
  

Doklady Physics, Vol. 46, No. 2, 2001, pp. 103–106. Translated from Doklady Akademii Nauk, Vol. 376, No. 6, 2001, pp. 753–756.
Original Russian Text Copyright © 2001 by Volkov, Grishchenko, Kravchenko, Loshchilov, Pichugin, Pustovo

 

œ

 

t, Skuratova.

                        

TECHNICAL 
PHYSICS
Analysis of Ice Conditions in Arctic Regions
according to Data of Radiophysical Measurements 

by the “Okean-01” Satellite

A. M. Volkov*, V. D. Grishchenko**, V. F. Kravchenko***, V. S. Loshchilov**,
A. M. Pichugin*, Corresponding Member of the RAS V. I. Pustovoœt****, and I. S. Skuratova*****

Received September 9, 2000
INTRODUCTION

Radiophysical methods play an important role in
solving problems of the Earth’s remote probing (see,
e.g., [1–5]). Among them, microwave-range multichan-
nel satellite data are of paramount significance, since
they provide complete information on environmental
conditions on the basis of observations from space
independently of the weather and illuminance of the
Earth’s surface. The latter fact is of particular impor-
tance while monitoring the sea-ice cover in polar
regions. However, in spite of the intense development
of radar ([1, 2, 4, 6–9] etc.) and radiometric ([1, 4, 10,
11] etc.) systems for the space monitoring of the envir-
onment, there is no experience to date concerning the
combined data analysis of radar and radiometric Earth
probing. This can be explained by the fact that the most
known satellites are not equipped with adequate instru-
ments operating synchronously in time and space. Only
satellites of the “Okean” series possess these features
[1, 2, 4]. Therefore, the urgency of the present study is
evident.

INSTRUMENTAL CHARACTERISTICS

In this study, we present results of a complex analy-
sis and an interpretation of patterns of sea ice, which
were obtained with the help of both a radar lateral-scan-
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ning system functioning with an operation frequency of
9.52 GHz, a scanning band of 450 km, and a coordinate
resolution of 2 × 2 km2 and a PM-08 microwave radi-
ometer operating at a frequency of 36.6 GHz with hor-
izontal polarization, a scanning band of 550 km, and a
coordinate resolution of 20 × 20 km2. Both systems are
installed on board the “Okean-01” satellite [1, 2, 4, 12].

AN ALGORITHM FOR DATA INTERPRETATION

In spite of its rather low resolution, the PM-08 radi-
ometer makes it possible to obtain important informa-
tion on ice conditions, which complements the data of
a radar lateral-scanning system. In particular, the back-
scattering of radiowaves by rarefied young smooth ice
is very low and differs little from the scattering by a
weakly ruffling sea surface. Therefore, in patterns
obtained with the help of a radar lateral-scanning sys-
tem, this ice can be erroneously interpreted as an open
water surface. In this case, the PM-08 ranging data
make it possible to determine the positions of these ice
fields more reliably owing to the stronger contrast
between the radiations of the sea surface and the ice
cover.

Below, we present an algorithm for the interpreta-
tion of microwave patterns of the sea-ice cover together
with an estimate of the general and partial ice close-
packing for predominant ice age stages. This algorithm
is based on model calculations of radio-brightness tem-
peratures and PM-08 radiometric data. Methods of pro-
cessing and analysis of radiometric and radar patterns
are described in a number of papers [13–15]; therefore,
these problems are not discussed here.

We emphasize that single-channel measurements by
a PM-08 radiometer make it possible only to distin-
guish either two age types of sea ice (provided that it
completely covers the region under investigation and
other ice types are absent) or the combination of ice and
open water. To determine an ice type according to PM-
08 ranging data, the following procedures should be
performed:
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1. Reclassification of the radiothermal pattern in
accordance with the chosen threshold, and creation of
the binary pattern in which the brightness values equal
to 100 or 0 are assigned to all pixels corresponding to
many-year ice or one-year ice, respectively. A similar
procedure is performed to separate the boundary
between the ice and the open water surface.

2. Low-frequency filtration by a window with a
given size of the binary pattern obtained forms a tone
pattern whose brightness in each pixel is proportional
to the value of the close-packing of the many-year ice
in the filter window. The size of this window is chosen
depending on the necessary specification of the ice
close-packing distribution, pattern resolution, and the
scale of the ice map being created.

3. Reclassification of the smoothed pattern for sep-
arating the boundaries of zones with prescribed quanti-
tative ranges of close-packing values for many-year ice,
and assigning conditional brightness values to these
zones.

4. Interactive procedure of constructing a vectorial
file of the ice map with separating the boundaries of
zones with given ranges of ice close-packing values
according to their pattern in terms of a conditional
brightness. Graphical ice symbols containing qualita-
tive and quantitative parameters for distributions of the
two ice types (in accordance with their international
classification) are included in the zones.

REALIZATION IN PRACTICE

The above-mentioned approach to the interpretation
of radiothermal patterns of sea ice is aimed at con-
structing ice maps with scales on the order of 1/3 × 106

to 1/5 × 106. In Fig. 1, an ice map of the ice close-pack-
ing distribution for the many-year ice and one-year ice
is presented. The map is obtained according to data of
a PM-08 radiometer using a filter window of 15 ×
15 pixels.

To confirm the validity of the interpretation of sea-
ice radiothermal patterns, a fragment of the complex
ice map developed in the Center of the Ice and
Hydrometeorological Information of the Research
Institute of Arctic and Antarctic Regions for the period
of January 10 to 15, 1997, is presented. The map was
composed according to lateral-scanning radar-system
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Fig. 1. Ice map composed according to the results of interpretation of the radiothermal pattern for the PM-08 microwave radiometer
installed at the “Okean-01” satellite No. 7.

of the ice age are indicated:
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Fig. 2. Fragment of the complex review ice map composed according to the results of visual interpretation for a series of patterns
obtained by the lateral-scanning radar system installed at the “Okean-01” satellite No. 7 and AVHRR patterns of the NOAA satellite
in the infrared range for the period of January 10 to 15, 1997 (Archives of the Center for the Ice and Hydrometeorological Informa-
tion of the Research Institute of Arctic and Antarctic Regions).

of the ice age are indicated: 

thick ice (120-200 cm);

F

patterns obtained with the help of the “Okean-01” sat-
ellite and the AVHRR high-resolution multichannel
radiometer of the NOAA satellite. Based on the com-
parative analysis of these maps, we are able to make the
following conclusions:

1. The positions of the boundaries for a zone in
which the old ice predominates (6/10 and larger), in
general features, coincide for both maps.

2. The southern boundaries for a zone of maximum
close-packing of the old ice approximately coincide.
However, the partial close-packing for this ice is deter-
DOKLADY PHYSICS      Vol. 46      No. 2      2001
mined by the visual map as 8/10, (with the presence of
2/10 of the one-year white ice and gray-white ice). At
the same time, according to the results of the interpre-
tation of the radiothermal pattern, the close-packing of
the old ice is determined to be 10/10; i.e., the presence
of the one-year ice does not exceed 5%.

3. In accordance with the data of interpretation of
the radiothermal pattern in the sea northern part (in the
air-temperature zone of –35°C), the ice edge is shifted
by 4 to 48 km towards the open water with respect to
the position of this edge on the visual map. To the south
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from the Medvezhiœ island (in the air-temperature zone
of –17°C), the ice edge is shifted by 24 to 37 km, but,
contrarily, towards the ice pack. The cause of this dis-
agreement could be an effect of the PM-08 antenna sys-
tem and errors in both the choice of the radio-bright-
ness temperature threshold for the open water while
interpreting the radiothermal pattern and the determi-
nation of the ice edge position while visual interpreting
patterns were obtained with the help of the satellites.

4. The boundaries and configurations of small zones
do not coincide in detail; however, the variations in dis-
tinctions of partial ice close-packing do not exceed
2/10. These distinctions are typical for subjective esti-
mates of the partial ice close-packing and are not con-
sidered as rough errors for ice maps.

CONCLUSIONS

Thus, comparative analysis of the ice maps has
shown the general consistency between the results of
automated interpretation of the radiothermal patterns
and the data obtained by means of the visual interpreta-
tion of radar and infrared patterns with a higher resolu-
tion. Hence, the above-mentioned complex approach to
the interpretation of radiothermal and radar patterns,
which is complemented by information related to the
optical range, can be used for mapping of the ice cover
in the winter period of a year.

In spite of the relatively low spatial resolution, the
PM-08 radiometer data are an important source of
information on sea ice, especially in the case of a com-
bined interpretation using lateral-scanning radar-sys-
tem patterns. This combined analysis of radiothermal
and radar patterns substantially facilitates interpreta-
tion of ice conditions and makes it possible to exclude
a number of ambiguities. The method of processing and
interpreting of patterns obtained by both radar lateral
scanning and radiometric measurements by the PM-08
radiometer installed at the “Okean-01” satellite allows
the general and partial close-packing for basic age
types of sea ice in Arctic regions to be determined and
their distribution to be mapped.
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The effect of reversible shape memory (RSM) is
usually associated with internal-stress fields due to dis-
locations [1]. If these fields are oriented in a certain
way, then they induce a martensite transformation with
the selection of a certain martensite orientation from all
crystallographically possible orientations. The selec-
tion of the preferable orientation results in macroscopic
deformation of the specimen, the so-called reversible
shape memory deformation henceforth called the RSM
deformation. In alloys based on titanium nickelide with
nickel content exceeding the equiatomic value, aging
processes [2] and precipitation of the Ti3Ni4 phase
occur, which produce an essential effect on the subse-
quent martensite transformations [3]. The present study
was undertaken with the aim to clarify the role of
Ti3Ni4-particles in the formation of the reversible mem-
ory effect in titanium nickelide. We established that the
austenitic-type reversible-memory effect and its preser-
vation during thermal processing of specimens are pro-
vided by precipitation of the aging-phase particles
(Ti3Ni4) with preservation of the texture in the particle
arrangement.

The 2.2-mm-thick plates of the Ti–50.5 at. % Ni
alloy were obtained by rolling the specimens in the aus-
tenitic state. The temperatures of martensite transfor-
mations and RSM deformation were studied by the
dilatometric method on a Chevenard differential optical
dilatometer. The specimens were cut out from the
plates along the rolling direction. The measurements
were made in the following sequence. Each specimen
was first cooled to a temperature below the temperature
åf of the completion of the martensite transformation,
then it was heated above the temperature Äf of the com-
pletion of the reverse martensite transformation, and,
finally, was cooled to room temperature. The directions
of dilatometric measurements are indicated by the
arrows near the corresponding curves. Room tempera-
ture is shown by the vertical lines. The material struc-
ture was studied with the help of a JEM 200CX electron
microscope.
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Rolling with subsequent holding of the specimens
for 3.6 ks at temperatures 523, 623, and 698 K only
slightly affected the dilatometric curves of the marten-
site transformations. The curves indicate the austenite-
type reversible memory effect characteristic of speci-
mens rolled in the austenitic state [4]. Martensite trans-
formations occurring during specimen cooling pro-
ceeded in the sequence B2  R  B19'. During
specimen heating, the sequence was B19'  B2
(curve 1 in Fig. 1). Holding of the specimens at temper-
atures 723, 248 K (curves 2 and 3 in Fig. 1) and, then,
at 773 K (Fig. 2, curve 1) reduced the temperatures of
the martensite transformations and the RSM deforma-
tion. Comparing the dilatometric curves of martensite
transformations upon specimen holding at 773 and
698 K (cf. curve 1 in Fig. 2 and curve 1 in Fig. 1), one
can see that the RSM deformation is reduced by three
times, whereas the temperatures of the martensite
transformations decreased by 30 K. These changes
indicate considerable variations in the structural state
of the alloy.

However, the specimens preliminarily heated to
773 K and then held for 3.6 or 36 ks at 623 K showed

223 273 323 223 273 323 223 273 323
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K

Fig. 1. Dilatometric curves of martensite transformations:
(1) deformation with 3.6-ks-long holding of the specimen at
698 K; (2) the same as in (1) with 3.6-ks-long holding of the
specimen at 723 K; (3) the same as in (2) with 3.6-ks-long
holding of the specimen at 748 K.
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a more pronounced RSM deformation and higher tem-
peratures of martensite transformations (curves 2 and 3
in Fig. 2). Upon 36-ks-long holding of the specimens at
623 K, the transformation temperatures become equal
to the temperatures obtained upon heating of the
deformed specimens at 623 K. The RSM deformation
is restored, although only partly. These experiments
indicate the existence of a specific type of the memory,
the reversible shape memory, which we called the dou-
ble memory. The existence of a double memory indi-
cates that holding of the specimens preliminary heated
to 773 K at the temperature 623 K provides, at least,
partial restoration of the structural state of the alloy.

A decrease of RSM deformation with an increase of
the specimen temperature to 723–773 K could be
explained by the change in the internal-stress fields
caused by rearrangement of the dislocation structure.

223 273 323 223 273 323 223 273 323

1

2

3
0.

2%

K

Fig. 2. Dilatometric curves of martensite transformations:
(1) deformation with 3.6-ks-long holding of the specimen at
773 K; (2) the same as in (1) with 3.6-ks-long holding of the
specimen at 623 K; (3) the same as in (1) with 36-ks-long
holding of the specimen at 623 K.

0.25 µm

Fig. 3. Precipitation of Ti3Ni4 particles at subgrains. Defor-
mation with 3.6-ks-long holding of the specimen at 773 K
followed by 36-ks-long holding of the specimen at 623 K.
However, the restoration of specimen deformation
upon its reheating to 623 K is inconsistent with such an
explanation. The decrease in the temperatures of mar-
tensite transformations upon specimen heating to
773 K and their increase during subsequent heating to
623 K indicate the occurrence of the processes of dis-
solution and precipitation of the Ti3Ni4 phase.

The aging process with precipitation of Ti3Ni4 parti-
cles in titanium-nickelide alloys containing 50.5 at. %
Ni (and lower) has not been studied as yet. Our electron
microscopy data show that at a temperature of 623 K,
the precipitation of Ti3Ni4 particles takes place. Then,
at 773 K, they are dissolved. Thus, in the alloy studied
here, as well as in the alloys with higher Ni-content, the
solubility of nickel in the TiNi intermetallic compound
is temperature-dependent. Upon rolling in the austen-
itic state, the structure contained ~70-nm-long Ti3Ni4
particles formed during aging. The particles were ori-
ented with their long axes along a certain preferable
direction. Thus, rolling and cooling give rise to the
aging process and, in addition to the deformation tex-
ture of the B2-phase, a texture in the particle arrange-
ment arises. Thus, the reversible memory effect can be
explained not only by the existence of a “crystallo-
graphic” and a “dislocation” texture in the B2-phase,
but also by the texture in the arrangement of the Ti3Ni4
particles.

Holding of the specimens for 3.6 ks at 773 K results
in dissolution of the Ti3Ni4 particles and polygonization
of the B2-phase. Additional holding of the specimens at
623 K gives rise to a new aging process, whereas the
Ti3Ni4 particles precipitate mainly at the subgrain
boundaries, thus, forming a characteristic net (Fig. 3).
Since martensite is nucleated at these particles [2, 3]
orientationally related to the B2 matrix, the increase of
the RSM deformation in the process of aging at 623 K
(Fig. 2) can be explained by the reproduction of the tex-
ture in the particle arrangement. Thus, the reversible
shape memory effect is associated with the memory of
the texture in the arrangement of the Ti3Ni4 particles.

The cycles of particle precipitation and dissolution
can be multiply repeated. Figure 4 illustrates the
change in the temperatures of martensite transforma-
tions and RSM deformation upon alternating holdings
of the specimen at 623 and 773 K. The alternating hold-
ing of specimens at 773 and 623 K gives rise to an alter-
nating decrease and increase of the RSM deformation.
Here, the Ti3Ni4 particles play a double role. Particle
precipitation and the corresponding matrix depletion of
nickel increase the temperatures of the martensite
transformations. The texture in the particle arrange-
ment and the martensite nucleation at these particles
result in a selection of preferable martensite orienta-
tions and macroscopic RSM deformation. It should be
emphasized that the processes of particle dissolution
and precipitation take place in the deformed and
polygonized B2-matrix at temperatures below the
DOKLADY PHYSICS      Vol. 46      No. 2      2001
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recrystallization temperature, which provides the
implementation of the reversible memory effect.

Heating of the specimens to 873 K results in disso-
lution and recrystallization of Ti3Ni4 particles. These
processes are accompanied by complete disappearance
of the reversible memory effect and reduction of the
temperatures of the martensite transformations. Aging
of specimens preliminarily heated up to 873 K during
36 ks and subsequent 360-ks-long holding at 623 K
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273
2 3 4 6 7 8

313

273

, %
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Fig. 4. The change in the RSM deformation  and the tem-

peratures íR and AS of initiation of the transformation
B2  R and Ç19'  Ç2, respectively, upon alternat-
ing holding of the specimen for 36 ks at 623 K and 3.6 ks at
773 K. (1, 3, 5, 7) Holding of the specimen at 623 K;
(2, 4, 6, 8) holding of the specimen at 773 K.
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increases the temperatures of the martensite transfor-
mations, but the RSM deformation is not restored.

Thus, a new type of structural memory has been dis-
covered in titanium nickelide, namely, reversible shape
memory of the austenitic type. The reversible shape
memory is associated with the processes of precipita-
tion of the particles of the aging Ti3Ni4 phase fixing the
dislocation structure. In the alloys where the dissolu-
tion temperature of the Ti3Ni4-particles is lower than
the temperature of their recrystallization, the RSM
deformation can be controlled by varying the processes
of particle dissolution and precipitation.
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Materials with pronounced viscous properties find
ever increasing application in industry. These are poly-
mer-matrix-based and pure polymer composites whose
number and variety steadily increase. It is well known
that various climatic factors such as temperature and
humidity are very important for estimating the behavior
and characteristics of these materials and, therefore, the
derivation of constitutive equations with allowance for
these factors is of key importance for modern machine
building.

In this paper, we use as the constitutive equation the
Rabotnov nonlinear equation [1]

(1)

where ϕ(ε) is the curve of instantaneous deformation,
K(t – τ) is the kernel of the integral equation in the form
of the Abel kernel,

proved to be very efficient in nonlinear equations [2, 3,
etc.].

The problem of allowance for temperature and
humidity is considered in a large number of studies, in
which the temperature and humidity are artificially
introduced into the constitutive equation. In other
words, all the kernel parameters and the curve of
instantaneous deformation (or, in the linear case, the
elastic modulus) are assumed to be dependent on both
temperature and humidity. Evidently, the determination
of these dependences requires vast experimental infor-
mation, which is not always available.

We should invoke here the principle of analogies
still widely used in engineering practices (see [4–6,
etc.]). The difficulty here is the determination of the
entire set of necessary parameters whose number is

ϕ ε( ) σ K t τ–( )σ τ( ) τ ,d

0

t

∫+=

K t τ–( ) k

t τ–( )α-----------------,=
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very large in the nonlinear case. In turn, this makes
their determination ambiguous. Moreover, consider-
able difficulties also arise in attempts to solve particular
nonlinear mechanical problems.

In [7], another method of taking into account the
temperature was suggested and tested on many materi-
als with pronounced viscous properties. The method is
based on the fact that the ϕ(ε) curve, being the curve of
instantaneous deformation, is also the curve of the
absolute-zero temperature. The corresponding equation
is written as

If the process proceeds at an infinitely high rate (i.e.,
with t = 0 at a certain temperature) or at an arbitrary
rate, but at the absolute zero, we arrive at σ = ϕ(ε), i.e.,
at the equation of a curve limiting the possible defor-
mation process from above. It was also shown that the
function of temperature effect can be an exponential
function f1(T) = T γ, where T is the temperature in
Kelvins. It is expedient to take

(2)

In this paper, we propose the principle of allowance
for humidity in the constitutive equation proceeding
from the same premises as were used in allowance for
temperature. We introduce the function of humidity
effect f2(W), where W is a relative increment in weight
(expressed in percent) due to absorption of moisture:

(3)

Here, W0 is an empirical constant which can condition-
ally be taken as the relative decrease in the material
weight (expressed in percent) under the conditions of
room humidity compared to the weight of an absolutely
dry material.

ϕ ε( ) σ K t τ–( ) f T( )σ τ( ) τ .d
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The constitutive equation takes the form

(4)

The introduction of the humidity function into the con-
stitutive equation in the above form is justified by avail-
able experimental data. It was shown that an increase of
humidity lowers the position of the deformation curve
and enhances the effect of creep. On the other hand, the
material drying “suppresses” viscous effects and the
deformation curve approaches the curve of instanta-
neous deformation. This fact implies the choice of the
function of humidity effect in the same form as that of
the temperature effect. Experiments on the humidity
effect are labor-consuming and require meticulous
measurements and special instruments. Thus, the num-
ber of relevant published data is scarce, which, in turn,
hinders testing of the suggested equation.

An important problem is the construction of a scale
of moisture saturation, which requires at least two ref-
erence points. For temperature, the reference points (in
the Celsius scale) are the ice melting point (0°C) and
water boiling point (100°C). In the SI system of units,
temperature is measured in kelvins. The first reference
point is 0 K or the absolute-zero temperature (–273°C);
the other reference point is the triple-point of water,
273 K (0°C). Thus, the function of temperature effect
f1(T ) is taken to be relationship (2). Unfortunately,
there is no reliable scale for determining the level of
moisture saturation. Nevertheless, the magnitude W0 in
Eq. (3) has a quite definite physical meaning. If, on
material drying, W(wt %) becomes equal to –W0 , then
f2(W) = 0 and, in accordance with Eq. (4), we arrive at
the equation for the instantaneous curve σ = ϕ(ε), irre-
spective of other loading conditions. The value of the
quantity W0 should be one of the reference points for
constructing the scale of moisture saturation. The sec-
ond reference point can be humidity under room condi-
tions, W = 0.

The validity of similar representations is confirmed,
e.g., in [8], where the effect of various media (including
water) on the strength characteristics of polymethyl
methacrylate is considered. It was also shown that at a
low loading rate (1 × 10–3 s–1), the medium reduces the
strength and increases the viscous effects (thus, in
water, the strength decreases by 18%; in acetone, by
56%). With an increase in the loading rate by an order
of magnitude, the effect of the media becomes rather
weak. Thus, irrespective of the material saturation with
various components and the rate tending to infinity, the
deformation curve approaches the instantaneous curve,
which justifies the initial premises used for the con-
struction of Eq. (4).

ϕ ε( ) σ k

t τ–( )α----------------- 273 T°C+
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As an example, we consider the results of the exper-
iments on the combined effect of the temperature and
humidity on the deformation and creep curves of PN-3
polyester resin [5, 6]. The parameters of Eq. (4) were
calculated as is described in [9]. It should be empha-
sized that the reason for determining the parameters of
the humidity function is the same as for determining the
function of temperature described in detail in [10].
Thus, we obtained the following values: α = 0.93; k =
0.02 min–(1 – α); γ = 13.27; W0 = 3.45 wt %; and β = 2.5.
The calculated instantaneous curve of deformation,
ϕ(ε), is shown in Fig. 1. Figure 1 also shows the exper-
imental data and the data calculated by Eq. (4) at W =
0.2 wt % and different temperatures. Figure 2 shows the
experimental and calculated creep curves at different
levels of saturation with moisture at 40°C. It should be
indicated that, as was shown in studies [5, 6], the
humidity at 20°C only slightly affects the creep curves.
Indeed, at the moisture change from 0.2 to 1.5 wt %,
five-hour loading gives rise to 0.3% strain, whereas the
same loading at 40°C yields a strain exceeding 3%.

The above results prove the necessity of the simul-
taneous allowance for both temperature and humidity
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Fig. 1. Deformation curves for PN-3 polyester resin obtained
under a constant loading rate 
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and the importance of constructing reliable constitutive
equations for calculating the structure elements operat-
ing in various modes.

If the temperature and humidity in the problem
under study remain constant, irrespective of their val-
ues, Eq. (4) is used in the same way as Eq. (1), with the
only difference being the kernel parameter (a multiplier
before the integral) recalculated according to (2) and
(3). The possibility of using Eq. (4) for the processes
with varying temperature and constant humidity was
shown in [2]. As far as we know, no experiments with
variable humidity have yet been made.

It should be emphasized that the combined effect of
the temperature and humidity on material behavior can

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0 1 2 3 4 5 6
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3
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1

t, h

ε, %

Fig. 2. Creep curves σ = 12 MPa for PN-3 polyester resin at
different humidity values at T = 40°C. Solid lines indicate
experiment [5]. Dashed lines are calculated by Eq. (4).
(1) 0.2; (2) 0.5; (3) 1.0; (4) 1.5 wt %.
          

be more complicated than the behavior described by
Eq. (4). Here, some secondary effects are also possible.
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INTRODUCTION

In modern practice, increasingly rigid requirements
are being imposed on sensitive elements of naviga-
tional systems. Unconventional gyro devices designed
on the basis of new physical principles are necessitated.
One of such a class of devices is that generally referred
to as Foucault pendulums. Among them, the microme-
chanical vibrational gyroscope, string gyroscope, ring
gyroscope, etc. are well known. This paper is devoted
to studying the properties of sensitive elements (sen-
sors) of wave solid-state gyroscopes [1, 2] whose oper-
ation principle is based on using inertia features of
standing waves excited in revolving axial-symmetric
shells. This effect was discovered theoretically and
confirmed experimentally by G. Bryan in 1890 [3]. The
fundamentals of the analytical theory and mathematical
modeling of elastic processes in resonators of solid-
state wave gyroscopes were given in [1, 2, 4–9]. As a
rule, the authors of these papers dealt with sensors in
the form of either an elastic ring or canonical shells of
revolution (cylinder, cone, quadric shells). In this
paper, we first consider the use of atomic functions [10]
which allow us to determine dynamic characteristics of
sensitive elements for arbitrary-shape gyroscopes.

STATEMENT OF THE PROBLEM

Let a shell of revolution be either bounded by two
parallel lines of this shell or dome-shaped. We assume
the boundary conditions to be linear and homogeneous
and introduce an orthogonal coordinate system related
to the meridians and parallels of its median surface. The
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** Institute of Radio Engineering and Electronics,
Russian Academy of Sciences, ul. Mokhovaya 11,
Moscow, 103907 Russia
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Russian Academy of Sciences, 
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1028-3358/01/4602- $21.00 © 20113
arc length s (0 < s1 < s < s2) of the generatrix and the
azimuth angle ϕ (0 < ϕ < 2π) are taken as curvilinear
coordinates. We denote by B(s) and θ (θ1 < θ < θ2) the
distance to the axis of revolution and the angle between
the inner normal to the shell and the axis of revolution,
respectively. It is well known that the rotation of an
axial-symmetric shell is accompanied by splitting
(caused by the action of Coriolis forces) of the normal
modes for bending vibrations and results in a preces-
sion of standing waves. Under the simplifying assump-
tion on inextensible parallels, the standing-wave pre-
cession coefficient for a revolving shell is given by the
formula [7]

(1)

where U(θ), V(θ), and W(θ) are the Rayleigh functions
[11] determined by the shell geometry, boundary con-
ditions, and the vibrational-mode number n, i.e., the
number of waves in a parallel. In practice, it is inconve-
nient to use formula (1) directly, except for the case of
a narrow class of axial-symmetric canonical shells for
which an expedient system of curvilinear coordinates
can be chosen. In this case, the Rayleigh function can,
as a rule, be found analytically. The problem is to
develop a new mathematical model allowing these
functions to be evaluated for arbitrary shells of revo-
lution.

DERIVING DIFFERENTIAL RELATIONSHIPS 
FOR THE RAYLEIGH FUNCTIONS

We introduce the cylindrical coordinates r, z, and ϕ,
with the z-axis directed along the symmetry axis. In this

K

V U θcos W θsin+( )B s( ) sd

s1

s2

∫

U2 V2 W2+ +( )B s( ) sd

s1

s2

∫
---------------------------------------------------------------------,–=
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case, the following expressions for the displacement
components ur , uz, and uϕ hold:

(2)

If the inextensibility conditions for the median surface
are satisfied, then Ucosθ + Wsinθ = nV. In the new
notation, expression (1) takes the form

(3)

where z0 = z(s1) and Z = z(s2). In the case of an inexten-
sible shell, the functions ur(z), uz(z), and uϕ(z) are deter-
mined from the following equations [11]:

(4)

Introducing the notation y(z) = ruϕ(z), we assume
that y(z0) = 0 (rigid fixing) and the boundary z = Z is
free. Since the Rayleigh functions are defined with an
accuracy to a constant nonvanishing factor [11], we can
assume that y(Z) = C, where C is an arbitrary nonvan-
ishing constant. Let C = 1. In this case, the function y(z)
is a solution to the boundary value problem for the ordi-
nary differential equation of the second order:

(5)

Employing the change of variables y(z) = u(z) + u0(z),

with u0(z) = , we reduce problem (5) to that with

homogeneous boundary conditions:

(6)

Here,

In the case of an arbitrary shell with its generatrix
described by the expression r = r(z), problem (6) can
only be solved numerically. As follows from (4), to
determine the displacement components uz at arbitrary
points, the first derivative of the solution to problem (5)
should also be evaluated. Hence, if the method of finite
differences is employed to solve this problem, an addi-
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r
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n
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t z( ) n2 1–( )r''
r
-----, f z( ) t z( )u0.–= =
tional approximation to the function y(z) in the gaps
between net nodes is required. To avoid this, it is advis-
able to seek a solution to problem (5) in the class of
continuously differentiable functions. We employ one
of the projecting-net methods, with properly chosen
basis functions. The method of collocations is the sim-
plest for numerical simulations. It yields adequate
results if finite functions are chosen as basis functions.
Recently, the theory of atomic functions is being
widely used for solving various problems of numerical
analysis [10, 12–14].

ATOMIC FUNCTIONS up(x) 
AND fupn(x)

The simplest atomic function up(x) satisfies the fol-
lowing functional–differential equation:

The function up(x) is even, with up(0) = 1. It increases
(decreases) in the interval [–1; 0] ([0; 1]), with
up(1 − x) = 1 – up(x). The following recurrence rela-
tions hold for the moments of up(x):

Here,

The values of the function up(x) at the points  are

rational numbers; in particular,

To find up(x) at an arbitrary point, the convergent series
of the form

is used. Here,

up' x( ) 2up 2x 1+( ) 2up 2x 1–( ),–=
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and x = 0, p1…pk is the binary representation of the
number x. The recurrence functional–differential rela-
tions for the determination of atomic functions fupn(x)
are similar to the equations for the Schönberg Bn-
splines:

where K is a normalization factor. It follows from these
equations that

In this interval, the function fupn(x) can be repre-
sented as

We approximate the function f (t) ∈  Cr[–π; π], given

at the equidistant net ∆N: ti = ih, h =  (i = ),

with the help of elements of the space UPN, r , i.e., by
linear superpositions of the functions up(x) with their
arguments translated and scaled:

We assume that r is an even number and the functions
f(t) are given at the points

The space UPN, r has a basis consisting of the finite
function fupr(x) with translated and scaled arguments.
The approximation of the rth order of the function f(t)
by atomic functions is performed according to the
expression
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Here, ϕr, k(t) ≡ fupr  and the support for

ϕr, k(t) is defined by the inequality |t – τk | ≤ h. It is

known [10] that, for arbitrary ∀ h > 0, there exist the
numbers ∃ ck such that

where ωr( f; h) is the continuity modulus of the function
f (r )(x), with Kr independent of h (but dependent on r).

THE METHOD OF SOLVING

We introduce the equidistant net

(7)

and the notation ti = t(zi), fi = f(zi), and ui = u(zi). We
seek the approximate solution u*(z) to problem (6) as a
linear superposition of the atomic function fup2(x) with
its argument translated and scaled which satisfies the
above conditions:

(8)

where

(9)

The indeterminate coefficients di, i = 0, 1, …, N + 2 are
found from the set of linear algebraic equations:

(10)

The components of the matrix A and vector b are deter-
mined from the collocation conditions

at the nodes zi , the boundary conditions

and an additional (fairly arbitrary) condition for inter-
polation by the atomic function:

The following theorem takes place.
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Theorem. If u(z) ∈  C4[z0; Z] is an exact solution to
problem (6), then the following estimate for the error of
approximated solution (8) holds:

(11)

NUMERICAL SIMULATION

Quadric shells of revolution. The method pro-
posed allows us to evaluate the precession coefficient K
for both canonical shells of revolution (ellipsoid and
paraboloid of revolution, two-sheeted hyperboloid)
and various complex-shaped shells. For dome-shaped
quadric shells of revolution, the use of the net with
N = 8 provides a good coincidence with the results
obtained analytically (within an absolute error of about
10–4) [8]. In both cases, the thickness of the arm fixing
the segment on the base (θ1 = 0) was ignored. For the
case of θ1 > 0, it was proposed in [9] to employ the
method of successive integrations, which significantly
complicates the problem and leads to cumbersome cal-
culations. In the case under consideration with θ1 > 0,
by virtue of the boundary conditions, the strain compo-
nents ur, uϕ , and V turn out to be vanishing. Table 1 pre-
sents the calculated values of the precession coefficient
for a spherical segment at certain values of θ1 and θ2 .
For comparison, similar data taken from [9] are also
presented in Table 2. The data obtained suggest that the
arm is noticeably efficient only at sufficiently large θ1
(from ~30° to 45°). This is explained by the fact that
only that part of the shell which is close to its free
boundary is mainly involved in the vibration. In this

u z( ) u* z( )– C z0 Z;[ ]
h2

12
------ uIV z( )

t z( )
-------------- .

z z0  Z;[ ]∈
max≤

Table 1.  Calculated values of the precession coefficient for
a spherical segment at various angles θ1 and θ2

θ1 θ2 = 80° θ2 = 90° θ2 = 100°

0° 0.7631 0.7230 0.6868

15° 0.7634 0.7231 0.6868

30° 0.7675 0.7254 0.6880

45° 0.7881 0.7371 0.6943

Table 2.  Values of the precession coefficient for a spherical
segment at various angles θ1 and θ2 (according to the data of [9])

θ1 θ2 = 80° θ2 = 90° θ2 = 100°

0° 0.7632 0.7230 0.6867

15° 0.7632 0.7230 0.6867

30° 0.7635 0.7231 0.6867

45° 0.7681 0.7254 0.6878
case, the rate of precession of the standing oscillatory
wave increases slightly because the coupling between
the wave and the base is enhanced. Variations of the
angle θ2 more considerably affect the precession. The
results obtained are consistent both qualitatively and
quantitatively with those given in [8, 9].

Shells with zero curvature. We now consider
cylindrical and conical shells. In this case, solving sys-
tem (6) is simplified because t(z) = f(z) = 0; i.e., u(z) =
u0(z). Transposing equality (3), we obtain for a cylin-
drical shell (r = a),

(12)

For the fundamental mode of vibration (n = 2), in the
limit as Z  ∞, we have K  –0.4. The same value
of the scaling coefficient is yielded by the ring model
for the resonator of a wave solid-state gyroscope [2]. In
the case of a conical shell (r = λz), we have the follow-
ing expression for the precession coefficient:

(13)

According to [8], the scaling coefficients for cylindrical
and conical shells must take the forms, respectively,

(14)

(15)

In the case of n = 2, formulas (12) and (13) coincide
with (14) and (15). It is worth noting that, for shells
with zero curvature, the extension of the median sur-
face is more significant compared to that for shells with
positive curvature. Results disregarding this extension
can be treated only as qualitative ones [8].

Complex-shaped shells. The case of the shell
directrix described by a piecewise continuous function
is of particular interest. In this case, the solution to
problem (6) should be sought in the class of distribu-
tions. As an example, we consider a shell consisting of
two bodies linked in the plane z = c, namely, a cone
with its vertex at the origin and a cylinder of radius a
and length l = Z – c (Fig. 1):

K
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Here, η(z) is the Heaviside step function:

It is known that

where δ(z) is the Dirac delta-function. Using its basic
properties, it is easy to prove that

To evaluate the indeterminate coefficients in expan-
sion (8), we employ the Galerkin method. We seek an
approximate solution in the form

where ω(z) is a function satisfying the homogeneous
boundary conditions

With regard to the properties of the Dirac delta-
function, the elements of the matrix A and the compo-
nents of the vector b in Eq. (10) are found by the Galer-
kin method in the form

When evaluating the precession coefficient K by for-
mula (3), it should be taken into account that

Let a = Z. Varying the parameter c from zero to Z,
we can prove that the coefficient K changes continu-
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ously from a minimum of 0.6522 to a maximum of
0.7778, which correspond to a cylinder and cone,
respectively. These limiting values coincide with those
obtained by formulas (12) and (13).

CONCLUSIONS

The proposed and substantiated method of finding
the Rayleigh functions and precession coefficient for
shells of revolution has a number of advantages when
compared to analytical methods. It allows us to perform
calculations for shells of arbitrary shapes. The new
method is suitable for numerical simulations. The use
of atomic functions as basis functions enables us to
solve boundary value problem (6) and makes finding
coefficient (3) more simple. The precession coefficients
evaluated for a wide class of shells are in good agree-
ment with the theoretical results obtained by different
methods [2, 6, 8, 9]. Numerical analysis indicates that
the method proposed can be used for designing wave
solid-state gyroscopes and allows us to optimize their
basic dynamic characteristics.
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Irregularity is a characteristic feature for time varia-
tion of the number of seismic events prior to an earth-
quake: lull periods in a preparation zone of a future
earthquake are changed by the periods of relative acti-
vation. Increase in seismic activity in a wide zone
around a future-earthquake focus was first noted by
Keœlis-Borok [1]. The phenomenon of seismic lull in a
preparation zone of a strong earthquake was first
described by Mogi [2]. Both precursor phenomena
observed in the month–year time scale, being in appar-
ent conflict, are quite consistent. The seismic lulls men-
tioned by Mogi occur against the background of activa-
tion in a wider zone (“doughnut pattern”). Both activa-
tion (in the foreshock form) and lull periods are observed
prior to earthquakes in a shorter time scale [3].
Kosobokov and co-authors [4] have demonstrated the
precursor character of local changing in activation and
lull periods. Various scenarios for space–time variation
of seismic activity prior to earthquakes were studied by
a large number of authors.

In this paper, for constructing a model of irregular
temporal change in seismic activity, we use data on
acoustic emission in the process of metallic-specimen
destruction. These data are compared with the results of
analysis of time dependence for seismic events accu-
mulated during a preparation period for earthquakes.

The well-known models for lull periods are based
on either a temporal drop in tectonic stress or dilatancy
hardening in a seismic-active zone, or on a bimodal dis-
tribution of rock strength in this zone. Variations of tec-
tonic stress are related [3] to loss of strength as a result
of rock sliding under creep conditions. Dilatancy hard-
ening is associated with either a decrease of pore pres-
sure in the Earth’s crust when evolving fracturing or
with the Kaiser effect [2, 5] observed in analysis of the
acoustic emission for both metallic materials and rocks.
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The essence of this effect is the fact that a material,
being repeatedly loaded, exhibits no acoustic-emission
signals until the preceding loading level is attained. In
other words, this effect of material “memory” assumes
a change in the tectonic stress, i.e., its decrease and sub-
sequent restoration in a lull period. The bimodal mate-
rial’s strength distribution for a medium may be a con-
sequence of its random heterogeneity, i.e., the existence
of the heterogeneities or roughnesses in the rupture
plane [6].

The multiplicity of models proposed for the expla-
nation of the same phenomenon testifies to the fact that
its physical meaning, as well as constitutive factors,
need to be elucidated. It is well known [2, 7, 8] that
acoustic emission can be employed for analyzing seis-
micity. The characteristics of acoustic-emission devel-
opment when destroying specimens of rock or model
materials, in many instances, are similar to those of
seismicity prior to an earthquake. Therefore, for under-
standing the nature of lull periods and the factors gov-
erning them, data records for the acoustic emission
when destroying metal specimens were used. These
data were compared with the results of the analysis for
temporal dependence of seismic events accumulated in
North California and certain other regions of the world
during earthquake-preparation periods.

For constructing the temporal behavior of the events
accumulated in North California, all principal events
with a magnitude M ≥ 6 found in the catalogue which
occurred from 1976 to 1995 were selected. The after-
shocks following these events were excluded. Thus,
16 such earthquakes were found. Then, the accumu-
lated number of events with a magnitude M ≥ 3.5 which
occurred five years prior to the principal event was cal-
culated for the spatial region of strong-earthquake
preparation. This region was determined from the after-
shock cloud for this earthquake. The results of these
estimates are shown in Table 1.

In addition, similar temporal dependences were
constructed for 32 earthquakes with M ≥ 7.5 which
occurred in various regions of the world. In Fig. 1a are
shown typical temporal dependences for the accumu-
lated number of events ΣN, the ratios S/N for the
weight sum S [1] of the events to their number N, and
001 MAIK “Nauka/Interperiodica”
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Table 1.  Duration TS of lull periods prior to principal events with a magnitude å ≥ 6 in the North California region from 1976
to 1995

No. Year Month Day Hour Min Latitude Longitude Depth, km M TS, days

1 1976 11 26 11 19 41.29° 125.71° 15 6.80 280

2 1980 5 25 19 44 37.57 118.82 15 6.70 53

3 1980 11 8 10 27 41.12 124.25 19 7.20 1190

4 1983 5 2 23 42 36.22 120.32 10 6.70 170

5 1984 4 24 21 15 37.32 121.70 8 6.20 540

6 1984 9 10 3 14 40.50 126.83 10 6.70 1200

7 1984 11 23 18 8 37.48 118.65 15 6.20 1160

8 1986 7 21 14 42 37.54 118.45 9 6.50 300

9 1987 7 31 23 56 40.42 124.41 16 6.00 250

10 1989 10 18 0 4 37.04 121.88 18 7.10 950

11 1991 8 17 19 29 40.24 124.35 12 6.30 175

12 1992 4 25 18 6 40.37 124.32 15 7.20 250

13 1993 5 17 23 20 37.17 117.78 6 6.20 270

14 1994 9 1 15 15 40.40 125.68 10 7.10 160

15 1994 9 12 12 23 38.82 119.65 14 6.10 780

17 1995 9 20 23 27 35.76 117.64 5 6.10 840
the exponent b in the well-known Gutenberg–Richter
equation

relating the accumulated number of seismic events to
their magnitudes. The weight sum for the events was
calculated from the equation

The ratio S/N [1] yields the mean event magnitude
determining the mean fracture length. Therefore, a
sharp increase in the ratio S/N is indicative of a simi-
larly sharp increase in the fracture length prior to an
earthquake. As is evident from Fig. 1a, the dependence
ΣN as a function of T has two plateaus separated by a
region of sharp rise of the number of events accumu-
lated prior to the earthquake. The length of the second
plateau, which is 2.5 years in this case, determines the
lull period. Its beginning in 1990 coincides with a sharp
increase in the ratio S/N characterizing the fracture
length and with a decrease in the exponent b. The latter
fact was employed by a number of researchers [9] as
one of the earthquake precursors. For the construction
of temporal dependences for the accumulated number
of acoustic-emission signals (ΣN), the results of tests
of specimens made of steels of various qualities under
conditions of stretching and bending [10, 11] were
used. This information is of interest since it is obtained
for materials of various strength and viscosity and for
specimens of various geometric shapes (see Table 2).

Nlog Clog bM,–=

S t: M M S α β, , , ,( ) 10
β Mi α–( )

.∑=
Moreover, it contains data on the experimental defor-
mation curve (Fig. 1b), which makes it possible to eval-
uate the specimen destruction energy, as well as data of
optical and electron microscopy accounting for the
actual material vulnerability to damage at various
stages of destruction development.

It is evident that curves ΣN as a function of T in
Fig. 1b, obtained for metallic specimens from acoustic-
emission data, are similar to the analogous curves in
Fig. 1a, based on the results of seismic-activity analy-
sis. Indeed, as in the first case, in the temporal depen-
dence of the accumulated number of acoustic-emission
signals, there exist two plateaus connected with one
another by a segment having a sharp increase in ΣN.
The onset of the second plateau corresponds to the min-
imum value of the signal amplitude A and to the break
in the deformation curve P(T) owing to a decrease in
the strain-hardening coefficient. This decrease can be
caused by a reduction in the plastically deformed vol-
ume and localization of the destruction (see Fig. 1b).
Indeed, observation of the notch mouth with the help of
an optical microscope revealed a microcrack with a size
of ~0.5 mm (Fig. 1c) which appeared at the beginning
of the acoustic-lull period and was absent prior to this
moment. Further deformation of the specimen caused
stable development of the crack (according to the pit-
creation mechanism) until maximum loading was
attained. Thereafter, this development was changed by
the unstable increase of the crack according to the
cleavage mechanism, which proceeded up to final fail-
DOKLADY PHYSICS      Vol. 46      No. 2      2001
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Fig. 1. Temporal dependences of the accumulated number of (a) seismic events prior to the Philippines earthquake on May 17, 1992,
with M = 7.5 (latitude is 17.19°, longitude is 126.76°, depth is 33 km) and (b) acoustic events while destroying specimens made of
17KhG2SAFR steel with a notch radius r = 1.5 mm. (c) The initial crack in the notch mouth for a 17KhG2SAFR girder-steel spec-
imen tested for three-point bending.

T, years T, s
ure. In a number of cases, this resulted in one more pla-
teau in the curve ΣN(T). This fact made it possible to
relate the development of the unstable brittle crack to a
short-term lull. This is in contrast to the concept of a
stable crack development initiating an intermediate-
type lull.

As the estimates [11] have shown for specimen frac-
tures (see Table 2), it is the stable-crack length lc that
DOKLADY PHYSICS      Vol. 46      No. 2      2001
determines the lull-period TAE, since in the case of a
larger stable-crack length, a longer lull duration is
observed. It follows from Table 2 that the duration of
the lull period for a specimen depends on the steel
strength and viscosity and on the notch radius r. The
lower the strength of a material and the weaker the ten-
dency to brittle fracture, the longer the period in the
acoustic-activity decrease and, correspondingly, the
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period of stable crack growth (occurring, in this case,
with a low speed). The same effect is caused by an
increase in the specimen notch radius and a decrease in
the loading rate.

The effect of the factors indicated is also found in
evaluating the maximum number Nmax of accumulated
events. While testing viscous steels, Nmax increases with
the notch radius. However, while testing higher-

5 7

3

4

2

–3

–4

–5

6 8 9– 3– 4 ~
~

~~

log TÄE = 0.5M* – 0.5

log TS = 1.2M – 0.9

M

log T [days]

Fig. 2. The duration of the period of seismic TS and acoustic
TAE lull (the first and third quadrants, respectively) as func-
tions of the magnitudes of earthquakes (M) and metallic-
specimen failures (M*). d Data of T. Rikitake [5]; s data
obtained in the present study for the earthquakes in North
California; j steel 45; n steel U8; r steel 17KhG2SAFR.
strength steels, Nmax is scarcely affected by variation of
the notch radius.

Thus, the phenomenon of acoustic lull is associated
with a stable development of a crack formed at the
beginning of the lull period. The duration of this period
is determined by a strained state near the crack vertex.
This state depends on the notch-vertex radius and the
strength and viscosity of the specimen material.
According to fracture-mechanics approaches, this state
can be characterized by the stress-intensity coefficient.
When, for a given material, the critical value for this
coefficient is attained, the lull period is over and unsta-
ble brittle fracture begins.

In a similar manner, a lull period can be character-
ized by the work spent for the crack-development or by
the total work E spent for the specimen fracture. This
work is numerically equal to the area under the defor-
mation curve. Then, from the relation used in seismol-
ogy between the earthquake energy and magnitude, we
can estimate a new parameter characterizing the metal-
lic-specimen fracture, i.e., the fracture magnitude M*.
This allows us to compare the magnitude dependences
for the duration of the seismic lull period TS prior to an
earthquake and the acoustic period TAE prior to the
specimen fracture.

The values of the fracture magnitudes M* calculated
from the well-known Gutenberg–Richter relation

1.5M = 11.8 –  [erg]

are listed in Table 2. In the third quadrant of Fig. 2 are
shown the magnitude dependences obtained for the
duration of the acoustic-lull periods TAE prior to frac-
tures of specimens with various strength, viscosity, and

Elog
Table 2.  Failure characteristics for metal specimens [11] and corresponding estimated failure magnitudes

Steel quality and
mechanical properties r, mm TAE, s E, J M* lc, mm ΣN , 105 pulses

Steel 45,
σb > 610 MPa,
σ0.2 = 360 MPa

1.5 46 37.8 –3.3 1.1 2.3

1.0 45 37.2 –3.3 1.61 3

0.5 27 21.7 –3.5 1.13 3

0.1 25 17.1 –3.5 0.5 3

<0.1 11 7.0 –3.9 0.18 2

Steel 17KhG2SAFR,
σb = 860 MPa,
σ0.2 = 630 MPa

1.5 59 66.5 –3.2 0.94 17

1.0 63 76.0 –3.1 0.80 –

0.5 41 37.3 –3.3 0.70 5.3

0.1 22 22.9 –3.6 0.22 7

<0.1 14 9.3 –3.8 0.07 4

Steel U8,
σb = 1000 MPa

1.5 66 55.5 –3.1 0.70 0.7

1.0 65 56.1 –3.1 0.72 –

0.5 43 34.2 –3.3 0.39 0.9

0.1 17 7.8 –3.7 0.12 2.1
DOKLADY PHYSICS      Vol. 46      No. 2      2001
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notch shapes. It is seen that, for three types of steels, the
experimental points satisfy the universal straight line
described by the relation

 = 0.5M* – 0.5.

The points not satisfying this dependence and posi-
tioned below and above it correspond to specimens
with sharp notches (with radii near the vertex r ≤ 0.1)
that initiate brittle fracture of the specimens, which is
followed by an elevated spread of mechanical properties.

In the first quadrant of Fig. 2 is shown the magni-
tude dependence of the seismic-lull-period duration TS

described by the relation  = 1.2M – 0.9 and con-
structed according to data obtained both in the present
study and published in [6]. According to the data of
other authors, who analyzed the lull phenomenon in
various regions of the world, the coefficient standing at
the magnitude M ranges from 0.3 to 0.8.

Both magnitude relationships shown in Fig. 2 are
linear in the coordinates used but differ in the level of
estimated parameters (T and M) and in their slope.

The results of this study allow us to suggest that
seismic lull periods of the intermediate type, by anal-
ogy with acoustic periods, are associated with localiza-
tion of the fracture in the Earth’s crust, reduction of the
prefracture zone, and formation of the principal frac-
ture and its subsequent stable development. The dura-
tion for both lull-period types is controlled by the
stressed state in the mouth of the principal fracture.
This state depends on the rock strength, viscosity,
degree of comminution, and the strain rate, as well as
on the geometry of the fracture vertex.

TAElog

TSlog
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When calculating elastic wave fields in stratified-
homogeneous media, two approaches are usually used.
These are the matrix Thomson–Hackell method [1, 2]
developed in [3] and the impedance method proposed
in [4, 5] and developed in [6].

According to the first method, each layer is repre-
sented by a characteristic matrix linking the spectra of
stress vectors and displacement vectors at the bound-
aries of this layer (see below). The layered system, as a
whole, is described by a matrix obtained by multiplying
(in a certain order) the characteristic matrices of the
layers. At given boundary value conditions, this matrix
and the inverse one define the wave field.

The impedance method employs the linear depen-
dence of the stress spectra and displacement spectra
with the impedance tensor at an arbitrary coordinate
along the gradient of the medium properties or at the
layer boundaries. The determination of this tensor is
reduced to solving the Cauchy problem for the matrix
ordinary differential Riccati equation followed by sub-
sequent determination of the field.

Both methods are valid for stratified and gradient
media and possess mutual advantages and disadvan-
tages.

In this study, we propose a new method, which is, in
a certain sense, a hybrid one. In addition, it is rather
simple and calls for a smaller amount of computation.
To illustrate the essence of the method, we consider, as
an example, a radially inhomogeneous medium in
cylindrical coordinates r, θ, z(x1, x2, x3).

The method is based on solving the following prob-
lem. Let an mth cylindrical coaxial layer (rm – 1, rm) be
given. The layer is occupied by a homogeneous isotro-
pic viscoelastic medium with complex elastic fre-

quency-dependent Lamé moduli  and  [7] and
density ρm . One of the layer boundaries is loaded by a

λ̃m µ̃m
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known impedance (for definition, see below). It is nec-
essary to find the impedance at the other boundary.

The equation of small-amplitude harmonic vibra-
tions varying by the law exp(–iωt) in a viscoelastic
medium has the form [8]

(1)

where I is the identity matrix; u is the displacement

vector; kp =  and ks =  are the complex wave num-

bers for longitudinal and transverse waves, respec-

tively; and cp =  and cs =  are the complex

propagation velocities of these waves, respectively.
By definition, we introduce the potentials

(2)

where ez is the unit vector and R is the arbitrary reduc-
tion radius.

Equations (1) are satisfied by the solutions to the
following Helmholtz equations [9]:

(3)

where ∆ is the Laplacian, Λ = kpR, and τ = ksR. Hence-

forth, we use the dimensionless coordinates  = ,

 = .

For a layer, the solutions to Eqs. (3) have the form

(4)

kp
2– grad div⋅ ks

–2rot rot⋅ I+–( ) u⋅ 0,=
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where 

(5)

Here, (x) are the nth-order Hankel functions of
the first and second kind of the argument x, respec-

tively; p =  and s = .

With respect to angular harmonics, the solutions are
completely split. Therefore, we consider furthermore
only the spatial spectrum with respect to z of the nth
harmonic. Below, we do not indicate this fact and use,
for example, Ak instead of Akn.

At an arbitrary cylindrical boundary, the spectra of
stresses s and displacements u are linked by the linear
dependence

(6)

where Gij and Zij are the complex tensors of spatial
spectral elasticity and spatial spectral impedance, res-
pectively; vj = –iωuj are vibration-velocity components;
and n is the unit vector of the outer normal to the sur-
face. In addition, Zij = –Zji , i ≠ j [6].

It is evident that Gij = –iωZij . Therefore, at small
vibrations, the use of Gij and Zij is equivalent. By con-
vention, we term the method the “impedance elasticity”
and the tensor Gij the “loading elasticity,” which
emphasizes the extraneous interaction of the media
separated by the boundary.

On the surface r = const, the stresses are determined
by the formula [8]

(7)

Introducing an arbitrary constant normalizing elasticity
µ0 and taking into account (2) and (6), we obtain for the
spectra

(8)

where

ϕn A1nHn
1( ) pr( ) A2nHn

2( ) pr( ),+=

ψn A3nHn
1( ) sr( ) A4nHn

2( ) sr( ),+=

χn A5nHn
1( ) sr( ) A6nHn

2( ) sr( ).+=

Hn
1 2,( )

Λ2 ζ2– τ2 ζ2–

σi σijn j Giju j– Zijv j, i j,– 1 2 3,, ,= = = =

s r( ) λ̃n divu⋅ 2µ̃ ∂u
∂n
------ 

  µ̃ n — u××[ ] ,+ +=

n er.=

σi

σi

µ0
----- –gij

mu j bik
m Ak,+= =

Gij gij
m–( )u j bik

m Ak+ 0,=

u j

u j

R
----, Gij

Gij

µ0
-------, µm

µ̃m

µ0
------,= = =
DOKLADY PHYSICS      Vol. 46      No. 2      2001
(9)

Here, the formulas of the type b12 =  imply that b12

is obtained from b11 as a result of changing the Hankel
function of the first kind to that of the second kind; the
sign ^ denotes the differentiation with respect to the
argument; in (8), the summation over j and k is taken
from 1 to 3 and from 1 to 6, respectively.

From (2), we have

(10)

(11)

Then, (8) takes the form

(12)

Let the loading elasticity of the mth layer at the
boundary  =  be known and equal to . Then,
from (12), we obtain three equations:

(13)

At the second boundary,  = , of the layer, we use
in addition three equations (10):

(14)

gij
m = 2µmgij, g11 = g22 = 

1
r
---, g12 = 

in
r
-----, g13 = iζ ,

gij g ji i j≠( ), g23– g33 0,= = =

bik
m µmbik, b11 τ2Hn

1( ) pr( ),–= =

b23 s2Hn
1( ) sr( ),=

b33
nζ
r

------Hn
1( ) sr( ), b35 τ2sĤn

1( )
sr( ),= =

b13 b15 b21 b25 b31 0,= = = = =

bi 2k, bi 2k 1–( ),
2( ) .=

b11
2( )

u j a jk Ak,=

a11 pĤn
1( )

pr( ), a13
in
r
-----Hn

1( ) sr( ),= =

a15 iζsĤn
1( )

sr( ),=

a21
in
r
-----Hn

1( ) pr( ), a23 sĤn
1( )

sr( ),–= =

a25
nζ
r

------Hn
1( ) sr( ),–=

a31 iζ Hn
1( ) pr( ), a33 0,= =

a35 s2Hn
1( ) sr( ), a j 2k, a j 2k 1–( ),

2( ) .= =

Gij gij
m–( )a jk bik

m+[ ] Ak dik Ak 0.= =

r rm Gij rm( )

dik rm( )Ak 0.=

r rm 1–

a jk rm 1–( )Ak u j rm 1–( ).=
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From the system of equations (13) and (14), we can
determine the six-dimensional vector Am, expressing its
components Ak in terms of uj( ) and . The
determinant of this system is nonzero. Inverting the
system, we have

(15)

From (8), at  = , we obtain expressions for the
desired components of the loading-elasticity tensor:

(16)

These expressions are the solutions to the problem
under consideration for the cylindrical coaxial layer. It
is evident that result (16) retains its validity if we mutu-
ally interchange everywhere  and .

Let the outer boundary  =  of the layer be in con-
tact with an infinite viscoelastic medium. We now
determine its impedance for arbitrary vibrations at the
boundary  = .

From the radiation conditions, it follows that in (5),
A2 = A4 = A6 = 0. Thus, in (9), only the Hankel functions
of the first kind remain. Further, we introduce the 3 × 3
matrices βik and αjk with their components βik = bi, (2k – 1)
and αjk = aj, (2k – 1), where bik and ajk are determined by
formulas (9) and (11). System (10) takes the form

(17)

and is closed. Whence it follows that

(18)

Substituting Ak into (8), we obtain the expression for
the loading elasticity:

(19)

We do not write out the explicit formulas for a vis-
coelastic medium and an ideal liquid here.

If there is a stratified system with piecewise-con-

stant functions , , and , then calculations
are performed sequentially for each layer by the same
algorithm considered above. In this case, only the val-
ues of the material parameters and the numbers of the
boundaries are changed, with allowance for the conti-
nuity condition with respect to all impedance compo-
nents. This condition follows from the continuity of
stresses and displacements at all boundaries. The gradi-
ent medium is approximated, as in the matrix method,
by a number of thin homogenous layers with a corre-

rm 1– Gij rm( )

Ak qkju j rm 1–( ).=

r rm 1–

Gij rm 1–( ) gij
m rm 1–( ) bik

m rm 1–( )qkj .–=

rm rm 1–

r rN

r rN

α jk rN( )Ak u j rN( )=

Ak qkj rN( )u j rN( )     q kj α jk 
1– = ( ) .=

Gij rN( ) gij
N 1+ rN( ) βik

N 1+ rN( )qkj rN( ).–=

λ̃ r( ) µ̃ r( ) ρ r( )

          
sponding partition step. As a result, we find the imped-
ance at one system boundary provided that it is known
at the other boundary.

The initial boundary ( , ) of the stratified-
homogeneous system may be loaded by the known
impedance, for example, by the infinite-medium
impedance (19). This boundary may be free of stresses
(zeroth impedance) or fixed (zeroth admittance). As

  0, singularities are eliminated by the method
described in [10]. Let the stresses (displacements) deter-
mined by a source at  =  ≠ 0 be known. Using (6), we
derive the displacements (stresses) as

(20)

 

provided that the impedance is known as a result of cal-
culations.

Knowledge of the three-dimensional displacement
vectors and stress vectors for 

 

 = 

 

 makes it possible
to determine the six-dimensional vector 

 

A

 

 in the
adjoining layer and, then, in the entire system, which
determines the wave field.

If the source is placed inside the domain, then, recal-
culating the impedance at both edges, we arrive at the
problem of a uniform (maybe, thin) layer loaded at its
boundaries by known impedances, with the source
being placed inside the layer or at its boundary. This
problem has a unique solution. Knowledge of the
impedance at the boundary and the vibrations at this
boundary is sufficient for determining 

 

A

 

 in the adjoining
layers and, consequently, the field in the entire system.

The characteristics of the normal waves and other
wave modes in the system are determined in the same
way as in calculating the impedance.

The method described can be applied, at least, in
five coordinate systems in which the longitudinal and
transverse waves are separated [9]. It may be used for
solving the problems of borehole acoustics, seismic
surveying, and in the analysis of natural vibrations of
planets. The method may be extended to the problems
of electrodynamics and optics (fiber optics, spherically
nonuniform lenses, etc.). Since recalculation of the
impedance is similarly performed while decreasing and
increasing , it is possible to test the calculations for
finding calculation errors and to construct refining
interpolation formulas.

REFERENCES

 

1. W. T. Thomson, J. Appl. Phys.

 

 21

 

, 89 (1950).

2. N. A. Hackell, Bull. Seismol. Soc. Am. 

 

43

 

, 17 (1953).

3. L. A. Molotkov, in 

 

Mathematical Problems in the Theory
of Wave Propagation

 

 (Leningrad, 1972), Vol. 4, p. 116.

r0 rN

r0

r r0

u j r0( ) Gij
1– σi r0( ), σi r0( )– Gij r0( )u j r0( ),–= =

r r0

r

DOKLADY PHYSICS      Vol. 46      No. 2      2001



A DIRECT IMPEDANCE METHOD FOR CALCULATION OF WAVE FIELDS 127
4. M. M. Machevariani, V. V. Tyutekin, and A. P. Shkvarni-
kov, Akust. Zh. 17, 97 (1971) [Sov. Phys. Acoust. 17, 77
(1971)].

5. P. E. Krasnushkin, Dokl. Akad. Nauk SSSR 252, 332
(1980) [Sov. Phys. Dokl. 25, 358 (1980)].

6. A. V. Bezrukov, V. Yu. Prikhod’ko, and V. E. Tyutekin,
Akust. Zh. 32, 372 (1986) [Sov. Phys. Acoust. 32, 227
(1986)].

7. V. N. Krutin, Vibrational Rheometers (Mashinostroenie,
Moscow, 1985).

8. L. D. Landau and E. M. Lifshitz, Course of Theoretical
Physics, Vol. 7: Theory of Elasticity (Nauka, Moscow,
1987; Pergamon, New York, 1986).
DOKLADY PHYSICS      Vol. 46      No. 2      2001
9. P. M. Morse and H. Feshbach, Methods of Theoretical
Physics (McGraw-Hill, New York, 1953; Inostrannaya
Literatura, Moscow, 1960), Vol. 2.

10. V. V. Muzychenko, Sound Diffraction on Elastic Shells
(Nauka, Moscow, 1993).

11. G. I. Petrashen’, L. A. Molotkov, and P. V. Krauklis,
Waves in Layered-Homogeneous Isotropic Elastic
Media (Nauka, Leningrad, 1985), Vol. 2.

Translated by Yu. Vishnyakov
                                 



  

Doklady Physics, Vol. 46, No. 2, 2001, pp. 128–131. Translated from Doklady Akademii Nauk, Vol. 376, No. 4, 2001, pp. 488–491.
Original Russian Text Copyright © 2001 by Shemyakin.

                                                             

MECHANICS
The Dissipative Function in Models 
of Perfect Elastoplastic Bodies

Academician E. I. Shemyakin

Received October 24, 2000
1. In recent papers [1–5], mathematical models for
perfect plastic bodies were widely discussed. The new
results presented in them are associated with the devel-
opment of the ideas of T. Kármán, which concern com-
plete- and incomplete-plasticity states and plasticity
singular conditions of the Tresca–Saint-Venant type [1,
3, 4, 6]. In this case, representation of the dissipative
function determining the energy loss caused by irre-
versible (plastic) shear deformation is of primary
importance. Indeed, the energy loss due to volume
deformations is not considered at this level (the effects
of packing change and dilatancy are ignored) and, con-
sequently, the concept of the dissipative function
reflects fundamental mechanical hypotheses lying in
the basis of the mathematical model.

Usually, when constructing an expression for the
dissipative function, we automatically (or by analogy
with a perfectly elastic body) assume that the principal
directions for the stress tensor and strain (strain rate)
tensor also coincide with each other in the plastic state.
As a result, the expression for the dissipative function
D takes the form

(1)

where σi are the principal stresses and  are the
increments of the plastic strain at each step of loading.
In correspondence with the invariants introduced previ-
ously for stressed and strained states [3, 4], we consider
sets of the invariants

; . (2)

Here, T and Γ are the maximum tangential stress and
the principal shear in the principal cross section; σn is
the normal stress in the same cross section; εn is the
strain normal to the cross section of the principal shear;
and µσ and µε are the Nádai–Lode factors for the corre-
sponding states. For these sets of the invariants, a spe-
cific connection with the trihedron (trihedrons) of the
principal directions is characteristic, although the quan-

∆D σi∆εi
p,=

∆εi
p

T µσ σn, , Γ µε εn, ,
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tities σn and εn represent spherical tensors. The param-
eters µσ and µε are rather important in this discussion.
Their equality implies the similarity of the correspond-
ing tensors:

(3)

(in connection with the proposed set of the invariants,
see the data of Taylor and Quinney presented in [3, 4]).

In our opinion, the role of the parameters µσ and µε
is beyond the scope of mathematical formulation of the
similarity problem, because they contain substantial
information on the role played by other areas with
extreme values of tangential stresses and strains in the
Mohr stress circles:

(4)

(5)

It is worth noting that the hypothesis of the similar-
ity of tensors, which is used while constructing mathe-
matical models in continuum mechanics (including the
model of a viscous non-Newtonian fluid), represents a
very strong requirement. It implies not only proportion-
ality of tensor components (deviators) but also coinci-
dence of the principal directions. From this standpoint,
it is important when following Kármán [6, 7], to sepa-
rate two requirements, namely, those of the proportion-
ality of the tensor components and the coincidence of
the principal axes, especially in connection with the
states of complete and incomplete plasticity.

We consider the incomplete-plasticity state in the
case of immobile (with respect to the initial elastic
state) principal directions. Then, according to Kármán,
this implies that the maximum tangential stress T
attains the Tresca–Saint-Venant limiting value T = τS
corresponding to the given material, whereas two other
extreme tangential stresses remain below this limit. For
this state, there exist two deformation features associ-
ated with the transition to complete plasticity, in which
two of the three extreme tangential stresses attain lim-
iting values and remain constant during the deforma-
tion process. The first feature is associated with the fact

µσ µε, µσ µ∆ε= =

µσ
T23 T12–

T
---------------------,=

T12

σ1 σ2–
2

-----------------, T23

σ2 σ3–
2

-----------------.= =
001 MAIK “Nauka/Interperiodica”
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that elastic bonds are conserved in the second principal
direction; i.e., the body becomes anisotropic with
respect to shears (at least, orthotropic). The second fea-
ture is associated with investigation of area fans in the
vicinity of principal-shear areas. The constant value of
T is attained in the basic area and the principal shear Γ
grows (i.e., plastic deformation occurs). At the same
time, in the vicinity of the area bisecting the angles
between the first and the third principal axes and pass-
ing through the second principal axis, i.e., in other areas
passing through the second axis, the tangential stresses
are lower than their ultimate value. Shears occurring in
these areas are in no way related to their own tangential
stresses, so that the anisotropy of resistance to shear
(orthotropy with allowance for orthogonality of the tri-
hedron of the principal directions) again manifests
itself. These features of the plastic state are of great
importance, especially in the case of rotation of the prin-
cipal directions of the stressed and strained states [8].

Thus, in the transition to the plastic state, a material
can acquire anisotropic features with respect to the
resistance to shears even if, initially, it was homoge-
neous and isotropic. As the residual strain, the anisot-
ropy induced by plastic deformations likely represents
a basic property of solids. A similar remark is possibly
also valid in the case of constructing mathematical
models for viscous non-Newtonian media.

2. We now consider the transition from incomplete
plasticity to complete plasticity, which occurs with the
conservation of the principal directions of the stressed
and strained states. Then, in the general relation
between the invariants

(6)

where G is the function determined experimentally
(see, e.g., [4]), the onset of the complete plasticity state
depends on the form of the stressed state µσ only in
other extreme areas in addition to the principal one. At
the same time, the spherical tensor σn only causes vol-
ume strain, without affecting the process of plastic
deformation. We can consider a surface mapping the
process of loading and deformation in the space of the
invariants T, µσ, and σn (see figure). The point A and
those inside the rectangular parallelepiped represent
the initial incomplete-plasticity state and elastic states,
respectively. In the case of stress variation, the motion
of the point A in the plane T = τS = const corresponds
to the elastic deformations in the second principal
direction. When the point A approaches the face
µσ = −1, the limiting value is attained in the area with
the stress T12; i.e., the complete-plasticity state arises:

(7)

Consequently, as A tends to the face µσ = –1, the stress
T12 grows and T23 drops. At the same time, as A
approaches the face µσ = 1, the tangential stress T23
increases and T12 decreases. It should be emphasized
that in the incomplete-plasticity state, by virtue of the

G T µσ σn, ,( ) 0,=

σ1 σ3– 2τS, σ1 σ2– 2τS .= =
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conservation of elastic bonding in the second principal
direction, a decrease in T12 or T23 does not imply
unloading in the areas where it occurs. The scheme of
loading and deformation of the perfect elastoplastic
bodies under consideration may form a basis for the
classification of loading types. For example, in a broad
sense [6], the simple loading corresponds to the motion
of the point A along the face T = const within the range
1 ≥ µσ ≥ –1, but without attaining extreme values. As
has been noted before, the motion of this point towards
the interior of the volume corresponds to unloading.

The simple loading is also the load applied to the
edges µσ = ±1, provided that the transition to the com-
plete-plasticity state occurs immediately from the elas-
tic state. However, in this case, in addition to the elastic
unloading, there is also a partial unloading. This occurs
when the point A is displaced onto one of the faces sit-
uated to the left or to the right of the edge. For example,
the transition onto the face µσ = 1 implies unloading in
the area with stress T. In this case, the increments of T
and Γ are related by the law of elasticity:

(8)

Completing a rough classification of loading types,
we call the loading that accompanied the rotation of the
principal directions complex. In these cases, as has
been noted above, a dissimilarity of the tensor principal
axes arises, so that the maximum tangential stresses
and the principal shears act in different, not coinciding,
areas. Examples of complex loading corresponding to
this classification are presented in [8].

3. Returning to the structure of the dissipative
function, we note certain features of the plasticity
condition (6) which are characteristic for a transition
from the incomplete-plasticity state to the complete-
plasticity state. Since T = const and σn does not affect
plastic deformation, we have from (6)

(9)

∆T µ∆Γ .=

G µσ( ) 0, µσ
2σ2 σ1– σ3–

2τS
--------------------------------.= =

T

A

σn

µσ

–1

+1

µσ = 1

µσ =–1

Figure.
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As was said above, the edges µσ = 1 or µσ = –1 rep-
resent the lines of the transition to the complete-plastic-
ity state. Consequently, the condition for the transition
to the complete-plasticity state has the form

(10)

Concerning calculations of shears, we note that their
values in the extreme areas are governed by the param-
eter µε , while the quantity Γ in itself is not related to the
stressed state; it depends on the problem geometry, i.e.,
on the slip-line network and the problem boundary con-
ditions, including elastic zones, the network being
determined by the conditions at the boundary with the
elastic zone.

Finally, we express the dissipative function in new
invariants, bearing in mind that

(11)

Thus, we obtain

(12)

The expression for D does not contain µε , but
involves µ∆ε . We note the following:

(i) The quantity  does not enter into D only at
µσ = 0 (pure shear). For other values of µσ ≠ 0, the quan-

tity  can affect the dissipation. This is explained by
the fact that, due to the incompressibility of the

medium,  can be directly expressed in terms of µ∆ε

and ∆Γp; i.e.,

(13)

(ii) In the complete-plasticity state, (µσ = ±1),

so that, in these cases, the quantity  affects the total
dissipation and, after the second direction has become
valid, controls the quantity µσ.

By virtue of the linear dependence of D(µσ), there is
no necessity for D to be optimized. Independently of
the sign of µσ, the optimum value of D can be calcu-
lated as

.

The above-mentioned experiments of Taylor and Quin-
ney [3, 4] show that, in the complete-plasticity state, the
similarity of tensors, which is violated in the case of the
incomplete-plasticity state, can be restored. This implies
that the energy dissipation in the case of plastic defor-
mation is controlled by the parameter µ∆ε .

µσ 1+− 0.=

σ1 = T σn, σ2+  = σn µσT , σ3+  = –T σn.+

σi∆εi
p T∆Γ p µσT∆ε2

p+ T∆Γ p 1 µσ
µ∆ε

3
-------+ 

  .= =

∆ε2
p

∆ε2
p

∆ε2
p

µ∆ε
3∆ε2

p

∆Γ p
------------.=

∆D T ∆ε1
p ∆ε3

p– µσ∆ε2
p+( ),=

∆ε2
p

∆D
4
3
---T∆Γ p=
In turn, this implies that at µσ = 1, the increments
(but not the shears in themselves) are equal to one
another:

If µσ = –1, then, respectively,  = ∆Γp.

The positiveness of D allows both the theorem of
uniqueness of the solutions to the boundary value prob-
lems for elastoplastic bodies and variational principles
to be considered. In this connection, a theorem for the
body’s energy can be written out as

(14)

where W is the positive-definite quadratic form with
respect to stresses or strains for elastic states, while D
is positive for all µ∆ε and ∆Γp. In calculating D, the con-
dition of the complete-plasticity state is taken into
account.

Systems of partial differential equations for the
states of complete and incomplete plasticity can be
indicated; these are similar to the Lamé system in the
elasticity theory. This is rather convenient in discussing
transitions from one state into another. The equations
are derived in the local coordinate system x, y, z under
the assumption that the principal directions of stressed
and strained states coincide with each other and the vol-
ume variation is elastic (see [1]).

In the case of incomplete plasticity, the system has
the form

(15)

where λ and µ are the Lamé constants and

∆Γ23
p ∆Γ p.=

∆Γ12
p

sν udS⋅
S

∫ F udV⋅
V

∫+ 2 WdV DdV ,

V

∫+

V

∫=

λ µ+( )∂
2u

∂x2
-------- C2

∂2u

∂y2
-------- C1

∂2u

∂z2
--------+ +

+ λ C2+( ) ∂2v
∂x∂y
------------ λ µ C1+ +( ) ∂2w

∂x∂z
-----------+ 0,=

λ C2+( ) ∂2u
∂x∂y
------------ C2

∂2v

∂x2
--------- λ 2µ+( )∂

2v

∂y2
---------+ +

+ C3
∂2v

∂z2
--------- λ C3+( ) ∂2w

∂y∂z
-----------+ 0,=

λ µ C1+ +( ) ∂2u
∂x∂z
----------- λ C3+( ) ∂2v

∂y∂z
----------- C1

∂2w

∂x2
---------+ +

+ C3
∂2w

∂y2
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2w

∂z2
---------+ 0,=

C1

τS

γ1
-----, γ1 ε1 ε3; C2– µ

µγ1 τS–
2γ2

-------------------,–= = =

γ2 ε1= ε2, C3 µ
µγ1 τS–
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-------------------– , γ3 ε2 ε3.–= =–
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In addition, in the onset of the incomplete plasticity,

(16)

i.e.,

The comparison with the Lamé equations shows
that a change of the type of equations for the displace-
ments or displacement velocities occurs. Namely, the
elliptic type of equations in the elasticity theory is
changed to the degenerate hyperbolic type. Thus,
although the system has two real-valued characteristic
surfaces, higher derivatives calculated along the second
principal direction cannot be determined. This fact is
evident and justified from the physical point of view,
because these surfaces correspond to the slip surfaces
in the case of the preservation of the elastic bonding
along the second principal direction.

In the state of complete plasticity (σ2 = σ3), the sys-
tem is statically determinate and, according to [1], has
the form

(17)

τS µγ1 µγ2;= =

C1 C2 C3 µ.= = =

K
∂2u

∂x2
-------- C4

∂2u

∂y2
-------- C1

∂2u

∂z2
--------+ +

+ K C4+( ) ∂2v
∂x∂y
------------ K C1+( ) ∂2w

∂x∂z
-----------+ 0,=

K C4+( ) ∂2u
∂x∂y
------------ C4

∂2v

∂x2
--------- K

∂2v

∂y2
--------- K

∂2w
∂y∂z
-----------++ + 0,=
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Here, K is the compression modulus:

The analysis of the system shows its hyperbolic
nature. Its characteristic surface forms a circular cone
with the axis directed along the first principal direction,
which is also characteristic.
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The continuum-mechanics approach to studies of
damages was initiated by L.M. Kachanov and
Yu.N. Rabotnov [1], who introduced the concept of
damage measure. This measure characterizes the den-
sity of microcracks, micropores, plastic microstrains,
and other newborn defects. These defects have a small
scale compared to the body’s dimensions but large com-
pared, e.g., to the crystal-lattice parameters and other
microscopic-level characteristics inherent in solid-state
physics. The Kachanov–Rabotnov phenomenological
damage measure is a scalar ω acquiring its values
within the range 0 ≤ ω ≤ 1. Here, the lower and upper
values correspond to the virgin nondamaged and com-
pletely damaged materials, respectively. Being applied
to the states close to unidirectional tension, this mea-
sure is often interpreted as the relative decrease in the
effective cross-sectional area. In this form, this measure
is used in machine-design calculations against creep
fracture [1–3].

It is evident that the damage orientational distribu-
tion plays an essential role, so that the damage level
should be characterized by tensor quantities. In the first
attempt at damage tensorial treatment [4], a second-
rank symmetric tensor similar to that describing the
density of dislocations was introduced to characterize
the spatial distribution of microcracks. To date, a num-
ber of various measures have been proposed to describe
the dispersed damage of materials, including tensors of
second, fourth, etc. ranks [5, 6]. A new branch of solid-
state mechanics, namely, continuum damage mechan-
ics, is being intensely developed. The lack of experi-
mental data and a certain freedom in choosing damage
measures seems to generate a wealth of literature rep-
resented, e.g., by [6]. The conventional approach is the
following: assumed damage measures are treated as
complementary internal parameters which are intro-
duced into equations for the free energy, dissipation
rate, etc. The constitutive equations are developed in a
standard way and, in contrast to classical equations of
mechanics, are supplemented by kinetic equations
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describing the process of damage accumulation. The
resulting system of equations is usually illustrated by
simple, most often one-dimensional, examples.

The basic disadvantage of the current state of con-
tinuum damage mechanics is the fact that it is weakly
confirmed by experimental data. Although the fracto-
graphic patterns of micro-damages are studied in detail,
the passage to phenomenological models of continuum
mechanics remains ambiguous. Usually, the level of
damage attained is associated with the growth of the
material’s compliance, in particular, with the decrease
in elastic moduli. However, the effect of small and
moderate damages on the material’s compliance is low,
whereas a high damage level is accompanied, as a rule,
by significant macroscopic plastic deformations and/or
formation of macroscopic cracks.

The goal of this study is to substantiate a direct and
clear relationship between damage measures and a
material’s macroscopic parameters which can be easily
measured in laboratory conditions. To do this, we need
to study macroscopic parameters more sensitive to
damage level than the elastic moduli and other charac-
teristics of the material’s stiffness. This condition is sat-
isfied by using the magnitude of the specific fracture
work as a macroscopic parameter, i.e., the amount of
energy spent for the formation of a unit of the new
crack surface. The process of fatigue-crack growth, as
well as the development of other cracklike defects is,
basically, controlled by the interaction of two mecha-
nisms. The first is the accumulation of damages near
the crack tips; the second is the general balance of
energy and forces in the system composed of the
cracked body and a load. A crack grows when the mag-
nitude of the specific fracture work reduces, due to
damage accumulation, to a level where the state of the
system becomes unstable or, at least, neutral [7–9]. The
amount of energy spent on the crack-tip propagation
can be easily calculated on the basis of force-displace-
ment relationships obtained experimentally. Thus, fol-
lowing the evolution of the specific fracture work in the
process of damage accumulation, we can yield a quali-
tative evaluation of the phenomenological damage
measure.

The other problem is the study of the geometric
properties of the damage measure. In particular, the
001 MAIK “Nauka/Interperiodica”
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rank of tensors characterizing the angular distribution
of damages is of interest. Up to now, attention was
attracted to materials whose properties were close to
isotropic. However, to analyze tensor properties, we
have to turn to strongly anisotropic materials, such as
composites of laminate and fiber structure. The compli-
ance and strength parameters of these composites may
differ by several orders of magnitude. Even within a
stacking plane, i.e. in the case of interlayer deformation
and fracture, the magnitude of the specific fracture
work is significantly direction-dependent. For example,
the mean value of the specific fracture work along and
across a unidirectional fiber-reinforced glass-epoxy
composite differs approximately by a factor of two.
A similar picture is observed while testing textile glass-
epoxy composites, for which the difference attains
approximately a factor of three.

Treating a composite as a quasi-homogeneous
orthotropic solid, we attribute the axes of symmetry to
the principal axes of a certain second-rank tensor and
consider the material parameters related to these axes
as the principal values of this tensor. Testing specimens
with an oblique orientation of principal axes, we can
also assess nondiagonal components of the tensor [9].

When a specimen cut out in the oblique direction
from an orthotropic composite plate is subjected to
tearing, the normal to the crack front deviates from the
direction of the tearing force. To describe this phenom-
enon, we should use, at least, a second-order matrix,
such as

(1)

In this case, only a part of the newly formed crack area
may be related to the contribution of the diagonal ele-
ments of this matrix. Namely, nondiagonal matrix ele-
ments γ12 = γ21 which are naturally assumed to be sym-
metric correspond to the formation of “skew” areas.
These areas are limited by the crack front and the line
normal to the direction of the tearing force. Varying the
angle between the direction of this force and the direc-
tion of one of the composite principal axes, we are
afforded the possibility of comparing the values of the
specific fracture work with the results given by the ele-
mentary transformations for the elements of the sec-
ond-rank tensor:

(2)

Here, γ1 and γ2 are the values of specific fracture work
while tearing along the principal axes and θ is the angle
between the principal axis 1 and the tearing-force
direction. A satisfactory agreement between the exper-
imental results and the calculations based on expres-

γ γ11 γ12

γ21 γ22 
 
 

.=

γ11 γ1 θcos
2 γ2 θsin

2
,+=

γ12 γ21

γ1 γ2–
2

---------------- 2θ.sin= =
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sions (2) is observed, although a spread of the experi-
mental results is noticeable.

Measuring the specific fracture work for initially
damaged specimens opens a path to numerical evalua-
tion of damage measures. Based on the model given by
expressions (1) and (2), we introduce the phenomeno-
logical damage measures ω1 and ω2 in the case of tear-
ing along the principal axes:

(3)

Here,  and  are the magnitudes of specific fracture
work along the principal axes for a virgin material.
Thus, the phenomenological damage measures can be
interpreted as a relative decrease in the specific fracture
work along the principal axes. Then, we assume that the
interlayer damage may be described by a symmetric
matrix,

, (4)

whose components are connected with the principal
damage measures ω1 and ω2 (3) by relationships similar
to (2). We may interpret the matrix (4) as a matrix cor-
responding to a second-rank damage tensor.

In modeling the fatigue-crack growth, it is necessary
to distinguish at least two types of damages, namely,
damage produced by the cyclic normal stress acting in
the plane of the expected crack propagation and that
produced by the cyclic tangential stress. Let normal
∆σn and tangential ∆τn stresses act in the plane with the
normal n. Equations for the damage accumulation may
be written out in the form

(5)

where ∆σn ≥ ∆σth and ∆τn ≥ ∆τth .
The damage measures ωτ(N) and ωn(N) are consid-

ered slowly varying functions of the cycle number N.
Material parameters (σd, τd, ∆σth, ∆τth, mσ, and mτ) are
easy to attribute to macroscopic characteristics mea-
sured in laboratory tests. In particular, the semiempiri-
cal Paris–Erdogan equation and its generalizations con-
tain a number of characteristics that correlate with the
parameters entering into Eqs. (5). It was shown [7, 9]
that, using Eqs. (5) with properly chosen material
parameters, a satisfactory agreement can be attained
with numerous experimental data on fatigue crack
growth. Note that the damage measures and patterns
corresponding to normal and skew cracking are con-
nected with the components ωjk of the matrix (4) by
Cauchy relationships.

ω1 1
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γ1
0

-----, ω2– 1
γ2

γ2
0

-----.–= =

γ1
0 γ2

0

ω ω11 ω12

ω21 ω22 
 
 

=

∂ωn

∂N
---------

∆σn ∆σth–
σd

-------------------------- 
 

mσ

,=

∂ωτ

∂N
---------
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The proposed simple interpretation of damage mea-
sures relates to the two-dimensional case and cracks of
the mode I, which propagate in a fixed plane. Mixed-
mode fracture cracks accompanied by kinking and
branching are often observed in actual conditions. We
can easily generalize the model proposed. First, we
consider the three-dimensional case when the matri-
ces (1) and (4) are replaced by similar 3 × 3 matrices.
Second, we can introduce three matrices corresponding
to modes I, II and III. In the general case, all the modes
interact with each other, which results in additional
matrices taking this interaction into account. Thus, we
arrive at a matrix of dimension 9 × 9. Under the
assumption of symmetry and in the general case of
anisotropy, we have to deal with 21 matrix elements.
This conclusion corresponds to earlier proposals of
describing continuum damage with fourth-rank ten-
sors. Further generalizations yield higher-rank tensors.
However, it is difficult to presently propose a set of lab-
oratory experiments realizing a well-conditioned pro-
cedure of evaluating components of a fourth rank ten-
sor even in the simplest case of orthotropic media. The
actual situation is much more complicated. In solving
engineering problems, pure mechanical damage is
often accompanied by damages of a nonmechanical
nature such as corrosion, hydrogen embrittlement, etc.
Allowance for nonmechanical damages requires the
introduction of additional damage measures and for-
mulation of relationships taking into account the inter-
action between measures of different nature [9].
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We consider constructing a general solution to the
problem of designing laminated plates, i.e., the set of
all designs providing a desired stiffness for a plate.

The solution is obtained by methods of the “convex-
combination problem” [1], to which the initial problem
can be reduced provided that the Young’s moduli of
materials are taken as variables (instead of routinely
used volume contents). We propose an algorithm of
solving the discrete convex-combination problem
which can be employed by numerically solving the
design problem (excluding the allowance for stiffness).

1. FORMULATION OF THE PROBLEM

We consider a laminated plate with layers disposed
in parallel to the coordinate plane and formed from
homogeneous isotropic materials. It is necessary to find
the distribution of these materials in the layers which
provides the given stiffness (stiffness in the plane,
asymmetric stiffness, and flexural stiffness) for the
plate.

Let the coordinate y-axis be directed across the
plate. In the laminated plate, the Young’s modulus E(y)
and the Poisson ratio ν(y) are functions of the variable y.

The design problem is the following. It is required
to find the distribution of the material’s characteristics
providing a given stiffness S0 for a plate in the plane, an
asymmetric stiffness S1 , and a flexural stiffness S2 .

To do this, it is necessary to solve the problem (with-
out a loss of generality, the plate thickness is taken
to be 1)

(1.1)

E y( )
1 ν2 y( )–
---------------------- yd

1/2–

1/2

∫ S 0= ,

E y( )y

1 ν2 y( )–
---------------------- yd

1/2–

1/2

∫ S1,
E y( )y2

1 ν2 y( )–
---------------------- yd

1/2–

1/2

∫ S 2.==
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The integrals in (1.1) yield the expression for the
corresponding stiffness of the plate in terms of the elas-
tic constants of its constituent layers [2–5].

For simplicity, we assume that ν(y) = const. In this
case, Eqs. (1.1) are a problem with respect to E(y). In
practice, in plate designing, a finite (often small) num-
ber of materials is used.

For discretization of the problem, we divide the

plate into m layers of equal thickness ; the function

E(y) is constant in the intervals  + , –  + .

Henceforth, i = 1, 2, …, m.

The desired values are Ei . In the physical sense,
Ei ≥ 0. Problem (1.1) can be reduced to the following
form:

(1.2)

The solution (the plate design) is described by the set
(E1, …, Eb) [or the corresponding vector (x1, …, xb)].

2. THE DISCRETE PROBLEM
OF CONVEX COMBINATIONS

We consider the following problem. Let Zn ⊂  [0, 1]
be a finite set (consisting of n numbers) and vi, v ∈  Rk

be the given vectors. It is required to indicate the num-
bers xi which are solutions to the following problem:

(2.1)

(2.2)

1
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Problem (2.1) with the condition

(2.3)

is the convex-combination problem (CCP) considered
previously in [1, 2].

We remove discreteness condition (2.3) and replace
it by condition (2.4). The general solution to CCP (2.1),
(2.3) is known and has the form [1, 2]

(2.4)

where Pγ = (P1γ, …, Pmγ) is a certain finite set of solu-
tions to CCP (2.1), (2.4) and λγ (γ = 1, 2, …, M) are
arbitrary numbers satisfying the conditions

(2.5)

In other words, the set Λ(v) of solutions to
CCP (2.1), (2.2), (2.4) has the form Λ(v) = conv{Pγ,
γ = 1, 2, …, M}. The method of constructing the set of
vectors {Pγ, γ = 1, 2, …, M} is described in [1, 2].

The set  = {x: xi ∈ Zn} represents the discrete net
in Rm. The set of solutions to CCP (2.1)–(2.3) is Λ(v) ∩

.

Problem (2.1), (2.2) is solved if we indicate the vec-
tors given by formulas (2.4), (2.5) and satisfying the
condition xi ∈  Zn .

Relationships (2.4), (2.5) can be considered as the
CCP with respect to λ γ. From the convexity of the set
Λ(v), it follows that, if the first i – 1 equations in (2.4)
are satisfied, the subsequent ith equation is solvable if
and only if

(2.6)

The interval Ii is, generally speaking, dependent on
x1, …, xi – 1.

From (2.6), we obtain the necessary and sufficient
condition for the existence of the solution to the dis-
crete CCP:

(2.7)

Since the intervals Ii depend on x1, …, xi – 1 , a T tree
appears. Its top T(0) corresponds to i = 1, i.e., to the
absence of the solution. The branching at the level
T(i − 1) corresponds to the points Z(i). An arbitrary
branch coming from the root T(0) to the level T(m)
yields the solution (2.1), (2.2) to the discrete CCP. On
the contrary, the branch coming from the root T(0) to
the level T(m) corresponds to an arbitrary solution of
the discrete CCP. Thus, the indicated tree yields the set
of all the solutions to the discrete CCP.

0 xi 1≤ ≤

xi Piγλγ, i
γ 1=

M

∑ 1 2 … m,, , ,= =

λγ

γ 1=

M

∑ 1, 0 λγ 1.≤ ≤=

Zn
m
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m

xi Ii∈ mini maxi,[ ] .=

Z i( ) Zn Ii ∅ for  all i . ≠∩  =                                 
3. NUMERICAL ALGORITHMS

The numerical algorithm involves the following
stages.

The passage from CCP (2.1), (2.3) to CCP (2.4),
(2.5), i.e., the construction of the set of vectors {Pg,
g = 1, 2, …, M}. The set of vectors can be constructed
on the basis of the convolution algorithm described pre-
viously in [1, 2].

The test of the solvability of CCP (2.4), (2.5) for
the right-hand sides from the set Zn (constructing
the intervals Ii). Since only the interval [mini, maxi]
but not the solutions to (2.4), (2.5) are of interest to us,
we can use the simplex method, which requires lesser
computer memory than the convolution method. To do
this, the first i – 1 equations from (2.4) and Eq. (2.5) are
considered at the (i – 1)th step as constraints and the
goal function L(λ) is constructed on the basis of the 

 

i

 

th
equation from (2.4):

 

. (3.1)

 

We also consider the problem

 

(3.2)

 

Constructing the tree.

 

 The tree can be constructed
in an arbitrary manner, because its dimensions turn out
to be not very large.

Thus, the numerical algorithm of the solution to the
discrete CCP is reduced to solving well-known prob-
lems, namely, the CCP and the linear-programming
problem.

4. SOLVABILITY OF A CCP
AND THE STRUCTURE OF ITS SOLUTION

We consider a relatively internal point 

 

x

 

 of the set
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, i.e., the point for which we can find the vector 
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and the number 
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, such that 
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 for 0 <

 

τ

 

 < 

 

δ

 

. Substituting 
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 + 
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 into relationships (2.1), (2.2)
and differentiating them with respect to 

 

τ

 

, we obtain
that the vector 

 

y

 

 satisfies the equalities

 

(4.1)

 
Introducing the vectors 
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 = (
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1
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, …, 

 
v

 
mj 

), 
 

w
 

0 
 =

(1, …, 1)  , we can rewrite (4.1) in the form  w 
i

 y  = 0,  j  =
0, 1, 2 for each vector connecting the relatively internal
points. This implies that the set 

 

Λ

 

(

 

v

 

)

 

 lies in the hyper-
plane given by Eqs. (4.1) and has the dimension 

 

m

 

 – 3
[we recall that the solutions to CCP (2.1), (2.3) are the
elements of the set 

 

R

 

m

 

].
By virtue of this property, problem (2.4), (2.5) for an

arbitrarily given 

 

x

 

, as a rule, has no solutions, because
a random presence of a point in the hyperplane has a
zero probability (this is only observed in the numerical
calculation for an arbitrary set of desired stiffness).
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In this connection, it is possible to propose perturb-
ing the set {Pγ, γ = 1, 2, … M} with the goal of yielding
a solidity (i.e. the dimension m) for a convex shell of
the perturbed set. From (4.1), it follows that it should
perturb the set {Pγ, γ = 1, 2, …, M} by the vectors wi ,
j = 0, 1, 2 [which are the solutions to (4.1) and are “per-
pendicular” to Λ(v)].

We now consider the perturbation of the set {Pγ, γ =
1, 2, …, M} in the form {Pγ + rξwγmod 3, γ = 1, 2, …, M},
where ξ is the random value uniformly distributed over
the interval [0, 1], r is the characteristic value of the
perturbance, and the subscript mod implies the division
with respect to modulus. With the probability equal to
unity, conv{Pγ + rξwγ mod 3} has the dimension m.

Let problem (2.5) with the vectors {Pγ + rξwγmod3,
γ = 1, 2, …, M} instead of vectors {Pγ, γ = 1, 2, …, M}
have the solution x. This solution is representable in the
form of a convex combination:

(4.2)

Substituting this expression into the former equa-
tion of (2.1) and taking into account that {Pγ, γ = 1, 2,
…, M} satisfies equalities (2.1), we obtain

The last expression corresponds to the error with
which the solution x satisfies the first equation of (2.1).
This quantity is seen to have an order r.

5. NUMERICAL TESTS

We composed codes to obtain the simplicial solu-
tions to the CCP, to construct the tree, and to solve the
linear-programming problem.

Test problem. The following test problem was
used. A certain structure  of the laminated plate was
given, and the values of the stiffness Sν (ν = 0, 1, 2)
were calculated for it according to formulas (1.1).
Then, the design problem was solved for these stiff-
ness. Within the set of its solutions, the solution 
must be present. This property was verified and con-
firmed by numerical calculations.

Problem with a perturbed set {Pγ, γ = 1, …, M}. As
a typical example, we present the following problem.
The number of layers is m = 7. The design { , i =
1, …, 7} = {3, 5, 3, 5, 3, 5, 3} is taken as known. The
corresponding stiffness are S0 = 3.8571, S1 = 0, and S2 =
1.1348. The number of solutions to CCP (2.1), (2.4) is
M = 12.
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For the design, the set of materials Z6 = {1, 2, 3, 5,
7, 10} is used.

The perturbation parameter was taken to be r = 0.05.
Here, we present the number of nodes of the T tree at
various levels:

The following designs were obtained: E1 = {5, 3, 5,
5, 1, 7, 1}, E2 = {3, 5, 5, 5, 1, 5, 3}, E3 = {3, 5, 3, 5, 3,
5, 3}, and E4 = {1, 7, 3, 5, 3, 3, 5}. The design E3 coin-
cides with the initial design.

The stiffness S0 = 3.857 and S2 = 1.135 are the same
for all designs obtained, while the values of the stiff-
ness S1 are equal to 0.163, 0.245, 0.000, and 0.082,
respectively.

Examples of other numerical calculations are given
in [6].

6. THE DESIGN PROBLEM WITH ALLOWANCE 
FOR THE STRENGTH 

AND THE AVERAGED STRENGTH CRITERION

Above, we described the method of solving the
problem of designing laminated plates with desired
stiffness characteristics. The complete solution to this
problem must take into account the strength require-
ments. We show that the design algorithm proposed is
also applicable to solving the design problem with
allowance for strength.

Preliminary, we introduce the averaged strength cri-
terion. As that for a composite plate, we imply such a
criterion which, being written in terms of the character-
istics of a plate as a two-dimensional object, enables us
to estimate its strength as a three-dimensional
(although thin) heterogeneous body [3–5]. It is possible
to obtain such criteria in the case of the existence of for-

mulas connecting local stresses  in a plate (consid-
ered as a three-dimensional body) with its deformation
characteristics as a two-dimensional object.

For a laminated plate, such formulas were obtained,
e.g., in [4, 5], and have the form

(6.1)

where y = y3 is the coordinate across the plate (as in [1],
the plate layers are directed parallel to the plane Ox1x2),
cijkl(y) is the elastic-constant tensor, εαβ is the strain ten-
sor in the plate plane, and ραβ is the curvature tensor.

Level i 0 1 2 3 4 5 6 7

Number of 
nodes

1 5 19 49 157 80 12 4

σij
ε

σij
ε  = cijαβ y( ) εαβ yραβ+[ ] ,

i j,  = 1 2 3, α β,, ,  = 1 2,,
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Using the relation between εαβ , ραβ , and the forces
Nαβ in the plate plane and the moments Mαβ ,

(6.2)

we can express  in terms of Nαβ and Mαβ (α, β, γ,
δ = 1, 2).

We consider the case where the Poisson ratios for
materials coincide. In this case, the elastic-constant ten-
sor can be represented in the form

(6.3)

where  is independent of y and E(y) is the Young’s
modulus.

In this case, if the ith layer  + , –  + 

of the plate is occupied by the Kth material [E(y) = EK

in the layer under consideration], the local stresses in
this layer are

(6.4)

We recall that a unit-thickness plate (or that trans-
formed to such a plate by a proper replacement of the
variable) is considered.

Let the strength criterion for the Kth material be
written in the form

(6.5)

where fK is the nonnegative Lipschitz function.
Substituting (6.4) into (6.5), we obtain the averaged

strength criterion for the ith layer under the condition
that this layer is occupied by the Kth material:

(6.6)

The partition into layers was carried out with a step

. In this case, with an accuracy to  (M is the max-

imum of the Lipschitz constants for the functions fK;
k = 1, 2, …, n), we can replace (6.6) by the condition

(6.7)

Constructed according to the design (E1, …, Em) or
(x1, …, xm), the plate conserves the integrity of all its
layers if condition (6.7) is fulfilled for all i = 1, 2, …,
m. In the case of violation of conditions (6.6) or (6.7),
the destruction of a certain layer takes place {i.e., (6.6)
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m
-----

FK εαβ ραβ,( )

≡ f K EKcijkl
0 εαβ –

1
2
--- i

m
----+ 

  ραβ+ 
  1.<
and (6.7) are the strength conditions “with respect to
the first crack” [3–5]}. Condition (6.7) is an approxi-

mate condition with an accuracy of .

7. THE DESIGN PROBLEM WITH ALLOWANCE 
FOR STRENGTH

The descriptive formulation of the problem is the
following: It is required to indicate all the designs pro-
viding the desired stiffness for a plate and making it
possible not to be destroyed while enduring the strains
εαβ and ραβ (or the loads Nαβ and Mαβ).

The formalized setting of the problem with allow-
ance for the above-said is the following: it is necessary
to solve problem (2.1), (2.2) under condition (6.7).

The algorithm proposed in Section 2 is coordinated
with the formulated problem. To obtain the designs
desired, it suffices to use condition (6.7) as a filter at a
recurrent step of this algorithm. For substantiating this
statement, we turn to the description of the algorithm
step which was presented in Section 2. At the ith step,
we supplement the previously available fragment of the
design x1, …, xi – 1 with the quantity xi satisfying condi-
tion (6.6).

We modify this algorithm in the following manner.
Let xR satisfy (6.6) (we change the subscripts in order
for i and R to number a layer and a type of a material,
respectively). In this case, we verify the validity of the
condition

(7.1)

If condition (3.1) holds, then xR =  is taken as a

possible value; otherwise, this equality is discarded.
We deal with the algorithm from Section 2, in which
the condition xi ∈  Ii is replaced by the condition
{xR ∈  Ii} ∩ {for xR, condition (7.1) is fulfilled} (i.e.,
supplementary condition (7.1) is posed, which we call
the strength-condition filter).

Condition (7.1) is obvious from the mechanical
standpoint. This is the test for a material with the
Young’s modulus ER (xR and ER are unambiguously
interrelated, see Section 2) as a candidate for the filling
in with this material of the ith layer. The efficiency of
modifying the algorithm to take into account its
strength is related to its locality (layer-by-layer con-
structing of the plate design by this algorithm), which
successfully coincides with the locality of strength cri-
terion (6.7) (written for the given layer).

In the case of setting the load (i.e., Nαβ º  and Mαβ),
the values of εαβ and ραβ can be calculated using Nαβ,

M
m
-----

FR i, εαβ ραβ,( )

≡ f R ERcijkl
0 εαβ

1
2
--- i

m
----+– 

  ραβ+ 
  1.<

ER

mS 0
---------
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Mαβ and the given stiffness. In this connection, we
again arrive at the above problem.
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For a given body-base area and constraints imposed
on both the length and transverse dimensions of the
body, the problem of its shape providing the maximum
depth of penetration into dense media is solved within
the framework of the model of local interaction.

STATEMENT OF THE PROBLEM

Let a body penetrate into a medium normally to its
free surface in the direction opposite to the axis given
by the unit vector x. We assume that at an initial time
moment, the body is entirely immersed in the medium
and has a velocity U0 . We write out the resistance expe-
rienced by the penetrating body in the form

(1)

Here, σn and στ are the normal and tangential stresses
on the body surface, respectively; n and t are the unit
vectors of the inner normal and the tangent to a surface
element, respectively; and integration is performed
over the body surface S.

We now study the interaction between the medium
and the surface S within the framework of a local
model. To do this, we consider the stresses to be given
by two-term sums containing a constant term and a
dynamic one proportional to the body velocity U
squared:

(2)

Here, Ak and Ck are positive constant model parame-
ters dependent on the characteristics of the medium
(k = 1, 2).

We introduce the notation α = (n · x). Within the
framework of the model, the vector t lies on a sliding
plane for particles of the medium, with (t · x) = (1 –

D σn n x⋅( ) στ t x⋅( )+[ ] S.d∫
S

∫=

σn A1U2 n x⋅( )2 C1+ ,=

στ A2U2 n x⋅( )2 C2+ .=
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α2)1/2, and the surface S is the upstream part of the body
surface on which the condition

0 ≤ α ≤ 1 (3)

is satisfied.

With regard to the assumptions accepted, we
rewrite (1) in the form

D(U) = D1U2 + D2, (4)

(5)

The values of integrals (5) are independent of the
velocity U. This allows us to integrate the equations of
motion for a body with mass M subjected to the action of
force (4). As a result, the penetration depth for the body
in the medium is given by the expression (cf. [1, 2])

(6)

For a given velocity U0 and mass M, the penetration
depth H depends on the body shape. We will seek the
body shape providing the maximum value of H in a
class of bodies with piecewise smooth surface S and
base area Sb, which are interrelated by the expression

(7)

Let the surface S be described by the equation x =
χ(ρ, θ) in the cylindrical coordinates (x, ρ, θ), where χ
is a one-valued function of points lying in the body
base. Then, αdS = dSb = ρdρdθ. Denoting the polar

Di f i α( )α S, id∫
S

∫ 1 2,,= =

f 1 α( ) α2 A1 γA2+( ), f 2 α( ) C1 γC2,+= =

γ 1 α2–
α

-------------------.=

H
M

2D1
---------

D0

D2
------ 

  , D0ln D U0( ).= =

α Sd∫
S

∫ Sb.=
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ON BODY SHAPES PROVIDING MAXIMUM PENETRATION DEPTH IN DENSE MEDIA 141
radius of the points in the base contour by R(θ), we
rewrite expressions (5) and (7) in the form

(8)

(9)

As follows from (4), (6), and (8), we obtain the
functional H depending on the functions α(ρ, θ) and
R(θ) that specify the body shape and are independent of
each other. With M, U0 , and Sb given, the problem of the
body shape providing the maximum depth of penetra-
tion is formulated in the following manner: it is neces-
sary to find the functions α(ρ, θ) and R(θ) that meet
conditions (3) and (9) and provide the maximum of
functional (6).

Below, we derive equations for the functions α(ρ, θ)
and R(θ) for an extremal surface and prove that the
function α is constant on this surface.

EXTREMAL SURFACES

The Lagrange function for functional (6) is given in
the form

where λ0 is a constant factor. The Euler equations for
the functions α(ρ, θ) and R(θ) of an extremal surface
are determined from the condition δΦ = 0. We present
δΦ in the following equivalent forms:

(10)

(11)

In (10) and (11), the quantities Km (m = 1, 2, 3, 4)
depend on the body shape and are determined by the
expressions

where q =  > 1, w =  < 1, and Km (m = 1–4) are

always positive. With regard to (4) and (8), we write out
the variations δDi (i = 0, 1, 2) in (10) and (11) in the
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1
2
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form

(12)

Here, αf = αf (R(θ), θ) and (α) are the derivatives of
the functions fi(α) with respect to the parameter α,
which are given by the expressions

(13)

Next, we consider representation (11) for δΦ. Since
the quantities K3, K4, and λ0 are common for the entire
surface and δα and δR are independent variations, the
equality δΦ = 0 is satisfied only if the function α meets
the conditions

(14)

(15)

Since Eq. (14) has to be valid at each point on an
extremal surface, we determine that the equality

α = α* = const (16)

holds on this surface. The constant α* in (16) is a root
of Eq. (14) provided that this root meets conditions (3)
and (15). It can be proven that Eq. (14) has no more
than one such root. This results in the extremal surface
containing no sections with different values of α. Equa-
tion (14) may have no roots. Even in this case, condi-
tion (16) remains in force on the extremal surface.

In general, function H(α) (6) of the real argument
attains its maximum within the interval [0, 1] when
α = α*. The maximum value of H* = H(α*) is sought
among local and boundary extrema. The function H
attains its local extrema for α satisfying Eq. (14), while
the boundary extrema are possible for α = 0 and α = 1.
It is worth noting that roots (14) are independent of Sb
and α* is determined only by the characteristics of the
medium and the initial velocity U0 of penetration.

The values of α* as a function of the parameter Y =

 are presented in Fig. 1. The curves 1 and 2

correspond, respectively, to the model with constant
friction, when A2 = 0, C2 ≠ 0 and C1 = 5C2 , and the
model of Coulomb friction, when A2 = µ0A1 , C2 = µ0C1 ,
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and µ0 = 0.2. It is worth noting that curve 3, which cor-
responds to the model with constant friction in the thin-
body approximation (α2 ! 1), yields a good fit to α* for
Y < 0.5. The local maximum of H coincides with the
edge maximum for Y = Y*, where the values of Y* are
shown by the points A and B on the curves 1 and 2,
respectively. For Y > Y*, the body with α* = 1 has the
maximum penetration depth.

BODY SHAPES PROVIDING MAXIMUM 
PENETRATION DEPTH

Condition (16) is similar to that of the minimum
resistance for bodies [3, 4]. However, using representa-
tion (10) for δΦ with equalities (12) and (13) taken into
account, we can prove that the surface of the minimum-
resistance body, which is found at an initial stage of
penetration with U = U0 and satisfies the condition
δD0 = 0, is not optimal for functional (6) provided that
positive values of δα are admissible. Hence, the body
surface providing both the maximum penetration depth
and the minimum resistance are formed by sections of
a circular-cone surface with an opening angle β* =
2 α* and planes tangent to the cone. However, the
values of α* for surfaces optimal from the standpoint of
resistance and penetration depth are different in these
two cases.

arcsin

1.0

0.5

0 0.5 1.0

α*

1
2

3

4

5

B A D C

Y

Fig. 1. Values of α* as a function of parameter Y for the
body shape providing (1–3) maximum depth of penetration
or (4, 5) minimum resistance. The model of constant fric-
tion (solid lines) and the model of Coulomb friction (dashed
lines) are used. An example of the optimal body shape is
shown in the insert.
For comparison, the values of α* found for the min-
imum-resistance body shape in [3] are presented in
curves 4 and 5 in Fig. 1. In this case, curves 4 and 5 cor-
respond to curves 1 and 2 (by both the model of friction
and the characteristics of the medium), respectively.
The body with α* = 1 has minimum resistance pro-
vided that Y > Y*, where the values of Y* are shown by
the points C and D on curves 4 and 5, respectively. For
such Y, the body shapes providing minimum resistance
and maximum penetration depth coincide.

Condition (16) is obtained under the assumption
that only the body-base area Sb is given. However, it
was proved in [3, 4] that if, in addition to given Sb, con-
straints were imposed on the body’s length and trans-
verse dimensions, an infinite set of bodies whose sur-
faces met these constraints and condition (16) could be
found. This implies that all such bodies, with Sb given,
have the same maximum depth H* of penetration into
the medium provided that the initial conditions, veloc-
ity U0 , and mass M are identical. Such optimal bodies
may be conical and have a cyclic symmetric (star-
shaped) cross section [3]. At the same time, the method
developed in [4] and based on condition (16) allows us
to find nonconical and asymmetric optimal body
shapes. In particular, this method can be used for find-
ing the optimal shape of a body with given length pro-
vided that the body base is a circle. An example of such

100

50

0 0.5 1.0

∆H

1

2

3

α

Fig. 2. Relative difference ∆H =  × 100 as a func-

tion of α for Y = (1) 0.1; (2) 0.5; and (3) 0.8. The model of
constant friction with C1 = 5C2 (solid lines) and the model
of Coulomb friction with µ0 = 0.2 (dashed lines) are used.

H*
Hk
------- 1– 

 
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a body is presented in Fig. 1. The stress action on the
surface of a body moving in a dense medium often
results in deformation and destruction of the body. The
strength for optimal bodies with a circular base is
higher than that for conical star-shaped bodies equiva-
lent in their length and base area. Hence, in the case of
a dense medium, from the standpoint of optimal shape,
such circular-area bodies are preferred over star-shaped
bodies.

For various Y, the maximum penetration depth H*
was compared to the penetration depth Hc for circular
cones with the same mass and base area as the optimal

body. The relative difference ∆H =  × 100 as

a function of α is plotted in Fig. 2 for cones with an
opening angle β = 2 α. Curves 1, 2, and 3 are
plotted for Y = 0.1, 0.5, and 0.8, respectively. Solid lines
in Fig. 2 correspond to the constant-friction model with
C1 = 5C2, and dashed lines correspond to the Coulomb
friction model with µ0 = 0.2. The tangency and inter-
section of the curves with the abscissa axis in Fig. 2
occur at α = α*.

H*
Hk
------- 1– 

 

arcsin
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REMARKS AND CONCLUSIONS
The problem of body shape providing maximum

depth of penetration into dense media is solved in the
framework of the model of two-term local interaction (2).
This model is used for describing the stress on the sur-
face of a body penetrating into a dense medium similar
to grounds and metals [1, 2]. The problem is solved
without simplifying assumptions concerning the
body’s geometry [1, 2]. It is proved that the structure of
the body shape providing maximum penetration depth
coincides with that providing minimum resistance at an
initial stage of penetration [3, 4]. However, in the gen-
eral case, the body shapes optimal from the standpoint
of penetration depth and resistance differ from one
another.
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The development of theoretical models describing
the penetration of fast charged particles through a
medium placed in a magnetic field is of undoubted
interest in solving problems of high-energy physics,
astrophysics, and physics of the Earth. The possibility
of using analytic methods for this goal is caused by the
smallness of the single-scattering angle, which results
in a substantial simplification of the elastic part of the
collision integral in the transport equation. Representa-
tion of this integral in differential form made it possible
to obtain a number of solutions to the transport equa-
tion in small-angle approximation [1–3].

However, the results obtained relate to the case of
the motion of a charged-particle flux along the mag-
netic-field direction, i.e., to a rectilinear beam. For a
curvilinear beam, the transport equation in the small-
angle approximation is not derived. For example, the
problem of the injection of a charged-particle beam at
a certain angle to the direction of the uniform magnetic
field was studied in [4–7] on the basis of kinetic equa-
tion. In this paper, we obtained the transport equation in
the small-angle approximation for the problem of pen-
etration of a curvilinear charged-particle beam through
a medium placed into a nonuniform magnetic field. For
this equation, the Green’s functions in the case of ring
and spiral beams are also constructed.

In the presence of an external magnetic field B, the
transport equation has the form

(1)

Here, N(x, W, T) is the charged-particle flux density; e,
m, and T are the particle charge, mass, and kinetic
energy, respectively; S is the density of the sources; Iel
is the elastic part of the collision integral; and

The propagation of the particle beam can be
conveniently considered in the curvilinear s, η, ζ-coor-

W∂N
∂x
------- e

c
-- WB[ ] ∂N

∂p
-------+ S Iel.+=

p W T T 2mc2+( )
c

----------------------------------.=
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dinate system:

where Y(s) is the particle trajectory in the beam axis;
s is the trajectory length measured from the beam injec-
tion point; and t, n, and b are the vectors of the Frenet
trihedron related to the Y(s) curve. Substituting the
expression for the velocity v = ut into the equation for
the particle motion occurring in an external magnetic
field, we find for the trajectory curvature Y(s),

where p0 is the particle momentum.

In the new coordinate system, Eq. (1) takes the form

(2)

where κ is the torsion of the curve Y(s) and σ = 1 – kη.
In the small-angle approximation, W ≈ t + αn + βb.

This allows us to simplify the integral for elastic colli-
sions (provided that the effect of the external magnetic
field on the collision process is ignored):

where χ2(T) is the mean square of the scattering angle
per unit path length.

x Y s( ) ηn ζb,+ +=

k
ebB0

c p0
------------,–=

B0 B Y s( )( ), p0
mu

1 u2

c2
-----–

------------------,= =

1
σ
---tW∂N

∂s
------- nW κ

σ
---ζ+ 

  ∂N
∂η
-------+

+ bW κ
σ
---η– 

  ∂N
∂ζ
------- e

c
-- WB[ ] ∂N

∂p
-------+ S Iel,+=

Iel L T( )N , L T( )
1
4
---χ2 T( ) L1 L2+( ),= =

L1
α2

2

∂
∂

, L2
β2

2

∂
∂

,= =
001 MAIK “Nauka/Interperiodica”



70 NAUMOV
For a narrow beam, when the ratios of its transverse
size to the beam curvature radius and the twisting
radius are small, the values of kη, κη , and λζ  are low.
In addition, we suppose the degree of nonmonoenerge-

ticity of the beam to also be small; i.e., τ =  – 1,

where W = c  – mc2 is the particle kinetic
energy in the beam axis. Therefore, due to the small-
ness of the scattering angle, we can assume that χ2(T) ≈
χ2(W). Expanding the external field near the beam axis,
B = B0 + B1 , and ignoring terms of the second order of
smallness, we find from Eq. (2)

(3)

where we denote

Equation (3) describes the penetration of a narrow
beam of fast charged particles through a medium
placed into a nonuniform magnetic field with allow-
ance for the effect of multiple elastic scattering. This
equation is simplified for κ = 0, i.e., in the case when
the beam axis is a plane curve. As a particular example,
we consider the propagation of a ring beam in a weakly
focusing magnetic field with decay index q:

In this case, Eq. (3) is written out as

(4)

where the following notation is introduced:

The solution to Eq. (4) can be obtained by the
method of Green’s functions:
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Here, for the set of variables, the following notation is
used:

It is easy to see that the Green’s function has the fol-
lowing structure:

where ϑ(x) is the Heaviside step-function and the func-
tions Fi satisfy the equation

with the initial condition Fi(s', xi; s', ) = δ(xi – ).

To determine the functions Fi , we should pass from
xi to new variables ξi and γi:

where ψi = ki(s – s'). This substitution of variables
results in the elimination of terms with first-order deriv-
atives (for brevity, the subscript i is omitted):

(5)

To solve Eq. (5), we can use the double Fourier
transform for the variables ξ and γ, whereupon a stan-
dard differential equation is obtained for the Fourier
transform. This equation is easily integrated, and, in the
end, the following result is obtained:

For a delta-shaped source, the particle density is

where c1 and c2 are the values of the coefficients C1 and
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C2 for s' = 0. These quantities characterize beam broad-
ening due to multiple elastic scattering.

Similarly, we can find the Green’s function for the
beam in a uniform magnetic field, when the beam axis
represents a helical line. In this case, the curvature and
torsion of the beam axis are independent of s: k =

|ν|sinθ, κ = νcosθ, where ν = –  and θ is the angle

between the magnetic-field vector and the direction of
the beam injection. For a spiral beam, Eq. (3) has the
form

(6)

Here, for eliminating the terms with first derivatives,
we should use the following substitution of variables:

where the notation

is introduced.

As a result, Eq. (6) is reduced to a form similar
to (5):

For brevity, the expressions for the symmetric matrix of
the coefficients aij are not given. However, they can be
easily obtained by performing the above-indicated sub-
stitution of variables.
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Applying the Fourier-transform method, we can
obtain the Green’s function:

The coefficients used here have the form (r = s – s')

The practical importance of the results obtained lies
in the possibility of estimating the parameters of a
beam of fast charged particles penetrating a medium
placed in an external magnetic field. The estimates
obtained can be applicable in a region where a notice-
able thickening of a beam caused by dispersion of par-
ticle velocities and multiple elastic scattering still does
not occur.
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Interpretation of spectra of magnetoelastic waves in
magnetically ordered materials is still among the most
important problems of solid-state physics. The most
successful and widely used methods are secondary
quantization and Bogolyubov transformation, which
provide rich information on spectra of coupled magne-
toelastic waves in magnetically ordered materials over
wide ranges of temperature and other parameters [1, 2].

Axially anisotropic ferromagnets are of consider-
able interest because of their domain structure. Study of
these ferromagnets have shown that one of the easy-
magnetization axes is tilted to the surface normal,
which makes it necessary to revise the contributions of
magnetostriction and anisotropy in the specimen plane
in the physics of magnetic domains. It was shown that
these contributions cannot be regarded as mere correc-
tions to anisotropy. The domain structure of axially
anisotropic ferromagnets depends on the changes in the
tilt angles of the easy-magnetization axes to the surface
normal, the temperature, the geometric dimensions of
the specimen, and the external stresses. The orienta-
tional phase transitions in these materials are also
rather specific [3, 4].

Below, we use the method of secondary quantiza-
tion for studying the coupled magnetoelastic waves in
axially anisotropic cubic ferromagnets in the case
where the easy-magnetization axes induce anisotropy
along various directions in the specimen plane with due
regard for the geometric sizes of the specimen.

Consider a Hamiltonian which takes into account
the magnetic (Hm), elastic (He), and magnetoelastic
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(Hme) energies and determines the spectrum of magne-
toelastic waves in an axially anisotropic ferromagnet:

The dependence of the frequency ω(k) of a magne-
toelastic wave on the wave vector k at various angles ψ
of the tilt of the easy-magnetization axis to the surface
normal of the specimen is characterized by the
“dynamics” illustrated by Fig. 1. It is seen that the tilt
angle of the easy-magnetization axis with a value up to
ψ = 10° gives rise to an additional resonance in the
spectrum of coupled magnetoelastic waves (Fig. 1,
ψ = 10°). At tilt angles up to ψ = 15°, a diffuse spin
wave is generated at the nonzero values of the momen-
tum; i.e., there is a region where no coupled magne-
toelastic waves can exist (Fig. 1, ψ = 15°). This region
strongly depends on the tilt angle of the easy-magneti-
zation axis of the axially anisotropic ferroelectric
(Fig. 1, ψ = 15°, ψ = 25°). The dependence of the
region without any coupled magnetoelastic waves on
the tilt angle can result in complete disappearance of all
the magnetoelastic interactions (Fig. 1, ψ = 45°). With
a further increase of the tilt angle of the easy-magneti-
zation axis to the surface normal, the effect of soft cre-
ation (annihilation) of a coupled magnetoelastic wave
is observed (Fig. 1, ψ = 50°), whereas in the region of
large tilt angles, a diffusion spin wave arises (Fig. 1,
ψ = 65°, ψ = 80°). It is also established that the energy
of the magnetic subsystem is strongly dependent on the
tilt angle of the easy-magnetization axis irrespective of
the geometric dimensions of the specimen (Fig. 2).
Moreover, the resonance frequency is also strongly
dependent on the tilt angle (Fig. 3). In terms of the sig-
nal transformation, the above phenomena are very
important. Choosing the appropriate magnetic parame-
ters, specimen thickness, and tilt angle, it is possible to
arrive at a situation where the coupled spin waves exist

H Hm He Hme.+ +=
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only in the narrow range of k values in the vicinity of
the resonance.
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Studies of structural modifications induced by the
action of fast neutrons in ceramic insulators are of sub-
stantial scientific and practical importance. This is
explained by the necessity of conserving the physical
properties and strength characteristics of ceramic mate-
rials under extreme conditions of nuclear-reactor irradi-
ation [1–3]. Aluminum-oxide ceramics widely used as
insulating materials in nuclear-power engineering
abruptly lose their mechanical and electric strength (up
to 70%) when irradiated by high-fluence fast neutrons.
The least modifications (below 14%) are observed in
the mullite–corundum ceramics [3, 7, 8]. This paper is
devoted to clarifying the mechanisms of these pro-
cesses at the structural level.

We studied samples of highly alumina ceramics
with an Al2O3 mass fraction from 76 to 99%, namely,
UF-46, 22KhS, and GB-7 ultraporcelains and MK
microlite, before and after irradiation by fast neutrons
with a fluence of 3.7 × 1021 cm–2. The samples were
irradiated in the VÉK-8 channel of a BOR-60 nuclear
reactor for 3.5 years (Nuclear Reactor Research Insti-
tute, Dimitrovgrad). The neutron-energy range
amounted to 0–20 MeV, in which 100- to 300-keV neu-
trons predominated. The irradiation proceeded at a tem-
perature of 300°C. The sample holding time between
completing irradiation and the beginning of investiga-
tion was 13 years. For studying structure modifications
in the ceramics, methods of X-ray structural diffraction
and infrared (IR) spectroscopy were used.

The samples were photographed in a continuous
mode and in a point-by-point scanning mode by the
Debye–Scherrer method using DRON-3 and
DRON-UM1 X-ray diffractometers. The Debye pow-
der patterns were photographed for the copper K-series
X-rays transmitted through a Ni filter according to the
Bragg–Brentano scheme. As a result of photographing
the samples, we obtained X-ray diffraction patterns for
all the ceramic brands under investigation. From the set
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of interplane spacings and reflection intensities, the
crystalline phases of the ceramics were identified
according to the international JCPDS X-ray dosimetry
card catalog [9, 10].

The ceramic samples were investigated by methods
of IR absorption spectroscopy. The IR spectra were
recorded with an IKS-29 spectrophotometer in the
range of 400 to 1400 cm–1 with an error of 3 cm–1. The
samples for the investigations were prepared by press-
ing of pellets with KBr [5].

The highly alumina ceramics under study belong to
the class of materials formed in the MgO–Al2O3–SiO2
system. In addition to the basic crystalline α-Al2O3
phase, supplementary crystalline phases with a content
lower than 5% are present in the ceramics, namely,
magnesian spinel in MK; quartz, celsian, and anorthite
in UF-46.

After fast-neutron irradiation, the phase composi-
tion of the materials was investigated by the method of
X-ray dosimetry. After irradiation, the corundum con-
tent decreased negligibly in UF-46 and by 10% in
GB-7. In microlite, no peaks corresponding to the
α-Al2O3 phase were found (Fig. 1). After rejection by
the harmonic-analysis method of the background and
the diffusion components corresponding to the (111)
and (220) lines, the crystalline phase arisen after the
irradiation was identified as γ-Al2O3 according to the
JCPDS X-ray dosimetry card catalog (no. 10-425) [10].
The mechanism of the α–γ-transition in the aluminum
oxide within the composite material can be inconsistent
with the model proposed for pure oxide, which is con-
firmed by the difference in phase modifications under
the action of irradiation in the ceramics with various
mass fractions of Al2O3.

We investigated IR spectra for UF-46, 22KhS,
GB-7, and MK. In Figs. 2 and 3, the IR spectra for
GB-7 and microlite in the range of 800 to 5000 cm–1 are
shown; as is seen, Al2O3 is transparent to infrared radi-
ation. A unit cell of γ-Al2O3 has a cubic close packing
of oxygen atoms and represents a combination of two
types of anions, i.e., (AlO6)9– and (AlO4)5– (in the crys-
tallographic sense, this is a combination of tetrahedrons
and octahedrons with a ratio of 1 : 2). The spatial group
001 MAIK “Nauka/Interperiodica”
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Fig. 1. X-ray diffraction spectra of ceramic materials before (i.e., in the initial state) and after irradiation by fast neutrons.
of this modification corresponds to  [4]. Based on
the complete vibrational representation of the Oh group
and according to the selection rules, two vibrations cor-
responding to the F14 vibrational representation for
AlO6 octahedron and two vibrations corresponding to
the F2 for AlO4 turn out to be active in the IR spectral
range. Thus, the absorption bands corresponding to the
triply degenerate F14 and F2 vibrations must occur in
the IR spectrum of γ-Al2O3 . The F14 deformation vibra-
tion of the δ-AlO6 octahedron yields a band at 450 cm–1,
while the F14 valence vibration of the ν-AlO6 octahe-
dron yields absorption bands at 600 and 635 cm–1 [6].
These bands are characteristic of both Al2O3 modifica-
tions and are present in the spectra of all aluminum-

Oh
7
 oxide ceramics. The band at 560 cm–1 is related to the

F2 deformation vibration of the δ-AlO4 tetrahedron,
while the 720- to 730-cm–1 absorption band corre-
sponds to the F2 valence vibration of the ν-AlO4 tetra-
hedron. These bands, which are characteristic of the γ
modification, are present only in the spectra of the irra-
diated MK and GB-7 ceramics; they are much lower in
intensity for GB-7 (see Figs. 2 and 3). In the X-ray dif-
fraction spectra of GB-7, no γ-Al2O3 peaks are
detected, because the content of this phase is lower
than 5%.

Thus, the IR-spectroscopy analysis not only con-
firmed the existence of the α–γ-transition of the alumi-
num oxide in MK under the action of irradiation, but
DOKLADY PHYSICS      Vol. 46      No. 2      2001
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also revealed the nucleation of the γ phase in GB-7. In
the UF-46 and 22KhS materials, no similar modifica-
tions under the action of irradiation were found.

Since the predominant type of radiation defects in
these materials are the large-radius dislocation loops
[11], it turns out to be possible to introduce transition
local temperatures Tt with a characteristic random
spread δTt(R), depending on the loop radius. In this
case, the nucleation of the γ-phase turns out to be local-
ized in the irradiation thermal spikes and the amount of
nuclei does not attain a value detectable by routine
methods. However, microlite contains magnesian
spinel introduced for hampering the growth of α-Al2O3

nuclei. While sintering, it wraps around the corundum
grains in thin (down to 1 µm) interlayers. It is necessary
to take into account that the γ-Al2O3 latent nonstoichi-
ometric synthetic phase has a spinel structure charac-
terized by an imperfection in the cation positions.
When forming an Al2O3 solid solution in MgAl2O4

spinel, the cation substitution proceeds according to the
scheme

,

where hMg is the vacant site belonging to the magne-
sium cation [6].

Thus, the γ-phase nuclei arisen in microlite under
the action of neutron irradiation are surrounded by
spinel, which leads to formation of a substitutional
solid solution and the total transition of aluminum
oxide into the γ modification in this material. In GB-7,
the presence of the glass phase is lower than 9% and the
amount of the γ phase formed corresponds to the calcu-
lated amorphization of corundum. In UF-46 and 22KhS,
the reaction of the glass phase reduces the radiation
swelling and amorphization of corundum. In these mate-
rials, no formation of the α-phase occurs at all or it is
formed in a negligible amount undetectable by these
methods. Thus, the abrupt deterioration in the strength
characteristics of MK and GB-7 ceramic materials irra-
diated with fluences above 2.8 × 1021 neutrons cm–2 can
be explained by the polymorphic transformation of the
basic crystalline phase localized in the sites of the dis-
location-loop aggregation in GB-7 and by the total
transformation in microlite owing to the presence of
magnesian spinel in this material. Based on X-ray
dosimetry, the full-profile analysis of ceramic insula-
tors in combination with IR spectral analysis makes it
possible to predict the α–γ-phase transition of Al2O3

under the action of neutron irradiation. From the X-ray-
dosimetry data on partial amorphization of corundum
with simultaneous appearance of the Al2O3 γ-phase
nuclei in GB-7 and the comparative analysis of sub-
structure modifications in microlite, it follows that

3Mg2+         2Al 
3+

 h Mg +                                    
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increasing the fluence (above 3.7 × 1021 cm–2) leads to
a loss of strength characteristics for GB-7 ceramics.

The results obtained extend the scope of radiation-
damage mechanisms in ceramic insulators under the
action of fast-neutron irradiation. These data can be
used for developing a method of predicting the radia-
tion resistance of ceramic insulators on the basis of
structure modifications revealed by X-ray diffractome-
try and IR spectroscopy.
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F2
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INTRODUCTION

The development of high-power solid-state lasers
with a high quality of radiation for various technologi-
cal applications is an important problem in laser phys-
ics. One of the most simple but, at the same time, effi-
cient methods of solving this problem is passive Q-
switching of a cavity. Indeed, in the early 1980s, it was

found [1–3] that applying LiF:  crystal as a passive
laser Q-switch provides generation on the principal
mode without using additional selectors. In this case,
the spectral width of the mode is inversely proportional
to the pulse duration of the modulated radiation. How-
ever, the spatial and spectral radiation parameters
remain stable only when the pumping level negligibly
exceeds the threshold level and the pulse radiation
power is no higher than several kilowatts.

Previously, in [4, 5], we showed the possibility of
realization of a single-mode modulated radiation with a
pulse peak power up to 100 kW and a spatial brightness
exceeding 1 × 109 W/(cm2 sr) with a divergence of
2 mrad and a coherence length of 10 cm. For this pur-
pose, in a master oscillator of a YAG:Nd laser, we used
an unstable cavity with a passive laser Q-switch based

on a LiF:  crystal. Multistage amplification of the radi-
ation in the master oscillator allowed us to increase the
pulse power and its spatial brightness only by a factor of
2 to 2.5, while the divergence and the coherence length
were unchanged [6]. Noticeable improvement of the
energy and spatial characteristics was attained in [7, 8]
when a coupled cavity of a special geometry was used.
The passive laser Q-switch and two active YAG:Nd ele-
ments were placed in different arms of this cavity. An
initial pulse was formed in the first arm containing the
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passive laser Q-switch. Then the pulse was amplified
with the help of active elements placed in the second
arm. This made it possible to increase the peak power
of the single-mode radiation up to 500 kW and the spa-
tial brightness up to 3 × 1010 W/(cm2 sr), with simulta-
neous reduction of the divergence to 1.6 mrad and
extension of the coherence length to 17 cm.

An important advantage of the latter scheme is the
substantial reduction of optical and thermal loads on
the passive laser Q-switch, whose values are deter-
mined by the transmission of a coupling mirror
installed between the cavities. However, when employ-
ing optically dense passive laser Q-switches (initial
transmission T0 ≤ 70%), the increase in the pumping
energy was accompanied by a reduction in the modula-
tion depth of laser radiation. This is explained by the
insufficient radiation intensity needed to obtain the sta-
ble antireflection coating of the passive laser Q-switch,
by the reflection of a part of the radiation from the end
mirror, and by the radiation escape immediately from
the second cavity arm. The improvement of the cou-
pling-mirror transmission in order to increase the mod-
ulation depth was accompanied by a decrease in the sta-
bility of generation pulses, thereby breaking the ther-
mal regime and the increase in thermal loads on the
passive laser Q-switch. In addition, increasing the num-
ber of active elements in the optical circuit up to three
and more reduced the radiation efficiency due to an
insufficient compensation of aberrations.

In this study, we have investigated the possibilities
of using a Sagnac interferometer as an end reflector for
further improving the energy and spatial radiation char-
acteristics of high-power pulse-periodic lasers with
passive modulation of the Q-factor.

1. OPTIMIZATION OF THE OPTICAL SCHEME 
OF A YAG:Nd LASER

To determine the optimum geometry, we investi-
gated two different laser cavities (Fig. 1, schemes 1
and 2) with active elements on the basis of a YAG:Nd
crystal with a diameter of 6.3 and a length of 100 mm.
In the first scheme (Fig. 1), the two active elements 1
and 2 were placed in a cavity consisting of two Sagnac
2001 MAIK “Nauka/Interperiodica”
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Fig. 1. Optical schemes of lasers based on a LiF:  crystal with a passive Q-switch: (1), (2), and (9) active elements; (3) laser pas-

sive Q-switch; (4) deflecting mirrors; (5) split mirror; (6) exit spherical mirror; (7) exit plane mirror; (8) plane nontransmitting
mirror.
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interferometers 4 and 5 and an exit plane mirror 7 (mir-
rors 6 and 8 were absent). In the second scheme
(Fig. 1), a single active element 1, a Sagnac interferom-
eter, and a convex mirror 6 with a curvature radius of
750 mm form a master oscillator (mirrors 7 and 8 are
absent). The second active element was used as a sin-
gle-pass amplifier. The totally reflecting mirror was
applied in both laser schemes to evaluate the effect of
open output of the Sagnac interferometer on radiation
parameters. The optical pumping was performed by
KDNP-6/90A krypton lamps connected to a GND-13
power supply unit (the pulse pumping energy attained
85 J for each lamp, the pulse-repetition frequency was
between 1 and 30 Hz with a pulse duration of 200 µs).
Passive Q-switching was performed with the help of

a LiF:  crystal (3) with dimensions of 8 × 17 ×
66 mm. The crystal had a variable transmission chang-
ing linearly from 20 to 80% perpendicular to the laser
optical axis. The optimum position of the passive laser
Q-switch was evaluated through the generation effi-
ciency and the thermal state of the crystal in its position
both inside the cavity and in the Sagnac interferometer.
It was established that the position of the passive laser
Q-switch in the diagonal of the Sagnac interferometer
is the most reasonable. In this case, the energy parame-
ters of the radiation are higher by a factor of 1.3, while
the thermal and optical loads on the passive laser
Q-switch are significantly lower compared to those cor-
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responding to its location inside the cavity. Indeed,
when the passive laser Q-switch is positioned near the
active element, the radiation propagating in the direct
and opposite directions from the active element to the
end reflector passes through the LiF crystal twice. This
results in an increase in the energy loss in the medium
of the passive laser Q-switch, thus elevating the thermal
and radiant loads and decreasing the generation

efficiency. Extension of the LiF:  crystal length to
40 mm did not provide stabilization of the thermal
regime without forced cooling. It is worth noting that in
the linear scheme [7], the radiation also executes no
less than two passes through the passive laser Q-switch
before escaping the cavity passive arm.

In the case of positioning the passive laser Q-switch
in the interferometer, the radiation comes back again to
the active element, passing by the LiF crystal only
once. This fact decreases the energy loss on the nonre-
flecting faces of the passive laser Q-switch and the

residual energy loss in the LiF:  crystal. Since the lat-
ter are mainly determined by the radiation absorption
and scattering on inactive centers and depend on the
quality of crystal manufacturing, the coefficient of the
residual loss can be evaluated by the formula α = kpl =
kal/β, where kp and ka are the coefficients of the inactive
(passive) and active loss, respectively; l is the crystal
length; and β = ka/kp is the contrast characterizing the
quality of the crystal. The values of kp and ka were
determined according to the transmission spectrum of

the LiF:  crystal. In this case, the value of β was inde-
pendent of T0 and equaled β = 27. For T0 = 52 % (ka =
0.39 cm–1), the coefficient of residual loss was α =
0.025, whereas for T0 = 32% (ka = 0.67 cm–1), this coef-
ficient increased up to α = 0.042. Hence, with allow-

ance for reflections from the faces of the LiF:  crystal
(up to 5%), 7 to 10% of the energy can be lost only for
a single pass through the passive laser Q-switch. Since
the amount of the loss per single pass affects not only
the rate of generation development but also the number
of radiation passes through the cavity, the decrease in
the effect of the residual loss in the case of using the
Sagnac interferometer as an end reflector makes it pos-
sible to noticeably increase the efficiency of laser gen-
eration.

For both schemes 1 and 2 (Fig. 1), the optimum exit-
mirror transmission was determined in terms of the
mean and peak powers of the modulated radiation. The
pumping-pulse energy was 84.4 J for each lamp, and
the initial transmission of the passive laser Q-switch
was ~58%. The results obtained showed that the opti-
mum value of the exit-mirror transmission was 85–90%
both with the additional mirror 8 and without it. In
schemes 1 and 2 with open output (without the addi-
tional mirror 8), the average radiation power turned out
to be the same and attained 69 W. However, when using
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scheme 2 (the master oscillator with a single-pass
amplifier), we obtained maximum values of 1.15 MW
for the peak power and an energy of 57.5 mJ for the
radiation pulses. This is, apparently, associated with the
shorter length of the cavity and, as a consequence, the
lesser time of passing by it [9]. This fact is confirmed
by reducing the duration of generation pulses from
65 ns (scheme 1) to 45 ns (scheme 2). In addition,
scheme 2 is more profitable from the standpoint of
lower radiant loads on the passive laser Q-switch. This
is explained by the fact that the radiation of the only
single active element is practically absorbed.

Introducing a totally reflecting mirror at the open
output of the Sagnac interferometer made it impossible
to noticeably increase the average radiation power. For
example, in scheme 2 with additional mirror 8, the
average radiation power increased only up to 72 W, i.e.,
by 5%. Moreover, the parameters of certain pulses of
the modulated radiation appreciably deteriorated. The
instabilities of the amplitude, duration, and pulse-repe-
tition period increased from 5 to 10–15%. The number
of pulses in a train increased from 40 to 49, and their
energy and peak power even decreased to 49 mJ and
1 MW, respectively. In the profile of the radiation-
intensity distribution, we observed chaotically arising
local inhomogeneities. This testifies to a multimode
character of generation. Therefore, application of an
additional mirror in the linear laser scheme with the
Sagnac interferometer can hardly be reasonable.

It should be noted that for a scheme with a linear tri-
ple-mirror cavity [7], the radiant loss was optimum
when the exit-mirror transmission was 47%. The initial
transmission of the passive laser Q-switch was 58%.
From our results obtained for schemes 1 and 2 (Fig. 1),
we can conclude that application of the Sagnac interfer-
ometer makes it possible to increase the cavity Q-factor
and, as a consequence, the energy parameters of laser
radiation for close values of the initial transmission of
the passive laser Q-switch. To the greatest extent, this
advantage becomes apparent in scheme 2 (Fig. 1),
where the passive laser Q-switch is placed in the diag-
onal of the Sagnac interferometer. This assumption
agrees well with the results of a test experiment in

which the LiF:  with an initial transmission T0 = 53%
was placed inside the cavity in front of the Sagnac
interferometer. In this case, the average radiation power
decreased by a factor of 1.3 and attained 52 W.

The results of investigation of the dependences of
laser energy and time parameters for scheme 2 (addi-
tional mirror 8 was absent) on the initial transmission
of the passive laser Q-switch and the energy of pump-
ing pulses are presented in Figs. 2 and 3.

Figure 2 shows the dependences of the energy
(Fig. 2a) and time (Fig. 2b) radiation parameters on the
initial transmission of the passive laser Q-switch for a
pumping-pulse energy of 84.4 J and pulse-repetition
interval of 30 Hz. As is seen from the results obtained,
the maximum average power P = 74 W (Fig. 2a,
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curve 1) and the maximum pulse-train energy WS =
2.45 J (Fig. 2a, curve 2) for modulated radiation are
attained in the case of the initial transmission of the

LiF:  crystal, T0 = 78%. The energy of an individual
pulse is Wi = 15 mJ (Fig. 2a, curve 3) and its peak power
is Pi = 200 kW. The decrease in the initial transmission
of the passive laser Q-switch from 78 to 20% due to an
increase in the threshold value of the inverse population
and time needed to attain this value at a constant pump-
ing rate leads to increasing the pulse-repetition period
Ti in the train from 1.4 to 9.1 µs (Fig. 2b, curve 5),
decreasing the number Ni of pulses from 160 to 22
(Fig. 2b, curve 7) and the duration τi from 80 to 35 ns
(Fig. 2b, curve 6). As a result, the decrease in the initial
transmission of the passive laser Q-switch is responsi-
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Fig. 2. Dependences of (a) energy parameters and (b) time
parameters of laser radiation for scheme 2 on the initial

transmission of the laser passive Q-switch on the LiF:

crystal: (1) the average power; (2) the energy of the pulse
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ble for the sharp increase in the energy of an individual
pulse in the train and its power. For T0 = 20%, these val-
ues are equal to 70 mJ and 2 MW, respectively. How-
ever, in this case, the average radiation power and the
energy of the pulse train are lowered approximately by
a factor of 1.4, i.e., to 50 W and 1.7 J, respectively.

Figure 3 demonstrates the dependences of the
energy parameters (Fig. 3a) and time parameters
(Fig. 3b) for laser radiation on the energy of pumping
pulses for a 30-Hz repetition frequency and for an ini-
tial transmission of 53% for the passive laser Q-switch.
It is seen that the increase in the energy WP of pumping
pulses is accompanied by a lowering of the time of
attainment of the threshold inverse population and, as a
consequence, the period Ti of pulse repetition in the
train (Fig. 3b, curve 5). This results in an increase not
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only in the number of pulses Ni (Fig. 3b, curve 6) but
also in the average power P (Fig 3a, curve 1) and in the
energy of the pulse train WS (Fig. 3a, curve 2). The
energy of an individual pulse in the train Wi (Fig. 3a,
curve 3) and its power Pi (Fig. 3a, curve 4) increase
also, which may be caused by the rise in the volume of
an active medium taking part in the generation. How-
ever, in the range of pumping energy between 50 and
84.4 J, their rise slows down. This indicates that the use
of the energy stored in the active element under pump-
ing is close to maximum. This is also confirmed by the
existence of the optimum value WP = 54 J for which the
maximum generation efficiency η = 1.42% is attained.
The significant increase in the energy parameters of the
single-mode radiation may be expected in a YAG:Nd
laser with a coupled cavity involving a Sagnac interfer-
ometer in one of the arms.

2. A YAG:Nd LASER WITH AN OPTICALLY 
COUPLED RESONATOR AND SAGNAC 

INTERFEROMETER

The optical scheme of this laser is given in Fig. 1
(scheme 3). In contrast to scheme 2, we used a two-
stage amplifier (active elements 2 and 9) and an addi-
tional transmitting mirror 7 placed after the output
amplification stage. To improve the compensation of
the thermal lens in the active element 1 of the master
oscillator, we applied a convex mirror 6 with a curva-
ture radius of 750 mm. Its position in the cavity was
chosen from the condition of correspondence between
the diameters of both the zeroth mode and the active
element. The optimum transmission of mirrors 6 and 7
(85 and 93%, respectively) was determined from the
maximum generation efficiency.

The investigation of the radiation energy parameters
and time parameters for the YAG:Nd laser system with
the Sagnac interferometer as functions of the initial
transmission of the passive laser Q-switch demon-
strated that the character of these dependences is simi-
lar to those for scheme 2 (Fig. 2). It is worth noting that
pulse durations in a train coincide for both schemes
within the experimental errors. Whence, it follows that
the optically coupled cavity with an additional stage of
amplification practically does not affect the develop-
ment of generation in the master oscillator but performs
only multipass amplification of the radiation generated
by this oscillator, which was not obtained in linear mul-
timirror resonators [8, 9]. As in scheme 2, the maxi-
mum generation efficiency for the laser system is
attained for the pumping-pulse energy WP = 54 J. How-
ever, application of two-stage amplification made it
possible to increase not only the radiation energy
parameters, namely, the averaged power, the train
energy, the energy of an individual pulse, and the peak
power, but also the laser efficiency that attained η =
1.62%.
DOKLADY PHYSICS      Vol. 46      No. 2      2001
In Fig. 4, the dependences of the radiation energy
characteristics (Fig. 4a) and time characteristics
(Fig. 4b) of the YAG:Nd-laser on the energy of pump-
ing pulses for a pulse-repetition frequency of 30 Hz are
given. The position of the gradient dyeing passive laser
Q-switch corresponded to the initial transmission T0 =
53%. The dependences obtained show that compared
with scheme 2 (see Fig. 3), the additional amplification
provides the possibility of increasing the radiation
energy parameters by a factor of 1.5–2, namely, the
averaged power P from 70 to 123 W (Fig. 4a, curve 2),
the train energy WS from 2.3 to 4.1 J (Fig. 4a, curve 3),
the energy Wi of an individual pulse from 54 to 69 mJ
(Fig. 4a, curve 4), and the radiation power Pi from 1.15
to 1.6 MW (Fig. 4a, curve 1). The absence of the satu-
ration for the rise of the energy parameters and the
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weak effect of the amplification stages on the time
characteristics (Fig. 4b, curves 5 and 6) indicate the
possibility of further elevating the generation efficiency
in the case of a larger number of amplification stages.

The divergence of laser radiation determined by the
relative distribution of intensity in the focal plane of the
lens with a focal distance of 1 m was θ/2 = 1.1 mrad at
the level of e–2 with respect to the maximum intensity.
This corresponds to the quality parameter M2 = 8.1. For
the maximum pumping energy and the initial transmis-

sion T0 = 20% of the LiF:  crystal, the spatial radia-
tion brightness was as high as 2.2 × 1012 W/(cm2 sr).
The coherence length measured with the help of a
Michelson interferometer was 30 cm.

CONCLUSIONS
The data presented testify to the high generation

efficiency of the laser system with a Sagnac interferom-

eter and a passive Q-switch on the LiF:  crystal.
Application of the Sagnac interferometer as an end
reflector made it possible not only to decrease the
energy loss in the cavity but also to increase the energy
radiation parameters by a factor of 2 to 4 and the coher-
ence length by a factor of 1.5 to 2, to elevate by more
than one order of magnitude the radiation spatial
brightness, as well as to raise the efficiency of laser
generation.

In our opinion, this improvement of the radiation
energy parameters and space parameters is caused by
the spatial spectral and angular selectivity of the Sag-
nac interferometer, which arises while introducing the

LiF:  crystal into its ring. In addition, the Sagnac
interferometer modified by this manner is efficiently
compensated through the self-collimating of the ther-
mal lens induced under the action of pumping in the
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active element of the master oscillator. Furthermore,
due to the interference, the Sagnac interferometer
attenuates an irregularity in the phase incursion over
the cross section of radiation reflected from it which
retains the cavity Q-factor close to the initial value.
Finally, the feasibility of controlling the radiation
parameters by smooth changing of the optical density

of LiF:  crystals with varying the transmission makes
it possible to design flexible laser systems. These sys-
tems may be easily automated and involved in various
technological processes.
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As is well known [1], the key advantage of field-
effect transistors is the presence of a current-saturation
region in their current–voltage characteristics. Accord-
ing to the classical model [2], the onset of the saturation
region corresponds to the drain voltage  = VG – Vt

(where VG is the gate voltage and Vt is the so-called
threshold voltage) and extends to  = VB , i.e., to the
voltage corresponding to the onset of impact ionization.
It is also well known that the saturation region is asso-
ciated with a specific propagation of the drain voltage
along the device structure. Indeed, the voltage drop
along the channel length attains VG – Vt and corre-
sponds to the almost complete depletion of the channel
near-drain part. In this case, the relevant excess equal to
VD – VG + Vt is associated with a relatively narrow
region of the space charge near the channel-drain
boundary. This is the region of localization of the
impact-ionization avalanche process occurring at a suf-
ficient magnitude of this excess.

As a rule, in the practice of field-effect transistor
design, the tendency exists to increase the breakdown
voltage (in order to enhance the output power). Below,
we show that in the field-effect heterostructure transis-
tors, an additional feasibility appears for elevating the
breakdown voltages compared to the field-effect
devices of conventional (Schottky-transistor and MIS)
realizations. It is evident that this feasibility is caused
by the presence of two dissimilar semiconductor layers,
namely, wide-gap and narrow-gap ones, in the transis-
tor active region. The essence of the structural features
of the ionization process in the heterostructure under
study is easy to elucidate with the help of the electric-
field pattern in the device near-drain region shown in
Fig. 1. The equipotential lines shown in the figure dem-
onstrate, first, the existence of the bulk channel in the
transistor subgate wide-gap layer. Second, this is the
most essential point, the field lines perpendicular to the
equipotential lines and forming, with allowance for the

VD'

VD''
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energy jump, trajectories of the electron drift at the het-
eroboundary are decomposed into two classes. One of
their parts (outgoing from the bulk channel directly into
the GaAs–n+ drain-electrode) is placed completely in
the wide-gap layer and, consequently, is characterized
by a considerably high threshold of impact ionization.
At the same time, the other part (outgoing from the sur-
face channel at the heteroboundary) is almost com-
pletely localized in the narrow-gap layer with a low
ionization threshold.

We now try to complete the qualitative pattern of the
phenomenon under consideration, complementing this
pattern with the necessary quantitative estimates. At the
source boundary, the cold electrons are injected into the
surface 2DE-channel, since the bulk channel is sepa-
rated from the source by an energy barrier. Then, drift-
ing in a strong electric field, the electrons in the surface
channel are heated and partially or almost completely
pass into a bulk wide-gap channel, overcoming the cor-
responding energy barrier ∆ = 0.1–0.3 eV at the hetero-
boundary. Moving already in the bulk channel, these
electrons are cooled while penetrating the heterobar-
rier. Then, they traverse the region of possible ava-
lanche multiplication in the near-drain space-charge
region without escaping from the wide-gap layer, in
which the impact-ionization threshold is rather high. In
turn, the electrons that failed to appropriately overcome
the energy barrier of the heteroboundary are involved in
narrow-gap trajectories of the near-drain space-charge
region. There, the process of avalanche multiplication

MetalGaAs–n+

AlxGa1–xAs

InyGa1–yAs

Fig. 1. Qualitative field pattern in the channel of a hete-
rotransistor with modulation doping.
001 MAIK “Nauka/Interperiodica”



 

86

        

GERGEL’ 

 

et al

 

.

                                                                      
develops at voltages considerably lower than those
needed for avalanche breakdown along the wide-gap
trajectories to be developed.

Consequently, in order to enhance the electric
strength of a transistor, we should provide specific con-
ditions for high-field heating charge carriers in the
channel and properly choose the energy barrier for the
heteroboundary when almost the entire electron flow
has time to hop within the channel length from the sur-
face channel to the bulk one. For the corresponding
quantitative estimate, we use the simplest formula of a
so-called thermoionic emission [3], roughly assuming
it to be homogeneous along the channel length. This
yields for the branching flow,

where vT is the mean thermal velocity; T is the mean
electron temperature; and Q is the surface electron den-
sity, depending on the boundary value of the bulk elec-
tron concentration nS according to the well-known

quasi-classical relation nS = Q ; L is the channel

length and E⊥  = . To estimate the electron tempera-

ture, we employ the result of the ultraquasi-hydrody-
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Fig. 2. Current–voltage characteristic for a transistor with a
high heterobarrier ∆ = 0.27 eV.
namic drift model [4] proposed by us previously.
According to this model, 

In turn, the current of the transistor-surface channel
can be represented as a product of the surface charge by
the mean drift velocity I = vDQ. Combining this expres-
sion with the formula given in [1], it is easy to under-
stand that the situations of interest, i.e., I – ∆I ! I and
∆I ! I, are provided by the fulfillment of either of two
inequalities:

Here, d is the thickness of the wide-gap layer, which

appears here since E⊥  = . Taking into account

that the typical values of the relevant quantities are

VG − Vt = 0.5 V,  . 10, and  ≥ 3, we see that in the

variation range of 0.1 < ∆ < 0.4 eV, the realization of
each situation is possible. The estimate given (rough
but fairly reliable) indicates a quite realistic practical
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possibility of elevating the transistor breakdown volt-
age by a corresponding optimization of the composi-
tion of the transistor wide-gap layer.

To confirm the considerations given above concern-
ing the features of avalanche breakdown in heterotrans-
istors, the families of current–voltage characteristics
for two tested AlxGa1 – xAs–InyGa1 – yAs P–HEMTs
with similar parameters, except the composition x of
the wide-gap layer, are shown in Figs. 2 and 3. In the
first of them, the aluminum fraction was 0.27, which
corresponds to the value ∆ = 0.27. In the second case,
x = 0.2 and ∆ = 0.17. It is also evident that the overly
large (from our point of view) molar fraction of alumi-
num and, correspondingly, barrier height ∆ resulted in
DOKLADY PHYSICS      Vol. 46      No. 2      2001
significant degradation of the characteristics of the first
transistor.
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In recent years, there has been considerable interest
in epitaxial films grown on unusual vicinal faces of
GaAs such as (111), (211), (311) etc. with a certain
misorientation because of specific physical properties
and novel possibilities for their application in various
devices. Thus, it was shown [1] that a 1°–4°-misorien-
tation of GaAs (111)A substrates in the [211] direction
results in formation of a vicinal surface consisting of
terraces formed by (111)A planes and steps formed by

(111)B planes. In the [2 ]-direction, such misorienta-
tion gives rise to terraces formed by (111)A planes and
steps formed by (100) planes [2]. Considerable interest
is also expressed in the unusual behavior of the silicon
dopant in (111) GaAs layers [in comparison with the
(100) orientation]. Unlike (100) GaAs, where silicon
located in the sites of Ga sublattice behaves mainly as
a donor, in the (111)A layers grown by molecular beam
epitaxy (MBE), one can obtain both strongly compen-
sated semi-insulating layers or layers with n- or p-type
conductivity, depending on the growth temperature Tg
and ratio γ = PAs/PGa of arsenic (PAs) and gallium (PGa)
fluxes [2–5].

Of special interest is the so-called growth of planar
or δ-doped layers, which provide the formation of
extremely narrow quantum-size doping regions. How-
ever, as far as we know, no studies of the effect of GaAs
(111)A misorientation on the process of δ-doping upon
simultaneous variation of the γ ratio of fluxes on the
type of conductivity and the carrier concentration in the
layers or their optical properties have been made as yet.

Below, we present, for the first time, the results of
our study of the Hall effect and the photoluminescence
spectra of grown by the MBE and δ-doped (with Si)
GaAs layers obtained at various values of the γ ratio on
the (111)A substrates and the substrates misoriented

from this plane along the [2 ] direction.
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The specimens were grown on semi-insulated GaAs
substrates with (111)A ± 0.5° orientation and also on
substrates purposefully misoriented from this plane by

an angle α (1°, 1.5°, and 3°) along the [2 ] direction
by molecular beam epitaxy on the TsNA-24 setup. All
the substrates were glued to the common molybdenum
holder with the aid of indium in order to grow all the
specimens simultaneously. Silicon-doped structures
grown by this method also had a ~0.48 µm-thick
undoped buffer GaAs layer, a Si δ-doped layer, and an
~0.033 µm-thick upper undoped or “cap” GaAs layer.
Epitaxial growth was performed at Tg = 600°C. The
temperature of the silicon source was chosen to provide
an electron concentration of n = 1 × 1018 cm–3 in the
(100) GaAs layers. The deposition time of the silicon in
δ-doping was 135 s. During formation of δ-layers, the
growth was ceased (the screen of the molecular gallium
source was shut). The conditions of structure formation
are listed in the table. Carrier concentrations and con-
ductivity type were determined by Hall-effect measure-
ments. The photoluminescence (PL) spectra were mea-
sured in the photon energy range "ω from 1.3 to
1.55 eV at T = 77 K. The PL excitation was performed
by an Ar+-laser with a wavelength of λ = 488 nm and a
maximum excitation power of 100 W/cm2 on the spec-
imen surface.

The photoluminescence spectra for specimens 1–5
are presented in Fig. 1. The growth conditions, the
mobilities µ, and the layer concentration ns are given in
the table. All these specimens were grown at a PAs/PGa

ratio of ≈18. Specimen 1 has n-type conductivity,
whereas all the other specimens have p-type conductiv-
ity. The PL spectra of specimens 2–5 show two bands.
One (at "ω ≈ 1.508 eV, hereafter referred to as B-band)
corresponds to the radiative interband recombination
(e–h). The second broad band is observed at "ω ≈
1.36−1.38 eV and is hereafter referred to as Si-band.
Figure 2 presents the PL spectra of specimens 6–10
grown under the same conditions as specimens 1–5 but
having no Si δ-layer. In this case, no Si band is
observed. This gives grounds to ascribe it to a Si

11
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δ-doped layer. According to [6, 7], the PL spectra of
single layers δ-doped with Be and grown on (100)GaAs
have no such band. The PL bands due to the layer
δ-doped with Be are located at "ω = 1.42−1.49 eV [6, 7].
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Fig. 1. PL spectra for specimens 1–5 grown at γ = 18 and
having layers δ-doped with Si at T = 77 K. The curves are
displaced with respect to each other along the vertical. The
corresponding data are presented in the table. In the inset, a
possible energy diagram for optical transitions is presented.
DOKLADY PHYSICS      Vol. 46      No. 2      2001
According to [3, 8], the PL band at "ω = 1.36 eV in
the homogeneously Si-doped GaAs (111)A layers is
attributed to optical transitions between donor states
associated with As-vacancies, VAs , and acceptor states
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Fig. 2. PL spectra for specimens 7–10 grown at γ = 18 and
having no layer δ-doped with Si at T = 77 K. The spectra are
displaced with respect to each other along the vertical.
Table

Specimens Substrate
orientation α, degree γ Conductivity 

type ns, ps, cm–2 µ, cm2/(V s)

1 (100) – 18 n 2 × 1012 601

2 (111)A ±0.5 18 p 6.3 × 1012 54

3 (111)A 1 18 p 1.0 × 1013 43

4 (111)A 1.5 18 p 6.2 × 1012 49

5 (111)A 3 18 p 4.9 × 1012 60

11 (100) – 63 n 1.3 × 1013 305

12 (111)A ±0.5 63 n 3.6 × 1012 129

13 (111)A 1 63 n 1.1 × 1012 271

14 (111)A 1.5 63 n 2.0 × 1012 175

15 (111)A 3 63 n 1.1 × 1012 166

Note: α is the misorientation angle in the [2 ] direction. Layer concentration ns and mobility µ are measured at T = 300 K.11
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associated with silicon atoms at the arsenic sites SiAs ,
i.e., to the transitions VAs  SiAs . This band is also
observed in the Si-doped epitaxial layers grown on
GaAs (100) after annealing at Tan > 600°ë [9, 10] and

Ga
As

[111]

[211]

[011]

(1
00

)

Lter

(111)A

Fig. 3. Schematic arrangement of Ga and As atoms on the

vicinal GaAs (111)A surface misoriented in the [2 ]
direction.
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Fig. 4. PL spectra for specimens 11–15 grown at γ = 63 hav-
ing layers δ-doped with Si at T = 77 K. The spectra are dis-
placed with respect to each other along the vertical. For
specimens 12–16, the principal band ("ω = 1.508 eV) is not
shown.
in layers grown on (111)A, (211)A and (311)A sub-
strates at low As pressures [8, 11]. The inset in Fig. 1
shows a diagram for the optical transitions constructed
according to experimental data [3, 8, 9].

We consider the behavior of the Si-band as a func-
tion of misorientation angle α (Fig. 1). With an increase
of misorientation, the peak of Si-band shifts to shorter
wavelengths (from "ω = 1.36 eV at α = 0° to 1.383 eV
at α = 3°), which can be readily explained in terms of
the bond density on the terraces and the steps. Figure 3
shows, schematically, the arrangement of Ga and As
atoms on the vicinal surface at the misorientation of the

(111)A plane of the GaAs substrate along the [2 ]
direction. The vicinal surface is characterized by differ-
ent densities of dangling Ga-bonds at terraces and
steps; in other words, the conditions for formation of
VAs vacancies and location of Si in the As sites are also
different for the terraces and steps. We assume that
donor–acceptor (D–A) pairs can be formed only if the
distance r between them exceeds the Bohr radius. Then,
according to [13], the emission energy of such a pair is
determined by the expression

where Eg is the gap energy; EA and ED are the acceptor
and donor levels, respectively; ε and ε0 are the relative
dielectric constants of GaAs and vacuum, respectively;
e is the electron charge; and r is the donor–acceptor dis-
tance. Thus, the transition energy Eg – (EA + ED) ≈
1.36 eV should be corrected for the quantity
e2/(4πεε0r) due to the interaction inside a D–A-pair. In
our case, r is determined by a certain average donor–
acceptor distance in pairs for a terrace of each length
Lter , which are 37.2, 18,6, 12.4, and 6.2 nm at α = 0.5°,
1°, 1.5°, and 3°, respectively. The values of e2/(4πεε0r)
for r = 40 and r = 10 nm are 0.0027 and 0.012, respec-
tively; i.e., it increases with the misorientation angle α
and is comparable to the Si-band shift toward high
energies observed in the PL spectra in Fig. 1. Thus, the
Si-band shift with α can be explained by the variations
in D–A distances in the D–A pairs at steps and the ter-
races of vicinal faces. 

Now, we consider the epitaxial layers grown at a
high γ value (≈63) providing the n-type conductivity.
The PL spectra for specimens 11–15 grown at a high
γ-ratio are shown in Fig. 4. As is seen from the table, all
specimens exhibit the n-type conductivity. For the
(100) orientation, the electron concentration at γ = 63 is
higher than that at γ = 18, although the temperature of
the silicon cell and the time of δ-layer formation were
the same at both γ values. This may be explained by an
increase of the number of Si atoms at Ga sites (SiGa),
i.e., an increase of the donor concentration, since under
high arsenic pressure PAs , the probability of occupying
As sites by Si atoms decreases. As is seen from Fig. 4,
in addition to the main band at "ω = 1.508 eV, the mis-
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oriented specimens also show a band at "ω =
1.47−1.48. For specimen 12, it has the shape of a
“shoulder” in the range close to "ω = 1.483 eV. With an
increase of α, it becomes a simple peak (specimens 13,
14, and 15). We believe that this band is caused by tran-
sitions between donor and acceptor silicon states, i.e.,
SiGa–SiAs.

Thus, our studies have shown that both p- and
n-type δ-doped layers can be grown on (111)A sub-
strates doped with silicon alone. The PL spectra for the
(111)A substrate and substrates misoriented from this

plane in the [2 ] direction show bands that are attrib-
uted to single silicon δ-doped layers. The analysis of
the PL spectra has shown that at low γ values (charac-
teristic for formation of a p-type δ-layer), an increase in
the misorientation angle results in a shift of the band at
"ω = 1.36 eV toward high energies. This shift is inter-
preted in terms of the variation of the average donor–
acceptor distance in D–A-pairs because of an increase
in terrace lengths at higher misorientation angles α.
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There are hundreds of equations of state for liquids
and gases that have been published. They describe ther-
mal, caloric, acoustic, and other properties of a one-
component substance (see, e.g., [1–6]). Rather arbi-
trarily, these equations can be divided into local and
general ones. The former are intended to describe the
separate regions of a thermodynamic surface, while the
latter allow description by a single equation of thermo-
dynamic properties for both liquids and gases to be
made. However, despite long-term investigations in this
field of thermodynamics, equations of different forms
and structures are used for description of thermody-
namic characteristics of a substance. Seemingly, the
preferable form of the general equation of state has not
been yet chosen in the literature. As is considered, the
thermal equation of state having the form of a virial
series in powers of density is the most validated from
the theoretical point of view. However, as is well
known, such a series diverges at high densities [4, 5].
Therefore, to accurately describe the thermodynamic
properties of both liquid and gas in a wide range of state
parameters, many authors express the compressibility
factor as a power series in temperature and density
instead of using the virial series.

In this paper, within the framework of phenomeno-
logical thermodynamics, we seek such a form (struc-
ture) of the thermal equation of state which could be
considered preferable. Furthermore, based on it, we
attempt to derive specific expressions for sufficiently
accurate description of thermal properties of both liq-
uid and gas.

The well-known exact equation of thermodynamics

(1)
∂U
∂v
------- 

 
T

T
∂P
∂T
------ 

 
v

P–=
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can be transformed into

(2)

where T and P are temperature and pressure, v is the

volume, U is the internal energy, z =  is the com-

pressibility factor, and R is the gas constant.
Taking the caloric equation U = U(T, v) as initial

(known), we can reduce Eq. (2) to the form

(3)

Consequently, if the equation used for the internal
energy is true, relation (3) determines the correct struc-
ture of the equation for Z. It is evident that, as v  ∞
(a state of a perfect gas), ϕ(T, v) = 0 and ψ(v) = 1. The
physical meaning of the function ψ(v) is to be clarified
below.

From the mathematical point of view, an equation of
the form

(4)

is trivial. However, from the physical standpoint,
Eqs. (3) and (4) imply the form of an equation of state
that agrees with the correct equation for the internal
energy and the exact thermodynamic relation (2).

The van der Waals equation

(5)

is the most known equation of state satisfying condi-
tion (3). It is written in terms of specific quantities, such

as the specific volume v (the density ρ = ) and the gas

constant R for a substance, which will also be used
below. Then,

(6)
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Fig. 1. Dependence of the function y = Z +  on the density ρ.
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where

According to (4),

(7)

i.e., the function y(T, v) = Z – ϕ(T, v) must depend only
on a single variable (volume) at arbitrary parameters T
and v characterizing a thermodynamic system:
y(T, v) = ψ(v). The van der Waals equation should also
satisfy this requirement in the case where the function

ϕvW =  properly describes the behavior of the

actual system. In other words, the condition

(8)

must be satisfied.
We can assume that, depending only on the single

variable, the function ψ(v) in (8), in the general case,

can differ from ψvW(v) = , which results from the

van der Waals equation.
Equation (8) can be verified directly, because all

quantities (except a) entering into its left-hand side can
be measured experimentally or taken from reliable tab-
ulated data for well-studied substances [7–13].

Figure 1 presents the results of calculations carried
out for carbon dioxide, argon, oxygen, methane, and
ammonia [7–11]. According to this figure, for each of
the above-mentioned substances, fitting of the constant a

ϕvW T v,( ) a
vRT
-----------, ψvW v( )–

v
v b–
-------------.= =

Pv
RT
-------- ϕ T v,( )– ψ v( );=

a
vRT
-----------–

Pv
RT
-------- a

vRT
-----------+ ψ v( )=

v
v b–
-------------
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in the first approximation (within a certain data spread)

allows y = Z +  to be considered as a single-valued

function of the density: y = f(ρ). The function f(ρ) can
be formally described, for example, by a polynomial on
the basis of the least-square technique. At an equal
number of polynomial coefficients, the best approxima-
tion was provided by a polynomial in odd powers of the
density:

(9)

The values Zcalcd, calculated by approximating Eq. (9)
in a wide range of state parameters, differ from the tab-
ular values of Z by no more than 0.13.

When following the spirit of the van der Waals
ideas, according to Eq. (6), the calculated values of the

function y =  + , at a certain ‡, must be equal

to those of the function ψvW = , which can be

reduced to the form

(10)

Therefore, according to the van der Waals equation,
at a certain value of b, the plot of y as a function of

 must be represented by a straight line with a

slope coefficient b. For argon, carbon dioxide, oxygen,
methane, and ammonia, these plots are presented in
Fig. 2. As is seen, within a certain interval of uncer-
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tainty, the relations y as functions of  can actually

be considered linear. However, their slope coefficients
cannot even approximately be accepted equal to b.

In the general case, data plotted in Fig. 2 can be pre-
sented in the form

(11)

or

(12)

where c is the individual constant of the substance.

1
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Fig. 2. Dependence of the function y = Z +  on .

Symbols correspond to tabular experimental data; solid
lines are plotted according to calculations by Eq. (12).
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For certain well-studied substances, the coefficients
in Eq. (12), which are calculated by optimizing the

compressibility factor Z =  on the basis of the least-

square technique, are presented in the table. According

to it, the ratio , even approximately, cannot be consid-

ered to be unity, as it follows from the van der Waals
equation of state.

The compressibility factor Z that we have calculated
by the equation

(13)

using the least-square technique almost everywhere
differs from tabular data by a value ∆Z ≤ ±0.1. The dis-
crepancy is higher only at high pressures and densities
(near the triple point), near the critical point, and for
rarefied gas. For such a simple three-parameter equa-
tion of state as (12) or (13), the result obtained is quite
acceptable. Figure 3 represents the carbon dioxide
pressure as a function of the gas density. The calcula-
tions are performed along isotherms by Eq. (13).

It was assumed above that, at a certain a, the func-

tion y = Z +  is a single-valued function of den-

sity ρ. However, a detailed analysis of this function
shows that, actually, at an arbitrary a, it systematically
forms bundles corresponding to isolines (isotherms and
isobars). Moreover, its splitting in bundles essentially
exceeds the errors of experimental (tabular) data and,
therefore, prevents further improvement of the descrip-
tion even at the expense of complication of the density
function f(ρ) and an increase in the number of fitting
parameters.
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vRT
-----------
Coefficients of the equation and an estimate of errors corresponding to calculations by formula (13) for various substances

Substance R, 

Parameter ranges

a, b, c, 
T, K P, MPa ρ, 

Argon 208.17 90–500 0.1–50 10–1448 90 0.5406 × 10–3 1.0434 × 10–3 1.93 0.014

Neon 411.95 26–500 0.1–50 0.5–1296 49.9 0.6190 × 10–3 0.9295 × 10–3 1.50 0.034

Carbon
dioxide

188.92 220–1000 0.1–100 5–1250 240 0.5451 × 10–3 1.8053 × 10–3 3.31 0.034

Methane 518.271 100–500 0.01–50 4–460 905.8 1.7857 × 10–3 3.2836 × 10–3 1.84 0.024

Propane 188.549 100–500 0.01–50 0.1–733 561.6 1.2304 × 10–3 3.2593 × 10–3 2.65 0.079

Ethylene 296.376 120–500 0.1–50 0.7–658 661.4 1.2914 × 10–3 3.0653 × 10–3 2.37 0.026

Oxygen 259.835 60–500 0.1–50 0.8–1330 138.04 0.6569 × 10–3 1.2675 × 10–3 1.93 0.031

Ammonia 481.617 200–600 0.1–50 0.3–750 1262 1.0732 × 10–3 2.5324 × 10–3 2.36 0.035

J
kg  ä 
------------ J  m 3 

kg
 
2
 ----------- m3

kg------- m3

kg-------
c
b
--- σ

Z tabl Zcalcd–( )2

N 1–
-------------------------------------=kg

m3
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Fig. 3. Pressure of carbon dioxide as a function of density and temperature: (1) 230 K; (2) 260; (3) 290; (4) 305; (5) 330; (6) 350;
(7) 400; (8) 500; (9) 600; (10) 800; (11) 1000. Symbols correspond to tabular experimental data; solid lines are calculated according
to Eq. (13); the dashed line represents the liquid–vapor saturation curve.

ρ, kg

m3
------
         
In addition, similarly to the van der Waals equation,
Eq. (13) does not provide a correct transformation to
the case of rarefied gas whose equation of state can be
described by the second virial coefficient B(T). For
many substances, the equation describing the tempera-
ture dependence B(T) in the entire temperature range
studied to date is presented to within experimental
accuracy in [14].

Thus, Eqs. (12) and (13) qualitatively incorrectly
describe the thermal properties of a substance in the
critical region and in the region of rarefied gas. (Never-
theless, these equations describe experimental data
throughout a wide range of parameters much better
than other known few-parameter equations of state.)
Therefore, it is natural to use these equations for
describing the thermal properties of the liquid phase,
i.e., in a narrower range of state parameters. It is evident
that in this case, the constants of the equations can vary
noticeably and the requirement that, at low densities,
these equations turn into those of state for the perfect
gas becomes unnecessary.

Then, Eq. (13) can be written as

(14)

According to our calculations, Eq. (14) describes
the thermal properties of the above-mentioned sub-
stances within the accuracy of experimental (tabular)
data within the temperature range from Ttr to 0.9Tcr and
for pressures varying up to 100 MPa. As an example,

Z d
c

v b–
-------------

a
vRT
-----------.–+=
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we present the equation of state for liquid carbon
dioxide:

 

(14a)

 

where 

 

p

 

, 

 

T

 

, and 

 

v 

 

are expressed in megapascals, kelvins,
and m

 

3

 

 kg

 

–1

 

, respectively, and 

 

R

 

 = 188.92 J kg

 

–1

 

 K

 

–1

 

.

For the liquid CO

 

2

 

 phase, the discrepancy between
the tabular [7] and calculated [by Eq. (14a)] values of
density does not exceed 0.2% at pressures up to
100 MPa (Fig. 4), which is comparable with the errors
of experimental (tabular) data.

We now consider the physical meaning of the func-
tion 

 

ψ

 

(

 

v

 

)

 

. As is seen from Eq. (8), the temperature-

Z
pv
RT
------- 1.686 1.469 10 3–×

v 0.594 10 3–×–
---------------------------------------

258
vRT
-----------.–+= =
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δρ, %

Fig. 4. Relative discrepancy between tabular and calculated
[by Eq. (14a)] values of density for carbon dioxide δρ =

 × 100 in the temperature ranges from 220 to

270 K and pressures up to 100 MPa.
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dependent term ϕvW =  tends to zero as T  ∞

at arbitrary finite v if the coefficient a is a constant or a
weakly varying function of temperature. Thus, the
function

(15)

i.e., the function ψ(v) = f(ρ), represents the compress-
ibility factor Z at infinitely high temperatures. We can
assume (although this question needs to be specially
analyzed) that this conclusion does not depend on a
specific form of the equation of state (presented here by
the van der Waals equation) and results directly from
Eq. (3). Then, Eqs. (8) and (15) determine the asymp-
totic behavior of an actual system at high temperatures

provided the term  entering into the van der Waals

equation (5) sufficiently adequately describes the inter-
particle interaction in the actual system. In the litera-
ture, the high-temperature asymptotic equation of state
is usually represented by the equation of state for hard
spheres. According to our calculations, the compress-
ibility factor for the system of hard spheres Zhs coin-
cides with ψ(v) [or f(ρ)] only up to the critical density.
With increasing the density, the discrepancies between
Zhs and f(ρ) grow and can exceed two at the density
occurring at the triple point.

Thus, the analysis and the calculations carried out in
this paper show that a form (structure) of the general
thermal equation of state (as well as of the local equa-
tions) is preferable provided that the equation for the

compressibility factor Z =  contains a term being a

function only of one variable, namely, the density (or
the specific volume). Certain known equations of state
(see, e.g., [1, 2, 6]), as well as the van der Waals equa-
tion (6), contain a density function as a term. However,
as far as we know, the fact that just such a structure of
the equation of state is preferable has not been thor-
oughly discussed in the literature.

a
vRT
-----------–

ψ v( ) Pv
RT
-------- 

 
T ∞→

,=

a

v 2
------

pv
RT
-------
REFERENCES

1. J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molec-
ular Theory of Gases and Liquids (Wiley, New York,
1954; Inostrannaya Literatura, Moscow, 1961).

2. M. P. Vukalovich and I. I. Novikov, Equations of State
for Actual Gases (Nauka, Moscow, 1948).

3. Equations of State for Gases and Liquids, Ed. by
I. I. Novikov (Nauka, Moscow, 1975).

4. E. Mason and T. Spurling, The Virial Equation of State
(Pergamon, New York, 1969; Mir, Moscow, 1972).

5. Physics of Simple Liquids, Ed. by H. N. V. Temperley,
J. S. Rowlinson, and G. S. Rushbrooke (North-Holland,
Amsterdam, 1968; Mir, Moscow, 1971).

6. G. A. Spiridonov and I. S. Kvasov, Obzory po Teplofiz.
Svoœstvam Veshchestv, No. 1 (57), 45 (1986).

7. V. V. Altunin, Thermal Properties of Carbon Dioxide
(Izd. Standartov, Moscow, 1975).

8. V. A. Rabinovich, A. A. Vasserman, V. I. Nedostup, and
L. S. Veksler, Thermal Properties of Neon, Argon, Kryp-
ton, and Xenon (Izd. Standartov, Moscow, 1976).

9. Thermodynamic Properties of Methane, Ed. by
V. V. Sychev, A. A. Vasserman, V. A. Zagoruchenko,
et al. (Izd. Standartov, Moscow, 1979).

10. I. F. Golubev, V. P. Kiyashova, I. I. Perel’shteœn, and
E. B. Parushin, Thermal Properties of Ammonia (Izd.
Standartov, Moscow, 1978).

11. Thermodynamic Properties of Oxygen, Ed. by
V. V. Sychev, A. A. Vasserman, A. D. Kozlov, et al. (Izd.
Standartov, Moscow, 1981).

12. V. V. Sychev, A. A. Vasserman, A. D. Kozlov, and
V. A. Tsymarnyœ, Thermodynamic Properties of Pro-
pane (Izd. Standartov, Moscow, 1989).

13. Thermodynamic Properties of Ethylene, Ed. by
V. V. Sychev, A. A. Vasserman, E. A. Golovskiœ, et al.
(Izd. Standartov, Moscow, 1981).

14. A. B. Kaplun and A. B. Meshalkin, High Temp. High
Press. 31, 253 (1999).

Translated by Yu. Verevochkin
DOKLADY PHYSICS      Vol. 46      No. 2      2001



  

Doklady Physics, Vol. 46, No. 2, 2001, pp. 97–102. Translated from Doklady Akademii Nauk, Vol. 376, No. 5, 2001, pp. 629–634.
Original Russian Text Copyright © 2001 by Kravchenko, Ponomarev, Pustovo

 

œ

 

t, Ninjo-de-Rivera.

                                                        

TECHNICAL 
PHYSICS
Robust Nonlinear Image Filtration with Retention 
of Small-Size Details in the Presence of Pulse

and Multiplicative Interferences

V. F. Kravchenko*, V. I. Ponomarev**, 
Corresponding Member of the RAS V. I. Pustovoœt***, and L. Ninjo-de-Rivera**

Received October 16, 2000
    
1. Space and airborne systems for the Earth’s sur-
face remote sensing (RS) have gained wide-spread
application in ecological and agricultural monitoring,
survey of natural resources, etc., [1–5]. Unfortunately,
in many practical instances, the quality of images
obtained with such systems is unacceptable due to the
noise effect. In practice, nonlinear filters are widely
used for image filtration and processing in view of their
ability to suppress noise of various nature [6]. However,
well-known nonlinear filters are primarily aimed at
retention of boundaries of large-scale objects in an
image rather than of its small-size details [7–9].

In this paper, new robust filtration algorithms
employed for image processing are presented. These
algorithms provide retention of small-size details while
suppressing pulse noise and multiplicative interference.

To this end, we employed a modification of the stan-
dard sigma filter [7], which is generally recognized by
its ability to retain small-size details. The algorithm
uses a robust filter of the KNN-type as a preliminary
result in calculating the locally adaptive M-estimate [6].
The restraining function for the M-estimate is similar to
that used in the sigma filter. Estimation of data local
activity is introduced, which is similar to that employed
for estimating local statistics in a Lie filter [8]. The
image filter proposed has the property of efficiently
suppressing both pulse and multiplicative interfer-
ences.

2. There exists a number of physical models for the
noise effect [2, 6, 10, 11]. Employed here is the follow-
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ing physical model of image distortion in the presence
of pulse interference [10, 11]:

(1)

Here, I(x, y) is the initial image, u(x, y) is the result of
the image distortion by the pulse noise, and
Npulse(I(x, y)) is the functional determining the noise
effect on the image:

We consider that in the digital-image case for data
taken in byte representation, the pulse noise is
uniformly distributed within the interval of values
[0, …, 255].

In addition to the pulse noise, an image formed in
RS systems [1, 2] is also distorted by multiplicative
interference. In this connection, noise model (1) is
transformed to the form

(2)

Here, εmult(x, y) corresponds to the multiplicative noise.
Thus, the problem is to develop a robust filtration

algorithm capable of eliminating pulse noise, suppress-
ing multiplicative interference, and providing reason-
able retention of small-size image details. Such contra-
dictory requirements to the filtration algorithm can be
realized only by invoking nonlinear filtration proce-
dures.

3. Robust image-filtration algorithms based on a
simplified one-step scheme for calculating reduced
robust M-estimates for the data sampling mean value X
were proposed in [10, 11]:

(3)

(4)

u x y,( ) Npulse I x y,( )( ).=

Npulse I x y,( )( )

=  

an  event  with  a  random  amplitude

and  a  probability  of  occurrence  P i 

I x y

 
,( )

 

,  otherwise.

u x y,( ) Npulse εmult x y,( )I x y,( )( ).=

θmedM med Xiψ̃ Xi med X{ }–( ) i 1 … n, ,=,{ } ,=

θWilM 0.5 Xiψ̃ Xi med X{ }–( )[{
i j≤

?÷med?

+ X jψ̃ X j med X{ }–( ) ] i, 1 … n } ., ,=

med=
001 MAIK “Nauka/Interperiodica”
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Below, we use a simple approximation for the cutoff
function ψ(X), which is related to the Huber robust
M-estimate [12] for a normal distribution having long
tails:

(5)

The function  is the normalized ψ-function: ψ(X) =
X (X).

The principal idea realized in these algorithms con-
sists in substituting the arithmetic truncated mean
(which is characteristic of robust M-estimates) by the
mean value calculated in terms of ranks or R-estimates.
As was shown recently [10, 11], RM-estimates (3), (4)
constructed by this procedure possess robust properties
which are superior to those of the basic R- and M-esti-
mates.

Employing K elements of a sampling whose values
are closest to the central element (pixel) of the filter
window, we obtain the well-known KNN-filtration
algorithm [13] for images with an initial estimate:

(6)

Here,

and m, n = –L, …, L.
For improving the robust properties of (6), we pro-

pose changing the arithmetic mean in (6) to the rank
estimate used in RM-algorithms (4), (5):

(7)

(8)

Here, uKNN(i + m, j + n), uKNN(i + m1, j + n1) is the total-
ity of K pixels in the filtration window which are closest
in value to the central element u(i, j ), m ≤ m1, n ≤ n1, m,
n, m1, n1 = –L, …, L.

Simulation of filtration algorithms (6)–(8) has
shown that algorithm (6) has no property of revealing
random pulse disturbances and much less of suppress-

ψ̃ X( )
X , X r≤
0, X r.>


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ψ̃
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otherwise,

ÎMMKNN i j,( ) med uKNN i m j n+,+( ){ } ,=

ÎWMKNN i j,( )

=  med
uKNN i m j n+,+( ) uKNN i m1 j n1+,+( )+[ ]

2
------------------------------------------------------------------------------------------------------

 
 
 

.

 

ing them. On the contrary, robust algorithms (7), (8)
ensure the suppression of pulse interferences even for
low probabilities of their appearance. In this case, the
ability of suppressing disturbances considerably decre-
ases near boundaries of extended objects.

Improvement of the properties of algorithm (6) is
attained by additional allowance for elements possess-
ing the closest values in the pixel sampling within the
window near the object boundaries. The number of
these elements is calculated from the parameter of the
local activity of sampling data. In addition, the use of
the iterative scheme in calculating estimates is pro-
posed.

With this scheme taken into account, filtration algo-
rithm (6) transforms into a linear algorithm of the mod-
ified 

 

KNN

 

 filter (

 

LMKNN

 

):

 

(9)

 

where

Here,

 

(10)

 

The parameter 

 

a

 

 determines the algorithm sensitiv-
ity to local data variations near the object boundaries.
The maximum number 

 

K

 

max

 

 of elements neighboring
the central one determines the boundary smoothing and
retention of the image small-size details. Filtration
algorithm (9) is the generalization of filter (6) and is
equivalent to (6) in the case 

 

q

 

 = 1 and 

 

a

 

 = 0.

Variants of the 

 

RM

 

-type algorithms for 

 

KNN

 

 filtra-
tion, which are applicable to processing of wide-class
images, are realized on the basis of 

 

R

 

-estimates (4), (5)
in the form of two algorithms of 

 

RMKNN

 

 filtration.

The first one is the median algorithm of the 

 

M

 

-type
for 

 

KNN

 

-filtration, i.e., the 

 

MMKNN

 

-algorithm:
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Î LMKNN
q( )

i j,( )

=  
1

Kclose
------------ ψ̃ q 1–( )

u i m j n+,+( ) Î
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the estimate at the previous step (i, j ),

(i, j ) = u(i, j ).

The second algorithm is the KNN-filtration M-type
Wilcoxon algorithm, i.e., the WMKNN algorithm:

(12)

Here, the values h(q)(i + m, j + n), h(q)(i + m1, j + n1) are
determined by Kc closest sampling values in the win-
dow with respect to the estimate at the previous step

(i, j ), (i, j ) = u(i, j ); the value Kc is
determined by relation (10), where m ≤ m1, n ≤ n1, m, n,
m1, n1 = –L, …, L. In (11) and (12), iterations cease

when (i, j ) = (i, j ).

4. In the course of numerical simulation, filters (9),
(11), and (12) were noticed to be sensitive to the value
of Σ(u(i, j )) from (10). We now propose the following
modification of the detector Σ(u(i, j )), which provides
a higher quality filter operation:

(13)

Here, med{u(i + k, j + l)} is the sampling median
within the filtration window; k, l = –L, …, L; and
MADM is the median of absolute deviations from the
median.

As a result of modeling, for a wide range of pulse-
noise intensities, the window size 5 × 5 was found to be
optimal. In this case, the minimum number of neigh-
boring elements Kmin = 5 provides satisfactory retention
of small-size details in the image and sufficient sup-
pression of pulse noise.

To improve the quality of the pulse-noise suppres-
sion, when Kc is reasonably large, filtration employing
a median filter can be performed. It was shown by
numerical simulation that, for Kc > 7 and Kc > 350, the
filter described in (10), (13), and (11) can be replaced
by a median one with a window size of 3 × 3 and 5 × 5,
respectively.

For suppressing multiplicative interference, we pro-
pose a new robust filtration algorithm for the first time.
This algorithm preserves the pulse-noise elimination
properties of the filter described previously and is capa-
ble of suppressing multiplicative interference. In this
case, the yield of the filter described in (10), (13), and
(11) is used as the initial estimate for computing
another M-estimate suitable for image filtration [10, 11].

ÎMMKNN
q 1–( )

ÎMMKNN
0
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=  med
h
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 
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In addition, the robust M-estimate is employed on the
basis of the cutoff function:

(14)

Here, U is a vector composed of image elements inside
the filtration window, θ(0) = (i, j ), and med{U}
is the median for a sampling of elements from the filtra-
tion window of size 5 × 5. Thus, with allowance for cut-
off function (14), the M-type filter can be written in the
form

(15)

where

and med{U(i, j )} is the median for a sampling of the
image elements inside the filtration window [the coeffi-
cient b controls the suppression of multiplicative inter-
ference; m, n = –L, …, L; 2(L + 1) are the vertical and
horizontal sizes of the filtration window]. Here,

(i, j ) = (i, j ).

Simulation of the algorithm has shown that filter (15)
possesses a property of suppressing multiplicative
interference but efficiently retains small-size image
details only in the case of a low noise level. With the
goal to remedy this drawback, we propose an adaptive
scheme similar to that used in the Lie filter [8, 14].
Then, the image-filtration algorithm is represented in
the form

(16)

Here,

(17)

is the robust estimate for the local data activity and the
coefficient c controls the degree of retention of small-
size image details; m, n = –L, …, L.
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Thus, the proposed image-filtration algorithm (8),
(9) is a connected series of two filters retaining image
small-size details, namely, a 5 × 5 MMKNN-filter (10),
(13), (11) for pulse-noise suppression and an M-filter
(15) for multiplicative-interference suppression. M-fil-
ter (15) is similar to the well-known sigma filter retain-
ing small-size image details with allowance made for
the weighted processing on the basis of local-activity
data.

At the final stage, the yields of these two filters are
mixed in algorithm (16), (17) by a method similar to
that used in the Lie filter [8].

5. A number of numerical experiments are carried
out with the aim of studying the properties of new algo-
rithms (9), (11), (12), (15)–(17). These algorithms are
compared with the algorithm of the KNN-filter (6), as
well as with the median filter. As the efficiency crite-
rion, we employed that of the mean square error

(MSE): MSE = 〈[I(x, y) – (x, y)]2〉 .
Artificial test images were used for evaluating the

deterministic characteristics of the filtration algo-
rithms. The simulation has shown that, in the nonitera-
tive variant, the KNN-filter does not change the object
boundaries and restores image small-size details. Algo-
rithms (9), (11), and (12) with parameters a = 0, q = 25
provide retention of the image boundaries and small-
size details if the value Kc is equal to the filtration-win-
dow size. If this size is 3 × 3 and Kc > 3, the small-size
details of the test image are reduced to one pixel of res-
olution.

Analysis of the experimental results shows that the
WMKNN algorithm provides better reconstructed
small-size details than the standard median filter even
when the latter employs a filtration window with a
smaller aperture. The standard median filter does not
retain thin lines and distorts the angles of triangular
objects. Similar results were obtained when processing
the widely used test image “Lena”. We can conclude
that the response functions of the filters proposed pro-
vide good reconstruction of the object boundaries.

For studying the statistical characteristics of noise
suppression by the RM-type filtration algorithms, the
initial test image was distorted by pulse noise according
to physical model (1). The maximum number of itera-
tions was qmax = 25. Analysis of the statistical-simula-
tion data for the RMKNN algorithms has shown that
they provide distortions with significantly smaller
MSE-values in the resulting image compared to the
median filter. For a low-intensity noise, MMKNN algo-
rithm (11) provides the best results in terms of MSE-
value for the 5 × 5 filtration-window. However, in the
case of high noise intensity, the best image quality is
provided by WMKNN-filter algorithm (12).

It is worth noting that the MSE-minimum criterion
does not reflect the image-filtration quality from the
standpoint of the suppression of random-interference
pulses. Additional visual analysis of the filtration

Î

                       

should be carried out with respect to retention of the
image boundaries and small-size details. With this fact
taken into account, we list in Table 1 the characteristics
obtained in the process of simulating the algorithms
being analyzed for two widely used in the literature test
images “Lena” and “Bridge” [10, 11].

As follows from Table 1, WMKNN algorithm (12)
provides the best filtration quality for all cases under
study. MMKNN algorithm (11) yields good results
when the noise intensity is not very high. The LMKNN
algorithm yields the worst results. For low noise inten-
sity, the 3 × 3 window is preferable. However, for a
high-intensity noise, the 5 × 5 window should be used.

For finding the characteristics of the proposed noise
suppression by filters (14)–(16), the standard test
images “Lena” and “Mandrill,” as well as other ones
distorted by a mixture of multiplicative Gaussian noise
and pulse noise (2), were used. The following parame-
ters of the noise mixture were varied: the probability of
the appearance of a pulse with a random amplitude in
each image reading and the relative variance of multi-
plicative interference. The filter parameters a and c
were also varied. The minimum values of the MSE for
the test image “Lena” determined from the simulation
results are listed in Table 2. For a quantitative com-
parison of the characteristics for the filter developed,
the results of the noise suppression for the test image by
the 5 × 5 median filter are listed in the same table (in
brackets).

It can be concluded from the analysis of the tables
that the filter proposed provides better quantitative
results (compared to the standard median filter) when
the relative variance of multiplicative interference is
lower than 0.25. However, when the noise relative vari-
ance is much higher than 0.25, the filter proposed does
not adequately suppress the noise. This fact can be
explained by the strongly nonlinear structure of the fil-
ter proposed ceasing its operations when the neighbor-
ing elements have their maximum or minimum values,
which occurs reasonably often within the range from 0
to 255, i.e., when the relative variance is too large. The
filter “recognizes” the destroyed regions as spurious
objects by realizing the procedure of their reconstruc-
tion as small-size details of the image.

6. Thus, new robust nonlinear-filtration algorithms
of the RM-type for RS-system image processing are
obtained and analyzed for the first time [15]. Such fil-
ters are capable of simultaneously suppressing a com-
plicated noise mixture, of leaving sharp boundaries of
large-size objects, and of retaining small-size details in
the images being processed. The optimum parameters
employed in adaptive algorithms for various physical
characteristics of a noise mixture were determined. The
filters developed provide good visual quality of the
images processed when the relative variance of multi-
plicative noise is not too large and the probability of
appearance of pulse interferences corresponds to a
moderate level.
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Table 1.  Results of statistical simulation of algorithms

Pulse-noise 
probability Algorithm MSE Detail retention Noise

suppression Window Kc a

0.01 LMKNN 36.68 Poor Strong 3 × 3 4 0.1

MMKNN 35.10 Good Strong 3 × 3 4 0.05

WMKNN 28.64 Excellent Strong 3 × 3 4 0.05

LMKNN 30.83 Fair Strong 5 × 5 5 0.1

MMKNN 22.58 Good Strong 5 × 5 5 0.1

WMKNN 14.71 Excellent Strong 5 × 5 5 0.05

0.05 LMKNN 44.07 Poor Strong 5 × 5 5 0.1

MMKNN 47.07 Fair Strong 5 × 5 5 0.1

WMKNN 41.0 Good Strong 5 × 5 5 0.1

LMKNN 44.09 Fair Strong 5 × 5 7 0.05

MMKNN 47.21 Good Strong 5 × 5 7 0.05

WMKNN 41.49 Excellent Strong 5 × 5 7 0.05

0.1 LMKNN 51.64 Very poor Weak 3 × 3 4 0.5

MMKNN 55.24 Very poor Weak 3 × 3 4 0.5

WMKNN 52.66 Very poor Weak 3 × 3 4 0.5

LMKNN 57.89 Poor Excellent 5 × 5 5 0.1

MMKNN 65.28 Poor Strong 5 × 5 5 0.1

WMKNN 56.59 Fair Strong 5 × 5 5 0.1

LMKNN 66.07 Poor Excellent 5 × 5 7 0.1

MMKNN 61.82 Fair Strong 5 × 5 7 0.05

WMKNN 55.81 Good Strong 5 × 5 7 0.05

Table 2.  Minimum values of the mean-square error (MSE), which are obtained as a result of simulating the algorithm develo-
ped for the test image “Lena”

Pulse-noise probability

Relative variance of multiplicative interference
(the bracketed numbers are the MSE for the 5 × 5 median filter)

0 0.05 0.1 0.25

0.00 3.4 (37.5) 63.6 (86.9) 116.4 (129.1) 268.4 (170.1)

0.01 6.4 (37.8) 66.3 (87.7) 120.8 (130.8) 265.9 (251.6)

0.05 16.75 (39.5) 76.9 (90.1) 126.9 (135.5) 280.2 (258.0)

0.10 31.9 (41.8) 90.8 (96.0) 142.8 (142.3) 253.9 (266.5)

0.15 30.45 (45.4) 102.9 (103.8) 134.2 (153.0) 271.8 (280.1)

0.20 36.74 (50.1) 111.8 (112.9) 149.9 (165.1) 288.8 (298.8)
The results obtained demonstrate the advantages of
the new robust algorithms introduced for the RM-filtra-
tion while processing images in problems of remote
sensing.
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