
  

Doklady Physics, Vol. 46, No. 4, 2001, pp. 219–222. Translated from Doklady Akademii Nauk, Vol. 377, No. 4, 2001, pp. 464–467.
Original Russian Text Copyright © 2001 by Vlasov.

                                       

PHYSICS

    
Equilibrium and Nonequilibrium Impurity Atmospheres
N. M. Vlasov

Presented by Academician V.V. Osiko November 20, 2000

Received August 4, 2000
In this paper, formation kinetics of equilibrium and
nonequilibrium impurity atmospheres in the vicinity of
triple junctions of grain boundaries is considered.

Equilibrium impurity atmospheres are formed in the
vicinity of structural imperfections of a crystal free of
external loads. Thus, an inhomogeneity related to
impurity atoms appears near the triple junctions of the
boundary grains with a positive dilatation, increasing
the crystal lattice parameter. This entails the appear-
ance of concentration compressive stresses which
retard the diffusion of the impurity atoms. In other
words, the impurity atmosphere hinders its own devel-
opment. Nonequilibrium impurity atmospheres are
formed in the vicinity of crystal structural imperfec-
tions under irradiation. Interstitial atoms of radiative
origin form complexes with impurities of small atomic
radius and transfer them to sinks with a positive dilata-
tion. The interstitial atoms are absorbed by sinks, and
the remaining impurities produce nonequilibrium
impurity atmospheres [1]. In the vicinity of a sink, con-
centration tensile stresses appear which accelerate the
migration of impurity atoms in the complex structure.
A nonequilibrium impurity atmosphere facilitates its
own formation. This is the fundamental difference in
the formation processes for equilibrium and nonequi-
librium impurity atmospheres. The aim of this report is
to compare the kinetics of both processes using as an
example formation of the corresponding impurity
atmospheres in the vicinity of grain-boundary triple
junctions. A disclination model of this structural defect
allows one to obtain an exact analytical solution to the
diffusion equation in the field of forces, thereby setting
off the characteristic features of the formation of equilib-
rium and nonequilibrium impurity atmospheres [2, 3].

The effect of concentration stresses on diffusion is
determined, in general, by an accepted model of a point
defect. Thus, in the model of dilatation centers, these
stresses do not affect the migration of the impurity
atoms [4]. Physically, this is due to the fact that the
redistribution of dilatation centers does not change the
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energy of a system [5]. However, the model of dilata-
tion centers, as a rule, is unacceptable for the descrip-
tion of actual systems, where the determining role is
found to belong to the interaction between the impurity
atoms. Therefore, we will use the experimental depen-
dence of the lattice parameter on the concentration of
impurity atoms c (Vegard’s rule) [6]:

(1)

where a1 and a2 are the lattice parameters of the solvent

and the dissolved component, respectively;  is

the relative change in the lattice parameter per unit con-

centration; and  is the relative change in the lattice

parameter depending on the impurity atom concentra-
tion. If (a2 – a1) > 0, the lattice parameter increases in
accordance with the concentration profile. The neigh-
boring regions with lower impurity concentration
impede free concentration expansion. Therefore, in the
places with the highest concentration of impurity
atoms, compression stresses appear which retard the
diffusion of large impurity atoms. If (a2 – a1) < 0, the
lattice parameter is reduced. The neighboring regions
with a lower impurity concentration impede free con-
centration compression and tensile stresses arise. These
stresses aid the migration of impurities of small atomic
radius into the structure of the complex with interstitial
atoms.

Now, we consider the formation of an equilibrium
impurity atmosphere in the vicinity of a triple junction
of grain boundaries in the case of initial concentration
inhomogeneity. The diffusion of impurity atoms is
described by the unsteady diffusion equation in a field
of forces with corresponding initial and boundary con-
ditions:

(2)

Here, D is the diffusivity of the impurity atoms, k is the
Boltzmann constant, T is the absolute temperature, c0 is
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the mean concentration of impurity atoms, cp is the
equilibrium concentration of impurity atoms in the
vicinity of the triple junction line with characteristic
size r0, R is the outer radius of the triple junction, and
V is the potential of the interaction of the impurity atom
with the structural defect with allowance for the con-
centration inhomogeneity. At the initial instant, the
concentration of the impurity atom is equal to the mean
concentration c0 . The same concentration is also
retained for r = R. This physically means that, as the
impurities escape toward the triple junction line, the
impurities from the triple junctions go to the boundary
r = R with the opposite dilatation field. The boundary
condition for r = r0 implies that an equilibrium concen-
tration of impurity atoms is established there instanta-
neously and, further on, is retained during the whole
time of their diffusive migration.

Wedge disclination is considered the commonly
accepted model of the triple junction of grain bound-
aries. In this case, r0 represents a disclination core
radius and R is its outer radius. The potential of the
interaction of the impurity atom with the wedge discli-
nation is defined by the relationship

(3)

where µ is the shear modulus, ν is Poisson’s ratio, ω is
the disclination rotation vector, and ∆υ is the crystal-
volume change due to the disposition of the impurity
atom. The finite values of r0 and R enable us to avoid
logarithmic divergence of the potential V1 for r  0
and R  ∞. Then, without loss of generality, we
introduce a steady-state concentration inhomogeneity
under the problem boundary conditions presented
in (2). The tensor trace for concentration stresses in the
region r0 ≤ r ≤ R for the boundaries free from radial
stresses is defined by a known expression similar to that
for temperature stresses [7]:

(4)

where β =  is the change of the lattice parameter

per unit impurity concentration. The remaining nota-
tions correspond to those accepted earlier. The con-
stants in relation (4) play no role, as the diffusion pro-

cess depends on the quantity . The potential of

the interaction of the impurity atom with the steady-
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state concentration inhomogeneity coincides with that
for a wedge disclination to within a constant factor:

(5)

The logarithmic coordinate dependences of V1 and V2
essentially simplify the diffusion equation in the field
of forces:

, (6)

The dimensionless parameters α1 and α2 determine
the contribution of structural stresses and concentration
stresses to the kinetics of the formation of the equilib-
rium impurity atmosphere. For the wedge disclination
with a positive dilatation, α1 < 0, because ω < 0 in rela-
tion (3). Therefore, the rate of the impurity atmosphere
formation increases. On the other hand, the concentra-
tion inhomogeneity reduces the rate of arrival of impu-
rity atoms, since α2 > 0 for β > 0. This immediately fol-

lows from the form of Eq. (6). In fact, for  < 0, the

impurity accumulation rate  increases for α1 < 0 and

decreases for α2 > 0. Thus, to elucidate the role of the
concentration stresses in the formation of the equilib-
rium impurity atmosphere, the following model is sug-
gested. The diffusion of impurity atoms in the stress
field of the wedge disclination is analyzed for the case
of a steady-state concentration inhomogeneity. Such a
“frozen” inhomogeneity should be considered a certain
structural defect whose stress field also affects the dif-
fusion of impurity atoms. Certainly, the physical sim-
plicity of the model is achieved at the expense of its
mathematical simplification. In a rigorous statement,
the concentration stresses depend on the current value
of the concentration and the equation becomes non-
linear.

The formation of the nonequilibrium impurity
atmosphere in the vicinity of the wedge disclination is
also described by Eq. (6). However, some constants
acquire another physical meaning. Thus, coefficient D
characterizes the diffusion of impurities of small
atomic radius in the structure of complexes with inter-
stitial atoms. The value of cp defines the limiting con-
centration of impurity atoms near a sink. The gradient
of their concentration is directed opposite to the flux of
interstitial atoms, and all the complexes decompose in
the vicinity of the sink. For a wedge disclination with a
positive dilatation, α1 < 0, since the impurities of small
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atomic radius are transferred by the interstitial atoms.
However, α2 < 0, since β < 0 in relation (5). This
implies that the concentration inhomogeneity of small
impurity atoms increases the rate of formation of the
nonequilibrium impurity atmosphere. In this case, we
consider ∆υ in relation (5) to be the change in crystal
volume caused by the disposition of the interstitial
atom–impurity complex.

Finally, we outline a case which is more easily per-
ceived, when the structural stresses are taken into
account only in the boundary condition. Then, the
kinetics of the diffusion process depends only on the
parameter α2:

(7)

When |α2| @ 1, the concentration stresses greatly con-
tribute to the kinetics of the diffusion process. For
|α2| ! 1, the formation of the impurity atmosphere is
caused by the gradient of the impurity concentration.
When |α2| ≈ 1, the diffusion fluxes of the impurity atoms
due to concentration gradients and concentration
stresses are comparable. The estimates show that for
actual systems, within the framework of the adopted
model, |α2| ≈ 1. Actually, for the Cu–Au system, for β =

0.13, cp – c0 = 50 at. %, µ = 4.2 × 1010 Pa, ν = 0.35,  =

102, ∆υ = 4.9 × 10–30 m3, and kT = 10–20 J, we have
α2 = 0.8. Therefore, we consider the following cases:
(i) α2 = –1 (nonequilibrium atmospheres); (ii) α2 = 1
(equilibrium atmospheres); (iii) α2 = 0 (absence of the
concentration inhomogeneity). For the accepted values
of the α2 parameter, we obtain from Eq. (7), corre-
spondingly,

(8a)

(8b)

(8c)

The solution to these equations for similar initial and
boundary conditions determines the contribution of the
concentration inhomogeneities to the kinetics of the
formation process of the impurity atmospheres in iso-
lated (a crystal without external loads) and open (a
crystal being irradiated) systems. A cylindrically sym-
metric impurity atmosphere is formed for α2 = 0. The
initial concentration inhomogeneity in the isolated sys-
tem (α2 = 1) changes the diffusion equation: the cylin-
drically symmetric atmosphere is formed according to
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the spherical-symmetry law. This retards the accumula-

tion rate for the impurity atoms. In fact, for  < 0, it

follows from Eq. (8b) that  is smaller than the corre-

sponding value from Eq. (8c). The concentration inho-
mogeneity in open systems (α2 = –1) also changes the
diffusion equation: now, the cylindrically symmetric
atmosphere is formed according to the plane symmetry
law. This results in an increase in the accumulation rate

of impurity atoms. For  < 0, it follows from Eq. (8a)

that  is larger than the corresponding value in

Eq. (8c). A mathematically clear comparison of the
kinetics of the two processes is possible due to the log-
arithmic coordinate dependence of the potential of the
interaction of impurity atoms with an initial concentra-
tion inhomogeneity. Other coordinate dependences of
the interaction potential complicate the diffusion equa-
tion, with a corresponding loss of mathematical clear-
ness. The physical meaning of this result is evident. The

additional term   in the right-hand side

of Eq. (8b), as compared to Eq. (8c), reflects the pres-
ence of sinks for impurity atoms. Therefore, the rate of
formation of the equilibrium impurity atmosphere is
retarded. The formation of the nonequilibrium impurity

atmosphere leads to the disappearance of the term 

 in Eq. (8c). This corresponds to the appear-

ance of sources of impurity atoms in Eq. (8a), and the
rate of formation of the nonequilibrium impurity atmo-
sphere increases.

The solution to Eq. (8) under similar initial and
boundary conditions is well known:
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(9c)

Here,

µn are the roots of the equation

and J0(µ) and N0(µ) are the Bessel functions of the first
and second kind, respectively. It is seen that, for a sim-
ilar period of time, the dimensionless concentration of
the impurity atoms takes different values. Thus, for

steady-state values of  in the region r0 < r < R,

we have

(10)

This testifies to the different rates of accumulation of
the impurity atoms. The nonequilibrium impurity
atmosphere (9a) is characterized by the highest rate of
formation, while the formation rate of the equilibrium
impurity atmosphere (9b) is naturally lower.
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Thus, the equilibrium impurity atmosphere in iso-
lated systems (a crystal in the absence of external
loads) impedes its own formation. The nonequilibrium
impurity atmosphere in open systems (a crystal being
irradiated) helps its own formation. The result obtained
is of general physical meaning. It is well known, for
example, that nonequilibrium states are enhanced in
open systems [8]. Under external actions, any system
tends, as fast as possible, to free itself from this action
at the cost of the enhancement of the nonequilibrium
state.
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In this paper, we show that introducing the zeroth
component of a toroidal moment, which is normalized
to the scalar electric potential (scalar moment), is an
efficient method of ascertaining the relation between
diamagnetic and thermodynamic properties of con-
tinua. This allows thermodynamic characteristics to be
used for estimating the diamagnetic properties of mate-
rials in the case when direct magnetic measurements
are incapable of providing such information (e.g., in the
case of atoms having intrinsic magnetic moments). On
the other hand, this makes it possible to predict certain
thermodynamic parameters (such as the specific sur-
face energy or the evaporation heat) using known dia-
magnetic properties. In this case, the scalar moment of
a chemical element is treated as an additive character-
istic similar to the parachor, which allows us to pass
from the properties of simple materials to characteris-
tics of complex molecules.

Since the character of interaction of atoms or mole-
cules (van der Waals forces) is determined by the
charge distributions in them, the diamagnetic suscepti-
bility χ (with M = χB, where M and B are the magneti-
zation vector and the magnetic-induction vector,
respectively) can be considered one of the intermolec-
ular-interaction parameters and can be related to the
thermodynamic properties of the material (see [1,
pp. 577–579]):1 

(1)

Here, m is the electron mass, e is the elementary charge,
n is the density of atoms (or molecules), ρ is the atomic-
charge density, and r is the radius vector in the atom
center-of-mass system. The integration in (1) is per-

1 Here, the SI system of units is used; for simplification of the for-
mulas, it is sometimes assumed that ε0 = 1 and c = 1.
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formed over the entire atomic volume. The presence of
the factor r2 leads to an exclusively predominate contri-
bution of the electron cloud to the integrand. Therefore,
the above integral, as expression (1), has a negative sign
(i.e., the diamagnetic susceptibility is negative). Here,
under the assumption of random orientation of mole-
cules, there appears a factor 1/6 having a statistical
nature. As follows from (1), the quantity χ is a measure
of the mean radius squared for the electric-charge dis-
tribution in an atom.

The integral entering into (1),

(2)

arises also in the expansion (over irreducible tensor
representations) for the energy corresponding to the
charge density ρ in the external potential ϕ (see [2,
p. 1206]):

(3)

Here, Qij is the quadrupole moment and the last term
can be rewritten in the form

(4)

where ρe = –∇ 2ϕ is the external-charge density. The
quantity a introduced in this manner is a characteristic
of the system’s (atom) response to this external-charge
density. For definiteness, we refer to the quantity a as a
scalar moment. A spherical charged capacitor is a sim-
ple model for an electrically neutral system possessing
a scalar moment.

For an electrically neutral atom, its scalar moment
calculated in the center-of-mass system of the atom can
be proven to be an additive quantity. Indeed, the scalar
moment for a group of atoms is the sum of their scalar
moments, provided that the interaction disturbing the
charge distribution is ignored.
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Scalar moments of compounds

H Li Na K Hg Cu Ag Au –

H 3.72 5.97 – – – – – – 1.9

Cl 21.07 22.72 28.36 36.53 55.25 37.38 45.90 63.07 19

I 44.71 46.80 53.81 60.17 78.34 59.5 75.43 85.64 43

Br 31.12 32.85 38.89 46.39 54.11 46.9 56.44 57.53 29

F 8.12 9.55 15.19 22.23 50.05 – 37.25 – 6

OH 12.20 11.69 22.29 20.68 – – – – 10

– 1.9 4 10 17 36 17 27 43 –
For the density n of atoms, each having the scalar
moment a, the energy density corresponding to for-
mula (4) is

(5)

In electrostatics, the energy density has the form ϕρe;
therefore, the quantity na entering into (5) is propor-
tional to the scalar potential of substantial (i.e., depend-
ing on the substance properties) nature,

(6)

or, with regard to expression (1), to the diamagnetic
susceptibility,

(7)

For materials in the condensed state, this potential is
usually on the order of several volts [2].

The dipole toroidal moment is known to determine
the matter response to the substantial manifestation of
the vector potential [3, 4]. The electromagnetic poten-
tial is a four-dimensional vector. Therefore, scalar
moment (2) enters into the zeroth component (time
component) of the toroidal-moment vector.

With an accuracy to the first-order terms in the
expansion over the velocity of the point charge q, the
operator of the toroidal-moment zeroth component,
which is consistent with the definition of the toroidal-
moment operator [3], takes the form

(8)

Here, v is the particle-velocity operator, L = r × mv is
the angular-momentum operator, and gσs = pm is the
intrinsic magnetic moment. In this formula, all the
terms, except for the first, are relativistic in character.
Hence, the first term in the right-hand side of (8) is,

ω naρe.=
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generally, a reliable estimate for the scalar toroidal
moment:

(9)

The difference in the numerical factors [1/5 in (9)
instead of 1/6 in (2)] is associated with the fact that the
toroidal-moment vector was defined in [3] in terms of a
three-dimensional multipole expansion, which ignores
the normalization of its density to the four-dimensional
vector potential.

Based on formulas (1) and (2) for the scalar moment
of an atom or a molecule in a material with diamagnetic
susceptibility χ, we have

(10)

Introducing the conventional magnetic susceptibility
related to the unit mass density χm, we rewrite (10) as

(11)

where M is the mass of an atom or a molecule of the
material under consideration.

In the table, we present the values of the scalar
moment a × 1040 C m2 for hydrogen and additive com-
pounds of certain univalent metals with hydrogen,
chlorine, iodine, bromine, fluorine, and hydroxide-ion.
The scalar moments of compounds were evaluated by
Eq. (11) on the basis of data of [5] (these values are
given at the intersection of the corresponding column
and row).

We can see that the gradual increase in the atomic
mass from H to K affects the scalar moments for the
compounds of these chemical elements with Cl, I, etc.
Moreover, in each of the rows, the passage from a col-
umn to a neighboring one leads to approximately the
same increment in the scalar moment. This fact allows
the increment to be related to the scalar-moment differ-
ences for adjacent chemical elements in the series H,
Li, Na, and K. The compounds of these chemical ele-
ments with the hydroxide-ion seem to be an exception.
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This might be due to the bivalent (composite) nature of
this ion or to certain experimental errors associated
with the formation of molecules of alkalis and water in
a dissociated solution and with effects of other distort-
ing agents. Similar arguments are basically valid for the
other metals listed in the first row of the table.

The scalar moments of hydrogen and the metals are
represented in the bottom row of the table. They were
evaluated by analyzing the differences between the sca-
lar moments listed in the columns, with the error not
exceeding 5% for hydrogen and alkaline metals (for
other metals, the errors may be slightly larger).

The scalar moments of the elements listed in the left
column are presented in the right column. They were
evaluated on the basis of the arguments indicated
above. A value standing at an intersection is approxi-
mately equal to the sum of the scalar moments of the
elements in the headings of the corresponding column
and row.

When evaluating the partial moments, we use the
additivity principle for the scalar moment of a com-
pound while ignoring distortions caused by the forma-
tion of chemical bonds. This procedure is the main
source of errors in the estimates made above. The addi-
tivity principle can be markedly violated in more com-
plex compounds. This is associated with the strong dis-
tortions of partial moments by chemical bonds, so that
the scalar moments of chemical bonds should also be
taken into account.

The scalar-moment density in a liquid is, in accor-
dance with (6), a scalar electric potential of substantial
nature which describes the resulting action of the van
der Waals forces. This density can be related to the ther-
modynamic parameters of the liquid, such as the spe-
cific surface energy, the evaporation heat, the specific
heat, etc. This implies that the measurements of the char-
acteristics mentioned above allow us to evaluate the dia-
magnetic susceptibility of the liquid by formula (10). In
this case, we avoid magnetic measurements or compli-
cated calculations involving wave functions. The
method for determining the mean-square radius of the
charge distribution in an atom or a molecule may be the
only experimental method of indirectly studying dia-
magnetic properties of paramagnetic materials.

Formulas (6) and (7) describe the scalar potential
averaging manifestations of intermolecular or inter-
atomic forces; this allows us to ascertain the relation
between the scalar moment (and also diamagnetic sus-
ceptibility) and thermodynamic parameters.

We now consider an interface (between two differ-
ent solids, a solid and a liquid, a solid and a gas, or a gas
and a liquid). Let the contacting phases be character-
ized by the diamagnetic constants χ1 and χ2 , respec-
tively. (In particular, for vacuum χ2 = 0.) With regard
to (7), the potential difference at the interface is

(12)∆ϕ1–2
m

eε0
------- χ1 χ2–( ).=
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In the case of dielectric phases, we can disregard the
effect of conduction electrons (equalizing the potential
difference by varying their density in the near-bound-
ary layer). Let δ1–2 be the thickness of the interfacial
boundary layer. Then, potential difference (12) of the
dielectric phases corresponds to an electric-field with
intensity

(13)

Hence, the volume energy density is

(14)

while the surface energy density in the interfacial layer
is given by

(15)

In the case of an interface between a liquid and vac-
uum or two liquids, quantity (15) is, respectively, the
absolute or relative surface tension. It is convenient to
choose the effective thickness of the interfacial layer in
the form

(16)

where K is a certain number. The values of K evaluated
by formulas (15) and (16) according to the experimen-
tal data for a variety of organic liquids and water are
close to 4 (e.g., at room temperature, K . 4.2 and 4.3
for H2O and D2O, respectively) [2].

The magnitude of K is mainly determined by the
polarization of molecules of the liquid in the near-sur-
face electric field (13).

The decrease in the electric-field intensity is deter-
mined by the permittivity εhf in the high-frequency
region, since the essentially short-range near-surface
field is subjected to high-frequency oscillations corre-
sponding to the thermal motion of molecules. Thus, the
effective mean electric-field intensity is lower by a fac-
tor of εhf than that given by expression (13). The corre-
sponding energy decrease is inversely proportional to
εhf squared or to the fourth power of the refractive
index. For example, the refractive index for water is
about 1.3, and its fourth power is about 3. This number
is close to the values of K with a correction for the den-
sity decrease in the near-surface layer. For the other
dielectric liquids under consideration, the refractive
index is approximately the same.

When studying the surface tension of complex liq-
uids, the scalar moment might be used as an additive
characteristic instead of the parachor (sometimes used
in these cases), because the latter is a purely empirical
quantity having no clear physical meaning and provid-
ing no acceptable accuracy of description.

E
∆ϕ1–2

δ1–2
-------------.=

ω
ε0E2

2
-----------,=

σ ωδ1–2
ε0ϕ1–2

2

2δ1–2
--------------

a1n1 a2n2–( )2

2ε0δ1–2
----------------------------------.= = =

δ Kn 1/3– ,=
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The relation between the surface tension and the
evaporation heat can be found on the basis of analysis
of the interaction energy for an isolated molecule and
the entire continuum. Within the framework of a sim-
plified model for spherically symmetric molecules, the
formula

(17)

was derived in [2], which relates the molar evaporation
heat αm and the scalar moment [or, with regard to (10),
the diamagnetic susceptibility]. Here, NA is the

Avogadro’s number and K .  [see (16)]. Far from
the liquid–gas critical point, this formula is in satisfac-
tory agreement (within 10%) with the experimental
data for water and organic liquids [2] and allows both
the molar scalar moment a and diamagnetic properties
of a liquid to be related to its evaporation heat.

Similarly, it is possible to ascertain the relation
between the scalar moment of a molecule and other

αm . 
2πNAa2Kn5/3

ε0
--------------------------------

εhf
2–
thermodynamic and thermal characteristics of its corre-
sponding material. This makes it possible to study the
dielectric properties of materials by both thermody-
namic and thermal-physics experimental methods.
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The parameters of spinodals are related to the work
needed for the formation of homogeneous nuclei of the
new phase and to their maximum number per unit vol-
ume at accessible levels of overheating or supercooling
in metastable systems. Several examples illustrating the
implementation of the obtained relationships are con-
sidered.

In the thermodynamics of metastable systems, the
position of the limiting temperature that characterizes
the boundary of phase states (spinodal) is determined
by setting the second variation of a certain thermody-
namic potential equal to zero, for example, δ2G = 0,
where G is the Gibbs free energy [1, 2]. According to
this definition, the parameters characterizing the
boundary of phase states can be found with the help of
the equation of state by setting the derivatives ∂T/∂V or
∂p/∂V equal to zero.

Along with the thermodynamic definition of the
phase state boundary, its “kinetic” definition is often
used for practical purposes. The latter definition relates
the vicinity of this boundary to the steep growth in the
homogeneous nucleation rate (by 3–9 orders of magni-
tude as temperature increases by one degree of centi-
grade) [2]. The sharpening of the nucleation regime
near the phase state boundary is observed in experi-
ments as spontaneous (fluctuation-driven) boiling of
liquids [2, 3] upon their intense heating in the absence
of heterogeneous nucleation centers.

The aforementioned definitions of the phase state
boundary are formally not related to each other, while
they do lead to similar results in calculations of param-
eters that characterize this boundary. The purpose of
the present paper is to reveal the relationship between
the parameters of the spinodal and the characteristics of
nucleation. The existence of such a relationship stems
from the fact that both the spinodal and the nucleation
are the manifestations of the same phenomenon,

Mendeleev University of Chemical Technology, 
Miusskaya pl. 9, Moscow, 125190 Russia
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namely, the breakdown of stability in metastable sys-
tems under the effect of thermal disturbances. This is
the case both for overheated and supercooled systems.

In the absence of centers of homogeneous nucle-
ation, overheating above the temperature T∞ of equilib-
rium phase transformation is accompanied by the for-
mation of homogeneous nuclei. The work needed for
this formation is [2]

(1)

where σ is the surface tension, ps is the pressure of sat-
uration, and p' is the applied pressure; v ' and v '' are the
specific volumes of the condensed and gaseous phases,
respectively.

The probability of formation of a homogeneous
nucleus in a unit volume per unit time is proportional to
the nucleation rate. The latter is given by the following
relationship at the stage of the steady-state flow of
nuclei [2]:

(2)

where k is the Boltzmann constant, N0 is the number of
molecules per unit volume, and B is the frequency fac-
tor, B = 1010 1/s.

Relationship (2) is found under the assumption that
the arising nuclei do not produce any effect on each
other. In fact, their mutual influence does not exist at
the initial stage of nucleation, when the number of
nuclei is small. However, as soon as the positions for
the formation of nuclei become exhausted, the effect of
“overcrowding” manifests itself and the rate J
decreases. At a certain moment, it vanishes. If the
neighboring nuclei are located close to each other and
the amount of the condensed phase is insufficient for
the formation of a new nucleus, then the phase transi-

W*
16πσ3

3 ps p'–( )2 1 v '/v ''–( )2
-------------------------------------------------------,=

J N0B W*/kT–( ),exp=
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tion terminates. A similar situation is observed upon
cooling.

The relation under discussion allows us to give the
following definitions for the upper and lower bounds of
metastable states. The upper bound is determined by
the temperature set Tl(p), above which nucleation is
impossible because the potential nucleation centers are
exhausted as a result of the complete transformation of
the material into another phase. Correspondingly, the
lower bound defines the temperature level below which
nucleation becomes impossible owing to the same
mechanism. Nucleation occurs only when the corre-
sponding Gibbs free energy ∆G is available; therefore,
overheating (or supercooling) of the substance can be
done up (down) to the limiting temperature Tl , below
(above) which the excess energy ∆G is sufficient for the
formation of the maximum number nm of homogeneous
nuclei per unit mass.

We now find the relationship between the excess
energy ∆G and nm . To create n homogeneous nuclei of
critical size, we need to expend the work W'' = nW*.

Assuming that the entire mass M of the material was
spent in forming the highest number of nuclei, we find
that their number nm is M/ρ''V*, where ρ'' = 1/v '' is the

density of a nucleus and V* = 4π /3 is its volume. The

radius of a critical nucleus is [2]

r*
3

r*
2σ

ps p'–
--------------- 1 v '

v ''
------– 

  .=

100 300

500

1000

0
200

1

2

3

Tl T, °C

KW, J
∆G, J
W, J

Fig. 1. Graphical solution of Eq. (4) determining the coeffi-
cient K: (1) KW; (2) ∆G; (3) W. Dashed lines denote the
behavior of the corresponding plots above Tl according to
Eq. (3).
Bearing relationship (2) in mind for W*, we find the

total work W '' required for the formation of nuclei:

(3)

Then, we should take into account that in the case of
a large number of nuclei, the value of nm is limited by
their packing density. Upon random nucleation, the
closest (octahedral) packing does not form and the
degree of volume filling depends on the sequential for-
mation of nuclei at different stages. To make allowance
for the portion of the volume that is actually accessible
to the nuclei, we introduce the factor k1 equal to the
ratio of this volume to the entire volume of the sub-
stance. Hence, we have W = k1W ''. We should also take
into account that a certain portion of the energy spent
in the formation of the film can be released by merging
of neighboring nuclei. This energy is proportional to
the number of nuclei and hence to the sample mass.
Therefore, the contribution of such an energy can be
accounted for by introducing the coefficient k2  in W ''.
In this coefficient, we also include the energy loss for
overcoming the forces of inertia upon formation of
nuclei with allowance for the effect of “overcrowding.”
Further on, we write equality ∆G = W, introduce the
notation K = k1k2 , and obtain the final relationship

(4)

The values of all parameters involved in (4) can be
found in reference books, for example, in [2, 4]. The
only exception is coefficient K, which can be calculated
using data on the stochastic process of creating and
merging nuclei with due account of their distortion.
This is a quite complicated and cumbersome problem.
A simpler method of determining K is based on the
semiempirical approach using the parameters of the
spinodal for a certain well-characterized reference sub-
stance, such as water. The temperature corresponding
to the spinodal of the distilled and thoroughly purified
water is 312°C at normal pressure [2], which yields
K = 9.29.

A solution to Eq. (4) can be found either numeri-
cally or by a graphical method, i.e., by drawing ∆G(T)
and W(T) plots. The abscissa of the intersection point
for these plots determines the required temperature
value. The construction of such graphs for water is
illustrated in Fig. 1. The ∆G(T) = ∆H(T) – T∆S curves
are calculated for the metastable region as monotonic
functions of temperature. The latent heat of the phase
transition is not included in these functions in the meta-

W'' nmW* ps p'–( ) 1 v '/v ''–( )/2ρ''.= =

∆G K ps p'–( ) v '' v–( )/2.=
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stable region, i.e.,

where T0 and p0 are the initial temperature and pressure,
respectively.

To test Eq. (4), we calculated the temperatures cor-
responding to the spinodal upon overheating of pure
volatile liquids and compared the results with the
experimental data reported in [2]. The calculated value
for benzene is Tl = 491 K; the measurements of differ-
ent researchers yield the following values: 473 K
(F. Kernik, P.A. Gilbert, and K. Wismer), 498 K
(E.N. Sinitsyn and V.P. Skripov), and 510 K (P.A. Pav-
lov and Skripov). Thus, the deviations of the calculated
value from the experimental value range from 1.4 to
3.87%, which are admissible in applied calculations.
The calculated value for n-heptane is Tl = 485 K; exper-
iments yield 484 K (G. Wineshim and K. Tanata),
486 K (Skripov and V.I. Kukushkin), and 485.8 K
(Skripov and Pavlov).

Equation (4) admits an approximate solution based
on the assumption that ∆H = const and ∆S = const. Sub-
stituting relationship ∆G = ∆H – T∆S into the left-hand
side of (4), we obtain, after some transformations,

Then, taking into account that ∆H/∆S = T∞ , we find
the simple relationship

(5)

where the proportionality coefficient is C = 1 + K(ps –
p')(v '' – v ')/2∆H.

A solution to (5) can be close to an exact solution, if
the temperature range Tl–T∞ is sufficiently narrow, for
example, at elevated pressures or for substances with
small accessible overheating. The coefficient C turns
out to be the same for substances with close chemical
compositions. For example, for oxygen-containing
organic compounds of small molecular mass (68–
144 atomic units), the coefficient C, equal to the ratio
Tl/T∞, is nearly constant at atmospheric pressure and is
1.34 ± 1.5%. For ethanol, we have C = 463/361 = 1.32;
for propyl alcohol, C = 495/370 = 1.34; etc. [2]. For a
large number of high-boiling noncyclic hydrocarbons,
C = 1.31 ± 5% at atmospheric pressure [2]. Such an
accuracy is sufficient for many applied calculations. As
the pressure rises, the difference v '' – v ' becomes

∆H T( ) ∆H T0 p0,( ) Cp T( ) T ,d

T0

T

∫+=

∆S T( ) ∆S T0 p0,( ) Cp T( ) Tln ,d

T0

T

∫+=

Tl ∆H/∆S K ps p'–( ) v '' v '–( )/2.+=

Tl CT∞,=
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smaller and the coefficient C also decreases, so that at
the critical point, we have v '' = v ' = 0 and C = 1.

Note that a relationship similar to (5) puts the
attainable values of overheating in correspondence
with the equilibrium transformation temperature upon
melting [5]. However, on melting, C is close to unity
under overheating (1.01–1.02), whereas upon super-
cooling, it can be as low as 0.8 [5].

Equation (4) is valid both for volatile and nonvola-
tile substances, which, on heating, can undergo thermal
decomposition without boiling. In this case, the
changes in ∆G depend on the chemical potentials of the
initial (µi) and final (µj) reaction products: ∆G =

 – , where νi and νj are the coefficients
accounting for the stoichiometry. In addition, when cal-
culating the frequency J and the coefficient C, we
should take into account the activation energy E of the
reaction products at the phase boundary. With allow-
ance for these arguments, we can write out the coeffi-

cient C as C = 1 + K(ps – p')  –  ×

2∆H + ED/∆H, where vi and vj are the specific volumes
of the initial and final products, respectively. Experi-
mental data demonstrate that the ratio Tl/T∞ = C lies
within the range 1.1–1.46 for many nonvolatile ther-
mally stable substances [3, 6, 7]. The values of this ratio
for substances with different composition are presented
in the table along with T∞ and the initial temperature of
decomposition. These temperatures were determined
by thermal-analysis techniques [8, 9]. The values of Tl

correspond to the first stages of thermal decomposition
and characterize the temperatures to which the sub-
stance retains its initial composition as the heating rate
increases above 102 K/s. We should note the agreement
between the measured values of Tl for a number of
materials and the calculations based on the wide-range

ν iµi∑ ν jµ j∑

ν jv j∑ ν iv i∑ 


Experimental data on attainable overheating of nonvolatile
substances at normal pressure (T, K)

Substance T∞ Tl Tl/T∞

Polystyrene 653 803 1.23

Low-density polyethylene 593 773 1.3

Ammonium sulfate 483 643 1.33

Pentahydric copper sulfate 531 643 1.21

Potassium permanganate 513 648 1.25

Boric acid 343 493 1.43

Potassium hydrocarbonate 393 565 1.43

Gaseous carbon (G6) 563 733 1.3

Celluloid 460 600 1.3

Lead azide – 670 –
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and other equations of state [10–12]. This confirms the
relationships used in the calculations.

The above discussion of overheating and supercool-
ing near the spinodal provides an opportunity to restore

1

2

(a)

1

2

(b)

G

J

3

1

2
(c)

S = –(∂G/∂T)p

TT∞Tcool
l T heat

l

Fig. 2. Isobaric curves for potential- and kinetic-phase dia-
grams. (a) Variation in the Gibbs free energy: (1) condensed
phase; (2) gaseous phase. (b) Variation in the nucleation

rate: (1, 3) nucleation flow J; (2) coefficient ζ = 1 – .

(c) Variation in the entropy: (1) liquid phase branch; (2) gas-
eous phase branch. Thin lines: without taking nucleation
into account; bold solid lines: nucleation is taken into
account; dashed line: actually unrealizable branch of the
labile state.

n
nm
------
the missing portions of isobaric and isothermal curves
in the plots of thermal potentials, which are usually
drawn without taking nucleation into account, see, for
example, [13]. In Fig. 2a, such plots are drawn by thick
solid lines. The variation of relative filling of the vol-
ume by nuclei, ζ = 1 – n/nm , and the J(T) and S(T)
curves are plotted in Figs. 2b and 2c in the vicinity of
the spinodal.

As far as the practical implementations of the pre-
sented description of the metastable regions are con-
cerned, we note the need to take the spinodal into
account in calculating the thermal processes arising in
materials under exposure to high-energy irradiation.
The latter occurs, for example, in intense technological
processes (plasma chemistry, laser irradiation, self-
propagating high-temperature synthesis, cracking of
petroleum and heavy-fraction petroleum products,
etc.). The spinodal is also important in the analysis of
combustion and explosion processes in condensed sys-
tems. The mathematical models used in the calculation
of such processes, are often developed for equilibrium
thermal conditions and do not involve information on
the spinodal. The implementation of these models at
high temperatures in the vicinity of the spinodal with-
out taking into account its parameters may lead to inac-
curate determination of the evaporation rates and the
rates of thermal decomposition, to the overestimation
of the concentration of the condensed phase in the
reacting systems, and to other significant errors. Note
that the lack of information on spinodals in the refer-
ence literature (reference book [2] is a rare exception)
leads to the use of various and often baseless extrapola-
tions of the data obtained for the stable phases to the
region of metastable states in thermal calculations. The
correlations obtained above allow us to avoid the errors
caused by such an extrapolation.

Due account of the spinodal parameters provides an
opportunity to improve the accuracy in the calculations
of the temperature of reagents in the intense thermal
processes in condensed systems. Note here the calcula-
tion of the reaction-zone size and of the operation-
channel length in the plasmachemical reactors [12], the
calculations of the evaporation rate for highly over-
heated liquids [11], the determination of the yield of
reaction products in the gasification of solid fuels under
intense heating [7, 9], the calculation of the adiabatic
delay period before the ignition of energy-consuming
materials [7, 14], and the calculation of the propaga-
tion rate for the combustion front [7, 15]. Other exam-
ples illustrating the use of improved mathematical
models in the calculations of thermal processes are
discussed in [7].
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1. Study of inelastic collisions of slow electrons
with strontium atoms is of considerable interest from
the standpoint of fundamental science. The valence
shell of a strontium atom in the ground state is charac-
terized by the presence of two equivalent s-electrons, as
for a helium atom. However, in contrast to the latter, the
strontium atom has an atomic skeleton with a rather
complicated structure. This structure involves filled
1s22s22p63s23p63d104s24p6 electron shells. This atom
differs from those of lighter alkaline-earth elements,
namely, magnesium and calcium, in the existence of the
3d-shell in it.

On the other hand, in the last few years, strontium
acquired an important practical significance associated
with the appearance of metal-vapor lasers. For the first
time, laser generation based on a transition with wave-
length λ = 6.45 µm was observed in [1] for a strontium
atom. Later [2], such a generation was found for the SrI
spectral lines, namely, λ = 3.0665 and 3.0111 µm. The
generation on 9 transitions of a single-charged stron-
tium ion was also obtained. The majority of these tran-
sitions correspond to IR lines with a wavelength of
approximately 1 µm [3].

Thus, information on cross sections for the excita-
tion of a strontium atom by electron impact can be used
in solving both theoretical problems of atomic physics
and electron–atom collisions and in developing new-
types of lasers (e.g., lasers with electron pumping [4]).
However, the processes occurring in the collisions of
slow electrons with strontium atoms cannot be referred
to as thoroughly studied. The first and most detailed
experimental data concerning excitation cross sections
for singlet atomic states of a strontium atom were
obtained in [5]. A subsequent experimental study [6]
was devoted to the thorough investigation of only one
SrI transition, namely, the 460.733-nm resonance spec-
tral line. Then, a unique theoretical study [7] appeared
in which the calculation of the excitation cross sections
for a strontium atom was performed in the Born–Och-
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kur approximation. Finally, quite recently, two papers
[8, 9] were published devoted to discussing the pecu-
liarities of the excitation of n3P1 levels for alkaline-
earth metals and also of two-electron excitation. How-
ever, these studies are completely based on the results
of the original paper [5] and do not contain new exper-
imental information.

It should be noted that calculations [7] have only
been performed for the lowest lying levels; the differ-
ence between theoretical and experimental cross sec-
tions for certain levels attains one decimal order. In the
experimental study [5], the dependence of the cross
sections on the principal quantum number n of the
upper level (i.e., in spectral series) was approximated
by a power function. At the same time, it was noted that
considerable deviations from the power dependence
took place in some singlet series. Since only 3 to 4
experimental points were measured for each of the sin-
glet series, the reliability of the approximation at the
available experimental errors of 30 to 40% is not high.

2. In this paper, a thorough investigation of the exci-
tation of the 1D2 level of a strontium atom by slow
homogeneous-energy electrons is carried out. The main
goal of this study was to determine the behavior of the
excitation cross sections in the 5s5p1 –5snd1D2 spec-
tral series. We used the method of extended intersecting
beams in combination with the optical-spectroscopy
method [10]. The technique and instrumentation for
investigations using extended beams have been dis-
cussed in detail [11, 12]. Thus, the description of these
methods seems to be unnecessary in this paper. How-
ever, the basic conditions of the experiments performed
with strontium should be presented here.

Metallic strontium with a total impurity content not
exceeding 0.02% (the main impurities are Si, Zn, Cu,
Fe) was evaporated from a tantalum crucible by elec-
tron-beam heating of its external surface. Defocusing
of the electron beam to a diameter of approximately
40 mm made it possible to provide a more uniform tem-
perature field. In the operation regime at a crucible tem-
perature of 1000 K, the concentration of Sr atoms
within the region of intersection for atomic and electron
beams attained 2.5 × 1010 cm–3. However, when inves-
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tigating the resonance atomic lines, we lowered the
concentration to 1 × 109 cm–3 with the goal of mini-
mizing the role of reabsorption. It should be noted that
in [5], the atomic concentration attained 1011–1012 cm–3.

As do atoms of other metals of the second group,
strontium has an isolated ground level 1S0 separated
from the nearest excited levels by an interval exceeding
14000 cm–1. For the evaporation temperature of 1000 K
indicated above, the thermal equilibrium population of
these levels is extremely low and excitation occurs only
from the ground level.

The electron-beam current density in the entire
operating energy range from 0 to 200 eV did not exceed
1.0 mA cm–2, i.e., was several times lower than in [5].
The width of the electron energy distribution, which
was measured at the entry of the electron collector by
the retarding-potential method, was 0.9 eV at an energy
of 100 eV and 1.0 eV at energies of 20 and 200 eV.

While scanning spectra, the actual spectral resolu-
tion of the setup, with allowance for the high operation
speed of the electronic modules forming the registra-
tion system, was approximately 0.1 nm in the UV and
visible spectral regions at λ ≤ 600 nm. In the longer
wave spectral region, the resolution dropped to 0.2 nm
due to the necessity of changing the monochromator
diffraction grating. Owing to the fact that only reflect-
ing elements (with the exception of the quartz window
applied for extracting the radiation from the vacuum
chamber) were used in the optical system, it is achro-
matic and needs no additional adjustment in the entire
operating spectral range from 190 to 850 nm.

The error in the measurements of relative cross sec-
tions amounts to 3 to 15% depending on the intensity of
the spectral line and its position in the spectrum. The
error in the absolute values of cross sections lies within
the limits of ±20 to ±32%. A detailed discussion of error
sources and test experiments can be found in [10–12].

3. We measured approximately 220 excitation cross
sections for spectral lines within the spectral range
from 242 to 768 nm in the case of exciting electrons
with an energy of 30 eV. In this paper, we consider the
behavior of the excitation cross sections for spectral
lines arising in transitions from 1D2 levels. The interest
in the cross sections of these transitions is stimulated
first of all by the fact that in a number of previous stud-
ies, an anomalous behavior of radiation lifetimes for
5snd1D2 levels was observed. These anomalies in the
behavior of low-lying [13] and higher-lying [14] 1D2
levels were found experimentally and were predicted
theoretically in a wide range (n = 6–25) [15]. Analo-
gous data for cross sections are absent, although the
anomalous behavior of the excitation cross section for
the 5s5p1 –5s7d1D2 transition was noted in [15]
without other comments.

The experimental results are presented in the table,
in which the wavelength λ, the kind of the transition,
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the internal quantum number J, the energies El and Öu

of the low-lying and high-lying layers, the cross-sec-
tion values Q30 and Qmax at an energy of exciting elec-
trons of 30 eV and in the maximum of the optical exci-
tation function (OEF), respectively, and the position
E(Qmax) of the maximum are listed. In the OEF column,
the numbers of OEFs are indicated in accordance with
their numbering in Fig. 1. Although in the present study
the spectral resolution is much better than in [5], and all
the more in [6], certain pairs of lines in the dense SrI
spectrum could not be experimentally resolved. To do
this, we used the entire available information concern-
ing SrI atomic constants. The cross sections obtained as

0.5
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Fig. 1. Optical excitation functions for the excitation of
strontium atoms.
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Cross sections for strontium atoms

λ, nm Transition J El, cm–1 Eu, cm–1 Q30,
10–18 cm2

Qmax,
10–18 cm2 E(Qmax), eV OEF

(329.662 5s5p3P°–5s12d1D 1–2 14504 44829) 0.48 0.63 11.0 7

(334.005 5s5p3P°–5s12d1D 2–2 14898 44829) 1.47 1.93 11.0 7

(355.485 5s5p3P°–5s8d1D 2–2 14898 43021) 0.22 0.27 12.0 4

(365.833 5s5p3P°–5s7d1D 1–2 14504 41831) 0.79 1.04 11.5 3

(371.188 5s5p3P°–5s7d1D 2–2 14898 41831) 0.051* 0.067 11.5 3

(396.261 5s5p3P°–5s6d1D 1–2 14504 39733) 1.10 1.77 11.0 2

416.931 5s5p1P°–5s23d1D 1–2 21698 45676 0.10 – – –

417.388 5s5p1P°–5s22d1D 1–2 21698 45650 0.115 – – –

417.920 5s5p1P°–5s21d1D 1–2 21698 45619 0.125 – – –

418.542 5s5p1P°–5s20d1D 1–2 21698 45584 0.14* – – –

419.278 5s5p1P°–5s19d1D 1–2 21698 45542 0.16* – – –

420.153 5s5p1P°–5s18d1D 1–2 21698 45492 0.185* – – –

421.204 5s5p1P°–5s17d1D 1–2 21698 45433 0.22 – – –

422.470 5s5p1P°–5s16d1D 1–2 21698 45362 0.19 0.21 9.5 10

424.240 5s5p1P°–5s15d1D 1–2 21698 45263 0.165 – – –

426.232 5s5p1P°–5s14d1D 1–2 21698 45153 0.32 0.35 9.0 9

428.814 5s5p1P°–5s13d1D 1–2 21698 45012 0.40 0.53 110.0 8

432.195 5s5p1P°–5s12d1D 1–2 21698 44829 0.20 0.26 11.0 7

436.936 5s5p1P°–5s11d1D 1–2 21698 44578 0.37 0.46 18.0 6

445.180 5s5p3P°–5p2 1D 1–2 14504 36960 0.45 0.76; 0.76 9.5; 13 11

453.135 5s5p3P°–5p2 1D 2–2 14898 36960 1.27 2.15; 2.15 9.5; 13 11

453.237 5s5p1P°–5s9d1D 1–2 21698 43755 1.44 1.81 12.0 5

468.855 5s5p1P°–5s8d1D 1–2 21698 43021 3.21 3.91 12.0 4

(494.346 5s5p3P°–5s5d1D 1–2 14504 34727) 0.115 0.205 7.8 1

496.558 5s5p1P°–5s7d1D 1–2 21698 41831 8.18 10.8 11.5 3

(504.174 5s5p3P°–5s5d1D 2–2 14898 34727) 2.46 4.39 7.8 1

554.336 5s5p1P°–5s6d1D 1–2 21698 39733 21.0 33.8 11.0 2

644.668 5s4d3D–4d5p1D° 3–2 18319 33826 0.54 1.50 7.4 12

655.024 5s5p1P°–5p2 1D 1–2 21698 36960 64.1 109.0; 109.0 9.5; 13.0 11

730.942 5s4d1D–4d5p1D° 2–2 20 149 33826 5.61 15.6 7.4 12

767.308 5s5p1P°–5s5d1D 1–2 21698 34727 42.1 75.2 7.8 1
a result of this procedure are marked by stars. More-
over, some intercombination lines (mainly in the UV
spectral region) are not contained in any of the spectro-
scopic papers, and their classification is performed in
the framework of this study. The data related to these
lines are put in brackets.

As is seen from the table, the most complete data are
obtained for the 5s5p1 –5snd1D2 spectral series in
which cross sections are measured for all transitions
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having n = 5–23, with the exception of the transitions
with n = 10. This transition is also absent in all preced-
ing experimental studies devoted to the determination
of atomic constants for SrI [5–9, 13, 14]. Seemingly,
the excitation probability for this transition is rather
small, so that this transition could not be experimen-
tally detected to date.

The behavior of the excitation cross sections in the
spectral series for atoms of alkaline-earth atoms have
been previously discussed many times (see, e.g., [5, 10]);
DOKLADY PHYSICS      Vol. 46      No. 4      2001
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however, these discussions were often done on the basis
of scarce experimental data. Only investigations using
extended beams made it possible to measure 15 to
20 cross-section values for certain series. It was estab-
lished that in many cases, the dependence of the excita-
tion cross section on the principal quantum number of
the upper level obeys the power law

(1)

Here, Ai and αi are constants with their own character-
istic values for each spectral series. However, in a num-
ber of cases, deviations from the power law were
observed; therewith, no explanation was proposed to
this effect in [5]. At the same time, the analysis per-
formed for the calcium atom [10] allowed the
undoubted close relation of the deviations from the
dependence (1) with the existence of perturbances of
the spectral series to be revealed.

The power dependence (1) is best presented in log-
arithmic coordinates, in which it is mapped by a
straight line. This plot is depicted in Fig. 2 for the spec-
tral series under discussion in the case of a Sr atom at
an electron energy of 30 eV. As is seen, the reduction in
the cross section with increasing n is substantially non-
monotone. For comparison, Fig. 3 shows a similar
dependence of the natural lifetime τ = f(n) for 5snd1D2
levels as a function of the principal quantum number n,
which is taken from [14]. The theory predicts a mono-
tonous growth τ ~ n3; however, this dependence takes
place only for unperturbed series. Comparing Figs. 2
and 3, we may conclude that a correlation in the behav-
ior of the dependences Q = f(n) and τ = f(n) is observed.
This behavior of the radiation lifetimes near n = 15 is
explained in [14] by the perturbing effect of the
4d6s1, 3D2 levels. On the other hand, at n ~ 10, the basic
perturbing cause is, apparently, the 4d23P0, 1, 2 levels.
For the lower lying 1D2 levels, the perturbance is pro-
vided, first of all, by the interaction with the 4d21D2
level.

Quite recently, in [15], the effect of perturbances on
the behavior of the radiation lifetime for levels of Sr
atoms (including 5snd1D2 levels) was subjected to the-
oretical analysis. It was shown that application of the
multichannel quantum-defect theory makes it possible
to obtain satisfactory agreement between calculated
and experimental lifetimes even for strongly perturbed
series, including the series under discussion for a Sr
atom. Unfortunately, the behavior of Sr-atom excitation
cross sections was not considered from this standpoint.
In fact, the behavior of the cross sections for this series
is in agreement with formula (1) only when n ≥ 17,
which corresponds to the values αi = 2.64 and Ai =
3.84 × 10–16 cm2.

When analyzing the OEFs shown in Fig. 1, we can
conclude that the existence of a perturbance also affects
the OEF shape. The most likely explanation of this fact

Q Ain
α i–

.=
DOKLADY PHYSICS      Vol. 46      No. 4      2001
is that in the presence of a perturbance, the relation
between contributions of different excitation channels
varies with n and causes the appearance of additional
features of the OEF. Previously, it was established that
a similar behavior of the cross sections and the OEF in
the perturbed 1D2 series for a calcium atom occurs [10].
In this case, the basic perturbing levels are 3d21D2 and
3d5s1D2.

Alongside the transitions arising as a result of sin-
gle-electron excitation of 5snd 1D2 levels, several of the
transitions observed occur as a result of two-electron
excitation of the even 5p21D2 level and odd 4d5p 1

level. Although the cross sections for some of them are
rather large, (e.g., for transitions at 655.024 and
730.942 nm), the information concerning the excitation
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Fig. 3. Dependence τ = f(n) for 5snd1D2 levels [14].
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of these levels is scarce, which makes detailed discus-
sion of these cases impossible. Nevertheless, it should
be noted that the excitation cross section for the
655.024-nm spectral line is the greatest among those
measured for 1D2 levels of SrI.

4. While investigating the dependence Q = f(n) for
the 5s5p1 –5snd1D2 spectral series, it was established
that this dependence is substantially nonmonotone. As
in the case of the similar dependence τ = f(n), a sug-
gested cause of this behavior can be a perturbance of
the series under consideration. For n ≤ 10 and n ~ 15,
the levels of the 4d2 and 4d6s configurations can be
considered, respectively, perturbing levels.
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INTRODUCTION

The description of drop growth in certain devices or
under natural conditions (e.g., in clouds), as well as of
thermophoresis and diffusiophoresis phenomena,
needs a quantitative theory capable of treating the gas
flow around a particle immersed in gas aerosol in a
wide range of Knudsen numbers. This theory must be
based on solving the Boltzmann kinetic equation.

To date, there exists a number of approaches related
to solving the Boltzmann equation for arbitrary Knud-
sen numbers. Among them, we note the Lees method
[1, 2] with certain modifications [3, 4] and a method
based on solving integro-moment equations by the
variational Bubnov–Galerkin method [5–7].

Each of these methods have advantages and short-
comings. For example, the Lees method describes gas
flows at large Knudsen numbers (Kn @ 1) well but fails
at small Knudsen numbers (Kn ! 1). In the intermedi-
ate range of Knudsen numbers (Kn ~ 1), the accuracy
of the method is, generally speaking, unknown. The
integro-moment Bubnov–Galerkin method is varia-
tional and makes it impossible to find the distribution
function.

In this study, we use the method proposed previ-
ously in [8] for solving the Boltzmann equation at arbi-
trary Knudsen numbers. This method can be considered
a natural generalization of the method of half-space
moments with allowance for the ideas applied in the
Lees method [1, 2].

The essence of the method is the following. A gas
flow is described by a distribution function that has a
discontinuity in the velocity space (as in the method of
half-space moments [9]). However, as in the Lees
method, the discontinuity takes place in the influence
cone (Fig. 1) rather than in the half-plane vn = 0 (vn is
the molecule velocity component normal to the particle
surface). The procedure of constructing a system of
moment equations is similar to the method of half-
space moments [9]. Thus, the method proposed com-
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bines the advantages of the methods preceding it.
Owing to the presence of the influence cone, this
method allows us to describe the flows at arbitrary
Knudsen numbers. On the other hand, the procedure of
constructing the system of moment equations is similar
to that in the method of half-space moments. This
makes it possible to eliminate the inconsistency intrin-
sic to the Lees method in the choice of moments, while
constructing the system of moment equations. Thus, in
the limiting case as Kn  0, the system of moment
equations is reduced to that derived by the method of
half-space moments, since, in this case, the influence
cone is transformed into a half-plane vn = 0. In the other
limiting case, i.e., as Kn  ∞, the system of equations
describes a free molecular flow.

FORMULATION OF THE PROBLEM

We consider a volatile spherical particle of radius a
which is placed into its own vapor. Let the vapor tem-
perature T0 and its concentration n at a great distance
from the particle (compared with the mean free path λ)
be known. Let also n = n0(1 + s), where n0 = nsat(T0) is
the concentration of the saturated vapor at temperature
T0 . The parameter s, depending on its sign, character-
izes either supersaturation or incomplete saturation of

the vapors. The Knudsen number is defined as Kn = .

We restrict ourselves to a small temperature drop Tw

between the surface of the particle and the gas; i.e., we
assume the validity of the relation

In this case, the state of the gas differs slightly from the
equilibrium state and the velocity distribution function
f of the gas molecules can be expanded near the equilib-
rium Maxwellian distribution function f0:

(1)

λ
a
---

Tw T0–
T0

------------------  ! 1.

f ± f 0 1 Φ+( ),=
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where

(2)

m is the mass of a molecule, and c = v is its

reduced velocity.
The steady gas flow is described by the linearized

Boltzmann equation [10] written out in the spherical
coordinate system:

(3)

where Ic(Φ) is the linearized collision integral [10] and
r, ϕ, and θ are spherical coordinates.

CONSTRUCTING THE SYSTEM
OF MOMENT EQUATIONS

We represent the distribution function of vapor mol-
ecules, which is discontinuous on the influence cone
(Fig. 1), in the following form:

We expand the function Φ± into a series in terms of
Sonin polynomials:

where (c2) is the Sonin polynomial [10]. In the
expansion of function Φ±, we preserve the terms up to
k = 1 inclusively. Note that in the conventional Lees
method [1], only the first two terms of the first sum-

f 0 n0
m

2πkT0
--------------- 

  3/2

c2–( ),exp=

m
2kT0
------------

c∇( )Φ Ic Φ( ),=

Φ Φ±≡
Φ+ inside  the  influence  cone

hatched  region  in  Fig.1 ( )

Φ
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∑ bk
±crS3/2
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k 0=

∞

∑+=

Sν
k

a

Fig. 1. Influence cone.
 

mand are preserved. Renaming the expansion coeffi-
cients and omitting the argument in the Sonin polyno-
mials, we have

 

(4)

 

To simplify the calculation of the moments from the
collision integral, the BGK-model [11] was chosen:

Here,

Evaluating the parameters 

 

ν

 

, 

 

G

 

, and 

 

τ

 

 and substitut-
ing them together with function (4) into Eq. (3), we
obtain the differential equation with respect to the

expansion coefficients 

 

, , 

 

, and . Further-
more, this equation is multiplied by the same velocity
polynomials [which were used when distribution func-
tion (4) was expanded into a series] and, finally, inte-
grated over regions both inside and outside the influ-
ence cone. As a result, after simple rearrangements, we
obtain the following system of moment equations:

(5)

Φ± a0
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1 a2
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16
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(6)

(7)

(8)

Here, r is the distance from the origin, which is normal-

ized to the particle radius a, and x = .

As Kn  0, the system of differential equations (5)–
(8) transforms into the system obtained by the method
of half-space moments in [12, 13]. Formally, the pas-
sage to a limit can be performed by taking x = 0 in (5)–

(8). As Kn  ∞, evidently,   0. As a result, the

terms standing in the right side and representing the
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moments of the collision integral vanish. In this case,
collisions between molecules cease to influence the dis-
tribution function and Eqs. (5)–(8) describe the free
molecular flow.

KINETIC BOUNDARY CONDITIONS
ON A VOLATILE SURFACE

To solve the system of equations (5)–(8), it is neces-
sary to set kinetic boundary conditions. Using the well-
known Maxwellian model, we assume that a vapor
molecule incident onto the drop surface can be either
condensed on it (with probability α–) or diffusely
reflected backward into the gas (with probability 1 – α–).
Hence, the molecular flow directed outward from the
particle surface consists of two parts. The first one rep-
resents the flow of molecules evaporated from the sur-
face [their distribution function is characterized by the
temperature Tw and the density nw = nsat(Tw)]. The sec-
ond part represents the flow of reflected molecules
(their distribution function is characterized by the
unknown parameters Ts and ns). As a result, the distri-
bution function for molecules flying from the surface
can be represented in the form

Linearizing this function near the f0 absolute Max-
wellian, we obtain

(9)

where

and n0 = nsat(T0). Comparing this expression with the
distribution function f+ = f0(1 + Φ+), we obtain the fol-
lowing boundary conditions:

To determine the four unknown quantities νw , τw ,
νs , and τs , we use the following relationships:

f + α–nw
m
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  3/2 mv 2
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2πkTs

--------------- 
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1 τw–+( )=
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(i) the Clausius–Clapeyron equation

(10)

(ii) the energy-balance equation

(11)

(iii) the equation for the balance of molecule flow

(12)

where J '' is the part of the flow which was diffusely
reflected from the drop surface;

(iv) the thermal-accommodation condition [14]

(13)

Here, αT is the energy accommodation coefficient, 
is the energy flux transferred by molecules reflected
from the phase boundary, and  is the energy flux
transferred by molecules reflected from the phase
boundary provided that complete thermal accommoda-
tion takes place.

Solving the system of equations (10)–(13) with
respect to the unknown quantities νw , τw , νs , and τs and
substituting the solutions obtained into (9), we arrive at
the system of boundary conditions which links the
expansion coefficients for the functions f+ and f–.

The boundary conditions at infinity have the form

(14)
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Fig. 2. Reduced mass flow at different values of the Knud-
sen number Kn: (1) the combined method; (2) the Lees
method [1, 2].
                             

SOLUTION TO THE SYSTEM OF EQUATIONS 
AND ANALYSIS OF THE RESULTS OBTAINED

The system of equations (5)–(8) with boundary con-
ditions (10)–(13) was solved by the Galerkin method.

Since the heat flow and mass flow are proportional
to each other, we restrict ourselves to analysis of the
results concerning the mass flow Jm only. While calcu-
lating this flow, we assumed that complete thermal
accommodation of the molecules occurs on the particle
surface (i.e., αT = 1). In addition, we assumed that
s = 0.5.

The plots obtained by both methods are shown in
Fig. 2. Curves 1 and 2 were obtained by the combined
method proposed in [8] and developed here and by the
Lees method [1], respectively. All the results are nor-
malized to the mass-flow density in a free molecular
regime Jfree . As is seen, at Knudsen numbers on the
order of unity, significant discrepancies are observed in
the values of the flows, which were evaluated by both
methods. At Kn < 1, curve 2 is cut off since the Lees
method is not applicable in this region.

Thus, we can state that the combined method of cal-
culating the heat flow and mass flow is valid in the
entire range of Knudsen numbers. Comparing the
results obtained by the combined method and Lees
methods, we can solve the problem of the validity of the
latter method in the intermediate range of Knudsen
numbers, i.e., at Kn ≈ 1.

Since the Galerkin method makes it possible to min-
imize the residual of kinetic equations only on the aver-
age, the representation of the distribution function in
the form of an expansion in terms of basic functions
only approximately describes its true behavior. There-
fore, the calculated values of the heat flow and mass
flow are not exactly constant and vary around their
mean values. The average magnitude of these devia-
tions may be taken as the estimated calculation accu-
racy. At Kn ≈ 0.5 and 4.0, the calculation error deter-
mined by this manner is approximately 7%. At Kn ≈ 1,
this error does not exceed 4%.
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A pulse-periodic pseudocorona microwave dis-
charge at atmospheric pressure [4] is of interest from
both the fundamental and applied standpoints. This
phenomenon attracts attention as a complicated object
for investigation in the field of gas-discharge physics.
For practice, this type of discharge is important by
virtue of its catalytic properties in the chemical pro-
cesses of hydrocarbon conversion with participation of
plasma [1–3]. The effect of discharge-plasma catalytic
activity in the process of thermal decomposition of
methane into hydrogen and carbon consists in a signif-
icant (by several times) increase in the degree of pre-
heated-methane decomposition under the action of dis-
charge plasma. In this case, the microwave energy
introduced into the system in the form of plasma repre-
sents a small fraction (smaller than 20%) of the thermal
energy required for heating the methane. The process
occurs mainly owing to accumulated thermal energy, so
that the energy cost for the additional decomposition of
methane molecules under the action of plasma, as com-
pared with the energy introduced only in the plasma
form, turns out to be lower than the enthalpy inherent in
the process [3].

To explain the mechanism of plasma catalytic activ-
ity and to optimize reactors based on the effect of
plasma catalysis, detailed information on the discharge
space-time structure and parameters is required. We
imply the electric-field amplitude in the plasma, the
concentration of the charged particles, and the temper-
ature of the neutral component. The electric-field
amplitude determines the efficiency of accumulation of
active-particles (electrons, ions, and clusters) in
plasma, the chain reactions of which are the most prob-
able mechanism determining the effect of plasma catal-
ysis [2].

The discharge is formed at the point of a needle
introduced into a microwave waveguide system as an
initiator (Fig. 1). The parameters of the microwave
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radiation are the following: the pulse power is 30 to
100 kW, the frequency is 9.04 GHz (the wavelength is
3.3 cm), and the pulse duration is 0.1 to 1 µs. The dis-
charge is produced from the initiator point in the form
of a bundle (about ten filaments) of fine plasma forma-
tions with the following geometric parameters: the
length is ~1 cm, the radius is ~0.1 mm, and the length
growth rate is ~106 cm/s. The results of investigation of
the discharge spatial-structure evolution are described
in [4].

In a number of studies (see, e.g., [5, 6]), mecha-
nisms of arising and developing filamentary discharge
structures in a microwave field under conditions of high
pressure were analyzed. The following two of them are
the most probable. The first is the microwave-streamer
mechanism that corresponds to microwave-field ampli-
tudes close to threshold (discharge) amplitudes. The
second is the development of ionization-overheating
instability which is characterized by gas heating in the
initially weakly irregular plasma, gas expansion, and an

increase in the  (field-intensity/concentration) para-

meter with a subsequent charge development in thin
strongly heated channels. Each of these mechanisms
can be realized experimentally. In these cases, dis-
charge-plasma parameters may significantly differ
depending on the mechanism. Theoretically, it is quite
difficult to predict plasma properties in a particular
experiment, since the system is too complicated for
detailed numerical simulations. Therefore, direct expe-
rimental investigations of discharge properties are of
great importance.

This study is devoted to the diagnostics of the time
dependences of microwave-field amplitude, the con-
centration of electrons, and the gas temperature in
plasma discharge channels in both methane and hydro-
gen. We analyzed the experimental profiles of spectral
Hα and Hβ lines from the hydrogen Balmer series, as
well as the rotational spectrum in the V0–0 transition of
Swan bands for a C2 molecule. The spectral measure-
ments were performed with a high (20 ns) time resolu-
tion. The discharge radiation from the region near the
needle point was detected with the help of a MDR-23
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Needle∅  2 cm

E

Fig. 1. Cross section of the discharge chamber and an external view of the discharge.
monochromator, a FEU-79 photomultiplier, and a high-
speed analog-to-digital converter. For resolving the
spectra in time, we applied the strobing-integrator
method. Several tens of thousands of spectral dots were
recorded in the pulse-periodic regime of the discharge
(with a repetition frequency of 1 kHz) by uniform scan-
ning using a monochromator. Each dot of the spectrum
was measured for every sequential microwave pulse
during a short period of time (5 ns), which was shifted
with respect to the pulse onset for a fixed time interval.
Thus, the spectrum obtained related to a certain time
moment counted off from the beginning of the charge
development. Varying the time delay, we recorded the
time evolution of the spectra in a certain fixed cross sec-
tion of the plasma channel. The measurements were
performed without resolution with respect to the chan-
nel radius; therefore, the measured charge parameters
should be considered to be averaged values.

An interesting feature of the measured time depen-
dences was observed for the profiles of the Hα and Hβ
lines. For discharge in methane, at a time moment of
about 0.4 µs from the beginning of the discharge devel-
opment, the half-width of the profiles sharply increased
(during about 100 ns) from approximately 1 and 4 Å to
6 and 40 Å for the Hα and Hβ lines, respectively. This
jump was explained by a sharp rise of the electron con-
centration in the plasma. For the time interval <0.4 µs,
we observed a structure of satellite peaks on the line
profiles (Fig. 2). Such a structure is characteristic for
Stark splitting of atomic sublevels in an external elec-
tric field. At later time moments, this structure was not
observed. For discharge in hydrogen, the jump in the
line widths occurred earlier, namely, at t ≈ 250 ns from
the beginning of the discharge development. The Stark
structure of the lines was also observed before the time
moment mentioned above.

The feature indicated made it possible to conclude
that the discharge development has two time stages:
before the jump in concentration of charged particles
and after this jump. At the initial stage (t < 250 ns in
HYSICS      Vol. 46      No. 4      2001
hydrogen and t < 400 ns in methane), the time depen-
dence of the microwave-field amplitude was measured
according to the observed Stark structure of the line
profiles (Fig. 2). In these measurements, we used a
method of profile modeling for which the measured
values of parameters provided the best coincidence of
the experimental and model profiles. To obtain a model
profile, it is necessary to calculate the Blokhintsev pro-
files [7] for each side Stark component and, further-
more, to sum them over all side components with their
relative intensities taken into account. Then, the convo-
lution of the profile obtained with the monochromator
instrumental profile and the Doppler profile was per-
formed at T ~ 1000 K (this is the approximate temper-
ature in the initial stage of a discharge). The fundamen-
tal component Hα of the Stark structure is not affected
by the field, but it is significantly broadened by the
electron impact. Therefore, in addition to the broaden-
ing causes listed above, we have performed a convolu-
tion of the Lorentz impact profile, whose half-width
was fitted for the best coincidence of the calculated pro-
file with the experimental profile. For a particular case,
the experimental (curve 1) and calculated (curve 2) pro-

2– 2– 4 4

1

2

∆λ, arb. units

Fig. 2. Hα profiles in the 20-kV/cm microwave field: (1) the
measured profile; (2) the calculated profile.
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files of the Hα line for the discharge in methane are
shown in Fig. 2. For clarity, the profiles were plotted
with slightly different amplitudes. A similar structure
was also observed for the Hβ line. The effect of the
microwave field on a radiating atom gives rise to a char-
acteristic structure of satellite peaks representing the
Stark system of sublevels. It is worth noting that the
spacing between neighboring satellites along the wave-
length scale is proportional to the field amplitude (the
linear Stark effect). It is possible to fit this spacing
within an accuracy of no worse than 10%, which, by
virtue of the linearity, is the measurement accuracy for
the field in itself.

Figure 3 shows the measurement results for the field
amplitude of the Hα and Hβ lines in the case of dis-
charge in both hydrogen and methane. The moment of
the discharge appearance coinciding with the micro-
wave-field maximum was chosen as the onset of count-
ing time. In the discharge chamber, in the absence of
the needle and plasma (curve 2), the field amplitude
was calculated for the instantaneous value of the micro-
wave power (curve 1). We managed to measure the
amplitude of the microwave field for discharges in
hydrogen and methane within the time intervals of
50 to 250 ns and 50 to 400 ns, respectively. At later time
moments, because of the drastic drop in the electron
density, the line profile is already determined by other
broadening causes. As is seen from Fig. 3, for discharge
in methane, the field amplitude decreases from 28 to
18 kV/cm (the corresponding average electron energy
calculated for this field amplitude varies within the
range of 3 to 2 eV). For discharge in hydrogen, the field
is somewhat lower than that for methane. In the time
interval from 0 to 50 ns, the radiation intensity was
insufficient for reliable recording of the spectral-line

0

20

200 400
15

25

30

t, ns

E, kV/cm

1

2

3

4

Fig. 3. Amplitude of the microwave field in plasma:
(1) microwave pulse; (2) field amplitude in the discharge
chamber in the absence of a needle and plasma; (3) dis-
charge in methane; (4) discharge in hydrogen.
profiles. However, it is this time interval that corre-
sponds to the maximum field (in the microwave-
streamer head). At earlier time moments, we deter-
mined the field evolution by modeling the propagation
of an ionization front in the framework of the diffusion
model [4] using the measured propagation velocities
for microwave streamers. The estimated maximum
field in the microwave-streamer head attains 100 and
75 kV/cm for discharges in hydrogen and methane,
respectively. This field rapidly drops (in a time on the
order of 1 ns) to 25–30 kV/cm. The maximum mean
electron energy in the streamer head attains 7 to 8 eV.

Beginning from the time moments of 250 and
400 ns in hydrogen and methane, respectively, we
observed a drastic change in the half-widths of both the
Hα and Hβ lines, which was accounted for by a signifi-
cant increase in the concentration of the charged parti-
cles in the plasma. Under these conditions, the predom-
inant mechanism of line broadening became the broad-
ening due to the presence of ions and electrons.

Analysis of the experimental profiles for the Hα and
Hβ lines was performed in order to determine the con-
centration of the charged particles. This procedure also
consisted in modeling calculated profiles and compar-
ing them with experimental profiles. We took into
account both the quasi-static ion broadening (when the
ion field was described by the Holtsmark distribution)
and the electron-impact broadening of Stark compo-
nents provided that the ion and electron concentrations
were the same. The calculation procedure of the impact
half-widths is described in [7]. The ion concentration
can be evaluated within acceptable accuracy from the
line half-width with the help of the relationship [8]

(1)

where λ is the wavelength, nu and nl are the principal
quantum numbers of the transition upper and lower lev-
els, respectively, and N is the ion concentration. This
simplified procedure yields values of the concentration
which are close to the results of detailed modeling.

The measurements results are shown in Fig. 4. For
the concentration obtained, the normal Holtsmark ion
field, E0 = 2.6031 eN2/3, is higher than 50 kV/cm, which
considerably exceeds the intensity of the microwave
field at a given time moment (about 18 kV/cm at t =
0.4 µs in Fig. 3). In addition, at such values of electron
concentration, the screening effect must be noticeable,
which reduces the microwave field in the plasma. This
arguments confirm that the procedure of ion-concentra-
tion determination is correct.

The concentration of free electrons in the plasma
was evaluated from the broadening of the central com-
ponent of the Hα line by electron impact. It turned out
that this component can be isolated from the summary
profile, since the side components of Stark structures
are affected by the ion field similarly to the components

∆λ1/2
λ2

2πc
---------12.5 nu

2 nL
2–( )N2/3,=
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of Hβ. For them, relationship (1) with the correspond-
ing quantum numbers and wavelength is also applica-
ble. The electron concentration estimated from the
width of the central Hα component yields a value close
to that of the ionic concentration (Fig. 4). Therefore, the
electron and ion concentrations were considered to be
identical. For discharge in methane, the electron con-
centration exceeds that for the discharge in hydrogen
by approximately a factor of two. As is seen from
Fig. 4, the concentration slightly drops with time,
which might be related to the dynamics of the micro-
wave-radiation absorption by the discharge, which is
beyond the scope of this discussion.

During the initial 0.4 µs, when the broadening of
lines by the microwave field prevails, the electron con-
centration was evaluated from the power W absorbed
by the discharge, the measured propagation velocity,
the field amplitude E, and the spatial parameters with
the help of the relationship

Here, V is the volume and σ is the plasma conductivity.
The plasma conductivity was estimated for the fre-
quency of the pulse loss, which was found from the
electron mobility in methane and is approximately con-

stant in a wide range of variation of the ratio  (ν =

6.5 × 1012 s–1). The estimated value (curve 4 in Fig. 4)
is approximately constant in time and is equal to
(1−2) × 1015 cm–3.

The time dependence of gas temperature for the dis-
charge in methane was measured according to the rota-
tional structure of the Swan-band spectrum (V0–0 and
V1–1 transitions). The Swan-band spectra resolved in
time were obtained by a method similar to that applied
in measuring the Hα and Hβ profiles. Then, we calcu-
lated the modeling spectrum, performed the convolu-
tion with the instrumental function of the monochroma-
tor, and compared the spectrum obtained with the
experimental spectrum. The measurement results are
shown in Fig. 4. In our experimental conditions, the
rotational temperature of a C2 molecule was identified
with the gas temperature.

In conclusion, we briefly review the basic results of
the diagnostic investigations which were presented
above. The discharge time evolution can be described
in the following way. The discharge development is
characterized by two stages. The first is microwave-
streamer development. The basic characteristics of the
streamer head (i.e., of the ionization front) are a high
electric-field intensity (100 kV/cm) and a high mean
electron energy (8 eV). Under these conditions, the
electron concentration can be as high as 1014 to
1015 cm–3, which leads to screening of the microwave
field. As a result, this field (along with the mean energy
and the electron concentration) attains a steady-state

W
1
2
---VσE2.=

E
N
----
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value of 30 kV/cm in times (as is indicated by the
numerical simulation of the ionization front) on the
order of 1 ns. The electric-field intensity measured
within the intervals of 50 to 250 ns in hydrogen and of
50 to 400 ns in methane (Fig. 3) characterizes the
streamer column. The electron concentration in the
streamer column is maintained at a level of ~1015 cm–3

(curve 4 in Fig. 4). Such a quasi-stationary state of the
streamer-column parameters corresponds to streamer
models of the discharge development [5]. Furthermore,
as is seen from Fig. 4, in the streamer column, a rather
rapid rise of the gas temperature is observed. Approxi-
mately simultaneously with attainment of a stationary
gas temperature in methane at t = 0.4 µs, a sharp jump
in the electron concentration (Fig. 3) is observed. This
is apparently caused by gas expansion and an increase

in the reduced field , i.e., development of ionization-

superheating instability. The concentration of 5 ×
1016 cm–3 characterizing the stage of the developed
instability is in good agreement with the results
obtained by other authors in discharge channels for a
prebreakdown field [10].

The high values of electron concentration and gas
temperature in discharge channels testify to the high
magnitude of the energy contribution. At the second
stage of discharge, the estimated energy contribution
obtained on the basis of diagnostic investigations
attains approximately 3 eV per CH4 molecule. This
value is considerably higher than that of the microwave
energy (0.4 eV per molecule) required for decomposi-
tion of a single methane molecule [1]. Thus, the
assumption that the acceleration of the methane decom-
position by chain ionic-molecular reactions must pro-
ceed not only in the plasma discharge channels but also
in the weakly ionized peripheral regions of these chan-
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Fig. 4. Electron concentration Ne and rotational temperature
Trot as functions of time. (1) Microwave pulse; (2) Ne for the
discharge in hydrogen; (3) Ne for discharge in methane;
(4) Ne obtained from measurements of the absorbed power
and field intensity; (5) Trot .
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nels necessarily follows. The problem associated with
the formation of these ranges remains, to a large extent,
open since the low electron concentration in them (pre-
sumably, 1011 to 1012 cm–3) and weak luminosity
strongly hamper direct measurements of plasma
parameters. In [11], it was assumed that a weakly ion-
ized periphery is formed owing to UV-radiation from
strongly heated channels. It is also worth noting the
possibility of the reaction proceeding both in the pro-
cess of decomposition and the diffusive plasma expan-
sion of the channel in itself.
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In the last 25–30 years, thermodynamic calculations
of phase diagrams for both binary and multicomponent
systems received wide application. The computer pro-
grams [1–7] developed in various research centers of
the world are of wide use. The numerical methods
involved in these programs can be divided into two
classes. In studies of the first class [2], the Gibbs-
energy minimum is sought for a heterogeneous system.
In studies of the second class, the set of phase-equilib-
rium equations (establishing the equality of chemical
potentials for the components of various phases) is
solved [1, 3–7]. In this case, either the Newton–Raph-
son iterative method [1] or the Nelder–Mead modified
simplex method is used to minimize the objective func-
tion representing the sum of residuals of the phase-
equilibrium equations [7]. An essential constraint of the
former methods is the impossibility of guaranteeing
attainment of the global minimum of the Gibbs energy
for a heterogeneous system. This means that the calcu-
lated phase diagram can be both stable and metastable.
An essential disadvantage of the latter methods is the
necessity of selecting a successful initial approxima-
tion for starting the iterative process, for which there is
no assurance that the iterations will converge to the
desired solution. Thus, the calculating methods of both
the first and second class render it principally impossi-
ble to create autonomous computer programs for calcu-
lating phase diagrams and thermodynamic properties
of multicomponent alloys of systems with three or
more components.

Previously, we succeeded [8] in developing a gen-
eral method of calculation and an autonomous com-
puter program for calculating phase diagrams of binary
systems which were not hampered by the above disad-
vantages. However, the problem of developing a gen-
eral method of calculation of phase diagrams and ther-

Baœkov Institute of Metallurgy, Russian Academy of Sciences,
Leninskiœ pr. 49, Moscow, 117334 Russia
1028-3358/01/4604- $21.00 © 20247
modynamic properties for multiphase alloys of systems
with three or more components is much more compli-
cated.

The purpose of this study is to develop a reasonably
general method for calculating two-phase equilibria in
systems with three or more components.

FORMULATION OF THE PROBLEM 

First, the number of unknown quantities in the set of
equilibrium equations for two phases in the n-compo-
nent system, which is written for constant temperature
and pressure conditions, is equal to 2(n – 1) and
exceeds the number n of set equations by n – 2. Thus,
the set of equilibrium equations for two phases is para-
metric. Therefore, our first task is to perform unambig-
uous parameterization of the set of phase-equilibrium
equations and, specifically, to obtain the principal pos-
sibility of unambiguous description of the two-phase
equilibrium in an n-component system with a chosen
set of parameters. Second, the problem involves search-
ing for a stable conode, which should correspond to the
two-phase stable equilibrium at the isothermal cross
section of the phase diagram of an n-component system
at a constant pressure.

SOLUTION TO THE PROBLEM 

For solving the problem formulated, we use the vec-
tor approach [9]. The closed n-component systems
involving components A1–A2–…–An are considered. A
composition vector x is posed in correspondence to
every point of a regular (n – 1)-dimensional simplex
∆n – 1 of the compositions. We introduce the covariant
basis {e1, e2, …, en – 1}, each unit vector of which coin-
cides with the ribs of the simplex ∆n – 1 and is directed
from the common simplex apex corresponding to com-
ponent An to the simplex apices, which correspond to
components A1, A2, …, and An – 1 . In this case, the com-
001 MAIK “Nauka/Interperiodica”
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position vector x in the covariant basis can be written as
follows:

(1)

Here, xi is the molar fraction of component Ai . It is evi-
dent that the molar Gibbs energy of a closed n-compo-

nent system in the q-phase system, , is
related to the molar Gibbs energies of all the phases

, , …,  by the equation

(2)

where αi is the fraction of the ith phase, i.e., the ratio of
the number of moles of atoms in the ith phase to the
total number of moles of atoms, 1 ≤ i ≤ q; and xi is the
composition vector for the ith phase. In a closed n-com-
ponent system, the normalizing conditions are fulfilled:

(3)

The equilibrium of all q phases at a constant tempera-
ture T and a constant pressure P is attained provided
that

(4)

Using Eqs. (2) and (3), we obtain from (4) the set of
equilibrium equations in the vector form for all q
phases on the condition that temperature and pressure
are constant:

(5)

The vector form of equilibrium equations was orig-
inally obtained by Wilson [10] for two phases in the
four-component system and by Udovskiœ [11] for q
phases in the n-component system. The vector form of
the phase-equilibrium equations (5) is invariant relative
to an arbitrary system of coordinates. Because the gra-
dient of a scalar function G is a covector, Eqs. (5) in a
generally covariant form and in an arbitrary covariant
basis for the case of equilibrium of two phases, for
example, for α and β phases in the n-component sys-
tem, take the following form:
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(6)

Here, xα = ( , , …, ) and xβ = ( , , …, )
are the composition vectors for the equilibrium α and β
phases, each having n – 1 contravariant curvilinear
coordinates, that is, (n – 1) components of the compo-
sition vector. The quantity gij in Eq. (6) is the contravar-
iant metric tensor. The set of phase-equilibrium equa-
tions (6) are presented in an arbitrary covariant basis. In
the particular case when the curvilinear set is orthogo-
nal, the metric tensors, both covariant and contravari-
ant, are diagonal: 

In this case, the set of equations (6) for the equilibrium
of two phases are as follows:

(7)

For simplicity, we first consider the use of (7) for a
three-component system. In the simplex of composi-
tions, we introduce the polar system of coordinates
whose pole with respect to the origin of coordinates
arranged at a point where the third component is
located is set by the vector x0 . In this case, the compo-
sition vectors for equilibrium phases are written as

(8)

The family of poles of the polar system can be found in
the curve of the intersection of the Gibbs molar ener-
gies for the α and 

 

β

 

 phases:

 

(9)

 

We write the vector specifying the pole of the polar sys-
tem of coordinates both in the covariant basis (
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through the oblique coordinates ( , ), and in the
orthonormalized basis (s1, s2) arranged with respect to
the oblique basis (e1, e2) so that the bisectrices of angles
between the unit vectors of the corresponding bases
coincide:

(10)

In this case, the polar coordinates of the composition
vectors for the α and β phases completely specify the
oblique coordinates of these vectors:

(11)

With allowance for (11), the dependence of the Gibbs
molar energies for the α and β phases on composition
is expressed through the polar coordinates and through
the coordinates of the pole. In these coordinates, the
physical components of the gradient from scalar func-
tion G take the form

(12)

where r0 and j0 are the unit vectors of the basis of the

polar system of coordinates. Let the pole ( , ) be
inside the two-phase (α + β) region. In this case, with
allowance for the fact that the vectors rα and rβ are anti-
parallel, set (7) in the polar system of coordinates
becomes

(13)

It is worthwhile to divide the process of solving set (13)
into three stages. At the first stage, from the equality of
the Gibbs molar energies (9) for competitive phases, we
find the curve that unambiguously parameterizes the
two-phase conodes. In this curve, a pole for the polar
system of coordinates is chosen. At the second stage,

we fix a certain value of the angle ϕα = ; then, the set
of equations (13) describes the tentative conode, which

depends parametrically on  and represents the solu-
tion to set (14):
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The set of equations (14) is solved using the generaliz-
ing Maxwell “rule of equal areas” in the coordinates

 – r, where

(15)

and r is the modulus of the radius vector directed along

the unit vector r0 at an angle  to, e.g., the first unit
vector of the covariant basis e1 . Alternatively, one can
use the condition of continuity of the radial component
of the gradient for the Gibbs molar energy at the phase
boundaries α/(α + β) and β/(α + β) of the phase dia-

gram for a fixed value of the angle  between the sin-
gle-phase and heterophase regions:

(16)

Here, ( ), ( ) and ( ), ( ) are the

modules of the radius vectors  and  of the

ends of the test two-phase conode calculated at the jth
and ( j + 1)th cycles, respectively, for the same fixed

angle .

At the third stage, we compose an objective function
which is equal to the sum of residuals squared of all
three equations of set (13). This function is minimized

using the values of the angular variable  from a min-
imum to a maximum value of this angle in the domain
of its admissible values. As a result, we find a stable
two-phase conode in the family of tentative conodes for
a fixed pole. Conducting the cycle over the family of
points lying in the curve specified by equality (9), we
obtain a family of stable two-phase conodes on the iso-
thermal–isobaric cross section of the phase diagram for
the three-component system.

In the general case, set (7) of phase-equilibrium
equations is written in the hyperspherical system of
coordinates which represents the generalization of the
spherical system of coordinates (see, e.g., [12]). This
set is divided into two subsets of equations. The first
involves the equalities of the angular components of the
gradients of the Gibbs molar energies for two phases
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with respect to the vector of phase compositions calcu-
lated at the points of composition vectors for the equi-
librium phases. The second subset is close to set (14)
except that, instead of a single direction angle for the
composition vector of the α phase, as was the case for
the three-component system, n – 2 angles appear for the
composition vector of the α phase in the n-component
system. Further, the entire procedure is also divided
into three stages in searching for a two-phase conode in
the isothermal-isobaric section of the phase diagram in
the n-component system. At first, from (9), we seek the
surface which localizes the family of single-phase and
two-phase ends of conodes and represents the family of
poles for the hyperspherical system of coordinates.
Thereafter, all the space of independent variables (rα,

rβ, , , …, ) is divided into two subspaces: the

first is a two-dimensional subspace  formed by the
radial components of the composition vectors for both
phases (rα, rβ); the second is the (n – 2)-dimensional

subspace  formed by the angular variables ( ,

, …, ). For every fixed pole of the hyperspher-

ical system of coordinates in the space  and for every

fixed angle ( , , …, ), we solve the set of two
equations using the generalized Maxwell equal-area

rule in coordinates  – r and seek the tentative conode.

Finally, at the third stage, we compose an objective func-
tion equal to the sum of residuals squared of all n phase-
equilibrium equations of set (7) written in the hyper-
spherical system of coordinates, which is minimized

over all the values of angular variables ( , , …,

) in the domain of admissible values. As a result,
we find a stable two-phase conode in the family of
tentative conodes for a fixed pole in the n-component
system.

θ1
α θ2

α θn 2–
α

Er
2

Eθ
n 2– θ1

α

θ2
α θn 2–

α

Er
2

θ1
α θ2

α θn 2–
α

∂G̃
∂r
-------

θ1
α θ2

α

θn 2–
α

ACKNOWLEDGMENTS

This work was supported by the President’s Federal
Target-Oriented Program “Integration,” project
nos. K0573 and A0075.

REFERENCES

1. L. Kaufman and H. Bernstein, Computer Calculation of
Phase Diagrams (Academic, New York, 1970; Mir,
Moscow, 1972).

2. J. F. Counsell, E. B. Less, and P. J. Spencer, Met. Sci. J.
5, 210 (1971).

3. H. Gaye and C. H. P. Lupis, Metall. Trans. A 6, 1049
(1975); 6, 1057 (1975).

4. H. L. Lukas, E. Th. Henig, and B. Zimmerman,
CALPHAD: Comput. Coupling Phase Diagrams Ther-
mochem. 1 (3), 225 (1977).

5. H. L. Lukas, J. Weiss, and E. Th. Henig, CALPHAD:
Comput. Coupling Phase Diagrams Thermochem. 6 (3),
229 (1982).

6. B. Sundman, B. Jansson, and J. O. Andersson,
CALPHAD: Comput. Coupling Phase Diagrams Ther-
mochem. 9 (2), 153 (1985).

7. L. Lin, P. Wollants, O. van der Biest, and L. Delaye,
CALPHAD: Comput. Coupling Phase Diagrams Ther-
mochem. 18 (1), 89 (1994).

8. A. L. Udovsky, V. N. Karpushkin, and E. A. Kozodaeva,
CALPHAD: Comput. Coupling Phase Diagrams Ther-
mochem. 19 (3), 245 (1995).

9. A. L. Udovskiœ, in Phase Diagrams in Material Science
(Naukova Dumka, Kiev, 1984), pp. 112–147.

10. A. J. C. Wilson, Proc. Cambridge Philos. Soc. 37, 95
(1941).

11. A. L. Udovskiœ, in Mathematical Problems of Chemi-
cal Thermodynamics (Nauka, Novosibirsk, 1985),
pp. 132–142.

12. A. L. Udovskiœ, A. M. Gaœdukov, and O. S. Ivanov, Dokl.
Akad. Nauk SSSR 231, 671 (1976).

Translated by V. Bukhanov
DOKLADY PHYSICS      Vol. 46      No. 4      2001



  

Doklady Physics, Vol. 46, No. 4, 2001, pp. 251–253. Translated from Doklady Akademii Nauk, Vol. 377, No. 4, 2001, pp. 477–480.
Original Russian Text Copyright © 2001 by Aristov.

                                        

MECHANICS
A Stationary Cylindrical Vortex in a Viscous Fluid
S. N. Aristov

Presented by Academician L.V. Ovsyannikov August 30, 2000

Received September 26, 2000
Localized vortex flows are widely distributed in
nature and may easily arise under very diversified con-
ditions. Their sizes range from whirlpools produced by
vigorous stirring of tea to tornados and tropic cyclones.
Though these vortices were studied for a long time,
many features of their structure remain unanswered. In
this study, an attempt is made to describe a stationary
cylindrical vortex in a viscous fluid in the framework of
a new class of exact solutions of Navier–Stokes equa-
tions.

FORMULATION OF THE PROBLEM

We consider a stationary axisymmetric flow of an
incompressible fluid inside an infinite cylinder. Adher-
ence conditions are given on the lateral boundary of the
cylinder, and one of its cross sections is taken to be an
impermeable partition. It is necessary to find the veloc-
ity and pressure on the assumption that the fluid is set
in rotation far from the partition.

In the case of stationary and axisymmetric fluid
motion, the Navier–Stokes equation can be written as
follows [1]:

(1)

where Vϕ , Vz , and Vr are the velocity components in the
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cylindrical coordinate system, P is the pressure divided
by the density, and ν is the viscosity factor.

We seek the solution of Eqs. (1) in the following
form:

(2)

where U, V, B, and G are the unknown functions of the

dimensionless coordinate x = , R is the radius of the

cylinder, and P0 is the external pressure. The imperme-
able partition is taken as the zero of the longitudinal
coordinate.

Substituting (2) into Eqs. (1) and collecting the
terms at identical powers of the longitudinal coordi-
nate, we obtain the system of ordinary differential
equations:

(3)

(4)

(5)

(6)

where the prime denotes the derivative with respect to
coordinate x. In view of (2), the incompressibility con-
dition is automatically fulfilled and relationships (5)
and (6) follow from the equation for the radial velocity
component. Equation (5) defines the balance between
the centrifugal force and part of the pressure gradient.
According to (6) and (3), the pressure is determined in
an explicit form after the velocity components have
been found. Equations (3)–(5) form an isolated system
describing the mutual influence of poloidal and azi-
muthal circulations. This makes it possible to assign
such flows to self-induced vortices. To formulate the
boundary conditions, we assume that adherence condi-
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tions are given on the lateral boundary and all hydrody-
namical fields are regular in the center of the cylinder.
This leads to the following conditions:

(7)

Thus, we have the following problem to be solved:
To find the possible solutions of Eqs. (3)–(5) satisfying
boundary conditions (7).

ANALYSIS OF THE PROBLEM

Before analyzing Eqs. (3)–(5), it is pertinent to
begin with the study of an ideal fluid. It will suffice to
drop the linear terms in Eqs. (3)–(6). This means that
the inertial effects dominate the viscous effects. Enter-
ing (3) into (5) and performing several identical trans-

x 0: U V 0, U'' G
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Fig. 1. Dependence of the velocity components on the
dimensionless coordinate for three different regimes of the
fluid flow.
formations, we obtain

The last two equations have evident integrals that coin-
cide with the linear variant of the Grad–Shafranov
equations; namely,

(8)

where α and β are arbitrary constants. The investiga-
tion of (8) demonstrates that it has no solutions satisfy-
ing conditions (7). However, there exist localized solu-
tions decaying at infinity. One among them, for

β = , is expressed via analytical functions:

(9)

The characteristic property of this solution is that the
pressure dependence on the distance to the axis of the
cylindrical vortex is nonmonotonic. For other values of
parameter β, the mentioned single-cellular regime
gives way to the multicellular regime. It is significant
that poloidal circulation can be directed arbitrarily in
accordance with the reversibility of the Euler equa-
tions.

In the case of a viscous fluid, the solutions were
found numerically by the Runge–Kutta method. All
required derivatives at the axis of the cylinder were
found using the system of equations (3)–(5). This led to
the Cauchy problem with three arbitrary parameters
that were derivatives with respect to velocity compo-
nents U '(0) and V '(0) and pressure G(0). Note that the
equations were integrated to the point where the radial
velocity was equal to zero. Further, the problem was
solved again with the use of the following transforma-
tion, which did not change the form of the input equa-
tions:

x = ε2x, V = ε–1V, G = ε–4G, B = ε–2B, U = U,

where ε is an arbitrary number and the notation of the
variables is the same as before. In addition, this trans-
formation restricts our consideration to analysis of a
two-parameter problem. The results of solving this
problem are shown in Figs. 1 and 2. It is possible to use,
as the Reynolds number, either the average angular
momentum in a certain cross section of the cylinder or

2G –UU'' U'U',+=

B
U2

4x
------,–=

UV' VU',=

V2

2x2
-------- U2 U''

U
------ 

  '.=

V αU , U'' β α2

2x
------– 

  U ,= =

α4

16
------

U Ax
α2x

4
---------– 

  , Gexp
U2

2x2
--------, B

U2

4x
------.–= = =
DOKLADY PHYSICS      Vol. 46      No. 4      2001



A STATIONARY CYLINDRICAL VORTEX IN A VISCOUS FLUID 253
the value of the vertical pressure gradient on its axis. In
this case, figures on the curves correspond to the suc-
cessive rise in the Reynolds numbers. To describe the
results obtained, it is convenient to take the imperme-
able partition as the cup bottom and to discuss the flows
in the range of positive values of the longitudinal coor-
dinate.

The first type of solution is determined by the fol-
lowing parameters of the Cauchy problem: U '(0) =
17.657, V '(0) = 0, and G(0) = 43.581. In this case, the
fluid does not rotate and its motion must be caused by
a fluid flow directed along the axis to the cup bottom.
The fluid on the axis flows in the direction of the pres-
sure increase. The profiles of the pressure components
and the radial velocity are marked on the curves by
number 1. This regime does not seem to be of great
interest, and it was known before since in the absence
of rotation, the problem in question coincides with the
formulation of the problem on a flow in a porous pipe
[2, 3].

In the second case (curves 2; U '(0) = –47.756;
V '(0) = 136.719, and G(0) = 1342.790), the fluid flow is
directed upward from the cup bottom, i.e., in the oppo-
site direction as compared with the nonrotating fluid.
The azimuthal velocity near the axis depends almost
linearly on the radial coordinate. The pressure on the
axis decreases with distance from the cup bottom; con-
versely, near the edges, it, correspondingly, rises. Thus,
near the axis and near the edges, the fluid moves in the
direction of the pressure increase.

With a further increase in the rotation velocity, the
solution exists for the following set of parameters:
U '(0) = 121.501, V '(0) = 22.089, and G(0) = 1891.179.
In this case, there is a central zone in the cylinder,
where the fluid flows toward the partition, and an exter-
nal range, where the flow is directed away from the wall
of the cylinder to its axis (see curves 3). The occurrence
of a two-cellular poloidal circulation is a characteristic
feature of powerful atmospheric vortices. In our case,
such a flow is characterized by the maximal Reynolds
number. Due to the insufficient accuracy of the method
chosen, we failed to find any solutions with further
increase of parameter G(0).

CONCLUSION

Qualitatively, the solutions obtained adequately
describe vortex flows produced in the process of stir-
ring tea in a cup. It is known that the forced fluid rota-
tion near the free surface of the cup bottom is responsi-
ble for a powerful vertical flow, owing to which tea-
leaves move upward. The increase in the velocity rota-
tion gives rise to the formation of a funnel at the center
of the cup where the fluid sinks. This is also a charac-
teristic feature of powerful atmospheric vortices. It is
evident that the results presented here do not exhaust all
DOKLADY PHYSICS      Vol. 46      No. 4      2001
possible problems that can be studied in the framework
of the above new class of exact solutions.
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The set of gas-dynamic equations describing the
flows in a heat-nonconducting inviscid compressible
continuum are of the hyperbolic type, and there are pos-
sible gas flows with weak discontinuities of sonic or
contact characteristics [1]. This property of the set of
gas-dynamic equations makes it possible to solve com-
plicated and important problems (see, e.g., [2]). The
complete set of the Navier–Stokes equations [3]
describing the flows of a heat-conducting viscous gas
belongs to a mixed type. In flows of such a continuum,
weak discontinuities are also possible on either the
thermal-wave front [4] or the contact surface [5]. The
investigation of flows in a heat-conducting inviscid gas
(see, e.g., [6]) is of interest in connection with the prob-
lem of obtaining high energy densities [7].

In this study, we prove that, in flows of a heat-con-
ducting inviscid gas, there are characteristic surfaces of
three types and, consequently, weak discontinuities are
possible on all of these surfaces.

First, there are two sound characteristics whose
propagation velocities are independent of the thermal-
conductivity coefficient and strictly lower than the
sound velocity in a heat-nonconducting gas. Using the
transport equation derived for these characteristics, we
argue that in flows of a heat-conducting inviscid gas,
the gradient-catastrophe phenomenon is possible. In
the class of analytical functions, we prove the theorems
on the existence and uniqueness of solutions to prob-
lems on a piston and on obtaining preassigned distribu-
tions in the flows of a heat-conducting inviscid gas. We
also consider two mechanisms of perturbation transfer,
namely, elastic interaction and the thermal conductivity
process.

Second, the contact surface in unsteady flows is a
second-type characteristic that has a multiplicity of two
or one for three- or two-dimensional cases, respec-
tively. We showed that, in the two-dimensional case,
the transport equation for the characteristics of this type
is a linear partial differential equation.
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Third, we also prove that, if the gas thermal-conduc-
tivity coefficient depends on temperature and has cer-
tain properties, then the given trajectory of motion of
the heat-wave front and the given cold flow of gas
unambiguously determine the heat compression wave
propagating through this background and continuously
joining it at the wave front.

A thermodynamically perfect gas is described by
the equation of state

(1)

Here, p is pressure, ρ is density, T is temperature, and
e is internal energy. To describe the flows of such a gas,
we can take ρ, T, and, in particular, the sound velocity

squared c2 = , as independent thermody-

namic variables; the latter is determined by the relation-

ship c2 = RγT, where S is the entropy and γ = 1 +  > 1

is the gas adiabatic index. For the gas described by
equations of state (1), we also consider the complete set
of Navier–Stokes equations for a heat-conducting
inviscid gas (i.e., we assume the coefficients of
dynamic and volume viscosities to be zero):

(2)

Here, D =  + u · ∇ , t is time, u = {u, v, w} is the vec-

tor of gas velocity, 0 is the zero vector, and κ = κ(ρ, T)
is the thermal-conductivity coefficient. In set (2), we
introduce dimensionless variables, including the

dimensionless sound velocity c = .

p RρT , e cv0T , R cv0, const 0.>= = =

∂p
∂ρ
------ 

 
S const=

R
cv0
------

Dρ ρdivu+ 0,=

Du
1
γ
--- T

ρ
--- ∇ρ ∇ T+ 

 + 0,=

DT γ 1–( )Tdivu+
1
ρ
--- κ∆T ∇κ ∇ T⋅+( ).=

t∂
∂

T
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We now consider, in a conventional manner, the case
when the surface C, determined by the functions ϕ(t, x,
y, z) as

is a characteristic surface of set (2). For this purpose,
we make the corresponding change of variables for
which the surface C under consideration becomes a
new coordinate plane θ = 0. In addition to the change of
variables, we pass to a quasilinear set containing only
the first-order derivatives. In the set of partial differen-
tial equations obtained in this way, the determinant of
the matrix A0 , which is multiplied by the vector of the
derivatives with their components normal to the plane
θ = 0, is factored:

Thus, the presence of characteristics in the flows of a
heat-conducting inviscid gas is possible only if one of
the following three factors is zero:

The change from κ = 0 to κ > 0 leads to a heat wave
propagating through the cold background. The second
and third equalities determine, respectively, contact

surface C0 and two characteristics denoted below as 
and also referred to as sonic characteristics. In this case,
the propagation velocity 

(3)

(with respect to the flow under consideration) for such
characteristics in a heat-conducting gas is independent
of the thermal conductivity coefficient, i.e., indepen-
dent of the heat-conduction properties of the gas. Since

cκ = , the sound velocity in a heat-conducting gas is

strictly lower than the sound velocity in a heat-noncon-
ducting gas. It is this fact that seems to be responsible
for the lagging of the compression-wave front in a heat-
conducting gas with respect to that in a heat-noncon-
ducting gas (this effect was found in calculations [8]).

In the case of one-dimensional flows, it is conve-
nient to introduce the new variable θ = x – ψ(t); then,
set (2) takes the form

(4)

C: ϕ t x y z, , ,( ) 0,
∂ϕ
∂t
------ 

 
2

∇ ϕ( )2 0,≠+=

detA0
1
ρ
--- ∇ ϕ( )2κ Dϕ( )2 Dϕ( )2 1

γ
---T ∇ ϕ( )2– .=

κ 0, Dϕ 0, Dϕ( )2 1
γ
---T ∇ ϕ( )2– 0.= = =

Cκ
±

cκ
1

γ
------- T=

c

γ
-------

ρt u ψ'–( )ρθ ρuθ+ + 0,=

ut u ψ'–( )uθ
1
γ
--- T

ρ
---ρθ Tθ+ 

 + + 0,=

Tt u ψ'–( )Tθ γ 1–( )Tuθ+ +   

=  
1 ρ 
---  κ T θθ κ ρ ρ θ T θ κ T T θ 

2 + + ( ) .                                                         
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For components of the derivatives which are normal to
the characteristic under consideration, we accept the

notation fk = , k = 0, 1, 2, …

Let one of the characteristics :  x = ψ(t), all the
desired functions, and [by virtue of the form of set (4)]
the heat flux on this characteristic be given by

(5)

In this case,

(6)

In this and subsequent formulas, the zero superscript in
the thermal conductivity coefficient and in its partial
derivatives with respect to ρ and T implies that these
functions are considered for ρ = ρ0 and T = T0 .

We differentiate the first two equations of set (4)
with respect to θ, put θ equal to 0, and take into account
relations (5) and (6). Then, their linear combination
yields the transport equation for u1(t):

(7)

where the functions A(t) and B(t) are expressed through
f0

 

(

 

t

 

)

 

. They are not written out here owing to their awk-
wardness.

If constant values of the desired functions are given

on the characteristic ,

 

(8)

 

then, in transport equation (7), 
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(
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) = 

 

α
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 = 0,

where the constant 

 

α 

 

= 

 

 is positive. In

this case, Eq. (7) has a particular solution in the form

For example, if 
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10
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 + 
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 < 0, the gradient

catastrophe occurs at the moment  t *  =   > 0.

∂k f

∂θk
--------

θ 0=

Cκ
±

ρ θ 0= ρ0 t( ) 0, u θ 0=> u0 t( ),= =

T θ 0= T0 t( ) 0, Tθ θ 0=> T1 t( ).= =

u0 ψ'–
T0

γ
-----, ρ1+−

γ
T0
----- ρ0u1 ρ0'+( ),±= =

T1
γT0ρ0'

ρ0
------------------ γu0' ,–+−=

T2

ρ0

κ0
----- T0'

T0

γ
-----T1 γ 1–( )T0u1++−=

–
1

κ0
----- κρ

0ρ1T1 κT
0 T1

2+( ).

u1' u1
2 A t( )u1 B t( )+ + + 0,=

Cκ
±

ρ0 t( ) ρ00 const 0, u0 t( )> 0,= = =
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The existence of certain flows in the neighborhood

of the characteristics  is established with the help of
the two following theorems.

Theorem 1. Let initial conditions (5) satisfying

equalities (6) be given on one of the characteristics 
for the set of equations (4), and let either the condition

(9)

or the condition 

(10)

also be given. In this case, there exist unique analytic
solutions to both problem (4), (5), (9) and problem (4),
(5), (10) if all the initial data are analytical in a certain
neighborhood of the point (t = 0, θ = 0).

This theorem formulates problems with initial val-
ues for either the density ρ = ρ0 or the velocity u = u0 of
the gas, which are given at the moment t = 0 and con-
tinuously join the background flow through a weak dis-

continuity on .

Theorem 2. Let initial conditions (5) satisfying

equalities (6) be given on one of the characteristics 
for the set of equations (4), and let the condition

(11)

also be given. In this case, there exists a unique ana-
lytic solution to problem (4), (5), (11) if all the initial
data are analytical in a certain neighborhood of the
point (t = 0, θ = 0).

Relationship (11) is the condition of zero flow
through a piston moving along the trajectory x = xp(t).
Therefore, relations (4), (5), and (11) describe the prob-
lem of a smooth motion of an impenetrable piston.

The proof of Theorems 1 and 2 consists in reducing
the formulated problems to the Cauchy characteristic
problem of the standard form [2].

Theorems 1 and 2 admit corresponding generaliza-
tions to the case of three-dimensional unsteady flows.

Let conditions (8) for a quiescent homogeneous
heat-conducting gas and a sonic characteristic in this

gas be given (for definiteness,  is assumed to move
from the left to the right). This characteristic originates

when an incompressible piston smoothly [ (0) > 0]
moves into the gas. Such a piston generates a compres-
sion wave with  < 0 and  < 0. However, it fol-

lows from (6) in this case that T2 < 0 and, at small t, in
the entire compression-wave region including the pis-
ton, the gas temperature is lower than that of the homo-
geneous background through which the characteristic

Cκ
±

Cκ
±

ρ t θ,( ) t 0= ρ0 θ( ), ρ0 θ( ) θ 0= ρ0 t( ) t 0== =

u t θ,( ) t 0= u0 θ( ), u0 θ( ) θ 0= u0 t( ) t 0== =

Cκ
±

Cκ
±

u t θ,( ) θ xp t( ) ψ t( )–= xp' t( ),=

xp 0( ) ψ 0( ), u0 0( ) xp' 0( )= =

Cκ
+

xp''

ux Cκ
+ ρx Cκ

+

 propagates. This implies that, simultaneously with
gas compression, heat outflows from the gas through
the piston. If the compressing piston is heat-insulating
or the heat inflows through it to the gas, the inequality

 > 0 is satisfied necessarily. However, by virtue of

relationship (6), condition (8) is already not satisfied on

such a characteristic  and the background flow
ceases to be a homogeneous quiescent gas. The same
conclusion also follows from general physical consid-
erations. Indeed, the heat wave overtakes characteristic

 moving with a finite velocity. It affects the gas
parameters in front of it and, consequently, affects its
propagation velocity. Along with this, the calculations of
the compression wave in a heat-conducting gas show [8]
that the weak-discontinuity front is nevertheless
retained; this fact is confirmed by the presence of the

 characteristics in heat-conducting gas flows.

The formulas and arguments presented above are
particular mathematical confirmations of the general
conclusion that the solutions to the set of equations (2)
allow for both mechanisms of perturbation transfer,
namely, that caused by elastic interactions and that
induced by heat conduction. Each of these processes is
characterized by its inherent rate (finite or infinite,
respectively) of perturbation transfer.

Furthermore, in the case of  = w = 0, we use the

change of variables θ = x – ψ(t, y), ξ = y, and τ = t for
the set of equations (2) in order to give the characteris-
tic C0: x = ψ(t, y) in the form of θ = 0. In this case, the
transport equation, which is an equation for the deriva-
tive v1(τ, ξ) normal to the surface C0, is obtained from
the corresponding linear combination of the second and
third equations differentiated previously with respect to
θ and considered for θ = 0:

Here, the functions C(τ, ξ) and D(τ, ξ) are not written
out owing to their awkwardness. The equation obtained
is a linear transport equation, and the singularities of
the solutions to this equation are known.

Finally, a weak discontinuity in flows of a heat-con-
ducting inviscid gas can originate in the case of the pas-
sage from κ = 0 to κ > 0. For simplicity, we consider
this problem only in the one-dimensional case.

Theorem 3. Let the thermal-conductivity coefficient
κ(ρ, T) satisfy the conditions

(12)

Let set (4) have the solution

(13)

Cκ
+

T x Cκ
+

Cκ
+

Cκ
+

Cκ
±

z∂
∂

v 1τ v 0 τ ξ,( )v 1ξ C τ ξ,( )v 1 D τ ξ,( )+ + + 0.=

κ ρ T,( ) T 0= 0, κρ ρ T,( ) T 0= 0,= =

κT ρ T,( ) T 0= 0.>

ρ ρ00 const 0, u 0, T 0≡≡>= =
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and be referred to as a cold homogeneous background.
If the given function x = ψ(t) is such that

and if all the initial data for the problem under consid-
eration are analytical in a certain neighborhood of the
point t = 0 and x = ψ(0), then, in addition to solution (13),
there exists one more analytical solution continuously
joining it in the line θ = 0, i.e., for x = ψ(t). 

This second solution is constructed in the form of an
infinite series:

(14)

where f can be ρ, u, or T, with

(15)

For proof of the convergence of series (14) (as done
in [4]), we construct a majorant problem with an ana-
lytical solution.

Solution (14) is a heat wave propagating through
cold homogeneous background (13) and joining it con-
tinuously on a heat-wave front whose trajectory of
motion is described by the function x = ψ(t). From for-

ψ' 0( ) 0,≠

f t θ,( ) f k t( )
θk

k!
-----,

k 0=

∞

∑=

ρ0 ρ00, u0 0, T0 0;= = =

ρ1

ρ00u1

ψ'
------------, u1

T1

γψ'
--------, T1

ψ'ρ00

κT
0

------------.–= = =
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mulas (15), it follows that heat wave (14) is a compres-
sion wave. Indeed, the density and the gas velocity, as
well as temperature, increase behind the wave front.

Theorem 3 admits a natural generalization to the
case of a spatial heat wave propagating through an arbi-
trary cold flow which is the solution to the set of equa-
tions (2) with T ≡ 0. The heat wave also exists in the
case of κ = κ0 , κ0 = const > 0, when the last condi-
tion of (12) is not satisfied.
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In this paper, we prove a theorem on the uniform
stability with respect to a multidimensional parameter
for an equilibrium state of the nonlinear time-indepen-
dent differential equation

 = g(x, h), x ∈  Rn, h ∈  H ⊂  Rk, (1)

which is defined on the set B(r) × H, where B(r) = {x ∈
Rn: |x | ≤ r} with r > 0. We assume that

g(0, h) = 0 ∀ h ∈  H. (2)

The problem on the uniform stability of an equilib-
rium state with respect to a multidimensional parameter
is of both theoretical and applied importance [1]. It is
closely related to the problem of studying the stability
of the equilibrium state x = 0 for Eq. (1) under perma-
nently acting perturbations [2–4]. Indeed, for a fixed
h = h0 , differential equation (1), rewritten in the form

 = g(x, h0) + [g(x, h) – g(x, h0)]

can be considered a perturbed equation with respect to
the differential equation

 = g(x, h0). (3)

It is known [3, 5] that the stability of the equilibrium
state x = 0 for Eq. (1) under permanently acting pertur-
bations follows from the asymptotic stability of the
equilibrium state for Eq. (3). The concept of stability
under permanently acting perturbations of the form
R(x, h) ::= g(x, h) – g(x, h0) was introduced in [6]. This
concept is rather useful for studying the stability of
conservative mechanical systems under permanently
acting perturbations of a given class.

ẋ

ẋ

ẋ
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We assume that the function g(x, h) satisfies the Lip-
schitz condition with respect to x = (x1, x2, …, xn) for
each h ∈  H ⊂  Rk; i.e.,

Moreover, we assume that the solutions x(t, x0, h) to
Eq. (1), with x(0, x0, h) = x0, continuously depend on
both the initial point x0 and the parameter h = (h1, h2, …,
hk), with k ≥ 1.

The solution x = 0 to Eq. (1) is referred to as uni-
formly stable with respect to the set H ⊂ Rk if

(4)

In (4), the number δ depends on ε but is independent of
the choice of point h ∈  H.

We consider an example of an equation that depends
on a parameter belonging to a noncompact set.

Example 1. Let H = (0, 1]. We introduce the nota-

tion r2 =  +  and θ =  and consider the

set of equations

 = r2(r – h),  = 1, h ∈  H. (5)

Then, for each point h ∈  H, the solutions to Eq. (5)
which originate at the points of the set {r: r < h} tend to
zero as t  +∞, while the solutions originating at the
points of the set {r: r > h} are unbounded as t  +∞.
The set {r: r = h} is invariant with respect to (5). For
any δ > 0, there are unbounded solutions for h < δ
belonging to the set {r: r < h}. Hence, the solution x1 =
x2 = 0 to Eq. (5) is not uniformly stable with respect to
the noncompact set H = (0, 1].

L∃ L h( ) 0: g x1 h,( ) g x2 h,( )– L x1 x2–≤>=

x1∀ x2, B r( ).∈

ε 0 δ∃>∀ δ ε( ) x0 δ x t x0 h, ,( ) ε<⇒<=

t R+, h∀ H .∈∈∀

x1
2 x2

2 x2

x1
----- 

 arctan

ṙ θ̇
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We now consider an example of the set of equations
when the trivial solution is stable but not uniformly sta-
ble with respect to the compact set H = [0, 1].

Example 2. Let H = [0, 1] and h ∈  H. We consider
the following set of equations:

(6)

Here, r and θ are defined in the foregoing example.
For an arbitrary given number ε > 0 and each point

h ∈  [0, 1], a solution belonging to the set {r: r <
min(h, ε)} will belong furthermore to the set {r: r < ε}
for all t ∈  R+. For h = 0, any solution satisfying the ine-
quality r < ε should belong furthermore to the set
{r: r < ε} for all t ∈  R+.

Therefore, for each h ∈  H, the solution x1 = x2 = 0 to
set (6) is stable but not uniformly stable (in h) with
respect to the set H.

The following theorem is valid.
Theorem. Let the above conditions for differential

equation (1) be valid. If the trivial solution x = 0 to
Eq. (1) is asymptotically stable for each h belonging to
the compact set H of the space Rk, then the trivial solu-
tion x = 0 to Eq. (1) is uniformly stable with respect to
the set H.

Proof. By virtue of the inversion found in [7] for the
Lyapunov theorem on the asymptotic stability, for each
point h ∈  H, there exists a scalar Lyapunov function
V(h, x) defined for 0 ≤ |x | ≤ σ(h) (where σ is a number
depending on h) and having the following properties:

(1) the function V(h, x) and its partial derivative
Vx(h, x) are continuous in the sphere B(σ(h)) of radius
σ(h) > 0;

(2) V(h, 0) = 0 and V(h, x) > 0 for 0 < |x | ≤ σ(h);
(3) (Vx(h, x), g(x, h)) < 0 for 0 < |x | ≤ σ(h).

For each point h0 ∈  H, there exists an open set
N(h0) ⊂ B(σ(h0)) × H containing (B(σ(h0)) – {0}) ×
{h0} such that

(Vx(h0, x), g(x, h)) < 0, (x, h) ∈  N(h0).

Let a number ε > 0 be given. We choose a number a > 0
such that

Qa ::= {x ∈  B(σ(h0)): V(h0, x) ≤ a} ⊂  intB(ε).

We introduce the notation

Pa ::= {x ∈  Qa: V(h0, x) = a}

and 

 ::= {h ∈  H: Pa × {h} ⊂  N(h0)}.
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Since h0 ∈   and the set N(h0) is open, we have

∃λ  = λ(h0): |h – h0| ≤ λ(h0) 

 

⇒

 

 

 

h

 

 

 

∈

 

 

 

H

 

.

 

We now prove that there exists a number 

 

δ

 

 =

 

δ

 

(

 

ε

 

, 

 

h

 

0

 

) > 0

 

 such that

 
|

 
x

 

0

 
|

 
 < 

 
δ

 
 

 
⇒

 
 

 
|

 
x

 
(

 
t

 
, 

 
x

 

0

 
, 

 
h

 
)

 
|

 
 < 

 
ε ∀
 

t
 

 
 

∈
 

 
 

R
 

+

 
,  

 
|

 
h

 
 – 

 
h

 

0

 
|

 
 

 
≤

 
 

 
λ

 
(

 
h

 

0

 
).

 
Indeed, we choose a number 
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are satisfied for certain points p ∈  Rk and y ∈ Rn, then,
for a certain τ > 0, the equality |x(τ, y, p)| = ε is valid. It
follows from the inequalities

V(h0, y) < a < V(h0, x(τ, y, p))

that µ ∈  (0, τ), where

µ ::= sup{t < τ: V(h0, x(t, y, p)) = a}.

Moreover, we have

V(h0, x(µ + η, y, p)) > a ∀η ∈ (0, τ – µ).

There exists a number η0 ∈ (0, τ – µ) such that

(x(τ, y, p), p) ∈ N(h0) ∀ t ∈ [µ, µ + η0].

Hence, the inequalities

are valid. Therefore, the assumption on the existence of
the point (y, p) ∈  Rn × Rk leads to a contradiction.

By virtue of the compactness of the set H, we can
isolate a finite subcovering from the open covering of
this set:

.

Let the points h1, h2, …, hm belonging to the space Rk be
such that

For given h ∈ H and |x0| < δ(ε) [where δ(ε) ::=
min{δ(ε, h1), …, δ(ε, hm)}], there exist h j, 1 ≤ j ≤ m

Hh0

a V h0 x µ η0+ y p, ,( ),( )< V h0 x µ y p, ,( ),( )=

+ V x h0 x t y p, ,( ),( ) q x t y p, ,( )( ),( ) τd

µ

µ η0+

∫
< V h0 x µ η+ y p, ,( ),( ) a=

q H: q h–
1
2
---λ h( )<∈

 
 
 

h H∈
∪

H q H: q hi–
1
2
---λ h

i
( )<∈

 
 
 

.
i 1=

m
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such that |h – h j| < λ(h j). Since |x0| < δ(ε) ≤ δ(ε, h j), we

conclude that |x(t, x0, h)| < ε ∀ h ∈ H, ∀ t ∈ R+. Thus, the
theorem is proven.
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High-precision methods of observation for trajecto-
ries of Earth-pole motion testify to the rather compli-
cated dynamic processes occurring in the Earth–
Moon–Sun system [1, 2]. Development of an adequate
mathematical model that makes it possible to describe
the actual trajectories of the Earth-rotation axis (i.e., the
instantaneous position of the angular-velocity vector)
in a certain convenient coordinate system bound to the
Earth seems to be extremely important in both astro-
metric and geophysical aspects. Based on mathematical
modeling, the investigation of the evolution of the
Earth’s rotation and the translational-rotational motion
of the Earth–Moon system can turn out to be quite
interesting and useful [2–4]. Attempts to allow only for
the perturbing hydrometeorological processes proceed-
ing, particularly, in the Southern hemisphere in order to
explain the phenomena correlated with the motion of
poles are insufficiently convincing. These attempts are
of a qualitative nature and correspond only to estimates
of different-scale oscillation periods.

To describe the rotational motion of the deformable
Earth and the mutations of its poles, we can use a
mechanical model of a viscoelastic solid, which is
based on rigorous theorems of mechanics and perturba-
tion methods, i.e., methods of singular expansions and
averaging [5]. The two-layer model of the Earth is used
which corresponds to a continuous solid nucleus and a
viscoelastic mantle [2]. The deformation process is
assumed to occur quasistatically. The motion is consid-
ered to proceed with respect to the center of mass of the
three-axis Earth with “frozen” principal central moments

of inertia , , and . At each time moment, this
motion corresponds to instantaneous rotation about a
certain axis under the action of perturbing gyroscope,
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gravitational, and tidal moments of force. The vector of
the motion is inclined at variable angles to both the axis
of the Earth figure and the vector of the kinetic
moment. The problem of the dynamics and analysis of
a possibility of approaching the axis of the Earth’s max-
imum moment of inertia and the vector of the kinetic
moment are of considerable importance for the investi-
gation of steady-state motions. (Here, an analogy with
a free solid having interior dissipative elements takes
place [5].) It is of interest to clarify the mechanisms of
external action that hamper this approach and lead to
steady-state vibrations within time intervals on the
order of 103T, where T = 433 to 441 sidereal days is the
period of the Chandler wobble.

Below, for the system of “the binary Earth–Moon
planet” in the attraction field of the Sun, we use the
model of a viscoelastic solid. Based on both asymptotic
methods of nonlinear mechanics and mathematical
modeling equations of motion in terms of action-angle
variables, we propose, for the first time, a qualitative
analysis and quantitative estimates of the relevant com-
plicated dynamic process. As a result, we can describe
the mutual position of the instantaneous Earth-rotation
axis, figure axis, and its kinetic-moment vector. The
possibility of determining the system parameters and
the consistency of the analytic model with the actual
trajectory measurements for the motion of the Earth’s
poles are studied.

1. The setting of the dynamical problem under con-
sideration is based on the spatial variant of the system
composed of the deformable Earth and the Moon in the
attracting central field of the Sun. The Moon and the
Sun are considered to be gravitating mass points. In the
initial theoretical model, the Earth–Moon system is
assumed to be an “almost binary planet”. This presup-
poses the existence of a barycenter and the necessity of
allowing for its position in further calculations. The
mutual orbital motion of the Earth’s and Moon’s cen-
ters of mass with respect to the barycenter is given in
canonical Delone variables.

The most adequate generalized coordinates for
describing the proper rotation of the Earth about its
center of mass are the action-angle canonical variables
(Ii , wi , i = 1, 2, 3). The qualitative theory of dissipative
001 MAIK “Nauka/Interperiodica”
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systems is used as a basis for the dynamic model and
for identification of its parameters, which correspond to
the regime of the Chandler wobble of the Earth’s pole
at frequency  = . The evolution of the mutation of
the Earth’s poles is studied on the basis of allowance for
gravitational tides caused by the actions of the Moon
and the Sun.

We introduce the perturbed Routh functional

(1)

where ε > 0 is the dimensionless parameter, εR1 is the
perturbing functional caused by gravitational tides, I2 is
the modulus of the Earth’s kinetic moment, I1 is the
projection of the kinetic moment on the figure axis, and
u is the displacement vector for the elastic medium
(mantle). The functional R0 describes the intermediate
trajectory for the Earth’s rotation about the center of
mass in the case of Euler–Poinsot-type motion:

(2)

Here, κ2 and λ2 are the basic dynamic parameters: for
the Earth, 0 < λ2 < 1; h is a constant corresponding to
the integral of the intermediate-motion energy. The

quantities , , and , as was mentioned above,
determine the principal central moments of inertia for
the deformable Earth under the action of centrifugal
forces caused by its proper motion and the Moon’s
gravitational field. All parameters introduced in (1) are
known or must be evaluated using experimental data.
The structure of the perturbing functional εR1 is sub-
jected to further analysis and simplification on the basis
of the averaging method.

Numerical estimations show that the angle (phase)
w2 is a relatively rapid variable. The frequency  =

 = 7.29 × 10–5 s–1 ≈ 10–4 s–1 corresponds to the diur-
nal rotation of the Earth. The w1 phase corresponds to
the motion of the pole with period T of the Chandler
wobble,  =  = 1.7 × 10–7 s–1. Furthermore, this
phase is considered a “semislow” variable, and averag-
ing over this variable is not performed. In other words,
partial averaging takes place (i.e., averaging over the
rapid w2 phase). The employment of averaged equa-
tions of motion leads to a relative error of 10–3 to 10–4

within the time interval (103–104)T, i.e., on the order of
the Earth-axis precession period.

2. The qualitative analysis and numerical experi-
ment for the model problem is performed on the basis

ẇ1 nw1

R R0 I1 I2,( ) εR1 I{ } w{ } u[ ] u̇[ ], , ,( ) ε2…,+ +=

R0

I2
2

2 Ã
------- 1

C̃ Ã–

C̃
------------- κ2

κ2 λ2+
-----------------– 

  , C̃ B̃ Ã,> >=

κ2 C̃ Ã B̃–( )
Ã B̃ C̃–( )
----------------------, λ2 κ22hC̃ I2

2–

I2
2 2hÃ–

---------------------.= =

Ã B̃ C̃

ẇ2

nw2

ẇ1 nw1
of evolutionary (averaged over w2) equations of the
form

(3)

Here, the angular brackets 〈…〉  imply averaging over
w2, δ2 is the angle between the axis of the Earth’s figure
and the kinetic-moment vector, the quantity δ2 is δ2 .
0 2 . 10–6 rad, and  is the frequency of the Chan-

dler wobble of the Earth’s pole in the intermediate
motion. Since the modulus λ is rather small, λ . 10–7,

then K(λ) =  + O(10–14), and for the intervals of phase

variation under consideration, w1 . 104–105, we can
obtain u . w1, snu . sinw1, and dnu . 1. It is worth not-
ing that the averaged functional 〈R1〉  depends on the
parameters κ2 and λ2, the “semislow” w1 phase, and the
orbit parameters. The variables I1 and δ2 entering into (3)
are related to slow variables.

Along with Eqs. (3), which were considered in
absolute time t, for the qualitative and quantitative anal-
ysis of the pole trajectories, these equations should be
analyzed on the manifold with argument w1 , i.e., the
phase characterizing the mutations of the pole:

(4)

Qualitative analysis of systems of equations (3) and
(4) shows that the right-hand sides of the equations for
I1 have zero average values over w1 . This property leads
to a weak evolution (without secular variation) of the I1

variable that contains a periodic component with fre-
quency , which is caused by the tidal moments of

force. The variable w1 changes with time almost lin-
early, so that this change is superimposed by similar
periodic modulations. As follows from Eqs. (3) and (4),
the character of this change for the variable δ2 is essen-
tially different. The secular variation of the quantity δ2

may occur due to the existence of the function

κ2sin2w1:  –  . εd(t – t0), where d = const is deter-
mined by the resonance action of the tidal moments of
force with the Chandler-wobble period.

İ1 ε
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The pole mutation is determined as the angular
motion of the rotation axis with respect to the figure
axis; the components of this motion are

(5)

In accordance with the generally accepted agreement,
the angular coordinate yp in (5) is directed along the 90°
meridian of the western longitude [6]. Since λ2κ–2 .
10–12, expressions (5) make it possible to establish the
approximate shape of the virtually closed elliptical fig-
ure circumscribed by the axis of the instantaneous
angular velocity of the rotation in the tangent plane:

(6)

Here, RE is the Earth’s radius and Dx and Dy are the
ellipse semiaxes. We can find from (6) that the ellipse
semiaxes weakly change with the variation of λ that has
a small periodic component with frequency  caused
by variations of I1 (4). We note that the ratio of the
ellipse semiaxes is virtually constant and close to unity;

xp
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B̃
--- 1 κ2+ 1,>= =

Dx RE
C̃

Ã
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the ellipse is slightly extended along the Y-axis. Fur-
thermore, as follows from (6), Dx, y . 7.7 m; i.e., the
ellipse linear size is 15.4 m. Data of pole-trajectory
measurements made in the middle of the 1990s yielded
trajectories of the elliptic-spiral type and magnitudes of
the semiaxes close to 0 45–0 5, which is equivalent to
a linear size L . 14.2–15.7 m. Moreover, this elliptic
spiral is extended along the Y-axis. Our estimates testify
to the fact that theoretical and experimental data are
both qualitatively and quantitatively well consistent
with each other.
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In this paper, we consider three types of orbital
stability for semitrajectories of a dynamical system,
namely, metric stability, topological stability, and sta-
bility in a system of two neighborhood filters. We also
introduce and study an essential extension of the con-
cept of orbital stability for a trajectory, which we term
the rigidity of the trajectory in the Poincaré sense. The
orbital stability and the rigidity in the Poincaré sense
are, in general, independent notions. We prove that the
set ΩO of all orbitally stable semitrajectories is a proper
subset of the set ΩP of all semitrajectories rigid in the
Poincaré sense: ΩO ⊂ Ω P, ΩO ≠ ΩP . Using a family of
Lyapunov functions, we establish criteria for both
orbital stability and rigidity in the Poincaré sense for
semitrajectories and semihulls of motions for a dynam-
ical system. In the developed theory, we propose a gen-
eral approach to investigating properties, similar to sta-
bility, of compact and noncompact trajectories of a
dynamical system.

The concept of orbital stability (but not this term)
for a periodic trajectory is met within the studies of
P. Laplace [1] and A. Poincaré [2]. Various approaches
to defining the concept of orbital stability for an indi-
vidual semitrajectory were developed in the papers of
N.D. Moiseev [3], S. Lefshets [4], and B.P. Demidovich
[5]. The same subjects for semiinvariant and invariant
(both compact and noncompact) sets of trajectories
were considered in the studies of V.I. Zubov [6],
N.P. Bkhatia and G. Szegö [7], A.A. Shestakov [8, 9],
Yu.V. Malyshev [10], T. Ura [11], J. Auslander [12],
J. Auslander and P. Seibert [13], and other authors.

1. DEFINITIONS

We consider a continuous dynamical system
ϕ: Rn  Rn in the Birkhoff sense which is generated

Russian State Open Technical University 
of Rail Communication,
ul. Chasovaya 22/2, Moscow, 125808 Russia
1028-3358/01/4604- $21.00 © 20264
by the nonlinear steady-state equation

(1)

In what follows, we denote a positive semitrajectory
and a positive semihull of motions for dynamical sys-
tem (1) as C+ = C+(x) and H+ = H+(x), respectively, pro-
vided that the trajectory and motions pass through the

point x ∈ Rn, with H+(x) = , where the bar implies
set closure.

The positive prolongation (x) of the point x ∈ Rn

and the positive prolongation (H+) of the semihull
H+ = H+(x) of motions for the dynamical system ϕ are
defined by the relationships

where N(x) is the set of all neighborhoods of point x.
The neighborhood filter Φ of set A is termed

topological and denoted as T if Φ is the set of all open
sets containing A. This filter is termed metric and is
denoted as M if Φ is the set of all open balls B(A, ε) con-
taining A.

We define the prolongation of a semihull H+ with
respect to the neighborhood filter Φ of this semihull by
the formula

The neighborhood filter Φ of the semihull H+ is
termed dense if  = H+, where U ∈  Φ. We denote
the set of all positively invariant filters as {Φ+}.

For the two-dimensional case, the concept of pro-
longation was introduced by Poincaré [2] and used by
Bendixson [14] for qualitatively studying systems (1) in
the plane R2. For the dynamical system in Rn, the con-
cept of prolongation was introduced by Ura [11]. It fol-

lows from the definitions that (i) H+(x) ⊂  (x);

(ii) (x) = (x); (iii) (x) = ∅ , x ∉ , D ⊂  Rn;

dx
dt
------ g x( ), g C1 Rn          R n ( ) . ∈  =

C+ x( )

P1
+

P1
+

P1
+ x( ) H+ U( ), P1

+ H+( )
U N x( )∈
∩ P1

+ x( ),
x H

+∈
∪= =

PΦ H+( ) H+ N( ).
N Φ∈
∩=

U∩

P1
+

P1
+ P

R
n

+ PD
+ D
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and (iv) y ∈  (x) if and only if there exist sequences
{xn} ⊂  D and {tn} ⊂  R such that xn  x, tn ≥ 0 and
ϕ(tn, xn)  y.

It is evident that PΣ(H+) ⊂  PΦ(H+) if Φ ⊂ Σ , where
Φ and Σ are the neighborhood filters for H+ = H+(x).

The semihull H+ = H+(x) of motions for the dynam-
ical system ϕ: Rn  Rn is termed 

(a) positively orbitally topologically stable if, for
each neighborhood V of the semihull H+, there exists a
neighborhood U of the semihull H+ such that C+(U) ⊂  V;

(b) positively orbitally metrically stable if, for each
number ε > 0, there exists a number δ > 0 such that
C+(B(H+, δ)) ⊂  B(H+, ε), where B(H+, µ) is an open ball
with a center in H+ and of radius µ > 0;

(c) positively orbitally stable with respect to the
neighborhood filters Σ and Φ (Σ ⊃ Φ ) if, for each neigh-
borhood U ∈  Σ of the semihull H+, there exists a neigh-
borhood V ∈  Φ of the semihull H+ such that C+(U) ⊂  V;

(d) positively rigid in the Poincaré sense if

(2)

where T is the topological filter of the semihull H+; and
(e) positively nonrigid in the Poincaré sense if

equality (2) is invalid.
The notions of the orbital topological stability and

orbital metric stability of the semihull H+ are particular
cases of the concept of orbital stability with respect to
a system of two neighborhood filters. Namely, the
orbital topological (metric) stability is the orbital stabil-
ity in the system of (T, T) [in the system of (M, M)].

2. EXAMPLES

The character of the metric orbital stability for a
noncompact trajectory differs from that for a compact
trajectory.

Example 1. Let the following dynamical system be
given in R2:  = 1 and  = –2xy(1 + x2) for x ≤ 0 and

 = 0 for x ≥ 0. The trajectory y = 0 is evidently an
invariant set of the system, and this trajectory is orbit-
ally unstable because the following condition (for brev-
ity, it is referred to as condition A) is not met: for each
ε > 0, there exists a number δ > 0 such that the impli-
cation

holds.
However, for the trajectory y = 0, the other contigu-

ous property (for brevity, the property A1) is fulfilled: for
an arbitrary ε > 0 and an arbitrary compact set Q ⊂  R2,
there exists δ = δ(ε, Q) > 0 such that the implication 

takes place.

PD
+

PT H+( ) H+,=

ẋ ẏ
ẏ

x B y 0 δ,=( ) C+ x( ) B y 0 ε,=( )⊂⇒∈

x B y 0 δ,=( ) Q C+ x( ) B y 0 ε,=( )⊂⇒∩∈
DOKLADY PHYSICS      Vol. 46      No. 4      2001
Example 2. Let the dynamical system  = 1 and
 = 0 for x ≤ 0 and  = –2xy(1 + x)–1 for x ≥ 0 be given

in R2. It is evident that the trajectory y = 0 is positively
asymptotically orbitally stable because both condition A
and the attraction condition (for brevity, it is referred to
as condition B) are satisfied for it. Namely, there exists
δ > 0 such that the implication

holds, where d is the distance from the point ϕ(t, x) to
the axis Ox.

Example 3. Let the following dynamical system be
given in R2:

It is evident that the trajectory y = 0 is positively
orbitally stable but not asymptotically stable because
condition B is not satisfied for it. However, another
attraction condition (for brevity, it is referred to as con-
dition B1) is satisfied for it. In other words, for each
compact set Q ⊂  R2, there exists a number δ > 0 such
that the implication x ∈  B(y = 0, δ) ∩ Q ⇒  d(ϕ(t, x),
y = 0)  0 holds as t  +∞.

Example 4. Let the following dynamical system be
given on R2:  = 1 and  = –2xy(1 + x2)–1. The trajec-
tory y = 0 is evidently an attractor (condition B is satis-
fied), but it is not positively orbitally stable (condition
A is not satisfied). However, condition A1 is satisfied
for it.

Remarks. (1) In all these examples, we consider the
noncompact trajectory y = 0 for which conditions B and
B1, as well as conditions A and A1, are independent.

(2) It is easy to show that, for the compact semitra-
jectory C, conditions A and B follow from the condi-
tions A1 and B1, respectively.

3. RELATION BETWEEN THE ORBITAL 
STABILITY OF A SEMIHULL AND ITS RIGIDITY 

IN THE POINCARÉ SENSE

We consider the semitrajectory C+(x) (generally
speaking, noncompact) of continuous dynamical sys-
tem (1). It follows from the definitions of orbital stabil-
ity and rigidity in the Poincaré sense that the set ΩO for
all orbitally stable semitrajectories of dynamical sys-
tem (1) is a proper subset of the set ΩP of all semitra-
jectories rigid in the Poincaré sense; i.e., ΩO ⊂  ΩP and
ΩO ≠ ΩP . Thus, the set of all trajectories rigid in the

ẋ
ẏ ẏ

x B y 0 δ,=( ) d ϕ t x,( ) y = 0,( ) 0→⇒∈
as t         + ∞

ẋ 1, ẏ 0 for x 0 and y 2,≥≤= =

ẋ 2xy 1 x2+( ) 1–
for x 0 and y 1 x2+( ) 1,≤≥–=

ẋ 2 y–( ) 2x 1 x2+( ) 1 2x2+( ) ysgn[×[ ] 1–
–=

for   x 0, y 2, and y 1 x + 
2 ( ) 1. ≥≤≥

ẋ ẏ
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Poincaré sense is wider than the set of all orbitally sta-
ble semitrajectories.

The following theorem establishes the relation
between the first prolongation and the prolongation with
respect to the neighborhood filter for the semihull H+.

Theorem 1. Let T be the topological filter of the
semihull H+. In this case,

(3)

where (H+) is the positive prolongation of the semi-
hull H+.

Proof. It is evident that the right-hand side of (3) is
contained in its left-hand side. Let q ∈  PT(H+). We
show that there exists a sequence of points pn ∈  H+ such

that qn ∈  (pn) and qn  q. We assume the contrary.
In this case, we can find a number r > 0 such that the

closure  is compact and (p) ∩ B(q, r) = ∅ ,
∀ p ∈  H+. Each point p has a neighborhood Up  such that
C+(Up) ∩ B(q, r) = ∅ . Therefore, we have

The contradiction obtained proves the theorem.
Theorem 2. Let H+ be a positively rigid (in the

Poincaré sense) semihull of motions for the dynamical
system ϕ: R+  Rn. In this case, the following state-
ments are equivalent:

(A1) PΦ(H+) = H+ for a certain neighborhood filter
Φ of the semihull H+.

(A2) (x) ⊂  H+ ∀ x ∈ H+.

(A3) The semihull H+ is orbitally stable with respect
to its certain dense neighborhood filter G.

(A4) The semihull H+ is orbitally stable with respect
to some of its dense neighborhood filters Σ and Φ.

Proof. It is evident that statement (A1) follows from
the rigidity, in the Poincaré sense, of the semihull H+. If

(A1) is valid, then the relation (p) ⊂  PΦ(H+) = H+

takes place for p ∈  H+. Hence, (A2) is valid and we infer
from Theorem 1 that

.

Statement (A1) is proven. It follows from statement (A1)
that the filter {Φ+} is dense. The semihull H+ is evi-
dently always orbitally stable with respect to {Φ+}.
Now, we assume that H+ is orbitally stable with respect
to G, with G being a dense filter for H+. In this case, if
q ∉  H+, there exists a neighborhood N ∈ Σ such that q ∉
H+. Let U ∈  G be such that C+(U) ⊂  G so that q ∉
C+(U). Consequently, PG(H+) = H+ and, therefore, (A1)

PT H+( ) P1
+ H+( ),=

P1
+

P1
+

B q r,( ) P1
+

H+ U( ) B q
1
2
---r, 

 ∩ ∅ , q PT H+( ).∈=

P1
+

P1
+

PT H+( ) P1
+ p( )

p H
+∈

∪ H+= =
                                                              

follows from (A3). It is evident that (A4) follows from
(A3). If (A4) is valid, then Φ ⊂  {Σ+} so that {Σ+} is a
dense filter and (A3) is valid with G = {Σ+}.

The following theorem on the relation between the
rigidity in the Poincaré sense and the orbital stability
holds.

Theorem 3. If the semihull H+ is positively rigid in
the Poincaré sense, there exists a unique maximum
dense filter F with respect to which the semihull H+ is
orbitally stable.

Theorem 4. Let H+ be a positive semihull of motions
of a dynamical system. In order for H+ to be topologi-
cally orbitally stable, it is necessary and sufficient that

(x) be a compact subset of H+, where x ∈  H+.

Proof. Theorem 4 is proven by contradiction with
the use of Theorem 2.

The next theorem establishes a criterion of the rigid-
ity in the Poincaré sense in terms of neighborhoods of
the points belonging to a semitrajectory.

Theorem 5. In order for the semitrajectory C+(x) of
the dynamical system ϕ: Rn  Rn to be positively rigid
in the Poincaré sense, it is necessary and sufficient that
the following condition take place: for arbitrary points
p ∉  C+(x) and q ∈  C+(x), neighborhoods U and V of
these points exist such that

(4)

Proof. Let the semitrajectory C+ = C+(x) satisfy
condition (4). In this case, there exist neighborhoods U
and V of points p and q, respectively, which satisfy con-
dition (4) for p ∉  C+ and q ∈  C+. Consequently, p ∉
H+(V) and, therefore,

Since q ∈ C+ is an arbitrary point, then p ∉  (C+) so

that (C+) ⊂  C+. Hence, the condition (C+) = C+ is
satisfied and, therefore, the semitrajectory C+ is rigid in
the Poincaré sense. Now, let the semitrajectory C+ be

rigid in the Poincaré sense. In this case, (C+) = C+.

Let p ∉  C+ and q ∈  C+. Hence, p ∉  (q) ⊂  (C+).

Because (q) = ∩{H+(V): V is a neighborhood of q},
there exists a neighborhood V of point q for which p ∉
H+(ϕ). In this case, Rn = H+(V) = U is a neighborhood of
point q; consequently, condition (4) is satisfied.

Theorem 6. If the semitrajectory C+ = C+(x) is
positively rigid in the Poincaré sense, it is positively
invariant.

Proof. Let the semitrajectory C+ be positively rigid
in the Poincaré sense. According to Theorem 5, this
semitrajectory satisfies condition (4). Let p ∉  C+. In

P1
+

U C+ V( )∩ ∅ .=

p ∩ H+ V( ): V  is  a  neighborhood  of  q { }∉  P 1
+

 q ( ) .=

P1
+

P1
+ P1

+

P1
+

P1
+ P1

+

P1
+
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this case, it follows from (4) that p ∉  C+(q) for each
point q ∈  C+. Thus, p ∈  C+(C+) = ∪ {C+(q): q ∈  C+}.
Hence, C+(C+) ⊂  C+ and the semitrajectory C+ is posi-
tively invariant.

In the general case, the rigidity of a semitrajectory
in the Poincaré sense and the orbital stability of this
semitrajectory are independent notions. However, in a
number of cases, these notions are equivalent, as fol-
lows from the definition of the topological orbital sta-
bility, the properties of the semihull H+, and Theorem 5.

Theorem 7. Let the semihull H+ of motions of the
dynamical system ϕ: Rn  Rn have a compact omega-
limiting set. In this case, the semihull H+ is topologi-
cally orbitally stable if and only if it is rigid in the
Poincaré sense.

It is important to note that the concept of the rigidity
for a trajectory in the Poincaré sense is an extension of
the concept of the orbital stability for the trajectory,
while the concept of stability in the Joukowski sense [15]
is an extension of that in the Lyapunov sense with
respect to coordinates.

4. THE USE OF A FAMILY OF LYAPUNOV 
FUNCTIONS FOR INVESTIGATING

THE ORBITAL STABILITY AND RIGIDITY
OF TRAJECTORIES

Let (Σ, Φ) be a system of two filters Σ and Φ, Φ ⊂ Σ
for the semihull H+, and let Ν ∈ Σ  be a positively invari-
ant set of the dynamical system ϕ: Rn  Rn. The semi-
hull H+ may be noncompact.

The nonnegative function v : N  Rn is termed a
Lyapunov function for the semihull H+ and its filter Σ if
(a) v –1(0) = H+; (b) v(ϕ(t, x)) ≤ v(x) ∀ (t, x) ∈  R+ × N;
and (c) v –1([0, c)) ∈ Σ , c > 0.

The family V of nonnegative functions in Rn is
termed a (Σ, Φ)-family of the Lyapunov functions for
the semihull H+, if each function v of this family is a
Lyapunov function for the semihull H+ and its filter Σ
and, for each neighborhood U of the filter Φ ⊂ Σ , there
exists a function v ∈ V such that inf{v(x): x ∈  U} > 0.
This inequality is equivalent to the following property:
for each neighborhood U ∈ Φ , there exists a function
v ∈  U and a number d > 0 such that v –1([0, d)) ⊂  U.

Theorem 8. In order for the semihull H+ of motions
of the dynamical system ϕ: Rn  Rn to be positively
orbitally stable with respect to (Σ, Φ), it is necessary
and sufficient that such a (Σ, Φ)-family V = {v} of the
Lyapunov functions exist for the semihull H+ such that
Φ ⊂ Σ  and Φ are a dense filter.

Theorem 9. Let Φ be a dense neighborhood filter of
the semihull H+. In order for the semihull H+ to be pos-
itively asymptotically orbitally stable with respect to Φ,
it is necessary and sufficient that the Φ-family V of the
DOKLADY PHYSICS      Vol. 46      No. 4      2001
          

Lyapunov functions v exist for H+ and, moreover, that
the following property be valid:

Theorem 10. Let the semihull H+ of motions of the
dynamical system ϕ: Rn  Rn be positively rigid in the
Poincaré sense, and let F be the unique dense filter of
the semihull H+ with respect to which H+ is orbitally
stable (such a filter always exists). In order for the
semihull H+ to be positively rigid in the Poincaré sense,
it is necessary and sufficient that the F-family of the
Lyapunov functions exist.

Theorems 8–10 are criteria for the orbital stability
and the rigidity in the Poincaré sense in terms of fami-
lies of the Lyapunov functions which are, in general,
discontinuous.
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In the book by P. Brockett [1], the following prob-
lem was formulated.

Let three matrices A, B, and C be given. Under what
conditions does there exist a matrix K(t) such that the
system

(1)

is asymptotically stable?

It is worth noting that the problem of stabilizing sys-
tem (1) by means of a constant matrix K is well known
in the automatic-control theory [2, 3]. From this point
of view, the Brockett problem can be reformulated in
the following manner.

How much would introduction of a time-dependent
matrix K(t) improve the capabilities of the conventional
stabilization?

In solving problems of stabilization of mechanical
systems, a more narrow class of stabilizing matrices
K(t) should often be considered. These matrices must
be periodic and have a zero mean value over their
period [0, T]:

(2)

Such stabilizing actions are realized in the problems of
stabilization of pendulum systems.

We consider a pendulum with its point of support
vibrating in the vertical direction. In the linear approx-
imation, the pendulum vibrations in the vicinity of the
upper equilibrium position are described by the equa-
tion

(3)

where α and ω0 are positive numbers. As a rule, the
functions K(t) are assumed to take either form

dx
dt
------ Ax BK t( )Cx, x Rn∈+=

K t( ) td

0

T

∫ 0.=

θ̇̇ αθ̇ K t( ) ω0
2–( )θ+ + 0,=

St. Petersburg State University, 
Universitetskaya nab. 7/9, St. Petersburg, 199164 Russia
1028-3358/01/4604- $21.00 © 20268
βsinωt [4] or

(4)

[5, 6]. For these functions K(t), the effect of stabiliza-
tion of the pendulum upper equilibrium position is well
known for large ω or small T.

In this paper, we present algorithms for constructing
periodic piecewise-constant functions K(t), which
allow us to solve the Brockett problem in a number of
cases.

Theorem 1. Let α2 < 4(β – ). Then, for any τ > 0,
there exists a number T > τ such that Eq. (3) with a
function K(t) having form (4) is asymptotically stable.

In particular, the possibility of stabilizing the upper
equilibrium position for a pendulum point of support
under low-frequency vibrations follows from this theo-
rem.

We here outline the proof of Theorem 1. For
K(t) = –β, Eq. (3) has two linear manifolds in its phase
space, namely, a stable (η = L1θ) and an unstable (η =

L2θ) one (with η = ). In this case, the rate of solution
convergence to the unstable manifold is higher than the
divergence rate along this manifold. After a change at
K(t) = β, this unstable manifold may turn along the tra-
jectories of Eq. (3) and can then attain coincidence with
the straight line η = L1θ before the next change. (Large
values of T imply that the pendulum vibrates many
times during time T.) Since the above-mentioned con-
vergence of the solution predominates over its diver-
gence after the change at the moment t = T, any solution
as a whole can be embedded into a sphere of arbitrarily
small radius.

We now describe the similar algorithm for system (1).
We assume that there exists a matrix K1 such that the

system

(5)

with scalar parameter µ has a stable linear invariant
manifold L(µ). Here, µ ≥ µ0 and µ0 is a certain number.

K t( )
β at t [0, T /2)∈
β– at t [T /2, T )∈




=

ω0
2

θ̇

dx
dt
------ A µBK1C+( )x=
001 MAIK “Nauka/Interperiodica”



ON THE BROCKETT STABILIZATION PROBLEM 269
We also assume that

(6)

and, for any given number δ > 0, there exists a number
µ1 ≥ µ0 such that

(7)

Here, x(0, x0) = x0 and the existence of limit (6) implies
that the set L(µ) ∩ {|x | ≤ 1} is in the ε-neighborhood
L0 ∩ {|x | ≤ 1}, where ε  0 as µ  +∞.

The above-formulated assumption implies that the
trajectories rapidly converge on manifold L(µ) for large
values of parameter µ.

We denote by M(µ) the linear invariant manifold of
system (5) such that for this manifold,

We also assume that M(µ) is the manifold of slow
motions; i.e., there exists a number R such that the ine-
quality

(8)

is valid for arbitrary µ ≥ µ0 . We then assume that a
matrix K2 exists such that for the system

, (9)

the fundamental matrix Y(t) can be found with Y(0) = I,
which satisfies the condition

(10)

for a certain number τ.

We now define the matrix K(t) with period (2 + τ) in
the following manner:

(11)

Theorem 2. System (1) with a matrix K(t) having
the form of (11) is asymptotically stable for sufficiently
large µ.

The following corollary of Theorem 2 takes place.

Theorem 3. Let the matrices K1 and K2 exist and
satisfy the following conditions:

(i) The matrix BK1C has (n – 1) eigenvalues with
negative real parts, and detBK1C = 0.

L µ( )
µ +∞→
lim L0=

x 1 x0,( ) δ,≤
x0∀ x 1={ } L µ( ), µ µ1.≥∩∈

M µ( )
µ +∞→
lim M0,=

dimM µ( ) dimL µ( )+ n, M µ( ) L µ( )∩ 0{ } .= =

x 1 x0,( ) R,≤
x0∀ x 1={ } M µ( )∩∈

dy
dt
------ A BK2C+( )y=

Y τ( )M0 L0⊂

K t( )
µK1 for t [0, 1)∈
K2 for t [1, 1 τ )+∈
µK1 for t [1 τ+ 2 τ ).+,∈

=
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(ii) For a certain number λ and a vector u ≠ 0 satis-
fying the equality BK1Cu = 0, the vector-function

is periodic.

Then, there exists a periodic matrix K(t) such that
system (1) is asymptotically stable.

In a two-dimensional case, Theorem 3 has the fol-
lowing simple formulation.

Theorem 4. Let n = 2 and there exist matrices sat-
isfying the following conditions:

(I) detBK1C = 0 and TrBK1C ≠ 0.

(II) The matrix A + BK2C has complex-valued
eigenvalues.

Then, there exists a periodic matrix K(t) having
form (11) such that system (1) is asymptotically stable.

A more complicated algorithm for constructing the
piecewise stabilizing function K(t) allows us to prove
the following theorem.

Theorem 5. Let n = 3, B be a column, C be a row,
and the following conditions be satisfied:

(1) det(B, AB, A2B) ≠ 0.

(2) CB ≠ 0.

(3) There exists a number k1 such that the matrix A +
k1BC has two complex-valued and one negative eigen-
value.

(4) There exists a number k2 such that the function

has at least one zero in the interval (−∞, 0).

Then, there exists a periodic function K(t) such that
the system of Eqs. (1) is asymptotically stable. 

We then consider system (1) provided that B is a
vector column, C is a vector row, and K(t) is a scalar
piecewise continuous function R1  R1. Assuming
complete controllability of pair (A, B) and complete
observability of pair (A, C), we reduce system (1) to the
form [7]

Here, aj and cj are certain numbers. In the case of cn ≠ 0,
without loss of generality, we can set cn = 1.

Theorem 6. Let the following inequalities be satis-
fied:

(i) for n > 2, c1 ≤ 0, …, cn – 2 ≤ 0;

A BK2C λ I+ +( )t[ ]uexp

C A k2BC+( )t[ ]exp B

ẋ1 ẋ2,=

…………

ẋn 1– xn,=

ẋn – anxn … a1x1+ +( ) K t( ) cnxn … c1x1+ +( ).–=
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(ii)

Then, there are no functions K(t) for which system (1)
is asymptotically stable. 

Theorem 6 is a consequence of the positive invari-
ance for the set

We now apply the above-formulated theorems pro-
vided that n = 2, B is a column, C is a row, and K(t) is
a scalar function. (This case is important in control the-
ory.) To do this, we introduce the transfer function for
system (1):

Here, p is a complex-valued variable.
In what follows, we assume that ρ ≠ 0. For the prob-

lem under consideration, without loss of generality, we
can set ρ = 1. Moreover, we assume that the function
W(p) is nongenerate; i.e., the inequality

is met. It is well known [7] that system (1) can be
rewritten in this case in the form

(12)

It is easy to see that the stabilization of system (12) by
means of a constant function K(t) ≡ K0 is possible if and
only if α + K0 > 0 and β + γK0 > 0. For the number K0
to meet these inequalities, it is necessary and sufficient
that either the condition γ > 0 or the relationships γ ≤ 0
and αγ < β be satisfied.

We now consider the case when the stabilization by
means of a constant function K(t) ≡ K0 is impossible
since γ ≤ 0 and αγ > β. To do this, we use Theorem 4. It
is evident that hypothesis (i) of Theorem 3 is met
because detBK1C = K1detBC = 0 and TrBK1C =
K1CB = –K1 ≠ 0.

Hypothesis (II) of Theorem 4 will be met if, for a
certain K2 , the polynomial

has complex-valued zeroes. It is easy to see that for

c1 an cn 1––( ) a1,>
c1 c2 an cn 1––( ) a2,>+

…………………………

cn 2– cn 1– an cn 1––( ) an 1– .>+

x1 0≥ … xn 1–, , 0, xn cn 1– xn 1– … c1x1+ + + 0≥ ≥{ } .

W p( ) C A pI–( ) 1– B
ρp γ+

p2 αp β+ +
----------------------------.= =

γ2 αγ– β+ 0≠

σ̇ η ,=

η̇ –αη βσ– K t( ) η γσ+( ).–=

p2 αp β K2 p γ+( )+ + +
such K2 to exist, it is necessary and sufficient that the
inequality

(13)

be satisfied.
Hence, if inequality (13) holds true, there exists a

periodic function K(t) such that system (12) is asymp-
totically stable.

As is easy to see, the hypotheses of Theorem (6) are
met if the inequality

(14)

is satisfied.
Hence, we arrive at the following theorem [8].
Theorem 7. If inequality (13) is met, then there

exists a periodic function K(t) such that system (12) is
asymptotically stable.

If inequality (14) is valid, there are no functions K(t)
for which system (12) is asymptotically stable.

This result was also obtained in [9] by the averaging
method for another class of stabilizing functions K(t)
having the form
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Manifestations of volcanic eruptions occur in great
varieties: from slow lava outflow to catastrophic explo-
sive eruptions. The eruption type is determined by the
amount of gas initially dissolved in the magma, the
magma viscosity, and the intensity of the gas with-
drawal through the magma and into the volcano-con-
duit walls. Pure lava eruptions are typical of low-vis-
cosity magma with a small amount of dissolved gas.
Eruptions of magma saturated with gas are the most
dangerous when an abrupt change from the lava out-
flow to gas-ashed jets is possible. In this case, the dis-
charge rate can be briefly changed by several orders of
magnitude [1].

In view of the difficulty of direct study, volcanic
eruption modeling on the basis of continuum mechan-
ics is of great importance. Special features of these
flows are a high value of viscosity (up to 109 Pa s),
strong dependence of viscosity on the concentration of
magma gases in the melt and on temperature, an
unusual pressure dependence of the volatile component
content, a small value of the diffusion coefficient, etc.
The eruption-magma flow is characterized by a strong
pressure drop (from hundreds of MPa to atmospheric
pressure), which results in changing from homoge-
neous flow to a bubble flow and then, possibly, to a flow
with suspension of matter in gas.

A slow extrusion of a lava dome with an outflow of
the gas present in magma through the dome surface is
the most typical eruption regime for magma containing
many crystals and a relatively small amount of dis-
solved gas. This type of volcanos is typified by Soufri-
ere Hills (Montserrat Island, 1995–2000), Mount
Unzen (Japan, 1990–1995), and Lascar (Chili, 1984–
1996). In the models elaborated by the author in collab-
oration with A.A. Barmin [1–3], the possibility of such
an eruption regime and its transition to the explosive
phase was found in the quasi-stationary approach; how-
ever, the description was highly simplified.
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In papers [4, 5], where the results of field observa-
tions are generalized, it was shown that the lower the
magma flow, the greater the quantity of crystals con-
tained in the magma, the crystallization being at work
in the volcano conduit when the magma is elevated.
The gas outflow through magma is another peculiarity
of such eruptions. This results in a relatively low frac-
tion of bubbles at the dome surface: 10–30% instead of
99% for estimates ignoring gas loss [1].

A stationary model with a simplified equation of
magma crystallization was published in [6]. In the
present paper, an unsteady model for magma flow in a
volcano conduit with an adequate equation for crystal
growth is considered. The effect of the processes in the
magmatic chamber on the magma discharge rate at the
surface is studied.

The statement of the problem on a flow in a conduit
in the case of a rising lava dome is similar to that of [1].
At depth L, there is a magmatic chamber connected
with a growing dome by a conduit with diameter d. The
magma parameters in the magmatic chamber (the pres-
sure Pch, the dissolved gas concentration cch, and the
volumetric fraction of the crystals βch) are time-depen-
dent. The magma is a four-component medium contain-
ing a melt, dissolved gas, bubbles, and crystals. The
flow in the conduit is described by the system of equa-
tions

(1a)

(1b)

(1c)
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(1d)

(1e)

(1f)

(1g)

Here, ρm, ρc, ρx, and ρg are the densities of the melt,
crystals, bubbles, and dissolved gas, respectively; ρ is
the mixture density; α and β are the volumetric concen-
trations of bubbles and crystals (the latter is taken rela-
tive to the condensed-phase volume, i.e., relative to the
volume of the melt-and-crystal mixture); V and Vg are
the magma and gas velocities, respectively; p is the
pressure; c is the mass concentration of the dissolved
gas; µ, µm, and µg are the viscosity of the mixture, melt,
and gas, respectively; d is the conduit diameter; k(α) is
the coefficient of gas filtration through the magma; R is
the gas constant; T, Tm , Tliq , and Tsol are the magma
temperature, the effective melting temperature, and the
temperatures of liquidus and solidus, respectively; a is
the bubble radius; n is the bubble number density; x is
the vertical coordinate; and I and U are the rates of crys-
tal growth and nucleation.
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System (1) is written out under the following
assumptions: the motion is one-dimensional and lami-
nar; the magma is a Newtonian fluid with a viscosity
dependent on the dissolved gas concentration and the
volumetric fraction of crystals; and the mixture temper-
ature is constant. The system consists of continuity
equations for the melt and crystals (1a), for the dis-
solved gas and the gas in the free phase (1b), momen-
tum equations for the condensed phase with allowance
for gravity and volcanic conduit resistance, and the
Darcy law for gas motion in porous magma (1c); equa-
tions accounting for the mass exchange intensity in the
magma (1d); and equations describing physical proper-
ties of the magma, (1e)–(1g). Formula (1g) for k(α) was
obtained by approximating the data of penetrability
measurements for samples from the eruption of the
Soufriere Hills volcano; the µm(c) was taken from [7];
the θ(β)-dependence was obtained by approximating
data on the dome growth for the Soufriere Hills volcano
using a stationary model.

The following assumptions are taken in obtaining
Eqs. (1d). The bubbleward gas diffusion is quasi-equi-
librium, and the concentration profile is determined by
solving a stationary diffusion equation [8]. The bubble
nucleation is assumed to be instantaneous, and their
concentration in a liquid particle is conserved. The
magma crystallization is quasi-isothermal due to the
change in the effective melting temperature when the
amount of dissolved gas decreases. The expressions for
the nucleation intensity of crystals and their growth are
similar to that of [9]; however, the expressions take into
account the decrease in the diffusivity with decreasing c.

For system (1), the boundary-value problem is
solved for a given conduit length, the parameters in the
magmatic chamber, and the conditions at the exit. For
the magmatic chamber of spherical shape, the pressure
is related to the discharge rates of the inflowing (Qin)
and outflowing (Qout) magma through the equation

where Vch and ρch are the volume of the magmatic
chamber and the mean magma density in it and γ is the
rock elastic modulus. The pressure at the upper edge of
the conduit is equal to atmospheric pressure. For calcu-
lations, the same values of parameters as those in [6]
were used.

System (1) was solved by an implicit method with a
varied mesh in space, which provides first-order accu-
racy. The steady-state solution with a low (0.15 m3/s)
discharge rate was used as the initial condition; the dis-
charge rate Qin was taken to be constant (0.75 m3/s).

In Fig. 1 we show, in the Qe–Pch plane (Qe is the
magma discharge rate at the volcano conduit exit), the
steady-state solution to Eqs. (1) and a family of
unsteady solutions corresponding to various τ values

dPch

td
-----------

Qout Qin–
τ

-----------------------, τ
Vchρch

γ
---------------,=–=
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Fig. 1.
and βch = const. The steady-state solution is nonunique
for certain values of pressure in the magmatic chamber;
this is associated with the influence of crystallization.
When the crystallization time is comparable with the
time of magma elevation, the decreasing discharge rate
results in increasing the crystal quantity and, conse-
quently, in increasing the magma viscosity. For reduc-
ing resistance, it is essential to further decrease the dis-
charge rate. The behavior of the unsteady solution
depends substantially on the values of Qin and τ. When
Qin corresponds to the upper or lower regimes, the erup-
tion comes to the stationary state as time elapses. The
greater the value of τ, the longer the time of approach-
ing the stationary regime. The eruption is also stabi-
lized in the case when Qin corresponds to the average
regime and τ is less than the critical value. For large τ,
undamped periodic oscillations of the magma dis-
charge rate occur. Their amplitude and period are
τ-dependent. The different asymptotic behavior of the
solution is connected with the change in the boundary
condition: small τ values correspond to a given magma
discharge rate from the magmatic chamber, while the
stationary solution corresponding to a fixed discharge
rate is unique. Large τ values correspond to a fixed
PHYSICS      Vol. 46      No. 4      2001
pressure in the magmatic chamber, when the stationary
solution is many-valued. The transition between sta-
tionary regimes provides undamped discharge-rate
oscillations.

Shown in Fig. 2 are the functions Qe(t), βe(t), and
Pch(t). The oscillation periods are 375, 495, and
675 days for the magma-chamber volumes equal to 5,
10, and 15 km3, respectively. For the Soufriere Hills
volcano, the two-year activity cycle was isolated [10].
The maxima and minima of Pch(t) and Qe(t) do not
coincide because of specific boundary conditions.

The time dependence of Qe for Vch = 15 km3 and
βch = β0(1 + ε*sin(ωt)) with ε = 0.05 and a period of
40 days is shown in Fig. 3. The reason for such a
change of the βch value may be the convective instabil-
ity of the lower heated magma layer in the magmatic
chamber, which causes the floating up of individual hot
portions of magma and their elevation through the vol-
cano conduit. The dashed line shows the time depen-
dence of the discharge rate for βch = β0 . When the
magma discharge rate is small, crystallization occurs in
the volcano conduit and the mean crystal concentration
in the conduit depends weakly on its value in the mag-
matic chamber. For a high discharge rate, the crystalli-
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zation in the conduit is weak and the mean crystal con-
centration and, consequently, the magma viscosity are
determined by their values in the magmatic chamber.
This results in oscillations of Qe with frequency βch.
Cycles 6–7 weeks in duration were recorded for erup-
tion of the Soufriere Hills volcano in the course of the
overall activity increase in the vicinity of the maximum
of the two-year cycle [11].
The constructed unsteady model for a volcanic
eruption with allowance for magma crystallization
and gas filtration through the magma provides an
example of an object with distributed parameters pos-
sessing both limiting steady-state and periodic solu-
tions. The calculations performed provide a method of
explaining cyclic variations of the magma discharge
rate in the course of an eruption and estimating the
DOKLADY PHYSICS      Vol. 46      No. 4      2001
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magma chamber dimension, which defies direct mea-
surements.
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The classical problem of the laminar-to-turbulent
transition in a viscous incompressible flow occurring in
a pipe of a circular cross section is considered. It is well
known that two types of equilibrium flows, statistically
homogeneous along the pipe axis, can be observed far
from the inlet and outlet sections of a pipe: time-inde-
pendent (Poiseuille) and time-dependent (turbulent).
These flows are well described by time-independent and
statistically steady-state solutions to the three-dimen-
sional Navier–Stokes equations, respectively [1, 2]. At
the same time, there is experimental evidence [3, 4]
that, at the Reynolds numbers Re = Ub × 2R/ν = 2200,
where Ub, R, and ν are, respectively, the cross-sectional
average of fluid velocity, the pipe radius, and the kine-
matic viscosity, there is another equilibrium self-sus-
tained flow regime in which turbulent puffs, surrounded
by almost laminar flow regions and preserving their
lengths, drift downstream. Nevertheless, until recently,
the very existence of equilibrium puffs and, conse-
quently, of the flow regimes characterized by intermit-
tence at arbitrarily large distances from the pipe inlet
was open to question.

In part, this is so because the pipes used in the exper-
iments are not very long and the leading edge of a tur-
bulent puff is highly diffuse. The last circumstance sub-
stantially lowers the accuracy of laboratory measure-
ments. Fortunately, the equilibrium puffs are good
candidates for direct numerical simulation based on the
Navier–Stokes equations with periodic boundary con-
ditions imposed on the flow velocity along the pipe axis
(provided that the period X is sufficiently large).
Papers [5, 6] describe two attempts at such a simulation
at Re = 2200, where X = 36R and X = 32πR, respec-
tively. The initial conditions used in both cases were
specially fitted in the form of structures localized in
space. Although the results of these calculations closely
resemble the turbulent puffs observed in laboratory
experiments, a fairly short computing time in [5],
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which is equal to T ≈ 120R/Ub, does not provide an
answer to the question of whether the equilibrium puffs
exist. As for the investigation carried out in [6], it pre-
sents the values of convective rates at leading and trail-
ing edges of turbulent puffs which differ from each
other and are equal to ULE = 1.56Ub and UTE = 0.73Ub,
respectively. This means that either the calculated tur-
bulent flow structure is not equilibrium (and, far from
the pipe inlet, the neighboring puffs merge and form a
purely turbulent flow) or the computing time (T ≈
60R/Ub) is also not sufficiently long.

The author of [7] tried to describe the intermittent
flows by solutions of the Navier–Stokes equations with
spatial period X ≈ 2πR, which is much shorter than in
the above papers. Undamped self-sustained oscillations
were calculated at Re ≥ 2250. For 2000 < Re ≤ 2200,
they survive for a long time (T ≈ 3000R/Ub). Then, the
perturbations damp rapidly and the flow becomes lam-
inar. The time-dependent solutions to the Navier–
Stokes equations obtained in [7] describe flow regimes
that are not intermittent, because, as the author points
out, velocity oscillations are always chaotic in such
flows and a noticeable flow simplification does not
occur. On the contrary, the intermittent flows observed
in the experiments exhibit essential simplification
within a certain part of the pipe, where they become
practically laminar. We have repeated some results
of [7] by carrying out our calculations according to the
algorithm described in [8] at X = 2πR. Similarly to [7],
we established that all time-dependent flow regimes
with period X = 2πR (both undamped and long-lived
and arising at small values of Re) are not intermittent;
i.e., they do not consist of turbulent puffs alternating
with almost laminar flow regions. This result is quite
natural, because, according to experimental data (see,
for example, [3]), the lengths of the turbulent puffs are
on the order or larger than 40R. Therefore, description
of such a flow structure by solutions of spatial period
X = 2πR is obviously unrealistic (see also [9]).

To clarify the question of whether the equilibrium
puffs exist in reality and, if so, what space–time struc-
ture they have, we have carried out a special series of
calculations in the range of the transitional Reynolds
numbers 1800 ≤ Re ≤ 4000. Due to the application of
001 MAIK “Nauka/Interperiodica”
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an accurate and efficient numerical algorithm [8], we
could perform the calculations over very long time
intervals for each value of the Reynolds number
[T ≈ (2500–4000)R/Ub at Re about 2200] using a Hita-
chi SR8000 parallel supercomputer at the Tokyo Uni-
versity. An exclusively long time of simulation entirely
ensures us that the obtained flow regimes are equilib-
rium and self-sustained. Moreover, according to the
calculations, stabilization of flow characteristics (for
example, after a change of Re) is rather slow and, at
Re ≈2200, takes a time on the order of (500–1000)R/Ub.
This value is larger by a factor of 5−10 than the total
lengths of time intervals used in [5, 6] for integration of
the Navier–Stokes equations for the same Reynolds
number.

All our calculations were carried out within the
framework of the so-called long-wave approximation.
This means that numerical solutions to the Navier–
Stokes equations were sought as those having a consid-
erable period X = 16πR of velocity variation along the
pipe axis. As was shown in [9], the value of 16πR is
approximately twice the minimum period that allows
adequate description of the long-wave motions charac-
teristic of transitional Reynolds numbers); the calcula-
tions were carried out with a resolution of (Q + 1) ×
(2N + 1) × (2M + 1) = 33 × 41 × 321 points along the
radial (r), azimuthal (ϕ), and longitudinal (x) coordi-
nates, respectively. Below, we present the flow param-
eters corresponding to Re = 2200. They are Reτ = uτ ×
2R/ν ≈ 153 (where uτ = ,  is the average tan-
gential wall stress and ρ is the fluid density); the period
X+ = Xuτ/ν ≈ 3846; the minimum resolved wavelengths

 = π × 2Ruτ/Nν ≈ 24 and  = Xuτ/Mν ≈ 24 in ϕ (at
r = R) and x, respectively; the maximum and minimum

distances in r  = ∆rmaxuτ/ν ≈ 3.75 and  =
∆rminuτ/ν ≈ 0.09 between the collocation points; the
calculation time T ≈ 2405R/Ub ≈ 167R/uτ; and the drag

coefficient Cf = – 〈∇ p〉 rϕxtD/2ρ  ≈ 9.68 × 10–3, where
D = 2R and 〈∇ p〉 rϕxt is the time- and space-averaged
pressure gradient. It should also be emphasized that the
initial conditions used for integration of the Navier–
Stokes equations were not a priori close to the desired
intermittent flow regime.

The numerical simulation is carried out for 11 val-
ues of the Reynolds number (see Fig. 1). As initial con-
ditions for the first calculation performed at Re = 4000,
we use the superposition of the Poiseuille flow and of
the least damping axisymmetric and three-dimensional
eigenfunctions, which correspond to certain longitudi-
nal and azimuthal wave numbers (see also [8]). The
arrow in Fig. 1 connects the initial and final states of the
process of transition to turbulence, where the open cir-
cle (t = 0) and filled circle 1 correspond, respectively, to
the perturbed laminar flow and to the steady-state tur-

τw/ρ τw

λϕ
+ λ x

+

∆rmax
+ ∆rmin

+

Ub
2
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bulent regime forming at Re = 4000. At smaller Rey-
nolds numbers Re, turbulent, intermittent, and laminar
flow regimes (filled circles numbered from 2 to 11) are
obtained successively; i.e., the statistically steady-state
velocity field corresponding to the final stage of the ith
calculation represents the initial data for the (i + 1)th
calculation (i = 1, 2, …).

Flows 1–6 can be considered purely turbulent,
because the corresponding drag coefficients Cf agree
well with the Blasius drag law Cf = 0.079Re–1/4 and
these flows have no laminar inclusions. The last finding
is illustrated in Fig. 2, where we show typical distribu-
tions of the longitudinal velocity component along the
pipe axis (r = 0) for four Reynolds numbers: Re =
(a) 2200, (b) 2350, (c) 2500, and (d) 4000. One can see
that for Re = 4000 and 2500, the longitudinal velocity
component exhibits no characteristic decrease in a cer-
tain (locally turbulent) region of the pipe axis. Con-
versely, at Re = 2200 and 2350 (Figs. 2a, 2b), a
decrease in the longitudinal velocity component, which
represents a property of all turbulent puffs, is clearly
discernible and similar to that observed in laboratory
experiments. Dotted lines plotted here pertain to lami-
nar Poiseuille flows. Additional support of this fact is
presented in Fig. 3, which shows, at Re = 2200, a frag-
ment of the typical time variation of the longitudinal
velocity component at a certain point of the pipe axis.
The total time of integration of the Navier–Stokes
equations is much longer than that shown in Fig. 2:
after the statistically steady state has been reached, the
calculation continued for a time T ≈ 2000R/Ub. Such
extraordinarily time consuming calculations allow us to
assert that the intermittent flows simulated at Re = 2200
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Fig. 1. Dependence of the drag coefficient on the Reynolds
number. Dots (1)–(6), (7) and (8), and (9)–(11) correspond
to purely turbulent flows, the regimes with alternating equi-
librium puffs and laminar flow regions, and laminar Poi-
seuille flows, respectively.
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Fig. 3. Typical time variation of the longitudinal velocity component at a point on the pipe axis (Re = 2200).
and 2350 contain equilibrium self-sustained turbulent
puffs.

From the above discussion we can make the follow-
ing conclusions: (1) The equilibrium puffs do exist.
(2) They can be described by long-wavelength solu-
tions to the three-dimensional time-dependent Navier–
Stokes equations at 2200 ≤ Re ≤ 2350. (3) In the present
work, we performed systematic numerical simulation
DOKLADY PHYSICS      Vol. 46      No. 4      2001
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of viscous incompressible flows formed in a pipe of a
circular cross section in the entire range of transitional
Reynolds numbers, including purely turbulent flows
(2500 ≤ Re ≤ 4000), equilibrium self-sustained flows
with alternating laminar and turbulent regions (Re =
2200, 2350), and purely laminar flows (Re ≤ 2000).
(4) Flow-velocity fields recorded on magnetooptical
carriers allow the distributions of certain quantities to
be calculated at various distances from the leading and
trailing edges of a turbulent puff. These quantities are
the average velocity, the velocity components, the pres-
sure, the Reynolds stresses, and all terms of the equa-
tion describing transport of kinetic turbulent energy.
Study of the details of space–time and wave structures
of equilibrium puffs is also prospective.
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1. INTRODUCTION

In this paper, we use the term “variational inverse
boundary value problems” (VIBV problems) to denote
a class of boundary value problems with unknown
boundaries, for which both solutions to a partial differ-
ential equation and domain D of its definition are
desired quantities. In this case, domain D has an extre-
mum property and one boundary condition is imposed
on boundary ∂D. The extremum property of D mani-
fests itself in a maximization (minimization) condition
imposed on a given functional J (usually, under addi-
tional constraints). As to their formulation, the above
problems belong to optimum-design problems (see,
e.g., [1]). However, the solvability of these problems
can be significantly affected by the presence (or
absence) of additional constraints. Therefore, it is nec-
essary to specify what functionals need to be consid-
ered and what additional constraints have to be
imposed. It is difficult to answer these questions as
based on general considerations. At the same time, the-
ories of modeling natural phenomena (for example, gas
flows or fluid flows) often involve VIBV problems.
Classical aerohydrodynamics is one of such theories.

2. VIBV PROBLEMS IN AEROHYDRODYNAMICS

The problems mentioned above arise in one of the
methods for optimizing aerodynamic profiles. In the
two-dimensional case, the method consists in designing
profiles that have optimum characteristics (a maximum
lift coefficient or best aerodynamic characteristic, a
minimum drag, etc.). In the case of an ideal-fluid flow
or a subsonic gas flow, such problems are reduced,
mathematically, to VIBV problems for analytical func-
tions. For example, in [2], it was proved that among
smooth arcs with a given length and a bounded curva-
ture, the maximum velocity circulation Γ (hence, the
maximum lift force Y) in an ideal incompressible fluid
flow without separation is attained for a circular arc.

Chebotarev Scientific Research Institute 
of Mathematics and Mechanics, Kazan State University, 
ul. Universitetskaya 17, Kazan, 420008 Russia
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A series of important results concerning the VIBV
problems in aerohydrodynamics was obtained in the
theory of jet and cavity flows, when solving the optimi-
zation problems with depression curves in the filtration
theory, and in designing optimum aerodynamic profiles
for supersonic and hypersonic flows (a review of these
results and references can be found in [3–6]).

In the VIBV problems for all analytical functions
which have been investigated to date, we can study
whether the problem is well-posed provided that the set
of desired domains can be given as a set of images for
a canonical domain (in particular, the exterior of the
unit circle E– = {ζ: |ζ| > 1}) in a specific class of con-
formal and quasi-conformal mappings described by a
control function P. After passage to the canonical
domain, the problem functional can be presented in the
form J = J(P). In aerohydrodynamical VIBV problems,
the procedure described above is implemented in the
following manner.

We specify a class L of closed piecewise smooth
profiles with a given perimeter L (Fig. 1) as a set of
images of a unit circle under the conformal mappings
z = zP(ζ), ζ ∈  E–. These mappings are normalized in
accordance with the conditions zP(∞) = ∞ and zP(1) = 0
and are determined by the control function P(γ), γ ∈
[0, 2π], where γ is the polar angle for the circle points
ζ = exp(iγ). We assume that these profiles are impene-
trable (with the possible exception of isolated singular-
ities) and that an ideal fluid flows around them. The
flow velocity v∞ at infinity is horizontal, with w = w(z)
being the flow complex-valued potential. Let the func-

D

v∞
B

A

(z) E–

u0

BA

(ζ )

β

γ

Fig. 1. Class of profiles being optimized.
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tion P(γ) satisfy the Hölder condition with a certain
index (this condition is sufficient for the existence of
improper integrals) and determine the limiting values
on the circle of the real part of the function:

This function is the difference between the Mitchell–
Joukowski function χ0(ζ) and a proper function χ1(ζ),
which is chosen to eliminate the singularities deter-
mined by the zeros and poles of the complex-conjugate

velocity . It is advisable to take χ1(ζ) = ln ,

where w = w(ζ) is the complex-valued potential for the
flow around a circle and u0 is the incident-flow velocity

in plane ζ. In this case,  = u0exp(–iβ), where β is

the so-called theoretical angle of attack, which deter-
mines the angular deviation of the profile from the
direction ensuring a circulation-free flow around this
profile. Hence, χ(∞) = iβ and we have

(1)

Here, the density P(γ) for the Schwartz integral satisfies
the condition

(2)

(Hereinafter, R denotes the real part of a complex-val-
ued function.) It follows from (1) that

(3)

Because the profiles belonging to class L are assumed
to be closed [i.e., the functions zP(γ) are one-valued],
function P(γ) must satisfy solvability conditions for the
inverse boundary value problems in aerohydrodynam-
ics, namely, the conditions for the closure of profile L
(see [5, Ch. 2]):

(4)

Finally, the class L of the profiles under consider-
ation is defined by the conformal mappings z = zP(ζ)
determined from (3), while the control function P(γ)
satisfies constraints (2) and (4) in addition to those
described above. Parameter u0 specifies the linear scale
in the physical plane and (since parameter L is given for

χ ζ( ) χ0 ζ( ) χ1 ζ( ), χ0 ζ( )– v∞
1– dw

dz
------- ζ( )ln .= =

dw
dz
------- u0

1– dw
dζ
------- 

 

dw
dζ
-------

∞

χ ζ( )
u0

v∞
-------ln

dz
dζ
------  2π( )– 1– P

0

2π

∫ γ( )eiγ ζ+

eiγ ζ–
---------------dγ iβ,+ln–=

P γ( ) Rχ eiγ( ), γ 0 2π,[ ] .∈=

P γ( ) γd

0

2π

∫ 0.=

dz
dζ
------ u0v∞

1– χ ζ( )–[ ] .exp=

P γ( ) γcos γd

0

2π

∫ P γ( ) γsin γd

0

2π

∫ 0.= =
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profiles belonging to class L) is related to function P(γ)
by the equality following from (3):

In this case, we assume that the flow trailing point is the
original of the point ζ = 1. The theoretical angle of
attack β ∈  (0, π/2] is an optimization parameter.

We consider the following variational problem.
Problem A. It is required to find the impenetrable

profile (belonging to the class L) which maximizes the
lift force (or, which is the same, the velocity circulation)
in an ideal flow without separation around the desired
profile, with the velocity v∞ given at infinity and the
flow branching point being on the desired profile.

As is known from the theory of inverse boundary
value problems in aerohydrodynamics [5, 7], the solu-
tion to Problem A is unambiguously determined
from (1) provided that the velocity v = v(s) on the
desired profile is given as a function of the arc length s
of this profile. In this case, function P(γ) and angle β are
unambiguously determined by the distribution v = v(s).
To solve Problem A with regard to the equality

we have to maximize the functional J1(v) in the corre-
sponding class of the functions v(s). This class is
defined by hydrodynamic reasonability conditions (the
absence of boundary-layer separation, the limitation for
the maximum velocity on the profile, etc.). As a result,
informative variational problems appear [5] in which
so-called plane-segment profiles, having an interval
with a constant velocity, are extrema. In this case, solv-
ability conditions (2) and (4) cannot be expressed in
terms of function v (s). Hence, they have to be satisfied
either by the fitting of free parameters introduced in the
class of profiles v(s) or by employing the method of
quasi-solutions to the inverse boundary value problems
in aerohydrodynamics [5]. This method affects the
extremum profile v(s) in the minimum degree (in terms
of the norm of the functional space used). However, it
is most important that the value Γ of the velocity circu-
lation (i.e., the extremum value of functional J1)
remains constant, although the angle β certainly varies.

Another way of solving Problem A is based on the
following relation of the control function P(γ) and the
optimization parameter β to the circulation Γ:

(5)

This relation is a consequence of the Joukowski
theorem on lift force and of formulas (1). Hence, in
order to maximize Γ, we must minimize the functional

u0

Lv∞

J P( )
------------, J P( ) P γ( )–[ ]exp γ.d

0

2π

∫= =

Γ J1 v( ) v s( ) s,d

0

L

∫≡=

Γ
4πLv∞ βsin

J P( )
-----------------------------.=
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J0(P, β) =  under constraints (2) and (4) imposed

on the control function P(γ). The optimization parame-
ter β is not related to function P; hence, the optimum
value of β is, evidently, β = β* = π/2. This corresponds
to the flow around the profile in which the branching
and trailing points coincide. Such a conclusion is com-
pletely consistent with the well-known fact that, in the
case of ideal flow around a circle, with the stagnation
point on the circumference, the maximum velocity cir-
culation is attained when the trailing and branching
points coincide. Our further analysis is based on the
following statement.

Lemma 1. Let the function P(γ) belong to L2[0, 2π]
and satisfy constraints (2) and (4). Then, for the strictly
convex functional J(P),

and this value is attained for the unique function P(γ) =
P∗ (γ) ≡ 0.

It follows from Lemma 1 that the desired optimum

profile is determined by the mapping z(ζ) = 

and is a circle with radius . The trailing and branch-

ing points in an ideal-fluid flow around this profile
coincide. The absolute maximum Λ* for the dimen-

sionless circulation Λ =  =  =  is

Λ* = 2. It is worth noting that Λ = , where Cy is the

lift coefficient calculated according to the profile semi-
perimeter.

The above procedure for solving VIBV problems in
aerohydrodynamics certainly uses the fact that the con-
trol function P(γ) is not related to the control parame-
ters (in the simplest case, to the parameter β) through
constraints. The relation between function P(γ) and the
control parameters appears in the process of optimiza-
tion and is caused by additional constraints. Under
physical constraints (the condition for flow without
separation with allowance for the flow viscosity in the
boundary-layer approximation and the compressibility
of the medium, etc.), we fail to prove the uniqueness for
the extrema even for strictly convex functionals J. This
situation becomes even more complicated if either the
profile drag coefficient or the lift-drag ratio (even when
both are written out in their explicit form) is chosen as
a characteristic to be optimized. As a result, the opti-
mized solutions significantly differ from a circle and
can be evaluated only numerically. However, under cer-
tain simplifying assumptions (in particular, for the sim-
plest set of empirical constants in the criteria for flow
without separation), strictly convex functionals can be
obtained and their extrema can be constructed [10–12].

J P( )
βsin

------------

J P( )
P γ( ) L2∈

inf 2π=

L ζ 1–( )
2π

--------------------

L
2π
------

Γ
L v∞
---------- 4π βsin

J P( )
------------------ 4π

J0 P β,( )
--------------------

Cy

4
------
3. A CIRCLE AS AN EXTREMAL SOLUTION

As follows from Lemma 1, in an ideal flow without
separation around a profile belonging to the class of
smooth closed impenetrable profiles with a fixed
perimeter, the maximum lift force Y corresponds to a
circle. If point singularities (sources and drains) appear
on a profile, relationship (5) will include an additional
factor with parameters defining the positions of the
originals for these singularities on the circle. These
parameters are not related in any way to the control
function P(γ). Hence, Lemma 1 allows us to state that
only a circle can be the optimum solution in these
cases. Moreover, because there are no relations
between the control function P(γ) and the controlling
parameters, the initial variational problem is reduced to
the minimization problem for a function of several vari-
ables under nonlinear constraints (i.e., equalities) [13].

Thus, a circle is an extremum in many of the varia-
tional inverse boundary value problems, as well as in
the classical isoperimetric problems. Although such a
profile does not fulfill the practical requirements of air-
craft design, this circular solution is derived analyti-
cally under the least constraints following from the
mathematical flow model. Therefore, the solution
yields the least upper bound for the lift force Y in an
ideal incompressible-fluid flow. It is natural to put forth
the following question. Are there variational problems
in the framework of the model of an ideal flow whose
extrema differ from circles? The following problem is
a natural generalization of Problem A.

Problem B. It is required to find the profile in the
class L which maximizes the quantity Y under the con-
dition that the maximum value vmax of the relative flow

velocity  does not exceed the given value v∗  > 1.

It is worth noting that the additional constraint for
Problem B takes the form

(6)

We now estimate the range of the controlling param-
eter β using the following statement of F.G. Avkhadiev
(see [5, Ch. 53]).

Lemma 2. Let F(a) be a set of functions analytic
in E–,

,

with a given coefficient a ≠ 0 and the boundary condi-
tion fa(γ) = RFa(eiγ) be an integrable function. Then,
the equality

v
v∞
-------

f β γ( ) P γ( ) 2 γ β–( )sin βsin+[ ]ln v*,ln≤+≡

γ 0 2π,[ ] .∈

Fa ζ( ) a
ζ
--- akζ

k–

k 2=

∞

∑+=

f a γ( )
γ 0 2π,[ ]∈

sup
Fa F a( )∈

inf a
2
-----=
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Fig. 2. Optimum profiles for β = π/2 and various v∗ .

v, y v, y v, y v, y
is valid in the class F(a) with the infimum not attainable
in F(a); i.e., for an arbitrary function fa(γ), we have 

(7)

Let

It is evident that Fa(ζ) ∈  F(a) for a = 2ieiβsinβ and
fa(γ) ≡ fβ(γ) = RFa(eiγ). It follows from (7) that inequal-
ity sinβ < lnv∗  is necessarily valid.

We now formulate the basic statement to be proved.

Theorem 1. If v∗  > 1, Problem B is undoubtedly

solvable with sinβ* < lnv∗  and Λ* < 2lnv∗ . In addi-

tion, if 1 < v∗  < 4, the extremal differs from a circle. If

v∗  ≥ 4, the unique extremal is a circle. Moreover, Λ* ≥
v∗  – 2 and β* ≥ arcsin(v∗ /2 – 1) if 2 < v∗  ≤ 4, while

Λ* = 2 and β* = π/2 if v∗  ≥ 4, where Λ* and β* are the

absolute maximum of Λ and the extremum value of β,
respectively.

In the particular case of Problem B when the quan-
tity β is given (we referred to this case as Problem B'),
the strictly convex functional J(P) must be minimized
under constraints (2), (4), and (6), with β = β* given.

The following theorem also holds.

Theorem 2. The inequality sinβ* < lnv∗  is a neces-

sary condition for Problem B' to be solvable. If v∗  > 2

and sinβ* ≤  – 1, the unique extremal is a circle. If

f a γ( )
γ 0 2π,[ ]∈

sup
a
2
-----.>

Fa ζ( ) χ ζ( ) 1 ζ 1––( ) 1 e2iβ

ζ
--------+ 

  .ln+=

v*
2

-------
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v∗  > 1 and max 0,  – 1  < sinβ* < lnv∗ , the extre-

mal differs from a circle.

In Fig. 2, we present examples of the optimum pro-
files evaluated numerically at β = 90° (when the
branching and trailing points coincide) for various val-
ues of v∗  in the two-parametric set of the functions

P(γ) = acos2γ + bsin2γ satisfying conditions (2) and
(4), where a and b are certain parameters. All the veloc-
ity distributions (1) and profiles (2) are symmetric with
respect to the vertical. The first example is a circle with
v∗  = 4. The thickness of these profiles significantly

decreases with decreasing v∗ , and a nearly straight sec-

tion appears in the velocity distributions. The calcula-
tion results for the maximum lift coefficient Cymax as a
function of v∗  for various β showed that the values

Cymax decrease within admissible ranges by smaller
than 8% when the value v∗  decreases. Moreover, for

each β, there is a minimum value of the maximum
velocity on the profile.

The solution given above determines the lower esti-
mate for the dependence Cymax = Cymax(v∗ ) in a nar-

rowed class of the functions P(γ). To exactly solve the
problem for fixed β, we performed a numerical optimiza-

tion for the class of the functions P(γ) = akcos2γ +

bksin2γ) by varying the coefficients ak and bk . One of
the results of this numerical optimization for β = 10°,
v∗  = 1.4, and N = 20 is presented in Fig. 3. This is a

symmetric profile (2) with a nearly straight section (1)
in the velocity distribution on the profile upper surface.



 v*

2
-------





(
k 2=

k N=

∑
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The value Cy = 1.16 is attained at the angle of attack α =
0.25°.

Actual profiles usually have a cusped trailing edge.
In Fig. 4, we present the optimized shape (2) for the
profile with a cusped trailing edge (with an interior
angle of 36°). In this case, the coefficient Cy attains its
maximum at v∗  = 1.4 for β = 10°. The profile obtained
for the calculated angle of attack α = –1.88° has Cy =
1.15. This value is fairly close to that evaluated previ-
ously for optimized profiles with blunted trailing edges.
The velocity distribution (1) on the upper surface of the
profile obtained has a nearly straight section, but high
velocity gradients in the neighborhood of the trailing
edge testify to the presence of a detached flow.
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Fig. 3. Numerically optimized profile with a blunted trailing
edge for β = 10°, Cy = 1.16, and α = 0.25°.

Fig. 4. Numerically optimized profile with a sharp trailing
edge for β = 10°, Cy = 1.15, and α = –1.88°.
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We now consider the case when an ideal flow
around a desired profile has its branching points inside
the flow. In this case, we have (see, for example, [9])

where ζ∗  = – ir is the original of the branching point and
r > 1 is a parameter. We again introduce the function
P(γ) and use relationships (2)–(4). The equality

is an analogue of (5). Because functional J(P) has a
lower bound, the upper bound of Γ goes to infinity with
increasing r in the case of fluid flow around an arbitrary
profile. Therefore, in this situation, Problem A loses its
meaning.

In the case of Problem B, the inequality

is an analogue of condition (6). After fixing quantity r,
we arrive at an analogue for Problem B'. The following
theorem on the solvability of these problems sums up
the above considerations.

Theorem 3. If an ideal flow around a profile belong-
ing to class L has its branching points inside the flow,
then the following statements are true.

(1) Problem B is solvable only for v∗  > e, with Λ* ≤

r ∗  + . For e < v∗  < 4, the extremum differs from a

circle.
(2) The inequalities 1 < r ≤ r∗  and v∗  > e are neces-

sary conditions for Problem B' to be solvable. The solu-
tion is unique and is a circle, with Λ* = r + r–1 if 1 < r ≤
r1 and v∗  > 4. In the case of r1 < r ≤ r∗ , the extremal

differs from a circle, with Λ* ≤ r + r–1.

Here, r1 =  and r ∗  is a sin-

gle root of the equation rln  = 1.
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Stability of a Thin Round Plate in Radial Compression
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Problems on the behavior of constructions (shells,
membranes, rod systems, etc.) under the action of loads
rapidly varying in time-dependent and true impact
loads are of crucial importance both theoretically and
in practice; however, their exact solutions are extremely
difficult to obtain. Very often, such problems are solved
by approximate or numerical methods; it has been pos-
sible to solve only a few of them analytically.

In the previous authors’ papers [1, 2], the problem
on magnetization reversal of a magnetic sheath with
asymmetric boundary conditions was shown to be sim-
ilar to Euler’s stability problem for an elastic rod. For
magnetic systems, a sequence of stability-loss thresh-
old fields for a ferromagnetic layer was found and anal-
ogy to the dynamic stability loss for elastic systems
studied by Lavrent’ev and Ishlinskiœ [3] was drawn.

The analogy found allows a number of analytic
results for describing the stability of the magnetic and
elastic systems to be obtained. Thus, for elastic sys-
tems, we found exact solutions to the nonlinear equation
of strong bending for an elastic rod-cantilever under the
action of a transverse concentrated load at the free
end [4].

The theoretical results obtained permit analysis of
more involved elastic systems in a new way, in particu-
lar, the problem on thin-plate bending.

Problems on elastic-system bending are convention-
ally solved for geometrically linear equations for
deflections using complicated trial functions for
stresses [10–12]. In this case, sophisticated approxi-
mate calculating methods (Bubnov–Galerkin method,
perturbation theory, etc.) must be used [10–13].

In the present study, an approach is proposed involv-
ing consistent analysis of geometrically nonlinear
equations of the Föppl–Karman type for elastic-system
deflections under the action of external forces [5–7].

* Kirenskiœ Institute of Physics, Siberian Division, 
Russian Academy of Sciences, Akademgorodok,
Krasnoyarsk, 660036 Russia

** Siberian State Technological University, 
Prospect Mira 82, Krasnoyarsk, 650049 Russia
1028-3358/01/4604- $21.00 © 20286
Using this approach, we shall obtain an analytically
exact solution to a model problem on strong bending of
an elastic round thin plate.

We consider a geometrically nonlinear case and
construct a system of solutions by analogy with the
results for nonlinear bending of a thin rod [4] assuming
that the plate is initially planar and is fixed at the edge.
Hooke’s law is assumed to be satisfied.

For describing the plate deflection, we use the widely
known static equations of plate equilibrium [5–7] in the
form [8–10]

(1)

where the desired functions uz are the components of
the elastic-displacement vector for points of the middle
plate surface in the normal direction and Φ is the stress

function; D =  is the cylindrical rigidity of

the plate, E is Young’s modulus, µ is Poisson’s ratio,
h is the plate thickness; ∆ is the Laplace operator in
arbitrary surface curvilinear coordinates and ∆k is a
mixed-type operator. For an arbitrary surface with a
metric gij and second-quadratic-form components bij ,

(2)

(3)

To reveal the effects associated with the geometric
nonlinearity of the problem, we use exact expressions
for the surface curvature instead of the popular approx-
imation, where deflections are assumed to be small as
compared to the overall plate dimensions. In our case,
the first equation of system (1) for an initially unbent
plate in arbitrary surface orthogonal coordinates (α, β)

D∆∆uz ∆kΦ± q,=

∆∆Φ Eh∆kuz+− 0,=

Eh3

12 1 µ2–( )
-------------------------

∆f x1 x2,( ) 1

detg
-------------- ∂

∂xi
------- detggij ∂f

∂x j
------- 

  ,≡

i j, 1 2,,=

∆k f x1 x2,( ) 1

detg
-------------- ∂

∂xi
------- detb 1–( )i j+ bij

detg
--------------------------------------- ∂f

∂x j
------- 

  ,≡

i j, 1 2.,=
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for an arbitrary external load takes the following exact
form:

(4)

Here, σαβ =  is the stress tensor and χαβ =

 is the matrix of the principal surface curva-

tures κ and torsion χ. The minus sign corresponds to the
positive direction of the external-load vector q, and the
vector uz = w corresponds to the elastic displacement of
a surface point along the internal normal to the plate
surface. The desired surface-bending function (devia-
tion from the equilibrium) enters into this equation
through the surface curvatures. The radial load is
expressed in terms of the stresses σ. The transverse load
q appears in the equation explicitly. In the general case,
to this equation, one should add the equation for the
stress function, i.e., the continuity equation for the plate
middle surface. In cylindrical coordinates, Eq. (4) takes
the form

(5)

The following designations are introduced: R is the
plate radius, w is the deflection, and p is the constant
radial load uniformly distributed along the length of the
contour. Here, we assume that the contour points freely
transfer in the radial direction. The external distributed
transverse load is absent; i.e., q = 0. In our case, we
have axisymmetric buckling when the median plate
plane changes to a surface of revolution (Fig. 1).

We introduce the tangent slope in the radial direc-
tion at the moving point θ(r) as the desired function
(Fig. 1). The Laplace operator obtained from (2) is of
the form

(6)

The function θ(r) appears in Eq. (5) through the curva-
tures

For Eq. (5), we obtain

(7)

The boundary conditions for a plate with its edges rig-

D∆ κα κβ+( ) h σαβχαβ

αβ
∑± q.=

σα τ
τ σβ 

 
 

κα χ
χ κβ 

 
 

D∆r κ r κϕ+( ) h σrκ r σϕκϕ+( )+ q.=

∆r

θrcos
r

------------- d
dr
----- r θr

d
dr
-----cos 

  .=

κ r = θdθ
dr
------, κϕcos  = 

θsin
r

-----------, κϕ κ r+  = 
1
r
--- d

dr
----- r θsin( ).

D
θcos

r
------------ d

dr
----- r θ d

dr
----- 1

r
--- d

dr
----- r θsin( ) 

 cos 
 

+ h σr θdθ
dr
------cos σϕ

θsin
r

-----------+ 
  0.=
DOKLADY PHYSICS      Vol. 46      No. 4      2001
idly bound to the contour are of the form

(8)

From the equilibrium condition for a round plate, the
radial σr stresses and the arc σϕ stresses are related
through the expression

(9)

Using (9), we eliminate stress σϕ in Eq. (7). Next, in our
case of nonlinear deflection, we employ the expression
for the radial stress σr = pcos2θ and perform the appro-
priate integration [the integration constant vanishes due
to the boundedness condition for θ(r)]. Then, we obtain
the nonlinear second-order equation for θ(r):

(10)

The Bessel functions of the first kind with subscript 1
are the solutions to this equation, since the Bessel func-
tions of the second kind J1 are unbound at zero. We
have

(11)

where k is the integration constant and λ = . The

condition θ(R) = 0 results in J1(λR) = 0; from this equa-
tion, we have λ = τn/R, where τn is the nth zero of the
Bessel function J1(r). Knowing the dependence θ(r),
we express the plate profile w(r) and curvilinear length
l(r) explicitly in terms of quadratures:

where the conditions w(R) = 0 and l(0) = 0 are taken

θ R( ) 0, θ 0( ) 0, θ r( ) ∞.<= =

σϕ θ d
dr
-----

rσr

θcos
------------ 

  .cos=

d
dr
----- 1

r
--- d

dr
----- r θsin( ) 

  hp
D
------ θsin+ 0.=

θ r( )sin kJ1 λr( ),=

hp
D
------

w r( ) θ r( )tan r, l r( )d

R

r

∫ θ r( )sec r,d

0

r

∫= =

θ(r)

r

nw

Fig. 1. Coordinate system.
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into account. Using (11), we have

(12)

The form of the expressions obtained (12) is similar
to the structure of the elliptic integrals in the Lagrange
normal form. Therefore, it is worthwhile introducing a
new system of special functions, i.e., integrals and their
inversions, by analogy with elliptic integrals and Jacobi
functions.

We introduce a new special function, “the elliptic
Bessel integral”:

(13)

Here, the main dissimilarity from the elliptic integral of
the first kind is in the replacement of sine in the inte-
grand by the Bessel function with subscript 1. The
modulus values k must fall in the range between 0 and

 = 1.7186…, where MaxJ1 = 0.5818… is the

maximum value of the Bessel function; otherwise, the

w r( )
knJ1 τnr/R( )dr

1 kn
2J1

2 τnr/R( )–
------------------------------------------,

r

R

∫–=

l r( ) dr

1 kn
2J1

2 τnr/R( )–
------------------------------------------.

0

r

∫=

Fb k ϕ,( ) dϕ

1 k2J1
2 ϕ( )–

--------------------------------.

0

ϕ

∫=

1
MaxJ1
----------------

0.4

4

0

– 0.4
0 8 12 16 20

snb

u

k = 1.5 k = 1.71 k = 1.718 k = 1.7186

k = 0

Fig. 2. “Elliptic Bessel sine” for various values of the mod-
ulus k. It is seen that the first “half-period” of the function
tends to infinity when k  kmax , the other periods being
essentially unchanged.
function Fb(k, ϕ) takes complex values for a real argu-
ment.

An “elliptic Bessel amplitude” is the inversion of
the elliptic Bessel integral:

(14)

This function also depends on the modulus k, and the
Jacobian elliptic amplitude is its analogue.

By analogy with the elliptic Jacobi sine, we intro-
duce an “elliptic Bessel sine” snb(u, k) = J1(amb(u, k)).
This function has zeros at the points u = Fb(k, τn). The
integral Fb(k, τn) is the analogue of the complete ellip-
tic integral of the first kind K(k) = F(k, π/2) and plays
the role of a nonuniform “half-period”, similar to the
function 2K(k) playing the role of the uniform half-
period in the theory of the Jacobi elliptic functions. The
plot of the function snb(u, k) is shown in Fig. 2 for var-
ious k-values.

It is seen that the function snb(u, k) makes possible
the modeling, by a single function, of linear and
strongly nonlinear (in the region of the first maximum),
properties of various systems with axial symmetry. An
additional function can also be introduced:

We represent the solutions to the problem found
above with the aid of the functions introduced. The
expressions for a curvilinear arc and polar radius are as
follows:

(15)

The expression for the tangent slope (11) changes to the
following:

(16)

The resulting expressions are structurally identical to
those represented in terms of the elliptic functions for
the tangent slope in the problem on the strong bending
of a rod reported in [4] and for the angle of the nonlin-
ear-pendulum deflection.

By L, we denote the total curvilinear length of the
plate or “semidiameter,” which is measured along the
arc length on the plate surface. The boundary condition
for the plate fixed at the edge, θ(L) = 0, gives sinθ(L) =
ksnb(λL, k) = 0. From this relation, using properties of
the function snb(u, k), we obtain the eigenvalue spec-
trum

(17)

u Fb k ϕ,( ), ϕ amb u k,( ).= =

dnb u k,( ) 1 k2snb2 u k,( )– .=

l r( ) 1
λ
---Fb k λr,( ), r l( ) 1

λ
---amb λ l k,( ).= =

θ l( )sin kJ1 amb λ l k,( )( ) ksnb λ l k,( ),= =

θ l( )cos 1 θ l( )sin
2

– dnb λ l k,( ),= =

θ l( ) ksnb λ l k,( )[ ] .arcsin=

λ 1
L
---Fb k τn,( ).=
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The plate-end coordinate can be found from the known

λ-value: R = . Using (17), we find the load thre-

sholds:

.

By introducing the first critical load, i.e., the Eulerian

force p1 =  = , the previous expression

can be rewritten as

(18)

Expression (18) gives, implicitly, the external-load-
dependence of modulus k(λ). For the external load
p < p1 , the unique value k = 0 corresponds to every
p-value. For the load value within the interval p1 < p <
p2 , there is one nonzero value of k for every p-value; for
p2 < p < p3 , there are already two values of k and two
profile forms (they are the static mode and the first
dynamic mode, according to Lavrent’ev–Ishlinskiœ ter-
minology [3]); etc.

Of course, as the load smoothly increases above the
first threshold (p > p1), only one profile form corre-
sponding to the static mode will be realized. The first
dynamic mode can be reached only upon pulsed (impact)
loading [3], when the pulse rise time is less than the sys-
tem relaxation time. Nonlinear properties of the system
begin to show up clearly for k-values near kmax.

Now, we find the plate profiles in the section made
along the principal axis. An expression for the plate
deflection can be written parametrically in terms of
quadratures, where a curvilinear arc acts as a parameter:

(19)

These equations describe the shape of a strongly arched
plate (0 ≤ l ≤ L) under the action of a static load (n = 1)
and dynamic loads (n > 1). The modulus k ranges from
0 to 1.7186; it specifies the overall plate-profile curva-
ture and is determined by the values of the external act-
ing force p. For every threshold, dependence k(p) is
determined by its own equation (18) for the corre-
sponding n-value. The system of solutions (19) and
expressions for strong bending of a rod given in [4]
have a similar structure.

Expressions (18), (19) are also true for a plate with
a fixed edge if the identical substitution τn  αn is

τn

λ
----

p
λ2D

h
----------

DFb2 k τn,( )
hL2

----------------------------= =

DFb2 0 τ1,( )
hL2

-----------------------------
Dτ1

2

hL2
---------

p
p1
-----

Fb k τn,( )
τ1

----------------------
2

.=

w l( ) k snb
Fb k τn,( )l

L
------------------------ k, l,d

l

L

∫=

r l( ) L
Fb k τn,( )
----------------------amb

Fb k τn,( )l
L

------------------------ k, .=
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used in these expressions. Here, αn is a set of roots of

the transcendental equation J0(α) –  = 0.

The plate profiles (dependence w(r)) are shown in
Fig. 3. The length L is the unit of measurement in these
plots.

Thus, when solving the general geometrically non-
linear equation for a round plate compressed by a radial
load, it was shown that the solutions found are an exten-
sion of the solution of the problem on the strong bend-
ing of a rod to a two-dimensional surface.

The exact solution to the geometrically nonlinear
equation for a round plate compressed by a radial load
is not expressed in terms of known analytic functions.
For description of the exact solution, we introduced a
system of special functions: elliptic Bessel integrals
and elliptic Bessel functions, which, for cylindrical
symmetry, are the analogues of the elliptic integrals and
Jacobi elliptic functions.

The system of functions introduced describes the
essentially nonlinear properties of a system in a
bounded region and describes the system as linear out-
side of this region; this system can be used to analyze
processes in which a strong action takes place within
a bounded region.
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MECHANICS
Energy Estimates for Phase Transitions in a Ball Subjected
to a Spherically Converging Compression Wave
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We propose a model for describing the deformation
processes initiated by phase transitions in a ball sub-
jected to a spherically converging intense compression
wave. The effect of the formation of a cavity at the
ball’s center is explained.

1. FORMULATION OF THE PROBLEM
AND BASIC HYPOTHESES 

Let a continuous homogeneous isotropic ball with
radius R be subjected to a spherically symmetric radial-
compression shock load applied to its surface [1].

The equilibrium equation for a continuum takes the
form

where ∇  is the Helmholtz differential operator, σ is the
Cauchy stress tensor, ρ is the mass density, u is the dis-
placement vector, and the points over a letter mean dif-
ferentiation with respect to time.

At an initial moment, the ball is at rest; i.e., u(0, r) =
(0, r) ≡ 0 for r ∈  [0, R]. For t > 0, the ball is subjected

to normal spherically symmetric surface forces; i.e.,
n · σ(t, R) · n = F(t), where n is the outward normal and
the function F(t) determines the time dependence of the
shock pulse. In this case, the displacement at the ball’s
center remains bounded.

The medium, subjected to intense shock actions, is
described by an unknown defining tensor relationship
σ = S{∇ u}, which allows for phase transitions. Here,
the braces indicate an operator dependence. Hence, we
will propose an approximate (using the conservation of
energy) approach based on approximating the actual
wave process by base functions that are determined
from a solution to the simplified boundary-value prob-
lem with initial conditions under the following assump-
tions.

ρu̇̇ ∇ σ⋅– 0,=

u̇

Institute of Problems in Machine Science, 
Russian Academy of Sciences, 
Bol’shoœ pr. 61, St. Petersburg, 199178 Russia
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(1) All quantities depend only on the radius, the dis-
placements are radial, and the Cauchy stress tensor
remains spherical up to the ultimate stress; i.e., σ = –pI,
where p is the hydrostatic pressure and I is the unit
tensor.

(2) By virtue of the low compressibility of iron, the
strain in the ball is described by the small-strain tensor

ε = (∇ u + (∇ u)Τ ).

(3) The medium is described by Hooke’s linear law
p = –k0Tr(ε), where k0 is the bulk modulus.

As a result, the base functions are found from a solu-
tion to the classical problem on the propagation of an
acoustic wave through the ball. According to the num-
ber of terms taken into account in the expansion of the
wave solution, different models of actual physical pro-
cesses can be developed.

(1) Keeping only the first term (compression wave),
we can account for the origination of a cavity at the
ball’s center as the formation of a gaseous core sur-
rounded by a liquid layer and, farther, by a solid crust.

(2) The allowance for the second term (rarefaction
wave) makes it possible to explain the origination of the
cavity by the cavitation at the center of the liquid mol-
ten core formed under the action of the compression
wave.

(3) The allowance for the next terms is worthwhile
for a fairly long pulsed loading.

The adequacy of these models can be verified by
physical experiments.

2. ESTIMATION OF THE SIZES 
FOR THE SUBLIMATION CORE

AND LIQUID LAYER 

The first model deals with the processes during the
first passage of the compression wave:

p(t, r) = F t –  +  for t ∈  0, .

1
2
---

R
r
--- 

 R
c
--- r

c
--



 R

c
---


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Here, c =  is the front velocity [2]. We assume that

at the moment when the compression wave converges
at the ball center, the potential energy is instanta-
neously converted into internal energy in the central
region of the ball. This may result in fusion and subli-
mation (dry evaporation) of the medium.

The amounts of energy needed to melt or sublimate

a mass m are equal to Q(i) = m , i = 1, 2, where 

and  are the heats of melting and sublimation,
respectively. Hence, according to the hypotheses
accepted, both the sublimation core radius ra = aR and
outer liquid-layer radius rb = bR are determined from
the set of nonlinear equations

(1)

The function F(t) is rapidly decreasing [1]. Hence,
it is easy to prove that the set of equations (1) always
has a pair of real roots 0 ≤ a ≤ b. The following cases
are realized depending on the arrangement of the roots.

(1) If a = b = 0, the whole ball remains solid.
(2) If 0 = a < b < 1, a liquid core surrounded by a

solid crust forms.
(3) If 0 < a < b < 1, a gaseous core surrounded by a

liquid layer and, farther, by a solid crust forms.
(4) If 0 < a < 1 ≤ b, a gaseous core surrounded by a

liquid layer up to the ball surface forms.
(5) If a ≥ 1, the whole ball passes into a gaseous

state; i.e., it evaporates.
It is worth noting that set (1) always has the trivial

solution a = b = 0, while the two last variants lead to full
destruction of the ball.

3. PROCESSES IN THE SOLID CRUST
AFTER PHASE TRANSITIONS 

We assume that the pressure pa in the sublimate is
equalized along the radius nearly instantly. It can be
estimated from the condition that the sublimation

energy Q(2) = ρVa  is equal to the potential energy
paVa of compressed gas, where Va is the sublimation
core volume. The liquid layer transfers the sublimate
pressure to the inner surface of the solid crust according
to the Pascal law. Thus, the following estimates are
valid:

(2)

Under the action of pressure, the solid crust begins
to expand and the stress tensor ceases to be spherically

k0

ρ
----

cp
i( ) cp

1( )

cp
2( )

F2 Rx
c

------ 
  xd

0

a

∫ 2
3
---ρk0cp

2( )a3,=

F2 Rx
c

------ 
  xd

a

b

∫ 2
3
---ρk0cp

1( ) b3 a3–( ).=

cp
2( )

pa ρcp
2( ), pb η2 pa, η a

b
---.= = =
symmetric; the latter can lead to irreversible shear
strains. Both the sublimate condensation on the liquid-
layer inner surface and the thickening of the solid crust,
which is due to the recrystallization of the liquid layer,
take place simultaneously inside the sphere. As a result,
the pressure under the rising crust drops and the crust
growth stops. After cooling the ball, its external radius
can rise up to R∗  = R + ur(R).

The irreversible strains inside the solid crust are
estimated by solving the problem of expanding a spher-
ical layer through internal pressure. In this case, the
stress–strain relation is taken in the deviator form [3]:

(3)

Here, µ is the shear modulus; α > 0 and σs > 0 are the
dynamic coefficient of strengthening and the yield
stress, respectively; and H(x) is the Heaviside function.

The radial displacement ur(r) =  is found from the

condition of plastic incompressibility: Tr(ε) =  +

 = 0. Here, the constant C is determined from the

boundary condition on the inner surface of the solid
crust: σrr(rb) = –pb .

Thus, the following estimate is valid for the relative
increment of the outer radius of the solid crust:

(4)

Here, s = max  = η2  is the relative

tangential stress on the inner surface of the solid crust.
For s ≤ 1, the outer radius of the ball does not increase
because δR = 0. Within the framework of the model
under consideration, it is easy to verify that, for η ≤

η∗  = , the cavity cannot form. In this

case, the second model has to be employed.
The relative radius of the spherical cavity is found

from the law of mass conservation by the formula

(5)

where ρ∗  is the density of the recrystallization layer for
the liquid phase.

4. NUMERICAL RESULTS 

We analyzed the expressions obtained using, as an
example, an iron ball with radius R = 0.05 mm. We

εD σs

2µα
----------H

σD

σs
--------- 1– 

  σD
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--------- 1– 
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C
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2ur
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DOKLADY PHYSICS      Vol. 46      No. 4      2001



ENERGY ESTIMATES FOR PHASE TRANSITIONS 293
set [4] that k0 ≈ 108, µ ≈ 84, σs ≈ 1 GPa, α ≈ 0.1 rel. units,

ρ ≈ 7.6 × 103 kg/m3, Å ≈ 1.3 × 104 J/mol,  ≈ 3.5 ×
105 J/mol, and m0 ≈ 6 × 10–2 kg/mol (molar mass of
iron). We considered the simplest approximation to the
shock pulse: F(t) = F0exp–t/λ, where λ = 0.15 µs [1].

Figure 1 shows the relative values for (1) the subli-
mation core radius a, (2) outer radius b of the liquid
layer, and (3) radius δ∗  of the spherical cavity (under
the assumption that ρ∗  = ρ) as functions of the ampli-
tude F0 of the shock pulse.

For the typical value F0 = 40 GPa [1], the relative
values for the sublimation core radius and the outer
radius of the liquid layer, a ≈ 0.14 and b ≈ 0.53, corre-
spond to the third state of the above-mentioned states of
the ball. In this case the sublimate pressure pa ≈
44.3 GPa. The relative increment of the outer radius is
δR ≈ 0.01. Under the assumption that ρ∗  = ρ, the relative
radius of the spherical cavity is, hence, δ∗  ≈ 0.32; this
estimate is well consistent with experimental data [1].

The liquid-phase recrystallization takes place at
pressure pa and temperature Ta . According to the per-
fect gas law, the latter is estimated as

where R0 = 8.31 J/(K mol) is the gas constant.

The following improvements of the model proposed
are possible:

(1) more accurate estimation of the strain potential
energy at the moment when the shock wave converges
at the center;

(2) allowance for both temperature and pressure
effects on the heats of melting and sublimation, as well
as for temperature variations, under adiabatic compres-
sion;

(3) more accurate estimation of pressure in the sub-
limate;

(4) allowance for the processes of sublimate con-
densation and melt recrystallization under solid-crust
expansion, which is reduced to solving the Stefan prob-
lem combined with the problem on viscoplastic flow;

cp
1( ) cp

2( )

Ta pa

3m0

2ρR0
------------

3cp
2( )m0

2R0
------------------ 3.75 103 × K,≈= =
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(5) allowance for both temperature and pressure
effects on the phase composition in the recrystallization
layer, as well as for the medium loosening.
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The model of a fiber bundle is one of the basic struc-
tural systems in studying the strength problem of dis-
crete media in its probabilistic formulation [1, 2]. The
term “fiber bundle” is applied in strength mechanics to
differentiate this system from that considered within
the mathematical theory of reliability of the parallel
connection model: the failures of elements in the latter
are independent (in the probabilistic meaning), whereas
the events of fiber failure in the bundle are dependent
due to the redistribution of stresses.

Beginning with the classical work [3], in which the
case of linearly elastic fibers was considered assuming
the uniform redistribution of a statically applied load,
the model of the fiber bundle was intensively studied
under various modifications. The cases of the localized
redistribution of load were studied, as well as problems
on the long-term strength and models with nonlinear
diagrams of the fiber tension (see, e.g., [4–7] and refer-
ences therein).

In this report, we consider the case where a cycli-
cally varying tensile load is applied to the bundle.
Fatigue failure [1, 8, 9] induced by such actions occurs
under loads sufficiently less than those needed for static
failure. In engineering, this results in the necessity of
considering the cyclic actions (e.g., vibrations in tech-
nique or wave action on naval buildings) as one of the
calculated cases. As applied to the model of the fiber
bundle, the problem consists in determining the fatigue
endurance of the bundle (measured as the number of
loading cycles after which the failure occurs) on the
assumption that the fiber fatigue properties are known.

Exhibiting a significant statistic variability [1, 8,
10], the endurance requires a probabilistic description.
The model studied in this report is close in some
aspects to those proposed earlier [11, 13]; however, we
consider a more general formulation. The main result is
as follows: asymptotically, a deterministic fatigue
curve forms in a stochastic bundle, the lifetime of
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which turns out to be shorter than the mean lifetime of
individual fibers.

1. Let the bundle consisting of n nominally identical
fibers be subjected to the action of a cyclic tensile load
with amplitude S. It is assumed that fibers can be
destroyed as a result of cumulative fatigue damage and
that the load is always uniformly distributed among
nondestroyed fibers. In particular, the initial load on

each fiber is s = . Let us designate by N(s) the lifetime

of an individual fiber for a constant amplitude s of the
accepted load and consider this value as random, with
the distribution function FN(t; s) being identical for all
fibers.

After the failure of the “weakest” fiber in the bundle,
the stresses in the remaining fibers increase from the

value  up to the value ; after the failure of the

next fiber, they increase up to the value , etc.

Thus, the load acting upon the fiber in the bundle is not
constant (in the sense of its amplitude) and represents a
so-called multilevel loading [1] of the kind {l1; q1} +
{l2; q2} + …, where li is the duration of the block (level)
and qi is the load magnitude. Therefore, the information
presented by the function FN alone is insufficient for
determination of the sequential instants of the fiber fail-
ure in a bundle and additional hypotheses are required
for the cumulative damage and for the corresponding
criterion of the fiber failure under multilevel loading
conditions, naturally, within the framework of the prob-
abilistic approach.

Let us specify the model of fatigue endurance of the
bundle with allowance for the considerations presented
above. We suggest that the fatigue properties of fibers are
described by a probabilistic fatigue curve (the other nota-
tion is the S–N curve or the Wöhler diagram) of the form

(1)

where ϕ(s) is a monotonically increasing load function
and r is an arbitrary characteristic of the fatigue

S
n
---

S
n
--- S

n 1–
-----------

S
n 2–
-----------

N s( ) r
ϕ s( )
-----------,=
001 MAIK “Nauka/Interperiodica”
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strength, which represents a random value with distri-
bution function Fr(x). Using such an approach [1], an
individual S–N curve is assigned to each fiber depend-
ing on the particular realization of the random value r.
Usually, it is assumed [1, 11, 13] that ϕ is a power-law
function and, therefore,

(2)

however, this is unessential at the given stage of analy-
sis. On account of (1),

We restrict our consideration to the case when the
values of ri [and, therefore, Ni(s) (i = 1, 2, …, n)] corre-
sponding to different fibers are independent. It is obvi-
ous that the failure of fibers in the bundle occurs in
order of increasing ri values, as the larger fiber lifetime
corresponds to the larger value of r, according to for-
mula (1). For the sake of convenience, we renumber the
fibers in order of increasing fatigue strength character-
istics: r(1) ≤ r(2) ≤ … ≤ r(n) (such a sequence is termed a
variational series, and its ith term is termed the ith order
statistics) [14].

As a criterion of the fiber failure under multilevel
loading, we employ its probabilistic modification cor-
responding to the model of a linear summation of
damage, which is widely used in engineering applica-
tions [1, 9, 10] and is known as the Palmgren–Miner
rule. We designate the load acting upon the nonde-
stroyed fibers of the bundle within the ith loading level

(when exactly fi fibers are destroyed) by si =  (i =

0, 1, …, n – 1) and the duration of the ith level by ki .
Then, one can assert that the fiber with number m,
m = 1, 2, …, n is destroyed under the multilevel
(m-level) loading {s0; k0} + … + {sm – 1; km – 1}; in this
case, the values of ki are sequentially found from the
condition that the corresponding total damage in the ith
fiber is equal to the critical value 1:

Here,  is the damage accumulated during the ith
loading level in the mth fiber and the values N(m)(si) are
defined by relation (1) for the corresponding values
of r(m) .

Summing the durations of all n loading levels, we
find the required (random) lifetime of bundle Tn(s) =
k0 + … + kn – 1:

(3)

N s( ) r

su
----, u 1;≥=

FN t; s( ) Fr= ϕ s( )t( ).

S
n i–
----------

µ0
m( ) … µm 1–

m( ) k0

N m( ) s0( )
-------------------- …

km 1–

N m( ) sm 1–( )
--------------------------+ +≡+ + 1.=

µi
m( )

Tn s( ) N i( ) s( ) ϕ s( )

ϕ n
n i– 1+
-------------------s 

 
-------------------------------- ϕ s( )

ϕ n
n i–
----------s 

 
----------------------– ,

i 1=

n

∑=
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where s =  is the specific load [for i = n, we set

ϕ(∞) = ∞].
Thus, the lifetime of the bundle of n fibers under the

action of a cyclic load with specific value s is a linear
combination of the order statistics N(i)(s) defined under
the same load s. The latter statement is essential, since
it means that in the model under study, the information
on the tests for fibers with a constant load amplitude is
sufficient for determination of the bundle lifetime.

The coefficients in relation (3) are simplified in the
case of the power-law function ϕ(s) = su, and this rela-
tion takes the form

(4)

where the coefficients ci are independent of the load.
The combined distribution of the order statistics is

known only formally [14], since it is set by an n-dimen-
sional integral over the nontrivial domain. Therefore, it
is impossible to make any general conclusions on the
distribution or numerical characteristics of the bundle
lifetime for relatively small values of n.

2. Now, we will show that for ϕ(s) = su (u ≥ 1), our
model allows one to study the behavior of the random
value Tn(s) for n  ∞. First, we consider the case
u = 1 consistent with the linear function ϕ, where we

introduce the additional designation  for the bundle
lifetime. For this case, the analysis can be done without
utilizing the theory of order statistics. Actually, for

u = 1, we obtain that ci =  for all i. Therefore,

(5)

where N(i)(s) are the order statistics. However, N(i) is
understood (further on, we consider s a fixed value and
drop it in the designations) simply as a set of realiza-
tions of the fiber lifetimes Ni , i = 1, 2, …, n; not arrang-
ing them in increasing order, the sum remains
unchanged. Consequently, expression (5) can be treated
as a standard estimate of the mean value of a certain
random quantity (fiber lifetime in this case) with a pre-
assigned distribution. According to the central limit

theorem [15], the quantity Tn (= ) has an asymptot-
ically normal distribution with mean value T = M[N]

and variance  = , where M[N] and D[N] are

the respective values for the lifetime of isolated fibers
(we assume that the values are finite). The asymptotic
normality means that for all a, b (a < b),

(6)
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where P{·} is the event probability and Φ0 is the normal
distribution (with zero mean value and unit variance).
Property (6) for considerably large n allows one to
approximate the distribution function for the bundle
lifetime Tn by a normal law.

3. Consider now the general case u > 1. In the theory
of order statistics [14], the following conclusion is
proved. Let the coefficients ci in the linear statistics Tn (4)
be written in the form

(7)

where the function J(z) is continuous on the segment
[0, 1] and the following condition is fulfilled:

Then, the quantity Tn is asymptotically normal and rela-
tion (6) is valid for it where

(8)

One cannot apply this assertion directly to the prob-
lem considered because relations (4) for ci do not com-
ply with the form of (7) (except for the case of u = 1
studied above). Nonetheless, one can show that the
quantities ci for u > 1 are representable by the sum of

two components, ci =  + , the first of which has
the form (7) with function J(z) = u(1 – z)u – 1, and the sec-

ond is written as  = Bin–u, where Bi are some
bounded functions of the parameters i, n, and u: |Bi| <
B = const, i = 1, 2, …, n [for u ≥ 2, this is illustrated by
a direct expansion of expressions (4) for ci in a Taylor
series]. Then, the lifetime of the bundle Tn (3) is written
as a sum:

The second term, owing to the estimate  ≤

, tends to zero for n  ∞ (since u > 1), and

the first one, according to the above assertion on the
behavior of linear statistics, has an asymptotically nor-
mal distribution with the mean value T (I) calculated by
formula (8):

(9)
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Tn Tn
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n

∑ ci
(II)N i( )
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n
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Tn
(II)

B

nu 1–
----------Tn

0( )

T (I) 1 FN t( )–[ ]u t.d

0

+∞

∫=
Thus, it is proved that the lifetime of the bundle
really becomes a deterministic quantity (with the value
T (I)) as the bundle size increases, since its variance
tends to zero with increasing n. In addition, noting that

we come to the conclusion that the bundle lifetime is
always less than the lifetime of the fibers making up
this bundle (excluding the case u = 1, where these val-
ues are the same).

4. Consider a simple example. Let the family of
fatigue curves for the fibers be written in the form of
power-law dependence (2) and the parameter r of the
fatigue strength of the fibers be defined by the Weibull
distribution, which is often employed in various
strength models [1, 2, 9]:

(10)

where r0, ρ are some parameters. Then, it follows
from (2) that the distribution of the quantity N—the
lifetime of isolated fibers—is also the Weibull distri-
bution

with the mean value

It is simple to verify that the asymptotic value of
lifetime of the bundle T (9) takes the form

where the quantity Kb can be interpreted as the coeffi-
cient of realization of the mean fiber lifetime in the
bundle.

Experimental data (see, e.g., [1, 12]) give evidence
that the exponent in fatigue curve equation (2) usually
satisfies the condition u ≥ 4 and that the parameter ρ in
the Weibull distribution (10) ranges from 1 to 5. Under
these conditions, the coefficient Kb takes a value rang-
ing from 0.25 to 0.75.

5. The linear dependence of expression (3) for the
bundle lifetime on the lifetimes of the isolated fibers is
due to the application of the rule of linear summation of
damage in multilevel loading. Such a linearity is known
[1, 9, 10] to poorly confirm sharp changes in the load
level in experiments, especially when the load
decreases. In the bundle model considered above, even
for a relatively small number of fibers, the loading level
changes insignificantly, increasing from level to level.
This gives grounds to consider the use of the indicated

M N[ ] 1 FN t( )–[ ] t,d
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+∞

∫=
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x
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rule in the bundle model quite feasible not only from
the methodical but also from the practical standpoint.

The effect of the bundle lifetime reduction may turn
out even more essential if one additionally takes into
account the existence of the limiting static tensile
strength of fibers and/or considers the model with a
nonuniform redistribution of the load. The latter, in par-
ticular, relates to models of the strength of fiber com-
posites in which the load accepted by the destroyed
fibers is transferred only to the closest neighboring
fibers.

It is of interest to note that in the problem on the
static tensile strength of the fiber bundle, the effect of
lowering the bundle specific strength relative to the
mean strength of individual fibers also takes place. This
is true both for the linear [2, 3] and nonlinear [7] stress–
strain diagrams for the fiber, though the mathematical
model substantially differs from that considered in this
report.
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