3.
Since the LPA is known to be the first order of a system-
atic derivative expansion, it is desirable that the next
order be computed.

Let us now remark that, even if the 3D physics is
well reproduced by our analysis, a coherent picture of
frustrated system behavior would still require one to
understand the discrepancy between the NLσ model
approach and the Landau–Wilson one. A striking dif-
ference between both approaches is that near D = 2 the
low-temperature expansion of the NLσ model predicts
that a new “current” term of the form (φ*∇φ )2 is rele-
vant [2]. This term appears to be fundamental, since for
N = 3, it allows one to find a fixed point with an O(4)
symmetry. Being highly nonrenormalizable near D = 4,
it is irrelevant and forgotten. There is thus a scenario
other than the numerical unreliability of the three-loop
RG approximation; namely, the Landau–Wilson
Hamiltonian (1) is incomplete in 3D. As was suggested
for the Abelian Higgs transition, this could be inter-
preted as the necessity to have recourse to the NLσ
model description, abandoning that of the Landau–Wil-
son model. Note, however, that it is very doubtful that
the analysis made around D = 2 can be extended
straightforwardly for any N up to D = 3, since i) for
3-component spins, the O(4) fixed point found for D =
2 + e was shown to disappear in a nontrivial dimension
strictly smaller than three in a closely related principal
chiral model [20] and ii) an O(4) behavior was seen nei-
ther experimentally nor numerically for N = 3 and D = 3.
Thus, the perturbative analysis of the NLσ model also
fails for D > 2. However, it remains that a coherent pic-
ture of the behavior of frustrated systems for all N and
D should include the results of the NLσ model and
therefore explain why and when the current term starts
to be relevant as a function of N and D. If this happens
to be around D = 3 for N ~ O(1), it could perturb the RG
results presented above and explain why otherwise
powerful methods do not work properly here. In any
case, we believe that our results for N = 6 constitute a
clear challenge to the theoretical approaches, which is
perhaps not out of reach from higher order RG calcula-
tions and improvement of the LPA method.

This work was supported in part by the Alexander
von Humboldt Foundation (D.L.), the International
Science Foundation (A.I.S., grant no. p99-943), and the
Ministry of Education of Russian Federation (A.I.S.,
grant no. 97-14.2-16). B. Delamotte and D. Loison are
grateful to G. Zumbach for discussions.
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The asymptotic formula for the effective conductivity of isotropic three-color (three-conductivity) rhombic tesse-
lation in the plane is obtained for the case when one conductivity is much smaller than the other two. The tentative
formula for this rhombic tesselation is suggested and discussed. © 2000 MAIK “Nauka/Interperiodica”.
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In spite of the fact that the history of studying the
effective conductivity of composite materials is long
enough [1], the number of exact mathematical results in
this field is rather restricted. From these results, the
most important is the duality relation for the effective
conductivity of a plane covered by pieces of a medium
with different conductivities. This relation was
obtained in the seminal paper by Keller [2] and then
rederived by Dykhne [3] for the random equal-
weighted distribution. Mendelson [4] analyzed the
applicability of this relation to the three-color non-
equal-weighted structures. For the general isotropic
structure of plane tesselation or for an anisotropic
structure possessing the main axes, this relation can be
written as follows:

(1)

where  is the arbitrary number of the corresponding
dimensionality. Let us stress that Eq. (1) is also true for
non-equal-weighted distributions of conductivities. For
two-color isotropic equal-weighted structures, the

well-known formula σ =  immediately follows
from the general duality relation (1). For the anologous
problem with three colors, one can see that when σ3 =

, we immediately get that effective conductivity
is equal to σ3 [3]. Unfortunately, it is of little use for the
construction of general formulas for three-color tesse-
lations.

Notice also that the duality relation for three-color
isotropic tesselations contains information about the
first and second partial derivatives of the effective con-
ductivity with respect to the partial conductivities.
Making calculations in the vicinity of the point where

σxx σ1 σ2 …, ,( )σyy σ̃2/σ1 σ̃2/σ2 …,,( ) σ̃2,=

σ̃

σ1σ2

σ1σ2

1 This article was submitted by the authors in English.
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all partial conductivities are equal (for convenience, we
choose them to be equal to 1), one can find that

(2)

(3)

(4)

It is not surprising, because in the first two orders of
perturbation theory, the structure is not essential and
manifests itself beginning with third order.

In this letter, we would like to investigate some
properties of regular three-color (i.e., three-conductiv-
ity) structures on the plane. For convenience, we repro-
duce here the table of the so-called Dirichlet tessela-
tions in the plane [5] (see Fig. 1). From these tessela-
tions, one can get the most interesting equal-weighted
three-color structures on the plane.

Besides the exact formulas and relations described
above, asymptotic relations which can be obtained for
the cases when the conductivity of one component is
much smaller than of the others have an important
value. Important relations of this kind were obtained by
Keller [6]. The key element of this consideration is the
calculation of effective conductivity for the corner,
which consists of four sectors. A medium with high
conductivity σa occupies the sector –α/2 < θ < α/2 and
the opposite sector, while the two other sectors contain
a medium with a very low conductivity σb. For such a
corner, one has the following formula for the effective
conductivity [6]:

(5)

∂σ
∂σi

-------- 1/3,=

∂2σ/∂σi∂σi 2/9,–=

∂2σ/∂σi∂σk 1/9, i k.≠=

σ α( ) ασaσb/ π α–( )( )1/2, for σa/σb @ 1.∼
000 MAIK “Nauka/Interperiodica”
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Fig. 1. Eleven topological types of isohedral face-to-face tesselations in the E2 plane. Notice that the honeycomb structure (k) is the
parent and all others can be obtained from it by the contraction of edges or polygons.
This formula was used in paper [6] for the investigation
of the effective conductivity of the checkerboard cov-
ered by parallelograms and also for the generalization
of the asymptotic formulas for two-color three-dimen-
sional parallelepipedal structures studied before in [7].

Here, following the scheme elaborated in [6], we
will consider a corner with six alternating sectors (each
equal to π/3), three of which have a very high conduc-
tivity, while the others have a very low one. Looking at
Fig. 2, it is easy to see that this structure is the basic one
for three-color tesselation in the plane by rhombs (see
also Fig. 1f).

Thus, we will consider circle of radius 1, where the
regions of high conductivity σ1 occupy the sectors
−π/6 < θ < π/6, π/2 < θ < 5π/6, and –5π/6 < θ < –π/2
(see Fig. 3). Orienting the electric field along the axis
θ = 0 from left to right, we see that the current flows
from the last two sectors to the first one. It is convenient
to choose the boundary conditions in the following
way: the potential ϕ on the circumference (ρ = 1) is
equal to +1 at –π/6 < θ < π/6 and is equal to –1 at π/2 <
θ < 5π/6 and –5π/6 < θ < –π/2. Then, an effective con-

Fig. 2. Three-color rhombic tesselation of the plane.
ductivity of the corner could be written as

(6)

or

(7)

We will look for a solution of the Laplace equation for
ϕ satisfying the following boundary conditions:

(8)

(9)

(10)

(11)

(12)

(13)

Here, Eq. (9) reflects the quasi-insulator nature of
the second medium, Eq. (10) reflects the symmetry of
the current about the axis θ = 0, Eq. (11) reflects the
continuity of the potential on the boundary between
two mediums, and Eq. (13) describes the continuity of
the current through this boundary. Equation (12)
reflects the fact that, due to the symmetry of the prob-
lem, the line of vanishing potential is θ = π/3. (Notice
that in the original problem with a four-sector corner
such a line was located at θ = π/2 [6]).

We will look for a solution of the Laplace equation
in the following form:

(14)

2σ σa
∂ϕ
∂ρ
------ ρ θ,( ) ρ 1= θd

π/6–

π/6

∫ σa ϕρ 1 θ,( ) θd

π/6–

π/6

∫= =

σ σa ϕρ 1 θ,( ) θ.d

0

π/6

∫=

ϕ 1 θ,( ) 1, 0 θ π/6,< <=

ϕρ 1 θ,( ) 0, π/6 θ π/2,< <=

ϕθ ρ 0,( ) 0,=

ϕ ρ π
6
---–, 

  ϕ ρ π
6
---+, 

  ,=

ϕ ρ π
3
---, 

  0,=

σaϕθ ρ π
6
---–, 

  σbϕθ ρ π
6
---+, 

  .=

ϕ Aaρ
ν νθ, 0 θ π

6
---< <cos=
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and

(15)

Substituting Eqs. (14) and (15) into Eqs. (11) and (13),
one has

(16)

and

(17)

Equations (16) and (17) imply

(18)

Taking into account that σb ! σa, one can easily get

(19)

Now, using the smallness of ν, one can obtain from
Eq. (8) 

(20)

Now, using Eq. (7), it is easy to get

(21)

Now, we are in a position to apply the obtained
Eq. (21) to a regular isotropic structure with rhombi
(see Fig. 2). It is easy to see that, if one of the colors
corresponds to the vanishing conductivity, such a struc-
ture will not conduct, because this color constitutes
“traps.” One can represent the total rhombic tesselation
as a covering of the plane by identical hexagons, each
of which represents a plaquette consisting of alternat-
ing grey and black rhombi surrounded by isolating
white triangles (see Fig. 4).

Now, suggesting that white-colored regions have a
small conductivity σ1 ! σ2 and σ1 ! σ3, we see that the
flow of current between plaquettes of the type repre-
sented in Fig. 4 is realized through two corners of the
type represented in Fig. 3. Now, using simple consider-
ations for the network of plaquettes and Eq. (21) for the
corners, one can get an asymptotic formula for the
effective conductivity of rhombic tesselation:

(22)

Similar considerations for the case when σ1 = σ2 ! σ3
give

(23)

A similar result was also obtained by A.M. Dykhne
(private communication).

ϕ Abρ
ν ν π/3 θ–( ), π/6 θ π/3.< <sin=

Aa
νπ
6

------cos Ab
νπ
6

------sin=

Aaσa
νπ
6

------sin Abσb
νπ
6

------.cos=

νπ
6

------tan
σb

σa

-----.=

ν 6
π
---

σb

σa

-----.≈

Aa 1.≈

σ σaσb.=

σasymp σ1σ2 σ1σ3.+=

σasymp
1
2
--- σ1σ3.=

Thus, we have an asymptotic formula for rhombic
tesselation in the case where there is a great contrast
between the conductivities. On the other hand, from our
preceding work [8], one can understand that, for a plane
covered by isotropic equal-weighted covering of the
plane by N colors, the conductivities of which can be
written in the form

(24)

where α is some small function on the plane (small
contrast), the effective conductivity is2 

(25)

Now we can try to construct the tentative formula
for the rhomb tesselation which is self-dual, asymptot-
ically true for the case of large contrast, and true for the
case of small contrast up to the second order of pertur-
bation theory:

(26)

2 Notice that for the multidimensional two-color checkerboard we
have the same formula, where N is the dimensionality of space.

σ 1 α , α〈 〉+ 0,= =

σeff 1
1
N
---- α2〈 〉 ….+–=

σrhomb

σ1 σ2 σ3+ +
1

σ1

--------- 1

σ2

--------- 1

σ3

---------+ +
-------------------------------------------.=

Fig. 3. Basic corner for the rhombic tesselation.

Fig. 4. Basic plaquette for the rhombic tesselation. 
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Naturally, this formula is only a hypothetical one. How-
ever, the check of its validity in the next perturbative
approximation [8] can give it more solid grounds.

In the paper [9], the authors, using self-duality and
symmetry of the isotropic three-color equal-weighted
tesselations in the plane, have suggested that effective
conductivities of such tesselations can be described by
the cubic equation which represents the simple gener-
alization of the well-known Bruggeman effective
medium equation [10]:

(27)

In the Bruggeman equation, A = 1/3. The authors have
suggested that in this hypothetical equation the con-
stant A is correlated with the geometrical structures.
Simple application of this equation to the rhomb tesse-
lation shows that for the case of σ1 = 0, the general con-
ductivity is equal to zero and A should be equal to zero.
Hence, σ = (σ1σ2σ3)1/3 for any set of values of σ1, σ2,
σ3), which obviously contradicts asymptotic result (22),
obtained above (square roots instead of cube roots!).
Thus, the suggested cubic equation is not universal and
is not applicable to the rhomb structure. The source of
this mistake lies in the suggestion of the authors [9] that
self-duality and symmetry are enough for the resolution
of the three-color problem. However, it is not true and
it is well known from the theory of exactly solvable sta-
tistical models.3 Even in the frame of cubic equations
the idea that A is a constant selects only one from an
infinite set of possibilities, because it is easy to see that
A can be an arbitrary function of self-dual combination
of three conductivities. In such a way, the cubic equa-
tion with the constant A is not a general equation for
symmetric isotropic structures.

3 A. B. Zamolodchikov, V. L. Pokrovsky, private communication.

σ3 Aσ2 σ1 σ2 σ3+ +( )+

– Aσ σ1σ2 σ1σ3 σ2σ3+ +( ) σ1σ2σ3– 0.=
In conclusion, we would like to make one comment
regarding another three-color isotropic structure, a hon-
eycomb structure consisting of hexagons of three col-
ors (see Fig. 1l). For such a structure, the numerical
simulation was carried out in [9] and the approximate
value of the parameter A was found. However, it is
obvious that the numerical simulation cannot give
proof of the validity of equation. A plausible check of
the formulas for effective conductivity could be pertur-
bative calculations, which should be done to at least the
sixth order [8].
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In this paper, the caption to Fig. 2 should be the following:

Fig. 2. Luminescence spectrum at a wavelength of 1.3 µm as a function of δν2 for δν1 = 5 GHz: (a) E1, E2 = 150 µJ cm–2 and

n = 1.6 × 1013 cm–3; (b) E1, E2 = 150 µJ cm–2 and n = 2.4 × 1014 cm–3; (c) E1, E2 = 400 µJ cm–2 and n = 1.6 × 1013 cm–3; and

(d) E1, E2 = 550 µJ cm–2 and n = 1.6 × 1013 cm–3.

Erratum: “High-Efficiency Zn Isotope Separation
in a Photochemical Reaction Induced
by Two-Photon Excitation”
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