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A perturbation-theory framework is developed for calculation of the
characteristics of thep1p2 atom on the basis of the field-theoretic
Bethe–Salpeter approach. A closed expression is obtained for the first-
order correction to the lifetime of thep1p2 atom. © 1997 American
Institute of Physics.@S0021-3640~97!00124-2#

PACS numbers: 36.10.Gv, 31.15.Md

Experimental studies of the hadronic atomspp ~Ref. 1!, pp, andpd ~Ref. 2! have
now been carried out. The first estimate of the lifetime of thep1p2 atom was given in
Ref. 1. The DIRAC collaboration is now designing an experiment at CERN for
high-precision measurement of the lifetime ofp1p2 atoms. This experiment migh
provide a decisive improvement in the direct determination of the difference of
S-wave pp scattering lengths and thus serve as a valuable test for the predictio
chiral perturbation theory.3 In view of these experiments there arises a need for a th
retical framework which would enable one to calculate the characteristics of such a
with a high accuracy on the basis of the ideas of standard model.

The theoretical study of hadronic atoms starts from Refs. 4–6, where the non
tivistic formulas for the lifetime of a hadronic atom and the shift of its energy levels
to the strong interactions are obtained, which relate these quantities to the strong s
ing lengths. The expression for the widthG0 of the p1p2 atom in the ground state is

G05
16p

9
A2Dmp

mp
~a0

02a0
2!2f0

2, ~1!

whereDmp is themp62mp0 mass difference, andf0 is the value of the Coulomb wav
function of pionium at the origin.

The approach to the problem of hadronic atoms which was developed in R
makes use of a general characteristic feature of hadronic atoms — the factorizat
strong and electromagnetic interactions. Formula~1! demonstrates this factorization prop
erty explicitly, expressing the atom lifetime as a product of two factors: the Coul
783 7830021-3640/97/120783-06$10.00 © 1997 American Institute of Physics
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wave function at the origin, and the strong interaction factor, which is completely
centrated in thepp strong scattering lengths.

The problem of evaluation of the electromagnetic and strong corrections to the
formula~1! within different approaches is addressed in Refs. 7–14. For a brief review
Ref. 12. In that paper we derived the relativistic analog of formula~1! within the Bethe–
Salpeter~BS! approach, taking into account the first-order correction due to the disp
ment of the bound state pole position by the strong interactions~strong correction!. This
correction was found to be of relative order 1023. It should be stressed that the field
theoretical approaches10,12–14 to the problem, unlike the potential treatment,7,11 do not
refer to the concept of a phenomenological strong interactionpp potential, which is a
source of additional ambiguity in calculations of the characteristics of hadronic atom
the former approaches these characteristics are expressed directly in terms of the
lying strong-interaction~chiral! Lagrangian, and the results can be compared to exp
ment, providing a consistent test of the predictions of the chiral theory.

In the present work we suggest a relativistic perturbation-theory framework fo
calculation of the energy levels and lifetime of hadronic atoms. The main purpose o
work is to demonstrate the possibility~not only in potential scattering theory but in th
BS treatment as well! of the clear-cut factorization of the strong and electromagn
interactions in the observable characteristics of hadronic atoms, thus avoiding the d
counting problem in the calculation of these quantities. It should be noted that the
gested approach allows one to calculate the strong and electromagnetic correction
orders of perturbation theory. At the present stage we apply the general formalism
calculation of the first-order strong and electromagnetic corrections to the pionium
time. The results for the strong corrections obtained in Ref. 12 are reproduced in
calculations.

Our approach is based on a perturbation expansion about the solution of th
equation with a Coulomb kernel similar to that introduced in Ref. 15:

VC~p,q!5Aw~p!
4impe2

~p2q!2
Aw~q!, w~p!5Amp

2 1p2. ~2!

The factorAw(p)w(q) introduced in the kernel~2! enables one to reduce the BS equ
tion with such a kernel to the exactly solvable Schro¨dinger equation with the Coulomb
potential. Then the exact solution of the BS equation with this kernel is written in
form

cC~p!5 iG0~M !;p! 4Aw~p!
4pampf0

p21g2
, c̄C~p!5cC~p!, ~3!

whereg5mpa/2, M !25mp
2 (42a2) is the eigenvalue corresponding to the unperturb

ground-state solution, andG0 denotes the free Green8s function of thep1p2 pair. The
exact Green8s function corresponding to the Coulomb kernel~2! is given by the well-
known expression

GC~P!;p,q!5~2p!4d~4!~p2q!G0~P!;p!1G0~P!;p!TC~E!;p,q!G0~P!;q!. ~4!

HereTC is given by
784 784JETP Lett., Vol. 66, No. 12, 25 Dec. 1997 Lyubovitskij et al.
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TC~E!;p,q!516ipmpaAw~p!w~q!F 1

~p2q!2
1E

0

1 ndrr2n

D~r;p,q!G , ~5!

D~r;p,q!5~p2q!2r2
mp

4E! S E!2
p2

mp
D S E!2

q2

mp
D ~12r!2,

wheren5aAmp /(24E!) andE!5(P!224mp
2 )/(4mp).

The full BS equation for thep1p2 atom wave functionx(p) is written as

G0
21~P;p!x~p!5E d4k

~2p!4
V~P;p,q!x~q!, ~6!

whereV(P;p,q) denotes the full BS kernel, which is constructed from the underly
~effective! Lagrangian according to the general rules and includes all the strong
electromagnetic two-charged-pion irreducible diagrams. In particular, it contains the
grams with two neutral pions in the intermediate state which govern the decay o
p1p2 atom intop0p0. Note that in additionV(P;p,q) contains the two-particle reduc
ible charged-pion self-energy diagrams attached to the outgoing pionic legs~with the
relative momentumq). These diagrams arise in the definition of the kernelV(P;p,q)
because the free two-particle Green8s function instead of the dressed one is used in
left-hand side of Eq.~6!. The c.m. momentum squaredP2 of the atom has a comple
value, corresponding to the fact that the atom is an unstable system. According
conventional parametrization, we can writeP25M̄25M22 iM G whereM denotes the
‘‘mass’’ of the atom, andG is the atom decay width.

The full four-point Green’s functionG(P) for the kernelV has a pole in the com
plex P2 plane at the bound-state energy. The relation between the exact wave fu
x(p) and the Coulomb wave functioncC is given by12

^xu5C^cCuGC
21~P!!G~P!, P!2→M !2,P2→M̄2 ~7!

where C is the normalization constant. In what follows we assume that the limi
procedure is performed with the use of the prescription12 P!25M !21l,
P25M̄21l, l→0. The validity of Eq.~7! can be trivially checked by extracting th
bound-state pole inG(P) and using the BS equation forcC .

In order to perform the perturbation expansion of the bound-state characteristM
andG about the unperturbed values, we, as in Ref. 12, split the full BS kernelV into two
parts asV5VC1V8 and considerV8 as a perturbation. It can be shown that Eq.~7! is
equivalent to

^xu52C21^cCu@11~DG0
212V8!GRQ#21, DG0

215G0
21~P!2G0

21~P!!. ~8!

With the use of Eq.~8! the following identity is easily obtained

^cCu@11~DG0
212V8!GRQ#21~DG0

212V8!ucC&50, ~9!

which is an exact relation and serves as a basic equation for performing the pertur
expansion for the bound-state energy.
785 785JETP Lett., Vol. 66, No. 12, 25 Dec. 1997 Lyubovitskij et al.
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In Eqs.~8! and~9! GRQ stands for the regular~pole-subtracted! part of the Coulomb
Green8s function~4!, projected onto the subspace orthogonal to the ground-state u
turbed solution. This quantity can be further split into two pieces, according
GRQ5G0(M !)1dG. Here the functiondG corresponds to the ladder of the exchang
Coulomb photons and thereby contains explicit powers ofa. It is given by the following
expression:

dG5 iAw~p!w~q!FF~p,q!2S~p!S~q!
8

M !

]

]M !GG0~M !,p!G0~M !,q!,

F~p,q!516pmpaF 1

~p2q!2
1I R~p,q!G1~mpa!22S~p!S~q!R~p,q!, ~10!

S~p!54pmpaf0~p21g2!21, R~p,q!5252A 8

pmpa
@S~p!1S~q!#1•••,

where the ellipses stand for the higher-order terms ina. The integralI R(p,q) is given by

I R~p,q!5E
0

1 dr

r
@D21~r;p,q!2D21~0;p,q!#, E!52

1

4
mpa2. ~11!

Equation ~8! expresses the exact BS wave function of the atom in terms of
unperturbed wave function via the perturbation expansion in the perturbation pot
V8. This potential consists of the following pieces.

1. The purely strong part, which is isotopically invariant. This part survives w
the electromagnetic interactions are ‘‘turned off’’ in the Lagrangian.

2. A part containing the diagrams with finite mass insertions, which are respon
for the mp62mp0 electromagnetic mass difference.

3. A part containing the exchanges of one, two, . . . virtual photons and an arb
number of strong interaction vertices.

Note that the terms 1 and 2 are the more important, for the following reasons
first term includes the strong interactions, which are responsible for the decay o
pionium. The second term makes this decay kinematically allowed due to the
difference of the charged and neutral pion masses. Consequently, it seems to be na
consider pieces 1 and 2 together. We refer to the corresponding potential asV12. TheT
matrix corresponding to the potential V12 is defined by T12(P)
5V12(P)1V12(P)G0(P)T12(P). The rest of the potentialV8 is referred to as
V35V82V12. In what follows we restrict ourselves to the first order in the fine struct
constanta, i.e., we consider the diagrams with only one virtual photon contained inV3.

Returning to the basic equation~9!, we expand it in a perturbation series, treatingV3

and dG as perturbations. Meanwhile we expandDG0
21 in a Taylor series in

dM5M̄2M ! and make the substitutionM̄5M !1DE(1)1DE(2)2 i /2 G (1)2 i /2G (2)

1(8M !)21G (1)21•••.

Restricting ourselves to the first order of the perturbation expansion, we arrive
following relations:
786 786JETP Lett., Vol. 66, No. 12, 25 Dec. 1997 Lyubovitskij et al.
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DE~1!5ReS i

2M !

T12

mp
f0

2D , 2
1

2
G~1!5ImS i

2M !

T12

mp
f0

2D . ~12!

Hereafter we use the local approximation forT12, assuming that it does not depend o
the relative momenta. Equations~12! coincide with the well-known Deser-type formula
for the energy-level shift and lifetime.4 Note that on the mass shell

Re~ iT12!;T~p1p2→p1p2!, Im~ iT12!;ADmpuT~p1p2→p0p0!u2. ~13!

If we assumeV35dG50, we arrive at the result

G~2!

G~1!
52

9

8

DE~1!

E1
20.763a, where E152

1

4
mpa2. ~14!

The first term of this expression, called the ‘‘strong correction,’’ was obtained in
previous paper.12 However, as opposed to the present derivation, in Ref. 12, we use
Born approximation for the calculation ofDE(1), i.e., in Eq.~12! T12 was replaced by
V12. The second term comes from the relativistic normalization factorAw(p)w(q) in the
kernel~2! and corresponds to the relativistic modification of the pionium Coulomb w
function u*d4p/(2p)4cC(p)u25f0

2(120.381a)2/mp . Since this correction comes from
the Coulomb wave function of the atom, it does not depend on the parameters
strongpp interaction, and for this reason it was neglected in Ref. 12.

Inclusion of dG introduces a correction in the lifetime due to the exchange of
infinite number of Coulomb photons. The integrals emerging in the calculation of
correction are ultraviolet convergent, containing, however~in complete analogy with a
well-known result from nonrelativistic scattering theory!, an infrared enhancementa lna
which stems from the one-photon exchange piece in Eq.~5!. Collecting all terms togethe
and using Eqs.~12! for relating ImT12 to DE(1), we finally arrive at the first-order
correction to the pionium rate,

~15!

wheredM stands for the mass shift correction14 and the last term collects the radiativ
corrections13,14 ~including the retardation correction,10 the correction due to vacuum
polarization,8 etc.!. In Eq. ~15! all the first-order strong and electromagnetic correctio
are given in closed form, thus avoiding any difficulties connected with the dou
counting problem. The kernel which appears in the last te
(11T12G0(M !))V3(11G0(M !)T12), is constructed from the underlying Lagrangia
787 787JETP Lett., Vol. 66, No. 12, 25 Dec. 1997 Lyubovitskij et al.
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with the use of the conventional Feynman diagrammatic technique. A detailed ree
nation of the above-mentioned corrections within the BS approach will be address
our forthcoming publications.

In order to estimate the size of the calculated corrections to the pionium life
~Eq. ~15!! we have used the following value of the singlet scattering leng
mp(2a0

01a0
2)50.49, corresponding to a valueDE(1)/E150.24%. The first, second, an

third terms then contribute, respectively,20.26%,20.55%, and11.85%, and the tota
contribution amounts to;1% of the decay width~apart from the mass shift and radiativ
corrections!. The largest contribution comes from thea lna term in Eq.~15!.

We thank J. Gasser, M. A. Ivanov, E. A. Kuraev, H. Leutwyler, P. Minkowski, L.
Nemenov and H. Sazdjian for helpful discussions, comments, and remarks. A.
thanks Bern University, where part of this work was completed, for hospitality. T
work was supported in part by INTAS Grant 94-739 and by the Russian Fund for
damental Research~RFFR! under contract 96-02-17435-a.

a!e-mail: lubovit@thsun1.jinr.dubna.su
b!e-mail: lipartia@thsun1.jinr.dubna.su
c!e-mail: rusetsky@thsun1.jinr.dubna.su

1L. G. Afanasyev, A. S. Chvyrov, O. E. Gorchakovet al., Phys. Lett. B308, 200 ~1993!; Phys. Lett. B338,
478 ~1994!.

2D. Sigg, A. Badertscher, M. Bogdanet al., Phys. Rev. Lett.75, 3245 ~1995!; D. Chattelbard, J.-P. Egger
E. Jeannetet al., Phys. Rev. Lett.74, 4157~1995!.

3J. Gasser and H. Leutwyler, Ann. Phys.~N.Y.! 158, 142 ~1984!.
4S. Deser, M. L. Goldberger, K. Baumannet al., Phys. Rev.96, 774 ~1954!.
5J. L. Uretsky and T. R. Palfrey, Phys. Rev.121, 1798~1961!.
6S. M. Bilenky, Nguen Van Hiew, L. L. Nemenovet al., Yad. Fiz.10, 812~1969! @Sov. J. Nucl. Phys.10, 812
~1969!#.

7T. L. Trueman, Nucl. Phys.26, 57 ~1961!.
8G. V. Efimov, M. A. Ivanov and V. E. Lyubovitski�, Yad. Fiz.44, 460 ~1986! @Sov. J. Nucl. Phys.44, 296
~1986!#.

9A. A. Bel’kov, V. N. Pervushin and F. G. Tkebuchava, Yad. Fiz.44, 466~1986! @Sov. J. Nucl. Phys.44, 300
~1986!#.

10Z. Silagadze, JETP Lett.60, 689 ~1994!.
11U. Moor, G. Rasche and W. S. Woolcock, Nucl. Phys. A587, 747 ~1995!.
12V. Lyubovitskij and A. Rusetsky, Phys. Lett. B389, 181 ~1996!.
13E. A. Kuraev, Preprint http://xxx.lanl.gov/hep-ph/9702327.
14H. Jallouli and H. Sazdjian, Preprint IPNO/TH 97-01~1997!.
15R. Barbieri and E. Remiddi, Nucl. Phys. B141, 78 ~1983!.

Published in English in the original Russian journal. Edited by Steve Torstveit.
788 788JETP Lett., Vol. 66, No. 12, 25 Dec. 1997 Lyubovitskij et al.



ss of

auss
ls
s

lar
note
-type
.g., in
Self-similar potentials and Ising models
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A new link between soliton solutions of integrable nonlinear equations
and one-dimensional Ising models is established. Translational invari-
ance of the spin lattice associated with the KdV equation is related to
self-similar potentials of the Schro¨dinger equation. This gives antifer-
romagnets with exponentially decaying interaction between the spins.
The partition function is calculated exactly for a uniform magnetic field
and two discrete values of the temperature. ©1997 American Insti-
tute of Physics.@S0021-3640~97!00224-7#

PACS numbers: 05.50.1q

The one-dimensional Schro¨dinger equation

Lc~x![2cxx~x!1u~x!c~x!5lc~x! ~1!

lies at the foundation of quantum mechanics and the theory of solitons. The cla
potentialsu(x) for which the spectrum and eigenfunctions of the operatorL are known in
closed form is of particular interest. It includes simple potentials related to the G
hypergeometric function~for a review, see Ref. 1!, finite-gap potentials, and potentia
whose discrete spectra consist of a number of arithmetic or geometric progression~see
Refs. 2 and 3 and references cited therein!. The latter potentials appear after a self-simi
reduction of the factorization chain or the chain of Darboux transformations. In this
we discuss the relationship of the self-similar potentials to the one-dimensional Ising
spin chain models. Below we use the language of the soliton theory described, e
Refs. 4 and 5.

It is well known that if the potentialu(x,t) and the wave functionc(x,t) in Eq. ~1!
depend on the ‘‘time’’t in such a way that

c t~x,t !5Bc~x,t !, B[24]x
316u~x,t !]x13ux~x,t !, ~2!

then the condition of compatibility of Eqs.~1! and ~2!, Lt5@B,L#, is equivalent to the
Korteweg–de Vries~KdV! equationut1uxxx26uux50. TheN-soliton solution of this
equation can be represented in the formu(x,t)522]x

2lntN(x, t), wheretN5det C is the
determinant of the matrix
789 7890021-3640/97/120789-07$10.00 © 1997 American Institute of Physics
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Ci j 5d i j 1
2Akikj

ki1kj
e~u i1u j !/2, u i5kix2ki

3t1u i
~0! . ~3!

Here ki are the amplitudes of solitons related to the bound state energies of~1!,
l i52ki

2/4, andu i
(0)/ki are the zero-time phases. The ordering 0,kN, . . . ,k1 is as-

sumed. Equivalently, thist function can be rewritten in the form4,5

tN5 (
m i50,1

expS (
1< i , j <N

Ai j m im j1 (
1< i<N

u im i D , ~4!

where the phase shiftsAi j are determined by the formula

eAi j 5
~ki2kj !

2

~ki1kj !
2 . ~5!

There are generalizations of expressions~3!–~5! such that the correspondingu(x,t, . . . )
satisfy higher order members of the KdV hierarchy, sine-Gordon, Kadomts
Petviashvili~KP!, Toda, and some other integrable equations.4

We start from the observation that expression~4! has a nice interpretation within
statistical mechanics. Namely, foru i5u (0)5 const it defines the grand partition functio
of the lattice gas model.6 In this case them i play the role of filling factors of the lattice
sites by mutually repulsive molecules,u (0) is proportional to the chemical potential, an
the Ai j are proportional to the interaction energy between thei th and j th molecules.

Simultaneously, the function~4! is closely related to the partition function of th
one-dimensional Ising model:6

ZN5 (
s i561

e2bE, E5(
i , j

Ji j s is j2 (
1< i<N

His i , ~6!

whereN is the number of spinss i561, Ji j 5Jji is the coupling betweeni th and j th
spins,Hi is the external magnetic field, andb51/kT is the inverse temperature. Indee
let us introduce into~4! the spin variables via the substitutionm i5(s i11)/2. After some
simple calculations one finds

tN5eFZN , F5 1
4(
i , j

Ai j 1
1
2 (
1< j <N

u j , ~7!

provided that

Ai j 524bJi j , u i52bS Hi1 (
1< j Þ i<N

Ji j D . ~8!

As a result, one arrives at an interesting fact: from a givenN-soliton t function of the
KdV equation~4!, one recovers the partition function of theN-spin Ising model~7!. The
t function is defined only up to a gauge factor exp(ax1b), and the function~7! fits this
freedom. Therefore one may identify~6! as theN-solitont function itself for the specific
exchange interaction~5!. This fact alone does not help much in the evaluation ofZN .
However, the recursive way of buildingN-soliton potentials with the help of Darbou
790 790JETP Lett., Vol. 66, No. 12, 25 Dec. 1997 I. Loutsenko and V. Spiridonov
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transformations or the factorization method appears to be quite useful. Let us giv
representation ofZN following from the Wronskian form oftN ~Refs. 7 and 8!:

ZN5
2N~N11!/2WN

)
i , j

~ki
22kj

2!1/2

, WN5detS di 21C j

dxi 21 D , ~9!

whereC2 j 215coshbHN22j12,C2j5sinhbHN22j11. The dependence ofH j on the soliton
parameters is read from~8!.

The factorization method transforms a given potentialuj (x)5 f j
2(x)2 f jx(x)1l j

with some discrete spectrum to the potentialuj 11(x)5uj (x)12 f jx(x) containing an
additional~the lowest! bound state with the prescribed energyl j . Within the Ising-model
context, this corresponds to the extension of the lattice by one more site. The
infinite-soliton potentials correspond to the thermodynamic limitN→`. Characterization
of a generaltN at N→` is a challenging problem, but for the specific choice of para
eterski ,u i

(0) this function can be analyzed to some extent through the basic infinite c
of equations1

~ f j~x!1 f j 11~x!!x1 f j
2~x!2 f j 11

2 ~x!5r j[l j 112l j , j PZ. ~10!

In general bothtN andZN diverge in the limitN→`. If the corresponding solutions o
~10! are finite, then the divergences gather into the gauge factor.

A key observation of the present work is that the simplest physical constr
imposed upon the form of spin interactionsJi j of the infinite Ising chain select the
potentials with a discrete spectrum composed from a number of geometric progres
First, let us demand that all the spins are situated on equal distance from each oth
that they are identical, i.e., that there is a translational invariance,Ai 11,j 115Ai j . This
means that the interaction intensitiesAi j depend only on the distance between the s
u i 2 j u, Ai j 5A(u i 2 j u). Such a natural constraint has theuniquesolution

ki5k1qi 21, q5e22a, Ai j 52 lnutanha~ i 2 j !u, ~11!

wherea.0 is an arbitrary constant. For finiteN this spectrum corresponds to reflectio
less potentials with the eigenvalues condensing nearl50. For q.1, one should write
ki5k1q2 i 11 for correct ordering ofki . ~The exponentially growing spectrum is formal
obtained for purely imaginaryk1 and q.1, but the corresponding potential contai
singularities.! In the limit N→`, one gets an infinite soliton potential with the discre
spectruml j52k1

2q2( j 21)/4 describing a specific semi-infinite spin chain (j takes only
positive values!. As qj→0 for j→`, thex and t depending part of the magnetic field
decaying exponentially from the edge of the lattice. The limitsx,t→` correspond to the
growing penetration depth of the magnetic field inside the bulk. Note that one can
lyze boundary effects by working with a difference of the free energy at two fixed va
of the magnetic field.

Since 0,utanha(i2j)u,1, one hasJi j .0, i.e., an antiferromagnetic interaction~the
spins are not aligned in the ground state!. It has nice physical characteristics — i
intensity falls exponentially fast with the distance between the sites. It is well known
the one-dimensional systems with finite-range interactions do not have phase tran
791 791JETP Lett., Vol. 66, No. 12, 25 Dec. 1997 I. Loutsenko and V. Spiridonov
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at nonzero temperature. There is a model with the exponential intera
Ji j 52guJ0ue2gu i 2 j u solved in the limitg→0 by M. Kac.9 This limit corresponds to the
very weak but long-range interaction and exhibits a phase transition with the Va
Waals equation of state.

There should be some relation of our model to the Kac one, but it is not c
whether there exists a direct connection. A similar molecular-approximation lim
reached in our case ifa→0. Formally theAi j }Ji j /kT diverge in this limit. If we renor-
malize the interaction constants asJi j

ren5Ji j (q
212q) and the temperature a

Tren5T(q212q), then the maximal interaction energy of a singlei th spin ~determined
by the summation ofJi j

ren over j ) will be finite for a→0 ~or q→1). Therefore the limit
q→1 corresponds to thelong-range interactionmodelat low temperature. Note that one
should simultaneously rescale the magnetic fieldH5h/(q212q) to imitate the change o
the temperature.

The particular form of the renormalization factorq212q was chosen so as to re
cover the interactionJi j

ren}d i 11,j in the limit q→0. If one takesh as a real magnetic field
then one gets the nearest-neighbor interaction Ising model at high temperature.
magnetic field is not rescaled, then theq→0 limit corresponds to completely noninte
acting spins. Thus our formalism allows us to analyze the partition function on
dimensional planes in the space of variables (T,H,q). Unfortunately, for fixedq the
temperature is fixed as well, and we may normalize the ‘‘KdV temperature’’ tokT51.

The discrete spectrum does not characterize completely even the reflectionle
tentials — one has to fix the phasesu i . Only for a special choice of these paramete
does one arrive at self-similar potentials. For example, the simplest case is determin
the condition that the scaling ofx and t by q and q3 respectively is equivalent to
removing one soliton. Formally this corresponds to the constraintu i(qx,q3t)5u i 11(x,t),
assuming the choiceu i

(0)5u (0)5 const. However,tN , ZN , and F in ~7! diverge for
N→`, and a more careful analysis is thus called for. Note that the shift ofHi in ~8!
remains finite, and it becomes a fixed constant fori→`. This means that in the thermo
dynamic limit the zero chemical potential in the lattice-gas partition function corresp
to a fixed nonzero magnetic field in the Ising model, and, vice versa, zero magnetic
corresponds to a prescribed value of the chemical potential.

Let us consider now the ‘‘M -color’’ Ising model for which the chain is formed b
embedded sublattices in which blocks ofM spins with different distances between the
are periodically repeated. Within each of this block the distances between spins a
equal, so that the interaction constants between the firstM sites are given by arbitrary
~random! numbers. Equivalently, one may think that at equidistant lattice points one
particles with different magnetic moments, i.e., some kind of ferrimagnetic interac
Such physical constraints are bound to the conditionAi 1M , j 1M5Ai j , which leads to a
constraint on the soliton energies in the formkj 1M5qkj , generalizing the previous cas
For a specific choice of the phasesu i 1M

(0) 5u i
(0) one arrives at general self-similar pote

tials, for which one hasu i(qx,q3t)5u i 1M(x,t). The rigorous definition of these poten
tials for fixed time is given by the constraints2

f j 1M~x!5q f j~qx!, r j 1M5q2r j ~12!

imposed upon the chain~10!. The system of mixed differential andq-difference equa-
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tions arising after this reduction describesq-deformation of the Painleve´ transcendents
and their higher order analogs. ForM51 one has aq-harmonic oscillator model, for
M52 a system with thesuq(1,1) symmetry algebra, etc.

Using the Wronskian representation~9!, we calculated exactly the free energy p
site f I in the thermodynamic limitZN→e2bN fI, N→`, for a uniform magnetic field and
arbitraryM . For M51 one has

2b f I~H !5 ln
2~q4;q4!` coshbH

~q2;q2!`
1/2

1
1

2p E
0

p

dn ln~ ur~n!u22q tanh2bH !, ~13!

where (a;q)`5) j 50
` (12aqj ) and

ur~n!u25
~q2e2in;q4!`

2 ~q2e22in;q4!`
2

4sin2n~q4e2in;q4!`
2 ~q4e22in;q4!`

2
5q

u4
2~n,q2!

u1
2~n,q2!

. ~14!

The Jacobiu functions are defined in the standard way.10 The density functionr(n) has
integrable singularities near the pointsn50,p. Note that it satisfies a curious identit
such that the second term in~13! vanishes forH50.

The dependence of the magnetizationm(H)52]Hf I(H) on H has the form

m~H !5S 12
1

pE0

p u1
2~n,q2!dn

u4
2~n,q2!cosh2bH2u1

2~n,q2!sinh2bH
D tanhbH. ~15!

SubstitutingbH5h/(q212q) into this expression and plottingm(h), we obtain the
dotted curves in Fig. 1q50.1 ~the lower curve! andq50.8. We would like to note tha
it is not clear how to solve the Ising model under consideration with the help of
traditional Bethe ansatz and transfer matrix methods.6

As was mentioned, a drawback of the given construction is that the KdV-gene
partition function has a fixed temperature for fixeda. In order to obtain the full thermo-
dynamic description it is necessary to extend the formalism and replaceAi j ~11! at least
by nAi j , where n is a positive integer. The KdV temperature is thus normalized
b5n51 ~for n.1 one has to renormalize the magnetic fieldHi→nHi in order to imitate
the effect of lowering the temperature!. This means that we need to look for an integra

FIG. 1. Dependence of the magnetizationm(h) on h for the KdV casen51 ~dotted curves! and for the BKP
casen52 ~solid curves!. The lower curves correspond toq50.1 and the upper ones toq50.8.
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model with phase shifts given by powers of expression~5!. Then one may hope to
recover the partition function at arbitrary values of the temperature}1/n by an analytical
continuation.

The phase shiftsAi j for a given Hirota polynomialP(x1 ,x3 , . . . ) specifying a
particular evolution equation can be represented in the form5

eAi j 52
P~k12k2 ,k2

32k1
3 , . . . ,~21! l ~k1

2l 112k2
2l 11!!

P~k11k2 ,2k2
32k1

3 , . . . ,~21! l ~k1
2l 111k2

2l 11!!
, ~16!

where l is the number of variables inP. We have looked for equations admittin
N-soliton solutions with the prescribed phase shifts, substituting homogeneous~with the
weights of the variables taken into account! polynomials with undefined coefficients int
~16!. It turns out that the taken conditions are very restrictive. The only solution we w
able to find is the hierarchy which starts fromP(x1 ,x3 ,x5)516x1

6

120x1
3x319x1x525x3

2, corresponding ton52. After an appropriate rescaling of var
ables this polynomial coincides with the one for the B-type KP~BKP! equation.11

Using the Pfaffian representation of theN-soliton solutions of the BKP equation,11

we calculated exactly the partition function in the thermodynamic limitN→` for a
uniform magnetic field and arbitraryM . For M51 one has

2b f I~H !5
1

2p E
0

p

dn ln 2U ~q;q!`
2

~2q;q!`
2

cosh 4bH1
]nu1~n,q1/2!

u2~n,q1/2!
U , ~17!

where]n means the derivative with respect to the variablen and u2(n,q1/2) is another
Jacobiu function.10 The dependence of the magnetization onH is

m~H !5S 12
1

pE0

p

dnS 11
~q;q!`

2 u2~n,q1/2!cosh 4bH

~2q;q!`
2 ]nu1~n,q1/2!

D 21D tanh 4bH. ~18!

For q→0 one gets the simple answerm(H)5tanh 2bH.

SubstitutingbH5h/(q212q) into ~18! and plotting m(h), we obtain the solid
curves in Fig. 1 forq50.1 ~the lower curve! and q50.8. From a comparison of th
magnetization curves one can see that as the temperature is lowered, which corre
both to the transition fromn51 to n52 and to an increase ofq, the functionm(h)
becomes steeper. This may be interpreted as a trend towards formation of a stairca
fractal function that should take place at zero temperature according to the argume
Ref. 12. Formation of the plateaus form(h) at low temperatures can be easily check
analytically for the nearest-neighbor interaction Ising antiferromagnet.

Attempts to find integrable systems withn.2 have failed for Hirota polynomials o
up to 20th degree. Probably one has to pass from the scalar Lax pairs to the matri
in order to imitate other values of the discrete temperature. The lattice of tempera
itself resembles a discrete variable unifying different hierarchies of integrable sys
into one class.
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A relation between the two-dimensional nearest neighbor interaction Ising m
and the sinh-Gordon hierarchy was discussed in Ref. 13. In particular, the correspo
N-soliton solutiont function,N→`, was shown to be the generating function of cor
lation functions. It should be noted that our identification of the one-dimensional I
model partition function witht-functions of some integrable equations is different fro
the constructions considered in Ref. 13 and earlier related works. However, it is exp
that the self-similar potentials~or q-analogs of the Painleve´ transcendents! are related to
some correlation functions in the corresponding setting as well. A hint on this co
from the fact that the supersymmetric quantum mechanical representation of the f
ization method is related to the Lax pair of the sinh-Gordon equation.

The authors are indebted to Yu. Berest, V. Inozemtsev, T. Shiota, and C. Trac
stimulating discussions. This work is supported in part by NSERC~Canada!, RFBR
~Russia! Grant 97-01-01041 and by INTAS 96-700.
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Effects of high- j intruder states in the fine structure
of superdeformed bands

I. M. Pavlichenkov
Kurchatov Institute Russian Science Center, 123182 Moscow, Russia

~Submitted 11 November 1997!
Pis’ma Zh. Éksp. Teor. Fiz.66, No. 12, 759–764~25 December 1997!

All known cases ofDI 54 bifurcation in superdeformed bands are
analyzed on the basis of the theory proposed by the author in a previous
paper@I. M. Pavlichenkov, Phys. Rev. C55, 1275~1997!#. It is shown
that the high-j intruder single-particle states play a critical role in the
phenomenon. The bands in which fine structure can be observed are
predicted. ©1997 American Institute of Physics.
@S0021-3640~97!00324-1#

PACS numbers: 21.10.2k, 21.60.Ev

1. An intriguing discovery in the physics of high-spin nuclear states was the ob
vation of fine structure~or DI 54 bifurcation! in a superdeformed~SD! rotational band of
the 149Gd nucleus.1 This structure is observed experimentally asDI 52 staggering of the
energies ofg transitions in the band. Later,DI 52 staggering was found in two othe
regions of SD nuclei, but the errors of all measurements were comparable to the m
tude of the effect. This defect has been eliminated in the latest experiments.2,3 Especially
interesting is the work in Ref. 3, where not only was the regular pattern of the stagg
in 149Gd confirmed, but two other SD bands with a similar structure were found in148Eu
and148Gd nuclei. The extent, regularity, and similarity of the staggering in all three ba
preclude the possibility of explaining the phenomenon by means of band crossing4 We
note that theDI 52 staggering in a band is noticeable only for spins greater than s
critical valueI 0. For Eu and Gd isotopesI 0;40.

The fine structure of the bands is explained by the nonadiabatic nature of the ro
and is described by an effective Hamiltonian in the form a power series of proje
operators that project the total angular momentumI k of the system onto moving axe
k51,2,3. The symmetry of the system imposes certain restrictions on the terms o
series. For theC4 axis the lowest-order nonaxial operator in the Hamiltonian
I 1

4 1I 2
4 (I 65I 16 i I 2). In molecules of the type AB4 it results incluster statesin rota-

tional multiplets.5 The splitting of the levels of a cluster is small, since it is determined
tunneling through classically inaccessible regions of phase space. Only the sym
stateA1 of the groupC4v exists in a nucleus. The position of this state in a clus
depends on the quantum numberI . This is how theDI 52 staggering is explained in
Refs. 6 and 7. The symmetry axisC4 implies the existence of aY44 deformation of the
surface of a nucleus. However, calculations of the equilibrium shape of rotating
nuclei have not confirmed this conjecture. For this reason, the explanation of the
nomenon on the basis of an analogy with molecular cluster states is acknowledged
problematic.8
796 7960021-3640/97/120796-06$10.00 © 1997 American Institute of Physics
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2. In Refs. 9–11, the present author proposed a different explanation of the
structure of nuclear bands. According to this theory, the operatorI 1

4 1I 2
4 in the rotational

Hamiltonian is due to the interaction of rotation with the single-particle motion of nu
ons in a nucleus. The starting point is the Routhian

H85H02
1

2 (
l52,4

xl (
m
Qlm* Qlm2v1J12v2J2 , ~1!

whereH0 is a spherically symmetric single-particle Hamiltonian,x2 andx4 are quadru-
pole and hexadecapole interaction constants, and the last two terms, which depend
angular velocitiesvk and angular momentaJk , describe the rotation of a nucleus abo
an axis perpendicular to the symmetry axis 3. Such an orientation of the rotation
makes it possible to obtain nonaxial terms in the rotational Hamiltonian and to stud
limit of a purely collective rotation. In the Routhian~1! the pairing interaction is omitted
taking account of this interaction does not present any difficulties.

In the Hartree approximation the rotational energy of a nucleus depends o
nonaxial collective coordinatesalm5Tr(qlmr), m562, 64, which are nonzero becaus
the density matrixr is nonaxial as a result of the rotation. But rotation apprecia
distorts the motion of nucleons only in states with a high single-particle angular mo
tum j . States with the highest value ofj in each shell are distinguished by parity, and f
them j is a good quantum number. Correspondingly, we write the nonaxial coordina
the form

alm5Qlm1ãlm , ~2!

whereQlm is the multipole moment of the nucleons of intruder subshells. Comple
filled subshells do not contribute toQlm , since the operatorqlm has a zero trace. There
fore Qlm equals the multipole moment of nucleons in partially filled intruder subsh
and is a microscopic quantity,Qlm;alm /A. The macroscopic quantityãlm equals the
multipole moment of the nucleons in the remaining states. It can be represented
form of a perturbation series

ãlm'Tr~qlmr~2!!1Tr~qlmr~4!!1 . . . , ~3!

wherer (n) is thenth order correction to the density matrix of the nucleus as a resu
rotation. Equations~2! and~3! can be used to find the rotational energy of a nucleus in
form of a power series in the angular momentum projection operators.11 This series is not
an ordinary perturbation-theory series, because rotation in the states of the intrude
shells is taken into account by means of exact diagonalization.

To obtain the conditions for the existence of fine structure in a band it is suffic
to study the limit of purely collective rotation. The corresponding rotational Hamilton
to fourth order will have the form

Heff5AI21BI41d~ I 1
2 1I 2

2 !1c~ I 1
4 1I 2

4 !. ~4!

The axial terms of this Hamiltonian include the moment of inertiaI (A51/2I) and the
next inertial parameterB. Nonaxial terms with the parameters
797 797JETP Lett., Vol. 66, No. 12, 25 Dec. 1997 I. M. Pavlichenkov
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l52,4

xlQl2Fal2
~2!1

I ~ I 11!

4I2
al2

~4!G , c52
x4

16I4
Q44a44

~4! ~5!

arise on account of the quadrupole and hexadecapole interactions of the partially
intruder subshells with the rotational distortion of the self-consistent field of the nuc
For this reason, the parameters~5! include the momentsQ22, Q42, and Q44 and the
angular-frequency independent quantities

alm
~n!5v1

2~n1m!/2v2
2~n2m!/2Tr~qlmr~n!!, ~6!

where v65v16 iv2. The nonaxial terms start to play an appreciable role for sp
I;I c5ud/4cu1/2. The Hamiltonian~4! is not invariant under the groupC4v nor, in con-
sequence, under the substitutionc→2c. The latter transformation inverts the levels
rotational multiplets.

The solution of the Schro¨dinger equation with the Hamiltonian~4! in the quasiclas-
sical approximation makes it possible to find the condition for the existence of
structure in a band:11

c.0, I 0,I ,I c , I 05F ~22A2!
udu
4cG1/2

. ~7!

If c,0, the staggering shifts into the upper parts of the multiplets. The fine structu
explained, as in Refs. 6 and 7, by oscillations of the wave function in classically
cessible regions. The distinction is that these regions are formed not by aY44 deformation
but rather by the interaction of the rotational and single-particle motions.

3. The macroscopic quantities~6! can be calculated for the anharmonic oscilla
potential with frequenciesvz along the symmetry axis of a nucleus andv' in a perpen-
dicular plane. Such a potential makes it possible to obtain an expression foralm

(n) in
analytical form. For example, in the limitv'2vz@v'1vz we have

a44
~4!5A 35

32p

9\2

64M2v'
4 vz

2S v'1vz

v'2vz
D 4

~3Szz212S'z13S''2SLL!, ~8!

whereM is the nucleon mass and the quantitiesS ik equal the sums of bilinear comb
nations of the oscillator quantum numbersn' , nz , and L over all completely filled
states. It is easy to show thata44

(4),0 for SD bands. Therefore the sign of the parame
c is determined by the sign of the momentQ44.

The microscopic quantitiesQlm can be calculated for an intruder subshell as

Qlm~ j !5(
v,a

^ j vauqlmu j va&nj va , ~9!

wherev51,2, . . . ,j 11/2, a561/2 is the signature andnj va are the nucleon occupatio
numbers of the subshell. For SD nuclei withA;150 the subshellsh11/2,i 13/2 for protons
(p) and i 13/2, j 15/2 for neutrons (n) are not completely filled. The figure shows th
dependence of the momentQ44(15/2) on the numberN of occupied states and th
rotational frequencyv5(v1

21v2
2)1/2. The functionsF j (N)5Q44/^nlur 4unl& are ap-

proximately the same for all subshells indicated above, since in the limit of ang
798 798JETP Lett., Vol. 66, No. 12, 25 Dec. 1997 I. M. Pavlichenkov
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momentumj alignment, which is close to the situation in our system at the rotatio
frequencies considered here, the average value ofq44 is proportional to the Clebsch–
Gordan coefficient̂ jm,40u jm&, wherem is the projection ofj on the rotation axis 1. The
matrix element̂ j vauq44u j va& is always greater in symmetric~favored! states than in
asymmetric~unfavored! states. The values of the parametersc andd for SD nuclei with
A;150 with ~without! pairing give the following estimate of the critical spin
I 0;40(400).

4. We will use the conditionc.0 for a comparison of the theory with experimen
For this, let us consider a more realistic model of the nucleus, withZ protons andN
neutrons. Assuming that the mean square radius and the deformation are identi
neutrons and protons~this means that the ratio of the number of neutrons to the num
of protons is constant inside the nucleus12!, we obtain

c52
x4

16I4F S 2Z

A D 2/3

Q44~p!1S 2N

A D 2/3

Q44~n!G H S 2Z

A D 2/3

a44
~4!~Z!1S 2N

A D 2/3

a44
~4!~N!J ,

~10!

whereQ44(t)5( jQ44(t, j ), t5p,n, and the summation overj extends over all incom-
pletely filled intruder subshells. The high-j subshells make the predominant contributio
Nucleons in the levels of these subshells form thedominant configurationof the SD
band. For nuclei withA;150 this configuration isp6mn7n with m protons andn neu-
trons in subshells with principal quantum numbers 6 and 7, respectively.

In the approximation of the configurationp6mn7n the sign of the parameterc is
determined by the sign of the quantity

F~m,n!515F13/2~m!119F15/2~n!, ~11!

FIG. 1. Expectation value of the hexadecapole momentQ44 as a function of the numberN of nucleons in the
cranked singlej 515/2 subshell for different rotational frequenciesv50.4 MeV (d), 0.6 MeV (h), 0.8 MeV
(n) and the representative deformationsb250.622 andb450.041.
799 799JETP Lett., Vol. 66, No. 12, 25 Dec. 1997 I. M. Pavlichenkov
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if the contributions of the neutrons and protons on the right-hand side do not compe
each other. For example, in the151Tb~1! band with the configurationp63n72 the contri-
butions of the neutrons and protons toF(3,2) are negative. There is noDI 52 staggering,
in agreement with experiment.1 The absence of staggering in the152Dy~1! band1 can also
be explained by means of Eq.~11!. In this case the dominant configuration of the band
p64n72. Here the contributions of the neutrons and protons are of different sign
there is no compensation~see Table I!.

The dominant configurationp62n71 is assigned to the series of SD bands
148,149Gd and148Eu nuclei. As one can see from Table I, the contributions of the neut
and protons to the quantityF(2,1) compensate each other, and the simple criterion
applicable. Nonetheless, the results of Ref. 3 can be explained qualitatively by stu
the configuration of the bands of148Gd13 ~we enumerate the SD bands of this nucle
according to Ref. 14! and148Eu relative to the configuration of the149Gd~1! band15 and
assuming, in accordance with experiment, thatc.0 for the latter. Then the bands whic
are identical to it,148Eu~1! with the configuration149Gd~1!^ (p@301#1/2,a521/2)21

and 148Gd~4! with the configuration149Gd~1!^ (n@411#1/2,a511/2)21, must have fine
structure, since the momentQ44(p)(Q44(n)) changes very little when a proton~neutron!
is removed from thep1/2(s1/2) subshell. On the contrary, when a neutron in a symme
state is removed from theg9/2 or i 13/2 subshell the momentQ44(n) decreases by a finite
amount, which can change the sign of the parameterc. This explains the absence of fin
structure in the bands148Gd~1! ~the configuration149Gd~1!^ (n@651#1/2,a511/2)21)
and 148Gd~5! (149Gd~1!^ (n@642#5/2,a511/2)21. The absence of fine structure in th
148Gd~6! band, which has the configuration149Gd~1!^ (n@770#1/2,a521/2)21 at low
rotational frequencies and the configuration 149Gd~1!^ (n@651#1/2)22

^ (n@770#1/2,a51/2) at high rotational frequencies, follows from an approximation
the dominant configurationp62n70 or p62n72.

On this basis it follows that the most reliable predictions are those of the theor
SD nuclei having a dominant configuration for which the neutron and proton mom
Q44 have the same sign. Let us give these configurations for the well-known yrast b
The bifurcation can be observed in the bands143Eu(p61n64), 144Eu(p61n71),
145Tb(p61n64), and 151Dy(p64n71) but it is absent in the bands150Gd(p62n72) and

TABLE I. Value of F(m,n) for the dominant configurations of some SD yrast bands with differ
rotational frequenciesv.

SD Dominant Deformation F(m,n)

band configuration b2 b4 v50.4 MeV v50.6 MeV v50.4 MeV

142Eu~1! p61n63 0.49 0.04 0.327 0.071 20.098
148Gd~1! p62n71 0.55 0.035 20.109 0.004 0.145
149Gd~1! p62n71 0.60 0.032 20.116 20.018 0.113
150Tb~1! p63n71 0.59 0.09 0.655 0.537 0.392
152Dy~1! p64n72 0.61 0.022 20.419 20.257 20.329
153Dy~1! p64n73 0.59 0.12 0.259 0.074 20.163
154Dy~1! p64n72 0.57 0.03 20.411 20.263 20.346
800 800JETP Lett., Vol. 66, No. 12, 25 Dec. 1997 I. M. Pavlichenkov
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152Tb(p63n73). As one can see from Table I, the dominant-configuration approxima
is applicable for the150Tb~1! and152,154Dy~1! bands and inapplicable for the142Eu~1! and
153Dy~1! bands. An experimental check of these theoretical predictions would contr
to a deeper understanding of the phenomenon.

In summary, in this paper the reason for theDI 52 staggering ofg transitions of SD
bands has been determined. It arises as a result of an interaction of the rotation w
partially filled intruder subshells. The nonadiabatic effects are described by a rota
Hamiltonian which is not invariant under the groupC4v ; this limits the existence region
of this staggering in respect to spinI and the nucleon occupation numbers of the sing
particle states. This limitation has made it possible to check the theory for the exam
eight SD bands in nuclei withA;150. The situation in two other regions of SD nuclei
not so obvious, probably because the experimental data are unreliable.

I am grateful to G. de France for providing the experimental data for SD band
the 148Gd nucleus prior to publication. This work was performed with the support of
Russian Fund for Fundamental Research~Grant 96-02-16115!.
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Solid deuterium source of ultracold neutrons based on a
pulsed spallation source

A. P. Serebrov,a) V. A. Mityukhlyaev, and A. A. Zakharov
B. P. Konstantinov St. Petersburg Institute of Nuclear Physics, Russian, Academy of
Sciences, 188350 Gatchina, Russia

T. Bowles and G. Greene
Los Alamos National Laboratory, Los Alamos, New Mexico 87545 USA

J. Sromicki
Swiss Federal Institute of Technology, CH-8093 Zurich, Switzerland

~Submitted 28 October 1997!
Pis’ma Zh. Éksp. Teor. Fiz.66, No. 12, 765–770~25 December 1997!

A new type of source of ultracold neutrons~UCNs! is proposed. The
source operates on the basis of a pulsed spallation source. Solid deute-
rium makes it possible to obtain UCN density 104 neutrons/cm3 as a
result of high gain at low temperatures and the possibility of withstand-
ing high pulsed heat loads as a result of the high specific heat of solid
deuterium. ©1997 American Institute of Physics.
@S0021-3640~97!00424-6#

PACS numbers: 29.25.Dz

INTRODUCTION

The possibility of obtaining UCN density 104 neutrons/cm3 by using solid deuterium
was discussed in Ref. 1 and studied experimentally in Refs. 2 and 3. In the presen
we are proposing a new type of UCN source based on a pulsed spallation source
solid deuterium moderator.

In this method the high pulse neutron density of a spallation source is used and
the UCNs are confined in the large volume of a trap for a long period of time up to
next neutron pulse. The UCN density in such a source can exceed the pulsed neutr
on average by a factor of 300, for example. The pulsed neutron flux density is limite
the specific heat of solid deuterium, and the average neutron density is limited b
thermal conductivity of solid deuterium.

SCHEME OF A UCN SOURCE BASED ON A PULSED ACCELERATOR

Let us examine the scheme of a UCN source show in Fig. 1. A 600 MeV pr
beam with 1 mA per pulse strikes a lead~tungsten! target surrounded with water~5 cm!,
which cools the target and is used for preliminary thermalization of the neutron
Liquid-helium-cooled solid deuterium is the main neutron moderator and the sour
UCNs. To decrease the heat load on the solid deuterium, a 3-cm thick bismuth shie
be placed in the light water of the spallation source. At the moment of the proton
the volume of the trap of the source is filled in a time of 2 s with UCNs up to a density
802 8020021-3640/97/120802-07$10.00 © 1997 American Institute of Physics
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almost equal to the UCN density in the source. Then, two cylindrical shields are c
up and cover the surface of the source. At this moment the proton current is switche
The accumulated UCNs can be confined in the trap for a time close to the ne
lifetime. The trap walls are made of beryllium and they are at the temperature of l
nitrogen. This gives UCN confinement in the trap for a timet loss determined only by the
probability of losses at the walls of the trap, which is at a level of 104 s ~Ref. 4!, so that
the storage time (tst

215tn
211t loss

21) is limited by the neutron lifetime (tn). During the
interval between the neutron pulses~600 s! the UCN density in the trap decreases. Ov
this period of time the solid deuterium source cools to the temperature of liquid he
and is capable of accepting the next neutron pulse. Thus, the UCN density in the t
the source is quasistationary with pulsed periodic pumping.

PARAMETERS OF THE UCN SOURCE

We shall present the basic parameters of the source that characterize a varia
scheme which is not yet optimized. The average power or heat load on the source is
with an average current of 3.3mA. The pulsed power is 0.6 MW with a current of 1 m
for 2 s. The interval between pulses is 600 s. The power released in the volume
solid deuterium can be estimated using the data for a SINQ spallation source, in
80–85% of the power is released in the main water-cooled target. Then it can be as
that 15% of the total power will be released in the solid deuterium. We note that
estimate neglects the effect of the bismuth shield. Therefore the average load on th
deuterium source equals 300 W. Correspondingly, the pulsed load is 300 times h
The bismuth shield can decrease the heat release by approximately a factor of 3.

FIG. 1. Scheme of the UCN source.
803 803JETP Lett., Vol. 66, No. 12, 25 Dec. 1997 Serebrov et al.
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Figure 2 displays the temperature variation of the gain for a solid deuterium sou3

The curve1 corresponds to a theoretical calculation for a half space filled with s
deuterium, i.e., for a source with a quite large volume (V>50 liters!. Curve1a repre-
sents a more accurate calculation in the same geometry but with allowance for the
hydrogen admixture and the incoherent elastic scattering of UCNs in the solid deute
An accelerator-based UCN source operates in an accumulation mode, while a re
based source operates in a flow-through mode. In the flow-through mode a jump
UCN density is observed at the boundary of the solid deuterium as a result of incoh
elastic scattering of UCNs. For this reason, a high UCN density outside the source c
be obtained with a reactor-based source~curve1a in Fig. 2!. In the accumulation mode
the UCN density in the trap over the time of a pulse reaches the density inside the s
~curve1 in Fig. 2!, and this density can be used in experiments. Curve2 in Fig. 2 shows
the results of a reactor experiment performed on a 6-liter solid deuterium source
0.2% hydrogen added to the deuterium. For the experimental curve, at temper
below 10 K the temperature dependence has still not been studied with adequate
racy. Some experimental tests show that there is virtually no temperature dependen
the gain equals 1.23103. In the calculations below we shall proceed from the exp
mental results, but we shall introduce a correction factor for the much higher degr
thermalization of the neutron flux in a large-volume source and a correction facto
deuterium purity.

The effective temperature of the neutron flux thermalized in a 6-liter volume
reconstructed from the experimental spectrum of neutrons emanating from the s

FIG. 2. Temperature gain of UCN yield for solid deuterium normalized to the UCN yield at room tempera
1 — Computed curve for a large source with incoherent elastic scattering cross section of UCNs equal
or for a UCN source in the accumulation mode;1a— computed curve for a large source taking account of UC
scattering~2.2 b! and the hydrogen impurity~0.2%!; 2 — experimental results obtained on a reactor with
source volume of 6 liters of solid deuterium containing 0.2% hydrogen. The large increase in the UC y
18.7 K is due to a transition from the liquid to the solid state.
804 804JETP Lett., Vol. 66, No. 12, 25 Dec. 1997 Serebrov et al.
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The experimentally obtained spectrum is not Maxwellian but it can be decomposed
two spectra: 56% of the intensity with neutron temperature 180 K, and 44% o
intensity with neutron temperature 30 K.2 However, the optimal neutron temperatu
equals 40 K.1 The expected additional gain with respect to the experimental situation
be estimated as a factor of 2.1 when the temperature of the neutron spectrum r
40 K.

The dependence of the gain on the hydrogen impurity concentration in the deut
was measured experimentally in Ref. 3, where mixtures of 0.2%, 0.7%, and 2% hyd
in deuterium were used. Extrapolating the experimental data to a purity of 0.05–0.1
terms of the H2 impurity, one can expect an additional gain of 1.5. Then the comb
correction factor for the experimental gain will equal to a factor of 3.1, and the expe
gain for a large-volume source with a purity of 0.05–0.1% in terms of the hydro
impurity will be 3.73103.

SUBSTANTIATION OF THE SOURCE PARAMETERS

We shall present some estimates substantiating the parameters of the sourc
neutron lifetime determines the maximum interval between pulses. Taking this inter
be 600 s and requiring that the exit time through one open neutron guide equ
neutron lifetime, we can calculate the characteristic volume of the UCN trap. In a
dance with the gas-kinetic theory, the exit time of UCNs from a trap is given
t54Vt /Sv̄, whereVt is the trap volume,S is the area of the exit window~cross section
of the neutron guide!, andv̄ is the average velocity of UCNs in the trap. Assuming th
the source volume is an order of magnitude smaller than the trap volume, we find th
radius of the trap must be 1.2 m.

We note that the limiting energy of reflection of UCNs from beryllium correspo
to a height of 2.5 m in terms of the gravitational energy of a neutron, so that a bery
trap with a diameter greater than 2.5 m will not be completely filled. It is also impor
to understand that the maximum UCN density in a trap in a gravitational field is nea
bottom of the trap, so that the neutron guides should be attached to the lower part
trap.

A cold solid-deuterium moderator must have a sufficiently large volume to ther
ize the neutron flux to a temperature of 40 K. This neutron temperature is optima
obtaining maximum UCN yield.1 The mass of solid deuterium must be sufficient
withstand the pulsed load by virtue of the specific heat. The surface area of the s
must be large so that the trap will be rapidly filled with the UCN gas. As one can
there are many factors requiring a substantial source volume. We shall attempt to c
the volume of the solid deuterium source on the basis of the requirement that the s
temperature not exceed 10 K at the end of a pulse.

The heat release in the source is proportional to the filling time of the UCN trap.
trap filling timet f depends on the source surface area, i.e., the dimensions of the s
To simplify the estimates, we shall assume the source to be spherical with radiusRS . We
choose the proton pulse duration to be 2t f . The heat release in the source (Q52t fwS)
determines the jumpDT in the temperature of the solid deuterium at the time of the pu
according to the relation
805 805JETP Lett., Vol. 66, No. 12, 25 Dec. 1997 Serebrov et al.



roton
umes
dera-

e other
should
oduct
nitial
g the
the
n
ram-

proton
sible

hermal
nds
ature.
ortho-

f

the
iments

nd the
m is
Q52t fwS5C mDT, ~1!

wherews is the pulse power released in the solid deuterium,C is the specific heat of solid
deuterium, andm is the mass of the solid deuterium.

For a preliminary estimate, we assume that 15% of the total power of the p
beam is released in the volume of the cold moderator and that, starting with vol
greater than 100–200 liters, this power depends very little on the volume of the mo
tor. Then from the relation~1!, the gas-kinetic formulat f54VT /SSv̄, and the formula
VT5(4p/3)(Rt

32RS
3) we obtain

DTC5
2wS

p v̄r

~Rt
32RS

3!

RS
5

, ~2!

where Rt and Vt are, respectively, the radius and volume of the UCN trap,SS is the
surface area of the solid deuterium source,RS is the source radius, andr is the density
of solid deuterium.

AssumingRt
3@RS

3 , we obtain for the characteristic dimensions of the source

RS5S 2wS

p v̄r

Rt
3

DTCD 1/5

. ~3!

As one can see from this analysis, the dependence of the source dimensions on th
parameters of the problem is very weak because of the exponent 1/5. Therefore it
be expected that even a rough analysis will give a quite definitive estimate. The pr
DTC in Eq. ~3! must be interpreted as an integral of the specific heat between the i
and final temperature of the solid deuterium over the duration of the pulse. Takin
initial temperature to be 6 K and the final temperature to be 10 K, and using data for
specific heat, we obtain from Eq.~3! the valueR50.6 m for the characteristic dimensio
of the source. The exponential filling time can be determined from the geometric pa
eters obtained for the source and is found to be 1.0 s. Hence the duration of the
pulse for pumping a trap up to a UCN density equal to 86% of the maximum pos
value will be 2.0 s.

We shall now estimate the average source temperature, using data on the t
conductivity of solid deuterium. The thermal conductivity of solid deuterium depe
strongly on the ortho- and para- composition of the deuterium and on the temper
The ground state of deuterium at low temperature is orthodeuterium. However, the
and para- compositions can depend on the level of the neutron andg-ray radiation field.
Experience in working with solid deuterium sources2,3 has shown that at a level o
irradiation by thermal neutrons of 831011 neutrons•cm22s21, a fast neutron flux of
331010 neutrons•cm22s21, and a heat release fromg rays of 1.531022 W/g, 95% of
the deuterium will be in the ortho- modification, and the irradiation of deuterium in
liquid phase accelerates the transition to orthodeuterium. The results of these exper
enable us to use the thermal conductivity of orthodeuterium in the calculations.

As a result of the sharp temperature dependence of the thermal conductivity a
substantial spatial variation of the heat release, an exact solution of this proble
nontrivial. We shall make here only a rough estimate using the following equation:
806 806JETP Lett., Vol. 66, No. 12, 25 Dec. 1997 Serebrov et al.
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T̄S5THe1
1

2
DTmax5THe1

W̄SDR

2l̄SHe

, ~4!

whereDTmax is the maximum possible temperature difference, which arises when
heat release is entirely localized on the inner surface of the source near a warm
DR is the radial thickness of the solid deuterium,SHe is the helium-cooled surface are
l̄ is the average thermal conductivity of solid deuterium, taken to be 8 W/K•m, andWS

is the average power of the heat load, equal to 300 W. Then we have for the av
temperature of solid deuteriumT̄s57 K.

UCN DENSITY IN THE SOURCE TRAP

Finally, we shall estimate the principal characteristic of a source — the UCN de
in the trap. According to the estimate presented earlier, the gain for a solid deut
source at temperature 7–10 K can be equal to 33103. Then the coefficient relating the
UCN density (rUCN@cm23]) and the thermal-neutron flux (F0@n/cm2s]) will have the
form

rUCN5
1

2S Ec

TR
D 2 GF0

v̄
52.4310210

•F0 , ~5!

whereEc is the limiting energy of the trap,TR is room temperature~300 K!, andG is the
temperature gain factor.

The average neutron flux for a solid deuterium moderator can be estimated
data on the distribution of the thermal-neutron flux in heavy water around a spall
source ~SINQ design!. The emergence depth of UCNs from solid deuterium at l
temperatures is determined by the diffusion lengthLD5ALSLa/3, whereLs5(nsS)21 is
the scattering length,n is the density of deuterium nuclei per cubic centimeter,sS52.2
b is the incoherent elastic scattering cross section,La5(nsa)21 is the UCN absorption
length, andsa is the sum of the UCN trapping cross section (sc) and the UCN inelastic
scattering cross section (sup). The computed value of the diffusion length is'15 cm at
6 K. Therefore the UCNs in the source trap are furnished by a 15-cm layer of
deuterium. The average neutron flux in this layer can be estimated as 831013

neutrons•cm22s21 with a proton current of 1 mA. Then the UCN density in the sou
trap will be r52.43104F0523104 neutrons/cm3. Such a density will be 2 to 3 order
of magnitude higher than in present-day sources.5,6

CONCLUSIONS

In proposing a new type of UCN source based on a pulsed accelerator, we u
score that such a source is different from a reactor-based source. The advantag
pulsed UCN source lies in the fact that a high UCN density is obtained at low tem
tures of the solid deuterium as a result of the high pulse density of the neutron flux
peak heat load at the moment of the pulse is taken up by the specific heat of deu
and then removed by heat conduction on account of the quite high thermal conduc
of deuterium. The heat load on a stationary reactor-based source of UCNs is much
than the average load on a pulsed UCN source.
807 807JETP Lett., Vol. 66, No. 12, 25 Dec. 1997 Serebrov et al.
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It should be noted that the basic premises of the present design have alread
checked experimentally.2–4 This gives hope that the estimates presented here for the U
density in a trap are quite realistic.

The design of the solid deuterium source of UCNs with high density in a trap ca
implemented on accelerators in LANL~USA!, PSI ~Switzerland!, Institute of Nuclear
Research~Russia!, KEK ~Japan!, and on a complex of the future European pulsed sou

The first experimental checks of the proposed design can be started on a
model, using heavy ice~D2O! instead of solid deuterium.

We thank our colleagues at the St. Petersburg Institute of Nuclear Physics
Alamos National Laboratory, and PSI for helpful discussions.
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Photoelectric instability in oxide glass

M. K. Balakirev,a) L. I. Vostrikova, and V. A. Smirnov
Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Scie
630090 Novosibirsk, Russia

~Submitted 28 October 1997!
Pis’ma Zh. Éksp. Teor. Fiz.66, No. 12, 771–776~25 December 1997!

The spatially periodic modulation of optical anisotropy~MOA! induced
in oxide glass by mutually coherent light beams with different frequen-
cies (v and 2v) is unstable under illumination with monochromatic
light with frequencyv. Disturbances with small amplitudes intensify
and disturbances with large amplitudes relax. Irrespective of its initial
degree, the MOA reaches the same steady-state level, which depends
on the illumination intensity. Intensification of MOA is accompanied
by the appearance of second-harmonic radiation whose intensity grows
in time to a steady-state level. The instability of the anisotropy is due to
degenerate three-wave mixing and to feedback arising as a result of the
coherent photogalvanic effect. A hypothesis that takes into account the
observed giant growth~by three orders of magnitude! of light absorp-
tion in the MOA region is proposed to explain the stabilization of the
instability and the formation of stationary periodic refractive-index
gratings. © 1997 American Institute of Physics.
@S0021-3640~97!00524-0#

PACS numbers: 42.70.Ce, 42.65.Sf

It has been established in a number of recent works that the symmetry of an
cally isotropic medium~glass! can be lowered by irradiation with monochromatic rad
tion. As a result, the state of the glass1 light system is unstable. The change in sym
metry is accompanied by a restructuring of the spectrum and spatial distribution o
light flux. This is manifested experimentally as the spontaneous appearance and
fication of the second harmonic under prolonged transmission of monochromatic
through an optical fiber1,2 or as a self-maintained diffraction of light in bulk samples.3 It
is believed4,5 that the coherent photogalvanic effect6–9 ~CPGE! — the appearance of a
steady-state current in a medium illuminated by two mutually coherent sources
different frequencies (v and 2v) — is responsible for the instability. On the basis of th
idea, the instability and growth of fluctuations of optical anisotropy in an isotropic
dium under monochromatic illumination could be due to intensification of macrosc
fluctuations of the electrostatic field.

In the present letter we report the results of a direct observation of the instabil
photoinduced modulation of the anisotropic refractive index in glass and investigat
properties of this instability.

The experiments were performed in oxide glass and consisted of the following.
a reversible spatially periodic changeDn of the refractive index — aDn grating3,10 —
was produced in glass by two mutually coherent beams at the fundamental and do
809 8090021-3640/97/120809-07$10.00 © 1997 American Institute of Physics
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frequencies of a pulsed neodymium laser. The grating played the role of an initia
turbance at the next stage of the experiment. The amplitude of the initial disturbanc
varied by varying the duration of illumination of the glass, and the angle between
beams was chosen so that theDn grating would be oriented at the Brewster angle w
respect to the beam at the fundamental frequency~main beam!. After the initial distur-
bance was produced, the beam at the doubled frequency was covered and the dyna
the diffraction efficiency of the main beamhd5I d /I 1 was investigated as a function o
the amplitude of the initial disturbance andI 1 (I d and I 1 are the peak powers of th
diffracted and incident light!. In this formulation, the main beam was the probe beam
simultaneously fulfilled the role of a ‘‘pump.’’ In another series of experiments, after
initial disturbance was written the dynamics of the second-harmonic radiation ar
from the region of the grating under illumination by the main beam was investigate
a function of the intensity of the main beam and the amplitude of the initial disturba

1. A typical family of curves of the evolution of the diffraction efficiency for di
ferent initial disturbances is presented in Fig. 1. The arrows mark the moments whe
writing of the gratings ceases and illumination of the gratings by radiation only a
fundamental frequency starts. Curve1 characterizes the dependence of the diffract
efficiency of the initial disturbance on its writing time. One can see from the figure
disturbances with small amplitudes grow and disturbances with large amplitudes
However, irrespective of the initial value, the diffraction efficiency of the gratin
reaches the same steady-state levelhd5h0. Investigation of the dependence ofh0 on the
illumination intensity showed that the steady-state level increases monotonically wI 1

and saturates at quite high values ofI 1. On the whole, the observed dynamics of t
gratings is formally similar to the evolution of disturbances in active nonlinear oscilla
systems with a stable limit cycle.

Thus there exists in the system a photoinstability of photoinduced refractive-i

FIG. 1. Evolution of the diffraction efficiency of gratings with different initial amplitudes.
810 810JETP Lett., Vol. 66, No. 12, 25 Dec. 1997 Balakirev et al.
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gratings whereby the system is brought to a stable steady state that depends
intensity of the incident light.

2. Amplification of the gratings is accompanied by the appearance and grow
second-harmonic radiation from the region of the grating. The direction and polariz
of this radiation are the same as in the case of the beam with the doubled freq
employed for producing the initial disturbance. The efficiencyhg5I 2 /I 1 of second-
harmonic generation~SHG! (I 2 is the peak power of the second harmonic produced! is
observed to increase to a steady-state levelhg0 ~see Fig. 2, where the process is show
for two different intensities of the main beam!. The levelhg0 increases withI 1. Satura-
tion of SHG and diffraction efficiencies is reached over the same period of time, i
direct correlation is observed betweenhg(t) andhd(t).

If the diffraction efficiency of the initial disturbance is much greater thanh0, then
the second-harmonic radiation at the initial stage of the relaxation of the grating i
detected to within the sensitivity of the apparatus. However, radiation does arise
regionhd<1.2h0 and intensifies rapidly with decreasing amplitude of the grating, rea
ing a maximum athd5h0. The SHG efficiency then equals the steady-state valuehg0.
The correlation of the SHG efficiency with the relative diffraction efficiency is shown
Fig. 3. Thus, a direct relation is observed between the intensification of the grating
the increment to the SHG efficiency.

We shall now discuss the results, proceeding from the fact that the change
optical properties of glass is due to the appearance of an electric fieldE„r … in the glass as
a result of the CPGE. The appearance of optical anisotropy in the simplest mo

FIG. 2. Evolution of SHG efficiency with different illumination intensity: 1 —I 1 , 2 — 1.4 I 1.
811 811JETP Lett., Vol. 66, No. 12, 25 Dec. 1997 Balakirev et al.
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described as follows. The two-frequency light fieldE(v,2v)5E(v)1E(2v) with

E~v!5e1E1exp i ~k1r2vt !, E~2v!5e2E2exp i ~k2r22vt ! ~1!

produces in the glass a spatially periodic grating of the CPG currentJ(r ):

J„r …5~a1e1~e1e2!1a2e2!E1
2E2exp iqEr , qE5~2k12k2!. ~2!

In Eqs.~1! and ~2! E1,2, e1,2, andk1,2 are the amplitudes, polarizations, and wa
vectors of the harmonics anda1,2 are the photogalvanic constants. Charge separatio
the currentJ(r ) results in the appearance and growth of an electrostatic field E:

dE

dt
5

4p

e
~J2Jc!, ~3!

whereJc is the conduction current ande is the static permittivity. For small values ofE,
while the electrical conductivitys does not depend on the field~but can depend on the
intensity of the light!, the conduction current is proportional to the fieldJc5s(I 1 ,I 2)E,
and a periodic grating of the field with wave vectorqE accumulates in the sample
E5(J/s)(12exp(2t/t)), t5e/4ps. The field grating is accompanied by a grating
the effective second-order polarizabilityx (2);x (3)E with vectorqx5qE and a refractive-
index gratingDn;x (3)E2 with vectorqn52qE , i.e., the glass transforms into an inh
mogeneous optically uniaxial medium. In our experiment the gratings studied pla
role of an initial disturbance and model fluctuations of the electrostatic field.

The appearance of an effective second-order polarizability in the disturbed me
produces conditions for the appearance of a CPG current under monochromatic i
nation of the medium, since SHG becomes possible. As a result of this, small s
fluctuations of the field can be intensified by monochromatic light and a mutual chan
the optical properties of the medium and light flux should occur. The scenario of su
instability of system can be represented, using an idea of Ref. 4, as follows.

FIG. 3.
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Let a weak fluctuation fieldEf(r ) exist in the medium. Monochromatic lightE(v)
incident on the medium in the region whereEfÞ0 generates a fieldE2g(2v,k2g)at the
doubled frequency. The fields generated by this harmonic and by the incident light in
a CPG currentJs;E2gE1

2, which under certain conditions intensifies the initial char
separation, causing the field to increase in time. In other words, the CPGE engend
the system a positive feedback which results in a light~more accurately, photoelectric!
instability of the system. The Fourier componentsEf(q)exp i(q–r ) of the field which are
spatially in phase with the current (q52k12k2g) and are polarized so as to give max
mum SHG efficiency should grow the most. For this reason, the development of
bility should be accompanied by the formation of predominantly periodic anisotr
structures. In our experiment the conditions of maximum intensification were satisfie
choosing the polarization and angle of incidence of the light on the grating. In
process, a second harmonic withq2g52k12gE is generated, and the spatial phase s
chronism of this grating and of the initial grating of the field arises automatically.

It is important to underscore that the mechanisms studied should result in insta
of anisotropy fluctuations not only of electrostatic origin. The only requirement is
they be accompanied by nonzero second-order polarizability. For this reason, the
bility of optical anisotropy fluctuations studied above is quite universal and can be
served in a medium with any symmetry.

Comparing the experimental results with the model considered above show
they qualitatively fit in the model, excluding the stabilization of the instability and
relaxation of the gratings.

Let us examine the possible mechanisms of stabilization, remaining within the
nomenological model~3!. The CPG currentJs is determined by the relation~2!, except
that the external fieldE(2v) in it is replaced byE2g(2v), which arises as a result o
generation. Stabilization of instability appears with a change in sign ofJs2Jc . This is
possible, if at some value of the fieldJs increases with the field more slowly thanJc or
decreases. Our experiments correspond to the latter case~see Sec. 2!: As the amplitude of
the grating increases~with hd /h0.1), the intensity of the generated harmonic decrea
rapidly and, correspondingly, the currentJs should decrease.

The decrease in SHG efficiency is due to the rapid increase in the absorption o

FIG. 4. Attenuation of the intensity of light at the doubled-frequency.
813 813JETP Lett., Vol. 66, No. 12, 25 Dec. 1997 Balakirev et al.
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at this frequency as the amplitude of the grating increases above a steady-state
Special experiments showed that as it passes through the grating, the doubled-fre
radiation can be attenuated on the beam axis by a factor of 30, irrespective o
polarization of the incident light. Figure 4 shows the time dependence of the inte
I (2v) of the light with the doubled frequency after passing through the grating when
initial disturbance is written all the way to saturation. The typical intensity distribu
over the diameter of the transmitted beam is shown in the inset. Since the transver
of the grating is somewhat smaller than the beam diameter, the obtained distrib
approximately reflects the dependence of the attenuation on the transverse distribu
the amplitude of the grating. If it is assumed, for a rough estimate, that the decay ov
length of the grating is exponential, then the observed attenuation corresponds to a
tion a;7 cm21. The change in absorption compared with an unperturbed mediu
three orders of magnitude.

We note that an increase in light absorption has been observed11 in optical fibers
with prolonged passage of mutually coherent bichromatic light with frequenciesv and
2v through them as well as with monochromatic illumination of germanium–alumin
silicate optical fibers doped with erbium.12 At the present stage of the investigations, w
do not completely understand the nature of the giant increase in absorption in the
ings, but it has been established experimentally that under our conditions it is not d
decay mechanisms~generation of subharmonics!.

We also note that an increase in the currentJc , as a result of an increase in phot
conductivity accompanying SHG, or an increase in conductivity with an increase o
field could make an additional contribution to stabilization of the instability. Howe
these mechanisms should not lead to a decrease of the SHG efficiency with incr
amplitude of the gratings. Therefore their contributions are not determining in ou
periments, though they could be significant under other conditions~in other materials!.

Of course, we do not claim that the scheme studied here gives an exhaustiv
scription of the observed phenomena. It does not include diffusion and recombinat
charge carriers, which damp the instability, and it neglects the nonlocal relation bet
the electrostatic field andE2g . Such a relation should have an integral representat
describing the simultaneous growth of harmonics in space, and should be obtaine
self-consistent solution of the problem~see, for example, Refs. 4 and 5!. However, we
assume that these factors should not fundamentally change the interpretation of t
perimental results.

We thank M. V. Éntin for fruitful debates and a discussion of the results.

This work was supported by the Russian Fund for Fundamental Research~Grant
96-62-19353!.
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Effects of two strong fields in resonant four-wave mixing

S. A. Babin, E. V. Podivilov, and D. A. Shapiro
Institute of Automation & Electrometry, Russian Academy of Sciences,
630090 Novosibirsk, Russia

~Submitted 8 September 1997; resubmitted 13 November 1997!
Pis’ma Zh. Éksp. Teor. Fiz.66, No. 12, 777–782~25 December 1997!

An explicit solution is obtained for the four-wave mixing
v45v12v21v3 of two strong fieldsE1 ,E3 and two weak fields
E2 ,E4 in a four-level system with large Doppler broadening. Reso-
nance of the intensity dependence of the mixing coefficient is found
around equal Rabi frequencies,E1•d15E3•d3, whered1,3 are the di-
pole moments of the corresponding transitions. The effect is interpreted
as a crossing of quasi-energy levels. Up to 6 peaks appear in the de-
pendence of the conversion coefficient on the detuning of the probe
field E2. The unexpected additional pair of peaks is a consequence of
averaging over velocities. The results permit interpretation of the satu-
ration behavior found in recent experiments on mixing in sodium va-
por. © 1997 American Institute of Physics.@S0021-3640~97!00624-5#

PACS numbers: 42.65.Hw

Four-level systems are promising objects for resonant optics and spectroscop
ing to the great variety of nonlinear effects. These include nonlinear interference, i
sionless gain, resonance refraction, electromagnetically induced transparency, op
induced energy-level mixing and shifting, population redistribution, etc.~see Refs. 1 and
2 and citations therein!. Recent experiments on continuous resonant four-wave frequ
mixing of the Raman type with sodium molecules in a heat pipe3,4 gave interesting
behavior of the generated wave power as a function of the frequencies and intensi
the incident waves. In particular, the dependence of the output power on the intens
the first strong field was found to saturate in an experiment on down-conversion,3 while
the dependence on the intensity of the third wave exhibited linear growth. The mea
ments were taken at large Doppler broadening, whereas the nonperturbational ana
theory was intended5,6 for atoms at rest.

From the mathematical standpoint the development of a nonperturbative theo
volves the solution of a set of 16 algebraic equations for the steady-state elements
atomic density matrix for the four-level system. The problem is only to analyze
resulting awkward expression and to average this expression over a Maxwellian ve
distribution. In the present paper we study the particular case of two strong and two
fields interacting with a four-level system having some symmetry. The fourth de
equation can be reduced to a biquadratic one, and then the integration can be
analytically ~Fig. 1b!.

Let us consider the conversion of two strong incident wavesE1,3 resonantly inter-
acting with opposite transitionsgl,mn and the weak fieldE2 near the resonance with th
816 8160021-3640/97/120816-07$10.00 © 1997 American Institute of Physics
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transitiongn into the fourth output weak waveE4 ~inset of Fig. 1!. The electric field in
the cell is

E~r ,t !5 (
n51

4

En exp~ ivnt2 ikn•r !, ~1!

whereEn is the amplitude of thenth field, andvn ,kn are the frequency and wave vecto
The index n numbers the transitions,n51,2,3,4. The detuningsV15v12vgl ,
V25v22vgn , V35v32vmn , V45v42vml are assumed to be smal
v i j 5(Ei2Ej )/\ are the transition frequencies between energy levelsEi and Ej . The
indicesi , j 5m,n,g,l denote the energy levels. The frequency and wave vector of fo
wave satisfy the phase-matching conditionv45v12v21v3 , k45k12k21k3 .

The Maxwell equation for the output wave can be reduced to

dE4

dx
52

2p ivmldml

c
^rml&, ~2!

where x is the coordinate alongk4, dml is the matrix element of the dipole mome
operatord̂, c is the speed of light,rml is the coherence at the transitionml, and the angle
brackets denote averaging over the velocity distribution. We are to calculaterml as a
function of the input amplitudesE1,2,3, their wave vectorsk1,2,3, and the frequency de
tuningsV1,2,3.

With this goal we solve the equation for Wigner’s atomic density matrix

S ]

]t
1v•¹1g i j D r i j 5qjd i j 2 i @V̂,r̂ # i j , ~3!

FIG. 1. Conversion coefficientu^b4&u2 ~arbitrary units! as a function of the detuningV of the second field at
uG1u51, uG3u50.5, k1vT57.0, k2vT56.9, g50.2 ~a!, g50.02 ~b!, andg50.02 atuG1u5uG3u50.5 ~c! ~all
values are in ns21). The inset shows the level diagram of a four-level system interacting with two st
driving fields at opposite transitions~solid arrows! and with two weak fields~wavy arrows!. The dotted lines
show the forbidden transitions.
817 817JETP Lett., Vol. 66, No. 12, 25 Dec. 1997 Babin et al.
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wherev is the atomic velocity,g i j are relaxation constants,qj5Qjexp(2v2/vT
2)/vT

3p3/2

is the Maxwellian excitation function, andV̂52E(r ,t)•d̂/2\ is the interaction operator

To the zeroth approximation we can neglect both the weak fieldsE2,4→0. The
problem boils down to finding the populationsr j[r j j and coherences
r1[rglexp(2iV1t1ik1•r ), r3[rmnexp(2iV3t1ik3•r ) of a pair of separated two-leve
systems. The solution for a two-level system in a strong field is well known~see Ref. 7!.

Weak fields with amplitudesG25E2•dgn/2\ andG45E4•dml/2\ give rise to cross-
coherence between levels belonging to the opposite two-level systems at the a
transitions,r2[rgnexp(2iV2t1ik2•r ), r4[rmlexp(2iV4t1ik4•r ), and at the forbidden
transitions, r5[rgmexp(2iV5t1ik5•r ), r6[rnl exp(2iV6t1ik6•r ), where V55V1

2V4 , V65V12V2 , k55k12k4 , k65k12k2. To first order one can neglect the influ
ence of these fields on the populationsr j and coherencesr1,3. A set of 4 algebraic
equations for the off-diagonal matrix elements appears:

G2r22 iG1r6* 1 iG3r552 iG2~rg2rn!,

G4* r4* 1 iG3* r6* 2 iG1* r55 iG4* ~rm2r l !, ~4!

G5r52 iG1r4* 1 iG3* r25 iG2r3* 2 iG4* r1 ,

G6* r6* 1 iG3r4* 2 iG1* r252 iG2r1* 1 iG4* r3 .

Here G15E1•dgl/2\ and G35E3•dmn/2\ are the Rabi frequencies,Gn5gn1 iVn8 ,
g1[ggl , g3[gmn , g2[ggn , andg4[gml are the constants for relaxation of the cohe
ence at the allowed transition,g5[ggm and g6[gnl are the constants for forbidde
transitions, andVn85Vn2kn•v is the Doppler-shifted detuning.

The solution of Eq.~4! for the off-diagonal element at transitionml can be written
as

r4* 52 ib4G1* G2G3* 2 ia4G4* . ~5!

In the thin-medium approximation the generated field is small,uG4u!uG2u, so that one
may neglect the absorptiona4 and find the coefficientb4. We found the intensity of the
output wave by integrating Eq.~2! from x50 to the cell lengthL:

I 4~L !5u
2p2vmlL

c2\3
^b4&~dgl•e1!~dgn•e2!~dmn•e3!~dml•e4!u2I 1I 2I 3 , ~6!

whereen is the polarization of thenth wave, andI n5cuEnu2/8p is its intensity. We find
the coefficientb4 by comparing Eq.~4! to a solution of the form~5!:

b45
1

D S ~G51G6* !~rg2rn!2
uG1u22uG3u22G2G5

iG1*
r1*

2
uG3u22uG1u22G2G6*

iG3*
r3* D . ~7!
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Here the elementsrg ,rn ,r1 ,r3 are solutions for separated two-level systems. The
terminantD of set~4! is a polynomial of fourth degree in the velocity. The averaging
the coefficientb4 over velocity can be done by using the residue theorem in the Dop
limit knvT@uGnu,uVnu,g.

To examine the intensity dependence of the coefficientb4, let us consider the cas
of equal relaxation constants (g i j 5g), excitation of the lower level only, detunings of th
strong field such thatV1 /k15V3 /k3!vT , and equal wave numbers of the two we
fields. The conditionk25k4 ~and thereforek55k6) seems realistic for the down
conversion experiment of Ref. 3, where the difference of the wave numbers of the
fields was about 10%. One can ignore the differencek22k4 provided that
uk22k4u!(k2k4k5k6)1/4. In view of the phase-matching condition it is reasonable that
weak field detunings depend on a single parameterV: V25k2V1 /k11V,
V45k4V1 /k12V. If all the wave vectors are parallel, then the expression for^b4&
assumes a simple form:

^b4&5
N

ApvT

e2V1
2/k1

2vT
2E

2`

` C~y!

D~y!

dy

Gs1
2 1k1

2y2
, ~8!

C~y!54uG1u2iz1~g2 ik1y!@ uG1u22uG3u22~g2 i ~k2y2V!~g2 i ~k5y2V!!#.

Here y5k2•v/k22V1 /k1 , z5V2 ig, Gs1
2 5g214uG1u2 is the saturated width, and

N5Ql /g is the unperturbed population. The determinantD(y) turns out to be a function
of y2:

D~y!5k4y422k2y2D11D2
2 , ~9!

D2
25@z22~ uG1u2uG3u!2#@z22~ uG1u1uG3u!2#,

D15~m2/221!z22uG1u21uG3u2, m5
k1

k
5Fk2

k1
S 12

k2

k1
D G21/2

.2.

The limiting casem→` corresponds to a quasi-degenerate four-level systemk5,6→0.
The opposite limitm→2 meansk3→0. The detuning dependence ofuD2u takes its mini-
mum values at

V56uG1u6uG3u. ~10!

This is a consequence of the level splitting by the strong driving field. Note tha
uG1u5uG3u the two minima merge together. The reason is the equal Rabi splitting
each level.

The simple form of the determinant~9! allows calculating the mixing coefficient~8!
explicitly,

^b4&5
Ap

kvT

Ne2V1
2/k1

2vT
2

Gs1
2 1Gs1Rm1D2m2 Fg1 izm2

R
1

4izuG1u21g~m2z2/22D1!

D2
S 1

R
1

m

Gs1
D G ,
~11!

whereR5A2(D22D1), RR.0. The branch of the double-valued functionD2 should be
chosen according to the following rules:
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RD2,0 at P1,uVu, RD2>0 at uVu<P2 , sign~ID2!5sign V at P2,uVu<P1 ,

whereP65uuG1u6uG3uu.

The mixing coefficientu^b4&u2 calculated from Eq.~11! is plotted in Fig. 1a as a
function of the detuningV. The coefficient has 4 peaks at points given by~10! as for
motionless particles. At equal distances between quasi-energy levelsuG1u5uG3u the two
central peaks coalesce at the centerV50 ~Fig. 1c!. Besides the zeros ofD2, zeros of
R(V) may add two peaks near the center~Fig. 1b! arising from averaging over velocities
To interpret the twoadditionalpeaks let us plot the two positive zerosV (1,2)(y) of D as
a function of velocityy ~Fig. 2!. The two negative zeros are located symmetrically ab
the y axis. Thereturn points,a! where the derivativeV (1,2)8(y) equals zero, are places o
minimum variation of the eigenfrequencies. They therefore give the main contributio
the integral over velocity. The integration over each neighborhood adds one sharp p
the spectrum, as shown schematically at the right. The two upper return points deno
the large black circles are located at zero velocity. Two additional return points, sh
by the small black circles, appear at finite velocity and correspond to the additional
The return points can be found analytically from the conditions

dz

dy
50, D~y,z!50,

]D

]y
1

]D

]z

dz

dy
50. ~12!

At g50 this gives four solutions~10! at y50, namely, z56uG1u6uG3u. At real
y56AD1/k there are two additional solutions:

z562AuG1u2

m2 2
uG3u2

m224
. ~13!

The coefficientD1 becomes positive atuG1 /G3u>m2/(m224)5k1
2/k3

2; otherwise the
return point vanishes, and with it the additional peak.

The valueu^b4&u2 at exact resonance (Vn50, n51, . . . ,4) is shown in Fig. 3 as a
function of uG1u2. The sharp peak atuG1u5uG3u confirms the qualitative interpretation o
the effect as a crossing of quasi-energy levels. The inset in Fig. 3 illustrates the

FIG. 2. Two positive solutionsV (1,2)(y) of the equationD(y,V)50 as a function ofy/vT . The other two zeros
are symmetric:V (3)52V (1),V (4)52V (2). The Maxwellian distribution is shown by the dotted curve.
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where the cross-transition from the upper sublevel of levelg to the upper sublevel o
level n has the same frequency as the transition between their lower sublevels. Co
rently, the same resonance is achieved for the transitionm–l . In this case only 3 peaks
remain in the spectrum~Fig. 1c!, with a predominant maximum at the center. The cro
ing conditionuG1u5uG3u brings about the maximum conversion efficiency in the inte
sity dependence.

The splitting effect is evident from experimental results3,4 on resonant four-wave
mixing in Na2. The main feature is saturation of the output power as a function of on
the strong fields. The experimental conditions of Ref. 3 generally satisfy the a
model: ~1! a down-conversion level schemev4,v1 ~see inset, Fig. 1! with k1vT57.0
ns21, k2vT56.5 ns21, k3vT55.2 ns21, k4vT55.7 ns21; ~2! the interaction region is
short enough~about 1 cm! that the model of thin media can be employed;~3! the
estimated level parameters are Nl;1012 cm23@Nn;1011 cm23@Ng ,Nm ;
gm.gg;0.2 ns21, gn.g l;0.02 ns21. A slightly noncollinear geometry~mixing angle
u;1022) leads to an effective broadeningDv;kvT•u;0.1 ns21. Another factor is the
usual jitter of laser frequencies, especially for dimer and dye lasers,Dv;0.2–0.4 ns21.
Thus, the effective valueg50.3–0.6 ns21 seems reasonable;~4! the maximum field
values estimated from the focusing geometry,uG1umax;1 ns21, uG2umax;0.2 ns21, and
uG3umax;0.5 ns21, nearly correspond to the condition of two strong fields.

The resonance conditionuG1u5uG3u may result in peaks in bothb4(I 1) andb4(I 3).
If uG1umax.uG3umax, the peak is seen only inb4(I 1). The width of the peak is determine
by the decay rateg. Since in the experimentg;uG3umax, the peak is wide~Fig. 3b! and
gives a smooth saturation curveI 4(I 1) ~Fig. 3c!, in agreement with the experimental da
~boxes in Fig. 3!. At the same time, there is no saturation forI 4(I 3) in both theory and
experiment. Under the opposite experimental condition,uG1umax,uG3umax ~Ref. 4!, the
behavior ofI 4(I 1) and I 4(I 3) changes.

Thus the model explains qualitatively the main features of the measured satu
curves. To observe the sharp resonances arising from Rabi splitting, stabilization o

FIG. 3. Conversion coefficientu^b4&u2 ~in arbitrary units! versus uG1u2 at uG3u50.5, V50, k1vT57,
k2vT56.5: g50.06 ~a!, g50.6 ~b!; intensity I 4 ~arb. units! versusuG1u2 at g50.6 ~c!. The parameters for~b!
and~c! correspond to experiment; all values are in ns21. The boxes denote the experimental points from R
3. The inset illustrates the Rabi splitting of dressed states.
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frequencies seems to be important. To increase the efficiency of conversion int
fourth wave it is necessary to tune the laser frequencies to the corresponding peak
optimum atVn50 corresponds to equal Rabi frequenciesuG1u5uG3u.

The authors are grateful to S. G. Rautian, A. M. Shalagin, and M. G. Stepano
fruitful discussions and to B. Wellegehausen and A. A. Apolonsky for clarifying
details of their experiments. This work was partially supported by the RFBR, Gr
96-02-00069G and 96-15-96642, and Deutsche Forschungsgemeinschaft, Grant W
18-1.

a!Or ‘‘return frequencies,’’ as they are called in the theory of three-level system with large Doppler widt8
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Precompression of matter during radiative energy
transfer in a steady-state thermonuclear burn wave

S. Yu. Gus’kov and L. P. Feoktistov
P. N. Lebedev Physics Institute, Russian Academy of Sciences, 117924 Moscow, Ru

~Submitted 28 October 1997!
Pis’ma Zh. Éksp. Teor. Fiz.66, No. 12, 783–786~25 December 1997!

It is shown that precompression of matter ahead of the thermonuclear
burn wave front can occur in the central volume of a multilayer cylin-
drical system under conditions of radiative energy transfer outside the
region of wave propagation. The degree of compression is sufficient for
the development of a self-maintained wave of fusion reactions.
© 1997 American Institute of Physics.@S0021-3640~97!00724-X#

PACS numbers: 28.52.Cx, 44.40.1a

1. From the standpoint of initial energy costs one of the most economical versio
a steady-state fusion reaction with unlimited intensification in terms of energy is a
monuclear burn wave in a cylindrical system under conditions such that a portion o
energy released is converted into thermal radiation and this radiation is used for pr
pression of thermonuclear fuel ahead of the wave front.1 The following such system is
being studied: two infinitely long coaxial cylindrical shells of matter consisting of he
elements, the inner shell containing the thermonuclear material and the gap betwe
shells being filled with matter consisting of light elements. The conversion of the rele
thermonuclear energy into thermal radiation occurs in the inner shell and radiative
fer occurs along the gap between the cylinders.

In the present letter, a theoretical groundwork is laid for the possibility of initia
and the conditions of propagation are determined for an ‘‘external’’~with respect to the
burn region! wave of radiative energy transfer which provides the precompressio
thermonuclear matter that is required for the development of a stationary burn wa

2. Without going into the specific method of initial ignition~this can be irradiation
with a laser pulse or ion beam!, we take as the conditions of propagation of a se
maintained wave of DT reactions the well-known conditions of development of a d
nation wave2 or a thermonuclear burn wave,3 which require that the parameterrr ~prod-
uct of the density of the matter by the radius of its cylindrical volume! and temperature
exceed the values

rcr c50.320.4g/cm2, Tc510 keV. ~1!

Moreover, we shall assume that the propagation of the wave is characterized by a d
degreeh of fuel burnup. Further, we shall assume, as is ordinarily done for pu
inertial systems, that neutrons do not deposit energy in the system, whereasa particles
are completely stopped in the burn region and the inner shell.
823 8230021-3640/97/120823-05$10.00 © 1997 American Institute of Physics
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Thus the problem is formulated as follows. The system contains a source of e
with thermonuclear energy release intensity in terms ofa particles that corresponds to th
above-indicated ignition parameters~1!. We are interested in the rate of heat trans
through the gap between the cylinders and the ratio of this rate and the velocity
‘‘conventional’’ burn wave that would propagate along an isolated cylindrical volum
DT matter with the prescribed parameters~1!. Is it possible for the rate of heat transfe
through the gap to exceed the velocity of a ‘‘conventional’’ burn wave under the a
tional requirement that the pressure in the gap will be sufficient for compression o
matter so that the ignition condition~1! is satisfied?

In the approximation of a uniform temperature distribution over the cross sec
the following equation of energy balance, established in the system after the burn
front passes, holds:

T(
j 51

3

Ajmj1SWr5eah
b

~11b!
m1 , ~2!

whereT is the temperature of the matter;Aj andmj are, respectively, the specific hea
and masses~per unit length! of parts of the cylindrical system~the indices 1, 2, and 3
refer to the DT material, the inner shell, and the gap between the shells, respect!;
m15pr 1

2r1 , m25p(r 2
22r 1

2)r2 , andm35p(r 3
22r 2

2)r3; r 1 , r 2 , andr 3 are, respectively,
the radii of the inner and outer surfaces of the inner shell and the inner surface o
outer shell;b is the ratio of the thermal energy of the matter to the kinetic energy and
be estimated from the self-similar solution for isothermal expansion of matter4 for a
cylindrical geometryb51/3(g21), g is the adiabatic exponent~ratio of specific heats!;
Wr54sT4/c is the energy density of the equilibrium radiation,s51.0331024

ergs/cm2
•s•keV4 is the Stefan–Boltzmann constant;c is the speed of light;S5pr 3

2; and,
ea56.831017 ergs/g is the calorific value of the DT matter in terms ofa particles.

We shall now determine the region of characteristic parameters of the system
ceeding from the ignition conditions~1!. The density and temperature of the DT mater
compressed by the inner shell under pressure in the gap are, neglecting the energy
in the shell,

rc'r1S g11

g21D S m2

m1
D 1/~g21!

, Tc'T
A3m3

A1m1

b

~11b!
. ~3!

The compression time of the inner cylindertc>r 2 /vc (vc is the average velocity of the
shell material toward the center! is

t'r 2F ~11b!r2

~g21!~R221!W3
S 11

m3

m2
D D

r 2
G 1/2

; ~4!

D5r 22r 1 is the thickness of the inner shell,R5r 3 /r 2, W35A3Tr3 is the internal
energy of the matter in the gap between the shells. This approximation is valid fo
very high ratiosm2 /m1<10220. Assuming that the degree of burnup is 20% and,
definiteness,m2 /m1510, r150.2 g/cm3 ~density of DT ice!, r2520 g/cm3, andr352
g/cm3, we obtain that according to Eq.~3! the parameterrcr c50.4 g/cm2 corresponds to
massesm1'231022 g/cm andm2'231021 g/cm with the aspect ratio of the inne
824 824JETP Lett., Vol. 66, No. 12, 25 Dec. 1997 S. Yu. Gus’kov and L. P. Feoktistov
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shell r 2 /D'20 andr 2'0.18 cm. As a result of the energy balance equation~2!, the
second ignition conditionTc510 keV is satisfied withT52 keV andm3 /m1'12.5,
which corresponds toR'1.5. For higher values of the parameterR a higher ignition
temperature is reached with a lower temperature in the gap:Tc'14 keV andT'1.4 keV
for R'2 andTc'16 keV andT'1 keV for R'2.5.

3. We now proceed directly to the problem of heat transfer along the gap bet
the shells. The transfer equation is

A3m3

]T

]t
5

]

]xS x
]Wr

]x D2aWr

c

4

2p~r 31r 2!

p~r 3
22r 2

2!
, ~5!

wherex[Lgc/352(r 32r 2)c/3 is the thermal conductivity, which in the case of rad
tive transfer in the gap between the shells is determined by a geometric factor, sin
geometric radiative transfer lengthLg under these conditions is much smaller~by more
than an order of magnitude! than the material transfer length;a(T,r)[qs /qr is the
‘‘albedo’’ of the shell — the ratio of the energy flux transferred by the radiational ther
conductivity in the shell and converted into internal energyqs of the vaporized materia
to the equilibrium radiation fluxqr .

Setting in Eq.~5! x;Vxt, we obtain the following simple estimate for the rate
heat transfer along the gap between the shells:

Vx5F2

3

r 2

t
c~R21!G1/2S Wr

Ws11Ws21W3
D 1/2

, ~6!

whereWs11Ws25 (ct/2r 2(R21)) aWr is the specific internal energy of the vaporize
parts of the shells. We note that the heat-transfer rateVx increases as the shell albed
decreases.

Let us examine in greater detail the process of vaporization of the shells and
estimate the ‘‘albedo.’’ Radiative transfer in the shell material consisting of heavy
ments is determined by the material path length, which can be represented as a pow
function of the temperature and density of the materialLr5aTn/rm. For definiteness, we
hall assume that the shells are made of the same material. The radiation flux into
shell can be approximately determined as

qs5x
]Wr

]x
'S 4

41nDLrc

3

Wr

h
, ~7!

whereh is the thickness of the layer of vaporized matter

h'qst/Ws , ~8!

Ws5AsTrs is the internal energy of the vaporized shell material. Combining Eqs.~7! and
~8!, it is easy to obtain an expression for the albedo and the rate of increase o
thickness of the layer of vaporized shell material:

a'F4

3S 4

41nDLr

ct

Ws

Wr
G1/2

, vh'
h

t
5F1

3S 4

41nDWr

Ws
G1/2

. ~9!
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The necessary condition for rapid radiative transfer is that the gap must not be
with the vaporized heavy-element shell matter. This condition is satisfied if the ra
increase of the thickness of the layer of vaporized matter is less than the rate at whic
material is removed into the volume of the shell by the shock wave:

vh<vs5F2S g21

g11D S Ws

rs0
D G1/2

,

wherers0 is the initial density of the shell material (rs05r2). The expression forvh in
Eq. ~9! reduces this condition to

1

3S 4

41nDLr

ct
<S g21

g11D 2Ws
2

rs0c2Wr

. ~10!

When the condition~10! is satisfied, a region of vaporized matter is formed at
boundaries of the shells. The pressure in this region equals the pressure of the m
the gapWs5W3 ~‘‘Sakharization’’ process!. A wave of radiative heat conduction prop
gates into the shell along this vaporized matter.

Comparing Eqs.~9! and~10! shows that the minimum value of the albedo, which,
shown above, corresponds to the maximum rate of heat transfer along the gap, is r
whenvh5vs ~equality in the condition~10!!:

amin52S g21

g11

2W3
3

rs0c2Wr
2D 1/2

. ~11!

The rate of heat transfer along the gap between the shells should exceed the v
of the burn wave front at least during the compression of the inner shell by the pre
generated when heat wave heats up the material in the gap. Substituting expressio~11!
and ~4! into Eq. ~6! we find that the maximum rate of heat transfer along the gap~with
minimum albedo! over the compression time of the inner shell is

Vx5cS g21

g11

2Wr
2

rs0c2W3
D 1/4F j2

3~j12!G
1/2

, j5F2~g11!~R21!2~R221!

~11b!~11m3 /m2!

r 2

D G1/2

.

~12!

Finally, substituting expression~4! into Eq. ~10!, using the ‘‘Sakharization’’ condi-
tion Ws5W3, and taking the constant and exponents in the expression for radiation
length, respectively,a51023, n53, andm51, we find that the condition that the radia
tive transfer channel not be filled during the compression of the internal cylinder req

T<1.12F S g21

g11D r3
5r 2

2~R21!2

x2 G 1/11

.

For the system parameters which were determined in Sec. 2 the condition th
gap between the shells not be filled leads to the requirementT<1.2 keV. According to
Eqs.~12!, the rate of heat transfer along the gap isVx'1022c533108 cm/s, which is
approximately three times higher than the velocity of a ‘‘conventional’’ thermonuc
burn wave for the ignition conditions~1!.
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In summary, our theoretical analysis substantiates the possibility of a wave o
diative energy transfer propagating in a multilayer cylindrical system, permitting
propagation of a thermonuclear burn wave with precompression of the cold the
nuclear matter at the wave front.

This work was supported by Russian Fund for Fundamental Research Grant 9
16727.
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Observation of the plasma channel dynamics and
Coulomb explosion in the interaction of a high-intensity
laser pulse with a He gas jet

G. S. Sarkisov,a), V. Yu. Bychenkov, and V. T. Tikhonchuk
P. N. Lebedev Physics Institute, Russian Academy of Sciences, 117924 Moscow, Ru

A. Maksimchuk, S. Y. Chen, R. Wagner, G. Mourou, and D.
Umstadter
Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, MI 48109-209
USA

~Submitted 11 November 1997!
Pis’ma Zh. Éksp. Teor. Fiz.66, No. 12, 787–792~25 December 1997!

We report the first interferometric observations of the dynamics of
electron–ion cavitation of relativistically self-focused intense 4 TW,
400 fs laser pulse in a He gas jet. The electron density in a channel 1
mm long and 30mm in diameter drops by a factor of approximately 10
from the maximum value of;831019 cm23. A high radial velocity of
the plasma expansion,;3.83108 cm/s, corresponding to an ion energy
of about 300 keV, is observed. The total energy of fast ions is estimated
to be 6% of the laser pulse energy. The high-velocity radial plasma
expulsion is explained by a charge separation due to the strong pon-
deromotive force. This experiment demonstrates a new possibility for
direct transmission of a significant portion of the energy of a laser pulse
to ions. © 1997 American Institute of Physics.
@S0021-3640~97!00824-4#

PACS numbers: 52.50.Jm, 52.20.Hv, 42.65.Jx

A number of proposed applications of ultrahigh-intensity, short laser pulses im
laser guiding for distances much longer than the Rayleigh length. Guiding of intense
pulses in underdense plasmas due to the relativistic self-focusing was first repor
Ref. 1 and then studied in detail in Refs. 2–6. However, the dynamics of plasma ch
at high laser intensities and phenomena associated with its expansion have not ye
addressed. This letter presents new experimental results on the dynamics of the
channel produced by an ultrahigh-intensity, short laser pulse and offers a theo
interpretation for these results.

The experiment was performed using the 10 TW Ti:sapphire–Nd:glass laser s
based on chirped-pulse amplification,7 developed at the Center for Ultrafast Optical S
ence, University of Michigan. The laser operates at the wavelengthl51.053mm and
produces 3-J, 400-fs FWHM pulses with an intensity contrast of 105. The laser beam, 50
mm in diameter, was focused with an off-axis parabolic mirror (f /3.3, f 516.5 cm! to a
10 mm spot with a vacuum intensity 631018 W/cm2. Laser beam was focused in
high-back-pressure~7 MPa! He gas jet expanding through a nozzle 1 mm in diame
828 8280021-3640/97/120828-07$10.00 © 1997 American Institute of Physics
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The optimal conditions for beam guiding correspond to focusing of the laser on th
edge, with a He atom densitynHe.331019 cm23. The jet thickness was about 1 mm.
two-channel optical setup has been used for simultaneous recording of interferom
and shadow plasma images. The probe beam was split from the main beam, prop
through an adjustable optical delay, and was incident on a plasma in the direction
pendicular to the interaction beam. The plasma was imaged using a single spheric
with angular aperture67° on two cooled 12-bit CCD cameras. The spatial and temp
resolution was 10mm and 400 fs, respectively. For the electron density measuremen
air-wedge shearing interferometer8 was used.

The plasma evolution was investigated in the time interval from22 to 155 ps. As
t50 we take the time of arrival of the maximum laser intensity in the focal planez50.
The first signs of gas ionization were observed att522 ps. This indicates the lase
intensity is above the He ionization threshold,;1015 W/cm2, at that time.9 We observed
a fast gas ionization in the cone of laser convergence, which is 8.6°. It propagates
the laser axis approximately at the speed of light until it reaches the rear side of th
On the time of ionization~from 22 to 13 ps! the front part of interferogram is blurre
because of the fringe motion during the exposure time. The first signatures of p
channel formation~fringe bending on the laser axis! were observed att50 ps. The
channel length increases with subluminal velocity up to 1000mm.

The interferometric and shadow plasma images taken att520 ps are shown in Fig
1 for a laser energy of 1.7 J~4.3 TW!. The local opposite displacement of the interferen
fringes in a narrow axial region in the interferogram indicates a decrease of the
shift in this region and hence a decrease of the electron density. This region is man
in the shadow image by a bright narrow line, which is due to refraction of the probe b
on the high radial electron density gradient. The two-dimensional reconstruction o
electron density profile fort535 ps~assuming the axial symmetry of a plasma! for the
same laser conditions is presented in Fig. 2a. The maximum electron density is 7.631019

cm23 at a radius of.20 mm and the depth of the plasma channel is up to 80–90%.
accuracy of measurement of the channel depth is limited by the Abel inversion proce

The dynamics of electron density profile near the focal plane (z5100 mm! is shown
in Fig. 2b. The electron density gradient at the channel walls reaches the value of 531022

cm24 at a time of 7 ps and remains practically the same out to 55 ps. The evolution o
lineal electron density~number of electrons per unit lengthNe52p*rdrne(r )) at
z5100 mm and the evolution of the mean electron density in the same cross sectio
presented in Fig. 3a. After the initial phase of fast ionization~from 22 to 0 ps! the
number of electrons remains constant~from 0 to 9 ps!, and then ionization starts again. A
the same time the average electron density starts to decrease. These features
agreement with the temporal behavior of the plasma radius atz5100 mm ~shown in Fig.
3b!. It remains approximately the same from 0 to 9 ps then the plasma begins to e
radially with almost constant velocity. If we define the plasma edge as a region whe
electron density equals 531018 cm23 ~17% ionization!, then the expansion velocity
equals 3.83108 cm/s ~curve 1 in Fig. 3b!. The region of higher degree of ionization
1.531019 cm23 ~50% ionization!, expands at a lower velocity;2.53108 cm/s~curve2
in Fig. 3b!.

We attribute the plasma expansion to ionization of the ambient gas by fast
829 829JETP Lett., Vol. 66, No. 12, 25 Dec. 1997 Sarkisov et al.
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expelled from the channel. Then the expansion of plasma edge~with 17% ionization! can
be related to the propagation of fast ions with an energy of about 300 keV, while
expansion of the main plasma volume~with 50% ionization! corresponds to 130 keV
ions. This assumption of collisional ionization of the gas by fast ions also explain
;10 ps delay time, which is the time needed for fast ions to penetrate throug
laser-ionized plasma volume and reach the ambient gas.~The velocity of the plasma
profile at a given density is lower than the actual ion velocity on account of the radia
expansion and the decrease of the ion flux. However, we neglect this difference in p
paper and, therefore, underestimate the ion energy.!

The channel diameter~Fig. 3b! also changes with time. Up to timet59 ps we do
not observe a significant variation of channel diameterD;10–15mm, which is at the
limit of our spatial resolution. Att.9 ps the channel diameter increases to 25235 mm
at a velocity of about 63107 cm/s.

The initial laser beam channeling can be attributed to the effect of relativistic
focusing of intense laser pulse.1 The critical power for relativistic self-focusing
Pc517nc /ne GW ~wherene is the electron density andnc is the critical density! corre-
sponds under our conditions to 280 GW, which is more than 10 times lower tha
actual laser power. Therefore we speculate that a substantial part of the laser po
trapped in a narrow channel near the laser axis. The amount of trapped power depe

FIG. 1. Interferometric~a! and shadow~b! images of a plasma at time 20 ps after focusing 1.7 J, 4.3 TW la
pulse. The 100mm spatial scale is shown in left corner. The vertical line in the shadow image marks
position of focal plane. Arrows indicate the plasma channel. The horizontal arrow indicates the direction
interaction laser beam.
830 830JETP Lett., Vol. 66, No. 12, 25 Dec. 1997 Sarkisov et al.
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the focusing conditions and it is about 50% in the present case. This estimate is de
from the measurement of the radial energy distribution in the output plane of the
channel. The actual diameter of the laser channel is probably smaller than the instr
tal resolution and was not measured directly in the experiment.~Below we estimate the

FIG. 2. Two-dimensional electron density distribution,ne(r ,z), at time 30 ps~a!, and the evolution of the radia
electron density profile,ne(r ,t), at the axial positionz5100 mm from the focus~b!.

FIG. 3. a: Temporal evolution of the linear electron density,Ne(t), ~curve1! and the mean electron density~2!
in the cross section located atz5100 mm from the focal plane. b: Temporal evolution of the plasma radius
z5100 mm for thene5531018 cm23 ~1! and 1.531019 cm23 ~2!, and the temporal evolution of the plasm
channel diameter~3!.
831 831JETP Lett., Vol. 66, No. 12, 25 Dec. 1997 Sarkisov et al.
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channel radius asr 0'3mm by relating it to the fast ion energy.! The rest of laser powe
is not trapped and ionizes gas in the laser convergence cone. The measured initia
ionized plasma radius in the focal plane isr p.40 mm.

The laser pulse exerts a radial ponderomotive force on electrons, expels them
the axis, and forms an electron channel. Its depth,dne /ne5le

2¹ r
2A11a2/2, is about 10%

for a laser channel radiusr 0'3mm and a2'5. This formula follows from Poisson’s
equation and the balance between the electrostatic and ponderomotive potentials
le5c/vp is the electron inertia length,vp is the electron plasma frequency, an
a50.8531029l@mm#AI @W/cm2# is the dimensionless laser field vector potential in
channel. The ions do not have time to move during the passage of the laser pulse a
electrons return to their original position when the pulse ends. However, the laser
supports the electron channel and because of that loses its energy for ion accele
Then the ions in the wakee of the laser pulse acquire a kinetic energy and begin to
in radial direction. This effect, known as ’’Coulomb explosion,’’10 has been discussed a
a mechanism of plasma channel formation.4,5

For a relatively short laser pulse,t,r 0 /ui;1 ps, the velocity acquired an ion~with
the massM ) from the laser pulse can be estimated asui5(Z/M )mc2¹ r*dtA11a2/2.
Then one finds the ion kinetic energy

e i5
Z2

2M
m2c4S ¹ rE dtA11

a2

2 D 2

, ~1!

and the corresponding pulse energy loss per unit length,dE/dz.22p*rdrnie i . Accord-
ing to the observations there is a characteristic maximum ion energy;300 keV. Formula
~1! also predicts the high-energy cutoff. For estimates we assume a Gaussian pulse
in time and over the radius,I 5I maxexp(2t2/t22r2/r0

2), with t.240 fs. Then to accom-
modate the maximum ion energy of 300 keV with 50% laser energy trapping in
channel, the laser channel radius in Eq.~1! has to ber 0.3mm, which determines the
maximum laser intensity,I max;8.331018 W/cm2. These estimates of the channel radi
and laser intensity qualitatively agree with the theory of relativistic self-focusing Re
and 11. The group of fast;300 keV ions is responsible for the preionization of ambie
gas~cf. Fig. 3b, curve1!. Equation~1! predicts a rather wide energy spectrum of the io
with mean energy of;130 keV. These ions are initially concentrated in a cylinder
radiusR;5 mm and then begin to expand radially. These ions are responsible fo
bulk of the ionization of the ambient gas~50%, cf. Fig. 3b, curve2!. The characteristic
energy deposited into these ions isdE/dz; 0.5 J/cm, which constitutes about 6% of th
laser pulse energy trapped in a channel 1 mm in length.

There are also relatively low-energy ions~about 10 keV! expelled from a larger
radius,r ch'15 mm, which are responsible for the slow dynamics of the plasma chan
They are accelerated by the low-intensity wings of the untrapped part of the laser
According to Eq.~1!, the intensity required for acceleration of these ions is below 118

W/cm2.

This regime of plasma channel formation due to the ion acceleration~‘‘Coulomb
explosion’’ according to the terminology of Ref. 10! is completely different from the
mechanism of plasma thermal heating and electron-impact ionization. In the latter
832 832JETP Lett., Vol. 66, No. 12, 25 Dec. 1997 Sarkisov et al.
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plasma expands with the ion acoustic velocity.2 The electron temperatureTe can be
estimated as about 100 eV, according the measurements of Ref. 5 for conditions s
to the present experiment. Therefore the ion acoustic velocitycs5AZTe /M;73106

cm/s in our experiment is less than one-tenth of the ion expansion velocity. We
disagree with the conclusion of Ref. 5 that the plasma expands at the ion ac
velocity, since the conditions of that experiment are similar to ours.

Initially the accelerated ions propagate through a plasma (R,r p;40 mm! and can-
not be seen with our diagnostic tools. After a delay timetd5r p /ui;10 ps they penetrate
into the neutral gas (r .r p) and begin to ionize it. Although the ionization consumes
negligible part of ion energy, it proceeds very efficiently because the fast ion velo
ui;(2 –4)3108 cm/s, is comparable to the velocity of bound electrons in the hel
atom. These conditions correspond to the maximum of the ionization cross-se
s i;3310216 cm2 ~Ref. 13!. It is about an order of magnitude larger than the cro
section of He ionization due to electron collisions.

The electron density at the radiusr behind the group of fast ions can be estimated
ne'nHe

2 r 0
2s i /r . This corresponds to about 10% ionization atr;100 mm. The degree of

preionization decreases withr as the fast ion flux decreases. The 100 eV electrons
accompany fast ions can also contribute to the gas ionization at a level of a few pe
According the same formula, the main~130 keV! ions that penetrate into the preionize
gas somewhat later produce three times higher ionization at the same distance. Th
may expect about 50% ionization forr;100 mm, in agreement with experimental re
sults. The total number of the electrons behind the ion front increases linearly with
while the average electron density is inversely proportional tot. All these qualitative
relations as well as the number of the electrons agree with data shown in Fig. 3a.

In conclusion, the temporal evolution of the plasma channel created due t
relativistic self-focusing of a 4 TW, 400 fs laser pulse has been observed for the first t
using the interferometric technique with high spatial and temporal resolution. By c
parison of the experimental data with theoretical estimates we demonstrate that the
nel evolution is dominated by the Coulomb explosion effect, with the subsequent
etration of high-energy ions into the ambient neutral gas. This experiment reveals
efficient mechanism of direct deposition of the laser energy into the high-energy
(;6% for our conditions!, which can play a fundamental role in the absorption sh
high-intensity laser pulses. We estimate the fast ion energy as;300 keV or 80 keV/
nucleon, which is comparable to that observed in a solid-target experiment.14
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work was supported by NSF PHY 972661, NSF STC PHY 8920108, DOE/LLNL s
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Critical dynamics of spin systems in the four-loop
approximation

V. V. Prudnikov,a) A. V. Ivanov, and A. A. Fedorenko
Omsk State University, 644077 Omsk, Russia

~Submitted 29 October 1997!
Pis’ma Zh. Éksp. Teor. Fiz.66, No. 12, 793–798~25 December 1997!

A field-theoretic description of the critical dynamics of spin systems is
constructed. Using the Pade´–Borel summation technique, the dynamic
critical exponent for two- and three-dimensional systems is evaluated
directly in the four-loop approximation. The results are compared with
the values obtained for the dynamic exponent by Monte Carlo methods.
© 1997 American Institute of Physics.@S0021-3640~97!00924-9#

PACS numbers: 03.70.1k, 75.40.Cx

Renormalization group methods are widely used to describe the anomalous p
ties of the thermodynamic characteristics of systems undergoing second-order phas
sitions. Such methods make it possible to calculate the critical exponents characte
the asymptotic behavior of the thermodynamic and correlation functions near the c
temperature. Of these methods the most promising is the field-theoretic approach.1 It has
two important advantages. First, it makes it possible to use the powerful and conve
mathematical arsenal developed in quantum field theory. This is especially importa
calculating the high-order fluctuation corrections for second-order phase transitio
the basis of the perturbation theory. Second, it makes it possible to perform calcul
directly for d52, 3 in the form of an expansion in terms of the interaction vertex
magnetization fluctuations without using an« expansion («542d, whered is the di-
mension of the system!. Thus far calculations of the static critical exponents describ
the equilibrium behavior of a system near a critical point have been performed o
basis of this approach for thegw4 model in the six-loop approximation.2 The values so
obtained for the exponents are considered to be most accurate. However, calcu
with this degree of accuracy are not available for the nonequilibrium properties of
tems undergoing second-order phase transitions. This is due, above all, to the fact t
volume of calculations grows rapidly even in the lowest orders of perturbation the
The most accurate results have been obtained in Ref. 3, where the calculations
performed in the three-loop approximation.

In the present letter we construct a field-theoretic description of the nonequilib
critical behavior of ferromagnets in the four-loop approximation. The model consists
classical spin system that is thermodynamically equivalent to theO(n) symmetric
Ginzburg–Landau model with effective Hamiltonian

H5
1

2 E ddxS r 0w21~¹w!21
g0

12
w4D , ~1!
835 8350021-3640/97/120835-06$10.00 © 1997 American Institute of Physics



eld

point

be

s

hich
ion as

ontain
int by

lized

ss.
tions
whered is the dimension of the system,w(x,t) is an-component order parameter~mag-
netization!, r 0;T2Toc (Toc is the critical temperature determined by the mean-fi
theory!, andg0.0 is the interaction vertex of the magnetization fluctuations.

The dynamical behavior of a magnet in the relaxation regime near the critical
is described by a Langevin-type kinetic equation for the magnetization:

]w

]t
52l0

dH
dw

1z1l0h, ~2!

wherel0 is a transport coefficient,z(x,t) is a random force, andh(x,t) is the external
magnetic field. It is known that its solution in the form of correlation functions can
obtained using a generating functional of the form

V5E D@w#D@c#expS 2Heff@w,c#1E whdddtD , ~3!

where an auxiliary fieldc and the effective Hamiltonian

Heff5E ddxdtS l0
21w21 icS l0

21 ]w

]t
1

dH
dw D D ~4!

have been introduced. The magnetization correlation function is then determined a

G~x,t !5^w~0,0!w~x,t !&5
1

V

d2V

dh~0,0!dh~x,t !
. ~5!

Instead of the correlation function it is more convenient to study its vertex part, w
can be represented in the Feynman diagram formalism in the four-loop approximat

The four-loop diagrams are presented in the figure. The Feynman diagrams c
a d-dimensional integration over momenta and are characterized near the critical po
an ultraviolet divergence with pole-type singularities at large momentak. These poles
can be eliminated using a dimensional-regularization scheme in which renorma
quantities are introduced.4 We define the renormalized order parameter asw5Z21/2w0.
Then the renormalized vertex functions will have the generalized form

GR
~m!~k,v;r ,g,l,m!5Zm/2G~m!~k,v;r 0 ,g0 ,l0! ~6!

with renormalized coupling constantg, temperaturer , and transport coefficientl

g05m42dZgg, r 05m2Zrr , l0
215m2Zll21, ~7!

where the scale parameterm is introduced in order to make the quantities dimensionle
The factorsZ are determined from the requirement that the renormalized vertex func
be regular, as reflected in the normalization conditions:
836 836JETP Lett., Vol. 66, No. 12, 25 Dec. 1997 Prudnikov et al.
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]G~2!~k!

]k2 U
k250

51, Z2G~4!uki505m42dg, ~8!

Z2G~2,1!uki ,pj 5051, Z
]G~2!~k,v!

]~2 iv!
U

k2,v50

5l21. ~9!

We carried out this regularization procedure for the vertex functions in the four-
approximation. For this purpose we represent as follows the vertex functions appea
the normalization conditions:

G~4!uki505g01A1g0
21A2g0

31A3g0
4 , ~10!

]G~2!

]k2 U
k250

511B1g0
21B2g0

31B3g0
4 , ~11!

]G~2!

]~2 iv!
U

k50,v50

511C1g0
21C2g0

31C3g0
4 , ~12!

where the coefficients are sums of the corresponding diagrams or their derivativ
zero external momenta and frequencies. The values of these coefficients forn51 are
presented in Table I. The diagrams in the figure which form the coefficientC3 decompose
into 48 4d-fold integrals, whose numerical values are given in Table II. We write
expansion of the quantitiesg0 , Z, andZl in terms of the renormalized coupling consta
g as

g05g1b1g21b2g31b3g4, ~13!

Z512z1g22z2g32z3g4, ~14!

FIG. 1. Four-loop diagrams contributing to the vertex function. The solid lines represent the fun
G0(k,v)5(r 01k22 iv/l0)21 and the crosses represent the functionC0(k,v)52l21

3((r 01k2)21(v/l0)2)21.
837 837JETP Lett., Vol. 66, No. 12, 25 Dec. 1997 Prudnikov et al.
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527
580
776
378
691
820
650
377

981
314
470
866

730
485
121

760
Zl511d1g21d2g31d3g4, ~15!

where the unknownsbi , zi , anddi are expressed in terms ofAi , Bi , andCi with the aid
of the normalization conditions. The next step in the field-theoretic approach is to d
mine the scaling functions that determine the differential equation of the renormaliz
group:

Fm ]

]m
1b

]

]g
2rg r

]

]r
1lgl

]

]l
2

m

2
gfGGR

~m!50. ~16!

To discuss the dynamical behavior we shall require only the functionsb(g) andgl(g):

b~g!52~42d!F] ln Zgg

]g G21

, gl~g!5b~g!
] ln Zl

]g
. ~17!

TABLE I. Values of the coefficients in the expressions for the vertex functions.

Coefficient d52 d53

A1 21.0 21.0
A2 1.3750699 1.2222222
A3 22.3054548 21.7053479
B1 0.0084916 0.0054869
B2 20.0116591 20.0070112
B3 0.0179966 0.0101430
C1 0.0152547 0.0096865
C2 20.0213740 20.0126257
C3 0.0352450 0.0169420

TABLE II. Values of the four-loop diagrams.

N d52 d53 N d52 d53 N d52 d53

1 0.165307 0.104869 17 0.004131 0.001108 33 0.007463 0.002
2 0.009670 0.004166 18 0.003307 0.000923 34 0.029449 0.014
3 0.022921 0.008180 19 0.003343 0.000932 35 0.070254 0.039
4 0.059714 0.029674 20 0.034609 0.019410 36 0.006421 0.002
5 0.003943 0.003264 21 0.034135 0.019189 37 0.012723 0.004
6 0.010076 0.015354 22 0.011294 0.004177 38 0.007370 0.003
7 0.028777 0.014330 23 0.004644 0.001928 39 0.027311 0.011
8 0.016314 0.011627 24 0.005891 0.000706 40 0.013297 0.005
9 20.006853 20.002506 25 0.010167 0.003421 41 0.007464 0.003
10 0.002744 0.000823 26 0.003535 0.000862 42 0.010303 0.003
11 0.009238 0.003444 27 0.002471 0.000551 43 0.023519 0.009
12 0.010685 0.003745 28 0.011209 0.003898 44 0.010905 0.003
13 20.012280 20.004883 29 0.003405 0.001077 45 0.038420 0.023
14 20.012280 20.004883 30 0.011007 0.003815 46 0.062921 0.033
15 0.017180 0.007527 31 0.012666 0.007379 47 0.021633 0.007
16 20.014199 20.005471 32 0.009667 0.004177 48 0.011691 0.004
838 838JETP Lett., Vol. 66, No. 12, 25 Dec. 1997 Prudnikov et al.
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The explicit form of the first of these functions in the six-loop approximation was
tained in Ref. 2. The dynamic scaling functiongl(g) in the four-loop approximation,
taking account of Eqs.~7!–~15!, assumes the form

gl~g!52~42d!g@2~B12C1!1~3B223C224A1B114A1C1!g1~4B324C3

29A1B219A1C2110A1
2B1210A1

2C124A2B114A2C128B1D116B1
2

22C1
2!g2#. ~18!

Substituting the values of the coefficients from Table I, we obtain

gl~g!50.027053g220.004184g310.022130g4, ~19!

for d52 andn51 and

gl~g!50.008399g220.000045g310.020423g4, ~20!

for d53 andn51. The dynamic exponentz characterizing the critical retardation of th
relaxation processes is determined as

z521g~g* !, b~g* !50, ~21!

where the values of the fixed points in the four-loop approximation2 are

g* ~d52!51.8836, g* ~d53!51.4299. ~22!

The series obtained are asymptotically convergent. We used the Pade´–Borel method to
sum them.2 Using @3/1# approximants, we obtained the following values of the expon
z:

z~4!~d52!52.093, z~4!~d53!52.017

while in the preceding~three-loop! approximation its values werez(3)(d52)52.066 and
z(3)(d53)52.016, respectively. The small change in the exponentz for three-
dimensional systems suggests that the higher-order corrections will give only very
changes, falling outside the accuracy of the experiment. For two-dimensional sys
however, there are no grounds for such an assertion.

Let us now compare our results with those obtained in other works. Monte C
simulation of the three-dimensional Ising model gives the following valu
z51.9960.03,5 2.1060.02,6 1.9760.08,7 and 2.0460.01.8 The field-theoretic approach
in the two-loop approximation with interpolation of the 11« and 42« expansion results
givesz52.02.9 Hence one can see that, with the exception being Ref. 6, our value o
dynamic exponentz(4)(d53)52.017 is in good agreement with the results obtained
the works cited. We present the results of a computer simulation of the two-dimens
Ising model:z52.1460.02,5 2.1360.03,10, 2.07660.005,11 2.2460.04,12 2.2460.07,13

and 2.1660.04;14 for the field-theoretic approach in the two-loop approximation w
interpolation of the 11« and 42« expansion resultsz52.126 ~Ref. 9! and the high-
temperature expansion givesz52.18360.005.15 Hence, one can see that for the tw
dimensional Ising model the values of the exponentz lie in a quite wide range
2.08<z<2.24 and our values are near the lower limit. However, our procedure
calculating the exponents is considered to be most accurate, so that the computed
839 839JETP Lett., Vol. 66, No. 12, 25 Dec. 1997 Prudnikov et al.



ms and
can serve, we hope, as standards for computer simulations of homogeneous syste
can be used for developing methods for simulating disordered systems.
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Characteristic features of the sorption of light atoms on
the surface of a single-layer carbon tubelene

I. V. Zaporotskova and A. O. Litinski 
Volgograd State University, 400062 Volgograd, Russia

L. A. Chernozatonski a)

Institute of Biochemical Physics, Russian Academy of Sciences, 117334 Moscow, Ru

~Submitted 18 July 1997; resubmitted 10 November 1997!
Pis’ma Zh. Éksp. Teor. Fiz.66, No. 12, 799–804~25 December 1997!

The mechanisms of sorption of H, O, C, and Cl atoms on the surface of
a single-layer carbon tubelene are studied, and a comparison is made
with the case of sorption of these atoms on graphite. Three versions of
the position of the adatoms above the surface were studied. A cyclic-
cluster model and an appropriately modified MNDO computational
scheme are used. The optimal geometry of the sorption complexes and
the sorption energies are obtained. The high hydrogen accumulation
efficiency in a material consisting of single-layer carbon nanotubes is
explained. ©1997 American Institute of Physics.
@S0021-3640~97!01024-4#

PACS numbers: 68.45.Da, 81.05.Ys

A great deal of attention is now being devoted to experimental and theore
investigations of recently discovered new forms of carbon — nanotubes~or tubelenes!.1–6

These tubes, ranging up to several microns in length and several nanometers in dia
consist of one or several graphite layers, depending on the preparation conditions.
lene structures are classified using the symbols (n,m) proposed by Hamadaet al.4 An
(n,m) tube, characterized by chiral symmetry, is obtained by twisting a graphite
ment so that the last hexagon from a row lies above the first hexagon with displace
mA11nA2, whereA1 andA2 are primitive translation vectors of the graphite fragme
The following names have been adopted for tubelenes exhibiting cylindrical symm
(n,n) tubelene — armchair-type, (n,0) tubelene — zigzag-type. Theoretical investig
tions have shown that depending on the diameter and chirality tubes can posses
metallic, for example, (n,n) tubes, and semiconductor conductivity.5,6 At present, a
structure in which the elastic properties and conductivity of individual multila
nanotubes6,7 and bundles of single-layer tubes;1 nm in diameter8 has been prepared an
investigated.

In the present letter we call attention to the fact that on account of their stro
curved surface tubelenes, just as fullerenes~which attach to themselves different atom
radicals and functional groups, and on whose basis compounds with different ph
chemical properties are obtained6!, can be of great interest as a strong sorbent of ato
The sorption properties of small-diameter nanotubes, comparable in size to C60 and C70,
are calculated. The characteristics of sorption of light atoms~adatoms! on the surface of
841 8410021-3640/97/120841-06$10.00 © 1997 American Institute of Physics
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single-layer~6, 6! carbon tubelene with a diameter of 8 Å are determined — a compari-
son with the case of sorption of the same adatoms on graphite showed that the sorp
highly efficient. A more detailed calculation is made of the sorption of hydrogen at
on the surface of a nanotube in the ratio C4 /H, which suggested an explanation of th
recently observed high efficiency of hydrogen accumulation in a carbon nano
material.9

Previously, calculations of the electronic structure of nanotubes were perfo
using methods such as theab initio method,10 the local-density approximation,11 cyclic
cluster in Hückel-type computational schemes,12 the extended Hu¨ckel method, and
others.5 In the present letter we present MNDO~modified neglect of diatomic overlap!
calculations performed with a cyclic-cluster model13 for the most often observed one
layer tube8,9 — the armchair type. Cyclic boundary conditions in the direction of
nanotube axis were imposed on the molecular orbitals~MOs! of a cylindrical expanded
unit cell ~EUC!, containing 96 atoms and consisting of four carbon armchair chains~Fig.
1!. The matrix elements of the one-electron Hamiltonian~Fock operator —F) of the
EUC in the MNDO approximation are13

Frq
AA5d rqUrr 1 (

r 8q8

~A!

Pr 8q8F ^rqur 8q8&2
1

2
^rr 8uqq8&G

1 (
B~ÞA!

F(
pt

~B!

Ppt^rqupt&2ZB^rquSBSB
&G , ~1!

Frt
AB5b rt

0~AB!Srt
AB2

1

2 (
r 8

A

•(
t8

B

Pr 8t8^rr 8utt8&, ~2!

wherer , q, r 8, andq8 ares-, p-, andd-type atomic orbitals localized on atom A;p, t,
p8, and t8 are atomic orbitals on atom B;Urr is the kinetic and potential energy of a

FIG. 1. Expanded unit cell of a~6, 6! nanotube.
842 842JETP Lett., Vol. 66, No. 12, 25 Dec. 1997 Zaporotskova et al.
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electron in atom A;d rq is the Kroneckerd-function; P is the density matrix~matrix of
bond orders!; ZB is the charge on a B atom;b rt

0(AB) is a resonance integral;S is the matrix
of interatomic overlaps;̂rr 8uqq8& and ^rqupt& are one- and two-center electron repu
sion integrals, respectively; and,sB ares-type atomic orbitals of atom B.

The imposition of cyclic boundary conditions on the MOs of the EUC reduces to
fact that the two-center integrals of the typeSrt

AB and^r AqAupBtB& in Eqs.~1! and~2! ~we
denote them asg(A, B!! can be calculated for each pair of atoms~A, B! within a prefixed
interaction radiusR0, i.e., at distancesRAB,R0. If for a given A P EUC and BP EUC
the distanceRAB.R0 and the translation vector of the EUC transfers an atom BP EUC
into an atom BP EUC such thatRAB<R0, then the functiong~A, B8) is calculated as
g~A, B!.

In our case the dimensions of the expanded unit cell~along the tube axis
L~EUC!58.4 Å! made it possible to chooseR0 such that interactions up to the thir
sphere of neighbors inclusively are taken into account, which, in contrast to previ
employed methods, makes it possible to make allowance for the nanotube curvatur
accurately.

Three versions of adsorption of atoms were studied: I! above a carbon atom, II!
above the center of the C–C bond, and III! above the center of the hexagon~Fig. 2!. The

TABLE I.

r ad, Es , QA r ad, Es , QA r ad, Es , QA

Å eV Å eV Å eV

I II III

Sorption on the surface of a~6,6! nanotube
H 2.1 4.7 0.67 1.5 4.0 0.62 1.6 4.5 0.7

O 2.0 4.9 21.98 2 2 2 1.5 2.6 21.99

C 1.8 9.4 1.31 2 2 2 1.5 5.1 1.3

Cl 1.5 6.9 20.98 1.4 1.2 20.98 2 2 2
Sorption on the surface of a graphite layer

H 1.4 2.56 0.27 1.3 20.7 0.31 1.4 3.08 0.22

O 2.0 0.56 21.99 1.5 2.02 21.97 1.3 25.0 21.97

C 1.6 1.47 0.50 1.5 21.2 0.36 1.6 22.4 0.81

Cl 2.0 1.13 20.99 2.2 1.32 20.99 2.5 0.36 20.99

FIG. 2. Fragments of an expanded unit cell with an indication of the position of the sorbate atom.
843 843JETP Lett., Vol. 66, No. 12, 25 Dec. 1997 Zaporotskova et al.
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C–C bond lengths in a tubelene were assumed to be 1.4 Å. The distances betwe
adatoms and the tubelene surface were optimized~see Table I!. The quite large value of
L shows that the interaction of adatoms from different EUCs can be neglected, i.e.,
be assumed that adsorption of a single atom is studied.

The calculation of the difference of the total energies of the electronic system
noninteracting absorbent and the corresponding atom and their sorption complex~Table
I! showed that the position I on the tubelene surface is energetically the most ad
geous position for all adsorbed atoms. In the case of the sorption of H and C a
electron density (Drad) is transferred from the adatom to the surface in all cases and
O and Cl atoms electron density is transferred from the surface to the adatom, a
addition these atoms transform practically completely into the anions O22 and Cl2.

For comparison, we performed calculations of sorption of the same atoms
graphite surface~in the one-layer approximation! in the same positions as in a nanotu
~see Table I!. This surface was modeled by a cyclic cluster with the composition72

(636 unit cells!, forming a uniformly expanded graphite cell whose MOs were requ
to satisfy cyclic boundary conditions. It was found that the most advantageous pos
are: for H — above the center of a hexagon, for O and Cl — above the center of a b
and for C — above a carbon atom on the surface. The computed sorption energies
selected atoms on graphite agree well with existing experimental data:Es(exp) ~H! 5 2.5
eV14 andEs(exp) ~O! 5 2.0–3.5 eV.15

The fact that the most advantageous version of sorption of the adatoms stud
above a carbon atom of tubelene can be explained by the fact that the sorption b
stronger because it has a highers-type fraction~appearance ofpsd hybridization, whered
is small but nonzero!.

The study of the character of the damping of a disturbance produced on the s
by the adatoms showed~see Table II! that the following. 1! The disturbance completel
damps out at the boundaries of a cluster~on the carbon atoms — zero charges!, confirm-
ing the conclusion that the sorption is singular. 2! In contrast to graphite, the degree
damping of a disturbance on a tubelene surface is direction dependent: It decays
slowly along the axis of the tube than along the circumference of the tube. 3! The
disturbance introduced by adsorbed hydrogen decays more rapidly than a distu
produced by O, C, and Cl atoms. Thus, in the case when a H atom is adsorbed in th
position I, the disturbance extends to the first interaction sphere along the circumfe
and to the third sphere along the axis of the tubelene. For complexes with O, C, a
atoms in the same positions, the disturbance extends to the third and fourth sp
respectively. 4! The greatest disturbance of the surface occurs in the cases when H a
are adsorbed above a bond~II ! and O and C are adsorbed above an atom~I!.

It was recently shown that hydrogen gas can condense up to high densitie
material consisting of bundles of single-walled carbon nanotubes.9 However, a simple
calculation9 of the coverage by densely packed H2 molecules inside a nanotube~with
nearest-neighbor distance 3.51 Å and with molecules approaching the wall to 2.9!
gave for a characteristic~10, 10! tube the ratio C21/H3 or 0.012 of the weight of a carbon
nanotube. This estimate is 2.5–5 times below the experimental data. As noted b
844 844JETP Lett., Vol. 66, No. 12, 25 Dec. 1997 Zaporotskova et al.
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of
authors,9 a possible explanation is that hydrogen is adsorbed on the outer walls o
carbon nanotubes.

Using the method presented above, we calculated two versions~Fig. 3! of a carbon

TABLE II.

Spheres of interaction 1 2 3 4 5

a I 0.10 0.05 0.01 0.0 0.0
~along II 0.14 0.07 0.02 0.0 0.0

H axis! III 0.11 0.06 0.01 0.0 0.0

b I 0.10 0.01 0.0 0.0 0.0
~along cir- II 0.14 0.03 0.0 0.0 0.0

cumference! III 0.11 0.03 0.0 0.0 0.0

I 0.58 0.25 0.14 0.07 0.0
O a III 0.28 0.21 0.15 0.05 0.0

I 0.58 0.08 0.03 0.0 0.0
b III 0.28 0.07 0.02 0.0 0.0

I 0.40 0.21 0.04 0.02 0.0
C a III 0.20 0.13 0.05 0.03 0.0

I 0.40 0.10 0.01 0.0 0.0
b III 0.20 0.10 0.02 0.0 0.0

I 0.42 0.20 0.09 0.04 0.0
Cl a II 0.48 0.21 0.11 0.06 0.0

I 0.42 0.10 0.03 0.0 0.0
b II 0.48 0.12 0.03 0.0 0.0

FIG. 3. Expanded unit cells of a~6, 6! carbon tube, unfolded in a plane, with an indication of the positions
the hydrogen atoms~filled circles! on the surface in two~a, b! computational versions.
845 845JETP Lett., Vol. 66, No. 12, 25 Dec. 1997 Zaporotskova et al.
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tube with hydrogen atoms located above the carbon atoms~this position of sorption of
one H atom is energetically advantageous, see Table I!. It was found that from the energ
standpoint it is even more advantageous for a group of hydrogen atoms to settle
opposite vertices of hexagons, Fig. 3b (r ad51.2 Å, QH50.11, andEs55.2 eV!, and not
in chains, Fig. 3a (r ad51.2 Å, QH50.15, andEs54.5 eV!. Such hydrogenization can b
represented qualitatively as follows. A H2 molecule approaching close to a metal
nanotube is subjected to image forces, the interaction energy (E0>24.5 eV!16 between
hydrogen atoms in the molecule decreasing:E8>E01e2/d,17 e is the electron charge
andd is the distance from the metal surface. The coupling force of these atoms dec
substantially atd>1.5 Å, and the atoms strive to occupy the most advantageous pos
above the carbon atoms at opposite vertices of the hexagon~Fig. 3b!. Allowing for
hydrogen sorption in the ratio C4/H on the surface of the same~10, 10! tube characteristic
for the material, we obtain reasonable agreement with experiment:9 The total fraction of
hydrogen atoms~on the surface and in the channel — C420/H165) is now 0.033 of the
weight of such a material.

So, our calculations have shown that carbon tubes with nanometer diameter p
the 2 to 6 times greater sorption power for sorbing light atoms than graphite. This o
up new prospects for using such tubes as sorbents of atoms of other elements o
ecules and for obtaining new materials and polymers by saturating the free bonds
adatoms.

We thank E. G. Gal’pern and I. V. Stankevich for a discussion of this work and
E. Lozovik for a helpful debate and a discussion of the possible mechanism of hyd
adsorption on a metal nanotube. One of us~L. A. C.! is grateful to the Japanese Socie
for the Support of Science. This work was supported by the Russian Fund for F
mental Research~Grant 96-02-18445-a!.
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Spectroscopic manifestations of the difference of the
local symmetry of calamitic and discoidal nematics

E. M. Aver’yanova)

L. V. Kirenski� Institute of Physics, Siberian Branch of the Russian Academy of Scienc
660036 Krasnoyarsk, Russia

~Submitted 13 November 1997!
Pis’ma Zh. Éksp. Teor. Fiz.66, No. 12, 805–810~25 December 1997!

It is shown that the difference in the local symmetry of nematics con-
sisting of rod-shaped and disk-shaped molecules is manifested as an
observable qualitative difference in their spectroscopic characteristics.
The well-known controversial experimental data are explained.
© 1997 American Institute of Physics.@S0021-3640~97!01124-9#

PACS numbers: 61.30.Eb, 78.40.Dw

1. Calamitic (N) and discoidal (ND) nematics, consisting of rod-shaped and di
shaped molecules, respectively, have the same macroscopic symmetry but differen
symmetry. A well-known consequence of the latter circumstance is that the sign o
reactive coefficient in the equations of hydrodynamics of these liquid crystals~LCs! is
different.1,2 Moreover, the difference of the local symmetry ofN and ND phases is
manifested in the characteristics of the dipole–dipole intermolecular interactions a
the fact that the components of the Lorentz tensorL are in opposite relation for electri
fields directed parallel (i) and perpendicular (') to the directorn, i.e., L i,L'(N) and
L i.L'(ND) ~Refs. 3 and 4!. This creates a distinction wherein theND nematics can have
a ferroelectric state5,6 and also means that the local-field effects will have a differ
manifestation in the anisotropic spectroscopic properties of calamitic and and disc
LCs. The latter aspect has thus far not been noted in the literature.

Recently, however, the substantial improvement in the accuracy of measureme
the positionsvm j ( j 5i ,') of the polarized IR absorption bandsK j (v) of nematicsN,
smecticsA(Sa), and discoticsDh(0) ~Refs. 7 and 8! as well as the first polarization
investigations of electronic absorption in theND andDh(0) phases9,10 have shown that the
dependences of the componentsvm j on the phase state of these LCs are characterize
large diversity and by anomalies whose origins are as yet unclear. In the present le
is shown that the observed features of the variations ofvm j reflect the different local
symmetry of the corresponding LCs.

2. Let us consider a uniformly oriented nematicN or ND with orientational order
parameter of the moleculesS5^3 cos2ul–n21&/2, whereu l–n is the angle between th
molecular symmetry axisl and the directorn. Let us separate in the spectrum of th
molecule an isolated nondegenerate transition with frequencyv1, renormalized by the
static intermolecular interactions in the LCs. The transition dipole momentd makes an
angleb with the axisl. Nearv1 the componentse j (v) of the permittivity tensor of the
LC can be represented in the form3
847 8470021-3640/97/120847-06$10.00 © 1997 American Institute of Physics
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e j~v!5eb j1
vp

2F j f b j
2

v j
22v21 iGv

, v j
25v1

22vp
2F jL jdb j , ~1!

whereeb j are the components of the background permittivity for the given transitionvp

is the plasma frequency,F j5FCj /3, F is the transition oscillator strength
Ci5112SSb , C'512SSb , Sb5(3cos2b21)/2, andf b j511L j (eb j21) are the back-
ground components of the local-field tensor. The absorption coefficientK j (v) is given by
the expression

K j~v!5
A2v

c
@@~eJ8!21~e j9!2#1/22e j8#1/2, ~2!

where the real (e j8) and imaginary (e j9) parts of the componentse j (v), taking account of
the inequalitiesv1@(v12v j ), v1@G, can be put into the form

e j85eb j2xe j9 , e j954ajeb j /~11x2!. ~3!

Herex52(v2v j )/G anda j5(vp
2F j f b j

2 )/(4Gv jeb j). The position of the maximumvm j

of the bandK j (v) is determined by the solution of the equation

x323ajx
22x1aj50. ~4!

For very strong absorption bands withaj@1 it follows hence thatxj'1/A3 and

vm j
~S!'v j1

G

2A3
5v12

vp
2F jL j f b j

2v1
1

G

2A3
. ~5!

For aj<1/4 or (v12v j )<(0.220.4)G, which is typical for IR and UV absorption band
of LCs, we obtain from Eq.~4!, taking account of the Eq.~1!,

vm j
~W!5v j1

vp
2F j f b j

2

8v jeb j
5v12

vp
2 f b jL jF j

2v1
S 12

f b j

4L jeb j
D . ~6!

To analyze the shifts of the frequenciesvm j at the transitionsI 2N(ND)2SA(Dh)we
introduce the parameter

d j5~vm j2vmi!/~v12v i !, ~7!

for which the expressions

d j
~S!5123CjL j f b j / f bi , d j

~W!5
3ebi22

4ebi
2

3CjL j f b j

f bi
S 12

f b j

4L jeb j
D ~8!

follow from Eqs. ~1!, ~5!, and ~6!. The surfacesd i ,'(S,b) have a line of intersection

d j (S50)50. For S51, we haved i
(S)(b590°)5d'

(S)(b50)51, d i
(W)(b590°)5d'

(W)

3(b50)5(3ebi22)/4ebi , which also fix the surfacesd i ,'(S,b) at one end. A change
in the anisotropy of the tensorseb , L, andf b accompanying a change in the temperatu
phase state, or type of LC is manifested as a deformation of the surfacesd i ,'(S,b) and
a displacement of their free endsd i(S51,b50) andd'(S51,b590°).

3. Let us now consider the experimental consequences of the relations~8!. For LCs
with small birefringenceDn5ni2n' we haveL j'1/3, f b j' f bi ~Ref. 3! and from Eq.
848 848JETP Lett., Vol. 66, No. 12, 25 Dec. 1997 E. M. Aver’yanov
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~8! we obtaind j
(S)512Cj andd j

(W)5d j
(S)(3ebi22)/4ebi . For b,bM554.7° (b.bM)

we have the inequalitiesd i,0, d'.0 (d i.0, d',0) and the surfacesd i ,'(S,b) inter-
sect along the straight lineb5bM . The splittingDv5vm'2vmi is proportional to the
oscillator strengthF of the transition and depends strongly on the angleb of the orien-
tation of the transition moment. Forb,bM (b.bM) we have Dv.0,
K i(vmi).K'(vm') (Dv,0, K i,K'), in agreement with the data of Ref. 11 for the I
absorption band corresponding to vibration of theC[N bond in nematic and smecticSB

phases of the LC 4CCH. For fixedb we haveDv;S, which corresponds toDv increas-
ing at aN2SB transition for the 4CCH band under discussion.11

To compare the consequences of the relations~8! with the data of Refs. 7–10, let u
set Deb5ebi2eb'[Deb0S and L j51/31bjS, wherebi52t0 and b'52t0.3 For ca-
lamitic ~discoidal! LCs we take t0520.12(0.24), Deb050.73(21.10), and
ebi5 ēb5(ebi12eb')/352.53(2.60). These parameters are close to the experim
values for calamitic LCs3 and also for a discoidal nematic4 isomorphic to the objects
investigated in Ref. 9.

The dependencesd j
(W)(S,b) presented in Figs. 1a and b show a qualitatively diff

ent character of the effect of the anisotropy of the tensorsL, eb , and f b on the functions
d j (S,b) for the two types of LCs under study, the anisotropy of the tensorL being the
main factor. Compared with the case of isotropic tensorsL, eb , and f b , in calamitic
~discoidal! LCs an increase ofut0u results in a displacement of the free ends of t
surfacesd j (S,b) in opposite directions: upward~downward! — for d i(S51, b50) and
downward~upward! — for d'(S51, b590°). This is accompanied by a displacement
the line of intersection of the surfacesd i(S,b) and d'(S,b), which for calamitic~dis-
coidal! LCs corresponds to the valuesb5b0,bM (b0.bM). Anisotropy of the tensorL
in the calamitic~discoidal! LCs intensifies the splittingDv of the bandsK j (v) for

FIG. 1. d (W)(S,b) for calamitic ~a! and discoidal~b! LCs calculated according to Eq.~8! with the parameters
t0 andebi j presented in the text.
849 849JETP Lett., Vol. 66, No. 12, 25 Dec. 1997 E. M. Aver’yanov
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transitions withb590° (b50), induces a change of the sign ofDv for values ofb in
the intervalb0,b,bM (b0.b.bM), and decreasesDv for b50 (b590°). The latter
explains the small differencevmi'vm' for IR absorption bands withb>0 in calamitic
nematic phases of pectinate polymers7 and low-molecular compounds12 with large bire-
fringence and anisotropy of the tensorL.3

It is evident from Fig. 1a that for smallb and S50.320.4, close to the typica

values ofS near the temperatureTNl of the I 2N transition, the average valuev̄m j is

virtually identical tovmi . This explains the small change inv̄m j for bands withb>0 at
a I 2N transition and in a narrow interval of the nematic phase with low values ofS.7

The observed growth ofv̄m j for isolated IR absorption bands withb>0 in the nematic
and smecticA phases with decreasing temperature7 corresponds to the data in Fig. 1a a
is explained by an increase ofS and anisotropy of the tensorL. In addition, the more

rapid growth ofd j
(W) for high values ofS correlates with an appreciable change inv̄m j at

a N2SA transition and into the smectic phase.7 A quantitative estimate of the shift

v̄m j2vmi at I 2N2SA transitions can be obtained taking account of the fact that for
isotropic phase of a LC withebi52 it follows from Eq.~6! thatv12vmi

(W)5(v12v i)/2.
For typical valuesn12nmi

(W)'5 cm21 for the IR absorption bands we obtain from Eq.~7!

and the data in Fig. 1a withS50.620.8 andb50 n̄m j2nmi'223 cm21, in agreement
with experiment.7

For absorption bands withb'bM andK i'K' in uniaxial LCs there is no contri-
bution from static interband interactions to the observed splittingDv ~Ref. 13! andDv
is determined completely by the anisotropy of the tensorsL, eb , and f b . The observed
relation vmi.vm' for the IR absorption bands withK i'K' in calamitic nematics12

corresponds to the data of Fig. 1a.

As one can see from Fig. 1b, for discoidal LCs witht050.24 the surfacesd i
(W)

3(S,b) andd'
(W)(S,b) are divided by a gap and the relationvm'.vmi holds irrespec-

tive of the values ofS andb. This explains the increase invm' for isolated IR absorption
bands with different values ofb at a I 2Dh0 transition.8 Electronic transitions polarized
in the plane of the aromatic core of discoidal molecules are characterized by the
b590°. In theND phase withS50.320.6 ~Ref. 4! from Fig. 1b it follows that for such
bandsud i

(W)u<d'
(W) with nonmonotonic variation ofd i

(W) . For this reason, at aI 2ND

transition a very small displacement of the maximumvm of an unpolarized absorption
band nearTNl and a weak increase invm far from TNl can be expected. The latter ha
been observed in Ref. 9. The maximumvm of the weak electronic band undergoes, at
same time, a low-frequency shift on account of the fact that the static interactions
the determining contribution.13

In the discoticDh0 with S'0.9 the static intermolecular interactions decreasevm j

for electronic absorption bands and have virtually no effect onDv.13 The dependence o
vmi in solution on the type of solvent can serve as a measure of the effect of
interactions onv'n . As one can see from Fig. 1b, for electronic bands withb590° the
relationsvm'>vmi.vmi are expected in theDh0 phase. This explains the increase
vm' for intense electronic absorption bands in a number of objects accompany
transition from solution to theDh0 phase.10,14 In addition, a larger increase invm' is
850 850JETP Lett., Vol. 66, No. 12, 25 Dec. 1997 E. M. Aver’yanov
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observed in LCs14 where the static intermolecular interactions have only a weak effec
the positions ofvmi andvm' .

For the weak electronic bands of the same objects, the small increase invm' due to
the resonance intermolecular interactions are compensated by a decrease invm' on
account of static interactions. As a result, for objects where the influence of static
actions on the position ofvmi in solution is strong10 and weak14 vm' is observed to
decrease10 and remain constant14 at a transition from solution into theDh0 phase. Thus
the data10,14 in the Dh0 phase confirm thatvm' increases as a result of resonance int
molecular interactions. If the static interactions made a determining contribution,
vm' would have decreased with increasingS for bands of any intensity withb.bM .13

For b5const the surfacesd j (S,t0) characterize the displacement of the polariz
absorption bands with a change in temperature in the LCs with different anisotropy
tensorL. Figure 2 displays the functionsd j

(W)(S,t0) for calamitic and discoidal LCs for
values ofb corresponding to the strongest manifestation of the anisotropyt0 of the
tensorL in the possible ranges (21/6)<t0(N)<03 and 0<t0(ND)<1/3,4 taking ac-
count of the nonlocality of the molecular polarizability. Comparing Figs. 1 and 2 give
idea of the behavior of the functionsd j

(W)(S,t0) for intermediate values 0,b,90°.

4. In summary, the difference of the local symmetry between the calamitic
discoidal LCs is manifested as a qualitative difference between their observed sp
scopic features. In addition, the latter are determined mainly by the anisotropy o
tensorL. This distinguishes qualitatively the corrections to the position of the polar
absorption bands for local-field anisotropy from the analogous corrections to the in
ties of these bands, which depend on the anisotropy of the tensorf b .3 It is significant that
for LCs with a large anisotropy of the tensorL the tensorf b can be isotropic.3 The
controversial experimental data on the dependence ofvm j on the type of LC, the tem-

FIG. 2. d (W)(S,t0) for calamitic~a! and discoidal~b! LCs calculated according to Eq.~8! with b50 ~a! and 90°
~b! and the parametersebi j presented in the text.
851 851JETP Lett., Vol. 66, No. 12, 25 Dec. 1997 E. M. Aver’yanov
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perature, the polarization of the bands, and the orientation of the trans
moments7–12,14can be explained in a unified approach. The qualitatively different c
acter of the functionsd j (S) in Fig. 2 for calamitic (b50) and discoidal (b590°) LCs
with large and small anisotropy of the tensorL makes it possible to judge the magnitud
of this anisotropy without determining the componentsL j experimentally. This present
new possibilities in searching for discoidal nematics satisfying the requirements5,6 for a
ferroelectric state to arise in them.

This work was supported by the Russian Fund for Fundamental Research th
the Grant 97-03-33719 and the State Science and Technology Program ‘‘Fundam
spectroscopy’’ through Grant 2.3. I am grateful to Dr. D. Markovitsi for sending
reprints of Refs. 9 and 10.
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Excitation of plasma oscillations during the motion of
Josephson vortices in layered superconductors

S. N. Artemenkoa) and S. V. Remizov
Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 10390
Moscow, Russia

~Submitted 13 November 1997!
Pis’ma Zh. Éksp. Teor. Fiz.66, No. 12, 811–816~25 December 1997!

The electric and magnetic fields arising during uniform motion of a
vortex lattice in a magnetic field oriented parallel to the conducting
layers are calculated in an exactly solvable model. For low tempera-
tures and high velocities of the lattice, features due to the excitation of
plasma oscillations of the superconducting electrons appear in the
current–voltage characteristic. Peaks associated with plasmon excita-
tion and the Cherenkov effect are present in the radiation spectrum.
© 1997 American Institute of Physics.@S0021-3640~97!01224-3#

PACS numbers: 74.80.Dm, 74.50.1r, 74.25.Fy

Experimental1,2 and theoretical3–6 investigations performed in the last few yea
have shown that plasma oscillations of superconducting electrons at frequencies
hundreds of megahertz to terahertz range exist in layered superconductors. The ex
of a weakly damped characteristic mode results in resonance features in the forc
cillations when the frequency and wave vector of the driving force are close to tho
the characteristic mode. Specifically, for sufficiently rapid motion of a lattice of Jos
son vortices produced by a magnetic field oriented parallel to the layers, the freque
of variation of the electromagnetic field fall within the same frequency range as
plasma oscillations. Under the influence of a transport current flowing in a dire
perpendicular to the layers the velocity imparted to these vortices can be very high,
the modulus of the order parameter in them is disturbed very little. For this reaso
sufficiently high voltages on the superconductor it is possible that the condition
resonance and generation of plasma oscillations are satisfied, which in turn should
ence the form of the current–voltage characteristic~IVC!. We present below a solution o
the problem of the motion of a Josephson vortex lattice in an infinite crystal in not
strong magnetic fields, in which the nonlinear cores of the vortices do not overlap
assume that the characteristic frequencies of the problem are low compared wi
amplitudeD of the order parameter.

The presence of vortices changes the characteristic oscillations, imparting t
spectrum an acoustic form.7,8 However, the response of a superconductor to the motio
a vortex lattice under the action of a transport current is not associated with the os
tions of the vortices. For this reason, forced oscillations are determined by the char
istic modes with a plasma edge.

For high velocities the shape of the vortices changes. This makes it much
difficult to calculate the dynamics of the vortices, since the standard approach emp
853 8530021-3640/97/120853-07$10.00 © 1997 American Institute of Physics
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the perturbation theory in the velocity becomes inapplicable. For a strict solution o
problem, it is necessary to solve Maxwell’s equations into which expressions fo
current and charge density are substituted. Having in mind high-temperature sup
ductors, we shall assume that the order parameter has the form characteristicd
pairing. The expressions for the charge and current densities are nonlinear functi
the phase difference of the order parameter between neighboring layers and in the g
case have a quite complicated form.9 Besides the dependence on the time derivatives
the superconducting momentumPn5(1/2)iqxn2(1/c)An and the phase difference, th
quasiparticle current density also depends on the gradient of the gauge-invariant
potentialmn5(1/2)(]xn /]t)1Fn, whereAn is the vector potential,Fn is the electric
potential, andxn is the phase of the order parameter in thenth layer. ~We assume
\51, e51.! In the general case the potentialmn is found from the solution of Poisson’
equation, but in the problem of vortices at low temperaturesT!D, which we shall study,
the imbalance of the populations of the quasiparticle branches and the potentialmn due to
this imbalance can be neglected if (r 0 /d)2!1, wherer 0 is the Thomas–Fermi screenin
radius andd is the period of the crystal in a direction perpendicular to the layers.
linear-response expression can be used for current along the layers, since in the p
of Josephson vortices the characteristic scale of the currents is determined by the
current j c in a direction perpendicular to the layers, and this current is small comp
with the critical current in the direction of the layers. The expression for the cur
density in thenth layer, written in the Fourier representation, is

jn5
c2

4pl2
Pn2 ivs i~v!Pn .

The first term here describes the superconducting current and the second term de
the quasiparticle current;2 iv and iq correspond to the time derivative and gradient
the direction of the layers. The frequency dependence of the conductivitys i(v) depends
on the symmetry of the order parameter and is determined by the momentum sca
time. We shall employ for it the expression from Ref. 10.

The superconducting current density between the layersn andn11 is determined
by the expression

j'n
~s!~wn!5 j c sin wn ,

wherewn is the gradient-invariant phase difference. We shall switch to the exactly s
able model, replacing the sine by a saw-tooth function

j'n
~s!~wn!5 j c arcsin sinwn , ~1!

as was done in Ref. 11. This substitution was also used in solving the problem o
motion of Josephson vortices in an approximation linear in the velocity.12 In accordance
with Eq. ~1!, we employ a linear dependence of the quasiparticle current on the p
difference:

j'n
~qp!52 ivs'~v!wn /~2d!.

We substitute the expression for the current densities into Maxwell’s equation
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j1

1

c

]D

]t
, ~2!

after replacing the derivatives with respect to the coordinate in the directionz perpen-
dicular to the layers by a finite difference and expressing the magnetic field in ty
direction in terms ofwn andPn :

Hy5
c

2d

]wn

]x
2

c

d
~Pn112Pn!,

wherex is the coordinate in the direction of motion of the vortices.

In the displacement current, we allow only the component along thez axis, since
because of the strong anisotropy the plasma frequency in a direction parallel to the
Vp5c/l, is much higher than the characteristic frequencies of the problem, which
close to the plasma frequency in the direction perpendicular to the layers,vp5cz /lc ,
wherecz5c/Ae, e is the dielectric constant along thez axis, andl andlc5c/A8pd jc
are the screening lengths of the magnetic field for screening by currents flowing
and across the layers, respectively. As a result, we obtain the equations

j'n
~s!~wn!2

c2

8pd

]2wn

]x2
12lc

2 ]

]x
~Pn112Pn!52

lc
2

c2

]

]tS 4ps'

e
1

]

]t Dwn , ~3!

c2

2d2

]

]x
~wn2wn21!1Vp

2Pn2
c2

d2
~Pn111Pn2122Pn!52

]

]tS 4ps i1
]

]t D Pn . ~4!

Solving these equations, we find the electric and magnetic fields as functions o
coordinates and time.

The model phase dependence of the current~1! makes it possible to find the exac
solution of Eqs.~3! and~4! by means of the Fourier transformation. Strictly speaking
is necessary to take into account the curvature of the flux lines during the mo
However, we shall confine our attention below to the case when the displacement
center of a vortexx0(y) along thex axis at distancesy'lc is small. A calculation of the
deformation based on the balance equation for the forces exerted on a vortex b
transport current and the currents produced by the vortices themselves in fieldsH@Hc1

shows that the deformation can be neglected if

x0~lc!

lc
'

l

pd ln~l/d!

j trHc1

j cH
!1. ~5!

We shall assume thatH is much larger thanHc1 and the condition~5! holds.

As a result, we obtain for a triangular lattice moving with velocityu

~ṽp
22v21 ivv r !w22c2qKP/e5Pd~q2v/u!, ~6!

2~c2qK/2d2!w1~Ṽ p
22v21 ivV r !P50. ~7!
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Here K52 sink/2, uku,p is the wave number obtained as a result of performin
discrete Fourier transformation with respect to the layer number,ṽp

25vp
2(11lc

2q2),

Ṽ p
25Vp

2(11l2K2/d2), v r54ps'e, V r54ps i , and finally

P54p2~vp
2/ iv!(

l ,m
exp@2 i ~ l 1m/2!qX2 imkZ/d#.

The solution of Eqs.~6! and ~7! for the phase difference has the form

w5P~11l2K2/d2!d~q2v/u!/D, ~8!

whereD is the determinant of the system~6!, ~7!. The zeros ofD determine the spectrum
of the characteristic oscillations – plasmons. At sufficiently high frequencies and
temperatures, for which the dielectric relaxation frequencies Rev r and ImV r are small,

D5@~vp
22v2!~11l2K2/d2!1vp

2lc
2q22 iv@v r~11l2K2/d2!1V r~vp

22v2

1vp
2lc

2q2!/Vp
2#.

We shall illustrate the change in the character of the solution as a function o
frequency for the example of the components of the electric fieldEz52 i (v/2d)w. The
slowly varying ~along z) part of the fieldEz produced by a single vortex at frequenc
v5qu (q52p/X) has the form

Ez5
puvp

2 exp~2z/L!

2dA~vp
22v22 ivv r !~vp

22v21vp
2lc

2q22 ivv r !
,

L5lA vp
22v22 ivv r

vp
22v21vp

2lc
2q22 ivv r

. ~9!

The total field is described by the sum of fields produced by all vortices. One can se
at low frequencies the decay length of the field is of the order ofl, and when the
frequency exceeds the plasma frequency the real part of the argument of the expo
in Eq. ~9! becomes small, i.e., in the region of plasma oscillations the decay length o
field increases rapidly and is determined by the damping of the plasmons.

To find a relation between the transport currentj tr and the velocityu of the vortex
lattice, we premultiply Eq.~3! by (c2/lc

2)]wn /]x and Eq.~4! by 4]Pn /]x, and then add
these equations, integrate overx, and sum over alln. As a result, the terms on th
left-hand side of the equality obtained form a combination which is a total derivative
respect tox, the integral of which reduces to22d2(nHy

2u2`
1` . This expression determine

the force acting on the lattice. It is proportional to the half-sum of the magnetic field
different sides of the sample, i.e., the external magnetic field, and the difference o
magnetic fields, which by means of Eq.~2! can be expressed in terms of the transp
current. We write the right-hand side of the equation with the aid of the Fourier tr
formation, substituting into it the solution of Eqs.~6! and ~7!. The result is
856 856JETP Lett., Vol. 66, No. 12, 25 Dec. 1997 S. N. Artemenko and S. V. Remizov
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16p2d j tr5E dqdkuvp
4@ev r~11l2K2/d2!2

1V rl
4K2q2/d2!]/ uDu2 (

l ,m
ei ~ l 1m/2!X1 imkZ/d. ~10!

Substituting into Eq.~10! the solution~6! and ~7!, we find the dependence onj tr of the
velocity of the vortices and hence of the average electric fieldĒ52pnLu ~wherenL is
the density of vortices!.

In the limit of low velocities of the lattice,u!(d/l)c, the effect of the velocityu on
the shape of the vortices can be neglected. In this case the IVC is described by Ohm
with resistivity

r5
1

s'1s i~l/lc!
2

2nLdlJ

p
, ~11!

wherelJ5dlc /l. The last factor in Eq.~11! describes the fraction of the superconduc
volume occupied by the nonlinear region of the vortex. We can see an analogy wi
Bardeen–Steven law, in which the areaj2 of the vortex core is replaced by the areadlJ

of the nonlinear region of the Josephson vortex.

An analytical expression for the dependence ofu on j tr can also be obtained for th
case of frequencies of the order of the plasma frequency and small damping o
plasmons:

j tr5 j c

sinh b

coshb2cosa
, a5

Xcz

lcu
, b5

v r~vp!

2vp
a.

The last factor in this formula describes oscillations which appear in the IVC as a r
of the interference of plasmons emitted by different vortices. In the limit of high vel
ties, the IVC goes over to Ohm’s law with a resistivityr52pAnLdl j /s(vp). The form
of the IVC in the region of the plasma oscillations is sensitive to the magnitude
anisotropy of the quasiparticle conductivity. An increase in the conductivity resul
stronger damping of the plasmons and suppression of the characteristic feature
regime of very weak damping is easily achievable with isotropic pairing, when the o
parameter has no nodes and the quasiparticle density at low temperatures become
nentially small. In the case ofd pairing the damping is greater and the peaks in the I
are smaller. Figure 1 shows the functionj tr(u), found numerically under the assumptio
that the real part of the quasiparticle conductivity is described by the equations from
10 and falls off as 1/v2 at frequencies greater than the reciprocal of the momen
relaxation time. We note that the condition~5! for neglecting the deformation of th
vortices is difficult to satisfy at high currents in regions near the maxima, so that fin
the shape of the IVC near the tops of the peaks requires a more accurate calculati
takes into account the curvature of the flux lines during the motion.

Therefore, regions of negative differential conductivity, where a uniform flow of
lattice of Josephson vortices is unstable, appear on the IVC in the region of pl
oscillations. These sections alternate with regions of stability. Uniform motion is stab
high voltages.
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ctro-

ynt-
found

ar the
to the

nel
nction
nits

end
ities
peaks
er of

ortex

he
The excitation of plasma oscillations is associated with the generation of ele
magnetic radiation. Let us find the radiation energy flux along thex axis at frequency
vN52puN/X, whereN is the number of the harmonic. For this, we calculate the Po
ing vector, using expressions for the electric and magnetic fields that can be easily
with the aid of Eq.~8!:

S5E
2p

p uc2vp
4~11l2k2/d2!

16lZdX2uD~v5vN!u2 (
m

eimZk/ddk.

It is obvious that the energy flux grows rapidly at resonance frequencies at whichuDu is
small. For a triangular lattice the odd harmonics of the radiation contain peaks ne
plasma frequency and the even harmonics also contain peaks at velocities close
velocity of light cz in the medium, which plays the role of the Swihart velocity in a tun
junction. The latter peaks correspond to Cherenkov radiation. Figure 2 shows the fu
S(u) for the first harmonic, where the energy flux is expressed in the u
S05\2c2vp /(16e2l2lc). For valuese525, l50.2 mm, andlc560 mm, characteristic
for BSCCO, andS0;10 W/cm2. The form of the curve and the sizes of the peaks dep
strongly on the magnitude and anisotropy of the conductivity. The lattice veloc
corresponding to the peaks in the radiation are not necessarily correlated with the
in the IVC, so that it is possible to observe radiation peaks at frequencies of the ord
plasma frequencies at voltages in the regions of stable uniform motion of the v
lattice.

The peak in the energy flux withu.cz is much higher than the peaks near t
plasma frequency. It is described approximately by the expression

S5
S0h2

4p2$@11hN2~12u2/cz
2!#21hN2v r

2~u5cz!%
,

FIG. 1. Typical curve of the transport current versus the velocity of vortices in a fieldH520Hc1.
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whereh54p2llcnL . We note that the frequencies corresponding to a lattice mo
with velocity close tocz fall into the frequency range below the amplitude of the ord
parameter only in sufficiently weak magnetic fields, where the lattice periodX is com-
parable tolc . As the field increases, the frequency will reachD, which will lead to
stronger damping as a result of pair breaking.

We also note that the effects which we have studied above refer to higher fre
cies and voltages than those at which the experimental investigations of Josephso
tices are usually conducted, as, for example, in the recent work Ref. 13 where
Josephson radiation was observed during motion of vortices in BSCCO. Since w
studying a uniform motion of a vortex lattice in an infinite crystal, such radiation does
occur in our formulation of the problem.
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Interaction of optical phonons with anisotropic
imperfections

L. A. Falkovsky
Landau Institute of Theoretical Physics, Russian Academy of Sciences, 117334 Mosc
Russia; Groupe d’Etudes des Semiconducteurs, UM2-CNRS, 34095 Montpellier,
France

~Submitted 13 November 1997!
Pis’ma Zh. Éksp. Teor. Fiz.66, No. 12, 817–822~25 December 1997!

Inelastic~Raman! light scattering by phonons interacting with anisotro-
pic imperfections is investigated. Three different kind of disorder-
induced defects~point, linear and planar! have been considered. The
optical phonon width and line shape are found to depend importantly
on the dimension of the imperfections. There is a close correspondence
between the scale of the imperfection and the phonon line shape ob-
served in the Raman scattering experiments. The dependence of the
phonon frequency shift and width on the defect concentrations is cal-
culated, and the critical concentrations at which the optical phonon can
no longer be observed are determined. ©1997 American Institute of
Physics.@S0021-3640~97!01324-8#

PACS numbers: 78.30.Ly, 61.72.2y, 63.20.Dj

1. Many problems encountered in disorder systems have well-known theore
explanations. In particular, the dynamics of impurities in crystals has been describ
Refs. 1 and 2, where both the density of states and frequency of local vibrations
specially considered. The influence of impurities on the vibrational Raman scatterin
been examined in Refs. 3 and 4, but so far there has been no relevant interpretation
optical phonon interaction with anisotropic imperfections. This is done in the pre
work. Let us emphasize the peculiarities of this phenomenon.

First, the different type of imperfections~e.g., impurities, vacancies, dislocation
crystallite boundaries! have different spatial structure. Dislocations are an example of
defects. In the case of ion implantation, the defects are certainly more elongated
direction normal to the surface than in the tangential direction. Finally, the boundari
crystallites or pores are plane defects. In this work, we focus on the interaction of o
phonons with three main kind of disorder-induced defects:(i) point defects,(ii) line
defects, and(iii) a random set of plane defects. Both the optical phonon width and
shape are found to depend importantly on the dimension of the imperfections.

Second, because the optical phonons are usually observed in inelastic~Raman! light
scattering, the momentum transferk ~which is of the order of the incident light momen
tum v ( i )/c) is much smaller than the cutoff valuek(w)5Av0G/s determined by the
phonon widthG.5 cm21.1012 s21, the frequencyv0.53102 cm21.1014 s21 and
the dispersion parameters.106 cm/s which is of the order of the sound velocity. Ther
fore, the conditionk!k(w) holds and we have to calculate the width in the vicinity of
860 8600021-3640/97/120860-08$10.00 © 1997 American Institute of Physics
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extremum of the branch, taking into account self-consistently the phonon width and
which result from the interaction of phonons with the disorder. The size 1/k(w) is mod-
erately large in the atomic scalea5ps/v0: 1/k(w)a5Av0 /G/p and this is the existence
of this large~on the microscopic scale! parameter 1/k(w) that provides justification for the
present theory.

Third, since the optical phonons are bosons, they can be excited or emitted sin
the process of interaction with light. Then the Raman cross section of the first ord
determined by the phonon Green function averaged over the distribution of the im
fections. Therefore, a simple theory can be advanced using Dyson’s equation w
squared phonon–imperfection potential as transition probability. A similar technique
been recently applied to the problem of strain relaxation near semicondu
heterointerfaces,5 except that averaging over the distribution of imperfections can
performed now in an explicit form. We obtain the phonon shift and width~i.e., the
phonon self-energy! in the case of the various imperfection geometry. The phonon
shape i.e., the frequency dependence of the inelastic light scattering cross section~which
is proportional to the imaginary part of the averaged Green function! becomes asymmet
ric and conditioned by the parameterr 0k(w)5pr 0 /aAv0 /G.0.1r 0 /a for the set of
values listed before, wherer 0 is the domain size where phonons can be scattered by
imperfection. Before closing this series of introductory remarks, it may be be usef
notice that this asymmetry has no connection to the well known Fano resonan
conducting systems. Indeed, the Fano resonance results from a contribution of the
tron loop in the photon–phonon vertex while, in our case, the asymmetric phonon
shape originates from the phonon density of final states when one considers the sca
of phonons by the imperfections.

2. The inelastic light scattering cross section is determined by the Green functi
optical phononsDi j (r,r 8,v) which obey the equation

~H2 ivG~ int!1V~r !2v2!D~r,r 8,v!5d~r2r 8!,

where the matrixHi j 5v0
2d i j 1m i j lm]2/]xl]xm represents the long-wave expansion of t

dynamical matrix near a extremum of the branch. The damping parameterG (int) describes
the intrinsic phonon width caused by the phonon–phonon and electron–optical ph
interactions,6 and the matrix

Vi j ~r !5(
n

v i j ~r2rn! ~1!

is the interaction with imperfections located at pointsrn . In the case of a substitutiona
defect of massmv instead of m, the interaction may be simply estimated
v i j (r2rn)5d i j d(r2rn)v0

2a3(m2mv)/M , whereM anda3 are the mass and volume o
the lattice cell. For a line defect, (r2rn) is a two-dimensional vector. It becomes on
dimensional for a plane defect. The phonon degeneracy has been taken into acco
using the subscripti . For instance, in a cubic crystal, there are three optical phonon
the G point with a threefold degenerate frequency (i 51,2,3). The long-range Coulom
forces split this degeneracy in such a way that the LO phonon has a higher frequenc
the twofold degenerate TO phonon.
861 861JETP Lett., Vol. 66, No. 12, 25 Dec. 1997 L. A. Falkovsky
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The Green function has to be averaged over defects distributed randomly. Usin
diagram technique and summing diagrams with the averages^Vi j & and
^dVi j (r )dVlm(r1)&5Wi jlm(r2r 8), wheredV5V2^V&, we obtain the Dyson equatio
for the averaged Green function. Near the branch maximum, we seek its solution

D j j
21~k,v!5v j

2~k,v!2sj
2k22 ivG j~k,v!2v2 ~2!

and arrive at a system of coupled integral equations

v j
2~k,v!2v j

22 iv~G j~k,v!2G j
~ int!!2^Vj j &

52(
m

E d3k1

~2p!3

Wjmm j~k12k!

vm
2 ~k1 ,v!2s2k1

22 ivGm~k1 ,v!2v2
, ~3!

where the unknown functions areG j (k,v) andv j (k,v).

The conditions of validity for Dyson’s equation~3! should be outlined here. The lin
shape on the wings (uv2v0u.G) can be obtained using the perturbation theory~the
Born approximation! whenvm

2 (k1 ,v)2 ivGm(k1 ,v) is substituted in the right-hand sid
~i.e., in the phonon self-energy! for its unperturbed valuev0

22 ivGm
(int) . At the center of

the line, the diagrams with intersections of the correlator lines make a contribution o
order of the leading diagram, and a more sophisticated theory is needed.

The correlation functionWjmm j(k12k) has the meaning of a transition probabili
( j ,k)→(m,k1). In order to find the averages^V& and ^dV(r )dV(r 8)&, let us write the
Fourier transform in Eq.~1! for the point defects

Vi j ~r !5(
n
E d3q

~2p!3
v i j ~q!eiq~r2rn!. ~4!

Averaging, i.e., performing an integration over all positions of the defects in a large~on
the microscopic scale! volumeV0 we get immediatelŷVi j (r )&5nvv i j (q50), wherenv
is the volume concentration of defects.

The contributions to the two-point correlation function come from the terms wh
in the product of two sums~4!, involve the same defect:

^dVim~r !dVl j ~r 8!&5nvE d3q

~2p!3
v im~q!v l j ~q!eiq~r2r8!. ~5!

Equation~5! gives the Fourier transformWiml j (q) of the potential–potential correlatio
function for point defects. For line defects we obtainWiml j (q)52pnsd(qz)
3v im(q')v l j (q'), whereq' is the two-dimensional vector in the plane perpendicula
the set of line imperfections andns is their concentration per unit area. A similar expre
sion ~with a two-dimensionald function! can be found for plane imperfections wit
concentrationnl per unit length.

3. For simplicity, let us consider only the case of a phonon singlet. We will disc
the interband phonon transitions in the conclusion. In this case the subscripts inDi j and
Vi j take only one value (j 51) and we will omit them. The poles of the phonon Gre
function give the phonon dispersion law. In the absence of imperfections, using~2! and
862 862JETP Lett., Vol. 66, No. 12, 25 Dec. 1997 L. A. Falkovsky



tum
fers
f

-
o

the

s
t
dence

order
t
be

., the

-
an

nent
~3! we get near the maximum of the branchv2(k)5v0
22s2k22 iv0G (int), where the

parameters depends on thek-direction. This is not essential in what follows.

One point should be noticed. When applied to Raman scattering, the momenk
and frequencyv in Eqs.~3! have the meaning of the momentum and frequency trans
from the light. Then the valuesk1<k(w)5Av0G/s are important in the denominator o
Eq. ~3! if one is interested in a neighborhooduv02vu.G of the phonon frequencyv0.
The size 1/k(w) is large on the atomic scalea5ps/v0: 1/k(w)5aAv0 /G/p.10a. On the
other hand, the phonon momentum transfer (k12k) in the interaction with an imperfec
tion is determined by the domain sizer 0 in which the imperfection relaxes. The tw
valuesk(w) and 1/r 0 may be of the same magnitude, but they are much larger than
small momentum transferk.v ( i )/c from the incident light. Thenk can be omitted in the
integrand, i.e., the unknown functionsv1(k,v) and G(k,v) can be regarded a
k-independent. But these functions depend essentially onv because of the square roo
singularity of the phonon density of states at the extremum of branches. This depen
is responsible for the non-Lorentzian shape of the phonon mode~of course, the asym-
metric broadening and line shift are much more pronounced for the short-range dis
r 0k(w)<1). Finally, if we put~for the correlation function only! the Fourier componen
v(q)5v(q50) in the regionq,r 0

21 and equal to zero elsewhere, all the integrals can
done analytically, and one obtains a system of coupled algebraic equations forG(v) and
v1(v).

Let us now present the results. We will denote the phonon self-energy, i.e
right-hand side of Eq.~3!, by S(v). Then our main equation will take the form

v1
2~v!2v0

22 iv~G~v!2G~ int!!2^V&5S~v!. ~6!

We see that the linear term̂V& gives onlyuniform shift for the squared phonon fre
quencyv1

(un)25v0
21^V& which is always linear in the concentration of defects, but c

have an arbitrary sign. The additionalinhomogeneousshift and broadening result from
the bilinear~with respect to the imperfection potential! termS. To find them, we have to
solve Eq.~6!.

i. Point imperfections.The imaginary and real parts of~6! with

S~v!5AS 2b2~a12 ia2!S 1

2
log

x1
211

x2
211

1 i arctanx11 i arctanx2D D ~7!

give a system of two coupled equations for the unknown functionsv1(v) and G(v),
wherex15(b1a1)/a2 , x25(b2a1)/a2, a15(v1

2(v)2v21V2(v))1/2, a25(2v1
2(v)

1v21V2(v))1/2sign(v), V4(v)5(v1
2(v)2v2)21v2G2(v), b5A2s/r 0, and

A5nvv2(q50)/4A2p2s3.

Let us write v(q50)5gr0
3v0

2 for estimates~where g.1 if the force constants
change around imperfections!. Then the linear term̂V& in ~6! givesgnvr 0

3v0
2/2, and the

second-order term in~7! gives A5g2nvr 0
3v0(r 0v0 /s)3/4A2p2. For the above-

mentioned example of a substitutional defect, the Fourier compo
v(q)5v0

2a3(m2mv)/M , and we need to cut off the real part of integral~3! at 1/a
instead of 1/r 0.
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The numerical solution to the coupled system~6!–~7! as a function of the frequenc
transfer, together with the Raman cross section which is proportional to ImD(v), is
shown in Fig. 1 for several values of the interaction constantA and r 053.5a. One find
clearly that the line shape is asymmetric. The resonance curve drops more slowly
low-frequency side of the peak and, as we have said, this comes about simply beca
density of phonon states increases below the maximum. The center of the line~renormal-
ized phonon frequency! is determined by the equationv1(v)5v ~see Eq.~2! with
k50). Using Eqs.~6! and ~7! at the center of the line, one can easily find the phon
width G and the defect-induced shift (v12v0) .

ii. Line imperfections.In this case,

S~v!5BS 1

2
log

~s2/r 0
21v22v1

2~v!!21v2G2~v!

~v22v1
2~v!!21v2G2~v!

2 i arctan
v1

2~v!2v2

vG~v!

2 i arctan
s2/r 0

22v1
2~v!1v2

vG~v! D , ~8!

whereB5nsv
2(q'50)/4ps2 andv(q'50)5gr0

2v0
2.

The resonance line appears wider than it was in case~i! because of the more impor
tant frequency dependence of the line shift.

FIG. 1. Theoretical Raman intensity~imaginary part of the phonon Green function, the left panel!, phonon
width ~top of the right panel! and shift~dotted lines! plotted as function of the frequency transfer in the case
point defects with a potential of the small radiusr 053.5a in atomic unitsa. The intrinsic phonon width is taken
2 cm21, but three different values of the dimensionless interaction constantAd5A/v0 have been used in Eq.~7!
and the corresponding total widthsG ~cm21) obtained at the line centers:~a! perfect crystal,Ad50, G52 ~b!
Ad50.075,G54.84, ~c! Ad50.187,G57.40.
864 864JETP Lett., Vol. 66, No. 12, 25 Dec. 1997 L. A. Falkovsky
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iii. Plane imperfections.We obtain

S~v!5CS 1

2
log

x1
211

x2
211

1arctanx11 i arctanx2D Y ~2a11 ia2!, ~9!

where the notation is the same as in~7!; C5nl v2(qz50)/A2ps, the one-dimensiona
Fourier componentv(qz50)5gv0

2r 0, and nl is the lineal concentration of scatterin
planes~density per unit length!. In other words (nl a)21 is the average crystallite or por
size measured in atomic units.

It is interesting to remark that one obtains the same frequency dependence
Raman cross section in the limiting case of the very large potential radiusr 0k(w)@1 for
all dimensions. This case describes simply the small-angle scattering of phono
imperfections and, as a consequence, the phonon cannot ‘‘see’’ really the geometry
imperfections. As an example, we show the case of the line defects in Fig. 2 for
range disorder. Although our final results have been written for a single phonon m
the basic Dyson equation~3! may be applied to a degenerate phonon. In this case,
phonon scattering by the anisotropic imperfections implies both damping and splitti
the degenerate phonon mode.

4. In Fig. 3 the inhomogeneous shift~the homogeneous shift is not included! and
width are shown as functions of the defect concentration for different dimensions o
imperfections. They would be linear functions if the standard perturbation theory
used. For imperfections on an atomic scaler 0;a, one can obtain from Eqs.~7!–~9! the

FIG. 2. Same as Fig. 1 but for line defects of large radiusr 0520a for three values of the interaction consta
Bd : ~a! Bd50.063,G53.58, ~b! Bd50.21,G55.5, ~c! Bd50.55,G58.1.
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rough estimatesG2G (int)5g2nva3(v0G)1/2 for the point defects,G2G (int)5g2nsa
2v0

for the line defects, andG2G (int)5g2nl av0(v0 /G)1/2 for the plane defects, whereg.1
is a dimensionless coupling of phonons with the imperfections.

The fact that the optical phonons are not visible in the Raman scatterin
G/v0..01 ~roughly! gives that defines the critical concentrations of the point and
defects asnva3g2.(G/v0)1/2..1 andnsa

2g2.G/v0..01, respectively, and the critica
crystallite size (nl g2)21;a(v/G)3/2.103a above which the Raman lines are no long
observed.

Our results also show that there is a definite correspondence between the imp
tion scaler 0 and the phonon line shape observed in the Raman scattering. The cros
value r 0

21 for the potential radius is determined by the phonon widthk(w)5AGv0/s. In
the case of the short-range imperfection potentialk(w)r 0<1, the phonon line shape i
asymmetric due to the influence of the phonon density of state~see Fig. 1!. For the
imperfections of large radiusk(w)r 0.1, the influence of phonon–defect scattering resu
in a symmetric but non-Lorentzian line shape~see Fig. 2!.

This paper was motivated by discussions with J. Camassel of his experimen
interfaces and ion implantation. It is my pleasure to thank him for comments and i
I am also grateful to V. Fateev for discussions and comments. This work was supp
in the framework of INTAS program 0101–CT93–0023 and also by Russian Fun
Fundamental Research~Grant No 97-02-16044!.

FIG. 3. Dependence of the inhomogeneous phonon shift and width~at the line centers! on the imperfection
concentration for three kinds of defects. The potential radiusr 053.5a and the phonon–imperfection couplin
g50.5 are taken for all cases. The concentrations are given by the dimensionless variablesnvr 0

3 , nsr 0
2, nl r 0 for

the point, line, and plane imperfections, respectively. The solid curves are the solutions of equations~6!–~9!.
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Thermal conductivity of the spin-Peierls compound
CuGeO3

A. M. Vasil’ev, M. I. Kaganov, and V. V. Pryaduna)

Department of Physics, M. V. Lomonosov Moscow State University, 119899 Moscow
Russia

G. Dhalenne and A. Revcolevschi
Laboratoire de Chimie des Solides, Universite Paris-Sud, 91405 Orsay Cedex, Franc

~Submitted 17 July 1997; resubmitted 18 November 1997!
Pis’ma Zh. Éksp. Teor. Fiz.66, No. 12, 823–826~25 December 1997!

The thermal conductivity of the pure and zinc-doped spin-Peierls com-
pound CuGeO3 is investigated for the first time. Characteristic features
reflecting the changes in the phonon spectrum of the crystals are ob-
served in thek(T) curves at a transition into the dimerized state in
CuGeO3 at Tsp514.2 K and in Cu0.98Zn0.02GeO3 at Tsp510.6 K. Near
the spin-Peierls transition temperatureTsp the thermal conductivity of
Cu0.98Zn0.02GeO3 (k53 W/m•K! is much less than the thermal con-
ductivity of CuGeO3 (k521.5 W/m•K!. © 1997 American Institute
of Physics.@S0021-3640~97!01424-2#

PACS numbers: 72.20.2i, 72.80.Sk, 75.80.1q

Copper germanate CuGeO3 is currently one of the most popular objects of inves
gation in solid-state physics. This is due to the discovery of a spin-Peierls transiti
this inorganic compound.1 Previously, a structural transition due to magnetoelastic in
action in quasi-one-dimensional chains of half-integer spins had been observed o
some organometallic compounds.2–4 In the orthorhombic structure of CuGeO3 the
magnetic-moment carriers with spinS51/2 are Cu21 ions, forming chains of copper–
oxygen octahedra along thec axis. Along thea and b axes these chains are separa
from one another by nonmagnetic chains of germanium–oxygen tetrahedra. The a
romagnetic exchange interaction in a chain is estimated to beJc5120 K, and the hier-
archy of exchange integrals along the principal crystallographic axes
Ja50.1•Jb50.01•Jc ~Ref. 5!. At Tsp514.3 K the periods of the crystal lattice along th
a and c axes double, and the Cu21 ions are shifted in pairs toward one another. T
dimers formed do not possess a magnetic moment, and the paramagnetic suscepti
CuGeO3 rapidly decreases with temperature in all crystallographic directions. In
absence of a constant magnetic field, the spin-Peierls transition is a second-order
transition, accompanied by sharp anomalies of the specific heat6 and elastic moduli.7 The
introduction of a small quantity of impurities which break the magnetic chains resu
a rapid decrease of the spin-Peierls transition temperature. This effect has been i
gated in greatest detail for the system Cu12xZnxGeO3 ~Ref. 8!.

In contrast to the thermodynamic properties, the kinetic characteristics of CuG3

have been little studied. It is shown only in Ref. 7 that the damping~like the velocity! of
868 8680021-3640/97/120868-05$10.00 © 1997 American Institute of Physics
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sound exhibits an anomaly near the spin-Peierls transition. In the present letter we
the results of an investigation of the thermal conductivity of copper germanate.
thermal conductivityk of CuGeO3 and Cu0.98Zn0.02GeO3 single crystals grown from mel
by the floating-zone method was measured by the stationary heat flux method.9 The
dimensions of the CuGeO3 sample in thea, b, andc directions were equal to 0.24, 0.86
and 4 mm and the dimensions of the Cu0.98Zn0.02GeO3 sample were equal to 0.05, 0.8
and 3 mm. The thermal conductivity measurements were performed along the cry
graphic directionsb andc in the temperature interval 5–100 K.

The temperature dependences of the thermal conductivity in pure CuGeO3 are
shown in Fig.1. Dependences of this type are characteristic for dielectrics, where h
transferred by phonons. As the temperature decreases, the thermal conductivity alo
c axis at first increases with increasing carrier mean free path, reaches its maximum
k529 W/m•K at T523.3 K, and then decreases as a result of the decrease in the nu
of phonons. The thermal conductivity along theb axis does not exhibit a distinct phono
maximum, and its absolute magnitude is much smaller. From Fig. 2, where measure
of the thermal conductivity along the dimerization axisc in pure and doped samples

FIG. 1. Temperature dependences of the thermal conductivity of CuGeO3 along the crystallographic direction
b andc.

FIG. 2. Temperature dependences of the thermal conductivity of CuGeO3 and Cu0.98Zn0.02GeO3 near the
spin-Peierls transition along thec axis. The lines are drawn according to the relationk;(T2Tsp)

a .
869 869JETP Lett., Vol. 66, No. 12, 25 Dec. 1997 Vasil’ev et al.
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low temperatures are displayed on an enlarged scale, one can see that features
served in the curvesk(T) near the spin-Peierls transition. The critical temperatures w
determined from the maximum of the derivativedk/dT near the spin-Peierls transition
The transition temperatures, established in this manner, into the dimerized sta
CuGeO3 (Tsp514.2 K) and Cu0.98Zn0.02GeO3 (Tsp510.6 K) are in good agreement wit
the results of other measurements.1,6–8 The thermal conductivity of the pure samp
k521.5 W/m•K near the spin-Peierls transition is much higher than the thermal con
tivity of the doped samplek53 W/m•K. This is due to the presence of a large number
defects in the doped sample.

At high temperatures the thermal conductivity of dielectrics is due mainly
phonon–phonon interactions accompanied by umklapp processes. This causes th
mal conductivity to decrease ask;T21 for T.Q, whereQ is the Debye temperature
The Debye temperature for CuGeO3 was determined in Ref. 6 to beQ5360 K. At low
temperaturesT,Q collisions of long-wavelength phonons do not lead to umklapp p
cesses, and the phonon mean free pathl is determined by scattering on defects. Whel
is comparable to the dimensions of the sample, the thermal conductivityk stops increas-
ing and its behavior is determined by the specific heatC.

It can be conjectured that the maximum in the functionk(T) for CuGeO3 is deter-
mined by phonon scattering by the surface. This conjecture, however, is at varianc
the estimate of the phonon mean free path. From data on the thermal conductivityk, the
specific heatC,6 and the speed of soundv,7 the temperature dependence of the phon
mean free pathl can be determined using the gas-kinetic relationk5(1/3)Cv l . It is
shown in Fig. 3. One can see that the maximum in the temperature dependencek(T) at
T523.3 K is observed for carrier mean free paths much smaller than the geom
dimensions of the sample. This makes it impossible to attribute this feature to scat
of phonons by the boundary of the crystal. The most likely cause of the limitation on
phonon mean free path and hence on the thermal conductivity seems to be scatte
planar defects, examples of which are, cleavage planes in the crystal. We not

FIG. 3. Temperature dependence of the phonon mean free path in CuGeO3 along thec axis.
870 870JETP Lett., Vol. 66, No. 12, 25 Dec. 1997 Vasil’ev et al.
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CuGeO3 crystals, being layered compounds, easily split into plates with thickness
the order of microns.

The minimum in the dependencel (T) near the spin-Peierls transition temperature
CuGeO3 is due mainly to a jump in the specific heatDCp57.8 J/kg•K;6 the change in
the velocity of longitudinal sound along thec axis is small atTsp : Dv/v51023 ~Ref. 7!.

The dips observed in the temperature dependences of the thermal conductiv
CuGeO3 and Cu0.98Zn0.02GeO3 near the spin-Peierls transition are apparently due
actuation of an additional mechanism of phonon scattering, on critical fluctuations o
order parameter. The specific nature of the spin-Peierls compounds is that the den
states of the short-wavelength phonons increases as the transition temperatureTsp is
approached.10 Quasi-one-dimensional critical fluctuations which lead, specifically,
characteristic diffuse scattering of x rays11 develop in spin-Peierls magnets long befo
static lattice distortions appear atTsp . The appearance of such phonons asT→Tsp

increases the probability of phonon–phonon interactions accompanied by umklap
cesses, which is proportional to (T2Tsp)

21. However, as shown in Fig. 2, th
experimental data are approximated best by a functionk(T);(T2Tsp)

a. In the case of
CuGeO3 a50.7060.05, and in the case of Cu0.98Zn0.02GeO3 a50.7660.03. This means
that asTsp is approached from the high-temperature side, not only the mean free pa
short-wavelength phonons but also the number of such phonons changes. It is inte
to note that the critical exponenta determined in this manner is close to the critic
exponent 2b50.66 determined from the intensityI of the additional crystallographic
reflections near the spin-Peierls transition temperature in CuGeO3:11 I;d2;(T2Tsp)

2b,
whered is the order parameter corresponding to dimerization of the lattice. Howe
belowTsp the order parameter corresponds to static dimerization of the lattice, and a
Tsp it corresponds to dynamic lattice fluctuations.

The thermal conductivity of spin-Peierls magnets cannot be compared directly
that of compounds undergoing a Peierls transition.12,13In compounds exhibiting a metal–
insulator transition, conduction electrons play the main role in heat transfer proc
near the transition and against their background the anomalies due to a change
phonon spectrum of the crystal are weak. An analogy can be drawn between the be
of the spin-Peierls magnets and the thermal conductivity of magnetic dielectrics.14 The
magnon subsystem in such materials can be manifested in heat transfer processes
ways. First, magnons as independent quasiparticles can themselves transfer hea15 and,
second, the magnetoelastic interaction of magnons with phonons opens up an add
phonon scattering channel. Thus, in easy-plane antiferromagnets a minimum of the
mal conductivity, due to scattering of phonons by critical fluctuations of the mag
subsystem near the Ne´el point, was observed against the background formed by
phonon maximum. However, the magnon spectrum in easy-plane antiferromagnet
tains a gapless branch, so that at low temperatures magnons can be excited togeth
phonons. In spin-Peierls compounds below the transition temperature, an energ
opens up in the spectrum of magnetic excitations. This suppresses the spin–p
interaction mechanisms.

This work was supported by the Russian Fund for Fundamental Research th
Grant 96-02-19474.
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