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The ductile-brittle transition (DBT) is known [1-4]
to depend on temperature, chemical composition,
stressed state, and loading rate. Moreover, aswas estab-
lished in studies [4, 5], there exists a unified DBT
mechanism consisting in the disordering of the electron
structure responsible for chemical bonds. This mecha-
nism involves either the recovery (or rupture) of the
directed component of chemica bonds at the critical
temperatures T, of a DBT or the so-called “crystalliza-
tion” of valence electrons. The Wigner crystallization in
the presence of a uniform compensating field of the lat-
tice is the simplest example of such amechanism [6, 7].

Aswasnoted in [5], adecreasein thermal vibrations
or achangein the doping element leads to the initiation
of directed chemical bonds, i.e., crystallization of the
electron structure at the temperature T, of the DBT.
In this case, we can use the theory of the second-
order phase transition, as was done, for example, in
studies [6-8].

We consider an electron system with the following
Hamiltonian in the x-representation:

~2
H = J‘dxés*(x)gﬁn+ U(x)—péés(x)
(D

" ; [axdyv(x-y)a ()a” (y)a* ()a’(x).

Here, 8% (x) and &°(x) are the production and annihila-
tion operators, respectively, for particles with the spin

s= i% 1 V(X, y) isatwo-body interaction potential inde-
pendent of s; U(X) = U(x+ R) isthe periodic field of the
a2

crystal lattice {R}; 2£r71

(h=1); and p isthe chemical potential. Theintegration
is carried out over the whole volume of the system.
Cyclic boundary conditions are imposed. The summa-

is the kinetic energy operator
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tion is performed over the repeating superscripts s
ands.

The operators &% (x) and a°(x) can be expressed in
terms of the second quantization operator in the basis of
the Wannier electron functions W,(x — R):

a"(x) = § & (RW; (x=R),
2
2)
a’(x) = ¥ &(RW,(x-R).
2

The Wannier functions W,(x — R) are defined by Bloch
functions:

Wx=R) = T3 U (e, e
k

where the summation is extended over k within the first
Brillouin zone of thelattice { R} and N is the number of
lattice sitesin the cyclic volume V. The Bloch functions
U, n(X) relating to the nth zone are solutions to the
Schrddinger equation:

[2Ap_m+u(x)}“k,n(x) = LIKUa(x).  (3)

with the eigenvalues L? (k).

We now take into account the valence angle and a
certain broadening of the energy gaps between the
bands due to thermal vibrations and which causes the
gaps to be more broad than the corresponding charac-
teristic interaction energies. In the new representation,
the Hamiltonian can be written out as

H= S L(R-R)& (R)a(R,)

n Ry, Ry

+
NI

Z Vi(RiR:R3R,)

n; R, Ry, Ry, Ry (4)

x & (R, (R)&(R)ax(Ry),
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g ReR)

Lo(Ri—R;) = Z(L (k) -we

where

V(R RRsR,) = Idx dyv(x-y)W; (x=R,)

(5)
X WP (Y = Ry) W, (Y — Ry) W, (X = Ry).
We introduce the Green function
G,(RR'; t—t")
(6)

= —2me(t—t)Ja (R t), a) (R, t)].0

Here, &, (R, t) and a; (R, t') are the operators in the
Heisenberg representation; 6(t — t') is the Heaviside
step function; [, -], is the anticommutator; COis the
averaging over a grand canonical ensemble defined by

Hamiltonian (4) and the parameter 3 = 1 , Where T is

T
the absolute temperature in energy units; and the sum-
mation is performed over the superscript s. Itisobvious
that this Green function obeys the equation

S {6 (R~Ry; E)~M(R R;; E}}

@)

xG, (R, R E) = 2,

where G is the inverse nonperturbed Green func-

tion, Gy " (R-R;; E) = Edgg, — Ly(R—Ry),and M is
the mass operator {E is the parameter of the Fourier
transform with respect to time (t —t)}.

Analysis of the solutions leads to the first density
matrix (see [8-10]),

p(R R) =4 (R)&°(R)
i G(R R;E+ig)-G(R, R'; E— |s)dE ®
2"I F+1 '

Furthermore, by means of (2a), it is possible to
determine the density n(x) of actual particles. In a cer-
tain limit, the mass operator M(R, R; E) can be written
out as a functional of the expression p(R, R’; E). After
performing certain transformations in accordance with
[8-10], we obtain the nonlinear equation

GO(P)Gy(p) + G,(p) z a(k) G(O)—l%) N kE%eikS, X
{kg

—Mo(P)Go(p) — Z M, (p, kS)GOEP _ kﬁga (k)e"*

- ()

K, K.
-3 S ™, %) chsl 2%

{kg {k3

SEMENOV

i (kg + k), X

x a(ks)a(ks)e =2,

which is reduced to a set of finite difference equations
determining Gy(p) and G,(p). Using (8), we then pass

from Gy(p) and G,(p) to ng” (p) and n{” (p), which
obey the set of equations

ns’(p) = Gu{n (p), N (p)}
n(p) = oA (p), N ()},

where ), and ), are nonlinear integral operators.

(10)

From physical considerations, the solutionto Eq. (7)
isspatially uniformasT — oo} i.e,,

p(RR) = pP’(RR) = nP(R-R). (11

For the set of Egs. (7) with T > T, we obtain that
N =0and n{” = Nl (R-R). In this case, the tem-
perature T, is the point of a phase transition, i.e., loss
of stability for the spatially uniform solution.

However, T, can be determined using the branching
method, aswas done in paper [9]. This method is based
on thefact that, for T< T, T — T, the functions

cr cr

3no(p) =N (P)—n(p), dnu(p) = n(p) (12)

tend to zero, remaining infinitesimal. Varying Eqg. (10)
with regard to (12), we obtain

3No(p) = A 3No(p), N:(P)}
3n1(p) = A{ 3no(p), SN1(P)} -

Here, A; and A, are linear integral operators depen-

(13)

dentonB:_Tl_ and .

The least positive eigenvalue 3, of set (13) defines
the highest phase transition temperature T, depending
on the particle density through . If aband isfilled, then
the particle density corresponding to it is n(R) =2 and
the redistribution of the quantum state population is
impossible; therefore, electronic crystallization does
not occur.

Thus, the crystallization of the electron structure
responsible for chemical bonds is possible only for
atoms with unfilled electron shells. The theory pro-
posed describesthe DBT mechanism quite correctly. In
the case of binary alloys of iron, this crystalization
occurs provided the impurities have unfilled np-, nd-,
and nf-electron shells[4, 5]. In order toreduce T, of the
DBT for analoy of iron, it isnecessary to alloy theiron
matrix using elements having filled np-, nd-, and nf-
electron shells with large valence angles and long
chemical bonds.
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INTRODUCTION

In[1], the authors proposed a mechanism governing
giant ascending atmospheric discharges. This mecha-
nism involves the devel opment of an avalanche of rela-
tivistic runaway electrons. The avalanche is character-
ized by its exponential development with temporal and
gpatial scalest,andl.=c %t (whereeistheavalanche—

development rate). The quantity I_ is the relativistic

analog of the Townsend ionization coefficient a;.

Three approaches were employed in the calcula-
tions: the numerical solution of the kinetic equation [2—
4, 6, 7], the Monte Carlo simulation [5, 6], and the
coarse-particle method [8]. In [6], the values of t, cal-
culated with the help of the kinetic equation and Monte
Carlo simulation were compared. These values differ
by a factor of 3 to 4 within the electric-field intensity
range under consideration. Such a strong discrepancy
leadsto principle differencesin the modeling of natural
phenomena. The urgent necessity of thorough analysis
of this discrepancy stimulated new calculations of t..
These calculations are based on methods of the kinetic
equation and Monte Carlo simulation with allowance
(in the former case) for the exact correlation between
the directions of motion of two electrons participating
in an ionization event. The results of this analysis are
presented below.

THE KINETIC EQUATION

We solve the following kinetic equation similar to
that givenin [2—4]:
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of L 10, 2
Fri ;za_p[p f(neE—F(e)]

2
+i[eE1_u f}
op p

(Z2I12+1)F(g) 0 [( B af]
4yp ap ()

= Nfc de'Y > cd(s €)=(da f(t, €, ).
J Sy

Here, f(t, p, W) is the electron distribution function for
momenta and cosines of angles between the directions
of p and the electric force ek, F(¢) is the Bethe friction
force[9], € istheenergy of ionization, and Nisthe mol-
ecule concentration. The Méller formula[2, 3] is used
for calculating the ionization differential cross section.
In contrast to [2-4, 6], where the integral over a is
replaced by the trapezoid formula, here the angles
between the directions of the force eE and the momenta
of primary (W' = cosd") and secondary (U = cosB) elec-
trons are linked by an exact relation [10]:

W' = My, + 4/1—pisinBcosa,

_ Je(e + 2mc?)
Mo = [ > -
g'(e+2mc")

Since inelastic loss on the order of dozens of elec-
tronvolts dominates, it isassumed in (1) that the energy
and angular distributions of primary electrons do not
change in the ionization process [2—4]. This implies
violation of the conservation laws, which are fulfilled
only on the average: the actual energy lossin individual
collisionsis described by the averaged energy loss with
the help of the continuous friction force F(€). The aver-
age variation of the primary-electron momentum turns
out to be zero because the friction force is aways
directed opposite to the momentum. These kinetic
equations do not make it possible to allow for either
energy-loss fluctuations or angular fluctuations; thisis
automatically taken into account by the Monte Carlo
method.
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We solved kinetic equation (1) using the finite dif-
ference method with splitting over the p and p vari-
ables. Implicit conservative finite-difference schemes
of first-order accuracy were employed. In calculating
the diffusion part of the kinetic equation, we used the
flow-sweep method. Theintegral over a was calculated
according to the Simpson formula with the maximum
number of points n = 11. Since the ionization time is
much longer than the characteristic times of the elec-
tron transfer and scattering, the contribution of theion-
ization integral was recalculated after a given number
of time steps and remained constant at intermediate
steps. It was sufficient to calculate the ionization-inte-
gral contribution only for energies € > g;, wherethe run-
away threshold g, corresponds to the mean root of the
equation F(gy,) = eE [11]. In the region € < g, under the
description in terms of the averaged friction force, the
electrons certainly cannot become runaway electrons.

MONTE CARLO SIMULATION

The Monte Carlo smulation is based on the codes
used in [5, 6], namely, the basic ELIZA code and the
simplified Monte Carlo (SMC) code. The ELIZA
code [12] isintended for solving problems of the com-
bined transfer of photons, electrons, and positrons. In
the case of photons, Compton scattering (with allow-
ance for the bound state of atomic electrons), Rayleigh
scattering, photoabsorption (with due regard to the
emission of fluorescent photons and Auger electrons),
and electron-positron pair production are taken into
consideration. For electrons and positrons, we took into
account the eastic scattering on nuclei and free elec-
trons, atomic K-shell ionization, bremsstrahlung, and
two-photon annihilation. The description is based on
the EPDL92 (photons), EEDL92 (electrons), and
EADL92 (atomic-shell relaxation) cross-section data-
banks. Here, a number of modifications improving the
calculation accuracy were introduced compared to the
code version used in [5, 6]. In the case of the SMC
code, the motion of electrons between subsequent col-
lisonsisdescribed by the electric force eE and the fric-
tion force F(g). Only elastic scattering and ionization
collisions accompanied by the production of electrons
with energies on the order of several kiloelectronvolts
are statistically ssimulated. The Rutherford cross section
for the screened Coulomb potential is used to describe
the elastic scattering of electrons on atomic nuclei. For
the ionization differential cross section o, the Moller
formula is used. The SMC code makes it possible to
efficiently perform necessary calculationsin the frame-
work of the physical model corresponding to thekinetic
equation. A provision for eliminating variations in the
energy and momentum of the primary electron in an
ionizing collision is made that correspondsto violation
of the conservation laws in kinetic equation (1).
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DISCUSSION OF THE RESULTS

The calculations were performed in air (g, = 15 eV)
under atmospheric pressure (P = 1 atm, N = 2.7 x
10%° cm3). It was assumed that two-MeV electrons had
been injected at theinitial time moment into a homoge-
neous electric field along the direction of the electric-
force action. The number N,,.(t) of runaway €electrons
as a function of time was caculated. In the kinetic
equation, the number N, is defined as the number of
electronswith energies€ = €. Inthe case of the Monte
Carlo method, N,,,, corresponds to the number of elec-
trons whose trgjectories are traced to the energies
€ = 1 keV. Since the fraction of electronsin the region
€ <&y, isontheorder of several percent, both definitions
are close to each other to within good accuracy. To
reduce therole of theinitial stage of developing therel-
ativistic-electron avalanche, the quantity t.is defined as

|j3 In NrurEJ_l T . .
03t O ° where the derivative is taken in that time

moment when the dependence InN,,(t) becomes linear.
In the Monte Carlo calculations, smoothing of InN,,,(t)
was performed. Analytical estimates similar to those
performed in [5] were carried out. The values of t, were

eE

calculated for three overvoltages & = with

min
respect to the relativistic minimum of the Bethe force
Frin = 2.18 keV/(cm atm) (see Table 1).

Results without allowance for elastic scattering.
In this case, the analytical estimates agree with the
results based on the SMC code. The results that take
into account the conservation laws in the ionization
process turned out to be intermediate between the
results for the SMC code, which admit the violation of
the conservation laws, and the results for the ELIZA
code. Thediscrepancy between the cal cul ations accord-
ing to the SMC code with and without violation of the
conservation laws taken into account are explained by
fluctuationsin the energy loss. The divergence of 25 to
30% for the results obtained in accordance with the
ELIZA and SMC codes under the condition that the
conservation laws are valid is caused by the difference
in the ionization cross sections and different descrip-
tions of the inelastic processes.

By virtue of the same physical models, the values of
t, obtained from the solution to kinetic equation (1)
must be close to the SMC-code calculations without
exact fulfillment of the conservation lawsin theioniza-
tion process. However, the results of the solution to
kinetic equation (1) for n = 11 are considerably higher
than in the case of the calculations according to the
SMC code with the violated conservation laws and are
closeto theresults of the ELIZA code. Thisfact, appar-
ently, isaconsequence of the rough angular-coordinate
net and the numerical diffusion in solving the kinetic
equation.
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Characteritic timet,, ns of the avalanche development in air, P = 1 atm

Method Electron scattering isignored Electron scattering istaken into account
&ho 0=2 6=5 0=8 60=2 0=5 0=8

Analytica estimates [5] 48-59 11-18 6-10 145 314 16.7
Coarse-particle method [8] ? 26 125
Kinetic equation

reduction of [4] to1am, n=2 195 43 217 96 13 6

thiswork, n=2 19.9 5.05 224 95 13 5.6

thiswork, n=11 98 31 16.3 197 399 21.2
Monte Carlo Method 1744 33.2 17.3

paper [7] SMC code:

conservation laws are violated 46.1 14.8 8.6 182 34.1 17.9

conservation laws are fulfilled 77.6 20.8 11.2 200 35.6 18.6

ELIZA code 107 28 15.8 440 54 275
Note: &= ;—1 .

2.18kV cm

The results of calculating t, according to the kinetic
equation with n = 2 (i.e., with using the trapezoid for-
mula as was done in [4]) are close to the results of [4].
For n=11, thevaluesfor t. differ by several timesfrom
those obtained according to the SMC and ELIZA
codes.

Results with allowance for elastic scattering. All
conclusions made for calculations without elastic scat-
tering taken into account remain valid. However, there
also exist certain differences: (i) The analytical esti-
mates being dependent (the SM C-code results are used
for the fraction of electrons passing to the runaway
mode) satisfactorily agrees with the calculations by the
SMC code without exact fulfillment of the conservation
laws. (i) Another difference consistsin the fact that the
calculation results for the kinetic equation (n = 11) and
for the SMC code are close to one another. It is proba-
ble that with the elastic scattering taken into account,
the numerical diffusion weakly affects the results
obtained. (iii) The SMC code yields very close values
of t, for both the validity and violation of the conserva-
tion laws. This implies that the effect of scattering is
stronger than the fluctuation effect. (iv) In contrast, the
allowance for scattering enhances the divergence up to
35 to 100% between the values of t, obtained according
to the ELIZA and SMC codes with the conservation
laws fulfilled. This fact is most likely associated with
the difference in the values used for the scattering cross
sections. As a whole, the allowance for elastic colli-
sionsincreasesthe energy threshold g;,. The calculation
results differ by afactor of 1.5to 3.5 for different vari-
ants under consideration.

As is seen from the table, the simplified methods,
namely, the kinetic equation, the use of the SMC code,
the calculations of Lehtinen et al. [7], and the coarse-

grain method [8], yield surprisingly close results. Inad-
equacy of the coarse-grain method to the stochastic
nature of runaway electrons provides, most likely, the
lowest value of t, [8]. The ELIZA code involving the
most complete and accurate set of cross sections for
elementary interactionsis the most exact. Being free of
simplifications (explicitly or implicitly) intrinsic to
other approaches, the ELIZA code realizes a direct
numerical experiment whose results, in essence, can be
reasonably used for calibration of less precise methods.

CONCLUSION

There exists amain reason for the divergence of the
development rate for an avalanche of relativistic run-
away electrons, which was obtained in [2—4, 6] by the
Monte Carlo method and from the solution to the
kinetic equation. This reason is the inadequacy of the
accepted approximation for the ionization-collision-
integral used in solving the kinetic equation to the
strongly anisotropic runaway process.

Solving the kinetic equation using the finite-differ-
ence method with a rough approximation of theioniza-
tion integral (n = 2), which is similar to that employed
in [2-4, 6], yields results that coincide with those
of [2—4, 6].

For sufficiently high overvoltages (0 = 5 and 8), the
calculated results for t,, which are based on the kinetic
equation with improved approximation of the ioniza-
tion integra (n = 11), and the simulation results
obtained by the Monte Carlo method (SMC code, the
calculations of Lehtinen et al. [7]) are close to each
other. They agree with analytical estimates and consid-
erably approach the calculation results obtained
according to the ELIZA code.
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With decreasing 9, the divergence from the ELIZA-
code resultsis enhanced. Thisfact is, most likely, asso-
ciated with the differences in interaction cross sections,
as well as in the method of description of the elemen-
tary interactions.
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The icelike structure and diffusion of molecules of
liquid water exhibit both a two-humped far-infrared
(far-IR) absorption spectrum and a low-frequency
Debye relaxation spectrum [3-5]. An absorption trans-
lational band with wave number v = 200 cm™ appears
due to the vibration of neighboring oxygen H-bonded

(&)
2711C
called frequency) is approximately the same for ordi-
nary and heavy water (isotopic effect). (Here, w is the
angular frequency and c is the speed of light.) In the
libration band that is due to the reorientation of polar
molecules, the frequency v, of the absorption peak, by

approximately a factor of ﬁ, is lower for D,O com-
pared to H,O, namely, v, = 670 cm for H,0O, while it
is =500 cm™ for D,O. This difference corresponds to
that of the moments of inertial for these molecules. In
the libration band, the absorption spectrum a(v) and
complex-permittivity spectra e*(v) = €' + i€" (* isthe
complex-conjugation symbol) can be described [9] on
the basis of phenomenological molecular theory. An
adequate description has not thus far been given for the
frequency dependences a(v) and €*(v) of a tranda
tiona band.

In this paper, atheory of the translational bands and
of the isotopic effect, which is based on the simplified
model of a nonrigid dipole, is proposed. The model is
illustrated in Fig. 1. The dipole moment of a molecule
is assumed to comprise a superposition of time-inde-

atoms [6-8]. This wave number v = (furthermore

TThis paper isbased on reports[1, 2]. The article was submitted by
the authors in English.

* |nstitute of Radio Engineering and Electronics
(Fryazino Branch), Russian Academy of Sciences,
pr. Vvedenskogo 1, Fryazino,
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Russian Academy of Sciences,
Mokhovaya ul. 18, Moscow, 103907 Russia

pendent and time-dependent components i and [i(t) =
Hrsin(wyt + Y), where w; = 21ev: . Thisideaisimplied
by the fact that the average dipole moment p of amol-
eculein aliquid differs from the moment , of an iso-

lated molecule. The time-dependent component [i(t) is
considered to be stipulated by the vibration of H-
bonded oxygen atoms. In Fig. 1, the latter are denoted
by white circles. These vibrations are directed along the
H-bond. The hydrogen atoms (denoted by symbols B)
penetrate into the negatively charged cloud formed by
anonshared electron pair of the oxygen atom (denoted
by the symbol A) and thereby change the charge distri-
bution in the cloud. Thus, the resulting dipole moment
of awater molecule varies with time. We suppose it to
be directed along a line connecting the centers of
masses of the oxygen atom A and the pair B,B of the
hydrogen atoms of a neighboring water molecule.

In the theory developed in [9, 10], a dipole spectral
function L(2) isintroduced, where z is the complex fre-
guency (which is defined below). Then, with alowance
for the time-dependent component of the dipole-

moment |1, the modified spectral function [henceforth

-\X

A
‘\ B B /‘
@) !
A R+ [0 Al

Fig. 1. Explanation of the appearance of the time-dependent
dipole moment in awater molecule (the resulting moment is
marked by the thick vertical arrow).
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Fig. 2. Frequency dependences for (&) the absorption coefficient and (b) permittivity imaginary part of liquid water at 27°C. Solid
and dashed lines correspond to calculations for ordinary and heavy water on the basis of the hybrid model. Dotsin Fig. 2a are exper-
imental data for the absorption coefficient [3, 4, 12]. Dotsin Fig. 2b correspond to the results of dielectric-loss cal culations based
ontheempirical formula[4]. vt, v, and vp are experimental values of the absorption-peak frequenciesin the translational band, in
the libration band, and in the dielectric-loss frequency maximum, respectively.

denoted by S2)] can be written out in terms of L(2) in
the form

S2=L(2
+0_2[ P ,_D +ZgL(z+p)_L(z—p>g} M
4/p-z p+tz pptz p-z

Here, p = wn isthe normalized frequency of the trans-
lational-band peak; n = I—, kg is the Boltzmann
2k T

n.
T
and T is the mean lifetime of a dipole libration in a
potential well of a given shape. The model parameter

~2
o’= <&> is fitted by comparing experimental and

constant; T is temperature; z= X + iy, X =Nw; y =

2

theoretical data. The value of this parameter is used for
estimating the time-independent component i and the
amplitude p; of the time-dependent component. They

arerelated to the average dipole moment of a molecule
in the liquid by the relations

_ vl uo

B= = Mr = J1=1(X),
N1+0O 1+o0
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where

exp(=X?)

= Jmerf(X)’

, f(X) =

alg

and o is found as the solution to the transcendental
equation

2

2 _ Op
= —J[1-2f ,
o 2X2[ 1-21(X)]

Ho

whileg, =1 — — isdetermined by known values of |,

and p of the dipole moment. In addition, the ratio X =

%J must satisfy the inequality Xiz[l -fX)]<1.

The main contribution to the trandational band is
p p

p-z ' ptz
trand ational band calculated from Eq. (1) istoo narrow.
This drawback to the theory can be excluded by intro-
ducing thelifetime1; of the dipole moment fi(t) , which
differsfrom T. In other words, we decrease the duration
of an individual period in the regular variation of p(t) .
Inthiscase, wereplacezand y inthe Lorentzian and in

given by the Lorentzian However, the

the terms ﬁ) by Z=x+iYand Y= dl respectively.

T’
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Further calculationswere carried out for a rectangu-
lar intermolecular potential well having a finite depth
Uy, which was considered in the framework of the
hybrid model developed in [9, 11]. The orientational
susceptibility x* is connected (see [9, p. 191; 10, 11])
to the resulting spectral function Sthrough the rational
relation

GAIDUK et al.

Here, g is the Kirkwood correlation factor; ¢ is the
static permittivity; n,, isthe optic refractive index; p is
the density of theliquid; M isthe molecular mass; N, is
the Avogadro’s number; and k, is the correcting factor
for the dipole moment of a molecule in the liquid. The
formulas given above can be used for calculating the
frequency dependences £*(v) and a(v).

: gGzS The following parameters are used in the hybrid-
XHx) = i ’ model version under consideration: (3, which is the
gx+iy(1l+gxz)S Lo ; o .
libration amplitude entering into the spectral function,
5 ) andL, T, 17, 0%, and k,. The frequency dependence a(v)
_ & NL28+ N, of the absorption coefficient for ordinary and heavy
amG  3g, water is shown in Fig. 2a. The theoretical and experi-
mental spectraof the dielectric loss€"(v) are compared
s N K (E +2 in Fig. 2b. The fitted and estimated model parameters
g=HN ny=DTal Mok (N, +2) for ordinary and heavy water at 27°C are presented
3k T’ M’ 3 here.
0
Molecular constants € Tp, PS n ! 5 clr?; : v,emt vy omt M
H,O 76.6 7.85 1.7 1.483 670 200 18
D,O 79.2 85 17 2.765 505 200 20
Hybrid-model parameters T, pS T, PS Ky B (20 p
H,O 0.38 0.04 1.080 19.9° 0.010 17
D,O 0.33 0.089 1.116 19.9° 0.014 22
Estimated parameters y Y Op o p/u pr/p
H,O 0.11 0.78 0.25 0.150 0.995 0.146
D,O 0.17 0.65 0.27 0.340 0.99 0.255

Our model makes it possible to explain the far-IR
isotopic effect (cf. solid and dashed linesin Fig. 2anear
the absorption-peak frequency v;) and the low-fre-
guency dependence €"(v) of the dielectric loss. The
ratio of the lifetime 1 to the mean libration period [T, [
isapproximately half an order of magnitude. Therefore,
dipoles execute several cycles of libration motion dur-
ing their lifetime. The translational oscillations are
more damped: the lifetime 1 is shorter than the period

i—;—:. This result is in agreement with the conclusion

of [13] on the rapid energy dissipation via the H-bond
network in water. The time-independent component
is close to its mean value |, while the amplitude i of
the time-dependent component comprises a noticeable
fraction of W itis 15% for H,O and 25% for D,O. As
distinct from ordinary water, heavy water is character-
ized by a deeper potential well.

We emphasize the fact that, previoudly, in [9, 14],
only the formal description of the spectra a(w) and
€*(w) in ordinary and heavy water and of the isotopic
effect was given by introducing an additional potential
well. Inthisstudy, the consideration isrestricted to only
one (rectangular) well.
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The Rouse model [1], which represents a system of
Maxwell elements—dampers (balls) and springs con-
nected-in-series—is widely used to describe the relax-
ation properties of polymer chains. To calculate this
model, it isimportant to assume that the number of such
elementsis sufficiently large. In this case, a discrete set
of differential-difference equations describing the
motion of balls can be represented in acontinuousform
[1-3] asasingle second-order equation in partial deriv-
atives. It is evident that, for sufficiently short chains,
one should solve the problem using a relatively small
number of equations. The objective of the present work
isto find such a solution.

Let aforce F be applied through a spring to the first
element of the system. The initial deformation of the
spring connected with the first element decreases as a
result of the displacement of this element, and the rate
of strain change is assumed to be equal to the rate of
change of element displacement. Thus,

dL _ 1dF _dx; _1_ E

gt Edt _dt n paTx) @
Here, L is the spring length, n is the viscosity of the
medium (viscous interaction between the ball and the
medium), and x; is the coordinate of the ith ball.

The rate of displacement of all the n balls is deter-
mined by the elastic action of the springs connected to
the given ball. Therefore, the relaxation of the system
comprising n ballsis accounted for by theset of n + 1
equations

TF = —F + E(X; — Xp),
. _F
TX; = = — Xy + Xy,
1 E 1 2
TX, = X3 — 2%, + X3,

)

Institute of Chemical Physics Problems,
Russian Academy of Sciences, Chernogolovka,
Moscow oblast, 142432 Russia

TX = Xi_q—2X% + X 41,

X, = X1 — Xpy

wheret = n isthe time of relaxation of aMaxwell ele-

E
ment.

Note that the Rouse model [1] considers system (2)
without the first, second, and last equations, because
the role of these equations for a system consisting of a
large number of elementsis assumed to be inessential.
However, for short chains, we cannot ignore these
equations.

To solve set (2) as a combination of exponential
terms, it is necessary to find their indices, which are
determined as the roots of the polynomial [4]:

z-1 E -E 00..0 0 O
é z-1 1 00..0 0 O
D,=| 0 1 z-210..0 0 0 [=0.(3
0O 0O O0 00..1z-2 O
O 0O O0 00.0 1 z-1

The transformation of the determinant D,, resultsin
the determinant B,;:

z-2 1 0 0..0 0 O
1 z-2 1 0.0 0 O
0O O 0 0..1z-2 1
0O O 0 0.0 1 z-1

Equality (4) meansthat nonzero roots of the polyno-
mial D,, are determined by the equality B, = 0.

1028-3358/01/4608-0544%$21.00 © 2001 MAIK “Nauka/Interperiodica’
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It can be readily shown that the quantity B, obeys
the recurrence relationship

Bn = (2_2) Bn—l_ Bn—21 (5)
which, on account of the obvious equalities
B,=z-1, B,=(z-2)(z-1)-1,

enables one to find numerical solutions to polynomials
of arbitrarily high degree.

Table 1 lists the roots of Eg. (4) for some values of
n. As can be seen, the minimum relaxation time t,,,;,, is

close to }1 Only one third of al the values of T; turns

out to be higher than t.

Figure 1 shows the dependence of T; (in the coordi-
nates of the Rouse equation) on the mode number (the
highest value of T1; corresponds to the minimum mode
number). According to [1],

-1 _ . 2|j_'[ i
T, = 4sn ons il (6)

It is seen that this dependence tends asymptotically

Table 1. Parameters of Eq. (7) for various chain lengths n

545
1/1;
10! -
100
107!
2 ——8
—— 3 — 9
1072 —— 4 —— ]0
—+— 5 —— ]2
—— 6 —— 30
1073 L L _+_| 7 5|0
102 107! 100 10°

Fig. 1. Dependence of relaxation time on the mode number
in the coordinates of the Rouse equation. The number of the
mode is shown in the figure. The straight line corresponds
to the dependence based on the Rouse model.

to the value defined by formula (6) as the time of relax-
ation decreases and the number n increases; however,
for high values, the deviations (toward higher T, values)
are quite significant.

i 1 2 3 4 6 7 8 9 10
Py 1
ay; 1
Py 0382 | 2618
ay; 0724 | 0276
Pai 0198 | 1555 | 3.247
ag 0605 | 0237 | 0.157
Pai 0121 | 1.000 | 2347 | 3532
a 0431 | 0333 | 0184 | 0.052
Ps; 0081 | 0690 | 1715 2831 | 3.682
as; 0.356 0.301 0.208 0.106 0.029
Psi 0.058 0.503 1.291 2.241 3.136 3.771
ag 0.303 0.269 0.2083 0.135 0.066 0.018
Pyi 0.044 0.382 1.000 1791 2.618 3.338 3.827
ay 0.264 0.241 0.200 0.147 0.092 0.044 0.011
Pgi 0.034 0.300 0.795 1.453 2.184 2.891 3.478 3.865
ag 0.233 0.218 0.188 0.150 0.107 0.065 0.031 0.008
Poi 0.027 0.241 0.645 1.197 1.835 2491 3.094 3.578 3.892
ag; 0.209 0.1969 0.179 1.444 0.118 0.074 0.055 0.020 0.003
P1oi 0.022 0.198 0.534 1.000 1.555 2.149 2.731 3.247 3.652 3.911
Ay 0.188 0.182 0.164 0.143 0.116 0.088 0.060 0.036 0.017 0.004
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Table 2. Coefficients of theinitial values of the kth derivati-
ves of F(0)

K F ()
F(0)
1 1
T
2 2
T2
3 _5
_[3
14
4 a
T
5 42
_[5
5 132
_[6
429
7 7
T
o 1430
T8
o 4862
_[9
16896
T

Once the roots of Eq. (4), i.e., the indices of expo-
nential terms, are found, it is possible to calculate the
pre-exponential terms a; in the equation

F(t) = zaiexp{_pit}- (7

To do so, we should set up n algebraic equations
relating the coefficients g, to the initial conditions.

The consecutive differentiation of the set of equa
tions (2) givesriseto the following set of algebraic equa
tions, in which superscript (k) denotesthe initial value of
the kth derivative of the corresponding quantity:

FY(0) = -F(0),
1F?(0) = -F®(0) + Ex{"(0),
F(0) = -F?(0) + E(x{?(0) - x2(0)), ...,

1F90) = -F* D) + E P (0) - x5V (0)), ...,

IRZHAK

>x{’(0) = éF(OL
™>7(0) = éF“)(o) —xi7(0) +x57(0),
o%(0) = 2F?(0) - x?(0) + X(0), ..,

=x(0) = éF(k‘”(O) —x{ D0y + x¥ D0y, ..., "
™(0) = 0,

x7(0) = x{(0),
1x7(0) = x?(0) —2x5(0),
$7(0) = X2 (0) - 2x2(0) + x2(0), ...,
1x5(0) = ™(0) = 0,
x5(0) = x2(0),
1x57(0) = x37(0) —2x57(0),

x$(0) = x5P(0) - 2x$7(0) + xP(0), ...

The results of calculations are given in Table 2.
The consecutive differentiation of Eq. (7) yields

FY0) = (-1 pia. ©)
i=1

Using n such equations with coefficients F®(0) listed
in Table 2 enables us to determine all g values, which
aregivenin Table 1.

Using the obtained values of the relaxation times T;
(in units of 1) and their spectrum (&), we can calculate
the mean values

n
2
n zaiTi

il d Et = i:nl_.
iZlar and 10,
ZaiTi
i=1

These values are given in Table 3, and their depen-
denceonnisshowninFig. 2.

Aswith the Rouse model, the quantity [T}, turns out
to be proportional to the length of the chain, whereas
the dependence of [0}, and 1,,,, on the length of the
chain is stronger. In the latter case, the relationship

Gt = (10)

DOKLADY PHYSICS Vol. 46 No.8 2001



THE ROUSE MODEL FOR OLIGOMER CHAINS

Table 3. The mean values of the relaxation time

547

n i {n! (S y= %” Trmax G, A, E
2 2.00 2.50 1.25 2.62 1.91 2.62 2.62
3 3.02 477 1.46 5.05 3.06 5.05 5.05
4 3.99 7.47 1.87 8.29 3.90 7.64 7.48
5 5.00 11.00 2.20 12.34 4.83 11.36 11.20
6 6.01 15.20 2.53 17.21 5.76 15.82 15.66
7 6.97 19.83 2.85 22.88 6.83 20.24 21.81
8 8.01 25.55 3.19 29.32 7.82 26.14 25.81
9 9.08 32.03 3.53 36.63 8.84 32.88 32.56

10 10.10 39.13 3.87 44.84 9.95 39.73 40.00

Tax © N%, Which isinherent in the Rouse model, is vir-
tually satisfied.

It is worth noting that the coefficients g increase
with the relaxation time. As a result, small relaxation
timesplay aninsignificant rolein determining the mean
values. Indeed, the mean values calculated with allow-
ance for the values of T1; > T (denoted by the asterisk in
Table 3) are close to the exactly calculated values.
Comparison of a and T; likewise shows that, for high n

T
100
n 1
I 2
3
10k
- 4
Ie
b L L L L TR B T |
1 10

Fig. 2. Relaxation time versus the chain length: (1) maxi-
mum relaxation time T,,,,.; (2) weighted-mean time @0,
(3) average time [@0,; (4) theratio of these quantities defin-
ing the spectrum distribution width.

DOKLADY PHYSICS Vol.46 No.8 2001

values, the g; values are leveled for large 1; values. This
enables us to estimate the mean values (at least, [L})
while completely ignoring the relaxation time spec-

>
trum, i.e., using the approximate formula @}, = -—
T

and taking into account only the series terms thatI are
higher than t. The validity of such an approach is con-
firmed by the data given in Table 3.

Thus, our analysis shows both a certain similarity
and essential differences in the Rouse model between
long and short chains.
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The rapid development of modern semiconductor
electronics is accompanied by a growing demand for
novel semiconductor materials and structures possess-
ing specific properties. Therefore, search for novel
solid solutions and structures based on them are of
urgent necessity in semiconductor technology.

In this paper, some results of studying the growth of
Ge, _,Sn, solid-solution layers from atin solution-melt
are presented. The growth method employed forced
cooling within the temperature range 740450°C in a
hydrogen ambient. The growth process occurred from
the volume of the solution-melt placed between two
horizontal substrates and was stopped by removing the
solution-melt from the gap between the substrates with
the help of a centrifuge. Germanium wafers oriented
along the [111] crystallographic direction with aresis-
tivity of 40 Q cm and p-type conductivity served asthe
substrates. The diameter and thickness of the substrates
reached 50 and 350-400 mm, respectively. The content
of theSn+ Ge, Sn+ Ge + Zn, and Sn + Ge + Zn + Se
solution-melts and the corresponding temperature-
growth range were determined from literature data and
preliminary experiments [1].

The content of the Ge, _,Sn, solid solution and the
distribution of components in the epitaxial layers
grown were studied using a JEOL microanalyzer. It was
shown that the value of x and the homogeneity of the
component distribution (both across the thickness of
the epitaxial layer and along the directions parallel to
the crystallization front) depend on the temperatures of
both the solution-melt and crystallization-onset. With
increasing the content of zinc, especialy of zinc and
selenium in the solution-melt, the tin content in the
solid solution drastically increases. This fact is likely
associated with the influence of the third component on
the effective value of the distribution coefficient. It is
established that under similar conditions and contents
of the solution-melt, the Sn content in a Ge, _,Sn, solid
solution increases with the temperature of the crystalli-
zation onset.

Physicotechnical Institute, NPO “ Fizika—Solntse,”
Academy of Sciences of the Republic of Uzbekistan,
Tashkent

We have grown homogeneous mirror-smooth epi-
taxial layers of a Ge, _,Sn, solid solution from a Ge +
Sn + ZnSe solution-melt in the case of crystallization-
onset temperatures T, = 740°C for x = 0.1 and T, =
540°C for x = 0.03. The X-ray fluorescence spectral
analysis was performed prior to and after subsequent
removal of the surface layers. The analysis revealed
high-intensity peaks corresponding to Ge (A =
1244 mA) and Sn (A = 925 mA) and showed that the
Geand Sn content in the solid solution is the same
across the film thickness and along the directions of
layer growth. The thickness of epitaxial layers grown
on Ge varied within the range 5-35 pm depending on
both the gap thickness d between the substrates and the
growth regime.

The quality of Ge, _,Sn, epitaxial layers grown onto
Ge substrates depended aso on the rate of the forced
cooling, which varied in the range 0.5-7.5°C/min. The
optimum cooling rate for producing mirror-smooth lay-
ers of Ge,_,Sn, solid solution turned out to be 0.5—
1.5°C/min; this correspondsto an actual layer-crystalli-
zation rate of 0.13-0.2 pum/min. The structural perfec-
tion of the layers grown with all other conditions being
equal depended al so on the gap size 4 between horizon-
tally placed substrates. The gap could be varied within
therange 0.25-2.5 mm with the help of special graphite
supports. For the gaps d < 0.25 mm, the growth of epi-
taxial filmswas not observed at al, probably, dueto the
absence of the substrate wettability by the solution-
melt. The most structurally perfect layers of solid solu-
tions on both upper and lower substrates were grown at
the gap value & ranging between 0.65 and 1 mm. For & >
0.85 mm, the quality of layers grown on the upper and
lower substrates strongly differed. The quality of epi-
taxial layers grown on the lower substrates always
turned out to be higher than that for the upper sub-
strates. This fact also affected the surface dislocation
density for the layers grown. The difference increased
with arisein . In our opinion, this is associated with
the predominance of the convection stream to the crys-
tallization front in the masstransfer mechanismin com-
parison with the molecular diffusion in the case of gap
increase, which we established previously [2].

The qualitative estimate for the distribution of the
solution-forming components across the thickness of

1028-3358/01/4608-0548%$21.00 © 2001 MAIK “Nauka/Interperiodica’
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Fig. 1. Raster images of cleavages for Ge-Ge, _,Sn, structures, x = 0.03.

the epitaxial layer can a so be made by examining raster
images for cleavages of the Ge-Ge, _,Sn, structures
obtained. These images are evidence of the amost
homogeneous distribution of the components acrossthe
thickness of the epitaxial layer (Fig. 1).

Analysis of raster images and morphological studies
have shown that defects appear at the substrate—film
interface depending on the value of x. The difference
between the lattice parameters of the first crystalline
layer and of the substrate appears dueto the fact that the
first grown layer consists of Ge, _,Sn, withx> 0 and the
substrate consists of pure germanium. With the growth
of subsequent epitaxial layers, this difference reduces
due to the fact that these layers differ insignificantly
with respect to the Ge, _,Sn, content. Asaresult of elas-
tic deformation of thelayer produced that playstherole
of the substrate, the total energy of the system
decreases. Through crystallization of the next layer
without a change in the lattice parameter, this energy
turns out to be lower than that at the initial stage of the
process. Varying conditions for the growth regime, we
can govern the action of heteroboundaries. It wasfound
that with an Sn-content increase in the Ge, _,Sn, solid
solution, the structural perfection of layers sharply
deteriorates beginning from x > 0.1 and, moreover, pre-
cipitations of the second phase appear.

The crystalline perfection and the lattice parameters
of the solid solutions were studied using the X-ray dif-
fractometry method with a DRON-UM1 setup. Spe-
cialy grown sampleswith alayer thicknessd = 3-5 pm
were selected for this analysis. The diffraction spectra
were obtained using continuous recording for the
Cu-anode lines (\, = 1.5418 A, Ag = 1.3922 A). The
anode voltage and current were 30 kV and 10 mA,
No. 8

DOKLADY PHYSICS \Vol. 46 2001

respectively. The exposure time was varied within the
range 1-3 h. Asis seen from the X-ray diffraction pat-
tern (Fig. 2), the peak positions for substrates and films
differ insignificantly. Thisimplies the closeness of |at-
tice parameters for these structures (age = 5.656 A,

8ge,_sn, = 5.681 A). At the same time, the absence of
other peaks on the diffraction pattern yields additional

information on the single-crystallinity of the epitaxial
layers obtained [3].

%)
=
5
S <L
—
0

© 2
2 v
%) I
o) g
c m, O o
= o ’ O
c = — ~ O
o \, ) QA
= | 0 NI
e g ° g
S
= Q g
o &

N

o]

f

1 1
56° 55°

20

1
57°

Fig. 2. Diffraction pattern for Ge-Ge| _,Sn, heterostruc-
tures, x = 0.03.
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Certain electrical parameters of the epitaxia layers
produced were determined using the van der Pauw
method. These layersturned out to have p-type conduc-
tivity with acarrier concentration of 10*~10'8 cm and
mobility of 15-20V scm™ at 300 K.

In conclusion, itisworth noting that by selecting the
conditions of liquid-phase epitaxy, we can obtain struc-
turally perfect epitaxial layers of Ge, _,Sn, solid solu-
tions on Ge substrates; this could be of interest in mod-
ern microel ectronics.
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Bending of an isotropic layer (or semilayer) weak-
ened by a through noncircular hole was considered
in[1]. A similar problem for an isotropic layer with a
circular hole was solved in [2, 3] using different meth-
ods. Study of a stressed isotropic layer weakened by
through holes in the case of diding fixation of its ends
(the so-called symmetric case) was undertaken in [4].
In all the papers mentioned above, the solutions to the
boundary value problems were based on the Vorovich
semi-inverse method. A number of electroelasticity
problemsfor alayer under various boundary conditions
imposed at its ends was considered in [5]. A method,
distinct from that developed in [4], for solving mixed
boundary value problems in the theories of elasticity
and electroelasticity for a layer weakened by through
inhomogeneities was described in [6].

We consider a piezoelectric-ceramic layer (-h<x; <
h, —c0 < X, X, < ) weakened by atunnel (i.e., directed
along the 0x;-axis) through hol es (cavities) whose cross
sections are smooth closed contours L i=12, ...,k
We assume that the side surfaces of the cavities are
force-free and the bending-torsional stressat infinity is

given by the uniform field oi"j’ (i,j=1,23).
The problem set above is described by the following

complete system of equations (volume forces and
charges are assumed to be absent):

the equilibrium equations (the summation over the
repeating subscriptsisimplied)

_ _90 . ._ :
OJO'” 0’ ai axi’ IvJ - 11 2131 (1)
the electrostatics equations
amDm = Ol Em = _am¢1 (2')

* Moscow State Technical University—
Moscow Automotive Institute, Moscow,
ul. Bol'shaya Semenovskaya 38, 105830 Russia
** QUmy State University,
ul. Rimskogo-Korsakova 2, Sumy, 400007 Ukraine

the Cauchy relations
= a a ,
&j = ‘2( iuj + jUi)- (3)

the equations of state for the piezoelectric ceramics
preliminary polarized in the direction of the 0x;-axis

Oy = C11€4 + C1p€y + C13€, — €31 F,,

Ty, = 2Cu€,, —€sEy,
Oy = Cpp€, + Cy4€y + C13€, — €51 F,,

Ty = 2C448xz - elSExa

“)

0,= C13(8x + 8y) + C33£z_e33Ez’

Txy = (Cll - C12)8xy’

Dy =¢enE +2e55€,,, Dy=¢eyE +2e58,

Dz = S33Ez + e31(£x + sy) + e33£z;
the boundary conditions at x; = +h
u; =0, 03=0, 05=0, ¢ =0; (5)

and, finaly, the boundary conditions on the cavity
surface
ogn; =0, kj=123,

D, = 0.

i

(6)

Furthermore, it is reasonabl e to use the set of equilib-
rium equations in displacements obtained from (1)—4)
asan initial system. These equations are

VO?U+cydiu+0,0 = 0,
VO?v +c,,05v +0,0 = 0, O° = 85+d5,

Cau0°W + Cou05W

+05{ C(0,u+0,v) + €07 + e53050} = 0,

1028-3358/01/4608-0551$21.00 © 2001 MAIK “Nauka/Interperiodica’



552
2 2 2
€070 +€5030 —es0°W (7
—e,05W—0.{e(d,u+d,v) =0,
(Ci1—Cp2),

1 1
U= 5(011‘*'012)’ V = 5

C=Ci3tCy, €= E5*t6y,
0 = U(0,u+0,v) +cosw+eds0.
We will seek the solution to set (7), which is skew-

symmetric with respect to the median plane x; = 0 of the
layer. We assume that
- . 2k +1
(v} = S {uvdsive vio= S,
k=0 (8)

(W) = 3 {0 coy
k=0

With regard to these relationships and Egs. (7),
we have

VKU, +0,6,=0, VKV +0,6, =0,

C
LigWi + Lisdy + Uykek =0,
e _
LogWy + Loy + Uykek =0,
Kg = DZ_ViHcZ)a Lz = CMDZ_VEESP €
Liy = Los = €50° = Vie8y, Loy = yids—e55 0%,

Bk = U(01u + 0,V ) + YiCW, + Y edy,

2 2

— ce e
0, = ex—

C
U, 63= 833+U

o, = Css—U,

Solving this system of equations, we arrive at

U—iVvy = ZVKVZ p4(_puza Q™ + 2i 35

3

W =Yy (=8, k=01,...,

m=1

(10)

3
O = Vi Y (3= Q"
m=1
Here, the function Q(km) is an arbitrary solution to the
Helmholtz wave equation (02 — v2u2) Q™ =0, Q,

GRIGOLYUK et al.

isan arbitrary solution to the equation (02— yop2 )Q, =
0, and p,,, are the roots of a bicubic equation [6].

The desired metaharmonic functions entering
into (10) are sought in the form

Q = ka(Z) Ko(YkHor)ds,

r=1(-1,

Z = Xy +iX,,

11
o™ = jp<““)(Z)Ko(vkumr)ds, (b
(= El + iEz gL,

where K (2) is the nth-order MacDonald function and
p(Q) and p” pi’

m=1,2,3,

(¢) are desired densities, with p{> = p{”..

In what follows, we assume that, on the cavity sur-
face, the stress vector components and the normal com-
ponent of the electric induction satisfy the expansions

N = Z N.siny,Xs, T= ZTksinykxg,
=0 k= (12)

[ 00

Z= z Z,Cosy,X;, D, = Z DY cosy, Xs.

k=0

It is reasonable to represent the boundary condition
on the cavity surface as

Oy + 0 — 2ilIJ(022—C711"'2i012) = 2(N-iT),
Re{€"(05—i05)} = Z,
D, = 0.

(13)

Here, Y isthe angle between the positive normal to the
contour L and the Ox,;-axis and N and T are, respec-
tively, the normal and tangential vector components of
the stress applied to the body surface from outside.

With the help of representations (11) and expan-
sions(8) and (12), the boundary value problem (13) can
be reduced to a set of integro-differential singular equa-
tions, which cannot be written out here due to its awk-
wardness.

As an example, we here consider a layer weakened
by a cavity whose cross section is a square with
rounded angles,

&, = a(cosd +ccos3op),

&, = a(sing —csin3¢): 0<sp <21, c = 0.14036

with abending load o7, = Px, applied at infinity.
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The distribution of the relative circumferential stress
Ogg/P aong the thickness coordinate.

Thedistribution of therelative circumferential stress
Og/ P at thepoint ¢ = T—ZT (wherethis stressis maximal)
along the thickness coordinate is shown in the figure.

Curves 1, 2, and 3 correspond to 2 =051, and 2,
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respectively. The numerical results were obtained for
piezoel ectric ceramics PZT-4.
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To date, descriptions of numerous observations of
unusual optical glows proceeding at low or middle lat-
itudes and at altitudes of 15 to 100 km in the evening or
night Earth atmosphere have been published. The
mechanisms of initiation of these glows termed red
sprites, blue jets, elves, and blue starters are unclear
today [1-3]. However, its correlation with the underly-
ing thunderstorm activity is without doubt. It has been
noted that red sprites correlate with positive lightnings
and are observed above regions of stratified clouds that
produce a convective-line trace in large thunderstorm
complexes. A structure consisting of 4 to 6 layersand a
high frequency of positive lightnings that transfer neg-
ative charge upward are intrinsic to these clouds [4-8].

Various explanations of the origin of these glows
were proposed. However, in al cases, an initiator is
assumed to be close to lightning. This lightning causes
aninitialy short (~100 us) electromagnetic pulsein the
atmosphere and, furthermore, a long-time (~100 ms)
rise of the electric field (a consequence of the charge
transfer by the quasi-continuous lightning current) [9].
At present, anumber of versions are being discussed in
theliterature. According to them, the glow of red sprites
is caused by either a usua breakdown of the atmo-
sphere [2] or arelativistic runaway-€electron discharge
[10-12]. In the latter case, a weaker (by an order of
magnitude) field is required.

Recently, a series of measurements of the electric
field above aregion of stratus clouds in large thunder-
storm complexes were carried out [4-8]. The authors
of [4] aso performed calculations of electric-field dis-
continuities above a stratiform cloud caused by positive
lightning. In the cloud model [4], the electric field is
formed by one charged layer and itsimage. An instan-
taneous neutralization of the lightning charges is sug-
gested, al values of the physical parameters being
taken from experiments. As aresult of these simplifica-
tions, the multilayer cloud structure and polarization of
the atmosphere are not taken into account. Thus, the

Russian Federal Nuclear Center,
All-Russia Research Institute of Experimental Physics,
Sarov, Nizhni Novgorod oblast, 607188 Russia

possibility of both imitating theintracloud charge trans-
fer and calculating the electrostatic cloud energy and
dynamics of theintracloud electric field is absent.

In this paper, athree-layer model of athundercloud
is described. Calculation results for the cloud structure,
parameters, and jumps of the quasistatic electric field
caused by positive lightning with allowance for atmo-
sphere polarization are presented. A possible correla
tion of the electric-field jumps with the initiation of
atmospheric optical phenomenais discussed.

MODEL OF A STRATIFIED THUNDERCLOUD

Let cloud layers be represented by three coaxia
charged disks with radius R and thickness d, which are
parallel tothe Earth’s surface and placed at the altitudes
Gh;. The corresponding uniform charge volume densi-
tiesare p; < 0, p, > 0, and p; < O (the enumeration
occurs from top to bottom). The charge surface densi-
ties are 0, = dp;; the disk charges are Q, = R?g;. We
assume the cloud, asawhole, to be electrically neutral:
0, + 0, + 0, = 0. In caculating the electric field, we
additionally introduce nine image disks. The first three
are symmetric to the cloud layers with respect to the
Earth’s surface. The other six are obtained as aresult of
the reflection of the cloud layers and three first images
from the boundary of the conducting atmosphere,
whichislocated at an atitude H,. The allowancefor the
electrosphere is important since near its boundary, the
fields of the lower and upper charges have the same
magnitude and are equally directed, which doubles the
field. The images are charged and located in such a
manner that the following 18 relations can be written
out in the accepted notation:

hy = —hs, hs = —h,, hg = —h,,
h, = 2H.+hy, hg = 2H.+h,, hy = 2H,+ h;,
h,, = 2H.—h;, h;; = 2H,-h,, h, = 2H.—h,,
04 = =03, O5 = =03, Og = Oy, W
0; = 0,, Og = O,, Oy = O,
019 = =03, O = =03, O3 = —0;.

1028-3358/01/4608-0554%$21.00 © 2001 MAIK “Nauka/Interperiodica’
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On the axis of the disk system at an altitude z, the elec-
tric field is represented by the formula

12

E(Z) = Zo-iq)(zi hiv R)! (2)

where

z-h  z-h }
|z—hyl R+ (z—h)?
and g, isthe dielectric constant.

Multiple probing of stratified thunderclouds showed
that the strength of the intracloud quasisteady electric
field usually do not exceed acertain critical value E,(2)
(z is the dtitude) [4-6]. The quantity eE,.(z) corre-
sponds to the minimum friction force of a relativistic
electron in air. This quantity is interesting in the fact
that when it is exceeded, the development of a specific
electric discharge, namely, a relativistic runaway-elec-
tron discharge, can arise [10-12]. The friction force is
proportional to the gas density:

o(zh,R) = %[

eEne(2) = eEof(2), 3)

where E, = 0.204 MV/m is the electric-field strength
corresponding to the minimum friction force at normal
air density and an electron kinetic energy of 1.2 MeV
[10-12] and f(2) isthe rel ative atmospheric density. The
threshold for the air breakdown by thermal electronsis
considerably higher, namely, E, 4(2) = 3f(2 MV/m. We
now define the overvoltage &(2) as aloca ratio of the
field strength to its threshold value (3):

_EQ@
&= e & )

Based on measurement results for the electric field in
stratified clouds and above them [4-6], we set the field
magnitudes, i.e., the overvoltages at four points of the
cloud axis, at dtitudes of z; = 16 km, z, = h,, z; = h,,
and z, = 1 km:

E(z) =-1 kV/m or &, = &(z;) = —0.0363,
0; = 8(z) = +1, 03 = 3(z) = -1, ®)
E(z,)) = +10kV/m or 0o, = &(z,) = +0.05.

The choice of the points z, and z; immediately below
the upper and the middle disks is not accidental. Since
the distance between the neighboring disks is much
smaller than their diameters, the field between the disks
isalmost uniform. Asfar asthe quantity E .(2), like the
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atmosphere density, exponentially decreases with alti-
tude, the maximum val ue || between neighboring disks
is attained below the upper disk, as follows from (4).
Measurements of the intracloud electric field do not
exhibit values |5|> 1 [4-8]. Therefore, we can consider
that in the limiting cases (that we analyze) and immedi-
ately before a lightning strike, the value |8] = 1 is
attained at two axis pointsin a cloud. The values of 9,
and &; were chosen in (5) in accordance with this con-
sideration. Combining the neutrality condition with
formula (2) and condition (5), we write out a system of
algebraic equationsfor determining the unknown cloud
parameters:

12
Zoiq)(zj,hi,R) = §;Ene(z), | = 1,2,3,4,
i=1

0,+0,+03; = 0.

By setting free parameters h, and R and solving the sys-
tem of equations with allowance for relations (1), we
can find the parametersh,, h,, 0,, 0,, and 0;. The value
of thefield jumpis

12
AE(z) = z (Oik—0)d(z h, R), (7
i=1

where g, are the final charge densities (after the light-
ning has occurred), which are here, in a certain extent,
free parameters since they depend on the method of
layer neutralization.

To determine the electric field above acloud at alti-
tudes exceeding 30 km after a lightning strike, it is
more reasonable to calculate the field jump (7) than the
field initself (2). Thisis substantiated by the fact that,
prior to this event, the field intensity at atitudes of
30 km and higher was much lower than 1 kV/m. Thus,
we assume that the cloud layers were screened by addi-
tional charged regions located at altitudes between 16
and 30 km, which were not taken into account in our
calculations. Actually, in calculating the field inside a
cloud or that at a small height above it, we should use
formula (2) with the values of o; taken before or after
the lightning strike.

The assumption on the instantaneous charge transfer
by a lightning has two consequences. Firgt, the field
jump penetrates upward without attenuation because
the atmosphere has no time for polarization. On the
other hand, the longer the duration of the lightning, the
lower the electrosphere boundary in which the field-
relaxation timeis shorter than the lightning duration. In
subsequent calculations, we assumed that the charge
transfer by a lightning occurs in accordance with the
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exponential law with a characteristictimet = 10 ms:
O td
0,(t) = 05+ [0,(0) — 0y expG—.
00

This value of T corresponds to the night altitude of
the electrosphere boundary H, = 60 km [12]. A multi-
plier

1

MY = T 4mz(z)[exp(4m£(z)) - exp%—%}

was used to take into consideration the vertical polar-
ization of the atmosphere and the weakening of the
electric field. Here, tistime and §(2) isthe conductivity
of the night atmosphere [12]. The electric-field jump
above a cloud (but with allowance for the atmosphere
relaxation) is —AE(z, t) = AE(2)A().

ELECTRIC-FIELD DISCONTINUITIES
ABOVE STRATIFIED THUNDER CLOUDS
INITIATED BY A POSITIVE LIGHTNING

To calculate cloud parameters prior to a lightning
strike, we assumed that the altitude of the lower layer,
the thickness of the layers, and the cloud radius were 2
to 5 km, 500 m, and 5 to 10 km, respectively. It was
found that the upper and middle cloud layers can be
located correspondingly at altitudes of 6.2 to 12.4 and
3.7 to 8.0 km. The calculated charge densities in the
upper and lower disks vary within—2.5 to —0.86 nC/m3,
while in the middle disk they vary within +2.5 to
+4.55nC/m3. All these values are close to those
observed previously [4—6]. The values of charges for
the positive layer turned out to be within the range
115-626 C. These values correspond to charges trans-

400
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Electrostatic energy, GJ

1 1 1 ]
0 1 0 1 2 3

Density in the middle layer, nC/m?3

Fig. 1. Electrostatic energy of acloud in the process of layer
discharge for h; =5 kmand R = 10 km.
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ferred by apositive lightning [9]. However, asis shown
below, complete neutralization of the entire positive
charge by a lightning is unlikely. According to the
charge values and disk altitudes obtained, the electro-
static energy of the plane-capacitor systemiscalculated
with corrections for edge effects taken into account.
Figure 1 exhibits the energy of a system consisting of
12 layers as afunction of the current charge density of
the middle and lower cloud layers. The right-hand
branch of curve / corresponds to a situation when the
lower and upper cloud layers preserve their charge and
only the middle layer is neutralized by the charge com-
ing from the Earth until the minimum energy has been
attained (this is the first variant of neutralization). The
energy minimum (in variant /) is attained as aresult of
discharging the middle layer from 2.5 to 1.67 nC/mq.
To this time moment, the charge of —130 C is trans-
ferred from the Earth, whereasthe energy dissipationis
close to 13 GJ. Furthermore, we assume that the light-
ning channel has a sufficient induction and a small
resistance, so that the charge transfer from the Earth
can be continued until the cloud energy comes back to
the initial energy (this is the second variant of neutral-
ization). The left-hand edge of curve 1 in Fig. 1 corre-
sponds to the end of the lightning in the latter variant.
The residual charge density in the middle layer is now
equal to 0.863 nC/m?, i.e., to 30% of the initial layer
charge. The charge transferred from the Earth is
—257 C. Thus, it turns out that the complete discharge
of one positive layer by alightning, as it was assumed
for certain cases in [4], is most likely impossible.
Whence it follows that the field-jump values are over-
estimated in [4].

The third variant of neutralization (the right-hand
part of curve 2 in Fig. 1) consists in the transfer by the
intracloud lightning of the entire charge of —136 C from
the lower layer to the middle layer. The energy mini-
mum is attained for p,, = +0.86 nC/m® = —p, and
Ps = 0, whiletheenergy releaseis~25.7 GJ. Thefourth
discharge variant (the left-hand branch of curve 2 in
Fig. 1) consists in the continuation of the negative-
charge transfer onto the middlelayer. However, the pro-
cess occurs from the Earth until a state is formed with
an energy equal totheinitial state. This condition deter-
mines the final values of both p,,=—0.29 nC/m? and the
charge of —182 C transferred from the Earth.

Figure 2 demonstrates the results of one of the cal-
culationsfor the distribution of the vertical electricfield
on the cloud axis at time moments prior to and after a
lightning in the case of the fourth neutralization variant
when the field undergoes a maximum jump. The enve-
lopes show thethreshold field (3). At an dtitude of 16 km,
the field after the lightning is equal to —17.4 kV/m. In
the third variant (when the jump is minimal), the field
is —=7.49 kV/m, which satisfactory agrees with the
observed data of about -5 kV/m [4]. We should take
into account that the measuring balloon was usually sit-
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uated dozens of kilometers from the strike point of a
lightning identified with a given field jump.

Figure 3 exhibits the calculated altitude depen-
dences for the field-jump values above a cloud for the
third (curve 2) and fourth (curve 7) neutralization vari-
ants. A usual breakdown and the runaway-electron dis-
charge are possible above the E,4(2) curve and the E,«(2)
curve, respectively. These dependences are obtained
without allowance for the weakening of the field dis-
continuity dueto the atmosphere polarization; however,
weimplied the el ectrosphere boundary at an altitude of
60 km while determining the positions of images. For
various scenarios of layer neutralization, the threshold
for the electron runaway is overcome at atitudes of
30-43 km and higher, whereas the usual breakdown
can develop above 60-67 km, which is close to the
results of [4]. Theincrease in the field jump (Fig. 3) at
the heights greater than 60 km contradicts the physical
standpoint and is completely a consequence of the
roughness of the model accepted; namely, it allows for
the electrosphere in the formation of images and
ignores the field decrease caused by the polarization in
the electrosphere. With the polarization taken into con-
sideration, the field jump does not penetrate above
75 km and the maximum value of & (which does not
exceed 12.5) is attained in 2025 ms after the lightning
has begun at an altitude of 62 km. We can make a con-
clusion that the usual breakdown above the cloud is
impossible since, in order for this to occur, it is neces-
sary that 6 = 15.

Thus, our calculations have shown that the neces-
sary conditions for the development of a relativistic
runaway-electron avalanche and a specific form of a
discharge can be attained within the altitude range of
30-73 km [10-12]. These conditions correspond to a
relatively small size of both the stratus cloud and values
of charges being transferred. It is this range that corre-
sponds to observations of red sprites. However, in order
to explain the observed glow intensity, overvoltages o >
1.5-2 are necessary at small altitudes, which would
provide an electron avalanche gain by a factor of 10!’
[12]. Such an intense avalanche could be developed,
e.g., beginning from 25 km in the field of a vertica
electric dipole whose negative charge of =100 C is sit-
uated at an altitude of 18 km [12]. In the given calcula-
tions, the avalanche can be developed only above
30 km. In addition, in this case, the overvoltage at an
atitude of 30 kmiscloseto 1 and very slowly riseswith
thedtitude. Therefore, the avalanche does not attain the
required amplification at atitudes of 50-70 km. Thus,
we can explain the blue jet observed at altitudes from
cloud tops up to 35 km neither by the runaway-electron
discharge nor, all the more, by a usual breakdown. In
my opinion, the results obtained do not reject the con-
cept that red sprite and blue jet areinitiated in acertain
way by jumps of the thunder field [2]. Indeed, here, a
simplified model of athundercloud is analyzed which
does not take into account the variety of natural condi-
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Fig. 2. Electricfield on the cloud axisfor hg =5kmand R=

10 km prior to (thin line) and after (thick line) a lightning
strike. (The case of the fourth variant of layer neutraliza-
tion.)
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Fig. 3. Altitude dependence for the values of quasistatic
electric-field jumps above a stratus cloud (h; = 5 km and

R = 10 km) which accompany a positive lightning.

tions involved, e.g., nonuniformity and fluctuations of
intracloud charge distribution and the specific features
of charge transfer by lightning.

ACKNOWLEDGMENTS

This work was performed under the financia sup-
port of the International Scientific-Technological Cen-
ter, project no. 490.

REFERENCES

1. D. D. Sentman and E. M. Wescott, Phys. Plasmas 2,
2514 (1995).



558

2.

3.
4.

MIRONYCHEV

D. J. Boccippio, E. R. Williams, S. J. Heckman, et al.,
Science 269, 1088 (1995).

W. A. Lyons, Mon. Weather Rev. 122, 1940 (1994).

T. C. Marshall, M. Stolzenburg, and W. D. Rust, J. Geo-
phys. Res. 101 (D3), 6979 (1996).

T. C. Marshadl, M. P. McCarthy, and W. D. Rust, J. Geo-
phys. Res. 100 (D4), 7097 (1995).

T. C. Marshall, W. Rison, W. D. Rust, et al., J. Geophys.
Res. 100 (D10), 20815 (1995).

T. C. Marshall and W. D. Rust, Bull. Am. Meteorol. Soc.
74, 2159 (1993).

8.

9.

10.

11

12.

M. Stolzenburg, T. C. Marshall, W. D. Rust, et al., Mon.
Weather Rev. 122, 1777 (1994).

M. A. Uman, The Lightning Discharge (Academic, San
Diego, 1987).

A. V. Gurevich, G. M. Milikh, and R. A. Rousel-Dupre,
Phys. Lett. A 165, 463 (1992).

R. A. Roussal-Dupre, A. V. Gurevich, T. Tunnell, et al.,
Phys. Rev. E 49, 2257 (1994).

R. A. Roussel-Dupre and A. V. Gurevich, J. Geophys.
Res. 101 (A2), 2297 (1996).

Trandated by G. Merzon

DOKLADY PHYSICS Vol. 46 No.8 2001



Doklady Physics, \ol. 46, No. 8, 2001, pp. 559-561. Translated from Doklady Akademii Nauk, Vol. 379, No. 4, 2001, pp. 470-472.
Original Russian Text Copyright © 2001 by Lyubutin, Mesyats, Rukin, Sovikovskiz, Alichkin.

TECHNICAL

PHYSICS

Subnanosecond Switching of Gigawatt Peak Power
Using a Silicon Avalanche Shar pener

S. K. Lyubutin, Academician G. A. Mesyats, S. N. Rukin,
B. G. Slovikovskii, and E. A. Alichkin

Received March 12, 2001

Electrical pulses with time durations from tenth
fractions to several nanoseconds with a peak power of
hundreds of megawatts to several gigawalts are
required in various fields of electrophysics and itstech-
nological applications. Up to now, the sole method of
producing such pulses was the use of ultrahigh-pres-
sure gas spark gaps as switches. The well-known short-
comings of the spark gaps, e.g., their limited lifetime
and pulserepetition rate, aswell astheinstability of the
parameters of pulses formed, are the main obstacles
that hamper the employment of powerful short pulsesin
technologies and high-precision physical experiments.
In this connection, the development of new superin-
tense and superfast semiconducting current switchesis
of great practical importance.

One of the most high-rate methods of current
switching in semiconductors is based on the formation
of adelayed shock-ionization wave in the base of p*—n—
n*-diode. In this case, the rate of the base filling by the
electron-hole plasma can exceed the carrier rate in the
current saturation region by a factor of ten [1, 2]. At
present, superfast semiconductor switches, the so-
called silicon avalanche sharpeners (SAS) based on this
principle, are being developed [3]. They are capable of
forming subnanosecond pulses with a rise time on the
order of 10° s. The most powerful SAS with several
semiconducting structures connected in series form
pulses with an amplitude on the order of 10*V and a
peak power up to several megawaetts [3, 4] at the 50-Q
load.

The development of an SAS with an operating volt-
age exceeding 100 kV and a switching power of hun-
dreds of megawatts and higher is of practical interest.
These SAS could be, in this case, an alternative to
superhigh-pressure gas spark gaps. In this paper, the
results of the first experiments on switching power by
SAS on the basis of a delayed shock-ionization wave

Institute of Electrophysics, Ural Division,
Russian Academy of Sciences,
ul. Amundsena 106, Yekaterinburg, 620016 Russia

were enhanced by more than two orders of magnitude
and reached 1 GW at a pulse duration of 1.8 ns.

The sketch of the experiment is shown in Fig. 1.
A solid-state SM-3NS short-pulse charging generator,
whose characteristics are given in [5], was used to pro-
duce an overvoltage at the SAS under study. The out-
put-pulse formation unit of the generator contains an
inductive energy store L and a current semiconductor
opening switch (SOS) on the basis of SOS-diodes with
a subnanosecond current cutoff [6]. For exciting a
delayed shock-ionization wave, a rise-time rate of the
reverse voltage of ~10'> V/s per one structure is
required [2]. In our case, the generator provided a volt-
age rise time at the open output at a rate of ~10'4V/s
(450 kV for ~4 ns), which was sufficient for wave exci-
tation when the number of in-series structures attained
~100. A coaxial 50-Q oil-filled pulse-forming line with
an outer diameter of 90 mm was connected to the
SM-3NS generator output. In the experiments, the line
length varied from 5 to 20 cm. The SAS under study
was mounted between the line output and the resistive
load R. A blocking diode / was installed between the
output of the charging generator and the inner line con-
ductor, which eliminates plasmainjection into the SAS
in the case of the appearance of a positive-voltage pre-
cursor pulse at the stage of SOS direct pumping.

The charging voltage of the pulse-forming line and
the voltage in the load were monitored using capacitive
broad-band voltage dividers, 2 and 3. The measurement
of the current flowing through the SAS was carried out

Pulse-forming line
SAS R

il

—_ —_

2| 5]

Fig. 1. Sketch of the experiment.
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Fig. 2. Oscillograms of (a) an SAS current pulse in the
mode of the short-circuited load and (b) the voltage pulse
for theload R, = 53 Q. The horizontal scaleis 1 ns/division.

with the help of a low-inductive shunt mounted in the
load circuit. A digital TDS684 oscilloscope with a
1-GHz transmission band was used for pulse recording.
Theintrinsic transient characteristic of the entire detec-
tion circuit was no longer than 500 ps. In the process of
measurements, the signal attenuation in the measuring
cables was taken into account. The overall measure-
ment accuracy was no worse than 10%.

In preliminary experiments with an SAS terminated
by a matched load R, = 50 Q, the length of the pulse-
forming line was varied. This line determined the volt-
age at the SAS and therate of the voltagerise. The num-
ber N of the series structures and their area S in the
sharpener were adjusted to obtain a maximum pulsed
power intheload. The optimized SAS contained N = 144
silicon semiconductor structures of p*—p-n-n*-type,
which were connected in series. The structures were
prepared according to diffusion technology with a
deeply buried position of the p-n-junction. The base
length and the structure area were approximately
120 um and 6.75 cm?, respectively. The length of the

LYUBUTIN et al.

entire device was 105 mm. The blocking diode 1 con-
sisted of 60 identical structures each with an area of
2.25 cm?. The resistive load R, was assembled on the
basis of TVO-2 low-inductive carbon resistors (12 in
parallel).

In the case of current cutoff by the SOS switches,
the pulse-forming line is charged from the inductive
energy store L viathe blocking diode /. In the experi-
ments, the charging time and the line voltage lay within
the ranges 3-5 ns and 240-350 kV, respectively. An
oscillogram of the current through the SAS in the |oad
short-circuited mode is shown in Fig. 2a. In this exper-
iment, the length of the pulse-forming line was 7 cm.
The line was charged up to ~300 kV for ~3 ns. When
charging the line, the displacement current passes
through the SAS, forming a precursor pulse, and then,
the process of SAS switching-on follows. The ampli-
tude of the current through the SAS was 6.5 KA. The
precursor-pulse amplitude was 10% of that of the main
pulse. Therefore, the switching time could be deter-
mined from the current and voltage oscillograms at the
level of 0.2-0.9 of their amplitudes. Under these condi-
tions, the current rise time in the load short-circuited
mode was 0.68 ns. The current rise time in the steepest
region of the switching characteristic was approxi-
mately 7 KA/ns.

In Fig. 2b, an oscillogram of the voltage pulse in a
53-Q load is shown for aline length of 7 cm, a pulse
amplitude of 232 kV, and apeak power of 1 GW. Inthis
case, therisetime at the amplitude level of 0.2-0.9 was
0.85 ns and the pulse duration measured at the pulse
half-height was 1.8 ns. The maximum rates for the rise
of the current and the voltage were 3.6 kA/ns and
190 kV/ns, respectively.

The specific feature of the experimental operationis
that the SAS does not represent a concentrated element
but isacontinuation of theinner conductor of the pul se-
forming line, the SAS length in the majority of experi-
ments exceeding the geometric length of theline. Inthe
process of sharpener switching, the filling of the line
section inwhich the SASisinstalled occursthrough the
electric and magnetic field of the running electromag-
netic wave. This fact explains the experimental data
obtained. First, the duration of the pul ses being formed
coincides at their half-height with the time of double
passage of the wave aong the line, whose length is
equal to the summary lengths of the pulse-forming line
and of the SAS. Second, the pulse amplitudein theload
is 70-80% of the charge voltage in the pulse-forming
line instead of 50% when the charged line is switched
in the matching load with a zero initial current.

We also tested the circuit in the frequency operation
mode. The maximum pul se repetition rate was 3.5 kHz
and was limited by the capabilities of the SM-3NS
power-supply generator. Due to the limited power of
the feeding circuit, the reduction of the generator input
voltage occurred and, as a consequence, the amplitude
of the output pulses decreased. At apulserepetition rate

DOKLADY PHYSICS  Vol. 46
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of 3.5 kHz, the mean power introduced into the load
R = 53 Q attained 3.8 kW, while the pulse amplitude
decreased to ~200 kV (~750 MW). In the mode with
the maximum pulse repetition rate, the generator was
switched for atimefrom 1to 3.5 ns. Thelimitation was
associated with the low shunted power (24 W) of the
load resistors.

Thus, the work carried out has shown the feasibility
of formation of super-powerful short pulses by a solid-
state semiconductor device on the basis of a delayed
shock-ionization wave. The levels attained in pulse
power, voltage, and duration (1 GW, 230 kV, and
1.8 ns) correspond to the characteristics of frequency
generatorswith high-pressure gas spark gaps: 0.3-3 GW,
140-210kV, and 0.4-1.1 ns[7, 8]. The results obtained
areexplained, in thefirst turn, by theimplementation of
a powerful solid-state feeding generator with a high-
rate output voltage rise in the experiment. This allowed
us to realize the mode of the delayed shock-ionization
wave in the sharpener with alarge number of semicon-
ductor structures. In this connection, further studies on
the enhancement of the power being switched-on can
be associated with the use of more powerful feeding
generators and with increasing the number and area of
structures involved in a sharpener.

DOKLADY PHYSICS Vol.46 No.8 2001
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Recently, a new class of composite materials con-
sisting of a polymer matrix and afiller in the form of
small rubber particles with sizes on the order of
100 micron in diameter appeared [1-5]. In this study,
we discovered that a gradual increase in filler concen-
tration leads to two successive transitions of the defor-
mation mechanism of amaterial made on the basis of a
high-density polyethylene matrix. The first transition
(from plastic to brittle failure) is observed after intro-
ducing into the material only several particles of an
elastic filler per entire sample volume. For filler con-
centrations of 40-50 vol %, the second transition (from
brittle to plastic failure) occurs. In this paper, we
obtained the criterion for such atransition.

To prepare acomposite material, we used high-den-
sity polyethylene with the trade mark 277-73. As a
filler, we applied rubber particles prepared on the basis
of ethylene-propylene-diene rubber obtained by grind-
ing industrial rubber wastes. The size of the rubber par-
ticles varied between 100 and 600 pm.

The composite material was obtained by mixing in
a melt with the help of a single-screw laboratory
extruder. The filler concentrations were taken within
the range between 2 and 95 wt % (1.8-94.5 vol %). We
used the material obtained to make 2-mm-thick plates
through hot pressing at 160°C and under 10-MPa pres-
sure followed by cooling under pressure to room tem-
perature. Next, for our investigations, we cut out sam-
ples in the form of a double-ended spade with dimen-
sions of the useful part of 5 x 35 mm.

The mechanical properties of the composites were
determined by a 2038 R-005 tension testing machine at
room temperature. The deformation rate was
20 mm/min. After testing, the fracture surface was
examined with the help of an MBS-9 optical micro-
scope.

Figure 1 showsthe stress—strain diagrams of unfilled
high-density polyethylene (curve 1) and a series of

Enikolopov Institute of Synthetic Polymeric Materials,
Russian Academy of Sciences,
Profsoyuznaya ul. 70, Moscow, 117393 Russia

composites composed of high-density polyethylene
with a different content of the filler (curves 2-5). The
polyethylene deformation curve was characterized by
forming a neck and a characteristic tooth-shaped yield
curve. The neck propagation was unstable, and the sam-
ples failed in the process of the neck growth. In the
course of deformation, polymer hardening did not
occur and the rupture stresswas equal to the lower limit
of theyield stress.

Introducing rubber particles into polyethylene
changed both the shape of the stress-strain diagram and
the character of the materia failure. For a relatively
small rubber content, the deformation diagram
acquired a shapetypical of brittle materials (curves2, 3
in Fig. 1). In order to determine the critical concentra-
tion of particles, which corresponds to the transition to
brittle failure, we prepared samples containing only a

o, MPa
30

20

10

]
300
€, %

Fig. 1. Tensile stress o as a function of strain ¢ for
(2) unfilled high-density polyethylene and composites of
high-density polyethylene with rubber. The filler content is
(2) 4.3, (3) 26.7, (4) 46, and (5) 88.4 vol %.

| |
0 100 200
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few rubber particles. These samples exhibited brittle
failure before neck formation. Their ultimate strength
practically coincided with the upper yield point of the
unfilled matrix. Thus, after introducing only one filler
particle into the entire sample volume, the material
becomes brittle. This fact is illustrated in Fig. 2 as a
photograph of a sample containing a single rubber par-
ticle. Sample constriction in the fracture plane is
absent, and thefailureisactually brittle. The crack grew
starting from the particle (that, apparently, served asits
nucleus) rather than along the matrix—rubber interface.
This fact indicates that the adhesion strength of the
interfacial polyethylene-rubber boundary is higher than
the particle’s strength.

At first glance, after introducing rubber particles,
the brittle fracture of the polymer is unexpected. It is
well known that introducing rubber particles makes it
possible to obtain shock-proof thermoplastic polymers
[6, 7]. In content, rubber plastics are analogs of shock-
proof polymers but sharply differ in structure. First, the
particle sizes are different. In shock-proof polymers,
particle diameters are on the order of a few hundred
nanometers compared to afew hundred micronsin rub-
ber plastics. Second, for arubber concentration exceed-
ing 40 vol %, shock-proof polymers undergo phase
inversion and the material transforms into rubber filled
with polymeric particles [8]. In contrast, in rubber
plastics, the filling degree is as high as 95% but the
polymer preserves the phase continuity and all matrix
properties [9].

Figure 3 shows the strength (curve /) and the frac-
turing deformation (curve 2) of the composites as func-
tions of concentration of the rubber particles. After
introducing an elastic filler, the ultimate strength
increases and becomes higher than the polymer
strength. This is explained by the transition to brittle
failure. The strength of an unfilled polymer is equal to
the neck propagation stress (lower yield stress). After
introducing a filler, material failure occurs when the
stress approaches the upper yield point, which causes
an increase in the failure stress. The further increasein
the filler concentration gives rise to monotonic reduc-
tion of the composite strength.

Introducing a filler causes a sharp decrease in the
ultimate elongation (by a factor of approximately 20).
For particle concentrations within the range between 2
and 30 vol %, the ultimate elongation is constant and
equals 10-15%. A further increase in particle concen-
tration up to V; = 40-50 vol % results in a gradual
increase of the fracturing deformation of the composite
(curve I in Fig. 3). For a filling degree higher than
50 vol %, the material is deformed macrouniformly. In
the process of deformation, there appear a set of shear
bands on the surfaces of the samples and microzones
areformed in which the matrix plastic flow islocalized.
These factsindicate that, within this range of composi-
tions, the material-deformation mechanism changes. It

DOKLADY PHYSICS Vol. 46
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Fig. 2. Example of a sample containing one rubber particle.
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Fig. 3. Dependence of (1) strength o, and (2) fracturing
strain g, of the composites as functions of the volume frac-
tion of rubber particles V;.

is worth noting that the transition to the macrouniform
deformation of acomposite was previously observed in
isotactic polypropylene filled with Al(OH); particles
that were previously subjected to the action of an anti-
adhesive substance in order to decrease adhesion to the
matrix [10].

We now consider amodel characterizing the transi-
tion from brittle to plastic deformation. In this model,
the spherical particles are assumed to be situated in the
sitesof aregular cubic lattice (Fig. 4) [11-13]. It is nat-
ural to suppose that the material flow isinitiated in the
cross section AB in which the area of the polymer
matrix is minimal. As was mentioned above, when the
concentration of rubber particles exceeds 50 vol %, a
large number of microzones is formed in the plastic
flow. As a result, the sample consists of alternating
areas of plastically deformed microzones and undis-
torted material. In the model under consideration, these
zones correspond to planes crossing particle centers.
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Fig. 4. Model of the composite. The arrows indicate the
extension direction.

We assume that the first yield microzone was
formed in the AB plane (Fig. 4). The next microzonein
the CD plane can appear provided the strength of the
formed zone is higher than that required for the appear-
ance of the second microzone. Mathematically, this
condition iswritten out inthe form o, > o,, where g, is
the strength of the microzone and o, is the upper yield
stress of the composite. Thus, acriterion characterizing
the transition from brittle to plastic deformation hasthe
form [14]

0,=0,. (1)

The deformation of the composite, while initiating
plastic deformation, is not strong (~10%), and the stress
in the rubber particlesis negligible compared to that of
the matrix. As a consequence, in the case of initiating
plastic deformation, the particles behave like pores.
The effect of pores on the upper yield stress o, of a
composite was studied rather thoroughly, and oy is
fairly well described by the relationship [15]

oM

where o, isthe upper yield point of the matrix and V
is the volume fraction of thefiller particles.

It is evident that the failure of the composite occurs
through the crack growth along the weakest cross sec-
tion of the material (the AB planein Fig. 4). Unlike the
initiation of plastic deformation, the stress in rubber
particlesin the course of failure can be compared to the
matrix strength. The strength of the composite is equal
to the sum of the strengths in both the matrix and the
particles in the AB plane with allowance for their cross
sections:

0,= O-msm"'o-fS‘- (3)

Here, o,,, isthe matrix strength, equal to the lower yield
point in our case; o; is the strength of the rubber parti-
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cles, and S,, and S are the cross sections of the matrix
and the rubber particles, respectively. It is easy to show
that the area of particles in the AB plane is equal to

%[Vf% . Thus, Eq. 3 takes the form

911 on
g, = om%—e&vfﬂﬁmf #%vfm. )

Thetransition from material brittle behavior to plas-
tic behavior is determined from Egs. (1), (2), and (4):

.= }-@ Oym—On |:J3/2
Vf %/;[Gf + Oym— o-mD 1 ©)

where V{ isthe critical degree of filling. According to

Eqg. (5), the critical concentration of the filler depends
only on two parameters, namely, the strength of the par-
ticles and the height of the tooth shaped yield curve,
which is equal to the difference 0, — O,

The value o; = 8MPais determined by extrapolating
the dependence of the composite strength to V; = 100%
(Fig. 3). Thelower yield stress of the matrix o,,, isequal
to 17 MPa. Substituting the characteristics of the matrix
and the filler (0,, = 28 MPa, o; = 8 MPa, and 0, =

17 MPa), we obtain V§ ~ 35%. This estimate of the

critical filler concentration is in satisfactory agreement
with experimental data.

For the degree of filling V; < 35 vol %, the strength
of microzones is lower than the composite yield
strength (o, < o) and the composite failure occurs as
brittle. At V; > 35 vol %, the reversed inequality o, > o,
isvalid and the composite is plastically deformed. The
transition from brittle to plastic deformation is
explained by the fact that the particles do not exfoliate
from the matrix and undergo a load whose value is
comparable to the height of the tooth-shaped yield
curve. Thisfact leads to stabilization of the composite-
material deformation.

Comparing Egs. 2 and 4, we can see that the ine-
quality o, > o, isfulfilled for any degree of filling pro-
vided the matrix strength is higher than its upper yield
point. Thisimpliesthat there exists a principle possibil-
ity of avoiding composite brittle failure if the matrix
capability of the strain hardening is so high that the ulti-
mate strength exceeds the yield point.
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In this paper, we prove that elliptic trajectories of
classical unperturbed Keplerian motions, which are
unstable in the sense of Lyapunov, are stable in the
Joukowski sense.

The equations for unperturbed Keplerian motions
have the form

% +Kr o =0, i=123, 0
r? = X+ %+ G,
. d’x . o
where X; = F and K # is the gravitation constant.
t

Introducing a new independent variable s with the
help of the relationship

dt
= = 2
s ()
and denoting

X, = uf—ug—u§+ui,

X, = 2(UjUp; —Ugly), X3 = 2(UjUz—UyUy),

we arrive at the regularized differential equationsin the
variables u;, which take the form

u}'+guj =0, j=1234, 3

"+ 2hr = K2,
where -h isthe total energy [1].

As was proved in [1], an arbitrary €elliptic solution
(with h > 0) to classical Newtonian equations (1) is
unstable in the Lyapunov sense and any solution to reg-
ularized system (3) is stable in the Lyapunov sense for
h > 0. We here prove that the trgjectories of Keplerian
motions (1) are stable in the Joukowski sense.

Russian Open State Technical University
of Railway Transport,
ul. Chasovaya 22/2, Moscow, 125808 Russia

In what follows, we will use the general canonical
theory [1] in the generalized phase space. Let g, and p,
be the generalized coordinates and momenta, respec-
tively, H(p;, g;, t) be the Hamiltonian, and P;(py, g, t)
be the nonconservative forces. The generalized Hamil-
tonian variational principle [1, 2] states that

t
O O,
{EIB[Z Pidi — H} + Zpiaqut =0, “4)

whereH =H(p,, g, t); P=P;(p, G t); 1, k=1,2, ...,
n; and the quantities dq; are the displacements from the
point (q;, ..., g, to the point (q, + &q,, ..., 0, + 00,),
with these points being on the actual and varied trajec-
toriesin g-space, respectively, and corresponding to the
same instant of time.

From (4), it is easy to obtain the following Euler
equations of motion for the mechanical system:

. _ _oH
p = _aqi+P“

. _ OH .
G = TR i=12..,n. (5
We note that variational problem (4) is invariant with
respect to arbitrary noncanonical transformations of the
dependent variables g; and p; .

We now introduce a new independent variable by
the following manner. Instead of (2), we consider the
more general transformation

= =pu>0, ©)

where pisacontinuously differentiable scalar function
of ;, Gy, ..., O

We now generalize the classical concept of the
canonical transformation by introducing a differentia
transformation (6) of the independent variable. In this
case, wetreat the physical timet asanew coordinate g,
and introduce the conjugate momentum p, in the varia-
tional principle. The meaning of the symbol P, will be
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elucidated below. Then, variational principle (4) takes
the following form:

I@{ dg; ,

dg
P.——u(H + o)

O
+ uPydq, + zPiBi s =0,
HF000q0 l-li qgj e
H = H(p;,q,t),

K = u(p; Gis Pos do) >0,

Hence we obtain the following set of differential
equations of motion:

Pi = Pi(Pw O 1),
ibk=12..,n

do; _
% ”ap, {H"'po}apl ®)
d
= ur{Hep g ©)
dp _  0H oy
@ = MGg (H¥pdSE+uP, (10)
dp, _ _ 0H o1
G5 - M3g. ~{H*Pd aq0+uPo- (1)

We specify the conditions required for the quantity

H(H + po) (12)

(called a generalized homogeneous Hamiltonian) to be
an integral of motion. For this purpose, we set

L 9H
j K
,-; op;

where P, is a negative dissipative force.

We imposetheinitial conditionsfor p, at the instant
of timet=q,=s=0. If weset p, =—H, then the func-
tions p(H + py) and H + p, vanish on the trajectory.
Under these conditions, the quantity p, is equal to the
total negative energy and Eq. (9) reducesto

dgo _ .
as W

thus, time transformation (6) becomes one of Egs. (8)—
(11). Findly, Eqg. (11) acquires the form of the energy
equation:

(13)

dpo oH

ds u6_q0

In the rectangular Cartesian coordinate system, with p,,
p,, and p; being momenta, unperturbed Keplerian prob-

+ UP,. (14)
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lem (1) is described by the Hamiltonian

1
H(ta X11 X21 X3’ pl! p21 p3) = é(pi + pg + pg) - Kzry
(15)

r? = ¢+ + X5,

which generates a canonical system of six equations:

dx, _ 0H dp. _ oH _
i op; dt - _axk’ k=12,3. (16)
The inclusion of the time transformation g—; =

(X, X0, X3, P> P2y P3) NECESSitates introduction of the
corresponding homogeneous Hamiltonian,

1 ;
Hy = H+po = S(Pi+ P2+ pg) =K T+ po. (17)

and an associated system of eight equations:

dx _ oHy dp; _ dH,

dt ~op,’ dt  ox’ (1)

j=01,23.
Here, X,(t) =t, py(t) =—H(t) isthetotal negative energy,
and the initial conditions have the form

%(0) = 0, po(0)
= —H(0, x,(0), X,(0), x3(0), p;(0), p-(0) , p3(0)).

Hence the new functions x(s) and p.(s) of s can be
found from the system of equations

dX' al:'h dpj _

dt

apja E - ax = 01 1!2131

(19)

where H,, = pH,, and the initial conditions for prob-
lem (19) are the same as at s = 0. Therefore, the time
transformation need not be taken into account since it
coincides with one of Egs. (19).

Next, we consider the cases when

L= (20)
or
h=— @)
N2Pg
In the cases of (20) and (21), the fictitious time oTls =

Xdlt (i.e., dt = xds) and the generalized eccentric anom-

ay E= 2@
pendent variables.

s, respectively, should be treated as inde-
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Under the above conditions, variational problem (7)
for the perturbed motion has the form

dxO

Sz|:J
I%ﬁ{po ds

dXi D r 2 KZ
P —=> pi-
"2PE R P

Po
eV + [ rm} ——€Py0X,
«/ Po 2.0 J2po

(22)

Py = —ZPjpj, i,j =123
i

Here, X, = ¢, = tisthe physical time, p, isthetotal neg-
ative energy, V is the potential, eP; are the forces that
cannot be obtained from the potential, and € is a small
perturbation parameter.

For variational problem (22), the Euler equations
lead to the following system of equations:

dx; r :
= T 1, 2, 3, (23)
ds «/Zpop
dx, o
- = pl ——+eV+ pd]
ds %_ZZ O 2p8
(24)
r 2
- - pi —K +£rVi|
2./2p, {22 J2p;5
dp _ _r _D—K—Zx-—sa—vD
ds /2p, B “oxH
2
By Koy pg—
2 i ar.J/2po
0 2 0 (25)
sz' P
+ r EPi = _D l + _da_l
2P %A/Zpo 2Dr
O O
€ c')(rV)+ r -
—_ SPi, I = 11 21 31
J2po 9% [2p,
dp, r [ v }
o — + P 26
ds /2p, 6X0 ° 20

Let the solution x;(S), X(9), p;(S), Py(S) to Egs. (23)—
(26), which is specified by the initial conditions x;(0),

DRUZHININA

X5(0), pi(0), and py(0) at s = 0, correspond to the
solution x;(t) to Egs. (1). The solution x;(t) to Egs. (1)
is referred to as stable in the Joukowski sense if, for
each € > 0, there exist numbersd,>0,i =1, 2, 3, and 4,
such that the inequalities

|%;(0) —%(0)| <&,
|pi(0) — p;(0)| < B,
follow from the inequalities

[X0(0) —%o(0)| <3,
|Po(0) — Po(0)| <,

%(S) = %i(S)| <&, [Xo(S) —%o(S)| <k,
Ipi(s) = Pi(s)| <&, |po(S) —Po(s)| <& [s>0.

This formulation of the stability in the Joukowski
sense is a concrete definition of that introduced and
studied in [3] for ageneral smooth dynamical system.

Theorem 1. Any solution x;(t) to Egs. (1) is stable
in the Joukowski senseif h> 0.

Proof. We substitute the variabl e defined by (6) into
(1) and passto Egs. (23)—26). We set € = 0 and assume
that the energy does not varied. It is sufficient to prove
that any solution to system (23)—(26) is stable in the
Lyapunov sense. For € = 0, system (23)—(26) has the
following first integral:

= L K* s—) xp|+C 27
2po| ,/2p, Iz o
where C is an integration constant.
According to Kepler's law, we have
Z X P = ./2poesinE, (28)

where E = s + const is the eccentric anomaly and e is
the eccentricity.

Theleft-hand side of Eq. (28) isa periodic function.
It follows from Eq. (28) that varying the initial condi-
tions for the quantities x, and p; results in a periodic
variation in the time x,. In this case, the coordinate X,
(considered asafunction of s) isstablein the Lyapunov

sense. Multiplying Egs. (23)—(26) by ./2p, and elimi-
nating the quantity p; does not influence the stability in
the Joukowski sense. Then, we obtain

dx; fx” O
d’x 2 %ds dx,  Bebdst O
— - T ot P
dt r 0o 2r 0
0 0 (9
- 6(rV)+r epP, 1=1,23,
ox;
dpy _ i
E { "2 P } G0
]
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>
dXO _ I - ds 2 1
s 5 > —K"+erV TN (31

In the system of equations (29)—(31), the quantity s
is not a generalized eccentric anomaly, but it is propor-
tional to this anomaly.

For € = 0, the solutions to Egs. (29) and (30) are sta-
blein the Lyapunov sense. Equations (29) and (30) coin-
cide with those for x and p, (p, = h) obtained in [4, 5],
inwhich the stability in the Lyapunov sense was proved
with the help of the Levi-Civita transformation.

Since the solutions to Egs. (29) and (30) are stable
in the Lyapunov sensefor € = 0, the solution to Egs. (1)
for h > 0 isstable in the Joukowski sense.

The proposed method of treating the stability for the
trajectories of classical Keplerian motions does not
employ the concept of atime variable introduced in [1]
and can be used not only for ordinary coordinates but
also for KS-coordinates. The corresponding vector KS
equations have the form

d’u  h
— +z-U = 4au(lul V)+—|u| L'P,

2 *3 (32)

o
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= el Sy —2e [ TR (33)
ot
dt
at | 12 [ K2+l V}Zh (34)
wherep, =h, x, =t.
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The bounded two-body problem on a sphere of unit
radius is related to the Hamiltonian system with two
degrees of freedom described by the Hamiltonian

H= 9+—Pi"—+1+w(p9cos¢—p¢sin¢cot9)—0(cot9
20° " srtal

(see [1-3]). Here, 8 and ¢ are spherical coordinatesin
the moving reference system related to a body with
nonzero mass, Py and p, are momentum components
conjugated to these coordinates, wisthe angular veloc-
ity of a body with nonzero mass, and a is the gravita-
tional constant.

We consider the system with Hamiltonian H in com-
plexified phase space M*, which isthe direct product of

the complexified circle S}D with coordinate 8(mod2T1)

except for points 0 and T, the complexified circle Sé

with coordinate ¢, and the two complex straight lines
C" with coordinates pg and py .

At a =0 or w = 0, the system under study has an
additional analytical firstintegral (i. ., anintegral func-
tionally independent of the Hamiltonian).

According to the numerical calculations [3], this
integral seemsto be absent at a # 0, w # 0. The main
result of the present paper is the following theorem
proving this conjecture.

Theorem. At a # 0, w# 0, the systemwith Hamilto-
nian H has no additional meromorphic first integral in
the phase space M.

Proof. Hamiltonian H isinvariant with respect to the
involutory symplectic diffeomorphism

JM—M, J:(6,0,ps py) — (6+ T, Py, Py)-

The induced Hamiltonian system on the factor man-

ifold M = M/J has a one-parameter family of phase
curves ' (k), k O R. These curves do not correspond to

Institute of Radio Engineering and Electronics,
Russian Academy of Sciences,
ul. Mokhovaya 11, Moscow, 103907 Russia

the equilibrium positions and are defined by the equa-
tions
b=p,=0 1% _acotd = k
pq) ’ 2p ’
wz
wherep=pg+ w, k=h+ > and his the constant in

the Hamiltonian.
In the phase curve I' (k), we have

4
1
2o |(P—P),
i=1

-1t 2 ) =
cote—a@p I% p

p1 = J2(k+ai), p, = —p;,

|03=517 p4:62-

Taking p asacoordinate in the phase curve I (k), we
find that the latter isthe complex plane C except for the
pointsp,,j=1,2, 3,4

To simplify the notation, we denote d$ as ¢, dp, as
Py, and the derivative with respect to p as prime. Then,
we write the reduced set of variational equations along
the phase curvel (k), i. e., the constraints on the normal
variational set of equations along this phase curve onto
the zero equiscalar surface of its first integra dH
(see[4]). These equations have the form

-2k P
0 = 2002 Py
|'|(p—p,-
. 2_2k W
p:b = _4Gw¢_4__p_j_(£.___2mp¢_4_9_:_____

[1(P—P)

i=1

[1(P—p)
j=1

Introducing the notation x = PpPs Y = % we

rewrite Egs. (1) in the form of a Fuchs set:

y' =y ===V )
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wherep, =0,
o, 10 O 0

A =00 50 A=0" %0 j=123a4
0 o A= .
Oop 10 &

4
-0 4 =
r = 2p;' a, 0C, ZA] 0.
j=1

Itisobviousthat all solutionsto set (2) are holomor-
phic at the point p,.

Near thepointp;,j =1, 2, 3, 4 set (2) hastwo linearly
independent solutions in the form y = (p - pj)*’i f*(p),
where f* are the holomorphic vector functions f*(p;) # 0

and o) Il 5.

Let us assume that the system with Hamiltonian H
has an additional meromorphicfirst integral in the man-
ifold M. Then, according to thelemmafrom Section 1.5
in [4], the induced Hamiltonian system in the factor

manifold M aso has an additional meromorphic first
integral. The eigenvalues of transformations generated
by set (2) in the course of path-tracing around the points
P;» j =1, 2,3, 4arenot equal to the values of the square
root from unity. Then, according to Theorem 2 from
[4], the eigenvectors of these transformations coincide.
Hence it follows that set (2) has two linearly indepen-
dent solutionsin the form

y = [1(P-p)"f(P) 3)

i=1

where g; = r; and f is the entire vector function. From
this relationship and from set (2) it follows that, in the
neighborhood of the infinite point, all solutions to this
set can be represented in the form of a Laurent series
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expansion:

1
y=S yp. y0C )
j=—0
4
Introducing the notation s= z g; , weobtainfrom
j=1
relationships (3) and (4) J

sO/Z. (5)

Let us choose the parameter k of the phase curve
I"(k) in such away that 4Rer isnot an integer. Then, it
follows from (5) that s= 0; hence

ety
Cet +

Let us choose one of the two linearly independent
solutionsto set (2) in form (3) in such away that equality
g =-T isvalid for at least two j values (j = 1, 2, 3, 4).
Then, for these j values, we have ap, + b = 0; i.e,
a=b=0.Henced=0,x=0;i.e,y=0,whichisincor-
rect. The theoremis proved.

a,b,c,dOC.
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We consider a system of nonlinear periodic waves
with wavelength A. The waves movein afluid from the
right to the left with a constant phase velocity ¢ above
aflat horizontal bottom, the gravitational acceleration
being g. The fluid is assumed to be perfect and incom-
pressible. The motion is perceived to be two-dimen-
sional and vortex-free. We introduce a coordinate sys-
tem Oxy moving together with the waves in which the
flow is steady. The x-axis is aligned with the bottom,
and the y-axis is directed vertically upwards so that it
intersects one of the wave crests. As may be inferred
from dimensional analysis, a steady flow is determined
by two dimensionless parameters. We denote these
parameters as a and [3 (generally speaking, their spe-
cific choice is not of principle importance). We con-
sider the wave shape and the velocity field to be known
for the steady motion. The question arises asto whether
it is possible to determine the phase velocity ¢ of the
wave motion from these data? Since the physical con-
dition for determining c is absent, this cannot be done
in general.

However, we assume that the wave system under
consideration arises beyond acertain body asaresult of
itstranslatory motion parallel to the bottom with a con-
stant velocity ¢ and that the fluid motion becomes
steady with time in the body frame of reference. Then,
the velocity of the body’s motion will coincide with the
wave phase velocity c. We denote the height of the
unperturbed fluid level above the bottom at the left
infinity by h. For the steady motion at the left infinity,
the following relations hold:

ch=Q, (D
c+2gh=B. 2)
Here, B is the Bernoulli-integral constant. Since the

velocity field is assumed to be known at the right infin-
ity, the parameters Q, B, and g are also known. Conse-
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quently, relations (1) and (2) can be considered a sys-
tem of equationsin terms of two unknowns c and h.

Let h, and h, be, respectively, the heights of crests
and troughs of the waves at the right infinity and (hCbe
the mean wave depth:

A2

=1
hO = X J' Yo(X)dx.

A2

Here, y = y(X) is the A-periodic function defining the
shape of the free surface.

Based on the principle of the maximum modulus
and the Cauchy theorem for analytic functions, we can
prove the following theorems.

Theorem 1. For an arbitrary steady system of peri-
odic waves whose crests and troughs are in the symme-
try axes, there are only two pairs of strictly positive
numbersc,, h, and c,, h, that satisfy the system of equa-
tions (1), (2). For these pairs, the following inequalities
aretrue:

Cy
h,<h,<h,, F,= <1, €))
) Jahy
C,
h,<h, F,= >1. 4)

Jah,

Theorem 2. If periodic steady waves result fromthe
trandatory motion of a body with velocity ¢ in a fluid
layer with depth h and the fluid motion is steady in the
body’'s frame of reference, then either c=c¢,, h=h, or
c=c, h=h,.Inthefirst case, thewavedragis

D, = 3V+ pgAhBAh —-(1- Fi)hl}, 5)

Ah = h, - [h]

where p isthe fluid density and V is the mean potential
energy of the waves per unit area. In the second case,

1028-3358/01/4608-0572%$21.00 © 2001 MAIK “Nauka/Interperiodica’



STEADY WAVES GENERATED BY A MOVING BODY AND WAVE DRAG

thewavedragis

Theflow diagram for the casesh=h, and h=h, are
shown in Fig. 1. According to theorem 1, the flow is
subcritical (the Froude number F, < 1) in thefirst case
and it is supercritical (the Froude number F, > 1) in the
second case. We found numerically that the wave drag
is D, < 0 for the second case. Therefore, flows of this
type are physically unrealizable and are not considered
hereafter. Thus, flow around a body with a downstream
wavetrainispossible only for asubcritical flow regime.

It is worth noting that the statement of Theorem 1
remains valid for solitary waves too. In this case, the
first inequality in (4) should be substituted by the equal-
ity h, = h,, where h; is the height of the unperturbed
level for the free surface at infinity. In the case of afluid
of infinite depth, it can aso be shown that formula (5)
of Theorem 2 is simplified and takes the form

D, =3V-2T,

where T is the wave mean kinetic energy per unit area.

Formulas (1), (2), and (5) alows us to find, for an
arbitrary periodic wave system, the phase velocity ¢ = ¢,
that these waves would have if they were generated by
amoving body. These formulas also makeit possibleto
find the depth of the unperturbed level h = h,, the
Froude number F=F,, and thewavedrag D = D, . Con-
sequently, we can write out

A

F=f(ap), &= fiap)
(6)
C, = — = f,(a,p),
pgh

wheref, f,, and f, are known (in the sense that they can
be calculated) functions of the constitutive parameters
o and 3 and C, is the wave-drag coefficient.

v .
Wetakea =1n ;—‘ , Where v, and v, arethe velocities

Cc
at wave crests and troughs, respectively. The parameter
o varies between 0 and +o and characterizes the wave
slope. Asa — 0, the wave has an infinitesimal ampli-
tude; as a — +oo0, the wave approaches the Stokes
limiting wave with an angular point of 120° at the wave
vertex.

The quantity r, = exp(-d) is often chosen as the sec-
ond congtitutive parameter characterizing the wave-
21Q
A Oov
fluid particles over a single wave period in a steady

length. Here, d = (¥ Ois the mean velocity of
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Fig. 2.

flow: = LA, y}z —0(XY). 4x. y) iss the steady-

flow potential (see, e.g., [1]). Itiseasy to seethat r, is
the inner radius of aring onto which a single period of
the wave region is conformally mapped, the external
radius being equal to unity in this case. As the second
parameter, we take

tenh(d) )

B =T(d), T(d) = d

Similarly tor,, the parameter 3 variesfrom 0to 1. The
case 3 = 0 corresponds to infinitely deep waves; the
case B = 1 corresponds to solitary waves. The main
advantage of introducing the parameter Bisthat B = F
for waves with infinitesimal amplitudes. Indeed, let the
wavelength obtained from the linear theory be denoted
by A,,. This wavelength depends only on the Froude
number F = F, and is determined from the equation
(see (2, p. 34))

®)
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— h; therefore,

Asa —» 0, wehave A —= A, %D

f(0,B) =PB.

Figure 2 shows the a-dependence of the Froude
number F for various fixed values of 3 (the values of
vary from 0.1 to 1 with a step of 0.1). The method pro-
posed in [3] was employed for calculating the waves.
We consider the function B =f-'(a, F), which is
inverse to the function f(a, B) for each fixed a.
Numerical calculations have shown that the lines F =
f(a, B = const) never intersect. Therefore, they are the
level linesfor the function B =f-!(a, F) and theregion
shown in Fig. 2 is the domain of definition for the
function B = f!(a, F). We denote this region by G.
Then,

G={(,F)ORxR a=0, 0sF<fya),
fia) = f(a,1)}.
Like the function f(a, B), the function f~!(a, F) can be
calculated for arbitrary values of (a, F) 00 G. The func-

tion F = f(a) bounds the region G from above and
determines the dependence between the parameter o

MAKLAKOV

and the Froude number F for solitary waves. We
emphasize that, even for solitary waves, the Froude
number introduced by usis F = F, < 1. The function
f(a) as, incidentally, any function f(a, B = const) is
nonmonotone. According to the Longuet-Higgins—Fox
asymptotic theory of almost ultimate waves [4], this
function has an infinite sequence of alternating maxima
and minima. Our calculations have shown that the first
minimum of the function f(a) is attained at the point
o =1.5022 and itsvalueisf,,,;, = 0.760706. (Hereafter,
in al approximated numbers, the author assures an
error no higher than one unit of the last decimal digit.)
The other extrema of the function f(a) can befound by
employing the asymptotic formula[4]

fa) = f (o) +aexp(-3a)cos(ka —b), (9)

which is true for large values of a. Here, k = 2.14293
and, according to our caculations, ffw) =
0.7629045093 is the value of the Froude number for the
limiting solitary wave; a= 0.3469 and b = 1.0427.

Using relations (6), we find

= f,[a, f(a, F)],

>I>

(10)
C, = f,[a, f(a,F)], (a,F)OG.

Formulas (10) make it possible to find the maxima and
minima for the relative wavelength %
coefficient C, for each fixed number F. On the other
hand, formulas (10) represent the parametrically speci-

and the drag

fied function C, depending on % for fixed values of F.

Thus, if the wavelength A beyond the body is known,
the wave drag can be calculated exactly.

_)\Iin

i A Amin =i
Figure 3 shows ma"T (curve I) and —m'”h lin

(curve 2) as functions of the Froude number F, where
Ayin 1S determined from Eq. (8). Curve / has the vertical
asymptote F = f ., = 0.760706. This implies that the
wavelength A beyond the body is finite for F < f ...
For f, .., < F < 1, it can become infinite and the flow
regime can transform to the ultimate runoff regime[3, 5].
The plots in Fig. 3 clarify the extreme properties of
wavelength A, determined from the linear theory. The
linear theory yields the maximum possible wave-
length for 0 < F < 0.6954 and the minimum possible
wavelength for 0.7201 < F < 1; the wavelength A, is
neither maximum nor minimum in the narrow range
0.6954 < F < 0.7201.

No. 8
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The variation domain for F and C, in the case of
steady wave regimesis shownin Fig. 4. It isworth not-
ing that the drag coefficientsfor limiting waves (dashed
line) are not the highest possible. The global maximum
of the wave drag can be attained for F = f, ;,, and its
valueisC, .. = 0.00780053.
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The Madelung transformation in quantum mechan-
ics[1,2] isreferred to as the representation in the form

= JpexnHgH

equation (with an arbitrary real-valued potentia U)

of the solution to the Schrodinger

aLIJ_ B
i5F = SAp+UY. (1)

This transformation results in an equivalent system of
equations,

P 0D ) =0,
2
%, @) g Bab
2 2«/5

which issimilar to the Euler equations for the potential
motion of a perfect liquid, except the last term in the
right-hand side of the second equation. The relation
between (1) and (2) was used in [1] to calculate the
potential flow of aperfect liquid with alocalized vortic-
ity approximated by a distribution of vortex filaments.
In this approach to the flow description, the vortex fila-
ments correspond to intersecting surfaces whoseimplicit
equations are determined by the equation | = 0.

In the present paper, we discuss a generalization of
this approach to a perfect liquid with a distributed vor-
ticity.

For completeness of the consideration, the original
version of the Madelung transformation (with the nota-
tion modified for brevity) is discussed in Section 1. In
Section 2, generalization of the Madelung transforma-
tion is performed. In Section 3, the equivalence
between the system of equations (8) for two complex-
valued functions and the system of equations for a per-
fect liquid in barotropy approximation is substantiated.

Kutateladze I nstitute of Thermal Physics, Sberian Division,
Russian Academy of Sciences,
pr. Akademika Lavrent’ eva 1, Novosibirsk, 630090 Russia

1. Following Madelung [2], we replacethe variables

_ IB
P=Uul, ¢ = m
in continuity equation (2). Here, Y is a complex-valued
functionand { isitscomplex conjugate function. After
the substitution of new variables and factorization, we
obtain

oy _ip _
U A¢H+ cc. = 0. 3)
Here, c.c. corresponds to the complex conjugate terms.
According to Madelung [2], Eq. (3) is satisfied identi-
caly if the function  obeys the equation

oy ip .

St~ 3 A = -iuy, “)
where U is areal-valued function of coordinates, time,
and/or . The equivalence of (4) and (1) is evident. As
applied to the potential motion of a continuum, the
guantity p may be interpreted not only asthe density of
theliquid. Thisfact stipulates the appearance of various
nonlinear modifications of the Schrodinger equation in
quite different physical problems.

2. Furthermore, we consider the continuity equation

ap

written out in dimensionless form. In order to describe
the barotropic flow of aperfect liquid with adistributed
vorticity, the number of variables must be doubled
compared to the case of potential motion. We consider
the following choice of variables:

W

b = —‘lnmk

Pk = Wiy,
(6)

p=Zpk, J=pV=Zpkﬁb ko

wherek = 1, 2. In terms of these variables, the velocity

1028-3358/01/4608-0576%$21.00 © 2001 MAIK “Nauka/Interperiodica’
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and the vorticity are, respectively,
P1 P2

V= = + = ,

> 4 5 b,

plp2 P
OxV = —=0In X W,
Ch

wherew = 0(¢, — ¢,). It |sworth noting that withinthis
choice of variables, the permutation of indices 1 ~—— 2
does not change the physical quantities. Since the
velocity potentials are many valued, it is possible to
describe a vector field with nonzero integral helicity in
theform [3]

_ _ P1P1P2 0

(the integral is calculated over an arbitrary closed sur-
face).

Substituting relations (6) into Eq. (5) and using the
method described in Section 1, we arrive at

Z mkgﬁk—%mgw.c. = 0. %)
Then, assuming
5 .
%—‘Awk = Uy, 3)

we derive from (7) that p,;HU, + p,9HU, = 0. This con-
dition is satisfied by the following choice of potentials:

P2Q _ PQ
U, = 26 iVy, U, = 20
where Q, V,, and V, are arbitrary real-valued functions
of coordinates, time, and/or |, and y,. The substitution

W= /prexp(idy) in (8) yields an equivalent system of
equations:

—iV,,

6pk OB ) = (- 1)k 1p1pz
©

09, (B _ . 1AJp_k

ot 2 K 2 Jou

3. We now demonstrate that the system of equa-
tions (9) [and also (8)] is equivalent to Euler equations
provided that the potentials

= MN(p )——w Ao
20 2.Jp;
V, = I'I(p)——w “/_2 (10)
i 20" 2.,
DOKLADY PHYSICS Vol. 46 No. 8 2001
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1 B 4 D 1
= O W+ 2w [k, —2 + p, —3
Q p EH)Zpl P15, O

P
are chosen, where M(p) = I %p Potentials (10) are

0
invariant with respect to the Galilean transformation.
Substituting potentials (10) into Egs. (9), we arrive at
the system of equations

apk+|:| . ) = (- 1)k 1plsz

90, (B 2)° _ P o2

St 5 =N +2p2W , (11)
6¢2 (@ ) 2’ - _n+Po pl

We notethat inthecase Y, = ,,i.e,d =1 ,, p;, =
p,, and w? = 0, the system of equations (11) is trans-
formed into Euler equations for a potentia barotropic
flow.

We now turn to the derivation of the Euler equations.
We multiply both sides of Egs. (11) by p,, calculate the
gradient for the resulting equations, and then add the
mass balance equation multiplied by @ . Introducing
the flows j, = pd ,, we have after certain algebraic
transformations

J 64)1

OJ

p 000

ot

it ,
[Qpl 2 p

[le Ejl .00, plszv\}j

12
0 P1 P2 (12)

Using auxiliary identities

J? J_ Jz pl_pzwz
P 2p, 2p, 2p

P
Liom = g, + 2g
p P, Ha P, ok

DE]Z]W

PP
p, U

p Up,

and transforming (12), we arrive at the equation
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‘” i T I BT

(opd 2pp p
D 0d:, . 00, _E'; 0
plpz[EEll 00,
—Q=w = —pn .
p Up,  p, (% P

The transformation of the terms in braces with the
equation for velocity potential (11) and thefirst identity
taken into account yields

aJ oo Fp L1
+0 =2 4+ 210
e 2pp " p

+oBiits_Ghg

Lot atD 0,

Plpzd] Ejl 00, g
—=wg= —pl .
p’ Up, P2 dﬂ E P

Further transformations of the terms in braces with
allowance for the vel ocity-potential equation (11), aux-
iliary identities, definitions of Q, velocity, and vorticity
yield

P1P2 V[T Inplv\)j

Sy mw)0inf
P2 p, U

=VxOxV.
From the equation transformed

aJ oD YD
Lopd 20 p

—pV><D><V+F—)JDDJ = —p

with due regard to Egs. (5) and transformation (6), we
arrive at the Euler equation in the Lamb form:

(3V Vv OV
5t DD 5 D—VXDXV——I]TI ,

SOROKIN

which isthefinal goal of the transformations.

4. In hydrodynamic problems, the nonlinear
Schrédinger equation appears in the case of using sim-
plified assumptions and specia choices of variables
(see, eqg., [4.9)]).

The generalization of the Madelung transforma-
tion considered in the present paper links the equa-
tions for a perfect liquid and the equivalent system of
equations (8) and (11) under the single assumption of
the barotropic nature of the flow. The proposed set of
variables have a uniform dimension. Thus, the real and
imaginary parts of ), can be considered coordinates of
asurface in afour-dimensional Euclidean space.

It follows from (6) that for flows characterized by a
small Mach number M, the surface is close to a sphere
with curvature radius variations on the order of M2.
This geometric interpretation of the solution could be
useful in analytical studies.

In the general case, the problem of conserving the
correlation between the zeroes of the function {, and
the vortex axis in the three-dimensional vector field is
of particular interest. If this correlation also holds for
the suggested choice of variables, then we are able to
rigorously define the three-dimensional vortex as a cer-
tain structure (the definition of a vortex is, to a large
extent, intuitive in hydrodynamics). This definition
would be similar to that of apoint vortex intheclassical
two-dimensional hydrodynamics of perfect incom-
pressible liquids.
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In this paper, a theory of right-hand solutions to a
class of Lagrangian systems of the second kind with
discontinuous controlsis developed. A method of unam-
biguously regularizing the controls on discontinuity sur-
faces is proposed. Conditions for the existence of the
solutions and their genera properties are considered.

1. STATEMENT OF THE PROBLEM

We consider amechanical system with n degrees of
freedom which obeys the equations of mation

A(t, )3 = g(t, q,4) + Q"(t, g, 4) + B(t, g, a)u. (1)
We use here conventional notation: q = (q', ..., gV,

q=(q",...q")%and § =(4", ..., §")T arethevectors
of the generalized coordinates, velocities, and acceler-

ations, respectively; Q*=(Q%, ..., Q") andg=(g,, ...,
g, are continuous vector functions describing the
forces acting upon the system (i.e., potential, drag, and
generalized gyroscopic forces, force of amoving space,
and others); and A(t, q) = | a;(t, q)[;; -, isthe matrix
of the inertia coefficients that defines the quadratic
form of the generalized velocities entering into the
expression for the kinetic energy. The function u =
(U, ..., U, " specifies generalized control forces, and

the matrix B = |b;(t, g, )|} -, is nonsingular. The

functions a;(t, ) and by(t, g, q) are assumed to be con-
tinuoudly differentiable with respect to the sets of their
arguments. Constraints taking the form

lul <H(t,g,q), i=12..n Q)

are imposed on the controls u;, where H; = H;(t, g, q)
are continuous nonnegative functions. All the above-
mentioned conditions are assumed to be satisfied in a

Institute of System Dynamics and Control Theory,
Sberian Division, Russian Academy of Sciences,
ul. Lermontova 134, Irkutsk, 664033 Russia

certain variability domain Q 0 R"* ! of the variablest,
g,and q.

The structure of the controls u; is determined by the
following problem of synthesizing control systems for
mechanical systems on the basis of the decomposition
principle [1]. It is required to find such controls that
cause the motions of system (1) to attain (under certain
additional assumptions) a smooth manifold (i.e., the
goal set), which takes the form

S={(t,q,90Q:¢(tqg,q=0i=12,....nt.(3)

A certain quadratic form

n
1
Vo = 5 z ci(t, e “)
ij=1

is chosen as the measure of deviation of motions from
set (3). Here, Cy(t, 9) = || c;(t, 9)|}; -, isapositive def-
inite symmetric continuously differentiable matrix. The
control u is naturally determined from the condition of
the minimum for the derivative v ,, with due regard for

system (1). This control has the form
U = —H;sgny;, i =1,2,...,n 5)
under the condition x; # 0, where X; = xi(t, g, q) are
continuously differentiable functions. The values of u;
for x; = 0 should be regularized. System (1) with con-

trols (5) represents a set of differential equations of the
second order with a discontinuous right-hand side.

In this paper, we will study right-hand solutions.
With allowance for inegqualities (2), the controls u; are
unambiguously determined in the entire domain Q, in
particular, at discontinuity points. The controls to be
found must be consistent with the conditions for the
initiation of the motions over the goal set S. In order for
the controls u; to be unambiguoudly regularized at
discontinuity points, we propose an implicit procedure
generalizing certain known methods, such asthe method

1028-3358/01/4608-0579%$21.00 © 2001 MAIK “Nauka/Interperiodica’
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of equivalent control [3] (see also [2]) and the method
of determining the Coulomb dry-friction forces at rela-
tive-rest points, which was described in [4] for systems
with friction. For the closed set of equations (1), we
prove that they are reduced to the explicit form

d = G(t, q,0). (6)

2. AN IMPLICIT METHOD
FOR DETERMINATION OF GENERALIZED
CONTROLS AT DISCONTINUITY POINTS

We assume that the functions @ are continuously
differentiable. Then, we introduce the following nota-
tion: o= (@, ..., @7, J; yisacolumn consisting of par-
tial derivatives of the functions ¢ with respect to t, and
Jy o and Jg , @ren x n matrices whose rows are gradi-
ents of the functions @ with respect to the variables ¢/
and qj , respectively. According to set (1), the derivative
v, takestheform v, = u'™D'@+ F, where

. B} 11,
F= (pTCqJ[‘]t,(p +Jg¢0+ Jg oA Yo+ QM + ECPTCq)(P,
D' = B'A™"J4,4C,

Since F is independent of u, the minimum of the func-
tion v, is ensured, with regard to constraints (2), by
contrals (5) with the functions

X=D'@=(Xu - Xn) - )

If C(pz Aand Q= qi —fi(t’ q), withi = 1’ 2’ ..., N, then
the control is given by

U = —Hisgn § b(¢ - fi(t a), i =

i=1

If, in addition, B=E, then u, = —H, sgn(q —f.(t, @), i =
1,2,...,n(see[1, 5)).

To regularize the controls at discontinuity points, we
now transform Egs. (1). To do this, we assume that the

matrix Jao is continuously differentiable, with its
determinant being nonzero, and that the equality J, , =
D"J, , isvalid, where J, , isthe Jacobian of the func-

tions x; with respect to the variables qj . (Thelast equal-
ity isvalid if the matrix DT isindependent of ¢.) Since
the matrix DT is nonsingular, the matrix J,, is also
nonsingular.

FINOGENKO

We define the vector functions x = x (t,g, 4, §) and
R=R(, g, §) and the matrix P = P(t, g, q) by the equa-
lities

X = Jiy t Jogxd+ g x0,
T aA-1.T 1471
P=[B A" J;,ColsoA Bl
R = P(J,+ Jqx0) + B (g+Q".
Then, Egs. (1) can be written out in the form
Px = R+u. (8)
With regard to (5) and (2), we define the controls u;, =
u(t, g, q, x) inthe general form as

D_Hisgn)(ii |f Xi ¢0
0 .

u = R, if Xi =0, |Q<H, 9)
%HisgnQi’ if X; = 0, |Q|| > H;.

Here,

n
Q = Z pinj -R;,
j=1i#]j
p;; are the matrix elements of P, and R are the compo-
nents of vector Rwithi=1,2,...,n.

Input equation (1) and Eqg. (8) with the function u
given by formulas (9) represent differential equations
unsolved with respect to the higher derivatives g,
which aso enter into the right-hand side via the func-
tion u. Since the matrix J, , is nonsingular, the unam-

biguous solvability of Egs. (8) with respect to X (serv-
ing as an independent variable) leads to the unambigu-
ous solvability of Egs. (1) withrespectto q; i.e., Eq. (1)
is reduced to form (6). In this case, the controls u; can
be completely and unambiguously determined at each
point (t, g, ) 0JQ ; hence they do not enter into the
function G.

We now consider right-hand solutionsto set (1) with
controls (9) assuming that they exist. In so doing, we
treat X; (i=1,2, ..., n) astheright-hand derivatives of
the functions X; along these solutions and assume that
Xi=0and |Q|<H forali=1,2,...,ninacertaintime
interval. In this case, Q = -R and u; = -R;; hence the
system moves along the intersection of the manifolds,

S={(t,q,9)0Q:x,=0C, i=12..,n (10)
With regard to equality (7), this motion represents full
sliding over manifold (3) [i.e., themotion in the decom-
position regime described by the differential equations
@t g ) =0,i=1,2,...,n]. Inthis case, the method
of equivalent control [3] isrealized in system (1).

DOKLADY PHYSICS Vol. 46

No. 8 2001



ON RIGHT-HAND SOLUTIONS TO A CLASS OF LAGRANGIAN SYSTEMS

In the course of the motion of systems under con-
strained controls (provided that transient processes
originate), either theinequality |Q;| < H; or |Q;| > H; can
be satisfied on the surfaces S, depending on the sub-
scriptsi. Then, motion over the intersection of the sur-
faces S does not exist. In this case, formulas (9)
describe the control that causes the system to move on
the intersection of the surfaces S for which the ine-
qualities |Q,| < H; are satisfied (because x; = 0) and to
leave the surfaces for which |Q;| > H; (because X; # 0
and sgny; = sgny; for x; # 0).

3. UNAMBIGUOUS SOLVABILITY
OF EQUATIONS (1) WITH RESPECT TO

Weintroducethevariablez= (z,, ..., z,)", define the
function u; = u;(2) by equalities (9) with x = z and
form the function u(z) = (u,, ..., uy)". Let apoaint (t, g,
g) [Q be fixed. Then, we consider a set of algebraic
equations with respect to z

Pz = R+u(2). (11)
Theorem 1. The solution to Egs. (11) existsand is
unique.

Corollary 1. Equations (1) with controls (9) are
unambiguously resolvable with respect to the general-
ized accelerations and can be reduced to form (6).

Corollary 2. For Egs. (1) of arbitrary goal set (3)
and arbitrary positive definite matrix C, of quadratic
form (4), there exist controls (9) that can be unambigu-
ously determined at each point (t, g, q) (2 .

4. RIGHT-HAND SOLUTIONS

The absolutely continuous right-hand differentiable
function {q(t), q(t)}, which satisfies the condition
D*q(t) = G(t, q(t), q(t)) at each point t [ [ty, t)), is
referred to as a right-hand solution to Egs. (1) in the
interval [t,, t;] with the initial conditions q(ty)) = g,
and q(t,) = gy, the function D*q (t) being continuous on
theright.

Theorem 2. For an arbitrary initial state, there

exists a local right-hand solution to Egs. (1) with con-
trols u; determined by formulas (9).

In defining the right-hand uniqueness of the solutions
(at a point and in the domain Q), we will follow [2]
(seep. 81).

Theorem 3. Let, in addition to the conditions of Sec-
tions1and 2, thefunctionsg, Q,andH; (i=1,2,...,n)
be continuoudy differentiable. Then, the right-hand
uniqueness of the solutionsto Egs. (1) with controls (9)
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takes placeinthedomain {(t, g, q) (X2 : Hi(t, g, q) #0,
i=1,2,...,n}.
If H; in Theorem 3 are constant quantities, then

right-hand uniqueness evidently takes place in the
entire domain Q.

One of the known methods of solving Egs. (1) with
constraints (5) imposed on the control u consistsin con-
vex multiple-valued regularization of the right-hand
sides of these equations and the introduction of differ-
ential switching [2]:

At a)d 0 g(t, g, ) + Q*(t, g, d) + B(t, g, )V, (12)
wherethe set U = U(t, g, q) is defined by the equality

U = {u0OR"% u;, =—H,sgnx;, X; #0;
lu|<H,x; = 0;i01,2,...,n}.

In this case, the absolutely continuous function {q(t),
g (t)} with the measurable second derivative ¢ (t) that
obeys Egs. (12) aimost everywhere istreated as a solu-
tion to problem (1) (the Caratheodory solution). This
solution becomes nondifferentiable when attaining or
intersecting discontinuity surfaces for the functionsu; .

Theorem 4. Differential switching (12) and Egs. (1)
with controls (9) are equivalent in the sense of coinci-
dence of their Caratheodory solutions. Any Carathe-
odory solution to Egs. (1) with controls (9) is a right-
hand solution.

Asfollowsfrom Theorem 4, differentia switching (12)
and Egs. (1) with controls (9) areequivalent in the sense
that the sets of their right-hand solutions coincide.
However, it is the unambiguous regularization by for-
mulas (9) for the functions u; on the discontinuity sur-
faces alone that allows usto solve the problem of exist-
ence and uniqueness for the right-hand solutions.
Moreover, formulas (9) for Egs. (1) necessarily follow
from the condition of existence for loca right-hand
solutions to differential switching (12) for an arbitrary
initial state.

Theorems 2—4 alow properties of the right-hand
solutions to Egs. (1) to be analyzed on the basis of the
theory of differential switchings, which has been well
developed recently. Known results of the theory of dif-
ferential switchingswith an upper semicontinuous con-
vex right-hand side can be applied to Egs. (1) [2].
Under the conditions of Theorem 3, the dependence of
solutionsto differential switchings on theinitial condi-
tions and on the right-hand sides that is semi continuous
from above turns into a continuous dependence of the
right-hand solutions to Egs. (1) on the same quantities.
If the sets of initial values are compact or connected,
then the theorems on the continuability of solutions
onto the right maximum domain of their existence and
the theorems on the compactness and connectedness of
both the set of right-hand solutions and theintegral fun-
nel in the corresponding spaces are valid. In this case,
conventional properties of approximate solutions (the
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o-solutionsfor which small variations of the boundaries
of the continuity domains, aswell as small variations of
the right-hand sides of the equations in these domains,
are taken into account) and properties of trgectories
and w-limiting sets for autonomous systems (see [2,
pp. 59-64 and pp. 94-101]) take place.

In addition, the right-hand solutionsto Egs. (1) have
specific properties that follow from the structure of
these equations and controls (9). To describe one of

them, we introduce the notation S° = {t, g, q): @ =0,
R|<H;,i=1,2,...,n}and assume that S° # 0 and
S=9.

Statement 1. For an arbitrary compact subset K O S
and for an arbitrary T > 0, there exists a [3-neighbor-
hood KP of the set K such that the condition

(te 2(t,)) OKP O (t,z(t))O'S (13)

is satisfied for each right-hand solution z(t) = (q(t),
g(t)) to Egs. (1) and for all t = t in the domain of defi-
nition of z(t). In this case, the numbers T and 3 can be
chosen to be so small that the solutions stay in an arbi-
trary preassigned e-neighborhood of the set K during
theinitial timeinterval [t, t, + 1).

Similar properties for mechanical systems with
Coulomb dliding friction were studied in [6].

If @=¢ —f(t g),B=E andC,=A wehavex = ¢
P=AJy=-dt.Jqy=—J andJ x = E. Under the
condition@=0(=1,2,...,n), the mequalities R <

q, s

FINOGENKO

H; defining the set S take the form

! Eaafk

2 2

of
za ,kf.g [9,+ Q]

g=fta (14)

i|qu(t’q), =12, ...,n

Under the right-hand continuation of the solution
Z(t), theequality |R/| = H; can bevalid at acertaint > t
provided that S# S°. In this case (and only in this case),
the solution can leave the goal set S.
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INTRODUCTION

A boundary-value problem maodeling the separation
of aboundary layer and its subsequent reattachment to
a surface bounding a flow is considered under increas-
ing pressure. It isproven that, outside acertain bounded
region adjacent to awall in afluid, the generalized solu-
tionto thisproblemisaclassical positive solution to the
Prandtl-Mises system of boundary-layer equations.
Inside this region, local stagnation zones, the solution
to which is equal to zero, can form near the wall. It is
established that the alternation of suction with injection
represents a possible way of controlling the boundary

layer.

1. PRANDTL-MISES PROBLEM

The problem of extension of the Prandtl boundary
layer is considered in the region D = {0 < X < oo,
0 < <o} using the Mises variables [1, pp. 27, 28].
It has the form

Wy = VA, +2UU,, (x ) OD, €))

Wly=o = Wo(Y),

Jim w(x, P) = U*(X),

w|w=o =0, ®

where v = const > 0 is the viscosity and U(x) is the
external-flow velocity related to the pressure p(x)
through the Bernoulli law,

2p(x) + U*(x) = const > 0.
It is assumed that

(@ wy(y) O C'0, ©) n C>*9(0, ), a O (0, 1);
U?(x) O C?[0, e);

Lavrent’ ev Institute of Hydrodynamics,
Sberian Division, Russian Academy of Sciences,
pr. Akademika Lavrent’ eva 15, Novosibirsk, 630090 Russia

(b) 0 < wy(P) < UX0), wy(P) > 0; wy(P) <0 at
W>0, wy(0) = 0, wy(0) > 0, Jim wWo (W) = UX0),

T wWo(P)

©UX)=20>0,UXx)<0ax>0,0<-[UX)] <
Ok x + k] at x = x;, wherek, d, x;, k>0, and A >3
are certain constants,

(d) U'(0) = 0, Jowo(W)wg (W) = 0(Y) at Yy — 0.

Dueto the assumptionsin (a)—d), asmooth positive
solution w(x, Y) to problem (1), (2) existsin the region
{0<x<A 0<P<oo} atcertanA[l].

Let A, be the supremum of such A. If A; < o, we
shall assume that separation of the boundary layer
occurs at the point x = A,.

Itisusually believed that separation of the boundary
layer arises at such a point where, being negative, the
gradient of external-flow velocity U'(X) reaches its
maximum in absolute value [2, p. 388; 3, p. 408].

This observation is consistent with the integral con-
dition[4] imposed on avalue of |U'| and ensures bound-
ary-layer separation, including the case of a drictly
positive external-flow velocity U(x).

Boundary-layer separation from the surface of a
high-drag body is accompanied by the formation of an
extensive wake. M easurements of the pressure distribu-
tion along the surface bounding the flow show that, in
certain cases, the pressure is amost constant along the
separation areaand practically coincideswith itsvalues
at the outer boundary of the detached boundary layer.
Under these conditions, near the surface bounding the
flow in the zone of boundary-layer separation, the pres-
sure is assumed to be constant and the fluid immovable
[3, pp. 424-426].

i [UZ(O)—wo(w) + Iwé;(w)l} ke

2. MODEL OF THE BOUNDARY LAYER
WITH SEPARATION

The following modified statement of the problem
described in [4] is proposed for modeling flows with

1028-3358/01/4608-0583%$21.00 © 2001 MAIK “Nauka/Interperiodica’
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boundary-layer separation and reattachment to

thewall:
W = VW + (X w), 3)
w(x, )20, (x ) 0D,
Wyoo = Wo(W), Wyo0 =0,
4)

lim w(x, y) = U*(x),

Lp - 00
where ¢(x; w) =2UX)U'(X) at w> 0, ¢(x; 0) =0.

Paper [4] presents the proof of existence of anonne-

gative generalized solution to the boundary value prob-
lem (3), (4). This solution is bounded in the region D,
continuous in the sense of Holder at (x, ) 0 D = {0 <
X< 00,0 < < oo}, and satisfies both conditions (4) and
the integral identity

8 |:@("‘)3/4|:|2
If[wfx—gvmaw O f-vJ/owy,f,
D

+o(x; w)f}dxdw+J'w0(L|J)f(0, w)dy = 0.
0

Here, f(x, ¢) O CY(D) isan arbitrary function equal to
zero both at Y = 0 and outside a finite region. Being
positiveintherange0 < x < A, thissolution is classical
for problem (1), (2).

The generalized solution to problem (3), (4) is con-
structed as the limit of a steadily decreasing (at € — 0)
sequence of positive solutions,

w, = w(x, P, e) 0C* (D),
_ 0 0
D, = [DSX<oo,Oquslg,

0 €0

to the following regularized boundary value problems:

w—-¢€

W, =V woqw+2UU'mT€, (x, ) O D¢, (5)

0‘)|x=o = wOs(qJ)1 w|w=o =&,

(6)
Wy =1 = wo%%-

Here, {wy,(P)} O C40, ) is the set of functions that
converge uniformly to w,(P) (O < P<w) ase — 0 and
have the properties (b), (d) of theinitial profile w,(W).

3. DOMAIN OF POSITIVENESS
OF THE SOLUTIONS

Theorem 1. Under the assumptions in (a)—d), a
solution w(x, W) to problem (3), (4) is positive in

KHUSNUTDINOVA

a certain region
Gr = {0<x <0, F(X)<W<od,
F(x) O C[0, o), F(0) = F(x)) =0, F(X) > 0 at x I (0, X,),

F(X) =0 at x = X,, whereit represents the classical solu-
tion to the Prandtl-Mises equation (1).

Schematic proof. Asaresult of the change of vari-
ables

the regions G and D, n G turn into the regions P, =

g
{0<x<oo,0<r]<oo}andP£:[0<x<oo,0<r]<:—é—
O

F(X) E, respectively. In addition, solutions wx(x, y) and
0

w(X, P, €) to problems (3), (4) and (5), (6) turninto the
solutionsw(x, ) = w(x, N + F) and w, = w(x, n, €) =
w(x, N + F, €) of the following boundary-value prob-
lems:

L(w) = v./ww,, + F'(x)w, —w, = —2UU",

(7
(x,n)OP;
Wl,=o = Wo(N), W[, -0 = (X F(X)),
limw(x, n) = U*(X); (®)
n - o
Le(W) = v./ww,, + F(x)w, —w, + uuN—€_g
W+ € 9)

(x;n) OP;
Wx:OEwOE(n)v W|n=0 = (.O(X, F(X),S),

: (10)
W, =1p T Oy

We assume that F(X) = x(2M — x) at x O [0, M],

X

F(X) =F,(x) = M? - J'( 1 —e2E=M)[B(t-M)+ 1] 'dt at

M

x O [M, %], and F(x) =0 at x > X, where the point x, is
determined by solving the equality F,(x,) = 0.

Thefunction F(x) is continuousin [0, c) and doubly
continuously differentiable in both ranges [0, X,] and
[%, ).

Further, we construct the barriers from below
0:(x, n) for solutions w,(x, n) of the boundary value
prablems (9), (10) such that

W(%, ) = 0.(x,n)>lima,(x,n) = o(x,n),
E-o (11)
(x,n) O P,

whereo(x, n) >0atn >0 and o(x, 0) =0.

DOKLADY PHYSICS Vol. 46 No.8 2001
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Properties (11) are inherent in the functions

o(x,n) = ®(X)f(n +e),
o(x,n) = ®(x)f(n);

d(x)=U?(x), x0O [0, %}

-2
M +:|_i| ,

x O [%’“},f(nham+azn4’3atnslva1+az<la

®(x) = uzg\z"g[zs%—

f()<fm) <1, |f|+|f"|<a,n=1,f@)>0an=0,
f'(n) —0,f"(n) - 0an — oo,

f(n) O C[0, w), lim f(n) = 1,
: fm)+H(nN
Jim = ()

According to the construction, the function ®(x) O
CI0, ) and is continuoudly differentiable in the ranges

M M 0
[0, E} and [E , O,

The constants a, and €,, aswell asthe function f(n),
are chosen so that the inequalities

Z(X!nvs) = (Ws(xar])—oe(xan))ZO, (12)

(x,n)dr,
e : 0
are satisfied at the parabolic boundary 'y = Ox = 0,
O
O
0sn< - ,r| 0,x=0, r|_— -F, x>ODofthereg|on

P, for e < g, < 1. Such achoice of f(n) is possible due
to the constraints (b) on the function w,(y) and the
estimate w,(x, n) = € [4, p. 1198].

IntheregionsH, = %) <X< M
O

1 O
2 7O<n<E_F(X)E’

0 O
H, = DM <X<X,0<n< 1 -F(X)0, and H; = %(O <

02 € 0

1 O .
X<o,0<n< c F (x)0, the function z = wg(x, n) —

0
0.(x, n) satisfies the linear parabolic equation

Lo(2) =V . Wz, + F'(X)z, -2, + dz = —L.(0,), (13)
DOKLADY PHYSICS  Vol. 46
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Gsnn 4UU'e

ﬁ+[ ROEDICED)
L.(0,) =vd./Of

FE()OF -, f + 20025
O, +¢€

€

0.

For (x, n) O H, O H, O H;, theinequality L.(g,) >0is
made valid by the choice of the constants M, 3, and €,
O<e<g <)

Asaresult, with allowancefor (12) and according to
the maximum principle applied successively in the
regionsH,, H,, and Hs, solutionsto Eq. (13) satisfy the
inequality

w(x,n) 20, at (x,n) 0 [JH, = Pe
k

Sincethefunctionsw,(x,N) OC¥[0<x<A,0<n<
N7] are compact for eachN >0 (0<a' < a), similar ine-
qualities are satisfied for the limiting functions
w(x, n) = w(x, P) and a(x, n) = o(x, P — F), so that
WX, P) 2o P -F)a (x, P) OGg. Consequently, it
follows from Theorem 2.1 [4] that the function w(x, U)
satisfying Eq. (3) and positive in G likewise represents
the classical solution to Eg. (1).

4. EXISTENCE OF LOCAL STAGNATION ZONES

Theorem 2. The generalized solution w(x, ) to
problem (3), (4) cannot have isolated zeros in the
region{0<x< X, 0 <P < F(X}.

Schematic proof. First, the maximum principle is
used to establish the inequalities

(x, @) O D¢ (14)

q_allJ

for solutions w,(x, P) of the boundary-value problems
(5), (6).
The assumption is that both w(x;, ¢;) = 0 a

(X, Uy O D and uxXx,, P) = 0 at Y [0, Y,] contradict
estimate (14). Consequently,

W(Xy, Y)=0 at Y O[O, Pyl.

Therefore, according to the properties of the func-
tion w(x, P) [2, item 3],

(15)

w(x,P)=0 at xO [xl, X, +

wo B

(U llJ) ]

24vm (16)
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In particular, oo%x, %—1% =0at x U [X, Xs], X3 = % +
2

Py
96vm

. Then, similarly to (15),

(X, P)=0 at xO[Xy, Xg], Y [O, %1] (17)

Relations (16) and (17) yield that
WX, P)=0 at (X, P) 0 Qg = (Xq, X3) X (Wo, Y1),

where Y, = {U; — ./24vm(X—X;), X; < X< X3}. Thus,
the region Q, represents a local stagnation zone; i.e.,
the point (x,, ;) isnot isolated.

CONTROL OF THE PRANDTL-MISES
BOUNDARY LAYER

In the Mises variables, the flow in the boundary
layer that forms near a porous wall with suction
[vo(¥) < Q] or injection [vy,(x) > Q] through it is
described by the following boundary-value problem
[1, p. 29]:

Wy = VA/WOW,y — Vo(X)wy, +2UU,, (%, @) 0D, (18)

W= = Wo(Y),

q!im w(x, P) = U*(X).

The distribution of the velocity of fluid suction into

aporouswall [v(x) < Q] that prevents separation of the

boundary layer was constructed in [5]. On the other

hand, the boundary layer aways separates from the

wall [6] when fluid injection occurs at any constant
velocity [Vvy(X) = €= const > 0].

Theorem 3. Let assumptions (a)—d) be satisfied

Blo-o =0 (19)

and, in addition, w,(Y) =0 at Y [0, Y,] O [lIJi , m%
0

(Y, = const > 0).
Then, thereisthefunction v(x) (1 C[0, ), which sat-
isfies the conditions v,(x) < 0 at x [ (0, X°), v,(x) > 0 at

1
X

x O, xY, vy(x) =0 at x 0 (X!, «), and J'vo(t)dt =0,

0
such that boundary-value problem (18), (19) is solv-
able in the region D and its solution w(x, Y) > 0 at
Yy >0.

KHUSNUTDINOVA

Schematic proof. At vy(x) = —F'(x), problem (18),
(19) does not differ from the already considered prob-
lem (7), (8), where the conditions—F'(x) < 0 (at x (I [0,
M)) and F'(x) > 0 [at x [1 (M, X,)] correspond to suction
and injection, respectively. This fact proves the state-
ment of Theorem 3 that problem (18), (19) is solvable
in the classical sense and its solution w(x, Y) has a
minorant a(x, P): w(X, Y) = ox, ) >0a ¢ >0 and
o(x, 0) = 0.

Thus, the separation-free flow in the Prandtl-Mises
boundary layer can be realized by alternating a region
of fluid suction into the wall with that where the identi-
cal fluid massisinjected into the boundary layer.

Remark. Accordingtolemmas2.1.8-2.1.13[1], the
solution w(x, Y) to problem (18), (19), which corre-
spondsto the function v,(x) smoothed in the vicinity of

the points x = 0 and x = X, S0 that v,(x) O C![0, ) and
v,(0) = 0, satisfies the inequalities

Wy <M, |Jwoay/ <M, (xw)0D,

lw] <My P w,2m>0,
0sysy, 0<p<s.

These inequalities justify the inverse substitution of
the Mises variables x, Y by the original Eulerian coor-
dinates x, y [1, Theorem 2.1.5].
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L.A. Galin[1] gave asolution to the problem on the
elastoplastic state of a plate having a circular hole and
subjected to biaxial tension. At alater time, anumber of
approximate analytic solutions to elastoplastic prob-
lems were obtained. In this paper we consider, using a
small-parameter method, the problem on the elasto-
plastic state of a plate having a circular hole and sub-
jected to biaxial tension in the presence of longitudinal
shears. Three approximations for the stresses are used
in this problem.

1. As an initial unperturbed state, we consider an
axisymmetric state of a thick-walled tube with internal
and external radii aand b (a< b), respectively. Thistube
is acted upon by the internal and external pressures p
and g and, at the internal boundary, by the tangential
force 1. The tube materia is assumed to be incom-
pressible.

Below, we relate all the quantities having dimen-
sions of stressto the yield strength k and all the quanti-
ties having dimensions of length to the radius p; of the
plastic zone. We will use the following notation:

0|J k1 p k! q kl T k’ G k!
& :E, u:E, vV = 1,
" ps Ps Ps
W = V_V, a = E, B = E,
Ps Ps Ps

where g;; are the components of the stresstensor; €;; are
the components of strain rates; u, v, w are the compo-
nents of displacement rates along the axes p, 8, and z,
respectively; and k isthe yield strength.

It is evident that everywhere

0

.0 _ 0
Tpe—Tez—o,

g0=£0,=0, v°=0, £=0; (1)

al other components of tensors of stress, strain rate,
and displacement velacities depend solely on p.

Yakovlev Chuvash Sate University,
Cheboksary, Russia

The equilibrium equations have the form

0 0 0 0 0
d&)+0—p_09: , deZ+T_pZ:O' 2)
dp p dp p
with the boundary conditions
Op=—p, Tg,=Tfor p=a 3)
and
op = q for p = B. )

In the plastic region adjacent to the internal surface
of the tube, the plasticity condition

(op —0)’+ 41.=4, og=0"+ % 5)

issatisfied. The second equation of system (2), withini-
tial conditions (3), yields
o _art
Ty, = —. (6)
“p

It follows from (5) and (6) that

2 2.2
Op_O_Op __2A/p —aT
P z = p
0

op__op_0Tp
0,’—0g" =

o

)

0
P_gOP
2

Using the first equation of system (2) and relation-
ships (7) and (3), we obtain

-1.

oﬁ" = InR 4 nPEfNP =0T p’—a’t®
O+ 119
p2_a2_l_2
_____.____“p

+J1-1°-p,

2 2_2
0% = IR 4+ InRENR 0T 9y 12— p, 8)
O a@+J1-1%

1028-3358/01/4608-0587$21.00 © 2001 MAIK “Nauka/Interperiodica’
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a(l+J1-1°)
+«/02;a212+ 12 p.

In the elastic region (1 <
Hooke's law

o®=InR4+ NP —9T

< B), according to

oy’ —0g° = 2G(ep°—£5°), 9)
the incompressibility condition
=0, (10)

and the boundary condition (4), thefollowing equations
arevalid:

Oe Oe
€ *&

oy = 2<3c:1EE2 =
Oe _ |:|1 1|] —
Oy = 2G01q3—2 + +q, where C, = const.
At the boundary of the elastoplastic zone of the
material, conjugation conditions are satisfied:

+q,
(1)

Oe _ _Op
GP —O'p,

On account of (8), (11), and (12), we have
t+1

og° = off for p = 1. (12)

Ci=4g t= 1-0a°1% (13)
1+t 2
2lna +IN—————+.J1-1
1+4J1-12

(14)

From (13), (8), and (7), we aso obtain

t+101 1
oy’ = Ebz =H+aq,
(15)
O_Oe t+1gl 1D+q

[bz

For the plane with acircular hole, in formulas (15),
B = 00,

2. We now turn to the consideration of the elasto-
plastic state of an infinite plate with a circular hole of
radius a. The problem is solved in the cylindrical frame
of coordinates (p, 8,2) with the z-axis perpendicular to
the plate plane. It isassumed that, on the (p6) plane, the
plate is stretched at infinity by mutually orthogonal
forces p, and p, (p; > p,) and, in addition, the normal
pressure p and the tangential pressure t, perpendicular
to this plane, act at the hole contour.

AFANAS’EVA, MIKHAILOVA

In the elastic and plastic regions, the solution to the
problem is sought in the form

o = o) + 30+ 80} + 80}, &= pl;pz

The boundary conditions at infinity are written as

. (16)

0, =q—58cos26, 0g = q+ dcos26,

(17)
and rpe = 0sin26 for p = oo,

P+ P,
-

At the hole contour, we define the following condi-
tions:

whereq =

op = —p, (18)

Since the internal contour and externa loads on it
are fixed in the problem at hand, we have

Tge=0f0rp=0(.

of=0, ¢’=0, ¢;"=0. (19)

L et us define the components of the stressed state in

the elastic region. The boundary conditions (17) at
infinity take the form

o, = —C0s20, Ty, = sin26 for p = (20)
0y =0, Tyo=0 for p = oo, 1)
0,°=0, Ty =0 for p = . (22)

Using the conditions of conjugation [2],

. do;
[0+ Fps] =0 for p =1 (23)

and taking (1), (8), (15), and (19) into account, we
obtain

1€

Oy = Tpe=0forp=1 (24)

and

2
o = ( +t1) Py for p=1. (25)

The boundary conditions (20) and (24) define,
according to [2], the solution in the elastic region:

e _ [ 4 30
0, = 1+ ———5c0s26,
0= 2 p4]
O = %H 3Dcosze (26)
p*
Tho = %L + =- S|n26
DOKLADY PHYSICS Vol. 46 No.8 2001
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From (26) and (25) we have

1s = at 5C0s28.

(t+1)

27)

In the second approximation, using the conjugation
conditions [2]

O_Il + 60:1

achpfs oo,
i3 Pist -
p

J]

op> 2 app

s=0for p=1

and formulas (1), (8), (15), (19), (26), and (27), we
obtain

—iz(l + c0s408),

O, =
(t+21)
16t (28)
n = ——2 _gn40 for p = 1,
po (t 1)2 p
oy°—8cos” 29(5 3t
+1
(29)
2
= (t+1) p,s for p = 1.

The boundary conditions (21) and (28) define,
according to [2], the solution in the elastic region:

e 4 1,09 107
o= L= + 55 — ZHcosa6,

we _ 4t
O =

T..e 8t D3
pe (t + 1)2%4
Then, from (30) and (29), we have

5Dsn46

at°

(t+1)°
x ((3t* =2t —4) + (3t° — 2t + 2) cos48).

p25 =
(3D

In the third approximation, the conjugation condi-
tions[2]

ij ap 1s apz 2 ap 3|
ao , 99} d°c"
+5p Past 5y Past apz’plsPZS =0 (forp=1)

yield, on account of (1), (8), (15), (19), (26), (27), (30),

DOKLADY PHYSICS Vol.46 No.8 2001
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and (31), the following expressions:

me
P

= [(7t — 2t +1)c0s26

(t +1)*
+ 5—1t _32t i 1c0566},
(32)
U = - 16t [(3t2— 2t + 2)sin20

(t+1)*
+(3t° =2t + 14)sin68] for p = 1,
and

we 16 [18t5—2t4—16t3+14t2—6t+3

2+ 2" 2
x c0s26 (33)
5 4 3 2
+ 18t” + 90t +86ts + 2t —6t+3CO 66} (t+ 1) Dae.

The boundary conditions (22) and (32) define,
according to [2], the solution in the elastic region:

we _ 16 [5—12t4+8t3—t2—2t+1
0' =
P 4| [ 4
(t+1) 2p
3 2
+ (t=2)(6t"+2t" -t + DECOSZG

2

Y

LAt +16t° - 61" -2t + 1
O 20°

L 2(18t" — 12t + 33" + 2t — 1) ECOSGG}
3p° ’

B—th +8t°—t°
2p”

24t + 16— 61t° -2t + 1

O 20°

L (8t' 12t +33t° + 2t - 1) 500369}
3p° ’

we _ 16 [rl2t*+8t°—t*—2t+1
T, = 4l [] 4
(t+1) 2p

3 2
+ (t=1)(6t"+2t" -t + D%inZG

we _ 16 [
(6)

—2t+ 1%00329
(t+ 1)

(34)

2

p

L 24t +16t°-61t° -2t + 1
0 20°
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absent, t = 1 (1 = 0) and expressions (26)— (35) take a
form similar to that of the relationships obtained in [2].

6

L (18t'—12t>+ 33t" + 2t — 1)%%66}

2p
From (33) and (34) we have REFERENCES
1. L.A. Galin, Prikl. Mat. Mekh. 10 (3) (1946).
8 2. D.D.lvlevandL.V.Ershov, Perturbation Method in the
Pss = 6 Theory of an Elasticoplastic Body (Nauka, Moscow,
t(t+1) (35) 1978).

6 ~pnib 4 3 qp42 _ 3. A.Yu. Ishlinskii, Applied Problemsin Mechanics. Vol. 1.
x[(12t"—26t"+ 3t" + 18t" - 15t" + 6t — 3) cos26 Mechanics of Elastoplastic and Incompletely Elastic

+(12t°— 14t° + 9t* — 2° — >+ 2t — 1) c0S68 .. Bodies (Natka, Moscow, 1986).
In the special case when longitudinal shears are Translated by A. KozZlenkov
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The fundamental studies of A.M. Lyapunov [1] and
N.E. Joukowski [2] initiated numerous, fundamental
investigationsin the field of stability of motion and tra-
jectory stability, as well as in the application of these
theories to various problems of natural science and
technology. In the context of classical mechanics and
Newtonian celestial mechanics (NCM), fundamental
papers[3-5] and some others (see also review [6]) were
dedicated to problems of the stability theory in the
Lyapunov sense. At the same time, problems of the tra-
jectory-stability theory in the Joukowski sense were
studiedin[7-11]. In the framework of relativistic celes-
tial mechanics (RCM), the problem of the stability of
motion in the Lyapunov sense was studied in [12, 13],
whereas the problem of the trajectory stability in the
Joukowski sense was not posed at al. Meanwhile,
RCM has its specific features (the absence of absolute
time and the Riemannian nature of the manifold). In
this context, the concept of trgjectory stability in the
Joukowski sense more adequately characterizes the
inertia (or noncompliance) of a motion and its trajecto-
ries than the concept of motion stability in the
Lyapunov sense proposed in [12, 13]. The former con-
cept does not use synchronous correspondence in time
for points in its definition and is based on the corre-
spondence of a points in the normal. At the same time,
the latter concept is based on replacing the correspon-
dence in time by the correspondence in arc length for
unperturbed and perturbed trajectories.

In the present paper, the problem of the traectory
stability in the Joukowski sense is posed in the frame-
work of RCM. A criterion for the stability of ageodetic
trgjectory (geodetic) is also proved in the M* Riemann
space-time with a metric whose tensor gogs(X;, %o, X3, X4)
has the signature (+ ——-).

We now cite certain necessary information from the
general theory of relativity [14, 15]. The system of non-

Russian Open State Technical University
of Railway Communication,
ul. Chasovaya 22/2, Moscow, 125808 Russia

linear Einstein equations of the form

G*= R“B—:—ZLg“BR—g“B/\ = 8c'myT® (1)

isthekernel of thistheory. A material system character-
ized by an energy-momentum tensor T moves in an
M# four-dimensional space-time with a metric ds’ =
JupdX?dXP. The invariant ds is referred to as the space-
time interval; gy and g°® are covariant and contravari-
ant metric tensors, respectively; x* are the coordinates
of pointsin M#; y is the Newtonian gravitational con-
stant; ¢ is the speed of light in free space; and A isthe
cosmological constant. The summation over repeated
indices a, B, ... is assumed in the case when one of
them is upper and the other is lower. Theindices a, 3,
U, v, ... take the values 0, 1, 2, 3. The tensors g°® and
Oop Satisfy the condition g?gg, = 35 , where 3 is the
Kronecker delta. The Ricci tensor Ryg is provided by

the convolution of the Riemann—Christoffel curvature
tensor

R _orh, ol
v = B v
ox 0x

+ rgvrgo_rgﬁr\ljc (2)

over theindicesp and v; i.e., Ry = R*_‘aw. The quanti-

ties 'y arereferred to as second-kind Christoffel sym-
bols. They are equal to

_1 0|j)g a9 agB[I
Mp=59 "t o= = M
P27 Uax®  ax® axU P

The invariant R (scalar curvature of M*) is determined
by the formulas

RE =g Ry, R=R. (4)

System (1) is a system of ten nonlinear partia dif-
ferential equations of the second order in ten desired
functions g,g(x’). A variation of the right-hand side of
(1) causes a change of the solution to the system. The
quantity T (the energy-momentum tensor of matter)
contains g, apart from physical quantities (masses,

1028-3358/01/4608-0591$21.00 © 2001 MAIK “Nauka/Interperiodica’
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charges, velocities, angular momenta and magnetic
moments of bodies, etc.). It is well known that Eq. (1)
is satisfied by four identities that express the fact that
the covariant divergence G°® of the Einstein tensor is

zero. Thisresultsin the validity of the equality Tf’BB =0,

where the semicolon impliesthe covariant partial deriv-
ative. The last equality leads to the energy-momentum
conservation laws for a material system and to equa-
tions of motion in any approximation. In particular,
from this equality, we can easily derive the exact equa-
tions of motion for a tentative particle in the external
gravitational field,

Du“ du“ a B, H
=—+4 = 0;
s S MU u 0; ®))
the equations of motion for atentative charged particle,
DU” € [,
— = —u'fg; 6
ds mCZU B (6)

and the eguations of trandational and rotational
motions for the rotating part,

ds dstd 2
DS «DS* DS _
gs U ds =~ dsO~ 0. ®)

In Egs. (5)—(8), operator D is the absolute-differen-

a

L dx
tiation operator; u® = —
P ds

particle's 4-velocity; m and g, are the particle's mass
and charge; S® = —SPY is a tensor characterizing the

particle’s momentum; Fgu arethe Christoffel symbols;

are the components of the

Rp, isthe Riemann—Christoffel curvature tensor; and

féa is the tensor of an electromagnetic field linked to
the four-vector A, through the relation fy,; =
AG; [ Aﬁ; ar

The absence of the usual parallelismfor tensor fields
makestheir comparison ambiguous. The reason for this
isthat the comparison in M* takes ameaning only once
the trandation of a tensor from a point in which it is
determined by presetting the field to a point in which
we wish to compare it with a given tensor has been
specified. In the M* manifold, this depends on both the
path and method of the trandation (a paralel transa
tion in the Levi-Civitasense, etc.) [7, 12].

Since the concept of stability isrelated to the notion
of point closeness in unperturbed and perturbed trajec-

tories, the correspondence between pointsin C and C
hasto be established. It iswell known that in the frame-
work of NCM, such a correspondence is established
owing to the presence of an external absolute parame-

DRUZHININA

ter, i.e, time. Namely, points in the perturbed and
unperturbed tragjectories are considered as correspond-
ing to each other if the same time (measured by a cer-
tain hypothetical absolute clock) corresponds to them.
Evidently, this definition of the correspondence is
meaninglessin the framework of RCM, where time has
no sense of the absolute parameter. Therefore, we
establish the correspondence between points in C and

C based on the “correspondence in the normal”.
Definition 1. We say that pointsin unperturbed and

perturbed trajectories C and C arein orthogonal corre-

spondence (correspondence in the normal) if these

points are intersections of the indicated geodetics with
asurface N orthogonal to the geodetic C.

It follows from Definition 1 that if P and P are arbi-
trary corresponding points in C and C, respectively,
then point PistheclosestinCto P O C.

In M#, the tentative-particle trgjectory (in the partic-
ular case of equilibrium) defines a world line whose
equation is determined by solving the differential equa-
tions

d «a
6sp
which satisfy certain initial conditions. Here, p* =

a

mgdl(s— is the particle momentum, F¢ is the force four-

= E, €))

vector, mis the tentative-particle mass, and 6§s is the

operator of covariant differentiation along the line.
Definition 2. Let X° (s) and x%(s) be coordinates of
points P and P corresponding in the normal for the per-
turbed C and unperturbed C trgjectoriesand 0° (s) and
u®(s) be the four-velocity coordinates at the points P
and P, respectively. Let u®(s) also be a vector 0°(s)
trandated in parallel to its own direction from the point

P to point P. The unperturbed trajectory C is referred
toas

(i) stable in the Joukowski sense if, for every num-
ber € > 0, anumber &(¢) > 0 can be found such that the
following inequalities are fulfilled:

(9 -x (9 <&, [w(9-0(s) <e Os>s,
if

[ (s0) ~x(s0) <8, |0*(s0) ~ 0 (s0)| <&
(if) unstablein the Joukowski senseif it is not stable
in the Joukowski sense;

(iii) asymptoticaly stable in the Joukowski sense if
it is stable in the Joukowski sense and, in addition,
DOKLADY PHYSICS Vol. 46
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X(8) = ()] —~ 0, |u®(s)=a(s)| —~ 0 for
S — +00,

Definition 3. An unperturbed trgjectory Cisreferred
to as stable in the Joukowski sense with respect to the
trajectory coordinates x%(s), four-velocity u®(s), and
spin SY(s) if, for every number € > 0, anumber d(¢) > 0

can be found such that [x°(s)-x%(s) < e,
|ﬂ°‘(s)—u“(s)| <€, and |§’(s)—S“(s)| <eOs>g as
0" (s0) —U*(s0)| <3,and

soon as | X% (sp) — X% (sp)| <3,

‘S“(so) - S“(so)‘ < 8. If, according to agiven g, it isnot
always possible to find d(¢) > 0 such that all indicated
conditions are satisfied, then the unperturbed motionis
referred to as unstable with respect to x%(s), u%(s),
and S%(s).

Remark 1. For steady-state differential equations of
NCM, the norma correspondence of the trajectory
points and inequalities analogousto those of Definition 2
were used as adefinition of thetrajectory stability inthe
Joukowski sense [11]. Therefore, Definition 2 isagen-
eradization of the definition of the stability in the
Joukowski sense givenin [11].

Remark 2. Definitions 2 and 3 relate to different
types of exact equations of motion for tentative bodies.
In particular, Definition 3 is concerned with the case
when there are also equations for the particle spin [12].

In the free-moation case, Eq. (9) determines a geo-
detic:

d «

=u

0s
Here, s is the canonical parameter. Furthermore, we
study only geodetics. Let adirection uy be given at a

= 0. (10)

point X, 0 M*. Then, Egs. (10) determine the unper-
turbed geodetic C. We assume that geodetic C is
uniquely determined by the solution to Egs. (10), which
correspond to theinitial conditions

X*(so) = Xo, U%(Sp) = Up. (11)

We also assume that there exists a neighborhood K of
the geodetic C in which the theorem of uniqueness and
existence for the solutionsto Egs. (10) holds. Under the
conditionsindicated, achange (as small asiswished) of

initial conditions (11) determines a new geodetic C
in M4, which below is referred to as the perturbed
geodetic.

The concept of stability in the Joukowski sense is
associated with the notion of point closeness in unper-
turbed and perturbed geodetics, and, hence, it rests on
the notion of correspondence between points of the

geodetics C and C. Let P be an arbitrary point in C and
P be a point corresponding to P in C for the case of

DOKLADY PHYSICS Vol.46 No.8 2001
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orthogonal correspondence. We now connect P and P
by a geodetic. This geodetic is unique. Drawing a tan-
gent vector y* at apoint P [0 C, we can write out with
an accuracy to termshigher than thefirst order of small-
ness that

x°(s) = x(s) +y'(9), (12)

where x9(s) and X" (s) are coordinates of the corre-
sponding pointsin C and C, respectively.
We elucidate the condition under which the geodet-

ics are determined by the functions x?(s) and x° (s). To

do this, we assume that the function y® is twice differ-
entiable along C. Then, we differentiate (12) twice with

respect to s and add to both sides of the result obtained
the expression

Here, 'y, isthe Riemannian connectednessin C and's

is the canonical parameter in C. Since C is geodetic,
we have

v+ u’u —u'p+u” =0, (13)

ds
ds’
hood of C into a series:

For=r% +a,r%y +.... (14)

Substituting (14) into (13) and taking into account
that C is geodetic and s is its canonical parameter, we
obtain after simple transformations

where p = In==". We now expand I 5, in the neighbor-

2

66_32yu +RGUTY W+ p(ut +y) +FU(YL YY) = 0,
where F® are terms of a higher degree compared to the
first one in the quantities involved and Rgm isthe cur-
vature tensor for M* cal cul ated on the unperturbed geo-
detic C.

It is easy to see that the unperturbed geodetic C is
determined by the zero solution to Eqg. (15).

Let 0" be atensor obtained by trandating u® to the
corresponding point P [1 C along the geodetic connect-
ing these points. The difference

Z=u"-u" (16)
isreferred to as the four-velocity perturbation. We also
assumethat the orders of smallnessfor y* and 2 arethe
same.

For a special case of geodetics, Definition 2 of the
stability in the Joukowski sense is formulated as
follows.
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Definition 4. An unperturbed geodetic C is referred
to as € in the Joukowski sense if, for every number
€ >0, anumber & > 0 exists such that

y<e, |Zl<e DOs>s, (173)

if, fors=sg,

o[ <3, 2] <. (17b)

Otherwise, the unperturbed geodetic C isreferred to as
unstable in the Joukowski sense.

Definition 4 is an analog of the stability definition
(in the Lyapunov sense) for the zero solution to
Egs. (15) if thetrandation is such that a system of first-
order differential equationsin y® and z* arises. By vir-
tue of the uniqueness, independent of the trandation,
the zero initial conditions correspond to the zero solu-
tion y* = 0 to system (15) and, consequently, 2 = 0. It
is worth noting that the definition of stability is the
same in the case when unperturbed and perturbed geo-
detics determine world lines.

—a

We assume that 0" is obtained by the Levi-Civita
translation [14] of the vector u® from P O C to the cor-
responding point P [0 C aong the geodetic connecting

P with P. Then, from du® = 0, with an accuracy to
terms of the first-order of smallness, it follows that

u’(s) = 0(s) -Ig,y’u'.
From (10) and (18), we have

a_ O a
z s -

Relations (10) and (19) are found with an accuracy
to the first-order terms of smallness with respect to a
perturbation provided that y® is a vector field along
geodetic C. However, these relations can be considered
as a substitution of variables, which helps to reduce the
order for a system of equations from the second to the
first one.

The following theorem holds.

Theorem 1. Let the quantity 2% be a vector; i.e,, itis
determined by an invariant trandation. Then, the
notion of the stability in the Joukowski sense (Defini-
tion 2) isinvariant with respect to coordinate transfor-
mations that satisfy the inequality

ax”
ax°

Proof. We show that the orbit C is stable in the
Joukowski sense in the new coordinate system if ine-
quality (20) issatisfied. Since 2 isavector, we find that
in the new coordinate system,

ax*
ax°

(18)

(19)

<L. (20)

a
’

ax°

y' = = z. 1)
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Passing to absolute values in (21), we arrive at the
following estimates:

ax°
a

0x

y 1<y, [ <] 12

0x

From the property of stability for the unperturbed
trajectory C and from inequality (20), it follows that
ly®| < 4Le and || < 4Le Os > g, if, for s= g,, theine-

qualities |y | <4Ldand || <4LS aretrue.

In the initial coordinate system, by virtue of the
C-geodetic stability for agiven € > 0, there exists d, > 0

such that |y?| < %sL—l, || < %ﬁ:L—1 Os> g if, fors=g,,

the following inequalities are valid: |y§| < &, and

4] <3,

We now denote &, = 4L9, . Then, for agiven number
€ > 0, anumber &, > 0 can always be found such that
ly*|< € and || <€ Os> g if, for s= g, the following

inequalities are fulfilled: |y3| <&, and |z| < 3,.

Therefore, the unperturbed geodetic C is stable in
the Joukowski sense in the new coordinate system.
Thus, the theorem is proved.

Let us call the indicator the norm of the vector
JpU?UP. Inthis case, the following theorem holds.

Theorem 2. For geodetic C to be stable in the
Joukowski sense with respect to the quantities 2 and

y* inthe M* Riemann manifold, it is necessary and suf-
ficient that geodetic C be stable in the Joukowski sense
with respect to perturbations that conserve the indica-
tor sign of the normal vector.

The proof of the theorem is based on the fact that,
for an unperturbed geodetic, the normal-vector indica-

tor is determined by the formula Tt = 1T+ A(y?, y%),
where 1tis the unperturbed-geodetic indicator.
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Relations determining the field of displacement
velocitiesin a perfectly plastic body in the state of full
plagticity under the Tresca—Saint-Venant condition
were considered in papers[1, 2].

This paper presents formulas for displacement
velocitiesin the case of ageneral plane problem of per-
fect plasticity [3], when avector of displacement veloc-
ity depends on the coordinates x and y. If the longitudi-
nal displacement velocity w directed along the z-axisis
equal to zero, there are known relations for the plane
strain [4].

The problem under consideration concerns die
indentation into a perfectly plastic half-space with non-
zero longitudinal velocity.

1. Taking the tensile—compressive yield stress of the
perfectly plastic body as a unit of stress, we write the
condition of full plasticity in the space of the principal
stresses as

0,=0, 03=0,+1.

(1.1)

Components of the stress tensor that satisfy condi-
tion (1.1) can be expressed in terms of both the average
stress o and the functions 8 and ¢ in the form

_ 1.1 2
o, = 0—3+2(1+ cosB)cos ¢,
o, = 0—%+%(1+ cose)sin2¢,

—g-tilg_
0,=0 3+2(1 cos0),

=3
3

(1.2)
(o,+0,+0,),

* Yakovlev Chuvash Sate Pedagogical University,
ul. Dzerzhinskogo 20, Cheboksary, 428000 Russia
** Moscow Sate Academy
of Instrumentation Engineering and | nformatics,
ul. Sromynka 20, Moscow, 107846 Russia

Ty = %(1+ cosB)sing cosd,

T, = %sinecosq), Ty, = %sinﬁsinq).
Direction cosines of the principal stress o, with respect
to the x-, y-, and z-axes of coordinates are determined
by the angles 6 and ¢ as

0 0 . . 0
n, = cosécosq), n, = cosésmq), ng; = smé. (1.3)

In the case of ageneral plane problem, the quantities
0, 6, and ¢, aswell asthe componentsu, v, and w of the
displacement-velocity vector, do not depend on the
coordinate z. Substituting the expressions for stresses
(1.2) into the equilibrium equations leads to quasilinear
differential hyperbolic-type equations for the functions
0, 6, and ¢ with thethree characteristic curvesa, 3, and
y, aswell asto the differential relations

rdyd — a6+ T+ Il tan2 _ 1-cosf

0, = el e = 2
(1.4)

[L+cosf . _
doiDde = 0 along B and a, (1.5)
%ﬁ—ﬁ = tand, (1.6)
] 2sin@ Oy o _

L+ cos 0 +sinBsin2édd +d6 = 0 (17

aong v.
Thefield of displacement velocities must satisfy the
conditions of incompressibility,

Jdu, 0v

—+ = = .

ax 3y 0, (1.8)
and isotropy [1, 2], where, with the use of relations (1.3)
for the direction cosines, the latter condition can be

1028-3358/01/4608-0596%$21.00 © 2001 MAIK “Nauka/Interperiodica’
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written in the form of the equations

au [@u avg[nz
6x Q?y ox0Ch,

N
nf-
(1.9)

26u ou aanz
ox Qay ox0n,

(1.10)

The system of equations (1.8)«1.10) in the
unknown displacement velocities u, v, and w is of the
hyperbolic type and has the three characteristic curves
from (1.4) and (1.6). Differential relations for du, dv,

597

and dw, which are valid along the characteristic curves,
are derived by using the characteristic determinant of
the system. These relations are

du+EpIyD

m)@ dv—f

dw = 0, (1.11)

a,B,y

. ns(1—2n3)

apy = (1.12)

n,(1- 2n1)+n2(1 2n2)%E .
a,By

For the characteristic curves a and 3, which are
determined by the differential equations (1.4), formu-
las (1.3) for the direction cosines n;, n,, and n; alow
function (1.12) to be expressed in terms of the angles 6
and ¢ as

tan=cos6

fop =

(1.13)

cosd(1— (1+cose)cos¢)+sm¢(1 (1+ cosB)sin ¢)Dj)g

For the characteristic curvey, using Egs. (1.3), (1.6),
and (1.12) turns the differential relation (1.11) into

tanB(ducos¢ +dvsing) —dw = O along y. (1.14)

At 0 =0, Egs. (1.4) and (1.5) determine the orthog-
onal characteristic curves of plane strain and Hencky’s
relations for the stressfield. In the case of plane strain,
the longitudinal flow velocity w = 0 and the differential
relations (1.11) for the displacement velocitiesu and v
express the condition of characteristic-curve orthogo-
nality inthe physical (X, y) and hodograph (u, v) planes
according to Geiringer’s equations.

The condition 0 < 6 < g corresponds to the genera

plane strain when the characteristic curvesa and 3 (1.4)
are not orthogonal and have the characteristic curve
Y (1.6) as abisector of the angle between them.

For the general plane strain, the problem of con-
structing fields of stresses and displacement velocities
is statically determinate. First, Egs. (1.4)—(1.7) should
be used to determine the fields of characteristic curves
and stresses at specified boundary conditions for the
functions g, 8, and ¢. Then, once the functions 8 and ¢
used in the differential relations (1.11)—(1.14) are
already known, the field of displacement velocities can
be constructed at specified kinematic boundary condi-
tions.

In the plastic region, the rate of energy dissipation
must be positive so that

D=0, +0,8,+038320, (1.15)
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whereg,, €,, and &, are the principal strain rates. Under
the condition of full plasticity (1.1), inequality (1.15)
takes the form &; > 0. In the case of calculating dis-
placement velocities, this inequality is convenient for
check aong the characteristic curve y. Under the
assumption that ¢ = 0in (1.3), the relation for &, takes
the form

= oV 8, dwy o
€3 = COSZDd COS2 dssmzj

where v, isthe projection of the velocitiesu and v onto
the direction of the characteristic curve y. The associ-
ated plastic-flow rule for edge (1.1) of the Tresca prism
leads to the following inequalities for the other two
principal strain rates[4]:

(1.16)

€,<0, &<0. (1.17)

2. We now consider the problem of flat-die indenta-
tion into the rigid-plastic half-space (Fig. 1). If the die
length in the longitudinal direction (along the z-axis)
exceeds considerably its width in the transverse direc-
tion (along the x-axis), indentation and longitudinal slip
of the rough die are accompanied by the onset of plastic
general plane-strain flow in the cross sections z = const.
The die width and the magnitude of velocity of its
trandational oblique (to the normal to the half-space
boundary) motion are taken as scales of length and
velocity, respectively.

The direction of the die velocity is defined by the
angles A and ), which determine the velacities of die
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indentation along the y-axis and of die dlip along the x-
and z-axes as follows:

Vo = —COSA, Uy = sinAcosy,

2.1
W, = sinAsiny, Os)\,wsg. @1
If the die velocities u, and w, exceed the plastic-flow
velocities u and w at the boundary of the contact, posi-
tive shear stresses 1, and T, are applied to the plastic
half-space there. Specifying the angles 6* and ¢* as
parameters in the boundary conditions for the trans-
verse and longitudinal contact frictions, we calculate
these stresses using formulas (1.2). The angle 6* varies

intheinterval 0 < 6* < g while the range of the angle

¢* depends on 6* as

x I
CUSO* <7+,

_1 [ — cosb*
M= —arctan ,
DZA/cose*D

The upper value of ¢* is determined by the degen-
eration of the characteristic-curve field into a line tan-
gential to the die boundary, whileitslower value corre-
spondsto the case when, at large values of 8%, theangle
between the directions of characteristic curves a and 3
approaches the critical value 1t Since the die width is
equa to unity, the constant contact shear stresses T,,
and 1, caculated using formulas (1.2) are equal to
shearing forces directed along the x- and z-axes so that

2.2)
O<c<1.

P, = %(1+ cosB*)sing* cos*,
(2.3)
p, = %sine*sinq)*.
The indentation force P, applied to the die is deter-
mined after calculating the normal contact stresses in
the plastic region situated at the boundary OA.

At the half-space boundary AC, which is free from
applied stresses, the normal stresses satisfying the con-
dition of full platicity (1.1) are o, =0,=-1and g, =0.

IVLEV et al.

Asaresult, Egs. (1.2) yield the following values of the
functions o, ¢, and 0 at this boundary:

2 Tt

O'=—§, ¢=§1 6 = 0 at AC. 2.4)
At 8 =0, the characteristic curves (1.4) arestraight lines
odys  _ L0
D]j)@ = 1 and the uniform stressed state (2.4) of

plane stral n exists in the region ABC.

At the singular point A, variation in the average
stress, which is associated with a transition from the
free boundary AC to the die boundary OA, is calculated
by integrating Eq. (1.5) along the degenerate character-
istica. Asaresult,

1+ cosG

__—+I2m

A similar integral calculated along the degenerate
characteristic curve 3 is used to test the bearing capac-
ity of arigid wedge with its vertex at point O.

The boundary conditions (2.2)—«2.5) alow the
determination of the characteristic-curve and stress
fields in the plastic region through numerical integra-
tion of the differential relations (1.4)—(1.7). These con-
ditions also make possible the calculation of the rigid-
plastic boundary ODBC at which, according to the
kinematic boundary condition, the velocity component
normal to the boundary must be continuous. This con-
dition has the form

2.5)

usiné +vcosé = 0, & = ¢—l—-1[—u, (2.6)
where € is the inclination of the characteristic curve a
to the x-axis. At the die boundary with the plastic
region, the normal velocity component v is continuous
and equal to the vertical die velocity so that

V =V, = —COSA. 2.7

At point O of the die contact with the rigid region, the
velocity component tangential to the characteristic
curve a exhibits ajump described by the relation

[V]cx = -

Here, the angle &*, determined by both the second
equation (2.6) and the boundary conditions of contact
friction (2.2), is calculated from condition (2.7) and, due
to the homogeneity of the differentia relations (1.11) for
the velocities, remains constant along the rigid-plastic
boundary. The longitudinal velocity w is tangential to
the rigid-plastic boundary directed along the z-axis and
satisfies condition (2.6). When thedie dipsin the direc-
tion of the z-axis, along the half-space boundary, the
velocity wisassumed to be continuous at therigid-plas-
tic boundary. Relations (2.6) and (2.8) are used to find

COSA

SnE (2.8)
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plastic-region velocities at the rigid-plastic boundary
ODBC:
u=[v]scosg, v =][v],sng, w=0. (2.9
Thus, having calcul ated the characteristic-curve and
stress fields, we determine the boundary conditions for
velocities (2.9) at the rigid-plastic boundary. Together
with condition (2.7) specified at the die boundary, they
allow calculation of the velocity field in the plastic
region through integration of the differential relations
(1.11)—1.14) for displacement velocities.

In the case of plane strain [6 =0 and Y =0 in kine-
matic condition (2.1)], it is possible to obtain asimple
exact analytic solution to the problem by using
Hencky’s and Geiringer’s equations. Below, we discuss
a numerical solution to the equations of the general
plane strain, which, as® — 0 and y — 0, turnsinto
the exact solution to the plane-strain problem.

3. The characteristic-curve and stressfields are calcu-
lated by integrating the differential relations (1.7)—(1.14)
for the functions o, ¢, and 8 with the boundary condi-
tions (2.2)«2.5). At regular nodes of the mesh of the
characteristic curves, which do not belong to the singu-
lar point A and the die boundary OA, we solve the ele-
mentary Cauchy problem for the functions o, ¢, and 6
known at points / and 2 of the Cauchy contour (Fig. 2).
To find the solution, the functions ¢ and 6 are approxi-
mated by their average values calculated along the
characteristic curves and the differentials entering
Egs. (1.3)(1.6) are substituted by the finite differ-
ences. The coordinates x, y of point P satisfy three dif-
ferential equations of the characteristic curves, which,
in the case of the finite-difference approximation, have
the form

Y=Y _ M., 0] .
v = tan[cl)—mﬂt} in a, 3.1
y=¥> _ o, A .
X_Xz = tan[¢+ +pD} in B, 3.2)
Y—VYs _ .
% tand in v. (3.3)

Unknown coordinates of point 3 are found as the coor-
dinates of intersection of the characteristic curvey with
the Cauchy contour, which is approximated by the
chord connecting points / and 2, and, therefore, satisfy
the equation

Ys—Y1 _ Ya—Yi
X3—X; Xp—Xq

(3.4)

When the coordinates of point 3 are known, the values
of the functions o, ¢, and 6 at this point are calculated
by linearly interpolating these functions between
points / and 2.
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The differential relations along the characteristic
curves are written in the form

oo, = 2O 4y in q,

3.5

~ 0 Joose. G

o0, = 5*123339%@: 0) in B GO
B 1 2sin6

93 0= (h + COSGI( ) (3.7)

+sinBsn2¢ (¢ —b,) in v,

where 0,, 0,, and 05 represent the values of o at
points 7, 2, and 3.

Equations (3.1)—«3.7) in the unknowns presented
through the coordinates of point P, the functions g, ¢,
and 6 there, and the coordinates of point 3 are solved by
simple iterations. Known values of the angles ¢ and 6
at points / and 2 are used to calculate x and y from
Egs. (3.1) and (3.2). The values of o and ¢ at point P
are then determined from Egs. (3.5) and (3.6). Coordi-
nates of point 3 are calculated from Egs. (3.3) and (3.4),
while values of o, ¢, and 8 occurring there are found
through linear interpolation between points / and 2.
Equation (3.7) is used to calculate 0 at point P. The cal-
culations are repeated with the use of average values of
the angles ¢ and 6 along the characteristic curves con-
necting points /-P, 2-P, and 3—P. Absolute differences
of successive vaues of ¢ and O calculated at point P
reach the order of magnitude of 10 after two-threeiter-
ations performed almost instantly on a Pentium-133.

Intheregion ABD (Fig. 1), thefield of the character-
istic curves is determined by solving the Goursat prob-
lem, where the functions g, ¢, and 8 are known in the
[-type characteristic curve AB and at the singular point A,
while the regular nodes of the mesh formed by the char-
acteristic curves are calculated using Egs. (3.1)—3.7).
Then, in the region OAD, we solve the mixed problem
with thefunctions g, ¢, and 6 known in the 3-type char-
acteristic curve AD and with boundary conditions spec-
ified at OA. Since ¢ and 6 at OA are specified by bound-
ary conditions (2.2), the coordinates x and values of o
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at the nodes situated there are calculated using the lin-
ear equations (3.1) and (3.5).

In the region OABD, the field of the characteristic
curves is determined accurate to an unknown length L
of the characteristic curve AB. Thislength is calculated
from the condition that the coordinate x, of point O is
equal to zero. An algorithm for constructing the field of
the characteristic curves determines x, as a continuous
function of the parameters L, which satisfies the con-
dition

X(L) = 0. (3.8)

Equation (3.8) is solved using the iterative Newton
method, where the derivative is approximated by a
finite-difference ratio and the plane-strain length L of
the boundary AC istaken astheinitial approximation. In
two-three steps, the iterative Newton process makes
solutions to Eqg. (3.8) to be accurate to the order of 107°.
For a pair of values ¢* and 6* specified at boundary
OA, the calculation of characteristic-curve and stress
fields takes about 1 s on a Pentium-133. This fact
reveal sthe high efficiency of the numerical algorithms
for solving the hyperbolic problems of perfect-plastic-
ity theory [5].

For the shearing forces P, = 0.269 and P, = 0.159,
Fig. 1 shows the field of the characteristic curves and
the normal stress distribution along the die boundary
calculated at 6* = 1 and ¢* = 0.388. Being almost con-
stant, the pressure applied to the die increases dightly
near the singular point A. The indentation force P, =
2.075. When the magnitude of the contact shearing
force P, = «/P; + P approaches its limiting value :—ZL ,
the characteristic-curve field degeneratesinto aline that

coincides with the die boundary. The case ¢ = g and

0— g corresponds to longitudinal die shear along

IVLEV et al.

the zaxisat P, = 0 and P, = % Then, according to

Egs. (2.5) and (1.2), 0 = _g, o, = _%, and o, = _12L_
Thisis the case of pure shear at the minimum pressure

applied to the die, for which

1 1 T
Py:§1 PXZO, Pz=éat¢=G:§.
Thus, variation in the shearing forces changes the
limiting pressure applied to the die from its maximum

(3.9)

value 1 + 1—-[, which corresponds to a smooth Prandtl

2

die, to the minimum value %

pure longitudinal shear of an absolutely rough die.

The calculated field of the characteristic curves
determines the kinematic boundary conditions (2.9) at
the rigid-plastic boundary ODBC (Fig. 1). Together
with the boundary condition (2.7) specified at the die
boundary, these conditions allow construction of the
field of displacement velocities through solving both
the mixed problem for Egs. (1.11)—(1.14) in the region
OAD and the Goursat problem in the region ADB.
According to the calculations, 8 = 0 both at boundary
AB and in the region ABC, f, 3 = 0in (1.13) and equa-
tions (1.11) turn into Geiringer’s equations. The veloc-
ities u and v occurring in the region ABC are constant
along the characteristic curves a, while the vel ocitiesw
do not vary along the characteristic curvesy according
toEq. (1.14) at 6 =0.

The elementary Cauchy problem for Egs. (1.11) and
(1.14) approximated using finite differences leads to
the following system of linear equations in the veloci-
tiesu, v, and w:

, which correspondsto the

(u-u) +(v-v) B —w-w)f, =0, (3.10)

dy -
(u—uy) +(v-v,) —(w—=w,)f; =0, (3.11)
2 2 Qj}aﬂ 2/ B
tanB((u—
anB((u—us)cosd 3.12)

+(v—-v3)sing) —(w-ws) = 0.

where the unknowns are calculated at the regular nodes
P of the mesh formed by the characteristic curves
(Fig. 2) and the velocities used in the calculations are
specified on the Cauchy contour 7-3-2.

Coefficients of the system of equations (3.10)—(3.12)
are calculated with the use of the angles 8 and ¢ aver-
aged along the characteristic curves I-P, 2-P, and 3-P,
which are known as a result of solving the system of
equations (3.1)—(3.7). At the mesh nodes formed by the
characteristic curves at the die boundary, the velocity v
is specified by boundary condition (2.7), while the
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velocities u and w there are found by using Egs. (3.11)
and (3.12) to solve the mixed problem for the velo-
cities.

Figure 3 presents the field of the displacement
velocitiesu, v inthe hodograph plane. It correspondsto
the characteristic-curve field shown in Fig. 1 and to the
oblique die indentation with velocities u, = 0.833, v, =
—0.315, and w,, = 0.455. In contrast to the plane strain,
the longitudinal shear is accompanied by anonuniform
velocity distribution in the region OAD situated under
the die and along the characteristic curves 3, which
convergeto the singular point A in the region of the cen-
tered fan ABD. In theregion of the uniform stressed state
ABC, the velacity field turns out to be nonuniform with
the velocities u and v decreasing along boundary AC.

For the characteristic-curve field plotted in Fig. 1,
Fig. 4 shows the distribution of the longitudinal veloc-
ity w as an isometric projection of the surface w(x, y).
The velocity w is positive and increases in the direc-
tions from the rigid-plastic boundary ODB to the die
boundary OA and to the singular point A, at whichit has
apolar singularity and takes a maximum value equal to
w, = 0.26. The plastic materia is pulled by the longitu-
dinal stress of the contact friction in the direction of die
dlip. However, the velocity w of the plastic material is

DOKLADY PHYSICS Vol.46 No.8 2001

lower than the longitudinal velocity of die motion
w, = 0.455, and, therefore, the energy dissipation
caused by the longitudinal friction forcesis positive. In
the region of the uniform plane stressed state occurring
from theright of boundary AB, 6 = 0 and the differential
relation (1.14) yields that w = const along the straight
characteristic curvesy parallel to the y-axis.

For the presented field of displacement velocities,
the dissipation of energy of the plastic flow is positive.
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Study of the motion of a droplet in an electromag-
netic field is an important and urgent problem [1, 2].
This motion is caused by a nonuniform distribution of
temperature along the droplet surface. In this case,
additional tangential stresses appear owing to the tem-
perature dependence of the droplet surface-tension
coefficient; these stresses are responsible for the
ordered motion of the droplet. The nonuniform distri-
bution of temperature can be induced by various fac-
tors, for example, by an external constant gradient of
temperature [3, 4], a chemical reaction on the droplet
surface[5], the presence of surface-active substancesin
afluid [6], etc. If the droplet moves due to the nonuni-
form distribution of inner heat sources, this motion is
called photophoretic [7].

In the past few years, interest in the droplet motion
for considerable temperature drops in their neighbor-
hood has grown [8-10]. In this paper, in contrast to pre-
vious studies, we took into account the exponential
temperature dependence of the coefficient of dynamic
viscosity in the thermocapillary drift of a droplet and
the influence of fluid motion on the temperature distri-
bution.

The analysis carried out in this work showed that,
along with the temperature dependence of the coeffi-
cient of dynamic viscosity, the convective transport can
also substantially influence the thermocapillary drift of
droplets heated by inner heat sources. In particular, it
was shown that, if the droplets absorb radiation as a
blackbody, two qualitatively different motions of the
particle are possible: in the direction of propagation of
radiation and in the opposite direction. This circum-
stance is caused by a marked influence of the convec-
tive motion of fluid (large Prandtl numbers) on the
angular nonuniformity of the temperature distribution
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in the neighborhood of a droplet for significant radial
temperature drops.

PROBLEM FORMULATION

We consider the steady motion of a nonuniformly
heated spherical droplet of radiusR, density p;, and heat
conductivity A; in an immiscible viscous incompress-
ible fluid with a density p, and a heat conductivity A,
filling the whole space. Thefluidisat rest at infinity. As
a heated particle, we understand that the particle’s
mean surface temperature considerably exceeds the
environment temperature.

The heated surface of the droplet can have a sub-
stantial effect onthethermal characteristics of the envi-
ronment and, thus, on the distribution of velocity fields
and pressure in its neighborhood.

Among the parameters of fluid transport, only the
viscosity coefficient depends strongly on temperature.
Taking the temperature dependence of viscosity into
account, we used formula (1) proposed in [3] (for
F,, = 0, thisformulacan be reduced to the Reynoldsfor-
mula[11]):

He = uo{1+ z n[1]— h}expD—AD = 1% (D

n=

Here, A and F, are constants, T,, is the temperature of
the fluid far from the heated droplet, |, = H«(T.,); here-
after, the subscriptseand i refer to the external fluid and
the droplet, respectively.

The fluid viscosity is known to decrease with tem-
perature according to the exponential law [11]. Analy-
sisof the available semiempirical formulas showed that
expression (1) makes it possible to best describe the
change in viscosity in a wide range of temperatures
with an arbitrary desired accuracy. For illustration, we
listin Table 1 the values of F,, for water (A=5.779, F, =
-2.318, F, = 9.118, and T, = 273 K); Heaeq IS the
dynamic viscosity calculated from formula (1) and e,
isthe experimental value of the dynamic viscosity. The
relative error isless than 2%.

1028-3358/01/4608-0602%$21.00 © 2001 MAIK “Nauka/Interperiodica’



FEATURES OF THE THERMOCAPILLARY DRIFT FOR A HEATED DROPLET

The heat-conductivity coefficient of a droplet is
assumed to considerably exceed the heat-conductivity
coefficient of the medium; the density (p), heat capacity
(cp), and heat conductivity (A) are considered to be con-
stant values; droplet motion is reasonably slow (small
Peclet and Reynolds numbers); the surface-tension coef-
ficient o is an arbitrary function of temperature [0 =
o(T)]; and the droplet is assumed to retain its spherical
shape (this assumption is valid under the condition
MU _o

R < R

It is convenient to introduce a reference system
related to the center of the moving droplet. In this case,
the problem is reduced to analysis of the steady flow
around the droplet by a homogeneous fluid whose
velocity at infinity (U,,) isto be defined (U,, = -U).

In terms of the above assumptions describing this
flow, the dimensionless conservation equations and
boundary conditions can be reduced to the form [12]

, where U isthe droplet drift velocity [12]).

nAV; = Op;,, divv; =0, n = HE; (2)

00

Ope = NAVe+2( )Ve+[M o xrotV,],

divV, = 0;
QiRZ
RePro(Ve)te = Ate, Aty = ——; @)
1 0
_ o, o0ty o i e _ i
y_l’ )\lay _)\eayvvr _Vr _01 Ve _Ve’
[6_VS+16_V?_V_S} _1 990t
9y yoo y| yU.otod
aVvL 10Vvi V %)
- .[__e+l__r___e]
'tay yod y /|
y — o, V,—cosfe —sng""e,, 6
te—1, p.—1; ©)
y—0, [V|[#o, ti#w, p#o. @)

Here, V, and V; are the radial and tangential compo-
nents of the mass velocity, while e, and e, are the unit
vectors in the spherical system of coordinates, respec-

tively; y = é is the dimensionless radial coordinate;

_ peU.R _ By

and Pr,, =
[ )\e
Prandtl numbers, respectively; and U,, = [U,|.

Re,,

are the Reynolds and
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Tablel
‘Hcalcd — p-expt‘ %
T.K | Heaca, PAS | Hegr, PAS Hcalca
100, %

279 0.0017525 | 0.0017525 0.00
293 0.0010089 | 0.0010015 0.74
313 0.0006433 | 0.0006513 1.22
333 0.0004581 | 0.0004630 1.06
353 0.0003556 | 0.0003509 1.35
363 0.0003199 | 0.0003113 2.76

The variables are made dimensionless by using the
following characteristic values: R (the droplet radius),

-, F _Jpo
Te Py er aNA U,, = T P=padV=p
For Re,, < 1, the incoming flow exerts only a per-
turbing action. Therefore, the solution to the equations
of hydrodynamics and heat transfer can be sought inthe
form

V =VP2iRe v®P+ .,
p=p2+Re,p+ ..., (8)

t = t9+Re tM+....

When finding the force acting on a nonuniformly
heated dropl et and itsthermocapillary-drift velocity, we
restrict our consideration to first-order corrections with
respect to Re,,.

The form of boundary conditions (5)—7) makes it
possible to seek the solution as follows:

Vv = G(y)cosd, VI = —g(y)sine,

© )

p~ = 1+ h(y)cos6.
Taking into account the inequality A, < A;, we can
ignore the dependence of the coefficient of dynamic
viscosity on the angle 8 in the droplet—fluid system and

assume that p(tu(y, 0)) = p(t?). Using this fact and
substituting (8), (9) into Egs. (2)—4), we make sure that
the variables are separated and obtain, asaresult, linear
partial differential equations for perturbed values. In
finding the distribution of temperature in the vicinity of
aheated dropl et, we used the method of joining asymp-
totic expansions [8]. As a result, the following expres-
sions were obtained for the velocity fields and the tem-
peratures outside and inside a particle:

Vi(y, 8) = cos8(1+AG; + AGy),
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Vg(y’ 0) = —sinB(1+ A,G; + A,G,),
Vi(y, 8) = cosB(A;+ Ay,
Vi(y, 8) = —sinB(A; + 2A,7),

t(y, 0) = 2 +Re t”, t(y,0) = t?+Re t?,

where
l © A(l)
G, = — +n3 -, G3 = Gl+%/GI1’
Y & (n+3)y
G, =G,+ %’G'Z,
1o AP
-4 n
i yn;(m)yn
@ A
) [(n+3)|n}—1}-———-———
y n=0 y (n+ 3) y
3
| U
Ay, 8) = %(1—)/) + DLZH;JZ AT, []cosB,
Y & 0

) = 1+5,

t9y) = B+ ﬁ%—x—yjq.dv I dy——jwody,

w = yPr,, (10)

1
tD(y) = By + ———— g, zdV
) = By 4nR2Tm)\iy2J: a

+ {y_[ sy — —J'wlydy}

00

A
y & (n+1)(n+3)(n+4)y"”

01 (2) AE12)

_ 1
T(y) = yD_Z 6y Z (n2—1)(n +2)y"

gz[(n+1)(n+3)(n+4)|n;—L/—3n2—16n—19}
Y’ £
ALY O
x 2 - 2 2 D
(n+1)°(n+3)"(n+4)Yy" 0

+1

R® ,2n+1
AT

Wn(y) =— P,(cosB)d(cos0),

P.(cos0) are the Legendre polynomials, y=t;— 1, t; =

T :
T_s , and T, is the mean temperature of the heated drop-

[

let surface determined by the formula

T,
— =1+ 11
Te (D

1

an T,
\Y
In (10), G,, G, , and G, are the first, second, and
third derivatives of the corresponding functions with
respect to y (k = 1, 2). The values of the coefficients
AP and AP can be obtained using the following
recurrence relations:

A = _n(n1+ 5)2 [(n+4—k)

x{aP(n+5-k)—af +a DAY, (n21),

(12)
Aff) — 1 [—6 o g4)yn

“(n+3)(n=2)

*Z{<”+2 DI +3-Ka” -] +a iy a2,

n
tay {(2n+5- 2k)a —aPhy kAﬁl_)k_z} (n=3).
k=0
When calculating the coefficients A" and A®

from formulas (12), it is necessary to take into account
the following equalities:

AP =3 AP =, AP =1 o =4,
(l) — (2) _ (l) — ~@) _
=Fy O =4, 0Oy =05 = 1,
2 4 A"
o = (4-n)F,+ A, ol = 5,
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a = —115{ [3(4a” —a?) +aP1a P

—[2(3a3” - a”) + a3’y — 6057y},

a® = 2AF,_,-2(2+n)F,,

A(Z) — y[6a(4)+2(3a(” (2)) +G(3)]

Theintegration constants A, A,, A, A, By, B, and I
are determined from the corresponding boundary con-
ditions on the droplet surface.

Our primeinterest isthe solution for the asymmetric
part of perturbed values, which will enable us to deter-
mine the force and velocity of the thermocapillary-
drift. For this purpose, we specify the nature of the ther-
mal sources. The heating of a particle is assumed to
take place through the absorption of electromagnetic
radiation, and the droplet absorbs the radiation as a
blackbody. In this case, the radiation is absorbed in a
thin layer of thickness dR < R adjoining the heated area
of the particle surface. The thermal-source density
within the layer of thickness dR is determined from the
following formula:

[ T
o - _
D6R0036 5 S <0<, R-O0R<r<R
qi(r,6) = O

5b, 0<8<s,

where | isthe incident radiation intensity.

The expression for the total force acting on the par-
ticleis obtained by integrating the stress tensor over the
droplet surface. This expression is made up of the vis-
cous force F,, and the force F,;,, whose appearance is
caused by the nonuniformity of the distribution of ther-
mal-source density in the body of the particle with
allowance for the convective termsin the heat-conduc-
tivity equation. In the general case, these expressions
can be represented in the form

F = F,+Re,Fp, (13)

where

F, = 6mRu, U, e, F, = —6TRY,f e,

2 U He

fu= 3—A%N NEeXp{—Av}
)\S
5=1+2=5 V= ﬁlnR3,
AP 3
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2 A
Bz N+ ke 2P0 26 0,602
3K 3Hi6u°°)\|
®y = 21,47, k= 1,2,
4
fon A exp{ V} Ephat

— s CD:[D R|

Eph - (A))\e%. G D 2T

and e, is the unit vector along the z-axis.

In estimating the coefficients f, and f,,, it is neces-
sary to take into account that the subscript s designates
values of physical quantities taken at a mean droplet-
surface temperature Ty, which is determined from for-
mula(11); thefunctions ®,, ®,, G,, G,, N;, N,, N;, and

N4 are taken fOI’ y =1 [Nl = GIGIZ — GzGIl, N2 =
G,(2G; + G;) - G2G; + G;), Ny = -Gy, and
N,=2G, + G} ].

In the case when droplet-surface heating is reason-
ably weak, i.e., when the mean dropl et-surface temper-
ature differs insignificantly from the environment tem-

perature at infinity (y — 0), the temperature depen-
dence of the viscosity coefficient can beignored. Inthis

case, G, =1, G, =-3, G} =12,G, =1, G, =1,

GI2=15G!2I:2,N1:2,N2=6,N3:3,N4:6,T1:—%,
3 1 1
TI1=Z,T2=§,andT|2 =—5.

Setting the total force equal to zero, we obtain the
expression for the thermocapillary-drift velocity:

f
hen = 2.

> (14)

U = —Re.hxe,,

Formulas (13) and (14) enable us to estimate the
force acting on aspherical droplet heated by an electro-
magnetic field in a viscous fluid and its thermocapil-
lary-drift velocity. These estimates are made for arbi-
trary temperature drops between the dropl et surface and
the region far from this surface with allowance for the
temperature dependence of the viscosity coefficient
represented in the form of an exponential seriesand for
the influence of fluid motion on the droplet drift.

We consider the expression

®q R

Go 2T, (15)

En = YPAHL -
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Table2
€pn E:h l, 102 W/cm?

0 0 0

0.167 —0.0429 12
0.346 —0.0882 24
0.534 —0.1356 3.7
0.730 —0.1846 51
0.934 —0.2355 6.4
1.142 -0.2871 7.8
1.354 —0.3395 9.3
1.566 -0.3921 10.7
1.780 —-0.4451 12.2

which contains two terms entering it with opposite
signs. Consequently, there are qualitatively different
droplet motions along the direction of propagation of
radiation and in the opposite direction. This is due to
the contribution of convective terms to the total force
and velocity entering the heat-conductivity equation
[theterm proportional to Pr,, informula(4)]. Moreover,
the contribution from the former term can be so impor-
tant that it can be comparable to the major effect (the
latter term). From (15) it follows that this term is pro-
portional to the product of the Prandtl number and the
relative temperature drop y. Taking into account that the
Prandtl number in a fluid can be large and the motion
for considerable temperature drops in the droplet
neighborhood is investigated, this effect can be signifi-
cant in the proper choice of the fluid.

To illustrate the contribution of the fluid motion to
the force and velocity of the thermaocapillary-drift, we

listin Table 2 datarelating the values €, and &7, tothe

intensity | for large-size mercury droplets with radius
R=2x10°mmoving in water at T,, = 273 K. Theval-

ues of &, were estimated from formula (15), while &3,

were estimated from formula(15) for y=0; i.e., nofluid
motion wastaken into account. The molecular transport
coefficients were taken at the mean surface temperature
(Te =Ty). In Table 3, we give numerical estimates for
theinfluence of droplet-surface heating and the convec-
tivetermsin the heat-conductivity equation on the ther-
mocapillary-drift velocity of the droplet. The value of

h,, was estimated from formula (14); the value of hfjh :
from formula (14) without convective terms (i.e., for
w = 0). The value of hy, was determined for low rela-

tive temperature drops (y — 0), the molecular-trans-
port coefficients being taken at T, = T,. The coefficient
of dynamic viscosity for water is described by the val-
uesA=5779, F,=-2.318, and F, = 9.118 in the tem-
perature range from 273 to 363 K with arelative accu-
racy to within 2%; Pr,, = 12.99. If we consider the
motion of a mercury droplet in glycerin, this effect is
especially significant because, for example, the Prandtl
number Pr, = 4753 at T,, = 303 K.

From the above numerical estimates it follows that
the convective terms should be taken into account in the
heat-conductivity equation when the mean temperature
of the surface of heated droplets differs significantly
from the environment temperature. For low relative
temperature drops, this effect must be taken into
account for fluids with high Prandtl numbers. In this
case, the contribution can be as high as 20%. In a gas,
this effect should not be taken into account because the
Prandtl number for most gases is on the order of unity.

Table 3

Ts K Pon hon Mo hon

273 0 0 0 0

283 —3.032x 104 7.785 x 10°° —2.017 x 1074 8.108 x 10°°
293 —6.658 x 1074 1.700 x 10~ —2.944 x 1074 1.828 x 10
303 -1.080 x 103 2.743 x 1074 -3.101 x 104 3.025 x 104
313 —1.538 x 103 3.891 x 1074 —2.707 x 1074 4.367 x 1074
323 —2.039x 1073 5.141 x 10~* -1.913x 104 5.841 x 10~4
333 —2.575x 1073 6.473 x 1074 —8.426 x 10 7.408 x 104
343 —3.143x 1073 7.883 x 1074 4.303%x10™° 9.060 x 104
353 —3.734x 1073 9.350 x 1074 1.885 x 104 1.077 x 1073
363 —4.342 x 1073 1.086 x 1073 3.414 x 1074 1.252 x 1073
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ERRATA

Erratum: “Reflection and Absor ption Characteristics
of Various Physical Objects
in a Millimeter Radio-Wave Range”
[Doklady Physics 45 (10), 510 (2001)]

V. I.Zagatin, V. V. Meriakri, G. S. Misezhnikov,
E. E. Chigryai, and V. B. Shteinshleiger

In our paper “Reflection and Absorption Characteristics of Various Physical Objects in a Millimeter Radio-
Wave Range,” which was published in Doklady Physics, val. 45, no. 10, pp. 510-511, the beginning of the last
item should be red as “ The results of the measurements of the reflection coefficient... .”

V.I. Zagatin, V.V. Meriakri,

G.S. Misezhnikov, E.E. Chigryai,
V.B. Shteinshleiger
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