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We study the propagation of spin waves through a
periodic structure consisting of ferromagnetic layers of
equal thickness but different magnetization. The wave
spectrum contains forbidden zones determined by the
parameters of both the structure and external magnetic
field. The wave propagation in such a structure is
impossible if its frequency lies in a forbidden zone. In
the presence of a layer with different thickness and
magnetization, the structure symmetry is violated; this
leads to the possibility of spin-mode localization on a
structure defect. The coefficients of wave reflection
from a periodic structure of finite thickness and of wave
propagation through such a structure are calculated. By
analogy with the known photonic crystals, in which
non-transmission zones arise in the spectrum when
light propagates through a crystal, such magnetic
superlattices can be termed magnonic crystals.

In recent years, the problem associated with control-
ling and manipulating the optical properties of crystals
has received much attention. In particular, materials in
which light can propagate only in certain directions or
generally can be localized in certain areas are designed,
constructed, and investigated. Since the properties of
light propagating in them closely resemble those of
electrons in actual crystals, these materials have come
to be known as photonic crystals [1]. In its basis, a pho-
tonic crystal represents a material whose index of light
refraction varies periodically. The most simple example
of a photonic crystal, also called a one-dimensional
photonic crystal, is a one-dimensional multilayered
periodic structure [2]. The spectrum of optical radiation
propagating through such a structure has forbidden fre-
quency gaps. Light with frequencies lying in a forbid-
den gap cannot propagate in the direction perpendicular
to the plane of such a structure. Afterwards, two- and
three-dimensional photonic crystals were also modeled
and obtained [3]. Three-dimensional crystals, in addi-
tion, can have an absolutely forbidden gap. This implies
that the light in such crystals has no possibility of prop-
agating along any direction. Recently it was demon-
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strated that even a one-dimensional photonic crystal
can have an absolutely forbidden gap [4, 5] if a proper
choice of layers is performed in a multilayered struc-
ture. By analogy with photonic crystals, phononic crys-
tals [in which acoustic waves (phonons) exhibit proper-
ties similar to those of light] were also modeled and
obtained [6]. The properties of certain photonic crystals
can be governed by varying the external magnetic field
if one or all layers in a periodic structure are made of a
magnetic material [7].

It is possible to create materials similar to photonic
and phononic crystals in which information is trans-
ferred by spin waves. Such materials possess forbidden
gaps for propagating spin waves and can be termed
magnonic crystals by analogy with photonic crystals.
Over the past decade, multilayered magnetic structures
are extensively studied for investigating giant magne-
toresistance. In investigating their properties, the ferro-
magnetic and spin-wave resonance methods were
applied, but an idea related to using similar structures
as systems similar to photonic crystals was not previ-
ously considered.

In this study, we analyze the dispersion properties of
spin waves in a one-dimensional periodic multilayered
structure (a one-dimensional magnonic crystal) and
present the results of investigations on the reflection and
transmission of these waves through such a structure.

The investigated periodic structure consists of iso-
tropic ferromagnetic layers with the same thickness d
but with different magnetization, M1 and M2. The sys-
tem energy can be written in the form

(1)

where M0 =  is the average saturation mag-
netization, α is the nonuniform exchange interaction

constant, Vf is the volume of the system, and h0 = 
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the circular variables 

U M0
2 dv

α
2
--- ∇ m( )2 1

2
---mh0– 

  ,

V f

∫=

M1
2 M2

2+

H0

M0
-------

M
M0
-------
001 MAIK “Nauka/Interperiodica”



 

688

        

GULYAEV, NIKITOV

                                             

    
(2)

we arrive at the following differential equation:

(3)

where

(4)

and ω0 = γM0 . Having described the solution for the
magnetization in a harmonic form 

(5)

and having set the periodic boundary-value conditions
(similarly to the Kronig–Penning model that describes
the motion of electrons in a periodic potential), we
obtain the following dispersion equation:

(6)

Here, κ1 and κ2 are the propagation constants defined
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Fig. 1. Dispersion of spin waves (the reduced frequency 

as a function of qzd) propagating through a periodic multi-
layered ferromagnetic structure (curves 1 and 4 correspond
to the localized modes).
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by Eq. (4), and qz is the wave number of the spin wave
propagating along an axis perpendicular to the structure
surface. Note that the presence of forbidden zones is a
characteristic feature of the dispersion curves (Fig. 1).
If the wave frequency lies in this zone, the propagation
of waves in such a structure is impossible. However, the
situation changes under conditions when the symmetry
of a system is broken. If a structure contains a layer
with different magnetization or thickness, there appear
conditions in which a wave can penetrate the structure
even when its frequency lies in the forbidden zone. The
dispersion equation of spin waves in the structure with
broken symmetry (one of the layers has a thickness l)
has the following form:

(7)

Figure 1 also shows the dispersion curve for spin
waves propagating in a periodic structure with broken
symmetry (curves 1 and 4 correspond to the modes
localized on defects).

We now consider the reflection of spin waves from
a periodic structure with a finite number of periods and
their propagation through such a structure. First, we
calculate the reflection of spin waves from a semi-infi-
nite periodic structure. If the coefficients of reflection
from and transmission through a single boundary sepa-
rating two ferromagnetic materials are known for a
wave, then the coefficient of reflection from a semi-infi-
nite structure can be represented similarly to that of a
quantum-mechanical particle from a semi-infinite
potential [8]:

(8)

Here, R(→) and T(→) are the corresponding coefficients
of reflection and transmission of spin waves through a
single boundary. In the case of spin waves, the bound-
ary value condition with partially fixed spins at the
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interface between the two ferromagnetics has the form:

(9)m±∂
n∂

--------- ξm± 0,=
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where ξ is the spin fixation parameter. Hence,
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In order to describe the coefficients of reflection and
transmission for a finite-length lattice (for a wave inci-
dent onto a structure from the left), it is necessary to
note that to the left of the structure there are both inci-
dent and reflected waves, whereas to the right, there is
only the transmitted wave. Inside the structure itself,
there are waves propagating from the right to the left
and vice versa. Satisfying these end conditions, we
obtain the coefficients of reflection and transmission of
a wave from a lattice of the finite length L:

(12)

(13)

where ∆ = κ1 + κ2 . The plots for the coefficient of trans-
mission of spin waves through the periodic structure
consisting of 100 periods are shown in Fig. 2 as a func-

tion of the wave number . In the calculations, we

used a periodic structure composed of nickel and iron
layers with a thickness of 0.1 µm, and the other param-
eters were chosen in accordance with the experimen-
tal study [9] devoted to investigating the spin-wave res-
onance in layered ferromagnetic structures. It is seen
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Fig. 2. Transmission coefficients for spin waves propagat-
ing through a periodic structure containing 100 periods of
ferromagnetic nickel and iron layers (peaks 2 and 3 corre-
spond to the modes localized on defects).
that there are peaks of almost total transmission and
total reflection (corresponding to the forbidden zones).
The peaks 2 and 3 correspond to the modes localized on
defects. The thickness of a defective layer was taken to
be 0.15 µm.

Thus, we considered the propagation of spin waves
through a periodic multilayered structure consisting of
ferromagnetic layers with the same thickness but differ-
ent magnetization. The wave spectrum contains the for-
bidden zones. The transmission coefficients of waves
having the frequencies within these zones are virtually
equal to zero; i.e., such waves are almost totally
reflected. By analogy with photonic crystals, such
structures may be termed one-dimensional magnonic
crystals. As with the photonic crystals, it is possible to
work out and investigate both two- and three-dimen-
sional magnonic crystals.
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The process of electric conduction was studied on
the basis of experimental results for current–voltage
characteristics (CVCs) of metallic conductors (copper
wire with a length L0 = 50 mm and diameter d =
0.1 mm) for a direct current up to its maximum density
(at jmax ~ 2 × 109 A/m2 samples collapse) under near-
isothermal conditions (cooling by running water at T .
290 K). It was established (Fig. 1) that CVCs of con-
ductors under the indicated conditions can be approxi-
mated by the dependence

(1)

where a ≡ ρ0 is the resistivity of the material for j 
0 and b is a positive constant [experimental values for
copper are: ρ0 = (1.98 ± 0.04) × 10–8 Ω m, b = (3.84 ±
0.24) × 10–18 V m3/A2]. Analogous measurements
under similar conditions were carried out [1] for nickel
foils (δ ~ 5 µm) whose CVCs had the same shape as
those displayed here.

A nonlinear behavior of the CVCs (for j > 3 ×
108 A/m2) is accompanied by conductor deformations
(elongation) ∆L(j), which, like the resistivity of the

sample material ρ(j) =  (Fig. 2), are temperature-

dependent: ∆L(T) = L0αT∆T and ρ(T) = ρ0(1 + αρ∆T).
From here, we obtain the relation

(2)

where αρ and αT are, respectively, the coefficients of the
resistivity and of the linear elongation for a conductor

and ej ≡ e(j) =  are the relative conductor strains

caused by the action of the electric current.

Comparing relationships (1) and (2), we obtain that
the indicated relative strains should be defined as

(3)
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where the coefficient γ will be referred to as the galva-
nomechanical coefficient. Correspondingly, according
to (3), the current dependences of resistivity and tem-
perature must also be linear:

(4)

It can be seen that, under the condition of intense
cooling of a sample, the Joule law of heat release,
which is quadratic with respect to the electric current,
does not manifest itself explicitly in the form of current
dependences e(j), ∆ρ(j), and ∆T(j). Therefore, expres-
sions (3) and (4) describe the nonthermal action of the
electric current on the conductor parameters.

It is of interest that the first experimental investiga-
tions of this nonthermal effect of the electric current on
the physical properties of a metal were carried out as
early as 1844 by Wertheim [2]. From the elongation of
wire samples of various metals subjected to constant
mechanical loading under conditions of the electric-
current conductance j ~ 107–108 A/m2 or only under
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Fig. 1. Current–voltage characteristics E(j) for copper-wire
samples (with the length L0 = 50 mm and diameter d =
0.1 mm): the circles are experimental data, and the solid
line represents the approximation. E(j) = aj + bj 2; a =
1.98 × 10–8, sd = 3.86 × 10–10; b = 3.84 × 10–18, sd = 2.41 ×
10–19; R = 0.999.
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thermal action, the Young elastic moduli G1 and G2 of
the studied material were determined at a fixed sample
temperature. The obtained difference ∆G = |G1 – G2|
served as an evidence for the nonthermal effect of the
electric current on the value of the elastic modulus of a
metal. These investigations are a unique physical exper-
iment, and a priority in the discovery of the phenome-
non of mechanically stressed states under the action of
electric current belongs to Wertheim. Unfortunately,
this phenomenon was not appropriately perceived at
that time. Only after a lapse of 125 years it was redis-
covered by Troitskiœ [3].

Nowadays, the mechanically stressed state of a
metal conductor induced by a high-density electric cur-
rent (j ~ 108–109 A/m2) is vigorously studied (see, for
example, [1, 4–8]), in particular, with the purpose of
practical applications. However, in our opinion, the key
physical problem considered in this paper has yet not
been posed.

Following formula (4) for ∆ρ(j), we find, as a result,
the specific analytical expression for the CVC specified
by physical parameters of the metal conductor

(5)

This expression agrees qualitatively and quantitatively
with the experiment (Fig. 1) [for copper with γ = (7.7 ±
0.4) × 10–13 m2/A].

Correspondingly, we can write out the relation
between the electric-field strength in a metal and its gal-
vanomechanical strains:

(6)

Here, a certain analogy is noted with the piezoelectric
effect in dielectrics; however, contrary to the piezoelec-
tric effect that exists only in crystals without a center of
symmetry, the effect described by expression (6) is
observed in metals of an arbitrary crystal system. This
phenomenon can be conventionally named the electro-
elastic effect.

Numerical estimates of coefficients ahead of ej show
that, for elastic strains in a metal (e ≤ 10–4), the first
term in (6) is at least by two orders of magnitude larger
than the second term. Therefore, for routine values of
current density (j ≤ 107 A/m2), the dependence E(ej) is

linear (for copper, the coefficient  . 2.6 × 104 V/m).

As can be seen, the presence of an electric field in a
metal is related to the mechanically stressed state of a
conductor under the action of electric current. From the
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elastic energies (G is the elastic Young modulus), we
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find the electric induction in the conductor, which can
be written for the linear part of expression (6) as

(7)

Here, the coefficient τ has the dimension of time and is
equal to 3.8 × 10–6 s for copper. Thus, the electric field
in a metal is the consequence of the electric polarization
of the conductor material in the process of passing the
electric current.

An expression similar to formula (7) can also be
obtained from the material relationships of electrody-
namics as applied to an electrically conducting
medium:

Here ε is the relative permittivity of the medium, and ε0
is the dielectric constant. The physical meaning of the
coefficient τ' = εε0ρ can be understood from the conti-

nuity equation divj +  = 0 in our case, j =  and

the Gauss theorem divD = ρq (ρq is the space-charge
density at a given point). Upon integrating this equa-

tion, we obtain ρq(t) = ρq(0)exp , where τ' is the

relaxation time for a charge in a conducting medium.

It should be noted that the estimate of τ, which is
obtained from the electroelastic effect, correlates in the
order of magnitude with the value of the relaxation time
for a charge in a metal (τ' ~10–6 s as was reported
in [9]). Taking τ ≡ τ', we estimate the order of magni-
tude of the relative permittivity for a normal (nonsuper-
conducting) metal (under the condition of passing the
direct electric current) by expressing permittivity in
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Fig. 2. Resistivity ρ(j) and absolute elongation ∆L(j) of cop-
per wires as a function of the electric-current density j.
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terms of the material parameters of the metal: ε =  ~

1013−1014. In our opinion, such a value of ε is physically
reasonable, because, in the case of a flowing electric
current, the electric field in a normal conductor is very
weak but nonzero, in contrast to the essentially zero
electrostatic field of a conductor.

The additional experiments intended to verify the
electroelastic effect in metals were carried out with the
indicated wire samples without their intense cooling,
i.e., in conditions of considerable heating (T . 400–
600 K) by the electric current (j < 1 × 108 A/m2) in the
ambient air. In this experiment, the CVCs E(j) and the
current dependences of the absolute elongation ∆L(j)
and the resistivity ρ(j) were found to be substantially
nonlinear; however, the strain dependence E(ej)
remained linear.

Thus, it was established that the electric-field
strength E(j) in an electrically conductive metal in the
process of passing an electric current and its mechani-
cal strains ej caused by the action of the electric current
of a standard value (j ≤ 107 A/m2) are connected by a
linear dependence. It is physically logical to assume
that the indicated phenomenon of the galvanomechani-
cal strain E(ej) is characteristic of arbitrary conductors
and can be observed at all temperatures of the con-
densed state of matter (above the temperature of super-
conducting transition).

The electroelastic effect E(ej) makes it possible to
alternatively define the difference in electric potentials
(electric voltage)

in a metal as the work of extraneous forces (for defor-
mation of the crystal lattice of the conductor per unit
charge) in the process of passing an electric current. As
a result, the electric field in a conductor is caused by
scattering of the drift pulse of current carriers on heter-
ogeneities of the conductor crystal lattice. This scatter-
ing leads to the relative shift of the centers of mass for
positive and negative charges, which is responsible for
the electric polarization of the medium. In this case, in
order to create the electric field in a metal under the
action of an electric current, the energy of the electro-
motive-force source must be permanently spent for
heating the conductor. Therefore, the process of passing
the electric current without the energy dissipation in the
case of superconductivity proceeds essentially without
a drop of the electric voltage in the conductor.

The character of dependence (3) for e(j), which fol-
lows formally from the analysis of the experimental
CVC (Fig. 1), can be physically explained by an excess
pressure of the conduction-electron gas in the metal
crystal lattice in the case of passing an electric current.
This pressure is induced by the overheating tempera-
ture of the electron gas, ∆T(j) = Tel – Tlatt , with respect

τ
ρ0ε0
----------

U E e j( ) Ld

L

∫ ρ
γ
---∆L j( )= =
to the lattice temperature [10]. In this case, due to the
presence of ∆T(j), the resistivity ρ(j) of the material
must essentially depend on the electric-current density,
and it increases with the current even for a sample
maintained, in one way or another, at a constant tem-
perature. As estimates show, according to relation (4),
the dependence ∆ρ(j) for a copper conductor manifests
itself markedly only for the currents j > 2 × 108 A/m2

when ∆T(j) ≥ 10 K; i.e., this dependence has a threshold
character with respect to the current. This fact is also
confirmed by the results of our experiment (Fig. 2).

Using the value of the galvanomechanical coeffi-
cient (γ = 7.7 × 10–13 m2/A) obtained experimentally for
a copper conductor, we can estimate the ultimate
strength σu for a copper whisker (1 µm in diameter and
10 µm in length), whose explosive collapse occurred,
according to [11], under conditions of intense cooling
for the current densities j > jcr . 1.5 × 1011 A/m2. In this
case, σu = Gej = Gγjcr ~ 2 × 1010 N/m2, which corre-
sponds to the theoretical value of the ultimate strength
for a metal (~G/10).

For such currents, the volume density of electric

energy in a metal,  = ρj2τ . 109 J/m3 , is on the

order of the thermal-energy density for an actual ther-
moionic cathode qT = cρmT (ρm and c are the density
and specific heat capacity of the material, and T = 2 ×
103 K). Using (4) for ∆T(j), we obtain that, for j ~ 5 ×
1010 A/m2, the temperature of overheating for the con-
duction-electron gas above the lattice temperature in
the process of passing the electric current is ∆T . 3 ×
103 K. Therefore, under such conditions, the ther-
moionic emission must occur from the surface of a cold
metal (Tlatt ! Tel). In fact, this emission was observed
in  [11] when, for j . 1 × 1011 A/m2, the emission cur-
rent was detected from the surface of a copper single
crystal whose temperature Tlatt did not exceed 373 K. It
is interesting that the anomalously high electron emis-
sion from thermoionic cathodes at the heating current
density j ~ 1011 A/m2 has long been known [12]; how-
ever, there was no satisfactory explanation for this fact.

Thus, we can conclude that the existence of the elec-
tric field in a conductor is caused by the mechanically
stressed state of the medium under the action of electric
current. Therefore, the Ohm law E(j) for electric con-
duction is the formal generalization of two physical
phenomena: the galvanomechanical strain ej of a con-
ductor caused by scattering of a drift pulse of current
carriers in the crystal lattice, and the electric polariza-
tion arising in this case, which is a source of the electric
field E(ej) in the conductor. It is essential that the resis-
tivity ρ(j) of the conductor material depends on the den-
sity of the electric current and increases with current
not only due to the Joule-heat release but also due to the
current dependence of the temperature ∆T(j) of the
heating of the electron gas with respect to the lattice

ED
2

-------- 1
2
---
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temperature. Introducing a new material characteristic
for a conducting medium, the galvanomechanical coef-
ficient γ, which is of the same importance as the resis-
tivity ρ, makes it possible to refine and extend our
notion about the range of physical phenomena accom-
panying the process of passing an electric current.

REFERENCES
1. V. V. Sidorenkov, Dokl. Akad. Nauk SSSR 308, 870

(1989) [Sov. Phys. Dokl. 34, 926 (1989)].
2. G. Wertheim, Ann. Phys. Chem. 11/11, 1 (1848).
3. O. A. Troitskiœ, Pis’ma Zh. Éksp. Teor. Fiz. 10, 18 (1969)

[JETP Lett. 10, 11 (1969)].
4. V. I. Spitsyn and O. A. Troitskiœ, Electroplastic Deforma-

tion of Metals (Nauka, Moscow, 1985).
5. V. M. Kontorovich, in Conduction Electrons, Ed. by

M. I. Kaganov and V. S. Édel’man (Nauka, Moscow,
1985), pp. 44–100.
DOKLADY PHYSICS      Vol. 46      No. 10      2001
6. H. Conrad, N. Karam, S. Mannan, and A. F. Sprecher,
Scr. Metall. 22, 235 (1988).

7. V. V. Sidorenkov, D. I. Sementsov, and Yu. V. Kornev,
Dokl. Akad. Nauk SSSR 310, 1371 (1990) [Sov. Phys.
Dokl. 35, 188 (1990)].

8. V. V. Sidorenkov and S. L. Timchenko, Inventor’s Certif-
icate No. 1770399, Byull. Izobret., No. 39 (1992).

9. A. Sommerfeld, Electrodynamics (Academic, New York,
1952; Inostrannaya Literatura, Moscow, 1958).

10. P. G. Borzyak and Yu. A. Kulyupin, Electron Processes
in Island Metallic Films (Naukova Dumka, Kiev, 1980).

11. E. E. Vdovin and A. I. Kasumov, Fiz. Tverd. Tela (Len-
ingrad) 30, 311 (1988) [Sov. Phys. Solid State 30, 180
(1988)].

12. V. L. Ginzburg and V. P. Shabanskiœ, Dokl. Akad. Nauk
SSSR 100, 445 (1955).

Translated by V. Bukhanov



  

Doklady Physics, Vol. 46, No. 10, 2001, pp. 694–696. Translated from Doklady Akademii Nauk, Vol. 380, No. 5, 2001, pp. 607–609.
Original Russian Text Copyright © 2001 by Naumov.

                                               

PHYSICS
Self-Similar Solution to Equations of Magnetic Hydrodynamics
for a Pinch of an Elliptic Cross Section

N. D. Naumov
Presented by Academician A. F. Andreev June 25, 2001

Received February 28, 2001
The construction of exact unsteady solutions to
equations of magnetic hydrodynamics is of doubtless
interest. To achieve this purpose, it turns out to be effi-
cient to use the self-similar approach [1], whose merit
consists in the possibility to pass from solving a set of
partial differential equations to integrating a set of ordi-
nary differential equations, which is a simpler problem.
Such solutions to equations of magnetic hydrodynam-
ics were previously obtained for unsteady plasma
motions rated in the class of continuum motions for
which velocities are proportional to the distance to the
center of symmetry [2–6].

However, these studies dealt with the one-dimen-
sional motion of plasma. Here, we construct an exact
solution to the two-dimensional problem for motion
with a homogeneous strain. This unsteady solution to
equations of magnetic hydrodynamics describes the time
dependence of the transverse size for the pinch of elliptic
cross section as the external magnetic field varies.

The set of equations of magnetic hydrodynamics is
used for the macroscopic description of plasma in the
context of a model of a perfect conducting fluid [7]:

(1)

(2)

(3)

Here, ρ, V, and p are the density, velocity, and pressure
of plasma, respectively.

The steady solution to Eqs. (1)–(3) for a plasma cyl-
inder of elliptic cross section was obtained in [8]:

(4)

(5)

divB 0,
∂B
∂t
------- rot VB[ ] ,= =

∂ρ
∂t
------ divρV+ 0,=

dV
dt
------- ∂V

∂t
------- V∇( )V+≡ 1

ρ
--- ∇ p–=

1
4πρ
---------- BrotB[ ] .–

B
4I

abc λ2 1+( )
----------------------------- y– λ2x 0, ,( ),=

p
1
2
---ρQ 1 x2

a2
-----– y2

b2
-----– 

  .=
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Here, I is the strength of electric current flowing along

the pinch, λ = , a and b are the semiaxes in the pinch

cross section, and Q is the constant.
In this case, the magnetic field represents a superpo-

sition of the confining external magnetic field of the
quadrupole type and the magnetic field generated by
the pinch [9]:

(6)

(7)

To characterize a value of the external-field gradient
k, it is convenient to use the value J of the strength of a

certain effective current assuming k = . Expres-

sions (5) and (7) lead to a different form of representa-
tion of the external field:

(8)

Thus, from the comparison of expressions (6) and (8),
we obtain the following relationship:

(9)

If relationship (9) is considered as an equation with
respect to λ, then this equation has positive roots under
the condition

Thus, the steady state of the pinch is possible in the
case when the intensity of the current flowing along it
is not lower than the critical value Icr specified by the
external-field gradient. Otherwise, the external field
tears the pinch apart.

Before passing to the construction of an unsteady
solution to equations (1)–(3), we obtain a useful conse-
quence from the condition of the freezing-in of mag-
netic-field lines. Let S be a certain value that is con-
served during the plasma motion. If Eq. (1) is multi-

b
a
---

B B0= B1, B0+ k y x 0, ,( ),=

B1
4I

abc λ 1+( )
--------------------------- y– λx 0, ,( ).=

4J
abc
---------

B0
4I

abc
--------- λ λ 1–( )

λ 1+( ) λ2 1+( )
------------------------------------- y x 0, ,( ).=

Iλ λ 1–( ) J λ 1+( ) λ2 1+( ).=

I Icr≥ J 22 10 5+ .=
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plied by ∇ S, the resulting equation can be transformed
to the following form:

With allowance for equations

we finally obtain the following result:

(10)

i.e.,  is also the quantity being conserved during

the plasma motion.
In the case of motions with a homogeneous strain,

the plasma density is ρ = , and the expression

for plasma velocity has the form:

where ξ =  and η =  are self-similar variables. For

the class of motions under consideration, these vari-

ables are the conserved quantities:  =  = 0.

Assuming subsequently S1 = η and S2 = ξ in (10), we
find the following conditions:

(11)

where Ci are the constants determined from the initial
conditions.

From conditions (11), it follows that, in the general
case, the unsteady motions with a homogeneous strain
are possible if the gradient of the external magnetic
field and the strength of the current flowing along the
pinch depend on time:

(12)

To specify these dependences, it is necessary to inte-
grate a set of ordinary differential equations obtained
from Euler equation (3):

(13)

∇ S
∂B
∂t
------- ∇ Srot VB[ ] div ∇ S VB[ ][ ]–= =
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d
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Here, we introduce the following notation:

where the current strength I is defined by expression (12).

The analytical solution to equations (13) can be con-
structed in the case when α and β are independent of
time, i.e., for a constant strength of the current flowing
along the pinch. As can be seen from (12), this condi-

tion is met if the ratio λ =  of semiaxes in the pinch

cross section remains invariable in the process of the
plasma motion.

The simplest result is obtained in the case α = β = 0,
i.e., for the linear time dependence of the cross section
size:

(14)

This solution describes the self-similar motion of
the pinch as the gradient of the external magnetic field
varies according to the law

(15)

This dependence follows from the fact that the condi-
tion C1 = C2 leads to relationship (9). Accordingly,
expression (14) passes to the above steady solution to
Eqs. (1)–(3) for  = 0.

As is easy to understand, the analytical expression
for the nonlinear law of variation of the transverse
pinch sizes can be obtained as the condition α = βλ2 is
met. In this case, λ is independent of time if a = a0 f and
b = b0 f, where the function f, as it follows from (11) and
(13), satisfies the equation

(16)

Here, we use the following notation:

Equation (16) describes the self-similar pinch
expansion for positive values of κ and its contraction
for negative values. The contraction can be preceded by
a certain preliminary expansion of the pinch provided

that  = u > 0:

This result can be obtained from Eq. (16) if we put κ =

. The maximum increase in the transverse size of

the pinch is characterized by the quantity f = F =

α Q µIC1, β– Q µIC2, µ–
1

πca0b0ρ0
-----------------------,= = =

b
a
---

a a0= ȧ0t, b+ b0 λ ȧ0t.+=

k
4Iλ λ 1–( )

abc λ 1+( ) λ2 1+( )
-----------------------------------------------.=

ȧ0

f ḟ˙ κ .=

κ 1
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πρ0
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  2

.= =

f 0̇

t τF π erf uτ( ) erf u2τ2 fln–( )–[ ] .=
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2τ2
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exp(u2τ2) and is attained at the time moment t = tk =

τ Ferf(uτ). Then, at t ≥ tk , the contraction begins:

When  = –u ≤ 0, the pinch contraction occurs at
once:

Here, erf(x) is the probability integral [10].
The solution obtained corresponds to the time depen-

dence of the external-field gradient, which is similar
to (15):

This dependence coincides with (15) as τ  ∞. For
arbitrary initial conditions, the solution to the set of dif-
ferential equations (13) can be obtained by numerical
methods.
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The purpose of this study is to show the role of the
momentum transfer from drifting ions to neutral com-
ponents of a medium in initiation of a vortex motion of
dust particles in a nuclear-excited dust plasma. The vor-
tex motion of dust particles was previously observed
in [1].

A characteristic feature of the nuclear excited
plasma is its track structure. This implies that the
quasineutrality of such a plasma takes place only for
volumes that contain a large number of nuclear-particle
tracks. Within the tracks themselves, the quasineutral-
ity is violated very rapidly due to the large difference in
diffusion coefficients for electrons and ions. In an exter-
nal field, the track decomposes into clusters of elec-
trons and ions drifting towards the corresponding elec-
trodes. In a homogeneous field, the clusters conserve
the cylindrical symmetry. For the high intensity of a
radioactive source, the role of direct processes of charg-
ing particles increases when an ionizing particle shoots
through a dust particle.

In [1], we studied the behavior of dust particles of
CeO2 in the nuclear-excited plasma formed in atmo-
spheric air by both fission fragments and alpha particles
from 252Cf. As the strength of an external electric field
increased above 20 V/cm, the levitation of particles
gave way to a rotational motion that appeared as an
equilibrium vortex formation. The particles in the
ensemble moved along closed trajectories forming a
torus in the volume of the experimental cylindrical
chamber, the torus axis being coincided with the axis of
the cylinder. Rotational motion was also observed for
sole particles, as well as in the absence of walls within
the region occupied by vortices.

The vortex motion of macroparticles in air has two
characteristic features. The velocity of dust particles
near the chamber axis is always directed away from the
radioactive source. The angular rotation rate of parti-
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Izhorskaya ul. 13/19, Moscow, 127412 Russia

** Institute of Physics and Power Engineering, 
State Scientific Center, pl. Bondarenko 1, 
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1028-3358/01/4610- $21.00 © 20697
cles in a vortex increases with the electric-field strength
and approaches a constant value similar to the current–
voltage characteristic for the flat ionization chamber in
which the experiment was carried out (Fig. 1).

First, we consider the process of the electric-charge
accumulation by a dust particle with a diameter of 1 µm
in air. In the interelectrode space with nuclear-excited
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Fig. 1. The current–voltage characteristic of the ionization
chamber for the 252Cf source with an intensity of 105 fis-
sions/s at a pressure of 105 Pa and the angular velocity of a
vortex of CeO2 dust particles with a mean diameter of 1 µm
as functions of the electric-field strength. The symbols cor-
respond to experimental data; the lines are the results of cal-
culation.
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plasma, the clusters of ions drift to the corresponding
electrodes under the action of an external electric field.
In a homogeneous field, these clusters have a cylindri-
cal shape with the axis of symmetry parallel to the flight
direction of the ionizing particle. When entering the
drifting cluster, a dust particle acquires a charge from
ions that form the cluster. The time dependence of a
dust-particle charge was calculated by the Monte Carlo
method following [2] for an electric-field strength of
100 V/cm characteristic for the experiment. The results
of the calculation are shown in Fig. 2. The value of the
charge is below several tens of elementary electric
charges. Thus, this charge is too small to induce the
observed motion of macroparticles. Fluctuations of the
charge are caused by the random nature of interaction
between nuclear particles and matter.

Another cause of the charge accumulation can be
the motion of ionized air induced by the momentum
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Fig. 2. Inverted charge of a dust particle as a function of
time for a distance 1 cm from the source. The mean charge
corresponds to 20.6 units of the elementary electric charge e.
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Fig. 3. Geometry of the calculation: the arrows 1 and 2 cor-
respond to drifting ions with opposite signs; (3) is the
source of fission fragments.
transfer from ions accelerated in the electric field to the
neutral component. Macroparticles make the air motion
visible so that we consider this process at the macro-
scopic level. In the time t of motion, Ni ions acquire the
momentum, and, therefore, transfer it to gas molecules.
In the linear approximation, the momentum is equal to

, where τ is the average time between colli-

sions and wi is the drift velocity. To estimate the
momentum transferred to a gas mass ∆m in the drift
time Td, we easily obtain

(1)

where j is the current density, νT is the ion thermal
velocity, mm is the mass of a gas molecule, σ is the col-
lision cross section of ions and molecules, V is the gas
volume, n is the concentration of gas atoms, q is the
total electric charge of ions in the volume V, and E is the
field strength. The substitution of the values character-
istic for the experiment performed into expression (1) a
value of several cm/s for the specific momentum trans-
ferred to the gas mass, which agrees with the experi-
mental data of [1]. In addition, it can be seen that the
transferred momentum is proportional to the ion cur-
rent, and this fact explains the form of the dependence
of the rotation velocity on the electric-field strength
(Fig. 1).

A more accurate calculation of the specific trans-
ferred momentum averaged over the time interval T,
which takes into account the stochastic nature of the
escape of ionizing particles and the track structure of
the plasma being formed, was carried out by the Monte
Carlo method according to the expression

(2)

where ∆p is the momentum transferred to the gas mass
∆m in the time ∆t when a time-averaged force F acts
upon the gas. This force is caused by the interaction of
the charge of an electron cloud or ion cloud with an
external electric field E. Under experimental condi-
tions, due to a limited intensity of the ionizing-particle
source, the time dependence of the force F has a pulsed
nature:

(3)

Here, Qe, i is the charge of an electron cluster or ion
cluster, and ts and te are the starting and final instants of
time in its motion towards the electrode. The averaging
time T can be arbitrary. It is only necessary for this time
to correspond to a reasonably large number of events.
The time interval ∆t is equal to the characteristic time
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of variation in the velocity of vortex motion; it is
approximately 1 s in the experiment. To simplify the
calculation, the field was assumed to be homogeneous.

In Fig. 3, we show opposite drift directions for two
ion flows within a single elementary cell. The source of
ionizing particles is located at the point Z = 0. When con-
sidering the entire track, these flows have a cylindrical
shape, the cylinder axis being parallel to the initial
track. In the Monte Carlo method, the ejection angle θ
is a random quantity. The result is averaged over the
time corresponding to the passage of 2000 tracks. The
cell length along the Z-axis is assumed to be equal to
the mean free path of fission fragments; along the
X-axis, each cell has a size equal to a hundredth fraction
of the free path for a fission fragment. We calculated a
number of ions produced by a fragment within the cells
crossed by this fragment. The contribution of ions with
opposite charges in every elementary cell, which is cut
by a step along the X-axis, is taken with the opposite
sign.

The calculations were carried out for air at atmo-
spheric pressure and for neon at a pressure of 5 ×
104 Pa. The electric-field strength was chosen to be
equal to 100 V/cm. The drift velocities required for the
calculation were taken from [3–5]. The results are
shown in Fig. 4. The drop in the energy loss for the ion-
ization along the track, as well as the decrease in the
density of tracks with the removal of ionizing particles
from the source, increases the contribution to the trans-
ferred momentum of ions moving near the Z-axis. In
each elementary cell, the number of ion pairs increases
with approaching the source. The ions moving towards
the upper electrode travel a longer path in gas and trans-
fer a higher momentum. The momentum transfer in air,
in accordance with the experimental data, is almost
independent of the electric-field direction. In the exper-

iment, the  ions are formed in a time on the order of
several fractions of microsecond as a result of the inter-
actions with oxygen. The mobility of these ions differs

only slightly from that of the  ions, and the contribu-
tion of these ions to the momentum transfer is almost
independent of the sense of the field. This leads to the
initiation of air motion that is directed away from the
source of ionizing particles at an arbitrary polarity of
ions. In a volume bounded by walls and electrodes, a
vortex motion of gas appears, which becomes visible
owing to dust particles.

If the electric field in neon is directed along the
Z-axis, the positive neon ions move upwards (Fig. 3),
and electrons move downwards. In this case, the spe-
cific momentum transfer near the Z-axis is large, and, in
the volume occupied by neon, there appears gas motion
directed away from the source. The vortex motion of
this kind in neon is actually observed in the experiment
for the indicated sense of the field. If the field is
directed oppositely to the Z-axis, the upward-moving
electrons cannot give a large contribution to the trans-

O2
–

N2
+
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ferred momentum due to the very short drift time. A
small contribution of ions leads to the momentum
transfer towards the source.

The calculations were carried out under the assump-
tion that the ionization chamber operates in the regime
of the saturation of the current–voltage characteristic.
For lower values of the electric-field strength, the
recombination leads to a loss of charges both in the
track itself and on the way of ions to electrodes. This
effect results in a decrease in both the electric current
intensity and the momentum transferred. The proposed
model of the appearance of the vortex motion explains
the second important experimental fact, namely, the
saturation of the rotation rate that attains a plateau in
accordance with the current–voltage characteristic. The
reason is the same in both cases. Before saturating the
rotation rate, both values increase, because the recom-
bination in the tracks decreases, whereas upon reaching
the plateau, all the ions produced by the source arrive at
the electrodes. Therefore, the velocity of vortex motion
depends on the applied voltage in the same way as in
the case of the current–voltage characteristic. In fact,
according to expression (1), the value of the transferred
momentum is proportional to the drift time (inversely
proportional to the drift velocity) and to the field
strength. In its turn, the drift velocity is proportional to
the field strength. Then, under the saturation condition,
in the absence of the charge loss, the dependence of the
transferred momentum on the field strength disappears.

Thus, the mechanism of the vortex formation pro-
posed in this study explains two characteristic features
of the vortex motion in air and in neon, namely, the
sense of the rotation and the property of saturation of
the rotation velocity. The value of the gas-motion
velocity near the axis agrees with experimental data.
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Fig. 4. Results of calculations as functions of a distance
along the X-axis. The solid and dashed curves correspond to
the electric field directed along and opposite to the Z-axis,
respectively.
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The difference between the values of rotation velocity
for vortices in air and neon in the case of a change in the
sign of the potential can be explained as follows. When
the positive potential is applied to an electrode covered
by a layer of californium and the negative potential is
applied to the opposite electrode, the positive ions
formed mainly near the source travel a longer path to
the negative electrode and transfer a larger momentum
to gas molecules. This is valid for both an electronega-
tive gas and an inert gas. When the sign of potential in
the electronegative gas changes, negative ions also
form near the source for fractions of a microsecond.
While moving to the positive opposite electrode, they
travel a long path and transfer a large momentum to the
gas. For inert gases, it is electrons that travel a long path
to the positive electrode. But since their drift velocity is
several orders of magnitude higher than that for ions,
they have no time to transfer a noticeable momentum to
the gas. Eventually, this fact is associated with a negli-
gible electron-to-molecule mass ratio.
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It is well known that substances in the condensed
state preserve their thermodynamic stability below the
upper temperature of the phase-state boundary. This
boundary can be attained as a result of both an intensi-
fication of heating and a sharp drop in pressure [1–4].
The description of thermal processes accompanying the
decomposition of various materials in macroscopic vol-
umes and under the intense heating of surface layers, in
particular heat-resistant coatings [5], is of prime inter-
est for practical applications. Near the phase-state
boundary, the frequency of homogeneous nucleation,
which is rather low at moderate temperatures, sharply
increases (by orders of magnitude). This is explained
by a high activation barrier that causes the vaporization
rate and substance-thermolysis rate to be enhanced. In
addition, the mechanism of chemical thermal-decom-
position reactions in nonvolatile materials can change
near the phase-state boundary [6, 7]. In this paper, our
objective is to develop a mathematical model for the
macroscopic (bulk) process of material thermal decom-
position. We propose to include into this model param-
eters of a phase-state boundary and kinetic features of
processes occurring in its vicinity.

In thermodynamics, the position of the phase-state
boundary is determined from the condition of vanishing
the second variation for one of thermodynamic poten-
tials, e.g., δ2G = 0, where G is the Gibbs free energy [1].
Since

the partial derivatives  or  vanish on the stability

boundary. This enables us to calculate parameters of a
phase-state boundary for both volatile and nonvolatile
substances using the equation of state [1–4]. However,
the absence of reliable equations of state that would be
adequate for the thermodynamic properties of a number

δ2G
∂2G

∂T2
---------dT2= 2

∂2G
∂T∂p
-------------dTdp
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∂ p2
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∂V
-------
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of substances has long been an obstacle for determining
parameters of the phase-state boundary. It should also
be noted that the equation of state, which was proposed
recently in [8, 9] and is valid in a wide range of temper-
ature variations, allows us to calculate with a high accu-
racy the parameters of phase-state boundaries for poly-
meric and other materials. Moreover, experimental
methods of a thermal probe [2–4] and a contact thermal
analysis [9–11] were developed recently. These meth-
ods make it possible to approach the phase-state bound-
ary as a result of high-rate (up to 106 K/s) heating and
to obtain information on structural variations and ther-
molysis kinetics in the vicinity of the phase-state
boundary. These methods also enable us to determine
the temperatures Tl for the attainable overheating of
substances that are lower even by 2 to 5 K than the cor-
responding temperatures on the phase-state boundary
under various given pressures and thermal-decomposi-
tion rates.

In Fig. 1, the thermal-decomposition time tp
obtained by contact thermal analysis for certain sub-
stances is presented as a function of the inverse absolute
temperature near the phase-state boundary. The plots
exhibit a specific configuration. The lower branch cor-
responding to moderate temperatures has a shape simi-
lar to a descending straight line; i.e., it can be described
by the Arrhenius equation. The left-hand branch is bend
up and asymptotically approaches a vertical line with

the abscissa equal to , which does not correspond to

Arrhenius kinetics. We use these data in order to con-
struct a mathematical model for the thermal decompo-
sition of a material.

We consider a one-dimensional steady-state process
of the thermal decomposition of a half-space, which
proceeds in accordance with the equation of thermal
conduction:

(1)

Here, u is the velocity of motion for the decomposition
front that coincides with the origin of a chosen coordi-

1
T l
----
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dx
------λdT

dx
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nate system (x = 0), and F(T) is the heat-absorption
function. The latter is usually written out in the form
F(T) = ρQk(T) [5] under the assumption that the ther-
molysis reaction proceeds as a zero-order reaction (Q is
the reaction thermal effect) with the reaction constant

k(T) and the density ρ. [For these reactions, k(T) = .]

The last term in formula (1) is usually ignored by
virtue of its smallness [5]. Upon integrating Eq. (1)

with allowance for the boundary condition    = 0 as

x  ∞ and assuming the variation of the heat conduc-
tion due to the secondary porosity to be proportional

to the density variation, i.e., λ(T) =  [6], we

arrive at the equation 

(2)
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Fig. 1. Data obtained while testing materials by the method
of contact thermal analysis; (1) UPM-07037 shock-proof
polystyrene; (2) polystyrene of unit design with a molecular
mass of 600000; (3) 276-73 high-density polyethylene;
(4) lavsan; (5) 10201-04 low-density polyethylene;
(6) TUM XII 2898-55 polyvinylchloride film; (7) polyme-
thyl methacrylate (technological PMMA, the inclined
shaded region corresponds to data spreading for PMMA of
different trade marks); (8) polycaprolactam obtained by
polymerization of α-caprolactam; (9) colemanite mineral;
(10) oil from the Alanin layer; (11) polyethylene glycol with
the molecular mass of 2000; (12) aluminum nitrate.
where the notation

is introduced.
In the case of high-intensity thermal actions that are

common for conditions in which heat-resistant coatings
are applied [5], the times of heating a substance from
the initial temperature T0 to the surface temperature Tw
do not exceed a few seconds. These short times corre-
spond to the upper segments of the plots in Fig. 1.
Reconstructing the plots in the linear scale (see Fig. 2)
showed that they correspond to the equation of an nth-
power parabola, which has the form tp = A(Tl – T)n,
where n is an integer (n = 3, 4, 5, …). The function J(T)
for two segments can be represented as the sum

where Ta is the upper temperature within the Arrhenius

J T( ) k T( ) T , Dd
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Fig. 2. Duration of the material thermal decomposition as a
function of temperature. The data are obtained by the
method of contact thermal analysis under short-term heat-
ing: (1) colemanite mineral; (2) polymethyl methacrylate;
(3) polyvinylchloride; (4) polystyrene.
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segment. For this segment, thermolysis times tp attain
from several minutes to several hours. In the case of in-
tense heating, these times are virtually not realized.
Thus, we may consider that

We now equalize the heat inflow qw to the material
surface and the total amount of the thermal energy
spent for the heating and decomposition of the material:

(3)

Here, λw = λ(Tw) = κλ0, κ . , and ζ is the fraction

of the material that has reacted. After substituting the tem-
perature gradient from formula (2) into Eq. (3), we find

(4)

where Cp is the thermal capacity averaged within the
temperature range from T0 to Tw.

We now substitute the value of the integral found
above

into the right-hand side of Eq. (4) for the case of the
upper limit T = Tw. After simple transformations, we
arrive at the expression

(5)

In this expression, the temperature Tw remains
unknown. It can be determined using Eq. (2):

Substituting the value of J(Tw) into this formula, we
obtain

where B =  and C = . 

From this, it follows that as qw increases the rise in
the surface temperature is bounded by the value Tl . This
result is consistent with the numerous experimental
data [13–15]. For example, in the case of polymethyl
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methacrylate, while intensifying heating up to values
above 0.1–0.7 kW/cm2 by laser radiation or radiant or
convective heating, as well as while burning gas mix-
tures with a high oxygen content, the surface tempera-
ture Tw measured by different methods did not exceed
Tl = 500°ë within an accuracy of ±20 to ±40°C. These
observations cannot be described within the framework
of traditional mathematical models based on the Arrhe-
nius dependence k(T). Figure 3 shows plots of variations
in the velocity u = f(1/T) for polymethyl methacrylate,
which were obtained according to the data of [13] in the
case of intensely heating the material surface. As was
shown in [13], the Arrhenius equation (dashed line)
approximates the lower segment of the plots but fails to
describe the rise near the phase-state boundary.

1

2

310–1

10–2

10–3

1.0 1.4

450°C475°C500°Cu, mm/s

103/T, ä–1

∆

∆u

4

Fig. 3. Data (and their approximation) obtained while test-
ing polymethyl methacrylate by the method of linear pyrol-
ysis [13]. The linear pyrolysis rate: (2, 3) for the trans-
versely sewed PMMA and (1, 4) for the linear PMMA as
functions of temperature Tw (the case of a heating element
in the form of a metallic plate). The upper numbers 500°C
and 475°C, 450°C correspond to the temperature Tl of
PMMA and maximum temperatures Tw attained in the
experiment, respectively. Dashed and dotted lines corre-
spond to the approximation by the Arrhenius and parabolic
equations, respectively. ∆ represents the segment of the plot
approximated by the proposed mathematical model at tem-
peratures close to Tl (the segment of structural variations); ∆u
is an error arising while using the Arrhenius approximation.
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In accordance with Eq. (6), the calculation using
characteristics of polymethyl methacrylate, which were
taken from [5], with λ0 = 0.21 W/(m K), ρ0 =
1000 kg/m3, Cp = 1.9 kJ/(kg K), Q = 2100 kJ/kg, and
plots of Fig. 1, makes it possible to provide consistency
with the experimental data (see the dotted line in the
high-temperature region) and to propose a simple
explanation for the similarity of the shapes for the
dependence u(1/T) and plots shown in Fig. 1.

The approach under consideration allows us to cal-
culate the variation of the temperature near the surface
of the body that is being heated. As a result of integrat-
ing Eq. (2), with allowance for the dependence J(T) .

, which is valid at high temperatures, we

arrive at the dependence T(x) in the form

where m = . For example, in the case of polyme-

thyl methacrylate, we have n = 3 and m = 2; therefore

This distribution differs from the Michelson temper-
ature profile [5], which is known in the theory of frontal
processes, by higher temperature gradients dependent
on the reaction thermal effect Q. In accordance with the
dependence T(x), it is easy to calculate the near-surface
distribution of the excess pressure for thermolysis gas-
eous products

which causes the formation of the vapor-droplet zone
consisting of particles of the undecomposed material

[13–15]. Upon substituting the value of k(T) = , we

obtain for n = 3, as a result of integration,

where P is the diffusive permeability, N = (A(n – 1))1/2,
and M = N(Tl – T0)2 . The thickness of the vapor-droplet
zone is determined by the coordinate x1 that corresponds

to the maximum value ∆p found from  = 0 with

allowance for the dependence P(x).
The analysis performed showed that the experimen-

tally observed deviation of the thermal decomposition
rate of a material from the Arrhenius dependence at
high-intensity heating of the material surface is caused
by structural variations near the phase-state boundary
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of an initially homogeneous medium. The allowance
for parameters of structural variations (i.e., the temper-
ature of the attainable overheating, which is determined
by the homogeneous-nucleation frequency [2], density
variations, heat-conduction variations, and the degree
of completing the thermolysis reaction) makes it possi-
ble to propose a simple interpretation of experimental
data and noticeably improve the accuracy of calculating
macroscopic thermal-decomposition phenomena in the
process of their mathematical simulation. In light of
this, it is especially worth mentioning the necessity of
attaining a high accuracy, while calculating the sizes of
heat-resistant coating elements. Indeed, the calculation
of the heat resistance of a coating material, which is
carried out without allowance for the parameters of the
phase-state boundary (as was shown by the example of
a simple Arrhenius extrapolation) yields a considerably
underestimated (by an order of magnitude) thermal-
decomposition rate for the material under consider-
ation. A coating thickness chosen in accordance with
this calculation is, evidently, insufficient to provide a
reliable heat resistance for a given time period.
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According to quantum electrodynamics, vacuum
has nonlinear properties. For this reason, equations for
electromagnetic field in vacuum coincide in their form
with the equations of the electrodynamics of continua:

However, the meaning of the vectors D and H in these
equations is different:

Here Bq =  = 4.41 × 1013 G is a quantum electro-

dynamic parameter, and α =  ≈  is the electro-

magnetic coupling constant.

For a long time, nonlinear electrodynamics in vac-
uum had no experimental verification and, therefore,
was considered by many researchers as an abstract the-
oretical model. At present, its status has changed essen-
tially. Experiments [1] on the inelastic scattering of
laser photons by gamma photons corroborated that the
electrodynamics in vacuum is actually a nonlinear the-
ory. Therefore, its various predictions, which can be
verified experimentally, are worthy of the most serious
attention.
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In the current scientific literature [2–10], a diversity
of various experiments was proposed for studying such
effects. However, for the fields B, E ~ 106 G, which are
accessible in terrestrial laboratories, the nonlinear cor-
rections to the Maxwell equations in vacuum are so
small that it is very difficult to detect the effects they
cause. For this reason, it is appropriate to investigate the
principal tendencies of nonlinear electrodynamics in
vacuum [4] by using astrophysical sources of magnetic
fields. In fact, such astrophysical objects as pulsars, for
example, have magnetic-dipole fields of B ~ 1013 G that
are inaccessible under laboratory conditions, and such
strong fields stretch for significant distances. Even
more intense magnetic fields, B ~ 1015 G, are generated
by recently discovered magnetars.

The basic channel of incoming information on non-
linear electrodynamic effects that occur in the mag-
netic-dipole field of astrophysical objects is electro-
magnetic radiation. This is an electromagnetic wave
that passes through the magnetic field of a neutron star
and is affected by the nonlinear electrodynamic and
gravitational actions of this field. Because the gravita-
tional influence on electromagnetic waves is well stud-
ied in the general theory of relativity [11], it is also pos-
sible to reveal certain principal tendencies of the non-
linear electrodynamic interaction of electromagnetic
fields by analyzing the incoming electromagnetic radi-
ation. It should be noted at once that since pulsars and
magnetars have magnetospheres filled with matter,
these experiments should be performed with X-rays or
gamma-radiation, because the magnetosphere is trans-
parent for such waves.

Now, we turn to studying the nonlinear electrody-
namic bending of electromagnetic rays in a pulsar or
magnetar field. We consider the magnetic field of a
magnetic dipole with the magnetic dipole moment m:

. (1)

Using the mathematical approach developed in [7–10],
it is possible to show that the eikonal equation for a ray

B0
3 mr( )r r2m–

r5
----------------------------------=
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passing through the field described by formula (1) takes
the form

(2)

The coefficient η entering into this equation depends on
the electromagnetic-wave polarization and takes one of
the following values for two mutually perpendicular
polarizations:

 = 5.1 × 10–5 and  = 9.0 × 10–5.

The eikonal equation represents a nonlinear differ-
ential equation whose solution is not generally known.
Therefore, we analyze the behavior of a ray in a partic-
ular case when Eq. (2) can be integrated in analytical
form.

We denote a plane perpendicular to the magnetic
dipole moment m as the XOY plane. The eikonal equa-
tion for an electromagnetic wave polarized along the
vector m and traveling in the XOY plane takes the form

Solving this equation by the method of separation of
variables, we arrive at

(3)

where E0 and M are integration constants that take the
following forms for a ray passing near the star at a dis-
tance ρ:

Because the value of  is small, we can use here

the algorithm developed for the calculation of the grav-
itational-bending angle for light rays. Using the deno-
tations introduced in monograph [11], we expand the

radial part of eikonal (3) in powers of :

where  describes the rectilinear propagation of the
gamma-radiation.
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In the case when a wave propagates from a gamma-
radiation source located at a large distance R to the
point r = ρ, which is nearest to the star, and then to the
same distance R, the total variation of Sr is 

The variation in the polar angle on this path can be

obtained by differentiating  – ∆Sr with respect to

M = :

Passing to the limit R @ ρ, we arrive at

(4)

The plus sign in this expression shows that the mag-
netic-dipole field in the plane of the magnetic equator
acts on electromagnetic waves like a convex lens. Quite
similarly, it is possible to show that the ray bending
angle for an electromagnetic wave polarized in the XOY
plane is equal to

(5)

According to the general theory of relativity, together
with the nonlinear electrodynamic bending of light
rays, the gravitational bending takes place [11]:

(6)

where rg is the gravitational radius of the star.

We now estimate the maximum values of the ray-
bending angles in the magnetic and gravitational fields
of pulsars and magnetars. In the case of pulsars, the
magnetic field can attain a value of B ~ 1013 G. In this
case, expressions (4) and (5) yield the following esti-
mates: δϕ1 = 5.5 × 10–5 rad and δϕ2 = 3.1 × 10–5 rad.

When the gamma-radiation propagates through the
magnetic field of a magnetar, the maximum values for
the angles of the nonlinear electrodynamic bending
increase significantly: δϕ1 = 0.55 rad and δϕ2 =
0.31 rad.

Because the masses and sizes of pulsars and magne-
tars are approximately equal, we will use the mean val-
ues rg = 3 km and ρ = 100 km in order to estimate the
maximum value of the gravitational bending of light
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rays. In this case, expression (6) leads to the estimate
δϕg = 6 × 10–2 rad.

Thus, in the cases of pulsars and magnetars, the
main contributions to the ray bending are, respectively,
due to the gravitational field and nonlinear electrody-
namic effects in vacuum. Because the gravitational and
nonlinear electrodynamic bendings of a light ray are
inversely proportional to the first and sixth powers of
the impact parameter ρ, respectively, these two contri-
butions can be separated, provided that the summary
bending angle is measured for several values of the
impact parameter.

As the detailed analysis shows, the external mani-
festation of the nonlinear electrodynamic and gravita-
tional bendings of light rays depends on the ratio of the
distances from the gamma-radiation source and pulsar
(or magnetar) to the Earth. For extragalactic gamma-
ray sources, the scattering of their gamma-radiation
flux by the magnetic and gravitational fields of a pulsar
or magnetar is large. Therefore, the radiation intensity
for significantly curved rays should be extremely small
in the vicinity of the Earth. In this case, the ray bending
manifests itself in a sharp decrease in the radiation
intensity, even for vanishingly small bending angles.

If the gamma-radiation originates in the vicinity of
a magnetic neutron star (for example, in the case of the
star contained in a close binary system, or if the
gamma-radiation originates in regions immediately
adjoining the surface of the star), the radiation scatter-
ing by the magnetic and gravitational fields is not so
pronounced. In this case, the radiation intensity
detected on the Earth decreases with an increase in the
bending angle, but not so abruptly as in the case of an
extragalactic source. Therefore, for astrophysical
DOKLADY PHYSICS      Vol. 46      No. 10      2001
objects containing a neutron star with a magnetic field
B ~ 1013–1015 G, the effects of the nonlinear-electrody-
namic and gravitational ray bendings already become
observable at the current level of the measurement accu-
racy for facilities of extraterrestrial astronomy.
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Various defects of crystal structure dramatically
affect the physical and mechanical properties of solids
[1, 2]. Above all, such defects are represented by vacan-
cies, interstitials, and dislocations. According to the
available concepts [1], vacancies play an important role
in the processes of diffusion and related phenomena
such as aging, precipitation of secondary phases, and
annealing. It was also established, among them theoret-
ically, that nonequilibrium vacancies can change the
surface tension of intergrain boundaries (see, e.g., [3]).
There are various methods to obtain noticeable concen-
trations of vacancies in materials, in particular, by irra-
diating them with nuclear particles or with the help of
plastic strains. Varying the vacancy concentration, it is
thereby possible to control the corresponding proper-
ties of materials, including the surface tension of
boundaries.

In this paper, we considered theoretically a possibil-
ity of affecting the surface tension of a boundary (an
interface) formed as a result of the contact of various
crystalline materials by changing the vacancy concen-
tration in them. This problem is of special interest in
studying the adhesion properties of multilayer coatings,
because, in the case of brittle rupture, the surface
energy (in the Griffits sense) coincides with the surface
tension at the interface within the accuracy to the coef-
ficient of two if the crack grows along the interface
between the materials (an adhesion crack). In a number
of experimental studies (for example, in [4]), it was
shown that the adhesion and strength of thin-film coat-
ings determined by the value of surface tension at the
coating–substrate interface [5] depend substantially on
defect concentration. In our consideration, we
employed the thermodynamic approach similar to that
used in [3] for analysis of the surface tension of inter-
grain boundaries.
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We consider an interface between two different
homogeneous materials 1 and 2, which is in equilib-
rium with these materials. As is well known, a change
in the surface tension σ12 of the interface caused by the
variation in the thermodynamic state of materials 1 and
2 is described by the Gibbs equation [3]. If the changes
in the states of materials are caused by the deviation of
their vacancy concentrations from the equilibrium
ones, the Gibbs equation can be written as

(1)

where T and p are the temperature and pressure in mate-
rials 1 and 2, dµ1 and dµ2 are the changes in the chem-
ical potentials of these materials caused by a change in
the concentrations of vacancies, sI and v I are the spe-
cific (per unit interface area) entropy and specific vol-
ume of the interface, and Γ1 and Γ2 are the numbers of
vacancies from materials 1 and 2 in the interface per its
unit area:

(2)

Here, GIi < 1 is the dimensionless concentration of
vacancies of the ith material in the interface, Ωi is the
volume of the corresponding vacancies, and b is the
interface thickness.

The chemical potentials of nonequilibrium vacan-
cies, whose variation contributes into Eq. (1), are deter-
mined by the expressions [6]

(3)

where Ci is the nonequilibrium dimensionless concen-
tration of vacancies in the ith material, Cie is its equilib-
rium value, and k is the Boltzmann constant.

Furthermore, we assume that the temperature and
pressure are constant; i.e., dT = 0 and dp = 0 in (1).
Then, substituting expressions (2) and (3) into (1), we
obtain

(4)

dσ12 –Γ1dµ1 Γ2dµ2– sIdT– v Idp,–=

Γ i

CIib
Ωi

----------, i 1 2.,= =

µi kT
Ci

Cie
-------, iln 1 2,,= =

dσ12 bkT
CI1

Ω1
-------

dC1

C1
---------

CI2

Ω2
-------

dC2

C2
---------+ 

  .–=
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The concentrations CI1 and CI2 in (4) are, in general, the
functions of C1 and C2 . To find them, we use a model
according to which the interface is considered as a sur-
face absorbing the vacancies [3]. We also assume that
the absorption of vacancies in each of the materials 1
and 2 takes place independently. In this case, the kinet-
ics of the variation in CI1 and CI2 is described by the
equations

(5)

Here, ka1 and kd1 are, respectively, the constants of
adsorption and desorption of vacancies in the process
of their exchange between the material 1 and the inter-
face, and ka2 and kd2 are these constants for material 2. In

the steady-state regime , we obtain from (5):

(6)

In its form, dependence (6) represents the known Lang-
muir isotherm for the surface adsorption [3]. Integrat-
ing equation (4), with allowance for (6), yields

(7)

where hi =  and  = σ12 (C1 = C1e, C2 = C2e) is the

value of surface tension in the equilibrium state. For-
mula (7) generalizes the relationship derived in [3] for
the dependence of the intergrain–boundary tension on
the concentration of nonequilibrium vacancies in the
grains of a polycrystalline structure.

It is easy to understand that the character of the
dependence of σ12 on C1 and C2 is unaffected by the
value hi . Both contributions in the braces of (7)
increase, respectively, with C1 and C2 from negative
values for Ci < Cie to positive values for Ci > Cie and
vanish for Ci = Cie .

At the same time, the value of σ12 –  depends
rather strongly on the values of h1 and h2 . We consider,
therefore, in more detail what determines these values.
The constants kai and kdi of adsorption and desorption

dCI1

dt
----------- ka1 1 CI1–( )C1 kd1CI1 1 C1–( ),–=

dCI2

dt
----------- ka2 1 CI2–( )C2 kd2CI2 1 C2–( ).–=

dCIi

dt
---------- 0= 

 

CIi

kdiCi

kdi kai kdi–( )Ci+
-----------------------------------------.=

σ12 σ12
0( ) bkT

h1

Ω1
------

h1 1–
--------------

1 h1 1–( )C1+
1 h1 1–( )C1e+
------------------------------------ln







–=

+

h2

Ω2
------

h2 1–
--------------

1 h2 1–( )C2+
1 h2 1–( )C2e+
------------------------------------ln







,

kai

kdi

------ σ12
0( )

σ12
0( )
DOKLADY PHYSICS      Vol. 46      No. 10      2001
depend on temperature in the manner similar to the
Arrhenius law, which yields

(8)

where

and ∆Ei = Edi – Eai is the difference in the activation
energies for desorption (Edi) and adsorption (Eai) of
vacancies in the interface, σI and σi are the mechanical
stresses in the interface and in the bulk of the corre-

sponding material (the latter is the sum of external 

and internal  stresses generated by the interface;

i.e., σi =  + ), and hi0 is the value of hi without
external mechanical loading.

If the interface is a good absorber of vacancies of the

given material for  = 0, kai must exceed kdi as fol-

lows from (5), because this provides  > 0; i.e.,

hi0 > 1. Thus, if  > 0, we have a fortiori that hi > 1.
However, in fact, this contribution only slightly affects
the relationship between hi and 1 for real stresses by

virtue of the smallness of  in (8) compared to

∆Ei . For example, even for  ~ 100 MPa and

Ωi . 10–29 m3 , we have  ~ 0.01 eV, whereas
|∆Ei | ~ 0.1 eV.

We now consider the character of the dependence of
σ12 on concentrations C1 and C2 . As follows from (7),
each of the two contributions into σ12 is a monotone
function of C1 and C2 , respectively. In other words,
independent of whether the interface is a good (hi > 1)
or bad (hi < 1) absorber for the vacancies of the materi-
als used, its surface tension decreases with an increase
in the vacancy concentration in each of them separately.

In this case, the inequalities σ12 –  < 0 and σ12 –

 > 0 are realized for Ci > Cie and Ci < Cie , respec-
tively.

However, being the function of two variables,
σ12(C1, C2) can also behave in a more complicated fash-
ion. Let C1 and C2 vary simultaneously so that C2 is a
certain function of C1; for example, C2 = εC1 + C2e –
εC1e (ε > 0 is a certain coefficient). If the interface effec-
tively absorbs the vacancies from material 1 (h1 > 1)
and poorly from material 2 (h2 < 1), the analysis shows

hi hi0

σi
ex( )Ωi

kT
---------------- 

  ,exp=

hi0

∆Ei σi
in( )Ωi σIΩI–( )+
kT

-----------------------------------------------------
 
 
 

exp≅

σi
ex( )

σi
in( )

σi
in( ) σi

ex( )

σi
ex( )

dCIi

dt
----------

σi
ex( )

σi
ex( )Ωi

σi
ex( )

σi
ex( )Ωi

σ12
0( )

σ12
0( )
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that the dependence of σ12 on C1 can have a maximum

at C1 =   = 0 at C1 = , where

provided that the conditions

are satisfied for which 0 <  < 1 and  < 0 for

C1 = .

Thus, when the value of σ12 is changed by varying
the vacancy concentrations in the bulk of the materials
that form the interface, it is possible to realize both the
monotonic dependences and those having a maximum.
This conclusion can turn out to be useful for the optimi-
zation of those characteristics of interfaces, which are
related to the surface tension in them.

Finally, using (7), we estimate the order of magni-

tude for ∆σ12 =  – σ12. For example, at T = 300 ä,
b ~ 5 Å, ∆E1 = 0.35 eV, ∆E2 = –0.1 eV, C1e . 10−9, C2e .
10–8, and Ω1 ~ Ω2 ~ 10–29 m3, we obtain

C1*
dσ12

dC1
-----------

 C1*


C1*

bh1

Ω1
--------

εh2

Ω2
--------+

ε
h1

Ω1
------ 1 h2–( )

h2

Ω2
------ h1 1–( )–

------------------------------------------------------------------,=

b 1 1 h2–( ) C2e εC1e–( ),–=

ε
1 1 h2–( )C2e–
1 1 h2–( )C1e–
------------------------------------,

1
h2
----- 1–

1 1
h1
-----–

--------------
Ω1

Ω2
------,> >

C1*
d2σ12

dC1
2

-------------
 
 
 

C1*

σ12
0( )
In this case, ∆σ12 ~ 0.5 J/m2 for C1 ~ 10–5 and ∆σ12 ~
0.1 J/m2 for C1 ~ 10–6. These are reasonably high values
if we take into account that the surface tension of metals
amounts to 1–3 J/m2 [7]. The tension coefficients for
interfaces between two metals must be of the same
order of magnitude, because, according to the current

theories (see the review in [5]), |σ1 – σ2| <  < σ1 +
σ2 (σ1 and σ2 are the surface tensions of the metals
forming the interface). For example, σAl ~ 1 J/m2 and

σCu ~ 1.7 J/m2 [7]; i.e., 0.7 J/m2 <  < 2.7 J/m2 for
the Al–Cu interface.
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Nickel–zirconium alloys have a high glass-forming
ability in a wide range of concentrations and constitute
the basis for a variety of bulky amorphous metallic
materials [1]. However, until now, there is no informa-
tion on the Gibbs energy of the Ni–Zr-melt formation.
This fact hampers both the analysis of thermodynamic
and kinetic parameters of the transition of the Ni–Zr
liquid into an amorphous state and the understanding of
the reasons why such a transition easily proceeds in a
number of transition metal systems.

In the study proposed, we investigated the composi-
tion of vapor and thermodynamic properties of the
nickel–zirconium alloy within the temperature range
between 1357 and 1861 K and in the composition range
from 0 to 94.3 at. % Zr using the method of Knudsen
mass spectrometry. The saturated-vapor pressure was
measured using doubled Knudsen cells manufactured
from molybdenum, tantalum, or niobium. To prevent
the interaction of the alloys under investigation and a
reference sample with the material of effusion cells, we
deposited zirconium oxide or zirconium diboride on
their inner surface using the plasma method. No effect
of the cell material on the vapor composition and partial
pressures of components was observed. For compari-
son, we used ultrapure iron with an impurity content of
10–6% of cobalt of 99.99% purity. For the synthesis of
alloys, iodide zirconium (99.98%) and electrolytic nickel
(99.99%) were used. The methods of preparation of sam-
ples and performing experiments were similar to those
described previously [2].

In the mass spectra of saturated vapor, Ni+ and Zr+

ions were detected above nickel–zirconium melts, tes-
tifying to its simple composition. The values of pres-
sure of saturated-vapor components found were used to
calculate their activities with respect to liquid metals.
For this purpose, we used the data of [3] on the Gibbs

Kurdyumov Institute of Metal Physics and Functional 
Materials, Bardin Central Research Institute for the Iron 
and Steel Industry, Vtoraya Baumanskaya ul. 9/23,
Moscow, 107005 Russia
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energies for melting Ni and Zr. Because Zr-vapor pres-
sure was measurable only within a very narrow interval
of the investigated temperature–concentration range, the
activity of vapor was mainly found by integrating the
Gibbs–Duhem equation using the nickel α-functions:

As a result of the experiments and calculations per-
formed, we obtained a representative data base contain-
ing more than 900 values of activities of the compo-
nents for various compositions and temperatures. A
part of them are displayed in the table.

The structure of the phase diagram for the Ni–Zr
system [4], an intense interaction between its compo-
nents (see the table), and the tendency of the melt to
amorphization in a wide range of concentrations make
it natural [5] to describe its thermodynamic behavior
using the conception of association solutions. Previ-
ously, it was this approach that made it possible to ade-
quately approximate both the concentration and tem-
perature dependences of thermodynamic functions of
liquid alloys for a number of binary and ternary systems
of transition metals with metalloids [5, 6]. It turned out
that in many cases special features in the behavior of
such liquids are close to those for perfect association
solutions due to the prevalence of a covalent constituent
of the chemical bond between its components. In the
case of nickel–zirconium alloys, the presence of a con-
siderable metal constituent of the chemical bond is evi-
dent; it must lead to an essential excess interaction in
addition to the formation of the associative groups. This
interaction can be taken into account in the context of
the model [5], according to which the Gibbs energy of
the Ni–Zr-melt formation can be represented by the
equation

(1)

where ∆fG(i) = –RTlnK(i) = ∆fH(i) – T∆f S(i) is the
Gibbs energy for the formation of one mole of the asso-

α Ni( ) γ Ni( ){ }ln

1 x– Ni( )[ ] 2
-----------------------------= .

∆ f G n i( )∆ f G i( ) RT n Ni1( ) x Ni1( )ln{+∑=

+ n Zr1( ) x Zr1( ) n i( ) x i( ) } ∆ f G
E,+ln∑+ln
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Experimental data on activities of Ni–Zr melt components chosen arbitrarily from the experimental data base and the values
of a(Ni) and a(Zr) calculated from the model proposed

x(Ni) T, K
a(Ni) a(Zr)

experiment model experiment model

0.148 1823 0.000305 0.000302 0.760 0.760

0.570 1823 0.0625 0.0620 0.0345 0.0343

0.994 1823 0.991 0.994 1.18 × 10–7 1.19 × 10–7

0.199 1773 0.000493 0.000500 0.635 0.640

0.473 1773 0.0082 0.0183 0.104 0.102

0.799 1773 0.462 0.457 0.000283 0.000286

0.242 1723 0.000757 0.000764 0.527 0.531

0.406 1723 0.00705 0.00701 0.187 0.184

0.752 1723 0.308 0.307 0.000783 0.000778

0.303 1673 0.00149 0.00147 0.378 0.378

0.705 1673 0.186 0.187 0.00201 0.00203

0.903 1673 0.779 0.790 5.70 × 10–6 5.65 × 10–6

0.351 1623 0.00229 0.00232 0.271 0.268

0.850 1623 0.607 0.607 2.32 × 10–7 2.29 × 10–5

0.524 1573 0.0188 0.0186 0.0430 0.0436

0.598 1523 0.407 0.401 0.0121 0.0122

0.903 1473 0.768 0.776 8.22 × 10–7 8.15 × 10–7

0.647 1423 0.0570 0.0570 0.00311 0.00313
ciative complex of the type i; ä(i) is the constant of
equilibrium of the corresponding reaction of formation
for the groups of the type i; n(i), x(i), n(Ni1), n(Zr1),
x(Ni1), and x(Zr1) are the numbers of moles and the
mole fractions of components of the association solu-
tion; and ∆f GE is the excess Gibbs energy for the solu-
tion formation. This excess energy is caused by both the
presence of other contributions to the chemical bond
between initial components (except the covalent bond),
which is responsible for the formation of associative
groups, and the presence of a certain residual interac-
tion as well as a distinction in the volumes of mono-
meric particles and associative groups [4]. The summa-
tion in Eq. (1) is accomplished over all the types of
associative complexes being formed. For ∆f GE, accord-
ing to [5, 7], we take the expression

(2)

where n(Ni) and n(Zr) are the numbers of moles of ini-
tial components. The quantity, type, thermodynamic
functions of formation of associative groups, as well as
the number of terms and the values of coefficients for
the term ∆f GE were found with the help of the optimi-
zation procedure. It consisted of varying the model
parameters (∆f H(i), ∆f S(i), Lij) and finding the mini-

∆ f G
E

=  Lijn
i Ni( )n j Zr( )/ n Ni( ) n Zr( )+( ) i j 1–+( ),∑
mum of the sum for the squares of residuals between
the calculated and experimental activities of the com-
ponents. In the calculations, we used a complete data
base of experimental values. The calculations per-
formed showed that an adequate description of the con-
centration and temperature dependences for activities
of the components with an accuracy better than the
experimental error (2–3%) (see the table) can be
attained only with allowance for the presence of the
associative groups of three types (NiZr, Ni2Zr, and
Ni3Zr) in the solution and of two terms in the expres-
sion for the excess Gibbs energy. Values of parameters
(∆f H and Lij expressed in J/mol and ∆f S expressed in
J/(mol K)) are:

(3)

The concentration dependences found for the inte-
gral thermodynamic functions of the Ni–Zr-melt for-
mation are asymmetric (Fig. 1) Their extremes are
shifted towards nickel, which agrees well with the form
of the phase diagrams of the Ni–Zr system [4]. Until
now, only the enthalpy ∆f H for the formation of liquid

∆ f H NiZr( ) 62 000, ∆ f S NiZr( )– 38.4;–= =

∆ f H Ni2Zr( ) 97 400, ∆ f S Ni2Zr( )– 40.3;–= =

∆ f H Ni3Zr( ) 120 800, ∆ f S Ni3Zr( )– 60.2;–= =

L11 106 875, L21– 26 975.–= =
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Fig. 1. Integral thermodynamic functions for the formation of the Ni–Zr melt from liquid components according to the results of
this investigation: (1) ∆f H(1450 K), (2) ∆f H(1823 K), (3) ∆f G(1450 K), (4) ∆fG (1823 K), (9) ∆f SE(1823 K), (10) ∆f SE(1450 K)
and according to the data of other authors: (✧) [9], ∆f H(1823 K); ( ) [8], ∆f H(1963 K); (s), [4], the results obtained with a high-
vacuum calorimeter, ∆fH(1838 K); and the data obtained with a SETARAM calorimeter: ( ) ∆fH(1740 K), ( ) ∆fH(1742 K),
( ) ∆fH(1743 K), and ( ) ∆fH(1741 K). The calculated contributions to the thermodynamic functions are related to the covalent
(associative) interaction between components: (5) ∆f H(1450 K), (6) ∆f H1823 K), (7) ∆f G(1450 K), and (8) ∆f G(1823 K).
nickel–zirconium alloys was experimentally studied [4,
8, 9]. The results obtained (Fig. 1) are in good agree-
ment with each other and, with allowance for a differ-
ence in the investigated temperature ranges, coincide
with the data of the present study. Somewhat underesti-
mated ∆f H values were obtained only in [4], evidently
owing to the partial oxidation of samples in the course
of measurements carried out in ambient argon with a
SETARAM calorimeter. This is corroborated by the
fact that the discrepancy with results of other investiga-
tions and with the data of the same authors obtained by
means of a high-vacuum calorimeter (Fig. 1) increases
with zirconium content. In Fig. 1, in addition to the
DOKLADY PHYSICS      Vol. 46      No. 10      2001
summary properties, we also display the values of
change in the integral thermodynamic characteristics
caused by the presence of the covalent constituent of
the chemical bond, which leads to the association pro-
cesses in the liquid. These values are calculated using
Eqs. (1), (2), and parameters (3), and are shown in
Fig. 1 for two temperatures: 1823 K, which is close to
the upper limit of the measurement temperature range,
and 1450 K, which is approximately a median temper-
ature of the liquidus on the phase diagram for the Ni−Zr
system [4]. As can be seen in Fig.1, the contribution
associated with the metal constituent of the chemical
bond prevails in the Gibbs energy and the enthalpy of
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the Ni–Zr-melt formation. The strength of the covalent
interaction is significantly lower; however, it increases
rapidly with a decrease in temperature: while the cova-
lent contribution to the enthalpy of the formation of the
Ni−Zr liquid amounts only nearly one third of the total
value at 1823 K, it exceeds one half at 1450 K. The total
value of the excess enthalpy of the solution formation is
related to the processes of association. It is negative
within the entire concentration range and also rapidly
increases in absolute value with a decrease in tempera-
ture (Fig. 1). On the other hand, the temperature effect
on the metallic-type interaction is negligible.

According to conclusions following from the study
[10], the kinetic and thermodynamic stimuli for the
melt transformation into an amorphous state coincide
and are reduced to the minimum values of the entropy
∆mS of melting and to the maximum differences ∆C
between the heat capacities of liquid and crystals. The
last statement is equivalent to the requirement of mini-
mum values for the excess entropy ∆f SE and maximum

values of the heat capacity  of the melt, which are
excessive with respect to an additive sum of character-
istics of liquid components. The calculations per-

formed (Fig. 2) showed that the quantity , as well as
the quantity ∆f SE for the Ni–Zr melt, is related exclu-
sively to the association processes, i.e., to the covalent
constituent of the chemical bond. The concentration

dependence of , as well as ∆f SE, is strongly asym-
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Fig. 2. Concentration dependences of the Ni–Zr-melt heat

capacity  excessive with respect to the additive sum of

characteristics of liquid components and the difference ∆Cp
in the heat capacities of the liquid and crystals.

Cp
E

metric and is even close to a triangular shape. The
extremum is shifted towards nickel and lies in the
region of the composition with the most strong associa-
tive group Ni2Zr. As the temperature drops from 1823

to 1450 K, the value of  decreases slightly for the
alloys with a high content of nickel and increases for
the zirconium-based compositions. In Fig. 2, we also
display the values of ∆C calculated for 1450 K with
invoking the data on heat capacities of crystalline

phases from [3, 11]. It can be seen that  constitutes
the larger fraction of this characteristic, especially for
the alloy compositions that pass most easily into an
amorphous state. Thus, in spite of the lower energy con-
tribution from the covalent constituent compared to the
metal one of the chemical bond in the interaction
between components, this is the covalent constituent
that determines the predisposition of liquid alloys of
nickel with zirconium to amorphization. This fact
explains a number of specific features of the amor-
phization of metallic liquids, for example, the closeness
in the glass-forming ability of alloys of zirconium with
nickel and copper independently of a large difference in
the intensity of the resulting interaction between com-
ponents in the systems indicated.
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In studies of the magnetic properties of microcrys-
talline Fe–Nd–B alloys produced by the crystallization
of quenched amorphous ribbons, the precipitation of
pure iron in the course of specimen annealing was
revealed [1, 2]. However, at that time, attention was not
drawn to this fact. The phase instability in complex
compounds was also observed in other studies. For
example, the conversion of highest valence oxides to
lowest valence oxides as well as the reduction of oxides
to a pure metal in the course of the shear deformation
under high pressure were demonstrated in [3, 4]. A
phase layering in the course of alloy-powder processing
in a ball mill is described in [5]. In these papers, the
phase instability observed is attributed to an effect of
the severe plastic deformation on the crystalline struc-
ture. It is unclear why the same phenomenon is
observed in the course of annealing of a specimen with
submicrocrystalline structure produced by crystalliza-
tion of an amorphous alloy.

In our efforts to obtain additional insights into the
phase instability of complex compounds, we studied
the temperature dependence of the magnetization and
phase composition of the Er0.45Ho0.55Fe2 compound in
the coarse-grained and fine-grained states. The choice
of the matter for scientific enquiry is caused by the fact
that this compound is ferrimagnetic and iron is its con-
stituent. That is why, in this case, the temperature
dependence of the magnetization can serve as a highly
sensitive indicator of the change in the specimen phase
composition.

A fragment of a cast alloy with a size of about 1mm
was used as a specimen with the macrocrystalline struc-
ture. Because of the extraordinary brittleness of the
chosen material, the fine crystalline state was obtained
by grinding the material in an agate stamp. To prevent
oxidation, the powder was crushed in the ambient etha-

* Institute of Problems of Metal Superplasticity,
Russian Academy of Sciences,
ul. Khalturina 39, Ufa, 450001 Bashkortostan, Russia

** Moscow State University, 
Vorob’evy gory, Moscow, 119899 Russia
1028-3358/01/4610- $21.00 © 20715
nol. The powder with particle sizes on the order of 1 µm
was obtained by the sedimentation method. The pow-
der-particle size was determined using a JSM-840 scan-
ning electron microscope. The temperature dependence
of the specimen magnetization was recorded by the use
of automatic vacuum scales [7] in the temperature range
from 80 to 1080 K. The phase analysis of the specimens
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Fig. 1. Temperature dependence of the magnetization for
the coarse-grained specimen.
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Fig. 2. Temperature dependence of the magnetization for
the fine-grained powder.
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Fig. 3. X-ray diffraction pattern for the fine-grained powder (a) before and (b) after heating to 1080 K.

Line amplitude, arb. units

Line position, arb. units
was carried out with an automated DRON-3M X-ray dif-
fractometer.

The curve of the temperature dependence for the
coarse-grained magnetization σ(T) of the specimen is
shown in Fig. 1. The specimen heating is seen to rapidly
decrease the magnetization, which vanishes at 570 K.
The distinctive feature of this curve is that the transition
of the ferrimagnetic state into a paramagnetic one takes
place abruptly. The curves recorded on the specimen
heating and cooling essentially coincide. This confirms
the phase-state stability of the coarse-grained specimen
up to 1080 K.

The temperature dependence of the magnetization
σ(T) for the fine-grained specimen is shown in Fig. 2.
The curve 1 obtained while heating the specimen sig-
nificantly differs from the corresponding curve for the
DOKLADY PHYSICS      Vol. 46      No. 10      2001
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coarse-grained specimen in Fig. 1. Initially, the speci-
men magnetization decreases as the temperature
increases. However, above 500 K, the magnetization
begins to increase from a nonzero value. The magneti-
zation passes the maximum at 830 K and approaches
zero only at 1033 K. Another feature of the dependence
σ(T) for the fine-grained specimen is the dissimilarity
of the run of the curve 2 recorded while cooling the
specimen from that obtained after its heating. In this
case, curve 2 in Fig. 2 looks like the temperature depen-
dence of the saturation magnetization for pure 3d-ferro-
magnets.

The unusual run of the curves σ(T) for the fine-
grained powder is presumably explained by a change of
the specimen phase composition in the course of heat-
ing. The magnetization growth upon the specimen heat-
ing above 500 K should be related to the precipitation
of a new phase with a large magnetic moment. The run
of the curve σ(T) corresponding to the precipitated
phase implies that it is pure iron because the tempera-
ture of the disappearance of the specimen magnetiza-
tion coincides with the Curie point for iron. It follows
from this fact that the Er0.45Ho0.55Fe2 compound
decomposes with the precipitation of pure iron when
fine particles of the compound are heated in vacuum.
The same is evidenced by the fact that the contribution
of the Er0.45Ho0.55Fe2 compound into the magnetization
is absent on the curve σ(T) recorded while cooling the
specimen.

To confirm the conclusion on the decomposition of
fine particles of the Er0.45Ho0.55Fe2 compound while
heating in vacuum, which was based on the magnetic
measurements, roentgenographic studies of the com-
pound phase composition were carried out.

Figure 3a shows the X-ray diffraction pattern taken
from the fine powder immediately after grinding. All
peaks of the diffraction pattern correspond to the basic
phase of the Er0.45Ho0.55Fe2  compound. Consequently,
in the course of grinding, the phase composition of the
compound under study is unaffected.

In the diffraction pattern taken from the same fine
powder but heated to 1080 K (see Fig. 3b), a number of
additional peaks emerged. The phase identification car-
ried out according to the angular position of the addi-
tional peaks shows that not only pure Fe but pure Ho,
Er, and phases corresponding to the Ho2Fe17, Er2Fe17 ,
and Er6Fe23 compounds as well were formed in the
course of heating of the fine powder of the compound
under study. The notation for the corresponding phases
is shown in Fig. 3b near the additional peaks.

There are also the basic-phase peaks in the diffrac-
tion pattern corresponding to the annealed powder. At
the same time, there is no residual basic phase in the
temperature-dependence curve for the magnetization
obtained in the course of the fine-grained specimen
DOKLADY PHYSICS      Vol. 46      No. 10      2001
cooling below 1080 K. The point is that a great deal of
the material is required for carrying out the X-ray radi-
ography. By this reason, the specimen was prepared
from the ground powder not separated into fractions
with different particle sizes. Because of this, when the
specimen is heated, the compound decomposes in
small-sized crystals of the powder, whereas the basic
phase persists in large-sized ones. On the other hand,
the availability of the basic-phase peaks in the diffraction
pattern is convenient because, firstly, they are actually
reference points, and secondly, it is clearly seen that the
compound does not decompose in larger-sized particles.

It should be noted that whereas the magnetic mea-
surements allowed the pure iron release to be basically
recorded when heating the fine-grained specimen, the X-
ray diffraction analysis also revealed the presence of two
phases produced in the course of the decomposition.

Thus, the research performed discloses that the sta-
bility of the Er0.45Ho0.55Fe2 compound depends on the
crystallite size. Heating the compound crystals with a
size of ~1 mm to 1080 K does not result in changing the
phase composition. But when crystallites with a size of
~1 µm are heated, their decomposition into pure Fe, Er,
Ho, and other compounds of these elements already
begins at 500 K. Consequently, the phase instability of
complex compounds can be observed not only under
the action of high mechanical stresses but also at high
temperatures.
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Many physical, chemical, and hydrodynamic sys-
tems with continuous distributions of parameters
whose properties are described by nonlinear differen-
tial equations have an ordered structure with clearly
identified elements. Striations in a gas discharge, regu-
lar structures formed by chemical reactions of the
Belousov–Zhabotinsky type [1], regular cells of con-
vective flows in a fluid layer between two planes [2],
and periodic structures between differentially rotating
coaxial cylinders [3] are objects of intense investiga-
tions. In certain cases, it is possible to choose character-
istic symmetric functions that satisfactorily describe
the regularity of the spatial structure of the phenome-
non [1, 4, 5]. The existence of discrete symmetries of
the same type in various physical systems indicates a
possibility of constructing a regular method for their
discovery.

In this paper, we propose an algorithm for searching
for discrete symmetries of models of physical pro-
cesses described by nonlinear differential equations
based on combining immersion methods, the analysis
of differential forms, and the calculation technique for
continuous Lie groups.

We consider the system of differential equations of
the general form

(1)

where {xj} is the set of differential variables, {Fi} is the

set of field variables, { }, { }, …, and { } are
the sets of all partial derivatives of the first, second, and
higher orders. In the case of the existence of discrete
symmetries, the sets of variables {xj} and {Fi} in

Eqs. (1) pass to the sets of new variables { } and { }
under the action of their operators:

(2)

Eqk x j{ } Fi{ } Fi'{ } Fi''{ } … Fi
l( ){ }, , , , ,( ) 0,=

Fi' Fi'' Fi
l( )

x̃ j F̃i

x j{ } Fi{ },( ) ° x̃ j x j Fi,( ){ } F̃i x j Fi,( ){ },( ).

Institute of Problems of Mechanics, 
Russian Academy of Sciences,
pr. Vernadskogo 101, Moscow, 117526 Russia
1028-3358/01/4610- $21.00 © 20718
In this case, the following differential equations are
valid:

(3)

These equations are derived from (1) by a formal
replacement of the old variables by the new ones.

In the context of the formalism of differential
forms [6], the set of Eqs. (1) is represented by the set of
the 1-forms dx1, dx2, …, dxn, dF1, dF2, …, dFm and the

forms of the type , where

(4)

denotes the derivative of the lth order for the qth field
variable with respect to the differential variables xi, xj,
…; the subscripts i, j, … must follow in a nondecreas-
ing order. Correspondingly, for set (3), there is its own

set of 1-forms d , d , …, d , d , d , …, d ,

and the forms d .

The consideration is carried out in the extended
space dx1, …, d , …, which is not the direct sum of its

subspaces dx1, …, and d , …, because the basis forms

dx1, …, dFm, and d , …, d  are connected by the
automorphism relationships.

The automorphic transformations of the field and
differential variables satisfy the relationships [7]

(5)

where Gl and  are the Lie generators of sets (1) and

(3), and  are the constant coefficients of a nondegen-
erate automorphism matrix, which, in terms of the dif-
ferential forms, can be written as

(6)

Here, +v() and () denote the Lie derivatives with
respect to the isovectors acting in the spaces of the old
and new coordinates.

Ẽqk x̃ j{ } F̃i{ } F̃i'{ } F̃i''{ } … F̃i
n( ){ }, , , , ,( ) 0.=

d pq ijk   …,  
l

 
( )

pq ijk  …,  
l

 
( )

 
∂

 

l

 

( )

 
F

 
q ∂ x 

i
 ∂ x 

j
 ∂ x 

k  … 
-------------------------------=

x̃1 x̃2 x̃n F̃1 F̃2 F̃m

p̃q ijk   …,  
l

 
( )

x̃1

x̃1

x̃1 F̃m

Gl bl
kG̃k,=

G̃k

bl
k

+vl
x̃ j( ) bl

k+vl

˜ x̃ j( ), +vl
F̃i( ) bl

k+vl

˜ F̃i( ).= =

+v
˜
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Because the operator of external differentiation
commutes with the Lie derivative, the action on Eqs. (6)
leads to the expressions

(7)

which show that the basis forms dx1, …, dFm , and d ,

…, d  are connected by the automorphism relation-
ships.

The diffeomorphism between the derivatives of field

functions in the old variables  and in the new

variables  {induced by automorphism (7)} is
represented as an overdetermined set of nonlinear alge-
braic equations.

The essence of the method proposed consists in the
fact that two classes of 1-forms are singled out in
extended co-tangential space: the class of basis (or
identically annulled) forms and the class of forms anni-
hilated at the solutions to sets (1), (3).

The identically annulled 1-forms can be written as

(8)

where Fi is the field variable, and dFi is its differential:

(9)

In a similar way, the 1-forms  defined on the new

variables  and  are created. The differential forms
annulled on the solutions to set (1) are sought as

(10)

The functions  and Bj [6] are chosen in such
a way that equations (1) can be composed by means of

the linear combinations of  and using the external
multiplying by the corresponding forms of differential
variables {dxj}. Differential forms annulled on solu-
tions (3) have a similar appearance.

Let the symmetry transformations be given by the
functions

(11)

Using the rules for differentiation of the composite
functions and relationship (11), we can represent the
basis forms in the new variables as

+vl
d x̃ j( ) bl

k+vl

˜ d x̃ j( ), +vl
d F̃i( ) bl

k+vl

˜ dF̃i( ),= =

x̃1

F̃m

pq ijk  …,  
l

 
( )

p̃q ijk   …,  
l

 
( )

ωi
b( ) dFi=

∂Fi

∂x1
--------dx1–

∂Fi

∂x2
--------dx2– …–

∂Fi

∂xn

--------dxn,–

dFi

∂Fi

∂x1
--------dx1

∂Fi

∂x2
--------dx2 …

∂Fi

∂xn

--------dxn.+ ++=

ω̃i
b( )

F̃i x̃ j

ωi
s( ) A l( )

q ijk…, d pq ijk…,
l( ) B jdx j.∑+∑=

A l( )
q ijk…,

ωi
s( )

x̃k Φk xi{ } F j{ },( ), F̃l Ψl xi{ } F j{ },( ).= =

ω̃i
b( ) dF̃i=

∂F̃i

∂ x̃1
--------d x̃1

∂F̃i

∂ x̃2
--------d x̃2–– …–

∂F̃i

∂ x̃n

--------d x̃n–

=  
∂Ψi

∂xk

--------- p̃i 1,
1( )∂Φ1

∂xk

---------– p̃i 2,
1( )∂Φ2

∂xk

---------– …– p̃i n,
1( )∂Φn

∂xk

---------– 
  dxk

k

∑
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(12)

Automorphism (7) and the nondegeneracy condi-
tion for transformation (11) always provide the exist-

ence of the set of 0-forms  such that

(13)

where the summations are assumed over the repeated
subscripts. Using (8), relationship (12) can be reduced
to the form

(14)

or

where  = . The expressions obtained rep-
resent the basis annulled forms as to the principle of its
construction. At the same time, representation (14)

makes it possible to interpret the annihilation of  as

a result of nulling all the  components. Thus, the set
of equations arises that is defined in the extended tan-

gential space { , },

(15)

The closure condition for basic annulled 1-forms (14)
on the solutions to the extended set of equations creates
the discrete symmetries of the original set (1). The ana-
lytical representation of the method of searching for
symmetries followed from set (1) has the form

(16)

where the summation is performed over the repeated
subscripts. The existence of a relation between the basis
forms in old and new variables (13) excludes the forms

{ } from the linear combination (16).

The features of the technique for application of the
method are exhibited in analysis of the sin-Gordon
equation, which is used in the description of disloca-
tions, properties of ferromagnets, charge-density

+
∂Ψi

∂Fl

--------- p̃i 2,
1( )∂Φ1

∂Fl

---------- p̃i 2,
1( )∂Φ2

∂Fl

----------–– …– p̃i n,
1( )∂Φn

∂Fl

----------– 
  dFl.

l

∑

ai
j

ω̃i
b( ) ai

kωk
b( ), i k, 1 2,  … m , , , = =

ω̃i
b( ) ∂Ψi

∂xk

------------- p̃i 1,
1( ) ∂Φ1

∂xk

---------- p̃i 2,
1( ) ∂Φ2

∂xk

----------–– …– p̃i n,
1( ) ∂Φn

∂xk

----------–




k

∑=

+ pl k,
1( ) ∂Ψi

∂Fl

-------- p̃i 2,
1( )∂Φ1

∂Fl

---------- p̃i 2,
1( )∂Φ2

∂Fl

----------–– …– p̃i n,
1( )∂Φn

∂Fl

----------– 
 

l

∑ 



dxk,

ω̃i
b( ) Ωi

kdxk,
k
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Ωi
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 ω̃ i
b( )〈 〉

ω̃i
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Ωi
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pi j,
1( ) p̃i j,
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k λ i
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waves, phase transitions, and surface epitaxial struc-
tures [8],

(17)

In terms of differential forms, this equation can be writ-
ten as

(18)

The calculations are simplified in the case of sym-
metrization of the original equation by introducing the
variables

that transform (17) into

(19)

The required 1-forms can be written as

(20)

Taking into account the relationships

we obtain the 1-forms for Eq. (18):

(21)

The sequential realization of procedure (9)–(16)
leads to the following result for the admissible discrete
symmetries:

(22)

where

The signs for the values α, β, γ, and δ are chosen with
allowance for the relationships

utt'' c2uxx''– ω2 usin+ 0.=

dq dx∧ c2d p dt ω2 udx dt∧sin–∧+ 0,=

p ux' , q ut'.= =

y
x ct+

2c
-------------, z

x ct–
2c

-------------,= =

uyz'' ω2 usin– 0.=

ωP dP ω2 udz, ωQsin– dQ ω2 udy,sin–= =

P uy' , Q uz' .= =

dP
2
c
--- dq cdp+( ), dQ

2
c
--- –dq cdp+( ),= =

dy
1
2
--- dx cdt+( ), dz

1
2
--- dx cdt–( ),= =

ωp dp
ω2

2c2
-------- udx, ωqsin– dq

ω2

2
------ udx.sin+= =

ũ u πn, n Z ,∈+±=

x̃ αx βt, t̃+ γx δt,+= =

α  = 1± , β = c 1 c2 1–( )n–
1–( )n

1 c2 1–( )n– c4–
-------------------------------------,±

γ = 
1
c
--- 1 c2 1–( )n–± , δ = c2 1–( )n

1 c2 1–( )n– c4–
-------------------------------------.±

α2 c2γ2– c2 1–( )n,=

αβ γδ– 0, β2 c2δ2– c2 1–( )n.–= =
                         

The obtained sets include both the characteristics of
the linearized equation (17) and more complicated
types of symmetries. This is corroborated by the direct
substitution of (22) into (17).

The equation describing the structure of a convec-
tive flow between the differentially rotating coaxial and
spatially inhomogeneously heated cylinders is charac-
terized by another type of discrete symmetries [4]:

(23)

Here, A is the order parameter that describes the direc-
tion and intensity of the fluid rotation, ε and µ are small
perturbation parameters, and the functions f(x) and h(x)
describe the local Rayleigh number and the spatial-
heating distribution, respectively.

The set of 1-forms for Eq. (23) can be written as

(24)

where  = f(ξ) and  = h(ξ). In (24), we used the nota-

tion p = , q = , ξ = , τ = , and B = , while ωt

and  are the unknown functions that arise in the con-
text of the method of searching for discrete symmetries
and must be determined.

In the degenerate case, when the Jacobian of trans-
formation (2) vanishes and the condition

(25)

is met for the coefficient B in (24), the partial solutions
to (23) should be sought in the form ϕ(x) + ψ(t). Thus,
on the regular basis, we find the substitution that was pre-
viously used heuristically in constructing partial quasi-
periodic or disordered nonasymptotic solutions [4, 5].

In the nondegenerate case with the supplementary
condition ε = µ = 0, transformation (2) in the form of

(26)

describes the discrete reflection symmetry with respect
to the origin of coordinates x = 0 and also the continu-
ous shifts in space and in time. When the perturbation

At' Axx'' 1 εf x( )+( )A A3–+= µh x( ),+

f x L+( ) f x( ), h x M+( ) h x( ).= =

ωA dA  –  pdx qdt ,–=  

ω

 

p

 

dp q

 

1

 

ε

 

f

 

+

 

( )

 

A

 

–

 

A

 

3

 

µ

 

h

 

–+

 

( )

 

dx

 

–

 

ω

 

t

 

dt

 

,–=

 

ω

 

˜

 

p

 

d p

 

˜=

 

q

 

˜ 1

 

ε

 

f

 

˜+

 

( )

 

B

 

–

 

B

 

3

 

µ

 

h̃–+( )dξ– ω̃tdτ ,–

f̃ h̃

Ax' At' x̃ t̃ Ã

ω̃t

∂2B
∂x∂t
----------- 0=

ξ x x0, τ+± t t0,+= =

B A, x0 t0,± const,= =
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parameters ε and µ vanish simultaneously, the symme-
tries yield three solutions in the degenerate case:

(27)

The first and the second solutions describe the equilib-
rium state and a uniform motion of fluid, respectively.
The third solution known as the separatrix corresponds
to fixed defects, for example, the domain walls between
the regions with the opposite direction of the rotation of
fluid during its separation in striations. This result
agrees with [4].

Thus, the discrete-symmetry algorithm for nonlin-
ear sets of partial differential equations in the degener-
ate case, when the Jacobian of transformation (2) van-
ishes, makes it possible to construct partial non-self-
similar solutions.
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The Fredholm integral equations of the second kind
obtained in [1] determine displacements and stresses in
a three-dimensional elastic wedge when normal and
tangential loads act on one face of the wedge, whereas
various conditions exist on the other face. For the case
when this face is stress-free, the Papkovich–Neuber
functions are given in [2]. When an aperture angle of
the wedge corresponds to a half-space, the formulas
of [2] coincide with the well-known Boussinesq and
Cerruti solutions. The solutions of [1, 2] use a Fourier–
Kontorovich–Lebedev complex integral and the tech-
nique of reducing the three-dimensional problem of the
elasticity theory to a generalized (in the sense of Vekua)
Hilbert boundary value problem [3, 4]. In the present
paper, by using this technique, generalizations of the
two other fundamental solutions, i.e., those of Mindlin
(1936) [5] and Lord Kelvin (Thomson, 1882) [6], are
obtained in the framework of classical elasticity theory
for the case of a three-dimensional wedge. The Papkov-
ich–Neuber functions are given in the explicit form for
three problems when a concentrated force acts in the
bisector half-plane of the wedge, and for three variants
of boundary conditions on the wedge faces.

Using cylindrical coordinates r, ϕ, z, we consider a
three-dimensional elastic wedge (0 ≤ r < ∞, |ϕ| ≤ α, |z | <
∞) with an aperture angle 2α and elastic characteristics
G (shear modulus) and ν (Poisson’s ratio). The z-axis is
directed along the wedge edge so that the system of
coordinates is right-handed (see the figure). Let the
concentrated force P, perpendicular to the edge, act in
the bisector half-plane ϕ = 0 of the wedge at the arbi-
trary point r = x, z = y. The faces ϕ = ±α are either
stress-free (problem !), or are subjected to sliding sup-
port or fixed support (problems @ and #). Due to the
symmetry of the problems with respect to the angle ϕ
we consider the wedge region –α ≤ ϕ ≤ 0, and write out
the boundary conditions in the form

(1)!) ϕ α : σϕ– τ rϕ τϕ z 0,= = = =

Institute of Mechanics and Applied Mathematics,
Rostov State University, 
pr. Stachki 200/1, Rostov-on-Don, 344090 Russia
1028-3358/01/4610- $21.00 © 0722
(2)

(3)

(4)

We also suppose that stresses vanish at infinity.
We express the general solution of Navier equilib-

rium equations in cylindrical coordinates in terms of
three Papkovich–Neuber harmonic functions Φn =
Φn(r, ϕ, z), n = 0, 1, 2, by the formulas

(5)

(6)

(7)

The stresses can be determined from (5)–(7) using
Hooke’s law.

@) ϕ α : uϕ– τ rϕ τϕ z 0,= = = =

#) ϕ α : uϕ– ur uz 0,= = = =

ϕ  = 0: τ rϕ  = 
1
2
---Pδ r x–( )δ z y–( ), uϕ  = τϕ z = 0.

ur

∂Φ0

∂r
----------

1
4 1 ν–( )
-------------------- ∂

∂r
----- rω1( ) ω1,–+=

ω1 ϕΦ1 ϕΦ2,cos–sin=

uϕ
1
r
---

∂Φ0

∂ϕ
---------- 1

4 1 ν–( )
--------------------

∂ω1

∂ϕ
--------- ω2,–+=

ω2 ϕΦ1cos ϕΦ2,sin+=

uz

∂Φ0

∂z
----------

r
4 1 ν–( )
--------------------

∂ω1

∂z
---------.+=

z

P

ϕ = –α ϕ  = 0 ϕ = α

Concentrated force inside a three-dimensional wedge.
2001 MAIK “Nauka/Interperiodica”
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We present the solutions to boundary value prob-
lems (1)–(4) as a superposition of even and odd solu-
tions with respect to z, considering collinear, equal or
opposite forces at the points r = x, z = ±y. We seek the
harmonic functions Φn as a sin- or cos-Fourier integral
with respect to z and a Kontorovich–Lebedev complex
integral with respect to r [3, 4]. Using the well-known
technique [3, 4], we obtain the solutions of the bound-
ary value problems (1)–(4) in the form (5)–(7), where
(we pass to real-valued Kontorovich–Lebedev inte-
grals, n = 0, 1, 2)

(8)

(9)

The functions (9) are the same for the three problems;
_iτ(x) is the modified Bessel function. For problem ! (1),
(4) we have

(10)

(11)

(12)

(13)

Φn r ϕ z, ,( ) P

2π3G
------------- πτ( ) An τ β,( ) ϕτ( )cosh[sinh

0

∞

∫
0

∞

∫=

+ Bn τ β,( ) ϕτ( ) ]sinh _iτ βr( ) β z y–[ ]( )dτdβ,cos

B0 τ β,( ) x
2 1 ν–( )
--------------------_iτ βx( ),=

A1 τ β,( ) 0, B2 τ β,( ) 2_iτ βx( ).= =

A0 τ β,( ) x ατ( )coth
2 1 ν–( )

--------------------------_iτ βx( ) 1 2ν–
β ατ( )sinh
--------------------------–=

× W t α,( )Φ t β,( ) πt/2( )Ψ t β,( )cosh+
πt( )cosh πτ( )cosh+

----------------------------------------------------------------------------------------- πt
2
-----sinh t,d

0

∞

∫

B1 τ β,( )

=  
2 2α( )_iτ βx( )sin 4 1 ν–( ) ατ( ) αΨ τ β,( )cossinh+

2ατ( )cosh 2α( )cos–
-----------------------------------------------------------------------------------------------------------------------–

–
4 1 ν–( ) ατ( ) αΦ τ β,( )cossinh

πτ/2( ) 2ατ( )sinh τ 2α( )sin+[ ]cosh
----------------------------------------------------------------------------------------,

A2 τ β,( )

=  
2 2ατ( )_iτ βx( )sinh 4 1 ν–( ) ατ( ) αΨ τ β,( )sincosh–

2ατ( )cosh 2α( )cos–
-------------------------------------------------------------------------------------------------------------------------------

–
4 1 ν–( ) ατ( ) αsin Φ τ β,( )cosh

πτ/2( ) 2ατ( )sinh τ 2α( )sin+[ ]cosh
----------------------------------------------------------------------------------------,

Φ t β,( ) Φ* t β,( ) πt
2
-----F t β,( ),cosh+=

_it' βx( ) ∂
∂x
------_it βx( ),=

F t β,( )
4_it βx( )
2α t( )cosh 2α( )cos–

----------------------------------------------------=

× t α t( ) αcossinh
2 1 ν–( )

------------------------------------ α t( ) αsincosh– 
 
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(14)

(15)

The function Φ∗ (t, β) for a fixed β satisfies the Fred-
holm integral equation of the second kind (0 ≤ t < ∞)

× 

(16)

(17)

(18)

For problem @ (2), (4) we have

(19)

(20)

For problem # (3), (4)

(21)

–
2 1 ν–( ) 2α t( )sinh t 2α( )sin+

2α t( )cosh 2α( )cos–
-------------------------------------------------------------------------Ψ t β,( )

+ 1 ν–( ) 1– t α t( ) α_it βx( )cossinh[

+ x α t( ) α_it' βx( ) ]sincosh
1 2ν–
1 ν–

---------------+

× 2 αu( )sinh α_iu βx( )cos 1 ν–( ) 2α( )Ψ u β,( )sin–
2αu( )cosh 2α( )cos–[ ] πu( )cosh πt( )cosh–[ ]

--------------------------------------------------------------------------------------------------------------------------

0

∞

∫
× πu( )du,sinh

Ψ t β,( )

=  
t α t( ) α_it βx( )coscosh x α t( ) α_it' βx( )sinsinh+

1 ν–( ) 1 2ν–( )
------------------------------------------------------------------------------------------------------------------------.

Φ* t β,( ) 1 2ν–( ) L t u,( )
0

∞

∫=

Φ* u β,( ) πu
2

------ F u β,( ) Ψ u β,( )
W u α,( )
--------------------+ 

 cosh+ du

–
βx

1 ν–
------------ πt

2
-----

πτ( ) ατ( )g τ α,( )_iτ βx( )coshsinh
πτ( )cosh πt( )cosh+

------------------------------------------------------------------------------------ τ ,d

0

∞

∫cosh

L t u,( ) 2 πt
2
-----cosh

πu
2

------W u α,( )sinh=

× πτ( )g τ α,( )dτsinh
πτ( )cosh πt( )cosh+[ ] πτ( )cosh πu( )cosh+[ ]

------------------------------------------------------------------------------------------------------------------,

0

∞

∫

W t α,( ) 2α t( )cosh 2α( )cos–
2α t( )sinh t 2α( )sin+

-----------------------------------------------------,=

g t α,( ) α t( ) 2α( )sin
2

coth
2α t( )cosh 4α( )cos–

----------------------------------------------------.=

A0 τ β,( ) x ατ( )coth
2 1 ν–( )

--------------------------_iτ βx( ),=

B1 τ β,( )
2 2α( )_iτ βx( )sin

2ατ( )cosh 2α( )cos–
-----------------------------------------------------,–=

A2 τ β,( )
2 2ατ( )_iτ βx( )sinh

2ατ( )cosh 2α( )cos–
-----------------------------------------------------.=

A0 τ β,( ) x ατ( )tanh
2 1 ν–( )

--------------------------_iτ βx( ), κ 3 4ν ,–= =
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(22)

(23)

Integrals (8) converge for functions (9)–(23) for all ϕ ∈
[–α, 0].

The solution to problem ! in the form (8)–(18) for
α = π/2 coincides with the Mindlin solution for a half-
space. For this case we have Φ∗ (t, β) = B1(τ, β) = 0, and
using the integral

we obtain

We show the coincidence for the displacement
ur(r, 0, z). Calculating integrals [7], we obtain

and, using the first formula of (5), we determine

B1 τ β,( )

=  
2 2α( ) τ 2α( )_iτ βx( )sin x 2ατ( )_iτ' βx( )sinh–[ ]sin

2ατ( )cosh 2α( )cos+[ ] κ 2ατ( )sinh  – τ 2α( )sin[ ]
---------------------------------------------------------------------------------------------------------------------------,–

A2 τ β,( )

=  
2 2ατ( )cosh 1–[ ]

2ατ( )cosh 2α( )cos+[ ] κ 2ατ( )sinh  – τ 2α( )sin[ ]
------------------------------------------------------------------------------------------------------------------------–

× τ ατ( ) 2α( )sincoth κ 2ατ( ) κ 2α( )cos–cosh–( )[

× _iτ βx( ) 2x α_iτ' βx( ) ]sin
2

.–

πt/2( )_it βx( )cosh
πt( )cosh πτ( )cosh+

--------------------------------------------------- td

0

∞

∫ β
2 πτ/2( )cosh
------------------------------- _iτ βx( ) x,d

x

∞

∫=

A0 τ β,( ) x πτ( )cosh κ+[ ]
2 1 ν–( ) πτ( )sinh
------------------------------------------_iτ βx( )=

+
2 1 2ν–( )

πτ( )sinh
----------------------- _iτ βx( ) x,d

x

∞

∫

A2 τ β,( )
2 πτ( )cosh κ+[ ] _iτ βx( ) 4x_iτ' βx( )–

πτ( )sinh
---------------------------------------------------------------------------------------------.=

Φ0 r 0 z, ,( ) P
8πG
-----------=

× x
2 1 ν–( )R–
-------------------------- κx

2 1 ν–( )R+
-------------------------- 2 1 2ν–( ) dx

R+
------

x

∞

∫+ +
 
 
 

,

Φ2 r 0 z, ,( ) P
4πG
----------- 1

R–
----- κ

R+
------ 2x

∂
∂x
------ 1

R+
------–+ 

  ,=

R± r x±( )2 z y–( )2+ ,=

ur r 0 z, ,( ) P
16π 1 ν–( )G
------------------------------- κ

R–
-----

5 12ν– 8ν2+
R+

---------------------------------+
=

+ r x–( )2

R–
3

------------------ κ r x+( )2 2rx–

R+
3

------------------------------------ 6rx r x+( )2

R+
5

---------------------------+




.+
This agrees exactly with the second expression of for-
mula (9.25) in [8] (the displacement uz in Cartesian
coordinates corresponds to the displacement ur in cylin-
drical coordinates).

The solution to problem @ in the form (8), (9), (19),
(20) for α = π coincides with the fundamental Lord
Kelvin solution for an elastic space. For this case, we
have

and, for instance, for the displacement ur(r, 0, z), we
similarly arrive at the formulas

This result is in agreement with formulas (9.2) and (9.4)
for uz in [8].

We now explain why the solutions to problems @
and # are simpler than that for problem !. As is
known [1, 4], the problem on the action of concentrated
forces on one face of a three-dimensional wedge whose
other face is stress-free can be reduced to two Fredholm
integral equations of the second kind. When, however,
the other face has a sliding support or is fixed, the cor-
responding problem is reduced to only one Fredholm
equation. For the wedge with a stress-free face, we can
then express displacements as a combination of two
Neumann series that serve as the solutions to the two
Fredholm equations. At the same time, for the other two
cases, displacements can be represented as a single
Neumann series. The boundary conditions (1)–(4) cor-
respond to the inverse problems, because in relation (4),
the displacement uϕ is given instead of the stress σϕ .
Therefore, the solutions to problems (1)–(4) must con-
tain the inversions of the indicated Neumann series.
One Neumann operator series for problems @ and
# has a simple inverse operator in the form (see for-
mula (1.6) in [9])

where 7 is a known operator and I is the identity oper-
ator. For problem !, the inversion of the combination
of two Neumann series has a complicated form (see
theorem in [4, p. 160]). This inversion contains the
solution of the Fredholm integral equation whose ker-
nel has the form (17), (18). Fredholm integral equations
with the same kernel occur in the problem on a cut

A0 τ β,( ) x πτ( )coth
2 1 ν–( )

-------------------------_iτ βx( ),=

B1 τ β,( ) 0, A2 τ β,( ) 2 πτ( )_iτ βx( ),coth= =

Φ0 r 0 z, ,( ) = 
Px

16π 1 ν–( )GR–
-------------------------------------, Φ2 r 0 z, ,( ) = 

P
4πGR–
-----------------,

ur r 0 z, ,( ) P
16π 1 ν–( )G
------------------------------- κ

R–
----- r x–( )2

R–
3

------------------+
 
 
 

.=

1 2ν–( )n7n

n 0=

∞

∑
1–

I 1 2ν–( )7,–=
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(crack) in a three-dimensional wedge with stress-free
faces [9, 10] and in the problem on the action of con-
centrated forces on one wedge face when the other face
has a sliding support [1, 4] (in these problems), the
same components of the stress tensor and of the dis-
placement vector are given). As is proved in [1, 4], the
solution of such Fredholm integral equations and,
therefore, of integral equation (16), for any angle α and
at least for ν > 0.053, can be represented by a Neumann
series which converges uniformly in the Banach space
CM(0, ∞) of functions that are continuous and
bounded on the semiaxis. In other words, the solution
to problem ! for ν > 0.053 can be written as a func-
tional series in powers of 1–2ν.

The formulas obtained can be applied, for example,
to problems on a thin rigid inclusion in a three-dimen-
sional wedge; similar problems for a space and a layer
were considered in [11].
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In this paper, we find new multiparameter families
of exact solutions (among them, periodic solutions) to
the steady-state and unsteady Navier–Stokes equations.
We also construct more general solutions depending on
one or several arbitrary functions. Various modifica-
tions of the method of generalized separation of vari-
ables are employed for finding the exact solutions.

Self-similar and invariant solutions to the Navier–
Stokes equations were considered in [1–6]. A number
of exact solutions to nonlinear heat-conduction equa-
tions and other nonlinear equations of the second
order with the generalized separation of variables
were given in [5, 7–10].

1. EQUATION FOR THE STREAM FUNCTION 

The two-dimensional nonstationary equations for a
viscous incompressible fluid,

,

can be reduced to a nonlinear equation of the fourth
order for the stream function w introduced by the for-

mulas u1 =  and u2 = –  (with the subsequent

elimination of the pressure from the first two equations
by cross differentiation):

(1)

u1∂
t∂

-------- u1

u1∂
x∂

-------- u2

u1∂
y∂

--------+ + –
1
ρ
--- p∂

x∂
------ ν∆u1,+=

u2∂
t∂

-------- u1

u2∂
x∂

-------- u2

u2∂
y∂

--------+ + –
1
ρ
--- p∂

y∂
------ ν∆u2,+=

u1∂
x∂

--------
u2∂
y∂

--------+ 0=

w∂
y∂

------ w∂
x∂

------

∂
t∂

---- ∆w( ) w∂
y∂

------ ∂
x∂

----- ∆w( ) w∂
x∂

------ ∂
y∂

----- ∆w( )–+ ν∆∆w,=

∆w
∂2w

x2∂
---------

∂2w

y2∂
---------.+=
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2. EXACT SOLUTIONS 
WITH THE GENERALIZED SEPARATION

OF VARIABLES 

New exact solutions to Eq. (1) with the generalized
(incomplete) separation of its variables are described
below. These solutions are sought in the form of finite
sums,

or

where the functions fk(x) and gk(y, t) [or fk(x, t) and
gk(y)] should be chosen to satisfy the equation under
consideration. For nonlinear equations, in contrast to
linear ones, the functions gk(y, t) with different
subscripts k are related to each other and to the func-
tions fm(x).

We now consider the simplest case when a set of the
functions depending on the coordinate [for example,
fk(x)] is described by linear differential equations with
constant coefficients. In this paper, we use the most
widespread solutions to such equations,

and their linear superpositions in order to find exact
solutions to Eq. (1) (here, λk, αk, and βk are free param-
eters). Another set of the functions, gk(y, t), is deter-
mined by solving the corresponding nonlinear equa-
tions.

Remark. Solutions with another generalized separa-
tion of variables is given in Sections 3 (2°) and 4
(2° and 9°).

w x y t, ,( ) f k x( )gk y t,( )
k 1=

n

∑=

w x y t, ,( ) f k x t,( )gk y( ),
k 1=

n

∑=

f k x( ) xk, f k x( ) e
λk x

,= =

f k x( ) α kx( ), f k x( )sin cos βkx( ),= =
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EXACT SOLUTIONS TO THE N

3. STEADY-STATE SOLUTIONS
IN THE CARTESIAN 

AND POLAR COORDINATE SYSTEMS 

1°. There are the exact solutions with the general-
ized separation of variables:

where A, B, C, D, β, and λ are arbitrary constants.
Taking in the second solution A = –νλ, B = C = 0,

and λ = , we obtain

This solution describes a steady-state fluid flow caused
by the motion of the surface points y = 0 with the veloc-
ity u1|y = 0 = kx.

2°. There exists the more general exact solution with
incomplete separation of its variables:

w(x, y) = F(z)x + G(z), z = y + kx.

Here, the functions F = F(z) and G = G(z) are described
by the system of ordinary differential equations of the
fourth order,

(2)

(3)

w x y,( ) 6νx y λ+( ) 1– A y λ+( )3 B y λ+( ) 1–+ +=

+ C y λ+( ) 2– D ν 0≠( ),+

w x y,( ) Ax B+( )e λy– νλx C,+ +=

w x y,( ) A λx–( )exp B λy–( )exp+=

+ νλ x y–( ) C,+

w x y,( ) A λx( ) B λy–( )exp νλ x y+( ) C,+ + +exp=

w x y,( ) A βx( )sinh B βx( )cosh+[ ] e λy–=

+
ν
λ
--- β2 λ+

2( )x C,+

w x y,( ) A βx( )sin B βx( )cos+[ ] e λy–=

+
ν
λ
--- λ2 β2–( )x C,+

w x y,( ) Aeλy βx+ Beγx νγy
ν
λ
---γ β γ–( )x C,+ + + +=

γ λ2 β2+ ,±=

k
ν
---

w kνx 1 k
ν
---y– 

 exp– .=

Fz' Fz'' FFzzz'''– ν k2 1+( )Fzzzz'''' ,=

Gz' Fzz'' FGzzz'''– ν k2 1+( )Gzzzz'''' 4kνFzzz'''+=

+
2k

k2 1+( )
-------------------FFzz'' .
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Integrating these equations, we obtain the new system
of equations of the third order,

(4)

(5)

where A and B are arbitrary constants and the function
ψ(z) is determined by the formula

The order of autonomous equation (4) can be lowered
by unity.

Equation (2) has the following particular solutions:

where a, b, and λ are arbitrary constants.

In general, the substitution U =  reduces Eq. (5)
to a linear inhomogeneous equation of the second
order, which has a nontrivial particular solution in the
case of ψ = B = 0 (i.e., in the homogeneous case):

Hence, its general solution can be expressed in terms of
quadratures [11, 12].

3°. There is a solution with the generalized separa-
tion of variables in the polar coordinate system:

Here, x = rcosθ, y = rsinθ, and the functions f = f(r) and
g = g(r) satisfy the system of ordinary differential equa-
tions

(6)

(7)

where L(f ) = r–1(r .

The exact solution to Eqs. (6) and (7) takes the form

where C1, C2, C3, C4, C5, and C6 are arbitrary constants.

Fz'( )2
FFzz''– ν k2 1+( )Fzzz''' A,+=

Gz' Fz' FGzz''– ν k2 1+( )Gzzz''' ψ z( ) B,+ +=

ψ z( ) 4kνFzz''
2k

k2 1+
-------------- FFzz'' z.d∫+=

F z( ) az b z,+ y kx,+= =

F z( ) 6ν k2 1+( ) z a+( ) 1– ,=

F z( ) ae–λ z λν k2 1+( )+ ,=

Gz'

U
Fzz'' , if Fzz'' 0≠

F, if Fzz'' 0.=



=

w r θ,( ) f r( )θ g r( ).+=

f r'– L f( ) f L f( )[ ] r'+ νrL2 f( ),=

gr' L f( )– f L g( )[ ] r'+ νrL2 g( ),=

f r' )r
'

f r( ) C1 rln C2, g r( ) C3r2 C4 rln+=+=

+ C5 rQ r( ) rd∫ rd
r
-----∫ C6,+

Q r( ) r
C2/ν( ) 1– C1

2ν
------ rln

2

 
 exp r,d∫=
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4. UNSTEADY SOLUTIONS IN THE CARTESIAN 
AND POLAR COORDINATE SYSTEMS 

1°. There is an exact solution with an incomplete
separation of variables:

(8)

Here, the functions F = F(y, t) and G = G(y, t) are deter-
mined by the system of one-dimensional equations of
the fourth order:

(9)

(10)

Equation (9) is solved independently of Eq. (10).
Integrating Eqs. (9) and (10) over y yields

(11)

(12)

Here,  f1(t) and f2(t) are arbitrary functions. Equation (12)
is linear in the function G. After performing the substi-
tution

(13)

with the function h = h(t) satisfying the linear ordinary
differential equation

(14)

equation (12) is reduced to the linear homogeneous
equation of the second order,

(15)

Thus if a particular solution to Eq. (9) or Eq. (11) is
known, the determination of the function G is reduced
to solving linear equations (14) and (15) with the sub-
sequent integration in formula (13).

The exact solutions to Eq. (9) are listed in Table 1.
The ordinary differential equations presented in the two
last lines of Table 1 have the traveling-wave solution
and the self-similar solution. These equations are
autonomous; hence, their order can be lowered.

The general solution to the inhomogeneous equa-
tion (14) is found with the help of a fundamental set of
solutions to the corresponding homogeneous equation
(with f2 ≡ 0). Necessary formulas and the fundamental
solutions to homogeneous equation (14), which corre-
spond to all exact solutions listed in Table 1, can be
found in handbooks [11, 12].

w x y t, ,( ) F y t,( )x G y t,( ).+=

∂3F

t y2∂∂
------------

F∂
y∂

------∂2F

y2∂
--------- F

∂3F

y3∂
---------–+ ν∂4F

y4∂
---------,=

∂3G

t y2∂∂
------------

G∂
y∂

-------∂2F

y2∂
--------- F

∂3G

y3∂
---------–+ ν∂4G

y4∂
---------.=

∂2F
t y∂∂

----------
F∂
y∂

------ 
 

2

F
∂2F

y2∂
---------–+ ν∂3F

y3∂
--------- f 1 t( ),+=

∂2G
t y∂∂

----------
F∂
y∂

------ G∂
y∂

------- F
∂2G

y2∂
---------–+ ν∂3G

y3∂
--------- f 2 t( ).+=

G U yd∫ hF– ht'y,+=

U U y t,( ),=   F F y t ,( ) ,=

htt'' f 1 t( )h– f 2 t( ),=

U∂
t∂

------- ν∂2U

y2∂
--------- F

U∂
y∂

------- F∂
y∂

------U .–+=

           
For arbitrary function F = F(y, t), Eq. (15) has a trivial
solution. The expressions in Table 1 and formula (13)
with U

 

 = 0 describe certain exact solutions of the
form (8). A wider class of exact solutions can be obtained
if nontrivial solutions to Eq. (15) are considered.

In Table 2, we present transformations that simplify
Eq. (15) for some of the solutions to Eq. (9) [or (11)]
listed in Table 1. It is seen that in the first two cases the
solutions to Eq. (15) are expressed in terms of solutions
to the conventional heat-conduction equation with con-
stant coefficients. In the other three cases, Eq. (15) is
reduced to an equation in separable variables.

 

2°

 

. There is a more general exact solution with
incomplete separation of variables:

Here, the functions 

 

F

 

(

 

ξ

 

, 

 

t

 

)

 

 and 

 

G

 

 = 

 

G

 

(

 

ξ

 

, 

 

t

 

)

 

 are deter-
mined from the system of one-dimensional equations
of the fourth order:

 

(16)

(17)

 

Integrating Eqs. (16) and (17) over 

 

ξ

 

, we arrive at

 (18)

(19)

 

where 

 

f

 

1

 

(

 

t

 

)

 

 is an arbitrary function and 

 

Q

 

(

 

ξ

 

, 

 

t

 

)

 

 is deter-
mined by the formula

with 

 

f

 

2

 

(

 

t

 

) being an arbitrary function.
Equation (19) is linear in the function 

 

G

 

. The substi-

tution 

 

U

 

 =  

 

reduces this equation to the linear equa-

tion of the second order

 

(20)

 

Thus when a particular solution to Eq. (16) or (18)
is known, the function 

 

G

 

 is determined by the linear
equation (20) of the second order. With the help of the
scaling of the independent variables, 

 

ξ

 

 = (

 

k

 

2

 

 + 1)

 

ζ

 

 and

w x y t, ,( ) F ξ t,( )x G ξ t,( ), ξ+ y kx.+= =

∂3F

t ξ2∂∂
-------------

∂F
ξ∂

------∂2F

ξ2∂
--------- F

∂3F

ξ3∂
---------–+ ν k2 1+( )∂

4F

ξ4∂
---------,=

∂3G

t ξ2∂∂
-------------

∂G
ξ∂

-------∂2F

ξ2∂
--------- F

∂3G

ξ3∂
---------–+ ν k2 1+( )∂

4G

ξ4∂
---------=

+ 4νk
∂3F

ξ3∂
--------- 2k

k2 1+
-------------- F

∂2F

ξ2∂
--------- ∂2F

t ξ∂∂
----------– 

  .+

∂2F
t ξ∂∂

----------
F∂
ξ∂

------ 
 

2

F
∂2F

ξ2∂
---------–+ ν k2 1+( )∂

3F

ξ3∂
--------- f 1 t( ),+=

∂2G
t ξ∂∂

----------
F∂
ξ∂

------ G∂
ξ∂

------- F
∂2G

ξ2∂
---------–+ ν k2 1+( )∂

3G

ξ3∂
--------- Q ξ t,( ),+=

Q ξ t,( ) 4νk
∂2F

ξ2∂
--------- 2k

k2 1+
-------------- F∂

t∂
------–=

+
2k

k2 1+
-------------- F

∂2F

ξ2∂
--------- ξd∫ f 2 t( ),+

G∂
ξ∂

-------

U∂
t∂

------- ν k2 1+( )∂
2U

ξ2∂
--------- F

U∂
ξ∂

------- F∂
ξ∂

------U– Q ξ t,( ).+ +=
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Table 1.  Exact solutions to Eqs. (9) and (11). Here, ϕ(t) and ψ(t) are arbitrary functions, while A and λ are arbitrary constants

No. Function F = F(y, t)
(the general form of solution) Function f1(t) in Eq. (11) Defining coefficients (or defining equation)

1 F = ϕ(t)y + ψ(t) f1(t) =  + ϕ2 –

2 f1(t) = 0 –

3 f1(t) = 0 –

4 f1(t) = Be–2βt β = νλ2, B = A2λ2 > 0

5 f1(t) = Be–2βt β = νλ2, B = A2λ2 > 0

6 f1(t) = Be2βt β = νλ2, B = A2λ2 > 0

7 f1(t) = Be2βt β = νλ2, B = –A2λ2 < 0

8 F = F(ξ), ξ = y + λt f1(t) = A

9 F = t–1/2[H(ξ) – ξ], ξ = yt–1/2 f1(t) = At–2

ϕ t'

F
6ν

y ψ t( )+
-------------------- ψt' t( )+=

F A –λy λψ t( )–[ ] ψ t' t( )+exp νλ+=

F Ae βt– λy λψ t( )+[ ] ψ t' t( )+sin=

F Ae βt– λy λψ t( )+[ ] ψ t' t( )+cos=

F Aeβt λy λψ t( )+[ ] ψ t' t( )+sinh=

F Aeβt λy λψ t( )+[ ] ψ t' t( )+cosh=

–A λFξξ
'' Fξ

'( )
2

FFξξ
''–+ + νFξξξ'''=

1
2
--- 3

4
--- A– 2Hξ

' Hξ
'( )

2
HHξξ

''–+– νHξξξ
'''=

Table 2.  Transformations of Eq. (15) for corresponding exact solutions to Eq. (11). The numbers in the first column corres-
pond to the numbers of the exact solutions F = F(y, t) in Table 1

No. Transformation of Eq. (15)  The equation obtained

1

2 U = ζ–3u(ζ, t), ζ = y + ψ(t)

3 U = eηZ(η, t), η = –λy – λψ(t)

8 U = u(ξ, t), ξ = y + λt

9 U = t–1/2u(ξ, τ), ξ = yt–1/2, τ = lnt

U
1

Φ t( )
-----------u z τ,( ) τ, Φ2 t( ) t,d∫= =

z yΦ t( ) ψ t( )Φ t( ) t Φ t( ),d∫+ ϕ t( ) td∫[ ]exp= =

∂u
∂τ
------ ν∂2u

∂z2
--------=

∂u
∂t
------ ν∂2u

∂ζ2
--------=

∂Z
∂t
------ νλ 2∂2Z

∂η2
--------- νλ 2 Aλeη–( )∂Z

∂η
------+=

∂u
∂t
------ ν∂2u

∂ξ2
-------- F ξ( ) λ–[ ] ∂u

∂ξ
------ Fξ

' ξ( )u–+=

∂u
∂τ
------ ν∂2u

∂ξ2
-------- H ξ( )∂u

∂ξ
------ 1 Hξ

' ξ( )–[ ] u+ +=
t = (k2 + 1)τ, Eq. (16) is reduced to Eq. (9), in which ζ
and τ should be substituted for y and t (exact solutions
to Eq. (9) are described in Table 1).

3°. There is an exact solution [a particular case of
solutions taking form (8)]

w x y t, ,( ) e λy– f t( )x g t( )+[ ]=

+ ϕ t( )x ψ t( )y χ t( ),+ +

f t( ) C1E t( ), E t( ) νλ 2t λ ϕ t( ) td∫–[ ] ,exp= =

g t( ) C2E t( ) C1E t( ) ψ t( ) t.d∫–=
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Here, ϕ(t), ψ(t), and χ(t) are arbitrary functions, and
C1, C2, and λ are arbitrary parameters.

4°. There is an exact solution

w x y t, ,( ) e λy– A t( )eβx B t( )e βx–+[ ] ϕ t( )x+=

+ ψ t( )y χ t( ),+

A t( ) C1 ν λ 2 β2+( )t β ψ t( ) td∫– λ ϕ t( ) td∫–[ ] ,exp=

B t( ) C2 ν λ 2 β2+( )t β ψ t( ) td∫ λ ϕ t( ) td∫–+[ ] ,exp=
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in which ϕ(t), ψ(t), and χ(t) are arbitrary functions and
C1, C2, λ, and β are arbitrary parameters.

5°. There is an exact solution

Here, ϕ(t), ψ(t), and χ(t) are arbitrary functions, λ and
β are arbitrary parameters, and the functions A(t) and
B(t) satisfy the linear nonautonomous system of ordi-
nary differential equations

(21)

The general solution to system (21) takes the form

where ϕ = ϕ(t), ψ = ψ(t), and C1 and C2 are arbitrary

constants. In particular, if ϕ = (λ2 – β2) and ψ = a, we

obtain the periodic solution

6°. There are exact solutions

in which ϕ(t), ψ(t), and χ(t) are arbitrary functions; k1,
λ1, k2, and λ2 are arbitrary parameters related by one of
the two equations

 +  =  +  (the first family of the solutions),

k1λ2 = k2λ1 (the second family of the solutions),

and the functions A(t) and B(t) satisfy the linear ordi-
nary differential equations

These equations are easily solved:

w x y t, ,( ) e λy– A t( ) βx( )sin B t( ) βx( )cos+[ ]=

+ ϕ t( )x ψ t( )y χ t( ).+ +

At' ν λ 2 β2–( ) λϕ t( )–[ ] A βψ t( )B,+=

Bt' ν λ 2 β2–( ) λϕ t( )–[ ] B βψ t( )A.–=

A t( ) ν λ 2 β2–( )t λ ϕ td∫–[ ]exp=

× C1 β ψ td∫( )sin C2 β ψ td∫( )cos+[ ] ,

B t( ) ν λ 2 β2–( )t λ ϕ td∫–[ ]exp=

× C1 β ψ td∫( )cos C2 β ψ td∫( )sin–[ ] ,

ν
λ
---

A t( ) C1 aβt( )sin C2 aβt( ),cos+=

B t( ) C1 aβt( )cos C2 aβt( ).sin–=

w x y t, ,( ) A t( ) k1x λ1y+( )exp=

+ B t( ) k2x λ2y+( )exp ϕ t( )x ψ t( )y χ t( ),+ + +

k1
2 λ1

2 k2
2 λ2

2

At' ν k1
2 λ1

2+( ) λ1ϕ t( ) k1ψ t( )–+[ ] A,=

Bt' ν k2
2 λ2

2+( ) λ2ϕ t( ) k2ψ t( )–+[ ] B.=

A t( ) = C1 ν k1
2 λ1

2+( )t λ1 ϕ t( ) td∫ k1 ψ t( ) td∫–+[ ] ,exp

B t( ) = C2 ν k2
2 λ2

2+( )t λ2 ϕ t( ) td∫ k2 ψ t( ) td∫–+[ ] .exp
7°. There is an exact solution

Here, ϕ(t) and χ(t) are arbitrary functions, C1, C2, λ, and
β are arbitrary parameters, and the functions A(t) and
B(t) satisfy the linear non-autonomous system of ordi-
nary differential equations

(22)

The general solution to system (22) takes the form

where C3 and C4 are arbitrary constants.

8°. There is an exact solution

in which ϕ(t) and χ(t) are arbitrary functions, C1, C2, λ,
and β are arbitrary parameters, and the functions A(t)
and B(t) satisfy the linear non-autonomous system of
ordinary differential equations

(23)

The general solution to system (23) takes the form

where C3 and C4 are arbitrary constants.

9°. There is an exact solution

Here ϕ(t) and ψ(t) are arbitrary functions, k and λ are
arbitrary parameters, and the function u(z, t) satisfies
the linear differential equation of the fourth order:

w x y t, ,( ) C1 λx( )sin C2 λx( )cos+[ ]=

× A t( ) βy( )sin B t( ) βy( )cos+[ ] ϕ t( )x χ t( ).+ +

At' ν λ 2 β2+( )– A βϕ t( )B,–=

Bt' ν λ 2 β2+( )– B βϕ t( )A.+=

A t( ) ν λ 2 β2+( )t–[ ]exp=

× C3 β ϕ td∫( )sin C4 β ϕ td∫( )cos+[ ] , ϕ ϕ t( ),=

B t( ) ν λ 2 β2+( )t–[ ]exp=

× C– 3 β ϕ td∫( )cos C4 β ϕ td∫( )sin+[ ] ,

w x y t, ,( ) C1 λx( )sinh C2 λx( )cosh+[ ]=

× A t( ) βy( )sin B t( ) βy( )cos+[ ] ϕ t( )x χ t( ),+ +

At' ν λ 2 β2–( )A βϕ t( )B,–=

Bt' ν λ 2 β2–( )B βϕ t( )A.+=

A t( ) ν λ 2 β2–( )t[ ]exp=

× C3 β ϕ td∫( )sin C4 β ϕ td∫( )cos+[ ] , ϕ ϕ t( ),=

B t( ) ν λ 2 β2–( )t[ ]exp=

× C– 3 β ϕ td∫( )cos C4 β ϕ td∫( )sin+[ ] ,

w x y t, ,( ) u z t,( ) ϕ t( )x ψ t( )y+ , z+ kx λy.+= =

∂3u

t z2∂∂
------------ kψ t( ) λϕ t( )–[ ] ∂3u

z3∂
--------+ ν k2 λ2+( )∂

4u

z4∂
--------.=
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The transformation

reduces this equation to the conventional heat-conduc-
tion equation

10°. There is a solution with the generalized separa-
tion of variables in the polar coordinate system:

Here, x = rcosθ and y = rsinθ, the functions f = f(r, t)
and g = g(r, t) satisfy the system of equations

(24)

(25)

the subscripts r and t imply the corresponding partial
derivatives, and

For the particular solution f = ϕ(t)lnr + ψ(t) to
Eq. (24) (ϕ and ψ are arbitrary functions), Eq. (25) is
reduced to a linear equation of the second order by the
substitution U = L(g).
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U ξ t,( ) ∂2u

z2∂
--------, ξ z kψ t( ) λϕ t( )–[ ] td∫–==

U∂
t∂

------- ν k2 λ2+( )∂
2U

ξ2∂
---------.=

w r θ t, ,( ) f r t,( )θ g r t,( ).+=

L f t( ) r 1– f rL f( ) r 1– f L f( )[ ] r+– νL2 f( ),=

L gt( ) r 1– grL f( ) r 1– f L g( )[ ] r+– νL2 g( ),=

L f( ) r 1– r f r( )r, L2 f( ) LL f( ).= =
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A number of dynamic mixed problems in the theory
of elasticity, electroelasticity, and mathematical physics
for semibounded bodies of the layered half-space type
leads to the equation

(1)

with the oscillating kernel whose symbol has branch
points on the real axis:

(2)

In this paper, we present the theorem which estab-
lishes the form of the solution to equation (1). Owing to
the use of direct numerical procedures, this theorem is
an extension of the solution to the equation of type (1)
that was obtained, in particular, in [1–3] under the
assumption that K in (2) is meromorphic. The applica-
tion of numerical methods enables us to use an exact
representation of the symbols of the integrated-operator
kernels omitting a traditional approximation stage. As a
result, we retain all the specific features of the equation,
including branch points of the kernel symbol. This per-
mits us to consider at greater length the dynamic prop-
erties of the problem and to improve the accuracy of the
solution obtained.

1. We assume that: (i) K(α) is an even function hav-
ing a finite number of branch points on the real axis;
this number depends on the problem type and the prop-
erties of the medium material; (ii) K(α) is meromorphic
in the complex plane with cuts that do not pass to one
another, are located in the quadrants I and III, and con-
nect the branch points with the infinitely distant point;
(iii) K(α) has on the real axis a finite number of zeros γk

(k = 1, 2, …, n2) and poles zk (k = 1, 2, …, n1), as well
as a countable set of complex zeros and poles with the

kq k x1 ξ–( )q ξ( ) ξd

a–

a

∫ f x1( ), x1 a,≤= =

k s( ) 1
2π
------ K α( )eiα s α .d

Γ
∫=

* Kuban State University, 
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points of condensation in certain sectors containing the
imaginary axis; and (iv) K(α) takes the form

at infinity. The position of the contour Γ corresponds to
the emission conditions, and equation (1) is uniquely
resolvable for any twice continuously differentiable
function f(x1) [4]. We introduce the functions

and (3)

where zk (k = 1, 2, …, n1) and γk (k = 1, 2, …, n2) are
real, and the remaining zk (k = n1 + 1, …, M) and γk

(k = n2 + 1, …, M), M ≥ max{n1, n2} are the complex
poles and zeros of K(α) that lie in the band |Imα| ≤ E0 .
It follows from (3) that K0 retains in itself all unac-
counted in Π singularities of K, above all, the branch
points on the real axis.

Theorem. The Fourier transform of the solution to
Eq. (1) is given by the formula

(4)

(5)

Here, Rk(α) is the function that satisfies the condition

Q(α) = Rk(α), α = ±zk, k = 1, 2, …, M [1–3];  are the

components of the vectors Bk = , which satisfy
the systems

K α( ) c α 1– 1 O α 1–( )+[ ]=

Π α( ) α2 γk
2–( ) α2 zk

2–( ) 1–

k 1=

M

∏=

K0 α( ) Π 1– α( )K α( ),=

Q α( ) T α( )Π 1– α( )= CkRk α( ),
k 1=

2M

∑+

T α( ) T0 α( )= CkTk α( ),
k 1=

2M

∑+

Tk α( ) βk
pΦp α( ), k

p 1=

N

∑ 0 1 … 2M., , ,= =

βk
p

βk
p{ } p 1=

N

ABk Fk, A Apl p l, 1=
N , Fk f k

l{ } l 1=
N

,= = =
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(6)

()* implies a complex conjugate quantity;

(7)

is the Fourier transform of the coordinate function

(8)

in which ap, p = 1, 2, …, N – 1 are the points that divide
the segment [–a, a] into equal parts, a0 = –a, aN = a; and
the constants Ck appearing in (4) and (5) are found
from the constraints

(9)

2. The proof is based on the method of regulariza-
tion of an integral operator developed in [1–3], which
represents a solution in the form

(10)

provided that

(11)

[V(α) and V–1(x1) are, respectively, the operators of the
direct and inverse Fourier transforms]. Without loss of
generality and on account of the arbitrariness in (11),
we can choose r in the form

(12)

Upon substituting (10), with (12) taken into account,
and passing to the new unknown quantity

, (13)

equation (1) converts to the form

(14)

The validity of the theorem statement is achieved by
introducing the set of the coordinate functions (8), by

Apl K0 α( )Φp α( )Φl* α( ) α ,d

Γ
∫=

f 0
l f x1( )ϕ l x1( ) x1, f k

ld

a–

a

∫ K α( )Φl α( )e
iα x1

k–
α ;d

Γ
∫= =

Φp α( ) iα 1– e
iαap e

iαap 1––[ ]–=

ϕ p x1( )
1, x1 ap 1– ap,[ ]∈
0, x1 ap 1– ap,[ ] ,∉




= p 1 2 … N ,, , ,=

T γn±( ) 0, n 1 2 … M., , ,= =

q x1( ) q0 x1( )= r x1( )+

V α( )q V α( )r, V α( )q0 0,= =

α zk, k± 1 2 … M, , ,= =

r x1( ) Ckrk x1( ).
k 1=

2M

∑=

t x1( ) V 1– x1( )T , T α( ) Π α( )Q0 α( )= =

k0t Ck f k x1( )
k 1=

2M

∑= f 0 x1( ), x1 a.≤+
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representing the solution in the form

(15)

and by substituting it into Eq. (14) with subsequent
application of Galerkin’s scheme. Condition (9) fol-
lows from the lemma given in [5], which establishes the
equivalency of transformations.

When exploring the dynamics of massive bodies,
mechanical or electromechanical systems interacting
with an elastic or electroelastic medium, the main prob-
lem is to calculate the integral characteristics of the
problem (the response of the medium on the die action,
charge, etc.). The necessity of calculating the density of
these characteristics (contact stresses, charge distribu-
tion density, etc.) drops out. In this case, it is possible to
restrict consideration by the Fourier transform of the
problem solution. In other words, the class of r-func-
tions in (12) can be substantially expanded by taking,
for example,

(16)

as the components, where  are the coordinates of the
points that divide the segment [–a, a] into equal parts.
In this case,

, (17)

which considerably simplifies formula (4). To calculate
the integral characteristics of the problem, it is suffi-
cient to put α = 0 in (4).

3. Let A and A–1 be constructed. Then, the solutions
to systems (6) take the form

(18)

It follows from (18) that the solution of 2M + 1 sys-
tems of algebraic equations (9) is concentrated on the
calculation of the matrices A and A–1, a procedure that
is sufficient to perform once. Next, we should calculate

all the vectors Bk , whose components are , p = 1, …,
N, k = 0, 1, 2, …, 2M.

Remark 1. We assumed above that zk and γk are sin-
gle-valued. The extension to the case of multiple zeros
and poles is, in principle, not difficult. However, in this
case, representation (3) and the form of relationships (9)
change [1].

Remark 2. When the function q(x1), as the solution
to the original equation (1), must be calculated, we
should use formula (4) and choose r(x1) from the class
Lp, p > 1, or, when r is used in form (16), introduce t(x1)

t x1( ) t0 x1( )= Cktk x1( ),
k 1=

2M

∑+

tk x1( ) βk
pϕ p x1( ), k

p 1=

N

∑ 0 1 … 2M,, , ,= =

rk x1( ) δ x1 x1
k–( ),=

x1
k

Rk α( ) e
iα x1

k

=

Bk A 1– Fk.=

βk
p
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such that r(x1) is present in the final expression only
under the integration sign [1].

Remark 3. The method is extended without diffi-
culty to the class of three-dimensional axisymmetric
problems of the elasticity theory. In this case, α is

replaced by a new variable u = . The proposed
approach, providing a high accuracy in considering
dynamic properties, makes it possible to study subtle
problems of contact interaction, in particular, the effect
of initial stresses on the dynamic stiffness of the
medium.

α1
2 α2

2+

2

0

–2

–4
0.3 3.4 6.5 9.6

κ2

ReQ±, Im*Q±

1

2

3

3

1

2

Fig. 1. Effect of localization of prestresses on the dynamic
stiffness of the medium as illustrated by the graphs ReQ±

and Im*Q± = ImQ± + 6. See details in the text.κ 2
1–
4. We now consider Eq. (1), which arises in the
study of the interaction of a die with a two-layered pre-
stressed half-space, when

K α( ) ∆k3 σk
1( )cosh h ∆k 2 3,++ σk

1( )hsinh[ ] ,
k 1=

2

∑=

∆lp

∆lp
0

∆0
-------, l p, 1 2 … 6, ∆0, , , det Tlp l p, 1=

6 ,= = =

2

0

–2

–4
0.3 3.4 6.5 9.6

κ2

1

2

3

Re Q±, Im*Q±

3

1
2

Fig. 2. Effect of localization of prestresses on the dynamic
stiffness of the medium as illustrated by the graphs ReQ±

and Im*Q± = ImQ± + 6. See details in the text.κ 2
1–
T1k = l1k
1( ) σk

1( )h, T1 k 2+,cosh  = l1k
1( ) σk

1( )h, T1 k 4+,sinh  = 0,

T2k = l3k
1( ) σk

1( )h, T2 k 2+,sinh  = l3k
1( ) σk

1( )h, T2 k 4+,cosh  = 0,
where  = –iα  (n, k = 1, 2);  are
the cofactors of Tlp; and the superscript indicates that
the given quantity belongs to layer (1) or half-space (2):

T3k 0, T3 k 2+, f k
1( ), T3 k 4+, f k

2( ),–= = =

T4k 1, T4 k 2+, 0, T4 k 4+, 1,–= = =

T5k l1k
1( ), T5 k 2+, 0, T5 k 4+, l1k

2( ),–= = =

T6k 0, T6 k 2+, l= = 3k
1( ), T6 k 4+, l3k

2( ),–=

f k
n( ) S3k

n( ) σk
n( )S1k

n( )( ) 1– ∆lp
0

l1k
n( ) χ3113

n( ) σk
n( ) f k

n( )= iαχ 1313
n( ) ,–

S1k
n( ) B32

n( )H1k
n( ) α2B13

n( )B23
n( ),+=

l3k
n( ) χ3333

n( ) σk
n( )= iαχ 3311

n( ) f k
n( ),–

S3k
n( ) B12

n( )H3k
n( )

 – σk
n( )2

B13
n( )B23

n( ),=

Hmk
n( ) χ3mm3

n( ) σk
n( )2

= χkmmk
n( ) α2 ρ n( )ω2–( ),–

Bmk
n( ) χmmkk

n( ) χmkmk
n( ) ,+=
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Here, δmp is Kronecker’s symbol, ρ(n) is the density, and
v nm is the relative elongation of filaments of the layer
(n = 1) or the half-space (n = 2) along the xm-axis. The

coefficients ψnl and , l, m = 0, 1, 2, depend on the
form of the elastic potential and on the initial deformed
state (IDS). Their appearance for some particular cases

is given in [5–9];  are derived from the characteris-
tic equation

5. Numerical analysis was performed for a medium
that represents a layer (bronze) arranged on the half-
space (steel 35KhGSA) [6]). The IDS was set by the
conditions: vnl = vn2 = vn3 = 1 ± ζ (n = 1 stands for the
layer, n = 2 for the half-space) and ζ = 0.005. 

The effect of localization of prestresses on the
dynamic stiffness of the medium is illustrated in Figs. 1
and 2, in which we plotted the graphs ReQ±, Im*Q± =

ImQ± + 6 (Fig. 1) and ReQ±, Im*Q± = ImQ± + 6
(Fig. 2). The functions Q± and Q± are calculated using
formula (4) [f(x1) = 1] for the cases of the preliminary
compression (–) or tension (+) of the layer (superscript)
or the half-space (subscript). Curves 1 correspond to
the natural state, curves 2 correspond to tension, and
curves 3 to compression of the corresponding domain
of the composite medium. From these graphs, it follows
that in the absence of initial stresses the quantities
ReQ0 and Im*Q0 exhibit oscillations that are due to the
heterogeneity of the medium. The appearance of these
oscillations substantially depends on the IDS localiza-

χ lmsp δlsδmpslm
1n= δmsδlpv l

2slm
2n δlmδspsls

3n,+ +

slm
1n 2Jn

1– –ψ0n ψ2nv nl
2 v nm

2+[ ] ,=

slm
2n 2Jn

1– ψ1n ψ2n+ v nl
2 v nm

2+( )[ ] ,=

slm
3n 4Jn

1– VMN
n( ) v nl

2Mv nm
2N .

N 0=

2

∑
M 0=

2

∑=

Vlm
n( )

σk
n( )

H1k
n( )H3k

n( ) α2σk
n( )2

B13
n( )2

+ 0.=

κ2
1– κ2

1–
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tion. The compression of the layer (curve 3 in Fig. 1),
as well as the tension of the half-space (curve 2 in
Fig. 2), decrease the heterogeneity of the layered struc-
ture. Conversely, the tension of the layer, as does the
compression of the half-space, enhances the medium
heterogeneity. This confirms the previously indicated
[7–9] specific character of the action of the IDS on the
dynamic stiffness of the medium, namely, the increase
of the dynamic stiffness under compression of the layer
or the homogeneous half-space and, conversely, its
decrease under tension.
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We consider dynamics of an ideal homogeneous
incompressible fluid passing through a given domain
D ⊂  R2. Euler equations of motion of the fluid are writ-
ten as

(1)

where v is the fluid velocity, w = rotv, H = P + , and

P is the pressure. We assume that, at any time t ≥ 0, the
following conditions

(2)

are set at the boundary S of domain D. Here, n is the
unit vector of the outward normal to S = ∂D, γ and ω+

are the given functions (  = 0 for all t ≥ 0), and the

inlet  and the outlet  are the parts of the boundary
S through which the fluid inflows into domain D and,
respectively, outflows from it at the time moment t ≥ 0.
Therefore, by definition, 

and 

It will be recalled that Kochin was the first, who has
analyzed the general problem of unsteady fluid flow [1].
In his study, the boundary conditions (2) were pro-
posed. Yudovich [2] established that a two-dimensional
problem defined by Eq. (1) and boundary conditions (2)
is globally solvable. In what follows, we consider only
this two-dimensional problem and refer it to as the
problem Y.

∂tv w v∧+ ∇ H , divv– 0,= =

v 2

2
------

v n⋅( ) x t,( ) γ x t,( ), x S,∈=

ω x t,( ) ω+ x t,( ), x St
+ S⊂∈=

γ sd

S

∫
St

+ St
–

St
+ x S: γ x t,( )∈ 0<{ }=

St
– x S: γ x t,( )∈ 0>{ } .=
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In the general case, problem (1), (2) is overdeter-
mined [3]. At the same time, the correctness (but only
local in time) was proved for some other boundary
value problems in the case of two- and three-dimen-
sional Euler equations [4, 5].

The permeation of fluid through the boundary of the
flow domain involves a complicated dissipation–pump-
ing mechanism: while penetrating into this domain,
fluid particles bring in (or bring out, when leaving it)
energy, enstrophy, kinetic momentum, and other mate-
rial quantities. For example, a strong pumping effect
arises when the flow inlet contains a closed curve c. In
this case, the equality

(3)

follows from the equations of motion and from the
boundary conditions (2). If the functions ω+ and γ are
independent of time t and the integral in the right-hand
side of equality (3) does not vanish, the velocity circu-
lation around the contour c increases linearly with time.
Thus, the generation of the accelerating rotation
occurs by blowing. In this case, there are no steady-
state regimes, and all solutions of the unsteady problem
are unbounded. 

At the same time, the enstrophy of the flow declines
when its vortex is identically equal to zero at the inlet.
In this case, dissipation concentrates at the outlet and
may seem weak, but actually it may result in the asymp-
totic (exponential or even nilpotent) stability of the
steady-state regime. Here we are dealing with such a
stability. 

Let problem Y have a steady-state solution with the
velocity field v and the vortex ω. We make the follow-
ing assumptions: 

(H1) the flow domain is bounded, simply connected,
and piecewise smooth;

(H2) the normal velocity γ is given in such a manner
that the inlet S+ and the outlet S– are the connected
smooth arcs without common end points; the set of
angular points of domain D coincides with the set

d
dt
----- v dx⋅

c

∫° ω+γ sd

c

∫–=
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∂S + ∪ ∂ S– of points where the inlet, outlet, and rigid
wall join; 

(H3) the complete efflux condition is fulfilled; i.e.,
inf{|v(x)|, x ∈  D} > 0, so that the flow has no stagnation
points both inside the flow region and on the rigid wall; 

(H4) the boundary arcs of the flow region intersect
each other at the right angles, and the steady-state solu-
tion is regular to such an extent that v ∈ C∞(D) ∩ C( )

and ω ∈ C1( ). 

The flow (or its velocity field v) that satisfies condi-
tion (H3) will be termed a through flow.

The condition of regularity (H4) has a minor charac-
ter and can be weakened. The condition of single con-
nectedness is essential, as follows from the above
example. 

The condition of full permeation (H3), i.e., the
absence of stagnation zones in the flow, is of fundamen-
tal importance for all the results we consider below.
Moreover, this condition justifies, to a certain extent,
the assumptions on the smoothness of the principal
solution [6]. The point is that the vortex of the flow with
stagnation points can undergo discontinuities along the
separatrix streamlines. At the same time, a large num-
ber of explicitly smooth solutions (both through and
non-through) to the steady-state problem Y are known.
The simplest among them are shear flows with rectilin-
ear or circular streamlines parallel to the rigid walls of
the channel. 

The problem with initial and boundary value condi-
tions, which arises as a result of the linearization of
problem Y, will be named the LY problem. In the single
connected domain D, problem LY has the form

(4)

Here, S+ =  is the mainstream inlet; σ is the vortex
disturbance; and Kσ = ∇ω ∧ ∇ Gσ, where G is the
Green operator of the problem; i.e., –∆ϕ = σ, ϕ|S = 0. 

When ω ; const, we eliminate from Eq. (4) the term
Kσ, which reduces problem LY to a problem on the pas-
sive transport of the scalar σ by the known velocity
field v, so that

(5)

Transport problem (5) for an arbitrary smooth field v is
integrable in Lagrange coordinates, which are the time
τ(x, t) and the point a(x, t) where a fluid particle that
occupies position x at the time instant t originally
appeared in domain D.

According to the full-efflux condition, the quantity
t – τ(x, t) (the age of the fluid particle) is uniformly
bounded in the half-cylinder D × {t > 0}. The maximal

D

D

∂tσ v ∇,( )σ Kσ+ + 0,=

σ
S

+ 0, σ t 0= ξ .= =

St
+

∂tσ v ∇,( )σ+ 0, σ
S

+ 0, σ t 0= ξ .= = =
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age of the particle (the full efflux time) is denoted by t∗
so that 

Proposition 1. For any through vector field v, the
solution σ0 to the transport problem (5) with the arbi-
trary initial function ξ is identically equal to zero in the
half-cylinder D × {t > t∗ }. In particular, the through
flow with a constant vortex is nilpotently stable.

In general, we consider problem LY as a disturbed
transport problem (5). Clearly, the disturbing operator
K: L2(D)  L2(D) is completely continuous. 

Proposition 2. Under the full-efflux condition, the
spectrum of problem LY is discrete in the sense that the
corresponding resolvent R(λ): L2(D)  L2(D) is a
meromorphic function of the complex variable λ. In this
case the real parts of eigenvalues are bounded from
above.

We represent the solution σ of problem LY as a per-
turbation-theory series so that

where σ0 is the solution to the transport problem (5),
and the functions σk (k = 1, 2, …, ∞) are defined by the
recurrence relationships

(6)

Here X(s, x, t) ∈  D is the position that was occupied at
the moment s ∈ (τ(x, t), t) by the fluid particle, which
is located at the time instant t > 0 at the point x ∈  D.
Note that the length of the integration segment in inte-
gral (6) does not exceed the time of the full efflux t∗
and, therefore, the disturbances σk are different from
zero only when t < (k + 1)t∗ .

Theorem 1. Let the mainstream be through. Then,
for all t > t∗ , the evolutionary operator U(t) : ξ ° σ(t)
of problem LY is compact in L2(D). 

Let D' be the fixed subdomain of domain D bounded
by both a pair of the internal streamlines and the arcs
S+ and S–. Then, for any positive integer m and for the
instant t > mt∗ , the following estimates of the deriva-
tives with respect to the space norm L2(D') take place:

(7)

Here, the constant c depends, in general, on subdomain
D', but does not depend on the initial disturbance and
on the time t. Moreover, for all t > t∗ , the derivatives
(∂tσ)(t) and (v, ∇ )σ(t) satisfy inequality (7), where
m = 1 and D' = D. 

t* sup t τ x t,( )– x D∈ t 0>, ,{ } .=

σ t( ) σ0 t( )= … σk t( ) …,+ + +

σk x t,( ) Kσk 1–( ) X s x t, ,( ) s,( ) s.d

τ x t,( )

t

∫–=

∂t x,
m σ( ) t( ) 2 D ', csup σ s( ) 2 D, s t mt*– t,( )∈,{ } ,≤

t mt*> .
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Having compared Theorem 1 with the known exam-
ples of loss of the smoothness of disturbances [7, 8, 9,
13, 14], we can suggest that the flow smoothness
improves in the part of the flow where rapid drift of dis-
turbances occurs and worsens in places where distur-
bances drift slowly. The simplest condition for asymp-
totic stability is related to the dimensionless quantity
qv = t∗ (D) , where λ1(D) is the minimum

eigenvalue of the first boundary value problem for the
operator –∆ in domain D. The flow (or its velocity
field v) that satisfies the condition qv < 1 is hereafter
referred to as fast one.

Theorem 2. The fast flow is exponentially asymptot-
ically stable within the linear approximation in the
enstrophy metric (i.e., in the metric L2(D) for vortex
disturbances). In this case, for an arbitrary n = 0,1, …
and for the instant t > nt∗ , the following inequality
holds

(8)

where r(µ) = qv(exp(µt∗ ) – 1)(µt∗ )–1 and the number µ is
arbitrary solution to the inequality max[r(µ), r(–µ)] < 1.
Moreover, the higher norms of the disturbance whose
estimates are given in Theorem 1 are exponentially
damped as t  +∞. 

In particular, any shear flow turns into a fast flow
when a sufficiently large constant V0 is added to its pro-
file V. It is important that the fast flow remains fast after
a small smooth deformation (caused, e.g., by the distur-
bance of the boundary data in problem Y) and in cases
when disturbances of the vortex are C1 small. For
example, any steady flow that is close to the through
Couette flow is fast. 

More precise stability conditions are obtained by the
second Lyapunov’s method using Lyapunov functions
introduced by Arnol’d [12]. This approach appears
especially attractive if we note that the dependence of
the vortex ω of the through flow on its stream function
ψ is single valued and allows explicit expression in
terms of the boundary data ω+ and γ of the steady prob-
lem Y. Thus, the through steady flow is arranged in a
substantially simpler form than the arbitrary flow in
which the functional dependence of the vortex and the
stream function is not necessarily single valued.
Although the single-valuedness takes place when the
flow maximizes its energy [10, 11], even in this case the
function ω(ψ) is arranged in a complicated way, and its
explicit expression is unknown. 

Arnold’s theorem [12] is extended onto problem Y
in the following way. Let the stream function ψ of the
basic flow be expressed in terms of its vortex ω by the
equality ψ = Ψ(ω). Here, the function Ψ is determined
on the entire axis R, and its derivative Ψ' is uniformly
bounded. We introduce the function Φω assuming that

λ1
1/2– ∇ω

D
max

σ t( ) 2 D, max 1 eµt*,( ) r µ–( )[ ] n 1 r µ( )–( ) 1– σ 0( ) 2 D, ,≤
t nt*,>
Φω(σ) = f(ω + σ) – f(ω) – Ψ(ω)σ, where f is the primi-
tive function of the function Ψ. By virtue of the nonlin-
ear equation of disturbances, we define the functional

W and its derivative  by the equalities

(9)

Theorem 3. Let the condition essinf |Ψ'| > 0 be ful-
filled. If in this case the function Ψ increases, we
assume, in addition, that the functional –W is positive

definite so that inf{−W(σ) : σ ∈ L2(D)} > 0. Then,
an arbitrary solution σ(t) to the nonlinear equation of

disturbances admits a priori estimate  ≤

c , where the constant c is independent of time
t and of vortex σ(0) of the initial disturbance. 

As an example, we consider a shear flow with recti-
linear streamlines in the channel of length l. (Here, l is
the projection of the channel length onto the x-axis par-
allel to the streamlines.) Let the profile of the shear flow
V have the form V(y) = sinµy, y ∈  (0, 1), µ > 0. This
flow is non-through. At the same time, Theorem 3
yields the estimate of the enstrophy for the flow finite
disturbances, at least until µ < π(1 + l–2)1/2. For compar-
ison, in the case of a channel of infinite length and dis-
turbances being periodic along the channel, the Arnol’d
theorem gives a result only under the condition µ < π.

Now, let the flow profile have the form V(y) = e–µy,
y ∈  (0, 1), µ > 0. When the channel length is finite, this
through flow satisfies the conditions of Theorem 3 for
all µ, but the condition qv < 1 is fulfilled only for µ ! 1.
Hereafter, it will be shown, however, that the through
flow is asymptotically stable within the linear approxi-
mation under the linearized conditions of Theorem 3.

We now introduce the function κ by the equality

κ(x) = (x), x ∈  D. We linearize Theorem 3,

assuming that Ψ(h) = κh and Φω(h) =  in (9).

Theorem 4. Let the function κ =  be bounded

and definite in sign in the sense that essinf |κ| > 0. If, in
this case, function κ is positive, we assume, in addition,

that the functional –W where Φω(σ) =  is posi-

tively defined on L2(D). Then the system LY is stable
according to Lyapunov in the enstrophy metric. 

Ẇ

W σ( ) ∇ Gσ( )2

2
------------------- Φω σ( )– z,d

D

∫=

Ẇ σ( ) γΦω σ( ) s.d

S
–

∫=

σ 2 D,
2–

σ t( ) 2 D,
2

σ 0( ) 2 D,
2

∇ψ
∇ω
-------- 

 

κh2

2
--------

∇ψ
∇ω
--------


 κσ2

2
---------


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Note that Theorems 3 and 4 do not use the condition
of complete efflux. If, however, the latter is satisfied,
then, according to Theorem 1, the bounded trajectories
of the system LY are compact in L2(D), allowing us to
establish the asymptotic stability of through flows in
line with the Barbashin–Krasovskiœ theorem. Follow-
ing this sample, we find from formula (9) that ω-limit-
ing set M of an arbitrary trajectory of system LY con-
sists of smooth functions equal to zero in both the inlet
S+ and the outlet S–. Therefore, the restriction of system
LY on M is reversible: motions are invariant with
respect to the change of the field v to the field –v with a
simultaneous time inversion. 

Theorem 5. Let the through flow v satisfy the condi-
tions of Theorem 4. Then, all the motions of system LY
tend to the finite-dimensional subspace X0 spanned by
the system of eigenvectors of the neutral spectrum of
problem LY.

The question on the existence of the neutral spec-
trum for the individual flow is difficult to solve. A sim-
ple general answer can, however, be given for analytic
flow families. 

Theorem 6. Let a family of through flows vµ analyt-
ically depend on the parameter µ, and allow that for
any µ the field vµ satisfies the conditions of Theorem 4.
Then, the dimension of the neutral subspace X0 is con-
stant within the family. If, in this case, the family con-
tains a fast flow, then all its elements are asymptotically
stable in the enstrophy metric within the linear approx-
imation. Moreover, as t  +∞, the higher norms of
disturbances, whose estimates are given in Theorem 1,
are damped. 

Theorem 6 entails, e.g., an asymptotic stability of
shear flows with profiles V(y) = exp(–µy) for an arbi-
trary µ > 0. 

In conclusion, we consider one of the possible
mechanisms for the onset of instability. 

Theorem 7. Assume that the family vµ of through
flows is defined and analytic in the neighborhood of
point 0. Let, in addition, the following conditions be ful-

filled for µ = 0: (a) the functions κ0 =  and ν0 = 

are limited and positive, (b) the minimal eigenvalue α
of the problem (−∆ϕ = (α + ν0)ϕ in domain D, ϕ = 0

∇ψ 0

∇ω 0
---------- κ0

1–
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on S) is equal to zero, and (c) the function ∂µκµ in
domain D is nonpositive and is not identically equal to
zero. Then there exists a vicinity I0 of the point µ = 0,
such that in this vicinity the analytic branch λµ of sim-
ple real eigenvalues of problem LY is determined and
this branch transversally intersects the imaginary axis
for µ = 0. Then the flow vµ is unstable for all positive
values µ ∈  I0  and stable for all negative values µ ∈  I0 .

It should be noted that the instability of the flow
with rectilinear streamlines cannot arise according to
the scenario of Theorem 7. At the same time, this sce-
nario is realized for certain flows with circular stream-
lines in the annual sector with an angular opening
exceeding π.
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As is well known, conditions of mechanical equilib-
rium of a solid have the following form:

(1)

where V is the volume occupied by the solid under con-
sideration and ∂V is its surface. In the absence of mass
forces inside the volume V of the body, the Cauchy
equations of equilibrium are valid:

(2)

In the classical theory of elasticity, the condition
σij = 0 is assumed to be met at equilibrium both in the
bulk and on the surface of the solid. However, it is well
known that under equilibrium conditions (1) and (2),
stresses inside the solid are nonzero. Welds can serve as
an example. Experimental study [1] shows that stresses
in welds are comparable with those arising under exter-
nal actions.

In engineering, various technological procedures
are used making it possible to reduce the level of inter-
nal stresses or, on the contrary, to elevate it. As such
procedures, we can indicate various types of thermal
treatments: annealing, quenching, etc. As a rule, the
explanation of results of the action of such technologi-
cal procedures on a material is associated with a redis-
tribution or disappearance of defects in its internal
structure.

The physical theories of strength and plasticity con-
sidered various models of defects in the crystal struc-
ture of materials resulting in nonzero stresses under equi-
librium conditions (see, for example, [2, Section IV]). As
early as the 1950s, the analysis of these physical mod-
els led Kondo [3] and Bilby [4] to the conclusion of the
necessity to use non-Euclidean geometric objects in
their description, which were forbidden in the classical
theory of elasticity.

Xi Sd

∂V

∫ σijn j Sd

∂V

∫ 0, i j, 1 2 3,, ,= = =

σilxk σklxi–( )nl Sd

∂V

∫ σki σik–( ) Vd

V

∫+ 0,=

∂σij

∂x j

--------- 0.=
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Thus, the experimental investigations explicitly
indicate the existence of nonzero internal self-balanced
stresses. To describe them on the basis of physical mod-
els of defects in the internal structure of a material, it is
necessary to use mathematical objects inconsistent with
the Euclidean geometric description of deformation
properties for elastic continuum. However, the contra-
diction that arises can be overcome on the basis of solu-
tions to problem (1), (2).

In fact, nonzero solutions to Eqs. (2) are well known
in the classical theory of elasticity [2] and are related to
the introduction of stress functions. The general solution
to (2) can be represented in the following form:

(3)

where Wi are three arbitrary vector functions. It should
be noted that σij has the gauge invariance [5] with

respect to the transformation  = Wi + ∇Φ i. Thus only
the vortex component of fields Wi contributes to the
stresses. From the total set of solutions (3), we choose
the solutions that can be represented in the form:

(4)

where εipq is the Levi–Civita symbol and Γqm, p are con-
sidered as a certain set of stress functions. The con-
stants σ0 and l have the dimension of stress and length.

Taking into account the necessity of introducing
non-Euclidean objects for describing the defects, we
interpret Γqm, p as the objects of connectedness on the
manifold generated by the internal defect structure of a
material. For general affine connectednesses, the fol-
lowing relationship [5] takes place:

(5)

where

(6)

Here Rpqmn is the tensor of connected curvature, Knpl is
the nonmetric tensor, and gij is the metric of manifold
generated by defects.

σij rotWi( ) j= , i j, 1 2 3,, ,=

Wi'

σij εipqε jmn

∂Γqm p,

∂xn

----------------
∂Γqn p,

∂xm

---------------– 
  σ0l2,=

∂Γqm p,

∂xn

----------------
∂Γqn p,

∂xm

---------------– Rpqmn=

– gls Γqn s, Γ pm l, Γqm s, Γ pn l,– Γqn s, Kmlp Γqm s, Knpl–+( ),

Knpl

∂gpl

∂xn

----------= Γ pn l,– Γ ln p, .–
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The geometric objects involved in (5) and (6) were
used in [6–9] to analyze the general relationships of
nonequilibrium thermodynamics in models of contin-
uum with an internal structure. From the physical point
of view, these geometric objects are compared to vari-
ous defect structures [10].

In the general case, the stress tensor given by for-
mula (4) is asymmetric. The set of functions determin-
ing (4) by means of (5) and (6) is reasonably large:
these are 27 objects of connectedness and 6 metric-ten-
sor components. A decrease in the number of functions
used in the theory is associated with the hypothesis on
the geometric structure of the manifold under consider-
ation. In particular, if the manifold is Riemannian, Γqn, s
are expressed through the metric according to the
Christoffel formulas, and the nonmetric tensor Kpql = 0.
In this case, the internal stresses are completely deter-
mined by the manifold metric and are equal to

(7)

Expressions (4) identically satisfy Eqs. (2). It is pos-
sible to directly verify the validity of integral equilib-
rium conditions (1). Now it should be noted that the
pointwise equilibrium conditions used in the theory of
elasticity are invalid for stress field (4):

By virtue of the linearity of equilibrium conditions, it is
always possible to introduce the elastic-stress field τij so
that

(8)

where U is the internal energy of an elastic solid, and Aij

is the Almansi tensor. The combined action of the fields
provides the validity of all the equilibrium conditions:

Somewhat more cumbersome calculations show that the
moment conditions in (1) are also met if we consider the
relationships of the moment theory of elasticity.

We now turn to discussing the results obtained. The
stress field

satisfies equilibrium equations (2) and satisfies point-
wise the conditions of the absence of external forces on
the solid surface:

Thus formulas (7) and (8) represent the set of possible
distributions for the nonzero internal stresses in a contin-

σij 2σ0l2εipqε jmn

∂2gpm

∂xn∂xq

-----------------.=

σijn j ∂V 0.≠

∂τ ij

∂x j

-------- 0, τ ijn j ∂V σijn j ∂V ,–= =

τ ij ρ δik 2Aik–( ) ∂U
∂Akj

----------,=

∂ τ ij σij+( )
∂x j

-------------------------- 0, τ ijn j σijn j+( ) ∂V 0.= =

Tij τ ij= σij+

∂Tij

∂x j

--------- 0, Tijn j ∂V 0.= =
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uum. It should be emphasized that the fields τij and σij

interact only through the boundary-value condition in (8).
This fact indicates the important role of the solid surface
in studying deformation characteristics of a solid. This
feature of the free surface of deformable solids was
emphasized in [11].

As a result, the structure of an internal-stress field is
formed from both the field of stresses generated by
defects and the elastic-stress field that compensates for
the surface nonequilibrity of the defects. The joint
action of these stresses enables the sample to hold the
given shape, and their variation leads automatically to a
change in the shape of the solid when the defects
emerge from the bulk of the solid body to its surface.
The last statement follows directly from the invariance
of distribution (7) with respect to motions of continuum
generated by the infinitesimal diffeomorphic maps.

The question on a particular type of the metric gij

depends on the prehistory of formation of defects and
requires an analysis of dissipative processes in the
material on the basis of the models considered previ-
ously in [6–9].
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In this paper, a method for describing the two-
dimensional motion of a perfect stratified fluid is pro-
posed. The method is based on Hamiltonian equations
written out in natural semi-Lagrangian coordinates in
terms of two physical variables, namely, vorticity and
density. It is shown that the equations obtained, which
make the most use of the conservation laws, are conve-
nient for studying both the wave motion in a stratified
fluid and the hydrodynamic stability of shear flows. On
the basis of the approach derived, the problem is solved
for waves in a flow exhibiting a continuous vorticity
distribution in a layer of finite thickness. The dynamics
of developing perturbances is determined by the param-
eter a that characterizes the vorticity gradient in the
layer and by the parameter e proportional to the ratio of
the layer thickness to the wavelength. If the gradients of
the unperturbed vorticity are sufficiently high, then the
frequency of the discrete-spectrum mode obtained dif-
fers from the mode frequency corresponding to the vor-
ticity jump by the value on the order of e. With decreas-
ing the parameter a, i.e., decreasing the vorticity gradi-
ent in the layer, a wave packet appears corresponding to
the continuous spectrum, which determines the pertur-
bation dynamics. The results obtained make it possible,
in particular, to estimate the limits of applicability of
the finite-layer approximation for certain flow types.

Investigating two-dimensional motions of ideal
fluid is a necessary stage in solving numerous particular
problems of hydrodynamics and geophysics, including
the description of wave motion and the analysis of the
hydrodynamic stability of shear flows. As was recently
shown, the most efficient method for solving these
problems in linear and nonlinear formulation is the
Hamiltonian formalism [1–3].

This method is actively used for studying discrete
models of flows with in-layer constant density and vor-
ticity [4–6]. In this case, it remains unclear to what
extent the results obtained are suitable for describing
flows with a continuous stratification and what is the
difference between continuous and discrete models [7].

Obukhov Institute of Atmospheric Physics, 
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Pyzhevskiœ per. 3, Moscow, 109017 Russia
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In this paper, equations usually applied for describ-
ing wave motion in continuous models for flows of
ideal incompressible fluids (in the linear approxima-
tion, these are Rayleigh equations and Taylor–Gold-
stein equations) are presented in a certain integro-dif-
ferential form. This form is more convenient for com-
parison with discrete models. The optimal formulation
of the model should take into account conservation
laws valid for the problem under consideration and,
therefore, includes three stages. First, the relevant equa-
tions are written out in terms of quantities being con-
served in the given setting, namely, of the density and
vorticity. In this setting, the plasma-hydrodynamic
analogy is manifested especially clearly, because the
spatial vorticity distribution is naturally compared with
the electron-velocity distribution function [8, 9].

The second stage is the passage to the semi-
Lagrangian coordinates that are also directly associated
with conservation laws. Retaining the Eulerian x-coor-
dinate, we use, instead of the vertical coordinate, the
Lagrangian variable h numbering the surface on which
the motion of fluid particles occurs. These coordinates
present the possibility of uniformly analyzing continu-
ous and discrete stratified fluid flows. In essence, such
an approach may be called a generalization of the con-
tour-dynamics method. In this case, we may consider
an arbitrary surface corresponding to a constant value
of the Lagrangian variable as a boundary of the domain.
This Lagrangian–Eulerian representation is discussed,
e.g., in [10] when describing two-dimensional flows in
a continuously stratified fluid.

The third stage involves the reduction of the
obtained equations to the Hamiltonian form most suit-
able for developing approximate methods and con-
structing the perturbation theory. The Hamiltonian for-
malism for waves on a fluid surface was proposed in [11]
and developed in [2, 4–6] for multilayer models with
constant values of the layer density and vorticity. For
analyzing perturbations in continuous models in the
framework of the Lagrangian–Eulerian description, the
Hamiltonian structure was introduced into kinetic
equations for collisionless plasma and into the Benney
equation for nonpotential waves in shallow water [3].

In the present paper, we propose two methods for
representing equations of the two-dimensional dynam-
ics of the incompressible stratified ideal fluid in the
001 MAIK “Nauka/Interperiodica”
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Boussinesq approximation in the form of a Hamilto-
nian system in the Lagrangian–Eulerian (i.e., semi-
Lagrangian) coordinate system.

The two-dimensional dynamics of the incompress-
ible ideal fluid in the Boussinesq approximation can be
represented by the equations

(1)

(2)

where ρ is the density, Ω is the component of the vor-
ticity vector rotV orthogonal to the (x, z)-plane, V is the
velocity vector, and g is the gravitational acceleration.

The horizontal and vertical components of the
velocity vector are written out as u = –∂zΨ and w = ∂xΨ,
where the stream function Ψ satisfies the Poisson
equation ∆Ψ = –Ω and is expressed in terms of the
vorticity Ω in the form

where

is the Green function for the Laplace operator. Hence-
forth, the integral symbol implies the double integra-
tion over the entire (x, z)-plane. In the state of rest, the
medium is described by the density distribution and
vorticity distribution, each depending only on the verti-
cal coordinate. It is easy to show that the system of inte-
gro-differential equations (1), (2) is adequate to both
continuous and stratified media [12]. In the latter case,
it is equivalent to the system afforded by the boundary
conditions and leads to solutions containing general-
ized functions. It is worth noting that, for such a formu-
lation of the problem and for a medium with a constant
density, the plasma-hydrodynamic analogy is manifested
especially clearly [8, 9, 13]. In this case, it is natural to
compare the spatial vorticity distribution Ω(x, z, t) and
the velocity hydrodynamic field with the distribution
n(x, v , t) of the electric charge in the phase plane and
with the electric field, respectively. This comparison is
justified because both distributions are obtained as the
solutions of the Poisson equation. In both cases, the z-
coordinate evidently corresponds to the velocity v-
coordinate in the phase plane. The only difference lies
in the fact that in the plasma case the electric field does
not depend on the charge velocity.

We now pass to the formulation of the problem in
the semi-Lagrangian coordinate system. We determine
the Lagrangian coordinate h with the help of the equa-
tion of a surface in which either the density or vorticity
are invariant:

∂tρ u∂xρ w∂zρ+ + 0,=

∂tΩ u∂xΩ w∂zΩ
g∂xρ

ρ
------------–+ + 0,=

Ψ – Ω x ' z ',( )G x x '– z z '–,( ) x 'd z 'd ,∫=

G x x '– z z '–,( ) 1
4π
------ x x '–( )2 z z '–( )2+( )ln=

∂th u∂xh w∂zh+ + 0.=
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We represent the dependence of the vertical z-coor-
dinate on h in the form

z = s(x, t, h) = h + η(x, h, t).

In the coordinates x and h, system (1), (2) is written
out as 

(3)

(4)

where the Brunt–Väisälä frequency squared, N2, is
determined by the expression

Since the quantity s' =  satisfies the equation

we have for the vorticity density, expressed in semi-
Lagrangian coordinates as

the equation

(5)

The system of equations (3), (5) is, in fact, a system
of equations of the contour dynamics, which is written
out for the continuous model of a stratified flow. We
represent the Hamiltonian (i.e., the energy normalized
to the averaged density) in the form

We now calculate the variational derivatives

∂s
∂t
----- u

∂s
∂x
------+ w,=

∂Ω
∂t
------- u

∂Ω
∂x
-------+ 

  ∂s
∂h
------ N2∂s

∂x
------– 0,=

N2 g
ρ
---–

dρ
dh
------.=

∂s
∂h
------

∂s '
∂t
------- ∂ us '( )

∂x
---------------+ 0,=

Ω̃ x h t, ,( ) Ω x s t, ,( )s ' Ω x s t, ,( ) 1 ∂η
∂h
------+ 

  ,= =

∂Ω̃
∂t
------- ∂ uΩ̃( )

∂x
---------------- N2∂s

∂x
------–+ 0.=

H
1
2
---Ψ x z t, ,( )Ω x z t, ,( ) gzρ

ρ0
---------+ 

  x zdd∫=

=  
1
2
--- Ω x z,( )Ω x ' z ',( )G x x '– z z '–,( ) x z x ' z 'dddd∫∫–

+
gzρ
ρ0

--------- x zdd∫ 1
2
--- Ω̃ x h,( )Ω̃ x ' h ',( )G x( x ' s x h,( ),–∫∫–=

– s x ' h ',( ) )dx dh dx 'dh '
gsρ
ρ0

--------- ∂s
∂h
------ x h.dd∫+

δH

δΩ̃ x h,( )
--------------------- Ω̃ x' h',( )G x( x'– h η+,∫–=

– h' η' )dx'dh'– Ψ x h, η x h,( )+( ),=

δH
δη x h,( )
-------------------- – Ω̃ x' h',( )Ω̃ x h,( )∫=
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Clearly, equations of motion (3), (5) can be represented
in the Hamiltonian form

In order to pass to the canonical form, it is sufficient

to replace the variable  = , whereupon the equa-

tions written out in terms of the function Φ acquire the
standard form

(6)

Here, we may consider the quantities η and Φ as the
generalized coordinate and the generalized momentum,
respectively.

The equations obtained are convenient for consider-
ing the interaction of waves with flows and vortices. If
we are interested in the development of disturbances
against the background of a given flow, then we should
use the expansion of the Green function entering into
the expression for the Hamiltonian in terms of a small
nonlinearity parameter. In this case, it is convenient to
pass to another Hamiltonian structure expressed in
terms of variables that describe perturbances.

Following [4], in which similar variables were intro-
duced for the description of the wave motion for in-
layer constant-vorticity flows, we determine the vari-
able φ according to the formula:

Here, ν(h) is the vorticity of the unperturbed flow. The
variable of the type of the η-coordinate remains the
same. For in-layer stratified fluid models, the function φ
corresponds to the difference of hydrodynamic poten-
tials on each side of the interface [11, 4].

The variational derivatives of the Hamiltonian H
with respect to η and φ are

(7)

(8)

× ∂
∂η
------G x x'– h η+, h'– η'–( )dx'dh'

+ N2 h( )η x h,( ) –u x h,( )Ω̃ x h,( ) N2 h( )η x h,( ).+=

∂η x h t, ,( )
∂t

-------------------------
∂
∂x
------ δH

δΩ̃ x h t, ,( )
-------------------------- 

  ,=

∂Ω̃ x h t, ,( )∂t
∂
∂x
------ δH

δη x h t, ,( )
------------------------- 

  .=

Ω̃ ∂Φ
∂x
-------–

∂η x h t, ,( )
∂t

-------------------------
δH

δΦ x h t, ,( )
--------------------------,=

∂Φ x h t, ,( )
∂t

--------------------------
δH

δη x h t, ,( )
-------------------------.–=

Ω̃ x h t, ,( ) ν h( )= ∂ νη( )
∂h

---------------
∂φ
∂x
------.–+

δH
δφ x h t, ,( )
------------------------- w x h t, ,( )= u x h t, ,( )∂η x t h, ,( )

∂x
-------------------------,–

δH
δη x h t, ,( )
------------------------ u– x h t, ,( ) ∂φ x h t, ,( )

∂x
----------------------- νh h( )η x h t, ,( )– 

 =

+ N2 h( )η x h t, ,( ).
It follows from Eqs. (7), (8) that the equations of
motion (3) and (5) are representable in the following
Hamiltonian form:

(9)

(10)

where the dot denotes the differentiation with respect to
time.

Here, the variables turn out to be noncanonical.
However, as a rule, solving particular problems is based
on the subsequent representation of the system in terms
of normal canonical variables. In these variables, the
quadratic term of the expression for the perturbance
energy has the simplest form [5, 6].

The linearized equations are derived from the sys-
tem of equations (9), (10) when we retain the basic qua-
dratic term in the expansion of the Hamiltonian H in
powers of the variables φ and η. This term has the form

where

and

The system of equations (9), (10), like system (6),
can be employed to describe the perturbance dynamics
of both continuously stratified flows and flows with in-
layer stratification. Substituting into Eqs. (9), (10)
expressions for the Brunt–Väisälä frequency and for
the derivative of the unperturbed vorticity with respect
to h, which is represented in the form

(11)

we arrive at the equations for perturbances in the in-
layer stratified flows, which were found previously
in [4].

In order to study flows with more or less arbitrary
stratification, we may use the generalizing model (11)
describing the Brunt–Väisälä frequency and the deriva-

∂
∂x
------φ̇ x t h, ,( ) ∂

∂x
------ δH

δη x t h, ,( )
------------------------- νh

δH
δφ x t h, ,( )
-------------------------,+–=

η̇ x t h, ,( ) δH
δφ x t h, ,( )
-------------------------,=

H2
1
2
--- φ( S φ[ ] 2v h( )ηφx+∫=

+ N2 v h( )νh h( )+( )η2 )dx dh,

S φ x h,( )[ ] S̃ x x '– h h '–,( )φ x' h',( ) x'd h'd∫=

S̃ x x'– h h'–,( )

=  
1

4π
------ k i( k x x'–( )) k h h'––( )expexp k.d∫

N h( ) N jδ h h j–( ),
j 1=

n

∑=

νh h( ) ∆ν jδ h h j–( ),
j 1=

n

∑=
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tive of the vorticity as a sum of functions concentrated
near the levels hj:

(12)

If the parameters of an unperturbed flow are given in
the form of (11) or (12), then the Hamiltonian can be
represented in the form H = H0 + Hint , where the first
term is the sum of Hamiltonians for elementary inter-
acting layers, while the second describes the interlayer
interaction. In the case of a proper choice of a partition
adequate to a particular problem, we are able to study
first the perturbance development in individual layers
and, furthermore, to take into account the interlayer
interaction.

On the basis of this method, we can study linear
waves being developed against the background of a
homogeneous (in density) flow. Although the approach
being used for solving this problem is equivalent to the
method based on the solution to the Rayleigh equation,
this approach turns out to be more convenient for anal-
ysis and makes it possible to clarify certain points open
to questions until now.

We next assume that the derivative νh of the main-
stream vorticity differs from zero only in the narrow
layer with the thickness ∆h in the vicinity of the layer h0
and that this thickness is small compared to the charac-
teristic wavelength in the horizontal direction. We also

assume that νh = µ(ξ), where ξ = . Thus µ(ξ)

differs from zero only for |ξ| < 1. Let also  = 1.

We take the velocity profile in the form v (h) = v (h0) +
ν∆hV(ξ), where V(ξ) = ξ + aλ(ξ), µ(ξ) = λ''(ξ). We

additionally introduce the parameter a = . If µ(ξ) =

δ(ξ), then we are dealing with a flow model that exhib-
its a vorticity jump. We assume the initial perturbance
to be concentrated in this layer as well. Substituting
quadratic Hamiltonian H2 into Eqs. (9), (10) and
assuming N to be zero, we arrive at the system of linear
equations with respect to φ and η. In terms of the Fou-
rier transform over x, the equation for φ has the form

(13)

where τ = νt is the dimensionless time, q =  is the

dimensionless wave number, and V0 = k0νv (h0). As is
seen, the properties of Eq. (13) are governed by the

dimensionless parameters e = k0∆h and a = .

N h( ) N j h h j–( ), νh h( )
j 1=

n

∑ νhj h h j–( ).
j 1=

n

∑= =

∆ν
∆h
-------

h h0–
∆h

--------------

µ ξ( ) ξd∫

∆ν
ν

-------

∂φ
∂τ
------ iq V0 eξ eaξ2

2
-----------+ + 

  φ+

=  ia q e q ξ ξ '––( )φ ξ'( )exp ξ ',d∫sgn

k
k0
----

∆ν
ν

-------
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Equation (13) is very similar to that describing
waves in plasma free of magnetic field. In this case, the
quantity φ plays the role of an electron distribution
function. By virtue of this fact, it is reasonable to apply
methods developed in plasma theory. These methods
were used by various authors while studying waves in
hydrodynamic flows [13]. Nevertheless, in our
approach, parallels with plasma theory are especially
obvious. We initially assume that the parameter a is on
the order of unity and consider the hydrodynamic
approach. We search for the solution in the form φ =
e−iωτΦ. Using the smallness of the parameter e and pre-
serving in Eq. (13) basic terms, we obtain

(14)

We also assume µ(ξ) = [θ(ξ + 1) – θ(ξ – 1)]. Integrat-

ing (14) over ξ and introducing the notation Ω = ω – qV0,
we arrive at

where

We obtain two subsequent equations multiplying (14)
sequentially by ξ and ξ2 , integrating, and preserving
only basic terms in e:

As a result, the dispersion equation acquires the form

The discrete-mode frequency is determined (to within
the terms on the first order of smallness in e) by the
expression

(15)

For e = 0, we have a case of a vorticity jump. Within
the limits of the accuracy used by us, the mode deter-
mined by the second root is not reliable. In order to ana-
lyze the low-frequency region, we should use a method
that, in analogy with plasma theory, may be called the
kinetic approach. We now consider the parameter a to
be small (on the order of e). Retaining only basic terms
in Eq. (14), we have

ω q V0 eξ eaξ2

2
-----------+ + 

 – 
  Φ

+
a
2
--- Φ qsgn eq ξ ξ '––( ) ξ'd∫ 0.=

1
2
---

Ω a qsgn eaq
2

---------–+ 
  A0 eqA1–

3eaq
2

------------A2– 0,=

A0 Φ ξ, A1d∫ ξΦ ξ , A2d∫ ξ2Φ ξ.d∫= = =

ΩA1 0, ΩA2
qA0sgn
6

------------------+ 0.= =

D Ω( ) Ω a
2
---+ qsgn eq–( ) Ω e q a2

8
--------------+ 0.= =

Ω a
q
2
---sgn–= 3eaq

4
------------+ .

Ω eqξ–( )Φ a
2
--- q Φ ξ 'd∫sgn+ 0,=
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from which it follows

Upon integration, we arrive at the dispersion equation
in the form

The position of the pole associated with the discrete
mode is determined by the expression

As is seen, the pole tends to q or –q as a  0, depend-
ing on the sign of a. If a @ e, we have an expression that
coincides with Eq. (15) in the principal order. In addi-
tion to the pole, the dispersion equation determines
branching points associated with the wave packet that
corresponds to the continuous spectrum [14, 15]. At
small values of the parameter a, the discrete-mode fre-
quency is very close to this packet and, for finite times,
cannot be considered separately from it. In this case, the
behavior of the summary wave depends greatly on the
sign of the vorticity derivative [7]. Moreover, the dis-
crete-spectrum mode can either transform into a wave
packet of the continuous spectrum or become unstable
as a result of interaction with another layer. Thus we can
conclude that the approximation of the continuously
stratified flow by the finite-layer model is possible when
parameters characterizing the flow at high vorticity-gra-

dient levels satisfy the condition  ~ 1, k0∆h ! 1. This

condition, in fact, coincides with the condition of appli-
cability of the hydrodynamic approach.

Φ a qsgn
2 Ω eqξ–( )
---------------------------- Φ ξ 'd∫+ 0.=

D Ω( ) = 1
a
2
--- q Ω eq+( )ln Ω eq–( )ln–[ ]sgn+  = 0.

Ω eq
e q
a

-------- 
  .coth–=

∆ν
ν

-------
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Studies of tendencies in the development of airplane
vortex wakes became rather urgent in recent years. This
is associated with the fact that a flying aircraft produces
a long-lived and extended (up to 10 to 12 km) vortex
wake in the atmosphere, which may constitute a threat
for other aircrafts. At the present time, methods of
mathematical simulation of airplane vortex wakes that
take into account effects of atmospheric parameters,
namely, atmosphere stratification, turbulence, side
wind, etc. [1–3] are developed.

The problem of the interaction of the airplane vortex
wake with the Earth’s surface in takeoff and landing
regimes acquired great importance due to continuously
rising airport loading, which results in reduced time
intervals between subsequent operations of airplanes.
In this light, studies of the behavior of the airplane vor-
tex system in the vicinity of airport surfaces are not
only of scientific but also practical importance. 

In theoretical investigations of the interaction of a
pair of oppositely rotating vortex bundles with a screen,
the two-dimensional unsteady problem is solved in a
plane perpendicular to the vortex-bundle direction. The
initial vortex system (including the diameter of vortex
bundles, the distance between the bundles, their altitude
with respect to the screen surface, and the distribution
of tangential velocities in the vortex bundle) is either
given arbitrarily or is borrowed from experiments. The
clearest data are obtained in the course of numerically
solving Reynolds equations closed with the help of a
certain differential turbulence model. The results of
numerically simulating the two-dimensional problem
on the interaction of a vortex pair with a screen [4, 5]
make it possible to describe basic features of this inter-
action. We imply the flow separation from the screen,
the interaction of the primary and secondary vorticity,
and the creation of the loop-shaped trajectory for the
motion of primary vortices.

At high Reynolds numbers, the method of discrete
vortices combined with the methods of boundary-layer
theory can be successfully applied for solving the prob-
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1028-3358/01/4610- $21.00 © 20747
lem on the interaction of the airplane vortex wake with
the Earth’s surface. In particular, this is stipulated by
the fact that in such a case the flow contains domains of
both the concentrated vorticity and the potential flow.
Even the first experimental studies of the wing vortex
system in a wind tunnel demonstrated that, near the
screen, not only the drop of trailing vortices but also an
increase in the distance between them occurs (as fol-
lows from the theory of an inviscid fluid). In addition, a
lift of both vortices (their jump upward) to a certain
level appears with a subsequent motion along a loop-
shaped trajectory. It was shown that the appearance of
this trajectory is caused by the separation of the bound-
ary layer that arises on the screen in the case of a trans-
verse (wingspan) flow induced near the screen surface
by the wing vortex system. While separating the bound-
ary layer, secondary vortices coming down into the
flow interact with the primary vortices, and as a result
of this interaction there arises a loop-shaped trajectory
in their motion.

We consider the quasi-three-dimensional schemati-
zation of the flow. In other words, we analyze the
behavior of the vortex system in a number of cross sec-
tions corresponding to different time moments. We list
characteristic features of this method used for numeri-
cally simulating the airplane vortex system near the
Earth.

1. The initial airplane vortex system is determined in
the framework of the linear theory of the discrete-vor-
tex method. This method allows us to simulate the wake
near the airplane, including the vortex wake of the hor-
izontal tail and the process of the convolution of this
wake into two centered vortex bundles for an airplane
with a given geometry, given angles of attack for the
wing and for the tail, and given the flap inclination
angle. In the case of the existence of a weak side wind,
the vortex system of the vertical tail should be taken
into account, which is calculated in the linear approxi-
mation. In these cases, a plate-shaped schematization
of the fuselage, wings, and the empennage is used [2].
Here the circulation and shape of the vortex bundles
and the velocity distribution inside and outside of them,
as well as the position of these bundles along the stream
001 MAIK “Nauka/Interperiodica”
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at various distances from the Earth’s surface, are deter-
mined.

2. The wing spanwise flow (induced by the vortex
bundles, i.e., by the primary vortices) near the Earth’s
surface is used below for calculating parameters of the
boundary layer and its separation in the cases of both
the absence and the existence of a weak side wind.
Using the values of the velocity at the outer surface of
the boundary layer in the separation cross section uzδ,
we can find the circulation of the secondary vortices
coming off into the flow:

.

Allowing for the roughness of the runway surface and a
large extension of the boundary-layer development
domain that attains several tens of meters, the boundary
layer on this runway may be assumed with a high
degree of confidence to be completely turbulent.

3. Furthermore, in the framework of the discrete-
vortex method, the unsteady problem on the interaction
of primary and secondary vortices is solved with their
dissipation taken into account. Strictly speaking, the
boundary layer in the problem under consideration is
unsteady. However, in the framework of the approxima-
tions used, we may restrict our analysis by the quasi-
steady approximation.

4. In the absence of a side wind, the distribution of
the velocity induced by the vortex bundles on the
Earth’s surface is symmetric with respect to the sym-
metry plane z = 0. In the presence of the side wind, the
pattern becomes asymmetric, and the calculation of the
boundary layer is performed on either side from the
critical point on the Earth’s surface. In this case, the
wind velocity is assumed to be constant along the ver-
tical coordinate, and its effect is reduced to the wind-
ward shift of the vortex system.

5. In order to obey the impenetrability condition on
the Earth’s surface, fictitious mirror-reflected vortices
are added into both the basic vortex system and the sys-
tem of secondary vortices. With the help of the vortex-
bundle circulation determined by the above method, we
can find the distribution of the transverse (wingspan)
velocities induced by these vortex bundles. This
approach makes it possible to calculate parameters of
the turbulent boundary layer, the position of its separa-
tion point, and the velocity on the outer edge of the
boundary layer in the separation cross sections and to
find the value of the secondary-vortex circulation at
each time instant.

We now consider the approximate method for the
determination of the circulation dissipation in the pri-
mary and secondary vortices and allow for the effect
of the atmospheric turbulence on the circulation of

Γ dΓ
dt
------- 

  ∆t
1
2
---uzδ

2 ∆t= =
these vortices. For the primary vortices, we have the
expression

. (1)

Here Γ1 and Γ0 are current and initial values of the pri-
mary-vortex circulation, respectively; t is time; q is the
root-mean-square velocity pulsation in the atmosphere;
b1(t) is the distance between the centers of the primary
vortices; r = [(z – zi)2 + (y – yi)2]1/2 is the radius-vector
modulus for a point with the coordinates z and y with
respect to the vortex with coordinates zi, yi; νt1 is the
coefficient of the turbulent viscosity; and c is the empir-
ical multiplier. The first multiplier in the right-hand side
of expression (1) takes into account the circulation dis-
sipation caused by the action of the viscosity of the
medium and of the turbulence inside the vortex bundle.
The second multiplier in expression (1) allows for the
circulation variation with time, which is caused by the
effect of the atmospheric turbulence. According to the
calculations and to results of processing the experimen-
tal data [9], the average value of νt1 for the vortex bun-
dle reaches approximately 0.25 m2/s. This value is
obtained as a result of replacing the kinematic viscosity
ν of the medium by the corresponding coefficient of the
turbulent viscosity νt1 in the well-known approximate
formula for a rectilinear vortex fiber [7].

We assume that an expression with a structure simi-
lar to formula (1) can also be presented for secondary
vortices in the separation cross section of a turbulent
boundary layer. However, one difference exists: this
expression involves the value of the characteristic tur-
bulent viscosity in the trailing point of the vorticity cen-
ter νt2 at a distance y = δ* from the Earth’s surface (δ* is

the thickness of the boundary layer in its separation
cross section):

,

. (2)

Here, b2(t) is the distance (along the horizontal z-axis)
between secondary vortices. The difference between
formulas (1) and (2) consists in the fact that the circu-
lation Γ1(t) decreases with time, whereas the circula-
tion Γ2(t) for the boundary layer initially increases
(due to the summation over ∆t) and then decreases due
to dropping K(t).

In order to determine parameters of the turbulent
boundary layer and the position of its separation point,
we exploit one of the well-known integral one-paramet-
ric calculation methods [9].

In accordance with the procedure described, the far
vortex wake of a Boeing-727 airplane was calculated

Γ1 t( )
Γ0

------------ 1 r
2

4ν t1t
------------– 

  c
qt
b1
-----– 

 expexp–=

Γ2 t( ) 1
2
--- uzδ

2( )sepK t( ) c
qt
b2
-----– 

  ∆texp=

K t( ) 1
y

2
+ z zsep–( )2

4ν t2t
--------------------------------–exp–=
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for the first time with the Earth’s boundary layer taken
into consideration. The code operation time was 15 to
20 s, depending on the initial conditions, using an IBM
PC with a Pentium III-550 processor. Figure 1a (above)
shows the positions of the far vortex wake and of sec-
ondary vortices at the instant of time corresponding to
DOKLADY PHYSICS      Vol. 46      No. 10      2001
the 120th s (the back view) at a flight altitude of 40 m.
The flight velocity was V∞ = 72 m/s, a side wind was
absent, the wing angle of attack reached α = 8.1°, and
the flap inclination angle was 25°. These calculations
were performed for the value νt1= 0.25 m2/s. The results
obtained illustrate the development of the loop-shaped
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trajectory for the motion of primary vortices. Analysis
of the calculated data corresponding to different flight
altitudes shows that allowance for the effect of the
boundary layer significantly changes the position of
primary vortices, this effect being enhanced with a
decrease in the flight altitude. Figure 1a (below) dem-
onstrates the altitude y and the coordinate z of the pri-
mary vortices as a function of time. Figure 1b presents
the calculated data corresponding to the same flight
conditions as in the case of the existence of a side wind
with the velocity uw = –1 m/s. Thin lines in Figs. 1a
and 1b correspond to the calculation results obtained
without regard for the boundary layer on the Earth’s
surface.

We now compare the data of the calculation and of
the flight experiment carried out in 1995 in the Mem-
phis airport (USA) for a Boeing-727 airplane under
the following conditions: the flight altitude, flight
velocity V∞ , wind velocity uw, angle of attack α, and
flap inclination angle were, respectively, 34.8 m; 72 m/s;
−1.3 m/s, 5.6°, and 25° [11]. The satisfactory consis-
tency of the calculated results with the experimental
data for the vertical position of the vortex bundles (see
Fig. 1c) is notable.

We now present the calculation results for the far
vortex wake of the Boeing-727 airplane in the presence
and the absence of a side wind. The flight conditions
were the same as in Figs. 1a and 1b, except for the ele-

vated degree  = 0.75 of the atmosphere turbulence,

where V0 = 1.44 m/s is the dropping rate of the vortex
pair at the initial instant t = 0. The conventional deter-

mination of the turbulence degree yields  ≈ 1.5%.

Figures 2a and 2b illustrate the relevant dependences.
From this it follows that the elevated atmospheric tur-
bulence leads to a decrease in both the height of the vor-

q
V0
------

q
V∞
------
tex’s upward jump near the Earth’s surface and the
transverse distance between the vortex bundles.
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1. PROBLEM STATEMENT

We assume that a 2π-periodic motion exists in an
autonomous Hamiltonian system with two degrees of
freedom and that Hamiltonian function in the vicinity
of the trajectory corresponding to this motion is ana-
lytic. With a proper choice of the canonically conjugate
variables ξi and ηi (i =1, 2), the solution corresponding to
undisturbed motion can be represented in the form [1]
ξ1(t) = t + ξ1(0), η1 = ξ2 = η2 = 0, and the Hamiltonian
function will also be 2π-periodic in ξ1 .

Two characteristic indices of the linearized equa-
tions of disturbed motion are always equal to zero,
while two others, ±iλ, are assumed to be imaginary.
When the value of 3λ is integer, i.e., a third-order reso-
nance takes place, the orbit of the periodic motion is, as
a rule, unstable [2]. However, this instability may hap-
pen to be only local, because trajectories of disturbed
motion can perpetually stay in a certain restricted vicin-
ity of the trajectory of undisturbed motion. In this study,
we obtained asymptotic estimates for the size of this
vicinity in the case when the equations of motion con-
tain a small parameter.

2. HAMILTONIAN OF DISTURBED MOTION

Let Hamiltonian function depend on the parameter ε
and be analytic for sufficiently small values of this
parameter, while the value of 3λ differs from an inte-
ger n by the value on the order of ε2 . We set

and assume that for ε = 0 Hamiltonian function is inde-
pendent of ξ1 . This assumption is acceptable for many
problems of mechanics. It holds, for example, for the
circular restricted three-body problem. 

We represent the Hamiltonian H of disturbed motion
as a series in powers of η1, ξ2, η2, and ε. Thereafter,
using the real, analytical with respect to η1, ξ2, η2, and
ε, canonical change of variables, ξ1, η1, ξ2, η2  ϕ1,

n 3λ– ε2α=

Institute of Problems in Mechanics, 
Russian Academy of Sciences,
pr. Vernadskogo 101, Moscow, 117526 Russia
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r1, q2, p2 (obtained, for example, by the Deprit–Hori
method [2]), we bring H to the form

(1)

Here,  is the form of the fourth power with respect
to |r1|1/2, q2, and p2 and coefficients that are 2π-periodic
in ϕ1, and O5 is the sum of terms whose power is no less
than 5. The quantities a, b, c20, c11, and c02 are the con-
stant coefficients, among which a and b are represent-
able by the convergent series a = a1 + εa2 + … and b =
b1 + εb2 + … . The canonical transformation

(2)

ceases the dependence of third-power terms on the
angular variable ϕ1 , bringing Hamiltonian (1) to the
form

H r1=
1
2
---λ q2

2 p2
2+( )+

+ ε a nϕ1cos b nϕ1sin–( )q2 q2
2 3 p2

2–( )[

+ a nϕ1sin b nϕ1cos+( )p2 p2
2 3q2

2–( ) ] c20r1
2+

+
1
2
---c11r1 q2

2 p2
2+( ) 1

4
---c02 q2

2 p2
2+( )2 εkH4

k( ) O5.+
k 1=

∞

∑+ +

H4
k( )

ϕ1 ϕ̃1, r1 r̃1
1
6
---n q̃2

2 p̃2
2+( ),–= =

q2 q̃2 ϕ p̃2 ϕ ,sin+cos=

p2 q̃2 ϕsin–= p̃2 ϕ ϕ 1
3
---nϕ̃1= 

 cos+

H r̃1
1
2
---ε2α q̃2

2 p̃2
2+( ) ε a[ q̃2 q̃2

2 3 p̃2
2–( )+–=

+ b p̃2 p̃2
2 3q̃2

2–( ) ] a20r̃1
2 1

2
---a11r̃1 q̃2

2 p̃2
2+( )++

+
1
4
---a02 q̃2

2 p̃2
2+( )2 εkH̃4

k( )
O5,+

k 1=

∞

∑+
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Let a02 ≠ 0. By making another canonic transfor-
mation

(3)

and going to the new independent variable τ = κ2|a02|–1t,
we obtain the Hamiltonian of disturbed motion in the
following form:

(4)

The quantity I1 can have arbitrary sign, while ρ2 ≥ 0.

a20 c20, a11 c11
2
3
---nc20,–= =

a02
1
9
---n2c20

1
3
---nc11 c02.+–=

ϕ̃1 σw1, r̃1 ε2κ2a02
2– I1,= =

q̃2 εκ a02
1– 2ρ2 ψ ψ0+( ),sin=

p2 εκ a02
1– 2ρ2 ψ ψ0+( ),cos=

κ 2 2 a1
2 b1

2+( ), ψ σθ2
1
6
---π 1 σ–( ),+= =

σ = a02, a1sgn  = 
2

4
-------κ 3ψ0,sin–

b1
2

4
-------κ 3ψ0cos=

H H 0( ) I1( ) ε2H 2( ) I1 ρ2 θ2, ,( )+=

+ ε3H 3( ) I1 ρ2 w1,  θ 2 ε, , , ( ),

H 0( ) a02κ
2– I1,=

H 2( ) νρ2 ρ2
3/2 3θ2 ρ2

2 b11I1ρ2 b20I1
2,++ +cos+–=

ν αa02κ
2– , b11 a11a02

1– , b20 a20a02
1– .= = =
 

3. TRAJECTORIES
OF AN APPROXIMATE SYSTEM

We now consider an approximate system with
Hamiltonian function 

 

H

 

(0)

 

 + 

 

ε

 

2

 

H

 

(2)

 

. In this system, the
quantity 

 

I

 

1

 

 is constant, while the variables 

 

θ

 

2

 

 and 

 

ρ

 

2

 

 are
described by the equations

 

(5)

 

in which

 

(6)

 

Here, we introduced the notation

 

(7)

 

The system of equations (5) has the integral 

 

γ

 

 = 

 

h

 

 =
const. The behavior of its trajectories has been exam-
ined in detail (see, e.g., [3] and references therein).
Phase portraits of system (5) are shown in Fig. 1. The
singular point 

 

x

 

1

 

 = 

 

x

 

2

 

 = 0 corresponds to the unperturbed
periodic motion. Next, we will be interested solely in
the trajectories that envelop all singular points of sys-
tem (5). From the results obtained in [3] it follows that
for such trajectories, a point with coordinates 

 

 

 

and 

 

h

 

must be located in the region 

 

D

 

 of the plane 

 

, 

 

h

 

, which

is defined by the following conditions. When   <  ,

then 

 

h

 

 > 0; when 

 

 

 

≥

 

 , 

 

h

 

 > 

 

f

 

( )

 

, where

 

(8)

 

The region 

 

D

 

 is shown schematically in Fig. 2. 

dθ2

dτ
-------- ε2 ∂γ

∂ρ2
--------,

dρ2

dτ
-------- ε2 ∂γ

∂θ2
--------,–= =

γ ν̃ρ2–= ρ2
3/2 3θ2 ρ2

2.+cos+

ν̃ ν b11I1.–=

ν̃
ν̃

ν̃ 9
32
------–

ν̃ 9
32
------– ν̃

f
27 18u– 8u3/2 u2–+

4096
--------------------------------------------------= , u 32ν̃ 9.+=
(a)
x2

x1

(b)

(c) (d) (e)

Fig. 1. Phase portraits of system (5) in the plane x1 = cosθ2, x2 = sinθ2 for the cases (a)  < , (b)  = ,

(c)  <  < 0, (d)  = 0, and (e)  > 0.

2ρ2 2ρ2 ν̃ 9
32
------– ν̃ 9

32
------–

9
32
------– ν̃ ν̃ ν̃
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On the trajectories being considered, the inequali-
ties 0 < r ≤ ρ2 ≤ R are satisfied. The quantities r( , h)
and R( , h) are real positive roots of the equations

(9)

When h ≥ 0, we have a single real positive root for
each of these equations. However, when h < 0, each of
the equations has two real roots; in this case r and R are
equal, respectively, to the maximum real roots of the
first and second equations (9). 

If the condition ρ2(0) < r is satisfied at the initial
moment τ = 0, then the inequality ρ2(τ) < R is valid for
all τ ≥ 0. 

We will write Hamiltonian (4) for equations of
undisturbed motion in new variables Ii and wi (i = 1, 2),
which, for the approximate system, are the action–
angle variables in the regions filled with trajectories
enveloping all singular points of system (5). Since w1 is
a cyclic coordinate in the approximate system, one of
these pairs of variables is the pair I1, w1. Hamiltonian (4)
written out in variables Ii and wi is denoted by

(10)

Here F(0) is the function H(0) from (4), F(2) = b20  +

Φ(I1, I2), and Φ is function (6) represented in new vari-
ables. This function is inverse to the function

(11)

where ρ2(θ2, h) is the value of the momentum ρ2 on the
considered closed trajectories of the approximate sys-
tem (the dependence of ρ2 on I1 in (11) is not indicated).

Hamiltonian function (10) is 6π-periodic in w1 and
2π-periodic in w2 , and is analytic for I2 > 0 with respect
to its arguments. When ε = 0, function (10) depends
only on one of the action variables (on I1). Therefore, in
the problem at hand the case of the degeneracy of this
problem is realized [4].

4. ESTIMATES OF THE VALUES 

OF r1(t) AND (t) + (t)

We can verify that Hamiltonian (10) satisfies the
conditions

(12)

Therefore, according to [4], in the case of disturbed
motion the quantities Ii(τ) (i = 1, 2) perpetually stay
near their initial values:

(13)

ν̃
ν̃

r2 r3/2 ν̃r– h–+ 0, R2 R3/2 ν̃R– h–– 0.= =

F F 0( ) I1( ) ε2F 2( ) I1 I2,( )+=

+ ε3F 3( ) I1 I2 w1 w2 ε, , , ,( ).

I1
2

I2 h( ) ρ2 θ2 h,( )dθ2,∫°=

q2
2 p2

2

∂F 0( )

∂I1
------------ 0,

∂F 2( )

∂I2
------------ 0,

∂2F 2( )

∂I2
2

-------------- 0.≠≠≠

Ii τ( ) Ii 0( )– cε, c  =  const. <                                   
DOKLADY PHYSICS      Vol. 46      No. 10      2001
It follows from (13) and from formulas (2) and (3),
which describe a change of variables, that for all t ≥ 0
the equality

is valid. Therefore, the quantity r1 + n(  + ) may

be called an almost integral of the equations of dis-
turbed motion. This implies that for all t > 0 this quan-
tity differs from its initial value by at least 3 orders of

magnitude with respect to ε if r1(0) and (0) + (0)
have an order no less than 2.

The presence of this integral makes it possible to
reduce the problem of estimation of the size of the
region where trajectories of disturbed motion are con-

centrated to finding the estimate of the quantity (t) +

(t). 

First, we consider the case where the coefficient b11
in Hamiltonian (4) is equal to zero. From (7), it follows
that  = ν; i.e., the quantity  does not depend on ini-
tial conditions and is completely determined by the
parameters of the system under consideration. Taking
into account the fact that, according to (13), I

 

2

 

(

 

t

 

) =

 

I

 

2

 

(0) + 

 

O

 

(

 

ε

 

)

 

 for all initial conditions, we obtain, using
the results of Sections 2 and 3, the following asymp-
totic estimates. When

 

(14)

 

the inequality

 

(15)

 

is satisfied for all 

 

t

 

 

 

≥

 

 0

 

. Here 

 

r

 

 and 

 

R

 

 are determined by
Eqs. (9), and positive values of 

 

δ

 

i

 

 are infinitesimal for
small 

 

ε

 

 and tend to zero more slowly than 

 

ε

 

. It can be
assumed, e.g., that 

 

δ

 

1

 

 = 

 

δ

 

2

 

 = 

 

O

 

(

 

χ

 

)

 

, where 

 

χ

 

 = 

 

ε

 

1 – 

 

β

 

(0 <

 

β

 

 < 1)

 

. 
For the given 

 

ν

 

, inequalities (14) and (15) define a
one-parameter family of estimates. The parameter in
this family is the quantity 

 
h

 
, which is chosen so that the

point (  ν  ,  h  ) falls in the region  D   (Fig. 2). When  b 11  ≠  0 ,

r1
1
6
---n q2

2 p2
2+( )+ ε2κ2a02

2– I1 0( ) O ε( )+( )=

1
6
--- q2

2 p2
2

q2
2 p2

2

q2
2

p2
2

ν̃ ν̃

q2
2 0( ) p2

2 0( )+ 2ε2κ2a02
2– r ν h,( ) δ1–[ ] ,<

q2
2 t( ) p2

2 t( )+ 2ε2κ2a02
2– R ν h,( ) δ2+[ ]<

h
D

ν~

–9/32 0
h = f(ν)

~

Fig. 2. Region D of the existence of trajectories enveloping
all singular points of the system of equations (5). Part of the
plane lying outside the region D is hatched.
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estimates (14) and (15) remain valid, but the quantity ν
must be replaced by the quantity  defined by Eq. (7),
which depends on initial conditions. Using (13), we can
represent this equality in the form 

Taking (2) and (3) into account and introducing the
notation

we obtain, with an accuracy on the order of ε,

(16)

The quantity x can have arbitrary sign, and y ≥ 0.
Let the values of ν, b11, and n appearing in the right-

hand side of (16) be known. We fix a certain value of the

parameter h exceeding  (with such a choice, a

point with coordinates h and  lies in the region D of
Fig. 2 at any ), and consider the inequality

(17)

in which r is determined by the first equation in (9) and
 is given by formula (16). In the half-plane y0 > 0, ine-

quality (17) holds in a certain region G. Let x0 = , y0

= , and the point ( , ) lies in the region G
together with its χ-vicinity. Then for these initial data
(and for sufficiently small ε), trajectories of disturbed
motion satisfy the condition that, for all t ≥ 0, inequality
(15) is valid in which ν is the value ν* of function (16)
at the point ( , ). 

The algorithm described here can be slightly refined
if we divide the half-plane y0 > 0 into the regions  <

 and  >  and take into account that in this

case h > 0 for the first region and h > f( ) for the second,
where the function f( ) is determined by equality (8).

5. EXAMPLE

As an example, we consider the problem of bound-
edness of asteroid trajectories in the Cassini gap of
Minerva. The ratio of the mean motion of asteroids in
this gap to Jupiter’s mean motion is close to the rational
number 5 : 2; i.e., it corresponds to the third-order res-
onance [5]. We model the orbits of asteroids using the
Poincaré first-order periodic solutions for the restricted
three-body problem. 

Units of measure are chosen in such a manner that
Jupiter’s revolution period, the distance between the

ν̃

ν̃ ν b11I1 0( )–= O ε( ).+

r1 t( ) ε2κ2a02
2– x t( ), q2

2 t( ) p2
2 t( )+ ε2κ2a02

2– y t( ),= =

x 0( ) x0, and y 0( ) y0,= =

ν̃ ν̃ x0 y0,( ) ν b11 x0
1
6
---ny0+ 

  .–= =

27
4096
------------

ν̃
ν̃

y0 2r ν̃ h,( ),<

ν̃
x0*

y0* x0* y0*

x0* y0*

ν̃
9
32
------– ν̃ 9

32
------–

ν̃
ν̃

Sun and Jupiter, and the sum of their masses are equal
to unity. Jupiter’s mass is denoted by ε. For ε = 0, the
Poincaré orbits become circular orbits with a radius ρ;

the value ρ = ρ0 =  = 0.54288 corresponds to the

above 5 : 2 commensurability. 

The quantity λ is calculated by the formula

where ω = (1 – ρ3/2)–1; the expression for λ1 is given
in [6]. Assuming that 

we obtain λ =  + O(ε2). 

The calculations show that in Hamiltonian (1),

According to formulas of Section 2, we find

and expression (16) takes the form

(18)

The region G is specified by the inequalities

Let the initial disturbances of the quantities r1, q2,

and p2 be chosen so that the point ( , ) with

(19)

lies in the interior of the region G at a distance no
smaller than χ from its boundary. Then for all t ≥ 0 we
obtain the estimate

where ν* is the quantity defined by formula (18) and
calculated at the point with coordinates (19).

4
25
------3

λ ω ρ( )= ελ1 ρ( ) O ε2( ),+ +

ρ ρ0= ελ1 ρ0( )
dω ρ0( )

dρ0
------------------ 

 
1–

,–

5
3
---

a1 1.21567, b1– 0,= =

c20
1
2
---c11 c02 3.39302.–= = =

a20
3
4
---a11–

9
4
---a02 3.39302,–= = =

κ 3.43842, b11 3–= =

ν̃ ν̃ x0 y0,( ) ν 3x0+= =
5
2
---y0.+

y0 0, x0
2h
3y0
--------

2y0

6
------------

2y0

3
--------–

ν
3
---.–+–>>

x0* y0*

x0* 0.192349ε 2– r1 0( ),=

and y0* 0.192349ε 2– q2
2 0( ) p2

2 0( )+( ),=

q2
2 t( ) p2

2 t( )+ 10.39779ε2 R ν* h,( ) δ2+[ ] ,<
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In [1], Saint-Venant problems for anisotonic bars
with rectilinear and cylindrical anisotropy were thor-
oughly studied on the basis of a semi-inverse method.
In the present paper, the results of an analysis of Saint-
Venant problems for a bar with a screw anisotropy are
given. These results are based on the method of homo-
geneous solutions and spectral operator theory [2, 3]. In
particular, we can imagine a material with the screw
anisotropy obtained as a result of a helical winding of
thin fiber layers made of a stiff material with their
simultaneous covering with a polymeric material. Thus
we deal with a fibrous composite having screw anisot-
ropy with respect to the cylinder axis. Homogenization
methods [4, 5] lead to transversely isotropic materials
with their symmetry axis aligned along the tangents to
the screw spirals. Bars with the screw anisotropy, and
also naturally twisted ones, can be used as transformers
of longitudinal strains into longitudinal-torsional
strains and, vice versa, as transformers of longitudinal
vibrations into flexure-torsion vibrations. At present,
there exist examples of devices based on these phenom-
ena that are used in engineering practice.

BASIC RELATIONSHIPS

We consider a cylindrical body occupying the vol-
ume V = S × [0, l], where S and l are the cylinder cross
section and length, respectively. We denote the side sur-
face of the cylinder as Γ = ∂S × [0, l], where ∂S is the
boundary of S. We associate the origin of the Cartesian
coordinate system x1, x2, x3 = z with the center of grav-
ity of one of the cylinder end walls. In order to describe
mechanical properties of the body, we introduce a con-
comitant cylindrical coordinate system r, θ, z, which is
linked with the basic coordinate system by the relations

(1)
x1 r θ τzcoscos r θ τz,sinsin–=

x2 r α τ zsincos r θ τz.cossin+=

Rostov State University, 
ul. Fridrikha Engel’sa 105, Rostov-on-Don, 344711 Russia
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Here, τ =  is the relative twisting angle (twist) of the

screw spiral, and h is its step. Furthermore, these quan-
tities are considered to be constant at all points of the
cylinder.

For r = const, θ = const, relationships (1) are para-
metric equations of a screw line. The radius vector for
points of the screw line can be represented in the form

R = r  + z . 

Here,  = er, e2 = ,  = ez are unit vectors of the
concomitant coordinate system. We associate with
points of a screw line a natural frame e1 = n, e2 = b,
e3 = t, where n, b, and t are the unit vectors of the prin-
cipal normal, of the binormal, and of the tangent,
respectively. The orthogonal matrix for the transition
from the ej basis to the  basis has the form

We consider the material of the cylinder to be
locally transversely isotropic, with the symmetry axis
of mechanical properties directed along the tangent to
the screw line. We determine the properties in the ej basis
by five elasticity moduli c11, c12, c13, c33, and c44 [1]. As
a result of the passage from the ej basis to the  basis,
we arrive at the following relations for the generalized
Hooke’s law:

σrr = Ò11err + Ò12eθθ + Ò13ezz + 2Ò15eθz, 

σθθ = Ò12err + Ò22eθθ + Ò23ezz + 2Ò25eθz, 

σzz = Ò13err + Ò23eθθ + Ò33ezz + 2Ò35eθz, (2)

σθz = 2Ò44eθz, σrz = 2(Ò55erz + Ò56erθ),

σrθ = 2(Ò56erz + Ò66erθ);

 = c11,  = (c12 + c13x2]/g2,

 = (c13+ c12x2]/g2,  = x(c13 – c12)/g2, 

2π
h

------

e1' e3'

e1' eθ' e3'

ei'

A
1– 0 0

0 1/g– x/g

0 x/g 1/g

, g2 1 x2, x+ τr.= = =

ei'

c11' c12'

c13' c14'
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SAINT-VENANT PROBLEMS FOR A BAR WITH A SCREW ANISOTROPY 757
 = [c11 + (2c13 + 4c44)x2 + c33x4]/g4, 

= [c13 + (c11 + c33 – 4c44)x2 + x4]/g4, 

 = [(c13 + 2c44 – c11)x + (c33 – c13 – 2c44)x3]/g4,

 = [c33 + 2(c13 + 2c44)x2 + c11x4]/g4, (3)

 = [(c33 – c13 – 2c44)x + (c44 + 2c13 – 2c11)x3]/g4,

 = [c44 + (–2c13 + c11 + c33 – 2c44)x2 + c44x4]/g4,

 = [c44 + 2(c11 – c12)x2]/g2,

 = x[c44 – 2(c11 – c12)]/g2,

 = [2(c11 – c12) + c44x2]/g2.

The components of the strain tensor ε and the equa-
tions of equilibrium in the basis of the concomitant
coordinate system can be obtained with the help of the
relations

2ε = ∇  ⊗  u + (∇  ⊗  u)', (4)

∇ · σ = 0, ∇  = er∂r + eθr–1∂θ + ez(∂z – τ∂θ). (5)

Here, u = {ur , uθ, uz} is the displacement vector; σ is the
stress tensor; and ∂r, ∂z, and ∂θ are derivatives with
respect to the corresponding variables.

ELEMENTARY SOLUTIONS
AND THE GENERAL REPRESENTATION

OF THE SOLUTION

We assume that the side surface É is free of stresses:

(6)

where nr and nθ are the projections of the vector corre-
sponding to the unit normal to the surface Γ.

Using relationships (2)–(5), we can represent the
equilibrium equations with respect to the displacement
vector and boundary conditions (6) in the form

(7)

Here A, B, C, E, and G are the 3 × 3 matrix differential
operators expressed in terms of the variables r and θ
with the coefficients depending only on r.

While searching for the solution to problem (7) in
the form u = eλza(r, θ), this property of the matrix coef-
ficients makes it possible to reduce the solution to the
spectral problem on the cross section

Z(λ)a ={L(λ)a, N(λ)a} = 0. (8)

Three following statements are valid.
Statement 1. The spectrum of problem (8) Λ =

Λ0 ∪ Λ 1, where Λ0 consists of four-fold eigenvalues,

c22'

c23' c13'

c24'

c33'

c34'

c44'

c55'

c56'

c66'

nrσrr nθσrθ+ 0, nrσrθ nθσθθ+ 0,= =

nrσrz nθσθz+ 0,=

L ∂z( )u ∂z
2Cu ∂zBu Au+ +≡ 0,=

N ∂z( )u Γ ∂zG E+( )u≡ 0.=
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namely, λ0 = 0, λ1 = iτ, and λ–1 = –iτ; Λ1 is the countable
symmetric set of eigenvalues λk for which Re(λk) ≠ 0.

Statement 2. Eigenvalues from Λ0 corresponds to
12 elementary solutions to problem (7):

u1 = a1, u2 = a2, u3 = eiτza3, u4 = ,

u5 = eiτz(za3 + a5), u6 = ,

u7 = za1 + a7, u8 = za2 + a8, (9)

u9 = eiτz , u10 = ,

u11 = eiτz , u12 = .

Here, the superscript * corresponds to the complex con-
jugate quantity;

a1 = er, a2 = reθ, a3 = eiθ(er + ieθ), a5 = – ;

the vector functions a7, a8, a9 , and a11 are the solutions
to the following two-dimensional problems on the cyl-
inder cross section:

Aaj + 6 = Fj, Eaj + 6 = fj, j = 1, 2, (10)

(11)

F2 = {– τr, 0, 0}, f2 = {0, 0, –nθ τr},

L(iτ)aj + 6 = Fj, Eaj + 6 = fj, j = 3, 5,

F3 = –(2iτC + B)a5 – Ca3, f3 = –Ga5,

F5 = –(2iτC + B)a9 – Ca5, f5 = –Ga9;

and R is a certain characteristic linear scale.
The next statement follows from the theorem on the

completeness of the system of elementary solutions [2].
Statement 3. Any solution to problem (7) can be

represented in the form

(12)

Here, Xm, Cm, and Ck are arbitrary constants; the sum-
mation in the expression for us is performed over ele-
mentary solutions (9); finally, in the expression for up ,
the summation is performed over all elementary solu-
tions corresponding to eigenvalues from Λ1 . The first
sum in the expression for us describes an arbitrary dis-
placement of the cylinder as a solid body; the second
sum describes the stress-strain state with the nonzero
principal vector and the nonzero principal moment in

u3*

u5*

z2a3

2
--------- za5 a9+ + 

  u9*

z3a3

6
---------

z2a5

2
--------- za9 a11+ + + 

  u11*

rzeiθez

R
----------------

F1 ∂rc13'
c13' c23'+

r
-------------------–– 0 0, ,

 
 
 

,=

f1 –nrc13' –nθc23' 0, ,{ } ,=

c44' c44'

u us up,+=

us Xmum

m 1=

6

∑ Cmum 6+ , up

m 1=

6

∑+ Ckuk.
k

∑= =
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the cross section z = const. The stress state correspond-
ing to up is self-balanced and localized near the cylinder
end walls.

It is natural to call the vector functions us and up the
Saint-Venant solution and the boundary layer, respec-
tively. For the latter, the attenuation rate is described in
the general case by the expression exp(–αy), where y is
the distance to the nearest cylinder end wall and α =
inf(Reλk). (The value of the parameter α depends on
mechanical properties and on cross-section geometry
of the bar.)

The determination of Xm, Cm, and Ck can be reduced
to the solution of infinite systems of equations, which
are obtained when the boundary conditions on the cyl-
inder end walls are satisfied with the help of the rela-
tionships for the generalized orthogonality [2, 6]. In
this case, the constants Cm are determined exactly on
the basis of an algebraic system whose matrix coincides
in its structure with that obtained in [3].

SAINT-VENANT SOLUTION
FOR A CIRCULAR CYLINDER

For a circular cylinder (r1 ≤ r ≤ r2 = R), nr = 1 and
nθ = 0. Thus, the construction of the Saint-Venant ele-
mentary solutions um + 6 is reduced to the integration of
boundary value problems for ordinary differential
equations. Here, we restrict our consideration by the
results obtained in solving the Saint-Venant problem on
the tension–torsion of a cylinder. In this case, analysis
of solution (10) yields the following expressions for
displacements and stresses:

ur = C1ar1 + C2ar2, uθ =  + , uz = X1+ C1z,

σrr = C1[ ∂rar1 + r–1 ar1 + ] 

+ C2 ∂rar2 + r–1 ar2 + ,

σθθ = C1[ ∂rar1 + r–1 ar1 + ] 

+ C2 ∂rar2 + r–1 ar2 + , (13)

σzz = C1[ ∂rar1 + r–1 ar1 + ] 

+ C2 ∂rar2 + r–1 ar2 + ,

σzθ = C1[ ∂rar1 + r– ar1 + ] 

+ C2 ∂rar2 + r–1 ar2 + .

Here, arj = arj(r) are the solutions to the following

X2r
R

--------
C2zr

R
-----------

c11' c12' c13'

c11' c12'
c14' r
R

---------

c12' c22' c23'

c12' c22'
c24' r
R

---------

c13' c23' c33'

c13' c23'
c34' r
R

---------

c14' c24' c34'

c14' c24'
c44' r
R

---------
boundary value problems:

∂r[ ∂rarj + r–1 arj]

+ r–1(  – )∂rarj + r–2(  – )arj = Frj,

( ∂rarj + r–1 arj)(rα) = frαj, (14)

Fr1 = –∂r  – r–1(  – ), frα1 = – (rα), 

Fr2= , frα2 = 0.

The constants C1 and C2 are determined in terms of the
principal vector and of the principal stress moment σzθ,
σzz by the relations

d11C1 + d12C2 = Qz, d21C1 + d22C2 = . (15)

The exact values for the coefficients d11, d12, d21, and d22
of the stiffness matrix are expressed by the quadratures

d11 = 2π  + ∂rar1 + r–1 ar1)rdr, 

d12 = 2πR–1 ∂rar1 + r–1 ar1)r2dr, 

d21 = 2π ∂rar2 + r–1 ar2)rdr,

d22 = 2π r/R + Ò14∂rar2 + r–1Ò14ar2)r2dr.

Relationships (15) make it possible to present the
following interpretation of the quantities appearing in
them: d11 is the bar stiffness for tension–compression;
d22 is the stiffness for torsion; d12 = d21 (this equality
follows from the Betti theorem) is the correlation coef-
ficient for the tension–compression and torsion; C1 is
the bar longitudinal strain; and C2 is the relative twist-
ing angle normalized to R.

Assuming that the cylinder is rigidly fixed at z = 0,
we can determine the exact values of the constants X1
and X2 only by solving infinite systems of equations,
which were mentioned above. For sufficiently long cyl-
inders, these constants may be put equal to zero [with

the asymptotic error O .

c11' c12'

c11' c12' c12' c22'

c11' c12'

c13' c13' c23' c13'

–c14' c24'+( )r

R
------------------------------

Mz

R
------

(

r1

R

∫ c33' c13' c23'

(

r1

R

∫ c14' c24'

(

r1

R

∫ c13' c23'

(

r1

R

∫ c44'

R
l
--- 

 
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ASYMPTOTIC SOLUTIONS FOR SMALL
AND LARGE τ

The construction of the solutions to problems (14) at
arbitrary values of the dimensionless parameter τ0 = τR
can be realized by numerical methods. However, the
asymptotic behavior of the solutions to these problems
at small and large τ0 is of certain importance. The pos-
sibility to reconstruct this behavior follows from the
analysis of expression (3).

In the case τ0 < 1, the straightforward simplifica-
tions of expressions (3) and subsequent integration of
problems (14) lead, in the first approximation, to the
following results:

ar1 = –ν'r,

d11 = SE', d12 = [E'– 2(1 + ν')G'], d22 = ,

S = π(1 – ρ2)R2, Jp = (1 – ρ4)R4, ρ = ,

ν' = , E' = c33 – 2ν'c13, G' = c44,

A0 = 3c12 – 2c13 – c11 + 2c44, 

A1 = –3  + 3  –2c13(c11 – c12) – 2c44(2c12 + 6c11).

These formulas are valid for both solid and hollow
cylinders. The symbols E' and ν' correspond to the
Young’s modulus and Poisson’s ratio that determine the
longitudinal and transverse strains of a trustropic mate-
rial in the case of tension–compression along the sym-
metry axis [1]. The formula for d12 provides an idea of
the interaction of torsion and tension–compression as a
function of the anisotropy degree for small values of τ0 .
It should be noted, therewith, that 2(1 + ν')G' = E' only
in the case of an isotropic material.

The formulas given below for large values of τ0 are
valid only for hollow cylinders under the condition
ρτ0 > 1. In this case, we have in the first approximation:

ar2

τ0

8c11
----------

A0r3

R2
----------





=

+ A
1 ρ2+( )r
c11 c12+
---------------------- ρ2R2

r c11 c12–( )
--------------------------+





,

τ0J p

R2
----------

c44J p

R2
------------

π
2
---

r1

R
----

c13

c11 c12+
-------------------

c12
2 c11

2
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a1 = –Rc13

a2 = – R(c13 – c12)

d11 = c11S + 2πR2[B11(p) + B11(–p)], d22 = c44Jp,

d12 = (2c44 + c13 – c11)S + 2πR2[B12(p) + B12(–p)],

B11(p) = –c13(pc12 + c13)(1 – ρp + 1) ,

B12(p) = –c13(pc13 – pc12 + c33 – c13 – 2c44)

× (1 – ρp + 1) ,

B(p) = , p = .

We now may conclude that, on the basis of the
method proposed, the Saint-Venant solutions can be
constructed for an inhomogeneous (along the radius)
cylinder, as well as for the case of τ = τ(r). The case τ(r)
= kr–1 leads to differential equations with constant coef-
ficients and corresponds to the condition of a constant
angle between the unit vectors t and ez .
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The maximum possible finite spacing between prin-
cipal humps in a sequence of solitary waves is shown to
exist in a flowing-down layer. For small values of the
wave number s < s∗ , the spacing between the humps
reduces spontaneously due to the hydrodynamic insta-
bility. Bifurcations of a new type, s  2s, s  3s,
are found, and a critical value s∗  is estimated.

1. Solitary waves in a thin viscous-fluid layer flow-
ing down along a vertical surface were first experimen-
tally studied by P.L. Kapitsa and S.P. Kapitsa [1]. If per-
turbing pulses in the initial cross section are fairly rare,
a set of identical two-dimensional waves is formed in
the initial cross section down stream, with the layer
thickness being constant on a significant interval
between their humps. In essence, a periodic sequence
of solitary waves is formed. Their velocity exceeds the
velocity of propagation of linear perturbations and var-
ies depending on the spacing between the humps.
Increasing the frequency of perturbing pulses, it is pos-
sible to attain a stable wave mode, in which the humps
are close to each other and an intermediate type of wave
flow is realized. In the subsequent experiments [2], it
was found that the inverse process of increasing the
spacings between the humps by decreasing the fre-
quency of perturbing pulses is of limited nature.
Indeed, for a given fluid flow rate, there exists a bound-
ary frequency such that the mean spacing between the
humps in the wave mode, which is being developed
downstream, does not increase with a subsequent
decrease in frequency.

As a result of the interaction between the principal
humps and the newly arising intermediate humps,
either their coalescence or decomposition takes place.
Curve 1 in Fig. 1 specifies the experimental limit for the
existence of waves with the largest wavelength L [2]. In
this study, we give the theoretical interpretation of the
experiments on the formation of a chain of solitary
waves.

Moscow State University,
Vorob’evy gory, Moscow, 119899 Russia
1028-3358/01/4610- $21.00 © 20760
2. The investigation is carried out on the basis of
numerical solutions to the set of equations [3] for the
thickness h(x, t) of a layer and the fluid flow rate q(x, t):

(1)

Here, Hc is the characteristic thickness of the layer; ρ is
the fluid density; ν and σ are the coefficient of viscosity

ht qx+ 0,=

qt
6
5
--- q2

h
----- 

 +
1

5δ
------ hhxxx h

q

h2
-----–+ 
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δ 3Re( )11/9
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A

Fig. 1. Curves 1–4 are the boundaries of wave modes in the

experiments [2]. The parameters used are vq = (45δ)9/11

and vα = (30πδ )–1. Curves 5–8 show the dominating

waves for δ = 0.04, 0.1, 0.15, and 0.2, respectively. The dots
correspond to the waves of the second family with the max-
imum flow rate for δ = 0.1, 0.15, 0.2, 0.225, and 0.247.
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and surface tension coefficient, respectively; and g is
the gravitational acceleration.

The system involves one similarity parameter δ
introduced in [4]. This allows the results to be suitable
for an arbitrary fluid. In studies [2, 5, 6] and many oth-
ers, solutions to Shkadov equations (1) provided a com-
prehensive description of all principal experimental
data on spatially periodic nonlinear waves in a flowing-
down thin layer. With an increase in the wavelengths L

or with decreasing the wave number α ≡ , special

features of the instability of the periodic waves become
pronounced and do not allow stable sequences of soli-
tary waves to be obtained from such waves.

Together with a wave-free solution h = 1 and q = 1,
we will consider the solutions for solitary and periodic
waves. The steady motion of a wave having the veloc-
ity c in the coordinate system t and ξ = x – ct is deter-
mined by the equation following from Eq. (1):

(2)

A local flow rate in the steady wave can be found from
its profile:

(3)

In the case of a solitary wave, the following asymp-
totic boundary conditions should be added to condi-
tion (3):

(4)

The phase velocity c can be found as an eigenvalue for
boundary value problem (2), (4) for q0 = 1. The solution
is numerically constructed by the method of matching
the corresponding asymptotic expansions at points at
infinity ξ = ±∞ [4].

In the case of a spatially periodic wave, Eq. (2)
should be complemented by the periodicity conditions

(5)

While solving the equations numerically, it is conve-

nient to use the normalized wave number s = , αn =

. In this case, the instability region for a basic
wave-free flow is s ∈  (0, 1). The phase velocity c and
the mean flow rate q0 for a nonlinear periodic wave are
found as eigenvalues of boundary value problem
described by Eq. (2) and conditions (5).

As was proved in [7], for every fixed δ, boundary
value problem described by Eq. (2) with condition (4)
has two denumerable sets of solutions γ±m, j . Here, the

-
 2π

L
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sign in the subscript stands for a subset of fast (+) or
slow (–) waves, 

 

m

 

 = 1, 2, …

 

, is the number of the solu-
tion, and 

 

j

 

 = 1, 2, denotes one of two possible varieties
of the solitary wave with the number 

 

m

 

, namely, with
one or two principal humps.

The single-hump solitary wave of the elevation 

 

γ

 

+1, 1

 

has the highest phase velocity, and the single-hump sol-
itary wave of indentation 

 

γ

 

–1, 1

 

 has the lowest one. The
solution to the boundary value problem described by
Eq. (2) and condition (5) can be found in the form of the
finite Fourier series:

 

(6)

 

There are two denumerable sets of the periodic solu-

tions  for a given value of 

 

δ

 

. Each family is repre-
sented by a smooth curve in the (

 

s

 

, 

 

c

 

) plane. The family
arises at the bifurcation point 

 

s

 

n

 

 and extends to 

 

s

 

  

 

0

 

,
being transformed into the corresponding solitary wave

 

γ

 

±

 

m

 

, 

 

j

 

. In [8], two principally distinguishing families of
solutions were selected and named the first and second
families.

The first family 

 

 

 

begins from a soft bifurcation
at the point 

 

s

 

 = 1 and is finishes by the slowest single-
hump solitary wave 

 

γ

 

–1, 1

 

 as 

 

s

 

 

 

 

 

0

 

. The second family

 branches as a rigid bifurcation at the point  s  =  s b 
and ends with the fastest single-hump solitary wave.
For small values of 

 

δ

 

 

 

≤

 

 0.096

 

, the bifurcation point of
the second family is in the vicinity of 

 

s

 

 

 

≈ 

 

1/2

 

; when 

 

δ

 

increases, this point displaces to 

 

s

 

 

 

 0

 

. There exists
an ascending sequence of critical values of 

 

δ

 

, above
which a jump transition of 

 

s

 

b

 

 to the next lower value
from the sequence 

 

s

 

 

 

≈ 

 

1/3, 1/4, …

 

 occurs. In this case,
the solution of the second family is interchanged by the
bifurcation point with the next family of the slow waves

, which leads to the formation of families of inter-
mediate bifurcations.

We now pay attention to the excitation of nonlinear
waves by means of small perturbations at an initial time
moment:

 

(7)

 

The solution to Cauchy problem described by formu-
las (1), (5), and (7), is sought in the form of Fourier
series (6), whose coefficients depend on 

 

t

 

. The use of
the Galerkin method leads to the formation of a
dynamic system for 

 

h

 

k

 

 and 

 

q

 

k

 

. In [9], on the basis of
systematic numerical experiments for 

 

s

 

 

 

≥ 0.1, we estab-
lished a set of dominating waves composing a global
attractor of periodic solutions to system (1). Every
dominating wave is characterized by the fact that its
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Fig. 2. Wave profiles for δ = 0.04, s = 0.15: (a) , c = 3.7740, q0 = 1.0327; (b) , c = 3.3941, q0 = 1.0319; (c) Γ1, c = 3.2858,

q0 = 1.0275; (d) Γ2, c = 3.4127, q0 = 1.0317; (e) Γ3, c = 3.3518, q0 = 1.0310; and (f) Γ4, c = 3.3909, q0 = 1.0317.

γ+1 1,
2 γ+1 1,

2 2,
velocity, amplitude, and mean flow rate have maximum
values among all regular waves existing for the values
of (δ, s) under consideration.

The projection of the attractor onto the (s, c) plane
represents a piecewise continuous curve with its pieces
belonging to the different families, namely (in order of
decreasing s) to the first, intermediate, and second fam-
ilies. In Fig. 1, we show the dominating waves for δ =
0.04, 0.1, 0.15, and 0.2, and the experimental bound-
aries of wave modes. The waves belonging to the sec-
ond, intermediate, and first families are observed
between curves 1 and 2, 2 and 3, and 3 and 4, respec-
tively.

3. The second-family solutions  correspond to
the solitary waves observed in experiments (Fig. 2). The
translation along the branch of this family to s  0 cor-
responds to the passage to a periodic sequence of soli-
tary waves with the increasing spacings between their
principal humps. The question is whether the attracting

properties of the family  are conserved for all
small values of s. By virtue of these properties, the solu-
tions of this family develop spontaneously from small
initial perturbations of the wave-free flow.

The calculations of unsteady solutions to Eqs. (1)
show that the attracting properties of the second solu-
tion are weakened for sufficiently small values s < s∗ (δ)
and that the global attractor consisting of the dominat-
ing waves is destroyed. The attracting solutions turn out
to be waves of another type. In Fig. 3, we show two
examples of the regular waves developing with time

γ+1 1,
n

γ+1 1,
n

from small initial perturbations. For s = 0.1125 and s =
0.165, a small harmonic perturbation and a periodic
wave with random small Fourier coefficients are used
as initial conditions, respectively. The spontaneous

transition from a wave with a period of  to shorter

wavelengths with periods of  and  is a new

observed phenomenon. It is possible to verify by the
direct comparison that the principal parameters of the
formed nonlinear waves, such as the phase velocity c,
maximum height hmax , and fluid flow rate q0 , differ
slightly from the parameters of the corresponding dom-
inating wave with the wave number 2s or 3s. The simi-
lar evolutions of unsteady solutions arise only for
s < s∗ (δ). It was found that the critical values are
s∗ (0.04) ≈ 0.22 [with s∗ (0.1) ≈ 0.1] and s∗ (0.04) ≈
0.115 for the transitions s  2s and s  3s, respec-
tively.

The effect discovered manifests itself in the fact that
the periodic sequence of waves, which is specified by
the initial conditions and corresponds to the number s,
is inconsistent with the flow, and the solution is sponta-
neously reconstructed into a sequence of waves with
two shorter spacings between the humps, which are
specified by the wave numbers 2s and 3s.

Because the steady nonlinear waves with the wave
numbers 2s and 3s represent invariant solutions, they
must also be solutions to the nonlinear eigenvalue prob-
lem described by Eq. (2) and condition (5).

2π
s

------

2π
2s
------ 2π

3s
------
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Fig. 3. Formation of solitary waves for δ = 0.04. Figures 3a to 3e correspond to s = 0.1125 and t = 0, 5, 10, 20, and 80; Figs. 3f to
3j correspond to s = 0.165 and t = 0, 10, 20, 40, and 80, respectively.
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Fig. 4. Families of bifurcations of the second sequence for δ = 0.04. (a): (1) , (2) , (3) Γ1 , (4) Γ2 , (5) Γ3 , and (6) Γ4 .

(b): (1) , (2) Γ5 , and (3) Γ6 .

γ+1 1,
2 γ+1 1,

2 2,

γ+1 1,
2 3,

(a) (b)
It should be noted that the foregoing branches of
solutions bifurcate at the points sn from the first family.
This is associated with the existence of doubled solu-
tions for this family. The solution with wave number s

is repeated n times for the wave number . Different

branches of solutions originate in the vicinity of these
points. We will refer to them as families of the first
kind. The doubled families are possible also for other
families of regular waves. In order to identify them, it

is convenient to use the denotation , where the
additional superscript l implies the fact that an arbitrary

solution  calculated for a wave-number value s is

considered over the period of . In Fig. 4, we show

the results of the bifurcation analysis of the second fam-
ily in the (s, q0) plane for δ = 0.04. The new families

s
n
---

γ m± j,
n l,

γ m± j,
n

2πl
s

--------
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denoted as Γk, k = 1, 2, …, 6, branch from the doubled

families , whose bifurcation points are s = 

for l = 1, 2. For the doubled families and the families
branching from them, the phase velocities and maxi-
mum heights of waves differ only slightly; their fluid
flow rates are also very close, but these waves are dif-
ferent. In Fig. 3, we also show the spectral distributions
Hk = k2|hk|2, which are of importance for the identifica-
tion of the families. The waves belonging to the fami-
lies Γ3 and Γ4 have very similar shapes, differing only
in the spacings between the principal humps, but their
spectra are significantly different. In particular, the
maximum values of Hk are attained for various harmon-
ics. The important role of the spectral analysis in pro-
cessing experimental results was indicated even in [1];
here, this idea turned out also to be fruitful for the
numerical investigations of waves.

γ+1 1,
2 l, 0.4961

l
----------------
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The circles in Fig. 4 show the attractors of system (1)
for small parameters defining initial conditions. The
closed circles mark the ultimate solutions whose inte-
gral characteristics, for example, the fluid flow rate and
the wave velocity, attain constant values under the pro-
longed integration of Eq. (1). In the phase space hk, k =
1, 2, …, such solutions to the dynamic system obtained
from Eq. (1) by the Galerkin method correspond to ulti-
mate cycles. We note that the solutions belonging to the

various families Γ2, Γ3, Γ4, Γ6, and  serve as attrac-
tors for nearly equal small values of the wave number,
but not the waves of the second family as is the case for
finite values of s (see Fig. 2). The competition between
close regular waves can lead to the formation of biperi-
odic and quasiperiodic oscillatory solutions, which are
shown in Fig. 4 by connected open circles correspond-
ing to the maximum and minimum values of the fluid
flow rate. The alternation of almost coherent localized
wave structures and disordered periodic waves is intrin-
sic to quasiperiodic solutions [10]. The trajectories on
the invariant tori in the phase space hk correspond to the
biperiodic oscillating solutions.

4. Thus, while decreasing the wave number s, the
passage to shorter structures corresponding to the wave
numbers 2s and 3s takes place in the developing wave.
In the formed sequence of solitary waves, the spacing
between their humps is, on the average, less than a cer-
tain critical value corresponding to the wave number
s∗ (δ).

The calculation of the critical value s∗ (δ), which can
be principally carried out by numerically solving
Eq. (1), encounters considerable calculational difficul-
ties when δ increases. For estimating s∗ (δ), we use an
idea of [3] on optimal wave modes, which provide the
maximum flow rate for a given mean thickness of the
layer (or the maximum mean thickness for a given flow
rate). We assume that the maximum value of q0(s)

along the second family  is attained at the point
s∗ (δ). This assumption is quite consistent with the
numerical results obtained for two values of δ:
s∗ (0.04) = 0.195, s∗ (0.1) = 0.087, and s∗ (0.15) = 0.080. 

In Fig. 1, the dots mark the parameters of the wave
flow corresponding to the critical value s∗ (δ) for δ =
0.1, 0.15, 0.2, 0.225, and 0.247. For the two last values,

γ+1 1,
2 3,

γ+1 1,
n

s∗  was found by extrapolation. It can be seen that all the
points are placed virtually at the curve that specifies the
upper experimental boundary of the existence of
steady-state modes, with their wavelengths determined
by periodic pulses in the initial cross section of the
layer. In [5], Shkadov equations (1) in the formulation
simulating the experimental conditions [1, 2] were
numerically solved for given input perturbations with
random frequencies. A unique cumbersome calculation

concerns the variant δ = 0.217 . The estimate of
the maximum spacing between the humps in the wave
chain formed downstream amounts to L = 65. This
value correlates with the theory developed here; the
corresponding point A is shown in Fig. 1.
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