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FORMULATION OF THE PROBLEM

It is well known that the cavitation processes in tur-
bulent boundary layers near interfaces of the atmo-
sphere–hydrosphere–lithosphere are characterized by
effects related to both vibrational hydrodynamic phe-
nomena (generation of cavitation cavities [1, 2]) and
wave acoustic phenomena (noise-radiation during cav-
itation [3, 4]). As a rule, both effects are investigated
independently. Since the above processes can be
described by the same parameters, it is of interest to
establish the interconnection and interdependence
between the processes of both types in terms of param-
eters describing these phenomena. The present study is
devoted to solving this problem.

THE METHOD FOR SOLVING THE PROBLEM

As was shown by authors previously, there exists a
possibility of conjugation of harmonic parameters (har-
monics) qualitatively characterizing different dynamic
effects in complex distributed systems (in mechanical
continua, in Earth’s crust structures, etc.) on the basis of
the D-SELF model. This model was put forward for the
first time in [5] and further developed in [6]. In a series
of papers [7–9], the different aspects of the applications
of the D-SELF model were demonstrated. The present
study develops this direction of research.

According to the D-SELF model, harmonic effects
are characterized by simultaneous excitation of wave
processes and vibration processes while transforming
the energy delivered from an external source [8].

It is well known [10] that in a continuum with dis-
tributed parameters, various forms of periodic motion
and processes can be classified as wave and vibration
ones. There exists the problem that the processes of
both types in the classical formulation are not related to
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one another. Traditionally, their interconnection is con-
sidered in nonlinear approaches. The principal diffi-
culty in the analysis of waves and vibrations is associ-
ated with the absence of a unique generalization includ-
ing the formalism of both the wave approach
(d’Alembert interpretation) and vibration approach
(Bernoulli interpretation). The D-SELF model makes it
possible to consider the interconnection between the
wave and vibration motions in mechanical media on the
basis of conjugation parameters for wave and vibration
processes [8].

Performing an analysis of spectra of the vibration
process (vibration generation) and the wave process
(noise-radiation by cavitation cavities) taken as exam-
ples, we show their interconnection via the conjugation
of their parameters. As a condition of conjugation for
two arbitrary parameters ζ and ζ* with respect to
parameter ζ0 , we will consider their invariant intercon-

nection as described by the relation 

LOW-FREQUENCY GENERATION
OF CAVITIES

The formation (generation), growth, and collapse of
cavitation cavities arising in turbulent boundary layers
and cocurrent flows are related to periodic pressure pul-
sations in the turbulent flow [1, 2]. It is shown in [2] that
this periodicity is described by the frequency directly
proportional to the flow velocity V and inversely pro-
portional to the characteristic size L of a body (or an
obstacle) (Fig. 1):

(1)

where Sh is the Strouhal number and 

The given process has a hydrodynamic nature. Pul-
sations of the liquid mass with frequency f represent a
flow response to a disturbance produced by a body
(obstacle in a fluid).
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It should be noted that the frequency f and the flow
velocity V are variables in (1). It is appropriate to con-
sider the Strouhal number as a reciprocal quantity for the
self-similarity coefficient k [11]. The physical meaning
of the coefficient k lies in the fact that, in a flow, an
attached mass in the form of a cavitation cavity is formed
beyond a body of size L. After separation, this cavity
generates pulsations of frequency f. It is worth mention-
ing that the quantity k varies between 2 and 6 [11].

CAVITY NOISE RADIATION
The cavitation noise measured near collapsing cav-

ities has a characteristic maximum depending on flow
velocity V and body size L [3]. We now analyze the fre-
quency of the maximum as a function of the parameters
of a body and flow. The effect under consideration is
related to the pressure pulsations of the compressible
fluid as a result of the action of the fluid flowing around
an obstacle with characteristic dimensions L. In this
case, the body with a characteristic size L, which is sit-
uated in the flow, generates noise radiation with fre-
quency f. This noise radiation propagates through a
fluid with a velocity of sound c in the form of a wave
having wavelength λ:

(2)

It was indicated previously [3] that with increasing
frequency, the maximum of the noise radiation of cavi-
tation cavities shifted towards the lowest frequencies.
This implies that the wavelength λ of the noise radia-
tion rises with increasing flow velocity. We introduce

the normalized velocity , where M is the Mach

number. In this case,

(3)
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Fig. 1. Frequency f for the collapse of cavitation cavities as
a function of the flow velocity V [2].
In addition, as was emphasized in [1, 3], the value of
the maximum was determined by the size kL of the cav-
itation cavity; i.e.,

(4)

In view of (3) and (4), the wavelength is determined
by the characteristic size kL and depends on the flow
velocity V and the Mach number M:

(5)

As a result, the noise-radiation frequency and the
parameters of the cavity and the flow are interrelated by
the dependence

(6)

Relationship (6) exhibits a process having an acous-
tical nature. The pressure pulsations with frequency f
are a response of the compressible liquid to a distur-
bance produced by a body.

INTERPRETATION OF THE RESULTS 
AND DISCUSSION

We write out relationship (6) in the form

(7)

where  is the quantity having the dimension

of a velocity with its numerical value considerably
exceeding the velocity of sound.

It is interesting that relationships (1) and (6) possess
a certain symmetry that can be represented by the rela-
tionships

where f0 is the characteristic frequency conjugating fre-
quencies f and f *.

The symmetry of frequencies f and f * can be repre-
sented in logarithmic form:

(8)

Relation (8) represents the interconnection between
frequencies f and f * that characterize two physical pro-
cesses, namely, acoustic and hydrodynamic processes.
The interconnection is realized via parameters charac-
terizing fluid flow (flow velocity V and body size L).

Dependence (8) is shown graphically in Fig. 2. As is
seen, frequencies f and f* are conjugate (i.e., symmetric
in logarithmic form) with respect to the frequency f0
defined by the relation

(9)
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The symmetry illustrated by Fig. 2 is characteristic
not only of frequencies f and f * but also of the wave-
lengths of both processes, i.e., of their spatial character-
istics. Thus, relation (8) characterizes the space-time
symmetry of dynamic processes having a hydrody-
namic and acoustic nature. Similar symmetry was con-
sidered in the D-SELF model describing a regulation
inherent in self-organized systems [6].

From the standpoint of the D-SELF model, the pro-
cesses considered above are an effect of self-regulation
in the form of a response of a fluid transforming the
energy transferred to it from a source that generates
noise-radiating cavitation cavities. The energy transfor-
mation occurs in the form of the generation of harmon-
ically conjugate processes: a vibrational hydrodynamic
process with frequency f and a wave acoustical process
with frequency f *.

The D-SELF model describes the generation of non-
linear processes. Therefore, it is necessary to indicate
that along with the generation of frequencies f and f *,
processes with harmonics of frequency f0 are also
excited. In this case, two sets of harmonics arise: har-
monics generating cavitation cavities (subharmonics
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Fig. 2. (1) Reduced frequency for generation of cavitation
cavities (empirical data) and (2) their noise-radiation as a
function of relative flow velocity M in the case of hydrody-
namic cavitation. The calculation is performed according to
formula (8).
DOKLADY PHYSICS      Vol. 46      No. 1      2001
          

with frequency f0) and harmonics of noise radiation
(subharmonics of frequency f0). It is important to
emphasize that the excited subharmonics with frequen-
cies fi and  are conjugate with one another with
respect to frequency f0:

where i is the ordering number of the ith subharmonic
or superharmonic.

Thus, when generating noise-radiating cavitation
cavities, conjugation effects will be characteristic of
both subharmonics and superharmonics. In this case, it
is correct to speak of harmonic conjugation of these
effects.
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INTRODUCTION

Molecular and atomic clusters attract considerable
interest; this can be explained by their intermediate
position between molecules, as such, and macroscopic
particle ensembles, as well as their position in the hier-
archy of systems described by methods of statistical
mechanics. Gibbs statistical mechanics also remains
valid for systems with a limited number of particles.
For the rigorous derivation of an equilibrium distribu-
tion function, two conditions should be fulfilled: the
size of a thermostat in equilibrium with a molecular
system should be macroscopic and the energy of the
interaction between the system and the thermostat
should be infinitely small compared to the system inter-
nal energy. The thermodynamic limit for the number of
particles N  ∞ in the system in itself is not required
[1]. The mechanism responsible for the formation of
the collective behavior of particles, which, in the mac-
roscopic limit, leads to phase transitions, is of funda-
mental interest. In small molecular systems, liquid-
crystal transitions are of particular importance in appli-
cation, since they occur at rather low temperatures,
when molecular clusters, within a relatively wide range
of external conditions, are stable with respect to
decomposition. Strictly speaking, phase transitions
accompanied by discontinuities in functional depen-
dences of thermodynamic potentials are possible only
in the limit of an infinite number of particles. Phase
transitions represent the most complex problem in
modern classical statistical equilibrium thermodynam-
ics. In addition, there exists no theory capable of
explaining, in the general form, the origin of phase
transitions and linking the mechanism of particle inter-
action with the position of the boundaries separating
different phase states in the phase diagram. According
to present-day concepts of general statistical theory [2],
phase transitions are related to the zeros of the grand
statistical sum:

(1)Ξ λ V T, ,( ) Q N V T, ,( )λN ,
N

∑=
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where Q(N, V, T ) is the statistical sum of the canonical
statistical ensemble, V is the volume, T is temperature,

λ = exp  is the absolute activity, and µ is the

chemical potential. In systems with a finite number of
particles, the series (1) transforms into a polynomial in
powers of λ with positive coefficients which has no real
roots. In the macroscopic limit, the number of roots
increases and they are aligned along a certain curve. In
the case when this curve intersects the real axis of val-
ues of λ, the intersection point forms a singularity
which we interpret as a phase transition. The limiting
distribution law for roots on this curve at the point of its
intersection with the real axis probably determines the
kind of phase transition. At least, there are no reasons
to expect other singularities of functional relation (1)
which, after taking the logarithm, would lead to discon-
tinuities of the free energy [3] or its derivatives in the
region of finite real λ.

For finite N, the proximity of roots to the real axis
affects the statistical behavior of the system in the form
of formally continuous but relatively abrupt changes in
its properties under temperature variation. In this case,
the entropy jumps degenerate into S-shaped depen-
dences and singularities of thermal coefficients are
transformed into intense but finite maxima. Strictly
speaking, these structural changes in molecular clusters
are not phase transitions. However, with increasing N,
the anomalies become so clearly pronounced that they
are termed melting, evaporation, etc. by analogy with
macroscopic systems.

Variations in N give rise to displacement of the poly-
nomial roots in (1) not only towards the real axis but
also along it. This implies that the points of structural
transitions in clusters depend on their sizes. This
dependence was discovered already in the first numeri-
cal studies of very simple clusters consisting of noble-
gas atoms [4–10]. In [7], it was first shown that in an
extremely small system consisting of as little as 16 par-
ticles, separation into a liquid core and gas residing in
equilibrium with this core was clearly observed. The
universal property is a shift of the melting and evapora-
tion points for clusters to lower temperatures. The shift

µ
kBT
--------- 
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magnitude is determined by the character of interparti-
cle interactions. For example, the melting of a cluster
consisting of 16 argon atoms occurs at a temperature
lower by a factor of three than that of the corresponding
macroscopic crystal lattice and the gas-liquid transition
is shifted downwards along the absolute-temperature
scale by a factor of two. In an ionic system, the shift of
structural transition points in clusters is far less signifi-
cant and is accounted for by the screening effect [11].

THE ROLE OF WATER CLUSTERS 
IN THE PROBLEM OF OZONE DECOMPOSITION

Water clusters are of special interest. The unique
properties of water underlie most of the physicochemi-
cal processes in the atmosphere. The freezing point of
water is approximately in the middle of the range of
usual temperature variations near the Earth’s surface,
and the equilibrium conditions for the vapor and liquid
phase are close to the natural conditions in the atmo-
sphere. This provides the inclusion of phase transitions
occurring in water into a sequence of local and seasonal
variations of atmospheric conditions. The latent heat of
phase transitions serves as an energy accumulator
smoothing these vibrations and enhancing natural con-
vection. In the stratosphere, at altitudes on the order of
several tens of kilometers, specific conditions are real-
ized for the existence of clusters of water molecules. It
should be expected that the characteristic temperatures
of 180 to 220 K at these altitudes correspond to a
boundary between the solid-crystal and quasi-liquid
states of water clusters. Relatively small seasonal tem-
perature variations can give rise to changes in the clus-
ter phase states and affect the behavior of physico-
chemical processes on the cluster surface. The most
important phenomenon of such kind is the process of
decomposing the natural ozone layer in the strato-
sphere. The ozone is decomposed in the reaction of oxi-
dizing free chlorine, which is, in turn, a product of
decomposing chlorine-containing CCl2F2 and CCl3F
Freons, as well as foam-forming compounds of the
CH3CF2Cl type. The interaction of chlorine and its
oxide with NO2 and CH4 gases results in the binding of
active chlorine in the form of such compounds as HCl
and ClONO2, which are chemically inert with respect
to ozone. At this stage, the ozone decomposition cycle
would be completed, but atomic chlorine can be liber-
ated from these compounds in the reactions

(2)

(3)

In the gaseous phase, the chlorine is liberated
extremely slowly. However, the ice surface acts as a
catalyzer, accelerating reactions (2) and (3) and again
producing the active chlorine. In the circumpolar
regions at altitudes up to 100 km, the formation of spe-
cific stratospheric clouds containing ice microparticles
is observed [12]. The appearance of these clouds is cor-

HCl HOCl+           Cl 2 H 2 O,+

HCl ClONO2+          Cl 2 HNO.+                     
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related with intensifying the process of ozone decom-
position and formation of so-called ozone holes. Chem-
ically passive HCl is adsorbed on the surface of ice
microparticles, and in the period of seasonal warming
with the income of the arctic spring, it becomes a
source for the materials of reactions (2) and (3). The
cause of this enhanced temperature effect may be the
melting of water clusters on the adsorbing surface of
microparticles. The single-crystal ice surface has a
complex microrelief, depending on the history of its
formation. This relief represents clusters of water mol-
ecules irregularly adhering to one another. Since the
melting temperature for clusters depends on their size,
the elevation of temperature results, in the first turn, in
the melting of smaller-size clusters, whereas the larger-
size clusters can remain in the solid-crystalline state.
According to present-day concepts [13], acceleration of
reactions (2) and (3) occurs due to the formation of
intermediate annular cluster HCl structures with water
molecules which are extracted from the surface of ice
microparticles. The probability of detachment of a
water molecule from the ice surface and, consequently,
its catalytic effect are determined by the mobility of the
molecules, which, in turn, is related to the phase state
of that microscopic surface area on which the chemical
reactions take place. The melting of clusters must lead
to an increase in the active surface and to acceleration
of free-chlorine production. Thus, the melting of small
clusters is one of the key components in the chain of
reactions causing ozone decomposition.

RESULTS OF NUMERICAL EXPERIMENTS

In this paper, we study the melting of clusters con-
sisting of 40 and 10 water molecules. The melting was
identified according to the behavior of the internal
energy, heat capacity, and electric susceptibility. The
heat capacity was calculated via energy-interaction
fluctuations, U, [3]:

(4)

Formula (4) yields the nonideal component of heat

capacity, which differs in a trivial term NkB from the

total heat capacity for rigid molecules with six degrees
of freedom. The diagonal elements in the tensor of
static electric susceptibility were calculated on the
basis of fluctuations of the dipole moment P:

(5)

where αw = 1.44 × 10–3 nm3 is the isotropic polarizabil-
ity of the water molecules.

The calculations were performed by the Monte
Carlo method for the canonical statistical ensemble [3].
We used the standard Metropolis scheme. One step of

CV
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the procedure consisted in a spatial shift and rotation of
a molecule around three Cartesian axes. The fraction of
new configurations taken was 50–60%. The iteration-
step length and the rotation angle ranged from 0.01 to
0.05 nm and 20° to 30°, respectively, depending on the
calculation conditions. One Markovian chain consisted
of 100 × 106 steps, the first 10 × 106 steps allotting for
thermalization. To avoid evaporation, the system was
placed into a spherical cavity with a radius of 1.2 nm.
The interaction of the molecules is described by the
Raman–Stillenger ST2 pair five-center intermolecular
potential. The potential explicitly simulates the
exchange, dispersion, and Coulomb interactions, as
well as directed hydrogen bonds. In this model,
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Fig. 1. Internal energy (without kinetic component kBT)

estimated for one molecule: (1) (H2O)40 and (2) (H2O)10.

6
2
---

Fig. 2. Specific heat (without the kinetic component kB)

estimated for one molecule at a constant volume:
(1) (H2O)40 and (2) (H2O)10.

6
2
---
                      

unpaired interactions are taken into account implicitly.
Priority was taken for the ST2 potential, since it
belongs to the most successful intermolecular poten-
tials developed for water. Unlike, for example, the SPC
model, this potential explicitly takes into account the
tetrahedral structure of the interactions in the first coor-
dination layer of the molecules. Strictly speaking, the
domain of applicability of the arbitrary modeling inter-
molecular potential is limited by the particular temper-
ature range, so that the range under investigation lies on
the boundary of the applicability of the ST2 model.
Nevertheless, we deliberately use this model, since the
goal of the present study is to reproduce the basic fea-
tures related to the melting of clusters containing nar-
row-directed hydrogen bonds rather than a precise cal-
culation of the water thermodynamic characteristics.

In the vicinity of the melting point 273 K of the
macroscopic phase, there is no evidence in the temper-
ature curves for the cluster equilibrium characteristics
of any qualitative changes in the system which resem-
ble melting. The melting temperature of a cluster con-
sisting of 40 molecules is shifted downward to 210 K.
At this point, a change in the slope on the internal
energy curve and a small jump (approximately 0.02 eV,
i.e., 

 

~

 

k

 

B

 

T

 

 accounted for one molecule) occurs, Fig. 1.
At this point, a maximum on the temperature depen-
dence of the heat capacity against the background of its
general accelerated drop (approximately by a factor
of two) is formed while cooling the system, Fig. 2. The
melting does not occur strictly jump-wise but is
extended in a temperature scale ranging in an interval
of approximately 10 K. According to the behavior of
calorimetric characteristics, the melting of the cluster
consisting of 10 molecules occurs at approximately
200 K and is more strongly extended in the temperature
scale (Figs. 1, 2). In the vicinity of the melting point
from the side of lower temperatures, the heat capacity
differs by 25% from its low-temperature limit of 

 

3

 

k

 

B

 

,
which corresponds to harmonic vibrations in the crystal
lattice, thus demonstrating the degree of anharmonicity
of thermal vibrations in the crystal. In [14], the melting
of clusters (H

 

2

 

O)

 

6

 

 and (H

 

2

 

O)

 

8

 

 was investigated by a
method of molecular dynamics. The behavior of the
Lindemann factor testified to the fact that the melting of
clusters composed of six and eight particles corre-
sponded to temperatures of 60 and 170 K, respectively.
Our results are in agreement with both the data of [14]
and the general regularity of increasing the melting
temperature with the cluster size.

In macroscopic molecular systems, crystallization is
associated with the formation of long-range molecular
ordering and a drastic decrease in the diffusion coeffi-
cient. The long-range ordering cannot be realized in
these clusters by virtue of their spatial boundedness,
and the diffusion motion for the distances on the order
of the cluster size is difficult to distinguish from the
thermal motion. In spite of this fact, the numerical
experiment shows that the cluster cooling is accompa-
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nied by drastic qualitative changes which affect the
temperature dependences of their equilibrium charac-
teristics. In the systems with pair interactions, the inter-
nal energy is expressed as an integral of binary correla-
tion functions. Therefore, any strong changes in energy
inevitably imply certain drastic changes in the correla-
tion functions. However, when melting, the relative
change in relevant quantities turns out to be too small
to be noted in a simple visual analysis of the correlation
functions. For example, the oxygen–oxygen gOO(r) cor-
relation-function curves (Fig. 3), while cooling, exhibit
a gradual rise in oscillations, which indicates the con-
tinuous amplification of the correlations in the spatial
positions of molecule centers of mass. However, the
positions of the maxima remain, in fact, invariable: no
new maxima are formed and the qualitative steps in the
increase in the correlations remain virtually indistin-
guishable. More thorough analysis is based on calculat-
ing orientational correlation functions. For binary ori-
entational correlation functions, the qualitative changes
associated with melting are identified much more reli-
ably. Above the melting point, a monotonous reduction
of the orientational correlations is observed on the
dependence of the mean angle between the dipole
moments of the molecules on the distance between
them along the symmetry axis of one of the molecules.
After melting, the situation changes qualitatively. The
monotonous dependence becomes oscillating. The
strongest orientational correlations are observed for
intermolecular distances corresponding to maxima of
gOO(r) in Fig. 3, i.e., in coordination layers. In spacings
between layers, the correlations are even reduced with
cooling. The oscillation amplitude in the orientational
correlations begins to rise at the melting point and con-
tinuously increases with further lowering of the tem-
perature. Thus, the distinctive feature of the crystalliza-
tion in bounded systems with a strong anisotropic inter-
molecular interaction is the appearance of a spatial
nonuniformity in the orientational correlations of the
particles. We expect that in macroscopic systems of the
same type, the orientational correlations under the crys-
tallization would also undergo strong changes along
with other structural characteristics. However, the spe-
cific nature of a small molecular system consists in the
fact that the change in the orientational correlations
turns out to be the most well-pronounced event that
allows us to judge the character of the structural
changes. It is worth noting that the changes in the clus-
ter structure in the process of crystallization do not
reduce to a simple amplification of the orientational
correlations. The essence of the changes is the spatial
redistribution of these correlations in accordance with
already existing correlations in the positions of mole-
cule centers of mass. The melting is a process of violat-
ing the dependence between orientational and transla-
tional correlations in the system.

In systems with strongly different energy scales for
the isotropic and anisotropic components of interparti-
cle interactions, in principle, two different phase transi-
DOKLADY PHYSICS      Vol. 46      No. 1      2001
            

tions of translational and orientational ordering are pos-
sible. Alloys based on iron, nickel, or cobalt may be
used as an example. In these alloys, with a rise in tem-
perature, the destruction of ferromagnetic properties
and melting occur at different temperatures. The
destruction temperatures for the long-range transla-
tional and orientational orders are also separated in liq-
uid crystals. In most materials, particularly in water,
both forms of the long-range molecular order are
destroyed simultaneously while melting. This behavior
is most typical of real substances and can be explained
by the fact that for the existence of two different phase-
transition orderings, the anisotropic component must
be significantly weaker than the isotropic component of
the interaction. However, in the case of an overly weak
anisotropic interaction, the transition to an orientational
ordered phase will occur at an overly low temperature,
when the effects associated with quantum-mechanical
uncertainty in the particle positions become significant.
Then, the behavior of the system changes qualitatively.

Theoretically, it is possible to expect that the points
of the translational and orientational ordering can be
separated in the temperature scale due to the extreme
smallness of the system. With decreasing the cluster
size, the average number of neighboring particles in the
nearest coordination layer also decreases. If the orien-
tational ordering is more sensitive to the number of
closest neighbors, the appearance of the orientational
order may be shifted towards low temperatures. It is
this effect that we observed in the cluster consisting of
10 molecules. The polarizability is sensitive to the ori-
entational ordering. The qualitative changes in the ori-
entational order are accompanied by the intensified
fluctuation rotations of molecules and, by virtue of (5),
by the rise in polarizability. If for the cluster consisting
of 40 molecules, the maxima of the polarizability and

0.08

0.06

0.04

0.02

0
2 4 6 8 r, Å

gOO, Å–3

1

2

Fig. 3. Oxygen–oxygen correlation function for the (H2O)40
cluster normalized to the number (with one less) of mole-
cules: (1) T = 300 and (2) 162 K. The dashed line is the total
density of water under normal conditions.
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thermal capacity coincide in temperature scale, then for
a cluster composed of 10 molecules, we have obtained
a strong polarizability maximum at a much lower tem-
perature of 150 K (Fig. 4). Here, the rare but strong
fluctuations of the dipole moment associated with cor-
related rotations as a whole of groups composed of two
to four molecules are observed. The distribution func-
tion for the cluster moment squared has a bimodal
shape. The rotations do not need to overcome activation
barriers, as is the case for larger clusters. Therefore,
they do not contribute to the heat capacity (Fig. 2). It is
evident that an increase in the cluster size of up to
40 molecules eliminates such barrier-free paths in the
system configuration space and that the orientational
order is stabilized at higher temperature. In [15], the
melting point of (H2O)8 was evaluated as, approxi-
mately, 150 K by the molecular-dynamics method,
according to the behavior of the Lindemann factor. The
melting of the (H2O)12 cluster corresponded to the same
temperature with an accuracy to an error inherent in
this method, and the (H2O)24 cluster was melted at
approximately 170 K. The estimates of [15] for clusters
consisting of 8 and 12 molecules contradict the data
of [14] for a cluster consisting of 8 molecules (the melt-
ing temperature is 170 K) and correspond to the maxi-
mum of electric susceptibility for the cluster modeled

1

2

100 150 200 250 T, K

20

15

10

α, Å3

Fig. 4. Cluster polarizability estimated for one molecule:
(1) (H2O)40 and (2) (H2O)10.
by us and consisting of 10 molecules, which is shown
in Fig. 4. At these temperatures, we failed to observe
the extremum of the heat capacity. We consider that the
phase transition in these extremely small clusters is sig-
nificantly extended in the temperature scale. Then, by
virtue of the effects discussed above, different charac-
teristics may attain their extrema at essentially different
temperatures. This is a likely source of the discrepan-
cies observed in the positions of the melting points
determined in various ways.
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The velocity of a longitudinal acoustic wave in a
thin elastic rod decreases if the rod is immersed in a
fluid [1]. The reduction in the velocity of sound is
explained by the fact that a boundary layer of fluid
vibrates along with the rod metal. The thickness of this
layer depends on the frequency of rod vibrations and
also on the density and viscosity of the fluid. For a
sound frequency of 100 kHz, the thickness of the fluid
boundary layer is 10 to 50 µm for moderately viscous
fluids similar to oil [1]. If the mass of the boundary
layer in the fluid is comparable with the mass of the rod,
the reduction in the velocity of sound is substantial. In
macroscopic samples with a thickness larger than
1 mm, no effect is observed.

The boundary-layer thickness of the fluid depends
on its viscosity. This made it possible to use the effect
of decreasing the velocity of sound for determining the
viscosity of the fluid. This method is rather rapid,
which makes it possible to measure up to 3000 experi-
mental points per second. As a sensor, a thin aluminum
strip was used [1]. However, it is more convenient from
the engineering standpoint to use a fiber instead of a
strip. Therefore, the goal of this paper is to investigate
the effect of fluid on the propagation of sound in a thin
fiber.

As a sensor, we used nichrome fibers (wires) with an
operating length of 210 mm and a diameter of 100 and
150 µm. The fiber immersed in the bath with the fluid
was placed in a thermostatically controlled chamber.
After the desired temperature had been attained, an
ultrasonic pulse with a frequency of 250 kHz was trans-
mitted through the fiber and the time of the pulse prop-
agation through the sample was determined. The ultra-
sound velocity was calculated by dividing the sample
length by the signal-passage time.

We consider the propagation of a longitudinal
acoustic wave in an elastic cylindrical rod immersed in
an unbounded Newtonian fluid (Fig. 1). The presence
of the fluid was taken into account by adding to

Semenov Institute of Chemical Physics, 
Russian Academy of Sciences, 
ul. Kosygina 4, Moscow, 117977 Russia
1028-3358/01/4601- $21.00 © 20017
the wave equation a term describing the fiber–fluid
interaction:

(1)

Here, u is the displacement of the fiber from the equi-
librium position, Y is the direction of the fiber axis, ρ0

is the density, R is the radius, πR2 is the cross section, E
is the fiber elastic modulus, and τ is the stress induced
by the interaction of the fiber with the fluid.

For finding shear stress τ, we solve the problem of
the motion of the fluid contacting the fiber. Let an
unbounded cylindrical rod of radius R be in contact
with an incompressible viscous fluid being, as a whole,
quiescent, and let this rod undergo longitudinal har-
monic vibrations with an angular frequency ω along its
Y-axis. We assume that the fluid is Newtonian, the vis-
cosity is proportional to the velocity gradient, and the
motion of the fluid in the cylindrical coordinate system
can be described by the equation

(2)

where v is the velocity of the fluid along the fiber vibra-
tion axis Y, ρ is the density, and η is the viscosity of the
fluid.

πR2ρ0
∂2u

t2∂
-------- πR2E

∂2u

Y2∂
-------- 2πRτ .+=

ρ v∂
t∂

------- η ∂2v

r2∂
---------

1
r
--- v∂

r∂
-------+ 

  ,=

H

ω

Y

2R

r

Fig. 1. Schematic diagram for computation. Y is the fiber
axis, R is the fiber radius, and ω is the angular frequency of
vibrations.
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We seek the time-periodic solution to Eq. (2) in the
form

where i is the imaginary unit. Substituting v(r, t)
into (2) and performing the change of variables x =

, we obtain

(3)

Equation (2) is the Bessel equation of the argument

xi  [2, 3]. The solution to this equation, which
damps at infinity, is known as the Bessel function of

the second kind of the argument xi  [2] or the Russel
function [3, 4]:

(4)

The functions ker and kei are, respectively, the real
and imaginary parts of the Russel function. They are
calculated in the form of a series [2, 3], and tables
describing them can be found in [4]. These functions
oscillate with decreasing amplitude with an increase in
x (i.e., the distance to the fiber axis).

Note that the wave v(r, t) excited in the fluid is the
shear wave, and it propagates along the direction per-
pendicular to the fiber axis. Once the problem of wave
propagation in the fluid has been solved, we can return
to the problem of sound propagation in the fiber. The

fiber–fluid interaction stress is τ = η  for r = R. Dif-

ferentiating (4), we arrive at

(5)

Here, x0 = R, ker'x = , and kei'x = . It

is easy to show that  = , where λr is the length

of the wave excited in the fluid [1]. Thus, x0 = 2πR/λr is
the dimensionless parameter describing the ratio
between the fiber diameter and the wavelength of the
transverse wave in the fluid.

The solution to Eq. (1) for the longitudinal vibra-
tions of the fiber is found in the form

where k is the wave number. In this case, the velocity

v =  of a rod element is determined by the relation-

ship

(6)

v r t,( ) s r( ) iωt( ),exp=

ωρ
η

-------r

∂2s

x2∂
-------

1
x
--- s∂

x∂
----- is–+ 0.=

i

i

s s0 kerx ikeix+( ).=

s∂
r∂

-----

τ s0 ηωρ ker'x0 ikei'x0+( ) iωt( ).exp=

ωρ
η

-------
dkerx

xd
-------------- dkeix

xd
--------------

ωρ
η

-------
2π
λ r

------

u u0 i ωt ky–( )[ ] ,exp=

u∂
t∂

-----

v iωu0 i ωt ky–( )[ ] .exp=
Equalizing the velocity of the fluid s0(kerx + ikeix) ×
exp(iωt) to that (6) of the fiber at the boundary x = x0 ,
we find

(7)

The substitution of Eqs. (5) and (7) into (1) yields

(8)

Thus, we obtain the wave number k:

(9)

where

(10)

and f =  is the frequency of sound. On the basis

of (9), we determine the velocity of sound as a ratio of
the angular frequency to the wave-number modulus:

(11)

The asymptotic behavior of the ker and kei func-
tions for x @ 1 is described by the relationships [1]

For x @ 1, the coefficients α = β = γ, where

(12)

Expanding (11) into a series and restricting ourselves to
linear terms of the expansion, we obtain

(13)

iωu0 s0 kerx0 ikeix0+( ).=

ρ0Rω2 ERk2 2iω ηωρ ker'x0 ikei'x0+( )
kerx0 ikeix0+

-------------------------------------------------------------------.–=

k2 ω2

c0
2

------ 1 α iβ+ +( ),=

α 2ρη
ρ0

2R2πf
------------------ 

ker'x0keix0 kei'x0kerx0–

ker2x0 kei+
2
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where c0 is the velocity of sound in the fiber in the
absence of fluid. The imaginary part of wave number k
(9) determines the damping of the longitudinal wave in
the fiber:

(14)

Note that the effect of fluid on the velocity of sound
in a cylindrical fiber is similar to that in a thin strip [4].

The asymptotic formulas (at  @ 1) describing the

effect of fluid on the velocity and damping of sound
coincide in the case when the fiber diameter is equal to
one-half the strip thickness.

In Fig. 2, we display the experimental data for the
velocity of sound as a function of the temperature of the
nichrome wire immersed in glycerin or an oil. In a pure
metal (curves 1, 2), the velocity of sound decreases lin-
early with increasing temperature. The immersion of
the fiber in the fluid leads to a reduction in the velocity
of sound. The magnitude of this effect decreases with
elevation of the temperature and reduction in the fiber
diameter. This effect manifests itself more drastically in
viscous glycerin than in oil. Such a behavior agrees
completely with formula (13).

Above, we have solved the problem of the effect of
a fluid on the propagation velocity of an acoustic wave.
However, the solution of the inverse problem, namely,
determining the viscosity of fluid according to the
known reduction in the velocity of sound after the
immersion of the fiber in a fluid, is of greater impor-
tance. This problem can be solved on the basis of for-
mula (13):

(15)

In Fig. 3, we demonstrate the correlation between
the viscosity determined from Eq. (15) and the tabular
values for the viscosities of glycerin and spindle oil at
various temperatures [10]. The difference between the
calculated and tabular values does not exceed 25%. The
only exception is the region of low viscosities (<0.1 Pa s)
in which formula (15) overestimates the viscosity. The
reason for this fact remains unclear.

The difference between the calculated and experi-
mental data in the case of high viscosity of the fluid can
be caused by the inaccuracies in formulas (13) and (15).
The effect of the fluid is characterized by the reduction
in the velocity of sound ∆c = c0 – c. The inaccuracy of

formula (13) can be estimated by the ratio , where

∆c2 is determined from (13), while ∆c1 is found by
numerical calculation from exact formula (11). In

u u0 βz–( ) πfρη
R2ρ0

2c0
2

----------------y–
 
 
 

.exp≈exp=

R
λ r

-----

η  . 
πf ρ0

2

ρ
------------

c0 c–( )2

c0
2

--------------------.

∆c2

∆c1
--------
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Fig. 4, we display the ratio F =  as a function of the

parameter x0 = R. For all x0, this ratio is smaller

than unity. Consequently, in actual conditions, the effect
is slightly higher than that predicted by formula (13).
This implies that the calculation of viscosity by for-
mula (15) results in overestimating the viscosity for
small x0 . Under the conditions of the experiment, x0

varied from 1.5 (a fiber 0.1 mm in diameter in glycerin
at 14°C) to 30. The minimum value of F for x0 = 1.5
was 0.9. It is easy to show that, for this value of F, for-
mula (15) leads to a relative error of ~20% in the mea-
sured viscosity. The inaccuracy in formula (15) can be
ignored if the error in measuring the viscosity does not
exceed 5%. Based on Fig. 4, we can show that this con-
dition is fulfilled for x0 > 4. Note also that, with allow-

∆c2

∆c1
--------

ωρ
η

-------

30 50

4.8

5.0

4.9

4.7

10 90 110

Ò, km/s

í, °C

4.6
70 130

1
23

4
5

6

Fig. 2. Ultrasound velocity c as a function of temperature T.
The nichrome-wire diameter is (1, 3, 5) 0.15 mm and
(2, 4, 6) 0.10 mm. Tests were performed (1, 2) in air,
(3, 4) in spindle oil, and (5, 6) in glycerin.

0.5 1

1.0

2.0

1.5

0.5

0 1.5 2

ηÒ, Pa s
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Fig. 3. Correlation between the calculated viscosity ηc of a
fluid and the tabular value of viscosity η. Notation is the
same as in Fig. 2.
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ance for (13), the parameter x0 is associated with the
reduction in velocity ∆c by the relation

(16)

According to (16), parameter x0 is inverse to the rel-
ative value of the effect of reduction in velocity ∆c,

x0
0.71ρ

ρ0
--------------

c0

∆c
------.=

4 8

0.4

0.8

0

F

x0

Fig. 4. Ratio F =  as a function of dimensionless param-

eter x0 = R. ∆c2 was determined from formula (13),

and ∆c1 is the result of a computer calculation according to
exact formula (11). ∆c is the reduction in the ultrasound
velocity after immersion of the fiber in a fluid.

∆c2

∆c1
---------

ωρ
η

-------
from where x0 can be directly estimated using the value
of the reduction in the velocity of sound.

Thus, the presence of fluid leads to a decrease in the
velocity of an acoustic wave in a fiber after it has been
immersed in fluid. The problem is reduced to a plane one
if the dimensionless parameter x0, equal approximately
to the ratio between the fiber diameter and the wave-
length of the transverse wave in the fluid, exceeds 4. In
this case, we can use approximate relations (13)–(15) to
determine the effect of the fluid. Otherwise, it is neces-
sary to take into account the fiber curvature using rela-
tionships (10) and (11).
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INTRODUCTION

Problems on evaluating the temperature field for a
radiating body are of great practical importance in stud-
ies of aircraft components. In such problems, a bound-
ary condition is typically represented in the form of a
functional relation (a functional) connecting the heat
flow at an arbitrary point on the wall of the object under
investigation with the temperature field at its other
points. The heat transfer by radiation for such objects
subjected to heating by solar radiation is presently
being investigated. The temperature field of the body
under study is found from its known radiation capacity.
The results of the investigation of the heat-transfer pro-
cess, as applied to regions having the shape of hollow
cylinders, polygons, and cubic boxes, are presented in
[1]. In this new approach, the functional relation in a
boundary condition is assumed to be represented in the
form of three-dimensional harmonics inside the body.
This makes it possible to reduce the heat-conductivity
problem to a system of differential equations in these
harmonics and to linearize this system by an iterative
procedure. However, this approach is hard to imple-
ment for more complicated geometric objects, since a
function allowing for the geometry factor that enters
into the functional relation for the boundary condition
cannot always be constructed. In this paper, we pioneer
the use of the R-function method [2] for finding the
temperature field of a radiating body having an arbi-
trary geometric shape.
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FORMULATION OF THE PROBLEM

We represent the system of heat-conductivity
equations for a heat-radiating body Ω ∈ R3 with a
boundary S, which is placed into an external field, in
the following form:

(1)

(2)

(3)

In (1), c is the specific-heat coefficient, k is the heat-
conductivity coefficient, and (x) is the heat-source
function for the body Ω . Equations (2) and (3) describe
the initial and boundary conditions, respectively. The
function (x) in the interior of the region Ω is repre-
sented by the relation

(4)

where

qi is the incoming heat flow from all external points of
the body surface, qu is the outgoing heat flow, and ql is
the total heat flow which is assumed to be known a pri-
ori. Thus, the surface sources are concentrated inside of
this layer with elementary thickness dn along the
boundary S of the body Ω . The outgoing heat flow qu

for the dissipated radiation in vacuum is written in the
form of the following functional expression:

(5)

Here, F(x) = σε(x)T4(x) is the function describing the
direct radiation from the boundary S (i.e., wall) of the
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body Ω; r(x) is the function describing the wall reflec-
tivity, which is independent of both the wavelength and
the direction of the incident wave; χ(x, x ') is the func-
tion responsible for the geometry of the region; σ is the
radiation (or the Stefan–Boltzmann) constant; and ε(T)
is the degree of the body’s blackness. Equation (5) is an
integral equation with respect to the unknown function
qu(x). The solution to this equation allows us to study the
formulated problem (1)–(3). The methods for solving the
integral equations in form (5) are presented in [3].

ALGORITHM 
FOR SOLVING PROBLEM (1)–(3)

We apply a difference scheme of the following form in
the variable t to the system of equations (1)–(3) (see [3]):

(6)

Here, h is the partition step for the time interval [0, τ];
Ti, Ti – 1 are the magnitudes of the temperature field at the
ith and (i – 1)th time steps, respectively, i = 1, 2, …, p;
and the initial approximation for i = 1 is equal to T0 .
Then, at each ith step of the t-variable variation, we
have p time-independent nonlinear boundary value
problems:

(7)

(8)

Problem (7), (8) is linearized by the iteration
method [4]. Assuming the value Ti = 0 to be the initial
approximation for s = 1, we arrive at elliptic linear
boundary value problems for the (s + 1)th iteration at
each time layer:

(9)

(10)

We represent the solution to problem (9), (10) for
each time layer and for every linearization step using
the R-function method [2]:

(11)

where P0(x), P1(x) are indeterminate components of the
form
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 are approximating functions for
which classical polynomials, polynomials with local
supports, or special functions can be chosen; 
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function describing the boundary 
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 of the region; 
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 is
a differential operator of a special form; and 
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 are
unknown coefficients determined by a numerical method.
Expression (11) exactly satisfies boundary condition (10)
without restrictions of generality for the geometry of
the region, since it provides a unified analytic equation
for the boundary 

 

S

 

. The source functions 

 

q

 

 are deter-
mined by solving an integral equation [5] of the form
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trated; and 

 

dn

 

 = 

 

dS

 

'

 

 is the thickness of the surface layer.
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 be an orthonormal system of functions of a
closed set determined at system surface 

 

S

 

. We also
assume that the source-determining functions from (5)
and (11) can be represented in the form of the series
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The coefficients in relations (13) are determined by
the Fourier method. Unlike [1], we represent the geom-
etry factor 
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 not in series form, but by a unified ana-
lytic expression employing function 

 
ω
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x

 
)

 
 and using the

R-function theory [2]. This allows us to consider the
temperature fields for regions of virtually arbitrary
shape. Substituting the expansion coefficients from (13)
into (5), we have
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of a series:
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Upon rearrangement, we obtain a system of linear
algebraic equations from which unknown values of ql

are found:

(16)

where

and δlM is the Kronecker delta.

NUMERICAL EXAMPLE
We now consider the boundary value problem

(17)

(18)

(19)

Here, S is the boundary of the region Ω consisting of
internal S1 and external S2 surfaces. Infinitely long cyl-

f M α lMql,
l

∑=

α lM δlM ω x( ) rPλPQ, λPQ

P Q,
∑– VPVQ S,d

S

∫= =

c
∂T
∂t
------ K∆T q*+=

+
ω x( )

s
------------ ε1 qu S'd
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∫ ε1 ε2+( )σT4– ,

T x t,( ) T0 x( ), t 0,= =

∂T
∂ν
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S

0.=
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inders with quadratic (Fig. 1) and hexagonal (Fig. 2)
cross sections were considered in the study. In
Eqs. (17)–(19), s is the thickness of the surface layer
containing heat sources, ε1 and ε2 are the radiation
capacities for internal and external boundaries, and the
function  includes heat sources. We introduce the

following dimensionless variables: ξ = , ζ =  are

the dimensionless abscissa and ordinate, respectively;

L is the geometric parameter for the region Ω; θ = 

is the dimensionless temperature (T* is the reference

temperature); ς =  is the dimensionless time (i.e.

time normalized to time t* = );  =  are the

dimensionless heat sources with respect to the refer-

ence source q* = ; ϕu =  is the dimensionless

outgoing heat flow; η1 = ε1  and η2 =

ε2  are, respectively, the coefficients of inter-

nal and external heat exchange through radiation at the

reference temperature T*; and, finally, ε1  and

q*
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Fig. 1. Temperature-field distribution in the section x2 = 0 for a rectangular region.
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T
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Fig. 2. Temperature-field distribution in the section x2 = 0 for a hexagon.

x
L

ε2  are the three-dimensional heat sources corre-

sponding to the outgoing-radiation flow from the inter-
nal and external boundaries of the body, respectively.
In terms of dimensionless variables, system of
Eqs. (17)–(19) takes the form

(20)

(21)

(22)

Let θ(ς, x) = U(x)T(ς). We define the orthonormal sys-
tem of functions Vn as a solution to the problem of

determining the eigenvalues  and eigenfunctions U
for the other problem:

(23)

According to [2], the structure of the solution to
problem (23) is represented by expression (11) in the
form

(24)
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where Φ1 =  and the coefficients Ci are found

from the minimum condition for the functional [6]
which corresponds to boundary value problem (23).
Equation (20) will be written as a nonlinear differential
equation of the first order:

(25)

with the initial condition

(26)

where the coefficients γnh and β contain physical
parameters of the problem and nonlinear relations for
the source functions at the internal and external sides of
the boundary S. While linearizing Eq. (25), we choose
the initial condition as the first approximation. Numer-
ical analysis revealed the number of iterations for prob-
lem (25), (26) to be 10 to 12, depending on the geomet-
ric shape and parameters of the object; the number of
eigenvalues in relation (24) was equal to 6. As the con-
vergence criterion for the solutions to problem (25),
(26), the inequality

(27)

was used, where ε is the given accuracy value. The fol-
lowing physical parameters of the problem were cho-
sen: radiation capacity ε1 = 0.3, 0.6, 0.9; T* = 300 K;
η2 = 70; η1 = 30, 60, 90. Figures 1 and 2 show temper-
ature distributions in cross section x2 = 0 for rectangular

CnVn
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∑

dTn

dt
--------- γnhTh
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∑+ β,=

Tn 0( ) Tn
0( ), t 0,= =

Ti Ti 1–– ε≤
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and hexagonal regions in the case of η2 = 70, η1 = 30,
60, 90 (curves 1, 2, and 3, respectively).

The reliability of the results was confirmed by com-
paring them with those of [1] in the case of a rectangu-
lar region in one of the cross sections. Note that the
coincidence is observed in the central part of the sec-
tion. At its ends, there are oscillations explained, appar-
ently, by the nature of the approximation method (trig-
onometric polynomials) used in the numerical analysis.
The wave character of the temperature-field distribu-
tion at the section ends in Fig. 2 is caused by the pres-
ence of corner points in the hexagonal region.

Thus, in this paper, the application of the R-function
method to the investigation of radiation processes for
complex-shaped bodies is proposed. The examples of
numerical analysis presented show the efficiency of this
new approach.
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The changes in mechanical properties of solids dur-
ing their adsorption interaction with molecules of a
medium (the so-called Rehbinder effect) are observed
practically irrespective of the choice of materials and
the type of mechanical action on them (metals, solids
with covalent, ionic, and molecular bonds, and poly-
mers) [1].

The dispersion of solids depends mainly on two
phenomena proceeding during the fracture of materi-
als: an increase in the area of the interphase surfaces
and distortion of the crystalline structure (especially on
fractured surfaces) caused by plastic deformation under
external loading [2]. In an ideal crystal, stable cracks
cannot form, because microcrack stabilization is pro-
vided by plastic deformation [3]. This type of deforma-
tion is developed in front of the crack tip in a narrow
region whose parameters are determined by the nature
of the solid, the state of its lattice, the conditions of
fracturing, and the character of the interaction between
the solid and the ambient medium [2].

The dispersion of a solid is accompanied by surface
destruction caused by the development of plastic defor-
mations in the region of stress localization on the struc-
tural defects (observed even for such brittle material as
quartz) [2]. As a result, the surfaces of the dispersed
particles are amorphized and a spectrum of the defects
is formed (i.e., violation of the long-range order of the
material caused by irreversible deformation occurs).
This is accompanied by a break of the chemical bonds
and their disordered closure, changes in the valence
angles and coordination numbers of the atoms, transi-
tion of these atoms into nonequilibrium states, fraction-
ation of the coherent-scattering regions (D), and an
increase in microdistortions η and coherent-scattering
misorientation angle, etc., which, in turn, causes changes
in the mechanical properties of the material [4].

Two-hour dispersion of quartz in a planetary mill
with agate-lined drums and agate balls caused the for-
mation of specific surfaces in quartz powders dispersed
in water and in air equal to 28 and 6.6 m2  g–1, respec-
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tively. The microdistortions and dimensions of the
coherent-scattering regions were measured along the
〈101〉  and 〈202〉  crystallographic directions with an
accuracy of ±10%. The Fourier coefficients were com-
puted using modified codes. The methods of powder
dispersion and determination of the parameters of the
substructures in various minerals are described in detail
in [5–7].

The adsorption-active media used in the dispersion
of solids change the mechanical properties of these sol-
ids [6, 8]. The thickness of the amorphized layer of
quartz particles dispersed in ambient air exceeds (by an
order of magnitude and even more) the thickness of the
amorphized layer formed by quartz dispersion in an
adsorption-active medium [4–9]. Indeed, as is seen
from Fig. 1, the amorphized-layer of quartz particles
dispersed in a 5%-hydrofluoric-acid solution is dissolved
and attains a plateau level with the parameters of the ini-
tial-material substructure (D = 220 nm, η = 4.5 × 10–6)
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0 5 10 15 20 t, min
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ln ηD, nm

Fig. 1. Kinetics of the parameters of (1, 2) coherent-scatter-
ing region D and (3, 4) microdistortions η during dissolu-
tion of quartz dispersed (1, 3) in air and (2, 4) in water.
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within a shorter period of time (curves 2, 4) than air-dis-
persed quartz (curves 1, 3). This indicates that plastic
deformation under quartz dispersion occurs mainly
during material fracture in the surface layers on the
sites of highest stress concentration (crack tips), whose
values, according to the theory of elasticity, rapidly
decrease in the region of shear localization. Dissolution
of the amorphized layer reveals that the particles have
crystalline cores. A decrease in the thickness of the
amorphized layer of water-dispersed particles was also
observed for other minerals [2]. This is consistent with
the fact that the thickness of the amorphized layer of
water-dispersed quartz is constant and equals h ≈ 2 nm
within a wide dispersion range, whereas in air-dis-
persed quartz, this thickness attains a value of h ≈
15 nm and even higher values [9].

The size-dependent dispersion hardening, i.e., the
increase in specific energy necessary for fracture with a
decrease of the linear dimension d of the particles (eval-
uated from the formation of a plateau on dispersion-
kinetics curves), was considered in detail in [9]. It was
indicated there that explaining size-dependent disper-
sion hardening in terms of the lower probability of find-
ing a “dangerous” crack in a particle with a decrease in
its dimension is not quite adequate. Indeed, during dis-
persion, each particle is repeatedly subjected to almost
critical stresses, giving rise to the formation and devel-
opment of new defects which make considerable
change in the density of these defects unlikely. Thus,
the mechanism of size-dependent dispersion hardening
remains unclear. Well-known experimental data on the
strength of glass balls of various diameters were repre-
sented in the coordinates of a theoretically derived
equation for particle strength P. It was shown that ball
strength increased with a decrease in particle diameter
and approached a constant value at a diameter equal to
~40 µm [9] (Fig. 2, curve 1). However, numerous pub-
lications show that material strength can also increase
with a decrease in specimen diameter in considerably
smaller dimensions (several microns) [10]. This makes
it necessary to analyze the mechanism of size-depen-
dent dispersion hardening and the effect of adsorption-
active medium on this mechanism with due regard for
the recent data on the nature of fracture in solids [2].

Modern concepts on the changes in defect structure of
solids due to plastic deformation indicate that the evolu-
tion of defects with an increase in their density is accom-
panied by specific collective effects, such that it becomes
possible to establish the coherent relation between the
components of the defect spectrum and the formation of
the structural elements of a higher level [11]. Thus, upon
attainment of the critical density of dislocations, they
form small-angle walls, which, in turn, decrease the
energy of the dislocation structure. Dislocation walls
provide fractionation of the initial coherent-scattering
regions, with the D value corresponding to the spacing
between the dislocation walls [12].
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Plastic deformation occurring at the tip of a propa-
gating crack provides material hardening along the
crack sides because of a higher dislocation density in
the region of plastic-shear localization. We believe that
this process leads to an increase in particle strength [4].
Dislocation pileups in the glide plane can be considered
as a large effective dislocation with Burgers vector nb
(where n is the number of dislocations in the region of
shear decelerated by an obstacle and b is the unit Burg-
ers vector). Then, the total elastic stress field becomes
n-fold more intense than the field formed of a single
dislocation. Therefore, the dislocation pileup is charac-
terized by large crystal regions (with high stress con-
centrations) in which microcracks can become open [8],
whereas the considerable stresses around dislocation
pileups determine the character of strain hardening,
because they strongly affect the dislocation motion in
the neighboring glide planes [13]. Material hardening
with an increase in plastic strain caused by a higher dis-
location density is described by the equation of shear

stress τ =  [14], where G is the shear modulus and

a is the interatomic distance along the shear direction.
According to this equation, τ is inversely proportional
to the linear dimension of the coherent-scattering
region.

The effect of an adsorption-active medium on shear
in a solid can be estimated from the following consid-
eration. Dislocation nucleation results in relaxation of
the elastic energy in the region of shear localization.
The shear equal to the magnitude of the Burgers vector
b proceeds along the circumference 2πr of radius r,

which, in turn, gives rise to elastic strain  and stress

, which can be evaluated from the Hooke’s law
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Fig. 2. Increase in the strength (1) of glass balls (according
to [9]) and quartz particles dispersed (2) in air and (3) in
water with a decrease in their diameter in the coordinates of
Eq. (4).
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valid for small shear deformations . For a three-

dimensional problem, the dislocation energy at the
average stress value is determined as

(1)

where l is the dislocation length, R is the radius of the
outer boundary of the ring (R ≈ 104b is the average
spacing between dislocations), and r ≈ b (determined
by the applicability limit of the elasticity theory).

Nucleation of dislocations is associated with forma-
tion of a cavity with surface energy σ. It is assumed that
a dislocation has a cylindrical shape. The energy of the
cavity formation equals 2πrlσ, whereas the energy of
stress relaxation during the cavity formation is deter-
mined by Eq. (1). Therefore, the total change in energy
during crack nucleation equals

and is minimal at the equilibrium dislocation cavity

 = 0 and 2πlσ –  = 0, whence the equilib-

rium radius is

(2)

A Franck–Read source starts generating disloca-
tions under the effect of an applied stress at the moment

when shear stress satisfies the condition τ = , where

l is the length of an element which is a source of dislo-
cations [13]. Substituting into this formula the value of
b from (2), we see that the shear stress is proportional
to σ1/2 (τ ∼  σ1/2). In other words, in an adsorption-active
medium, dislocations are generated under lower
stresses than in inert media. At the same time, the plas-
tic deformation proceeds more intensely because of the
reduced level of stresses necessary for attaining the
critical dislocation concentration (n = 102–103 [8]) in
the region of the damped shear.

Considering the criterion of microcrack nucleation
during quartz amorphization, we managed to derive
formulas relating the critical crack dimension lc and the

shear stress [9]: lc =  and τ2 =  (where λ is

the region of incomplete-shear localization and f is the
numerical coefficient on the order of 1.5).

According to [8], the size of the shear-localization
region is maximal if it spreads over the entire cross sec-
tion of a single crystal (or all the grains of a polycrys-
tal); i.e., λmax = L, where L is the diameter of a single
crystal or a grain. This conclusion is consistent with
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experimental data. In our case, we can assume that λmax
is equal to D, i.e., to the size of the coherent-scattering
region (a fragment of the particle substructure). Then,

τ2 = , which is similar to the above relationship

for τ from [14], and

(3)

Proceeding from the Griffith criterion for strength of a

solid with a nucleated crack, P =  (where the

coefficient α is close to unity and E is Young’s modu-
lus) [15], and formula (3) (obtained for the length lc of
the nucleated crack) and assuming that P ≈ τ and E ≈ G,

we obtain Pτ = . Thus, the strength of small par-

ticles is determined as P = κ  (where κ =  is

close to unity and ϕ is the coefficient taking into
account the slope of the plane of maximum stresses to
the direction of the applied force [9]). With due regard
for the formula describing the strength P0 of bulky par-
ticles, we obtain a relationship taking into account the
effect of particle size on particle strength (via the
parameter D) and the surface energy:

(4)

Strictly speaking, the Griffith criterion is applicable
only to materials with perfect brittleness, but, as a
microcrack is nucleated in the region of incomplete
shear, this criterion should also be applicable to materi-
als which undergo plastic shear prior to fracture [8].

The above estimate by Eq. (4) for strength of dis-
persed quartz particles, which is based on the analysis
of saturation attained by the experimental kinetic
curves D(t) for an average-size particle, is shown in
Fig. 2 (curves 2, 3). This estimate shows that hardening
also occurs for particles with linear dimensions of
0.65 µm (dispersion in air, curve 2) and 0.15 µm (dis-
persion in water, curve 3), which is consistent with the
kinetics of quartz dispersion and shows that particle
hardening becomes noticeable when the kinetic curve
attains its plateau at diameter d ≈ 2 µm (dispersion in
water) and d ≈ 6 µm (dispersion in air). The above
mechanism of size-dependent hardening allows us to
estimate the parameter of the most hardened particles
from the experimental data for the hardened amor-
phized layer d = 2h (where h is the thickness of the
amorphized layer) [9], which is equal to da ≈ 30–40 nm
for dispersion in air and dw ≈ 4 nm for dispersion in
water.
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According to (4), reduction of the surface energy σ
of a solid in an adsorption-active medium decelerates
the process of dispersion hardening, because the thick-
ness of the amorphized layer of the particles is less than
the reduction of the surface energy during dispersion in
air. It is seen from Fig. 2 that both absolute hardening
and the rate of its increase for water-dispersed quartz
particles are lower than the corresponding values for
air-dispersed quartz particles, which is seen from the
kinetics of the material dispersion. Dispersion in an
adsorption-active medium is more efficient than in air.

Thus, size-dependent dispersion hardening is
caused by hardening of the surface layer of particles
due to plastic deformation of the material at the tip of a
propagating crack, which plays the role of a strong
stress concentrator. Upon attainment of the linear parti-
cle dimension d @ h during dispersion of solids, the
crack starts propagating mainly in the unhardened
region of the particle (i.e., in its crystalline core). If d
becomes comparable to h, the contribution of the hard-
ened layer to the mechanical properties of the particles
becomes noticeable and the specific energy necessary
for change of the mechanical properties increases. In
the limiting case d = 2h, particle strength becomes
maximal. The degree of particle hardness can be esti-
mated from parameter D, which describes the dimen-
sions of the coherent-scattering region. The thicknesses
of the amorphized layer of the particles during material
dispersion in air, ha, and in an adsorption-active
medium, hm, are different (usually, ha @ hm), and the
maximum dimensions of most hardened particles are
also different, da @ dm.

The above mechanism of size-dependent dispersion
hardening is consistent with the concepts of possible
material hardening by two different methods: by
designing defect-free materials and by plastic deforma-
tion of materials. Bulky materials used in technology
are hardened mainly using the second method.
DOKLADY PHYSICS      Vol. 46      No. 1      2001
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A critical point (CP) corresponds to singularities in
properties of a substance and, therefore, to values spec-
ifying similarity criteria for heat and mass transfer,
which substantially affects the character and intensity
of heat and mass exchange in a critical region. The most
general approach to studying the critical state was
developed by J. Gibbs [1], who formulated basic equa-
tions for a CP. Unfortunately, these equations turned
out to be little-known, so that this paper is likely to be
one of the first attempts to describe the critical state
and, in particular, the special features of the processes
of heat and mass transfer in this state on the basis of
Gibbs equations.

In the case of a simple single-component substance,
for example, a pure liquid or gas, the Gibbs equations
for a CP are of the form

(1)

Here, E(S, V) is the internal energy, S is entropy, and
V is volume; the subscripts denote corresponding par-
tial derivatives.

The first equation of set (1) determines a spinodal
for each of the phases (i.e., according to Gibbs, the sta-

bility boundary at which  = 0); the second equa-

tion relates directly to a CP. Following L. Landau
(see [2], Sect. 152), we consider the quadratic form
ESSδS2 + 2ESVδSδV + EVVδV 2 (this form is also the sec-
ond variation δ2E) at the CP. According to the Landau
assumption, δ2E = 0 at the CP, which is valid because it
follows directly from Eqs. (1). Indeed, upon differenti-
ating the first equation and opening the second one, we
obtain
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DV DS
dS
dV
-------+ 0, DV ESS DSESV– 0.= =
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From here, it follows that  = –  with  =

−  = –  and, correspondingly, δS =

− δV. Substituting this into δ2E, we find that at

the CP,

δ2E = 0. (2)

At all other points, δ2E ≠ 0 and, as can be seen from the
well-known equilibrium stability condition,

(3)

Here, δ2E is positive [the higher-order terms in (3) can
be denoted as δ3E/3!, δ4E/4!, etc.].

The CP parameters (pcr, Tcr, Vcr) are determined
unambiguously by the two equations in (1) and the
equation of state; i.e., the CP is unique. Only at this
point, δ2E = 0, while the magnitude of the derivative

 at the spinodal is equal to  =  at the CP,

i.e., coincides with the value of  at the phase-equi-

librium line. This implies that the spinodals of both
phases and the line of equilibrium have a common tan-
gent at this point, while the equation of the spinodal is
similar, in particular, to the equation for V – Vcr at the
phase-equilibrium line.

It is important to establish the character of Eq. (2),
i.e., to clarify whether this equation is a simple equality
or an identity. According to the quadratic-form theory,
a nonnegative quadratic form of two variables is char-
acterized by a single zero eigenvalue of the square
matrix composed of quadratic-form elements. The
eigenvalues are calculated according to the characteris-
tic equation, which has the following form with allow-
ance for the first equation of set (1):

.

(Here, ESS, ESV, and EVV are reduced to the dimension-

dS
dV
-------

ESV

ESS

--------
ESV

ESS

--------

∂p
∂T
------ 

 
S

∂p
∂T
------ 

 
V

ESV

ESS

--------

1
2
--- ESSδS2 2ESVδSδV EVVδV2 ]+ +[

+ higher-order  terms 0. >

dS
dV
------- ∂p

∂T
------ 

 
V

dp
dT
------

dS
dV
-------

λ2 λ ESS EVV+( )– 0=
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less form). The solution to this equation is

λ1 = 0, λ2 = ΕSS + EVV .

The equality λ1 = 0 implies that one of the eigenval-
ues is zero at the spinodal of each phase. The quadratic
form is zero in such a state, when, in addition to the first
eigenvalue, the second one is also zero, i.e., when λ1 = 0
and λ2 = 0. However, if all the eigenvalues (in this case
two of them) are zero, the quadratic form vanishes
identically (this is also seen from the equality λ2 = 0;
i.e., ESS + EVV = 0, which is zero only for ESS = 0 and
EVV = 0 due to the positiveness of ESS and EVV). It fol-
lows from this fact that the equality δ2E = 0 is identi-
cally fulfilled at the CP (which, as was already noted, is
unique); i.e., δ2E ≡ 0. Thus, at the critical point, all the
eigenvalues and all the coefficients in the quadratic
form vanish; i.e., it degenerates. However, in this case
according to (3), it must also be that δ3E = 0 and
δ4E > 0 for the stability of the critical state:

δ2Ε ≡ 0, δ3Ε = 0, δ4Ε > 0. (4)

These are the most general characteristic conditions
determining the CP. From the equalities ESS = 0 and

EVV = 0 at the CP (where ESS = , and  = a is the

sound velocity), it follows

CV  ∞, a = 0. (5)

Fundamental results (4) and (5) are the direct conse-
quence of Gibbs equations (1) and are entirely corrob-
orated by recent precise experiments.

Furthermore, it follows from (4) that T =  and

p = –  are expressed either by the term Tcr or pcr and

by the sum of products (V – Vcr) and (S – Scr) of the third
degree and higher. Owing to this, at the phase-equilib-
rium line, where S can be considered as a function hav-

ing the form S = Scr +  (V – Vcr) in the vicinity of

the CP, we can write out

At the CP, the derivative is  = ; therefore,

 = 0. Since  ~ (V – Vcr)2 ,  cannot

be a degree of V – Vcr lower than three, but for retaining

the sign “minus” everywhere,  must be

expressed by an even degree of V – Vcr . Consequently,
at the critical isobar, the CP corresponds to the deriva-

CV

T
------ vEVV

1/2

∂E
∂S
------

∂E
∂V
-------

∂S
∂V cr
----------

Tcr T  ~ V Vcr–( )3– ; pcr p ~ V Vcr–( )3.–

dp
dT
------ ∂p

∂T
------ 

 
V

∂p/∂V( )T

dT /dV
----------------------- dT

dV
------- ∂p

∂V
------- 

 
T

∂p
∂V
------- 

 
T
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tive  ~ (V – Vcr)4 with Tcr – T ~ (V – Vcr)3 . Using

these values, it is possible to determine the heat capac-
ity Cp . According to the thermodynamic relation,

 = –T . We multiply both sides by

 equal to (Tcr – T)4/3, as was shown above. In this

case, the left-hand side is ; the right-hand side

is proportional to (Tcr – T)1/3 with allowance for

 ~ (Tcr – T)1/3 – 2 and  ~ (Tcr – T)4/3. Thus,

 ~ (Tcr – T)–1/3 ~ ; i.e., Cp = aln(V –

Vcr) + f(T). Replacing V – Vcr by (Tcr – T)1/3, we find that
the singular component Cp varies in the critical isobar
as

(6)

It is easy to verify that the difference Cp – CV equal

to –T  has no singularity, so that the sin-

gular component of heat capacity CV varies according
to the same law as Cp (for this reason, the subscript “p”
for C in (6) is omitted), the values of the singular parts
of Cp and CV being identical at the CP. In a similar man-
ner, CV varies in the isochore [because the sum of CV of
each phase in the equilibrium line V(T) leads, with an
accuracy to a finite-jump, to the doubled value of CV in
the two-phase region for the line V = Vcr].

With the known expression for CV, it is easy to
determine the velocity of sound; at the critical isobar, it
equals

(7)

We now consider how δ2E changes when passing
from the spinodal to the nearby state. Let this passage
occur along the isobar; then, δS = Sp – Ss , δV = Vp – Vs

and the quantity ESS at the point under consideration

attains  + (Vp – Vs) + (Sp – Ss).

In the same way, we express ESV and EVV (furthermore,
the subscript “p” is omitted). After obvious transforma-

tions (with allowance for the equalities ESSEVV –  = 0

and  = –  at the spinodal), substituting these

values in δ2E and ignoring the higher-order terms, we
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∂p
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T
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------- 

 
T
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C Tcr T– .ln∼

∂V
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T

a Tcr T–ln[ ]–1/2∼ .
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s( ) ∂ESS

∂V
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s( ) ∂ESS

∂S
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s( )
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2

ESV

ESS

-------- ∂p
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obtain ESS  – δV2. According to the

thermodynamic relation, we have  = . On

the other hand,  =  + (T – Ts).

Since  =  +  and the differ-

ence  –  is small compared to the other

term in square brackets, the difference is equal to
CV∆T/T∆V. Correspondingly, the variation δ2E amounts

to  (T – Ts)2. In the case of passing along the criti-

cal isobar, the variation δ2E is equal to (T – Tcr)2.

As is well known, the quantity δ2E determines the

minimum work, Lmin = ∆E – T0∆S + p0∆V. Accordingly,
the variation ∆Φ of the Gibbs energy is expressed in the
same manner as the variation δ2E; i.e., for the isobaric
variation of the state near the spinodal, we have for the
specific minimal work

(8)

This thermodynamic relation makes it possible to esti-
mate the temperature dependence for each term com-
posing Φ.

The state near the spinodals of each phase and, espe-
cially, near the critical point is characterized by the
presence of new-phase nuclei in the initial phase. A
nucleus of critical size (with a radius rcrit) is in the state
of unstable equilibrium with respect to the original
phase: the minimum work for the formation of such a

nucleus satisfies the equation lmin – σ · 4π  = ,

where σ is the surface tension. According to the above
proportionality of lmin and ∆Φ to the temperature differ-
ence T – Ts squared, we conclude that the right-hand
side can be reduced to the form (T – Ts)ϑ(T – Ts)ν ~ (T –
Ts)2, where ϑ and ν are the so-called critical super-
scripts in the expressions σ ~ (T – Ts)ϑ and rcrit ~ (T –
Ts)−ν. In the left-hand side of the original equation, the

value σ × 4π  ~ (T – Ts)ϑ(T – Ts)–2ν represents the
contribution to the constant or regular part of the Gibbs
energy and is independent of the difference T – Ts. Near
the CP, the temperatures Tcr and Ts virtually coincide, so
that from the obtained relationships 

(T − Tcr)ϑ(T – Tcr)ν ~ (T – Tcr)2 
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2

CVT
----------

CV

T
------ 

 

1
2
---

∆lmin ~ T Ts–( )2.

rcrit
2 2σ

rcrit
-------

rcrit
2

and (T – Tcr)ϑ(T – Tcr)–2ν ~ (T – Tcr)0, 

we find ϑ =  and ν = . As T  Tcr, the value

rcrit  ∞, which testifies to the scaling invariance for
states of a substance in the neighborhood of the CP.

By virtue of the unstable equilibrium, a critical-size
nucleus can be considered as a periodically arising den-
sity pulsation of the initial phase. It is clear that the

wave number k =  is associated with the critical-

nucleus radius and that the fundamental wavelength Λ

is such that k = . From this condition, it follows

that the fundamental frequency ω ~  (i.e., the “soft

mode”) is proportional to ; i.e., ω ~ (Tcr – T)ν. In the

vicinity of the CP, the quantity  can serve as a mea-

sure of time. On the other hand, the only quantity hav-
ing a dimension of length is the critical-nucleus size
rcrit. Based on this fact, we can establish an expression
for the thermal diffusivity and viscosity in the vicinity

of the CP. Substituting the expressions  ~ (Tcr – T)–ν

instead of time t into the general heat-conductivity

equation  = κ∆T and rcrit ~ (Tcr – T)–ν instead of the

coordinate xi , we obtain (Tcr – T)ν ~ ; i.e., κ

~ (Tcr – T)–ν, where ν = . Thus, the thermal diffusivity

increases at the CP to infinity. The same statement is
also true for the heat conductivity; with allowance
for (6),

(9)

The viscous dissipation is determined by the
equation

where  is referred to the entire liquid, Φ = ,

and w is the velocity. Bearing in mind that  =

∆ dV, we find similarly to the previous case that

(Tcr – T)2(Tcr – T)ν ~ ; i.e., η ~ (Tcr – T)4/3.

4
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Hence, it follows that the shear viscosity has no singu-
lar component.

We now estimate the diffusivity D at the CP. As is

known, D =  (α is the finite kinetic coefficient, µ

is the chemical potential, Ò is the concentration, and ρ
is the density). In the critical state of a binary mixture

(a solution),  = 0 and, therefore, D = 0.

The state of a substance near the CP is sometimes
considered to be a gas of liquid droplets. Such a repre-
sentation is not correct: if it were valid, the heat con-
ductivity and viscosity would be proportional to one
another, as this takes place in a low-density gas. In fact,
λ and η vary near the CP according to quite different
laws; λ tends to infinity, while η remains finite.

Substituting the found values of Cp, a, λ, and η into
the expressions corresponding to the criteria expressed
via the Reynolds, Prandtl, Grashof, and Mach numbers,
we conclude that, in the CP region, the Reynolds num-
ber Re conserves a finite value, whereas the Prandtl
number Pr tends to zero and the Grashof and Mach
numbers Gr and M become infinite:

αρ∂µ
∂c
------

∂µ
∂c
------
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(10)

Thus, the heat exchange in the fluid flow near a crit-
ical point is characterized by a Prandtl number tending
to zero. This implies that the thickness of the thermal
boundary layer δT is substantially larger than that of the
hydrodynamic boundary layer δ:

The free convection at a temperature T of a fluid
close to Tcr and to that of a solid, which is much lower
than T, is characterized by a higher value of the Grashof
number and, therefore, is turbulent; in this case, the
convection in itself is unstable.
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We investigated the local processes proceeding in
the case of changing the boiling regime on a heated
cylindrical rod with a hemispherical end immersed in
water (T = 285 K) at a depth equal to the radius of the
hemisphere. The rod was heated in ambient air up to
temperature T ≤ 1000 K.

Vapor-film escape was observed visually using a
microscope and two video cameras installed below and
aside from the hemisphere immersed in the liquid. The
pressure arising in the liquid and the vapor-film thick-
ness were measured using fiber-optical sensors [1]. In
our experiments, we used metallic rods made of steel,
pure copper, and copper covered by PSr62 silver solder.

After immersing the hemisphere in a liquid, free-
convection flow formed near the heated surface. Then,
wave formations appeared on the vapor–fluid interface.
The amplitude and characteristic length of the surface
waves were on the order of magnitude of a vapor-film
thickness.

The process of vapor-film escape and passing to
bubble boiling proceeded following two different sce-
narios. According to one of them, the wave pertur-
bances having the form of isolated solitons or wave
trains were enhanced with time and enveloped the
entire hemisphere immersed in the water. Afterwards, a
vapor-film explosion occurred and the nucleate-boiling
regime was established. In a number of cases, the
explosive boiling of the film was accompanied by the
formation of a jet flow directed from the lower end of
the hemisphere into the fluid. The explosive escape of
the vapor film accompanied by the formation of the jet

* Moscow Power Institute, 
ul. Krasnokazarmennaya 17, Moscow, 
111250 Russia

** Joint Institute for High Temperatures, 
Russian Academy of Sciences,
ul. Izhorskaya 13/19, Moscow, 127412 Russia

*** Élektrogorsk Research Center, 
Élektrogorsk, Moscow oblast, Russia
1028-3358/01/4601- $21.00 © 20034
flow can be repeated (up to 30 times) in intervals of 0.3
to 1 s. In the other regime, the wave perturbances, once
arisen, attenuated gradually and passed relatively
smoothly to the nucleate-boiling regime. Smooth pas-
sage to nucleate boiling was observed only at the first
immersion in water for a new hemisphere or for that
freshly cleaned from oxides. In repeated experiments
with surfaces having the oxide film, the vapor escaped
explosively. In Figs. 1–3, we show photographs of a
vapor film before explosion and with various types of
its escape. The experiments were carried out under nor-
mal pressure, and the temperatures of the cooling water
and heated surface were 293 and 795 K, respectively.
The characteristic values of the vapor–fluid jet velocity
(Fig. 3) attained 0.3 m/s.

Vibrations of the vapor-film surface were detected
both at the second boiling crisis with quiet vapor-film
escape and with vapor explosion. The characteristic
longitudinal dimension of the wave structures attained

1

2

Fig. 1. Heated hemisphere immersed in water. The photo-
graph corresponds to the last exposure of the film-boiling
regime: (1) hemispherical solid surface with the vapor film
and (2) water.
001 MAIK “Nauka/Interperiodica”
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a value on the order of the vapor-film thickness (about
200 µm); i.e., they can be assigned to capillary waves.
We can assume that the waves are maintained by the
recoil pressure exerted by the vapor evaporated from
their surface. In this case, it is necessary for the build-
up of vibrations that the recoil-pressure growth be
delayed with respect to the wave-amplitude growth.

This phenomenon can be explained in at least two
ways. First, in the case of boiling with strong liquid
underheating, a significant fraction of the growing heat
flow at the stage of the wave-crest’s approaching the
surface is spent not for evaporation, but is transferred
into the bulk of the liquid by the thermal-conduction
mechanism. At the same time, at the stage of removing
it from the surface, the near-surface layer is already
heated and the arriving heat is spent only to evapora-
tion. As a result, the recoil momentum at the stage of
the wave’s approaching the surface is lower than at the
stage of removing; i.e., the wave is enhanced. The esti-
mates show that this effect is relatively weak for capil-
lary waves strongly attenuating owing to viscosity. This
fact does not exclude the efficient character of this pro-
cess for isolated solitons running along the vapor-film
surface, since their damping decrement is much lower.

Second, we can assume that, for strongly nonequi-
librium processes (in the experiments, the temperature
gradient is higher than 107 K/m), overheating of the
fluid manifests itself at the free surface. It is known that
in flow problems, the free surface behaves as a solid
wall; i.e., the evaporation from this surface can be ham-
pered. Furthermore, for strongly nonequilibrium pro-
cesses, the phonon-distribution function is substan-
tially asymmetric in the fluid, which can also affect the
evaporation probability from the surface. This fact is
likely also confirmed by experiments involving over-
heated water with a free surface, for which tempera-
tures T* = 563 K were attained under normal condi-
tions, provided that the characteristic heating time did
not exceed a critical value τcr. According to the experi-
ments performed [2], for water, τcr = 50 µs; for other
fluids, τcr is considerably higher and attains about 1 ms.

Within the framework of this hypothesis, we can
formulate the following statement. When the amplitude
of capillary waves increases to the extent that the fluid
temperature at the wave crest attains the temperature of
the maximum accessible overheating for this fluid,
boiling occurs almost instantaneously. If the recoil
momentum attained at the boiling is sufficiently high, it
initiates a large-amplitude wave that, in turn, boils
explosively, etc.

In order to estimate the recoil momentum experi-
enced by the large-amplitude capillary wave during
explosive boiling over a highly heat-conducting sur-
face, we assume that the wave amplitude grows linearly
with time t, having the characteristic rate uf /2; i.e., A =
uf t/2, where uf = (σ/ρlδ0)1/2 is the velocity of a capillary
wave with wavelength l = 2δ0π, δ0 is the thickness of
DOKLADY PHYSICS      Vol. 46      No. 1      2001
the unperturbed vapor film, σ is the surface-tension
coefficient, and ρl is the density of the liquid. In this
case, the conductive heat flow q(t) to the wave surface,
which is spent for overheating the fluid, increases

according to the law q(t) = , τ0 = , q0 =

, where 〈Ts〉  is the mean temperature of

the fluid surface in the process of heating and λs is the
thermal conductivity of the fluid. The temperature dis-
tribution in the fluid at the moment τ*, when the fluid
temperature on the wave surface attains the ultimate
possible temperature of overheating and explosive boil-

q0 t/τ0( )
1 t/τ0–
-----------------

2δ0

uf
--------

λ s Tw T s〈 〉–( )
δ0

---------------------------------

1

Fig. 2. Onset of the explosive vapor-film escape from the
copper hemispherical surface freshly cleaned from oxides in
the absence of generation of jet flows: (1) vapor and
(2) water.

1

2
3

Fig. 3. Explosive escape of the vapor film from the hemi-
spherical oxidized-copper surface, which is accompanied
by the formation of a vapor-fluid jet: (1) vapor, (2) water,
and (3) vapor–water jet.
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ing begins, can be obtained in the one-dimensional
approximation using the Green’s functions. For the
temperature on the surface, we have

(1)

where ε =  and al and Cl are the thermal diffusivity

and the heat capacity of the liquid. For the total heat
transferred per unit area of the fluid surface, the integra-
tion yields

(2)

For the heat-flow density on the order of q0 = 105–
107 W/m2, we have ε  1, and the fluid is overheated
only in the immediate vicinity of the surface. In this
case, expression (1) acquires the asymptotic form

(3)

For q0 = 105 W/m2, δ0 = 200 µm, and uf = 0.5 m/s,
the minimum value δmin of approaching the heating sur-
face by the fluid amounts to hundredths of a micron,
even though the surface temperature Tw ≈ 770 K corre-
sponding to the parameters indicated above is much
higher than the temperature T* of the ultimate over-
heating of the fluid. This immediate approach of the
fluid to the heated surface is experimentally indistin-
guishable from a contact. The momentum Π transferred
to a unit area of the surface in the case of explosive boil-

ing of an overheated layer is on the order of Π ~ ,

where cs is the velocity of sound in vapor and r is the
evaporation heat. The condition for recoiling the fluid
contained in the wave crest after the explosion with a
momentum sufficient for generating a high-amplitude
wave can be approximately written out in the form

(4)

Condition (4) for water at atmospheric pressure is
fulfilled within the range q0 = 2 × 105 W/m2 to q0 = 3 ×

T∗ T s–
2q0τ∗

ρlCl πalτ∗
----------------------------=

× 1

1 ε–( )ε
----------------------- ε

1 ε–
----------- 

  1–arctan 
  ,

τ∗
τ0
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Q q0τ0 1 ε–( ) ε–ln–[ ] .=

T∗ T s–
πq0τ0

ρlCl alτ0

------------------------ 1

1 ε–
--------------- 

  .=

Qcs

4r
---------

Π ρlufδ0≥ Π
ρlδ0uf
---------------=

=  
csCl alτ0

3/2 T∗ T s–( )

8 πδ0
2
r

------------------------------------------------ 1 ε–
1

1 ε–
----------- 

  ε–ln 1.≥
106 W/m2. Thus, no strong recoiling of the fluid from a
wall which is capable of generating other interphase
contacts arises either at exceptionally high or low tem-
perature differences. With increasing saturation pres-
sure, the difference T* – Ts decreases, tending to zero
at the critical point. For T* – Ts < 50 K (Ps ~ 70 bar),
the strong-recoiling condition holds, without doubt, for
none of the heat flows.

The density q of the heat flow from the surface in the
case of a shock distortion of the film shape is q ≈
(3−4)q0 . As estimates show, the dynamic action per
unit area of the heater surface attains only few tens of
pascals. However, its inhomogeneous distribution over
the heated surface can lead to its fragmentation [3] if
this surface is liquid-metallic. As follows from evident
geometric considerations, the expansion rate for the
region with an inhomogeneous film relief amounts to

uf , which agrees with experimental data.

The cyclic character of initiation of interphase con-
tacts in the case of film boiling with a frequency of con-
tacts of about 1 kHz was experimentally discovered in
water [4]. We may assume that synchronization of the
explosive boiling of capillary-wave crests occurs at a
wavy surface. As a result, an acoustic signal outgoing
from the generation region represents not shot noise but

pulse packets following with a frequency of ν ≈  ≈

 ~ 1.25 kHz. This phenomenon was actually

observed in experiment [4] and is indirect evidence that
the explosive-boiling process is coherent.
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We studied the stability of symmetric (i.e., indepen-
dent of one of the coordinates) steady motion, axisym-
metric and geostrophic. This motion is of considerable
interest because it qualitatively describes the basic
structures of atmospheric motion, such as zonal flows,
vortices, and states of geostrophic balance. Since the
first publication by Fjortoft [1], this problem has been
studied (see, for example, [2–4]) with the aim to gener-
alize its formulation and extend the range of possible
application. It is worth noting that almost all studies
were made in the approximation of incompressibility,
which limits the use of the results to small- or moder-
ate-scale atmospheric processes. Our study was under-
taken to overcome the shortcomings of this approxima-
tion and to formulate the criteria of symmetric stability
of compressible media described by an arbitrary equa-
tion of state. We consider here the general case of
axisymmetric motion, including zonal flows, on the
basis of the direct Lyapunov method (a variational
approach).

1. We now write out a set of equations for the adia-
batic axisymmetric motion of an ideal fluid in a system
of cylindrical coordinates (r, z, ϕ) rotating about the
z-axis with angular velocity Ω:

(1)

Here u, w, and vϕ are the radial, vertical, and circular
velocity components, respectively; M = rvϕ + Ωr2 is the
absolute angular momentum; p and ρ are the pressure
and density, respectively; ϕgr is the gravitational poten-
tial; σ is the specific entropy (per unit mass); and
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The last equation of set (1) is used instead of the
conventional continuity equation and can be obtained
from it with due regard for the given equation of state
ρ = ρ(p, σ) and the adiabaticity condition. The density
is determined from the equation of state. The motion is
considered in a certain finite region bounded by sur-
faces of revolution (coaxial with the z-axis) where the
normal velocity component vanishes.

The state of the system is defined by the set of vari-
ables (u, w, M, p, σ). The variables corresponding to the
steady state are marked with bars. It is also assumed

that the Jacobian  has a nonzero value. Set (1)

yields the steady-state equations

(2)

Theorem 1. If the conditions

(3)

are satisfied, the steady-state motion described by
Eq. (2) is stable in the Lyapunov sense for axisymmet-
ric disturbances, with Ωp being an absolute potential
vortex. 

Proof. We write out the Bernoulli function for
steady motion as

(4)

Hereafter, N = M2 and h(p, σ) is the specific enthalpy
(per unit mass) related to the specific internal energy as

h = ε + p. Using the thermodynamic equation dh =

Tdσ + dp (where T is temperature), we can write

Eqs. (2) in the form

(5)
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We now denote by H(σ, N) the function obtained
from H by expressing the coordinates r and z in terms
of N and σ and solving the equations

(6)

Then, using (5), we can show that the function
H(σ, N) satisfies the relationships

(7)

We define the Lyapunov functional by the relation

Integration is performed over the entire flow region.
The functional remains constant for the solutions to
system (1). Indeed, the last term in the integrand is the
density for the Lagrange invariant, whereas the sum of
all the remaining terms is the total-energy density (in
the fixed coordinate system).

We now consider the variations in L in the vicinity
of the steady state. Expanding L(δu, δw,  + δN,  +
δp,  + δσ) into a power series in deviations (δ indi-
cates the deviation of the variable from its steady value)
and using (4) and (7), we find that the first variation
goes to zero.

According to the general theory [5], in this case, a
steady state is stable in the Lyapunov sense in the norm
equivalent to δ2L if the second variation δ2L is positive.

The second variation for a steady state is reduced to
the form

(8)

The sufficient condition for positiveness of δ2L is

(9)

The second derivatives in (9), obtained by differen-
tiating Eq. (7) with due regard for Eq. (6), are
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Then, we transform inequalities (9) to the form

(10)

The first inequality, generalizing the well-known
Rayleigh criterion, shows that on the isentropic sur-
faces, the squared absolute angular momentum is an
increasing function of r. The second inequality depends
on the thermodynamic characteristics of the medium. It
is well known from electrodynamics that

where cp is the specific thermal capacity at constant
pressure and v is the specific volume.

For most materials,  > 0. Limiting our con-

sideration to this case and taking the derivatives with
respect to r and z in (10), with (2) taken into account,
we can show that inequalities (10) can be written in the
following equivalent form:

(11)

In the case of axisymmetric flow, the potential vor-
tex Ωp has the form

(12)

such that, with due regard for equality  = , ine-
qualities (11) are identical to (3).

As an example, we consider the case of a zonal flow.
Strictly speaking, the potential of a rotating planet is
not spherically symmetric; however, with a sufficient
accuracy, it is symmetric with respect to the equatorial
plane; i.e., ϕgr = ϕgr(r, z2). Therefore, the second condi-

tion in (3) requires the product  to be positive in
the northern hemisphere and negative in the southern.
The available data on potential-vortex distribution (see
review [6]) indicate that, on the whole, the second sta-
bility condition in (3) is satisfied. If the quantity 

(or the meridional gradient ) has a nonzero value on
the equator, conditions (3) are violated. However, it is
unclear whether this should lead to instability of the
steady state or not. This problem deserves special
study, but for incompressible fluids [3, 4], this conclu-
sion is quite correct; therefore, we believe that it may be
correct for compressible media as well.

Prior to further consideration, some remarks should
be made. For axisymmetric motion, there exist more
than two Lagrange invariants and, therefore, the poten-
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tial vortex Ωp is a function of M and σ. In [6], the
dependence Ωp(M, σ) is referred to as a functional
invariant because, being determined from the initial M0
and σ0 values, it remains constant. In what follows, the
states with identical functional invariants are called
equivalent states.

2. The principle of the energy minimum. A steady
state for which stability conditions (3) are satisfied has
the energy minimal in the class of equivalent states. For
incompressible fluids, this principle was proved in [4, 7]
and interpreted in [7].

We represent the difference in the energies of a
steady state and a state equivalent to it in the form

(13)

The contributions of the two last terms to the inte-
gral compensate each other. To prove this statement, we
change variables (r, )  (M, σ) and (r, z) 

( , ) and make use of relationship (12), taking into
account that the values of Ωp , being the functions of M
and σ, are equal for the equivalent states.

If the stability conditions are satisfied, the integrand
in (13), being a function of (u, w, N, p, σ), is convex at
each point of the flow domain and, together with its first
derivatives, becomes zero at the point (0, 0, , , ).

This implies that if (u, w, N, p, σ) ≠ (0, 0, , , ), the
integrand is positive, whence follows the above state-
ment.

Of course, this principle is also valid in a rotating
coordinate system, which can be readily proved by tak-
ing into account the law of energy transformation in the
transition to such a coordinate system:

E  E – Ω MdV.

3. We now consider the symmetric stability of a state
of cyclostrophic balance. For symmetric motion in the
f-plane model, the dynamic equations in the Cartesian
system take the form
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where u, v, and w are the velocity components along
the x-, y-, and z-axes, respectively; f is the Coriolis

parameter; and the operator  now has the form  =

 + u  + w . The second equation can be rewritten

in the form of a law of conservation for a geostrophic

momentum m = fx + v:  = 0. The state of the system

is defined by the set of variables (u, w, m, p, σ). We

assume that the Jacobian  has a nonzero value.

The steady state of the geostrophic balance satisfies the
conditions

(15)

Theorem 2. If the conditions

(16)

are satisfied, steady state (15) is stable in the Lyapunov
sense in the class of symmetric perturbances.

The theorem will be proved as in the previous case.
We define a function H by the equality

satisfying the equation

(17)

We now denote by H(σ, m) the function obtained
from H, provided that the coordinates x and z are
expressed in terms of m and σ, by solving the equations
m = (x, z) and σ = (x, z). The desired function sat-
isfies the conditions

(18)

The Lyapunov functional is set as
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The above functional remains constant for the solutions
of system (14). Indeed, the last term in the integrand is
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the density of a Lagrange invariant, whereas the sum of
the remaining terms is the energy density with the sub-

tracted density of the Lagrange invariant ρm2. The

first variation L for a steady state becomes zero,
whereas the second one acquires the form identical
to (8), provided that N is replaced by m. The condition
of δ2L positiveness is similar to (9). The second deriva-
tives entering into this condition are obtained
from (18), which is formally equivalent to (7) upon

substitution of  with –xf. As a result, the positive-

ness condition for δ2L acquires the form

(20)

The first inequality shows that, on isentropes, the
geostrophic momentum is an increasing function of x.

Assuming that  > 0, passing to the independent

variables x and z in (20), and performing certain trans-
formations, we see that (20) is actually equivalent

1
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σ
f
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------------------ 0.>>
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p∂

------ 
 

σ

to (16). In this case, we also made use of the expression
for symmetric motions of a potential vortex:

The principle of the energy minimum for stable
steady states is formulated and proved in an analogous
way. In this case, the role of the functional invariant is
played by a potential vortex expressed in terms of the
Lagrange invariants m and σ.

REFERENCES
1. R. Fjortoft, Geophys. Publ. 17 (6), 1 (1950).
2. B. J. Hoskins, Q. J. R. Meteorol. Soc. 100, 480 (1974).
3. H.-R. Cho, T. G. Shepherd, and V. A. Vladimirov,

J. Atmos. Sci. 50, 822 (1993).
4. P. N. Svirkunov, Prikl. Mat. Mekh. 62, 996 (1998).
5. V. I. Arnol’d, Dokl. Akad. Nauk SSSR 162, 975 (1965).
6. M. V. Kurganskiœ and M. S. Tatarskaya, Izv. Akad. Nauk

SSSR, Fiz. Atmos. Okeana 23, 787 (1958).
7. M. V. Kalashnik and P. N. Svirkunov, Meteorol. Gidrol.,

No. 4, 58 (1998).

Translated by V. Chechin

Ωp
1
ρ
--- m σ,( )∂

x z,( )∂
------------------.=
  

DOKLADY PHYSICS

 

      

 

Vol. 46

 

      

 

No. 1

 

      

 

2001

                    



  

Doklady Physics, Vol. 46, No. 1, 2001, pp. 4–8. Translated from Doklady Akademii Nauk, Vol. 376, No. 2, 2001, pp. 178–182.
Original Russian Text Copyright © 2001 by Olevanov.

                                                                    

PHYSICS
Effect of Polarized Radiation on Conductivity 
of Thin Anisotropic Metal Films

M. A. Olevanov
Presented by Academician A.M. Dykhne January 25, 2000

Received February 15, 2000
A change in conductivity of a deformed metal film
in an external high-frequency field is theoretically
calculated. This effect was recently discovered by
V.V. Ragul’skiœ in experiments with thin aluminum
films [1].

In the model considered here, a linearly polarized

electromagnetic wave with amplitude  and frequency
ω is normally incident onto the surface of a uniformly
deformed metal film. The electric current induced by a
constant field E0 applied along the deformation axis
flows along the film. Two cases are considered: (1) an
incident wave is polarized along the direction of the
current flow and (2) an incident wave is polarized nor-
mal to the current flow.

The solution to the problem is based on solution of
the Boltzmann equation and determination of the elec-
tron distribution function in the presence of an electric
field and the field of a light wave. Since a high-fre-
quency field cannot penetrate deeply into a massive
metal, the phenomenon under consideration is of a
purely subsurface character and therefore can be
observed only in very thin samples with a thickness
comparable to that of a skin layer. Thus, in our further
calculations, the intensity of the light-wave field can be
assumed to be independent of the spatial coordinate,
and, thus, by solving the kinetic equation, we can
assume that the distribution function is independent of
the spatial coordinate.

Now, we write out the Boltzmann equation for the
distribution function of the electron gas in metal in the
following form:

(1)

Here, k is the wave vector of an electron in the phase
space, E is the total electric field acting on an electron,

Ẽ
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and the collision integral has the form [2]

(2)

Here, ρ(k) is the density of states and the term W(k, k')
characterizes the probability of the transition of an
electron from the state k into the state k' under the con-
dition that the former state is occupied and the latter
one is vacant.

We represent the distribution function of electrons
as f = f0 + δf, where δf ! f0 and f0 is the equilibrium dis-
tribution function, and substitute it into Eq. (1). Upon
certain transformations, we have

(3)

Integration in the right-hand side is performed over the
surface of the constant energy.

The simplest solution to Eq. (3) is obtained for the
model of almost free electrons. In this case, the disper-
sion relation has a simple form:

(4)

The energy is measured from the bottom of the conduc-
tion band. Thus, the isoenergetic surfaces in the phase
space have a spherical shape. Under these conditions, it
is possible to introduce the relaxation parameter by
assuming that the integral in the right-hand side of
Eq. (3) does not depend on δf and by obtaining a self-
consistent solution to Eq. (3):

(5)

Here, τ0 is the relaxation time and m0 is the effective
mass of an electron in the metal. We also used the fol-
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lowing notation:

In fact, the above formula also includes the phase, but
since it is inessential for further consideration of the
problem, it is omitted. In addition, we also introduce
the following notation:

Thus, the approximation of almost free electrons leads
us to the classical formula for conduction in metals.

If there is a certain deformation, the model would
also take into account anisotropy in the shape of isoen-
ergetic surfaces. However, since the film deformation is
rather small, its effect on the distribution function of
electrons can be considered a small perturbance.

Now, we determine the correction to the solution of
Eq. (3). With this aim, we substitute the value of δf for
almost free electrons into the collision integral in the
right-hand side of Eq. (3),

(6)

and consider the case E0 || , i.e., the radiation polar-
ized along the current flow. The axis x is taken to be
parallel to the field E0 . Then, the field-dependent term
in the integrand can be transformed as follows:

(7)

It is seen that the collision integral for E0 ||  and that
for the case of unexplored film have the same form. In
other words, illumination of the film with the light
polarized along the current flow does not affect its con-
ductivity. This conclusion is quite consistent with
experimental data [1].

Thus, we can write for τ0,

(8)

We now consider the case E0 ⊥  . Let the constant
component of the electric field be directed along the
x-axis and the variable component be directed along the
y-axis. The axis normal to the film surface is denoted
by z. These axes are also the principal axes of the defor-
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mation tensor. Then, the field-dependent term in (6) is
written as

(9)

It is seen that the collision integral is a rapidly varying
periodic function of time. Denoting the field-dependent
integral in the right-hand side of Eq. (6) as g(ωt), we
obtain

(10)

Substituting (10) into the Boltzmann equation, we have

(11)

Since all the functions in Eq. (11) are periodic, it can be
solved as a sum of harmonics, but, since we must cal-
culate the sample conductivity for the constant current,
we restrict ourselves to the zero harmonics δfc:

(12)

Comparing (12) and (5), we see that the expression in

the denominator of (12) has the meaning of , where

τ is the relaxation time. The integral in the right-hand
side of (12) can be readily calculated, and we obtain
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(14)

where τ0 is the relaxation time in the absence of illumi-
nation. We also used the notation

(15)

Integration in (15) is performed over the surface of the
constant energy. It can be readily shown that in the iso-
tropic case corresponding to dispersion equation (4),
this integral tends to zero. In other words, for an unde-
formed film, the irradiation does not affect film conduc-
tivity.

We now consider how the shape of isoenergetic sur-
faces depends on weak anisotropy. If an ideal lattice is
subjected to uniform deformation characterized by
strain tensor ξij , with the components being less than
unity, the energy spectrum of the electrons can be rep-
resented in the form

(16)

The coefficients m0 and m' calculated for a number of
metals can be found elsewhere [3]. The calculated
effective masses are close to the mass of a free electron.
Moreover, the coefficients m' have negative values.

For simplicity, we assume that only one component
of the deformation tensor corresponding to extension or
compression of the sample along the x-axis differs from
zero (the ξ-component). Then, the equation for the
isoenergetic surface is written as

(17)

Here, θ is the angle between vector k and the deforma-

tion axis and ∆ = – ξ, where m0 is the effective elec-

tron mass in the isotropic metal. Taking into account
that m0 and m' are of the same order of magnitude but
have opposite signs, we can write within the accuracy
to the factor on the order of unity that ∆ . ξ ! 1.

Now, we perform integration in (15) along the sur-
face of the constant energy given by Eq. (17). Then, in
the first order of the perturbation theory with respect to
∆ within the accuracy to the factor on the order of unity,
we find
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(18)

Thus, the parameter  can be obtained as

(19)

It is seen from this expression that film anisotropy gives
rise to anisotropy of the relaxation time depending not
only on the direction in the crystal but also, in a rather
complicated way, on the induced fields. We write this
dependence as τ = τ0ψ(θ, α), where θ is the angle
formed by the direction for which the relaxation time
should be determined and the x-axis, whereas the new
parameter α determines the effect of the fields:

(20)

The function ψ introduced above has the following
form:

(21)

We now substitute the integral in (12) for the expres-
sion found for the relaxation time:

(22)

Since the distribution function for electrons is known, we
can calculate the electric current density in the sample
and determine the conductivity. One can readily see
from (22) that the change in electrical conductivity of
the deformed illuminated film is now determined only
by the new angular dependence in the distribution func-
tion. Thus, the relative change in conductivity is given
by the following integral formula:
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σ σ0–

σ0
---------------

ψ α θ,( ) θcos
2 θsin θd ϕd

0

2π

∫
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π
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0

2π

∫
0

π

∫–
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0

2π

∫
0

π

∫
-----------------------------------------------------------------------------------------------------------------------,=
 

where σ0 is the conductivity of not illuminated film.
Substituting (21) into (23) and performing integration,
we obtain

(24)

Analyzing the above expression, we see that the rel-
ative change in conductivity depends on two parame-
ters: ∆ . ξ ! 1 (where ξ is the strain) and α (propor-
tional to the intensity of the incident radiation). The
behavior of the relative change in conductivity at vari-
ous values of parameter α is shown in the figure in units
of ∆.

Now, we consider the behavior of the dependence
obtained at high and low values of parameter α. At
α ! 1, Eq. (24) yields the following asymptotic depen-
dence:

(25)

In other words, in the domain of parameters considered
above, the relative change in conductivity should lin-
early depend on the intensity of the incident radiation.

At α @ 1, Eq. (24) takes the form

(26)

i.e., under extremely intense film illumination, the rel-
ative change in conductivity, which is inversely propor-
tional to the intensity of the incident radiation, attains
saturation.

Thus, the conductivity of a thin uniformly deformed
conductor depends on the polarization of the incident
radiation. This effect is caused by anisotropy in the
shape of the isoenergetic surfaces caused by sample
deformation.

We now compare the predictions of the theoretical
model with the experimental results obtained in [1].

First, we consider a qualitative behavior of the
effect. We have shown that the conductivity of the irra-
diated sample changes only if the incident wave is
polarized normal to the direction of the electric current
in the film. If the wave is polarized longitudinally with
respect to the current flow, the conductivity is not
changed as in the absence of an external field. This con-
clusion is quite consistent with experimental results.

∆σ
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To analyze the quantitative results, we have to deter-
mine the range of the model parameters corresponding
to the experimental conditions. As was shown above,
the relative change in conductivity depends on two
parameters: ∆ . ξ ! 1 (where ξ is the strain) and α
[given by formula (20)]. The field intensity and the fre-
quency of the incident wave in the experiments [1]

were the following:  ≤ 3.5 V/cm, E0 = 5 V/cm, ω =
2.98 × 1015 s–1.

The relaxation time in (20) can be evaluated from
the classical formula

(27)

The conductivity of aluminum equals σ = 3.5 ×
107 Ω−1 m–1 = 3.1 × 1017 S–1 [4]. The average number of
electrons per aluminum atom is 1.31 (see [5], p. 126).
The aluminum density is ρ = 2.7 g/cm3, and the molar
mass is µ = 27 g/mol. Then, the number of conduction
electrons per unit volume can be readily calculated as

 = 7.9 × 1022 cm–1. (28)

Substituting all the values obtained into (27), we have
τ0 = 1.5 × 10–14 s. Then, under maximum illumination,

Ẽ

τ0
m

e2
----σ

n
---.=

n 1.31
ρ
µ
---NA=

1 2

0

0.15

0.10

0.05

– 0.05
43 50

α

∆σ/σ0

Relative change in conductivity as a function of parameter α.
The scale along the ordinate axis is given in units of ∆.
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Eq. (20) yields α = 2.5 × 10–4, which corresponds to the
range of low parameter values, and, consequently,
the relative change in conductivity is described by for-
mula (25). As was shown above, within an accuracy to
the factor on the order of 1, the value of ∆ equals the
strain. In the experiments, the aluminum film was com-
pressed, which corresponds to negative ∆. Then, it fol-
lows from (25) that within the parameter range under
consideration, the conductivity of the sample will
increase proportionally to the intensity of the light radi-
ation, which is confirmed experimentally.

We now determine the relative change in conductiv-
ity for the maximum illumination of the film. Substitut-
ing the values of parameters ∆ . 6 × 10–1 and α = 2.5 ×

10–4 into (25), we obtain  . 3.8 × 10–7. The experi-

mental value is somewhat lower, 2 × 10–7. The differ-
ence between the theoretical estimates and the experi-
mental data (almost two times greater) is associated
with the fact that our model takes into account only one
mechanism of electron scattering in the bulk, whereas
the scattering in the surface film is ignored.

The theory developed above shows that a number of
practical applications of the phenomenon are possible.

First, the study of the effect of irradiation on con-
ductivity yields information on the anisotropy of the
Fermi surface and on its relation to the sample defor-
mation. As was already indicated, the calculated anisot-
ropy of the isoenergetic surfaces under small deforma-
tions is of the same order of magnitude as the strain of
the sample. Measuring the relative change in conduc-
tivity under various deformations, we can directly
determine the dependence ∆(ξ). The formulas obtained
in the present study can be quite useful despite the fact
that they were derived for a simplified model.

∆σ
σ

-------
When designing detectors based on the effect under
study, it is expedient to measure α. Using formula (24),
one can readily show that at α = 1, the relative change
in conductivity is zero. Varying the constant field,
inducing a current in the film, and maintaining constant
film illumination, the ratio ∆σ/σ0 can be reduced to
zero. Then, the intensity of the incident radiation is
simply calculated by (20) as

(29)

It should be emphasized that the calculation of the final
result does not require knowledge of the anisotropy
value.
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In this paper, resonance domains for the Hill equa-
tion with allowance for damping are found using for-
mulas for derivatives of a monodromy matrix with
respect to parameters [1, 2]. The problem is solved by
the asymptotic method for small amplitudes of an excit-
ing force and a low damping coefficient. A description
of these domains (represented by halves of cones) in a
three-dimensional parameter space is given.

1. We consider a system of linear differential equa-
tions

(1)

where G = G(t, p) is an m-dimensional real square
matrix smoothly depending on the vector of actual
parameters p = (p1, p2, …, pn), which is a continuous
periodic function of time G(t, p) = G(t + T, p), where T
is a period. We denote linear independent solutions to
system (1) as x1(t), x2(t), …, xm(t) and use them to form a
fundamental matrix X(t) = [x1(t), x2(t), …, xm(t)]. This
matrix, satisfying the equations

(2)

where I is the m-dimensional identity matrix, is called
the matriciant, and the matrix F = X(T) is called the
monodromy matrix [3].

Along with Eqs. (2), we consider a conjugate sys-
tem of equations for the matrix Y:

(3)

The solutions X(t) and Y(t) to Eqs. (2) and (3) are linked
by the equation [3]

(4)

which allows us to write out Y(t) = (XT(t))–1.
We now take an increment of the vector of the

parameters in the form p = p0 + ∆p. Hereupon, the
matrix G and, therefore, X(t) have increments as well.
This correspondingly leads to a change in the mono-

ẋ Gx,=

Ẋ CX , X 0( ) I ,= =

Ẏ GTY , Y 0( )– I .= =

XT t( )Y t( ) I ,=
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dromy matrix F. The formulas for the first and second
derivatives of the monodromy matrix with respect to
the parameters were found in [1, 2] in the form of inte-
grals over period T:

(5)

(6)

where the zero subscript implies that the corresponding
value is taken for p = p0 . Note that in calculating deriv-
atives (5) and (6), it is necessary to know only the

matriciants X0(t), (t) = (t), and the derivatives of
the matrix G with respect to the parameters taken at
p = p0 . Using derivatives (5) and (6), the variation of
the monodromy matrix can be written out in the form

(7)

With the known derivatives of the monodromy
matrix, we can calculate its value in the vicinity of the
point p0 and, thus, estimate the behavior of the multipli-
ers (the eigenvalues of the monodromy matrix) respon-
sible for the stability of system (1) in the case of varia-
tion of the problem parameters.
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2. We consider the Hill equation with damping [4]

(8)

where ϕ(t) is a continuous periodic function of time
with a period 2π.

We seek instability domains for the trivial solution
y ≡ 0 (the domains of parametric resonance) in the case
of small excitation amplitude ε, low damping coeffi-
cient β, and arbitrary eigenfrequency ω ≠ 0. For this
purpose, we represent Eq. (8) in the form of (1), taking
into account that

(9)

This system of equations contains three parameters p =
(ε, β, ω). If we assume in (8) and (9) that ε = 0, β = 0,
then from (2) and (3), it is easy to find the matriciants

(10)

Note that in accordance with (4), (t)Y0(t) = I. Thus,
for ε = 0, β = 0 the monodromy matrix takes the form

(11)

The eigenvalues (multipliers) of this matrix are

(12)

For all ω ≠ k/2, k = 1, 2, …, the multipliers are complex
conjugate quantities lying in a unit circle (stability
state). For β = 0, system (8) is Hamiltonian in character.
This implies that simple multipliers cannot leave the
unit circle when changing parameters ω and ε [3]. It can
be shown that introducing damping (β > 0) results in
asymptotic stability of the system.

To do this, we find the approximate value of the
monodromy matrix F using relations (5), (7), and (9)–
(11). With an accuracy to terms on the order of β, we
obtain

(13)

where F0 is defined in (11), I is the identity matrix, and

(14)
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From (13) and (14) we find that
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Since the determinant of the monodromy matrix is
equal to the product of the pair of the complex conju-
gate multipliers, then for rather small 

 

β

 

 > 0, it follows
from (15) that 

 

|ρ

 

1, 2

 

|

 

 < 1; this implies asymptotic sta-
bility.

Therefore, instability (resonance) can arise only in
the vicinity of the points

 
(16)

 

at which the multipliers are double.
To find the domains of a parametric resonance, we

expand the monodromy matrix 

 

F into a Taylor series
with respect to parameters ε, β, and ∆ω = ε – k/2 in the
vicinity of the points p0:

(17)

According to formulas (5) and using (9)–(11), we cal-

culate the derivatives , , and  for p = p0 . As

a result, with an accuracy to the terms of the first order
of smallness, we have

(18)

Here, for the coefficients, we introduced the notation

(19)

Thus, they are directly related to the coefficients of the
Fourier series for the periodic function ϕ(t).

The multipliers for the matrix (18) can be found
approximately as

(20)

(21)

The system is unstable if the absolute value, at least for
one multiplier, exceeds unity [3]. This condition is ful-
filled for β < 0, and the system becomes unstable. But
in the case of β ≥ 0, this condition is satisfied only when
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2π  > πβ. Hence, using (21), we find that the domain
of parametric resonance lies inside the half of the cone,

(22)

adjoining the half-space β < 0, see Fig. 1. Assuming
that β = 0 in (22), we find the domains of parametric
resonance in the absence of damping:

(23)

Intersecting the domain (22) by the plane ε = const,
we deal with the half of an ellipse having semiaxes
|ω − ω0| = rkε, ω0 = k/2 – ckε, and β = 2rkε, the centers
of the ellipses lying on the axis ω = k/2 – ckε, see
Figs. 1, 2. Note that with increasing damping coeffi-
cient β, the width of the resonance domain over the fre-
quency ω decreases and for β > 2rkε, disappears alto-
gether.

The cross section of the half-cone (22) by the plane
β = const, β ≥ 0 yields domains of parametric resonance
limited by two hyperbolas, see Fig. 3. Their asymptotes
are found from inequalities (23). In the case of damping
(β > 0), according to (22), the minimum (in its absolute
value) amplitude needed for the excitation of the reso-
nance is |ε|min = β/(2rk), and the appropriate resonance
frequency is shifted from the value k/2 by −ckε (Fig. 3).
With an increase in resonance number k, the coeffi-
cients rk and ck tend to zero. This implies that with
increasing k, the cone axis (22) approaches the vertical
line and the cone, in itself, narrows. Note that if the
average value of the periodic function is zero (ck = 0),
the axes of the cones are vertical lines for all k and the
resonance domains are symmetric with respect to the
planes ω = k/2.

For β = 0 and ck = 0, we find from (23) the resonance
domains for the Hill equation without damping and with
a zero average value of the periodic function ϕ(t) [5].
Assuming in (8) that β = 0, ϕ(t) = cost, we arrive at the
Mathieu equation. In this case, we find from (19), for
the domain of the first resonance, that k = 1, a1 = 0, b1 =
r1 = 1/2, c1 = 0, and we obtain from (23) the well known
relation 1 – ε < 2ω < 1 + ε [4, 5].

The above-presented method for analysis of para-
metric-resonance domains using derivatives of the
monodromy matrix is simpler and more evident com-
pared to methods based on searching for periodic solu-
tions at the boundaries of stability domains [4–6].

3. We now consider as an example a pendulum with
a suspension point vibrating vertically in accordance
with the law

(24)

where a is the amplitude, φ(τ) is a periodic function
with a period 2π, and Ω is the excitation frequency. We
investigate the stability of the lower equilibrium posi-
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tion of the pendulum depending on the frequency Ω
and small quantities, such as the amplitude a and the
damping coefficient γ.

The linearized equation of motion for the pendulum
with allowance for damping has the form [4]

(25)

where θ is the pendulum deviation angle measured
from the equilibrium position, m is the pendulum mass,
l is the length, and g is the acceleration of gravity.

According to (24), we have  = aΩ2 (Ωt). Substituting
this expression into (25) and introducing notation τ =

Ωt, ϕ(τ) = – (τ), we transform Eq. (25) to a form sim-
ilar to (8):

(26)

It follows from the results of Section 2 that for small
excitation amplitude a and damping coefficient γ, the
lower equilibrium position of the pendulum becomes
unstable at excitation frequency Ω close to critical val-
ues:

(27)

In this case, according to (22), the instability domains
(domains of the parametric resonance) are determined
by the semicone

(28)
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---ϕ τ( )+ θ+ + 0.=
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2
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--- g

l
---, k 1 2 …, ,= =

k
2
--- 1 Ω

Ωk

------– 
  cka

l
-------+

2 γ2

4Ωk
2m2

----------------
rk

2a2

l2
---------, γ 0,≥<+
where Ωk is defined in (27) and the coefficients ck and
rk related to the periodic function ϕ(τ) are found from
expressions (19), (21). Formula (28) can be trans-
formed to the form

(29)

From this expression, it is easy to see how rapidly the
instability cone becomes more narrow and straight with
increasing k. Inequality (29) becomes even more sim-
ple for the zero mean value of the periodic function
(ck = 0).
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1. We consider the plane and axisymmetric problem
of the supersonic symmetric collision of two infinite
jets of different condensed materials. Previously, a sim-
ilar problem of subsonic collision in hydrodynamic
approximation was analyzed by M.A. Lavrent’ev [1].
In the problem formulation considered here, both com-
pressibility and thermodynamic phenomena are essen-
tial, although, similar to [1], we ignore the effects of the
strength, heat conduction, and viscosity. It is worth not-
ing that allowance for these effects in the numerical
simulation of the collision of equivalent metal jets [2]
did not result in significant corrections to the data
obtained in [1]. To describe the jet collision as a steady-
state flow of a compressible inhomogeneous fluid with
its temperature taken into account, we use the so-called
incomplete equations of state for solids and liquids
under high pressures (the Mie–Grüneisen-type and
Tillotson-type equations [3–6]), which describe the
dependence of the specific internal energy E on pres-
sure P and specific volume V [or P = P(E, V)].

A flow configuration is shown in the figure, where
L1, L2 , and L are the free surfaces of jets 1 and 2 and the
interface, respectively. In addition, A'AA'' and B'BB''
are the fronts of detached shock waves and the points
x = 0, xA, and xB are the positions of the contact discon-
tinuity and the wave fronts on the symmetry axis x. The
relative collision velocity is U0 . The flow ahead of the
wave fronts is unperturbed: the jet radii (half-thick-
nesses) ri, the mass-velocity magnitudes along the flow
axis Di (or, which is the same, the wave-front velocities
in the corresponding laboratory coordinate systems),
the specific volumes Vi, and the temperatures Ti are
constant, the constant pressure being Pi = 0 (i = 1, 2).

Following [1] and omitting the details of the flow
description, we consider flow principal characteristics,
namely, the maximum values of the thermodynamic
functions at the wave fronts and at the stagnation point
x = 0, the relative penetration velocity, etc.

The conventional laws of conservation and continu-
ity are also valid at shocks and the interface. In contrast
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to gas dynamics [7], the shock fronts in dense media are
formed at relatively long distances from the interface,
and, therefore, the Newtonian approximation of a thin
shock layer becomes invalid. Thus, assuming an isen-
tropic nature for the additional loading behind the wave
fronts, we can use the Bernoulli integral for a com-
pressible fluid to link the thermodynamic functions at
the points A and B of the wave fronts with their values
to the left and to the right of the stagnation point x = ±0
to arrive at the following closed system of eleven alge-
braic and “integro-algebraic” equations with respect to
eleven unknowns [P and V at the singular points xA, xB,
and x = ±0; and also wave-front (Di) and mass (U+i)
velocities behind the fronts (i = 1, 2)]:

(1)

(2)

(3)

(4)

(5)

(6)

The subscripts + and * indicate the function values
immediately behind the wave fronts and at the point
x = 0 at the interface, respectively; subscripts 1 and 2
indicate the material parameters of the jets to the left

U Di, P E 0, V Vi, T Ti,= = = = =
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and to the right of the interface, respectively (these
subscripts are omitted in the cases where it does not
lead to any ambiguities); PH(V) and PS(V, V+) are the
Hugoniot curves and the isentropes originated at the
points V0 = Vi and V+, respectively; and the magnitudes
of the mass velocities U are calculated in a stationary
coordinate system, where the discontinuity surfaces are
immobile. Isentropes are calculated with the invocation
of thermodynamic relationships.

Once the system (1)–(6) is solved, the maximum
temperatures attained on both sides of the stagnation
point 0 are determined by summing the T+ value at
the shock front and an increment along the correspond-
ing isentrope behind the front using the thermodynamic
relation

(7)

Under the assumption that Ti have low values (close to
room temperature), the above equation together with
the equation for entropy S at the adiabat (see [3]) yields
the following equation for T+:

(8)

Here, cV is the specific heat at a constant volume, Γ =
Γ(V, T) is the Grüneisen function [3–5], and T0 = Ti; it
is also assumed that Ti are on the order of room temper-
ature. Both temperature distribution behind the fronts,
T = T(V), and its maximum values, T∗ i, are determined
by integrating (7) under the condition that dS ≡ 0 and
the initial conditions T = T+i and V = V+i .

2. We now analyze the semi-inverse method of solv-
ing the problem. Instead of the collision velocity U0 ,
we set one of the wave-front velocities D. The corre-
sponding value U0 is determined a posteriori. Then,
coupled equations (1)–(8) are split and its solution is
reduced to calculations using formulas (1) and (2), deter-
mination of the roots of nonlinear equations (3)–(6) with

dT
T

------ dS
cV
------ Γ dV

V
-------.–=

dT
dV
-------

Γ
V
---T+

1
2
---

V0 V–
cV

---------------
dPH

dV
---------- 1

2
---PH,+=

V+ V V0; T<≤ T0, V V0.= =
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L
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A
B'

B''

0 B
x

D1

D2

Diagram of steady flow for supersound-jet collision.
only one unknown, and the solution of ordinary differ-
ential equations (7) and (8).

Connecting the states at the points x = ±0 with the
corresponding states at infinity, we can write out the
Bernoulli integral at each side of the contact disconti-
nuity. Transforming this integral with due regard for the
shock conditions and determining integral (4), we
arrive at the following expression for velocities along L
at infinity:

where ES(V+, V0) is the increment in the specific inter-
nal energy along the isentrope originating at point V0
within the interval V+ < V < V0 . Since the difference
between the increments in the specific energies calcu-
lated along the Hugoniot curve and the isentrope in
braces is positive at the same compressibilities, the
velocities of the particles at infinity along the interface
are lower than along the free surfaces, Li , where they
are equal to Di . This is one of the differences of our
model from that described in [1].

Assuming that in (1)–(8) P+i = 0, V+i = Vi, U+i = –Di,
and T+i = Ti (i = 1, i = 2, or i = 1, 2), we can also study
the subsonic regimes (the point x = xA, x = xB, or both
these points move away to infinity). This method can
also be extended to the case of jumpwise phase transi-
tions in material 1 or material 2 or in both materials
simultaneously upon the introduction of additional dis-
continuity surfaces and setting the conditions for such
transitions at these surfaces and conventional relations
at the discontinuities. However, if the medium under-
goes such phase transitions only at the wave front with-
out wave decomposition, calculation can still be per-
formed by (1)–(8). At r1 = ∞, we arrive at the pattern of
an unbounded flow of material 1 around jet 2. If the
materials are equivalent, the thermodynamic functions
along the x-axis are symmetric with respect to the stag-
nation point within the accuracy of similarity transfor-
mation of one of the x-semiaxis. In other words, these
functions attain the same values at the wave fronts and
at the stagnation point. The distributions of these values
as a function of any of them chosen to be an indepen-
dent variable (for example, of V) are also identical. In
this case, the penetration rate of one jet (i) into another
(j) equals Di; i.e., the stagnation-point velocity in the
coordinate system, where the other jet is immobile at
infinity, equals half the collision velocity U0 . Moreover,
similar to the Lavrent’ev model, the depth of the jet
penetration, H, equals the decrease in its length L. If, in
addition, the jet configurations are identical, the inter-
face is a plane and the problem becomes equivalent to
the problem of a jet impinging onto a smooth flat wall.

U∞ D 2 EH V+ V0,( ) ES V+ V0,( )–{ } ,–=

ES V+ V0,( ) PS V V0,( ) V ,d

V+

V0

∫=
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3. Under moderately high pressures and tempera-
tures, the Mie–Grüneisen equation [3–5] with the tem-
perature-independent Grüneisen function satisfactorily
describes the state of the medium. Often, the depen-
dence of this function on the specific volume is written

in the approximation  =  = , where V0 = Vi and

Γ0 = Γi , which correspond to the V and Γ values under
the normal conditions. They are assumed to be satisfied
in the unperturbed flow regions. We also consider
T0 = Ti . Assuming, in addition, that the Hugoniot curve

PH = PH(Θ) Θ = 1 –  is experimentally deter-

mined, the equation of state and the general solution to
the differential equation of an isentrope (the equation is
derived in [3]) can be written out as

(9)

Usually, the experimental Hugoniot curves are
approximated by a linear dependence of the wave-front
velocity D on the jump in the mass velocity at the wave
front:

(10)

The constants C and λ in (10) are taken to be the values
Ci and λi related to the material i. It is convenient to
introduce the following dimensionless quantities [5]:

(11)

where cV is constant, because the temperatures consid-
ered below exceed the corresponding Debye tempera-
tures [3]. Initially, using Eq. (9) with due regard for
Eqs. (10) and (11), we derive the expressions for dimen-
sionless thermodynamic functions behind the front in the
case of loading along the isentrope. Then, system (1)–(8)
can be reduced to a simpler form,

(12)
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(13)

(14)

(15)

(16)

We now consider the algorithm for solving system of
equations (12)–(16) by the above semi-inverse method
for the case of two shock waves. Setting one of the val-
ues (e.g., M2 > 1) and using (12), we determine the cor-
responding values p+2 and θ+2 . Then, using Eq. (13), we
determine the physically meaningful root θ∗ 2 and, then,
also the pressure p∗ 2 by formula (14). Solving Eq. (15)
(i = 1) with respect to M1 , we obtain the explicit form
of the function M1 = M1(θ∗ 1) and, with allowance for

the dependence θ+1 = , also the direct relation

between θ+1 and θ∗ 1 . Substituting the functions θ+1 =
θ+1(θ∗ 1) and M1 = M1(θ∗ 1) into Eq. (13) or Eq. (14) and
assuming now i = 1, we arrive at the equation for the
dilatation θ∗ 1 . Solving this equation, we determine the
Mach number M1. Then solving Eq. (12), we obtain the
values of all the remaining quantities at the shockwave
front A'AA''. Finally, the temperature is determined
from Eqs. (12) and (16), whereas the collision velocity
is determined by the sum U0 = C1M1 + C2M2 . As a
result, all the quantities desired are determined as func-
tions of U0 .

If the determined value of M1 is smaller than unity,
the jet flow 1 is subsonic, the calculation of correspond-
ing parameters should be changed by using M1 = 1 in
Eqs. (12). Accordingly, in the subsonic flow mode, we
should assume that M1 = M2 = 1 in the above equations.
This automatically leads to the relations p+ = θ+ = 0 and
u+ = –λ equivalent to the conditions at infinity, which
follow from (1) for infinitely remote fronts.
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Since the contact discontinuity can be replaced by a
smooth wall without changing the flow outside this
wall, the first part of the calculation of the flow param-
eters on one side of this wall is similar to the calcula-
tions in [8] of the supersonic flow around a blunt per-
fectly rigid body. However, in this case, the applicabil-
ity of the physical model is bounded from above with
respect to velocity by the actual body strength. In our
formulation of the problem, the validity range of the
defining relationships should be taken into account.
Thus, if the temperature exceeds several tens of thou-
sands of degrees, the Mie–Grüneisen description of the
pressure and the energy should be complemented with
the terms responsible for thermal excitation of elec-
trons [4]. In turn, this can change the linear relation
between the velocities at the shock (10). Since there is
no experimental data for this range of pressures and tem-
peratures, it is expedient to use theoretical intermediate
defining relationships such as, e.g., the Tillotson equa-
tion [6] continuously relating the space of states where
the approximation of the Hugoniot curve (10) is valid
with the Thomas–Fermi model for electron gas at
superhigh pressures and temperatures [4].

4. For velocities up to U0 ≈ 20 km/s, system (12)–(16)
has been solved numerically for different combinations

of the following materials: iron (Fe), ρ0 =  =

7.68 g/cm3, C = 3.8 km/s, λ = 1.58; tungsten (W), ρ0 =
19 g/cm3, C = 4.029 km/s, λ = 1.237; dry sand, ρ0 =
1.6 g/cm3, C = 1.7 km/s, λ = 1.31; water, C = 1.48 km/s,
λ = 1.60, T0 = 273 K; and the high-pressure phase of
ice, ρ0 = 1.293 g/cm3, C = 1.28 km/s, λ = 1.56, T0 =
263 K. The above parameters were averaged through-
out the pressure range observed in the experiments on
shock compression, the possible phase transitions
being ignored. The data for tungsten and other materi-
als were taken from [9] and [6], respectively. The tem-
perature T0 was taken to be 300 K for all the materials
except ice and water.

For different pairs of the materials, the maximum
pressures and temperatures obtained at U0 = 20 km/s
are presented in the table. It is seen that the tempera-

1
V0
------

Table

Material P, GPa T, K

Fe + Fe 548 11 933

W + Fe 836 23 570

W + sand 305 62 612

Sand + sand 132 20 936

Water + water      61.8     890

Water + ice      69.3     544
tures are such that no extrapolation of the defining rela-
tionships to higher velocities is any longer possible.

The shape of the curves describing the maximum
pressures and temperatures at the wave fronts and at the
interface as functions of the collision velocity is typical
of all the pairs of materials under consideration.

At the point of the transition to the supersonic mode,
the curves of the maximum pressures and temperatures
at the wave fronts and the interface as functions of the
collision velocity have no discontinuities. The jumps
are observed only for the derivatives of the functions
corresponding to the wave fronts. The curve shapes are
characteristic of all the pairs of the materials. However,
the curves also exhibit certain differences. In metals,
the values of P and T, which are calculated behind the
front and at the stagnation point, become closer at a
higher collision velocity. For example, for the pair Fe +

Fe at U0 ≈ 20 km/s, we have  >  and  ≈ 0.87.

The situations for water being in different states are
quite different: in this case, the additional loading
behind the front continues to be the main factor of the
pressure at the stagnation point in the calculated range
of velocities. The presented data show that the temper-
ature increase in both water and ice is much weaker
than in metals.

Surprisingly, the penetration velocities and, there-
fore, also the ratio between the depth H of penetration
of one jet into the other and its length L are in rather
good agreement with the calculations by the Lavrent’ev
formulas for incompressible fluids with different densi-

ties ρ1 and ρ2 [1]. According to these formulas,  = η

and η = , where it was assumed that a thin jet pen-

etrates into a thick one (see the figure). For the ice–

water pair, the  ratio first increases with the velocity

and attains maximum value at U0 = 4.24 km/s, which
only differs from η by 3.5%, and, then, slowly
decreases, always being, however, higher than this
nominal value. For pairs of materials characterized by
more contrasting properties, this difference, of course,
increases. Thus, the relative penetration depth of a
tungsten rod into sand, first, noticeably decreases to a
minimum at U0 = 8.28 km/s, with the latter being lower
by ~17.7% than the value obtained from the Lavrent’ev
formula. Upon passing by the minimum, the penetra-
tion depth slowly increases, remaining lower by ~12%
than this value calculated at U0 = 20 km/s.

The effect of different compressibilities of the mate-

rials is seen from the estimate of the  ratio, which

P+

P*
------ 1

2
---

T+

T*
------

H
L
----

ρ2

ρ1
-----

H
L
----

H
L
----
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was calculated by substituting pH(θ*) = (θ*) +

O( ) into Eqs. (13) (i = 1, 2) at θ* ! 1:

It should be emphasized that the stagnation pressure
is always higher than that predicted by the Lavrent’ev
formula. For the tungsten + sand pair, where this effect
is the most pronounced, the relative excess in pressure
ranges from 31 to 37% in the velocity range from 10 ≤
U0 ≤ 20 km/s.

It can be shown that the contribution of the heat-
induced pressure is rather low despite the attained high

temperatures (T* ~ 104 K). The compressibility  at

U0 = 20 km/s attains the values 1.89 for Fe + Fe, 1.32
for water + water, and 3.00 for sand + sand. The overly
high compressibility for sand is associated with a dras-
tic increase in its density in the quartz–stishovite-type
phase transitions [6].

pS*

θ*
3
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1 ρ2/ρ*2+
-------------------------
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Researchers’ attention to the problems of motion of
small celestial bodies entering into the atmosphere
have recently promoted a certain progress in this field
of science. Thus, several models for body fragmenta-
tion caused by aerodynamic drag were proposed [1–4].
In most cases, calculation of the trajectories for frag-
ments of a body was performed by numerical integra-
tion. The model proposed in [4] allows for the effect of
body size on the disintegration process. In this case, the
properties of a swarm of particles along a body’s trajec-
tory is calculated with the help of the step-by-step
method for each two subsequent acts of disintegration
whose number attains several tens.

In this paper, we present a simple modification of
the model [4] in which the description of the disintegra-
tion process is based on a variable corresponding to the
midsection area for a certain effective body. In the
framework of this modification, the motion, under the
assumptions suggested in [4], is described by a differ-
ential equation with separable variables. The model of
stepwise calculation, in fact, is a specific difference
approximation for this differential equation. Moreover,
a simple generalization taking into account the body’s
ablation is admissible: the mass transfer equation must
contain the same variable corresponding to the midsec-
tion area.

According to [4], the characteristic size of a frag-
ment after a kth disintegration is expressed by the for-
mula

(1)

where Re is the characteristic size of a parent body. The
condition for the kth disintegration is written out in [4]
as

(2)

Rk

Re

2k /3
--------= ,

ρa
2Vk

4 3γ
*

E
Re

------------- 2 k 1–( )/3×= .
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Here, 2γ∗  is the specific (i.e., per unit area) fracture
energy [4], E is the Young’s modulus, ρa is the atmo-
spheric density, and Vk is the body’s velocity at the
moment of the kth disintegration.

Finally, the total midsection area under the condi-
tion of independent motion of the fragments is
expressed by the formula

(3)

Excluding k from expressions (2) and (3) and omitting
subscript k, we obtain the following expression for the
midsection area variable:

(4)

For brevity, we use the notation  = 

We now write out the dimensionless equations for
deceleration and carrying out of the mass in the form

(5)

Here, the trajectory angle γ, drag coefficient cd, and
mass transfer coefficient ch, as well as the evaporation
enthalpy H*, are constant quantities. The values of the
velocity V, body mass M, and midsection area A are
normalized to values corresponding to their entry into
the atmosphere, which are denoted by the subscript “e.”
The altitude h and the density ρa are normalized to alti-
tude h0 of the uniform atmosphere and density ρ0 at

h = 0, respectively; i.e., v = , m = , a = , y =

, and ρ = . The first disintegration of the body is

assumed to occur prior to the onset of its ablation and
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drag. Therefore, the initial conditions are taken in the
form

(6)

The solution to the problem (4)–(6) for the exponen-
tial atmosphere ρ = exp(–y) at α = const and β = const
has the form

(7)

For limited values of parameter β (β < 2), we can
employ the approximate expression from [5]:

This makes it possible to reduce all calculations to ele-
mentary functions. The solution depends on the three
dimensionless defining parameters α, β, and y∗ .

As the calculations show, the results based on for-
mula (7) for β = 0 are consistent to a high accuracy with
the calculations [4] performed according to the differ-
ence scheme.

Needless to say, the disintegration model (2) is ade-
quate only in the region of increase of aerodynamic
load ρaV 2 and the disintegration ceases to occur upon
attaining the maximum value of this parameter in the
trajectory.

Solution (7) allows us to calculate the altitude hmax

for which the value (ρaV 2)max is attained in the frame-
work of the model under consideration in simple terms.
We perform these calculations for the case of β = 0 and
compare the results obtained with those of [4]. We find
from (7) for β = 0 that 
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tion (8), we obtain
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 (6) of the fracture onset
and altitude 
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 (9) of the maximum aerodynamic load
for fragments of the disintegrating body for three vari-
ants of those calculated in [4] are given in the table.
There, the values 

 

z

 

1

 

 of the altitude for the first disinte-
gration and 

 

z

 

n

 

 for the last 

 

n

 

th disintegration, which were
taken from Table 1 of [4] for the same variants, are also
given for comparison.

As follows from the table, the calculations per-
formed in [4] and the data corresponding to analytical
model (7), as a whole, are close to one another. How-
ever, there is a certain discrepancy between the alti-
tudes of disintegration onset h∗  and z1. This is difficult
to explain, since, as follows from Fig. 1 of [4] (see the
second summand in the left-hand side of Eq. (9) of [4]),
the body drag prior to disintegration onset is negligible
and cannot affect the value of z1 . It is possible that this
initial divergence also affects the values hmax and zn , at
least for the first two calculation variants.
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Table 1

Variant
index [4] h*, km z1, km hmax, km zn, km

L4 80.7 78.9 48.4 44.7

P3 76.3 74.3 45.6 43.9

G1 24.4 21.7 7.0 7.9
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MECHANICS
Numerical Simulation of a Twisted Turbulent Wake
beyond a Self-Propelled Body

Academician O. F. Vasil’ev*, A. G. Demenkov**, 
V. A. Kostomakha***, and G. G. Chernykh**

Received September 4, 2000
Spatial turbulent flows are objects of elevated com-
plexity for mathematical simulation. Examples of these
flows can be fluid motion in various kinds of power
facilities and chemical-engineering facilities of compli-
cated configuration, flows around three-dimensional
bodies, the case of twisting, etc. In this paper, we con-
sider an axisymmetric turbulent wake beyond a self-
propelled body. We study a particular case of motion of
a body with a propelling device whose thrust compen-
sates hydrodynamic drag. In this case, the body moves
uniformly and rectilinearly in an unbounded homoge-
neous incompressible fluid, so that the longitudinal
component of the excess momentum in the wake is
zero. The propelling device can also twist the fluid;
therefore, in order to prevent body rotation about its
axis, the twisting must also be compensated in a certain
manner. In this case, the moment of momentum in the
wake with respect to its axis also equals zero.

A review of previous studies devoted to numerical
investigation of twisted turbulent wakes is given in [1].
There, the results of calculations according to a simpli-
fied e-model of turbulence are described and, at the
same time, attempts at using Reynolds-stress algebraic
models and more general second-order mathematical
models were criticized. These unsuccessful attempts
were apparently caused by the incompleteness or the
absence of experimental data for the wake near-field
region, which are necessary for using these models.
Asymptotic and numerical analysis of twisted wakes,
which are based on the classical (e – ε) model of turbu-
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lence, are given in [2–4]. These studies presented a
qualitatively adequate description of principal flow fea-
tures, but failed to describe completely the structure of
turbulence in the wake.

A numerical simulation based on using the hierar-
chy of second-order semiempirical models of turbu-
lence was performed in [5, 6] for a twisted momentum-
free turbulent wake with a nonzero moment of momen-
tum. It was shown that satisfactory agreement with
experimental data [7] can be obtained on the basis of a
mathematical model involving differential transport
equations for the normal Reynolds stress and a model
of tangential Reynolds stresses, as well as nonequilib-
rium algebraic relationships for the remaining tangen-
tial stresses.

Below, we present our original numerical model
constructed for a twisted turbulent flow with a zero
moment of momentum, which makes it possible to ade-
quately describe the wake beyond a self-propelled
body. The calculations based on this model are com-
pared with experimental data obtained in a wind tunnel
in the wake beyond an ellipsoid of revolution whose
drag was balanced by the momentum of a twisted jet
ejected from its rear part, whereas the twisting intro-
duced by the jet was compensated by the rotation of a
part of the body surface in the opposite direction. In
these experiments, the following quantities were mea-
sured at various distances from the body: all the com-
ponents of both the average-velocity vector and the
Reynolds-stress tensor, as well as the rate of the turbu-
lent-energy dissipation [8].

To describe the flow, we use the set of averaged
equations of motion, incompressibility, transfer of nor-
mal Reynolds stresses, and rate of turbulent-energy dis-
sipation:
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(2)

(3)

(4)

(5)

(6)

(7)

Here, (x, r, ϕ) is the cylindrical system of coordinates
with the origin at the body’s rear edge; the x-axis is
directed oppositely to the body motion; U, V, W, u', v'
and w' are the components of the velocity for the aver-
aged and pulsation motion; 〈u'2〉 , 〈v '2〉 , 〈w '2〉 , 〈u'v '〉 ,
〈u'w'〉 , and 〈v 'w'〉  are the Reynolds stresses; e =

(〈u'2〉  + 〈v '2〉  + 〈w'2〉) is the turbulence energy; and the

angular brackets imply averaging. In the right-hand
side of Eqs. (1), (2), (4)–(7), the terms corresponding to
molecular viscosity were assumed to be small and,
therefore, could be discarded.
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Tangential turbulent stresses are determined from
nonequilibrium algebraic relations [9]:

 

(8)

(9)

(10)

 

where 

 

α

 

1

 

 = –
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. In Eqs. (4)–

(7) and relationships (8)–(10), the quantity 

 

P

 

 is deter-
mined by the turbulence energy of the averaged motion:

We cast the model proposed in [10] on the basis of the
above-mentioned mathematical model. The empirical
constants of the model were taken to be 
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As the initial conditions at 

 

x = 10D, we set the
experimental transverse distributions for U, W, ε, and
〈 〉 , i = 1, 2, 3. Our experiments corresponded to the

Reynolds number Re =  = 50000, where ν is the

kinematic viscosity, U0 is the velocity of the unper-
turbed fluid, and D is the body diameter.

In the case of r  ∞, the conditions for an unper-
turbed flow were posed; and in the case of r = 0, the
conditions of symmetry for U, 〈 〉 , and ε and of
asymmetry for V and W were required to be valid:

From Eqs. (1)–(3) and the indicated initial and bound-
ary conditions for the flow under consideration, the fol-
lowing laws of conservation for the excess momentum
and the moment of momentum can be formulated:
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Here, U1 = U – U0 is the defect of the velocity longitu-
dinal component and ρ0 = const is the fluid density.

The numerical realization of this model is based on
the application of the finite-difference algorithm of the
first-order approximation at mobile nets. As compared
to [5, 6], this algorithm is modified with the goal to
guarantee the laws of conservation (11) and (12) hold.
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Fig. 1. Comparison of the dimensionless profiles for the
defect of the velocity longitudinal component with experi-
mental data.

Fig. 2. Comparison of the dimensionless profiles for the
velocity circular component with experimental data.
In the process of calculation, the boundary condi-

tions for U1, W, e, ε, and 〈 〉  were transported from
infinity to the line r = r* = 4D (the quantity r* was

determined in the process of numerical experiments).
The calculated distributions for the defect of the lon-

gitudinal U1(r, x) and circular W(r, x) components of
the average-velocity vector, as well as the distribution
of the intensities of various components (σu = 〈u '2〉1/2,
σv = 〈v '2〉1/2, σw = 〈w '2〉1/2) of the velocity pulsation, are
compared with the experimental data in Figs. 1, 2, 3,
respectively. The solid curves in these figures show the
results of calculations; the dots correspond to the exper-

imental data  = (1) 20, (2) 30, (3) 46 . As is seen,

the calculated results agree quite satisfactorily with the
experimental data.

Figure 4 illustrates the change in the calculated and
measured characteristic scales of turbulence as a func-
tion of the distance from the body. Here, U10/U0 is the
axial value of the defect for the velocity longitudinal
component (solid line and dots 1 are, respectively, the

calculated and experimental data);  (dashed line

and dots 2) is the maximum value of the velocity circu-

lar component in a given cross section of the wake; 

(dashed–dotted line and dots 3) is the turbulence energy

at the wake axis; and  (dashed line and dots 4) is the

characteristic scale of a wake width, which is deter-
mined from the condition

,

where 〈u'2〉1/2(0, x) is the root-mean-square value for
fluctuations of the velocity longitudinal component at
the wake axis.

As can be seen, the results of calculations agree with
the experimental data, virtually coinciding for the scal-
ing functions U10(x), Wmax(x), e0(x) = e(0, x), and r1/2(x)

within the entire range of the values of  under con-

sideration.
At large distances from the body, the behavior of all

the scaling functions exhibits an exponential depen-
dence on x (in the logarithmic coordinates, these are the
dashed straight lines in Fig. 4). In the framework of the
mathematical model used, this fact is a necessary indi-
cation of attaining self-similarity of the turbulent
motion in the wake. In particular, it is seen that the cir-

cular velocity component decreases for large  as
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Fig. 3. Transverse distributions for three components of tur-
bulence intensities in the wake at various distances from the
body.

Fig. 4. Change in the characteristic scales of the turbulent
flow in the wake as a function of distance from the body.
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Wmax(x) ~ x–2.5, i.e., more rapidly than the axial defect of
the velocity U10(x) ~ x–1.9, so that the twisting can be
ignored beginning from a certain distance from the body.

Another necessary indication of attaining self-simi-
larity is the affine similarity of transverse profiles for
various characteristics of the turbulence in the wake,
which are normalized to the corresponding scales.
Based on analysis of the calculated results, we have
determined that the similarity of distributions is also

attained in the wake for  > 1000 in exact correspon-

dence with attaining asymptotic degeneracy (Fig. 4).
Thus, in this paper, we have constructed the numer-

ical model of a twisted turbulent wake beyond a self-
propelled body. This model is based on the second-
order semiempirical model of turbulence. The results of
the calculations are well consistent with the experimen-
tal data. The numerical analysis is also carried out for
the self-similarity of the turbulent-wake degeneracy in
the far-field region.
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It is well known [1, 2] that the regularities in pro-
cesses of fracturing laboratory samples made of rocks
and the preparation of an earthquake are quite similar.
There is a sufficient number of grounds to assume that
the same similarity can also be observed in analyzing
metallic-sample fractures. The suggestion we verify in
this study is based on the fact that the processes of
crack accumulation and crack growth under different
forms of loading have common features in various
materials. They are associated with a similar sequence
of stages which are retained on many typical scales and
testify to the self-similarity of the fracture process [3–6].

One of these common regularities is the similarity in
the distribution function of basic fracture parameters.
For example, it was established in [5] that the size dis-
tribution of fatigue microcracks in carbon-steel sam-
ples obeys the relation

where N is the number of microcracks with size equal
to or larger than l and CS is a constant. The merging of
microcracks and the onset of localized sample fractur-
ing, which implies a change in its mechanism, result in
an almost two-fold reduction in the tangent bS of the
slope angle for the distribution curve.

A similar change in the mechanism of accumulating
discontinuities must affect the physical characteristics
of the fracture process. Indeed, it was established in a
number of studies (see, e.g., [7, 8]) that the amplitude
distribution of acoustic signals under the development
of vulnerability to damage in rock samples is consistent
with the relation

logN = CAE – bAElogE, 

where N is the number of acoustic pulses with acoustic
energy equal to or lower than E, ëAE is a constant, and

Nlog CS bS l,log–=
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the parameter bÄÖ in the last relation is also lowered in
its absolute value prior to fracturing.

The Gutenberg–Richter relation, well known in seis-
mology, has a similar form. This relation associates the
number of seismic events with the fracture energy [9]:

(1)

Here, N is the number of seismic events with energy not
exceeding E, M is the event magnitude, and CS is a con-
stant. Prior to the earthquake, the lowering of the expo-
nent bS often takes place [10].

The similarity observed in the above power relations
is important from different standpoints. First, it allows
us to use the lowering of the exponents (bC , bAE, and bS)
in the above power relations as forerunners of fracture.
In addition, it allows us to associate the reduction in
parameter bS prior to the earthquake with the merging
of breaks which appear in the process of the earth-
quake’s preparation. And, finally, an analogy based on
the similar sequence of the fracture preparation pro-
cesses in a solid body makes it possible to employ
metallic samples along with rock samples for studying
and modeling seismic processes.

Keeping this analogy in mind, we consider the
behavior of parameter bAE under the fracturing of
metallic samples held previously in a corrosive
medium.

To perform this analysis, the tests in [11] for the ten-
sion of samples made of low-doped 30G2 steel with a
ferrite-pearlite structure were carried out with an ulti-
mate strength and yield stress of 655 MPa and
380 MPa, respectively, in the initial state. The samples
contained an induced fatigue crack and were held for
different periods of time (360 and 2160 h) in a medium
containing hydrogen sulfide, which induces the embrit-
tlement of steel.

In the process of mechanical testing, the acoustic
emission was registered in the form of a sequence of
signals digitized with a discretization frequency of
2 MHz. The recording of each signal was accompanied
by information on both its arrival time at a piezoelectric
sensor and load magnitude. For discrimination of use-
ful signals against the noise background, the informa-

Nlog CS bS Elog– CS bSM.–= =
001 MAIK “Nauka/Interperiodica”
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Fig. 1. Changes in the load and in parameter bAE with time for the case of crack development in samples of 30G2 steel: (a) in the
initial state and (b) after three-month holding in a corrosive medium.
tive attributes of the signal shape and spectrum were
used. The basic method of information processing con-
sisted in calculating parameter bAE, which character-
izes the slope angle for the cumulative amplitude-dis-
tribution curve under fracturing [12].

The value of parameter bAE was determined as the
modulus of the slope-angle tangent for the line
obtained by the linear approximation (using the least-
square technique) of the curve for the amplitude distri-
bution of the acoustic-emission signals:

(2)

Here, N is the number of acoustic-emission signals reg-

istered with an energy larger than E ~ ; A is the sig-
nal amplitude; M is the signal magnitude measured in

decibels and equal to M = 20 ; A0 is the threshold

Nlog CAE bAE Elog– CAE bAEM.–= =

A0
2

A
A0
------log
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signal amplitude taken equal to 1 µV; and ëAE is an
acoustic parameter characterizing the constant compo-
nent of dependence (2).

To construct the time dependence for parameter
bAE, each of its values was determined according to for-
mula (2) in a moving window involving 50 experi-
mental points. The neighboring points of the curve
were obtained when shifting the window stepwise
(3−5 points). For reducing the irregularity of the plot,
linear smoothing was performed.

Furthermore, the logarithmic dependence of the
accumulated number of events as a function of magni-
tude for all sampling points was plotted. Parameter bAE
was also estimated according to the curve slope angle.

The results of estimates for the time dependence of
parameter bAE for samples of the initial material embrit-
tled as a result of being held in a corrosive medium are
shown in Fig. 1 together with the loading curves. As
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follows from Fig. 1, holding in the corrosive medium
abruptly changes the shape of the stress-strain curve.
After holding in this medium, in contrast to the smooth
tensile-test diagram characteristic for steel in the initial
state (Fig. 1a), a number of abrupt load drops appear on
the curve (Fig. 1b) which correspond to crack jumps. It
follows from Fig. 1 that immediately before the load
drop, i.e., prior to the jump of the crack, a decrease in
parameter bAE is observed.

The data presented in [5, 10, 12] allow us to suggest
that the high magnitudes of acoustic-emission events
and, correspondingly, the low values of parameter bAE

are caused by the interaction of defects at the stage of
plastic deformation of the metallic sample and by the
merging of microcracks in the plastic zone prior to the
formation of the main crack. Consequently, the
decrease in parameter bAE can be considered a criterion
for fracture localization.

Studies of breaks in tested samples after holding in
a corrosive medium have revealed a periodic relief
associated with a jump-type crack development
(Fig. 1b). It follows from Fig. 1 that the crack-jump
length is proportional to the load-drop magnitude.
While testing samples made of the initial material
(Fig. 1a), crack jumps and a periodic relief were absent.
Studies of breaks with a scanning electron microscope
have shown that, obeying the mechanism of intergrain
cleavage, the fracture in the region of the crack jump is

103
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Fig. 2. Cumulative distributions for the number of acoustic-
emission events as functions of their magnitude for 30G2-
steel samples at various stages of loading.

1.0
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7

5
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Fig. 3. Changes in parameter bS characterizing the process
of earthquake preparation in the central region of New
Zealand from 1955 through 1979. The earthquakes with
magnitudes M > 5 are indicated in the abscissa axis by ver-
tical lines.

100
brittle. At the same time, in the regions of slow stable
crack growth, the fracture mechanism changes and
attributes of viscous fracture (dimples) are observed in
the breaks. The same dimple microrelief is also charac-
teristic for a sample made of the initial material.

Analysis of the acoustic-emission signal shapes has
shown that signals with relatively low amplitudes,
mean frequencies, and a long signal-front time (time
for attaining the signal-amplitude peak) correspond to
a fracture mechanism of the viscous type. In contrast,
the brittle fracture is characterized by high amplitudes
and frequencies and a relatively short time of signal
increase. Signals of the viscous type dominated at the
initial stage of loading, which was associated with plas-
tic deformation, as well as at the stage of viscous frac-
ture. Prior to the jump of a brittle crack, the fraction of
brittle-type signals increased.

Magnitude analysis of the distribution curves for the
accumulated number of acoustic signals (analysis of
recurrence curves) has revealed the following regulari-
ties. The recurrence curves plotted for the initial period
of sample deformation were linear in their logarithmic
coordinates (i.e., M was a linear function of logN),
Fig. 2, curve 1, with slope angle bAE equal to 1.5. The
curves plotted for the subsequent periods of time in
which crack jumps were found had a discontinuity in
the high-amplitude region of acoustic emission signals
(Fig. 2, curve 2). With an increase in the number of
crack jumps, the values of parameter bAE corresponding
to the linear portion of the curves decreased (Fig. 2,
curve 3) from 1.15 (curve 2) to 0.9. The values of bAE
obtained as a result of testing all the samples were 1.37
and 1.01 for the embrittled and the initial materials,
respectively.

The results of the studies carried out allowed us to
reveal certain common features of the acoustic and
seismic regimes preceding the basic event (fracture or
earthquake).

First, the periodic character of the time dependence
for parameter bAE, while testing metallic samples
(Fig. 1), is similar to the character of the change in
parameter bS entering into the Gutenberg–Richter rela-
tion (1), which occurs in the period of earthquake prep-
aration. As is seen from Fig. 3, in which the time depen-
dence of parameter bAE is shown for one of the central
regions of New Zealand [10], an increase in this param-
eter for several years prior to the basic event is replaced
by a decrease for several months or weeks prior to an
earthquake. A similar lowering of parameter bS in the
region of fore-shock activity is also noted in many other
papers.

Second, the values of parameters bAE and bS are
close to one another and vary in similar ranges. In this
case, parameter bS is associated with the change in the
stressed state [2], the inhomogeneity of the geological
structure [1], and the degree of the rock brittleness
depending, in particular, on the depth of the earthquake
DOKLADY PHYSICS      Vol. 46      No. 1      2001
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center: the closer the earthquake center to the crust sur-
face, the higher the rock brittleness. Systematic studies
of these factors are apparently absent; however, it is
noted in [2] that the higher the rock brittleness, the
higher parameter bS. Similar conclusions can be drawn
based on the results of the tests carried out in the
present study.

Third, a common feature of the acoustic and seismic
regimes is the existence of a linear part of the distribu-
tion curves and a discontinuity in the regions of mean
and large magnitudes, respectively.

Thus, our studies have confirmed the suggestion that
there exists a similarity in the basic regularities for the
development of acoustic activity under the fracturing of
metallic samples and for the seismic activity in the
period of earthquake preparation. The similarity indi-
cated is, probably, based on the common regularities of
nucleation and development of discontinuities in vari-
ous materials at different-scale levels. Therefore, the
difference in the properties of metallic samples and
rocks is of no decisive importance and can only affect
the values of exponents in relations obeying the power
law which describe the kinetics of the basic-event prep-
aration. Making use of metallic samples as models for
studying the global processes occurring in the Earth’s
crust allows us to expand the possibilities for analysis
of the basic characteristics of these processes and the
factors affecting them.
DOKLADY PHYSICS      Vol. 46      No. 1      2001
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An asymptotic solution to the problem of compres-
sing a plane strip by rough plates was found by Prandtl
[1]. The compression of an ideally plastic three-dimen-
sional layer was considered in [2]. Below, we deal with
three-dimensional flows of an ideally plastic material in
the case of plasticity condition depending on stress-
deviator components. We prove that the linearity of
compressing stresses is not related to the form of the
plasticity condition. In particular, we analyze the Mises
plasticity condition.

1. We consider the equilibrium equations

(1.1)

and the plasticity condition

(1.2)

where σij are the stress-tensor components and  are
the stress-deviator components:

(1.3)

From (1.2), in accordance with the associated flow
rule, we have

(1.4)

where εij are the strain-rate components.

σx∂
x∂

--------
τ xy∂
y∂

---------
τ xz∂
z∂

---------+ + 0,=

τ xy∂
x∂

---------
σy∂
y∂

--------
τ yz∂
z∂

---------+ + 0,=

τ xz∂
x∂

---------
τ yz∂
y∂

---------
σz∂
z∂

--------+ + 0=

f σij'( ) f σx' σy' σz' τ xy τ xz τ yz, , , , ,( ) 0,= =

σij'

σij' σij δijσ, σ–
1
3
---σii.= =

εx λ f∂
σx∂

--------, 2εxy λ f∂
τ xy∂

---------,= =

εy λ f∂
σx∂

--------, 2εxz λ f∂
τ xz∂

---------, λ 0,≥= =

εz λ f∂
σx∂

--------, 2εyz λ f∂
τ yz∂

---------,= =
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From (1.2)–(1.4), we have

(1.5)

and then 

(1.6)

Let a layer be compressed along the z-axis by rigid
parallel rough plates (see the figure). We seek the solu-
tion under the assumption that all deviator components
are functions of only variable z:

(1.7)

Furthermore, we set that

(1.8)

It follows from (1.1), (1.7), and (1.8) that

(1.9)

We seek the displacement-velocity components in
the form

(1.10)

where

εx εy εz+ + 0=

εx

f∂
σx∂

--------
--------

εy

f∂
σy∂

--------
--------

2εxy

f∂
τ xy∂

---------
----------

2εxz

f∂
τ xz∂

---------
---------

2εyz

f∂
τ yz∂

---------
---------.= = = =

σij' σij' z( ).=

τ xz az c1, τ yz+ bz c2,+= =

a b c1 c2  =  const. , , ,

σx –ax by– c3 ϕ1 z( ),+ +=

σy a– x= by– c3 ϕ2 z( ),+ +

σz –ax by– c3, c3  =  const.+=

u p1x q1y ψ1 z( ),+ +=

v p2x q2y ψ2 z( ),+ +=

w cz, pi qi c  =  const, , ,  =           
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Figure.
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(1.11)

According to (1.10) and (1.11),

(1.12)

From (1.12) and (1.5), we arrive at the equality

(1.13)

With regard to (1.12), expressions (1.6) take the
form

(1.14)

According to (1.2), (1.3), and (1.7), functions 

depend on variable z. It follows from (1.2) and (1.9)
that

(1.15)

According to (1.15), functions ϕ1(z) and ϕ2(z) are
determined from the relationships

.

From (1.14), we have

According to (1.9), the linearity of the compressing
stresses σz does not depend on the form of plasticity
condition (1.2).

2. We assume that both incompressibility condi-
tion (1.5) and the following relations of the plasticity
theory are valid [3]:

(2.1)

εx
u∂
x∂

-----= , εy
v∂
y∂

-------, εz
w∂
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------,= =

εxy
1
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x∂
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1
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x∂
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1
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y∂
------+ 

  .
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2
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εxz
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2
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zd

---------, εyz
1
2
---

ψ2d
zd

---------.= =

p1 q2 c+ + 0.=
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--------
--------

q2

f∂
σy∂

--------
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f∂
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---------
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ψ1'
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ψ2'

f∂
τ yz∂

---------
---------.= = = =
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σij∂

---------
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---------
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--------- ϕ1 z( ) ϕ2 z( ) τ xz τ yz, , ,( ),=
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 ∂  ---------  
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(2.2)

We seek the solution under the assumption that
expressions (1.7)–(1.10) hold. In this case, relations (2.2)
take the form

(2.3)

(2.4)

(2.5)

where

The set of equations (2.4) and (2.5) is linear with
respect to  and . From (2.4) and (2.5), we find

 

(2.6)

 

Equations (2.6) govern functions 
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 and 

 

ψ

 

2

 

, with
functions 

 

τ

 

xy

 

, 

 

ϕ

 

1

 

, and 

 

ϕ

 

2

 

 determined from (2.1), (2.3),
and (2.5).

 

3. 

 

We now consider the Mises plasticity condition:

 

(3.1)

 

From the associated plastic-flow rule, we have

From these relations, it follows that relationship (1.5)
and the equalities

 
(3.2)

 

are valid.
We seek the solution under the assumptions

of (1.7)–(1.10). From (1.9), we have

 

(3.3)
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Taking into account (3.1) and (3.3), we obtain

(3.4)

where τxz and τyx are determined by relations (1.8).
According to (1.12) and (3.3), Eqs. (3.2) take the

form

(3.5)

From (3.5), we find

(3.6)

Using (3.4), (3.6), and the equality

,

we obtain the equations

Æ (3.7)

With regard to expressions (3.5)–(3.7), we arrive at
the equation

τ xy
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2 ϕ2
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F2 z( ) k2 τ xz
2– τ yz
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ϕ2 NF z( ), N mM.= =

3 p1

2N M–( )F z( )
-----------------------------------

ψ1'

2τ xz

---------
ψ2'

2τ yz

---------= =
and, finally,

Thus, in accordance with (1.9) and (1.10), we have
determined the stress components and the strain-rate
components in the problem of three-dimensional flow
of an ideally plastic layer compressed by rough plates.
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INTRODUCTION

The stressed-strained state of an elastic cavity weak-
ened by a hole of nonclassic shape in the case when an
acting load varies in time in an arbitrary manner is dif-
ficult to investigate, first of all, because of the impossi-
bility of separating the time variable. In this connec-
tion, in order to solve unsteady problems, we often have
to use integral transformations over the time variable,
the execution of an inverse integral transformation
being one of the points in this case.

FORMULATION OF THE PROBLEM

Many issues associated with studying elastic-wave
diffraction reduce to solution of unsteady problems for
potentials of longitudinal and transverse waves Φ
and Ψ [1–4]:

(1)

Here, x = (x1, x2), t = c1t1, γ = , and c1, c2 are the prop-

agation velocities for longitudinal and transverse
waves. We assume that the boundary conditions caused
by the action of a wave of arbitrary profile on an elastic
medium weakened by a complex-shaped hole Ω with a
boundary contour Γ are of the form

(2)

where n and τ are the normal and the tangent to the
boundary contour Γ, respectively. The initial conditions

∂2Φ
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---------- ∂2Φ

x2
2∂

----------+
∂2Φ

t2∂
----------, ∂2Ψ
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x2

2∂
----------+ γ2∂2Ψ

t2∂
----------.= =

c1

c2
----

σn Γ f 1 x1 x2 t, ,( ), τn Γ f 2 x1 x2 t, ,( ),= =
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are written as

(3)

For solving problems of such type, methods of the
dynamic elasticity theory are mainly employed [4].
However, they make it possible to obtain exact analytic
solutions, as a rule, only for a limited number of
problems.

METHOD OF SOLUTION

We will solve problem (1), (2) using approaches
based on the combined employment of the Laplace
transform [5] and the R-function method (RFM) [6–11].
The algorithm for application of the Laplace transform
implies the following stages:

(a) A passage from the desired original F(x1, x2, t) to

the transform function (p, x1, x2) is performed.

(b) In accordance with the operational-calculus the-
orems, the initial system of equations (1), (2) is trans-
formed to a simpler system of equations in terms of the
transform-function (p, x1, x2).

(c) A solution to the transformed system in terms of
the transform-function (p, x1, x2) is found.

(d) A passage from the solution obtained for the
transform-function (p, x1, x2) to the original
F(x1, x2, t) is realized.

We apply the Laplace transform in t-variable to sys-
tem (1)–(3):

(4)

Here, p is the transformation parameter, Rep > 0; and the
functions Φ and Ψ are implied by function F(x1, x2, t).
Then, in the transform domain, we obtain the system of

Φ t 0= 0, Φ∂
t∂

-------
t 0=

0,= =

Ψ t 0= 0= ,
Φ∂
t∂

-------
t 0=

0.=

F

F

F

F

F p x1 x2, ,( ) F x1 x2 t, ,( )e pt– t.d

0

∞

∫=
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Helmholtz equations [2, 3] for the functions  and :

(5)

with boundary conditions

(6)

We solve problem (5), (6) by employing approaches
based on the R-function theory [6–11]. We represent
the analytic solutions for the potentials  and  as [7]

(7)

where

Here, ω = ω(x) are functions describing the equation of
the boundary Γ; T1, D1 are special differential operators
defined in [6]; Φi1 are special functions, classic polyno-
mials, or polynomials with local supports, which can be
represented as expansions with coefficients deter-
mined from the variation principle corresponding to
problem (5), (6); and λ, µ are the Lamé coefficients for
the elastic medium. Solutions (7) have the form of
functional relations involving elementary functions or
superposition of elementary and special functions. In
this case, boundary conditions (2) and the geometry of
the domain under investigation for problem (1), (2) are
taken into account analytically. Moreover, the arbitrari-
ness in choosing functions Φi1 (i = 1, 2) makes it possi-
ble to take into consideration information available
a priori (if it exists) on the exact solutions and to
approach them in the metric of corresponding func-
tional space. The conditions at infinity are taken into
account by introducing the pseudodifferential operators
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-------2 λ µ+( )
λ 2µ+

---------------------,+ +=

Ψi ωT1Φi1
λ

λ 2µ+
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x1∂
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2 ω∂
x2∂

-------
2

+ , i 1 2;,= =

Φ0
∂
x1∂

-------Φ̃0
∂
x2∂

-------Ψ̃0, Ψ0+
∂
x2∂

-------Φ̃0
∂
x1∂

-------Ψ̃0,–= =

Φ̃0
1

λ µ+
-------------ω ω∂

x1∂
------- f 1 x( ) 1

µ
---ω ω∂

x2∂
------- f 2 x( ),+=

Ψ̃0
1

λ µ+
-------------ω ω∂

x2∂
------- f 1 x( ) 1

µ
---ω ω∂

x1∂
------- f 2 x( ).–=

S1 Φ( ) Φ∂
n∂

-------, S2 Ψ( ) Ψ∂
n∂

-------.= =
These operators are considered in a certain bounded
domain Ω0 ∈ Ω  with a boundary Γ0 . We choose the
function ω(x) in the form

where ω0 is the equation for boundary Γ0 in domain Ω0 .
We provide a required quality for structural formula (7)
when studying wave processes in various zones for
incident and reflected waves. To find the potentials Φ
and Ψ of initial problem (1), (2), the inverse Laplace
transform L–1 needs to be performed [5]. This stage is
the most difficult in the application of the Laplace
transform. Various approaches for finding an original
exist, e.g., tables of correspondence between originals
and their transforms. However, the tables do not always
cover the cases relevant to actual practice. Moreover, an
original function is often expressed in terms of sophis-
ticated functions which are difficult to calculate [5]. We
demonstrate one of the approaches for approximate
inversion of the Laplace transform. It allows the origi-
nal to be found from its transform in the real axis [12]
and reduces to summation of convergent infinite series.
In particular, this method for the inversion of the
Laplace transform allows the original F(x1, x2, t) to be
found using the Mellin–Bromwich inversion formula [5]:

(8)

where

(p, x1, x2) = (p + γ) is the function regular in the
region Rep > 0; c is the abscissa in the absolute-conver-
gence half-plane for the Laplace integral; p is the
parameter of the Laplace transform (Rep > γ); and γ is
the abscissa of the absolute convergence for the
Laplace transform, which is not necessarily zero. The
algorithm for this method of employing the inverse
Laplace transform [12, 13] implies that the exponent in
formula (8) can be approximated by the expression

(9)

where a is an arbitrary positive number; the functions
ϕ1(x, a) and ϕ2(x, a) are chosen in such a manner that

the condition  = ex is fulfilled.

With the expansion of functions sinhx and coshx in
terms of partial fractions and assuming that

ϕ1(p, a)   0, ϕ2(p, a) (p)  0 as |p |  ∞,

ω
ω0r

ω0 r+
--------------, r x1

2 x2
2+( )1/2

,= =

F x1 x2 t, ,( ) eγtF* x1 x2 t, ,( ),=

F* x1 x2 t, ,( ) 1
2πi
-------- F* p x1 x2, ,( )ept p;d

c i∞–

c i∞+

∫=

F* F̃

ex ea
x≈ 1

2
---

ϕ1 x a,( )
sinh x a–( )
---------------------------

ϕ2 x a,( )
cosh x a–( )
----------------------------+ 

  ,=

ea
x

a ∞→
lim

F̃* F̃*
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the following expression can be written out:

(10)

Here, expression (8), with substitution (9) taken into
account, is implied as F*(t, a):

Substituting expression (10) into (8), we obtain the
inverse Laplace transform in the form of a series:

(11)

Relation (11) is simplified provided that functions
ϕ1(x, a) and ϕ2(x, a) are independent of x or that they
can be approximated, e.g., by the following functions:

(12)

In the latter case, we have

(13)

where

In our case,  implies the potentials of the longi-

tudinal and transverse waves  and  considered as
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=  
1
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t
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1

2a
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,

Rn 1–( )nReF̃* a
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π
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 + 
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transform functions for which the solution is repre-
sented in form (7). If approximation (12) is fulfilled, we
can apply inverse integral transformation (8) to solu-
tions (7) and arrive at the expressions for the potentials
of longitudinal and transverse waves Φ and Ψ in the
form of the following series:

(14)

The parameter a is chosen in such a manner that the
upper and lower limits containing the desired original
could be indicated. It is also easy to write out the gen-
eral expression for potentials Φ and Ψ with general
relation (11) taken into account. Thus, with known
solution (7) in the transform domain and the values of

these functions at points  + i n ,  + i  – 

of the real axis, the solution to problem (1), (2) can be
found and analyzed. Using the formulas obtained for
potentials Φ and Ψ, the components of the strain- and
stress tensors can be determined from the following
expressions [1]:

Here, the asterisk implies transposition; E is the unit
matrix; c1 is the propagation velocity for longitudinal
waves; c2 is the propagation velocity for transverse
waves; and U is the displacement vector that can be rep-
resented in the form

Here, vectors Up and Us describe, respectively, the
potential field and solenoidal field:

NUMERICAL RESULTS

We consider the interaction of a plane unsteady dila-
tational wave with a circular cylindrical cavity of radius
r1 having a circular groove of radius r2 . The interaction
occurs in an unbounded elastic medium under the con-

Φ 1
2a
------ ∂

x1∂
------- Φ1 Ψ2+[ ] ∂

x2∂
------- Φ2 Ψ1+[ ]– Φ0+

 
 
 

=

× asinh R0 2 Rn

n 1=

∞

∑+ 2 acosh In

n 1=

∞

∑+
 
 
 

,

Ψ 1
2a
------ ∂

x2∂
------- Φ1 Ψ2–[ ] ∂

x1∂
------- Φ2 Ψ1–[ ]– Ψ0+

 
 
 

=

× asinh R0 2 Rn

n 1=

∞

∑+ 2 acosh In

n 1=

∞

∑+
 
 
 

.

a
t
---

 π
t
--- 

 a
t
---

 π
t
--- n

 1
2
---





2ε ∇ U ∇ U( )*, σ+ λεE 2µε.+= =

U Up Us.+=

Up ∇ Φ, U ∇ Y, ∇ Y 0.= = =
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0
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Fig. 1. Diagram for stresses  in an elastic medium in the vicinity of a region weakened by a hole for the case of (a) t = 2 and

(b) 4 (short waves).

σr
ditions of plane deformation. At the cavity surface, the
following boundary conditions hold true:

(15)

Here, Γ is the cavity boundary, f(t, x1, x2) = σ0σ(t), and
σ0 = const. We consider the results of calculations carried
out according to the foregoing algorithm. In Fig. 1, the

stress distribution  =  is shown in the vicinity of the

cavity for dimensionless time moments t =  =

2, 4 . The value of a in relations (14) was determined

σn Γ f t x1 x2, ,( ), τ Γ 0.= =

σr

σr

σ0
-----


 c1τ

r1
-------




from the intervals (0.713, 0.789) and (1.111, 1.156) for
the short and long waves, respectively. It is worth not-
ing that the solution to this problem in the limiting case
of the cylindrical cavity without a groove (r2 = 0) has
demonstrated reasonable agreement with the results of
paper [1].

Thus, in the present study, the method for solving
boundary value problems of unsteady elastic-wave dif-
fraction on complex-shaped objects, based on the
R-function theory, is proposed and substantiated. The
algorithms found, as well as the physical analysis of the
results obtained and their comparison with traditional
methods, allow it to be concluded that the method pro-
posed is quite highly efficient.
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The results of this study were reported at the Second
International Conference on Modern Trends in Compu-
tational Physics, July 24–29, 2000. Dubna, Russia [14].
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Available experimental data testify to the existence
of regimes in plasmas in which strong electric and mag-
netic self-fields can appear. According to the Gauss the-
orem, electric-field intensity is determined by the space
charge. As a result of charge separation in plasma, elec-
tric domains are formed [1]. These domains and the
domain instability observed in semiconductor plasma
were also detected afterwards in gas-discharge plasma
[2], in explosive-emission cathode plasma [3], and in
extraterrestrial-space plasma. Collapsing the domains
near plasma-chamber walls results in formation of
plasma channels [3]. These channels were also
observed in [4].

We consider the grounds leading to the formation of
domains in plasma. Voltage drop is determined by finite
plasma conductivity. In a number of cases, the output
voltage of a power source maintains an electric-field
intensity E in plasma exceeding the critical Dreicer
field Ec . At E > Ec , there occurs a transition of elec-
trons into the collisionless runaway state. At a certain
field intensity, their directed velocity exceeds the thermal
velocity. In the presence of a magnetic field, at E > B,
plasma particles are also captured into the acceleration
regime. In inhomogeneous plasmas, there exist concen-
tration (pressure) gradients. The action of electric and
magnetic fields and concentration gradients results in
the formation of directed-drift flows of electrons and
ions. In general form, these flows can be written out as
the relations

(1)

(2)

where n is the concentration, u is the velocity, and D is
diffusivity. The subscripts e and i denote an electron
and an ion, respectively. In the region of charge separa-
tion, the condition of inequality for flows of directed
particle drift takes place, i.e., Ge ≠ Gi . In a strong longi-
tudinal electrical field, Ge > Gi . In plasmas placed into a
longitudinal magnetic field, the transverse flows of the
directed drift are determined by the particle diffusion.

Ge –neue E B,( ) De∇ ne,–=

Gi niui E B,( ) Di∇ ni,–=
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In a weak magnetic field, when the cyclotron frequency
ωc is much lower than the collision frequency between
electrons and neutral atoms νm , the transverse flows
satisfy the inequality Ge, ⊥  > Gi , ⊥ . Conversely, in a
strong magnetic field, i.e., when ωc @ νm , the reverse
inequality, Ge, ⊥  < Gi, ⊥ , is valid. Ignoring the processes
of ionization, recombination, and collisions, we can
write out continuity equations for ions and electrons in
the form

(3)

(4)

The distribution of the electric-field intensity in plas-
mas with a dielectric permittivity ε is given by the Pois-
son equation

(5)

The electron and ion densities standing in the right-
hand side of equation (5) are excessive. Upon differen-
tiating (5) with respect to time and taking into account (3)
and (4), we obtain

(6)

It follows from (6) that the intensity Eind of the electric-
field induced in the process of charge separation is pro-
portional to the difference in the directed drift flows for
electrons and ions. Since plasma is an element of an
electric circuit (its load), then the density fluctuations
for particles of a certain kind, arising in the region of
domain nucleation, have no time to disappear because
of the finite plasma conductivity. Therefore, the density
fluctuation will grow until the resulting force of all the
forces responsible for the fluctuation and leading to
charge separation will be balanced by the force of the
Coulomb attraction between the oppositely charged
layers of the domain. At this moment, a stable electric
domain of a strong field is formed in the plasma. The
generation of the domain occurs for a time tf exceeding
the Maxwellian relaxation time τM for the space charge.
In semiconductor physics, it is assumed that tf = 3τM.

ne∂
t∂

------- ∇ Ge⋅ ,–=

ni∂
t∂

------- ∇ Gi⋅ .–=

∇ ε E( )⋅ 4πe ni ne–( ).=

Eind∂
t∂

------------
4πe

ε
--------- 

  Ge Gi–( ).=
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The relaxation time is given by the relationship τM =

 [5], where µe is the electron mobility.

The formation of electric domains in plasma is
equivalent to introducing an element with a capacitive
component into a medium having an ohmic component
of its impedance. Using the Ohm’s law j = σE and the

relations I =  and Q = CU, we can determine that the

charge in a domain layer varies as Q = Q0 .

The displacement or escape of a group of charged par-
ticles of the first kind with a larger velocity from a cer-
tain region in the plasma to the distance L exceeding the
Debye screening length λD and their separation from
a group of particles of the second kind give rise to both
an induced electric field Eind and a space charge associ-
ated with this field. In the process of formation or
decomposition of a domain, a displacement current
appears between its layers. Since the electric circuit
must be closed, it is evident that the role of the conduc-
tor or reverse-current conductor connecting the domain
layers is played by the plasma contacting them through
the periphery. The transition of a part of plasma elec-
trons from the current-conducting (free) state into the
bound state, i.e., into the layers of the excess negative
charge of electrical domains, is responsible for the
anomalous plasma resistance.

The current flowing between the layers of a domain
during its generation or collapse is related to change in
the electric charge. In accordance with the Maxwell
theory, the time-alternating electric field produces the
magnetic field. The left-hand side of Eq. (6), containing

the factor , corresponds to the displacement-current

density entering into the Maxwell equation:

(7)

In the process of formation, the conduction current in
the region of a domain drops to zero. We now estimate
the electric-field intensity using the data obtained
in [3]. The peak voltage across a domain was Udl =
50 kV. The distance between layers can be evaluated
with the help of the formula L = uetf . In a strong field,
at E > Ec , the velocity of the electron motion is ue ≈
108 cm/s. For plasma with ne = 1014 cm–3, the domain
time formation attains tf = 3 × 10–10 s. Hence, we have

L = 3 × 10–2 cm. The field intensity Eind =  induced

on a domain is Eind ≈ 1.7 × 106 V/cm. The variation rate

for the field intensity induced on a domain is  ≈

1015 V/(cm s). The estimates based on the data obtained

ε
4πeneµe

--------------------

dQ
dt
-------

t
τM
------ 

 exp

1
c
---

∇ B× 1
c
--- E∂

t∂
------ 4π

c
------J.+=

Udl

L
-------

dEind

dt
------------
in [3] show that, when the electric current in the region
of a domain attains I = 200 A, the magnetic induction at
a distance of 0.1 cm from the domain center is 4 kGs.
The magnetic fields induced in the process of charge
separation are responsible for the formation of mag-
netic cavities, i.e., regions in which the resulting mag-
netic field in both its magnitude and direction consider-
ably differs from the induction of the longitudinal mag-
netic field imposed on the plasma. These cavities
promote anomalous plasma diffusion. The spontaneous
magnetic fields arising in plasma of a Z-pinch, which is
caused by the explosion of wires, exist owing to electric
domains. Formations propagating with a velocity char-
acteristic of domains were detected in such plasma [6].

When forming a domain, the velocity of a group of
particles escaping a volume element decreases because
of the Coulomb interaction between the domain layers.
The reduction in the kinetic energy for this group of
particles is accompanied by a rise in their potential
energy on the domain. The charge separation in plasma,
which occurs for a very short time, is accompanied by
the appearance of transverse electromagnetic waves.
The equations of motion for particles in the presence of
a strong electric field in weakly ionized plasmas can be
written out in the form

(8)

(9)

Since the directed-drift velocity of electrons in the
strong electric field is commensurable with the thermal
velocity or even higher, we can write out the energy-
dependent collision frequency in the form νea(E) =

. Solution of a system consisting of equations of

motion, a continuity equation and Maxwell equations
makes it possible to obtain expressions for the fre-
quency of space-charge waves,

(10)

and the frequency of transverse electromagnetic waves,

(11)

generated in the process of charge separation. The fol-
lowing notation is used in (10) and (11): ωpe is the
plasma (Langmuir) electron frequency, σd is the differ-
ential plasma conductivity (σd = 4πeneµd), k is the wave
vector, and c is the speed of light. It follows from (10)

that the charge separation time τ =  and the con-
stants for the rise (decay) time of fluctuation ampli-
tudes are determined by the differential plasma conduc-
tivity. Charged particles existing inside a domain and

me
∂
t∂

---- ue ∇⋅+ 
  ue eE meνea E( )ue,––=

mi
∂
t∂

---- ui ∇⋅+ 
  ui eE.=

e
me

------ µd
1–

ωwsc ωpe

ωpe
2

24πiσd

-----------------,–=

ωshf kc ωwsc,+=

ωwsc
1–
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GENERATION OF STRONG FIELDS IN PLASMA 11
electrons and ions produced due to ionization of the
neutral atoms in the domain region accumulate the
energy corresponding to the voltage on the domain.
This energy is sufficient to satisfy the phase-matching
condition and subsequent acceleration with the help of
electromagnetic waves generated in the process of
charge separation. The energy of fast electrons and ions
in a number of experiments exceeds by several times
the value corresponding to the voltage applied. The
high voltages in plasmas are attained due to interaction
of the generated electromagnetic waves with both
plasma and the plasma-containing chamber. In a num-
ber of cases, the latter plays the role of a hollow reso-
nator. Application of a resonator insulated from elec-
trodes in spark-discharge experiments results in a sig-
nificant decrease in the breakdown voltage [7].

It is also evident that the magnetic storms in the
Sun’s chromosphere and fast particle flows detected in
periods of elevated solar activity are caused by the gen-
eration of domains in the solar plasma.
DOKLADY PHYSICS      Vol. 46      No. 1      2001
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