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The variational principle in the theory of irreversible
processes, i.e., the principle of the minimum of the
algebraic sum of squares of dissipative flows in a sta-
tionary nonequilibrium state, is proposed. This sum is
in fact the difference between the sum of squares of
proper dissipative flows integrated over the Kirchhoff
potential and the square of the thermal flux, which is a
consequence of a purely transport character of the heat
conduction function. Some applications of the principle
introduced and the well-known principle of the mini-
mum energy dissipation in the stationary state are con-
sidered. In particular, the conclusion is made that in
some specific tasks, a solution to the energy equation
near the stationary nonequilibrium state can be
replaced by the condition of constant dissipation. Such
an asymptotic representation is a consequence of the
principle of the minimum dissipation. 

1. As an extremal principle for the parabolic dissipa-
tive equation that describes a non-steady-state irrevers-
ible process, I imply the variational principle whose
steady-state condition is given by the same equation
that describes an irreversible process in the final sta-
tionary state, which can also be nonequilibrium. We can
say that the steady-state condition is fulfilled here in a
literal sense. If the equation of an irreversible process
described by a certain function u(t, r) has the form

and the functional J(t) is given by the relation

then its first variation is expressed as

,

and the steady-state condition δJ = 0 is equivalent to the
conditions

ut f t r; u v∇( )u, ∆u …, , ,[ ] ,=

J t( ) + V ,d∫=

δJ δ+ Vd∫ δJe δJi δJe fδu Vd∫+≡+= =

δJe 0, f t ∞= …,( ) 0.= =
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Here, + is the Lagrangian, the subscripts e and i are
related to the external and internal parts of J, and the
remaining notation is that used in [1]. Two extremal
principles are known in the mechanics of dissipative
continua: the principle of the minimal energy dissipa-
tion (PMED) in a stationary state and the principle of
the minimum entropy production in the same state [2]
(see also [3]). The first principle gives the steady-state
equations of motion and continuity equations for sub-
stances (impurities, charges) in the diffusion approxi-
mation. The second leads to the steady-state energy
equations under particular assumptions. An attempt to
extend the domain in which the second principle is cor-
rect was made in [4] using a certain identity transforma-
tion of the initial nonlinear heat conduction equation.
According to [2], this principle is valid only if the heat
conduction coefficient is κ(T) ~ T–2 (where T is temper-
ature). It was found, however, that such a transforma-
tion occurs only at the expense of lowering the level of
generality of geometric description (a transition to one-
dimensional description) and boundary conditions (adi-
abaticity). The latter implies that the final state is equi-
librium. Moreover, only the necessary condition was
obtained in [4] for the minimum of entropy production,
rejecting, in essence, the variational description of the
problem at hand. This follows from the fact that the
steady-state condition divq = 0 (where q is the thermal
flux) cannot be obtained, in general, from the varia-
tional principle [2] (more exactly, in the case of identi-
cal fulfillment of this condition by virtue of the equality
q = 0). Here we set forth the possibility of invoking the
variational principle that meets all above-listed general
requirements.

2. Channels for dissipation and scattering of energy
follow from the general heat transfer equation (entropy
equation; see, e.g., [1])

(1)

where bracketed terms are related to viscous, Joule,
chemical, diffusion, and filtration energy dissipation

ρT
ds
dt
----- σik'

∂v i

∂xk

-------- j2

σ
---- Q

i2

αd

------ i2

α f

------+ + + + 
 =

– divq +1 divq,–≡
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(its transformation into heat), while the term divq cor-
responds to the transfer (scattering) of heat due to the
heat conduction. Here,

(2)

is the incompressible (for the sake of simplicity) part of
the tensor of viscous stresses;

(3)

is the electric current density, and ϕ is the potential. In
the diffusion treatment, the mass flux i has the form

(4)

while in the filtration treatment it is

(5)

Here, µ is the chemical potential, c is the concentration,
and k is the permeability of the porous medium.
Clearly, k > 0, and thermodynamic derivatives

are also positive. Finally,

(6)

where K =  is the Kirchhoff potential. In the for-

mulas for the fluxes, small irreversible crosseffects
(such as thermal diffusion) are disregarded. In the gen-
eral case, the positive dissipative coefficients of viscos-
ity η, electric conduction σ, diffusion D, and heat con-
duction κ depend on T. For the flux q, the functional F,
for which the steady-state condition with respect to T
yields the relation +1 – divq = 0, is similar to [5]:

(7)

Indeed, the condition +1 – divq = 0 follows from

in view of δTe = 0 or qe = 0. The variational principle (7)
is determined as the principle of the minimum algebraic
sum of squares of dissipative fluxes (PMDF) in the
steady-state nonequilibrium state. As can be seen

σik' η
∂v i

∂xk

--------
∂v k

∂xi

---------+ 
  ηsik'≡=

j σ∇ϕ–=

i ρD∇ c–= αd
∂µ
∂c
------ 

 
T p,

∇ c,–≡

i ρk
η
--- ∇ p α f

∂µ
∂p
------ 

 
T c,

∇ p.–≡–=

∂µ
∂c
------ 

 
T p,

∂µ
∂p
------ 

 
T c,

, ∂V
∂c
------- 

 
T p,

=

q κ∇ T ∇ K ,–≡–=

κ Td∫

F +2 V +1 Kd
q2

2
-----–∫ 

  Vd∫≡d∫=

=  η Ksik'
∂v i

∂xk

--------d∫ Kd
σ

-------j2∫+
∫

+ Q K
Kd

αd

-------i2∫ Kd
α f

-------i2∫ 
+ +d∫ q2

2
-----– V .d

δF δ+2 Vd∫=

=  δK q Sd( ) +1 divq–( )δK Vd∫+∫ 0=
from (7), the algebraic sum is, in essence, the differ-
ence between the sum of squares of dissipative fluxes
integrated over K and the square of the heat flux. This
follows from the fact that the heat flux enters as a linear
term into the general heat-transfer equation (1), imply-
ing a purely transport character of the heat conduction
function that represents the sole channel for energy
(heat) dissipation. The functional

(8)

in cases (3)–(6) has the Lagrangian

where I is the flux, Φ is the potential, and L > 0 is the
kinetic coefficient, which is independent of Φ. The vari-
ation of the functional 

yields the steady-state continuity equations of the diffu-
sion type

The functional

leads to the steady-state equation of motion for an
incompressible fluid, which follows from

Finally, the functional

,

by analogy with (8), yields the steady-state energy
equation

The combined cases are of greater interest.
3. We consider first the isothermal mode of a steady-

state flow for a viscous incompressible fluid through a
channel under the action of a longitudinal (with respect
to the channel) pressure gradient. If a plane (along the
channel radius) profile of the longitudinal velocity is
specified at the channel inlet, i.e.,

(9)

D +1 Vd∫=

+1
1
2
---I2

L
---- 1

2
---L ∇Φ( )2, I L∇Φ ,–= = =

δD δΦ I Sd( ) δΦdivI Vd∫+∫– 0= =

divI 0.=

D
1
2
--- σik'

∂v i

∂xk

-------- Vd∫=

∆v 0,=

δD σik' δv i Skd∫= η ∆vδv( ) Vd∫– 0.=

F
q2

2
----- Vd∫=

divq 0.=

u const U0,= =
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then, under the action of the viscosity, this profile
changes as the longitudinal coordinate z increases; as
z  ∞, the profile approaches asymptotically to the
stabilized Poiseuille profile. Thus, if the flow was non-
equilibrium with respect to both coordinates at its tran-
sition segment, it will remain nonequilibrium after sta-
bilization only along the radius. Within standard

approximations,  ! 1, 

, (10)

and with allowance for the boundary conditions

(11)

, (12)

the integrals of the steady-state axisymmetric continu-
ity equations, the motion, and mechanical energy take
the form

(13)

(14)

(15)

where the values n = 0, 1 are related to the planar and
cylindrical geometry, respectively, and the indices
imply partial differentiation. Giving up the traditional
isolation of a boundary layer, we introduce the variable
profile, unified throughout the channel cross section,

(16)

Here, ϕ0 = 1 – ξν, ξ =  ∈  (0; 1), and U, ν, a1, a2, … are

the functions of z to be determined. For the simplest sit-
uation, in which a1, a2, … are disregarded, we obtain
the closed system of equations (13)–(15) for determin-
ing p, U, and ν. The initial conditions p0 and U0 are
assumed specified. Setting u(0, r) = U0 , we arrive at the
initial condition

(17)

In this case, the variational principle takes the form
of the PMED specific for the problem of a conditional
extremum:

(18)

where λ = pz = const is the Lagrange coefficient and G =
const is the mass rate [integral (13)]. The condition

uzz

urr

------

pr 0=

ur z 0,( ) 0, u z a,( ) 0,= =

v z 0,( ) 0, v z a,( ) 0= =

urn rd

0

a

∫ 
 
 

z

0,=

ρ0 u2rn rd

0

a

∫ 
 
 

z

an 1+

n 1+
------------ pz+ η0anur z a,( ),=

ρ0
u3

2
-----rn rd

0

a

∫ 
 
 

z

pz urn rd

0

a

∫+ η0 ur
2rn r,d

0

a

∫–=

u z r,( ) Uϕ ξ( )= Uϕ0 ξ( ) 1 a1ξ
ν a2ξ

2ν …+ + +( ).≡

r
a
---

ν z         0 ( )         ∞ .

J D λG+=
1
2
---η0 ur

2rn r pz urn r,d

0

a

∫+d

0

a
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δJ = 0 yields the steady-state equation of motion, as
follows from

Substitution of u = Uϕ0 into G gives U as a function
of 

 

ν

 

:

Hence,

 

,

 

and the variation of 

 

D

 

 with respect to 

 

ν

 

 has the form

i.e., the steady-state condition for 

 

D

 

 results in the Poi-
seuille profile with 

 

ν

 

 = 2.
The less obvious example of using the PMED is the

determination of the correcting factor 

 

a

 

1

 

 in (16). We
represent 

 

a

 

1

 

 as

where 
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1

 

∞

 

 ≡ 
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1

 

(
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)

 

 and the undetermined function 

 

ψ

 

(

 

ν

 

)

 

satisfies the following passages to the limits

The simplest choice of 

 

a

 

1

 

, which satisfies these condi-
tions, has the form 

 

. (19)

 

It turns out that the use of the PMED leads in this case
to an expression that functionally coincides with rela-
tion (19). Indeed, upon substituting (16) into

 

 D

 

 and dif-
ferentiating the result with respect to 

 

a

 

1

 

, we obtain

so that for the cylindrical geometry (

 

n

 

 = 1)

 (20) 

which functionally coincides with (19). For the sake of
clarity, we show in Fig. 1, for 

 

n

 

 = 1, the dependences of

 

ν

 

 and of the dimensionless dissipation 

 

 = 

 

 on

the dimensionless coordinate

δJ η0rnurδu( )= 0

a
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0

a

∫+ 0.=

U
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ν
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D
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a1
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D
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η 1
Re0
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Comparing this calculation of D with the traditional
calculation [6] shows their good agreement. A consid-
erably earlier passage to the asymptotic behavior of the
quantity D(η) than ν(η) (as well as all the remaining
quantities) is a consequence of the PMED. From this, it
follows that in specific tasks, near the stationary non-
equilibrium state (the degree of closeness is seen in
Fig. 1), the solution to the equation of energy can be
replaced by the condition of constant dissipation. 

4. We now consider the problem of stability for the
process of heat release in a heat-conducting medium. In
this case, the PMDF takes the form

(21)

where the conditions Q > 0 and  > 0 correspond to

the combustion process. The first variation of (21) is

from which the steady-state heat conduction equation
follows

(22)

This equation was firstly solved in [7, 8] for the case
Q ~ exp(αT), with κ and α = const assuming the planar
and cylindrical geometry (see also [9]); the absence of
solutions to boundary value problems in [7, 8] was
treated as an absolute instability. The same solutions
based on group-theoretic considerations were obtained
in [9, 10]. The variational statement (21) makes possi-
ble the use of the general method of analysis of stability
based on the solution of the so-called Jacobi equation
(see, e.g., [11]). 

Restricting our consideration to the planar geometry,
we have the argument x ∈ (–d, d) and the even function
T(x) = T(–x). The boundary conditions are 

(23)

F Q Kd∫ ∇ K( )2

2
---------------– V ,d∫=

dQ
dT
-------

δF δK q Sd( ) –divq Q+( )δK V ,d∫+∫=

divq– ∆K Q.–= =

T d–( ) T–,=

0.01 0.02 0.030

2

4

6

8

10

D

ν

ν, D

η

Figure. 
(24)

Clearly, we also have

so that the dimensionless function is 

where θ0 is to be determined. It is convenient to intro-
duce the dimensionless argument

In this case, Eq. (22) takes the form

, (25)

and its solution is

(26)

The condition for determining

i.e., the quantity θ0 , is

(27)

The Jacobi equation is the disturbed equation (25):

(28)

where τ = δθ [11]. Its general solution is

(29)

with the constants being determined from the standard
boundary conditions [11]

(30)

The final form of the solution for ξ ∈ (–ξ0, ξ0) is given
by the formula

(31)

The stability condition (δ2F > 0) is reduced to the
requirement

(32)

for ξ ∈ (–ξ0, ξ0) [11]. We ascertain by direct substitu-
tion that condition (32) is satisfied only for

(33)

so that the boundary of the stability domain is deter-
mined by the condition τ2(ξ0) = 0. 

dT
dx
------ 0( ) 0.=

Q T( ) Q–e
α T T––( )

=

θ α T T––( ) 0 θ0,( ),∈=

ξ
αQ–

2κ
----------e

θ0

 
 

1/2

x.=

θξξ 2e
θ θ0–

+ 0=

θ θ0= 2 ξ .coshln–

ξ0

αQ–

2κ
----------e

θ0

 
 

1/2

d ,=

ξ0

ξ0cosh
-----------------

αQ–

2κ
---------- 

 
1/2

d .=

τξξ 2
τ

ξcosh
2

----------------+ 0,=

τ C1τ1= C2τ2+ C1 ξtanh≡ C2 1 ξ ξtanh–( ),+

τ ξ 0+−( ) 0,
dτ
dξ
------ ξ0–( ) 1.= =

τ τ 2 ξ0( )τ1 ξ( ) τ1 ξ0( )τ2 ξ( )–[ ] .+−=

τ 0>

τ2 ξ0( ) 1 ξ0 ξ0tanh 0,≥–=
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The result expressed by relation (33) coincides with
the stability criterion [7, 9], which follows from (27)
and is obtained from the geometrically apparent con-
dition

In this example, the unsteady-state stage is
described by the equation

where h =  and K =  χ = . Differen-

tiating F [given by formula (21)] with respect to t yields

so that for (Tt)e = 0 or qe = 0, we have Ft < 0. This ine-
quality is the necessary condition for the attainment of
the steady state (minimum of F), but, as shown by this
example, it is not the sufficient condition. The sufficient
condition for the minimum of F is δ2F > 0; it requires
the solution to the Jacobi equation and its investigation.
In conclusion, we note that the results of [5], where the
variational principle was proposed for the unsteady-
state nonlinear heat-conduction equation, allow a sub-
stantial extension. Indeed, if

is the heat-conduction equation for the potential θ2
introduced by the relationship h = ∆θ2 then we obtain
from the variational principle [5] two equivalent equa-
tions

From these equations, we find the desired equations

(34)

which were obtained in [5] for the partial linear case
χ = const. The same equations were also obtained
in [12, 13], where the same linear case was studied.
Thus, the parallel existence of two identical subsystems
postulated in [13] with opposite directions of time is
obtained here automatically for the general nonlinear

d
dξ0
--------

ξ0

ξ0cosh
----------------- 1

ξ0cosh
----------------- 1 ξ0 ξ0tanh–( ) 0.≥=

ht ∆K Q T( ),+=

ρc Td∫ χ hd∫ -
 κ

ρc
------



Ft Kt( )e qe Sd( )∫+ htKt V 0,<d∫–=

E2 ∂tθ2≡ K ∆θ2( )– 0=

∂tE2 ∆ ∂t
2θ2 χ∆K ∆θ2( )–[ ]≡

=  ∆ ∂t χ∆±( ) ∂tθ2 K ∆θ2( )+−[ ] 0.=

∂tθ2 K ∆θ2( )+− 0,=
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case. The conclusion [5] that the total energy

vanishes in this case follows from (34) and is the con-
sequence of the complete compensation of the energy
dissipation in the system as a whole.
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and Isotropic Universe

Corresponding Member of the RAS S. S. Gershtein, Academician A. A. Logunov,
and M. A. Mestvirishvili

Received July 16, 2001
The problem of the possibility of generating gravi-
tons in the Universe was thoroughly studied in [1, 2].
In [2], the formula was derived for the graviton genera-
tion rate in the uniform and isotropic Universe

(1)

under the assumption that

(2)

where R is the scalar curvature and Rρλµν is the Rieman-
nian curvature tensor.

For the radiation-dominant evolution stage of the
hot Universe, the equation of state 

(3)

holds. Since, according to the general relativity theory
(GRT), the scalar curvature R is exactly zero at this
stage of the Universe’s evolution, the authors of [1, 2]
concluded that in the hot and uniform Universe the gen-
eration of gravitons does not occur. In [1], it was also
noted that the generation of gravitons apparently pro-
hibits isotropic singularities in the vicinity of which the
equation of state

(4)

takes place. Such a conclusion evidently arose due to
the fact that in this case the scalar curvature R would
become as large as is wished. Therefore, an extremely
intense graviton generation must occur, which, in the
case of the existence of a singularity, could lead to an
inconsistency with modern data on the density of mat-
ter in the Universe.

1

g–
---------- d

dt
----- g– ng( ) 1

288π
------------R2=

R2

Rρλµν Rρλµν--------------------------- ! 1,

p
1
3
---ρc2=

p
1
3
---ρc2>
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In the relativistic gravitational theory (RGT) consid-
ering the gravitational field as a physical field with a
spin of 2 or 0, which evolves in the Minkowski space,
the completely opposite situation arises: the evolution
of the uniform and isotropic Universe is described by
other equations [3, 4]. It is extremely important to
emphasize that, in this case, no singularities are
present:

(5)

(6)

Here,

(7)

and m is the graviton mass.

As follows from these equations (see [3, 4]), for the
radiation-dominant stage of the Universe’s evolution
and for small values of the scaling factor a(τ), the equa-
tion is valid

(8)

In the GRT, the left-hand side of Eq. (8) is exactly zero
in the radiation-dominant region. Therefore, at this
stage of the Universe’s evolution, the Fridman stage
takes place when the scaling factor a(τ) varies with time

according to the  law. In the RGT, according to
Eq. (8), the pre-Fridman stage of the Universe’s evolu-
tion exists in the radiation-dominant phase. Here, the
scalar curvature for the uniform and isotropic Universe is

(9)

1
a
---d2a

dτ2
-------- –

4πG
3

----------- ρ 3 p

c2
------+ 

  2ω 1 1

a6
-----– 

  ,–=

H2 1
a
---da

dτ
------ 

 
2

≡ 8πG
3

-----------ρ ω
a6
----- 1 3a4

amax
4

---------– 2a6+
 
 
 

.–=

ω 1
12
------ mc2

"
--------- 

 
2

,=

ȧ̇
a
---

ȧ
a
--- 

 
2

+
ω
a6
-----, ȧ

ad
τd

------.= =

τ

R
6

c2
---- ȧ̇

a
---

ȧ
a
--- 

 
2

+ .–=
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On the basis of Eq. (8), we have

(10)

From Eq. (6), it follows that the scaling factor a(τ) can-
not turn into zero, and its minimum value equals

(11)

where

(12)

while in fact the maximum density ρmax of matter in the
gravitational field is an integral of motion, which is not
determined theoretically.

Based on relationships (10)–(12), we may conclude
that, at the time moment when the maximum density of
matter is attained, the scalar curvature of effective Rie-
mannian space takes the value

(13)

At this time moment, the Hubble constant H is exactly
zero. We can see from formula (13) that, in contrast to
GRT, in the RGT the scalar curvature R in the radiation-
dominant stage of the Universe’s evolution does not
turn into zero. Moreover, it may be sufficiently large,
since it is determined by the maximum density of mat-
ter ρmax in the gravitational field.

Thus, according to the RGT, in the radiation-domi-
nant phase of the Universe’s evolution, there is a pre-
Fridman stage in which the scalar curvature not only
differs from zero but may be sufficiently large, since it
is determined by the maximum density ρmax of matter.
In order to find the graviton generation rate, we cannot
apply formula (1), because it was derived in approxi-
mation (2), which is not fulfilled in our case.

If, based on dimensional concepts, we assume, in
the general case, the graviton generation rate to be
dependent only on the quantities

(14)

then a time interval should be chosen during which the
Hubble constant attains its maximum, since the Frid-
man stage arises very soon. It can be easily found from
Eqs. (5), (6) that the Hubble constant H attains its max-
imum at a time moment when the scaling factor a(τ) is

(15)

Employing relation (15), we find from Eqs. (6) the

R
1
2
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"
------- 

 
2 1

a6
-----.–=
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2ρmax
------------- 
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1/6

,=
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1

16πG
-------------- mc2

"
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R
16πG
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--------------ρmax.–=
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a2 τ( ) 3
2
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maximum value of the Hubble constant

(16)

At the time moment when H attains its maximum, the
scalar curvature is

(17)

and the ratio  is determined by the expression

(18)

The invariant obtained by the convolution of the curva-
ture tensor for the metric of a uniform and isotropic
Riemannian space is

(19)

Substituting Eqs. (16), (18) into this expression, we
arrive at

(20)

It should be noted that the Hubble constant varies
from zero to the maximum value Hmax , which is deter-
mined by formula [16] during a rather short time inter-
val equal to [3, 4]

(21)

If the graviton generation rate is determined by quanti-
ties (14), then during time interval (21) a sufficiently
large amount of gravitons can be generated, provided
that the density ρmax is reasonably high. However, if it
is much lower than the Planck density, this implies that
the generated gravitons immediately become free,
while their energy further decreases due to the red shift.

Thus, a gravitational relict background of nonther-
mal origin must arise. The gravitons interact with each
other sufficiently strongly, since their interaction con-
stant is equal to unity. In the case of a sufficiently high
density of the gravitons, this fact can violate the uni-
formity of the relict gravitational background having
a nonthermal origin. From dimensional considerations,
the total number per cubic centimeter of generated grav-

Hmax 3 2– 32πGρmax( )1/2.=

R
2
3
--- 

 
3

16πG
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----------×–=

ȧ̇
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ȧ̇
a
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2
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itational-field quanta is proportional to the quantities

(22)

where the quantities R2, RρλµνRρλµν, and τ are given by
expressions (17), (20), and (21). It follows from these
formulas that the graviton generation rate in the hot
radiation-dominant phase of Universe evolution is
determined, basically, by the value of the maximum
matter density ρmax . Being informed about the process
of the graviton generation in more detail, we would be
able to determine the maximum value of the matter
density intrinsic to the Universe in the present expan-
sion cycle. On the other hand, we can formulate the fol-
lowing hypothesis: the gravitational background of
nonthermal origin could be a dark matter that manifests
itself in the Universe as a missing mass. However, this
hypothesis requires a more thorough analysis.

cR2τ , c Rρλµν Rρλµν( )τ ,
ACKNOWLEDGMENTS

The authors are grateful to A.A. Grib, V.A. Petrov,
N.E. Tyurin, and Yu.V. Chugreev for fruitful discussions.

REFERENCES

1. L. P. Grishchuk, Zh. Éksp. Teor. Fiz. 67, 825 (1974)
[Sov. Phys. JETP 40, 4009 (1975)].

2. Ya. B. Zel’dovich and A. A. Starobinskiœ, Pis’ma Zh.
Éksp. Teor. Fiz. 26, 373 (1977) [JETP Lett. 26, 252
(1977)].

3. S. S. Gershtein, A. A. Logunov, and M. A. Mestvirish-
vili, Yad. Fiz. 61, 1526 (1998) [Phys. At. Nucl. 61, 1420
(1998)].

4. A. A. Logunov, Theory of Gravitational Field (Nauka,
Moscow, 2000).

Translated by G. Merzon
DOKLADY PHYSICS      Vol. 46      No. 11      2001



  

Doklady Physics, Vol. 46, No. 11, 2001, pp. 773–776. Translated from Doklady Akademii Nauk, Vol. 381, No. 2, 2001, pp. 188–192.
Original Russian Text Copyright © 2001 by Kortsenstein, Tseskis.

                                                                                

PHYSICS
Specific Character of Critical Behavior in a Finite-Size System: 
A Model with the Landau Effective Hamiltonian

N. M. Kortsenstein* and A. L. Tseskis**
Presented by Academician V.P. Skripov June 1, 2001

Received June 28, 2001
We show that the problem on the critical behavior in
a three-dimensional model with the Landau effective
Hamiltonian can be solved exactly if a certain inequal-
ity is fulfilled. For a system with sufficiently small sizes
(specified by this inequality), we calculate critical indi-
ces and a shift of the heat-capacity maximum with
respect to its position in the thermodynamic limit. The
shift is also calculated for systems of noncubic shape.
If the space dimension exceeds an upper critical value,
the results turn out to be exact in the thermodynamic
limit since the model under consideration is renormal-
izable in this case.

1. As a rule, exact results of statistical mechanics
have an asymptotic character. This implies the passage
to the thermodynamic limit (i.e., to the number of par-
ticles N tending to infinity) in the corresponding calcu-
lations. In this case, the results concerning macroscopic
systems with the number of particles (or degrees of
freedom) on the order of Avogadro’s number are virtu-
ally exact by virtue of the smallness of fluctuations
determined by values on the order of N –1/2. This con-
cerns the temperatures of various phase transitions and,
for example, the phase interfaces in the first-order tran-
sitions or the coinciding sharp (possibly, infinite) peaks
of the heat capacity, susceptibility, etc., in the second-
order transitions. On the contrary, if N is not too large,
the fluctuations are not small and the second order tran-
sitions are smeared over a certain temperature interval.
In this case, singularities of physical quantities are
smoothed, and the extrema are shifted with respect to
their positions for infinite N. Recently, such effects
were studied in numerous experiments (see, for exam-
ple, [1, 2]). As to their theoretical description, it is
reduced to finding corrections to exact solutions for dis-
crete models with finite (but large!) numbers N [3, 4] or
to extrapolating the results obtained for d ≥ 4 to the
physical dimension d = 3 by ε-expansion within the
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framework of a continuous model [5]. It should be
noted that the volume V of the system, rather than the
number N, must be considered in the continuous model.

Here, we report exact results for the continuous
model with the Landau effective Hamiltonian, which
are valid only for systems with small sizes. It should be
noted beforehand that we ignore surface effects in finite
systems. In contrast to [5], we consider the case of
d = 3, with no extrapolation used, and directly calculate
the heat capacity cp. For finite systems, the critical tem-
perature is identified with the maximum point for cp. In
fact, this result is reduced to finding a correction to the
Landau theory, which occurs due to the zero-mode fluc-
tuation. In the theoretically important case of d ≥ 4, we
also show that the results obtained remain exact in the
thermodynamic limit.

2. Within the framework of the continuous model,
investigating the vicinity of the second-order phase-
transition temperature is reduced to calculating a fluc-
tuation correction to the thermodynamic potential (the
so-called singular part of the potential) [6]:

Here, the statistical integral Z corresponds to the sum-
mation over all possible distributions of the field η in
the volume Ld (d is the space dimension):

(1)

We start from the Landau effective Hamiltonian
Heff , which takes the following form in terms of the
Fourier transform of the field η (t = T – Tc, V = Ld):

(2)
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As V  ∞, the number of degrees of freedom in the

model tends to infinity n = V, where K is the

cutoff parameter . To describe a finite-size system in

the case of d = 3, we consider the field in the volume L3

such that the following inequality holds for a nonzero
wave number κ with the smallest modulus:

(3)

It is evident that this inequality is also fulfilled for all
the components with nonvanishing k. Taking into

account that κ ~ , we also have that  @ 1. It is

easy to see that the contribution of the regions with non-
vanishing ηk ≠ 0 into the statistical integral is negligible
if these inequalities are fulfilled. Under these condi-
tions, average values of physical quantities are also
independent of the particular form of the terms of the
fourth order in η, which enter into Heff . This statement
is confirmed by the calculation of the heat capacity (see
necessary relationships below) of the system with three
degrees of freedom, with the fourth-order term simu-
lated by two various polynomials of the fourth degree:


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Fig. 1. Temperature dependence of the heat capacity (in
dimensionless units) for various ways of representing the

fourth-order terms h4 in Heff : (n) h4 = , (d) h4 = ;

solid line corresponds to one degree of freedom.

h4
1( )

h4
2( )
The calculations were carried out with the following val-
ues of parameters: L = 20, a = b = Tc = 1, and g = 100.
The results are presented in Fig. 1. In the same figure,
we also show the calculation results for the heat capac-
ity of the system with one degree of freedom, η0 (for the
same values of the parameters). As is seen from Fig. 1,
the points corresponding to all the cases under consid-
eration are in the same curve.

Thus, when describing the phase transition in a sys-
tem with sufficiently small sizes, we can only consider
a system with one degree of freedom. Such a problem
corresponds to spatially homogeneous fluctuations and
can be solved exactly. We also note that solving this
problem is interesting by itself, serving as a formal
example of an exactly solvable model of the second-
order phase transition. It is evident that this model cor-
responds to the correction to the Landau theory, which
is due to spatially homogeneous (with k = 0) fluctua-
tions. Omitting the subscript in the component η0 , we
write out the effective Hamiltonian in the form (as
before, a = b = Tc = 1)

(4)

Twice differentiating the singular part of the potential
with respect to the temperature t, with Heff given by (4),
we obtain the following expression for the heat capacity
per unit volume:

Performing the change of variables Vη4 = x4 and intro-
ducing the denotation tV1/2 = ξ, we arrive at

(5)

For sufficiently large ξ, evaluating integrals in (5) by
the saddle-point method is reduced to integration over
the vicinity of the minimum for Heff in the exponent,
i.e., of the point x = 0. Hence, in the high-temperature
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region (t > 0), the heat capacity cp decreases, tending to
zero with increasing t. For t = 0 (ξ = 0),

In this case, the derivative  is negative and propor-

tional to V1/2. In the low-temperature phase (t < 0), with
the help of the change of variables –ξ2 = y2 , the quantity
cp is transformed to a form in which the exponent in the

integrands is y2 – , while the right-hand side of

Eq. (5) is additionally multiplied by ξ–2. For sufficiently
large but finite ξ2 (in any case, ξ2 > 1), it is easy to prove

that the contribution of  into the derivative of cp

with respect to t is essential, being positive and propor-
tional to V1/2. Thus, the curve of the heat capacity must
have a maximum at a certain point tm in the region
−AV –1/2 < t < 0 (A is a constant). By virtue of the finite-
ness of ξ, this maximum is finite and independent of V;
however, the tangents to the curve on both sides of this
point become vertical as V  ∞.

The calculation results for the heat capacity are
shown in Figs. 2–4. Figures 2 and 3 display the varia-
tion in the heat-capacity behavior (in its temperature
dependence) with increasing sizes of the system. It is
worth noting that while decreasing t in the low-temper-
ature phase, the heat capacity tends to a value of 0.5.
This value is evidently determined by the order param-
eter minimizing Heff in the exponent. Thus, the differ-
ence cp(–∞) – cp(∞) is the heat-capacity jump in the

cp
Γ 1/4( )Γ 5/4( ) Γ2 3/4( )–

Γ2 1/4( )
--------------------------------------------------------- 0.135763.= =

∂cp

∂t
--------

y4

ξ2
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∂ ξ 2–( )
∂t

---------------
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0.50
–0.30 –0.25 –0.20 –0.15 –0.10

2

3
4

5 6

1

cp

t

Fig. 2. Temperature dependence of the heat capacity for
small (L ≤ 9) sizes of the system: L = (1) 5.8, (2) 6, (3) 6.4,
(4) 6.8, (5) 8, and (6) 9.
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Landau theory ∆cp =  in conventional units . In

this case, both the shape of the curves and its variation
with an increase in L are in a qualitative agreement with
experimental data [1, 2] for systems with small L. (It is
interesting to note that, for systems with a small num-
ber of particles, a similar behavior of the heat capacity
is possible even if the phase transition is not of the sec-
ond order [7].) In particular, it can be seen from Fig. 2
that the heat-capacity maximum increases with L for
the sufficiently small L for which the approximation


 a2Tc

2b
----------- 


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0.53
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0.50
–0.20 –0.15 –0.10 –0.05 0

7

cp

t

8 9 10

Fig. 3. Temperature dependence of the heat capacity for L ≥
10: L = (7) 10, (8) 20, (9) 30, and (10) 50.

0.1

0.01
0.1 1 10 λ

tm

Fig. 4. Temperature tm corresponding to the heat-capacity
maximum as a function of size and geometry of the system:
(s) cubic geometry, positions of the maxima in curves 1–10
of Figs. 2 and 3; (solid line) the dependence tm =

−3.875λ−1.498; (n) lengthy geometry; (dotted line) the
dependence tm = −0.39175λ–1; (h) flat geometry; and

(dashed line) the dependence tm = –0.039175λ–0.5.
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under consideration is immediately applicable. The
dependence of the maxima tm of curves 1–10 in Figs. 2
and 3 on the size of the system is shown in Fig. 4. As is
seen, the corresponding points approach the curve (in
this case, λ ; L)

with increasing L. The fact that the exponent slightly
differs from 3/2 is associated with the limited computa-
tional accuracy of the numerical integration. Since tm
tends to zero from below as V  ∞, the shift in the
critical temperature with respect to its value in the ther-
modynamic limit is given by the universal dependence

, (6)

with the constant determined above. It should be noted
that, in general, the dependence on the size of a finite
system in the critical region (finite-size scaling), as well
as the shift in the position of the heat-capacity maxi-
mum with a variation in the size, is a characteristic of
the critical behavior of finite-size systems. Thus, in the
case under consideration as well as when solving the
two-dimensional Ising model, the corresponding rela-
tionships can be established exactly, in contrast to the
case considered in [8], for example, where such rela-
tionships are fairly indefinite. In the case under consid-
eration, L is a unique quantity with the dimension of
length. Hence, the exponent in the relationship tm ~
L−3/2 has to be immediately related to the critical index
ν; therefore, ν = 2/3. It is not difficult to find the remain-
ing (temperature) indices. It is evident that α = 0 and
β = 1/2. For finding the susceptibility index, we differ-
entiate Φsing with respect to t. As a result, the mean
square of fluctuations in the volume V at t = 0 is

.

Taking into account that L ~ t –2/3, we find that γ = 1;
hence, ζ = 1/2. The above results concerning systems
with the cubic geometry can be extended to other sys-
tems, for example, to lengthy systems having the shape
of a rectangular parallelepiped L × λ × λ or to plane sys-
tems, L × L × λ, with L @ λ. It is found for these cases,

tm(λ) ~  and tm(λ) ~ , respectively, with tm

being the absolute value of the corresponding quantity.
The numerical results are shown in Fig. 4. Thus, the
shift in the critical temperature is determined by the
shape of a system as well as its size. This conclusion is
in qualitative agreement with the experimental data.

3. In conclusion, we make the following notes. In
the case of d = 3, the results listed above have a direct
physical sense, provided that, of course, the inequalities

tm 3.875L 1.498––=

Tc L( ) Tc ∞( )– constL 3/2–=

η2 Vd∫ V1/2∼

λ 1–

L
------- λ 1/2–

L
----------
indicated at the beginning of this paper are fulfilled. As
was noted above, the extrapolation of the results to
large L is of methodical interest. In the space with a
dimension d ≥ 4, these results are exact just in the ther-
modynamic limit, which can be proved by the follow-
ing manner. Using the change of variables ηkLd/4 = xk ,
with regard to tLd/2 ~ 1, we exclude the quantity L from
the two first sums in the effective Hamiltonian (2). The
last sum proportional to g takes the form

hence, the corresponding term is not small even for the
smallest k ~ L–1. With regard to the representation of the
Dirac δ function in the form

it is evident that a product of the Dirac δ-functions,

, enters into the functional-integration element

in the statistical sum, while the corresponding addi-
tional factor independent of t yields a negligible addi-
tive term to Φsing after taking the logarithm. Thus, the
field components with nonzero k are eliminated. There-
fore, in the case of d ≥ 4, the consideration similar to that
carried out above for d = 3 becomes exact as L  ∞.
This is evidence of the renormalizability of the model η4

for d ≥ 4. The consideration gives, as it must be, the val-
ues of indices coinciding with those in the model of free
field: α = 0, β = 1/2, γ = 1, ν = 1/2, and ζ = 0.
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The concept of magnetic symmetry [1] served as a
basis for the statement on the principle possibility of the
existence of the magnetoelectric (ME) effect. Further-
more, specific predictions of the ME effect in the Cr2O3
antiferromagnet were made [2].

Recently, the ME effect was experimentally discov-
ered in the polydomain Cr2O3 crystal [3]. Later, more
exact experiments [4] revealed an anisotropy in the ME
effect, and the first microscopic theory of the ME effect
appeared [5].

All subsequent microscopic theories followed the
initial assumption that, under the action of the electric
field E, a certain parameter of the spin Hamiltonian
changes, namely, the axial term (D-term) quadratic in
spins [5], isotropic exchange [6], g-factor [7], antisym-
metric exchange [8], and biquadratic exchange [9]. The
temperature-averaged terms entering into the expres-
sions for the components αij of the ME susceptibility
tensor that determines the linear ME effect were calcu-
lated basically by three methods. These methods imply
the approximation of the molecular field [5], the allow-
ance for the experimentally determined temperature
dependence of magnetic susceptibility [8], and the
Green’s function method [10].

The magnetic susceptibility tensor αij , which deter-
mines the linear ME effect, does not possess any inter-
nal symmetry. However, it should be invariant under the
action of operations of crystal magnetic-symmetry
point groups. In particular, this statement is true for the
point group of the Cr2O3– m' magnetic symmetry (the
prime implies the operation of the time inversion). As a
result, the matrix acquires the form

(the z-axis coincides with the axis of the third order).

3'

α ij

α⊥ 0 0

0 α⊥ 0

0 0 α|| 
 
 
 
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The authors of [8], after comparing the refined the-
ory with available experimental data, made a conclu-
sion that the temperature dependence of α⊥  in Cr2O3 is
best described by the mechanism of the single-ion
(spin-orbital) type. At the same time, for α||, the best
agreement with the experimental data in the high-tem-
perature and low-temperature regions is provided by
the double-ion (isotropic exchange) and single-ion
(g-factor variation) mechanisms, respectively.

However, it is unlikely that any particular micro-
scopic theory of the ME effect can be considered to be
completely satisfactory. Difficulties arise due to the
impossibility of error estimation while calculating the
temperature-averaged quantities that are present in the
theory. The Green’s-function method [10], in principle,
must give more precise results. However, the discrep-
ancy in the values of α⊥  predicted on the basis of differ-
ent versions of the theory (the random-phase approxi-
mation and Callen decoupling) is comparable with the
divergence between these versions, on one hand, and
predictions of the molecular-field approximation, on
the other hand.

Meanwhile, the simple development of the phenom-
enological theory makes it possible to obtain a result
that can describe the temperature dependence of α|| and
α⊥  within a wide temperature range. In this case, the
true behavior (i.e., the behavior consistent with experi-
mental data) is provided as T tends to zero, as well as in
the spin-flop phase. The development of the theory is
the goal of this paper.

The construction of the thermodynamic theory
describing the ME effect in antiferromagnets starts
from the consideration of a certain nonequilibrium
thermodynamic potential, e.g., the Gibbs potential

where G0 is independent of the components of the H-
and E-fields (indices i and j determine Cartesian x-, y-,

G G0
1
2
---kijEiE j–

1
2
---χ ijHiH j– α ijEiH j,–=
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and z-axes; the summation over recurring indices is
implied). The relations

(1)

result in the following material equations:

(2)

In order to solve the problem formulated above, we
write out the Gibbs potential in the form of the expan-
sion into a series of the antiferromagnetism vector L
and its components including powers to the sixth order:

(3)

(the z-axis of the Cartesian coordinate system is aligned
along the symmetry axis of the third order; the x-axis
coincides with that of the second-order axes).

Minimizing relation (3) over M for a given L, we
arrive at

(4)

where

We now introduce several definitions:

L = Ll,
l = {cosφsinθ, sinφsinθ, cosθ} is the unit vector in the
spherical coordinate system;

H = {H⊥ cosψ, H⊥ sinψ, H||} 

= H{cosψsinν, sinψsinν, cosν}.

Using these definitions, as well as relation (4), and

ignoring the isotropic terms of the form L2, which are

unessential in considering the spin flop, we can rewrite
series (3) in the form

P
G∂
E∂

-------, M– G∂
H∂

-------–= =

Pi kijE j α ijH j,+=

Mi χ ij α jiE j.+=

G G0
1
2
---AL2 1

2
---BM2 1

2
---D LM( )2 1

4
---CL4+ + + +=

+
1
6
--- IL6 1

2
---A ' Lx

2 Ly
2+( ) 1

4
---C ' Lx

2 Ly
2+( )2

+ +

+
1
6
--- I ' Lx

2 Ly
2+( )3 1

4
---KLz 3Lx

2Ly Ly
3–( )+

+
1
6
---R1 Lx

3 3LxLy
2–( )2 1

6
---R2 3Lx

2Ly Ly
3–( )2

+

+
1
6
---K 'L2Lz 3Lx

2Ly Ly
3–( ) MH( )–

M χ⊥ H χ⊥ χ||–( ) LH( )
L2

-------------L,–=

χ⊥
1
B
---, χ|| B DL2+( ) 1–

.= =

A
2
---

G G0
1
2
---χ⊥ H2–

1
2
--- χ⊥ χ||–( ) lH( )2 A '

2
-----L2 θsin

2
+ +=

+
C '
4
-----L4 θsin

4 I '
6
---L6 θsin

6 K
4
----L4 θ θsin

3
3φsincos+ +
Minimization of this expression over φ under the con-

dition  >  =  (Hc is the threshold field of

the spin-flop transition for H⊥  = 0) determines the posi-
tion of the vector L in the spin-flop phase. It is easy to

see that if θ = , then it is determined by the roots of

the following equation

(5)

On the other hand, the presence in series (3) of the term

KLz(3 Ly – ) results in the violation of the rigor-

ous inequality θ =  in the spin-flop phase, even if

ν = 0 is the incomplete spin flop. With allowance for
this fact, Eq. (5) is replaced by the new equation

Thus, we can consider that φ ≈ 0; i.e., the vector L is
directed along one of the light axes in the (x, y)-plane [11].

A part of the Gibbs potential, which corresponds
to  ME interactions, with the invariants of both the
first [12] and the third power (in the components of the
vector L) taken into account, is written as

(6)

+ 
K'
6
-----L4 θ θsin

3
3φ  sincos  

R

 

1

 

6
----- 3

 

φ

 

cos

 

2

 

R

 

2

 

6
----- 3

 

φ

 

sin
2

+ L6 θ.sin
6

+

H ||
2 Hc

2 A 'L2

χ⊥ χ||–
-----------------

π
2
---

6φsin 0.=

1
4
--- Lx

2 Ly
3

π
2
---

3φsin
3

2R '
-------- K

4
---- 1

L2
----- K '

6
-----+ 

  θcos

θsin
3

------------, R '
R1 R2–

2
-----------------.= =

GME –Λ 1( )Ez LM( ) Λ 3( )EzL
2 LM( )–=

– λ1 Lx ExMy EyMx+( ) Ly ExMx EyMy–( )+{ }

× 1 kL2 r Lx
2 Ly

2+( )+ +[ ]

– λ2Ez LxMx LyMy+( ) 1 eL2 f Lx
2 Ly

2+( )+ +[ ]

– λ3Lz ExMx EyMy+( ) 1 cL2 d Lx
2 Ly

2+( )+ +[ ]

– λ4Mz LxEx LyEy+( ) 1 gL2 h Lx
2 Ly

2+( )+ +[ ]

– λ5LzMzEz 1 aL2 b Lx
2 Ly

2+( )+ +[ ]

– λ6 ExMy EyMx–( ) Lx
3 3LxLy

2–( )

– λ7LzEz My Lx
2 Ly

2–( ) Mx 2LxLy×+[ ]

– λ8LzMz Ey Lx
2 Ly

2–( ) Ex 2LxLy×+[ ]

– λ9Lz ExMx EyMy–( ) Lx
2 Ly

2–( )[

+ ExMy EyMx+( ) 2LxLy× ] λ 10EzMz 3Lx
2Ly Ly

3–( )–
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The exchange invariants of both the first and the third
power over L with the corresponding constants are
written out in the first line of this relation.

Dividing the tensor α into two parts α = α(1) + α(3),
in addition to the results obtained previously [12] (the

– λ11 ExMx EyMy+( ) 3Lx
2Ly Ly

3–( ).
DOKLADY PHYSICS      Vol. 46      No. 11      2001
constant Λ(1) is introduced in accordance with [13]), we
now find from relations (1) and (2)

From here, it immediately follows that

α ij
1( )

λ1Ly λ3Lz+ λ1Lx    Λ 1
 

( ) λ 2 + ( ) L x 

λ

 

1

 

L

 

x

 

λ

 

–

 

1

 

L

 

y

 

λ

 

3

 

L

 

z

 

+    Λ 1
 

( ) λ 2 + ( ) L y 

λ

 

4

 

L

 

x

 

λ

 

4

 

L

 

y    Λ 1
 

( ) λ 5 + ( ) L z  
 
 
 
 
 

 

.=
α ij
3( )

λ1kL2Ly λ3cL2Lz+ λ1kL2Lx Λ 3( ) eλ2+( )L2Lx

λ1kL2Lx λ1– kL2Ly λ3cL2Lz+ Λ 3( ) eλ2+( )L2Ly

λ4gL2Lx λ4gL2Ly Λ 3( ) aλ5+( )L2Lz 
 
 
 
 
 

≈ ,

α33 Λ 1( ) λ5+( ) Λ 3( ) aλ5+( )L2+[ ] Lz,≈
and, if the constant denoted by us as a is negative and
sufficiently large, so that Λ(3) + aλ5 < 0, then, while the
temperature tends to zero, α33 also becomes negative.

A similar temperature behavior of the correspond-
ing tensor components αij evidently manifests itself in
the spin-flop phase. This behavior is completely consis-
tent with the results of the experiment performed
in [11]. However, we should note once again that the

presence of the mixed term KLz(3 Ly – ) of the

fourth power in expansion (3) for the Gibbs potential
results in the fact that the z-component of the antiferro-
magnetism vector Lz does not vanish in the spin-flop
phase. The term of similar nature in expression (6) for

GME – (λ10EzMz(3 Ly – )) contributes to α33 . This
contribution is proportional to the third power of L. Due
to this fact, the term α33 can differ from zero in the spin-
flop phase [12].
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Since the discovery of quasicrystals [1], a large
number of theoretical papers have been published
devoted to their investigation (see, e.g., [2–6]). The
main challenge to the theory of quasicrystalline struc-
tures is related to determination of the actual arrange-
ment of atoms in a quasicrystal [7]. D. Gratias, one of
discoverers of quasicrystals [1, 7], noted that for signif-
icant progress in studying physical properties of quasi-
crystals it is necessary to know the actual arrangement
of atoms in these structures. Thus, in order to calculate
1028-3358/01/4611- $21.00 © 20780
such properties of quasicrystals as strength, plasticity,
electrical conduction, etc., we need a theory capable of
thoroughly describing quasicrystal structures, i.e.,
much as traditional crystallography describes periodic
crystals.

In this study, we analytically solve the problem of
quasicrystal structures, namely, the determination of
coordinates of atoms in a quasicrystal. For this, we
apply a method involving traditional crystallography
that describes periodic and incommensurate crystal
r w t q w s w wq qsu w r w w w w w w wt q s v r t q s u q s
jmcgojmcgnegom jcgnelbjmcgojmcgn
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e1
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Fig. 1. Scheme of a two-dimensional quasicrystal with the a–w structure cells.
Kirenskiœ Institute of Physics, Siberian Division, Russian Academy of Sciences, Akademgorodok, Krasnoyarsk, 660036 Russia
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Fig. 2. Validity of the condition pk(n + β) = 1 in the region Uk corresponding to a kth structure cell.
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Fig. 3. The map of Uk regions and corresponding 23 structure cells for a Penrose quasicrystal (top left). The same scheme with
16 structure cells for the Ammann–Beencker quasicrystal (top right). Quasicrystals in the bottom part of the figure are generated by
a computer program on the basis of formulas (1) and (2).
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e2 e1

e3

e4

e0

Fig. 4. Illustration of the symmetry for a Penrose quasicrystal, as an example. In the coordinated bases (e0, e1) and (e1, e2), a qua-
sicrystal is described by formulas (1) and (2) but with different parameters a and b.
structures. This method generalizes the definition of a
crystal. In the framework of the model proposed, a peri-
odic crystal can be represented as a particular case of a
quasicrystal. We obtained simple and clear formulas
describing the position of any atom in the quasicrystal.
The exact solutions for Penrose and Ammann–
Beencker quasicrystals are presented. The method is
universal and can be used in the analysis of biological
microstructures and fractal images. The symmetries of
quasicrystal structures are considered on the basis of
superspace groups [8, 9], a classical method in the
present-day description of incommensurate structures.

Crystal structures (in particular, quasicrystals)
exhibiting point diffraction, which, however, are aperi-
odic, can be described by a finite number of structure
cells. Figure 1 shows the scheme of a two-dimensional
quasicrystal with a–w structure cells.

In such a quasicrystal whose crystallographic axes
are parallel to base vectors e0 and e1 , the structure cells
are assumed to be situated in quasiperiodic lattice sites
with coordinates

rn(α, β) = e0x0(a0, β0) + e1x1(a1, β1),

where 

[x] is the integer part of x, σl > 1 and χl are irrational
numbers, al and βl are arbitrary numbers, al are the lat-
tice parameters, and l = 0, 1. In what follows, we

assumed that  < 1 since, in the opposite case, al

changes; i.e., = al + . Let the vector Yn(β') be

given in a Cartesian coordinate system by the following
expression:

where {x} is the fractional part of x. Then, the distribu-

xnl
al nl al

1
χ l

----
nl βl+

σl

---------------+ + 
  ,=

βl

σl

----

al'
1
χ l

----
βl

σl

----

Yn β( )
n0 β0+

σ0
----------------

 
 
  n1 β1+

σ1
----------------

 
 
 

,
 
 
 

,=
tion function for the density of atoms in a quasicrystal
with K structure cells can be written out in the form

(1)

(2)

where  is the vector characterizing the positions of
atomic centers in a kth structure cell with respect to the
lattice point with which the cell is connected; the
domains Uk are located within the rectangle σ0 × σ1 . In
general, the shapes of Uk regions can be arbitrary
(Fig. 2).

Equations (1) and (2) determine the positions of
atoms in a quasicrystal and can be easily introduced
into a computer program [10] to generate a quasiperi-
odic structure of arbitrary size having arbitrary param-
eters α and β. As an example, Fig. 3 demonstrates a solu-

tion for Penrose quasicrystals σ0 = σ1 + χ0 = χ1 = τ,

τ = , a0 = a1 = 1  and Ammann–Beencker

(σ0 = σ1 = χ0 = χ1 = a0 = a1 = σ, σ = 1 + ) quasi-
crystals.

For simplicity, we considered the construction of a
two-dimensional quasicrystal. In the three-dimensional
case, the structure cells represent parallelepipeds with
their edges parallel to the crystallographic axes, and the
Uk regions are considered as volume elements in a rect-
angular parallelepiped. This approach was first pro-
posed by the author in [11].

For an arbitrary shape of Uk domains, the analytical
calculation [12] of the radiation diffraction on a quasi-
crystal, according to formulas (1) and (2), shows that

ρ n α β, ,( )

=  pk n β+( ) δ r rn α β,( )– r jk
–( ),

jk

Jk

∑
k 1=

K

∑
n0 n1, ∞–=

∞

∑

pk n β+( ) 0, Yn β( ) Uk∈
1, Yn β( ) Uk,∉

=

r jk




1 5+
2

---------------- 


2
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the diffraction pattern is independent of parameters α
and β. Since physical properties of a quasicrystal,
namely, the scattering of radiation, do not depend on α
and β, the following invariance condition can be formu-
lated for a quasicrystal [8, 9]: if only the parameters α
and β, rather than the function ρ in itself, change under
the action of a transformation operator on the atomic-
density distribution, then such a quasicrystal is invari-
ant with respect to this transformation. Thus, if the con-
dition

is fulfilled [where R(ϕ, r0) is the rotation operator, ϕ is
the rotation angle, and r0 is the coordinate of a point
about which the rotation occurs], then such a quasicrys-
tal has a symmetry axis on the order of q (Fig. 4).
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Nickel–zirconium alloys have a high glass-forming
ability in a wide range of their concentrations and thus
are a base for a number of bulky amorphous metallic
materials [1]. However, no Gibbs energies for the for-
mation of nickel–zirconium crystalline phases have
been determined until now due to experimental difficul-
ties associated with the high reactivity of zirconium and
low values of partial saturated-vapor pressures of the
components. The lack of experimental data prevents the
analysis of thermodynamic and kinetic parameters of
the Ni–Zr-liquid transition into the amorphous state,
hampers understanding the reasons for the easiness of
this phenomenon proceeding in a number of systems of
transition metals, and impedes revealing the degree of
stability and possible directions of further transforma-
tions into vitreous compositions.

In the study proposed, Knudsen mass spectrometry
was used for investigating a vapor composition and
thermodynamic properties of nickel–zirconium alloys
within the temperature range 971 to 1518 K and the
composition range 18.0 to 64.9 at. % of Zr. The satu-
rated-vapor pressure was measured with the help of
doubled Knudsen cells. As a reference medium, we
used copper (99.999%) or ultrapure iron with an impu-
rity content of 10–6%. For synthesis of alloys, we used
zirconium iodide (of 99.99% purity) and electrolytic
nickel (of 99.98% purity). The procedures for preparing
samples and performing the experiments were similar
to those described previously [2].

Crystalline Ni–Zr alloys are characterized by
extremely low partial pressures of the vapor of compo-
nents. At temperatures of their stability, the Knudsen-
measurement technique is capable of measuring only a
nickel-vapor pressure over samples whose com-
positions belong to the regions of heterogeneous equi-
librium

Ni + Ni5Zr, Ni5Zr + Ni7Zr2, Ni7Zr2 + Ni21Zr8.

Kurdyumov Institute for Metal Physics 
and Functional Materials,
Bardin Central Research Institute
for the Iron and Steel Industry, 
Vtoraya Baumanskaya ul. 9/23, Moscow, 107005 Russia
1028-3358/01/4611- $21.00 © 0784
These data are evidently insufficient for determining
the thermodynamic functions of intermediate phases.
With the purpose of establishing them, we developed a
procedure based on initiating and investigating equilib-
rium with the participation of volatile products. We
added into effusion cells with alloys under investigation
certain quantities of fluorides of magnesium, calcium,
or sodium. As a result of their interaction, volatile zir-
conium fluorides appear. In the mass spectra of satu-

rated vapor, , , ZrF+, Zr+, and Na+, Mg+, or

Ca+ ions were detected, respectively. The lines of 
and Na+, Mg+, or Ca+ were the most intense. The exper-
iments carried out with Ni–Zr alloys of various compo-
sitions and metallic zirconium, as well as calculations
performed, showed that their interaction with admix-
tures of fluorides of Mg, Ca, and Na proceeds, basi-
cally, in the reactions

(1)

(2)

(3)

The ,  ZrF+, and Zr+ ions have a fragmenta-
tion origin and are formed by the dissociative ionization
of zirconium–tetrafluoride (ZrF4) molecules. Na+, Mg+,
or Ca+ ions originate from Na, Mg, or Ca atoms, respec-
tively. The ratios 100 : 7.5 : 5.9 : 4.0, which had been

observed between ion-current intensities for ,

, ZrF+, Zr+, virtually coincided with those previ-
ously established in [3] while investigating evaporation
of ZrF4. For reactions (2) and (3), two measurement
runs were carried out under different experimental con-
ditions (effusion-orifice diameter, effusion-chamber
material). The virtually complete coincidence of the
experimental results (Fig. 1) demonstrates that a state
close to equilibrium is attained in the effusion cell and

ZrF3
+ ZrF2

+

ZrF3
+

Zr c( ) 4NaF c( )+ ZrF4 g( ) 4Na g( ),+=

Zr c( ) 2MgF2 c( )+ ZrF4 g( ) 2Mg g( ),+=

Zr c( ) 2CaF2 c( )+ ZrF4 g( ) 2Ca g( ).+=

ZrF3
+ ZrF2

+

ZrF3
+

ZrF2
+
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Fig. 1. Values of partial pressures for vapors of ZrF4 and Na, Mg, or Ca over the mixtures of fluorides of sodium, magnesium or
calcium with zirconium under various experimental conditions (added fluoride, effusion-cell material, material of the inner-surface
coating, effusion-orifice diameter [deff , mm]): ( ) Na and (k) ZrF4 (NaF, Mo, ZrB2, 0.114); (n) Mg and (s) ZrF4 (MgF2, Mo, BN,
0.143); ( ) Mg and ( ) ZrF4 (MgF2, Nb, ZrB2, 0.208); (,) Ca and (e) ZrF4 (CaF2, Ta, BN, 0.236); ( ) Ca and ( ) ZrF4 (CaF2,
Nb, ZrB2, 0.129).

k

n g
that the data obtained are reliable. Data analysis made
it possible to determine the variations in the Gibbs
energy of reactions (1)–(3) (expressed in J/mol):

(4)

(5)

(6)

These results virtually coincided with the JANAF refer-
ence data [4]. For example, the Gibbs-energy calcula-
tion for reaction (1) according to the data of [4] in the
temperature range 700–1000 K led to the equation

(7)

As can be seen from Fig. 1, introducing one or
another additive leads to the initiation of reactions with
volatile products within a wide temperature range from

∆rG 1( ) 1033400 1200± 641.5 1.5±( )T ,–=

711 T 982 K,≤ ≤

∆rG 2( ) 835700 800± 417.1 0.7±( )T ,–=

904 T 1241 K,≤ ≤

∆rG 3( ) 1074800 1000± 375.9 0.7±( )T ,–=

1197 T 1618 K.≤ ≤

∆ f G 1( ) 1028100  –  636.5 1.5 T , ± =

700

 

T

 

1000 K.

 

≤ ≤
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700 to 1600 K, which makes it possible to cover the
entire temperature range for investigation of crystalline
Ni–Zr alloys.

From the measured values of partial vapor pressures
(ion currents) of ZrF4 and Mg, Ca, or Na over the mix-
tures of fluorides with nickel–zirconium alloys and a
pure metal, we calculated partial thermodynamic
functions for Zr (see table). This was done according
to the expressions for constants of equilibrium in reac-
tions (1)–(3). In such calculations, no ionization cross
sections of gas molecules were used, which signifi-
cantly elevated the accuracy of the desired values. For
each of the two-phase regions in the diagram of state for
the Ni–Zr system, we investigated several alloys of var-
ious compositions in different experimental conditions
(effusion-chamber material, effusion-orifice area).
Depending on the temperature measurement range, we
used admixtures of different fluorides of Na, Mg, or Ca.
In all cases, the coincidence was observed within the
experimental error for the thermodynamic characteris-
tics found under various conditions. This fact is illus-
trated in Fig. 2 by the example of two-phase fields,

Ni10Zr7 + Ni11Zr9, Ni10Zr7 + NiZr, Ni11Zr9 + NiZr,

and proves that a state close to equilibrium is attained
in the effusion cell when performing experiments with
Ni–Zr alloys.
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45
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–∆G(Zr), kJ/mol

Fig. 2. Partial Gibbs energy for zirconium, which was established in investigations of alloys belonging to the regions of heteroge-
neous equilibrium of Ni10Zr7 + Ni11Zr9, Ni11Zr9 + NiZr, and Ni10Zr7 + NiZr under various experimental conditions [x(Zr)], added
fluoride, effusion-cell material, material of the inner-surface coating, and effusion-orifice diameter (deff , mm)}: ( ), ( ) 0.430,
MgF2, Nb, ZrB2, 0.182; (g) 0.442, CaF2, Ta, BN, 0.224; ( ) 0.476, MgF2, Mo, BN, 0.157; ( ) 0.476, NaF, Mo, BN, 0.157;
( ) 0.491, CaF2, Nb, ZrB2, 0.215.

n

g

The determination of partial thermodynamic prop-
erties of both components in the heterogeneous regions
of Ni5Zr + Ni7Zr2 and Ni7Zr2 + Ni21Zr8 made it possible
to calculate the thermodynamic functions for the for-
mation of corresponding phases. The thermodynamic
characteristics of other compounds were found with the
help of the Gibbs–Duhem equation. As a result, the fol-
lowing expressions were obtained for the temperature
dependences of the Gibbs energy in the formation of
intermetallic nickel–zirconium compounds from fcc Ni
and bcc Zr:

(8)

∆ f G
1
6
---Ni5Zr 

  32025 790±( )–= 2.74 0.57±( )T ,+

1108 T 1518 K,≤ ≤

∆ f G
1
9
---Ni7Zr2 

  42930 754±( )–= 4.84 0.55±( )T ,+

1108 T 1518 K,≤ ≤

∆ f G
1
29
------Ni21Zr8 

   = – 47028 716±( ) 5.99 0.53±( )T ,+

1201 T 1438 K,≤ ≤

∆ f G
1
17
------Ni10Zr7 

   = – 50075 611±( ) 5.16 0.46±( )T ,+

1058 T 1339 K,≤ ≤
                           

Until now, only the formation enthalpy was experi-
mentally investigated for Ni–Zr intermediate phases by
means of dissolving calorimetry [5, 6] and direct reac-
tion calorimetry [7]. The values ∆fH [5–7] are com-
pared in Fig. 3 with the data presented in this paper. As
is seen, the results of all these studies agree well with
each other.

The authors of [8] estimated the Gibbs energy for
the formation of Ni–Zr intermediate phases at 1273 K
on the basis of results of measuring the heat capacity
for six Ni–Zr alloys with zirconium molar fractions of
0.30, 0.39, 0.47, 0.48, 0.54, and 0.61. In these experi-
ments, differential scanning calorimetry within the
temperature range of 120 to 800 K and data of [6, 7] for
∆fH was used. As can be seen from Fig. 3, values of ∆fG

∆ f G
1
20
------Ni11Zr9 

   = – 49675 586±( ) 4.66 0.45±( )T ,+

1253 T 1440 K,≤ ≤

∆ f G
1
2
---NiZr 

  50793 553±( )–= 5.23 0.43±( )T ,+

1004 T 1441 K,≤ ≤

∆ f G
1
3
---NiZr2 

  36460 450±( )–= 2.12 0.37±( )T ,+

971 T  ≤  1345 K. ≤                                            
DOKLADY PHYSICS      Vol. 46      No. 11      2001



THERMODYNAMIC INVESTIGATION OF INTERMEDIATE PHASES 787
found in [8] are somewhat lower than our data. This dis-
crepancy is likely associated with errors inherent in [8]
when performing measurements and calculations.
Namely, for determining the absolute entropy of com-
pounds, the authors of [8] investigated heterogeneous
alloys instead of homogeneous samples. For calculat-
ing the absolute entropy and the formation entropy at
1273 K, the measured heat capacities were extrapolated
to the large temperature range of 120 and 473 K,
respectively. At last, the formation entropy for the
Ni7Zr2 phase was estimated by a simple interpolation of
the values of ∆fS(Ni21Zr8) to zero in the case of metallic
nickel.

The authors of [9] performed an analysis of avail-
able experimental data on thermodynamic properties
and phase equilibrium in the Ni–Zr system. As the ini-
tial thermodynamic data, they used the values of the
formation enthalpy for the compounds, which had been
established in [5–7]. The optimal values of ∆fH
obtained in [9] turned out to be close to both the results
of [5–7] and those of the present study, whereas a dis-
tinction was observed in the values of ∆fG (Fig. 3). This
is caused by the fact that the initial information in [9]
was insufficient for correctly determining the Gibbs
energy of the formation of intermediate phases.

In our study, the thermodynamic functions for inter-
mediate phases of the Ni–Zr system have been estab-
lished while investigating alloys of various composi-
tions and under different experimental conditions (effu-
sion-chamber material, effusion-orifice diameter, and
type of reactive admixture). These functions agree well
both among themselves and with the independent
experimental data of [10] on the phase equilibrium. For
example, the thermodynamic functions of an equi-
atomic nickel–zirconium compound calculated on the
basis of data obtained for the two-phase field of
Ni10Zr7 + NiZr and for the heterogeneous-equilibrium
regions of Ni10Zr7 + Ni11Zr9 and Ni11Zr9 + NiZr coin-
cide. The peritectic–decomposition temperature for
DOKLADY PHYSICS      Vol. 46      No. 11      2001
Ni11Zr9 calculated from the data displayed in Fig. 2
attains 1248 K, whereas the value found by methods of
physicochemical analysis is equal to 1251 K [10]. All
these facts testify to the reliability of the procedure used
for studying crystalline Ni–Zr alloys and to the preci-
sion of the thermodynamic values obtained.

60

50

40

30

20

10

0.2 0.4 0.6 0.8 1.0
x(Ni)

–∆ f H, –∆ f G, kJ/mol

–∆ f H

–∆ f G

0

Fig. 3. Thermodynamic functions for the intermediate-
phase formation in the Ni–Zr system from fcc Ni and bcc Zr
according to the results of this study: (n) ∆fH, (,) ∆fG, and
data for ∆fH of other authors: (e) [5], (m) [6], ( ) [7],
(k) [9], (f) [8], and ( ) [9].

f

                              
Partial thermodynamic functions of components in Ni–Zr heterogeneous alloys with respect to fcc Ni and bcc Zr

Phase field T, K n Component –∆H, J/mol –∆S, J/(mol K)

Ni5Zr + Ni7Zr2 1108–1518 91 Zr 197186 ± 1000 –34.55 ± 0.76

1274–1518 55 Ni –1086 ± 926 –3.64 ± 0.66

Ni7Zr2 + Ni21Zr8 1201–1438 62 Zr 101972 ± 2010 –21.41 ± 1.52

1336–1438 25 Ni 26097 ± 3072 0.12 ± 2.22

Ni21Zr8 + Ni10Zr7 1058–1339 79 Zr 63249 ± 997 1.57 ± 0.82

Ni10Zr7 + Ni11Zr9 1253–1440 57 Zr 43886 ± 2007 –2.58 ± 1.5 

Ni10Zr7 + NiZr 1004–1244 60 Zr 54873 ± 1258 6.23 ± 1.13

Ni11Zr9 + NiZr 1253–1441 52 Zr 61973 ± 2304 11.92 ± 1.73

NiZr + NiZr2 971–1345 89 Zr 7880 ± 770 –4.26 ± 0.67
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Formation of Diamond-Like Boron Nitride by Pulsed Heating
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Boron nitride (BN) is an artificially produced com-
pound. This material is interesting due to its great hard-
ness. Instruments using BN compete with those using
diamond. The interest in application of diamondlike
BN is caused by its two advantages. Boron nitride is
annealed at 1800°C; i.e., it is efficient at higher (com-
pared to diamond) temperatures. In addition, boron
nitride does not react with metals. This makes it possi-
ble to employ this material for processing hardened
steels.

It is well known that in the case of shock compres-
sion of hexagonal boron nitride (h-BN), the dense
wurtzite phase (w-BN) is always formed in a thick-
walled recovery ampoule. At the same time, the forma-
tion under these conditions of the cubic modification,
the so-called sphalerite (c-BN), was apparently not
observed. This situation is usually explained by the
high-temperature nature of the cubic modification [1].
This fact leads to failures while loading specimens in
the dynamic mode. For polymorphic transformation, a
high initial temperature of a specimen being com-
pressed is necessary. However, in combination with
additional heating caused by the shock compression,
this can lead to such high residual temperatures that,
after the shock compression is over, annealing of the
formed cubic modification c-BN occurs. At low (or
room) initial temperatures, only the low-temperature
wurtzite phase is formed.

However, there exists another possible (kinetic) rea-
son for the absence of the cubic form in the case of a
direct pulsed transformation of h-BN, e.g., due to the
extremely high activation energy of this process. The
h-BN  c-BN transition of a specimen compressed
under conditions of millisecond-scale pulsed heating in
a Belt-type high hydrostatic-pressure chamber was
described by Bundy and Wentorf [2], indicating the
possibility of millisecond-time phase transformation.
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1028-3358/01/4611- $21.00 © 20789
Later on, the results of Bless [3] were published. In this
experiment, h-BN placed into a copper tube was com-
pressed by the electromagnetic field up to pressures P =
182 kbar. According to the author’s estimates, in the
case of specimen porosity of about 5%, a temperature
of 1000°C was attained due to the heating of rubbing
particles. As a result, c-BN lines were observed in the
X-ray diffraction pattern. However, the author of [3]
made no mention of the quantitative yield of this phase.
Therefore, it is possible that the temperature required
for the phase transformation was attained only on the
surface of rubbing particles and that the cubic modifi-
cation was formed only in the thin surface layer.

Meanwhile, in the case of initial high temperatures,
explosive loading can lead to the formation of the cubic
c-BN phase only in the case of dynamic–static com-
pression [4]. Indeed, in this method, the static pressure
(20 kbar) is produced at the stage of shock unloading,
which prevents annealing of the dense phase. However,
due to the complexity of these experiments, it is diffi-
cult to choose their optimal temperature. Therefore, we
undertook an investigation for the possibility of cubic-
phase formation under conditions that can be consid-
ered tentative.

The experiments were carried out in the following
manner. A tablet made of a h-BN and W (tungsten)
powder mixture with a volumetric ratio of 1 : 1 was
placed between Bridgman anvils in a miniature press.
The area of the Bridgman anvils was subjected to the
action of a force equivalent to a pressure of ~80 kbar,
which was produced by means of an oil press. Then the
tablet to which high pressure was applied was fed by a
single electric-current pulse with an amplitude of 20 to
45 kA. An electric-pulse setup that had been used pre-
viously [5] in studies of properties of liquid carbon
under pulsed heating was employed. At the moment of
passing the short-time electric-current pulse (with a
duration of about several tens of microseconds) through
the tablet, the temperature reached the tungsten melting
point, i.e., approximately 3700 K. (This estimate has
been obtained in the course of experiment by the obser-
vation of melted traces of tungsten.) After termination
of the pulsed discharge and decrease in pressure, the
tablet of the substance under investigation was
extracted from the experimental setup. Then it was sub-
jected to study by X-ray and IR-spectroscopy methods
001 MAIK “Nauka/Interperiodica”
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with the help of DRON-3 and Specord measuring
devices, respectively. The X-ray diffractometry turned
out to be low informative in this case. Actually, owing
to the high concentration of tungsten, the BN lines do
not manifest themselves. At the same time, the reflec-
tions of tungsten were slightly displaced (within the
limits of several hundredths of an angstrom) towards
the smaller parameters of the tungsten cell. This
occurred apparently due to the formation, in a very
insubstantial concentration, of the W–O or W–N incor-
poration solid solution.

On the basis of studying IR spectra, the appearance
of a dense BN form was observed whose concentration
increased with the rise of the electric-current pulse.

f

e

d

c

b

a

1800 1500 1200 900 600
Wave number, cm–1

T
ra

ns
m

is
si

on
, %

Fig. 1. Evolution of the IR absorption spectra of BN while
varying the charging voltage of the setup (elevation of the
voltage corresponds to the rise of the heating electric cur-
rent and, correspondingly, to the increase in temperature):
(a) initial BN + W specimen; (b) BN + Cu, the voltage is
12 kV; (c) BN + W, the voltage is 10 kV; (d) BN + W, the
voltage is 11.5 kV; (e) BN + W, the voltage is 12.5 kV;
(f) BN + W, the voltage is 16 kV.
Figure 1 shows the evolution of the absorption spectra
measured in this experimental run. In order to deter-
mine the structure of the BN dense form, a specimen
obtained as a result of electric-pulse loading was sub-
jected to thermal processing after the experiment. The
specimen was heated in ambient argon for 5 h at a tem-
perature of 1000°C. Then we compared the IR spectra
of the original, transformed, and heated specimens (see
Fig. 2). As the wurtzite modification is annealed even at
850°C, the spectrograms presented indicate the invari-
ability of the absorption band for the dense phase
(~1000 cm–1) and provide an idea on its quantitative
yield (~30% of the mass of the original hexagonal
phase). Finally, in Fig. 3, the data corresponding to
indicated conditions for thermal treatment of all BN
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Fig. 2. Evolution of h-BN: (a) initial specimen; (b) the spec-
imen after the pulsed action at a high pressure (the c-BN
band is additionally shown with the tenfold increase in the
sensitivity); (c) the specimen after the electric-pulse action
at a high pressure + subsequent steady-state thermal treat-
ment.
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Fig. 3. Effect of annealing at 1000°C (5 h in ambient argon) on
the IR spectra of polymorphic BN modification: (a) standard
specimen of c-BN (1112 cm–1); (b) c-BN after thermal treat-
ment; (c) standard specimen of w-BN (1060 cm–1); (d) hexag-
onal phase of h-BN (1380 cm–1) formed from w-BN;
(e) specimen obtained as a result of electric-pulse treatment.
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(Wurtzite)
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IV
(Sphalerite)

I
Catalyzed
transition

Fig. 4. Phase diagram borrowed from [2] for BN. (Notation
corresponds to that of [2].): (L) liquid phase; (I) hexagonal
(graphite-like) boron nitride h-BN; (III) (dense phase)
w-BN; (IV) sphalerite (diamond-like modification) c-BN.
Hatched curve is the line of equilibrium between the graph-
ite-like and dense modifications (catalyzed transition of the
hexagonal phase I into sphalerite IV); hatched straight line
corresponds to the phase transition (without catalysts) of
wurtzite (III) into sphalerite (IV).
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modifications are displayed. These data unambiguously
testify to the fact that we managed to synthesize the
cubic form in the above-mentioned mode. At the same
time, the intensity of the characteristic absorption band
in the IR spectrum of the specimen obtained turned out
to be enhanced by a factor of 10. From this result, it fol-
lows that the shape of the absorption band differs from
the standard one, which implies possible structural pecu-
liarities of specimens synthesized in the pulsed mode.

In Fig. 4, the phase diagram taken from [1, 2] for BN
is presented. A similar phase diagram is also given
in [6]. The high-pressure phases of BN III (wurtzite)
and IV (sphalerite) can be obtained by either the cata-
lytic method or directly, without the presence of cata-
lysts (Fig. 4). It was assumed [1] that, at a temperature
below 1600°C, the transition of h-BN into w-BN
occurs, while at higher temperatures c-BN is formed. In
Fig, 4, the transition of h-BN into the diamond-like
modification c-BN is realized at a pressure of 110 kbar
and temperature of ~2000 K. In [6], it was established
that this transition can occur under steady-state condi-
tions at a pressure of 80 kbar and temperature of about
2000 K. The results of the present experiments with
pulsed loading, which were performed at an initial
pressure of ~80 kbar and at a temperature of ~ 3700 K,
give grounds for the conclusion that rapid heating is not
an obstacle for such a phase transition. The distinction
of the rapid method employed by the authors of this
paper from the virtually steady-state method described
in [6] consists in fast (tens of microseconds) pulsed heat-
ing that has no limitations related to the temperatures to
be attained. This is rather favorable for research studies
and further automation of the technological process. The
fact that in the experiment under consideration a mass
yield of the diamond-like phase attained approximately
30% (according to our estimates) indicates the high oper-
ation speed of the direct phase transition.
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In this paper, we formulate optimization problems
for the shape of the cross sections of cylindrical bars.
We consider the flexural stiffness, the maximum stress,
and the cross-section area of a bar as optimized func-
tionals. The cross-section boundary of the bar, consid-
ered as unknown, is sought in the class of regular
polygonal contours. Optimal boundaries are found by
employing the minimax approaches for cases of simply
connected and doubly connected cross sections with
given convex holes.

1. Optimization problems for the shape of elastic
cylindrical bars are considered in optimal design in
order to improve the strength characteristics of the bars
under bending, torsion, compression, and other types of
static and dynamic loads. Rational and optimal design
of the cross sections of bars was considered in a large
number of theoretical studies. However, until now,
solving many important problems on the optimal
design of bar shapes with the use of present-day meth-
ods of investigating distributed systems with unknown
boundaries encountered certain difficulties. The most
complicated problems arising in the optimal design of
the bar cross sections are associated with determining
admissible cross sections, investigating local extrema,
finding global optima, and solving multipurpose opti-
mization problems. A detailed analysis of studies pub-
lished before 1980 was given in monograph [1]. Varia-
tional methods were then used in [2–4] for analyzing
the problem on finding convex cross sections for bars
that have the maximum flexural and torsional stiff-
nesses. In [5], parametric representations of boundaries
were used for solving the minimization problem for the
mass of a thin-walled bar, with restrictions imposed on
the minimum torsional and flexural stiffnesses. The prob-
lem posed in [6] of finding rational and optimal shapes of
beam cross sections, with constraints imposed on the
strength, was considered in [7]. The recent study [8]
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should also be mentioned, in which the maximization
problem was investigated for the torsional stiffness of a
composite bar having imperfect matrix–fiber cohesion.

In this study, we investigate such characteristics as
the buckling load, the strength, and the stiffness. At
first, we consider stiffness properties for the cross sec-
tions of a bar, which determine the buckling load under
compression and characterize the flexural stiffness of
the bar. As is well known, for decreasing deflections of
a bent beam and also for increasing the stability–loss
critical force (fundamental eigenvalue), it is necessary
to increase the moment of inertia of the beam cross sec-
tion under certain isoperimetric conditions. We assume
that the cross-section area S of a cylindrical bar is given
{S = measΩ} and the cross section Ω bounded by the
contour Γ is convex. The optimization problem consists
in finding the boundary Γ of the domain Ω that maxi-
mizes the minimum moment of inertia I(Γ, α),

(1)

under the isoperimetric condition

(2)

Here, S0 is a given value of the cross-section area, and
α is the angle determining the orientation of the flexural
plane. We consider the case when all the bending loads
applied to the bar act in the same flexural plane, while
the orientation of this plane is not given beforehand and
can be chosen arbitrarily. This case is peculiar to com-
pressed columns in which the stability loss takes place
in the plane having the minimum flexural stiffness
(minimum moment of inertia). In this case, for optimiz-
ing the bar stiffness (i.e., the stability–loss critical
force), it is necessary to maximize the minimum
moment of inertia of the cross section. As was noted
in [8] and as follows from the theory of symmetriza-
tion [9], in order to optimize the cross-section shape it
is necessary to consider a family of admissible symmet-
ric cross sections having the same moments of inertia

I* I Γ α,( )
α

min
Γ

max=

S Γ( ) Ωd

Ω
∫ S0.= =
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for arbitrary neutral lines crossing the centroid. It
should be noted that an arbitrary regular symmetric
cross section [from an equilateral triangle (n = 3) and to
a circle (n = ∞), where n is the number of the polygon
sides], has the same moments of inertia with respect to
any axes passing through the cross-section center. In
what follows, we consider only regular polygonal cross
sections with n axes of symmetry and investigate their
properties. For the symmetric polygonal cross sections
under consideration, their moments of inertia with
respect to the axes passing through the centroid turn out
to be equal. We have

(3)

where Ip is the polar moment of inertia, ρ is the distance
from the center (centroid) of the cross section, Ix and Iy
are the moments of inertia with respect to the x- and
y-axes of the orthogonal coordinate system Oxy, and the
point O is the centroid of the cross section. In order to
estimate the polar moment of inertia Ip, it is sufficient
to consider the triangle OPQ (Fig. 1) having the polar
moment of inertia (Ip)e. For the polar moment of inertia
of the cross section, we have Ip = n(Ip)e. Introducing a
local orthogonal coordinate system Oηζ  with the
Oη-axis perpendicular to the side PQ, we obtain the
relationship (Ip)e = (Iζ)e + (Iη)e, where (Iη)e = b3a/48 and
(Iζ)e = ba3/4 are the moments of inertia for the triangle
OPQ with respect to the η- and ζ-axes. We denote the
lengths of the segments OT and PQ by a and b, respec-
tively (height and side of the triangle). Using the
expression for (Ip)e and the isoperimetric equality S0 =
n(ba/2) following from (2), we sum the quantities (Ip)e

(e = 1, 2, …, n). As a result, we obtain the relationships

(4)

(5)

The dependence of the dimensionless moment of iner-

tia  = I/  on the number n of the sides of polygons is
shown in Fig. 2. In what follows, we omit the tildes
standing for dimensionless quantities. As can be seen
from Fig. 2, the dimensionless moment of inertia I
decreases monotonically as the number n tends to infinity
and has the maximum value for n = 3. Thus, the optimum
is attained for an equilateral triangle, while the worst case

I
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corresponds to a circular cross section (n = ∞). The fact
that a triangular cross section is optimal on the set of all
the regular polygonal domains (with the same area) was
established in [8], where the problem on finding the
column shape providing the maximum stability–loss
critical force was investigated. We note that, using the
calculus of variations, it is possible to establish that a
triangular cross section is locally optimal in the class of
symmetric convex regions. We now cite the corre-
sponding considerations. To do this, we apply an arbi-
trarily small symmetric perturbation, which does not
violate either the convexity condition or the isoperimet-
ric constraint S = S0 , to the contour Γ bounding the
polygonal cross section Ω . The unperturbed region
PQR and a third of its perturbed boundary, P'KT 'DQ' ,

T
Q

η

P
b

x

ζ

O

a

y

Fig. 1.
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are shown in Fig. 3. The expression for the variation δI
of the moment of inertia I is given by the formula

(6)

where δf is the variation of the boundary of the cross
section, which is measured in the direction of the out-
ward normal to Γ. Allowing for the symmetry of both
the unperturbed region of the cross section and the per-
turbed boundary with respect to the symmetry axes
(shown in Fig. 3 by the dashed lines), we write the
expressions for the variations of the moment of inertia
and the cross-section area:

(7)

(8)

Formula (8) and the isoperimetric condition S = S0
(δS = 0) lead to the relationship

(9)

Using Eq. (9) and the inequality

, (10)

δI
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Fig. 3.
we arrive at the following estimates:

(11)

Thus, δI ≤ 0 and, therefore, the local maximum of the
optimized functional corresponds to a triangular cross
section.

We now assume that the cross section Ω is a doubly
connected region; i.e., the bar has a cylindrical cavity.
The region Ω has the given inner boundary Γi and the
outer polygonal boundary Γ. We also assume that the
inner region Ωi, bounded by the contour Γi, is convex
and has the same moments of inertia with respect to all
the axes lying in the cross section and crossing the cen-
troid. We suppose that the area S of the cross section Ω
is given (S = S0) and that the boundary of the equilateral
triangle with the area S = Si + S0 [Si + S0 = meas(Ωi + Ω0)]
does not touch or intersect the boundary Γi . The last
condition is essential when considering the variations
of the outer boundary Γ in the class of regular polygons.
On the set of the boundaries Γ under consideration, the
minimum distance between Γ and the centroid is
attained for an equilateral triangle. Under these
assumptions, an unknown outer boundary Γ is found
from the optimum condition for the moment of inertia I
of the cross section Ω. The expression for the moment
of inertia I can be written as I(n) = Is(n) – Ii. Here, Is is
the moment of inertia of the simply connected region
Ωi + Ω , which depends on the number n, and Ii is the
moment of inertia of the inner convex region Ωi, whose
value is independent of n. The optimization problem is
reduced to the maximization of the quantity Is(n).
We have

(12)

Thus, the equilateral triangle with its center in the cen-
troid of the cross section Ωi is the optimal cross section.

2. Above, we considered the optimization problem
for the stiffness of a bar, which was reduced to the max-
imization of integral functionals. Below, we analyze the
maximization problem for the strength of a bar, which
is based on estimating local functionals. We consider
the minimization problem for the bending stresses in
cylindrical bars having convex cross sections. As
before, we assume that both the flexural plane and the
plane in which external forces act are not known
beforehand. The limiting value M0 of the acting bend-
ing moment is considered as given. We allow for only

δI 3 ρ2( )K δf Γd

P

K

∫ ρ2( )K δf Γd

K

T

∫+
 
 
 

≤

=  3 ρ2( )K δf Γd
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K

∫ δf Γd

K

T

∫+
 
 
 

0.=

I* I n( )
n

max Is n( ){ } I i–
n

max Is 3( ) I i.–= = =
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normal stresses acting in the bar cross sections. They
are determined by the formula

(13)

Here, the angle β specifies the direction of the neutral
line of the cross section relative to the global coordinate
system, and h is the distance between the point (x, y)
under consideration and the neutral line of the bar. The
optimization problem consists of finding the boundary
Γ of the cross section Ω that minimizes the maximum
stress

(14)

under isoperimetric condition (2). In the case of fixed Γ
and β, we denote the maximum values of h and σ on Ω
by hm and σm, respectively; i.e.,

(15)

(16)

As above, we consider only symmetric convex cross
sections bounded by regular polygons. In this case, the
moment of inertia is independent of β [I = I(Γ)], while
the maximum value of h for the set of β (0 ≤ β ≤ 2π) and
(x, y) ∈ Ω  is given by the formula

(17)

where n is the number of sides of the polygon under
consideration. Isoperimetric condition (2) is taken into
account when deriving expression (17). Furthermore,
using formulas (4) and (17), we find the maximum
value of the quantity σ in the form

(18)

The dependence of the maximum stress σM on the num-
ber n is shown in Fig. 4, where the dimensionless quan-
tity  = σM  is used, and the tilde, standing for

the dimensionless variable, is omitted. As can be seen
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from Fig. 4, the maximum stress σM = Ψ(n) decreases
monotonically as n tends to infinity, taking the mini-
mum value at n = ∞. Consequently, the optimum is real-
ized in the case of a circular cross section and the worst
case corresponds to a equilateral triangle (n = 3).

It is possible to show that a circular cross section
provides the local minimum of the optimized func-
tional. In order to prove this statement, we consider the
circular cross section Ω and perform small symmetric
variations of its boundary Γ, which do not violate the
convexity condition and isoperimetric constraint (2)
(S = S0). For the sake of simplicity and without loss of
generality, we assume that the perturbed boundary Γ +
δΓ has three axes of symmetry. The small variation of
the optimized functional is given by the following
expression:

(19)

With regard to both the expression for the small varia-
tion of the area S of the circular region under consider-
ation and the isoperimetric condition, we have

(20)

Using equality (20), we estimate the first variation of
the moment of inertia:

(21)

Here we take into account that the function ρ(x, y) is
constant at the boundary Γ (ρ is the radius of the circular
cross section). Thus, the second term in expression (19)
vanishes. The variation of the quantity hm is less than or
equal to zero (δhm ≤ 0). Therefore, for perturbances
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under consideration of a circular cross section, the fol-
lowing inequality is valid:

(22)

As with the former part of this study, the consider-
ations carried out can be extended to the case of doubly
connected cross sections.
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On the Shear Correction Factor 
in the Timoshenko-Type Shell Theory
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As is well known, in the theory of Timoshenko-type
shells the shear correction factors k are introduced to
allow for the nonuniformity of the transverse-shear dis-
tribution in shell cross sections [1]. At present, the fol-
lowing values are commonly used for the shear correc-

tion factors: k =  [2] and k =  [3]. These correction

factors were obtained as a result of analysis of thin elas-
tic plates and are consistent with one another. As is
shown below, in the case of the approach [3] (in which
the derivation of governing relations is based on the
principle of virtual work), the value of the shear correc-
tion factor k = 1 is preferable. In this case, the trans-
verse components of the stress tensor can be recovered
by integrating equations of the spatial elasticity theory.
The choice k = 1 makes it possible to construct a math-
ematically consistent and noncontradictory theory of
Timoshenko-type shells.

1. We consider a thin anisotropic shell with a con-
stant thickness h. It is assumed that at each shell point
there exists a surface of elastic symmetry that is parallel
to face surfaces S– and S+. We take as an reference sur-
face S an arbitrary internal shell surface located at the
distances δ– and δ+ from the face surfaces; i.e., h = δ+ –
δ−. We associate the reference surface with orthogonal
coordinates α1 and α2 , which are counted off along the
lines of principal curvatures. The α3-coordinate is
counted off in the direction of increasing the outer nor-
mal to the surface S.

In linear elasticity theory, the equations of equilib-
rium for a thin shell whose face-surface metrics can be
identified with the metric of the reference surface have
the form

5
6
--- π2

12
------

1
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∂σii

∂α i

--------- 1
A j

-----
∂σij

∂α j

---------
∂σi3
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(1)

Here, Bi = ; σαβ are stresses; Ai and ki are the

Lamé parameters and curvatures of the coordinate
lines, respectively; i, j = 1, 2; and α, β = 1, 2, 3.

The equations of the generalized Hooke law with
allowance for the admission σ33 ! σij can be written out
in the form

(2)

In constructing the theory, we employ the modified
Timoshenko hypothesis [4] on the linear distribution of
displacements across the shell thickness

(3)

where (α1, α2) are tangential displacements of the
face surfaces S±, and v 3(α1, α2) is the transverse dis-
placement of the surface S.

We now introduce displacements (3) into the strain
displacement relations of the linear elasticity theory.
Then, assuming the transverse shears to be distributed
uniformly across the shell thickness, we arrive at the
expressions

+ Bi σii σ jj–( ) 2B jσij kiσi3+ + 0, i j,≠=

1
A1
------

∂σ13

∂α1
---------- 1

A2
------

∂σ23

∂α2
----------

∂σ33

∂α3
----------+ +

+ B1σ13 B2σ23 k1σ11– k2σ22–+ 0.=

∂A j/∂α i

A1A2
-------------------

σij bijlmεlm, σi3

l m≤
∑ bi3l3εl3,

l

∑= =

i j l m, , , 1 2.,=

ui N– α3( )v i
– N+ α3( )v i

+, u3+ v 3,= =

N– α3( )
δ+ α3–

h
-----------------, N+ α3( )

α3 δ––
h

----------------,= =

v i
±

εij N– α3( )eij
– N+ α3( )eij

+ , εi3+ ei3, ε33 0,= = =

eii
± 1

Ai

-----
∂v i

±

∂α i

--------- B jv j
± kiv 3 i j,≠+ +=
001 MAIK “Nauka/Interperiodica”



798 GRIGOLYUK, KULIKOV
(4)

We multiply first two equations of equilibrium (1)
by the shape functions N±(α3) and integrate them
(together with the third equation) with respect to the
transverse coordinate within the limits from δ– to δ+,

with the boundary conditions σα3(δ±) =  taken into
account. As a result, we arrive at the equations of equi-
librium for a shell with respect to the stress resultants

(5)

Here, Tiα and  are the classical and generalized

stress resultants, respectively, and  are the surface
loads acting on the face surfaces S±.

With allowance for relationships (2), the constitut-
ing equations for specific forces and moments can be
represented in the form

(6)

where we assumed kil = 1 for the shear correction fac-
tors. We should note that formula (6) for the transverse
forces Ti3 expresses a rather simple fact. This formula
implies that the elasticity relations for the transverse
shear stresses (2) in the Timoshenko-type shell theory
are not satisfied pointwise but are fulfilled as integral
relations across the shell thickness [4, 5].
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Furthermore, we integrate Eqs. (1) of the spatial
elasticity theory over the transverse coordinate from δ–

to α3 . Taking into account the boundary conditions

σα3(δ–) = , we arrive at the formulas for the determi-
nation of the stress transverse components

(7)

(8)

We pay attention to the fact that, by virtue of the
equality Qiα(δ+) = Tiα and equations of equilibrium (5),

the boundary conditions σα3(δ+) =  immediately fol-
low from relationships (7).

2. We now discuss a statement important for the the-
ory of Timoshenko-type shells and associated with the
validity of equations of equilibrium (5) for a shell in the
case of the stress field (2), (7), which was found as a
result of solving the problem. The matter is that upon
the determination of the transverse shear stresses σi3
according to formula (7) and the calculation on this

basis of the transverse forces , we can encounter a
situation when listed equations of equilibrium (5) for a
shell are not exactly satisfied. The reason consists in the
fact that the transverse forces Ti3 , whose calculation is
based on Hooke law (2), i.e., on formula (6), in the gen-

eral case, can be not coincident with .

In order to solve the problem posed, we employ the
formulas following from relationships (2), (4), and (8):

With allowance for these formulas, as well as for rela-
tion (7), we obtain the expression

(9)

With equations of equilibrium (5) for a shell taken

into account, we have from Eq. (9) that  = Ti3 , which
was in need of proof.
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In conclusion, it is worth emphasizing that we man-
aged to construct the noncontradictory theory for
Timoshenko-type shells [in the sense of the simulta-
neous satisfaction of the equations of equilibrium for a
shell (5) and relationships (7)]. Such a construction
became possible on the basis of a physically clear
assumption about the integral validity of equations cor-
responding to the Hooke law for transverse shear
stresses (2). This implies that we should admit kil = 1 in
formula (6) for transverse forces. In this connection, we
note that, from the standpoint of the approach devel-
oped in this paper, attempts to construct theories for
Timoshenko-type shells, which are based on one con-
cept or another related to calculation methods for the
shear correction factors [1], will result in mathemati-
cally inconsistent and contradictory theories.
DOKLADY PHYSICS      Vol. 46      No. 11      2001
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In the classical setting, the problem of the electro-
capillary motion of a spherical droplet [1] with a sur-
face charge of the double electrical layer is described in
dimensionless variables by the system of equations [2]

(1)

Here, σ* = , η* =  are the ratios for the coefficients

of the electrical conduction and dynamic viscosity; q is
the dimensionless charge density in the double electri-
cal layer; jΣ = ±qvθ is the convective surface current for
each of two oppositely charged surfaces of the thin dou-

ble electrical layer,  ! 1, d is the thickness of the

double electrical layer, and a is the droplet radius ;

ue is the unknown dimensionless velocity of the droplet
electrocapillary motion, which is normalized to

E0a ; and E0 is the intensity of an external electric

field. Other characteristic quantities correspond to
those taken in [2].

The solution to this problem yields a potential flow
outside the droplet and a spherical Hill vortex inside it.
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At the same time, the distribution of the electric poten-
tial has the form

where β = qv 0 – 1/2 and the fluid velocity v 0 on the
droplet surface is connected with ue by the formula

However, we can go out of the usual framework for
electrodynamics and obtain the final solution to this
problem in the electrical approximation [3]. In other
words, we seek the magnetic field B induced by the
flowing electric currents. Then, we take into account in
the equations of motion the existence of the magnetic
component of the Lorentz force (that arises due to the
interaction of these currents with the self-magnetic field)
on the basis of the theory of electrovortex flows [4]. In
this case, we can find several new effects.

1. Taking the quantity B0 = µσaE0 as a characteristic
induction of the self-magnetic field, and after certain
transformations, we arrive at the system of equations

(2)

In this case, at the passage through the electric-current
layers of a mobile double electrical layer, the jump of
the magnetic-field induction is {B} = 0 as r = 1. How-
ever, it is well known from the courses of electrody-
namics (see, e.g., [3, 5]) and magnetic hydrodynamics
[6] that the tangential component of the magnetic field
B has a discontinuity when passing through an electric-
current layer.

This illusory contradiction can be overcome due to
the fact that, in the presence of the relative motion of
phases, the double electric layer corresponds to the vec-

ϕ' –
2qv 0

σ*
------------r θ, ϕcos –r

β
r2
----+ 

  θ,cos= =

ue
2
3
---v 0

q

2 3η* q2 1 2/σ*+( )+ +
---------------------------------------------------------.= =

rotB j=

divB 0=

 r 1: B> 1

2
---r 1 2β

r3
------+ 

  θeϕsin=

r 1:  B ' <  q v 0 r θ e ϕ .sin=  





⇒
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tor double current layer (DCL), inside of which (as

  0) there is a simple magnetic layer (SML) sim-

ilar to the surface δ-function with the induction BΣ =
−qv 0sinθeϕ. This conclusion is confirmed by the solu-

tion (within the accuracy to the small parameter  ! 1)

to the interior Dirichlet problem for a magnetic field
inside a spherical layer.

Thus, a new structure arises, namely, a vector triple
electromagnetic layer (TEML) with the meridional and
antiparallel spreading of the convective electric current
in the double current layer. This structure is accompa-
nied by the appearance of the orthogonal azimuth mag-
netic field in the simple magnetic layer. This can be
written out in the following symbolic form:

TEML = DCL ∪  SML.

In addition, a direct verification of other properties
of the triple electromagnetic layer as a generalizing uni-
fication of classical concepts for potentials of double
and simple layers [5–7] is possible.

2. In the electrodynamic approximation, the electro-
vortex flow caused by the Lorentz force is described by
the equation

(3)

where j = –∇ϕ  and B are determined by formulas (2).
The Hartmann number M calculated on the basis of the
induction B0 of the self-magnetic field of the electric
current j is connected with the Alfven number Al, the
Reynolds number Re, and the electrovortex-flow
parameter S by the following relations:

The application of the curl operation to Eq. (3) with
both the expression for the Lorentz force and the axial
symmetry taken into consideration makes it possible to
derive the inhomogeneous equation for the stream
function Ψ(r, θ) outside a droplet

(4)

By virtue of the potential properties of the Lorentz
force for r < 1, a similar homogeneous equation can
also be obtained for the interior of the droplet.

The form of the angular dependence in the right-
hand side of Eq. (4) allows us to seek the stream func-

d
a
---

d
a
---

∆u1 M j B×[ ]⋅+ ∇ p1,=

B0a
σ
η
--- M Al Re⋅ S

Re
------ µja2 σ

η
---.= = = =

1
r θsin
------------- ∂2

∂r2
-------

θsin

r2
-----------

θ∂
∂ 1

θsin
-----------

θ∂
∂

 
 + 

 
2

Ψ

=  
3β
r3
------ 1 2β

r3
------+ 

  θ θ.cossin
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tion and the tangential component of the electrovortex
flow on the droplet surface in the form

With allowance for the corresponding modification
of the boundary conditions related to the system of
equations (1) as r  ∞ and r = 1, we finally obtain

(5)

where

Outside the droplet, the velocity field of the electro-
vortex flow, which corresponds to stream functions (5),
presents an analog of the axisymmetric deformation
flow, while in the droplet interior we deal with the sys-
tem of Taylor toroidal vortices. The summary electro-
capillary vortex motion inside a droplet has the form of
a spherical Hill–Taylor vortex.

3. The electrocapillary flow formally found in [1, 2]
corresponds to the Stokes approximation (Re ! 1). At
the same time, the potential flow outside a droplet and
the Hill spherical vortex inside it are related to the class
of dynamically reversible flows and satisfy the com-
plete Navier–Stokes equations [8]. Then, the electro-
vortex flow found as a correction to the electrocapillary
flow takes place for all values of the parameter S for
which the breakdown of the double electrical layer does
not even occur. Therefore, ball lightning composed of
cold or cluster plasma can also have a similar electro-
capillary-vortex structure. This ball lightning can be a
cluster of the spherical Hill–Taylor-vortex type. The
cluster can possess the surface triple electromagnetic
layer at the interface that bounds the phases and the
ambient ionized air and can participate in the above-
described (or more complicated) motion. This model of
ball lightning makes it possible to qualitatively explain
many strange characteristic features intrinsic to its
nature [9].

Ψ r θ,( ) f r( ) θsin
2 θ,cos=

u1θ u1θ' v 1 θ θ.cossin–= =

Ψ Mβ
8
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v 1
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A missile flow is one of the complicated and often-
encountered regimes of two-phase flows. In a vertical
missile flow, a major fraction of gas is enclosed in a
large bulletlike bubble, which is called a Taylor bubble.
This bubble occupies the greater part of the pipe cross
section. Fluid between the Taylor bubble and the pipe
wall flows around this bubble as a thin film. Taylor bub-
bles are separated by continuous fluid portions, which
can contain small bubbles. The shape of the interphase
surface in two-phase flows specifies the exchange by the
mass, momentum, and energy between the phases.

THEORETICAL DESCRIPTION 
OF THE TAYLOR BUBBLE SHAPE

If a Taylor bubble is more than five times longer than
the diameter of the pipe with the missile flow, the bub-
ble can be separated into three parts so that the Taylor
bubble shape can be described by three asymptotes (as
is shown in Fig. 1).

The surface of the first part (bow) of the bubble is

spherical. The radius of this surface is equal to D,

where D is the pipe diameter. The surface of this part
can be described in the cylindrical coordinates (r, x) by
the following equation [1]:

(1)

The second part of the Taylor bubble can be
described by the equation derived in [2] under the
assumption on the free fall of a perfect fluid:

(2)

Here, D is the pipe diameter, ug is the emersion velocity
of the bubble in the pipe with the quiescent fluid, and
g is the acceleration of gravity.

At the third part of the Taylor bubble, the falling-
fluid layer becomes so thin that the gravity force is bal-
anced by viscous forces. Therefore, the layer thickness

3
8
---

r
D
2
----

1
2
--- x 3D 4x–( ).–=

r
D
2
---- 1

ug

2gx
-------------– .=
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becomes constant and can be represented by the equa-
tion derived in [3]:

, (3)

where νl is the kinematic viscosity of the fluid. This part
begins at a distance on the order of five pipe diameters
from the bow part of the bubble, and the layer thickness
depends on the properties of the gas and liquid phases
of the flow.

EXPERIMENTAL INVESTIGATION
Our experiments were carried out with the setup

shown in Fig. 2. A solitary Taylor bubble was formed in

δ
ν l

2

g
-----3=

x

1[ ]

2[ ]

4[ ]

δ

δ D
2
---- 1

ug

2gx
-------------––=

δ δ∞=

Fig. 1. Asymptotic shapes of the Taylor bubble.
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8
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a vertical glass pipe with a length of 1.5 m and an inner
diameter of 15.6 mm. This pipe was a part of a closed
system in which distilled water circulated under the
action of an electrical pump. The water flow in the mea-
suring section (glass pipe) was directed downward. Air
was introduced into this section through a capillary
tube by a calibrated syringe. In this manner, a solitary
Taylor bubble was formed in the system and kept at rest
by means of the downward water flow, whose velocity
was varied with the voltage applied to the pump. The
buoyancy force was balanced by other hydrodynamic
downstream forces (friction force and inertia force)
acting upon the bubble. As a result of the balance of
these forces, the Taylor bubble remained at rest. This
method enabled us to thoroughly examine the Taylor
bubble surface, because the bubble was immobile with
respect to the pipe (i.e., to the Eulerian coordinate sys-
tem). The immobile Taylor bubble was photographed
and recorded on videotape using a high-speed video
camera.1 

In order to eliminate the effect of refraction in the
cylindrical-pipe wall, a cubic box with glass windows

1 It should be noted that the problem of a moving bubble in an
immobile pipe and the problem of a viscous flow around an
immobile bubble in the same pipe are not equivalent hydrody-
namically.

P

DC

2

9

5

6

7

3

1 8

4

Fig. 2. Layout of the experimental setup: (1) section for
measuring and photographing the flow, (2) water pump,
(3) air-feeding syringe, (4) tank with water, (5) drain valve,
(6) glass pipe, (7) photographic or video camera, (8) Taylor
bubble, and (9) controllable power supply.
(with a refractive index n = 1.41) was placed in the
measuring section. The glass pipe (n = 1.41) and the
box had a common axis of symmetry. The box was
filled with the same distilled water (n = 1.334) as in the
system. This facility enabled us to investigate the inter-
phase boundaries of the Taylor bubbles without dis-
tortions.

In Fig. 3, we show the photograph on which pro-
nounced waves in the form of ripples at the lateral sur-
face of the bubble are seen distinctly. The photographs
obtained were processed digitally (Fig. 4). We mea-
sured the thickness of the fluid layer between the pipe
wall and the Taylor bubble. The experiments showed
that the longer the Taylor bubble, the smaller the ampli-
tude and length of the waves at the bubble surface.

The Taylor bubble velocity was also measured. For
this purpose, the Taylor bubble was displaced at the
glass-pipe bottom by increasing the water-pump capac-
ity. After switching off the pump and stopping the
motion of the working fluid, the Taylor bubble began
floating up. The measurements were carried out only
after the bubble had passed a relaxation section with a

Fig. 3. Long Taylor bubble.
DOKLADY PHYSICS      Vol. 46      No. 11      2001
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length of 15 cm. Measuring the time that the bubble
spent to cover a given distance between two points, we
determined the emersion velocity. The Taylor bubble
velocity was equal to the average velocity of the water
flow that held the Taylor bubble in a fixed position. The
emersion velocity was 0.13 m/s. The same velocity was
observed for all the Taylor bubbles except those with
the smallest volume.

The high-speed video recording and photography
showed that the stability of the bottom surface of a Tay-
lor bubble depends on its length. Namely, the longer the
bubble, the less stable the lower surface.

0 2.5 5.0 7.5 r, mm

5

10

15

20

25

30

35
x, mm

Experiment
[1]
[2]

Fig. 4. Taylor bubble shape obtained by the digital process-
ing of the photographic image and the theoretical asymp-
totes (D = 15.6 mm).
DOKLADY PHYSICS      Vol. 46      No. 11      2001
The emersion velocity for the Taylor bubble in a
cylindrical channel is [1, 2]

(4)

where ρl and ρg are the liquid and gas densities, respec-
tively, and k1 is equal to either 0.351 [1] or 0.328 [2].
We used an average value k1 = 0.345; it was obtained in
the set of experiments carried out in study [4]. In our
case (ρg ! ρl), equation (4) can be reduced to the form

(5)

It follows from (5) that the theoretical emersion velocity
for the Taylor bubble is equal to 0.135 m/s. This value is
very close to 0.13 m/s obtained in our experiment.

From comparison between the Taylor bubble sur-
face and its asymptotic behavior (1)–(3), it is seen that
the theoretical values are in good agreement with our
experimental data. The results of the comparison are
shown in Fig. 4. None of the theoretical schemes
known to us can describe waves on the Taylor bubble
surface; in any case, this concerns fairly short bubbles.

It is evident that such waves have to be taken into
account in calculating the interphase density of the Tay-
lor bubble surface, and this should be the object of fur-
ther investigations.
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1. Fields of natural gas hydrates discovered in vari-
ous world regions have turned out to be so significant
that they are considered as potential sources of natural
gas. Presently, the development of technologies for gas
extraction from natural deposits of gas hydrates has
become a principal problem [1]. In [2, 3], simple mod-
els were proposed for hydrate formation and decompo-
sition in natural conditions, which allow for basic gov-
erning physical mechanisms. Further investigations
demonstrated that the consideration of new physical
processes leads to principle changes in the mathemati-
cal structure of the solution to the problem of gas-
hydrate decomposition in natural reservoirs [4–6].

In this paper, a new mathematical model is analyzed
for the dissociation of a heterogeneous gas-hydrate
mixture in strata, taking into account the existence of a
mobile liquid phase. The presence of four qualitatively
different regimes of hydrate decomposition is shown;
these correspond to extended hydrate-dissociation
domains as well as to ice formation under the dissocia-
tion and to the formation of ice plugs in strata initially
having positive temperatures.

2. We assume that a hydrate-containing stratum cor-
responds to a porous medium saturated with a hetero-
geneous mixture of gas hydrate and gas. We admit that
the operation of a gas-producing well decreases the gas
pressure in a stratum and leads to hydrate dissociation
and the appearance of a domain saturated with water
and gas. A system of governing equations comprises
the conservation laws for mass and energy, the Darcy
law, and the equation of state for the gas, as well as ther-
modynamic relations. For the gas–hydrate domain, we
have the system of equations

(1)

m
t∂

∂ 1 v–( )ρg divρgνg+ 0,=

νg
k
µg

----- f g v( )gradP,–=
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.

For the gas–water domain, the system of equations
acquires the form

(2)

The conditions on the hydrate-decomposition front
are formulated like those of the thermodynamically
equilibrial jump for saturation functions of gas and
water. The conditions of the thermodynamic equilib-
rium on the hydrate-dissociation front are of the form

(3)

The second group of boundary conditions on the
dissociation surface represents the conservation laws

P ρgRT ,=

ρC( )1
∂T
∂t
------ div νgP( ) Cv ρgνggradT+ +  = div λ1gradT( ),

λ1 mv λh m 1 v–( )λg 1 m–( )λ s,+ +=

ρC( )1 mv ρhCh m 1 v–( )ρgCg 1 m–( )ρsCs+ +=

m
t∂

∂ 1 S–( )ρg divρgνg+ 0,=

m
t∂

∂
S divνw+ 0,=

P ρgRT , ν j
k
µ j

----- f j S( )gradP, j– w g,,= = =

ρC( )2
∂T
∂t
------ div P νg νw+( )[ ]+

+ ρwCwνw ρgCgνg+( )gradT div λ2gradT( ),=

λ2 mSλw m 1 S–( )λg 1 m–( )λ s,+ +=

ρC( )2 mSρwCw m 1 S–( )ρgCg 1 m–( )ρsCs.+ +=

T+ T– T*, P+ P– P*,= = = =

P*ln A
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for the mass of gas and water, as well as the energy-con-
servation law:

(4)

Here, v  is the hydrate saturation, T is temperature, P is
pressure, S is the water saturation, ν is the filtration rate,
f is the relative permeability, m is the porosity, k is the
permeability, C is the heat capacity, R is the gas con-
stant, µ is the viscosity, ρ is the density, λ is the thermal
conductivity, V is the jump velocity, and q is the specific
dissociation heat. The subscripts w, g, and s correspond
to water, gas and the skeleton of the porous medium,
respectively. The symbols n, plus, and minus corre-
spond to the normal to the hydrate-decomposition front
and relevant quantities on the right and left of the front.
The symbols asterisk, subscript zero, and superscript
zero correspond to values of various quantities on the
front, initial values, and values on the immobile bound-
ary, respectively.

3. We now consider the problem of the hydrate
decomposition in a semiinfinite stratum. Let, in the ini-
tial time moment, the semiinfinite space x > 0 occupy a
stratum filled with a heterogeneous mixture of hydrate
and gas at a temperature T0 , pressure P0 , and the
hydrate saturation is v  = v 0 . We assume that on an
immobile wall x = 0, which corresponds to a gas-
extracting well, the pressure drops down to a suffi-
ciently low level P0 . This value satisfies the thermody-
namic conditions for the existence of gas in the free
state. Then the hydrate-dissociation front x = X(t) prop-
agates to the right from the surface x = 0. This front sep-
arates the domains saturated with the gas-hydrate mix-
ture and the gas-water mixture.

We analyze the dissociation regimes that correspond
to the technology of the hydrate decomposition by the
method of decreasing the stratum pressure. In this case,
the stratum-temperature variation is not high, since it is
associated with the heat absorption due to the hydrate
decomposition. Assuming the variations of pressure to
be low compared to its absolute value, and ignoring
small terms in the systems of equations (1) and (2), we
arrive at the system of linear equations for perturbances
in the gas–water and hydrate–gas domains, respec-
tively:

m v +

ρ0g

ρg

------- S– v +–+ 
  Vn

k f g v +( )
µg

------------------- gradP( )n+=

–
k f g S–( )

µg

------------------ gradP( )n–,

m v +

ρ0w

ρw

-------- S–– 
  Vn

k f w S–( )
µw

------------------- gradP( )n–,=

mv +qρhVn λgradT( )n+ λgradT( )n–.–=
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Here, aj are the thermal-diffusivity coefficients and S0 is
the unperturbed water saturation for the gas-water
domain.

The initial and boundary conditions have the forms

We now turn to the case when the stratum saturation
with hydrate and the initial and boundary values for
temperature and pressure are constant. Then the prob-
lem has the self-similar solution of the form

The solutions in both domains can be expressed as
probability integrals. Substituting the solutions into the
conditions on the moving boundary (3), (4), we obtain
a system of transcendental equations for the determina-
tion of the boundary velocity and the values of desired
functions on this boundary.

4. The system of transcendental equations on the
mobile boundary was solved numerically. The numeri-
cal experiments performed in the wide range of param-
eters revealed four principally different regimes for the
decomposition of gas hydrates in a stratum that initially
coexisted with gas at the positive temperature. Figure 1a
exhibits examples of the calculation results, which tes-
tify to the existence of a consistent solution correspond-
ing to typical values of parameters and the following
initial and boundary conditions:

T0 = T 0 = 275 K, P0 = 6 × 106 Pa, 

P0 = 2.5 × 106 Pa, k = 10–17 m2.

In this case, the solution is noncontradictory. The
increase in the stratum permeability results in a qualita-
tive change of the solution. Figure 1b presents the cal-
culation results corresponding to k = 5 × 10–17 m2 when
the hydrate-decomposition temperature in the domain
ahead of the dissociation front dropped below the stra-

∂S'
∂t
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∂P'
∂t

-------- κ j∆P',= =

∂T
∂t
------ a j∆T , j 1 2,,= =

κw
k f S0( )
mµw
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kP0

mµg

----------,= =

κ2
S0

µw

------ 1 S0–
µg

--------------+
kP0

m 1 S0–( )
-----------------------.=

t 0: X 0( ) 0, x 0: T> T0, P P0;= = = =

x 0: P P0 P0 P0<( ), T T0.= = =

T T ζ( ), P P ζ( ), S S ζ( ),= = =

ζ x/2 a1t, X t( ) 2γ a1t.= =
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Fig. 1. Distributions (1) of temperature T K in a stratum and (2) of the hydrate dissociation temperature: (a) noncontradictory case,
P0 = 2.5 × 106 Pa, k = 1 × 10–17 m2; (b) hydrate superheating, P0 = 2.5 × 106 Pa, k = 5 × 10–17 m2; (c) water supercooling on the
dissociation front, P0 = 1.3 × 106 Pa, k = 1 × 10–17 m2; (d) hydrate superheating in the domain ahead of the dissociation front and

supercooling of water on the front, P0 = 1.5 × 106 Pa, k = 2 × 10–17 m2.
tum temperature, which corresponds to hydrate super-
heating in the domain. In this case, an extended domain
of hydrate decomposition arises similar to the domain
introduced in [4].

The decrease in pressure on the boundary (P0 =
1.3 × 106 Pa) for the permeability k = 1 × 10–17 m2

results in intensifying the dissociation process
(Fig. 1c). Therefore, the dissociation temperature cal-
culated in the process of solving the problem turns out
to be lower than the water-crystallization temperature.
In this case, it is natural to assume that the hydrate-
decomposition process is accompanied by the appear-
ance of ice and the formation of ice plugs hindering the
gas outflow.

If both the pressure gradient and the permeability
are sufficiently high (P0 = 1.5 × 106 Pa, k = 2 ×
10−17 m2), then a dissociation regime can exist for
which hydrate in the domain ahead of the dissociation
front is superheated and, simultaneously, the tempera-
ture calculated on the front is lower than the water-crys-
tallization point (Fig. 1d). In this case, the physical pro-
cess is accompanied by the creation of an extended dis-
sociation domain and an ice-containing domain.
In the problem-parameter space, domains can be
isolated that correspond to the existence of the solution
of each type. In Fig. 2, two neutral curves are plotted in
the (k, ∆P)-plane. These curves divide the plane into

2

1

3

4

1 2 3 4 5 6

4.8

4.4

4.0

3.6

∆P × 10–6

k × 10–17

Fig. 2. Critical diagram in the (k, ∆P)-plane. The domains
correspond to (1) decomposition into gas and water;
(2) decomposition with the formation of ice; (3) formation
of ice and of an extended dissociation domain; (4) forma-
tion of an extended dissociation domain. ∆P = P0 – P0.
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four domains in which the corresponding form of the
solution is realized.

It is worth noting that the model under discussion
presents an adequate mathematical description only in
one domain in the (k, ∆P)-plane. Nevertheless, this
model allows in each case the prediction of both phys-
ical features intrinsic to the process and the structure of
a mathematical model that presents a consistent
description of the process.
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The problem under consideration concerns intro-
ducing a damage into a preloaded elastic body. The
damage leads to the origination of new large strains and
stresses. They are superposed upon large strains and
stresses already existing in the body considered as a
continuum. Since the initial stresses in the body are
large, the initial thickness of the cut that finally takes
the shape of a narrow slot can be much smaller than the
characteristic dimension (length) of the cut. Hence, we
can treat the process as a traction breaking along the
whole cut, i.e., as the formation of a physical cut (in the
sense of a physical microscopic molecular model, for
example, within the framework of kinetic theory of
fracture [1–3]).

For solving this problem, we use the theory of mul-
tiple superposition of large strains [4–6]. Our results
from the numerical calculations are given for a plane
problem. The extended statement of the problem is the
following. Let an unstressed body be subjected to exter-
nal forces introducing large plane static strains and
stresses in the body. As a result, the body makes the
transition into the first intermediate state. Further, we
mentally remove a part of the body, which is bounded
by a certain closed surface. In accordance with the prin-
ciple of freedom of bonds, we substitute the forces dis-
tributed over this surface for the action of the removed
part onto the remainder of the body. Obviously, such a
procedure does not change the stress–strain state of the
remaining body’s part. Furthermore, we quasi-stati-
cally (for example, isothermally) decrease these forces,
considered as external, down to zero. This procedure
initiates large stresses and strains (at least, in the vicin-
ity of the boundary surface), which are superposed onto
the large initial stresses and strains already existing in
the body. As a result, the body makes the transition into
the final state (or, if the loading is not completed, into
the second intermediate state [5]). Naturally, this tran-
sition is accompanied by variation of the shape of the
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formed boundary surface (i.e., the cavity contour). In
the case under consideration, the surface in the final
state is assumed to be given. We note that the procedure
of forming another possible cut (if it is required) is sim-
ilar.

We now write out basic relations of the theory of
multiple superposition of large strains [5, 7], which are
necessary for solving the problems under consider-
ation.

The system of equilibrium equations and the bound-
ary conditions have the form

(1)

(2)

In Eq. (1),

(3)

is the generalized total-stress tensor in the mth state,
with the tensor related to the coordinate basis of the nth
state; σ0, m is the actual total-stress tensor in the mth
state (at m = 1, σ0, 1 is the Cauchy tensor); ∆0, m is the
relative volume change caused by transition of the body

from the initial state to the mth state; Ψm, n =  · Ψ0, n

is the corresponding strain affinor [5, 7]; Ψm, n = ;

 = ;  is the radius vector of the particle in the nth

state; ξi are the Lagrangian (frozen [8]) coordinates of
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mining the translation from the previous ((n – 1)th)
state to the next (nth) one; and

(4)

In Eqs. (1)–(4) and below, the symbol above a quantity
denotes the number of the state which this quantity is
given in or to which it is related (with the exception of

 and ).

In Eqs. (2),  is the vector of actual stresses on

the d  = |d | area. The symbol ∗  stands for the
transposition. For the Treloar material, which was used
in the specific calculations, the defining relations writ-
ten in the space of an arbitrary mth state have the form
([5, 7, 9])

(5)

Here,  is the strain tensor describing strain varia-
tion caused by the transition from the mth state to the
nth state and related to the coordinate basis of the nth
state. (We note that, for m > n, the sequence of sub-

scripts in the notation  entering into the first term

is inverted; i.e., formally,  = – .) In the general
case,

(6)

where, for p = γ = 1 and q = 0,  is the Almansi ten-
sor. In Eqs. (5), p0, n is the Lagrange multiplier. It is
determined by both the equations of the boundary value
problem and the incompressibility conditions [5, 9]

representing, in the general case, a system of N equa-
tions, where N is the number of the final state [9].

Relations (4)–(6) show that for m > n, the tensor

 depends not only on the strain tensor  but also

on the strain tensor . As a result, solving the prob-
lems formulated in the space of the mth state is signifi-
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cantly complicated, because the system of the equilib-
rium equations (in general, m vector equations) does
not split into separate equations. However, such a for-
mulation is often necessary, for example, when bound-
ary conditions are specified in the mth state.

We now consider the results of solving the problem
formulated above on a cut introduced into a preliminary
loaded body made of the Treloar material [5, 9], with
the final shape of the damage being a narrow slot with
the axes a and b. In the case of a preliminary uniaxial

tensile load, when  = 0 and  = 0.0060415µ,

provided that  = 248 (with the coefficients of confor-

mal transformation C1 = 0.988 and C3 = –0.004), we
have h = 0.21 × 10–5l. Here, h and l are the maximum
distance between the edges of a damage (crack) and its
length (the characteristic dimension of the damage),

respectively, at the initial time. In addition,  =
1.28µ in the crack tip. We note, for example, that when
l = 0.3 mm, the dimension h can be considered as a per-
molecular one [10, 11].

Thus, the above consideration confirms the state-
ment made at the beginning of the paper.
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At the present time, a growing interest is observed in
the magnetohydrodynamic (MHD) method for the
direct transformation of thermal energy into electric
energy. This method is considered to be the most prom-
ising for creating various autonomous power facilities
that can be employed, e.g., in geophysical studies [1, 2],
in the development of compact autonomous power
modules [3–6], in aerospace applications [7–9], etc.
The general feature of these and similar facilities is the
fact that in order to run them, hot gas flows produced by
combusting various solid, liquid, and gaseous fuels at a
temperature from 2000 to 3000 K are used.

A complication in the employment of these flows is
that it implies a certain level of electric conduction
required for the MHD process in conditions when the
thermal ionization of fuel-combustion products is virtu-
ally absent. The conduction can be provided, e.g., by
using readily ionized additives of alkaline metals [10].
However, due to the great ecological hazard, this
method is completely unsuitable in the case of applica-
tion of the MHD method in autonomous power mod-
ules and aerospace crafts that operate by an open cycle.
The solution to this problem can be found through the
employment of laminar flows with a nonuniform elec-
tric conduction.

A principle feasibility to form a stable flow-layer
structure is associated with using the T-sheet effect the-
oretically predicted and substantiated by Academicians
Tikhonov and Samarskiœ with their coworkers [11].
This feasibility implies that a domain with a high tem-
perature, equilibrium conduction (the so-called T layer
or T sheet), and high electric-current density is formed
in a flow of weakly conducting gas (plasma) moving
across a magnetic field. The T layer can be formed in a
plasma flow due to small fluctuations of the electric
conduction as a result of a nonlinear effect consisting of
the development of superheating instability [12]. In
order to use the effect of the T layer in facilities with a
relatively cold flow, it is necessary to be able to initiate
it. This can be realized, e.g., with the help of additional
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heating of a part of the flow up to a temperature sup-
porting a certain minimal conduction level sufficient
for the development of the T sheet.

It was shown theoretically that the T sheet in the
flow of a weakly conducting plasma can be obtained by
introducing a local perturbance of either temperature or
electric conduction [13]. If the temperature perturbance
gives rise to the T sheet, we speak on the pickup of the
perturbance. If this perturbance of the flow temperature
occurs during a time much shorter than the time of the
sound-wave propagation through the channel width,
then we should speak about the isochoric heating pro-
cess. The calculations made in [14] showed that, at the
initial time moment, the process of the expansion
(divergence) of the perturbed wave essentially affects
the pickup of the isochoric perturbance. This fact some-
times results in ceasing the T-sheet development. Such
a phenomenon cannot be observed upon the spontane-
ous appearance of the T sheet in a plasma flow placed
into a magnetic field, because the development of the
T sheet occurs from an infinitely small perturbance
(fluctuation) of the conduction. It is of interest to exper-
imentally investigate the effect of the perturbance
pickup.

The initiation of the T sheet by local isochoric heat-
ing was experimentally investigated on the basis of a
model of a disk-shaped induction MHD generator. The
sketch of the experimental setup is presented in Fig. 1.
An electric-discharge shock tube with a coaxial dis-
charge chamber served as a plasma source. The diame-
ters of both the chamber and the low-pressure channel
were 50 mm. The discharge chamber and the channel
were made of copper and aluminum, respectively. The
lengths of the chamber and of the channel were 850 and
1200 mm. The plasma source was fed from a capacitor
battery with a total capacity of 1200 µF and a voltage
of 5 kV.

The channel 2 is connected with a ring-shaped
MHD channel formed by two organic-glass disks with
a diameter of 350 mm. The gap between the disks (i.e.,
the MHD-channel width) is 20 mm. In channel walls,
sockets for pressure sensors and Rogowski loops are
provided. There are also optical windows for IR diag-
nostics, spectroscopic measurements, and photorecord-
ing plasma flows. The MHD channel was designed
001 MAIK “Nauka/Interperiodica”
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Fig. 1. Sketch of the experimental setup aimed at investigation of the T-sheet development after a local temperature perturbance:
(1) coaxial plasma source; (2) low-pressure channel; (3) disk-shaped MHD channel; (4) permanent-current electromagnet;
(5) induction-heating coil; (6) power-supply units for the plasma generator; (7) oscillator-heater.
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according to data obtained as a result of studies of the
T-sheet development, which were described in [11, 15].

The external magnetic field is formed by an iron-
free permanent-current electromagnet constructed in
accordance with the Helmholtz scheme. The maximum
field strength in the electromagnet gap reached
6400 Oe; the radial and axial nonuniformities of the
field were lower than 2% in both the central and the
middle channel parts and 5% at the channel end.

At the channel inlet, plasma was heated by a pulsed
inductive discharge. Inductor turns with a radius of
55 mm were located in pairs at each side. They were
embedded into the channel walls at a depth of 1 mm. A
capacitor battery with a total capacity of 0.033 µF and
a voltage of 50 kV is discharged into two induction
coils switched contrary to each other.

Flow parameters, namely, the flow velocity, the gas-
dynamic pressure, and the electron density, which are
required for the determination of the hydromagnetic
interaction, were measured. According to the two latter
quantities, the electron temperature and the electric
conduction were calculated, which are necessary for
the determination of the magnetic Reynolds number
and the hydromagnetic-interaction parameter. The flow
velocity was determined by photographic sweeps of the
plasma flow. The pressure and the electron density were
determined with the help of piezoelectric sensors and
by both the broadening of the hydrogen Hβ emission
line and the absorption of laser radiation with wave-
length λ = 10.6 µm.

We performed an experimental verification of the
possibility for the existence of the pickup and an inves-
tigation of its basic characteristics. The results obtained
were compared with the spontaneously arising T sheet
described in [11, 13, 15]. To do this, the setup regimes
were initially studied in which a flow with the T sheet
appeared as a result of the development of a superheat-
ing instability in the flow. These instabilities were asso-
ciated with nonuniformities of the temperature and
conductivity existing in the flow. Figure 2 presents plots
for the variation of both the maximum electron density
in the T sheet and its velocity as a function of the chan-
DOKLADY PHYSICS      Vol. 46      No. 11      2001
nel radius at ç0 = 3200 Oe. As is seen, the electron den-
sity increases during the motion along the channel from
2.2 × 1016 at its inlet to 4.0 × 1016 cm–3 at the radius of
85 mm. At the time moment corresponding to the radius
of 130 mm, the drag ceases and, in the process of fur-
ther movement, the flow velocity remains constant,
while the electron density decreases to 2 × 1016 cm–3.
The temperature distribution along the channel length,
which was calculated from the measured values of NÂ

and , testifies to the fact that in the input part of the
channel the plasma in the bright luminous ring (the
T sheet being photographed manifests itself in this man-
ner) is heated, and its temperature reaches 13000 K. Fur-
thermore, at the channel end (for r exceeding 100 mm)
the temperature drops to 10000 K. Such features of the
process are consistent with the experimental results
obtained for air in the case of the spontaneous forma-
tion of the T sheet [15]. Thus we can consider dynamics
of the current-sheet development and the associated
flow rearrangement, in general, to be similar to those
described in [13] and observed in [15]. These facts tes-
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Fig. 2. Electron-density variation in the current sheet and
velocities of its motion along the MHD channel as a func-
tion of the channel radius. H0 = 3200 Oe, argon, p0 = 2 torr.
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tify to the manifestation of the T-sheet effects. The mag-
netic Reynolds number was 0.3–0.4. In this case, the
parameter of the hydrodynamic interaction, P = RemPm ,
was 0.5–0.6.

Afterwards, by increasing the initial pressure in the
plasma source, the decrease in temperature and the
plasma-flow velocity at the input of the MHD channel
was attained. In this case, weakening or a complete ces-
sation of the plasma interaction with the external mag-
netic field in the channel was observed. Figure 3 exhib-
its the parameter of the hydromagnetic interaction as a
function of the initial pressure (from 1 to 12 torr) in the
plasma source.

As the experiments showed, when the initial pres-
sure was higher than 10 torr, the flow parameters were

0.5

0 2 4 6 8 10
P0, torr

RemPm

12

1.0

Fig. 3. Variation of the hydromagnetic-interaction parame-
ter P at the input of the MHD channel as a function of the
initial pressure.
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Fig. 4. Variations of flow parameters in the ring-shaped
heating zone during flow movement in the channel: (1),
(2) electron density; (3), (4) flow velocity. (s) H0 =
1600 Oe; (d) 4800 Oe.

Ne, 1016 cm–3
so small that the interaction of the flow with the mag-
netic field was not observed. In these conditions, the
initiation of the T sheet was investigated with the help
of additional heating of the flow.

The heating of plasma in a ring with an approximate
cross section of 2 × 2 cm2 was provided by the induc-
tion discharge for 2 µs. During this time, an energy of
about 4 J was introduced into the plasma. Comparing
the time of heating (2 µs) with the time of the sound-
wave propagation through the perturbed zone having a
temperature of 12000 K, a pressure of 0.6 bar, and a
width of 2 cm (tS ≈ 10 µs), we can consider the heating
to be isochoric. The moment for heating was chosen so
as to provide the increase of the electron density imme-
diately beyond the front of the wave produced after the
impact of the plasma bunch with the end wall. The
experimental results obtained for the pressure p0 =
2 torr testifies to the fact that the current sheet indeed
arises in this part of the flow. The plots for variations of
the maximum electron density of the flow in the bright
luminous zone (i.e., in the T sheet) with the channel
radius, as well as the flow velocity at the magnetic-field
intensity ç0 = 1600 and 4800 Oe, are given in Fig. 4.
As is seen, heating the flow at a magnetic-field intensity
of 1600 Oe leads to neither an increase in the electron
density during the movement of the flow along the
channel nor the formation of the current sheet. The for-
mation of the current sheet occurs with an increase of
the magnetic-field intensity to 4800 Oe. The electron
density in the heated layer rose with the radius, and an
essential flow drag was observed. As a result of heating,
the electron concentration, pressure, and temperature in
the narrow ring-shaped zone increased from 0.4 ×
1016 cm−3, 0.7 bar, and 8500 K to 2.5 × 1016 cm–3,
0.8 bar, and 10600 K, respectively. In this case, the
magnetic Reynolds number and the parameter of
hydromagnetic interaction increased to 0.22 and 0.34.
As a result, conditions arose in favor of sufficiently
intense flow interaction with the magnetic field.

In conclusion, we analyze the data presented in
Figs. 2 and 4, as well as features of the flow with allow-
ance for the fact that the magnetic Reynolds number
and hydromagnetic-interaction parameter have compa-
rable values. Under these conditions, we can certainly
identify the argon-plasma flows for p0 = 11 torr in the
presence of heating (which were accompanied by the
initiation of the T sheet) with the flow at p0 = 2 torr
without heating when the spontaneous T-layer forma-
tion was observed.

Thus, based on the results presented above, we may
conclude that the T sheet can be initiated in the MHD
channel by isochoric heating of a part of a flow.
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Averaging Method in Systems with Fast and Slow Phases 
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Nonlinear oscillatory systems containing fast and
slow phases are considered. We propose a modified
averaging method under conditions when slow vari-
ables averaged over the fast phase do not vary. We
describe and substantiate a new method for separation
of variables. The method is applicable for large time
intervals at which significant changes of all the vari-
ables take place. Several examples illustrating the
approach proposed are presented.

1. We consider a system of two vectors x and y with
arbitrary dimensions, which is standard in the Bogoly-
ubov sense [1, 2]. We assume that the following
requirements concerning the quantities averaged with
respect to t are satisfied:

(1)

The functions X and Y are assumed to be piecewise-
continuous, 2π-periodic in t, and sufficiently smooth in
(x, y) ∈  Dx × Dy , where Dx and Dy are closed bounded
sets. The angular brackets stand for averaging over the
argument t (i.e., over the fast phase). In the first approx-
imation with respect to ε, the mean variation rate of x is
zero; i.e., |x – x0| = O(ε), and that of y is on the order of

O(ε); i.e., |y – y0| = O(1) for t ~ . For practical appli-

cations, it is of interest to study the variation of the slow

variable x within a time interval t ~ , because this

variable determines basic parameters of the oscillatory
system (its energy and amplitude). The fast variable y is
usually related to a phase or an angular variable and can
significantly affect the vector x (see examples in Sec-
tion 4).

ẋ εX t x y, ,( ), x 0( ) x0, X0 x y,( ) X〈 〉 0;≡= = =

ẏ εY t x y, ,( ), y 0( ) y0, Y0 x y,( ) Y〈 〉  ò 0;= = =

1
ε
---

1

ε2
----

Institute of Problems in Mechanics, 
Russian Academy of Sciences,
pr. Vernadskogo 101, Moscow, 117526 Russia
1028-3358/01/4611- $21.00 © 0816
In the general case of a system of form (1), the appli-
cation and substantiation of the standard averaging

method at a time interval of t ~  (1) is difficult. There-

fore, we will consider the case, often encountered in
applications, when the average system for y has a com-
plete family of one-particle rotatory–oscillatory
motions with a constant x = ξ [1–3]:

(2)

Here, ϕ is the slow phase (  ~ ε) and the summed
dimension of the constant vectors ζ and ϕ0(mod2π)
coincides with the dimension of y.

Using the change of variables (x, y)  (ξ, η),
which is close to an identity, we rewrite system (1) in
the form

(3)

The functions Ξ and H satisfy the conditions of smooth-
ness and periodicity. Ignoring the terms on the order of
O(ε2) in system (3), we arrive at expressions (2) for ξ
and η. We then make the change of variables y = η 
(ζ, ϕ) according to relations (2). As a result, with due
regard to the terms on the order of O(ε2) and the identity
for η0 , we obtain a system with both fast and slow
phases, t and ϕ, respectively:

1

ε2
----

x ξ Dx, y∈ η 0 ϕ ζ ξ, ,( ) Dy,∈= =

ϕ ω ζ ξ,( )τ ϕ 0, τ+ εt.= =

ϕ̇

ξ̇ ε2Ξ t ξ η ε, , ,( ), ξ 0( ) x0, ξ Dx;∈= =

η̇ εY0 ξ η,( ) ε2H t ξ η ε, , ,( ),+=

η 0( ) y0, η Dy;∈=

x ξ ε X s ξ η, ,( ) s,d

0

t

∫+=

y η ε Y s ξ η, ,( ) Y0 ξ η,( )–[ ] s.d

0

t

∫+=

α̇ ε2A t α ϕ ε, , ,( ), α 0( ) α0= = , α ξ T ζT,( )T
,=
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(4)

The functions A, ω, and Φ are sufficiently smooth in α,
ϕ, and ε; in addition, they are piecewise-continuous in
t and 2π-periodic in t and ϕ. The initial values α0 and ϕ0

are determined by the change of variables y  (ζ, ϕ)
according to relations (2). System (4) is to be analyzed

in the interval 0 ≤ t ≤  on which the slow variable α can

acquire, generally speaking, an increment of δα ~ 1. In
this case, the fast phase, i.e., the argument t, is separated
out with an accuracy to a desired power of ε, while the
slow phase ϕ and variable α are interrelated. The aver-

aged system allows a new argument τ = εt, 0 ≤ τ ≤ ,

to be introduced and, furthermore, can be subjected to
the standard asymptotic analysis [1–6]. If the phase ϕ is
scalar, the averaging method developed for systems
with fast rotating phases is employed [1, 2]. Like the
classical Krylov–Bogolyubov method, the proposed
scheme of highest powers is based on the requirement
that the asymptotic expansion should contain no singu-
lar terms of the form (ε2t)k within the extended interval

0 ≤ t ≤ . A particular case of missing y was studied

previously [7].

2. In order to separate the fast phase t, we use the
change of variables (α, ϕ)  (β, ψ) such that the vari-
able t is eliminated from the equations with an accuracy
to a desired power of ε:

(5)

In the right-hand sides of Eqs. (5), the unknown
exchange functions Π and Γ, which are 2π-periodic
with respect to t and ψ and do not contain the functions
B and Ψ averaged over t and independent of t, can be
approximately found by asymptotic expansions of them
or by successive approximations in powers of ε using
the solutions to the following partial differential equa-
tions:

ϕ̇ εω α( ) ε2Φ t α ϕ ε, , ,( ),+=

ϕ 0( ) ϕ0 mod 2π( ); A = ΞT ZT,( )T
,=

Φ ZT,( )T
 = 

∂η0

∂ϕ
---------

∂η0

∂ζ
---------,

1–

H
∂η0

∂ξ
---------Ξ– 

  ;

∂η0

∂ϕ
--------- 

  ω ξ ζ,( ) Y0 ξ η 0,( ), α Dα , ϕ ∞ .<∈≡

L

ε2
----

L
ε
---

L

ε2
----

α β ε2Π t β ψ ε, , ,( ), ϕ+ ψ ε2Γ t β ψ ε, , ,( ),+= =

β̇ ε2B β ψ ε, ,( ), ψ̇ εω β( ) ε2Ψ β ψ ε, ,( ).+= =

I ε2Πβ'+( )B Πψ' εω ε2Ψ+( )+
DOKLADY PHYSICS      Vol. 46      No. 11      2001
(6)

In particular, the first expansion coefficients govern-
ing a significant evolution of the variables are given by
the equations

(7)

.

The angular brackets stand for averaging over the
explicit argument t, and the quantities in the parenthe-
ses (A) or (Φ) correspond to α = β, ϕ = ψ, and ε = 0.
The subsequent coefficients Bj, Πj – 1, Ψj – 1, and Γj – 1,
with j ≥ 2, are found by the recurrence method. By anal-
ogy with the conventional averaging, in order to con-
struct the jth approximation within a time interval of t ~
ε–2, all the functions up to Bj – 1, Π j – 2, Ψj – 2, and Γj – 3
must be found. In particular, the Cauchy problem for
the first approximation takes the form

(8)

System (8) can be treated by standard analytic or
numerical methods. This system is significantly sim-
pler than original system (4), allows the slow time τ =
εt to be introduced, and can be written out in a standard
form with the fast phase ψ [1–5]. If the function
ω(β) ≥ c > 0, where c is a constant, then the phase ψ is
rotating and, in the first approximation, the method of

averaging over the variable ψ in the interval 0 ≤ τ ≤ 

is applicable to the system (8); i.e., t ~ ε–2.
The following theorem holds.
Theorem 1. The solution to Cauchy problem (8)

determines the solution to problem (5) under the same
initial conditions with errors on the order of O(ε) in β
and of O(1) in ψ within the time interval 0 ≤ t ≤ Lε–2.
The slow (α, ξ, and x) and relatively fast (η, ϕ, and y)
variables are found within this interval with errors on
the order of O(ε) and of O(1), respectively. In general,
the variations in the quantities x, y, ξ, η, α, and β are

=  A t β ε2Π ψ ε2Γ ε,+,+,( ) Π t',–

ε3Γβ' B 1 ε2Γψ'+( ) ω β( ) εψ+( )+

=  ω β ε2Π+( ) εΦ t β ε2Π+ ψ ε2Γ+ ε, , ,( ) Γ t'.–+

B0 = A t β ψ 0, , ,( )〈 〉 ,

Π0 t β ψ, ,( ) A( ) A( )〈 〉–( ) s,d

0

t

∫=

ψ0 = Φ t β ψ 0, , ,( )〈 〉 ,

Γ0 t β ψ, ,( ) Φ( ) Φ( )〈 〉–( ) s;d

0

t

∫=

B1 Aε'( )〈 〉 ω β( ) Π0ϕ'〈 〉 …,–=

β̇ ε2A0 β ψ,( ), β 0( ) α0; ψ̇ εω β( ),= = =

ψ 0( ) ϕ0 0 t Lε 2–≤ ≤ .;=

L
ε
---
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on the order of O(1) and those in ϕ and ψ are on the
order of O(ε–1); i.e., a significant evolution of the sys-
tem occurs.

Proof. Under corresponding assumptions on
smoothness and boundedness, Theorem 1 is proved with
the help of the Gronwall lemma by standard methods
with due regard to the exact changes of variables (3)
and (5).

The second approximation is based on the averaged
Cauchy problem

(9)

under the same initial conditions. The dot (in the super-
script) stands for the derivative with respect to τ = εt,
0 ≤ τ ≤ Lε–1. The functions Bj and Ψj – 1 are determined
from Eqs. (5)–(7). The problem of nth approximation is
constructed similarly to (8) and (9):

(10)

Here, the terms on the order of ε j + 1 and of ε j are omit-
ted in β and ψ, respectively. When constructing the jth
approximation, we can also use a standard scheme of
successive approximations, which is based on partial
differential equations (6) in the functions B, Ψ, Π , and
Γ having a certain structure. Both the schemes require
that the right-hand side of system (4) should be smooth
in α and ϕ [i.e., original system (1) should be smooth in
x and y], because the order of the derivatives with
respect to the slow variables β and ψ increases. In the
general case, the separation of the variables t, β, and ψ
does not occur even for analytic systems [4, 5].

The following theorem holds.
Theorem 2. The functions β(τ, ε) and ψ(τ, ε)

determined by Eqs. (10) are the solution to Cauchy
problem (4) with errors on the order of O(ε j) and of
O(ε j – 1) at the interval 0 ≤ τ ≤ Lε–1, respectively. The
original variables x and y are found with the same
errors.

In the particular case of a quasi-linear oscillatory
system with ω(β) = ν = const, all the variables are deter-
mined with the same error of O(ε j) [1, 2]. Theorems 1
and 2 substantiate the application of the second-power
scheme (t ~ ε–2).

3. The proposed scheme for the separation of vari-
ables can be extended to the case of the slow phase ϕ
determined by Eqs. (2) and (3). As a result, we arrive at
an approximate many-particle nonlinear system similar
to (10). However, the analytic and numerical analysis of
this system for τ ~ ε–1 is associated with certain difficul-
ties [1–6].

β
.

εB0 β ψ,( ) ε2B1 β ψ,( ),+=

ψ. ω β( ) εΨ0 β ψ,( )+=

β
.

εB0 β ψ,( ) ε2B1 … ε jB j 1– , β 0( )+ + + α0,= =

ψ. ω β( ) εΨ0 β ψ,( ) ε2Ψ1 … ε j 1– Ψ j 2– ,+ + + +=

ψ 0( ) ϕ0.=
Similar asymptotic expansions are also valid in the
case of a more general hierarchy of the variation rate for
both the slow variable β and the phase ψ, namely, when

 = εkBk – 2 + εk + 1 + … and  = εlω(β) + εl + 1 + …,
with k > l ≥ 1. The case of ω ≡ 0 can also be considered,

for example, when  = ε3B1 and  = ε2Ψ0. The corre-
sponding asymptotic expansions are valid for 0 ≤ t ≤
Lε–k (the kth-power scheme). Alongside the variant with
one slow phase, a more complicated system containing
a phase hierarchy can be analyzed, namely, when  ~

εω1,  ~ ε2ω2, …,  ~ εlωl. In this case, the variable

β must be 2π-periodic and slow:  ~ εk, k > l.
The range of applicability of the approach proposed

can be significantly extended. Instead of system (1), we
now consider a more general system  = X(x, ε). If
ε = 0, this general system has a family of asymptoti-
cally (exponentially) stable periodic (rotatory–oscilla-
tory) solutions x0(θ, x), where θ = ν(a)t + θ0 is a phase
and a is a constant vector [1, 3, 8]. There exists a change
of variables x  (a, θ, h) taking the form

(11)

where N is a complex-valued matrix 2π-periodic in the
real phase, h is a vector, and the asterisk stands for the
complex conjugation. The sum of dimensions of the vec-
tors a, h, and θ is equal to the dimension of the vector x.
In the neighborhood of the local integral manifold, the
perturbed system is described by the equations [8]

(12)

Here, the functions A, ν, and Θ are real-valued and the
characteristic indices of the matrix K have negative real
parts if a ∈  Da . For sufficiently small |ε| and |h |, the
solutions to system (12) approach the stable integral
manifold arbitrarily closely within the period on the
order of ln |ε|–1: h* = εh1(a, θ) + ε2h2 + ε3 + …, where
the functions hj are found in the standard manner [1, 8,
9]. After substituting h* into Eqs. (12), we obtain a
standard system for a and θ with a rotating phase. Intro-

ducing the argument θ (by dividing  by ), we can
write out this system in the form of Eqs. (1). Further-
more, a method (standard or highest-power) of separa-
tion of the slow and fast variables, a and θ, respectively,
is employed.

4. We now consider several examples of oscillatory
systems analyzed by means of the second-power aver-
aging method presented in Sections 1 and 2.

β̇ ψ̇

β̇ ϕ̇

ϕ̇1

ϕ̇2 ϕ̇ l

β̇

ẋ

x x0 θ a,( ) 1
2
--- N θ a,( )h N* θ a,( )h*+[ ] ,+=

ȧ A a θ h ε, , ,( ), a 0( ) a0; a a0, Da,∈= =

θ̇ ν a( ) Θ a θ h ε, , ,( ), θ 0( )+ θ0 mod2π( ),= =

ḣ K a( )h H a θ h ε, , ,( ); h 0( )+ h0,= =

A Θ H, , O ε h 2+( ).=

ȧ θ̇
DOKLADY PHYSICS      Vol. 46      No. 11      2001
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4.1. To illustrate the method proposed, first we con-
sider the two-dimensional system

(13)

with corresponding initial conditions. The functions f,
θ, and γ are assumed to be 2π-periodic in y and smooth
in x and y. We transform the variable x according to
Eqs. (3); i.e., we perform the change of variables
(x, y)  (α, y). As a result of averaging over t, we
obtain the equations of the first approximation (see Sec-
tions 1 and 2) with the slow time τ = εt, which serves as
an independent variable:

(14)

Here, there is no need to transform the slow variable y
to the form of a phase because system (14) can be ana-
lyzed immediately. If the function γ averaged over y is
nonvanishing for the values of β under consideration
[β = x + O(ε)], the passage to the phase ϕ and then to ψ
are performed in a regular manner [1–3, 9] in accor-
dance with Eqs. (3)–(5). In particular, if the function γ
does not approach zero, it is convenient to pass from the

argument τ to y, i.e., to analyze the equation for .

Equation (14) can be averaged over y, and, as a result,
the second term in its right-hand side vanishes. After
averaging, system (14) can be completely integrated,
because the variables of both its equations are sepa-
rated. In this case, variations in the variables β and x are

governed by the function –  averaged over y and, in

the general case, are on the order of O(1) for y ~ ε–1; i.e.,
t ~ ε–2. The standard scheme [1–3] for a time interval
t ~ ε–1 leads to the expression x = x0 + O(ε).

4.2. In studying a many-particle quasi-linear system
in the neighborhood of a resonance, one of its fre-
quency mismatches often is larger (usually being on the

order of ) than others. In this case, a system of the
form (4) holds under corresponding assumptions, with

the indicated mismatch being equal to  = const.
Herein, we use for convenience the parameter ε2 instead
of ε. As an example, we consider the system

(15)

ẋ εf x y,( ) t θ x y,( )+( ), ẏsin εγ x y,( )= =

β
.

ε 1
2
--- f 2θξ

' γ f θcos( )y'+ 
  y.,– γ β y,( ),= =

0 τ Lε 1– .≤ ≤

dβ
dy
------

f 2θβ
'

2γ
-----------

ε

εω

q̇̇ Q q( )+ P t( ) Λq̇, q– εr, Q 0( ) 0,= = =

Q ' 0( ) ν2 0, χ> 1
2
---Q '' 0( ),–= =

µ 1
6
---Q ''' 0( ),–=

P ε2h 2t ε3 f t κ+( ),sin+sin=
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Omitting the terms on the order of O(ε4) and dividing
Eqs. (15) by ε, we obtain a quasi-linear equation in the
unknown r. This equation is then reduced to the vari-
ables x and y (the amplitude and the phase mismatches,
respectively) by the conventional change of variables
r = xcos(t + y) and  = –xsin(t + y). Transforming the
variables (x, y) in accordance with Eqs. (3)–(5), we
arrive at the averaged system of the first approximation,
with the slow time τ = εt serving as an independent
variable:

(16)

The frequency mismatch εγ in Eqs. (15) results in an
additional exponential damping for t ~ ε–2. The stan-
dard approach leads to x = x0 + O(ε) for t ~ ε–1.

4.3. Lastly, we consider quasi-linear parametric
oscillations in the vicinity of the second resonance
zone [7]. They describe the motion of a plane physical
pendulum whose axis of suspension periodically
vibrates in both vertical and horizontal directions. We
introduce a small parameter and make corresponding
assumptions, similar to (15), relevant to orders of the
quantities. As a result, we obtain the desired equation

(17)

The parameters ε, ε3d, and ε2λ relate to the amplitudes
of vertical and horizontal vibrations and the energy dis-
sipation, respectively. By passage to the variables (x, y)
(i.e., amplitude and phase mismatch), this equation is
reduced to the form of Eqs. (1), for which the second-
power averaging scheme is applicable. The averaging
over the explicit argument t leads to equations similar
to (16). However, the right-hand side of the equation for
the variable β is very cumbersome. Under the assump-
tion that γ ~ 1, we obtain expressions similar to (16),
which are valid in the interval t ~ ε–2 with an error on
the order of O(ε). It is worth noting that for γ ~ ε the
evolution of the system is much more complicated than
that for γ ~ 1 [7] because in the latter case the averaging
over ψ significantly simplifies the situation.

ν 1 εγ, Λ+ ε2λ .= =

ṙ

β
.

ε γ2β 2ψ 1
4
---γ2β 1

2
--- f ψ κ–( )cos––sin

=

–
1
2
---λβ ψ 2

3
---hγ 1

2
---χγβ2 2ψsin– 

 

 ,cos+

ψ. γ, β x O ε( )+ x0 1
2
---ε 1

2
---γ2 λ+ 

  τ– ,exp= = =

0 τ L
ε
---.≤ ≤

ż̇ 4 ε 2tcos–( )z+ 4εγz–=

– ε2 4γ2z λ ż
2
3
---z3 4d 2t κ+( )sin+–+ 

  .
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INTRODUCTION

A control problem for a thin layer of a viscous
incompressible fluid flowing down a vertical wall is
studied. A feedback regulator using both cooling and
heating of the wall is proposed to suppress the convec-
tive flow instability. The structure of the regulator sta-
bilizing low-frequency harmonic perturbations of the
flow is determined.

SYSTEM OF EQUATIONS AND FORMULATION 
OF THE PROBLEM

To describe a thin layer of a viscous incompressible
fluid flowing down a vertical wall, we use the following
system of equations [1]:

(1)

(2)

Here, t is time, x is the coordinate directed along the
gravity force, h is the layer thickness, q is the flow rate,
ν is the kinematic viscosity, and g is the acceleration of
gravity.

In this paper, we consider the evolution only of
long-wave perturbations; therefore, the term associated
with the surface tension is omitted in equation (2).

The fluid temperature T enters into the kinematic
viscosity as a parameter; i.e., ν = ν(T). The investiga-
tion concerns sufficiently thin layers such that at any
time moment their temperature can be considered as
equal to the wall temperature. For small deviations of

h∂
t∂

----- q∂
x∂

-----+ 0,=

q∂
t∂

----- 1.2
∂
x∂

-----q2

h
-----+ gh

3νq

h2
---------.–=

Institute of Mechanics, Moscow State University, 
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temperature from the steady wall temperature T0 , we
can write out

(3)

Thus, the variation of wall temperature changes
fluid viscosity and, consequently, the last term in equa-
tion (2). As a result, the existence of the temperature
difference ∆T, in fact, leads to the appearance of an
additional force applied to the layer.

By using representative values of layer thickness,
the volume flow, time, and layer length denoted by hr ,
qr, tr, and L, respectively, we introduce the following
dimensionless variables and parameters:

Furthermore, asterisks used as superscripts of dimen-
sionless variables are omitted.

The effect of unsteady temperature variation along
the x direction on the fluid-layer flow is described by
the dimensionless function

(4)

In the case of the constant wall temperature T = T0 ,
the system of equations (1), (2) has the steady-state
solution

q = 1, h = 1. (5)

It can be shown that both characteristics of the
hyperbolic system (1), (2) are directed downstream so
that all perturbations brought into the layer drift along
this direction.

As is known, the steady-state solution describing the
vertical fluid-layer flow is unstable. Remaining
bounded at an arbitrary fixed x, the amplitude of small

ν ν0 1
ν∂
T∂

------∆T
ν0
-------+ 

  , ∆T T T0,–==

ν0 ν T0( ).=

t*
t
tr
---, x*

x
L
---, q*

q
qr
----, h*

h
hr
----,= = = =

qr

ghr
3

3ν0
--------, tr

hrL
qr

--------, β
9ν0

2L

ghr
4

------------.= = =

Θ t x,( ) ν∂
T∂

------∆T t x,( )
ν0

--------------------,
ν∂
T∂

------–
ν∂
T∂

------ T0( ).= =
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harmonic perturbations brought in at a certain flow
point increases downstream.

The force caused by temperature variations allows
realization of the control action onto the fluid layer and,
if necessary, suppression of convective instability with
the help of a feedback regulator.

We now discuss the feedback structure. The vertical
surface is partitioned into a system of segments, each of
length d. An external device varies wall temperature
inside each segment so that the deviation of the current
temperature from T0 is proportional to the deviation of
the layer thickness from its steady-state value at a given
point of the segment under consideration. For the kth
segment, we have

(6)

where α is the gain factor, xk is the coordinate of the
point sensor situated in the kth segment, and Φk(x) is
the given function localized in this segment.

SUPPRESSION OF SMALL PERTURBATIONS
We now analyze the problem of suppressing small

perturbations in the linear formulation. To do this, we
introduce the functions q1 and h1:

(7)

We assume that, within the first surface segment
(0 ≤ x ≤ d), Φk(x) ≡ 1 and the control action has the form

(8)

Θ Θ t x,( ) α h t xk,( ) 1–[ ]Φ k x( ),= =

xk kd ,=

q 1 q1, h+ 1 h1,+= =

q1 ! 1, h1 ! 1.

Θ αh1 t d,( ).=
Then, q1 and h1 satisfy the system of equations

(9)

(10)

Harmonic perturbations are assumed to be brought
continuously into the layer at x = 0. Therefore, the
boundary conditions have the form

(11)

where, generally speaking, q0 and h0 are complex num-
bers.

The solution to the system of equations (9), (10),
which satisfies the boundary conditions (11), is sought as

(12)

Relations (9)–(12) lead to both a system of equa-
tions and boundary conditions for the functions Q(x)
and H(x). The solution to this system can be repre-
sented in the form

(13)

Elements of the transition matrix {Aij} have the fol-
lowing structure:

∂
t∂

----h1
∂
x∂

-----q1+ 0,=

∂
t∂

----q1 2.4
∂
x∂

-----q1 1.2
∂
x∂

-----h1–+

=  β q1 3h1– αh1 t d,( )–( ).–

x 0, h h0 iωt{ } , qexp q0 iωt{ } ,exp= = =

h H x( ) iωt{ } , qexp Q x( ) iωt{ } .exp= =

Q x( )
H x( ) 

 
  A11 iω x,( ) A12 iω x,( )

A21 iω x,( ) A22 iω x,( ) 
 
  q0

h0 
 
 

.=

Aij iω x,( )
Bij iω x,( )

∆ iω( )
-----------------------,=
∆ iω( ) = 1
βαk1k2

iω β+( ) 2iω D×
--------------------------------------------- k1d{ }exp k2d{ }exp–( ),+
Here, the functions Bij(iω, x) and ∆(iω) are such that
Bij(λ, x) and ∆(λ) represent analytic functions of the
complex-valued argument λ in the right half-plane
Reλ ≥ 0. In the imaginary axis, λ = iω.

The eigenvalues µ1 and µ2 of the matrix {Aij} are
determined by the formulas

The values µ1 and µ2 characterize variations of the
flow rate and layer thickness with increasing the coor-

k1 – iω 5
4
---β+ 

  D, k2+ – iω 5
4
---β+ 

  D,–= =

D
1
6
---ω2–

5
3
---βiω 25

16
------β2.+ +=

µ1 2,
A11 A22+

2
----------------------

A11 A22–( )2

4
---------------------------- A12A21+ .±=
dinate x. If µ1 and µ2 are modulo smaller than unity,
both the volume flow and thickness perturbations
decrease with increasing x; if they are modulo larger
than unity, the perturbations grow with x.

In the absence of a regulator (α = 0), |µ1| > 1 or
|µ2| > 1 for all frequencies of the perturbations brought
in at x = 0. Consequently, the perturbation of any fre-
quency grows with x; i.e., the steady-state thin-layer
flow is unstable.

Introducing a control leads to the onset of an infinite
discrete set of self-oscillations of the system. Among
these oscillations, there can be both stable and unstable
ones. The eigenvalues λk (k = 1, 2, …) corresponding to
these self-oscillations are calculated by solving the
equation ∆(λ) = 0. Parameters of the regulator should
be chosen in a manner that provides all self-oscillations
to be stable. This requirement is satisfied if all roots of
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the equation ∆(λ) = 0 belong to the left half-plane
Reλk < 0. By virtue of the Rouché theorem [2], the con-
dition Reλk < 0 is certainly satisfied for

Numerical investigations carried out for β = 1 show
that, for any d (d ≤ 1), there is an α range (αmin < α <
αmax, αmin < 0, αmax > 0) not containing roots of the
equation ∆(λ) = 0. Perturbations generated by the regu-
lator and corresponding to this range are damped. Val-
ues of |αmin| and αmax depend on d and grow as it
increases. At d = 1, αmin = –3 and αmax = 4, while, at
d = 0.1, αmin = –25.8 and αmax = 34.4.

To suppress the perturbations being brought in into
the flowing layer, parameters α and d of the regulator
are chosen in the range αmin(d) < α < αmax(d), within
which its self-oscillations are stable.

Numerical investigation of the effect of the regulator
parameters α and d (αmin < α < αmax) on µ1 and µ2 was
carried out for the frequency ω ranging from 0 to 100.
At d = 0.1, Fig. 1 shows the quantity y = max{|µ1|, |µ2|}
as a function of the frequency ω for α = 0 (curve 1,
absence of the regulator) and for values α = –2 (curve 2)
α = –5 (curve 3), and α = –10 (curve 4). As is seen, for
d = 0.1 and α = –2, stabilization of the perturbations
occurs in the range 0 < ω < 30, while at d = 0.1 and
α = –10, this is true within the range 15 < ω < 60. To
stabilize higher frequencies (ω > 60), one should
decrease d and α. For example, the regulator with
d = 0.01 and α = −20, stabilizes the oscillations from
the range 3 < ω < 100.

The results obtained for β = 1 can be also used for
β ≠ 1 by dividing the corresponding value of d by β and
multiplying the corresponding ω by β.

The above-considered problem concerns the stabili-
zation within the first surface segment. As a result, it
was established that at the exit of the first segment,
amplitudes of the perturbations brought in are multi-
plied by y = max{|µ1|, |µ2|}. Since the perturbations
propagate only downstream, the stabilization within
each segment can be considered in the same manner as
within the first one and independently of the others.
Consequently, after passing through n segments, the
initial amplitude is multiplied by yn.

NUMERICAL INVESTIGATION
OF CONVECTIVE-INSTABILITY SUPPRESSION 

WITH THE HELP 
OF THE FEEDBACK REGULATOR

Here, we numerically investigate the development
of perturbations brought into the flow at x = 0 and hav-
ing the form

α 1
Ψ iω( )

∞– x ∞< <
max

------------------------------------, Ψ iω( )< 1 ∆ iω( )–
α

-----------------------.=

h1 h0 ωt ϕ+( ), q1sin q0 ωt( ).sin= =
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To suppress the convective instability, we use the con-
trol action of form (8). 

The system of equations (1), (2) is solved by the
Godunov method. The calculations are carried out for
different values of the parameters β, q0, h0, ϕ, and ω.
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Fig. 1. Dependence of y = max{|µ1|, |µ2|} on the frequency
ω at β = 1, d = 0.1: (1) α = 0; (2) –2; (3) –5; and (4) –10.

Fig. 2. Development of harmonic perturbations with the fre-
quency ω = 50 at the time moments t* = 0.4 and 0.7 for
α = –2, β = 5, and d = 0.02: (1) without the regulator and
(2) with the regulator.
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Figure 2 presents results of the numerical calculations
for β = 5, ω = 50, q0 = 0.001, and h0 = 0. A dimension-
less coordinate x and a dimensionless layer thickness h
are plotted as an abscissa and an ordinate, respectively.
The development of the convective instability in the
absence of the regulator is shown in Fig. 2 by curves 1,
while the effect of the regulator is illustrated by curves 2.
The regulator parameters α = –2 and d = 0.02 are cho-
sen according to the results obtained in item 2 of this
paper. Switching on the regulator and starting genera-
tion of the perturbations occurred simultaneously at
t = 0. Figure 2 presents states of the fluid layer for the
time t* = 0.4 and 0.7. The regulator with the chosen
parameters suppresses the perturbations within the
range 0 < ω < 150. To suppress higher frequency per-
turbations, we should use the regulator with other
parameters chosen in accordance with the results of
item 2.
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of Nanometer-Size Objects
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In recent years, rapid development of nanotechnol-
ogies led to the necessity of constructing adequate
physical models that make it possible to describe phys-
icomechanical properties of objects with a nanometer-
size (nanosize) scale. The majority of existing models
of such a kind adopt that basic mechanical characteris-
tics of nanosize objects correspond to those obtained in
macroscopic experiments. However, when dealing with
structures containing only several atomic layers, the
discrepancy arises between the evident discreteness of
an object under study and a continual method of its
description. The inconsistency of values of elastic mod-
uli, which were obtained in microscale and macroscale
experiments, was noted by many researchers. In partic-
ular, one of the methods of determining elastic charac-
teristics of nanosize objects is investigating the
microrelief arising in the course of tension of a speci-
men having an ultrathin coating [1–3]. The solution to
an equivalent continual problem allows the Poisson’s
ratio and Young modulus for the coating to be deter-
mined from such experiments [2, 4, 5]. However, the
values of elastic characteristics measured by this
method exhibit a substantial inconsistency by their
macroscopic values for the same material.

In the present study, we used a two-dimensional
strip made of a single-crystal material with a hexagonal
closely packed (HCP) lattice as a model for studying
the effect of scaling on mechanical properties of a
material. The interaction between atoms is assumed to
be dual. The basic problem of our study is determining
the dependence of the Poisson’s ratio and Young mod-
ulus of a finite (in one direction) single crystal on the
number of atomic layers.

We consider a two-dimensional single crystal shown
in the figure. The crystal possesses an infinite length
along the x direction and N ≥ 2 atomic layers in the y
direction. Each atom interacts only with its nearest
neighbors, as is shown in the figure. Constant tensile
forces Q are applied to atoms located at crystal ends.
The deformed single-crystal state under consideration

St. Petersburg State Technical University,
ul. Politechnicheskaya 29, St. Petersburg, 195251 Russia
1028-3358/01/4611- $21.00 © 0825
is completely determined by the distance a between
neighboring atoms in each layer and by the interlayer
distance h. We denote by the symbol b the distance
between nearest atoms in neighboring layers (see fig-

ure). In this case, evidently, the relationship b2 =  +

h2 is valid. In the undistorted state, the lattice consists
of equilateral triangles with an edge a = b = a0 , and the
end load is absent (Q = 0). Let F(r) be the force of inter-
action between two atoms separated by distance r (the
attraction is considered as positive) Then, projecting
onto the y direction the equation of equilibrium for an
atom situated at the crystal surface, we find

(1)

Here, σ2 is the normal stress in the y direction. We now
mentally cut the crystal by a vertical straight line AB
(see figure). The total normal force acting from one part
of the crystal onto the other part can be written out as

(1a)

Here, σ1 is the normal stress in the x direction and H is
the crystal thickness (its extension along the y direc-
tion). The quantity H, in principle, cannot be deter-
mined unambiguously. For example, if we assume that
the crystal thickness is equal to the distance between
atomic layers lying on opposite crystal ends (see fig-
ure), then, in this case, H = (N – 1)h. On the other hand,
it is quite reasonable to determine the crystal thickness
as a product of the number of layers by the thickness of
a single layer, which results in the formula H = Nh.
Therefore, we denote

(2)

where N* is the quantity reflecting an arbitrariness in

the determination of H. By virtue of the smallness of

a2

4
-----

Q 2
h
b
---F b( ) σ2⇒ Q

a
---- 2

h
ab
------F b( ).= = =

def

Hσ1 NF a( ) N 1–( ) a
2b
------F b( ).+=

H N*h, N 1 N* N ,≤ ≤–=
def
2001 MAIK “Nauka/Interperiodica”



 

826

        

KRIVTSOV, MOROZOV

                     
y

x

H
 =

 (
N

 –
 1

)h
h b

a

A

B

Q

H
 =

 N
h

Q

h

h

h

h

h

h

h

h

Two-dimensional single-crystal strip.
strains, forces acting within the crystal can be approxi-
mately written out in the form

(3)

where C has a meaning of the rigidity of an interatomic
bond, while the symbol ∆ implies the deviation of a cer-
tain quantity from its value corresponding to the undis-
torted crystal. We denote the crystal strain in the x and
y directions as ε1 and ε2 , where

(4)

The substitution of relationships (2), (3), and (4) into
expressions (1) and (1a) yields the elasticity relations

(5)

As is seen from relations (5), the crystal under consid-
eration is anisotropic. We recall that the infinite crystal
with the HCP crystal lattice is isotropic and, hence, the
anisotropy indicated is a manifestation of the scale fac-
tor. Furthermore, we denote

F a( ) C∆a, F b( ) C∆b, C F ' a0( ) 0,>= = =
def

ε1
∆a
a0
-------, ε2

∆h
h0
-------, h0

3a0

2
------------≡ .= =

def def

σ1
3

12
------- C

N*
------- 9N 1–( )ε1 3 N 1–( )ε2+( ),=

σ2
3

4
-------C ε1 3ε2+( ).=

ν1
ε2

ε1
----–=

σ2 0=
, E1

σ1

ε1
-----=

σ2 0=

;
def def

ν2

ε1

ε2
----

σ1 0=
, E2–

σ2

ε2
-----

σ1 0=
.= =

def def
Here, ν1 and E1 are the Poisson’s ratio and Young mod-
ulus for tension along the x axis; the quantities ν2 and
E2 correspond to tension along the y axis. Using rela-
tionships (5), we obtain

where, ν∞ =  and E∞ =  are values of the Poisson’s

ratio and Young modulus, which correspond to the infi-
nite crystal [6, 7]. We now analyze the formulas
obtained. Under tension along atomic layers, the Young
modulus E1 substantially depends on the quantity N*,

i.e., on a method for determining the thickness of the
nanocrystal strip. If we assume that N* = N (N is the

maximal value of N*) then, under tension along atomic

layers, the Poisson’s ratio and Young modulus are inde-
pendent of a number of layers. Evidently, this is associ-
ated with the fact that in the longitudinal direction, the
crystal under consideration is infinite. By contrast, the

Young modulus  corresponding to the minimal
value N* = N – 1, is not constant. It increases with a

decrease in the number of atomic layers and for N = 2
attains a value twice as large as E∞ (see table). Thus, the
ambiguity in determining the Young modulus turns out
to be rather substantial for small values of N. In the case
of tension in the direction perpendicular to atomic lay-
ers, both the Poisson’s ratio and the Young modulus
depend on N, the former decreasing and the latter

ν1 ν∞, E1  =  
N

N
 

*
------- E ∞ ;=

ν2
N 1–

N 1/9–
------------------ν∞,= E2

N
N 1/9–
------------------E∞,=

1
3
--- 2C

3
-------

E1
max
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increasing with the reduction in the number of layers.
The values of the Poisson’s ratio and Young modulus
for different N are presented in the table. It is worth not-
ing that for N = 2 the Poisson’s ratio is smaller than ν∞
almost by a factor of 2. As N  ∞, elastic moduli tend
to values corresponding to the infinite crystal, which
are independent of the deformation direction.

Based on the studies performed, we can list the basic
properties intrinsic to nanocrystals.

1. For the Young modulus of a nanocrystal, only a
possible interval of values is determined. This is asso-
ciated with the impossibility of unambiguously deter-
mining the size of a nanoobject.

2. Elastic properties of a nanocrystal substantially
depend on the number of atomic layers forming it.

3. The shape and size of a nanocrystal introduce an
additional anisotropy into its elastic properties.

The effects listed are obtained on the basis of a
rather simplified model. However, as far as they mani-
fest themselves for the simplest nanocrystal, they must
all the more play an important role in the case of more
complicated nanocrystalline objects. The indicated
ambiguity in the determination of the Young modulus,
evidently, manifests itself for all mechanical character-
istics whose definition substantially involves the con-
cept of the nanoobject’s size. In particular, the specific
deformation energy per unit volume is determined
ambiguously.

In the present study, we took into account the inter-
action of only neighboring atoms in the crystal lattice.
It can be shown that allowance for further neighbors
leads to the enhanced effect of the scale factor, espe-
cially in the three-dimensional case.

Thus, the concepts of classical continuum mechan-
ics, including those of the elasticity theory, must be
used with great care in the case of their application to
nanoobjects. It is necessary to take into account the
variation of mechanical characteristics when scales of
objects under consideration approach nanometers. Spe-
cial attention should be paid to quantities (such as the
Young modulus) that are in principle ambiguous at the
nanometer level. Using them, we must clearly define
DOKLADY PHYSICS      Vol. 46      No. 11      2001
         

what we imply while applying these quantities to
nanoobjects.
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Translated by G. Merzon

Poisson’s ratio and Young modulus of a nanocrystal as func-
tions of the number of atomic layer

N ν2 ν2/ν∞ E2/E∞

2 2.00 0.18 0.53 1.06

3 1.50 0.23 0.69 1.04

4 1.33 0.26 0.77 1.03

5 1.25 0.27 0.82 1.02

10 1.11 0.30 0.91 1.01

20 1.05 0.32 0.96 1.01

50 1.02 0.33 0.98 1.00

100 1.01 0.33 0.99 1.00

E1
max

/E∞
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