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Abstract—We discuss the physical phenomena that arise in the scattering of acoustic waves from fluid-
immersed elastic (metal) shells which may be either evacuated or filled with the same or with a different fluid.
The phenomena occurring here include the formation of circumferential (peripheral, or “surface”) waves that
circumnavigate the shells, propagating either as elastic waves in the shell material or as fluid-borne waves of
the Scholte–Stoneley type in the external or the internal fluid. By phase matching along a closed circuit, these
waves may lead to prominent resonances in the acoustic scattering amplitude, and we demonstrate how the set
of observed resonance frequencies is related to the dispersive phase velocities of the surface waves, so that one
can be determined from the other. In addition, we discuss how the dispersion curves (phase velocity plotted vs.
frequency) of the various types of surface waves show repulsion phenomena due to their coupling through the
boundary conditions. The cases of spherical and cylindrical shells are investigated here as typical examples, and
as an introductory topic we additionally mention surface waves on plates where related phenomena also occur.
Both the theoretical and the experimental aspects of the present subject will be considered, including the exper-
imental visualization of the surface waves. © 2001 MAIK “Nauka/Interperiodica”.
1 INTRODUCTION

We consider the process of acoustic interactions
with elastic (metal) shells of a cylindrical or spherical
shape, these examples being sufficient to exhibit the
essential physical phenomena arising in the acoustic
interaction process. They were found to be qualitatively
similar to those in metal plates, the effects of curvature
in the shells not having caused any major differences
[1] as long as the radius of curvature is large compared
to the wavelength. We assume the shells to be fluid-
loaded on the exterior or on both the exterior and the
interior with the same or with different fluids. Acoustic
interaction, e.g., by an incident plane wave (or, if there
is no external fluid, assuming some mechanical interac-
tion) will cause the excitation of waves in the shell
material which, in analogy to similar waves in elastic
plates, can be referred to as Lamb-type (pseudo-Lamb
or, simply, Lamb) waves; the lowest-order wave is
related to the Rayleigh wave on an elastic half space
[2–4] and has often been referred to by this name [5].
In distinction from the analogous plate waves, these
waves on a shell may propagate in a “circumferential”
fashion along a closed “peripheral” path and can then
be referred to under these names or, alternately, as “sur-
face waves”; the circumferential Lamb waves have also
been called “Whispering Gallery waves” [5], from
Lord Rayleigh’s observations in the dome of St. Paul’s
cathedral [6] in London. The distinguishing feature
from plate waves appears here as the possibility that
surface waves may match phases over their closed
paths and thus form standing circumferential waves,
which leads to a resonant reinforcement of their ampli-

1 This article was submitted by the author in English.
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tudes and, hence, to acoustic scattering resonances.
Due to the dispersive nature of the waves, these will
occur at well-defined resonance frequency values
which, owing to attenuation, have an imaginary compo-
nent. The latter is often small, in which case, spectacu-
larly high and narrow resonance features may appear in
the scattering amplitude; see, e.g., [7]. Closed-path
phase-matching resonances will also occur on elastic
bodies of more general shapes, such as spheroids or
finite-length cylinders; some of these cases have been
discussed in [8, 9].

The presence of fluid loading causes the appearance
of additional surface waves during the excitation pro-
cess which, in contrast to the shell-borne Rayleigh and
Lamb-type waves, are predominantly fluid-borne and
which are often referred to as Scholte–Stoneley waves,
in analogy to related geophysical waves introduced by
Stoneley [10] and by Scholte [11]. Their phase-velocity
dispersion curves tend asymptotically, for high fre-
quencies, to the sound velocity in the fluid loading(s)
while those of the Rayleigh or Lamb waves tend
towards the Rayleigh-wave speed cR or the bulk shear
speed cT in the shell material, respectively; but the situ-
ation is complicated here by the coupling of the
Scholte–Stoneley waves with the lowest-order Lamb
(or Rayleigh) wave; this has been analyzed by Bao
et al. [12]. The acoustic coupling phenomena have first
been clarified for the case of an elastic plate [13]. For
this reason we shall, in the following, first present a
brief overview of the related surface-wave dispersion
phenomena on plates, before proceeding to the analo-
gous, more complicated phenomena on cylindrical and
spherical shells, for which the discussion of the plate
case furnishes a first step towards their understanding.
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Fig. 1. Phase velocity dispersion curves of Lamb waves on a free aluminum plate (from [13]).
A more complete discussion of plate wave dispersion
phenomena can be found in [14], which is a review
paper devoted exclusively to plate waves.

PLATE WAVE DISPERSION

Phase velocity dispersion curves for the waves on an
elastic plate are given, e.g., for a free plate by Bre-
khovskikh [15] or for a plate loaded by two different
fluids on one or both sides by Talmant [16], see also
[13]. They are obtained from solving the characteristic
equation for plate vibrations. Figure 1 shows the dis-
persion curves for an aluminum plate in vacuo in a ver-
sion obtained by [13]; see also [4]. Phase velocities are
plotted vs. the product of frequency f and plate thick-
ness d, and the compressional (cL) and shear velocity
(cT) of bulk waves in aluminum are indicated by hori-
zontal lines. Lamb-wave modes indexed by i corre-
spond to either symmetric (Si) or antisymmetric or flex-
ural (Ai) plate displacements, and the phase velocities
of the lowest-order (i = 0) Lamb waves (or Rayleigh-
type waves) S0 or A0 (flexural wave) tend asymptoti-
cally for fd  ∞ towards the Rayleigh wave velocity
cR on a half-space (lying just below cT), while the
higher-order (i ≥ 1) Lamb waves tend towards the shear
speed cT, the Si waves having lingered around the com-
pressional-wave speed cL before eventually dropping
down to the shear speed also.

The pattern of Ai and Si wave dispersion curves in
Fig. 1 has been explained by [13] in the following fash-
ion. One may, as in Fig. 2, calculate the dispersion
curves for a free aluminum plate for which either the
shear waves were assumed absent (cT = 0) or the com-
pressional waves were assumed absent (cL = 0). This
yields the two families of intersecting curves of Fig. 2,
which lead to the following interpretation for the curves
of an actual plate shown in Fig. 1 (except for those of
S0 and A0 waves): descending from certain individual
cutoff positions, the Ai curves drop down to their
asymptotic value cT in a fairly straightforward fashion,
and may be identified with the (purely shear) cL = 0
curves in Fig. 2. The Si curves, after descending from
their individual cutoffs, try to form horizontal curve
segments around cL before asymptotically dropping
down to cT also. One notices, however, that the horizon-
tal curve segments of neighboring Si waves may be
thought to be connected from one wave to the next, so
that such a connected curve (with gaps) approaches a
(purely compressional) cT = 0 curve of Fig. 2. This was
studied in detail in [13] by changing the plate parame-
ters but is most easily seen in Fig. 1 when advancing,
e.g., from the horizontal portion of the S3 to that of the
S4 wave. These gap-forming phenomena are caused by
the coupling between the cT = 0 and the cL = 0 waves
(caused by the plate boundary conditions), and we con-
clude that each wave in Fig. 1 changes its nature as one
goes along its dispersion curve: in its steep portion it
largely has the nature of a shear (cL = 0) mode; in its flat
portion, largely that of a compressional (cT = 0) mode.
When now, e.g., the S3 curve in its flat, compressional
portion (cT = 0) approaches the downward-coming
shear (cL = 0) S4 curve, it then turns downward itself
and changes into a shear (cL = 0) mode, asymptoting to
cT, undergoing a curve repulsion which at the same
time converts the S4 curve into a flatter, compressional
ACOUSTICAL PHYSICS      Vol. 47      No. 2      2001
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(cT = 0) mode. The curve repulsions caused by the cou-
pling of waves thus break up the basic (cL = 0 or cT = 0)
uncoupled curves into segments with gaps, with each
wave changing its physical nature when passing a point
of curve repulsion.

One may now consider the case of a fluid-loaded
plate. Figure 3 shows [4] the phase velocities, divided
by the sound speed cw in the one-sided water loading,
of the S0 and A0 Lamb waves of an aluminum plate. In
addition, the phase-velocity dispersion curve of the
Scholte–Stoneley wave (which we shall call the “A wave”)
that now appears [17] due to the fluid loading, and
which is largely water-borne, is shown also. (These
curves would be essentially unchanged with two-sided
water loading, the A0 and S0 curves being essentially the
same as those for a free plate; there only appear now
some imaginary parts of the phase speeds due to the
waves radiating off into the water, the imaginary parts
doubling for two-sided vs. one-sided water loading
[16].) One notices a repulsion phenomenon between
the A0 and the A wave around fd ≅  30 MHz mm, which
means not only that these two waves are coupled, but
also that they exchange their physicals nature while
passing through the repulsion region: the A0 wave as it
approaches cR for fd  ∞ is plate-borne there, while
the A wave as it approaches cw is fluid-borne there. To
the left of the repulsion region, the A0 wave is now
fluid-borne there and the A wave is plate-borne [4].

The case of two-sided fluid loading of a plate has
been investigated in [18, 19]; see also [1]. Figure 4
shows a result for an aluminum plate water-loaded on
one side and alcohol-loaded on the other. It is seen that
here two Scholte–Stoneley waves appear which tend
asymptotically to the sound velocity in water (cw =
1483 m/s) and in alcohol (ca = 1200 m/s), respectively.
This limiting behavior has been noted earlier [20]. We
also see that the dispersion curve of the wave that tends
to the higher-lying fluid sound speed forms a loop to the
left of point M; the existence of such a loop in a disper-
sion curve has been noted before [21], and it was shown
that the wave in the loop region propagates without
attenuation.

The foregoing discussion of the basic features of
surface waves in fluid-loaded plates will help us under-
stand similar phenomena in fluid-loaded thin shells, to
which we shall turn our attention in the following.

SURFACE WAVES AND RESONANCES
ON FLUID-LOADED THIN ELASTIC 

CYLINDRICAL SHELLS

Our discussion of the physical phenomena involv-
ing elastic shells will deal with the interplay of surface
waves on the shell, of the circumferential (peripheral)
type, and of the resonances caused by them; but we
shall also mention resonant processes dealing with lon-
gitudinal (axially propagating) shell waves. These
waves are generally assumed here to be excited acous-
ACOUSTICAL PHYSICS      Vol. 47      No. 2      2001
tically by an incident plane wave that gets scattered by
the shell (requiring the shell to be immersed in an exter-
nal fluid whose influence on these processes needs to be
considered in addition), but the literature also contains
examples of their excitation by (point) mechanical
forces [22, 23]. The study of acoustic shell interactions
goes back to the work of Lyamshev [24–29]. His and
other related works have been reviewed by Muzy-
chenko and Rybak [30], and we may also mention here
as relevant the book on thin-shell theory by Gol’den-
veœzer [31]. This earlier work also involves [30] the
effects of plane acoustic waves obliquely incident on a
finite-length cylindrical shell and a discussion of the
excitation of normal modes of axial shell waves by their
coincidence with the trace of the incident wave on the
shell (sometimes referred to as Cremer’s coincidence
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Fig. 2. Phase velocity dispersion curves of Lamb waves on
a free aluminum plate for which either cT or cL were set
equal to zero, as indicated (from [13]).

Fig. 3. Phase velocity dispersion curves of S0 and A0
Lamb waves in an aluminum plate with one-sided water
loading, together with that of the A (Scholte–Stoneley)
wave from [13].
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condition [15]), but a discussion of resonances in the
frequency space is also given in [30].

The shell resonances can be calculated and observed
as distinct features, often of a quite narrow width in fre-
quency, in the acoustic scattering amplitude, with strik-
ing examples of both shown, e.g., in [32, 33] and in
[34], respectively, Fig. 5 (from [34]) illustrating these
resonances. Their physical origin lies in the (acoustic)
excitation of surface waves on the shell which, e.g., for
an acoustic signal incident normally to the cylinder
axis, will circumnavigate the shell in a peripheral fash-
ion along a closed circumferential path. If upon each
circumnavigation they match phases with themselves at
their point of origin (i.e., forming circumferential
standing waves with an integer number of wavelengths
spanning the circumference), this will lead to their res-
onant reinforcement and to a resonance in the scatter-
ing amplitude. The resonances plotted vs. frequency
can be quite narrow but are of a finite height due to
damping introduced by radiation of the surface wave as
it circumnavigates the shell. Because of the dispersive
nature of the surface waves, phase matching takes place
at a series of well-defined resonance frequencies. This
explanation of the (circumferential-wave) resonance
spectrum of a cylindrical shell (or generally, of an elas-
tic object on which surface waves can circumnavigate
along a closed path) was put forward by Überall et al.
[35, 36] in 1977 and has been generally followed (see,
e.g., [32]). This tight interplay of resonances and sur-
face waves will allow a determination of the surface
wave phase velocity dispersion curves from a known
corresponding subset of the resonance spectrum, or,
conversely, it will allow a determination of the corre-
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Fig. 4. Phase velocity dispersion curves (normalized by
shear speed cT) of the A0 wave for an aluminum plate in vac-
uum, and of the A0 wave and two Scholte–Stoneley waves A
and S for an aluminum plate loaded by water on one side and
by alcohol on the other (from [18, 19]).
sponding resonance spectrum from known (e.g., calcu-
lated) surface wave dispersion curves.

For a cylinder of finite length, another set of reso-
nances arises from the formation of longitudinal standing
waves in the axial direction, which also amounts to a
phase matching [37]. These were studied, e.g., in [38],
and for an oblique direction of the incident wave [23]
both longitudinal and circumferential waves can be
excited simultaneously in a combined fashion, generating
resonances from the formation of helical waves [39–41].

As to the scattering from a spherical shell (or a
sphere, in general), circumferential surface waves
excited, e.g., by an incident acoustic wave, can likewise
match phases and form standing peripheral waves. It
should be noted here, however, that in this case the cir-
cularly peripheral waves will pass through two focal
points, one towards the source and one on the opposite
side, at which a quarter-wave phase jump occurs [42].
Phase matching then takes place here in integer-num-
ber-plus-half wavelengths of the surface wave span on
the circumferential path [43].

A. Circumferential Waves on Infinite Cylindrical Shells 
with External Fluid Loading

Figure 3 showed the lowest (S0 and A0 or “flexural”)
Lamb waves on an aluminum plate and the additional (A)
Scholte–Stoneley wave which is introduced by a one-
sided water loading of the plate. The appearance of
such a Scholte–Stoneley wave on a water-immersed,
evacuated shell was first shown by Subrahmanyam
[44]; see also [34]. (Note, however, that the first reso-
nance and dispersion analysis of immersed cylindrical

70 90 110 130 k1a

20 30 40 50 60

D'
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∆
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Fig. 5. Resonance contribution to the far-field backscatter-
ing amplitude of an evacuated cylindrical aluminum shell in
water, plotted vs. ka (k is the propagation constant in water,
a is the outer shell radius) (from [34]).
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shells is due to [45], and it was followed up by the work
of [46].) Figure 6 shows Subrahmanyam’s calculated
results [44] for water-loaded, air-filled steel shells of
various thickness b/a. The figure displays the phase-
velocity (cp) dispersion curves, normalized by the
sound speed in water (c), for circumferential waves anal-
ogous to the plate waves: the S0-Lamb analog (l = 2 or
first Whispering Gallery wave, in cylinder terminol-
ogy); the A0-Lamb analog (l = 1 or Rayleigh wave); and
the Scholte–Stoneley analog (l = 0). Present knowledge
(see above) tells us that the A0 wave, descending from
the right, continues as the white circles to the left of
ka ≅  5, while the A wave, coming in horizontally from
the right, continues as indicated by the descending black
dots to the left of ka ≅  5. The two curves come close but
repel each other at ka ≅  5. Physically, however, the con-
tinuous-looking black dot curve (A0 to the right, A to the
left) is shell-borne in its entirety, and the near-horizontal,
continuous-looking curve (black dots to the right, white
circles to the left) is water-borne entirely.

The mentioned repulsion of the A0 and the A wave
dispersion curves, not well discernible in Fig. 6, is vis-
ible for a plate in Fig. 3 and has been studied for cylin-
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ious shell thickness ratios b/a (from [34]).
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drical shells in [47, 48]. Figure 7, from [48], shows cal-
culated dispersion curves for A0 and A waves on water-
immersed steel shells of various thickness, b/a = 0.5,
0.7, and 0.9, indicating the repulsion phenomenon
between these two curves. Note that the dashed curve,
representing the A0 wave on a shell without fluid load-
ing and thus entirely shell-borne, clearly indicates the
shell-borne nature of the lower curve to the left of the
repulsion region and of the upper curve to the right of it.
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Far-field acoustic scattering amplitudes from such
cylindrical shells of various thickness, calculated for
normal incidence, are shown in Fig. 8, from [48]. The
various visible resonances were attributed here to the
S0 (*), A0 (j), and A wave (d) as indicated. One can
notice the following features: (i) S0 resonances, the
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Fig. 8. Far-field backscattering amplitude plotted vs. k1a,
from evacuated steel shells in water of thickness ratios b/a =
(a) 0.7, (b) 0.8, and (c) 0.9 (from [48]).
numbers indicating their order number n, occur at all
thicknesses of the shell; (ii) A0 resonances are visible at
all remaining resonance features for b/a = 0.7, at all but
one of these for b/a = 0.8, and at only one single reso-
nance feature for b/a = 0.9, while (iii) no A resonance
occurs among the non-S0, b/a = 0.7 resonance features,
only one is visible at b/a = 0.8, and at b/a = 0.9 all but
one of the non-S0 resonance features are A-wave reso-
nances. These and other observations (e.g., [49]) show
that while the A resonances are visible on thin shells
(b/a ≥ 0.9), the A0 resonances are harder and harder to
observe the thinner the shell becomes. The reason for
this non-observability of the A0 wave (via its reso-
nances) on very thin shells was recognized by Talmant
and Quentin [16, 50] to lie in the fact that at low fre-
quencies the attenuation (caused by re-radiation) of the
A0 wave, especially for frequency-thickness values fd ≤
1 MHz mm, is an order of magnitude higher than, e.g.,
that of the S0 wave, due to the transverse (flexural) nature
of the A0 wave. It was also shown [16] that the attenua-
tion coefficient is inversely proportional to (1 – b/a), so
that the thinner the shell, the larger the attenuation (and
reradiation) of the wave. In the experiments of Talmant
and Quentin [50, 51], which were done observing the
radiation from multiply circumnavigating pulses on the
shells, one single (non-identified) circumnavigating
pulse was seen on a steel shell (but not on duraluminum
shells) in addition to those of the S0 and A waves, which
might have been an example of the A0 wave.

Experimental observations of the A0 wave on very
thin shells have been carried out, however [52], by uti-
lizing ultra-short, spark-generated sound pulses excit-
ing the A0 wave on the cylindrical shell and observing
only a short initial portion of just its first circumnaviga-
tion, before it had any time to decay. The visualization
of the A0 wave propagation was achieved by the shad-
owgraph method [53]. Figure 9 presents the shadow-
graph of a b/a = 0.94 water-immersed, evacuated steel
shell insonified by a spark acoustic source (top), which
shows the incident (I) and specularly reflected pulse
(SR), turning into the fluid-borne Franz or “creeping”
wave [35, 36, 54, 55] as it wraps around the cylinder. It
also shows the re-radiation in water of two kinds of
shell waves which have traveled ahead of the incident
pulse: the S0 wave (fastest) and the A0 wave (as indi-
cated), which has been clearly observed here. Its iden-
tification occurred via spectral analysis of its observed
re-radiation, permitting the extraction of its phase-
velocity dispersion curve which closely agreed with the
calculated dispersion curves [47, 48].

The mentioned Franz waves are entirely fluid-borne
and exist even if the (cylindrical or general) scattering
object is impenetrable (rigid or soft); the A wave is also
largely fluid-borne although its existence depends on
the scatterer being elastic. It stands to reason, therefore,
that a possible interplay of the Franz waves and the A
wave should be discernible. This has been brilliantly
demonstrated in [56], where it was shown for water-
immersed, evacuated aluminum and steel shells that for
ACOUSTICAL PHYSICS      Vol. 47      No. 2      2001
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varying values of the shell curvature, the water-borne
(Stoneley) wave and the succession (F1, F2, …) of water-
borne Franz waves cross over and often exchange roles
with each other. This study also includes the shell-borne
(A0) wave and the attenuation of these waves. Figure 10
shows the phase velocities in an aluminum plate and
shell of the following situations: of the A0 wave for a

plate in vacuum ( ); on a one-sidedly water-loaded

plate both  and AP (here called SP) are shown, and on
a water-immersed shell with (a + b)/2(a – b) = 45 the fig-
ure shows the A0, A (here called S), and the first two
Franz waves F1 and F2. One notices the role F1 plays in
the repulsion region of the A0 and A waves. This analy-
sis is based on the Timoshenko–Mindlin shell theory
and the Watson transformation.

In Fig. 5, one can notice a series of approximately
evenly spaced resonances in the acoustic scattering
amplitude for an immersed empty aluminum shell
(b/a = 0.96). This is also seen [57] in Fig. 11 for a steel
shell (b/a = 0.99), the frequency domain being indi-
cated in (a). If an incident pulse is assumed rather than
a steady plane wave, it can be described by a Fourier
transform which then is also applied to the scattered
wave. The nearly even spacing of the resonances allows
us to approximate the scattered-wave Fourier integral
by a summable series in the time domain, with the
result shown in (b). This simple mathematics furnishes
a series of evenly spaced pulses, which obviously phys-
ically represent the observation of the radiation from
circumferential-wave pulses that encircle the shell a
number of times.

A definitive theoretical study on the observability of
the A0 wave for thin evacuated, water-immersed metal
shells has appeared very recently [58] based on filtering
of the backscattered amplitude in the frequency and in
the time domain. Figure 12 displays the calculated
backscattering acoustic pressure spectrum for a b/a =
0.94 steel shell vs. ka, indicating (a) A-wave resonances
which appear in the frequency window 10 ≤ ka ≤ 25
(see also Fig. 5), (b) an oscillation with a constant
period in 25 ≤ ka ≤ 70, and (c) a large amplitude varia-
tion at ka ~ 195 which constitutes the so-called “thick-
ness resonance,” at a frequency where a resonating
standing wave can be formed across the shell thickness.
The A-wave resonances have been known to appear
[45, 46, 59, 60] for an immersed, evacuated shell only
in a well-defined “frequency window” (for a 0.94 steel
shell at 10 ≤ ka ≤ 25; for a 0.96 shell at 20 ≤ k/a ≤ 40; for
a 0.98 shell at 45 ≤ ka ≤ 70). The spectrum of Fig. 12 is
Fourier-analyzed to obtain the time-domain response of
a short (Dirac) pulse. Suppressing the specular echo
and applying an inverse Fourier transform gives the res-
onance spectra without the specular-echo “back-
ground,” which always needs to be eliminated [60, 61]
in order to display the true resonances. This pure reso-
nance spectrum is now frequency-filtered to eliminate
the A-wave resonances in their frequency window.

A0
PV

A0
P
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Another Fourier transform furnishes the time-filtered
signal in which a series of circumferential S0 pulses
appears quite similar to Fig. 11, but the earliest appear-
ing pulse is recognized [58] as an A0-wave pulse, which
thus is seen to correspond to the constant-period oscil-
lation in 25 ≤ ka ≤ 70 of Fig. 12.

A0

Franz 

I

SR

wave

S0

Fig. 9. Shadowgraph of ultrashort sound pulses propagating
around water-immersed steel shell (b/a = 0.94), showing S0,
A0, and Franz waves (from [52]).
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Fig. 10. Phase velocity dispersion curves of A0, A, and Franz
waves on aluminum plates and shells, water-loaded from
one side. Here, h = a – b and R = (a + b)/2 (from [56]).
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The above-described discussion of shell scattering
and the ensuing extraction of shell-borne surface waves
have ultimately been based on far-field analysis. Guo
[62] has, starting from asymptotics, derived near-field
pressure and shell responses in terms of the shell
waves.
ACOUSTICAL PHYSICS      Vol. 47      No. 2      2001
B. Circumferential Waves on Infinite,
Fluid-Filled Cylindrical Shells

Unlike the above-described investigations of empty
shells subject to fluid immersion, the study of fluid-
filled shells in air or vacuum is of much more recent ori-
gin [37]. Figure 13a shows circumferential-wave phase
(b)
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Fig. 13. Phase-velocity dispersion curves for (a) the water-filled b/a = 0.92 aluminum shell and of (b) the b/a = 0.963 steel shell in
air (from [37]).
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velocity (cp) dispersion curves on a water-filled, b/a =
0.92 aluminum shell in air, and Fig. 13b shows the
same for a water-filled, b/a = 0.963 AISL 304L steel
shell in air. They are normalized by the sound velocity
in air, c0 ≡ 340 m/s, and are plotted against both ka ≡
ωa/c0 and against kwa = ωa/cw where the sound speed
in water is cw = 1483 m/s. We see the lowest-order curve
starting out from the origin and asymptotically tending
towards cw/c0. A series of higher-order curves descends
from certain lower frequency cutoffs, also appearing to
tend towards cw/c0 although this would be seen clearly
only if the figures extended to higher frequency regions.
However, the asymptotics identify well enough all of
these waves to be fluid-borne in the filler fluid [18–20],
and this will be confirmed in the following section
where shells with both external and internal fluid load-
ing are considered.

C. Circumferential Waves on Infinite Cylindrical Shells 
with Both External and Internal Fluid Loading

This case considered here, double fluid loading with
two different fluids, represents the most general situa-
tion of fluid loading on a shell. After a brief study of
this case [1], a complete investigation was carried out
by Bao et al. [12]. Their results are shown in Fig. 14a
for a water-immersed, alcohol-filled aluminum shell
with b/a = 0.92. The phase velocities cp are normalized
by the sound speed in water, c0 = 1483 m/s. The dashed
curve shows the A0 wave dispersion curve for a free
shell without any fluid loading (denoted A0free), and the
A0 and A wave dispersion curves for an evacuated,
water-loaded shell (denoted by A0evac and Aevac, respec-
tively) are indicated by diamonds. These are the waves
that have been discussed in Section A above. The shell-
borne disjoint portions of these curves are here indi-
cated by the letter a0, and the water-borne portions, by
the letter a. If the alcohol filling is added, the results
corresponding to a double-loading of the shell are
obtained as the curves indicated by asterisks. Here, we
immediately find the dispersion curves of the circum-
ferential waves propagating in the filler fluid, which are
very similar to those shown in Fig. 13. While the lowest
curve corresponds to the A wave, which shows a possi-
ble asymptotic limit at ca/c0 = 0.81 where ca = 1200 m/s
is the sound speed in alcohol, all the higher curves
labeled F1, F2, F3, … correspond to the filler-fluid-
borne waves that descend from their low-frequency
cutoffs and possibly tend toward ca/c0 also, although
the right end of the figure at ka ≡ ωa/c0 = 50 does not
allow a firm conclusion on this.

What is seen, however, is the repulsion phenomenon
of the filler-borne waves already familiar from Fig. 1.
We have labeled each continuous curve by Fi. What is
clear, however, is that without the interaction mecha-
nism that causes the repulsions, we would have the con-
tinuous curves we called fi (as indicated in Fig. 14a). The
repulsion causes a gap in all fi curves, reconnecting
them along the A0free line to form the continuous Fi
curves, all of which have a short segment that follows
the A0free line. The sequence of these segments can now
be recognized as the A0 curve which has been seg-
mented by the interaction mechanism that also seg-
mented (and reconnected) the fi curves.

This interaction mechanism can be identified from
Fig. 14b in which the dispersion curves have been
drawn for the same doubly fluid loaded aluminum
shell, but assuming “liquid aluminum” in which cT was
taken as zero. This assumption is seen to have elimi-
nated all the curve repulsions, so that now the disper-
sion curves of the filler-fluid-borne waves coincide
with the fi curves of Fig. 14a; likewise, no A-wave curve
appears at all since the “liquid” shell won’t support any.
This clarified the interaction mechanism causing the
curve repulsions in Fig. 14a as being due to the elastic-
ity of the shell (see the equivalent situation when com-
paring Figs. 1 and 2 for a plate). The onset of the cou-
pling for a fluid-filled aluminum shell in air, Fig. 13a,
cannot be seen in that figure since the figure cuts off at
kwa = 20 while the first curve repulsion in Fig. 14a com-
mences at about this value (note kwa in Fig. 13a is the
same as ka in Fig. 14a).

D. Determination of the Resonance Frequency 
Spectrum of Shells

Practical applications often require a knowledge of
the eigenfrequency spectrum of fluid-filled cylindrical
metal shells in air. The eigenfrequencies corresponding
to circumferential waves can be obtained from the
above-given dispersion curves by using the principle of
phase matching [35], in which a circumferential wave
closes into itself with the same phase after each circum-
navigation of a cylinder or cylindrical shell, leading to
the formation of standing waves and hence resonant
eigenfrequencies. The condition for phase matching, i.e.,
n wavelengths spanning the circumference, is 2πa = nλ
(for a thin shell) or

(1)

(where k ≡ ω/c0 is the wave number in the air). This
equation represents a straight-line plot of cp/c0 vs. ka,
and its intersections with the dispersion curves, e.g.,
those of Fig. 13, furnish the portion of the eigenfre-
quency spectrum of the fluid-filled cylindrical shell
corresponding to the circumferential waves. Table 1
lists the eigenfrequencies of the water-filled cylindrical
aluminum shell corresponding to Fig. 13a, obtained in
this way, and Table 2, those of the AISL 304L steel
shell of Fig. 13b. The graph of Fig. 15 shows the
straight lines of Eq. (1) intersecting with the dispersion
curves of Fig. 13a, indicating how the entries of Table 1
were found. For completeness, we also list in Table 3
the values obtained from Fig. 14a for the eigenfrequen-

cp/c0 ka/n 2πa/nc0( ) f= =
ACOUSTICAL PHYSICS      Vol. 47      No. 2      2001



ACOUSTICS OF SHELLS 125
*

************* ** ** ****** **

*

*
*

**********************
******* *************************************

*

*

*

*
*

*

*
*

*

***************

* ********

*
*

*** *

*
*

* ** * *

*
* * *

****

*****

**********************
****************

**** ************

**
* *** *******

**********

** * * ** *

*

*

*
*

**
* *

**** * ** ****

* * * * * * * *

*

*
*

********** * * * *

*
*

*
*

*

*

*
*

***** ** *

*
** ** ** ** *

* * *

*
*

*
* * *** *** * *

*
*** ** **

***

** * ** * * * * * * * *

******* *

* * * * * *
* * * * * * * ****

* * *
*
*
* * *
*****

* * ** ** ** ********* ********** * ****

** *******************

********************* ***

******

0 10 20 30 40 50
ka

0.5

1.0

1.5

2.0

Aevac(a)

A0evac(a0)

Aevac(a0)

A0evac(a)

F1

F2

F3

F4...

0

0.5

1.0

1.5

2.0

Aevac(a)

A0evac(a0) A0

Aevac(a0)

A0evac(a)

F1( f1)
(segmented)

A0

A

A0free

A

F2( f2) F3( f3)
F4( f4)...

cp/c0 (a)

(b)

a

F3( f4)
F2( f3)

F1( f2)

Fig. 14. Phase-velocity dispersion curves (a) for water-immersed, alcohol-filled aluminum shell with b/a = 0.92 and (b) for alu-
minum shell with cT set equal to zero (from [12]).
cies of the alcohol-filled, water-immersed aluminum
shell with b/a = 0.92.

E. Determination of Shell Characteristics:
Inverse Scattering

Acoustic scattering can be used for purposes of
object recognition and material characterization; for
ACOUSTICAL PHYSICS      Vol. 47      No. 2      2001
this application it is known as “Inverse Scattering.” In a
series of publications, Professor Quentin and collabora-
tors [63–66] have devised several inverse scattering
schemes in order to determine the material and/or size
parameters of water-immersed metal cylinders or air-
filled metal cylindrical shells via acoustic reflections
therefrom, primarily from the scattering resonances of
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circumferential waves. Our present review of this topic
will be restricted only to the case of shells.

In the mentioned references, it has been noticed that
the resonances of such cylindrical shells can be seen to
fall into two families which are termed as follows:

(a) Shear resonances (T): their frequencies depend
only on the shear speed cT (not on the longitudinal
speed cL) of bulk waves in the shell material; they are of
narrow width [note that all resonance widths depend
mainly on the density ratio ρ/ρ0 of the shell (ρ) and the
ambient fluid (ρ0), rather than on cL and cT].

(b) Longitudinal resonance (L): these are wide-band
and depend only on cL (not on cT).

The corresponding cL or cT dependence was found
to be approximately linear, following the empirical
equations (x = ka, k = ω/c0):

(2a)xn i,
T π/c0( ) ai/ a b–( ) β n( )+[ ]cT , i integer= =

Table 1.  Circumferential wave eigenfrequencies fl (in kHz)
of water-filled cylindrical aluminum shell in air (shell radius
a = 5 cm) corresponding to the three waves in Fig. 13a labe-
led l = 1, 2, 3 (from below)

n f(1) f(2) f(3)

1 – 12.7
2 – 20.5
3 0.93 26.6 42.9
4 4.92 32.4 48.6
5 7.69 38.2 56.1

Table 2.  Circumferential wave eigenfrequencies fl (in kHz)
of water-filled cylindrical AISL 304L-steel shell in air (shell
radius a = 5.4 cm) corresponding to the waves in Fig. 13b
labeled l = 1, 2, … (from below)

n f(2) f(3) f(4)

1 11.11
2 17.89
3 23.24 38.13
4 28.21 44.34
5 33.27 49.91 64.74

Table 3.  Circumferential wave eigenfrequencies fn (in kHz)
of alcohol-filled, water-immersed cylindrical Al shell (shell
radius a = 5 cm) corresponding to the waves A, A0, F1, F2,
and F3 of Fig. 14a

n A A0 F1 F2 F3

2 14.65
3 19.88
4 11.38 24.26
5 15.41 28.82 45.01
6 19.51 33.38 50.08
7 13.13 24.55 37.85 55.01
8 18.10 29.91 42.26 60.02 75.02
for shear resonances and

(2b)

for longitudinal resonances. Here, n is the standing-
wave order number and i, j label the resonance modes
of a given n with respect to increasing frequency. The
constant β(n) depends on n and on b/a. The resonance
widths ΓL are found to be given by

(3)

Figure 16, from [66], shows the calculated longitudinal
resonance frequencies, plotted vs. n, of b/a = 0.5 shells
of steel (cL = 5790 m/s), aluminum (cL = 6370 m/s),
bronze (cL = 4550 m/s), and copper (cL = 4600 m/s),
divided by the corresponding values of cL. The reso-
nances L1…L4 associated with these four materials and
corresponding to the same values of n and Lj appear at
the same normalized frequencies.

For certain values of cT and cL there occur coinci-
dences between a certain shear and a certain longitudi-
nal resonance. Figure 17, from [66], shows the varia-
tion of calculated shear resonance frequencies (linear)
and longitudinal resonance frequencies (independent of
cT, hence horizontal) with cT. One notices near-crossover
points where, due to the elastic-wave coupling, a repul-
sion phenomenon occurs, familiar from Figs. 1 and 14a,
that prevents an actual crossing of the curves, but instead
creates what [66] terms “hybrid modes.”

The three unknowns in the inverse problem of the
shell are cL, cT, and ρ of the shell material. From a mea-
sured sequence of circumferential shell resonances
(their frequencies and widths), these three quantities
are determined from Eqs. (2) and (3) provided a and b
of the shell are known, in addition to the Lj (and Tj)
labels and of the mode number n. Determining the lat-
ter requires bistatic scattering experiments [67] (while
the Lj or Tj labels can be assigned considering the
widths of the resonances).

In order to avoid such complications, Batard et al.
[66] have devised a different, statistical method
(MECA) based only upon the measurement of the res-
onance frequencies in acoustic backscattering. This
method allows the determination of cT and cL, when a
and are known; but for thin shells it allows the determi-
nation of cT without knowing b/a and the determination
of this quantity b/a subsequently. A detailed discussion
of MECA lies beyond the scope of this review.

F. Axially Propagating Waves on Finite-Length 
Cylindrical Shells

Besides the circumferential waves, cylindrical
shells also support waves propagating in the axial
direction. The dispersion curves for such waves were
obtained by Kumar [68] for empty or water-filled brass
shells in vacuum (restricted to axially symmetric waves,
i.e., with a circumferential symmetry index n = 0),
and by Kumar and Stephens [69] for empty shells

xn j,
L π/c0( ) aj/ a b–( ) β n( )+[ ]cL, j integer= =

Γ L 2 ρ0/ρ( ) a/ a b–( )[ ] 1 c0/cL( )2–[ ] 1/2–
.≅
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(restricted to flexural waves with n = 1). The dispersion
curves are similar to those on the flat plate (with appro-
priate loading) since the transverse curvature is of little
influence for axial propagation on a cylinder [70]. An
example of this is the propagation of the Scholte–
Stoneley wave on a fluid-loaded plate which is known
to be nonradiating (i.e., it has a real propagation con-
stant). The same was shown to be the case for the axial
propagation of this wave on a fluid-immersed cylindri-
cal shell [71].

If the cylindrical shell is not infinitely long as
assumed before, but is terminated at both ends (the
shell being assumed here to be water-filled and in a vac-
uum) and having a length L, then the phase matching
condition for axially propagating waves (furnishing the
resonant eigenfrequencies) leads to the formation of
standing waves (assuming fixed terminations):

(4a)

or

(4b)

(where kw is the wave number in the water filling, and
we use kwd as the frequency variable, with d = a – b. This
equation represents a straight-line plot of cp/cw vs. kwd,
and its intersection with the dispersion curves of axially
propagating waves again furnishes a portion of the
eigenfrequency spectrum of the fluid-filled cylindrical
shell that corresponds to the axially-propagating waves.
For aluminum and steel, these dispersion curves are not
available from the literature regarding fluid-filled cylin-
drical shells, but as said above, it may be sufficient here
to use the dispersion curves on plates fluid-loaded on
one side (aluminum: [18, 19, 56]; steel: [56]). These
curves (restricted to the A0 wave, the S0 wave, and the
Scholte–Stoneley wave A) are shown in Fig. 3 for the

L nλ /2, n 1 2 3 …, , ,= =

cp/cw kwd/n( ) L/πd( ) 2L/ncw( ) f= =
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Fig. l5. Determination of the eigenfrequencies of the water-
filled cylindrical aluminum shell of Fig. 13a (from [37]).
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one-sidedly water-loaded aluminum plate. Intersection
with Eq. (4b) leads to the eigenfrequencies shown in
Table 4 for an aluminum shell of length L = 960 mm.
The intersection with the higher-lying S0 wave disper-
sion curve (see Fig. 3) leads to much higher lying
eigenfrequencies. Note that at higher frequencies,
curve repulsion effects would appear in the dispersion
curves [68].

The acoustic resonances of cylindrical shells with
flat or hemispherical endcaps were obtained and ana-
lyzed [72–74] employing, among other approaches, the
Finite Element/Boundary Element Method [75]. This
was done for axial incidence, where the corresponding
phase matching condition, e.g., for a cylindrical shell
with hemispherical endcaps was obtained [43] for
propagation along the meridian circumference (the
term 1/2 appearing here due to the quarter-wavelength
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Fig. 16. Longitudinal-resonance frequencies of b/a = 0.5
steel, aluminum, bronze, and copper steel shells plotted vs.
n (from [66]).

Table 4.  Eigenfrequencies fn (in kHz) of S0, A0, and A stan-
ding waves in the longitudinal direction on a water-filled alu-
minum shell in vacuum, of length 960 mm (fixed end pieces),
outer radius a = 5 cm and wall thickness 4 mm, correspon-
ding to Fig. 3

n S0 A0 A

1 2.85

2 5.69

3 8.52

5 14.21 0.967

10 28.41 2.58

20 56.82 7.74 1.81

30 85.19 16.45 6.77

40 113.58 26.06 12.38

50 141.90 35.47 19.35
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phase jump at the focal points on each of the hemi-
spheres):

(5)

Here, ccyl is the phase velocity of the axially propagat-
ing wave and csph the phase velocity of a circumferen-
tial wave on the spherical shell. For a tungsten carbide
(WC) spherical shell (b/a = 0.97) and infinite cylindri-
cal shell, ccyl and csph are shown [74] plotted vs. ka in
Fig. 18a; the resonance (n, l) predictions (arrows) and
the observed resonance spectrum (displaying the l = 2
peaks of the S0 wave) for a shell of total overall length

2L/ccyl( ) 2πa/csph( )+[ ] f 1/2– n.=

Frequency (x1)

Shear wave velocity, cT (m/s)
cT(reference) cT(scaled) cT(target)

α
α

αmax

Fig. 17. Shear- and longitudinal-resonance frequencies of
shells plotted vs. cT (from [66]).
L and diameter D with a ratio L/D = 2 are shown [74]
in Fig. 18b.

G. Surface Waves and Resonances on Submerged 
Cylindrical Shells Subjected to Oblique

Acoustic Incidence

An early theoretical investigation by Veksler [33] of
circumferential waves on cylindrical shells was subse-
quently succeeded by a similar study of surface waves
and their resonances generated by oblique acoustic
incidence [76]. This latter study found an excitation of
axially propagating waves (called Ti), in addition to that
of the circumferential waves. Experimentally detected
axially propagating waves on cylinders [77–79] have
been referred to as “guided waves.” The shell problem
with oblique incidence was investigated using finite-
length cylindrical shells [23, 38]. For oblique inci-
dence, circumferential, and guided waves combine to
form helical waves [80, 81]. The physical basis of the
corresponding experimentally observed scattering res-
onances [39] was lucidly explained [40] on the basis of
phase matching of a helical wave with itself during its
propagation on an infinite cylinder, as shown in Fig. 19.

These resonances were observed at the Institute
LAUE at Le Havre, France [82], for infinite cylindrical
shells, as shown in Fig. 20 for a b/a = 0.9 air-filled alu-
minum shell in water at an angle of incidence from the
normal α = 5°. The resonances of the A wave [n], n = 8–
11; of the S0 wave (n, 0), n = 3–5; and of the new guided
wave T0, 〈n, 0〉 , n = 2–7, have been identified and the
mode number n has been determined via bistatic scat-
tering measurements (for a full circuit of the receiver
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Fig. 18. (a) Phase velocity dispersion curves for a b/a = 0.97 spherical and cylindrical shell of tungsten carbide (WC).
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Fig. 18. (b) Measured and predicted resonances for b/a = 0.97 tungsten carbide steel with hemispherical end caps and length/diam-
eter ratio of 2 (from [74]).
around the cylinder axis, the number of lobes in the
observed angular scattering pattern is 2n).

In the same laboratory [82], results were also
obtained for finite-length cylindrical shells terminated
by plane disks [38]. Figure 21a shows for a b/a = 0.89
aluminum shell with L/2a = 1.66 the measured back-
scattering spectrum at normal incidence (A, before, and
B, after removal of the specular reflection background)

M

N

Fig. 19. Helical wave on a cylindrical object generated by
oblique acoustic-wave incidence and resonances created by
phase matching of the helical wave with itself (from [40]).
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where only the n = 2…8 resonances of the l = 2 (S0)
Whispering Gallery wave are seen. Part C of the figure
displays the resonance spectrum at α = 4° incidence
showing, besides the S0 resonances (which have shifted
upwards in frequency), the n = 6…10 resonances of the
T0 guided wave. These also shift upwards in frequency
when observed (or calculated) at increasing angles α;
in addition, a frequency doubling of many of the S0 as
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Fig. 20. Observed resonances in the acoustic scattering
amplitude of a cylindrical shell showing circumferential-
wave and T0 guided-wave resonances for 5° oblique inci-
dence (from [82]).
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well as the T0 peaks is observed. This can be explained
as follows. Figure 21b shows as solid lines the shift of
the T0 peaks as a function of α. The finite length of the
shell imposes the phase matching (stationary) condition

(6)ka mπa/L α , msin integer= =
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Fig. 21. (a) Observed resonances on a b/a = 0.89 aluminum
shell terminated by plane disks. A, before and B, after
removal of specular background, and C, α = 4° off-normal
incidence. (b) Shift of T0 resonances vs. α (solid curves) and
phasematching condition (dashed curves) (from [38]).
shown in Fig. 21b as dashed curves. Their intersections
with the solid curves predict the resonances, with
experimental values indicated as asterisks. We see that
for a given n, two (or in principle, several) resonances
exist, which explains the observed frequency doubling
due to various values of m, the number of standing
wavelengths over the length of the finite shell.

H. Scattering from Cylindrical Shells
with Internal Reinforcements

The topic of cylindrical shells containing internal
structures quite obviously constitutes a problem of
great practical importance, both as a vibration problem
and as one of acoustic scattering. There exists ample lit-
erature on this topic, of which because of space limita-
tion, we can discuss in detail only some selected exam-
ples.

The acoustic radiation problem from cylindrical
shells with ribs has been studied by Bernblit [83, 84] in
the USSR and by Burroughs [85, 86] and others [87] in
the US; Burrough’s investigations also included exper-
imental measurements. Acoustic scattering from the
same cylinder with doubly-periodic ring supports that
had been considered by Burroughs [85] was studied
theoretically by Moser et al. [88].

Additional theoretical investigations of the scatter-
ing from shells with internal structures are due to Guo
[89–92] and Felsen and Guo [93]. The internal struc-
tures considered in these studies are diametrical or off-
diameter elastic plates, with the internal masses
attached to the shell walls directly or by means of
springs, possibly attached at several internal points. The
vibrations of a cylindrical shell with a floor partition
were studied by Missaoui et al. [94]. The acoustic exci-
tation of Scholte–Stoneley and Lamb waves on a shell
containing an internal attachment was considered by
Poncelet et al. [95].

A series of experimental investigations of sound
scattering by a reinforced shell, accompanied by the
relevant theory, was carried out at the LAUE laboratory
at Le Havre, France [96–98]. In these studies, a diamet-
rical lengthwise rib was considered, attached to either
one shell wall with a gap towards the opposite wall or
diametrically attached to both shell walls. The results
of these studies will be shown below.

The ribbed cylinder considered in [85, 88] is a finite-
length MK-35 shell of a 21 inch diameter with ribs
spaced in a 7 inch, 8 inch, 8 inch, 7 inch, 8 inch, and
8 inch sequence; in addition, an ensemble of five such
shells end-to-end is also considered. The shell is
0.325 inches thick, which is small compared to the
wavelength, hence it is assumed to be describable by a
soft cylinder. The scattering amplitude of the body of
the shell is obtained from the Geometrical Theory of
Diffraction [99] (GTD) and stems mainly from its
edges (whose curvature was taken into account) with
the edge diffraction coefficient obtained from GTD. In
ACOUSTICAL PHYSICS      Vol. 47      No. 2      2001
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Fig. 22. Backscattering amplitude from a ribbed shell, showing a Bragg diffraction pattern (from [88]).
this way an analytical expression for the scattering
amplitude is obtained. The rib scattering amplitude for
a single rib in a shell is adapted from Wooley’s solution
for a rib on a plate [100] (with a curvature correction)
and is summed over the MK-35 ensemble. Figure 22
shows the target strength (backscattering amplitude)
vs. frequency at the 5-shell ensemble at an angle of
incidence of the acoustic signal of 20° from the cylinder
axis. The underlying pattern is caused by the shell’s
edge diffraction; two sets of arrows indicate the Bragg
diffraction pattern due to the ribs. Short arrows point at
maxima every 1.37 kHz which, by Bragg’s law, stem
from the 23 inch repeat factor of the assembly; long
arrows indicate primary maxima every 4.10 kHz which
stem from an overlap of the 7.667 inch average rib
spacing and every third 23 inch repeat. It is indicated
that the average spacing and the repeat pattern of the
ribs contribute most to the diffraction pattern grating
portion of the target strength, rather than the actual rib
spacings [88]. The rib scattering effects are apparent at
all frequencies considered here, as well as at all inci-
dent angles (10°–70°), and their positions are in perfect
agreement with the prediction of Bragg’s law.

The Tallinn-Le Havre collaboration [96–98, 101,
102] has produced a large amount of illuminating
results regarding the topic of scattering from a shell
reinforced by a lengthwise plate (“stringer”) attached
along the shell wave from one side. Figure 23a from
[96] shows the backscattering amplitude vs. ka for a
b/a = 0.98 aluminum shell with one internal lengthwise
aluminum stringer of dimensions relative to the radius
hs = 0.02 (thickness in the azimuthal direction) and ls =
0.07 (radial dimension). The dashed curve in part (A)
refers to a smooth shell, the solid curve to the shell with
ACOUSTICAL PHYSICS      Vol. 47      No. 2      2001
stringer. Parts (B) and (C) present the stringer-gener-
ated contributions of vibrations symmetric (B) and
antisymmetric (C) relative to the stringer; in these parts,
solid curves refer to an aluminum stringer and dashed
curves to a rigid stringer. Comparison of the corre-
sponding curves in (B) vs. (C) reveal a doubling of the
resonance frequencies, which has been explained in
[95] as being due to a foreshortening of the path of
phase-matching circumferential waves that either pass
through or are reflected by the stringer (Fig. 23b).
These waves, responsible for the extra resonances in
Fig. 23a, are A waves whose “frequency window” has
been opened up by the interaction with the stringer.

With a stringer that diametrically traverses the shell
but avoids touching the opposite wall [97] (Fig. 24), the
scattering resonances of a smooth shell are observed
coming from the S0 wave (top portion, A) and the extra
resonances seen for the stiffened shell (bottom portion)
are due to the A wave [95] again. Short-pulse backscat-
tering results [97] (Fig. 25a) show a series of pulses that
can be explained (Fig. 25b) by the incident pulse being
reflected from the apex of the cylinder (I), from the
stringer junction (II), traveling across the stringer and
being back-reflected from its rear edge (III), or circum-
navigating the shell as if it were smooth (IV).

Similar approaches were used in [98] where a shell
was considered that was diagonally traversed by a plate
attached to both walls of the shell. The plate-shell junc-
tions were shown to act as reflectors for circumferential
waves; these were excited on the shell surface by the
incident wave at the known critical angle, traveled to
the junction where they were reflected, and returned the
same way they came in. If the plate was not in a posi-
tion normal to the direction of incidence, but inclined,
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Fig. 23. (a) Backscattering amplitude vs. ka for a b/a = 0.98 aluminum shell with lengthwise stringer, from [96]; (b) explanation of
frequency doubling in (a) by phase matching with and without reflection from the stringer, from [95].
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Family A Family B or C
the wave’s surface path could be made very short and in
this way, it was possible to observe the A0 wave before
it had time to decay. This approach is an alternative to
observing the A0 wave by visualization shortly after its
creation [52]; see Fig. 9. It should be noted that [98]
contains more useful information on A0, A, and S0
waves on smooth shells such as phase and group veloc-
ity dispersion curves, attenuation of these waves, and
their critical angles.
SURFACE WAVES AND RESONANCES
ON FLUID-LOADED THIN ELASTIC

SPHERICAL SHELLS

The scattering amplitude for submersed spherical
shells has been calculated and experimentally mea-
sured as a function of frequency, in a fashion that
involved both the resonances of the target and the sur-
face waves [7, 57, 103–111]. We might also mention
ACOUSTICAL PHYSICS      Vol. 47      No. 2      2001
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some calculations for spheroidal shells [112, 113]
which can, however, not be discussed by us in detail
here.

A series of publications on the scattering of waves
from a spherical layer [114–118], which have been
intended for geophysical applications, will however be
discussed here to some extent since they provide us
with the opportunity to familiarize the reader with a
method called the “Generalized Debye Series Method”
[119] that has also been applied to plates and to cylin-
drical shells [120, 121]. This analytic method can be
used for the scattering from multilayered objects, pro-
vided all layer boundaries correspond to the coordinate
surfaces of any of the eleven coordinate systems in
which the wave equation is separable [122]. The basis
of the method is a replacement of the known standard
solution, obtained by Kramer’s rule as the quotient of
two huge determinants that each stem from satisfying
the boundary conditions at all of the layer boundaries,
by a solution that only contains the known (“local”)
transmission and reflection coefficients between layers
and that is developed into a series of powers of matrices
(the Generalized Debye series) which have immediate
physical (geometrical) significance, as illustrated in
Fig. 26.

If, for the multilayer case, the layers are labeled,
starting from the top, by m, m – 1, …, and m + 1 label-
ing the overlying ambient medium, the solution satis-
fies

(7a)

where 1 indicates the 4 × 4 unit matrix and Sm + 1 is

, (7b)

am + 1 (and ) being the amplitude of outgoing P
waves (or SV waves, respectively) and the quantities R
and T being reflection and transmission matrices
defined in [114] or [119]. The resonances of the mth
layer are obtained as the roots of the equation

. (8)

If the multiply-reflected amplitudes are desired (Fig. 26),
one may expand then using the Cayley–Hamilton theo-
rem [123]:

. (9)

Sm Rm 1+ m, Tm m 1+, Sm 1 Rm m 1+, Sm–( ) 1– Tm 1+ m, ,+=

Sm 1+

am 1+ 0

0 am 1+'

am 1+ 0

0 am 1+' 
 
 
 
 
 
 

=

am 1+'

det 1 Rm m 1+, Sm–( ) 0=

1 Rm m 1+, Sm–( ) 1– Rm m 1+, Sm( )p 1–

p 1=

∞

∑=
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This is the Generalized Debye series [119], which leads
to a representation of the scattering solution in the
ambient medium in terms of the various known “local”
reflection and transmission coefficients at all the inter-
faces of the multilayer system, in a fashion symbolized
by Fig. 26. Note, however, that the Debye series accom-
plishes this decomposition in an automatic fashion,
without having to go through the detailed steps implied
by Fig. 26.

An interpretation of calculated scattering ampli-
tudes from a spherical shell, showing the scattering res-
onances and associating them with the phase matching
of surface waves, was given, e.g., by [7, 103]. Figure 27
(from [7]) shows the resonances in the backscattering
amplitude from a b/a = 0.975 thick evacuated spherical
aluminum shell of outer radius a plotted vs. ka, with
k = ω/c (c = sound velocity in the ambient water).
Notice the similarity of this curve with those of a cylin-
drical shell, Fig. 5 (top portion) or Fig. 12 (leftmost
portion). The analysis of the resonances was carried out

kHz50 100 150 200 250

(b)

(a)

Fig. 24. Observed resonance amplitudes for (A) smooth
and (B) stringer-reinforced stainless-steel cylindrical shell
(from [97]).



134 ÜBERALL
0 50 100 150 200
 µs

–0.1

0.1

p

I

II III

III'

IV

(a)

I

II

III

IV

(b)

Fig. 25. (a) Short-pulse backscattering from a stringer-reinforced stainless-steel cylindrical shell, both (A) calculated and (B)
observed, and (b) explanation of backscattering pulses by interaction with the stringer (from [97]).
using the plate dispersion curves of Fig. 3, to sufficient
accuracy. The scale conversion from fd of the plate to
ka is given by [1, 7, 51]

(10)

For spherical geometry, the condition for the phase
matching of circumferential waves that causes the res-
onances is (at the discrete resonance points)

(11)

cp being the phase velocity of the circumferential wave
and k* the resonant wave number. Incidentally, the

ka 2π/c( ) fd/ 1 b/a–( ).=

cp/c ka( )*/ n 1/2+( ),=
group velocity cg of these waves, which in general is
given by

(12a)

can also be obtained from the spacing ∆(ka)* of the res-
onances [1, 16, 50, 51]

(12b)

(at the discrete resonance points) and, alternately, from
the arrival times of pulses in a transient experiment or
calculation. Equation (11) represents a straight line

cg d/d fd( ) fd/cp( )[ ] 1– ,=

cg/c ∆ ka( )*=
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through the origin in Fig. 3 which, intersected with the
cp curve, predicts the resonance frequency  together
with the mode number [1] n (as before for the cylindri-
cal case), or, conversely, a known series of resonances

 leads to a determination of cp.

It should be noted that in calculated or measured
backscattering amplitudes, a useful display of the scat-
tering amplitudes can only be made if the background
amplitude stemming from the wave geometrically
reflected from the apex of the scatterer is coherently
subtracted (e.g., going from part A to part B of Fig. 21).
The prescription for this is given by the Resonance
Scattering Theory [5] (RST) where it is suggested to
subtract the scattering amplitude of a rigid object, for
the case of a solid metal scatterer or a thick metal shell,
or that of a soft object for a very thin evacuated or air

kn*

kn*

1

2

3S

Fig. 26. Geometrical resolution of scattering process on a
spherical shell by the Generalized Debye series (from
[115]).
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filled shell. For the intermediate case of a not-so-thin
shell, an exact intermediate background has been
derived for the spherical case by Werby [61] or the use
of the scattering amplitude for a corresponding fluid
object has been suggested [124, 125]. Earlier sugges-
tions for intermediate backgrounds are contained in
[126, 127].

The result of an interpretation of Fig. 27 is the iden-
tification of resonances numbered n = 40…63 in the
frequency window of the Scholte–Stoneley wave (A),
and of n = 8…20 due to the S0 Lamb wave. No individ-
ual A0-wave resonances are visible. This wave, being
flexural, is not excited below the coincidence frequency
[109] (defined by cp, A = c), and just above this fre-
quency, the imaginary part of its wave vector is exceed-
ingly large [16, 50, 51, 98] so that it will not propagate
very far. Alternately speaking, it will give rise to reso-
nances that are exceedingly wide. Many of these broad
resonances overlap coherently.

The A wave does get excited below the coincidence
frequency, but its resonances are visible only in a lim-
ited frequency window [45] (of about ka = 30–70 for
the case of [7], Fig. 27). The reason for this is as follows:
if the group velocity cgA is obtained from Eq. (12), it is
found to have a plateau over such a frequency region
(i.e., if is rather nondispersive there) and circumnavigat-
ing wave packets interfere constructively to form reso-
nances. Outside the region, the wave packets disperse.
For the A0 wave, no plateau of cg is found, which is the
same reason for its nonappearance in Fig. 27 as that
given above (dispersive wave packets indicate Imk ≠ 0).

It should be noted that at very low frequencies, the
plate model dispersion curves are not applicable to the
spherical shell: an exact calculation shows [106] that
here the A-wave curve (see Fig. 3) ceases to tend to
zero, but instead turns up toward infinity (as does the A0
curve for the case of no fluid loading, Fig. 28). The cor-
responding additional intersections with the straight-line
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Fig. 27. Scattering-amplitude resonances for a b/a = 0.975 spherical aluminum shell in water (from [7]).
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curve of Eq. (11) were shown [7] to give rise to what
Junger and Feit [128] termed the lower (j = 1) branch of
spherical shell vibration modes. More details on this
will be given below.

The first resonance calculations for spherical shells
[103, 104] have represented the resonances in a form
where the resonance frequencies k*a are plotted vs. the
mode number n. The resulting curves are termed
“Regge trajectories,” after the way elementary particle
masses (resonances) are plotted vs. the angular
momentum quantum numbers [129]. Resonances of the
A0 (l = 1), S0 (l = 2), and A1 (l = 3) waves were found,
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Fig. 29. Regge trajectories of surface waves on a b/a = 0.80
spherical Fortal shell (from [104]).
and for the case of a spherical Fortal shell of b/a = 0.80
(Fig. 29), the A wave (l = 0) has also been found.

The most recent calculation of the resonances and
circumferential-wave dispersion curves for spherical
shells has interpreted [111] the phenomenon of low-
frequency upturning of the A wave dispersion curve for
fluid-immersed spherical shells (or of the A0 wave for
the case of a shell in vacuum) that was mentioned in
connection with Fig. 28. These A wave (solid-line)
curves were calculated [106] for 5 and 2% thick alumi-
num shells as shown in Fig. 30, and the points of a res-
onance calculation [7] for the 5% shell are entered here
and show perfect agreement. For the case of steel
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Fig. 30. A wave dispersion curves for 5 and 2% thick spher-
ical aluminum shells in water (from [111]).
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shells, the corresponding results were formerly still
unavailable since in fact, some results in the earlier lit-
erature contradict the interpretation offered by Fig. 30.
The study of [111] has now presented 2.5- and
1%-thickness steel-shell results (Fig. 31) in complete
analogy with those of the aluminum shell shown in
Fig. 30. The calculated solid-line A wave dispersion
curve is due to [130]; it has been extended here to a
lower frequency, drawn through the resonance points to
provide an analogy to the aluminum curve of Fig. 30.
The circles are resonance frequencies from the calcula-
tions of [131]. The low-frequency upturn of the A wave
dispersion curves is thus confirmed here for the 2.5%
steel shell also, and the Junger resonances [128] (dark
points) for the 1% steel shell are, by a comparison with
the aluminum case of Fig. 30, recognized here as
belonging to the A wave and, in particular, correspond-
ing to the low-frequency upturn of the A wave disper-
sion curve for the 1% steel shell.

CONCLUSIONS

Over the last several decades, the study of acoustic-
wave scattering from elastic shells has led to a unified
picture of the physical phenomena involved, due to the
understanding that has been gained regarding the role
played by the surface waves (circumferentially or axi-
ally propagating) when they are excited in the scatter-
ing process, and of the prominent resonances which
they engender by phase matching. The main progress in
shell scattering can thus be summarized as our acquired
understanding of the resonance phenomena and their
causes, rather than as simply verifying their existence.
The resonances can be used to furnish information on
the properties of the surface waves due to the one-to-
one relationship between these two phenomena, this in
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Fig. 31. A-wave dispersion curves for 2.5 and 1% thick
spherical steel shells in water (from [111]). 
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a sense providing a solution of the inverse scattering
problem or at least of one important aspect of it.
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Abstract—A two-dimensional interaction between long-wave (sound) and short-wave (ultrasound) pressure
perturbations in a rarefied monodisperse mixture of a weakly compressible liquid with gas bubbles is consid-
ered. The conditions at which this interaction leads to a singular focusing (an explosive instability) of ultra-
sound are determined. A numerical study of the defocusing and the singular focusing in a bubbly liquid is car-
ried out. The effect of the long-wave–short-wave resonance on the development of two-dimensional distur-
bances is studied. © 2001 MAIK “Nauka/Interperiodica”.
A liquid with gas bubbles exhibits pronounced non-
linear acoustic properties due to the nonlinear character
of the bubble oscillations and the high compressibility
of the bubbles. The theoretical and experimental stud-
ies performed in the last few decades revealed many
types of nonlinear wave phenomena in bubbly liquids:
the self-focusing of ultrasound [1, 2], the self-clarifica-
tion of sound [3], wavefront reversal [4], the acoustic
echo [5], subharmonic wave generation [6, 7], the
focusing and amplification of waves in inhomogeneous
bubbly liquids [8, 9], and pattern formation in acoustic
cavitation [10–12].

For a bubbly liquid, the dispersion curve represent-
ing the frequency dependence of the wave number of
the disturbance consists of two branches [13]: the low-
frequency branch and the high-frequency one. There-
fore, in this medium, a simultaneous propagation of
long (sound) and short (ultrasound) waves is possible.
The propagation of these waves in the medium is
accompanied by the energy transfer between them
through the mechanism of the long-wave–short-wave
interaction [14]. This interaction is most pronounced
when the group velocity of the short waves coincides
with the phase velocity of the long wave (the long-
wave–short-wave resonance [15]). The physical sys-
tems in which the long-wave–short-wave resonance
can occur include, e.g., waves on the water surface [16]
and plasma [17]. Our recent studies [18] show that bub-
bly liquids also belong to such systems.

In the one-dimensional case, the nonresonance long-
wave–short–wave interaction is described by the nonlin-
ear Schrödinger equation for the short-wave envelope
[19] and the resonance interaction is described by the
Zakharov system of equations [17]. Both these sys-
tems have a solution in the form of the envelope soli-
ton [20, 21], which is known to be an example of the
1063-7710/01/4702- $21.00 © 0140
one-dimensional focusing of perturbations. In the case
of a two-dimensional nonresonance interaction, the
Davey–Stewartson system of equations [22] also
describes the focusing process. As a rule, the two-dimen-
sional focusing is singular; i.e., it leads to the develop-
ment of an explosive instability [23, 24]. Only with spe-
cially selected coefficients, does the Davey–Stewartson
system of equations become integrable and have local-
ized bounded solutions.

In our previous paper [25], we showed that, in a bub-
bly liquid, the two-dimensional interaction of long and
short waves is described by equations that can be
reduced to the Davey–Stewartson system and, for some
parameters of the liquid, to one of its integrable ver-
sions (the Davey–Stewartson equations). In this paper,
we derive the conditions for the singular focusing of
ultrasound in bubbly liquids and perform its numeri-
cal study. We analyze the effect of the long-wave–
short-wave resonance on the development of singular
focusing.

Let us consider the conditions of a singular focus-
ing. The equations describing the two-dimensional
interaction between ultrasound and sound in bubbly
liquids were obtained in our previous paper [25] by the
multiscale method:

(1)

Here, L is the profile of the long (sound) wave, S is the
short (ultrasound) wave envelope, ξ = ε(x – cgt), ζ = εy,
and τ = ε2t (ε is the parameter characterizing the small-
ness of the short-wave amplitude). The group velocity
of the short waves cg; the equilibrium velocity of the
long wave ce; and the coefficients α, β, , γ, and δ
depend on the polytropic index κ, the parameter b =

cg
2 ce

2–( )Lξξ ce
2Lζζ– α S 2( )ξξ ,=

iSτ βSξξ Sζζ γ S 2S+ + + δLS.=ζρ

ζρ
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, the wave number of the short wave ks,
and its cyclic frequency ωs [25].

Applying the substitution L  δ–1∂ψ/∂ξ (δ ≠ 0)

and introducing the notation σ = (  – ), we
reduce the system of Eqs. (1) to the Davey–Stewartson
equations:

(2)

It is known [23, 24] that, in the nonintegrable case, if

the coefficients β, , σ, and αδ/  are positive and γ > 0

or |γ| < αδ/ , the solution to Eqs. (2) with the bound-
ary condition

tends to infinity for sufficiently large amplitudes within
a finite time interval (the effect of singular focusing or
an explosive instability). The existence of the singular
focusing in nonlinear optics is confirmed by the exper-
imental data [26]. For another choice of coefficients,
any initially localized solutions to this system are defo-
cused, i.e., spread in space.

If the solution to system (2) exists and tends to zero
when ξ2 + ζ2  ∞, the following conservation laws
are valid [27]:

The first of these integrals can be interpreted as the
“mass” of the short wave, the second and third integrals
as the components of the “momentum” of the short
wave, and the fourth integral as the “energy” of the
long-wave–short-wave system, although these integrals
have nothing to do with the physical conservation laws
[23].

p0ρl0
1– αg0

1– Cl
2–

ce
2– ce

2 cg
2

σΨξξ Ψζζ+ αδce
2– S 2( )ξ ,–=

iSτ βSξξ Sζζ γ S 2S+ + + SΨξ .=ζρ

ζρ ce
2

ce
2

S 0 for ξ2 ζ2 ∞+

M S 2dξdζ ,
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+∞

∫∫=

Px S*
∂S
∂ξ
------ S

∂S*
∂ξ

---------– 
  dξdζ ,

∞–

+∞

∫∫=

py S*
∂S
∂ζ
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∂S*
∂ζ

---------– 
  dξdζ ,

∞–

+∞

∫∫=

E β ∂S
∂ξ
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2 ∂S
∂ζ
------

2
+

∞–

+∞

∫∫=

–
1
2
--- γ S 4 σce

2

αδ
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2 ce
2

αδ
------- ∂Ψ

∂ζ
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2
+ + 

  dξdζ .

ζρ
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For the Davey–Stewartson equations (2), the follow-
ing relationship is valid [27]:

.

This relationship can be easily integrated:

(3)

(A and B are the integration constants). In terms of the
above representation, the integral I can be considered as
the “moment of inertia” of the short wave. Then, Eq. (3)
will be an example of the virial theorem.

In the conditions of singular focusing (see above) and
for sufficiently large wave amplitudes, the “energy” E
can be negative [23]. Then, according to Eq. (3), the inte-
gral I, which is a positive definite quantity, will become
zero at some instant of time. Since the “mass” of the
short wave is conserved, its “moment of inertia” can
become zero, if the short-wave perturbation will be
concentrated near a single point (a focus). Such a redis-
tribution of the “mass” of the wave leads to a sharp
increase in the wave amplitude at this point and, finally,
to an explosive instability.

The existence of a “negative-energy” wave and, as a
consequence, the development of the singular focusing
is caused by the instability of the solitons of the nonlin-
ear Schrödinger equation envelope to transverse long-
wave perturbations. This statement is confirmed exper-
imentally for waves on the water surface [28]. There-
fore, the theory developed for one-dimensional enve-

d2

dt2
------- ξ2

----- ζ2

β
-----+ 

  S 2dξdζ
∞–

+∞

∫∫ 8E=
ζρ

I
ξ2

----- ζ2

β
-----+ 

  S 2dξdζ
∞–

+∞

∫∫ 8Et2 At B+ += =
ζρ

2.5 ks0

0.285

1

b

γ1 < 0

γ1 > 0

γ1 < 0

γ1 > 0

ce > cg

ce < cg

0.79

Fig. 1. Regions of explosive instability (hatched) in the

(ks, b) plane. The coefficient is γl = γ + αδ/ .ce
2
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lope waves does not apply to waves with dimension 2
and higher.

For a bubbly liquid, the coefficients β and  are
always positive and α and δ are of the same sign.
Hence, in such a liquid, a singular focusing of an ultra-
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Fig. 2. Nonresonance focusing of the short-wave envelope |S|.
sonic wave is possible, provided that the following con-
ditions are satisfied:

(4)

Figure 1 shows (by hatching) the explosive instability
zones determined by conditions (4) in the (ks, b) plane.

Figures 2–5 present the results of the numerical
analysis of Eqs. (1). The numerical integration of this
system of equations was performed using the Fourier
transform method [29] for the first equation and the
variable directions scheme [11, 30] for the second
equation. We considered the boundary conditions

and the initial condition

Here, S0 is the real amplitude. The coefficients were
selected so as to satisfy the condition ce > cg (in this
case, the first equation is an elliptic one). We analyzed

ce cg, γ αδ/ce
2 .–> >

L ξ ζ,( ), S τ ξ ζ, ,( ) 0,=

for ξ2 ζ2 ∞+

S τ 0 ξ ζ, ,=( ) S0 ξ2 ζ2+( )–{ } .exp=

0

5
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|S|
τ = 0
τ = 0.39633
τ = 0.99860
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b = 0.4
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b = 0.4

(a)

(b)

|S|

Fig. 3. Effect of the long-wave–short-wave resonance on the
defocusing process in a bubbly liquid: (a) dependence of the
short-wave envelope |S | on the spatial coordinate ξ (ζ = 0) at
various instants of time; (b) comparison of the dependences
of |S | on ξ in the nonresonance (the solid line) and resonance
(the dashed line) cases at τ = 0.9986.
ACOUSTICAL PHYSICS      Vol. 47      No. 2      2001



MECHANISMS OF INTERACTION BETWEEN ULTRASOUND AND SOUND IN LIQUIDS 143
four cases: (1) ks = 0.5, b = 0.4; (2) ks = 1.036, b = 0.4;
(3) ks = 0.5, b = 0.25; and (4) ks = 0.574, b = 0.25. The
first case corresponds to a nonresonance stable interac-
tion, because cg ≠ ce and the point (0.5, 0.4) lies in the
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Fig. 4. Nonresonance singular focusing of the short-wave
envelope |S |.
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stability zone (see Fig. 1). The numerical analysis con-
firms the analytical results: in this case, a defocusing
occurs for both long and short waves (Fig. 2).

In the second case, we also deal with the stability
zone, but in this case we approach the resonance curve
(cg  ce). From Fig. 3a, one again can see a defocus-
ing of the solution. However, the defocusing process is
decelerated and accompanied by a change in the wave
form (Fig. 3b).

In the third case, an unstable nonresonance interac-
tion takes place. With time, the solution to Eq. (1)
shrinks to a point and increases in amplitude (Fig. 4). At
some instant of time, this results in the appearance of an
explosive instability.

A singular focusing is also observed in the fourth
(unstable resonance) case. In this case, the focusing is
accelerated and accompanied by a strong deformation
of the wave profile (Fig. 5). It is significant that the
minimal amplitude necessary for the development of
the singular focusing decreases in the resonance case:
S0 = 30 away from the resonance and S0 = 20 at reso-
nance. Therefore, the long-wave–short–wave resonance
increases the probability of the singular focusing.

Thus, on the basis of the analysis of the coefficients
in the model of a two-dimensional long-wave–short-
wave interaction, we determined the conditions for a
singular focusing (an explosive instability) in bubbly
liquids. The existence of a two-dimensional defocusing
and a singular focusing in such liquids is confirmed by
the numerical integration of the interaction equations.
We also analyzed the effect of the long-wave–short-
wave resonance on the two-dimensional interaction of
long and short waves. It was shown that, in the reso-
nance case, the defocusing process is decelerated and
accompanied by changes in the wave form. By contrast,
the singular focusing is accelerated with the develop-

–5.0 –2.5 0 2.5 ξ
0

25

50

|S|
τ = 0
τ = 0.14765
τ = 0.39633

Fig. 5. Dependence of the short-wave envelope |S | on the
spatial coordinate ξ at various instants of time in the case of
the resonance singular focusing.
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ment of a strong distortion of the wave profile. More-
over, the resonance leads to a decrease in the amplitude
threshold of the singular focusing.
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Abstract—Evolutionary equations are obtained in the vicinity of a singularity for a slow wave with allowance
for the quadratic nonlinearity, dispersion, and dissipation. It is demonstrated that the propagation of quasi-
monochromatic waves in a current-conducting gas–liquid mixture is described by ordinary differential equa-
tions for the amplitudes in the aforementioned region. © 2001 MAIK “Nauka/Interperiodica”.
Nonlinear equations describing the behavior of a
slow magnetoacoustic wave in the vicinities of singu-
larities have been given by Bagdoev [1]. It was demon-
strated that, unlike the equations describing waves near
caustics, they are partial differential equations of the
third order. At the same time, their linear solution near
a singularity that does not lie at the axis coinciding with
magnetic field is expressed through the Airy function
[1, 2], although the amplitude of the solution is in this
case multiplied by the imaginary unit. In this paper,
we derive the equations for short waves in a conduct-
ing gas–liquid mixture in the vicinity of a singularity
with allowance for the quadratic nonlinearity, disper-
sion, and dissipation. From these equations, we obtain
ordinary differential equations for the amplitude of a
quasi-monochromatic wave in the vicinity of a singu-
larity.

For a planar problem in the x–y plane, linear equa-
tions of magnetogasdynamics have the form [1]

(1)

where P is the pressure, ρ is the density, vx and vy are
the components of the particle velocity, the magnetic

field is B⊥  = B0 + B0bx and By = B0by, q(t) = q0

is the source of mass, δ(x) is the delta-function, σ(t) is

∂ρ
∂t
------ ρ0

∂vx

∂x
--------

∂vy

∂y
--------+ 

 + q t( )δ x( )δ y( ),=

∂vx

∂t
--------

1
ρ0
-----∂P

∂x
------,

∂vy

∂t
--------–

1
ρ0
-----∂P

∂y
------– a1

2 ∂by

∂x
--------

∂bx

∂y
--------– 

  ,+= =

∂P
∂t
------ a0

2∂ρ
∂t
------,

∂bx

∂t
--------

∂vy

∂y
--------– ,

∂by

∂t
--------

∂vy

∂x
--------,= = =

t
k0 1– σ t( )

Γ
----------
1063-7710/01/4702- $21.00 © 20145
the unit function, Γ is the coefficient characterizing the

medium,  = , a1 is the Alfven velocity, and a0 is

the sound velocity.
The solution to Eq. (1) is sought using the Laplace

integral transformation with respect to t and the Fourier
transformation with respect to x and y by assuming that,
for the transformation with respect to t, we have

(2)

where α1 = ωα, β1 = ωβ, ω is the frequency, and iω is
the parameter of the Laplace transformation. From the
equation for P obtained according to the set of Eqs. (1)
after substituting Eq. (2) into it, we derive the relation-
ships

(3)

Substituting Eq. (3) into Eq. (2) and calculating the
residue with respect to β at the point β = β(α) deter-
mined by the dispersion equation Π(α, β) = 0, we
obtain an expression for the linear solution P = P0:

(4)

a1
2 B0

2

4πρ0
------------

P dα1 e
i α1x β1y+( )

A' α1 β1,( ) β1,d

∞–

∞

∫
∞–

∞

∫=

A'
a0

2 1 a1
2α2– a1

2β2–( )
Π α β,( )

----------------------------------------------- 1

4π2
--------

q0

iω–( )
k0 1–

-----------------------,–=

Π α β,( ) 1 a1
2α2– a1

2β2–( ) 1 a0
2α2–( ) a0

2β2.–=

estP0
q0

iω–( )
k0 1–

-----------------------–
i

2π
------=

×
a0

2 1 a1
2α2– a1

2β2 α( )–{ } iωT–

Πβ'
------------------------------------------------------------------- α ,d

∞–

∞

∫
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where T = t – αx – β(α)y.
At the singular point A0 (see figure), the wave has an

infinite curvature and, therefore, β''(α0) = 0. In order to
obtain a solution in the vicinity of the singularity, we
can use an expansion within a small vicinity of α = α0:

(5)

Substituting Eq. (5) into Eq. (4) and introducing the

Airy function v(η) = dξ, where η =

y1, we obtain

(6)

Here, k = k0 + 3/2,

(7)

(8)

x1 is the eikonal, and y1 characterizes the distance from
the ray passing through the point A0. Thus, the linear
solution near the singularity A0 is written in the form of
Eq. (6), which differs from the solution near a caustic
[1] by a factor of i.

Now, we consider the derivation of a nonlinear
equation in the vicinity of a singularity without taking
into account the dissipation and the dispersion for a
nonstationary point wave. As Eq. (6) shows, the solu-

T t α0x– β α0( )y–≈

– x β' α0( )y+{ } α α0–( ) 1
6
---β''' y0( ) α α0–( )3.–

1

2 π
---------- e

iηξ i
ξ3

3
-----+

∞–

∞∫

ω
2
3
---

estP0 e
i
π
4
---–

2A1v ω
2
3
---

y1 
  ω

1
6
---

iω–( )k 1+
----------------------e

iωx1.=

A1
1

2 π
----------q0a0

21 a1
2α0

2– a1
2β2 α0( )–

Πβ' α0 β α0( ),{ }
------------------------------------------------ 2

β''' α0( )y
--------------------

 
 
 

1
3
---

i,–=

y1
2

β''' α0( )y
--------------------

 
 
 

1
3
---

x β' α0( )y+{ } ,=

x1 α0x β α0( )y t,–+=

x

x1

y

B0

A0

y1

Form of a slow magnetogasdynamic wave near the singular-
ity A0.
tion in the vicinity of a singularity is determined in the
principal orders by the coordinates x1, y1 (Eq. (8)).

Since the relationship y =  is satisfied

for the wave, we obtain

(9)

In the equation for small perturbations in the vicin-
ity of the point A0, we take into account the nonlinear
term in which only the derivatives with respect to the
fast coordinate x1 are retained [1]:

(10)

Here, the pressure P = U1 is taken as one of the func-
tions, U = {Ui} is the vector of the desired quantities,
K1 = {K1i} is the vector determined from the matching
conditions for the linear wave [1], and A0, 1, 2 are the
coefficients of the linear part of the initial equations.

Solving the set of equations given by Eq. (10) with
respect to P, we obtain the equation

(11)

Here, ∆ is the characteristic determinant for the left-
hand side of the set of Eqs. (10), this left-hand side

being a homogeneous function of p = , q = , and

S = ; Ai1 are the cofactors of the first row elements of ∆.

From the linear solution (6), by analogy with the
solution of the problem with the caustic [1], we obtain
the relationships

(12)

Proceeding from Eq. (11), introducing the function

 = P (one can see from Eq. (7) that u' = u'(x1, y1)), and

taking into account Eq. (9), we arrive at the expressions

(13)

t
β α0( ) αβ' α0( )–
---------------------------------------

x1 α0x β α0( )y t, y1–+
x β' α0( )y+

t
1
3
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---------------------------K ,= =
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∂U
∂t
------- A1

∂U
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∆ p q S, ,( )P Ai1K1iP
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∂
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, t 1.∼∼

u'

t
1
3
---

----

p α0
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K
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1
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Assuming that p0 = α0 , q0 = β0 , S0 = – ,

and β0 = β(α0) and expanding ∆(p, q, S) in the powers

of the operators  ! , we obtain

(14)

The subscript marking the quantity ∆ denotes the
differentiation.

Taking into account the homogeneity of ∆ and the
fact that ∆(α, β, –1) = 0 is the dispersion equation of a
linear problem, we differentiate it with respect to α and
obtain

(15)

Here, one should take into account that, at the singu-
larity, β'' = 0.

Then, Eq. (14) takes on the form

(16)

where the fact that  = (α∆α + β∆β) is taken

into account and m is the power of the operator polyno-
mial ∆.

Substituting ∆ into Eq. (11) and taking into account

the fact that Ai1(p0, q0, s0) = Ai1(α0, β0, –1),

we obtain

∂
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To determine the coefficient on the left-hand side of
Eq. (17), we have to allow for the fact that it is the same
as the coefficient of the nonlinear term in the evolution-
ary equations describing the vicinities of the tangency
points of the waves [1] in the form of Eq. (11), where 

(18)

L is the transverse operator containing the derivatives in
the direction tangential to the wave, and τ = x1 is the
eikonal. In the coordinate system connected with the

wave, we can take β = 0 and α = .

Writing Eqs. (11) and (18) for the problem that is
one-dimensional with respect to τ, we obtain an equa-
tion for the nonlinear characteristics

(19)

On the other hand, in the one-dimensional problem,
the following relationship for the normal velocity of a
nonlinear wave [1] is valid in the first order with respect
to P:

(20)

where H1 is the normal velocity of the wave in the lin-
ear problem, u being the particle velocity normal to the

wave and u =  in magnetogasdynamics. Then, we

obtain

(21)

and the comparison with Eq. (19) yields

(22)

Expressing Eq. (17) in terms of u, we obtain a nonlinear
equation

(23)

1
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Following the results of the previous studies [1, 3], we
write the expression for the coefficient Γ in the form

Here, α0 = . For the problem with the adia-

batic exponent n, we have α0 = .

At the next stage, we consider the nonlinear equa-
tions for waves with allowance for the dissipation and
dispersion. The linear solution in the vicinity of the
point A0 has the form of Eqs. (6) and (7) in which A1 =
iA3, where A3 is the real amplitude of the wave far from
the singularity. The meaning of this amplitude is
revealed when the asymptotics of the function v(η) for
large η is used [1].

A nonlinear equation taking into account the disper-
sion and dissipation can be obtained directly from the
equations of magnetogasdynamics. However, it is eas-
ier to take into account the necessary terms with the
help of three-dimensional equations of short waves.
These equations have the following form in the system
of coordinates connected with the wave [1]:

(24)

where τ = x1 is the eikonal, L(u) is the transverse oper-
ator with respect to the coordinates tangential to the
wave, and E and D are the dispersion and dissipation
coefficients given in [3]. Comparing Eqs. (24) and (23)
and taking into account the fact that τ = x1, it is possible
to obtain an equation near the singularity A0:

(25)

This equation takes into account that, in Eqs. (24) and
(25), the terms that are one-dimensional with respect to
τ and x1 must coincide.

In the case of a quasi-monochromatic wave, we
assume

(26)

where U0 is the constant term, U1, 2 are the amplitudes
of the first and second harmonics, ω is the fundamental
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frequency, ω1 is the modulation frequency, and ν is the
linear attenuation. Substituting Eq. (26) into Eq. (25)
and equating the terms describing the first harmonic,
we obtain

(27)

Equating the terms with the second harmonic in
Eq. (25) for high frequencies when |ω1|t @1, it is pos-
sible to eliminate the derivatives of the amplitude of the
second harmonic and obtain in the basic approximation

(28)

Since, in the diffraction problem under consider-
ation, U1 ~ ε and U0 ~ ε3, where ε is the small parameter,
the terms with U0 can be eliminated from the equation
for the first harmonic. In this case, we obtain

(29)

where the asterisk means a complex conjugate quantity.

Since, according to Eq. (12), we have x1 ~  and
y1 ~ ε, the first term in Eq. (29) can be eliminated and
the weak time dependence of the coefficients in Eqs. (6),
(9), and (29) can be ignored. Then, taking into account
Eq. (28), we obtain for a quasi-monochromatic wave
near the point A

(30)

(31)

where

(32)

In the coordinate system  = y', ψ = ,
Eq. (31) has the form

(33)

where the plus sign corresponds to  > 0 and the

minus sign corresponds to  < 0.
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According to Eq. (6), in the linear problem, we have

(34)

where  is a real quantity and

(35)

Then, in view of Eq. (33), the following equation is

valid for the function  = :

(36)

Unlike a caustic [1] in a nondissipative medium (ν1 =

0), here  =  is a complex quantity. Setting

 = A + Bi, we obtain from Eq. (36)

(37)

By analogy with the solution of the problem [1] near
the caustic, the set of Eqs. (37) should be solved with
the boundary conditions set far from the singularity,
e.g., at y' = ±5:

(38)

We denote  = A – v(y'). Then, we have zero

boundary conditions for  at y' = ±5. Denoting the
right-hand sides of Eqs. (37) by f1 and f2 with allowance
for the fact that far from the singularity a linear variant
for Eq. (36) takes place, we can write Eqs. (37) in the
form

(39)

with two zero boundary conditions at y' = ±5 for each
of the two equations.
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5–

y'

∫=

d2B
dy'2
--------- y'B– f 2 y'd

5

y'

∫=
ACOUSTICAL PHYSICS      Vol. 47      No. 2      2001
The solution can be sought by reducing Eqs. (39) to

a set of integral equations with respect to  and B. Two
Airy functions, v(y') and u(y'), are involved in the ker-
nels of these equations. The process of iterations start-
ing from a linear solution for the right-hand sides of
Eqs. (39) is performed in the same way as in the case of
a single equation [1]. As in the case of a caustic [1], one
should distinguish focusing (χ2 < 0) and defocusing
(χ2 > 0) media, depending on the sign of dispersion. In
the first case, noticeable distinctions from the solution

of the linear problem exist for small values of . In

the second case, the nonlinear solution differs little
from the corresponding linear solution.

Thus a linear solution for a quasi-monochromatic
wave in the vicinity of a singularity of a slow magneto-
gasdynamic wave is obtained. Using the values of the
parameters of motion and the coordinates x1, y1
obtained from the linear solution, we obtained a nonlin-
ear equation in the region under consideration for a
nonstationary wave in a nondissipative medium with-
out dispersion. This equation is complemented by tak-
ing into account the dispersion and dissipation. An
additional complete equation for a medium with a qua-
dratic nonlinearity and with dissipation and dispersion
is obtained in the vicinity of a singularity for a nonsta-
tionary problem. Two ordinary differential equations
for the real and imaginary parts of the amplitude are
derived from the aforementioned equation for a quasi-
monochromatic wave, and the problem of solving these
equations with the boundary conditions taken from the
linear solution is formulated. An expression for the
amplitude of the second harmonic is obtained. As in the
case of a caustic [1], the amplitude of the first harmonic

increases by a factor of  due to the presence of a sin-
gularity and the amplitude of the second harmonic

increases by a factor of .
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Abstract—The data obtained from a set of experiments on the long-range, low-frequency (<5 kHz) sound
propagation in the central region of the Baltic Sea are analyzed. The experiments were carried out in the sum-
mer season, with a fully developed underwater sound channel. Experimental data on the sound attenuation are
presented. A significant excess of the attenuation coefficients over the predicted absorption coefficients is
obtained. The quantitative estimates indicate that the sound scattering by internal waves is the most probable
mechanism responsible for the observed excessive sound attenuation. The frequency dependence of the atten-
uation coefficient exhibits a minimum whose position on the frequency axis at the beginning of the summer
season noticeably differs from that at the end of summer. The analysis of the propagation conditions allows one
to relate the position of this minimum to the critical frequency of the water modes. In addition to the intensity
parameters of the sound field, the formation of the time structure of explosion-generated signals propagating in
the Baltic underwater sound channel is considered for the case of the sound propagation along the 360-km path
crossing the Gotland Hollow. The specific role of the bottom waves in the time structure formation at short dis-
tances from the sound source is demonstrated. © 2001 MAIK “Nauka/Interperiodica”.
For a number of years, the researchers from the
Acoustics Institute studied the structure and intensity
characteristics of the sound fields generated by point
sources in the underwater sound channel of the Baltic
Sea. The waters of this sea are rather desalinated. The
salinity significantly varies: from 15–21% in the vicin-
ity of the Dutch Straits to 3–5‰ near the Gulf of Both-
nia. Salt waters of the North Sea are desalinated under
the influence of numerous rivers that fall into the Baltic
Sea. In addition to desalination, a stratification of the
waters takes place: the dense salt waters are spread near
the sea floor, the light-weight desalinated ones lie over
them. In the central region of the Baltic Sea, the water
salinity increases with the depth from 6–8‰ near the
surface to 12–14‰ near the bottom [1, 2].

A well-pronounced underwater sound channel
(USC) seldom exists in a shallow sea. In this respect,
the Baltic Sea is an exception. A stable USC, with the
axis at a depth of about 50 m, can be observed here for
6 to 8 months a year. The difference between the sound
speeds at the channel boundaries and at its axis is
higher than 8–10 m/s. With a sea depth of approxi-
mately ~100 m, this channel captures the rays that cross
the USC axis at angles exceeding 6°–7°. The vertical
profiles C(z) of the sound speed are noticeably different
for the spring and autumn seasons (Fig. 1). In May, the
weak warming of the upper water layer corresponds to
the discontinuity layer at a depth of 5–15 m, with a
sound speed difference of 10–15 m/s. With the colder
near-surface waters that are intermixed by the winter
storms up to depths of 60–70 m, the weak spring warm-
1063-7710/01/4702- $21.00 © 20150
ing of the very upper layers leads to a minimum in the
sound speed, which is spread in depth and corresponds
to a nearly isospeed 40- to 50-m layer of the intermedi-
ate waters. By August or September, the intense warm-
ing of the near-surface waters leads to the formation of
the temperature discontinuity layer with a sound speed
difference of 50–55 m/s. During the summer, the mul-
tiple storm-induced mixing of the warm near-surface
waters leads to their penetration down to the 40-m
depth. By August or September, the USC is formed with
a sharply pronounced minimum in the sound speed.
Independently of the season, as the depth increases from
60–70 to 150–200 m, both the salinity and temperature
increase (by 4–6‰ and 1–2°C, respectively). Hence, the
sound speed increases as well (by 8–12 m/s). In addition
to the seasonal variability of the water parameters in the
Baltic Sea, a year-to-year variability takes place that is
associated with the corresponding variations in the
water exchange with the North Sea and in the water
supply from the rivers.

The ray patterns shown in Fig. 2 illustrate the gen-
eral features of the sound propagation in the central
region of the Baltic Sea. The patterns are calculated for
the environmental conditions that were experimentally
observed at the beginning and end of the summer sea-
son. In May (Fig. 2a), with the 50-m source depth (near
the USC axis) and the 80–85-m sea depth, the “water”
rays insonify the layer from 10 m to the bottom. With
the same conditions in August (Fig. 2b), these rays
insonify a thinner layer (from 45–50 m to the bottom).
In both cases, the length of the full ray cycle is 1.5–2.5 km
001 MAIK “Nauka/Interperiodica”
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Fig. 1. Sound speed profiles on the propagation paths of the
May (V) and September (IV) experiments: (a) at the south-
ern path end; (b) in the middle of the path; and (c) at the
northern path end.
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for the water rays. On the average, the 100-km propa-
gation path includes 50 such ray cycles; the number of
bottom reflections is higher than 50 (for the bottom-
reflected rays).

The main studies of the long-range propagation
were carried out on the 350–400-km path whose south-
ern point was 120–130 km northwest of Kaliningrad.
The path crossed the 20° meridian (in the vicinity of the
Gotland Hollow), at an angle of about ~20°.

At the initial 70-km-long part of the path, the sea
depth was within 80–85 m, then it slowly increased to
140 m at a distance of 195 km from the reception point,
and up to 240–250 m in the region of the Gotland Hol-
low (at a distance of 250 km). At the terminal part of the
path, the sea depth decreased from 210 m (at a distance
of 290 km) to 105 m (at a distance of 305 km), and to
80–85 m at the path end.

According to the auxiliary measurements accompa-
nying the acoustic experiments, the sound speed in the
1.5–2.5-m upper layer of the bottom sediments was
1500 m/s at the northern part of the path, the sediment
density being 1.3 g/cm3. At the southern part of the path,
the corresponding sound speed increased to 1545 m/s,
with the density being 1.5 g/cm3. The bottom sediments
consisted of the pelitic silt. Closer to the southern point
of the path, traces of sand were observed in the sedi-
ments.

The intensity characteristics of the sound field
were studied in the USC of the Baltic Sea with the use
of both cw sound sources (within the kilohertz fre-
quency band) and explosive ones with pressure-sensi-
tive detonators. The source was towed and the charges
were exploded at the depth 50 m, near the USC axis.
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Fig. 2. Ray patterns plotted for the conditions of the (a) May and (b) September experiments. The sea depth is 80–90 m, the source
depth is 50 m.
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The signals were received by omnidirectional systems,
one of which was also at the USC axis.

By analogy with a deep sea, the following intensity
parameters were chosen to characterize the sound prop-
agation in the shallow sea: the propagation anomaly,
the attenuation coefficient, and the transition distance.

In a deep sea, the attenuation is usually interpreted
as the change in the sound field with distance due to the
sound absorption and the scattering in the medium. For
a shallow sea, apart from the geometric spread, the
losses caused by bottom reflections substantially con-
tribute to the sound field decay. However, for the
USC-propagation in the Baltic Sea, the main part of the
sound field is formed by “purely water” rays that do not
touch the bottom and propagate within the USC. In this
case, just as in a deep sea, the range decay of the sound
field is governed by the geometric spread and the atten-
uation in the water medium, including both absorption
and scattering of sound.

According to this deep-sea analogy, we define the
propagation anomaly A(R) for the Baltic Sea as the
excess of the sound field level produced by a sound
source in the sea medium over the mean sound level of
the same source in an unbounded medium, with the
attenuation coefficient β that characterizes the actual
propagation conditions in the specific sea region. Thus,
the decay law of the sound field can be described by the
following relation:

(1)

where I0 is the sound field intensity produced by the
source at the unit distance in an unbounded uniform
medium.

If one excludes the attenuation-caused losses of the
sound energy, the sound field decay in the USC will fol-
low the cylindrical law, provided that the distance from
the source is sufficiently long, and the propagation
anomaly will change proportionally to the distance:
A(R) = kR. The quantity 1/k is called the transition dis-
tance (R0). For ranges R @ R0, by substituting the anom-
aly value determined from the transition distance into
Eq. (1), one obtains a relation that describes the decay
law of the sound field at large distances from the
source:

In the experiments performed in the kilohertz fre-
quency band, the sound source was used that con-
sisted of a set of cylindrical piezoceramic transducers
placed into a towed body. The transmitting vessel
went about 3 knots, away from the receiving vessel or
toward it. In these experiments, the distance between
the vessels was less than 80–100 km: this value was
limited by the signal-to-noise ratio which was higher
than 10–15 dB in all measurements. A continuous noise

I
I0

R2
-----A R( ) 10 0.1βR– ,×=

I
I0

RR0
---------- 10 0.1βR– .×=
signal was transmitted within the 1/3-octave band. On
the receiving vessel, the sound signal was continuously
recorded, with reference to the distance between the
vessels (at long distances) or between the transmitting
and receiving systems (at shorter distances). The stabil-
ity of the transmitted signal was monitored by measur-
ing the level of the electric signal applied to the piezo-
ceramic transducer.

As the initial data for estimating the attenuation,
the experimentally obtained decay law of the sound
field level was used. The attenuation coefficient was
determined by measuring the deviation of the range-
dependent sound level recorded at long distances from
the cylindrical law. In addition to the experimental
level decay, the data of calibrating the source, which
were obtained in a deep sea, were used in determining
the transition distance R0 and the propagation anom-
aly A(R).

In the experiments with the source and receiver
close to the USC axis, which were carried out by us in
the summer months of different years, we obtained the
values from 200 to 350 m for the transition distance R0.

In Fig. 3, the range dependence of the propagation
anomaly is shown that was obtained in an experiment
carried out in the summer season (in June). In the same
figure, in addition to the experimental dependence (the
solid curve), the calculated range dependence (the dot-
ted curve) of the propagation anomaly is plotted. The
calculation was performed with the computer code by
Tebyakin [3].

With the explosion-generated signals, the following
quantity was used to characterize the sound field:

where pf(t) is the time-dependent sound pressure in
the explosion-generated signal upon filtering within
1/3-octave frequency bands, and T is the signal dura-
tion. This quantity is equivalent to the energy of the
received signal, which is normalized to the associated
frequency band.

The signals received at distances longer than 20–30 km
(@R0) were processed to determine the parameter β
governing the decay law:

The frequency dependence β(f) was obtained for the
attenuation coefficient.

All experimental data on the sound attenuation in
the central region of the Baltic Sea are summarized in
Fig. 4. The values of the low-frequency (100–2500 Hz)
attenuation coefficient are shown for two experiments
carried out in May (in different years), at different sea
states (Beoufort 3 and dead calm), and for an experi-
ment performed in September. Explosions were used as

E f p f
2 t( ) t,d

0

T

∫=

E f
1
R
--- 10 0.1βR– .×∼
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the sound sources in these experiments. In the figure,
the attenuation coefficients for the kilohertz frequency
band are also shown; they were obtained in different
years with the use of cw sound sources. Most of the
entire set of data on the frequency dependence of the
low-frequency attenuation coefficient, which was
obtained in the USC of the Baltic Sea, is bounded by two
curves described by the expressions β = 0.04f 0.65 ∂B/km
(the solid curve) and β = 0.06f 0.65 ∂B/km (the dashed
curve), where f is the frequency (in kHz).

In the experiments of May (the full circles), the
attenuation coefficients obtained at a sea state of Beou-
fort 3 are (on average) by a factor of 1.5 higher than
those obtained for a dead calm sea.

In the data of September (the squares), a pro-
nounced minimum in the attenuation can be seen at the
frequencies 400–600 Hz. At the same time, the data of
May exhibit only a trend to forming the attenuation
minimum at 100–200 Hz. The analysis of the difference
in the propagation conditions for the beginning and end
of summer allows one to assume that the position of the
minimum is governed by the critical frequency of the
water modes. For example, for the sound speed profiles
C(z) of May, at the sea depth 80–90 m, the calculated
value of the critical frequency is 80–110 Hz for the first
mode, while it is 180–220 Hz for September. For the
second, third, and higher modes, the critical frequen-
cies are higher by a factor of two, three, and so on. It is
hardly probable that the sound field is formed solely by
the first mode. Hence, at frequencies lower than 400–
600 Hz in September and lower than 100–200 Hz in
May, the attenuation was caused by the losses of the
sound energy in the sea floor, in addition to the absorp-
tion in the water medium. The contribution of the bot-
tom-associated losses must increase as the frequency
decreases, just in accordance with the experimental
data.

For the sake of comparison, Fig. 4 also shows the
experimental results obtained by Schneider et al. [4] in
summer (August) on a 70-km path, with the sea depth
about 120 m (see the full triangles). These data agree
well with our results. The authors of the cited publica-
tion attempted to explain the observed attenuation in
the Baltic Sea by the relaxation absorption associated
with boron that is present in the sea water. To estimate
the absorption coefficient, they used the formulas given
in [5], which unfortunately are incorrect in describing
the actual dependence of this quantity on the boron
concentration.

Nowadays, the relaxation absorption associated
with boron is used to explain the low-frequency sound
attenuation in relatively “calm” regions of the ocean,
i.e., in the regions that are not influenced by intense
currents, mixing of different-origin waters, or straits.
The boron content in ocean waters is approximately
constant and equals 4.6 mg/l. This content varies pro-
portionally to the water salinity. In this respect, we can
say that the law of constancy for the salt content of the
ACOUSTICAL PHYSICS      Vol. 47      No. 2      2001
sea water (the Marcette principle [6]) is valid for boron
as well. In spite of the significant desalination (6–14‰),
the Baltic waters are not an exception, with respect to
both their main components [7] and boron [8]. For the
Baltic Sea, the proportions in the salt water content are
the same as for the ocean: the deviations are lower than
5–10%. Thus, the considerable change in salinity of the
Baltic waters, as compared to the ocean, leads to a pro-
portional change in the boron content.

To estimate the low-frequency absorption coeffi-
cient, we use the expression [9]

α
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f / f rB f rB/ f+
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AMgSO4
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Fig. 3. Propagation anomaly for an experiment with the cw
sound source. The transmission and reception depths are 56
and 52 m, respectively. The dotted curve is computed with
the code by Tebyakin [3].

Fig. 4. Experimental data on the sound attenuation in the
central region of the Baltic Sea.
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Fig. 5. Time variations of the sound speed at three fixed depths corresponding to (1) the mixed upper layer, (2) the temperature dis-
continuity layer, and (3) the axis of the underwater sound channel.
where f is the frequency (kHz), K = 1.42 × 10–8 ×
101240/T dB/km kHz2,  = 1.125 × 10(9 – 2038/T) kHz,

 = 62.5ST × 10–6 dB/km kHz, frB = 37.9S 0.8 ×
10−780/T kHz, AB = 1.65S × 10(4 + 0.78pH – 3696/T) dB/km kHz,
S is the salinity (‰), T is the temperature (K), and pH
is the hydrogen ion exponent.

For the central region of the Baltic Sea (at the depth
close to the USC axis), the temperature 4–5°C, the
salinity 6–10‰, and the hydrogen ion exponent 7.8–8.0
are typical. The frequency dependence of the absorp-
tion coefficient, which was calculated for these mean
values of the parameters, is shown by the dotted curve
in Fig. 4. For the low-frequency sound attenuation in
the Baltic Sea, one can see a significant excess of its
value over the absorption caused by the relaxation pro-
cesses associated with magnesium sulphate and boron
that are present in the sea water. Such an excess indi-
cates that there are additional mechanisms responsible
for the main part of the losses in the sound propagation
in the USC of the Baltic Sea.

In the literature, numerous mechanisms are dis-
cussed that lead to an additional sound attenuation in
the ocean (the scattering by various inhomogeneities of
the medium [10, 11], the losses of the sound energy in
the suspension of sediment particles [12], etc.).

In one of the acoustic experiments, we monitored
the fluctuations of the sound speed by cyclically mea-
suring it at characteristic horizons. The data obtained in
this experiment show relatively high rms values of the
measured sound speed fluctuations. For example,
according to the data of one set of the measurements,
the rms values of the refractive index fluctuations

 were 9 × 10–5 in the upper water layer, 12 × 10–4

f rMgSO4

AMgSO4

µ2〈 〉
in the temperature discontinuity layer, and 35 × 10–6 at
the USC axis. If the additional attenuation in the Baltic
Sea is associated with the sound scattering by thermal
inhomogeneities of the water medium off the USC
(according to [10]), then, with the inhomogeneities of
about 30 cm in size, it is sufficient to specify the value

10–3 for . We observed such values of 
only in the temperature discontinuity layer. However,
the records shown in Fig. 5, which were obtained in a
set of the sound speed observations, exhibit a behavior
that is typical of internal waves rather than of random
inhomogeneities. The data of the measurements con-
firm the existence of internal waves in the temperature
discontinuity layer, the periods of these waves being
about 10–20 min. The magnitude of the sound speed
fluctuations reaches 4 m/s in this layer. With a sound
speed gradient of about 0.8 1/s in the layer, this magni-
tude corresponds to a height of approximately 5 m of
the internal wave (from its crest to foot). If we specify
a value of ~0.4 m/s for the propagation velocity of the
internal waves, the wavelength will be about 360 m.

To estimate the losses associated with the sound
scattering by internal waves, we carried out a computer
simulation. We used a sinusoidal internal wave with the
parameters close to the experimentally observed ones.
The changes were calculated in the angle at which the
ray crosses the USC axis after turning in the tempera-
ture discontinuity layer perturbed by the internal wave.
On the assumption of equally probable positions of the
internal wave (in its phase) relative to the source, a dis-
tribution was estimated for the deviations of the angle
of the ray intersection with the USC axis, as measured
relative to the initial value (i.e., the one unperturbed by
the internal wave). The obtained distribution was recal-

µ2〈 〉 µ2〈 〉
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culated to the scattering diagram. The redistribution of
the sound energy was computed for each of the selected
ray tubes (about 100 tubes), after each ray turning in the
discontinuity layer. In this procedure, the energy scat-
tered beyond the angle range of the water rays was
treated as lost. The coefficient of losses estimated in
such a way proved to be 1–2 dB/km for the conditions
of the May experiment.

For the attenuation coefficient due to the sound scat-
tering by internal waves, off the USC, a more rigorous
ray-approximation estimate was reported in [13, 14].
A solution was used for the equation of the ray diffu-
sion caused by the medium inhomogeneities repre-
sented by internal waves with the Munk spectrum [15].
As applied to the equatorial Atlantic, the obtained rela-
tions led to rather low values of the attenuation coeffi-
cient (~5 × 10–4 dB/km), which are comparable with the
absorption in the ocean only at frequencies lower than
50 Hz. On the other hand, the recalculation performed
by us for the Baltic Sea leads to attenuation coefficients
that have the same order of magnitude as those
observed experimentally at frequencies of about 1 kHz.

The obtained estimates are somewhat rough and
yield an order of magnitude for the attenuation caused
by internal waves rather than its frequency dependence.
However, these estimates show that the sound scatter-
ing by internal waves is the most probable explanation
for the observed increased level of the attenuation.

The time structure of the sound field was studied
with the use of explosive sound sources. Let us recall
that the initial (“single-ray”) explosion-generated sig-
nal that serves as the “sounding” one in our experi-
ments consists of a train of short pulses: the shock wave
and several fluctuations of the gas bubble. If the spec-
trum of the explosion-generated signal is limited by
3−5 kHz from above, the pulses of the shock wave and
the first fluctuation have comparable amplitudes, which
considerably exceed those of subsequent fluctuations
of the gas bubble. The time delay between the pulses of
the shock wave and the first fluctuation (the period of
the first fluctuation T0) depends on the charge weight
and the depth of the explosion. If small charges (the
pressure-sensitive detonators that we used in our exper-
iments) are exploded at a depth of 50 m, the bubble
fluctuation period is 40 ms.

In the studies of region-dependent features of the
time structure of the sound field in deep-water regions
of the ocean, the greatest attention has been paid to the
positions of the “classical” quartets of signals whose
relative time delays are determined by the sound prop-
agation over the whole water column of the ocean (or
over the major part of it) [16]. In such an approach, the
conservative characteristics of deep waters (deeper than
200–300 m) played the decisive role in forming the
time delays between the quartets, this conservation pro-
viding the reliability and stability of the regional classi-
fication. The Black Sea is the only region where the sta-
bility and reproducibility of the time structure has been
ACOUSTICAL PHYSICS      Vol. 47      No. 2      2001
observed in the sound field formed within the 200-m
subsurface layer. Highly ordered arrival times were
observed in the sound field that was formed by signals
propagating along the near-axis rays in the 200-m sub-
surface layer of the Black Sea. This property of being
highly ordered manifested itself in a specific form of
the terminal part of the explosion-generated signal
propagating in the USC. Such a form has been never
observed in other seas.

In the Baltic Sea (in contrast to a deep sea), the time
structure of the sound field is completely formed by
signals that propagate in the shallow 100- to 150-m
water layer whose characteristics are strongly variable
in time and space.

The time structure of the sound field was calculated
for the path in the Baltic Sea with the sea depths smaller
than 90 m. The calculation yields a complex pattern:
the signal quartets that differ in a number of full ray
cycles overlap, and the sequence of single arrivals,
which is typical of a deep sea, is violated. With the sea
depth up to 250 m, the ordered arrivals are observed
only for the signals that have lower turning points at
horizons deeper than 90–100 m.

The key features of forming the structure of the
sound field in the Baltic Sea can be illustrated by the
data of a May experiment. In Fig. 6, the signals are
shown that were received at a distance of 13 km from
the source. In this figure and the following ones, the
amplitude of each signal is normalized to its maximal

0.5 s

12.6 km

9.7 km

6.8 km

3.9 km

1.0 km

Fig. 6. Time structure of the explosion-generated signals
received at short (<13 km) distances from the source. The
source–receiver distance is indicated on the right for each
signal.
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Fig. 7. Time structure of the explosion-generated signals received at long (>35 km) distances from the source. The source–receiver
distance (in km) is indicated on the right for each signal.
value. At distances up to 6–8 km from the source, a
reverberation-like protraction of the signal can be
noticed that nearly vanishes at 12 km. In the multiray
signals received at the distances 4–13 km, two compact
groups are well-resolved that are separately formed by
the pulses of the shock wave and the first gas-bubble
fluctuation. Within each group, single signals are unre-
solvable. The duration of each group is by a factor of
3−4 less that the period of the first bubble fluctuation.
As the distance increases, the two resolved groups of
signals become broader and begin to overlap; they
become nearly unresolved starting from the distance
55–60 km (Fig. 7). The duration of the groups becomes
approximately equal to the bubble fluctuation period at
50–55 km.

A characteristic feature of the signals received at the
distances up to 175 km is their sharp fronts. At the dis-
tances 200–225 km and longer, the signal front is
spread, and a smooth increase in the signal level is
observed (Fig. 7). Such changes in the signal shape can
be explained by the sound scattering from internal
waves. Starting from 150–175 km relative to the recep-
tion point, the sea depth smoothly increases from 120–
130 to 240 m at the distance 250 km. A possibility
arises for the sound to propagate at horizons deeper
than 80–100 m without contacts with the bottom, along
the rays that cross the USC axis at the angles greater
than 6°–7°. With the scattering by internal waves, such
a propagation is quite feasible. Figure 8 presents the
reduced t–R-diagram calculated for the Baltic Sea.
According to this diagram, the signals propagating
along the aforementioned rays are ahead of the signals
propagating along the main energy-carrying ray beam
formed at the 100-km part of the path that is closest to
the reception point. As a result, the front of the multiray
explosion-generated signal is spread. With an inaccu-
racy determined by the time spreads of the leading and
trailing edges of the multiray signal, one can estimate
the signal duration at different distances from the source.
The factor of proportionality is equal to 0.0012 s/km for
the signal protraction on the path at hand.

In analyzing the time structure of the sound field,
one should also consider the low-frequency waves
propagating in the sea bottom. To observe and record
ACOUSTICAL PHYSICS      Vol. 47      No. 2      2001
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these bottom waves, in some experiments we used a
special receiving device whose frequency response was
extended down to the infrasound frequencies (5–6 Hz)

0

–0.01

–0.02

–0.03

τ, s

0 2 4 6 R, km

6.8°

7.5°

Fig. 8. Reduced t–R-diagram computed for the central
region of the Baltic Sea. The two points of the diagram (6.8°
and 7.5°) correspond to the limiting water signal at the sea
depths 80 and 90 m, respectively.
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with a noticeably reduced noise level at these frequen-
cies. The bottom waves generated by the explosive sound
source were observed up to the distances 10–15 km.

To visualize the bottom waves, the received explo-
sion-generated signal was preliminarily filtered by a
two-band filter with pass frequencies of 7–35 and 140–
180 Hz. The time structure of the bottom waves was
analyzed in view of the arrival time of the water waves
and, hence, in view of the time structure of the entire
received signal. Figure 9 shows a set of the recorded
explosion-generated signals received by a bottom-
moored hydrophone in one of the measurements. The
water signal was recorded with some overload (it is
symbolically shown by the black spot); the bottom sig-
nals were received with a sufficient excess over the
interfering noise.

The time structure of the bottom waves strongly
depends on the properties of the sea floor. The group
velocity of the signal is a function of frequency and
changes from the value of the sound speed in the bot-
tom material to the 0.7- to 0.9-fraction of the sound
speed in water. For the simplest model of a two-layer
sea medium (a water layer above a half-infinite liquid
bottom), the group velocity U of sound is given by the
expression [18]
1
U
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1
C0 θcos
------------------ θcos

2 θsin

1
θsin

----------- m 1 n2–( )

2l 1–
2

-------------π θcos
2

n2–
m θsin

-----------------------------arctan+ 
  m2 θsin

2 θcos
2

n2–+( ) θcos
2

n2–

----------------------------------------------------------------------------------------------------------------------------------------------------------------+

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ ,=
where C0 is the sound speed in water, n = C0/Cb, Cb is
the sound speed in the bottom material, m = ρ0/ρb, ρ0

and ρb are the densities of water and bottom material,
and θ is the grazing angle of the plane waves that con-
stitute the lth normal wave. From this expression, one
obtains U = Cb for the critical grazing angle θcr (cosθcr =
n). The sound speed in the bottom is the maximal veloc-
ity for the signal transmission in such a waveguide.
Thus, from the arrivals of the explosion-generated sig-
nals received at different distances from the source, one
can estimate the sound propagation velocity in the sea
floor. At θ  0, the group velocity tends to the sound
speed in water. However, it is not the minimal group
velocity. It is the propagation velocity of the Airy wave
which is the last to arrive at the receiver, and the mini-
mal group velocity is somewhat lower than this value.
The Airy wave also carries information on the bottom
material. The propagation velocity and the frequency of
the Airy wave depend on the ordinal number of the
exited wave, as well as on the ratios of the densities and
sound speeds for the bottom material and the water.
Upon determining the sound speed in the sea floor
(from the time analysis of the signal), one can attempt
to estimate the density of the bottom material. How-
ever, the accuracy of such an estimate will be rather
low. Thus, with C0/Cb = 0.75, a change from 1 to 2 in the
ratio ρb/ρ0 of the densities leads to only a 1.5%-change
in the propagation velocity of the Airy wave and to a
frequency change by 15%.

For a multilayer model of the medium, the disper-
sion phenomena are more complicated. However, if the
upper sediment layer is much thicker than the water
one, the three-layer model allows one to use the rela-
tions obtained for the simplest two-layer model, with a
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Fig. 9. Time structure of the explosion-generated signals received at short (2 to 9 km) distances from the source by the bottom-
moored hydrophone in the frequency band 7–35 Hz. The vertical dashed line indicates the arrival time of the water signal that is
schematically shown by the black spot. The following abbreviations are used: BW for the bottom wave, AW for the Airy wave, and
WW for the water waves.
sufficient degree of reliability. On the other hand, by
measuring the arrival times of single bottom waves that
correspond to separate layers of the bottom sediments,
one can estimate the thicknesses of these layers, e.g.,
with the use of the technique described in [19]. With the
multilayer model, it is much more difficult to identify
single Airy waves associated with each layer boundary.
The Airy wave which propagates with the minimal
velocity is the only one that can be well detected.

The ten records shown in Fig. 9 correspond to ten
explosions produced at the distances 2 to 9 km from the
receiver. The bottom signal becomes split starting from
the second explosion and remains such up to the tenth
one. At some distances, several time-separated bottom
waves arrive. However, for most explosions, only the
arrivals of two bottom waves that can be associated
with two separate layers of the bottom sediments can be
observed.

On the basis of the analysis of the experimental time
structure of the bottom waves for two parts of the stud-
ied path of long-range sound propagation, we estimated
the structure of the bottom sediments. Within the cen-
tral part of the path, the 360-m sediment layer with a
sound speed of about 1900 m/s overlies a layer of a
more rigid bottom material with a sound speed of about
4600 m/s in it. For the southern end of the path, two
sediment layers were identified (the 650-m upper layer
with the sound speed ~1540 m/s and the 800-m lower
one with the sound speed ~2100 m/s) that lie above the
layer of a rigid material with a sound speed of approx-
imately 4900 m/s.

ACKNOWLEDGMENTS

I am grateful to V.V. Nemchenko, A.V. Mikryukov,
and N.K. Abakumova from the Acoustics Institute for
the assistance in the experiments and for useful discus-
sions. The work was supported by the Russian Founda-
tion for Basic Research, project no. 99-02-18359.

REFERENCES

1. V. F. Sukhoveœ, Seas of the World Ocean (Gidometeo-
izdat, Leningrad, 1986).

2. T. A. Bernikova, Hydrology and Industrial Oceanology
(Moscow, 1980).
ACOUSTICAL PHYSICS      Vol. 47      No. 2      2001



LONG-RANGE SOUND PROPAGATION IN THE CENTRAL REGION OF THE BALTIC SEA 159
3. V. P. Tebyakin et al., A Report (Akust. Inst. Akad. Nauk
SSSR, Moscow, 1990).

4. H. G. Schneider, R. Thiel, and P. C. Wille, J. Acoust. Soc.
Am. 77, 1409 (1985).

5. R. E. Francois and G. R. Garrison, J. Acoust. Soc. Am.
72, 1879 (1982).

6. R. Horne, Marine Chemistry (Wiley, New York, 1969;
Mir, Moscow, 1972).

7. E. Zarins and J. Ozolins, J. Cons. (Copenhagen) 10 (3)
(1935).

8. D. W. Dyrssen and L. R. Uppstrom, J. Hum. Env. Res.
Man. 3 (1) (1974).

9. R. A. Vadov, Akust. Zh. 46, 624 (2000) [Acoust. Phys.
46, 544 (2000)].

10. L. A. Chernov, Wave Propagation in a Random Medium
(Akad. Nauk SSSR, Moscow, 1958; McGraw-Hill, New
York, 1960).

11. Yu. P. Lysanov and L. M. Lyamshev, in Proceedings of
the Fourth European Conference on Underwater Acous-
tics (Rome, 1998), p. 801.
ACOUSTICAL PHYSICS      Vol. 47      No. 2      2001
12. S. D. Richards, J. Acoust. Soc. Am. 103, 205 (1998).
13. Sound Transmission through a Fluctuating Ocean, Ed.

by S. Flatte (Cambridge Univ. Press, Cambridge, UK,
1979; Mir, Moscow, 1982).

14. R. H. Mellen, D. G. Browning, and L. Goodman,
J. Acoust. Soc. Am. 60 (5) (1976).

15. C. Garret and W. H. Munk, J. Geophys. Res. 80, 291
(1975).

16. R. A. Vadov, Akust. Zh. 40, 930 (1994) [Acoust. Phys.
40, 824 (1994)].

17. R. A. Vadov, Akust. Zh. 44, 749 (1998) [Acoust. Phys.
44, 651 (1998)].

18. M. A. Isakovich, General Acoustics (Nauka, Moscow,
1973).

19. C. Pekeris, Mem.–Geol. Soc. Am., No. 27 (October 15,
1948).

Translated by E. Kopyl



  

Acoustical Physics, Vol. 47, No. 2, 2001, pp. 160–168. Translated from Akusticheski

 

œ

 

 Zhurnal, Vol. 47, No. 2, 2001, pp. 200–209.
Original Russian Text Copyright © 2001 by Vilkov, Shavrov, Shevyakhov.

                     

REVIEWS

       
Interaction of a Shear Wave with a Moving Domain Wall
in an Iron Garnet Crystal 

E. A. Vilkov*, V. G. Shavrov**, and N. S. Shevyakhov* 
* Institute of Radio Engineering and Electronics, Ul’yanovsk Branch, Russian Academy of Sciences, 

ul. Goncharova 48, Ul’yanovsk, 432700 Russia 
** Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 

ul. Mokhovaya 11, Moscow, 103907 Russia 
Received September 25, 1998 

Abstract—The boundary-value problem of the interaction of a plane monochromatic shear wave with a
moving Bloch wall in an iron garnet crystal is solved in the framework of the nonexchange magnetostatic
approximation on the basis of the method of phase invariants for wave problems with moving boundaries.
For a shear wave incident on the domain wall, the possibility of the reflectionless birefringence is demon-
strated. Numerical results illustrating the resonance properties of the magnetic subsystem are presented. It is
established that, at the upper bound of the reflectionless birefringence range, the interaction of the shear wave
with the domain wall manifests itself as a degenerate resonance with the solution in the form of two com-
bined antiphase, collinearly propagating shear waves of infinitely large amplitudes, which form a zero resulting
field. © 2001 MAIK “Nauka/Interperiodica”.
In our recent publication [1], we reported on the
possibility of a reflectionless birefringence for a shear
wave incident on a moving 180° domain wall (DW) in
an iron garnet crystal. However, it was found that, for
obtuse refraction angles θ' > π/2, which are character-
istic of this phenomenon (Fig. 1), it is of fundamental
importance to take into account the effective changes
that are implicitly introduced in the dispersion law of
the refracted waves by the motion of the DW. There-
fore, a more detailed study of this problem is required. 

This paper continues the previous study [2] and the
aforementioned publication [1]. We note that the prob-
lem of the interaction of acoustic waves with moving
domain walls in ferrites was to some extent initiated by
the study of the parametric interaction of electromag-
netic radiation with moving mirror boundaries in optics
and in electrodynamics [3]. In particular, the reflection
of electromagnetic waves from moving magnetic “mir-
rors” (magnetic steps) in ferrites was considered by
Freidman [4]. 

For acoustic waves, the first results were obtained
by Auld and Tsai [5] who pointed out the possibility of
an adiabatic interbranch transformation of magne-
toelastic waves incident on a moving magnetic step in
a ferrite, this transformation being a result of the Dop-
pler shift. A rigorous evaluation of the efficiency of
such processes proved to be possible for the case of a
plane Bloch wall after the theoretical study by Nedlin
and Shapiro [6] who considered the reflection of an
acoustic wave from a moving DW of the aforemen-
tioned type in a cubic ferrite. However, in the cited
paper and in the following publications [7, 8], the anal-
ysis was performed for a normal incidence of waves on
1063-7710/01/4702- $21.00 © 20160
the DW, when, in iron garnets in the frequency range
ω & 1010 s–1, the acoustodomain interaction, which is
caused mainly by the contribution of the nonuniform
exchange to magnetostriction, is weak.1 As was noted
in [2], this interaction can noticeably increase owing to
the resonance response of the magnetic subsystem
through the magnetostatic scattering fields of the poles
of alternating signs, which are induced at the DW by an
obliquely incident wave. It is essential that the afore-
mentioned possibility of an increase in the interaction
of the incident wave with a DW allows one to consider-
ably simplify the procedure of constructing the solution
for the case of iron garnets by using the nonexchange
approximation and by eliminating the short-wave
(exchange) part of the spectrum, so that the DW can be
considered as a structureless, infinitely thin boundary. 

It should be noted that, after the aforementioned
publication [2], no papers concerned with the problem
of acoustodomain interaction in iron garnets in the con-
ditions of an oblique incidence of waves on a moving
DW appeared in the literature. The structureless repre-
sentation of a DW as a geometric domain boundary
implies that it cannot be excited in its internal (struc-
tural) degrees of freedom at the expense of the motion,
which, hence, can be considered as preset. Otherwise,
one has to consider the typical problem of the magne-
todynamics of domain walls that consists in the self-

1 This does not apply to the case of antiferromagnets characterized
by a strong magnetoelastic coupling [8]. However, for the latter
materials, it also seems important to take into account the
response of magnetostatic scattering fields to the acoustodomain
interaction in the conditions of an oblique incidence of acoustic
waves.
001 MAIK “Nauka/Interperiodica”
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consistent description of the acoustic fields (not neces-
sarily in the presence of external sources of radiation, if
one is interested in the acoustic generation [9–11]) and
the motion of the DW with allowance for different
aspects of its dynamic stability [12–14]. 

Let us assume that shear waves propagate in the
(001) plane of an iron garnet with the displacements uj

collinear with the spontaneous magnetizations  in

the domains (  ↑↓   || [001]; j = 1, 2 is the
domain number). The domains are separated in the
(010) plane by a geometrically thin, structureless Bloch
wall with the current coordinate yD = VDt, where VD < 0
is the velocity of the Bloch wall motion and t is time.
Correspondingly, we assume that the spontaneous mag-

netizations  and the internal magnetic fields 

in the domains have the form  = (–1) j + 1M0 and

 = (–1) j + 1Hi, where M0 > 0, Hi > 0, j = 1 for y > yD,
and j = 2 for y < yD. Since we use the nonexchange mag-
netostatic approximation, the adopted model of the DW
is adequate for the interval of the wave numbers k and
frequencies ω up to the values slightly exceeding the
“forbidden” gap in the spectrum of magnetoelastic
waves [15]. In addition to the condition k∆ ! 1 (∆ is the
DW thickness) satisfied in the aforementioned interval,
we also imply a low structural sensitivity of the domain
walls to external actions [16], which is characteristic of
iron garnets away from the phase transition. To exclude
the magnetostrictive (Cherenkov) instability of the DW,
we assume that |VD | < ct , where ct is the velocity of
shear waves without regard for the magnetoelastic cou-
pling. 

With the conditions specified above, we arrive at the
following initial equations (see [2]): 

(1)

Here, Ω is the frequency of the incident or refracted
wave, ϕj is the magnetostatic potential,  = λ +

γβ2ω0/[M0(Ω2 – )], ω0 = γHi is the uniform preces-
sion frequency, ωM = 4πγM0 is the magnetization fre-
quency, ωk = [ω0(ω0 + ωM)]1/2 is the magnetoacoustic
resonance frequency, γ is the gyromagnetic ratio, β is
the magnetoelastic interaction coefficient, λ is the shear
modulus, and ρ is the density of the ferrite. 

The first of Eqs. (1) is the Helmholtz equation the
solution to which can be represented in the form of
plane harmonic waves with the dispersion law 

(2)

M0
j( )

M0
1( ) M0

2( )

M0
j( ) Hi

j( )

M0
j( )

Hi
j( )

∇ 2u j ρΩ2/λΩ*( )u j+ 0,=

∇ 2ϕ j 1–( ) j 1+ 4πγβω0

Ω2 ωk
2–

-------------------∇ 2u j.=

λΩ*

ωk
2

k2 k2 Ω( )≡ ρΩ2

λΩ*
----------.=
ACOUSTICAL PHYSICS      Vol. 47      No. 2      2001
The second of Eqs. (1) allows us to write the expres-
sions 

(3)

where Φj is the potential of the scattering field of the
magnetic poles. 

Following the usual procedure of solving the refrac-
tion problems, we set the frequency ω and the wave
vector of the incident wave k = nk, where n = (sinθ,
–cosθ), θ is the angle of incidence, and k = k(ω) is the
wave number determined from Eq. (2) in which Ω is
replaced by ω. The wave refracted by the moving DW
is characterized by the frequency ω' and the wave vec-

ϕ j 1–( ) j 1+ 4πγβω0

Ω2 ωk
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Fig. 1. Refraction of a shear wave by a moving DW for
(a) acute and (b, c) obtuse refraction angles: (1) the wave
vector of the incident wave, (2) the wave vector of the
directly transmitted wave, and (3) the wave vector of the
refracted wave. 



162 VILKOV et al.
tor k' = n'k' with the wave normal n' = (sinθ', cosθ') and
the wave number k' = k(ω'), which is obtained from
Eq. (2) with Ω being replaced by ω'. Here, θ' is the
refraction angle from the interval [0, π). 

The relationship between the frequencies ω and ω'
and the angles θ and θ' can be determined from the con-
dition of the conjunction of the wave fields at the DW
by the phase invariant method [3]. Namely, from the
equality of the projections of the wave vectors of the
incident and refracted waves at y = yD, we obtain 

(4)

and the temporal matching of the phases of oscillations
at the DW is provided by the relationships 

(5)

In Eqs. (4) and (5), v = ω/k and v ' = ω'/k' are the phase
velocities of the incident and refracted waves, respec-
tively. 

ω
v
---- θsin

ω'
v '
----- θ'sin kτ≡=

ω 1
V D

v
------- θcos+ 

  ω' 1
VD
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1

2

3
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θ* θ** π/20
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θ

Fig. 2. Typical refraction dependences in the vicinities of
the frequencies ω0 (the solid curves) and ωk (the dashed
curves): (1) the case of low velocities |VD | ! ct , (2) the case
of moderate velocities |VD | < ct, and (3) the refraction
dependence θ' = π – θ for the directly transmitted wave. 
Taking into account Eq. (2), one can prove that Eqs. (4)
and (5) are equivalent to the system of equations 

(6)

(7)

The quantity χ = γβ2/(λM0ω0) is the dimensionless (and
usually small, χ ! 1) parameter of magnetoelastic cou-
pling, and ct = (λ/ρ)1/2. 

Since θ, ω, and, hence, v = v(ω) are known, Eq. (6)
determines θ' as the root of a transcendental equation.
Then, the corresponding value of ω' can be easily cal-
culated by Eq. (7), which exhibits the presence of the
Doppler shift in the refracted wave. The first of the two
solutions to Eq. (6), θ' = π – θ, exists only for obtuse
refraction angles θ' > π/2 and does not depend on VD.
The wave refracted in such a way has the characteristics
ω, ν, and k that are identical to the characteristics of the
incident wave. It is evident that, in the conditions in
which the refraction problem has a physical meaning,
this wave should be associated with the propagation
region y < yD. As a result, the root θ' = π – θ of Eq. (6)
will correspond to the directly transmitted shear wave
represented in the refraction diagrams of Fig. 1 by
arrows 2 (in terms of the wave vectors). 

The second solution to Eq. (6), θ' ≠ π – θ, can be
obtained only by the numerical method. In [2], the solu-
tion was obtained by applying the iteration procedure
directly to Eqs. (4) and (5). Because of the possibility
for the iterated values of the frequency ω' to fall into the
“forbidden” gap of spectrum (2) of magnetoelastic
waves at the intermediate stages of calculation, a strict
limitation was imposed on the region of calculation:
|VD |/ct ! 1. This condition considerably narrowed the
region of calculation and made it impossible to con-
sider in detail the refraction of the shear wave by the
DW for obtuse angles θ' ≠ π – θ. To avoid this disadvan-
tage, here we will use a more general procedure of an
exhaustive search to determine the root θ' [17]. 

The refraction dependences θ'(θ) obtained with this
method are shown in Fig. 2 for small (|VD| ! ct, curves 1)
and moderate (|VD| < ct, curves 2) fixed values of VD < 0
for frequencies close to ω0 and for frequencies ω * ωk

by solid and dashed curves, respectively. The difference
observed between these curves at θ'  π – θ (line 3 in
Fig. 2 corresponds to the refraction law θ' = π – θ for
the directly transmitted wave) is explained by the con-
siderable frequency dispersion of the refracted wave
due to the Doppler-related approach of ω' to ωk, which
occurs in the case of the dashed curves according to
Eqs. (6) and (7). The dashed curves have the form typ-
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ical of the refraction dependences for waves in the con-
ditions of a complex aberration effect [18]. 

If we ignore the nearly grazing incidence of waves
with the frequencies ω * ωk (see dashed curve 1 in
Fig. 2), we will have θ' > θ and, according to Eq. (7),
ω' < ω. In such conditions, the refraction curves shown
in Fig. 2 demonstrate the possibility of a transition from
acute refraction angles θ' < π/2 (see Fig. 1a where
refracted wave 3 represents a reflected wave) to obtuse
angles θ' > π/2 with increasing θ (Figs. 1b, 1c). We
restrict our consideration to the case θ' > π/2 when θ ∈
[θ*, θ**]; the reflective refraction for θ < θ* was con-
sidered in [2]. 

To estimate the lower bound θ* of the interval under
study, it is convenient to assume that the frequencies ω
are close to ω0 and, without noticeably reducing the
precision of our estimate, to set v ≈ ct, which corre-
sponds to neglecting the term with χ in Eq. (6). Since,
at θ = θ*, we have θ' = π/2, from Eqs. (6) and (7) we

derive cosθ* ≈ –2(VD/ct)(1+ / )–1. The intersection
of the solid refraction curves with the straight line 3 in
Fig. 2 means that θ** is determined in the conditions of
a multiple degeneracy of the roots θ' of Eq. (6). To elim-
inate the degeneracy, we set θ + θ' ≈ π – α, α ! π. Then,
we expand sin(θ + θ') and sinθ' on the left-hand side of
Eq. (6) in powers of α and retain the linear terms;
assuming that ω' ≈ ω in Eq. (7) and taking into account

the equality v = ct[1 + χ (ω2 – )–1]1/2, which fol-
lows from Eq. (2), we derive the expression 

(8)

Here, ω must be sufficiently small in comparison with
ωk. As in the case of the solutions obtained for relativ-
istic problems [3, 19–21], starting from the angle θ**,
the incident signal in the form of a pulse (group) of
shear waves ceases to catch up with the DW moving
away from it. Hence, the angular region θ > θ** is
excluded from our consideration. 

The problem of correctly constructing the solution
within the interval θ* < θ < θ** formally consists in
choosing between the alternative refraction variants
presented in Figs. 1b and 1c. In the first case (Fig. 1b),
refracted wave 3 complements the directly transmitted
wave 2 in the region y < yD, which was interpreted in [1]
as the reflectionless birefringence experienced by the
shear wave at a moving DW. In the second case (Fig. 1c),
the orientation of the wave vector of the refracted
wave 3 relative to the DW is the same as in Fig. 1b, but
in this case the refracted wave “complements” the inci-
dent wave 1. At first glance, this defies common sense.
However, exactly this type of refraction is considered in
the known solutions of the optics and electrodynamics
problems with moving boundaries [3, 19] for the angles
θ' > π/2. The same results were obtained in other stud-
ies [20, 21]. 
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By analogy with the cited papers [3, 19–21], wave 3
in Fig. 1c can be considered as an infinitely long
(because we consider monochromatic waves) stub of
radiation of Huygens sources from the DW surface, so
that this stub is continuously generated but more and
more lags behind the DW because of its relatively fast
motion at θ > θ*. Such a choice is based on the fact
(mentioned in [3, 19]) that wave 3 in Fig. 1c provides
the energy transfer away from the DW precisely
because of the fast motion of the latter, which complies
with the Mandelshtam radiation principle [22]. By con-
trast, in the first case (Fig. 1b), the choice of the solu-
tion was made in [1] on the basis of the seemingly evi-
dent fact of the normal dispersion of magnetoelastic
waves [15] (see Eq. (2)) in compliance with the Som-
merfeld radiation principle, which is suitable in these
conditions. However, this approach [1] does not take
into account that the DW is continuously displaced,
which, according to the relativity principle, is equiva-
lent to the opposite motion, or drift, of the medium as a
whole with the velocity |VD | through the DW. 

From the viewpoint of an observer resting in the
DW frame of reference, such an “ether wind” makes
the ferrite an anisotropic nonstationary medium with
both frequency and spatial dispersion properties. In
such a medium, the Mandelshtam condition of the
energy transfer from the boundary by the refracted
wave should be compatible with the possible existence
of the states with both positive and negative energy
densities [23]. According to Bolotovskiœ and Stolyarov
[24], in this case, the causality requirement will be sat-
isfied for the waves with a positive projection of their

group velocity Vg = ∂ /∂  on the direction the energy
transfer, independently of the type of the energy state of

the medium. Here,  and  denote the frequency and
the wave vector of the refracted wave in the DW frame
of reference, 0 , related to the laboratory frame of
reference, x0yz, by the Galilean transformation  = x,

 = y – VDt,  = z, and  = t. 

If we take into account the invariance of the wave
numbers as a consequence of the general invariance of
the Helmholtz equation (1) under the Galilean transfor-
mation, then, on the basis of the above consideration,
we obtain the following criterion for the choice of the
solution in the case under study, i.e., in the case of the
reflectionless birefringence (Fig. 1b): ∂ /∂k' > 0. When
∂ /∂k' < 0, the refracted wave should complement the
incident wave according to the diagram shown in Fig. 1c.
In this case, we do not need to solve the boundary-
value problem, because now the results obtained in [2]
are also valid for the angular region θ > θ* (θ' > π/2,
VD < 0). Evidently, this does not eliminate the necessity
to draw a distinction between the ordinary reflected
wave and the refracted wave complementing the inci-
dent one. 

ω̃ k'˜

ω̃ k'˜

x̃ ỹz̃
x̃

ỹ z̃ t̃

ω̃
ω̃
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The quantity  is a time invariant of the phase of
oscillations at the DW [3]. Therefore, from Eq. (5) we
obtain  = ω' – k'VD. Here, according to the rule that
determines the real direction of motion of the DW by
the sign of VD, we have k'VD = k'VDcosθ'. The desired
dependence (k') can be derived by using the explicit
expression for ω' according to Eq. (2): 

(9)

where  =  ± k'2 . From the ordinary (nonex-
change) representation of the spectral branches of mag-
netoelastic waves [15, 25], this dependence differs by
the term k'VD, which expresses the effect of the “ether
wind.” 

Figure 3 shows the typical spectral curves of Eq. (9)
for a given VD < 0; the curves are numbered in order of
increasing values of θ' from θ' = π/2 and θ = θ* (the
dashed curves) to θ' = π – θ** and θ = θ** (curves 3).
The series of the upper curves corresponds to the plus
sign in Eq. (9) and represents the high-frequency (ω' ≥
ωk) spectral branches of magnetoelastic waves. The
low-frequency (ω' < ωk) spectral branches are repre-
sented by the lower curves in Fig. 3 and correspond to
the minus sign in Eq. (9). Evidently, the dashed curves
coincide with the real behavior of the spectral depen-
dences ω' = ω(k') for magnetoelastic waves in the labo-

ω̃
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ω̃ 1

2
------- Ω+
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4 4k'2ct
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Fig. 3. Dispersion branches of the refracted wave in the DW
frame of reference at a fixed value of VD < 0 in the nonex-
change approximation: (1) θ' * π/2, (2) θ' > π/2, and (3) θ' =
π – θ**. The dashed curves correspond to the value θ' = π/2
or VD = 0. The straight line (4) represents the dependence

(k') obtained from the time invariant of the phase of oscil-
lations, Eq. (5), at θ = θ**. 
ω̃

ratory frame of reference. The effect of the “ether
wind” can be revealed by comparing the solid curves
with the dashed ones. For example, one can see that
both dispersion branches contain segments with a nor-
mal (∂ /∂k' > 0) and an anomalous (∂ /∂k' < 0) dis-
persion. The anomalous (or normal) dispersion mani-
fests itself in those regions of the spectral branches
where the magnetoelastic waves predominantly exhibit
a spin (or, correspondingly, an acoustic) nature. 

Thus, unlike the problems of optics and electrody-
namics [3, 19–21] in which the choice of the solution at
obtuse refraction angles is uniquely determined in favor
of the refraction diagram shown in Fig. 1c (the electro-
dynamic type of refraction), in the case under study
both variants are possible, depending on the values of
the parameters ω, VD, and θ* < θ < θ**. Such a duality
of the refraction of magnetoelastic waves at θ' > π/2
can be considered as a consequence of the mixed (lat-
tice–field) nature of these waves and, finally, follows
from the different roles played by the moving medium
(“ether”) in the propagation of acoustic and electro-
magnetic waves [26]. When the magnetoelastic waves
behave as spin waves (magnetic, i.e., essentially elec-
tromagnetic, waves), the condition ∂ /∂k' < 0 is satis-
fied, which determines the choice of the solution in
compliance with the results of the aforementioned stud-
ies [3, 19–21]. When magnetoelastic waves behave as
acoustic waves, we have ∂ /∂k' > 0 and the reflection-
less birefringence [1] takes place, which is noncharac-
teristic of electromagnetic waves at θ' > π/2. 

Turning to Fig. 3, one can notice that the limitation
k' < k* cuts off the short-wave part of the spectrum, i.e.,
the spin part of the low-frequency branch and the
acoustic part of the high-frequency branch. Corre-
spondingly, in the framework of the approach adopted
for describing the acoustodomain interaction, at the
angles θ' > π/2 it is possible to consider either the
reflectionless birefringence for ω' < ωk or the purely
electrodynamic-type refraction for ω' > ωh. Generally
speaking, in the latter case one has to take into account
the possible interbranch transformation of modes at the
DW [27] (see also [5]), which, in view of the appear-
ance of waves with k' > k*, leads to the violation of the
condition k'∆ ! 1 and requires a revision of the solution
[2] of this problem in the spirit of paper [6]. 

We will restrict our following consideration to the
case of the reflectionless birefringence of a shear wave
by a moving DW at frequencies ω considerably lower
than ωk. With allowance for Eqs. (3), the solution to
Eqs. (1) can be represented in the form 

(10)

ω̃ ω̃

ω̃

ω̃

u1 U i kr ωt–( )[ ] ,exp=

Φ1 C iξ( ) kτ y yD–( )–[ ] , y yD,>expexp=

u2 = UT i kr ωt–( )[ ]exp UT' i k'r ω't–( )[ ] ,exp+
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Here, ξ = kτx – (ω – kVD)t, kτ is the projection of the
wave vectors of waves on the DW, as determined by
Eq. (4); T and T ' are the amplitude coefficients of the
directly transmitted and the additionally refracted
waves; U is the amplitude of the displacements in the
incident wave; and C and D are the amplitude coeffi-
cients of the potentials of the scattering fields localized
by the DW. 

The relativistic corrections to the boundary condi-
tions do not exceed the neglected corrections allowing
for the magnetic field delays (they are of the order of
the ratio ct/c = 10–5, where c is the speed of light).
Hence, the boundary conditions at the moving DW are
reduced to the classical boundary conditions from the
theory of elasticity and magnetostatics [2, 15]: 

(11)

y yD,<
Φ2 D iξ( ) kτ y yD–( )[ ] , yexpexp yD.<=

u1 y yD= u2 y yD= , ϕ1 y yD= ϕ2 y yD= ,==

Tyz
1( )

y yD= Tyz
2( )

y yD= ,=
ACOUSTICAL PHYSICS      Vol. 47      No. 2      2001
Taking into account that the y component of the mag-
netic moment is determined by the expression 

and the shear stresses  have the form 

we substitute Eqs. (10) in Eqs. (3) and (11) and solve
the resulting algebraic system of equations. Then, we
obtain the desired result: 

4πmy
1( ) ∂ϕ1/∂y–[ ] y yD= 4πmy

2( ) ∂ϕ2/∂y–[ ] y yD= .=

my
j( ) γβ

Ω2 ωk
2–

------------------ iΩ
∂uj

∂x
-------- 1–( ) j 1+ ω0

∂u j
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--------+=

+
ωM

4π Ω2 ωk
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------------------------------ ω0

∂Φ j

∂y
--------- 1–( ) j 1+ iΩ

∂Φ j

∂x
---------+

Tyz
j( )

Tyz
j( ) λΩ*

∂u j

∂y
-------- 1–( ) j 1+ iΩ γβ2

M0 Ω2 ωk
2–( )
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∂uj
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--------+=

+
γβ

Ω2 ω0
2–

------------------ 1–( ) j 1+ ω0

∂Φ j

∂y
--------- iΩ

∂Φ j

∂x
---------+ ,
(12)
T ' =  

i γβ2/λω*M0( )Γ+ ω ω,( ) θtan

1 λω'* /λω*( ) θ θ'cottan+[ ] i γβ2/λω*M0( )Γ– ω' ω,( ) θtan–
--------------------------------------------------------------------------------------------------------------------------------,
where T = 1 – T '. In Eq. (12), we used the notation

We note that, in the derivation of Eq. (12), the quantity

Ω involved in the expressions for  and  was
taken to be equal to ω at j = 1 and ω or ω' at j = 2,
depending on which of the terms of the expression for
u2 from Eqs. (10) was used for the substitution. 

Switching to the DW frame of reference and assum-
ing that all frequencies in Eq. (12) are equal to  from
Eq. (5), one can easily show that, in the conditions of
the reflectionless birefringence, the laws determined in
[2] for the frequency response of the magnetic sub-
system retain their validity. For example, at  = ω0, the
ferromagnetic resonance takes place, whereas at 

(13)

we have the ferromagnetic antiresonance at the magne-
tostatic scattering fields Φj from Eqs. (3). The magne-
toacoustic resonance that formally is possible at the

lower bound of the “forbidden” frequency band  –

Γ± Ω ω,( ) Ω ω ω',=

Ω ωMF Ω±( )–

Ω2 ωk
2–

-----------------------------------
ω ωMF ω–( )–

ω2 ωk
2–

----------------------------------,±=

F Ω( )
Ω ω' ω–( ) ω0 ω' ω+( ) 2ωk

2–+

2ω'ω 2ω0 ωM+( ) ω' ω+( )– 2ωk
2+

------------------------------------------------------------------------------------.=

my
j( ) Tyz

j( )

ω̃

ω̃

ω̃ ω̃ ω0–( ) ω0ωM– 0=

ω̃2
 + χ  = 0 [15, 25, 26] (it manifests itself as a result
of the spin–phonon coupling in the spectrum of modes
of waves (2) propagating in the ferrite) falls within the
spin part of the spectrum of the low-frequency branch,
i.e., in the region where the solution under consider-
ation is meaningless. It should be noted that the ferro-
magnetic resonance and antiresonance lines are sensi-
tive to the Doppler shift: with increasing |VD | or with
decreasing ω, they occur at greater angles θ. 

Figures 4 and 5 show the dependences |T '(θ)| for a
YIG crystal with the parameters [28, 29]: χω0 = 107 s–1,
M0 = 140 Gs, ct = 3.8 × 105 cm/s, ω0 = 1.4 × 1010 s–1,
and ωM = 3.5 × 1010 s–1. The dependences were calcu-
lated by Eq. (12) for the frequencies ω = 1.4 × 1010 s–1

(Fig. 4) and 1.7 × 1010 s–1 (Fig. 5) and for VD/ct = –0.6
(curves 1) and –0.3 (curves 2) after the preliminary
determination of θ' and ω' from Eqs. (6) and (7). At
ω = ω0, the angular position of the ferromagnetic reso-
nance peak corresponds to the grazing incidence θ =
π/2 or to a stationary DW. Therefore, in Fig. 4 this peak
is absent. Similarly, it falls outside the interval [θ*,
θ**], but this time it occurs in the angular region θ <
θ*, as in the case of curve 2 shown in Fig. 5. The typical
form of the ferromagnetic resonance peak observed in
the vicinity of the angle θ = 36° in the conditions of the
reflectionless birefringence is demonstrated by curve 1
in Fig. 5. 

ωk
2 ω0

2
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The behavior of |T(θ)| qualitatively does not differ
from that of the dependence |T '(θ)|. For the case of
curve 1 in Fig. 5, the dependences |T '(θ)| and |T(θ)|
shown in Fig. 6 (curve 1 and the dashed curve, respec-

21

0 30 60 90
ϑ , deg

103

102

10

1

10–1

10–2

10–3

|T '|

102

10

1

10–1

10–2

0 30 60 90
ϑ , deg

1 2

|T '|

Fig. 4. Dependence |T '(θ)| for the frequency ω = ω0 and for
different velocities of the DW motion. 

Fig. 5. Dependence |T '(θ)| for the frequency ω = 1.7 ×
1010 s–1 and for different velocities on the DW motion. 
tively) coincide in the immediate vicinity of the ferro-
magnetic resonance and in the limit θ  θ**. Outside
the specified regions, the quantity |T | is close to unity,
being much greater than |T '|. Curve 2 in Fig. 6 repre-
sents the dependence |T '(θ)| calculated for the inverted
directions of the spontaneous magnetization in the
domains, as compared to the case of curve 1. The zero
value of the function |T '(θ)|, which lies to the right of
the ferromagnetic resonance peak of curve 1 within
approximately 7°, here represents the ferromagnetic
antiresonance line in the angular spectrum, this line
being determined by Eq. (13) at ω0  –ω0 and ωM 
–ωM or   . The ambiguity of the result, which
is evident from the difference between curves 1 and 2
of Fig. 6 obtained by the magnetic inversion procedure

  , expresses the inherent nonreciprocity
of ferrites [15, 28]. 

It is remarkable that the ferromagnetic antireso-
nance line of the angular spectrum of the quantity
|T '(θ)| can be interpreted as the consequence of the
existence of a proper solution in the form of a plane
monochromatic shear wave engaged with the moving
DW and propagating in the direction of its motion. To
prove the existence of a proper solution of this kind, we
switch to the DW frame of reference and, according to
the aforesaid, consider the solution to Eqs. (1) not in the
form of Eqs. (10) but in the form 

(14)

where k||, k⊥  > 0. In the DW frame of reference, the

expressions for  and  and the boundary condi-

tions (11) (at  = 0) are obtained by the substitutions
Ω   = ω – kVD and ∂/∂x, y  ∂/∂ , , where
kVD = –k⊥ VD, VD < 0. Taking into account the equality
of the amplitudes of the shear displacements U1 = U2 ≡
U, which follows from the first of Eqs. (11), we substi-
tute Eqs. (14) in Eqs. (11) with allowance for Eqs. (3)
and for the inequality  ≠ ω0 + ωM. As a result, we
obtain F1 = –F2 ≡ F. Thus, we arrive at a system of
homogeneous algebraic equations 

As the condition of the nontriviality of the solution for
 > 0, this system yields the frequency of the engaged

wave  = [ω0 + ]/2. One can easily see
that this expression represents a root of Eq. (13) that
belongs to the physical sheet of the solution. Thus,
when the wave frequency  coincides with the root of
Eq. (13), a total direct transmission of a wave through
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the DW (T '  0, T  1) occurs as a kind of spatial
resonance of the incident wave with the engaged wave
given by Eq. (14). The specific manifestation of this
resonance does not crucially depend on the DW
motion2 but is determined exclusively by the ability of
the incident wave to be, in contrast to the spatial reso-
nance types known in acoustics (see, e.g., [30]), an inte-
gral part (the field u1 in Eqs. (14)) of the proper solu-
tion. 

In addition to the ferromagnetic resonance and anti-
resonance lines, the angular spectra of the wave ampli-
tudes in Figs. 4–6 show the presence of a pole at the
point θ = θ**. The elimination of this singularity of the
solution by taking into account the magnetic losses
with the substitution ω0  ω0 – iωR (ωR is the mag-
netic attenuation frequency, which for YIG is about
10–6 s–1 [28]) does not provide the desired result. For
example, from the behavior of the dashed curve 1 in
Fig. 5, which was obtained in the approximation of
small losses ωR/ω0 ~ 10–2 and for frequencies close to
ω0, one can see that the magnetic attenuation, which
broadens and lowers the ferromagnetic resonance peak,
almost does not affect the behavior of |T '(θ)| at other
angles of incidence. 

When θ  θ**, the waves uT and  combine
(θ'  π – θ**, ω'  ω). This process is accompa-
nied by an infinite growth of amplitudes because of the
termination of the decelerating effect of magnetic poles
induced at the DW by the incident wave. When θ < θ**,
by virtue of the relation vcosθ > |VD|, the incident wave
catches up with the moving DW and interacts with it. In
the limit θ  θ**, such an advanced propagation of
the incident wave relative to the DW is almost termi-
nated:3 vgcosθ** = |VD |, where vg & v. The corre-
sponding energy matching of the propagating waves
uT, T ' with the moving DW is expressed by the equality

cosθ' = VD. In combination with the retained engage-
ment of each individual wave with the DW, this condi-
tion provides an infinite growth of the wave amplitudes. 

Since cosθ' = ∂ω'/∂(k'cosθ'), the latter equality

with allowance for Eq. (5) for  can be interpreted as
the requirement that the energy transfer across the DW
by the wave uT ' be absent in the DW frame of reference,
∂ /∂(k'cosθ') = 0. In the case of Fig. 3 where θ' plays
the role of a fixed parameter, this requirement is equiv-
alent to the condition ∂ /∂k' = 0. Hence, in Fig. 3, the
point that corresponds to the pole θ = θ** will be pre-
cisely the point of intersection of curve 3 (for θ' = π –
θ**, i.e., at θ = θ**) with the straight line 4 (determined

2 This spatial resonance is also possible in the case of the ordinary
reflective refraction of the shear wave by the DW, including the
case of a stationary DW [2].

3 For the region of a weakly pronounced dispersion of magnetoelas-
tic waves, when the replacement of their group velocity vg by the
phase velocity v is appropriate, this expression leads to Eq. (8).

uT'

v g'

v g'

ω̃

ω̃

ω̃
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according to Eq. (5) by the equation  = ω +
k'cosθ**VD) at which the tangent to curve 3 is strictly
horizontal. 

In refraction problems, the usual practice is to
relate the poles of the amplitude coefficients to the
presence of a proper solution in the absence of the
incident wave. Therefore, in the DW frame of refer-
ence, it is convenient to represent the proper solution
for the pole θ = θ** of the coefficients T and T ' from
Eq. (12) in the form of Eqs. (10) at u1 = 0: 

Here, k||, k⊥ , and  are positive and VD < 0. Following
the procedure used for the transformation of the bound-
ary conditions (11) in considering the proper solution
in the form of the engaged wave (14), we substitute
Eqs. (15) in them, and, equating the determinant of the
resulting system of equations to zero, we obtain  –
k⊥  = 0. This condition means a collinear propagation of
the partial waves of proper solution (15) in front of the
moving DW, and, as one would expect, in view of the
relations  = –k'cosθ' and k⊥  = kcosθ and with allow-
ance for Eqs. (4) and (5), it determines the coordinates

ω̃

u1 = 0, Φ1 = C i k ||x̃ ω̃t–( )[ ] k ||ỹ–( ), ỹexpexp 0>

u2 = i k ||x̃ ω̃t–( )[ ] U ik ⊥ ỹ–( )exp U' ik ⊥' ỹ–( )exp+[ ] ,exp
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Fig. 6. Dependences |T '(θ)| (the solid curves) and |T(θ)| (the
dashed curves) for the frequency ω = 1.7 × 1010 s–1 and for
VD/ct = –0.6. Curve 2 represents the dependence |T '(θ)| calcu-
lated for the inverted directions of the spontaneous magneti-
zation in the domains, as compared to the case of curve 1. 
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of the pole of the coefficients T and T ' from Eq. (12):
θ = θ**, ω' = ω. 

It should be noted that, although, according to the
requirement U, U ' ≠ 0, solution (15) is nontrivial, the
condition  – k⊥  = 0 in combination with the equality
U' = –U, which expresses the antiphase character of
oscillations in the partial waves determined by Eqs. (15),4

and with the corresponding absence of magnetic poles
at the DW, C = D ≡ 0 (the contributions made by the
partial waves to the poles compensate each other),
yields a proper solution of a degenerate zero type: uj ≡ 0,
Φj ≡ 0 for all space–time points. This result eliminates
the logical contradiction between the fact of the infinite
(resonance, if we keep in mind the presence of the
proper solution given by Eqs. (15)) growth of the
amplitudes T, T ' for θ  θ** and the termination (in
terms of the signal) of the interaction of the incident
wave with the moving DW precisely at these condi-
tions. In fact, the resulting field u2 = uT + uT ' excited in
the resonance way proves to be zero at θ  θ**, in
accord with the degeneracy of the proper solution (15).
In this case, the oscillations of the waves uT and uT ' are
combined in antiphase, no matter how large their
amplitudes. 

In closing, we note that, in the immediate vicinity of
the angle θ**, because of the violation of the spatial
synchronism and the slight frequency mismatch of the
waves uT and uT ', the oscillations in these waves will not
fully compensate each other. The beats that occur in
this case can be used for detecting the conditions of the
reflectionless birefringence and for studying the effects
associated with this phenomenon. 
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Abstract—Estimates are presented for the fluctuations of the parameters of low-frequency sound fields in shal-
low-water regions of the Barents Sea, in the presence of seasonal internal gravity waves. The objective of the
experiments is to reveal the main mechanisms that govern the sound fluctuations and their statistical parameters
on paths of moderate lengths (50–60 to 100–120 km). Another objective is to determine the features of the
sound interaction with internal waves for the sound speed profile of the summer–autumn type for which the
water stratification is most pronounced. As the probing signals, continuous tonal ones produced by bottom-
moored sources at the frequencies about 100 and 300 Hz are used along with the 1/3-octave noise signals with
the central frequency 1000 Hz, which are generated by a source deployed from a vessel. For the signal recep-
tion, both fixed bottom-moored hydrophones and a vertical chain of hydrophones are used, the chain also being
deployed from the vessel. The water temperature, the salinity, and the thermocline displacements are monitored
with standard hydrographic sensors. The following main results are presented: the estimate of the degree of
correlation between the sound fluctuations and the parameters of the water layer, the comparison of the fluc-
tuations in the signal amplitude envelope with the data obtained in other regions, and the estimate of the sta-
tistical parameters of the signal amplitude fluctuations, including their dependence on the path length. One
more result consists in the proof of the wave nature of the interaction of sound and internal waves, which man-
ifests itself in a strong dependence of the sound interaction with internal waves of discrete frequencies on the
frequency of the probing signal and on the angle at which these wave beams intersect. An attempt is made to
explain the observed phenomena by the synchronism in the interacting sound and gravity waves. The data
obtained can be used to analyze and compare the fluctuations of the sound fields in the ocean, especially in
shallow-water regions. © 2001 MAIK “Nauka/Interperiodica”.
Internal gravity waves existing in many ocean
regions are believed to be the main factor that causes
amplitude and phase fluctuations of the underwater
sound fields of different frequencies [1–5, 13]. With
regard to the problems of acoustic tomography and
thermometry, it has become highly urgent to study and
predict the sound field fluctuations on propagation
paths of various lengths. In recent years, many papers
[14–20] were published on sound fluctuations in the
presence of internal gravity waves, mainly for deep-
water ocean regions and relatively high sound frequen-
cies (several hundreds of hertz). The studies of the laws
of sound field formation, which can be associated with
the problem of global warming, have also become quite
topical. To perform such studies, one often must choose
the paths lying in the polar regions of the Earth. In
many cases, these paths may run through shallow-water
regions, in the shelf zones or in near-pole seas. In such
regions, a number of common laws and features are
typical of both the field of internal gravity waves and
the sound field fluctuations caused by them [1–6, 9, 10,
14–16, 27–29]. Numerous studies [8, 11–13, 17] of
sound fluctuations in these regions are purely experi-
mental and, in contrast to the deep-water studies [18],
do not reveal the general principles. One of the first
1063-7710/01/4702- $21.00 © 20169
attempts to generalize different kinds of data on the
fluctuations of low-frequency sound fields in shallow-
water polar regions was made by Katsnel’son and Pet-
nikov [9]. By analogy with deep-water ocean regions,
they treated the local wave processes induced by inter-
nal waves as the key factor responsible for the sound
fluctuations. The latter statement seems to be partially
true for paths that are shorter than 100 km. [27]. In con-
trast to deep-water regions, the shallow-sea internal
waves usually exhibit no seasonal, temporal, or spatial
uniformity [9, 10]. In a number of cases, they are rep-
resented by trains of soliton-like waves of high ampli-
tudes on the background of weak internal waves. The
periodicity of the solitons observed in a shelf zone is
usually associated with tides. Therefore, such pro-
cesses (along with a number of other mechanisms) can
only be used to explain the formation of the sound field
fluctuations at frequencies that correspond to a period
of about 12 h. They cannot be the cause of regular
sound field fluctuations observed on paths running
through offshore areas of shallow seas and character-
ized by circular frequencies of 10–4 to 10–1 rad/s, within
the so-called super-low frequency band [27].

As evidence of the regular spatial structure of inter-
nal waves on long paths, the data on the scattering of
001 MAIK “Nauka/Interperiodica”
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electromagnetic waves by the sea surface can be men-
tioned, this process being influenced by the structure of
internal gravity waves that propagate over the shallow-
water area. Such observations were performed with the
use of a satellite positioned above a region of the North
Atlantic, near the New-Jersey coastline, in summer
1995, during the SWARM experiment [1, 2, 28]. From
the analysis of the photographs, one can conclude that
the structure of the internal-wave field observed on the
acoustic path significantly depends on its orientation
relative to the propagation direction (orientation of the
fronts) of internal waves and that to the coastline. The
paths used for the studies in a shelf zone can be differ-
ently oriented relative to the fronts of internal waves
and to the coastline, which determines different regular
structures of the wave field on the path. For instance,
the typical size of the photographed sea surface area
[28] is about 40 km, and up to several tens of the wave
front projections are covered by the image. Evidently,
the interaction process may depend on the angle
between the propagation directions of the internal and
sound waves. Thus, the effects of internal waves on
sound can be different in their structures and interaction
mechanisms for shallow-water regions (where low fre-
quencies of sound are predominantly used) and deep-
water ones (where higher frequencies are commonly
used). The latter fact is determined by the statistical
parameters of the spectrum and by the nature of the
hydrodynamical wave fields that exist in deep-water
regions [18]. On the other hand, in forming the sound
field fluctuations in shallow-water regions, the deter-
ministic phenomena of interaction between sound and
hydrodynamical fields associated with both internal
and surface gravity waves are significant. At the same
time, according to [27], the stable hydrodynamical
fields associated with long-period surface gravity
waves are universal, and their parameters are nearly
independent of the season and water stratification for a
given ocean region. On the contrary, in coastal regions,
the manifestations of the hydrodynamical wave fields
depend on tidal processes, along with weather condi-
tions for shallow water areas. The same properties seem
to be typical for the corresponding fluctuations of the
sound fields. On this background, other fluctuations can
exist that are even less uniform in space and time.
These fluctuations can be governed by local seasonal
internal waves, tidal phenomena, and passages of fluc-
tuating front zones, eddies, or soliton-like objects.

In general, one can predict (or model) the effect of
the wave field on the received sound signal only if the
mode content of the sound field is known in advance or
if the reception point is chosen in such a manner that a
single mode contributes to the received signal. This is
the case, e.g., for shallow-water regions at distances
more than 100 km from the sound source, where the
sound field structure can be satisfactorily described by
two or three initial modes and the aforementioned
choice of the reception point is quite feasible [27]. In
some cases, one can assume that the mean phase of all
power-predominating modes is influenced by the
hydrodynamical wave field in a synchronous manner.
Then, the choice of the reception point becomes easier:
for instance, it can be located at the sea floor within the
near-bottom sound channel [13, 14]. The effect of the
hydrodynamical waves on each mode of the sound field
can be characterized by the depth of the phase modula-
tion for this mode. As to the experimentally measured
amplitude modulation, it is often far from being a deter-
minative and objective characteristic of the interaction,
because the extent to which it is stressed in the received
signal can be governed by the location of the receiver
or by the deliberate masking of the lower modes at the
very reception point [26].

In this paper, experimental data are reported on the
sound fluctuations observed on the background of the
aforementioned processes, on shallow-water paths of
lengths up to 120 km. The objective of the experiments
was to reveal the mechanisms of the formation of the
sound fluctuations caused by the interaction of sound
with gravity waves, mainly internal ones. The measure-
ments were carried out in the Barents Sea, with the
summer–autumn sound field profile, which corre-
sponds to the most pronounced stratification of the layer.
The path lengths varied from 50–60 to 100–120 km. The
probing signals were continuous tonal signals produced
by fixed bottom-moored sound sources with the fre-
quencies 100 and 300 Hz, as well as with 1/3-octave
noise signals with a central frequency of about 1000 Hz,
which were transmitted from a vessel. A separate
objective of this work was to prove the wave nature of
the interaction between sound and internal waves in
shallow-water regions. This nature manifests itself in
the following features:

(i) A noticeable correlation between the spectrum of
the envelope of the amplitude fluctuations of the signal
(both for tonal and noise signals) generated at different
frequencies and the spectrum of the vertical ther-
mocline displacements caused by internal waves;

(ii) A dependence of the efficiency of interaction
between sound and internal waves on the frequency of
the probing sound signal, on the wavelength of the
internal wave, and on the angle of intersection of the
wave beam fronts.

Preliminary measurements of sound fluctuations
were performed in summer, in a shallow-water region
of the Barents Sea, on two paths schematically illus-
trated in Fig. 1. The first path was formed by two fixed
narrow-band sound sources, which were bottom-
moored at the same point and had the frequencies 100
and 300 Hz, and a receiving system. The latter was
either a broadband sound receiver fixed near the bottom
at a distance of 60 km from the sources or a vertical
chain of hydrophones deployed from the vessel. The
chain was fastened to a drifting buoy and stretched by a
load attached to its lower end. From the fixed receiver,
the signals were cable-transmitted to a coastal labora-
tory and recorded. From each hydrophone of the verti-
ACOUSTICAL PHYSICS      Vol. 47      No. 2      2001
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cal chain, the received signals were radio-transmitted
and recorded in the vessel’s laboratory. The second path
ran between a transmitter of 1/3-octave band noise with
a central frequency of 1000 Hz and the same receivers
located at a distance of about 50 km from the source.
The sound source was deployed from the anchored
research vessel to a depth of 20–30 m. The vertical
chain (Fig. 1) consisted of seven equidistant hydro-
phones, with the depths 16 and 37 m of the uppermost
and lowest ones, respectively. At the point where the
fixed sound sources were bottom-moored, the sea depth
was about 60 m, and it varied reaching 200 m near the
receiving systems. During the experimentation, with
the use of standard hydrographic probes deployed from
the research vessel, vertical profiles of the water tem-
perature, density, and salinity were measured along the
path. Simultaneously, the vertically distributed temper-
ature sensors [10] were used to measure the tempera-
ture variations in the thermocline, this data serving to
subsequently estimate the thermocline displacements.
The total duration of the simultaneous measurements of
the parameters of sound and internal waves was up to
40 h. The data were recorded by a multi-channel mag-
netic-tape recorder. Later, the signals were spectrally
processed with the use of a special computer code [13].
In the processing, the power spectra and the correlation
characteristics (both auto- and cross-correlation) of the
signals were estimated along with the vertical displace-
ments of the thermocline. The vertical distributions of

L2

H1 H2

L1

D1

D2c(z)

S1, f1

S2, f2

f3
S3

∆f = 1/3octave

Fig. 1. Layouts of the experiments on measuring the param-
eters and fluctuations of the sound signal on the shallow-
water paths: S1 and S2 are the omnidirectional narrow-band
(tonal) sound sources of frequencies f1 = 100 Hz and f2 =
300 Hz, respectively; the sources are bottom-moored at the
beginning of the path; D1 is the omnidirectional sound
receiver (hydrophone) bottom-moored at the opposite end
of the path; L1 = 60 km is the path length between the
sources S1, S2 and the hydrophone D1; S3 is the noise source
with the central frequency f3 = 1000 Hz and the 1/3-octave
bandwidth; this source is deployed from the drifting vessel;
D2 is the receiving system (a vertical chain containing N =
7 equidistant hydrophones); the chain is stretched between
a surface buoy and a load; it is carried by a vessel; its length
is 20 m with the upper hydrophone positioned at a depth of
16 m; the data are transmitted from the buoy to the vessel via
a radio channel; L2 = 50 km is the path length between the
vessel and the drifting buoy; H is the thickness of the water
layer smoothly varying along the path from H1 = 60 m to
H2 = 200 m.
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the sound speed and Väisälä–Brunt frequencies were
also estimated.

The typical profiles of the temperature T(z), sound
speed c(z), salinity S(z), and Väisälä–Brunt frequency
N(z) obtained as a result of the data processing are
presented in Fig. 2. These data show that the vertical
temperature gradient observed within the ther-
mocline reached 0.5°C/m. The thermocline covered
the depths from 15 to 20 m, which correspond to the
near-bottom channel that is commonly observed in
shallow-water regions of the Arctic shelf in summer.
The Väisälä–Brunt frequency in the water layer varied
within 2.5–14.0 cycles per hour, and it was 4.5 to
14.0 cycles per hour in the layer of the most pro-
nounced thermocline, i.e., at the depths from 8 to 28 m.
The parameters of the power spectrum of internal
waves were close to those of the well-known Garret–
Munk spectrum [18]. At the same time, narrow-band
discrete components of high-intensity were also
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Fig. 2. Typical distributions of the water parameters in
depth, which are measured from the vessel in the course of
the experiment in summer in a shallow-water region of the
north-eastern part of the Barents Sea: the temperature T, the
salinity S, the sound speed c, and the Väisälä–Brunt fre-
quency N.
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present in the spectrum. Thus, within a narrow band
around 12 cycles per hour, regular oscillations of the
thermocline that are caused by internal waves with dis-
placement amplitudes of 10–12 m can be noticed. In
addition, within the band 3–12 cycles per hour, short-
period quasi-periodic oscillations of the thermocline
were observed that were induced by internal waves
with the 4- to 5-m displacement amplitudes. The longi-
tudinal correlation lengths Ri of the thermocline dis-
placements were estimated to yield a value close to
10 km. This value agrees well with the data reported in
[9, 10].

Figure 3a shows the high-frequency part of a typical
normalized power spectrum of thermocline displace-

101

102

2

Ω–2

(a)

Fξ2(Ω)/Fmax, h

2 3 4 5 7 10 20

10

1

10–1

10–2

10–3

(b)

Ω–3

Ω, cph

Fp(Ω), Pa2 × h

Fig. 3. Power spectra of the amplitude fluctuations for the
processes experimentally studied in the shallow-water Arc-
tic region (summer, northeastern part of the Barents Sea):
(a) a typical normalized spectrum of the vertical ther-
mocline displacements as measured from the vessel; the
straight line corresponds to the law Ω–2 for the decay of the
power envelope spectrum with frequency; (b) a typical
power spectrum of the envelope of the amplitude fluctua-
tions for the electric signal at the output of the band-pass fil-
ter with the central frequency 1000 Hz and the bandwidth
15 Hz, as measured with the sound source S3 on the quasi-
stationary path with L2 = 50 km; the realization duration is
6 h, the spectral resolution of the analysis is about (4–5) ×
10–5 Hz; the straight line corresponds to the law Ω–3 for the
mean decay of the power envelope spectrum with frequency.
ments. In Fig. 3b, the corresponding part of a typical
normalized power spectrum is presented for the enve-
lope of amplitude fluctuations of the broadband sound
signal received by the lower hydrophone (at the depth
37 m) of the vertical chain, upon band-pass filtering
within 995–1010 Hz. The typical duration of the
recorded envelope realization is 6 h, the spectral reso-
lution of the analysis is (4–5) × 10–5 Hz. It is evident
that the power-predominating parts of both spectra cor-
respond to frequencies of 2.4 to 9.0 cycles per hour, the
spectra rising towards lower frequencies (longer peri-
ods), though with different slopes (the corresponding
dependences Ω–2 and Ω–3 are shown by straight lines in
Fig. 3). According to the analysis of the data, during the
40-h measurements, the cross-correlation coefficient of
these signals (for different receivers of the vertical
chain) remained at a level of about 0.7 and reached
0.82–0.87 in the presence of the discrete component. It
is worth mentioning that the compared realizations
cover a relatively small (limited) number of oscillations
(cycles) of the main frequency: from 2.4 to 9 per one-
hour realization. Even when averaged over 6 h (over six
realizations), the value of the cross-correlation coeffi-
cient depends on the change in the relative initial
phases of the signals to be compared. The estimate of
the maximal correlation coefficient can be obtained by
adjusting the relative phase of the processes (signals).
This procedure is important in estimating the time
cross-correlation coefficient between the thermocline
displacements and the envelopes of the amplitude fluc-
tuations of the signals received by the hydrophones of
the vertical chain, because the phases of these enve-
lopes depend on the depth of the observation point in
the water layer [9]. The aforementioned procedure is
the one we used to establish the fact that the compared
processes were rather close to each other, especially
when the discrete component was present in the spec-
trum of internal waves. Note that such structure of the
spectrum is typical for internal waves in shallow-water
regions.

Let us consider the data on the intensity fluctuations
of the signals generated by the used sound sources on
the studied paths. The analysis resulted in the following
values of the fluctuations in the signal level: about 4 dB
(which corresponds to the mean variation coefficient up
to ±18.3%) at a frequency of 300 Hz for the narrow-
band signal on the first path; the same value at the out-
put of the 15-Hz filter with a central frequency of
1000 Hz for the broadband signal on the second path;
1.6 dB (the variation coefficient up to ±6.8%) at the out-
put of the 1/3-octave filter with a central frequency of
1000 Hz for the broadband signal on the second path;
and less than 1.0 dB (the variation coefficient lower
than ±4.2%) at a frequency of 100 Hz for the narrow-
band signal on the first path. Here, the variation coeffi-
cient (V, %) means the relative mean value of the enve-
lope fluctuations V = 2–1/2( / ), where  is the mean
value of the envelope and  is the mean value of its

ã a a
ã
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fluctuations, this coefficient being estimated for the
entire realization duration (2500–3600 s in our case).
The relative value /  of the fluctuations is directly
related to the mean magnitude ∆LdB of fluctuations in
the signal level according to the expression

(1)

so that V(%) ≅  2–1/2(  – 1) × 100%. We used this
relation in our calculations.

The difference in the fluctuation values at the out-
puts of the 15-Hz and 1/3-octave filters are quite pre-
dictable and can be explained by averaging the out-of-
phase components of the noise signal. Recall that, in
such a case, the different-frequency spectral levels of
the signal are governed by a combination of modes that
have different phase increments formed by the field of
internal waves. In a narrow band, the phase increments
are fixed, thereby leading to the maximum intensity of
fluctuations. If the band were broader, a further decrease
in the intensity of fluctuations would be observed
because of different phase increments. According to
our estimates, the magnitude of the fluctuations in the
signal level would be no higher than 1.0 dB in an octave
band.

For the fluctuations of the signal propagating over
the first path, the envelope spectrum proves to be close
to that of the fluctuations of the noise signal at the out-
put of the 15-Hz filter (Fig. 4b). The generality of this
result is also confirmed by comparing with the data of
[9]. Figures 4a and 4b show the envelope spectra for the
amplitude fluctuations of the 300-Hz signals for two
paths of the same lengths, in the same region of the Bar-
ents Sea. These data were obtained in the summer of
another year, with similar weather conditions. Even the
shape and slope of the spectra are in good agreement
for these two data sets. The explanation consists in the
closeness of the spectra of internal waves, which can be
observed in summer in this region. According to the
measurements of different researchers [9], discrete
spectral components are more weakly pronounced for
deep-water regions, with close mean shapes of the
spectra of sound signal amplitudes and thermocline dis-
placements induced by internal waves. Theoretically, in
the absence of discrete components in the spectrum of
thermocline displacements, the spectrum shape should
be close to that of Garret–Munk [18] for this part of the
band. Later, we will see that the discrete components
also change the form of the statistical distribution of the
amplitude sound fluctuations. The distribution of the
variation coefficients is nearly Gaussian for deep-water
regions, whereas, in shallow-water regions, it is nar-
rower and closer to the Rayleigh form. In addition, the
mean values of the variation coefficients differ by a fac-

ã a

∆LdB Lmax dB, Lmin dB,– 20 1 ã/a+( )log[= =

– 1 ã/a–( ) ]log

=  20
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tor of 2–3 in these regions [14]. The experimental data
indicate that a narrow-band signal of a frequency that is
no lower than 300 Hz coherently images the structure
of internal waves, especially if narrow-band discrete
components are present in the displacement spectrum.
For lack of a noise sound source with a frequency band
around 300 Hz, we failed to determine the band of
coherency for such a signal in the presence of internal
waves. However, this band cannot be higher than 1–2%
(in relative units). Thus, at a frequency around 1000 Hz,
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Fp, Pa2(cph)–1

0.5 1 2 5 10 20
10–4
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Fig. 4. Power spectra of the amplitude fluctuations for the
processes experimentally studied in similar experiments
performed by other researchers [9] on fixed paths in the
shallow-water Arctic region: (a) a typical power spectrum of
the envelope of amplitude fluctuations for the electric signal
at the output of the band-pass filter with the central fre-
quency 300 Hz and the relative bandwidth (1–2)%, as mea-
sured with the sound source S2 on a path of about 70 km in
length; the spectral resolution of the analysis is approxi-
mately 0.07 cycles per hour (2 × 10–5 Hz); (b) the same as
in Fig. 4a for the path of comparable length, with the same
sound source, but with other position of the receiver within
the shelf zone. The straight lines in both plots correspond to
the law Ω–3 for the mean decay of the power envelope spec-
trum with frequency.
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the 15-Hz band of the analysis should be regarded as
the band of coherency for the noise signal envelope [9].

Note that, on the first path where two narrow-band
signals (300 and 100 Hz) were received simulta-
neously, the values of the fluctuation spectra differ by a
factor of nearly four from each other. This experimental
result is unexpected and requires additional consider-
ations. In that case, the sound beams of different fre-
quencies simultaneously interacted with the gravity
waves traveling at the same angle. Hence, the differ-
ence in the degree of the interaction cannot be
explained in purely geometric terms, i.e., by the differ-
ence in the angles of intersection. The first attempt to
explain this phenomenon was reported in [13]. There, a
preliminary analysis can be found that is based on esti-
mations of the conditions for sound and gravity (inter-
nal) waves to interact in a synchronous way. Here, we
repeat this analysis with some corrections and general-
izations. For the synchronism between the fields of
sound and gravity waves to exist, some conditions
should be met in space and time [20–22]. The time con-
dition is usually met for a narrow-band sound beam of
frequency f (∆f ! f) if the bandwidth ∆f of the sound
signal is higher than the value of the characteristic fre-
quency for the gravity (internal) wave within the
domain of interaction Ω (∆f ≥ Ω).

To evaluate the condition of spatial synchronism,
we introduce the angle ϑ  between the z axis (directed
upwards with the unit vector n) and the direction of the
wave vector K. In view of the well-known dispersion
relation Ω2 = N2sin2ϑ  for internal waves (N is the
Väisälä–Brunt frequency, Ω ≤ N), one can find [19] a
general relation for the group velocity Uig to have the
form:

(2)

with the unit vector n = K/K. The velocity Uig is per-
pendicular to the vector K, and its magnitude is Uig =
(N/K)cosϑ . Its vertical and horizontal projections are
Uigv = –(N/K)cosϑ sinϑ  and Uigh = (N/K)cos2ϑ , respec-
tively. Accordingly, the phase velocity of the wave also
does not coincide with the vector K in its direction,
and Uif = (N/K)sinϑ . Its vertical and horizontal projec-
tions are Uifv = (N/K)sin2ϑ and Uifh = (N/K)cosϑ sinϑ,
respectively. Evidently, the horizontal component of
the phase velocity has its maximal value at ϑ = ±π/4,
and this value is Uifh = (N/2K). At ϑ = 0, ±π/2, and ±π,
the horizontal phase velocity is equal to zero. The
velocity u of the fluid particles in the wave proves to be
perpendicular to the vector K, so that the entire motion
of the fluid occurs in parallel to the surfaces of constant
phase, which is typical for transverse waves [19, 22].
Thus, the horizontal projection of the wave vector K can
be expressed as Kih = Ω[Uifh/(Uif)2] = (ΩK/N)cotϑ =
Kcosϑ . And, in view of the horizontal path orientation
determined by the angle ϕ (varying from 0 to 2π in a

Uig
N2

ΩK
--------- nn( ) n nn( )n–{ }–=
cylindrical coordinate system with a vertical axis), the
actual value of the projection of the wave vector onto
the direction of sound propagation can be expressed as

 = Kcosϑ cosϕ.

For surface gravity waves with frequencies within
2.5–12 cycles per hour, which exist in practice, the
phase velocity obeys the relation Usf = (gH)1/2 in shal-
low-water regions. With these waves, the phase veloc-
ity coincides with the group velocity in its direction
along the water layer. Hence, the horizontal projection
of the wave vector K is given by the expression:  =
Ω/Usfh = [Ω/(gH)1/2]cosϕ' where ϕ' is the angle formed
by the path with the propagation direction of surface
gravity waves; in the general case, we have ϕ ≠ ϕ'.

For the sound modes of numbers m and n, which
propagate along the layer and have horizontal projec-
tions ξm and ξn of the wave vectors, respectively, the
space condition takes the form |ξm – ξn| = |Kh|. In the
simplest case of a uniform layer of thickness H, the left-
hand side of the condition can be expressed as |ξm – ξn| =
(πc/16H2f)[(2m – 1)2 – (2n – 1)2], where c is the sound
speed in the layer [23, 24]. The expression in square
brackets is always greater than eight for arbitrary inte-
gers m ≠ n ≠ 0. Therefore, for the minimal sound fre-
quency f1 that allows the synchronism between the
gravity waves (internal or surface ones) and the sound
waves to occur, we arrive at the estimate:

(3)

where Uf is the phase velocity of the internal or surface
wave.

For our experiment (H = 60 m, c = 1500 m/s, cosϑ =
(2)–1/2, cosϕ = 1, Uif = 1 m/s, and Ω = 2 cycles per hour
with a frequency of about 1 mHz), the estimated mini-
mal frequency fl proves to be approximately 148.5 Hz,
which is somewhat higher than 100 Hz but lower than
300 Hz. This result partially explains the difference in
the fluctuation intensities at these frequencies on the
fixed path [13]. Thus, for a given combination of the
parameters H and c, the frequency f of the source, and
the sound speed profile that determines the values of Uf,
Ω , and ϑ , one can use Eq. (3) to select the angle ϕ that
determines the path orientation relative to the fronts of
gravity waves (see, e.g., [28]), at which no synchronism
occurs, and the amplitude variations of the sound signal
are reduced.

For surface waves, the estimate of the frequency fl
proves to be much higher because, with the same sound
frequencies and the same orientations of the propaga-
tion path with respect to the propagation direction of
the gravity waves of the two types (ϕ = ϕ'), the ratio of
the corresponding phase velocities (Usfcosϑ /Uif) is
about 20–30. Thus, if the value of cosϑ  is not too low

K ih*

Ksh*

f 1
πc

2H2 Kh*
--------------------≥

=  
πc U f

2H2Ω ϑ ϕcoscos
-------------------------------------------

πc U f

2H2Ω ϕcos
-----------------------------------,≅
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(|cosϑ| ≈ 1), the change from 300 to 100 Hz in the car-
rier frequency is not critical for the interaction between
the surface and sound waves. It looks like only the
internal waves are be responsible for the observed phe-
nomena in our experiments. Similar estimations based
on the conditions of the synchronism are mainly appli-
cable to narrow-band components in the spectrum of
internal waves, and they fail in explaining the interac-
tion of sound with internal waves of a continuous spec-
trum (similar to the Garret–Munk one), which are also
observed in the experiments. Thus, for the experimental
conditions, one should observe only a partial interac-
tion of the 100-Hz sound with the internal waves exist-
ing on the fixed path. At a frequency of 300 Hz, the
interaction proves to be more pronounced. In that case,
an additional contribution is made by the regular oscil-
lations of the thermocline, which exist, e.g., around the
frequency 12 cycles per second and are caused by inter-
nal waves with displacement amplitudes of 10–12 m.
Thus, to create a fixed shallow-water tomographic sys-
tem that can be used to monitor weak phenomena (as in
the observations of global warming), one should prefer
a carrier frequency lower than 100 Hz. Both the prelim-
inary experiments and the physical considerations evi-
dence in favor of such a choice. Nevertheless, this con-
clusion requires further analysis and verification.

For this purpose, additional experiments were car-
ried out on fixed paths 60, 90, and 120 km in length, in
another shelf region of the Barents Sea, with similar
water stratification (the near-bottom sound channel of
the summer type). In these experiments, a bottom-
moored sound source with the frequency about 100 Hz
was used (Fig. 1). Three fixed sound receivers were
located at the aforementioned distances. The amplitude
envelopes of the received continuous signals were pro-
cessed with the same technique as above, within the cir-
cular frequency band 2.6–15 cycles per hour. The dura-
tion of simultaneously received signals that were
processed was no less than 52–60 h on each path. In
processing, the main attention was paid to the variation
coefficient (V, %) that is directly related (see Eq. (1)) to
the magnitude ∆LdB of the sound level fluctuations,

including the mean value of  and its standard devia-
tion σ within the observation time. The data of the sta-
tistical processing are summarized in the table.

Figure 5b shows the probability density distribu-
tions Ψ(V) of the observed envelopes for all paths,
namely, for the 60-km-long, the 90-km-long, and the
120-km-long paths. Figure 5a compares the typical
probability distributions for the envelope variations in
(1) shallow-water and (2) deep-water regions. Distribu-
tion 1 is based on the data obtained on the 90-km path
that is intermediate in length; distribution 2 uses our data
[14] obtained in a deep-water region close to the Russian
Pacific coastline, on a fixed path of about 400 km
between the Sakhalin and Iturup islands, with a narrow-
band sound source of about 400 Hz. One can see the
evident difference both in the forms of the distributions

V
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(distributions 1 and 2 are close to the Rayleigh and
Gauss ones, respectively) and in the median values of
the variation coefficients (they differ by a factor of 2–3
in favor of the deep-water regions). The form of distri-
bution 1 (for which the mean, rms, and most probable
values can be generally different) testifies to a residual
effect of the aforementioned narrow-band processes
on the statistical parameters of the envelope fluctua-

Table

Path length, km  (%) σ (%)

60 4.80 1.20

90 5.90 1.27

120 6.50 1.32

V
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0.1

0.2

0.3

0.4

1

2

Ψ(V)

(a)

0 5 10

0.1

0.2

0.3

0.4

V, %

(b)
1a

1b

1c

Fig. 5. Probability density distributions Ψ(V) for the
observed variations of the envelope on fixed paths of differ-
ent lengths: (a) (1) in shallow-water regions (the data corre-
spond to the intermediate 90-km-long path) and (2) in
deep-water regions (the data from [14]); (b) in the shallow-
water region under study for the path lengths (1a) 60 km,
(1b) 90 km, and (1c) 120 km.



176 DERZHAVIN, SEMENOV
tions in shallow-water regions, although, at the fre-
quency 100 Hz, this effect is lower than at 300 or 1000 Hz
(Figs. 3b, 4a, and 4b). In deep-water regions, the
observed spectrum of the envelope fluctuations is usu-
ally smoother, and the probability density distribution
of the fluctuations is nearly Gaussian (with coincident
mean, rms, and most probable values). Note that the
fluctuations observed on the shortest 60-km path are
qualitatively close to the data obtained on the similar
path in the aforementioned preliminary experiments
[13] carried out in another region. Attention should be
paid to the weak dependence of the standard deviation
of the variation coefficient (from its mean value) on the
path length, with a trend to slowly increase for longer
paths.

The experimentally revealed dependence of the fluc-
tuation parameters on the path length is also worth men-
tioning. This dependence obtained on the basis of the
tabulated data is shown in Fig. 6. According to [9, 27],
outside the zone (Ri) of the longitudinal correlation of
the thermocline displacements, the mean amplitude of
the fluctuations is proportional to (L/Ri)1/2. In Fig. 6, the
solid curve indicates the expected dependence of the
fluctuation parameters on the path length, which corre-
sponds to an experimental estimate of about 10 km for
the quantity Ri (in agreement with other data [9]). This
dependence was approximated by the law V = k(L/Ri)1/2

[27], where Ri was specified to be equal to 10 km, and
the value of the factor k was selected by fitting. From
the experimental data, the latter value was found to be
k = 1.92%. The resulting dependences allow one to
obtain the prognostic estimates that are required to
implement the tomographic system in a shallow-water

V = k(L/Ri)
1/2

Ri = 10 km, k = 1.94%

40 50 60 70 80 90 100 110 120
0

2

4

6

8

V, %

L, km

Fig. 6. Experimental dependence of the variation coefficient
V (%) of the amplitude fluctuations of sound on the length
of shallow-water paths. The data are presented in the form
of vertical bars whose centers indicate the mean values of 
and whose size corresponds to two standard (rms) devia-
tions (±σ). The solid line shows the expected dependence of
the fluctuation parameter of the sound signal envelope on
the path length. The dependence was sought in the form V =
k(L/Ri)

1/2 [27], and values of Ri and k were chosen accord-
ing to the experimental data to be 10 km and 1.92%, respec-
tively.

V

region of the Arctic shelf. Thus, from the collected data,
one can expect that, for a path 200 km in length, the
mean value of the correlation coefficient will be about
8.6%, with the associated standard deviation 1.45%.
However, these estimates should be complemented
with those of the effect of surface waves, which can
exceed the predicted contribution of internal waves to
the variability of low-frequency sound on longer shal-
low-water paths [27].
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Abstract—In the framework of a rheological model, a nonlinear dynamic equation of state of a microinho-
mogeneous medium containing nonlinear viscoelastic inclusions is derived. The frequency dependences of
the effective nonlinear parameters are determined for the difference frequency and second harmonic gener-
ation processes in the case of a quadratic elastic nonlinearity. It is shown that the frequency dependence of
the nonlinear elasticity of the medium is governed by the linear relaxation response of the inclusions at the
primary excitation frequency, as well as by the relaxation of the inclusions at the nonlinear generation fre-
quencies. © 2001 MAIK “Nauka/Interperiodica”.
In recent years, the theory of media that exhibit a
strong acoustic nonlinearity has been extensively
developed. These media include different kinds of rock,
some metals, and some structural materials. To date, it
has been established that the nonlinear properties of
such media are connected with various structural inclu-
sions (or microinclusions) whose dimensions are large
relative to the interatomic distances and small relative
to the characteristic dimension of acoustic distur-
bances. In acoustics, such media are referred to as
microinhomogeneous media [1–4]. As a rule, the
acoustic properties of microinhomogeneous media can-
not be described in terms of the classical (five- or nine-
constant) theory of elasticity [5]. Firstly, the damping
constant of such media is frequency-independent
within a sufficiently wide frequency band [6], whereas
the damping constant of homogeneous media is a linear
function of frequency. Secondly, the elastic nonlinear-
ity of homogeneous media is frequency-independent,
whereas the nonlinearity of microinhomogeneous
media can depend on frequency [7, 8]. Therefore, an
adequate model and a corresponding equation of state
should be developed to describe the nonlinear wave
processes in microinhomogeneous media. The linear
and nonlinear rheological models of a microinhomoge-
neous medium, which were proposed earlier in [9–14],
provide the explanation for the frequency-independent
behavior of the Q-factor and the strong elastic nonlin-
earity observed in such media. This paper combines
and extends these models to derive a dynamic nonlinear
equation of state of a microinhomogeneous medium
and analyzes the frequency dependences of some non-
linear effects in the interaction between elastic distur-
bances in a medium if this kind.

Consider a rheological model of a nonlinear micro-
inhomogeneous medium. As we noted above, microin-
1063-7710/01/4702- $21.00 © 20178
homogeneous media contain various inclusions
(grains, cracks, dislocations, etc.) whose characteristic
dimensions are small relative to the acoustic wave-
length. In most cases, the compressibility of these
inclusions is higher than that of the surrounding homo-
geneous material. Due to the higher compressibility of
the inclusions, an elastic stress that occurs in their
vicinity creates a higher strain (and, accordingly, strain
rate), which is much higher than the average strain (and
strain rate) in the medium. Therefore, the dissipation
and the elastic nonlinearity of the medium are governed
by the effect of these highly compliant inclusions. In
order to derive the equation of state of the medium, we
consider its part of length L much smaller than the char-
acteristic wavelength λ. In such a region, the strain can
be treated as quasi-static, which allows us to ignore the
inertial properties of the material. Therefore, the rheo-
logical model of the microinhomogeneous medium can
be represented by a nonuniform chain of linear elastic
and nonlinear viscoelastic elements connected in
series, as shown in Fig. 1. In this chain model, the uni-
form parts consisting of stiff elements (with the elastic
coefficient κ) correspond to the inclusion-free regions
of a perfectly elastic medium, while the nonlinear vis-
coelastic elements (with the elastic coefficients κi ! κ)
correspond to the compliant inclusions. We assume that
the stiff and compliant elements of the chain are of
equal length l, so that their number within the length L
is equal to N, where Nl = L, and the number of inclu-
sions is N1 = νN, where the dimensionless coefficient ν
is the relative (per-unit-volume) concentration of these
inclusions.

Rheological models similar to the model shown in
Fig. 1 were proposed in [9–14] for describing the dissi-
pation and the nonlinear elastic properties of microin-
homogeneous media. These models explain the fre-
001 MAIK “Nauka/Interperiodica”
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quency independence of the Q-factor of such media on
the basis of the assumption that the distribution of elas-
tic parameters of the viscoelastic inclusions is wide
with the nonlinear properties of the inclusions being
ignored [9–11]. Conversely, the analysis of the nonlin-
ear elasticity of the medium [12–14] ignored the vis-
cosity of the inclusions and allowed for their nonlinear-
ity. Clearly, when the viscosity of the nonlinear inclu-
sions is taken into account, their effective stiffness
proves to increase with the frequency of the acoustic
disturbance, which results in an increase in the sound
velocity at high frequencies, i.e., in the acoustic disper-
sion. An increase in the stiffness of the inclusions also
decreases their strain and, therefore, decreases the non-
linearity of the medium, which means that its nonlinear
elasticity becomes frequency-dependent. Thus, the ori-
gin of the sound velocity dispersion and that of the fre-
quency dependence of the nonlinear elasticity of the
medium are closely related.

To derive the dynamic equation of state of the
microinhomogeneous medium, we use the model
shown in Fig. 1 to calculate the elongation X(t) of the
chain under the action of stress σ as a sum of elonga-
tions of the stiff and compliant elements:

(1)

where ε0l is the elongation of a stiff element,  = εil
is the elongation of the ith inclusion, and ε0 and εi are
their relative strains. Dividing both sides of Eq. (1) by
the length of the element L = Nl, we obtain the expres-
sion for the average strain ε:

(2)

As we noted above, the stiff elements of the chain are
perfectly elastic and are described by the equation

(3)

where E = κl is the elasticity modulus of the medium
consisting of the stiff elements. The equation of state of
the ith inclusion characterized by the viscosity and
elastic nonlinearity has the form

(4)

where  ≡ dεi /dt is the inclusion strain rate, ςi is a
dimensionless coefficient that characterizes the relative
elasticity of the inclusions (ςi = Ei/E ! 1), and F(εi) is
the small elastic nonlinear correction (|F(εi)| ! |εi |).

Equations (2)–(4) can be used to derive the equation
of state of the microinhomogeneous medium, i.e., the
function σ = σ(ε). For the stiff elements, Eq. (3) yields

(5)

Since the nonlinearity is weak, the strain of the inclu-
sions can be found by the successive approximation

X t( ) N N1–( )ε0l Xi
s( ),

i 1=

N1

∑+=

Xi
s( )

ε 1 ν–( )ε0 νεi.+=

σ Eε0,=

σ ςiE εi F εi( )–[ ] gε̇i,+=

ε̇i

ε0 σ/E.=
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technique assuming that εi =  +  + …, where

| | ! | |. In the linear approximation, the solution
to Eq. (4) has the form of the relaxation integral:

(6)

where Ω = E/g has the frequency dimension, so that
Ωi = ςiΩ is the relaxation frequency of the ith inclusion.

The expression for the nonlinear correction  has
the form

(7)

Substituting Eqs. (5)–(7) for the strains ε0 and εi into
Eq. (2), we obtain the nonlinear dynamic equation of
state of the microinhomogeneous medium in the form

(8)

This equation is valid within the entire range of inclu-
sion concentrations 0 ≤ ν ≤ 1. The concentrations ν = 0
and ν = 1 (at ςi = const) correspond to the homogeneous
media: at ν = 0, we obtain a perfectly elastic linear
medium and, at ν = 1 and ςi = const, we have a nonlin-
ear elastic medium whose dissipation properties are
similar to those of liquids, gases, and homogeneous
solids; in this case, the equation of state of the medium
coincides with Eq. (4).
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Fig. 1. Rheological model of a microinhomogeneous
medium.



180 ZAŒTSEV et al.
When the concentration of the inclusions is small,
Eq. (8) can be reduced to the canonical form σ = σ(ε):

(9)

Note that equations of this kind (i.e., with relaxation
kernels) were earlier introduced phenomenologically to
describe the imperfectly (inherently) elastic materials
[4, 15, 16].

Equation of state (9) can be used to analyze the fre-
quency behavior of the elastic nonlinearity of the
microinhomogeneous medium. As can be seen from
this equation, the dynamic action manifests itself in the
nonlinear response of the medium in two ways. Firstly,
this is the effect of the linear relaxation of the medium,
because the linear response is the argument of the non-

linear correction F( ). Secondly, the relaxation
affects the response of the medium to the nonlinearity-
induced secondary sources (the nonlinear correction F),
which govern the nonlinearity-induced strain (or stress).
These mechanisms (or, rather, components of a single
nonlinear relaxation process) are essentially different.
The first mechanism is universal for any nonlinear cor-
rection and is independent of the nature of the nonlinear
process. The second mechanism strongly depends on
the time scale of the nonlinear strain; therefore, the par-
ticular type of the nonlinearity and of the nonlinear pro-
cess is significant (for example, it is important whether
the process upconverts or downconverts the frequency).
Nevertheless, Eq. (9) allows us to make some suffi-
ciently general conclusions. The following estimate is
valid for the relaxation integral of the function f(t):

(10)

Then, the elastic nonlinearity of the medium containing
relaxing nonlinear inclusions diminishes with increas-
ing frequency of the action, because the argument of
the nonlinear function in Eq. (9) decreases.

Below, we consider the basic features of the fre-
quency dependence of the elastic nonlinearity for a

medium with a quadratic nonlinearity, F(εi) = Γ , by
examples of the generation (or demodulation) of the
second harmonic and the difference frequency under a
harmonic and biharmonic action on the medium.

We begin with analyzing a medium containing iden-
tical inclusions (ςi = ς). Consider the downconversion
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process when the difference-frequency stress is pro-
duced under the biharmonic strain of the medium:

(11)

Substituting Eq. (11) into Eq. (9) and separating the
components at ωd = |ω1 – ω2|, we derive the expression
for the difference-frequency stress σd at the difference
frequency in the form σd(ωd) = Adcosωdt + Bdsinωdt =
|σd|cos(ωdt + ϕd), where the amplitude σd and the phase
ϕd have the form:

(12)

(13)

As can be seen from Eq. (12), in the static limit ωd,

ω1, 2 ! ςΩ, the amplitude is |σd| = σstat = νΓ E/ς2.
When the frequencies ωd and ω1, 2 reach the order of the
characteristic relaxation frequency ςΩ of the inclusions
or higher, the nonlinear response of the medium
decreases: σd ~ (ω1ω2ωd)–1. For a low difference fre-
quency (ωd ! ςΩ) and for ω1 ≈ ω2 = ω, Eq. (12) is sim-
plified:

(14)

This expression shows that, when ω @ ςΩ, the ampli-
tude behaves as |σd| ~ ω–2.

As can be seen from Eq. (13), the relaxation of the
inclusions leads to a monotonic variation of ϕd from
zero (in the quasi-static limit when ω1, ω2, ωd ! ςΩ) to
π/2 (when ω1, ω2, ωd @ ςΩ).

To describe the frequency dependence of the elastic
nonlinearity of the microinhomogeneous medium in the
case of the difference frequency generation, we intro-
duce the normalized nonlinear parameter Nd defined as
the ratio of the amplitude |σd| given by Eq. (14) to the

amplitude value σstat = νΓ E/ς2 in the static limit:

(15)

The parameter Nd versus frequency ω is shown in Fig. 2
(curve 1).

Consider the process of the second harmonic gener-
ation under the harmonic action on the medium: σ(t) =
σ0cosωt. In this case, Eq. (9) yields the expression for
the stress at the double frequency, σ2 = A2cos2ωt +

ε t( ) ε0 ω1t ε0 ω2t.cos+cos=
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B2sin2ωt, the amplitude and phase of the stress σ2
being determined as

(16)

(17)

Figure 3a shows the frequency dependences of the
normalized nonlinear parameter N2 introduced accord-
ing to Eq. (15) and of the phase σ2. Curve 1 demon-
strates a rapid decrease in the parameter N2 when the
frequency ω is higher than the inclusion relaxation fre-
quency ςΩ. In addition, Eq. (16) shows the above-men-
tioned effect of the inclusion relaxation on the nonlin-
earity of the medium at the frequency of the primary
excitation ω and at the frequency of its second har-
monic, 2ω. Note that the following inequality is valid:
N2 ≤ Nd.

In contrast to the smooth variation of the phase from
0 to π/2 in the case of the difference frequency genera-
tion, from Eq. (17), it follows that the phase ϕ2 of the
second harmonic changes rapidly by π in the vicinity of

the frequency ω = ςΩ/ . This property can be used to
change the frequency dependence of the parameter N2:
when the medium contains inclusions with different
relaxation frequencies, their nonlinear responses super-
impose, which may cause a nonmonotonic frequency
dependence of the parameter N2. Figure 3b shows the
dependences of N2 and ϕ2 on frequency for a medium
with inclusions of two types (their relaxation frequen-
cies differ by an order of magnitude). These depen-
dences demonstrate the nonmonotonic behavior men-
tioned above.
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2E

1
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Fig. 2. Normalized nonlinear parameter Nd versus fre-
quency ω1 for the process of the difference frequency gen-
eration (ωd/Ω = 10–5): (1) a medium with identical inclu-
sions (ς = 10–3) and (2) a medium with inclusions distrib-
uted in elasticity (a = 10–4, b = 10–1).
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In real microinhomogeneous media, inclusions are
not identical and are characterized by a certain distribu-
tion in elasticity, ν = ν(ς), so that ν(ς)dς represents the
concentration of inclusions with the parameter ς within
the interval [ς, ς + dς]. In general, real inclusions are
also distributed in the viscosity (or in the relaxation fre-
quency Ω), so that the inclusion distribution function
must depend on the parameters ς and Ω: ν = ν(ς, Ω). In
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Fig. 3. (1) Normalized nonlinear parameter N2ω and
(2) phase ϕ2ω versus frequency ω for the process of the sec-
ond harmonic generation (a) in a medium with identical
inclusions (ς = 10–3), (b) in a medium with inclusions of two
types (ς1/ς2 = 10–1), and (c) in a medium with inclusions
distributed in elasticity (a = 10–4, b = 10–1).
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this case, Eqs. (1)–(7) provide an evident generaliza-
tion of Eq. (9):

(18)

It has been shown [9–11] that, to explain the frequency-
independent behavior of the Q-factor of microinhomo-
geneous media, one should assume that the distribution
ν(ς) is sufficiently wide, the wide distribution of inclu-
sions in elasticity being of most importance particularly
for the linear dissipation–dispersion properties, while
their distribution in viscosity affects the results insig-
nificantly [11]. Since the linear and nonlinear parts of
Eq. (18) contain relaxation integrals of similar struc-
ture, we will first analyze the nonlinear elasticity as a
function of frequency by analogy with [9–11] allowing
for the distribution of the inclusions in the parameter ς
under the assumption that

(19)

As above, we consider the processes of the difference
frequency and second harmonic generation in a medium
with a quadratic elastic nonlinearity.

In the case of the difference frequency generation,
one can obtain expressions similar to Eqs. (12) and
(13). However, they are rather lengthy. Therefore,
below, we present the formulas for the quadrature coef-
ficients Ad and Bd derived for a low difference fre-
quency when the primary-excitation frequencies are
approximately equal (ω1 ≈ ω2 = ω) and ωd ! ω:

(20)

(21)

These expressions also show the effect of the relaxation
at both the excitation and difference frequencies; the
medium is characterized by two relaxation frequencies
aΩ and bΩ , which correspond to the lower and higher
boundaries of the inclusion distribution in elasticity,
respectively. The dependence of the parameter Nd on
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the frequency ω is shown in Fig. 2 (curve 2). This plot
shows that Nd = const for ω < aΩ . When aΩ < ω < bΩ ,
we have Nd ~ ω–1, i.e., Nd decreases more slowly than
predicted by Eqs. (12) and (14), which are derived for
the medium with identical inclusions. For ω > bΩ , we
have Nd ~ ω–2 (as for the medium with identical inclu-
sions for ω > ςΩ).

For the second harmonic, one can obtain the follow-
ing expressions for the coefficients A2 and B2 by anal-
ogy with Eqs. (15) and (16):

(22)

(23)

The effect of the inclusion relaxation at the excitation
frequency and at its second harmonic can also be seen
here. Figure 3c shows the parameter N2 and the phase ϕ2
versus the frequency ω. One can see that, when ω < aΩ,
N2 = const; in the range aΩ < ω < bΩ, N2 ~ ω–1; and for
ω > bΩ, N2 ~ ω–3.

Now, we consider the combined effect of the inclu-
sion distributions in elasticity and viscosity. We assume
that the inclusions are uniformly distributed in the
parameters ς and Ω:

(24)

In this case, we failed to study Eq. (18) analytically
and generalize Eqs. (20)–(23), though, in principle, the
solutions of interest can be obtained numerically. Here,
we present the approximate analytical result describing
the process of demodulation (ωd = 0):

(25)

Figure 4 represents the parameter Nd versus fre-
quency ω for different values of the parameter Ωb/Ωa.
As can be seen from Fig. 4, the additional allowance
made for the distribution of inclusions in the viscosity
(unlike the distribution in elasticity) weakly affects the
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nonlinear parameter Nd, as in the case of the results
obtained in [9–11] for linear dissipation and dispersion
properties of a microinhomogeneous medium.

Thus, in this paper, in the framework of a rheologi-
cal model, a nonlinear dynamic equation of state of the
microinhomogeneous medium containing viscoelastic
inclusions is derived and, for the case of the quadratic
elastic nonlinearity, the frequency dependences of the
effective nonlinear parameters are determined for the
processes of the difference frequency and second har-
monic generation. It is shown that the frequency depen-
dence of the nonlinear elasticity of the medium is gov-
erned by the combined effect of (i) the linear relaxation
response of the inclusions at the frequency of the pri-
mary excitation and (ii) their relaxation at the combina-
tion frequencies and harmonics. Note that, though the
consequences of the equation of state are analyzed for
a medium with a quadratic nonlinearity, the approach
developed in this paper can also be applied to media
with other types of the elastic nonlinearity: cubic, dif-
ferent-modulus, hysteretic, etc. [4, 17, 18].

The equation of state derived above (together with
the equation of motion) can be used to study various
nonlinear effects that occur in the propagation and
interaction of elastic waves in microinhomogeneous
media. Due to the above-mentioned specific features of
these media, the character of the nonlinear processes in
them essentially differs from that of the nonlinear pro-
cesses in homogeneous media, which can be used as a

–6 –4 –2 0
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–6

–8

–10

log(ω/Ω)

logNd

Fig. 4. Normalized nonlinear parameter Nd versus fre-
quency ω for the process of demodulation (ωd = 0) in the
medium with inclusions distributed in elasticity (a = 10–4,
b = 10–1) and viscosity: Ωb/Ωa = (1) 10 and (2) 104.
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diagnostic indicator in the remote monitoring of the
medium.

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation
for Basic Research (project nos. 98-05-64683 and 98-
02-17686) and by the Interbranch Center for Science
and Engineering (project no. 1369).

REFERENCES
1. M. I. Isakovich, General Acoustics (Nauka, Moscow,

1973).
2. V. E. Nazarov, L. A. Ostrovsky, I. A. Soustova, and

A. M. Sutin, Phys. Earth Planet. Inter. 50 (1), 65 (1988).
3. K. A. Naugol’nykh and L. A. Ostrovskiœ, Nonlinear

Wave Processes in Acoustics (Nauka, Moscow, 1990).
4. V. E. Gusev, W. Lauriks, and E. Thoen, J. Acoust. Soc.

Am. 103, 3216 (1998).
5. L. D. Landau and E. M. Lifshits, Course of Theoretical

Physics, Vol. 7: Theory of Elasticity (Nauka, Moscow,
1965; Pergamon, New York, 1986).

6. S. Ya. Kogan, Izv Akad. Nauk SSSR, Fiz. Zemli, No. 11,
3 (1966).

7. V. E. Nazarov, Fiz. Met. Metalloved. 88 (4), 82 (1999).
8. V. E. Nazarov, Akust. Zh. 46, 228 (2000) [Acoust. Phys.

46, 186 (2000)].
9. V. Yu. Zaœtsev and V. E. Nazarov, Akust. Zh. 45, 622

(1999) [Acoust. Phys. 45, 552 (1999)].
10. V. Yu. Zaœtsev and V. E. Nazarov, Acoust. Lett. 21, 11

(1997).
11. V. Yu. Zaœtsev, V. E. Nazarov, and A. E. Shul’ga, Akust.

Zh. 46, 348 (2000) [Acoust. Phys. 46, 295 (2000)].
12. V. Yu. Zaœtsev, Acoust. Lett. 19, 171 (1996).
13. I. Yu. Belyaeva and V. Yu. Zaœtsev, Akust. Zh. 43, 594

(1997) [Acoust. Phys. 43, 510 (1997)].
14. I. Yu. Belyaeva and V. Yu. Zaœtsev, Akust. Zh. 44, 731

(1998) [Acoust. Phys. 44, 635 (1998)].
15. V. A. Pal’mov, Vibrations of Elastically Plastic Bodies

(Nauka, Moscow, 1976).
16. Yu. N. Rabotnov, Mechanics of a Deformed Solid

(Nauka, Moscow, 1979).
17. K. E.-A. van Den Abeele, P. A. Johnston, R. A. Guyer,

and K. R. McCall, J. Acoust. Soc. Am. 101, 1885 (1997).
18. V. Gusev, C. Glorieux, W. Lauriks, and J. Thoen, Phys.

Lett. A 232, 77 (1997).

Translated by A. Khzmalyan



  

Acoustical Physics, Vol. 47, No. 2, 2001, pp. 184–193. Translated from Akusticheski

 

œ

 

 Zhurnal, Vol. 47, No. 2, 2001, pp. 227–237.
Original Russian Text Copyright © 2001 by Zverev, Korotin, Matveev, Mityugov, Orlov, Salin, Turchin.

                           

REVIEWS

                                  
Experimental Studies of Sound Diffraction by Moving 
Inhomogeneities under Shallow-Water Conditions

V. A. Zverev, P. I. Korotin, A. L. Matveev, V. V. Mityugov, D. A. Orlov,
B. M. Salin, and V. I. Turchin

Institute of Applied Physics, Russian Academy of Sciences, 
ul. Ul’yanova 46, Nizhni Novgorod, 603600 Russia

e-mail: matveyev@hydro.appl.sci-nnov.ru; turchin@hydro.appl.sci-nnov.ru
Received January 31, 2000

Abstract—The experimental data on the sound propagation and diffraction by moving test inhomogeneities
under lake conditions are presented. It is shown that the diffracted signals under multimode propagation are
adequately described by simplified theoretical models proposed earlier. The detection of the diffracted signals
against the background of a fluctuating direct signal is demonstrated for the reception by a horizontal or vertical
array. It is also shown that the direct and diffracted signals observed in the lake are similar in their characteristics
to the signals in a shallow sea, which allows one to use the lake experiment for testing various underwater
acoustic techniques intended for shallow-sea conditions. © 2001 MAIK “Nauka/Interperiodica”.
In a series of papers [1–6], a method of diagnostics
of moving inhomogeneities by the scattering of the pri-
mary acoustic field in the “forward” direction, i.e., in
the directions close to that of incidence, is considered.1

A scheme for the observation of inhomogeneities by
such a method is shown in Fig. 1. The acoustic source
and the receiving array (a vertical or horizontal one)
form the stationary propagation track OA, which is
crossed by a moving inhomogeneity at a point S. In the
absence of a scatterer, the array elements receive the
direct signal P0; if no fluctuations occur in the medium,
the amplitude and phase of this signal are constant in
time. At the moments close to the time when the inho-
mogeneity intersects the track OA, the received signal
experiences a perturbation, since, in accordance with
the Babine principle, the direct field is supplemented by
a field diffracted by the inhomogeneity: P = P0 + Pd,
where P is the received signal and Pd is the diffracted
signal. If the level of radiation is rather high, the fluctu-
ations of the direct signal are the main interference.

To single out a diffracted signal against the back-
ground on this interference, several methods were
suggested [2–7], which use, to one or another extent,
model descriptions of the diffracted signal. A number
of experiments carried out in shallow-sea conditions
showed that the “forward” scattering is very promis-
ing for use in the diagnostics of moving inhomogene-
ities [2, 3, 8].

However, to develop such a method, systematic
experimental investigations were needed. In particular,
it is of interest to compare real diffracted signals with

1 In a number of works, the term “bistatic sonar” is also used.
1063-7710/01/4702- $21.00 © 20184
the simplified theoretical models [2, 3] and to use a
great body of experimental data for testing various
algorithms of the signal processing under the condi-
tions of a fluctuating transmission channel, etc. To this
end, in summers of 1997 and 1998 at Lake Sankhar (the
Vladimir region), a number of experiments were car-
ried out to observe the diffracted signals in the fre-
quency range 1–3 kHz.

In choosing such a method of the experimental
investigations, we allowed for its low cost, as compared
to the sea experiments, and for the following facts.

First, the regular components of both the direct and
the diffracted acoustic fields obey the similarity rela-
tions [10]: with a simultaneous increase in frequency
by a factor K and a decrease in all geometric dimen-

A

S

O
Π

Scatterer

Vertical array

Horizontal arrayA

α0

r1

αsr2

Source

Fig. 1. Disposition of the source, the receiving arrays (A),
and the scatterer moving along the trajectory Π in the hori-
zontal plane; αs is the angle between the normal to the line
OA and the trajectory Π, α0 is the scatterer bearing mea-
sured relative to the normal to the array.
001 MAIK “Nauka/Interperiodica”
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sions by the same factor, the acoustic field structure is
not changed, provided that the sound velocity and the
density remain invariable. Approximately, this will be
valid even with allowance for the sound absorption in
the sea bottom, because the absorption coefficient is
almost proportional to frequency in a rather broad fre-
quency range. In the lake chosen, the vertical sound
velocity profile and the type of the bottom (sand, silt)
are specific for a shallow sea (see below). Therefore,
the results obtained can be extended to shallow sea con-
ditions with allowance for a corresponding scaling
coefficient.2

Second, the preliminary observations have shown
that the acoustic field fluctuates in the lake conditions,
the statistical characteristics of these fluctuations being
similar in a qualitative sense to sound fluctuations
along a stationary track in shallow sea conditions (see,
e.g., [12]). Although the fluctuations of the acoustic
field in the lake can be generated by somewhat different
hydrophysical processes, only the statistical character-
istics of the interference (temporal spectra, spatial cor-
relation scales, etc.) are significant in the detection of
useful signals. From this point of view, one can hope
that the validation of the signal processing algorithms
under lake conditions will to some extent also testify to
their applicability in the shallow sea conditions.

Both above-mentioned facts allow one to consider
the lake experiment as a rather exact scale model of a
sea experiment with the scaling coefficient K ~ 10–20.
Moreover, in the lake experiment, it is easier to monitor
the track parameters, the motion of the scatterer, and
the hydrophysical characteristics of a water area.

The experiments were carried out at Lake Sankhar,
which is of the karst origin and forms a closed fresh-
water basin (the salinity is less than 1‰) without
sinks and sources. The area of the deep-water part is
~0.6 × 0.8 km with the water depths 10–20 m and the
sand-silt bottom (the thickness of mud is about 1 m in
the region of maximal depths and several to several
tens of centimeters in other parts). The map of the lake
with isobars and the disposition of the equipment is
shown in Fig. 2.

In the experiment, two identical 64-element line
receiving hydroacoustic arrays 12 m in length were
used. One array was installed horizontally at a depth of
~6 m, the second array was installed vertically and
spanned almost the whole propagation channel. The
signals from the array hydrophones were brought out to
a small pontoon that was anchored near the place of
the array installation. The pontoon carried the equip-
ment for the analog conversion of signals (amplifica-
tion, filtering) and for the digital conversion (hetero-
dyning, low-frequency filtering, and increasing the
time lapse between signals). The transformed signals

2 In a lake, as an additional factor, sound reflections may occur
from the coastlines, which can introduce some extra difficulties in
the signal interpretation.
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were recorded on a hard disk of a computer. The radi-
ated signal had the relative frequency stability no worse
than ~10–9, which allowed one to carry out phase mea-
surements during at least several hours. Basically, we
used a continuous multifrequency signal of the form

with the frequencies fi in the range 0.8–3.0 kHz. A sound
source of the piezoceramic type was rigidly fixed at a
distance of ~0.7 m from the bottom at different sea
depths (see Fig. 2). In some experiments, near this
source, an additional hydrophone was installed from
which the signal was transmitted by a cable to the pon-
toon.

To study the sound diffraction, three test scatterers
were used. Two of them were the hollow metallic cyl-
inders with an internal diameter of 0.45 m and with the
lengths 5.2 and 2.5 m (below, “long” and “short” scat-
terers, respectively); for streamlining, the 0.6-m conic
nozzles were mounted at the ends of the cylinders,
these nozzles being partially filled with foam plastic.
The third scatterer was a rectangular screen of the foam
plastic; it was 5 × 1 m in area and 0.1 m in thickness. To
provide the negative buoyancy of it, a load was attached
to its lower side. To move the scatterers in the underwa-
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20 m) and the positions of the equipment: (S) source;
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of the moving inhomogeneity; and (T) stationary tracks of
sound transmission.
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ter position with a constant speed, we used a halyard
stretched between the shores of the lake and a winch.

In addition to the acoustic equipment, a wave
recorder, sensors of temperature fluctuations in water at
different depths and a meter of the speed and wind
direction were also used. From the depth dependence of
the temperature, the sound velocity profile c(z) was
determined; some examples of c(z) are shown in Fig. 3.
As follows from Fig. 3, the variability of c(z) is mainly
related to warming (cooling) of the upper layers due to
changes in the weather conditions. Note that the profile
in Fig. 3, in general, agrees well with the theoretical
automodeling solution for a shallow sea [9].

The main part of observations are the records of sig-
nals received by the array elements for three stationary
acoustic tracks T1, T2a, and T2b between the source and
the vertical array (VA) and between source and the hor-
izontal array (HA) (see Fig. 2). Most records were
obtained when one of the test scatterers moved approx-
imately across the stationary track along the trajectories
Π1 or Π2; the speed of the movement was in the range
0.3–0.7 m/s at a scatterer depth of 6 or 10 m; the dura-
tion of a record was 5–20 min. More than 100 such
records were made with one to four intersections of the
acoustic track (about 50 records were also made in the
absence of the scatterer movement). Every record is a
3D set of complex numbers Pnji, where n is the number
of the hydrophone of the vertical or horizontal array, j
is the number of the time reading, and i is the number
of the radiation frequency. The signal readings were
made with the frequency 6–10 Hz (in different
records); the signal band after demodulation of the car-
rier frequency fi was ±(3–5) Hz. A number of specific
experiments were also carried out for synthesizing the
diffracted signals and measuring the “sections” of the
acoustic field; signals were recorded by series within
24 h (without a scatterer).

It is initially assumed that the acoustic field in the
lake, as well as in a shallow sea, has the regular (coher-
ent) component determined by a sufficiently large num-
ber (~10–20) of propagating modes and a weaker fluc-
tuating component due to the scattering by the surface
roughness and the volume fluctuations of the sound
velocity.

Figure 4 exhibits some examples of the spatial spec-
tra of the coherent component for the vertical and hori-
zontal arrays (the result of averaging over a ~3-min inter-
val) for the track T2b and the carrier frequency 2.5 kHz.
As follows from Fig. 4, the spatial structures of the sig-
nals are sufficiently stable in time. The spatial spectrum
for the HA has a pronounced main lobe in the direction
toward the source (sinα0 = 0.18).3 The spatial spectrum
of the VA had a quasi-random set of the peaks in the
range ±sinθw , where θw is the trapping angle of the
waveguide. For the sound velocities in the bottom in the
range 1650–1800 m/s and the profiles c(z) shown in
Fig. 3, we have sinθw . 0.5–0.6, which agrees well with
the results presented in Fig. 4.

Figure 5 exhibits some examples of normalized spec-
tral power densities (SPD), W(norm)(f ), (in dB per 1/Hz)
of the signals at the hydrophones of the VA and HA

3 For the larger bearings, the main lobe of the HA is deformed at
some frequencies, i.e., the modal structure of the sound field
affects the spatial spectrum (see, e.g., [13]).
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with the frequency resolution 2–3 MHz for the same
carrier frequency 2.5 kHz. The SPD were determined
by averaging the records from all 64 hydrophones for
each array over ~15 min intervals with the use of the
Hanning window. Since the fluctuations observed
have a multiplicative character, in order to exclude
the dependence of the estimate on the radiated signal
level and the size of the analyzing window (for f ≠ 0),
the normalization was performed by the integrated
power, i.e.,

where Fs is the sampling frequency.

It is convenient to compare the normalized SPD, with
allowance for the frequency band occupied by the dif-

fracted signal , with the dimensionless ratio R of
the intensities of the diffracted and direct signals (see
below). Since, as mentioned above, the direct signal fluc-
tuations are the main interference for singling out the dif-

W norm( ) f( ) W f( ) W f( )d f
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Fs/2

∫
1–
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Fig. 4. Spatial spectra of the coherent field component at the
(a) vertical and (b) horizontal arrays as functions of sinα,
where α is a current bearing: a frequency of 2.5 kHz, track
T2b; each plot exhibits three realizations with a time separa-
tion of 1.5 h and two days relative to the first record.
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fracted signal, then the comparison of  and
 allows one to judge the signal-to-noise ratio

(SNR) in the experiment. The analysis of the SPD for
different tracks, wind speeds, etc., showed the presence
of a low-frequency component close to the zero fre-
quency with the rate of decay ~f –1…2 and peaks in the
vicinity of frequencies 1.0–2.0 Hz, which are related to
the wind-induced waves. The same features (the pres-
ence of the low-frequency component and wind-
induced peaks) are typical of stationary tracks in a shal-
low sea (see, e.g., [12]), although the parameters char-
acterizing the SPD are different in the sea and the
lake. For example, the peaks corresponding to the
sound scattering by the rough surface in the lake are
localized in a more high-frequency region due to the
fact that wind-induced waves are not fully-developed
ones. In spite of such distinctions, the fact itself of the
presence of the ambient noise background (fluctua-
tions) in the lake allows one to test different algo-
rithms of signal processing under the lake conditions
and, with some corrections, to extrapolate the results
to sea conditions.
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ning, the track, and the wind speed are shown in the plot.
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As a model of a diffracted signal Pd(t) for matched
processing in the case of a single receiving element of
the VA or HA, we [3] suggested using the following
expression

(1)

Here, Ad is the time-independent amplitude of the dif-
fracted signal, which is proportional to the direct signal
amplitude A0 (see below); tc is the time when the scat-
terer intersects the track OA (see Fig. 1); and the func-
tion Φ(ı) describes the normalized directional pattern
of the scattered field (for the scatterer of the rectangular
form, Φ(ı) = sinπx/πx). The parameters Td and γ char-
acterizing the duration of the diffracted signal and the
rate of change of the Doppler frequency shift are
described by the expressions

(2)

where h = r1r2/r; r1 = OS, r2 = SA (see Fig. 1); r = r1 +
r2 is the acoustic track length; v = vscosαs and l =
lscosαs, where vs and ls is the speed and length of the
scatterer, respectively, and αs is the angle between the
normal to the track and the scatterer trajectory; and κ is
a mean wave number lying within the interval κ1 < κ <
κm, where κm (m = 1, 2, …, M) is the wave number of
the mth mode. Expression (1) was obtained in the
paraxial approximation for sufficiently shallow angles
~vTd/2r2, vTd/2r1.

For the HA, the model of a space–time diffracted
signal can be constructed on the basis Eq. (1) [5] in the
framework of the same approximations:

(3)

where x is the coordinate along the array (x = 0 is in the
center of the array), α0 is the source bearing, and

The models presented above disregard the multi-
mode behavior of the sound propagation and operate
with some average wave number,4 which makes these
models stable with respect to the incompleteness of
a priori data on the channel. For the VA, a model of the
space–time diffracted signal Pd(z, t) (z is the current
depth of the receiving elements) cannot be constructed
in the framework of such an approximation. Although
in a number of problems, the modal expansions for a
plane-layered medium (see, e.g., [15]) were used in the
processing, it is known that such representations are
very critical to the accuracy of a priori data on the

4 In a plane-layered medium, Pd represents M2 terms of the form of
Eq. (1) with various combinations of the wave numbers κm' and
κm'' (see, e.g., [14]).
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sound velocity profiles, the bottom parameters, the
invariability of the sea depth along the acoustic track,
etc. It is most simple to assume that a priori data on the
vertical structure of the diffracted field are absent. In
this case, as a model for the VA, we can take the expres-
sion Pd(z, t) = Ad(z)Sd(t – tc), where Ad(z) is an unknown
complex function of depth z.

The statistical models of the diffracted signal can be
developed with allowance for a frequency band occu-
pied by this signal. The bandwidth of the spectrum
given by Eq. (1) equals ±∆fd, where ∆fd ~ v/l, provided
that h @ κl2 (in this case, for the LFM-like signal (1),
the bandwidth is determined by the frequency devia-
tion γ). At the same time, as follows from Fig. 6, most
intense fluctuations of the direct signal together with
the coherent component are concentrated in a rather
narrow spectral interval in the vicinity of the zero fre-
quency and can be suppressed with the use of a high-
pass filter (HPF), provided that the cutoff frequency of
the HPF is fl ! ∆fd; i.e., the diffracted signal is only
slightly distorted after filtering. Thus, the received and
filtered signal P(F)(t) can approximately be written as

(4)

where ∆P0(t) represents the residual fluctuations of the
direct signal, which now can be considered as a random
stationary process with the zero mean5 and consider
Eq. (4) as a classical statistical model involving the
additive mixture of the diffracted signal Pd of the
known form with several unknown parameters (the
time of crossing, the speed, etc.) and the interference
∆P0. It is well known that for such a model, the optimal
procedure is constructed on the basis of the consistent
(correlation) processing with the use of models (1)–(3).

Since the described models of the diffracted signal
are a very rough approximation of the waveguide prop-
agation, there is a need in the experimental testing of
their correspondence to the real diffracted signals, since
considerable deviations reduce the efficiency of the
consistent processing. The direct testing, i.e., the exper-
imental observation, for example, of the temporal
dependence Pd(t) and its comparison with Eq. (1) is not
possible because of the smallness of the diffracted com-
ponent compared to the residual fluctuations of the
direct signal. Although, after HPF, the diffracted com-
ponent was noticeable in some records, the low signal-
to-noise ratio (SNR) did not allow estimation of the dif-
fracted signal profile. Therefore, several indirect exper-

5 Naturally, in a random inhomogeneous waveguide, both the direct
and diffracted signals will fluctuate; moreover, the diffracted sig-
nal fluctuations have, in a sense, a multiplicative character; for
example, a change in the amplitude and phase of the radiated sig-
nal causes the same changes in the diffracted signal. However,
expression (4) assumes that the fluctuating components of both
signals are much less (approximately by the same factor) than the
regular components; in this case, one can neglect the fluctuating
component of the diffracted signal due to the smallness of the dif-
fracted signal compared to the direct signal.

P F( ) t( ) . Pd t( ) ∆P0 t( ),+
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imental methods were used to verify this correspon-
dence.

First, in order to increase the SNR, according to
Eq. (3), we used the coherent summation of the signals

(t) received by the elements of the HA and passed
through HPF with delays proportional to the coordinate
xn of the nth received element:

(5)

where N is the number of the elements of the HA. In
general, model (1) agrees rather well with the experi-
ment, which can be seen from Fig. 6a, where the esti-
mate of Pd(t) is given, as an example, for the screen of
plastic foam. For the long cylinder, an interesting effect
was revealed: the difference in time between the maxi-

mum in | (t)| and the instant of the sign reversal of the
first derivative of the phase; i.e., the maximum of the
scattering pattern was oriented at some angle to the
direction of the signal incidence.6 For the short cylin-
der, this effect was also present, but it was less pro-
nounced.

Second, for the experimental estimation of the mis-
match between model (1) and the diffracted signal in a
real shallow-water channel, an experiment was carried
out for synthesizing the diffracted signal. To this end,
the source of a cw signal was towed along the trajectory
of the scatterer motion at the same depth. The signals
were received by the hydrophones of the HA and VA,
as well as by a separate hydrophone located close to the
source that was used in the experiments with a real
moving scatterer. The product of the signal received by
every element of the array and that received by the sep-
arate hydrophone were subjected to the moving inte-
gration over time with a window T = l/v, where v if the
speed of towing and l is the scatterer length. Thus, we
experimentally imitated the Kirchhoff diffraction by a
line (one-dimensional) scatterer l in length, which
moved with the speed v in a real shallow-water channel
(the reciprocity principle was used for determining the
current source–scatterer transfer coefficient). Figure 6b
shows an example of a synthesized diffracted signal.
The correlation coefficients between synthesized sig-
nals and model (1) were within ~0.7–0.8 in the range
1.5–2.5 kHz.

The procedures of the selection of the diffracted sig-
nal and evaluation of its parameters in the framework of
the above-mentioned model describing the forward
scattering involved the method of incoherent accumu-
lation over elements of the VA after matched temporal
filtering [2, 3] and the method of space–time matched

6 The reason is likely to be in the features of diffraction by the elas-
tic shell of the cylinder: its diameter was comparable with the
sound wavelength, while the Kirchhoff approximation demands
that it be much greater than the wavelength; moreover, the cylin-
der was composed of different sections, which made the parame-
ters of its shell inhomogeneous.
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filtering (STMF) for the HA [5]. In the first case, the
temporal dependences Fi(t) were constructed for every
ith radiation frequency Fi(t):

(6)

where Anorm is the normalizing factor independent of
time. These dependences have a sharp peak of width

~∆  at the instant of intersection, t . tc. In the sec-
ond case, the temporal dependences Fi(t ) were con-
structed as

(7)
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The outputs of the matched filters were averaged inco-

herently over frequencies: F(t) = (1/I ) (t);
thus, we reduced the probability of the disappearance
of the diffracted signal when the scatterer got into the
sound field minimum with respect to the source or the
receiver, and an increase in the output value of the SNR
was achieved. Examples of such dependences for the
VA and HA are shown in Figs. 7 and 8. Note that the
theoretical estimates of the intensity ratio of the dif-
fracted and direct signals |Ad/A0|2 on the basis of the
relationships from papers [3, 4] yielded for our experi-
ment –15…–25 dB for various types of scatterers,
depths, and transmission tracks (the experimental esti-
mates of this ratio are mainly in the same limits), while
the normalized SDP of the fluctuations of the direct sig-
nal were –10…–20 dB in the frequency band of the dif-
fracted signal ~±0.2 Hz (see Fig. 5), which character-
izes the input SNR. After processing, the SNR was
~30 dB, as follows from Figs. 7 and 8; the correspond-
ing gain was achieved due to the matched processing.

The third method to verify the efficiency of model (1)
was as follows: into the experimental body of data, we
introduced the parameters of a model diffracted signal;
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Fig. 7. Examples of the application of procedure (6) for the
processing of experimental (E) and model (M) diffracted
signals for the VA (track T1, frequency ~3 kHz): (a) long
cylinder, averaging over four frequencies; (b) short cylinder,
averaging over five frequencies.
the parameters of the trajectory (the speed etc.) and the
amplitude Ad were taken from the experimental data,
while the instant of the intersection, tc, was chosen so
that the responses to the model and experimental dif-
fracted signals did not overlap. As seen from Figs. 7 and
8, the amplitudes of the responses to the experimental
and the model diffracted signals differ by 1–2 dB.

Procedures (6) and (7) were also used for the param-
eter estimation of the diffracted signal: for this purpose,
the result of the application of Eqs. (6) and (7) was
maximized over an unknown parameter, for example,
the scatterer speed, v. Using Eq. (6), one can estimate
three unknown parameters, for example, in our experi-
ment, the instant of the intersection, the speed, and the
scatterer length, while Eq. (7) allows one to estimate
four parameters, for example, the instant of intersec-
tion, the speed (including the sign), the scatterer length,
and the distance to the intersection point. As an exam-
ple, Fig. 9 exhibits the dependences of the scattering
cross-section on the speed (including its sign) and
scatterer length (Eq. (6)) and on the speed and dis-
tance (Eq. (7)) at t = tc.

Besides procedures (6) and (7) matched with the
form of the diffracted signal at the instant of intersec-
tion of the transmission track, more simple methods of
processing were also used. In particular, after prelimi-
nary filtering in the band ∆f = fh – fl (fl and fh are the
lower and upper cutoff frequencies of the filter, respec-
tively), the dependence of the signal on time and bear-
ing s = sinα was constructed for the HA [7]:

where  are the time readings of the signal at the nth
element of the HA after preliminary filtering, tj is the
time of the jth reading, and the number of the radiation
frequency i is omitted. Figure 10 exhibits an example of
such a dependence for the frequency fl > ∆fd, i.e., for the
case when the diffracted signal corresponding to the
forward scattering was considerably suppressed. It can
be seen from Fig. 10 that the trajectory of the scatterer
motion is quite clearly traced both before and after the
time of the track intersection; i.e., the diffracted signal
is well observed in the region of the bistatic scattering.7

In this region, the Doppler frequency shift appeared
with the sign corresponding to the direction of the scat-
terer motion, to or from the track OA shown in Fig. 1.
As a result, the spectrum of the diffracted signal was
shifted to the left or to the right of the frequency range
±∆fd corresponding to the forward scattering. Although
the amplitude of the diffracted signal decreases signifi-
cantly in the region of the bistatic scattering, the SPD

7 In contrast to a classical scheme of the bistatic location, the
source and the receiver were on different sides of the scatterer tra-
jectory.
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Fig. 9. Dependence of the intensity F2(tc) (Eq. (6)) on (a) the scatterer length l and (b) the speed v for the VA (frequency ~3 kHz,
track T1, short cylinder 2.5 m in length, speed of motion 0.34 m/s, incoherent averaging over five frequencies) and the dependence of
the intensity (Eq. (7)) on (c) the speed and (d) the distance r2 for the HA (track T2b, short cylinder moving with a speed of –0.68 m/s
and intersecting the track at the distance r2 . 150 m, incoherent averaging over five frequencies in the range 2.0–2.5 kHz).
of the direct signal fluctuations also decreases, as fol-
lows from Fig. 5. This fact is the reason of the success-
ful observation of diffraction in the region of the
bistatic scattering.

The simplest model of the diffracted signal in this
region is the “scattering point.” In the framework of
this model, if a multimode character of the wave prop-
agation is neglected, the diffracted signal received by
ACOUSTICAL PHYSICS      Vol. 47      No. 2      2001
the HA in the region of the bistatic scattering can be
written as

(8)

where r1(t ) and r2(t) are the current distances between
the source and the scatterer and between the scatterer
and the center of the HA; s(t) is the sine of the current
bearing of the scatterer; and the time dependences r1(t),

Pd x t,( ) e
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r2(t), and s(t) are found from elementary geometric
considerations. With allowance for Eq. (8), a space–
time matched filter was constructed; its output as a
function of time is shown in Fig. 11. As follows from
Fig. 11, the diffracted signal correlates well with
model (8); the output value of the SNR is close to that
of the filter matched with the signal scattered forward
(see Fig. 8).

Thus, the preliminary analysis leads to the follow-
ing conclusions:

(i) The propagation and scattering of acoustic sig-
nals under lake conditions at frequencies of the order of
units of kilohertz in many respects is similar to that
observed in a shallow sea at frequencies from ten to
several hundreds of hertz (some differences in the sta-
tistical characteristics of fluctuations can easily be
taken into account); thus, the fundamental possibility to
test various schemes of remote diagnostics of the inho-
mogeneities under lake conditions is demonstrated,
which reduces the cost of the tests;

(ii) The previously developed simplified model of
the diffracted signal in the region of the forward scat-
tering and the estimates of the diffraction levels are in
good agreement with the experimental data obtained in
ACOUSTICAL PHYSICS      Vol. 47      No. 2      2001
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the multimode sound propagation, at least, for dis-
tances ~K × 500 m, where K ~ 101;

(iii) With a suitable procedure of the received signal
processing, the diffracted component is clearly
observed in the region of the bistatic scattering, which
allows one not only to detect the fact of the intersection
of the stationary transmission track by an inhomogene-
ity, but to carry out a trajectory evaluation as well.

The body of the experimental data obtained in our
experiment is several Gbytes; the processing and the
analysis of these data is continued, and we hope to
obtain new results, which will be presented in subse-
quent publications.
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Abstract—The light spectrum of molecular scattering is used for studying the particular features of the
hypersound propagation in a guaiacol–glycerol binary solution with two critical points. The kinetics of the
spectrum of scattered light in liquid salol is studied when the viscosity of the latter varies over ten orders of
magnitude. Acoustic singularities are revealed in the critical region at the phase transition and at a large vis-
cosity. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION 

Acoustic waves are interpreted in this paper as elas-
tic oscillations of particles of a medium, these oscilla-
tions propagating with the speed of sound and transfer-
ring energy without any mass transfer. The frequencies
of acoustic waves existing on the Earth span from 0 Hz1

to the boundaries of the Debye spectrum, 1013 Hz [1].
The part of sound that is perceived by human ear occu-
pies the interval of acoustic frequencies from 16 to
20000 Hz, which constitutes only one ten-billionth
(10–10) part of the whole acoustic range. 

Low-frequency sound or infrasound (0–16 Hz), as
well as high-frequency ultrasound (106–109 Hz) and
hypersound (109–1013 Hz) (this classification is purely
conditional), are widely used for scientific and techno-
logical purposes. 

The utilization of acoustic waves of different fre-
quencies for scientific purposes calls for finding an ade-
quate method of recording the sound interaction with
the phenomenon under investigation and a possibility
to retrieve the desired information from the obtained
records. 

Below, we present some new results concerning the
interaction of longitudinal and transverse sound result-
ing from the pressure fluctuation ∆P and the fluctuation
of anisotropy ∆ξik. As is known, fluctuations of differ-
ent thermodynamic quantities such as pressure ∆P,
entropy ∆S or temperature ∆T, and concentration ∆C, as
well as the fluctuation of such a nonthermodynamic
quantity as anisotropy ∆ξik, occur as a result of the ther-
mal chaotic motion of atoms or molecules of a medium.
The fluctuations of entropy, pressure, concentration,
and anisotropy are independent of one another. 

1 Here we consider sound of zero frequency as sound with the wave-
length equal to the linear dimensions of the globe, 1.2 × 109 cm,
and with the speed of sound being different at different depths;
however, if we assume the latter to be equal to 5 × 105 cm/s, we
obtain that the zero frequency corresponds to fmin ~ 5 × 10–4 Hz.
1063-7710/01/4702- $21.00 © 20194
We note that such fluctuations as the fluctuations of
pressure, entropy or temperature, and concentration do
not affect the isotropy of the medium. This means that
the light scattered due to such fluctuations is always lin-
early polarized, the electric vector of the scattered light
wave being directed perpendicularly to the scattering
plane, independently of the polarization or depolariza-
tion of the excitation light. 

Pressure fluctuations arising at any point of a body
cannot stay there but travel along the body with the
sound velocity. Any fluctuation arises and vanishes at
any place and time thus filling constantly the whole vol-
ume of the body. 

Einstein provided a method for calculating the ther-
modynamic fluctuations [2]. 

Two years later, Debye [1], while developing the
Einstein theory of heat capacity of solids, assumed that
3N degrees of freedom of coupled atomic oscillators of
a solid have to be treated as 3N normal elastic waves
[here, N is the total number of particles (atoms and
molecules) in the whole sample]. Thus Debye [1] treats
the energy of thermal motion of particles of a solid as
the energy of elastic waves. From this point of view,
fluctuations are the result of a superposition (interfer-
ence) of Debye elastic waves. We also can consider the
Debye elastic waves as the Fourier components of the
fluctuation, as was done earlier by Einstein [2] and
Mandel’shtam [3]. We extend this approach to any con-

densed medium where the mean free path  is much

less than the light wavelength λ(  ! λ). 

Therefore, in a solid, we have 3N elastic waves,
where N is a great number and the thermal elastic
waves have different frequencies within the aforemen-
tioned interval and different directions. At first glance,
it seems impossible to separate a single wave and con-
duct all necessary investigations with it. Luckily, this is
not the case, and it turns out to be possible to separate
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any of these waves and study its behavior in the physi-
cal phenomenon under investigation. 

However, we first need a technique for separating a
preset thermal elastic wave. 

THERMAL SOUND
AND ITS CHARACTERISTICS 

Let us direct a beam of light with the wavelength λ
at the sample of the continuous medium under investi-

gation (  ! λ) in which the aforementioned great num-
ber of Debye waves are “crowded.” In such conditions,
there are always some waves with the wave vectors +

and – , where | | = . Here, Λ is the sound wave-

length. The superposition of such waves gives rise to a
standing wave. Light incident on such a standing wave
is diffracted by it as by a diffraction grating. The direc-
tion of the diffracted light is determined by the Bragg
condition 

(1)

where n is the refraction index and θ is the angle
between the propagation directions of the excitation
light and the diffracted light. 

From Eq. (1), it follows that it is possible to separate
the sound waves with the minimal wavelength Λmin =
λ/2n at θ = 180°, and, for θ = 0, with the wavelength
Λmax ≅  ∞ (conditionally, Λ ≅  109 cm). 

The time variation of the density in a standing sound
wave modulates the scattered light at the frequency of

the elastic wave f = , where V is the sound velocity.

Such a modulation gives rise to discrete components in
the spectrum of scattered light. These are the Man-
del’shtam–Brillouin components shifted with respect
to the central (Rayleigh) line by ∆ω. The latter quantity
is determined from the sound frequency and Eq. (1): 

(2)

Here, C and ω are the light velocity and frequency,
respectively. Thus, two shifted Mandel’shtam–Bril-
louin components appear in the spectrum of molecular
scattering. From their positions and from Eq. (2), it is
possible to determine the velocity V. The shape of the
shifted line is determined by the form of the function
modulating the scattered light. Such a function is deter-
mined by the law of the fluctuation variation with time. 

The time dependence of the pressure fluctuation in
a medium with losses is determined by the solution of
the Navier–Stokes equation, while the fluctuations of
the entropy and concentration are determined by the
solution of the Fourier equation. The problem is treated
in detail in the literature [4–6], and here we present the
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final result of the calculation of the intensity distribu-
tion in frequencies, I(ω), for the Mandel’shtam–Bril-
louin components: 

(3)

Here, Iad is the integral intensity of light scattered by
adiabatic fluctuations, δ is the attenuation coefficient of
sound, and Ω is the sound frequency. 

The total width of the Mandel’shtam–Brillouin
component at the half of its maximal intensity is 

(4)

where α is the amplitude attenuation coefficient of
sound. One can also see from the theory that α is deter-
mined by the shear and bulk viscosities and the heat
conductivity: 

(5)

Here η, η', κ, γ, and ρ are the shear and bulk viscosities,
the heat conductivity coefficient, ratio of the heat
capacity at constant pressure to the heat capacity at
constant volume, and the density, respectively. Thus,
investigation of the light spectrum of molecular scatter-
ing provides an opportunity to determine all basic char-
acteristics of an acoustic wave. 

The absorption coefficient α (Eq. (5)), as well as the
sound velocity (Eq. (2)), can be obtained for any acous-
tic wave with the wavelength that can vary according to

Eq. (1) from the minimal one equal to Λ =  (for ordi-

nary liquids, Λ is approximately three times less than
the wavelength of the excitation light) to the maximal
Λ that is not limited fundamentally, but in practice it is
difficult to realize the angles θ ~ 0 because of the prox-
imity to the excitation light, and, therefore, one has to
choose θ ≠ 0 in an experiment. A typical intensity dis-
tribution in the spectrum of molecular scattering is
shown in Fig. 1. 

In this paper, we consider the cases of the propaga-
tion of ultrasound and hypersound in the critical region
at phase transitions in binary liquid solutions when two
critical points are present and the case of a transverse
hypersonic wave propagating in a medium where the
shear viscosity varies over a wide range. 

VELOCITY AND ATTENUATION OF SOUND
IN THE CRITICAL REGION 

Experimental and theoretical studies of phase tran-
sitions in various media have always been important
and remain topical now. The study of such a substance
as Rochelle salt, which has two Curie critical points
(the higher point at a temperature of 24°ë and the lower
point at a temperature of –18°ë) was of special interest.
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The temperature dependence of absorption in the vicin-
ities of both Curie points in Rochelle salt at a frequency
of 5 × 106 Hz was obtained for the first time by Yakov-
lev, Velichkina, and Baranskiœ [7]. They observed a
rapid growth of the sound absorption coefficient in the
vicinities of both critical points. For a detailed investi-
gation of the phenomenon, variations of the positions
of the critical points with respect to temperature are
necessary, which is connected with great difficulties of
crystallographic character. Probably, this was the main
reason why the problem was not developed further. 

We studied samples of liquid binary solutions of
guaiacol and glycerol, which have two critical points

0

∆ω∆ω +ω

δω

–ω

Fig. 1. Typical spectrum of molecular scattering of light:
± ∆ω (=±2πf ) is the shift of the Mandel’shtam–Brillouin
components with respect to the central (Rayleigh) line; the
shift is determined by the sound velocity, the light fre-
quency, and the scattering angle θ (Eqs. (2) and (3)); δω is
the half-width of the Mandel’shtam–Brillouin component;
its value is determined by the absorption coefficient of the
thermal sound waves (Eqs. (4) and (5)). 
under certain conditions. The relative positions of the
critical points can be varied easily and arbitrarily within
a certain interval. Since the patterns of the second-order
phase transitions that occur in various media have many
common features, the results obtained by us are of a
general character. They are suitable for discussing the
critical phenomena accompanying phase transitions in
general, and we hope that they will be useful for the
development of the microscopic theory of phase transi-
tions [8, 9]. 

However it turned out that our experimental study
brought up more questions than the number of answers
we expected to obtain while experimenting. The solu-
tion of the carefully purified guaiacol (CH3OC6H4OH)
and glycerol (CH2OHCHOHCH2OH) components is
homogeneous over the whole temperature–concentra-
tion phase plane. However, if we add water to such a
solution—one molecule of water per 25 molecules of
the solution, or one molecule of CCl4 per 180 mole-
cules of the solution—a closed region or loop appears
in the phase plane within which the solution is strati-
fied (Fig. 2a). It is hard to imagine that the effect of so
small a quantity of the third component leads to such
radical changes in the solution properties. Most prob-
ably, the small quantity of the third component plays
the role of a trigger (a trigger effect), but the mecha-
nism of this effect remains to be studied. Two critical
points appear in the loop in Fig. 2a. Their relative posi-
tions can be varied arbitrarily until they merge into a
double critical point. One can see from the three-
dimensional phase diagram that the higher and lower
critical points form the upper and lower lines of critical
points (Fig. 2b). 
THCP

TLCP

CCRIT C

T (a)

CCRIT
T

Cx

C

C

C

THCP

THCPTLCP

TLCP

1 2

DCP

T

T

p

(b)

Fig. 2. Phase diagrams for a guaiacol–glycerol solution with a closed region of stratification in the temperature–concentration (T–C)
coordinates: THCP is the temperature of the higher critical point, TLCP is the temperature of the lower critical point, CCRIT is the
critical concentration, and ∆T = THCP – TLCP; the region of stratification is shown by hatching. (a) The two-dimensional diagram
and (b) the three-dimensional phase diagram in the T–C–Cx coordinates (Cx is the concentration of the third component) with the
lines of the (1) lower and (2) higher critical points. 
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VELOCITY AND ABSORPTION
OF HYPERSOUND NEAR 
THE CRITICAL POINTS 

Our experimental studies described above have
demonstrated that both the critical index of the correla-
tion radius and the purely outward phenomena like the
critical opalescence are identical at the higher and
lower critical points. However, the presence of the
higher and lower critical points in one solution is not a
common phenomenon. Therefore, it is necessary to
study the behavior of various physical quantities
(acoustic quantities in our case) in the region of the
homogeneous solution above the higher critical point
and below the lower critical point. We use the interfer-
ence setup designed by us on the basis of a multipass
Fabry–Perot interferometer and electronic recording of
the spectrum with its subsequent processing by a per-
sonal computer. Figure 3 presents the results of mea-
surements of the velocity of hypersound with the fre-
quency f ~ 1010 Hz and the results of its calculation by
Eq. (4). The temperature dependence of the velocity is
linear in both studied regions. The unusual feature is
the big difference between the inclinations of the
straight lines or the temperature coefficients of the
velocity β = dV/dT: above the higher critical point, β =
–6.5 ms–1 deg–1 and, below the lower critical point, β =
–11.5 ms–1 deg–1. This result is the evidence of the fact
that the same solution is described by different equa-
tions of state on different sides of the critical points.
Such a statement remains valid even when both criti-
cal points merge into one double critical point where
βDCT = 0. On different sides of the double critical point,
the temperature coefficient of velocity differs almost by
a factor of two. Since no chemical reactions occur in the
solution, one can assume that the solution structure
changes. A detailed study of the temperature depen-
dence of the velocity of hypersound in the whole tem-
perature interval reveals three different regions: above
the higher critical point, where β = –6.5 ms–1 deg–1;
below the lower critical point, where β = –11.6 ms–1 deg–1;
and near the double critical point (within several
degrees), where β = 0. The width of the Mandel’shtam–
Brillouin component is determined by the sound absorp-
tion (Eq. (4)). Figure 4 shows the experimentally mea-
sured temperature dependence of the width of the Man-
del’shtam–Brillouin component. The same dependence
for the double critical point is presented in Fig. 5. 

The behavior of the curves resembles that of the
λ-curve of absorption in the case of the second-order
phase transition in helium (He I to He II). 

MEASUREMENT OF THE VELOCITY
OF ULTRASOUND 

The observed difference in the temperature coeffi-
cients of sound velocity and in the character of the
curves of hypersound absorption given above can be
explained in our opinion only by the difference
ACOUSTICAL PHYSICS      Vol. 47      No. 2      2001
between the structures above the higher critical point
and below the lower critical point. Such a difference
can be determined by the fact that molecular clusters
are formed in different ways within different tempera-
ture intervals; or, alternatively, they are formed in one
region, and the other region has nothing except for the
Van der Waals forces and the hydrogen bond forces. If
the linear dimensions of the clusters are of the same
order of magnitudes as the acoustic wavelength, this
should have some effect on the sound propagation.
Apparently, in this case, the medium cannot be consid-
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Fig. 3. Temperature dependence of the hypersound velocity
V in guaiacol–glycerol solutions with different size of the
stratification region ∆T: ∆T = (r) 0.062, (d) 7.7, and
(m) 39°C. The straight lines show the mean experimental
dependences. The temperature coefficient of the veloc-
ity, dV/dT = β, above the higher critical point is equal to
–6.5 m s–1 deg–1, below the lower critical point it is equal
to –11.6 m s–1 deg–1, and it remains such for all ∆T. In the
immediate vicinity of the double critical point, within a nar-
row temperature range of ~5°C, β = 0. 

Fig. 4. Temperature dependence of absorption coefficient of
hypersound α (in cm–1) in a guaiacol–glycerol solution with
∆T = 7.7°C. The absorption in the absence of the third com-
ponent is taken as zero. The absorption curve in the critical
region has a λ-form. 
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ered as continuous. By contrast, when the sound wave-
length is greater than the linear dimensions of the clus-
ters, the sound propagating in the medium will not
“notice” the inhomogeneities, and this must also affect
the characteristics of the medium. These considerations
lead us to the necessity to measure the temperature
dependence of the sound velocity in the same regions
where we studied the propagation of hypersound, but
this time using ultrasound with the frequency four
orders of magnitude lower than the frequency of hyper-
sound studied in the experiments presented in Fig. 3,
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Fig. 5. Temperature dependence of the absorption coeffi-
cient α in cm–1 in the same solution as in Fig. 4 with ∆T =
0.062°C (almost the double critical point). 

Fig. 6. Temperature dependence of the velocities of hyper-
sound and ultrasound at ∆T = 7.7°C: straight lines A corre-
spond to hypersound with the wavelength Λ = 2.4 × 10–5 cm
and straight lines B correspond to ultrasound with the wave-
length Λ = 7.6 × 10–2 cm. In the case of ultrasound, β is
almost the same in both temperature regions and equal to
–4 m s–1 deg–1. The maximal dispersion of the sound veloc-
ity is 22% and decreases down to 4–2% with increasing
temperature.
namely, fUS ≅  106 Hz.2 Ultrasound was generated by
piezoelectric quartz, and the measurements were con-
ducted using a special setup designed by us [5, 10]. The
results surpassed our expectations. The experimental
results demonstrated that, while the temperature coeffi-
cients of velocity for hypersound with the wavelength
ΛHS ≅  2 × 10–5 cm differ by a factor of two, no differ-
ence is observed in the temperature coefficients for ΛUS
≅  7 × 10–2 cm [11]. Figure 6 presents the temperature
dependence of the velocity of ultrasound with the fre-
quency 2.8 × 106 Hz on both sides of the critical points.
The results obtained for hypersound (Fig. 3) are given
in the same plot for comparison. It follows from these
results that, in the case of ultrasound, β is the same in
both regions, and it is equal to –4 ms–1 deg–1. The fact
that β is the same in both regions apparently means that
Λ ≅  0.1 cm is greater than the linear dimensions of the
expected clusters to such extent that this medium can be
considered as homogeneous and continuous for the
applied ultrasound. Hypersound with Λ ≅  2 × 10–5 cm
presumably “feels” the inhomogeneity caused by the
clusters, and the medium cannot be considered as con-
tinuous for this kind of sound. 

It is well known that, if inhomogeneities in a medium
are of the size ~0.1 λ, the intensity distribution in the
scattering angle will be asymmetric (in the case of a
noticeable difference between the refraction indexes).
Our angular measurements of intensity showed that, for
the angles 45° and 180°–45°, the intensity of the scat-
tered light is the same. Therefore, the linear dimensions
of inhomogeneities are less than λ/10. Thus, the ques-
tion about the size of the clusters is still to be answered.
One can notice a wide difference between the values of
the sound velocity at ultrasonic and hypersonic fre-
quencies, i.e., the dispersion of the sound velocity. The
large dispersion of the sound velocity amounting to
22%, as well as the dependence of the sound velocity
on temperature, is observed here for the first time (as far
as we know). 

If we use the simple version of the relaxation theory
of sound propagation in condensed media by Man-
del’shtam and Leontovich [12] as the basis, we can
write the following expression for the dispersion of the
sound velocity: 

(6)

Here, τ is the relaxation time of the bulk viscosity.
A large value of ∆V/V means either a large η ' or a
small τ. The latter is unlikely taking into account the
fact that the medium most probably has clusters. We
believe that further investigation will give an answer

2 Here, the subscripts HS and US mean hypersound and ultrasound,
respectively.
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to this question, as well as to other questions raised by
this study. 

TRANSVERSE SOUND WAVES
AND THE RELAXATION PROCESS 

Fluctuations of anisotropy can arise by virtue of
their nature only in the case when the thermal chaotic
motion occurs with anisotropic molecules or particles
constituting the medium. As was mentioned in the
introduction, the fluctuation of anisotropy is anisotro-
pic, and, hence, the light scattered because of this fluc-
tuation is depolarized. In the spectrum, this kind of
scattered light represents a rather wide band, which
extends for 100–150 cm–1 and even farther and is usu-
ally called the wing of the Rayleigh line. Starting from
the discovery of this phenomenon in 1928 and till 1941,
it was assumed that this band has a peak at the unshifted
frequency. However, in 1967 it was demonstrated that
the situation was not as simple [13]. 

The first quantitative theory of the phenomenon was
developed by Leontovich [5, 14]. This theory took into
account only one relaxation time of the anisotropy and
was fairly complicated. Away from the unshifted fre-
quency, the intensity distribution in frequency was
described by the Lorentzian of the form 

(7)

where ω0 is the frequency measured with reference to
the frequency of the excitation light and τ is the relax-
ation time of the anisotropy. For evaluation purposes,
we can assume that τ = Φη/kBT, where Φ is the volume
of a molecule and kB is the Boltzmann constant. 

A general theory for any number of relaxation times
was developed by Rytov [15, 6]. The experimental
investigation of the spectra of depolarized scattered
light was conducted using the same interference setup
that was utilized for the study described above. Salol
was selected as the medium for investigation, because
its molecules have a large anisotropy and the substance
itself can be supercooled and allows a viscosity varia-
tion over many orders of magnitude. 

The scattered light was observed at an angle of 90°.
A polarizer (a Glan prism) was positioned in the path of
the scattered light in such way that the light scattered
because of the fluctuations of anisotropy and pressure
was completely eliminated. The observation and the
measurement were conducted only for the depolarized
light, IVH (the electric vector of the scattered light lay in

I ω( ) const

1 ω0
2τ2+

--------------------,=
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the scattering plane).3 The spectra were recorded when
the salol temperature varied from 19 to –70°ë. Simul-
taneously, the viscosity η varied from 29 cP at 19°ë to
1011 cP at –70°ë. 

The spectral records of the light scattered in salol at
different values of temperature and viscosity are pre-
sented in Fig. 7. Spectrum 1 corresponds to the temper-
ature interval from +90 to +50°ë (the viscosity range
from 2 to 7 cP). The fine structure of the Rayleigh line
[13] is clearly visible. Spectrum 2 corresponds to the
temperature interval from +50 to 20°C (the viscosity
from 7 to 27 cP), the fine structure of the wing of the
Rayleigh line is not observed. Spectrum 3 is obtained
at the temperature 19°C (the viscosity is 29 cP). Spec-
trum 4 corresponds to the temperature –20°C. The Man-
del’shtam–Brillouin components caused by a trans-
verse wave are observed. 

3 The first index in the subscript shows the polarization of the exci-
tation light and the second index corresponds to the polarization
of the scattered light; V is the vector of the electric field of a light
wave and is perpendicular to the scattering plane; and H lies in
the scattering plane.

4

3

2

1

Fig. 7. Spectra of the depolarized scattering of light in salol:
(1) a doublet structure with the minimum at the frequency of
the excitation light in the temperature interval from +90 to
+50°C; (2) a continuous spectrum of depolarized scattered
light in the temperature interval from +50 to 20°C; (3) a
spectrum of depolarized scattering of light at +19°C, where
the doublet of the Mandel’shtam–Brillouin component
appears at the wings of the central component; and (4) a
triplet structure of the spectrum at the temperature –20°C. 
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The results obtained by measuring the velocity of
transverse sound and its absorption are presented in
Fig. 8. In the temperature dependence of the transverse
sound velocity (curve 1), one can clearly distinguish

two regions with  = 6.25 ms–1 deg–1 in the interval

from –34 to 19°C and  = 3.3 ms–1 deg–1 in the inter-

val from –70 to –34°C. Here, Vs is the velocity of trans-
verse sound. 

As far as we know, the velocity of transverse hyper-
sound in salol had been studied earlier [13], while the
width of the shifted depolarized components was mea-
sured by us for the first time [11]. 

To compare the results of our experiment with the
theory, we used the formulas of the nonlocal relaxation
theory [17]. 

The theoretical curves (Fig. 8) describe qualitatively
the experimental results (the solid lines). We believe
that the observed disagreement between theory and
experiment is caused by the imperfection of the theory.
We will study this problem further. 

If we assume that the thermal Debye wave does not
differ from the sound wave generated, e.g., by a quartz
radiator of sound,4 it becomes clear that the discrete

4 In reality, the Debye wave does not decay in time and space [6],
but the phase of such a wave is not constant and changes in time
according to a certain law. In the case under consideration, the
spectra of the scattered light are almost identical in both cases,
and, therefore, we assume for the sake of simplicity that the
Debye elastic wave does not differ from the wave generated artifi-
cially.
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Fig. 8. Results of the experimental studies of (1) the trans-
verse sound velocity ((+) the experimental points and (the
solid curve) the calculation by the theory [17]) and (2) the
absorption coefficient of hypersound ((*) the experimental
points and (the solid curve with a peak) the calculations by
the theory [17]). 
Mandel’shtam–Brillouin components should not be
observed, because the shear viscosity is too large. 

If a half of the total half-width δω/2 = αsV is equal
to the distance between the orders (Eq. (2)), it is impos-
sible to observe discrete lines, and the corresponding
condition of absorption at the wavelength Λ is 

where αs is the absorption of a shear wave. 
It follows from hydrodynamics that, in the case

under consideration, we have αsΛ @ 2π at low temper-
atures and the discrete Mandel’shtam–Brillouin com-
ponents must not be observed. 

They also must not be observed when the relaxation
that occurs at high frequencies is taken into account.
However, in our experiment, we observe clearly
defined transverse Mandel’shtam–Brillouin compo-
nents (Fig. 7). 

In terms of αsΛ, we obtain that the maximal value
is αsΛ = 1.16. For the temperature –10°C, we obtain
αsΛ = 0.6, and the Mandel’shtam–Brillouin compo-
nents are well pronounced.

A possible explanation for the observed discrepancy
is that the molecular viscosity noticeably differs from
the shear viscosity measured by a viscometer or by the
macroscopic viscosity [18]. 
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Abstract—A method for observing weak diffraction responses on the background of a fluctuating signal
from a primary cw source is developed and tested. The possibility to visually observe the dynamics of the
secondary field caused by the presence of nonstationary perturbations of the water medium is demonstrated.
© 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The method of element-by-element incoherent accu-
mulation of signal responses at a vertical array showed
its high efficiency for a noise-immune observation of
moving underwater inhomogeneities and for measuring
the parameters of their motion in a shallow-water sound
channel. One of the important stages of the correspond-
ing signal processing is the quasi-holographic temporal
filtering based on the a priori theoretical predictions con-
cerning the structure of the desired signal [1–3].

Along with the incoherent accumulation, it seems to
be reasonable to use the space-coherence properties of
the sound field recorded by a multielement vertical
array [4]. In our previous publication [5], we already
demonstrated the possibility to reconstruct the spatial
distribution of the field and the position of a stationary
cw source by using the principle of the wave front
reversal realized by numerical computer methods. Sim-
ilar studies were performed in full-scale conditions [6]
and on the basis of computer simulations [7].

The transmission-shadow technique, which we used
for the observation of weak diffraction signals, required
the development of effective algorithms for the prelim-
inary “subtraction” of the intense signal generated by a
remote primary source. The signals remaining after
such an operation are those produced by secondary
sources, and these signals can also be visualized in the
signal plane (the vertical plane that includes the array
and the primary source) with the help of the coherent-
numerical procedure of the wave front reversal. Below,
it will be shown that the use of such an approach pro-
vides fuller hydrophysical information than simple
localization of a compact inhomogeneity.

By combining the principles of temporal hologra-
phy (matched filtering) and spatial holography (coher-
ent wave front reversal), it is possible to indicate and
localize with a higher contrast the episodes correspond-
ing to the intersection of the signal plane by moving
inhomogeneities.
1063-7710/01/4702- $21.00 © 20202
THEORETICAL ANALYSIS OF COHERENT
AND INCOHERENT METHODS

OF EXTRACTING WEAK SIGNALS

In this section, we analyze the algorithms of extract-
ing secondary signals as applied to different methods of
their subsequent processing. We divide the primary sig-
nals received by the hydrophones of the array into the
following three components. The first component is
represented by the temporally constant signals from the
primary source, which “illuminates” the underwater
spatial region under study. Owing to the interference
effects caused by the multimode character of sound
propagation in the shallow-water sound channel, these
signals considerably vary both in amplitude and in
phase, depending on the depth of the receiving element.

The second component corresponds to the interfer-
ence-related temporal fluctuations caused by the non-
stationary propagation conditions (seiches, internal
waves, or nonstationary underwater currents). Multiple
experiments carried out in lakes and in sea conditions
showed that the low-frequency spectral region of these
fluctuations exhibits the properties of 1/f-noise.

The third component is the desired signal itself,
which represents the result of the diffraction shadowing
of the primary source by a moving screen or related in
some other way to the presence of acoustic inhomoge-
neities in the spatial region under study. In the lake
experiments with a moving screen, the characteristic
frequencies of the corresponding disturbances were
found to vary from several hundredths to several tenths
of a hertz.

The aforementioned time characteristics of the three
listed components allow one to separate the signal of
the primary source together with the most significant
low-frequency part of noise fluctuations by way of a
conventional moving averaging within time intervals
about tens of seconds. Such a procedure will make it
possible to eliminate these signals from the subsequent
processing, while the structure of the desired signal will
001 MAIK “Nauka/Interperiodica”
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practically remain unaffected. The next stage of signal
processing is the matched filtering, which, in addition
to the low-frequency noise suppression, will provide
the suppression of high-frequency noise.

We denote the current complex amplitudes of the
received signals by xk(t) (where k is the number of
hydrophone in the vertical array) and use the conven-
tional exponential representation

(1)

where Xk(t) and ϕk(t) are the real amplitudes and phases,
respectively. In the case under study, we can write

xk(t) = x0k(t) + δxk(t), (2)

where x0k(t) is the signal from the primary source
together with the interference fluctuations and δxk(t) is
the weak desired signal.

We calculate the first variation of representation (1):

(3)

In accordance with the processing procedure described
above, we will identify the “unperturbed” values of the
amplitude X0k(t) and phase ϕ0k(t) with the results of the
moving averaging

(4)

(5)

with the use of the filter-window

(6)

In practice, the data of the full-scale and model lake
experiments were processed by using the values of τ
within 20–60 s.

Thus, for the subsequent processing, as a desired
signal, we take the set of functions

(7)

where

(8)

(9)

To compare the numerical data, it will be more con-
venient to use normalized dimensionless functions
obtained by dividing the complex amplitudes by the
array average value

(10)

(N is the number of the array elements) and introducing
the variables

(11)

xk t( ) Xk t( ) iϕk t( )[ ]exp ,=

δxk t( ) δXk t( ) iX0k t( )δϕk t( )+[ ]exp iϕ0k t( )[ ] .=

X̃k t( ) Xk t'( )g t t'–( ) t',d∫=

ϕ̃k t( ) ϕk t'( )g t t'–( ) t'd∫=

g t( ) τ 1– for t τ /2≤
0 for t τ /2.>




=

δxk t( ) Yk
a( ) t( ) i X̃k t( )Yk

ϕ( ) t( )+[ ]exp iϕ̃k t( )[ ] ,=

Yk
a( ) t( ) Xk t( ) X̃k t( ),–=

Yk
ϕ( ) t( ) ϕk t( ) ϕ̃k t( ).–=

X̃ t( ) 1
N
---- X̃k t( )

k 1=

N

∑=

yk t( ) δxk t( )/ X̃ t( ).=
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The dynamical reconstruction of the secondary
acoustic field pattern from these complex variables is
performed by the method of coherent wave front rever-
sal based on the acoustic reciprocity principle.

For a spatial point located in the signal plane at a
depth z (measured from the water surface) and at a dis-
tance r from the array in the horizontal direction
(toward the “illuminating” primary source), we write a
conventional mode expansion [8] for the dimensionless
transmission coefficient between this point and the kth
element of the array:

(12)

where χn and Un(z) are the mode wave numbers and the
mode functions calculated with given boundary condi-
tions at the bottom and at the water surface with allow-
ance for the measured sound velocity profile c(z). Com-
puter programs for performing such calculations are
known (see, e.g., [9]). These programs allow one to
take into account the rough bottom relief, while expan-
sion (12) is valid only for a planar waveguide.

If we replace each hydrophone of the array by a
source generating a signal that is complex conjugate
with respect to the received signal, then, according to
the reciprocity principle, the spatial structure of the
generated field will reproduce the initial one (correct to
the aperture limitations and natural distortions due to
the off-duty ratio of the array). In the experiment
described below (compare also [3]), the array (12 m long)
covered practically the whole depth of the lake, and the
distance between neighboring elements (19.5 cm) was
approximately three times less than the acoustic wave-
length. Taking into account the aforesaid, we write the
formula for the sound field amplitude p(r, z) of the
reconstructed field of secondary sources:

(13)

In what follows, for the reconstruction of the secondary
field, we will use not only the variables yk(t), but also the
results of their complex matched filtering, which will
allow us to increase the contrast when observing the epi-
sodes of the intersection of the (r, z) signal plane by the
moving screen. We note that, in the brightness images of
the field structure, we represent not the pressure ampli-
tude, but the field intensity, i.e., the quantity p2(r, z).

Now, we turn to the procedure of extracting weak
signals by the method of incoherent accumulation. For
this purpose, it is convenient to use the normalized
amplitude variables

(14)

and the corresponding normalized complex functions

(15)

K z zk r, ,( ) χnr( )
1
2
---–

Un zk( )Un z( )e
iχnr

,
n

∑=

p r z t, ,( ) yk* t( ) χnr( )
1
2
---–

Un zk( )Un z( )e
iχnr

n

∑
k 1=

N

∑ .=

Yk
a nor( ) t( ) Yk

a( ) t( )/ X̃k t( )=

Yk
nor( ) t( ) Yk

a nor( ) t( ) iYk
ϕ( ) t( ).+=
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Here, we omit the exponential phase factor that is
involved in Eq. (7), because, in the case of the incoher-
ent accumulation of the signal responses over the array,
this factor is insignificant.

We note that the introduction of the normalized vari-
ables given by Eqs. (14) and (15) already involves a
nonlinear transformation of the initially received sig-
nals. The application of this heuristic procedure dem-
onstrated a high efficiency of the latter in nonstationary
propagation conditions with a pronounced stratification
of the sound field, when the standard methods of the
theory of linear filtering are ineffective.

In our previous paper [10], it was shown that already
a simple incoherent accumulation with the formation of
the output signal

(16)

provides satisfactory results in the case of the observa-
tion of a diffracting inhomogeneity with a sufficiently
large cross-section.

In observing a moving inhomogeneity, the signal-
to-noise ratio can be noticeably increased by applying
the complex matched filtering algorithm [1]

(17)

with the use of the filter

(18)

where V is the screen velocity component normal to the
signal plane, l is the projection of the horizontal screen
aperture length onto the same direction, λ is the sound
wavelength, and h is the reduced distance between the
point of intersection and the array (see [3]). Then, the
incoherent accumulation is performed for the trans-
formed responses:

(19)

The normalization of filter (18) is chosen according to
the condition

(20)

In this case, the maximal signal spikes that occur in the
processing by Eqs. (16) and (19) can be treated as equal.

Returning to the problem of the coherent recon-
struction of the secondary field, we note that, in this
case, for increasing the contrast of the focal spot corre-
sponding to the moving inhomogeneity, the variables
yk(t) are subjected to the same type of matched filtering.

S t( ) 1
N
---- Yk

nor( ) t( )
k 1=

N

∑=

Fk t( ) Yk
nor( ) t'( )Φ* t t'–( ) t'd∫=

Φ t( ) Cexp
V
hλ
------ iπ 2l2

hλ
-------+ 

  t2– ,=

F t( ) 1
N
---- Fk t( ) .

k 1=

N

∑=

C 1– Φ t( ) 2 td∫ 1.=
More precisely, we perform transformation (17) only
for the pre-exponential parts of the functions yk(t), after
which the phase factors i (t) are reproduced in the ini-
tial form. This corresponds to the method known from
classical radio engineering, namely, to a linear filtering
of variables reduced to the zero stationary phase.

Now, we will proceed to discussing some experi-
mental results.

EXPERIMENTAL RESULTS

In this section, we illustrate the theoretical possibil-
ities discussed above by experimental data obtained in
a fresh-water reservoir (a lake). At the site where the
vertical receiving array was installed, the depth of the
lake was about 14 m and, within the acoustic track
under study, the bottom was practically flat. The array
contained 64 hydrophones, and its total length was 12 m.
The primary source producing a cw “illumination” was
positioned near the bottom, at a distance of 300 m from
the array; the cw radiation frequency was f = 2499 Hz.

Below, we study a five-minute-long record segment
that contains one episode of intersection of the signal
plane by an acoustically opaque screen (220 s from the
beginning of the record). The screen was towed by a
boat in the direction perpendicular to the acoustic track
(and to the source–array vertical signal plane) at a
depth of 4–5 m and at a distance somewhat greater than
40 m from the array. The screen length was l = 1.7 m,
its cross-sectional area was σ = 1 m2, and the speed of
towing was V = 0.4 m/s. For towing, a special-purpose
vertical arm was used, so that the boat and the underwa-
ter screen crossed the track practically simultaneously.

Prior to the signal processing, a mathematical model
of the moving screen was introduced in the record (the
track intersection at the instant t1 = 45 s). The model
imitates the intersection of the signal plane by a compact
screen with the same parameters l = 1.7 m, σ = 1 m2, and
V = 0.4 m/s at a depth of 6 m and at a distance of 40 m
from the array.

Figure 1 shows the result of the incoherent accumu-
lation (19) of the transformed signal responses over all
array elements. The first (imitated) signal peak at t1 =
45 s (indicated by an arrow) only slightly exceeds the
level of random noise spikes and is much lower than the
experimental peak observed at t2 = 220 s. This fact
immediately suggests that a substantial contribution to
the observed signal peak was made by the eddy distur-
bances that were caused by the boat and accompanied
the motion of the underwater screen. We note that the
following study of the spatial structure of the secondary
acoustic field confirmed this assumption.

Figure 2 shows the half-tint pattern of the intensity
of the inverse secondary field p2(r, z) for the instant t1
(the time reading has a duration of about 1 s). The pat-
tern was obtained by using algorithm (13). In the figure,

ϕ̃k
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one can clearly see the focal spot from the imitated inho-
mogeneity at the given depth and distance (6 and 40 m,
respectively). Simultaneously, more intense interference
disturbances can be observed at other points of the pattern.

Figure 3 presents the result of a similar procedure
for the same signals subjected to matched filtering
described by Eqs. (17) and (18). One can see that, in
this case, the imitated inhomogeneity is observed with
a noticeably higher contrast. It is important that, from
Fig. 3, one can detect with confidence the passage of
the moving inhomogeneity, while, after the procedure
of incoherent accumulation defined by Eq. (19), the
excess of the signal over the noise level (Fig. 1) is obvi-
ously insufficient for such a detection.
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Fig. 1. Result of the incoherent accumulation of signal
responses after matched filtering.

Fig. 3. Secondary field pattern for the instant t1 after
matched filtering.
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In addition, the computer simulation allows one to
estimate the brightness levels (in arbitrary units, which
result from the use of our dimensionless functions) at
which one should expect the appearance of the desired
spot from by the screen in the real experiment. This
estimate is helpful in constructing the patterns of the
inverted field, because it allows one to introduce and
select the upper threshold limitations of the brightness
range in order to observe the expected focal spot from
the real screen in the presence of other perturbations of
the water medium.

Figure 4 shows the pattern of the inverted secondary
field for the time reading t2; the pattern is obtained with
the upper limitation of the brightness range p2(r, z) at a
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level of 1.5 (in arbitrary units). One can clearly see the
focal spot from the underwater screen at a depth
slightly exceeding 4 m and at a distance of 42 m. Simul-
taneously, closer to the surface, relatively large distur-
bances caused by the boat motion are observed. Pre-
sumably, these disturbances made the maximal contri-
bution to the experimental signal peak near the instant
t2 in Fig. 1. We note that, without using the threshold
limitation, one obtains the brightness level of the max-
imal disturbance in the pattern under discussion as high
as 6, and the focal spot produced by the screen will be
barely noticeable against this background.

Figure 5 presents the intensity pattern of the
inverted field after matched filtering for the same time
reading t2 = 220 s. Here, the threshold brightness level
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Fig. 5. Secondary field pattern for the instant t2 after
matched filtering.

Fig. 6. Secondary field pattern for the instant t2 – 12.7 s.
is selected to be 0.35, which corresponds to the simula-
tion result shown in Fig. 3. The focal spot from the
underwater screen can be clearly distinguished, although
the eddy disturbances caused by the boat motion are
considerable. The intensity of the maximal secondary
field disturbance is about 1.2 (in the same arbitrary
units).

An interesting physical effect was observed in
studying the pattern structure corresponding to the
“precursor” of the intersection of the signal plane by
the boat with the towed screen. Figure 6 shows the pat-
tern of the inverted field for the time reading taken 12.7 s
prior to the instant t2. In this figure, one can see an oval-
wave structure concentric with respect to the point of
the future boat passage. Presumably, here, we observe
the result of the Bragg reflection of sound from the sur-
face wave produced by the boat. One should remember
that, although we reconstruct only a plane cross-section
of the field structure, sound waves from other directions
also arrive at the array. If considerable disturbances are
present outside the signal plane, these additional com-
ponents may also be noticeable. Apparently, it is these
effects that are observed in the case under study.

One more specific feature was revealed in studying
the pattern of the “precursor” signals after matched fil-
tering (17). Such a pattern is shown in Fig. 7 for the
same reading t2 – 12.7 s. It was found that, in this case,
the filtering procedure completely “erased” the oval-
wave disturbances thus allowing one to observe the
structure of the unperturbed acoustic field. Specifically,
it has become possible to clearly distinguish the differ-
ence between the sound propagation in the warm sur-
face layer (about 4 m thick) and the propagation in the
colder water bulk below. Since only the sound beams
incident on the surface at large angles penetrate into the

0

2

4

6

8

10

12

14

20 40 60 80 100

0.20

0

Distance, m

Depth, m

0.18
0.16
0.14
0.12
0.10
0.08
0.06
0.04
0.02

Fig. 7. Secondary field pattern for the instant t2 – 12.7 s after
matched filtering.
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surface layer, the field formed in this case has a
“coarser” cellular structure.

SUMMARY

Thus, the method of the secondary field reversal
provides fuller hydrophysical information and allows
one to reveal the origin of the observed perturbations.
We note that, for its realization, it is necessary to use the
same signals as for the observations by the incoherent
accumulation scheme, which means that the construc-
tion of visual patterns of the secondary field does not
require any additional hydroacoustic equipment. How-
ever, for calculating the mode eigenfunctions, one
needs the fullest possible information on the hydrolog-
ical conditions of signal propagation, on the relief and
physical parameters of the bottom, etc.

For a continuous operation of such a system of
observation, it is necessary to continuously monitor the
hydrological conditions. With all aforementioned
requirements being satisfied, the remaining problems
will be easily solved by using the appropriate software
and fast-performance computers. In any case, today a
visual observation of the dynamics of the underwater
medium by acoustic methods seems to be quite feasible.
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Abstract—Expressions for the variance of the estimated power of an acoustic source are presented for the case
of the source identification in a natural shallow-water environment. The effect of errors in the estimated param-
eters of a shallow-water waveguide and in the estimated coordinates of the phase center of the source on the
confidence interval of the estimated directional characteristics of the source is investigated using a model signal
as an example. © 2001 MAIK “Nauka/Interperiodica”.
In the case of the acoustic source identification in
the conditions of a natural body of water, the error in
the estimated parameters of the source model essen-
tially depends on the errors in the estimated parameters
of the model of the shallow-water waveguide.

The literature on the parameter estimation for the
models of shallow-water waveguides is quite extensive.
Gerstoft and Gingras [1] used the information on the
acoustic pressure field measured with a vertical array.
Solving the inverse problem in terms of the objective
function, they correlated the forecast and the observed
fields. The solution provided the estimated model
parameters, including the parameters of the ground
underlying the water layer. The observations were
carried out in the frequency ranges 165–175 and 325–
335 Hz. Candy and Sullivan [2] estimated the parame-
ters of the waveguide model by matching the predicted
acoustic pressure and sound velocity profile with the
observed ones and called their approach the model-
based environmental inversion. Correlating the
observed and the predicted parameters, they used the
objective function to take into account the random
character of the field formation. Random signals were
processed using the Kalman filtration. The serviceabil-
ity of the models used was confirmed by testing the sta-
tistical hypotheses. The resulting estimates of the
parameters in models describing the field formation
were used for the source detection [3] and source local-
ization [4, 5], unfortunately, without a sufficient analy-
sis of the measurement errors and their effect on the
solution of the detection and localization problems. The
a posteriori analysis of the experimental results shows
that, for a correct processing, one needs to additionally
determine the parameters of the medium in processing
the information signal [3–5]. Candy and Sullivan [5]
1063-7710/01/4702- $21.00 © 20208
reported on the solution of the localization problem
together with the determination of some additional
characteristics of the data transmission channel. For
several points of the water layer, they measured both
sound pressure and sound velocity and used this infor-
mation to repeatedly correct the parameters of the
modes propagating in the channel. Using corrected
mode parameters, they estimated the distance to the
source and the depth of the source. The propagating
mode parameters represented the process of state in the
extended Kalman filtration version they used.

Consider the estimation of the variance of the radia-
tion power in a given direction from the source. In this
case, the pressures measured in the sound channel of a
natural water body can serve as the initial data. Power
is a scalar parameter; consequently, a scalar variance is
sufficient to characterize the errors in the value of the
power. However, the power measured in a specified
direction relative to the source depends on the vector of
the source parameters describing the directional pattern
of the radiation. To characterize the errors of a vector,
we must use the variance matrix. In the process of esti-
mating the parameter vector of the source, measure-
ments are carried out in a waveguide that, in turn, is
characterized by its own vector of parameters. The
problem formulated includes, first, the calculation of
the variance matrix of the waveguide parameters; sec-
ond, the calculation of the variance matrix of the source
parameters affected by the above errors in the
waveguide parameters; and, third, the calculation of the
variance of the radiation power.

In solving the inverse problem, one must forecast the
observed signal. Forecasting can be conveniently per-
formed using the parametric description of the direc-
tional characteristic of the acoustic source G(φ, ϕ, b).
001 MAIK “Nauka/Interperiodica”
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Let φ and ϕ be the angles in the vertical and horizontal
planes, respectively, and b be the vector of the expan-
sion coefficients of the directional characteristic of the
observed source in a set of orthogonal functions. The
measured pressure depends not only on the vector b,
but also on the vector of the waveguide parameters h.
Such procedures are usually realized under the assump-
tion that the components of the vector h are known
(they can be estimated, for example, from the special
preliminary experiments [6, 7]). The model parameters
are estimated as the parameters minimizing the objec-
tive function.

In the course of measurements, it is often necessary
not only to estimate the parameter vectors of the source
b and the waveguide h, but also to reconsider the exper-
imental procedure by determining some additional
parameters required for forecasting the measured sig-
nal. In the theory of measurements, these parameters
are usually called the interference parameters. Desig-
nate the vector of interference parameters for the source
identification by e and the vector of interference param-
eters for the waveguide identification by n. In the gen-
eral case, the vectors of the estimated parameters (q for
the source identification and m for the waveguide iden-
tification) are representable in the form q = [βT, εT]T

and m = [ηT, νT]T, where the superscript T denotes the
transposition operation. Since the procedure estimates
all parameters, including the interference parameters,
one should include the error transfer in the variance
matrixes of the estimated parameters. By the error
transfer, we mean the recalculation of errors in estimat-
ing the interference parameters e and n into the errors
in estimating the parameters of the source b and the
waveguide h. We designate the resulting variance
matrixes of the vectors of estimates b and h by Dβ/ε and
Dη/ν, respectively. In estimating the parameters, for
example, of the waveguide, the parameters of the model
of the measurement situation are adjusted in such a way
as to allow forecasting the observed signal. In this
adjustment, random deviations of the observed signal
from the forecast must be consistent with the model of
the measurement situation [8]. The estimation of the
parameters of the measurement situation q and m,
including the parameters of the autoregression equation
characterizing the frequency response of the Kalman
filter xi related to the signal fluctuations, is given in [7].
The variance matrix Dξ of state xi is related to the qual-
ity of the accomplished estimation and is determined
from the solution of the Sylvester equation [9] whose
form is uniquely related to the parameters of the autore-
gression equation. The nonzero diagonal elements of
the variance matrix DξY (this matrix corresponds to
fluctuations in the processed realization Y relative to
the stochastic forecast, and its dimension coincides
with the number of readings N in realization Yi) are
formed, according to the procedure described in [10],
from the variance matrix Dξ of state xi whose dimen-
sion coincides with the dimension of the autoregression
ACOUSTICAL PHYSICS      Vol. 47      No. 2      2001
equation. The cited paper considered the situation of
fully coherent mode (or ray) fluctuations. The coherent
component of the jth mode (or ray) for the ith reading
in the lth signal realization is described by the function
sijl(θ, µ), where i = 1–N, j = 1–m, and l = 1–L. If the fluc-
tuations are not fully coherent, the coefficient of the
cross-correlation between the fluctuations of signals of
different modes Rjk is specified in the linear autoregres-
sion equation. A consequence of the correlation of fluc-
tuations is the increase of the dimension of the matrix
Dξ. The nonzero diagonal elements of the variance
matrix of fluctuations DξYjk are formed from the matrix
Dξ of increased dimension, according to the procedure
described in [10].

In order to estimate the model parameters of a towed
acoustic source in a natural shallow-water environ-
ment, we need the initial information that can be
formed, for example, as an array of energies of the
sound field measured by the elements of a receiving
aperture located in the shallow-water waveguide. In
what follows, we assume that a multielement receiving
array was used to measure the values of the field energy
in the water layer Zil and to determine the source loca-
tion relative to the aperture at the ith moment. For esti-
mating, we used the objective function composed of
two factors. The first factor is formed as the sum

(Zil, θ, η) where the terms Fil(Zil, θ, η)

are proportional to the energy of the mismatch between
the observed parameters and the parameters predicted
with the use of the directional characteristic G(φ, ϕ, β).
The second factor is determined by the statistics of the
tested hypotheses and was calculated by the procedure
described in [7].

Let us assume that the variations δZ of the observed
pressure in the realization Z processed for estimating
the source parameters are uncorrelated with the varia-
tions δY of pressure in the realization Y used for esti-
mating the model parameters of the shallow-water
sound channel. For the source parameters, the variance
matrix can be estimated similarly to the procedure used
for estimating the waveguide parameters in [10]. The
variance matrix of the measured parameters is formed
of the variance matrix of state describing the mismatch
between the measurement and the forecast. The result-
ing expression for the variance matrix of the parameter
vector Dθ has the form

(1)

Fill 1=
L∑i 1=

N∑

Dθ HZ
1– QZ diag sijl θ η,( )( )

j 1=

m

∑
k 1=

m

∑




=

∑ × DξYjkdiag sikl
c θ η,( )( ) DwZ+ QZ

T

∑ × KZθη Dη /νKZθη
T





HZ
1T– ,
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where HZ is the matrix with the elements HZpq =

Fil(Zil , θ, η)/∂θp∂θq , QZ is the matrix

with the elements QZqil = ∂2Fil(Zil , θ, η)/∂θq∂Zil ,
diag(Sijl(θ, η)) is the diagonal matrix with the elements

sijl(θ, η), the superscript in (θ, η) means the com-
plex conjugation, DwZ is the diagonal variance matrix of
white noise whose energy is proportional to the energy
of the multimode signal of the source under identifica-

tion, and KZθη = Fil(Zil, θ, η)/∂θp∂ηg is

the sum of terms estimated for the readings of the real-
ization Z used for the identification of the source in the
preliminarily identified waveguide. The matrix DwZ

describes the noise caused by the fluctuations of the
signal propagating in the measurement area of the shal-
low-water waveguide. The matrix KZθη determines how
the objective function relates the parameters estimated
in the current phase of the measurement process to
those estimated in the preceding phase. The subscripts
p and q correspond to the parameters of the current
phase, and the subscript g corresponds to the parame-
ters of the preceding phase. The variance matrix Dη/ν
can be obtained from the results of the waveguide iden-
tification. In principle, the parameters of the source and
the waveguide models can appear simultaneously
among the parameters of the measurement situation.
However, such a simultaneous appearance is very
undesirable, because these parameters are more conve-
niently estimated in different phases of the experiment.
If the source and the waveguide parameters are esti-
mated simultaneously in the same experimental phase,
no parameter coinciding with the waveguide parame-
ters measured during the source identification can
appear among the preliminarily estimated waveguide
parameters ηg. In principle, one can additionally deter-
mine the waveguide parameters ηg during the phase of
the source measurement. However, in so doing, the
objective function must include the information on the
variance matrix of the additionally determined parame-
ters, and another expression must be used for the matrix
Dθ. If the additional determination of the waveguide
parameters during the source identification is neverthe-
less desirable and if one has to use the objective func-
tion in the above form Dη/ν neglecting the information
on the estimation errors for the waveguide parameters,
the additional parameters must appear in the vector e
rather than in the vector h; i.e., one should treat them as
the interference parameters at the preliminary identifi-
cation stage. The models used in both experiments for
describing the acoustic field formation must coincide
and depend on the waveguide parameters ηg. Certainly,
one obtains an increased variance for the source param-
eters estimated from the fields measured in the
waveguide for which the parameters of the acoustic
model are also measured rather than known exactly,

∂2

l 1=
L∑i 1=

N∑

sikl
c

∂2

l 1=
L∑i 1=

N∑
because they are characterized by the variance matrix
Dη/ν. If the parameters of the model are known exactly,
one has Dη/ν = 0.

Then, the variance matrix Dβ/ε of the vector of the
source parameters b is calculated from the variance
matrix Dθ of the vector of parameters q whose compo-
nents are used for forecasting the observed characteris-
tics of the acoustic field. In the case of estimating the
vector of the interference parameters ε from the realiza-
tion used for estimating the source parameters, the
matrix Dβ/ε takes into account the fact that both these
vectors were estimated during the measurement.

Consider the calculation of the matrix Dη/ν assum-
ing that the matrix Dµ is known (the matrix Dβ/ε is
similarly determined from the matrix Dθ). Since the
measurement is carried out so as to minimize the
objective function, the derivative of the objective
function with respect to the vector of the estimated
parameters must be zero at the point corresponding to
the best estimation. Introducing the rectangular matrix

UYη = Fil(Yil, η, ν)/∂µ∂η and the similar

matrix UYν in which the partial derivative with respect
to ν replaces the partial derivative with respect to η,
from the condition of the zero derivative of the objec-
tive function, we obtain

Solving this equation according to the method of least
squares, we obtain

We use this formula, which relates the variation δη
of the waveguide parameters to the variation δν of the
parameters considered as the interference ones in the
waveguide identification, for deriving the expression
for the variance matrix Dη/ν composed of the variances
of only the waveguide parameters and affected by the
variance matrix of the interference parameters. We des-
ignate the square matrix corresponding to the matrix Dµ
portion related to the vector of the waveguide parame-
ters h by Dη and the similar matrix corresponding to the
matrix Dµ portion related to the vector n composed of
the parameters that are considered as the interference
ones in the waveguide identification by Dν. The rest of
the matrix Dµ is described by two rectangular Hermi-
tian-conjugated matrixes the right-top of which we des-
ignate by Dµν. Taking into account the above relation-
ship between the variations δη and δν and assuming
that the vectors h and n are estimated during the same
experiment, we obtain the following expression for the
variance matrix of only the waveguide parameters,

∂2

l 1=
L∑i 1=

N∑

UYηδη UYνδν .–=

δη UYη
T UYη{ } 1–

UYη
T UYνδν .–=
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Dη/ν, with allowance made for the interference parame-
ters:

(2)

For the source identification, the effect of the mea-
surement errors in the interference parameters can be
taken into account in a similar way. Note that, if the
interference parameters are measured without the use
of the signal realizations used for the identification, one
can perform the calculations with the matrixes Dν and
Dε obtained from independent measurements. In this
case, all elements of the matrixes Dµν and Dθε are zero-
valued, because the measurements of the vectors h and
b are independent of the measurements of the vectors e
and n.

The variance  of the calculated energy G(φ, ϕ, β)
transmitted by the source in the direction specified by
the angles φ and ϕ can be estimated using the linear
transfer of the error [11]:

(3)

where ∂G(φ, ϕ, β)/∂βT is the row matrix composed of
the derivatives of the directional characteristic with
respect to the corresponding parameters.

To demonstrate the use of the above relationships,
we consider an example based on the model signal. The
model signal was generated according to the model of
the acoustic field formation in a natural shallow-water
environment [7].

The model signal was defined as energy readings of
the tone signal received by an omnidirectional hydro-
phone from a moving directional local source. The
directional characteristic was assumed to be cylindri-
cally symmetric, and its angular dependence was
described by the sum of four Legendre polynomials
with respective factors of 0.5, –0.16, 0.3, and 0.1. The
observed energy of the acoustic signal depends on these
factors according to a linear relationship. It is these fac-
tors appearing in the directional characteristic that we
estimated in the model experiment. We simulated the
measurement situation in which the directional source
moved along the symmetry axis of its directional char-
acteristic with the velocity coinciding with the velocity
of the omnidirectional source in the procedure of the
estimation of the waveguide parameters. Such situation
occurs, for example, for the sound generated by a pro-
peller in a homogeneous flow. In this case, the direc-
tional characteristic is symmetric relative to the rota-
tion axis of the propeller. In the considered model, the
source trajectory used for estimating the parameters of
the directional characteristic can essentially differ from

Dη /ν D= η DµνUYν
T UYη UYη

T UYη[ ] 1–{ }–

– DµνUYν
T UYη UYη

T UYη[ ] 1–{ }
T

+ UYη
T UYη[ ] 1–

UYη
T UYνDν UYν

T UYη UYη
T UYη[ ] 1–{ }

T
.

σG
2

σG
2 G φ ϕ β, ,( )/ βT Dβ/ε G φ ϕ β, ,( )/ βT∂∂[ ]T

,∂∂=
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the source trajectory during the estimation of the
waveguide parameters. The simulation was carried out
for the case of a uniform rectilinear motion of the
source with the receiver located at a distance of 50 m
abeam with the motion direction. The coordinates of
the phase center of the directional source are nonlin-
early related to the observed energy readings of the
acoustic signal. We assumed these coordinates to be
unknown and estimated them as the interference
parameters. In this way, we estimated the waveguide
parameters and the variance matrix of the estimation
vector from the experimental signal. Then, we used this
matrix to estimate the variance matrix of the parameter
vector of the directional acoustic source for the model
signal.

Calculating the variance matrix of the estimated
vector of the waveguide parameters, we used an obvi-
ous modification of Eq. (1) for the case of the parameter
estimation from the realization Y. Since the estimation
of the waveguide parameters does not require any pre-
liminary information, we discarded the second term
between braces in Eq. (1). We used Eq. (2) for calculat-
ing the variance matrix of the estimated waveguide
parameters with allowance made for the effect of the
interference parameters. For calculating the variance
matrix of the estimated vector of the source parameters,
we used Eq. (1). Calculating the variance matrix of the
estimated source parameters with allowance for the
effect of the interference parameters, we used an obvi-
ous modification of Eq. (2) for the case of the parameter
estimation from the realization Z. The confidence inter-
val of the estimated value of energy transmitted by the
source in a specified direction was evaluated from the

variance  calculated by Eq. (3).

The figure shows the polar diagram of the estimated
directional characteristic of the source with the corre-
sponding confidence interval in the plane passing
through the symmetry axis. The outer and the inner
contours correspond to the upper and lower boundaries
of the confidence interval, respectively, and the inter-
mediate contour corresponds to the estimate. For all
fragments, the distance from the fragment center to the
peripheral circle corresponds to 20 dB. We varied the
confidence probability in order to fit all three contours
characterizing the measurements carried out under dif-
ferent conditions within the 20-dB interval. We set the
value of 95% for the confidence probability of the inter-
val calculated under the assumption that the waveguide
parameters and the coordinates of the source phase cen-
ter are known exactly (Fig. 1a). Calculating the confi-
dence interval under the effect of the measurement
errors in either the waveguide parameters (Fig. 1c) or
the coordinates of the phase center (Fig. 1d) or both
(Fig. 1b), we used the 5% confidence probability. In
this case, the lower boundary of the confidence interval
in Fig. 1b takes the form of narrow lobes directed
toward the minima of the contour describing the upper

σG
2
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(a) (b)

(c) (d)

Fig. 1. Estimated directional characteristic of the source. The distance between the dotted circles corresponds to 5 dB. (a) Esti-
mate and the 95% confidence interval calculated under the assumption that the waveguide parameters and the coordinates of the
source phase center are exactly known. (b) Estimate and the 5% confidence interval calculated under the assumption that the coor-
dinates of the source phase center are estimated simultaneously with the estimation of the directional characteristic and the
parameters of the acoustic waveguide model are estimated in an additional experiment of the same duration. (c) Estimate and the
5% confidence interval calculated under the assumption that the estimate of the directional characteristic is affected by only the
errors in the waveguide parameters measured in an additional experiment, and the coordinates of the source phase center are
exactly known. (d) Estimate and the 5% confidence interval calculated under the assumption that the coordinates of the source
phase center are estimated simultaneously with the directional characteristic, and the parameters of the acoustic waveguide model
are exactly known.
boundary of the confidence interval. For the 95%
probability of the confidence interval in Figs. 1b–1d,
the corresponding contours of the lower and upper
boundaries will not appear in the 20-dB interval.

As follows from the figure, the plausible a priori
information about the phase center of the source under
investigation and about the waveguide parameters in
the measurement region considerably narrows the con-
fidence interval of the estimated radiation level. If the
estimation of the source parameters is accompanied by
the estimation of the waveguide parameters or the coor-
dinates of the source phase center, the confidence inter-
val considerably widens, independently of whether the
accompanying measurements are carried out in the
main experiment or in additional ones. Consequently,
the final result of acoustic measurements in shallow
water can essentially depend on the errors in the acous-
tic model of a natural body of water and the errors in the
additional determination of the source parameters that
are nonlinearly related to the observed characteristics
of the field.
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Abstract—Stimulated Raman-type acoustic scattering by bubble oscillations in three-phase marine sediments,
which consist of a solid frame, the pore water, and air bubbles, is considered. A model is developed for the case
of the bubbles surrounded by water. The acoustic properties of the sediments are described on the basis of the
Biot theory of sound propagation in a fluid-saturated porous medium. Nonlinear wave equations are obtained
for marine sediments containing air bubbles. Expressions for the nonlinear scattering coefficient and the thresh-
old intensity of the exciting sound wave are derived. A possibility of an experimental observation of the scat-
tering process is discussed. © 2001 MAIK “Nauka/Interperiodica”.
Multiphase media exhibit specific features of their
wave-propagation properties, as compared to single-
phase media. Marine sediments consisting of a solid
component and water are an example. In recent
decades, the studies of the acoustic properties of marine
sediments has become urgent, this urgency being
caused by the wide application of acoustic techniques
in oil exploration and production, in bottom-related
environmental activities, in the detection of objects on
the sea floor, and so on. Because of the high power of
the sound sources used, the nonlinear acoustic proper-
ties of the sediments should be investigated. Marine
sediments proved to have higher nonlinearity than a
homogeneous liquid (see [1]). For example, for water,
the so-called second-order nonlinear parameter (which
characterizes the degree of the quadratic nonlinearity)
is approximately equal to 5–6 while it is about 8–12 for
water-saturated sediments. A much higher nonlinearity
is characteristic of the marine sediments that contain
gas bubbles. It is known [2–4] that, in a liquid, the non-
linearity caused by air bubbles in it is by several orders
of magnitude higher that the nonlinearity of the hydro-
dynamic nature. Thus, the propagation of high-inten-
sity sound waves in marine sediments containing gas
bubbles is accompanied by essentially nonlinear pro-
cesses that are still insufficiently studied.

Recently, studies were reported [5, 6] on the interac-
tion of sound with oscillating bubbles in the ocean bot-
tom. According to Boyle and Chotiros [5], even a very
low gas content (the relative concentration of bubbles
10–5 or lower) proves to be sufficient for sound scatter-
ing by them to predominate over other scattering mech-
anisms. The same researchers [6] developed a model
for a spontaneous sound scattering by the bubble oscil-
lations in marine sediments. Since marine sediments
with gas inclusions represent a medium with pronouced
nonlinear properties, one can expect that nonlinear
1063-7710/01/4702- $21.00 © 20214
acoustic processes similar to the well-known phenom-
ena of nonlinear optics can be observed in such sedi-
ments. In this paper, we theoretically study one of these
processes, namely, the stimulated Raman-type scatter-
ing of a high-intensity sound wave by the bubble oscil-
lations in marine sediments.

To describe the physical properties of the ocean bot-
tom, we use the well-known Biot model [7, 8] for inter-
penetrating solid and liquid phases. The solid phase
consisting of individual mineral grains forms a semi-
rigid frame whose pores are filled with the liquid. In the
one-dimensional case, the equations of continuity and
momentum conservation for the solid and liquid com-
ponents have the form [9, 10]:

(1)

In Eqs. (1), only the linear terms are retained, because,
as was mentioned above, the nonlinear propagation of
sound is mainly governed by the nonlinearity of a sin-
gle bubble, which is much higher than that of the hydro-
dynamic nature. The following notations are used in
Eqs. (1): ρm is the density of the liquid sediment phase,
i.e., the mean density of the mix of water and bubbles;
ρs is the density of the solid phase of the sediment (the
subscript “0” indicates the equilibrium values); v and u
are the velocities of particles in the liquid and the
frame, respectively; P is the pressure in the liquid; m is

∂ρm

∂t
--------- ρ0m
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∂x
-------+ 0, ρ0m

∂v
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------+ 0,=
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the porosity of the sediment; σxx represents the effective
stresses in the porous medium [10]:

where k and µ are the bulk and shear moduli of the
frame of the porous medium, respectively, and ks is the
bulk modulus of individual grains constituting the
frame.

By eliminating the velocities v and u from Eqs. (1),
we obtain the equations

(2)

The density ρm of the mix that appears in Eqs. (2)
can be expressed in terms of the density ρs of the solid
phase and the pressure P in the liquid; in addition, it
depends on the volume occupied by the bubbles. Let us
determine the expression for ρm.

In the equilibrium state, the density of the mix with
the concentration n of the bubbles can be represented in
the form [2]

(3)

where M and V0m are the total mass and the volume of
the liquid phase of the sediment, i.e., of the water–air
mix; ρ0f and ρ0g are the densities of water and air,
respectively, in the equilibrium state; and V0 is the equi-
librium volume of a bubble.

In the absence of bubbles, the following expression
[11] can be obtained for the relative change in the vol-
ume of the liquid phase:

(4)

Here, Vf is the volume of water in the sediment, V is the
displacement of the liquid, U is the displacement of the
frame, ν = 1 – m – k/ks, and

where kf is the bulk modulus for water.
On the other hand, in the equilibrium state with

respect to the oscillations of the bubbles, the volume of
the liquid is
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and, hence,

In view of this relation, we obtain the following
expression for the volume of the liquid phase in the
presence of the oscillating bubbles:

(5)

Here, Vf and Vg are the total volumes of water and air
in the presence of bubble oscillations and V is the vary-
ing volume of an individual bubble.

Expression (5), together with Eq. (3), yields the
expression for the water–gas mix:

Since the total volume of bubbles is small in the actual
sediments, nV0 ! 1, the relation obtained for the den-
sity of the liquid phase can be reduced to the form

(6)

By substituting this relation into Eq. (2), we obtain
wave equations for the marine sediments with bubbles:

(7)

Now, let us consider the bubble oscillations. For a
single gas bubble, the equation of motion was derived
in [2]:

(8)

where ω0 is the natural frequency of the bubble oscilla-
tion. The factors appearing in Eq. (8) can be expressed
through the equilibrium volume V0 of the bubble (or
through its radius R0) and the adiabatic index γ:

where δ is the dimensionless absorption coefficient.
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In the linear approximation, the volume perturba-
tion has the form

(9)

We consider the stimulated Raman-type scattering of
the exciting acoustic wave P1expi(k1x – ω1t) by the
bubble oscillations with the natural frequency ω0. The
resulting scattered wave of the difference frequency has
the form P2expi(k2x – ω2t), where ω2 = ω1 – ω0. For a
liquid, such a process was considered by Zabolotskaya
[12]. For the sake of simplicity, we so far restrict our
consideration to a situation when all bubbles have the

V iωt–( )exp
eP iωt–( )exp

ω2 ω0
2

– ifω+
---------------------------------.=
same radius and, hence, the same natural frequency.
The system of Eqs. (7) involves the only nonlinear term
which is responsible for the Raman-type scattering: the
right-hand side of the first equation. To be more precise,
the volume V of the bubble, which appears in this term,
is the sum of the linear and nonlinear components: Vl +

Vn. The nonlinear amplitude  of the bubble oscilla-
tions is related to the sound wave P2 that is produced by
the scattering of the exciting wave P1 by the bubble
oscillations, which in turn are enhanced by the nonlin-
ear interaction of the waves P1 and P2. This nonlinear
amplitude can be obtained from Eq. (8) in the form
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P2.=
Note that, because Eq. (10) is obtained by the method
of successive approximations, it is valid only far
enough from the resonances ω1 = ω0 and ω2 = ω0.
Therefore, one can neglect the attenuating terms in the
two first factors of the denominator.

With the expression for the nonlinear part of the
bubble oscillation amplitude, we can obtain an equation
for the dependence of the scattered wave P2 on dis-
tance. Let us eliminate the quantity ρs from Eq. (7). To
do so, we represent δρs in the form

(11)

where λ is the nonlinear correction to the linear relation
between δρs and P, which can be derived, e.g., from the
second equation of system (7); c is the sound speed in the
sediment. By substituting this relation into system (7),
we obtain the following equations:

(12)

where D is expressed as
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and c is equal to the velocity of the sound wave P2 for
the case at hand. In these and the following equations,
the subscript “0” is omitted in the equilibrium values of
ρf and ρs. By linearly approximating Eq. (7), one can
show that the expression appearing in the square brack-
ets in the first equation of system (7) is equal to zero.
Eliminating λ from these equations and using Eq. (10)

for , we obtain an equation for the dependence of the
amplitude of the scattered wave P2 on distance, with the
natural assumption that it slowly varies within the dis-
tance equal to the wavelength

(13)

where  is the amplitude attenuation coefficient for the
sound wave. Here, N is the “nonlinear force”

(14)

where
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According to Eq. (13), the threshold intensity of the
exciting wave, I = |P1|2/2ρc1, has the form

(16)

where ρ is the mean density of the sediment; the atten-
uation coefficient δ corresponds to the frequency ω0:
δ = δ(ω0); and c1 and c2 are the velocities of the exciting
and scattered sound waves, respectively.

The analysis of the frequency dependence F(Ω)
given by Eq. (15) shows that, far from the resonant val-
ues Ω = 1 and Ω = 2, this function is always positive,
except for the point Ω ≈ 3 where F(Ω) = 0, and it takes
its maximal values in the interval 1 < Ω < 2 (see fig-
ure). For the values of Ω that are higher than approxi-
mately 2.6, the function F(Ω) is small and can barely
be distinguished from zero in the figure.

Let us numerically estimate the threshold intensity I.
We use the values of the parameters specified for the
marine sediments in [13]:

Further, according to [14], we set V0 ≈ 10–4 cm3, ω0 =
2π × 104 s–1, and δ ≈ 4 × 10–2.

If we take Ω = 1.5, we have ω2 = 0.5ω0 = 0.5 × 2π ×
104 s–1; for this frequency,  ≈ 3 × 10–3 cm–1 (see [15]),
ρ ≈ ρf m + ρs(1 – m) ≈ 2 g/cm3, c1 ≈ c2 ≈ 1.7 × 105 cm/s.

With these values of the parameters, we obtain the
following estimate for the threshold intensity:

For the characteristic values nV0 = 10–4–10–5, this esti-
mate yields

I ≈ (103–104) erg/cm–2s–1 ≈ (10–4–10–3) W/cm2.

The results obtained above can be summarized as fol-
lows. The nonlinear equations that describe the propaga-
tion of a sound wave in marine sediments containing gas
bubbles are obtained. The problem of the nonlinear
Raman-type scattering by the bubble oscillations in the
ocean bottom is solved. Numerical estimates of the
threshold intensity of the exciting sound wave are
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obtained. The estimates show that the nonlinear scatter-
ing discussed above can be observed experimentally.
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Abstract—The spectral levels of the quadrupole noise generated by a boundary layer flow over a smooth sur-
face are calculated. Explicit dependences of the noise levels on the Reynolds number are obtained for the low-
frequency and high-frequency ranges. It is shown that the logarithmic zone of the velocity profile is responsible
for the region of the quadrupole noise spectrum with a hyperbolic dependence on frequency. A method of cal-
culating the dipole noise of a boundary layer flow over a rough surface is developed. The method is based on
the use of the combined probability density for the turbulent velocity fluctuations and the random dimensions
of protuberances of the rough surface. The two constants involved in this theory are determined from a special
experiment. It is shown that the surface roughness noticeably increases the radiation levels of a boundary layer
flow in a certain frequency range. © 2001 MAIK “Nauka/Interperiodica”.
Noise generation by turbulent flows has attracted
the attention of many researchers, which can be seen,
e.g., from the review published few years ago [1].
Acoustic radiation of a boundary layer flow over an
aerodynamically (hydrodynamically) smooth plate was
theoretically studied in [2–4]. The results proved to be
not fully coincident because of the difference in both
the initial experimental data and the theoretical con-
cepts used in these studies. The noise of a boundary
layer flow over a rough surface was theoretically stud-
ied in [5–7] only for the case of the roughness elements
that did not extend beyond the viscous sublayer, so that
the flow about them experienced no separations. 

In this paper, the approach used for studying the
noise of a boundary layer flow over a smooth surface
did not undergo any fundamental changes as compared
to the approach used earlier [2, 3]. The previous results
are quantitatively refined and, what is more important,
represented in terms of several new spectrum normal-
izations, which allow one to clearly demonstrate the
role of inertial and viscous forces in the noise genera-
tion by the flow at low and high frequencies. The noise
of a boundary layer flow over a rough surface is studied
for the case of a high degree of roughness, when the
roughness elements exceed the thickness of the viscous
sublayer by at least an order of magnitude and cause
separations of the flow. The method developed for this
study is based on new experimental data. 

The main idea used earlier in [2, 3] (and later in [8],
for the determination of turbulent pseudosound pres-
sures) is as follows. For the characteristic scales of the
velocity v and length , of the turbulent fluctuations in
1063-7710/01/4702- $21.00 © 20218
a flow with the mean velocity shear dU/dy ≠ 0, we use
the relations 

(1)

Here, U is the mean velocity in the boundary layer at

the distance y from the surface and  is the single-
point correlation between the longitudinal component
of turbulent velocity fluctuations u1 and the component
normal to the wall u2. The calculation of the scales
given by Eqs. (1) with the use of simple relations of the
semiempirical theory of turbulence [9, 10] allows us to
determine the contributions made to the sound radia-
tion by different boundary layer parts whose fluctuating
motion depends in different ways on viscous and iner-
tial forces. 

As before, the intensity I of the quadrupole acoustic
radiation (the radiation power per unit area of the sur-
face contacting the flow) was determined from the rela-
tion derived on dimensional grounds: 

(2)

where ρ is the mass density of the medium; c0 is the

sound velocity; ε = /(dU/dy) is the eddy viscosity;
and k is the empirical constant, which was determined
after solving a similar problem on the radiation power
generated by cold subsonic turbulent jets whose noise
could be reliably recorded [11]. 

Instead of the value k = 20.4 used in [2], we take the
value k = 43, which was obtained after analyzing the
experimental data [11] with allowance for the comment
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made in [4] in connection with the papers [2, 3] about
the necessity to consider the sound reflection from the
plate. Some other constants were also refined, but their
quantitative refinements were less significant. In calcu-
lating the local friction factor cw at the surface contact-
ing the flow, the Schlichting formula [10] was replaced
by the more precise Falkner formula cw = 0.0263 ,
where Rx = U0x/ν, U0 is the flow velocity at the outer
boundary of the boundary layer, x is the distance from
the leading edge of the plate, and ν is the kinematic vis-
cosity. Then, the boundary layer thickness δ, the dis-
placement thickness δ*, and the momentum thickness θ
are calculated by the formulas

(3)

where Uτ =  = U0  is the friction velocity
and τw is the friction stress at the surface under consid-
eration. The first of expressions (3) was obtained in [8],
and the other two are the approximations (Fig. 1) of the
results obtained by numerically integrating the corre-
sponding expressions, (1 – U/U0) and (U/U0)(1 – U/U0),
over the entire thickness of the boundary layer; the inte-
gration was also performed in [8]. 

Reconsidering the results presented in [2, 3] with
allowance for the aforementioned refinements, we obtain
that the spectrum of the quadrupole turbulent noise P(ω)
normalized to the “inner” velocity Uτ and length ν/Uτ
scales of the boundary layer is now described by the for-
mulas 

(4)

Here,  = ων/ , Ω = 16.0625/Rτ, Rτ = Uτδ/ν, and
M = U0/c0 is the Mach number. 

Figure 2 presents the dimensionless spectra (4)
for several values of the Reynolds numbers Rx and
Rτ; the unique relationship between them, Rτ =

exp[0.41(8.72  – 7.4)], is easily determined from
the aforementioned Falkner formula and the first of
Eqs. (3). One can see that the low-frequency radiation
spectra, which are caused mainly by the large-scale
inertial turbulence in the outer part of the boundary
layer, form a family of curves. These curves display a
relatively fast increase with frequency and correspond
to the dimensionless frequencies , which are the
lower, the higher the Reynolds number is. 

As the limiting frequency Ω = 16.0625/Rτ is
reached, the spectra obtained for all Reynolds num-
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bers acquire the form of a single universal depen-

dence P(ω) /[ νM4(cw/2)2] ≈ 50.82 (1.23)7/2/  =

104.88/ , which, according to the calculations, is
determined by the turbulent motion in the logarithmic
part of the boundary layer. In connection with the result
obtained here for the sound pressures, it should be
noted that the hyperbolic law ω–1 was theoretically pre-
dicted by Bradshaw [12] for turbulent pseudosound
pressures governed by the logarithmic part of the
boundary layer, and this law was later verified by cal-
culations [8]. From Fig. 2, it also follows that the length
of the frequency range corresponding to the spectral

decrease as  is the smaller, the lower the Reynolds
number is. At Rx ≈ 1.76 × 105 (Rτ ≈ 230), this range van-
ishes. 
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Fig. 1. Ratios of (1) the displacement thickness δ* and
(2) the momentum thickness θ to the thickness of the
boundary layer δ as functions of the Reynolds number Rx:
(s), (d) the results of numerical integration and (—) the
approximation by Eqs. (3). 

Fig. 2. Quadrupole noise spectra normalized by the
“inner” scales: Rx = (1) 5 × 108, (2) 108, (3) 107, (4) 106,

and (5) 1.76 × 105; Rτ = (1) 1.5 × 105, (2) 2.95 × 104,

(3) 3.91 × 103, (4) 704, and (5) 230. 
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Beginning from the frequency  ≈ 0.07, the radia-
tion spectra for all Reynolds numbers Rx ≥ 1.76 × 105

are characterized by a single curve, which decreases
more and more steeply with increasing frequency. The
calculations show that this part of the spectrum is gov-
erned by the smallest scale turbulence in the viscous
sublayer and the buffer zone of the boundary layer,
which are located in the immediate vicinity of the plate
where the viscous forces prevail over the inertial ones. 

The presence of breaks in the radiation spectra at the
boundaries  = Ω between the low and medium fre-
quencies is a consequence of the simplifications that
were used in the dimensional analysis and allowed us to
obtain solution (4) in a simple analytical form. One
should expect that, in reality, the breaks will be
replaced by smooth transitions from one part of the
spectrum to the other, as, for example, is shown by the
dashed lines in Fig. 2. 

Figure 3 presents the radiation spectra with another
normalization that uses the “outer” length scale,
namely, the boundary layer thickness δ governing the
motion of large-scale inertial vortex structures in the
outer part of the boundary layer. One can see that, with
such a normalization, the whole family of the low-fre-
quency spectra shown in Fig. 2 merge into a single
curve. This curve describes the dimensionless spectra

P(ω)Uτ/[ M4(cw/2)2δ] in the dimensionless frequency
range 0 < ωδ/Uτ ≤ 16.0625 beyond which the spectra
decrease first as (ωδ/Uτ)–1 and then more steeply. One
can also see that, in contrast to the normalization used
in Fig. 2, the spectra shown in Fig. 3 exhibit a pro-
nounced splitting in the Reynolds number at medium
and, especially, high frequencies ωδ/Uτ and extend the
farther into the high-frequency region, the higher the
Reynolds number is. The empty circles in Fig. 3 indi-
cate the ends of the hyperbolic spectral regions, these
ends corresponding to the dimensionless frequency

ων/  ≈ 0.07 in Fig. 2. The formulas used for obtain-
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Fig. 3. Quadrupole noise spectra normalized by the “outer”
length scale: Rx = (1) 106, (2) 107, (3) 108, and (4) 109. 
ing the spectra shown in Fig. 3 can be easily derived on
the basis of dependences (4) and the evident relation-
ship between the “outer” and “inner” length scales: δ =
(ν/Uτ)Rτ. 

The normalization of turbulent pseudosound pres-
sures is often performed by using “mixed” (according
to the terminology used in [13]) scales of velocity and
length, U0 and δ*, which allow one to obtain the dimen-
sionless noise spectra in the form 

(5)

According to Eq. (2), Eqs. (4) and (5) describe the
spectra of the noise generated by a unit area of the plate
surface. If the plate dimensions are finite, but suffi-
ciently large for neglecting the additional noise pro-
duced by the flow around the plate edges [14], the fac-
tor S/(2πr2) should be added on the right-hand sides of
Eqs. (4) and (5). This factor indicates that the total radi-
ation energy increases in proportion to the area S of the
surface contacting the flow and is approximately uni-
formly distributed over the surfaces 2πr2 of all hemi-
spheres located above the plate sufficiently far from it
(r2 @ S). After multiplying the right-hand sides of
Eqs. (4) and (5) by S/(2πr2), we can normalize both
sides of these equations by the dimensionless ratio
(S/r2). As a result, the radiation spectra (for any, but
sufficiently large, values of S and r on condition that
r2 @ S) will be described by the dependences of the type 

(6)

Such a normalization is used in the alternative estimate
[4] of the radiation spectrum of the turbulent noise pro-
duced by a boundary layer flow. Figure 4 shows the
estimate (Fig. 9.16 in [4]) corresponding to the Mach
number M = 10–2 and independent of the Reynolds
number together with the results of our calculations for
different Reynolds numbers. Both estimates depend on
the Mach number in the same way, P(ω) ~ M4, which
corresponds to the quadrupole radiation of a boundary
layer flow over a smooth surface. One can see that the
estimate obtained in [4] predicts higher radiation levels
in the region of high dimensionless frequencies
ωδ*/U0, but its extrapolation to the low-frequency
region, presumably, will provide lower levels than our
estimate. These differences are hardly of practical sig-
nificance for small Mach numbers, because both esti-
mates yield very low levels, which can be considered as
some ideal limits in designing engineering structures
and cannot be achieved in reality because of the inevi-
table presence of more powerful acoustic sources of
other origins. However, for large Mach numbers, the
level of the noise generated by the boundary layer flow
is not always negligibly low, and, therefore, the differ-
ence in the predictions should not be neglected. By
now, it is difficult to indicate the origin of the difference
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in the noise levels predicted by different methods. One
can only assume that it may be caused by the fact that
the estimate given by Eq. (9.52) from [4] is indirectly
based on the results of measurements of the wave num-
ber–frequency spectra of turbulent pressures at both
smooth and rough surfaces (Fig. 8.30 in [4]). As will be
shown below (Fig. 9), the surface roughness consider-
ably increases the noise level especially at high fre-
quencies. 

Quadrupole sources of sound of different intensities
and frequencies occur throughout the entire thickness
of the boundary layer, excluding the surface [2, 3]
where the turbulent velocity fluctuations are zero. At
the surface of a rigid plate, the dipole sources of sound
are also absent [15–17], provided that the plate surface
is smooth. The presence of roughness on the surface
contacting the flow changes the situation both quantita-
tively and qualitatively. First, the roughness increases
the skin friction in the flow thus intensifying the turbu-
lent velocity fluctuations within the entire boundary
layer thickness. This, in its turn, leads to an increase in
the quadrupole radiation in proportion to the product

, according to Eqs. (4)–(6). Second (which is
more important), the flow about the protuberances of
the rough surface is accompanied by the formation of a
set of local flow separations. This gives rise to a dipole
radiation, which at low Mach numbers is much more
intense than the quadrupole radiation. 

Figure 5 shows the schematic diagram of a boundary
layer flow near a rough surface. The mean velocity of the
flow about protuberances of a rough surface is 8.5Uτ [10]
for a fully-developed roughness  = Uτh/ν ≥ 70 (h is
the statistical mean height of protuberances). It is
known that the dipole radiation accompanying a flow
separation behind a bluff obstacle, e.g., a cylinder, has
a pronounced Strouhal frequency f = Sh(U/d), where U
is the flow velocity; d is the size of the cross-section of
the bluff body; and Sh is the Strouhal number, which is
approximately equal to 0.2 for a cylinder. It is also
known that the radiation power in this case is character-

ized by the dependence W ~ ρU6 Ld, where c0 is the
sound velocity and L is the cylinder length. Taking into
account that the mean velocity of the flow around the

surface protuberances is 8.5Uτ, where Uτ = U0 ,
the radiation power produced by one roughness ele-
ment with the height h and the transverse dimension d

can be determined as W ~ ρ M3hd, where M =
U0/c0 is the Mach number. We assume that, on the aver-
age, the size of the protuberances of the rough surface
is proportional to their height: d ~ h. It is evident that
the number of protuberances n on the surface of area S
is inversely proportional to their cross-sectional area:
n ~ S/d2 ~ S/h2. With allowance for these simple geo-
metric considerations, the radiation power produced by
a flow around n elements lying within the area S can be

τw
2 cw

2

Rh*

c0
3–

cw/2

cw
3 U0

3
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expressed by the formula Wrh = krh(S/h2)ρ M3h2 =

krhSρ M3 and the corresponding radiation inten-
sity, Irh = Wrh/S, will have the form 

(7)

where krh is the dimensionless coefficient of propor-
tionality, which is to be determined from the experi-
ment. 

In a turbulent boundary layer flow over a surface
with a uniform roughness, a statistical set of local flow
separations from the roughness elements is formed.
The accompanying radiation of vortex sound presum-
ably occurs not at the single Strouhal frequency, but in
a fairly wide frequency range. This is explained by two
factors. First, the velocity of the flow around every pro-
tuberance continuously varies due to the turbulent fluc-
tuations in the boundary layer. Second, the radiation
should occur at different frequencies, because each pro-

cw
3 U0

3

cw
3 U0

3

Irh krhρcw
3 U0

3M3,=

10–2 10–1 100 101 102

–160

–150

–140

–130

–120

–110

ωδ*/U0

4

321

10log
P ω( )U0

τw
2 δ

--------------------   
S

r2
---- 

 
*

y
U0

h

x

Fig. 4. Quadrupole noise spectra at a distance r from the
plate of area S for the Mach number M = 10–2: Rx = (1) 107,
(2) 108, and (3) 109; and (4) the estimate from [4]. 

Fig. 5. Schematic diagram of a boundary layer flow over a
rough surface. 
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tuberance has its individual dimensions, which ran-
domly vary near the statistical mean height h. Both
these factors should cause the appearance of a whole
spectrum of different radiation frequencies in the flow
about a rough surface. 

The random turbulent velocity Us of the flow about
the roughness elements can be described with a suffi-
cient accuracy by the normal law of the probability dis-
tribution with the mathematical expectation 8.5Uτ and

variance : 

(8)

For the probability distribution w2(hs) of the random
dimensions hs of the rough surface protuberances, no
reliable data are available, but it seems to be reasonable
to assume that this distribution obeys the Rayleigh,
Maxwell, or χ2-distribution law, which excludes the
probability of negative heights of protuberances and
determines an almost unrealizable probability for too
large values of the random quantity hs. We will use the
specific type of the χ2-distribution [18]: 

(9)

where Γ(x) is the gamma-function and h =

hsw2(hs)dhs is the statistical mean height of protuber-

ances of the rough surface. 

The distribution functions (8) and (9) correspond to
the mutually independent random quantities Us and hs.
Therefore, the combined two-dimensional probability
density is characterized by the multiplicative property: 

(10)

In a flow with the velocity Us around a protuberance
of height hs, the radiation occurs mainly at the fre-
quency ω = m(Us/hs), where m is a coefficient, which
has the same meaning as the Strouhal number for a cyl-
inder, Sh = 0.2, but may have another numerical value.
Then, according to the known laws of mathematical
statistics, the probability distribution function for the
radiation frequencies will have the form

(11)
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Substituting Eqs. (8)–(10) in Eq. (11) and introduc-

ing the notations z = 6hs/h and ξ = ωh/(U0 6m), we
derive the expression 

(12)

The function 

(13)

involved in Eq. (12) is shown in Fig. 6 by the solid
curve. For obtaining the estimates, we can perform the
calculations with the use of the approximate functions 

which are shown in Fig. 6 by the dashed curve. 
As any probability density, the distribution func-

tion (12) satisfies the conventional normalization con-
dition 

(14)

Evidently, the probability w(ω) is proportional to
the spectrum Prh(ω) of the dipole radiation caused by
the flow about a rough surface just as integral (14) is
proportional to the integral of the spectrum Prh(ω) over
all frequencies. To determine the relationship between
w(ω) and Prh(ω), we take into account that the radiation
intensity given by Eq. (7) is related to the mean square

sound pressure  and the spectrum Prh(ω) in the fol-
lowing way: 

(15)

which yields 

Comparing this result with Eqs. (14) and (12), we
obtain 

(16)

where Krh denotes a new empirical constant replacing
the old one krh: Krh = 1.604 × 10–19krh/m. From Eq. (16),
it follows that the form of the radiation spectrum is
determined by function (13) shown in Fig. 6. The posi-
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tion of the spectrum on the dimensionless frequency

axis, ωh/(U0 ), is determined by the value of the yet
unknown constant m, and the spectral levels are gov-
erned by the other constant Krh. Both constants are
determined experimentally. 

The measurements were performed on the lower
wall of the closed-jet part of the low-noise, low-turbu-
lence wind tunnel belonging to the Krylov Central
Research Institute (the description of the wind tunnel
can be found in [19]). The sand-type roughness of the
surface contacting the flow was formed by abrasive
paper pasted on one of the four walls along the entire
working section of the wind tunnel. Two kinds of abra-
sive paper were used: no. 50 with h = 0.5 mm and
no. 80 with h = 0.9 mm. The flow velocity in the work-
ing section was set at intervals of 10 m/s: U0 = 20, 30,
40, and 50 m/s. The measurements covered the ranges
of the Reynolds numbers: with respect to the displace-
ment thickness, U0δ*/ν, from 4.5 × 103 to 3.3 × 104;
with respect to the height of protuberances of the rough
surface, Uτh/ν, from 80 to 160; and with respect to the
dimensionless frequencies, ωδ*/U0, from 0.4 to 12.5.
The pressure fluctuations were measured by piezocer-
amic transducers whose receiving surfaces 1.2 mm in
diameter were mounted flush with the wall and by
B&K plane capacitor microphones with the diameters
1/8 and 1/4 inches (3.175 and 6.35 mm). 

The turbulent pseudosound pressures that occurred
in the boundary layer flow at the rough surface acted on
the receiving surfaces of the transducers simulta-
neously with the sound pressures caused by the dipole
vortex sound that accompanied the flow separation
from the protuberances of the rough surface. The anal-
ysis of the results showed that the turbulent pseudo-
sound pressures prevailed in the low-frequency range,
from the lowest frequencies to 1–5 kHz (in the given
experimental conditions), while the sound pressures
were dominant in the frequency range from 10 to 30–
40 kHz. In the intermediate frequency range, from 5 to
8–10 kHz, the levels of the pseudosound and sound
pressures were comparable. Figure 7 schematically
depicts the typical frequency spectrum and cross-spec-
trum measured in the experiment. In the low-frequency
range 1, the frequency spectrum (Fig. 7a) exhibits a
monotonic behavior typical of turbulent pseudosound
pressures; in the intermediate frequency range 2, the
spectral curve breaks, and, at higher frequencies (fre-
quency range 3), one can see an increase in the spectral
levels, which is not typical of pseudosound spectra.
This fact alone cannot reliably prove that the spectrum
observed in region 3 corresponds to the acoustic radia-
tion of the boundary layer flow. Such a proof can be
obtained from the measurements of the cross-spectra
(Fig. 7b). It was found that, at low frequencies, the
dimensionless longitudinal cross-spectrum, which was
adequately normalized by the phase velocity close to
the flow velocity, practically vanished at frequencies of
3–5 kHz. In other words, in the low-frequency range 1,

cw
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the behavior of the longitudinal cross-spectrum corre-
sponds to its behavior in the field of turbulent pseudo-
sound pressures [4, 19–21]. In the high-frequency
region 3, the cross-spectrum has the form of an oscilla-
tory function with the dimensionless oscillation ampli-
tude reaching relatively large values of 0.35–0.40,
which points to a strong correlation of pressure fluctu-
ations at higher frequencies. Such a correlation is quite
unnatural for pseudosound [19–21]. The analysis
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Fig. 6. The function ϕ(ξ) (the solid line) and its approxima-
tion (the dashed line). 
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Fig. 7. Typical results obtained by measuring the pseudo-
sound and sound pressure fluctuations at a rough surface:
(a) the frequency spectrum and (b) the dimensionless cross-
spectrum at a constant separation; (1) the pseudosound
region, (2) the intermediate region, and (3) the sound region. 
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showed that the normalizing phase velocity for the
oscillations in the high-frequency region exceeds the
flow velocity by an order of magnitude and reaches
300–350 m/s, which is close to the sound velocity in air.
Hence, in our experiment with the flow about the rough
surface, in the high-frequency region 3 we actually
recorded the sound pressure fluctuations, which were
absent in the experiments in a low-noise wind-tunnel
with a flow over a smooth surface [19]. The statement
that, in our experiment, we observed the acoustic radi-
ation of the boundary layer rather than pseudosound is
also confirmed by the fact that transducers with differ-
ent dimensions, e.g., 1/4- and 1/8-inch microphones,
perceived the spectral components at these frequencies
in the same way. The turbulent pseudosound fluctua-
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Fig. 8. Dimensionless spectrum of the dipole noise at a
rough surface: (1) the pseudosound region; (2) the dipole
noise; (s), (d) the results of measurements for the flow
velocity U0 = 20 and 50 m/s; and (—) the results of the cal-
culations. 
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tions that occur at frequencies above 20–30 kHz are
caused by such small vortices that an increase in the
transducer diameter by a factor of two should lead, due
to the averaging effect, to a decrease in the measured
spectral levels by approximately 6 dB [20, 21]. This
must not occur (and did not occur in reality) when the
pressure fluctuations are caused by sound waves whose
wavelengths exceed those of pseudosound pressure-
fluctuation waves by about an order of magnitude. 

In the experiments, it was found that, in the high-
frequency region, the spectral levels increase in propor-
tion to the size of the roughness elements h and to the
fifth power of the flow velocity U0, in compliance with
Eq. (16). Figure 8 compares the measured spectral lev-
els of the turbulent noise at a rough surface with the lev-
els calculated by Eq. (16). The friction coefficient cw at
the rough surface was calculated by the Schlichting for-
mula [10] cw = [2.87 + 1.58 Rx/Rh)]–1, where Rh =
U0h/ν. The constant m involved in Eq. (16) and deter-
mining the position of the spectral maximum on the fre-
quency axis was obtained by fitting the computations to
the experimental data: m ≈ 3.81. Thus, the maximum of
the noise spectrum of the boundary layer flow occurred

at the dimensionless frequency ωh/(U0 ) ≈ 16.7. As
was expected, the spectrum of the dipole noise of the
boundary layer flow over a rough surface proved to be
a broadband one: it covered almost two decades of the
frequency range for a spectral level drop of 45–50 dB
relative to the maximum. In determining the other
empirical constant Krh, which governs the levels of the
spectra given by Eq. (16), it was necessary to take into
account the effect of the walls of the closed-jet section
of the wind tunnel on the results of the turbulent noise
measurements. Using the statistical theory of room
acoustics [22], we obtained an approximate estimate of
the increase in the measured noise levels because of the
noise accumulation inside the channel, which con-
sisted of four thick metal plates with the dimensions
1.3 × 4.0 m2 [19] (in the calculations, the plates were
assumed to be perfectly rigid). The estimate showed
that the measured levels were by approximately 11 dB
higher than the radiation levels in a free space. With
allowance for this correction for the results of mea-
surements (Fig. 8), one should set Krh ≈ 2.53 × 10–20

in Eq. (16). 
Figure 9 presents the frequency spectra of the noise

generated by the boundary layer flow over a rough
surface with the normalization (6) for the Mach num-
ber M = 0.3; the Reynolds number Rx = U0x/ν = 108;
and three different numbers  = Uτh/ν = 100, 500,
and 2000 characterizing the degree of roughness. This
figure also shows the radiation spectrum of a boundary
layer flow over a smooth surface (  = 0) for the same
values of M and Rx. In the calculations, it was assumed
that the ratio of the displacement thickness to the
boundary layer thickness was the same for the smooth

(log

cw

Rh*

Rh*
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and rough surfaces, and the displacement thickness for
the rough surface was expressed through the displace-
ment thickness for the smooth surface by the formula

 = 0.523δ*(U0h/ν)–1/7 [23]. Curve 5 in Fig. 9 corre-
sponds to the estimate obtained in [4, Fig. 9.17] on the
basis of the experimental data for both smooth and
rough surfaces. From Fig. 9, one can see that, in a cer-
tain frequency range, the roughness of the surface con-
tacting the flow noticeably increases the levels of noise
generated by the turbulent boundary layer flow. 
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Abstract—Expressions describing the field of a point source in a planar channel with admittance walls enclos-
ing a two-layer nonuniform flow are obtained. The dispersion equation that determines the eigenvalues in a
wide range of flow velocities in the layers (including supersonic velocities) is studied. The effect of the admit-
tance of the channel walls on the growth rate of unstable disturbances is considered for different frequencies. It
is established that the effect of the admittance of the channel walls on the growth rate of the instability waves
decreases with increasing frequency and essentially depends on the type of admittance. It is shown that, in the
presence of the admittance, new unstable disturbances are formed with a growth rate that can exceed that of the
Kelvin–Helmholtz instability wave. © 2001 MAIK “Nauka/Interperiodica”.
An effective means for suppressing the low-fre-
quency noise of an aircraft engine is an ejector nozzle
for the exhaust jet. The noise suppression occurs owing
to the decrease in the mean velocity and temperature of
the average flow formed in the ejector channel as a
result of the mixture of the cold ejected air and the hot
jet. This kind of silencer had always attracted the inter-
est of engineers, and, in recent years, this interest has
grown in connection with the development of a super-
sonic passenger airplane of the second generation [1–4].
The central place is occupied by the studies of distur-
bances originating from the unstable shear layer
formed between the ejected flow and the fast jet [5].
The analysis of the instability nature was performed in
[6] on the basis of the study of the supersonic mixing
layer inside a rectangular channel with rigid walls. It
was found that the interaction of this layer with the
acoustic modes reflected from the walls gives rise to a
new family of supersonic unstable solutions in addition
to the known Kelvin–Helmholtz (K–H) instability [7].
Attempts were made to affect the unstable distur-
bances and to reduce the degree of instability by
applying a sound-absorbing lining (SAL) to the chan-
nel walls [8–10]. It was found that, in some cases, the
rate of growth of unstable waves can be reduced, and
this effect is largely determined by the choice of the
appropriate parameters of the SAL. In particular, it is
important that the impedance of the SAL has a negative
imaginary part [9].

The studies mentioned above were concerned only
with the unstable modes formed in a channel with per-
fectly rigid walls, because it was believed that just these
modes are responsible for the low-frequency noise.
However, it is also of interest to study the effect of the
admittance of the walls on the whole set of modes exist-
ing in the ejector channel, including the unstable
1063-7710/01/4702- $21.00 © 20226
modes, in a wider frequency range and a wider range of
Mach numbers, as compared to the previous studies.
On the other hand, the ejection of air in the channel
leads to an increase in the high-frequency noise compo-
nent, which can be even more unfavorable from the
ecological point of view [11]. The other important
question that should be answered in this connection
arises from the strict limitations imposed on the ejector
dimensions, namely the following: How effective is the
use of the SAL for reducing the degree of instability of
modes in view of the fact that this method leads to a
loss of the possibility of noise suppression at high fre-
quencies? It may be more expedient to use other meth-
ods for suppressing the unstable modes, and the SAL
should be used for the noise suppression in the high-
frequency range.

In this paper, we use a point source model to study
the modal structure of the acoustic field in a lined pla-
nar channel with a two-layer flow whose layers are
characterized by different parameters. Taking into
account the rather high velocities of the flows in the
layers, the real mixing layer can be replaced for sim-
plicity by a tangential discontinuity boundary, at least
within a relatively long initial part of the channel. As is
known, the flows with tangential discontinuities are
unstable with respect to the initial excitation [7]. How-
ever, the results obtained on the basis of this represen-
tation have a certain domain of applicability [12, 13]
and can be useful in studying the sound propagation in
moving layered media, including the study of unstable
solutions.

Let us consider the propagation of sound in a planar
channel of height H. The sound is generated by a sim-
ple point source. The flow consists of two layers with
the parameters Vj , ρj , cj, and Hj, where Vj is the flow
velocity, ρj is the density of the medium, cj is the sound
001 MAIK “Nauka/Interperiodica”
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velocity, Hj is the layer thickness, and the subscript
j = 1 or 2 corresponds to the lower or the upper layer,
respectively. The channel walls are described by the
complex admittance βj. The acoustic field formed in each
of the layers satisfies the convective wave equation

(1)
where pj is the sound pressure, A0 is the source ampli-
tude, (x, y) are the coordinates of the point of obser-
vation, (x0, y0) are the source coordinates, ω is the cir-
cular frequency, and Dj/Dt = –iω + Vj∂/∂x (j = 1, 2).
The boundary conditions at the lower (y = 0, j = 1)
and upper (y = H, j = 2) walls of the channel have the
form [14]

iω∂pj/∂y = (–1)j(βj/cj) pj/Dt2. (2)

If we represent the vortex layer as a thin membrane that
is permeable for sound but impermeable for the flow,
then, for the regions under the membrane and over it,
we obtain the respective relationships [12]

∂pj/∂y = –ρj η/Dt2; j = 1, 2, (3)

where η is the normal displacement of the membrane.
In addition, in the vortex layer region, the condition of
the pressure continuity must be satisfied: p1 = p2. The
boundary-value problem represented by Eqs. (1)–(3) is
solved by applying the Fourier transform, as in the pre-
vious publications [14, 15]. Assuming that the source is
in region 1, for the Fourier transform we obtain the fol-
lowing expressions:

(4)

(5)
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Ã0

χ1
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χ1y0 φ2–( )cos
φ1 φ2–( )sin

----------------------------------- χ1y φ1–( ), 0 y y0,≤ ≤cos

=

P2

Ã0 χ1y0 φ1–( )cos χ1H1 φ2–( )cos
χ1 φ1 φ2–( )sin χ2H2 ϕ2–( )cos

-------------------------------------------------------------------------------=

× χ2 H y–( ) ϕ2–( ), H1 y H ,≤ ≤cos
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where

(6)

(7)

(8)

Formally, the acoustic field in the channel is deter-
mined by the inverse Fourier transforms of Eqs. (4) and
(5). These expressions have singular points in the form
of the poles that are the solutions to the dispersion
equation F(ξ) = 0, where F(ξ) is determined by Eq. (8).
Hence, the integration can be reduced to the summation
over the poles. Since these expressions contain no
branching points, the spatial spectrum will be discrete.
It should be noted that, at M1 = M2, the dispersion equa-
tion, as well as Eqs. (4) and (5), pass into the equation
and the Fourier transforms obtained earlier for a chan-
nel with a uniform flow [15]. From Eq. (7), it follows
that, at the poles, we have φ1 = φ2. The residues at the
poles, which correspond to Eqs. (4) and (5), have the
form

P j p jexp iξx–( ) ξ , Ã0 A0exp iωt– iξ x0–( ),=d

∞–

∞

∫=

φ1( )tan G1, ϕ2( )tan G2,–=–=

G j ik jβ jS j/χ j, S j 1 M jξ /k j–( )2= , k j ω/c j,==

M j V j/c j, φ2( )tan
χ1H1( )tan R–

1 R χ1H1( )tan+
---------------------------------------,= =

R Z χ2H2 ϕ2–( )tan , Z– χ2ρ1S1/χ1ρ2S2,= =

χ j
2 k j M jξ–( )2 ξ2, j– 1 2,,= =

φ1 φ2–( )sin

=  F ξ( ) χ1H1 φ1–( )/ χ1H1 φ2–( ),coscos–

F ξ( ) χ1H1 φ2–( ) χ2H2 ϕ2–( )cossin=

+ Z χ1H1 φ2–( ) χ2H2 ϕ2–( ).sincos
(9)
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If the source is located in the upper part of the
channel, H1 ≤ y0 ≤ H, the solution is obtained in
the  same way, and the residues at the poles are
expressed as
(11)

(12)

ResP1
 =  

Ã0Z
χ2

----------
χ2 H y0–( ) ϕ2–[ ] χ1y φ1–( )coscos

∂F/∂ξ
-------------------------------------------------------------------------------------

ξ ξn=

,–

0 y H1,≤ ≤

ResP2

Ã0Z
χ2

----------
χ2 H y0–( ) ϕ2–( ) χ2 H y–( ) ϕ2–( )cos χ1H1 φ1–( )coscos

χ2H2 ϕ2–( )cos ∂F/∂ξ
-------------------------------------------------------------------------------------------------------------------------------------------

ξ ξn=

, H1 y H .≤ ≤–=
    
    

It should be noted that Eqs. (10) and (11) exhibit a cer-
tain kind of reciprocity; namely, to obtain Eq. (11) from
Eq. (10), one should interchange the positions of y and
y0 and multiply the result by ρ1S1/ρ2S2.

The success in calculating the field of the source by
means of the theory of residues largely depends on how
quickly and accurately one obtains the roots of the disper-
sion equation determined by Eq. (8): F(ξ; β1, β2, M1, M2,
ω) = 0. If, in the latter equation, we set ξ = ξ(βj) or ξ =
ξ(Mj) or ξ = ξ(ω) and consider all other variables as
external parameters, this equation will have singular
points at certain values of βj or Mj or ω, respectively. At
these points, which actually are second-order branch-
ing points, two roots of the equation merge. For exam-
ple, for ξ = ξ(βj), the behavior of the roots near a given

point ξ = ξ0( ) is determined by the relationshipβ j
0

dF 0
∂F
∂ξ0
-------- ξ ξ0–( )= =

+
1
2
---∂2F

∂ξ0
2

--------- ξ ξ0–( )2 ∂F

∂β j
0

-------- β j β j
0–( ).+

5

4

3

2

1

–1

–2

–3

–4

–5

1–1–2–3–4–5 0

Jmµ

Reµ

1
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3

2

Fig. 1. Positions of the poles in the complex plane for three
variants of the flow velocities in the channel: 1—a uniform
flow with M = 0.4; 2—a uniform flow with M = 0.8; and
3—a two-layer flow with M1 = 0.8 and M2 = 0.4.
                    

When ∂F/∂ξ0 ≠ 0, we have ξ – ξ0 = – / ,

and ( ) is a regular point. When ∂F/∂ξ0 = 0, we have

ξ – ξ0 = ±  and ( ) is a second-

order branching point. Similar relationships can be
written for ξ = ξ(Mj) and ξ = ξ(ω). Below, we will show
that singular points in M1 also exist, which leads to the
appearance of unstable solutions at supersonic flow
velocities.

In the following, for simplicity we will assume that
ρ1 = ρ2 and c1 = c2; i.e., the layers differ in only the flow
velocity. We will consider different combinations of the
flow velocities in the layers. For definiteness, we
assume that M2 < M1.

SUBSONIC FLOWS IN THE UPPER
AND LOWER LAYERS

In the specific calculation of the field in the channel
with the use of the theory of residues, a question arises
of how to select an appropriate path of integration along
the real axis in the complex plane ξ so that the poles
lying above the path correspond to the field in the chan-
nel region x – x0 > 0 and the poles lying below the path
correspond to the field in the region x – x0 < 0. For a
channel with rigid walls, the dispersion equation can be
represented as follows:

(13)

Figure 1 shows the positions of the dispersion equation
determined by Eq. (8), µ = ξ/k, for three types of the
flow: a flow that is uniform within the entire channel
cross-section with the velocity corresponding to M =
0.4, a similar flow with the velocity corresponding to
M = 0.8, and a two-layer flow with the aforementioned
values of the flow velocity in the upper and lower lay-
ers, respectively. In the calculations, we used the
parameters H = 0.36 m, H1 = H2 = H/2, and the wave
parameter kH = 10.639. When the flow is uniform
throughout the channel cross-section, the roots of the

∂F

∂β j
0

-------- β j β j
0–( ) 

  ∂F
∂ξ0
--------

β j
0

2
∂F

∂β j
0

-------- β j β j
0–( )/

∂2F

∂ξ0
2

---------– β j
0

χ1 χ1H1( ) χ2H2( )/S1cossin

+ χ2 χ1H1( ) χ2H2( )/S2sincos 0.=
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dispersion equation lie on the real axis within the range
–k/(1 – M1, 2) < ξ < k/(1 + M1, 2) and on the line that is
parallel to the imaginary axis and intersects the real

axis at the point ξ1, 2 = –M1, 2k/(1 – ) (the subscript
indicates the flow velocity). The roots of the first kind
correspond to the homogeneous modes, and the roots of
the second kind correspond to the inhomogeneous
modes. In the case of a two-layer flow, the roots lie on
the real axis within the range –k/(1 – M1) < ξ < k/(1 +
M2) and in the complex plane in the region between the
straight lines parallel to the imaginary axis and inter-
secting the real axis at the points ξ1, 2. The roots of the
latter type asymptotically approach the aforementioned
straight lines. In addition, in the case of a two-layer
flow, we obtain two complex roots: µ0 = 1.5112 ±
i0.4847. It can be shown that one of them corresponds
to the K–H hydrodynamic instability. To prove this
statement, we divide the equation F(ξ) = 0 by the quan-
tity cos(χ1H1 – φ2)cos(χ2H2 – ϕ2). As a result, we obtain

(14)

We assume that, in this equation, the quantities χjHj

(j = 1, 2) are fairly large, which may occur because of
the large values of either H, or χ, or both of them. Then,
we obtain   –i. Substituting this value in
Eq. (14) and using the well-known trigonometric for-
mulas, we derive

(15)

or, in an explicit form, we obtain 1 + (χ2ρ1(1 –
V1ξ/ω)2)/(χ1ρ2(1 – V2ξ/ω)2) = 0. With the search for a
hydrodynamic solution in mind, we set c  ∞. This

yields ξ/ω = (1  iq)/(V1  iqV2), where q = .
Setting q = 1, µ = ξ/k, ω = kc, and V = Mc, we obtain

(16)

For M1 = 0.8 and M2 = 0.4, the calculation by Eq. (16)
yields µ = 1.5 ± 0.5, which is fairly close to the exact
value. In the case M2 = 0, from Eq. (16) we obtain the
well-known relation between ξ and ω [7]. It should be
noted that the condition obtained in [15] for the forma-
tion of pseudosound solutions in a channel with a uni-
form subsonic flow corresponds to the condition that
the numerator (as well as the denominator) in Eq. (15)
be equal to zero.

For H1, H2  ∞ and M2 = 0, the analytical solu-
tions to the dispersion equation in the form of Eq. (13)
were first obtained by L.D. Landau in 1944. These solu-
tions can be generalized to the case M2 ≠ 0 by trans-
forming the corresponding dispersion equation

F1(ξ) = χ1/S1 + χ2/S2 = 0 (17)

M1 2,
2

F1 ξ( ) χ1H1 φ2–( )tan Z χ2H2 ϕ2–( )tan+ 0.= =

χ jH j( )tan

Z G1 G2 i G1G2 1–( )+ +( )/ G1(–=

+ G2 i G1G2 1–( )) 1–≡+

+− +− ρ2/ρ1

µ M1 M2 i M1 M2–( )+−+( )/ M1
2 M2

2+( ).=
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to the equation of the following type:

The root of the first cofactor µ = 2/(M1 + M2) is always
real, and the roots of the second cofactor have the form

(18)

where µ = ξ/k. Of these four roots, two roots corre-
sponding to the plus sign should be rejected, because
they do not satisfy the initial equation. From Eq. (18),
it follows that, when (M1 – M2)2 < 8, we have two com-
plex conjugate roots. When (M1 – M2)2 > 8, the roots
become real. The presence of the real roots suggests the
stability of the tangential discontinuity for the Mach

numbers |M1 – M2| > 2 . However, this conclusion
(derived on the basis of solving the dispersion equation
with allowance for the compressibility) contradicts the
result obtained above without regard for the compress-
ibility (see Eq. (16)) and testifies to the fact that the tan-
gential discontinuity is always unstable. To reveal the
origin of this contradiction, solutions (18) were numer-
ically studied as functions of M1 and M2. The problem
was alleviated owing to the fact that it was unnecessary
to seek any new solutions to Eq. (17) by numerical
methods, because one can state that any solution to
Eq. (17) should be expressed by formula (18). The
numerical analysis showed that it is not for all values of
M1 and M2 that formula (18) yields a correct result, i.e.,
a result that makes F1(ξ) equal to zero. Specifically, it
was found that the condition of the existence of solutions
to Eq. (17) satisfies the inequality |M1 – M2| < 1.7 when
M1 or M2 is equal to zero. As M1 (or M2) increases, this

range narrows and, thus, never exceeds the value 2 .
Hence, we can conclude that, on the basis of solu-
tion (18), it is inappropriate to consider the stability or
instability of the tangential discontinuity for |M1 – M2| >
2 , because, for the Mach numbers satisfying this
condition, Eq. (17) has no solutions. In the allowed
region of Mach numbers, two complex conjugate solu-
tions are present, one of which corresponds to the insta-
bility of the tangential discontinuity. For a more
detailed study of the K–H instability, it is necessary to
consider the model with a finite thickness of the mixing
layer. In the presence of the bounding walls, the multi-
ple reflections from them result in the formation of dis-
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turbances at the discontinuity surface. These distur-
bances are unstable for any large Mach numbers,
although the degree of their instability decreases with
an increase in the velocities of the concurrent flows and
a decrease in the velocity difference between them.

Important characteristics that allow one to identify
the modes in a uniform channel are the energy flux and
the group velocity. Although the group velocity is
determined for a wave packet, it can be used in applica-
tion to individual modes, provided that this involves no
contradictions with the physical meaning. The energy
flux density can be represented in the form [16]

W = (p2/ρ0c)(1 + M · n)(n + M), (19)

where n is the unit vector in the direction of the wave
propagation. The relation of the energy flux density to
the energy density and the group velocity is determined
by the equation W = EVg, where

E = (p2/ρ0c2)(1 + (n · M)), (20)

Vg = c(n + M). (21)

The projections of the group velocity and the energy
flux density on the x axis are as follows:

(22)

(23)

For complex values of µ, the expression for the energy
density flux can be generalized:

(24)

Let us represent each mode that is a solution to the
dispersion equation determined by Eq. (8) as a superpo-
sition of plane waves propagating in a layered medium.
The relationship between the real values of the wave
numbers along the channel axis, µ = ξ/k, and along the
direction toward the wall, ν = χ/k, is determined by
Eq. (6). Figure 2 shows the graphical representation of
this relationship. As µ varies, the ends of the wave vec-
tors describe the respective ellipses. Figure 2 corre-
sponds to the data shown in Fig. 1. Each of the ellipses
in Fig. 2 can be considered independently in order to

Vgx c M µ 1 M2–( )+( )/ 1 µM–( ),=

Wx p2/ρc( ) M µ 1 M2–( )+ / 1 µM–( )2( ).=

Wx p2/ρc( )Re M µ 1 M2–( )+( )/ 1 µM–( ) 2.=
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Fig. 2. Graphical representation of Eq. (6) in a two-layer
channel with subsonic flows in the layers.
reveal the specific features of a channel with a uniform
flow. Specifically, it can be shown that, for a wave with
the wave numbers (µ, ν), the group velocity vector is
directed along the normal to the ellipse at the corre-
sponding point. This means that the projection of the
group velocity vector and the energy flux are positive
(i.e., directed along the flow) when µ > –M/(1 – M2);
otherwise, the projection of the group velocity vector
and the energy flux are negative (i.e., directed against
the flow). In the case –M/(1 – M2) < µ < 0, the phase and
group velocities are of opposite sign. At the critical fre-
quency determined from the condition µ = –M/(1 – M2),
the projection of the group velocity on the z axis is zero
and the wave propagates normally to the wall with the

velocity Vg = c . From Eq. (24), it follows that
the energy flux of the inhomogeneous waves is equal to
zero. Therefore, in the case of a uniform flow, the path
of integration (see Fig. 1) should be selected in such a
way that the points lying on the real axis to the right of
the point µ = –M/(1 – M2) be above the path and the
points lying to the left of this point be below the path.
In addition, if (x – x0) > 0, the integration path should
be closed in the upper half-plane, and, if (x – x0) < 0, it
should be closed in the lower half-plane.

From Fig. 2 for a two-layer flow, it follows that,
when –1/(1 – M1) < µ < –1/(1 – M2), the wave corre-
sponding to a given mode and incident from medium 1
on medium 2 experiences a total internal reflection, and
in medium 2 we obtain a field that is nonuniform along
the y axis (a superposition of exponentially decaying
and exponentially growing waves). When –1/(1 – M2) <
µ < 1/(1 + M1), the wave penetrates into the second
medium. In this case, the initial angle of incidence of
the wave is determined by the relation cos(θ1) = –1/(1 +
M1 – M2) (the angles are measured relative to the posi-
tive direction of the x axis) and the refracted wave prop-
agates in the direction θ2 = π. At µ = 1/(1 + M1), the
wave excited in the first medium propagates in the
direction θ1 = 0 and the refracted wave propagates in
the direction determined by the relation cos(θ2) = 1/(1 +
M1 – M2). When 1/(1 + M1) < µ < 1/(1 + M2), a nonuni-
form field consisting of a superposition of waves expo-
nentially decaying and exponentially growing along the
y axis is formed in medium 1. In the case M1 > M2, the
angle of incidence is smaller than the angle of refrac-
tion, except for the case µ = 0, when the angle of inci-
dence is equal to the angle of refraction.

In a two-layer flow, the identification of modes
encounters some difficulties. The energy flux and the
group velocity provide no unique result. For example,

when –M1/(1 – ) < µ < –M2/(1 – ) (Fig. 2), the
energy flux corresponding to the given mode is positive
in the lower layer and negative in the upper layer. Sim-
ilarly, the calculation of the energy flux corresponding
to the K–H mode shows that the energy flux is positive
in both layers, but the group velocity determined as the
real part of Eq. (20) can have different signs in different

1 M2–

M1
2 M2

2
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layers and be positive or negative depending on the sign
of the energy density determined by Eq. (20). If the
energy density is negative, the group velocity is also
negative, and vice versa.

For a unique identification of modes, one should use
the Briggs criterion [17], which is equivalent to the cau-
sality principle [18]. According to this criterion, it is not
necessary to assume that the frequency and, hence, the
wave number are real numbers in the dispersion equa-
tion. Moreover, if any solution to the dispersion equa-
tion corresponds to a wave propagating in the positive
direction and having a real wave number, the same
solution will also correspond to a wave propagating in
the positive direction and having a complex wave num-
ber with a positive imaginary part. If we take a wave
number with a fairly large positive imaginary part, the
solutions to the dispersion equation that lie in the upper
half-plane of the complex plane ξ(Imξ > 0) will cor-
respond to the waves that occur to the right of the
source and the solutions lying in the lower half-plane
(Imξ < 0) correspond to the waves to the left of the
source. Thus, we should select a complex frequency
whose real part is equal to the true frequency and the
imaginary part is a sufficiently large positive number
and, by decreasing the imaginary part down to zero,
study the motion of the roots in the complex plane. The
roots that intersect the real axis by moving downward
correspond to the modes propagating in the positive
direction and exponentially growing in this direction.
The roots that intersect the real axis while moving
upward correspond to the modes growing in the nega-
tive direction. As an example, Fig. 3 shows the motion
of the roots in the complex plane for Im(kH) decreasing
from 4 to zero and Re(kH) = 10.639. According to this
figure, some of the roots moving along their trajectories
remain in the complex plane, other roots move down-
ward or upward approaching the real axis, and only one
root, which corresponds to the K–H instability, inter-
sects the real axis in the downward direction. Hence, in
calculating Green’s function, the integration path
should be selected so as to leave this root on the left
while going around the path in the counterclockwise
direction. In terms of physics, the appearance of a
growing solution is caused by the fact that the mode
takes the energy from the two-layer flow, which, in its
turn, leads to a spreading of the boundary between the
layers and to an increase in the boundary layer thick-
ness.

The question arises as to how strongly the growth
rate of the K–H instability waves can be affected by the
SAL mounted on the walls of an ejector. From the stud-
ies [8–10] of supersonic flows, it was found that the use
of SAL leads to a decrease in the rate of growth of the
instability waves. However, the effect was obtained for
relatively low frequencies and for a flow with a diffuse
structure that is observed at a relatively large distance
from the inlet. These studies showed that the effect of
the SAL on the growth rate of the instability wave is
possible only at low frequencies, and this effect
ACOUSTICAL PHYSICS      Vol. 47      No. 2      2001
depends on the type of the admittance; namely, when
the imaginary part of the admittance is negative, the
growth rate decreases, and, when the imaginary part of
the admittance is positive, the growth rate of the insta-
bility wave can even increase. At high frequencies, the
effect is practically absent. What is more important, the
presence of SAL gives rise to another growing mode
(or several modes) and this mode appears at both low
and high frequencies independently of the type of the
admittance. This phenomenon is illustrated in Fig. 4,
which shows the motion of some of the roots of the dis-
persion equation with the variation of the imaginary
part of the admittance at a low frequency for kH =
0.665. The root corresponding to the K–H instability is

1 2–1–2–3–4

3

–1

–2

–3

Imµ

0
Reµ

Fig. 3. Motion of the roots in the complex plane when
Im(kH) decreases from 4 to 0 for a channel with perfectly
rigid walls; Re(kH) = 10.639, H1 = H2 = H/2, M1 = 0.8, and
M2 = 0.4.
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–1

–2

0
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Fig. 4. Motion of the roots of the dispersion equation in the
complex plane when the imaginary part of the admittance
varies within the interval –2 ≤ Imβ1, 2 ≤ 2; Reβ1, 2 = 1, H1 =
H2 = H/2, M1 = 0.8, M2 = 0.4, and kH = 0.665.
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enclosed in a dashed circle. In the entire range of vari-
ation of the imaginary part of the admittance, the new
mode has a greater imaginary part and, hence, a higher
growth rate, as compared to the K–H mode. At higher
frequencies, no qualitative changes are observed,
except for the region of the variation of the K–H roots.
With increasing frequency, this region is contracted to
a point, which confirms that the K–H instability is inde-
pendent of the admittance at high frequencies. To show
that the new mode is similar in character to the K–H
mode and that it satisfies the Briggs criterion, we con-
sider Fig. 5, which represents the motion of the roots in
the complex plane with a decrease in the imaginary part
of the wave parameter from 0.2 to zero at a constant real
part of 3.325 and at β1, 2 = 1 at which the imaginary part
µ of the new mode is maximal in magnitude. From

1
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Imµ
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–3
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Fig. 5. Motion of the roots in the complex plane when the
imaginary part of the wave parameter decreases from 0.2 to
zero; Re(kH) = 3.325, β1, 2 = 1, H1 = H2 = H/2, M1 = 0.8,
and M2 = 0.4.

Fig. 6. Motion of the roots of the dispersion equation when
the flow velocity in the lower layer decreases from M1 = 0.8
to M1 = 0.4; M2 = 0.4, kH = 3.325, and H1 = H2 = H/2.
Fig. 5, it follows that two roots are present and these
roots begin their motion from the upper half-plane and
intersect the real axis. One of these roots corresponds to
the K–H mode, and the other to the new mode. Accord-
ing to the Briggs criterion, they are unstable. It is of
interest to consider the motion of the unstable solutions
with the decrease in the flow velocity in the lower layer
down to the value of the flow velocity of the upper
layer. Figure 6 shows the motion of the roots for the
selected admittance values β1, 2 = 1. When M1  M2,
the roots corresponding to the K–H instability tend to a
real value, which, however, cannot be a root of the dis-
persion equation in a channel with a uniform flow,
because this value, µ = 2.42, exceeds the upper bound
of the roots of the dispersion equation, µ = 1/(1 + M2) =
0.71. The new unstable root tends to infinity. There are
reasons to believe that the appearance of the new unsta-
ble solutions is related to the singular points of the dis-
persion equation, if we assume that, in this equation,
ξ = ξ(β1, β2). A detailed analysis of these solutions will
be the subject of our following study.

A SUBSONIC FLOW IN THE UPPER LAYER
AND A SUPERSONIC FLOW

IN THE LOWER LAYER

The Difference between the Flow Velocities
in the Layers Is Less than Twice the Velocity of Sound

In a channel with rigid walls, the relationship
between the values of the wave numbers along the
channel axis, µ = ξ/k, and in the direction toward the
wall, ν = χ/k, will be determined according to Eq. (6)
by an equation for an ellipse in the upper layer and by
an equation for a hyperbola in the lower layer (Fig. 7).
From Fig. 7, one can see that real values of the roots can
exist in the entire range –∞ < µ < ∞. As in the case of
the subsonic flow, using Fig. 7 we can trace the changes
in the directions of the wave vectors in the layers and
get an idea of the field structure for the whole range of
values of µ. The roots corresponding to the K–H instabil-
ity have their real parts belonging to the interval 1/(1 +
M2) < µ < 1/(M1 – 1) in which the real roots of the dis-
persion equation are absent. As in the case of the sub-
sonic flow, the direction of the group velocity is deter-
mined by the direction of the normal to the curve at a
given point. From Fig. 7, it follows that, in the upper
layer, the direction of the group velocity can vary
within 0 ≤ ϑ2 ≤ π when µ varies within –1/(1 – M2) ≤
µ ≤ 1/(M1 + 1). In the lower layer, the direction of the
group velocity varies within the Mach cone: 0 ≤ ϑ1 ≤

. The group velocity is positive in
the lower layer for all real values of µ, and, in the upper

layer, it is negative for −1/(1 – M2) ≤ µ ≤ –M2/(1 – ).
In the case of a uniform channel, this interval of the val-
ues of µ corresponds to the acoustic energy transfer
against the flow.

M1
2 1– /M1( )arccos

M2
2
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From the analysis presented above, it follows that,
in choosing the path of integration along the real axis
from –∞ to +∞, it is necessary to pass it to the right of
the singular points lying on the real axis except for the
singular points within the interval −1/(1 – M2) ≤ µ ≤
–M2/(1 – ) and to the left of the latter points. It is
also necessary that the integration path passes to the
right of the points corresponding to the K–H instability.
This conclusion is confirmed by the use of the Briggs
criterion.

When the walls have a finite admittance, the roots
move to the complex plane. As in the case of a subsonic
flow in the upper layer, unstable solutions due to the
finite wall admittance appear in addition to the unstable
solutions of the K–H type. The degree of instability of
these additional modes depends on the admittance and
can exceed the degree of the K–H instability. At high
frequencies, the K–H instability is also independent of
the wall admittance. However, in the presence of a
supersonic flow, we obtain other unstable solutions
related to the presence of this flow. In the case of a finite
admittance with Reβ > 0, when Reµ > 1/(M – 1), which
corresponds to the right branch of the hyperbola (see
Fig. 7), the roots of the dispersion equation move down-
ward from the real axis and, thus, become unstable.

The Difference between the Flow Velocities
in the Layers Is Greater than or Equal 

to Twice the Velocity of Sound

In a channel with perfectly rigid walls, an increase
in M1 will lead to the leftward motion of both branches
of the hyperbola (Fig. 7). When M1 – M2 > 2, the right
branch of the hyperbola intersects the ellipse. It is evi-
dent that, at the point of intersection, we have χ1 = χ2,
which yields µ0 = 2/(M1 + M2). In this case, in the inter-
val µ0 < µ < 1/(1 + M2), an anomalous phenomenon is
observed: in passing from the lower layer to the upper
one, the wave vector deviates toward smaller rather
than larger angles. One can easily see that, when M1 =

 = M2 + 2µ0 is a root of the dispersion equation.
Moreover, we can show that this point is a second-
order root with respect to the velocity M1; i.e., (µ – µ0)2 ≈
M1 – , or  is a second-order branching point.
This means that, in passing through this point, the cor-
responding two roots merge on the real axis into a dou-
ble root and then diverge moving at an angle of 180° to
the upper and lower half-planes. Thus, the new class of
unstable solutions, which were studied in [6], can be
considered as a result of the branching of roots at the
singular points of the dispersion equation, if we assume
that, in this equation, ξ = ξ(M1). Figure 8 illustrates the
formation of unstable solutions as a result of the
branching of the roots of the dispersion equation for M1
varying from 1.4 to 3.15, M2 being constant and equal
to 0.4 and H = 10.639. For comparison, the same figure

M2
2

M1
0( )

M1
0( ) M1

0( )
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presents the solutions corresponding to the K–H insta-
bility. In the whole range of values of M1 specified
above, the K–H instability exceeds the instability of the
new type, although the degree of the K–H instability
decreases according to Eq. (16). The new type of insta-
bility appears at M1 = 2.4. With a further increase in M1,
this instability reaches some maximal value. At M1 =
2.65, the two complex roots return to the real axis and
then diverge by moving on different sides of the real
axis. Within the interval 2.65 < M1 < 2.70, the instabil-
ity of the new type is absent. As M1 increases further,
the roots come closer to each other and the instability
of the new type again comes into play. It should be
noted that the coalescence and the bifurcation of
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Fig. 7. Graphical representation of Eq. (6) in a two-layer
channel with a subsonic flow in the upper layer and a super-
sonic flow in the lower layer.
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Fig. 8. Motion of the roots corresponding to the unstable
solutions to the dispersion equation in the complex plane:
1—the K–H instability and 2, 3—the instabilities of the new
type.
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modes, which were obtained at a fixed frequency with
the variation of the Mach number, can also be obtained
by continuously varying the frequency at fixed values
of M1, 2 [6].

SUPERSONIC FLOWS IN THE LOWER
AND UPPER LAYERS

In this case, the situation is much the same as that
with a subsonic flow in the upper layer. For a channel
with perfectly rigid walls, the roots of the dispersion
equation lie on the real axis, except for the two roots
corresponding to the K–H instability. However, the
roots lying on the real axis are spaced at half the inter-
vals corresponding to a subsonic flow in the upper
layer. In the case under study, the modes are not sepa-
rated into homogeneous and inhomogeneous ones, and,
in calculating Green’s function, it is necessary to take
into account the whole infinite set of modes. The path
of integration should be selected so as to leave all roots
on the left and to close the path in the upper half-plane.
This means that the field is concentrated to the right of
the source and is absent to the left of it. The relation-
ship between the real values of the wave numbers
along the channel axis and in the direction toward the
wall is determined by the equations describing the
hyperbolas. The left branches of the hyperbolas corre-
spond to the wave numbers oriented in both positive
and negative directions, depending on the value of the
root of the dispersion equation; the right branches of
the hyperbolas correspond to the negative direction of
the wave vectors and, hence, of the phase velocities.
Otherwise, the case under study is similar to the case
of a subsonic flow in the upper layer, which was
described above. As in the latter case, the direction of
the group velocity coincides with the normals to the
hyperbola branches. The maximal angle of the devia-
tion of the hyperbola normal from the µ axis is deter-

mined by the formula  =  or sin(ϑ) =
1/M. Thus, we have a set of modes propagating in the
positive direction within the Mach angle with the
group velocities determined by Eq. (21): Vg1, 2 =

c . As in the case
with a subsonic flow, the admittance of the channel
walls weakly affects the K–H instability at low fre-
quencies and does not affect it at high frequencies. For
complex values of the admittance with Reβ > 0, all
roots of the dispersion equation that correspond to the
right branches of the hyperbolas are shifted to the lower
half-plane, and this shift is greater than in the case with
a subsonic flow. In terms of the Briggs criterion, these
roots correspond to unstable solutions and the integra-
tion path should lie to the right of them.

As in the case with a subsonic flow in the upper layer,
when M1 – M2 > 2, unstable solutions related to the sin-

ϑ( )cot M2 1–

M1 2,
2 1 µM1 2,+( )/ 1 µM1 2,–( )+
gular points of the dispersion equation are present, if we
assume that, in the dispersion equation, ξ = ξ(M1).

Thus, we have studied unstable disturbances in a
wide range of Mach numbers, from subsonic to super-
sonic ones, in a lined channel with a two-layer flow in it.

It is established that the effect of the admittance of
the channel walls on the growth rate of the K–H insta-
bility waves decreases with increasing frequency and
depends on the type of the admittance.

It is shown that, in the presence of the admittance,
new unstable disturbances are formed, and the growth
rate of these disturbances can exceed the growth rate of
the K–H instability wave. There are reasons to believe
that the appearance of such growing solutions is related
to the singular points of the dispersion equation, pro-
vided that, in this equation, ξ = ξ(β1) or ξ = ξ(β2).

It is shown that the appearance of growing solu-
tions in a channel with rigid walls in the case M1 – M2 >
2 is related to the presence of the singular points of the
dispersion equation, if one assumes that, in the latter,
ξ = ξ(M1).

On the whole, the studies described above show that
the use of SAL for reducing the growth rate of the
unstable waves is ineffective, because the character of
the waves remains the same, i.e., unstable. A better
method of reducing the growth rate of unstable waves
should be the intensification of the intermixing of the
flows at the ejector inlet, which provides the most rapid
equalization of the flow velocities in the layered
medium. This can be achieved by using corrugated noz-
zles, special windows, etc. Although their application
leads to an increase in the high-frequency noise, the lat-
ter can be suppressed by using an SAL, which is much
more efficient in this spectral region.
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An empirical frequency-angular dependence char-
acterizing the high-frequency backscattering of sound
by a rough sea surface is known. This dependence was
obtained by Schulkin and Shaffer on the basis of the
analysis and generalization of results of multiple exper-
iments [1].

It has the form

(1)

Here, Ns is the so-called strength of sound scattering by
the sea surface in decibels, f is the sound frequency, h
is the amplitude of sea waves, and Θ is the glancing angle.

Up to now there has been no explanation of the
physical mechanisms of the “origin” or nature of this
dependence. Meanwhile, the fact that dependence (1) is
described by a power law with a fractional (noninte-
gral) index attracts one’s attention. This kind of depen-
dence is typical of the wave scattering by fractal struc-
tures and surfaces (see, e.g., [2, 3]). It is known that a
power dependence of the intensity of wave scattering
on the frequency (the wavelength) and the scattering
angle with a fractional power index is characteristic of
fractals. It is natural to associate dependence (1) with
the fractal characteristics of the sea surface.

Rather convincing evidence of the fact that the sea
surface is characterized by fractal properties exists
now. For example, Barenblatt and Leœkin [4] have dem-
onstrated the self-similarity of the high-frequency
spectrum of the wind waves on the sea surface and pre-
sented a formula describing the frequency spectrum of
wind waves. The wind wave spectrum [4] is character-
ized by a power law with the index ν which can take on
fractional or integral values, and, in particular, at ν = 5,
it describes the Phillips spectrum [5] and, at ν = 4, the
Zakharov–Filonenko spectrum [6]. Barenblatt and
Leœkin [4] focused their attention on the many existing
experimental observations which indicate that the
index ν for the frequency spectrum of the waves on the
sea surface assumes a nonintegral (i.e., fractional)
value. In other words, the spectrum of the sea-surface
waves is described by a fractal law.

Expressions characterizing the elevations and the
frequency spectrum of a rough sea surface in the space
E = 3 were obtained by West [7] on the basis of the
modified Weierstrass–Mandelbrot function, which is
frequently used for describing fractal surfaces. It was

Ns 10 fh Θsin( )0'99log 45.3.–=
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shown that the sea surface in the presence of strong
roughness is fractal within the interval of the scales of
surface waves 0.1–100 m. In this case, the fractal
dimension of the surface is D ≈ 2.25. The frequency
spectrum of waves is described by an expression that
matches with the formulas obtained by Barenblatt and
Leœkin [4], Zakharov and Filonenko [6], Glasman and
Weichman [8], and Kitaœgorodskiœ [9].

Zaslavskiœ and Sharkov [10] studied the fractal
properties of the zones of breaking waves on the sea
surface. The experimental data were obtained by
remote optical probing of the sea surface. Large-scale
photography of a rough sea surface with foam forma-
tions that accompany the breaking surface gravity
waves was performed. In other words, the experimental
data represented the results of the backscattering of
light by the sea surface in the process of wave breaking.
It was established that the distribution of the wave
breaking zones was fractal and had the fractal dimen-
sion D = 0.5. As is well known, the dimension 0 < D < 1
characterizes the Cantor fractal set [11].

A paper was published recently [12] where an
attempt to theoretically relate dependence (1) to the
fractal properties of the sea surface was made. The
sound scattering by a fractal surface in the space E = 2
was considered under the condition that the surface was
characterized by the generalized Koch fractal curve.
This curve is characterized by the following parame-
ters:

(2)

Here,

; (3)

n is the number of the sequence (step) of the fractal

curve formation; Λ0 is the primer; , , and 
are the elements constituting the leader of the Koch
curve; A0 is the amplitude; and Θ is the angle between
the neighboring elements of the fractal set (the Koch
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curve). The Hausdorff measure for the indicated gener-
alized fractal curve is expressed by the formula

(4)

where D is the fractal dimension and 1 < D < 2. The cal-
culation of the sound scattering was conducted in the
Kirchhoff approximation when the condition λ ! Λ0,
A0, where λ is the sound wavelength, is satisfied. Essen-
tially, the calculation of the sound scattering by the sur-
face approximated by the Koch prefractal was con-
ducted in the Kirchhoff approximation. The calculation
of the scattered field was conducted using the proce-
dure proposed by Freedman [13] in order to exclude the
specific properties of the prefractal from consideration.
The expression for the strength of the sound backscat-
tering by a fractal rough surface (the Koch prefractal),
which was obtained by Qian [12], has the form

, (5)

where f is the frequency, h is the average height of
roughness, and Θ is the glancing angle. Expression (5)
almost coincides with Eq. (1), if we assume that the
conditions Θ ≈ π/2 and D ≈ 0.5 are satisfied.

The dimension D of the Koch prefractal obeys the
condition 1 < D < 2. According to Qian [12], the
necessity to satisfy the condition D ≅ 0.5 in Eq. (5) can
be explained by the fact that, in the case of the back-
scattering of sound, a quasi-degeneration of the con-
tinuous Koch fractal curve into the Cantor set occurs.
Such an explanation can seem quite reasonable in the
light of the above-mentioned results of the optical
experiments [10].

Comparing Eqs. (1) and (5), one can arrive at a con-
clusion that the conditions with the sound backscatter-
ing occurring by individual troughs of the sea surface
waves corresponded to the results of the acoustical
experiments generalized by Schulkin and Shaffer [1].
However, the state of the sea surface in this case was
such that, even in the presence of breaking waves,
which were observed in the optical experiments by
Zaslavskiœ and Sharkov [10], no effective formation of
a subsurface layer of air bubbles takes place. Other-
wise, when a layer of air bubbles is formed under the
sea surface, the dependence described by Eq. (1) is vio-
lated. However, as Gilbert demonstrated [14], in this
case the sound backscattering by the sea surface also
obeys the fractal laws. The sound scattering is caused in
this case not by the sea surface itself, but by the layer of
air bubbles. As it turned out, the spectrum of the sound
velocity fluctuations in the subsurface bubble layer
obeys the Kolmogorov–Obukhov law, which (as is well
known now) reflects the fractal structure of turbulence.
The calculations of the strength of the sound backscat-
tering made by Gilbert [14] agree with the experimental
data even for rather low frequencies (from 0.1 kHz) and
for a wide range of glancing angles.
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Schulkin and Shaffer [1] have noted that earlier
many researchers obtained power laws for the varia-
tions of the intensity of the sound backscattering by the
sea surface. As above (see Eq. (1)), the experimental
dependences obtained by them can be represented in
the form

, (6)

where K1 = 3.28 × 102 and ν1 = 2.03 [15]; K2 = 5.57 ×
103 and ν2 = 1.52 [16]; K3 = 1.81 × 103 and ν3 = 1.43
[17]; and K4 = 6.88 × 103 and ν4 = 1.03 [18]. Corre-
spondingly, K = 3.649 × 104 and ν = 0.99 for depen-
dence (1) by Schulkin and Shaffer [1].

One could treat the dependences given by Eq. (6) as
single and, in a certain sense, incidental facts. Appar-
ently, Schulkin and Shaffer [1] treated them in just this
way, and, generalizing, they obtained the average
dependence given by Eq. (1).

In our opinion, in reality these results are quite nat-
ural when taken separately. Each time, they reflect the
experimental conditions or, in other words, the state of
the sea surface and its fractal properties, while the value
of the power index reflects the fractal dimension. This
conclusion agrees well with the idea of Shaefer and
Keefer [2] that the approximation of the experimental
spectrum of the sea surface waves obeys a power (frac-
tal) law

, (7)

where ω is the frequency of waves and A is a constant.
The analysis of a large number of experimental

spectra of fully developed waves [19] (see [1]) demon-
strated that, for the frequency interval ω = 1.5–3.8 s–1,
the values of n lie within the interval n = 2.5–4.3.

The fact that the fractal properties of waves at the
sea surface can be characterized by different values of
the fractal dimension depending on the external condi-
tions is confirmed, for example, by the results of optical
experiments [20] and by their comparison with the
results of the experiments by Zaslavskiœ and Sharkov
[10]. Zosimov and Naugolnykh [20] presented the
results of an experimental study of the statistical char-
acteristics of wind waves at the ocean surface. The
studies were conducted by scanning over the surface by
a laser beam. It turned out that the set of specular points
at the rough ocean surface was the Cantor set with the
fractal dimension 0 < D = 0.8 < 1. Recall that the opti-
cal experiments by Zaslavskiœ and Sharkov [10] pro-
vided the fractal dimension D = 0.5. The results of the
experiments by Zaslavskiœ and Sharkov [10] and Zosi-
mov and Naugolnykh [20] not only agree but also indi-
cate the variety of the fractal properties of the rough sea
surface.

Finally, it is necessary to note that, as was expected,
in the case of small-amplitude waves at the surface or
relatively large wavelengths of sound, Rayleigh scatter-
ing is observed and the power index in the power law

Ns 10 fh Θ/Kisin( )
νilog=

F Aω n–=
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governing the sound intensity variation with frequency
is ν = 4. The sea surface behaves as a Euclidean surface,
and, even if it is fractal and not Euclidean, its fractal
properties may not manifest themselves in the low-fre-
quency sound scattering.

Thus we can state that the high-frequency surface
reverberation observed in the sea in a wide range of
variation of sea waves is characterized by fractal prop-
erties or has a fractal nature. The frequency dependence
of the reverberation intensity obeys a power law with
the fractional value of the power index. The value of the
index contains information on the fractal properties of
the sea surface and on its fractal dimension and can
serve for characterizing the wind waves.
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Oleg Pavlovich Galkin (On His 70th Birthday)
On September 6, 2000, Oleg Pavlovich Galkin—a
well-known specialist in ocean acoustics and underwa-
ter acoustic engineering and one of the leading scien-
tists of the Andreev Acoustics Institute—turned sev-
enty.

In 1953, Galkin graduated from the Physics Depart-
ment of Moscow State University and started working
at the Acoustics Institute of the Academy of Sciences of
the USSR. His whole scientific career has been related
to the Acoustics Institute where he was promoted from
the position of radio engineer to head of a research
department.

The scope of Galkin’s scientific interests covers a
wide range of problems of underwater acoustics. Long-
term studies of sound fields in the ocean are related to
his name, including the fundamental works on the hor-
izontal refraction of sound, the form of the phase front
of sound waves in an oceanic waveguide, the frequency
dependence of the positions of convergence zones, etc.
Galkin supervised the design and manufacture of
1063-7710/01/4702- $21.00 © 20239
unique research systems for the ships of the Acoustics
Institute. He is responsible for a number of develop-
ments without which up-to-date underwater acoustic
experiments would be difficult to perform. He proposed
a method for precise measurement of the distance
between submerged transmitting and receiving systems
in the open ocean, a method for exploding charges at a
strictly predetermined depth from on board a drifting
ship, and a method for determining the coordinates of a
sound source from the structure of the sound field
received at relatively long distances.

Galkin supervised many oceanic experiments which
were carried out with the help of research vessels in
various regions of the ocean. The geography of the
expeditions where Galkin performed his experiments
includes the coastal regions of the Black Sea, the Kola
Peninsula, and Kamchatka; he also took part in a polar
expedition on a floating research station.

Galkin pays much attention to the practical applica-
tions of scientific results. He supervised important
research and development works aimed at designing
underwater acoustic weapons for the navy, including
the development of the first Soviet underwater acoustic
systems for long-range operation.

The results of the studies carried out by Galkin are
presented in his ~200 publications including papers in
leading Russian journals and collections of papers and
in reports. Galkin is the author of many inventions. The
most important results obtained by Galkin were pre-
sented at international, all-Union, and all-Russian con-
ferences and meetings.

Several candidate dissertations in physics and math-
ematics were prepared and defended under Galkin’s
supervision. He was the editor of many issues of the
Proceedings of the Acoustics Institute.

Galkin’s characteristic features are a thorough
approach to the analysis of scientific results, the desire
to consider in close detail all problems arising in his
work, and high standards for the reliability of his con-
clusions and recommendations.

In communicating with his colleagues, as well as in
solving various difficult problems, Galkin is always
guided by high moral principles.

In 1967, Galkin defended his candidate dissertation
in physics and mathematics. In 1970, he received the
title of senior researcher. Since 1972, he has been a
member of the Scientific Council of the Acoustics Insti-
tute.
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Galkin combines research with tutorial activity. He
delivers lectures to the students of the Moscow State
Institute (Technical university) of Radio Engineering,
Electronics and Automation.

Galkin’s views on the problems of the formation of
sound fields in the ocean, as well as on other problems
of underwater acoustics, are highly respected by spe-
cialists from many institutions involved in the develop-
ment of underwater acoustic equipment. His collabora-
tion with these organizations substantially contributed
to the development of Russian underwater acoustics.
Galkin’s activity in science and engineering was
praised by the government: he was awarded two orders
of merit and four medals.

Celebrating his 70th birthday, Oleg Pavlovich
Galkin is full of energy and creative ideas. We wish him
health and more success in science and in his other
areas of interest.

Translated by E. Golyamina
ACOUSTICAL PHYSICS      Vol. 47      No. 2      2001



  

Acoustical Physics, Vol. 47, No. 2, 2001, p. 241. Translated from Akusticheski

 

œ

 

 Zhurnal, Vol. 47, No. 2, 2001, p. 288.
Original Russian Text Copyright © 2001 by Lyamshev.

      

INFORMATION

 

International Editorial Forum
The 2000 International Editorial Forum was held in
New York on October 4 and 5, 2000. It was a meeting
of Editors-in-Chief of physical science journals of the
Russian Academy of Sciences with the managers of the
American Institute of Physics (AIP) and the Interna-
tional Publishing Company “Nauka/Interperiodica”
(MAIK “Nauka/Interperiodica”). The forum was orga-
nized by the AIP and MAIK “Nauka/Interperiodica.” It
was a regular event in a series of meetings that have
been held over the last ten years. 

Now the English language versions of almost all
physics journals of the Russian Academy of Sciences
such as Acoustical Physics, Astronomy Reports, Jour-
nal of Experimental and Theoretical Physics, Technical
Physics, Physics of Atomic Nuclei and many others are
published by MAIK “Nauka/Interperiodica” and dis-
tributed worldwide (including electronic versions) by
the AIP. 

The forum was opened with addresses by Acade-
mician R. Petrov, Vice-President of the Russian
Academy of Sciences; M. Brodsky, Executive Direc-
tor of the AIP; and N. Avanesov, First Deputy Direc-
tor General of MAIK “Nauka / Interperiodica.” The
significant progress in the joint activities of the AIP and
MAIK “Nauka/Interperiodica” was noted. N. Avanesov
and D. Walters (AIP) presented reports on the state of
publication and translation of journals. M. Flikop, the
manager of the department of translations of the AIP,
delivered a detailed report on the translation and publi-
cation activities of the AIP. The English language ver-
sions of physics journals of the Russian Academy of
Sciences are refereed by the research consultants of the
AIP, who give their opinions on each issue of each jour-
nal characterizing the quality of translation and scien-
tific level of the published articles. The general conclu-
sion was that the level of articles is high and the quality
of translation meets the requirements. 

A special report was devoted to marketing and the
state of subscriptions. The necessity for more active
work on expanding subscriptions in countries such as
Singapore, Malaysia, the Philippines, Thailand, and
Vietnam was noted. 

F. Perugini (AIP) made a report on the electronic
versions of the AIP journals and their presentation on
1063-7710/01/4702- $21.00 © 20241
the Internet. Significant progress in the distribution of
electronic versions of papers was noted. Now about six
million electronic copies of papers from AIP journals
are requested per year! Special attention was given to
the AIP initiatives in the development of electronic
forms of physics journals published by the AIP and the
realization of these initiatives in practice. One of these
initiatives is the publication of so-called virtual jour-
nals. Another initiative is the organization of references
on web sites. The AIP has started the publication of a
virtual monthly journal “Biophysics.” This journal pub-
lished monthly in electronic (virtual) form compiles
multiple articles in biophysics from various journals of
different publishers (not only the AIP) from all over the
world. The AIP made special contracts with all these
publishers. These contracts secure the copyright. An
advantage of this virtual journal lies in the fact that an
expert in biophysics does not need to search for neces-
sary articles in various journals. The virtual journal
includes the overwhelming majority of papers pub-
lished in leading journals from many countries over the
last month. 

It was noted in particular that starting from 2000
almost all English-language versions of physical jour-
nals of the Russian Academy of Sciences will be pub-
lished in electronic form, not only the abstracts of arti-
cles as was done before. 

The 2000 International Editorial Forum was closed
by the final addresses by M. Brodsky, Executive Direc-
tor of AIP and Academician R. Petrov, Vice-President
of the Russian Academy of Sciences. Both speeches
stressed the fruitfulness of the joint work done by the
AIP and MAIK “Nauka/Interperiodica” and the good
prospects of adopted decisions on further joint publish-
ing activities. 

The forum sessions were well organized. This pro-
vided an opportunity to maintain their tight schedule.
The participants could exchange their views in official
and unofficial discussions and consider specific plans
of joint publishing activities. 

L. M. Lyamshev

Translated by M. Lyamshev
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