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We study the propagation of spin waves through a
periodic structure consisting of ferromagnetic layers of
equal thickness but different magnetization. The wave
spectrum contains forbidden zones determined by the
parameters of both the structure and external magnetic
field. The wave propagation in such a structure is
impossible if its frequency liesin a forbidden zone. In
the presence of a layer with different thickness and
magnetization, the structure symmetry is violated; this
leads to the possibility of spin-mode localization on a
structure defect. The coefficients of wave reflection
from aperiodic structure of finite thickness and of wave
propagation through such a structure are calculated. By
analogy with the known photonic crystals, in which
non-transmission zones arise in the spectrum when
light propagates through a crystal, such magnetic
superlattices can be termed magnonic crystals.

In recent years, the problem associated with control-
ling and manipulating the optical properties of crystals
has received much attention. In particular, materials in
which light can propagate only in certain directions or
generally can belocalized in certain areas are designed,
constructed, and investigated. Since the properties of
light propagating in them closely resemble those of
electrons in actual crystals, these materials have come
to be known as photonic crystals[1]. Initsbasis, apho-
tonic crystal represents a material whose index of light
refraction varies periodically. The most simple example
of a photonic crystal, also called a one-dimensional
photonic crystal, is a one-dimensional multilayered
periodic structure[2]. The spectrum of optical radiation
propagating through such a structure has forbidden fre-
guency gaps. Light with frequencies lying in a forbid-
den gap cannot propagate in the direction perpendicul ar
to the plane of such a structure. Afterwards, two- and
three-dimensional photonic crystals were also modeled
and obtained [3]. Three-dimensional crystals, in addi-
tion, can have an absol utely forbidden gap. Thisimplies
that the light in such crystals has no possibility of prop-
agating along any direction. Recently it was demon-

Ingtitute of Radio Engineering and Electronics,
Russian Academy of Sciences,
Mokhovaya ul. 18, Moscow, 103907 Russia

strated that even a one-dimensional photonic crystal
can have an absolutely forbidden gap [4, 5] if a proper
choice of layers is performed in a multilayered struc-
ture. By analogy with photonic crystals, phononic crys-
tals [in which acoustic waves (phonons) exhibit proper-
ties similar to those of light] were dso modeled and
obtained [6]. The properties of certain photonic crystals
can be governed by varying the external magnetic field
if one or all layersin a periodic structure are made of a
magnetic material [7].

It is possible to creaste materials similar to photonic
and phononic crystals in which information is trans-
ferred by spin waves. Such materials possess forbidden
gaps for propagating spin waves and can be termed
magnonic crystals by analogy with photonic crystals.
Over the past decade, multilayered magnetic structures
are extensively studied for investigating giant magne-
toresistance. In investigating their properties, the ferro-
magnetic and spin-wave resonance methods were
applied, but an idea related to using similar structures
as systems similar to photonic crystals was not previ-
ously considered.

In this study, we analyze the dispersion properties of
spin waves in a one-dimensional periodic multilayered
structure (a one-dimensional magnonic crystal) and
present the results of investigations on the reflection and
transmission of these waves through such a structure.

The investigated periodic structure consists of iso-
tropic ferromagnetic layers with the same thickness d
but with different magnetization, M, and M,. The sys-
tem energy can be written in the form

_ aa2 K 2 1 .1
U= MOIdV[Q(Dm) 2mhq], (1)

Vi

where M, = ,/M?+ M3 is the average saturation mag-
netization, a is the nonuniform exchange interaction
Ho

constant, V; is the volume of the system, and h, = Vi
0

and m= MM . Solving the Landau-Lifshitz equation in
0

the circular variables
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we arrive at the following differential equation:
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where
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and w, = yM,.. Having described the solution for the
magnetization in a harmonic form

m° = Agexp[+i(qgyy + 0,z— wt)] )

and having set the periodic boundary-value conditions
(similarly to the Kronig—Penning model that describes
the motion of electrons in a periodic potential), we
obtain the following dispersion equation:

HLS! 2]
+
cosk,dcosk,d Ok, 2K1DSInK1dS|nK2d
= cosh(2q,d). ©6)

Here, K, and K, are the propagation constants defined
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Fig. 1. Dispersion of spin waves (the reduced frequency wﬂ
o

as a function of g,d) propagating through a periodic multi-

layered ferromagnetic structure (curves 1 and 4 correspond
to the localized modes).
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by Eg. (4), and q, is the wave number of the spin wave
propagating along an axis perpendicul ar to the structure
surface. Note that the presence of forbidden zonesis a
characteristic feature of the dispersion curves (Fig. 1).
If the wave frequency liesin this zone, the propagation
of wavesin such astructureisimpossible. However, the
situation changes under conditions when the symmetry
of a system is broken. If a structure contains a layer
with different magnetization or thickness, there appear
conditions in which a wave can penetrate the structure
even when its frequency liesin the forbidden zone. The
dispersion equation of spin waves in the structure with
broken symmetry (one of the layers has a thickness I)
has the following form:

COSK 5l cosk, (I + d) cosk,l cosk ; (1 —d)

mLSY 3D
+ SNkl sink (1 - d) cosk,|
|:2K3 ]_
K
EQK: ESnszS‘nKlﬂ —d) cosKs|
_0%2 4 XsOgny .t sink,dcosk,(l —d
i, " et SnKedeosiall=d) o)

= cosh(2q,d).

Figure 1 also shows the dispersion curve for spin
waves propagating in a periodic structure with broken
symmetry (curves I and 4 correspond to the modes
localized on defects).

We now consider the reflection of spin waves from
aperiodic structure with afinite number of periodsand
their propagation through such a structure. First, we
calculate the reflection of spin waves from a semi-infi-
nite periodic structure. If the coefficients of reflection
from and transmission through a single boundary sepa-
rating two ferromagnetic materials are known for a
wave, then the coefficient of reflection from asemi-infi-
nite structure can be represented similarly to that of a
guantum-mechanical particle from a semi-infinite
potential [8]:

R
(-) 2 (=) v
[(R —1)°-T }

R 1) T 1/2.8
[ ) | ®

1/2
(RO + 2y -1 -

1/2
(R %1y

Here, R~) and T~ are the corresponding coefficients
of reflection and transmission of spin waves through a
single boundary. In the case of spin waves, the bound-
ary value condition with partially fixed spins at the
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interface between the two ferromagnetics hastheform:  where € is the spin fixation parameter. Hence,
t . ik, d —iK,d 2ik,d —2iK,d
a(;n +Em = 0, © Ro-Math2e -2 e te
n |k1 _E 2e—||<2 _ 2e||<1 _ e—2||<1 + e—2|K2
T(H) ) | K, + E(e_iKld _ e—iKZd)(e—Zisz _ e—ZiKld) _ (e—iKld _ e_isz)(EZiKld _ e—2iK2d) (1 1)
iK,+ E 2i Sinsz[Z(e_lKld _ e—IKZd) + (e—2|K1d _ e_ZIKZd)]

In order to describe the coefficients of reflection and
transmission for afinite-length lattice (for awave inci-
dent onto a structure from the left), it is necessary to
note that to the left of the structure there are both inci-
dent and reflected waves, whereas to the right, there is
only the transmitted wave. Inside the structure itself,
there are waves propagating from the right to the left
and vice versa. Satisfying these end conditions, we
obtain the coefficients of reflection and transmission of
awave from alattice of thefinitelength L:

1— eiAL

- p=)
T RO

(12)

(1_|RL(;)|2)eiAL/2
= 1_|R((;)|ZeiAL

T , (13)

where A = K, + K,. The plotsfor the coefficient of trans-
mission of spin waves through the periodic structure
consisting of 100 periods are shownin Fig. 2 asafunc-

q.d

tion of the wave number R In the calculations, we

used a periodic structure composed of nickel and iron
layerswith athickness of 0.1 um, and the other param-
eters were chosen in accordance with the experimen-
tal study [9] devoted to investigating the spin-wave res-
onance in layered ferromagnetic structures. It is seen
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Fig. 2. Transmission coefficients for spin waves propagat-
ing through a periodic structure containing 100 periods of
ferromagnetic nickel and iron layers (peaks 2 and 3 corre-
spond to the modes localized on defects).
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that there are peaks of almost total transmission and
total reflection (corresponding to the forbidden zones).
The peaks2 and 3 correspond to the modes|ocalized on
defects. The thickness of a defective layer was taken to
be 0.15 pm.

Thus, we considered the propagation of spin waves
through a periodic multilayered structure consisting of
ferromagnetic layerswith the same thickness but differ-
ent magnetization. The wave spectrum contains the for-
bidden zones. The transmission coefficients of waves
having the frequencies within these zones are virtually
equal to zero; i.e, such waves are almost totaly
reflected. By analogy with photonic crystals, such
structures may be termed one-dimensional magnonic
crystals. As with the photonic crystals, it is possible to
work out and investigate both two- and three-dimen-
sional magnonic crystals.
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The process of electric conduction was studied on
the basis of experimenta results for current—voltage
characteristics (CVCs) of metallic conductors (copper
wire with a length L, = 50 mm and diameter d =
0.1 mm) for adirect current up to its maximum density
(@t ju ~ 2 x 10° A/m? samples collapse) under near-
isothermal conditions (cooling by running water at T =
290 K). It was established (Fig. 1) that CVCs of con-
ductors under the indicated conditions can be approxi-
mated by the dependence

E(i) = p(i)j = aj +bj’, (1)
where a = p, is the resistivity of the material forj —»
0 and b is a positive constant [experimental values for
copper are: po = (1.98 £0.04) x 10 Qm,b=(3.84 +
0.24) x 1078 V m3/A?]. Anaogous measurements
under similar conditions were carried out [1] for nickel
foils (& ~ 5 um) whose CVCs had the same shape as
those displayed here.

A nonlinear behavior of the CVCs (for j > 3 x

108 A/m?) is accompanied by conductor deformations
(elongation) AL(j), which, like the resistivity of the

sample material p(j) = E%Q (Fig. 2), are temperature-

dependent: AL(T) = L,aAT and p(T) = py(1 + a,AT).
From here, we obtain therelation

a
ple) = pordk + 2ef @

wherea,, and a are, respectively, the coefficients of the
resistivity and of the linear elongation for a conductor
andg =€(j) = é—l—l‘_(—J—) are the relative conductor strains
0
caused by the action of the electric current.
Comparing relationships (1) and (2), we obtain that
the indicated relative strains should be defined as

e(l) = Vi 3)
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where the coefficient y will be referred to as the galva-
nomechanical coefficient. Correspondingly, according
to (3), the current dependences of resistivity and tem-
perature must also be linear:

. asy. . .
Ap(j) = poafyj, AT()) = alTJ- )

It can be seen that, under the condition of intense
cooling of a sample, the Joule law of heat release,
which is quadratic with respect to the electric current,
does not manifest itself explicitly inthe form of current
dependences &(j), Ap(j), and AT(j). Therefore, expres-
sions (3) and (4) describe the nonthermal action of the
electric current on the conductor parameters.

It is of interest that the first experimental investiga-
tions of this nonthermal effect of the electric current on
the physical properties of a metal were carried out as
early as 1844 by Wertheim [2]. From the elongation of
wire samples of various metals subjected to constant
mechanical loading under conditions of the electric-
current conductance j ~ 10’-10% A/m? or only under

E, V/m
40+

30F

20
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]

0 4 8 12 16

7, 108 A/m?
Fig. 1. Current-voltage characteristics E(j) for copper-wire
samples (with the length L, = 50 mm and diameter d =
0.1 mm): the circles are experimental data, and the solid
line represents the approximation. E(j) = aj + bj2; a =
1.98x 108 sd=386x107% b=384 x 1078 sd = 2.41 x
1071% R=0.999.
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thermal action, the Young elastic moduli G, and G, of
the studied material were determined at a fixed sample
temperature. The obtained difference AG = |G, — G|
served as an evidence for the nonthermal effect of the
electric current on the value of the elastic modulus of a
metal. Theseinvestigations are aunique physical exper-
iment, and a priority in the discovery of the phenome-
non of mechanically stressed states under the action of
electric current belongs to Wertheim. Unfortunately,
this phenomenon was not appropriately perceived at
that time. Only after alapse of 125 years it was redis-
covered by Troitskif [3].

Nowadays, the mechanically stressed state of a
metal conductor induced by ahigh-density electric cur-
rent (j ~ 10°-10° A/m?) is vigorously studied (see, for
example, [1, 4-8]), in particular, with the purpose of
practical applications. However, in our opinion, the key
physical problem considered in this paper has yet not
been posed.

Following formula (4) for Ap(j), wefind, asaresult,
the specific analytical expression for the CV C specified
by physical parameters of the metal conductor

Po0O,Y .2
Ot

E(j) = poi + [ (5)

This expression agrees qualitatively and quantitatively
with the experiment (Fig. 1) [for copper withy= (7.7 £
0.4) x 1073 m?/A].

Correspondingly, we can write out the relation
between the electric-field strengthin ametal anditsgal-
vanomechanical strains:

_ Podp 2
E(e —e+ e 6
(&) = T+ U (©)

Here, a certain analogy is noted with the piezoelectric
effect in dielectrics; however, contrary to the piezoel ec-
tric effect that exists only in crystals without a center of
symmetry, the effect described by expression (6) is
observed in metals of an arbitrary crystal system. This
phenomenon can be conventionally named the electro-
elastic effect.

Numerical estimates of coefficients ahead of g show
that, for elastic strains in a meta (e < 10%), the first
termin (6) isat least by two orders of magnitude larger
than the second term. Therefore, for routine values of
current density (j < 10” A/m?), the dependence E(g) is

linear (for copper, the coefficient — Po

=2.6x10°V/m).

As can be seen, the presence of an electric fieldin a
metal is related to the mechanically stressed state of a
conductor under the action of electric current. From the

equality E2D = 676 of the densities of electric and

elastic energies (G is the eastic Young modulus), we
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Fig. 2. Resistivity p(j) and absolute elongation AL(j) of cop-
per wires as afunction of the electric-current density j.

find the e ectric induction in the conductor, which can
be written for the linear part of expression (6) as

o(j) = &) = 1. @
Po
Here, the coefficient T has the dimension of timeand is
equal to 3.8 x 10 sfor copper. Thus, the electric field
inametal isthe consequence of the electric polarization
of the conductor material in the process of passing the
electric current.

An expression similar to formula (7) can also be
obtained from the material relationships of e ectrody-
namics as applied to an electricaly conducting
medium:

D = egE = ggppj = 1.

Here e isthe relative permittivity of the medium, and g,
is the dielectric constant. The physical meaning of the
coefficient T' = €g,p can be understood from the conti-

0pq _
ot

the Gauss theorem divD = p, (p, is the space-charge
density at a given point). Upon integrating this equa-

nuity equationdivj+ —— =0 dn our case, j = DE and

tion, we obtain py(t) = py(0)exp E—TLH , Where ' is the

relaxation time for a charge in a conducting medium.

It should be noted that the estimate of T, which is
obtained from the electroelastic effect, correlatesin the
order of magnitude with the value of therelaxation time
for a charge in a metal (' ~10° s as was reported
in[9]). Taking T = T', we estimate the order of magni-
tude of the relative permittivity for anormal (nonsuper-
conducting) metal (under the condition of passing the
direct electric current) by expressing permittivity in
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terms of the material parameters of the metal: € = L.

Pogo
103104, In our opinion, such avalue of € isphysically
reasonable, because, in the case of a flowing electric
current, the electric field in anormal conductor is very
weak but nonzero, in contrast to the essentialy zero
electrostatic field of a conductor.

The additional experiments intended to verify the
electroelastic effect in metals were carried out with the
indicated wire samples without their intense cooling,
i.e., in conditions of considerable heating (T = 400-
600 K) by the electric current (j < 1 x 10 A/m?) in the
ambient air. In this experiment, the CVCs E(j) and the
current dependences of the absolute elongation AL(j)
and the resistivity p(j) were found to be substantially
nonlinear; however, the strain dependence E(g)
remained linear.

Thus, it was established that the electric-field
strength E(j) in an electrically conductive metal in the
process of passing an electric current and its mechani-
cal strains g caused by the action of the electric current

of a standard value (j < 10” A/m?) are connected by a
linear dependence. It is physically logical to assume
that the indicated phenomenon of the gal vanomechani-
cal strain E(e;) is characteristic of arbitrary conductors
and can be observed at al temperatures of the con-
densed state of matter (above the temperature of super-
conducting transition).

The electroelastic effect E(g) makes it possible to
aternatively define the difference in electric potentials
(electric voltage)

_ Nal = Pap ¢
U= {E(e])dL yAL(J)

in ametal asthe work of extraneous forces (for defor-
mation of the crystal lattice of the conductor per unit
charge) in the process of passing an electric current. As
a result, the electric field in a conductor is caused by
scattering of the drift pulse of current carriers on heter-
ogeneities of the conductor crystal lattice. This scatter-
ing leads to the relative shift of the centers of mass for
positive and negative charges, which is responsible for
the electric polarization of the medium. In this case, in
order to create the electric field in a metal under the
action of an electric current, the energy of the electro-
motive-force source must be permanently spent for
heating the conductor. Therefore, the process of passing
the el ectric current without the energy dissipation in the
case of superconductivity proceeds essentially without
adrop of the electric voltage in the conductor.

The character of dependence (3) for &(j), which fol-
lows formally from the analysis of the experimental
CVC (Fig. 1), can be physically explained by an excess
pressure of the conduction-electron gas in the metal
crystal lattice in the case of passing an electric current.
This pressure is induced by the overheating tempera-
ture of the electron gas, AT(j) = T, — Ty, With respect

KORNEYV et al.

to the lattice temperature [10]. In this case, due to the
presence of AT(j), the resistivity p(j) of the material
must essentially depend on the electric-current density,
and it increases with the current even for a sample
maintained, in one way or another, at a constant tem-
perature. As estimates show, according to relation (4),
the dependence Ap(j) for acopper conductor manifests
itself markedly only for the currents j > 2 x 108 A/m?
when AT(j) = 10 K; i.e., thisdependence has athreshol d
character with respect to the current. This fact is also
confirmed by the results of our experiment (Fig. 2).

Using the value of the galvanomechanical coeffi-
cient (y=7.7 x 10 m?/A) obtained experimentally for
a copper conductor, we can estimate the ultimate
strength o, for a copper whisker (1 um in diameter and
10 um in length), whose explosive collapse occurred,
according to [11], under conditions of intense cooling
for the current densitiesj > ., = 1.5 x 10 A/m?. Inthis
case, 0, = Gg = Gyj,, ~ 2 x 10°°N/m?, which corre-
sponds to the theoretical value of the ultimate strength
for ametal (~G/10).

For such currents, the volume density of electric
ED _

> =
order of the thermal-energy density for an actual ther-
moionic cathode g; = ¢p,,T (P, and ¢ are the density
and specific heat capacity of the material, and T = 2 x
108 K). Using (4) for AT(j), we obtain that, for j ~ 5 x
10%° A/m?, the temperature of overheating for the con-
duction-electron gas above the lattice temperature in
the process of passing the electric current is AT = 3 x
10® K. Therefore, under such conditions, the ther-
moionic emission must occur from the surface of acold
metal (T,,, << T,). In fact, this emission was observed
in [11] when, for j = 1 x 10'* A/m?, the emission cur-
rent was detected from the surface of a copper single
crystal whose temperature T, did not exceed 373 K. It
is interesting that the anomalously high electron emis-
sion from thermoionic cathodes at the heating current
density j ~ 10'' A/m? has long been known [12]; how-
ever, there was no satisfactory explanation for this fact.

Thus, we can conclude that the existence of the el ec-
tric field in a conductor is caused by the mechanically
stressed state of the medium under the action of electric
current. Therefore, the Ohm law E(j) for electric con-
duction is the formal generaization of two physica
phenomena: the galvanomechanical strain g of a con-
ductor caused by scattering of a drift pulse of current
carriersin the crysta lattice, and the eectric polariza-
tion arising in this case, which isasource of the electric
field E(g) in the conductor. It is essential that the resis-
tivity p(j) of the conductor material depends on the den-
sity of the electric current and increases with current
not only dueto the Joule-heat rel ease but also dueto the
current dependence of the temperature AT(j) of the
heating of the electron gas with respect to the lattice

energy in a metal, %ijT = 10° Jm?, is on the
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temperature. Introducing a new material characteristic
for a conducting medium, the galvanomechanical coef-
ficient y, which is of the same importance as the resis-
tivity p, makes it possible to refine and extend our
notion about the range of physical phenomena accom-
panying the process of passing an electric current.
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The construction of exact unsteady solutions to
equations of magnetic hydrodynamics is of doubtless
interest. To achieve this purpose, it turns out to be effi-
cient to use the self-similar approach [1], whose merit
consists in the possibility to pass from solving a set of
partial differential equationsto integrating aset of ordi-
nary differential equations, which isasimpler problem.
Such solutions to equations of magnetic hydrodynam-
ics were previously obtained for unsteady plasma
motions rated in the class of continuum motions for
which velacities are proportional to the distance to the
center of symmetry [2-6].

However, these studies dealt with the one-dimen-
sional motion of plasma. Here, we construct an exact
solution to the two-dimensiona problem for motion
with a homogeneous strain. This unsteady solution to
equations of magnetic hydrodynamics describesthetime
dependence of the transverse size for the pinch of dliptic
cross section as the external magnetic field varies.

The set of equations of magnetic hydrodynamicsis
used for the macroscopic description of plasmain the
context of amodel of a perfect conducting fluid [7]:

divB = 0, %—? = rot[VB], (1)
90 4 divoV =
o +divpV = 0, 2)
dv _oVv 1

11
E‘a_tJ'(VD)V_ pr 4np[BrotB]- 3)

Here, p, V, and p are the density, velocity, and pressure
of plasma, respectively.

The steady solution to Egs. (1)—(3) for aplasmacyl-
inder of elliptic cross section was obtained in [8]:

4] 2
B = ——(-y,A"x,0), 4
abc()\2+1)( Y, A°X, 0) “4)
_1 X yn
p=3PQM -5 -1 5)

Here, | isthe strength of electric current flowing along
the pinch, A = g, a and b are the semiaxesin the pinch

cross section, and Q is the constant.

In this case, the magnetic field represents a superpo-
sition of the confining external magnetic field of the
guadrupole type and the magnetic field generated by
the pinch [9]:

B=B,+B;, By =Kk(y,x0), (6)

_ 4]

B = abc(A + 1)

To characterize avalue of the external-field gradient
k, it is convenient to use the value J of the strength of a

(_yv )\Xv 0) (7)

certain effective current assuming k = ;t;]c'

sions (5) and (7) lead to a different form of representa-
tion of the external field:

4 A=D1
abc() + 1)(A%+1)

Thus, from the comparison of expressions (6) and (8),
we obtain the following relationship:

INA —1) = J(A+1)(A\*+1). 9)

If relationship (9) is considered as an equation with
respect to A, then this equation has positive roots under
the condition

Expres-

(. x,0). (®)

|21, = JJ22+10./5.

Thus, the steady state of the pinch is possible in the
case when the intensity of the current flowing along it
is not lower than the critical value |, specified by the
external-field gradient. Otherwise, the external field
tears the pinch apart.

Before passing to the construction of an unsteady
solution to equations (1)—(3), we abtain a useful conse-
guence from the condition of the freezing-in of mag-
netic-field lines. Let S be a certain value that is con-
served during the plasma motion. If Eq. (1) is multi-
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plied by OIS the resulting equation can be transformed
to the following form:
DS%—B = OSot[VB] = —div[OS[VB]]
= Bgrad(VOS) —Vgrad(BOS) — (BOS)divV.

With alowance for equations

S .\, _ 1ldp
vas = 3 divv = odt’
we finally obtain the following result:
dﬁﬂﬁ_
il p O ; (10)

i.e, BTDS is also the quantity being conserved during

the plasma motion.
In the case of mations with a homogeneous strain,

the plasma density isp = po:gao , and the expression
for plasma velocity has the form:

V = (&g bn,0),
where & = g andn = %’ are self-similar variables. For
the class of motions under consideration, these vari-
ables are the conserved quantities: % = %—rt] = 0.

Assuming subsequently S =n and S, = & in (10), we
find the following conditions:

2 4] _
a@*£§ﬁﬂ'cb

¥ e | = €

where C; are the constants determined from the initial
conditions.

From conditions (11), it follows that, in the general
case, the unsteady motions with a homogeneous strain
are possible if the gradient of the externa magnetic
field and the strength of the current flowing along the
pinch depend on time:

k=L &

a+bla

(11)

CH
DN
(12)

_Ckb, s
| = 3Pt i

To specify these dependences, it is necessary to inte-
grate a set of ordinary differential equations obtained
from Euler equation (3):

bb = B.

aa = da, (13)
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Here, we introduce the following notation:

1
TiCaghoPo’
wherethe current strength | isdefined by expression (12).

Theanalytical solution to equations (13) can be con-
structed in the case when a and B are independent of
time, i.e., for a constant strength of the current flowing
along the pinch. As can be seen from (12), this condi-

a=Q-plC;, B=Q-ulC, u=

tion is met if the ratio A = g of semiaxes in the pinch

cross section remains invariable in the process of the
plasma motion.

Thesimplest result isobtainedinthecasea =3 =0,
i.e., for the linear time dependence of the cross section
size:

a=agt+agt, b = by+Aa.t. (14)

This solution describes the self-similar motion of
the pinch as the gradient of the external magnetic field
varies according to the law

_ __AIA(A-1)
abc(A + 1)(A\2+ 1)

This dependence follows from the fact that the condi-
tion Ci=6G leads to relationship (9). Accordingly,
expression (14) passes to the above steady solution to

Egs. (1)—3) for a, = 0.

As is easy to understand, the analytical expression
for the nonlinear law of variation of the transverse
pinch sizes can be obtained as the condition a = BA% is
met. Inthis case, A isindependent of timeif a= a,f and
b= Db, f, wherethefunctionf, asit followsfrom (11) and
(13), satisfies the equation

(15)

ff=k.

Here, we use the following notation:
102 O

_1 2 _
K [7\ b0(1+)\) w} @ _T[_Q)anbodj

Equation (16) describes the self-similar pinch
expansion for positive values of K and its contraction
for negative values. The contraction can be preceded by
a certain preliminary expansion of the pinch provided

that fo =u>O0:

t = TF./merf(ut) —erf(Ju’t> = Inf)].

This result can be obtained from Eq. (16) if we putk =

1
—— . The maximum increase in the transverse size of

21°
the pinch is characterized by the quantity f = F =

(16)

2
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exp(U’T?) and is attained at the time moment t = t, =
TJ/TtFerf(ut). Then, at t > t,, the contraction begins:

t =t + TF/merf(Ju’t’ = Inf).

When fo = -u <0, the pinch contraction occurs at
once:

t = tF./mferf(Ju*t’=Inf) —erf(ut)].
Here, erf(x) isthe probability integral [10].
The solution obtained corresponds to the time depen-

dence of the externa-field gradient, which is similar
to (15):

_211-A, g __1pA\-1
abC )\+l wz'[ﬂ)\2+1 )

This dependence coincides with (15) as 1 — 0. For
arbitrary initial conditions, the solution to the set of dif-
ferential equations (13) can be obtained by numerical
methods.
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The purpose of this study is to show the role of the
momentum transfer from drifting ions to neutral com-
ponents of amedium in initiation of avortex motion of
dust particlesin anuclear-excited dust plasma. Thevor-
tex motion of dust particles was previously observed
in[1].

A characteristic feature of the nuclear excited
plasma is its track structure. This implies that the
quasineutrality of such a plasma takes place only for
volumesthat contain alarge number of nuclear-particle
tracks. Within the tracks themselves, the quasineutral-
ity isviolated very rapidly dueto thelarge differencein
diffusion coefficientsfor electronsand ions. In an exter-
nal field, the track decomposes into clusters of elec-
trons and ions drifting towards the corresponding elec-
trodes. In a homogeneous field, the clusters conserve
the cylindrical symmetry. For the high intensity of a
radioactive source, therole of direct processes of charg-
ing particles increases when an ionizing particle shoots
through a dust particle.

In [1], we studied the behavior of dust particles of
Ce0O, in the nuclear-excited plasma formed in atmo-
spheric air by both fission fragments and al pha particles
from 252Cf. As the strength of an external electric field
increased above 20 V/cm, the levitation of particles
gave way to a rotational motion that appeared as an
equilibrium vortex formation. The particles in the
ensemble moved along closed trgjectories forming a
torus in the volume of the experimental cylindrical
chamber, the torus axis being coincided with the axis of
the cylinder. Rotational motion was aso observed for
sole particles, as well asin the absence of wallswithin
the region occupied by vortices.

The vortex motion of macroparticlesin air has two
characteristic features. The velocity of dust particles
near the chamber axisis always directed away from the
radioactive source. The angular rotation rate of parti-

* |nstitute of Thermal Physics of Extremal States (IVTAN),
Russian Academy of Sciences,
| zhorskaya ul. 13/19, Moscow, 127412 Russia
** |nstitute of Physics and Power Engineering,
Sate Scientific Center, pl. Bondarenko 1,
Obninsk, Kaluzhskaya oblast, 249020 Russia

clesin avortex increases with the electric-field strength
and approaches a constant value similar to the current—
voltage characteristic for the flat ionization chamber in
which the experiment was carried out (Fig. 1).

First, we consider the process of the electric-charge
accumulation by adust particlewith adiameter of 1 um
in air. In the interelectrode space with nuclear-excited

1,107 A
0.12

0.10

0.08

0.06

0.04

0.02

L
800
E, V/cm

! !
400 600

|
0 200

Fig. 1. The current—voltage characteristic of the ionization
chamber for the 252Cf source with an intensity of 10° fis-
sions/s at a pressure of 10° Paand the angular velocity of a
vortex of CeO, dust particleswith amean diameter of 1 pm

as functions of the electric-field strength. The symbols cor-
respond to experimental data; thelines are the results of cal-
culation.
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Fig. 2. Inverted charge of a dust particle as a function of
time for adistance 1 cm from the source. The mean charge
corresponds to 20.6 units of the elementary electric chargee.
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Fig. 3. Geometry of the calculation: the arrows 1 and 2 cor-
respond to drifting ions with opposite signs; (3) is the
source of fission fragments.

plasma, the clusters of ions drift to the corresponding
electrodes under the action of an external electric field.
In a homogeneous field, these clusters have a cylindri-
cal shapewith the axisof symmetry parallel to theflight
direction of the ionizing particle. When entering the
drifting cluster, a dust particle acquires a charge from
ions that form the cluster. The time dependence of a
dust-particle charge was calculated by the Monte Carlo
method following [2] for an electric-field strength of
100 V/cm characteristic for the experiment. The results
of the calculation are shown in Fig. 2. The value of the
charge is below severa tens of eementary eectric
charges. Thus, this charge is too small to induce the
observed motion of macroparticles. Fluctuations of the
charge are caused by the random nature of interaction
between nuclear particles and matter.

Another cause of the charge accumulation can be
the motion of ionized air induced by the momentum

FORTOV et al.

transfer from ions accelerated in the electric field to the
neutral component. Macroparticles makethe air motion
visible so that we consider this process at the macro-
scopic level. Inthetimet of maotion, N, ions acquirethe
momentum, and, therefore, transfer it to gas molecules.
In the linear approximation, the momentum is equal to
——— , where 1 is the average time between colli-
sions and w; is the drift velocity. To estimate the
momentum transferred to a gas mass Am in the drift
time Ty, we easily obtain

Ap _ 9ETq _mwNTy/T_ jVrolly
Am”~ m,nV - m,,nV - e

: ey

where j is the current density, v is the ion thermal
velocity, m,, isthe mass of agas molecule, g isthe col-
lision cross section of ions and molecules, V is the gas
volume, n is the concentration of gas atoms, q is the
total electric chargeof ionsinthevolumeV, and Eisthe
field strength. The substitution of the values character-
istic for the experiment performed into expression (1) a
value of several cm/s for the specific momentum trans-
ferred to the gas mass, which agrees with the experi-
mental data of [1]. In addition, it can be seen that the
transferred momentum is proportional to the ion cur-
rent, and this fact explains the form of the dependence
of the rotation velocity on the electric-field strength
(Fig. 1).

A more accurate calculation of the specific trans-
ferred momentum averaged over the time interval T,
which takes into account the stochastic nature of the
escape of ionizing particles and the track structure of
the plasma being formed, was carried out by the Monte
Carlo method according to the expression

Ap\ _ 01 0
<A = %IF(I)&EAL )

where Ap is the momentum transferred to the gas mass
Am in the time At when a time-averaged force F acts
upon the gas. Thisforceis caused by the interaction of
the charge of an electron cloud or ion cloud with an
external electric field E. Under experimental condi-
tions, due to alimited intensity of the ionizing-particle
source, the time dependence of the force F has a pulsed
nature:

Qe iE. if tO[tytd

FO ,if tO[ty t].

3)

Here, Q. ; is the charge of an electron cluster or ion
cluster, and t, and t, are the starting and final instants of
time in its motion towards the electrode. The averaging
time T can be arbitrary. It isonly necessary for thistime
to correspond to a reasonably large number of events.
The time interval At is equal to the characteristic time
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of variation in the velocity of vortex motion; it is
approximately 1 s in the experiment. To simplify the
calculation, the field was assumed to be homogeneous.

In Fig. 3, we show opposite drift directions for two
ion flows within a single elementary cell. The source of
ionizing particlesislocated at the point Z= 0. When con-
sidering the entire track, these flows have a cylindrical
shape, the cylinder axis being parallel to the initial
track. In the Monte Carlo method, the gjection angle 6
is a random quantity. The result is averaged over the
time corresponding to the passage of 2000 tracks. The
cell length along the Z-axis is assumed to be equal to
the mean free path of fission fragments; along the
X-axis, each cell hasasize equal to ahundredth fraction
of the free path for afission fragment. We calculated a
number of ions produced by afragment within the cells
crossed by this fragment. The contribution of ions with
opposite charges in every elementary cell, which is cut
by a step along the X-axis, is taken with the opposite
sign.

The calculations were carried out for air at atmo-
spheric pressure and for neon at a pressure of 5 x
10* Pa. The dlectric-field strength was chosen to be
equal to 100 V/cm. The drift velocities required for the
calculation were taken from [3-5]. The results are
shown in Fig. 4. Thedrop in the energy lossfor theion-
ization along the track, as well as the decrease in the
density of tracks with the removal of ionizing particles
from the source, increases the contribution to the trans-
ferred momentum of ions moving near the Z-axis. In
each elementary cell, the number of ion pairs increases
with approaching the source. The ions moving towards
the upper electrodetravel alonger pathin gasand trans-
fer ahigher momentum. The momentum transfer in air,
in accordance with the experimental data, is almost
independent of the electric-field direction. In the exper-

iment, the O, ions are formed in atime on the order of

several fractions of microsecond as aresult of the inter-
actions with oxygen. The mobility of these ions differs

only slightly from that of the N ions, and the contribu-

tion of these ions to the momentum transfer is almost
independent of the sense of the field. This leads to the
initiation of air motion that is directed away from the
source of ionizing particles at an arbitrary polarity of
ions. In a volume bounded by walls and electrodes, a
vortex maotion of gas appears, which becomes visible
owing to dust particles.

If the electric field in neon is directed along the
Z-axis, the positive neon ions move upwards (Fig. 3),
and electrons move downwards. In this case, the spe-
cific momentum transfer near the Z-axisislarge, and, in
the volume occupied by neon, there appears gas motion
directed away from the source. The vortex motion of
thiskind in neonis actually observed in the experiment
for the indicated sense of the field. If the field is
directed oppositely to the Z-axis, the upward-moving
electrons cannot give a large contribution to the trans-
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Fig. 4. Results of calculations as functions of a distance
aong the X-axis. The solid and dashed curves correspond to
the electric field directed along and opposite to the Z-axis,
respectively.

ferred momentum due to the very short drift time. A
small contribution of ions leads to the momentum
transfer towards the source.

The calcul ations were carried out under the assump-
tion that the ionization chamber operates in the regime
of the saturation of the current—voltage characteristic.
For lower values of the electric-field strength, the
recombination leads to a loss of charges both in the
track itself and on the way of ions to electrodes. This
effect results in a decrease in both the electric current
intensity and the momentum transferred. The proposed
model of the appearance of the vortex motion explains
the second important experimental fact, namely, the
saturation of the rotation rate that attains a plateau in
accordance with the current—voltage characteristic. The
reason is the same in both cases. Before saturating the
rotation rate, both values increase, because the recom-
bination in the tracks decreases, whereas upon reaching
the plateau, all theions produced by the source arrive at
the electrodes. Therefore, the velocity of vortex motion
depends on the applied voltage in the same way as in
the case of the current—voltage characteristic. In fact,
according to expression (1), the value of thetransferred
momentum is proportional to the drift time (inversely
proportional to the drift velocity) and to the field
strength. In itsturn, the drift velocity is proportional to
the field strength. Then, under the saturation condition,
in the absence of the charge loss, the dependence of the
transferred momentum on the field strength disappears.

Thus, the mechanism of the vortex formation pro-
posed in this study explains two characteristic features
of the vortex motion in air and in neon, namely, the
sense of the rotation and the property of saturation of
the rotation velocity. The value of the gas-motion
velocity near the axis agrees with experimental data.
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The difference between the values of rotation velocity
for vorticesin air and neon in the case of achangeinthe
sign of the potential can be explained as follows. When
the positive potential is applied to an electrode covered
by alayer of californium and the negative potentia is
applied to the opposite electrode, the positive ions
formed mainly near the source travel a longer path to
the negative electrode and transfer a larger momentum
to gas molecules. Thisisvalid for both an electronega-
tive gas and an inert gas. When the sign of potential in
the electronegative gas changes, negative ions aso
form near the source for fractions of a microsecond.
While moving to the positive opposite electrode, they
travel along path and transfer alarge momentum to the
gas. For inert gases, it iselectronsthat travel along path
to the positive electrode. But since their drift velocity is
severa orders of magnitude higher than that for ions,
they have no timeto transfer a noticeable momentum to
the gas. Eventually, this fact is associated with a negli-
gible electron-to-molecule mass ratio.

FORTOV et al.
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It is well known that substances in the condensed
state preserve their thermodynamic stability below the
upper temperature of the phase-state boundary. This
boundary can be attained as a result of both an intensi-
fication of heating and a sharp drop in pressure [1-4].
The description of thermal processes accompanying the
decomposition of various materialsin macroscopic vol-
umes and under the intense heating of surface layers, in
particular heat-resistant coatings [5], is of prime inter-
est for practical applications. Near the phase-state
boundary, the frequency of homogeneous nucleation,
which is rather low at moderate temperatures, sharply
increases (by orders of magnitude). This is explained
by a high activation barrier that causes the vaporization
rate and substance-thermolysis rate to be enhanced. In
addition, the mechanism of chemica thermal-decom-
position reactions in nonvolatile materials can change
near the phase-state boundary [6, 7]. In this paper, our
objective is to develop a mathematical model for the
macroscopic (bulk) process of material thermal decom-
position. We propose to include into this model param-
eters of a phase-state boundary and kinetic features of
processes accurring in itsvicinity.

In thermodynamics, the position of the phase-state
boundary isdetermined from the condition of vanishing
the second variation for one of thermodynamic poten-
tids, e.g., 6*°G = 0, where G isthe Gibbsfree energy [1].
Since

2n _0°G 2, 0°G °G | 2
0G= a_I_ZdT +26T0pdep+ apzdp :
. oo 0p 0T . -
the partial derivatives 3v or v vanish on the stability

boundary. This enables us to calculate parameters of a
phase-state boundary for both volatile and nonvolatile
substances using the equation of state [1-4]. However,
the absence of reliable equations of state that would be
adequate for the thermodynamic properties of anumber

Mendeleev State University of Chemical Technology,
Miusskaya pl. 9, Moscow, 125047 Russia

of substances haslong been an obstaclefor determining
parameters of the phase-state boundary. It should also
be noted that the equation of state, which was proposed
recently in[8, 9] and isvalid in awide range of temper-
ature variations, allows usto cal culate with ahigh accu-
racy the parameters of phase-state boundaries for poly-
meric and other materials. Moreover, experimental
methods of athermal probe [2—4] and a contact thermal
analysis [9-11] were developed recently. These meth-
ods makeit possible to approach the phase-state bound-
ary as aresult of high-rate (up to 10° K/s) heating and
to abtain information on structural variations and ther-
molysis kinetics in the vicinity of the phase-state
boundary. These methods also enable us to determine
the temperatures T, for the attainable overheating of
substances that are lower even by 2to 5 K than the cor-
responding temperatures on the phase-state boundary
under various given pressures and thermal -decomposi-
tion rates.

In Fig. 1, the therma-decomposition time t,
obtained by contact thermal analysis for certain sub-
stancesis presented asafunction of theinverse absolute
temperature near the phase-state boundary. The plots
exhibit a specific configuration. The lower branch cor-
responding to moderate temperatures has a shape simi-
lar to adescending straight line; i.e., it can be described
by the Arrhenius equation. Theleft-hand branch isbend
up and asymptotically approaches a vertical line with

the abscissa equal to % , which does not correspond to
|

Arrhenius kinetics. We use these data in order to con-

struct a mathematical model for the thermal decompo-

sition of amaterial.

We consider aone-dimensional steady-state process
of the thermal decomposition of a half-space, which
proceeds in accordance with the equation of thermal
conduction:

—Ci)\gI —-F(T)+pC uOIT =

dx” dx Max = O &

Here, uisthe velocity of motion for the decomposition
front that coincides with the origin of a chosen coordi-
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Fig. 1. Data obtained while testing materials by the method
of contact thermal analysis; (1) UPM-07037 shock-proof
polystyrene; (2) polystyrene of unit design with amolecular
mass of 600000; (3) 276-73 high-density polyethylene;
(4) lavsan; (5) 10201-04 low-density polyethylene;
(6) TUM XII 2898-55 polyvinylchloride film; (7) polyme-
thyl methacrylate (technologicad PMMA, the inclined
shaded region corresponds to data spreading for PMMA of
different trade marks); (8) polycaprolactam obtained by
polymerization of a-caprolactam; (9) colemanite mineral;
(20) cil fromtheAlanin layer; (11) polyethylene glycol with
the molecular mass of 2000; (12) aluminum nitrate.

nate system (x = 0), and F(T) is the heat-absorption
function. The latter is usually written out in the form
F(T) = pQk(T) [5] under the assumption that the ther-
molysisreaction proceeds asa zero-order reaction (Qis
the reaction thermal effect) with the reaction constant

k(T) and the density p. [For these reactions, k(T) = tl ]
p

The last term in formula (1) is usually ignored by

virtue of its smallness [5]. Upon integrating Eq. (1)

ar . Oas

dx

X — oo and assuming the variation of the heat conduc-

tion due to the secondary porosity to be proportional

with allowance for the boundary condition

to the density variation, i.e., A(T) = )l‘)—%(—-—r—) [6], we
0
arrive at the equation
dT _ _ 2
vl D(I(T))™, (2)

L)

" 500

|
400 450 T,°C

Fig. 2. Duration of the material thermal decomposition asa
function of temperature. The data are obtained by the
method of contact thermal analysis under short-term heat-
ing: (1) colemanite mineral; (2) polymethyl methacrylate;
(3) polyvinylchloride; (4) polystyrene.

where the notation
T

J(T) = [KT)dT, D=

To

szoq:lllz
O, O

isintroduced.

In the case of high-intensity thermal actionsthat are
common for conditionsin which heat-resistant coatings
are applied [5], the times of heating a substance from
theinitial temperature T, to the surface temperature T,
do not exceed a few seconds. These short times corre-
spond to the upper segments of the plots in Fig. 1.
Reconstructing the plots in the linear scale (see Fig. 2)
showed that they correspond to the equation of an nth-
power parabola, which has the form t, = A(T, — T)",
wherenisaninteger (n=3, 4,5, ...). Thefunction J(T)
for two segments can be represented as the sum

Ta T

I(T) = [KT)dT + [K(T)dT,

where T, is the upper temperature within the Arrhenius
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segment. For this segment, thermolysis times t, attain
from several minutes to several hours. In the case of in-
tense heating, these times are virtually not realized.
Thus, we may consider that

T T

_ dT
I(T) :‘T[k(T)dT = JA—(T,—T)”’

T, = (0.8-0.97)T,.

We now equalize the heat inflow g,, to the material
surface and the total amount of the thermal energy
spent for the heating and decomposition of the material:

T
P,

Here, A, = A(T,,) =KA(, K = M

0
of thematerial that hasreacted. After substituting thetem-
perature gradient from formula (2) into Eq. (3), wefind

DKAo/pPo 12
u = J TW ’ 4
Cp(TW—To)+ZQ( (Tw)) )
where C, is the thermal capacity averaged within the
temperature range from T, to T,,,.

We now substitute the value of the integral found
above

, and { isthefraction

(M-1""-(T-T)""

A(n-1)
into the right-hand side of Eq. (4) for the case of the
upper limit T = T,,. After simple transformations, we
arrive at the expression

_ DKAJ/AYA(n—1)"p,
Cp(Tw _TO) + ZQ

x((T=Ty) "=(T =T 5)
In this expression, the temperature T, remains
unknown. It can be determined using Eq. (2):

dT
Gy = Mg, = A(DIT)™

Substituting the value of J(T,,) into thisformula, we
obtain

J(M) =

12

1
Te=T- -
(2B-C)""
whereB = (A(n—1)7 and C = 1
- AD (T)=To)""

From this, it follows that as q,, increases the rise in
the surfacetemperature isbounded by thevalue T,. This
result is consistent with the numerous experimental
data [13-15]. For example, in the case of polymethyl

DOKLADY PHYSICS  Vol. 46

No. 10 2001

703

500°C 475°C  450°C

u, mm/s

10—3 ] ] 1 ]

1.0 1.4 10T, K™!
Fig. 3. Data (and their approximation) obtained while test-
ing polymethyl methacrylate by the method of linear pyrol-
ysis [13]. The linear pyrolysis rate: (2, 3) for the trans-
versely sewed PMMA and (1, 4) for the linear PMMA as
functions of temperature T,, (the case of a heating element

in the form of ametallic plate). The upper numbers 500°C
and 475°C, 450°C correspond to the temperature T, of

PMMA and maximum temperatures T, attained in the

experiment, respectively. Dashed and dotted lines corre-
spond to the approximation by the Arrhenius and parabolic
equations, respectively. A represents the segment of the plot
approximated by the proposed mathematical model at tem-
peratures closeto T; (the segment of structural variations); Au

isan error arising while using the Arrhenius approximation.

methacrylate, while intensifying heating up to values
above 0.1-0.7 kW/cm? by laser radiation or radiant or
convective heating, as well as while burning gas mix-
tures with a high oxygen content, the surface tempera-
ture T,, measured by different methods did not exceed
T, = 500°C within an accuracy of £20 to £+40°C. These
observations cannot be described within the framework
of traditional mathematical models based on the Arrhe-
nius dependence k(T). Figure 3 shows plots of variations
in the velocity u = f(1/T) for polymethyl methacrylate,
which were obtained according to the data of [13] in the
case of intensely heating the materia surface. As was
shown in [13], the Arrhenius equation (dashed line)
approximates the lower segment of the plots but fails to
describe the rise near the phase-state boundary.
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In accordance with Eq. (6), the calculation using
characteristics of polymethyl methacrylate, which were
taken from [5], with A, = 0.21 W/(m K), p, =
1000 kg/m3, C, = 1.9 kJ/(kg K), Q = 2100 kJkg, and
plotsof Fig. 1, makesit possible to provide consistency
with the experimental data (see the dotted line in the
high-temperature region) and to propose a simple
explanation for the similarity of the shapes for the
dependence u(1/T) and plots shownin Fig. 1.

The approach under consideration allows us to cal-
culate the variation of the temperature near the surface
of the body that is being heated. As aresult of integrat-
ing Eq. (2), with allowance for the dependence J(T) =
(T-1)""

A(n-1)
arrive at the dependence T(x) in the form

, which is valid at high temperatures, we

_+_0 _Dm i
X (T,-T ,
| [ A(n — 1) ( | 0) 0
1+n
2
thyl methacrylate, we have n = 3 and m = 2; therefore
|:J2D 21:lljz
Thisdistribution differsfrom the Michel son temper-
ature profile[5], which isknown in the theory of frontal
processes, by higher temperature gradients dependent
on the reaction thermal effect Q. In accordance with the
dependence T(X), it is easy to calculate the near-surface
distribution of the excess pressure for thermolysis gas-
eous products

wherem = . For example, in the case of polyme-

T(X)=T,-

X

Ap(x) = é J‘k(T)dx,
0

which causes the formation of the vapor-droplet zone
consisting of particles of the undecomposed materia

[13-15]. Upon substituting the value of k(T) = tl , we
p
obtain for n = 3, asaresult of integration,

Ap(x) = LDM /Dx+ M,
PA(2/N)
where P isthe diffusive permeability, N = (A(n— 1))'7,
and M = N(T, - T,)?. The thickness of the vapor-droplet
zoneisdetermined by the coordinate X, that corresponds

to the maximum value Ap found from % =0 with

allowance for the dependence P(x).

The analysis performed showed that the experimen-
tally observed deviation of the thermal decomposition
rate of a materia from the Arrhenius dependence at
high-intensity heating of the material surface is caused
by structural variations near the phase-state boundary

SHLENSKY

of an initially homogeneous medium. The alowance
for parameters of structural variations (i.e., the temper-
ature of the attainable overheating, which is determined
by the homogeneous-nucleation frequency [2], density
variations, heat-conduction variations, and the degree
of completing the thermolysis reaction) makesit possi-
ble to propose a simple interpretation of experimental
data and noticeably improve the accuracy of calculating
macroscopi ¢ thermal-decomposition phenomenain the
process of their mathematical simulation. In light of
this, it is especially worth mentioning the necessity of
attaining a high accuracy, while cal culating the sizes of
heat-resistant coating elements. Indeed, the calculation
of the heat resistance of a coating material, which is
carried out without allowance for the parameters of the
phase-state boundary (as was shown by the example of
asimpleArrhenius extrapolation) yields a considerably
underestimated (by an order of magnitude) thermal-
decomposition rate for the material under consider-
ation. A coating thickness chosen in accordance with
this calculation is, evidently, insufficient to provide a
reliable heat resistance for a given time period.
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According to quantum electrodynamics, vacuum
has nonlinear properties. For this reason, equations for
electromagnetic field in vacuum coincide in their form
with the equations of the electrodynamics of continua:

rotH = 16—D, divD = 0,
c ot
_ 10B . _
rotg = ot divB = 0.

However, the meaning of the vectors D and H in these
equations is different:

a 2 2
D=E+ {2(E*-B®)E + 7(BE)B} ,
451B;
a 2 2
H=B+ 2(E*~B%*B -7(BE)E} .
prmri £ )B-7(BE)E}

q

m’c®
Here By = —— =441 x 10" G is a quantum electro-

2

1 .
137 is the electro-

dynamic parameter, and a =

é*‘lq)
(@]

magnetic coupling constant.

For along time, nonlinear electrodynamics in vac-
uum had no experimental verification and, therefore,
was considered by many researchers as an abstract the-
oretical model. At present, its status has changed essen-
tially. Experiments [1] on the inelastic scattering of
laser photons by gamma photons corroborated that the
electrodynamicsin vacuum is actually a nonlinear the-
ory. Therefore, its various predictions, which can be
verified experimentally, are worthy of the most serious
attention.

* Moscow State University,
\orob' evy gory, Moscow, 119899 Russia
** Tsiolkovskii Russian Sate Technological University,
Moscow, 103498 Russia

In the current scientific literature [2-10], adiversity
of various experiments was proposed for studying such
effects. However, for thefields B, E ~ 10° G, which are
accessible in terrestrial |aboratories, the nonlinear cor-
rections to the Maxwell equations in vacuum are so
small that it is very difficult to detect the effects they
cause. For thisreason, it isappropriateto investigate the
principal tendencies of nonlinear electrodynamics in
vacuum [4] by using astrophysical sources of magnetic
fields. In fact, such astrophysical objects as pulsars, for
example, have magnetic-dipolefields of B ~ 10'3 G that
are inaccessible under laboratory conditions, and such
strong fields stretch for significant distances. Even
more intense magnetic fields, B ~ 10! G, are generated
by recently discovered magnetars.

The basic channel of incoming information on non-
linear electrodynamic effects that occur in the mag-
netic-dipole field of astrophysical objects is electro-
magnetic radiation. This is an electromagnetic wave
that passes through the magnetic field of a neutron star
and is affected by the nonlinear electrodynamic and
gravitational actions of this field. Because the gravita-
tional influence on electromagnetic waves is well stud-
ied inthe genera theory of relativity [11], itisalso pos-
sible to reveal certain principal tendencies of the non-
linear electrodynamic interaction of electromagnetic
fields by analyzing the incoming electromagnetic radi-
ation. It should be noted at once that since pulsars and
magnetars have magnetospheres filled with matter,
these experiments should be performed with X-rays or
gamma-radiation, because the magnetosphere is trans-
parent for such waves.

Now, we turn to studying the nonlinear electrody-
namic bending of electromagnetic rays in a pulsar or
magnetar field. We consider the magnetic field of a
magnetic dipole with the magnetic dipole moment m:

2
B, = w (1)

r

Using the mathematical approach developed in [7-10],
it ispossible to show that the eikonal equation for aray

1028-3358/01/4610-0705%$21.00 © 2001 MAIK “Nauka/Interperiodica’
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passing through the field described by formula (1) takes
the form

LOST 11 4ngB3(VS)>—4nE (B,VS)

ZEBtD

The coefficient n entering into this equation dependson
the el ectromagnetic-wave polarization and takes one of
the following values for two mutualy perpendicular
polarizations:

= 0.2

= _(1_ = 5 = _Z(_X_ - 5
n TEn 51x10°and n 180m =9.0x 10~
The eikonal equation represents a nonlinear differ-
ential equation whose solution is not generally known.
Therefore, we analyze the behavior of aray in a partic-
ular case when Eq. (2) can be integrated in analytical
form.

We denote a plane perpendicular to the magnetic
dipole moment m as the XOY plane. The eikonal equa-
tion for an electromagnetic wave polarized along the
vector m and traveling in the XOY plane takes the form

1@@1P_nmﬂﬁw® 1@§j=0
c?tott 45mB2r® |Lbort  p2lagl '

Solving this equation by the method of separation of
variables, we arrive at

E 2 2
S = Egt+ Mo + [dr O1+ rajm® | Mg
457B%r° r?
q

where E, and M are integration constants that take the
following formsfor aray passing near the star at adis-
tance p:

WP
Eo = Wy, M= %
Because the value of ELZL is small, we can use here
r

q
the algorithm devel oped for the cal culation of the grav-

itational-bending angle for light rays. Using the deno-
tations introduced in monograph [11], we expand the

radial part of eikonal (3) in powers of 0(|m|
q
S=8
70(|m| Wyl (2p° + 3r )A/r - P
arccosDD
720nB c p rt p

where S? describes the rectilinear propagation of the
gamma-radiation.

DENISOV et al.

In the case when awave propagates from a gamma-
radiation source located at a large distance R to the
point r = p, which is nearest to the star, and then to the
same distance R, thetotal variation of S is

AS -AS
7 2 2 2 2
_ 7am| 200 (2p +3|§)4 R p 3afCCOSEEE
360mB,c PR Y

The variation in the polar angle on this path can be
obtained by differentiating AS, — AS with respect to
WoP .

-t

56, = 7a|m|{ a
p°

M=

CCOs Ep“% +

15R" — 2p°R* —5p*
360TB>

p5R4 /RZ_pZ
Passing to the limit R> p, we arrive at

7alm/®
48B:p°

The plus sign in this expression shows that the mag-
netic-dipole field in the plane of the magnetic equator
acts on electromagnetic waves like a convex lens. Quite
similarly, it is possible to show that the ray bending
anglefor an electromagnetic wave polarized in the XOY
planeisequal to

o0, = “4)

alm|®
12B%p°

0¢, = (&)

According to the genera theory of relativity, together
with the nonlinear electrodynamic bending of light
rays, the gravitational bending takes place [11]:

MQZ%%, ©)

wherer g isthe gravitational radius of the star.

We now estimate the maximum values of the ray-
bending angles in the magnetic and gravitational fields
of pulsars and magnetars. In the case of pulsars, the
magnetic field can attain avalue of B ~ 10'* G. In this
case, expressions (4) and (5) yield the following esti-
mates. 8¢, = 5.5 x 10° rad and 8¢, = 3.1 x 10° rad.

When the gamma-radiation propagates through the
magnetic field of a magnetar, the maximum values for
the angles of the nonlinear electrodynamic bending
increase significantly: d¢, = 0.55 rad and o, =
0.31rad.

Because the masses and sizes of pulsars and magne-
tars are approximately equal, we will use the mean val-
uesry =3 kmand p = 100 km in order to estimate the
maximum value of the gravitational bending of light

DOKLADY PHYSICS  Vol. 46

No. 10 2001



NONLINEAR ELECTRODYNAMIC EFFECT OF RAY BENDING

rays. In this case, expression (6) leads to the estimate
Oy =6 x 1072 rad.

Thus, in the cases of pulsars and magnetars, the
main contributions to the ray bending are, respectively,
due to the gravitational field and nonlinear electrody-
namic effectsin vacuum. Because the gravitational and
nonlinear electrodynamic bendings of a light ray are
inversely proportional to the first and sixth powers of
the impact parameter p, respectively, these two contri-
butions can be separated, provided that the summary
bending angle is measured for severa vaues of the
impact parameter.

As the detailed analysis shows, the external mani-
festation of the nonlinear electrodynamic and gravita-
tional bendings of light rays depends on the ratio of the
distances from the gamma-radiation source and pulsar
(or magnetar) to the Earth. For extragalactic gamma-
ray sources, the scattering of their gamma-radiation
flux by the magnetic and gravitational fields of a pulsar
or magnetar is large. Therefore, the radiation intensity
for significantly curved rays should be extremely small
inthevicinity of the Earth. In this case, the ray bending
manifests itself in a sharp decrease in the radiation
intensity, even for vanishingly small bending angles.

If the gamma-radiation originates in the vicinity of
amagnetic neutron star (for example, in the case of the
star contained in a close binary system, or if the
gammearradiation originates in regions immediately
adjoining the surface of the star), the radiation scatter-
ing by the magnetic and gravitationa fields is not so
pronounced. In this case, the radiation intensity
detected on the Earth decreases with an increase in the
bending angle, but not so abruptly asin the case of an
extragalactic source. Therefore, for astrophysica
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objects containing a neutron star with a magnetic field
B ~ 10"3-10" G, the effects of the nonlinear-electrody-
namic and gravitationa ray bendings aready become
observable at the current level of the measurement accu-
racy for facilities of extraterrestrial astronomy.
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Various defects of crystal structure dramatically
affect the physical and mechanical properties of solids
[1, 2]. Aboveall, such defects are represented by vacan-
cies, interdtitials, and dislocations. According to the
available concepts[1], vacancies play an important role
in the processes of diffusion and related phenomena
such as aging, precipitation of secondary phases, and
annealing. It was also established, among them theoret-
ically, that nonequilibrium vacancies can change the
surface tension of intergrain boundaries (see, e.g., [3]).
There are various methods to obtain noticeabl e concen-
trations of vacanciesin materials, in particular, by irra-
diating them with nuclear particles or with the help of
plastic strains. Varying the vacancy concentration, it is
thereby possible to control the corresponding proper-
ties of materials, including the surface tension of
boundaries.

In this paper, we considered theoretically a possibil-
ity of affecting the surface tension of a boundary (an
interface) formed as a result of the contact of various
crystalline materials by changing the vacancy concen-
tration in them. This problem is of special interest in
studying the adhesion properties of multilayer coatings,
because, in the case of brittle rupture, the surface
energy (in the Griffits sense) coincides with the surface
tension at the interface within the accuracy to the coef-
ficient of two if the crack grows along the interface
between the materials (an adhesion crack). In a number
of experimental studies (for example, in [4]), it was
shown that the adhesion and strength of thin-film coat-
ings determined by the value of surface tension at the
coating—substrate interface [5] depend substantially on
defect concentration. In our consideration, we
employed the thermodynamic approach similar to that
used in [3] for analysis of the surface tension of inter-
grain boundaries.

* |ngtitute of Problemsin Mechanics,
Russian Academy of Sciences,
pr. Vernadskogo 101, Moscow, 117526 Russia
** |ngtitute of Physics and Technology,
Russian Academy of Sciences,
ul. Krasikova 25a, Moscow, 117218 Russia

We consider an interface between two different
homogeneous materials 1 and 2, which is in equilib-
rium with these materials. Asis well known, a change
in the surface tension o, of the interface caused by the
variation in the thermodynamic state of materials 1 and
2 isdescribed by the Gibbs equation [3]. If the changes
in the states of materials are caused by the deviation of
their vacancy concentrations from the equilibrium
ones, the Gibbs equation can be written as

doj, = -, dy; =T ,dy, —sdT —v,dp, (1)

where T and p are the temperature and pressure in mate-
rials 1 and 2, dy, and dy, are the changes in the chem-
ical potentials of these materials caused by achangein
the concentrations of vacancies, s and v, are the spe-
cific (per unit interface area) entropy and specific vol-
ume of the interface, and I, and I, are the numbers of
vacancies from materials 1 and 2 in the interface per its
unit area:

C,ib
o 1, 2. )
Here, G, < 1 is the dimensionless concentration of
vacancies of the ith material in the interface, Q; is the
volume of the corresponding vacancies, and b is the
interface thickness.

The chemical potentials of nonequilibrium vacan-
cies, whose variation contributesinto Eqg. (1), are deter-
mined by the expressions [6]
S
Cie’
where C; is the nonequilibrium dimensionless concen-
tration of vacanciesin theith material, C,. isitsequilib-
rium value, and k is the Boltzmann constant.

Furthermore, we assume that the temperature and
pressure are constant; i.e,, dT =0 and dp = 0 in (2).
Then, substituting expressions (2) and (3) into (1), we
obtain

K = KTIn =12, (3

= prrEndS, GedCq
doy, = kTR + S8 @
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The concentrationsC,, and C,, in (4) are, in general, the
functions of C, and C,. To find them, we use a model
according to which the interface is considered as a sur-
face absorbing the vacancies [3]. We aso assume that
the absorption of vacancies in each of the materials 1
and 2 takes place independently. In this case, the kinet-
ics of the variation in C;; and C,, is described by the
equations

dC

Tll = Kau(1-C1)Cy —ky:Ci1(1-Cy),

4c (5)
TIZ = Kao(1-C;5)C, —kypCip(1-Cy).

Here, k, and ky, are, respectively, the constants of
adsorption and desorption of vacancies in the process
of their exchange between the materia 1 and the inter-
face, and k, and kg, are these constants for material 2. In

the steady-stater |mem L , weobtain from (5):
€

Kai Ci
Kai + (Kai —Kai) Ci”
Initsform, dependence (6) representsthe known Lang-

muir isotherm for the surface adsorption [3]. Integrat-
ing equation (4), with allowance for (6), yields

Ci = (6)

gh
00, ri1+(h-1)C,
0., = 09 —bkT In [ }
2 = 0% Hh—1" 1+ (h,—1)Cpe
0
h, .
0, r1+(h,—1)C,10
tho1! [1+(hz—1)cz,j5l )
0
K,
Whefe hl = k and O-g_g) = 012 (C] = C]e, Cz = CZG') |Sthe
di

value of surface tension in the equilibrium state. For-
mula (7) generalizes the relationship derived in [3] for
the dependence of the intergrain—boundary tension on
the concentration of nonequilibrium vacancies in the
grains of a polycrystalline structure.

It is easy to understand that the character of the
dependence of g, on C, and C, is unaffected by the
value h;. Both contributions in the braces of (7)
increase, respectively, with C, and C, from negative
values for C; < C;, to positive values for C; > C,, and
vanish for C; = C,..

At the same time, the value of o,, - 0(12) depends
rather strongly on the values of h, and h, . We consider,
therefore, in more detail what determines these values.
The constants k; and kg of adsorption and desorption
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depend on temperature in the manner similar to the
Arrhenius law, which yields

(eX)

_ ml ||:|
hi = hio€Xp = O ®)
where
hyo Dexp it (070 —oa
KT B
and AE; = E; — E; is the difference in the activation

energies for desorption (Ey) and adsorption (E;) of
vacanciesin the interface, 0, and o; are the mechanical
stresses in the interface and in the bulk of the corre-

sponding material (thelatter isthe sum of external o
and internal oi('”) stresses generated by the interface;

i.e,0=0" +0®), and h, isthevaueof h without
external mechanical loading.

If theinterfaceisagood absorber of vacancies of the
given material for o(ex) =0, k; must exceed ky as fol-

lows from (5), because this provides % >0;i.e,
hi, > 1. Thus, if 6'® >0, we haveafortiori that h; > 1.

However, in fact, this contribution only slightly affects
the relationship between h; and 1 for real stresses by

virtue of the smallness of GKEX)Q in (8) compared to
AE;. For example, even for ¢'® ~ 100 MPa and

Q =102 m?, we have 6''Q, ~ 0.01 eV, whereas
IAE,| ~ 0.1 eV.

We now consider the character of the dependence of
0,, on concentrations C, and C,. As follows from (7),
each of the two contributions into o,, is a monotone
function of C, and C,, respectively. In other words,
independent of whether the interfaceisagood (h; > 1)
or bad (h; < 1) absorber for the vacancies of the materi-
als used, its surface tension decreases with an increase
in the vacancy concentration in each of them separately.

In this case, the inequalities o, — 0(12) <0and oy, —

012 > 0 areredized for C; > C,. and C; < C,, respec-
tively.

However, being the function of two variables,
0,,(C,, C,) can also behave in amore complicated fash-
ion. Let C, and C, vary simultaneously so that C, isa
certain function of C;; for example, C, = €C, + C,o —
€C,.(e>0isacertain coefficient). If theinterface effec-
tively absorbs the vacancies from material 1 (h, > 1)
and poorly from material 2 (h, < 1), the analysis shows
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that the dependence of 0, on C, can have a maximum

(6)
+ 89 _ggc - o0 where

atcl =Y DdCl 10
bh, , eh,

h, h, '
el 5 (A-h)—gi(h—1)
b =1-(1-h,)(Cy—£Cy),
provided that the conditions

=1

L 1=(-h)Cp 0

1_(1_h2)C1e1 1__1_ Q21
h,

. . [4?
are satisfied for which0< C} <1and Bﬁ <Ofor
0dC: O

(:1=C~:|}_c

Thus, when the value of o, is changed by varying
the vacancy concentrations in the bulk of the materials
that form the interface, it is possible to realize both the
monotonic dependences and those having a maximum.
This conclusion can turn out to be useful for the optimi-
zation of those characteristics of interfaces, which are
related to the surface tension in them.

Finaly, using (7), we estimate the order of magni-
tude for Ao, = 0(1%) — 0,,. For example, at T=300K,
b~5A,AE,=0.35eV,AE,=-0.1€V,C o~ 107, Cye =
108, and Q, ~ Q, ~ 102 m3, we obtain

GOL’DSHTEIN, SARYCHEV

Ao, 00.2In(10°C,) J/m”.

In this case, Ay, ~ 0.5 Ym? for C, ~ 10 and Ag;, ~
0.1 Jm?for C, ~10°8. These are reasonably high values
if wetakeinto account that the surface tension of metals
amounts to 1-3 Jm? [7]. The tension coefficients for
interfaces between two metals must be of the same
order of magnitude, because, according to the current

theories (see the review in [5]), |0, — 0,] < 0(12’ <0+

0, (0, and g, are the surface tensions of the metals
forming the interface). For example, 6, ~ 1 Jm? and

Ocy ~ L7IM?[7];i.e, 0.7 Im2 < 00, < 2.7 Im? for
the Al-Cu interface.
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Nickel—zirconium aloys have a high glass-forming
ability in awide range of concentrations and constitute
the basis for a variety of bulky amorphous metallic
materials [1]. However, until now, there is no informa:
tion on the Gibbs energy of the Ni—Zr-melt formation.
This fact hampers both the analysis of thermodynamic
and kinetic parameters of the transition of the Ni—Zr
liquid into an amorphous state and the understanding of
the reasons why such a transition easily proceedsin a
number of transition metal systems.

In the study proposed, we investigated the composi-
tion of vapor and thermodynamic properties of the
nickel—zirconium aloy within the temperature range
between 1357 and 1861 K and in the composition range
from 0 to 94.3 at. % Zr using the method of Knudsen
mass spectrometry. The saturated-vapor pressure was
measured using doubled Knudsen cells manufactured
from molybdenum, tantalum, or niobium. To prevent
the interaction of the alloys under investigation and a
reference sample with the material of effusion cells, we
deposited zirconium oxide or zirconium diboride on
their inner surface using the plasma method. No effect
of the cell material on the vapor composition and partial
pressures of components was observed. For compari-
son, we used ultrapure iron with an impurity content of
10%% of cobalt of 99.99% purity. For the synthesis of
alloys, iodide zirconium (99.98%) and electrolytic nickel
(99.99%) were used. The methods of preparation of sam-
ples and performing experiments were similar to those
described previously [2].

In the mass spectra of saturated vapor, Ni* and Zr*
ions were detected above nickel—zirconium melts, tes-
tifying to its simple composition. The values of pres-
sure of saturated-vapor components found were used to
calculate their activities with respect to liquid metals.
For this purpose, we used the data of [3] on the Gibbs

Kurdyumov Institute of Metal Physics and Functional
Materials, Bardin Central Research Institute for the Iron
and Seel Industry, Vtoraya Baumanskaya ul. 9/23,
Moscow, 107005 Russia

energies for melting Ni and Zr. Because Zr-vapor pres-
sure was measurable only within avery narrow interval
of the investigated temperature—concentration range, the
activity of vapor was mainly found by integrating the
Gibbs-Duhem equation using the nickel a-functions:

a(Ni) = IV
[1—x(ND)]

As aresult of the experiments and cal cul ations per-
formed, we obtained arepresentative data base contain-
ing more than 900 values of activities of the compo-
nents for various compositions and temperatures. A
part of them are displayed in the table.

The structure of the phase diagram for the Ni—Zr
system [4], an intense interaction between its compo-
nents (see the table), and the tendency of the melt to
amorphization in a wide range of concentrations make
it natural [5] to describe its thermodynamic behavior
using the conception of association solutions. Previ-
oudly, it wasthis approach that made it possible to ade-
quately approximate both the concentration and tem-
perature dependences of thermodynamic functions of
liquid aloysfor anumber of binary and ternary systems
of transition metals with metalloids[5, 6]. It turned out
that in many cases special features in the behavior of
such liquids are close to those for perfect association
solutions due to the prevalence of acoval ent constituent
of the chemical bond between its components. In the
case of nickel—zirconium alloys, the presence of a con-
siderable metal constituent of the chemical bond is evi-
dent; it must lead to an essentia excess interaction in
addition to the formation of the associative groups. This
interaction can be taken into account in the context of
the model [5], according to which the Gibbs energy of
the Ni—Zr-melt formation can be represented by the
equation

AG = Zn(i)AfG(i)+ RT{n(Ni;)Inx(Ni,)
+n(Zry))Inx(Zr,) + Zn(i)lnx(i)} +AfGE, (1)

where A;G(i) = -RTInK(i) = AH() — TA:S() is the
Gibbs energy for the formation of one mole of the asso-

1028-3358/01/4610-0711$21.00 © 2001 MAIK “Nauka/Interperiodica’



712

ZAITSEV, ZAITSEVA

Experimental data on activities of Ni—Zr melt components chosen arbitrarily from the experimental data base and the values

of a(Ni) and a(Zr) calculated from the model proposed

a(Ni) a(Zr)

X(Ni) T,K

experiment model experiment model
0.148 1823 0.000305 0.000302 0.760 0.760
0.570 1823 0.0625 0.0620 0.0345 0.0343
0.994 1823 0.991 0.994 1.18x 107 1.19 x 10~/
0.199 1773 0.000493 0.000500 0.635 0.640
0.473 1773 0.0082 0.0183 0.104 0.102
0.799 1773 0.462 0.457 0.000283 0.000286
0.242 1723 0.000757 0.000764 0.527 0.531
0.406 1723 0.00705 0.00701 0.187 0.184
0.752 1723 0.308 0.307 0.000783 0.000778
0.303 1673 0.00149 0.00147 0.378 0.378
0.705 1673 0.186 0.187 0.00201 0.00203
0.903 1673 0.779 0.790 5.70 x 108 5.65x 1078
0.351 1623 0.00229 0.00232 0.271 0.268
0.850 1623 0.607 0.607 2.32x107 2.29%x10°
0.524 1573 0.0188 0.0186 0.0430 0.0436
0.598 1523 0.407 0.401 0.0121 0.0122
0.903 1473 0.768 0.776 8.22x 1077 8.15x 1077
0.647 1423 0.0570 0.0570 0.00311 0.00313

ciative complex of the type i; K(i) is the constant of
equilibrium of the corresponding reaction of formation
for the groups of the type i; n(i), x(i), n(Ni,), n(Zr,),
X(N1i,), and x(Zr,) are the numbers of moles and the
mole fractions of components of the association solu-
tion; and A; GE is the excess Gibbs energy for the solu-
tion formation. Thisexcessenergy iscaused by both the
presence of other contributions to the chemical bond
between initial components (except the covalent bond),
which is responsible for the formation of associative
groups, and the presence of a certain residual interac-
tion as well as a distinction in the volumes of mono-
meric particles and associative groups [4]. The summa:
tion in Eq. (1) is accomplished over all the types of
associative complexes being formed. For A¢ GF, accord-
ing to [5, 7], we take the expression

AGE

= ZLijni(Ni)nj(Zr)/(n(Ni) +nz) Y ()

where n(Ni) and n(Zr) are the numbers of moles of ini-
tial components. The quantity, type, thermodynamic
functions of formation of associative groups, aswell as
the number of terms and the values of coefficients for
the term A; GE were found with the help of the optimi-
zation procedure. It consisted of varying the model
parameters (A¢H(i), A¢:S(), L) and finding the mini-

mum of the sum for the squares of residuals between
the calculated and experimental activities of the com-
ponents. In the calculations, we used a complete data
base of experimental values. The calculations per-
formed showed that an adequate description of the con-
centration and temperature dependences for activities
of the components with an accuracy better than the
experimental error (2-3%) (see the table) can be
attained only with allowance for the presence of the
associative groups of three types (NiZr, Ni,Zr, and
Ni5Zr) in the solution and of two terms in the expres-
sion for the excess Gibbs energy. Values of parameters
(A¢H and Lj; expressed in Jmol and A S expressed in
J(mol K)) are:

AH(NizZr) = —-62000, A;S(NizZr) = -38.4;

AfH(NI,Zr) = 97400, AS(Ni,Zr) = —40.3; |
AH(NisZr) = —120800, A,S(Ni,Zr) = _602:"

L,, = -106875, L, = —26975.

The concentration dependences found for the inte-
gral thermodynamic functions of the Ni—Zr-melt for-
mation are asymmetric (Fig. 1) Their extremes are
shifted towards nickel, which agreeswell with theform
of the phase diagrams of the Ni—Zr system [4]. Until
now, only the enthalpy A;H for the formation of liquid
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Fig. 1. Integral thermodynamic functions for the formation of the Ni—Zr melt from liquid components according to the results of
this investigation: (1) A¢H(1450 K), (2) AsH(1823 K), (3) A¢ G(1450 K), (4) AG (1823 K), (9) A S5(1823 K), (10) A S(1450 K)
and according to the data of other authors: (O) [9], AsH(1823 K); (A) [8], A H(1963 K); (0), [4]. the results obtained with a high-
vacuum calorimeter, A;H(1838 K); and the data obtained with a SETARAM calorimeter: (<) A:H(1740 K), (») AH(1742 K),
(&) A H(1743 K), and () AsH(1741 K). The calculated contributions to the thermodynamic functions are related to the covalent
(associative) interaction between components: (5) AsH(1450 K), (6) As H1823 K), (7) A; G(1450 K), and (8) A; G(1823 K).

nickel—zirconium alloyswas experimentally studied [4,
8, 9]. The results obtained (Fig. 1) are in good agree-
ment with each other and, with allowance for a differ-
ence in the investigated temperature ranges, coincide
with the data of the present study. Somewhat underesti-
mated A;H values were obtained only in [4], evidently
owing to the partial oxidation of samplesin the course
of measurements carried out in ambient argon with a
SETARAM calorimeter. This is corroborated by the
fact that the discrepancy with results of other investiga-
tions and with the data of the same authors obtained by
means of a high-vacuum calorimeter (Fig. 1) increases
with zirconium content. In Fig. 1, in addition to the
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summary properties, we also display the values of
change in the integral thermodynamic characteristics
caused by the presence of the covalent constituent of
the chemical bond, which leads to the association pro-
cesses in the liquid. These values are calculated using
Egs. (1), (2), and parameters (3), and are shown in
Fig. 1 for two temperatures: 1823 K, which is close to
the upper limit of the measurement temperature range,
and 1450 K, which is approximately a median temper-
ature of theliguidus on the phase diagram for the Ni—Zr
system [4]. As can be seen in Fig.1, the contribution
associated with the metal constituent of the chemical
bond prevails in the Gibbs energy and the enthalpy of
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Fig. 2. Concentration dependences of the Ni—Zr-melt heat

capacity C'; excessive with respect to the additive sum of

characteristics of liquid components and the difference AC,,
in the heat capacities of the liquid and crystals.

the Ni—Zr-melt formation. The strength of the covalent
interaction is significantly lower; however, it increases
rapidly with a decrease in temperature: while the cova-
lent contribution to the enthal py of the formation of the
Ni—Zr liquid amounts only nearly one third of the total
valueat 1823 K, it exceedsone half at 1450 K. Thetotal
value of the excess enthal py of the solution formationis
related to the processes of association. It is negative
within the entire concentration range and also rapidly
increases in absolute value with a decrease in tempera-
ture (Fig. 1). On the other hand, the temperature effect
on the metallic-type interaction is negligible.

According to conclusions following from the study
[10], the kinetic and thermodynamic stimuli for the
melt transformation into an amorphous state coincide
and are reduced to the minimum values of the entropy
AS of melting and to the maximum differences AC,
between the heat capacities of liquid and crystals. The
last statement is equivalent to the requirement of mini-
mum values for the excess entropy A; SF and maximum

values of the heat capacity C'; of the melt, which are

excessive with respect to an additive sum of character-
istics of liquid components. The calculations per-

formed (Fig. 2) showed that the quantity C;, aswell as

the quantity A; § for the Ni—Zr melt, is related exclu-
sively to the association processes, i.e., to the covalent
constituent of the chemical bond. The concentration

dependence of C;, aswell as & &, is strongly asym-

ZAITSEV, ZAITSEVA

metric and is even close to a triangular shape. The
extremum is shifted towards nickel and lies in the
region of the composition with the most strong associa-
tive group Ni,Zr. As the temperature drops from 1823

to 1450 K, the value of C’,f decreases dlightly for the

alloys with a high content of nickel and increases for
the zirconium-based compositions. In Fig. 2, we aso
display the values of AC, calculated for 1450 K with
invoking the data on heat capacities of crystalline

phases from [3, 11]. It can be seen that C;; constitutes

the larger fraction of this characteristic, especialy for
the alloy compositions that pass most easily into an
amorphous state. Thus, in spite of thelower energy con-
tribution from the covalent constituent compared to the
metal one of the chemical bond in the interaction
between components, this is the covalent constituent
that determines the predisposition of liquid alloys of
nickel with zirconium to amorphization. This fact
explains a number of specific features of the amor-
phization of metallic liquids, for example, the closeness
in the glass-forming ability of aloys of zirconium with
nickel and copper independently of alargedifferencein
the intensity of the resulting interaction between com-
ponents in the systems indi cated.
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In studies of the magnetic properties of microcrys-
taline Fe-Nd-B aloys produced by the crystallization
of quenched amorphous ribbons, the precipitation of
pure iron in the course of specimen annealing was
revealed [1, 2]. However, at that time, attention was not
drawn to this fact. The phase instability in complex
compounds was aso observed in other studies. For
example, the conversion of highest valence oxides to
lowest valence oxides aswell asthe reduction of oxides
to a pure metal in the course of the shear deformation
under high pressure were demonstrated in [3, 4]. A
phase layering in the course of alloy-powder processing
in a ball mill is described in [5]. In these papers, the
phase instability observed is attributed to an effect of
the severe plastic deformation on the crystalline struc-
ture. It is unclear why the same phenomenon is
observed in the course of annealing of a specimen with
submicrocrystalline structure produced by crystalliza-
tion of an amorphous alloy.

In our efforts to obtain additional insights into the
phase instability of complex compounds, we studied
the temperature dependence of the magnetization and
phase composition of the Er, 4,sHo, 5sFe, compound in
the coarse-grained and fine-grained states. The choice
of the matter for scientific enquiry is caused by the fact
that this compound is ferrimagnetic and iron isits con-
dtituent. That is why, in this case, the temperature
dependence of the magnetization can serve as a highly
sensitive indicator of the change in the specimen phase
composition.

A fragment of acast alloy with asize of about 1mm
was used as a specimen with the macrocrystalline struc-
ture. Because of the extraordinary brittleness of the
chosen material, the fine crystalline state was obtained
by grinding the material in an agate stamp. To prevent
oxidation, the powder was crushed in the ambient etha-

* | nstitute of Problems of Metal Superplasticity,
Russian Academy of Sciences,
ul. Khalturina 39, Ufa, 450001 Bashkortostan, Russia
** Moscow State University,
\orab’ evy gory, Moscow, 119899 Russia

nol. The powder with particle sizeson the order of 1 um
was obtained by the sedimentation method. The pow-
der-particle size was determined using a JSM -840 scan-
ning electron microscope. The temperature dependence
of the specimen magnetization was recorded by the use
of automatic vacuum scales [7] in the temperature range
from 80 to 1080 K. The phase analysis of the specimens
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Fig. 1. Temperature dependence of the magnetization for
the coarse-grained specimen.
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Fig. 2. Temperature dependence of the magnetization for
the fine-grained powder.
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Fig. 3. X-ray diffraction pattern for the fine-grained powder (a) before and (b) after heating to 1080 K.

was carried out with an automated DRON-3M X-ray dif-
fractometer.

The curve of the temperature dependence for the
coarse-grained magnetization o(T) of the specimen is
showninFig. 1. The specimen heating isseento rapidly
decrease the magnetization, which vanishes at 570 K.
Thedistinctive feature of thiscurveisthat thetransition
of the ferrimagnetic state into a paramagnetic one takes

place abruptly. The curves recorded on the specimen
heating and cooling essentially coincide. This confirms
the phase-state stability of the coarse-grained specimen
up to 1080 K.

The temperature dependence of the magnetization
o(T) for the fine-grained specimen is shown in Fig. 2.
The curve / obtained while heating the specimen sig-
nificantly differs from the corresponding curve for the

No. 10 2001
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coarse-grained specimen in Fig. 1. Initialy, the speci-
men magnetization decreases as the temperature
increases. However, above 500 K, the magnetization
begins to increase from a nonzero value. The magneti-
zation passes the maximum at 830 K and approaches
zero only at 1033 K. Another feature of the dependence
o(T) for the fine-grained specimen is the dissimilarity
of the run of the curve 2 recorded while cooling the
specimen from that obtained after its heating. In this
case, curve?2 in Fig. 2 lookslike the temperature depen-
dence of the saturation magnetization for pure 3d-ferro-
magnets.

The unusual run of the curves o(T) for the fine-
grained powder is presumably explained by achange of
the specimen phase composition in the course of heat-
ing. The magnetization growth upon the specimen heat-
ing above 500 K should be related to the precipitation
of anew phase with alarge magnetic moment. The run
of the curve o(T) corresponding to the precipitated
phase implies that it is pure iron because the tempera-
ture of the disappearance of the specimen magnetiza-
tion coincides with the Curie point for iron. It follows
from this fact that the Er,,sHo,ssFe, compound
decomposes with the precipitation of pure iron when
fine particles of the compound are heated in vacuum.
The same is evidenced by the fact that the contribution
of the Er, 4,sHo, ssFe, compound into the magnetization
is absent on the curve o(T) recorded while cooling the
specimen.

To confirm the conclusion on the decomposition of
fine particles of the Er,Ho,ssFe, compound while
heating in vacuum, which was based on the magnetic
measurements, roentgenographic studies of the com-
pound phase composition were carried out.

Figure 3a shows the X-ray diffraction pattern taken
from the fine powder immediately after grinding. All
peaks of the diffraction pattern correspond to the basic
phase of the Er,sHo,ssFe, compound. Consequently,
in the course of grinding, the phase composition of the
compound under study is unaffected.

In the diffraction pattern taken from the same fine
powder but heated to 1080 K (see Fig. 3b), anumber of
additional peaks emerged. The phase identification car-
ried out according to the angular position of the addi-
tiona peaks shows that not only pure Fe but pure Ho,
Er, and phases corresponding to the Ho,Fe;, Er,Fe,;,
and ErgFe,; compounds as well were formed in the
course of heating of the fine powder of the compound
under study. The notation for the corresponding phases
isshown in Fig. 3b near the additional peaks.

There are aso the basic-phase peaks in the diffrac-
tion pattern corresponding to the annealed powder. At
the same time, there is no residual basic phase in the
temperature-dependence curve for the magnetization
obtained in the course of the fine-grained specimen
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cooling below 1080 K. The point isthat a great deal of
the material is required for carrying out the X-ray radi-
ography. By this reason, the specimen was prepared
from the ground powder not separated into fractions
with different particle sizes. Because of this, when the
specimen is heated, the compound decomposes in
small-sized crystals of the powder, whereas the basic
phase persists in large-sized ones. On the other hand,
the availability of the basic-phase peaksin the diffraction
pattern is convenient because, firstly, they are actualy
reference points, and secondly, it is clearly seen that the
compound does not decompose in larger-sized particles.

It should be noted that whereas the magnetic mea-
surements allowed the pure iron release to be basically
recorded when heating the fine-grained specimen, the X-
ray diffraction analysis also reveal ed the presence of two
phases produced in the course of the decomposition.

Thus, the research performed discloses that the sta-
bility of the Er,4sHo,ssFe, compound depends on the
crystallite size. Heating the compound crystals with a
sizeof ~1 mmto 1080 K does not result in changing the
phase composition. But when crystallites with a size of
~1 um are heated, their decomposition into pure Fe, Er,
Ho, and other compounds of these elements already
begins at 500 K. Consequently, the phase instability of
complex compounds can be observed not only under
the action of high mechanical stresses but also at high
temperatures.
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Many physical, chemical, and hydrodynamic sys-
tems with continuous distributions of parameters
whose properties are described by nonlinear differen-
tial equations have an ordered structure with clearly
identified elements. Striations in a gas discharge, regu-
lar structures formed by chemical reactions of the
Belousov—Zhabotinsky type [1], regular cells of con-
vective flows in a fluid layer between two planes [2],
and periodic structures between differentially rotating
coaxia cylinders [3] are objects of intense investiga-
tions. In certain cases, it is possible to choose character-
istic symmetric functions that satisfactorily describe
the regularity of the spatial structure of the phenome-
non [1, 4, 5]. The existence of discrete symmetries of
the same type in various physical systems indicates a
possibility of constructing a regular method for their
discovery.

In this paper, we propose an algorithm for searching
for discrete symmetries of models of physical pro-
cesses described by nonlinear differential equations
based on combining immersion methods, the analysis
of differential forms, and the calculation technique for
continuous Lie groups.

We consider the system of differential equations of
the genera form

Equ{x}, {F} {F} .{F} ... {F}) =0, (D
where{x} istheset of differential variables, {F;} isthe
set of field variables, {F!}, {F"}, ..., and {F" } are
the setsof all partial derivatives of thefirst, second, and

higher orders. In the case of the existence of discrete
symmetries, the sets of variables {x;} and {F} in

Egs. (1) passtothesetsof new variables{ %; } and{ Fi}
under the action of their operators:

{x} . {F})—( ;(j(xj’ ) 1{|Ei(xj’ Fl). @

Institute of Problems of Mechanics,
Russian Academy of Sciences,
pr. Vernadskogo 101, Moscow, 117526 Russia

In this case, the following differential equations are
valid:

Eq({X}, {F} . {FY AFY ... {F™) =0 (3
These equations are derived from (1) by a formal
replacement of the old variables by the new ones.

In the context of the formalism of differentid
forms[6], the set of Egs. (1) isrepresented by the set of

the 1-formsdx,, dx,, ..., dx,, dF,, dF,, ..., dF,and the
forms of the type d pfq',)i ik ..» Where
()
m o __ 0 Fq @)

Paiic... = OX,0%;0% ...

denotes the derivative of the Ith order for the gth field
variable with respect to the differential variables x;, X,
...; the subscriptsi, j, ... must follow in a nondecreas-
ing order. Correspondingly, for set (3), thereisits own

set of 1-forms d¥, , d%s, ..., d%,, dF1, dF2, ..., dFm,

and the forms dbgy)i,-k "

The consideration is carried out in the extended
spacedx,, ..., dX, , ..., which isnot the direct sum of its

subspaces dx,, ..., and dX, ..., because the basis forms
dx, ..., dF,,, and dx,, ..., dFm are connected by the

automorphism relationships.

The automorphic transformations of the field and
differential variables satisfy the relationships [7]

G, = biGy, (5)

where G, and Gy aretheLie generators of sets (1) and

(3), and b:‘ are the constant coefficients of a nondegen-

erate automorphism matrix, which, in terms of the dif-
ferential forms, can be written as

(%) = KL, (), L(F) = b, (F). (6)

Here, £,() and ié\,() denote the Lie derivatives with

respect to the isovectors acting in the spaces of the old
and new coordinates.
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Because the operator of external differentiation
commuteswith the Lie derivative, the action on Egs. (6)
leads to the expressions

%,(d%) = bL, (d%), Ly (dF) = bl (dFY), (7)

which show that the basisformsdx, ..., dF,,, and dX, ,

..., d Fm are connected by the automorphism relation-
ships.
The diffeomorphism between the derivatives of field

functions in the old variables py}, . and in the new

variables IOq ijk .. {induced by automorphism (7)} is
represented as an overdetermined set of nonlinear age
braic equations.

The essence of the method proposed consists in the
fact that two classes of 1-forms are singled out in
extended co-tangential space: the class of basis (or
identically annulled) forms and the class of forms anni-
hilated at the solutions to sets (1), (3).

The identically annulled 1-forms can be written as

oF, oF; oF;
(b) AN i i
= dF; ax, dx, — %, —dx, — 6 —dx,, 8
where F; isthe field variable, and dF; isits differential:
oF; oF, aFi
dF, = 3 1d +a 2d 5t axndX”' ©)

In asimilar way, the 1-forms Goi(b) defined on the new

variables F; and X; are created. The differential forms
annulled on the solutionsto set (1) are sought as

(S) — q, ijk... (l)

The functions Afy’** and Bl [6] are chosen in such

away that equations (1) can be composed by means of

the linear combinations of w(s) and using the external
multiplying by the corresponding forms of differential
variables {dx}. Differential forms annulled on solu-
tions (3) have asimilar appearance.

Let the symmetry transformations be given by the
functions

O ({x},{F}), Fi=w{x {F}). an

Using the rules for differentiation of the composite
functions and relationship (11), we can represent the
basis formsin the new variables as

(10)

X, =

o = OFi s OFi - _OFi
= dFi - aldxl a)~(2dx2 a)~(ndx
o¥ .@d® .1H0d ~ 10 P,
D2 s e
k
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~(1)aq31
'20F

~(1)6¢2
W29F,

~(1)0P
7]

. —Pin dF|.
ZEBH oFU (12)

Automorphism (7) and the nondegeneracy condi-
tion for transformation (11) always provide the exist-

ence of the set of O-forms aij such that

,(b) = akoo(kb), k=12 ..,m (13)
where the summations are assumed over the repeated
subscripts. Using (8), relationship (12) can be reduced

to theform

- ow, .pho®, . 30D ~10P
o = _p00_ 5w0Pz e 0
z%xk P ax, 2o, 1 X
oY ~(1)9¢1 0P, 0Py
+z pl kEBFl | 2aFI i, 2aFI R pl naF Xka

(14)
or

o = ZQ dx,,

where Qf = [d, [63". The expressions obtained rep-

resent the basis annulled forms asto the principle of its
construction. At the same time, representation (14)

makes it possibleto interpret the annihilation of (I)i(b) as

aresult of nulling al the Qik components. Thus, the set

of equations arises that is defined in the extended tan-

gential space { p{, P},

Q=0 i=12...m k=12 ..n (5
The closure condition for basic annulled 1-forms (14)
on the solutionsto the extended set of equations creates
the discrete symmetries of the original set (1). The ana-
lytical representation of the method of searching for
symmetries followed from set (1) has the form

0¥ = AT + P + v qwff),

=12 ...m k=12 ..
where the summation is performed over the repeated

subscripts. The existence of arelation between thebasis
formsin old and new variables (13) excludes the forms

{ ™} from the linear combination (16).

(16)

The features of the technique for application of the
method are exhibited in analysis of the sin-Gordon
equation, which is used in the description of disloca
tions, properties of ferromagnets, charge-density
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waves, phase transitions, and surface epitaxial struc-
tures[8],
u —c’ul + w’sinu = 0. (17)

Intermsof differential forms, thisequation can be writ-
ten as

dq Odx + c’dp Odt — w’sinudx Odt = 0,
p=U, 9=uU

The calculations are simplified in the case of sym-
metrization of the original equation by introducing the
variables

(18)

_ x+ct ;= X —Ct
2c ’ 2c ’
that transform (17) into

uy,—w’sinu = 0. (19)
The required 1-forms can be written as
wp = dP—w’sinudz, w, = dQ-w’sinudy,
P=u, Q=u,
Taking into account the relationships

(20)

dP = Z(dq+cdp), dQ = Z(~dq+ cdp),

dy = %(dx+cdt), dz = %(dx—cdt),
we obtain the 1-formsfor Eq. (18):

2 2
- w _ w .
w, = dp—z—czsmudx, W, = dq+?smudx. 2D

The sequentia realization of procedure (9)—(16)
leads to the following result for the admissible discrete
symmetries:

U=+u+mn, nO2Z,
. ~ (22)
X = ax+fBt, t = yx+0at,
where
a=#1, B=+cyl-c*(-1)" —2(_1) —
1-c(-1) -c

y = .1 /1-c?(-1)", &==c ___(:1)_”___
c N1-c’(-1)"-c*

The signs for the values a, 3, y, and d are chosen with
allowance for the relationships

a2_c2y2 - CZ(—l)n,

aB-yd =0, P*-c’d = —c*(-1)".

KISTOVICH, CHASHECHKIN

The obtained sets include both the characteristics of
the linearized equation (17) and more complicated
types of symmetries. Thisis corroborated by the direct
substitution of (22) into (17).

The equation describing the structure of a convec-
tive flow between the differentially rotating coaxial and
spatially inhomogeneously heated cylinders is charac-
terized by another type of discrete symmetries [4]:

A= A+ (L+ef (X)) A=A’ + ph(x),
f(x+L) = f(x), h(x+M) = h(x).

(23)

Here, Alisthe order parameter that describes the direc-
tion and intensity of the fluid rotation, € and 1 are small
perturbation parameters, and the functions f(x) and h(x)
describe the local Rayleigh number and the spatial-
heating distribution, respectively.

The set of 1-forms for Eq. (23) can be written as
wp = dA — pdx—qdt,
dp—(q—(1+¢&f)A+A’—ph)dx—wdt, (24)

Q)p =
@, = dp—(d— (1 +&f)B+ B> —ph)dE — &ydr,

where f = f(¢) and h= h(&). In (24), we used the nota-
tionp=A,,q=A,E=X,1=1,andB= A, while w,
and @, arethe unknown functionsthat arisein the con-

text of the method of searching for discrete symmetries
and must be determined.

In the degenerate case, when the Jacobian of trans-
formation (2) vanishes and the condition

9°B

axot 5)
is met for the coefficient B in (24), the partial solutions
to (23) should be sought in the form ¢(x) + Y(t). Thus,
ontheregular basis, wefind the substitution that was pre-
vioudly used heuristically in constructing partial quasi-
periodic or disordered nonasymptotic solutions[4, 5].

In the nondegenerate case with the supplementary
condition € = p = 0, transformation (2) in the form of

= X+ Xo,

3 T =t+t,,
B = £A,

(26)
X0 1o = const,

describes the discrete reflection symmetry with respect
to the origin of coordinates x = 0 and also the continu-
ous shifts in space and in time. When the perturbation
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parameters € and 1 vanish simultaneously, the symme-
tries yield three solutions in the degenerate case:

E =X, T=t,

(1) B =0,

(2) B = £1, (27)
3B = +tanh 22 + x

Dﬁ CH)

The first and the second solutions describe the equilib-
rium state and a uniform motion of fluid, respectively.
The third solution known as the separatrix corresponds
to fixed defects, for example, the domain walls between
the regionswith the opposite direction of the rotation of
fluid during its separation in striations. This result
agrees with [4].

Thus, the discrete-symmetry algorithm for nonlin-
ear sets of partia differential equations in the degener-
ate case, when the Jacobian of transformation (2) van-
ishes, makes it possible to construct partial non-self-
similar solutions.

ACKNOWLEDGMENTS

Thiswork was supported by the Russian Foundation
for Basic Research, project no. 99-05-64980, and by

DOKLADY PHYSICS Vol. 46 No.10 2001

721

the Ministry of Education of the Russian Federation
(The Federal Purposeful Program “Integratsiya,”
project no. 2.1-304).

REFERENCES

1. B. S. Kerner and V. V. Osipov, Autosolitons: a New
Approach to Problems of Salf-Organization and Turbu-
lence (Nauka, Moscow, 1991; Kluwer, Dordrecht,
1994).

2. L.D. Landau and E. M. Lifshitz, Course of Theoretical
Physics, Vol. 6: Fluid Mechanics (Nauka, Moscow,
1986; Pergamon, New York, 1987).

3. D. J. Tritton, Physical Fluid Dynamics (Clarendon,
Oxford, 1988).

4. S. Aubry, PhysicaD (Amsterdam) 7, 240 (1983).

5. P. Coulett, C. Elphick, and D. Repaux, Phys. Rev. Lett.
58, 431 (1987).

6. B. K. Harrison and F. B. Estabrook, J. Math. Phys. 12,
653 (1971).

7. P. E. Hydon, in Modern Group Analysis VII. Develop-
ments in Theory, Computation and Application (MARS,
1997), pp. 141-147.

8. Solitons in Action, Ed. by K. Lonngren and A. Scott
(Academic, New York, 1978; Mir, Moscow, 1981).

Trandated by V. Bukhanov



Doklady Physics, \ol. 46, No. 10, 2001, pp. 722-725. Translated from Doklady Akademii Nauk, Vol. 380, No. 4, 2001, pp. 487-490.

Original Russian Text Copyright © 2001 by Pozharskii.

MECHANICS

Generalization of the Mindlin
and Lord Kelvin Fundamental Solutions
in the Classical Elasticity Theory

D. A. Pozhar skii
Presented by Academician I. |. Vorovich April 9, 2001

Received April 20, 2001

The Fredholm integral equations of the second kind
obtained in [1] determine displacements and stressesin
a three-dimensional elastic wedge when normal and
tangential loads act on one face of the wedge, whereas
various conditions exist on the other face. For the case
when this face is stress-free, the Papkovich—Neuber
functions are given in [2]. When an aperture angle of
the wedge corresponds to a half-space, the formulas
of [2] coincide with the well-known Boussinesg and
Cerruti solutions. The solutions of [1, 2] use a Fourier—
Kontorovich—Lebedev complex integral and the tech-
nique of reducing the three-dimensional problem of the
elagticity theory to ageneralized (in the sense of Vekua)
Hilbert boundary value problem [3, 4]. In the present
paper, by using this technique, generalizations of the
two other fundamental solutions, i.e., those of Mindlin
(1936) [5] and Lord Kelvin (Thomson, 1882) [6], are
obtained in the framework of classical elasticity theory
for the case of athree-dimensional wedge. The Papkov-
ich—Neuber functions are given in the explicit form for
three problems when a concentrated force acts in the
bisector half-plane of the wedge, and for three variants
of boundary conditions on the wedge faces.

Using cylindrical coordinatesr, ¢, z, we consider a
three-dimensional elasticwedge (0<r <, |d|<q, || <
00) with an aperture angle 2a and elastic characteristics
G (shear modulus) and v (Poisson’sratio). The z-axisis
directed along the wedge edge so that the system of
coordinates is right-handed (see the figure). Let the
concentrated force P, perpendicular to the edge, act in
the bisector half-plane ¢ = 0 of the wedge at the arbi-
trary point r = X, z =Y. The faces ¢ = +a are either
stress-free (problem <), or are subjected to sliding sup-
port or fixed support (problems %8 and “6). Due to the
symmetry of the problems with respect to the angle ¢
we consider the wedgeregion—a < ¢ <0, and write out
the boundary conditionsin the form

A) ¢ =010y =T,y =Ty, =0, (1)

Institute of Mechanics and Applied Mathematics,
Rostov Sate University,
pr. Stachki 200/1, Rostov-on-Don, 344090 Russia

B) ¢ =-0ruy =T =

|
-
<
N
1
o
~
\9)
N

€) ¢ =—0iuy=u =u,=0, 3)

1
¢=0:1,4= §P6(r —X)0(Z-Y), Uy=T4,=0. (4)
We also suppose that stresses vanish at infinity.

We express the general solution of Navier equilib-
rium equations in cylindrical coordinates in terms of
three Papkovich—-Neuber harmonic functions @, =
D(r,d,2,n=0, 1, 2, by theformulas

u, = 0o, 1 i(roo)—oo

"7 ar 4(l-v)or YTV 5)
W, = sSing®, — cospP,,
_ 109, 1 0w,

T Toe Taa-vyae ©)
W, = cospd; + sinpd,,

0D, r 0w,

Y= 57 Taa-v oz

The stresses can be determined from (5)—(7) using
Hooke's law.

()

Ap

b="a 9=0

d=qa

Concentrated force inside a three-dimensional wedge.
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We present the solutions to boundary value prob-
lems (1)—(4) as a superposition of even and odd solu-
tions with respect to z, considering collinear, equal or
opposite forces at the pointsr = x, z= +y. We seek the
harmonic functions ®,, as asin- or cos-Fourier integral
with respect to z and a Kontorovich-L ebedev complex
integral with respect to r [3, 4]. Using the well-known
technique [3, 4], we obtain the solutions of the bound-
ary value problems (1)—(4) in the form (5)—7), where
(we pass to real-valued Kontorovich-Lebedev inte-
grals,n=0,1, 2)

00 00

%m¢a=2i

+ By(1, B) sinh(¢1) ]9 (Br) cos(B[z—y] ) dtdp, (8)

Bo(T,B) = 20— )%T(BX)

A(T,B) =0, By(T,B) = 2Ji(BX).

The functions (9) are the same for the three problems;
() isthemodified Bessdl function. For problem s (1),
(4) we have

€))

1-2v

xcoth(O‘T)?{.T(B) Bsinh(at)

Ao(T,B) = 20-v)

- (W(t 0)®(t, B) + cosh(Tt/2) W(t, B)

cosh(1tt) + cosh(117) sinh (10

B.(T,B)
_2sin(2a)J;(Bx) + 4(1 —v)sinh(at) cosa¥(t, B)
cosh(2at) — cos(2a)
__4(1-v)sinh(at)cosad (T, B)
cosh(mt/2)[sinh(2at) + tsin(2a)]’
A (T, B)
_2sinh(2a1)3;(Bx) —4(1 —v)cosh(at)sinaW¥(t, B)
cosh(2aT1) — cos(2a)
4(1—-v)cosh(at)sinad(t, B)

~ (U2 [snh(2an) + tsn(2a)] 2

(11)

(1, B) = (1, B) + coh TF(L B),
(13)
HA(BX) = (B,
438 (Bx)

FLB) = cosh(2at) — cos(2a)

9 rtsinh(at)cosa
O 2(1-v)

—cosh(at)sina%
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_2(1-v)sinh(2at) +tsin(2a)
cosh(2at) — cos(2a)

+(1-v) '[tsinh(at)cosa ¥, (Bx)

1 2v

w(t B)

+xcosh(at)sina X (Bx)] +

N ooZsinh(O( u) cosa J;,(Bx) = (1 —v)sin(2a)W(u, B)
,!: [ cosh(2au) — cos(2a)] [ cosh(ttu) — cosh(Ttt)]

x sinh(Tu)du,

w(t, B)
tcosh(at)cosafY{,t(Bx) + xsnh(at)sna%t(ﬁx)
(1-v)(1-2v)

(14)

(15)
The function ®t, B) for a fixed B satisfies the Fred-
holm integral equation of the second kind (0 <t < o)

®.(1B) = (1-20)[L(t Y
0

[CD*(U ) + cosh X (u, B) + W(u, B)D}du

W(u, o)

|3x Tt smh(nT)cosh(O(T)g(T o) IHi(Bx)
11— OSh cosh(TtT) + cosh(Tt) at,
(16)
L(t,u) = ZCOSh%sinh%jW(u,a)
xm sinh(1tt)g(T, a)dt
I[cosh(nr) + cosh(Ttt)][ cosh(mtt) + cosh(Tu)]’
° (17)
_ cosh(2at) — cos(2a)
W(t ) = sinh(2at) +tsin(2a)’ as)
_ coth(at)sin’(2a)
9(t o) = cosh(2at) — cos(4a)’
For problem % (2), (4) we have
xcoth(at)
Ao(T,B) = W%T(BX).
(19)
B,(1,p) = 2sin(2a) K (Bx)
ne cosh(201) — cos(20a)’
_ 2sinh(2at) 3 (Bx)
AT B) = cosh(20T) — cos(2a)’ 20)
For problem € (3), (4)
xtanh(at) _
Al(T,B) = W%'T(BX)' K = 3-4v, (21)
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Bl(T! B)
2sin(2a)[tsin(2a) K (Bx) — xsinh(2at) K (BX)]

[cosh(2at) + cos(2a)] [k sinh(2aT1) — Ttsin(2a)]’

(22)

Aq(T,B)
2[ cosh(2at1) —1]
[cosh(2aT) + cos(2a)] [k sinh(2aT) — tsin(2a)]
x [(tcoth(at)sin(2a) —k cosh(2at) —k cos(2a))
x I, (BX) — 2xsin’ a K- (BX)]. (23)
Integrals (8) converge for functions (9)—(23) for all ¢ O
[-a, 0].

The solution to problem & in the form (8)—(18) for
o = 172 coincides with the Mindlin solution for a half-
space. For this case we have ®t, B) = B,(t, B) = 0, and

using the integral

“ cosh(Tit/2) K, (BX) B
I cosh(Ttt) + cosh(Trr) +  2cosh(U/2) I Hic(Bx)dx,

we obtain

X[ cosh(TtT) + K]
2(1-v)sinh(1)

Ao(T,B) = Hie(BX)

20— 2v)
smh(m)

J’ﬂf.r(BX)dX

2[ cosh(TtT) + K] I (BX) — 4xf7{|T(Bx)
sinh(Tt7)

Ay(T,B) =

We show the coincidence for the displacement
u,(r, 0, 2). Calculating integrals [ 7], we obtain

_ P
Dy(r,0,2) = e

g x KX d
x %(1—V)R_+ FA-VR, + 2(1—2v)‘[é§,
P 01

615
(3ER+R+

D,(r,0,2) = axRﬂ’

R, = J(r£x)°+(z-y)’,
and, using the first formula of (5), we determine

2

_ P (K ., 5-12v+8v

W02 = AR TR,
NG —3)()2 LK+ x)32—2rx N 6rx(r: x)2EL
R” R. R O

POZHARSKII

This agrees exactly with the second expression of for-
mula (9.25) in[8] (the displacement u, in Cartesian
coordinates correspondsto the displacement u, in cylin-
drical coordinates).

The solution to problem 9B in the form (8), (9), (19),
(20) for a = Tt coincides with the fundamental Lord

Kelvin solution for an elastic space. For this case, we
have

A, B) = 52 (),

Bi(T,B) = 0, Ay(1,B) = 2coth(1t1)H;:(BX),

and, for instance, for the displacement u,(r, 0, z), we
similarly arrive at the formulas

_ Px _ P
®o(r,0.2) = e —vier: P41 92 = ere
_ P (r—x)qj
U(r0,2) = fera - v)G%

Thisresultisin agreement with formulas (9.2) and (9.4)
foru,in[8].

We now explain why the solutions to problems %
and € are simpler than that for problem . As is
known [1, 4], the problem on the action of concentrated
forces on oneface of athree-dimensional wedge whose
other faceis stress-free can be reduced to two Fredholm
integral equations of the second kind. When, however,
the other face has a sliding support or is fixed, the cor-
responding problem is reduced to only one Fredholm
equation. For the wedge with a stress-free face, we can
then express displacements as a combination of two
Neumann series that serve as the solutions to the two
Fredholm equations. At the sametime, for the other two
cases, displacements can be represented as a single
Neumann series. The boundary conditions (1)—(4) cor-
respond to theinverse problems, becausein relation (4),
the displacement u,, is given instead of the stress g,,.
Therefore, the solutions to problems (1)—(4) must con-
tain the inversions of the indicated Neumann series.
One Neumann operator series for problems % and
% has a simple inverse operator in the form (see for-
mula (1.6) in [9])

-1

[Z(l—zv)”g“} = 1-(1-2v)T
n=0

where I isaknown operator and | isthe identity oper-
ator. For problem s, the inversion of the combination
of two Neumann series has a complicated form (see
theorem in [4, p. 160]). This inversion contains the
solution of the Fredholm integral equation whose ker-
nel hastheform (17), (18). Fredholm integral equations
with the same kernel occur in the problem on a cut
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(crack) in a three-dimensional wedge with stress-free
faces [9, 10] and in the problem on the action of con-
centrated forces on one wedge face when the other face
has a dliding support [1, 4] (in these problems), the
same components of the stress tensor and of the dis-
placement vector are given). Asis proved in [1, 4], the
solution of such Fredholm integral equations and,
therefore, of integral equation (16), for any angle a and
at least for v > 0.053, can be represented by aNeumann
series which converges uniformly in the Banach space
Cu(0, 0) of functions that are continuous and
bounded on the semiaxis. In other words, the solution
to problem o for v > 0.053 can be written as a func-
tional seriesin powers of 1-2v.

The formulas obtained can be applied, for example,
to problems on athin rigid inclusion in a three-dimen-
sional wedge; similar problems for a space and a layer
were considered in [11].
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In this paper, we find new multiparameter families
of exact solutions (among them, periodic solutions) to
the steady-state and unsteady Navier—Stokes equations.
We also construct more general solutions depending on
one or severa arbitrary functions. Various modifica-
tions of the method of generalized separation of vari-
ables are employed for finding the exact solutions.

Self-similar and invariant solutions to the Navier—
Stokes equations were considered in [1-6]. A number
of exact solutions to nonlinear heat-conduction equa-
tions and other nonlinear equations of the second
order with the generalized separation of variables
were givenin [5, 7-10].

1. EQUATION FOR THE STREAM FUNCTION

The two-dimensional nonstationary equations for a
viscous incompressible fluid,

ou, ou, ou; _ 10p
‘a?“‘lax u2ay = _pa +VAu,,
Ju, ou, ou, _ 10p
ot TUigx tlgy T Tpay TVAU
aul 6u2 _
dx oy =0,

can be reduced to a nonlinear equation of the fourth
order for the stream function w introduced by the for-
mulas u, = ow

1 ay
elimination of the pressure from the first two equations
by cross differentiation):

and u, = —%—V—; (with the subsequent

ow 0 owd _
(A ) + ayax( w) — 6x6 —(Aw) = VAAw,
°w , 9° w )
Aw = — +—
X ay

Ingtitute of Problems in Mechanics,
Russian Academy of Sciences,
pr. Vernadskogo 101, Moscow, 117526 Russia

2. EXACT SOLUTIONS
WITH THE GENERALIZED SEPARATION
OF VARIABLES

New exact solutions to Eq. (1) with the generalized
(incomplete) separation of its variables are described
below. These solutions are sought in the form of finite
sums,

w(x,y,t) = z fr(X)gk(y: 1)
k=1

or

W(Xv Y, t) = z fk(x’ t)gk(y)v
k=1

where the functions f.(x) and g,(y, t) [or f.(x, t) and
0«(y)] should be chosen to satisfy the equation under
consideration. For nonlinear equations, in contrast to
linear ones, the functions g.(y, t) with different
subscripts k are related to each other and to the func-
tions f,(x).

We now consider the simplest case when a set of the
functions depending on the coordinate [for example,
fi(¥)] is described by linear differential equations with
constant coefficients. In this paper, we use the most
widespread solutions to such equations,

f(x) = X fu(x) = €

fu(x) = sin(ayx), fi(x) = cos(Byx),

and their linear superpositions in order to find exact
solutionsto Eq. (1) (here, A,, oy, and B, are free param-
eters). Another set of the functions, g.(y, t), is deter-
mined by solving the corresponding nonlinear equa-
tions.

Remark. Solutions with another generalized separa
tion of variables is given in Sections 3 (2°) and 4
(2° and 9°).

1028-3358/01/4610-0726%$21.00 © 2001 MAIK “Nauka/Interperiodica’



EXACT SOLUTIONS TO THE NAVIER-STOKES EQUATIONS

3. STEADY-STATE SOLUTIONS
IN THE CARTESIAN
AND POLAR COORDINATE SYSTEMS

1°. There are the exact solutions with the general-
ized separation of variables:

W(x,y) = 6UX(y+A) "+ Ay +A)’+B(y+A)"
+C(y+A\)?+D (v#0),
w(X,y) = (Ax+B)e™ +VvAx+C,
W(X,y) = Aexp(-Ax) + Bexp(-Ay)
+VA(x-y) +C,
wW(x,y) = Aexp(Ax) + Bexp(-Ay) + VA(x +y) + C,
w(x,y) = [Asinh(Bx) + Bcosh(px)] ™
+3(B+N)x+C,
w(x, y) = [Asin(Bx) + Bcos(Bx)] e

+3 (N =BI)x+C,

w(x,y) = AeV P+ Beyx+vyy+§y([3— y)x+C,

y = £JN+37

where A, B, C, D, B, and A are arbitrary constants.
Taking in the second solution A= -vA, B=C =0,

and A = A/%,Weobtain

w = kvx{l—expg—ﬁfyg}

This solution describes a steady-state fluid flow caused
by the motion of the surface pointsy = 0 with the vel oc-
ity uyly_o=kx.

2°. There existsthe more general exact solution with
incompl ete separation of its variables:

wW(X, YY) = F@x+ G(2, z=y+ kx

Here, the functions F = F(2) and G = G(2) are described
by the system of ordinary differential equations of the
fourth order,

F,F, —FFo, = V(K + 1)Fim, )

G,F,,—FGyy, = V(K +1)Gjyy, + 4kvFy,
2k

+(k2+1)

FF2. 3)
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Integrating these equations, we obtain the new system
of equations of the third order,

(Fo)=FFy, = V(K + 1)Fum, + A, 4)

G,F,—FG,, = v(K'+1)G, +W(2) +B, (5

where A and B are arbitrary constants and the function
Y(2) is determined by the formula

—_ mn 2k "
l.IJ(Z) = 4kv Fzz + m‘[F Fzzdz'
The order of autonomous equation (4) can be lowered
by unity.
Equation (2) has the following particular solutions:

F(2) = az+b, z=y+Kkx,

F(2) = 6v(K+1)(z+a) ™,

F(2) = ae”*+Av (K> + 1),
where a, b, and A are arbitrary constants.

In generd, the substitution U = G, reduces Eq. (5)
to a linear inhomogeneous equation of the second
order, which has a nontrivial particular solution in the
case of =B =0 (i.e., in the homogeneous case):

OFL, if Fl#0
=0
OF, if F), = 0.

Hence, itsgeneral solution can be expressed in terms of
quadratures[11, 12].

3°. There is a solution with the generalized separa-
tion of variablesin the polar coordinate system:
w(r,8) = f(r)6+g(r).

Here, x=rcosB, y = rsn6, and the functionsf = f(r) and
g=0(r) satisfy the system of ordinary differential equa-
tions

U

—fiL(F)+ F[L()]; = vrL?(f), (6)

—giL(f)+ f[L(Q)]; = vrL*(g), )

where L(f) =r-'(r f}), .
The exact solution to Egs. (6) and (7) takesthe form

f(r) = CiInr+C,, g(r) = Cyr’+Cylnr

+ Cﬂ’[J’rQ(r)dr}% + Cq,

Q(r) = Ir(czlv)_lexp%t%lnzrgdr,

whereC,, C,, C;, C,, Cs, and C; are arbitrary constants.
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4. UNSTEADY SOLUTIONS IN THE CARTESIAN
AND POLAR COORDINATE SYSTEMS

1°. There is an exact solution with an incomplete
separation of variables:

w(x, y,t) = F(y,t)x+G(y, 1). (®)

Here, thefunctionsF = F(y, t) and G = G(y, t) aredeter-
mined by the system of one-dimensional eguations of
the fourth order:

o°F  OFO’F __9°F _ 0°F
— 5 - Vo ©)
otdy ay ay>  ay ay
3 4
G +OGOF a_c;: a_c4; (10)
oty 9Yoay* oy ay

Equation (9) is solved independently of Eq. (10).
Integrating Egs. (9) and (10) over y yields

O°F  ORT_O°F _ O°F
510y EByD oy > =+ f4(1), (11)
9°G  0FaG a G a G
g2 2 = t). 12

Here, f,(t) andf,(t) arearbitrary functions. Equation (12)
islinear in the function G. After performing the substi-
tution

G = IUdy—hF +hy,

U=U(y.t), F=FMy1),

with the function h = h(t) satisfying the linear ordinary
differential equation

hie—fa()h = f5(1), (14)

equation (12) is reduced to the linear homogeneous
equation of the second order,

U _ 0, U 0F

(13)

y " dy (15)

Thusif aparticular solution to Eq. (9) or Eq. (11) is
known, the determination of the function G is reduced
to solving linear equations (14) and (15) with the sub-
sequent integration in formula (13).

The exact solutions to Eq. (9) are listed in Table 1.
Theordinary differentia equations presented in thetwo
last lines of Table 1 have the traveling-wave solution
and the self-similar solution. These eguations are
autonomous; hence, their order can be lowered.

The genera solution to the inhomogeneous equa-
tion (14) is found with the help of afundamental set of
solutions to the corresponding homogeneous equation
(with f, = 0). Necessary formulas and the fundamental
solutions to homogeneous equation (14), which corre-
spond to al exact solutions listed in Table 1, can be
found in handbooks [11, 12].

POLYANIN

For arbitrary function F = F(y, t), Eq. (15) hasatrivid
solution. The expressions in Table 1 and formula (13)
with U = O describe certain exact solutions of the
form (8). A wider class of exact solutions can be obtained
if nontrivial solutionsto Eq. (15) are considered.

In Table 2, we present transformations that simplify
Eqg. (15) for some of the solutions to Eq. (9) [or (11)]
listed in Table 1. It is seen that in the first two casesthe
solutionsto Eq. (15) are expressed in terms of solutions
to the conventional heat-conduction equation with con-
stant coefficients. In the other three cases, Eq. (15) is
reduced to an equation in separable variables.

2°. There is a more general exact solution with
incomplete separation of variables:
wix, y,t) = F(& )x+G(& 1), & = y+kx

Here, the functions F(&, t) and G = G(¢, t) are deter-
mined from the system of one-dimensional equations
of the fourth order:

3 2 3 4
OF LOROF p0F _yw+nlE (6
ot9E? 0% o8 08 of
3 2 3 4
0G ,0G0F p0G _24)2E
otag? 0% o ot o8
°F . 2k LO°F 9%F
+4vk=—= + ——F— = 17
98 12+10 gg2  Otoe] {an
Integrating Egs. (16) and (17) over E we arrive at
F [OFD Q_E or
5t0% * e FaE v(K? +1) E +f (), (18)
0°G 0FdG 02G
Rt v(K? +1) +Q(E 1), (19)

where f,(t) is an arbitrary function and QE&, t) is deter-
mined by the formula

0°F
= 4uk%LE _
Q& 1) = 622

2k 9F
k®+ 10t

2(1),

with f,(t) being an arb|trary function.
Equation (19) islinear in the function G. The substi-

tution U = %? reduces this equation to the linear equa-
tion of the second order
ou _ 0 U ou odF

Thus when a partlcular solution to Eqg. (16) or (18)
is known, the function G is determined by the linear
equation (20) of the second order. With the help of the
scaling of the independent variables, & = (k* + 1) and
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Table 1. Exact solutionsto Egs. (9) and (11). Here, ¢(t) and Yi(t) are arbitrary functions, while Aand A are arbitrary constants

Function F = F(y, t)

No. (the general form of solution) Function f;(t) in Eq. (11) | Defining coefficients (or defining equation)
1 F= ¢(t)y+ W(t) fi() = ¢; + 92 -
2 t f,()=0 -
yﬂp(t) + (1) 1(®)
3 F = Aexp[-Ay—AW(t)] +W;(t) + VA fi)=0 -
4 F = Ae™'sin[Ay + A ()] +W (1) f,(t) = Be 2 B=VAZ B=A22>0
5 F = Ae ™ cos[Ay + A(t)] +p (1) fi(t) = Be?® B=VA2,B=A22>0
6 F = Ae™'sinh[Ay + AQ(D)] +W(t) fy(t) = Be?® B=VAZ B=AA2>0
7 F = Ae™ cosh[Ay + A (t)] +y (1) f,(t) = Be?Pt B=VA2 B=-A22<0
8 F=F(),&=y+At f) =A —A+AFg; + (FE')Z— FFg = VFgs
9 F:rﬂZ[H(E)—%E],E:yr”2 fa(t) = A2 %—A—2H5+(HE) —HHg = VHgg

Table 2. Transformations of Eq. (15) for corresponding exact solutions to Eq. (11). The numbers in the first column corres-
pond to the numbers of the exact solutions F = F(y, t) in Table 1

No. Transformation of Eq. (15) The equation obtained
L U= q)(,[)u(z 1), T = J’tD (t)dt, g_u _ v‘ilzj
z = y®(t) + [y @(t)dt, d(t) = exp[[o(t)dt] ooz
du o%u
2 U=23E, 0,3 =y + () il
3 U=¢eZ(n,t),n =-Ay=AU(t) %% = v)\26 Z+(v)\ —Are! )
- — ou _ 0%u ,
8 U=u,t),E=y+At i v— +[F(&) - )\] —FE(E)u
o
9 U=tY2(E, 1), g =yt2 1=Int ou az +H(E) L+ [1-Hy(8)]u
B T G YT TS 01 az 0¢ 3

t= (k> + 1)1, Eq. (16) isreduced to Eq. (9), in which C
and 1 should be substituted for y and t (exact solutions

to Eq. (9) are described in Table 1).

3°. There is an exact solution [a particular case of
solutions taking form (8)]

f(t) = C,E(t), E(t) = exp[VA’t—A [otdy,

9(t) = CE(t) - ClE(t)J'llJ(t)dt-

w(X,

y, 1) = e[ f(t)x+g(t)]

+o()x+ (t)y +x(1),

DOKLADY PHYSICS Vol. 46 No.10 2001

Here, ¢(t), W(t), and x(t) are arbitrary functions, and
C,, C,, and A are arbitrary parameters.

4°, Thereis an exact solution

w(x y,t) = eV[A(t)e™ +B(t)e™] +o ()x

+Y(t)y+x(t),

At) = clexp[v(A2+B%t—ﬁfw(t)dt—x Jod,

B(t) = CzeXD[V(A2+B2)t+B_[w(t)dt—?\ fodd,
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inwhich ¢(t), Y(t), and x(t) are arbitrary functions and
C,, C,, A, and 3 are arbitrary parameters.

5°. Thereis an exact solution
w(x,y,t) = [A(t)sin(Bx) + B(t) cos(Bx)]

+o()x+W(t)y + x(1).

Here, ¢(1), Y(t), and x(t) are arbitrary functions, A and
B are arbitrary parameters, and the functions A(t) and
B(t) satisfy the linear nonautonomous system of ordi-
nary differential equations

A= [VA=PB%) = A ()] A+ B(t)B,
B = [V(A*=B") -\ (1)] B—Bw()A.
The general solution to system (21) takes the form
A(t) = explv(\" =Bt -2 [
X [Clsin(BJ’thdt) + Czcos(BJ'qut)] ,
B(t) = exp[v()\z—Bz)t—)\J'cI)dt]

x [Clcos(Bdet) - Czsin(BJ'llet)] ,
where ¢ = ¢(t), Y = Y(t), and C, and C, are arbitrary
constants. In particular, if ¢ = ;\—)(7\2 -BHandP=a,we
obtain the periodic solution
A(t) = C;sin(apt) + C,cos(apt),
B(t) = C,cos(apft) —C,sin(aft).
6°. There are exact solutions
w(x y,t) = A(t)exp(k;x +A,y)
+ B(t)exp(kox + Azy) + ¢ (t)x + W(t)y + X (1),

inwhich ¢(t), Y(t), and x(t) are arbitrary functions; k;,
Ay, ko, and A, are arbitrary parametersrelated by one of
the two equations

1)

K + A2 = k5 + A2 (thefirst family of the solutions),
kA, = KA, (the second family of the solutions),

and the functions A(t) and B(t) satisfy the linear ordi-
nary differential equations

A = [V(K; +AT) + A0 (1) — k(D] A,
Bi = [V(K5+A2) + A0(t) —kW(1)] B.
These equations are easily solved:

A(t) = Crexp[v(k; + At + Ao (D)t =k [W(t)d],

B(t) = Coexp[v(K; + Aj)t + Ao (Dt~ ke [W(D)d].

POLYANIN

7°. Thereis an exact solution
w(x, y,t) = [C;sin(AX) + C,cos(AX)]
x [A(t)sin(By) + B(t) cos(By)] +¢ (t)x + x(t).

Here, ¢(t) and x(t) are arbitrary functions, C,, C,, A, and
B are arbitrary parameters, and the functions A(t) and
B(t) satisfy the linear non-autonomous system of ordi-
nary differential equations

A= V(A*+B)A-BO()B,
Bl = (A" +B*)B+Bo(D)A.
The genera solution to system (22) takes the form
A(t) = exp[-v(A*+B*)t]
x [Casin(B_[det) + C4COS(BJ’¢dt)] 0 =0(),
B(t) = exp[-v(A"+ )]
X [—CscOS(BId)dt) + C4sin(BI¢dt)] )
where C; and C, are arbitrary constants.
8°. Thereis an exact solution
w(x, y,t) = [C,sinh(AXx) + C,cosh(AX)]
x[A(t)sin(By) + B(t) cos(By)] +¢ (t)x +Xx(t),

in which ¢(t) and x(t) are arbitrary functions, C,, C,, A,
and 3 are arbitrary parameters, and the functions A(t)
and B(t) satisfy the linear non-autonomous system of
ordinary differential equations

A = V(N -B%)A-Bo(1)B,
B = V(A =PB?)B+B(1)A.
The general solution to system (23) takes the form
A(t) = exp[v(\*-B)Y
X [Cosin(B[¢dt) + Cocos(B[d)]. ¢ = (D),
B(t) = exp[v(A*-B)1]
X [—C3cos(BI¢dt) + C4sin([3-[¢dt)] :

where C; and C, are arbitrary constants.
9°. Thereisan exact solution

w(x, y, 1) = u(z 1) + o (t)x+ w(t)y,

Here ¢(t) and (t) are arbitrary functions, k and A are
arbitrary parameters, and the function u(z t) satisfies
the linear differential equation of the fourth order:

(22)

(23)

Z = kx+Ay.

a’u d%u 2 .2.0%u
+[kp(t) =Ad ()] — = v(K"+A)—.
o [ky(t) d>()]aZ3 ( )az4
DOKLADY PHYSICS Vol. 46 No. 10 2001
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The transformation

d°u

U(E,t) = Pt £ = Z—J’[ktb(t)—?\d)(t)]dt

reduces this equation to the conventional heat-conduc-
tion equation

ou _

ot

10°. There is asolution with the generalized separa-
tion of variablesin the polar coordinate system:

w(r,8,t) = f(r,t)6+g(r,t).

Here, x =rcosB and y = rsin®, the functions f = f(r, t)
and g = g(r, t) satisfy the system of equations

L(f)—rf.L(f)+rf[L(f)], = VLZ(f), (24)

L(g)—r g L(f)+rf[L(g)], = vL*(g), (25

the subscripts r and t imply the corresponding partial
derivatives, and

L(f) = ri(rf,),, L3(f) = LL(f).

For the particular solution f = ¢(t)Inr + Y(t) to
Eq. (24) (¢ and @ are arbitrary functions), Eq. (25) is
reduced to a linear equation of the second order by the
substitution U = L(g).

2
V(e +2) Y,
0¢
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A number of dynamic mixed problemsin the theory
of elasticity, electroel asticity, and mathematical physics
for semibounded bodies of the layered half-space type
leads to the equation

a

kg = Ik(Xl—E)Q(E)dE = f(x), [x=a (D

with the oscillating kernel whose symbol has branch
points on the real axis:

K(s) = Zi = [K(o)e"da. @)
r

In this paper, we present the theorem which estab-
lishes the form of the solution to equation (1). Owing to
the use of direct numerical procedures, this theorem is
an extension of the solution to the equation of type (1)
that was abtained, in particular, in [1-3] under the
assumption that K in (2) is meromorphic. The applica
tion of numerical methods enables us to use an exact
representation of the symbols of theintegrated-operator
kernels omitting atraditional approximation stage. Asa
result, weretain all the specific features of the equation,
including branch points of the kernel symbol. This per-
mits us to consider at greater length the dynamic prop-
erties of the problem and to improve the accuracy of the
solution obtained.

1. We assume that: (i) K(a) is an even function hav-
ing a finite number of branch points on the real axis;
this number depends on the problem type and the prop-
erties of the medium materia; (ii) K(a) ismeromorphic
in the complex plane with cuts that do not pass to one
another, are located in the quadrants | and I11, and con-
nect the branch points with the infinitely distant point;
(iif) K(a) hason thereal axisafinite number of zerosy,
(k=1,2,...,ny)andpolesz (k=1,2, ..., n), aswell
as a countable set of complex zeros and poles with the

* Kuban Sate University,
ul. Karla Libknekhta 9, Krasnodar, 350640 Russia
** Research Institute of Mechanics
and Applied Mathematics,
Rostov Sate University, Rostov-on-Don, Russia

points of condensation in certain sectors containing the
imaginary axis; and (iv) K(a) takes the form

K(a) = clal[1+0(a™)]

at infinity. The position of the contour I correspondsto
the emission conditions, and equation (1) is uniquely
resolvable for any twice continuously differentiable
function f(x,) [4]. We introduce the functions

and

M
n _ 2 2y, 2 2l
(o) k|:|l(0( Yi(a”-Z) 3

Ko(a) = M7(a)K(a),

wherez (k=1,2,....,n)andy (k=1,2, ..., n) ae
real, and the remaining z (k= n, + 1, ..., M) and v,
(k=ny,+ 1, ..., M), M =2 max{n,, n,} are the complex
poles and zeros of K(a) that liein the band [Ima| < E,,.
It follows from (3) that K, retains in itself al unac-
counted in M singularities of K, above all, the branch
points on the real axis.

Theorem. The Fourier transform of the solution to
Eq. (1) isgiven by the formula

2M

Q@) =T()N (@) + ) CR(@), @)
k=1

T(e) = To(e) + ¥ CT(@),
. = ®)
T(@) = 5 Bi®y(a), k=01,...,2M.
p=1

Here, R(a) is the function that satisfies the condition
Q) =Ry(a), a =+z,k=1,2, ..., M[1-3]; B} arethe

components of the vectors B, = { B} ;': 1, Which satisfy
the systems

N
AB, = F, A =|Ayb - Feo={fdi-0,

1028-3358/01/4610-0732%$21.00 © 2001 MAIK “Nauka/Interperiodica’
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A = [Ko(@)P,(o)f (a1},
. ' (6)
fo = [ RCALICHLE fl = IK(a)wl(a)e‘i”lda;

(* implies a complex conjugate quantity;

a iaa,_;

y(a) = —ia e -] ™

isthe Fourier transform of the coordinate function

, X O[a,_q, a]

¢p(X1)=§g p=12..N@®)

, X Ofap g, &,

inwhicha,, p=1,2,...,N—1arethe points that divide
the segment [—a, a] into equal parts, a,=-a, ay=a; and
the constants C, appearing in (4) and (5) are found
fromthe constraints
T(xy,) =0, n=12 .. M. 9)
2. The proof is based on the method of regulariza-
tion of an integral operator developed in [1-3], which
represents a solution in the form

q(X1) = go(Xq) +r(Xy) (10)

provided that
V(a)g = V(a)r, V(a)g = 0, an
a=z%z, k=12,..M

[V(0) and V-(x,) are, respectively, the operators of the
direct and inverse Fourier transforms]. Without loss of
generality and on account of the arbitrariness in (11),
we can chooser in the form

2M

r(x,) = chrk(xl)' (12)
K=1

Upon substituting (10), with (12) taken into account,
and passing to the new unknown quantity

t(x) = V(x)T, T(a) = N(@)Qy(a),

equation (1) convertsto the form

(13)

2M

kot = Z Ckfk(xl) + fo(Xl), |Xl| sa
k=1

(14)

The validity of the theorem statement is achieved by
introducing the set of the coordinate functions (8), by
DOKLADY PHYSICS  Vol. 46
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representing the solution in the form

2M
t(Xy) = to(Xy) + Z Citi(Xq),
k=1 (15)

t(Xy) = ZBEd)p(Xl), k=01,...,2M,
p=1

and by substituting it into Eqg. (14) with subsequent
application of Galerkin's scheme. Condition (9) fol-
lowsfrom thelemmagivenin[5], which establishesthe
equivalency of transformations.

When exploring the dynamics of massive bodies,
mechanical or electromechanical systems interacting
with an elastic or electroel astic medium, the main prob-
lem is to calculate the integral characteristics of the
problem (the response of the medium on the die action,
charge, etc.). The necessity of calculating the density of
these characteristics (contact stresses, charge distribu-
tion density, etc.) dropsout. Inthiscase, it ispossibleto
restrict consideration by the Fourier transform of the
problem solution. In other words, the class of r-func-
tions in (12) can be substantially expanded by taking,
for example,

N(x) = 8(x,—xy), (16)

as the components, where xi are the coordinates of the

points that divide the segment [—a, a] into equal parts.
In this case,

f k
R(a) = e, (17)
which considerably simplifiesformula (4). To calculate
the integral characteristics of the problem, it is suffi-
cienttoput a =0in (4).

3. Let A and A! be constructed. Then, the solutions
to systems (6) take the form

B, = A'F,. (18)

It follows from (18) that the solution of 2M + 1 sys-
tems of algebraic equations (9) is concentrated on the
calculation of the matrices A and A~!, a procedure that
is sufficient to perform once. Next, we should calculate

al the vectors B, whose componentsare B¢, p=1, ...,
N,k=0,1,2...,2M.

Remark 1. We assumed above that z and y, are sin-
gle-valued. The extension to the case of multiple zeros
and polesis, in principle, not difficult. However, in this
case, representation (3) and the form of relationships (9)
change[1].

Remark 2. When the function q(x,), as the solution
to the original equation (1), must be caculated, we
should use formula (4) and choose r(x,) from the class
L, p>1,o0r, whenr isusedinform (16), introducet(x,)
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ReQ* Im*Q*
2,

—4 1 1 1
0.3 34 6.5 9.6
Ky

Fig. 1. Effect of localization of prestresses on the dynamic
stiffness of the medium as illustrated by the graphs ReQ*

and Im* Q* = k' ImQ* + 6. See detailsin the text.
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Re 0, Im*Q,
2 —
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3
-4 1 1 1
0.3 34 6.5 9.6

Fig. 2. Effect of localization of prestresses on the dynamic
stiffness of the medium as illustrated by the graphs ReQ..

and Im* Q. = Kgllin + 6. See detailsin the text.

such that r(x,) is present in the final expression only 4. We now consider Eq. (1), which arises in the
under the integration sign [1]. study of the interaction of adiewith atwo-layered pre-

Remark 3. The method is extended without diffi-  Stressed half-space, when

culty to the class of three-dimensional axisymmetric
problems of the elasticity theory. In this case, a is 2

(1)
replaced by anew variableu= ,/a’ + a5 . The proposed K(a) = Z[A"3COSth h+ A zSNNOH,

approach, providing a high accuracy in considering k=1
dynamic properties, makes it possible to study subtle

problems of contact interaction, in particular, the effect A
of initial stresses on the dynamic stiffness of the A, = _'g ,p=12,..,6, A° = det||T|p||.6 o
medium. A P

T = 1Pcosholh, T, ., =1%sinho®h, T, ,,4=0,

T = 1 sinhoPh, T, ., = 15 coshol’h, T, s=0,

Tk =0, Tgysz = £, Takea = —f, 150 = XS0k F =X B,

Tac =1 Taue2 =0, Thpea = -1, §1T<) = B(n)H(lnk)+cx B(n)B(Zg),

To = 15, Tske2 =0, Tsyea = %, 150 = XS0 —iaxX B fis

Ta=0. Towo =18 Towws = I, Sy = BEHS, ol BYBY,
where £ = —iaSP(aS) ™ (0 k=1,2); Af, are HO = X0 = (Xt = "),

the cofactors of T,p, and the superscript indicates that

the given quantity belongsto layer (1) or half-space (2): B = X o

mk — Xmmkk + kamka

DOKLADY PHYSICS Vol. 46 No. 10 2001
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2.2n

lesp = 6I56mpsllr?1 + 6m36IpVI SIm + 6|m63p8|33n,
SI:Lr‘lr: = Zng[_qJOn + qJZnVﬁIVEm] ’

S = 237 Wiy + Won(vi + v,

2 2

3 -1 2M 2N
SInr)\ = 4Jn z z VE\;?\IVnI Vnm-

M=0N=0
Here, &, is Kronecker's symbol, p™ isthe density, and
Vm iS the relative elongation of filaments of the layer
(n=1) or the half-space (n = 2) along the x-axis. The

coefficients P, and V', |, m= 0, 1, 2, depend on the

form of the elastic potential and on theinitial deformed
state (IDS). Their appearance for some particular cases

isgivenin[5-9]; G(k”) are derived from the characteris-

tic equation
HIDHY + 0?0 BY =

5. Numerical analysis was performed for a medium
that represents a layer (bronze) arranged on the half-
space (steel 35KhGSA) [6]). The IDS was set by the
conditions. v,; = V., = V3 = 1 £ { (n= 1 stands for the
layer, n = 2 for the half-space) and ¢ = 0.005.

The effect of localization of prestresses on the

dynamic stiffness of the mediumisillustrated in Figs. 1
and 2, in which we plotted the graphs ReQ*, Im*Q* =
K5 ImQt + 6 (Fig. 1) and ReQ,, Im*Q, = K; ImQ, + 6
(Fig. 2). The functions Q* and Q, are calculated using
formula (4) [f(x,) = 1] for the cases of the preliminary
compression (—) or tension (+) of thelayer (superscript)
or the half-space (subscript). Curves I correspond to
the natural state, curves 2 correspond to tension, and
curves 3 to compression of the corresponding domain
of the composite medium. From these graphs, it follows
that in the absence of initial stresses the quantities
ReQ, and Im* Q, exhibit oscillations that are dueto the
heterogeneity of the medium. The appearance of these
oscillations substantially depends on the IDS localiza-
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tion. The compression of the layer (curve 3 in Fig. 1),
as well as the tension of the half-space (curve 2 in
Fig. 2), decrease the heterogeneity of the layered struc-
ture. Conversely, the tension of the layer, as does the
compression of the half-space, enhances the medium
heterogeneity. This confirms the previously indicated
[7-9] specific character of the action of the IDS on the
dynamic stiffness of the medium, namely, the increase
of the dynamic stiffness under compression of the layer
or the homogeneous half-space and, conversely, its
decrease under tension.
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We consider dynamics of an ideal homogeneous
incompressible fluid passing through a given domain
D O R2. Euler equations of mation of the fluid are writ-
ten as

ov+owdv =-0H, dvv =0, )

2
wherev isthefluid velocity, @ = rotv, H =P + -"2— ,and

P isthe pressure. We assume that, at any timet = 0, the
following conditions

(vh)(xt) = y(x, 1), xOS,
x0sS0OS

are set at the boundary S of domain D. Here, n is the
unit vector of the outward normal to S= 0D, y and w*

are the given functions (Iyds =0for al t=0), and the
S

. )
w(x t) = w(xt),

inlet S’ and theoutlet S are the parts of the boundary

S through which the fluid inflows into domain D and,
respectively, outflows from it at the time moment t > 0.
Therefore, by definition,

S = {x0S y(x,t) <0}

and

S = {xOS y(xt)>0.

It will be recalled that Kochin was the first, who has
analyzed the general problem of unsteady fluid flow [1].
In his study, the boundary conditions (2) were pro-
posed. Yudovich [2] established that a two-dimensional
problem defined by Eqg. (1) and boundary conditions(2)
is globally solvable. In what follows, we consider only
this two-dimensional problem and refer it to as the
problemY.

Rostov State University,
Rostov-on-Don, Russia

In the general case, problem (1), (2) is overdeter-
mined [3]. At the same time, the correctness (but only
local in time) was proved for some other boundary
value problems in the case of two- and three-dimen-
siona Euler equations [4, 5].

The permeation of fluid through the boundary of the
flow domain involves a complicated dissi pation—pump-
ing mechanism: while penetrating into this domain,
fluid particles bring in (or bring out, when leaving it)
energy, enstrophy, kinetic momentum, and other mate-
rial quantities. For example, a strong pumping effect
arises when the flow inlet contains a closed curvec. In
this case, the equality

aqtfv [dx = —Idyds 3)

follows from the equations of motion and from the
boundary conditions (2). If the functions w* and y are
independent of timet and the integral in the right-hand
side of equality (3) does not vanish, the velocity circu-
lation around the contour ¢ increaseslinearly with time.
Thus, the generation of the accelerating rotation
occurs by blowing. In this case, there are no steady-
state regimes, and all solutions of the unsteady problem
are unbounded.

At the same time, the enstrophy of the flow declines
when its vortex is identically equal to zero at the inlet.
In this case, dissipation concentrates at the outlet and
may seem weak, but actually it may result inthe asymp-
totic (exponential or even nilpotent) stability of the
steady-state regime. Here we are dealing with such a
stability.

Let problemY have a steady-state solution with the
velocity field v and the vortex w. We make the follow-
ing assumptions:

(H1) theflow domain is bounded, simply connected,
and piecewise smooth;

(H2) the normal velocity yisgiven in such amanner
that the inlet S* and the outlet S- are the connected
smooth arcs without common end points; the set of
angular points of domain D coincides with the set

1028-3358/01/4610-0736%$21.00 © 2001 MAIK “Nauka/Interperiodica’
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0S* 00 S of points where the inlet, outlet, and rigid
wall join;

(H3) the complete efflux condition is fulfilled; i.e.,
inf{|v(x)|, x 0 D} >0, so that the flow has no stagnation
points both inside the flow region and ontherigid wall;

(H4) the boundary arcs of the flow region intersect
each other at the right angles, and the steady-state solu-

tion isregular to such an extent that v J C=(D) n C(D)
andw OCYD).

Theflow (or its velocity field v) that satisfies condi-
tion (H3) will be termed athrough flow.

The condition of regularity (H4) hasaminor charac-
ter and can be weakened. The condition of single con-
nectedness is essential, as follows from the above
example.

The condition of full permeation (H3), i.e, the
absence of stagnation zonesin theflow, isof fundamen-
tal importance for al the results we consider below.
Moreover, this condition justifies, to a certain extent,
the assumptions on the smoothness of the principal
solution [6]. The point isthat the vortex of the flow with
stagnation points can undergo discontinuities along the
separatrix streamlines. At the same time, a large num-
ber of explicitly smooth solutions (both through and
non-through) to the steady-state problemY are known.
The simplest among them are shear flows with rectilin-
ear or circular streamlines parallel to the rigid walls of
the channel.

The problem with initial and boundary value condi-
tions, which arises as a result of the linearization of
problemY, will be named theLY problem. Inthesingle
connected domain D, problem LY has the form

0.0+ (v,0)c+Kao = 0,

Olg =0, Oli=o = &

)

Here, St = S is the mainstream inlet; o is the vortex

disturbance; and Ko = [ OO Go, where G is the
Green operator of the problem; i.e., -A¢ = g, ¢|s=0.

When w = const, we eliminate from Eq. (4) theterm
Ka, which reducesproblem LY to aproblem onthe pas-
sive transport of the scalar o by the known velocity
field v, so that

d,0+(v,0)o = 0, Ol = 0, Ol =¢&. (5

Transport problem (5) for an arbitrary smooth field v is
integrable in Lagrange coordinates, which are the time
(X, t) and the point a(x, t) where a fluid particle that
occupies position x at the time instant t originaly
appeared in domain D.

According to the full-efflux condition, the quantity
t— 1(x, t) (the age of the fluid particle) is uniformly
bounded in the half-cylinder D x {t > 0}. The maximal
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age of the particle (the full efflux time) is denoted by t[;
so that

te, = sup{t—1(x,t),x0D,t>0.

Proposition 1. For any through vector field v, the
solution g, to the transport problem (5) with the arbi-
trary initial function & isidentically equal to zerointhe
half-cylinder D x {t > tj}. In particular, the through
flow with a constant vortex is nilpotently stable.

In general, we consider problem LY as a disturbed
transport problem (5). Clearly, the disturbing operator
K: L,(D) — L,(D) is completely continuous.

Proposition 2. Under the full-efflux condition, the
spectrum of problem LY is discretein the sense that the
corresponding resolvent R(A): L,(D) — Ly(D) isa
meromor phic function of the complex variableA. Inthis
case the real parts of eigenvalues are bounded from
above.

We represent the solution o of problem LY asa per-
turbation-theory series so that

o(t) = og(t) +... + O (t) + ...,

where g, is the solution to the transport problem (5),
and the functions o, (k= 1, 2, ..., ) are defined by the
recurrence relationships

t

o 1) = = [ (Ko )(X(s,x 1), 9)ds.  (©)
(X t)

Here X(s, x, t) 00 D isthe position that was occupied at
the moment s 0 (t(x, t), t) by the fluid particle, which
is located at the time instant t > 0 at the point x O D.
Note that the length of the integration segment in inte-
gral (6) does not exceed the time of the full efflux t
and, therefore, the disturbances o, are different from
zero only when t < (k+ tpg

Theorem 1. Let the mainstream be through. Then,
for all t >t the evolutionary operator U(t) : & — o(t)

of problemLY is compact in L,(D).
Let D' be the fixed subdomain of domain D bounded
by both a pair of the internal streamlines and the arcs

Stand S. Then, for any positive integer m and for the
instant t > mt[; the following estimates of the deriva-

tives with respect to the space normL,(D") take place:

|070) (V)] 2.0 < csup{ 3 (S)l15, o, ST (t—Mt,, )},
t>mt,. N

Here, the constant ¢ depends, in general, on subdomain
D', but does not depend on the initial disturbance and
on the time t. Moreover, for all t > tr; the derivatives
(0,0)(t) and (v, o(t) satisfy inequality (7), where
m=1andD'=D.
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Having compared Theorem 1 with the known exam-
ples of loss of the smoothness of disturbances[7, 8, 9,
13, 14], we can suggest that the flow smoothness
improvesin the part of the flow whererapid drift of dis-
turbances occurs and worsens in places where distur-
bances drift sowly. The simplest condition for asymp-
totlc stability is related to the dimensionless quantity

=t (D)maxl @ |, whereA,(D) isthe minimum

el genval ue of the first boundary value problem for the
operator —A in domain D. The flow (or its velocity
field v) that satisfies the condition q, < 1 is hereafter
referred to as fast one.

Theorem 2. Thefast flow is exponentially asymptot-
ically stable within the linear approximation in the
enstrophy metric (i.e., in the metric L,(D) for vortex
disturbances). In this case, for an arbitraryn=0,1, ...
and for the instant t > ntr; the following inequality

holds

lo(®)ll, o < max (L, €")[r(=1)]"(L - W) " 1o)l,, o,
t>nt,, (8)

wherer(p) = g, (exp(ptp) — D(Ut)~" and the number pLis

arbitrary solution to the inequality max[r(l), r(-p)] < 1.
Moreover, the higher norms of the disturbance whose
estimates are given in Theorem 1 are exponentially
damped ast — +oo,

In particular, any shear flow turns into a fast flow
when a sufficiently large constant V, is added to its pro-
file V. It isimportant that the fast flow remains fast after
asmall smooth deformation (caused, e.g., by the distur-
bance of the boundary datain problemY) and in cases
when disturbances of the vortex are C!' small. For
example, any steady flow that is close to the through
Couette flow isfast.

More precise stability conditions are obtained by the
second Lyapunov’s method using Lyapunov functions
introduced by Arnol’d [12]. This approach appears
especialy attractive if we note that the dependence of
the vortex w of the through flow on its stream function
Y is single valued and alows explicit expression in
terms of the boundary data w* and y of the steady prob-
lemY. Thus, the through steady flow is arranged in a
substantially ssimpler form than the arbitrary flow in
which the functional dependence of the vortex and the
stream function is not necessarily single vaued.
Although the single-valuedness takes place when the
flow maximizesits energy [10, 11], even in this case the
function w() isarranged in acomplicated way, and its
explicit expression is unknown.

Arnold's theorem [12] is extended onto problem Y
in the following way. Let the stream function @ of the
basic flow be expressed in terms of its vortex w by the
equality = W(w). Here, the function W is determined
on the entire axis R, and its derivative W' is uniformly
bounded. We introduce the function ®,, assuming that

MORGULIS, YUDOVICH

P (0) =f(w+ 0) - f(w) — P(w)o, wheref isthe primi-
tive function of the function W. By virtue of the nonlin-
ear equation of disturbances, we define the functional

W and its derivative W by the equalities

(0Go)*

W(G)zf[ 2

D

CDQ,(G)}dz,
9)

W(o) = Iy ®,(0)ds.
<
Theorem 3. Let the condition essinf|¥'| > O be ful-

filled. If in this case the function W increases, we
assume, in addition, that the functional -W is positive

definite so that inf{ —VV(cr)||0||2 b: 0 OLyD)} > 0. Then,
an arbitrary solution a(t) to the nonlinear equation of

disturbances admits a priori estimate ||cr(t)||§,D <

c||0(0)||§, b, Where the constant ¢ isindependent of time
t and of vortex a(0) of the initial disturbance.

As an example, we consider a shear flow with recti-
linear streamlines in the channel of length |. (Here, | is
the projection of the channel length onto the x-axis par-
ald tothe streamlines.) Let the profile of the shear flow
V have the form V(y) = sinpy, y O (0, 1), pu > 0. This
flow is non-through. At the same time, Theorem 3
yields the estimate of the enstrophy for the flow finite
disturbances, at least until pu < 1(1 + 1-)!2, For compar-
ison, in the case of a channel of infinite length and dis-
turbances being periodic along the channel, the Arnol’d
theorem gives aresult only under the condition p < 1T

Now, let the flow profile have the form V(y) = e,
y 0 (0, 1), 4 > 0. When the channel length isfinite, this
through flow satisfies the conditions of Theorem 3 for
al y, but the condition g, < 1Lisfulfilledonly for u < 1.
Hereafter, it will be shown, however, that the through
flow is asymptotically stable within the linear approxi-
mation under the linearized conditions of Theorem 3.

We now introduce the function k by the equality

K(X) = Bl D(x) x O D. We linearize Theorem 3,

assuming that W(h) = kh and ®(h) = ﬁ in(9).

Theorem 4. Let the function K = % be bounded

and definitein sign in the sense that essinf|k|> 0. If, in
this case, function K is positive, we assume, in addition,

that the functional -W SNhere o (0) = D IS posi-

tively defined on L,(D). Then the system LY is stable
according to Lyapunov in the enstrophy metric.
DOKLADY PHYSICS  Vol. 46
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Note that Theorems 3 and 4 do not use the condition
of complete efflux. If, however, the latter is satisfied,
then, according to Theorem 1, the bounded trajectories
of the system LY are compact in L,(D), alowing us to
establish the asymptotic stability of through flows in
line with the Barbashin—Krasovskii theorem. Follow-
ing this sample, we find from formula (9) that -limit-
ing set M of an arbitrary trajectory of system LY con-
sists of smooth functions equal to zero in both the inlet
Standtheoutlet S. Therefore, the restriction of system
LY on M is reversible motions are invariant with
respect to the change of thefield v to the field —v with a
simultaneous time inversion.

Theorem 5. Let the through flow v satisfy the condi-
tions of Theorem 4. Then, all the motions of system LY
tend to the finite-dimensional subspace X, spanned by
the system of eigenvectors of the neutral spectrum of
problemLY.

The question on the existence of the neutral spec-
trum for the individual flow is difficult to solve. A sim-
ple general answer can, however, be given for analytic
flow families.

Theorem 6. Let a family of through flows v, analyt-
ically depend on the parameter i, and allow that for
any U the field v, satisfies the conditions of Theorem 4.
Then, the dimension of the neutral subspace X, is con-
stant within the family. If, in this case, the family con-
tainsafast flow, then all its elements are asymptotically
stable in the enstrophy metric within the linear approx-
imation. Moreover, ast — +oo, the higher norms of
disturbances, whose estimates are given in Theorem 1,
are damped.

Theorem 6 entails, e.g., an asymptotic stability of
shear flows with profiles V(y) = exp(—Jly) for an arbi-
trary p > 0.

In conclusion, we consider one of the possible
mechanisms for the onset of instability.

Theorem 7. Assume that the family v, of through
flows is defined and analytic in the neighborhood of
point O. Let, in addition, the following conditions be ful -

filled for p = 0: (@) thefunctionsk, = %——0 andv, = Kgl
0

are limited and positive, (b) the minimal eigenvalue a

of the problem (-A¢ = (a + vy)¢ indomain D, ¢ =0
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onS) is equal to zero, and (c) the function 9,k in
domain D is nonpositive and is not identically equal to
zero. Then there exists a vicinity |, of the point i = 0,
such that in this vicinity the analytic branch A, of sim-
ple real eigenvalues of problem LY is determined and
this branch transversally intersects the imaginary axis
for u = 0. Then the flow v, is unstable for all positive
values p [ 1, and stable for all negative valuesp [11,,.

It should be noted that the instability of the flow
with rectilinear streamlines cannot arise according to
the scenario of Theorem 7. At the same time, this sce-
nario is realized for certain flows with circular stream-
lines in the annual sector with an angular opening
exceeding Tt
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Asiswell known, conditions of mechanical equilib-
rium of a solid have the following form:

J’XidS = J’oijnde =0, i,j =123,
ov ov

(1)
I(Gilxk_oklxi)nldS+I(0ki —-0,)dv = 0,
av v

where V isthe volume occupied by the solid under con-
sideration and 9V isits surface. In the absence of mass
forces inside the volume V of the body, the Cauchy
equations of equilibrium are valid:

a0;; _
> 0. )

In the classical theory of elasticity, the condition
0; = O is assumed to be met at equilibrium both in the
bulk and on the surface of the solid. However, it iswell
known that under equilibrium conditions (1) and (2),
stressesinside the solid are nonzero. Welds can serve as
an example. Experimental study [1] showsthat stresses
in welds are comparable with those arising under exter-
nal actions.

In engineering, various technological procedures
are used making it possible to reduce the level of inter-
nal stresses or, on the contrary, to elevate it. As such
procedures, we can indicate various types of thermal
treatments:. annealing, quenching, etc. As a rule, the
explanation of results of the action of such technologi-
cal procedures on amaterial is associated with aredis-
tribution or disappearance of defects in its internal
structure.

The physical theories of strength and plasticity con-
sidered various models of defects in the crystal struc-
ture of material sresulting in nonzero stresses under equi-
librium conditions (see, for example, [2, Section IV]). As
early as the 1950s, the analysis of these physical mod-
elsled Kondo [3] and Bilby [4] to the conclusion of the
necessity to use non-Euclidean geometric objects in
their description, which were forbidden in the classical
theory of elasticity.

I nstitute of Automatics and Control Processes,
Far East Division, Russian Academy of Sciences,
ul. Radio 5, Vladivostok, 690041 Russia

Thus, the experimental investigations explicitly
indicate the existence of nonzero internal self-balanced
stresses. To describe them on the basis of physical mod-
elsof defectsin theinterna structure of amaterid, itis
necessary to use mathematical objectsinconsistent with
the Euclidean geometric description of deformation
properties for elastic continuum. However, the contra-
diction that arises can be overcome on the basis of solu-
tions to problem (1), (2).

In fact, nonzero solutions to Egs. (2) are well known
in the classical theory of eadticity [2] and are related to
the introduction of stress functions. The genera solution
to (2) can be represented in the following form:

o = (rot&y);, i,j =123, 3)
where ; are three arbitrary vector functions. It should
be noted that o;; has the gauge invariance [5] with
respect to thetransformation ; = ; + [@ ;. Thusonly
the vortex component of fields ; contributes to the

stresses. From the total set of solutions (3), we choose
the solutions that can be represented in the form:

r or
G = Eipa oL me-Tedel’, @

where g, isthe Levi—Civitasymbol and I, , are con-
sidered as a certain set of stress functions. The con-
stants g, and | have the dimension of stress and length.

Taking into account the necessity of introducing
non-Euclidean objects for describing the defects, we
interpret ', , as the objects of connectedness on the
manifold generated by the internal defect structure of a
material. For general affine connectednesses, the fol-
lowing relationship [5] takes place:

ar or

amp_ 7 anp_ R

0X, B

pgmn
0Xm

&)
_gls(rqn, sr pm, | — I_qm,sr pn, | + rqn,sKmIp_ rqm,sKan)v
where
_ 09y
Kop = c)x’:1 B

Here R, is the tensor of connected curvature, K, is
the nonmetric tensor, and g; is the metric of manifold
generated by defects.

I_pn,l_rln,p- (6)
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The geometric objects involved in (5) and (6) were
used in [6-9] to analyze the genera relationships of
nonequilibrium thermodynamics in models of contin-
uum with an internal structure. From the physical point
of view, these geometric objects are compared to vari-
ous defect structures [10].

In the general case, the stress tensor given by for-
mula (4) is asymmetric. The set of functions determin-
ing (4) by means of (5) and (6) is reasonably large:
these are 27 objects of connectedness and 6 metric-ten-
sor components. A decrease in the number of functions
used in the theory is associated with the hypothesis on
the geometric structure of the manifold under consider-
ation. In particular, if the manifold is Riemannian, Cans
are expressed through the metric according to the
Christoffel formulas, and the nonmetric tensor K, = 0.
In this case, the internal stresses are completely deter-
mined by the manifold metric and are equal to

0°g

2 m

o = 20, sipqumnm. 7)
Expressions (4) identically satisfy Egs. (2). It ispos-

sible to directly verify the validity of integral equilib-

rium conditions (1). Now it should be noted that the

pointwise equilibrium conditions used in the theory of

elasticity areinvalid for stressfield (4):

OijNj|oy # 0.

By virtue of thelinearity of equilibrium conditions, itis
aways possibletointroduce the elastic-stressfield T;; so
that

lav

oT;;

] = —_

= = 0, Tyinjley = —0iNjfoy
]

oXx ®
u

where U istheinternal energy of an elastic solid, and A;
isthe Almansi tensor. The combined action of thefields
provides the validity of al the equilibrium conditions:

a(t; +0y) _ _
T =0, (tn;+a;n)|s = O.

U
Somewhat more cumbersome cal cul ations show that the
moment conditionsin (1) are also met if we consider the
relationships of the moment theory of elasticity.
We now turn to discussing the results obtained. The
stressfield

Tj; = P(Ok—2Ay)

T =Tjj+ 0y
satisfies equilibrium equations (2) and satisfies point-
wise the conditions of the absence of external forceson
the solid surface:
oT;,

a—X'; =0, TNy =

Thus formulas (7) and (8) represent the set of possible
distributions for the nonzero internal stressesin a contin-

0.
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uum. It should be emphasized that the fields T; and oj;
interact only through the boundary-value condition in (8).
This fact indicates the important role of the solid surface
in studying deformation characterigtics of a solid. This
festure of the free surface of deformable solids was
emphasized in[11].

Asaresult, the structure of an internal-stressfield is
formed from both the field of stresses generated by
defects and the elastic-stress field that compensates for
the surface nonequilibrity of the defects. The joint
action of these stresses enables the sample to hold the
given shape, and their variation leads automatically to a
change in the shape of the solid when the defects
emerge from the bulk of the solid body to its surface.
The last statement follows directly from the invariance
of distribution (7) with respect to motions of continuum
generated by the infinitesimal diffeomorphic maps.

The question on a particular type of the metric g
depends on the prehistory of formation of defects and
requires an analysis of dissipative processes in the
material on the basis of the models considered previ-
oudly in [6-9].
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In this paper, a method for describing the two-
dimensional motion of a perfect stratified fluid is pro-
posed. The method is based on Hamiltonian equations
written out in natural semi-Lagrangian coordinates in
terms of two physical variables, namely, vorticity and
density. It is shown that the equations obtained, which
make the most use of the conservation laws, are conve-
nient for studying both the wave motion in a stratified
fluid and the hydrodynamic stability of shear flows. On
the basis of the approach derived, the problemis solved
for waves in a flow exhibiting a continuous vorticity
distribution in alayer of finite thickness. The dynamics
of developing perturbancesis determined by the param-
eter a that characterizes the vorticity gradient in the
layer and by the parameter e proportional to the ratio of
the layer thicknessto the wavelength. If the gradients of
the unperturbed vorticity are sufficiently high, then the
frequency of the discrete-spectrum mode obtained dif-
fersfrom the mode frequency corresponding to the vor-
ticity jump by the value on the order of €. With decreas-
ing the parameter a, i.e., decreasing the vorticity gradi-
ent inthe layer, awave packet appears corresponding to
the continuous spectrum, which determines the pertur-
bation dynamics. The results obtained make it possible,
in particular, to estimate the limits of applicability of
the finite-layer approximation for certain flow types.

Investigating two-dimensional motions of ideal
fluid isanecessary stagein solving numerous particul ar
problems of hydrodynamics and geophysics, including
the description of wave motion and the analysis of the
hydrodynamic stability of shear flows. Aswas recently
shown, the most efficient method for solving these
problems in linear and nonlinear formulation is the
Hamiltonian formalism [1-3].

This method is actively used for studying discrete
models of flowswith in-layer constant density and vor-
ticity [4-6]. In this case, it remains unclear to what
extent the results obtained are suitable for describing
flows with a continuous stratification and what is the
difference between continuous and discrete models[7].

Obukhov Institute of Atmospheric Physics,
Russian Academy of Sciences,
Pyzhevskii per. 3, Moscow, 109017 Russia

In this paper, equations usually applied for describ-
ing wave motion in continuous models for flows of
ideal incompressible fluids (in the linear approxima-
tion, these are Rayleigh equations and Taylor—Gold-
stein equations) are presented in a certain integro-dif-
ferential form. This form is more convenient for com-
parison with discrete models. The optimal formulation
of the model should take into account conservation
laws valid for the problem under consideration and,
therefore, includesthree stages. First, the relevant equa-
tions are written out in terms of quantities being con-
served in the given setting, namely, of the density and
vorticity. In this setting, the plasma-hydrodynamic
analogy is manifested especialy clearly, because the
spatial vorticity distribution is naturally compared with
the electron-vel ocity distribution function [8, 9].

The second stage is the passage to the semi-
Lagrangian coordinates that are al so directly associated
with conservation laws. Retaining the Eulerian x-coor-
dinate, we use, instead of the vertical coordinate, the
Lagrangian variable h numbering the surface on which
the motion of fluid particles occurs. These coordinates
present the possibility of uniformly analyzing continu-
ous and discrete stratified fluid flows. In essence, such
an approach may be called a generalization of the con-
tour-dynamics method. In this case, we may consider
an arbitrary surface corresponding to a constant value
of the Lagrangian variable asaboundary of the domain.
This Lagrangian—Eulerian representation is discussed,
e.g., in [10] when describing two-dimensional flowsin
acontinuously stratified fluid.

The third stage involves the reduction of the
obtained equations to the Hamiltonian form most suit-
able for developing approximate methods and con-
structing the perturbation theory. The Hamiltonian for-
malism for waves on afluid surface was proposed in[11]
and developed in [2, 4-6] for multilayer models with
constant values of the layer density and vorticity. For
analyzing perturbations in continuous models in the
framework of the Lagrangian—Eulerian description, the
Hamiltonian structure was introduced into Kinetic
equations for collisionless plasma and into the Benney
equation for nonpotential waves in shallow water [3].

In the present paper, we propose two methods for
representing equations of the two-dimensional dynam-
ics of the incompressible stratified ideal fluid in the

1028-3358/01/4610-0742%$21.00 © 2001 MAIK “Nauka/Interperiodica’
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Boussinesq approximation in the form of a Hamilto-
nian system in the Lagrangian—Eulerian (i.e., semi-
Lagrangian) coordinate system.

The two-dimensiona dynamics of the incompress-
ibleideal fluid in the Boussinesq approximation can be
represented by the equations

0:p + Udyp +wd,p = 0, (1)

P _

9,Q +ud,Q +Wd,Q — gdp -0, @)

where p is the density, Q is the component of the vor-
ticity vector rot V orthogonal to the (x, z)-plane, V isthe
velocity vector, and g is the gravitational acceleration.

The horizontal and vertical components of the
velocity vector are written out asu = -0, andw=0,¥,
where the stream function W satisfies the Poisson
equation AW = -Q and is expressed in terms of the
vorticity Q intheform

= —J'Q(x ,Z)G(x=x',z—2Z)dx'dz,
where
G(x—x,z-7) = 4—1n|n((x—x')2+(z—z')2)

is the Green function for the Laplace operator. Hence-
forth, the integral symbol implies the double integra-
tion over the entire (X, 2)-plane. In the state of rest, the
medium is described by the density distribution and
vorticity distribution, each depending only on the verti-
cal coordinate. It iseasy to show that the system of inte-
gro-differential equations (1), (2) is adequate to both
continuous and stratified media[12]. In the |atter case,
it is equivalent to the system afforded by the boundary
conditions and leads to solutions containing general-
ized functions. It isworth noting that, for such aformu-
lation of the problem and for a medium with a constant
density, the plasma-hydrodynamic analogy ismanifested
especidly clearly [8, 9, 13]. In this casg, it is natural to
compare the spatial vorticity distribution Q(x, z t) and
the velocity hydrodynamic field with the distribution
n(x, v, t) of the electric charge in the phase plane and
with the electric field, respectively. This comparison is
justified because both distributions are obtained as the
solutions of the Poisson equation. In both cases, the z-
coordinate evidently corresponds to the velocity v-
coordinate in the phase plane. The only difference lies
in the fact that in the plasma case the el ectric field does
not depend on the charge velocity.

We now pass to the formulation of the problem in
the semi-Lagrangian coordinate system. We determine
the Lagrangian coordinate h with the help of the equa-
tion of asurface in which either the density or vorticity
areinvariant:

d;h+uo,h+wa,h = 0.
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We represent the dependence of the vertical z-coor-
dinate on hiin the form
z=sxt,hy=h+n(x h, t).

In the coordinates x and h, system (1), (2) is written
out as

as Js

ot TUax T W )
0Q . aQD()S 20S _
Dot "Yaxon Vax = & “)

where the Brunt-Vaisdla frequency sguared, N2, is
determined by the expression

2 _ gdp
N = pdh’

Since the quantity s = satisfies the equation

Js
oh
os | da(us")
ot 0X

we have for the vorticity density, expressed in semi-
Lagrangian coordinates as

:O,

A _ . 0
Q(x, h,t) = Q(x,s,1)s' = Q(X, s,t)%Ha—ﬂ%,

the equation

0Q , 9(uQ) 205
ot 0X ()4

The system of equations (3), (5) is, in fact, a system
of equations of the contour dynamics, which is written
out for the continuous model of a stratified flow. We
represent the Hamiltonian (i.e., the energy normalized
to the averaged density) in the form

= 0. 4)

H = J'Dlw(x 2,)Q(%, 2, t)+gpmdxdz
= _é IQ(x, 2Q(x', 2)G(x-X', z—2)dxdzdx'dz

¥ J'%)dxdz - —%ﬂ'f)(x, RO, h)G(x -, s(x, h)

gspads

Py dh

We now calculate the variational derivatives
oH

69(x h)

—h'—n")dxdh' = W(x, h+n(x, h)),

oH
dn(x, h) ~

=s(x, ")) dxdhdxdn’ + [ 7Edx .

= —IQ(X', h)G(x-X,h+n

J’Q(x hQ(x, h)
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x 2 G(x=x, h+n—h —n)dxdn
on '

+ N2(h)n(x, h) = —u(x, h)Q(x, h) + N*(h)n(x, h).

Clearly, equations of motion (3), (5) can be represented
in the Hamiltonian form

an(xht) 9 8H [
ot oxL5Q(x, h, )

QD OoH [
axLan(x, h, t)r

In order to passto the canonical form, it is sufficient

dQ(x h, t)at =

to replace the variable Q= —%—i} ,

tions written out in terms of the function @ acquire the
standard form

whereupon the equa-

on(x h,t) _ oH
ot ©3d(x, h, t)’
(6)
0P(x, h,t) _ OH
ot on(x, h,t)’

Here, we may consider the quantities n and @ as the
generalized coordinate and the generalized momentum,
respectively.

The equations obtained are convenient for consider-
ing the interaction of waves with flows and vortices. If
we are interested in the development of disturbances
against the background of a given flow, then we should
use the expansion of the Green function entering into
the expression for the Hamiltonian in terms of a small
nonlinearity parameter. In this case, it is convenient to
pass to another Hamiltonian structure expressed in
terms of variables that describe perturbances.

Following [4], in which similar variableswereintro-
duced for the description of the wave motion for in-
layer constant-vorticity flows, we determine the vari-
able @ according to the formula:

; - a(vn) _9¢

Q(x, h,t) =v(h) + Sh "3y
Here, v(h) isthe vorticity of the unperturbed flow. The
variable of the type of the n-coordinate remains the
same. For in-layer stratified fluid models, the function ¢
corresponds to the difference of hydrodynamic poten-
tials on each side of the interface [11, 4].

The variational derivatives of the Hamiltonian H
with respect ton and @ are

oH

oy - W h ) -ulxh, t)‘Mxth) o
oH ht
Sy U h t)@tp(x ) v (hn(x nif

+N*(hyn(x, h, t). (8)
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It follows from Egs. (7), (8) that the equations of
motion (3) and (5) are representable in the following
Hamiltonian form:

0 OH oH

d - _
Pt = s T Vsex )
n(xth) = 5(p(6'_'t % (10)

where the dot denotesthe differentiation with respect to
time.

Here, the variables turn out to be noncanonical.
However, asarule, solving particular problemsisbased
on the subsequent representation of the systemin terms
of normal canonica variables. In these variables, the
quadratic term of the expression for the perturbance
energy hasthe simplest form [5, 6].

The linearized equations are derived from the sys-
tem of equations (9), (10) when weretain the basic qua-
dratic term in the expansion of the Hamiltonian H in
powers of the variables ¢ and n. Thisterm hastheform

H = 5[ (oSl +2v (e,

+(N*+ v (h)v,(h))n?)dxdh,

where

So(x, h)] = J’é(x—x‘, h—h")e(x, h")dx'dn'
and
S(x—x, h—h)
= ‘%_[J’lklexp(ik(x—x'))exp(—|k||h—h'|)dk.

The system of equations (9), (10), like system (6),
can be employed to describe the perturbance dynamics
of both continuously stratified flows and flows with in-
layer stratification. Substituting into Egs. (9), (10)
expressions for the Brunt—Véisdla frequency and for
the derivative of the unperturbed vorticity with respect
to h, which is represented in the form

N(h) = z N;3(h—h,),
j:l (11)
v (h) = ZAvjé(h—hj),
i=1

we arrive at the eguations for perturbances in the in-
layer stratified flows, which were found previously
in[4].

In order to study flows with more or less arbitrary
dtratification, we may use the generalizing model (11)
describing the Brunt-V & sdléfrequency and the deriva-
2001
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tive of the vorticity as a sum of functions concentrated
near the levels h;:

N() = 3 Nih=h), vih) = 5 vy(h=hy). (12)
i=1 j=1

If the parameters of an unperturbed flow are givenin
the form of (11) or (12), then the Hamiltonian can be
represented in the form H = H, + H,,,, where the first
term is the sum of Hamiltonians for elementary inter-
acting layers, while the second describes the interlayer
interaction. In the case of a proper choice of a partition
adequate to a particular problem, we are able to study
first the perturbance development in individual layers
and, furthermore, to take into account the interlayer
interaction.

On the basis of this method, we can study linear
waves being developed against the background of a
homogeneous (in density) flow. Although the approach
being used for solving this problem is equivalent to the
method based on the solution to the Rayleigh equation,
this approach turns out to be more convenient for anal-
ysisand makesit possibleto clarify certain points open
to questions until now.

We next assume that the derivative v, of the main-
stream vorticity differs from zero only in the narrow
layer with the thickness Ah in the vicinity of the layer h,
and that thisthicknessis small compared to the charac-
teristic wavelength in the horizontal direction. We also

assume that v, = &

Ah
differsfrom zeroonlyfor [E]< 1. Let aIsoIp(E)dE 1

We take the velacity profile in the form v(h) = v(h)) +
VAhV(E), where V(§) = & +aA(&), U(E&) = A"(§). We
additionally introduce the parameter a= & A ) =
0(&), then we are dealing with aflow model that exhib-
its a vorticity jump. We assume the initial perturbance
to be concentrated in this layer as well. Substituting
quadratic Hamiltonian H, into Egs. (9), (10) and
assuming N to be zero, we arrive at the system of linear
equations with respect to ¢ and . In terms of the Fou-
rier transform over x, the equation for @ has the form

09, eaf T
Soriaglo+ et + <ge

=iasganeXp(—equIE—E'I)cp(E')dE', (13)

k .

k_o is the
dimensionless wave number, and V, = kyvv(hy). Asis
seen, the properties of Eq. (13) are governed by the

dimensionless parameters e = k)Ah and a = %

where T = vt is the dimensionless time, ¢ =

DOKLADY PHYSICS Vol. 46 No.10 2001

745

Equation (13) is very similar to that describing
wavesin plasmafree of magnetic field. In this case, the
quantity ¢ plays the role of an electron distribution
function. By virtue of thisfact, it is reasonable to apply
methods developed in plasma theory. These methods
were used by various authors while studying waves in
hydrodynamic flows [13]. Nevertheless, in our
approach, parallels with plasma theory are especially
obvious. Weinitially assume that the parameter ais on
the order of unity and consider the hydrodynamic
approach. We search for the solution in the form ¢ =
g9, Using the smallness of the parameter e and pre-
serving in Eq. (13) basic terms, we obtain

Do il

+§f¢(sgnq—eqlz—a'|)dz' = 0. (14)

We also assume (&) = % [B(E + 1) —6(& — 1)]. Integrat-

ing (14) over & and introducing the notation Q = w- gV,
we arrive at

qj _Equ_

3ea
= 9p, = 0,

H0 +asgng -
where

= [®dE, A, = [EOUE, A, = J’EqudE.

We obtain two subsequent equations multiplying (14)

sequentialy by & and &2, integrating, and preserving

only basictermsin e:

sgngA,
6

As aresult, the dispersion equation acquires the form

QA, =0, QA,+ = 0.

2
D(Q) = [Q+%(sgnq—eq)}§2+elq% = 0.

The discrete-mode frequency is determined (to within
the terms on the first order of smallness in €) by the
expression

asngnq 3€fq (15)

For € = 0, we have a case of avorticity jump. Within
the limits of the accuracy used by us, the mode deter-
mined by the second root isnot reliable. In order to ana-
lyze the low-frequency region, we should use a method
that, in analogy with plasma theory, may be called the
kinetic approach. We now consider the parameter a to
be small (on the order of €). Retaining only basic terms
in Eq. (14), we have

(Q—eqé)d + gsganQJdE‘ = 0,
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from which it follows

asgnq
P+ I
2(Q —eqg)

Upon integration, we arrive at the dispersion equation
in the form

ICDdE' = 0.

D(Q) =1+ gsgnq[ln(Q +eq)—In(Q—eq)] = 0.

The position of the pole associated with the discrete
mode is determined by the expression

_ Celdin
Q= —eqcothD a0

Asisseen, the poletendsto qor —qasa — 0, depend-
ingonthesign of a. If a> €, we have an expression that
coincides with Eqg. (15) in the principal order. In addi-
tion to the pole, the dispersion equation determines
branching points associated with the wave packet that
corresponds to the continuous spectrum [14, 15]. At
small values of the parameter a, the discrete-mode fre-
guency isvery closeto this packet and, for finite times,
cannot be considered separately fromit. Inthiscase, the
behavior of the summary wave depends greatly on the
sign of the vorticity derivative [7]. Moreover, the dis-
crete-spectrum mode can either transform into a wave
packet of the continuous spectrum or become unstable
as aresult of interaction with another layer. Thus we can
conclude that the approximation of the continuously
stratified flow by the finite-layer model is possible when
parameters characterizing the flow at high vorticity-gra-

dient levels satisfy the condition % ~1,k/Ah<< 1. This

condition, infact, coincides with the condition of appli-
cability of the hydrodynamic approach.
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Studies of tendenciesin the development of airplane
vortex wakes became rather urgent in recent years. This
is associated with the fact that aflying aircraft produces
along-lived and extended (up to 10 to 12 km) vortex
wake in the atmosphere, which may constitute a threat
for other aircrafts. At the present time, methods of
mathematical simulation of airplane vortex wakes that
take into account effects of atmospheric parameters,
namely, atmosphere stratification, turbulence, side
wind, etc. [1-3] are devel oped.

The problem of theinteraction of the airplane vortex
wake with the Earth’'s surface in takeoff and landing
regimes acquired great importance due to continuously
rising airport loading, which results in reduced time
intervals between subsequent operations of airplanes.
In thislight, studies of the behavior of the airplane vor-
tex system in the vicinity of airport surfaces are not
only of scientific but also practical importance.

In theoretical investigations of the interaction of a
pair of oppositely rotating vortex bundleswith ascreen,
the two-dimensional unsteady problem is solved in a
plane perpendicular to the vortex-bundle direction. The
initial vortex system (including the diameter of vortex
bundles, the distance between the bundles, their atitude
with respect to the screen surface, and the distribution
of tangential velocities in the vortex bundle) is either
given arbitrarily or is borrowed from experiments. The
clearest data are obtained in the course of numerically
solving Reynolds equations closed with the help of a
certain differential turbulence model. The results of
numerically simulating the two-dimensional problem
on the interaction of a vortex pair with a screen [4, 5]
make it possible to describe basic features of thisinter-
action. We imply the flow separation from the screen,
the interaction of the primary and secondary vorticity,
and the creation of the loop-shaped tragjectory for the
motion of primary vortices.

At high Reynolds numbers, the method of discrete
vortices combined with the methods of boundary-layer
theory can be successfully applied for solving the prob-

Sate Scientific Research Center TSAGI,
ul. Radio 17, Moscow, 107005 Russia

lem on the interaction of the airplane vortex wake with
the Earth’s surface. In particular, this is stipulated by
the fact that in such a case the flow contains domains of
both the concentrated vorticity and the potential flow.
Even the first experimental studies of the wing vortex
system in a wind tunnel demonstrated that, near the
screen, not only the drop of trailing vortices but also an
increase in the distance between them occurs (as fol-
lows from the theory of an inviscid fluid). In addition, a
lift of both vortices (their jump upward) to a certain
level appears with a subsequent motion along a loop-
shaped trajectory. It was shown that the appearance of
thistrajectory is caused by the separation of the bound-
ary layer that arises on the screen in the case of atrans-
verse (wingspan) flow induced near the screen surface
by the wing vortex system. While separating the bound-
ary layer, secondary vortices coming down into the
flow interact with the primary vortices, and as a result
of this interaction there arises a loop-shaped trgjectory
in their motion.

We consider the quasi-three-dimensional schemati-
zation of the flow. In other words, we analyze the
behavior of the vortex system in a number of cross sec-
tions corresponding to different time moments. We list
characteristic features of this method used for numeri-
cally smulating the airplane vortex system near the
Earth.

1. Theinitial airplane vortex systemisdeterminedin
the framework of the linear theory of the discrete-vor-
tex method. Thismethod allows usto simulate the wake
near the airplane, including the vortex wake of the hor-
izontal tail and the process of the convolution of this
wake into two centered vortex bundles for an airplane
with a given geometry, given angles of attack for the
wing and for the tail, and given the flap inclination
angle. In the case of the existence of aweak side wind,
the vortex system of the vertical tail should be taken
into account, which is calculated in the linear approxi-
mation. In these cases, a plate-shaped schematization
of the fuselage, wings, and the empennage is used [2].
Here the circulation and shape of the vortex bundlies
and the vel ocity distribution inside and outside of them,
aswell asthe position of these bundles along the stream

1028-3358/01/4610-0747$21.00 © 2001 MAIK “Nauka/ Interperiodica’
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at various distances from the Earth’s surface, are deter-
mined.

2. The wing spanwise flow (induced by the vortex
bundles, i.e., by the primary vortices) near the Earth’s
surface is used below for calculating parameters of the
boundary layer and its separation in the cases of both
the absence and the existence of a weak side wind.
Using the values of the velocity at the outer surface of
the boundary layer in the separation cross section u,
we can find the circulation of the secondary vortices
coming off into the flow:

_ s,
M= ggoht =

2uzz(;At.

Allowing for the roughness of the runway surfaceand a
large extension of the boundary-layer development
domain that attains severa tens of meters, the boundary
layer on this runway may be assumed with a high
degree of confidence to be completely turbulent.

3. Furthermore, in the framework of the discrete-
vortex method, the unsteady problem on theinteraction
of primary and secondary vortices is solved with their
dissipation taken into account. Strictly speaking, the
boundary layer in the problem under consideration is
unsteady. However, in the framework of the approxima:
tions used, we may restrict our analysis by the quasi-
steady approximation.

4. In the absence of a side wind, the distribution of
the velocity induced by the vortex bundles on the
Earth’s surface is symmetric with respect to the sym-
metry plane z= 0. In the presence of the side wind, the
pattern becomes asymmetric, and the calculation of the
boundary layer is performed on either side from the
critical point on the Earth’'s surface. In this case, the
wind velocity is assumed to be constant along the ver-
tical coordinate, and its effect is reduced to the wind-
ward shift of the vortex system.

5. In order to obey the impenetrability condition on
the Earth’s surface, fictitious mirror-reflected vortices
are added into both the basic vortex system and the sys-
tem of secondary vortices. With the help of the vortex-
bundle circulation determined by the above method, we
can find the distribution of the transverse (wingspan)
velocities induced by these vortex bundles. This
approach makes it possible to calculate parameters of
the turbulent boundary layer, the position of its separa-
tion point, and the velocity on the outer edge of the
boundary layer in the separation cross sections and to
find the value of the secondary-vortex circulation at
each time instant.

We now consider the approximate method for the
determination of the circulation dissipation in the pri-
mary and secondary vortices and allow for the effect
of the atmospheric turbulence on the circulation of

BELOTSERKOVSKII, GINEVSKII

these vortices. For the primary vortices, we have the
expression

A0
pD4 tD}eXpD_ bD (1)
Here, and ', are current and initial values of the pri-
mary-vortex circulation, respectively; tistime; qisthe
root-mean-square vel ocity pulsation in the atmosphere;
b,(t) is the distance between the centers of the primary
vortices; r = [(z— z)*> + (Y - ¥)*] is the radius-vector
modulus for a point with the coordinates z and y with
respect to the vortex with coordinates z, y;; v,, is the
coefficient of the turbulent viscosity; and ¢ isthe empir-
ical multiplier. Thefirst multiplier in theright-hand side
of expression (1) takes into account the circulation dis-
sipation caused by the action of the viscosity of the
medium and of the turbulence inside the vortex bundle.
The second multiplier in expression (1) allows for the
circulation variation with time, which is caused by the
effect of the atmospheric turbulence. According to the
calculations and to results of processing the experimen-
tal data[9], the average value of v, for the vortex bun-

die reaches approximately 0.25 m?/s. This value is
obtained as aresult of replacing the kinematic viscosity
v of the medium by the corresponding coefficient of the
turbulent viscosity v, in the well-known approximate
formulafor arectilinear vortex fiber [7].

We assume that an expression with a structure simi-
lar to formula (1) can also be presented for secondary
vortices in the separation cross section of a turbulent
boundary layer. However, one difference exists: this
expression involves the value of the characteristic tur-
bulent viscosity in thetrailing point of the vorticity cen-
ter v, at adistancey = d. from the Earth’ssurface (o4 is

the thickness of the boundary layer in its separation
Cross section):

o) = (e () XA
K(t) = 1—exp[—%] @)

Here, b,(1) is the distance (along the horizontal z-axis)
between secondary vortices. The difference between
formulas (1) and (2) consistsin the fact that the circu-
lation I, (t) decreases with time, whereas the circula-
tion I,(t) for the boundary layer initially increases
(due to the summation over At) and then decreases due
to dropping K(t).

In order to determine parameters of the turbulent
boundary layer and the position of its separation point,
we exploit one of thewell-known integral one-paramet-
ric calculation methods [9].

In accordance with the procedure described, the far
vortex wake of a Boeing-727 airplane was calculated
DOKLADY PHYSICS Vol. 46
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for the first time with the Earth’s boundary layer taken  the 120th s (the back view) at aflight altitude of 40 m.
into consideration. The code operation timewas 15to  The flight velocity was V,, = 72 m/s, a side wind was
20 s, depending on theinitial conditions, using an IBM  absent, the wing angle of attack reached a = 8.1°, and
PC with aPentium 111-550 processor. Figure 1a(above) the flap inclination angle was 25°. These calculations
shows the positions of the far vortex wake and of sec-  were performed for thevaluev,,= 0.25 m?/s. Theresults
ondary vortices at the instant of time corresponding to  obtained illustrate the development of the loop-shaped
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trajectory for the motion of primary vortices. Analysis
of the calculated data corresponding to different flight
altitudes shows that allowance for the effect of the
boundary layer significantly changes the position of
primary vortices, this effect being enhanced with a
decrease in the flight altitude. Figure 1a (below) dem-
onstrates the altitude y and the coordinate z of the pri-
mary vortices as a function of time. Figure 1b presents
the calculated data corresponding to the same flight
conditions as in the case of the existence of asidewind
with the velocity u,, = =1 m/s. Thin lines in Figs. la
and 1b correspond to the calculation results obtained
without regard for the boundary layer on the Earth’'s
surface.

We now compare the data of the calculation and of
the flight experiment carried out in 1995 in the Mem-
phis airport (USA) for a Boeing-727 airplane under
the following conditions: the flight atitude, flight
velocity V,,, wind velocity u,, angle of attack a, and
flap inclination angle were, respectively, 34.8 m; 72 m/s,
-1.3m/s, 5.6°, and 25° [11]. The satisfactory consis-
tency of the calculated results with the experimental
data for the vertical position of the vortex bundles (see
Fig. 1c) isnotable.

We now present the calculation results for the far
vortex wake of the Boeing-727 airplanein the presence
and the absence of a side wind. The flight conditions
were the same asin Figs. 1laand 1b, except for the ele-

vated degree a

Vo
where V, = 1.44 m/s is the dropping rate of the vortex
pair at the initial instant t = 0. The conventional deter-

= 0.75 of the atmosphere turbulence,

mination of the turbulence degree yields V& = 1.5%.

Figures 2a and 2b illustrate the relevant dependences.
From this it follows that the elevated atmospheric tur-
bulenceleadsto adecreasein both the height of the vor-

BELOTSERKOVSKII, GINEVSKII

tex's upward jump near the Earth's surface and the
transverse distance between the vortex bundles.
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1. PROBLEM STATEMENT

We assume that a 21e-periodic motion exists in an
autonomous Hamiltonian system with two degrees of
freedom and that Hamiltonian function in the vicinity
of the tragjectory corresponding to this motion is ana-
Iytic. With a proper choice of the canonically conjugate
variables¢; and n; (i =1, 2), the solution corresponding to
undisturbed mation can be represented in the form [1]
&M =t+¢&,(0),n,=¢&,=n,=0, and the Hamiltonian
function will also be 2teperiodicin &, .

Two characteristic indices of the linearized equa
tions of disturbed motion are always equal to zero,
while two others, i\, are assumed to be imaginary.
When the value of 3A isinteger, i.e., athird-order reso-
nance takes place, the orbit of the periodic motion s, as
arule, unstable [2]. However, this instability may hap-
pen to be only local, because trajectories of disturbed
motion can perpetually stay inacertain restricted vicin-
ity of thetrajectory of undisturbed motion. Inthisstudy,
we obtained asymptotic estimates for the size of this
vicinity in the case when the equations of motion con-
tain asmall parameter.

2. HAMILTONIAN OF DISTURBED MOTION

L et Hamiltonian function depend on the parameter €
and be analytic for sufficiently small values of this
parameter, while the value of 3A differs from an inte-
ger n by the value on the order of €2. We set

n—3\ = €°a
and assume that for € = 0 Hamiltonian function isinde-
pendent of &,. This assumption is acceptable for many
problems of mechanics. It holds, for example, for the
circular restricted three-body problem.

We represent the Hamiltonian H of disturbed motion
as a series in powers of n;, &,, N,, and €. Thereafter,
using the real, analytical with respect ton;, &,, n,, and
g, canonical change of variables, &, n,, &, N, — ¢,

Institute of Problems in Mechanics,
Russian Academy of Sciences,
pr. Vernadskogo 101, Moscow, 117526 Russia

r, b, P, (obtained, for example, by the Deprit—Hori
method [2]), we bring H to the form

1
H=ry+5M(d5+ p))
+ e[ (acosnd, —bsinnd,)q,(qs — 3p)

+(asinng, + beosnd ;) p,(ps—302)] + Cpor: (1)

1 1 , =
+ écllrl(qg + pg) + Zcoz(qg + pg) + Z sngk) + 05.

k=1

Here, H isthe form of the fourth power with respect

to |r,|'2, q,, and p, and coefficients that are 2T-periodic
ing,, and O isthe sum of termswhose power isno less
than 5. The quantities a, b, ¢,, ¢,;, and ¢, are the con-
stant coefficients, among which a and b are represent-
able by the convergent seriesa=a, +€a, + ... and b=
b, + €b, + ... . The canonical transformation

o e 1 o o~
61 = 1 1y = Fi-Zn(@+ P2),
0, = 00080 + p,sing, )
~ . ~ 1 -
P, = ~G,sin¢ + P,cos¢ = 3ndy

ceases the dependence of third-power terms on the
angular variable ¢,, bringing Hamiltonian (1) to the
form

~ 1 ~ ~ ~ ~
H = T, 5e"a (@ + P) + e[ady(& - 3p2)

~ o~ ~ ~ 1 ~ o~ ~
+bpy( p§—3q§)] + azori + éallrl(qg + pg)
1 i 2?2 e ki (k)
+780(@+ ) + Y eHa + Oy,

k=1
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2
8y = Cp, an = Cll_énCZO’

1 1
Ay = §n2C20 - éncn + Coo.

Let a,, # 0. By making another canonic transfor-
mation

b, = ow,, T, = ek’apl,,
0> = efaw] /2P, SIN(Y + Yo),
P> = €Klag] " ./2p,cos(W + ),
K = Zm, W= 092+%n(1—0), ®)

0 =99nay,, a,= —%ZKsinSqu,
b, = %KCOS?)LIJO

and going to the new independent variable T = k?|a,|t,
we obtain the Hamiltonian of disturbed motion in the
following form:

H = HO1) +e2H?(,, p,, 6,)
+ ESH(S)(IL P2, Wy, 92’ 8)’

H® = agkl,,
“

H® = -vp, + p§’2c05392 + p§ + Dby 11, + byl iv

vV = (anZK_Z, by = 31136; by = azoasg-
The quantity |, can have arbitrary sign, whilep, = 0.

X2

(2)
< % é X1

()

Fig. 1. Phase portraits of system (5) in the plane x; = ,/2p, cosB,, X, = ,/2p, sin6, for the cases (a) V < -3 (b) v = —

© —3—95 <% <0,(d) ¥ =0,and (&) ¥ >0.

A
A\
D

3. TRAJECTORIES
OF AN APPROXIMATE SYSTEM
We now consider an approximate system with
Hamiltonian function H® + g2H®, In this system, the
quantity I, is constant, while the variables 6, and p, are
described by the equations

de, _ ,ay dp, _ 0y
&t - Cap, dr - tae, )
in which
y = —Up, + p3-c0s30, + p5. ©
Here, we introduced the notation

The system of equations (5) hastheintegral y=h =
const. The behavior of its trajectories has been exam-
ined in detail (see, e.g., [3] and references therein).
Phase portraits of system (5) are shown in Fig. 1. The
singular point x, =X, = 0 correspondsto the unperturbed
periodic motion. Next, we will be interested solely in
the trgjectories that envelop all singular points of sys-
tem (5). From the results obtained in [3] it follows that

for such trajectories, a point with coordinates v and h
must be located in the region D of theplane v , h, which

is defined by the following conditions. When v < —3% ,
thenh>0; when v > —3%, h>f(v), where

_27-18u+ 8u¥? —?
4096 ’

The region D is shown schematically in Fig. 2.

f u=32v+9. (8

(b)

9

32’ 32’
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On the trgjectories being considered, the inequali-
tiesO <r < p, < Rare satisfied. The quantitiesr(v, h)
and R(v , h) are real positive roots of the equations

r’+r¥_9r-h =0, RR—-R¥-UR-h = 0. (9

When h = 0, we have a single real positive root for
each of these equations. However, when h < 0, each of
the equations hastwo real roots; in thiscaser and Rare
equal, respectively, to the maximum real roots of the
first and second equations (9).

If the condition p,(0) < r is satisfied at the initial
moment T = 0, then the inequality p,(t) < Risvalid for
alt=0.

We will write Hamiltonian (4) for equations of
undisturbed motion in new variables|; and w; (i =1, 2),
which, for the approximate system, are the action—
angle variables in the regions filled with trajectories
enveloping all singular points of system (5). Sincew, is
a cyclic coordinate in the approximate system, one of
these pairs of variablesisthe pair |, w,. Hamiltonian (4)
written out in variables |; and w; is denoted by

F=F20)+eF(, 1) 10
+83F(3)(|1’ [, Wy, Wy, €).

Here F© is the function H® from (4), F® = b,,1> +

(4, 1,), and @ isfunction (6) represented in new vari-
ables. Thisfunction isinverse to the function

I,(h) = fpz(eza h)d6,, (11)

where p,(6,, h) isthe value of the momentum p, on the
considered closed tragjectories of the approximate sys-
tem (the dependence of p, on 1, in (11) isnot indicated).

Hamiltonian function (10) is 6Te-periodic in w; and
21eperiodicinw,, and isanalytic for 1, > 0 with respect
to its arguments. When € = 0, function (10) depends
only on one of the action variables (on |,). Therefore, in
the problem at hand the case of the degeneracy of this
problem isrealized [4].

4. ESTIMATES OF THE VALUES
OF ry(t) AND @3 (t) + p; (1)
We can verify that Hamiltonian (10) satisfies the
conditions
oF"
oI,

(2 2(2)
<0, ¥ 4o, Q£;¢0. (12)
aIZ alz

Therefore, according to [4], in the case of disturbed
motion the quantities 1,(T) (i = 1, 2) perpetualy stay
near their initial values:

[li(t) = 1;(0)| <ce, c=const. (13)
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Fig. 2. Region D of the existence of tragjectories enveloping
all singular points of the system of equations (5). Part of the
plane lying outside the region D is hatched.

It follows from (13) and from formulas (2) and (3),
which describe a change of variables, that for all t = 0
the equality

1 -
ry+2n(0;+ p3) = K ag(11(0) + O(e))

isvalid. Therefore, the quantity r, + %n(qg + p;) may

be caled an almost integral of the equations of dis-
turbed motion. Thisimplies that for all t > 0 this quan-
tity differs from itsinitial value by at least 3 orders of

magnitude with respect to ¢ if r,(0) and q§ 0) + p§ 0)
have an order no less than 2.
The presence of this integral makes it possible to

reduce the problem of estimation of the size of the
region where trajectories of disturbed motion are con-

centrated to finding the estimate of the quantity qg ®)+

2
P2 (1).

First, we consider the case where the coefficient b,
in Hamiltonian (4) isequal to zero. From (7), it follows
that v = v; i.e., the quantity v does not depend on ini-
tial conditions and is completely determined by the
parameters of the system under consideration. Taking
into account the fact that, according to (13), I,(t) =
1,(0) + O(¢) for dl initial conditions, we obtain, using
the results of Sections 2 and 3, the following asymp-
totic estimates. When

02(0) + p3(0) < 2e’k *agy[r (v, h) —3.],
the inequality
0a(t) + p(t) < 26°k*ag[R(V, h) + 3,] (15)

issatisfied for al t = 0. Herer and R are determined by
Egs. (9), and positive values of &, are infinitesimal for
small € and tend to zero more slowly than €. It can be
assumed, e.g., that 8, = &, = O(X), where x = €! B0 <
B<D.

For the given v, inequalities (14) and (15) define a
one-parameter family of estimates. The parameter in
thisfamily isthe quantity h, which is chosen so that the
point (v, h) fallsin theregion D (Fig. 2). When b,, # 0,

(14)
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estimates (14) and (15) remain valid, but the quantity v
must be replaced by the quantity v defined by Eq. (7),
which dependsoninitia conditions. Using (13), we can
represent this equality in the form

Taking (2) and (3) into account and introducing the
notation

2_-2

ri(t) = ek agx(t), at) + py(t) = e’k agy(t),
X(O) = XO! and y(O) = yO!
we obtain, with an accuracy on the order of ¢,

~ o~ 1
V=00 Yo) = V-bugotznyg.  (16)
The quantity x can have arbitrary sign, and y = 0.

Let thevauesof v, b;;, and n appearing in the right-
hand side of (16) be known. Wefix acertain value of the

parameter h exceeding 4%;6 (with such a choice, a

point with coordinates h and v lies in the region D of
Fig. 2 at any v ), and consider the inequality

Yo<2r(v, h), (17)

inwhichr isdetermined by thefirst equationin (9) and
v isgiven by formula(16). Inthe half-planey, > 0, ine-
quality (17) holdsin acertain region G. Let X, = X3 , Y,

= ygs, and the point (x5, yg ) lies in the region G
together with its x-vicinity. Then for these initial data
(and for sufficiently small €), trgjectories of disturbed
motion satisfy the condition that, for dl t = 0, inequality
(15) isvalid in which v isthe value v* of function (16)

at the point (X3 , Yo )-

The agorithm described here can be slightly refined
if we divide the half-plane y, > 0 into the regions v <
—3% and v > —3% and take into account that in this
caseh > Ofor thefirst region and h > (v ) for the second,
where the function f(v ) is determined by equality (8).

5. EXAMPLE

As an example, we consider the problem of bound-
edness of asteroid trajectories in the Cassini gap of
Minerva. The ratio of the mean motion of asteroids in
this gap to Jupiter’'smean motion is closeto the rational
number 5 : 2; i.e, it corresponds to the third-order res-
onance [5]. We model the orbits of asteroids using the
Poincaré first-order periodic solutionsfor the restricted
three-body problem.

Units of measure are chosen in such a manner that
Jupiter’s revolution period, the distance between the

MARKEEV

Sun and Jupiter, and the sum of their masses are equal
to unity. Jupiter's mass is denoted by €. For € = 0, the
Poincaré orbits become circular orbits with aradius p;

the value p = p, = 3&/27% = 0.54288 corresponds to the

above 5 : 2 commensurability.
The quantity A is calculated by the formula

A = w(p) +eAy(p) + O(E?),

where w = (1 — p*?)7!; the expression for A, is given
in [6]. Assuming that

- rfoo(po)T
P = Po—€A(Po) dp, O

weobtan A = g + O(g?).
The calculations show that in Hamiltonian (1),
a, = —-1.21567, b, = 0,
Cyp = %cﬂ = Cp = —3.39302.
According to formulas of Section 2, we find

8.20 = —:28.11 = ?16102 = _339302,

K = 343842, b, = -3

and expression (16) takes the form
V = V(X Yo) =V+3XO+SYO- (18)
Theregion G is specified by the inequalities

L )
Yo 0. Xo>—30 + 5" —3 73

Let the initial disturbances of the quantitiesr,, q,,
and p, be chosen so that the point (x5 , Y5 ) with

Xt = 0.192349¢7°r,(0),

(19)
and y; = 0.1923495%(q5(0) + p5(0)),
lies in the interior of the region G at a distance no
smaller than x from its boundary. Then for al t > 0 we
obtain the estimate

o5 (t) + p5(t) < 10.39779¢’[R(v*, h) +3,],

where v* is the quantity defined by formula (18) and
calculated at the point with coordinates (19).
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In [1], Saint-Venant problems for anisotonic bars
with rectilinear and cylindrical anisotropy were thor-
oughly studied on the basis of a semi-inverse method.
In the present paper, the results of an analysis of Saint-
Venant problems for a bar with a screw anisotropy are
given. These results are based on the method of homo-
geneous solutions and spectral operator theory [2, 3]. In
particular, we can imagine a material with the screw
anisotropy obtained as a result of a helical winding of
thin fiber layers made of a stiff material with their
simultaneous covering with a polymeric material. Thus
we deal with a fibrous composite having screw anisot-
ropy with respect to the cylinder axis. Homogenization
methods [4, 5] lead to transversely isotropic materials
with their symmetry axis aligned along the tangents to
the screw spirals. Bars with the screw anisotropy, and
also naturally twisted ones, can be used astransformers
of longitudina strains into longitudinal-torsiona
strains and, vice versa, as transformers of longitudinal
vibrations into flexure-torsion vibrations. At present,
there exist examples of devicesbased on these phenom-
enathat are used in engineering practice.

BASIC RELATIONSHIPS

We consider a cylindrical body occupying the vol-
umeV = Sx [0, |], where Sand | are the cylinder cross
section and length, respectively. We denote the side sur-
face of the cylinder asT = dS x [0, |], where 0Sis the
boundary of S. We associate the origin of the Cartesian
coordinate system X, , X,, X; = Zwith the center of grav-
ity of one of the cylinder end walls. In order to describe
mechanical properties of the body, we introduce a con-
comitant cylindrical coordinate systemr, 6, z, whichis
linked with the basic coordinate system by the relations

X, = rcos@costz—rsindsintz, "
rcosasintz+rsinBcostz.

X2

Rostov Sate University,
ul. Fridrikha Engel’sa 105, Rostov-on-Don, 344711 Russia

Here, 1= EhT_T istherelative twisting angle (twist) of the
screw spiral, and hisits step. Furthermore, these quan-
tities are considered to be constant at all points of the
cylinder.

For r = const, 8 = congt, relationships (1) are para
metric equations of a screw line. The radius vector for
points of the screw line can be represented in the form

R=re| +z€;.

Here, €, = e, e, = €, €; = €, are unit vectors of the
concomitant coordinate system. We associate with
points of a screw line a natural frame e, = n, e, = b,
e; =t, wheren, b, andt are the unit vectors of the prin-
cipal normal, of the binormal, and of the tangent,
respectively. The orthogonal matrix for the transition

fromthe g basisto the € basis has the form

-1 0 O , ,
A=10 -1/gxig|, 9 =1+x, x=r1r.
0 x/g U

We consider the material of the cylinder to be
locally transversely isotropic, with the symmetry axis
of mechanical properties directed along the tangent to
the screw line. We determine the propertiesinthe g basis
by five easticity moduli ¢,;, C;, C;3, C33, @Nd Cyy [1]. AS

aresult of the passage from the g basisto the € basis,

we arrive at the following relations for the generalized
Hooke's law:

Oy = €116y + C12€p T+ €138 + 2€5€
Ogg = €126 + C22€0p + €23€4 + 2C25€0,,
Oz = €136 + 23699 + C33€4 + 2C35€;, 2
Op, = 2¢44€95 017 = 2(C556 7+ C56€0)s
Org = 2(C568r2 + Co6€r0);

Cy =Cjp,  Cpp =(Cpp + C13X°1/0%,

Ciz = (Cpz+ CX°]/QP,  Ciy = X(Cj3 — C)/P,

1028-3358/01/4610-0756%$21.00 © 2001 MAIK “Nauka/Interperiodica’
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Ca = [Cyy + (2C13 + 4Cu)X + C33X*1/g,
Co=[Cy3 + (Cyy + C33 — 4Cyy)X* + Ci3X*)/0",
Cos = [(Cy3 + 2C4y — C )X+ (C33 — Cp3 — 2C4)X°1/0%,
(3
2¢, )X/,

Ca3 = [C33 + 2(Cy3 + 2C4)X* + €y, X'/,
C\'?>4 = [(C33 - 2C44)X + (C44 + 2C13 —

Cas = [Cyy + (2C;3 + €y + C33 — 204X + CuX*1/0r,

Ci3—

Css = [Cyy + 2(Cy; — C)X]/T,
2(c;; — Cp)l/g?

Cip) + CuX?1/0%.

The components of the strain tensor € and the equa-
tions of equilibrium in the basis of the concomitant
coordinate system can be obtained with the help of the
relations

Cs = X[Cys —

Ces = [2(Cy; —

2e=00u+(O0uw,
0:-0=0, O=e0,+ ey '0y+e(0,—10y).

“)
Q)
Here, u = {u,, Uy, U,} isthedisplacement vector; ¢ isthe

stress tensor; and 0,, d,, and dy are derivatives with
respect to the corresponding variables.

ELEMENTARY SOLUTIONS
AND THE GENERAL REPRESENTATION
OF THE SOLUTION

We assume that the side surface T isfree of stresses:

nrorr+neor9 = 0! nr0r9+n6099 = 01

0,
where n, and ng are the projections of the vector corre-

sponding to the unit normal to the surfacer .

Using relationships (2)—«5), we can represent the
equilibrium equations with respect to the displacement
vector and boundary conditions (6) in the form

L(d,)u=0>Cu +9,Bu+Au = 0,
N(@,u|, =(3,G+E)u = 0.

Here A, B, C, E, and G arethe 3 x 3 matrix differentia
operators expressed in terms of the variables r and 0
with the coefficients depending only onrr.

While searching for the solution to problem (7) in
theformu = e2a(r, 0), this property of the matrix coef-
ficients makes it possible to reduce the solution to the
spectral problem on the cross section

ZMa={L(M)a, Na} =
Three following statements are valid.

Statement 1. The spectrum of problem (8) A =
Ny N\ |, where A\, consists of four-fold eigenvalues,

(6)

r'lro-rz + necez =

()

®)
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namely, A\, =0, A, =it,and A_, =—it; A\, isthe countable
symmetric set of eigenvalues A, for which Re(A,) # 0.

Statement 2. Eigenvalues from A, corresponds to
12 elementary solutions to problem (7):

u=a, Ww=a, U=€Y, u,=uU},
Us = €"(za; + a;), Ug= Uz,
U; =28, +8;, Ug=27a+ &, )
_e'TZBZ +za5+a%, U= U3,
2,
eu[{!ag 22 +Zag+anD, Upp = U3

Here, the superscrl pt * correspondsto the complex con-
jugate quantity;

o _ rzeieezl
& =6, H=r6 &=€YG+i6) &=—"p—;

the vector functions a;, ag;, &, and a,, are the solutions
to the following two-dimensional problems on the cyl-
inder cross section:

Ag.¢=F, Ea.,e=fj |

=1,2, (10)

C
w 13— 23003

f; = {—n,Cy3, —NgC33, O} , (11)

F,={-Cyutr, 0,0}, f,=1{0,0,-NngCyTr},

L(lT)aJ+6= FJ’ Eaj+6=fj, J :3, 5,
F;=—2itC +B)a; —Ca;, f3=-—Gas,
Fs=—-QitC+ B)a, — Ca;, f5s=-Gay;

and Risacertain characteristic linear scale.
The next statement follows from the theorem on the
compl eteness of the system of elementary solutions[2].
Statement 3. Any solution to problem (7) can be
represented in the form

u = ug+u,
(12)

6 6
= Z Xmum+ z Cmum+61 = zckuk-
m=1 m=1 k

Here, X, C,, and C, are arbitrary constants; the sum-
mation in the expression for ug is performed over ele-
mentary solutions (9); finally, in the expression for u,,,
the summation is performed over al elementary solu-
tions corresponding to eigenvalues from A,. The first
sum in the expression for ug describes an arbitrary dis-
placement of the cylinder as a solid body; the second
sum describes the stress-strain state with the nonzero
principal vector and the nonzero principal moment in
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the cross section z = const. The stress state correspond-
ingto u, isself-balanced and localized near the cylinder
end walls.

Itisnatural to call the vector functions us and u, the
Saint-Venant solution and the boundary layer, respec-
tively. For the latter, the attenuation rate is described in
the general case by the expression exp(-ay), whereyis
the distance to the nearest cylinder end wall and o =
inf(ReAy). (The value of the parameter a depends on
mechanical properties and on cross-section geometry
of the bar.)

The determination of X,,,, C,,, and C, can be reduced
to the solution of infinite systems of equations, which
are obtained when the boundary conditions on the cyl-
inder end walls are satisfied with the help of the rela
tionships for the generalized orthogonality [2, 6]. In
this case, the constants C,,, are determined exactly on
the basis of an algebraic system whose matrix coincides
in its structure with that obtained in [3].

SAINT-VENANT SOLUTION
FOR A CIRCULAR CYLINDER

For acircular cylinder (r,<r<r,=R),n, =1 and
ng = 0. Thus, the construction of the Saint-Venant ele-
mentary solutions u,,,  is reduced to the integration of
boundary value problems for ordinary differential
equations. Here, we restrict our consideration by the
results obtained in solving the Saint-Venant problem on
the tension—torsion of a cylinder. In this case, analysis
of solution (10) yields the following expressions for
displacements and stresses:

Xr  C,zr
U= *+ & -

u = Cia + Gy, u,=X+C,z,
0, =C,[C; 0,8, +r'Cra, + Cy3]
, , Cul
+ Cz[cnararz +r'cpa, + l_Fi’} ,
Ogo = Ci[C120,8 + "' Cxpa + C3]
' 1A C'24r
Gy Cpdantricpaat T | (1)
0,=Cy[C130,a, + ' Cyza, + Cz3]
, , Coul
+ Cz[claararz +r'Cyua, + “Bl::—} )
0, =C,[C140,8, + 7Cd + Cy]
1 1A Cl‘r4r
+ Cz[cmararz I Cyant ?} .

Here, a; = a,(r) are the solutions to the following

USTINOV

boundary value problems:
ar[clll ararj +r! CI12 arJ]
+r17l(cyy — Cp, )0, 8y + r*(Cy, — Cxp a; =Fy,

(Clll ararj +r! C;LZ arj)(ru) = froxjv (14)

I:rl = _ar CI13 - r_I(CEIS - CIZS)’ fral = _C;I.3 (ru)’
(=Cig + Coo)r

Fr2: R ’

erZ = 0.
The constants C, and C, are determined in terms of the

principal vector and of the principal stress moment 0,
0, by the relations

M
d2lC1 + d22C2 = _Z

d;,C, +d,C=Q, R

(15)

The exact valuesfor the coefficientsd, , d,,, d,;, and d,,
of the stiffness matrix are expressed by the quadratures

R
dy = ZWI( C33 + Ci30,8 + ' Cygayrr,
R
dy, = 2T[R1J’( €140, + Iy )r2dr,
R
;= 2”-]'( Ci3 Ga, + ' Cpay)rdr,
R
d,, = 21TJ’( CuI/R+ ¢ 40,8, + ¢ a,)rdr.
Relationships (15) make it possible to present the
following interpretation of the quantities appearing in
them: d,, isthe bar stiffness for tension—compression;
d,, is the stiffness for torsion; d,, = d,; (this equality
follows from the Betti theorem) is the correlation coef-
ficient for the tension—compression and torsion; C, is

the bar longitudinal strain; and C, is the relative twist-
ing angle normalized to R.

Assuming that the cylinder isrigidly fixed at z= 0,
we can determine the exact values of the constants X;
and X, only by solving infinite systems of equations,
which were mentioned above. For sufficiently long cyl-
inders, these constants may be put equal to zero [with

i HiS
the asymptotic error O ] D} .
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ASYMPTOTIC SOLUTIONS FOR SMALL
AND LARGE t

The construction of the solutionsto problems (14) at
arbitrary values of the dimensionless parameter 1, = TR
can be realized by numerical methods. However, the
asymptotic behavior of the solutions to these problems
at small and large 1, is of certain importance. The pos-
sibility to reconstruct this behavior follows from the
analysis of expression (3).

In the case 1, < 1, the straightforward simplifica-
tions of expressions (3) and subsequent integration of
problems (14) lead, in the first approximation, to the
following results:

U

a;=-vr,
3
_ To UAgr

ar2

- 8cy 0 R?

pZRZ i| %
r(cu—cp)lp

. A[ﬂ +pIr,

CitCp

ToJ CasJ
dll =$', d12= —O—EE[E'_ 2(1 +VV)G‘], d22= —4113—'3,
R R
_ _ A2\R2 — 7_-[ _n? — r_l
S=ml-pIR, Jp=35(1-pYR, p=r,
S E'=cy;-2Vcy, G=c
Cll+C12’ 3 13> 44y

Ay=3C, —2C;3—C +2Cy,
A =-3 Ciz + 3051 —2C13(Cyy — Cpp) — 2C44(2Cy, + 6Cyy).

These formulas are valid for both solid and hollow
cylinders. The symbols E' and v' correspond to the
Young's modul us and Poisson’sratio that determine the
longitudinal and transverse strains of atrustropic mate-
rial in the case of tension—compression along the sym-
metry axis [1]. The formulafor d,, provides an idea of
the interaction of torsion and tension—compression as a
function of the anisotropy degree for small values of t,,.
It should be noted, therewith, that 2(1 + v)G' = E' only
in the case of an isotropic material.

The formulas given below for large values of 1, are
valid only for hollow cylinders under the condition
pT, > 1. Inthis case, we have in the first approximation:
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a8, = —Rcy3
_ P ri
8 =-T R(C;3—Cp) [B(p) % +B(—p) Eﬁ%
diy = C;; S+ 21R[By(p) + B 1(-P)], Gy = Cuudps

dpp= Tal (2C44 +Cj3—C)S+ Tal 2TR2[B2(p) + Bo(-P)1,

B
B, 1(P) = —Ci3(PCy, + C13)(1 — pP* l)ﬁ,

B12(P) = —C13(PCy3 — PCjp + C33 — Cj3 — 2Cy4)

+1, B(P)
x(1-ppt ) =B
(p011+c12)(1—p2p)’ e, -

We now may conclude that, on the basis of the
method proposed, the Saint-Venant solutions can be
constructed for an inhomogeneous (along the radius)
cylinder, aswell asfor the case of T =1(r). The case1(r)
=kr! leadsto differential equationswith constant coef-
ficients and corresponds to the condition of a constant
angle between the unit vectorst and e,.

B(p) =
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The maximum possibl e finite spacing between prin-
cipal humpsin aseguence of solitary wavesis shown to
exist in a flowing-down layer. For small values of the
wave number s < s the spacing between the humps

reduces spontaneously due to the hydrodynamic insta-
bility. Bifurcations of a new type, s — 2s, s —= 3s,
are found, and acritical value spjis estimated.

1. Solitary waves in a thin viscous-fluid layer flow-
ing down along avertical surface werefirst experimen-
tally studied by PL. Kapitsaand S.P. Kapitsa[1]. If per-
turbing pulsesintheinitial cross section arefairly rare,
a set of identical two-dimensional waves is formed in
the initial cross section down stream, with the layer
thickness being constant on a significant interval
between their humps. In essence, a periodic sequence
of solitary wavesis formed. Their velocity exceeds the
velocity of propagation of linear perturbations and var-
ies depending on the spacing between the humps.
Increasing the frequency of perturbing pulses, it is pos-
sible to attain a stable wave mode, in which the humps
are closeto each other and an intermediate type of wave
flow is realized. In the subsequent experiments [2], it
was found that the inverse process of increasing the
spacings between the humps by decreasing the fre-
guency of perturbing pulses is of limited nature.
Indeed, for agiven fluid flow rate, there exists a bound-
ary frequency such that the mean spacing between the
humps in the wave mode, which is being developed
downstream, does not increase with a subsequent
decrease in frequency.

As aresult of the interaction between the principal
humps and the newly arising intermediate humps,
either their coalescence or decomposition takes place.
Curve linFig. 1 specifiesthe experimental limit for the
existence of waveswith the largest wavelength L [2]. In
this study, we give the theoretical interpretation of the
experiments on the formation of a chain of solitary
waves.

Moscow State University,
\orab’ evy gory, Moscow, 119899 Russia

2. The investigation is carried out on the basis of
numerical solutions to the set of equations [3] for the
thickness h(x, t) of alayer and the fluid flow rate q(x, t):

ht+qx = Oa
60 _ 1 a0
qt+§DFD - Eg%hxxx-i- h_F]—ZD, (1)
11/9 H3
6_(3Re)1/3 ' Rezg_zc’ Y = 40 13"
45y 3v p(v'a)

Here, H, isthe characteristic thickness of the layer; pis
the fluid density; v and o are the coefficient of viscosity

VoL
5

Fig. 1. Curves 14 are the boundaries of wave modesin the

experiments[2]. The parameters used are v = (458911 q_30
and v = (30m3qg° ). Curves 5-8 show the dominating

wavesfor d=0.04, 0.1, 0.15, and 0.2, respectively. The dots
correspond to the waves of the second family with the max-
imum flow rate for 8 = 0.1, 0.15, 0.2, 0.225, and 0.247.

1028-3358/01/4610-0760$21.00 © 2001 MAIK “Nauka/Interperiodica’
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and surface tension coefficient, respectively; and g is
the gravitational acceleration.

The system involves one similarity parameter &
introduced in [4]. This allows the results to be suitable
for an arbitrary fluid. In studies[2, 5, 6] and many oth-
ers, solutionsto Shkadov equations (1) provided acom-
prehensive description of al principal experimental
data on spatially periodic nonlinear wavesin aflowing-
down thin layer. With an increase in the wavelengths L

%)r with decreasing the wave number a = ZTH E Special

features of the instability of the periodic waves become
pronounced and do not allow stable sequences of soli-
tary waves to be obtained from such waves.

Together with a wave-free solutionh=1and q=1,
wewill consider the solutionsfor solitary and periodic
waves. The steady motion of awave having the veloc-
ity ¢ in the coordinate system t and & = x — ct is deter-
mined by the equation following from Eq. (1):

h°h™ + 8[6(q,—c)* —c*h? b
+h’-qg,—c(h—1) = 0.

A local flow rate in the steady wave can be found from
its profile:

2

q=c(h-1)+qo. A3)

In the case of asolitary wave, the following asymp-
totic boundary conditions should be added to condi-
tion (3):

§ —~+00: h—1. )

The phase velocity ¢ can be found as an eigenvalue for
boundary value problem (2), (4) for g, = 1. The solution
is numerically constructed by the method of matching
the corresponding asymptotic expansions at points at
infinity & = oo [4].

In the case of a spatially periodic wave, Eq. (2)
should be complemented by the periodicity conditions

h(¢) = h(€+L), h(&) =h(E+L),

E+L

5
W(E) = h(E+L), 1 [ hdg = 1 ©)
13

While solving the equations numerically, it is conve-

) . a
nient to use the normalized wave number s= g o,=

n
J153. In this case, the instability region for a basic
wave-free flow is s [0 (0, 1). The phase velocity ¢ and
the mean flow rate g, for anonlinear periodic wave are
found as eigenvalues of boundary value problem
described by Eqg. (2) and conditions (5).

As was proved in [7], for every fixed , boundary

value problem described by Eq. (2) with condition (4)
has two denumerable sets of solutions ., ;. Here, the
DOKLADY PHYSICS Vol. 46
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sign in the subscript stands for a subset of fast (+) or
slow (=) waves, m=1, 2, ..., isthe number of the solu-
tion, and j = 1, 2, denotes one of two possible varieties
of the solitary wave with the number m, namely, with
one or two principal humps.

The single-hump solitary wave of the elevationyy,, ,
has the highest phase vel ocity, and the single-hump sol -
itary wave of indentation y_, , has the lowest one. The
solution to the boundary value problem described by
Eqg. (2) and condition (5) can be found in the form of the
finite Fourier series:

N
h(x,t) = z h.expik&, h,=h,, hy=1,
k=-N

(6)

N

act) = ) okexpikE, o = Ot

k=-N
There are two denumerabl e sets of the periodic solu-

tions yzm, ; for agiven value of . Each family isrepre-

sented by asmooth curvein the (s, ¢) plane. The family
arises at the bifurcation point s, and extendsto s — 0,
being transformed into the corresponding solitary wave
Yim j- 1N [8], two principally distinguishing families of
solutions were selected and named the first and second
families.

Thefirst family yfl 1 begins from a soft bifurcation

at the point s = 1 and is finishes by the slowest single-
hump solitary wavey._, ; ass—= 0. The second family

VTL , branches as arigid bifurcation at the point s= g,

and ends with the fastest single-hump solitary wave.
For small values of & < 0.096, the bifurcation point of
the second family is in the vicinity of s= 1/2; when &
increases, this point displacesto s — 0. There exists
an ascending sequence of critical values of &, above
which a jump transition of s, to the next lower value
from the sequence s= 1/3, 1/4, ... occurs. In this case,
the solution of the second family isinterchanged by the
bifurcation point with the next family of the slow waves

Yy 1, which leadsto the formation of families of inter-
mediate bifurcations.

We now pay attention to the excitation of nonlinear
waves by means of small perturbationsat an initial time
moment:

t = 0:he = h(0), g = q(0). (7

The solution to Cauchy problem described by formu-
las (1), (5), and (7), is sought in the form of Fourier
series (6), whose coefficients depend on t. The use of
the Galerkin method leads to the formation of a
dynamic system for h, and g,. In [9], on the basis of
systematic numerical experimentsfor s= 0.1, we estab-
lished a set of dominating waves composing a global
attractor of periodic solutions to system (1). Every
dominating wave is characterized by the fact that its
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Fig. 2. Waveprofilesfor 5= 0.04, 5= 0.15: (a) Y5, 1 , ¢=3.7740, ¢ = 1.0327; (b) y2;" , c=3.3941, gy = 1.0319; () I';, ¢ = 3.2858,
G = 1.0275; (d) [, ¢ = 3.4127, g = 1.0317; (€) '3, ¢ = 3.3518, g = 1.0310; and (f) [, ¢ = 3.3909, ¢, = 1.0317.

vel ocity, amplitude, and mean flow rate have maximum
values among all regular waves existing for the values
of (9, s) under consideration.

The projection of the attractor onto the (s, ¢) plane
represents a piecewise continuous curve with its pieces
belonging to the different families, namely (in order of
decreasing s) to thefirst, intermediate, and second fam-
ilies. In Fig. 1, we show the dominating waves for 6 =
0.04, 0.1, 0.15, and 0.2, and the experimental bound-
aries of wave modes. The waves belonging to the sec-
ond, intermediate, and first families are observed
between curves 1 and 2, 2 and 3, and 3 and 4, respec-
tively.

3. The second-family solutions vy}, ; correspond to

the solitary waves observed in experiments (Fig. 2). The
trandation aong the branch of thisfamily tos— 0 cor-
responds to the passage to a periodic sequence of soli-
tary waves with the increasing spacings between their
principal humps. The question is whether the attracting

properties of the family yilyl are conserved for al

small valuesof s. By virtue of these properties, the solu-
tions of this family develop spontaneously from small
initial perturbations of the wave-free flow.

The calculations of unsteady solutions to Egs. (1)
show that the attracting properties of the second solu-
tion are weakened for sufficiently small valuess < s({d)

and that the global attractor consisting of the dominat-
ing wavesisdestroyed. The attracting solutions turn out
to be waves of another type. In Fig. 3, we show two
examples of the regular waves developing with time

from small initial perturbations. For s=0.1125and s=
0.165, a small harmonic perturbation and a periodic
wave with random small Fourier coefficients are used
as initia conditions, respectively. The spontaneous

transition from a wave with a period of -25 to shorter

wavelengths with periods of 2—2 and 2—2 is a new

observed phenomenon. It is possible to verify by the
direct comparison that the principal parameters of the
formed nonlinear waves, such as the phase velocity c,
maximum height h,,., and fluid flow rate q,, differ
dlightly from the parameters of the corresponding dom-
inating wave with the wave number 2s or 3s. The simi-
lar evolutions of unsteady solutions arise only for
s<s(0). It was found that the critical values are

S{0.04) = 0.22 [with s{0.1) = 0.1] and s[{0.04) =
0.115 for thetransitionss — 2sand s — 3s, respec-
tively.

The effect discovered manifestsitself in the fact that
the periodic sequence of waves, which is specified by
the initial conditions and corresponds to the number s,
isinconsistent with the flow, and the solution is sponta-
neously reconstructed into a sequence of waves with
two shorter spacings between the humps, which are
specified by the wave numbers 2s and 3s.

Because the steady nonlinear waves with the wave
numbers 2s and 3s represent invariant solutions, they
must al so be sol utionsto the nonlinear eigenval ue prob-
lem described by Eq. (2) and condition (5).
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It should be noted that the foregoing branches of
solutions bifurcate at the points s, from the first family.
This is associated with the existence of doubled solu-
tions for this family. The solution with wave number s

is repeated n times for the wave number E . Different

branches of solutions originate in the vicinity of these
points. We will refer to them as families of the first
kind. The doubled families are possible also for other
families of regular waves. In order to identify them, it

is convenient to use the denotation yZ’n'm i» Where the
additional superscript | impliesthe fact that an arbitrary
solution Vzm,,- calculated for awave-number value sis

considered over the period of %ﬂl . In Fig. 4, we show

theresults of the bifurcation analysis of the second fam-
ily in the (s, q,) plane for & = 0.04. The new families
DOKLADY PHYSICS  Vol. 46
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denoted as, k=1, 2, ..., 6, branch from the doubled

0.4961

I
for | = 1, 2. For the doubled families and the families
branching from them, the phase velocities and maxi-
mum heights of waves differ only dightly; their fluid
flow rates are also very close, but these waves are dif-
ferent. In Fig. 3, we also show the spectral distributions
H, = k?|hJ?, which are of importance for the identifica-
tion of the families. The waves belonging to the fami-
liesT; and I, have very similar shapes, differing only
in the spacings between the principal humps, but their
spectra are significantly different. In particular, the
maximum values of H, are attained for various harmon-
ics. The important role of the spectral analysisin pro-
cessing experimental results was indicated evenin [1];
here, this idea turned out also to be fruitful for the
numerical investigations of waves.

families yf‘l', 1, Whose bifurcation pointsare s=
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Thecirclesin Fig. 4 show the attractors of system (1)
for small parameters defining initial conditions. The
closed circles mark the ultimate solutions whose inte-
gra characteristics, for example, the fluid flow rate and
the wave vel ocity, attain constant val ues under the pro-
longed integration of Eq. (1). In the phase space h,, k =
1,2, ..., such solutions to the dynamic system obtained
from Eqg. (1) by the Galerkin method correspond to ulti-
mate cycles. We note that the solutions belonging to the
variousfamiliesl,, I, [y, [, and y7;°; serveasattrac-
tors for nearly equal small values of the wave number,
but not the waves of the second family asisthe case for
finite values of s (see Fig. 2). The competition between
close regular waves can lead to the formation of biperi-
odic and quasiperiodic oscillatory solutions, which are
shown in Fig. 4 by connected open circles correspond-
ing to the maximum and minimum values of the fluid
flow rate. The alternation of amost coherent localized
wave structures and disordered periodic wavesisintrin-
sic to quasiperiodic solutions [10]. The trajectories on
theinvariant tori in the phase space h, correspond to the
biperiodic oscillating solutions.

4. Thus, while decreasing the wave number s, the
passage to shorter structures corresponding to the wave
numbers 2s and 3s takes place in the developing wave.
In the formed sequence of solitary waves, the spacing
between their humps s, on the average, less than a cer-
tain critical value corresponding to the wave number
S{9).

The calculation of thecritical value s{d), which can

be principally carried out by numericaly solving
Eq. (1), encounters considerable calculationa difficul-
ties when & increases. For estimating S{d), we use an
idea of [3] on optimal wave modes, which provide the
maximum flow rate for a given mean thickness of the
layer (or the maximum mean thickness for a given flow
rate). We assume that the maximum value of q,(s)

along the second family y?ly , is attained at the point
sr(9). This assumption is quite consistent with the
numerical results obtained for two values of &:
$7{0.04) = 0.195, s10.1) = 0.087, and s{0.15) = 0.080.

In Fig. 1, the dots mark the parameters of the wave
flow corresponding to the critical value s{d) for & =
0.1, 0.15, 0.2, 0.225, and 0.247. For the two last values,

SHKADOV, SISOEV

swasfound by extrapolation. It can be seenthat all the

points are placed virtually at the curve that specifiesthe
upper experimental boundary of the existence of
steady-state modes, with their wavel engths determined
by periodic pulses in the initial cross section of the
layer. In [5], Shkadov equations (1) in the formulation
simulating the experimental conditions [1, 2] were
numerically solved for given input perturbations with
random frequencies. A unique cumbersome calculation

concerns the variant & = 0.217¢;"° . The estimate of

the maximum spacing between the humps in the wave
chain formed downstream amounts to L = 65. This
value correlates with the theory developed here; the
corresponding point Aisshown in Fig. 1.
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