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The oxidation process of diamond powders in vari-
ous media and under various conditions has been ana-
lyzed in a large number of papers. There is no common
opinion on the mechanism of diamond gasification. The
kinetics of the oxidation process is very sensitive to the
grain shape, size, and impurity content in diamond
powders. The ARK4 and ARV1 diamond powders
obtained by crushing polycrystalline diamonds of the
carbonado and ballas types contain up to 20 wt % of
metallic impurities, whose composition corresponds to
commonly used catalyst alloys. However, there has
been no systematic study on the effect of catalyst alloy
content on the oxidation kinetics of polycrystalline dia-
monds.

In this paper, we study the effect of catalyst alloy
content on the oxidation process in the ARK4 polycrys-
talline diamond powders. The powders were prepared
by crushing carbonado diamonds. Carbonado polycrys-
tals were synthesized using MGOSCH graphite over
the course of 15 s at 1800–1900 K with a starting pres-
sure equal to 8.0 GPa. A toroid-type high-pressure
chamber was used for the synthesis of the crystals.

The oxidation of diamonds in air was studied under
nonisothermic conditions using the Paulik–Paulik–
Erdelyi derivatograph. For each sample, thermogravi-
metric (TG), differential thermogravimetric (DTG),
and differential thermal (DTA) curves were recorded.
The measurements were characterized by the following
values of sensitivity: 200 and 500 mg/100 divisions for
TG curve, 1/10 (DTG curve), 1/15 (DTA curve). The
studies were carried out in ambient air at atmospheric
pressure. The heating rate was 5 K/min for heating up
to 1270 K and 7.5 K/min for heating up to 1670 K.
Ceramic crucibles and platinum plates were used as
vessels for the samples. The mass of the batch of poly-
crystalline diamond powder was 0.5 g. Aluminum
oxide annealed at 1700 K was used as the standard.

The study of the oxidation process in polycrystalline
diamonds included two stages: analysis of the oxida-
tion process in ARK4 800/630 diamond powders
obtained with the use of a Cr20Ni80 alloy as a catalyst
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and study of the resistance to oxidation of ARK4
250/200 powder produced in the case of different
metallic systems. The thermograms characterizing the
oxidation of these diamond powders (Fig. 1, ceramic
crucibles were used as vessels) illustrate the complex-
ity of the processes occurring in the system under study.
The initial stage of carbonado oxidation at tempera-
tures above 850 K is characterized by an exothermic
effect (the DTA curve), by a loss of mass (TG curve),
and by an increase in the reaction rate (DTG curve).
The exothermic effect attains its peak at 1030–1050 K.
As a result of further heating, the enthalpy of the sys-
tem under study increases (the DTA curve goes down,
illustrating the decreasing heat release in the oxidation
process), whereas the oxidation rate changes only
slightly. At 1120–1150 K, another exothermic peak is
observed in the DTA curve simultaneously with a sharp
increase in the oxidation rate (DTG curve). Beginning
from 1170 K, the reaction under study shifts toward the
endothermic zone, since the oxidation process is
accompanied by heat absorption, and the oxidation
rate, having attained its maximum, slightly decreases
and then remains nearly unchanged. At a temperature
of about 1300 K, a local endothermic minimum (DTA
curve) is observed, which is related to the melting of the
metallic phase in diamond polycrystals. The melting of
eutectics is accompanied by a certain increase in the
oxidation rate, manifesting itself not only in the DTG
curve but also in the DTA curve, which shifts toward
the exothermic side of the oxidation process.

From the standpoint of application, it is undoubt-
edly of primary importance to study the initial stages of
the oxidation process in diamond polycrystals, because
significant changes in their physical and mechanical
properties occur at relatively low temperatures. Quali-
tatively, description of the initial stages of the oxidation
process in polycrystalline diamonds seems to be similar
to that reported in [1, 2] for the oxidation of synthetic
diamond single crystals. At the beginning, when there
are no limitations on oxygen transport to the diamond
surface, the exothermic reaction dominates:

(1)

A certain amount of the heat absorption by the sys-
tem under study at 1070–1120 K is most probably
related to the fracture of the diamond crystallites [3].

Cdiam O2 CO CO2( ) Q.+→+
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Oxygen adsorption at the virgin surfaces results in a
decrease in the reaction rate (DTG curve) and then, in
its steep increase, represented by the exothermic peak
in the DTA curve.

Carbon oxide CO, arising according to the above
reaction, transforms partially or completely into CO2 if
there is enough oxygen. Enhancement of the CO2 con-
centration in the intergrain pores and above the dia-
mond batch in the free space of the crucible impedes
oxygen transport to the reaction zone. This causes a
change in the mechanism of diamond oxidation [1].
The following endothermic reaction begins:

(2)

The existence of the peak in the DTA curve testifies
to the limitations of oxygen transport for oxygen atoms
and is a consequence of the competition between reac-

Cdiam CO2 CO Q.–→+
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Fig. 1. Oxidation thermogram for ARK4 800/630 powder.
The vessel for the sample is a ceramic crucible; the batch
mass is 500 mg.
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tions (1) and (2). The pronounced endothermic effect in
the system under study suggests that the second reac-
tion dominates above 1100 K.

The sequence of the oxidation stages in the poly-
crystalline diamond is most clearly illustrated by anal-
ysis of the thermogram shown in Fig. 2. In this case,
platinum plates were used as vessels for the diamond
powder batch. As a result, both the oxygen transport to
the diamond surface and the removal of reaction prod-
ucts becomes easier in the process of oxidation. The
oxidation of carbonado, which begins at temperatures
above 850 K, occurs as an exothermic reaction. The
oxidation rate significantly increases at temperatures
above 1100 K, and the DTA and DTG curves confirm
this fact. The oxidation has such an intensity that the
heat released in the exothermic reaction becomes suffi-
cient for the diamond powder to be self-heated.
The sharp temperature increase in the reaction zone
(curve T) is an indication of this fact. The amount of
carbon dioxide produced in the course of the actively
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Fig. 2. Oxidation thermogram for ARK4 800/630 powder.
The vessel for the sample is a platinum plate; the batch mass
is 500 mg.
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proceeding reaction (1) is so large that this gas does not
have enough time to leave the reaction zone, and, as a
consequence, a pronounced endothermal dip is
observed in the DTA curve immediately after the exo-
thermic peak at 1170 K. The former is an indication of
intense endothermic reaction (2). The significant heat
absorption by the system under study in the course of
this reaction affects even the temperature decrease
(curve T) in the reaction zone. A certain decrease in the
oxidation rate of the polycrystalline diamond (DTG
curve) can also be explained by this effect. Further on,
the oxidation process occurs in the endothermic zone
and the shape of the DTG and DTA curves is deter-
mined by the competition of exothermic and endother-
mic reactions (with account taken of the relatively
intense removal of the oxidation products).

The effect of chromium in the alloys of a nickel–
chromium system and the effect of carbon in the alloys
of a Cr20Ni80–carbon system used for producing dia-
mond polycrystals were studied based on the estimate
of the mass loss ∆m/m for ARK4 250/200 powders on
heating up to 1270 K. The heating was performed at a
rate of 5 K/min. The resistance to oxidation of the dia-
mond powder increases with chromium content in the
catalyst up to 20 wt % (∆m/m decreases from 37 to
23%). The increase in the carbon content in the catalyst
leads to lowering of the resistance of the diamond to
oxidation (∆m/m attains 33%). Introducing titanium,
tantalum, and molybdenum into the catalyst alloy
Cr20Ni80 does not affect the resistance of the diamond
to oxidation. The temperature at which the batch mass
of ARK4 250/200 powder reduces by one percent was
considered the temperature of the onset of oxidation
Tonset . For ARK4 250/200, Tonset was always equal to
910 K.

The effect of boron and boron-containing com-
pounds upon the oxidation of polycrystalline diamonds
was studied by doping of Cr20Ni80- and Mo15Ni85-
based catalyst alloys, respectively. The Cr20Ni80 alloy
was doped by up to 10 wt % of boron, and up to
50 wt % of borides TiB2 and BNcub was introduced into
the Mo15Ni85 alloy. Quantitative spectral analysis
demonstrated that the boron content in the polycrystals
(up to 4%) was proportional to that in the catalyst alloy
Cr20Ni80 and that the introduction of up to 10–15%
borides into the Mo15Ni85 alloy also results in a pro-
portional enhancement of the boron content in the poly-
crystals. Analysis of the oxidation thermograms for the
ARK4 250/200 polycrystalline diamond demonstrated
that boron and titanium diboride introduced into the
initial catalyst alloy stimulate a substantial increase in
the resistance to oxidation of the synthesized carbon-
ado. Oxidation starts above 900 K, and up to 1100 K,
the polycrystalline diamond is oxidized at a very low
rate. Hence, the exothermic peak (at 1130 K) and the
DOKLADY PHYSICS      Vol. 45      No. 12      2000
endothermic dip in the DTA curve become shifted
toward higher temperatures.

Qualitative changes in the initial oxidation stages of
the synthetic polycrystalline diamond with an increase
in the titanium diboride content in the catalyst used for
the synthesis can be revealed by analysis of the DTA
curve corresponding to the oxidation thermograms
(Fig. 3). Even a small addition (1%) of TiB2 into the
catalyst results in a larger splitting of the exothermic
peaks: the first peak becomes lower and the second
slightly increases. Such a picture testifies to the
decrease as a whole in the intensity of oxidation for
polycrystalline diamond at the initial period of time. At
a low content of boron-containing compounds, the
amount of boron seems to be insufficient for the forma-
tion of a dense protective B2O3 film. Thus, the oxida-
tion of diamond and the formation of the protective film
occur simultaneously with an increase in temperature.
The complicated form of the DTA curve is a conse-
quence of these two simultaneous processes. An
increase in the TiB2 content in the catalyst results in
smoothing of the first exothermic peak corresponding
to the carbonado oxidation reaction until the peak com-
pletely disappears. This occurs when the amount of
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Fig. 3. Qualitative change in the initial stages of the oxida-
tion process (DTA curves) for a polycryctalline diamond at
various contents of titanium diboride in the initial catalyst.
The powders are ARK4 250/200; the vessels for the sample
are ceramic crucibles. Contents of titanium diboride in
Mo15Ni85 catalyst are (1) 0; (2) 1; (3) 5; (4) 10%.



 

638

        

ELYUTIN 

 

et al

 

.

                                                                       
TiB2 introduced attains 10%. In addition, the second
exothermic peak undergoes a certain shift to higher
temperatures (up to 1130 K). This evolution of the DTA
curves seems to be related to the enhancement in uni-
formity of the protection of polycrystalline diamond
against oxidation. This results in lowering of the oxida-
tion intensity.

The results of quantitative analysis of the oxidation
thermograms for polycrystals synthesized on the basis
of a Mo15Ni85–TiBr2 catalyst system are shown in
Fig. 4. The increase in the TiB2 content in the catalyst
up to 10% is accompanied by a quantitative increase in
the resistance to oxidation of the synthesized diamond
polycrystals. The increase in the resistance to oxidation
is characterized by the following parameters: Tonset

increases from 910 to 1040 K and ∆m/m decreases from
22 to 11% (heating to 1270 K at a rate of 7.5 K/min).
Further increase in the TiB2 content does not cause any
changes in the quantitative characteristics of the car-
bonado oxidation process. The resistance to oxidation
of polycrystals exhibits no quantitative changes, if, in
addition to titanium diboride, the initial catalyst con-
tains cubic boron nitride. A similar quantitative
enhancement of the resistance to oxidation is observed
for carbonado polycrystals when the Cr20Ni80–B sys-
tem is used as a catalyst for synthesis.
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Fig. 4. The effect of titanium diboride content in the initial
catalyst on the temperature of the oxidation onset Tonset and
on the relative mass loss ∆m/m for the polycrystalline dia-
mond. Tonset corresponds to the 1% mass loss for the ARK4
250/200 powder; ∆m/m is the mass loss for ARK4 250/200
while heating in ambient air up to 1270 K.
The enhancement of the resistance to oxidation for
diamond polycrystals containing boron compounds is
caused by the formation of boron oxide (B2O3) due to
interaction with air oxygen. For example, titanium
diboride starts to oxidize at a temperature of approxi-
mately 700 K [4]. Melting of B2O3 (above 900 K)
seems to enhance its protective properties, since the
high-mobility liquid oxide film “heals” the macro- and
microdefects in the diamond polycrystal. B2O3 oxide
manifests itself as a white substance at the surface of
boron-containing polycrystalline diamonds after they
have been heated.

The experimental results presented above, in partic-
ular, the evolution of the DTA curves corresponding to
the oxidation thermograms (Fig. 3) and the quantitative
variation in the resistance to oxidation for carbonado
polycrystals (Fig. 4), are adequately explained by the
formation of a protective B2O3 oxide film. However, if
we use a catalyst with another boron-containing com-
pound, namely, cubic boron nitride, the enhancement
of the resistance to oxidation is not observed for syn-
thesized diamond polycrystals, since the quantitative
characteristics of the oxidation process remain almost
unchanged. This can be explained by the fact that cubic
boron nitride starts to oxidize at higher temperatures
than diamond does [5].

Thus, in this paper, we revealed the features of the
oxidation process for polycrystalline carbonado dia-
monds. The sophisticated character of this process is
determined by the exo- and endothermic reactions pro-
ceeding in succession and in parallel to the gasification
of the diamond.

It was experimentally established that by introduc-
ing carbon into the initial Cr20Ni80 catalyst alloy, we
increase the carbonado oxidation rate. This testifies to
the fact that the ultimate saturation of the metallic
phase in polycrystals by carbon is not attained in the
synthesis of diamond polycrystals.

It was found that doping by boron (TiB2) results in
both an increase in the oxidation onset temperature for
polycrystalline diamond from 910 to 1040 K and a
slowing down of the diamond oxidation rate, which is
related to the formation of a protective layer of B2O3

oxide at relatively low temperatures.

The evolution of the experimental DTA curves cor-
responding to the carbonado oxidation thermograms
discussed in this paper clearly demonstrates a qualita-
tive change in the initial stages of the oxidation process
for polycrystalline diamond with enhanced TiB2 con-
tent in the catalyst used for synthesis. This change man-
ifests itself in a shift of the exothermic peaks toward
higher temperatures, which is caused by enhancement
of the uniformity of diamond protection against oxida-
DOKLADY PHYSICS      Vol. 45      No. 12      2000



        

THE EFFECT OF METALLIC PHASE IN A DIAMOND POLYCRYSTAL ON ITS OXIDATION 639

                    
tion with an increase in the amount of protective B2O3
oxide.
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It may be taken for granted that the functioning of a
cathode spot of a vacuum arc at low electric-current
values (on the order of several threshold values for the
arc-discharge currents) is caused by electric microex-
plosions at the cathode surface due to the high energy
concentration in the cathode’s microvolumes [1, 2].
Each of such microexplosions emits a portion of elec-
trons (electron cluster) referred to as an ecton. On this
basis, the occurrence of spatial (cells) and time (cycles)
discreteness of a cathode spot was explained in [3].
From the data of [3], the cell current for mercury and
copper cathodes is 2ithr , where ithr is the threshold cur-
rent. This is also confirmed by later measurements for
tungsten and molybdenum cathodes [4]. According to
the ecton model, a cathode spot of a high-current vac-
uum arc consists of a number of autonomous cells and
each of them proceeds for a time ~10−8 s. This conclu-
sion is confirmed by the fact that the trace of a cathode
spot always has a substructure (small craters with a size
of ~10–4 cm [5-7]) and also by optic studies of cathode-
spot structure [8].

However, there are certain facts that do not fit into
the above concept. The most essential of them is that
there exists a critical current such that, upon attaining
it, a spot is divided into parts. For many metals (Cu,
Mo, W, Al, etc.), this current amounts to il = 50–300 A
[5]; i.e., it is many times higher than the double arc
threshold current. There are other facts that, at first
glance, also contradict the idea of the spot’s cellular
structure: the increase in the cathode-spot diameter
with current [9], the dependence of the spot-current
density on the arc current intensity [9], the increase
in formation time for a trace of a cathode spot with cur-
rent [7], etc.

Nevertheless, assuming that a high-current arc (i @
2ithr) is a collective ecton process, all these points can
be explained. As was noted above, a major argument in
favor of this assumption is the presence of microcraters
with radius rc on the order of 10–4 cm in a cathode-spot
trace [5–7]. This is not only qualitative, but also quan-
titative evidence of ecton processes in a cathode spot.
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Indeed, if a crater is produced because of the thermal
conductivity, the speed of the thermal boundary attains
104 cm/s; therefore, the formation time for such a crater
is τÒ ~ 10–8 s. If the current flowing through a cell is ic =
2ithr and ithr ~ 1 A [3], then the current density in the cell
will be jc ~ 108 A/cm2. Such values for the parameters
rc , τÒ , and jc stem from ecton processes in a cathode
spot of a vacuum arc [1].

With the purpose of analyzing the parameters of a
cathode spot, we use experimental data obtained by
Daalder [9]. In the figure, the most probable diameter
of a cathode-spot trace is shown as a function of the
vacuum-arc current for a copper cathode. From this fig-
ure, it follows that the spot diameter is ~4 µm for cur-
rents lower than 40 A and, furthermore, linearly
increases with the current. The dependence of the mean
spot-current density on the current magnitude (see fig-
ure) exhibits a pronounced maximum; j ~ i to the left of
the maximum and j ~ i–1 to the right of it. For an arc cur-
rent equal to the double threshold value, the current
density estimated from a spot trace is 2.7 × 107 A/cm2

and the current-density maximum is jm = 2 × 108 A/cm2.
Therefore, for j = jm, no less than seven cells located in
immediate proximity to each other act in the cathode
spot; i.e., this is the maximum overlapping of cells in
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the current density. Thus, a cathode spot of a high-cur-
rent vacuum arc is caused by a multiecton process. Col-
lectivization of plasma flows for individual ecton
cycles occurs in this process, and this fact explains
many of the apparent contradictions between high-cur-
rent and low-current arcs.

We now consider this effect in more detail. In the
case of low currents, a weak dependence of the diame-
ter of a cathode-spot trace on the current intensity (see
figure) follows from the fact that this trace is governed
by the thermal conductivity of the cathode material.
Indeed,

dc = 4(atc)1/2, (1)

where a is the thermal diffusivity and tc is the current-
flow time during the ecton cycle. For copper, tc ≈ 3 ×
10−8 s and a = 0.42 cm2/s (liquid copper) [1]. Therefore,
dc ≈ 4 µm, which is consistent with the results of [9]. In
this case, the current density is

(2)

i.e., in the right-hand side of the curve j(i), we have j ~ i.
In the linear high-current segment of the curve dc(i)

(see figure), the expansion of the cathode-spot radius is
determined by the Joule heating. Under the assumption
that, for the arc current i @ 2ithr , a number of cells
simultaneously act inside a cathode spot, the cyclicity
factor can be disregarded and the arc current can be
considered as time-independent; i.e., i = const. In this
case, the diameter of a crater produced due to the Joule
heating is found from formula given by [1] as

(3)

where  is the specific action for an explosion. The arc
current is assumed to flow from a flat cathode surface.
The crater expansion ceases at the time moment when
the heat transfer into the cathode interior owing to the
thermal conductivity begins to play an essential role,
i.e., when

(4)

From formula (4), it follows that the lifetime for such a
collective cathode spot is

(5)

its diameter is

(6)
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and the current density is

(7)

Therefore, as in the experiments described in [9], we
obtain dc ~ i and j ~ i–1 for high currents (see the figure).
It is also worth noting that, according to the Juttner data
(see [7]), the spot lifetime in the case of a copper cath-
ode for current values of i ≥ 50 A attains τÒ ~ i2 , which
is in agreement with relation (5) derived by us.

Here, the following question arises: To what value
of the current will a cathode spot of a high-current vac-
uum arc exist as a whole? Evidently, this will remain
true as long as it is profitable from the energetic stand-
point, namely, as long as the mean current density in a
spot exceeds the current density in an individual cell,
i.e., as long as the collectivization of cathode-plasma
flows takes place. In this case, both the energy concen-
tration and the plasma density are higher than for
autonomous cells and they are confined to a single col-
lective cathode spot. As soon as these current densities
become equal, spot splitting occurs. The corresponding
arc current is the cathode-spot ultimate current.

For understanding the mechanism of confining cells
in a cathode spot for an arc current below its ultimate
value and for explaining the nature of the ultimate cur-
rent, we turn back once again to the dependence j(i).
The spot-current density has a maximum for a current
magnitude of ~50 A. The intensity of the arc current im,
which corresponds to the maximum current density,
can be estimated from formulas (2) and (7) by equating
quantities j. Then, we obtain for the current im

im = 2π(a )1/2dc , (8)

where dc is the cell crater diameter. From formula (8),
the value of im for copper is ~90 A. Changing the arc-
current dependence of the current density according to
the law j ~ i–1 causes a decrease in the energy concen-
tration in a spot with increasing current; such a spot
tends to split.

The maximum value of the current density jm is 2 ×
108 A/cm2; i.e., it is more than seven times higher than
the cell-current density. The number of cells acting in
such a spot is n ≈ im/2ithr ≈ 16. We call the ratio δ = j/jc
the overlap coefficient. For the 100-A current, the mean
current density reduces to j = 8 × 107 A/cm2. Therefore,
we have δ = 3; i.e., there is a triple overlap of the current
density, although in this case, the total number of cells
in the cathode spot attains almost 30. All the processes
in a spot are intensified for a large overlap δ; the plasma
pressure increases (P ~ δ); the expansion velocity of
liquid metal jets (v1 ~ δ1/2) [1] is enhanced; and the con-
centration of the cathode plasma rises as long as it is
produced by several cells acting in immediate proxim-
ity to each other. Since the process of cathode-spot self-
maintenance occurs due to plasma interaction with jets

j
16πah

i
----------------.≈

h
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of liquid metal, this promotes the confinement of all the
cells at the same place in the case of δ > 1. For δ ≤ 1, in
such a collective spot, there will be no advantages for the
existence of all the cells together. Therefore, this condi-
tion determines the ultimate arc current. To find its value
from this condition, we use the dependence j(i) once
more. If it is continued to the region of higher current
intensities, a value δ = 1 is attained for i ≈ 150–200 A; this
must correspond to the ultimate current. This value of the
current is consistent with the results for copper [10],
according to which the mean number of cathode spots
simultaneously acting on the copper cathode within the
range 150–200 A is equal to two.

On the basis of this analysis, it can be concluded that
the high-current vacuum arc is a collective multiecton
process. From the energetic standpoint, the collectiv-
ization of cathode cells provides more advantageous
conditions for initiation and reproduction of microex-
plosions inside a cathode spot. As the arc current
increases, the mean current density in a spot decreases,
which results in its splitting.
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In recent years, considerable attention has been
drawn to the problem of epitaxial growth in steps in the
presence of the Schwebel diffusion barrier. This barrier
hampers interlayer mass transfer and leads to morpho-
logical instability in the growth surface and to the for-
mation of three-dimensional (3D) hillocks violating
smooth epitaxial growth [1–6]. In [7, 8], we proposed a
kinetic model of homoepitaxial growth in the presence
of the Schwebel barriers and clearly demonstrated that
an increase in barrier height leads to evolution from
atomically smooth layer-by-layer growth to smooth
multilayer growth and, then, to rough 3D growth. In
this paper, we extend this model to the case of hete-
roepitaxial growth.

THE MODEL

According to model [7, 8], growth takes place
owing to the formation and development of consecutive
2D islands in successive monolayers. The interlayer
mass transfer is taken into account using the concept of
a feeding zone. This can be introduced in the following
manner: we assume that only those atoms which are
found in a stripe of width λ, which is adjacent to the
perimeter of the islands, migrate into a lower layer from
an arbitrarily chosen kth layer of atoms deposited on
the islands. At the same time, the atoms deposited in the
central part remain there, forming the feeding zone for
the next (k + 1)th layer. The specific area ξka(t) of the
feeding zone is related to the filling ξ(t) of the kth layer
by the formula ξka(t) = ξk(R(t) – λ), where R(t) is the
generalized radius of the islands. In [7], using the con-
cept of the feeding zone, we derived a set of kinetic
equations for homoepitaxial growth. For their general-
ization to the case of heteroepitaxy (with no misfit in
the conjugated lattices), it is sufficient to take into
account that atoms deposited directly on a substrate
(k = 1) migrate along it according to with rate deter-
mined by the heterodiffusion coefficient Dh (cm2 s–1).
At the same time, the atoms deposited at the surface of
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the islands of the first layer and of all the subsequent
layers (k > 1) already migrate along their native surface
with a coefficient of self-diffusion, which we denote as
Ds (cm2 s–1). In this case, after the corresponding trans-
formations, the kinetic equations for the surface con-

centrations of adatoms ( ) and 2D islands ( ) and

for the filling ξk in the kth layer can be written in the

dimensionless variables nk = , Nk = , and τ = 

in the following form:

(1)

Here, ξ0a ≡ 1, because it is evident that the entire sub-
strate serves as the feeding band for the first layer,
whereas all ξka with k ≥ 1 are given by the formulas

(2)

Here, µh, µs, ηi*, and ω are the numerical parameters
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of the model:

(3)

These parameters characterize the diffusion mobility of
the adatoms (µh and µs), the stability of the critical
nucleus (ηi*), and the Schwebel effect (ω). Further-
more, J (cm–2 s–1) is the deposition rate; σ11 and 〈σ〉  are
the adatom–adatom and adatom–island (averaged over
the entire ensemble of the islands) trapping coeffi-
cients, respectively; i* is the size of the critical nucleus;
Ci* is the configuration constant; Ei* is the binding
energy for atoms in the critical nucleus; and N0 (cm–2)
is the density of surface lattice sites. Coefficient δ takes
into account the character of the coalescence: if the
islands colliding with each other cease to grow at their
contact area but retain their individuality and continue
to grow in all permitted directions, then δ = 0; if they
merge to form a single island, δ = 1. νs and νd are the
frequencies of the diffusion-driven jumps of an adatom
over the descending step at the island edge and at a
smooth terrace with activation energies Es and Ed ,
respectively, and EB = Es – Ed is the height of the
Schwebel barrier. The critical time moments τck , corre-
sponding to the nucleation of the (k + 1)th layer at the
kth layer, are measured from the time moment when the
kth layer arises. They determine the critical filling ξck =
ξk(τck) and are found from the integral equation

(4)

RESULTS AND DISCUSSION
We now consider the case of the full condensation

characteristic of epitaxy for semiconductors and
assume that i* = 1. Then, we have ηi* = σ11 = 2 and
δ = 1. The trapping coefficient 〈σ〉  can be calculated
using the relationship derived in the lattice approxima-
tion [9, 10]:

(5)

To characterize quantitatively the morphology of a
growing film, we calculated the rms roughness based
on kinetic curves for filling ξk(τ) of consecutive layers
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obtained by the numerical integration of the equations
in (1):

(6)

where h is the local thickness of the film, the angular
brackets denote the averaging over the entire film, and
h and σ are measured in units of monolayers. We also
calculated the intensity of the reflection high-energy
electron diffraction (RHEED) using the relationship

(7)

In principle, the Schwebel barrier can be both repul-
sive (EB ≥ 0) and attractive (EB ≤ 0). We restrict our-
selves to the widespread case of a repulsive barrier
which violates only smooth epitaxial growth because it
gives rise to an ascending diffusion flux of adatoms. If
this is absent, homoepitaxial growth (at sufficiently
high values of µ) occurs owing to the mechanism of
atomically smooth layer-by-layer growth. In this case,
roughness 
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 oscillates with a period equal to the depo-
sition time for a single monolayer between 
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 = 0.5
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 > 0. The value of 
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 serves as the measure of
deviation of the actual growth observed from the ideal
layer-by-layer growth for which 
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law. In the presence of a barrier, the oscillations 
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damp gradually with an increase in barrier height
(decreasing 

 

ω

 

) due to the growth of 

 

σ

 

min

 

 and, for a cer-
tain value of 

 

ω

 

 depending on 
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 and 

 

σ

 

, are stabilized at
the level 

 

σ

 

s

 

 

 

.

 

 0.5,

 

 indicating the transition from the
layer-by-layer to smooth-multilayer growth when its
front consists of several layers being filled simulta-
neously [8]. With subsequent decrease in 

 
ω

 
, the value of

 

σ

 

s

 

 increases continuously and, at a certain 

 

ω

 

, transition
to the 3D growth occurs. This is characterized by an
infinitely growing roughness. We concentrate on these
transient regimes of growth (layer-by-layer to smooth
multilayer and smooth multilayer to 3D).

In the figure, we show the results for fixed 
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and 
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 = 0.025 corresponding to the layer-by-layer to
smooth multilayer transition and for three values of 
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. After the deposition of several monolayers,
the kinetics of growth in all these cases is, naturally,
identical, because it is determined by fixed parameters
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 and 

 

ω

 

; however, at early stages, there are significant
distinctions. As is seen for 

 

µ

 

h

 

 < 

 

µ

 

s

 

, the second layer
nucleates much later (

 

ξ1c = 0.826) than for the
homoepitaxy (ξ1c = 0.5) that clearly manifests itself in
a dip in the σ(τ) curve and in the enhanced peak in the
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Kinetics of epitaxial growth for fixed values of µs = 1010 and ω = 0.025 and three different values of µh: 108 (on the left), 1010

(in the center), and 1012 (on the right). From the top to the bottom: kinetic filling curves ξk(τ) of the consecutive layers, rms rough-
nesses σ, diffraction intensities I, and densities Nk(ξ) of islands in the consecutive layers whose numbers are indicated near the
curves.
I(τ) curve. This is explained by the fact that, owing to
slow heterodiffusion, high-density islands are formed
in the first layer and are, correspondingly, small in size.
Thus, the highly mobile atoms deposited on them
migrate into the first layer and, being built in at the
perimeter of the islands, accelerate their growth. There-
fore, the first layer becomes almost completely contin-
uous before the nucleation of the second layer. On the
other hand, for µh > µs, owing to fast heterodiffusion, a
small number of large-size islands are formed in the
first layer, so that the low-mobility atoms deposited on
them do not have enough time to migrate to the first
layer and the second layer starts to grow very early
(ξ1c = 0.25). Thus, the effect of two mobilities can lead
either to the smoother (µh < µs) or rougher (µh > µs) ini-
tial growth impeding or stimulating the layer-by-layer
to smooth multilayer transition. With an increase in
barrier height and in the (relative) difference of mobil-
ities, this effect manifests itself even more distinctly.
For example, for the transition from the smooth-multi-
layer to 3D regime (µs = 109, ω = 0.01), the second
DOKLADY PHYSICS      Vol. 45      No. 12      2000
layer arises rather early in the case of homoepitaxy
(ξ1c = 0.35); whereas in the case of heteroepitaxy with
µh = 106 < µs , the second layer manifests itself at the
nearly filled (ξ1c = 0.95) first layer. At the same time,
the rough growth takes place almost from the very
beginning (ξ1c = 0.09) for µh = 1012 > µs .

The results obtained also clarify the evolution of the
nucleation kinetics Nk(ξ) in consecutive layers, which is
poorly known in contrast to submonolayer kinetics. In
the regime of smooth homoepitaxial growth (layer-by-
layer and smooth multilayer), Nk(ξ) varies at first, but
gradually tends to the steady-state form. As can be seen
from the figure (in the center), the Nk(ξ) curves move
downward with increasing layer number because, in
contrast to the first layer, for which the whole substrate
serves as the feeding zone, for all the next layers, it is
formed in the process of growth, so that the area
allowed for the nucleation is smaller. In the case of het-
eroepitaxy, the Nk(ξ) curves tend to the same limiting
curve N(ξ) determined by parameters µs and ω from
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above (from below) owing to the high (low) density of
islands in the first layer for µh < µs (µh > µs). The
obtained curves N1(ξ) are excellently fitted by the
well-known scaling law for submonolayer kinetics
(cf., [4, 10]):

(8)

with the exponent p = . Therefore, in the case

under consideration, we have i* = 1 with p = 1/3 and
a certain universal unimodal function f(ξ) with a maxi-
mum at ξ = 0.07. The amplitude and width of limiting
curves N(ξ) depend on µs ≡ µ and ω, but, as analysis
shows, they can also be represented in universal scaling
form:

(9)

with the same exponent p = 1/3, exponent q = 0.18, and
another unimodal filling function ϕ(ξ) having a peak at
larger ξ (ξ = 0.2).

Thus, the model allows us to estimate quantitatively
the effects of two different mobilities in the case of het-
eroepitaxy, which can play a substantial role in the
early stages important for the growth of ultrathin films

N1 ξ( ) µ p–
f ξ( )=

i*
i* 2+
--------------

N ξ( ) µ p– ωqϕ ξ( )=
(δ-layers as well as tunneling structures and hetero-
structures in nanoelectronics).
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The enhancement of differential transconductance
and operation speed of field-effect transistors is one of
the main lines in development of microelectronic
technology. This enhancement comes about through
minimization of the device channel length using the
ultimate potentialities of the lithographic process and
the implementation of materials with high charge-car-
rier mobility (High Electron Mobility Transistor—
HEMT technology). The current level of technology
makes it possible to attain a minimum channel length
Lg ≈ 0.1−0.2 µm and a maximum electron mobility
µ ~ 105 cm2/(V s–1) at T = 77 K and ~104 cm2/(V s) at
T . 300 K (in two-dimensional electron gas at a hetero-

contact). The ultimate frequency  would

be as high as several thousand gigahertz for character-
istic operating voltages V = 1 V, thereby far exceeding
the requirements of developers of up-to-date and future
systems for data transmission and processing. How-
ever, the Joule heating of electrons at high electric fields
(~105 V/cm) in the device channel reduces the effective
electron mobility to approximately ~102 cm2/(V s) and,
consequently, the ultimate frequency to 150–180 GHz.
At first glance, the fundamental implications of this
lowering of the mobility at high fields and the difficul-
ties preventing significant reduction of the channel
length through radical improvement in the quality (spa-
tial resolution) of the lithography restrict the operating
speed of the field-effect transistor to a level of several
hundred gigahertz.

The previous discussion is related to conventional
transistor technology where the parameters of the sub-
gate region are uniform along the channel length. How-
ever, we now assume that a series of local unconnected
regions with high conductivity (electron concentration)
in the transistor channel can be formed. In this case, the
channel will be an array of alternating high-resistance
and low-resistance regions of nearly equal length L
(approximately 10–20 nm). It is obvious (from the con-
dition of current conservation) that the electric field in

f T
1

4π
------µV

L2
-------=
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the channel of such a transistor oscillates in accordance
with the ratio of electron concentrations; i.e., high elec-
tric field E1 in the high-resistance regions and low field

E2 in the low-resistance regions  will alter-

nate in the manner qualitatively represented in Fig. 1.
Now, we recall a feature of electron Joule heating in
semiconductors that is of importance to us: electrons
are not instantaneously heated to the quasi-steady-state
temperature T = T0 + µE2τ0 (where T0 is the steady-state
value of the electron temperature). The heating requires
a so-called energy relaxation time τ0 . 10–12 s, during
which the drifting electrons pass a distance LT = µEτ0.
It turns out that in choosing a sufficiently high concen-
tration of electrons n2 in the low-resistance inclusions
(n2 > 10n1), one can ensure the validity of the following
set of inequalities: LT1 > L > LT2 . It is easy to under-
stand that in this situation, the electrons passing across
the high-resistance region do not have enough time to
be heated to high quasi-steady-state temperature values

µ τ0 which correspond to the high field .

E1

E2
-----

n2

n1
-----= 

 

E1
2 E1 . 2

V
L
---

E2

E1

L Lg

ϕ

Fig. 1. Distributions of voltage and electric field in the pro-
filed-channel transistor; dashed lines correspond to the dis-
tributions in a uniform channel.
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Here, they gain a rather small thermal energy ,

where ν is the number of low-resistance inclusions in
the profiled channel under discussion. On the other
hand, when passing across the low-resistance region,
the electrons have time to be cooled to lower quasi-

steady-state temperature values T0 + µ τ0 , which
slightly exceed the steady-state value T0 . Thus, the
motion of electrons in the profiled channel under con-
sideration, with a strongly oscillating electric field, will
be characterized by a relatively low mean electron tem-

perature T = T0 +  with insignificant

2V
5ν
-------

E2
2

µE2
2τ0

V
5ν
------+

T0

T

Lg

µ

eϕ

Fig. 2. Distribution shapes of the electron temperature and
mobility in the profiled-channel transistor.

2
5

 oscillations (Fig. 2). This ensures a high con-

stant value of electron mobility along the entire channel
length. Consequently, the operation speed (ultimate
frequency) of such a transistor will attain a level of sev-
eral thousand gigahertz. This is the basic idea of the
present paper.

The suggested idea is entirely viable. It is well
known that the implementation of such basic opera-
tions of microelectronic technology as laser annealing,
ion etching, and molecular-beam epitaxy, can give rise
to the formation of either “point” or “filamentary” spa-
tial structures with enhanced carrier concentrations at
the surface of the semiconductor layers. In the litera-
ture, both methods that prevent the formation of such
spatial structures and their possible application are
widely discussed. In this connection, we can also men-
tion studies of filamentary structures aiming to reveal
the features of electrical conductance inherent in one-
dimensional quantum objects and the more successful
applications of so-called quantum dots in semiconduc-
tor lasers [1]. It is clear that the same methods, e.g.,
molecular-beam epitaxy of heterostructures, can ensure
the formation of the quasi-classical many-electron dot
structures or filamentary structures needed for the
implementation of our idea.
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INTRODUCTION

Semiconductor heterostructures with quantum dots
(QDs), which are often considered to be artificial
atoms, are of interest both for pure science and in appli-
cation (i.e., for instrumentation). The most promising
technology of their production is based on heteroepi-
taxial growth by the Stranski–Krastanov mechanism,
when the epitaxial layer grows at the substrate which is
lattice-mismatched with the layer and QTs are formed
when the layer thickness exceeds a certain critical value
[1–3]. Although a lot of papers on the structural and
optical properties of QTs have been published in recent
years, to date, the electron transport in these systems, in
particular, under the effect of strong electric fields, is
far from being well understood. Data on QD-based
transistors are also absent.

In this paper, we study the optical and transport proper-
ties of two-dimensional (2D) electron gas in modulation
doped InAs N-AlGaAs/GaAs/InAs/GaAs/InAs/GaAs het-
erostructures containing QDs built into the instrument
channel. We also study the characteristics of transistors
based on these structures.

MOLECULAR-BEAM EPITAXY
OF MODULATION-DOPED 

HETEROSTRUCTURES WITH QDs

In this paper, we study two types of heterostructures
with QDs (S1 and S2) grown by molecular-beam epit-
axy on semi-insulating GaAs(100) substrates. Their
cross section is schematically shown in Fig. 1. This
cross section involves an undoped buffer GaAs layer
0.5 µm thick and two very thin InAs layers separated by
an undoped GaAs spacer layer 5.6 nm thick. For the S1
samples, the thickness of InAs- and GaAs-spacer layers
was equal to 1.07 and 5.6 nm, respectively. For the S2
samples, the corresponding values of thickness were
0.7 and 3.7 nm. In both cases, two QD layers of differ-
ent size and density were formed. Then, after growing a
second GaAs spacer layer 5.6 and 3.7 nm thick for the S1

Institute of Radio Engineering and Electronics, 
Russian Academy of Sciences,
ul. Mokhovaya 11, Moscow, 103907 Russia
1028-3358/00/4512- $20.00 © 20649
and S2 samples, respectively, an undoped Al0.2Ga0.8As
spacer layer 10 nm thick, a δ(Si)-doped layer, and an
undoped barrier Al0.2Ga0.8As layer 35 nm thick were
grown. The formation of the heterostructures was com-
pleted by the growth of an undoped GaAs layer 6 nm
thick and an n+ GaAs contact layer 40 nm thick doped
with silicon (with a dopant density of 3 × 1018 cm–3).
Pseudomorphic strained AlGaAs/InyGa1 – yAs/GaAs het-
erostructures without QDs were grown as reference
samples; these samples had the same mean molar con-
tent of In, y = 0.17, and the thickness of the
In0.17Ga0.83As layer was 12 nm.

OPTICAL AND ELECTRICAL PROPERTIES 
OF THE HETEROSTRUCTURES WITH QDs

An atomic-force microscopy image of the surface of
the S1 sample is shown in Fig. 2. For this sample, the
molecular-beam epitaxy growth was terminated imme-

3 × 1018 cm–3

n+ GaAs

6 nm,
undoped
GaAs layer 

δ(Si)-layer,

2.5 × 1012 cm–2

InAs,
d = 1.07 nm (0.7 nm)

InAs,
d = 1.07 nm (0.7 nm)

S
G

D

Al0.2Ga0.8As

ds = 10 nmAl0.2Ga0.8As

40 nm

GaAs 5.6 nm (3.7 nm)

GaAs 5.6 nm (3.7 nm)

35 nm

Undoped GaAs buffer layer

Semi-insulating substrate

GaAs (100)

0.5 µm
20–40 nm 20–40 nm

Fig. 1. Cross section of the modulation-doped heterostruc-
tures with QDs.
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diately after the deposition of the second InAs layer had
occurred. It is clear from Fig. 2 that the mean size of
QDs and their density are ~40 nm and 3 × 1010 cm–2,
respectively. The formation of QDs in the S1 and S2
samples was also confirmed by photoluminescence
measurements at 77 K. For these samples, broad photo-
luminescence bands characteristic of QDs were
observed at photon energies hν = 1.27 and 1.25 eV,
respectively. On the other hand, in the reference SR
sample, where QDs are absent, two narrow lines (at
hν1 = 1.356 eV and hν2 = 1.400 eV, respectively) were
observed in the photoluminescence spectrum instead of
a broad band. This is characteristic of modulation-
doped quantum wells; these lines correspond to the
optical transitions between two occupied electron sub-
bands and hole states [4, 5].

The results of the Hall-effect-based measurements
of the mobility µ2D and density n2D of 2D electrons in
various samples are presented in the table. It follows
from the table that the introduction of QDs into the

450

300

150

0

nm

150 300 450 nm

Fig. 2. Atomic-force microscopy image of the S1 sample
surface.

Results of the Hall-effect-based measurements of µ2D
and n2D

Samples
µ2D, cm2/(V s) n2D, cm2

T = 77 K T = 300 K T = 77 K T = 300 K

SR 10108 4500 8.2 × 1011 9 × 1011

S1 3000 2852 1 × 1011 6 × 1010

S2 1500 1000 8.3 × 1011 8.05 × 1011
instrument channel (samples S1 and S2) causes a
decrease in electron mobility µ2D for both of them and
a substantial lowering of the electron concentration n2D
in the S1 sample as compared to the reference sample
SR. In the S1 samples, evidently, trapping of the major-
ity of electrons at deep levels in the QDs takes place. In
the S2 samples grown with a smaller amount of depos-
ited InAs, the lateral sizes of the QDs can be smaller
and their deep levels, are, consequently, less deep. As a
result, a smaller number of electrons can be trapped by
these QDs. The lower values of electron mobility in the
S1 and S2 samples in comparison with the SR sample
provide a direct indication of the specific potentials
related to the introduction of InAs QDs into the instru-
ment channel. These potentials efficiently scatter the
2D electrons. The electron charges trapped by the QDs
and the elastic stresses arising around each QD can be
responsible for these scattering potentials.

ELECTRON TRANSPORT
IN HETEROSTRUCTURES WITH QDs

UNDER THE EFFECT
OF A STRONG ELECTRIC FIELD

If a certain portion of 2D electrons in the S1 and S2
samples (especially in S1) is trapped by QDs, they, nat-
urally, cannot participate in low-field electron trans-
port. However, if this is actually the case, their contri-
bution should manifest itself in electron emission from
the QDs under the effect of a strong electric field. To
perform such experiments, special transistor structures
were produced for the S1 and S2 samples, such as
shown in Fig. 1, but without the gates. The distance
between the ohmic contacts corresponding to the
source and drain was 2 µm. Their current–voltage char-
acteristics (I–V curves) are shown in Fig. 3. As is seen
in Fig. 3, in contrast to the “classical” structures of
field-effect transistors, the I–V curves of the hetero-
structures with QDs have an anomalous two-step
shape. The two steps on these I–V curves are related to
the contributions of two different types of electron
states: mobile 2D electrons (as in conventional field-
effect transistors) are responsible for the first step,
which corresponds to the saturation of their drift veloc-
ity and electrons localized at QDs. The latter are
responsible for the second step. They contribute to the
electron transport only under the effect of a strong elec-
tric field F exceeding a certain threshold value Fth . This
contribution arises due to the electron emission from
QDs, which is induced by this field. It is clearly seen in
Fig. 3 (curves b and c) that a decrease in the distance
between the surface of the sample and the transistor
channel due to the etching-off of a certain surface layer
leads to a decrease in or even vanishing of the currents
in the vicinity of the first step. This is, evidently, caused
by the channel depletion in the mobile charge carriers
owing to the enhancement of the surface-potential
effect. In this case, due to the presence of only the sec-
DOKLADY PHYSICS      Vol. 45      No. 12      2000
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ond step, the I–V curves exhibit a clearly pronounced
threshold behavior.

CHARACTERISTICS OF TRANSISTORS
BASED ON MODULATION-DOPED 
HETEROSTRUCTURES WITH QDs

Field-effect transistors with gate lengths ranging
from 0.3 to 0.4 µm were manufactured using samples
of S1 and S2 heterostructures (Fig. 1). The I–V curves
of these transistors are shown in Fig. 4. This figure
demonstrates that even at zero bias voltage across the
gate, we have a substantial shift of the second current
step toward lower values of voltages compared to the
“gateless” transistors. This effect can be explained by
the redistribution of the electric field in the instrument
channel. Actually, the majority of electrons in the S1
samples is localized at deep levels in the QDs, hence
their concentration should be insignificantly controlled
by the gate voltage. Owing to this effect, the potential
distribution along the gate length should remain
unchanged. In this case, the main part of the voltage
applied between the source and drain should drop only
across gap dgd, between the drain and the gate edge
nearest to it. Since distance dgd is less than that between
the source and drain dsd , the electric field in the actual
operating region (i.e., in the gap dgd) should be larger
than the mean electric field in the gateless transistor.
Therefore, threshold voltage Uth should decrease com-
pared to the gateless transistors. It follows also from
Fig. 4 that saturation current Idss for the second step is
in fact independent of the gate voltage Ug; however, the
threshold voltage Uth for this step is very efficiently
controlled by voltage Ug. These characteristics qualita-
tively differ from those intrinsic to classical field-effect
transistors, for which only the electron density and,
consequently, the saturation currents are governed by
voltage Ug. Thus, the data in Fig. 4 show that in the
transistors under study, the concentration of electrons
participating in the strong-field transport is indepen-
dent of Ug, whereas the threshold voltage Uth needed
for electron emission from the QDs decreases when Ug
becomes more negative. Thus, in this case, instead of
“blocking” the transistor for negative values of Ug, as
occurs in all field-effect transistors, in the QD-based
devices, drain current Id even increases in the range of
low Ud voltage. The observed decrease in the threshold
voltage Uth is explained by the increase in the effective
field dgd in the gap.

The value of the threshold electric field Fthneeded in
order to initiate electron emission from the deep levels
in a QD can be determined from the I–V curves of the
gateless devices:

Using the value of Fth , one can also estimate the

Eth
U th

dsd
------- 4 104 V/cm.×= =
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effective depth (the energy of position) of occupied
electron levels EQD in QDs:

EQD = eEthdQD = 160 meV. (1)

Here, dQD = 40 nm is the lateral QD size. The maximum
relative transconductance gm of the transistors under
study was also determined from the curves in Fig. 4 in
the range of low voltages Ud, i.e., where currents Id are
controlled by the bias voltage Ug across the gate: gm ≅
500 m S/mm. In this case, one should expect the oper-
ating capacitance of these transistors not to be large.
The relatively large transconductance and the expected
small capacitance of these devices suggest that they are
rather promising for high-frequency applications.

4 8

200

600

12 16

400

0

a

b c

Uds, V

Ids, µA

Fig. 3. I–V curves in a high electric field for heterostructures
containing QDs (S1 sample) with the drair–source distance
dsd ≅  2 µm: (a) for the initial sample, (b) and (c) after addi-
tional etching of its surface layer.

2 4

200

600

6 10

400

0

Uds, V

Ids, µA

8

Ug = –3 V Ug = 0

Without gate

Fig. 4. I–V curves of the QD-based heterostructure transis-
tors with the gate length Lg = 0.35 µm for various values of
the gate voltage Ug . The passage from one curve to another
corresponds to the steps in the Ug change equal to –0.5 V.
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CONCLUSION REFERENCES
In conclusion, we note that the transistors under
study, which are based on modulation-doped hetero-
structures with QDs, differ basically from all known
field-effect transistors, e.g., high electron mobility tran-
sistors (HEMTs). Their unusual characteristics stem
from the fact that the charge carriers in them are “hot”
electrons, i.e., electrons which have an energy higher
than the depth characterizing the position of the occu-
pied electron states in QDs. Therefore, they can be con-
sidered as a novel type of device based on hot electrons.
Due to their high transconductance and small capaci-
tance, these devices can turn out to be very promising
for high-frequency applications.
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The neoclassical diffusion theory [1] appeared in
the late 1960s. In this theory, a first attempt was made
to explain the poor plasma confinement outside the
framework of the Bohm theory based on the allowance
for instabilities leading to turbulence. In the years fol-
lowing, the neoclassical theory was further developed
[2, 3], and, nowadays, this is the theory that provides
the best theoretical description of transport phenomena
in plasma of toroidal magnetic traps. However, to date,
there exists a significant discrepancy between calcu-
lated and experimental data. For ions, the disagreement
factor is about three, which is assumed to be inessen-
tial. For electrons, this factor, especially as related to
heat conductance, is on the order of 10 to 100, i.e., is
considerably higher. Since no more adequate confine-
ment theory exists, we can say that the basic incompre-
hensible fact is the quantitative misfit in the values of
transport factors. As the dimensions of both stellarators
and tokamaks became larger, the confinement quality
was improved, and its adequate description is now
given by the neoclassical theory rather than by the
Bohm theory. This progress, in fact, did not succeed in
explaining the phenomenon. When designing small-
scale stellarators in the early 1960s, the confinement in
the zero-current regime was assumed to improve in
comparison with that in tokamaks, since under these
conditions, no additional classes of current instabilities
appeared. At the same time, the lower the number of
possible types of instabilities, the better the confine-
ment. The experiments carried out with the TOR-1 and
TOR-2 stellarators in the Lebedev Physics Institute
failed to confirm this assumption. In addition, the
plasma density in small-scale stellarators was
extremely low, namely, more than by an order of mag-
nitude lower than that in tokamaks. A confinement
comparable to tokamaks of the same dimensions was
further attained with a larger Liven’-2 stellarator in the
plasma-current regime. These qualitative discrepancies
also call for explanation.

In the zero-current regime, the plasma in stellarators
was produced by injecting from plasma guns. In this
case, there appeared another puzzling feature of con-

Troitsk Institute for Innovation and Thermonuclear 
Research, Troitsk, Moscow oblast, 142092 Russia
1028-3358/00/4512- $20.00 © 20653
finement: the lifetime of decaying plasma was incon-
stant [4]. Initially, when the plasma density was rela-
tively high, the lifetime was short. The confinement
time increased to values slightly exceeding the Bohm
values at that discharge stage when the density
decreased to an extremely low level.

At present, there is one more undesired phenome-
non observed in middle-scale and large-scale toroidal
confinement facilities, for which an explanation would
be of great practical interest, namely, confinement deg-
radation with additional plasma heating.

1. Resonant disturbances of magnetic surfaces cause
the formation of magnetic islands. In this case, the res-
onance condition has the form

(1)

where ι  is the rotation number and i is the rotation
transformation angle. For drift trajectories, the closure
condition is modified:

ι  = ιB + ιE. (2)

The additional term

(3)

is determined by the electric drift associated with a pinch
charge. The fundamental fact is that expression (3) con-
tains the particle-velocity component parallel to the
direction of the magnetic field. For the Maxwellian
character of the particle distribution, there always exist
resonant particles that satisfy condition (1).

It is more difficult to solve the problem of a gener-
alized perturbation . In [5], it was shown that elec-
tric and magnetic disturbances can compensate one
another, and in this case, the disturbance in (1) is
absent. This occurs when the equipotentials of the elec-
tric field coincide with the magnetic surfaces, since in
this case, particles drift along the tangent to the mag-
netic surface. This is a situation that takes place under
ideal hydrodynamic equilibrium. In [5], a question was
also raised on the mixing of trajectories if disturbances

ι i
2π
------

n
m
----,= =

Bmn 0,≠

ι E
cEr

v ||Bz

-----------–
R
r
---=

Bmn*
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of the potential take place. We now return to this prob-
lem in its simplest formulation.

We consider a right cylinder with a current flowing
along its axis (coinciding with the z-axis), the terms on

the order of  being ignored. We use helical sym-

metry to describe the disturbances (only electric-field
disturbances are taken into account). In this case, the
integral for the drift motion has the form [6]

(4)

where . In the static case under consideration,

the longitudinal velocity depends on coordinates r and
θh = θ – αz:

(5)

Furthermore, we expand (4) and (5) into a series,
restricting ourselves by terms of the second order in
deviations ∆r from the circumference of the zero
approximation corresponding to the absence of distur-

bance; i.e.,  = 0. The multiplier at the term ∆r yields
condition (1), and the multiplier at ∆r2 is proportional
to the generalized shear ϑ*. Equating, at the initial
point of the trajectory, the expression obtained and the
constant determined by the primed values, we derive
the equation for ∆r. We restrict ourselves by the case of
simple parabolic profiles for both the current and the
potential. Hence, the basic formulas needed in the cal-
culations take the form

(6)

where κ =  is the potential at the pinch center,

which is normalized to the electron temperature,  =

, and vT = . The maximum particle displace-

ment is determined by the formula

(7)
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where the following notation is introduced: 

In addition, we present the formula for the width of the
resonance region:

. (8)

If the width of this region is large, the individual reso-
nances may overlap, the motion becomes more compli-
cated, and the above consideration is invalid.

In [5], the diffusion coefficient D was estimated by
the following method. The diffusion step was taken to
be the half-width of the islands in (8), and the effective
collision time was assumed to be equal to τeff = τii∆ξ2 .
In addition, the smallness of a number of the particles
involved in the transport was also taken into account

 = (2∆ξ) :

We now consider, as a numerical example, a project
of the T-11M small-scale tokamak with intense high-
frequency heating which is characterized by the follow-
ing basic parameters: a = 19 cm, R = 70 cm, B = 1.2 T,
Te = 2.6 keV, Ti = 1.1 keV. We choose the magnetic sur-

face  = 0.5 and suppose for it that ιB = 0.7047 (this

number is far from the resonances). Then, at the pinch
edge, ι a = 0.4027 and at the center, ι 0 = 0.8054 (qa =
2.483 and q0 = 1.242). We take κ = 3 for the dimension-
less potential at the center and Te = 2.2 and Ti = 1.0 keV
for the temperatures on the magnetic surface. Next, we

analyze the resonances ι  =  = , , . The calcula-

tion results are given in the table. As is seen, the most
dangerous resonance on the surface given corresponds

to ι  = . In this case, the electric shear is negative and

to a large extent compensates the magnetic shear,
whereas the displacements are maximal. It is important
to verify the collision regime. For the relative half-

width ∆ξ = , the effective collision time is by a factor

of 36 shorter than the ion scattering time τii defined by
the formula

(9)
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Table 1

ι  = ιE = ι  – ιB  = ϑ (⋅) , % ∆r, cm D, 103 

1 0.295 0.750 2.69 0.52 0.88 0.72

–0.202 –1.082 –0.46 3.04 13.64 13.64

–0.371 –0.596 2.36 0.59 1.00 1.16

n
m
---- ξ||

' ρLR

a
2

---------- κ
ι E
----

eΦmn

T
------------- cm

2

s
---------

1
2
---

1
3
---
(τi = 4.1 ms for λ = 15). Nonetheless, for one revolution
period of 10 µs, the ions execute more than 10 revolu-
tions and can bypass a significant part of a drift island.
The typical neoclassical Galeev–Sagdeev loss channel

corresponds to the perturbation harmonic  = 0,

whose consideration in the straightforward model is
incorrect.

It follows from the data presented that disturbances
of the potential must be small in order to avoid reso-
nance overlap. At the same time, the diffusion coeffi-
cients can be fairly large.

2. Calculation of the potential is performed for the
gas injection within the framework of the one-dimen-
sional model, since the basic effect consists of plasma
spreading along the magnetic field.

In the framework of two-fluid hydrodynamics, the
equation of motion along the z-axis has the form

(10)

In the same approximation,

(11)

We now take into account the continuity equation

nv = Γ = const. (12)

Since we consider the problem on the steady flow of the
cold plasma from a source with an intensity Γ at the
point z = 0, then using the relationship dz = vdt and
replacing the time derivative standing in the left part of
equation (1) by the derivative with respect to coordinate
z, we have

This equation is easily integrated:

(13)

n
m
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dv
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------- d
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----- n T i Te+( )[ ] .–=

E
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en
------ d

dz
----- nTe( ).–=
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dv
dz
------- d

dz
----- n T i Te+( )[ ] .–=

miv
1
v
---- T i T t+( )+ C const= =

=  miv∞
1
v∞
------- T i∞ Te∞+( ).+
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The subscript “∞” corresponds to the values of physical
quantities far away from the source. The values Ti∞ and
Te∞ correspond to the ion and electron temperatures of
the basic plasma, respectively.

After solving Eq. (13) with respect to v and based
on (12), we obtain an expression for the plasma density:

(14)

Formula (14) describes the density distribution of
newly arriving plasma in implicit form. If the density ne

is low compared to the basic-plasma density, the tem-
perature at the point z depends only on the mean time
spent by particles to reach this point; i.e., Ti and Te are
time-dependent functions. To obtain the spatial distri-
bution, we may consider the time t as a parameter and
calculate z as a time-dependent function by integrating
the velocity.

In order to find the time-dependent functions Ti(t)
and Te(t), we use the equation describing the average
energy increment for a bunch of tentative particles (α)
in a medium of field particles (β) [7]:

(15)

Here, λ is the Coulomb logarithm and xαβ = . The

ions are assumed to be singly charged. Equation (15)
determines the energy variation for tentative particles
in the process of collision with the same kind (α) of
field particles. The energy exchange between particles
with strongly different masses is known to be much
slower than the same process between particles with
identical masses. Therefore, we will take into account
the heating of electrons and ions of arriving plasma
only by the electrons and ions of the basic plasma,

respectively. In the case of  = 1, Eq. (15) can be

n
Γ mi
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written out in the dimensionless form

(16)

Here, time is normalized to the time of electron–ion
scattering by replacing mi in (9) with me . Another
approximation consists in the fact that the time depen-
dence of the temperature and energy is assumed to be

the same; i.e.,  = x. We denote this function as θ(t).

For ions, the argument of the function is αt, where α is
the ratio of collision times for the electrons and ions:

α = . The function z(t) and eϕ(t) can be

found provided that the function θ(t) is known. 
The function θ(t) can be approximately represented

in the form

θ(t) = 1 – e–γt

with the fitting coefficient γ = 2.6.
We also write out the formula for the maximum

potential ϕ0 as

For ti =  = 1, the disturbance of the potential is 130%.

In the toroidal system, the disturbance can decrease by
several times due to the closure of counter flows.

3. This calculation shows that when injecting gas
into plasma, the potentials develop, greatly exceeding
the admissible potentials that correspond to resonant
diffusion, the mixing of trajectories becoming even
stronger. Confinement of particles by the electric field,
which causes the appearance of electric superbananas,
is also possible. Thus, the phenomena listed in the
beginning of this paper can be explained by the exist-
ence of potentials violating the equipotentialization.
The appearance of the new loss channels can, in the first
turn, help to improve the quantitative description of the
confinement.

In this approach, we can explain experiments asso-
ciated with plasma decomposition after its injection
from guns into a stellarator. Immediately after injec-

dx
dt
------ 6 e x– π

4
-------erf x( )

x
------------------– 
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Te

Te∞
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Te
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Te∞
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1
2
--- ti ti 1+( )–

ti 1+

ti 1+ ti–
-----------------------------.ln+ += =

T i

Te
-----
tion, a trap is nonuniformly being filled and the mag-
netic surfaces become highly nonequipotential. There-
fore, at the initial moment, the diffusion is maximal. As
far as the trap is being filled, the nonuniformity of the
density tends to zero, the nonequipotentialization
decreases, and the additional loss channels are closed.
During gas breakdown in tokamaks, plasma is formed
uniformly throughout the volume for a short period of
time. This fact explains the better confinement in a
tokamak, as well as in a stellarator with a nonzero
current.

Along with the confinement time τ, we should intro-
duce a characteristic time τh of homogeneous filling. In
small-scale stellarators, we have τ < τh, which explains
the low plasma density. For larger facilities, an opposite
expression is valid: τ > τh. In the case of local heating,
disturbances of the potential, which can cause the deg-
radation of the confinement, are possible. With increas-
ing dimensions of a facility, the inequality τ > τh is
enhanced. In this case in particular, the conditions for
local methods of heating are improved.
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In recent years, the properties of materials having
nanocrystalline and submicron-grained structures have
attracted widespread attention. These materials signifi-
cantly differ in their physical properties from those of
substances formed by macroscopic crystallites. For
example, the materials with nanocrystalline and submi-
cron-grained structures exhibit both improved mechan-
ical parameters (hardness, strength, elastic modulus,
etc.) [1] and modified magnetic and electric properties
[2]. For example, the transition of ferromagnetic mate-
rials to the submicron and nanometer crystallite state is
accompanied by changes in such fundamental charac-
teristics of ferromagnets as the saturation magnetiza-
tion and the Curie temperature [3]. In addition, the sol-
ids with submicron- and nanostructures arising under
the effect of shear deformation at high pressures are
characterized by a significant increase in the rate of
physical and chemical processes and by a number of
solid-phase reactions, which are impossible in the
coarse-grained state. Under pressure, shear deformation
is a powerful factor also stimulating the polymerization
process in solid monomers [4]. However, the problem of
stability of different crystal phases in solids formed by
submicron particles is currently far from being well
understood. In this connection, we investigated the sta-
bility of hematite in submicron-size particles.

In this paper, we study the temperature dependence
of saturation magnetization for both coarse- and submi-
cron-grained hematite powder. The submicron-grained
powder was produced by shear deformation at Bridg-
man anvils by their rotation through an angle 2π under
pressure P = 200 MPa. We used a single crystal of nat-
ural hematite as the host material. α-Fe2O3 hematite has
a corundum-type crystal structure and is a weak ferro-
magnet with a small misalignment of magnetic
moments in its sublattices [5].

The grinding of hematite between the Bridgman
anvils yields a powder consisting of crystallites of var-
ious sizes. Using a special technique, we managed to
separate the fraction of hematite with the finest grains.
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The temperature dependence of the hematite satura-
tion magnetization σS(T) was recorded in a 1.5 × 10–3 Pa
vacuum in a 240 kA/m magnetic field using an auto-
matic vacuum microbalance [6]. The temperature vari-
ation rate was 4 K/min for the measurements of the
σS(T) curves.

The σS(T) curve for the coarse-grained hematite
powder is shown in Fig. 1a. The curve was recorded
both on heating and on cooling the sample. Before
cooling, the sample was held for 15 minutes at 970 K.
As is seen, the heating and cooling curves are identical.
The Curie temperature determined by extrapolation of
the steepest part of the σS(T) curve onto the temperature
axis equals 948 K, which corresponds to the Curie
point in stoichiometric hematite [7].

The σS(T) curves for the submicron-grained hema-
tite powder recorded on heating (curve 1) and on cool-
ing (curve 2) the sample in vacuum are shown in
Fig. 1b. Comparison of the curves in Fig. 1 demon-
strates that they are different. First, note that the value
of σS for the submicron-grained hematite powder is
30% smaller than that for the coarse-grained state. Sec-
ond, the shape of the heating and cooling σS(T) curves
is different for the submicron-grained hematite powder
and it also does not coincide with the corresponding
curve for the coarse-grained sample. On heating the
sample, σS remains constant up to 600 K. Then, it
steeply grows and at 750 K attains its maximum value
equal to 1.13 A m2/kg. On further increase in tempera-
ture, σS decreases. In the vicinity of 948 K, there is a
step in the temperature dependence of σS, but σS com-
pletely vanishes only at 1033 K. Note that the σS(T)
curve for the hematite powder on cooling down to
770 K coincides with the heating curve. Below 770 K,
the cooling curve goes above the heating curve. On fur-
ther decrease in temperature, σS again grows, and at
room temperature, it becomes higher by a factor of 5.7
than σS for the coarse-grained hematite.

Turning to a discussion of the observed effects, note
first that the σS(T) curves for coarse-grained hematite
coincide at heating and cooling. This implies that the
coarse-grained hematite is stable in vacuum up to rela-
tively high temperatures. The decrease in σS for the
submicron-grained hematite powder can be related
000 MAIK “Nauka/Interperiodica”
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both to the small size of the powder particles and to the
crystal lattice defects in the bulk of the particles when
the crystal is crushed under high pressure. This
assumption is based on theoretical studies [8, 9] dem-
onstrating high sensitivity of the antiferromagnetic
order to crystal-lattice defects.

The abrupt increase in σS and the existence of the
peak in the heating curve can be explained by the trans-
formation of a certain part of the hematite powder to
magnetite. This is confirmed by the fact that extrapola-
tion of the steep portion in the σS(T) curve leads to the
temperature value being equal to 848 K, which coin-
cides with the Curie point for magnetite. The small step
in the σS(T) curve after the peak is an indication that
rather large hematite crystallites exist in the powder. As
shown above, these crystallites are stable and do not
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Fig. 1. Temperature dependence of saturation magnetization
in hematite: (a) in the coarse-grained state; (b) in the submi-
cron-grained state. (1) Heating curve; (2) cooling curve.
transform into magnetite. To test the assumption con-
cerning the reduction of small hematite particles to
magnetite in vacuum, we measured the temperature
dependence of σS(T) for submicron-grained powder in
ambient air. The curve obtained is similar to that shown
in Fig. 1a. Thus, in air, even the smallest hematite par-
ticles do not transform into magnetite.

Nonzero magnetization, observed after the step
(above 848 K), implies that a certain part of the powder
(probably, that with the finest grains) is reduced to pure
iron at these temperatures. This is confirmed by the fact
that magnetization vanishes at 1033 K, and this temper-
ature coincides with the Curie point of iron.

As was already mentioned, after cooling, the satura-
tion magnetization for the submicron-grained hematite
powder increases up to 2.08 A m2/kg, i.e., by a factor of
8.3. Estimation based on these data shows that only a
small portion (about 1.3%) of the powder transforms
into magnetite. Such a small amount of magnetite can-
not even be detected by X-ray analysis. The hematite–
magnetite transition is likely to occur only in the finest
particles. The mean size of the particle determined by a
sedimentation technique in distilled water for 24 hours
was equal to 0.5 µm. Hence, the major part of the pow-
der consists of larger particles in which hematite
remains stable. One could also suggest that on heating
in vacuum, hematite is reduced to magnetite not only
inside small particles but at the surface of crystallites as
well. In this case, however, the complete coincidence of
the heating and cooling curves σS(T) of the coarse-
grained sample (Fig. 1a) would not be observed.

Thus, heating of the submicron-grained hematite
powder in vacuum leads to partial reduction of the hema-
tite with the formation of both magnetite and iron.
Hence, it follows that the α-Fe2O3 hematite in nanocrys-
tallites cannot exist in vacuum at elevated temperatures.
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INTRODUCTION

It is well known that the generation of super-broad-
band radiation is an important problem in the modern
technology of antenna-waveguide engineering. In this
case, conical structures are characterized by undirected
and super-broadband properties related both to the
directivity pattern and consistency. These structures are
widely used in radar engineering, communication, and
telemetry. In this study, the problem of excitation by an
electric radial dipole of a cone with periodic longitudi-
nal slots is considered. Certain cases exhibiting this
structure are of independent interest both to theory and
application, e.g., a cone with a longitudinal slot and a
plane angular cone with two symmetric slots (a model
of the V-shaped antenna). The analysis performed in
this paper is based on the Kontorovich–Lebedev inte-
gral transformation and a method applied in solving the
Riemann–Hilbert problem [1–4].

FORMULATION OF THE PROBLEM

We consider a semi-infinite ideally conductive and
infinitely thin circular cone (see figure) with N slots
periodically notched along the generatrix of the cone,
the cone axis and the cone vertex coinciding with the
0z-axis and with the origin of coordinates, respectively.

The slot structure period l =  and the slot width d

determine the values of the dihedral angles formed by
the intersection of planes passing through the cone axis
and the edges of the conical stripes. Then, in a spherical
coordinate system r, ϑ , ϕ introduced by this manner,
the cone is determined by the set of points

2π
N
------

Σ r ϑ ϕ, ,( ) R3: r 0 +∞) ϑ γ ϕ L∈,=,,[∈∈ ,=
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where

Let the cone be exposed to the time-dependent field of
a unit radial source u0(r, r0) [located at a point
B(r0, ϑ0, ϕ0)] which varies by the law exp(iωt). We
denote the scattered field by us(r). The total field u =
u0 + us is assumed to satisfy four conditions: the Helm-
holtz equation; the Dirichlet boundary condition at both
sides of the conical surface:

the radiation condition; and the condition of a limited
energy value. In this case, the problem has a unique

L Ls, Ls
s 1=

N

∪ s 1–( )l
d
2
---+ sl

d
2
---–, 

  .= =

u Σ 0;=

θ = γ

B(r, θ, ϕ )

B0(r0, θ0, ϕ0)
r

r0

y

x

z

ϕ
0

 – θ

Illustration of cone geometry.

π
2
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solution. In solving the problem, we use the Kontorov-
ich–Lebedev integral transformation [1]

(1)

(2)

where  are the Hankel functions and k is the
wave number (Imk ≤ 0). We represent us in the form of
the Kontorovich–Lebedev integral [2]

(3)

(4)

Here, (cosϑ) are the Legendre functions and bmτ and
xm, n are the known and desired coefficients, respec-
tively. In (4), the upper and lower signs correspond to
the intervals 0 < ϑ  < γ and γ < ϑ  < π, respectively.

METHOD FOR SOLVING THE PROBLEM

Taking into account the boundary value condition
and the field conjugation conditions in the slots, we
obtained a system of dual functional equations of the
first kind for xm, n:

(5)

(6)

where Γ(z) is the gamma function and ζ = –  + iτ, ν =

 – m0, −  ≤ ν < , and m0 is the integer closest to .

In the case of N(n + ν) @ 1, we have an estimate
for εm, n:

From the condition for the finiteness of energy, it
follows that xm, n belong to the Hilbert space l2 with

F τ( ) f r( )
Hiτ

2 kr( )

r
----------------- r,d

0

–∞

∫=

f r( )
1
2
--- τ πτeπτF r( )

Hiτ
2 kr( )

r
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0

+∞

∫–=

Hiτ
2 kr( )

us 1
2
--- τ πτeπτ bmτUmτ
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r
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m ∞–=

+∞

∑sinh τ ,d

0
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m nN+ ϑcos±( )

P–1/2 iτ+
m nN+ γcos±( )

--------------------------------------ei m nN+( )ϕ .
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+∞

∑=
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m

xm n, einNϕ

n ∞–=
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∑ e
im0 Nϕ

, ϕ L;∈=

N n ν+( ) n
n
----- 1 εm n,–( )xm n, einNϕ

n ∞–=
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∑ 0,=
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1
2
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m
N
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2
--- 1

2
--- m

N
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εm n, O
1

N2 n ν+( )
2

------------------------- 
  .=
the norm

Furthermore, we transform the system (5), (6) to the
form adapted for regularization. We now introduce the
coefficients

and differentiate Eq. (5) with respect to ϕ. Hence, we
arrive at the system of equations in the form

(7)

(8)

with the additional condition

where

We now represent the operator standing in the left-
hand side of the system as a sum of the principal and
completely continuous parts. Furthermore, we invert
the principal part using the solution to the Riemann–
Hilbert problem [3, 4]. As a result, we obtain an infinite
system of linear algebraic Fredholm equations of the
second kind with respect to ym, n:

(9)

(10)

Here, v = cosδ, while the functions Vs(v) and 
were determined and calculated in [4]. The system (9),
(10) is equivalent to functional equations (7), (8) and is
obtained as a result of their regularization. The coeffi-
cients ym, n are independent of the wave number, which
is convenient for clarifying the field behavior both near
the cone vertex (kr ! 1) and far from it (kr @ 1), as well
as for constructing the solution to the unsteady prob-

ξ 2 1 n+( ) ξn
2.

n ∞–=

+∞

∑=

ym n, 1–( )
n m0– n ν+

m0 ν+
--------------- n

n
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n
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∑ e
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∑ 1
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ϕ
------π, δ–  = 

π l d–( )
l

------------------.

Mν v( )ym 0, V
m0 v( )

s
s
-----ηm s, Vs v( )ym s, ,

s ∞–=

+∞

∑+=

Mν v( )
1
ν
---

Pν v–( ) Pν v–( )–
Pν 1– v–( ) Pν v–( )+
----------------------------------------------,=

ym q,  = Vq 1–
m0 v( )

s
s
-----ηm s, ym s, Vq 1–

s 1– v( )
s ∞–=

+∞

∑ yq 0, Pq v( ),+ +

q 0.≠

Vn 1–
m 1– v( )
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lem. The solution to the infinite system of linear alge-
braic equations exists and is unique. For arbitrary
parameters of the problem, this solution can be found
by the reduction method. In the case of a semitranspar-
ent cone, when the number of slots is large and their
width is commensurable to the structure period (N @ 1
and δ ! 1), the cone with narrow slots (d/l ! 1), and the
narrow conical sectors (δ ! 1), the norm of the matrix
operator is smaller than unity, making it possible to
apply the iteration method for solving the infinite sys-
tem of linear algebraic equations.

THE ANALYTICAL SOLUTION

Using the iteration method and restricting ourselves
by the first approximation in the case of a semitranspar-
ent cone being defined by the existence of the limit

we derive the following expression for us (γ < ϑ0):

This expression is valid for a source and observation
points related to each other through the condition ϑ +
ϑ0 > π + 2γ, which is caused by the convergence of the
above integral and corresponds to the region of the field
scattered by the vertex.

This representation for us is similar in the case of 0 <
ϑ < γ as well. On the surface of a semitransparent cone,
us satisfies the averaged boundary conditions of the form

In the case of the axisymmetric excitation of the cone
(ϑ0 = π, ϕ0 = 0), the expression for us can be written out
in the form

where

1
N
---- 2

δ
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δ 0→
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2
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Applying the Cauchy theorem on residues, it is pos-
sible to represent u in the form of a residue series with
respect to poles of the integrand function. For the semi-
transparent cone, the spectrum of the boundary value
problem consists of roots of the equation Dµ = 0. In the
particular case of a semitransparent cone, expressions
for these roots can be represented as

(a) W ! 1, 

(b) W @ 1, 

For the cone with narrow slots (ϑ0 = 0, ϕ0 = 0), the
asymptotic expansion of u in terms of parameter
(1 + v) ! 1 far away from the slots has the form

Φµ r r0,( )
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where  and  correspond to the upper and
lower signs, respectively, of the Legendre-function
argument.

The spectrum of eigenvalues for the boundary value
problem and a cone with narrow slots coincides with

the set { } and represents a perturbed spectrum

{ } of the Dirichlet boundary value problem for a
continuous cone [5]. It is worth noting that the angular
dimensions of the conical structure represent the spec-
tral parameters of the boundary value problem, the
minimum eigenvalue determining the field behavior
near the cone vertex.

In the case of narrow conical sectors ((1 – v) ! 1),
the asymptotic expansion of us (ϑ0 = 0 and ϕ0 = 0) takes
the form

The eigenvalue spectrum is determined by roots of
the equation
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which are grouped in the vicinity of zeros of the func-
tion cosπµ. The spectrum of the boundary value prob-
lem for a single narrow conical sector (N = 1) repre-

sents a set :

Thus, we proposed and rigorously substantiated a
numerically analytical method for solving the bound-
ary value problem of conical structures with radial
slots. This method has the advantage that the intricate
three-dimensional boundary value problem is reduced
to an infinite system of linear algebraic equations with
matrix coefficients independent of the wave parameter.
In addition, it turns out to be possible to construct an
analytical solution, as was done in [6, 7].

The above method can be used in solving unsteady
boundary value problems having a more complicated
geometry of the scattering surface. The results of this
study were partly reported at the 2nd International Con-
ference on Modern Trends in Computational Physics,
July 24–29, 2000, Dubna, Russia [8].
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The behavior of a high-molecular system under the
effect of intense local heat release is determined by a
number of different factors. These factors are the set of
the system’s thermal parameters in a given temperature
range, the features of thermal fracturing at short char-
acteristic times, and the position of a spinodal (the sta-
bility threshold for the condensed phase with respect to
cavitation phenomena) in the p–T diagram. At high val-
ues of both pressure p and temperature T, high-molecu-
lar systems have a low thermal stability. Therefore,
techniques needed for their experimental study must
have a sufficiently fast operation speed. 

The authors of [1–3] proposed an important
approach that provides an opportunity to determine the
temperature dependence of the thermal fracture rate in
polymers and to evaluate the spinodal temperature
based on this dependence. This approach includes the
deposition of a thin melt film onto a hot metal substrate
and the subsequent recording of the lifetime of the film
until its vaporization. However, the technique involving
a massive substrate, which was used in [1–3], is quasi-
static in essence. Therefore, it cannot resolve the initial
stage of thermal fracture in polymers and yields underes-
timated values of the spinodal temperature (see [4, 5]).
It is important to provide a high-speed temporal control
of the heater temperature T(t) and to record simu-
ltaneously the small variations in the heat flow q(t),
which stem from structural transformations in the
material.

Our goal was to reveal the features of heat transfer
and to resolve the initial stage of thermal fracture in
high-molecular systems under the effect of pulsed heat
release.

To solve these problems, we developed a technique
involving controlled pulsed heating of a thin wire
probe. For processes with pulsed heat release character-
ized by times t ~ 10–5–10–3 s, this method provides a
reliable basis for the study of heat transfer and thermal
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Russian Academy of Sciences, 
ul. Pervomaœskaya 91, Yekaterinburg, 620219 Russia
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fracture in small amounts of a material. In the regime of
thermal stabilization of the heated probe, we found the
range of short-time thermal stability of the polymer
melt at elevated temperatures. This type of stability
manifests itself in nearly constant values of the thermal
parameters. The stability range terminates when the
spontaneous vaporization of volatile products occurs,
which accompanies the initial stage of thermal fracture.
It is found that the characteristic time of the phase
transition giving rise to a reproducible signal is much
shorter than the characteristic time of a thermal
fracture.

The study of the heat transfer in a substance retain-
ing its individual features implies a low degree of ther-
mal fracture of the latter, i.e., a short time duration of
the process. We applied the method of pulsed Joule
heating using a platinum wire probe for resistance ther-
mometers 20 µm in diameter [6, 7]. This choice of the
method was based on its fast response, the small thick-
ness of its warmed-up layer, the possibility of varying
pressure in the system, and the convenience in imple-
menting a computer. It is convenient to demonstrate the
advantages of the method in the regime of gradual heat-

ing of the probe (  ≈ const) in the polymer melt. In the
experiment, we recorded the time dependence of the
temperature T(t) at a given impact function, such as
probe current I(t). The key point in the heating curve is
the moment of spontaneous vaporization T(t*) = T*
(Fig. 1). Spontaneous vaporization is accompanied by

thermal fracture of the substance at fast heating (  ≥
105 K/s). Similar to the spontaneous boiling of low-
molecular liquids, the typical response signal recorded
in the polymer melt is reproducible and has a narrow
time distribution (Fig. 1), i.e., the features intrinsic to a
spontaneous mechanism. Consequently, at a suffi-
ciently high average heating rate, the superheating of
ordinary and high-molecular liquids is close to its ulti-
mate value corresponding to a high rate of bubble
nucleation. The reproducibility of the heat transfer con-
ditions throughout the pulse duration implies that there
exists a reproducibility of the relaxation processes
responsible for the initiation and development of the
phase transition in the high-molecular system.

Ṫ
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Specific features of the object under study are
related to the fact that macromolecules virtually never
transform into the vapor phase without decomposition.
The absence of potential vapor nuclei in the parent sub-
stance determines the appearance of the dependence

T*( ). Since it is difficult to describe quantitatively
thermal fracture of a polymer, we have modeled this
dependence using a volatile admixture (carbon diox-
ide) preliminary introduced into the melt. A relatively
low concentration of carbon dioxide (Ò ~ 0.01 wt %)
lowers temperature T* by the value that takes place

when decreasing  by an order of magnitude. Thus, we
can consider the polymer to retain its structure until the
onset of vaporization.

We estimate here the effect of the phase transition in
the melt on the characteristics of the heat transfer based
on the temperature perturbation Θ(t – t*) of the probe
(Fig. 1) caused by the vaporization. Doing this, we also
consider the results of experiments carried out at the
given impact function with the probe in vacuum and
with a shorter probe in the substance under study. Then,
this perturbation can be related to the calculated frac-
tion of the thermally insulated probe surface s = Sν/S,
where Sν is the surface area covered by vapor with a
very low heat conductivity. In our experiments with
polymers, the value of s varied within the range 0.005
to 0.05 depending on the pressure and heating regime
used.

To study in detail the behavior of a substance in a
thermally unstable region, we developed a technique
allowing us to specify the necessary regime (of an arbi-
trary type, in general) of probe heating in the substance.
According to it, the heating path T(t), the pressure in the
substance, and the concentration of the low-molecular

Ṫ

Ṫ

600 620 640 660

t* Θ = 1 K

t, µs

Fig. 1. Signal corresponding to the spontaneous vaporiza-
tion in a polymer melt, which was resolved in the course of
probe heating at a rate of 1 K/µs. Θ is the temperature per-
turbation of the probe related to the vaporization. The upper
curve is plotted for the superposition of five successive
pulses.
admixture modeling products of the thermal fracture
were varied systematically, and the heat flow in the sub-
stance was determined. As a result, we obtain the data-
base necessary for analysis of heat transfer and vapor-
ization in a polymer within the range of its thermal
instability. In this paper, we consider the regime corre-
sponding to the thermal stabilization of the probe. In
processes with rapid temperature variation, this allows
us to create the temperature plateau regions T(t > tpl) =
Tpl at an arbitrary intermediate temperature and to mon-
itor the state of the system at the plateau on the basis of
the “instantaneous” thermal properties of the system.

The technique we used is briefly described below.
Variation of the probe temperature T(t) is determined
by the power consumed for its heating P(t) = I2(t)RT .
Function I(t) determining the current is formed by a
computer on the basis of both the model of the process
and the results of preliminary experiments. A voltage
proportional to the deviation of the function T(t) from
the given form is generated at the output of a tempera-
ture-monitoring circuit. For the regime of thermal sta-
bilization under consideration, we developed a numer-
ical algorithm for the minimization of the integral devi-
ation of T(t) from the given value Tpl . An iterating
model I(t) is used in order to find its optimum form If(t)
using two fitting parameters: If(t) = αI(βt). At the given
temperature difference ∆T, α = f(λ), and β = f(a), where
λ(p, T) and a(p, T) are the effective values of thermal
conductivity and thermal diffusivity of the substance,
respectively. According to the conditions of the prob-
lem, after the necessary adjustment has been per-
formed, we can generate the additional perturbations
δT(t) required.

The regime of thermal stabilization in itself includes
the stage of rapid heating of the probe (tpl ~ 10 µs) up
to the chosen temperature Tpl and the stage with con-
stant temperature (t – tpl ~ 102–103 µs). To find the form
of function I(t – tpl) at a given probe configuration (r, l),
we use the relationship

(1)

where J0 and Y0 are the Bessel and Neumann functions,
respectively. This yields the heat flux at the surface of
an ideal heat conducting cylinder with radius r if T(r) =
const and the initial temperature of the medium is equal
to zero [8]. At the appropriate choices of values of λ
and a, several iterations were sufficient to construct
function I(t), providing an acceptable temperature pla-

teau  for Tpl ~ (900 ± 100) K. Note

that λ and a are the structure-sensitive parameters. The
observed correspondence of model (1) to the experi-
mental conditions at λ and a independent of the time
t − tpl suggests the absence of qualitative structural
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changes in the material during the specified time inter-
val. Actually, at a given temperature Tpl , these parame-
ters undergo significant changes due to pressure varia-
tion or dissolution of the low-molecular admixture in
the substance.

In a certain range of Tpl  values, there is a clearly
resolved signal related to the spontaneous vaporization,
which is similar to that observed in the regime of con-
tinuous heating (Fig. 2). Upon increase in Tpl , the aver-
age polymer lifetime at the plateau till the beginning of
the phase transition becomes shorter. This result agrees
with data on the complete vaporization of thin polymer
films from heated substrates [1–3]. Taking into account
the small value of the temperature perturbation Θ and
the scale of decrease in T*(t*) caused by the dissolution
of the model products (Fig. 3), we assume that the time
moment of spontaneous vaporization corresponds to
the beginning of the initial stage of the thermal fracture.
The following conclusions can be drawn based on the
results of experiments with polydimethyl siloxanes and
caoutchoucs (SKD-KTR oligobutadiene and
SKN-10KTR oligobutadiene nitrile):

The polymers are characterized by a short-term
thermal stability at temperatures far exceeding those
corresponding to the onset of their thermal fracture in
the quasi-static process.

The temperature of spontaneous vaporization
depends on the heating path and is related to the accu-
mulation kinetics of volatile products and their compo-
sition.

The thermal conductivity and thermal diffusivity of
the polymers under study decrease with growing tem-
perature and lowering pressure.

We now discuss the experimental results on the
spontaneous vaporization of SKN-10KTR oligobutadi-
ene nitrile at different heating regimes (Fig. 3). At each
pressure (p ~ 0.1–2.0 MPa), the growth of temperature
Tpl in the regime of thermal stabilization or the increase
in the heating rate in the linear regime always causes a
decrease in the average lifetime of the polymer. For
short pulses (t* < 100 µs), only linear heating was used.
The shortest time t* at which the vaporization signal
was still resolved was equal to 10 µs at the average
heating rate of 8 × 107 K/s. The value of T* extrapo-
lated to zero heating time, i.e., to zero degree of thermal
fracture, was taken as an approximation for the spin-
odal temperature of the polymer at a given pressure.
According to the concepts developed in [4, 9], the crit-
ical polymer pressure is positive and close to zero.
Therefore, the spinodal temperature was evaluated for
zero pressure. We found that Tsp(p = 0) = 1111 K for
SKN-10KTR and Tsp(p = 0) = 1097 K for SKD-KTR.
In the variation range of the variables (T ~ 900–1100 K
and t ~ 10–1000 µs), the heat transfer between the
pulse-heated probe and the polymer is impeded by
spontaneous vaporization, which changes the time
dependence of the heat flow by several percent.
DOKLADY PHYSICS      Vol. 45      No. 12      2000
                                              Thus, we proposed a new approach to the analysis of
the behavior of high-molecular systems in processes
with rapid temperature variation. The approach turned
out to be convenient for application in high-pressure
facilities [10].
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Fig. 2. Frequency of the heating curve for probe heating in
a polymer melt in the regime of thermal stabilization. The
arrow indicates the time moment of spontaneous vaporiza-
tion. Two calibration isotherms (at 913 and 923 K) show the
scale of temperature variation.

Fig. 3. Temperature of spontaneous vaporization for SKN-
10KTR caoutchouc (curves 1 and 3) and for carbon dioxide
solution (~1 wt %) in caoutchouc (curve 2) as a function of
the heating time at a pressure of 0.3 MPa. The heating
regime is either linear (1 and 2) or that of thermal stabiliza-
tion (3) at tpl ≈ 40 µs. Dashed lines show heating paths.
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The development of nondestructive tests is based on
continuously recording an indentation diagram (i.e., the
load P applied to an indenter as a function of the dent
depth h) [1–7]. In this case, the relation between the
conventional (recovered) hardness H and nonrecovered
hardness Hh becomes vitally important. These quanti-
ties are measured through the transverse size of an
unloaded dent and the depth h of a loaded dent, respec-
tively. Both further progress in nondestructive testing
(based on the indentation method) of the stress–strain
and the structural characteristics of materials and in
forecasting the reliability and service life for construc-
tions under various operating conditions depend on the
possibility of accurately analytically evaluating the
relationship between H and Hh. This relationship was
first established in [3] and depends on the elastic and
plastic properties of materials. The allowance for elas-
tic strains in a dent is possible only by accurately mea-
suring the contact elastic modulus Er . A technique for
such a method of measuring according to the P–h dia-
gram was first proposed in [2] and then developed in a
series of papers [3–7]. It was shown in [2] (see Fig. 1)
that the slope angle for an initial segment of the unload-
ing branch for the P–h diagram is independent of the

parameter m =  determining the mean pressure HM

distribution over the dent area. In this case, the accu-
racy of determining the modulus relates to the measure-
ment accuracy of this angle. The initial part of the
unloading branch is close to a straight-line segment [2,
6]; however, more accurate measurements [5] testify to
the necessity of allowing for its deviation from linear
behavior.

To describe the dent unloading branch, we replace
the symbol h with w and set the origin at the final point
with coordinates hm and Pr = Pm – ∆Pr [4], where ∆Pr is
the load applied to an elastic-contact belt in the periph-
ery of the plastic dent. If the Young’s moduli E and Ei
of a material and an indenter, respectively, satisfy the
condition Ei @ E, then the initial stage of the unloading

w
w1
------

Moscow State Industrial University, 
ul. Avtozavodskaya 16, Moscow, 109280 Russia
1028-3358/00/4512- $20.00 © 20667
can be described by the model of an indenter with a flat
end, because all the points on the plastic-dent surface
are recovered by the same value ∆w equal to the
indenter lift. The area A of the indenter end does not
vary and is equal to the area of the unloaded plastic
dent. Under purely elastic unloading, the linear depen-
dence

∆P = Erd∆w1 (1)

holds in the region Pr–∆P. Here, ∆P is the load decre-
ment; d = 2a is the transverse size of the dent; and w1 is
the contact-strain constant providing the minimum
elastic strain w for all possible distributions of HM over
the area A [1, 3, 4] with the values of HM and d given.

Under unloading, the opposite-pressure distribution
is determined by the formula

(2)

Here, A = πa2 , with the change πa2 = ( )2 being

valid for a square dent with side , and px is the

px
∆P

2πa2
------------.=

A

A

1

2

3

h
w1

w

δ

P

Fig. 1. Typical indentation diagram with three branches:
(1) loading; (2) holding under loading; (3) unloading and
repeated loading accompanied by recording the hysteresis
loop of the width δ.
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opposite pressure on a contour of radius r defined by
parameter x:

(3)

Formula (2) suggests that no elastic process is real-
ized under the unloading of a plastic dent. After
decreasing the load Pm by ∆Pr , the opposite pressure
along the perimeter of the plastic dent increases at once
to the limiting value px = q and opposite plastic strains
arise. In the course of unloading, the width of the belt
∆rb = a – r, in which the pressure is uniform and equal
to q, increases. The experimental dependence P(w)
turns out to be determined by a combination of two pro-
cesses: an increase in the belt width ∆rb with growing
∆P and a decrease in the area πr2 (for which the model
of a flat indenter holds) with dropping P.

In the case of uniform pressure distribution, the
dependence ∆P(w) for d = const is linear and differs
from (1) only in its constant coefficient; namely,

∆P = Erd∆we, (4)

where we = . Thus, plastic-dent unloading turns

out to be described by a combination of two elastic
models, namely, by that of an indenter with a flat end of
area A and of a model of uniform pressure distributed
over the same area. In an actual unloading process gov-
erned by (1) and (4), it is necessary to take into account
that the parameter x defining the domains of validity of
these models varies simultaneously with ∆we and ∆w1 .

On the internal boundary of the belt ∆rz, the oppo-
site pressure px is equal to q. Under this condition and
with regard to (3), formula (2) (after multiplying it by
πa2) takes the form

where Ae is the belt area normalized to the area of πa2 .
Taking into account that qπa2 = Pr, with Pr being the
load applied to the plastic-dent area [4], and introduc-
ing the diameter y = 2r, we write out these equalities in
the following form:

(5)

We denote two summands of the resulting strain for

the areas Ae and , respectively, by δwe = f(∆we) and

δw1 = f(∆w1):

∆w = δwe + δw1. (6)
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The contributions of the quantities ∆we and ∆w1 to
the resulting unloading process must satisfy boundary
conditions. At the initial moment of unloading, the con-
tribution of ∆we vanishes, because, in a purely elastic
process, relationship (1) remains valid up to complete
unloading. Furthermore, if the pressure becomes uni-
form over the entire area of a plastic dent with size
2∆rz = 2a = d (as a result of opposite plastic strains), the

strain takes the form we = w1 . In this case, the contri-

bution of ∆w1 vanishes. Thus, for d = 2∆rb with expres-
sions (4), (1) taken into account, we arrive at

Under unloading, the elastic relaxation completely
transforms into the work of the plastic tensile deforma-
tion of area Ae. Therefore, omitting the factor 1/2 in
equality (5), we obtain

The pressure onto area Ae remains constant, while

the area varies as , but the pressure onto the resid-

ual elastic-contact area drops as . Therefore, the total

contribution of the two processes to the strain ∆w

depends on the parameter . The substitution of the

above expressions into expression (1) yields the quan-

tity ∆w. After normalizing , we arrive at the fol-

lowing correction:

(7)

Relationship (7) allows us to reliably determine the
modulus Er . To do this, we draw a straight line through
the end points of the segment ∆P = Pr – P of the unload-
ing curve and substitute the values obtained for the

derivative  into the conventional dependences pres-

ently used [1–7]. As a result, we obtain the value of Ew .
The actual value Er of the modulus is determined by the
relationship

(8)

The correction found is valid only for the first
unloading cycle, because the surfaces of the dent and
indenter are becoming self-congruent while the number
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of repeated cycles is increased. As a result, the hystere-
sis loop is contracted and the model of the flat indenter
should be modified.

The corrections Π =  – 1 evaluated by for-

mula (7) are presented in Fig. 2. They are compared
with those found experimentally for a series of materi-

als by measuring the variation of the slope  for the

straight line connecting the end points Pr and P of the
segment ∆ê. Deviations of the experimental points
from a linear dependence are virtually absent on seg-

ments with lengths up to 0.2 . In the case of further

unloading, the deviations from the calculated curve
increase. Under complete unloading, these deviations
are natural and indicate the character of the pressure
distribution over the dent surface. For the Vickers and
Berkovich pyramids, the deviations are within the lim-
its of the values of m from 1.3 to 1.5 [1, 3, 4] and from
1.2 to 1.6 [5], respectively.

Relationship (7) differs from the formula proposed
in [4] since the former allows for the fact that the pres-

sure distributions over areas Ae and  are different.

Formula (7) makes it possible to take characteristic fea-
tures of the unloading process into account. They are
associated with both the manifestation of the Bausch-
inger effect and the difference in the normalized sizes
of the plastic zone under the dent, which depend on the
strain-hardening coefficient of the material. The influ-
ence of these effects results in the experimental data
being poorly consistent with the calculated curve. The
deviation measured allows the properties of materials
to be estimated quantitatively according to the shape of
the hysteresis loop recorded under repeated loading.
The hysteresis loop increases with decreasing normal-
ized size of the plastic zone under the dent, hence, with
the resistance of the zone to opposite plastic strains. In
this case, the loop width δ increases with dent unload-
ing. After a certain number of repeated loads, plastic
fatigue of the material arises. Thus, the hysteresis loop
width is an important parameter in determining the
kinetics of fatigue and wear and the above model for
unloading a plastic dent elucidates the character of this
parameter.

It becomes necessary to express the dimensional
quantity δ in terms of the dimensionless strain ε. In a
loaded dent, the strain is determined by elastic and
plastic components differing in their physical nature.
Elastic and plastic strains relate to variation in the
body’s volume and shape, respectively. If the total
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2

DOKLADY PHYSICS      Vol. 45      No. 12      2000
strain in a dent of depth h is equal to ε, then the strain δ
should be expressed in the linear approximation as a

fraction  of ε.

In the presence of friction, the similar parameter 

becomes the stable characteristic of hysteresis, since
the strain h of the microridges on the surface is irregular
(see Fig. 1). This stability is caused by the very strained
state of the material in the surface layer. In this case, the
σ–ε diagram is close to a smooth plateau and crushing
of the microridges takes place under the conditions
when their hardness and elastic strain εw remain con-
stant. If the elastic strain is εw , then the strain εδw pro-

portional to δ should be expressed as a fraction  of

εw , with the relation between w1 and εw being linear.

The elastic strain is given by equations [1–4]

(9)

(10)

Both the increase in the opening angle of a dent and
the fraction of its plastic strain under unloading depend
on the modulus of w1 and on the relationship between
w1 and the elastic strain ws along the dent perimeter.

The ratio  weakly depends on the parameter m = 

δ
h
---

δ
w1
------

δ
w1
------

εw
2

π
-------

w1

A
-------- HM

Er
---------,= =

w1

A
--------

π
2

-------HM
Er

---------.=

ws

w1
------ w

w1
------

0.2 0.4

0.3

0.2

0.80.60

0.1

Π

∆P/Pr

Fig. 2. Correction Π to the Young’s modulus as a function of

the linear-segment length . Experimental data are pre-

sented for (d) Ti, (+) Mo, (j) Cu, ( ) L62 brass, and
( ) D16T duralumin alloy.

∆P
Pr
-------
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(see Fig. 1) determining the mean pressure HM distri-
bution over the area A.

For geometrically similar dents, ε is independent of
h. Taking into account that εδ < ε, we have, in the linear

approximation, that  or

εδ = ε . (11)

We then rewrite (11) in terms of the transverse size

 (instead of h) of the unloaded dent and introduce

the geometrical coefficient cA =  of the indenter

shape, where hd is the instrumental dent depth [1–4].
Taking into account that for the Vickers pyramid, cA =
4.95, ε = 0.08, and cAε = 0.40, we arrive at

εδ = 0.40 . (12)

If the strain ε in a dent of area A is proportional to its

normalized volume , then the proportion-

ality coefficient k for the material given is, in fact, con-

stant: ε =  =  = 0.08 and k = εcA = 0.08 × 4.95 ≅

0.40. This value of k holds for arbitrary opening angles
of the plastic dent.

By virtue of the linear relation between w1 and εw ,
the hysteresis strain is exactly expressed in terms of the
elastic strain:

εδw = εw . (13)

Dividing the numerator and denominator in (13) by

, we obtain, with regard to (9),

(14)

Equation (14) differs from (12) only in the factor
which is determined by the different nature of the elas-
tic and plastic strains. Comparison of these expressions
yields the equality

(15)

where σ is the corresponding tensile stress. Due to the
nonlinear behavior of the strain-hardening coefficient

, which decreases with increasing strain, the ine-

εδ

ε
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h
---=

δ
h
---

A

A
hd
--------

δ
A

--------

i.e.,  ε k
c

 

A

 -----=  
 

kh

A
-------- k

cA

-----

δ
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------

A

εδw
2

π
------- δ

A
--------.=

εδw

εδ
------- 2.8 . 

HM
σ

--------- 3,= =

dσ
dε
------

               
quality holds:  < . Therefore, the factor k

in (12) must decrease with increasing cA .
When analyzing processes of fatigue and wear, true

plastic strain εδ should be used. To calculate its value,
we should pass from the quantity h to the actual size

 of the contact area. The relation between h and 
has been considered in [1, 3, 4]. For large values of 
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 – 0.78
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. (16)

 

In the linear approximation, 

 

 = 0.81 – 0.26(

 

m

 

 –

1.27)

 

 [4]. In a region of quasi-elastic contact, it is advis-

able to express the relation between 

 

m

 

 and  as a

power series. For rapid estimates, this is less convenient
but more accurate than the linear approximation pro-

posed in [4]. The dependence 

 

(

 

m

 

)

 

 is approximated

by the following function:

In the interval of 

 

m

 

 from  to 1.5, it is reasonable to

use the simplified expression 

 

 = 1 – 0.334(

 

m

 

 – 1)

 

0.433

 

.

Formula (12) remains valid in the entire range of
variation from fully plastic contacts to quasi-elastic
contacts; the latter can be realized with indenters hav-
ing proper shapes. Therefore, using a set of indenters
which realize various contact conditions, we can find
strain 

 

ε

 

δ

 

 as a function of specific pressure 

 

p

 

 in the tri-
bound or of stress 

 

σ

 

 under fatigue conditions. It is evi-
dent that the dependence 

 

ε

 

δ

 

(

 

p

 

)

 

 is correlated with wear
resistance and fatigue.

The experimental data for the accumulation rate of
the recoverable plastic strain in various materials under
local loading by the Vickers pyramid (

 

ε

 

 

 

.

 

 0.08

 

) are
given in the table. For metal alloys, this quantity, as a
rule, decreases with increasing number 

 

N

 

 of unloading
cycles and becomes stable after 10 to 12 cycles. For
large 

 

N

 

, either cyclic hardening or cyclic softening of
the material takes place.

It is seen from the table that, in contrast to the Meyer
index 

 

n

 

, the hysteresis strain ranges within a limit of
one order of magnitude and depends on two material
characteristics: the strain-hardening coefficient and the

normalized hardness . In this connection, a more

εδw

εδ
------- HM

σ
----------

A A

A
cA

--------

ws

w1
------

ws

w1
------

ws

w1
------

 1
ws

w1
------– 0.1201– m 1–( )4 0.7607 m 1–( )3+=

– 1.3842 m 1–( )2 1.017 m 1–( ).+

4
π
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w1
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HM
Er
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The hysteresis strain εδ compared to other stress–strain properties of materials

No. Material E, GPa Er , GPa , % εδ, %

1 Mo 1.02 330 0.006 268 10.0 0.02

2 30KhGSA steel 1.08 210 0.013 187 14.0 0.065

3 12Kh18N9T steel 1.04 204 0.0085 182 7.0 0.02

4 Steel 45 1.12 195 0.014 165 14.0 0.07

5 L62 brass 1.08 98 0.0146 99 9.0 0.045

6 D16T duralumin alloy 1.06 80 0.022 79.5 4.5 0.035

7 Titanium alloy 1.08 130 0.0206 123 7.0 0.05

8 Ni–Al–Cr 0.94 210 0.037 187 6.0 0.08

9 Glass 0.85 74 0.091 73.7 10 0.32

10 KV glass 0.68 71 0.106 70.7 10 0.38

11 FeAl3 0.77 110 0.071 106 1.0 0.025

Note: When evaluating Er, we assume for diamond that E = 1140 GPa and that the Poisson’s ratio ν is 0.07.

HVh

HV
-----------

HM
E

----------
δ

W1
-------
accurate and rapid method for determining hardness
properties becomes possible, which is based on the

empirical dependences n ~  ~ , where ∆h is the

height of a material ridge extruded from a dent. There-

fore, the parameters Hh and  of the P–h diagram

quantitatively determine the tensile diagram within the
range before uniform strain.

Thus, the plastic-dent unloading described by a
combination of the two models makes it possible to
determine the degree of nonlinearity for the unloading
curve. To do this, we approximate the curved segment
by a straight line and then determine its slope with the
correction depending on the linear-segment length.
Such a description of the unloading of the plastic dent
in a material allows us to estimate the strain-hardening
coefficient according to the magnitude and shape of the
hysteresis loop. Both the Bauschinger effect and the
effect of cyclic hardening or cyclic softening are also
related to the strain hardening. Moreover, the above
method makes it possible to develop new, more accu-

δ
w1
------ ∆h

h
-------

δ
w1
------
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rate techniques for determining mechanical properties
through hardness measurements.
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The development of the exact theory of Earth rota-
tion is a rather complicated mathematical problem and
requires the elimination of a number of simplifications
in the accepted theory [2]. In spite of the exceptionally
high level of modern observations, researchers have
failed to attain a complete understanding of such
dynamic effects as the free nutation of the Earth-rota-
tion axis and the variation of latitudes, both of which
are extremely necessary in constructing a highly accu-
rate theory of rotational motion for the deformable
Earth.

We attempted to study certain fine regularities in the
theory of Earth rotation around its center of mass from
more general positions, namely, translational–rota-
tional movement. As a starting theoretical model, we
used the intermediate two-body problem of the Earth–
Moon system, which made it possible to take into
account the barycentric distance. In this intermediate
motion, the Earth uniformly rotates and deforms under
the action of centrifugal forces of inertia and the lunar
gravitation field. The deformations are considered to
proceed quasi-statically (the inertia terms can be
ignored). In other words, the motion of the three-axis
elastic Earth as a whole around its center of mass can
be represented as the motion of a planet with an equi-
librium configuration and “frozen” deformations. Fur-
thermore, on the basis of the intermediate model prob-
lem, it is of interest to consider the dynamics of evolu-
tionary processes, but already using perturbed motion
with allowance for dissipative factors and lunar–solar
perturbations.

In our opinion, when developing the theory of the
Earth’s rotation around its center of mass, an important
argument is the fact that the Earth–Moon dynamic sys-
tem is assigned to the class of systems with a slow evo-
lution in which it is possible to trace multistage
dynamic processes with various characteristic times.
Thus, it is possible to compare the characteristic times

Institute of Astronomy, Russian Academy of Sciences, 
ul. Pyatnitskaya 48, Moscow, 109017 Russia
1028-3358/00/4512- $20.00 © 20672
of the Earth’s own rotation around its axis, of the pre-
cession of the kinetic-moment vector for the deform-
able Earth, and of the evolution of the rotation-axis
inclination to the plane of the ecliptic. In such a system,
the natural separation of motions into fast and slow
motions takes place and these motions are described by
their corresponding parameters. Under certain condi-
tions, it is possible to isolate a set of slow parameters
(variables) whose rate of variation is asymptotically
slow (with respect to a certain small parameter), and the
evolutionary equations describing this variation are
separated from the remaining equations of the set [5].
Equations averaged over the fast variables for the trans-
lational–rotational motions of the Earth–Moon system
in the solar gravitational field are studied indepen-
dently. In the majority of cases, these equations turn out
to be a good approximation to the original equations for
a long (in the asymptotic sense) time interval. The
equations for the remaining variables form a fast com-
ponent of the Earth–Moon system and involve the evo-
lutionary-system variables as slowly varying parame-
ters. It should be noted that, from the standpoint of evo-
lutionary processes, the qualitative picture of the fast
motions of the system is a background against which
the slow evolution of the orbital–rotational motion
occurs.

1. The choice of intermediate trajectories for the
Earth’s motion is based on the spatial variant of the
two-body (planet–satellite) problem and, namely, the
deformable-Earth–Moon system (the Moon is taken as
a mass point) and is analyzed from the positions of a
double planet. This automatically presumes the pres-
ence of a barycentre and allows for its position in sub-
sequent calculations. The model problem under consid-
eration is formulated as follows: let a deformable planet
(the Earth) and its satellite (the Moon) participate in the
mutual translational–rotational motion around their
common center of mass (barycentre). The satellite orbit
is inclined at an arbitrary angle to the planet’s equator.
The Earth is represented by a two-layer model with a
solid core and a viscoelastic mantle [1, 7], which are
individually continuous. We introduce the inertial sys-
000 MAIK “Nauka/Interperiodica”
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tem of coordinates Cξ1ξ2ξ3 with the origin in the bary-
center of the planetary system. Let G be the Earth’s
own kinetic moment and L be the orbital angular
momentum for the lunar center of mass C1 and the ter-
restrial center of mass C2 . The angular momentum K =
G + L of the entire planetary system is immobile in the
inertial space and coincides with the axis Cξ3 (see the
figure).

The radii vectores for the points C1 and C2 in the
Cξ1ξ2ξ3 coordinate system are given in the form

(1)

Here, h, i, and ϑ are the ascending-node longitude, the
inclination, and the orbit true anomaly, respectively;

R21 = R21  is the radius vector drawn from the point

C2 to the point C1 , so that R21 = . The C2x1x2x3 Car-
tesian coordinate system is rigidly related to the solid
core of the planet. The axes of this system are directed
along the principal axes of inertia A, B, and C of the
planet. For this coordinate system, we may write out

(2)

where O(t) is the matrix specifying the passage from
the body axes to the inertial axes and is expressed in

Andoyer canonical variables: L, I2 = , I3, ϕ1, ϕ2, and
ϕ3; and cosδ1 = I3/I2, cosδ2 = L/I2 [5, 6].

We describe the mutual orbital motion of mass cen-
ters in the Λ, H, ϑ , h Delone canonical variables, where

H is the projection of Λ onto the Cξ3-axis, Λ = , and
cos i = H/Λ.

After a number of simple transformations and aver-
aging over the fast variables ϕ2 and ϑ, the Routh func-
tional of the intermediate problem is reduced to the
form (with an accuracy to an insignificant constant)

(3)

where , , and  are the elastic-Earth principal
moments of inertia modified under the action of the
centrifugal forces induced by the Earth’s rotation. With

Ri RiRi
0, Ri c̃iR21, i 1 2,,= = =

Ri
0 Γ3 h( )Γ1 i( ) ϑcos ϑ 0,sin,( ), R2

0 R1
0,–= =

c̃1 m2m 1– , c̃2 m1m 1– , m m1 m2.+= = =
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0
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0
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γ1 γ2 γ3,,( ),=
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1– δ2( )Γ3
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2
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2

Ã
---------------
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2
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----------------+ L2

2C̃
------- const,+ +=

Ã B̃ C̃
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allowance for the barycentric distance, they take the
form

(4)

Here, f is the gravitation constant; Jii[u] = diag{J11[u],
J22[u], J33[u]} is the inertia-tensor components depen-
dent on the vector u of the elastic translation for the
deformed planet in the planetary coordinate system;
and J[0] = diag{A, B, C} for u = 0. Structural form (3)
coincides exactly with the traditional expression for the
Routh function of a perfectly rigid body in the Andoyer
variables and is a basis for introducing the action–angle
variables Ii and wi (i = 1, 2, 3). It should be noted that
the action–angle variables compose the Hamiltonian
part of the variables, whereas the generalized coordi-
nates (modal variables) describing the deformations of
the shell compose the Lagrangian part of the variables.

Thus, we introduce the following principal dynamic
parameters:

(5)

where E is the energy constant.
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The relation between the action–angle variables and
the Andoyer variables is given by the following formu-
las [3, 4] (for brevity, we restrict ourselves by the case
0 ≤ λ < 1):

(6)

Here, K(λ), Π(π/2, κ2, λ) are the complete elliptic inte-
grals of the first and third kinds; and F(ξ, λ), Π(ξ, κ2,
λ) are the elliptic integrals of the first and third kinds.

In this case, Routh functional (3) can be written
out as

(7)

The general solution to the intermediate problem
with functional (7) has the form

(8)

where w10 and w20 are the initial values of the angular
variables.

Solving the first equation of set (6) with respect to λ
with an accuracy to λ2 inclusively, we obtain

(9)

Using (9), we can represent the frequencies of inter-

I1 = 
2I2
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mediate motion (8) in the form (0 ≤ λ < 1)

(10)

2. As an example, we consider the Chandler wobble
of the Earth’s poles. The wobble is determined as a
motion of the rotation axis with respect to the figure
axis [8]:

(11)

Here, snu and cnu are the Jacobi elliptic functions,
which are represented by the expansions in the Fourier
trigonometric series [3, 4]. In (11), according to the
accepted convention [8], yp is directed along the 90°
meridian of the western longitude.

The period of the Chandler wobble is determined by
the following expression:

(12)

Formula (12) relates the period of the Chandler
wobble with the principal dynamic parameters intro-
duced by the authors: the energy constant, the kinetic-
moment modulus, and the Earth’s principal moments of
inertia.

The analytical expressions obtained in this study for
the moments of inertia of the Earth with allowance for
its elasticity and the translational type of its motion is a
basis for both constructing a highly accurate theory of
the Chandler wobble and for a comparison of this the-
ory with long-term astronomical observations and esti-
mates for the period of this vibration. It should be espe-
cially emphasized that, on the basis of the derived aver-
aged differential equations, we can trace the evolution
of both the pole vibrational motion and the moments of
inertia for the Earth.
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κ1 Ã
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MECHANICS
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L. Prandtl [1] presented an asymptotic solution to
the problem of a flat slab compressed by rough plates.
In [2–4], this solution was extended to cases with bulk
stresses. Below, we consider the stressed state of a bulk
layer made of an ideally plastic material compressed by
curved and inclined rough plates under conditions of
perfect plasticity [5].

1. Under conditions of perfect plasticity, the stressed
state of a bulk layer with thickness 2h compressed
along the z-axis by rough parallel plates (the figure) is
determined by the relationships [3]

(1)

where σij are components of the stress tensor and k is
the shear yield point.

We consider the problem concerning a plastic layer
compressed by two concentric spherical surfaces.

In the spherical coordinate system, the equilibrium
equations have the form

τ xz az, τ yz bz, a b—const,,= =
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(2)

Following [3], we can write the condition of perfect
plasticity using the following relationships:

(3)

Further on, we use dimensionless variables; i.e., we
normalize the stress components by dividing them by
the value of shear yield point k and measure the length
in units of h.
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3
------–

τρθτθϕ

τρϕ
---------------,+= =

σϕ σ 2k
3

------–
τρϕτθϕ

τρθ
---------------,+=

τρθτρϕ

τθϕ
---------------

τρθτθϕ

τρϕ
---------------

τρϕτθϕ

τρθ
---------------+ + 2k,=

σ 1
3
--- σρ σθ σϕ+ +( ).=

z

y

x
0

2h

Figure.
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We introduce the change of variables

(4)

and represent (4) in the form

(5)

where δ is a small dimensionless parameter.
Then, we use relationships (5) to pass to variables x,

y, and z in equilibrium equations (2). This yields the
system

(6)

At δ = 0, equations (6) are transformed into equa-
tions describing the equilibrium in the Cartesian coor-
dinate system x, y, z.

The solution is sought in the form

(7)

We use solution (1) as an initial zeroth approxima-
tion. Based on (6), (7), and (3), we find the first approx-
imation:

(8)

(9)

ρ R z, R θ π
2
---– 

 + y,= =

Rϕ x, R—const=

1
ρ
---

δ
1 δz+
--------------, θ π

2
--- δy, ϕ+ δx, δ 1

R
---,= = = =

∂σz

∂z
--------

1
1 δz+
--------------

∂τ yz

∂y
--------- 1

1 δz+( ) δy( )cos
---------------------------------------

∂τxz

∂x
---------+ +

+
δ

1 δz+
-------------- 2σz σy– σx– τ yz δy( )tan–( ) 0,=

∂τ yz

∂z
---------

1
1 δz+
--------------

∂σy

∂y
-------- 1

1 δz+( ) δy( )cos
---------------------------------------

∂τxy

∂x
---------+ +

+
1

1 δz+
-------------- 3τ yz – σy σx–( ) δy( )tan( ) 0,=

∂τ xz

∂z
---------

1
1 δz+
--------------

∂τ xy

∂y
--------- 1

1 δz+( ) δy( )cos
---------------------------------------

∂σx

∂x
--------+ +

+
1

1 δz+
-------------- 3τ xz 2τ xy δy( )tan–( ) 0.=

σij σij
0 δσij' .+=

∂σx'

∂x
--------

∂τ xy'

∂y
---------

∂τ xz'

∂z
---------+ +

∂σx
0

∂x
---------z

∂τ xy
0

∂y
---------z 3τ xz

0 ,–+=

∂τ xy'

∂x
---------

∂σy
'

∂y
--------

∂τ yz'

∂z
---------+ +

∂τ xy
0

∂x
---------z

∂σy
0

∂y
---------z 3τ yz

0 ,–+=

∂τ xz'

∂x
---------

∂τ yz
'

∂y
---------

∂σz'

∂z
--------+ +

∂τ xz
0

∂x
---------z

∂τ yz
0

∂y
---------z 2σz

0 σx
0 σy

0+ + ;–+=

σx' σ'
τ xy' τ xz

0 τ xy
0 τ xz'+( )τ yz

0 τ xy
0 τ xz

0 τ yz'–

τ yz
0( )2

----------------------------------------------------------------------,+=

σy' σ'
τ xy' τ yz

0 τ xy
0 τ yz'+( )τ xz

0 τ xy
0 τ yz

0 τ xz'–

τ xz
0( )2

----------------------------------------------------------------------,+=
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(10)

Here,

From (1) and (8), we find

(11)

Following the approach of Prandtl [1], we set

(12)

Then, according to (12), (10), and (1), we have  =

(z). A solution to system (11) has the form

(13)

(14)

σz' σ'
τ xz' τ yz

0 τ xz
0 τ yz'+( )τ xy

0 τ xz
0 τ yz

0 τ xy'–

τ xy
0( )2

----------------------------------------------------------------------;+=

τxy' τ xz
0 τ xy

0 τ xz'+( )τ yz
0 τ xy

0 τ xz
0 τ yz'–

τ yz
0( )2

----------------------------------------------------------------------

+
τxy' τ yz

0 τ xy
0 τ yz'+( )τ xz

0 τ xy
0 τ yz

0 τ xz'–

τ xz
0( )2

----------------------------------------------------------------------

+
τxz' τ yz

0 τ xz
0 τ yz'+( )τ xy

0 τ xz
0 τ yz

0 τ xy'–

τ xy
0( )2

---------------------------------------------------------------------- 0.=

τxz
0 az, τ yz

0 bz,= =

τ xy
0 ab

a2 b2+
---------------- 1 1 a2 b2+( )z2–± 

  .=

∂σx'

∂x
--------

∂τ xy'

∂y
---------

∂τ xz'

∂z
---------+ + 4az,–=

∂τ xy'

∂x
---------

∂σy'

∂y
--------

∂τ yz'

∂z
---------+ + 4bz,–=

∂τ xz'

∂x
---------

∂τ yz'

∂y
---------

∂σz'

∂z
--------+ + –4 3 a

b
--- b

a
---+ 

  τ xy
0 .+=

τ xz' τ xz' z( ), τ yz' τ yz' z( ).= =

τ xy'

τ xy'

τ xz' z( ) a1z 2az2– c1, a1 c1—const,,+=

τ yz' z( ) b1z 2bz2– c2, b1 c2—const;,+=

σx' –a1x b1y– c f 3 z( )– f 1 z( ) F z( ),+ + +=

σy' –a1x b1y– c f 3 z( )– f 2 z( ) F z( ),+ + +=

σz' –a1x b1y– c F z( ),+ +=

F z( ) z 3 a2 b2+±–=

× z
2
--- 1

a2 b2+
---------------- z2–

1

2 a2 b2+( )
------------------------ z a2 b2+ 

 arcsin± ,

f 1 z( )
τ xy' τ xz

0 τ xy
0 τ xz'+( )τ yz

0 τ xy
0 τ xz

0 τ yz'–

τ yz
0( )2

----------------------------------------------------------------------,=
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Function (z) is determined by (10) and (13).

For curved plates, the compression pressure σz at
z = ±1, calculated in the first approximation, remains
linear according to (14), whereas the distribution of
tangential stresses τxz and τyz over the layer thickness
becomes nonlinear. In this approximation, the sand-pile
analogy established in [6] also remains valid for curved
plates.

2. In the case of a plate formed by conic sections
(θ = const), we can introduce the change of variables

(15)

and represent expressions (15) in the form

(16)

In the first approximation, like in (6) and (8), rela-
tionships (16), (7), (2), and (1) yield the equations

(17)

and relationships (9) and (10) remain valid.
From (1) and (17), we find

(18)

f 2 z( )
τ xy' τ yz

0 τ xy
0 τ yz'+( )τ xz

0 τ xy
0 τ yz

0 τ xz'–

τ xz
0( )2

----------------------------------------------------------------------,=

f 3 z( )
τ xz' τ yz

0 τ xz
0 τ yz'+( )τ xy

0 τ xz
0 τ yz

0 τ xy'–

τ xy
0( )2

----------------------------------------------------------------------.=

τxy'

ρ R y, R θ π
2
---– 

 + z,= =

Rϕ x, R—const=

1
ρ
---

δ
1 δy+
---------------, θ π

2
--- δz,+= =

ϕ δx, δ 1
R
---.= =

∂σx'

∂x
--------

∂τ xy
'

∂y
---------

∂τ xz'

∂z
---------+ +

∂σx
0

∂x
---------y

∂τ xz
0

∂z
---------y 3τ xy

0 ,–+=

∂τ xy'

∂x
---------

∂σy
'

∂y
--------

∂τ yz'

∂z
---------+ +

=  
∂τ xy

0

∂x
---------y

∂τ yz
0

∂z
---------y 2σy

0 σz
0 σx

0+ + ,–+

∂τ xz'

∂x
---------

∂τ yz
'

∂y
---------

∂σz'

∂z
--------+ +

∂τ xz
0

∂x
---------y

∂σz
0

∂z
---------y 3τ yz

0–+=

∂σx'

∂x
--------

∂τ xy
'

∂y
---------

∂τ xz'

∂z
---------+ + 3τ xy

0 ,–=

∂τ xy'

∂x
---------

∂σy
'

∂y
--------

∂τ yz'

∂z
---------+ + by 2

3b
a

------τ xy
0 ,–+=

∂τ xz'

∂x
---------

∂τ yz
'

∂y
---------

∂σz'

∂z
--------+ + 3bz.–=
In this case, the solution takes the form

(19)

According to (19), the plate curvature leads, in the
first approximation, to the by2/2 term characterizing the
deviation from linearity for the compression stress σz.
Linearity is implied by the sand-pile analogy [6].

3. In the case of an inclined plate formed by sections
ϕ = const, we introduce the change of variables

(20)

and represent expressions (20) in the form

(21)

In the first approximation, like in (6) and (8), rela-
tionships (21), (7), (2), and (1) yield the equations

(22)

and relationships (9) and (10) remain valid.

σx' a– 1x b1y–
b
2
---y2 c

3b
2

------z2– f 3 z( )– f 1 z( ),+ ++=

σy' a– 1x b1y–
b
2
---y2 c

3b
2

------z2– f 3 z( )– f 2 z( ),+ + +=

σz' –a1x b1y–
b
2
---y2 c

3b
2

------z2,–+ +=

τ xz' z( ) a1z 3 τ xy
0 z c1, c1—const,+d∫–=

τ yz' z( ) b1z 2z
3b
a

------ τ xy
0 z c2, c2—const,+d∫–+=

τ xy
0 zd∫ ab

2 a2 b2+( )
------------------------ 2z z 1 a2 b2+( )z2– -±

=

+
1

a2 b2+
-------------------- z a2 b2+ 

 

arcsin .

ρ R x, R θ π
2
---– 

 + y,= =

Rϕ z, R—const=

1
ρ
---

δ
1 δy+
---------------, θ π

2
--- δz,+= =

ϕ δx, δ 1
R
---.= =

∂σx'

∂x
--------

∂τ xy
'

∂y
---------

∂τ xz'

∂z
---------+ +

=  
∂τ xy

0

∂y
---------x

∂τ xz
0

∂z
---------x 2σx

0 σy
0 σz

0+ + ,–+

∂τ xy'

∂x
---------

∂σy
'

∂y
--------

∂τ yz'

∂z
---------+ +

∂σy
0

∂y
---------x

∂τ yz
0

∂z
---------x 3τ xy

0 ,–+=

∂τ xz'

∂x
---------

∂τ yz
'

∂y
---------

∂σz'

∂z
--------+ +

∂τ yz
0

∂y
---------x

∂σz
0

∂z
---------x 3τ xz

0 ,–+=
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From (1) and (22), we find that

(23)

In this case, the solution takes the form

(24)

∂σx'

∂x
--------

∂τ xy'

∂y
---------

∂τ xz'

∂z
---------+ + ax 2

3a
b

------τ xy
0 ,–+=

∂τ xy'

∂x
---------

∂σy'

∂y
--------

∂τ yz'

∂z
---------+ + 3τ xy

0 ,–=

∂τ xz'

∂x
---------

∂τ yz'

∂y
---------

∂σz'

∂z
--------+ + 3az.–=

σx' –a1x b1y–
a
2
---x2 c

3a
2

------z
2

– f 3 z( )– f 1 z( ),+ + +=

σy' –a1x b1y–
a
2
---x2 c

3a
2

------z2– f 3 z( )– f 2 z( ),+ + +=

σz' –a1x b1y–
a
2
---x2 c

3a
2

------z2,–+ +=

τ xz' z( ) a1z 2z
3a
b

------ τ xy
0 z c1, c1—const,+d∫–+=
DOKLADY PHYSICS      Vol. 45      No. 12      2000
According to (24), the plate curvature leads, in the
first approximation, to the bx2/2 term characterizing the
deviation from linearity for compression stress σz . Lin-
earity is implied by the sand-pile analogy [6].
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We describe a wide class of linear partial differential
equations that have exact solutions in the form of a
product of functions of partially separated variables (in
contrast to the time coordinate, the spatial coordinates
are separated). Problems in which the Green’s function
admits partial separation of variables are considered.
We construct solutions to a number of linear unsteady
boundary value problems of the first, second, and third
kinds for heat- and mass-transfer equations with vari-
able coefficients. We demonstrate examples of nonlin-
ear equations in mechanics and mathematical physics
whose exact solutions depend on partially separated
variables.

1. Preliminary remarks. The method of separation
of variables is one of many widespread methods used
for solving linear equations in mathematical physics.
This method is based on a search for particular solu-
tions to linear homogeneous equations, which take the
form of a product of functions for different variables:

Here, x1, …, xn are the spatial variables (generalized
coordinates) and t is time. The functions ϕ1 = ϕ1(x1),
…, ϕn = ϕn(xn), and ψ = ψ(t) are governed by ordinary
differential equations (for details see, e.g., [1–6]). The
generalization of this method is based on the search for
particular solutions in the form w(x, t) = ϕ(x)ψ(t).

In this paper, we deal with equations of mechanics
and mathematical physics whose particular solutions
depend on partially separated variables,

(1)

i.e., the solution is separated with respect to the spatial
variables x1, …, xn, but is not separated with respect to
time. In a more general case, we consider solutions
having the form

w x t,( ) ϕ1 x1( )…ϕn xn( )ψ t( ), x x1 … xn, ,{ } .= =

w x t,( ) ϕ1 x1 t,( )…ϕn xn t,( );=

w x t,( ) ϕ x1 … xk t, , ,( )ϕk xk 1+ … xn t, , ,( ).=

Institute of Problems in Mechanics,
Russian Academy of Sciences,
pr. Vernadskogo 101, Moscow, 117526 Russia
1028-3358/00/4512- $20.00 © 20680
2. Linear equations in partially separated vari-
ables. We consider the linear homogeneous partial dif-
ferential equation

(2)

where

(3)

Equations (2) and (3) have particular solutions with
partially separated variables in the form of (1), with the
functions ϕk = ϕk(xk, t) described by one-dimensional
partial differential equations:

(4)

The right-hand sides of Eqs. (4) depend on the arbitrary
functions λ1(t), …, λn(t) that satisfy the relationship

3. Cauchy problem (x Œ 5n, t ≥ 0). The solution to
the Cauchy problem for the linear nonhomogeneous
equation

(5)

with the initial condition

(6)

can be written out in the form [7]

w∂
t∂

------ Lk t, w[ ]
k 1=

n

∑– 0,=

Lk t, w[ ] aks xk t,( )∂
sw

∂xk
s

---------, k
s 0=

mk

∑ 1 … n., ,= =

ϕk∂
t∂

-------- Lk t, ϕk[ ]– λ k t( )ϕk.=

λ k t( )
k 1=

n

∑ 0.=

w∂
t∂

------ Lk t, w[ ]
k 1=

n

∑– Φ x t,( )=

w f x( ) at     t 0= =     
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(7)

Here, % = %(x, y, t, τ) is the fundamental solution that,
for t > τ ≥ 0, satisfies the linear homogeneous equation

(8)

with a nonhomogeneous initial condition having the
particular form

(9)

Here, δ(x) is the n-dimensional Dirac delta function;
the quantities τ and y = {y1, …, yn} serve as free param-
eters (y ∈  5n). In formula (7), we use the shortened
notation dy = dy1…dyn .

Taking into account the explicit form of differential
operators (3) and the equality δ(x – y) = δ(x1 –
y1)…δ(xn – yn), we can prove that the fundamental solu-
tion described by n-dimensional equation (8) with ini-
tial condition (9) can be written out in the form of the
product

(10)

Here, %k = %k(xk , yk, t, τ) are the fundamental solutions
that satisfy the one-dimensional equations

with the initial conditions

In this case, fundamental solution (10) depends on
partially separated variables (the solution is separated
with respect to the spatial variables but is not separated
with respect to time).

Example 1. The fundamental solution to the equa-
tion

is given by formula (10), where

w x t,( ) Φ y τ,( )% x y t τ, , ,( ) yd τd

5n

∫
0

t

∫=

+ f y( )% x y t 0, , ,( ) y.d

5
n

∫

%∂
t∂

------- Lk t, %[ ]
k 1=

n

∑– 0=

% δ x y–( ) at     t τ .= =

% x y t τ, , ,( ) %k xk yk t τ, , ,( ).
k 1=

n

∏=

%k∂
t∂

--------- Lk t, %k[ ]– 0, k 1 … n,, ,= =

%k δ xk yk–( ) at     t τ .= =

w∂
t∂

------ ak t( )∂
2w

xk
2∂

---------, 0 ak t( ) ∞<<
k 1=

n

∑=
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Example 2. The fundamental solution to the three-
dimensional Schrödinger equation

also operates with partially separated variables; i.e., it
can be represented in the form of a product of three one-
dimensional fundamental solutions [see formula (10) for
n = 3)].

4. Unsteady boundary value problems of heat-
and mass transfer. The equations

(11)

with 0 < 

 

a

 

k

 

(

 

x

 

k

 

, 

 

t

 

) < 

 

∞

 

, are widely met in the theory of
heat- and mass transfer [5, 6, 8].

We consider the domain 

 

V

 

 = {

 

α

 

k

 

 

 

≤

 

 

 

x

 

k

 

 

 

≤

 

 

 

β

 

k

 

, 

 

k

 

 = 1, …,

 

n

 

},

 

 which is an 

 

n

 

-dimensional parallelepiped. On the
faces of this parallelepiped, nonhomogeneous bound-
ary conditions are imposed:

 

(12)

 

where

Setting appropriate values of the coefficients 

and the functions 

 

 = (

 

t

 

)

 

 (

 

i 

 

= 1, 2), we can arrive
at the boundary conditions of the first, second, and third
kinds on each face.

%k x( k yk t τ ), , , 1

2 πTk

----------------
xk yk–( )2

4Tk

----------------------– ,exp=

Tk ak η( ) η .d

τ

t

∫=

i"
w∂
t∂

------ "
2

m2
------ ∂2w

x∂ 1
2

--------- ∂2w

x∂ 2
2

--------- ∂2w

x∂ 3
2

---------+ +
 
 
 

–=

+ U1 x1 t,( ) U2 x2 t,( ) U3 x3 t,( )+ +[ ]w

w∂
t∂

------ ak xk t,( )∂
2w

xk
2∂

---------
k 1=

n

∑–

+ bk xk t,( )∂w
xk∂

------- ck xk t,( )w+ Φ x t,( ),=

σk
1( ) w∂

xk∂
------- νk

1( ) t( )w+ gk
1( ) x t,( ),   for   x k α k ,= = 

σ

 

k

 

2

 

( )

 

w

 

∂

 

x

 

k

 

∂

 

-------

 

ν

 

k

 

2

 

( )

 

t( )w+ gk
2( ) x t,( ),   for   x k β k ,= =

σk
1 2,( ) νk

1 2,( ) t( )+ 0,>

σk
1( )νk

1( ) t( ) 0, σk
2( )νk

2( ) t( ) 0.≥≤

σk
i( )

νk
i( ) νk

i( )
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The solution to Eq. (11) with initial condition (6) and

homogeneous boundary conditions (12) [for  =

 = 0] can be written out in the form

(13)

where dy = dy1…dyn and V = {αk ≤ yk ≤ βk, k = 1, …,
n}. For t > τ ≥ 0, the Green’s function G(x, y, t, τ) in
solution (13) satisfies the linear homogeneous equation

(14)

with a nonhomogeneous initial condition of the partic-
ular form

(15)

and the homogeneous boundary conditions

(16)

gk
1( )

gk
2( )

w x t,( ) Φ y τ,( )G x y t τ, , ,( ) yd τd

V

∫
0

t

∫=

+ f y( )G x y t 0, , ,( ) y,d

V

∫

G∂
t∂

------- ak xk t,( )∂
2G

xk
2∂

---------
k 1=

n

∑–

+ bk xk t,( )∂G
xk∂

------- ck xk t,( )G+ 0=

G δ x y–( ),   for   t τ = =

σk
1( ) G∂

xk∂
------- νk

1( ) t( )G+ 0,   for   x k α k ,= = 

σ

 

k

 

2

 

( )

 

G

 

∂

 

x

 

k

 

∂

 

-------

 

ν

 

k

 

2

 

( )

 

t( )G+ 0,   for   x k β k .= =
The Green’s function can be shown to admit par-
tially separated variables:

(17)

Here, Gk = Gk(xk, yk, t, τ) are the auxiliary Green’s func-
tions that satisfy the one-dimensional equations

with the initial condition

and the homogeneous boundary conditions

Expressions for the auxiliary (one-dimensional)
Green’s functions for a large number of problems can
be found, for example, in [3, 5, 6, 8–10].

The solution to Eq. (11) with initial condition (6)
and nonhomogeneous boundary conditions (12) has the
form

G x y t τ, , ,( ) = Gk xk yk t τ, , ,( ).
k 1=

n

∏

Gk∂
t∂

--------- ak xk t,( )
∂2Gk

xk
2∂

-----------– bk xk t,( )
Gk∂
xk∂

---------– ck xk t,( )Gk– 0,=

k 1 … n,, ,=

Gk δ xk yk–( ),   for   t τ = =

σk
1( ) Gk∂

xk∂
--------- νk

1( ) t( )Gk+ 0,   for   x k α k ,= = 

σ

 

k

 

2

 

( )

 

G

 

k

 

∂

 

x

 

k

 

∂

 

---------

 

ν

 

k

 

2

 

( ) t( )Gk+ 0,   for   x k β k .= =
       
Here, we used the following notation (i = 1, 2):

w x t,( ) Φ y τ,( )G x y t τ, , ,( ) yd τd

V

∫
0

t

∫ f y( )G x y t 0, , ,( ) yd

V

∫+=

+ ak α k τ,( ) gk
1( ) y τ,( )Λk

1( ) x y t τ, , ,( )[ ] yk αk= Sy
k( )d τd

S
k( )

∫
0

t

∫
k 1=

n

∑ ak βk τ,( ) gk
2( ) y τ,( )Λk

2( ) x y t τ, , ,( )[ ] yk βk= Sy
k( )d τ .d

S
k( )

∫
0

t

∫
k 1=

n

∑–

dy = dy1…dyn, dSy
k( ) = dy1…dyk 1– dyk 1+ …dyn,

S k( ) =  αm ym βm ,   for   m ≤ ≤  1 … k 1 k 1 … n , , + , – , , =  { } ,

Λk
i( ) x y t τ, , ,( )  =   

∂
 y k ∂ 

-------
 

G
 

x y
 

t
 

τ, , ,( )    for   σ k
i

 
( ) 0,  ν k

i
 

( ) t ( ) 1= = 

G

 

x y

 

t

 

τ, , ,( )   for   σ k
i

 
( ) – 1,    and   ν k

i
 
( ) t ( )   is   arbitrary.=
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5. Linear equations. Certain generalizations. We
consider the equation of the form

(18)

where L1, …, s; t[w] and Ms + 1, …, n;t[w] are linear differ-
ential operators (of an arbitrary order) related to the
variables x1, …, xs , and xs + 1, …, xn , respectively. The
operator coefficients depend on the corresponding sets
of variables and time t.

Equation (18) has particular solutions with partially
separated variables, which take the form

The fundamental solution to the Cauchy problem
for Eq. (18) also depends on partially separated vari-
ables.

6. Nonlinear equations. Hamilton–Jacobi equa-
tion. We now describe the nonlinear partial differential
equations that have exact solutions with partially sepa-
rated variables.

The nonlinear equations

(19)

have exact solutions in the form of a sum,

(20)

where the functions wk = wk(xk, t) satisfy simpler equa-
tions in one spatial variable:

(21)

Here, λk(t) are arbitrary functions interrelated by the

equality (t) = 0.

Example 3. We consider in more detail the equation
of the first order (Hamilton–Jacobi equation) which
corresponds to the case m = 1 in (19). We seek the com-
plete solution to this equation in the form of (20), where
the functions wk = wk(xk, t) satisfy Eqs. (21) with
λk(t) = 0. It is easy to verify that the complete solutions
to Eqs. (21) take the form

where Ak and Ck are arbitrary constants. Substituting

w∂
t∂

------ L1 … s; t, , w[ ]– Ms 1 … n; t, ,+ w[ ]– 0,=

w x t,( ) ϕ x1 … xs t, , ,( )ψ xs 1+ … xn t, , ,( ).=

w∂
t∂

------ Fk xk t
w∂
xk∂

------- … ∂mw

xk
m∂

----------, , , ,
 
 
 

g t( )w+
k 1=

n

∑+ 0=

w x t,( ) wk xk t,( ),
k 1=

n

∑=

wk∂
t∂

-------- Fk xk t
wk∂
xk∂

-------- …
∂mwk

xk
m∂

------------, , , ,
 
 
 

g t( )wk+ + λ k t( ).=

λ k

k 1=

n

∑

wk uk xk t Ck, ,( ) Ak g t( ) td∫– ,exp+=

k 1 2 …,  n , , ,  =                                   
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these expressions into (20), we arrive at the solution

this solution depends on n + 1 arbitrary constants.
7. Nonlinear equations. Heat- and mass-transfer

equations. Nonlinear partial differential equations

(22)

have exact solutions in the form of a product:

(23)

Here, the functions wk = wk(xk, t) satisfy simpler equa-
tions having one spatial variable:

(24)

where λk(t) are arbitrary functions interrelated by the

equality (t) = 0.

Example 4.

 

 A particular anisotropic case of Eq. (22)
for 

 

n

 

 = 

 

m

 

 = 2 yields a nonlinear unsteady equation (of
heat- and mass-transfer theory or combustion theory)
with a source of a logarithmic type for an arbitrary
coordinate dependence of the principal thermal-diffu-
sivity coefficients:

 

(25)

 

Equation (25) has exact solutions of the form

Here, the functions 

 

u

 

(

 

x

 

, 

 

t

 

)

 

 and 

 

v

 

(

 

y

 

, 

 

t

 

)

 

 are determined by
two independent one-dimensional nonlinear differen-
tial parabolic equations:

where 

 

C

 

(

 

t

 

)

 

 is an arbitrary function.

w uk xk t Ck, ,( ) Cn 1+ g t( ) td∫– ,exp+
k 1=

n

∑=

Cn 1+ Ak;
k 1=

n

∑=

∂w
t∂

------- w Fk xk t
1
w
---- ∂w

xk∂
------- … 1

w
----∂mw

xk
m∂

----------, ,, ,
 
 
 

k 1=

n

∑+

+ g t( )w wln 0=

w x t,( ) wk xk t,( ).
k 1=

n

∏=

wk∂
x∂

-------- wkFk xk t
1
wk

-----
wk∂
xk∂

-------- … 1
wk

-----
∂mwk

xk
m∂

------------, ,, ,
 
 
 

+

+ g t( )wk wk λ k t( )wk+ln 0,=

λ k

k 1=

n

∑

∂w
t∂

-------
∂
x∂

----- f 1 x( ) w∂
x∂

------ ∂
y∂

----- f 2 y( ) w∂
y∂

------ βw w.ln+ +=

w x y t, ,( ) u x t,( )v y t,( ).=

u∂
t∂

-----
∂
∂x
------ f 1 x( ) u∂

x∂
----- βu u C t( )u,+ln+=

v∂
t∂

-------
∂
∂y
----- f 2 y( ) v∂

y∂
------- βv v C t( )v ,–ln+=
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It is worth noting that, in the case of the constant
coefficients in Eq. (25) [i.e., f1(x) = a and f2(y) = b], there
are exact solutions in the form of a product of traveling
waves:

where c1 and c2 are arbitrary constants.
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A growing number of studies has recently been
devoted to the problem of synchronization of motions
[1], which stems back to Huygens and is important in
modern applications. Among them, the problem of
coordinate synchronization for dynamical systems was
considered in a fairly general mathematical form [2–4].
In this case, an asymptotic coincidence for a part of (or
for all) the phase-space vector coordinates related to
two or more dynamical (among them, controllable)
systems must be provided. This problem has been
exciting keen interest since coordinate synchronization
was proven to be possible for chaotic processes as well
as for regular ones and closely related to the problem of
safe communication.

For example, let there be two interrelated systems

 = Xi(t, x1, x2, u) i = 1, 2, (1)

where xi = (yiT, ziT)T are the phase-space vectors (the
symbol T stands for transposition), dim(y1) = dim(y2),
and u is a control vector.

The problem of controlled coordinate synchroniza-
tion is reduced to choosing a control vector [2–4],

u = u(t, x1, x2), (2)

in set (1) such that the relationship

would be satisfied for all yith components of the solu-

tions xi(t; t0, , ) that originate within the given

range of the initial values .

Using the substitution w = y1 – y2 , we can reduce
this problem to a corresponding problem for the con-
vergence of motions with respect to a part of the vari-

ẋi

y1 t; t0 x0
1 x0

2, ,( ) y2 t; t0 x0
1 x0

2, ,( )–   0

(as  t    ∞ )

x0
1 x0

2

x0
i

                                     

Nizhniœ Tagil Institute of Ural State Technical University, 
ul. Krasnogvardeœskaya 59, Nizhniœ Tagil, 622031 Russia
1028-3358/00/4512- $20.00 © 20685
ables (w-convergence) which is related to the combined
system of differential equations

(3)

In other words, we need to choose control vector (2) in
set (3) such that the relationship ||w||  0 as t  ∞
would be satisfied for all the solutions that originate in

a given range of the initial values w0 and .

Modifications of this problem are possible. For
example, the requirement of w-convergence can be
substituted by a stronger requirement of asymptotic (in
particular, uniform) stability for the yith-components of
the solutions to set (1) and (2). Thus, the corresponding
problem of the asymptotic w-stability for set (3) can be
posed. Studying such problems is necessitated by the
character in itself of the initial problem for coordinate
synchronization. These problems can be solved within
the framework of the theory of stability with respect to
a part of the variables (partial stability) [6–11].

In this paper, both the notion and conditions of par-
tial asymptotic stability are modified, so that the prob-
lems of coordinate synchronization for two dynamical
systems can be analyzed both in part and as a whole. As
an example, we consider coordinate synchronization as
a whole for angular motions of two solid bodies.

1. Statement of the problem. The specific nature of
the problem of synchronization is responsible for cer-
tain peculiarities in the formulation of the problems of
partial asymptotic stability and partial convergence of
motions.

Introducing the notation y = w and z = (x1T, x2T

 

)

 

T

 

, we
reduce set (3) to the form

 

 = 

 

X

 

(

 

t

 

, 

 

x

 

),

 

 

 

x

 

 = (

 

y

 

T

 

, 

 

z

 

T

 

)

 

T

 

 

 

∈

 

 

 

R

 

n

 

, (4)

 

which is conventional in the theory of partial stability
(

 

y

 

-stability), see [6–11].
The synchronization in part can be studied on the

basis of one of the possible modified notions of partial

ẇ X∗ t w x1 x2 u, , , ,( ), ẋi Xi t x1 x2 u, , ,( ),= =

i 1 2.,=

x0
i

ẋ

           
000 MAIK “Nauka/Interperiodica”
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asymptotic stability, namely, the asymptotic y-stability
of the set x = 0 in part for large z0 [10, 11]. However, it
is quite possible that this set is not the solution to
Eqs. (4). This property of partial asymptotic stability

ensures that the solutions xi = x(t; t0, ) to sets (1) will
be close to and synchronized with them under suffi-
ciently close initial conditions; whereas, the initial con-

ditions  may differ by an arbitrary finite value ∆ > 0.

The synchronization as a whole can be studied
within the framework of the problem of asymptotic
y-stability as a whole of the set x = 0. However, in con-
trast to the results of [6–11], the global convergence to
the set x = 0 must be combined with the y-stability of
this set for large z0 .

We now make the corresponding definitions more
precise.

Definition 1. The set x = 0 is referred to as an
asymptotically y-stable set for large z0 if it is y-stable
for large z0 {i.e., for each ε > 0 and t0 ≥ 0 there exists a
quantity δ(ε, t0) > 0, such that ||y(t; t0, x0)|| < ε for all
t ≥ t0 provided that ||y0|| < δ and ||z0|| ≤ ∆ < ∞}, and, in
addition, this set is y-attracting for large z0; i.e.,

lim ||y(t; t0, x0)|| = 0, t  ∞, (5)

for all t0 and x0 in the domain S: {t0 ≥ 0, ||y0 || < δ,
||z0 || ≤ ∆ < ∞}. 

The set x = 0 is referred to as uniformly asymptoti-
cally y-stable for large z0 if it is uniformly y-stable for
large z0 (with δ being independent of t0) and relation-
ship (5) is satisfied uniformly with respect to t0 and x0
in the domain S.

Definition 2. The set x = 0 is referred to as (uni-
formly) y-attracting as a whole if relationship (5) is sat-
isfied (uniformly with respect to t0 ≥ 0 and x0 ∈ K, where
K is an arbitrary compact set of the space x ∈ Rn) for
all t0 and x0 in the domain t0 ≥ 0 and ||x0|| < ∞. 

Furthermore, we employ a modified method of the
Lyapunov functions for solving the problems of partial
asymptotic stability in the sense of Definitions 1 and 2.

2. Conditions for synchronization in part within
the framework of the method of the Lyapunov func-
tions. One of the modified methods of the Lyapunov
functions was proposed in [11, 12]. It is reduced to
adjusting the structure of the domain in which the
Lyapunov functions are constructed. As applied to the
problem under consideration, the method is reduced to
restricting the domain

t ≥ 0, ||y || ≤ h, ||z || < ∞ (6)

(h > 0 is a sufficiently small number), which is conven-
tionally used when studying the y-stability for the set

x0
i

x0
i

                          

x = 0 of Eqs. (4). This domain is substituted by the
domain

t ≥ 0, ||y || + ||W(t, x)|| ≤ h, ||z || < ∞, (7)

where W(t, x) is the vector function. In this case, the
assumption introduced, ||y || + ||W(t, x)|| ≤ h, should be
naturally confirmed in the course of solving the
problem.

Studying the problem of y-stability in domain (7) is
advisable because, in fact, the y-stable set x = 0 for
Eqs. (4) is also stable with respect to certain functions
Wi = Wi(t, x). Because the Wi-functions are not always
predetermined, they are naturally treated as compo-
nents of an additional vector Lyapunov W-function.
This function is introduced to make the substitution of
domain (6) by domain (7) the most efficient possible. In
this case, the derivative of the W-function along the tra-
jectories of set (4) need not be analyzed; this is an addi-
tional argument in favor of the approach under consid-
eration.

We employ this method for solving the problem of
the asymptotic y-stability of the set x = 0 of Eqs. (4) for
large z0 .

We assume that set (4) is continuous in domain (6)
and its solutions are unique and z-extendible. These
assumptions are conventional in the theory of stability
with respect to a part of the variables. We will consider
two classes of functions:

(10.) The functions ai(r): R1
  R1 (i = ) that are

continuous, increase monotonically for r ∈ [0, h], and
satisfy the condition ai(0) = 0.

(20.) The scalar function V(t, x): Rn + 1
  R1,

V(t, 0) ≡ 0 and two vector functions W(t, x): Rn + 1  Rq,
W(t, 0) ≡ 0, and U(t, x): Rn + 1  Rs, U(t, 0) ≡ 0, with
U = (U1, …, Us), where q and s are positive numbers
assigned in accordance with the particular problem to
be solved.

Theorem 1. Let there exist a scalar function V and
two vector functions U and W such that the following
conditions are satisfied in domain (7):

(1) V(t, x) ≥ a1(||y || + ||W(t, x) ||);
(2) V(t, x) = 0, for y = 0;

(3) (t, x) ≤ –a2(||U(t, x) ||); ||U(t, x) || ≥ a3(||y ||);
(4) a number M(t0, x0) > 0 can be found such that

either  ≥ M or  ≥ –M for each of the functions .

Then, the set x = 0 of set (4) is asymptotically y-sta-
ble for large z0 .

Proof. For each ε > 0 and t0 ≥ 0, by virtue of both the
fact that V(t, 0) ≡ 0 and condition (2) of Theorem 1, the
function δ(ε, t0) > 0 can be found such that V(t0, x0) <
a1(ε) if ||y0|| < δ and ||z0|| ≤ ∆ < ∞. Therefore, for any

1 3,

V̇

Ui
˙ Ui

˙ Ui
˙
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solution x(t; t0, x0) to set (4), with ||y0 || < δ and ||z0 || ≤
∆ for all t ≥ t0 , we have

Allowing for the properties of function a1(r), we
conclude that ||y(t; t0, x0) || + ||W(t; t0, x0)|| < ε for t ≥ t0
if ||y0 || < δ and ||z0 || ≤ ∆. Therefore, the set x = 0 of
Eqs. (4) is y-stable for large z0 .

We now prove that lim ||U(t, x (t; t0, x0)) || = 0 as
t  ∞ if ||y0 || < δ and ||z0 || ≤ ∆. Employing the
method described in [7, 13], we use the proof by con-
tradiction: Let there exist a number l > 0, a value x*
with ||y* || < δ and ||z*|| ≤ ∆, and a sequence tk  ∞
with tk – tk – 1 ≥ α > 0, k = 1, 2, 3, …, such that

||U(tk, x(tk; t0, x*)) || ≥ l, k = 1, 2, 3, …. (8)

If condition (4) of Theorem 1 is satisfied, we can
find a number β (0 < β < α), such that

(9)

for all k = 1, 2, 3, … if ||y*|| < δ and ||z*|| ≤ ∆.

Then, by virtue of (9) and condition (3) of Theo-
rem 1, provided that ||y* || < δ and ||z* || ≤ ∆, the ine-

qualities

(t, x) ≤ –a2(||U ||) ≤ –a2 , t ∈  Tk

are valid along the solutions x = x(t; t0, x*). Hence,

these inequalities cannot be valid for a sufficiently
large k.

Thus, assumption (8) is incorrect. Therefore,
lima3(||y(t; t0, x0)||) = 0 as t  ∞ and relationship (5)
is valid for all t0 ≥ 0, ||y0 || < δ, and ||z0 || ≤ ∆. The theo-
rem is proven.

Remarks to Theorem 1. (i) If condition (2) of The-
orem 1 is excluded, then Theorem 1 coincides with the
corresponding result of [12], which strengthens Theo-
rem 22.2 in [7] for W = 0 and is based on concepts [13]
stemming back to the classical Marachkov theorem. In
this connection, we emphasize that the nonuniformity
of the asymptotic y-stability is typical for theorems of

a1 y t; t0 x0,( ) W t x t; t0 x0,( ),( )+( )

≤ V t x t; t0 x0,( ),( ) V t0 x0,( ) a1 ε( ).<≤

1
2
---l U t x t; t0 x*,( ),( ) h,≤ ≤

t Tk∈ tk β– tk β+,[ ]=

V̇
1
2
---l 

 

0 V tk β+ x tk β+ t0 x0, ,( ),( ) V t0 x0,( )≤ ≤

+ V̇ τ x τ ;t0 x*,( ),( ) τ V t0 x0,( ) 2kβa2
1
2
---l 

  ;–≤d

ti β–

ti β+

∫
i 1=

k

∑
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the Marachkov type [7], which follow from Theorem 1
provided that U = y, W = 0, and condition (2) is
rejected.

(ii) For W ≠ 0, the quantity ||U ||, as well as V and ,
could not be of fixed sign either with respect to y [6, 7]
or in the Lyapunov sense. Moreover, condition (4) is
verified in domain (7) but not in domain (6), thereby
extending the possibility of employing the theorem.

Corollary. Let there exist the scalar function V and
the vector function U, such that for all the solutions
x(t; t0, x0) to set (4) which originate in the domain
t0 ≥ 0, ||y0 || < δ, and ||z0 || ≤ ∆ < ∞ conditions (3) and (4)
of Theorem 1 are satisfied and, moreover,

V(t, x(t; t0, x0)) ≥ –A (A = const > 0). (10)

Then, the set x = 0 of Eqs. (4) is y-attracting for
large z0 .

Proof. We prove by contradiction that relationship (8)
is valid. Using the proof scheme of Theorem 1, we
have, by virtue of conditions (3) and (4) of this theo-
rem, for t0 ≥ 0, ||y0 || < δ and ||z0 || ≤ ∆:

–A ≤ V(t0, x0) – 2kβa2 . (11)

This inequality is impossible for sufficiently large k.
The corollary is proven.

The condition of uniform synchronization in part
can be obtained by employing the method of Lyapunov
functions together with the differential inequalities
given in [14].

Theorem 2. Let there exist the scalar function V and
the vector function W, such that in domain (7):

(I) conditions (1) and (2) of Theorem 1 are satisfied
and, moreover, V(t, x) ≤ a2(||x ||);

(II)  ≤ ω(t, V), with the zero solution v = 0 to the
comparison set  = ω(t, v), is uniformly asymptoti-
cally stable.

Then, the set x = 0 of Eqs. (4) is uniformly asymp-
totically y-stable for large z0 .

The theorem is proven in the same way as in [14]
and with regard to the first part of the proof of Theo-
rem 1.

Conditions of synchronization as a whole within
the framework of the method of Lyapunov func-
tions. The conditions given can also be obtained on the
basis of concepts associated with employing the
Marachkov-type theorems and differential inequalities.

Theorem 3. Let there exist the scalar function V and
the vector function U, such that for all the solutions x(t;
t0, x0) to set (4) which are initiated in the domain t0 ≥ 0
with ||x0 || < ∞ condition (10) as well as conditions (3)
and (4) of Theorem 1 are satisfied.

Then, the set x = 0 of Eqs. (4) is y-attracting as a
whole.

V̇

1
2
---l 

 

V̇
v̇
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Proof. We prove by contradiction that relationship (8)
holds. Using the proof scheme of Theorem 1, with arbi-
trary x0 and t0 ≥ 0, and by virtue of condition (2) of The-
orem 1, we arrive at inequalities (11), which are contra-
dictory for sufficiently large k. Hence, relationship (5)
holds for all x0 and t0 ≥ 0. The theorem is proven.

Remarks to Theorem 3. (10) For U = y, condition (4)
of Theorem 1 turns into a requirement imposed on
set (4), i.e., that its right-hand sides corresponding to a
y-component of the vector x should be bounded for all
x0 and t0 ≥ 0.

(20) Combining the hypotheses of Theorem 3 and the
conditions of y-stability for large z0 [10, 11], we can
obtain the conditions of asymptotic y-stability for large
z0 and, simultaneously, of y-attraction as a whole.

Theorem 4. Let there exist a scalar function V, such
that in the domain t ≥ 0 and ||x || < ∞, the following con-
ditions hold:

(a) V(t, x) ≥ a1(||y ||); V(t, x) ≤ a2(||x ||);
(b) V(t, x) = 0, for y = 0;

(c)  ≤ –αV, α = const > 0.

Then, the set x = 0 of Eqs. (4) is asymptotically y-
stable for large z0 and, simultaneously, uniformly
y-attracting as a whole.

4. Synchronization of angular motions of two
solid bodies. We consider the problem of coordinate
synchronization of angular motions of two solid bod-
ies. In this case, the equations of motion take the form
(i = 1, 2)

(12)

Here, Aj (j = ) are the principal central moments of

inertia for these bodies (identical for both bodies); 
are the components of the instantaneous angular veloc-
ity, which are taken along the principal central axes of
inertia (they are combined into the vectors x1 and x2);

and  are the control moments applied to the first
(i = 1) and second (i = 2) bodies and combined into the
vectors u1 and u2 .

We need to find the control vectors u1 and u2 , such
that the limiting relationship

x1(t)  x2(t), t  ∞ (13)

would be valid for all motions xi(t) = xi(t; t0, ) of

these bodies (with arbitrary initial values  and ).

V̇

A1 ẋ1
i A2 A3–( )x2

i x3
i u1

i ,+=

A2 ẋ2
i A3 A1–( )x1

i x3
i u2

i ,+=

A3 ẋ3
i A1 A2–( )x1

i x2
i u3

i .+=

1 3,
x j

i

u j
i

x0
i

x0
1 x0

2

We now prove that the simplest control vectors
(coupled synchronization)

(14)

represent the solution to this problem.

To prove this, we use the Lyapunov function

(15)

whose derivative  by virtue of closed set (12) and (14)
takes the form

where the summation over j from 1 to 3 is implied.

Since V = , with V  ∞

as ||x1 || + ||x2 ||  ∞, then all solutions to set (12) and

(14) are bounded. Introducing the notation yj =  – 
and y = (y1, y2, y3)T, we can easily verify that the func-
tion V (15) satisfies the hypotheses of Theorem 3 for
U = y. Whence it follows that relationship (13) is satis-
fied for set (12), (14).

5. Conclusions. In this paper, we employed the the-
ory of stability with respect to a part of the variables for
solving the problems of coordinate synchronization for
dynamical systems. To consider these problems, we
modified both the notion of asymptotic stability with
respect to a part of the variables and a number of theo-
rems concerning the method of Lyapunov functions
and determining the conditions for this stability.

A different approach to the problem of coordinate
synchronization for dynamical systems, which is also
based on the notions of stability with respect to a part
of the variables, was proposed in [15].
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1. SETTING UP THE PROBLEM

We consider a motion of a Lagrange gyroscope
whose suspension fixing point O executes vertical har-
monic vibrations according to the law a*cosΩt. Inves-
tigation of such a motion necessitates analysis of a
reduced system with a single degree of freedom
described by the Hamiltonian function [1]

(1)

Here, the following notation is used: θ is the angle of
the gyroscope-axis deviation from the vertical line
(nutation angle) and p is the corresponding (dimension-
less) momentum. The quantities a and b are the values
of constant cyclic integrals corresponding to cyclic
coordinates, i.e., to angles of precession and proper
rotation:

where  is the reduced length of a body consid-

ered as a physical pendulum and zG = OG is the distance
between the gyroscope center of mass G and the sus-
pension point. The angular velocities of the precession
and proper rotation of the gyroscope are determined by
the formulas

(2)

Here, A and C are the equatorial moment of inertia and
the moment of inertia about the axis, respectively, and
the prime denotes differentiation with respect to τ.

The case ε = 0 corresponds to the classical Lagrange
gyroscope with a fixed point [2–4]. If |a| ≠ |b |, then a
single regular precession of the gyroscope corresponds

H
1
2
--- p ε τ θsinsin–( )2 a b θcos–( )2

2 θsin
2

------------------------------- d θ.cos+ +=

τ Ω t, ε
a*
l

------, d
g

Ω2l
--------,= = =

l
A

mzG

----------=

ψ'
a b θcos–

θsin
2

------------------------, ϕ'
A
C
----b

a b θcos–( ) θcos

θsin
2

-----------------------------------------.–= =
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to each pair of values (a, b). For a = b ≠ 0, a regular pre-
cession exists only under the condition a2 < 4c; for a =
–b, regular precessions of the gyroscope are lacking.

In the case of an oscillating suspension point, we
assume the following: (i) the vibration amplitude is

small (ε ! 1); (ii) the eigenfrequency  of small
vibrations of the body as a physical pendulum is much
lower than the frequency Ω of oscillations for the
point O (d ! 1); and (iii) the angular velocities for both
the precession and proper rotation of the gyroscope are
small. In addition, we assume that

(3)

We take θ = x and p = εX. Then, performing the
replacement of variables x, X  y, Y, which is
2π-periodic in τ and close to the identical canonical
change, we rearrange Hamiltonian (1) with allowance
for relation (3) to a form not involving τ in terms with
an order smaller than or equal to the third order in ε.
Next, by means of the canonical change y, Y  u, v
specified by the formulas u = cosy, Y = –vsiny, we reduce
the Hamiltonian obtained to the algebraic form [1]

(4)

(5)

We now assume that the parameters α and β are
bound by the relation |α| = |β| ≠ 0. In the present paper,
the problem of the existence, number, and stability of
the high-frequency (with a period equal to that for
oscillations of the suspension point) motions of a gyro-
scope, which closely resemble regular precessions, is
solved. The results are qualitatively different from
those found for the classical problem of motion of a
gyroscope with a fixed point.

2. THE CASE OF α = β
Equilibrium positions for an approximate sys-

tem. Let α = β. Omitting the term O(ε4) in (4), we

g/l

d ε4γ, a ε2α , b ε2β.= = =

K
1
2
---εv 2 1 u2–( ) ε3Π u( ) O ε4( ),+ +=

Π u( )
1
4
--- 1 u2–( ) γu

α βu–( )2

2 1 u2–( )
-----------------------.+ +=
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A CASE OF PERIODIC MOTION FOR A LAGRANGE GYROSCOPE 691
obtain a truncated Hamiltonian to which we put in cor-
respondence an autonomous system of differential
equations in the following form:

(6)

Here, the function Π(u) defined in (5) is calculated for
α = β.

In the equilibrium positions for system (6), v = 0,

while u satisfies the equation  = 0 or

(7)

In the plane of parameters (α, γ) (α ≠ 0, γ > 0), Fig. 1
shows the domains for which, in the interval u ∈
(−1, 1), Eq. (7) has either two solutions (regions 2), a
single solution (regions 1), or no solution (regions 0).
In the same domains, system (6) has two, one, or no
equilibrium position, respectively. The boundaries of
the domains in Fig. 1 are the parabola γ1(α) = 0.5 +
0.25α2, two segments of the curve γ2(α) =

0.25[3(2|α|)2/3 – 2] for  < |α| < , and segments of

the straight line γ = 0 for |α| <  and the straight line

α = 0 for 0 < γ < 0.5.

The motion of the gyroscope when its center of
mass is above the horizontal plane passing through the
suspension point corresponds to the positive roots of
Eq. (7), while the motion when the gyroscope center of
mass is under that plane corresponds to negative ones.
For the parabola γ = α2 , shown in Fig. 1 by a broken
line, Eq. (7) has a zero root. In domains 1, a single root
of Eq. (7) is negative in the subdomains a and positive
in the subdomains b. In domains 2, two roots of Eq. (7)
either have opposite signs (subdomains c), are both
positive (subdomains d), or are both negative (subdo-
mains e).

Gyroscope periodic motions close to regular pre-
cessions. According to the Poincaré theory of periodic
motions [5], for reasonably small values of ε, each
equilibrium position of approximate system (6) [the
points of the boundary curve γ = γ2(α) are excluded
from consideration] generates a single solution to the
system with complete Hamiltonian (4) (for α = β). This
solution is analytical in ε and 2π-periodic in τ and has
the form 

where u0 is the equilibrium value of u for approximate
system (6). The following solution of the system with

du
dτ
------ εv 1 u2–( ),

dv
dτ
------- εuv 2 ε3dΠ

du
-------.–= =

dΠ
du
-------

α2

1 u+( )2
------------------- γ 1

2
---u.–=

6
9

------- 2

6
9

-------

u* u0 O ε4( ), v*+ O ε4( ),= =
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Hamiltonian (1), which is 2π-periodic in τ, corresponds
to this solution:

(8)

Taking into consideration that α = β, we obtain
from (2) and (3) the following expressions for the angu-
lar velocities of the precession and proper rotation:

(9)

Relationships (8) and (9) specify motions for the
Lagrange gyroscope with a vibrating suspension point
which closely resemble regular precessions. In this
case, the tilt angle θ of the gyroscope axis to the vertical
line differs from the constant by a value on the order of
ε2 . The angular velocities ψ' and ϕ', being small values
on the order of ε2 , differ from the constant by a value
on the order of ε4 . These corrections are 2π-periodic in
τ. Depending on the values of parameters α and γ, two
(regions 2 in Fig. 1), one (regions 1), or no (regions 0)
such motions can exist.

The result obtained qualitatively differs from that
for the classical problem of the motion of a gyroscope
with a fixed point (in the case a = b). In the classical
problem, a single regular precession exists for the

points (α, γ) lying above the parabola γ = , shown
by the dashed-dotted line in Fig. 1. (In the same region,
depending on the values of α and γ, a single motion,
two motions, or no motion close to a regular precession
for a gyroscope with a vibrating suspension point can
exist.) Regular precessions are absent for points below
the parabola indicated (gyroscope motions similar to
regular precessions are also missing at the same
points).

θ u0 ε2 1 u0
2– τ O ε4( ),+cos+arccos=

p O ε4( ).=

ψ'
ε2α

1 θcos+
---------------------, ϕ' ε2α A

C
---- θcos

1 θcos+
---------------------– .= =

α2/4

γ

γ =
 γ1

(α
)

a

b

d d

b

cc
2 2

11

γ =
 γ2

(α
)

00

1/2

a

–1 10 6
9

-------
α

Fig. 1. Regions with various numbers of types of motion
closely resembling regular precession (α = β).
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Stability of periodic motions. We consider the
issue of stability for motions (8), (9) with respect to the
variables θ and p. For this purpose, we should initially
solve the problem of stability of the periodic solution
u = u*, v = v* for a system with Hamiltonian (4) (for
the case α = β). Let u = u* + x, v = v* + y. We then
expand the Hamiltonian for a perturbed motion as a
power series in x and y:

(10)

where Γk is a k-power form with respect to x and y and

If f(u0) > , then the periodic motion under consid-

eration is stable in a linear approximation; if f(u0) < ,

it is unstable.
Analysis of the function f(u) with relation (7) taken

into account shows that, in the case of a single equilib-
rium position for approximate system (6), the corre-
sponding periodic solution is stable in the linear
approximation. In the case of two equilibrium posi-
tions, the periodic solution corresponding to the lower
equilibrium value of u is stable, whereas the solution
corresponding to the higher value of u is unstable in the
linear approximation. The latter solution remains
unstable in a nonlinear problem as well. This conclu-
sion follows from the Lyapunov theorem on stability in
the first approximation [6].

To rigorously resolve the issue of stability for peri-
odic solutions stable in the linear approximation, we
perform a nonlinear analysis using the results of the
Kolmogorov–Arnol’d–Moser (KAM) theory [7].

With a canonical transformation x, y  X, Y of the
Birkhoff-transformation type, Hamiltonian (10) can be
reduced to the normal form

(11)

Here, O5 corresponds to a set of terms which is
2π-periodic in τ and whose powers in X and Y are not
lower than fifth one, while the constant coefficients ω
and c have the form

(12)

Γ Γ2 Γ3 Γ4 …,+ + +=

Γ2
1
2
---ε 1 u0

2–( )y2 1
2
---ε3 f u0( ) 1

2
---– x2 O ε4( ),+ +=

f u0( )
2α2

1 u0+( )3
---------------------.=

1
2
---

1
2
---

Γ 1
2
---ω X2 Y2+( ) 1

4
---c X2 Y2+( )2

O5.+ +=

ω ε2 1 u0
2–( ) –

1
2
---

df u0( )
du0

----------------– 
  O ε4( ),+=

c –ε
c1

4 1 u0–( ) 4α2 1 u0+( )3–[ ]2
------------------------------------------------------------------ O ε2( ),+=
The quantity c1 is positive for u0 ∈  (–1, 1) for an
arbitrary value of parameter α. Therefore, we have
c < 0 for reasonably small values of ε. Consequently,
c ≠ 0 and the periodic solution under consideration is sta-
ble, which follows from the Arnol’d–Moser theorem [7].

The inferences on the stability of periodic solutions
for a system described by Hamiltonian (4) (for α = β)
can be extended to the corresponding motion of the
Lagrange gyroscope, which is similar to regular preces-
sion. Such a stable motion exists for points (α, γ) lying
in domains 1 in Fig. 1. For the points (α, γ) lying in
domains 2, there exist two such types of motion. One of
them is stable, while the other is unstable.

3. THE CASE OF α = –β
Now, let α = –β. We omit the term O(ε4) in Hamil-

tonian (4). Then we obtain a truncated Hamiltonian to
which the approximate system of equations of form (6)
corresponds, where the function Π(u) defined in (5) is
calculated for α = –β.

The equilibrium positions for this system are given
by the equations v = 0 and the equation

(13)

In the interval u0 ∈  (–1, 1), Eq. (13) has either two
solutions [for points (α, γ) lying in domains 2 in Fig. 2]
or none (domains 0). The equation for the boundary
curve separating domains 0 and 2 has the form γ(α) =

0.25[2 – 3(2|α|)2/3] |α| < . Analysis shows that

both equilibrium values of u are positive in domains 2.
The 2π-periodic (in τ) solution to the initial system

with Hamiltonian (1) (for α = –β) corresponds to each
equilibrium position of the approximate system; the
solution has the form

(14)

In this case, the angular velocities for the precession
and proper rotation are calculated from the formulas

(15)

Relationships (14) and (15) specify motions for a
Lagrange gyroscope with a vibrating suspension point,
which are close to regular precessions.

We should particularly emphasize that, whereas reg-
ular precessions are absent for a Lagrange gyroscope
with a fixed suspension point in the case where a = –b,

c1 4 7 u0–( )α4=

+ 4 1 u0+( )2 2u0
2 9u0– 1+( )α2 1 2u0

2+( ) 1 u0+( )5.+

α2

1 u–( )2
------------------

1
2
---u γ.–=


 6

9
-------



θ u0 ε2 1 u0
2– τ O ε4( ),+cos+arccos=

p O ε4( ).=

ψ'
ε2α

1 θcos–
--------------------, ϕ' ε2α A

C
---- θcos

1 θcos–
--------------------+ .–= =
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A CASE OF PERIODIC MOTION FOR A LAGRANGE GYROSCOPE 693
the assumptions made about the nature of a vibration
for a suspension point and for gyroscope motion bring
about a radically new situation. In this case, a certain
domain of variation for the parameters α and γ
appeared in which there existed two gyroscope motions
closely resembling regular precessions.

As was done in Sections 2 and 3, we expand the
Hamiltonian for a perturbed motion into a series of
form (10), where

In the linear approximation when g(u0) > , the

periodic solution under consideration is stable, other-
wise it is unstable.

With allowance for (13), analysis of the function
g(u) shows that the solution corresponding to the lower
equilibrium value of u is unstable in the linear approx-
imation, and, consequently, this is also true for the non-
linear problem. As to the solution corresponding to the

Γ2
1
2
---ε 1 u0

2–( )y2 1
2
---ε3 g u0( ) 1

2
---– x2 O ε4( ),+ +=

g u0( )
2α2

1 u0–( )3
---------------------.=

1
2
---

0 0

1
2
---

γ

2 2

γ = γ(α)

6
9

-------
0 α

Fig. 2. Regions with various numbers of types of motion
closely resembling regular precession (α = –β).
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higher value of u, it is stable in the linear approxima-
tion. For this solution, using a canonical transformation
of the Birkhoff type, namely, x, y  X, Y, we can
reduce the perturbed Hamiltonian to a normal form
similar to (11). Here, the constant coefficients ω and c
are calculated from the formulas

(16)

The value of c2 is found from c1 [determined from (12)]
by substitution of u0 with –u0 . Both c1 and c2 are posi-
tive within the interval u0 ∈  (–1, 1). Therefore, in the
case of reasonably low values of ε, we obtain for the
coefficient c in (16), c < 0. Consequently, from the
Arnol’d–Moser theorem, the periodic motion under
consideration is stable.

It follows from the analysis presented here that for
two types of Lagrange-gyroscope motion existing in
domains 2 (Fig. 2) and closely resembling regular pre-
cessions, one is stable while the other is unstable.
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The process of unloading of deformed materials is
usually attributed to the decreasing or removing of
external loading forces. However, in the case of nonlin-
ear interrelation between reversible and irreversible
strains, there appear such regimes of deformation
where a decrease in the applied load can cause reiter-
ated plastic flow. In this paper, we discuss this effect
based on a one-dimensional problem concerning the
deformation of a thick-wall pipe under pressure applied
to its external cylindrical surface.

The problem concerning the accumulation of
reversible and irreversible strains in pipe material was
considered in [4] within the framework of the model of
finite elastoplastic strains proposed in [1–3]. In [4], the
plastic flow of a medium near the stress-free internal
surface of a pipe was studied as a time-dependent pro-
cess, whereas the state after unloading was calculated
without taking into account its time dependence. This
approach stems from assumptions implied in the spe-
cific model of finite elastoplastic strains in which the
result of deformation does not depend on the character
of the unloading path in the stress space. However, this
assumption is valid only in the case when a new plastic-
flow zone does not arise in the elastoplastic medium
upon a decrease in the applied load. If the latter situa-
tion is possible, the process of unloading should be
considered time-dependent. Hence, we should modify
the formulation of the problem in itself compared
to [4]. In other words, the model independence of the
unloading effect from the features of the process does
not ensure that this result can be calculated as that
related to the eventual equilibrium state. We should also
verify that no reiterated plastic flow took place in the
process of unloading. Special features of such modifi-
cations in the formulation of the problem are also dis-
cussed.

The model of finite elastoplastic strains used here
was discussed in detail in [2, 4]; therefore, we analyze
only those relationships of the model which we use
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below. Tensors eij and pij of elastic and plastic strains,
respectively, are determined by the following transport
equations [4, 5]:

(1)

Here, εij is the Euler strain-rate tensor,  is the strain-
rate tensor for irreversible strains, υi, j is the velocity-
gradient tensor for the points of a moving medium, and
rij = 0.5(υi, j – υj, i) + Φ(εij, eij) is the skew-symmetric
tensor calculated in [3, 4]. Using definitions (1) for
elastic and plastic strains, the separation of the Almansi
total strains dij into reversible component eij and irre-
versible component pij is performed by the relationship

(2)

We assume that the deformation process is isother-
mal and that the plastic flow is ideal. We also assume
the hypothesis to the effect that the free energy is inde-
pendent of plastic strains holds true. In this case, the
energy conservation law provides an opportunity to cal-
culate the stresses in the deformed body based on the
known strains in this body for the given dependence
F = F(eij) of free energy on irreversible strains. In our
calculations, we used the following relationships for
F(dij) in the case of an incompressible medium:

(3)

If there are irreversible strains in the medium, then
we have W = W(eij) and, instead of invariants of the

d pij

dt
--------- εij

p εik
p pkj pikεkj

p–– rik pkj pikrkj,–+=

deij

dt
-------- εij εij

p 1
2
--- eikυk j, υk i, ekj rikekj–+(––=

+ eikrkj εik
p ekj eikεkj

p ).+–

εij
p

dij eij pij 0.5eikekj – eik pkj pikekj– eik pksesj.+–+=

F dij( ) ρ0
1– W L1 L2,( ),=

W a µ–( )L1 aL2 bL1
2 χL1L2 θL1

3,––++=
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Almansi tensor in (3), we should assume that

for the same values of elastic constants µ, a, b, χ, and θ.
The choice of invariants I1 and I2 of the elastic-strain
tensor eij ensures that we can pass to L1 and L2 in the
limit of plastic strains tending to zero.

We assume that the thick-wall pipe whose boundary
surfaces in the free state is described in the cylindrical
coordinate system by the equations r = r0 and r = R0
(R0 > r0) is loaded by a pressure applied to its outer sur-
face σrr |r = R(t) = –P(t) and that its internal surface r = s(t)
remains free of stresses. When the pressure P(t)
increases up to a certain value P0 , reversible deforma-
tion takes place. At this pressure, the stressed state cor-
responds to the plasticity condition σrr – σθθ = 2k at the
internal surface r = s0 of the pipe. From this time
moment, an irreversible deformation starts from the
surface r = s0 so that, at subsequent moments of time t,
the plastic-flow zone is situated in the layer for which
s(t) ≤ r ≤ r1(t), where s(t) is the current position of the
internal surface of the pipe and r1(t) is the position of
the moving boundary of the plastic region. The
accepted condition of incompressibility of the medium
determines its kinematics with an accuracy to a certain
function of time ϕ(t):

(4)

In (4), ur = u is the nonzero component of translations
and drr and dθθ are the nonzero components of the
Almansi tensor. Using the given function P(t), function
ϕ(t) can be found by solving an ordinary differential
equation, which is the result of integrating equations of
motion separately in the zones of reversible and irre-
versible deformation. We use the boundary conditions
discussed above. The following values of parameters
can be taken as initial conditions for such an equation:

ϕ'(0) = 0 and ϕ(0) =  – . If a final value P(t1) = P1

of the applied pressure remains unchanged, then the
medium appears to be in the equilibrium state. In
Fig. 1, we show the characteristic plots illustrating the
distributions of dimensionless (normalized to µ)
stresses in the body. Everywhere within the range

between  = s1  and  = r1 , the difference
between dimensionless pressures σrr (solid line) and
σθθ (dashed line) is constant and equal to 2kµ–1 = 0.006.

We now unload the body by lowering the applied
pressure to a certain value P∗  ≤ P1 . If P1 ≤ , the
value of P∗  can be zero and the unloaded state can be

I1 eii 0.5eije ji,–=

I2 eije ji eisesje ji 0.25eiseskekje ji+–=

ur u r r2 ϕ t( )+( )1/2
,–= =

drr 0.5ϕ t( ) r2 ϕ t( )+( ) 1–
, dθθ 0.5ϕ t( )r 2– ,–==

ϕ t( ) R0
2 R2 t( )– r0

2 s2 t( ).–= =

r0
2 s0

2

ξ s1
R0

1– ξ r1
R0

1–

P1*
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calculated as an equilibrium state at zero external
forces but with accumulated irreversible strains [4]. In
this way, we calculate the residual stresses and strains.
However, at P1 > , i.e., when r1 @ s1 as in the case

shown in Fig. 1,  @ . In other words, when a sig-
nificant level of irreversible strains is accumulated in
the body, P∗  cannot attain the zero value. In fact, for a
certain value P∗  = P2 < P1 , the stressed state at the
internal surface comes again to the surface of loading
but with the opposite sign: σrr – σθθ= –2k. Such a dis-
tribution of stresses is shown in Fig. 2, where  and

 correspond to the positions of the internal surface of

the pipe and the plastic-zone boundary (  ≠  owing
to the difference between the material and spatial coor-
dinates). Whereas σrr at the internal surface of the pipe
remains zero with decreasing external pressure, σθθ
becomes positive with decreasing P∗ .

In the case of a further decrease in the external pres-
sure, the process of plastic flow of material begins and,
consequently, it is necessary to modify the formulation
of the boundary value problem. Now, it is necessary to
integrate not the equilibrium equations, but the equa-
tion of motion in the three zones  < ξ < ,  < ξ <

P1*
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ξ rp

ξ rp
ξ r1
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ξ r2

ξ r2

0 0.5

– 0.01

0

– 0.02

– 0.03

1

σ

ξr1 ξR1

ξ

ξs1

0 0.5

– 0.01

0

– 0.02

– 0.03

1

σ

ξrp ξRp

ξ

ξsp

Fig. 1. Stresses at the onset of the unloading process.

Fig. 2. Stresses at the onset of the reiterated plastic flow.
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, and  < ξ <  (Fig. 3) using the boundary con-

ditions and the continuity conditions for stresses at the
boundaries of the zones. In this case, it is necessary to
take into account that for ξ < , the reversible strains

remain the same, whereas for  < ξ < , the irrevers-

ible strains are constant. The values ξ =  are deter-

mined by the position of the boundary of the region of
the plastic flow. In Fig. 3, we show the distributions of
the residual stresses, i.e., the final values of parameters

, , , and  and of dimensionless stresses σrr

and σθθ at zero applied pressure. Everywhere in the

ξ rk
ξ rk

ξRk

ξ r2

ξ r2
ξ rk

ξ r2

ξ sk
ξ r2

ξ rk
ξRk

0 0.5

0.016

0.008

0

1

σ

ξrk ξRk

ξ

ξsk ξr2

0.032

Fig. 3. Residual stresses after complete unloading of the
body.
 < ξ <  range, the difference between stresses σrr

and σθθ remains equal to –2k.
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We report the results of an experimental study on the
laminar-to-turbulent transition in the spherical Couette
flow, i.e., in a viscous incompressible flow between two
spherical boundaries rotating about the same vertical
axis. The experiments are carried out in a thick spheri-

cal layer with a relative thickness δ =  = 1.006

for oppositely rotating spherical boundaries (Re2 < 0).
The Reynolds numbers vary within the ranges –950 <

Re2 < –700 and 250 < Re1 < 450. Here, Rei = , ν is

the kinematic viscosity of the fluid in the layer under
consideration, and ri and Ωi are the radii and angular
velocities of the spherical boundaries labeled by the
indices 1 (inner) or 2 (outer).

Previously, the transition of the spherical Couette
flow formed in a thick layer to stochastic behavior was
investigated both for rotation of only the inner bound-
ary (Re2 = 0) [1] and for the oppositely rotating spher-
ical boundaries (Re2 = –700) [2]. In particular, it was
shown that, in the case of quasi-static variation of Re1 ,
the flow can become stochastic after passing through
six (in the first case) or four (in the second case) bifur-
cation points. For a wider range of determining param-
eters (in the case of the spherical Couette flow, they are
represented by Re1 , Re2 , and the relative thickness of
the layer), the problem of classification of the transition
scenarios remained open.

Experimental studies of the transition to stochastic
behavior were carried out by using the Shar setup [1].
A laser Doppler anemometer was used for measuring
the velocity pulsations at a layer point situated at a dis-
tance of 120 mm from the rotation axis of the spheres.
The distance to the equator varied from 45 to 75 mm.
We could maintain all parameters of the setup at a con-

r2 r1–
r1

--------------

Ωiri
2

ν
----------

Institute of Mechanics, Moscow State University, 
Michurinskiœ pr. 1, Moscow, 117234 Russia
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stant level, so that deviations of both the Reynolds
numbers and the layer temperature from their nominal
values did not exceed 0.05%. Spectra of velocity pulsa-
tions were calculated by the fast Fourier-transform
method for discrete analog-signal samples consisting
of 16384 and 32768 points separated by 0.06-s inter-
vals, which were obtained with the help of a laser Dop-
pler anemometer. All flow regimes presented here cor-
respond to constant Re2 and quasi-static variation
of Re1 .

The primary flow formed in the spherical layer is
symmetric with respect to both the equator and the rota-
tion axis. It represents the superposition of the azimuth
axial rotation and meridional circulation, the amplitude
and shape of the latter being dependent on the relation
between Re1 and Re2 [3]. For example, in the case of
oppositely rotating spherical boundaries, the appear-
ance of a flow with a two-vortex meridional circulation
formed by oppositely rotating vortices is possible [3].
Then, a line separating flow regions with different
directions of meridional circulation is observed in the
meridian plane.

The segment abc for the stability boundary corre-
sponding to the primary flow in a spherical layer of
thickness δ = 1.006 (see [4]) in the region –1100 <
Re2 < –510 is shown in Fig. 1a. This boundary has a
local maximum at the point b. In the region a–b corre-
sponding to the stability threshold, the line separating
meridional circulations of the primary flow is shifted in
the equatorial region to the inner spherical boundary. In
addition, the loss of stability is accompanied by the for-
mation of a circumpolar secondary spiral flow spread-
ing from the pole towards the equator. Pattern P in
Fig. 1a shows, in the meridian plane (above the equa-
tor), a separation line of meridional circulations of the
primary flow and (below the equator) a section of the
secondary flow by this plane [4]. Under the conditions
corresponding to the segment b–c of the stability
threshold, the line separating the meridional circula-
tions of the primary flow is remote along its entire
length from both spherical boundaries. The secondary
000 MAIK “Nauka/Interperiodica”
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Fig. 1. (a) Thresholds for the onset of the supercritical-flow
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(b) relative frequency for the helicons regime.
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Fig. 2. Relative frequencies of the supercritical flow regimes
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flow arising under such conditions is asymmetric with
respect to both the equator and the rotation axis. It rep-
resents a system of helicons (shown schematically in
the pattern S of Fig. 1a) which are equidistant from
each other, inclined with respect to the equatorial plane,
and propagate both along the rotation axis and in the
direction of the rotation of the inner sphere. Being
observed visually, this secondary flow manifests itself
in the meridian plane as periodic oscillations propagat-
ing along the line that separates the meridional circula-
tions. Similar secondary-flow structures were observed
previously in thin layers [3]. Thus, neutral curves cor-
responding to different instability types intersect each
other at the point b. For the Couette flow caused by
oppositely rotating cylindrical boundaries, a similar
region near the point of intersection of neutral curves
was studied theoretically in [5].

For any Re2 within the range –810 < Re2 < –700, a
quasi-static increase in Re1 results in the same sequence
of supercritical flow regimes. Each of them is charac-
terized by its own spatial structure and a frequency set
in the spectrum of velocity pulsations. In this sense, for
the Re2 range under consideration, the scenario of tran-
sition to chaos by passing through four bifurcation
points, which was investigated in [2] at Re2 = –700, is
universal. For each supercritical flow regime, Fig. 2a
shows the dependence of relative frequencies (normal-
ized to the rotation frequency of the outer spherical
boundary f2) belonging to the velocity-pulsation spec-
trum on Re1 . The first bifurcation (at Re(1)) represents
the stability loss characterized by the appearance of
helicons with a single frequency fs in the spectrum
(Fig. 2a, curve s). The second bifurcation (at Re(2))
characterizes the onset of a quasi-periodic regime in
which circumpolar motion having frequency fp (Fig. 2a,
curve p) arises along with the helicons. The third bifur-
cation (at Re(3)) leads to a new flow regime character-
ized by single frequency ft (Fig. 2a, curve t) and is con-
ventionally called the regime of localized vortices. In
this regime, the flow resembling the open Taylor rings
forms from both sides of the equator. It represents three
vortices which are inclined with respect to the equato-
rial plane in the azimuth-equidistant opening regions
and propagate, as an entire structure, along the azimuth
circle. The top view of this flow regime is shown in the
pattern T of Fig. 1a. The fourth bifurcation (corre-
sponding to Re(4)) leads to the chaotic flow regime. In
contrast to the first two regimes, the localized-vortex
and chaotic regimes are of hard excitation. (The corre-
sponding hysteresis zones are shaded in Fig. 2a.)

Figure 1a, curves 1–3, shows the boundaries of
onset for the (1) quasi-periodic, (2) localized-vortex,
and (3) stochastic flow regimes at –810 < Re2 < –700.
DOKLADY PHYSICS      Vol. 45      No. 12      2000
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Furthermore, we consider the transition from the
laminar flow regime to the stochastic flow regime under
the conditions conforming to the segment a–b of the
stability-threshold line.

Figure 2b presents the relative frequencies as func-
tions of Re1 at Re2 = –900. The first bifurcation (at Re(1))
represents the stability loss characterized by the
appearance of circumpolar motion with a single fre-
quency fp in the spectrum. The second bifurcation (at
Re(2)) is accompanied by the origination of helicons on
the surface separating the meridional circulations.
Then, the quasi-periodic flow regime forms and the fre-
quency fs arises in the spectrum along with fp. An
increase in Re1 is accompanied by a decrease in the first
frequency fp to zero. In this case, the spatial flow struc-
ture in the circumpolar region becomes steady. Further-
more, the circumpolar waves reverse their direction of
propagation and the frequency fp starts to grow. At
Re(3) , the third frequency fg arises in the spectrum (the
third bifurcation), such that the amplitude of this spec-
tral line exceeds those of the lines with frequencies fs

and fp . As Re1 increases, the amplitude of the circum-
polar motion grows and becomes higher than that of the
helicons but lower than the amplitude of the spectral
line at frequency fg . At Re(4), the fourth bifurcation
occurs. It is followed by the formation of the regime of
localized vortices with a single frequency ft in the spec-
trum. We note that the frequency fg before bifurcation
and the frequency ft after bifurcation are very close to
each other. This allows us to assume that the onset for
the regime of local vortices occurs at the frequency fg .
The regime of local vortices, in turn, is changed by the
stochastic regime at Re(5) (the fifth bifurcation).

Figure 1a shows curves for the onset of the above-
described quasi-periodic (curve 4), three-frequency
(curve 5), local-vortex (curve 6), and stochastic flow
(curve 7) regimes for the left (with respect to the local
maximum) segment of the stability threshold. Curve 4
corresponds to the onset of the quasi-periodic regime
and continues the segment b–c of the stability-thresh-
old line. Moreover, the relative frequency fs/f2 , describ-
ing the helicons associated with curve 4, varies without
discontinuities compared to the corresponding values
in the segment b–c (Fig. 1b). Due to this fact, we have
attempted to find a unified description of the scenarios
for transition to the left and to the right from the local
maximum.

It turns out that, at any Re2 , the relative frequencies
of the supercritical flow regimes depend only on the
ratio Re1/Re1s (Fig. 3), where Re1s corresponds to the
threshold of helicon formation (Fig. 1a, curves 4 and
b−c).

All s curves (Fig. 3), which describe the helicons,
originate at the point Re1/Re1s = 1 and virtually repre-
sent a single curve. The difference lies in the fact that at
DOKLADY PHYSICS      Vol. 45      No. 12      2000
Re2 > –810, this regime is secondary, i.e., arising at the
stability threshold, whereas at Re2 < –810, it is com-
bined with the already existing circumpolar motion.
Curves p, which describe the circumpolar motion, also
represent the unified dependence for all analyzed val-
ues of Re2 . The difference lies in the moment of the
appearance of values of the circumpolar motion depen-
dent on the ratio Re1/Re1s. The onset of the circumpolar
motion occurs always for Re2 < –810 at Re1/Re1s < 1
and for Re2 > –810 at Re1/Re1s > 1, i.e., always in the
ascending branch of the function fp/f2 . It is noteworthy
that the frequency fg/f2 , existing only at Re2 < –900, is
close to ft/f2 in the hysteresis region of the localized-
vortex regime corresponding to the segment b–c
(Fig. 3, white symbols).

Thus in the region of the determining parameters
under investigation, the laminar-to-turbulent transition
occurs in accordance with scenarios that, with the use
of the specially chosen coordinates, are of a unified
description. In the analyzed range of the parameters
Re1 and Re2 , both to the left and to the right from the
local maximum of the stability curve, all frequency
characteristics of the supercritical flow regimes are
formed by combinations of the frequencies that corre-
spond to the following three spatial flow structures: the
helicons, the circumpolar motion, and the localized-
vortex regime. The transition to stochastic behavior
always occurs from the single-frequency localized-vor-
tex regime with a structure symmetric with respect to
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the equatorial plane. At the same time, all bifurcation
points preceding this regime arise according to the
Ruelle–Takens scenario [6].
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Academician I. F. Obraztsov, Yu. A. Barynin, and M. A. Khanin

Received September 9, 1999
INTRODUCTION

Using methods of mathematical simulation, a
hemostasis system was found to be bistable [1–4].
Later on, the concept of bistability and the existence of
threshold effects in the external-path activation were
supported by the results of biochemical studies. As is
well known, the bistability of the hemostasis system
protects against the formation of inadequate thrombo-
sis. On the other hand, this feature suggests the possi-
bility that there exists an autowave mechanism for the
propagation of an activation zone of a hemostasis sys-
tem. It was hypothesized in [5] that activation-zone
propagation is terminated owing to the propagation of
an autowave of a certain inhibitor that catches up to the
activation wave. However, no inhibitor satisfying the
necessary requirements is known. The goal of the
present study is to investigate the mechanism for the
processes terminating the propagation of the activation-
zone for a hemostasis system using a mathematical-
simulation method. The same mechanisms must also
insure that the thrombus size is adequate relative to the
extent of blood-vessel damage.

BASIC PROCESSES FOR CONSTRUCTING
A MATHEMATICAL MODEL

We consider only the external path of the hemoco-
agulation schematically shown in Fig. 1. As is seen
from this figure, the external path is composed of the
following components:

(1) cascade of fermentative reactions;

(2) positive feedback caused by the action of a
cofactor, i.e., the factor Va;

(3) positive feedback appearing in the mutual acti-
vation of factors VII and X;

(4) negative feedback caused by the action of the C
protein.

Moscow Institute of Aviation and Technology (MATI), 
ul. Orshanskaya 3, Moscow, 121552 Russia
1028-3358/00/4512- $20.00 © 20701
In the mathematical model proposed, the following
processes are represented:

(i) fermentative reactions resulting in the activation
of coagulation factors;

(ii) chemical reactions of the second order resulting
in the formation of activated-factor complexes;

(iii) diffusion of proenzymes, procofactors,
enzymes, cofactors, as well as complexes of activated
factors and cofactors;

(iv) activation of the external path by the tissue
factor;

(v) distinction between the rate of fermentative
reactions on thrombocyte membranes and that in the
blood bulk;

(vi) transfer of the coagulation factors by the blood
flow.

MATHEMATICAL MODEL
FOR PROPAGATING THE ACTIVATION ZONE

With the structure of the external path and the pro-
cesses under consideration taken into account, the
mathematical model being developed takes the follow-
ing form.

TF VII

[TF VII] [TF VIIa]

VII VIIa

X Xa Va

[Xa Va]

II IIa PCa PC

V

Fig. 1. Diagram for the hemocoagulation external path.
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The process proceeding on cell membranes:
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Here, [i] and Di are the i-factor concentration and diffu-
sivity, respectively; ki, ma is the constant for the rate of
activation of the i-factor by the mth-ferment; kmi, ma is
the Michaelis constant in the fermentative activation
reaction for the i-factor by the mth-ferment; δ is the
thickness of the near-membrane layer; and Ei is the
constant of the i-factor inactivation.
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The boundary conditions. Equations (1) define the
boundary condition of the problem at x = 0, i.e., at the
boundary of a near-membrane layer.

Another boundary condition at x = L, where L is a
value on the order of the vessel radius, is of the form

For t = 0, [
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] = [

 

i

 

0
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 and [
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] = 0.

RESULTS

In Figs. 2 and 3, the concentration distributions for
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Fig. 2. 

 

Distributions of the prothrombin and thrombin con-
centrations over the external-path activation zone. The
curves with indices 

 

a

 

 and 

 

b

 

 correspond to prothrombin and
thrombin, respectively. The indices 

 

1

 

, 

 

2

 

, 

 

3

 

,

 

 and 

 

4

 

 correspond
to the time moments of 1, 2, 3, and 4 min after the onset of
the process. After an elapsed time of 4 min, the activation-
zone front becomes stabilized.

 

Fig. 3.

 

 Concentration distributions for the factors 

 

V

 

 and 

 

Va

 
over the external path activation zone. The curves with indi-
ces  a   and  b   correspond to the factors  V   and  Va , respectively.
The indices 

 
1

 
, 

 
2

 
, 

 
3

 
,

 
 and 

 
4

 
 correspond to the time moments of

1, 2, 3, and 4 min after the onset of the process. After an
elapsed time of 4 min, the activation-zone front becomes
stabilized.
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the coordinate axis normal to the vessel-wall surface
for various instants of time. As is seen from Figs. 2 and
3, the activation-zone front moves deeply into the ves-
sel and attains a certain steady position. If the terms
corresponding to hemodynamic transport are discarded
in Eqs. (1) and (2), the wave front propagates continu-
ously. The same effect is also observed in the absence
of a cascade in the hemocoagulation scheme. Thus, a
cascade of fermentative reactions enhances the effect of
the hemodynamic entrainment as a factor restricting
propagation of the activation zone for a hemostasis sys-
tem. The greater the number of fermentative reactions
involved in a cascade, the smaller the path traversed by
the activation zone. For example, an internal path
involving a “longer” cascade forms an activation zone
with a smaller penetration depth compared to that of the
external path. This corresponds to the physiological
functions of the external and internal paths, the former
of which is fitted at significantly heavier damage of the
vessels.

CONCLUSIONS
Employing the method of mathematical simulation,

the hemodynamic entrainment of activated factors is
established as the basic mechanism resulting in the ter-
mination of hemostasis activation-zone propagation.
The same mechanism insures that the thrombus size is
adequate for the extent of vessel damage. The mecha-
nism for regulation of the penetration depth of the acti-
vation zone associated with the hemodynamic transport
of activated factors is essential only in the case of exist-
ence of a cascade scheme for fermentative reactions.

The results obtained are appropriate for the case of
the activation-zone propagation in a blood flow.
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