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The Kargin—-Slonimskii—Rouse model is often used
for the description of the relaxation behavior of poly-
mers[1, 2]. A chain whose links are modeled by iden-
tical Maxwell elements (according to their properties)
is assumed to be sufficiently long. Therefore, the dis-
crete system of differential-difference equations
describing the chain displacement x; is represented in
the continuousform [3, 4] asasingle equationin partial
derivatives of the second order. It is evident that this
approach is unsuitable for short chains, and in order to
solve a problem involving a relatively small number of
equations it is necessary to take into account the relax-
ation of end chains in explicit form. In addition, the
generalization of the model necessitates the admission
of an arbitrary distribution of relaxation characteristics
for chain links. The solution to this prablem is the goal
of the present paper.

Let an ith link be characterized by the relaxation
timert,.

In this case, the relaxation of a system containing n
links and removed from the equilibrium state by aforce
F applied to thefirst link is described by the following
system of n + 1 equations:

Tll_; = _F + E(Xl_XZ),

T2X2 = X1_2X2+X3,

ey

TiX = Xi_1—2X * X1 1,

ToXn = Xno1—Xp-

Here, E is the elasticity modulus for a Maxwell ele-
ment. We suppose, for simplicity, that this quantity is
the samefor all links, whereas their differencein relax-
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ation timesis caused by the differencein their friction
coefficients, i.e., the interaction of these links with
matter.

The solution to the system of eguations (1) in the
form of a combination of exponential functions

F= Foz hyexp{—p;t}

i=1
is determined by the roots of the polynomial [5]:
D

zz-2 1 0 0..0 0O 0O
1 -2 1 0..0 0 0O

| 0 1 z-21..0 0 0 |_,
)
0 0 0 0..1z.,-2 1
0O 0 0 0..0 1 z-1

It is easy to obtain the numerical solution to Eq. (2)
on the basis of the fact that the determinant D, can be
represented in the form of the recurrence series

D, = z,—-1,
D, = (z,-,-2)D; -1,
D; = (z,-,-2)D,—-Dy,
3)
Di = (z-2)D;_;-D;_,,

Dn = (Zl_z)Dn—l_ Dn—2-

The solution of the equation D,, = 0 makes it possi-
bletofind n rootsp,, p, ..., pn- Theseroots correspond
to inverse values of relaxation times that characterize
the relaxation behavior of the system asawhole.

As an example, the results of the analysis of the
relaxation spectrum for oligomeric chainswith alength
of 10 are given in Table 1. Chains were considered
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Fig. 1. Maximum relaxation time tp; as a function of the logn

chain length: (1-6) chains with an a-type end link;
(7) chains with a block structure. The relaxation times T/t
of the a-type links are: (1) 1000; (2) 100; (3, 7) 10; (4) 5;
(5) 2; and (6) 1.

whose end links (of the a type) are featured by relax-
ation times 1, and t,,, whereas the others (of the b type)
are characterized by the relaxation time 1.

As is seen from the data presented in Table 1, an
increasein T, and T1,, is accompanied by a considerable
rise in the maximum relaxation time (a decrease in p,).

Fig. 2. Correlation between the chain length n and the mode
number m.

In this case, the value of the maximum relaxation time
isweakly dependent on whether one or both chain ends
are modified; athough the first link directly subjected
to the action of the applied force has aweaker influence
than the end one. The modification of the second end
leads to a sharp increase (in its magnitude) in the sec-
ond relaxation time (i.e., to adecrease in p,). The other

Table 1. Relaxation properties of oligomeric chains (n = 10) as functions of the oligomeric properties of end links 4/t and 1,/t

/T Ty/1 P 137 P3 P4 Ps Ps p7 Pg TP P10

1 1 0.022 0.198 0534 | 1.000 | 1555 | 2149 | 2731 | 3.247 | 3.652 | 3.911

2 1 0.0187 0.170 0.474 0.915 1.461 2.062 2.662 3.202 3.630 | 3.905

5 1 0.0123 0.134 0.420 | 0.859 | 1.410 | 2021 | 2.633 | 3.185 | 3.622 | 3.903

10 1 7.7x10°| 0117 0.401 | 0.841 | 1.396 | 2010 | 2.625 | 3.179 | 3.620 | 3.903

100 1 9.7x10%| 0.100 0.384 0.826 1.383 2.001 2.619 3.176 3.618 | 3.902

1000 1 |[100x104| 0.098 0382 | 0.825 | 1.382 | 2.000 | 2.618 | 3.176 | 3.618 | 3.902

1 2 0.022 0.190 0477 | 0.849 | 1.343 | 1936 | 2557 | 3.132 | 359 | 3.896

1 5 0.022 0.157 0.323 0.699 1.235 1.863 2.510 3.105 3.583 | 3.893

1 10 0.021 0.106 0.273 0.667 1213 1.847 2.500 3.099 3.581 3.892

1 100 |8.87x10°| 0.030 0243 | 0647 | 1.198 | 1.836 | 2492 | 3.094 | 3579 | 3.892

1 1000 99x10%| 00275 | 0.241 0.646 1.197 1.835 2.491 3.094 | 3578 | 3.892

2 2 0.0185 0.164 0.427 0.781 1.254 1.842 2.478 3.078 3.568 | 3.889

5 5 0.0122 0.117 0268 | 0570 | 1.079 | 1.713 | 2389 | 3.025 | 3544 | 3.882

10 10 76x103| 00819 | 0.1838| 0.513 1.036 1.681 2.367 3.012 3538 | 3.881

100 100 9.6x104| 0.011 0.125 | 0472 | 1.003 | 1.655 | 2349 | 3.001 | 3.533 | 3.880

1000 | 1000 9.8x10° (11203 0.121 | 0468 | 1000 | 1.653 | 2.347 | 3.000 | 3534 | 3.879
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relaxation times vary relatively little compared to those
in the case of an unmodified chain. For the Rouse
model, the maximum relaxation time as a function of
the chain length is described by the law p, v ¢, where
€ = 2. Thisdependence, however, becomes weaker with
an increase in T, and drops to unity as seen from the
data plotted in Fig. 1.

The introduction of severa a-type links into the
chain changes the entire relaxation spectrum consider-
ably. Table 2 shows relaxation features of block-struc-
ture chains: the first and the last a-type links are char-
acterized by relaxation times equal to 101. These links
are introduced into the chain after each three links of
the b type, which have a relaxation time 1. Thus, the
chains possess a periodic structure. A chain consisting
of five links has three b-type and two a-type links,
while a chain consisting of nine links has six and three
b-type and a-type links, respectively.

Asis seen from the data presented in Table 2, with
anincrease inthe chain length and acorresponding pro-
portional increase in the number of a-type links, the
maximum relaxation time rises higher than that which
is characteristic of the Rouse chain: € = 2.26 (Fig. 1).
Relaxation times intrinsic to a minimum-size chain are
present in avirtually unchanged form in longer chains.
At the same time, a whole set of additional modes
appears while increasing the chain length. The number
of modes being featured by relatively long times
increases proportionally to the number of a-type links
introduced (from 2 to 7). At the same time, modes
appear which are characterized by shorter relaxation
times. In a 9-link chain, these are numbers 5, 7, and 9.
In longer chains, modes with similar relaxation times
arise. In a 13-link chain, these are numbers 6 and 7, 9
and 10, and 12 and 13. In a 17-link chain, three packets
arepresent: numbers7, 8, and 9; 11, 12, and 13; and 15,
16, and 17. The same packets are met in longer chains:
8,9, 10, and 11; 13, 14, 15, and 16; 18, 19,and 20 in a
21-link chain; 10, 11, 12, and 13; 15, 16, 17, 18, and 19;
21, 22, and 23in a 25-link chain; etc. The total number
of modesin long chains turns out to be smaller than the
number of links. Apparently, thisis associated with the
fact that certain modes possess relaxation times which
are so close to each other that they are virtualy indis-
tinguishable. At the same time, in the case of a suffi-
ciently rough experimental determination, modes com-
posing a packet manifest themselves as a single mode,
and therelation between the number of links and modes
becomes nonlinear. Indeed, asis shown in Fig. 2, this
dependenceis close to alogarithmic one.

Thus, we may conclude that the consideration of
chains with a nonuniform structure shows that their
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Table 2. The effect of the oligomeric-chain structure on the
spectrum of relaxation times

| 0
n=5|n=9 |n=13|n=17|n=21|n=25
1 | 0.0495| 0.0123| 0.0054 | 0.0030 | 0.0019 | 0.0013
2 (0112 [ 0.081 | 0.044 | 0.026 | 0.017 | 0.012
3 10338 | 0.123 | 0.087 | 0.063 | 0.043 | 0.031
4 11631 | 0318 | 0.125 | 0.089 | 0.073 | 0.056
5 (13270 | 0.682 | 0.318 | 0.125 | 0.090 | 0.079
6 1628 | 0.636 | 0.318 | 0.125 | 0.091
7 2.055 | 0.718 | 0.615 | 0.318 | 0.125
8 3.27 1628 | 0.678 | 0.605 | 0.318
9 343 2.028 | 0.733 | 0.651 | 0.599
10 2.080 |1.628 | 0.702 | 0.633
11 3.27 2.017 | 0.740 | 0.677
12 3.42 2054 |1.628 | 0.717
13 3.44 2.091 | 2.011 | 0.745
14 3.27 2.038 | 1.628
15 3.42 2.070 | 2.008
16 343 2.096 | 2.028
17 3.44 3.27 2.054
18 3.425 | 2.080
19 3435 | 2.098
20 3.442 | 3.269
21 3.430
22 3.438
23 3.443

relaxation behavior considerably deviates from that
predicted by the Kargin—Slonimskii—Rouse model.
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Fluctuations play a substantial role in the relaxation
of ametastable boiling-up fluid. Usual thermal fluctua-
tions in a molecular system initiate the nucleation of
vapor bubbles. The nucleation processisirreversible. It
arises against the background of stationary white noise.
The following growth of vapor bubbles can introduce
new features into the nature of the fluctuation process.

Homogeneous nucleation has athreshold nature [1].
The subsequent growth of the vapor phase proceeds
very fast. This makesit possible to observe the boiling-
up of a superheated liquid even in the case of a high
space-time concentration of the phase transition, in
particular, when the jet flows though a short channel [2,
3]. In this channel, the thermodynamically nonequilib-
rium flow of aboiling-liquid jet is realized. Under con-
ditions of intense homogeneous nucleation, critical
locking of the channel occurs. The jet shape beyond the
channel end varies depending on the degree of the
superheating of the fluid [3]. Under high superheating,
the observed flow instability manifestsitself in the jet-
shape fluctuations.

The intense fluctuation boiling-up of the super-
heated-fluid jet can be considered as a peculiar crisisin
the flow, which is somewhat similar to the heat-transfer
crisis associated with the passage from nucleate boiling
to film boiling. In [4, 5], it was experimentally shown
that in the case of the crisis of water boiling in a verti-
cal-wire heater, intense thermal fluctuations with the
spectral power inversely proportiona to the frequency
(flicker noise) occur. Theflicker noise (1/f noise) found
in [4, 5] is associated with nonequilibrium phase tran-
sitions in the system.

As was shown theoretically in [6-9], the origin of
the 1/f noise may be caused by the superimposition and
interaction of two nonequilibrium phase transitions. If
white noise exists in a system, this interaction can lead
to a self-organization of the critical state of the system
that manifests itself in the divergence of the spectral
characteristics of the fluctuations.

Ingtitute of Thermal Physics, Ural Division,
Russian Academy of Sciences, ul. Amundsena 106,
Ekaterinburg, 620016 Russia

In addition to the boiling crisis modes, flicker-noise
was al so found experimentally in other nonequilibrium
phase transitions, in particular, in combustion [10] and
in arc discharge [11]. The intense fluctuation boiling of
the superheated-liquid jet can a so be considered anon-
equilibrium phase transition.

In this study, we experimentally investigate phase
transitionsin asuperheated liquid and reveal conditions
for the appearance of the flicker noise.

Our experiments were carried out using alaboratory
setup that provided a steady outflow of a superheated
liquid into the atmosphere for several tens of seconds.
The working chamber was a cylindrical steel vessel
with a volume of 600 cm? and with an electric heater
wound around it. In these experiments, we used a short
cylindrical channel with a diameter of 0.5 mm and a
length of 0.7 mm. As a working liquid, we used
Freon-11, which has alow boiling temperature (23°C).
Theinitia pressure in the chamber varied along the sat-
uration curve within the temperature range 50 < T, <
165°C and the pressure range 0.24 < P, < 2.78 MPa.
Significant superheating in the flow was attained by
using short channels in which high pressure-drop rates
(on the order of 10° MPa/s) are realized.

In[3], thejet shape for boiling-up superheated water
was investigated. The jet shape of superheated
Freon-11 passed through the same stages of evolution
asthe water jets. For low initia parameters, no boiling-up
occurred and the jet shape was close to the cylindrical
one. Astheinitial temperature (and pressure) increased,
isolated occurrences of boiling-up were observed in the
jet. Beginning from the temperatures T, = 90°C (and
the corresponding pressures P, = 0.66 MPa), the princi-
pal factor influencing the jet shape was intense bulk
boiling. The boiling-up occurred beyond the channel
outlet. In this case, the jet had a hollow-cone shape. At
the temperature T,, = 150°C, the boiling-up mechanism
changed. At these temperatures, the boiling-up was dis-
tinguished by a higher intensity and concentration
(explosive boailing-up). Explosive boiling-up with a
predominantly homogeneous nucleation mechanism
leads to the shifting of the cross section of intense
vaporization towards the channel interior. In this case,
the jet shape was almost parabolic.
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Fig. 1. Fluctuation-power spectrafor the boiling-up of asuper-
heated Freon-11 jet: (a) cold jet; (b) boiling-up beyond the
channel outlet; (c) explosive boiling-up in the channel.
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The boiling-jet shape fluctuated severely. In this
study, the fluctuations wereinvestigated using transmit-
ted laser radiation photometry. A laser beam with an
=1 mm diameter and with an laser-radiation wave-
length of 0.65 um wastransmitted through thejet of the
outflow liquid. The laser-beam intensity was measured
using an FD256 photodiode with a sensitivity of
0.5A/W. Signals were digitized by a 12-bit analog-to-
digital converter and read out to the personal-computer
memory. The photocurrent fluctuations were measured
when the beam was transmitted through variousjet sec-
tions at a distance of 0 to 10 mm from the boiling spot.
The results presented below are virtually independent
of the choice of the distance.

Using the fast Fourier transform method for data
processing, we found the fluctuation-power spectra. In
the case of the outflow of a cold jet (T, < 90°C), the
fluctuation-power spectrum had the shape of white
noise with auniform frequency distribution for the fluc-
tuation intensity. This spectrum is shown in Fig. l1a.

By increasing the initial temperature and with the
onset of bulk boiling-up, we observed anincreasein the
low-frequency spectral component in the jet (Fig. 1b).
In the low-frequency region, the frequency dependence
of the fluctuation-power spectral density was close to
1/f. With an increase in the temperature T, in the cham-
ber, the intense-boiling spot (the cone vertex)
approached the channel outlet. In this case, the bound-
ary of the transition from white noise to 1/f behavior
was shifted towards higher frequencies; in other words,
the frequency range for the flicker noise broadened. At
temperatures T, = 150°C and under explosive-boiling
conditions for the superheated liquid, the flicker-noise
was observed in the channel with the frequency varia-
tion extended over arange of more than four orders of
magnitude (Fig. 1c). In Fig. 2, we show atypical pattern

0 20

40 t,s

Fig. 2. Fluctuations of the transmitted laser-radiation intensity in the case of the boiling-up of a superheated Freon-11 jet.
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of photocurrent fluctuations in the channel wherein the
broadband flicker-noise was observed under explosive
boiling-up conditions. The lower limit of the flicker-
noise was restricted by the time of the steady outflow of
fluid (i.e., by the chamber sizes).

Thus, we experimentally observed fluctuations in
the boiling-up of superheated-liquid jets. The power
spectrum of these fluctuations varies according to the
1/f law. The presence of flicker-noise implies the pos-
sibility of large-scale catastrophic gjections in the sys-
tem. These catastrophic gjections arise as a result of
energy transfer from high-frequency degrees of free-
dom to low-frequency ones. The flicker noise found is
induced by the nonequilibrium phase transitions in
superheated-fluid jets, which are associated with explo-
sive baoiling-up.
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The effect of the rotation of a polarization plane and
the dllipticity of electromagnetic waves have become
powerful tools in the investigation of magneto-ordered
media. They can be used, in principle, for studying the
spectraof both spin and magnetostatic waves, for deter-
mining the dielectric and magnetic dynamic tensors,
and for establishing general relations between the
polarizability and magnetization of a medium [1]. In
the optical range, as a rule, such investigations are car-
ried out in transparent mediathat also have alarge quan-
tity of magneto-optic properties. Usually, the skin depth
inasampleissignificantly larger than its thickness.

Under the doping of a conducting ferromagnetic
oxide (e.g., lanthanum manganite), its conductivity and
Curie temperature in the radio-frequency range may be
altered significantly and, thus, the relationship between
the skin depth and the thickness of a sample may be
arbitrary. Because of the colossal magneto-resistance
effect, the doped |anthanum manganites have become a
subject of thorough investigation [2]. Electromagnetic
properties of this class of compounds are being inten-
sively studied in the microwave range [3-5]. The prac-
tical applications of the electromagnetic properties of
lanthanum manganites in this range were considered
in[6].

In this work, we study features of electromagnetic
field transmission through lanthanum manganites. At
low frequencies in the range under consideration, the
skin depth in a sample is much greater than its thick-
ness, whereas at frequencies of tens of MHz, it is
approximately equal to, or less than, the thickness. We
carried out the experiments at frequencies that are
much less than the ferromagnetic resonance and anti-
resonance frequencies. Therefore, the features of trans-
mitting the radio-frequency electromagnetic field were
determined by domain-wall displacementsand therota-

* |nstitute of Physics of Metals, Ural Division, Russian
Academy of Sciences, ul. S. Kovalevskor 18,
Ekaterinburg, 620219 Russia

** |ngtitute of Solid-State Chemistry, Ural Division, Russian
Academy of Sciences, ul. Pervomaiskaya 91,
Ekaterinburg, 620219 Russia

tion of the magnetization vector. For doped manganites,
the description of the field transmission becomes more
complicated because of the presence of a granular
structure and the spatial nonuniformity of conductivity.
The experiments were carried out in a layout corre-
sponding to the Cotton—Mouton effect. Unlike the
usual conditions for observing this effect in magneto-
polarized media [1], the real and imaginary compo-
nents of the wave number in a conducting manganite
are of the same order of magnitude. In principle, it was
possible to observe both the magneto-optic effect and
the dichroism.

A magnetic field was generated and recorded by
exciting and receiving coils, which were on both sides
of athin plate made of a manganite. The coil axis and,
hence, the variable magnetic field vector H_ lay in the
plane of the plate. In addition, aconstant magnetic field
H parald to this plane was applied. The wave number
k and the constant magnetic field were always mutually
perpendicular; thus, the layout of the Cotton—-Mouton
effect was realized. The amplitude of the applied con-
stant magnetic field was aways sufficiently large
(H| > |H.]). Therefore, the magnetic state of the sam-
ple was determined by the field H. By rotating the axis
of the receiving coil, we determined the polarization of
the radio-frequency magnetic field transmitted through
the plate under investigation.

The origina powders of manganites with the nomi-
nal composition LaygsY o07B83,MNO; were prepared
by coprecipitation from solutions. The samples of bulk
polycrystalline manganites were obtained by a 6-hour
heat treatment of the pressed powders in an oxygen
flow at a temperature of 1200°C. The density of the
sampl es obtained was 60% of the roentgen one, and the
Curie temperature was equal to 346 K. At T = 293 K,
the specific resistance was 1.5 Q cm and the relative
magnetoresistance in the magnetic field H = 10 kOe
was —5.7%. In the experiments, we used manganite
plates with athickness of d = 0.54 mm. At afrequency
of f =1 MHz and magnetic permeability of p = 1, we
evaluated the skin depth &,, which turned out to be
0.8 mm. The experiments were carried out in the fre-
guency range from 20 kHz to 60 MHz.

1028-3358/01/4609-0615%$21.00 © 2001 MAIK “Nauka/Interperiodica’
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Fig. 1. Transmission of the electromagnetic field at the fre-
quency of 30 MHz through a plate made of lanthanum man-
ganite. Open and filled circles denote the transmission coef-
ficientsfor H ||H. and H O H_, respectively.

In general, a sufficiently strong magnetic field leads
to a significant increase (up to ten times) in the ampli-
tude of the transmitted electromagnetic field. Figure 1
shows the relative change in the electromative force

AE _ E(H)—E(0)
(EMPF). £ E(0)
coil as a function of the magnetic field strength at
H_OH and H ||H.. Here, E(H) and E(0) are the val-
ues of EMF in the receiving coil with and without the
magnetic field H, respectively. In the case of H_ O H,
EMF was observed to increase monotonically with H up
to the saturation field. In the case of H ||H .., the depen-

, measured in the receiving

dence of A—EE measured at a frequency of 30 MHz has

its maximum at field strengths approximately equal in
magnitude to the anisotropy field strength; beyond this,
the EMF value slowly decreases. This dependence is
even with respect to the direction of the applied mag-
netic field with an insignificant hysteresis.

The experimental dependences of the Faraday rota-
tion angle ¢ and the ellipticity € on the external mag-
netic field strength are shown in Fig. 2. The ellipticity
was defined as the ratio of the small and large semiaxes
of the polarization ellipse for the transmitted electro-
magnetic field. These experimental results were
obtained at afrequency of f = 30 MHz, withtheangle 6

USTINOV et al.

—10¢

-20
-30 10.2
_40+
40.1
]
—50}
0 2 4 6 80
H, kOe

Fig. 2. Ellipticity € and the Faraday rotation angle ¢ for the
variable electromagnetic field H_ making the angle 6 =
—45° with the constant external magnetic H (f = 20 MHz).

between the exciting-coil axis and H equal to —45°. It
is observed that most changes in polarization occur in
fields less than 1 kOe, with |¢| and ¢ amounting to
~=0.2 and =-24°, respectively. In stronger near-satura-
tion fields, the Faraday rotation angleiscloseto zero and
the elipticity decreases considerably.

We now introduce a field transmission coefficient

- out ) )
for the plate, D = t'{; where H" and H>" are com-
plex amplitudes of the fields leading into and coming
out of the plate, respectively. EMF in a cail is E ~

wH' DWS, where Sand w are the cross section and the
number of turns in the coil, respectively, and w = 27d.
Provided that H 0O k, two waves whose field strengths
are determined by the skin effect are normal modes. For
the first mode, the variable magnetic field vector is par-
allel to the external magnetic field vector, H_ ||H; for
another mode, it is perpendicular the later, H_ OH. For
the transmission coefficients of these waves, D, ,, we
have [7]

o 2(1+i)
Dyo = D, de®” = =—~
bo = [Did 70, B, -

1
X — — :
sinht, jcost, 5+ isint, cosht; ;
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Here, 0, ; and 9 ;; are the conductivity and the skin

depth for H_|[H and H_.OH, respectively; 9, o =

(2/wlgHret 50}, 0 Hrevy o) 1S the relative reversible

permeability; t o= 61 ; and Z = 1201tis the character-
Il O

istic impedance of a vacuum. Expression (1) isvalid if

d>

; this condition was satisfied in our experi-
Z0)

ments. A difference in the transmission coefficients D,
and Dp, which is due to anisotropy of material con-
stantsin amagnetic field, leadsto achangein the polar-
ization of the electromagnetic field because of theinter-
ference of proper waves transmitted through the plate.
It can be shown that the Faraday rotation angle and the
elipticity angley = arctane are given by the formulas

1 1-8°b*—b(1—E&%) cose

¢ = Sactn 2Ebcos@ )
_1_ . 2&bsing
= zarcsin . 3
Dy -
Here, b= @=@— @, & = tanB, and B istheangle

Dl
between the exciting-coil axis and the vector H. The
guantities of b and @ entering in (2) and (3) define the
dependence of the polarization of the transmitted field
on the field strength.

In the extreme case of low frequencies, t;, ; < 1, the
relative variation in the transmission coefficient with
the magnetic field is expressed in the following way:

ADy (H)| = _Me(®) 1 AP My,
‘ D(0) urev(ll,D)(H)%l p(0) O ™ @
where % is the relative magnetoresistance. Since

the relative manganite magnetoresistance in the fields
H < 10 kOe does not exceed —5.7%, the behavior of the
transmission coefficient is basically determined by the
variation in the magnetic permeability with the field
strength. In a sufficiently strong magnetic field, the

Hre,(0)

Hrev(H)
expect an increase in the amplitude of the transmitted
signal, which is due to varying the permeability. The
different curvesinthecasesof H_ ||[H and H. OH are
related to differences in the types of dynamic perme-
ability, on which field transmission depends. According
to the classification of V.K. Arkad ev [8], the dynamic
permeability inthese casesis either transverse or longi-
tudinal magnetic permeability, We,n and Hye,, respec-
tively. These permeabilities are not identical, because
the processes of rotation make different contributions
to them. Inthe case of H_ ||H, the contribution to mag-

condition > 1 is valid. Therefore, we can
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netic permeability increases from zero at H = 0 to the
value corresponding to the anisotropy field. Further, it
decreases monotonically to W, — 1 a saturation.
Therefore, the maximum for fields of ~500—700 Oe is
observed in the case of H_ ||H. For such field strengths,
the difference in the transmission coefficients for the
two orientations is largest, the ratio of the transmitted-

field amplitudesis maximal, and the estimate Previ . 2

revld
isvalid. From (4) and the experimental resultsshownin
Fig. 1, itispossibleto estimatetheinitial reversible per-

meability p,q,(0). For ‘AP(H) <1,
P

= Urev(o) -1

‘AD”(H )| _ ‘ADD(H_WO)
D(0) D(0)

Hence, as follows from the data shown in Fig. 1,
Me(0)=3.8 a the frequency f = 30 MHz for
LagesY 0.07B3.30MNO; manganite.

In the experiment with a transversely magnetized
medium under skin-effect conditions (see Fig. 2), the
polarization vector for the excited wave makes an angle
0 = —45° with the external magnetic field vector. The
structure of the excitation field differs from that of nor-
mal wave fields. As a result, the transformation of the
polarization is similar to that in the Cotton—Mouton
effect. It is worth noting that the experimental condi-
tionsfor observing polarization phenomenain conduct-
ing manganites differ from those for observing the Cot-
ton—Mouton effect in microwave and optical ranges. In
the first place, the transformation of polarization is
observed herefor the fieldswhose spatial distributionis
defined by the skin effect rather than by running elec-
tromagnetic waves. In this case, the real and imaginary
components of the wave number are of the same order
of magnitude. Secondly, since the condition §, > d is
satisfied at low frequencies in the range under consid-
eration, the amplitude of the transmitted field basically
depends on the ratio between the impedances of the fer-
romagnetic and the environment. Since the impedance
of normal waves in a ferromagnetic is proportional to

M, o, a contribution in the polarization appears,

whichis dueto the difference in the longitudinal p, and
transverse |, permeabilities. Due to the fact that the
impedance of a conducting medium preserves both the
real and imaginary parts of the wave number, the inter-
ference results in both the rotation of the polarization
plane and the ellipticity of the transmitted field.

Thus, in a plate made of conducting ferromagnetic
lanthanum manganite and with alayout corresponding
to the Cotton—-Mouton effect, we observed the mag-
neto-optic effect and dichroism, which manifested
themselves in the rotation of the polarization plane and
in the elipticity of aradio-frequency field. These vari-
ationsin polarization are basically caused by the anisot-
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In papers[1-3], the transverse flame propagation in
asystem of homogeneous combustible solid layerswas
theoretically analyzed while making allowance for the
thermal resistance of the interfaces, under the assump-
tion that the interfaces have no thermal inertness and
that thermal gradients in the layers vanish. The authors
of the works [1-3] confirmed the results of experimen-
tal study [4] concerning the existence of two limiting
modes of flame propagation, which were called quasi-
homogeneous and express-delivery regimes.

In this paper, we propose and numericaly analyze a
more general model, free from the restrictions men-
tioned above. The model completely describes the
behavior of discrete combustion waves in heteroge-
neous media.!

We consider combustion in a system of alternating
layers of combustible and inert substances (see Fig. 1).
This combustion involves reaction transfer in sequen-
tial layers of the system via heat transfer. We make the
following assumptions: the combustion is catalytic, the
thermal properties of a combustible layer are indepen-
dent of temperature and depth and may differ greatly
from those of an inert layer, heat loss through the lateral
surface of the systemisnegligible, thelayersare opaqueto
thermal radiation, and the chemical reactionsare governed
by the simplest kinetic law of the first order.

We will describe the model under consideration by
the following system of equations in dimensionless
variables:

heat conduction and macrokinetic equations for the
ith combustible layer [(i — 1)(d+ &) < & <id + (i — 1)9],

0.8 = 90 +y 'an,
0.n = (1-n)exp(6/(1+P16)) = yF(6, n);

1 The term “discrete combustion waves’ was introduced in [5],
where previous studies of this problem (see papers[1-4] and oth-
ers) were generalized.

* |nstitute of Structural Macrokinetics and Problems
of Materials Technology, Russian Academy of Sciences,
Chernogolovka, Moscow oblast, 142432 Russia
** |nstitute of Problems of Chemical Physics,
Russian Academy of Sciences, Chernogolovka,
Moscow ablast, 142432 Russia

heat conduction equation for theith inert layer [id +
(i-1d<&<i(d+9)],

ocpare = 0)0¢0;

thermal matching conditions,

Olcomp = Olins  9e8lcomb = 010Bin;
thermal initiation conditions (1 > 0, & = 0),
0 = 6,
and initial conditions (1 =0, & > 0),
8=6, n=0.

Here, we introduce the following scale quantities
and dimensionless variables:

090,

O_
Combustible substance
Inert substance
66060606 0600
X

Fig. 1. Model heterogeneous system.
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timet= RT3 k-'exp(E/RT)Ce/QE,

length x= [(Ar/CrPR)t 1%,
characteristic temperature Tp;

T=thy, &=x/X, 0= (T-T,)E/RT:.

It should be noted that there are two adiabatic tem-
peratures in this problem, which can be chosen as Tr

the adiabati c-combustion temperature Tf,,lj) for the com-
bustible (reactive) layer,

TS = To+ Q/cn,

and the adiabatic steady-state temperature, which is
established after temperature equalization in the system
of combustible and inert layers,

T(afi) =Ty + Qprd/(Crprd + €0, d).

Here, Ris the gas constant; E is the activation energy;
kis the pre-exponentia factor; and cg, C,, Pr, Pi> Ar
and A\, are the specific heats, densities, and heat conduc-
tivity coefficients, respectively.

We use the following dimensionless parameters:
the ratio of the thicknesses of the reaction and heat-
ing zones in the combustion wave,
y=RT: G/EQ;
the factor in the temperature dependence of the reac-
tion rate,
B=RTHE

the ratio of the specific heats (per unit volume) of
the combustible and inert layers,

O = (G P)/(CrPR);
and the ratio of the heat conductivity coefficients of
the combustible and inert layers,
0-)\ = )\l/)\R'

If the scale of heterogeneity of amultilayer system,
d + 9§, tends towards zero, the system should passinto a
homogeneous medium described by averaged charac-
teristics:

A* = (d+S)AARI(AeB + Ad),
(cp)* = (crprd +cipd)/(d + ).

The thermal diffusivity is a = A*/(cp)*. In such a
medium, the typical combustion front thicknessisL; =
a/V, whereas the burning velocity V can be estimated
according to [6]:

V? = akexp(—-E/RT,)RT2/E(T, —Ty).

MERZHANOV et al.

Therefore, we are dealing with a multiparameter
problem. The model described in [1] correspondsto the
limiting case

0,—=0 and (d+3)/L<1.

The model under consideration describes a consid-
erable number of new effects, the analysis of which
enriches combustion theory. In this paper, we confine
our consideration to only a few examples illustrating
capabilities of the model.

The mathematical model represents a stiff set of par-
tid differential equations. This set was numerically ana-
lyzed using implicit finite-difference schemes and anon-
equidistant computational grid adapted to the solution.

General case. Let both thermal characteristics and
sizes of the combustible and inert layers be commensu-
rate. The commensurability of sizes of inert and fuel
particles are rather common in experiments on the com-
bustion of mixtures. Thisisthe case, for example, under
a consistent change of sizes of fuel particles, when the
degree of dilution (or porosity) remains constant. Tem-
perature profiles in the layered system under consider-
ation at consecutive time instants are shown in Fig. 2.
We see that in the steady-state combustion regime the
temperature distribution in each inert—fuel pair (periods
1,2,3,and4inFig. 2) isrepeated withatimelag 1, [1].
In this example, T, = 5262. When calculating this com-
bustion regime, we assumed that T= T, + Q/Cr.

Analyzing the profiles, we come to the following
conclusions:

1. Each combustible layer burns up in accordance
with the frontal regime; itstemperature exceeds the adi-

abatic temperature TS .

2. A burnt layer induces the unsteady-state heating
of both fresh (sequent) and preceding (already heated)
inert layers; the latter effect is due to superadiabatic
temperatures.

3. Heat transfer through an inert layer leads to the
heating up of the sequent combustible layer and to its
ignition.

4. When the combustion front approaches the oppo-
site surface of acombustible layer, atemperature surge
(as a manifestation of the enthalpy effect [7]) can
appear near this surface.

It should be noted that the reaction in acombustible
layer causesitsignition only after the burning up of the
preceding combustible layer. Hence, this example cor-
responds to the express-delivery regime of heteroge-
neous combustion [1, 2]. In this case, the shock-wave-
front travel time for a period (d + &) coincides, in
essence, with the initiation time, whereas the combus-
tion duration is negligible. Heat transfer becomes a
determining factor depending on the structure of the
heterogeneous system and the thermal properties of the
medium.

DOKLADY PHYSICS Vol.46 No.9 2001
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Fig. 2. Space-time distribution of temperature in the multilayer system under the express-delivery regime: d = 4 = 100, 0¢, = 0.1,
o) = 1.0, y=0.1534, B = 0.118, 8, = —6.508, and 8,, = 6,,; = —0.65.

The case of small thermal inertness of an inert
layer (6., —= 0) and a thin combustible layer (d <
L; or d<L;and A < 1). This case simulates a variant
previously considered in [1-3], in which the combus-
tion wave in amodel heterogeneous system is realized
(thin plates separated by gas gaps).

The calculated unsteady-state temperature profiles
areshownin Fig. 3. They corroborate the validity of the
accepted assumptions (the quasi stationary heat transfer
in gas gaps, which leads to linear temperature profiles,
and the absence of atemperature spread in thin plates).

Figure 3 corresponds to the quasihomogeneous
regimewith (d + d)/L; < y. In this case, the combustion
wave is similar to that in a homogeneous medium. The
wave consists of a heated zone characterized by the
original composition and an exothermic-reaction zone,
more narrow than the former, in which the original
heated reagents transform into high-temperature prod-
ucts. Their temperatureis close to the equilibrium com-

bustion temperature T' {here, To= T3 }. Character-

istics of the structure and the wave vel ocity can approx-
imately be derived from effective therma and
macrokinetic parameters. The heat-release function
F(0, n) at afixed moment of time 1* is also shown in
Fig. 3a (the corresponding temperature distribution is
marked by an asterisk). It is interesting to note that
approximately three effectively reacting layers in the
reaction zone are sufficient for the shock front to have

DOKLADY PHYSICS Vol. 46
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a quasihomogeneous structure. The heat-release source
has abar character, because heat releaseis concentrated
in the reacting plates. The envelope of F(0, n) corre-
sponds to the heat release in a homogeneous medium.
Its trandation is caused by coherent variations of
F(6, n) in the reacting layers.

Figure 3b presents an intermediate case (between
guasihomogeneous and express-delivery regimes), (d +
0)/L; ~y. In this case, the interaction between interlay-
ers becomes heterogeneous, and the reactive layers
burn up according to the express-delivery initiation
regime. The remaining layers have either burnt or have
alow temperature; in the latter case, their transforma-
tion can beignored. The propagation of the combustion
wave is characterized by the relaxation oscillations of
al the characteristics of the front, among them the
velocity of wave propagation. In Fig. 3b, the space—
time dependence of F(B, n) inside two reactive layers
(marked by 1 and 2) isalso shown. If the moment of the
burnout of the layer preceding layer 1 is chosen as a
timereference point [T" =0, ax(n) > 0.99], then the pro-
files marked by 1 to 20 correspond to ™ = 406.39,
442.39, 451.92, 45559, 457.46, 458.53, 459.30,
450.93, 460.64, 462.15, 869.62, 905.62, 914.54,
918.82, 920.69, 921.15, 922.27, 922.77, 938. 48, and
925.15, respectively. It is seen that the oscillation
period involves a heating stage of relatively long dura
tion. In Fig. 3b, the corresponding space-time distribu-
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Fig. 3. Space-time distribution of temperature and the heat-release function in the multilayer system under (a) homogeneous (d =
0.3125) and (b) intermediate (d = 5) regimes: d/d = 0.5, 0¢, = 0.25, 0, = 0.1, y=0.117, $ = 0.153, 6, = -5.67, and 6, = 6;,; = 0.

tion of temperature is shown by the dashed line. In this
case, explosive combustion of the consecutive reactive
plates occurs, and the characteristic time of heating to

Vv
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e? e! 1 e Ind
Fig. 4. Burning velocity V as afunction of the scale of het-
erogeneity: d/d = 0.5, 0 = 1.0, 0, = 0.1, y= 0117, B =
0153, 90 = —5.67, and 900 = Gini =0.

0.04

ignition is one tenth as long as the thermal relaxation
time. The temperature of combustion productsis super-
adiabatic. The released energy causes the original het-
erogeneous medium to heat up. At the sametime, inter-
layer heat transfer occurs behind the combustion front,
which results in the establishment of an equilibrium
temperature of the reaction products.

Superadiabatic heating substantially influences both
instantaneous and mean velocities. The burning veloc-
ity V as afunction of the thickness d of a combustible
layer (for = 0.5d) is presented in Fig. 4. For thin lay-
ers, quasihomogeneous combustion takes place. In this
case, the burning vel ocity depends on macrokinetic and
thermal parameters but is nearly independent of the
scale of heterogeneity. As the thickness increases, for
d/d = const, the homogeneous regimeis replaced by the
express-delivery one. In this case, the maximum tem-
perature in a reactive layer sharply increases and con-
siderably exceeds the equilibrium temperature. Despite
the increase in the thickness of an inert layer, the mean
heat flux into the nearest reactive layer increases. The
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burning vel ocity attains amaximum. For thicker layers,
the temperature is nearly constant and the flux
decreases; as aresult, the burning velocity decreases.

A more detailed analysis of the model proposed can
be found in papers devoted to the character and features
of heterogeneous combustion. Here, we note only two
remarkable features of the discrete heterogeneous
model in comparison with a homogenized mixture of
reactive and inert layers. The localization of acombus-
tible component in equidistant layers allows us to
obtain the following effects:

In the first place, the transformations occur at
higher, superadiabatic temperatures.

Secondly, the heat-pul se transport occurs at a higher
velocity.

The first effect is of interest in self-propagating
high-temperature synthesis (SHS) technology (SHS in
weakly exothermic systems and the fusion of high-
melting substances). The second one could be used in
pyrotechnics (in systems of heat-pulse transport over a
distance).
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In this paper, the parameters of an ion flow gener-
ated by cathode spotsin avacuum arc are explained for
thefirst time based on the ecton mechanism.

The key problem of the physics of a vacuum arc is
the mechanism governing the effusion of a conducting
medium into vacuum, because it is this process that
determines the discharge operation. Since the time the
vacuum arc was discovered, the nature of the physical
processes resulting in the generation of the cathode
plasma and ion flows from cathode spots has been
actively discussed. A generally accepted model of the
processes occurring at the vacuum arc cathode is still
lacking because of the difficulties related to the diag-
nostics of cathode spots, which execute permanent ran-
dom motion. The characteristic temporal and spatial
scales of the processes in cathode spots are 10° s and
10~ cm, respectively [1, 2]. Nevertheless, in spite of the
above difficulties, it is possible to determine the most
important characteristics of cathode plasmageneration.
Such characteristics aretheion erosion rate y; (the ratio
of the mass of the ions gected from the cathode to the
charge passed through the cathode, q = iAt, wherei is
the arc current) and the averageion charge number Z in
the cathode plasma. Obviously, an adequate physical
model of a vacuum arc should explain the values of
these parameters, which can be determined experimen-
tally.

In recent years, a substantial progressin the investi-
gation of the ion parametersin an arc plasma has been
achieved. Thisis related to the creation of vacuum arc
ion sourcesthat makeit possible to measuretheion dis-
tributions over charge states for practicaly all of the
conductive materials [3]. These investigations have
shown that the charge composition of a vacuum arc
plasma remains unchanged as the arc current increases
from 50 up to 500 A. An important result of these stud-
iesisthe experimentally established fact that ions with
different charges move at the same velocity [4], which
undoubtedly evidences in favor of the gasdynamic
mechanism for ion accel eration.

Ingtitute of Electrophysics, Ural Division,
Russian Academy of Sciences,
ul. Amundsena 106, Yekaterinburg, 620016 Russia

The study of explosive electron emission [2] madeit
possibleto reveal the nature of physical processesin the
cathode spot of avacuum arc. It was established that the
parameters (such as the expansion velocity and charge
composition) of a cathode jet plasma produced due to
explosive electron emission in the spark stage of adis-
charge are almost the same asin the arc plasma. In both
cases, the erosion patterns at the cathode are identical.
The expansion velocity of the liquid metal fraction, the
erosion rate, the cathode voltage drop, and the thresh-
old current also coincide with those in the arc. All this
allows us to conclude that, in a vacuum arc, explosive
electron emission takes place. In [1], it was shown that
the processes in a vacuum arc cathode spot are deter-
mined by microexplosions at the cathode accompanied
by the formation of ectons (electron bunches) in the
course of explosive electron emission.

In the present paper, we apply the ecton model of a
vacuum arc cathode spot [1] to analyze the main char-
acteristics of the processes resulting in the generation
of a cathode plasma in a vacuum arc (such as the ion
erosion rate and the average ion charge). According to
thismodel, the cathode spot of avacuum arc consists of
individual cells emitting ectons. The model is based on
the main experimentally observed features of the ion
flows gected from a vacuum arc cathode spot. The
increase in the current leads to an increase in the num-
ber of cells. The main parameters of the ion flows are
determined by the processes occurring in an individual
cell in the course of explosive destruction of the cath-
ode surface under the action of Joule heating. The cath-
ode material sequentially passes through the following
states: condensed matter, a nonideal plasma, and an
ideal plasma. Asaresult, theion charge composition of
the plasma produced is established and the ions are
accelerated by the pressure gradient of the plasma,
whose density falls by several orders of magnitude over
adistance of ten microns from the cathode surface.

An ecton is formed in the interaction of a liquid
metal jet (see Fig. 1) gected from the cathode spot
region with the cathode plasma. By analogy to the el ec-
tric explosion of aconductor, the current density j inthe
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jet during the ecton formation can be estimated by the
formula

|:EDl/Z
GO 1)

where h is the specific action of the current during the
electric explosion and t, isthe explosion delay time. For

the majority of metals, we have h ~ 10° A2 s cm™.
Hence, for t;= 10~ s, the current density ison the order

of 10° A/cm?. The high current density results in the
rapid heating and explosion of the cathode spot region
accompanied by explosive electron emission. In the
course of explosion, the area of the emission zone
increases and the current density decreases, so that both
the heat removal due to thermal conduction and the
energy withdrawal dueto the gection of the plasmaand
of the heated liquid metal begin to play an important
role. As a result, explosive emission terminates and a
short-lived electron bunch (ecton) is formed.

The ecton lifetime can be estimated as [1]

j =

.2
i

t = €
° rfa’he"

where a is the thermal diffusivity of the cathode mate-
rial and i, is the ecton current. When deriving expres-
sion (2), it was assumed that the ecton is produced due
to the explosion of a liquid metal point of conical
geometry with asmall apex angle 6 (Fig. 1). The mass
carried away from the cathode intimet, is equal to

)

_ 2 _ i
31 (ah)*’0*

3)

where p isthe massdensity of the cathode material. The
total charge of the electrons that have passed over the
time during which the ecton existsis equal to

3
|

de = S

°  rfa’he’

Since the arc discharge is maintained due to the explo-
sions of liquid metal microspots, in formulas (1)—4),

the liquid state values of a, p, and h should be used.

Because of the finite lifetime of the ecton, the pro-
cesses in a cathode spot are cyclic in character. The
cycle consists of two phases: the main (ecton) phase
with aduration t, equal to the ecton lifetime and theion
phase with a smaller duration t;, in which a new ecton
isinitiated by theion current from the cathode plasma.
The cycle period can be estimated from the experimen-
tal dataon the oscillations of both the discharge voltage
at currents close to the threshold arc current and the
noise discharge voltage. According to these estimates,
the cycle period is on the order of t. ~ 30 nsfor copper

“)
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Geometry of aliquid metal jet at which an ecton is formed:
rc isthe radius of the fused region at the cathode, and re is
the radius of the ecton zone.

and tungsten cathodes and the relative duration of the

t
oy =02 [5].

ion phaseisa =

Another important property of the cathode spot is
the presence of aninternal structurethat manifestsitself
in the existence of individual cells or the fragments of
the cathode spot. According to [6], a current equal to
the doubled threshold arc current i; flows through each
cell of the cathode spot. In the ecton model, the spot cell
is regarded as an explosive emission center emitting a
portion of electrons—an ecton.

The measurements of the ion energy distribution in
an arc plasma showed that the ions leave the cathode
spot with an average velocity of ~10° cm/s. Theseions
produce a current opposite to the arc current because
they move from the cathode toward the anode. The
measurements carried out by Kimblin [7] showed that
the ion current collected by a cylindrical screen has a
maximum, which is independent of the geometrical
parameters, is approximately proportional to the total
arc current, and depends dightly on the cathode mate-
rial. The ratio of the ion current to the total current is
approximately equal to 0.1.

Theion current from the cathode results in the loss
of the cathode material, emitted as ions. Experimental
data on the cathode erosion are rather contradictory
because, along with ion erosion, the cathode material is
carried away in the form of macroparticles, drops, and
neutral vapor. The results obtained by conventional
methods for determining the erosion parameters (such
asweighing asample and estimating the erosion rate by
the change in the geometrical parameters of the erosion



626

MESYATS, BARENGOLTS

Theion erosion rate and the average ion charge number in an arc plasmafor different cathode materials

Material p, glem?® a, cm?/s h x109° A2scm ™| Vi, ug/C z Z[3,10]
Cu 8.0 0.42 31 37.2 1.76 1.7-2.0
Au 17.2 0.40 13 120.6 1.69 1.6-2.0
Al 2.3 0.40 14 155 1.80 1517
Ag 9.3 0.56 2.0 62.2 1.77 1821
W 17.0 0.14 15 65.7 2.90 3.0-31

structure) depend substantially on the arc current, dis-
charge duration, and cathode geometry. Daalder [8]
carried out a series of experiments with copper elec-
trodes 25 and 10 mm in diameter. The current varied in
therange 33-200A. It wasfound that, as q decreased to
0.1 C, the measurements of the erosion rate carried out
at different currents yielded the same value equal to
~40 ng/C, which was the ion erosion rate. Theion ero-
sion rate can aso be determined from the measured
average ion charge number by the formula[8]

_him
i Ze'
where i, is the ion current from the cathode, Z is the

average ion charge number in an arc plasma, and mis
the mass of anion.

Let us apply the ecton model to analyze the charac-
teristics of theion flow emitted by the cathode spot. The
mass carried away during the time t, is determined by
formula(3). During thetimet;, theion current, whichis
directed to the cathode, is approximately equal to 0.1 of
the arc current. Therefore, during acycle, the total loss
of mass by the cathodeis equal to M(1-2a). Taking into
account expression (4), we obtain the following expres-
sion for the ion erosion rate:

)

(6)

Using formulas (5) and (6), we can determine the aver-
age ion charge number in a plasma produced under the
action of an ecton:

3ii m dTD:UZ

Z= 2iep(1-20)H] @)

Since we have % = (.1 for all the materias[7], theval-

ues of vy, and Z are independent of the current and are
determined exclusively by the cathode material, which
agrees with the experimental results of [3, 8]. Thetable
presents the average ion charge numbers and the ion
erosion rates calculated by using formulas (6) and (7)

for a number of metals for which the values of h are
known. The values of the thermophysical coefficients

are taken from [9]. For al of the metals (by analogy to
tungsten and copper), the value of a was set equal to

0.2. It is seen that the calculated values agree well with
the experimental data, which is somewhat surprising,
taking into account an uncertainty in the cathode spot
temperature and a significant scatter in the experimen-
tal data on the thermophysical parameters of the mate-
rials under consideration.

Thus, the estimates of the ion parameters in a vac-
uum arc obtained using the ecton model agree qualita:
tively and quantitatively with the experimental data. We
note that these estimates are obtained for asingle cell of
the cathode spot (asingle ecton). Theincreaseinthearc
current isrelated to the increase in the number of simul-
taneously existing ectons. That iswhy, in experiments,
the ion parameters depend only slightly on the arc cur-
rent (up to currents of about 1 kA, at which the mag-
netic field of the plasma column begins to play an
important role).
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INTRODUCTION

Vibrational pre-excitation of reacting molecules
leadsto an increasein the combustion rate for (H, + air)
mixtures and to a reduction in the length of the induc-
tion zone in a supersonic flow behind a shock front [1].
These effects are caused by the intensification of reac-
tions that lead to the formation of O and H atoms and
OH radicals, which are responsible for the chain com-
bustion mechanism. Vibrational excitation is known to
cause an increase in theinelastic collision cross section
o(E) for reacting molecules. In this case, the value of
threshold energy E;, at which the inelastic interaction
between calliding particles become possible decreases.
Hence, the reaction rate for molecules excited into a
low-lying vibrational state is greater by severa orders
of magnitude than that for unexcited molecules[2, 3].

The excitation of the electronic state of molecules
should lead to anincreasein o(E) and E,, that is greater
than that caused by vibrational excitation. The reaction
rate constant k is related to the cross section o(E) by the
formula

k = J’o(E)JEf(E)dE,
Eth

wheref(E) isthe energy distribution function for mole-
cules. Therefore, the increment of k due to the excita-
tion of the el ectronic state of areagent should obviously
be greater than that caused by vibrational excitation.
This conclusion was verified by experimental data[2, 4].
We will show that the excitation of the electronic state
of molecular oxygen into the O,(a'A,) state can signif-
icantly affect the combustion kinetics for H, + O, mix-
tures and initiate the detonation combustion of the gas
behind a shock front at a low temperature (~650 K).
The molecules O, can be excited either by laser radia-

Baranov Central Institute of Aviation Motors,
Aviamotornaya ul. 2, Moscow, 111250 Russia

tion with awavelength A = 1.27 um [5] or by an elec-
tric discharge [6].

STATEMENT OF THE PROBLEM
AND KINETIC MODEL

We will analyze aflow with a stationary shock wave
whose front isinclined at an angle 3 < 30° to the veloc-
ity vector u, of the undisturbed flow and whose gas
velocity behind the front remains supersonic [1]. The
pressure P, and the Mach number M, in the undisturbed
flow range from 107 to 10* Pa and from 5 to 6, respec-
tively. We assume that the translational, rotational, and
vibrational degrees of freedom of the moleculesin the
mixture are in thermodynamic equilibrium, which is
not disturbed by chemical reactions. As was shown in
[7], a sufficiently complete scheme of 29 reactions
involving H, O, OH, H,0, H,, O,, HO,, H,0,, and O,
should be used in order to describe the low-temperature
ignition of the H, + O, mixture. The presence of
0,(a'Ay) molecules necessitates the introduction of the
additional reactionslisted in Table 1.

The excitation vibrational and electronic states lower
the endoergic-reaction barrier in the Arrhenius law

o OE
ko = AT "exp =5,

where E,, is the activation energy for the gth reaction
and T is the gas temperature. In this case, E,, = qu -

04Ee, Where Eg, is the activation energy for the gth
reaction involving unexcited reagents, E, isthe excita-
tion energy of the reacting molecule, and o is a utiliza-

tion factor for the vibrational or electronic energies,
whose valueis given by the expression (for Eq, < Ey) [8]

+

E
Gq = + =
Es+E

aq
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Table 1. Reactionsinvolving Oz(alAg) that wereincluded in the description of the combustion kinetics for hydrogen—oxygen

mixtures

No. Reaction No. Reaction
1 O+O+M202(a1Ag)+M 9 H+Oz(a1Ag):OH+O
2 HO, + M = Oya'ay) +H+M 10 H, + Oy(a'Ag) = 20H
3 2HO, = H,0, + O,(a'Ay) 11 H, + Ox(@!8;) = H + HO,
4 03+0=0,+0,a'0,) 12 H,0 + O,(a'Ay) = OH + HO,
5 H + O3=OH + O,@a'Ay) 13 OH + Oy(a'Ag) = O + HO,
6 O3+O0H =HO, + O,(@'4,) 14 H,0 + O,(aAy) = Hy0, + O
7 O3+HO,=0H + O, + Ox(a'Ay) 15 O3+ 0,(@'A)) =0,+0,+0
8 O3+ M =0 +0ya'ay) + M 16 O,(@'A) +M =0, +M

Here, E;q and E,, are the activation energies for the
gth reactions of the disintegration and formation of an
excited molecule, respectively. The procedure of
decreasing E,, was employed to determine the rate con-
stantsfor the backward reactions 1, 4, and 5, and for the
forward reactions 10, 12, and 13. The temperature
dependences of the rate constants for the forward and
backward exchange reactions 9 and 11 and for reaction
15 were taken from papers [9] and [10], respectively.

For reactions with low or zero activation energies
Eoq, Which lead to the formation of O,(a'Ay or

0O,(b! Z;) molecules, we assume that the probability of
exciting the corresponding electronic states of O, mol-
eculesis determined by their degeneracy multiplicities.
In this way, we determined the rate constants for the
forward reactions 2, 3, 6, 7, and 8, and for the back-
ward reaction 14. In so doing, we assume that the reac-
tion rate for the eectronictrandationa (E-T) relaxation
0,(b'Zy) —= O,(@'Ay) ismuch higher than the rates of
all other processes. For the forward reactions 1, 4, 5,
and 14, aswell asfor the backward reactions 3, 6, 7, 10,
12, 13, and 15, the rate constants were evaluated on the
basis of the detailed balance principle. The relaxation
rate constants for the O,(a'A,) state (reaction 16) were
taken from [11].

LASER BEAM EXCITATION OF O,

L et ahomogeneous 2H, + O, gas mixture moving at
supersonic velocity ahead of a shock wave front be
acted upon by aradiation field on the interval [x, — 0, %]
We assume that the radiation intensity | is constant and
that the frequency v, coincides with that of the elec-
tronic-vibrational transition for the O, molecule,

mX*Z,, v\, j', K) — n@4, v",j", K"). Here, (v',
j'yKYand(v",j", K") arethevibrational and rotational

quantum numbers for the X*X; and a'A states, respec-
tively. It will be recalled that these transitions are
allowed in the magnetic-dipol e approximation. We now
consider the cases when the rates of chemical reactions
upstream from the shock wave front are considerably
lower than the rates of both induced transitions and the
collisional relaxation of the alAg state. In this case, we
can use the two-level approximation for excitations of
the O, molecules. The concentrations N, and N, of the

0, molecules in the X*Z;(N,) and a'Ay(N,) states,
respectively, are determined by the relationships

= BLN0 _ B0 ll
Ni = % *+ FNm = Z7exP 3 o
= NO+ ONC B _ epdatd
N, = No+ NG, AD[l expHd TFJ]}’
= 04 90k 9 oo L AEmT
A %+ngTI+1+gmexpD KT o (1)

T
B = (N%+N)E + -
(No+ NHL+

-1 _ anI _ )\ﬁanmn ;In2
(TI) - hV| ’ an - 4T[bD TT—H(X, a)'

Here, N2, and N° are the concentrations of the

0,(X*Zy) and O,(a'A,) molecules in the undisturbed
flow (x < %, — 0), respectively; h is Planck’s constant;
Amn 1S the wavelength corresponding to the midpoint of
the absorption line; A, isthe Einstein coefficient; by is
the Doppler width of the spectral line for the transition
m — n; AE,,= E,- E; E, and E,, arethe correspond-
ing energy levels of the O, molecule; g, and g,,, are the
corresponding degeneracy multiplicities; K isthe Bolt-
Zmann constant; T isthe electronic—trandational relax-
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N,
Ny,

0.6 4
0.5 3

0.4

0.3

0.1

0 0.01

Fig. 1. Evolution of relative concentrations of the excited
OQ(alAg) moleculesin the |aser rediation action zone a Py =

103 Pafor | = (1) 1, (2) 5, (3) 10, and (4) 50 kW/cm?.

o O mU
ation time for the Oy(@'Ay) state Ox = z Ny Kis;
o £ 0

and H(x, a) istheVoigt function. We will analyze a par-
ticular case where the radiation frequency coincides
with the midpoint of the transition line °P(3), with v' =
v"=0,j'=4,j"=3,andK'=K" = 3. For thistransition,

629

the Einstein coefficient and wavelength are equal to
2.58 x 10 st and 1.268 um, respectively.

We now define the characteristic times T, T, and T,

and the absorption length L, = k", which specify the
external action and the spatial scale of the problem. For
P,=10-10* Paand T, = 300 K, the time T ranges from
0.1t00.05s. Thetime1, isrelated to thelength o of the
radiation action zone and to the flow velocity u, by the

formulat, = ué . The quantity 1, specifies the rate of
0

production of the O,(a'A;) molecules. The condition
T, << T should be satisfied in order to obtain a high con-
centration of O,(a'A,) molecules. Given T and T,, the
relative concentration of excited O, molecules
increaseswith radiation intensity |. Thisisillustrated in

. . N, . .
Fig. 1, where the quantity KIE isshown as afunction of

m
the length of the action zone for various values of |. For
high supersonic-flow velocities, it is fairly difficult to
attain large values of N, if & is small. For example,
when M, = 6 and P, = 10° Pa, the quantity u,t is equal
to 2100 m. Hence, for & = 1 m, the value of N, is not

greater than 0.05 N7, even for | = 50 kW/cm?. However,

such a concentration of O,(a'Ag) moleculesin the mix-
ture is sufficient for both lengths, L;, and L. of the
induction and combustion zones, respectively, to
decrease significantly (their values were determined in
the same way asin [12]). This effect is seen in Fig. 2,

logy; :

!

7
H,  0,x%%,)

-2r Oy(a'Ds,)

4

Oz(dlAg)

4 logx,cm

Fig. 2. Evolution of concentrations of the components behind the front of the shock wave with M, = 6, B = 25°, and P, = 10° Pa.
Theflow of the 2H, + O, mixtureis subjected to laser irradiation with awavelength A = 1.268 um and an intensity | = 50 kW/cm?

(solid lines). Dashed lines correspond to the absence of irradiation.
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Fig. 3. Length L;,, asafunction of pressure Py in the case of combustion of the 2H, + O, mixture behind the front of the shock wave,
with Mg = 6 and T = 300 K. Solid, broken, and dashed lines correspond to 3 = 20°, 25°, and 30°, respectively, for the radiation

intensities | = (1) 0, (2) 10, and (3) 50 kW/cm?.

which shows the spatial dependence of the mole con-
centrations y; for various components behind the shock
wave front in a mixture subjected (or not subjected) to
radiation. Under these conditions, the length L;,, dimin-
ishes by afactor of 200. Since the absorption length L,
is equal to 257 and 81 m at the pressure P, = 10 and
10* Pa, respectively, the corresponding concentration of
0,(a'Ay) molecules in the action zone can be attained
by repetitive scanning across the flow using a narrow
laser beam with aradius ranging from 0.1to 1 cm.

When exciting the a'A, state of the O, molecules,
the reduction of the combustion zone length for the
H, + O, mixture is attained by an intensification in the
chain combustion reactions. Indeed, the combustion is
initiated by the formation of OH, O, and H in the fol-
lowing reactions: H, + O, = 20H, OH + H, = H,0O + H,
H+0O,=0H+ 0, and O + H, = OH + H. The presence
of excited O,(a'A,) molecules in the mixture opens up
new production channels for OH, O, and H. These are
basically reactions 9, 10, and 11 (see Table 1). It is
worth noting that, for T, < 700 K, reaction 15 involving
the O,(a'Ay) and O; molecules becomes essentia for
the formation of O atoms. All these processes have very
high reaction rates. Hence, the presence of even asmall
amount of O,(a'Ay) molecules leads to a significant
decrease in L;, and L.. The extent of this decrease
depends on the mixture parameters P, and T, behind the

shock wave front, which define the ratio %T—' and, there-
R

fore, the concentration of O,(@'A;) molecules in the
induction zone as well as on the quantity |. The values
of P, and T, depend on P, T,, M,,, and 3.

The dependence of L;,, on P, for M;=6, T, =300K,
and 3 = 20°, 25°, and 30°, corresponding to T, = 517,
646, and 791 K, is shown in Fig. 3. There are two
ranges of P, for each set of the parameters | and (3.
Indeed, L;,, can either increase or decrease with increas-
ing P,. The boundary value P, separating these ranges
increases with | and T,. The existence of Py, and the
increase in L;,, at P, > Py, are due to the formation of
chemically inert H,O, molecules and the decrease in
the concentration of OH, O, and H [7]. The higher the
concentration of O,(a'Ay) in a mixture, the greater the
pressure P, at which these processes begin to dominate.
It is seen that the excitation of O, molecules into the
a'A, state allows detonation combustion to be initiated
at small distances behind the shock wave front. Indeed,
for B = 30° and P, = 8000 Pa, the length L, for | =
50 kW/cm? amounts to only 25 c¢cm, while it attains
15 mif there are no excited molecules. Even if the tem-
perature T, of the gas behind the front is as small as
646 K (B = 25°), the length L, for | = 50 kW/cm? can
till be diminished to 1.8 m.
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ELECTRIC DISCHARGE EXCITATION
OF O, MOLECULES

We now consider the case where oxygen activated in
an electric discharge is mixed with hydrogen upstream
from ashock wave. A bulk electric discharge in oxygen
|eads to the formation of small amounts of ozone, O,
0,, 03, O;, O, O,, and O; [6, 13] as well as
0,(a@'Ay) and O,(b! Zg) molecules. However, the ions
disappear after a short time; as a result, only the long-
lived molecules O,(X*,), O,(a'Ay), O, and O, remain
behind the discharge zone. According to [14], a T, =
300 K and P, = 1316 Pa, the concentrations of O,
0,(@'Ay), and O, behind this zone are equal to 0.0071,
0.0145, and 0.0165, respectively, and remain invariable
over thetime T, = 102 s. Even for supersonic flowswith

Mach numbersfrom 5to 6, the typical mixing length of
H, and discharge-activated O, does not exceed 0.5 m.

631

This corresponds to the characteristic mixing time T, ~
3x10%s; therefore, 1, < T,. For theinitial stoichiomet-
ric mixture of H, and O,, the concentrations of H,,

0,(X*%y), 05(@'ay), O, and O; formed in the mixture
are equal to 0.668, 0.32, 4.84 x 1078, 2.35 x 107, and
5.49 x 1073, respectively.

Compared to the presence of excited O, molecules,
the presence of O, and O along with O,(a'A) leads to
asignificant increase in the combustion rate behind the
shock wave front. This concluson isillustrated in Fig. 4,
where the concentrations of both theinitial components
and those formed in the combustion process are pre-
sented. Variants 1 and 2 correspond, respectively, to

the mixtures H,~0,(X*X;)-0,(a'Ay)—-0-0; (electric-
discharge excitation) and H, : O,(X*%; : Oy(@'ay) =
0.667 : 0.328 : 0.005 [laser excitation of Oy(@'Ay)]. A
more marked intensification of chain reactions in the

logy; T K
1 ’
D) 13000
-3

Oy(a'hy)
4 12000
S HO,
H,0,
-6 -1000
-7
-8 1 0
1 5
oL 13000
3 Oy(a'Dy) a
o M oxany
_al s 12000
_5k
H,0,
6 OH 11000
_7k
-8 1 1
-2 -1 0 logx, cm

Fig. 4. Evolution of concentrations of the components (solid lines) and temperature of the gas (dashed lines) in the case of combus-
tion of mixtures (&) 1 and (b) 2 behind the front of the shock wave, with Mg =6, B = 30°, To = 300 K, and P, = 1316 Pa.
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Table2. Vaues of L;, and L, for various methods of activa-
ting molecular oxygen. The combustion of the 2H, + O, mix-
ture occurs behind the front of an inclined shock wave at P, =
1316 Paand T,, = 300 K. In the two last columns, numbers

A x 10M are presented as A(m)

My | B | TuK Qg%ﬁiooz L,om | Ly om
5 | 20 | 439 1 582(2) | 6.25(2)
2 381(5 | 3.81(5)
6 | 20 | 517 1 2532) | 3.06(2)
2 7.383) | 7.43(3)
7 | 20 | 605 1 128(2) | 156(2)
2 147(3) | 153@3)
6 | 30 | 791 1 | 265 48.1
2 133(2) | 155(2)

combustion process under the el ectric-discharge excita-
tion of O, iscaused not only by the presence of O atoms
in the reaction mixture but also by the appearance of
new production channels for O atoms and OH radicals
in reaction 15 and in the reaction O; + H = OH + O,,
respectively. In this case, detonation combustion can be
initiated in the gas behind the shock wave front a a
temperature as low as T, < 600 K. At such a tempera-
ture, the detonation combustion of the nonactivated
2H, + O, mixture cannot be realized. This method of
activating O, yields a more pronounced decreasein L;,,
and L, than the excitation of O, moleculesinto thea'A,
state. This follows from the data listed in Table 2 for
various values of Mg and 3 and for the two variants of
activating the O, molecules. For M= 6 and 3 = 30°
(T, =791 K), the dectric-discharge excitation of O,
allows one to obtain a combustion zone length L. as
short as ~0.5 m, whereas without activating O, the
length L. isequal to 9 m.

Thus, the laser beam excitation of the metastable
0,(a'Ay) state of molecular oxygen or its excitation by
an electric discharge leads to the initiation of the deto-
nation combustion of hydrogen—oxygen mixturesin a
supersonic flow behind the front of afairly weak shock

STARIK, TITOVA

wave when the temperature T, of the gas does not
exceed 750 K. Inthis case, the length of the combustion
zone can beasshort as1 m.
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It iswell known that plastic deformation in metals
and many other crystalline materials is associated
with their strain hardening [1, 2]. Generally, the larger
the deformation magnitude, the higher is the metal
strength and the lower the reserve of its plasticity.
Strain hardening is applied in the cold rolling of auto-
mobile sheets, the drawing of wires, and in many other
technological processes. However, their efficiency is
reduced due to the plasticity loss by metals. In this
study, we show that severe plastic deformation of met-
as, i.e, their strong deformation under conditions
when very high pressures are applied [3-5], leadsto a
new effect that is characterized by a concurrent
increase in both strength and plasticity. The physical
nature of thisnew phenomenon isrelated to the forma-
tion of nanometer-sized structures (nanostructures)
and the modification of the micromechanisms of
deformation. The observed effect may result in
completely new possibilities for the use of metallic
materials.

In this study, we used two methods that cause severe
plastic deformation and which were actively developed
in recent years [4]: torsion under high pressure and
equichannel angular pressing (Fig. 1). In both methods,
deformation is caused by shear and accumulates by
increasing either the number of turns under torsion or
the number of runs under equichannel angular pressing.
An important advantage of the pressing method is the
possibility of obtaining massive blanks, which makesit
possible to cut out samples that are suitable for a
detailed investigation of their mechanical properties. It
is worth noting that the magnitude of the true strain,
which corresponds to each pass, is about unity [4],
while the pressure applied, as in the case of the torsion
method, exceeds 2 GPa.

In performing our investigations, pure Cu
(99.996%) was subjected to equichannel angular press-
ing with rotation through 90° between successive
passes. In addition, pure Ti (99.98%) and the interme-
tallic NizAl compound were also studied, which were

Ingtitute of Physics of Advanced Materials,
Ufa Sate Technical University of Aviation,
ul. Karla Marksa 12, Ufa, Bashkortostan, 450000 Russia

subjected to torsion under high pressure. Severe plastic
deformation was brought about at room temperature.
Both strength and plasticity were determined according
to the results of uniaxial-tension tests of plane samples
with dimensions of 5 x 2 x 1 mm®. The deformation
rate reached 103 s,

The results of the mechanical-tension tests for each
material are shown in Fig. 2, and the stress—deforma-
tion curves for a state obtained by severe plastic defor-
mation are presented. For comparison, the correspond-
ing results for the coarse-grained annealed state of the
materials and their state upon being subjected to defor-
mation by rolling or extrusion are also presented.

The initial coarse-grained Cu with grain sizes of
about 30 um exhibits atypica behavior (Fig. 2, curve 1)
associated with a low eastic limit, insignificant cold
hardening, and significant elongation. Upon cold roll-
ing, the strength of Cu significantly increases but its
plasticity drops considerably (Fig. 2, curve 2); the
higher the rolling deformation, the higher the strength,
but the lower the plasticity. This tendency apparently
continues when Cu is subjected to two passes of
equichannel angular pressing where the deformation
magnitude is close to 2 (Fig. 2, curve 3). However, the
situation completely changes for Cu subjected to much
more severe deformation, e.g., when the number of
passes is equal to 16 (Fig. 2, curve 4). In this case, we
not only observed a further increase in strength that
reached the extreme values for Cu but also a noticeable
increasein plasticity. It should be noted that all the tests
were performed at room temperature.

A similar regularity was observed in Ti subjected to
severe plastic deformation by torsion (Fig. 2). Here,
after deformation by single-turn torsion (when the true
logarithmic strain is close to unity), followed by tensile
deformation at 250°C, we also observed hardening.
However, in this case, the plasticity decreased (Fig. 2,
curve 6) when compared to theinitial coarse-crystalline
state with average grain sizesof 20 um (Fig. 2, curveb5).
A further increase in the degree of severe deformation
(to 5 turns) alows for the attainment of an extremely
high strength of Ti (Fig. 2, curve 7), with an ultimate
strength of about 1000 GPa. This value is comparable
with that which is typical for high-strength Ti-based
alloys. The plagticity also rises when the ultimate elon-
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Fig. 1. Methods of severe plastic deformation: torsion under high pressure and equichannel angular pressing.

gation exceeds even the maximum elongation for the
initial annealed sample.

The NizAl intermetallic compound in the recrystal-
lized state (with grain sizes of 5 um) obtained by hot
extrusion exhibits (including the extension at 650°C,
Fig. 2, curve 8) alimited plasticity that istypical for this
material. The severe deformation by single-turn torsion
increases the strength, but the plasticity remains insig-
nificant (Fig. 2, curve 9). However, further severe
deformation (up to 5 turns) qualitatively changes the
situation. In this case, the material displays avery high
strength and, at the same time, extreme plasticity with
an elongation to the point of failure that exceeds 300%
(Fig. 2, curve 10).

Thus, the tests of all three materials show that,
under the action of severe plastic deformation by both
torsion under high pressure and equichannel angular
pressing, their behavior qualitatively changes. They
demonstrate not only a very high strength but also a
very high plasticity. Such a behavior of the materials
gualitatively differs from that of metals and alloys
subjected to large plastic deformation, e.g., by rolling
or drawing, where an increase in strength usually cor-
relates with adecreasein plasticity [2, 6]. The unusual
phenomenon described in this paper defines a paradox
of severe plastic deformation that exists when, in con-
trast to the well-known tendencies of very large defor-
mations characterized by true strains exceeding 6-8,

there is arise not only in the strength but also in the
plasticity of metals and alloys.

To understand the nature of the above effect, we
consider recent data on the investigations of structures.
The data show that under high pressure severe plastic
deformation, whose degree exceeds 6-8, resultsin the
formation of nanostructures having extremely small
grain sizes on the order of 100 nm [3, 4]. These nano-
structures can also be observed in the materials investi-
gated by transmission electron microscopy (Fig. 3).
The diffraction patterns confirm the presence of grains
misoriented at large angles. Nanostructuresformed asa
result of severe plastic deformation qualitatively differ
from cellular and fragmented microstructures formed
after large regular deformations [ 6, 7]. It is evident that
due to the formation of nanostructures deformation
mechanisms under conditions of sample extension may
be changed. Actually, in this case, processes occurring
at the boundaries of nanograins formed under severe
plastic deformation, in particular, grain-boundary slid-
ing, begin to play an active part comparable to the role
of lattice-dislocation motion [8].

Asiswell known, the combination of strength and
plasticity is a necessary condition for obtaining poten-
tially useful technological materials. In this connection,
attaining very high strength and plasticity in metalsand
alloys subjected to severe plastic deformation opens up
ways of creating fundamentally new structural materials
with nanometer-size microstructures. Such nanostruc-
No. 9
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1. We consider the problem of the interaction of
elastic waves with an inhomogeneous interface
between two solid bodies. These problems are of cur-
rent interest in geophysics, acoustics, and nondestruc-
tive strength tests. In [5, 6], an interface in the form of
athinisotropic layer free of inhomogeneities was used.
In this paper, we adopted a model of an interface with
defectsthat was proposed in [1]. The model isbased on
the study of athin layer with numerous small cylindri-
cal inclusions aligned in a certain direction. Under such
conditions, the material of the layer becomes anisotro-
pic and its behavior is described by the following rela
tion between the displacement-stress vector U = (u,, U,
Uy Oz, Oy, O5)" in the upper half-space and a similar
vector U' in the lower half-space:

u=BU, B=|P1B (1)
B, B,

Here, u; are the displacement vector components; i.e.,
u= (U, U, Uy, and gj is the stress tensor. The layer
material is assumed to be orthotropic in the (x,, vy, 2)
coordinate system, with the (X, Y,) plane coinciding
with the layer surface and the inhomogeneities aligned
inthe x,-direction. The elastic properties of the material

are described by the elastic tensor Cﬁ entering in the
linear relationships of the generalized Hooke law.
We use the series expansion of the matrix B (see[1]):

B=| —iKhA—%(KhA)Z +i(khAY @)

A= |q B 0 ay O O , 3)
0O 0 a; 0 0 1
a; ap 0 a;p 0 0
3 a& 0 a; 0 O

Kuban Sate University,
ul. Karla Libknekhta 9, Krasnodar, 350640 Russia

T T
s = _If’ 16 _|f<4’
1'55 Cis Css
Ay N Ga C_ssl 30 = C_33’
¥ jkCyx' TR ik’
o\ po(*) Aes O
a51 - |K 161 a. %_ 2|:|,
po(*) %J,l_ 11 D
Po Vf
I Cuy _ Css
44 55 = )
CasCss5—Cis CasCss5—Cis
C C.C.
Tys = 2 )\I] = Cij_ Ié 13-

Here, h is the layer thickness; Vpn = % is the phase

velocity; w = 21 is the angular frequency; f is the fre-
guency in Hz; K = K;sin6; is the component of the wave
vector inthe plane z= 0; K; isthe wave number; 6; isthe
angle of incidence for awave; p, is the layer density;

Kh = K;hsin6; = hsme and C;; is the elastic tensor

A

inthe (x,y, 2) coordl nate system, with the (x, y) plane
coinciding with the layer surface. The plane of inci-
dence for elastic waves, (X, 2), isinclined at an angle ¢

tothe (X, 2) plane. Thetensor C;; isrelated to Ci(} by the
formula

Cc = PC°P". %)

The representation of the matrix P was givenin [1].
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Let one of the following conditions be satisfied: the
angle of incidenceiscloseto vertical, the wavelength A,
of the incident wave is much longer than the layer
thickness h, or these waves are emitted at a low fre-
guency. In this case, we keep in expansion (2) only
terms up to a certain order in powers of kKh to provide
sufficient accuracy. In addition, we introduce approxi-
mate boundary conditions. In what follows, we use, as
was done previously in [5, 6], the first approximation.

We assume that the field of monochromatic plane
wavesincident on theinterfaceisdescribed in the upper
half-space by a superposition of the longitudinal waves
(hereafter, the factor exp[-iwt] is omitted):

Ui = An;exp(ikzng, )
and transverse waves:
Ui = Ugyi + Ugy;-
Here,
Ugy; = Agy(n; X €;)exp(iKy,n,, )
and
Ushi = Agi€2eXP(iKzNy, I)

are the fields of the SV waves and SH waves, respec-
tively; A, Agy, and Agy are the corresponding ampli-
tudes; n; is the normal to the wave front; r = (X, y, 2) is
the coordinate vector; k;; are the wave numbers (the
componentswithi =1 andi = 2 correspond to the lower
and upper half-spaces, and those withj =1 andj=2to
the longitudinal and transverse waves, respectively);
and e, = (0, 1, 0). The unknown displacements are
sought as Fourier integral expansions in the lower and
upper half-spaces, respectively:

' 1 ) . 1z 12 —iBx
Uy(x, 2) = E[I[_'Bcnea "'0(12(312eol ﬁe P dp,

' 1 ) 01,Z—iBX
U, = 5o [du(B)e™ " ap, 5)

00

' 1 0z . 0,2, —ipx
U(x 2) = 5o [lancne™ +iBeye “Je ™ dp,

1o o
U(x,2) = 5= [ [-iBoge

—0 5,7

—0C0e ]e_iBXdB + Uiy,

DOKLADY PHYSICS Vol.46 No.9 2001

637

_ l ° —0,,Z—iBX
Uy = 55 [ da(B)e =B + (©)

00

l —0Z
U,(X, 2) = 51‘.[‘[.[—0(21(:21e “

+iBcype 2 1€ PdB + uy,.

Here, Uy, U;,, and u;, are the incident-field components
2.

L et the properties of the layer depend on the sign of
X, and be described by the matrices B and B' for x, < 0
and x, > 0, respectively. The matrix B' contains the
same elements as the matrix B, but these are marked by
primes. To determine the unknown coefficientsin rela-
tionships (5) and (6), we employ the approach
described in [5], which leads to the system of six func-
tional equations of the sixth order

(1 + Qo)X =X + QL. )
Here, | istheidentity matrix;
0, = -N;Q N,Q:'P,
-N,Q;" N,Qi'P,
Q. = [P,(B3P, + B,) — (B}P, + B})],

and Gij: BZ—K

P = WMy, 8)

N; = (B,—B))P, + B,— By,
N, = (B;—B3)P, + B,—Bj;

—-iB 0 a —-iB 0 —a,
Wi=|l0 1 o Wa={ 0 1 0]
o, 0 ip —-a, 0 ip
(A +2u)05 -AB° 0 2ipBoy,
M, = 0 1,0, 0 , (9)
~2ip,Bay, 0 (B +0d)
(A + 2“2)0(31—)\2[32 0 —2i,Bay,
I-IZ = 0 _pzazz O )
2i,Bay 0 Uz(Bz + ng)

ngg, L, = Le+Ly,
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00

Lic = [ ige ™
0

0
Lic= [Girige™ Pdx.

The superscripts“+” and “—" signify that thefunctionis
analytically extendable along 3 to the upper and lower
half-spaces, respectively. Here,

ji1 = Ang, i; = Agie,+ Ag,(cosB,e, + Sinb,e;),
j» = iKyA[Ae;—2ucosd;ny],
i, = =K [ AgyC0S8,€,
+ Agv{ c0S28,e, + Sin26,e3] ,
e,=(1,0,0), e=(00 1),

and 0, and 8, are the angles of incidence for the longi-
tudinal and transverse waves, respectively.
The desired vector—functions C,,

[f10 o
C,= HiH C,= {5, (10)
IJ:12|:| |1.'\’22D

are expressed in terms of the vector functions X* = (X7,
+. T
X35):
Ce = MISe S = NT(X7-X7),
S, = (B3P, + BN, (X;—X3) + X5 - L.

2. The application of the Wiener—Hopf method to
the system of equations (7) is reduced to the left-hand-
side factorization of the matrix function Q =1 + Q, of
the sixth order with respect to the contour that coincides
with the real axis almost everywhere and bypasses real
singularitiesin theleft and right half-planesfrom above
and from below, respectively [2]:

Q = Q.Q..

Poles, branch points, and zeros of the matrix determi-
nant are rea singularities. After factorization of the
matrix Q, the solution to the problem can easily bewrit-
ten out. However, there are no methods for the exact
factorization of general-form matrices. Therefore,
approximate methods should be used; namely, ele-
ments of an initial matrix should be approximated by
rational functions. The matrix obtained in this manner
can be factorized exactly [2].

Sometimes, analysis of the matrix being factorized
makes it possible to conclude that its elements off the
main diagonal are close to zero. In this case, the initial

BABESHKO, BUZHAN

matrix can be approximated by a diagonal matrix
whose factorization is easily performed by factorizing
its diagona dements, i.e, its scalar functions. Such a
method allows the contribution of surface wavesinto the
total field near the interface to be separated from the gen-
eral integral solution as aresidue in the real root of the
corresponding dispersion equation. As an example, we
consider an interface layer (Similar to that treated in [5])
whose elastic properties vary along the boundary:

B,=B;, B;=B;, B,#B, B, =B,
Properties of the half-spaces are assumed to be identi-
cal. In this case, the set of equations (7) is reduced to
the system of the third order:

(1 =N QXTI = X1 + N, Q1 P,L ;. (11)

In contrast to the plane problem considered in [5], the
matrix T=1-N, Q]l of system (11) cannot be reduced

tothediagonal form (i.e., the system isnot decomposed
into three independent equations) by thefollowing sim-

plifications: B, = B; =1,B,=B; =0, and B, =0. In
dimensionless variables, the matrix T takes the form

_Fi(a) ay 0
S0 S
T=|&@) (@) o | (12)
Si02 S5
0 0 _Fy(a)
i S0 |
Here,

2 _ 2Cg
5= Tk’ % = UK’
33 = L S, = L

TeshKh' ™ Tyghkh’

M is the shear modulus for the elastic half-space; k; =
Kj2 = Ky; and

Fs(0) = 0y + S5, =12,

Aa) = 4[(0(2—0.5)2—0(2 az—lA/az—sz}.

If the assumptions concerning the matrix elements that
were listed at the beginning of this section arevalid, the

Fi(a) =A(a) —s0,3_;,
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problem is reduced to the factorization of the functions
F (o). In particular, it follows from relationship (4) that
Cu = Cocosh + Cosin’ g,
Ces = Co,sin’¢ + Ccos’ 9,
Cu = 05(CY,—C%)sin2¢.
In this case, it is evident that the form of the matrix is
closeto adiagonal matrix if C3, = CJ, i.e., if ¢ =0° or
¢ = 90°.

The factorization of the functions F, ,(a) was per-
formed in [5]. To factorize F5(a), we employ the same
method and introduce the functions

Fs(a)
0s(a)@3(a)

@;(0) = az/a—-1+d;/a—igs,
@3(0) = @5(—a) = —i{ag/o+1+dy/a+igg.

Hs(a) = (13)

The parameters a;, d;, and g; are determined from the
condition that the characteristic singularities of the
functions F;(a) and @; (a)@; (a) should be identical.
Hence,

_A-smife  _Wimdies
1-.figs - 1-./igs .

The choice of the free parameter g; is dictated by the
best approximation of the function H;(a) to unity
throughout the real axis. The function H;(a) obtained
in this manner can be factorized exactly in the integral
form [2]:

a3

. 3 0 1 InH(Q) O
Hi(a) = eXpStZTIi 7—a dZH (14)

T

The contour I was defined above. Hence,

Fs(a) = g3(a)H3(a).

3. Theincidence of aplanewave onthelayer surface
results in the origination of surface waves propagating
along the x-direction near the layer surface. There exist
two types of these waves: symmetric and antisymmet-
ric. Symmetric waves excite antiphase oscillations of
particles along the z-direction and in-phase oscillations
along the directions of the x- and y-axes, and thereverse
holds for antisymmetric waves. If the direction of the
wave propagation coincides with the symmetry axis
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(i.e., with the direction of the x,-axis or y,-axis), then,
as follows from (12), the equations
Fi(a) =0 and Fza) =0 (15)

are the dispersion equations, respectively, for the anti-
symmetric modes with P-SV and SH polarizations.

Thefirst equationin (15) hasasinglereal root [5, 7].
The second equation has no real roots, because the
mode-propagation condition requires that o > 1; hence,
theradical a,, ispurely real-valued. The equation

Fo(a) =0 (16)

isthe dispersion equation for the symmetric mode with
P—SV polarization that, under certain conditions, could
have asingle rea root [7]. If the propagation direction
for a wave does not coincide with the symmetry axis,
then, as follows from (12), the dispersion eguation, in
general, cannot be reduced to independent equations
for modes with P-SV and SH polarizations (see aso
[1D).

The dispersion eguation for the symmetric mode
with SH polarization can also be derived from the
matrix of the system of equations (7), provided that the
inertia properties of the interface layer vary along the
boundary [6]:

B, =B, B,=B, B;#B,;, B,#B,.
This matrix has a similar structure to that considered
above, while the dispersion equation takes the form

2pV,
wM pSH.

Ga(a)=1-0gza, =0, Q3 = (17)

Here, v, is the velocity of the transverse wave in the
O C%O. .
half-space; Mgy = M0l — >0 is the effective
0 PoV pnlJ

mass of athin plate, which describes its inertia proper-
ties along the direction orthogonal to the plane of inci-
dence; and M,, = pyh is the plate mass per unit area. In
contrast to the antisymmetric mode, Eq. (17) possesses

asinglerea root
ag = O3 A/1+05.

The factorization of G;(a) is performed in the same
manner as that for F;(a):

Gs(a) = W3(a)Rs(a).

Here, R; () isdetermined by theintegral formula (14)
with the function Rs(a) substituted for Hs(a):

G;(a)
(o) Ws(a)

(18)

Rs(a) =



W3(a) = byfa—1-cz/a—its,
P3(a) = Py(-a) = i{bga+1-cg/a+itg,
Oa(1—0ag) —i

b, = ,
2L T+igs—0s.figy

_ Os(1+0a3) +i(2,/05(1—q3) - 1)
2L T+ig-azfig]

- [imas(as+ ) —2ias /i —a) |
P as(aa* 1) —i+2iJag(i-ay) |

4. In our numerical evaluations, we use the follow-
ing parameters borrowed from paper [1]:

1. For the elastic half-space, v, = 6.2 km/s, v, =
3.24 km/s, and p = 2.7 g/cm3, where v, isthelongitudi-
nal-wave velocity;

Cs

3_

Re
2W
L PP

//
0 -7
Im __--
_qk---"""
_2 1 1 1 1 1 ]
-3 -2 -1 0 1 2 3

Fig. 1. Redl (solid line) and imaginary (dashed line) compo-
nents of the function F (a) for g3 = 40.
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0.005H

—— ]
0 0.5 1.0 1.5 2.0

Kh
Fig. 3. Amplitude of the antisymmetric mode with P-SV
pol arization propagating aong the x,-direction and (1) € = 0.2;
(2) 0.3; (3) 0.5; and (4) 0.7.
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2. For the interface layer having the porosity of
30%, Cy, = 11.2 x 10° N/m?, Cgs = Cg = 15.2 x
10° N/m?, and p, = 1.89 g/cm?,;

3.6, =45°th=0.1 MHz mm.

The exact values of the functions F3 (with g; = 40)

and R; evaluated by formula (14) are shown in Figs. 1
and 2, respectively. Based on these factorizations, we
evaluated the interface wave amplitudes. The ampli-
tudes of the antisymmetric mode with P-SV polariza-
tion propagating along the x,-direction are plotted in
Fig. 3. The numbers of the curves correspond to various

v , L
values of the parameter € = Vt . Themaximaarising in
|

therange 0.1 < k;h < 0.3 of the dimensionless frequen-
cies can testify, for example, to the existence of arange
of optimum frequencies for the ultrasonic monitoring
of welded joints. The amplitude of the symmetric mode

_ I I I I I ]
i?; -2 -1 0 1 2 3

Fig. 2. Redl (solid line) and imaginary (dashed line) compo-
nents of the function Rj (o).

0.04 - ;2
0.03+
0.02F
0.01 ¢ =0°90°
0 0.5 1.0 1.5 2.0 2.5

K h

Fig. 4. Amplitude of the symmetric mode with SH polariza-
tionand (1) € =0.2; (2) 0.3; (3) 0.4; and (4) 0.5.
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with SH polarizationisshownin Fig. 4. As can be seen,
the resonance frequenciesfal intherange 1.7 <kh< 2.
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1. Generdly, the image quality of objects under
remote sensing is poor when the data are interpreted in
applications[1]. Nonlinear filtersnormally provideres-
toration of the contours of large-scale objects in an
image [2-5] without correcting its small-scale details.

In the present paper, new robust nonlinear algo-
rithms of image filtering are presented that ensure the
retention of small-scale details and yet suppress pulse
and multiplicative noises. These algorithms employ fil-
ters of the RMKNN-type (rank maximum likelihood fil-
tersof K nearest neighbors) introduced in [6, 7] with the
simplest cutoff function or with the cut-median or
Hampd functions[5].

Realization of the proposed RMKNN algorithms on
the basis of digital signal processing with the use of a
DSP TMS320C6701 processor [8] experimentally con-
firmed the feasibility of the image filtering in real time
under various noise conditions.

2. We use the image distortion model previously
described in[7, 9]:

ux, y) = Npul(smulti(x’ Y)E(X, Y)). (D
Here,

Npu(e(X, ¥))

_ [arandom pulse, with the appearance probability P,
%(X, y) otherwise,

€nui(6 Y) 1S multiplicative noise; e(x, y) isatrue image;
u(x, y) isthe result of the image distortion by the pulse
and multiplicative noises; and N,,(e(X, ¥)) is a func-
tional determining the influence of the pulse noise on
the image.

* | nstitute of Radio Engineering and Electronics,
Russian Academy of Sciences,
ul. Mokhovaya 18, Moscow, 103907 Russia
** National Polytechnical Institute of Mexico, Mexico City,
e-mail: vponomar @cal mecac.esimecu.ipn.mx
*** Central Design Bureau of Unique Instrumentation,
Russian Academy of Sciences,
ul. Butlerova 15, Moscow, 117342 Russia

The present task is to elaborate a robust-filtering
algorithm capable of eliminating the pulse and multi-
plicative noises and reconstructing small-scale details
of an image. It was shown in [5, 6] that the reduced
robust M-estimate for the mean value of X-sample with
the one-step scheme is determined by the combined
RM-estimate:

Brea = Med{ X P(X,—0?),i=1,...,100. (2

Here, 8© is the mean value of the sample; the cutoff
function  (X) is chosen in such away that the required
level of robustness should be achieved. The function

OX, | X[ <r
0,1 > 1,
determined by the robust Huber M-estimate for the nor-
mal distribution with long tails, wasemployedin[6, 9].

A function picking out K neighboring pixels whose
values are nearest to the central element u(i, j) of afil-
tering window is a simple version of the function () (X).
In this case, the well-known filtering KNN algorithm is
eadly realized if, at the first iteration step, the central
pixel (element) is chosenin theform 6© = u(, j) [9]:

1

l:Dcut(X) =

e, J) = T T

S Y Gui+mj+n)

m=-L n=-L
L L

x5 S BuGi+m j+myui+mj+n). (3)

m=-L n=-L
Here, &y (i, j) isthe image estimate,
O(u(i +m, j +n))
(4, if u(i + m, j +n) is one of the K elements
= [nearest to u(i, j)

, otherwise.

It was shownin [8, 9] that the robust properties of a
standard filtering KNN-algorithm (3) may be improved
if, instead of the arithmetical mean in the one-step algo-

1028-3358/01/4609-0642%$21.00 © 2001 MAIK “Nauka/Interperiodica’
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rithm of the RM-estimate, the central pixel is reused as
the first iteration of the following estimate:

Ewmknn(is J) = med{ un(i +m, j+n)}. 4)

Here, ugw( + M, j + n) isaset of the K pixels nearest
toud, j), m,n=—, ..., L inside the filter window.

The median version of the RMKNN-filter (4) proved
to be the most convenient for the processing of images
of a diverse physical nature [7, 9]. Such a filter
(MMKNN is an acronym for “maximum likelihood
median filter of K nearest neighbors’) can be written
out in the following form:

eumnn(is 1) = med{g @G +m j+n}. (&)

Here, g9(i + m, j + n) isthe set of K, pixels weighted

with the () (X)-function, which are used inside the fil-

tering window and close to the estimate &% mhn (i, j) at

the previous step. Here, m, n = —L, L; &0 (i, J) =
ud, j); ud, j) isthe original image; (2L + 1)? isthefilter-
ing-window size; qistheindex of the current iteration;

é‘hﬂ?\,,KNN isthe estimate at the gth iteration; and K (i, j)

is the current number of the nearest pixels. This num-
ber accountsfor local data activity and the presence of
spikesin the filtering window; it is determined as fol -
lows:

Kc(ia J) = Knin + asud, J)) < Kmax~ (6)
Here,
med{ |u(i, j) —u(i +m, j + n)f}
MADM{ u(i, )}

MADM{ u(i, )}
S e uG +k j+ 1}

S(u(i, j)) =

The a-parameter controlsthe sensitivity of the filter-
ing algorithm to local data variations near the contour
of an object. The maximum number, K., of pixes
neighboring the central element determines the
smoothness of the contour and the preservation of fine
details of an image. MADM is an acronym for “the
median of absolute deviations from the median”.

The filtering algorithm proposed is a generalization
of astandard KNN-filter (3), being its equivalent in the
caeof g=l1landa=0.

Only the simplest cutoff function () (X) intro-
duced above was employed in the RM-type filters
described in[9]. A number of other cutoff functionsfor
reduced M-estimates are known (see[2-5]): the Andrus
sing, the Tuky function, the Bernoulli function, etc.

In this paper, other cutoff functions () (X) are
employed in the agorithms for the MMKNN-filter (5).
DOKLADY PHYSICS  Vol. 46
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It wasshownin[2, 5] that the most robust version of the
reduced M-estimate is the cut median:

JJmed(r)(X) = sgn(X) x 11 1(X)

_ Osgn(X), [X<r 7
, X>r.

Thus, employment of function (7) could result in
efficient noise suppression because of the robustness of
such an estimate.

We also employ the Hampel function represented in
the following form:
Sx, 0<|X|<a

Hosgn(X), a <[X| <

YooV =0=X poiger @
o r-B

5b, r<|X.

Here, O<a <fB<r<oo.

Cutoff functions (7) and (8) were used in the
MMKNN-filter (5) in order to sufficiently suppress
pulse noise.

To reduce the influence of multiplicative noise [9],
another robust filter was proposed, whose algorithm is
of the following form;

ew(i, J)

-+ .9

P{u +m, j+n) -2, )}

_ o lui +m, j +n)—&“, )| < bmed{ u(i, )}
0, otherwise,

med{u(, j)} isthe median of a sample of valuesinside
thefiltering window; the coefficient b controls the mul-
tiplicative noise suppression; m,n=-L, ..., L, 2(L+ 1)
determinethe sizes of thefiltration window and éo(i, j) =
eumknn(iy J) isthefirst iteration. The numerical analy-
sis of agorithm (9) shows that the filtering results
weakly depend on b (in what follows, b = 2 is taken).

To preserve the small-scale details of an image, an
adaptive scheme was proposed that is similar to the one
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Table 1. Processing time (in seconds) for various root-
mean-square deviation of multiplicative noise and the three
filtering functions

Root-mean-square deviation
Filter

0.00 0.05 0.10 0.25

The simplest 2.19 2.165 2.16 2.16
Median 2.187 221 2.205 221
Hampel 2.23 2.26 2.26 2.265

used in the local statistical Leefilter [9]:
e(i, J) = eumknn(i, 1)QC, )
o éw(i, J) ui
Q1) = 1 g an ) G T T TR

Here, the function Q(i, j) is the robust estimate of the
local sample activity, and the coefficient ¢ controlsres-
toration of the fine details of an image.

It is worth noting that algorithm (9) is analyzed in
the case when cutoff functions (7) and (8) are employed.
Consequently, the resulting processing filter (10) is
determined by two filters. One of them isthe MMKNN-
filter (5) and (6), which provides the suppression of
pulse noise and the preservation of fine details of an
image; the other is the M-filter (10), which suppresses
multiplicative noise.

3. The above-mentioned algorithms were actualized
using a Texas Instruments TMS320C6701 floating-
point processor, which records and processes signds [§].
Thetest picture“Automobile’ (infrared 256 % 256 image)
[8] was used for finding specific values of the process-
ing time for the filters described above. The data was
distorted by a pulse noise, which comprised 15%, and
mixed with amultiplicative noise of various root-mean-
square deviations. Then, the distorted data were used
for filtering. In Table 1, we list experimentaly found

values of time for both of the filters (MMKNN and M)
with the three functions: simplest, cut-median, and
Hampel functions. It is easily seen that the processing
time required for the algorithm with the simplest func-
tion is shorter than that with either the cut-median or
Hampel functions. The processing times for the filters
employing the functions under consideration were
longer than those for asimple median filter withas x 5
window size, the latter being 0.3881s. The required
processing time is one of the important characteristics
of the algorithms under study. Another equally impor-
tant characteristic of an algorithm is the filtering qual-
ity, which will be discussed below.

4. \We carried out a series of numerical experiments
for studying the properties of new algorithms (5) and
(20) and for their comparison with the standard 5 x 5
median filter. We used the root-mean-square deviation

Tetx, y) - é(x, y) PO
as acriterion of thefiltering quality.

For evaluating the noise-suppression quality of the
filters proposed, the standard image “Mandrill” [1, 3, 5]
was distorted by a mixture of multiplicative Gaussian
noise and pulse noise. The parameters a from (6) and ¢
from (10) were varied. The minimum values of the
root-mean-square deviation found from the numerical
experiments are given in Table 2 for the filter with the
simplest cutoff function and for the standard 5 x5
median filter. In Table 3, the values are for the filters
with the cut-median and Hampel functions. For the fil-
ters with the cut-median and Hampel functions, the
optimum values of the parameters a and c are constant.
The parametersa and r entering in the Hampel function
are constants. The parameter 3, however, differs little
for various images and noise levels. In the case of the
simplest cutoff function, the optimum values of aand ¢
are found to be virtually invariant under variations of
noise parameters. When the cut-median and Hampel
functions are employed, the parameter a is virtualy
constant. The parameter ¢ is equal to 0.01; however, it
is not constant but changes from one image to another.

Table 2. The minimum values of root-mean-square deviation for the “Mandrill” image: (humerator) simplest cutoff function

and (denominator) standard 5 x 5 median filter

Root-mean-square deviation for multiplicative noise
Pulse noise probability
0 0.05 0.10 0.25

0 144.2/877.7 819.1/1071.0 1015.1/1234.3 1220.721554.7

1 229.3/878.7 834.2/1076.6 1023.9/1249.8 1265.211568.70

5 312.7/909.9 1034.8/1113.9 1027.6/1270.8 1274.9/1569.3

10 418.9/944.3 1047.8/1115.7 1037.0/1325.0 1310.5/1642.7

15 534.4/984.4 1063.9/1194.2 1038.3/1343.6 1362.4/1661.8

20 667.3/1031.4 1070.6/1220.4 1055.8/1430.4 1412.4/1776.9
DOKLADY PHYSICS Vol. 46 No.9 2001
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Fig. 1. The results of modeling: (a) test infrared image “People”; (b) noise-polluted image (&) 20% of a pulse noise mixed with a
multiplicative Gaussian noise with relative root-mean-square deviation of 0.1; the results of the filtering by (c) standard 5 x 5
median filter and with (d) simplest cutoff, (€) cut-median, and (f) Hampel functions.

The optimum values for parameters a, 3, and r for the
Hampel function are a = 10.00, 3 < 100, and r = 300.00.

The following conclusions can be drawn from the
analysis of the numerical experiment: (i) The filtering
algorithms proposed provide better noise suppression
compared to the 5 x 5 median filter. The algorithms
with the cutoff functions ensure reasonably strong sup-
pression and preserve small-scaleimage details much bet-
ter than the median filter. (ii) The filters with the cut-
median and Hampel functions provide better noise sup-
pression compared to those with the smplest cutoff func-

tion when the level of the root-mean-square deviation for
multiplicative noise is greater than 0.01. (iii) The opti-
mum values of parameters a and ¢ for the cut-median
and Hampel functions are virtually invariable under
variations of noise parameters. (iv) The filters con-
structed on the basis of the cut-median and Hampel
functions show better robust properties compared to the
filter with the simplest cutoff function.

Figures 1a—1f show the comparative analysis of the

filtering and noise suppression by the developed and
standard median filters. Figures 1a and 1b show the

Table 3. The minimum values of root-mean-square deviation for the“Mandrill” image: (humerator) cut-median function and

(denominator) Hampel function

Root-mean-square deviation for multiplicative noise
Pulse noise probability
0 0.05 0.10 0.25

518.9/515.5 738.1/723.9 897.0/886.3 1209.6/1203.8

1 551.8/518.9 745.6/730.6 891.8/878.9 1214.4/1208.8
588.6/551.8 768.2/752.9 922.9/910.8 1268.3/1260.4

10 626.0/589.0 806.5/792.8 966.8/955.5 1217.4/1310.8

15 638.9/626.6 843.7/829.6 1004.9/993.3 1378.2/1375.1

20 663.9/644.5 890.1/876.6 1054.1/1043.7 1429.5/1430.4

DOKLADY PHYSICS Vol.46 No.9 2001
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original and noise-polluted images, respectively. Fig-
ures 1c to 1f show the results of image processing with
the standard 5 x 5 median filter and the filters with the
simplest cutoff, cut-median, and Hampel functions,
respectively.

Thus, new robust nonlinear filters for image pro-
cessing with various cutoff functions are presented.

The robust filtering algorithms proposed and justi-
fied can suppress complicated-structure noise and pre-
serve small-scale details of an image. The agorithms
with the filtering functions of the cut-median and
Hampel types provide better robustness compared to
the filter employing the simplest cutoff function. The
optimum algorithm parameters were found for various
classes of images and noise characteristics. The exper-
imental study of the digital signal processing for the fil-
ters under consideration showed that the filter with the
simplest cutoff function is less time-consuming than
those with the cut-median and Hampel functions.

The results of this study were partially reported at
the International Workshop “Mathematical Modeling
of Physical Processes in Inhomogeneous Media’
(March 2022, 2001, Guanajuato, Mexico) [10].
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When ultrashort pul ses are emitted by antennas|1, 2],
the emitted signal differs substantially from that fed to
the antennainput from a generator because of dynamic
distortions. The actual emitted signal is essentially dif-
ferent from the desired one both in form and duration.
For the distortion level to be reduced, it was proposed
in [3] to feed an additional correcting signal into the
antennainput in addition to the mgjor (operating) pulse.

Supplying a correcting signal simultaneously while
applying alinear correcting transformation to the major
operating signal is a more efficient means for reducing
the distortion level. A general method of constructing
such correcting systemsis presented in this paper.

1. STATEMENT AND SOLUTION
OF THE PROBLEM

According to the block diagram of the correcting
system presented in the figure, a signal X,(t) produced
by an ultrashort-pul se generator is fed into the input of
acorrecting device, whose dynamicsis described by an
impulse transient function v(t — 1). Next, the trans-
formed signal is added to the correcting signal u(t).
Thereafter, it is fed into the antenna input, whose
dynamicsis characterized by an impulsetransient func-
tion h(t —1).

As aresult, atime diagram of the emitted unidirec-
tional signal is determined in the form

t T

y= Ih(t —T)J’V(T —0)x,(8)dodt

+Ih(t—r)u(r)dT (D

* Moscow Research Institute of Instrument Building,
Kutuzovskii pr. 34, Moscow, 121170 Russia
** |nstitute of Mechanical Engineering,
Russian Academy of Sciences,
ul. Bardina 4, Moscow, 117334 Russia

= J'g(t—T)v(T)dT +J'h(t—T)u(T)dT,
0 0

where

t

g(t=1) = [h(t=6)x,(8-T)db.

Let yr(t) be the desired emitted-signal time diagram,
which is assumed to be a finite function

Vi (1) 20, tO(0, Ty, VY«(t) =0,

It is necessary to find functions v(t), ur{t) provid-
ing the best fit of y(t) to y{t). As a criterion of such

closeness, with the physical feasibility requirement
taken into account, the following quadratic functional
is used:

tO[Ty, ).

T

J(v,u) = J’[(y—y*)2+v1u2+vzv2]dt- )
0

Here, T > T, and vy, Yy, are positive weighting coeffi-
cients.
Assuming that the functions v, u belong to the space

L2(0, T), we can write out diagram (1) in the formy =
Au + Bv, where A and B are bounded linear operators;

X0 y

Block diagram of the system: (1) operating-pul se generator;
(2) linear correcting device; (3) correcting-pulse generator;
(4) antenna.

1028-3358/01/4609-0647$21.00 © 2001 MAIK “Nauka/Interperiodica’
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functional (2) can be represented in the form
(v, u) = (Y= Ys, Y= Ya) +Va(u, U)+V2(VaV)(3
= (Au+ BV =y, Au+ BV —y,) +yy(U, U) +Yo(v, V).

A procedure similar to that outlined in [4] for the
case of a desired function is used for minimization of
functional (3). The following system of linear operator
equations is obtained as a result of employing this pro-
cedure:

A*Au+ A*Bv +vy,u A* Yy,
B*Au+ B*Bv +vy,v = B*y,.

Here, A*, B* are operators conjugate to the operators A,
B. It follows from (4):

U = (rA* +1,B*) Yy,
Vi = (N A" +1,B*)y,,

“)

wherery (s=1, 2, k=1, 2) are elements of a matrix

operator R, .., which isthe inverse of the matrix oper-

ator of the left-hand side of system (4).

In the nonabstract form, system (4) takes a form of
Volterralinear integral equations of the second kind:

T 5

J’h(s— t)J’h(s—T)u(T)des

T S

+{h(s—t){g(s—r)V(T)deS+Vlu

= J’h(S—t)y*(S)ds,
c 5)
Ig(s—t)fh(s—r)u(r)drds
t 0

T s

+J'g(s—t)Ig(s—r)v(r)drds+ YoV

T

= J'g(S—t)y*(S)dS-

By virtue of this, ry are elements of the matrix resol-
vent R, , . It follows from (5): u(T) = v(T) = 0. By

applying the operators A*~! and B*~! (which are the

inverses of the operators A*, B*) to the first and second

equations of the system, respectively, we obtain
ViA*TU(0) = v+ (0) = 0,

Y2B* v (0) = v, (0) = 0.

BAKHRAKH, IZRAILOVICH

2. A PROBLEM
WITH FIXED FINAL CONDITIONS

Although the procedure outlined provides a reduc-
tion in the emission intensity outside the desired time
interval (0; T,), it does not allow the emission to be
completely suppressed at the fixed instant upon the
completion of the observational periodt = T. When this
condition is rigorously required, laws u(t) and v(t)
must be determined such that the equalities y/(T) = 0,
i=0,1,...,n—1areprovided, where y'(T) isthe deriv-
ative of the ith order of the emitted signal y(t) at the
instant of timet =T. Inview of (1), these conditions are
written in the form:

y(T) = A(T)u+B(T)v = 0. (6)

Here,

T

A(T)u = J’hi(T—t)u(t)dt,
0

T

B(T)v = J’gi(T—t)v(t)dt;

and the superscript implies the derivative of the ith
order.

For linear isoperimetric conditions (6) to be met, the
following extended functional should be introduced
when minimizing functional (3):

n-1

I(u, v, \) = I(u, v) + S MAMU+B(T)v]. ()
i=0

Here, A; (i=0, 1, ..., n—1) are Lagrange factors.

Asaresult of the minimization of functional (7), the
following system of equationsis obtained for the func-
tionsu, v instead of Egs. (4):

n-1

A* AU+ A*BV +y,u= A*y, — zAihi(T—t),
o ®)

n-1
B*Au+B*BV +V,v = B'y, - § Ag(T-1).
i=0

On account of system (8), the functions u, v must obey
the boundary conditions

n-1 n-1

vau(m) = =3 Ah'(0), v,v(T) == Agl(0),
i=0 i=0

DOKLADY PHYSICS Vol. 46 No.9 2001
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n-1

ViA T u(0) = =3 AR(T),

n-1

VBV (0) = =3 Ag(T).

As aresult of the substitution of the solution to sys-
tem (8), u(A), v())) into isoperimetric conditions (6),
we obtain a system of n linear algebraic equations in
Lagrange factors A, . After solving this system, the final
expressions for ury vjare determined:

n-1n-1

= (rpA* +r1,B*)y, — Z ZA”h(T_t)

i=0j=
X{[A{(T)ry+Bj(T)ry] A* )
+[A(T)rp+ By(T)rp] B* }ys,

nlnl

= (rp A% +1,B* )y, — Z z Q(T

i=0j=

X{[A(T)ry+B(T)ry] A* (10)

+[A{(T)rp+ B;(T)ry,] B*},
In (9), (10), A implies a determinant of the matrix
| A (T)(r A +ry,B* )N (T -1)
+B(T)(rnA* +1,B%)g (T-1)],

j=01,..,n-1, i=01,..,n-1,

and A are its algebraic adjuncts. As before, A(T)f,
B,(T)f denote linear operators

J'hi(T—t)f(t)dt, J’gi(T—t)f(t)dt.
0 0

3. SCHEMES OF A SIMPLIFIED SOLUTION

Although the numerical constructing of the func-
tions v[{t), ur{(t) isin accordance with the procedures
described, nevertheless, the procedureisfairly cumber-
some. This is also true when numerical methods are
combined with approximate analytical methods; in par-
ticular, when those used for the construction of the
matrix are resolvent R, , in the series form. At the

same time, for preliminary (estimating) calculations
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simpler algorithms and procedures that are based as
much as possible on closed analytic representations for
solutions are preferred. Because of this some versions
of simplified schemes of the solution are presented
below.

1. At first, the problem of finding v(t) issolved. In
this case,

y=Bv, J=(Y=Ysx:Y=Ys) *Yav,v). (11)

The solution is determined as vo= R, B*yj where, in
this case, Ry2 is a scalar operator, which is the inverse

of the operator B*B + y,. Then, we assume that
Yo = Bv[y After that, the problem of finding upis

solved by minimizing the functional

J(u) = (Au+Yyo—Ys, Au+yo—Vyy) +y (U, u). (12)

Asaresult, ugis determined in theformup= R, (Y-

Yo), Where R, isascalar operator that is the inverse of
the operator A*A + v, .

2. Use of simplified schemesisespecially topical for
aproblem with fixed final conditions, since the realiza-
tion of ur{(t), v(t) in the form (9), (10) is quite cum-

bersome. In this case, we first determine vjby mini-

mizing functional J(v) (11) without taking into account
conditions (6). For the compl ete antenna damping, only
the additive correcting signal up(t) is employed. In so

doing, an extended functional corresponding to J(u) (12)
isminimized in which Lagrangefactorsareinserted. As
aresult, upjis determined in the form:

nlnl

—RylmA (Vs — YO)_ZZ UR'(T -1)
j=0i= (13)

0
X Aj(TR, A* (Vs —Yo) + Vi X %

Here, A isthe determinant of the matrix
[AMR, (T -1,
i=01..,n-1, j=01,...,n=-1,
and A;; are its algebraic adjuncts;

t

ViXo = J'v* (t=T)Xo(T)dT.

3. In the case of a problem with a fixed right-hand
end, only the correcting device vjisused for correcting

the signal form. The function v[jis determined in the
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same way as above. As for the additive signal urj it is

used only for complete antenna damping. In this case,
the integral quadratic value J(u) = (u, u) serves as the
minimized functional. The solution is reduced to the
standard procedure [5] and is determined as

n-1n-1

u = -y zéAi—jhi(T—t)Bj(T)v*, (14)

j=0i=0

where A and A correspond to the previously obtained
solution (13) for R, = 1. Itismuch easier to construct
u(14) than u(13).
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Formation of a Two-Phase Zonein the Course
of Rapid Solidification of Refractory Oxides

A.Yu.Vorobyev, V. A. Petrov, V. E. Titov, and Academician V. E. Fortov
Received February 20, 2001

Among the refractory semitransparent aluminum,
zirconium, magnesium, and yttrium oxides and some
other oxides, there are those in which solid-iquid and
inverse transitions occur. For many years, a classic
model was employed for the description of these tran-
sitions both for the materials mentioned above and for
opague materials. This model considered only two lay-
ers, solid and liquid, separated by a smooth boundary,
for which the Stefan conditions were written. Early in
the 1960s, most likely for thefirst time, mathematicians
pointed out the shortcomings of such a model even for
applications to opagque materials. As a result, a theory
for a generalized solution to the Stefan problem was
developed, in which the existence of an extended
guasiequilibrium two-phase zone was assumed [1, 2].
Various reasons for the cause of the formation of the
two-phase zone were considered, but the role of volu-
metric radiative heat transfer inside a crystallizing
semitransparent material had not yet been analyzed. In
paper [3], a model of melting and solidification was
first considered that allowed for the possibility of form-
ing an extended two-phase zone caused by the radiative
heat transfer. In this case, only three smplified prob-
lems for model materials were analyzed. In particular,
the absorption coefficients in solid and liquid phases
were thought to be independent of both the wavelength
and temperature. Thermal properties were also
assumed to be constant and similar for both phases.
Nonequilibrium effects, such as supercooling, were
disregarded, and the nature of the formation of crystal-
lization centers was not considered at all. It isclear that
the formation of a two-phase zone is possible if volu-
metric sources and heat outflow exist so that nuclel of a
new phase can appear in bulk. However, the question of
the experimental or numerical-theoretical study of the
possibility of atwo-phase zone formation in the course
of fusion or solidification of refractory oxides has not
been considered until the present time.

In [4], we suggested a more realistic mathematical
formulation of the Stefan problem as applied to semi-
transparent materials. In addition to the one-dimen-

Ingtitute for High Energy Densities, Associated Institute
for High Temperatures, Russian Academy of Sciences,
| zhorskaya ul. 13/19, Moscow, 127412 Russia

sional non-steady-state process of combined radiative-
conductive heat transfer accompanied by the possible
formation of a two-phase zone, the model allowed for
possible overheating and supercooling, arbitrary non-
linear boundary conditions at the front and back sur-
faces of a sample, and the dependence of thermal and
thermal—radiative properties of both the phases on tem-
perature and on temperature and wavelength, respec-
tively. This model was used for the numerical calcula-
tion of the temperature distribution in a flat aluminum
oxide samplewhileit was being heated by concentrated
laser or solar radiation and, subsequently while it was
cooling after switching off the radiation. Aluminum
oxide is a unique oxide for which data on the optical
and thermal properties of the melt are available. Some
calculation resultsfor the one-dimensional field in aflat
10-mm-thick sample of Al,O4 are presented in Fig. 1,
the sample was heated from one of its sides by a
CO,-laser radiation with a flux density of 600 W cm™2.
Only the region of 2-mm thick near the heated surface
is shown; the heating stage is not shown. The first tem-
perature profile in Fig. 1 relates to the time moment of
100 s after the beginning of the heating, when the laser
heating was switched off. At this moment, the tempera-
ture profile is close to a quasistationary one, and the
thickness of the molten layer is equal to 0.625 mm. In
accordance with the calculations, the two-phase zoneis
not observed either in the process of melting the sample
and increasing the molten layer thickness or on attain-
ing the quasistationary state. After switching off the
laser heating, the surface temperature rapidly dropsand
after 130 ms becomes less than the melting tempera-
ture, although a liquid state is retained. The minimum
surface temperature is about 50 K lower than the melt-
ing temperature. The two-phase zone appears near the
surface about 0.2 s after the beginning of the cooling.
Its thickness increases very rapidly: within the range
from 100.3t0 100.5 s, it increases from 180 to 340 pm.
At 100.7 s, the two-phase zone occupies almost awhole
layer, which became molten before the beginning of the
cooling. One should note that at 100.5 s, athin layer of
the solid phase appears near the surface but because of
its high transparency it slightly affects the heat transfer
in the sample; its temperature is close to the solidifica-
tion point. The process of complete solidification of the
two-phase zone is rather long: it takes about 0.5 s. It is

1028-3358/01/4609-0651$21.00 © 2001 MAIK “Nauka/Interperiodica’
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Fig. 1. Temperature distribution observed in the aluminum oxide in the process of cooling.

this process that was observed in experiments of some
authors on the solidification of molten oxidesin solar and
arc image furnaces as a region with a constant brightness
temperature and treated as a solidification plateau.

Similar calculations were performed in the case of
heating using concentrated solar radiation with the
same flux density of 600 W cm. The quasistationary
temperature distribution dlightly differed from that
attained under laser heating, but this fact weakly influ-
enced the solidification process.

However, our mathematical model does not allow
for scattering, which can exist in a solidified layer
because of its porosity and in the two-phase zone
because of a difference in the refractive indices of lig-
uid and solid phases. Therefore, special experimentson
solidification were carried out under conditions of rapid
cooling. One of the experiments involved the study of
the solidification process when measuring thermal-
radiative characteristics of ceramics made of aluminum
oxide with a molten pool at its surface, which was
formed by laser heating. The high-speed measurements
of reflection of the probing laser radiation with the
required wavelength from the specimen were carried
out in the processes of sample heating by CW CO,-
laser and subsequent cooling after switching off the
laser heating. When heating with a flux density about
1600 W cm, the thickness of the molten layer was
about 0.4 mm. The solidification plateau in the temper-
ature measurements for the wavelengths of 0.55 and
0.72 umwas ot flat: after supercooling, asmall segment
of the plateau with a dight dope was observed on the
thermogram. Its length was about 0.17 s.

In other experiments, asample of premelted powder
of pure aluminum oxide that had been solidified in the
surrounding of the same powder was heated by concen-
trated laser radiation with a flux density of about
1000W cm? in an air atmosphere during a longer
period of time, about 2—-3 minutes. In the steady state,
the thickness of the melt was about 2—3 mm. Theresults
of the measurement of brightness temperatures for a
series of wavelengths are shown in Fig. 2; they were
obtained in the course of the cooling process after
switching off the laser heating. Since some differences
were observed in the density of the radiation flux in
these experiments, the regions of heating are not pre-
sented in Fig. 2. The beginning of the cooling is nor-
malized to the same time moment.

Asfollows from Fig. 2, the horizontal solidification
plateau for the brightness temperatures was observed at
wavelengths of 0.55, 5.0, and 9.0 um. Its length was
significantly greater than that for a thin melt and
amounted to about 2 s. Contrary to the results of numer-
ica calculations, there were no horizontal regions for
the brightness temperatures on the cooling thermo-
grams for the wavelengths of 2 and 3 um (correspond-
ing to the lowest values of the absorption coefficient);
these regions were slightly inclined. A steep fall of the
brightness temperatures after finishing the solidifica-
tion, which followed from the results of the numerical
modeling, was not found. The microstructure analysis
of the cross section of the solidified melts showed that
when atotal thickness of the solidified layer was about
0.4 mm, the solidified melt contained a combination of
lath crystals with a trigonal orientation, with the laths
consisting of elementary cubic crystals. There were
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voids in the space between the laths. In this case, a
homogeneous nucleation was most probable. Because
of the small thickness of the sample, the whole molten
layer was intensely cooled as aresult of volumetric radi-
ation, and the cooling rate was much higher than that in
the experiments with a thick molten layer. The super-
cooling causes volumetric nucleation and the growth of
randomly oriented grains. The microstructure of the
solidified thick layer of the melt was dightly different.
The subsurface layer with a thickness of about 450 um
consisted of two sublayers. The upper sublayer, with a
thickness of about 250 um, had a dendritic structure (the
dendrite axes were perpendicular to the surface); the
lower one consisted of more isometric particles. Beyond
the subsurface layer, there was a zone of large columnar
crystals misaligned to a greater or lesser extent with the
normal to the sample surface. Voids and fissures were
seen in both the sublayers, and they aso could have
caused scattering. The scattering coefficient in the two-
phase zone and in the crystallized layer certainly
depended on the wavelength. The formation of voidsand
fissures was associated with a large increase (approxi-
mately by 30%) in the density of Al,O; during solidifica
tion. Though the structure of the thicker crystalized
layer of the melt differs from that of a thinner one, the
two-phase zone formation is also very probable in the
process of crystalization. The dendritic nature of the
crystal growth in the subsurface layer suggests that den-
drites grew from the surface into the supercooled melt
and expanded into the melt between individual dendrites.
The transition from dendritic growth to the growth of
roughly isometric grains is associated with the decrease
of the cooling rate in deeper layers of the melt.

To confirm the possibility of forming a two-phase
zone in the process of rapid solidification of other
refractory oxides, we carried out experiments with
cubic zirconium oxide stabilized by 18 mol % of cal-
cium oxide. These experiments were performed in a
vacuum and in air. One of the principal differencesin
the results obtained was that supercooling was
observed in the vacuum and not in air. With respect to
the experimentsin the vacuum, the molten layer and the
adjacent ceramic layer became black because of oxy-
gen loss. After the experiments, the reflectivity of the
sample at room temperature remained very low within
the studied spectral range from 0.63 to 3.39 um. This
implies that the absorption coefficient increased irre-
versibly during the process of heating in the vacuum
and the material became practically opaque. The color
of the ceramics and the solidified melt did not change
during the experimentsin air. In the course of heating,
the absorption coefficient certainly increased; however,
even at the highest temperature of 3400 K, the oxide
melt in air should be considered a semitransparent sub-
stance. Actually, the micrographs of the structure showed
that the solidification of a 70-um-thick layer adjacent to
the surface involved the formation of individual star-like
dendritic crystals with sizesfrom 10 to 50 um. They had
no predominant orientation and had voids between them.
2001
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Fig. 2. Brightnesstemperatures of the deep pool with themelt
of auminum oxide observed in the process of its cooling for
various wavelengths: (1) 0.55; (2) 2; (3) 3; (4) 5; (5) 9 um.

This suggests that this layer crystalizes by volumetric
nucleation and that atwo-phase zone exists. Owing to the
high values of the absorption coefficient on heating in a
vacuum, the solidification began at the surface where the
supercooling was greatest. The grains grew inside, the
outer layer adjacent to the surface and observed in the
process of solidification in air was absent, and the two-
phase zone was absent, too.

Thus, the results of our experiments and numerical
caculations showed that the temperature plateau
observed in the process of solidification is explained by
the existence of atwo-phase zone. However, such atwo-
phase zone is not aways formed. Its formation depends
on the va ue of the absorption coefficient of the melt, the
cooling rate, and the solidification point determining the
contribution of the volumetric radiative heat transfer.
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The modified averaging method is presented for
investigating nonlinear vibrations described by the
N.N. Bogolyubov standard system. The following situ-
ation encountered in applied problems is considered:
thefirst-approximation set makesit impossibleto judge
its substantial evolution and qualitative behavior (an
averaged value of the right-hand side of the system is
identically equal to zero). The procedure for construct-
ing the averaged system is developed and substantiated
to describe the evolution for much longer time inter-
vals, and this system is averaged over the negative pow-
ers (quadratic, cubic, etc.) of a small parameter. The
efficiency of the proposed schemes of averaging the
highest powersisillustrated by solving some examples.

1. We consider amulti-dimensional nonlinear vibra-
tory system in the standard Bogolyubov form [1-4]:

x = eX(t,x), t=0, x(0) = X,

(1
O<e<g <1

Here, x isthe n-vector, x 0 D O R", D isacertain bound
set (aclosed [1-3] or open [4] region); X is the smooth
function of a real variable x, whose properties of
smoothness are specified below; and the continuity and
2reperiodicity are assumed with respect to the argu-
ment t (t isthe time or phase).

To investigate the Cauchy problem (1), we carry out
standard constructions of the averaging method [1-4]
and write out the averaged first-approximation system:

€= eXo(8), E(0) = x°, Xo(E)= IX(t, &)

@)
OS'[SI:.
€

According to the character of the first-approxima-
tion solution & [given by (2)] and the local properties of
system (1) in the vicinity of this solution, we use the
results of the Bogolyubov principal theorems on the
proximity of solutions (e-proximity in the case of the

Ingtitute of Problems of Mechanics,
Russian Academy of Sciences,
pr. Vernadskogo 101, Moscow, 117526 Russia

periodicity int) for the asymptotically largetimeinterval
0<t< IE_ (thefirst theorem, the averaging method [1-6]),

or the averaging on the infinite interval |t| < oo (the sec-
ond theorem, the method of local integral manifolds[1—
3. If Xy (&) = 0, the solution & = ¢, (2), generally
speaking, gives a reasonably complete representation
of the evolution of osculating variables x and the pro-
cess in general. Their variations (on the order of unity)

can be substantial for t ~ % . Successive approximations
give only a small refinement [on the order O(g)] of the
solution at theinterval 0 <t < Ié .

We consider the situation when the higher approxi-

mations are fundamentally important. In applied prob-
lems, the identity X,(§) = 0 often takes place; in this

case, , =X, and, at theinterval t ~ % the variable x

executes small vibrations with an amplitude on the
order O(¢) relative to x = xX°. We propose the approach
associated with constructing the schemes of averaging
the highest powers of € with a considerable increase in
the interval of variation of the argument t. We use the
standard transformation of the variable x —» & [1-6]:

t

x = &+eu(t, &), UEIX(s,E)ds, Xo(§)=0. (3)
0

The function u in (3) is 2reperiodicin t at fixed ; the
quantity & is the new unknown variable to be deter-
mined from the Cauchy problem:

: _ 2= _ 0 [Pu_
=280, (O =X frExa sy
== (1 +eup) e [X(t E+eu) - X(t, &)], EOD.

For reasonably small values of € > 0, the right-hand
side of system (4) is smooth with respect to &, § 00 D,
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and is 2reperiodic in time. For the function =, the
approximated representation is valid:

- :(0)(t’f~)+851(t1€)+£2+ EE(Q)"‘SAE,
)

— ' 1 " Vo
S = XU, Z1 = 5(XaU, U) —U X, o
Next, the Cauchy problem (4), (5) is considered at

theinterval 0 <t< LZ ,
€

where the variable & (and x) can
substantially change by a value of the order of unity. It
IS necessary to construct the scheme of the averaging
method for higher-order powers of € and to substantiate
the estimate of proximity. The principal purpose of the
outlined asymptotic approach, as with the Krylov—
Bogolyubov classic method [1], isto evade the secular
termsin the approximate construction of the solution at

the interval 0 <t< _L_2 The development of such an

€

approach in the calculation aspect is aso thought to be
topical, because the numerica integration of the

Cauchy problems (1), (4), at t ~ 1 is gtill more prob-
€

2

lematic than at t ~ %

2. We apply to the Cauchy prablem (4), (5) the stan-
dard scheme of change of variables§ — n of type (3):

E=n+e’v(tn,e) = n+elv,+elvatret+

t

VEI(E(s,r],s)—EED)ds, n oD,
0

(6)
N =€e"=o(n) + £°=0(n) + €'H(t,n,€), n(0) = x°,
o= [Eo(t,n)d =40=E(t,n)H..., OStSSLZ-

The function H isknown, 21eperiodic in t, smooth, and
uniformly restricted inn, n O D, for reasonably small
values € > 0; its definition is similar to (4) for =. Let
=, = 0; in this casg, it is natura to introduce an argu-

L

ment interval 0 <t < =, a which the variable n,
€

together with the variables & and x, change by a sub-
stantial value on the order of unity. We reject the terms
O(e* and higher order on the right-hand side of sys-
tem (6) and obtain the first-approximation self-govern-
ing system, whose solution is considered as known:

Mo = €Z0(No)s No(0) = X°,
Mo = No(€%t, X°), 0<e’t<L.

The uniform proximity of solutions ) and n, to prob-
lems (6) and (7) is estimated by means of integral ine-

(N
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gualities (Gronuollalemma[1-4]). The standard proce-
dure for constructing the estimates in the averaging
method |eads to the uniform estimate

L.
mzt;\x|n —No £ Cye, O<sts<=;

C, and L arethe constants, (8)
C, = MLexp(AL), M = mta%<|510+sH|,
nub,

Here, A is the Lipschitz constant in n for the function
=y(n). Itisassumed [1-3] that n, O D iswith acertain
small neighborhood. From (8), it follows, making
allowance for (6) and (3), that the solution n, to (7) is
g-proximate to the solutions & and x, to problems (4)
and (1), respectively:

O<e<eg,.

max|§ —nol < Cge, max|x—ngl < Cse,
L )
e

Thus, for X, =0 and =, = 0, the first-approximation
solution n, (7) determinesthe evol ution of the system (1)

O<t<

at theinterval t ~ 12 with asmall error O(g). The pro-
€
cedure of refining the solution n of problem (6) with
respect to the powers of € is realized similarly to the
averaging method [1-6]. The required degree of accu-
racy is restricted by the smoothness of the function =,
i.e., of theinitial right-hand side of X (1). In particular,
if thefunction =, satisfiesthe Lipschitz condition with
respect to &, & O D, with auniformly bounded constant
A, while the function A= is uniformly bounded in the
region 0 < € < g, n 0D, t =0, then the estimates of
g-proximity (8) and (9) take place for the first-approxi-
mation solution n, (7). The function =, is such if the
initial function X is continuously differentiable with
respect to x, X [1 D, whilethe derivatives satisfy the Lip-
schitz condition. The scheme of higher order powers of
€ requires higher smoothness than the standard averag-
ing scheme. Conceptually, this scheme is related to
constructing the second approximation (see Section 3).
If the function =, = =, + €=, (5) satisfiesthe Lip-
schitz condition with respect to &, i.e., the second deriv-
atives of the function X meet this condition with respect
to x, xO D, the following second-approximation
scheme can be written out according to (6):

N = 525('](1)) +33510(rl(1))7 Nw(0) = Xfl;O)
N =No(e’t, X°) +eny (€%, ) + e + ..., 0<e’t<L,

The function n, in (10) can easily be found by
numerical or analytical methods using the generating
solutionn, (7) and the systemin variations. In this case,
it is convenient to introduce the slow argument T = €%,
0 <1< L. Without any loss of accuracy with respect to
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the powers of €, we can substitute n, (1, X’) into the
function =,,. Using the acquired solution n (T, X, €) to
(10), we obtain the estimates:

max|n —n )| < Coe”,  max|§ —n | < Cee”,

max|x — [y + gu(t, No]| < C.”, Os<ts<

The construction of more exact solutions n(t, X’,
€), k= 3, which differ fromn by O(e") for 0 <t < —|:2 ,
3

requires a higher smoothness of the function X and
rather cumbersome expansions, taking into account the
expression for H(t, n, €) in (6), which require invoking
computer-algebra methods.

Theorem 1. When the condition X,(x) =0in (2) and
the formulated conditions of smoothness in x and peri-
odicity int for the function X (t, X) are met, the solution
X (t, X°, €) of system (1) is represented by the function

No(€%t, X°) (7) at theinterval 0 <t < Lz with an error
€

O(¢) according to (9) and by the functionn;, + gu(t, no)
(10) with an error O(g?) according to (11). For =, = 0,
the variable x changes in the general case by the value
of &x of the order of unity with respect to a small param-

eter &: [3x| = [x— x| ~ O(1), t~ = .
€

The Proof isvirtually carried out in the above con-
structions and has a constructive character. If the func-
tion X(t, x, €) and the quantity x°(€) depend explicitly on
the small parameter € in a smooth way [1-3], it should
be (but not necessarily) expanded into a power series of
€ [1-3] (seethe examplesin section 4). Of coursg, if the
functions X, X’ depend on € in an unsmooth manner (for
example, continuously), such expansions are impossi-
ble, and the dependence is taken into account com-
pletely.

3. Along with the first-order identity X,(&) = 0, the
second-order identity =y(n) = 0 can take place. In this
case, the variable ) does not change to a first approxi-

mation at the interval t ~ -1—2 According to (7), we
€

obtain n,=x’. Asaresult, |n— x| = O(€) [see (8)]. The
variables x and n aso change by the value of O(g) at

t~—1—2,because
€

N = €=(n) +€'H(t,n,e), n(0) = X,
=1(n) = 3C0CHt MU, N), u(t, )0

(12)
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Provided that the right-hand side is reasonably
smoothinn, it is possibleto apply the method of sepa-
ration of motions to system (12). This procedure leads
to the first-approximation system and the estimates:

o = £€250(L0), Lo(0) = X°, o = Lo(E%, X0,
IN—Co|<Che, [€-Co Cee, [x—Cg =Cig, (13)
L

"
€

Thus, for X, = =, =0, a substantial variation of the

O<t<

variable x takes place at the interval t ~ 13 under the
€

condition =,, # 0. The first approximation [with an
error O(¢)] is determined by the function ¢, (13). A
more exact calculation involves the standard scheme of
the averaging method based on the explicit expressions
for the functions =,,(n) and H(, n, €). Similarly, we
construct the set of evolutionary equations for slow
variables of an arbitrary power of .

The above schemes are realizable on the basis of the
standard procedure of the averaging method [1-6]:

2 k k+1
X = E+eU +eU,+ ... +eU, +7 + ..,

£ =£0(E ¢)

= €0, +£°0,+ %0, + ... +£“O, + "1+ ..

(14)

The coefficients U; and ©; in the asymptotic expan-
sions (14) are calculated with the derivatives of the
function X at the point x = & by quadratures and alge-
braic operations. The first-approximation system for an
arbitrary kth power in € and its solution &, have the
form:

X = E+eU,+ ... +€U,,
©,=0,=..=0,,20, 0,0,
; K 0 e o (I5)
&1 = €0,(&), &i(0) =X, & = &(et,x),

|§ -84 <Cee, [x—-&y<C,e, 0sts< sL"
and the following proposition is valid.

Theorem 2. Let the identities ©, = @, = ... =
Oy =0 befulfilled in the kth approximationin € using
scheme (14), but ©,(&) = 0, k= 1. Inthis case, the qual-
itative evolution of set (1) proceeds at the interval 0 <

t< Lk and is described by the function &,(gt, x°) (15)
€

with an error O(e).

Proof of the proximity of xand &, at 0 <t< Lk is
carried out by using integral inequalities. :
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Along with the averaging method [1-6], the recur-
rence accel erated-convergence method of the Newton-
type can be used for constructing the averaged system.
At the kth step, we have the system [provided that
Xk -1, = O D) or less]

X = € 9ot X €), B(K) = 2 (16)
The evolution of the variable x is determined on the
basis of system (16) if the average value X, (= O(e"),
where 0 < K < 8(k) — 1. The evolutionary first-approxi-

mation equations are reduced to form (15). A substan-
tial variation of the variable x takes place at the argu-

ment interval 0 < 1 < —LR , T =gk,
£

4. We investigate the nonlinear vibratory systems
whose substantial evolution requires the application of
the scheme of averaging the second power of €.

4.1. For the purpose of illustration, we first take the
scalar equation (1) with X = sin(t + x), which allows
analytic integration. Using the averaging method, we
obtain the desired solution to the Cauchy problem; i.e.,
the expression for x in the second approximation with
respect to €:

x = &)(1, X°) + g(cosx’ — cos(x’ +1)) + O(g?)

= x"+0(e), 17)

E(l)zxo—lr, T = €7,

<t<
5 O<t<

mir-

We will now apply the second-power averaging
scheme. On the basis of Theorem 1, the desired solution
is obtained in the first and second approximations:

x = &)(T, X°) + e[ cosx’ — cos(t + &))] + O(e%)
L ay)
g%

= &(T, X)) +O(g), Os<ts<

From the comparison of expressions (17) and (18),
it follows that the first term &, of the expansion deter-
mines the second-power solution with an error of O(g)

at theinterva t ~ %.Over thetime0<t< LZ a sub-
I3 €

stantial evolution takes place; i.e., dx ~ 1.

4.2. We consider a quasilinear vibratory system
under the action of two-frequency perturbation and lin-
ear dissipation in the form:

y+wy = eF(t,y,v,8), y(0) =a, y(0) = Vag)
F=hsin2wt + ay’

+e(fsin(wt+ ) + By’ —Ay) +e7yy' +€3 + ... .
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The parametersa, (3, and yin (19) are determined by
higher derivatives of the restoring-force function at the
equilibrium point. Introducing a dimensionless time
(et —= 1), renaming parameters, and adopting the Van-
der-Pol osculating variables x = (x;, X,)" in (19), we
obtain the set of equations of type (1) in Bogolyubov
standard form [1-3]. In the first approximation, accord-
ing to Theorem 1 for the averaged variable n, the equa
tion of type (7) is obtained with the argument t = €%t

. h A
n = p+dr]2Jr] + EEG—E_I—EDDH’
(20)

p= %(—cosq), sng)’, E = diag(1,—1).

The coefficient d is expressed intermsof a and 3; Jis
the symplectic unit. Set (20) has structural properties
and can be adequately investigated by analytical and
gualitative phase-plane methods. In particular, without
the externa action (h="f=0), itisintegrated in elemen-
tary functions [6]. The nonlinear perturbations O(gy?)

and O(e?y’) lead to the actions t ~ —1—2 , which areidenti-
€

cal in structure at the interval O(e’n’n, ,). They havea
conservative character, the former being independent of
the sign a, while the latter is determined by a value of
[ that can lead to their mutual compensation. The har-
monic action €hsin2t (19) for a reasonably high |ah|
leads to unstable stationary points of the saddle type (in
particular, for f = 0). For h = 0, we obtain a vibratory
system, which is quite substantive in the mechanical
aspect. This system is similar to the Duffing oscillator,
which has been well studied with respect to other reso-
nance relationships [7-10]. Thus, the approach described
shows that interesting evolutionary processes proceed a

the interval of i

> in st (19), none of which manifest
€

themsalvesin the standard investigation % O %E .

4.3. We consider the motion of aplane physical pen-
dulum, whose axis executes one-frequency vibrations
with allowance for viscous-force moment [6]. Contrary
to the case of fast vibrations [1-3], we assume that a
frequency of small vibrationsis comparableto the exci-
tation frequency. An amplitude of vibrations of the sus-
pension point and the viscous-friction moment are con-
sidered to be relatively small values. We investigate the
case of resonant quasilinear vibrations of the system
leading to the second-order averaging scheme (in the
neighbourhood of the second zone):

y+ (4—¢ecos2t)y

21
=sz[Ksin(2t+6)—4yy+§y3—0y}+O(s3). @)
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The substantial distinction between Egs. (20) and (19)
lies in parametric excitation. Additional constructions
are similar to the above constructions. As a result, the
averaged system is abtained:

2
o .
g g+ pe -z | =y,

_ Ko in&)T =1 T
p = 4( cosd, sind)', Nn = 192(r]2, 5ny) .

n =

Here, y determines the frequency mismatch; k and d are
the amplitude and phase of horizontal vibrations of the
suspension point, and o isthe coefficient of dissipation.

The solution n, , (€2, X7, X3) to the self-governing
set (22) determines the variables x; , and 'y, y with an

error of O(¢) at theinterval t ~ 12 . This set can be suf-
€

ficiently fully investigated by the phase-plane methods.
The extension of thisinvestigation schemeto the inter-

va t ~ 12 makes it possible to reveal some rather inter-
€

esting features of the evolution of vibrations of a pen-
dulum with a lowly vibrating suspension point in the
€2-vicinity of the considered resonance mode (22).
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A centered Riemann wave describes certain plane-
symmetric gas flows. This wave represents the solution
to the system of gasdynamic equations with a specific
singularity of the form

_ X
U= U=

where U is the vector of the desired functions and xp;
and tjare arbitrary constants. The centered Riemann

waveis used to solve many meaningful problems of gas
dynamics [1]. In the case of cylindrically and spheri-
caly symmetric flows, the self-similar solutions U =

Oorn
U0
singularity but only in the vicinity of the pointr = 0. In
particular, these solutions describe the focusing of a
compression wave onto a certain axis or a center of
symmetry [3]. Flowsthat possess properties of acentered
Riemann wavein the vicinity of thepointr =r>0or in

the many-dimensional case are described by a special
convergent infinite series (detailed references are pre-
sented in[4]). Such seriesare used to solve problemson
the instantaneous stopping of a piston, on gas outflow
into vacuum, and on strong shock-free gas compres-
sion. In problems of strong gas compression, an ade-
guate description of the arising flows requires that both
the equilibrium radiation and the Compton scattering of
photons be taken into account [3, 5].

In this paper, with the help of a special infinite con-
vergent series, we describe a certain flow of aheat-con-
ducting inviscid gas, whichissimilar to a centered Rie-
mann wave and is characterized by the strong compres-
sion of one-dimensiona gas layers with allowance for
the above-mentioned physical effects.

For this purpose, the spatial variable and one of the
desired functions exchange roles. A specia condition
that automatically ensures the presence of the required

derived by L.l. Sedov [2] possess a similar

Ural State University of Communication,
ul. Kolmogorova 66, Ekaterinburg, 620034 Russia

flow singularity isimposed on the system of equations
to be derived. The solution to the problem under con-
sideration iswritten as an infinite series, and the coeffi-
cients satisfying recursion relations are obtained. It is
proven that in the case of the anayticity of theinput data
the problem to be solved represents the standard form of
the characteristic Cauchy problem[4] for which the ana-
log of the Kovalevskaya theorem [4] is valid. Conse-
guently, the constructed seriesislocally convergent. By
thoroughly analyzing the structure of coefficients of the
series, we ascertain the unboundedness of the series-
convergence region with respect to one of the variables.
The explicit form of the first coefficients of the series
shows that in the physical space the solution obtained
has the same singularity as a centered Riemann wave.

The solution constructed in this paper is used to
describe the strong shock-free compression of one-
dimensional gas layers with allowance for equilibrium
radiation and the Compton scattering of photons. It is
proven that due to the unboundedness of the series-con-
vergence region, for any finite density given a priori,
there exists a nonzero mass of initially quiescent and
homogeneous gas of unit density such that the mass can
be compressed to this finite density. The approximate
variation law for the gas density in a piston providing
the required compression is found as well.

We consider a perfect gas with allowance for equi-
librium radiation. In other words, we take the following
relations (see [5]) as equations of state:

O-4 T*
= RpT+zT', e=c,ol+0—,

R 0,c,, = const> 0.

Here, p, T, p, € and o are pressure, temperature, den-
sity, internal energy, and the Stefan-Boltzmann con-
stant, respectively.

Since the Compton scattering of photons is taken
into account, the thermal-conduction coefficient kK has
the form [5]

) T3
K = —oco—,

R
= >0, 2
7-1 5 (2

y_l - CvO

1028-3358/01/4609-0659%$21.00 © 2001 MAIK “Nauka/Interperiodica’
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where c isthe speed of light and p is apositive constant
depending on a chosen system of units.

To describe the flows of such a gas, we can consider
p and T as independent thermodynamic variables.
Therefore, it is possible to use the complete system of
Navier—Stokes equations in which the coefficients of
dynamic (i) and volume (W) viscosity are assumed to
be zero [6]. In the case of one-dimensional flows, the
substitution of the function 9 = Inp as a desired func-
tion instead of the density turns this system into the
form

1'3‘t+u19r+ur+vlrJ =0,
T _
ut+uur+V{},+a({},T)Tr =0,
Tt+uTr+b(8,T)gjr+v%

= KoC(9, T)Er

Y 3
! rr+FTr_8rTr+_TfH1 (3)

T

a(9,T) = %,(1+ Kokyexp(=9)T%),

1+ K k,exp(=9)T3
b(9,T) = (y—1)T —Kka&R(D)T
1+ Kok,exp(—9)T
3
(9, T) = exp(=23)T "
1+Kok,exp(-3)T

Here, the values of v = 0, 1, and 2 correspond to the
plane, cylindrical, and spherical symmetries, respec-
tively. Dimensionless variables are introduced in the
standard manner with the help of the positive constants
L, poo, and T,,. Moreover, the sound velocity in anon-

heat-conducting gas u,, = ./Ry T, istaken as aveloc-
ity measure so that

T3
Ko = 20Ca—5>— >0,
RPooUgo
2PgoUgol
= PED= >0, K, = 3(y - 1)k, >0.
Similar to the case of a non-heat-conducting
gas[4], theroles of the variables § and r are mutually
exchanged to describe singularitiesarising in agas flow
at the moment of strong compression. The variable 9
(together with t) is considered to be independent, while
r becomes adesired function of t and 3. In other words,
we replace the variablest =t' and r = r(t', 9) with the

BAUTIN, CHERNYSHOV

Jacobian transformation J = —rg. This turns system (3)
into

r(u—r,) +rug+vurg = 0,

raut+(u—rt)u9+3—/—+a(8,T)T3 =0, 4)
rf,[rf)Tt +(u=r)Ty+b(3,T) B,Ia + v%r%}

Y 3
= KoC[d, T)%aTss —Tog Tyt FrgTa —ryTy+ fraT%-

(Here, the prime at t is omitted in order to simplify the
notation.)

The solution to system (4) is constructed as the
series
: t—t,)"
u(,d) = zUk(ﬁ)%,
=0 )
U (9) = 0 U(tk,S)
ot t=t,

where U = {r, u, T} is the desired vector function and
tpisthe given time instant.

Since we seek the flow with a singularity similar to
that of the centered Riemann wave, a plot of the func-
tion 9 = 9(t, M- cons @t — tg— 0 must turn into a

vertical straight line [4]
rlt:t*:r*:C0n5t>O' (6)

The solution to the system of equations (4) is con-
structed in the form of series (5) under condition (6),
which defines the coefficient ry(3).

To derive equations for the coefficientsr,(9), Uy(®),
and T(8), we should alow for condition (6), while set-
ting t = tin thefirst two equations of system (4) (then,
the third equation turns into the identity) and differen-
tiating once the third equation with respect to t. This
procedure leads to the following system of three differ-
ential equations, with two of them being nonlinear:

r*(uo—rl) + r*u;) = 0’

1 T 1
(uo_rl)u0+ —yg+a('8’TO)TO = O, (7)
[ ! [ 3 ] W2 _
rlTO_rlTO_rlT0+-T—rl(TO) = 0.

Finding the general solution to this system seemsto be
arather difficult task. Therefore, wetake asthefunction
To(®) the constant

To(D) =Ty = const >0, )
which turns the last equation of system (7) into an
identity. There are two reasons for using the partial

DOKLADY PHYSICS Vol.46 No.9 2001
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solution (8) here. First, the similar property isinherent
in the entropy of a non-heat-conducting gas (see [4]),
i.e, S|, = const. Second, in the plane-symmetric
case, it isthis property of the temperature, the absence
of ajump of the function T at the time moment t = t[;

that is observed in numerical calculations of the corre-
sponding compression wave in a heat-conducting gas
[5]. For the partia solution (8), the other two equations
of the system of equations (7) have the following gen-

eral solution:
T
Up(9) = £ |29 + Uy,

Y
T T
r(9) = £ [-29 +uu + |2
l() y 01 y

The integration resulted in the unambiguous defini-
tion of thefunction r,(9) and the appearance of two arbi-
trary constants T, and uy, in relationships (8) and (9).

€))

To obtain the coefficientsry ., u, and T, at k=2, we
should differentiate the first two equations and the third
equation of system (4) k and k + 1 times with respect to
t, respectively, and then set t =t This procedure yields

the equations
e (Ug=Tyq) + el = Fy,
KryUy + (Ug— 1)Uy + Up(U— T4 1)

T 1
+ Vk +a(d, To) Ty = Gy,

Kol« Tor(K+ 1)ri(T =Ty) = Hy,

where the functions F,, G, and H, depend onr,, |, U,
T, (01 <k-1), and their derivatives (dueto their awk-
wardness, the specific forms of these functions are not
presented here).

Initially, the third (differential) equation is used to
determine

Ty = Ty + TyaeXpd

(10)
—-a [H.d +a[H,exp(—3)ds,

where T,, and T, are arbitrary constants while a, rep-
resents particular numbers. Then, after the preliminary
elimination of r,, , with the help of the first equation,
we find from the second (differential) equation

U, = Ugeexp(kd/2)

exp(kd/2) | _ |y ~ Fu B
+ SEOEE) I{Jr JT: G~ |exp(-k9/2)d
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with one arbitrary constant u,,. Finaly, the first (alge-
braic) equation unambiguously determinesthefunction

, F
e = Ut U= =, (12)

*

The arbitrariness that arises in the construction of
series (5) is equivalent to the specification of the condi-
tions

u(t, 8)[y -5, = u’(t),
(13)

T(L)]sos, = TUL), To(t,9)]5-5, = TH(V),

where the arbitrary functions appearing on their right-
hand sides satisfy the relations

W(te) = Uy, To(tx) = Toy, T'(te) = 0.

Theorem. If the functions Wwo(t), T(t), and T!(t)
entering in conditions (13) are analytic in a certain
neighborhood of the point t = tr; then series (5) is con-

vergentinacertain vicinity of thepoint (t=t; 9 = 9).

In proving this theorem by the known procedure
described in [4], we reduce problem (4), (6), (13) to a
certain standard form that satisfies the analog of the
Kovalevskayatheorem on the existence and uniqueness
of the solution in the class of analytic functions [4].

The refinement of the convergence region for the
seriesis attained by thoroughly analyzing the functions
s> Ueand T

Lemma. At k = 1, the coefficients ry, ;, u,, and T,
are polynomials [in both & and exp(8/2)] such that the
maximum total power of the monomials in them of the
formd "exp(md/2) does not exceed 2k; i.e., n+ny2 < 2k.
In addition, each of the functionsr,, ,, u,, and T, nec-
essarily contain a monomial of the form exp(2kd) with
a nonzero coefficient in front of it.

The proof of the lemmalis carried out by induction
on k with the use of formulas (10)—(13) and repests, in
its principal features, the corresponding proofs for a
non-heat-conducting gas [4].

The lemma makes possible the derivation of thefol-
lowing formula for a convergence region of series (5),
which solves problems (4), (6), (13):

Mexp(29)[t—t.[ <1,

M = const >0, (14)

Thus, this region turns out to be unbounded in the
variable 9.
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With alowance for formulas (8) and (9), series (5)
can be written out as

- O Y O
= f [ L4

Y(I‘—I‘*) _
t [T A1), .

-
U= [0+ o+ (- 1)9(L 9),

T=Ty+(t-t,)h(t, 3),

where the functions f(t, 9), g(t, §) and h(t, 9) are ana-
Iytic in region (14). According to the theorem of the
existence of an implicit function, the first relation
in (15) determines 9 as a function of the variables
r—ry
t—ty

The Jacobian for the transition from the variables t,
r to the variablest', 9 can be represented in the form

J =1 = _E(t—t*)+(t—t*)ZQ(t,3),

wherethefunction g(t, 9) isalso analyticinregion (14).
Therefore, at t = tr; the Jacobian vanishes, and for any
finite value 9, > 0 there exists t, > 0 such that J # O for
|9 <9y and ft—t] < t,.

Consequently, the constructed series (5) describes
the flow of a heat-conducting gas with a mathematical
singularity in the physical space at the point r = rjand
thetimeinstant t =t} Thissingularity issimilar to that

of the velocity and density inherent in a centered Rie-
mann wave. Ast — t[; the principal part of the flow

is described by the first terms of formulas (15). In par-
ticular, this part is independent of the constant v and,
consequently, isidentical for all types of symmetry.

The known method (see [4]) allows for the determi-
nation of the asymptotic behavior (ast —» tj— 0) of
gas parametersin a piston that generates acompression
wave described by series (5). Let the function 9 = O(t)
specify the value of § in the impermeabl e piston. Then,
the differential equation occurs (see[4])

and t.

ro(t, O)%—?+rt(t, ) = u(t, ©). (16)

BAUTIN, CHERNYSHOV

After retaining only the principal termsin Eqg. (16),
it turns into the equation

do(t) _
dt

having the general solution

(t—t, 1,

O(t) = _InC _ID, = const > 0.
(t) O g, U Po1

a7

Formula (17) represents, of course, a certain
approximation to the desired dependence O(t). This
formula yields the following approximate dependence
for the gas density in the compressing piston:

Po1
t* _t.

The unboundedness (in the variable 9) of the con-
vergence region for series (5) leads to the following
mathematically-based conclusion: for any given den-
sity py> 1, there exists a nonzero mass of an inert and

homogeneous gas with the density p = 1, which, under
the action of an impermeable piston, admits shock-free
compression to the density prj This conclusion follows

from the fact that for any p7> 1 we can choose that tra-
jectory of the compressing-piston motion belonging to
region (14), i.e., to the convergenceregion of series(5) at
al values 0 < © < 9= In(pp). Then, the value t, — t,

specifiestheinitial width of agaslayer with the density
p = 1 further compressed to the final density p = p
Here, the time momentst, and t, are such that O(t,) =

p:
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1. Let afixed rectangular Cartesian coordinate sys-
tem (Ox;) with the unit vectors e; be given in the space
R"(e; -¢;=0;;i=1,2,...,n). Theorigin O of thiscoor-
dinate system is assumed to coincide with afixed point
on an n-dimensional body that is perfectly rigid and
moving in R". The time dependences of the body’s vol-
ume and surface are represented by V, and Z;, respec-
tively.

We introduce the radius vector r = xie; (r] =t =
JXiX;), the velocity vector r =v = v,e;, and the accel-

eration vector r =w =Wwe;. The velocity v isrelated to
r by the generalized Euler formula

v=0"%xr )

Here, Q("-2! js the tensor of rank n — 2, which is
referred to as an angular-velocity tensor or, simply, as

an angular velocity ("2 = Q; e, 0..0¢ )
that depends only on time.

12

One should keep in mind that in the space R" the
generalized cross product of the vectors A!™ and B{d!
of the ranks mand g (with m + g < n), respectively, is,
generaly, a pseudotensor C{"-m-d of therank n—m-q
with the components

Ity e T ime 1o Imag”

= €

2

Hereafter, the summation over twicerepetitive Latin
indices from 1 to n is assumed, with free indices aso

ranging from 1ton. In (2), € __; isthen-dimensional
Levi-Civita symbol. Together with it, we also use the

m+qg+1eIn

generalized Kronecker symbol 6'111', defined as:t

L For the generalized Kronecker delta, we use the upper and lower
indices for brevity only; they do not stand for covariant or contra-
variant tensor components.

Moscow State University,
\orab’ evy gory, Moscow, 119899 Russia

i iy =0 Mign
1=n —_ . . .
5]'1...]" = & i€, T N 3)

inj1 *** Main

the sum being over its upper and lower indices standing
one on top of the other

T igjy i1ino1
oM = Do : . 4)

jl---jn—ll

In—als °°° Ih-1ln-1

In the orthogonal Cartesian coordinate system used
for this paper, the quantity C{"-™-d jsatrue tensor [1].
With regard to (2), the Euler formula (1) can be written
in the component form (m=n-2,g=n-m-q=1):

Qi X &)

As follows from (5), the angular velocity must be
antisymmetric with respect to the permutation of any
pair of its indices. Hence, the number of independent
components of the tensor Q!{"-2! having n"-2 compo-

Vi = €

ok

nentsis equal to CI % = C? = %n(n— 1) = N. Hence,

the tensor Q!"-2} can be related to the antisymmetric
dual tensor o' = wye; [ ¢; of the second order, i.e., the
dual angular velocity, by the formulas

Wi = € ki,

{2 {n-2 {n-2 ©)
') = ﬂ Xl = 1X9 .

Then, equalities (1) and (5) can be represented in terms
of the dual angular velocity:
v = —? h, Vi = wyX. @)

Multiplying both sides of relationship (6) by €; . ; i,

iy lk
€, i, kWK = 6j1...jn_zlk ipein s @)
= 2(n—2)!lel__jn_2,

1028-3358/01/4609-0663%21.00 © 2001 MAIK “Nauka/Interperiodica’
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we arrive at the inversion of (6):

_ 1
Qisios = 30— 2)1 otk

9
Q"2 - 0'? x1 _ 1x0'? ®
2(n-2)! 2(n=-2)""

Thus, according to (6) and (9), the angular velocity and
dual angular velocity are unambiguously expressed in
terms of one another and in terms of the following dif-
ferential operators of the first order with respect to v:

(Gradv){Z} =0d0v = (M‘a O e
aX| (10)
=g e = o'?,
- ov
(rotv)!"? =0 xv = elkil---infza_x:(el 0.0 e,

(11)
= €, e U0 e = 2(n-2)1Q!"%,

The angular-velocity vector [ RN can beformally
associated with the tensors Q!"-2} and !?'. It isworth
noting that in the case of n =3 and N = 3 the quantity
Q! coincides with . For n = 2, the angular velocity
is a scalar associated with a unidimensional vector
field, as opposed to a vector with a single(!) nonzero
component.

We now consider the angular-acceleration tensor
en-2l =g e, 0...0¢  (angular acceleration)

[ PR PPN
and the tensor e!?) = g;e; 0 ¢; (dual angular accelera-
tion), which is dual to the first one in the sense of rela-
tionships (6) and (9):

= Qil...i

€ €i = (A)” (12)

[EErR P n-21

Aswasthe case with Q{"-2} and ®'?}, these tensors are
antisymmetric with respect to the permutation of any
pair of their indices. Differentiating both sides of (5)
with respect to time, we arrive at the generalized Rivals
formula, which can be written out in one of the follow-
ing forms:

Wi = €& i, k€, i, X

— 6;11-.-.-‘ijnn:z;|nl Qi Xy (1 3)

1271 In-2

w=e"? xr+0"? x Q"2 xr),
Wi = €1 X — 0y Wi Xim,

w=-2T+0? 2 0.

2. We presented above the tensor approach for deriv-
ing the generalized Euler formula (5) and Rivals for-
mula (13). We now obtain these formulas by the opera-
tor method.

To do this, we introduce the coordinate system

(Ox;) related to an n-dimensional solid body (i = 1,

(14)

GEORGIEVSKII, SHAMOLIN

2, ..., n). Let M bean arbitrary point of the body. Then,
its coordinates Ry, in the Ox; reference system are
related to its coordinates ry, in the Ox; system (i.e.,
before the rotation about the fixed point O) by the
equality

Ry = 1y, (15)
where I 0 SO(n). By differentiating relationship (15)
with respect to time, we obtain

vy = Qry, Q =1,
L (16)
& = T Oso(n),

where Q is the angular-velocity operator. The first

equality in (16) isthe Euler formulain R" writtenin the
operator form.

Rivals formulais derived similarly:
Wy, = Qry, + Qi = Ery + Q% EOso(n), (17)

where E isthe angular-accel eration operator (see[2-4]).
We now describe the operator [ in detail. The rotation

from the Ox; coordinate system to the Ox, system is
specified by coordinatesin the system SO(n), i.e., by N
angles of rotations in the corresponding two-dimen-
siona planes perpendicular to the coordinate axes in
SO(n).

The genera form of the operator I is

f = foN—l---fl- (18)

In the case of afour-dimensional space (N = 6), repre-
sentation (18) takes the form

E cosds sings 0 0L cosdps 0 —sinds OE
~ _ O-sinpg cosp, 0000 O 1 O 0O
F=0 00 0
o O 0 10ggsings 0 cosds O
0 o o o100 o o o 10
01 o 0 00U cosp; 00 sind,

O

0 : 0
00 cosp, sing, 00O O 10 O E(lg)
0
O

Ho -sing, cosp, 0H5 0 01 0
o o 0 100-sing; 00 coso,
51 0 0 O Egl 0 0 0 E
XEO COS¢20—Sin¢ZEEOl 0 0 E
g0 0 1 0 700 cosd, sing, g
00 sing, 0 cosp, IO O —sind, cos¢, [
DOKLADY PHYSICS Vol.46 No.9 2001
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Using the formulas described above and the inter-
pretation given in [4], we found a new integrable case
for n=4[5], whichisan extension of thecasen=3[6].

3. Wewill now consider the hyperplane motion (par-
ald to, e.g., the hyperplane 1i;: x, = 0) of an n-dimen-
siona body with a fixed point for which the velocity
components v,, of al the body’s points are equal to
zero. We prove that such amotion is the rotation in [R"
about the x,, axis and is described by the angular-veloc-
ity tensor Q!"-2! that has the following components:

n-2

1 n-j~
Qi i, = h—:_ZZ (-1) JQil...i,...in,zéijn- (20)
Here, f)il___;j___in , Q.1 .J dija1ein_, r€thecomponents
of acertain tensor sz of therank n—3.
Substituting (20) into (5), we arrive at
n-2
Vi = n— 22( 1)n : |1 A 2IkQ|1...|]...|n 26|Jnxl
j=1
n-2
= n— 22( 1)n J |1 g pqendns zlell...IJ...ln ZXI
=t (21)

n-2

_ 1 2(n-j) ~
- n_zz (_1) eil...ii...inleanir--ij---inszl
i=1

= eil...in_3lknéi1---in-3xl-
It followsfrom (21) that v,,= O for al the body’s points.

Moreover, the mechanical essence of the tensor o!"?
now becomes clear. Since the extreme left and right
sides of the series of equalities (21) actually form the

generalized Euler formula (5) in R"-!, the quantity

fz{n_s} is the angular-velocity tensor of a solid body

describing the rotation in the hyperplane Tt,.

The rotation about the axis x,, in RN is specified in

terms of dual angular velocity ®!?! in a form much
more compact than (20):

w, =0, |=12..,n (22)
4. We define in R" the momentum vector Q = Q,ey,
the angular-momentum tensor Ki"-2/ = K; ;. 2e,l 0
.. U &, the angular-momentum dual tensor k2
kije; (I ¢;, and the kinetic energy T:

Qx = J-kadV = €i1...in,2|in1...in,JpX|dV
B (23)
= oo|kjpx|dv Mei i i i zx,(C) = Mo, X2,
Vi
DOKLADY PHYSICS Vol.46 No.9 2001
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K.

iy s

1. Jn_pml
= 631 ,J Tk Qi 2J'pxkx dv
(24)

_|11 n-z

(T PPl PRP PP

kij = (n_z)!-[p(wmjxi_wmixj)xmdv’ (25)

t

J'plvl dv =

6]1 Jn Zml

PR jl'--jn—ZQil"'in—Z

XJ’pXkadV = %wmlwkljpxkxmdv

Vi Vi

(26)
- —%Ipr f? @ oav

Vt

1|J1 n-2

2 (PR PPt
Here, p(r) isthe density (its dimension is ML™) of the
n-dimensiona body; M is the body’s mass; and I!>"-4} =
'Illl IJn” 7q 0..0e¢ Oe DO..0¢ istheinertia
tensor of the rank 2n — 4 with the components

Ji-dn2™ %M1 dn2”

Jl ]n2

Oi i K Ipxkx av.

Ijl---in—Z — (27)

iy s

Hence, the definitions for K{"-2 and T take the
form conventional in classical mechanics;

K{n—z} - |{2n—4} ©) g{”—a
%g{n—z} o124 o ol"-2 (28)
Here, the symbols © stand for the convolution with
respect to n— 2 indices.

Using formula (4), we can prove that the convolu-
tions with respect to n — 2 indices in (24) and with
respect to 2n — 4 indicesin (26) are

T =

i1.in_p

n-2 (29)

=(n- 2)!Ip2Qi1...in_2 —X z Xiinl...ik_llik,,l...in_gdv,
k=1

T= (n 2) Ip(r .. 'nz i, dns

(30)

—(N=2)xXQ; i «Qi )dVv.

PP iq.dy_gl
Thus, the mass geometry of an n-dimensional body
is specified by the symmetricinertiatensor J12) = Jye; O ¢
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of only the second rank (the natural tensor of the
moment of inertia) such that

Jy = (n—2)!J.p(|"26ij—(n_z)xixj)d\/' €Y

Vt
n-2
1
Kipin = n__szlJiklQil...ik,lnk”...iH, nx=3, (32)

1
T= éJk,Q
In the case of n = 2, the standard relationshipsin [R?
[instead of (32) and (33)] follow from (29) and (30):
2

JoQ
02 ,WhereJo:J'p(xf + %5)dV.

For n = 3, the tensors I'?! and J2! areidentical and are
reduced to a conventiona inertiatensor in R3.

n=3. (33)

iq. i gk>%iq. iy _gl0
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The traditional approach to the calculation of inter-
nal-wave generation, which is based on the use of force
and mass sources with parameters adopted from the
homogeneous-liquid theory, enables one to determine a
far field accurate to empirical constants [1-3]. A
method for constructing the solutions to a linearized
problem that exactly satisfy boundary conditions, was
proposed in [4, 5]. As awave source, part of an infinite
plane positioned at an arbitrary angle ¢ to the horizon-
tal and executing periodic oscillations with afrequency
wwas considered. A finite-width strip oscillating along
its surface emits unimodular and bimodal beamsinto a
liquid of a constant buoyancy frequency N; the beams

travel at theangle 8 = ar(‘sin%) to the horizontal. In an

arbitrary case (¢ # 6), when all beams separate from the
emitting surface, the wave pattern and particle-dis-
placement amplitudes are consistent with the measure-
ments[6, 7]. Inthecritical case (¢ = 8), when two wave
beams propagate along a plane separating the liquid,
the calculations result in overstated values of the sepa-
rated-beam amplitudes and give no way of finding adja-
cent-beam parameters [5, 7]. The critical-angle case is
of particular interest for problems of geophysical
hydrodynamics [8] and calls for special consideration.

In the present paper, a solution to the more physi-
cally-based problem of internal-wave generation by a
finite-width oscillating strip is constructed for theentire
range of variation of the strip slope including the criti-
cal one.

A system of two-dimensional equations of motion
for an exponentially stratified incompressible liquid in
the Boussinesq approximation [1] is brought to the fol-
lowing equation for the stream function ¥ in the emit-

Institute of Problems of Mechanics,
Russian Academy of Sciences,
pr. Vernadskogo 101, Moscow, 117526 Russia

1028-3358/01/4609-0667$21.00 © 2001 MAIK *“

ting-surface axes coordinate system (€, ¢) (seefigure):

2, N2 9 QDZ_- 2 _
[u)A N %osq)aE SN 3 va}w(z, 2) =0.(1)
¢ &
Here, A = ?2 + ﬁ and v is the kinematic viscosity.
The gravity g is opposite to the z-axis; the relation

between the coordinate systems (x, z2) and (§, Q) is
shown in figure.

The adhesion conditions at the emitting surface
(which is a strip with a width a inclined at an angle ¢
and executing oscillations along its surface) and the
damping of al perturbations at infinity constitute the

boundary conditions for the velocity u; = o Uy =

g’

_%_L; . The components of the surface velocity (Ug, U;)

are specified by the relations
Ug(8) = ud 5 -[8H, U(8) =0, @

where § isthe Heaviside unit function. In what follows,
the common time-dependent factor exp(—wt) is omit-

SIS

(STEN

The problem geometry.

Nauka/ Interperiodica’



668

ted everywhere. Asaresult, the boundary conditionsfor
the stream function W on the plate take the form

o =u@® L =-u®).
a¢ =0 =0
They are supplemented with the continuity conditions
for W and for all its derivatives with respect to { up to
and including the third one for = 0, |§| > g; and with

the damping conditions at infinity: W(&, {) — 0 for &,

( — too,

The solution is found by the method of integral
transformations. In this way, the stream function of the
emitted field is represented in the form [4]

+o00

W(E, Q) = I%)e“(;“Z + ceiKEEeikEdk, >0. (4

Here, b(k) and c(k) are spectral densities; the wave
numbers K, (k) and K, (k), which correspond to travel-

ing internal waves and internal boundary layers, are
roots of the dispersion equation [5]

W’ (k® + k) = N*(k sing —kcosd)?
+ivo(k2+K%) = 0.

To meet the damping conditions at infinity, branches
are chosen such that

&)

Imk;,>0, Imk,>0, Imk,<0, Imk,<O.

The solution to Eg. (1) with the foregoing boundary
conditions is constructed by the method of successive
approximations. At the beginning, following the proce-

dure described in [3, 4], asolution W$" is constructed
with boundary conditions (3) and the additional condi-
tionsug =u; =0for { =0, [§|> g, which describe per-

turbations excited by the motion of apart of the infinite

plane. The solution LIJél) does not satisfy the conditions
of continuity for al its derivatives with respect to ¢ out-

side the strip. A correction Wf)z) satisfying Eqg. (1) and
providing the continuity of the sum W& + W& andits

derivatives up to the third onefor { = 0, [§| > % isadded

to ‘P(lo) . The sum obtained ceases to satisfy the bound-

ary conditions (3). To satisfy these conditions on the
strip, which is a part of the infinite motionless plane, a

function W" is added to the solution. The addition of
a function lIJ(lz) ensures the continuity of the sum

W + WP and its derivatives up to and including the
third one outside the plate. Each of the correction func-

KISTOVICH, CHASHECHKIN

tionssatisfies EQ. (1). Unrestricted repetition of theiter-
ative procedure allows for the representation of the
exact solution to the problem in the form

WE Q) = J W&, W, =wr+wl 6
n=0

Substitution of (6) into the boundary conditions of the
problem results in the following relations:

2 — w® (2) - w3
LIJn |z:+o - LIJn |§:_o1 LlJnZ 7=+0 — LIJnZ {=-0"

(2) (2)
LIJ”ZZ|Z =40 LIJnZZ|( =0
- aa yo (1)
- S%ﬂ _ij[wnll =0~ ¥ht z:+o}
(2) (2)
LIJHZZZ |Z =+0 LlJnZZZ |Z -0

7
— € €
- 8%‘“ _%[Lpnllllhz—o_wnllll z=+o}-

(1) —
Lpn+l (=0 - Ol

(1) — a L@
l'I'Jn+1,z|(:i0 - _SEE_lalmLpn( =+0"

LIJE’1)|Z=1rO = O’ Wéll)|l=:0 = UOS%_EE'

Here, each of theindices Z in W2 denotes differenti-
ation with respect to C.

Both iterations and the complete solution (4) are
sought in the form

W = [le@a - F

+8(_Z)A;%n<;z_eikgqa}eikzdk,
+eo . . (®)
l_ps]z) — Jo|:8 (Z)Ea:emwl + C;eIKbE

+9(-0)Bre ™ + Ce KEE} &k,

Substitution of (8) into (7) resultsin the following sys-
tem of equations:

(K=K AY = (K, —K) A5 = —2sin"E = A(K),

DOKLADY PHYSICS Vol. 46 No.9 2001
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An+l(k)E(K\7v_K;)A;+l = (K;v_KE)A;+1
Ku(K)Bn(K) + Ky (K)Cy (k) A(K=Ka .
nI k' —k 2
B,+C,-B,-C, =0, ©)
KwBy + K;Cr —Ky, B, —K,C, = 0,
Ku Bh + Ky Cp—Ky By =K 'Cp = —Dj A, + 1,
KilBr + K Co— Ky B — K °Cp = —D,A, + |,
Here,
| = 1 "D, (KA, (k) A(K=Ka.
U 1 k' —k 2

—00

D, = Ky +Kp—Ky—Kp, (10)

2 2 -2 - - -2
D, = Ky + KuKp + Kp- — Ky + KyKp + Kp- .

By solving system (9), substituting the result into (8)
and (6), and comparing it with (4), wearrive at the spec-
tral densities for the wave component b(k) and the
boundary-layer component c(k) of motion:

+oo

b(l9 = 7 [ Ry(k K)g(k)aK,
- 1y
o(k) = = [ Relk K)g(k) ok
Here, -
Rk ) = —Dalk) + LDy (K)
T (K=K (G — KD (K — Kp)
RN (12)
Rk = —Dak) +KiDy(K)

(K5 = Kp) (Kb = Ku) (Ky —Kq)

All K}, and K;, in (12) arefunctions of k and k-indepen-
dent; in (11), the function g(k) is a solution to the inte-
gral egquation

g(k)——IR(k K)g(Kk)dk' = —%sj k?""

(13)
with the kernel

(K= k)al
kk 2

(k" —K)a k)a

R(k k) =

I nA—s——
(K" —=k)aDs(K") D,(K) — D4(K") Dy (K)
2 (K" =Kk)(k"=k)Dg(k")

(14)

x sn dk".
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Here,

0 = (Ku—Ky) (Kyy = Kp) (Kp = K) (Kp — Kp),

D3 = KuKp —KyKp, (15)

+ o+, + + - =y - -
D4 = Kwa(Kw+Kb)_Kwa(KW+Kb)1

and D, and D, are defined in (10). The calculations of
the stream function performed for < 0 show that the
field possesses central symmetry: W(-€, () = W(&, 0).

Sincein what follows we employ approximate solu-
tionsto dispersion equation (5), cases of ageneral posi-
tion of the strip (¢ # £0) and of the critical angle (¢ =
0) call for separate considerations.

In the general case, approximate expressions for
roots of dispersion equation (5) are of the form

iv]k®
2Ncos@sin* (8 F Ad)’

Ki(k) = K cot(0 F ) £

A = sgnk,
+ ksing cos 16
Ki(K) = £k, —~SNOCOSP (16)
sin“g —sin'6

o 2. 2. [N|sin’d —sin°g)
k, = [i + sgn(sin“¢ — sin e)]J >vSn0 .

Substituting (16) into (12) and (14), we obtain approx-
imate expressions for thekernelsR, R, and R.:

1
Tk, SiNB cosB(sin’ ¢ — sin’0)

R(k k) =

(k" k)a ((K'=K)a

IS‘” 2

o SOk (K" —K)sinfpcosd + (K| - |K|)sinfBcosO

(17)

K=K (K—K) aie
n- A 1 sn2¢ 7. (K-k)a
Roll K) = ¢ R~ Range 9" 2 (1)

Rc(k, K) = kb(k:'L_k)Sin(k‘ —2k)a.

(19)

In the low-viscosity approximation for v — 0, ker-
nel (17) of theintegral equation (13) also tendsto zero,
and in the first approximation solution (13) is of the
form

g(k) = nksn2'

Substituting (20) and kernels (17), (18) into (11), we
obtain the spectral densities of the internal waves and

(20)
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the boundary layer:

_ lur1, 1 sin2g7 ka
b(k) = nkb[k+2|k|sin26} 2
U sn’@
kK~ 2

21
c(k) = —

In comparing (21) with the formulas given in paper
[5], it followsthat only the expression for thewavefield
changes in the more adequate formulation (in the
absence of the infinite motionless plane). The result
obtained in [5, 7] for the internal boundary layer
remains unchanged. It follows from (21) that the spatial
structures of beams emitted by an isolated strip and a
moving part of the infinite plane are the same, and the

sin2¢
sin28”

In the critical case, roots of dispersion equation (5)
are of the form:

amplitudes differ by the factor %l

Jé _ kcot 26
3

k! = S(k)[ }+ 9 (—k)kcot 26,

Kw B(k)kcot29+8(_k)[«/§’2—l _kcotze]

3

< = 1(}(k)[A/éH kcotZG}

3
kcotze}
3 1

(22)

+3(—k)[iy—

kcot28 J3+i
% }—8(—k)[ 2y +

=2 [2]K] I\\l)cose'

Substituting (22) into (14), we obtain

K= —8(k)[iy+ kcotze}

3

_ _1Uoa_rka
9(k) = —-Fe>0 (23)
where the universal function F(x) is the solution to the
integral equation

;m sin(x'—X)__l_m___S_!i’l(_)_(_X_l__ X
F(X)_T[I{ X —X 31TI(X X)X )X
o o (24)
sinx

%+%/7 sin(x" —x’)sin(x" —x)dx}F(x)dx = —

KISTOVICH, CHASHECHKIN

The kernels R, and R, are of the form

[ vK'[K]|

R(k, k) = 3K (k —k) % 2Ncos®

XE&S( k)+19(k)[1 (1+|J§){}Dsn(k zk)a

(25)
i VKIK]
3lk| (k' — k) 2Ncosb

x Dﬁ( k)[l 2#@}

+8(k)[1 (1-.[3)3[}55m( "Zk)a.

The equation for F(x) does not contain medium
parameters or source characteristics, which appear only
after transformations (11) with kernels (25) have been
applied to the function g(k). In the critical case, the
coordinate system (¢, {) becomes the comoving refer-
ence frame for two beams propagating aong the oscil-
lation plane. With allowance made for these properties,
the expression for the stream function in the region

Re(k, K) =

&> % can be found immediately without solving equa-
tion (24):
|[3uO a’ . vk3E
W= [—u kZ — }dk. 26
¢ 1 2Ncos’ GI *~ 2Ncosg | 2

Here, the universal coefficient of the problem

+o00

B= SinxlF(x)dx.

J ix

(27)

From a comparison of (26) with the results of [1, 3, 7]
it follows that the beam propagating along the plate is
always unimodular in thecritical case. The vertical-dis-
placement amplitude on its axis is determined by the
formula

Bbsme 20 2a

& 0) = ST

(28)

Ug . I :
where b = E;) is the plate-oscillation amplitude. Thus,
employing the correct solutions (22) to the dispersion
equation (5) solvesthe problem of critical anglesin the
generation problem aswell asin the problem of reflec-
tion of internal waves from arigid surface in aviscous,
continuously stratified liquid [9].
In athree-dimensional case, the boundary layer has
a more complex nature and includes both the periodic
DOKLADY PHYSICS Vol. 46
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Stokes flow, whose parameters do not depend on the
presence of dratification, and an internal boundary
layer, which is specific for a given geometry [10]. A
separated boundary layer forms a fine structure of a
medium at the source horizon [6]. Nonlinear interaction
between internal boundary layers and internal waves
may serve as an additional mechanism in wave genera-
tion [11].
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Over many decades, resistance properties of struc-
tural materials with respect to deformation and fracture
under cyclic loading have been studied. Investigations
aimed at the development of fracture criteria necessary
for estimating the strength of machines, equipment, and
structures of various application have also been per-
formed. In these studies, force, deformation, and
energy approaches were widely used. Each of these
approaches now has dozens of proposalsrelated to var-
ious criteria [1]. It should be noted that, as arule, the
existing criteria are reduced to equations of a fatigue
curve for agiven material and given loading conditions
and, therefore, cannot be extended to other materials
and testing conditions. In addition, these criteria are
related to a limited number of materials and loading
conditions that, as before, require a large amount of
experimental data.

Compared to the other approaches, the energy oneis
the most general. Numerous studies have demonstrated
[2], however, that the energy of cyclic fracture may
greatly exceed the energy spent on the single fracture of
asample and, thus, cannot be accepted asacriterion. In
the case of cyclic loading, a considerable part of the
energy is dissipated in the form of heat and is spent on
reversible deformation in the cycles. Only the lesser
part of the energy is directly spent on fracturing the
materia. The experimental determination of thispartis
extremely difficult [1]. The employment of this quan-
tity for estimating the endurance of structural elements
is also hampered.

In [3], asuggestion based on the energy approach is
made that in the case of low-cycleloading, the ultimate
work p of microscopic stresses (microstresses) in the
plastic-deformation path L is the fracture work:

J’kde = 1. (1)

Here, k isa constant determined from the experiment.

Based on the studies of the Bauschinger effect [1]
and concepts concerning the role of microdamages in

Blagonravov Institute of Engineering Science,
Russian Academy of Sciences, Malyi Khariton' evskii per. 4,
Moscow, 101990 Russia

the plastic-deformation path, | succeeded in finding a
fracture criterion for the case of cyclic loading within
the given loading range in asoft-loading cycle, i.e., ina
cyclewith agiven stressamplitude. In this case, the cri-
terion hasthe form

No _, N, .
J’f—sz+J'@—_——5-£l§—£—_—@dN = 1. 2)
0 0

Under the condition that, basically, o < €, criterion
(2) can be written out in the form
No N,

J’S—ZdN+IA§'dN -1, 3)
0 0

Here, d is the plastic deformation (the hysteresis-loop
width) in the tension half-cycle; & — &' = Ag isthe accu-
mulated deformation in the cycle under consideration;
' isthe plastic strain in the compression half-cycle; € is
the material plasticity in the case of the sample single-
stage fracture (this quantity providesthe material carry-
ing capacity); and N, is the number of cycles before
fracture.

In the case of loading within the given range of elas-
toplastic deformation in acycle (rigid loading), the sec-
ond term in relations (2) and (3) vanishes (the plastic-
deformation accumulation does not occur). Then, crite-
rion (3) for the case of rigid loading is written out as

dN = 1. C))

Thefirst termin relations (2) and (3) determinesthe
level of damage accumulated as aresult of the action of
cyclic plastic deformation. The second term corre-
sponds to the damage caused by the accumulated plas-
tic deformation for the number of loading cycles under
consideration. The fracture occurs when the damage
level attains unity. Therelations (3) and (4) makeit pos-
sible to determine the level of accumulated damage for
an arbitrary number (which we are interested in) of
loading cycles including programmable loading.

1028-3358/01/4609-0672%$21.00 © 2001 MAIK “Nauka/Interperiodica’
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As experiments show, relations (3) and (4) satisfac-
torily describe fracture conditions in the region of low-
cycle fatigue (Fig. 1a) but do not allow us to describe
fracture within the region of a large number of cycles
before fracture (more than 10* cycles).

The assumption about the damaging role of micro-
stresses also in the path of elastic deformation e, made
it possible to find the fracture criterion in the form
ND62 NDA Npe 6

bl + A + (== =
JO’EZdN { - dN {52 dN = 1. 5)

In this relation, the third term determines the level of
the accumulated damage caused by the action of elastic

deformation e, = % .
Criterion (5) can be rewritten as
Np6 Np
€ Atg _
J’—zepdN+I?dN =1, (6)
0

€
0

wheree,, =0 + €.
In the case of rigid loading, we can assume that 6 =
const and e,,, = const. Then, relation (3) takes the form

de,
—8—2‘1" N, = 1. (7)

The assumptions indicated on the damaging role of
microstresses in the path of elastic and plastic deforma-
tions made it possible to describe fracture conditionsin
the entire range of fracturing cyclic loading (i.e., for a
different number of fracturing cycles) in both theregion
of low-cycle and high-cycle fracture (Fig. 1b) by a
unique relation (6).

The criterion obtained testifies to the fact that, in the
case of cyclic loading, the damage-accumulation pro-
cess and fracture conditions obey the unique rule (law)
independent of loading conditions.

As it was shown previoudly [1], the ratio g in the

low-cycle region before fracture satisfactorily deter-
mines the Bauschinger cyclic effect. It may be assumed
that the Bauschinger parameter o, that characterizes
fields of residual microstresses can describe the Bausch-
inger effect in both thelow-cycle and high-cycleregions.

Experimental verification of criteria(6) and (7) con-
firmed the existence of a unique criterion for the frac-
ture of any given metallic material in any given struc-
tural state (i.e., independent of the thermal processing
form) with arbitrary conditions of cyclic loading (tem-
perature, loading frequency, cycle asymmetry, etc.). In
this case, loading conditions affect the characteristics
of resistance with respect to deformation, which enter
into relationships (6) and (7). However, in accordance
with these criteria, the loading conditions do not change
the rule (law) of summing damages, including program-

ROMANOV

mableloading (e.g., two-frequency, steplike, overloaded,
having time lagsin loading half-cycles, etc.).

Criteria (6) and (7) describe the kinetics of damage
accumulation, the extreme case of which corresponds
to the appearance of a macrocrack.

Numerouscriteriaof theultimatefailure (survivability
criteria) are obtained for describing the stage of the devel -
opment of such a crack. In contrast to those proposed
above, these criteria for describing fracture at the stage
preceding the appearance of cracks are not universal.

The extension of the above concept to the stage of
crack development make it possible to find criteria for
material (structure) survivability in the form

Np Np

I\)L;)pdN+I&dN =1, )
0 V¢ c

Here, v,,, Ve, Ve, and Av arethe plastic (residual revers-
ible), eastic, and elastoplastic (reversible) displace-
ments of the crack faces in the tension half-cycle and
the accumulated crack opening in the cycle, respec-
tively, and v, is the ultimate crack opening in the case
of asingle-stage fracture of a sample with a crack.

When an accumulation of the crack opening does
not occur (the case of arigid loading), the second term
in relationship (8) vanishes, and we have

Np

J’V‘\T;’ PAN = 1. )

0

An experimental verification of criteria (8) and (9)
has confirmed their validity.

Thus, we can affirm the existence of a unique crite-
rion for fracturing metallic materials in the entire pos-
sible time range of loading at the stages of nucleation
and the development of cracks (low-cycle and high-
cyclefatigue). Thiscriterion isindependent of the type,
structural state (i.e., thermal processing), form of a
loading of a materia (single-frequency, double-fre-
guency, asymmetric, having timelags, and programma-
ble), as well as of the loading conditions (temperature
and frequency). New approaches that can be applied to
both the cal culation methods for the cyclic strength and
to the rules for the choice of structura materials are
proposed.
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A nonlinear interaction of longitudinal and torsional
strains in an eastic cylinder is studied on the basis of
the exact theory for the torsion of prismatic bodies sub-
jected to severe strains [1, 2]. Along with the known
direct Poynting effect of varying the length of a pris-
matic body under the action of torque, we treat the
inverse Poynting effect, which represents the torsion of
abar under the action of alongitudinal force, provided
that the bar has been subjected to atorsional prestrain.
For a certain class of isotropic incompressible materi-
as, we draw a qualitative conclusion on the sign of the
Poynting effect. A series of identities and inequalities
relating the torsional and longitudina instantaneous
rigidities of a bar is found. General statements of the
theory developed are illustrated using a circular cylin-
der made of a non-Hookean material as an example. In
this case, using the explicit relationships found for the
longitudinal extension and the angle of torsion in terms
of the longitudinal force and the torque, we succeed in
studying the direct and inverse Poynting effects over a
wide range of strains.

1. The torsion and extension—compression of an
elastic prismatic (cylindrical) body subjected to finite
deformations are described by the relationships[1, 2]

Xy = Ug(Xq, X3) COSW X3 — Uy (Xy, Xp) SINWX3,
Xy = Ug(Xg, X2) SINPX;5 + Uy(Xy, Xp) COSWXg, (1)

X3 = (1+3)X3+ Uz(Xy, X5), W, d = const.
Here, x, (k=1, 2, 3) arethe Cartesian coordinates of the
body’s pointsin the undeformed configuration, with the
coordinate x; measured along the generatrix, i.e., along
the axis of the bar. We introduce the notation X, (s= 1,
2, 3) for the Cartesian coordinates of the body’s points
in the deformed configuration. The constants g and o
are the angle of torsion and the longitudinal elongation
per unit length of the elastic bar, respectively. The func-
tions u, (m =1, 2, 3) of the two variables are deter-
mined by solving the two-dimensional nonlinear prob-
lem formulated in [1, 2].

Rostov Sate University,
pr. Stachki 194, Rostov-on-Don, 344104 Russia

If the cross section of the cylinder has two axes of
symmetry and the bar is made of an isotropic material,
then, aswas proved in [2], the longitudinal force P and
the torque M, both applied to the bar’s faces, are given

by

PG = 55 MG = 5T

ne, ) = UW[u%(xl, Xo, U, 3)]dS. 3)
S

2

Here, Wis the specific strain (potential) energy for the
elastic material; Sis the cross section of the bar in the
undeformed configuration; and M3, W) is a functional
of the specific strain potential energy of the bar (per

unit length), which is evaluated for the solution u&

(m=1, 2, 3) to the two-dimensional boundary value
problem mentioned above. In what follows, we will
assume that the strain potential energy M(d, Y) of the
extended and twisted bar is a double differentiable
strictly convex function. From the physical standpoint,
this assumption implies that the process of extending
and twisting the cylinder is stable. As follows from
relationships (2), with regard to the strict convexity of
the function M (3, W), the functions P(, W) and M(d, )
are strictly reversible in the range of stable strains. In
this case, the relationships

9K _ K
op VEM =5y

K(P,M) = P5+My—T

3(P, M) = @

are satisfied, where K(P, M) is a strictly convex func-
tion describing the additional energy of the bar related
to the function (9, Y) by the Legandre transform. It is
worth noting that (3, Y) and K(P, M) are even func-
tions of the variables Y and M, respectively.

2. Let the longitudinal force P and torque M be
applied to the faces of an elastic bar. We now consider
small tensile and torsional strains caused by the load
increments AP and AM. Using (4), we obtain

- 0% 9% el ol
A8 = 55AP+ =2AM, A = S5AP + S2AM. (5)

1028-3358/01/4609-0675%$21.00 © 2001 MAIK “Nauka/Interperiodica’
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According to (5), the derivatives g—l\% and gg M(d, Y) is strictly convex, the following relationships

define the direct and inverse Poynting effects [3-5]
(i.e., the variations of the length or the angular twist of
a bar, which are caused, respectively, by increments of
the torque or the longitudinal force). The equality

_oy
a|v| " oP
of a bar subjected to a constant force P increases with
the torque then the angul ar twist of such abar subjected
to a constant torque will increase with the extratensile
force.

Sincethe specific elongation d isan even function of

oy . _
M, thederlvatlvesaM and P vanishat M =0. To ana-

lyze the direct and inverse Poynting effects for small
values of M, we approximate the functions &(P, M) and
(P, M) by the following partial sums of the Taylor
series:

following from (4) impliesthat if the length

3 = &(P) +3,(P)M*+O(M*),
Y = P (P)M + O(M°).
It follows from (4) and (6) that

26,(P) = 82 @

(6)

If the force P has an increment AP, then Eqg. (6) with
aconstant torque M yields

y =

According to (6), the bar elongates under the action
of atorque, provided that 3,(P) > 0. In this case, by vir-
tue of (7) and (8), we have MAY > 0 for small M and
AP > 0. Thisimpliesthat the extratensile force applied
to the bar subjected to a constant torque causes the bar
to be twisted in the same direction as that of the torque.
If abar is contracted when being twisted (i.e., 3, < 0),
then an extra tensile load leads to its untwisting (i.e.,
MAUY < 0).

3. Theresistance of apreloaded cylinder to torsional
and tensile-compression strains can be characterized

< MAP +O(M %. (8)

by the following instantaneousrigidities: E, = %’E

EAPD are the instantaneous longitudinal
M

rigidities under a constant angular twist and a constant

and E, =

. MO
torque, respectively, and G5 = [AM and G, =
() ml.plja P
AMn : : o
HA_L]JDP are theinstantaneous torsional rigidities under

aconstant €longation and aconstant force, respectively.
By virtue of (2) and the assumption that the function

arevalid:

Ev _ G

= 22 0<Ey<E,,
E, Gs M=

0<Gp<G;.

4. In the case of a circular cylinder made of an
incompressible isotropic material, the functions u, (k =
1, 2, 3) in (1), which express a solution to the problem
of torsion—tension in terms of the polar coordinates r
and ¢, take the form [6, 7]

rcosg, U, = o ’rsing,
a=1+06>0.

-1/2
u, = d
' ©)

u; = 0,

For an incompressible isotropic body, the specific
energy W is a function of the strain invariants |, and
L, [7]:
l,=tr(CTT), I,= %[trz(C T -tr(c ),

C= %‘i Oi 1o

Toox, s ©

where C isthe deformation gradient and i are the posi-

tion unit vectors. In the case of a circular incompress-

ible cylinder with radius a, we obtain, on account
of (2), (3), (9), and (10),

a

I-I(51 lJJ) = 2T[J.W[Il(r’ 51 lJJ), |2(r1 6! lp)] rdr,
0

1,(r, 8, W) = a’+a " (2+P’rd),
L(r, 8, ¥) = 20 +0a (1 + Yrd).

(11)

Along with using the invariants I, and |,, a wide-
spread method of defining elastic properties for incom-
pressible materias involves representation of the spe-
cific energy Win theform of afunction of theinvariants
J, and J, for the tension tensor (C - CT)'2, with

J, = tr(c c”?
and
3, = %[trz(C 2 _tr(creh).

Using (1), (9), and the formulas obtained in [8], we
arrive at

_ — 2 _
3, = 0(”2+A/(0( 112+O() +a1Lp2r2,

(12)

J,= O(ﬂz+«/(0(1/2+0( ) +G_2L|J2I’2
Asfollowsfrom (2), (11), and (12), the longitudinal
force P that must be applied to atwisted continuouscir-
DOKLADY PHYSICS Vol. 46
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cular cylinder in order for its length to remain constant
is given by the following equivalent expressions.

P(0, ) = —2anIE"iV+2‘M’Dr3dr, (13)
0

Oor, * “a1,0

a
0 _ 2 ZD 2.2 0
=—nj{ﬂl—%ﬂ%\/+ M—m%qrdr.
oL0 a8 Ofa+ g 092
As is known [5, 7], the strong-€llipticity condition
for the equilibrium equations for a nonlinear eastic
medium represents a constrain imposed on the specific
energy taking the form (in the case of an incompress-
ible material)
d2
—W(C +nC adb)
dn

>0, (15)

n=0

wherea and b are arbitrary nonzero mutually orthogonal
vectors. Using (13), (14), and the results of paper [9],
which contain the satisfiahility criteria for the strong-
ellipticity condition, we come to the following theorem.

Theorem. If the specific strain energy W of an isotro-
picincompressible material satisfiesthe strong-ellipticity
condition (15) and is a function of only one of the invari-
ants|, and I, or one of the invariants J, and J,, then the
longitudinal force P that must be applied to a twisted
continuous circular cylinder in order for its length to
remain constant is negative for all values of Y # 0.

The appearance of a compressive longitudinal force
under the torsion of a cylinder, provided that axial dis-
placements of its faces are precluded, evidently implies
that the length of the same cylinder will increase under
free torsion when P = 0. It is worth noting that, for the
materials mentioned in the hypothesis of the theorem,
this general conclusion on the sign of the Poynting
effect is concerned with only circular cylinders. Partic-
ular examples [2] indicate that the length of a bar sub-
jected to free torsion could decrease if its cross section
appreciably differsfrom acircle.

5. According to (3) and (9), in the case of a non-
Hookean material [7] described by the strain energy

W= % M(l; —3) (where p isthe shear modulus), the spe-

cific potential energy of acircular cylinder is given by
2 2

om0, 2 41, W
nE w = =& [28: +2-4+ a}

Y, =ya.

The strict-convexity condition for function (16) is
satisfied for the parameters a and y obeying the ine-
quality a > 0, which is valid for arbitrary torsion—ten-
sile deformation of the cylinder. From (2) and (16), we
have

(16)
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3 2
_a’ =1 . _
P T o’ “pod’ M+ T 2q

(17)

Resolving relationship (17) with respect to a and
W and assuming that P+ M3 > —3/3/4, we obtain

the explicit expressions for both the longitudinal elon-
gation and the angular twist in terms of the longitudinal
force and torque:

B A4, . 1 3]]13
6_t+[2+t+ 4+tD

_1/3
2fl | .3 1, .7
O+ S+t -1,
(D 4 U

Wy = 2(1+3)M,, tE%(P*+Mi).

(18)

It is easy to verify that &(t) is a monotonicaly
increasing function. It isimmediately seen from formu-
las (18) that the extension & and the angular twist
monotonically increase with the torque and the longitu-
dinal force, respectively, provided that either the longi-
tudinal force or the torque remains constant (the direct
and inverse Poynting effects).
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1. THE ATMOSPHERE
IN THERMAL EQUILIBRIUM

It iswell known that the density of a column of per-
fect gasin thermal equilibriumin afield of gravity force
decreases with dtitude according to the exponential law

P(2) = PP (1)

Here, mis the mass of gas particles, g is gravitational
acceleration, kisthe Boltzmann constant, and T is abso-
lute temperature. In the case of thermal equilibrium, the
temperature is assumed to be independent of the atmo-
sphere dtitude. As was noticed by Sommerfeld [1],
“meteorol ogists sometimes protested against this state-
ment.”

Formula (1) is easily derived from the equilibrium
condition for an ideal liquid

gradp = pF 2

(where p is pressure and F is the density of externa
forces) with the equation of state for a perfect gastaken
into account:

-k
p=—pr. 3)

On the other hand, relation (1) can be obtained by aver-
aging, with respect to momenta, the Maxwell-Boltz-
mann-Gibbs formula for the density of the canonical

probability distribution cexp E—K—FE , Where cisthe nor-

malizing factor, and H is the Hamiltonian of a particle
placed into the gravitational field. After averaging, we
obtain the altitude distribution density for gas particles,
which turns out to be proportional to the exponential
function in formula (1). This derivation of formula (1),
which was obtained for the first time by Maxwell, is
considered to be one of the first achievements of equi-
librium statistical mechanics.

We recall that even Loschmidt (see monograph [2])
has published critical remarks with respect to state-

Moscow State University,
\orab’ evy gory, Moscow, 119899 Russia

ments of Maxwell (including those based on the kinetic
theory). In addition, in well-known steady-state mod-
els, eg., in the International Standard Model, the
Earth’s atmosphere decreases with the altitude accord-
ing to a nonexponential law, and the temperature
depends considerably on the atitude of the observation
point.

Even more significant problems arise, however,
under the natural assumption that the Earth has a spher-
ical shape with a spherically symmetric mass distribu-
tion. It turns out that the Earth cannot have an atmo-
sphere with a finite mass and a constant temperature.
Indeed, let M bethe mass of the Earth, Ritsradius, ythe
gravitational constant, and r the distances between gas
particles and the Earth’'s center. Solving the system of
equations (2), (3) for the case of the gravitational attrac-
tion, we obtain the formula

p(r)=cexp%cr-;, c=const>0, G=yM. (4

Sincep(r) — c¢>0asr —» oo, the mass of the atmo-
sphere

00

an(r’p(r)dr (5)
]

is also infinite. We can complicate the problem by tak-
ing into account the mutual attraction of atmospheric
particles. In this case, the density at a constant temper-
ature is found as the solution to the integro-differential
equation

kt .o _ O iy u
—p'r° = —yM +4nJ'x p(x)dxp.
m g L U

This eguation is simply reduced to the nonautonomous
differential equation of the second order. The solution,
which we are interested in, has the following asymp-
totic behavior:

However, in this case, the integral (5) also diverges.

1028-3358/01/4609-0678%$21.00 © 2001 MAIK “Nauka/Interperiodica’
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It is worth noting that relationship (4) can be for-
mally derived from the canonical distribution for the
Newtonian attraction using the procedure of averaging
with respect to momenta. By virtue of the divergence,
however, no probabilistic measure can be associated
with this density in phase space.

Assuming T to be the known function of z, we
should change formula (1) according to Egs. (2), (3) by
the relationship

_C mgZ dx _
p(2) = ;(—Z—)exp[——k—_[m} ¢ = p(0)T(0). (6)

In particular, if the temperature linearly decreases with
the altitude z, then the atmosphere is in a steady state
(of course, provided that the temperature of the Earth’s
surface is constant). Indeed, the function 1(2) is har-
monic. Therefore, (in accordance with the Fourier law)
the temperature field does not vary with time.

Ift=1,(1-€2,0<z< %,TO =T1(0) then formula(6)

acquires the form

km—g -1
To€

P(2) = po(l-£2) (7
In the problem on the equilibrium of the atmospherein
the Newtonian gravitational field, the harmonic func-

tionshavetheform ? +b.Assuming, eg., T = a?l,where

a=kt(R), we have
mG

DrD ka

p(r) = cr[ﬁj , € = const>0. 8)

The integral (5) converges in the case when the condi-

tion %3 > 4 holds. Thisiscertainly true, provided that

the temperature of the Earth’s surface is not high.

The goal of the present paper is the application of
methods of statistical mechanics for deriving formulas
similar to (6)—8) for density. In this case, however, we
should change the canonical probability distribution in
phase space for other distributions whose densities
depend only on the total energy.

2. NONCANONICAL DISTRIBUTIONS

Let M = {x} be aconfiguration space of a mechani-
cal system with n degrees of freedom, P = T*M its
phase space, and

1
H = ézaij pip; + V(X)

the Hamiltonian function. Here, p,, ..., p, are canonical
momenta conjugate to coordinates x,, ..., X,, and V is
the force-field potential.
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Let g M - R be the nonnegative function deter-
mining the probabilistic measure on M:

J’g(x)d”x = 1.

Following Gibbs, we write out the probability den-
sity distribution on P intheform f(BH), wheref(:) isthe
nonnegative function of a single variable and 3 is a
parameter whose dimension is inverse with respect to
energy.

Averaging the density f over momenta, we arrive at
the integral equation

jf(BH)d”p = g(x). )
o

Thefunction g is considered to be given, whilef should
be determined.

At each point x 0 M, the kinetic energy can be
reduced to the quadratic sum by means of the linear

change p = Cy:
(Ap,p) = (V.y), A= |ay.

Passing to the spherical coordinatesin R" = {y}, we
transform equation (9) to the form

J’r”‘l[ﬁ%+\/g}dr = c./[Ag, (10)
0
r(n/2)

o2

function of the potential V. We take, for the sake of
brevity, that

where ¢ = It follows, then, that /A g is a

n-2

p(BV) = B TAlg.

Then, from Eg. (10), we obtain for the function f the
integral Volterra equation of the first order

n-2

J’(Z—E)Tf(i)dl = p(8). (11)
13

Theinsignificant difference from the classical case con-
sistsin the fact that the integral in Eq. (11) isimproper.

The form of the solution to Eq. (11) depends on the
evenness of the dimension n. Let n be even and equal to
2s+2(s=0). Then,

S (DT

f(z) - (S+ 1)!dES+l

P(&). (12)

In this case, of course, the (s + 1)th derivative of the
function p(§) must decrease sufficiently rapidly as
& — o in order to provide the convergence of the
improper integral in the left-hand side of Eq. (11).
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For an odd n, after several operations of differentia-
tionwith respectto &, Eq. (11) isreduced to an Abelian-
type integral equation so that we can use the classical
Abelian formula[3]. For exampl g inthecaseof n=1,

F(§) = ndgf (u)du

For thisformulato be correct, itisnecessary to havethe
convergence of theimproper integral and its continuous
differentiability with respect to the parameter &.

3. APPLICATION OF THE RESULTS
TO THE FINITE ATMOSPHERE

The solution to Eq. (11) acquires an especialy sim-
pleform for n=2 and, hence, f = —p' [see formula (12)
for s=0]. Using relationship (7) for the density of the
atmospheric column, we arrive at the formula

f(BH) = e -2 EHD

Here, T, correspondsto the temperature near the Earth’'s

Y1 Y2
2m

g .The

mg
-2
KT

(13)

surface, ¢ is the normalizing factor, and H =
mgzisthe Hamiltonian. Itisclear that 0 <H <

multiplier mig playstherole of the parameter 3.

Since T =T1,(1 —€2), thetemperatureisindependent of
the dltitude as € — 0. Therefore, formula (13) trans-
forms into the classical Maxwell-Boltzmann-Gibbs
distribution

H
f = cexp E—k—E.

Thus, formula(12) presents an example of aprobability
distribution that differs little from the canonical distri-
bution at small values of the parameter €. The theory of
these distributions for Hamiltonian systems with a
finite number of degrees of freedom isdiscussed in [4].

We now analyze the form of equations of state and
the dependence of the energy on thermodynamic
parameters for a rarified gas obeying distribution (13).
To do this, we consider asmall closed plane vessel dis-
posed in the vertical plane R? = {x, z} with small
dimensionsthat are compared to the altitude z. Let v be
the vessel volume (to be more precise, its area). The
normalizing factor c in formula (13) can be found from
the equality

J’J’f(BH)dzydo =1,

where do isan area element in the vertical plane. From
this formula, we obtain

KOZLOV

_ 2nvm’g(l-e2)" " ‘mg
e(a-1) Ktoe

Furthermore, the energy of the gas placed in the vessel
is determined as the average value of the Hamiltonian

NJ’J’Hfdzydo,

where N is the number of particlesin the vessel.

From relationships (13) and (14), we obtain the for-
mula

and a = (14)

E = Nkty(1-€2) + Mgz. (15)

Here, M = Nmisthe mass of the gas occupying the ves-
sel. The first term in formula (15) has the form Nk,
where 1 isthe temperature of the gasin the vessel. This
is the internal energy of the perfect gas being deter-
mined by the motion of its molecules.

In order to derive the equation of state, we should
employ the well-known relationship

_ oH
A= -M[5R

Here, A is the thermodynamic parameter and A is the
corresponding generalized force. In our case, A is the
gas volume v, while A is pressure p. Since the depen-
dence of the Hamiltonian on the volume is not given
explicitly, in order to calculate pressure it is necessary
to transform the right-hand side of relationship (16). In
doing so, we reduce it by calculating the derivative
(with respect to v) of a certain multiple integral.
Employing these relationships (14), we arrive at the
equation of state

pv = Nkty(l-¢€2).

With regard to the accepted altitude dependence of tem-
perature, this equation, apparently, is equivalent to the
equation of state (3) for perfect gas.

fd’ydo.
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1. Allowing for the action of a temperature field
T(r, 6, ¢), we study the stressed state of an elastic body
filling the region described in the spherical system of
coordinates by the relationships:

Q<r<ay, <0<sw, -M<LoH<T

It is assumed that the diding-attachment condition
is satisfied on the conical surfaces®=w,,i =0, 1;i.e,

Ug(r, o, ¢) = 0, To(r,w, d) = Tee(r, w0, ¢) =0,
i =01, (D
and that they are thermally insulated; i.e.,
oT(r, 8, 9) =0, i=01 )
ae 6=,

On the spherical surfacesr = g, i =0, 1, the boundary
conditions can be arbitrary, but for the sake of certainty,
wewill restrict our consideration by the following con-
ditions:

To(a,8,9) = 1,4(a,6,0)=0, i =01,
0 (a 6, ¢) = T(an 6,¢) = 0, 3
o(a;, 6,9) = -p(8,9), T(a;,6,¢) = q(8, ¢).
Taking into account the formula[1]

_ 2GT 20 Ba:HN ou,
2t = 210 = | PREH TS @
we can seethat the second condition of (1) issatisfied if
Ul -9 =01 )
00 0= w

2. For solving the formulated problem, the ther-
moelasticity equations are preliminarily transformed.

Mechnikov University,
ul. Petra Velikogo 2, Odessa, 270100 Ukraine

We introduce the designations for the displacements:
2Gu,(r,0,9) = u(r, 6, ),
2Gug(r, 8, 9) = V(r,6,¢), (6)
2Guy(r,8,¢) = W(r, 8, ¢).
Instead of the desired functions, their Fourier trans-
forms with respect to the polar angle are introduced:
u, V,
W, T,

()

u(r,6,9) V(r,6,d)
W(r,0,¢) T(r,86,d)

—|n¢d¢

1 1

= E‘F[J’
—Tt

In this case, the thermoel asticity equationsin the spher-

ical system of coordinates can be represented in the
form[1, 2]

AU, —2u, —2cosecB(V,sinB) — 2incosecOW,
1 0o, - 2[(V,sinB)’ I
ik AL “rane )

rlndNrDD 2
*sneCrOH= O T

(8)

|

AV, + 2u;,— cosec’ 6V, — 2incosecO cot OW,,

1 1(r’u) (V,sinB)" . o .
+1—2H[ . + Sno +|an} = a,rt,,

AW, + 2incosecOu, — coseczewn

+ 2incosecBcot 6V,
)

_ ouinr
sme }_ sinB

in r(r’u,) , Vo sme)
1—2u[ r sin@

ns
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AT, (r,8) = 0.

Here, the signs prime and dot signify the derivatives
with respect to r and 6, respectively;

ALf(r,0) = (r*f) —0,f

n’ ¢_(snef)"
. 2 - ; ’
sin’e sin®

(10)

0,f(r,0) =

o, =(1-2wW"'G(1 +4way and y, G, and oy are Pois-
son's ratio, shear modulus, and expansion coefficient,
respectively.

As in [3], we introduce the auxiliary functions to
simplify Egs. (8):

Z,(r, )
G

_ 1 Qsinevn(r,e) T ‘
= — +in
SN0A| g

This enabled us to transform equation (8) to the form
(rzu'n)' ~0

v, (r, e)

u,—2u,—-227Z,
(12)

(r’Z;) =t 0,Zy — 20,4,

_1_12“w = —Q rD Tn’ (13)
(r’z¥y' -0,z* =0, (r*T) -0O,T, =0,

where p=2(1 — p)(1 - 2p)~1.
If the boundary conditionsfollowing from (2) and (5),

ur;(r!(‘oi) = Tr;(r!(*)i) = Zr;(rv(*)i) = 01 (14)
are imposed on the solutionsto Egs. (12) and (13), then
the integral transformation constructed in [4] should be
used to reduce Egs. (12) and (13) to one-dimensional
equations. Thekernel of thistransformation isthe func-
tion (m=|n|)

(8, v) = P\T(cose)w
dow,
(15)
m dPy'( cosw
_QV(COSG)#’ v = Vﬁ,

0
satisfying the Legendre differential equation

B @y )+v(v+1)¢(® Vv) =0 (16)

POPOV

and the boundary condition

[6(8, vl

Here, the real-valued numbers vi, k=10, 1, 2, ..., are
found from the transcendental equation Qg(vy) = 0,

=0, 8=w, i=01 (17

k=0,1,2,..., where
Q (V) _ m+1 m+1
+m[cotw,Q ™+ cotw, QT (18)

+m cotooocotoole’

The transforms of the desired functionsin thisinte-
gral transformation are determined by the formulas

unk(r) 0y un(ra e)
Zu(n)| = [SinB|zZ,(r, 6) (6, vi)de.  (19)
Tnk(r) @ Tn(r1 e)

According to [4], the inversion of these transforms is
given by the formula

un(r,G) L unk(r) m c
676, vY)
20| = =3 |20 O )
7.0 T ™
<0< W,

where (with allowance for corrections made in [4])

1 _2v+ 1dQJ(coswy)
O-r(-:n k(wo, (.1)1) rm(V) d(}‘)0
dQ\(cosw,) d
[ éwl : Q v )}
2m 1 l 1
2 r%u m+ 2 \)jr +3 +—v%
M(v) = 1
F%l——m+ VDF m+ \%
VEERVIS

On account of (14), (16), and (17), the transition to
transforms (19) reduces Egs. (12) and (13) to the fol-
lowing one-dimensional equations:

[r2up(N] =12+ Ny U — Habs Zog

+ HoHx T Zpe = O, M T2 Tri(r), on
[r*Zn (1] = Ny Zoy — BN, Upy
—ZU* Nvunk = _apr NVT;k(r)v
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[r*Z3(N] =Ny Z(r) = 0,
(I’ Tnk) _Nank(r) = 01

i (22)
V =V,

where
Mo = (1-2p)7,
by = (3-4p)(1-2p) ™

3. In order to solve Egs. (21), we introduce the fol-
lowing functions:

N, = v(v +1),

Yo(r) = Un(r), yi(r) = rug(r),
Ya(r) = Zn(r), ys(r) = rZy(r), (23)
fa(r) = o P Thd(r),  fo(r) = —a,NyrTo(r).
In this case, with regard to the equalities
ryo(r) = ya(r), rya(r) = ys(r),
) . . 24)
(r unk)I = r(runk)""runk!
equations (21) can be written in the vector form:
ry(r) = Py(r) = f(r), ap<r<a,, (25)
where
H o 1 o o H
CH2HWIN, -1 W WEHoR
P«= g 0
0 0] 0 0 1 0
O O
U* Nv HONV IJ«* -1
O O 26)
0, O
0 Yo E 0 E
Dle O f1D c
y(r) =070, f(r) = 0~ V = Vg
EYZE 0900
Oys[O Of,0

Assuming the right-hand side in (25) to be zero at
the interval (0, «), we apply the Méellin integra trans-
formation to (25):

Ys
fs

-1|ly(r) dr
f(r)

As aresult, the solution to Eq. (25) is obtained in the
form

0

() = [oHe®,
ay
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where CD%% is the fundamental matrix function [6, 7]
of Eq. (25), which is determined by the formula

y+|00
00— _ 0
qJEﬁ] 2m‘[(sl k)qﬂds
_yjm'“’ 27)
A
2m j (€1 =Py Eﬁjdé
Y

For calculating the last integral, we take into
account that [5, 6]

(E1-P)™ = Q' (8)Ar, —PYA;,

1Q,(€) = (&l

Q,(€) = det(¢l
(28)

= £+ 28°— (2N, + )8 - 2(N, + 1)& + N,(N, - 2),

P = [(-8)
j=1

vV = V.
We then find the roots of the characteristic polynomial,

&, =-2-v,, & =-1+v,,

. (29)
&3 = Vi,

and represent the characteristic matrix intheform[5, 6]
3

(®) = yEad,

i=0

&y = 1+Vﬁ

(30)

In doing so, we find the numerical matrices A", j =
0, 1, 2, 3, by substituting (28) into the second equality
of (27) and then compare the coefficients by multiply-
ing the powers of &. Asaresult, we have
AS = |

AY = 2P+ Pi— (2N, + 1)1,

AP = 21 +P,,

AY = 2P2 + P} — (2N, + 1)P, — 2(N, + 1)1,
vV = vy
Moreover, the quantity A(gk)
the formula
A% = —Ny(N,-2)P,,

This formula can serve as the control of calculations.
Using (28) and (30), we obtain

can also be determined by

vV = V.

(&1-PY~ = Z G 31

NG (E)
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Substituting (31) into (27) wefind

CDEFD_ ZA(sk)J ‘Eﬁj
ViR = Rap
(32)
Jao - 1
Qﬂ 2
—y+ioo
1 oo

| Toenenene

Assuming that —y > —v, and v; = 1, and using the
theorem on residues and the second equality of (32), we
obtain

v,HE = vi(x)
0 0
1 1 D (—v)'x”, x>1%
2(2V+1) 2V — 1|:| (V 1)1 v-1 X<1D
O
0 0
1 —2-v)'x?V x>1
D (v+1)x"*1 x<1%

v=v;, j=01,23.

4. Thus, the solutions to both inhomogeneous equa-
tion (25) and set (21) are obtained. However, to find the
solution to the formulated problem, it is necessary to
satisfy boundary conditions (3). We write these condi-
tions as applied to the functions satisfying Egs. (12) and
(23). Conditions (3) in terms of the Fourier transforms
with respect to the polar angle can be written in the
form

Tren(ah e) = Trcpn(ai’ e) = 0’ i = 01 1;
On(80, 0) = Th(an 8) = 0
O-rn(al! e) = _pn(e); Tn(alf e) = qn(e)

By analogy with (11), we introduce combinations of
tangential stresses (in terms of their Fourier transforms)

(33)

T,(r, 6)
T, (r, 0)
_ (34)
- é_i];é s.ne‘[ren(rv e) +in 1--rctan(r- e) B
SiNBT,,(r, 6) T,gn(r, 0)[|0

POPOV

Using the Hook law in the spherical system of coordi-
nates [1], we can show that the following formulas are
valid:

2rt, =rZ,—Z,—OpUp, =rZy' -Z;.

After applying integral transformation (19), they take
the form

*
2rt,

2rTnk = ran_znk_l\lvunk1

(35)
2rtyy = 1Zy = Zj.
By virtue of (34), fulfilling the conditions (33) leads
to the equalities

1,(a,0) = 13(a,0) =0, i =0,1,
or, after applying transformation (20),
(@) = T(g) =0, i =01

By virtue of (35) and designations (23), thelast rela
tionships are reduced to the equalities

NyYo(a) +Y2(a) —ys(a) = 0,
aZn(a) —Zn(a) = 0,

On the basis of the relationship between stresses and
displacementsin the spherical system of coordinates[1],
and with alowance for (6) and (11), we establish that

(1_ZU)r0rnk = 2Hunk + (1_p-)ru:1k + uznk
—(1-20)d, Ty

Therefore, after applying transformation (19) and tak-
ing (23) into account, conditions (34) can be written in
the form

2uyo(ag) + (L—H)y1(a0) + Hy2(a9) = O, 37
2uygay) + (L —wys(a) + uyx(a) = —(1—2) Gk,
Onk = alpnk_auan!

Tnk(ao) = O, Tnk(al) = Onk- (38)

Here, we introduce the matrices A and B and the vector
v, which are determined by the formulas

(36)

EN 0 1-0
A = D 0O 0 00O D
DZU (1-p)p O D
Oo o ooO
(39)
o 0 [
5 0 g
—_ _ C
Y = mE 0 E, V =V,
H(1-2p)g,d
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(The matrix B is obtained from the matrix A by permu-
tation of the lines: the first and the third lines are replaced
by the second and the fourth ones, respectively.) Thus, in-
stead of formulas (36) and (37), we may write out

ULy(r)] = Ay(ao) + By(a,) = ¥. (40)

5. For solving the boundary-value problem (23) and
(40), we preliminarily construct a solution to the matrix
differential equation

rz'(r)-pP.Z(r) = 0. 41)

Using the Cauchy theorem, it is possible to show
that the function

_ e ohaee - 1 A(E)

2(r) = 55§18 =P Tdé = 5585 15

r r

isasolutionto Eq. (41) [6, 7], where T isaclosed contour
enveloping al the zeros of Q,(§). Substituting (30) into
this formulaand taking (29) into account, as was the case
when calculating integra (27), we cometo the formula

3
Z(r) = zAng,-w,-(r), 2(2v + L)wy(r)
i=0

rdg

)T () w+2) (42)
2v + 3

(W) ==t _ e

* v_1 V= Ve

Using the constructed solution to Eg. (41), we find
the basis matrix W(r) for the boundary-value problem
(25) and (40) [6, 7]. It must be a solution to the matrix
boundary-val ue problem

rY'(r)—PW(r) =0, ay,<r<a;, U[W(r)] =1I.
It is easy to verify that its solution is the matrix

W(r) = Z(r)u[z(mn™. 43)
It is possible to show [6, 7] that the matrix
— 0,1 I

G(r,p) = ® 3 w(r)u[qaqﬂ} (44)

isaGreen matrix for the boundary-value problem (25),
(40). Therefore, the solution to the boundary-value
problem (25) and (40) hasthe form

a

y(r) = !’OG(r,p)f(p)dp+W(r)v, 45)

Qp<r<a,.
All that remains is to construct the solution to the
boundary-value problems (22), (36), and (38). Since
the boundary-value problem for Zj, (r) is homoge-
neous, its solution is zero; i.e.,

Zh(r)=0, Zn(r,8)=0. (46)
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For solving the boundary-value problem for the
function T, (r), it is sufficient to construct the basis set of
solutions Yj;(r), j = 0, 1, to this problem [6, 7]:

[P—quV+1|:Pq:|V+l Iji—(DZV‘FlDr |:l\}

AW =Fn oo "hO P
_ !
A@) =1-g5
A B Dr |:|V IZP_q]z\;+1|:ﬁ]1:|\)+l _ c
@0 =g 55 Go o V=V

In this case, the solution to boundary-value problem (21)
and (38) takes the form

Tnk(r) = LlJl(r)an-
Thus, al the desired functions of the solvable sys-
tem of Egs. (21) and (22) are determined.
6. It remains to determine the functions V,(r, 8) and
W, (r, 8) by using the obtained auxiliary functions Z(r,
8) and Z; (r, 0). The desired functions must satisfy

boundary conditions (1) with allowance for designa
tions (6) and the passage to the Fourier transforms.
These can be written in the following form:

Vo(r, @) =0, r’[rVy(r, o)] +usr, w) = 0,

W, (r, ) — cotwyW,,(r, ) +inV,(r,w) = 0, (47)
i =0,1.
All these conditions will be satisfied, provided that
un(r,w) = 0, Vy(r,w) =0,

(48)

W, (r, W) —cotwW,(r,w) =0, i=0,1.
The first of these conditions has already been satisfied
through applying integral transformation (19) to
Eqg. (21). To satisfy the two remaining conditions

of (48), it is necessary to carry out operations allowing
the functions V,(r, 8) and W,(r, 6) to be determined

from the known functions Z.(r, ) and Z; (r, 6). For
this purpose, as was shown in [8], it is necessary to
solve the equations

Vi (r,8) cosecO[Z,(r, )sin’0]
W (r, 8) inZ,(r, 6)

Here, we take into account that (46) isvalid, amisprint
in [8] is corrected, and the following designations are
introduced:

V*(r,8) = sn@v,(r, 8),
WE (1, 8) = sinBW.,(r, 0).

-0, . (49)

(50)
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To satisfy conditions (48), it is necessary to impose
the following boundary conditions on equations (49):

Vi (r,w) =0,
(51)

W (r, @) —2cot W (r,w) = 0, i =0,1.

These conditions dictate the use of the integral
transformations [4]

w.

:fsne

W

Vi (r, 8)63(8, vi)
Wi (r, 8)05'(8, Vi)

V()
Wo(r)

de (52

for solving differential equations (49). Here, according
to[4],

$2(8, v) = PJ(cosB)Qy'(coswy)

—PJ'(cosw;)Q'(cosB), Vv = Vi,

(53)
®7(6, v) = PM(cosb)l}Q(cosh)
—Q"(cosB)I;PM(cosB), v = v,
h . .
liy(0) =y (w)+hy(w), i=01, (54)
h, = —2cotw,.

Eigenfunctions (53) will satisfy equation (16) and
boundary conditions (51) if the eigenvalues v; and VE
are found from the transcendental equations

Qv =0, QN(V) =0, k=01,2,...,

where Q7' (v)= Q"™ , and Qp' (v) is obtained from (18)
by replacing the factor m(not the superscript) for m—1.

Applying the integral transformations (52) to the
equations (49), we obtain

]

Vi) = - [Zo(r, 8)sin’84(8, v)do, v = v

Wy

Wi (r) = —:\I—nJ'Zn(r, 8)sinB¢,'(6,v)de, v = VE.

Using the inversion formulas for integral transfor-
mations (52) obtained in [4] and taking (50) into
account, we find the Fourier transforms for the dis-

POPOV

placements:
[Va(r, 8), W,(r, 0)]

*(DOT(8, Vi) WE(N)$E(8, vy)

a ! b
Om k(0q, 1) O m (0, W)

_ 1 o
B sinez
k=0

where, according to [4] (with allowance for correcting
the misprintsin [4]),

(55)

1 _ 2v+1Q0(eosw)dQiy) .

O (W, W) Fv(v) QM(coswy,) AV <
1 _ 2v+11iQ0(cosB)dQr(v)

, V=V,

Oh (@ @) v 1°QT(cose) IV

Formulas (55), together with (20), determine the
transforms of the desired displacements and tempera-
ture. To determine the originals, it is sufficient to use
the inversion formulas for the Fourier transforms. For
example,

[

u(r.8,9) = 2Gu,(r.8,9) = Y u,(r, 8)e".

n=—oo

Thus, we obtained an explicit solution to the formu-
lated problem. The method proposed is essentially
based on dliding-attachment conditions on the conical
surfaces (1). The boundary conditions for temperature
can be arbitrary for all boundary surfaces. They can
also be arbitrary for elastic displacements and stresses
on the spherical surfacesr =g, =0, 1.

REFERENCES

1. W. Nowatskii, Theory of Elasticity (PWN, Warszawa,
1970; Mir, Moscow, 1975), trandlated from Polish.

2. A. D. Kovaenko, Introduction to Thermoelasticity
(Naukova Dumka, Kiev, 1965).

3. G.Ya. Popov, Prikl. Mat. Mekh. 62, 840 (1998).

4. G.Ya. Popov, Prikl. Mat. Mekh. 64, 431 (2000).

5. F. R. Gantmacher, The Theory of Matrices (Gostekhteor-
izdat, Moscow, 1954; Chelsea, New York, 1959).

6. G. Ya Popov, S. A. Abdymanapov, and V. V. Efimov,
Green Functions and Matrices (Rauan, Almaty, 1999).

7. G. Ya. Popov, Elastic Sress Concentration near Dies,
Cuts,)Thin Inclusions and Fastenings (Nauka, Moscow,
1982).

8. G. Ya Popov, Dokl. Akad. Nauk 356, 47 (1997) [Phys.
Dokl. 42, 511 (1997)].

Trandated by V. Bukhanov

DOKLADY PHYSICS Vol. 46 No.9 2001



	609_1.pdf
	612_1.pdf
	615_1.pdf
	619_1.pdf
	624_1.pdf
	627_1.pdf
	633_1.pdf
	636_1.pdf
	642_1.pdf
	647_1.pdf
	651_1.pdf
	654_1.pdf
	659_1.pdf
	663_1.pdf
	667_1.pdf
	672_1.pdf
	675_1.pdf
	678_1.pdf
	681_1.pdf

