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The ductile-brittle transition (DBT) is known [1–4]
to depend on temperature, chemical composition,
stressed state, and loading rate. Moreover, as was estab-
lished in studies [4, 5], there exists a unified DBT
mechanism consisting in the disordering of the electron
structure responsible for chemical bonds. This mecha-
nism involves either the recovery (or rupture) of the
directed component of chemical bonds at the critical
temperatures Tcr of a DBT or the so-called “crystalliza-
tion” of valence electrons. The Wigner crystallization in
the presence of a uniform compensating field of the lat-
tice is the simplest example of such a mechanism [6, 7].

As was noted in [5], a decrease in thermal vibrations
or a change in the doping element leads to the initiation
of directed chemical bonds, i.e., crystallization of the
electron structure at the temperature Tcr of the DBT.
In this case, we can use the theory of the second-
order phase transition, as was done, for example, in
studies [6–8].

We consider an electron system with the following
Hamiltonian in the x-representation:

(1)

Here, (x) and (x) are the production and annihila-
tion operators, respectively, for particles with the spin

s = ; ν(x, y) is a two-body interaction potential inde-

pendent of s; U(x) = U(x + R) is the periodic field of the

crystal lattice {R};  is the kinetic energy operator

(h = 1); and µ is the chemical potential. The integration
is carried out over the whole volume of the system.
Cyclic boundary conditions are imposed. The summa-
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âs x( )∫=

+
1
2
--- x y ν x y–( )as* x( )âs '* y( )âs ' y( )âs x( ).dd∫
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tion is performed over the repeating superscripts s'
and s.

The operators (x) and (x) can be expressed in
terms of the second quantization operator in the basis of
the Wannier electron functions Wn(x – R):

(2)

The Wannier functions Wn(x – R) are defined by Bloch
functions:

(2a)

where the summation is extended over k within the first
Brillouin zone of the lattice {R} and N is the number of
lattice sites in the cyclic volume V. The Bloch functions
uk, n(x) relating to the nth zone are solutions to the
Schrödinger equation:

, (3)

with the eigenvalues (k).

We now take into account the valence angle and a
certain broadening of the energy gaps between the
bands due to thermal vibrations and which causes the
gaps to be more broad than the corresponding charac-
teristic interaction energies. In the new representation,
the Hamiltonian can be written out as

(4)

âs* âs
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s R( )Wn x R–( ).

R n,
∑=

Wn x R–( ) 1

N
-------- uk n, x( )eik R, ,

k

∑=

p̂2

2m
------- U x( )+ uk n, x( ) Ln

0 k( )uk n, x( )=

Ln
0

H Ln R1 R2–( )ân
s* R1( )ân

s R2( )
n R1 R2, ,
∑=

+
1
2
--- νn R1R2R3R4( )

n; R1 R2 R3 R4, , ,
∑

× ân
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where

(5)

We introduce the Green function

(6)

Here, (R, t) and (R', t ' ) are the operators in the
Heisenberg representation; θ(t – t ' ) is the Heaviside
step function; [·, ·]+ is the anticommutator; 〈 ·〉  is the
averaging over a grand canonical ensemble defined by

Hamiltonian (4) and the parameter β = , where T is

the absolute temperature in energy units; and the sum-
mation is performed over the superscript s. It is obvious
that this Green function obeys the equation

(7)

where  is the inverse nonperturbed Green func-

tion, (R – R1; E) =  – Ln(R – R1), and  is
the mass operator {E is the parameter of the Fourier
transform with respect to time (t – t ')}.

Analysis of the solutions leads to the first density
matrix (see [8–10]),

(8)

Furthermore, by means of (2a), it is possible to
determine the density n(x) of actual particles. In a cer-
tain limit, the mass operator M(R, R'; E) can be written
out as a functional of the expression ρ(R, R'; E). After
performing certain transformations in accordance with
[8–10], we obtain the nonlinear equation
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which is reduced to a set of finite difference equations
determining G0(p) and G1(p). Using (8), we then pass

from G0(p) and G1(p) to (p) and (p), which
obey the set of equations

(10)

where ψ1 and ψ2 are nonlinear integral operators.

From physical considerations, the solution to Eq. (7)
is spatially uniform as T  ∞; i.e.,

(11)

For the set of Eqs. (7) with T > Tcr, we obtain that

 ≡ 0 and  ≡ (R – R'). In this case, the tem-
perature Tcr is the point of a phase transition, i.e., loss
of stability for the spatially uniform solution.

However, Tcr can be determined using the branching
method, as was done in paper [9]. This method is based
on the fact that, for T < Tcr , T  Tcr , the functions

(12)

tend to zero, remaining infinitesimal. Varying Eq. (10)
with regard to (12), we obtain

(13)

Here,  and  are linear integral operators depen-

dent on β =  and µ.

The least positive eigenvalue βcr of set (13) defines
the highest phase transition temperature Tcr , depending
on the particle density through µ. If a band is filled, then
the particle density corresponding to it is n(R) ≡ 2 and
the redistribution of the quantum state population is
impossible; therefore, electronic crystallization does
not occur.

Thus, the crystallization of the electron structure
responsible for chemical bonds is possible only for
atoms with unfilled electron shells. The theory pro-
posed describes the DBT mechanism quite correctly. In
the case of binary alloys of iron, this crystallization
occurs provided the impurities have unfilled np-, nd-,
and nf-electron shells [4, 5]. In order to reduce Tcr  of the
DBT for an alloy of iron, it is necessary to alloy the iron
matrix using elements having filled np-, nd-, and nf-
electron shells with large valence angles and long
chemical bonds.
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INTRODUCTION

In [1], the authors proposed a mechanism governing
giant ascending atmospheric discharges. This mecha-
nism involves the development of an avalanche of rela-
tivistic runaway electrons. The avalanche is character-
ized by its exponential development with temporal and
spatial scales te and le = c × te (where e is the avalanche-

development rate). The quantity  is the relativistic

analog of the Townsend ionization coefficient αT.

Three approaches were employed in the calcula-
tions: the numerical solution of the kinetic equation [2–
4, 6, 7], the Monte Carlo simulation [5, 6], and the
coarse-particle method [8]. In [6], the values of te cal-
culated with the help of the kinetic equation and Monte
Carlo simulation were compared. These values differ
by a factor of 3 to 4 within the electric-field intensity
range under consideration. Such a strong discrepancy
leads to principle differences in the modeling of natural
phenomena. The urgent necessity of thorough analysis
of this discrepancy stimulated new calculations of te.
These calculations are based on methods of the kinetic
equation and Monte Carlo simulation with allowance
(in the former case) for the exact correlation between
the directions of motion of two electrons participating
in an ionization event. The results of this analysis are
presented below.

THE KINETIC EQUATION

We solve the following kinetic equation similar to
that given in [2–4]:

1
le

---
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(1)

Here, f(t, p, µ) is the electron distribution function for
momenta and cosines of angles between the directions
of p and the electric force eE, F(ε) is the Bethe friction
force [9], εt is the energy of ionization, and N is the mol-
ecule concentration. The Möller formula [2, 3] is used
for calculating the ionization differential cross section.
In contrast to [2–4, 6], where the integral over α is
replaced by the trapezoid formula, here the angles
between the directions of the force eE and the momenta
of primary (µ' = cosϑ ') and secondary (µ = cosθ) elec-
trons are linked by an exact relation [10]:

Since inelastic loss on the order of dozens of elec-
tronvolts dominates, it is assumed in (1) that the energy
and angular distributions of primary electrons do not
change in the ionization process [2–4]. This implies
violation of the conservation laws, which are fulfilled
only on the average: the actual energy loss in individual
collisions is described by the averaged energy loss with
the help of the continuous friction force F(ε). The aver-
age variation of the primary-electron momentum turns
out to be zero because the friction force is always
directed opposite to the momentum. These kinetic
equations do not make it possible to allow for either
energy-loss fluctuations or angular fluctuations; this is
automatically taken into account by the Monte Carlo
method.
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We solved kinetic equation (1) using the finite dif-
ference method with splitting over the p and µ vari-
ables. Implicit conservative finite-difference schemes
of first-order accuracy were employed. In calculating
the diffusion part of the kinetic equation, we used the
flow-sweep method. The integral over α was calculated
according to the Simpson formula with the maximum
number of points n = 11. Since the ionization time is
much longer than the characteristic times of the elec-
tron transfer and scattering, the contribution of the ion-
ization integral was recalculated after a given number
of time steps and remained constant at intermediate
steps. It was sufficient to calculate the ionization-inte-
gral contribution only for energies ε > εth where the run-
away threshold εth corresponds to the mean root of the
equation F(εth) = eE [11]. In the region ε ≤ εth under the
description in terms of the averaged friction force, the
electrons certainly cannot become runaway electrons.

MONTE CARLO SIMULATION

The Monte Carlo simulation is based on the codes
used in [5, 6], namely, the basic ELIZA code and the
simplified Monte Carlo (SMC) code. The ELIZA
code [12] is intended for solving problems of the com-
bined transfer of photons, electrons, and positrons. In
the case of photons, Compton scattering (with allow-
ance for the bound state of atomic electrons), Rayleigh
scattering, photoabsorption (with due regard to the
emission of fluorescent photons and Auger electrons),
and electron-positron pair production are taken into
consideration. For electrons and positrons, we took into
account the elastic scattering on nuclei and free elec-
trons, atomic ä-shell ionization, bremsstrahlung, and
two-photon annihilation. The description is based on
the EPDL92 (photons), EEDL92 (electrons), and
EADL92 (atomic-shell relaxation) cross-section data-
banks. Here, a number of modifications improving the
calculation accuracy were introduced compared to the
code version used in [5, 6]. In the case of the SMC
code, the motion of electrons between subsequent col-
lisions is described by the electric force eE and the fric-
tion force F(ε). Only elastic scattering and ionization
collisions accompanied by the production of electrons
with energies on the order of several kiloelectronvolts
are statistically simulated. The Rutherford cross section
for the screened Coulomb potential is used to describe
the elastic scattering of electrons on atomic nuclei. For
the ionization differential cross section σd , the Möller
formula is used. The SMC code makes it possible to
efficiently perform necessary calculations in the frame-
work of the physical model corresponding to the kinetic
equation. A provision for eliminating variations in the
energy and momentum of the primary electron in an
ionizing collision is made that corresponds to violation
of the conservation laws in kinetic equation (1).
DOKLADY PHYSICS      Vol. 46      No. 8      2001
DISCUSSION OF THE RESULTS

The calculations were performed in air (εt = 15 eV)
under atmospheric pressure (P = 1 atm, N = 2.7 ×
1019 cm–3). It was assumed that two-MeV electrons had
been injected at the initial time moment into a homoge-
neous electric field along the direction of the electric-
force action. The number Nrun(t) of runaway electrons
as a function of time was calculated. In the kinetic
equation, the number Nrun is defined as the number of
electrons with energies ε ≥ εth.  In the case of the Monte
Carlo method, Nrun corresponds to the number of elec-
trons whose trajectories are traced to the energies
ε = 1 keV. Since the fraction of electrons in the region
ε ≤ εth is on the order of several percent, both definitions
are close to each other to within good accuracy. To
reduce the role of the initial stage of developing the rel-
ativistic-electron avalanche, the quantity te is defined as

, where the derivative is taken in that time

moment when the dependence lnNrun(t) becomes linear.
In the Monte Carlo calculations, smoothing of lnNrun(t)
was performed. Analytical estimates similar to those
performed in [5] were carried out. The values of te were

calculated for three overvoltages δ =  with

respect to the relativistic minimum of the Bethe force
Fmin = 2.18 keV/(cm atm) (see Table 1).

Results without allowance for elastic scattering.
In this case, the analytical estimates agree with the
results based on the SMC code. The results that take
into account the conservation laws in the ionization
process turned out to be intermediate between the
results for the SMC code, which admit the violation of
the conservation laws, and the results for the ELIZA
code. The discrepancy between the calculations accord-
ing to the SMC code with and without violation of the
conservation laws taken into account are explained by
fluctuations in the energy loss. The divergence of 25 to
30% for the results obtained in accordance with the
ELIZA and SMC codes under the condition that the
conservation laws are valid is caused by the difference
in the ionization cross sections and different descrip-
tions of the inelastic processes.

By virtue of the same physical models, the values of
te obtained from the solution to kinetic equation (1)
must be close to the SMC-code calculations without
exact fulfillment of the conservation laws in the ioniza-
tion process. However, the results of the solution to
kinetic equation (1) for n = 11 are considerably higher
than in the case of the calculations according to the
SMC code with the violated conservation laws and are
close to the results of the ELIZA code. This fact, appar-
ently, is a consequence of the rough angular-coordinate
net and the numerical diffusion in solving the kinetic
equation.

∂ N runln
∂t

------------------ 
 

1–

eE
FminP
--------------
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Characteristic time te, ns of the avalanche development in air, P = 1 atm

Method
Electron scattering is ignored Electron scattering is taken into account

δ = 2 δ = 5 δ = 8 δ = 2 δ = 5 δ = 8

Analytical estimates [5] 48–59 11–18 6–10 145 31.4 16.7

Coarse-particle method [8] ? 26 12.5

Kinetic equation

reduction of [4] to 1 atm, n = 2 19.5 4.3 2.17 96 13 6

this work, n = 2 19.9 5.05 2.24 95 13 5.6

this work, n = 11 98 31 16.3 197 39.9 21.2

Monte Carlo Method 174.4 33.2 17.3

paper [7] SMC code: 

conservation laws are violated 46.1 14.8 8.6 182 34.1 17.9

conservation laws are fulfilled 77.6 20.8 11.2 200 35.6 18.6

ELIZA code 107 28 15.8 440 54 27.5

Note: δ = .
E

2.18 kV  cm 
–1

 
---------------------------------
The results of calculating te according to the kinetic
equation with n = 2 (i.e., with using the trapezoid for-
mula as was done in [4]) are close to the results of [4].
For n = 11, the values for te differ by several times from
those obtained according to the SMC and ELIZA
codes.

Results with allowance for elastic scattering. All
conclusions made for calculations without elastic scat-
tering taken into account remain valid. However, there
also exist certain differences: (i) The analytical esti-
mates being dependent (the SMC-code results are used
for the fraction of electrons passing to the runaway
mode) satisfactorily agrees with the calculations by the
SMC code without exact fulfillment of the conservation
laws. (ii) Another difference consists in the fact that the
calculation results for the kinetic equation (n = 11) and
for the SMC code are close to one another. It is proba-
ble that with the elastic scattering taken into account,
the numerical diffusion weakly affects the results
obtained. (iii) The SMC code yields very close values
of te for both the validity and violation of the conserva-
tion laws. This implies that the effect of scattering is
stronger than the fluctuation effect. (iv) In contrast, the
allowance for scattering enhances the divergence up to
35 to 100% between the values of te obtained according
to the ELIZA and SMC codes with the conservation
laws fulfilled. This fact is most likely associated with
the difference in the values used for the scattering cross
sections. As a whole, the allowance for elastic colli-
sions increases the energy threshold εth. The calculation
results differ by a factor of 1.5 to 3.5 for different vari-
ants under consideration.

As is seen from the table, the simplified methods,
namely, the kinetic equation, the use of the SMC code,
the calculations of Lehtinen et al. [7], and the coarse-
grain method [8], yield surprisingly close results. Inad-
equacy of the coarse-grain method to the stochastic
nature of runaway electrons provides, most likely, the
lowest value of te [8]. The ELIZA code involving the
most complete and accurate set of cross sections for
elementary interactions is the most exact. Being free of
simplifications (explicitly or implicitly) intrinsic to
other approaches, the ELIZA code realizes a direct
numerical experiment whose results, in essence, can be
reasonably used for calibration of less precise methods.

CONCLUSION

There exists a main reason for the divergence of the
development rate for an avalanche of relativistic run-
away electrons, which was obtained in [2–4, 6] by the
Monte Carlo method and from the solution to the
kinetic equation. This reason is the inadequacy of the
accepted approximation for the ionization-collision-
integral used in solving the kinetic equation to the
strongly anisotropic runaway process.

Solving the kinetic equation using the finite-differ-
ence method with a rough approximation of the ioniza-
tion integral (n = 2), which is similar to that employed
in [2–4, 6], yields results that coincide with those
of [2−4, 6].

For sufficiently high overvoltages (δ = 5 and 8), the
calculated results for te , which are based on the kinetic
equation with improved approximation of the ioniza-
tion integral (n = 11), and the simulation results
obtained by the Monte Carlo method (SMC code, the
calculations of Lehtinen et al. [7]) are close to each
other. They agree with analytical estimates and consid-
erably approach the calculation results obtained
according to the ELIZA code.
DOKLADY PHYSICS      Vol. 46      No. 8      2001
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With decreasing 

 

δ

 

, the divergence from the ELIZA-
code results is enhanced. This fact is, most likely, asso-
ciated with the differences in interaction cross sections,
as well as in the method of description of the elemen-
tary interactions.
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The icelike structure and diffusion of molecules of
liquid water exhibit both a two-humped far-infrared
(far-IR) absorption spectrum and a low-frequency
Debye relaxation spectrum [3–5]. An absorption trans-
lational band with wave number νT = 200 cm–1 appears
due to the vibration of neighboring oxygen H-bonded

atoms [6–8]. This wave number ν =  (furthermore

called frequency) is approximately the same for ordi-
nary and heavy water (isotopic effect). (Here, ω is the
angular frequency and c is the speed of light.) In the
libration band that is due to the reorientation of polar
molecules, the frequency νL of the absorption peak, by

approximately a factor of , is lower for D2O com-
pared to H2O, namely, νL ≈ 670 cm–1 for H2O, while it
is ≈ 500 cm–1 for D2O. This difference corresponds to
that of the moments of inertia I for these molecules. In
the libration band, the absorption spectrum α(ν) and
complex-permittivity spectra ε*(ν) = ε' + iε'' (* is the
complex-conjugation symbol) can be described [9] on
the basis of phenomenological molecular theory. An
adequate description has not thus far been given for the
frequency dependences α(ν) and ε*(ν) of a transla-
tional band.

In this paper, a theory of the translational bands and
of the isotopic effect, which is based on the simplified
model of a nonrigid dipole, is proposed. The model is
illustrated in Fig. 1. The dipole moment of a molecule
is assumed to comprise a superposition of time-inde-

ω
2πc
---------

2

¶ This paper is based on reports [1, 2]. The article was submitted by
the authors in English.
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pendent and time-dependent components  and  =
µTsin(ωTt + γ), where ωT = 2πcνT . This idea is implied
by the fact that the average dipole moment µ of a mol-
ecule in a liquid differs from the moment µ0 of an iso-
lated molecule. The time-dependent component  is
considered to be stipulated by the vibration of H-
bonded oxygen atoms. In Fig. 1, the latter are denoted
by white circles. These vibrations are directed along the
H-bond. The hydrogen atoms (denoted by symbols B)
penetrate into the negatively charged cloud formed by
a nonshared electron pair of the oxygen atom (denoted
by the symbol A) and thereby change the charge distri-
bution in the cloud. Thus, the resulting dipole moment
of a water molecule varies with time. We suppose it to
be directed along a line connecting the centers of
masses of the oxygen atom A and the pair B,B of the
hydrogen atoms of a neighboring water molecule.

In the theory developed in [9, 10], a dipole spectral
function L(z) is introduced, where z is the complex fre-
quency (which is defined below). Then, with allowance
for the time-dependent component of the dipole-
moment , the modified spectral function [henceforth

µ µ̃ t( )

µ̃ t( )

µ̃

Ä

B

Ä' µ + µ(t)

B

Ä'– ~

Fig. 1. Explanation of the appearance of the time-dependent
dipole moment in a water molecule (the resulting moment is
marked by the thick vertical arrow).
001 MAIK “Nauka/Interperiodica”



        

PHENOMENOLOGICAL MOLECULAR THEORY 541

                                                
200 600 1 10

10

1000

2000

3000

400 800 1000

4000

0

100

1
0.1 100

α, cm–1

νT

νL

ε''

ν, cm–1

νD

(a) (b)

Fig. 2. Frequency dependences for (a) the absorption coefficient and (b) permittivity imaginary part of liquid water at 27°C. Solid
and dashed lines correspond to calculations for ordinary and heavy water on the basis of the hybrid model. Dots in Fig. 2a are exper-
imental data for the absorption coefficient [3, 4, 12]. Dots in Fig. 2b correspond to the results of dielectric-loss calculations based
on the empirical formula [4]. νT, νL, and νD are experimental values of the absorption-peak frequencies in the translational band, in
the libration band, and in the dielectric-loss frequency maximum, respectively.
denoted by S(z)] can be written out in terms of L(z) in
the form

(1)

Here, p = ωTη is the normalized frequency of the trans-

lational-band peak; η ≡ , kB is the Boltzmann

constant; T is temperature; z = x + iy; x = ηω; y = ;

and τ is the mean lifetime of a dipole libration in a
potential well of a given shape. The model parameter

σ2 =  is fitted by comparing experimental and

theoretical data. The value of this parameter is used for
estimating the time-independent component  and the
amplitude µT of the time-dependent component. They
are related to the average dipole moment of a molecule
in the liquid by the relations

S z( ) L z( )≈

+
σ2

4
----- p

p z–
----------- p

p z+
------------ z

L z p+( )
p z+

------------------- L z p–( )
p z–

-------------------–
 
 
 

+ + .

I
2kBT
------------

η
τ
---

µ̃2 0( )
µ2

-------------

µ

µ µ

1 σ2+
-------------------, µT

µσ

1 σ2+
------------------- 1 f X( )– ,= =
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where 

and σ is found as the solution to the transcendental
equation

while σ0 = 1 –  is determined by known values of µ0

and µ of the dipole moment. In addition, the ratio X =

 must satisfy the inequality [1 – f(X)] ≤ 1.

The main contribution to the translational band is

given by the Lorentzian  + . However, the

translational band calculated from Eq. (1) is too narrow.
This drawback to the theory can be excluded by intro-
ducing the lifetime τT of the dipole moment , which
differs from τ. In other words, we decrease the duration
of an individual period in the regular variation of .
In this case, we replace z and y in the Lorentzian and in

the terms  by Z = x + iY and Y ≡ , respectively.

X
σ0

σ
-----, f X( )

X2–( )exp

πerf X( )
-----------------------,= =

σ2 σ0
2

2X2
--------- 1 2 f X( )–[ ] ,=

µ0

µ
-----

σ0

σ
----- 1

X2
------

p
p z–
----------- p

p z+
------------

µ̃ t( )

µ̃ t( )

z
z p±
------------ η

τT
-----
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Further calculations were carried out for a rectangu-
lar intermolecular potential well having a finite depth
U0, which was considered in the framework of the
hybrid model developed in [9, 11]. The orientational
susceptibility χ* is connected (see [9, p. 191; 10, 11])
to the resulting spectral function S through the rational
relation

χ∗ x( )
gGzS

gx iy 1 gxz+( )S+
-------------------------------------------,=

g
εs n∞

2–
4πG

----------------
2εs n∞

2+
3εs

-------------------,=

G
µ2N
3kBT
------------, N

NAρ
M

----------, µ
µ0kµ n∞

2 2+( )
3

-------------------------------.= = =
Here, g is the Kirkwood correlation factor; εs is the
static permittivity; n∞ is the optic refractive index; ρ is
the density of the liquid; M is the molecular mass; NA is
the Avogadro’s number; and kµ is the correcting factor
for the dipole moment of a molecule in the liquid. The
formulas given above can be used for calculating the
frequency dependences ε*(ν) and α(ν).

The following parameters are used in the hybrid-
model version under consideration: β, which is the
libration amplitude entering into the spectral function,
and L, τ, τT, σ2, and kµ . The frequency dependence α(ν)
of the absorption coefficient for ordinary and heavy
water is shown in Fig. 2a. The theoretical and experi-
mental spectra of the dielectric loss ε''(ν) are compared
in Fig. 2b. The fitted and estimated model parameters
for ordinary and heavy water at 27°C are presented
here.
Molecular constants εs τD, ps I × 1040,
g cm2 νL, cm–1 νT, cm–1 M

H2O 76.6 7.85 1.7 1.483 670 200 18

D2O 79.2 8.5 1.7 2.765 505 200 20

Hybrid-model parameters τ, ps τT, ps kµ β 〈σ2 〉 p

H2O 0.38 0.054 1.080 19.9° 0.010 1.7

D2O 0.33 0.089 1.116 19.9° 0.014 2.2

Estimated parameters y Y σ0 /µ µT/µ

H2O 0.11 0.78 0.25 0.150 0.995 0.146

D2O 0.17 0.65 0.27 0.340 0.99 0.255

n∞
2

σ µ
Our model makes it possible to explain the far-IR
isotopic effect (cf. solid and dashed lines in Fig. 2a near
the absorption-peak frequency νT) and the low-fre-
quency dependence ε''(ν) of the dielectric loss. The
ratio of the lifetime τ to the mean libration period 〈TL〉
is approximately half an order of magnitude. Therefore,
dipoles execute several cycles of libration motion dur-
ing their lifetime. The translational oscillations are
more damped: the lifetime τí is shorter than the period

. This result is in agreement with the conclusion

of [13] on the rapid energy dissipation via the H-bond
network in water. The time-independent component 
is close to its mean value µ, while the amplitude µT of
the time-dependent component comprises a noticeable
fraction of µ: it is 15% for H2O and 25% for D2O. As
distinct from ordinary water, heavy water is character-
ized by a deeper potential well.

2π
ωT
------

µ

We emphasize the fact that, previously, in [9, 14],
only the formal description of the spectra α(ω) and
ε*(ω) in ordinary and heavy water and of the isotopic
effect was given by introducing an additional potential
well. In this study, the consideration is restricted to only
one (rectangular) well.
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The Rouse model [1], which represents a system of
Maxwell elements—dampers (balls) and springs con-
nected-in-series—is widely used to describe the relax-
ation properties of polymer chains. To calculate this
model, it is important to assume that the number of such
elements is sufficiently large. In this case, a discrete set
of differential-difference equations describing the
motion of balls can be represented in a continuous form
[1–3] as a single second-order equation in partial deriv-
atives. It is evident that, for sufficiently short chains,
one should solve the problem using a relatively small
number of equations. The objective of the present work
is to find such a solution.

Let a force F be applied through a spring to the first
element of the system. The initial deformation of the
spring connected with the first element decreases as a
result of the displacement of this element, and the rate
of strain change is assumed to be equal to the rate of
change of element displacement. Thus,

(1)

Here, L is the spring length, η is the viscosity of the
medium (viscous interaction between the ball and the
medium), and xi is the coordinate of the ith ball.

The rate of displacement of all the n balls is deter-
mined by the elastic action of the springs connected to
the given ball. Therefore, the relaxation of the system
comprising n balls is accounted for by the set of n + 1
equations

(2)

dL
dt
------

1
E
---dF

dt
-------

dx1

dt
--------

1
η
---F

E
η
--- x1 x2–( ).–= = =

τ Ḟ F–= E x1 x2–( ),+

τ ẋ1
F
E
---= x1– x2,+

τ ẋ2 x1= 2x2– x3,+

…
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where τ =  is the time of relaxation of a Maxwell ele-

ment.

Note that the Rouse model [1] considers system (2)
without the first, second, and last equations, because
the role of these equations for a system consisting of a
large number of elements is assumed to be inessential.
However, for short chains, we cannot ignore these
equations.

To solve set (2) as a combination of exponential
terms, it is necessary to find their indices, which are
determined as the roots of the polynomial [4]:

(3)

The transformation of the determinant Dn results in
the determinant Bn:

(4)

Equality (4) means that nonzero roots of the polyno-
mial Dn are determined by the equality Bn = 0.

τ ẋi xi 1–= 2xi– xi 1+ ,+

…
τ ẋn xn 1–= xn,–

η
E
---

Dn = 

z 1– E E– 0 0…0 0 0

1
E
--- z 1– 1 0 0…0 0 0

0 1 z 2– 1 0…0 0 0

…
0 0 0 0 0…1 z 2– 0

0 0 0 0 0…0 1 z 1–

 = 0.

Dn = z

z 2– 1 0 0…0 0 0

1 z 2– 1 0…0 0 0

0 1 z 2– 1…0 0 0

…
0 0 0 0…1 z 2– 1

0 0 0 0…0 1 z 1–

 = zBn.
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It can be readily shown that the quantity Bn obeys
the recurrence relationship

(5)

which, on account of the obvious equalities

,

enables one to find numerical solutions to polynomials
of arbitrarily high degree.

Table 1 lists the roots of Eq. (4) for some values of
n. As can be seen, the minimum relaxation time τmin is

close to . Only one third of all the values of τi turns

out to be higher than τ.
Figure 1 shows the dependence of τi (in the coordi-

nates of the Rouse equation) on the mode number (the
highest value of τi corresponds to the minimum mode
number). According to [1],

(6)

It is seen that this dependence tends asymptotically

Bn z 2–( )Bn 1–= Bn 2– ,–

B1 z 1, B2– z 2–( ) z 1–( )= = 1–

τ
4
---

τ i
1– 4

π
2
--- i

n 1+
------------ 

  .sin
2

=
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to the value defined by formula (6) as the time of relax-
ation decreases and the number n increases; however,
for high values, the deviations (toward higher τi values)
are quite significant.

101

100

10–1

10–2

10–3

10–2 10–1 100 101

1/τi

2
3
4
5
6
7

8
9
10
12
30
50

Fig. 1. Dependence of relaxation time on the mode number
in the coordinates of the Rouse equation. The number of the
mode is shown in the figure. The straight line corresponds
to the dependence based on the Rouse model.
Table 1.  Parameters of Eq. (7) for various chain lengths n

i 1 2 3 4 5 6 7 8 9 10

p1i 1

a1i 1

p2i 0.382 2.618

a2i 0.724 0.276

p3i 0.198 1.555 3.247

a3i 0.605 0.237 0.157

p4i 0.121 1.000 2.347 3.532

a4i 0.431 0.333 0.184 0.052

p5i 0.081 0.690 1.715 2.831 3.682

a5i 0.356 0.301 0.208 0.106 0.029

p6i 0.058 0.503 1.291 2.241 3.136 3.771

a6i 0.303 0.269 0.2083 0.135 0.066 0.018

p7i 0.044 0.382 1.000 1.791 2.618 3.338 3.827

a7i 0.264 0.241 0.200 0.147 0.092 0.044 0.011

p8i 0.034 0.300 0.795 1.453 2.184 2.891 3.478 3.865

a8i 0.233 0.218 0.188 0.150 0.107 0.065 0.031 0.008

p9i 0.027 0.241 0.645 1.197 1.835 2.491 3.094 3.578 3.892

a9i 0.209 0.1969 0.179 1.444 0.118 0.074 0.055 0.020 0.003

p10i 0.022 0.198 0.534 1.000 1.555 2.149 2.731 3.247 3.652 3.911

a10i 0.188 0.182 0.164 0.143 0.116 0.088 0.060 0.036 0.017 0.004
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Once the roots of Eq. (4), i.e., the indices of expo-
nential terms, are found, it is possible to calculate the
pre-exponential terms ai in the equation

(7)

To do so, we should set up n algebraic equations
relating the coefficients ai to the initial conditions.

The consecutive differentiation of the set of equa-
tions (2) gives rise to the following set of algebraic equa-
tions, in which superscript (k) denotes the initial value of
the kth derivative of the corresponding quantity:

F t( ) ai pit–{ } .exp
i 1=

n

∑=

τF 1( ) 0( ) F 0( ),–=

τF 2( ) 0( ) F 1( ) 0( )–= Ex1
1( ) 0( ),+

τF 3( ) 0( ) F 2( ) 0( )–= E x1
2( ) 0( ) x2

2( ) 0( )–( ), + …,

τF k( ) 0( ) F k 1–( ) 0( )–= E x1
k 1–( ) 0( ) x2

k 1–( ) 0( )–( ),…,+

Table 2.  Coefficients of the initial values of the kth derivati-
ves of F (k) (0)

k

1

2

3

4

5

6

7

8

9

10

F k( ) 0( )
F 0( )

-----------------

1
τ
---–

2

τ2
----

–
5

τ3
----

14

τ4
------

–
42

τ5
------

132

τ6
---------

–
429

τ7
---------

1430

τ8
------------

–
4862

τ9
------------

16896

τ10
---------------
(8)

.

The results of calculations are given in Table 2.
The consecutive differentiation of Eq. (7) yields

(9)

Using n such equations with coefficients F (k)(0) listed
in Table 2 enables us to determine all ai values, which
are given in Table 1.

Using the obtained values of the relaxation times τi

(in units of τ) and their spectrum (ai), we can calculate
the mean values

(10)

These values are given in Table 3, and their depen-
dence on n is shown in Fig. 2.

As with the Rouse model, the quantity 〈τ〉 n turns out
to be proportional to the length of the chain, whereas
the dependence of 〈τ〉 w and τmax on the length of the
chain is stronger. In the latter case, the relationship

τ x1
1( ) 0( ) 1

E
---F 0( ),=

τ x1
2( ) 0( ) 1

E
---F 1( ) 0( )= x1

1( ) 0( )– x2
1( ) 0( ),+

τ x1
3( ) 0( ) 1

E
---F 2( ) 0( )= x1

2( ) 0( )– x2
2( ) 0( ), …,+

τ x1
k( ) 0( ) 1

E
---F k 1–( ) 0( )= x1

k 1–( ) 0( )– x2
k 1–( ) 0( ), …,+

τ x2
1( ) 0( ) 0,=

τ x2
2( ) 0( ) x1

1( ) 0( ),=

τ x2
3( ) 0( ) x1

2( ) 0( )= 2x2
2( ) 0( ),–

τ x2
4( ) 0( ) x1

3( ) 0( )= 2x2
3( ) 0( )– x3

3( ) 0( ), …,+

τ x3
1( ) 0( ) τx3

2( ) 0( ) 0,= =

τ x3
3( ) 0( ) x2

2( ) 0( ),=

τ x3
4( ) 0( ) x2

3( ) 0( )= 2x3
3( ) 0( ),–

τ x3
5( ) 0( ) x2

4( ) 0( )= 2x3
4( ) 0( )– x4

4( ) 0( ), …+

F k( ) 0( ) 1–( )k pi
kai.

i 1=

n

∑=

τ〈 〉 n aiτ i    and   τ〈 〉 w
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Table 3.  The mean values of the relaxation time

n 〈τ〉 n 〈τ〉 w γ = τmax

2 2.00 2.50 1.25 2.62 1.91 2.62 2.62

3 3.02 4.77 1.46 5.05 3.06 5.05 5.05

4 3.99 7.47 1.87 8.29 3.90 7.64 7.48

5 5.00 11.00 2.20 12.34 4.83 11.36 11.20

6 6.01 15.20 2.53 17.21 5.76 15.82 15.66

7 6.97 19.83 2.85 22.88 6.83 20.24 21.81

8 8.01 25.55 3.19 29.32 7.82 26.14 25.81

9 9.08 32.03 3.53 36.63 8.84 32.88 32.56

10 10.10 39.13 3.87 44.84 9.95 39.73 40.00

τ〈 〉 w

τ〈 〉 n
----------- τ〈 〉 n

* τ〈 〉 w
* τ〈 〉 w

**
τmax  n2 , which is inherent in the Rouse model, is vir-
tually satisfied.

It is worth noting that the coefficients ai increase
with the relaxation time. As a result, small relaxation
times play an insignificant role in determining the mean
values. Indeed, the mean values calculated with allow-
ance for the values of τi > τ (denoted by the asterisk in
Table 3) are close to the exactly calculated values.
Comparison of ai and τi likewise shows that, for high n

∞

100

10

1

1 10
n

τ

1

2

3

4

Fig. 2. Relaxation time versus the chain length: (1) maxi-
mum relaxation time τmax; (2) weighted-mean time 〈τ〉 w;
(3) average time 〈τ〉 n; (4) the ratio of these quantities defin-
ing the spectrum distribution width.
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values, the ai values are leveled for large τi values. This
enables us to estimate the mean values (at least, 〈τ〉 w)
while completely ignoring the relaxation time spec-

trum, i.e., using the approximate formula 〈τ〉 w ≈ 

and taking into account only the series terms that are
higher than τ. The validity of such an approach is con-
firmed by the data given in Table 3.

Thus, our analysis shows both a certain similarity
and essential differences in the Rouse model between
long and short chains.
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The rapid development of modern semiconductor
electronics is accompanied by a growing demand for
novel semiconductor materials and structures possess-
ing specific properties. Therefore, search for novel
solid solutions and structures based on them are of
urgent necessity in semiconductor technology.

In this paper, some results of studying the growth of
Ge1 – xSnx solid-solution layers from a tin solution-melt
are presented. The growth method employed forced
cooling within the temperature range 740–450°C in a
hydrogen ambient. The growth process occurred from
the volume of the solution-melt placed between two
horizontal substrates and was stopped by removing the
solution-melt from the gap between the substrates with
the help of a centrifuge. Germanium wafers oriented
along the [111] crystallographic direction with a resis-
tivity of 40 Ω cm and p-type conductivity served as the
substrates. The diameter and thickness of the substrates
reached 50 and 350–400 mm, respectively. The content
of the Sn + Ge, Sn + Ge + Zn, and Sn + Ge + Zn + Se
solution-melts and the corresponding temperature-
growth range were determined from literature data and
preliminary experiments [1].

The content of the Ge1 – xSnx solid solution and the
distribution of components in the epitaxial layers
grown were studied using a JEOL microanalyzer. It was
shown that the value of x and the homogeneity of the
component distribution (both across the thickness of
the epitaxial layer and along the directions parallel to
the crystallization front) depend on the temperatures of
both the solution-melt and crystallization-onset. With
increasing the content of zinc, especially of zinc and
selenium in the solution-melt, the tin content in the
solid solution drastically increases. This fact is likely
associated with the influence of the third component on
the effective value of the distribution coefficient. It is
established that under similar conditions and contents
of the solution-melt, the Sn content in a Ge1 – xSnx solid
solution increases with the temperature of the crystalli-
zation onset.

Physicotechnical Institute, NPO “Fizika–Solntse,”
Academy of Sciences of the Republic of Uzbekistan, 
Tashkent
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We have grown homogeneous mirror-smooth epi-
taxial layers of a Ge1 – xSnx solid solution from a Ge +
Sn + ZnSe solution-melt in the case of crystallization-
onset temperatures íco = 740°C for x = 0.1 and íco =
540°C for x = 0.03. The X-ray fluorescence spectral
analysis was performed prior to and after subsequent
removal of the surface layers. The analysis revealed
high-intensity peaks corresponding to Ge (λ =
1244 mÅ) and Sn (λ = 925 mÅ) and showed that the
Ge and Sn content in the solid solution is the same
across the film thickness and along the directions of
layer growth. The thickness of epitaxial layers grown
on Ge varied within the range 5–35 µm depending on
both the gap thickness d between the substrates and the
growth regime.

The quality of Ge1 – xSnx epitaxial layers grown onto
Ge substrates depended also on the rate of the forced
cooling, which varied in the range 0.5–7.5°C/min. The
optimum cooling rate for producing mirror-smooth lay-
ers of Ge1 – xSnx solid solution turned out to be 0.5–
1.5°C/min; this corresponds to an actual layer-crystalli-
zation rate of 0.13–0.2 µm/min. The structural perfec-
tion of the layers grown with all other conditions being
equal depended also on the gap size δ between horizon-
tally placed substrates. The gap could be varied within
the range 0.25–2.5 mm with the help of special graphite
supports. For the gaps δ < 0.25 mm, the growth of epi-
taxial films was not observed at all, probably, due to the
absence of the substrate wettability by the solution-
melt. The most structurally perfect layers of solid solu-
tions on both upper and lower substrates were grown at
the gap value δ ranging between 0.65 and 1 mm. For δ >
0.85 mm, the quality of layers grown on the upper and
lower substrates strongly differed. The quality of epi-
taxial layers grown on the lower substrates always
turned out to be higher than that for the upper sub-
strates. This fact also affected the surface dislocation
density for the layers grown. The difference increased
with a rise in δ. In our opinion, this is associated with
the predominance of the convection stream to the crys-
tallization front in the mass transfer mechanism in com-
parison with the molecular diffusion in the case of gap
increase, which we established previously [2].

The qualitative estimate for the distribution of the
solution-forming components across the thickness of
001 MAIK “Nauka/Interperiodica”
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Fig. 1. Raster images of cleavages for Ge–Ge1 – xSnx structures, x = 0.03.
the epitaxial layer can also be made by examining raster
images for cleavages of the Ge–Ge1 – xSnx structures
obtained. These images are evidence of the almost
homogeneous distribution of the components across the
thickness of the epitaxial layer (Fig. 1).

Analysis of raster images and morphological studies
have shown that defects appear at the substrate–film
interface depending on the value of x. The difference
between the lattice parameters of the first crystalline
layer and of the substrate appears due to the fact that the
first grown layer consists of Ge1 – xSnx with x > 0 and the
substrate consists of pure germanium. With the growth
of subsequent epitaxial layers, this difference reduces
due to the fact that these layers differ insignificantly
with respect to the Ge1 – xSnx content. As a result of elas-
tic deformation of the layer produced that plays the role
of the substrate, the total energy of the system
decreases. Through crystallization of the next layer
without a change in the lattice parameter, this energy
turns out to be lower than that at the initial stage of the
process. Varying conditions for the growth regime, we
can govern the action of heteroboundaries. It was found
that with an Sn-content increase in the Ge1 – xSnx solid
solution, the structural perfection of layers sharply
deteriorates beginning from x > 0.1 and, moreover, pre-
cipitations of the second phase appear.

The crystalline perfection and the lattice parameters
of the solid solutions were studied using the X-ray dif-
fractometry method with a DRON-UM1 setup. Spe-
cially grown samples with a layer thickness d = 3–5 µm
were selected for this analysis. The diffraction spectra
were obtained using continuous recording for the
Cu-anode lines (λα = 1.5418 Å, λβ = 1.3922 Å). The
anode voltage and current were 30 kV and 10 mA,
Y PHYSICS      Vol. 46      No. 8      2001
respectively. The exposure time was varied within the
range 1–3 h. As is seen from the X-ray diffraction pat-
tern (Fig. 2), the peak positions for substrates and films
differ insignificantly. This implies the closeness of lat-
tice parameters for these structures (aGe = 5.656 Å,

 = 5.681 Å). At the same time, the absence of

other peaks on the diffraction pattern yields additional
information on the single-crystallinity of the epitaxial
layers obtained [3].
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Certain electrical parameters of the epitaxial layers
produced were determined using the van der Pauw
method. These layers turned out to have p-type conduc-
tivity with a carrier concentration of 1017–1018 cm–2 and
mobility of 15–20 V s cm–2 at 300 K.

In conclusion, it is worth noting that by selecting the
conditions of liquid-phase epitaxy, we can obtain struc-
turally perfect epitaxial layers of Ge1 – xSnx solid solu-
tions on Ge substrates; this could be of interest in mod-
ern microelectronics.
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by Through Holes in the Case of Sliding Fixation of Its Ends
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Bending of an isotropic layer (or semilayer) weak-
ened by a through noncircular hole was considered
in [1]. A similar problem for an isotropic layer with a
circular hole was solved in [2, 3] using different meth-
ods. Study of a stressed isotropic layer weakened by
through holes in the case of sliding fixation of its ends
(the so-called symmetric case) was undertaken in [4].
In all the papers mentioned above, the solutions to the
boundary value problems were based on the Vorovich
semi-inverse method. A number of electroelasticity
problems for a layer under various boundary conditions
imposed at its ends was considered in [5]. A method,
distinct from that developed in [4], for solving mixed
boundary value problems in the theories of elasticity
and electroelasticity for a layer weakened by through
inhomogeneities was described in [6].

We consider a piezoelectric-ceramic layer (–h ≤ x3 ≤
h, –∞ < x1, x2 < ∞) weakened by a tunnel (i.e., directed
along the 0x3-axis) through holes (cavities) whose cross
sections are smooth closed contours Lj, j = 1, 2, …, k.
We assume that the side surfaces of the cavities are
force-free and the bending–torsional stress at infinity is

given by the uniform field  (i, j = 1, 2, 3).

The problem set above is described by the following
complete system of equations (volume forces and
charges are assumed to be absent):

the equilibrium equations (the summation over the
repeating subscripts is implied)

(1)

the electrostatics equations

(2)

σij
∞

∂ jσij 0, ∂i
∂

∂xi

-------, i j, 1 2 3;, ,= = =

∂mDm 0, Em ∂mϕ ;–= =

* Moscow State Technical University—
Moscow Automotive Institute, Moscow, 
ul. Bol’shaya Semenovskaya 38, 105830 Russia

** Sumy State University, 
ul. Rimskogo-Korsakova 2, Sumy, 400007 Ukraine
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the Cauchy relations

(3)

the equations of state for the piezoelectric ceramics
preliminary polarized in the direction of the 0x3-axis

(4)

the boundary conditions at x3 = ±h

(5)

and, finally, the boundary conditions on the cavity
surface

(6)

Furthermore, it is reasonable to use the set of equilib-
rium equations in displacements obtained from (1)–(4)
as an initial system. These equations are

 

εij
1
2
--- ∂iu j ∂ jui+( );=

σx c11εx= c12+ εy c13εz e31Ez,–+

τ yz 2c44εyz= e15Ey,–

σy c12εx= c11+ εy c13εz e31Ez,–+

τ xz 2c44εxz= e15Ex,–

σz c13 εx εy+( )= c33+ εz e33Ez,–

τ xy c11 c12–( )εxy,=

Dx ε11Ex= 2e15εxz, Dy+ ε11Ey= 2e15εyz,+

Dz ε33Ez= e31 εx εy+( ) e33εz;+ +

u3 0, σ13 0, σ23 0, ϕ 0;= = = =

σkjn j 0, k j, 1 2 3,, ,= =

Dn 0.=

V ∇ 2u c44∂3
2u ∂1θ+ + 0,=

V ∇ 2v c44∂3
2v ∂2θ+ + 0, ∇ 2 ∂1

2 ∂2
2,+= =

c44∇
2w c33∂3

2w+

+ ∂3 c ∂1u ∂2v+( ) e15∇
2ϕ e33∂3

2ϕ+ +{ } 0,=
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(7)

We will seek the solution to set (7), which is skew-
symmetric with respect to the median plane x3 = 0 of the
layer. We assume that

(8)

With regard to these relationships and Eqs. (7),
we have

(9)

Solving this system of equations, we arrive at

(10)

Here, the function  is an arbitrary solution to the

Helmholtz wave equation (∇ 2 – )  = 0, Ωk

ε11∇
2ϕ ε33∂3

2ϕ e15∇
2w–+

– e33∂3
2w ∂3 e ∂1u ∂2v+( ){ }– 0,=

U
1
2
--- c11 c12+( ), V

1
2
--- c11 c12–( ),= =

c c13= c44, e+ e15 e31,+=

θ U ∂1u ∂2+ v( ) c∂3w e∂3ϕ .+ +=

u v,{ } uk v k,{ } γ kx3, γksin
k 0=

∞

∑ 2k 1+
2h

---------------π,= =

w ϕ,{ } wk ϕk,{ } γ kx3.cos
k 0=

∞

∑=

Vκ kuk ∂1θk+ 0, Vκ k= v k ∂2θk+ 0,=

L13wk L14ϕk
c
U
----γkθk+ + 0,=

L23wk L24ϕk
e
U
----γkθk+ + 0,=

κ k ∇ 2= γk
2µ0

2, L13– c44∇
2= γk

2δ1,–

L14 L23 e15∇
2= = γk

2δ2– , L24 γk
2δ3 ε11∇

2,–=

θk U ∂1uk ∂2v k+( )= γkcwk γkeϕk,+ +

δ1 c33=
c2

U
----, δ2– e33

ce
U
-----, δ3– ε33

e2

U
----.+= =

uk iv k– 2γk
U
V
----

p4* µm( )
µm

2 µ0
2–

------------------ ∂
∂z
-----Ωk

m( ) 2i
∂
∂z
-----Ωk,+

m 1=

3

∑=

wk γk
2 d2µm

2 δk–( )Ωk
m( ), k

m 1=

3

∑ 0 1 …,, ,= =

ϕk γk
2 δ4 d1µm

2–( )Ωk
m( ).

m 1=

3

∑=

Ωk
m( )

γk
2µm

2 Ωk
m( )
is an arbitrary solution to the equation (∇ 2 – )Ωk =
0, and µm are the roots of a bicubic equation [6].

The desired metaharmonic functions entering
into (10) are sought in the form

(11)

where Kn(z) is the nth-order MacDonald function and

pk(ζ) and (ζ) are desired densities, with  = .

In what follows, we assume that, on the cavity sur-
face, the stress vector components and the normal com-
ponent of the electric induction satisfy the expansions

(12)

It is reasonable to represent the boundary condition
on the cavity surface as

(13)

Here, ψ is the angle between the positive normal to the
contour L and the Ox1-axis and N and T are, respec-
tively, the normal and tangential vector components of
the stress applied to the body surface from outside.

With the help of representations (11) and expan-
sions (8) and (12), the boundary value problem (13) can
be reduced to a set of integro-differential singular equa-
tions, which cannot be written out here due to its awk-
wardness.

As an example, we here consider a layer weakened
by a cavity whose cross section is a square with
rounded angles, 

with a bending load  = Px3 applied at infinity.

γk
2µ0

2

Ωk pk ζ( )K0 γkµ0r( ) s,d

L

∫=

r ζ z– , z x1 ix2,+= =

Ωk
m( ) pk

m( ) ζ( )K0 γkµmr( ) s,d

L

∫=

ζ ξ 1= iξ2+ L, m∈ 1 2 3,, ,=

pk
m( ) pk

3( ) pk
2( )

N Nk γkx3, T Tk γkx3,sin
k 0=

∞

∑=sin
k 0=

∞

∑=

Z Zk γkx3,cos
k 0=

∞

∑= Dn Dn
k( ) γkx3.cos

k 0=

∞

∑=

σ11 σ22 e2iψ σ22 σ11– 2iσ12+( )–+ 2 N iT–( ),=

Re eiψ σ13 iσ23–( ){ } Z ,=

Dn 0.=

ξ1 a ϕcos c 3ϕcos+( ),=

ξ2 a ϕsin c 3ϕsin–( ): 0 ϕ 2π, c≤ ≤ 0.14036= =

σ11
∞
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The distribution of the relative circumferential stress

 at the point ϕ =  (where this stress is maximal)

along the thickness coordinate is shown in the figure.

Curves 1, 2, and 3 correspond to  = 0.5, 1, and 2,
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The distribution of the relative circumferential stress
 along the thickness coordinate.σθθ/P
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respectively. The numerical results were obtained for
piezoelectric ceramics PZT-4.
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To date, descriptions of numerous observations of
unusual optical glows proceeding at low or middle lat-
itudes and at altitudes of 15 to 100 km in the evening or
night Earth atmosphere have been published. The
mechanisms of initiation of these glows termed red
sprites, blue jets, elves, and blue starters are unclear
today [1–3]. However, its correlation with the underly-
ing thunderstorm activity is without doubt. It has been
noted that red sprites correlate with positive lightnings
and are observed above regions of stratified clouds that
produce a convective-line trace in large thunderstorm
complexes. A structure consisting of 4 to 6 layers and a
high frequency of positive lightnings that transfer neg-
ative charge upward are intrinsic to these clouds [4–8].

Various explanations of the origin of these glows
were proposed. However, in all cases, an initiator is
assumed to be close to lightning. This lightning causes
an initially short (~100 µs) electromagnetic pulse in the
atmosphere and, furthermore, a long-time (~100 ms)
rise of the electric field (a consequence of the charge
transfer by the quasi-continuous lightning current) [9].
At present, a number of versions are being discussed in
the literature. According to them, the glow of red sprites
is caused by either a usual breakdown of the atmo-
sphere [2] or a relativistic runaway-electron discharge
[10–12]. In the latter case, a weaker (by an order of
magnitude) field is required.

Recently, a series of measurements of the electric
field above a region of stratus clouds in large thunder-
storm complexes were carried out [4–8]. The authors
of [4] also performed calculations of electric-field dis-
continuities above a stratiform cloud caused by positive
lightning. In the cloud model [4], the electric field is
formed by one charged layer and its image. An instan-
taneous neutralization of the lightning charges is sug-
gested, all values of the physical parameters being
taken from experiments. As a result of these simplifica-
tions, the multilayer cloud structure and polarization of
the atmosphere are not taken into account. Thus, the
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possibility of both imitating the intracloud charge trans-
fer and calculating the electrostatic cloud energy and
dynamics of the intracloud electric field is absent.

In this paper, a three-layer model of a thundercloud
is described. Calculation results for the cloud structure,
parameters, and jumps of the quasistatic electric field
caused by positive lightning with allowance for atmo-
sphere polarization are presented. A possible correla-
tion of the electric-field jumps with the initiation of
atmospheric optical phenomena is discussed.

MODEL OF A STRATIFIED THUNDERCLOUD

Let cloud layers be represented by three coaxial
charged disks with radius R and thickness d, which are
parallel to the Earth’s surface and placed at the altitudes
Ghi . The corresponding uniform charge volume densi-
ties are ρ1 < 0, ρ2 > 0, and ρ3 < 0 (the enumeration
occurs from top to bottom). The charge surface densi-
ties are σi = dρi; the disk charges are Qi = πR2σi . We
assume the cloud, as a whole, to be electrically neutral:
σ1 + σ2 + σ3 = 0. In calculating the electric field, we
additionally introduce nine image disks. The first three
are symmetric to the cloud layers with respect to the
Earth’s surface. The other six are obtained as a result of
the reflection of the cloud layers and three first images
from the boundary of the conducting atmosphere,
which is located at an altitude He . The allowance for the
electrosphere is important since near its boundary, the
fields of the lower and upper charges have the same
magnitude and are equally directed, which doubles the
field. The images are charged and located in such a
manner that the following 18 relations can be written
out in the accepted notation:

 (1)

h4 h3, h5– h2, h6– h1,–= = =

h7 2He h1, h8+ 2He h2, h9+ 2He h3,+= = =

h10 2He h3, h11– 2He h2, h12– 2He h1,–= = =

σ4 σ3, σ5– σ2, σ6– σ1,–= = =

σ7 σ1, σ8 σ2, σ9 σ3,= = =

σ10 σ3, σ11– σ2, σ12– σ1.–= = =
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On the axis of the disk system at an altitude z, the elec-
tric field is represented by the formula

(2)

where

and ε0 is the dielectric constant.

Multiple probing of stratified thunderclouds showed
that the strength of the intracloud quasisteady electric
field usually do not exceed a certain critical value Ebe(z)
(z is the altitude) [4–6]. The quantity eEbe(z) corre-
sponds to the minimum friction force of a relativistic
electron in air. This quantity is interesting in the fact
that when it is exceeded, the development of a specific
electric discharge, namely, a relativistic runaway-elec-
tron discharge, can arise [10–12]. The friction force is
proportional to the gas density:

(3)

where E0 = 0.204 MV/m is the electric-field strength
corresponding to the minimum friction force at normal
air density and an electron kinetic energy of 1.2 MeV
[10–12] and f(z) is the relative atmospheric density. The
threshold for the air breakdown by thermal electrons is
considerably higher, namely, Ebd(z) ≈ 3f(z) MV/m. We
now define the overvoltage δ(z) as a local ratio of the
field strength to its threshold value (3):

(4)

Based on measurement results for the electric field in
stratified clouds and above them [4–6], we set the field
magnitudes, i.e., the overvoltages at four points of the
cloud axis, at altitudes of z1 = 16 km, z2 = h1, z3 = h2 ,
and z4 = 1 km:

 (5)

The choice of the points z2 and z3 immediately below
the upper and the middle disks is not accidental. Since
the distance between the neighboring disks is much
smaller than their diameters, the field between the disks
is almost uniform. As far as the quantity Ebe(z), like the

E z( ) σiϕ z hi R, ,( ),
i 1=

12

∑=

ϕ z hi R, ,( ) 1
2ε0
--------

z hi–
z hi–
---------------

z hi–

R2 z hi–( )2+
-----------------------------------–=

eEbe z( ) eE0 f z( ),=

δ z( ) E z( )
Ebe z( )
---------------.≡

E z1( ) 1 kV/m or–= δ1 δ z1( ) 0.0363,–= =

δ2 δ z2( ) +1, δ3 δ z3( ) 1,–= = = =

E z4( ) +10 kV/m or δ4 δ z4( ) +0.05.= = =
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atmosphere density, exponentially decreases with alti-
tude, the maximum value |δ| between neighboring disks
is attained below the upper disk, as follows from (4).
Measurements of the intracloud electric field do not
exhibit values |δ| > 1 [4–8]. Therefore, we can consider
that in the limiting cases (that we analyze) and immedi-
ately before a lightning strike, the value |δ| = 1 is
attained at two axis points in a cloud. The values of δ2

and δ3 were chosen in (5) in accordance with this con-
sideration. Combining the neutrality condition with
formula (2) and condition (5), we write out a system of
algebraic equations for determining the unknown cloud
parameters:

 (6)

By setting free parameters h3 and R and solving the sys-
tem of equations with allowance for relations (1), we
can find the parameters h1, h2, σ1, σ2, and σ3 . The value
of the field jump is

(7)

where σik are the final charge densities (after the light-
ning has occurred), which are here, in a certain extent,
free parameters since they depend on the method of
layer neutralization.

To determine the electric field above a cloud at alti-
tudes exceeding 30 km after a lightning strike, it is
more reasonable to calculate the field jump (7) than the
field in itself (2). This is substantiated by the fact that,
prior to this event, the field intensity at altitudes of
30 km and higher was much lower than 1 kV/m. Thus,
we assume that the cloud layers were screened by addi-
tional charged regions located at altitudes between 16
and 30 km, which were not taken into account in our
calculations. Actually, in calculating the field inside a
cloud or that at a small height above it, we should use
formula (2) with the values of σi taken before or after
the lightning strike.

The assumption on the instantaneous charge transfer
by a lightning has two consequences. First, the field
jump penetrates upward without attenuation because
the atmosphere has no time for polarization. On the
other hand, the longer the duration of the lightning, the
lower the electrosphere boundary in which the field-
relaxation time is shorter than the lightning duration. In
subsequent calculations, we assumed that the charge
transfer by a lightning occurs in accordance with the

σiϕ z j hi R, ,( )
i 1=

12

∑ δjEbe z j( ), j 1 2 3 4,, , ,= =

σ1 σ2 σ3+ + 0.=

∆E z( ) σik σi–( )ϕ z hi R, ,( ),
i 1=

12

∑=



556 MIRONYCHEV
exponential law with a characteristic time τ = 10 ms:

This value of τ corresponds to the night altitude of
the electrosphere boundary He ≈ 60 km [12]. A multi-
plier

was used to take into consideration the vertical polar-
ization of the atmosphere and the weakening of the
electric field. Here, t is time and ξ(z) is the conductivity
of the night atmosphere [12]. The electric-field jump
above a cloud (but with allowance for the atmosphere
relaxation) is −∆E(z, t) = ∆E(z)λ(t).

ELECTRIC-FIELD DISCONTINUITIES 
ABOVE STRATIFIED THUNDER CLOUDS 
INITIATED BY A POSITIVE LIGHTNING

To calculate cloud parameters prior to a lightning
strike, we assumed that the altitude of the lower layer,
the thickness of the layers, and the cloud radius were 2
to 5 km, 500 m, and 5 to 10 km, respectively. It was
found that the upper and middle cloud layers can be
located correspondingly at altitudes of 6.2 to 12.4 and
3.7 to 8.0 km. The calculated charge densities in the
upper and lower disks vary within –2.5 to –0.86 nC/m3,
while in the middle disk they vary within +2.5 to
+4.55 nC/m3. All these values are close to those
observed previously [4–6]. The values of charges for
the positive layer turned out to be within the range
115−626 C. These values correspond to charges trans-
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Fig. 1. Electrostatic energy of a cloud in the process of layer
discharge for h3 = 5 km and R = 10 km.
ferred by a positive lightning [9]. However, as is shown
below, complete neutralization of the entire positive
charge by a lightning is unlikely. According to the
charge values and disk altitudes obtained, the electro-
static energy of the plane-capacitor system is calculated
with corrections for edge effects taken into account.
Figure 1 exhibits the energy of a system consisting of
12 layers as a function of the current charge density of
the middle and lower cloud layers. The right-hand
branch of curve 1 corresponds to a situation when the
lower and upper cloud layers preserve their charge and
only the middle layer is neutralized by the charge com-
ing from the Earth until the minimum energy has been
attained (this is the first variant of neutralization). The
energy minimum (in variant 1) is attained as a result of
discharging the middle layer from 2.5 to 1.67 nC/m3.
To this time moment, the charge of –130 C is trans-
ferred from the Earth, whereas the energy dissipation is
close to 13 GJ. Furthermore, we assume that the light-
ning channel has a sufficient induction and a small
resistance, so that the charge transfer from the Earth
can be continued until the cloud energy comes back to
the initial energy (this is the second variant of neutral-
ization). The left-hand edge of curve 1 in Fig. 1 corre-
sponds to the end of the lightning in the latter variant.
The residual charge density in the middle layer is now
equal to 0.863 nC/m3, i.e., to 30% of the initial layer
charge. The charge transferred from the Earth is
−257 C. Thus, it turns out that the complete discharge
of one positive layer by a lightning, as it was assumed
for certain cases in [4], is most likely impossible.
Whence it follows that the field-jump values are over-
estimated in [4].

The third variant of neutralization (the right-hand
part of curve 2 in Fig. 1) consists in the transfer by the
intracloud lightning of the entire charge of –136 C from
the lower layer to the middle layer. The energy mini-
mum is attained for ρ2k ≈ +0.86 nC/m3 ≈ –ρ1 and
ρ3k ≈ 0, while the energy release is ~25.7 GJ. The fourth
discharge variant (the left-hand branch of curve 2 in
Fig. 1) consists in the continuation of the negative-
charge transfer onto the middle layer. However, the pro-
cess occurs from the Earth until a state is formed with
an energy equal to the initial state. This condition deter-
mines the final values of both ρ2k ≈ –0.29 nC/m3 and the
charge of –182 C transferred from the Earth.

Figure 2 demonstrates the results of one of the cal-
culations for the distribution of the vertical electric field
on the cloud axis at time moments prior to and after a
lightning in the case of the fourth neutralization variant
when the field undergoes a maximum jump. The enve-
lopes show the threshold field (3). At an altitude of 16 km,
the field after the lightning is equal to –17.4 kV/m. In
the third variant (when the jump is minimal), the field
is –7.49 kV/m, which satisfactory agrees with the
observed data of about –5 kV/m [4]. We should take
into account that the measuring balloon was usually sit-
DOKLADY PHYSICS      Vol. 46      No. 8      2001
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uated dozens of kilometers from the strike point of a
lightning identified with a given field jump.

Figure 3 exhibits the calculated altitude depen-
dences for the field-jump values above a cloud for the
third (curve 2) and fourth (curve 1) neutralization vari-
ants. A usual breakdown and the runaway-electron dis-
charge are possible above the Ebd(z) curve and the Ebe(z)
curve, respectively. These dependences are obtained
without allowance for the weakening of the field dis-
continuity due to the atmosphere polarization; however,
we implied the electrosphere boundary at an altitude of
60 km while determining the positions of images. For
various scenarios of layer neutralization, the threshold
for the electron runaway is overcome at altitudes of
30−43 km and higher, whereas the usual breakdown
can develop above 60–67 km, which is close to the
results of [4]. The increase in the field jump (Fig. 3) at
the heights greater than 60 km contradicts the physical
standpoint and is completely a consequence of the
roughness of the model accepted; namely, it allows for
the electrosphere in the formation of images and
ignores the field decrease caused by the polarization in
the electrosphere. With the polarization taken into con-
sideration, the field jump does not penetrate above
75 km and the maximum value of δ (which does not
exceed 12.5) is attained in 20–25 ms after the lightning
has begun at an altitude of 62 km. We can make a con-
clusion that the usual breakdown above the cloud is
impossible since, in order for this to occur, it is neces-
sary that δ ≈ 15.

Thus, our calculations have shown that the neces-
sary conditions for the development of a relativistic
runaway-electron avalanche and a specific form of a
discharge can be attained within the altitude range of
30–73 km [10–12]. These conditions correspond to a
relatively small size of both the stratus cloud and values
of charges being transferred. It is this range that corre-
sponds to observations of red sprites. However, in order
to explain the observed glow intensity, overvoltages δ >
1.5–2 are necessary at small altitudes, which would
provide an electron avalanche gain by a factor of 1017

[12]. Such an intense avalanche could be developed,
e.g., beginning from 25 km in the field of a vertical
electric dipole whose negative charge of –100 C is sit-
uated at an altitude of 18 km [12]. In the given calcula-
tions, the avalanche can be developed only above
30 km. In addition, in this case, the overvoltage at an
altitude of 30 km is close to 1 and very slowly rises with
the altitude. Therefore, the avalanche does not attain the
required amplification at altitudes of 50–70 km. Thus,
we can explain the blue jet observed at altitudes from
cloud tops up to 35 km neither by the runaway-electron
discharge nor, all the more, by a usual breakdown. In
my opinion, the results obtained do not reject the con-
cept that red sprite and blue jet are initiated in a certain
way by jumps of the thunder field [2]. Indeed, here, a
simplified model of a thundercloud is analyzed which
does not take into account the variety of natural condi-
DOKLADY PHYSICS      Vol. 46      No. 8      2001
tions involved, e.g., nonuniformity and fluctuations of
intracloud charge distribution and the specific features
of charge transfer by lightning.
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Electrical pulses with time durations from tenth
fractions to several nanoseconds with a peak power of
hundreds of megawatts to several gigawatts are
required in various fields of electrophysics and its tech-
nological applications. Up to now, the sole method of
producing such pulses was the use of ultrahigh-pres-
sure gas spark gaps as switches. The well-known short-
comings of the spark gaps, e.g., their limited lifetime
and pulse repetition rate, as well as the instability of the
parameters of pulses formed, are the main obstacles
that hamper the employment of powerful short pulses in
technologies and high-precision physical experiments.
In this connection, the development of new superin-
tense and superfast semiconducting current switches is
of great practical importance.

One of the most high-rate methods of current
switching in semiconductors is based on the formation
of a delayed shock-ionization wave in the base of p+–n–
n+-diode. In this case, the rate of the base filling by the
electron-hole plasma can exceed the carrier rate in the
current saturation region by a factor of ten [1, 2]. At
present, superfast semiconductor switches, the so-
called silicon avalanche sharpeners (SAS) based on this
principle, are being developed [3]. They are capable of
forming subnanosecond pulses with a rise time on the
order of 10–10 s. The most powerful SAS with several
semiconducting structures connected in series form
pulses with an amplitude on the order of 104 V and a
peak power up to several megawatts [3, 4] at the 50-Ω
load.

The development of an SAS with an operating volt-
age exceeding 100 kV and a switching power of hun-
dreds of megawatts and higher is of practical interest.
These SAS could be, in this case, an alternative to
superhigh-pressure gas spark gaps. In this paper, the
results of the first experiments on switching power by
SAS on the basis of a delayed shock-ionization wave

Institute of Electrophysics, Ural Division,
Russian Academy of Sciences, 
ul. Amundsena 106, Yekaterinburg, 620016 Russia
1028-3358/01/4608- $21.00 © 20559
were enhanced by more than two orders of magnitude
and reached 1 GW at a pulse duration of 1.8 ns.

The sketch of the experiment is shown in Fig. 1.
A solid-state SM-3NS short-pulse charging generator,
whose characteristics are given in [5], was used to pro-
duce an overvoltage at the SAS under study. The out-
put-pulse formation unit of the generator contains an
inductive energy store L and a current semiconductor
opening switch (SOS) on the basis of SOS-diodes with
a subnanosecond current cutoff [6]. For exciting a
delayed shock-ionization wave, a rise-time rate of the
reverse voltage of ~1012 V/s per one structure is
required [2]. In our case, the generator provided a volt-
age rise time at the open output at a rate of ~1014 V/s
(450 kV for ~4 ns), which was sufficient for wave exci-
tation when the number of in-series structures attained
~100. A coaxial 50-Ω oil-filled pulse-forming line with
an outer diameter of 90 mm was connected to the
SM-3NS generator output. In the experiments, the line
length varied from 5 to 20 cm. The SAS under study
was mounted between the line output and the resistive
load Rl. A blocking diode 1 was installed between the
output of the charging generator and the inner line con-
ductor, which eliminates plasma injection into the SAS
in the case of the appearance of a positive-voltage pre-
cursor pulse at the stage of SOS direct pumping.

The charging voltage of the pulse-forming line and
the voltage in the load were monitored using capacitive
broad-band voltage dividers, 2 and 3. The measurement
of the current flowing through the SAS was carried out

SOS
 Pulse-forming line

SAS

SM-3NS

L Rl

2

1

SOS
3

Fig. 1. Sketch of the experiment.
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with the help of a low-inductive shunt mounted in the
load circuit. A digital TDS684 oscilloscope with a
1-GHz transmission band was used for pulse recording.
The intrinsic transient characteristic of the entire detec-
tion circuit was no longer than 500 ps. In the process of
measurements, the signal attenuation in the measuring
cables was taken into account. The overall measure-
ment accuracy was no worse than 10%.

In preliminary experiments with an SAS terminated
by a matched load Rl = 50 Ω, the length of the pulse-
forming line was varied. This line determined the volt-
age at the SAS and the rate of the voltage rise. The num-
ber N of the series structures and their area S in the
sharpener were adjusted to obtain a maximum pulsed
power in the load. The optimized SAS contained N = 144
silicon semiconductor structures of p+–p–n–n+-type,
which were connected in series. The structures were
prepared according to diffusion technology with a
deeply buried position of the p–n-junction. The base
length and the structure area were approximately
120 µm and 6.75 cm2, respectively. The length of the

(b)

(a)

232 kV

0

6.5 kA

0

Fig. 2. Oscillograms of (a) an SAS current pulse in the
mode of the short-circuited load and (b) the voltage pulse
for the load Rl = 53 Ω. The horizontal scale is 1 ns/division.
entire device was 105 mm. The blocking diode 1 con-
sisted of 60 identical structures each with an area of
2.25 cm2. The resistive load Rl was assembled on the
basis of TVO-2 low-inductive carbon resistors (12 in
parallel).

In the case of current cutoff by the SOS switches,
the pulse-forming line is charged from the inductive
energy store L via the blocking diode 1. In the experi-
ments, the charging time and the line voltage lay within
the ranges 3–5 ns and 240–350 kV, respectively. An
oscillogram of the current through the SAS in the load
short-circuited mode is shown in Fig. 2a. In this exper-
iment, the length of the pulse-forming line was 7 cm.
The line was charged up to ~300 kV for ~3 ns. When
charging the line, the displacement current passes
through the SAS, forming a precursor pulse, and then,
the process of SAS switching-on follows. The ampli-
tude of the current through the SAS was 6.5 kA. The
precursor-pulse amplitude was 10% of that of the main
pulse. Therefore, the switching time could be deter-
mined from the current and voltage oscillograms at the
level of 0.2–0.9 of their amplitudes. Under these condi-
tions, the current rise time in the load short-circuited
mode was 0.68 ns. The current rise time in the steepest
region of the switching characteristic was approxi-
mately 7 kA/ns.

In Fig. 2b, an oscillogram of the voltage pulse in a
53-Ω load is shown for a line length of 7 cm, a pulse
amplitude of 232 kV, and a peak power of 1 GW. In this
case, the rise time at the amplitude level of 0.2–0.9 was
0.85 ns and the pulse duration measured at the pulse
half-height was 1.8 ns. The maximum rates for the rise
of the current and the voltage were 3.6 kA/ns and
190 kV/ns, respectively.

The specific feature of the experimental operation is
that the SAS does not represent a concentrated element
but is a continuation of the inner conductor of the pulse-
forming line, the SAS length in the majority of experi-
ments exceeding the geometric length of the line. In the
process of sharpener switching, the filling of the line
section in which the SAS is installed occurs through the
electric and magnetic field of the running electromag-
netic wave. This fact explains the experimental data
obtained. First, the duration of the pulses being formed
coincides at their half-height with the time of double
passage of the wave along the line, whose length is
equal to the summary lengths of the pulse-forming line
and of the SAS. Second, the pulse amplitude in the load
is 70–80% of the charge voltage in the pulse-forming
line instead of 50% when the charged line is switched
in the matching load with a zero initial current.

We also tested the circuit in the frequency operation
mode. The maximum pulse repetition rate was 3.5 kHz
and was limited by the capabilities of the SM-3NS
power-supply generator. Due to the limited power of
the feeding circuit, the reduction of the generator input
voltage occurred and, as a consequence, the amplitude
of the output pulses decreased. At a pulse repetition rate
DOKLADY PHYSICS      Vol. 46      No. 8      2001
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of 3.5 kHz, the mean power introduced into the load
Rl = 53 Ω attained 3.8 kW, while the pulse amplitude
decreased to ~200 kV (~750 MW). In the mode with
the maximum pulse repetition rate, the generator was
switched for a time from 1 to 3.5 ns. The limitation was
associated with the low shunted power (24 W) of the
load resistors.

Thus, the work carried out has shown the feasibility
of formation of super-powerful short pulses by a solid-
state semiconductor device on the basis of a delayed
shock-ionization wave. The levels attained in pulse
power, voltage, and duration (1 GW, 230 kV, and
1.8 ns) correspond to the characteristics of frequency
generators with high-pressure gas spark gaps: 0.3–3 GW,
140–210 kV, and 0.4–1.1 ns [7, 8]. The results obtained
are explained, in the first turn, by the implementation of
a powerful solid-state feeding generator with a high-
rate output voltage rise in the experiment. This allowed
us to realize the mode of the delayed shock-ionization
wave in the sharpener with a large number of semicon-
ductor structures. In this connection, further studies on
the enhancement of the power being switched-on can
be associated with the use of more powerful feeding
generators and with increasing the number and area of
structures involved in a sharpener.
DOKLADY PHYSICS      Vol. 46      No. 8      2001
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Recently, a new class of composite materials con-
sisting of a polymer matrix and a filler in the form of
small rubber particles with sizes on the order of
100 micron in diameter appeared [1–5]. In this study,
we discovered that a gradual increase in filler concen-
tration leads to two successive transitions of the defor-
mation mechanism of a material made on the basis of a
high-density polyethylene matrix. The first transition
(from plastic to brittle failure) is observed after intro-
ducing into the material only several particles of an
elastic filler per entire sample volume. For filler con-
centrations of 40–50 vol %, the second transition (from
brittle to plastic failure) occurs. In this paper, we
obtained the criterion for such a transition.

To prepare a composite material, we used high-den-
sity polyethylene with the trade mark 277-73. As a
filler, we applied rubber particles prepared on the basis
of ethylene-propylene-diene rubber obtained by grind-
ing industrial rubber wastes. The size of the rubber par-
ticles varied between 100 and 600 µm.

The composite material was obtained by mixing in
a melt with the help of a single-screw laboratory
extruder. The filler concentrations were taken within
the range between 2 and 95 wt % (1.8–94.5 vol %). We
used the material obtained to make 2-mm-thick plates
through hot pressing at 160°C and under 10-MPa pres-
sure followed by cooling under pressure to room tem-
perature. Next, for our investigations, we cut out sam-
ples in the form of a double-ended spade with dimen-
sions of the useful part of 5 × 35 mm.

The mechanical properties of the composites were
determined by a 2038 R-005 tension testing machine at
room temperature. The deformation rate was
20 mm/min. After testing, the fracture surface was
examined with the help of an MBS-9 optical micro-
scope.

Figure 1 shows the stress–strain diagrams of unfilled
high-density polyethylene (curve 1) and a series of
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composites composed of high-density polyethylene
with a different content of the filler (curves 2–5). The
polyethylene deformation curve was characterized by
forming a neck and a characteristic tooth-shaped yield
curve. The neck propagation was unstable, and the sam-
ples failed in the process of the neck growth. In the
course of deformation, polymer hardening did not
occur and the rupture stress was equal to the lower limit
of the yield stress.

Introducing rubber particles into polyethylene
changed both the shape of the stress-strain diagram and
the character of the material failure. For a relatively
small rubber content, the deformation diagram
acquired a shape typical of brittle materials (curves 2, 3
in Fig. 1). In order to determine the critical concentra-
tion of particles, which corresponds to the transition to
brittle failure, we prepared samples containing only a
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Fig. 1. Tensile stress σ as a function of strain ε for
(1) unfilled high-density polyethylene and composites of
high-density polyethylene with rubber. The filler content is
(2) 4.3, (3) 26.7, (4) 46, and (5) 88.4 vol %.
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few rubber particles. These samples exhibited brittle
failure before neck formation. Their ultimate strength
practically coincided with the upper yield point of the
unfilled matrix. Thus, after introducing only one filler
particle into the entire sample volume, the material
becomes brittle. This fact is illustrated in Fig. 2 as a
photograph of a sample containing a single rubber par-
ticle. Sample constriction in the fracture plane is
absent, and the failure is actually brittle. The crack grew
starting from the particle (that, apparently, served as its
nucleus) rather than along the matrix–rubber interface.
This fact indicates that the adhesion strength of the
interfacial polyethylene-rubber boundary is higher than
the particle’s strength.

At first glance, after introducing rubber particles,
the brittle fracture of the polymer is unexpected. It is
well known that introducing rubber particles makes it
possible to obtain shock-proof thermoplastic polymers
[6, 7]. In content, rubber plastics are analogs of shock-
proof polymers but sharply differ in structure. First, the
particle sizes are different. In shock-proof polymers,
particle diameters are on the order of a few hundred
nanometers compared to a few hundred microns in rub-
ber plastics. Second, for a rubber concentration exceed-
ing 40 vol %, shock-proof polymers undergo phase
inversion and the material transforms into rubber filled
with polymeric particles [8]. In contrast, in rubber
plastics, the filling degree is as high as 95% but the
polymer preserves the phase continuity and all matrix
properties [9].

Figure 3 shows the strength (curve 1) and the frac-
turing deformation (curve 2) of the composites as func-
tions of concentration of the rubber particles. After
introducing an elastic filler, the ultimate strength
increases and becomes higher than the polymer
strength. This is explained by the transition to brittle
failure. The strength of an unfilled polymer is equal to
the neck propagation stress (lower yield stress). After
introducing a filler, material failure occurs when the
stress approaches the upper yield point, which causes
an increase in the failure stress. The further increase in
the filler concentration gives rise to monotonic reduc-
tion of the composite strength.

Introducing a filler causes a sharp decrease in the
ultimate elongation (by a factor of approximately 20).
For particle concentrations within the range between 2
and 30 vol %, the ultimate elongation is constant and
equals 10–15%. A further increase in particle concen-
tration up to Vf = 40–50 vol % results in a gradual
increase of the fracturing deformation of the composite
(curve 1 in Fig. 3). For a filling degree higher than
50 vol %, the material is deformed macrouniformly. In
the process of deformation, there appear a set of shear
bands on the surfaces of the samples and microzones
are formed in which the matrix plastic flow is localized.
These facts indicate that, within this range of composi-
tions, the material-deformation mechanism changes. It
DOKLADY PHYSICS      Vol. 46      No. 8      2001
is worth noting that the transition to the macrouniform
deformation of a composite was previously observed in
isotactic polypropylene filled with Al(OH)3 particles
that were previously subjected to the action of an anti-
adhesive substance in order to decrease adhesion to the
matrix [10].

We now consider a model characterizing the transi-
tion from brittle to plastic deformation. In this model,
the spherical particles are assumed to be situated in the
sites of a regular cubic lattice (Fig. 4) [11–13]. It is nat-
ural to suppose that the material flow is initiated in the
cross section AB in which the area of the polymer
matrix is minimal. As was mentioned above, when the
concentration of rubber particles exceeds 50 vol %, a
large number of microzones is formed in the plastic
flow. As a result, the sample consists of alternating
areas of plastically deformed microzones and undis-
torted material. In the model under consideration, these
zones correspond to planes crossing particle centers.

Fig. 2. Example of a sample containing one rubber particle.
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Fig. 3. Dependence of (1) strength σp and (2) fracturing
strain εp of the composites as functions of the volume frac-
tion of rubber particles Vf.
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We assume that the first yield microzone was
formed in the AB plane (Fig. 4). The next microzone in
the CD plane can appear provided the strength of the
formed zone is higher than that required for the appear-
ance of the second microzone. Mathematically, this
condition is written out in the form σz > σy, where σz is
the strength of the microzone and σy is the upper yield
stress of the composite. Thus, a criterion characterizing
the transition from brittle to plastic deformation has the
form [14]

σz = σy. (1)

The deformation of the composite, while initiating
plastic deformation, is not strong (~10%), and the stress
in the rubber particles is negligible compared to that of
the matrix. As a consequence, in the case of initiating
plastic deformation, the particles behave like pores.
The effect of pores on the upper yield stress σy of a
composite was studied rather thoroughly, and σy is
fairly well described by the relationship [15]

(2)

where σym is the upper yield point of the matrix and Vf
is the volume fraction of the filler particles.

It is evident that the failure of the composite occurs
through the crack growth along the weakest cross sec-
tion of the material (the AB plane in Fig. 4). Unlike the
initiation of plastic deformation, the stress in rubber
particles in the course of failure can be compared to the
matrix strength. The strength of the composite is equal
to the sum of the strengths in both the matrix and the
particles in the AB plane with allowance for their cross
sections:

(3)

Here, σm is the matrix strength, equal to the lower yield
point in our case; σf is the strength of the rubber parti-

σy σym 1 9π
16
------3 V f

2/3– 
  ,=

σz = σmSm σfSf .+

A B

DC

0

Fig. 4. Model of the composite. The arrows indicate the
extension direction.
cles; and Sm and Sf are the cross sections of the matrix
and the rubber particles, respectively. It is easy to show
that the area of particles in the AB plane is equal to

. Thus, Eq. 3 takes the form

(4)

The transition from material brittle behavior to plas-
tic behavior is determined from Eqs. (1), (2), and (4):

(5)

where  is the critical degree of filling. According to
Eq. (5), the critical concentration of the filler depends
only on two parameters, namely, the strength of the par-
ticles and the height of the tooth shaped yield curve,
which is equal to the difference σym – σm.

The value σf = 8MPa is determined by extrapolating
the dependence of the composite strength to Vf = 100%
(Fig. 3). The lower yield stress of the matrix σm is equal
to 17 MPa. Substituting the characteristics of the matrix
and the filler (σym = 28 MPa, σf = 8 MPa, and σm =

17 MPa), we obtain  ~ 35%. This estimate of the
critical filler concentration is in satisfactory agreement
with experimental data.

For the degree of filling Vf < 35 vol %, the strength
of microzones is lower than the composite yield
strength (σz < σy) and the composite failure occurs as
brittle. At Vf > 35 vol %, the reversed inequality σz > σy
is valid and the composite is plastically deformed. The
transition from brittle to plastic deformation is
explained by the fact that the particles do not exfoliate
from the matrix and undergo a load whose value is
comparable to the height of the tooth-shaped yield
curve. This fact leads to stabilization of the composite-
material deformation.

Comparing Eqs. 2 and 4, we can see that the ine-
quality σz > σy is fulfilled for any degree of filling pro-
vided the matrix strength is higher than its upper yield
point. This implies that there exists a principle possibil-
ity of avoiding composite brittle failure if the matrix
capability of the strain hardening is so high that the ulti-
mate strength exceeds the yield point.
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In this paper, we prove that elliptic trajectories of
classical unperturbed Keplerian motions, which are
unstable in the sense of Lyapunov, are stable in the
Joukowski sense.

The equations for unperturbed Keplerian motions
have the form

(1)

where  =  and K 2 is the gravitation constant.

Introducing a new independent variable s with the
help of the relationship

(2)

and denoting

we arrive at the regularized differential equations in the
variables uj, which take the form

(3)

where –h is the total energy [1].
As was proved in [1], an arbitrary elliptic solution

(with h > 0) to classical Newtonian equations (1) is
unstable in the Lyapunov sense and any solution to reg-
ularized system (3) is stable in the Lyapunov sense for
h > 0. We here prove that the trajectories of Keplerian
motions (1) are stable in the Joukowski sense.

ẋ̇i K2r 3– xi+ 0, i 1 2 3,, ,= =

r2 x1
2 x2

2 x3
2,+ +=

ẋ̇i

d2xi

dt2
---------

dt
ds
----- r=

x1 u1
2 u2

2– u3
2– u4

2,+=

x2 2 u1u2 u3u4–( ), x3 2 u1u3 u2u4–( ),= =

u j''
h
2
---u j+ 0, j 1 2 3 4,, , ,= =

r'' 2hr+ K2,=
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In what follows, we will use the general canonical
theory [1] in the generalized phase space. Let qi and pi

be the generalized coordinates and momenta, respec-
tively, H(pi , qi , t) be the Hamiltonian, and Pi(pk, qk, t)
be the nonconservative forces. The generalized Hamil-
tonian variational principle [1, 2] states that

(4)

where H = H(pi , qi , t); Pi = Pi(pk, qk, t); i, k = 1, 2, …,
n; and the quantities δqi are the displacements from the
point (q1, …, qn) to the point (q1 + δq1, …, qn + δqn),
with these points being on the actual and varied trajec-
tories in q-space, respectively, and corresponding to the
same instant of time.

From (4), it is easy to obtain the following Euler
equations of motion for the mechanical system:

(5)

We note that variational problem (4) is invariant with
respect to arbitrary noncanonical transformations of the
dependent variables qi and pi .

We now introduce a new independent variable by
the following manner. Instead of (2), we consider the
more general transformation

(6)

where µ is a continuously differentiable scalar function
of q1, q2, …, qn.

We now generalize the classical concept of the
canonical transformation by introducing a differential
transformation (6) of the independent variable. In this
case, we treat the physical time t as a new coordinate q0
and introduce the conjugate momentum p0 in the varia-
tional principle. The meaning of the symbol P0 will be

δ piqi H–
i

∑ Piδqi

i

∑+
 
 
 

td

t1

t2

∫ 0,=

q̇i
∂H
∂pi

--------, ṗi –
∂H
∂qi

------- Pi, i+ 1 2 … n., , ,= = =

dt
ds
----- µ= 0,>
001 MAIK “Nauka/Interperiodica”
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elucidated below. Then, variational principle (4) takes
the following form:

(7)

Hence we obtain the following set of differential
equations of motion:

(8)

(9)

(10)

(11)

We specify the conditions required for the quantity

(12)

(called a generalized homogeneous Hamiltonian) to be
an integral of motion. For this purpose, we set

(13)

where P0 is a negative dissipative force.

We impose the initial conditions for p0 at the instant
of time t = q0 = s = 0. If we set p0 = –H, then the func-
tions µ(H + p0) and H + p0 vanish on the trajectory.
Under these conditions, the quantity p0 is equal to the
total negative energy and Eq. (9) reduces to

thus, time transformation (6) becomes one of Eqs. (8)–
(11). Finally, Eq. (11) acquires the form of the energy
equation:

(14)

In the rectangular Cartesian coordinate system, with p1,
p2, and p3 being momenta, unperturbed Keplerian prob-

δ p0

dqi

ds
------- Pi

dqi

ds
-------

i

∑ µ H p0+( )–+


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s1

s2

∫

+ µP0δq0 µ Piδqi

i

∑+




ds 0,=

H H pi qi t, ,( ), Pi Pi pk qk t, ,( ),= =

µ µ pi qi p0 q0, , ,( ) 0, i k,> 1 2 … n., , ,= =

dqi

ds
------- µ∂H

∂ pi

-------- H p0+{ } ∂µ
∂ pi

--------,+=

dq0

ds
-------- µ H p0+{ } ∂µ

∂ p0
--------,+=

d pi

ds
-------- –µ∂H
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∂qi

-------– µPi,+=

d p0

ds
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∂q0
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--------– µP0.+=
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P0 P j
∂H
∂ p j

--------,
j 1=

n

∑–=

dq0

ds
-------- µ;=

d p0

ds
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-------- µP0.+=
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lem (1) is described by the Hamiltonian

(15)

which generates a canonical system of six equations:

(16)

The inclusion of the time transformation  =

µ(x1, x2, x3, p1, p2, p3) necessitates introduction of the
corresponding homogeneous Hamiltonian,

, (17)

and an associated system of eight equations:

(18)

Here, x0(t) = t, p0(t) = –H(t) is the total negative energy,
and the initial conditions have the form

Hence the new functions xk(s) and pk(s) of s can be
found from the system of equations

(19)

where  = µHh and the initial conditions for prob-
lem (19) are the same as at s = 0. Therefore, the time
transformation need not be taken into account since it
coincides with one of Eqs. (19).

Next, we consider the cases when

(20)

or

(21)

In the cases of (20) and (21), the fictitious time  =

x  (i.e., dt = xds) and the generalized eccentric anom-

aly E = 2 , respectively, should be treated as inde-

pendent variables.
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Under the above conditions, variational problem (7)
for the perturbed motion has the form

(22)

Here, x0 = q0 = t is the physical time, p0 is the total neg-
ative energy, V is the potential, εPi are the forces that
cannot be obtained from the potential, and ε is a small
perturbation parameter.

For variational problem (22), the Euler equations
lead to the following system of equations:

(23)

(24)

(25)

(26)

Let the solution xi(s), x0(s), pi(s), p0(s) to Eqs. (23)–
(26), which is specified by the initial conditions ,
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, , and  at s = 0, correspond to the
solution xi(t) to Eqs. (1). The solution xi(t) to Eqs. (1)
is referred to as stable in the Joukowski sense if, for
each ε > 0, there exist numbers δi > 0, i = 1, 2, 3, and 4,
such that the inequalities

follow from the inequalities

This formulation of the stability in the Joukowski
sense is a concrete definition of that introduced and
studied in [3] for a general smooth dynamical system.

Theorem 1. Any solution xi(t) to Eqs. (1) is stable
in the Joukowski sense if h > 0. 

Proof. We substitute the variable defined by (6) into
(1) and pass to Eqs. (23)–(26). We set ε = 0 and assume
that the energy does not varied. It is sufficient to prove
that any solution to system (23)–(26) is stable in the
Lyapunov sense. For ε = 0, system (23)–(26) has the
following first integral:

(27)

where C is an integration constant.
According to Kepler’s law, we have

(28)

where E = s + const is the eccentric anomaly and e is
the eccentricity.

The left-hand side of Eq. (28) is a periodic function.
It follows from Eq. (28) that varying the initial condi-
tions for the quantities xi and pi results in a periodic
variation in the time x0 . In this case, the coordinate x0
(considered as a function of s) is stable in the Lyapunov

sense. Multiplying Eqs. (23)–(26) by  and elimi-
nating the quantity pi does not influence the stability in
the Joukowski sense. Then, we obtain

(29)
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(31)

In the system of equations (29)–(31), the quantity s
is not a generalized eccentric anomaly, but it is propor-
tional to this anomaly.

For ε = 0, the solutions to Eqs. (29) and (30) are sta-
ble in the Lyapunov sense. Equations (29) and (30) coin-
cide with those for xi and p0 (p0 = h) obtained in [4, 5],
in which the stability in the Lyapunov sense was proved
with the help of the Levi-Civita transformation.

Since the solutions to Eqs. (29) and (30) are stable
in the Lyapunov sense for ε = 0, the solution to Eqs. (1)
for h > 0 is stable in the Joukowski sense.

The proposed method of treating the stability for the
trajectories of classical Keplerian motions does not
employ the concept of a time variable introduced in [1]
and can be used not only for ordinary coordinates but
also for KS-coordinates. The corresponding vector KS-
equations have the form

(32)
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(33)

(34)

where p0 = h, x0 = t.
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The bounded two-body problem on a sphere of unit
radius is related to the Hamiltonian system with two
degrees of freedom described by the Hamiltonian

(see [1–3]). Here, θ and ϕ are spherical coordinates in
the moving reference system related to a body with
nonzero mass, pθ and pϕ are momentum components
conjugated to these coordinates, ω is the angular veloc-
ity of a body with nonzero mass, and α is the gravita-
tional constant.

We consider the system with Hamiltonian H in com-
plexified phase space M4, which is the direct product of

the complexified circle  with coordinate θ(mod2π)

except for points 0 and π, the complexified circle 
with coordinate ϕ, and the two complex straight lines
C1 with coordinates pθ and pϕ .

At α = 0 or ω = 0, the system under study has an
additional analytical first integral (i. e., an integral func-
tionally independent of the Hamiltonian).

According to the numerical calculations [3], this
integral seems to be absent at α ≠ 0, ω ≠ 0. The main
result of the present paper is the following theorem
proving this conjecture.

Theorem. At α ≠ 0, ω ≠ 0, the system with Hamilto-
nian H has no additional meromorphic first integral in
the phase space M.

Proof. Hamiltonian H is invariant with respect to the
involutory symplectic diffeomorphism

The induced Hamiltonian system on the factor man-
ifold  = M/J has a one-parameter family of phase
curves Γ(k), k ∈  R. These curves do not correspond to

H  = 
1
2
--- pθ

2 pϕ
2

θsin
2

------------+
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the equilibrium positions and are defined by the equa-
tions

where p = pθ + ω, k = h + , and h is the constant in

the Hamiltonian.
In the phase curve Γ(k), we have

Taking p as a coordinate in the phase curve Γ(k), we
find that the latter is the complex plane C except for the
points pj, j = 1, 2, 3, 4.

To simplify the notation, we denote dϕ as ϕ, dpϕ as
pϕ , and the derivative with respect to p as prime. Then,
we write the reduced set of variational equations along
the phase curve Γ(k), i. e., the constraints on the normal
variational set of equations along this phase curve onto
the zero equiscalar surface of its first integral dH
(see [4]). These equations have the form

(1)

Introducing the notation x

 

 = 

 

p

 

ϕ

 

p

 

, 

 

y

 

 = 

 

, we

rewrite Eqs. (1) in the form of a Fuchs set:

 

(2)
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where p0 = 0,

It is obvious that all solutions to set (2) are holomor-
phic at the point p0 .

Near the point pj, j = 1, 2, 3, 4 set (2) has two linearly

independent solutions in the form y = (p – pj f ±(p),

where f ± are the holomorphic vector functions f ±(pj) ≠ 0

and f –(pj) || .

Let us assume that the system with Hamiltonian H
has an additional meromorphic first integral in the man-
ifold M. Then, according to the lemma from Section 1.5
in [4], the induced Hamiltonian system in the factor
manifold  also has an additional meromorphic first
integral. The eigenvalues of transformations generated
by set (2) in the course of path-tracing around the points
pj, j = 1, 2, 3, 4 are not equal to the values of the square
root from unity. Then, according to Theorem 2 from
[4], the eigenvectors of these transformations coincide.
Hence it follows that set (2) has two linearly indepen-
dent solutions in the form

(3)

where qj = ±rj and f is the entire vector function. From
this relationship and from set (2) it follows that, in the
neighborhood of the infinite point, all solutions to this
set can be represented in the form of a Laurent series
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expansion:

(4)

Introducing the notation s = · , we obtain from

relationships (3) and (4) 

(5)

Let us choose the parameter k of the phase curve
Γ(k) in such a way that 4Rer1 is not an integer. Then, it
follows from (5) that s = 0; hence

Let us choose one of the two linearly independent
solutions to set (2) in form (3) in such a way that equality
qj = –rj is valid for at least two j values (j = 1, 2, 3, 4).
Then, for these j values, we have apj + b = 0; i.e.,
a = b = 0. Hence ϕ ≡ 0, x ≡ 0; i. e., y ≡ 0, which is incor-
rect. The theorem is proved.
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We consider a system of nonlinear periodic waves
with wavelength λ. The waves move in a fluid from the
right to the left with a constant phase velocity c above
a flat horizontal bottom, the gravitational acceleration
being g. The fluid is assumed to be perfect and incom-
pressible. The motion is perceived to be two-dimen-
sional and vortex-free. We introduce a coordinate sys-
tem Oxy moving together with the waves in which the
flow is steady. The x-axis is aligned with the bottom,
and the y-axis is directed vertically upwards so that it
intersects one of the wave crests. As may be inferred
from dimensional analysis, a steady flow is determined
by two dimensionless parameters. We denote these
parameters as α and β (generally speaking, their spe-
cific choice is not of principle importance). We con-
sider the wave shape and the velocity field to be known
for the steady motion. The question arises as to whether
it is possible to determine the phase velocity c of the
wave motion from these data? Since the physical con-
dition for determining c is absent, this cannot be done
in general.

However, we assume that the wave system under
consideration arises beyond a certain body as a result of
its translatory motion parallel to the bottom with a con-
stant velocity c and that the fluid motion becomes
steady with time in the body frame of reference. Then,
the velocity of the body’s motion will coincide with the
wave phase velocity c. We denote the height of the
unperturbed fluid level above the bottom at the left
infinity by h. For the steady motion at the left infinity,
the following relations hold:

ch = Q, (1)

c2 + 2gh = B. (2)

Here, B is the Bernoulli-integral constant. Since the
velocity field is assumed to be known at the right infin-
ity, the parameters Q, B, and g are also known. Conse-
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quently, relations (1) and (2) can be considered a sys-
tem of equations in terms of two unknowns c and h.

Let hc and ht be, respectively, the heights of crests
and troughs of the waves at the right infinity and 〈h〉  be
the mean wave depth:

Here, y = ys(x) is the λ-periodic function defining the
shape of the free surface.

Based on the principle of the maximum modulus
and the Cauchy theorem for analytic functions, we can
prove the following theorems.

Theorem 1. For an arbitrary steady system of peri-
odic waves whose crests and troughs are in the symme-
try axes, there are only two pairs of strictly positive
numbers c1, h1 and c2, h2 that satisfy the system of equa-
tions (1), (2). For these pairs, the following inequalities
are true:

(3)

(4)

Theorem 2. If periodic steady waves result from the
translatory motion of a body with velocity c in a fluid
layer with depth h and the fluid motion is steady in the
body’s frame of reference, then either c = c1, h = h1 or
c = c2, h = h2 . In the first case, the wave drag is

(5)

where ρ is the fluid density and V is the mean potential
energy of the waves per unit area. In the second case,

h〈 〉 1
λ
--- ys x( ) x.d

λ /2–

λ /2

∫=

ht h1 hc, F1< <
c1

gh1

------------ 1,<=

h2 ht, F2<
c2

gh2

------------ 1.>=

D1 3V ρg∆h
3
2
---∆h 1 F1

2–( )h1– ,+=

∆h h1 h〈 〉 ,–=
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the wave drag is

The flow diagram for the cases h = h1 and h = h2 are
shown in Fig. 1. According to theorem 1, the flow is
subcritical (the Froude number F1 < 1) in the first case
and it is supercritical (the Froude number F2 > 1) in the
second case. We found numerically that the wave drag
is D2 < 0 for the second case. Therefore, flows of this
type are physically unrealizable and are not considered
hereafter. Thus, flow around a body with a downstream
wave train is possible only for a subcritical flow regime.

It is worth noting that the statement of Theorem 1
remains valid for solitary waves too. In this case, the
first inequality in (4) should be substituted by the equal-
ity h2 = ht, where ht is the height of the unperturbed
level for the free surface at infinity. In the case of a fluid
of infinite depth, it can also be shown that formula (5)
of Theorem 2 is simplified and takes the form

D1 = 3V – 2T,

where T is the wave mean kinetic energy per unit area.
Formulas (1), (2), and (5) allows us to find, for an

arbitrary periodic wave system, the phase velocity c = c1
that these waves would have if they were generated by
a moving body. These formulas also make it possible to
find the depth of the unperturbed level h = h1 , the
Froude number F = F1 , and the wave drag D = D1 . Con-
sequently, we can write out

(6)

where f, f1 , and f2 are known (in the sense that they can
be calculated) functions of the constitutive parameters
α and β and Cx is the wave-drag coefficient.

We take α = ln , where v c and v t are the velocities

at wave crests and troughs, respectively. The parameter
α varies between 0 and +∞ and characterizes the wave
slope. As α  0, the wave has an infinitesimal ampli-
tude; as α  +∞, the wave approaches the Stokes
limiting wave with an angular point of 120° at the wave
vertex.

The quantity r0 = exp(–d) is often chosen as the sec-
ond constitutive parameter characterizing the wave-

length. Here, d = , 〈v 〉 is the mean velocity of

fluid particles over a single wave period in a steady

D2 D1
ρg
2

------
h1 h2–( )3

h1 h2+
-----------------------.–=

F f α β,( ),
λ
h
--- f 1 α β,( ),= =

Cx
D

ρgh2
------------ f 2 α β,( ),= =

v t

v c
------

2πQ
λ v〈 〉⋅
-----------------
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flow: 〈v 〉 = ; ϕ(x, y) is the steady-

flow potential (see, e.g., [1]). It is easy to see that r0 is
the inner radius of a ring onto which a single period of
the wave region is conformally mapped, the external
radius being equal to unity in this case. As the second
parameter, we take

(7)

Similarly to r0 , the parameter β varies from 0 to 1. The
case β = 0 corresponds to infinitely deep waves; the
case β = 1 corresponds to solitary waves. The main
advantage of introducing the parameter β is that β = F
for waves with infinitesimal amplitudes. Indeed, let the
wavelength obtained from the linear theory be denoted
by λlin . This wavelength depends only on the Froude
number F = F1 and is determined from the equation
(see [2, p. 34])

(8)

ϕ x λ+ y,( ) ϕ x y,( )–
λ

--------------------------------------------------

β T d( ), T d( ) d( )tanh
d

-------------------.= =

F T
2πh
λ lin
---------.=
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As α  0, we have λ  λlin,   h; therefore,

f(0, β) = β.

Figure 2 shows the α-dependence of the Froude
number F for various fixed values of β (the values of β
vary from 0.1 to 1 with a step of 0.1). The method pro-
posed in [3] was employed for calculating the waves.
We consider the function β = f –1(α, F ), which is
inverse to the function f (α, β) for each fixed α.
Numerical calculations have shown that the lines F =
f (α, β = const) never intersect. Therefore, they are the
level lines for the function β = f –1(α, F ) and the region
shown in Fig. 2 is the domain of definition for the
function β = f −1(α, F ). We denote this region by G.
Then,

Like the function f(α, β), the function f –1(α, F) can be
calculated for arbitrary values of (α, F) ∈  G. The func-
tion F = f s(α) bounds the region G from above and
determines the dependence between the parameter α

Q
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Fig. 4.
and the Froude number F for solitary waves. We
emphasize that, even for solitary waves, the Froude
number introduced by us is F = F1 < 1. The function
f s(α) as, incidentally, any function f(α, β = const) is
nonmonotone. According to the Longuet-Higgins–Fox
asymptotic theory of almost ultimate waves [4], this
function has an infinite sequence of alternating maxima
and minima. Our calculations have shown that the first
minimum of the function f s(α) is attained at the point
α = 1.5022 and its value is fs min = 0.760706. (Hereafter,
in all approximated numbers, the author assures an
error no higher than one unit of the last decimal digit.)
The other extrema of the function f s(

 

α

 

)

 

 can be found by
employing the asymptotic formula [4]
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which is true for large values of 

 

α

 

. Here, 
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 = 2.14293
and, according to our calculations, 
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s
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∞
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 =
0.7629045093 is the value of the Froude number for the
limiting solitary wave; 

 

a

 

 = 0.3469

 

 and 

 

b

 

 = 1.0427.

Using relations (6), we find
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Formulas (10) make it possible to find the maxima and

minima for the relative wavelength  and the drag

coefficient 
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 for each fixed number F. On the other
hand, formulas (10) represent the parametrically speci-

fied function 
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 depending on  for fixed values of F.

Thus, if the wavelength 
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 beyond the body is known,
the wave drag can be calculated exactly.

Figure 3 shows  (curve 
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) as functions of the Froude number F, where
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 is determined from Eq. (8). Curve 
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 has the vertical
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 = 0.760706. This implies that the
wavelength 
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 beyond the body is finite for F  <  
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< 1, it can become infinite and the flow

regime can transform to the ultimate runoff regime [3, 5].
The plots in Fig. 3 clarify the extreme properties of
wavelength 

 

λ

 

lin

 

 determined from the linear theory. The
linear theory yields the maximum possible wave-
length for 
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≤

 

 F

 

 

 

≤

 

 0.6954

 

 and the minimum possible
wavelength for 

 

0.7201 

 

≤

 

 F < 1; the wavelength 

 

λ

 

lin

 

 is
neither maximum nor minimum in the narrow range
0.6954 < F < 0.7201.
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The variation domain for F and Cx in the case of
steady wave regimes is shown in Fig. 4. It is worth not-
ing that the drag coefficients for limiting waves (dashed
line) are not the highest possible. The global maximum
of the wave drag can be attained for F = fs min , and its
value is Cx  max = 0.00780053.
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The Madelung transformation in quantum mechan-
ics [1,2] is referred to as the representation in the form

ψ = exp  of the solution to the Schrödinger

equation (with an arbitrary real-valued potential U)

. (1)

This transformation results in an equivalent system of
equations,

(2)

which is similar to the Euler equations for the potential
motion of a perfect liquid, except the last term in the
right-hand side of the second equation. The relation
between (1) and (2) was used in [1] to calculate the
potential flow of a perfect liquid with a localized vortic-
ity approximated by a distribution of vortex filaments.
In this approach to the flow description, the vortex fila-
ments correspond to intersecting surfaces whose implicit
equations are determined by the equation ψ = 0.

In the present paper, we discuss a generalization of
this approach to a perfect liquid with a distributed vor-
ticity.

For completeness of the consideration, the original
version of the Madelung transformation (with the nota-
tion modified for brevity) is discussed in Section 1. In
Section 2, generalization of the Madelung transforma-
tion is performed. In Section 3, the equivalence
between the system of equations (8) for two complex-
valued functions and the system of equations for a per-
fect liquid in barotropy approximation is substantiated.

ρ iϕ
β
----- 
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i
∂ψ
∂t
------- –

β
2
---∆ψ Uψ+=

∂ρ
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1. Following Madelung [2], we replace the variables

in continuity equation (2). Here, ψ is a complex-valued
function and  is its complex conjugate function. After
the substitution of new variables and factorization, we
obtain

(3)

Here, c.c. corresponds to the complex conjugate terms.
According to Madelung [2], Eq. (3) is satisfied identi-
cally if the function ψ obeys the equation

(4)

where U is a real-valued function of coordinates, time,
and/or ψ. The equivalence of (4) and (1) is evident. As
applied to the potential motion of a continuum, the
quantity ρ may be interpreted not only as the density of
the liquid. This fact stipulates the appearance of various
nonlinear modifications of the Schrödinger equation in
quite different physical problems.

2. Furthermore, we consider the continuity equation

(5)

written out in dimensionless form. In order to describe
the barotropic flow of a perfect liquid with a distributed
vorticity, the number of variables must be doubled
compared to the case of potential motion. We consider
the following choice of variables:

(6)

where k = 1, 2. In terms of these variables, the velocity
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and the vorticity are, respectively,

where w = ∇ (ϕ1 – ϕ2). It is worth noting that within this
choice of variables, the permutation of indices 1  2
does not change the physical quantities. Since the
velocity potentials are many valued, it is possible to
describe a vector field with nonzero integral helicity in
the form [3]

(the integral is calculated over an arbitrary closed sur-
face).

Substituting relations (6) into Eq. (5) and using the
method described in Section 1, we arrive at

(7)

Then, assuming

(8)

we derive from (7) that ρ1RU1 + ρ2RU2 = 0. This con-
dition is satisfied by the following choice of potentials:

where Q, V1, and V2 are arbitrary real-valued functions
of coordinates, time, and/or ψ1 and ψ2 . The substitution

ψk = exp(iϕk) in (8) yields an equivalent system of
equations:

(9)

3. We now demonstrate that the system of equa-
tions (9) [and also (8)] is equivalent to Euler equations
provided that the potentials

(10)
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are chosen, where Π(ρ) = . Potentials (10) are

invariant with respect to the Galilean transformation.
Substituting potentials (10) into Eqs. (9), we arrive at
the system of equations

(11)

We note that in the case ψ1 ≡ ψ2 , i.e., ∇ϕ 1 = ∇ϕ 2, ρ1 =
ρ2 , and w2 = 0, the system of equations (11) is trans-
formed into Euler equations for a potential barotropic
flow.

We now turn to the derivation of the Euler equations.
We multiply both sides of Eqs. (11) by ρk , calculate the
gradient for the resulting equations, and then add the
mass balance equation multiplied by ∇ϕ k . Introducing
the flows jk = ρk∇ϕ k , we have after certain algebraic
transformations

(12)

Using auxiliary identities

and transforming (12), we arrive at the equation
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2
-----------------+ –Π

ρ2
2

2ρ2
--------w2,+=

∂ϕ2

∂t
---------

∇ϕ 2( )2

2
-----------------+ –Π

ρ1
2

2ρ2
--------w2.+=

∂J
∂t
------ ∇

j1
2

2ρ1
--------

j2
2

2ρ2
--------+ 

  ∇ρ 1

∂ϕ1

∂t
--------- ∇ρ 2

∂ϕ2

∂t
---------+

 
 
 

+ +

+
j1∇ j1⋅

ρ1
-----------------

j2∇ j2⋅
ρ2

-----------------
ρ1ρ2

ρ
-----------Qw–+ 

 

=  ∇ –ρΠ
ρ1ρ2

ρ
-----------w2

2
------+ 

  .

J2

2ρ
------

j1
2

2ρ1
--------

j2
2

2ρ2
--------

ρ1ρ2

2ρ
-----------w2,–+=

1
ρ
---J∇ J⋅

j1

ρ1
----- ∇ j1

j2

ρ2
----- ∇ j2⋅+⋅=

–
ρ1ρ2

ρ
-----------

∇ j1⋅
ρ1

-------------
∇ j2⋅

ρ2
-------------– 

  w,
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The transformation of the terms in braces with the
equation for velocity potential (11) and the first identity
taken into account yields

Further transformations of the terms in braces with
allowance for the velocity-potential equation (11), aux-
iliary identities, definitions of Q, velocity, and vorticity
yield

From the equation transformed

with due regard to Eqs. (5) and transformation (6), we
arrive at the Euler equation in the Lamb form:

∂J
∂t
------ ∇ J2

2ρ
------ 

  J2

2ρ
------ ∇ρ

ρ
-------–

1
ρ
---J∇ J⋅+ +

+ ∇ρ l

∂ϕ1

∂t
--------- ∇ρ 2

∂ϕ2

∂t
--------- J2

2ρ
------ ∇ρ

ρ
------- Π∇ρ+ + +

 
 
 

+
ρ1ρ2

ρ
-----------

∇ j1⋅
ρ1

-------------
∇ j2⋅

ρ2
-------------– Q– 

  w ρ∇Π .–=

∂J
∂t
------ ∇ J2

2ρ
------ 

  J2

2ρ
------ ∇ρ

ρ
-------–

1
ρ
---J∇ J⋅+ +

+ ρ
ρ1ρ2

ρ2
-----------

∂ϕ1

∂t
---------

∂ϕ2

∂t
---------– 

  ∇
ρ1

ρ2
-----ln





+
ρ1ρ2

ρ2
-----------

∇ j1⋅
ρ1

-------------
∇ j2⋅

ρ2
------------- Q–– 

  w




ρ∇Π .–=

ρ1ρ2

ρ2
----------- V w⋅( )∇

ρ1

ρ2
-----ln V ∇

ρ1

ρ2
-----wln⋅– 

 

=  V ∇ V.××

∂J
∂t
------ ∇ J2

2ρ
------ 

  J2

2ρ
------ ∇ρ

ρ
-------–+

– ρV ∇ V×× 1
ρ
---J∇+ J⋅ ρ∇Π–=

∂V
∂t
------- ∇ V V⋅

2
------------- 

  V ∇ V××–+ ∇Π ,–=
which is the final goal of the transformations.
4. In hydrodynamic problems, the nonlinear

Schrödinger equation appears in the case of using sim-
plified assumptions and special choices of variables
(see, e.g., [4,5]).

The generalization of the Madelung transforma-
tion considered in the present paper links the equa-
tions for a perfect liquid and the equivalent system of
equations (8) and (11) under the single assumption of
the barotropic nature of the flow. The proposed set of
variables have a uniform dimension. Thus, the real and
imaginary parts of ψk can be considered coordinates of
a surface in a four-dimensional Euclidean space.

It follows from (6) that for flows characterized by a
small Mach number M, the surface is close to a sphere
with curvature radius variations on the order of M2 .
This geometric interpretation of the solution could be
useful in analytical studies.

In the general case, the problem of conserving the
correlation between the zeroes of the function ψk and
the vortex axis in the three-dimensional vector field is
of particular interest. If this correlation also holds for
the suggested choice of variables, then we are able to
rigorously define the three-dimensional vortex as a cer-
tain structure (the definition of a vortex is, to a large
extent, intuitive in hydrodynamics). This definition
would be similar to that of a point vortex in the classical
two-dimensional hydrodynamics of perfect incom-
pressible liquids.
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In this paper, a theory of right-hand solutions to a
class of Lagrangian systems of the second kind with
discontinuous controls is developed. A method of unam-
biguously regularizing the controls on discontinuity sur-
faces is proposed. Conditions for the existence of the
solutions and their general properties are considered.

1. STATEMENT OF THE PROBLEM 

We consider a mechanical system with n degrees of
freedom which obeys the equations of motion

(1)

We use here conventional notation: q = (q1, …, qn)T,

 = ( , …, )T, and  = ( , …, )T are the vectors
of the generalized coordinates, velocities, and acceler-

ations, respectively; QA = ( , …, )
T
 and g = (g1, …,

gn)T are continuous vector functions describing the
forces acting upon the system (i.e., potential, drag, and
generalized gyroscopic forces, force of a moving space,

and others); and A(t, q) =  is the matrix
of the inertia coefficients that defines the quadratic
form of the generalized velocities entering into the
expression for the kinetic energy. The function u =
(u1, …, un)T specifies generalized control forces, and

the matrix B =  is nonsingular. The

functions aij(t, q) and bij(t, q, ) are assumed to be con-
tinuously differentiable with respect to the sets of their
arguments. Constraints taking the form

(2)

are imposed on the controls ui , where Hi = Hi(t, q, )
are continuous nonnegative functions. All the above-
mentioned conditions are assumed to be satisfied in a

A t q,( ) q̇̇ g t q q̇, ,( )= QA t q q̇, ,( ) B t q q̇, ,( )u.+ +

q̇ q̇1 q̇n q̇̇ q̇̇1 q̇̇n

Q1
A Qn

A

aij t q,( ) i j, 1=
n

bij t q q̇, ,( ) i j, 1=
n

q̇

ui Hi t q q̇, ,( )≤ , i 1 2 … n, , ,=

q̇
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certain variability domain Ω ⊂ R2n + 1 of the variables t,
q, and .

The structure of the controls ui is determined by the
following problem of synthesizing control systems for
mechanical systems on the basis of the decomposition
principle [1]. It is required to find such controls that
cause the motions of system (1) to attain (under certain
additional assumptions) a smooth manifold (i.e., the
goal set), which takes the form

(3)

A certain quadratic form

(4)

is chosen as the measure of deviation of motions from

set (3). Here, Cφ(t, q) =  is a positive def-
inite symmetric continuously differentiable matrix. The
control u is naturally determined from the condition of
the minimum for the derivative , with due regard for
system (1). This control has the form

(5)

under the condition χi ≠ 0, where χi = χi(t, q, ) are
continuously differentiable functions. The values of ui

for χi = 0 should be regularized. System (1) with con-
trols (5) represents a set of differential equations of the
second order with a discontinuous right-hand side.

In this paper, we will study right-hand solutions.
With allowance for inequalities (2), the controls ui are
unambiguously determined in the entire domain Ω , in
particular, at discontinuity points. The controls to be
found must be consistent with the conditions for the
initiation of the motions over the goal set S. In order for
the controls ui to be unambiguously regularized at
discontinuity points, we propose an implicit procedure
generalizing certain known methods, such as the method

q̇

S t q q̇, ,( ) Ω: φi t q q̇, ,( ) 0 i 1 2 … n, , ,=,=∈{ } .=

v φ
1
2
--- cij t q,( )φiφj

i j, 1=

n

∑=

cij t q,( ) i j, 1=
n

v̇ φ

ui Hi χ i, isgn– 1 2 … n, , ,= =

q̇
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of equivalent control [3] (see also [2]) and the method
of determining the Coulomb dry-friction forces at rela-
tive-rest points, which was described in [4] for systems
with friction. For the closed set of equations (1), we
prove that they are reduced to the explicit form

(6)

2. AN IMPLICIT METHOD 
FOR DETERMINATION OF GENERALIZED 
CONTROLS AT DISCONTINUITY POINTS 

We assume that the functions φi are continuously
differentiable. Then, we introduce the following nota-
tion: φ = (φ1, …, φn)T, Jt, φ is a column consisting of par-
tial derivatives of the functions φi with respect to t , and
Jq, φ and  are n × n matrices whose rows are gradi-
ents of the functions φi with respect to the variables qj

and , respectively. According to set (1), the derivative
 takes the form  = uTDTφ + F, where

Since F is independent of u, the minimum of the func-
tion  is ensured, with regard to constraints (2), by
controls (5) with the functions

(7)

If Cφ = A and φi =  – fi(t, q), with i = 1, 2, …, n, then
the control is given by

If, in addition, B = E, then ui = –Hi (  – fi(t, q)), i =
1, 2, …, n (see [1, 5]).

To regularize the controls at discontinuity points, we
now transform Eqs. (1). To do this, we assume that the
matrix  is continuously differentiable, with its

determinant being nonzero, and that the equality  =

DT  is valid, where  is the Jacobian of the func-

tions χi with respect to the variables . (The last equal-
ity is valid if the matrix DT is independent of .) Since
the matrix DT is nonsingular, the matrix  is also
nonsingular.

q̇̇ G t q q̇, ,( ).=

Jq̇ φ,

q̇ j

v̇ φ v̇ φ

F = φTCφ Jt φ, Jq φ,+ q̇ Jq̇ φ,+ A 1– g QA+( )[ ] 1
2
---φTĊφφ,+

DT BTA 1– Jq̇ φ,
T

Cφ.=

v̇ φ

χ DTφ χ1 … χn, ,( )T= = .

q̇i

ui Hi b ji q̇i f i– t q,( )( ), i
j 1=

n

∑sgn– 1 2 … n., , ,= =

sgn q̇i

Jq̇ φ,

Jq̇ χ,

Jq̇ φ, Jq̇ χ,

q̇ j

q̇
Jq̇ χ,
We define the vector functions  = (t, q, , ) and
R = R(t, q, ) and the matrix P = P(t, q, ) by the equa-
lities

Then, Eqs. (1) can be written out in the form

(8)

With regard to (5) and (2), we define the controls ui =
ui(t, q, , ) in the general form as

(9)

Here,

pij are the matrix elements of P, and Ri are the compo-
nents of vector R with i = 1, 2, …, n.

Input equation (1) and Eq. (8) with the function u
given by formulas (9) represent differential equations
unsolved with respect to the higher derivatives ,
which also enter into the right-hand side via the func-
tion u. Since the matrix  is nonsingular, the unam-

biguous solvability of Eqs. (8) with respect to  (serv-
ing as an independent variable) leads to the unambigu-
ous solvability of Eqs. (1) with respect to ; i.e., Eq. (1)
is reduced to form (6). In this case, the controls ui can
be completely and unambiguously determined at each
point (t, q, ) ∈ Ω ; hence they do not enter into the
function G.

We now consider right-hand solutions to set (1) with
controls (9) assuming that they exist. In so doing, we
treat  (i = 1, 2, …, n) as the right-hand derivatives of
the functions χi along these solutions and assume that
χi = 0 and |Qi| ≤ Hi for all i = 1, 2, …, n in a certain time
interval. In this case, Qi = –Ri and ui = –Ri; hence the
system moves along the intersection of the manifolds,

(10)

With regard to equality (7), this motion represents full
sliding over manifold (3) [i.e., the motion in the decom-
position regime described by the differential equations
φi(t, q, ) = 0, i = 1, 2, …, n]. In this case, the method
of equivalent control [3] is realized in system (1).

χ̇ χ̇ q̇ q̇̇
q̇ q̇

χ̇ Jt χ,= Jq χ, q̇ Jq̇ χ, q̇̇,+ +

P BT A 1– Jq̇ φ,
T CφJq̇ φ, A 1– B[ ]=

1–
,

R P Jt χ, Jq χ,+ q̇( ) B 1– g QA+( ).+=

Pχ̇ R u.+=

q̇ χ̇

ui

Hi– χ i, if χ i 0≠sgn

Qi, if χ i 0, Qi Hi≤=

Hi Qi, if χ isgn 0, Qi Hi.>=





=

Qi pijχ̇ j Ri,–
j 1 i j≠,=

n

∑=

q̇̇

J q̇ χ,

χ̇

q̇̇

q̇

χ̇ i

S̃i t q q̇, ,( ) Ω: χ i∈ 0={ }= , i 1 2 … n., , ,=

q̇
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In the course of the motion of systems under con-
strained controls (provided that transient processes
originate), either the inequality |Qi | ≤ Hi or |Qi | > Hi can

be satisfied on the surfaces , depending on the sub-
scripts i. Then, motion over the intersection of the sur-

faces  does not exist. In this case, formulas (9)
describe the control that causes the system to move on

the intersection of the surfaces  for which the ine-
qualities |Qi | ≤ Hi are satisfied (because  = 0) and to

leave the surfaces for which |Qi| > Hi (because  ≠ 0

and  =  for χi ≠ 0).

3. UNAMBIGUOUS SOLVABILITY
OF EQUATIONS (1) WITH RESPECT TO 

We introduce the variable z = (z1, …, zn)T, define the
function ui = ui(z) by equalities (9) with  = z, and
form the function u(z) = (u1, …, un)T. Let a point (t, q,

) ∈ Ω be fixed. Then, we consider a set of algebraic
equations with respect to z:

(11)

Theorem 1. The solution to Eqs. (11) exists and is
unique.

Corollary 1. Equations (1) with controls (9) are
unambiguously resolvable with respect to the general-
ized accelerations and can be reduced to form (6). 

Corollary 2. For Eqs. (1) of arbitrary goal set (3)
and arbitrary positive definite matrix Cφ of quadratic
form (4), there exist controls (9) that can be unambigu-
ously determined at each point (t, q, ) ∈ Ω . 

4. RIGHT-HAND SOLUTIONS

The absolutely continuous right-hand differentiable
function {q(t), (t)}, which satisfies the condition
D+ (t) = G(t, q(t), (t)) at each point t ∈  [t0, t1), is
referred to as a right-hand solution to Eqs. (1) in the
interval [t0, t1] with the initial conditions (t0) = 

and q(t0) = q0 , the function D+ (t) being continuous on
the right.

Theorem 2. For an arbitrary initial state, there
exists a local right-hand solution to Eqs. (1) with con-
trols ui determined by formulas (9).

In defining the right-hand uniqueness of the solutions
(at a point and in the domain Ω), we will follow [2]
(see p. 81).

Theorem 3. Let, in addition to the conditions of Sec-

tions 1 and 2, the functions gi, , and Hi (i = 1, 2, …, n)
be continuously differentiable. Then, the right-hand
uniqueness of the solutions to Eqs. (1) with controls (9)

S̃i

S̃i

S̃i

χ̇ i

χ̇ i

χ̇ isgn χ isgn

q̇̇

χ̇

q̇

Pz R u z( ).+=

q̇

q̇
q̇ q̇

q̇ q̇0

q̇

Qi
A
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takes place in the domain {(t, q, ) ∈ Ω : Hi(t, q, ) ≠ 0,
i = 1, 2, …, n}.

If Hi in Theorem 3 are constant quantities, then
right-hand uniqueness evidently takes place in the
entire domain Ω .

One of the known methods of solving Eqs. (1) with
constraints (5) imposed on the control u consists in con-
vex multiple-valued regularization of the right-hand
sides of these equations and the introduction of differ-
ential switching [2]:

(12)

where the set U = U(t, q, ) is defined by the equality

In this case, the absolutely continuous function {q(t),
(t)} with the measurable second derivative (t) that

obeys Eqs. (12) almost everywhere is treated as a solu-
tion to problem (1) (the Caratheodory solution). This
solution becomes nondifferentiable when attaining or
intersecting discontinuity surfaces for the functions ui .

Theorem 4. Differential switching (12) and Eqs. (1)
with controls (9) are equivalent in the sense of coinci-
dence of their Caratheodory solutions. Any Carathe-
odory solution to Eqs. (1) with controls (9) is a right-
hand solution.

As follows from Theorem 4, differential switching (12)
and Eqs. (1) with controls (9) are equivalent in the sense
that the sets of their right-hand solutions coincide.
However, it is the unambiguous regularization by for-
mulas (9) for the functions ui on the discontinuity sur-
faces alone that allows us to solve the problem of exist-
ence and uniqueness for the right-hand solutions.
Moreover, formulas (9) for Eqs. (1) necessarily follow
from the condition of existence for local right-hand
solutions to differential switching (12) for an arbitrary
initial state.

Theorems 2–4 allow properties of the right-hand
solutions to Eqs. (1) to be analyzed on the basis of the
theory of differential switchings, which has been well
developed recently. Known results of the theory of dif-
ferential switchings with an upper semicontinuous con-
vex right-hand side can be applied to Eqs. (1) [2].
Under the conditions of Theorem 3, the dependence of
solutions to differential switchings on the initial condi-
tions and on the right-hand sides that is semicontinuous
from above turns into a continuous dependence of the
right-hand solutions to Eqs. (1) on the same quantities.
If the sets of initial values are compact or connected,
then the theorems on the continuability of solutions
onto the right maximum domain of their existence and
the theorems on the compactness and connectedness of
both the set of right-hand solutions and the integral fun-
nel in the corresponding spaces are valid. In this case,
conventional properties of approximate solutions (the

q̇ q̇

A t q,( ) q̇̇ g t q q̇, ,( )∈ QA t q q̇, ,( ) B t q q̇, ,( )U ,+ +

q̇

U u Rn: ui∈ Hi χ isgn–= χ i 0;≠,{=

ui Hi χ i,≤ 0; i 1 2 … n } ., , ,∈=

q̇ q̇̇
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δ-solutions for which small variations of the boundaries
of the continuity domains, as well as small variations of
the right-hand sides of the equations in these domains,
are taken into account) and properties of trajectories
and ω-limiting sets for autonomous systems (see [2,
pp. 59–64 and pp. 94–101]) take place.

In addition, the right-hand solutions to Eqs. (1) have
specific properties that follow from the structure of
these equations and controls (9). To describe one of
them, we introduce the notation S0 = {t, q, ): φi = 0,
|Ri| < Hi , i = 1, 2, …, n} and assume that S0 ≠ ∅  and
S = S0 .

Statement 1. For an arbitrary compact subset K ⊂  S
and for an arbitrary τ > 0, there exists a β-neighbor-
hood Kβ of the set K such that the condition

(13)

is satisfied for each right-hand solution z(t) = (q(t),
(t)) to Eqs. (1) and for all t ≥ τ in the domain of defi-

nition of z(t). In this case, the numbers τ and β can be
chosen to be so small that the solutions stay in an arbi-
trary preassigned e-neighborhood of the set K during
the initial time interval [t0, t0 + τ).

Similar properties for mechanical systems with
Coulomb sliding friction were studied in [6].

If φi =  – fi(t, q), B = E, and Cφ = A, we have χ = φ,
P = A, Jt, χ = –Jt, f , Jq, χ = –Jq, f , and  = E. Under the
condition φi = 0 (i = 1, 2, …, n), the inequalities |Ri | <

q̇

t0 z t0( ),( ) Kβ∈ t z t( ),( )⇒ S∈

q̇

q̇i

Jq̇ χ,
Hi  defining the set S0 take the form

(14)

Under the right-hand continuation of the solution
z(t), the equality |Ri| = Hi can be valid at a certain t > τ
provided that S ≠ S0 . In this case (and only in this case),
the solution can leave the goal set S.
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∂q j
-------- f j
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INTRODUCTION

A boundary-value problem modeling the separation
of a boundary layer and its subsequent reattachment to
a surface bounding a flow is considered under increas-
ing pressure. It is proven that, outside a certain bounded
region adjacent to a wall in a fluid, the generalized solu-
tion to this problem is a classical positive solution to the
Prandtl–Mises system of boundary-layer equations.
Inside this region, local stagnation zones, the solution
to which is equal to zero, can form near the wall. It is
established that the alternation of suction with injection
represents a possible way of controlling the boundary
layer.

1. PRANDTL–MISES PROBLEM

The problem of extension of the Prandtl boundary
layer is considered in the region D = {0 < x < ∞,
0 < ψ < ∞} using the Mises variables [1, pp. 27, 28].
It has the form

(1)

(2)

where ν = const > 0 is the viscosity and U(x) is the
external-flow velocity related to the pressure p(x)
through the Bernoulli law,

It is assumed that

(a) ω0(ψ) ∈  C1[0, ∞) ∩ C2 + α(0, ∞), α ∈  (0, 1);
U2(x) ∈  C2[0, ∞);

ωx ν ωωψψ 2UUx, x ψ,( ) D,∈+=

ω x 0= ω0 ψ( ), ω ψ 0= 0,= =

ω x ψ,( )
ψ ∞→
lim U2 x( ),=

2 p x( ) U2 x( )+ const= 0.>
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(b) 0 < ω0(ψ) ≤ U2(0), (ψ) > 0; (ψ) ≤ 0 at

ψ > 0, ω0(0) = 0, (0) > 0, (ψ) = U2(0),

 = k;

(c) U(x) ≥ δ > 0, U'(x) < 0 at x > 0, 0 < –[U2(x)]' ≤
δ2[k1x + k2]–λ at x ≥ x1 , where k, δ, x1, ki > 0, and λ > 3
are certain constants;

(d) U'(0) = 0, (ψ) = 0(ψ) at ψ  0.

Due to the assumptions in (a)–(d), a smooth positive
solution ω(x, ψ) to problem (1), (2) exists in the region
{0 < x < A, 0 < ψ < ∞} at certain A [1].

Let A0 be the supremum of such A. If A0 < ∞, we
shall assume that separation of the boundary layer
occurs at the point x = A0 .

It is usually believed that separation of the boundary
layer arises at such a point where, being negative, the
gradient of external-flow velocity U'(x) reaches its
maximum in absolute value [2, p. 388; 3, p. 408].

This observation is consistent with the integral con-
dition [4] imposed on a value of |U' | and ensures bound-
ary-layer separation, including the case of a strictly
positive external-flow velocity U(x).

Boundary-layer separation from the surface of a
high-drag body is accompanied by the formation of an
extensive wake. Measurements of the pressure distribu-
tion along the surface bounding the flow show that, in
certain cases, the pressure is almost constant along the
separation area and practically coincides with its values
at the outer boundary of the detached boundary layer.
Under these conditions, near the surface bounding the
flow in the zone of boundary-layer separation, the pres-
sure is assumed to be constant and the fluid immovable
[3, pp. 424–426].

2. MODEL OF THE BOUNDARY LAYER
WITH SEPARATION

The following modified statement of the problem
described in [4] is proposed for modeling flows with

ω0' ω0''

ω0' ω0
ψ ∞→
lim

U2 0( ) ω0 ψ( )– ω0'' ψ( )+

ω0' ψ( )
-------------------------------------------------------------

ψ ∞→
lim

ω0 ψ( )ω0''
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boundary-layer separation and reattachment to
the wall:

(3)

(4)

where ϕ(x; ω) ≡ 2U(x)U'(x) at ω > 0, ϕ(x; 0) = 0.
Paper [4] presents the proof of existence of a nonne-

gative generalized solution to the boundary value prob-
lem (3), (4). This solution is bounded in the region D,
continuous in the sense of Hölder at (x, ψ) ∈   = {0 ≤
x < ∞, 0 ≤ ψ < ∞}, and satisfies both conditions (4) and
the integral identity

Here, f(x, ψ) ∈  C1( ) is an arbitrary function equal to
zero both at ψ = 0 and outside a finite region. Being
positive in the range 0 ≤ x < A0 , this solution is classical
for problem (1), (2).

The generalized solution to problem (3), (4) is con-
structed as the limit of a steadily decreasing (at ε  0)
sequence of positive solutions,

to the following regularized boundary value problems:

(5)

(6)

Here, {ω0ε(ψ)} ∈  C4[0, ∞) is the set of functions that
converge uniformly to ω0(ψ) (0 < ψ < ∞) as ε  0 and
have the properties (b), (d) of the initial profile ω0(ψ).

3. DOMAIN OF POSITIVENESS 
OF THE SOLUTIONS

Theorem 1. Under the assumptions in (a)–(d), a
solution ω(x, ψ) to problem (3), (4) is positive in

ωx ν ωωψψ ϕ x; ω( ),+=

ω x ψ,( ) 0, x ψ,( ) D,∈≥

ω x 0= ω0 ψ( ), ω ψ 0= 0,= =

ω x ψ,( )
ψ ∞→
lim U2 x( ),=

D

ω f x
8
9
---ν ∂ω3/4

∂ψ
------------ 

 
2

f– ν ωωψψ f ψ–

D

∫∫

---+ ϕ x; ω( ) f xd ψ ω0 ψ( ) f 0 ψ,( ) ψd

0

∞

∫+d 0.=

D

ωε ω x ψ ε, ,( ) C3 α+ Dε( ),∈=

Dε 0 x ∞<≤ 0, ψ 1
ε
---≤ ≤

 
 
 

,=

ωx ν ωωψψ 2UU '
ω ε–
ω ε+
-------------, x ψ,( ) Dε,∈+=

ω x 0= ω0ε ψ( ), ω ψ 0= ε,= =

ω ψ 1/ε= ω0
1
ε
--- 

  .=
a certain region

F(x) ∈  C[0, ∞), F(0) = F(x0) = 0, F(x) > 0 at x ∈  (0, x0),
F(x) ≡ 0 at x ≥ x0, where it represents the classical solu-
tion to the Prandtl–Mises equation (1).

Schematic proof. As a result of the change of vari-
ables

,

the regions GF and Dε ∩ GF turn into the regions P0 =

{0 < x < ∞, 0 < η < ∞} and Pε = 0 < x < ∞, 0 < η <  –

F(x) , respectively. In addition, solutions ω(x, ψ) and

ω(x, ψ, ε) to problems (3), (4) and (5), (6) turn into the
solutions w(x, η) ≡ ω(x, η + F) and wε = w(x, η, ε) ≡
ω(x, η + F, ε) of the following boundary-value prob-
lems:

(7)

(8)

(9)

(10)

We assume that F(x) = x(2M – x) at x ∈  [0, M],

F(x) = F1(x) = M2 – 1 – e–2(t – M))[β(t – M) + 1]–1dt at

x ∈  [M, x0], and F(x) ≡ 0 at x > x0 , where the point x0 is
determined by solving the equality F1(x0) = 0.

The function F(x) is continuous in [0, ∞) and doubly
continuously differentiable in both ranges [0, x0] and
[x0, ∞).

Further, we construct the barriers from below
σε(x, η) for solutions wε(x, η) of the boundary value
problems (9), (10) such that

(11)

where σ(x, η) > 0 at η > 0 and σ(x, 0) = 0.

GF 0 x ∞< < F x( ), ψ ∞< <{ } ,=

x x, η ψ F x( )–= =



 1

ε
---





L w( ) ν wwηη F ' x( )wη wx–+≡ 2UU ',–=

x η,( ) P;∈

w x 0= ω0 η( ), w η 0= ω x F x( ),( ),= =

w x η,( )
η ∞→
lim U2 x( );=

Lε w( ) ν wwηη F ' x( )wη wx– 2UU '
w ε–
w ε+
------------+ +≡  = 0,

x η,( ) Pε;∈

w x 0= ω0ε η( ), w η 0=≡ ω x F x( ) ε, ,( ),=

w η 1
ε
--- F–=

ω0
1
ε
--- 

  .=

(

M

x

∫

wε x η,( ) σε x η,( ) σε x η,( )
ε ∞→
lim>≥ σ x η,( ),=

x η,( ) Pε,∈
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Properties (11) are inherent in the functions

x ∈  , f(η) = a1η + a2η4/3 at η ≤ 1, a1 + a2 < 1,

f(1) ≤ f(η) < 1, |f '| + |f ''| ≤ a3, η ≥ 1, f '(η) > 0 at η ≥ 0,
f '(η)  0, f ''(η) → 0 at η  ∞,

According to the construction, the function Φ(x) ∈
C[0, ∞) and is continuously differentiable in the ranges

,  and , .

The constants ai and ε1 , as well as the function f(η),
are chosen so that the inequalities

(12)

are satisfied at the parabolic boundary Γε = x = 0,

0 ≤ η ≤ , η = 0, x ≥ 0, η =  – F, x ≥ 0  of the region

Pε  for ε ≤ ε1 ! 1. Such a choice of f(η) is possible due
to the constraints (b) on the function ω0ε(ψ) and the
estimate wε(x, η) ≥ ε [4, p. 1198].

In the regions H1 =  < x < , 0 < η <  – F ,

H2 =  < x < x0, 0 < η <  – F , and H3 =  <

x < ∞, 0 < η <  – F , the function z = wε(x, η) –

σε(x, η) satisfies the linear parabolic equation

(13)

σε x η,( ) Φ x( ) f η ε+( ),=

σ x η,( ) Φ x( ) f η( );=

Φ x( ) U2 x( ), x 0
M
2
-----, ;∈≡

Φ x( ) U2 M
2
----- 

  2β x
M
2
-----– 

  1+
2–

,≡

M
2
----- ∞,

f η( ) C2[0, ∞), f η( )
η ∞→
lim∈ 1,=

1 f η( )– f '' η( )+
f ' η( )

--------------------------------------------
η ∞→
lim a4.=

0
M
2
----- M

2
----- --∞



z x η ε, ,( ) wε x η,( ) σε x η,( )–( ) 0,≥=

x η,( ) Γε∈





1
ε
--- 1

ε
---





0-


 M

2
----- 1

ε
--- x( )





M
2
-----



 1

ε
--- x( )





x0-


1
ε
--- x( )





L0 z( ) ν wεzηη≡ F ' x( )zη zx– dz+ + Lε σε( ),–=
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For (x, η) ∈  H1 ∪  H2 ∪  H3, the inequality Lε(σε) > 0 is
made valid by the choice of the constants M, β, and ε1
(0 < ε ≤ ε1 ! 1).

As a result, with allowance for (12) and according to
the maximum principle applied successively in the
regions H1, H2, and H3 , solutions to Eq. (13) satisfy the
inequality

Since the functions wε(x, η) ∈  Cα' [0 ≤ x ≤ A, 0 ≤ η ≤
N] are compact for each N > 0 (0 < α' < α), similar ine-
qualities are satisfied for the limiting functions
w(x, η) ≡ ω(x, ψ) and σ(x, η) ≡ σ(x, ψ – F), so that
ω(x, ψ) ≥ σ(x, ψ – F) at (x, ψ) ∈  GF . Consequently, it
follows from Theorem 2.1 [4] that the function ω(x, ψ)
satisfying Eq. (3) and positive in GF likewise represents
the classical solution to Eq. (1).

4. EXISTENCE OF LOCAL STAGNATION ZONES

Theorem 2. The generalized solution ω(x, ψ) to
problem (3), (4) cannot have isolated zeros in the
region {0 < x < x0, 0 < ψ < F(x)}.

Schematic proof. First, the maximum principle is
used to establish the inequalities

(14)

for solutions ωε(x, ψ) of the boundary-value problems
(5), (6).

The assumption is that both ω(x1, ψ1) = 0 at
(x1, ψ1) ∈  D and ω(x1, ψ) ò 0 at ψ ∈  [0, ψ1] contradict
estimate (14). Consequently,

(15)

Therefore, according to the properties of the func-
tion ω(x, ψ) [2, item 3],

(16)

d ν
σεηη

wε σε+
-------------------------- 4UU'ε

wε ε+( ) σε ε+( )
---------------------------------------,+=

Lε σε( ) νΦ Φf f ''≡

+ F ' x( )Φ f ' Φx f– 2UU'
σε ε–
σε ε+
-------------- 0.>+

wε x η,( ) σε at x η,( ) Hk
k

∪∈≥ Pε.=

q
∂ωε

∂ψ
--------- 0, x ψ,( ) Dε∈≥=

ω x1 ψ,( ) 0 at ψ 0 ψ1,[ ] .∈≡

ω x ψ,( ) 0 at x x1 x1
ψ1 ψ–( )2

24νm
-----------------------+,∈ ,≡

ψ
ψ1

2
------ ψ1, .∈
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In particular, ω x,  ≡ 0 at x ∈  [x1, x3], x3 = x1 +

. Then, similarly to (15),

(17)

Relations (16) and (17) yield that

where ψ0 = {ψ1 – , x1 < x < x3}. Thus,
the region Q0 represents a local stagnation zone; i.e.,
the point (x1, ψ1) is not isolated.

CONTROL OF THE PRANDTL–MISES 
BOUNDARY LAYER

In the Mises variables, the flow in the boundary
layer that forms near a porous wall with suction
[v 0(x) < 0] or injection [v 0(x) > 0] through it is
described by the following boundary-value problem
[1, p. 29]:

(18)

(19)

The distribution of the velocity of fluid suction into
a porous wall [v 0(x) < 0] that prevents separation of the
boundary layer was constructed in [5]. On the other
hand, the boundary layer always separates from the
wall [6] when fluid injection occurs at any constant
velocity [v 0(x) ≡ ε = const > 0].

Theorem 3. Let assumptions (a)–(d) be satisfied

and, in addition, ω0(ψ) ≡ 0 at ψ ∈  [0, ψ0] ∪  , 

(ψ0 = const > 0).

Then, there is the function v0(x) ∈  C[0, ∞), which sat-
isfies the conditions v0(x) < 0 at x ∈  (0, x0), v0(x) > 0 at

x ∈  (x0, x1), v 0(x) ≡ 0 at x ∈  (x1, ∞), and (t)dt = 0,

such that boundary-value problem (18), (19) is solv-
able in the region D and its solution ω(x, ψ) > 0 at
ψ > 0.


 ψ1

2
------



ψ1
2

96νm
--------------

ω x ψ,( ) 0 at x x1 x3,[ ] , ψ 0
ψ1

2
------, .∈ ∈≡

ω x ψ,( ) 0 at x ψ,( ) Q0∈≡ x1 x3,( ) ψ0 ψ1,( ),×=

24νm x x1–( )

ωx = ν ωωψψ v 0 x( )ωψ– 2UUx, x ψ,( ) D,∈+

ω x 0= ω0 ψ( ), ω ψ 0= 0,= =

ω x ψ,( )
ψ ∞→
lim U2 x( ).=

1
ψ0
------ --∞



v 0

0

x
1

∫

Schematic proof. At v 0(x) ≡ −F '(x), problem (18),
(19) does not differ from the already considered prob-
lem (7), (8), where the conditions –F '(x) < 0 (at x ∈  [0,
M)) and F '(x) > 0 [at x ∈  (M, x0)] correspond to suction
and injection, respectively. This fact proves the state-
ment of Theorem 3 that problem (18), (19) is solvable
in the classical sense and its solution ω(x, ψ) has a
minorant σ(x, ψ): ω(x, ψ) ≥ σ(x, ψ) > 0 at ψ > 0 and
σ(x, 0) = 0.

Thus, the separation-free flow in the Prandtl–Mises
boundary layer can be realized by alternating a region
of fluid suction into the wall with that where the identi-
cal fluid mass is injected into the boundary layer.

Remark. According to lemmas 2.1.8–2.1.13 [1], the
solution ω(x, ψ) to problem (18), (19), which corre-
sponds to the function v 0(x) smoothed in the vicinity of
the points x = 0 and x = x0 so that v 0(x) ∈  C1[0, ∞) and
v 0(0) = 0, satisfies the inequalities

These inequalities justify the inverse substitution of
the Mises variables x, ψ by the original Eulerian coor-
dinates x, y [1, Theorem 2.1.5].
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L.A. Galin [1] gave a solution to the problem on the
elastoplastic state of a plate having a circular hole and
subjected to biaxial tension. At a later time, a number of
approximate analytic solutions to elastoplastic prob-
lems were obtained. In this paper we consider, using a
small-parameter method, the problem on the elasto-
plastic state of a plate having a circular hole and sub-
jected to biaxial tension in the presence of longitudinal
shears. Three approximations for the stresses are used
in this problem.

1. As an initial unperturbed state, we consider an
axisymmetric state of a thick-walled tube with internal
and external radii a and b (a < b), respectively. This tube
is acted upon by the internal and external pressures p
and q and, at the internal boundary, by the tangential
force τ. The tube material is assumed to be incom-
pressible.

Below, we relate all the quantities having dimen-
sions of stress to the yield strength k and all the quanti-
ties having dimensions of length to the radius ρs of the
plastic zone. We will use the following notation:

where σij are the components of the stress tensor; εij are
the components of strain rates; u, v , w are the compo-
nents of displacement rates along the axes ρ, θ, and z,
respectively; and k is the yield strength.

It is evident that everywhere

(1)

all other components of tensors of stress, strain rate,
and displacement velocities depend solely on ρ.

σij

σij

k
------, p

p
k
---, q

q
k
---, τ τ

k
--, G

G
k
----,= = = = =

εij

εij

ρs

-----= , u
u
ρs

-----= , v
v
ρs

-----,=

w
w
ρs

-----, α a
ρs

-----, β b
ρs

-----,= = =

τρθ
0  = τθz

0  = 0, ερθ
0  = εθz

0  = 0, v 0 = 0, εz
0 = 0;
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The equilibrium equations have the form

(2)

with the boundary conditions

(3)

and

(4)

In the plastic region adjacent to the internal surface
of the tube, the plasticity condition

(5)

is satisfied. The second equation of system (2), with ini-
tial conditions (3), yields

(6)

It follows from (5) and (6) that

(7)

Using the first equation of system (2) and relation-
ships (7) and (3), we obtain

(8)

dσρ
0

dρ
---------

σρ
0 σθ

0–
ρ

-----------------+ 0,
dτρz

0

dρ
----------

τρz
0

ρ
------+ 0,= =

σρ
0 p, τθz

0– τ for ρ α= = =

σρ
0 q for ρ β.= =

σρ
0 σz

0–( )2
4τρz

02+ 4, σθ
0 σ0= = 2

3
---+

τρz
0 ατ

ρ
------= .

σρ
0 p σz

0 p– 2
ρ2 α2τ2–

ρ
--------------------------,–=

σρ
0 p σθ

0 p–
σρ

0 p σz
0 p–

2
----------------------= 1.–

σρ
0 p ρ

α
---ln=

ρ ρ2 α2τ2–+

α 1 1 τ2–+( )
------------------------------------ln+

–
ρ2 α2τ2–

ρ
-------------------------- 1 τ2– p,–+

σθ
0 p ρ

α
--- ρ ρ2 α2τ2–+

α 1 1 τ2–+( )
------------------------------------ 1 1 τ2– p,–+ +ln+ln=
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In the elastic region (1 ≤ ρ ≤ β), according to
Hooke’s law

(9)

the incompressibility condition

, (10)

and the boundary condition (4), the following equations
are valid:

(11)

At the boundary of the elastoplastic zone of the
material, conjugation conditions are satisfied:

(12)

On account of (8), (11), and (12), we have

(13)

(14)

From (13), (8), and (7), we also obtain

(15)

For the plane with a circular hole, in formulas (15),
β = ∞.

2. We now turn to the consideration of the elasto-
plastic state of an infinite plate with a circular hole of
radius a. The problem is solved in the cylindrical frame
of coordinates (ρ, θ, z) with the z-axis perpendicular to
the plate plane. It is assumed that, on the (ρθ) plane, the
plate is stretched at infinity by mutually orthogonal
forces p1 and p2 (p1 > p2) and, in addition, the normal
pressure p and the tangential pressure τ, perpendicular
to this plane, act at the hole contour.

σz
0 p ρ

α
---ln=

ρ ρ2 α2τ2–+

α 1 1 τ2–+( )
------------------------------------ln+

+ ρ2 α2τ2–
ρ

-------------------------- 1 τ2– p.–+

σρ
0e σθ

0e– 2G ερ
0e εθ

0e–( ),=

ερ
0e εθ

0e+ 0=

σρ
0e 2GC1

1

β2
----- 1

ρ2
-----– 

 = q,+

σθ
0e 2GC1

1

β2
----- 1

ρ2
-----+ 

 = q,   where   C 1  = const.+

σρ
0e σρ

0 p, σθ
0e σθ

0 p for ρ 1.= = =

C1
t 1+
4G

-----------, t 1 α2τ2– ,= =

–2 αln 1 t+

1 1 τ2–+
---------------------------ln 1 τ2–+ +

+ 1 p– t 1+
2

-----------= 1

β2
----- 1+ 

  q.+

σρ
0e t 1+

2
----------- 1

β2
----- 1

ρ2
-----– 

 = q,+

σθ
0e t 1+

2
----------- 1

β2
----- 1

ρ2
-----+ 

 = q.+
 

In the elastic and plastic regions, the solution to the
problem is sought in the form

 

(16)

 

The boundary conditions at infinity are written as

 

(17)

 

where 

 

q

 

 = 

 

.

At the hole contour, we define the following condi-
tions:

 

(18)

 

Since the internal contour and external loads on it
are fixed in the problem at hand, we have

 (19) 

Let us define the components of the stressed state in
the elastic region. The boundary conditions (17) at
infinity take the form

 

(20)

(21)

(22)

 

Using the conditions of conjugation [2],

 

, (23)

 

and taking (1), (8), (15), and (19) into account, we
obtain

 

(24)

 

and

 

(25)

 

The boundary conditions (20) and (24) define,
according to [2], the solution in the elastic region:

 

(26)

σij σij
0= δσij' δ2σij'' δ3σij''', δ+ + +

p1 p2–
2

-----------------.=

σρ
e q δ 2θ,cos–= σθ

e q δ 2θ,cos+=

and   τ ρθ 
e δ 2 θ for ρ sin ∞ ,= =

p1 p2+
2

-----------------

σρ
p p, τρθ

p– 0 for ρ α .= = =

σij'
p

0= , σij''
p

0, σij'''
p

0.==

σρ'
e

2θ, τρθ'ecos– 2θ for ρsin ∞,= = =

σρ''
e

0, τρθ''e 0 for ρ ∞,= = =

σρ'''
e

0, τρθ'''e 0 for ρ ∞.= = =

σij'
∂σij

0

∂ρ
---------ρ1s+ 0 for ρ 1= =

σρ'
e τρθ'e 0 for ρ 1= = =

σθ'
e t 1+( )2

t
------------------ρ1s for ρ 1.==

σρ'
e

–1 4

ρ2
----- 3

ρ4
-----–+ 

  2θ,cos=

σθ'
e

1 3

ρ4
-----+ 

  2θ,cos=

τρθ'e 1 2

ρ2
----- 3

ρ4
-----–+ 

  2θ.sin=
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From (26) and (25) we have

(27)

In the second approximation, using the conjugation
conditions [2]

and formulas (1), (8), (15), (19), (26), and (27), we
obtain

(28)

(29)

The boundary conditions (21) and (28) define,
according to [2], the solution in the elastic region:

(30)

Then, from (30) and (29), we have

(31)

In the third approximation, the conjugation condi-
tions [2]

yield, on account of (1), (8), (15), (19), (26), (27), (30),

ρ1s
4t

t 1+( )2
------------------ 2θ.cos=

σij''
∂σij'

∂ρ
---------ρ1s

∂2σij
0

∂ρ2
-----------

ρ1s
2

2
-------

∂σij
0

∂ρ
---------ρ2s+ + + 0 for ρ 1= =

σρ''
e 4t

t 1+( )2
------------------ 1 4θcos+( ),–=

τρθ''e 16t

t 1+( )2
------------------ 4θ for ρsin– 1,= =

σθ''
e

8 2θ 5 3t–( )t
t 1+

--------------------cos
2

–

=  
t 1+( )2

t
------------------ρ2s for ρ 1.=

σρ''
e 4t

t 1+( )2
------------------ –

1

ρ2
----- 9

ρ4
----- 10

ρ6
------– 

 + 4θcos 
  ,=

σθ''
e 4t

t 1+( )2
------------------ 1

ρ2
----- 3

ρ4
----- 10

ρ6
------+– 

 + 4θcos 
  ,=

τρθ''e 8t

t 1+( )2
------------------ 3

ρ4
----- 5

ρ6
-----– 

  4θ.sin=

ρ2s
4t

2

t 1+( )4
------------------=

× 3t2 2t– 4–( ) 3t2 2t– 2+( ) 4θcos+( ).

σij'''
∂σij''

∂ρ
---------ρ1s

∂2σij'

∂ρ2
-----------

ρ1s
2

2
-------

∂3σij
0

∂ρ3
-----------

ρ1s
3

3!
-------+ + +

+
∂σij

0

∂ρ
---------ρ3s

∂σij'

∂ρ
---------ρ2s

∂2σij
0

∂ρ2
-----------ρ1sρ2s+ + 0 (for  ρ 1)==       
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and (31), the following expressions:

(32)

and

(33)

The boundary conditions (22) and (32) define,
according to [2], the solution in the elastic region:

(34)

σρ'''
e 8

t 1+( )4
------------------ 7t2 2t– 1+( ) 2θ -cos–=

+
51t2 2t– 1+

3
------------------------------ 6θcos ,

τρθ'''e 16t2

t 1+( )4
------------------ 3t2 2t– 2+( ) 2θsin[–=

+ 3t2 2t– 14+( ) 6θ ] for ρsin 1,=

σθ'''
e 16

t2 t 1+( )
4

--------------------- 18t5 2t4– 16t3– 14t2 6t– 3+ +
2

----------------------------------------------------------------------------–

× 2θcos

+
18t5 90t4 8t3 2t2 6t– 3+ + + +

6
-------------------------------------------------------------------------- 6θcos  = 

t 1+( )2

t
-----------------ρ3s.

σρ'''
e 16

t 1+( )4
------------------ 12– t4 8t3 t2– 2t– 1+ +

2ρ4
---------------------------------------------------------

=

+
t 1–( ) 6t3 2t2 t– 1+ +( )

ρ2
----------------------------------------------------------

 2θcos

+
24– t4 16t3 61t2– 2t– 1+ +

2ρ8
------------------------------------------------------------------



+
2 18t4 12t3– 33t2 2t 1–+ +( )

3ρ6
-----------------------------------------------------------------------

 6θcos ,

σθ'''
e 16

t 1+( )4
------------------ 12– t4 8t3 t2– 2t– 1+ +

2ρ4
--------------------------------------------------------- 

  2θcos–=

+
24– t4 16t3 61t2– 2t– 1+ +

2ρ8
------------------------------------------------------------------



+
18t4 12t3– 33t2 2t 1–+ +( )

3ρ6
--------------------------------------------------------------------

 6θcos ,

τρ'''
e 16

t 1+( )4
------------------ 12– t4 8t3 t2– 2t– 1+ +

2ρ4
---------------------------------------------------------

=

+
t 1–( ) 6t3 2t

2
t– 1+ +( )

ρ2
----------------------------------------------------------

 2θsin

+
24– t4 16t3 61t2– 2t– 1+ +

2ρ8
------------------------------------------------------------------


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From (33) and (34) we have

(35)

In the special case when longitudinal shears are

+
18t4 12t3– 33t2 2t 1–+ +( )

2ρ6
--------------------------------------------------------------------

 6θsin .

ρ3s
8

t t 1+( )6
--------------------=

× 12t
6

26t5– 3t4 18t
3

15t2– 6t 3–+ + +( ) 2θcos[

+ 12t
6

14t5– 9t4 2t
3

– t2– 2t 1–+ +( ) 6θ ] .cos
absent, t = 1 (τ = 0) and expressions (26)– (35) take a
form similar to that of the relationships obtained in [2].
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The fundamental studies of A.M. Lyapunov [1] and
N.E. Joukowski [2] initiated numerous, fundamental
investigations in the field of stability of motion and tra-
jectory stability, as well as in the application of these
theories to various problems of natural science and
technology. In the context of classical mechanics and
Newtonian celestial mechanics (NCM), fundamental
papers [3–5] and some others (see also review [6]) were
dedicated to problems of the stability theory in the
Lyapunov sense. At the same time, problems of the tra-
jectory-stability theory in the Joukowski sense were
studied in [7–11]. In the framework of relativistic celes-
tial mechanics (RCM), the problem of the stability of
motion in the Lyapunov sense was studied in [12, 13],
whereas the problem of the trajectory stability in the
Joukowski sense was not posed at all. Meanwhile,
RCM has its specific features (the absence of absolute
time and the Riemannian nature of the manifold). In
this context, the concept of trajectory stability in the
Joukowski sense more adequately characterizes the
inertia (or noncompliance) of a motion and its trajecto-
ries than the concept of motion stability in the
Lyapunov sense proposed in [12, 13]. The former con-
cept does not use synchronous correspondence in time
for points in its definition and is based on the corre-
spondence of a points in the normal. At the same time,
the latter concept is based on replacing the correspon-
dence in time by the correspondence in arc length for
unperturbed and perturbed trajectories.

In the present paper, the problem of the trajectory
stability in the Joukowski sense is posed in the frame-
work of RCM. A criterion for the stability of a geodetic
trajectory (geodetic) is also proved in the M4 Riemann
space-time with a metric whose tensor gαβ(x1, x2, x3, x4)
has the signature (+ – – –).

We now cite certain necessary information from the
general theory of relativity [14, 15]. The system of non-

Russian Open State Technical University 
of Railway Communication,
ul. Chasovaya 22/2, Moscow, 125808 Russia
1028-3358/01/4608- $21.00 © 20591
linear Einstein equations of the form

(1)

is the kernel of this theory. A material system character-
ized by an energy-momentum tensor Tαβ moves in an
M4 four-dimensional space-time with a metric ds2 =
gαβdxαdxβ. The invariant ds is referred to as the space-
time interval; gαβ and gαβ are covariant and contravari-
ant metric tensors, respectively; xα are the coordinates
of points in M4; γ is the Newtonian gravitational con-
stant; c is the speed of light in free space; and Λ is the
cosmological constant. The summation over repeated
indices α, β, … is assumed in the case when one of
them is upper and the other is lower. The indices α, β,
µ, ν, … take the values 0, 1, 2, 3. The tensors gαβ and

gαβ satisfy the condition gαµgβµ = , where  is the
Kronecker delta. The Ricci tensor Rαβ is provided by
the convolution of the Riemann–Christoffel curvature
tensor

(2)

over the indices µ and ν; i.e., Rαβ ≡ . The quanti-

ties  are referred to as second-kind Christoffel sym-
bols. They are equal to

(3)

The invariant R (scalar curvature of M4) is determined
by the formulas

(4)

System (1) is a system of ten nonlinear partial dif-
ferential equations of the second order in ten desired
functions gαβ(xν). A variation of the right-hand side of
(1) causes a change of the solution to the system. The
quantity Tαβ (the energy-momentum tensor of matter)
contains gαβ apart from physical quantities (masses,

Gαβ Rαβ≡ 1
2
---gαβR– gαβΛ– 8c 4– πγTαβ–=

δβ
α δβ

α

R.αβν
µ ∂Γαν

µ

∂xβ-----------
∂Γαβ

µ

∂xν----------- Γαν
σ Γβσ

µ Γαβ
σ Γνσ

µ–+–≡

R.αβµ
µ

Γαβ
µ

Γαβ
µ 1

2
---gµσ ∂gασ

∂xβ-----------
∂gβσ

∂xα-----------
∂gαβ

∂xσ-----------–+ 
 ≡ Γβα

µ .=

Rα
β gβσRασ , R Rα

α .≡≡
001 MAIK “Nauka/Interperiodica”
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charges, velocities, angular momenta and magnetic
moments of bodies, etc.). It is well known that Eq. (1)
is satisfied by four identities that express the fact that
the covariant divergence Gαβ of the Einstein tensor is

zero. This results in the validity of the equality  = 0,
where the semicolon implies the covariant partial deriv-
ative. The last equality leads to the energy-momentum
conservation laws for a material system and to equa-
tions of motion in any approximation. In particular,
from this equality, we can easily derive the exact equa-
tions of motion for a tentative particle in the external
gravitational field,

(5)

the equations of motion for a tentative charged particle,

(6)

and the equations of translational and rotational
motions for the rotating part,

(7)

(8)

In Eqs. (5)–(8), operator D is the absolute-differen-

tiation operator; uα ≡  are the components of the

particle’s 4-velocity; m and e0 are the particle’s mass
and charge; Sαβ = –Sβα is a tensor characterizing the

particle’s momentum;  are the Christoffel symbols;

 is the Riemann–Christoffel curvature tensor; and

 is the tensor of an electromagnetic field linked to
the four-vector Aα through the relation fαβ =
Aα; β − Aβ; α .

The absence of the usual parallelism for tensor fields
makes their comparison ambiguous. The reason for this
is that the comparison in M4 takes a meaning only once
the translation of a tensor from a point in which it is
determined by presetting the field to a point in which
we wish to compare it with a given tensor has been
specified. In the M4 manifold, this depends on both the
path and method of the translation (a parallel transla-
tion in the Levi-Civita sense, etc.) [7, 12].

Since the concept of stability is related to the notion
of point closeness in unperturbed and perturbed trajec-
tories, the correspondence between points in C and 
has to be established. It is well known that in the frame-
work of NCM, such a correspondence is established
owing to the presence of an external absolute parame-

T ;β
αβ

Duα

ds
---------- duα

ds
--------- Γβµ

α uβuµ+≡ 0;=

Duα

ds
----------

e0

mc2
---------uβ f β

.α
;=

D
ds
----- mcuα uβDSαβ

ds
------------+ 

  1
2
---R.βµν

α uβSµν+ 0,=

DSαβ

ds
------------ uµ uα DSβµ

ds
------------ uβDSαµ

ds
------------– 

 + 0.=

dxα

ds
---------

Γβµ
α

R.βµν
α

f β
.α

C

ter, i.e., time. Namely, points in the perturbed and
unperturbed trajectories are considered as correspond-
ing to each other if the same time (measured by a cer-
tain hypothetical absolute clock) corresponds to them.
Evidently, this definition of the correspondence is
meaningless in the framework of RCM, where time has
no sense of the absolute parameter. Therefore, we
establish the correspondence between points in C and

 based on the “correspondence in the normal”.
Definition 1. We say that points in unperturbed and

perturbed trajectories C and  are in orthogonal corre-
spondence (correspondence in the normal) if these
points are intersections of the indicated geodetics with
a surface Π orthogonal to the geodetic C.

It follows from Definition 1 that if P and  are arbi-

trary corresponding points in C and , respectively,

then point P is the closest in C to  ∈ .

In M4 , the tentative-particle trajectory (in the partic-
ular case of equilibrium) defines a world line whose
equation is determined by solving the differential equa-
tions

(9)

which satisfy certain initial conditions. Here, pα =

m  is the particle momentum, Fα is the force four-

vector, m is the tentative-particle mass, and  is the

operator of covariant differentiation along the line.

Definition 2. Let (s) and xα(s) be coordinates of
points  and P corresponding in the normal for the per-

turbed  and unperturbed C trajectories and (s) and

uα(s) be the four-velocity coordinates at the points 

and P, respectively. Let (s) also be a vector (s)
translated in parallel to its own direction from the point

 to point P. The unperturbed trajectory C is referred
to as

(i) stable in the Joukowski sense if, for every num-
ber ε > 0, a number δ(ε) > 0 can be found such that the
following inequalities are fulfilled:

if

(ii) unstable in the Joukowski sense if it is not stable
in the Joukowski sense;

(iii) asymptotically stable in the Joukowski sense if
it is stable in the Joukowski sense and, in addition,

C

C

P

C

P C

δ
δs
----- pα Eα ,=

dxα

ds
---------

δ
δs
-----

xα

P

C uα

P

uα uα

P

xα s( ) xα s( )– ε, uα s( ) uα s( )– ε s s0,>∀<<

xα s0( ) xα s0( )– δ, uα s0( ) uα s0( )– δ;<<
DOKLADY PHYSICS      Vol. 46      No. 8      2001



ON THE TRAJECTORY STABILITY IN THE JOUKOWSKI SENSE 593
  0,   0 for
s  +∞.

Definition 3. An unperturbed trajectory C is referred
to as stable in the Joukowski sense with respect to the
trajectory coordinates xα(s), four-velocity uα(s), and
spin Sα(s) if, for every number ε > 0, a number δ(ε) > 0

can be found such that  < ε,

 < ε, and  < ε ∀ s > s0 as

soon as  < δ,  < δ, and

 < δ. If, according to a given ε, it is not
always possible to find δ(ε) > 0 such that all indicated
conditions are satisfied, then the unperturbed motion is
referred to as unstable with respect to xα(s), uα(s),
and Sα(s).

Remark 1. For steady-state differential equations of
NCM, the normal correspondence of the trajectory
points and inequalities analogous to those of Definition 2
were used as a definition of the trajectory stability in the
Joukowski sense [11]. Therefore, Definition 2 is a gen-
eralization of the definition of the stability in the
Joukowski sense given in [11].

Remark 2. Definitions 2 and 3 relate to different
types of exact equations of motion for tentative bodies.
In particular, Definition 3 is concerned with the case
when there are also equations for the particle spin [12].

In the free-motion case, Eq. (9) determines a geo-
detic:

(10)

Here, s is the canonical parameter. Furthermore, we

study only geodetics. Let a direction  be given at a

point  ∈ M4 . Then, Eqs. (10) determine the unper-
turbed geodetic C. We assume that geodetic C is
uniquely determined by the solution to Eqs. (10), which
correspond to the initial conditions

(11)

We also assume that there exists a neighborhood K of
the geodetic C in which the theorem of uniqueness and
existence for the solutions to Eqs. (10) holds. Under the
conditions indicated, a change (as small as is wished) of
initial conditions (11) determines a new geodetic 
in M4 , which below is referred to as the perturbed
geodetic.

The concept of stability in the Joukowski sense is
associated with the notion of point closeness in unper-
turbed and perturbed geodetics, and, hence, it rests on
the notion of correspondence between points of the
geodetics C and . Let P be an arbitrary point in C and

 be a point corresponding to P in  for the case of

xα s( ) xα s( )– uα s( ) uα s( )–

xα s( ) xα s( )–

uα s( ) uα s( )– Sα s( ) Sα s( )–

xα s0( ) xα s0( )– uα s0( ) uα s0( )–

Sα s0( ) Sα s0( )–

δ
δs
-----uα 0.=

u0
α

x0
α

xα s0( ) x0
α , uα s0( ) u0

α .= =

C

C

P C
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orthogonal correspondence. We now connect P and 
by a geodetic. This geodetic is unique. Drawing a tan-
gent vector yα at a point P ∈ C, we can write out with
an accuracy to terms higher than the first order of small-
ness that

(12)

where xα(s) and (s) are coordinates of the corre-

sponding points in C and , respectively.
We elucidate the condition under which the geodet-

ics are determined by the functions xα(s) and (s). To
do this, we assume that the function yα is twice differ-
entiable along C. Then, we differentiate (12) twice with
respect to  and add to both sides of the result obtained
the expression

Here,  is the Riemannian connectedness in  and s

is the canonical parameter in . Since  is geodetic,
we have

(13)

where ρ = . We now expand  in the neighbor-

hood of C into a series:

. (14)

Substituting (14) into (13) and taking into account
that C is geodetic and s is its canonical parameter, we
obtain after simple transformations

(15)

where Fα are terms of a higher degree compared to the

first one in the quantities involved and  is the cur-
vature tensor for M4 calculated on the unperturbed geo-
detic C.

It is easy to see that the unperturbed geodetic C is
determined by the zero solution to Eq. (15).

Let  be a tensor obtained by translating uα to the
corresponding point P ∈ C along the geodetic connect-
ing these points. The difference

(16)

is referred to as the four-velocity perturbation. We also
assume that the orders of smallness for yα and zα are the
same.

For a special case of geodetics, Definition 2 of the
stability in the Joukowski sense is formulated as
follows.

P

xα s( ) xα s( )= yα s( ),+

xα

C

xα

s

Γστ
α uαuτ uα d

ds
----- ds

ds
-----.ln–

Γατ
α C

C C

ẏ̇ α Γστ
α uσuτ uαρ̇– u̇α+ + 0,=

ds
ds
-----ln Γστ

α

Γστ
.α

Γστ
α= ∂νΓστ

α yν …+ +

δ2

δs2
-------yα Rστ

α uα yτuµ ρ̇ uα yα+( ) Fα yα ẏα,( )+ + + 0,=

Rστµ
α

uα

zα uα= uα–



594 DRUZHININA
Definition 4. An unperturbed geodetic C is referred
to as ε in the Joukowski sense if, for every number
ε > 0, a number δ > 0 exists such that

(17a)

if, for s = s0,

(17b)

Otherwise, the unperturbed geodetic C is referred to as
unstable in the Joukowski sense.

Definition 4 is an analog of the stability definition
(in the Lyapunov sense) for the zero solution to
Eqs. (15) if the translation is such that a system of first-
order differential equations in yα and zα arises. By vir-
tue of the uniqueness, independent of the translation,
the zero initial conditions correspond to the zero solu-
tion yα = 0 to system (15) and, consequently, zα = 0. It
is worth noting that the definition of stability is the
same in the case when unperturbed and perturbed geo-
detics determine world lines.

We assume that  is obtained by the Levi-Civita

translation [14] of the vector uα from  ∈  to the cor-
responding point P ∈ C along the geodetic connecting
P with . Then, from δuα = 0, with an accuracy to
terms of the first-order of smallness, it follows that

(18)

From (10) and (18), we have

(19)

Relations (10) and (19) are found with an accuracy
to the first-order terms of smallness with respect to a
perturbation provided that yα is a vector field along
geodetic C. However, these relations can be considered
as a substitution of variables, which helps to reduce the
order for a system of equations from the second to the
first one.

The following theorem holds.
Theorem 1. Let the quantity zα be a vector; i.e., it is

determined by an invariant translation. Then, the
notion of the stability in the Joukowski sense (Defini-
tion 2) is invariant with respect to coordinate transfor-
mations that satisfy the inequality

(20)

Proof. We show that the orbit ë is stable in the
Joukowski sense in the new coordinate system if ine-
quality (20) is satisfied. Since zα is a vector, we find that
in the new coordinate system,

(21)

yα ε, zα ε s s0,>∀<<

y0
α δ, z0

α δ.<<

uα

P C

P

uα s( ) uα s( )= Γστ
α yσuτ .–

zα δ
δs
-----yα .=

∂xα '

∂xα--------- L.<

yα ' ∂xα '

∂xα--------- yα , zα ' ∂xα '

∂xα--------- zα .= =
Passing to absolute values in (21), we arrive at the
following estimates:

From the property of stability for the unperturbed
trajectory C and from inequality (20), it follows that
|yα' | < 4Lε and |zα' | < 4Lε ∀ s > s0 if, for s = s0 , the ine-

qualities  < 4Lδ and  < 4Lδ are true.

In the initial coordinate system, by virtue of the
C-geodetic stability for a given ε > 0, there exists δ1 > 0

such that |yα| < εL–1, |zα| < εL–1 ∀ s > s0 if, for s = s0 ,

the following inequalities are valid:  < δ1 and

 < δ1 .

We now denote δ2 = 4Lδ1 . Then, for a given number
ε > 0, a number δ2 > 0 can always be found such that
|yα' | < ε and |zα | < ε ∀ s > s0 if, for s = s0, the following

inequalities are fulfilled:  < δ2 and  < δ2.

Therefore, the unperturbed geodetic C is stable in
the Joukowski sense in the new coordinate system.
Thus, the theorem is proved.

Let us call the indicator the norm of the vector
gαβuαuβ. In this case, the following theorem holds.

Theorem 2. For geodetic C to be stable in the
Joukowski sense with respect to the quantities zα and

 in the M4 Riemann manifold, it is necessary and suf-
ficient that geodetic C be stable in the Joukowski sense
with respect to perturbations that conserve the indica-
tor sign of the normal vector.

The proof of the theorem is based on the fact that,
for an unperturbed geodetic, the normal-vector indica-

tor is determined by the formula  = π + ∆(yα, ),
where π is the unperturbed-geodetic indicator.
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Relations determining the field of displacement
velocities in a perfectly plastic body in the state of full
plasticity under the Tresca–Saint-Venant condition
were considered in papers [1, 2].

This paper presents formulas for displacement
velocities in the case of a general plane problem of per-
fect plasticity [3], when a vector of displacement veloc-
ity depends on the coordinates x and y. If the longitudi-
nal displacement velocity w directed along the z-axis is
equal to zero, there are known relations for the plane
strain [4].

The problem under consideration concerns die
indentation into a perfectly plastic half-space with non-
zero longitudinal velocity.

1. Taking the tensile–compressive yield stress of the
perfectly plastic body as a unit of stress, we write the
condition of full plasticity in the space of the principal
stresses as

(1.1)

Components of the stress tensor that satisfy condi-
tion (1.1) can be expressed in terms of both the average
stress σ and the functions θ and ϕ in the form

(1.2)

σ1 σ2, σ3 σ1= = 1.+

σx σ 1
3
---

1
2
--- 1 θcos+( ) ϕ ,cos

2
+–=

σy σ 1
3
---

1
2
--- 1 θcos+( ) ϕ ,sin

2
+–=

σz σ 1
3
---–

1
2
--- 1 θcos–( ),+=

σ 1
3
--- σx σy σz+ +( ),=
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Direction cosines of the principal stress σ3 with respect
to the x-, y-, and z-axes of coordinates are determined
by the angles θ and ϕ as

(1.3)

In the case of a general plane problem, the quantities
σ, θ, and ϕ, as well as the components u, v , and w of the
displacement-velocity vector, do not depend on the
coordinate z. Substituting the expressions for stresses
(1.2) into the equilibrium equations leads to quasilinear
differential hyperbolic-type equations for the functions
σ, θ, and ϕ with the three characteristic curves α, β, and
γ, as well as to the differential relations

(1.4)

(1.5)

(1.6)

(1.7)

The field of displacement velocities must satisfy the
conditions of incompressibility,

, (1.8)

and isotropy [1, 2], where, with the use of relations (1.3)
for the direction cosines, the latter condition can be

τ xy
1
2
--- 1 θcos+( ) ϕsin ϕ ,cos=

τ xz
1
2
--- θ ϕcos , τ yzsin

1
2
--- θ ϕ.sinsin= =

n1 = 
θ
2
--- ϕ , n2coscos  = 

θ
2
--- ϕ , n3sincos  = 

θ
2
---.sin

dy
dx
------ 

 
β α,

ϕ π
4
--- µ+ 

 ± , 2µtantan
1 θcos–

2 θcos
--------------------,= =

dσ 1 θcos+

2 θcos
--------------------- 

  dϕ± 0 along β and α ,=

dy
dx
------ 

 
γ

ϕ ,tan=

2 θsin
1 θcos+
--------------------- 

  dσ θ 2ϕdϕ dθ+sinsin+ 0=

along   γ .

∂u
∂x
------ ∂v

∂y
-------+ 0=
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written in the form of the equations

(1.9)

(1.10)

The system of equations (1.8)–(1.10) in the
unknown displacement velocities u, v , and w is of the
hyperbolic type and has the three characteristic curves
from (1.4) and (1.6). Differential relations for du, dv,

2∂u
∂x
------ ∂u

∂y
------ ∂v

∂x
-------+ 

  n2

n1
-----

n1

n2
-----– 

 +

– 2∂v
∂y
-------

∂w
∂x
-------

n3

n1
-----+

∂w
∂y
-------

n3

n2
-----– 0,=

2∂u
∂x
------ ∂u

∂y
------ ∂v

∂x
-------+ 

  n2

n1
-----+

+
∂w
∂x
-------

n3

n1
-----

n1

n3
-----– 

  ∂w
∂y
-------

n2

n3
-----– 0.=
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and dw, which are valid along the characteristic curves,
are derived by using the characteristic determinant of
the system. These relations are

(1.11)

(1.12)

For the characteristic curves α and β, which are
determined by the differential equations (1.4), formu-
las (1.3) for the direction cosines n1, n2, and n3 allow
function (1.12) to be expressed in terms of the angles θ
and ϕ as

du
dy
dx
------ 

 
α β γ, ,

+ dv f α β γ, ,– dw 0,=

f α β γ, ,
n3 1 2n3

2–( )

n1 1 2n1
2–( ) n2 1 2n2

2–( ) dx
dy
------ 

 
α β γ, ,

+

------------------------------------------------------------------------------------= .
(1.13)f α β,

θ
2
--- θcostan

ϕ 1 1 θcos+( )– ϕcos
2( )cos ϕ 1 1 θcos+( ) ϕsin

2
–( ) dx

dy
------ 

 
α β,

sin+

--------------------------------------------------------------------------------------------------------------------------------------------------------------.=
                 
For the characteristic curve γ, using Eqs. (1.3), (1.6),
and (1.12) turns the differential relation (1.11) into

(1.14)

At θ = 0, Eqs. (1.4) and (1.5) determine the orthog-
onal characteristic curves of plane strain and Hencky’s
relations for the stress field. In the case of plane strain,
the longitudinal flow velocity w = 0 and the differential
relations (1.11) for the displacement velocities u and v
express the condition of characteristic-curve orthogo-
nality in the physical (x, y) and hodograph (u, v) planes
according to Geiringer’s equations.

The condition 0 < θ <  corresponds to the general

plane strain when the characteristic curves α and β (1.4)
are not orthogonal and have the characteristic curve
γ (1.6) as a bisector of the angle between them.

For the general plane strain, the problem of con-
structing fields of stresses and displacement velocities
is statically determinate. First, Eqs. (1.4)–(1.7) should
be used to determine the fields of characteristic curves
and stresses at specified boundary conditions for the
functions σ, θ, and ϕ. Then, once the functions θ and ϕ
used in the differential relations (1.11)–(1.14) are
already known, the field of displacement velocities can
be constructed at specified kinematic boundary condi-
tions.

In the plastic region, the rate of energy dissipation
must be positive so that

(1.15)

θ du ϕcos dv ϕsin+( )tan dw– 0 along γ.=

π
2
---

D σ1ε1= σ2ε2 σ3ε3 0,≥+ +
                         

where ε1, ε2, and ε3 are the principal strain rates. Under
the condition of full plasticity (1.1), inequality (1.15)
takes the form ε3 > 0. In the case of calculating dis-
placement velocities, this inequality is convenient for
check along the characteristic curve γ. Under the
assumption that ϕ = 0 in (1.3), the relation for ε3 takes
the form

(1.16)

where v γ is the projection of the velocities u and v  onto
the direction of the characteristic curve γ. The associ-
ated plastic-flow rule for edge (1.1) of the Tresca prism
leads to the following inequalities for the other two
principal strain rates [4]:

(1.17)

2. We now consider the problem of flat-die indenta-
tion into the rigid-plastic half-space (Fig. 1). If the die
length in the longitudinal direction (along the z-axis)
exceeds considerably its width in the transverse direc-
tion (along the x-axis), indentation and longitudinal slip
of the rough die are accompanied by the onset of plastic
general plane-strain flow in the cross sections z = const.
The die width and the magnitude of velocity of its
translational oblique (to the normal to the half-space
boundary) motion are taken as scales of length and
velocity, respectively.

The direction of the die velocity is defined by the
angles λ and ψ, which determine the velocities of die

ε3
θ
2
---

dv γ

ds
--------- θ

2
---cos

dw
ds
------- θ

2
---sin+ 

  ,cos=

ε1 0, ε2 0.≤≤
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indentation along the y-axis and of die slip along the x-
and z-axes as follows:

(2.1)

If the die velocities u0 and w0 exceed the plastic-flow
velocities u and w at the boundary of the contact, posi-
tive shear stresses τxy and τyz are applied to the plastic
half-space there. Specifying the angles θ* and ϕ* as
parameters in the boundary conditions for the trans-
verse and longitudinal contact frictions, we calculate
these stresses using formulas (1.2). The angle θ* varies

in the interval 0 ≤ θ* < , while the range of the angle

ϕ* depends on θ* as

(2.2)

The upper value of ϕ* is determined by the degen-
eration of the characteristic-curve field into a line tan-
gential to the die boundary, while its lower value corre-
sponds to the case when, at large values of θ*, the angle
between the directions of characteristic curves α and β
approaches the critical value π. Since the die width is
equal to unity, the constant contact shear stresses τxy

and τyz calculated using formulas (1.2) are equal to
shearing forces directed along the x- and z-axes so that

(2.3)

The indentation force Py applied to the die is deter-
mined after calculating the normal contact stresses in
the plastic region situated at the boundary OA.

At the half-space boundary AC, which is free from
applied stresses, the normal stresses satisfying the con-
dition of full plasticity (1.1) are σx = σz = –1 and σy = 0.

v 0 λ , u0cos– λ ψ ,cossin= =

w0 λsin ψ, 0 λ ψ π
2
---.≤,≤sin=

π
2
---

cµ ϕ* π
4
--- µ,+<≤

µ 1
2
--- 1 θ*cos–

2 θ*cos
------------------------ 

  , 0 c 1.≤ ≤arctan=

Px
1
2
--- 1 θ*cos+( ) ϕ* ϕ*,cossin=

Pz
1
2
--- θ* ϕ*.sinsin=

2.074

z

O
y A C

B

D

x

α

γ

2.084

β

β

α

α

γ

γ

–σy

β

Fig. 1. 
As a result, Eqs. (1.2) yield the following values of the
functions σ, ϕ, and θ at this boundary:

(2.4)

At θ = 0, the characteristic curves (1.4) are straight lines

 = ±1  and the uniform stressed state (2.4) of

plane strain exists in the region ABC.
At the singular point A, variation in the average

stress, which is associated with a transition from the
free boundary AC to the die boundary OA, is calculated
by integrating Eq. (1.5) along the degenerate character-
istic α. As a result,

(2.5)

A similar integral calculated along the degenerate
characteristic curve β is used to test the bearing capac-
ity of a rigid wedge with its vertex at point O.

The boundary conditions (2.2)–(2.5) allow the
determination of the characteristic-curve and stress
fields in the plastic region through numerical integra-
tion of the differential relations (1.4)–(1.7). These con-
ditions also make possible the calculation of the rigid-
plastic boundary ODBC at which, according to the
kinematic boundary condition, the velocity component
normal to the boundary must be continuous. This con-
dition has the form

(2.6)

where ξ is the inclination of the characteristic curve α
to the x-axis. At the die boundary with the plastic
region, the normal velocity component v  is continuous
and equal to the vertical die velocity so that

(2.7)

At point O of the die contact with the rigid region, the
velocity component tangential to the characteristic
curve α exhibits a jump described by the relation

(2.8)

Here, the angle ξ*, determined by both the second
equation (2.6) and the boundary conditions of contact
friction (2.2), is calculated from condition (2.7) and, due
to the homogeneity of the differential relations (1.11) for
the velocities, remains constant along the rigid-plastic
boundary. The longitudinal velocity w is tangential to
the rigid-plastic boundary directed along the z-axis and
satisfies condition (2.6). When the die slips in the direc-
tion of the z-axis, along the half-space boundary, the
velocity w is assumed to be continuous at the rigid-plas-
tic boundary. Relations (2.6) and (2.8) are used to find

σ 2
3
---, ϕ–

π
2
---, θ 0 at AC.= = =


 dy

dx
------ 

 
α β, 



σ 2
3
---–=

1 θcos+

2 θcos
--------------------- ϕ .d

π/2

ϕ

∫+

u ξsin v ξcos+ 0, ξ ϕ π
4
--- µ,––= =

v v 0 λ .cos–= =

v[ ] α –
λcos

ξ*sin
--------------.=
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plastic-region velocities at the rigid-plastic boundary
ODBC:

(2.9)

Thus, having calculated the characteristic-curve and
stress fields, we determine the boundary conditions for
velocities (2.9) at the rigid-plastic boundary. Together
with condition (2.7) specified at the die boundary, they
allow calculation of the velocity field in the plastic
region through integration of the differential relations
(1.11)–(1.14) for displacement velocities.

In the case of plane strain [θ ≡ 0 and ψ = 0 in kine-
matic condition (2.1)], it is possible to obtain a simple
exact analytic solution to the problem by using
Hencky’s and Geiringer’s equations. Below, we discuss
a numerical solution to the equations of the general
plane strain, which, as θ  0 and ψ  0, turns into
the exact solution to the plane-strain problem.

3. The characteristic-curve and stress fields are calcu-
lated by integrating the differential relations (1.7)–(1.14)
for the functions σ, ϕ, and θ with the boundary condi-
tions (2.2)–(2.5). At regular nodes of the mesh of the
characteristic curves, which do not belong to the singu-
lar point A and the die boundary OA, we solve the ele-
mentary Cauchy problem for the functions σ, ϕ, and θ
known at points 1 and 2 of the Cauchy contour (Fig. 2).
To find the solution, the functions ϕ and θ are approxi-
mated by their average values calculated along the
characteristic curves and the differentials entering
Eqs. (1.3)–(1.6) are substituted by the finite differ-
ences. The coordinates x, y of point P satisfy three dif-
ferential equations of the characteristic curves, which,
in the case of the finite-difference approximation, have
the form

(3.1)

(3.2)

(3.3)

Unknown coordinates of point 3 are found as the coor-
dinates of intersection of the characteristic curve γ with
the Cauchy contour, which is approximated by the
chord connecting points 1 and 2, and, therefore, satisfy
the equation

(3.4)

When the coordinates of point 3 are known, the values
of the functions σ, ϕ, and θ at this point are calculated
by linearly interpolating these functions between
points 1 and 2.

u v[ ] α ξ , vcos v[ ] α ξ , wsin 0.= = =

y y1–
x x1–
------------- ϕ π

4
--- µ+ 

 – in α ,tan=

y y2–
x x2–
------------- ϕ π

4
--- µ+ 

 + in β,tan=

y y3–
x x3–
------------- ϕ in γ.tan=

y3 y1–
x3 x1–
---------------

y2 y1–
x2 x1–
---------------.=
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The differential relations along the characteristic
curves are written in the form

(3.5)

(3.6)

(3.7)

where σ1, σ2, and σ3 represent the values of σ at
points 1, 2, and 3.

Equations (3.1)–(3.7) in the unknowns presented
through the coordinates of point P, the functions σ, ϕ,
and θ there, and the coordinates of point 3 are solved by
simple iterations. Known values of the angles ϕ and θ
at points 1 and 2 are used to calculate x and y from
Eqs. (3.1) and (3.2). The values of σ and ϕ at point P
are then determined from Eqs. (3.5) and (3.6). Coordi-
nates of point 3 are calculated from Eqs. (3.3) and (3.4),
while values of σ, ϕ, and θ occurring there are found
through linear interpolation between points 1 and 2.
Equation (3.7) is used to calculate θ at point P. The cal-
culations are repeated with the use of average values of
the angles ϕ and θ along the characteristic curves con-
necting points 1–P, 2–P, and 3–P. Absolute differences
of successive values of ϕ and θ calculated at point P
reach the order of magnitude of 10–5 after two–three iter-
ations performed almost instantly on a Pentium-133.

In the region ABD (Fig. 1), the field of the character-
istic curves is determined by solving the Goursat prob-
lem, where the functions σ, ϕ, and θ are known in the
β-type characteristic curve AB and at the singular point A,
while the regular nodes of the mesh formed by the char-
acteristic curves are calculated using Eqs. (3.1)–(3.7).
Then, in the region OAD, we solve the mixed problem
with the functions σ, ϕ, and θ known in the β-type char-
acteristic curve AD and with boundary conditions spec-
ified at OA. Since ϕ and θ at OA are specified by bound-
ary conditions (2.2), the coordinates x and values of σ

σ σ1–
1 θcos+

2 θcos
--------------------- 

  ϕ ϕ 1–( ) in α ,=

σ σ2–
1 θcos+

2 θcos
--------------------- 

  ϕ ϕ 1–( ) in β,–=

θ3 θ–
2 θsin

1 θcos+
--------------------- 

  σ σ3–( )=

+ θ 2ϕ ϕ ϕ 3–( ) in γ,sinsin

β γ

α
P

1

2

3

Fig. 2. 
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at the nodes situated there are calculated using the lin-
ear equations (3.1) and (3.5).

In the region OABD, the field of the characteristic
curves is determined accurate to an unknown length L
of the characteristic curve AB. This length is calculated
from the condition that the coordinate x0 of point O is
equal to zero. An algorithm for constructing the field of
the characteristic curves determines x0 as a continuous
function of the parameters L, which satisfies the con-
dition

(3.8)

Equation (3.8) is solved using the iterative Newton
method, where the derivative is approximated by a
finite-difference ratio and the plane-strain length L of
the boundary AC is taken as the initial approximation. In
two–three steps, the iterative Newton process makes
solutions to Eq. (3.8) to be accurate to the order of 10–6.
For a pair of values ϕ* and θ* specified at boundary
OA, the calculation of characteristic-curve and stress
fields takes about 1 s on a Pentium-133. This fact
reveals the high efficiency of the numerical algorithms
for solving the hyperbolic problems of perfect-plastic-
ity theory [5].

For the shearing forces Px = 0.269 and Pz = 0.159,
Fig. 1 shows the field of the characteristic curves and
the normal stress distribution along the die boundary
calculated at θ* = 1 and ϕ* = 0.388. Being almost con-
stant, the pressure applied to the die increases slightly
near the singular point A. The indentation force Py =
2.075. When the magnitude of the contact shearing

force Pxz =  approaches its limiting value ,

the characteristic-curve field degenerates into a line that

coincides with the die boundary. The case ϕ =  and

θ   corresponds to longitudinal die shear along

x0 L( ) 0.=

Px
2 Py

2+
1
2
---

π
2
---

π
2
---

v

v0

0
u

O

A

C, B

D

π/4

[v]α

A u0

Fig. 3. 
the z-axis at Px = 0 and Pz = . Then, according to

Eqs. (2.5) and (1.2), σ = , σy = , and σz = .

This is the case of pure shear at the minimum pressure
applied to the die, for which

(3.9)

Thus, variation in the shearing forces changes the
limiting pressure applied to the die from its maximum

value 1 + , which corresponds to a smooth Prandtl

die, to the minimum value , which corresponds to the

pure longitudinal shear of an absolutely rough die.
The calculated field of the characteristic curves

determines the kinematic boundary conditions (2.9) at
the rigid-plastic boundary ODBC (Fig. 1). Together
with the boundary condition (2.7) specified at the die
boundary, these conditions allow construction of the
field of displacement velocities through solving both
the mixed problem for Eqs. (1.11)–(1.14) in the region
OAD and the Goursat problem in the region ADB.
According to the calculations, θ = 0 both at boundary
AB and in the region ABC, fα, β = 0 in (1.13) and equa-
tions (1.11) turn into Geiringer’s equations. The veloc-
ities u and v  occurring in the region ABC are constant
along the characteristic curves α, while the velocities w
do not vary along the characteristic curves γ according
to Eq. (1.14) at θ = 0.

The elementary Cauchy problem for Eqs. (1.11) and
(1.14) approximated using finite differences leads to
the following system of linear equations in the veloci-
ties u, v , and w:

(3.10)

(3.11)

(3.12)

where the unknowns are calculated at the regular nodes
P of the mesh formed by the characteristic curves
(Fig. 2) and the velocities used in the calculations are
specified on the Cauchy contour 1–3–2.

Coefficients of the system of equations (3.10)–(3.12)
are calculated with the use of the angles θ and ϕ aver-
aged along the characteristic curves 1–P, 2–P, and 3–P,
which are known as a result of solving the system of
equations (3.1)–(3.7). At the mesh nodes formed by the
characteristic curves at the die boundary, the velocity v
is specified by boundary condition (2.7), while the

1
2
---

2
3
---– 1

2
---– 1

2
---–

Py
1
2
---= , Px 0, Pz

1
2
--- at ϕ θ π

2
---.= = = =

π
2
---

1
2
---

u u1–( ) v v 1–( ) dy
dx
------ 

 
α

w w1–( ) f α–+ 0,=

u u2–( ) v v 2–( ) dy
dx
------ 

 
β

w w2–( ) f β–+ 0,=

θ u u3–( ) ϕcos(tan

+ v v 3–( ) ϕ ) w w3–( )–sin 0.=
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velocities u and w there are found by using Eqs. (3.11)
and (3.12) to solve the mixed problem for the velo-
cities.

Figure 3 presents the field of the displacement
velocities u, v  in the hodograph plane. It corresponds to
the characteristic-curve field shown in Fig. 1 and to the
oblique die indentation with velocities u0 = 0.833, v 0 =
–0.315, and w0 = 0.455. In contrast to the plane strain,
the longitudinal shear is accompanied by a nonuniform
velocity distribution in the region OAD situated under
the die and along the characteristic curves β, which
converge to the singular point A in the region of the cen-
tered fan ABD. In the region of the uniform stressed state
ABC, the velocity field turns out to be nonuniform with
the velocities u and v  decreasing along boundary AC.

For the characteristic-curve field plotted in Fig. 1,
Fig. 4 shows the distribution of the longitudinal veloc-
ity w as an isometric projection of the surface w(x, y).
The velocity w is positive and increases in the direc-
tions from the rigid-plastic boundary ODB to the die
boundary OA and to the singular point A, at which it has
a polar singularity and takes a maximum value equal to
wA = 0.26. The plastic material is pulled by the longitu-
dinal stress of the contact friction in the direction of die
slip. However, the velocity w of the plastic material is
DY PHYSICS      Vol. 46      No. 8      2001
lower than the longitudinal velocity of die motion
w0 = 0.455, and, therefore, the energy dissipation
caused by the longitudinal friction forces is positive. In
the region of the uniform plane stressed state occurring
from the right of boundary AB, θ = 0 and the differential
relation (1.14) yields that w = const along the straight
characteristic curves γ parallel to the y-axis.

For the presented field of displacement velocities,
the dissipation of energy of the plastic flow is positive.
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Study of the motion of a droplet in an electromag-
netic field is an important and urgent problem [1, 2].
This motion is caused by a nonuniform distribution of
temperature along the droplet surface. In this case,
additional tangential stresses appear owing to the tem-
perature dependence of the droplet surface-tension
coefficient; these stresses are responsible for the
ordered motion of the droplet. The nonuniform distri-
bution of temperature can be induced by various fac-
tors, for example, by an external constant gradient of
temperature [3, 4], a chemical reaction on the droplet
surface [5], the presence of surface-active substances in
a fluid [6], etc. If the droplet moves due to the nonuni-
form distribution of inner heat sources, this motion is
called photophoretic [7].

In the past few years, interest in the droplet motion
for considerable temperature drops in their neighbor-
hood has grown [8–10]. In this paper, in contrast to pre-
vious studies, we took into account the exponential
temperature dependence of the coefficient of dynamic
viscosity in the thermocapillary drift of a droplet and
the influence of fluid motion on the temperature distri-
bution.

The analysis carried out in this work showed that,
along with the temperature dependence of the coeffi-
cient of dynamic viscosity, the convective transport can
also substantially influence the thermocapillary drift of
droplets heated by inner heat sources. In particular, it
was shown that, if the droplets absorb radiation as a
blackbody, two qualitatively different motions of the
particle are possible: in the direction of propagation of
radiation and in the opposite direction. This circum-
stance is caused by a marked influence of the convec-
tive motion of fluid (large Prandtl numbers) on the
angular nonuniformity of the temperature distribution
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in the neighborhood of a droplet for significant radial
temperature drops.

PROBLEM FORMULATION

We consider the steady motion of a nonuniformly
heated spherical droplet of radius R, density ρi, and heat
conductivity λi in an immiscible viscous incompress-
ible fluid with a density ρe and a heat conductivity λe

filling the whole space. The fluid is at rest at infinity. As
a heated particle, we understand that the particle’s
mean surface temperature considerably exceeds the
environment temperature.

The heated surface of the droplet can have a sub-
stantial effect on the thermal characteristics of the envi-
ronment and, thus, on the distribution of velocity fields
and pressure in its neighborhood.

Among the parameters of fluid transport, only the
viscosity coefficient depends strongly on temperature.
Taking the temperature dependence of viscosity into
account, we used formula (1) proposed in [3] (for
Fn = 0, this formula can be reduced to the Reynolds for-
mula [11]):

(1)

Here, A and Fn are constants, T∞ is the temperature of
the fluid far from the heated droplet, µ∞ = µe(T∞); here-
after, the subscripts e and i refer to the external fluid and
the droplet, respectively.

The fluid viscosity is known to decrease with tem-
perature according to the exponential law [11]. Analy-
sis of the available semiempirical formulas showed that
expression (1) makes it possible to best describe the
change in viscosity in a wide range of temperatures
with an arbitrary desired accuracy. For illustration, we
list in Table 1 the values of Fn for water (A = 5.779, F1 =
–2.318, F2 = 9.118, and T∞ = 273 K); µcalcd is the
dynamic viscosity calculated from formula (1) and µexpt
is the experimental value of the dynamic viscosity. The
relative error is less than 2%.

µe µ∞ 1 Fn

Te

T∞
------ 1– 

  n

n 1=

∞

∑+ A
Te

T∞
------ 1– 

 –
 
 
 

.exp=
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The heat-conductivity coefficient of a droplet is
assumed to considerably exceed the heat-conductivity
coefficient of the medium; the density (ρ), heat capacity
(cp), and heat conductivity (λ) are considered to be con-
stant values; droplet motion is reasonably slow (small
Peclet and Reynolds numbers); the surface-tension coef-
ficient σ is an arbitrary function of temperature [σ =
σ(T)]; and the droplet is assumed to retain its spherical
shape (this assumption is valid under the condition

, where U is the droplet drift velocity [12]).

It is convenient to introduce a reference system
related to the center of the moving droplet. In this case,
the problem is reduced to analysis of the steady flow
around the droplet by a homogeneous fluid whose
velocity at infinity (U∞) is to be defined (U∞ = –U).

In terms of the above assumptions describing this
flow, the dimensionless conservation equations and
boundary conditions can be reduced to the form [12]

(2)

(3)

(4)

y = 1,  = ,  =  = 0,  = ,

(5)

(6)

(7)

Here, Vr and Vθ are the radial and tangential compo-
nents of the mass velocity, while er and eθ are the unit
vectors in the spherical system of coordinates, respec-

tively; y =  is the dimensionless radial coordinate;

Re∞ =  and Pr∞ =  are the Reynolds and

Prandtl numbers, respectively; and U∞ = |U∞|.
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The variables are made dimensionless by using the
following characteristic values: R (the droplet radius),

T∞, P∞, µ∞, and U∞ t = , p = , and V = .

For Re∞ ! 1, the incoming flow exerts only a per-
turbing action. Therefore, the solution to the equations
of hydrodynamics and heat transfer can be sought in the
form

(8)

When finding the force acting on a nonuniformly
heated droplet and its thermocapillary-drift velocity, we
restrict our consideration to first-order corrections with
respect to Re∞ .

The form of boundary conditions (5)–(7) makes it
possible to seek the solution as follows:

(9)

Taking into account the inequality λe ! λi , we can
ignore the dependence of the coefficient of dynamic
viscosity on the angle θ in the droplet–fluid system and

assume that  µ e ( t e ( y ,  θ )) =  µ e ( ) . Using this fact and
substituting (8), (9) into Eqs. (2)–(4), we make sure that
the variables are separated and obtain, as a result, linear
partial differential equations for perturbed values. In
finding the distribution of temperature in the vicinity of
a heated droplet, we used the method of joining asymp-
totic expansions [8]. As a result, the following expres-
sions were obtained for the velocity fields and the tem-
peratures outside and inside a particle:


 T

T∞
------ P

P∞
------ U

U∞
-------



V V 0( ) Re∞V 1( ) …,+ +=

p p 0( ) Re∞ p 1( ) …,+ +=
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p 0( ) 1 h y( ) θ.cos+=

te
0( )

Vr
e y θ,( ) θ 1 A1G1 A2G2+ +( ),cos=

 

Table 1

 

T

 

, K µcalcd, Pa s µexpt, Pa s  × 

100, %

279 0.0017525 0.0017525 0.00

293 0.0010089 0.0010015 0.74

313 0.0006433 0.0006513 1.22

333 0.0004581 0.0004630 1.06

353 0.0003556 0.0003509 1.35

363 0.0003199 0.0003113 2.76

µcalcd  –  µ expt 
µ

 

calcd

 
---------------------------------
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,

where

(10)
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ψn(y) = – y2 d(cosθ), 

Pn(cosθ) are the Legendre polynomials, γ = ts – 1, ts =

, and Ts is the mean temperature of the heated drop-

let surface determined by the formula

(11)

In (10), , , and  are the first, second, and
third derivatives of the corresponding functions with
respect to y (k = 1, 2). The values of the coefficients

 and  can be obtained using the following
recurrence relations:

(12)

When calculating the coefficients  and 
from formulas (12), it is necessary to take into account
the following equalities: 
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The integration constants A1, A2, A3, A4, B0, B, and Γ
are determined from the corresponding boundary con-
ditions on the droplet surface.

Our prime interest is the solution for the asymmetric
part of perturbed values, which will enable us to deter-
mine the force and velocity of the thermocapillary-
drift. For this purpose, we specify the nature of the ther-
mal sources. The heating of a particle is assumed to
take place through the absorption of electromagnetic
radiation, and the droplet absorbs the radiation as a
blackbody. In this case, the radiation is absorbed in a
thin layer of thickness δR ! R adjoining the heated area
of the particle surface. The thermal-source density
within the layer of thickness δR is determined from the
following formula:

where I is the incident radiation intensity.
The expression for the total force acting on the par-

ticle is obtained by integrating the stress tensor over the
droplet surface. This expression is made up of the vis-
cous force Fµ and the force Fph , whose appearance is
caused by the nonuniformity of the distribution of ther-
mal-source density in the body of the particle with
allowance for the convective terms in the heat-conduc-
tivity equation. In the general case, these expressions
can be represented in the form

(13)

where
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and ez is the unit vector along the z-axis.

In estimating the coefficients fµ and fph, it is neces-
sary to take into account that the subscript s designates
values of physical quantities taken at a mean droplet-
surface temperature Ts , which is determined from for-
mula (11); the functions Φ1, Φ2, G1, G2, N1, N2, N3 , and

N4 are taken for y = 1 [N1 = G1  – G2 , N2 =

G2(2  + ) – G1(2  + ), N3 = – , and

N4 = 2  + ].

In the case when droplet-surface heating is reason-
ably weak, i.e., when the mean droplet-surface temper-
ature differs insignificantly from the environment tem-
perature at infinity (γ  0), the temperature depen-
dence of the viscosity coefficient can be ignored. In this

case, G1 = 1,  = –3,  = 12, G2 = 1,  = –1,

 = 1,  = 2, N1 = 2, N2 = 6, N3 = 3, N4 = 6, τ1 = – ,

 = , τ2 = , and  = – .

Setting the total force equal to zero, we obtain the
expression for the thermocapillary-drift velocity:

(14)

Formulas (13) and (14) enable us to estimate the
force acting on a spherical droplet heated by an electro-
magnetic field in a viscous fluid and its thermocapil-
lary-drift velocity. These estimates are made for arbi-
trary temperature drops between the droplet surface and
the region far from this surface with allowance for the
temperature dependence of the viscosity coefficient
represented in the form of an exponential series and for
the influence of fluid motion on the droplet drift.

We consider the expression

(15)

∆ N1
µe

s

3µi
s

--------
2ρe

3µi
s

-------- ω
δµ∞
---------

λ e
s

λ i
s

----- G1Φ2 G2Φ1–( )∂σ
∂ti

------,–+=

Φk 2τk τk
I , k+ 1 2,,= =

f ph
4

9µi
s∆

------------ Aγ–{ }
G1

λ i
sδ

--------ξph
∂σ
∂ti

------,exp=

ξph ωλe
s 1

Φ1

G1
------– 

  RI
2T∞
---------,–=

G2
I G1

I

G1
I G1

II G2
I G2

II G1
I

G1
I G1

II

G1
I G1

II G2
I

G2
I G2

II 1
4
---

τ1
I 3

4
--- 1

2
--- τ2

I 1
2
---

U Re∞hphez, hph–
f ph

f µ
-------.= =

ξph γPr∞λ e
s 1

Φ1

G1
------– 

  RI
2T∞
---------,–=



606 YALAMOV et al.
which contains two terms entering it with opposite
signs. Consequently, there are qualitatively different
droplet motions along the direction of propagation of
radiation and in the opposite direction. This is due to
the contribution of convective terms to the total force
and velocity entering the heat-conductivity equation
[the term proportional to Pr∞ in formula (4)]. Moreover,
the contribution from the former term can be so impor-
tant that it can be comparable to the major effect (the
latter term). From (15) it follows that this term is pro-
portional to the product of the Prandtl number and the
relative temperature drop γ. Taking into account that the
Prandtl number in a fluid can be large and the motion
for considerable temperature drops in the droplet
neighborhood is investigated, this effect can be signifi-
cant in the proper choice of the fluid.

To illustrate the contribution of the fluid motion to
the force and velocity of the thermocapillary-drift, we

Table 2

ξph I, 102 W/cm2

0 0 0

0.167 –0.0429 1.2

0.346 –0.0882 2.4

0.534 –0.1356 3.7

0.730 –0.1846 5.1

0.934 –0.2355 6.4

1.142 –0.2871 7.8

1.354 –0.3395 9.3

1.566 –0.3921 10.7

1.780 –0.4451 12.2

ξph
*

list in Table 2 data relating the values  and  to the
intensity I for large-size mercury droplets with radius
R = 2 × 10–5 m moving in water at T∞ = 273 K. The val-

ues of ξph were estimated from formula (15), while 
were estimated from formula (15) for γ = 0; i.e., no fluid
motion was taken into account. The molecular transport
coefficients were taken at the mean surface temperature
(Te = Ts). In Table 3, we give numerical estimates for
the influence of droplet-surface heating and the convec-
tive terms in the heat-conductivity equation on the ther-
mocapillary-drift velocity of the droplet. The value of

hph was estimated from formula (14); the value of ,
from formula (14) without convective terms (i.e., for

ω = 0). The value of  was determined for low rela-
tive temperature drops (γ  0), the molecular-trans-
port coefficients being taken at Te = Ts . The coefficient
of dynamic viscosity for water is described by the val-
ues A = 5.779, F1 = –2.318, and F2 = 9.118 in the tem-
perature range from 273 to 363 K with a relative accu-
racy to within 2%; Pr∞ = 12.99. If we consider the
motion of a mercury droplet in glycerin, this effect is
especially significant because, for example, the Prandtl
number Pr∞ = 4753 at T∞ = 303 K.

From the above numerical estimates it follows that
the convective terms should be taken into account in the
heat-conductivity equation when the mean temperature
of the surface of heated droplets differs significantly
from the environment temperature. For low relative
temperature drops, this effect must be taken into
account for fluids with high Prandtl numbers. In this
case, the contribution can be as high as 20%. In a gas,
this effect should not be taken into account because the
Prandtl number for most gases is on the order of unity.

ξph ξph*

ξph*

hph
B

hph*
Table 3

Ts, K hph

273 0 0 0 0

283 –3.032 × 10–4 7.785 × 10–5 –2.017 × 10–4 8.108 × 10–5

293 –6.658 × 10–4 1.700 × 10–4 –2.944 × 10–4 1.828 × 10–4

303 –1.080 × 10–3 2.743 × 10–4 –3.101 × 10–4 3.025 × 10–4

313 –1.538 × 10–3 3.891 × 10–4 –2.707 × 10–4 4.367 × 10–4

323 –2.039 × 10–3 5.141 × 10–4 –1.913 × 10–4 5.841 × 10–4

333 –2.575 × 10–3 6.473 × 10–4 –8.426 × 10–5 7.408 × 10–4

343 –3.143 × 10–3 7.883 × 10–4 4.303 × 10–5 9.060 × 10–4

353 –3.734 × 10–3 9.350 × 10–4 1.885 × 10–4 1.077 × 10–3

363 –4.342 × 10–3 1.086 × 10–3 3.414 × 10–4 1.252 × 10–3

hph
B hph

* hph
B*
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In our paper “Reflection and Absorption Characteristics of Various Physical Objects in a Millimeter Radio-
Wave Range,” which was published in Doklady Physics, vol. 45, no. 10, pp. 510–511, the beginning of the last
item should be red as “The results of the measurements of the reflection coefficient… .”
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