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Thevariational principleinthetheory of irreversible
processes, i.e., the principle of the minimum of the
algebraic sum of squares of dissipative flows in a sta-
tionary nonequilibrium state, is proposed. This sumis
in fact the difference between the sum of squares of
proper dissipative flows integrated over the Kirchhoff
potential and the square of the thermal flux, which isa
consequence of a purely transport character of the heat
conduction function. Some applications of the principle
introduced and the well-known principle of the mini-
mum energy dissipation in the stationary state are con-
sidered. In particular, the conclusion is made that in
some specific tasks, a solution to the energy equation
near the stationary nonequilibrium state can be
replaced by the condition of constant dissipation. Such
an asymptotic representation is a consequence of the
principle of the minimum dissipation.

1. Asan extremal principlefor the parabolic dissipa
tive equation that describes a non-steady-state irrevers-
ible process, | imply the variational principle whose
steady-state condition is given by the same equation
that describes an irreversible process in the final sta-
tionary state, which can also be nonequilibrium. We can
say that the steady-state condition is fulfilled herein a
literal sense. If the equation of an irreversible process
described by a certain function u(t, r) has the form

u, = f[t,r; u (v)u,Au,...],
and the functional J(t) is given by the relation
J(t) = J’&Edv,
then itsfirst variation is expressed as
0J = J’6§£dv = 8J.+08J; EéJe+If6udV,

and the steady-state condition dJ = 0 isequivalent to the
conditions

8J.= 0, f(t=w,..) = 0.
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Here, & is the Lagrangian, the subscripts e and i are
related to the external and internal parts of J, and the
remaining notation is that used in [1]. Two extremal
principles are known in the mechanics of dissipative
continua: the principle of the minimal energy dissipa-
tion (PMED) in a stationary state and the principle of
the minimum entropy production in the same state [2]
(see dso [3]). Thefirst principle gives the steady-state
equations of motion and continuity equations for sub-
stances (impurities, charges) in the diffusion approxi-
mation. The second leads to the steady-state energy
equations under particular assumptions. An attempt to
extend the domain in which the second principleis cor-
rect was madein [4] using a certain identity transforma-
tion of the initial nonlinear heat conduction equation.
According to [2], this principle is vaid only if the heat
conduction coefficient isk(T) ~ T-2 (where T is temper-
ature). It was found, however, that such a transforma-
tion occurs only at the expense of lowering the level of
generality of geometric description (atransition to one-
dimensional description) and boundary conditions (adi-
abaticity). The latter implies that the final state is equi-
librium. Moreover, only the necessary condition was
obtained in [4] for the minimum of entropy production,
rejecting, in essence, the variational description of the
problem at hand. This follows from the fact that the
steady-state condition divq = 0 (where q is the thermal
flux) cannot be obtained, in general, from the varia-
tiona principle [2] (more exactly, in the case of identi-
cal fulfillment of this condition by virtue of the equality
q = 0). Here we set forth the possibility of invoking the
variational principle that meets al above-listed general
requirements.

2. Channels for dissipation and scattering of energy
follow from the general heat transfer equation (entropy
equation; see, e.g., [1])

ds _ . ov; j? i’ i’
pTdt B Ejikaxk+6+Q+a_d+a_f|:| (1)
—divg=%,—divq,

where bracketed terms are related to viscous, Joule,
chemical, diffusion, and filtration energy dissipation
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(its transformation into heat), while the term div q cor-
responds to the transfer (scattering) of heat due to the
heat conduction. Here,

O = Ny, *ax 0~ NS 2
istheincompressible (for the sake of simplicity) part of

the tensor of viscous stresses;

j =0l 3)

isthe electric current density, and ¢ is the potential. In
the diffusion treatment, the mass flux i has the form

[P
i =—pDOc=—04+== Oc, 4)
“Coc, ,
whilein thefiltration treatment it is
k
i = = —pP= Dp__afEB[ﬂT (5)

Here, pisthe chemical potential, cisthe concentration,
and k is the permeability of the porous medium.
Clearly, k> 0, and thermodynamic derivatives

oW g - OVg
Codl, Copl, ~ Coc,
are also positive. Finally,
g = «OT=-0K, 6)

where K = [kdT isthe Kirchhoff potential. In the for-

mulas for the fluxes, small irreversible crosseffects
(such asthermal diffusion) are disregarded. In the gen-
eral case, the positive dissipative coefficients of viscos-
ity n, electric conduction o, diffusion D, and heat con-
duction k depend on T. For the flux q, the functional F,
for which the steady-state condition with respectto T
yieldstherelation £, — divq = 0, issimilar to [5]:

F =[SV sj'a‘gfld}( ity

gL

+J.QdK+J,dKI2+J-dK i20_ q}

dK 2 @)

Indeed, the condition &, — divq = 0 follows from
oF = J’ES&EZdV
= J’BK(qu)+I(££1—divq)6KdV =0

inview of 8T, =0 or q.=0. The variationa principle (7)
isdetermined asthe principle of the minimum algebraic
sum of squares of dissipative fluxes (PMDF) in the
steady-state nonequilibrium state. As can be seen
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from (7), the algebraic sum is, in essence, the differ-
ence between the sum of squares of dissipative fluxes
integrated over K and the sgquare of the heat flux. This
follows from the fact that the heat flux entersasalinear
term into the general heat-transfer equation (1), imply-
ing a purely transport character of the heat conduction
function that represents the sole channel for energy
(heat) dissipation. The functional

D = J’&Eldv (®)
in cases (3)—6) hasthe Lagrangian
_1u* 1 2 _
581—2L—2L(ED), | = -L[® ,

where I isthe flux, ® isthe potential, and L > 0 isthe
kinetic coefficient, which isindependent of ®. Thevari-
ation of the functional

oD = —I6<D(Id8)+J’5d>divldV =0
yieldsthe steady-state continuity equations of the diffu-
sion type
divl = 0.
The functiona

_1..0v,
D= ZIG‘kaxde
leads to the steady-state equation of motion for an
incompressible fluid, which follows from

Av = 0,
oD =Io{k6vidS<—J'r](Av6v)dV = 0.
Finaly, the functional

F—J’qu

by analogy with (8), yields the steady-state energy
equation

divg = 0.

The combined cases are of greater interest.

3. We consider first the isothermal mode of a steady-
state flow for a viscous incompressible fluid through a
channel under the action of alongitudinal (with respect
to the channel) pressure gradient. If a plane (along the
channel radius) profile of the longitudinal velocity is
specified at the channel inlet, i.e.,

u = const = Uy, )
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then, under the action of the viscosity, this profile
changes as the longitudinal coordinate z increases; as
z — oo, the profile approaches asymptotically to the
stabilized Poiseuille profile. Thus, if the flow was non-
equilibrium with respect to both coordinates at its tran-
sition segment, it will remain nonequilibrium after sta-
bilization only along the radius. Within standard

approximations, |Yz| < 1,
urr
p, =0, (10)
and with allowance for the boundary conditions
u(z0) =0, u(za) =0, (11)
v(z,0) =0, v(za) =0, (12)

the integrals of the steady-state axisymmetric continu-
ity equations, the motion, and mechanical energy take
the form

O O
B’ur dgd =0, (13)

0 z
Da 0 n+1
PouTdD) + (P = oAUz @), (14
0 z

a a
pOB’ r er + pZ ur"dr = —ngfu’r"dr,
0

(15)

where the values n = O, 1 are related to the planar and
cylindrical geometry, respectively, and the indices
imply partial differentiation. Giving up the traditional
isolation of aboundary layer, weintroduce the variable
profile, unified throughout the channel cross section,

Uz r) = UDE) = Udy(E) (1 + a8 +ae™ +...). (16)

Here, ¢,=1-¢&", =£1 0(0;1),andU, v, a,, &, ... are

the functions of zto be determined. For the simplest sit-
uation, in which a,, a,, ... are disregarded, we obtain
the closed system of equations (13)—(15) for determin-
ing p, U, and v. The initial conditions p, and U, are
assumed specified. Setting u(0, r) = U,, we arrive at the
initial condition
V(z— 0) — o0, (17)
In this case, the variational principle takes the form
of the PMED specific for the problem of a conditional
extremum:

a a
J=D+AG= %no u’r"dr + p,(ur"dr,
0 0

where = p, = const isthe Lagrange coefficientand G =
const is the mass rate [integral (13)]. The condition

(18)
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0J = 0 yields the steady-state equation of motion, as
follows from

a

3J = (nor”u,au)|§+J’[r“pz—no(r“u,),]6udr = 0.
0

Substitution of u = U, into G gives U as a function
of v:

U n+1
= =14+ —=
Uy v
Hence,
2,0~ 1(v+n+1)
2”OU 2v+n-—1"

and the variation of D with respect to v has the form

v-2
(v+n+1)(2v+n- 1)
i.e., the steady-state condition for D results in the Poi-
seuille profilewithv = 2.

The less obvious example of using the PMED isthe
determination of the correcting factor a, in (16). We

represent a, as

oD = 2D

(V) = aL.P(v),
where a,,, = a,(e0) and the undetermined function J(v)
satisfies the following passages to the limits
Yy(v—2) —v-2—0, Y(v— ) —1.

The simplest choice of a;, which satisfies these condi-
tions, has the form

V-2

a = Q0 (19)

It turns out that the use of the PMED leadsin this case
to an expression that functionally coincides with rela-
tion (19). Indeed, upon substituting (16) into D and dif-
ferentiating the result with respect to a,, we obtain

v—2 1+(n-=1)/(4v)

v 1+(n-1)(3v-2)/(4v)’
so that for the cylindrical geometry (n= 1)
v-—2

V 1

which functionally coincides with (19). For the sake of
clarity, we show in Fig. 1, for n = 1, the dependences of

a =

a, = - (20)

v and of the dimensionless dissipation D = on

(NU?o
the dimensionless coordinate
_1z__ N 2z
Re,2a (pU)y2a2a’




768 PLESHANOV
v,D dT
10 &(0) = 0. (24)
gl Clearly, we aso have
QT) = Qe

Comparing this calculation of D with the traditional
calculation [6] shows their good agreement. A consid-
erably earlier passage to the asymptotic behavior of the
quantity D(n) than v(n) (as well as all the remaining
guantities) isaconsegquence of the PMED. From this, it
follows that in specific tasks, near the stationary non-
equilibrium state (the degree of closeness is seen in
Fig. 1), the solution to the equation of energy can be
replaced by the condition of constant dissipation.

4. We now consider the problem of stability for the
process of heat rel ease in a heat-conducting medium. In
this case, the PMDF takes the form

F = J’UQdK_g—D—g—)—Z}dV, (21)

where the conditions Q > 0 and 3—(_? > 0 correspond to

the combustion process. Thefirst variation of (21) is
oF = JéK(qu) +J’(—divq +Q)dKdv,

from which the steady-state heat conduction equation
follows

—divg = AK = -Q. (22)

Thisequation wasfirstly solved in[7, 8] for the case
Q ~exp(aT), with k and a = const assuming the planar
and cylindrical geometry (see also [9]); the absence of
solutions to boundary value problems in [7, 8] was
treated as an absolute instability. The same solutions
based on group-theoretic considerations were obtained
in[9, 10]. The variational statement (21) makes possi-
blethe use of the general method of analysis of stability
based on the solution of the so-called Jacobi equation
(see, e.g., [11]).

Restricting our consideration to the planar geometry,
we have the argument x [ (-d, d) and the even function
T(X) = T(—X). The boundary conditions are

T(-d) =T, (23)

30 that the dimensionless function is
0 =a(T-T_)0O(0, 6),

where 6, is to be determined. It is convenient to intro-
duce the dimensionless argument

_ 0 eg”
E_DzKeD X.

In this case, EQ. (22) takes the form

B +2 ° =0, (25)
and itssolutionis
0 = 6,—2Incosh§.

The condition for determining

(26)

_ Q_ edjllz
&o = 02 € O d,

i.e., the quantity 6,, is

&o _ ﬂJQ-Dﬂzd
coshé, U2kl ™

The Jacobi equation is the disturbed equation (25):

(27)

T

T +2 =0, (28)
33 coshPE
where T = 06 [11]. Itsgeneral solutionis

with the constants being determined from the standard
boundary conditions [11]

_ _ dt _
(¥Eo) = 0, &(—Eo) = 1.

The final form of the solution for & [ (¢, &) iSgiven
by the formula

T = F[1(&0)T1(1€]) —T1(E0) T2(E)] - (3D

The stability condition (6*F > 0) is reduced to the
requirement

(30)

1>0 (32)
for & O (&, &) [11]. We ascertain by direct substitu-
tion that condition (32) is satisfied only for

T,(&o) = 1-¢&ptanh§, =0, (33)

so that the boundary of the stability domain is deter-
mined by the condition 1,(&,) = 0.
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The result expressed by relation (33) coincides with
the stability criterion [7, 9], which follows from (27)
and is obtained from the geometrically apparent con-
dition

d o _ 1
d¢,cosh, cosh

In this example, the unsteady-state stage is
described by the equation

h, = AK +Q(T),

(1-E,tanh&,) = 0.
&o

_ - L - KO pj -
whereh—J'pch and K_J'xdh %(_ oel Differen
tiating F [given by formula (21)] with respect tot yields

Fi +J.(Kt)e(qeds) = _IhthdV <0,

so that for (T,).=0or q. =0, we have F, < 0. Thisine-
quality is the necessary condition for the attainment of
the steady state (minimum of F), but, as shown by this
example, it isnot the sufficient condition. The sufficient
condition for the minimum of F is &F > O; it requires
the solution to the Jacobi equation and itsinvestigation.
In conclusion, we note that the results of [5], where the
variational principle was proposed for the unsteady-
state nonlinear heat-conduction equation, allow a sub-
stantial extension. Indeed, if

E,=9,0,—K(A8,) = 0

is the heat-conduction equation for the potential 6,
introduced by the relationship h = A8, then we obtain
from the variational principle [5] two equivalent equa-
tions

0,E, = A[0;6, ~XAK(28,)]
= A(0; £ XxA)[0,6, FK(AB,)] = 0.
From these equations, we find the desired equations
06, FK(AB,) = 0, (34)

which were obtained in [5] for the partial linear case
X =const. The same equations were also obtained
in[12, 13], where the same linear case was studied.
Thus, the parallel existence of two identical subsystems
postulated in [13] with opposite directions of time is
obtained here automatically for the general nonlinear
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case. The conclusion [5] that the total energy

0
H2 = Aateza_Aa ezgz—ggz
t

=[98, + K(A6,)][0:8,-K(A8,)]

vanishes in this case follows from (34) and is the con-
sequence of the complete compensation of the energy
dissipation in the system as awhole.
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The problem of the possibility of generating gravi-
tons in the Universe was thoroughly studied in [1, 2].
In[2], the formulawas derived for the graviton genera-
tion rate in the uniform and isotropic Universe

fdt(“/—gqng) B 28811 M
under the assumption that
2
_R_ ®
RoawwR

where Risthe scalar curvature and R,,,, isthe Rieman-
nian curvature tensor.

For the radiation-dominant evolution stage of the
hot Universe, the equation of state

1 2
p=3pPC (3)

holds. Since, according to the general relativity theory
(GRT), the scalar curvature R is exactly zero at this
stage of the Universe's evolution, the authors of [1, 2]
concluded that in the hot and uniform Universe the gen-
eration of gravitons does not occur. In [1], it was also
noted that the generation of gravitons apparently pro-
hibitsisotropic singularitiesin the vicinity of which the
eguation of state

1
p>3pc’ 4)

takes place. Such a conclusion evidently arose due to
the fact that in this case the scalar curvature R would
become as large as is wished. Therefore, an extremely
intense graviton generation must occur, which, in the
case of the existence of a singularity, could lead to an
inconsistency with modern data on the density of mat-
ter in the Universe.

Institute of High-Energy Physics, Protvino,

Moscow oblast, 142284 Russia

E-mail: gershtein@mx.ihep.su; logunov@mx.ihep.su;
filimonova@thl.ihep.su

Intherelativistic gravitational theory (RGT) consid-
ering the gravitational field as a physical field with a
spin of 2 or 0, which evolves in the Minkowski space,
the completely opposite situation arises: the evolution
of the uniform and isotropic Universe is described by
other equations [3, 4]. It is extremely important to
emphasize that, in this case, no singularities are

present:
iiTa - _‘EEBH 200 - aig, 5)
HZE%%%z = g’?p_ggﬂ_-gn;+2a%
Here,
w = %ZD“TE , )

and misthe graviton mass.

Asfollows from these equations (see [3, 4]), for the
radiation-dominant stage of the Universe's evolution
and for small values of the scaling factor a(t), the equa-
tionisvalid

a,|r_® ,_0da
a’ G a® T ®

In the GRT, the left-hand side of Eq. (8) is exactly zero
in the radiation-dominant region. Therefore, at this
stage of the Universe’s evolution, the Fridman stage
takes place when the scaling factor a(t) varieswith time

according to the ./t law. In the RGT, according to
Eq. (8), the pre-Fridman stage of the Universe's evolu-
tion exists in the radiation-dominant phase. Here, the
scaar curvature for the uniform and isotropic Universeis

SR S
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On the basis of Eqg. (8), we have

l|jTIQ] 1

R= —50%0;

(10)

From Eg. (6), it follows that the scaling factor a(t) can-
not turn into zero, and its minimum value equals

mein Dllﬁ
(2P

amin =

(1T)
where

__1 et
pmin - 16T[GD ﬁ/ 0 (12)
whilein fact the maximum density p,,., of matter inthe
gravitational field isan integral of motion, which is not
determined theoretically.

Based on relationships (10)—(12), we may conclude
that, at the time moment when the maximum density of
matter is attained, the scalar curvature of effective Rie-
mannian space takes the value

16T[G

R = Prnax- (13)

At this time moment, the Hubble constant H is exactly
zero. We can see from formula (13) that, in contrast to
GRT, inthe RGT the scalar curvature Rin the radiation-
dominant stage of the Universe’'s evolution does not
turn into zero. Moreover, it may be sufficiently large,
sinceit is determined by the maximum density of mat-
ter P iN the gravitational field.

Thus, according to the RGT, in the radiation-domi-
nant phase of the Universe's evolution, there is a pre-
Fridman stage in which the scalar curvature not only
differs from zero but may be sufficiently large, since it
is determined by the maximum density p,,,, of matter.
In order to find the graviton generation rate, we cannot
apply formula (1), because it was derived in approxi-
mation (2), which is not fulfilled in our case.

If, based on dimensional concepts, we assume, in
the genera case, the graviton generation rate to be
dependent only on the quantities

R, R R, (14)
then atime interval should be chosen during which the
Hubble constant attains its maximum, since the Frid-
man stage arises very soon. It can be easily found from
Egs. (5), (6) that the Hubble constant H attains its max-
imum at a time moment when the scaling factor a(t) is

32
2m|n

Employing relation (15), we find from Egs. (6) the

a’(1) = (15)
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maximum value of the Hubble constant

Hom = 372(32NGP, )" (16)

At the time moment when H attains its maximum, the
scalar curvatureis

3
R = &7 x 16mGEm 17)
C

and theratio Z is determined by the expression

% = 37 x 32nGp, . (18)

Theinvariant obtained by the convolution of the curva-
ture tensor for the metric of a uniform and isotropic
Riemannian spaceis

Rp)\pv

ROMY 12[[11] [ﬂ]

Eajlsis (19

Substituting Egs. (16), (18) into this expression, we
arrive at

R Rp)\pv = 8x 3—7[{?721TG (20)

PALV

It should be noted that the Hubble constant varies
from zero to the maximum value H,,,, which is deter-
mined by formula[16] during arather short time inter-
val equal to [3, 4]

R e |
Eiaznepmax +in

If the graviton generation rate is determined by quanti-
ties (14), then during time interval (21) a sufficiently
large amount of gravitons can be generated, provided
that the density p,.. iS reasonably high. However, if it
ismuch lower than the Planck density, thisimplies that
the generated gravitons immediately become free,
whiletheir energy further decreases due to the red shift.

Thus, a gravitational relict background of nonther-
mal origin must arise. The gravitons interact with each
other sufficiently strongly, since their interaction con-
stant is equal to unity. In the case of a sufficiently high
density of the gravitons, this fact can violate the uni-
formity of the relict gravitationa background having
anonthermal origin. From dimensional considerations,
the total number per cubic centimeter of generated grav-

21
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itational-field quantais proportional to the quantities

cR’T, c(R,,, R™)1,

PAUYV (22)
where the quantities R,, R;,,,R, and T are given by
expressions (17), (20), and (21). It follows from these
formulas that the graviton generation rate in the hot
radiation-dominant phase of Universe evolution is
determined, basically, by the value of the maximum
matter density p,,... Being informed about the process
of the graviton generation in more detail, we would be
able to determine the maximum vaue of the matter
density intrinsic to the Universe in the present expan-
sion cycle. On the other hand, we can formulate the fol-
lowing hypothesis: the gravitational background of
nonthermal origin could be adark matter that manifests
itself in the Universe as a missing mass. However, this
hypothesis requires a more thorough analysis.

GERSHTEIN et al.
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We show that the problem on the critical behavior in
a three-dimensional model with the Landau effective
Hamiltonian can be solved exactly if a certain inequal-
ity isfulfilled. For asystem with sufficiently small sizes
(specified by thisinequality), we calculate critical indi-
ces and a shift of the heat-capacity maximum with
respect to its position in the thermodynamic limit. The
shift is also calculated for systems of noncubic shape.
If the space dimension exceeds an upper critical value,
the results turn out to be exact in the thermodynamic
limit since the model under consideration is renormal-
izablein this case.

1. As arule, exact results of statistical mechanics
have an asymptotic character. Thisimplies the passage
to the thermodynamic limit (i.e., to the number of par-
ticles N tending to infinity) in the corresponding cal cu-
lations. In this case, the results concerning macroscopic
systems with the number of particles (or degrees of
freedom) on the order of Avogadro’s number are virtu-
ally exact by virtue of the smallness of fluctuations
determined by values on the order of N-'/2, This con-
cernsthe temperatures of various phase transitions and,
for example, the phase interfaces in the first-order tran-
sitions or the coinciding sharp (possibly, infinite) peaks
of the heat capacity, susceptibility, etc., in the second-
order transitions. On the contrary, if N is not too large,
the fluctuations are not small and the second order tran-
sitions are smeared over a certain temperature interval.
In this case, singularities of physical quantities are
smoothed, and the extrema are shifted with respect to
their positions for infinite N. Recently, such effects
were studied in numerous experiments (see, for exam-
ple, [1, 2]). As to their theoretical description, it is
reduced to finding correctionsto exact solutionsfor dis-
crete modelswith finite (but large!) numbersN [3, 4] or
to extrapolating the results obtained for d > 4 to the
physical dimension d = 3 by e-expansion within the

* Joint Institute for High Temperatures,
Russian Academy of Sciences,
ul. Izhorskaya 13/19, Moscow, 127412 Russia
** Krzhizhanovskii Power Engineering Institute,
Leninskif pr. 19, Moscow, 117927 Russia

framework of a continuous model [5]. It should be
noted that the volume V of the system, rather than the
number N, must be considered in the continuous model.

Here, we report exact results for the continuous
model with the Landau effective Hamiltonian, which
arevalid only for systemswith small sizes. It should be
noted beforehand that we ignore surface effectsin finite
systems. In contrast to [5], we consider the case of
d = 3, with no extrapolation used, and directly calculate
the heat capacity c,. For finite systems, the critical tem-
perature isidentified with the maximum point for c,. In
fact, this result is reduced to finding a correction to the
Landau theory, which occurs due to the zero-mode fluc-
tuation. In the theoretically important case of d > 4, we
also show that the results obtained remain exact in the
thermodynamic limit.

2. Within the framework of the continuous model,
investigating the vicinity of the second-order phase-
transition temperature is reduced to calculating a fluc-
tuation correction to the thermodynamic potential (the
so-called singular part of the potential) [6]:

®gpy = —TINZ.

Here, the statistical integral Z corresponds to the sum-
mation over al possible distributions of the field n in
the volume LY (d is the space dimension):

0 H(mO
Z = J'exp[rmmébn- (1)
o T o

We start from the Landau effective Hamiltonian
H.¢, Which takes the following form in terms of the

Fourier transform of thefieldn (t=T-T,, V=L9):

0
Het = V%atz ﬂi
“ 2)

+bz

Ky, Ko Kg

U
AT T PR R ) g S
” U
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Fig. 1. Temperature dependence of the heat capacity (in
dimensionless units) for various ways of representing the

fourth-order termshy inHggp: (2) hy = hgl) , (@) hy= hﬁf) ;
solid line corresponds to one degree of freedom.

AsV —» oo, the number of degrees of freedom in the

d
K[ V, where K is the

model tends to infinity Bn = Ol

cutoff parameterEr To describe a finite-size system in

the case of d = 3, we consider thefield in the volume L3
such that the following inequality holds for a nonzero
wave number K with the smallest modulus:

1/2
g%% > 1. 3)

It is evident that this inequality is aso fulfilled for al
the components with nonvanishing k. Taking into

> 1.1tis

account that K ~ 1 , we aso have that 9 A
L (bL)

easy to seethat the contribution of the regionswith non-
vanishing ny x, into the statistical integral is negligible
if these inequalities are fulfilled. Under these condi-
tions, average values of physical quantities are also
independent of the particular form of the terms of the
fourth order in n, which enter into H.g. This statement
is confirmed by the calculation of the heat capacity (see
necessary relationships below) of the system with three
degrees of freedom, with the fourth-order term simu-
lated by two various polynomials of the fourth degree:

h) = ng+ni+n5+n5n:+nons+2nin3,

h{? = ng+ni+n5+ngni+ngns+nins+non.n..

KORTSENSTEIN, TSESKIS

The calculations were carried out with the following val-
ues of parameters. L =20, a=b=T,=1, and g = 100.
The results are presented in Fig. 1. In the same figure,
we also show the cal culation results for the heat capac-
ity of the system with one degree of freedom, n, (for the
same values of the parameters). Asis seen from Fig. 1,
the points corresponding to all the cases under consid-
eration are in the same curve.

Thus, when describing the phase transition in a sys-
tem with sufficiently small sizes, we can only consider
a system with one degree of freedom. Such a problem
corresponds to spatially homogeneous fluctuations and
can be solved exactly. We also note that solving this
problem is interesting by itself, serving as a formal
example of an exactly solvable model of the second-
order phase transition. It is evident that this model cor-
responds to the correction to the Landau theory, which
is due to spatially homogeneous (with k = 0) fluctua-
tions. Omitting the subscript in the component n,, we
write out the effective Hamiltonian in the form (as
before, a=b=T,=1)

H = V(tn®+n%). )

Twice differentiating the singular part of the potential
with respect to the temperature t, with H.; given by (4),
we obtain thefollowing expression for the heat capacity
per unit volume:

_ HDO- tHT
G = —y
Performing the change of variables Vn* = x* and intro-
ducing the denotation tV'?2 = &, we arrive at

V1/4

x4exp{ —EX— x“} dx

Ch = —0m

I exp{ -&x° —x} dx
v &)

SO 2 "}d)g
X exXxpy—cX —X

D_[ p{—=¢ .

e ]
|

| exp{—&x*—x} dx

0 0

14

-V

For sufficiently large &, evaluating integrals in (5) by
the saddle-point method is reduced to integration over
the vicinity of the minimum for H. in the exponent,
i.e., of the point x = 0. Hence, in the high-temperature
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Fig. 2. Temperature dependence of the heat capacity for
small (L <9) sizes of the system: L = (1) 5.8, (2) 6, (3) 6.4,
(4) 6.8, (5) 8, and (6) 9.

region (t > 0), the heat capacity c, decreases, tending to
zero with increasing t. Fort=0 (¢ = 0),

. = [ (U4 (5/4) —T2(3/4) _ 0.135763.
P r2(14)

. .. 0cy . ,
In this case, the derivative % is negative and propor-
tional to V2. In the low-temperature phase (t < 0), with
the help of the change of variables—&?2 = y?, the quantity
C, istransformed to aform in which the exponent in the
4

y

integrands is y?> — E_ while the right-hand side of

2 )
Eg. (5) isadditionally multiplied by &-2. For sufficiently
large but finite & (inany case, &2 > 1), itiseasy to prove

-2
that the contribution of Q%—t—) into the derivative of c,

with respect to t is essential, being positive and propor-
tional to V2. Thus, the curve of the heat capacity must
have a maximum at a certain point t,, in the region

-AV-12 <t <0 (Aisaconstant). By virtue of thefinite-
ness of &, this maximum isfinite and independent of V;
however, the tangents to the curve on both sides of this
point become vertical asV — oo.

The calculation results for the heat capacity are
shown in Figs. 2—4. Figures 2 and 3 display the varia-
tion in the heat-capacity behavior (in its temperature
dependence) with increasing sizes of the system. It is
worth noting that while decreasing t in the low-temper-
ature phase, the heat capacity tends to a value of 0.5.
Thisvalueis evidently determined by the order param-
eter minimizing H. in the exponent. Thus, the differ-
ence C,(—») — Cy() is the heat-capacity jump in the
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Fig. 3. Temperature dependence of the heat capacity for L >
10: L = (7) 10, (8) 20, (9) 30, and (10) 50.

2
aT,. , :
Landau theory E'Acp: ——2—b—° in conventional unltsg. In

this case, both the shape of the curves and its variation
withanincreasein L arein aqualitative agreement with
experimental data[1, 2] for systemswith small L. (Itis
interesting to note that, for systems with a small num-
ber of particles, asimilar behavior of the heat capacity
is possible even if the phase transition is not of the sec-
ond order [7].) In particular, it can be seen from Fig. 2
that the heat-capacity maximum increases with L for
the sufficiently small L for which the approximation

0.1F

0.01
0.1

Fig. 4. Temperature t,, corresponding to the hest-capacity

maximum as afunction of size and geometry of the system:
(©) cubic geometry, positions of the maximain curves 1-10
of Figs. 2 and 3; (solid line) the dependence t,, =

-3.875A71498: (A) lengthy geometry; (dotted line) the
dependence t,, = —0.39175\""; (O) flat geometry; and
(dashed line) the dependence t,, = —0.0391751\ 0,
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under consideration is immediately applicable. The
dependence of the maximat,, of curves 1-10in Figs. 2
and 3 on the size of the system isshownin Fig. 4. Asis
seen, the corresponding points approach the curve (in
thiscase, A = L)

t, = —3.875L7*°

with increasing L. The fact that the exponent slightly
differsfrom 3/2 is associated with the limited computa-
tional accuracy of the numerical integration. Since t,,
tends to zero from below as V —— oo, the shift in the
critical temperature with respect to its value in the ther-
modynamic limit is given by the universal dependence

To(L) = To() = constL™?, (6)
with the constant determined above. It should be noted
that, in general, the dependence on the size of afinite
systeminthecritical region (finite-size scaling), aswell
as the shift in the position of the heat-capacity maxi-
mum with a variation in the size, is a characteristic of
the critical behavior of finite-size systems. Thus, in the
case under consideration as well as when solving the
two-dimensiona 1sing model, the corresponding rela-
tionships can be established exactly, in contrast to the
case considered in [8], for example, where such rela-
tionships are fairly indefinite. In the case under consid-
eration, L is a unique quantity with the dimension of
length. Hence, the exponent in the relationship t,, ~
L2 has to be immediately related to the critical index
v; therefore, v = 2/3. It isnot difficult to find the remain-
ing (temperature) indices. It is evident that a = 0 and
B = 1/2. For finding the susceptibility index, we differ-
entiate @, with respect to t. As a result, the mean
square of fluctuationsin thevolumeVatt=0is

< Inde> oV,

Taking into account that L ~ t =23, wefind that y = 1;
hence, { = 1/2. The above results concerning systems
with the cubic geometry can be extended to other sys-
tems, for example, to lengthy systems having the shape
of arectangular parallelepiped L x A x Aor to plane sys-
tems, L x L x A, with L > A. It isfound for these cases,

)\—1 -1/2
tn(A) T and t,(A) 3
being the absolute value of the corresponding quantity.
The numerical results are shown in Fig. 4. Thus, the
shift in the critical temperature is determined by the
shape of a system aswell asits size. This conclusionis
in qualitative agreement with the experimental data.

3. In conclusion, we make the following notes. In
the case of d = 3, the results listed above have a direct
physical sense, provided that, of course, theinequalities

, respectively, with t,,

KORTSENSTEIN, TSESKIS

indicated at the beginning of this paper are fulfilled. As
was noted above, the extrapolation of the results to
large L is of methodical interest. In the space with a
dimension d = 4, these results are exact just in the ther-
modynamic limit, which can be proved by the follow-
ing manner. Using the change of variables n, LY+ = x,,
with regard to tL92 ~ 1, we exclude the quantity L from
the two first sumsin the effective Hamiltonian (2). The
last sum proportional to g takes the form

ng_ZZkzxﬁ;
k

hence, the corresponding term is not small even for the
smallest k ~ L-!. With regard to the representation of the
Dirac & function in the form

5(z) = lim %exp(—szzz),

it is evident that a product of the Dirac d-functions,
|_| o(k) , entersinto the functional -integration element
k

in the statistical sum, while the corresponding addi-
tional factor independent of t yields a negligible addi-
tive term to @, after taking the logarithm. Thus, the
field componentswith nonzero k are eliminated. There-
fore, in the case of d = 4, the consideration similar to that
carried out above for d = 3 becomes exact asL —» co.
Thisis evidence of the renormalizability of the model n*
for d = 4. The consideration gives, asit must be, the val-
ues of indices coinciding with those in the model of free
fidd:a=0,B=1/2,y=1,v=1/2,and { =0.
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The concept of magnetic symmetry [1] served as a
basisfor the statement on the principle possibility of the
existence of the magnetoelectric (ME) effect. Further-
more, specific predictions of the ME effect in the Cr,O4
antiferromagnet were made [2].

Recently, the ME effect was experimentally discov-
ered in the polydomain Cr,O; crystal [3]. Later, more
exact experiments [4] revealed an anisotropy inthe ME
effect, and the first microscopic theory of the ME effect
appeared [5].

All subsequent microscopic theories followed the
initial assumption that, under the action of the electric
field E, a certain parameter of the spin Hamiltonian
changes, namely, the axial term (D-term) quadratic in
spins[5], isotropic exchange [6], g-factor [7], antisym-
metric exchange [8], and biquadratic exchange [9]. The
temperature-averaged terms entering into the expres-
sions for the components a;; of the ME susceptibility
tensor that determines the linear ME effect were calcu-
lated basically by three methods. These methods imply
the approximation of the molecular field [5], the all ow-
ance for the experimentaly determined temperature
dependence of magnetic susceptibility [8], and the
Green's function method [10].

The magnetic susceptibility tensor aj;, which deter-
mines the linear ME effect, does not possess any inter-
nal symmetry. However, it should beinvariant under the
action of operations of crystal magnetic-symmetry
point groups. In particular, this statement istrue for the
point group of the Cr,0,—3'm magnetic symmetry (the
prime implies the operation of thetimeinversion). Asa
result, the matrix acquires the form

0 0
DGDO OD

o; =00 a; 00
O 0
0o OGHD

(the z-axis coincides with the axis of the third order).

Moscow State University,
\orab' evy gory, Moscow, 119899 Russia

The authors of [8], after comparing the refined the-
ory with available experimental data, made a conclu-
sion that the temperature dependence of o in Cr,05is
best described by the mechanism of the single-ion
(spin-orbital) type. At the same time, for o, the best
agreement with the experimental data in the high-tem-
perature and low-temperature regions is provided by
the double-ion (isotropic exchange) and single-ion
(g-factor variation) mechanisms, respectively.

However, it is unlikely that any particular micro-
scopic theory of the ME effect can be considered to be
completely satisfactory. Difficulties arise due to the
impossibility of error estimation while calculating the
temperature-averaged quantities that are present in the
theory. The Green’s-function method [10], in principle,
must give more precise results. However, the discrep-
ancy inthevalues of a predicted on the basis of differ-
ent versions of the theory (the random-phase approxi-
mation and Callen decoupling) is comparable with the
divergence between these versions, on one hand, and
predictions of the molecular-field approximation, on
the other hand.

Meanwhile, the simple devel opment of the phenom-
enological theory makes it possible to obtain a result
that can describe the temperature dependence of o and
05 within a wide temperature range. In this case, the
true behavior (i.e., the behavior consistent with experi-
mental data) isprovided as T tendsto zero, aswell asin
the spin-flop phase. The development of the theory is
the goal of this paper.

The construction of the thermodynamic theory
describing the ME effect in antiferromagnets starts
from the consideration of a certain nonequilibrium
thermodynamic potential, e.g., the Gibbs potentia

G = Gy— 2k

1
5 ijEiEj_QXiniHj_

a; EH

jr

where G, is independent of the components of the H-
and E-fields (indicesi and j determine Cartesian x-, y-,
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and z-axes; the summation over recurring indices is
implied). The relations
_ 96 -9
P==58 M=75
result in the following material equations:
P, = kjE; + a;;H;,

ij =i

I\/Ii = XIJ +G]IEJ

In order to solve the problem formulated above, we
write out the Gibbs potentia in the form of the expan-
sion into a series of the antiferromagnetism vector L
and its components including powers to the sixth order:

1,, 2.1

2,1 2, 1. 4
2AL +ZBM +2D(LM) +4CL

1)

2

G =G+
1.6 1,,,, 2 2 1., 2 2,2
+E_3|L +§A(LX+Ly)+ZC(LX+Ly)

1., 3 1
+zl (Ls+L)) +ZKLZ(3L§Ly—L§) ©)

+ %Rl(Li —3L,L2%+ %R2(3LiLy— L3

1 1

+gK L?L,(3LsL,— L) —(MH)

(the z-axis of the Cartesian coordinate systemisaligned

along the symmetry axis of the third order; the x-axis

coincides with that of the second-order axes).
Minimizing relation (3) over M for a given L, we

arrive at

LH
M = xDH—(xD—x”)—( Z)L, “)
where
1 _
Xo = B’ X = (B+D|—2) '

We now introduce several definitions:
L =Ll
1 = {cos@sing, sin@sin®, cosO} isthe unit vector in the
spherical coordinate system;
H = {Hycosy, Hysiny, H }
= H{cosWsinv, sinPsinv, cosv}.
Using these definitions, as well as relation (4), and

g‘ L?, whichare
unessential in considering the spin flop, we can rewrite

series (3) intheform

ignoring the isotropic terms of theform

G = Gy—3xXcH + 3(Xo—X(IH) + S L sin’e

+9L sin e+ L sn’g +

7 5 4L cosfsin’ 8sin3¢@

KROTOV, LISNYAK

+ %L“cosesinsesin?;(p

R, R,
[—cos 3(p+ 2sin 3cp}L sin’e.

6
Minimization of this expr on over ¢ under the con-
dition H? > H2 = 2 Lx (H_ is the threshold field of
[

the spin-flop transiti on for H; = 0) determines the posi-
tion of the vector L in the spin-flop phase. It is easy to
see that if © = g
the following equation

then it is determined by the roots of

sin6p = 0. )
On the other hand, the presencein series (3) of theterm

IkL,aLe L,

7 - Li) resultsin the violation of therigor-

ous inequality 6 = g in the spin-flop phase, even if

v =0 is the incomplete spin flop. With allowance for

thisfact, Eq. (5) isreplaced by the new equation

_§_[}§_1_ Kpeos® o _ Ri=R
6Ugn%9’ 2

2R'[4 L?
Thus, we can consider that @ = 0; i.e, the vector L is
directed ong one of thelight axesinthe (x, y)-plane[11].

A part of the Gibbs potential, which corresponds
to ME interactions, with the invariants of both the
first [12] and the third power (in the components of the
vector L) taken into account, is written as

Gue = -APEL(LM)-APEL*(LM)
_Al{ Lx(ExMy+ Eny) + Ly(ExMx_ EyMy)}

sin3g =

x[1+KL?+r(LE+ L2)]

“ME(L M+ L M)[1+eL?+ f(LZ+ L2)]
AL (E;M + E,M)[1+ cL® +d(L: + L2)]
~AM (L E, + L,E)[1+gL?+h(L; + LJ)]

~AsL,ME,[1+aL®+b(L:+ LY (6)
~Ae(ExM, —E,M,)(L; —3L,L5)
~MLEIM(LE L)) + M x 2L, L]
~AgL,M,[E(Li—L)) +E x2L,L,]

—AgL [ (ExM—E,M,) (L3 —Ly)

+(E,M, + E,M,) x 2L, L, ] —A0E,M,(3LL, - L7)
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~Au(ExM + E,M)(3LEL, —L}).
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constant AV isintroduced in accordance with [13]), we
now find from relations (1) and (2)

The exchange invariants of both the first and the third E)\ll—y + AL, AL, (AP +,) Lx%
power over L with the corresponding constants are @ _ 0 @ 0
written out in the first line of this relation. a" = E ML MLyt Asl, (AT +A)L, E
- , (1
Dividing the tensor a into two parts o = a® + a®), O Al AslLy (N7 +A5)L.0

in addition to the results obtained previously [12] (the

From here, it immediately follows that

B)\lkLzLy+)\3cL2Lz A KLZL, (A + e)\Z)LZLXE

3) o
o = B A KLZL, AMKLPL, + e, (AP +eny)LPL, E,
O O
0 AgLlL, AgLL, (A® +arg) L°L, 0

ag=[(AY +Ag) + (A +arg) L L,

and, if the constant denoted by us asa is negativeand 3.

sufficiently large, so that A® + a5 < 0, then, while the

temperature tends to zero, a3, aso becomes negative. 4.

A similar temperature behavior of the correspond-
ing tensor components a;; evidently manifests itself in

the spin-flop phase. Thisbehavior iscompletely consis- 6

tent with the results of the experiment performed

in[11]. However, we should note once again that the 7.

presence of the mixed term %1 KL,(3 Lf Ly - Li) ofthe g

fourth power in expansion (3) for the Gibbs potential
resultsin the fact that the z-component of the antiferro-
magnetism vector L, does not vanish in the spin-flop

phase. The term of similar nature in expression (6) for 1(1)

Gue — M\ EM,(3L5L, - L)) contributes to o33. This
contribution isproportional to thethird power of L. Due

tothisfact, theterm a,; can differ fromzerointhespin-  12.

flop phase[12].
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Since the discovery of quasicrystals [1], a large
number of theoretical papers have been published
devoted to their investigation (see, e.g., [2—6]). The
main challenge to the theory of quasicrystalline struc-
tures is related to determination of the actual arrange-
ment of atomsin a quasicrystal [7]. D. Gratias, one of
discoverersof quasicrystals[1, 7], noted that for signif-
icant progressin studying physical properties of quasi-
crystalsit is necessary to know the actual arrangement
of atoms in these structures. Thus, in order to calculate

such properties of quasicrystals as strength, plasticity,
electrical conduction, etc., we need atheory capable of
thoroughly describing quasicrystal structures, i.e.,
much as traditional crystallography describes periodic
crystals.

In this study, we anayticaly solve the problem of
quasicrystal structures, namely, the determination of
coordinates of atoms in a quasicrystal. For this, we
apply a method involving traditional crystallography
that describes periodic and incommensurate crystal
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structures. This method generalizes the definition of a
crystal. In the framework of the model proposed, a peri-
odic crystal can be represented as a particular case of a
guasicrystal. We obtained simple and clear formulas
describing the position of any atom in the quasicrystal.
The exact solutions for Penrose and Ammann—
Beencker quasicrystals are presented. The method is
universal and can be used in the analysis of biological
microstructures and fractal images. The symmetries of
quasicrystal structures are considered on the basis of
superspace groups [8, 9], a classica method in the
present-day description of incommensurate structures.

Crystal structures (in particular, quasicrystals)
exhibiting point diffraction, which, however, are aperi-
odic, can be described by a finite number of structure
cells. Figure 1 shows the scheme of atwo-dimensional
quasicrystal with a—w structure cells.

In such a quasicrystal whose crystallographic axes
are parallel to base vectorse, and e, the structure cells
are assumed to be situated in quasiperiodic | attice sites
with coordinates

(0, B) = eXo(@y, Bo) + €@y, By),

Xn| = aIB-'I + a| + )%[%IBIE’

|
[X] is the integer part of x, 0, > 1 and X, are irrationa
numbers, g and (3, are arbitrary numbers, a, are the lat-
tice parameters, and | = 0, 1. In what follows, we

B

assumed that — < 1 since, in the opposite case, g

0
. ' 1 Bl '
changes; i.e, aj=a + )?[5} . Let the vector Y (B be
| |
given in a Cartesian coordinate system by the following
expression:

where

O, [l
Y.(B) = et P Hhu* B
0 % g0 %

where{x} isthe fractional part of x. Then, the distribu-

tion function for the density of atomsin a quasicrystal
with K structure cells can be written out in the form

p(n, a,B)

D)X R T N

Ny Ny = —ok =1 I

0, Yq(B) O Uy
1, Y.B)OU,

p(n+B) = )

where r; is the vector characterizing the positions of

atomic centersin akth structure cell with respect to the
lattice point with which the cell is connected; the
domains U, are located within the rectangle o, x g, . In
general, the shapes of U, regions can be arbitrary
(Fig. 2).

Equations (1) and (2) determine the positions of
atoms in a quasicrystal and can be easily introduced
into a computer program [10] to generate a quasiperi-
odic structure of arbitrary size having arbitrary param-
etersa and 3. Asan example, Fig. 3 demonstrates a solu-

tion for Penrose quasicrystals EO’O =0 +Xo=X1=T,

1+./5 _
2 &=

(Co=0,=Xo=Xi=a=a =0,0=1+ .J2) quas-
crystals.

For simplicity, we considered the construction of a
two-dimensional quasicrystal. In the three-dimensional
case, the structure cells represent parallelepipeds with
their edges parallel to the crystallographic axes, and the
U, regions are considered as volume elementsin arect-
angular parallelepiped. This approach was first pro-
posed by the author in [11].

For an arbitrary shape of U, domains, the analytical

calculation [12] of the radiation diffraction on a quasi-
crystal, according to formulas (1) and (2), shows that

T= a, = IE and Ammann—Beencker

DOKLADY PHYSICS Vol. 46 No. 11 2001
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the diffraction pattern is independent of parameters a
and (. Since physical properties of a quasicrystal,
namely, the scattering of radiation, do not depend on o
and [3, the following invariance condition can be formu-
lated for aquasicrystal [8, 9]: if only the parameters a
and 3, rather than the function p in itself, change under
the action of a transformation operator on the atomic-
density distribution, then such a quasicrystal is invari-
ant with respect to thistransformation. Thus, if the con-
dition

R%%T,rq%p(r,a,ﬁi) = p(r,a',BY,

isfulfilled [where R(¢, r,) isthe rotation operator, ¢ is
the rotation angle, and r, is the coordinate of a point
about which the rotation occurs], then such aquasicrys-
tal has a symmetry axis on the order of q (Fig. 4).
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Nickel—zirconium alloys have a high glass-forming
ability in awide range of their concentrations and thus
are a base for a number of bulky amorphous metallic
materias [1]. However, no Gibbs energies for the for-
mation of nickel—zirconium crystalline phases have
been determined until now dueto experimental difficul-
ties associated with the high reactivity of zirconium and
low values of partial saturated-vapor pressures of the
components. Thelack of experimental datapreventsthe
analysis of thermodynamic and kinetic parameters of
the Ni—Zr-liquid transition into the amorphous state,
hampers understanding the reasons for the easiness of
this phenomenon proceeding in anumber of systems of
transition metals, and impedes revealing the degree of
stability and possible directions of further transforma-
tionsinto vitreous compositions.

In the study proposed, Knudsen mass spectrometry
was used for investigating a vapor composition and
thermodynamic properties of nickel—zirconium alloys
within the temperature range 971 to 1518 K and the
composition range 18.0 to 64.9 at. % of Zr. The satu-
rated-vapor pressure was measured with the help of
doubled Knudsen cells. As a reference medium, we
used copper (99.999%) or ultrapure iron with an impu-
rity content of 10-5%. For synthesis of alloys, we used
zirconium iodide (of 99.99% purity) and electrolytic
nickel (of 99.98% purity). The proceduresfor preparing
samples and performing the experiments were similar
to those described previoudy [2].

Crystalline Ni—Zr aloys are characterized by
extremely low partial pressures of the vapor of compo-
nents. At temperatures of their stability, the Knudsen-
measurement technique is capable of measuring only a
nickel-vapor pressure over samples whose com-
positions belong to the regions of heterogeneous equi-
librium

Ni + NigZr, NisZr + Ni;Zr,, Ni;Zr, + Niy Zrg.

Kurdyumov Institute for Metal Physics

and Functional Materials,

Bardin Central Research Institute

for the Iron and Seel Industry,

Vtoraya Baumanskaya ul. 9/23, Moscow, 107005 Russia

These data are evidently insufficient for determining
the thermodynamic functions of intermediate phases.
With the purpose of establishing them, we developed a
procedure based on initiating and investigating equilib-
rium with the participation of volatile products. We
added into effusion cellswith alloys under investigation
certain quantities of fluorides of magnesium, calcium,
or sodium. As a result of their interaction, volatile zir-
conium fluorides appear. In the mass spectra of satu-

rated vapor, ZrF;, ZrF,, ZrF*, Zr*, and Na*, Mg*, or

Ca* ions were detected, respectively. Thelines of ZrF;
and Na*, Mg*, or Ca* were the most intense. The exper-
iments carried out with Ni—Zr alloys of various compo-
sitions and metallic zirconium, as well as calculations
performed, showed that their interaction with admix-
tures of fluorides of Mg, Ca, and Na proceeds, basi-
caly, inthe reactions

Zr(c) + 4NaF(c) = ZrF,(g) + 4Na(qg), (1)
Zr(c) + 2MgF,(c) = ZrF,(9) +2Mg(9),  (2)
Zr(c) + 2CaF,(c) = ZrF,(g) + 2Ca(qg). 3)

The ZrF;, ZrF, ZrF*, and Zr* ions have a fragmenta-
tion origin and are formed by the dissociative ionization
of zirconium-tetrafluoride (ZrF,) molecules. Na*, Mg*,

or Ca*ionsoriginate from Na, Mg, or Caatoms, respec-
tively. The ratios 100 : 7.5 : 5.9 : 4.0, which had been

observed between ion-current intensities for ZrF;,

ZrF,, ZrF*, Zr*, virtually coincided with those previ-
ously established in [3] whileinvestigating evaporation
of ZrF,. For reactions (2) and (3), two measurement
runswere carried out under different experimental con-
ditions (effusion-orifice diameter, effusion-chamber
material). The virtually complete coincidence of the
experimental results (Fig. 1) demonstrates that a state
close to equilibrium is attained in the effusion cell and

1028-3358/01/4611-0784%$21.00 © 2001 MAIK “Nauka/Interperiodica’
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Fig. 1. Values of partial pressures for vapors of ZrF, and Na, Mg, or Ca over the mixtures of fluorides of sodium, magnesium or
calcium with zirconium under various experimental conditions (added fluoride, effusion-cell material, material of the inner-surface
coating, effusion-orifice diameter [dess, mm]): ( m) Naand () ZrF,4 (NaF, Mo, ZrB,, 0.114); () Mg and (0) ZrF, (MgF,, Mo, BN,
0.143); (A) Mg and (@) ZrF, (MgF,, Nb, ZrB,, 0.208); (v) Caand (¢) ZrF4 (CaF,, Ta, BN, 0.236); (v) Caand (¢) ZrF, (CaF,,

Nb, ZrB,, 0.129).

that the data obtained are reliable. Data analysis made
it possible to determine the variations in the Gibbs
energy of reactions (1)—(3) (expressed in Jmoal):

A,G (1) = 1033400 + 1200 — (6415 + 1.5)T,

4)
711<T<982K,

5,G (2) = 835700 800 (417.1£0NT,
904 < T <1241 K,

A.G (3) = 1074800 + 1000 — (375.9+ 0.7)T,
1197 < T < 1618 K.

Theseresultsvirtually coincided with the JANAF refer-
ence data [4]. For example, the Gibbs-energy calcula-
tion for reaction (1) according to the data of [4] in the
temperature range 700-1000 K led to the equation

A.G (1) = 1028100 — 636.5+ 1.5T,

(7
700 < T <1000 K.

As can be seen from Fig. 1, introducing one or
another additive leads to the initiation of reactions with
volatile products within awide temperature range from

DOKLADY PHYSICS Vol. 46

No. 11 2001

700 to 1600 K, which makes it possible to cover the
entire temperature range for investigation of crystalline
Ni—Zr alloys.

From the measured values of partial vapor pressures
(ion currents) of ZrF, and Mg, Ca, or Na over the mix-
tures of fluorides with nickel—zirconium alloys and a
pure metal, we calculated partial thermodynamic
functions for Zr (see table). This was done according
to the expressions for constants of equilibrium in reac-
tions (1)—(3). In such calculations, no ionization cross
sections of gas molecules were used, which signifi-
cantly elevated the accuracy of the desired values. For
each of the two-phase regionsin the diagram of statefor
the Ni—Zr system, weinvestigated several aloys of var-
ious compositions in different experimental conditions
(effusion-chamber material, effusion-orifice areq).
Depending on the temperature measurement range, we
used admixtures of different fluorides of Na, Mg, or Ca.
In all cases, the coincidence was observed within the
experimental error for the thermodynamic characteris-
tics found under various conditions. This fact is illus-
trated in Fig. 2 by the example of two-phase fields,

NiqoZr; + NiyyZrg, NijgZr; + NiZr, NijyZrg + NiZr,
and proves that a state close to equilibrium is attained

in the effusion cell when performing experiments with
Ni—Zr alloys.
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Fig. 2. Partial Gibbs energy for zirconium, which was established in investigations of alloys belonging to the regions of heteroge-
neous equilibrium of NiygZr; + Niq1Zrg, Nig1Zrg + NiZr, and NiygZr; + NiZr under various experimental conditions [x(Zr)], added

fluoride, effusion-cell material, material of the inner-surface coating, and effusion-orifice diameter (g, mm)}: (¢), (o) 0.430,
MgF,, Nb, ZrB,, 0.182; (@) 0.442, CaF,, Ta, BN, 0.224; (+) 0.476, MgF,, Mo, BN, 0.157; (a) 0.476, NaF, Mo, BN, 0.157;

(=) 0.491, CaF,, Nb, ZrB,, 0.215.

The determination of partia thermodynamic prop-
erties of both componentsin the heterogeneous regions
of NisZr + Ni,Zr, and Ni,Zr, + Ni» Zrg madeit possible
to calculate the thermodynamic functions for the for-
mation of corresponding phases. The thermodynamic
characteristics of other compoundswere found with the
help of the Gibbs-Duhem equation. As aresult, thefol-
lowing expressions were obtained for the temperature
dependences of the Gibbs energy in the formation of
intermetal lic nickel—zirconium compounds from fcc Ni
and bcc Zr:

AfG%NiSZ% = (32025 % 790) + (2.74 £ 0.57)T,

1108 < T <1518 K,

AfG%NHZr% = (42930 + 754) + (4.84 % 0.55)T,

1108 < T <1518 K,
1.
AfGEENber&D = —(47028 £ 716) + (5.99+ 0.53)T,
1201 < T <1438 K,

AfG%NiNZr% = (50075 = 611) + (5.16 + 0.46)T,

®)
1058 < T <1339 K,

AfG%%Nianqj = (49675 + 586) + (4.66 + 0.45)T,

1253< T <1440 K,

Af@%NiZ% = (50793 + 553) + (5.23 + 0.43) T,

1004 < T < 1441 K,

AfG%NinZD = —(36460 * 450) + (2.12+ 0.37)T,

971<T <1345 K.

Until now, only the formation enthal py was experi-
mentally investigated for Ni—Zr intermediate phases by
means of dissolving calorimetry [5, 6] and direct reac-
tion calorimetry [7]. The values AH [5-7] are com-
pared in Fig. 3 with the data presented in this paper. As
is seen, the results of al these studies agree well with
each other.

The authors of [8] estimated the Gibbs energy for
the formation of Ni—Zr intermediate phases at 1273 K
on the basis of results of measuring the heat capacity
for six Ni—Zr alloys with zirconium molar fractions of
0.30, 0.39, 0.47, 0.48, 0.54, and 0.61. In these experi-
ments, differential scanning calorimetry within the
temperature range of 120to 800 K and dataof [6, 7] for
AH wasused. Ascan beseenfrom Fig. 3, values of A;G

DOKLADY PHYSICS Vol. 46 No. 11 2001



THERMODYNAMIC INVESTIGATION OF INTERMEDIATE PHASES 787

found in [8] are somewhat lower than our data. Thisdis-
crepancy is likely associated with errors inherent in [8]
when performing measurements and calculations.
Namely, for determining the absolute entropy of com-
pounds, the authors of [8] investigated heterogeneous
aloys instead of homogeneous samples. For calculat-
ing the absolute entropy and the formation entropy at
1273 K, the measured heat capacities were extrapol ated
to the large temperature range of 120 and 473 K,
respectively. At last, the formation entropy for the
Ni,Zr, phase was estimated by asimple interpolation of
the values of A;S(Ni,,Zr) to zero in the case of metallic
nickel.

The authors of [9] performed an analysis of avail-
able experimental data on thermodynamic properties
and phase equilibrium in the Ni—Zr system. As the ini-
tial thermodynamic data, they used the values of the
formation enthal py for the compounds, which had been
established in [5-7]. The optimal values of AH
obtained in [9] turned out to be close to both the results
of [5-7] and those of the present study, whereas a dis-
tinction was observed in the values of A;G (Fig. 3). This
is caused by the fact that the initial information in [9]
was insufficient for correctly determining the Gibbs
energy of the formation of intermediate phases.

In our study, the thermodynamic functions for inter-
mediate phases of the Ni—Zr system have been estab-
lished while investigating aloys of various composi-
tionsand under different experimental conditions (effu-
sion-chamber material, effusion-orifice diameter, and
type of reactive admixture). These functions agree well
both among themselves and with the independent
experimental data of [10] on the phase equilibrium. For
example, the thermodynamic functions of an equi-
atomic nickel—zirconium compound calculated on the
basis of data obtained for the two-phase field of
NiqoZr; + NiZr and for the heterogeneous-equilibrium
regions of NiygZr; + NijyZrg and NiyyZrg + NiZr coin-
cide. The peritectic-decomposition temperature for

~OH, -G, kI/mol
60}

50

40

30

20

10

o A L T Loy
0 0.2 04 0.6 0.8 1.0

x(Ni)

Fig. 3. Thermodynamic functions for the intermediate-
phase formation in the Ni—Zr system from fcc Ni and bec Zr
according to theresults of thisstudy: (2) A:H, (V) A¢G, and

data for A¢H of other authors: (¢) [5], (A) [6], (o) [7],
() [9]. (0) [8], and () [9].

Ni,Zrg calculated from the data displayed in Fig. 2
attains 1248 K, whereas the value found by methods of
physicochemical analysisis equal to 1251 K [10]. All
thesefactstestify to thereliability of the procedure used
for studying crystalline Ni—Zr alloys and to the preci-
sion of the thermodynamic values obtained.

Partial thermodynamic functions of componentsin Ni—Zr heterogeneous alloys with respect to fcc Ni and bec Zr

Phase field T,K n Component —AH, Jmol —AS J(mol K)

NisZr + NiZr, 1108-1518 91 Zr 197186 + 1000 —34.55+0.76

12741518 55 Ni —1086 + 926 —3.64+0.66

NiZr, + NiyZrg 1201-1438 62 Zr 101972 + 2010 —21.41+1.52

1336-1438 25 Ni 26097 + 3072 012+2.22

NiyZrg + NiygZr; 1058-1339 79 Zr 63249 + 997 1.57+0.82
NioZr7 + NigqZrg 1253-1440 57 Zr 43886 + 2007 -258+15

NioZr; + NiZr 10041244 60 Zr 54873 + 1258 6.23+1.13

NiZrg + NiZr 12531441 52 Zr 61973 + 2304 11.92+1.73

NiZr + NiZr, 971-1345 89 Zr 7880 + 770 —4.26 + 0.67
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Boron nitride (BN) is an artificialy produced com-
pound. This material isinteresting dueto its great hard-
ness. Instruments using BN compete with those using
diamond. The interest in application of diamondlike
BN is caused by its two advantages. Boron nitride is
annealed at 1800°C; i.e,, it is efficient at higher (com-
pared to diamond) temperatures. In addition, boron
nitride does not react with metals. This makes it possi-
ble to employ this material for processing hardened
steels.

It iswell known that in the case of shock compres-
sion of hexagonal boron nitride (h-BN), the dense
wurtzite phase (w-BN) is aways formed in a thick-
walled recovery ampoule. At the same time, the forma-
tion under these conditions of the cubic modification,
the so-called sphalerite (c-BN), was apparently not
observed. This situation is usualy explained by the
high-temperature nature of the cubic modification [1].
This fact leads to failures while loading specimens in
the dynamic mode. For polymorphic transformation, a
high initial temperature of a specimen being com-
pressed is necessary. However, in combination with
additional heating caused by the shock compression,
this can lead to such high residual temperatures that,
after the shock compression is over, annealing of the
formed cubic modification c-BN occurs. At low (or
room) initial temperatures, only the low-temperature
wurtzite phase is formed.

However, there exists another possible (kinetic) rea
son for the absence of the cubic form in the case of a
direct pulsed transformation of h-BN, e.g., due to the
extremely high activation energy of this process. The
h-BN —» ¢-BN transition of a specimen compressed
under conditions of millisecond-scale pulsed heating in
a Belt-type high hydrostatic-pressure chamber was
described by Bundy and Wentorf [2], indicating the
possibility of millisecond-time phase transformation.
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Later on, the results of Bless[3] were published. In this
experiment, h-BN placed into a copper tube was com-
pressed by the electromagnetic field up to pressures P =
182 kbar. According to the author’s estimates, in the
case of specimen porosity of about 5%, a temperature
of 1000°C was attained due to the heating of rubbing
particles. As a result, c-BN lines were observed in the
X-ray diffraction pattern. However, the author of [3]
made no mention of the quantitative yield of this phase.
Therefore, it is possible that the temperature required
for the phase transformation was attained only on the
surface of rubbing particles and that the cubic modifi-
cation was formed only in the thin surface layer.

Meanwhile, in the case of initial high temperatures,
explosive loading can lead to the formation of the cubic
c-BN phase only in the case of dynamic—static com-
pression [4]. Indeed, in this method, the static pressure
(20 kbar) is produced at the stage of shock unloading,
which prevents annealing of the dense phase. However,
due to the complexity of these experiments, it is diffi-
cult to choose their optimal temperature. Therefore, we
undertook an investigation for the possibility of cubic-
phase formation under conditions that can be consid-
ered tentative.

The experiments were carried out in the following
manner. A tablet made of a h-BN and W (tungsten)
powder mixture with a volumetric ratio of 1 : 1 was
placed between Bridgman anvils in a miniature press.
The area of the Bridgman anvils was subjected to the
action of aforce equivalent to a pressure of ~80 kbar,
which was produced by means of an oil press. Then the
tablet to which high pressure was applied was fed by a
single electric-current pulse with an amplitude of 20 to
45 kA. An electric-pulse setup that had been used pre-
viously [5] in studies of properties of liquid carbon
under pulsed heating was employed. At the moment of
passing the short-time electric-current pulse (with a
duration of about several tens of microseconds) through
thetablet, the temperature reached the tungsten melting
point, i.e., approximately 3700 K. (This estimate has
been obtained in the course of experiment by the obser-
vation of melted traces of tungsten.) After termination
of the pulsed discharge and decrease in pressure, the
tablet of the substance under investigation was
extracted from the experimental setup. Then it was sub-
jected to study by X-ray and IR-spectroscopy methods
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Fig. 1. Evolution of the IR absorption spectra of BN while
varying the charging voltage of the setup (elevation of the
voltage corresponds to the rise of the heating electric cur-
rent and, correspondingly, to the increase in temperature):
(a) initial BN + W specimen; (b) BN + Cu, the voltage is
12 kV; (c) BN + W, the voltage is 10 kV; (d) BN + W, the
voltage is 11.5 kV; (e) BN + W, the voltage is 12.5 kV;
(f) BN + W, the voltage is 16 kV.

with the help of DRON-3 and Specord measuring
devices, respectively. The X-ray diffractometry turned
out to be low informative in this case. Actually, owing
to the high concentration of tungsten, the BN lines do
not manifest themselves. At the same time, the reflec-
tions of tungsten were dlightly displaced (within the
limits of several hundredths of an angstrom) towards
the smaller parameters of the tungsten cell. This
occurred apparently due to the formation, in a very
insubstantial concentration, of the W-O or W—N incor-
poration solid solution.

On the basis of studying IR spectra, the appearance
of adense BN form was observed whose concentration
increased with the rise of the electric-current pulse.

FORTOV et al.
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Fig. 2. Evolution of h-BN: (a) initial specimen; (b) the spec-
imen after the pulsed action at a high pressure (the c-BN
band is additionally shown with the tenfold increase in the
sensitivity); (c) the specimen after the electric-pulse action
at a high pressure + subsequent steady-state thermal treat-
ment.

Figure 1 shows the evolution of the absorption spectra
measured in this experimental run. In order to deter-
mine the structure of the BN dense form, a specimen
obtained as a result of electric-pulse loading was sub-
jected to thermal processing after the experiment. The
specimen was heated in ambient argon for 5 h at atem-
perature of 1000°C. Then we compared the IR spectra
of the original, transformed, and heated specimens (see
Fig. 2). Asthewurtzite modification isannea ed even at
850°C, the spectrograms presented indicate the invari-
ability of the absorption band for the dense phase
(~1000 cm™) and provide an idea on its quantitative
yield (~30% of the mass of the origina hexagonal
phase). Findly, in Fig. 3, the data corresponding to
indicated conditions for thermal treatment of all BN
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Fig. 3. Effect of annealing at 1000°C (5 hin ambient argon) on
the IR spectra of polymorphic BN modification: (a) standard
specimen of ¢-BN (1112 cm™); (b) ¢-BN after thermal treat-
ment; (c) standard specimen of w-BN (1060 cm‘l); (d) hexag-
onal phase of h-BN (1380 cm‘l) formed from w-BN;
(e) specimen obtained as aresult of e ectric-pul se treatment.
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Fig. 4. Phase diagram borrowed from [2] for BN. (Notation
corresponds to that of [2].): (L) liquid phase; (I) hexagonal
(graphite-like) boron nitride h-BN; (I11) (dense phase)
w-BN; (IV) sphalerite (diamond-like modification) c-BN.
Hatched curveisthe line of equilibrium between the graph-
ite-like and dense modifications (catalyzed transition of the
hexagonal phase | into sphalerite IV); hatched straight line
corresponds to the phase transition (without catalysts) of
wurtzite (111) into sphalerite (1V).
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modifications are displayed. These data unambiguously
testify to the fact that we managed to synthesize the
cubic form in the above-mentioned mode. At the same
time, the intensity of the characteristic absorption band
in the IR spectrum of the specimen obtained turned out
to be enhanced by afactor of 10. From this result, it fol-
lows that the shape of the absorption band differs from
the standard one, which implies possible structural pecu-
liarities of specimens synthesized in the pulsed mode.

InFig. 4, the phase diagram taken from[1, 2] for BN
is presented. A similar phase diagram is also given
in [6]. The high-pressure phases of BN |1l (wurtzite)
and IV (sphalerite) can be obtained by either the cata-
lytic method or directly, without the presence of cata
lysts (Fig. 4). It was assumed [1] that, at atemperature
below 1600°C, the transition of h-BN into w-BN
occurs, while at higher temperaturesc-BN isformed. In
Fig, 4, the transition of h-BN into the diamond-like
modification c-BN isrealized at a pressure of 110 kbar
and temperature of ~2000 K. In [6], it was established
that this transition can occur under steady-state condi-
tions at a pressure of 80 kbar and temperature of about
2000 K. The results of the present experiments with
pulsed loading, which were performed at an initial
pressure of ~80 kbar and at atemperature of ~ 3700 K,
give groundsfor the conclusion that rapid heating is not
an obstacle for such a phase transition. The distinction
of the rapid method employed by the authors of this
paper from the virtually steady-state method described
in[6] consistsin fast (tens of microseconds) pulsed heat-
ing that has no limitations related to the temperatures to
be attained. Thisis rather favorable for research studies
and further automation of the technological process. The
fact that in the experiment under consideration a mass
yield of the diamond-like phase attained approximately
30% (according to our estimates) indicatesthe high oper-
ation speed of the direct phase transition.
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In this paper, we formulate optimization problems
for the shape of the cross sections of cylindrical bars.
We consider the flexural stiffness, the maximum stress,
and the cross-section area of a bar as optimized func-
tionals. The cross-section boundary of the bar, consid-
ered as unknown, is sought in the class of regular
polygonal contours. Optimal boundaries are found by
employing the minimax approaches for cases of smply
connected and doubly connected cross sections with
given convex holes.

1. Optimization problems for the shape of elastic
cylindrical bars are considered in optimal design in
order to improve the strength characteristics of the bars
under bending, torsion, compression, and other types of
static and dynamic loads. Rational and optimal design
of the cross sections of bars was considered in a large
number of theoretical studies. However, until now,
solving many important problems on the optimal
design of bar shapes with the use of present-day meth-
ods of investigating distributed systems with unknown
boundaries encountered certain difficulties. The most
complicated problems arising in the optimal design of
the bar cross sections are associated with determining
admissible cross sections, investigating local extrema,
finding global optima, and solving multipurpose opti-
mization problems. A detailed analysis of studies pub-
lished before 1980 was given in monograph [1]. Varia
tional methods were then used in [2—4] for analyzing
the problem on finding convex cross sections for bars
that have the maximum flexural and torsional stiff-
nesses. In [5], parametric representations of boundaries
were used for solving the minimization problem for the
mass of a thin-walled bar, with restrictions imposed on
the minimum torsiona and flexural stiffnesses. The prob-
lem posed in [6] of finding rational and optimal shapes of
beam cross sections, with congtraints imposed on the
strength, was considered in [7]. The recent study [8]
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should also be mentioned, in which the maximization
problem was investigated for the torsiona stiffness of a
composite bar having imperfect matrix—fiber cohesion.

In this study, we investigate such characteristics as
the buckling load, the strength, and the stiffness. At
first, we consider stiffness properties for the cross sec-
tions of a bar, which determine the buckling load under
compression and characterize the flexural stiffness of
the bar. Asiswell known, for decreasing deflections of
a bent beam and also for increasing the stability— oss
critical force (fundamenta eigenvalue), it is necessary
to increase the moment of inertiaof the beam cross sec-
tion under certain isoperimetric conditions. We assume
that the cross-section area Sof acylindrical bar isgiven
{S= measQ} and the cross section Q bounded by the
contour I isconvex. The optimization problem consists
in finding the boundary I of the domain Q that maxi-
mizes the minimum moment of inertial(I", a),

I« = maxminl(l',a) (1)
r a

under the isoperimetric condition
) = J'dQ = S. )
Q

Here, S isagiven value of the cross-section area, and
o isthe angle determining the orientation of the flexural
plane. We consider the case when all the bending loads
applied to the bar act in the same flexural plane, while
the orientation of this planeis not given beforehand and
can be chosen arbitrarily. This case is peculiar to com-
pressed columns in which the stability loss takes place
in the plane having the minimum flexural stiffness
(minimum moment of inertia). In this case, for optimiz-
ing the bar stiffness (i.e., the stability-oss critical
force), it is necessary to maximize the minimum
moment of inertia of the cross section. As was noted
in [8] and as follows from the theory of symmetriza-
tion [9], in order to optimize the cross-section shape it
isnecessary to consider afamily of admissible symmet-
ric cross sections having the same moments of inertia
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for arbitrary neutral lines crossing the centroid. It
should be noted that an arbitrary regular symmetric
cross section [from an equilateral triangle (n=3) and to
acircle (n = o), where n is the number of the polygon
sides], has the same moments of inertia with respect to
any axes passing through the cross-section center. In
what follows, we consider only regular polygonal cross
sections with n axes of symmetry and investigate their
properties. For the symmetric polygonal cross sections
under consideration, their moments of inertia with
respect to the axes passing through the centroid turn out
to be equal. We have

1 1
= §(|x+|y) = élpl
2 2 2 2 (3)
p=jde, p” = X"+Y,

wherel, isthe polar moment of inertia, p isthe distance
from the center (centroid) of the cross section, I, and I,

are the moments of inertia with respect to the X- and
y-axes of the orthogonal coordinate system Oxy, and the
point O is the centroid of the cross section. In order to
estimate the polar moment of inertial,, it is sufficient
to consider the triangle OPQ (Fig. 1) Ftavmg the polar
moment of inertia(l)¢. For the polar moment of inertia
of the cross section, we have |, = n(l,)°. Introducing a
local orthogonal coordinate system On¢ with the
On-axis perpendicular to the side PQ, we obtain the
relationship (1,)¢= (1) + (1,)¢, where (I,)® = b*a/48 and
(I = ba'/4 are the moments of |nert|afor the triangle
OPQ with respect to the n- and {-axes. We denote the
lengths of the segments OT and PQ by a and b, respec-
tively (height and side of the triangle). Using the
expression for (1,)® and the isoperimetric equality §, =
n(ba/2) followi ng from (2), we sum the quantities (I,)®

(e=1,2,...,n). Asaresult, we abtain the relatlonshlps
=5 =00 =g 4
_Ep_é(p)_ q)(n), 4
2[TH] 2[1H]
sin EH]+3COS O
d(x) = T ®)
12nsm[mcos[m

The dependence of the dimensionless moment of iner-

tial = I/% on the number n of the sides of polygonsis

shown in Fig. 2. In what follows, we omit the tildes
standing for dimensionless quantities. As can be seen
from Fig. 2, the dimensionless moment of inertia |
decreases monotonically asthe number n tendsto infinity
and has the maximum vauefor n = 3. Thus, the optimum
isattained for an equilateral triangle, whiletheworst case
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corresponds to a circular cross section (n = o). The fact
that atriangular cross section isoptimal on the set of all
the regular polygonal domains (with the same area) was
established in [8], where the problem on finding the
column shape providing the maximum stability—oss
critical force was investigated. We note that, using the
calculus of variations, it is possible to establish that a
triangular cross section islocally optimal in the class of
symmetric convex regions. We now cite the corre-
sponding considerations. To do this, we apply an arbi-
trarily small symmetric perturbation, which does not
violate either the convexity condition or the isoperimet-
ric constraint S = §), to the contour I' bounding the
polygonal cross section Q. The unperturbed region
PQOR and a third of its perturbed boundary, P’KT'DQ',
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are shown in Fig. 3. The expression for the variation ol
of the moment of inertial is given by the formula

_ 12~ _ 12
ol = 26J’p dQ = 2J’p ofdr, (6)
Q r

where of is the variation of the boundary of the cross
section, which is measured in the direction of the out-
ward normal to I'. Allowing for the symmetry of both
the unperturbed region of the cross section and the per-
turbed boundary with respect to the symmetry axes
(shown in Fig. 3 by the dashed lines), we write the
expressions for the variations of the moment of inertia
and the cross-section area:

T

3l = 3d( 25fdr + 2eSfolrE @)
gpp { P n

T

5S = Gﬁéfdr+ stdrD @®)
TP

Formula (8) and the isoperimetric condition S = §
(0S=0) lead to the relationship

K T

J'6fdr = —fofdr. )
[

K

Using Eq. (9) and the inequality

Pk 2 (P)k, (P )kT< (PO, (10)

BANICHUK et al.

we arrive at the following estimates:

K T

3l < 3E(p2)KI6fdl' + (pz)KIBf drE
o 4 A

) T (11)
= 3(p?) B’éf dr + Iéfdrg =0
= « = 0.
P K U

Thus, 8l < 0 and, therefore, the local maximum of the
optimized functional corresponds to a triangular cross
section.

We now assume that the cross section Q is adoubly
connected region; i.e., the bar has a cylindrical cavity.
The region Q has the given inner boundary I'; and the
outer polygonal boundary I'. We also assume that the
inner region Q;, bounded by the contour I;, is convex
and has the same moments of inertiawith respect to al
the axes lying in the cross section and crossing the cen-
troid. We suppose that the area S of the cross section Q
isgiven (S= §) and that the boundary of the equilatera
trianglewiththeareaS=§ + § [§ + § = meas(Q; + Q)]
does not touch or intersect the boundary I';. The last
condition is essential when considering the variations
of the outer boundary I in the class of regular polygons.
On the set of the boundaries I under consideration, the
minimum distance between I' and the centroid is
attained for an equilateral triangle. Under these
assumptions, an unknown outer boundary I is found
from the optimum condition for the moment of inertial
of the cross section Q. The expression for the moment
of inertial can bewrittenasi(n) = 1(n) — I;. Here, I5is
the moment of inertia of the simply connected region
Q; + Q, which depends on the number n, and |; is the
moment of inertia of the inner convex region Q;, whose
value isindependent of n. The optimization problemis
reduced to the maximization of the quantity I4(n).
We have

e = maxi(n) = max{l,(n)} =1, = [«(3)—1;. (12)

Thus, the equilateral triangle with its center in the cen-
troid of the cross section Q; isthe optimal cross section.

2. Above, we considered the optimization problem
for the stiffness of abar, which was reduced to the max-
imization of integral functionals. Below, we analyzethe
maximization problem for the strength of a bar, which
is based on estimating local functionals. We consider
the minimization problem for the bending stresses in
cylindrical bars having convex cross sections. As
before, we assume that both the flexural plane and the
plane in which external forces act are not known
beforehand. The limiting value M, of the acting bend-
ing moment is considered as given. We alow for only
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normal stresses acting in the bar cross sections. They
are determined by the formula

o(x,y,[,B) = Mo—hl(z(’r,yéli)'

Here, the angle 3 specifies the direction of the neutral
line of the cross section relative to the global coordinate
system, and h is the distance between the point (X, y)
under consideration and the neutral line of the bar. The
optimization problem consists of finding the boundary
I" of the cross section Q that minimizes the maximum
stress

(13)

0x = minmax max a(x,Yy,I,B)
r B (xy)OQ

(14)

under isoperimetric condition (2). In the case of fixed I’
and [3, we denote the maximum values of h and o on Q
by h,, and a,,, respectively; i.e.,

h = hy(F,B) = (Xﬁyl)c'ﬂégh(x, Y, B), (15)

_Mo_

(T, B)

As above, we consider only symmetric convex cross
sections bounded by regular polygons. In this case, the
moment of inertiais independent of 3 [I = I(I")], while
the maximum value of hfor theset of B (0<[ < 2m) and
(x, y) X2 isgiven by the formula

Om = 0n(M,B) = B (16)

maxh,,(I', B) = maxmaxh(x, y, B)
B B (%)
%/2
nsin%cos%

(17)

where n is the number of sides of the polygon under
consideration. |soperimetric condition (2) is taken into
account when deriving expression (17). Furthermore,
using formulas (4) and (17), we find the maximum
value of the quantity o in the form

Mo

M
Oy = MaXo, = ——IgmaXhm(rvﬁ) =
B B

f i (T8 e LTH]
12 nS'nEH]COSEH]

sinz%+3cosz%

The dependence of the maximum stress ,, on the num-
ber nisshownin Fig. 4, where the dimensionless quan-

tity Gy =0y My So” isused, and thetilde, standing for
the dimensionless variable, is omitted. As can be seen

(18)

W(n) =
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from Fig. 4, the maximum stress g,, = W(n) decreases
monotonically as n tends to infinity, taking the mini-
mum value at n = co. Consequently, the optimum isreal -
ized in the case of acircular cross section and the worst
case corresponds to a equilateral triangle (n = 3).

It is possible to show that a circular cross section
provides the local minimum of the optimized func-
tional. In order to prove this statement, we consider the
circular cross section Q and perform small symmetric
variations of its boundary I, which do not violate the
convexity condition and isoperimetric constraint (2)
(5= S)). For the sake of simplicity and without loss of
generality, we assume that the perturbed boundary I +
ol has three axes of symmetry. The small variation of
the optimized functional is given by the following
expression:

1 h

-5hm-|—;“6|.

60M=|

(19)

With regard to both the expression for the small varia-
tion of the area S of the circular region under consider-
ation and the isoperimetric condition, we have

Iéf ar = o. (20)
)

Using equality (20), we estimate the first variation of
the moment of inertia:

_ 1.0 _ QZ _
31 = 5[e"stdr = Eyafdr = 0. Q1)
r r

Here we take into account that the function p(x, y) is
congtant at the boundary I (p istheradius of the circular
cross section). Thus, the second term in expression (19)
vanishes. The variation of the quantity h,,, islessthan or
equa to zero (dh,, < 0). Therefore, for perturbances
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under consideration of acircular cross section, the fol-
lowing inequality isvalid:

- I—léhm <0.

As with the former part of this study, the consider-
ations carried out can be extended to the case of doubly
connected cross sections.

30y, (22)
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Asiswell known, in the theory of Timoshenko-type
shells the shear correction factors k are introduced to
alow for the nonuniformity of the transverse-shear dis-
tribution in shell cross sections[1]. At present, the fol-
lowing values are commonly used for the shear correc-

ig

tion factors. k= 2 [2] and k= 5 [3]. These correction

factorswere obtained asaresult of analysisof thin elas-
tic plates and are consistent with one another. As is
shown below, in the case of the approach [3] (in which
the derivation of governing relations is based on the
principle of virtual work), the value of the shear correc-
tion factor k = 1 is preferable. In this case, the trans-
verse components of the stress tensor can be recovered
by integrating equations of the spatial elagticity theory.
The choice k = 1 makes it possible to construct a math-
ematically consistent and noncontradictory theory of
Timoshenko-type shells.

1. We consider a thin anisotropic shell with a con-
stant thickness h. It is assumed that at each shell point
there existsasurface of elastic symmetry that isparallel
to face surfaces S and St. We take as an reference sur-
face San arbitrary internal shell surface located at the
distances 6~ and &* from the face surfaces; i.e., h= &' —
0~. We associate the reference surface with orthogonal
coordinates a, and a,, which are counted off along the
lines of principal curvatures. The a5-coordinate is
counted off in the direction of increasing the outer nor-
mal to the surface S

In linear elasticity theory, the equations of equilib-
rium for athin shell whose face-surface metrics can be
identified with the metric of the reference surface have
the form

100, , 190, doy,

Ada;  Ajda;  da,

* Moscow State Technical University (MAMI), Bol’shaya
Semenovskaya ul. 38, Moscow, 105023 Russia
** Tambov Sate Technical University, Sovetskaya ul. 106,
Tambov, 392620 Russia

+Bi(0;;—0y;) + 2Bjo;; + ko3 = 0,
10053, 1005 005 (1)
A,0a; A,00, 004

iZ],

+B1013+ B0y —Kk 01, —K,0,, = 0.

A/,
AA;
Lamé parameters and curvatures of the coordinate

lines, respectively; i,j=1,2;anda, =1, 2, 3.

Here, B, = ; Oqp are stresses; A and k; are the

The equations of the generalized Hooke law with
alowancefor the admission o;; < o;; can be written out
in the form

0 = z BijimEims

I<m

Oj3 = zbi3I38I31 @)
[

ij,l,m=1,2.

In constructing the theory, we employ the modified
Timoshenko hypothesis [4] on the linear distribution of
displacements across the shell thickness

u = N(agvi +N'(@g v, us = v,
o5 O

h )

6+—G3
h )

N(ag) = N+(O(3) =

where vi (a,, a,) are tangential displacements of the

face surfaces S, and v;(a,, a,) is the transverse dis-
placement of the surface S

We now introduce displacements (3) into the strain
displacement relations of the linear elasticity theory.
Then, assuming the transverse shears to be distributed
uniformly across the shell thickness, we arrive at the
expressions

&; = N(ay)e; + N+(0(3)e:], €3 = €3 €3 =0,

. ov; . o
e; = %To&+8jv"_+kiv3 i ],
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+ 16v2 16vl .
= = 4
€12 Alam1 A,00, ~BVi-Byvy, )
&3 =Bi—-6, Bi= H(VT—Vi_)v
10v 1, - .
B = kiVi—Ka_Of7 v, = E(Vi +Vyi).

We multiply first two equations of equilibrium (1)
by the shape functions N*(a;) and integrate them
(together with the third equation) with respect to the
transverse coordinate within the limits from & to &+,
with the boundary conditions 0,;(5%) = p; taken into

account. As aresult, we arrive at the equations of equi-
librium for a shell with respect to the stress resultants

10Hﬂ 10H; -
A 00, Aaa * Bi(Hi—Hj)

« A, 21O = Fp° iZi
+ZBjHij+|:Eki+FDTi3_+pi’ 1],
16T23

16T13+
A26 2

A, 00, + B T3+ BTy (5)

=K T =Ky Ty = p3g— p;
5 5

HE = J'oijNi(O(3)dO(3, ia J’o.adas

Here, T, and H;, are the classical and generalized

stress resultants, respectively, and p; are the surface
loads acting on the face surfaces S.

With allowance for relationships (2), the constitut-
ing equations for specific forces and moments can be
represented in the form

- 1 _ +
Hj = éhz Bijim(2€/m + &),

I<m

+ 1 _ +
Hjj = éhzbijlm(elm+zelm)a (6)

l<m
Tij = H; +H|p Tis = hzknbislsem’
]

where we assumed k;, = 1 for the shear correction fac-
tors. We should note that formula (6) for the transverse
forces T,; expresses a rather simple fact. This formula
implies that the elasticity relations for the transverse
shear stresses (2) in the Timoshenko-type shell theory
are not satisfied pointwise but are fulfilled as integral
relations across the shell thickness [4, 5].

GRIGOLYUK, KULIKOV

Furthermore, we integrate Egs. (1) of the spatial
elasticity theory over the transverse coordinate from &~
to a;. Taking into account the boundary conditions
0,3(07) = py, Wearrive a theformulasfor the determi-
nation of the stress transverse components

O, = .__lg_i&
BOFA G0 A 0a;
—-Bi(Qi—Q;) -2B;Q; -kiQis, 7], o
Oan = p__ig_Q.E__l_aQB
B A 00, A, 00,
—B1Q13— B,Qu3 + K1 Qy; + K,Qy,
a = Iciadds- (8)

=

We pay attention to the fact that, by virtue of the
equality Q,,(0%) = T, and equations of equilibrium (5),
the boundary conditions o,;(8%) = p;, immediately fol-
low from relationships (7).

2. We now discuss a statement important for the the-
ory of Timoshenko-type shells and associated with the
validity of equations of equilibrium (5) for ashell inthe
case of the stress field (2), (7), which was found as a
result of solving the problem. The matter is that upon
the determination of the transverse shear stresses o5
according to formula (7) and the calculation on this

basis of the transverse forces T;5, we can encounter a

situation when listed equations of equilibrium (5) for a
shell are not exactly satisfied. Thereason consistsinthe
fact that the transverse forces T,5, whose calculation is
based on Hookelaw (2), i.e., onformula(6), in the gen-

eral case, can be not coincident with T;,.

In order to solve the problem posed, we employ the
formulas following from relationships (2), (4), and (8):

+ +

[ o

- 1
IQijda3 = hHy, IQisdas = éhTiS-

With allowance for these formulas, as well as for rela-
tion (7), we obtain the expression

s _ 10H; 10H;
Tiz = IGiado‘s = h|:pi “Ada, Ao,
J &)
—Bi(Hii -

H;j)—zstg—%kiTig,}, i7].

With equations of equilibrium (5) for a shell taken

into account, we have from Eq. (9) that T;5 = T3, which
was in need of proof.
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In conclusion, it isworth emphasizing that we man-
aged to construct the noncontradictory theory for
Timoshenko-type shells [in the sense of the simulta-
neous satisfaction of the equations of equilibrium for a
shell (5) and relationships (7)]. Such a construction
became possible on the basis of a physicaly clear
assumption about the integral validity of egquations cor-
responding to the Hooke law for transverse shear
stresses (2). Thisimpliesthat we should admitk, =1in
formula (6) for transverseforces. In this connection, we
note that, from the standpoint of the approach devel-
oped in this paper, attempts to construct theories for
Timoshenko-type shells, which are based on one con-
cept or another related to calculation methods for the
shear correction factors [1], will result in mathemati-
cally inconsistent and contradictory theories.
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In the classical setting, the problem of the electro-
capillary motion of a spherical droplet [1] with a sur-
face charge of the double electrical layer isdescribed in
dimensionless variables by the system of equations [2]

r>1: A¢ =0, Au = 0Op, divu = 0;

r<l: A¢' =0, Au = 0dp, divu = 0;
r—0: (@, |ul,[0p] <oo;

- —K; (1)

r— o u- Uk, [

r=21u,=u,=0, Uy = Uy = —V,SnO,

0 o b . ..
—b-qr—)+d|vzjZ =0, cy*a—q;+d|vzjz =0,
Nx Pro = Pro—d0:(9 —9").

Here, 0, = g ,Ns = 0 aretheratiosfor the coefficients
o n

of the electrical conduction and dynamic viscosity; gis
the dimensionless charge density in the double el ectri-
cal layer; js = £qv, isthe convective surface current for
each of two oppositely charged surfaces of the thin dou-

ble electrical layer, % < 1, d is the thickness of the

double electrical layer, and a is the droplet radi us%;

U, isthe unknown dimensionless velocity of the droplet
electrocapillary motion, which is normalized to

E@ﬁ; and E, is the intensity of an external electric

field. Other characteristic quantities correspond to
thosetakenin [2].

The solution to this problem yields a potentia flow
outside the droplet and a spherical Hill vortex insideit.

Moscow State University,
\orab’ evy gory, Moscow, 119899 Russia

At the same time, the distribution of the electric poten-
tial hasthe form

2
b = - gvorcose, b = %—r +%%cose,

* r

where 3 = qv, — 1/2 and the fluid velocity v, on the
droplet surface is connected with u, by the formula

ue:gvz g

3% 2430, +i(1+2/0,)

However, we can go out of the usual framework for
electrodynamics and obtain the final solution to this
problem in the electrical approximation [3]. In other
words, we seek the magnetic field B induced by the
flowing electric currents. Then, we take into account in
the equations of motion the existence of the magnetic
component of the Lorentz force (that arises due to the
interaction of these currents with the self-magnetic fiel d)
on the basis of the theory of electrovortex flows [4]. In
this case, we can find several new effects.

1. Taking the quantity B, = poak, as a characteristic
induction of the self-magnetic field, and after certain
transformations, we arrive at the system of equations

OotB = |

%>1: B = %r%HZ—EESinGeq,
HivB =0 O r

2
E,L< 1 B' = qvorsinBe,.

In this case, at the passage through the electric-current
layers of a mobile double electrical layer, the jump of
the magnetic-field inductionis{B} =0 asr = 1. How-
ever, it is well known from the courses of e ectrody-
namics (see, e.g., [3, 5]) and magnetic hydrodynamics
[6] that the tangential component of the magnetic field
B has adiscontinuity when passing through an electric-
current layer.

This illusory contradiction can be overcome due to

the fact that, in the presence of the relative motion of
phases, the double electric layer correspondsto the vec-

1028-3358/01/4611-0800$21.00 © 2001 MAIK “Nauka/Interperiodica’



ELECTROCAPILLARY-VORTEX MODEL FOR A HILL-TAYLOR SPHERICAL VORTEX

tor double current layer (DCL), inside of which (as
g — 0) thereis asimple magnetic layer (SML) sim-
ilar to the surface o-function with the induction Bs =
—QV,SinBe,. This conclusion is confirmed by the solu-

tion (within the accuracy to the small parameter g <1)

to the interior Dirichlet problem for a magnetic field
inside a spherical layer.

Thus, a new structure arises, namely, a vector triple
electromagnetic layer (TEML) with the meridional and
antiparallel spreading of the convective electric current
in the double current layer. This structure is accompa:
nied by the appearance of the orthogonal azimuth mag-
netic field in the simple magnetic layer. This can be
written out in the following symbolic form:

TEML =DCL 0O SML.

In addition, a direct verification of other properties
of thetriple electromagnetic layer asageneralizing uni-
fication of classical concepts for potentials of double
and simple layers [5—7] is possible.

2. In the electrodynamic approximation, the el ectro-
vortex flow caused by the Lorentz forceis described by
the equation

Au,+ M j xB] = Opy, 3)

wherej = - and B are determined by formulas (2).
The Hartmann number M calculated on the basis of the
induction B, of the self-magnetic field of the electric
current j is connected with the Alfven number Al, the
Reynolds number Re, and the electrovortex-flow
parameter Sby the following relations:

S _ .20
BOaA/; M = AIERe—R—e—uJaA/;.

The application of the curl operation to Eq. (3) with
both the expression for the Lorentz force and the axial
symmetry taken into consideration makesit possible to
derive the inhomogeneous equation for the stream
function W(r, 6) outside a dropl et

1 0°,snopn1 drf
rsn8h2 2 06L6inBad

“4)
33%[ + ZBDsmecose

By virtue of the potentia properties of the Lorentz
force for r < 1, a similar homogeneous equation can
also be obtained for the interior of the droplet.

The form of the angular dependence in the right-
hand side of Eq. (4) allows us to seek the stream func-
DOKLADY PHYSICS Vol. 46
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tion and the tangential component of the electrovortex
flow on the droplet surfacein the form

W(r, 8) = f(r)sin’Bcosb,
Ujg = Ujg = —V,SiNBCOSO.
With allowance for the corresponding modification

of the boundary conditions related to the system of
equations (1) asr — o and r = 1, wefinally obtain

Y = MBE 2B+Ao szsm Bcoso,

W' = MBA(r*—r®sin’6cosb, &)

_ B

Pz(cose) b, = a,r’P,(cosh),

vy oW
BM' "B 2BM’

- 24y
_3q11

MB(Brd)
20[1+r]* +%%+%B}

Outside the dropl et, the velocity field of the electro-
vortex flow, which corresponds to stream functions (5),
presents an analog of the axisymmetric deformation
flow, while in the droplet interior we deal with the sys-
tem of Taylor toroidal vortices. The summary electro-
capillary vortex motion inside a droplet has the form of
aspherical Hill-Taylor vortex.

3. The electrocapillary flow formally found in[1, 2]
corresponds to the Stokes approximation (Re < 1). At
the same time, the potential flow outside a droplet and
the Hill spherical vortex insideit are related to the class
of dynamically reversible flows and satisfy the com-
plete Navier—Stokes equations [8]. Then, the electro-
vortex flow found as a correction to the el ectrocapillary
flow takes place for al values of the parameter S for
which the breakdown of the double el ectrical layer does
not even occur. Therefore, ball lightning composed of
cold or cluster plasma can aso have a similar electro-
capillary-vortex structure. This ball lightning can be a
cluster of the spherical Hill-Taylor-vortex type. The
cluster can possess the surface triple electromagnetic
layer at the interface that bounds the phases and the
ambient ionized air and can participate in the above-
described (or more complicated) motion. This model of
ball lightning makes it possible to qualitatively explain
many strange characteristic features intrinsic to its
nature [9].
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A missile flow is one of the complicated and often-
encountered regimes of two-phase flows. In a vertica
missile flow, a major fraction of gas is enclosed in a
large bulletlike bubble, which is called aTaylor bubble.
This bubble occupies the greater part of the pipe cross
section. Fluid between the Taylor bubble and the pipe
wall flows around this bubble as a thin film. Taylor bub-
bles are separated by continuous fluid portions, which
can contain small bubbles. The shape of the interphase
surface in two-phase flows specifies the exchange by the
mass, momentum, and energy between the phases.

THEORETICAL DESCRIPTION
OF THE TAYLOR BUBBLE SHAPE

If aTaylor bubbleismore than five timeslonger than
the diameter of the pipe with the missile flow, the bub-
ble can be separated into three parts so that the Taylor
bubble shape can be described by three asymptotes (as
isshownin Fig. 1).

The surface of the first part (bow) of the bubble is

spherical. The radius of this surface is equa to gD,

where D is the pipe diameter. The surface of this part
can be described in the cylindrical coordinates (r, x) by
the following equation [1]:

r= g—%A/x(BD—4x). (1)

The second part of the Taylor bubble can be
described by the equation derived in [2] under the
assumption on the free fall of a perfect fluid:

u
r=2 1%

2 2g%

Here, D isthe pipe diameter, u, isthe emersion velocity

of the bubble in the pipe with the quiescent fluid, and
g isthe acceleration of gravity.

At the third part of the Taylor bubble, the falling-

fluid layer becomes so thin that the gravity forceis bal-
anced by viscous forces. Therefore, the layer thickness

2

Research Center for Nonlinear Mechanics and Technology,
Russian Academy of Sciences, Moscow, Russia

becomes constant and can be represented by the equa-
tion derived in [3]:

0 = 3/—, 3)

wherev, isthekinematic viscosity of thefluid. Thispart
begins at a distance on the order of five pipe diameters
from the bow part of the bubble, and the layer thickness
depends on the properties of the gas and liquid phases
of the flow.

EXPERIMENTAL INVESTIGATION

Our experiments were carried out with the setup
shownin Fig. 2. A solitary Taylor bubble wasformedin

)

Fig. 1. Asymptotic shapes of the Taylor bubble.
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Fig. 2. Layout of the experimental setup: (1) section for
measuring and photographing the flow, (2) water pump,
(3) air-feeding syringe, (4) tank with water, (5) drain valve,
(6) glass pipe, (7) photographic or video camera, (8) Taylor
bubble, and (9) controllable power supply.

avertical glass pipewith alength of 1.5 m and an inner
diameter of 15.6 mm. This pipe was a part of a closed
system in which ditilled water circulated under the
action of an electrical pump. The water flow in the mea-
suring section (glass pipe) was directed downward. Air
was introduced into this section through a capillary
tube by a calibrated syringe. In this manner, a solitary
Taylor bubble was formed in the system and kept at rest
by means of the downward water flow, whose velocity
was varied with the voltage applied to the pump. The
buoyancy force was balanced by other hydrodynamic
downstream forces (friction force and inertia force)
acting upon the bubble. As a result of the balance of
these forces, the Taylor bubble remained at rest. This
method enabled us to thoroughly examine the Taylor
bubble surface, because the bubble was immobile with
respect to the pipe (i.e., to the Eulerian coordinate sys-
tem). The immobile Taylor bubble was photographed
and recorded on videotape using a high-speed video
camera.’

In order to eliminate the effect of refraction in the
cylindrical-pipe wall, a cubic box with glass windows

L1t should be noted that the problem of a moving bubble in an
immobile pipe and the problem of a viscous flow around an
immobile bubble in the same pipe are not equivalent hydrody-
namically.

NIGMATULIN

Fig. 3. Long Taylor bubble.

(with a refractive index n = 1.41) was placed in the
measuring section. The glass pipe (n = 1.41) and the
box had a common axis of symmetry. The box was
filled with the same distilled water (n = 1.334) asin the
system. Thisfacility enabled us to investigate the inter-
phase boundaries of the Taylor bubbles without dis-
tortions.

In Fig. 3, we show the photograph on which pro-
nounced waves in the form of ripples at the lateral sur-
face of the bubble are seen distinctly. The photographs
obtained were processed digitally (Fig. 4). We mea-
sured the thickness of the fluid layer between the pipe
wall and the Taylor bubble. The experiments showed
that the longer the Taylor bubble, the smaller the ampli-
tude and length of the waves at the bubble surface.

The Taylor bubble velocity was also measured. For
this purpose, the Taylor bubble was displaced at the
glass-pipe bottom by increasing the water-pump capac-
ity. After switching off the pump and stopping the
motion of the working fluid, the Taylor bubble began
floating up. The measurements were carried out only
after the bubble had passed a relaxation section with a

DOKLADY PHYSICS Vol. 46
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Fig. 4. Taylor bubble shape obtained by the digital process-
ing of the photographic image and the theoretical asymp-
totes (D = 15.6 mm).

length of 15 cm. Measuring the time that the bubble
spent to cover a given distance between two points, we
determined the emersion velocity. The Taylor bubble
velocity was equal to the average velocity of the water
flow that held the Taylor bubblein afixed position. The
emersion velocity was 0.13 m/s. The same velocity was
observed for al the Taylor bubbles except those with
the smallest volume.

The high-speed video recording and photography
showed that the stability of the bottom surface of a Tay-
lor bubble depends onitslength. Namely, thelonger the
bubble, the less stable the lower surface.

DOKLADY PHYSICS Vol. 46 No. 11 2001
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The emersion velocity for the Taylor bubble in a
cylindrical channel is[1, 2]

1 1
Uy = kup, “[9D (P —Pg)] 7, (4)

where p, and p, are the liquid and gas densities, respec-
tively, and k, is equal to either 0.351 [1] or 0.328 [2].
We used an average value k, = 0.345; it was obtained in
the set of experiments carried out in study [4]. In our
case (pgy < py), equation (4) can be reduced to the form

u, = 0.345,/gD. (5)

It follows from (5) that the theoretical emersion velocity
for the Taylor bubble is equal to 0.135 m/s. Thisvalueis
very closeto 0.13 m/s obtained in our experiment.

From comparison between the Taylor bubble sur-
face and its asymptotic behavior (1)—3), it is seen that
the theoretical values are in good agreement with our
experimental data. The results of the comparison are
shown in Fig. 4. None of the theoretical schemes
known to us can describe waves on the Taylor bubble
surface; in any case, this concerns fairly short bubbles.

It is evident that such waves have to be taken into
account in calculating the interphase density of the Tay-
lor bubble surface, and this should be the object of fur-
ther investigations.
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1. Fields of natural gas hydrates discovered in vari-
ous world regions have turned out to be so significant
that they are considered as potential sources of natural
gas. Presently, the development of technologies for gas
extraction from natural deposits of gas hydrates has
become a principal problem [1]. In [2, 3], simple mod-
elswere proposed for hydrate formation and decompo-
sition in natural conditions, which allow for basic gov-
erning physical mechanisms. Further investigations
demonstrated that the consideration of new physica
processes leads to principle changes in the mathemati-
cal structure of the solution to the problem of gas-
hydrate decomposition in natural reservoirs [4-6].

In this paper, anew mathematical model is analyzed
for the dissociation of a heterogeneous gas-hydrate
mixture in strata, taking into account the existence of a
mobile liquid phase. The presence of four qualitatively
different regimes of hydrate decomposition is shown;
these correspond to extended hydrate-dissociation
domains aswell asto ice formation under the dissocia-
tion and to the formation of ice plugs in strata initially
having positive temperatures.

2. We assume that a hydrate-containing stratum cor-
responds to a porous medium saturated with a hetero-
geneous mixture of gas hydrate and gas. We admit that
the operation of agas-producing well decreases the gas
pressure in a stratum and leads to hydrate dissociation
and the appearance of a domain saturated with water
and gas. A system of governing equations comprises
the conservation laws for mass and energy, the Darcy
law, and the equation of state for the gas, aswell asther-
modynamic relations. For the gas-hydrate domain, we
have the system of equations

m%(l— V)pg+ divpg\3g =0,

> k M
Vg = —f(v)gradP,
Hg

Ingtitute for Problems in Mechanics,
Russian Academy of Sciences,
pr. Vernadskogo 101, Moscow, 117526 Russia

P = pyRT,
oT . > > e
(pC)lﬁ +div(VgP) + C,p,VegradT = div(A,gradT),

A= mvAL+m(1-V)A + (1-m)A,,
(pc)l = mvphCh+m(l—v)ngg+ (1_m)psCs-

For the gas—water domain, the system of equations
acquirestheform

m%(l—S)pgmivngg =0,

0 > @
mm8+ divuy = 0,
_ >k .
P= pgRT’ VJ - _Efj(s)gradpi J - W!g’
i

(pC)Z%—I + div[P(Vg + V)]
+ (PuCuVw + PgCyVg)gradT = div(A,gradT),
Ay = MSA, + M(L—S)A + (L—m)A,,
(pC), = mSp,Cy, + M(1-9)p,Cy + (1 —m)p,C..

The conditions on the hydrate-decomposition front
are formulated like those of the thermodynamically
equilibrial jump for saturation functions of gas and
water. The conditions of the thermodynamic equilib-
rium on the hydrate-dissociation front are of the form

B 3)

InP, = A——, A =4932, B = 9459.
Tx

The second group of boundary conditions on the
dissociation surface represents the conservation laws
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for the mass of gasand water, aswell asthe energy-con-
servation law:

_ kfg(v.)

Pog O
m=,—+S -v =V, radP),,.
& o & —=(gradP)
) (ragpy,
Mg
Kf (S) @

m%/+%”—sgvn = T(gradP)n_,

mv.gpyV, = (AgradT),, — (AgradT),_.

Here, v isthe hydrate saturation, T is temperature, P is
pressure, Sisthewater saturation, v isthefiltration rate,
fis the relative permeability, mis the porosity, k is the
permeability, C is the heat capacity, R is the gas con-
stant, i isthe viscosity, p isthe density, A isthethermal
conductivity, Visthejump velocity, and g isthe specific
dissociation heat. The subscriptsw, g, and s correspond
to water, gas and the skeleton of the porous medium,
respectively. The symbols n, plus, and minus corre-
spond to the normal to the hydrate-decomposition front
and relevant quantities on the right and left of the front.
The symbols asterisk, subscript zero, and superscript
zero correspond to values of various quantities on the
front, initial values, and values on the immobile bound-
ary, respectively.

3. We now consider the praoblem of the hydrate
decomposition in a semiinfinite stratum. Let, in theini-
tial time moment, the semiinfinite space x > 0 occupy a
stratum filled with a heterogeneous mixture of hydrate
and gas at a temperature T,, pressure P,, and the
hydrate saturation is v = v,,. We assume that on an
immobile wall x = 0, which corresponds to a gas
extracting well, the pressure drops down to a suffi-
ciently low level P°. This value satisfies the thermody-
namic conditions for the existence of gas in the free
state. Then the hydrate-dissociation front x = X(t) prop-
agatesto theright from the surface x = 0. Thisfront sep-
arates the domains saturated with the gas-hydrate mix-
ture and the gas-water mixture.

We analyze the dissoci ation regimes that correspond
to the technology of the hydrate decomposition by the
method of decreasing the stratum pressure. In this case,
the stratum-temperature variation isnot high, sinceitis
associated with the heat absorption due to the hydrate
decomposition. Assuming the variations of pressure to
be low compared to its absolute value, and ignoring
small termsin the systems of equations (1) and (2), we
arrive at the system of linear equationsfor perturbances
in the gas-water and hydrate-gas domains, respec-
tively:
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S _ . 0P _ .
i K AP, 3 KJ-AP,
oT _ o
5 = AT, j=12
_ kf(S) _ kPg
L TH R T
0
K = [§+1—SO} kP®
Ho Hg IJm(1-9)

Here, a arethethermal-diffusivity coefficientsand S'is
the unperturbed water saturation for the gas-water
domain.

Theinitial and boundary conditions have the forms

t =0: X(O)=0, X>0:T=T0,P:PO;

x=0 P=P° (P°<Py), T =T"

We now turn to the case when the stratum saturation
with hydrate and the initial and boundary values for
temperature and pressure are constant. Then the prob-
lem has the self-similar solution of the form

T=T@Q, P=PQ, S=90,
{ = x2/ait, X(t) = 2y./at.

The solutions in both domains can be expressed as
probability integrals. Substituting the solutions into the
conditions on the moving boundary (3), (4), we obtain
asystem of transcendental equationsfor the determina-
tion of the boundary velocity and the values of desired
functions on this boundary.

4. The system of transcendental equations on the
mobile boundary was solved numerically. The numeri-
cal experiments performed in the wide range of param-
etersrevealed four principally different regimes for the
decomposition of gas hydratesin a stratum that initially
coexisted with gas at the positive temperature. Figure 1a
exhibits examples of the calculation results, which tes-
tify to the existence of aconsistent solution correspond-
ing to typical values of parameters and the following
initial and boundary conditions:

T,=T0=275K, P,=6x10°Pa,
P =25x10Pa, k=107 m2.

In this case, the solution is noncontradictory. The
increasein the stratum permeability resultsin aqualita:
tive change of the solution. Figure 1b presents the cal-
culation results corresponding to k =5 x 107/ m? when
the hydrate-decomposition temperature in the domain
ahead of the dissociation front dropped below the stra-
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Fig. 1. Distributions (1) of temperature T K in astratum and (2) of the hydrate dissociation temperature: (a) noncontradictory case,
PO =25x 108 Pa k= 1 x 10" m?; (b) hydrate superheating, P° = 2.5 x 10° Pa, k=5 x 1077 m?; (c) water supercooling on the
dissociation front, Py = 1.3 x 10% Pa, k = 1 x 107" m?; (d) hydrate superheating in the domain ahead of the dissociation front and
supercooling of water on the front, Py = 1.5 x 10° Pa, k= 2 x 107" m?.

tum temperature, which corresponds to hydrate super-
heating in the domain. In this case, an extended domain
of hydrate decomposition arises similar to the domain
introduced in [4].

The decrease in pressure on the boundary (P° =
1.3 x 106 Pa) for the permeability k = 1 x 107 m?
results in intensifying the dissociation process
(Fig. 1c). Therefore, the dissociation temperature cal-
culated in the process of solving the problem turns out
to be lower than the water-crystallization temperature.
In this casg, it is natura to assume that the hydrate-
decomposition process is accompanied by the appear-
ance of ice and the formation of ice plugs hindering the
gas outflow.

If both the pressure gradient and the permeability
are sufficiently high (P° = 1.5 x 106 Pa, k = 2 x
10" m?), then a dissociation regime can exist for
which hydrate in the domain ahead of the dissociation
front is superheated and, simultaneously, the tempera-
ture calculated on thefront islower than the water-crys-
tallization point (Fig. 1d). In this case, the physical pro-
cessisaccompanied by the creation of an extended dis-
sociation domain and an ice-containing domain.

In the problem-parameter space, domains can be
isolated that correspond to the existence of the solution
of each type. In Fig. 2, two neutral curves are plotted in
the (k, AP)-plane. These curves divide the plane into

AP x 1070
4.8+
44}
4.0+
3.6
1 1 1 1 1 ]
1 2 3 4 5 6
kx 107"

Fig. 2. Critica diagram in the (k, AP)-plane. The domains
correspond to (1) decomposition into gas and water;
(2) decomposition with the formation of ice; (3) formation
of ice and of an extended dissociation domain; (4) forma-

tion of an extended dissociation domain. AP = Py — PP,
2001
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The problem under consideration concerns intro-
ducing a damage into a preloaded elastic body. The
damage |leadsto the origination of new large strains and
stresses. They are superposed upon large strains and
stresses already existing in the body considered as a
continuum. Since the initial stresses in the body are
large, the initia thickness of the cut that finally takes
the shape of anarrow slot can be much smaller than the
characteristic dimension (length) of the cut. Hence, we
can treat the process as a traction breaking along the
wholecut, i.e., asthe formation of aphysical cut (inthe
sense of a physical microscopic molecular model, for
example, within the framework of kinetic theory of
fracture [1-3]).

For solving this problem, we use the theory of mul-
tiple superposition of large strains [4—6]. Our results
from the numerical calculations are given for a plane
problem. The extended statement of the problem is the
following. Let an unstressed body be subjected to exter-
nal forces introducing large plane static strains and
stresses in the body. As a result, the body makes the
transition into the first intermediate state. Further, we
mentally remove a part of the body, which is bounded
by acertain closed surface. In accordance with the prin-
ciple of freedom of bonds, we substitute the forces dis-
tributed over this surface for the action of the removed
part onto the remainder of the body. Obviously, such a
procedure does not change the stress—strain state of the
remaining body’s part. Furthermore, we quasi-stati-
caly (for example, isothermally) decrease these forces,
considered as external, down to zero. This procedure
initiates large stresses and strains (at least, in the vicin-
ity of the boundary surface), which are superposed onto
the large initial stresses and strains already existing in
the body. As aresult, the body makes the transition into
the final state (or, if the loading is not completed, into
the second intermediate state [5]). Naturally, this tran-
sition is accompanied by variation of the shape of the

Moscow Sate University, Vorob' evy gory,
Moscow, 119899 Russia

formed boundary surface (i.e., the cavity contour). In
the case under consideration, the surface in the final
state isassumed to be given. We note that the procedure
of forming another possible cut (if itisrequired) issim-
ilar.

We now write out basic relations of the theory of
multiple superposition of large strains[5, 7], which are
necessary for solving the problems under consider-
ation.

The system of equilibrium equations and the bound-
ary conditions have the form

n n n

T P ()
+ZO,m L n,mEHJn,m_(':| 3t n,mD'Pn,m) |:En,m = 01
N 3, = P,
m dt _ (2)
P = (1+A, n)| Y i T
|di|

InEq. (1),
n

Zom = (1+D80)Whn o m ¥ n 3)

is the generalized total-stress tensor in the mth state,
with the tensor related to the coordinate basis of the nth
state; 0, , IS the actual total-stress tensor in the mth
state (at m= 1, g, , is the Cauchy tensor); A, , is the
relative volume change caused by transition of the body

fromtheinitial stateto the mth state; Wy, = Wo'm - Yo n
is the corresponding strain affinor [5, 7]; W, , = E&;

o

(nai = ' isthe radius vector of the particleinthenth

state; &' are the Lagrangian (frozen [8]) coordinates of
the particle; I’ — " "= u,,, where u,, is the vector deter-
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mining the trandation from the previous ((n — 1)th)
state to the next (nth) one; and

In Egs. (1)—(4) and below, the symbol above a quantity
denotes the number of the state which this quantity is
givenin or to which it isrelated (with the exception of

r and &).
In Egs. (2), l':‘,fqn) is the vector of actual stresses on

the drnk = l{1||d?k| area. The symbol O stands for the

transposition. For the Treloar material, which was used
in the specific calculations, the defining relations writ-
ten in the space of an arbitrary mth state have the form
([5,7,9])

rEO,n = pO,n(I + 2C(Em,n)_l'l- ll(l _2E0,m)_11
o = sgn(m-n).

&)

m
Here, E,, , isthe strain tensor describing strain varia-

tion caused by the transition from the mth state to the
nth state and related to the coordinate basis of the nth
state. (We note that, for m > n, the sequence of sub-

m
scripts in the notation E,, , entering into the first term

m m
isinverted; i.e., formaly, E, , =—E, ,.) Inthe general
case,

v
E_l

ap é(wv, p DP¢ p_q"v,q Dp\’/(,q)’

(6)
-1
Py’

W,,=W
1
where, forp=y=1andq=0, E; ; istheAlmans ten-
sor. In Egs. (5), po., is the Lagrange multiplier. It is
determined by both the equations of the boundary value
problem and the incompressibility conditions [5, 9]

Dy =0,

representing, in the general case, a system of N equa
tions, where N is the number of the final state [9].

Relations (4)—(6) show that for m > n, the tensor

m m
E,, » dependsnot only onthestraintensor E, , but also

m
on the strain tensor E,, ,,. Asaresult, solving the prob-
lems formulated in the space of the mth state is signifi-
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cantly complicated, because the system of the equilib-
rium equations (in general, m vector equations) does
not split into separate equations. However, such a for-
mulation is often necessary, for example, when bound-
ary conditions are specified in the mth state.

We now consider the results of solving the problem
formulated above on acut introduced into apreliminary
loaded body made of the Treloar material [5, 9], with
the final shape of the damage being a narrow slot with
the axes a and b. In the case of a preliminary uniaxial

tensileload, when 0g; | =0and o, 1, = 0.0060415,
provided that g =
mal transformation C, = 0.988 and C; = -0.004), we
have h = 0.21 x 109. Here, h and | are the maximum
distance between the edges of a damage (crack) and its
length (the characteristic dimension of the damage),

respectively, at the initial time. In addition, 0,5, =

1.28 in the crack tip. We note, for example, that when
| =0.3 mm, the dimension h can be considered as a per-
molecular one[10, 11].

Thus, the above consideration confirms the state-
ment made at the beginning of the paper.

248 (with the coefficients of confor-
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At the present time, agrowing interest isobserved in
the magnetohydrodynamic (MHD) method for the
direct transformation of thermal energy into electric
energy. This method is considered to be the most prom-
ising for creating various autonomous power facilities
that can beemployed, e.g., in geophysical studies[1, 2],
in the development of compact autonomous power
modules [3-6], in aerospace applications [7-9], etc.
The general feature of these and similar facilitiesisthe
fact that in order to run them, hot gas flows produced by
combusting various solid, liquid, and gaseousfuels at a
temperature from 2000 to 3000 K are used.

A complication in the employment of these flowsis
that it implies a certain level of electric conduction
required for the MHD process in conditions when the
thermal ionization of fuel-combustion productsisvirtu-
ally absent. The conduction can be provided, e.g., by
using readily ionized additives of alkaline metals[10].
However, due to the great ecological hazard, this
method is completely unsuitable in the case of applica-
tion of the MHD method in autonomous power mod-
ules and aerospace crafts that operate by an open cycle.
The solution to this problem can be found through the
employment of laminar flows with a nonuniform elec-
tric conduction.

A principle feasibility to form a stable flow-layer
structure is associated with using the T-sheet effect the-
oretically predicted and substantiated by Academicians
Tikhonov and Samarskii with their coworkers [11].
This feasibility implies that a domain with a high tem-
perature, equilibrium conduction (the so-called T layer
or T sheet), and high electric-current density is formed
in a flow of weakly conducting gas (plasma) moving
across amagnetic field. The T layer can beformed in a
plasma flow due to small fluctuations of the electric
conduction asaresult of anonlinear effect consisting of
the development of superheating instability [12]. In
order to use the effect of the T layer in facilities with a
relatively cold flow, it is necessary to be able to initiate
it. This can berealized, e.g., with the help of additional

Ingtitute of Theoretical and Applied Mechanics,
Sberian Division, Russian Academy of Sciences,
Novosibirsk, Russia

heating of a part of the flow up to a temperature sup-
porting a certain minimal conduction level sufficient
for the development of the T sheet.

It was shown theoretically that the T sheet in the
flow of aweakly conducting plasma can be obtained by
introducing alocal perturbance of either temperature or
electric conduction [13]. If the temperature perturbance
givesriseto the T sheet, we speak on the pickup of the
perturbance. If this perturbance of the flow temperature
occurs during a time much shorter than the time of the
sound-wave propagation through the channel width,
then we should speak about the isochoric heating pro-
cess. The calculations made in [14] showed that, at the
initial time moment, the process of the expansion
(divergence) of the perturbed wave essentially affects
the pickup of theisochoric perturbance. Thisfact some-
times results in ceasing the T-sheet development. Such
a phenomenon cannot be observed upon the spontane-
ous appearance of the T sheet in a plasma flow placed
into a magnetic field, because the development of the
T sheet occurs from an infinitely small perturbance
(fluctuation) of the conduction. It isof interest to exper-
imentally investigate the effect of the perturbance
pickup.

Theinitiation of the T sheet by local isochoric heat-
ing was experimentally investigated on the basis of a
model of a disk-shaped induction MHD generator. The
sketch of the experimental setup is presented in Fig. 1.
An €lectric-discharge shock tube with a coaxial dis-
charge chamber served as a plasma source. The diame-
ters of both the chamber and the low-pressure channel
were 50 mm. The discharge chamber and the channel
were made of copper and aluminum, respectively. The
lengths of the chamber and of the channel were 850 and
1200 mm. The plasma source was fed from a capacitor
battery with atotal capacity of 1200 uF and a voltage
of 5kV.

The channel 2 is connected with a ring-shaped
MHD channel formed by two organic-glass disks with
adiameter of 350 mm. The gap between the disks (i.e.,
the MHD-channel width) is 20 mm. In channel walls,
sockets for pressure sensors and Rogowski loops are
provided. There are also optical windows for IR diag-
nostics, spectroscopic measurements, and photorecord-
ing plasma flows. The MHD channel was designed
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Fig. 1. Sketch of the experimental setup aimed at investigation of the T-sheet development after alocal temperature perturbance:
(1) coaxia plasma source; (2) low-pressure channel; (3) disk-shaped MHD channel; (4) permanent-current electromagnet;
(5) induction-heating coil; (6) power-supply units for the plasma generator; (7) oscillator-heater.

according to data obtained as a result of studies of the
T-sheet devel opment, which were described in[11, 15].

The external magnetic field is formed by an iron-
free permanent-current electromagnet constructed in
accordance with the Helmholtz scheme. The maximum
field strength in the electromagnet gap reached
6400 Oe; the radial and axial nonuniformities of the
field were lower than 2% in both the central and the
middle channel parts and 5% at the channel end.

At the channdl inlet, plasmawas heated by a pulsed
inductive discharge. Inductor turns with a radius of
55 mm were located in pairs at each side. They were
embedded into the channel walls at adepth of 1 mm. A
capacitor battery with atotal capacity of 0.033 puF and
a voltage of 50 kV is discharged into two induction
coils switched contrary to each other.

Flow parameters, namely, the flow velocity, the gas-
dynamic pressure, and the electron density, which are
required for the determination of the hydromagnetic
interaction, were measured. According to the two latter
guantities, the electron temperature and the electric
conduction were calculated, which are necessary for
the determination of the magnetic Reynolds number
and the hydromagnetic-interaction parameter. The flow
vel ocity was determined by photographic sweeps of the
plasmaflow. The pressure and the electron density were
determined with the help of piezoelectric sensors and
by both the broadening of the hydrogen H; emission
line and the absorption of laser radiation with wave-
length A = 10.6 pum.

We performed an experimental verification of the
possihility for the existence of the pickup and an inves-
tigation of itsbasic characteristics. The results obtained
were compared with the spontaneously arising T sheet
described in [11, 13, 15]. To do this, the setup regimes
were initially studied in which a flow with the T sheet
appeared as aresult of the devel opment of a superheat-
ing instability in the flow. These instabilities were asso-
ciated with nonuniformities of the temperature and
conductivity existing inthe flow. Figure 2 presents plots
for the variation of both the maximum electron density
inthe T sheet and its vel ocity as a function of the chan-
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nel radiusat H,, = 3200 Oe. Asis seen, the electron den-
Sity increases during the motion along the channel from
2.2 x 10% at itsinlet to 4.0 x 106 cm™ at the radius of
85 mm. At thetime moment corresponding to theradius
of 130 mm, the drag ceases and, in the process of fur-
ther movement, the flow velocity remains constant,
while the electron density decreases to 2 x 10% cm=,
The temperature distribution along the channel length,
which was calculated from the measured values of N,
and p, testifies to the fact that in the input part of the
channel the plasma in the bright luminous ring (the
T sheet being photographed manifestsitself in this man-
ner) isheated, and itstemperature reaches 13000 K. Fur-
thermore, at the channel end (for r exceeding 100 mm)
the temperature dropsto 10000 K. Such features of the
process are consistent with the experimental results
obtained for air in the case of the spontaneous forma-
tion of the T sheet [ 15]. Thuswe can consider dynamics
of the current-sheet development and the associated
flow rearrangement, in general, to be similar to those
described in [13] and observed in [15]. These facts tes-

N,, 10'® ¢cm™

v, km/s

1 1 1
60 100 140

r, mm
Fig. 2. Electron-density variation in the current sheet and

velocities of its motion along the MHD channel as a func-
tion of the channel radius. Hy = 3200 Oe, argon, pg = 2 torr.
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Fig. 3. Variation of the hydromagnetic-interaction parame-
ter P at the input of the MHD channel as a function of the
initial pressure.
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Fig. 4. Variations of flow parameters in the ring-shaped
heating zone during flow movement in the channel: (1),
(2) electron density; (3), (4) flow velocity. (0) Hg =
1600 Oe; (@) 4800 Oe.

tify to the manifestation of the T-sheet effects. The mag-
netic Reynolds number was 0.3-0.4. In this case, the
parameter of the hydrodynamic interaction, P = Re, P,
was 0.5-0.6.

Afterwards, by increasing the initial pressure in the
plasma source, the decrease in temperature and the
plasma-flow velocity at the input of the MHD channel
was attained. In this case, weakening or acomplete ces-
sation of the plasma interaction with the external mag-
netic field in the channel was observed. Figure 3 exhib-
its the parameter of the hydromagnetic interaction as a
function of theinitial pressure (from 1to 12 torr) inthe
plasma source.

As the experiments showed, when the initial pres-
sure was higher than 10 torr, the flow parameters were

FOMIN et al.

so small that the interaction of the flow with the mag-
netic field was not observed. In these conditions, the
initiation of the T sheet was investigated with the help
of additional heating of the flow.

The heating of plasmain aring with an approximate
cross section of 2 x 2 cm? was provided by the induc-
tion discharge for 2 ps. During this time, an energy of
about 4 J was introduced into the plasma. Comparing
the time of heating (2 ps) with the time of the sound-
wave propagation through the perturbed zone having a
temperature of 12000 K, a pressure of 0.6 bar, and a
width of 2 cm (tg= 10 ps), we can consider the heating
to be isochoric. The moment for heating was chosen so
asto provide the increase of the el ectron density imme-
diately beyond the front of the wave produced after the
impact of the plasma bunch with the end wall. The
experimental results obtained for the pressure p, =
2 torr testifies to the fact that the current sheet indeed
arisesin this part of the flow. The plotsfor variations of
the maximum electron density of the flow in the bright
luminous zone (i.e., in the T sheet) with the channel
radius, aswell astheflow velocity at the magnetic-field
intensity H, = 1600 and 4800 Oe, are given in Fig. 4.
Asisseen, heating the flow at amagnetic-field intensity
of 1600 Oe leads to neither an increase in the electron
density during the movement of the flow along the
channel nor the formation of the current sheet. The for-
mation of the current sheet occurs with an increase of
the magnetic-field intensity to 4800 Oe. The electron
density in the heated layer rose with the radius, and an
essential flow drag was observed. Asaresult of heating,
the el ectron concentration, pressure, and temperaturein
the narrow ring-shaped zone increased from 0.4 x
10% cm™, 0.7 bar, and 8500 K to 2.5 x 10 cm,
0.8 bar, and 10600 K, respectively. In this case, the
magnetic Reynolds number and the parameter of
hydromagnetic interaction increased to 0.22 and 0.34.
As a result, conditions arose in favor of sufficiently
intense flow interaction with the magnetic field.

In conclusion, we analyze the data presented in
Figs. 2 and 4, aswell asfeatures of the flow with allow-
ance for the fact that the magnetic Reynolds number
and hydromagnetic-interaction parameter have compa-
rable values. Under these conditions, we can certainly
identify the argon-plasma flows for p, = 11 torr in the
presence of heating (which were accompanied by the
initiation of the T sheet) with the flow at p, = 2 torr
without heating when the spontaneous T-layer forma-
tion was observed.

Thus, based on the results presented above, we may
conclude that the T sheet can be initiated in the MHD
channel by isochoric heating of a part of aflow.
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Nonlinear oscillatory systems containing fast and
slow phases are considered. We propose a modified
averaging method under conditions when slow vari-
ables averaged over the fast phase do not vary. We
describe and substantiate a new method for separation
of variables. The method is applicable for large time
intervals at which significant changes of all the vari-
ables take place. Several examples illustrating the
approach proposed are presented.

1. We consider a system of two vectors x and y with
arbitrary dimensions, which is standard in the Bogoly-
ubov sense [1, 2]. We assume that the following
requirements concerning the quantities averaged with
respect to t are satisfied:

x(0) = X,

X = eX(t, X, ), Xo(X, y) = XO=0;
(1)

Yo(%,y) = ¥l=0;

eY(t, x,y), y(0) =Y’

y
The functions X and Y are assumed to be piecewise-
continuous, 2teperiodic in t, and sufficiently smooth in
(X, y) OO Dy x Dy, where D, and D, are closed bounded
sets. The angular brackets stand for averaging over the
argument t (i.e., over thefast phase). In the first approx-
imation with respect to €, the mean variation rate of xis
zero; i.e., x—X°| = O(¢), and that of y is on the order of

Oce);i.e., ly—y|=0Q1) fort ~ % For practical appli-
cations, itisof interest to study the variation of the slow

variable x within a time interval t ~ -1—2 because this
€

variable determines basic parameters of the oscillatory
system (its energy and amplitude). Thefast variableyis
usually related to aphase or an angular variable and can
significantly affect the vector x (see examples in Sec-
tion 4).

Institute of Problemsin Mechanics,
Russian Academy of Sciences,
pr. Vernadskogo 101, Moscow, 117526 Russia

Inthe general case of asystem of form (1), the appli-
cation and substantiation of the standard averaging

method at atimeinterval of t ~ —1—2 (1) isdifficult. There-
€

fore, we will consider the case, often encountered in
applications, when the average system for y has a com-
plete family of one-particle rotatory—oscillatory
motions with a constant x = & [1-3]:

x=¢&0D,, Yy=n9,¢¢)0D,,

5 @)
0 = (L E)T+°, T = et

Here, ¢ is the dow phase (¢ ~ €) and the summed

dimension of the constant vectors ¢ and ¢°(mod2T)
coincides with the dimension of .

Using the change of variables (x, y) — (§, n),
which is close to an identity, we rewrite system (1) in
the form

€= ’Z(t,E,n,e), £0) =", EOD

N = eYo(&,n) +€°H(t & n ),
n() =y’, nOD,;

t

X = E+EIX(8,E,n)ds,
0

3)

t

y=n +8_[[Y(&E,n)—Yo(E,n)]ds.

Thefunctions = and H satisfy the conditions of smooth-
ness and periodicity. Ignoring the terms on the order of
O(€?) in system (3), we arrive at expressions (2) for &
and n. We then make the change of variablesy=n —
(¢, ¢) according to relations (2). As a result, with due
regard to the terms on the order of O(e?) and theidentity
for n,, we obtain a system with both fast and slow
phases, t and ¢, respectively:

a=eAta,d.e), a0=a’ a=E,LN,

1028-3358/01/4611-0816%$21.00 © 2001 MAIK “Nauka/Interperiodica’



AVERAGING METHOD IN SYSTEMS WITH FAST AND SLOW PHASES

b = ew(a) + (L, o, d,¢),
0(0) = ¢°(mod2m); A=(=.Z), 4

T\T _ ||9No 9Ng|™ 0o,
@2 =T T TR
NGy 7) = Yo(En), o 0D, 0] <oo.

(o0

ThefunctionsA, w, and @ are sufficiently smoothina,
¢, and €; in addition, they are piecewise-continuous in
tand 2me-periodicint and ¢. Theinitial valuesa® and ¢°
are determined by the change of variablesy — (¢, ¢)
according to relations (2). System (4) isto be analyzed

intheinterval 0<t< Lz onwhichthedow variablea can
€

acquire, generally speaking, an increment of da ~ 1. In

thiscase, thefast phase, i.e., theargument t, is separated

out with an accuracy to a desired power of €, while the

slow phase ¢ and variable a are interrelated. The aver-

aged system allows anew argument T=€t,0 < T < IE_

to be introduced and, furthermore, can be subjected to
the standard asymptotic analysis[1-6]. If thephase ¢ is
scalar, the averaging method developed for systems
with fast rotating phases is employed [1, 2]. Like the
classica Krylov—Bogolyubov method, the proposed
scheme of highest powers is based on the requirement
that the asymptotic expansion should contain no singu-
lar terms of the form (g2t)k within the extended interval

0<st< LZ . A particular case of missing y was studied
€

previously [7].

2. In order to separate the fast phase t, we use the
change of variables (a, ¢) — (B, ®) such that the vari-
abletiseliminated from the equationswith an accuracy
to adesired power of €:

a =B+eM(LPB, Y e), ¢ = Y+eT(LB Y,e),
. 5)
B=¢eBB Y e), b =cn(p)+eW@B y,e).

In the right-hand sides of Egs. (5), the unknown
exchange functions N and I, which are 2T1eperiodic
with respect to t and s and do not contain the functions
B and W averaged over t and independent of t, can be
approximately found by asymptotic expansions of them
or by successive approximations in powers of € using
the solutions to the following partial differential equa-
tions:

(1 +€°ME)B + My (Ew+ £€W)
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= A(t, B+ €N, Y +€T,e) -, ©
T B + (1 +£°T},) (w(P) + eW)

= w(B+ €N) +ed(t, B+, P+eT,e)-T,.

In particular, thefirst expansion coefficients govern-
ing a significant evolution of the variables are given by
the equations

Bo=[A(t, B, Y, 0)0
Mo(t, B, @) = }((A) — (A)Dds,
0
Wo=0(t, B, ¥, 0)) (7
Fo(t, B, Y) = _t[((CD) — H@)Dds;

B, = HADT-w(B) Mg ....

The angular brackets stand for averaging over the
explicit argument t, and the quantities in the parenthe-
ses (A) or (P) correspondtoa =3, ¢ =, and e = 0.
The subsequent coefficients By, N, _, ¥;_, and I} _,,
withj =2, arefound by the recurrence method. By anal-
ogy with the conventional averaging, in order to con-
struct the jth approximation within atimeinterval of t ~
e2, al thefunctionsupto B; ;, M; _,, W, ,, andT;_;
must be found. In particular, the Cauchy problem for
the first approximation takes the form

B = &AsB, W), B(O) =0a% b =ew(P), )
Pp(0) = ¢% OstsLe™

System (8) can be treated by standard analytic or
numerical methods. This system is significantly sim-
pler than original system (4), allowsthe dow time T =
&t to be introduced, and can be written out in a standard
form with the fast phase ) [1-5]. If the function
w(B) = ¢ >0, where cisaconstant, then the phase ) is
rotating and, in the first approximation, the method of

averaging over the variable  intheinterval 0 <1 < IE‘

is applicable to the system (8); i.e., t ~ €2
The following theorem holds.

Theorem 1. The solution to Cauchy problem (8)
determines the solution to problem (5) under the same
initial conditions with errors on the order of O(g) in
and of O(1) in Y within the time interval 0 < t < Le™2.
The dow (a, &, and X) and relatively fast (n, ¢, and y)
variables are found within this interval with errors on
the order of O(g) and of O(1), respectively. In general,
the variations in the quantities x, y, &, n, a, and 3 are
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on the order of O(1) and those in ¢ and  are on the
order of O(e™); i.e., a significant evolution of the sys-
tem occurs.

Proof. Under corresponding assumptions on
smoothness and boundedness, Theorem 1 is proved with
the help of the Gronwall lemma by standard methods
with due regard to the exact changes of variables (3)
and (5).

The second approximation is based on the averaged
Cauchy problem

B = eBy(B, W) +€°By(B, W),
W = w(P) +eWo(B, W)

under the sameinitial conditions. The dot (in the super-
script) stands for the derivative with respect to T = &t,
0<t<Le’. ThefunctionsB; and W, _, are determined
from Egs. (5)—7). The problem of nth approximationis
constructed similarly to (8) and (9):

)

B = eBo(B, W) +e°By+... +£'B,_;, PB(0) = a°,

0 = () +eWo(B, ) + W, + .+, {0

W(0) = ¢°.

Here, the terms on the order of €/ + ! and of €l are omit-
ted in B and |, respectively. When constructing the jth
approximation, we can also use a standard scheme of
successive approximations, which is based on partial
differential equations (6) in the functions B, W, I'1, and
I having a certain structure. Both the schemes require
that the right-hand side of system (4) should be smooth
inaand ¢ [i.e, original system (1) should be smoothin
x and y], because the order of the derivatives with
respect to the slow variables 3 and s increases. In the
general case, the separation of the variablest, 3, and
does not occur even for analytic systems[4, 5].

The following theorem holds.

Theorem 2. The functions B(t, €) and (T, €)
determined by Egs. (10) are the solution to Cauchy
problem (4) with errors on the order of O(gl) and of
O(el -1 at the interval 0 < T < Le™!, respectively. The
original variables x and y are found with the same
errors.

In the particular case of a quasi-linear oscillatory
systemwith w(p) =v = congt, all the variablesare deter-
mined with the same error of O(el) [1, 2]. Theorems 1
and 2 substantiate the application of the second-power
scheme (t ~ €72).

3. The proposed scheme for the separation of vari-
ables can be extended to the case of the dow phase ¢
determined by Egs. (2) and (3). Asaresult, we arrive at
an approximate many-particle nonlinear system similar
to (10). However, the analytic and numerical analysis of
thissystem for 1 ~ £~! isassociated with certain difficul-
ties[1-6].

AKULENKO

Similar asymptotic expansions are also valid in the
case of amore general hierarchy of thevariation ratefor
both the slow variable 3 and the phase s, namely, when

B=eB, ,+ek+1+ . .and =€ewP)+&+"+ ...,
withk > 1> 1. The case of w=0 can also be considered,

for example, when B = €°B, and ¢ = €¥,. The corre-
sponding asymptotic expansions are valid for 0 <t <
Le* (the kth-power scheme). Alongside the variant with
one slow phase, a more complicated system containing

aphase hierarchy can be analyzed, namely, when ¢, ~
€W, O, ~ 2w, ..., &, ~€'w. Inthiscase, the variable

B must be 2m-periodic and low: 3 ~ € k> |I.

The range of applicability of the approach proposed
can be significantly extended. Instead of system (1), we
now consider a more genera system x = X(X, €). If
€ =0, this general system has a family of asymptoti-
cally (exponentially) stable periodic (rotatory—oscilla-
tory) solutions x,(8, x), where 8 = v(a)t + 6° is a phase
and aisaconstant vector [1, 3, 8]. There existsachange
of variablesx — (a, 8, h) taking the form

X = Xo(6, a)+%[N(G, a)h+N* (6, a)h*], (11

where N is a complex-valued matrix 21eperiodic in the
real phase, h is a vector, and the asterisk stands for the
complex conjugation. The sum of dimensions of the vec-
torsa, h, and 6 is equal to the dimension of the vector x.
In the neighborhood of the local integral manifold, the
perturbed system is described by the equations [8]

a=A(a0he), a0 =a’ aaOD,
6 = v(a) +O(a, 6,h,g), 6(0) = 8°(mod2m),
h = K(a)h+H(a 8,h,€); h(0) = h°,
A,0,H = O(le] + h).

Here, the functions A, v, and © are real-valued and the
characteristic indices of the matrix K have negative real
parts if a 0 D,. For sufficiently small |¢| and |h|, the
solutions to system (12) approach the stable integral
manifold arbitrarily closely within the period on the
order of In|ef!: hy = €hy(a, 0) + €?h, + € + ..., where

the functions h; are found in the standard manner [1, 8,
9]. After substituting hs. into Egs. (12), we obtain a

standard system for a and 6 with arotating phase. Intro-

ducing the argument 6 (by dividing a by 6), we can
write out this system in the form of Egs. (1). Further-
more, a method (standard or highest-power) of separa-
tion of the slow and fast variables, a and 0, respectively,
is employed.

4. We now consider several examples of oscillatory
systems analyzed by means of the second-power aver-
aging method presented in Sections 1 and 2.

(12)

DOKLADY PHYSICS Vol. 46 No.11 2001
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4.1. Toillustrate the method proposed, first we con-
sider the two-dimensional system

x = ef(x,y)sn(t+6(x,y)), y=ey(xy) (13)
with corresponding initial conditions. The functions f,
8, and y are assumed to be 21e-periodic in y and smooth
in x and y. We transform the variable x according to
Egs. (3); i.e, we perform the change of variables
(X, y) — (0, y). As aresult of averaging over t, we
obtain the equations of thefirst approximation (see Sec-
tions 1 and 2) with the low time 1 = €t, which servesas
an independent variable:

- Eﬂ_ ' ||:| PR
B = —SEEf262+y(fCOSB)}D,y = Y(BY), (14)

O<t<le™

Here, there is no need to transform the slow variable y
to the form of a phase because system (14) can be ana-
lyzed immediately. If the function y averaged over y is
nonvanishing for the values of (3 under consideration
[B =x+ O(g)], the passage to the phase ¢ and then to
are performed in a regular manner [1-3, 9] in accor-
dance with Egs. (3)—(5). In particular, if the function y
does not approach zero, it is convenient to passfrom the

argument T to y, i.e, to analyze the equation for 3—5
Equation (14) can be averaged over y, and, as a result,
the second term in its right-hand side vanishes. After
averaging, system (14) can be completely integrated,
because the variables of both its equations are sepa-
rated. Inthiscase, variationsin the variables 3 and x are
. g .

governed by the function _Z_yB averaged over yand, in
the general case, are ontheorder of O(1) fory~¢;i.e,
t ~ €2, The standard scheme [1-3] for a time interval
t ~ €' leads to the expression x = X° + O(g).

4.2. In studying a many-particle quasi-linear system
in the neighborhood of a resonance, one of its fre-
guency mismatches oftenislarger (usualy being onthe

order of JE) than others. In this case, a system of the
form (4) holds under corresponding assumptions, with

the indicated mismatch being equal to ./ew = const.

Herein, we usefor convenience the parameter €* instead
of €. Asan example, we consider the system

d+Q(a) = P()-Aa, q=cer, Q(0) =0,

Q(0) = v*>0, x = -3Q(0),

= Ly (15)
b= —2Q"(0),

P = ¢’hsin2t + > fsin(t + k),
DOKLADY PHYSICS \Vol. 46
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v=1+gy, A =€

Omitting the terms on the order of O(e*) and dividing
Egs. (15) by €, we obtain a quasi-linear equation in the
unknown r. This equation is then reduced to the vari-
ables x and y (the amplitude and the phase mismatches,
respectively) by the conventional change of variables
r = xcos(t +y) and f = —xsin(t + y). Transforming the
variables (x, y) in accordance with Egs. (3)—«5), we
arrive at the averaged system of thefirst approximation,
with the dow time T = &t serving as an independent
variable:

B = sH/ZBsinqu—%lyzB—%fcos(qJ—K)
_%)\B + cosw%hy—%xyﬁzsinzq%% -

N .

O<st<

mir-

The frequency mismatch €y in Egs. (15) results in an
additional exponential damping for t ~ €2. The stan-
dard approach leadsto x = x° + O(g) for t ~ €.

4.3. Lastly, we consider quasi-linear parametric
oscillations in the vicinity of the second resonance
zone [7]. They describe the motion of a plane physical
pendulum whose axis of suspension periodicaly
vibrates in both vertical and horizontal directions. We
introduce a small parameter and make corresponding
assumptions, similar to (15), relevant to orders of the
guantities. As aresult, we obtain the desired equation

z+ (4—¢€cos2t)z = —4eyz

17
—szgﬂy22+)\2—:—2%z3+4dsin(2t+K)E. 1n

The parameters g, €3d, and €A relate to the amplitudes
of vertical and horizontal vibrations and the energy dis-
sipation, respectively. By passage to the variables (X, y)
(i.e., amplitude and phase mismatch), this equation is
reduced to the form of Egs. (1), for which the second-
power averaging scheme is applicable. The averaging
over the explicit argument t leads to equations similar
to (16). However, the right-hand side of the equation for
the variable (3 is very cumbersome. Under the assump-
tion that y ~ 1, we obtain expressions similar to (16),
which are valid in the interval t ~ € with an error on
the order of O(g). It is worth noting that for y ~ € the
evolution of the system is much more complicated than
that for y~ 1[7] becausein thelatter case the averaging
over | significantly simplifies the situation.
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INTRODUCTION

A control problem for a thin layer of a viscous
incompressible fluid flowing down a vertical wall is
studied. A feedback regulator using both cooling and
heating of the wall is proposed to suppress the convec-
tive flow instability. The structure of the regulator sta-
bilizing low-frequency harmonic perturbations of the
flow is determined.

SYSTEM OF EQUATIONS AND FORMULATION
OF THE PROBLEM

To describe athin layer of aviscousincompressible
fluid flowing down avertical wall, we use thefollowing
system of equations[1]:

oh  0dg _

at Tax % @
9, ,,00 _ . 3vg
5+ 1250 = a3 )

Here, t is time, X is the coordinate directed along the
gravity force, histhelayer thickness, g isthe flow rate,
v isthe kinematic viscosity, and g isthe acceleration of
gravity.

In this paper, we consider the evolution only of
long-wave perturbations; therefore, the term associated
with the surface tension is omitted in equation (2).

The fluid temperature T enters into the kinematic
viscosity as a parameter; i.e., v = v(T). The investiga-
tion concerns sufficiently thin layers such that at any
time moment their temperature can be considered as
equal to the wall temperature. For small deviations of

Institute of Mechanics, Moscow State University,
Michurinskii pr. 1, Moscow, 117234 Russia

temperature from the steady wall temperature T,, we
can write out

_ OvVAT _
v = VO%L+ oT v AT=T-T,, -
Vo = V(Ty).

Thus, the variation of wall temperature changes
fluid viscosity and, consequently, the last term in equa-
tion (2). As a result, the existence of the temperature
difference AT, in fact, leads to the appearance of an
additional force applied to the layer.

By using representative values of layer thickness,
the volume flow, time, and layer length denoted by h,,
g t,, and L, respectively, we introduce the following
dimensionless variables and parameters:

* = E * = 5 * = H * = D
t tr, X L1 q qu h hrl
o - gh? Lo htL g - 9vaL
T3, g gh*

Furthermore, asterisks used as superscripts of dimen-
sionless variables are omitted.

The effect of unsteady temperature variation along
the x direction on the fluid-layer flow is described by
the dimensionless function

_OVAT(t, x) v
oT v, ' 0T
In the case of the constant wall temperature T = T,

the system of equations (1), (2) has the steady-state
solution

o x) = =21 @

gq=1, h=1. )

It can be shown that both characteristics of the
hyperbolic system (1), (2) are directed downstream so
that all perturbations brought into the layer drift along
this direction.

Asisknown, the steady-state sol ution describing the
vertical fluid-layer flow is unstable. Remaining
bounded at an arbitrary fixed x, the amplitude of small

1028-3358/01/4611-0821$21.00 © 2001 MAIK “Nauka/Interperiodica’
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harmonic perturbations brought in at a certain flow
point increases downstream.

The force caused by temperature variations alows
realization of the control action onto thefluid layer and,
if necessary, suppression of convective instability with
the help of afeedback regulator.

We now discuss the feedback structure. The vertical
surfaceis partitioned into asystem of segments, each of
length d. An external device varies wall temperature
inside each segment so that the deviation of the current
temperature from T, is proportional to the deviation of
the layer thickness from its steady-state value at agiven
point of the segment under consideration. For the kth
segment, we have

© = O(t, x) = a[h(t, x,) —1]P (X),
X, = kd,

where a is the gain factor, X, is the coordinate of the
point sensor situated in the kth segment, and ®,(x) is
the given function localized in this segment.

(6)

SUPPRESSION OF SMALL PERTURBATIONS

We now analyze the problem of suppressing small
perturbations in the linear formulation. To do this, we
introduce the functions g, and h;:

g=1+q;, h=1+h,,
g, <1 h <1

We assume that, within the first surface segment
(0 =£x<d), D (x) =1 and the control action hastheform

)

BUCHIN, SHAPOSHNIKOVA

Then, q, and h, satisfy the system of equations
0 0

(ythﬁ 350 = 0, )
0 0 0
aql + 24(.3—)(q1—12&h1 (10)

= —B(q,—3h, —ahy(t, d)).

Harmonic perturbations are assumed to be brought
continuously into the layer at x = 0. Therefore, the
boundary conditions have the form

x =0, q = goexp{iwt , (11)
where, generally speaking, g, and h, are complex num-

bers.

The solution to the system of equations (9), (10),
which satisfies the boundary conditions (11), is sought as

h = HX)exp{iwt}, g=QX)exp{iwt . (12)

Relations (9)—(12) lead to both a system of equa-
tions and boundary conditions for the functions Q(x)
and H(x). The solution to this system can be repre-
sented in the form

h = hyexp{iwt},

U 0o O i i U0 g, U
O Q(X) O=10 All(|w7 X) A12(|(A), X) 00 qO 0. (13)
OH) D OAy(iw, X) Axyio, x) 00 h, O

Elements of the transition matrix { A;} have the fol-
lowing structure:

_ _ Bjj(iw, x)
© = ahy(t, d). @®) Ayl X) = =gr=
. Bak,k,
= kl - k2 )
Aiw) 1+(ioo+ 5 XZinE(eXp{ d} —exp{k.d})

= flos§e 6. 1o = flos S5,

12 5, 25,2
D = 600 +3B|oo+166 .
Here, the functions B;;(iw, X) and A(iw) are such that
B;j(A, X) and A(A) represent analytic functions of the
complex-valued argument A in the right half-plane
ReA = 0. In theimaginary axis, A = iw.
The eigenvaues |, and Y, of the matrix {A;} are
determined by the formulas

A, + A A, —A)
o = Pt zzij( w=Pa pn,

The values |, and [, characterize variations of the
flow rate and layer thickness with increasing the coor-

dinate x. If Y, and Y, are modulo smaller than unity,
both the volume flow and thickness perturbations
decrease with increasing x; if they are modulo larger
than unity, the perturbations grow with x.

In the absence of a regulator (o = 0), |y| > 1 or
|| > 1 for al frequencies of the perturbations brought
in at x = 0. Consequently, the perturbation of any fre-
guency grows with x; i.e., the steady-state thin-layer
flow is unstable.

Introducing a control leadsto the onset of aninfinite
discrete set of self-oscillations of the system. Among
these oscillations, there can be both stable and unstable
ones. TheeigenvaluesA, (k=1, 2, ...) corresponding to
these self-oscillations are calculated by solving the
equation A(A) = 0. Parameters of the regulator should
be chosen in amanner that provides all self-oscillations
to be stable. This requirement is satisfied if al roots of
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the equation A(A) = 0 belong to the left half-plane
ReA, < 0. By virtue of the Rouchétheorem [2], the con-
dition ReA, < Oiscertainly satisfied for

1 1-A(iw)

laf < max |Y(iw)|’ Wliw) = a
Numerical investigations carried out for 3 = 1 show
that, for any d (d < 1), thereisan a range (d,,;, < O <
O naxs Omin < 0, O, > 0) not containing roots of the
equation A(M) = 0. Perturbations generated by the regu-
lator and corresponding to this range are damped. Val-
ues of |a.;,| and a,,,, depend on d and grow as it
increases. Atd=1, a,,,, = -3 and a,,,, = 4, while, at
d=01,a,,=-258andqa,,, = 34.4.

To suppress the perturbations being brought in into
the flowing layer, parameters a and d of the regulator
are chosen in the range a,,;,(d) < a < a,,,,(d), within
which its self-oscillations are stable.

Numerical investigation of the effect of the regulator
parametersa and d (0, < 0 < 0, ) ON |, and W, was
carried out for the frequency w ranging from 0 to 100.
Atd=0.1, Fig. 1 showsthe quantity y = max {|l, ||}
as a function of the frequency w for a = O (curve 1,
absence of the regulator) and for values a = -2 (curve 2)
o =-5(curve3), and a =-10 (curve 4). Asis seen, for
d=0.1 and a = -2, stabilization of the perturbations
occurs in the range 0 < w < 30, whileat d = 0.1 and
a =-10, thisis true within the range 15 < w < 60. To
stabilize higher frequencies (w > 60), one should
decrease d and a. For example, the regulator with
d=0.01 and a = —20, stabilizes the oscillations from
the range 3 < w < 100.

The results obtained for 3 = 1 can be also used for
B # 1 by dividing the corresponding value of d by 3 and
multiplying the corresponding w by f3.

The above-considered problem concerns the stabili-
zation within the first surface segment. As a result, it
was established that at the exit of the first segment,
amplitudes of the perturbations brought in are multi-
plied by y = max{|W], |W|}. Since the perturbations
propagate only downstream, the stabilization within
each segment can be considered in the same manner as
within the first one and independently of the others.
Consequently, after passing through n segments, the
initial amplitude is multiplied by y".

NUMERICAL INVESTIGATION
OF CONVECTIVE-INSTABILITY SUPPRESSION
WITH THE HELP
OF THE FEEDBACK REGULATOR

Here, we numerically investigate the development
of perturbations brought into the flow at x = 0 and hav-
ing the form

h; = hesin(wt+¢), d; = gesin(wt).
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Fig. 1. Dependence of y = max{|p ], |4, |} on the frequency
waf=1,d=0.1: (1) a =0; (2) -2; (3) -5; and (4) —10.

h*
1.01¢
= 0.4 J

1.00

0‘99 1 1 1 1 |

1.02

1.00

0.98 1 1 1 1 1
0 0.2 0.4 0.6 0.8 1.0

Fig. 2. Development of harmonic perturbationswith the fre-
quency w = 50 at the time moments t* = 0.4 and 0.7 for
a=-2,B3=5and d=0.02: (1) without the regulator and
(2) with the regulator.

To suppress the convective instability, we use the con-
trol action of form (8).

The system of equations (1), (2) is solved by the
Godunov method. The calculations are carried out for
different values of the parameters f3, q,, hy, ¢, and w.
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Figure 2 presents results of the numerical calculations
for B =5, w=50, q,=0.001, and h, = 0. A dimension-
less coordinate x and a dimensionless layer thickness h
are plotted as an abscissa and an ordinate, respectively.
The development of the convective instability in the
absence of the regulator is shown in Fig. 2 by curves/,
while the effect of theregulator isillustrated by curves?2.
The regulator parameters a = -2 and d = 0.02 are cho-
sen according to the results obtained in item 2 of this
paper. Switching on the regulator and starting genera-
tion of the perturbations occurred simultaneously at
t = 0. Figure 2 presents states of the fluid layer for the
time t* = 0.4 and 0.7. The regulator with the chosen
parameters suppresses the perturbations within the
range 0 < w < 150. To suppress higher frequency per-
turbations, we should use the regulator with other
parameters chosen in accordance with the results of
item 2.
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In recent years, rapid development of nanotechnol-
ogies led to the necessity of constructing adequate
physical models that make it possible to describe phys-
icomechanical properties of objects with a nanometer-
size (nanosize) scale. The majority of existing models
of such akind adopt that basic mechanical characteris-
tics of nanosize objects correspond to those obtained in
macroscopic experiments. However, when dealing with
structures containing only several atomic layers, the
discrepancy arises between the evident discreteness of
an object under study and a continual method of its
description. Theinconsistency of values of elastic mod-
uli, which were obtained in microscale and macroscale
experiments, was noted by many researchers. In partic-
ular, one of the methods of determining elastic charac-
teristics of nanosize objects is investigating the
microrelief arising in the course of tension of a speci-
men having an ultrathin coating [1-3]. The solution to
an equivalent continual problem allows the Poisson’s
ratio and Young modulus for the coating to be deter-
mined from such experiments [2, 4, 5]. However, the
values of elastic characteristics measured by this
method exhibit a substantial inconsistency by their
macroscopic values for the same material.

In the present study, we used a two-dimensional
strip made of asingle-crystal material with a hexagonal
closely packed (HCP) lattice as a model for studying
the effect of scaling on mechanical properties of a
material. The interaction between atoms is assumed to
be dual. The basic problem of our study is determining
the dependence of the Poisson’s ratio and Young mod-
ulus of afinite (in one direction) single crystal on the
number of atomic layers.

We consider atwo-dimensional singlecrystal shown
in the figure. The crystal possesses an infinite length
along the x direction and N = 2 atomic layersin they
direction. Each atom interacts only with its nearest
neighbors, as is shown in the figure. Constant tensile
forces Q are applied to atoms located at crystal ends.
The deformed single-crystal state under consideration

K. Petersburg Sate Technical University,
ul. Politechnicheskaya 29, . Petersburg, 195251 Russia

is completely determined by the distance a between

neighboring atoms in each layer and by the interlayer

distance h. We denote by the symbol b the distance

between nearest atoms in neighboring layers (see fig-
2

ure). In this case, evidently, the relationship b? = az +

h? is valid. In the undistorted state, the lattice consists
of equilateral triangleswith an edgea =b = a,, and the
end load isabsent (Q = 0). Let F(r) betheforce of inter-
action between two atoms separated by distance r (the
attraction is considered as positive) Then, projecting
onto the y direction the equation of equilibrium for an
atom situated at the crystal surface, we find

= oh “Q_,h
Q= 2bF(b) 0o, = 5 - 2abF(b)' (@)
Here, 0, isthe normal stressin they direction. We now
mentally cut the crystal by a vertical straight line AB

(seefigure). Thetotal normal force acting from one part
of the crystal onto the other part can be written out as

Ho, = NF(a) + (N —1)%F(b). (1a)

Here, o, isthe normal stressin the x directionand H is
the crystal thickness (its extension along the y direc-
tion). The quantity H, in principle, cannot be deter-
mined unambiguously. For example, if we assume that
the crystal thickness is equal to the distance between
atomic layers lying on opposite crystal ends (see fig-
ure), then, inthiscase, H = (N — 1)h. On the other hand,
it is quite reasonabl e to determine the crystal thickness
asaproduct of the number of layers by the thickness of
a single layer, which results in the formula H = Nh.
Therefore, we denote

N-1<N, <N, )

where N, is the quantity reflecting an arbitrariness in
the determination of H. By virtue of the smallness of

1028-3358/01/4611-0825%$21.00 © 2001 MAIK “Nauka/Interperiodica’
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strains, forces acting within the crystal can be approxi-
mately written out in the form

F(a) = CAa, F(b) = CAb, C% F'(a;)>0, 3)
where C has ameaning of therigidity of aninteratomic
bond, whilethe symbol A impliesthe deviation of acer-
tain quantity from its value corresponding to the undis-
torted crystal. We denote the crystal strain in the x and
y directionsas €, and €,, where

df Aa def Ah =«/§ao
€ = 2 € = he’ ho——2 : “)
The substitution of relationships (2), (3), and (4) into
expressions (1) and (1a) yields the elasticity relations

o, = ﬁ’,\?((gN e, +3(N=1)g,),

(5)
g, = %SC(€1+3€2).

Asis seen from relations (5), the crystal under consid-
eration is anisotropic. We recall that the infinite crystal
with the HCP crystal lattice isisotropic and, hence, the
anisotropy indicated is amanifestation of the scale fac-
tor. Furthermore, we denote

def &, def O .
= = , B, =— :
1 1
5102=0 €1 0,=0
def &€; def O
2T e g
2|0;=0 2|0,=0

Here, v, and E, are the Poisson’s ratio and Young mod-
ulus for tension aong the x axis; the quantities v, and
E, correspond to tension along the y axis. Using rela-
tionships (5), we obtain

N

Vl = Voo! E]_ = N_*Eoov
_ N-1 _ N
V2= NT1reVe B T NToete
1 2C . ,
where, v, = = and E, = =— arevalues of the Poisson’s
3 3

ratio and Young maodulus, which correspond to the infi-
nite crystal [6, 7]. We now analyze the formulas
obtained. Under tension along atomic layers, the Young
modulus E, substantially depends on the quantity N..,

i.e,, on amethod for determining the thickness of the
nanocrystal strip. If we assume that N, = N (N is the

maximal value of N,.) then, under tension along atomic

layers, the Poisson’sratio and Young modulus are inde-
pendent of anumber of layers. Evidently, thisis associ-
ated with the fact that in the longitudinal direction, the
crystal under consideration is infinite. By contrast, the

Young modulus Ef™ corresponding to the minimal
value N,. = N — 1, is not constant. It increases with a

decrease in the number of atomic layers and for N = 2
attainsavaluetwiceaslargeasE,, (seetable). Thus, the
ambiguity in determining the Young modulus turns out
to berather substantial for small valuesof N. In the case
of tension in the direction perpendicular to atomic lay-
ers, both the Poisson’s ratio and the Young modulus
depend on N, the former decreasing and the latter
2001
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increasing with the reduction in the number of layers.
The values of the Poisson’s ratio and Young modulus
for different N are presented in the table. It isworth not-
ing that for N = 2 the Poisson’s ratio is smaller than v,,
amost by afactor of 2. ASN — oo, elastic moduli tend
to values corresponding to the infinite crystal, which
are independent of the deformation direction.

Based on the studies performed, we can list the basic
propertiesintrinsic to nanocrystals.

1. For the Young modulus of a nanocrystal, only a
possible interval of values is determined. Thisis asso-
ciated with the impossibility of unambiguously deter-
mining the size of a nanoaobject.

2. Elastic properties of a nanocrystal substantially
depend on the number of atomic layers forming it.

3. The shape and size of a nanocrystal introduce an
additional anisotropy into its elastic properties.

The effects listed are obtained on the basis of a
rather simplified model. However, as far as they mani-
fest themselves for the simplest nanocrystal, they must
all the more play an important role in the case of more
complicated nanocrystaline objects. The indicated
ambiguity in the determination of the Young modulus,
evidently, manifestsitself for all mechanical character-
istics whose definition substantially involves the con-
cept of the nanoobject’s size. In particular, the specific
deformation energy per unit volume is determined
ambiguously.

In the present study, we took into account the inter-
action of only neighboring atoms in the crystal lattice.
It can be shown that allowance for further neighbors
leads to the enhanced effect of the scale factor, espe-
cidly in the three-dimensional case.

Thus, the concepts of classical continuum mechan-
ics, including those of the elasticity theory, must be
used with great care in the case of their application to
nanoobjects. It is necessary to take into account the
variation of mechanical characteristics when scales of
objects under consideration approach nanometers. Spe-
cia attention should be paid to quantities (such as the
Young modulus) that are in principle ambiguous at the
nanometer level. Using them, we must clearly define
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Poisson’ sratio and Y oung modulus of ananocrystal asfunc-
tions of the number of atomic layer

N ET/E, Vs, VolVe, E,/E.
2 2.00 0.18 0.53 1.06

3 150 0.23 0.69 1.04

4 1.33 0.26 0.77 1.03

5 1.25 0.27 0.82 1.02
10 111 0.30 0.91 1.01
20 1.05 0.32 0.96 1.01
50 1.02 0.33 0.98 1.00
100 1.01 0.33 0.99 1.00

what we imply while applying these quantities to
nanoobjects.
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