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Samples of the lunar ground were delivered to the
Earth for the first time by the Apollo-11 (1969) and
Apollo-12 missions, as well as by the Luna-16 (1970)
and Luna-20 (1972) Soviet automatic stations. These
samples stimulated studies devoted to the nature of the
appearance of the lunar-surface dustlike cover, the so-
called lunar regolith.

Two mechanisms of the regolith appearance were
considered, namely volcanic and meteoritic. However,
imitating investigations carried out for studying the for-
mation of regolith from basalt, which is one of the basic
substances of the lunar surface [1], have shown that the
mechanism for regolith formation is meteorite action [2].

This fact confirms the important role of high-speed
collisions of solids in both the formation of surface struc-
ture and possible differentiation of the elemental compo-
sition at the accretion stage and later stages of the devel-
opment of planets and other extraterrestrial bodies [3]. It
is evident that the principal cause for the formation of
lunar-surface layers by precipitation of eruptions and
partial condensation accompanying high-speed colli-
sions is the high specific power of the energy release
involved. This quantity may vary in broad limits
depending on the velocity and mass of the incident bod-
ies. Under lunar conditions, the mass of meteorites
bombarding the lunar surface and their velocity lie
within the limits of 10–10 to 1010 g and 3 to 70 km/s,
respectively.

As was shown for the first time in [4], for velocities
of a flying body higher than 14 km/s, the specific power
of the energy release in collisions of solids may exceed
1014 W/cm2. In this case, high-temperature plasma [5]
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must arise, with the ionic temperature lying in the
energy range of several kiloelectronvolts. The conse-
quence of this process is the complete evaporation of
both the incident body and a part of the basic material
in the impact zone independently of the chemical con-
tent of the interacting bodies. This fact is indirectly
confirmed in the imitating experiments employing
high-temperature pulse plasma generated in the
“Plasma focus” facility [6].

The substance ejected as a result of collision of sol-
ids with an impact velocity exceeding 14 km/s propa-
gates in extraterrestrial space in the form of clouds con-
sisting of gas or dust. Their components may have dif-
ferent velocities depending on the mass and energy
obtained at the moment of impact. In addition to the gas
and dust components, liquid and solid particles of the
basic material can be ejected from the impact zone.
These particles arise owing to propagation of shock
waves and their dissipation on inhomogeneities [7].

In the case of a decrease in the impact velocity, apart
from the arising vapor phase, droplet forms of the
ejected substance must play an ever increasing role, as
this is characteristic of low-temperature plasma [8]. As
applied to the conditions on the Moon (i.e., in the case
of a weak gravity field and high vacuum), the compo-
nents of the impact ejection with a velocity lower than
2.3 km/s will hit the lunar surface and form its struc-
ture. We should take into account therewith that at
velocities of bombarding particles lower than 2 km/s,
their super-deep penetration into the basic material is
possible, which can result in changes in the chemical
composition and structure over large thicknesses of
near-surface layers.

Thus, it is possible that the arising lunar-surface
layer, termed regolith, is a mixture of solid particles
ejected as a result of meteorite impacts, solidified drop-
lets, and the admixture of vapor-phase condensate. In
this case, we can assume that the chemical composition
of regolith may substantially differ from that of the
basic substance and can depend, to a great extent, on
the specific power of the energy released in impact.
This is especially the case when the power is consider-
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ably lower than 1014 W/cm2 in the region of the forma-
tion of the low-temperature plasma.

In this paper, we investigate the morphology, struc-
ture, and chemical composition of natural-basalt con-
densate arising upon impact-induced destruction by
laser pulses imitating actions of meteorites [10].

Here, in contrast to [2], principal attention is payed
to studying the condensate in the region of the low spe-
cific power of the energy release (lower than
108 W/cm2); this corresponds to velocities of meteor-
ites (or their secondary fragments) close to 2.4 km/s.

The comparison of chemical contents for the con-
densate and the original lunar basic substance, i.e.,
basalt, makes it possible to estimate the distribution of
constituting elements and to reveal their differentiation
under impact evaporation and subsequent condensation
of ejection products. This is quite important for clarifi-
cation of the formation nature for the outer layer of the
lunar surface.

As an initial material, we choose a usual volcanic
rock (basalt) with Si, Ti, Al, Fe, Mg, Ca, Na, K as its
basic chemical elements. The basalt surface was thor-
oughly polished and then subjected to the action of a
pulsed-laser radiation with the following characteris-
tics: wavelength λ = 1.06 µm, pulse energy = 100 J, and
laser pulse duration = ~10–3 s. In the present experi-
ment, the radiation power density was varied within the
limits of 106 to 107 W/cm2. The temperature developed
at the moment of the pulse hitting the target was
~4000 K [11].

The sample was fixed inside a vacuum chamber
with an ultimate vacuum of 10–5 torr with the help of a
special tripod system that allowed the sample position
to be changed with respect to the system optical axis.

A laser pulse was introduced into the vacuum cham-
ber with the help of a special optical system, making it
possible to scan the sample surface. For collecting both
the condensate and diverging products of pulse laser
action, we used polished plates made of high-purity sil-

Fig. 1. Surface of the basalt condensate obtained as a result
of evaporation under the action of a laser-pulse.
icon, which were placed at a distance of 8 cm from the
sample. After each pulse, several milligrams of the
basalt-sample substance were ejected. The condensate-
layer thickness attained approximately 0.1 mm. In
order to obtain the necessary amount of condensate
required for analysis, we had to produce several dozen
laser shots for different regions of the basalt target.
High-quality processing of the plate surface provided
simple removal of the condensate film. This made it
possible to solve a number of problems of analysis of
the film elemental composition by the neutron-activa-
tion method.

Figure 1 exhibits a typical photograph of the con-
densate surface. It represents a finely divided film with
glasslike melt droplets (glass spherulites) scattered on
it. They are preferably of light color, although there are
colorless forms among them. Many of the solidified
drops have a spherical shape. The average diameter of
the glass spherulites is ~1 µm.

As was shown in [8], one of the causes determining
the appearance of solidified droplets is the carrying out
from the walls by the low-temperature plasma of the
melt crater produced as a result of the impact with the
subsequent melt solidification, or at the divergence
stage, or while hitting the condensate substrate. In the
latter case, the structure and the morphology of the
solidified droplets is, mainly, determined by the ther-
mophysical properties of the substrate with all the char-
acteristic features of the melt solidification in the case
of directed heat removal and, in particular, by the
appearance of a shrinkage cavity on the sample surface.

The obtained amount of condensate allowed us to
determine the content of Na, Ca, Th, La, Ce, Sm, Eu,
Yb, Lu, Sc, Fe, Co, and Cr in it. The instrumental (com-
parative) variant of the neutron-activation analysis was
chosen as the determination method.

Synthetic multiple-element samples developed on
the basis of phenol-formaldehyde resin were used as
standards. The condensate, basic basalt, and standards
were exposed with thermal neutrons of a fluence of
~1017 neutrons cm–2. The quantitative determination of
the composition was performed with the help of
gamma-spectroscopy methods accompanied by subse-
quent processing of the spectra obtained and calcula-
tion of the elemental concentrations according to the
ASPRO code [14].

The data obtained concerning the content of ele-
ments in the original basalt and the condensate are pre-
sented in the table.

Comparison of the elemental content in the original
basalt and in the condensate shows a stable tendency to
the enrichment of the condensate by a number of cer-
tain chemical elements present in the basalt substance.
This tendency is clearly seen in Fig. 2 (curve 1), in
which the content of chemical elements in the conden-
sate is normalized to their content in the original basalt.
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The maximum enrichment, approximately by a fac-
tor of 1.4, is observed for thorium, ytterbium, and
lutecium.

The results obtained confirm the previous qualita-
tive observations testifying to the fact of differentiation
of the elements present in the original basalt [15].
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Fig. 2. Relative abundance of elements in the condensate
and basalt.
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Elemental content in lunar basalt and in the condensate

Element

Basalt Condensate

ncontent, 
ppm

 standard 
deviation 

σ, %

content, 
ppm

 standard 
deviation 

σ, %

Na 1.62 0.29 0.96 0.21 3

Zn 109 20.5 192 25 1

Ca 5.22 1.24 5.57 1.18 3

Th 1.07 0.64 1.6 0.6 2

Sc 30.2 5.4 41.2 1.4 4

La 7.09 1.19 8.65 1.53 3

Ce 21.1 7.5 20.1 7.3 3

Sm 2.96 0.50 3.35 0.76 3

Eu 0.83 0.10 1.08 0.20 5

Yb 1.73 0.80 2.52 0.32 3

Lu 0.26 0.05 0.39 0.03 3

Cr 98.5 28.1 103.6 25.4 2

Fe 7.85 1.12 7.74 1.21 3

Co 41.0 8.1 49.1 6.7 4

Note: Contents of Na, Ca, and Fe are given in mass percent; n is the
number of independent experiments.
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Curve 2 (Fig. 2) exhibits a relative abundance (nor-
malized to sodium concentration) of elements in the
condensate, which is substantially smaller than in the
original basalt [15]. We may conclude that the concen-
tration of such elements as thorium, scandium, lantha-
nium, samarium, europium, ytterbium, and lutecium, as
well as cobalt and zinc, in the condensate considerably
exceeds that in the original basalt. This can be associ-
ated with the following processes:

the complete or partial dissociation of oxides and
formation of low-temperature plasma (the specific
energy-release power attains 108 W cm–2, the tempera-
ture is 4000 K);

formation of clusters at the divergence of the vapor
phase when decreasing its temperature with subsequent
condensation;

transformation of silicate-melt oxides of various
elements into the vapor phase under conditions of ther-
modynamically nonequilibrium processes.

In the case when the droplets present in the diverg-
ing low-temperature plasma solidify in the process of
plasma divergence, they are observed in the condensate
in the form of perfect spheres (see Fig. 1). Similar spher-
ical formations can be found in the Moon regolith [12].

In this paper, absolute values are found for the con-
tent of more than ten elements in the condensate. It is
important that this condensate was obtained in the pro-
cess of laser-pulse evaporation, which, to a great extent,
illustrates the role of basic rock ejection in the forma-
tion of lunar regolith.

On this basis, the conclusion can be made that
impact evaporation under meteorite action is of impor-
tant significance for understanding the physical pro-
cesses of the elemental distribution in dust formations
on the lunar surface. This is indirectly confirmed by the
data obtained by the lunar orbital mission “Lunar Pros-
pector” (USA, 1998), which are based on the uniform
distribution of thorium in the lunar regolith on different
areas of the Moon’s surface.

CONCLUSIONS

For the first time, the elemental distribution in the
condensate of basalt, i.e., of basic lunar rock, is inves-
tigated quantitatively under an impact laser-pulse
action imitating that of meteorite fluxes. The effect of
the selective enrichment of the condensate by a number
of elements constituting the basalt content is revealed.

It is shown that the morphology of the condensate
surface under the imitating studies indicates, in part, the
actual morphology of the surface ground of the Moon.
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PHYSICS
On Pressure Fluctuations and Spectra of Light
Scattered on Elastic Thermal Waves
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1. In a perfectly pure condensed medium in which
any extraneous inclusions or waviness are absent, light
scattering occurs upon fluctuations of the optical
dielectric constant. These fluctuations are caused by
fluctuations of thermodynamic and nonthermodynamic
quantities, such as fluctuations of pressure ∆p, entropy
∆s or temperature ∆T, solution concentration ∆c, and
anisotropy ∆ξik .

Since only light scattering caused by pressure fluc-
tuations is considered below, we present the calculation
of the average value of ∆p squared, which was per-
formed by Einstein [1], who developed a method for
determining thermodynamic fluctuations and obtained
the result

(1)

Here, k, T, V*, and βs are the Boltzmann constant, the
absolute temperature, the fluctuation volume, and the
adiabatic compressibility, respectively. Furthermore,
βs = ρ–1v–2, where ρ and v are the density and adiabatic
sound phase velocity.

It is rather difficult to precisely obtain the quantity
∆p since far from the critical point under normal condi-
tions, we can determine the fluctuation volume V* only
with an accuracy to an order of magnitude. Assuming

that the linear size  of a fluctuation is ~ , where λ is

the wavelength of the visible light,1 pressure fluctua-
tions, e.g., in a liquid attain ~0.1% of the internal pres-
sure.

In calculating the scattered-light intensity, Einstein
[1] (for liquid volumes and solutions) and Mandel-
stam [2] (at the interface between two media) expanded
fluctuations into a Fourier series, i.e., into “formal
waves.”

1 For such , the indicatrix of the scattered light intensity does not
exhibit angular asymmetry.

∆ p2〈 〉 kT
V*βs

------------.=

l
λ
25
------

l
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In these studies, the expansion into formal waves
represents an approach which makes it possible to cal-
culate the intensity of scattered light.

Even before, Einstein [3] developed a theory of heat
capacity of solids in which he employed the Planck for-

mula assuming that "Ω exp  (instead of the pre-

viously used kT) per degree of freedom. Thus, the heat
capacity turned out to be a function of the frequency Ω
of proper vibrations of atoms being contained in a solid
and the absolute temperature T. It seemed that the heat-
capacity theory had nothing to do with the scattering of
light. In any case, even Einstein did not mention it.

However, the heat-capacity theory for solids in the
region of low temperatures, which was developed by
Einstein, needs improvement.

Continuing Einstein’s concepts [3], Debye proposed
in [4] a beautiful idea which represents a solid consist-
ing of a large number N of particles as a continuum
described by equations of elasticity theory.

To calculate the energy of a solid, it was assumed
that 3N degrees of freedom of coupled oscillators were
equivalent to 3N elastic waves.2 Hence, the kinetic
energy of the body’s particle thermal motion was the
energy of the elastic waves. In this study, the theory of
light scattering (diffraction) on elastic waves was also
not mentioned.

Apparently, Mandelstam [5, 6] was the first to
understand that both Einstein’s [1] and Mandelstam’s
[2] formal waves, Fourier components, and Debye ther-
mal waves are the same phenomena. Therefore, the the-
ory of heat capacity for a solid and the theory of light
scattering do not differ from each other, and from this
standpoint, pressure fluctuations are a result of interfer-
ence of Debye elastic waves.

Light scattering is the diffraction of exciting light on
elastic waves, and the scattered-light spectrum differs

2 Apparently in this case, not all degrees of freedom are taken into
account, but the basic features of the phenomenon under consi-
deration are.


 "Ω

kT
--------


1–
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from that of exciting light due to the Doppler effect or
the scattered-light modulation [7].

2. It follows from the model of a solid proposed by
Debye [4] that although it represents a continuum, the
frequencies of its elastic vibrations are bounded by a
certain maximum frequency Ωmax . There is a set of
elastic-vibration frequencies between Ω = 0 and Ωmax ,
such that dΩ corresponds to the frequency range
dZ(Ω) [4, 8], namely,

(2)

where V is the volume of the sample being studied and
v is the mean sound phase velocity. The maximum fre-
quency Ωmax is determined from the condition

(3)

Assuming  = d3, where d is the distance between the

particles, we find from the definition of d and Eq. (3) [8]

(4)

Here, Λ is the minimum wavelength of the elastic wave.
Within the limits from 0 to Ωmax, there are waves with
different frequencies and different directions of propa-
gation, i.e., different wave vectors q.

Under these conditions, a pair of waves forming a
standing wave with the same Ω and directly opposite
±q can always be found (Fig. 1). On this standing wave,
there occurs diffraction (scattering) of light propagat-

dZ Ω( ) V
3Ω2

dΩ
2π2

v 3
------------------,=

Z Ωmax( ) Z Ω( )d

0

Ωmax

∫ V
Ωmax

3

2π2v 3
--------------- 3N .= = =

V
N
----

Ωmax
3

4π
------ 

 
1/22πv

d
-----------, Λmin

4π
3

------ 
 

1/3

d .= =

q

–q

±q

ks

ks

kl

kl

θ θ

Propagation direction for light and elastic waves is deter-
mined by wave vectors kl for exciting light, ks for scattered
light, and ±q for elastic waves.
ing at an angle θ to the exciting light and along the
direction corresponding to the Bragg condition [8].

The effective amplitude of the thermal wave can be
estimated from the energy density of the elastic plane
wave:

(5)

where c is the vibrational velocity of the wave, ρ is the
density, and Aeff is the effective amplitude of the elastic
wave.

On the other hand, following Einstein, the photon
energy can be expressed by the Planck formula.

In the case under consideration,  ! 1, the

Planck formula transforms into the Rayleigh–Jeans
formula:

(6)

Comparing (5) and (6), we obtain for the effective
amplitude of the elastic wave

(7)

For example, in the case of benzene, assuming T =
300 K, ρ = 0.8, v = 1.5 × 105 cm/s, and dΩ . 109 rad/s,
we have

Aeff = 5 × 10–11 cm.

However, we should note that formula (7) contains
the multiplier dΩ , which introduces a certain indeter-
minacy in the quantitative calculation. The reason for
this is that it is unclear what frequency range is implied
for dΩ. In our calculation, we accept dΩ as correspond-
ing to the half-width of the Mandelstam–Brillouin com-
ponent since there is no other natural quantity for dΩ.

The most important conclusion from relation (7) is
the following. If Aeff is independent of the coordinate
and time, the thermal wave, hence, attenuates neither in
space nor in time.

3. Owing to the time variation of pressure in the
standing wave, scattered (diffracted) light is modulated
with an elastic-wave frequency Ω. For a constant
amplitude and phase of the light elastic wave, the spec-
trum of this modulated oscillation is described by the
δ-function. However, it is well known that the spectrum
of the molecular scattering of light yields a finite width
for the Mandelstam–Brillouin components [8, 9].

By virtue of arising and decaying fluctuations, the
waves forming a “diffraction grating” (Fig. 1) have a

EΩ ρc2 ρAeff
2 Ω2,= =

"Ω
kT
--------

EΩ
kTΩ2dΩ

π2v 3
----------------------.=

Aeff
kTdΩ
π2ρv 3
--------------- 

  1/2

.=
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constant amplitude, but the phase ϕ(t) changes in time.
For a plane wave,

(8)

where, far from the critical temperature, ϕ(t) is
described by the normal, or Gaussian, distribution.

In the case of excitation of scattered light by a plane
wave with frequency ω and amplitude E0 and its mod-
ulation by the elastic wave of form (8), we find for the
scattered-light field

(9)

The first term in (9) corresponds to the Stokes (Mandel-
stam–Brillouin) component; the second, to the anti-
Stokes component.3 Both lines are the same, and here,
we consider the shape of one of them.

The problem of calculating the spectrum shape of
the signal when its amplitude is constant and the phase
varies with time according to the Gauss law, i.e., the
white-noise problem, is important for radio physics and
has been analyzed many times. Here, in solving the
optical problem, we use the results obtained by Mala-
khov [10] for the frequency of a generator.

The variation of the phase with time in (9) is the
same as the frequency variation, so that in this case,

(10)

Here, ∆ω(t) is the frequency fluctuation whose average
value equals zero.

The spectral density of the scattered light intensity
is determined as

(11)

where

Here, Φ(t) is the correlation function, E(t) corresponds
to formula (9), and τ is the correlation time in the

3 The central component is also presented in the spectrum (Ray-
leigh line) due to scattering on fluctuations of the entropy or tem-
perature. However, the behavior of the central line is outside the
scope of this paper.

A Aeff Ωt ϕ t( )–[ ] ,cos=

E t( ) 1
2
---Aeff E0≈

× ω Ω–( )t ϕ t( )+[ ] ω Ω+( )t ϕ t( )–[ ]cos+cos{ } .

ϕ t( ) ∆ω t( ) t.d

t0

t

∫=

I ω( ) 2
π
--- Φ t( ) ωtcos t,d

0

∞

∫=

Φ t( ) 1
T
--- E t( )E t τ+( ) t.d

0

T

∫T ∞→
lim=
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ergodic ensemble in which the fluctuations are mutu-
ally independent.

Using the rather cumbersome calculations per-
formed in [10], the spectral density for the intensity
when [〈∆ω2〉τ 2] ! 1 can be written in the form

(12)

Here, K is a constant with the dimension of frequency,
I is the intensity, and ∆ω in the radiophysical case is the
frequency deviation from the radiator frequency.

In the optical case, the half-width of the Mandel-
stam–Brillouin component is

(13)

Formula (12) represents the result of kinematic cal-
culations without allowance for masses of particles,
their properties, and forces acting on them. Therefore,
relation (13) cannot be applied to calculate substance
parameters (e.g., absorption of sound). However, it is
substantial that in the case of Gaussian statistics, we
obtain for I(ω) an expression of the same form as for
the solution of the dynamical problem. This dynamical
calculation was performed previously (see, e.g., [8, 9])
in the same approximation and yielded the following
result:

(14)

Here, δ is the half-width of the Mandelstam–Brillouin

component, which is δ = Γq2, where Γ is the time

attenuation constant of the elastic wave and q is the
wave vector. Comparing (12) and (14), we can under-
stand the physical meaning of the frequency deviation
in the spectrum of the molecular scattering of light.
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According to [1], the transverse electric field in
magnetized plasma depends on the plasma transverse
viscosity. Here, the term “transverse” implies vector or
tensor components transverse to the direction of the
magnetic field in plasma. For example, in the simplest
case of two-dimensional geometry when the magnetic
field B is directed along the z-axis of the Cartesian
(x-, y-, z-) coordinate system, B || z, the electric field E
and its gradient are directed along the x-axis, E || x,
∇ Ex || x (x, z are the unit vectors along x, z). The spatial
dependence of the field E, i.e., the function Ex(x), is
determined by the equation

(1)

where πxy is the corresponding component of the
plasma viscosity tensor.

The conventional transport theory of magnetized
plasma [2] yields the following expression for πxy:

(2)

Here, Vy =  is the drift velocity in crossed (E, B) -

fields, c is the speed of light, n is the density of the num-
ber of particles in the plasma, T is the ionic tempera-
ture, ωB is the ion cyclotron frequency, and νeff is the
effective ion-collision frequency.

We now use Eqs. (1) and (2) for studying the follow-
ing problem. We assume that the half-plane x < 0 is
occupied by quiescent plasma or by any other conduct-
ing medium in which Ex ≡ 0. At the same time, in the
half-plane x > 0, there is plasma with a homogeneous
density and temperature and, according to the equilib-

∂πzy

∂x
---------- 0,=

πxy nT
νeff

ωB
2

-------
∂Vy

∂x
---------.–=

cEx

B
--------–
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rium equation, the magnetic field is uniform. The ques-
tion arises as to whether we can produce, in the region
x > 0, a certain electric field Ex(x) ≠ 0 bounded as
x  ∞ under the condition Ex(0) = 0. This condition
implies the absence of a jump of the plasma velocity Vy

at the interface between the two media mentioned
above. It follows from (1) and (2) that the answer is
negative. Only a trivial solution Ex ≡ 0 and a solution
growing linearly with increasing x, i.e., Ex ~ x, can be
found for x > 0 from (1) and (2) within the scope of the
given statement of the problem.

At this stage, another question arises: whether the
above mathematical result describes an actual physical
situation or is a consequence of a certain defect in our
statement of the problem? In this connection, we note
that expression (2) for πxy was derived in [2] using
expansion in a series with respect to the ratio of the ion
Larmor radius ρi to the characteristic length L of the

electric field inhomogeneity,  ! 1. However, for the

problem which we are interested in, the higher deriva-
tives of the electric field Ex and, correspondingly, the
velocity Vy have jumps at x = 0. This implies that L = 0
for x = 0. Consequently, the standard expression (2) for
πxy at the interface between two media is invalid and the
above-formulated result on the possibility of creating
the field Ex ≠ 0 for x > 0 is doubtful.

It is evident that for correct solution of this problem,
it is necessary to generalize formula (2) for πxy without
expanding it in a power series with respect to the ionic
Larmor radius squared. At the same time, it is of inter-
est to elucidate what we can obtain using the model
expression for πxy , which differs from (2) in its term
with the third derivative of the velocity Vy , i.e., using
the expression of the form

(3)

where cL is a certain numerical coefficient whose sign
is yet assumed arbitrary. We call this term hyperviscos-
ity. It is worth noting that the concept of hyperviscosity
was used previously in modeling the problem of geody-
namics (see, e.g., [3]), which is beyond the scope of

ρi

L
----

πxy nT
νeff

ωB
2

-------
∂V y

∂x
--------- cLρi

2∂3Vy

∂x3
-----------–

 
 
 

,–=
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plasma physics. As for plasma physics, we may men-
tion study [4], which dealt with hyperviscosity when
numerically simulating two-dimensional drift turbu-
lence.

Let cL > 0. Then, for x > 0, we can construct, with
the help of (1), the solution

(4)

where

(5)

(6)

with xL = ρi . This solution satisfies the above con-
dition Vy(0) = 0. Qualitatively, this solution is repre-
sented in Fig. 1.

Expression (3) for πxy is the simplest model allow-
ing for hyperviscosity. A more complicated expression
including the term with the fifth velocity derivative is

(7)

where, similarly to cL, dL is a numerical coefficient. By
means of Eqs. (2) and (7), for some additional assump-
tions on the coefficients cL, dL (for details see below) in
the region x > 0, we can construct the solution for Vy(x),
which, at x = 0, satisfies the condition of continuity for
both the velocity, Vy(0) = 0, and its first derivative,

 = 0. This solution can be represented in the

Vy x( ) V1 x( ) V2 x( ),+=

V1 x( ) V0 const,= =

V2 x( ) V0
x
xL

-----– 
  ,exp–=

cL
1/2

πxy nT
νeff

ωB
2

-------
∂Vy

∂x
--------- cLρi

2∂3Vy

∂x3
-----------– dLρi

4∂5Vy

∂x5
-----------+

 
 
 

,–=

∂Vy

∂x
--------- 

 
x 0=

xL
0

– V0

V0

V1(x)

V2(x)

x

Vy(x)

Vy

Qualitative dependence of the Vy(x) corresponding to the
viscosity model of form (3).
form of (4) with V1(x) of form (5) and V2(x), which is
the following generalization of (6):

(8)

Here c.c. implies the complex conjugation, κ =

, k = , δ = . Solution

(8) oscillates in space and, at the same time, decays
while moving away from the point x = 0 under the con-
dition

(9)

The period of spatial oscillations and the characteristic
decay length are comparable with the ionic Larmor
radius. Qualitatively, the function V2(x) of form (8) and
the total velocity Vy(x) characterized by formulas (4),
(5), and (8) are similar to those given in Fig. 1; the only
difference lies in the fact that there are now decaying
oscillations on both V2(x) and Vy(x).

Thus, in the case of either the viscosity model of
form (3) with positive cL or the model of form (7) with
arbitrary-sign cL and positive dL , which satisfy condi-
tion (9), we can construct the desired solution with
finite Ex(x) ≠ 0 in the region x > 0. However, a new
question arises: can the plasma theory yield the coeffi-
cients cL and dL satisfying these requirements? This
problem was studied in [5] in the framework of the
multimoment description of hydrodynamic plasma,
which goes back to the Grad approach [6]. The values

cL =  and dL =  found for this case confirm the

validity of condition (9). However, it seems to be
important to elucidate the consistency of these qualita-
tive results with the kinetic plasma theory. This implies
direct calculation of hyperviscosity on the basis of the
Boltzmann kinetic equation, which is the goal of our
following analysis.

Let F be the ion equilibrium distribution function,
i.e., the solution of the Boltzmann kinetic equation
obtained with ignoring the derivatives of Vy(x). These
derivatives cause a perturbation of the ion distribution
function denoted as f . This perturbation is described by
the perturbed part of the Boltzmann kinetic equation,
which, according to [7], can be reduced to the form

(10)

Here, C( f ) is the collisional term. The particle velocity
is represented in the form 

V2

V0

2
------ 1 iκ

k
-----+ 

  κ ik+( )x–[ ]exp c.c.+
 
 
 

.–=

δ/2( )cos

dL
1/4ρi

---------------------- δ/2( )sin

dL
1/4ρi

---------------------
cL

2dL
1/2

-----------arccos

dL

cL
2

4
-----.>

5
3
--- 553

300
---------

v ⊥ ϑ ∂f
∂x
------cos

Mv ⊥
2

2T
------------F 2ϑ

∂Vy

∂x
---------sin+ ωB

∂f
∂ϑ
------- C f( ).+=

v Vyy v ⊥ x ϑcos y ϑsin+( ),+=
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so that v⊥  is the modulus of the particle transverse
velocity in the reference frame moving in crossed fields
with the drift velocity and ϑ  is the Larmor gyration
phase of a particle. The collisional term C( f ) is taken in
the model form allowing for momentum conservation:

where ν is the model ion-collision frequency; U is the
y-component of the ion velocity in the above-men-
tioned reference frame; and

For simplicity, we restrict ourselves to the problem
of two-dimensional velocity distribution.

Our goal is to calculate the function f and to find the
viscosity-tensor component πxy defined by the relation

(11)

We use the Fourier transformation assuming that each
perturbed function X(x) is represented by the Fourier
integral of the form

(12)

where Xk is the Fourier component of X(x). Then,
Eq. (10) transforms to

(13)

Here, b = ; the functions γ and β are defined by the

relations

γ = , β = , Γ = .

We search for the solution to (13) in the form

(14)

restricting ourselves to the terms with l = 1, 2. Then, we
arrive at the equations

We solve these equations in the approximation

 ! 1, which corresponds to the case of strongly

C f( ) ν f
Mv ⊥

T
------------UF ϑcos– ,–=

U
v ⊥ ϑ fcos vd

n
-----------------------------, dv∫ v ⊥ dv ⊥ dϑ .= =

πxy M
v ⊥

2

2
------ 2ϑsin f v.d∫=

X x( ) ikx( )Xkexp k,d∫=

∂
∂ϑ
------- ν

ωB

------ ib ϑcos–– 
  f k 2γ 2ϑsin 2β ϑ .sin–=

kv ⊥

ωB

---------

Mv ⊥
2 FΓ k

4TωB

----------------------
νMv ⊥ FUk

2ωBT
--------------------------

∂Vy

∂x
---------

f k f l ilϑ( )exp
l 1>
∑ c.c.,+=

1 iν
ωB

------+ 
  f 1

b
2
--- f 2– β,=

2 iν
ωB

------+ 
  f 2

b
2
--- f 1– γ– .=

ν
ωB

------
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magnetized plasma. The result can be represented in
the form

(15)

where superscripts (0) and (1) denote the terms inde-
pendent of ν and proportional to ν, respectively. The

functions  and  are

The remaining functions entering into (15), namely,

 and , are not necessary for subsequent calcu-
lations.

According to (12), πxy(x) is related to (πxy)k by

(16)

Using the formulas given above, we find

(17)

where Uk = ik I1Γk,

(18)

(19)

Equations (16)–(19) determine the transverse vis-
cosity in the model allowing for the two first terms of
series (14). At the same time, in this model, the ratio
between the ionic Larmor radius and the spatial scale of
the velocity inhomogeneity characterized by parameter b
is considered arbitrary. In this sense, the above equa-
tions describe the generalized viscosity. It is assumed
that they are intended for studying localized perturba-
tions. In this case, the integrands in (18), (19) have no
poles (cf. [5]).

In correspondence with the above discussion, we
use these equations in deriving simpler models for πxy

by expanding expressions (18), (19) in a series with
respect to b2 . Restricting ourselves to the terms on an

order up to , we reduce (18), (19) to the form

f i f i
0( ) f i

1( ), i+ 1 2,,= =

f 1
0( ) f 2

1( )

f 2
1( ) iνγ

4ωB

---------- 1 b2/4+

1 b2/8–( )2
-------------------------- bβ

4 1 b2/8–( )
---------------------------,+=

f 1
0( ) bγ

4 1 b2/8–( )
---------------------------.–=

f 2
0( ) f 1

1( )

πxy x( ) ikx( ) πxy( )kexp k.d∫=

πxy( )k
ν

4ωB
2

----------nT I2Γ k 2ikI1Uk–( ),–=

1
2
---– ρi

2

I1
1

2n
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Mv ⊥
2

2T
------------ 

 
2

F

1 b2/8–
------------------- v,d∫=

I2
1

2n
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Mv ⊥
2
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 
2

1 b2/4+
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ρi
4

I1 1
3
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---ρi

2k2, I2+ 1 3ρi
2k2 21

4
------ρi
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Then, from Eqs. (12), (17), expression (7) follows with

νeff = , cL = 2, and dL = . In this case, condition (9)

is satisfied.

Thus, the kinetics qualitatively yields the same
results as the Grad-type approach. This is a weighty
argument in favor of the standpoint that the solutions of
type (4)–(6) and (8) with Vy(x)  const as x  ∞
are physical reality, whose description, however, is
beyond the scope of the traditional transport theory [2].

In conclusion, we would like to note that the prob-
lem considered in this paper is important, in particular,
from the viewpoint of magnetic islands in plasma
immersed in a sheared magnetic field [5, 8]. In this
case, the plasma inside the island separatrix plays the
role of the quiescent conducting medium lying in the
half-plane x < 0, while the region x > 0 is similar to the
region outside the separatrix. The solution found by us
with Ex  const as x  ∞ corresponds to the case
of magnetic islands with a localized velocity profile in
tokamaks under standard conditions when far from an
island, the gradient of the equilibrium radial electric
field vanishes or is negligibly small (see [5] for details).
At the same time, the solution with Ex ~ x corresponds
to the case of islands typical for so-called flows of
Mach–Alfven type [8]: in this case, we assume the
presence of a noticeable strongly inhomogeneous equi-
librium radial electric field. Therefore, it is clear that
the expressions for the hyperviscosity and generalized
viscosity derived by us can be a base for following
more complete analysis of magnetic-island dynamics.

ν
4
--- 15

4
------
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1. In papers [1–3], when solving inverse problems
of optimum estimates for parameters of surfaces on the
basis of electrodynamic models, fluctuations of scat-
tered fields with different polarizations were assumed
to be statistically independent. However, in many prac-
tical cases, in particular when sounding a small-scale
surface whose asperities satisfy small-perturbation
conditions [4], h(r) ! λ and |∇ ⊥ h| ! 1, the multiplica-
tive fluctuations of a signal in reception channels for
vertical and horizontal polarizations are equal and char-
acterized by the factor

Here, h(r) is the height of D-surface asperities; r ∈  D;
and q⊥  = (p, q) is the horizontal projection of the scat-
tering vector, with p and q being its components.

We consider the following formulation of the prob-
lem. We assume that a surface segment is sounded by
two oscillatory waves with vertical and horizontal
polarizations which are of the same amplitude and ini-
tial phase. The experiment is repeated M times; i.e.,
ranging of M statistically independent surface segments
is performed.

The observation equations for vertical and horizontal
polarizations, respectively, are written out in the form

(1)

Here, l = ||λj || is the set of surface electrophysical
parameters (permittivity, slope angle, etc.) to be esti-

α̇ h r( ) jq⊥ r( )exp r.d

D

∫=

uvvm
t( ) Reα̇mȦvv l( )Ṡ0 t( ) nvm

t( ),+=

uhhm
t( ) Reα̇mȦhh l( )Ṡ0 t( ) nhm

t( ),   m + 1, 2, …,  M .= =                             
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mated;  = exp(jϕm); the noise  and  is
considered to be white, i.e., Rn(t1, t2) = 〈n(t1)n(t
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determined by an electrodynamic model for the surface.

What is required is the best estimation of electro-
physical parameters 

 

l

 

 or such statistical surface charac-
teristics as the spectrum 
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lar deflections  of signals with different polariza-
tion, their relative phase shift, etc., [2].

 

2. 

 

We seek the optimum estimates for parameters 

 

l

 

within the framework of the maximum likelihood
method.

The likelihood function for observation equations (1)
has the form
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and µ is the energy signal-to-noise ratio.

By averaging the likelihood function over the
phases ϕm with uniform distribution and over the factor
αm distributed according to the Rayleigh law, we arrive
at the formula

(3)

where  is the parameter of the Rayleigh distribution.

From the condition  = 0, we obtain the

system of likelihood equations

(4)

Here,

(5)

Information on the complex-valued character of the

factors  and  is lost as a result of the aver-
aging over the phases ϕm . However, since the signals
with different polarizations have identical fluctuations,
information on the complex-valued character of the
ratio

is retained in the likelihood functional obtained.

The estimates for the electrophysical and geometric

parameters l entering into dependences  and
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 can be obtained by solving the system of non-
linear equations

(6)

Here, W1(q1) = W(q⊥ ). In the right-hand side of

expressions (6), there are known analytic dependences
relating the left-hand sides of the equations to the
parameters l to be estimated. The left-hand sides of
these equations also characterize the surface and must
also be estimated.

We find the solution to likelihood equations (4) for

the parameters r = (ϕh/v, , γh/v).

Substituting expressions (5) into formula (3), we
arrive at the likelihood functional for the parameters γh/v

and :
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and

Then, the effective scattering cross section for the
horizontal polarization is

3. We find the limiting measurement errors for the

parameters γh/v, ϕh/v, and  by inverting the Fisher
matrix

Namely,

(7)

Here, B is the Fisher information matrix and ∆ =

Bγγ – ( )2 =  is its

determinant.

After the parameters r = (ϕh/v, , γh/v) have been
found, the electrophysical parameters l (for example,
the real and imaginary parts of the complex-valued per-
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mittivity, Re  and Im , respectively) and the spectrum
W(q⊥ ) can be determined by solving the system of non-
linear equations (6).

The limiting measurement errors for the parameters
l and function W(q⊥ ) are characterized by the diagonal
elements of a matrix inverse to the Fisher information
matrix:

There exists a functional relation r = r(l) with r =

(ϕh/v, γh/v, ) between the parameters γh/v, ϕh/v,  and
l which is described by the system of equations (6).
Therefore, the first derivative of the logarithm of the
likelihood function can be written in the following
form:

Here, N is the dimension of the vector r.
The dimensions of the vectors r and l are taken as

coincident. Then,

where P = { } = .

The inverse information matrix takes the form

Here, the matrix P–1 has the following elements:
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k4 Ȧvv
2 γ̇h/v' 2

-------------------------------Im Ȧvv'( )∗ Ȧvvγ̇h/v' γ̇h/v* ,=
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Analysis of elements (7) of the matrix  and ele-

ments of the matrix  make it possible, first, to eval-
uate the possibility of solving the system of nonlinear

Br
1–

Bl
1–

0.2

0.4

0.3

0.1

(a)

σϕ(i, 20, 0, θ)
σϕ(i, 20, 10, θ)
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0.3

0.1
1.00

(b)

σγ(i, 20, 0, θ)
σγ(i, 20, 10, θ)
σγ(i, 20, 40, θ)

θ
Fig. 1. Measurement errors (a) σϕ and (b) σγ for the param-
eters ϕh/v and γh/v , respectively, as functions of the angle of
incidence θ for ε1 = 20. Solid, dashed, and broken lines cor-
respond to ε2 = 0, 10, and 40, respectively.

σϕ

σγ
equations for the parameters r and l at a given set of
conditions. Second, it provides a way of finding the
conditions under which the measurement errors would
be minimal. In particular, for radio waves, the values of
the angles of incidence on a surface can be found for
which an acceptable or highest accuracy of surface-
parameter measurements can be provided.

Figures 1a and 1b show the measurement errors
 and  for the parameters ϕh/v and γh/v, res-

pectively, as functions of the angle of incidence θ for
ε1 = 20 and ε2 = (0, 10, 40).

It is evident that the measurement error  for the
parameter ϕh/v sharply increases with the ranging angle θ
close to 70° but decreases with increasing ε2 . The error

 decreases with increasing the angle θ from 0° to
70° but sharply tends to infinity at the angles of inci-
dence θ close to the slip angle. An increase in the imag-
inary part ε2 of the complex-valued permittivity results
in a small decrease in the error .

4. Thus, taking into consideration that the amplitude
and phase functions in reception channels for different
polarizations are synchronous, we can employ not only
information inherent in the moduli of the complex-val-
ued amplitudes observed for waves with different
polarizations but also information inherent in phase dif-
ferences for these waves. This makes it possible to esti-
mate complex parameters of the surface, i.e., both their
real and imaginary parts, as well as real parameters and
statistical surface characteristics.
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In various technological conditions of forming pro-
tective diffusion coatings on products made of high-
melting metals and alloys, diffusion transfer to a metal
of saturating elements through the protective coating
being formed is a critical stage of the entire process [1].
Therefore, to reduce the time-temperature parameters
of the process, acceleration of saturating-element diffu-
sion to the protective coating needs to be provided.

As is shown below, this is achieved by using activat-
ing species evolving gaseous hydrogen fluoride (HF) in
amounts when HF predominantly affects the boundary
grains of the protective coatings being formed and
causes an acceleration of the diffusion of saturating ele-
ments in them.

For depositing protective diffusion coatings on
products made of high-melting metals and alloys [1],
equipment and procedures were used which were char-
acterized by introducing activators (e.g., moistened alu-
minum trifluoride AlF3 or acid potassium bifluoride
KHF2) into the active volume of a furnace. The
amounts of the activators introduced provide a partial
HF pressure in the furnace on the order of approxi-
mately 10–1 bar.

Phase X-ray analysis was used for determination of
the coating composition. The coating thickness was
determined by optical-microscopy and gravimetry
methods; the microstructure was studied by the method
of scanning electron-microscopy.

Boriding of Nb and Mo samples was performed at
1073–1373 K for a 2-hour holding. In this case, forma-
tion and growth of boride layers (NbB2 and MoB) with
a thickness of several tens of microns occurred. A par-
abolic time dependence of the boride-layer thickness
was observed (at holding for 1 to 5 h), which is charac-
teristic of the case when the total process is limited by
diffusion of boron atoms through a boride layer [1]. On

* State Unitary Enterprise “NIIgrafit,” 
Élektrodnaya ul. 2, Moscow, 111524 Russia
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State Research Center
“Bardin Central Research Institute of Ferrous Metals,” 
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the basis of this procedure, the diffusion coefficients D,
the entropy factor D0 , and the diffusion-activation
energy Q for boron atoms in boride layers were deter-
mined (Table 1).

The results obtained show that the employment of
an activator (moistened AlF3) for boriding Nb results in
elevation of the effective coefficients of boron-atom
diffusion in boride layers by an order of magnitude.
This occurs mainly due to the reduction of effective
activation energies. Similar results were also obtained
for molybdenum.

The effect of a KHF2 activator on the kinetics of
nitriding iodide Ti and Zr samples was studied for hold-
ing (from 1 to 5 h) at 870–1070 K and a nitrogen pres-
sure of 1.2 bar. In the presence of the activator, we
observed sharp intensification of the nitride layer (TiN
and ZrN) formation, the thickness of the layer attaining
several hundreds of microns. The kinetics of the
nitride-layer growth corresponded to a parabolic
dependence. Thus, the characteristics of the diffusion
of nitrogen atoms in nitride layers were measured
(Table 2).

Table 1.  Niobium boriding

T, K Saturation
medium

D, 10–11 
cm2 s–1

D0,
cm2 s–1

Q,
kJ mol–1

1173 Boron carbide 
(B4C) and
carbon

0.7 150 300

1223 2.3

1273 7.3

1323 21

1373 58

1073 Boron carbide 
and carbon with 
AlF3 activator

0.5 230 280

1123 2.2

1173 7.8

1223 25

1273 75

1323 200

1373 510
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The diffusion characteristics obtained in the process
of nitriding Ti and Zr with the KHF2 activator at 870–
970 K correspond to the characteristics of nitrogen sur-
face diffusion in nitride layers [2], which seem to pro-
ceed predominantly along microcracks. Diffusion char-
acteristics for nitriding without an activator at 870–
1070 K (Table 2) correspond to characteristics for
nitrogen diffusion predominantly along grain bound-
aries in nitride layers [2]. This can be caused by both
the low temperatures employed in the process and the
fine-grained structure of the nitride layers being
formed.

Grinding of the microstructure and the appearance
of microcracks at grain boundaries in nitride layers
when nitriding in the presence of an activator are likely
caused by local deformations. These occur owing to the
energy and excess volume of topochemical reactions
associated with the formation of secondary intermetal-
lic compounds (fluorides, etc.) in domains of cosegre-
gations of hydrogen and fluorine at intergrain bound-
aries. Nitriding Ti and Zr in the presence of an activator
occurs at considerably lower time-temperature param-
eters. In this case, the ratio of the nitride-layer thickness
to that of the nitrogen solid-solution layer in a metal
increases (by two orders of magnitude) due to an
increase (by four orders of magnitude) in the nitrogen
effective diffusion coefficient in the nitride layer.

Table 2.  Titanium nitriding* (  = 1.2 bar)

Activator T, K D, cm2 s–1 D0, cm2 s–1 Q,
kJ mol–1

Without
activator

870 8.8 × 10–13 8.5 × 10–5 133 ± 6

970 5.8 × 10–12

1070 2.7 × 10–11

KHF2 870 5.8 × 10–8 6.1 × 10–4 67 ± 7

920 9.6 × 10–8

970 1.5 × 10–7

* Similar results were also obtained for zirconium.

PN2

Employment of the KHF2 activator for oxidation of

Ti and Zr, as well as Zr + 1.0% Nb and Zr + 2.5% Nb
alloys, also results in a sharp intensification of the
entire nitriding process and in a reduction in the time-
temperature parameters of the entire process (due to the
acceleration of oxygen diffusion in oxide coatings).

In the process of carbidizing treatment of titanium
powder at temperatures of 673–1173 K (2-hour hold-
ing), formation of the carbide layer in the absence of an
activator and in the presence of the KHF2 activator was
studied at 1073–1173 K and 773–1173 K, respectively.
It was established that the activator reduced the lowest
temperature of the protective-coating formation by
300 K. A similar behavior was also observed in the case
of carbidizing a tungsten powder, as well as while
obtaining protective coatings (carbide layers) on tanta-
lum plates.

The scientific importance of the results obtained lies
in the fact that they introduce significant changes to the
existing concept on the interaction mechanism of tran-
sition high-melting metals and alloys (Nb, Mo, Zr, Ti,
Ta, and W) with metalloids of the III–VI groups of the
periodic system of elements (boron, carbon, nitrogen,
and oxygen) in the presence of activators. Among these
activators, species evolving gaseous HF occupy a spe-
cific place. The high efficiency and versatility of the HF
action are caused by the extremely high difference in
the electronegative properties of fluorine and hydrogen.

The practical importance of these studies consists in
the fact that, on this basis, a possibility appears to sig-
nificantly change the formula of activating additives.
Novel technologies for obtaining wear-resistant, heat-
protective, and antioxidant coatings on steels, nonfer-
rous and rare metals, and alloys may also be suggested.
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Loss-free propagation of an electromagnetic wave
in a medium with negative permeability µ and negative
permittivity ε) was first considered by V.G. Veselago in
1967 [1]. The possible creation of such materials was
repeatedly discussed in the literature both prior to
(see [2–4]) and after (see [5–10]) his publication. In
particular, Lagarkov and Sarychev [7] derived formulas
necessary for developing materials with elongated con-
ducting inclusions (sticks) having ε < 0. Later, Lagar-
kov et al. [10] experimentally studied materials with
negative µ and ε and derived corresponding formulas.
In all these studies, the attempts to design such materi-
als stemmed from various reasons and, therefore, pub-
lication [1] was ignored. It seems that the first materials
purposefully synthesized to verify a number of effects
predicted in [1] were obtained by J.B. Pendry (see [11,
and references therein]). Today, it is possible to state
that we possess both technologies for manufacturing
such materials and computational methods for predict-
ing and designing materials having negative real parts
of permittivity ε' and permeability µ'. In other words, it
has become possible to predict such materials also in
the case of dissipative media where the equations ε =
ε' – iε'' and µ = µ' – iµ'' are applicable, the time depen-
dence being chosen as eiωt.

Below, we describe our study of the interaction of an
electromagnetic wave with bodies of a relatively simple
shape, which either include such materials or are coated
with them. In particular, we consider cylindrical struc-
tures, including inhomogeneous structures and those
with arbitrary cross sections. We present here, at first
glance, the rather surprising field distributions and elec-
trodynamic properties of certain models studied.

The problems were solved by the known methods
[12]. We used the technique of matching fields at a half-
space interface in the calculation of the Fresnel coeffi-
cients. The body excitation was analyzed with the aid
of eigenfunctions and volume integral equations. The
use of different approaches provided a test of various

Institute for Theoretical and Applied Electrodynamics, 
Joint Institute of High Temperatures,
Russian Academy of Sciences,
Izhorskaya ul. 13/19, Moscow, 127412 Russia
1028-3358/01/4603- $21.00 © 20163
computational programs, which is of great importance
for reliable interpretation of the physical effects under
consideration.

The results of our numerical calculations confirm
theoretical conclusions [1] on materials with negative
permittivity and permeability. In particular, an incident
wave refracted by a planar interface propagates along
the direction symmetric (with respect to the surface
normal) to the propagation direction of the refracted ray
in a conventional medium. The phase incursion along
the refracted ray is positive, in full accordance with the
negative refractive index and the phase velocity. We
believe that studying other structures should reveal new
specific properties.

We now proceed to interfaces of a more complicated
geometry.

Let a plane wave be incident onto a circular dielec-
tric cylinder, as depicted in Fig. 1 but having no internal
conducting rod. The effect of field concentration
(“focusing”) well-known for materials with positive µ'
and ε' also arises for negative values of µ' and ε'. How-
ever, unlike the usual location of the focal point behind
the irradiated surface, in this case, the focal point is
located in the front part of the cross section (points F2

Y

X
P2 P1 F2F1

σ → ∞

ε, µ

Fig. 1. Ray diagrams for a circular cylinder.
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Fig. 2. Field distribution in the transverse cross section of a cylinder with coating and nearby it.
and F1 , respectively). Moreover, the field amplitude at
point F1 can exceed the amplitude at point F2 because
of the shorter path of the corresponding ray and, corre-
spondingly, lower attenuation due to the energy loss
always characteristic for dissipative media. This feature
allows more efficient field focusing in media with a
negative refractive index. We would like to mention
that conventional focusing is widely used in reflectors
of the Luneberg-lens type [13]. A reflector made of a
material with a negative refractive index can have a
number of technological and structural advantages. In
this case, the reflecting surface does not have the shape
of an encircling band as in a Luneberg lens, but is a core
in the shape of a metallic conducting cylinder or a
sphere (in the three-dimensional case). The core diam-
eter should be chosen in such a manner that the focal
point P1 lies in close vicinity to the conductor (Fig. 1).
Obviously, the optimum position of point P1 in the two-
dimensional case also depends on the wave polarization.

Another characteristic feature of such a structure is
the existence of a second focal point P2 lying outside
the cylinder (Fig. 1). The dashed lines in Fig. 1 show
the ray diagram characteristic of a conventional coating
with a positive refractive index. The existence of two
field-concentration points is confirmed by the calcula-
tions of field amplitudes in the coating bulk and in the
medium adjacent to the cylinder. These calculations
were performed for E-polarized waves (the intensity
vector of the electric field being parallel to the cylinder
axis), a radius of the internal metal cylinder kR = 6.0;

a coating thickness kD = 4.0; k = , where λ is the

wavelength in the free space, ε = –1.4 – i × 0.01; and
µ = –1.3 – i × 0.01. The field distribution (calculated in
the Cartesian coordinates) in the transverse cross sec-
tion is shown in Fig. 2. It should be emphasized that, in
accordance with the reciprocity principle, the field
source can be placed at point P2 , and then, in accor-

2π
λ

------
dance with the above ray diagram, we can expect the
appearance of directional radiation. The existence of
this effect was confirmed by a computational experi-
ment in which the above structure was excited by a cur-
rent-carrying filament located parallel to the cylinder
axis at point P2 (the distance between the filament and
the cylinder axis is kL = 10.4). The obtained (not nor-
malized) directivity patterns for three structures with
the same geometric dimensions indicated above but
having different electrodynamic parameters of the
material are shown in Fig. 3. Curve 1 is obtained at µ =
–1.3 – i × 0.01 and ε = –1.4 – i × 0.01; curve 2, at µ = 1.3 –
i × 0.01 and ε = 1.4 – i × 0.01; and curve 3, at µ = 1 and
ε = 1 (i.e., for a cylinder without coating). It is clearly
seen that at a negative refractive index (curve 1), a lobe
characteristic of the directional antennas is actually
formed. Thus, the reflecting convex surface coated with
a layer of a material having a negative refractive index
behaves as an analogue of a focusing mirror. In order to

– 180° 0°

– 10

10

0

– 90° 90°

F, dB

ϕ

1

2
3

Fig. 3. Directivity patterns for a system including filament
with a current and cylinder with a coating.
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estimate the effective opening surface (the aperture) of
the radiating system, we compared calculated results
with the directivity pattern for a cophase strip of the
surface electric current. The main lobes of the directiv-
ity pattern with an aperture of width kD = 16.0 and a
uniform current distribution turned out to be almost
coincident with those of the structure under consider-
ation. The levels of the first side lobes are also close.
Thus, the equivalent aperture size is rather large (equal
to the average of the internal and external diameters of
the dielectric shell). We can readily explain a relatively
high level of side-lobe radiation at the observation
angles 45° to 120° (it is formed by the rays indicated by
dashed lines in Fig. 1). Obviously, in order to reduce the
side-loop radiation and, thus, to increase the antenna
efficiency, we should improve the matching between
the coating and the outer medium, i.e., increase the
transmission coefficient and reduce the reflection coef-
ficient of the wave at the interface. This can be per-
formed, e.g., by application of an additional coating or
by making use of a coating with radius-dependent
properties (e.g., gradient coating). In this case, the basic
focusing element (the circular cylinder) remains an axi-
symmetric structure, which allows for creation of
multibeam or omnidirectional antennas with several
radiators or receivers and a common focusing element.
It would also be convenient to use such a reflector for
designing conformal antenna systems under rigorous
constraints for the shape (e.g., only convex) of the
reflecting surface.

We should like to emphasize the possible use of
materials with a negative refractive index as electro-
magnetic-wave absorbers. Figure 4 illustrates the cal-
culated bistatic for the effective scattering surface pat-
terns of the above cylinder with different coatings (the
angle ϕ = 180° corresponds to the backscattering direc-
tion). Curve 1 corresponds to the coating parameters
µ = –1 – i × 0.6 and ε = –1 – i × 1; curve 2, to the formal
sign reversal for the real parts µ = 1 – i × 0.6 and ε = 1 –
i × 1. We believe that the first material can be actually
obtained, while the development of the second material
with the desired parameters is associated with insur-
mountable difficulties. Curve 3 is calculated for the
coating made of a radiation-absorbing foamglass-based
material with parameters µ = 1 and ε ≈ 1– i × 0.6, which
is characterized by rather good matching to the free
space. And, finally, curve 4 shows scattering from an
uncoated cylinder. It is seen that in this case, the use of
an absorber based on a material with a negative refractive
index is much more advantageous, even when compared
to a hypothetical conventional-type absorber. Qualita-
tively similar curves were also obtained for twice thinner
coatings (kD = 2.0), i.e., for the case in which the
absorber-metal interface produces a stronger effect on
the field formation.

Thus, even a few examples of the calculations per-
formed for rather simple structures show that the spe-
cific characteristics of the materials with negative µ'
DOKLADY PHYSICS      Vol. 46      No. 3      2001
and ε' can be advantageous for various practical appli-
cations.
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INTRODUCTION

Short-term spectral analysis is a principal method of
speech-signal processing [1]. It is a basis for many sys-
tems of speech recognition, spectrographs, and vocod-
ers. In turn, short-term spectral analysis is based on the
short-term discrete Fourier transform for a speech seg-
ment weighted by a special window. Window functions
are used for determining vocalized and fricative seg-
ments of a speech, its homomorphic processing and lin-
ear prediction. A number of weight-window construc-
tions adapted for practical implementations are known.
Currently, a new class of windows based on atomic
functions (AF) is widely employed in solving problems
of signal and image processing [2–9]. In this paper, the
implementation of atomic functions for problems of
speech-signal processing is considered for the first
time.

PROPERTIES OF ATOMIC FUNCTIONS

Atomic functions are finite solutions to functional-
differential equations of the form

(1)Ly x( ) cmy ax bm–( ),
m 1=

M

∑=

* Institute of Radio Engineering and Electronics, 
Russian Academy of Sciences, 
ul. Mokhovaya 18, Moscow, 103907 Russia

** Bauman State Technical University, 
Vtoraya Baumanskaya ul. 5, Moscow, 
107005 Russia

*** Central Design Bureau of Unique Instrumentation, 
Russian Academy of Sciences, 
ul. Butlerova 15, Moscow, 117342 Russia

**** Instituto Politechnico Nacional, Unidad Culhuacan, 
av. Santa Ana No. 1000,
C. P. 04430, Col. San Francisco Culhuacan, 
Mexico, D. F. Mexico
1028-3358/01/4603- $21.00 © 20166
where |a | > 1; L =  + a1  + … + an is the linear

differential operator with constant coefficients. The
Fourier transform of atomic functions satisfies the fol-
lowing functional equation:

Here, P(pa–1), T(pa–1) are algebraic and trigonometric
polynomials, respectively. The explicit expression for
the Fourier transform of an AF is of the form

The AF are infinite convolutions of splines with

Fourier transforms of the form . Representing

them in the form of trigonometric and algebraic poly-
nomials, we can show that the function Y( p) is an inte-
gral analytic function on the entire complex plane and
has the form

where ak = y(x)dx are AF moments. Since an AF is

a finite and infinitely differentiable function, its Fourier
transform Y( p) decreases more rapidly than any power
pk as p  ∞. All AF are infinitely differentiable but
not analytic; i.e., their smoothness is less than that of
polynomials but larger than that of splines. Power
series cannot be used for calculating AF values,
because, at any point, the Taylor series for an AF either
has a zero radius of convergence or is represented by a
algebraic polynomial and, consequently, does not con-
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verge to a finite function. The implementation of the
rapidly converging Fourier series

provides the most universal method for calculating AF
when they are periodically continued beyond the finite-
ness domain [–d, d].

Presently, faster computation methods are being
developed for finding certain AF. In the AF class, the
function up(x) with the support [–1, 1] obeying the
equation

is the simplest and, at the same time, fundamental
function.

Here, up(x) has the following representation:

(2)

where

(3)

The key feature of the up(x) lies in the fact that any
algebraic polynomial can be represented by transla-
tions of this function; namely, there exist ck , such that
the following equality holds true for any n:

(4)

This implies that all polynomials of powers no
higher than n are contained among linear combinations
of translations (with the step k × 2–n) of the function
up(x) and a finite number of nonvanishing terms corre-
spond to each fixed x. The function ϕ(x) is the simplest
among all finite functions ϕ(x) with the support [–1, 1]
for which property (4) holds: either ϕ(x) is proportional
to up(x) or its derivatives increase faster than those of
up(x):

If the space of linear combinations of translations

up(x – k × 2–n) by k × 2–n for the function up(x)

is denoted as UPn , the following statements hold true:

y x( ) 1
2
--- Y

πk
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(a) The spaces UPn are coordinated: UPn ⊂ UPn + 1.
(b) The spaces UPn are the minimum possible mod-

ifications of the infinitely-smooth spline spaces.
(c) In the spaces UPn, there are bases consisting of

translations of the atomic function Fupn(x) with the sup-
port length approaching zero as n  ∞.

By definition, Fupn(x) is an AF with the support
[−(n + 2) × 2–n – 1, (n + 2) × 2–n – 1 – 1] and its Fourier
transform is of the form

Fupn(x) obeys the functional-differential equation

where  are binomial coefficients. Translations of
Fupn(x) by k × 2–n are linearly independent and form a
basis in the space UPn; Fupn(x) can be expressed in
terms of linear combinations of translations by k × 2–n

for the function up(x). It is worth noting that Fup0(x) ≡
up(x).

From (2) and (3), it follows that the function up(x)
is produced by an infinite convolution of the simplest

perfect spline, whose Fourier transform is .

The AF Ξn(x) with the support [–1, 1] [Ξ1(x) ≡ up(x)] is
the generalization of the function up(x) as the infinite
convolution of higher-order perfect splines. By defini-
tion, the Fourier transform for the function Ξn(x) has
the form

The functions Ξn(x) obey the equation

The AF hα(x), α > 1 have the Fourier transform

and satisfy the functional-differential equations of
form (1). In his particular case, h2(x) ≡ up(x). In prac-
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tice, the function h3/2(x) is widely used in addition
to up(x).

The efficient employment of the AF is caused by the
fact that they are relatively simple for handling (explicit
formulas for values, moments, derivatives, and Fourier
transform). On the other hand, AF possess adequate (in
some cases, the best) approximation properties. These
properties are intimately related to the possibility of
representing algebraic polynomials in the form of lin-
ear combinations of translations for the functions up(x),
Fupn(x), and Ξn(x). The spaces UPn were proved to be,
along with polynomials and splines, extreme or asymp-
totically extreme for classes of finite-smoothness func-

tions like  = {f(x): ||f (r) ||X ≤ 1} [2].

WEIGHT WINDOWS IN DIGITAL PROCESSING
OF SPEECH SIGNALS

Speech signals are classified into two main catego-
ries: vocalized and nonvocalized (fricative). As
opposed to fricative speech segments, vocalized ones
are characterized by a higher energy level, as well as a
quasiperiodic structure. There are also transition seg-
ments between vocalized and nonvocalized signals.
Short-term spectral analysis is one of the basic means
of speech processing in the frequency region. This
method is based on the short-term discrete Fourier
transform and allows signal properties hard to detect in
the time region to be revealed. The short-term discrete

W X
r

–1.0 – 0.5 0 0.5 1.0
ti

w1(x) = up(x)

–50

–100

0 0.79 1.57 2.36 3.14
ωi

20log |Hi|

Fig. 1. w1(x) atomic window [based on the function up(x)]
and its logarithmic frequency response.

0.5

1.0
Fourier transform for a signal s(x) can be written in the
form

where w(k – n) is the weight-window function used for
isolating an input-signal segment being processed cor-
responding to a discrete time moment k. Thus, the win-
dow w(n) isolates the speech-signal segment required
for processing and turns the signal to zero outside the
region of interest. The window shape and width affect
the frequency representation of the speech segment.
The ideal frequency response of a window must be
characterized by a narrow main lobe (providing high
resolution) and an absence of side lobes (causing
energy leakage). Since such a window cannot be real-
ized, special window types (rectangular, Hemming-
type, Gaussian, etc.) are employed in practice for vari-
ous applications. Owing to the narrow main lobe, the
rectangular window has the maximum frequency reso-
lution but, at the same time, a high level of energy leak-
age through side lobes. On the other hand, the Black-
man window features the minimum energy leakage
along with low resolution. As a rule, the window func-
tions to be compared must satisfy the normalization
conditions

The following weight windows originally intro-
duced by V.F. Kravchenko and V.A. Rvachev [2–4] are
constructed on the basis of AF:

Figure 1a shows the atomic window w1(x) and its
spectrum. The following system of physical parame-
ters is used for comparing characteristics of various
windows:

Xk e jω( ) w k n–( )s n( )e jωn– ,
n ∞–=

∞

∑=

w x( ) 0 for x 1, w 0( )> 1, w x–( ) w x( ).= = =

w1 x( ) up x( ),=

w2 x( ) up x( ) 0.01up'' x( ),+=

w3 x( )
fup1 3x/2( )

fup1 0( )
--------------------------,=

w4 x( )
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Characteristics of Kravchenko–Rvachev and classic windows

Window
Parameters

b1 b2 b3 b4 b5 b6 b7 b8

Kravchenko–Rvachev

w1(x) 1.6 12 1.2 3.3 –23.3 –∞ 2.1 0.5

w2(x) 1.5 17 1.4 3.1 –32.4 –∞ 1.9 0.5

w3(x) 1.9 6 0.9 3.6 –37.2 –∞ 2.4 0.39

w4(x) 1.8 7 1.1 3.6 –51 –∞ 2.3 0.4

w5(x) 1.3 30 0.7 1.7 –36 –∞ 2.9 0.52

w6(x) 1.2 32 0.8 1.7 –51 –∞ 2.5 0.55

w7(x) 1.9 5 0.9 3.7 –34 –∞ 2.4 0.38

Rectangular 1.0 50 3.9 3.9 –13.3 –6 1.2 1

Triangular 1.3 25 1.8 3.1 –26.5 –12 1.7 0.5

Hemming 1.4 23 1.8 3.1 –43 –6 1.8 0.54

Henning 1.5 17 1.4 3.2 –31.5 –18 1.9 0.5

Blackman 1.7 9 1.1 3.5 –58 –18 2.4 0.42

Kaiser–Bessel, β = 3 1.8 7 1.0 3.6 –69 –6 2.4 0.4

Gaussian, α = 6.25 1.5 19 1.6 3.2 –42 –6 1.9 0.49
(1) Equivalent noise band

;

(2) Correlation of overlapping segments

(3) Parasitic modulation amplitude (in decibels)

where W(p) is the Fourier transform for the window
function;

(4) Maximum transform loss (in decibels)

b4 = 10log(b1) + b3;

(5) Maximum side-lobe level (in decibels)

where {uk} are local-maximum points (excluding u0);

b1 2

w2 x( ) xd

1–

1

∫

w x( ) xd

1–

1

∫
2

---------------------------=

b2

w x( )w x 1–( ) xd

0

1

∫

w2 x( ) xd

1–

1

∫
-----------------------------------------100%;=

b3 10 W π/2( )
W 0( )

-------------------
2
,log–=

b5 10 W uk( )
W 0( )
---------------

2
,

k
maxlog=
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(6) Asymptotic decrease rate for side lobes (in deci-
bels per octave)

(7) The window width at a level of 6 dB b7 = 2u,
where u is the highest frequency, such that

(8) Coherent amplification

The table lists calculated physical characteristics for
atomic and classic windows. AF-based windows can be
seen to be superior to well-known ones in the b6-param-
eter. The simplest atomic w1(x) window has a relatively
high side-lobe level. For its improvement, w1(x) must
be modified, resulting in a w2(x) window with a lower
level of side lobes. This window turns out to be close to
a Henning window except for the parameter b6 . Intro-
ducing the w5(x) window makes it possible to signifi-
cantly reduce the b3-parameter. The b5-parameter can
be improved using the w6(x) window. When compared
with the w5(x) and w6(x) windows, the w3(x) and w4(x)
windows have an advantage: the function fupn(x) and

b6 10 W 2u( )
W u( )

----------------
2
;

u ∞→
limlog=

10 W 0( )
W u( )
-------------

2
log 6;=

b8
1
2
--- w x( ) x.d

1–

1

∫=
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Fig. 2. (a) Initial speech signal; (b) frequency response (dB) of a signal processed with a 10-ms-duration rectangular window;
(c) speech signal processed with a 10-ms-duration w1(x) weight window; (d) frequency response (dB) for a signal processed with a
10-ms-duration w1(x) window.
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its derivatives are easier to calculate compared to
h3/2(x).

NUMERICAL EXPERIMENT

We now consider a model of a speech signal com-
posed of four sinusoids with frequencies of 500, 1350,
2300, and 3400 Hz,

which is noise-polluted by a random additive compo-
nent with a zero mean value and unit amplitude
(Fig. 2a). Employing the w1(x) atomic window, we iso-
late a signal segment with a duration of 10 ms (Fig. 2c).
The digitization was realized with a frequency of
104 Hz. Figures 2b and 2d show logarithms of the abso-
lute values for the short-term discrete Fourier transform
of a signal weighted with rectangular and w1(x) atomic
windows. This transform can be easily computed for an
atomic window since the Fourier transform (3) for the
function up(x) is known. It is clearly seen in the case of
a rectangular window that the peaks of the frequency
response, which correspond to the initial-signal har-
monics, are narrower and sharper (high frequency res-

s t( ) 2π 500t×( )sin 0.7 2π 1350t×( )sin+=

+ 0.3 2π 2300t×( )sin 0.2 2π 3400t×( ),sin+
olution). At the same time, due to the energy leakage
caused, in this case, by a high side-lobe level, the short-
term spectrum appears more noise-polluted compared
to the case of the atomic window. This hinders identifi-

6.0

4.8

3.6

2.4

1.2

0 1000 2000 3000 4000 5000

(|X(i) |)2

ν (i)

Fig. 3. Power spectrum for a signal processed with a 10-ms-
duration w1(x) window.
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cation of the initial harmonics. Figure 3 illustrates the
short-term power spectrum for the segment of the sig-
nal processed by the w1(x) window. Here, there are
clearly visible peaks corresponding to frequencies of
input-sequence harmonic components.

We consider a linear predictive coding employed for
finding a fundamental-tone frequency in speech recog-
nition, synthesis, and coding problems [1, 10–12].
Then, a discrete sequence s[n] can be predicted from its
preceding values:

where P is the order of a linear predictor and a[k] are
coefficients of the linear prediction. In accordance with
the least square technique, we arrive at the system of
equations for minimizing the prediction error:

Here,  are estimates for the coefficients a[k]. Gen-
erally, summation must be taken over all values of n.
However, in practice, it is taken over a limited number
of readings s[n], so that the steadiness condition for
s[n] is met. To this end, s[n] is bounded by the window
w[n]:

Thus, we arrive at the system

where r[m] = [n]s'[n + m] is the autocor-

relation function for the sequence s'[n]. With allowance
made for autocorrelation-function evenness, this system
can be solved by the recursive Durbin’s algorithm [1].
The linear speech prediction can be used for finding the
frequency response of the voice path:

where G is the gain. Figure 4 shows the short-term
spectrum for the initial speech signal and amplitude–
frequency characteristic for the voice path calculated
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with the help of the linear prediction. The 
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 atomic
window was used; the predictor order is 

 

P

 

 = 10. The
harmonic-signal formants are clearly seen in Fig. 4.

It is worth noting that the 

 

w

 

1
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x

 

)

 

 window is not opti-
mum in its characteristics (see table). Other atomic-win-
dow types can be more efficient in solving more compli-
cated problems of speech-signal processing [10–12].

CONCLUSIONS

On the basis of the proposed and substantiated
method, numerical experiments were fulfilled. They
confirmed the efficiency of digital signal-processing
methods based on atomic functions. Appropriate choice
of these functions makes it possible to obtain, on their
basis, weight windows comparable in a number of the
most important characteristics with other well-known
windows. It is shown that the atomic windows are supe-
rior to the well-known ones in certain physical charac-
teristics [1]. This allows these windows to be widely
used in solving problems of speech digital processing.
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Rigorous theoretical analysis of cluster formation in
metallic melts and of nanoamorphous solid phases pro-
duced with participation of these clusters is possible
only on the basis of thermodynamics of small systems
(T. Hill’s method) [1, 2]. Indeed, the allowance for the
contribution of the surface energy and defects into the
energy state and dynamic equilibrium of clusters is
impossible in the Gibbs thermodynamics of macro-
scopic systems. According to the theory of homoge-
neous nucleation, which was developed in [1], the
expression for the work of the cluster nucleation in
binary metallic melts has the form

(1)

Here, α =  =  is the difference in chemical

potentials µc and µm of the cluster and melt surrounding

it; β =  is the term responsible for the surface

tension σ on the cluster boundary;

is the term taking into account fluctuations of the
energy and density; v‡ is the atomic volume; α0 is the
coefficient allowing for cluster shape; T is temperature;
κ is the isothermal compressibility; n0 is the number of
atoms in the alloy base; ni is the number of impurity
atoms in a cluster; n0 + ni = n; and H is the enthalpy per
atom.

In contrast to the well-known equation of the classi-
cal theory of homogeneous nucleation, Eq. (1) has an

∆ f n

∆Fn

kT
--------- –αn βn2/3 γn1/2.–+= =

µc µm–
kT

----------------- ∆µ
kT
-------

α0σv ‡
2/3

kT
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γ
H0n0 H ini+

n0 ni+
----------------------------- κ

v ‡
------ 
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kT( ) 1– /2=
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additional term γn1/2. For small β (solidification), the
maximum of the function ∆fn , which defines the cluster
critical size nj for β > γ, is equal to

(2)

where φ' = .

It is well known [1] that the absolute equilibrium
concentration of clusters at a temperature T can be writ-
ten as

(3)

where NÄ is the Avogadro’s number. Analysis of the
clusterized-melt state within the framework of the qua-
sichemical model [3] for a number of binary systems
based on Fe, Ni, Cr, Ti, Cu, and Zr and containing met-
alloid and metallic components was carried out in [1].
It was shown for the Fe–C system, as an example

(Fig. 1), that the absolute Nj and the relative  con-

centrations of the clusterized atoms increase with tem-
perature, while the number nj of atoms in the clusters
decreases. With increasing the concentration of the sec-
ond components (before the eutectic point), the first
three parameters decrease and nj increases. Beyond the
eutectic point, all things proceed in the inverse direc-
tion. Metalloids clusterize the melts more intensely
than metals. It is characteristic that clusters in melts
with metallic components have larger sizes, but their
concentration is lower than in melts with metalloids.
The formation of centers of a solid amorphous phase in
the case of superfast quenching from the liquid state
occurs on melt clusters with participation of coales-
cence of neighboring clusters. This fact promotes
actual high nucleation ratesIn . The higher the tempera-
ture of the melt quenching, the smaller the number of

n j 2
2β
9α
------- 
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-------------cos
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 
 

6

,=

2.38α1/2γ
β3/2

-----------------------arccos

N j NÄ –αn j βn j
2/3 γn j

1/2–+( )–[ ] ,exp=

nc

NÄ
-------
001 MAIK “Nauka/Interperiodica”



 

174

        

SHORSHOROV

                   
2000 2200

9

11

1800
8

10

12

1234

–∆µ, kJ mol–1

(a)

2000 2200

10

20

1800
0

15

25

1
2
3

4

nj

(b)

2000 2200

0.2

0.6

1800
0

0.4

0.8

1

2

3

4

Nj × 10–29

(c)

2000 2200

0.4

0.8

1800
0.2

0.6

1.0

1
2
3

4

nc / NA

(d)

T, K

Fig. 1. Polyterms for differences in chemical potentials ∆µ; number of atoms nj in critical-size clusters; cluster concentration Nj; and

the relative concentration  of clusterized atoms in melts for alloys of iron with carbon at carbon contents, wt % of (1) 0.1; (2) 0.3;

(3) 0.8; and (4) 0.23.

nc
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--------
atoms in clusters nj and in solid-phase centers icr.
Therefore, as a consequence, the dispersion of the
structure formed is also higher [1]. Comparison of the
calculated and experimental results for nj and icr con-
firms the contribution of the coalescence of neighbor-
ing clusters into the formation of amorphous phase icr .
For pure metals, this contribution lies within the range
80 to 220, and for alloys, it is from several hundreds up
to 600: the ratio icr/nj is 4 to 11. In the vicinity of the
melting point, the viscosity of metallic melts is high
and increases by several orders of magnitude in the case

of deep supercooling ∆  =  ≥ 0.22–0.25 .

Ultimately, this presents a necessary condition for the
formation of the nanoamorphous solid phase based on
the cluster structure of melts [1]. These conditions are
valid only for high cooling rates exceeding a certain
critical value Wc,cr, which also depends on the thermo-


 T

T L T–
T L

--------------- 


Table

Composi-
tion, at. % TL, K Phase 

content
Wc,cr,
K s–1 nj icr

Cu75–Zr25 1388 Peritectic 0.50 2 × 105 32 221

Cu65–Zr35 1373 Eutectic 0.60 4.5 × 103 58 602

Cu56–Zr44 1163 " 0.64 8 × 104 42 390

Cu46–Zr54 1201 " 0.58 2 × 105 36 280

TC

TL
------
physical properties of the melt and the heat-transfer
conditions.

Solidification kinetics of the two-phase zone in a flat
ingot (the case of the melt spinning process) is usually
described by the Kolmogorov equation [1, 4]. The cool-
ing rate of the two-phase zone at the solidification
boundary is determined by the source method with
allowance for the solidification heat ∆HS [1]. We ana-
lyzed the Zr concentration effect on the value of Wc,cr

for the Cu–Zr system taken as an example. The calcu-
lation data within the Zr-concentration range from 25 to
54 at. % practically coincided with the experimental
data of [1, 5, 6]. They confirmed that the minimum val-
ues of Wc,cr correspond to the eutectic concentration of
Zr (see the table).

The stability of amorphous-melt properties depends
on temperature. For example, while heating, the
strength, electrical resistance, and thermal conductivity
decrease for Fe and Ni alloys doped with P, B, and C.
In this case, internal-friction peaks appear caused by
the segregation of metalloids on free surfaces and around
submicropores. For example, in alloys of Fe with B and
Fe with P, peaks at 317 [7] and 313 K [8] appear, respec-
tively, etc. Sizes of pores (about 10 nm) [9] are close to
the mean sizes of fragments of a free volume in melts.
The segregation process near the plane boundary is
described in [10] (see Fig. 2, curve 1). The solution to
the problem of segregation around the micropores
requires analysis of the equation for diffusion of impu-
rity atoms from the volume between the neighboring
DOKLADY PHYSICS      Vol. 46      No. 3      2001
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submicropores:

, (4)

with complicated initial conditions C(r, t)|t = 0 = C(0) at

dC
dt
------- D

1

r2
---- d

dr
----- r2dC

dr
------- 

 =
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Fig. 2. (1) Time variations of the impurity concentration
Cd(t) at the body boundary and (2) Cs(t) in near-surface lay-
ers around the submicropores. D is the diffusion coefficient.
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Fig. 3. Character of the variation in the free energy FÄ for
amorphous alloys in the case of superfast cooling of melts
and subsequent continuous heating to the solidus tempera-
ture TS (solid lines) and plasticity δ within the range Tg – Tc
(dashed lines) as a function of the cooling rate Wc and heat-
ing rate Wh .
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rp + d < r < L, C(r, t)|t = 0 =  as r  rp and bound-

ary conditions

Here, d is the thickness of the pore near-surface layer;
r is the pore radius; L is the half-distance between

neighboring pores; φ =  is the equilibrium segre-

gation coefficient; Cp(∞) is the ultimate concentration
of a segregating element in the pore near-surface layer;
and Cp(0) is the initial concentration of this element,
which coincides with its mean bulk concentration. The
distance L changes from 0.1 to 1 µm [8, 9]. Equation (4)
is calculated by the finite-difference method for the
thickness d equal to six interatomic distances a and for
the mean micropore radius rp = 5 nm (see Fig. 2, curve 2).
At the initial stage, the segregation near the plane
boundary occurs more rapidly than around submi-
cropores. However, in the second case, the saturation
process is shorter. We can estimate it by the time tr of
attaining 90% of the ultimate concentration.

Above the glass-transition temperature Tg, the vis-
cosity of alloys drastically decreases and still below Tc
(crystallization), endothermic peaks, as well as plastic-
ity peaks δ, arise (Fig. 3). With elevating the heating
rate Wh, δ peaks become more pronounced and shift
towards higher temperatures. For strain rates of about
1 × 10–2–1 × 10–4 s–1, the magnitudes of the δ peaks
amount to several hundreds of percents, which is intrin-
sic to superplasticity [11, 12]. In Fig. 3, the character of
the variation of the free energy FÄ is also shown as a
function of T and Wh for the two states after melt
quenching: (1) for Wc,1 ≥ Wc,cr and (2) for Wc,2 = Wc,cr.
In this case, for the alloy obtained according to mode 2,
Wh2 is larger than Wh1 for the alloy obtained according
to mode 1. With the elevation of the quenching temper-
ature T, (dots 1 and 2) and Wh , the fraction ∆HS of heat
released in the process of crystallization increases.
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The phenomenon of grain growth by recrystalliza-
tion, i.e., absorption of one kind of crystallite by
another crystallite of the same phase, is long and
widely employed in metallurgical technology. How-
ever, a lot of unsolved questions remain in understand-
ing recrystallization. For example, it is unclear how the
residual dislocation density is produced by recrystalli-
zation [1], why an unusually high (compared to the cal-
culated rate) crystallite-growth rate occurs in the case
of secondary recrystallization (when individual large
crystallites suddenly appear in a fine-grained matrix
and rapidly grow, with the sizes of the remaining grains
being constant) [2].

In this paper, a geometric model of crystallite
growth in a three-dimensional structure by secondary
recrystallization is proposed. The model makes it pos-
sible to explain certain regularities experimentally
found in the study of the recrystallization process. The
basis of the model is the concept of allowance for the
effect of triple, quadruple, and quintuple grain junc-
tions upon the migration of intergrain boundaries. In
this case, other modern concepts also are used (see,
e.g., [3]). According to these concepts, intergrain
boundaries and their junctions are considered as crys-
tal-structure regions (or volumes) in which various
defects are present.

It is well known [4] that the front of secondary
recrystallization has a peculiar shape: triple junctions
of a developing crystallite (TJc) are extended along the
matrix grain boundaries (Bm); the segments of a devel-
oping crystallite boundary (Bc), which connect TJc, are
bent inward from a large crystallite. This configuration
of the recrystallization front implies that in the crystal-
lite development, TJc plays a leading role and the crys-
tallite-growth rate V is controlled by the process of
straightening of the concave Bc, which depends on their
mobility M.

In addition, along with Bm and TJc moving over
these boundaries, the triple junctions (TJm) of the
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matrix grains and the quadruple junctions (4QJc) of the
growing crystallite moving over them participate in the
process of crystallite development (Fig. 1). Therefore,
in estimating the secondary-recrystallization rate, we
should bear in mind the enhancement of the process
driving force owing to the gain Pt in the energy of TJm
and use the expression V = M(Pb + Pt), where Pb is the
grain-boundary energy gain.

We now consider the general case of the develop-
ment of a crystallite, when it absorbs matrix grains dif-
fering from it in orientation. In the growth of a crystal-
lite, TJc moving along Bm and colliding with TJm pro-
duces very defective quadruple grain junctions (4QJvd).
They are, at least, more defective than the joining
boundaries (Fig. 2a). These junctions, as more defec-
tive microvolumes, are incapable of growth and motion
and prevent the motion of Bc. Therefore, after their
straightening, crystallite development in this segment
ceases.

After the crystallite growth has been stopped, small
fractions of the matrix grains remain (AA1B1 in Fig. 2a).
They are absorbed by neighboring matrix grains by
breaking-off Bm (AB, AB1, A1B1 , and A1B2) from 4QJvd,
by displacement (indicated by dashed lines in Fig. 2b)
with formation of new TJc (J, J1, J2) and Bm (CB, C1B1 ,
C2B2), and by conservation (complete or partial) of
4QJvd. This process is similar to the migration of
boundaries in bicrystals of specific geometry (in partic-
ular, when one of the crystals has a shape of a small cor-

Growing crystal

QJc
Bc

Matrix

Fig. 1. Schematic diagram for the front of secondary recrys-
tallization.

TJm
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ner [5]). The size enhancement by a factor of 1.2 to 1.3
of the matrix grains directly surrounding the develop-
ing crystallite can be regarded as proof of the develop-
ment of this process [6].

The newly formed TJc immediately begin to move
along the newly produced Bm and “pull” the Bc twisting
them (Fig. 2c). Then, the concave Bc straighten, and
afterwards, the processes listed above are repeated.

Similar processes proceed also by translation of
4QJc along TJc: 4QJc collide with quadruple junctions
of the matrix grains (4QJm) and produce very defective
quintuple grain junctions (5QJvd). The remaining small
fractions of matrix grains are absorbed by neighboring
matrix grains with the formation of new TJm and 4QJc
under the conservation of 5QCvd.

The growth of crystallites according to the scheme
under consideration can have the following specific
features:

1. By absorption of the remaining small fractions of
matrix grains by neighboring boundary grains of the
matrix, Bm, moving over Bc and reprocessing and/or
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Fig. 2. Model for crystallite-growth by recrystallization.
sucking off a fraction of their defects and impurities,
make Bc less defective, more pure, and, consequently,
more mobile. An unusually high crystallite growth rate
by secondary recrystallization is associated with an
increase in M (owing to “improving” Bc) and P (owing
to the gain in the energy of TJm).

2. Crystallite boundary grains can break off from the
defective microvolumes (fragments of 4QJvd and
5QJvd) or move only after the fragments of 4QJvd and
5QJvd have been reprocessed (or sucked-off) by Bc. In
the case of realization of the first variant, the growing
crystallite will contain defective microvolumes.

Under secondary recrystallization, as a rule, the
large-angle specific (having the definite density of
coinciding lattice points) and arbitrary Bc migrate. Due
to their different structure, specific Bc break off from
the fragments of 4QJvd and 5QJvd, while the arbitrary Bc
reprocess them. Therefore, a migrating specific Bc
leaves behind more defects than an arbitrary one (this is
confirmed, e.g., by the defective structure of intergrain
regions of recrystallized films [7]).

3. The effect of retardation of the Bc motion by frag-
ments of 4QJvd and 5QJvd depends on the structure of
the latter fragments (i.e., on the density of defects in
them), which is, to a large extent, set by the structure
(imperfection) of the migrating Bc. Under other similar
conditions, specific Bc move faster than the arbitrary
Bc, as they (owing to their lesser imperfection) form
4QJvd and 5QJvd which possess a less retarding action.
An essential contribution of the large-angle specific Bc
to the texture formation by secondary recrystallization
is induced by this phenomenon.

In particular cases, a developing crystallite can meet
both a grain similar to it and a grain slightly differing
from it in orientation. In the first variant, similar TJ
(or QJ) collide and annihilate; 4QJvd (or 5QJvd) do not
appear, and this fact does not affect the growth and
structure of the crystallite being developed. In the sec-
ond variant, TJ (or QJ) slightly differing in structure
collide and, as a result, low-defective quadruple (or
quintuple) junctions of grains are formed, which are
less defective than the joining boundaries. 4QJld (or
5QJld), as low-defective microvolumes capable of
growth (developing), become recrystallization nuclei
(similar to the transformation of certain segments of the
split boundaries near the triple junction or near the sam-
ple surface to recrystallization centers [8]) and develop
owing to the absorption by them of more defective
boundaries. Here, a “critical” recrystallization exists
(when the boundary migration is stimulated by the dif-
ference in the defect densities on different sides of the
boundary [9]). In this case, certain regularities of the
critical recrystallization are revealed (accelerated motion
of boundaries is observed; the remaining migrating
boundaries have an enhanced defect density [9]). This
produces the through (in the entire bulk of the crystal-
lite) and wide (up to 0.2 mm) defective interlayer dis-
DOKLADY PHYSICS      Vol. 46      No. 3      2001
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covered in [10, 11]. The accelerated motion of bound-
aries in the process of critical recrystallization and pro-
duction of a defective intergrain structure (substructure)
is caused by the intense sink (or sucking off) of defects
and impurities from the migrating boundaries into the
defect nuclei. Such a mechanism of forming a defective
interlayer makes it possible to consider it a defective
grain slightly different in orientation from the develop-
ing crystallite.

In conclusion, we would like to note that the crystal-
lite-growth model proposed in this paper has the fol-
lowing advantages:

It can be realized in full measure in the case of pri-
mary recrystallization (when the developing crystal
absorbs subgrains and polygons).

It explains the unusually high rate of the crystallite
growth by secondary recrystallization.

It suggests, at least, two mechanisms of substructure
formation (defective microvolumes and interlayers) in
developing crystallites.

It makes it possible to understand the causes of the
effect of large-angle specified boundary migration in
the formation of substructure and crystallographic tex-
tures by recrystallization.

It takes into account the effect of impurities on the
behavior of boundaries, as well as of triple and quadru-
ple junctions.
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The density disturbance in a system of gravitating
masses, which is induced by a moving isolated body,
gives rise to dynamic screening of the Newtonian
potential of this body. When applied to the Solar plan-
etary system, this implies that, because of the motion of
the Sun in the Galaxy, the solar gravitational potential
turns out to be more weak than the Newtonian poten-
tial. The relevant modifications of the basic relations of
celestial mechanics leads, in particular, to an increase
in the estimated period of the revolution of the Earth
around the Sun by approximately 1 s. Such an increase
in the ephemeris year compensates by an order of mag-
nitude the observable mean difference between ephem-
eris time and universal time.

1. INTRODUCTION

The problem of consistency of universal time (UT)
with ephemeris time (ET) has a long history and is well
known in astronomy and geophysics. The first of them,
UT, is based on the Earth’s rotation rate (spin) with
allowance for nonuniformity of this rate and variations
of the actual solar day, which are due to the motion of
the Earth in its inclined elliptic orbit. Ephemeris time
was introduced later, when more sophisticated observa-
tory technology and methods of celestial mechanics
became available. It is determined in terms of the
observable periodic motion of planets around the Sun
or the Moon around the Earth with invoking calcula-
tions based on the equations of motion for an observ-
able body in the force field of other gravitating bodies.

At present, the primary time scale is the Interna-
tional atomic time (TAI), which is based on the fre-
quency of atomic oscillations. The second is taken as a
time unit in the International System (SI) and is defined
through the period of atomic oscillations of caesium.
The initial calibration [1] of the SI second was per-

Institute for Dynamics of Geospheres, 
Russian Academy of Sciences, 
Leninskiœ pr. 38, Moscow, 117979 Russia
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formed by comparing it with the ET second. Therefore,
the ET and TAI time scales match very closely.

However, an actually observable discrepancy
between the UT and ET time scales exists. The ET time
scale appears to run faster then the UT one. As a result,

the ephemeris year  (the period of the Earth’s rev-
olution around the Sun) is shorter than the UT year.

As a consequence of the nonuniformity of the
Earth’s spin, the difference between the UT and ET
years fluctuates. This fact forces the International Time
Service of the International Astronomical Union to per-
form permanent observations and to report annually on
the difference ∆T = UT – ET (or ∆T = UT – TAI) accu-
mulated per year (from 1900 to date). The well-traced

systematic difference  . 0.8 s/year is observed
against the fluctuation background.

There were numerous attempts to attribute this dif-
ference to different effects, e.g., the slowing down due
to tidal friction of the Earth’s spin [2] or relativistic
effects [3] affecting the Keplerian period of the Earth’s
revolution around the Sun. Nevertheless, the issue
remains open.

Here, we propose a new approach to this problem
which is based on the dynamic screening of the New-
tonian potential in a system of moving gravitating bod-
ies [4, 5].

2. GRAVITATIONAL SCREENING

In contrast to plasma or electrolyte, the screening of
the Coulomb potential of a charge particle is presum-
ably due to the presence of oppositely charged particles
and takes place for both a moving test particle
(dynamic screening) and a particle at rest (static
Debye–Hückel screening). In contrast to this, the
screening of the Newtonian potential of a selected test
body in a system of gravitating bodies is possible only
in the case of its motion among surrounding bodies.

In the model discussed below, the Galaxy is consid-
ered (with the dark matter ignored) as an equilibrium

T ⊕
eph

∆T
,
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gravitating system of stars having a Maxwellian distri-
bution of their velocities:

Here, ρ0 is the density of stellar matter and  is the
variance for the velocities. The Sun is excluded from
the entire system and considered as an additional gravi-
tating body of mass M(, which is inserted at the instant
t0 at the point r0 = 0 and then moves with constant
velocity u. Introduction of a test particle results in a
perturbation f1(r, v, t) of the system, so its distribution
function takes the form

Then, in the linear approximation in the perturba-
tion, the system is described by the Vlasov equation:

(1)

This is supplemented by the Poisson equation for the
effective potential:

(2)

We are interested in the steady-state behavior of the
gravitating system. This implies, physically, that the

motion is considered at times t > τ, where τ = 

is the characteristic relaxation time. For our Galaxy
(where ρ0 = 1.9 × 10–2 g/cm3), it is on the order of 107

years, i.e., much less than the time of existence of the
solar system (in the opposite case, transition processes
would be allowed for). To exclude transition processes,
we put t0  –∞. Then, the formal solution to Eqs. (1)
and (2) is

(3)

or, in the Fourier transforms,

(4)

Whence it follows that

(5)

f 0 v( ) ρ0 2πṽ 2( ) 3/2–
–
v 2

2ṽ 2
---------

 
 
 

.exp=

ṽ

f r v t, ,( ) f 0 v( ) f 1 r v t, ,( ).+=

∂ f 1 r v t, ,( )
∂t

--------------------------- v
∂ f 1 r v t, ,( )

∂r
--------------------------- ∇ Φ

∂ f 0 r v t, ,( )
∂v

---------------------------+ + 0.=

∇ 2Φ 4πGm d3v f 1 r v t, ,( )∫–=

– 4πGM(δ r u t t0–( )–( ).

1

4πGρ0

---------------------

∇ 2Φ 4πGm d3v dt'∇ Φ r v t t'–( )– t',( )
∂ f 0

∂v
--------

∞–

t

∫∫=

– 4πGM(δ r ut–( ),

k2 4πGm d3v
k

∂ f 0

∂v
--------

ω kv iν+–
----------------------------∫– Φ k ω,( )

=  8π2GM(δ ω ku–( ).

Φ k ω,( )
8π2GM(

k2εg k ω,( )
-------------------------δ ω ku–( ).=
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Here,

(6)

is the gravitational permittivity of the system. This
function determines the response of the gravitating sys-
tem to a gravitational disturbance. The concept of grav-
itational permittivity is well-known in the theory of
gravitating systems (see, e.g., [6–8]). Zeroes of this
function define a dispersion equation whose complex
roots determine the spectrum of elementary excitations
in a gravitational system.

An infinitesimal imaginary quantity iν is added to
the frequency ω in Eqs. (4) and (6). This corresponds to
introduction, into the right-hand side of the Vlasov
equation (1), of the term –νf1 related to the Boltzmann
collision integral. This addition ensures the selection of
retarded solutions and allows for the Landau damping
in collisionless plasma. For gravitating systems, this
problem was discussed in [5, 7, 8]. Then, the permittiv-
ity εg(k, ω) becomes a complex-valued function and
can be written out as

(7)

where kJ =  is the Jeans wave-number and

To calculate the inverse Fourier transform

, (8)

we put the axis z parallel to u and introduce the dimen-

sionless variables Z = (z – ut)kJ, X = xkJ, K = , and

V = . Taking into account cylindrical symmetry,

we arrive at the equation

(9)

εg k ω,( ) 1
4πG

k2
----------- d3v

k
∂ f 0

∂v
--------

ω kv iν+–
----------------------------∫–=

εg k ω,( ) 1
kJ

2

k2
----W w( ), w–

ω
2kṽ

--------------,= =

4πGρ0

ṽ 2
----------------- 

  1/2

W w( ) 1 i π( )1/2w z2–{ } erfc iw–( ).exp+=

Φ r t,( ) 1

2π( )4
------------- dω d3ke i ωt kr–( )– Φ k ω,( )∫

∞–

∞

∫=

k
kJ
----

u

2ṽ
-----------

Φ r t,( )
GM(kJ

2π2
------------------ dφ dθ dKK2∫

0

π

∫
π–

π

∫=

× θ iK X θ φcossin Z θcos+( ){ }exp

K2 W V θcos( )–
-----------------------------------------------------------------------------sin

=  
GM(kJ

X2 Z2+( )1/2
---------------------------- 1 X2 Z2+( )

1
2
---

I X Z V, ,( )+ ,
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where

(10)

This integral determines the deviation of the effec-
tive potential from the Newtonian potential described
by the first term in the brackets of Eq. (9). After taking
the Cauchy integral over K, we have

(11)

Here, ∆ = Xsinθcosφ + Zcosθ. The numerical integra-
tion of (11) for arbitrary parameters V and Z is quite
easy. For the problem under discussion of planetary
motion in the solar system, we can restrict ourselves to
certain values of these parameters.

For stellar (barionic) matter in the Galaxy, we have
kJ . 2.5 × 10–21 cm–1. Thus, the values of Z and X are
estimated as 10–9 < |Z| < 10–6, 10–9 < |X | < 10–6 for the
planets of the solar system whose orbits are at distances
of 1012 < r < 1015 cm from the Sun. Therefore, when
analyzing the effective potential of the Sun within the
solar system, the values X and Z can be regarded as
small parameters. To estimate effective potential (9) for
the linear approximation in these parameters, the inte-
gral I(X, Z, V) should be evaluated for the zeroth
approximation in ∆:

(12)

Because the peculiar velocity of the Sun in the Gal-
axy is 1.95 × 105 cm s–1 and the velocity variance in the
Galaxy is  . 1.55 × 106 cm s–1, we set V = 1.

The calculated value of integral (12) for V = 1 is I =
–0.3677. While increasing V from 0.3 to 3.0, the value
I decreases from –0.3 to –0.47.

3. CORRECTION TO THE EPHEMERIS TIME

According to Eq. (9) and the numerical estimate of
I obtained for integral (12), the energy of the renormal-
ized gravitational interaction between the Earth and the
Sun can be represented as

(13)

I X Z V, ,( ) 1

2π2
-------- dφ dθ dKW V θcos( )∫

0

π

∫
π–

π

∫=

× θ iK X θ φcossin Z θcos+( ){ }exp

K2 W V θcos( )–
-----------------------------------------------------------------------------.sin

I X Z V, ,( ) 1

4π2
-------- dφ dθ θ W–sin

0

π

∫
π–

π

∫=

× 2i ∆ W–( )sinh– Ci i∆ W––( )[

+ ∆ W–( ) π 2iShi ∆ W–( )+( ) ] .cosh

I X Z V, ,( ) = 
1

4π2
-------- dφ dθ θ W– π o ∆( )+[ ] .sin

0

π

∫
π–

π

∫–

ṽ

U R( ) U0 δU , U0+
A
r
---, δU– Aγ,= = =

A GM(M ⊕ , γ IkJ .–= =
Thus, in this approximation, the correction δU to the
Newtonian interaction energy is a constant value inde-
pendent of r.

Before the influence of this correction on the Keple-
rian period of the revolution of the Earth has been con-
sidered, we should verify whether the finite trajectory
of the Earth around the Sun remains closed.

In the classical two-body problem (after reducing it
to the central-force problem), the angle ∆ϕ of the peri-
helion precession (see, e.g., [9]) is given by

(14)

Here, rmax and rmin are the maximum and minimum val-

ues of the radius vector r, respectively; m = 

is the reduced mass;

The last two quantities, the moment M and energy E,
are integrals of motion.

For a trajectory of finite motion to be closed, the

precession angle must have the form ∆ϕ = , where

k and n are integers. For the Newtonian potential, this
condition is satisfied (∆ϕ = 2π).

In the expansion of the integrand in (14) in powers
of δU, the zeroth-order term yields 2π, while the first-
order term determines an additional precession of the
perihelion:

(15)

Here, the expression within the parentheses must be
estimated for the unperturbed motion and can be
expressed in terms of the parameter p and eccentricity
e of an elliptic closed orbit:

(16)

∆ϕ 2

M

r2
-----dr

2m E U0– δU–( ) M2

r2
-------–

------------------------------------------------------------.

rmin

rmax

∫=

M(M ⊕

M( M ⊕+
-----------------------

M mr2ϕ̇ ;   and   E mr ˙
 

2

 
2

--------- M
 

2

 
2

 
mr

 
2

 ------------ U .+ += =

2πk
n

---------

δϕ ∂
∂M
-------- 2m

M
------- r2δU ϕd

0

π

∫ 
 
 

0

.=

r
p

1 e ϕcos+
------------------------, p

M2

mA
--------, e 1 2EM2

mA2
--------------+ .= = =
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Then,

Therefore, the perturbed trajectory remains closed.

We now estimate the corresponding correction to
the revolution period T. It is easy to prove that all the
mathematical calculations leading to the third Kepler
law for the undisturbed Newtonian potential,

(17)

δϕ 2γ
mA
-------- ∂

∂M
-------- M3 dϕ

1 e ϕcos+( )2
-------------------------------

0

π

∫ 
 
 

=

=  
2γ
mA
-------- ∂

∂M
-------- M3π

1 e2–( )3/2
-----------------------

 
 
  2γπ

mA
--------- ∂

∂M
-------- M3

2 E M2

mA2
----------------- 

 
3/2

----------------------------

 
 
 
 
 

0.= =

T0 πA
m

2 E0
3

--------------, E0
mṙ2

2
--------- M2

2mr2
------------ U0 r( ),+ += =
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also remain valid for the change of E0 by E = E0 + δU.
As a result, we have

(18)

hence,

(19)

Using the equality

(20)

and the numerical values (e = 0.017, M( = 1.99 ×
1033 g, M⊕  = 5.98 × 1027 g, I = –0.3677, with an effect
of the dark matter ignored), we obtain

T  = πA
m

2 E0 δU+( )3–
--------------------------------- . πAm1/2 2E0–( ) 3/2–

× 1 3Aγ
2E0
----------– 

  T0 1 3Aγ
2 E0
------------+ 

  ;=

T T0–
T0

---------------
3Aγ
2 E0
------------.=

E0
mA2

2M2
---------- 1 e2–( )=
                  
     
(21)

 

T T0–
T0

---------------
3IkJ R4ϕ̇2

GM(

-----------------------– 3.9 10 8–   ×  = =

× I
0.3677–

------------------- G

6.7 10 8–×
-----------------------

1/2– ρ0

1.9 10 23–×
-------------------------

1/2

× ṽ

1.55 106×
------------------------

1– M(

2 1033×
-------------------

1– R

1.5 1013×
-----------------------

4 ϕ̇
2.1 10 7–×
-----------------------

2

.

This estimate corresponds to ∆T⊕  . 1 s year–1 (1 year
T⊕  . 3.15 × 107 s).

Thus, the effect of screening of the Newtonian
potential results in an increase in the ET year by about
1 s. This correction compensates (by an order of mag-

nitude) for the systematic difference  =  =

 – TAI . 0.8 s.

In this case, a question may arise on the correspond-
ing renormalization of the TAI scale since it was ini-
tially determined just via the ephemeris time.
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The overlapping of characteristic curves often arises
in nonconservative systems, depending on the parame-
ters involved [1–4]. The characteristic curves describe
the eigenvalues of an operator for a system as functions
of a chosen parameter, for example, a parameter of a
nonconservative load. The phenomenon consists in the
fact that, when varying parameters, the characteristic
curves come closer together, merge at a point, and then
overlap, forming a “bubble of instability”. In this case,
the overlapping is accompanied by a discontinuity of
the critical load.

In this paper, explicit formulas describing the over-
lapping in two-parametric nonconservative systems are
derived. These formulas use information on a system
only at the merging point and allow us to perform qual-
itative, as well as quantitative, analyses for the behavior
of the characteristic curves in the vicinity of this point.
A quadratic approximation of the flutter boundary is
also obtained. It is shown that the features of the char-
acteristic curves are related to convexity properties of
the flutter instability boundary.

1. We consider a linear autonomous nonconserva-
tive mechanical system without damping and gyro-
scopic forces, which is described by the equation

(1)

Here, M = MT > 0 and C ≠ CT are real m × m matrices
of mass and stiffness, q is the m-dimensional vector of
generalized coordinates, and the dots stand for the dif-
ferentiation with respect to time. System (1) is usually
referred to as a circulatory system [5, 6]. Let ω be the
frequency of oscillations. Substituting q = uexp(iωt)
into (1) and introducing the notation A = M–1C and λ =
ω2 , we arrive at an eigenvalue problem:

(2)

Mq̇̇ Cq+ 0.=

Au λu.=
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System (1) is stable if all the eigenvalues of problem (2)
are positive and semisimple. If all the eigenvalues λ are
real and some of them negative, then system (1) is stat-
ically unstable (the case of divergence). If at least one
eigenvalue λ is complex-valued, vibrational instability
(i.e., flutter) occurs.

2. We suppose that the matrix A smoothly depends
on the two-dimensional vector p = (p1, p2) of real-val-
ued parameters. It is known [7–9] that, in general, the
stability boundary of a two-parametric circulatory sys-
tem consists of smooth curves on which the matrix A
has either a simple zero eigenvalue or a positive double
eigenvalue with a Jordan chain of the length of 2. At
individual points of the stability boundary, singularities
of two types (namely, cusps and nodes) are possible.
These singularities correspond to matrices with a more
complicated Jordan structure [7, 9].

We first consider a point p = p0 on the stability
boundary on which the matrix A0 = A(p0) has a positive
double eigenvalue λ0 with a Jordan chain of the length
of 2. At this point, the eigenvalue λ0 corresponds to an
eigenvector u0 , associated vector u1 , adjoint eigenvec-
tor v0, and adjoint associated vector v1, which are gov-
erned by the equations

(3)

(4)

where I is the identity matrix. The vectors u0, u1, v0,
and v1 are related by conditions of orthogonality and
normalization:

(5)

The parentheses in (5) stand for the Hermitian scalar

product (a, b) =  of the vectors a, b ∈  Cm.

We consider smooth variations p(ε) = p0 + εe + ε2d
of the parametric vector in the vicinity of the point p0 .
Here, e and d ∈  R2 are variation vectors, |e | = 1, and

A0 λ0I–( )u0 0, A0 λ0I–( )u1 u0,= =

A0
T λ0I–( )v0 0, A0

T λ0I–( )v1 v0,= =

u0 v0,( ) 0, u1 v0,( ) u0 v1,( )≡ 1.= =

aibi

i 1=

m

∑
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ε > 0 is a small parameter. As a result of this perturba-
tion, the matrix A0 takes the increment

(6)

where matrices A1 and A2 are given by

(7)

The derivatives in (7) are taken at the point p = p0.

Due to the variation of the vector of parameters,
both the eigenvalue λ0 and the corresponding eigenvec-
tor u0 also take increments. According to the perturba-
tion theory of non-self-adjoint operators [10], in the
case of a double eigenvalue with a Jordan chain of the
length of 2, the expansions for the eigenvalue and
eigenvector contain terms with fractional powers of the
small parameter ε:

(8)

Substituting expansions (6) and (8) into eigenvalue
problem (2), we obtain equations for determining the
perturbations of λ0 and u0 . For the first coefficient λ1 ,
we have

(9)

Using expression (7) for the matrix A1 , we intro-
duce a vector f with the components

(10)

As λ0 is a real eigenvalue, the vector f is also real.
With regard to (10), we obtain a formula describing the
splitting of the double eigenvalue [9]:

(11)

Here, 〈a, b〉  =  is the scalar product of the vec-

tors a, b ∈  R2 in the parameter space. Formula (11) is
valid if the radicand is not zero. If 〈f, e〉  < 0, then the
double eigenvalue λ0 splits into a complex-conjugate
pair of eigenvalues (flutter instability). If 〈f, e〉 > 0, two
positive eigenvalues appear (stability). Therefore, the
vector f is a normal to the stability boundary and lies in
the stability domain (see Fig. 1a).

We now consider a degenerate case when

(12)

A p0 εe ε2d+ +( ) A0 εA1 ε2A2 …,+ + +=

A1
∂A
∂ps

--------es,
s 1=

2

∑=
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--------di

i 1=

2

∑ 1
2
--- ∂2A

∂ps∂pt

----------------eset.
s t, 1=

2

∑+=

λ λ0 ε1/2λ1 ελ2 ε3/2λ3 …,+ + + +=

u u0 ε1/2w1 εw2 ε3/2w3 …+ + + +=

λ1 A1u0 v0,( ).±=

f s ∂A
∂ps

--------u0 v0, 
  , s 1 2.,= =

λ λ0 ε f e,〈 〉 O ε( ).+±=

asbs

s 1=

2

∑

f e*,〈 〉 0.=
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This implies that the curves p(ε) = p0 + εe* + ε2d tend

to the tangents to the stability boundary as ε  0.
In this case, the terms with fractional powers disappear

S
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f

ε
e*

ρ
∆p

p0
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2

1

2ρ = 0

ρ > 0
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0 ε
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4ρ f
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D
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4ρ f

D
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Fig. 1. Transformation of frequency curves near the flutter
boundary.
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in expansions (8) [10]:

(13)

The coefficient λ2 is a solution to the quadratic equa-
tion [9]

(14)

λ λ0 ελ2 ε2λ4 …,+ + +=

u u0 εw2 ε2w4 …+ + +=

λ2
2 λ2a1 a2+ + 0=
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Fig. 2. Stability of vibrations for a plate in a gas flow.
with coefficients

(15)

The operator G0 , inverse to A0 − λ0I, is defined by
the expressions

where ϕ and ψ ∈ Cm and the solvability condition
(ϕ, v0) = 0 is assumed to be satisfied. In this case, the
solvability condition has the form (A1u0, v0) = 0 and is
valid for the degenerate directions given by (12) for the
vector e. Using expressions (7) for the matrices A1 and
A2 , the coefficients a1 and a2 can be written as

(16)

where the real vector h and matrix H are defined
by (15).

3. We substitute expressions (16) into Eq. (14) and
multiply the result by ε2 . Introducing the notation ∆λ =
λ2ε, we have

(17)

It is worth noting that no restrictions were imposed
on the vector d. It is convenient to set this vector col-
linear to the normal f, i.e., to set d = γf. Denoting ρ =
γ|f |ε2 , we see that ε and ρ are coordinates of the vector
∆p = p – p0 in the orthonormalized basis of the vectors

e* and , which are related by orthogonality condi-

tion (12). Indeed, 

Transforming the right-hand side of Eq. (17), we
have

(18)

Substituting (18) into (17), we arrive at

(19)

This equation describes the splitting of the eigen-
value λ0 , which occurs due to varying the parameters ε
and ρ near the stability boundary. In particular, the
approximate equation of the stability boundary in the
vicinity of the point p = p0 follows from (19). Indeed,
the boundary between the domains of stability and flut-
ter consists of points that correspond to matrices con-
taining positive double eigenvalues with a Jordan chain
of the length of 2. Therefore, the discriminant of qua-
dratic equation (19) has to be zero at the boundary

a1 – A1u0 v1,( ) A1u1 v0,( ),–=

a2 – A2u0 v0,( ) G0 A1u0( ) A1
Tv0,( ).+=

A0 λ0I–( )ψ ϕ    and   ψ G 0 ϕ ,= =

a1 h e*,〈 〉 , a2 He* e*,〈 〉 f d,〈 〉 ,–= =

∆λ2 ε h e*,〈 〉 ∆λ ε2 He* e*,〈 〉+ + ε2 f d,〈 〉 .=

f
f
-----

∆p εe* ε2d+≡ εe* ρ f
f
-----.+=

ε2 f d,〈 〉 f ∆p,〈 〉 ρ f .= =

∆λ2 ε h e*,〈 〉 ∆λ ε2 He* e*,〈 〉+ + ρ f .=
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points. This condition leads to a quadratic approxima-
tion for the boundary in the local coordinates ε and ρ:

(20)

(21)

Parabola (20) is convex either downward (if D < 0)
or upward (if D > 0). It immediately follows from
Eq. (19) that the flutter domain is defined by the ine-
quality

(22)

If the double eigenvalue λ0 at the point p0 is
assumed to be negative, then Eq. (20) describes the
boundary between the domains of flutter and diver-
gence and inequality (22) defines the flutter domain as
before.

For any fixed value of ρ, Eq. (19) describes the
behavior of two eigenvalues λ along a line parallel to
the tangent to the boundary at the point p0 . Changing
the sign of the parameter ρ implies passage through the
flutter boundary (see Fig. 1a). It is natural to expect that
qualitative changes in the behavior of the frequency
curves λ(ε) would take place in this case. Equation (19)
allows us to study the rearrangement of the frequency
curves both qualitatively and quantitatively, using only
information at the point p = p0 .

We take a perfect square from the left-hand side
of (19) and study the cases of positive and negative val-
ues of D defined by (21):

(23)

(24)

We then consider Eq. (23) corresponding to the con-
vex flutter domain D > 0 (Fig. 1a). If ρ > 0, then, for any
ε, the eigenvalues λ are real and placed on hyperbola 1
as shown in Fig. 1b. When the parameter ρ tends to
zero, the branches of hyperbola 1 approach each other,
so that for ρ = 0, the eigenvalues are on two real asymp-
totes:

If ρ < 0, the set of real solutions to Eq. (23) consists of
two branches of adjacent hyperbola 2 in Fig. 1b; how-

ever, for ε satisfying the inequality ε2 < – , the

eigenvalues λ are complex-valued and belong to an
ellipse (a so-called instability bubble). The real and

ρ ε2 D
4 f
--------,–=

D h e*,〈 〉 2 4 He* e*,〈 〉 .–=

ρ ε2 D
4 f
--------.–<

∆λ 1
2
---ε h e*,〈 〉+ 

 
2 ε D

2
----------- 

 
2

– ρ f , D 0;>=

∆λ 1
2
---ε h e*,〈 〉+ 

 
2 ε D–

2
-------------- 

 
2

+ ρ f , D 0.<=

Re∆λ ε( )
1
2
---ε h e*,〈 〉 D±( ).–=

4ρ f
D

------------
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imaginary components of the bubble are governed,
respectively, by the equations

(25)

(26)

The ellipse and two branches of hyperbola 2 have

common points when ε1, 2 = ±  (Fig. 1c), at

which the matrix A has the double real eigenvalues

Hyperbola (23) and ellipses (25) and (26) lie on the
orthogonal planes since the real component of the
ellipse is given by a straight line (Fig. 1b). Therefore,
when varying the parameter ε, the eigenvalues bifurcate
in the vicinity of the points ε1 and ε2 . Namely, two
eigenvalues, moving on a plane, merge and then come
out of the plane in the direction orthogonal to it. Such a
behavior of the eigenvalues is referred to as a strong
interaction and is typical for passage through the flutter
boundary [8]. It is worth noting that the inequality
determining the instability bubble exactly coincides
with the approximation of flutter domain (22). Thereby,
the overlapping is closely related to the convexity prop-
erties of the flutter domain.

We now consider the case D < 0 when the overlap-
ping of the frequency curves is described by the fami-
lies of ellipses (24). There are no real solutions for
∆λ(ε) if ρ < 0 (the case of flutter). At ρ = 0, the set of
real solutions consists of an isolated point. If ρ > 0, then
the set of real solutions ∆λ(ε) is ellipse (24), whose

boundary is defined by the inequality ε2 < . It is

easy to see that such a behavior corresponds to concave
flutter domain (22).

Remark 1. Similarly, using variations along the
curves p(ε) = p0 + εe + ε2d, we can analyze the overlap-
ping of the frequency curves near the boundary
between the domains of stability and divergence.

Remark 2. The basic equations describing the
bifurcations of eigenvalues, (11) and (17), and the over-
lapping of frequency curves, (23) and (24), are also
valid for the linear differential operators A under
homogeneous linear boundary conditions, depending
on the parameters. The difference is that the vectors f
and h and matrix H are defined through eigenfunctions
and associated functions of the operator and through
the derivatives of both the differential expression and
the boundary forms with respect to parameters.

4. As an example, we consider a simple problem of
stability for a rigid plate in an incident gas flow [11].
The plate is fixed by two elastic supports having stiff-
ness coefficients c1 and Ò2 per unit length and has two

Re∆λ ε
2
--- h e*,〈 〉 ,–=

Im∆λ( )2 ε D
2

----------- 
 

2

+ ρ f .–=

4ρ f
D

------------–

λ1 2, λ0
1
2
--- h e*,〈 〉 4ρ f

D
------------– .+−=

4ρ f
D–( )

------------
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degrees of freedom: the vertical displacement y and the
angle ϕ of deflection (see Fig. 2a). Small vibrations of
the plate are described by the following equations in
dimensionless variables [9, 11]:

(27)

Here, q = ρν2(c1 + c2)–1 is the load parameter pro-

portional to the dynamic pressure of the flow and c =

(c1 – c2)(c1 + c2)–1 is the parameter characterizing the

relation between the stiffness coefficients. Thus, circu-
latory system (27) depends on the vector of parameters
p = (c, q). It follows from physical reasons that q ≥ 0 and
–0.5 ≤ c ≤ 0.5.

Seeking the solution to Eq. (27) in the form  =

ueiωτ, we arrive at eigenvalue problem (2). With λ = ω2 ,
the corresponding characteristic equation has the form

(28)

Equations of the curves subdividing the plane of the
parameters c and q into the domains of stability, flutter,
and divergence follow directly from (28) (see Fig. 2b):

(29)

For the point c = 0, q =  on the boundary

between the domains of stability and flutter, which cor-
responds to the double eigenvalue λ = 1 (see Fig. 2b),
characteristic equation (28) can be easily transformed
into

(30)

For c = 0, Eq. (30) has two solutions:

(31)

The two lines (31) intersect one another at the point

q = , λ = 1 . If c ≠ 0, then Eq. (30) describes a fam-

ily of hyperbolas with asymptotes (31). For small c < 0
and 0 ≤ q ≤ 1, the solutions λ(q) to Eq. (30) belong to
the real plane. One of the two eigenvalues remains pos-
itive for any q, while another eigenvalue changes its
sign at a certain qd < 1 (see Figs. 2b, 2c). Thus, for c < 0
and sufficiently large q, system (27) loses its static sta-
bility (the case of divergence). Changing the sign of the

ẏ̇

ϕ̇̇ 
 
 

A y

ϕ 
 
 

+ 0, A 1 c q–

12c 3 3q–
.= =

1
2
--- cy

a

1
2
---

y

ϕ 
 
 

λ2 3q 4–( )λ 12cq 3q– 12c2– 3+ + + 0.=

qd c( )
1 4c2–
1 4c–
-----------------,=

q f c( )
2
3
--- 1 4c 2 c c 2+( )±+( ).=


 2

3
---



λ 1–
3
2
---q 1–+ 

 
2

–4c
3
2
---q 1–+ 

 
2

– –8c 4c2.–=

λ 1, λ 3 3q.–= =


 2

3
--- 



parameter c results in a transformation of the fre-
quency curves, which is accompanied by the origina-
tion of a region of complex-valued eigenvalues. In this
case, the system loses its stability at the values of qf ,
such that two positive eigenvalues λ merge to form a
double eigenvalue with a Jordan chain of the length
of 2 (flutter).

We now show that Eq. (30) can be approximated by
formula (23), whose coefficients are calculated by
using only information on the system at the point p0 =

. The eigenvectors and associated vectors of the

double eigenvalue λ = 1 are

(32)

Formulas (10) and (12) determine the vector f nor-

mal to the flutter boundary at the point p0 =  and,

therefore, the tangent vector e*:

(33)

Finding the vector h and matrix H by formulas (15) and
(16), with regard to expression (21), we obtain that
〈h, e*〉  = 3, D = 9, and the variation vector is ∆p =

c, q – . Thus, the parameter ρ in Eqs. (23) and (24)

is  = –c. As D > 0, the transformation of the fre-

quency curves is described by Eq. (23), which in this
case takes the form

(34)

Comparing exact equation (30) with its approximation
(34), we see that the asymptotes λ = 1 and λ = 3 – 3q
coincide completely in both equations, with the
approximations of the frequency curves being rather
good for small values of parameter c. The quadratic
approximation of the flutter domain in the vicinity of

the point p0 =  is given by formula (22):

(35)

Approximation (35) implies that the flutter domain is
convex (see Fig. 2b), and it is in good agreement with
the exact expression qf(c) for flutter boundary (29).

0
2
3
---, 

 

u0
1

0 
 
 

, v0
0

2/3– 
 
 

,= =

u1
0

3/2– 
 
 

, v1
1

0 
 
 

.= =

0
2
3
---, 

 

f 8–

0 
 
 

, e*
0

1 
 
 

.= =


 2

3
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

f ∆p,〈 〉
f

------------------

λ 1–
3
2
---q 1–+ 

 
2 3

2
---q 1– 

 
2

– 8c.–=

0
2
3
---, 

 

c
9
32
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2
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MECHANICS
The Structure of a Rarefaction Wave in Gas Suspension
A. V. Fedorov and Corresponding Member of the RAS V. M. Fomin
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In [1], the problem of decaying a particular type of
an arbitrary discontinuity in a gas–solid-particle mix-
ture was numerically investigated provided that the
high-pressure chamber of a shock tube was filled with
a gas suspension at a high pressure. The rarefaction
wave propagating into the gas suspension was the prin-
cipal element of flow in the high-pressure chamber. It
was numerically shown that the rarefaction-wave lead-
ing edge propagates with a velocity that approaches the
equilibrium sound velocity in the course of the process
development. It is of interest to analytically investigate
the problem on the rarefaction-wave structure in the gas
suspension. Below, we find, in particular, an exact
value of the propagation velocity for the leading edge
of the rarefaction wave and other parameters of the
mixture flow at small and large times of the develop-
ment of this process.

1. PRINCIPAL EQUATIONS 
AND THE PHYSICOMATHEMATICAL 
FORMULATION OF THE PROBLEM

We consider a channel with a mixture of gas and fine
particles under high pressure. At the initial moment of
time, the diaphragm separating the gas suspension and
the atmospheric air collapses and the mixture outflows
into the ambient medium. In this case, the channel cut
collapses and propagates to the right into the high-pres-
sure region. A similar problem was analyzed previously
in the mechanics as applied to problems on disastrous
ruptures of pipelines. Our purpose is to calculate the
mixture parameters in the channel as functions of time.
We study this problem within the framework of the
model for isothermal gas-suspension flow. This model
involves conservation equations for the mass and
momentum of each phase:

E∂tΦ + B∂xΦ = Ψ. (1)

Here, Φ(ρ1, u1, ρ2, u2) and Ψ(0, f0, –f) are the solution
vector function and the vector column, respectively; f =

 is the viscous-friction force between the
ρ2 u2 u1–( )

τ
--------------------------

Institute of Theoretical and Applied Mechanics, 
Siberian Division, Russian Academy of Sciences,
Novosibirsk, Russia
1028-3358/01/4603- $21.00 © 20190
phases, which is determined by a standard method; and
τ is the relaxation time. Furthermore, ρi = miρii is the
mean density; mi is the volume concentration; ρii is the
true density; ui is the velocity of the corresponding
phase; p is the pressure, which is common for the mix-
ture as a whole; and the indices i = 1, 2 correspond to
the gas and the particles, respectively. The equation of
state for the mixture is written in the form

where a0 is the isothermal sound velocity and ρ22 = r =
const is the actual density of the second phase. We
close (1) by the basic equality of mechanics of hetero-
geneous media:

m1 + m2 = 1. (1')

In Eq. (1), E is the identity matrix and the matrix B
(with the notation: p = ) is

The set of Eqs. (1) and (1') is closed and invariant with
respect to the Galilean transformations ui = ui – D and
x = x – Dt. Here, D is the velocity of motion for the left-
hand boundary of the one-dimensional channel.

2. SOLVING EQUATIONS
OF HETEROGENEOUS-MEDIUM MECHANICS 

FOR SMALL TIMES 
OF PROCESS DEVELOPMENT

2.1. Derivation of the set of ordinary differential
equations for the zero-order and first approxima-
tions. We seek the solution to Eqs. (1) and (1') in the

form Φ = Φ0(ξ) + tΦ1(ξ), where ξ =  is the self-simi-

p a0
2 ρ1

1 ρ2r–
----------------- p ρ1 ρ2,( ),= =

∂ρi
pρi
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u1 ρ1 0   0 
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lar variable. Making the corresponding change of vari-
ables, we obtain the set of partial differential equations
in the independent variables (ξ, t):

(2)

After substituting the linear representation of the solu-
tion and dividing the set into two subsets at t0 and t, we
obtain the desired sets of ordinary differential equa-
tions for the functions in the zero-order approximation:

(3)

and, in the first approximation,

(4)

Here, the operator dξ implies differentiation with
respect to the self-similar variable. Set (4) requires that
certain transformations be made; as a result, it takes the
normal Cauchy form:

(5)

Here,

ui ξ–( )∂ξρi t∂tρi ρi∂ξui+ + 0,=

ui ξ–( )ρi∂ξui tρi∂tui mi∂ξ p+ + tf 1–( )i 1+ ,=

i 1 2.,=

ui0 ξ–( )dξρi0 ρi0dξui0+ 0,=

ui0 ξ–( )ρi0dξui0 mi0 ∂ρ10
pdξρ10 ∂ρ20

pdξρ20+( )+ 0;=

ui0 ξ–( )dξρi1 ρi1 1 dξui0+( )+

+ ui1dξρi1 ρi0dui1+ 0,=

ui0 ξ–( ) ρi0dξui1 ρi1dξui0+( )
+ mi0 ∂ρ10

pdξρ11 ∂ρ20
pdξρ21+( )

+ ρi0ui1 1 dξui0+( ) 1–( )i 1+ f .=

dρ11

dξ
----------

U20
2 αβ–( ) A1U10 B1–( ) α A2U20 B2–( )+

U10
2 U20

2 αβ–( ) U20
2–

----------------------------------------------------------------------------------------------------,=

du11

dξ
---------- = 

U10 B1 U20
2 αβ–( ) α B2 A2U20–( )+[ ] A1U20

2–

U10
2 U20

2 αβ–( ) U20
2–

-------------------------------------------------------------------------------------------------------------,

dρ21

dξ
----------

U10
2 1–( ) A2U20 B2–( ) β A1U10 B1–( )+

U10
2 U20

2 αβ–( ) U20
2–

-----------------------------------------------------------------------------------------------,=

du21

dξ
----------

=  
U20 B2 U10

2 1–( ) β B1 A1U10–( )+[ ] A2αβU10
2–

U10
2 U20

2 αβ–( ) U20
2–

----------------------------------------------------------------------------------------------------------------.

Ui0 ui0 ξ– , i 1 2, γ, 1
ρ20

r
-------+ 

  ,= = =

α
ρ10

r
-------γ, β–

ρ20

r
-------γ,= =
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2.2. Solution to the set of equations for the zero-
order and first approximations. In order for homoge-
neous set (3) of the zero-order approximation to have a
nontrivial solution, its determinant must be equal to
zero:

Using the notation m10  =  and m20  = θ,

where θ =  = ρ10ϕ(ρ20), we take the quantities

a0 , ρ110 , and ρ110  as normalized units for the veloc-
ity, density, and pressure, respectively, and rewrite
resolvability condition (3) in the form

(6)

From (6), we can express one of the desired functions,
for example, ρ10 , through the remaining functions;

thus, ρ10 = . Using the three first equa-

tions of zero-order approximation (3), we obtain the set
of ordinary differential equations for the three desired
functions:

(7)

A1 u11∂ξρ10 ρ11+ 1 ∂ξu10+( )[ ] ,–=

A2 u21∂ξρ20 ρ21+ 1 ∂ξu20+( )[ ] ,–=

B1
ρ10ρ21

r2
---------------

ρ11
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-------γ+ ∂ξρ20=
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B2
ρ20ρ21
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ρ10ρ21
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Here,

For the given set of equations, the following nonlinear
boundary condition is well-posed at ξ = ξ*:

(8)

where ξ* is the desired quantity.
The quantity ξ* is determined from boundary con-

dition (8):

From here, it is seen that, in the zero-order approxima-
tion, the leading edge of the rarefaction wave propagates
with a velocity slightly differing from the frozen veloc-
ity of sound. This fact also enables us to numerically
solve the newly arisen Cauchy well-posed problem by
the Runge–Kutta method with the fifth order of accu-
racy. It is of interest to determine the type of a set of par-
tial differential equations for this solution. Indeed, this

is either a hyperbolic set  or a mixed

set . The calculations showed that

the set was of the hyperbolic type only in the case of its
approaching the point ξ = 0, after the gas has nearly
attained the velocity of sound.

3. SOLUTIONS TO EQUATIONS
OF HETEROGENEOUS-MEDIUM MECHANICS 

FOR LARGE TIMES

In accordance with [2], we take that the following
conditions are fulfilled as t  ∞:

(1) All the desired functions have finite limits.
(2) The limits of t∂tΦ are finite values; this implies

that the derivatives of the desired functions with respect
to time tend to zero for constant ξ.

(3) The limits of ∂ξΦ are finite values.

Combining the two last equations in (2), we obtain
the conservation equation for momentum of the mix-

F U10 ρ20 U20, ,( )
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 2 -----------------------   >  1                                                          
ture as a whole. Dividing the first equation of (2) by t,
we rewrite it in the form

From here and by virtue of assumptions (1)–(3), we
obtain that u1 = u2 as t  ∞ and the conservation
equation for momentum of the mixture takes the known
form

ρ(t∂tu + (u – ξ)∂ξu) + ∂ξp = 0. (9)

Combining two continuity equations for the phases, we
find the conservation equation for the mass of the mix-
ture:

t∂tρ – ξ∂ξρ + ∂ξp = 0. (10)

After expressing the mean densities of the phases
through their relative mass concentrations and the mix-
ture density ρi = ξi

 

ρ

 

, the equation of state can be written

as 

 

p

 

 = 

 

, where 

 

v

 

 = 

 

. Thus, as 

 

t

 

 

 

 ∞

 

, the

velocity-nonequilibrium flow of the mixture can be
described on the basis of the model for the velocity-
equilibrium flow expressed by Eqs. (9) and (10).

4. DISCUSSION OF NUMERICAL RESULTS
IN TERMS OF THE ZERO-ORDER 

AND FIRST-ORDER APPROXIMATIONS

In the process of numerical calculations, we investi-
gated the effect of the initial particle concentration on
the flow pattern. For this purpose, we found the flow
parameters in the zero-order and the first-order approx-
imations while varying the initial volume concentration
of the particles. The results of the calculations, namely,
the values of the desired functions at the channel cut,
i.e., at the point 

 

ξ

 

 = 0 (or close to it), are given in the
table. The velocity of motion of the left-hand boundary
for the one-dimensional channel was equal to 

 

D

 

 = 0.01
in all variants, while the velocity of both the particles
and the gas vanished at the point 

 

ξ

 

*

 

.
The second and third lines of the table contain the

initial values of the flow parameters, while the zero-
approximation parameters and the complete values of
the corresponding functions are presented in the subse-
quent lines. As we expected, the sonic flow is realized
at the channel cut with a high degree of accuracy. This
result follows from the generalized-action law: the fric-
tion in a subsonic gas flow accelerates the gas. In addi-
tion, it can be seen that the lower the particle concentra-
tion, the closer the flow velocity at the channel cut to
the sonic velocity.

In Fig. 1, as an illustration of the weak effect of the
particle concentration on the nearly linear profile of the
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gas velocity in the zero-order approximation, we show
this velocity as a function of the self-similar variable
for m20 = 10–4, 10–3, and 10–2. For these values of m20 ,
the gas-velocity curves, in the first-order approxima-
tion, are already markedly different in amplitude.
Lastly, in Fig. 2, we show the gas velocity u1(ξ, t*) =
u10(ξ) + t*u11(ξ), where t* is fitted in such a manner
that ρi(ξ, t) is positive and finite, while tρi1(ξ, t) !
ρi0(ξ, t). As can be seen, with an increase in m20 , the gas
velocity in the vicinity of the channel cut is slightly dif-
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Fig. 1. Gas velocity in the zero-order approximation as a
function of the self-similar variable ξ for various initial vol-
ume concentrations of particles. In the inset, solid, broken,
and dashed curves correspond to m20 = 10–4, 10–3, and 10−2,
respectively.
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ferent from the sound velocity and the linearity condi-
tion for the velocity profile is violated. However, with
further decreasing ξ, it is possible to attain the velocity
of sound. Physically, this corresponds to the fact that
the sonic velocity is attained in a channel of sightly
larger length. The calculations show that, in the case of
varying m20 , the particle velocity in the zero-order and
first approximations, as well as the total velocity of par-
ticles, vary nonlinearly. The particles are accelerated
from the zero velocity to that equal approximately to
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Fig. 2. Total gas velocity as a function of the self-similar
variable ξ for various initial volume concentrations of parti-
cles. Solid, broken, and dashed curves correspond to m20 =

10–4, 10–3, and 10–2, respectively.
Values of the flow parameters at the channel cut for various volume concentrations of particles

Parameter m20 = 0.01 m20 = 0.001 m20 = 0.0001

ξ* 1.000001889 1.000000186 1.000000019

ρ2(ξ*) 27 2.7 0.27

u10 –1.005869910 –1.000583987 –1.000059497

u20 –0.01085444072 –0.01080436506 –0.01081764804

ρ10 0.3693449512 0.3722505916 0.3811389960

ρ20 26.55015378 2.663420219 0.2663495078

u1 –0.9507967278 –0.9937236306 –0.9993609239

u2 –0.01423633305 –0.01407942092 –0.01408944370

ρ1 0.3748279416 0.3733083333 0.3812540796

ρ2 26.13981477 2.635482528 0.2635928975
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Fig. 3. Total velocity of particles as a function of the self-
similar variable ξ for various initial volume concentrations
of particles (m20 = 10–4, 10–3, and 10–2).
5 m/s at a given velocity of the channel-cut propaga-
tion. In Fig. 3, we show the total velocity of particles
for three values of their volume concentration. As is
clearly seen, the curves are not distinguished in the plot
scale used.

Thus, in this paper, we proved analytically that, for
small times of rarefaction processes in a gas suspen-
sion, the leading edge of the rarefaction wave propa-
gates with a velocity close to the frozen sound velocity
in this gas. As the process develops, i.e., for large times,
the edge moves with the equilibrium sound velocity.
The calculations were carried out by E.V. Ogurtsov.
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Investigation of working-process dynamics is one of
the most important problems in developing modern and
promising solid-propellant rocket engines. This urgent
trend is considered in the fundamental monographs [1–3]
of A.M. Lipanov and other authors. The problem of
working-process instability arose in its various mani-
festations simultaneously with the onset of the develop-
ment and use of the first solid-propellant rocket engines
(SPREs) [4, 5], liquid-propellant rocket engines [5, 6],
and rocket engines using other forms of propellants [7].
At present, in connection with the development of a
new generation of rocket engines with high power–
mass characteristics, the urgency of the problem gained
momentum. In the general case, the working-process
instability in SPREs can be of acoustic and nonacoustic
deeply nonlinear nature [1, 5, 7]. The acoustic instabil-
ity (this kind of instability is considered in our paper) is
associated with the appearance of periodic low-fre-
quency and high-frequency pressure oscillations in the
engine combustion chamber. Low-frequency pressure
oscillations with an approximate frequency range f
from ≈50 to 2500 Hz manifest themselves mainly in the
longitudinal direction of the combustion chamber. The
high-frequency pressure oscillations in the frequency
region f > 2500 Hz manifest themselves in the trans-
verse and tangential directions of the combustion
chamber.

Analysis of experimental and theoretical investiga-
tions [8, 9] leads us to the conclusion that the low-fre-
quency acoustic working-process instability in the
SPRE is of a hydrodynamic nature; however, there is no
conclusive confirmation of this fact in [8, 9] or other
papers. High-frequency instability is most often a conse-
quence of interaction of resonance waves generated in
the rocket-engine combustion chamber with the combus-
tion surface of the solid-propellant charge [5, 7].

* Institute of Mechanics and Ecology, Moscow, Russia
** Perm State Technical University, 

Komsomol’skiœ pr. 29a, Perm, 614600 Russia
1028-3358/01/4603- $21.00 © 20195
The most dangerous instability is the low-frequency
acoustic working-process instability in a SPRE. This
type of instability is characterized by a significant devi-
ation of the working pressure in the combustion cham-
ber from its mean value. Such an instability violates the
expected regime of the nozzle operation and initiates a
periodic vibrational-load transfer from the engine to the
rocket system as a whole, etc.

To date, the appearance of low-frequency acoustic
instability in SPREs has been poorly predicted and is
unaffected by direct numerical calculation, which fails
to reproduce the actual oscillation process. There are
only indirect rather approximate methods available for
estimating the possibility of initiating pressure oscilla-
tions in engines of a certain typical construction [9].
Rocket engineers are forced to eliminate this type of
instability by experimental optimization of the engine
design using the trial-and-error procedure.

In the paper proposed, we pioneer the reproduction
of an actual oscillation process in a direct numerical
experiment and investigate the mechanism of initiation
and feed of the low-frequency acoustic instability in a
SPRE combustion chamber.

We carried out the direct numerical simulation of
the low-frequency acoustic instability in SPREs by the
coarse-particle method (see, e.g., [10]), which success-
fully manifested itself while solving many nonlinear
problems of continuum mechanics (see, e.g., [11]). In
these calculations, both explicit and implicit parametric
totally conservative finite-difference schemes inherent
in this method were used. For describing the flow pro-
cess in a SPRE combustion chamber and a nozzle, we
employed approaches of multiphase-medium mechan-
ics [12]. As the basic physicomathematical model, the
total unsteady set of gas-dynamic eddy differential
equations written in the divergent form for a heteroge-
neous medium (gas + solid particles) was used. From
the spatial point of view, the problem was studied in an
axially symmetric formulation. A uniform orthogonal
computational mesh was used. At irregular boundaries
(not coinciding with the computational mesh) of the
calculation region, the fractional-mesh technique [13]
001 MAIK “Nauka/Interperiodica”
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was applied. The yield from the surface of combustion
of the solid-propellant charge was calculated by
“injecting” the combustion products with given fixed
parameters into the computational meshes arranged in
a certain geometric order on the combustion surface.

We now consider certain results of these calcula-
tions.

Figure 1 shows a schematic diagram for the free vol-
ume of the SPRE combustion chamber according to
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Fig. 1. Schematic diagram of a SPRE combustion chamber
according to Variant no. 1 and time variation of pressure in
the combustion chamber.
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Fig. 2. Schematic diagram of a SPRE combustion chamber
according to Variant no. 2 and time variation of pressure in
the combustion chamber.
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Fig. 3. Schematic diagram of a SPRE combustion chamber
according to Variant no. 3 and time variation of pressure in
the combustion chamber.

15

6 15
Variant no. 1 and the pressure in the combustion cham-
ber (deviation from the mean value at a given point) as
a function of time for several periods of oscillations.
The pressure is fixed in the region of the engine forepart
bottom (position A). The pressure-oscillation amplitude
and frequency amount to AP = 0.75 MPa and f = 77 Hz,
respectively, the oscillation process being stable. In the
process of attaining the steady-flow regime in the
engine combustion chamber, the pressure-oscillation
amplitude is invariable.

Figure 2 shows the schematic diagram for the free
volume of the SPRE combustion chamber according to
Variant no. 2 and the pressure in the combustion cham-
ber as a function of time. The parameters measured are
similar to those presented in Fig. 1. The pressure-oscil-
lation amplitude and frequency amount to AP =
0.55 MPa and f = 77 Hz, respectively. The oscillation
process remains stable. The pressure-oscillation ampli-
tude in the process of attaining the steady-flow regime
in the engine combustion chamber is also invariable.

Figure 3 shows the schematic diagram for the free
volume of the SPRE combustion chamber according to
Variant no. 3 and the time dependence of pressure in the
combustion chamber. The measured parameters are
also similar to those in Fig. 1. The pressure-oscillation
amplitude and frequency amount to AP = 0.21 MPa and
f = 76 Hz, respectively. The oscillation process remains
stable. The pressure-oscillation amplitude in the pro-
cess of attaining the steady-flow regime in the engine
combustion chamber is, again, invariable.

On the basis of the data presented, we can conclude
that the geometric shape of the combustion-chamber
essentially affects the pressure-oscillation amplitude in
the SPRE combustion chamber. In the case of purpose-
ful modification of the combustion-chamber configura-
tion, the pressure-oscillation amplitude decreases by a
factor of 0.75 MPa/0.21 MPa = 3.57. In this case, the
pressure-oscillation frequency in the engine combus-
tion chamber varies negligibly.

We consider, in more detail, the dynamics of the dis-
tribution of flow gas-dynamic parameters over the free
volume of the SPRE combustion chamber before the
flow enters the nozzle. The schematic diagram for the
free volume of the engine combustion chamber is given
in Fig. 2. We compare the flow parameters for combus-
tion products at various moments of time (within a sin-
gle pressure-oscillation period) along the combustion-
chamber length in the following cross sections of the
conic-cylindrical chamber (Fig. 2): (1) near the symme-
try axis OK and near the igniter surface FGO (below,
for brevity, this cross section is termed the symmetry
axis) and (2) near the combustion surface of the solid-
propellant charge ABCD and the combustion-chamber
wall DE (below, for brevity, this cross section is termed
a wall).

In Fig. 4, the distribution for the velocity longitudi-
nal component u1 for gaseous combustion products
along the SPRE combustion-chamber length in the two
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fixed cross sections (of the conic-cylindrical chamber)
defined above is shown for various moments of time.
The distribution of the transverse velocity component
v1 for gaseous combustion products is virtually uni-
form and essentially invariable in time. The only excep-
tion is the local zone in the nozzle region of the rocket
engine, which is outside the scope of our consideration.

At the time moment t = 2.5 ms (Fig. 4), an increase
in the velocity of motion of the combustion products
along the symmetry axis from the forepart bottom
(position AF in Fig. 2) to the onset of the region of large
inverse conicity (position B) up to u1max ≈ 182 m/s takes
place. Upon deeper entering into the region of large
inverse conicity, the flow is slightly damped. Further-
more, passing by the cylindrical section and entering
into the nozzle, the flow is intensely accelerated. At a
given time moment, a considerable variation in the
velocity longitudinal component of gaseous combus-
tion products along the combustion chamber radius is
observed, this variation being the most prominent near
the combustion surface of the solid-propellant charge
(ABCD surface, Fig. 2) and near the lateral wall of the
combustion chamber (DE surface, Fig. 2). Against the
background of the general direction of motion of the
combustion-product flow from the forepart bottom to
the nozzle, a pronounced counterflow is observed near
the combustion surface of the solid-propellant charge.
Here, the combustion products move from the nozzle to
the forepart bottom. The longitudinal component of the
counterflow velocity attains u1max ≈ –13 m/s. In the
region of the rear bottom, an enormous zone of damp-
ing of the combustion-product flow is formed near the
wall of the combustion chamber (position E in Fig. 2).

At the time moment t = 7.5 m/s (Fig. 4), an increase
in the velocity of combustion products up to u1max ≈
199 m/s occurs along the symmetry axis from the
forepart bottom to the onset of the region of large
inverse conicity. Upon entering into this region and fur-
ther into the rear-bottom region, the flow is slightly
damped. Entering into the nozzle, the combustion-
product flow is intensely accelerated. At a given time
moment, we also observe variation in the longitudinal
velocity component of the combustion products along
the combustion-chamber radius. However, in this case,
there is no counterflow zone along the combustion sur-
face of the solid-propellant charge. The velocity longi-
tudinal component of the combustion-product flow
along the combustion surface gradually increases and
attains a velocity u1max ≈ 72 m/s. Furthermore, upon
entering into the region of the large inverse conicity, the
near-wall flow velocity drops to a value u1min ≈ 5 m/s.
In the rear-bottom region near the combustion-chamber
wall, an enormous damping zone for combustion-prod-
uct flow is retained.

At the time moment t = 12.5 m/s (Fig. 4), against the
background of the general direction of motion of com-
bustion-product flow from the forepart bottom to the
nozzle, local zones of the counterflow again begin to
DOKLADY PHYSICS      Vol. 46      No. 3      2001
arise near the combustion surface of the solid-propel-
lant charge in the forepart-bottom region and in the
region of large inverse conicity. The velocity longitudi-
nal component of the combustion-product flow along
the charge combustion surface decreases, attaining
extreme values u1max ≈ 24 m/s and u1min ≈ –12 m/s.
Gradually, the conditions for the formation of an exten-
sive counterflow region along the combustion surface
of the solid-propellant charge are prepared.

Furthermore, for the oscillation period τ ≈ 13 m/s,
from the time moment t = 15.5 ms (Fig. 4), the flow pat-
tern in the SPRE combustion chamber begins to be
cyclically repeated (the lines denoted as 2.5-ms, axis
and 15.5-ms, axis and 2.5-ms, wall and 15.5-ms, wall
virtually coincide).

Thus, the causes for the initiation (excitation and
feed) of the oscillation process in the SPRE combustion
chamber should be sought in the structure and nature of
the combustion-product flow in itself. Here, the oscilla-
tions are of a hydrodynamic (gas-dynamic) deeply non-
linear nature. The frequency and the amplitude of oscil-
lations (especially, the amplitude) depend on a number
of factors. The main factor is the significant combus-
tion-product flow stratification over the flow parame-
ters (mainly, over the velocity) along the combustion-
chamber radius. The flow of such a complicated struc-
ture upon entering into the nozzle irregularly interacts
with the engine rear-bottom wall and is, in part,
reflected from it. In the rear-bottom region near the lat-
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Fig. 4. Distribution of the velocity longitudinal component
for combustion products along the length of the SPRE com-
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eral wall of the combustion chamber, a flow (counter-
flow) either is formed opposite to the basic flow or is
considerably damped. Thus, an unsteady low-fre-
quency acoustic pulsatory flow is excited (due to the
finite size of the combustion chamber) and cyclically
fed into the SPRE combustion chamber.
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Development of flow-control systems using vortex
cells with internal flow intensification by pulses gener-
ated in a certain way represents one of the urgent fields
of modern aerohydrodynamics. An example for design
realization of this idea is the promising project of the
“ÉKIP” aircraft with a thick-wing shape and an engine
which brings into operation a system of suction out of
vortex cells situated along its contour [1].

Recent numerical investigations [2–5] validate the
method for controlling a flow around different objects,
which is based on flow intensification in vortex cells
situated along the object contour. This method is real-
ized by causing either rotation of central bodies or suc-
tion through their surfaces. As examples, laminar and
turbulent flows around both a circular cylinder with
vortex cells and an airfoil whose shape is similar to the
simplified form of the integral-layout aircraft “ÉKIP”
capable of changing in wide limits its angle of attack
are considered. The results obtained show that, in prin-
ciple, by affecting flows within small-size vortex cells,
we can change the large-scale vortex structure of the
airfoil wake. In this case, we can remove flow separa-
tion, decrease the drag, and considerably increase the
lift-to-drag ratio at acceptable energy expenditures and
with a relatively simple realization of the method in
practice.

To solve these problems, we have developed an
original computational algorithm. This algorithm
makes it possible to simulate detached flows in multi-
ply connected regions and is based on both using multi-
block intersecting computational meshes and solving
Reynolds equations closed by a Menter zonal SST-
model of turbulence [6]. With the help of an implicit
factorized finite-volume procedure, the computational
complex was verified, in particular, by solving the
problem of a flow in a channel with a circular vortex
cell [7].

In this paper, we investigate a thick airfoil. Its upper
part represents a circular arc, while both segments of
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St. Petersburg, Russia
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small-radius circular arcs and a plane form its bottom.
As a linear (one-dimensional) scale, we take the size of
the airfoil chord. A series of four elliptic vortex cells
with central bodies of the same shape is embedded into
the airfoil under consideration. Figure 1 shows a pat-
tern of the airfoil with the vortex cells. The velocity
component Vn satisfying the suction condition is given
on the surfaces of the central bodies. The model of the
vortex-flow intensification in the cells under consider-
ation reflects, to a certain extent, the intake of air which
was injected by the engine through a porous insertion.
Such action on the flow inside the cells brings a
momentum into the outside flow through the cuts made
in a thick airfoil; this significantly changes the flow
around it. When the model of viscous fluid is used, the
airfoil angle of attack is set equal to zero.

The algebraic nonorthogonal O-type mesh is con-
structed around the airfoil. Its first tier adjacent to the
airfoil contains 41 × 520 nodes situated in the dimen-
sionless band with a thickness of 0.1 and crowded
toward the wall. The near-wall step is set equal to
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Fig. 1. Dependence of the (1) drag coefficient and (2) lift
coefficients on the Reynolds number. Calculated values of
Cy for the airfoils with (3) equivalent suction (Re = 105) and
(4) imposed circulation, which is generated by the cells and
is determined by the method of discrete vortices. Compari-
son of flow fields arising around airfoils with vortex cells
and with the equivalent suction at Re = 105.
001 MAIK “Nauka/Interperiodica”



 

200

        

ISAEV 

 

et al

 

.

                                                                                   
0.0005. The second tier consisting of 80 × 250 cells
covers the space around the airfoil at a distance of
40 chords. The vortex cells are partitioned by an O-type
mesh in which, in radial direction, 51 to 41 nodes are
disposed crowding toward the central bodies. The mesh
is uniform in the circumferential direction and contains
23 to 17 nodes (whose number decreases with dimin-
ishing cell size) in the region of the airfoil cut.

According to Fig. 1, for the airfoil with vortex cells,
inside which the flow is intensified by suction (Vn is set
equal to 0.05 in each cell), the effect of viscosity on the
flow around it manifests itself in an abrupt increase in
lift coefficient Cy for Reynolds numbers ranging from
104 to 2 × 104. In this case, Cx does not vary strongly
within the range of Re compared to Cy. The preliminary
calculations [5] showed that such a behavior of the lift
and drag coefficients is associated with a decrease in
flow separation from the airfoil with increasing Re.
According to the results presented here, the process
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Fig. 2. Comparison of pressure distributions along the air-
foil, which are calculated by the method of discrete vortices
(solid line) within the framework of the viscous model
(dashed line) for (a) Γ = 0; (b) Γ = 0.5; (c) (1) Γ = 0,
(2) 0.375, and (3) 0.5. Curve (4) describes the function p(s)
calculated according to the viscous model for Re = 105.
under discussion is caused by a growth of flow turbuli-
zation in the vortex cells with increasing the flow veloc-
ity therein. It is noteworthy that the function Cy(Re)
exhibits asymptotic features as Re  ∞.

In this paper, we compare and analyze integral aero-
dynamic forces and pressure distributions along the air-
foil, which are calculated by the method of discrete vor-
tices [7] and the finite-volume procedure of solving
Reynolds equations. Within the framework of the
method of discrete vortices, the steady-state separation-
free flow around the airfoil is calculated with substitu-
tion of the cells by suction, where suction rates are such
that flow rates through both airfoil elements and sur-
faces of the interior bodies are equal to each other. It is
postulated that the flow smoothly leaves the airfoil at its
trailing edge.

At Re = 105, we discovered a substantial difference
in the values of the lift force acting on the airfoil: Cy =
1.27 in the method of discrete vortices and Cy = 1.8 in
the viscous model (in the latter case, the coefficient of
total lift is equal to 2.34). The models also yield essen-
tially different incoming-stream angles (Fig. 2a).

If the turbulent flow around the airfoil is formed at
the zero angle of attack, the results of calculation by the
method of discrete vortices are close to those obtained
according to the viscous model (Cy = 1.11). These
results are obtained by replacement of the vortex cells
by suction through airfoil elements. As is seen in Fig. 1,
the flow fields arising here and in the case of the airfoil
with vortex cells are extremely different. For the airfoil
with vortex cells, the front stagnation point is situated
at the bottom generatrix of the airfoil contour, while, in
the absence of the cells, the attachment of the incident
flow occurs in the vicinity of the airfoil front edge.
Thus, the vortex cells not only promote separation-free
flow from the airfoil, but also make the flow incident at
a certain effective angle of attack. Apparently, the cause
of this effect lies in the generation of additional circu-
lation inside the vortex cells. The total vortex power in
the cells is estimated as Γ = 0.38.

To take into account the additional circulation gen-
erated inside the cells, the solution obtained by the
method of discrete vortices is modified by adding the
given value of the obtained circulation to it. In this case,
the flow leaves the airfoil at a point not coinciding with
its trailing edge. Figure 2b shows that, at the total vor-
tex strength Γ = 0.5, the model under consideration and
the viscous model predict pressure distributions along
the airfoil which are very close to each other. As a
whole, the lift coefficients Cy = 2.28 and 2.03 calculated
for Γ = 0.5 and 0.375, respectively, agree satisfactorily
with the prediction of the viscous model (Cy = 2.34).
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Remote acoustic methods play a key role in study-
ing the dynamics of the atmosphere and ocean. This
fact is explained by the low attenuation of sound in sea
water and the strong dependence of the sound refractive
index on both the atmosphere temperature and humid-
ity [1]. In stratified media free of admixtures, turbu-
lence is believed to be the primary cause of sound scat-
tering. This fact has been confirmed by numerous
atmosphere sounding experiments carried out accord-
ing to a bistatic configuration (i.e., with a remote static
emitter and receiver). This method made it possible to
identify microstructural bulk fluctuations by measuring
scattering angular distributions [1]. However, there are
many cases when acoustic-sounding data strongly dif-
fer from the results of contact measurements (e.g., in
the case of structural-constant measurements). These
discrepancies may be caused by the sound reflection
from thin high-gradient layers, which is beyond the
scope of the bulk scattering model [2].

The construction of a stable bistatic array in the
open ocean is a rather complicated engineering task.
Therefore, the greater part of relevant data was
obtained by means of the acoustic-radar method, i.e.,
by measuring the backscattering of sound. The charac-
ter of this scattering can be well established only for
bioaggregations according to catching data or to the
characteristic migration of sound-scattering water lay-
ers. When these bioaggregations are absent, the sound
scattering is associated with either the turbulence (this
conclusion is based on the characteristic frequency
dependence of signals [3]) or the reflection of sound
from thin water layers (in the case of the observed
anomalous dependence of signals on small vertical
deviations of the sonar ray [4–6]). Laboratory-scale
experiments on vertical echo sounding of a wake
behind a cylinder moving in a stratified fluid [6, 7] also
testify to the latter effect. However, comparative analy-
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sis of the efficiency of these scattering mechanisms has
not yet been fulfilled.

The wake behind a horizontal cylinder uniformly
moving in a continuously stratified fluid is an adequate
object for implementation of such an analysis. In a
wide range of flow regimes, this wake contains mixed
nonuniformities, namely, a bulk structure of turbulent
spots and thin high-gradient interlayers. Studying the
scattering angular distributions makes it possible to dis-
tinguish the contributions of separate structural flow
components. In this paper, we present, for the first time,
our experimental data on the ultrasound scattering by
the wake behind a two-dimensional cylinder. These
data were obtained by means of a bistatic array that
allowed visualization of the flow pattern to be simulta-
neously performed.

Our experiment was carried out in a tank 200 × 40 ×
60 cm3 in size which was filled with a water solution
stratified with respect to the salt concentration. The
tank was equipped with a high-frequency sonar, an
IAB–458 shadow device (with a visual-field diameter
of 23 cm), and an automatic camera. The optical axis of
the shadow device passed through the tank center per-
pendicularly to the vertical plane.

The sonar had identical transmitting and receiving
antennas (piezoelectric-ceramics disks with a diameter
a = 2.5 cm). Its carrier frequency, transmitted-pulse
duration τ, and pulse-transmission period were, respec-
tively, 1 MHz (a sound wavelength λ = 0.15 cm), 40 µs,
and 0.16 s. The axes of the directivity patterns for the
transmitting and receiving antennas lay in the vertical
plane. The antennas’ configuration is represented by
the shadowgraph of the sound beams (see Fig. 1),
which was obtained in the regime of continuously radi-
ating antennas. The opening angle of both sound beams
is 2α = 4°. The angle between the wave vectors k0 and
ks for the incident and scattered sound waves, respec-
tively, is denoted by θ. The position of the bistatic con-
figuration with respect to the horizontal reflecting sur-
face is defined by the angle ϕ between the difference
vector k = ks – k0 and the vertical axis. In our experi-
ments, the angles θ and ϕ varied from 39° to 88° and
001 MAIK “Nauka/Interperiodica”
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ks

k

k0

θ

Fig. 1. Shadowgraph of intersecting sound beams and configuration of the bistatic sounding array. The arrows show the wave vectors
for incident (k0) and scattered (ks) sound waves. The central horizontal strip shows the interface in the wake behind the cylinder for
the wake age t = 50Tb.
from –11° to 15°, respectively. These ranges were pro-
vided by rotating and vertically translating the anten-
nas, with the fixed horizontal distance D = 36 cm
between them.

Using a ladle device, we filled the tank (by the
method of continuous displacement) with a solution of
sodium chloride. In several hours, a linear density distri-
bution ρ(z) over the depth z was set in a tank with an

almost constant buoyancy period Tb = 2π gρ–1  =

6 s (g is the gravitational acceleration). The kinematic
viscosity (ν = 0.01 cm2 s–1) and temperature were
assumed to be constant. A horizontal cylinder with diam-
eter d = 1.5 m was towed with a velocity U = 3 cm s–1

along the middle plane of the tank. In the chosen

regime of motion the Froude number Fr =  = 1.7

and the Reynolds number Re =  = 430, with N =

, a relation between the inertial forces, buoyancy,

and dissipation effects was provided such that a well-
developed bulk microstructure with a thin central inter-
face coexisted in the wake behind the cylinder.

The microstructural nonuniformities with the wave

number k = 2k0sin  mostly contribute to the bulk scat-

tering. In this case, the scattering cross section mV for a
unit volume per unit solid angle is expressed in terms of

-
 dρ

dz
------


1/2–
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 U
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the three-dimensional spectrum Φr(k ) for fluctuations
of the sound refractive index [9]:

(1)

Assuming the microstructural fluctuations to be locally
isotropic, we have

(2)

where Fr(k) is the one-dimensional spectrum for fluc-
tuations of the refractive index. This spectrum can be
evaluated with an accuracy to a constant factor accord-
ing to the spectrum Y(k) of microstructural nonunifor-
mities on the shadowgraph of the scattering region. The
result desired follows from linear relations between the
shadowgraph blackness density, the beam deflection in
the shadow device, and the fluctuations of gradients for
the density, sound velocity, and light refractive index
[8, 11]. Whence it follows, finally, that the spectrum
Y(k) is proportional to the one-dimensional spectrum

(k) for the local gradient of the sound refractive
index. With regard to expression (2) and the equality

(k) = kFr(k), cross section (1) is reduced to the form

mV = AΦ(k), where Φ(k) = k–3 Y(k) – k  and A

is a constant. The normalization of the quantity mV to

mV 2πk0
4Φr k( ).=

Φr k( ) 2πk( ) 1––
dFr k( )

dk
----------------,=

Fr'

Fr'

-
 dY k( )

dk
--------------


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its maximum value Φm within the range of k under con-
sideration allows us to exclude the constant A:

(3)

In order to find Y(k), we scanned the shadowgraphs
along a straight line parallel to the vector k and passing
through the center of the visual field for the shadow
device. We then transformed the obtained numerical
arrays into spectra, and, in each of them, only the

domain of k > 2k0sin  was subsequently analyzed.

This domain corresponds to microstructural nonunifor-
mities, with θ0 = 39° being the minimum value of the
angle θ. The experimental value mV of the cross section

was calculated by the formula mV = . Here, Ps =

 is the scattering power at the reception point, R is

the equivalent input resistance of the receiver, Us is the
voltage at the receiver input, Ii is the intensity of the
incident sound beam, and Ω = 2π(1 – cosα) is the solid
angle of the directivity pattern for the receiving antenna
[9]. The intensity of the incident sound beam was eval-

uated by the formula Ii = , where Ic =  is the mea-

sured intensity of sound reflected from the cylinder (Uc

is the voltage at the receiver input, and Sa =  is the

antenna area) and nc is the reflection coefficient for the
short-wave region of sound waves (λ ! d) [12]:

Here, r =  is the distance from the cylin-

der reflecting surface element to the reception point
with D @ d and r @ d.

Since the minimum length of a transmitted pulse l =
cτsinθ = 6 cm (where c ≈ 1500 m s–1 is the sound veloc-
ity) exceeds the sound-beam width of the receiving
antenna, the scattering region coincides with the
intersection zone for the directivity patterns, which
can be approximated in this case by an ellipsoid with
volume [13]
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Here, De = D + cos  – ϕ  is the base width of an

equivalent bistatic configuration with dummy point
antennas placed on the directivity-pattern axes at dis-

tances  from the plane containing the actual antennas.

To compare the results obtained with the data of
spectral analysis performed according to (3), we nor-
malized the parameter mV to its maximum value mm:

(4)

For checking the consistency of this parameter to
the actual measurements, we transformed it into the
dimensionless scattering cross section

(5)

which can serve as a similarity criterion for the bulk
scattering.

The sonar was switched on immediately before the
cylinder was placed into the sound-beam zone. Each
transmitted acoustic pulse was accompanied by a con-
secutive choice of an 8-bit sound-scattering signal
within the time interval ∆t = 2.2 µs. This corresponded
to a 85-cm-length section of the sound path with a reso-
lution better than 0.2 cm. Our distance selector speci-
fied the position of this section, such that it contained
the cylinder and the interface region behind it. When
the cylinder moved in the sound-field region, the
receiver amplification factor was set equal to 1 and the
reference signal Uc was registered during this time.
After removing the cylinder from the sound-field
region, the amplification factor was fixed within the
range from 2 × 103 to 4 × 103 depending on the sound-
scattering intensity level.

Wake shadowgraphs are shown in Fig. 2. The cylin-
der moves in the tank along its longitudinal axis from
the right to the left. At the initial stage, the cylinder is
close to the left boundary of the visual field (Fig. 2a). In
this regime, there exists a chain of large-scale vortices
in the vicinity of the body which is accompanied by
attached inner waves (their ridges and troughs are seen
in Fig. 2 as dark arched open strips diverging up and
down). The distance between neighboring strips is

equal to half the wavelength  =  = 9 cm for these

waves. The dark horizontal strip to the right from the
wake axis, i.e., the central interface separating layers of
different density, is hidden inside the intense vortices
formed in the wake segment adjacent to the body. The
vortices disappear with time, and the central interface
evidently manifests itself against a background of less-
contrasting concentration interlayers and microstruc-
tural nonuniformities (Fig. 2b).

In the course of repeated towages with a constant
velocity, cocurrent flows with the same structure were
reproduced (Fig. 2). Before each towage, we set a new

a
2α
------- θ

2
---

 --

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-------.=

σ mVλ ,=
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(a) (b)

Fig. 2. Shadowgraph of the flow behind the cylinder d = 1.5 cm, U = 3 cm s–1, Re = 430, Fr =1.7): (a) t = 0.3Tb; (b) 3Tb.
angular disposition for the receiving and transmitting
antennas and took shadowgraphs of the sound beams,
which were then used to refine the angles θ and ϕ.

The normalized scattering cross sections are shown
in Fig. 3 as functions of the resonance wave number k =

2k0sin . All the data were obtained for the wake age t =

3Tb, i.e., when the central interface became virtually
horizontal. In the case of the mirror reflection being
absent, the experimental and calculated points are
grouped near the curve mV ~ k–7. For a fixed angle θ, the
variation of the angle ϕ (i.e., in the case of the rotation
of the bistatic array as a whole) weakly affects the
sound-scattering intensity for ϕ @ 0 (points 5–7 for
k ≈ 36 cm–1, i.e., for θ ≈ 51°). However, for ϕ ≈ 0°, the
same rotation results in a sharp decrease in the reflec-
tions (points 1 and 4 for k = 42 cm–1, i.e., for θ = 60°).
Provided that the mirror reflection occurs, the experi-
mental cross section, i.e., the ordinates of the points 1–3
(ϕ ≈ 0°), exceed the cross section (3) calculated for the
diffuse scattering by microstructural nonuniformities
by a factor of about 50.

In our experiments, dimensionless cross section (5)
for the diffuse bulk scattering ranges from 3 × 10–8 to
8 × 10–7 (see Fig. 4) and corresponds to the measured
scattering by bioaggregations in the ocean [6]. For the
mirror reflection, the cross section σ exceeds 2.5 × 10–6.
This lies far outside of actual measurement data,
because the other effect, namely, the reflection from a
thin layer, becomes most important. In such a situation,

the dimensionless thickness ξ =  (δ is the absolute

thickness) of a layer serves as a criterion for the consis-
tency of laboratory-scale and natural-scale sea data. In
our experiments and in [7], ξ = 0.7 (λ = 0.15 cm and δ ≈
0.1 cm). However, in sea experiments, the reflecting
layers with thickness δ from 1 to 20 cm were observed
by acoustic sounding with a wavelength of 5 < λ <

θ
2
---

δ
λ
---
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20 cm. Therefore, the parameter ξ was within the range
from 0.2 to 1 [3–5], i.e., close to the values obtained in
the course of laboratory-scale measurements.
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Fig. 3. Normalized scattering cross sections: (s) experimen-
tal data for me ; ⊗  the case of mirror reflection; (d) calcula-
tion data for mn obtained by formula (3); and (–) the depen-

dence k–7 (solid line). The angle ϕ at the points 1 to 7 is
equal, respectively, to 2°, 3°, 0°, 7°, 8°, 12°, and 13°.

Fig. 4. Dimensionless cross section σ = mVλ in the case of
bulk scattering.
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In this paper, we prove a theorem on the conditional
asymptotic stability in the Joukowski sense for a peri-
odic orbit of the nonlinear steady-state differential
equation

(1)

provided that the characteristic exponents of the corre-
sponding variational equation have both negative and
positive real parts. In this case, the structure of the peri-
odic-orbit neighborhood for Eq. (1) is also clarified.

The semitrajectory C+(p) of the solution ϕ(t, p) to
Eq. (1) is referred to as stable in the Joukowski sense
[1, 2] if, for every number ε > 0, a number δ = δ(ε) can
be found so that, for an arbitrary vector q, |p – q| > δ,
there exists a function σ(t) for which the following ine-
quality is valid:

Here, σ: R+  R+ is the one-to-one continuous map-
ping (homeomorphism) of R+ onto R+, with σ(0) = 0.

If for a certain number ∆ > 0 and at every point q of
the sphere |p – q | > ∆, there exists the homeomorphism
σ: R+  R+ for which

then the semitrajectory C+(p) of the solution ϕ(t, p) is
referred to as asymptotically stable in the Joukowski
sense [1, 2].

In [3–5], problems on the asymptotic orbital stabil-
ity of a periodic trajectory for Eq. (1) were considered
in the case when, along a periodic solution γ(t) to
Eq. (1), the variational equation

(2)

has one zeroth characteristic exponent and n – 1 char-
acteristic exponents with negative real parts.

ẋ g x( ), g C2 Rn Rn→( ),∈=

ϕ t p,( ) ϕ σ t( ) q,( )– ε t R+.∈∀≤

ϕ t p,( ) ϕ σ t( ) q,( )–
t +∞→
lim 0,=

ż gx γ t( )( )z=
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It is evident that, for the state of equilibrium of
Eq. (1), the notions of the stability in the Lyapunov
sense and of the orbital stability and strength in the
Joukowski sense are equivalent.

We show that, in the case of a periodic trajectory
C(p) of the solution γ(t) ò const, the notions of the
orbital stability and stability in the Joukowski sense are
equivalent. Indeed, the orbital stability of the periodic
trajectory C(p) follows from its stability in the
Joukowski sense. Inversely, we assume that the peri-
odic trajectory C(p) of the periodic motion γ(t, p) is
orbitally stable; i.e., the following inequality is ful-
filled:

Here, ρ is the distance between the periodic trajectory
C(p) of the motion γ(t, p) and the point γ(t, q), with
q ≠ p.

Because the function γ(t, p) is continuous and the set
C(p) is compact, the value ρ[γ(t, q), C(p)] is always
achieved at a certain vector γ(t, q) – γ(σ, p), where
σ ∈  R, with σ depending on t. Thereby, the mapping
t  σ = σ(t) is defined. If the number ε > 0 is chosen
to be sufficiently small, the ε-neighborhood of C(p) has
no self-intersections; i.e.,

Here, the asterisk is the transposition. In this case, the
mapping t  σ(t) determines reparametrization of
the trajectory C(p) and, consequently, the inequality
|γ(σ(t), p) – γ(t, q)| < ε is fulfilled; this implies that the
periodic trajectory C(p) is stable in the Joukowski
sense. In the general case, the notions of orbital stabil-
ity and stability in the Joukowski sense are not equiva-
lent for trajectories differing from the equilibrium state
and the periodic trajectory.

The following theorem is valid.

Theorem. Let γ(t) be a periodic solution with period
ω to nonlinear steady-state equation (1), and let the

ρ γ t q,( ) C p( ),( ) ε t R+.∈∀<

Ut1
Ut2

∩ t1 t2, t1 t2 0 ω,[ ] ,∈,≠∀=

Ut = y: y γ t p,( )– ε y γ t p,( )–( )*g γ t p,( )( ) = 0,<{ } .
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real parts αs , s = 1, …, k of the characteristic exponents
of Eq. (2) be arranged in increasing order,

(3)

and have multiplicities n1, n2, …, nk , respectively, with
αi = 0 for i = n1 + n2 + … + nk + 1.

In this case, there exist the manifolds Ms (s = 1,
2, …, k) having dimensions n1 + n2 + … + ns, respec-
tively, and the number µ > 0, such that, if there exists a
number t1: |p – γ(t1) | < µ, p ∈ Ms , the following asymp-
totic representation is valid:

(4)

If there exists t1 ∈ R: |p – γ(t1) | < µ, x0 ≠ Ms , the fol-
lowing asymptotic representation is valid:

(5)

Furthermore, if there exists t1 ∈  R: |p – γ(t1)| < µ, p ∈
Mi , then

(6)

Proof. Let ϕ(t, t0, p) be the solution to Eq. (1), such
that ϕ(t, t0, p) = p and γ(t) are the periodic solution to
Eq. (1) with a shortest period ω. The trajectory C pass-
ing through the point γ(0) is a simple closed curve. For
any h > 0, the function γ(t + h) is the solution to Eq. (1)
and the quantity |γ(t + h) – γ(t)| does not tend to zero as
t  +∞; hence, the solution γ(t) to Eq. (1) cannot be
asymptotically stable in the Lyapunov sense [5].
Assuming that y(t) = x(t) – γ(t) and using the Taylor
formula, we obtain

(7)

where G(x(t)) = o(|y |). By virtue of (1), we have

(8)

The matrix A(t) ≡ gx{γ(t)} is periodic with period ω.
Since

the derivative (t) is the periodic solution to variational
equation (2) in γ(t).

The term G(t, y) in Eq. (8) has the properties

 

α1 … α k,< <

ϕ t t0 p, ,( ) γ t t0–( )– o e
α s ε+( )t

( ),=

ε 0> , s 1 2 … k., , ,=

ϕ t t0 p, ,( ) γ t t0–( )– O e
α s ε–( )t

( ),≠
ε 0, s> 1 2 … k., , ,=

∆∃ R: ϕ t t0 p, ,( ) γ t ∆–( )–∈ o e
α i 1– ε+( )t

( ),=

ε 0.>

g x t( )( ) g γ t( )( ) gx γ t( )( )y t( ) G t y t( ),( ),+ +=

ẏ gx γ t( )( )y G t y,( ).+=

d
dt
----- γ̇ t( )( ) gx γ̇ t( )( )γ̇ t( ),=

γ̇

G t y,( ) o y( ), G t 0,( ) 0,≡= (9.1)

c1∃ 0,>
µ: y µ G t y1,( ) G t y2,( )– c1 y1 y2– .<⇒<∃

(9.2)
For further proof of the theorem, we use the follow-
ing proposition.

Proposition [6, 7]. Let variational equation (2)
have characteristic exponents with real parts αs, s = 1,
2, …, k, with α1 < … < αk  and satisfy the conditions of
exponential dichotomy; i.e., for a fundamental matrix
X(t) of Eq. (2), the following inequalities are fulfilled:

Here, c3, c4, a, and b are positive constants and P and
Q are the additional projections onto Rn . Let the func-
tion f(t) be such that

and the integral

be a bounded function. In this case, there exists a man-
ifold M(t0), with its dimension equal to the rank of the
matrix P, such that the solution y(t, t0, p) to Eq. (8) is
bounded in R+ if and only if p ∈ M(t0).

By virtue of this proposition, there exist manifolds
Ms(0) and numbers µs , s = 1, 2, …, k, such that

We define the manifolds:

(10)

It follows from (10) that if |p – γ(t1)| < µs, p ∈  Ms , then

(11)

if |p – γ(t1) | < µs , p ∉ Ms .

If |p – γ(t1) | < µs , p ∉ Ms , then

(12)

It follows from (11) and (12) that asymptotic repre-
sentations (4) and (5) are valid. Now, we prove state-
ment (6). With this purpose, the coordinates are
changed, so that the matrix R in the representation

X t( )PX 1– s( ) c3 a t s–( )–{ } , t s,≥exp≤

X t( )QX 1– s( ) c4 b t s–( ){ }exp , t s.≤≤

G t y,( ) f t( ) y Rn∈∀≤

F t( ) f t( ) td

t

t 1+

∫=

q µs supt 1– y t 0 q, ,( )log
t +∞→

lim⇒ α s q Ms,∈∀≤<

q µs supt 1– y t 0 q, ,( )log
t +∞→

lim⇒   ≥  α s 1+   q M s . ∉∀<

Ms γ 0( ) Ms 0( ), s+ 1 2 … k., , ,= =

ϕ t t0 p, ,( ) γ t t0–( )– y t 0 q, ,( ) o e
α s ε+( )t

( ),= =

ε 0,>

ϕ t t0 p, ,( ) γ t t0–( )– y t 0 q, ,( ) O e
α s ε–( )t

( ),≠=

ε 0.>
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X(t) = P(t)exp{Rt} [where P(t) is a periodic matrix and
R is a constant matrix] takes the form

Here, the matrices R1 and R2 have eigenvalues with pos-
itive and negative real parts, respectively, and the (m +
1)th diagonal element is zero. It is evident that (0) =
em + 1 is the (m + 1)th column of the unit matrix En hav-
ing dimension n × n.

The tangential space Ti – 1(p) of the manifold Mi – 1 at
the point p is a null-space for dqΠ(q + h(0, q))|p – γ(0) ,
where Π is the natural projection onto the last n – m
coordinates of the space Rn and the function h(t0, q) is
determined by the formula [4] 

It is evident that y(τ, 0, q) ≡ 0 for q = 0 because
dyG(τ, y(τ, 0, 0)) = 0 [4, 5].

It is also easy to verify that dqh(0, q)|0 = 0, and, there-
fore, Ti – 1(γ(0)) is the null-space for [O(n – m) × mEn – m] [4].
Because (0) ∉ Ti – 1(γ(0)), the solution γ(t) trans-
versely intersects the manifold Mi – 1 at the points ϕ(0),
ϕ(±ω), ϕ(±2ω), …. If there exists t1: |p – γ(t1)| < µ, with
p ∈ Mi , then ϕ(t, t1, p) ∈  Mi for all t; i.e., the difference
ϕ(t, t1, p) – ϕ(t – t1) increases exponentially. By virtue
of (4), this is impossible for αs = 0.

It is easy to prove that the manifolds Mi – 1 and Mi are
separated from one another.

R
R1  …
… 0 …
…  R2

.=

γ̇

h t0 q,( ) X t0( )PX 1– s( )G s ϕ s t0 q, ,( ),( ) sd

∞–

t0

∫–=

+ X t0( )QX 1– s( )G s ϕ s t0 q, ,( ),( ) s.d

t0

+∞

∫

γ̇
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There is a moment in the time interval [t1, t1 + ω] at
which the trajectory γ(t – t1) transversely intersects the
manifold Mi – 1 . Because the solution to Eq. (7) and
Ti − 1(p) continuously depend, respectively, on the total-
ity (t, t0, p) and on p, the number µ can be chosen so
small that 

It follows from (4) and (5) that

Substituting t by t + t1 – t0 and denoting ∆ = t0 – t1 + t2 ,
we arrive at statement (6).

The theorem is a generalization and an extension of
the results of [6, 7].
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1. INTRODUCTION

For Kirkwood gaps, there exists a commensurability
between the mean motions n and n' of an asteroid and

Jupiter, respectively: namely, the ratio  is close to a

rational number . The number l – s is referred to as the

order of commensurability or the resonance order.
At the same time, there exists an asymmetry in the

positions of Kirkwood gaps. Indeed, the centers of the
gaps observed are displaced towards Jupiter with
respect to exactly commensurate positions. A number
of studies were devoted to the problem of this asymme-
try (see, e.g., [1]).

In this paper, based on a two-dimensional circular
bounded three-body problem, we indicate possible
dynamic causes for the asymmetry in positions of Kirk-
wood gaps. In doing so, we simulate asteroid orbits
with the help of periodic solutions of the first kind.

2. PERIODIC MOTIONS

Let two material points S and J (the Sun and Jupiter)
move in circular orbits around their center of mass O
with an angular velocity n'. Let a negligibly small mass
point P move in the orbital plane of the mass points S
and J and be attracted by them according to the Newto-
nian law of universal gravitation. We take the polar
coordinates r and ϕ as generalized coordinates of the
point P. Here, r is the distance OP from the point P
toward the center of mass for the points S and J and ϕ
is the angle between the vector  and the vector 
rotating with angular velocity n'. The corresponding
generalized momenta are denoted by pr and pϕ . We take
the total mass of the points S and J and the distance
between them to be unity. We denote the mass of the
point J by µ (0 < µ ! 1) and take the dimensionless

n
n'
----

l
s
--

OP SJ
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Russian Academy of Sciences,
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quantity ν = n't as an independent variable. In this case,
the Hamiltonian has the form

(1)

For µ = 0, the equations of motion admit a partial
solution corresponding to circular motion of the point
P around the point S:

(2)

Here, R is a constant. We assume that 0 < R < 1. For
solution (2), we have

For small but nonzero µ, we take solution (2) as a
generating solution. In the case of the bounded three-
body problem, a lot of studies are devoted to finding
periodic solutions that, for µ = 0, transform into a gen-
erating circular solution and to using these solutions for
analyzing asteroid dynamics [2]. We construct these
solutions (the Poincaré solutions of the first kind) in the
following manner. We express the energy-integral con-
stant H = h = const as a power series h = h0 + µh1 +
µ2h2 + … and resolve the equality H = h with respect to
pϕ . As a result, we have

(3)

H
1
2
--- pr

2 pϕ
2

r2
-----+

 
 
 

pϕ– 1 µ–
r1

------------
µ
r2
----,––=

r1 r2 2µr ϕ µ2+cos+ ,=

r2 r2 2 1 µ–( )r ϕcos– 1 µ–( )2+ .=

r R, ϕ ν( ) Ων ϕ 0( ), pr+ 0,= = =

pϕ R, Ω R 3/2– 1, R–
n
n'
---- 

 
2/3–

.= = =

H h0 const, h0
2R3/2 1+

2R
---------------------– .= = =

pϕ K– r2 r F µr
V r ϕ,( ) h1+

F
----------------------------- …,++ += =
001 MAIK “Nauka/Interperiodica”
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(4)

For the isoenergetic level H = h, the equations of
motion take the Hamiltonian form (Whittaker equa-
tions [3]):

(5)

We seek the solutions r*(ϕ) and (ϕ) to set (5),
which are analytical with respect to µ and 2π-periodic
in ϕ, as the series

(6)

The functions f and g satisfy the equations

(7)

where

(8)

Here, V0 is the function V(r, ϕ) from (4) evaluated at r =
R, which can be expressed as a Fourier series [4]:

where  = (R) are the Laplace coefficients.

If ω is not an integer (i.e., there exists no resonance
of the first order), the periodic solution to Eq. (7) takes
the form of a Fourier series:

(9)

F 2h0 r2 pr
2–

2
r
---,+ +=

V r ϕ,( ) 1

1 2r ϕcos– r2+
------------------------------------------ 1

r
---

ϕcos

r2
------------.––=

dr
dϕ
------

∂K
∂pr

--------,
d pr

dϕ
-------- ∂K

∂r
-------.–= =

pr*

r r* R µf ϕ( ) …,+ += =

pr pr* µg ϕ( ) …+= =

df
dϕ
------

1
Ω
----g,=

dg
dϕ
------ –Ωω2 f

2 Ω 1+( ) V0 h1+( )
Ω2R

--------------------------------------------
1
Ω
----

∂V0

∂R
---------,+ +=

ω ω R( ) Ω 1+
Ω

-------------
1

1 R3/2–
-----------------.= = =

V0
1
2
---L1

0( ) 1
R
---– 

  L1
1( ) 1

R2
-----– 

  ϕcos L1
n( ) nϕ ,cos

n 2=

∞

∑+ +=

L1
n( ) L1

n( )

f f n nϕ , gcos
n 0=

∞

∑ Ω n f n nϕ ,sin
n 1=

∞

∑–= =

f 0
Ω 2+( )

Ω Ω 1+( )2R2
--------------------------------–=

+
1

Ω 1+( )2
--------------------

Ω 1+( ) L1
0( ) 2h1+( )

ΩR
-----------------------------------------------

1
2
---

dL1
0( )

dR
------------ ,+

f 1 = –
2

2Ω 1+( )ΩR3
-------------------------------- 1

2Ω 1+
-----------------

2 Ω 1+( )L1
1( )

ΩR
----------------------------

dL1
1( )

dR
-----------+ ,+
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The dependence of the momentum pϕ on ϕ is deter-
mined from (3), (4), and (6):

(10)

Functions (6) and (10) are 2π-periodic in the angle
ϕ. The dependence of this angle on the dimensionless
“time” ν is determined by the equation

Substituting r and pϕ from (6) and (10) into this
equation, we have

(11)

where

(12)

The period in terms of ν is equal to the time interval
T for which the angle ϕ takes the increment of 2π.

From (9), (11), and (12), we find that T = , where

Ω1 = Ω + µ  + O(µ2) and

The energy-integral constant is a significant param-
eter determining the periodic solution obtained. In par-
ticular, it is possible to choose h1, h2, … such that the
period of the solution is equal to that of the generating
circular motion.

3. THE HAMILTONIAN 
OF THE PERTURBED MOTION

In the vicinity of the periodic solution, we introduce
the perturbances q, p, and I with the help of the canon-
ical transformation

In the expansion of Hamiltonian (1) in a power
series of q, p, and I, the factor standing at the term I

f n
1

Ω2 ω2 n2–( )
-----------------------------

2 Ω 1+( )L1
n( )

ΩR
-------------------------------

dL1
n( )

dR
------------+ .=

pϕ pϕ* R µ
V0 h1+

Ω
----------------- …++= =

dϕ
dν
------ ∂H

∂pϕ
---------

pϕ

r2
----- 1.–= =

dϕ
dν
------ Ω µG ϕ( ) …,++=

G ϕ( ) 2 Ω 1+( )
R

----------------------– f
V0 h1+

ΩR2
-----------------.+=

2π
Ω1
------

G

G
1

2π
------ G ϕ( ) ϕd

0

2π

∫=

=  Ω 1+( ) Ω 3+( )
Ω

-------------------------------------
3 L1

0( ) 2h1+( )
2ΩR2

-------------------------------
1

Ω 1+( )R
----------------------

dL1
0( )

dR
------------.––

r r* q, pr+ pr* p, ϕ+ w,= = =

pϕ pϕ* q
d pr*

dϕ
---------- p

dr*
dϕ
--------– I .+ +=
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coincides with the right-hand side of Eq. (11). Instead
of the variables ϕ and I, we introduce the new canoni-
cally conjugate variables ϕ1 and I1 using the generating
function

In this case, in the series expansion of the Hamiltonian
for the perturbed motion, the factor multiplying I1 coin-
cides with the frequency Ω1 of the unperturbed periodic
motion. We then make the change of variables

and introduce the new independent variable τ = Ω1ν. As
a result, the Hamiltonian of the perturbed motion is
rewritten as the following series (with the above deno-
tation ϕ retained for the new angular variable ϕ1):

(13)

Here, Hm is a form of the mth degree with respect to
|I1 |1/2, q2, and p2 , with

4. CHARACTERISTIC EXPONENTS 
AND DISPLACEMENT 

OF THE KIRKWOOD-GAP CENTERS

The term H2 in Hamiltonian (13) corresponds to a
linearized set of equations for a perturbed motion. Two
characteristic exponents for this set vanish. Two other
exponents, ±i × 2πλ, become purely imaginary for suf-

S ϕ I1,( ) I1 ϕ µ
Ω
---- G̃ ϕ( ) ϕ …–d∫– 

  ,=

G̃ ϕ( ) G ϕ( ) G.–=

q Ω 1+( ) 1/2– q2, p Ω 1+( )1/2 p2= =

H H2 H3 H4 … Hm ….+ + + + +=

H2 I1
1
2
---ω q2

2 p2
2+( )+=

+ µ h20q2
2 h11q2 p2 h02 p2

2+ +( ) O µ2( ),+

h20
3 V0 h1+( )

Ω2R2
-------------------------

3 Ω 1+( )
ΩR

---------------------- f–=

–
2

ΩR
-------- dg

dϕ
------ Ω 1+

2Ω2
-------------G–

1
2Ω Ω 1+( )
---------------------------

∂2V0

∂R2
-----------,–

h11
2 Ω 1+( )

Ω2R
----------------------g, h02

Ω 1+

2Ω2
-------------G,–= =

H3 –2
Ω 1+
ΩR

------------------I1q2
Ω 1+
ΩR

------------------q2
3– O µ( ),+=

H4
1

2ΩR2
--------------I1

2 3

ΩR2
---------- I1q2

2 3

2ΩR2
--------------q2

4 O µ( ).+ + +=
ficiently small µ provided that resonance of the second
order (parametric resonance) does not exist. The quan-
tity λ can be treated (if the quantity τ = Ω1n't serves as
the time) as one of the frequencies of small-amplitude
oscillations in the vicinity of the periodic motion under
consideration.

If µ is sufficiently small, then λ is an analytical func-
tion of µ and can be expanded into a series:

(14)

where λ0 = ω and λ1 is determined by the formula

(15)

Let the exact commensurability  =  take

place for R = R0 . In this case, resonance of the mth
order occurs; i.e., mω0 = k, where ω0 = ω(R0). However,
for µ ≠ 0, the value of R = Rµ distinct from R0 corre-
sponds to resonance of the mth order. This value must
obey the resonance relationship

(16)

Here, λ is determined by formula (14). From (8) and
(16), we arrive at the following expression for the quan-
tity δ = Rµ – R0:

(17)

With the parameter µ known and the given commen-

surability of , formula (17) determines the displace-

ments of the Kirkwood-gap centers. We now consider
the concrete periodic motions with a period equal to
that of the generating circular motion. Then,

.

Taking into account the equality  = , where

K(R) is the complete elliptic integral of the first kind,

λ λ0 µλ1 …,+ +=

λ1
1

2π
------ h20 h02+( ) ϕd

0

2π

∫ Ω 1+( )R3

4Ω
-------------------------

d2L1
0( )

dR2
--------------–= =

+
Ω 1+( ) 2 Ω–( )R2

2Ω2
-------------------------------------------

dL1
0( )

dR
------------

+
3 Ω 1+( )2R

2Ω3
---------------------------- L1

0( ) 2h1+( ) Ω 1+( ) Ω 3+( )
Ω3

-------------------------------------.–

n
n'
---- k

k m–
-------------

mλ k.=

δ –µ
λ1 R0 h1,( )

ω0'
------------------------ O µ2( ),+=

ω0'
dω0

dR0
---------

3ω0
2 R0

2
--------------------.= =

n
n'
----

h1
1
3
--- Ω 1+( ) Ω 3+( )R2 1

2
---L1

0( )–
ΩR

3 Ω 1+( )
----------------------

dL1
0( )

dR
-----------–=

L1
0( ) 4K R( )

π
----------------
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we obtain from (15) and (17) the following expression
for the quantity δ:

For sufficiently small µ, δ is positive; i.e., for small
µ, the gap centers are displaced from the position R0
towards greater R (i.e., towards Jupiter).

5. ON THE STABILITY OF PERIODIC MOTIONS
AT THE BOUNDARIES 

OF PARAMETRIC-RESONANCE DOMAINS

We assume that the value of 2ω is close to an odd

number 2N + 1; i.e., the ratio  is close to a rational

number , with N = 1, 2, 3, … The stability of

periodic solutions to the bounded three-body problem
under such a commensurability has been studied for
many years [5, 6] (see the corresponding review in
monograph [2]).

Let the equality 2ω0 = 2ω(R0) = 2N + 1 be valid for
R = R0 . For values of R close to R0 , we assume that R =
R0 + ∆, with |∆| ! 1. Then,

(18)

where, according to (18) and (8),

(19)

Using the algorithm given in paper [7], we can make
the change of variables q2, p2, ϕ1, I1  ξ2, η2, ξ1, η1
(which is canonical and analytical with respect to µ, ξ2,
η2 , and η1 , and 2π-periodic in ξ1) such that the Hamil-
tonian of the perturbed motion is reduced to the form

Here, the term Γm is a form of the mth degree with
respect to |η1 |1/2, ξ2, and η2 , with its coefficients being
2π-periodic in ξ1 and

δ µ
2R0

3/2

3πω0
------------- R0

d2K R0( )
dR0

2
--------------------- 2

dK R0( )
dR0

------------------+ O µ2( ).+=

n
n'
----

2N 1+
2N 1–
-----------------

2N 1 2ω–+ 2µα ,=

α –
ω0'

µ
------∆ O ∆2( ).+=

Γ Γ2 Γ4 … Γm …+ + + +=

Γ2 η1
1
2
---λ ξ2

2 η2
2+( )+=

+ σ –
1
2
--- ξ2

2 η2
2–( ) kξ1cos ξ2η2 kξ1sin+ ,

Γ4 = c20η1
2 1

2
---c11 ξ2

2 η2
2+( )η1+

+
1
4
---c02 ξ2

2 η2
2+( )

2
O µ( ).+
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In these formulas,

where λ1 and α are given by (15) and (19) and χ is
found from the relationship

The coefficients cij in the function Γ4 are determined
by the equalities

(20)

For small µ, the parametric-resonance domains (i.e.,
the orbital-instability domains for the periodic solution
under consideration) are defined by the inequality |α –
λ1 | < |χ|. They are wedge domains on the R, µ plane
starting from the points R = R0 in the axis µ = 0. The
boundaries γ+ and γ– of these domains are defined,
respectively, by the equations

(21)

where a =  and b = .

For sufficiently small µ, there is either orbital stabil-
ity or instability on the boundary of the parametric-res-
onance domain, depending on whether the signs of the

quantities a02 = c20  – c11  + c02 and

α – λ1 are, respectively, distinct or equal [7].

However, it follows from (20) that

From (19) and (21), we can prove that the inequalities
α < λ1 and α > λ1 are satisfied, respectively, on the
boundaries γ+ and γ– . Therefore, for sufficiently small
µ, the Poincaré periodic solution under consideration is
orbitally stable on γ– and unstable on γ+. This is one

more of the possible dynamic causes corresponding to

the commensurability of  =  for the asym-

metry of positions of gap centers in the asteroid belt,

k 2N 1, λ+ N
1
2
--- µ α λ1–( )– O µ2( ),+ += =

σ µχ O µ2( ),+=

χ χ R( ) 1
2π
------ h11 kϕsin h02 h20–( ) kϕcos+[ ] ϕ .d

0

2π

∫= =

c20
1
2
---c11 c02

3

2ΩR2
--------------.–= = =

R R0 µa O µ2( ), R+ + R0 µb O µ2( ),+ += =

χ λ1–

ω0'
-----------------

χ λ1+

ω0'
-----------------–

N
1
2
---+ 

  2

N
1
2
---+ 

 

a02
3 2N 1–( )2

8ΩR2
--------------------------– 0.<=




n
n'
---- 2N 1+

2N 1–
-----------------


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because, with µ given, the points on the boundary γ+ are
located closer to Jupiter than those on the boundary γ– .
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Conventional (so-called direct) transport phenom-
ena are described by the empirical Fick law, Fourier
law, Newton’s law, Ohm’s law, etc. However, the pres-
ence in a medium of external physical fields gives rise
to the appearance of a large number of cross effects
resulting from interaction between the medium and the
fields. The well-known Soret effect, Dufour effect,
Peltier effect, etc. are among them. To date, cross
effects have been thoroughly studied only in the case of
steady electromagnetic fields [1–3]. The action of a
high-frequency electromagnetic field was mainly con-
sidered in the case of homogeneous systems with pri-
mary attention aimed at obtaining averaged relation-
ships for linearly polarizable media in the case of a
high-frequency electromagnetic field which is close to
monochromatic [4].

BASIC NOTIONS AND ADMISSIONS

Studying transport phenomena in disperse multi-
component systems subjected to the action of an elec-
tromagnetic field is of interest from the applied point of
view. We imply the high-frequency range, since for
many media (in particular, for those employed in oil
technology), it is this range that corresponds to the
maximum dissipation of electromagnetic energy and its
transformation into heat. While considering a high-fre-
quency electromagnetic field in continua, we assume
that it represents a quasi-monochromatic field [5]. We
also suppose that there are no chemical reactions in the
medium under consideration and that external bulk
forces are absent. Then, in the case of a polarizable
nonmagnetic dielectric, the following equations of state
are valid:

(1)

We assume also that in the case of an isotropic and
homogeneous medium, the additivity condition for the

Ḋ ε0ε̇ ω ρ T, ,( )Ė, Ḃ µ0Ḣ.= =

Bashkortostan State University, 
ul. Frunze 32, Ufa, Bashkortostan, 450074 Russia
1028-3358/01/4603- $21.00 © 20215
permittivity of each component is fulfilled:

(2)

where the dielectric constant of the kth component
depends, in general, on the field frequency ω, the den-
sity ρ, and the ambient temperature T of the medium
and

(3)

Here, ρk and Ck =  are the density and the mass con-

centration of the kth component; ε0 and µ0 are dielectric
and magnetic constants; and  and  are the real and
imaginary parts of the permittivity for the kth compo-
nent, respectively. The complex nature of  indicates
that the processes occurring in the medium are dissipa-
tive. This is explained by the fact that in high-frequency
fields, the relaxation of polarization processes is
delayed with respect to variation of the electromagnetic
field and, as a result, they are nonequilibrium. The iner-
tial properties of thermodynamic and hydrodynamic
processes compared to electrodynamic processes make
it possible to characterize the state of a medium by
parameters averaged over the field period.

The mass-conservation law for the kth component
and the system as a whole has the form [6]

(4)

where Jk is the diffusion-flow density for the kth com-
ponent and u is the averaged mass velocity:

ε̇ ω ρ T, ,( )
1
ρ
--- ρk ε̇k

k

∑ Ck ε̇k,
k

∑= =

ε̇k εk' ω ρ T, ,( ) iεk'' ω ρ T, ,( ).–=

ρk

ρ
-----

εk' εk''

ε̇

ρ
dCk

dt
--------- ρ

∂Ck

∂t
--------- u ∇⋅( )Ck+ 

  divJk,–= =

dρ
dt
------ ρdivu,–=

Jk ρ uk u–( ); u ρ 1– ρkuk

k

∑ Ckuk;
k

∑= = =

ρ ρk, Ck

k

∑
k

n

∑ 1.= =
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THERMODYNAMIC SUBSTANTIATION

To construct a phenomenological theory [7] of inter-
action between a multicomponent medium and a high-
frequency electromagnetic field on the basis of the
technique described in [8], we, using equations (1)–(4),
derived expressions for both the entropy and thermody-
namic flows. In the particular case of a two-component
system, while ignoring the pressure-diffusion term and
the dependence of the permittivity on the temperature
and the field frequency, the diffusion flow and the heat
flow take the form

(5)

(6)

Here,  is the chemical potential of the system in
the electromagnetic field with allowance for the equa-
tions of state (1),

and hk is the enthalpy,

,

for the kth component.
Omitting the terms associated with quantities of

electric nature in expressions (5) and (6), we obtain the
well-known equations for thermodynamic flows
including, in addition to the terms of interdiffusion and
heat conductivity [the first terms in (5) and (6), respec-
tively], the cross Soret and Dufour terms [the second
term in (5) and the third in (6), respectively]. In the case
of a nonhomogeneous high-frequency electromagnetic
field, the effects of electric diffusion and heat transfer
under the action of the field take place [the last terms
in (5) and (6), respectively]. As is seen from these
expressions, the field action manifests itself in addi-
tional terms characterizing an increase in both the
direct heat transfer and the cross thermal-diffusion
transfer in thermal and diffusion flows, respectively,

J1 J2– –
L11

T
------- 1

1 C1–
---------------

∂η1

∂C1
--------- 

 
T p E H, , ,

∇ C1




= =

+ h2 h1–
Lq1

L11
-------+ 

  1
2ρ
------ε0 ε2' ε1'–( ) Ė Ė∗⋅( )+ ∇ T

+
ε0 ε2' ε1'–( )

2ρ
-------------------------∇ Ė Ė∗⋅( )





,

Jq

Lqq

T2
------- ∇ T–=

– Lq1 h2 h1–( ) 1
2ρ
------ε0 ε2' ε1'–( ) Ė Ė*⋅( )+

∇ T

T2
--------

–
Lq1

T
------- 1

1 C1–
---------------

∂η1

∂C1
--------- 

 
T p E H, , ,

∇ C1

ε0 ε2' ε1'–( )
2ρ

------------------------∇ Ė Ė∗⋅( )+ .

ηk
em( )

ηk
em( ) ηk T ρ C1 … Cn, , , ,( )

1
2ρ
------ ε0εk' Ė Ė∗⋅( )( ),–=

hk hk T
∂ηk

∂T
--------–=
with a diffusion coefficient and a thermal-diffusion
coefficient of

(7)

respectively, as well as an electric-thermal diffusion
coefficient

(8)

It is worth noting a feature of the transport phenom-
ena associated with an effect of the high-frequency
electromagnetic field. They occur only in the case of
nonzero difference in the component’s permittivity, as
well as nonzero enthalpy difference in the case of a
temperature gradient. The same result was obtained
in [2] for polarizable media in the electrohydrodynamic
approximation.

Thus, the microwave electromagnetic field mani-
fests itself in two ways. On one hand, it acts directly via
the effects of both the electric diffusion (with coeffi-
cient DÖ) and the electromagnetic heat conduction
(with coefficient λÖ) in the presence of a field-strength
gradient. On the other hand, it acts latently, manifesting
itself indirectly as a component of thermal-diffusion
and thermal flows. Thus, in the case of the action of a
high-frequency electromagnetic field, the total thermal-
diffusion coefficient consists of two parts, namely, DT

and , which correspond to the thermal diffusion in
itself and the electric-thermal diffusion, respectively.

COMPARISON 
WITH THE EXPERIMENTAL DATA

The validity of the above theoretical conclusions
was experimentally confirmed in studying the filtration
of convection-diffusion flows of two-component
hydrocarbon systems in a homogeneous high-fre-
quency electromagnetic field [9]. As saturating fluids,
we used high-viscous oil from the Igrinsk deposit
(200 mPa s at 20°C) with a high content of polar com-
ponents including asphaltenes (8.45%), resins (50%),
and paraffins (4%), as well as purified kerosene. The
processes of oil replacement by a solvent under the
action of a high-frequency electromagnetic field were
investigated with the help of an experimental setup
whose principal part was a purposely designed oil-stra-
tum model made of a nonconducting material, namely,
a polyvinylchloride tube with an inner diameter of
22 mm and a length of 50 cm. Quartz sand with a frac-
tional composition from 0.25 to 0.5 mm was used as a
filler for the porous medium. The variation of the out-
put solvent concentration was determined by photoco-
lorimetric methods. This made it possible to qualita-

D
L11

ρT
------- 1

1 C1–
---------------

∂η1

∂C1
--------- 

  ,–=

DT

L11

ρT2
--------- h2 h1–

Lq1

L11
-------+ 

  ,–=

DT
E L11

1

2ρ2T2
--------------ε0 ε2' ε1'–( ) Ė Ė∗⋅( ).–=

DT
E
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tively estimate the intensity of mass-exchange pro-
cesses in the filtration flow under the action of the
electromagnetic field. As a generator of the high-fre-
quency field, we employed a 6-kW commercial
VCHDZ-6/81 facility operating at a frequency of
81.36 MHz.

The model of the porous medium was placed inside
the generator onto its lower electrode. A preliminary
calibrated thermocouple connected to an ammeter was
fixed at the model output. This procedure was applied
for both monitoring the heat transfer and performing
the test experiment under the action of the electromag-
netic field. In this experiment, an identical model of the
oil stratum was made, which was electrically heated to
the same temperature as in the first experiment. An
experiment was also performed in which oil was
replaced by a solvent without any external action.

The measured concentrations (marked by dots) for
one of the components (solvent) C1 at the output of the
porous-medium model are presented in the figure as a
function of time. We have carried out three comparative
experiments under identical conditions: without any
external action, upon heating, and under the action of a
high-frequency electromagnetic field.

On the basis of the experimental results and taking
into account the simplified equation

under the boundary conditions 

the following values for the effective coefficients of the

convective diffusion were obtained:  = 0.215 cm2 s–1

under the action of the microwave electromagnetic

field,  = 0.169 cm2/s in the case of heating, and
Df = 0.117 cm2/s in the absence of any external action.

Using the results of these experiments, we evaluated
the corresponding cross parameters. Here, we based
our calculations on the more complete convective dif-
fusion equation and the heat conduction equation with
the coefficients obtained for cross diffusion effects
being taken into account:

(9)

(10)

Here, m is the porosity of the model; v is the averaged
filtration rate; ρ and c and ρf and cf are the densities and
the specific heats of the medium and the mixture being
filtered, respectively; and λ is the heat-conductivity
coefficient for the saturated porous medium. Such val-
ues as the heat conductivity and the volumetric heat

m
∂C1

∂t
--------- v∇( )C1+ D f ∇

2C1=

C1 x 0,( ) 0, C1 0 t,( ) 1,   and   
∂
 
C

 
1 

L t
 

,
 
( )

 
∂
 
x
 --------------------- 0,= = =

D f
em

D f
T

m
∂C1

∂t
--------- v∇( )C1+ D∇ 2C1 αT αT

E+( )D∇ 2T ,+=

ρc
∂T
∂t
------ ρ f c f v∇( )T+ λ∇ 2T Q.+=
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capacity are assumed to be additive and are determined
by the expressions

where 

 

λ
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λ
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λ
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α

 

1

 

,

 

 and 

 

α

 

2

 

 are the heat con-
ductivity and volumetric heat capacity of the porous-
medium skeleton, of the solvent, and of the oil, respec-
tively.

The expression for distributed heat sources 

 

Q

 

 has
the form [7]

 

(11)

 

where 

 

ω

 

 and 

 

E

 

 are the circular frequency and the inten-
sity of the electromagnetic field, respectively, and 
is the tangent of the dielectric loss in the medium.

With allowance for the conditions of the experi-
ment, the problem (9)–(11) was solved in linear geom-
etry at the following boundary conditions:

Numerical calculations were performed for the fol-
lowing parameters corresponding to the physical prop-
erties of the medium and the experimental conditions:
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, λÒ = 1.67, λ1 = 0.122, λ2 = 0.125 W m–1 K–1,

λ 1 m–( )λ k m C1λ1 C2λ2+( ),+=

cρ 1 m–( )α c m C1α1 C2α2+( ),+=

c f ρ f C1α1 C2α2,+=

Q
ωε0ε' δtan

2
------------------------ E 2,=

δtan

C1 x 0,( ) 0, C1 0 t,( ) 1,
∂C1 L t,( )

∂x
--------------------- 0;= = =

T x 0,( ) T 0 t,( ) T0,
∂T L t,( )

∂x
------------------- 0.= = =

1 2
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0.4
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1 2 3

C1, arb. units

t, 103 s

Solvent concentration at the output of the stratum model as
a function of time: (1) thermal action, (2) action of the high-
frequency electromagnetic field, and (3) absence of any
action.
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 = 3.426,  = 2.163,  = 0.008274, and E =
11.1 kV m–1.

Comparison of the experimental and numerical
results shows (see figure, solid lines) that in the case
under consideration of convective diffusion transport,
the total coefficient of the total thermal diffusion and

the electric-thermal diffusion (DT + ) exceeds, by
more than an order of magnitude, the thermal-diffusion
coefficient DT in itself. The thermodynamic parameters
determined as ratios of the coefficients of thermal dif-
fusion and electric-thermal diffusion to the interdiffu-
sion coefficient for the experiment described are equal

to αT =  = 0.0025 K–1 and  =  = 0.115 K–1,

respectively.

CONCLUSIONS

Thus, along with the well-known cross effects in
multicomponent systems, a new phenomenon arises
under the action of high-frequency electromagnetic
radiation, namely, cross mass transfer by electric-ther-
mal diffusion. The effect of the electric-thermal diffu-
sion can be quite essential and can considerably exceed
the conventional transfer by the thermal diffusion. This
is caused by the fact that the thermal diffusion is deter-
mined by only the internal system parameters, i.e., the
difference in the component enthalpies (or chemical
potentials), whereas the electric-thermal diffusion is
determined by both the internal (difference of the com-
ponent’s permittivity) and the external parameters (in
the case under consideration, by the electric-field inten-
sity squared).

Although the values obtained for the parameters αT

and  relate to the experimental conditions which we
dealt with, it is important that the effect of the electric-
thermal diffusion is confirmed by the ratio of these
parameters rather than by their absolute values. The
effect under discussion takes place in all cases when,

ε2' ε1' δtan

DT
E

DT

D
------- αT

E DT
E

D
-------

αT
E

under the action of a high-frequency electromagnetic
field, there exists a permittivity-dispersion region
dependent on the field frequency. As is well-known, in
the dispersion frequency region, the tangent of the
dielectric-loss angle, i.e., , represents a resonance
curve which corresponds to the maximum dissipation
of the electromagnetic energy in a medium and the
maximum degree of its polarizability. In the case of a
multicomponent system consisting of components with
different permittivities, a nonhomogeneous-polariza-
tion field arises under the action of electromagnetic
radiation. This, evidently, intensifies the mass transfer
with the transport factor proportional to the electric-
field intensity squared.
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