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A perturbation-theory framework is developed for calculation of the
characteristics of ther™ 7~ atom on the basis of the field-theoretic
Bethe—Salpeter approach. A closed expression is obtained for the first-
order correction to the lifetime of the* 7~ atom. © 1997 American
Institute of Physicg.S0021-364(17)00124-3

PACS numbers: 36.10.Gv, 31.15.Md

Experimental studies of the hadronic atoms (Ref. 1), wp, andwd (Ref. 2 have
now been carried out. The first estimate of the lifetime of #ifer~ atom was given in
Ref. 1. The DIRAC collaboration is now designing an experiment at CERN for the
high-precision measurement of the lifetime of 7~ atoms. This experiment might
provide a decisive improvement in the direct determination of the difference of the
S-wave 7r7r scattering lengths and thus serve as a valuable test for the predictions of
chiral perturbation theory.In view of these experiments there arises a need for a theo-
retical framework which would enable one to calculate the characteristics of such atoms
with a high accuracy on the basis of the ideas of standard model.

The theoretical study of hadronic atoms starts from Refs. 4—6, where the nonrela-
tivistic formulas for the lifetime of a hadronic atom and the shift of its energy levels due
to the strong interactions are obtained, which relate these quantities to the strong scatter-
ing lengths. The expression for the widfly of the 7" 7~ atom in the ground state is
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whereAm,, is them_+ —m_o mass difference, and, is the value of the Coulomb wave
function of pionium at the origin.

The approach to the problem of hadronic atoms which was developed in Ref. 4
makes use of a general characteristic feature of hadronic atoms — the factorization of
strong and electromagnetic interactions. Fornilijadlemonstrates this factorization prop-
erty explicitly, expressing the atom lifetime as a product of two factors: the Coulomb
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wave function at the origin, and the strong interaction factor, which is completely con-
centrated in ther 7 strong scattering lengths.

The problem of evaluation of the electromagnetic and strong corrections to the basic
formula (1) within different approaches is addressed in Refs. 7—14. For a brief review see
Ref. 12. In that paper we derived the relativistic analog of fornjlilavithin the Bethe—
Salpeten(BS) approach, taking into account the first-order correction due to the displace-
ment of the bound state pole position by the strong interactistnang correction This
correction was found to be of relative order £0 It should be stressed that the field-
theoretical approach¥s>~1*to the problem, unlike the potential treatmént,do not
refer to the concept of a phenomenological strong interactianpotential, which is a
source of additional ambiguity in calculations of the characteristics of hadronic atoms. In
the former approaches these characteristics are expressed directly in terms of the under-
lying strong-interactior(chiral) Lagrangian, and the results can be compared to experi-
ment, providing a consistent test of the predictions of the chiral theory.

In the present work we suggest a relativistic perturbation-theory framework for the
calculation of the energy levels and lifetime of hadronic atoms. The main purpose of this
work is to demonstrate the possibilipot only in potential scattering theory but in the
BS treatment as wellof the clear-cut factorization of the strong and electromagnetic
interactions in the observable characteristics of hadronic atoms, thus avoiding the double-
counting problem in the calculation of these quantities. It should be noted that the sug-
gested approach allows one to calculate the strong and electromagnetic corrections in all
orders of perturbation theory. At the present stage we apply the general formalism to the
calculation of the first-order strong and electromagnetic corrections to the pionium life-
time. The results for the strong corrections obtained in Ref. 12 are reproduced in these
calculations.

Our approach is based on a perturbation expansion about the solution of the BS
equation with a Coulomb kernel similar to that introduced in Ref. 15:
4im_e

2
Ve(p,g)=yw(p) g Vw(@),  w(p)=ymZ+p* (2)

The factoryw(p)w(q) introduced in the kernglR?) enables one to reduce the BS equa-
tion with such a kernel to the exactly solvable Sclinger equation with the Coulomb
potential. Then the exact solution of the BS equation with this kernel is written in the
form

dmam,dy  —
Pe(P)=iGo(M*;p) 4\W(p) %yf’(’, be(P)= (P, ®

wherey=m_a/2, M*?= mi(4— «?) is the eigenvalue corresponding to the unperturbed
ground-state solution, an@, denotes the free Grenfunction of thew™ 7~ pair. The
exact Greefs function corresponding to the Coulomb keri@) is given by the well-
known expression

Ge(P*p,q)=(2m)*8(p—q)Go(P*;p) + Go(P*;p) Tc(E*;p,q)Go(P*;q).  (4)
Here T is given by
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Tc(E*;p,q)=1617m_ aw(p)w(q) , 5

1 1 vdpp™”
(p—q)2+J'0D(P;D,Q)
o m. (., P\, &
D(p;p,a)=(p—q)%p— 4E*(E _m_w)(E —m—w)(l—p)z,

wherev=a\m_/(—4E*) andE*=(P*?>—4m?2)/(4m,).

The full BS equation for ther™ 77~ atom wave functiony(p) is written as

4

Gal(P;p)x(p)=f V(P;p,a)x(a), (6)

(2m)*
whereV(P;p,q) denotes the full BS kernel, which is constructed from the underlying
(effective Lagrangian according to the general rules and includes all the strong and
electromagnetic two-charged-pion irreducible diagrams. In particular, it contains the dia-
grams with two neutral pions in the intermediate state which govern the decay of the
"~ atom intor°#°. Note that in additio’/(P;p,q) contains the two-particle reduc-

ible charged-pion self-energy diagrams attached to the outgoing pionid\etysthe
relative momentuny). These diagrams arise in the definition of the keéP;p,q)
because the free two-particle Gréeifiunction instead of the dressed one is used in the
left-hand side of Eq(6). The c.m. momentum squard®f of the atom has a complex
value, corresponding to the fact that the atom is an unstable system. According to the
conventional parametrization, we can wrké=M?2=M?—iMT" whereM denotes the
“mass” of the atom, and” is the atom decay width.

The full four-point Green’s functioits(P) for the kernelV has a pole in the com-
plex P? plane at the bound-state energy. The relation between the exact wave function
x(p) and the Coulomb wave functioic is given by?

(X|=C(yc|GHPHG(P), P*2—M*2P2M? (7)

where C is the normalization constant. In what follows we assume that the limiting
procedure is performed with the use of the prescrigfiorP*?=M*2+\,

P2=MZ2+\, A\—0. The validity of Eq.(7) can be trivially checked by extracting the
bound-state pole iG(P) and using the BS equation fof. .

In order to perform the perturbation expansion of the bound-state characte¥istics
andI’ about the unperturbed values, we, as in Ref. 12, split the full BS k¥fiao two
parts asvV=Vc+V’ and considelV’ as a perturbation. It can be shown that EQ.is
equivalent to

(XI==C X yell1+(AGy ' =V)GrQI ™, AGy =G, '(P)=Go '(P").  (8)
With the use of Eq(8) the following identity is easily obtained
(#cll1+(AGy T =V)GRQ] H(AGH = V")[ ) =0, )

which is an exact relation and serves as a basic equation for performing the perturbation
expansion for the bound-state energy.
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In Egs.(8) and(9) GRrQ stands for the reguldpole-subtractedpart of the Coulomb
Greeris function(4), projected onto the subspace orthogonal to the ground-state unper-
turbed solution. This quantity can be further split into two pieces, according to
GrQ=Gy(M™*)+ 6G. Here the functionG corresponds to the ladder of the exchanged
Coulomb photons and thereby contains explicit powera.dt is given by the following
expression:

8
oG =ivw(p)w(q) d)(p,q)—S(p)S(q)M, P Go(M*,p)Go(M*,0),
®(p,q)=16mrm,«a mﬂa(p,q) +(m,a) "2S(p)S(q)R(P,q), (10

8
S(p)=4mm ape(p*+y*) "1, R(p,q)=25- \/Wm—wa [S(p)+S(a)]+- -,

where the ellipses stand for the higher-order terms.ifhe integral g(p,q) is given by

1d 1
IR(lo,q)=f0 f[D‘l(p:p,q)—D‘1(0:p,q)], Er=—Zm,a® (11

Equation (8) expresses the exact BS wave function of the atom in terms of the
unperturbed wave function via the perturbation expansion in the perturbation potential
V'. This potential consists of the following pieces.

1. The purely strong part, which is isotopically invariant. This part survives when
the electromagnetic interactions are “turned off” in the Lagrangian.

2. A part containing the diagrams with finite mass insertions, which are responsible
for them_+—m_o electromagnetic mass difference.

3. A part containing the exchanges of one, two, ... virtual photons and an arbitrary
number of strong interaction vertices.

Note that the terms 1 and 2 are the more important, for the following reasons. The
first term includes the strong interactions, which are responsible for the decay of the
pionium. The second term makes this decay kinematically allowed due to the finite
difference of the charged and neutral pion masses. Consequently, it seems to be natural to
consider pieces 1 and 2 together. We refer to the corresponding potertig).athe T
matrix ~ corresponding to the potentialV,, is defined by T.4(P)
=V 1x(P)+V1AP)Go(P)T1o(P). The rest of the potentiaV’ is referred to as
V3=V'—V,. In what follows we restrict ourselves to the first order in the fine structure
constante, i.e., we consider the diagrams with only one virtual photon containét.in

Returning to the basic equati@®), we expand it in a perturbation series, treatifg
and 6G as perturbations. Meanwhile we exparmGa1 in a Taylor series in
SM=M—M* and make the substitutiom=M*+AE®+AE@—i2TM—jj2r®
+(8M*) I Wy

Restricting ourselves to the first order of the perturbation expansion, we arrive at the
following relations:
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oM* m, "0

i T 1
(VR 112 42 Sr@W—im
AE e(z - w¢°>’ ST =I

| T—”qsz) . (12

Hereafter we use the local approximation for,, assuming that it does not depend on
the relative momenta. Equatios2) coincide with the well-known Deser-type formulas
for the energy-level shift and lifetinfeNote that on the mass shell

ReiT)~T(mtm —ata™), Im(iTp)~VAm, |T(7r" 7™ —a%7%)|2 (13
If we assumeV;=6G=0, we arrive at the result

re 9 Ag®
-8 E

—0.763%, where E;=— %mwaz. (14)

The first term of this expression, called the “strong correction,” was obtained in our
previous papet® However, as opposed to the present derivation, in Ref. 12, we used the
Born approximation for the calculation &E™, i.e., in Eq.(12) T,, was replaced by

V5. The second term comes from the relativistic normalization fagtofp)w(q) in the
kernel(2) and corresponds to the relativistic modification of the pionium Coulomb wave
function|fd*p/(2m7)*yc(p)|?= ¢§(1—0.381a)2/mw. Since this correction comes from

the Coulomb wave function of the atom, it does not depend on the parameters of the
strong 7 interaction, and for this reason it was neglected in Ref. 12.

Inclusion of G introduces a correction in the lifetime due to the exchange of an
infinite number of Coulomb photons. The integrals emerging in the calculation of this
correction are ultraviolet convergent, containing, howefirercomplete analogy with a
well-known result from nonrelativistic scattering theprsn infrared enhancemeatna
which stems from the one-photon exchange piece in'BqCollecting all terms together
and using Eqs(12) for relating ImT;, to AE®), we finally arrive at the first-order
correction to the pionium rate,

9 AEW AEM
=Ty 1+| —=——1 +(~0.7630) +(1/2+2.694— Ina) + 8y
8 El \'W—/ El
relativistic w.f. \ /

Coulomb photon exchanges
strong

— (M TO)Y " Re(Ycl(1+ T ,Go(M*NV3(1+Go(M)T ) ) |

(15

where 8, stands for the mass shift correctt8rand the last term collects the radiative
correction$®!* (including the retardation correctidfi,the correction due to vacuum
polarization® etc). In Eq. (15) all the first-order strong and electromagnetic corrections
are given in closed form, thus avoiding any difficulties connected with the double-
counting problem. The kernel which appears in the last term,
(1+T1Go(M*))V3(1+Go(M*)T,,), is constructed from the underlying Lagrangian
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with the use of the conventional Feynman diagrammatic technique. A detailed reexami-
nation of the above-mentioned corrections within the BS approach will be addressed in
our forthcoming publications.

In order to estimate the size of the calculated corrections to the pionium lifetime
(Eg. (15) we have used the following value of the singlet scattering length:
m7(2a8+ a§)=0.49, corresponding to a valueE(Y)/E;=0.24%. The first, second, and
third terms then contribute, respectively0.26%,—0.55%), and+ 1.85%, and the total
contribution amounts te- 1% of the decay widtlfapart from the mass shift and radiative
correction$. The largest contribution comes from théna term in Eq.(15).
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A new link between soliton solutions of integrable nonlinear equations
and one-dimensional Ising models is established. Translational invari-
ance of the spin lattice associated with the KdV equation is related to
self-similar potentials of the Schdinger equation. This gives antifer-
romagnets with exponentially decaying interaction between the spins.
The partition function is calculated exactly for a uniform magnetic field
and two discrete values of the temperature. 1897 American Insti-
tute of Physics[S0021-364(07)00224-1

PACS numbers: 05.56.q

The one-dimensional Schiimger equation

Lgh(X) = — thux(X) T U(X) h(X) = N eh(X) (D)

lies at the foundation of quantum mechanics and the theory of solitons. The class of
potentialsu(x) for which the spectrum and eigenfunctions of the operatare known in
closed form is of particular interest. It includes simple potentials related to the Gauss
hypergeometric functioiffor a review, see Ref.)]1finite-gap potentials, and potentials
whose discrete spectra consist of a number of arithmetic or geometric progressens
Refs. 2 and 3 and references cited thexele latter potentials appear after a self-similar
reduction of the factorization chain or the chain of Darboux transformations. In this note
we discuss the relationship of the self-similar potentials to the one-dimensional Ising-type
spin chain models. Below we use the language of the soliton theory described, e.g., in
Refs. 4 and 5.

It is well known that if the potentiali(x,t) and the wave functiogi(x,t) in Eq. (1)
depend on the “time™t in such a way that

(X, D) =By(x,t), B=—43+6u(X,1)dy+3uy(X,t), 2

then the condition of compatibility of Eq$l) and(2), L;=[B,L], is equivalent to the
Korteweg—de VriegKdV) equationu;+ u,,,— 6uu,=0. The N-soliton solution of this
equation can be represented in the far(w,t) = —2(9>2<In7-N(x, t), wherery=det C is the

determinant of the matrix
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2 Vkikj elbi+6)2

0i=kix—ki3t+ Hi(o) . (3)
Here k; are the amplitudes of solitons related to the bound state energi€4),of
\i=—k?/4, and 6{/k; are the zero-time phases. The orderinglQ< ...<k, is as-
sumed. Equivalently, this function can be rewritten in the fofin

n= 2, exg > Aij it > O, (4)
©i=0,1 1<i<j=N 1<i=N
where the phase shifts; are determined by the formula
(ki—ky)?
efi= . 5
(kK2 ©

There are generalizations of expressi@8is-(5) such that the correspondingx,t, . . .)
satisfy higher order members of the KdV hierarchy, sine-Gordon, Kadomtsev—
Petviashvili(KP), Toda, and some other integrable equatibns.

We start from the observation that expressidh has a nice interpretation within
statistical mechanics. Namely, fér= 6(®)= const it defines the grand partition function
of the lattice gas modé&lIn this case thes; play the role of filling factors of the lattice
sites by mutually repulsive molecule&?) is proportional to the chemical potential, and
the Aj; are proportional to the interaction energy betweenitheandjth molecules.

Simultaneously, the functiod) is closely related to the partition function of the
one-dimensional Ising modél:

ZN: 2 e_BE, EZE JijO'iO'j_ . Hio-i! (6)
oj=%1 i<j 1<i<N

whereN is the number of sping;==1, J;;=J;; is the coupling betweeith andjth
spins,H; is the external magnetic field, amg= 1/kT is the inverse temperature. Indeed,
let us introduce int@4) the spin variables via the substitutipn= (o;+ 1)/2. After some
simple calculations one finds

w=e¥Zy, ®=1> Ajt+3 > 0, )
i<j 1<j=<N

provided that

Aij=—4BJi;, 6i=2pB

Hi+ >, Ji,-). 8)
Is<j#is=N

As a result, one arrives at an interesting fact: from a giMesoliton = function of the
KdV equation(4), one recovers the partition function of thespin Ising model(7). The

7 function is defined only up to a gauge factor exp(b), and the function(7) fits this
freedom. Therefore one may identif§) as theN-soliton = function itself for the specific
exchange interactiob). This fact alone does not help much in the evaluatiorZ of
However, the recursive way of building-soliton potentials with the help of Darboux
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transformations or the factorization method appears to be quite useful. Let us give the
representation oZy following from the Wronskian form ofry (Refs. 7 and B

NN+ D2\

Zy=
I1 (-KkH*>

i<j

d' =,
>, ©

, WN:de‘<W

whereW,; _;=coshBHy_j+2,¥5=sinh BHy_,;11. The dependence &f; on the soliton
parameters is read fron8).

The factorization method transforms a given potentjf(lx):sz(x)—fjx(x)+)\j
with some discrete spectrum to the potentigl ,(x) = u;(x) +2f;(x) containing an
additional(the lowest bound state with the prescribed eneigy Within the Ising-model
context, this corresponds to the extension of the lattice by one more site. Then the
infinite-soliton potentials correspond to the thermodynamic IMiit 0. Characterization
of a generaly at N—x is a challenging problem, but for the specific choice of param-
etersk; ,050) this function can be analyzed to some extent through the basic infinite chain
of equation$

(F100+ 1 200),+ 700 = F2 100 =pj=Nj 11—\, [eZ. (10

In general bothry andZy, diverge in the limitN—oo. If the corresponding solutions of
(10) are finite, then the divergences gather into the gauge factor.

A key observation of the present work is that the simplest physical constraints
imposed upon the form of spin interactiodg of the infinite Ising chain select the
potentials with a discrete spectrum composed from a humber of geometric progressions.
First, let us demand that all the spins are situated on equal distance from each other and
that they are identical, i.e., that there is a translational invariahce,j;=Aj; . This
means that the interaction intensitidg depend only on the distance between the sites
li—jl, Aij=A(]i—j|). Such a natural constraint has theiquesolution

ki=kiq' "', g=e 2%, Aj=2Intanha(i—j)l, (1)

wherea >0 is an arbitrary constant. For finit¢ this spectrum corresponds to reflection-
less potentials with the eigenvalues condensing nea®. Forq>1, one should write
ki=k,q ' ** for correct ordering ok; . (The exponentially growing spectrum is formally
obtained for purely imaginark,; and g>1, but the corresponding potential contains
singularities) In the limit N—oo, one gets an infinite soliton potential with the discrete
spectrumh ;= —kig?0~Y/4 describing a specific semi-infinite spin chaintakes only
positive valuel As q'—0 for j —, thex andt depending part of the magnetic field is
decaying exponentially from the edge of the lattice. The limjts—o correspond to the
growing penetration depth of the magnetic field inside the bulk. Note that one can ana-
lyze boundary effects by working with a difference of the free energy at two fixed values
of the magnetic field.

Since 0<[tanha(i—j)|<1, one has);;>0, i.e., an antiferromagnetic interacti¢the
spins are not aligned in the ground sjatk has nice physical characteristics — its
intensity falls exponentially fast with the distance between the sites. It is well known that
the one-dimensional systems with finite-range interactions do not have phase transitions
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at nonzero temperature. There is a model with the exponential interaction
Jij=—713ole” "1l solved in the limity—0 by M. Kac? This limit corresponds to the
very weak but long-range interaction and exhibits a phase transition with the Van der
Waals equation of state.

There should be some relation of our model to the Kac one, but it is not clear
whether there exists a direct connection. A similar molecular-approximation limit is
reached in our case #— 0. Formally theA;;«J;; /kT diverge in this limit. If we renor-
malize the interaction constants a¥f"=J;(q"'—q) and the temperature as
T,er=T(q 1—q), then the maximal interaction energy of a single spin (determined
by the summation od;F" over j) will be finite for «—0 (or —1). Therefore the limit
g—1 corresponds to thieng-range interactiormodelat low temperatureNote that one
should simultaneously rescale the magnetic figkdh/(q~ 1 —q) to imitate the change of

the temperature.

The particular form of the renormalization factgr 1—q was chosen so as to re-
cover the interactiod;7™x &, , 1 j in the limit g— 0. If one takesh as a real magnetic field
then one gets the nearest-neighbor interaction Ising model at high temperature. If the
magnetic field is not rescaled, then the-0 limit corresponds to completely noninter-
acting spins. Thus our formalism allows us to analyze the partition function on two-
dimensional planes in the space of variabl@sH,q). Unfortunately, for fixedq the
temperature is fixed as well, and we may normalize the “KdV temperaturkTte 1.

The discrete spectrum does not characterize completely even the reflectionless po-
tentials — one has to fix the phasés Only for a special choice of these parameters
does one arrive at self-similar potentials. For example, the simplest case is determined by
the condition that the scaling of andt by q and g° respectively is equivalent to
removing one soliton. Formally this corresponds to the consteafatx,g3t) = 6; ., 1(x,t),
assuming the choic@i(o)ze(o): const. However,ry, Zy, and ® in (7) diverge for
N—o, and a more careful analysis is thus called for. Note that the shifi;ofh (8)
remains finite, and it becomes a fixed constanti ferc. This means that in the thermo-
dynamic limit the zero chemical potential in the lattice-gas partition function corresponds
to a fixed nonzero magnetic field in the Ising model, and, vice versa, zero magnetic field
corresponds to a prescribed value of the chemical potential.

Let us consider now the M-color” Ising model for which the chain is formed by
embedded sublattices in which blocksMf spins with different distances between them
are periodically repeated. Within each of this block the distances between spins are not
equal, so that the interaction constants between theMirsites are given by arbitrary
(random numbers. Equivalently, one may think that at equidistant lattice points one has
particles with different magnetic moments, i.e., some kind of ferrimagnetic interaction.
Such physical constraints are bound to the condifiony ;v =A;;, which leads to a
constraint on the soliton energies in the fokm y=qk;, generalizing the previous case.
For a specific choice of the phasé®),, = 6{” one arrives at general self-similar poten-
tials, for which one ha®;(qx,q%) = 6, u(x,t). The rigorous definition of these poten-
tials for fixed time is given by the constraifts

fiomO)=0afi(ax), pj+m=0%p; (12
imposed upon the chaif10). The system of mixed differential argldifference equa-
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FIG. 1. Dependence of the magnetizatiomgh) on h for the KdV casen=1 (dotted curvesand for the BKP
casen=2 (solid curve$. The lower curves correspond ¢p=0.1 and the upper ones tp=0.8.

tions arising after this reduction describgsleformation of the Painléviranscendents
and their higher order analogs. Fbt=1 one has a-harmonic oscillator model, for
M =2 a system with theu,(1,1) symmetry algebra, etc.

Using the Wronskian representati¢®, we calculated exactly the free energy per
site f, in the thermodynamic limiZy—e #Ni, N—o, for a uniform magnetic field and
arbitraryM. For M=1 one has

2(9%9%., coshpH
(q2. qZ) 1/2
where @;q)..=I1;_o(1-aq)) and

(qzeZiV;q4)02c(q2e_2iv;q4)i 0421(V.q2)

2_ ‘ : = ) 14
lp(»)] 4sirtv(q*e?”;q%2(g%e2";q%2 qﬁi(v.qz) (19

1 T
—Bf,(H)=In +EJodvln(|p(v)|2—qtanr?,8H), (13

The Jacob# functions are defined in the standard wayhe density functiom(v) has
integrable singularities near the poinis-0,7. Note that it satisfies a curious identity
such that the second term (h3) vanishes foH =0.

The dependence of the magnetizatiofH) = — d4f,(H) on H has the form

- 92 , 2d
1f iva)dy tanh BH. (15)

Hy=|1-—
e ( mJo 63(v,q?) cosiBH — 62(v,q?)sint? BH

Substituting BH=h/(q 1—q) into this expression and plottinm(h), we obtain the
dotted curves in Fig. §§=0.1 (the lower curv¢ andg=0.8. We would like to note that

it is not clear how to solve the Ising model under consideration with the help of the
traditional Bethe ansatz and transfer matrix mettfods.

As was mentioned, a drawback of the given construction is that the KdV-generated
partition function has a fixed temperature for fixedIn order to obtain the full thermo-
dynamic description it is necessary to extend the formalism and repla¢él) at least
by nA;;, wheren is a positive integer. The KdV temperature is thus normalized to
B=n=1 (for n>1 one has to renormalize the magnetic figld-nH; in order to imitate
the effect of lowering the temperatyr@ his means that we need to look for an integrable
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model with phase shifts given by powers of expressibn Then one may hope to
recover the partition function at arbitrary values of the temperatira by an analytical
continuation.

The phase shifts\;; for a given Hirota polynomialP(x;,Xs, . ..) specifying a
particular evolution equation can be represented in the ¥orm

P(ki—kz k3—K3, . (1) (KE = KE)

A —
P(ky ko, —k3—K3, ... (- 1) (KT 14+K3 )

1=

(16)

where / is the number of variables i?. We have looked for equations admitting
N-soliton solutions with the prescribed phase shifts, substituting homogefeilighe
weights of the variables taken into accoupblynomials with undefined coefficients into
(16). It turns out that the taken conditions are very restrictive. The only solution we were
able to find is the hierarchy which starts fromP(xl,x3,x5)=16x§
+20xfx3+ 9x1x5—5x§, corresponding to=2. After an appropriate rescaling of vari-
ables this polynomial coincides with the one for the B-type (BKP) equationt!

Using the Pfaffian representation of tNesoliton solutions of the BKP equatidh,
we calculated exactly the partition function in the thermodynamic liit-co for a
uniform magnetic field and arbitratyl. For M=1 one has

(a;9)2 cosh BH + a,0,(v,q*?
2

, (17)
(—a;9)2 0,(v,q*?)

1 T
~Bty(H)= 5= fo dv In2

where g, means the derivative with respect to the variabland 6,(»,q*?) is another
Jacobi# function!® The dependence of the magnetizationtbris

1 (= (0;0)2 02(v,q¥?) cosh 48H
Hy={1-—[ dy|1
m(H) ( Wfo V( ! (—9;9)29,0:(v,q?)

-1
)tanh 4BH. (18

For g—0 one gets the simple answei(H) =tanh 28H.

Substituting BH=h/(q~*—q) into (18) and plottingm(h), we obtain the solid
curves in Fig. 1 forq=0.1 (the lower curv¢ and g=0.8. From a comparison of the
magnetization curves one can see that as the temperature is lowered, which corresponds
both to the transition from=1 to n=2 and to an increase af, the functionm(h)
becomes steeper. This may be interpreted as a trend towards formation of a staircase-like
fractal function that should take place at zero temperature according to the arguments of
Ref. 12. Formation of the plateaus fon(h) at low temperatures can be easily checked
analytically for the nearest-neighbor interaction Ising antiferromagnet.

Attempts to find integrable systems with>2 have failed for Hirota polynomials of
up to 20th degree. Probably one has to pass from the scalar Lax pairs to the matrix ones
in order to imitate other values of the discrete temperature. The lattice of temperatures
itself resembles a discrete variable unifying different hierarchies of integrable systems
into one class.
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A relation between the two-dimensional nearest neighbor interaction Ising model
and the sinh-Gordon hierarchy was discussed in Ref. 13. In particular, the corresponding
N-soliton solutionr function,N—oo, was shown to be the generating function of corre-
lation functions. It should be noted that our identification of the one-dimensional Ising
model partition function withr-functions of some integrable equations is different from
the constructions considered in Ref. 13 and earlier related works. However, it is expected
that the self-similar potential®r g-analogs of the Painlévieanscendenjsare related to
some correlation functions in the corresponding setting as well. A hint on this comes
from the fact that the supersymmetric quantum mechanical representation of the factor-
ization method is related to the Lax pair of the sinh-Gordon equation.

The authors are indebted to Yu. Berest, V. Inozemtsev, T. Shiota, and C. Tracy for
stimulating discussions. This work is supported in part by NSER@nad® RFBR
(Russia Grant 97-01-01041 and by INTAS 96-700.
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Effects of high- J intruder states in the fine structure
of superdeformed bands

I. M. Pavlichenkov
Kurchatov Institute Russian Science Center, 123182 Moscow, Russia

(Submitted 11 November 1997
Pis’'ma Zh. Kksp. Teor. Fiz66, No. 12, 759-76425 December 1997

All known cases ofAl =4 bifurcation in superdeformed bands are
analyzed on the basis of the theory proposed by the author in a previous
paper[l. M. Pavlichenkov, Phys. Rev. 85, 1275(1997)]. It is shown

that the highj intruder single-particle states play a critical role in the
phenomenon. The bands in which fine structure can be observed are
predicted. ©1997 American Institute of Physics.
[S0021-364(®7)00324-1]

PACS numbers: 21.16k, 21.60.Ev

1. An intriguing discovery in the physics of high-spin nuclear states was the obser-
vation of fine structuréor Al =4 bifurcation in a superdeforme(SD) rotational band of
the %Gd nucleus. This structure is observed experimentally/ds=2 staggering of the
energies ofy transitions in the band. Latepl =2 staggering was found in two other
regions of SD nuclei, but the errors of all measurements were comparable to the magni-
tude of the effect. This defect has been eliminated in the latest experifidBspecially
interesting is the work in Ref. 3, where not only was the regular pattern of the staggering
in 14%Gd confirmed, but two other SD bands with a similar structure were fouhtfiu
and!¥Gd nuclei. The extent, regularity, and similarity of the staggering in all three bands
preclude the possibility of explaining the phenomenon by means of band cr83alag.
note that theAl =2 staggering in a band is noticeable only for spins greater than some
critical valuel 3. For Eu and Gd isotopdsg~ 40.

The fine structure of the bands is explained by the nonadiabatic nature of the rotation
and is described by an effective Hamiltonian in the form a power series of projection
operators that project the total angular momentynof the system onto moving axes
k=1,2,3. The symmetry of the system imposes certain restrictions on the terms of this
series. For theC, axis the lowest-order nonaxial operator in the Hamiltonian is
14 +1% (1.=1,%il,). In molecules of the type ABit results incluster statesn rota-
tional multiplets® The splitting of the levels of a cluster is small, since it is determined by
tunneling through classically inaccessible regions of phase space. Only the symmetric
state A; of the groupC,, exists in a nucleus. The position of this state in a cluster
depends on the quantum numberThis is how theAl =2 staggering is explained in
Refs. 6 and 7. The symmetry ax@, implies the existence of ¥,, deformation of the
surface of a nucleus. However, calculations of the equilibrium shape of rotating SD
nuclei have not confirmed this conjecture. For this reason, the explanation of the phe-
nomenon on the basis of an analogy with molecular cluster states is acknowledged to be
problematic®
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2. In Refs. 9-11, the present author proposed a different explanation of the fine
structure of nuclear bands. According to this theory, the opetéter* in the rotational
Hamiltonian is due to the interaction of rotation with the single-particle motion of nucle-
ons in a nucleus. The starting point is the Routhian

1
H'=Ho—5 2 x» 2 95,0\, —w1di— w5, (1)
2524 m

whereH, is a spherically symmetric single-particle Hamiltonign,and y, are quadru-

pole and hexadecapole interaction constants, and the last two terms, which depend on the
angular velocitieso, and angular momentd,, describe the rotation of a nucleus about

an axis perpendicular to the symmetry axis 3. Such an orientation of the rotation axis
makes it possible to obtain nonaxial terms in the rotational Hamiltonian and to study the
limit of a purely collective rotation. In the Routhidf) the pairing interaction is omitted;
taking account of this interaction does not present any difficulties.

In the Hartree approximation the rotational energy of a nucleus depends on the
nonaxial collective coordinates, ,=Tr(q, ,p), u=*2, =4, which are nonzero because
the density matrixp is nonaxial as a result of the rotation. But rotation appreciably
distorts the motion of nucleons only in states with a high single-particle angular momen-
tum j. States with the highest value pfn each shell are distinguished by parity, and for
them]j is a good quantum number. Correspondingly, we write the nonaxial coordinate in
the form

a)\/L:Q)\/L+E)\M1 (2)

whereQ, , is the multipole moment of the nucleons of intruder subshells. Completely
filled subshells do not contribute @, , , since the operatar, , has a zero trace. There-

fore Q,, equals the multipole moment of nucleons in partially filled intruder subshells
and is a microscopic quantit@, ,~ a,,/A. The macroscopic quantit&m equals the
multipole moment of the nucleons in the remaining states. It can be represented in the
form of a perturbation series

a,,~Tr(dy,p?)+Tr(ay )+ .. ., (3)

wherep™ is thenth order correction to the density matrix of the nucleus as a result of
rotation. Equation$2) and(3) can be used to find the rotational energy of a nucleus in the
form of a power series in the angular momentum projection operatdtsis series is not

an ordinary perturbation-theory series, because rotation in the states of the intruder sub-
shells is taken into account by means of exact diagonalization.

To obtain the conditions for the existence of fine structure in a band it is sufficient
to study the limit of purely collective rotation. The corresponding rotational Hamiltonian
to fourth order will have the form

He=AlI?+ BI*+d(12 +12)+c(1% +1%). (4)

The axial terms of this Hamiltonian include the moment of inefti@d= 1/23) and the
next inertial parameteB. Nonaxial terms with the parameters
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1(1+1)

X4
d=-—5 2, Xxsz[ O3+~ g | 6=~ Quak (5)

1634

arise on account of the quadrupole and hexadecapole interactions of the partially filled
intruder subshells with the rotational distortion of the self-consistent field of the nucleus.
For this reason, the parametdfs include the moment€,,, Q,,, and Q,, and the
angular-frequency independent quantities

LW (6)

where w.=w;*iw,. The nonaxial terms start to play an appreciable role for spins
| ~1.=|d/4c|Y2. The Hamiltonian(4) is not invariant under the group,, nor, in con-
sequence, under the substitution> —c. The latter transformation inverts the levels of
rotational multiplets.

The solution of the Schabinger equation with the Hamiltonia@) in the gquasiclas-
sical approximation makes it possible to find the condition for the existence of fine
structure in a band!

1/2

|d|
(2=42) 4
If ¢<0, the staggering shifts into the upper parts of the multiplets. The fine structure is
explained, as in Refs. 6 and 7, by oscillations of the wave function in classically inac-
cessible regions. The distinction is that these regions are formed not hydeformation

but rather by the interaction of the rotational and single-particle motions.

c>0, l<I<l,, lo=

)

3. The macroscopic quantitig§) can be calculated for the anharmonic oscillator
potential with frequencies, along the symmetry axis of a nucleus and in a perpen-
dicular plane. Such a potential makes it possible to obtain an expressicmﬁom
analytical form. For example, in the limib, — w,>w, + w, we have

@ _ [ 35 9h? /wi-i—a)z 432 175 +38 s .
“44= N 324 64M2ij§\wL—wz (322, 1z 117 2A0), (8)

whereM is the nucleon mass and the quantit®eg equal the sums of bilinear combi-
nations of the oscillator quantum numbers, n,, and A over all completely filled
states. It is easy to show thaf})<0 for SD bands. Therefore the sign of the parameter
c is determined by the sign of the momedj,.

The microscopic quantitieQ, , can be calculated for an intruder subshell as

Qmj):UEa (joelayliva)n;,., 9)

wherev=1,2,...j+1/2, a= £1/2 is the signature anal,, are the nucleon occupation
numbers of the subshell. For SD nuclei wah-150 the subshellb;y5,i,3/, for protons

(7) andiqzp, j1sp for neutrons ¢) are not completely filled. The figure shows the
dependence of the momef},4(15/2) on the numbeiV of occupied states and the
rotational frequencyw=(wi+ w3)*2 The functionsF;(N)=Q,4/(nl|r¥|nl) are ap-
proximately the same for all subshells indicated above, since in the limit of angular-
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FIG. 1. Expectation value of the hexadecapole mon@@ptas a function of the numbeY of nucleons in the
cranked singlg =15/2 subshell for different rotational frequencies- 0.4 MeV (@), 0.6 MeV (), 0.8 MeV
(A) and the representative deformatiggs=0.622 andg,=0.041.

momentumj alignment, which is close to the situation in our system at the rotational
frequencies considered here, the average valug,pfs proportional to the Clebsch—
Gordan coefficien{jm,40jm), wherem is the projection of on the rotation axis 1. The
matrix element(jv @|q.djva) is always greater in symmetri¢avored states than in
asymmetriqunfavored states. The values of the paramete@ndd for SD nuclei with
A~150 with (without) pairing give the following estimate of the critical spin:
| o~40(400).

4. We will use the conditiort>0 for a comparison of the theory with experiment.
For this, let us consider a more realistic model of the nucleus, @ithrotons and\
neutrons. Assuming that the mean square radius and the deformation are identical for
neutrons and protonghis means that the ratio of the number of neutrons to the number
of protons is constant inside the nucl®swe obtain

I55

whereQui(7) =2;Quu(7,j), 7=m,v, and the summation ovgrextends over all incom-
pletely filled intruder subshells. The highsubshells make the predominant contribution.
Nucleons in the levels of these subshells form tloeninant configuratiorof the SD
band. For nuclei withA~ 150 this configuration isr6™»7" with m protons anch neu-
trons in subshells with principal quantum numbers 6 and 7, respectively.

In the approximation of the configuratiom6™v7" the sign of the parameter is
determined by the sign of the quantity

2/3

27
a(2)+

2/3
Xa (K) Q)+

160t

2N 2/3 2N 2/3
T) Qaa(¥) T) a&‘?(N)],

(10

F(m,n)=15F 3(m) + 19F 154 Nn), (11
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TABLE I. Value of F/(m,n) for the dominant configurations of some SD yrast bands with different
rotational frequencies.

SD Dominant Deformation F(m,n)

band configuration B, Ba w=0.4 MeV w=0.6 MeV w=0.4 MeV
2By 761168 0.49 0.04 0.327 0.071 —0.098
148Gd(1) w62p7t 0.55 0.035 —-0.109 0.004 0.145
149%Gd(1) w62v7t 0.60 0.032 -0.116 -0.018 0.113
1501p(1) w637t 0.59 0.09 0.655 0.537 0.392
152Dy (1) w6472 0.61 0.022 —-0.419 -0.257 -0.329
15Dy(1) w6473 0.59 0.12 0.259 0.074 —0.163
159Dy(1) w6472 0.57 0.03 -0.411 -0.263 —0.346

if the contributions of the neutrons and protons on the right-hand side do not compensate
each other. For example, in th&'Tb(1) band with the configuratioar63v72 the contri-
butions of the neutrons and protons#(3,2) are negative. There is id =2 staggering,

in agreement with experimehfThe absence of staggering in théDy(1) band can also

be explained by means of E@.1). In this case the dominant configuration of the band is
w6%v72. Here the contributions of the neutrons and protons are of different sign, but
there is no compensatidsee Table)l

The dominant configurationr62v7* is assigned to the series of SD bands in
148,14%d and*®&u nuclei. As one can see from Table I, the contributions of the neutrons
and protons to the quantit§(2,1) compensate each other, and the simple criterion in
applicable. Nonetheless, the results of Ref. 3 can be explained qualitatively by studying
the configuration of the bands ot8Gd'® (we enumerate the SD bands of this nucleus
according to Ref. 14and*®Eu relative to the configuration of tHé%Gd(1) band® and
assuming, in accordance with experiment, a0 for the latter. Then the bands which
are identical to it,**3Eu(1) with the configuration**Gd(1)® (7[301]1/2,a=—1/2)"*
and 1*&Gd(4) with the configuration**Gd(1)® (v[411]1/2,«¢= +1/2)" 1, must have fine
structure, since the mome@,4( 7) (Q44(v)) changes very little when a protdneutron
is removed from the,,X(S15) subshell. On the contrary, when a neutron in a symmetric
state is removed from thgy, or i3, subshell the momer®,4(v) decreases by a finite
amount, which can change the sign of the parametdihis explains the absence of fine
structure in the band¥*¥Gd(1) (the configuration**Gd(1)® (v[651]1/2,a= +1/2)"1)
and ¥%Gd(5) (**°Gd(1)® (v[642]5/2,«=+1/2)" 1. The absence of fine structure in the
148Gd(6) band, which has the configuratidfi®Gd(1)® (¢[770]1/2,a=—1/2)"* at low
rotational ~ frequencies and the  configuration 1*°Gd(1)® (¢[651]1/2) 2
® (v[770]1/2,«=1/2) at high rotational frequencies, follows from an approximation by
the dominant configuratiom6v7° or w6272

On this basis it follows that the most reliable predictions are those of the theory for
SD nuclei having a dominant configuration for which the neutron and proton moments
Q.4 have the same sign. Let us give these configurations for the well-known yrast bands.
The bifurcation can be observed in the ban#SEu(#6'v6%), *Eu(w6'v7%),
¥STh(7w61v6%), and S Dy(76*v7Y) but it is absent in the bands’Gd(w62»7?) and
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152Th(7r6317%). As one can see from Table |, the dominant-configuration approximation
is applicable for thé*°Tb(1) and®25Dy(1) bands and inapplicable for tH&Eu(1) and
153Dy(1) bands. An experimental check of these theoretical predictions would contribute
to a deeper understanding of the phenomenon.

In summary, in this paper the reason for thie=2 staggering ofy transitions of SD
bands has been determined. It arises as a result of an interaction of the rotation with the
partially filled intruder subshells. The nonadiabatic effects are described by a rotational
Hamiltonian which is not invariant under the groGy, ; this limits the existence region
of this staggering in respect to sgirand the nucleon occupation numbers of the single-
particle states. This limitation has made it possible to check the theory for the example of
eight SD bands in nuclei witA~ 150. The situation in two other regions of SD nuclei is
not so obvious, probably because the experimental data are unreliable.

| am grateful to G. de France for providing the experimental data for SD bands of
the 148Gd nucleus prior to publication. This work was performed with the support of the
Russian Fund for Fundamental Reseai@nant 96-02-16116
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A new type of source of ultracold neutrofidCNs) is proposed. The
source operates on the basis of a pulsed spallation source. Solid deute-
rium makes it possible to obtain UCN density*1leutrons/crh as a
result of high gain at low temperatures and the possibility of withstand-
ing high pulsed heat loads as a result of the high specific heat of solid
deuterium. ©1997 American Institute of Physics.
[S0021-364(97)00424-9

PACS numbers:; 29.25.Dz

INTRODUCTION

The possibility of obtaining UCN density 4®eutrons/criiby using solid deuterium
was discussed in Ref. 1 and studied experimentally in Refs. 2 and 3. In the present letter
we are proposing a new type of UCN source based on a pulsed spallation source with a
solid deuterium moderator.

In this method the high pulse neutron density of a spallation source is used and then
the UCNs are confined in the large volume of a trap for a long period of time up to the
next neutron pulse. The UCN density in such a source can exceed the pulsed neutron flux
on average by a factor of 300, for example. The pulsed neutron flux density is limited by
the specific heat of solid deuterium, and the average neutron density is limited by the
thermal conductivity of solid deuterium.

SCHEME OF A UCN SOURCE BASED ON A PULSED ACCELERATOR

Let us examine the scheme of a UCN source show in Fig. 1. A 600 MeV proton
beam with 1 mA per pulse strikes a legdngsten target surrounded with watéb cm),
which cools the target and is used for preliminary thermalization of the neutron flux.
Liquid-helium-cooled solid deuterium is the main neutron moderator and the source of
UCNSs. To decrease the heat load on the solid deuterium, a 3-cm thick bismuth shield can
be placed in the light water of the spallation source. At the moment of the proton pulse
the volume of the trap of the source is filled in a timfe2cs with UCNs up to a density
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FIG. 1. Scheme of the UCN source.

almost equal to the UCN density in the source. Then, two cylindrical shields are closed
up and cover the surface of the source. At this moment the proton current is switched off.
The accumulated UCNs can be confined in the trap for a time close to the neutron
lifetime. The trap walls are made of beryllium and they are at the temperature of liquid
nitrogen. This gives UCN confinement in the trap for a timg; determined only by the
probability of losses at the walls of the trap, which is at a level dfd(Ref. 4), so that

the storage time«,,'=r, '+ 7. is limited by the neutron lifetime 4,). During the
interval between the neutron puls@®d0 9 the UCN density in the trap decreases. Over
this period of time the solid deuterium source cools to the temperature of liquid helium
and is capable of accepting the next neutron pulse. Thus, the UCN density in the trap of
the source is quasistationary with pulsed periodic pumping.

PARAMETERS OF THE UCN SOURCE

We shall present the basic parameters of the source that characterize a variant of a
scheme which is not yet optimized. The average power or heat load on the source is 2 kW
with an average current of 38A. The pulsed power is 0.6 MW with a current of 1 mA
for 2 s. The interval between pulses is 600 s. The power released in the volume of the
solid deuterium can be estimated using the data for a SINQ spallation source, in which
80—-85% of the power is released in the main water-cooled target. Then it can be assumed
that 15% of the total power will be released in the solid deuterium. We note that this
estimate neglects the effect of the bismuth shield. Therefore the average load on the solid
deuterium source equals 300 W. Correspondingly, the pulsed load is 300 times higher.
The bismuth shield can decrease the heat release by approximately a factor of 3.
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FIG. 2. Temperature gain of UCN yield for solid deuterium normalized to the UCN yield at room temperature:
1 — Computed curve for a large source with incoherent elastic scattering cross section of UCNs equal to zero
or for a UCN source in the accumulation mode;— computed curve for a large source taking account of UCN
scattering(2.2 b and the hydrogen impurity0.2%); 2 — experimental results obtained on a reactor with a
source volume of 6 liters of solid deuterium containing 0.2% hydrogen. The large increase in the UC yield at
18.7 K is due to a transition from the liquid to the solid state.

TEMPERATURE GAIN FACTOR

Figure 2 displays the temperature variation of the gain for a solid deuterium sburce.
The curvel corresponds to a theoretical calculation for a half space filled with solid
deuterium, i.e., for a source with a quite large volunve=(50 literg. Curve la repre-
sents a more accurate calculation in the same geometry but with allowance for the 0.2%
hydrogen admixture and the incoherent elastic scattering of UCNs in the solid deuterium.
An accelerator-based UCN source operates in an accumulation mode, while a reactor-
based source operates in a flow-through mode. In the flow-through mode a jump in the
UCN density is observed at the boundary of the solid deuterium as a result of incoherent
elastic scattering of UCNs. For this reason, a high UCN density outside the source cannot
be obtained with a reactor-based soufoerve 1a in Fig. 2). In the accumulation mode,
the UCN density in the trap over the time of a pulse reaches the density inside the source
(curvelin Fig. 2), and this density can be used in experiments. CarireFig. 2 shows
the results of a reactor experiment performed on a 6-liter solid deuterium source with
0.2% hydrogen added to the deuterium. For the experimental curve, at temperatures
below 10 K the temperature dependence has still not been studied with adequate accu-
racy. Some experimental tests show that there is virtually no temperature dependence and
the gain equals 1:210°. In the calculations below we shall proceed from the experi-
mental results, but we shall introduce a correction factor for the much higher degree of
thermalization of the neutron flux in a large-volume source and a correction factor for
deuterium purity.

The effective temperature of the neutron flux thermalized in a 6-liter volume was
reconstructed from the experimental spectrum of neutrons emanating from the source.
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The experimentally obtained spectrum is not Maxwellian but it can be decomposed into
two spectra: 56% of the intensity with neutron temperature 180 K, and 44% of the
intensity with neutron temperature 302KHowever, the optimal neutron temperature
equals 40 K The expected additional gain with respect to the experimental situation can
be estimated as a factor of 2.1 when the temperature of the neutron spectrum reaches
40 K.

The dependence of the gain on the hydrogen impurity concentration in the deuterium
was measured experimentally in Ref. 3, where mixtures of 0.2%, 0.7%, and 2% hydrogen
in deuterium were used. Extrapolating the experimental data to a purity of 0.05-0.1% in
terms of the H impurity, one can expect an additional gain of 1.5. Then the combined
correction factor for the experimental gain will equal to a factor of 3.1, and the expected
gain for a large-volume source with a purity of 0.05-0.1% in terms of the hydrogen
impurity will be 3.7 10°,

SUBSTANTIATION OF THE SOURCE PARAMETERS

We shall present some estimates substantiating the parameters of the source. The
neutron lifetime determines the maximum interval between pulses. Taking this interval to
be 600 s and requiring that the exit time through one open neutron guide equal the
neutron lifetime, we can calculate the characteristic volume of the UCN trap. In accor-
dance with the gas-kinetic theory, the exit time of UCNs from a trap is given by
7=4V,/Sv, whereV, is the trap volumeS is the area of the exit windowcross section
of the neutron guide andv is the average velocity of UCNs in the trap. Assuming that
the source volume is an order of magnitude smaller than the trap volume, we find that the
radius of the trap must be 1.2 m.

We note that the limiting energy of reflection of UCNs from beryllium corresponds
to a height of 2.5 m in terms of the gravitational energy of a neutron, so that a beryllium
trap with a diameter greater than 2.5 m will not be completely filled. It is also important
to understand that the maximum UCN density in a trap in a gravitational field is near the
bottom of the trap, so that the neutron guides should be attached to the lower part of the
trap.

A cold solid-deuterium moderator must have a sufficiently large volume to thermal-
ize the neutron flux to a temperature of 40 K. This neutron temperature is optimal for
obtaining maximum UCN yield. The mass of solid deuterium must be sufficient to
withstand the pulsed load by virtue of the specific heat. The surface area of the source
must be large so that the trap will be rapidly filled with the UCN gas. As one can see,
there are many factors requiring a substantial source volume. We shall attempt to choose
the volume of the solid deuterium source on the basis of the requirement that the source
temperature not exceed 10 K at the end of a pulse.

The heat release in the source is proportional to the filling time of the UCN trap. The
trap filling time 7; depends on the source surface area, i.e., the dimensions of the source.
To simplify the estimates, we shall assume the source to be spherical with Radivge
choose the proton pulse duration to bg 2The heat release in the sourd@= 2 ;wg)
determines the jumAT in the temperature of the solid deuterium at the time of the pulse
according to the relation
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QZZTfWS:C mAT, (1)

wherew; is the pulse power released in the solid deuteriGns the specific heat of solid
deuterium, andn is the mass of the solid deuterium.

For a preliminary estimate, we assume that 15% of the total power of the proton
beam is released in the volume of the cold moderator and that, starting with volumes
greater than 100—200 liters, this power depends very little on the volume of the modera-

tor. Then from the relatioril), the gas-kinetic formularf=4VT/SSv_, and the formula
Vo= (47/3)(R3—R%) we obtain
2ws (RP-RY

ATC=— —F—, 2
TUP Rg @

where R, andV; are, respectively, the radius and volume of the UCN t@pjs the
surface area of the solid deuterium sourRe,is the source radius, andis the density
of solid deuterium.

AssumingR3>R3, we obtain for the characteristic dimensions of the source

_<2WS R3
S\ mup ATC

1/5

3

As one can see from this analysis, the dependence of the source dimensions on the other
parameters of the problem is very weak because of the exponent 1/5. Therefore it should
be expected that even a rough analysis will give a quite definitive estimate. The product
ATC in Eq. (3) must be interpreted as an integral of the specific heat between the initial
and final temperature of the solid deuterium over the duration of the pulse. Taking the
initial temperature to & 6 K and the final temperature to be 10 K, and using data for the
specific heat, we obtain from E¢B) the valueR=0.6 m for the characteristic dimension

of the source. The exponential filling time can be determined from the geometric param-
eters obtained for the source and is found to be 1.0 s. Hence the duration of the proton
pulse for pumping a trap up to a UCN density equal to 86% of the maximum possible
value will be 2.0 s.

We shall now estimate the average source temperature, using data on the thermal
conductivity of solid deuterium. The thermal conductivity of solid deuterium depends
strongly on the ortho- and para- composition of the deuterium and on the temperature.
The ground state of deuterium at low temperature is orthodeuterium. However, the ortho-
and para- compositions can depend on the level of the neutrory-aag radiation field.
Experience in working with solid deuterium sourtdhas shown that at a level of
irradiation by thermal neutrons of>810'' neutronscm ?s 1, a fast neutron flux of
3% 10 neutronscm 2s ™!, and a heat release fromrays of 1.5<10 2 W/g, 95% of
the deuterium will be in the ortho- modification, and the irradiation of deuterium in the
liquid phase accelerates the transition to orthodeuterium. The results of these experiments
enable us to use the thermal conductivity of orthodeuterium in the calculations.

As a result of the sharp temperature dependence of the thermal conductivity and the
substantial spatial variation of the heat release, an exact solution of this problem is
nontrivial. We shall make here only a rough estimate using the following equation:
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Ts=Thet EATmax: Thet TSHe, (4)
where AT, . IS the maximum possible temperature difference, which arises when the
heat release is entirely localized on the inner surface of the source near a warm target,
AR is the radial thickness of the solid deuteriuBy, is the helium-cooled surface area,

\ is the average thermal conductivity of solid deuterium, taken to be 8-Wi/KandWg
is the average power of the heat load, equal to 300 W. Then we have for the average

temperature of solid deuteriuy=7 K.

UCN DENSITY IN THE SOURCE TRAP

Finally, we shall estimate the principal characteristic of a source — the UCN density
in the trap. According to the estimate presented earlier, the gain for a solid deuterium
source at temperature 7—10 K can be equal xal8®. Then the coefficient relating the
UCN density pycn[cm %]) and the thermal-neutron fluxd{,[ n/cn?s]) will have the
form
1/ E.\?GD
puen==| = | —=2=2.4x10"10. d,,, (5)
2\Tr) b
whereE_ is the limiting energy of the traf;y is room temperaturé800 K), andG is the
temperature gain factor.

The average neutron flux for a solid deuterium moderator can be estimated using
data on the distribution of the thermal-neutron flux in heavy water around a spallation
source (SINQ design. The emergence depth of UCNs from solid deuterium at low
temperatures is determined by the diffusion leniggh= L gL ./3, whereL=(nog) tis
the scattering lengthm is the density of deuterium nuclei per cubic centimeteys 2.2
b is the incoherent elastic scattering cross seclign; (no,) ~* is the UCN absorption
length, ando, is the sum of the UCN trapping cross sectian. and the UCN inelastic
scattering cross sectiomr(,). The computed value of the diffusion length~sl5 cm at
6 K. Therefore the UCNSs in the source trap are furnished by a 15-cm layer of solid
deuterium. The average neutron flux in this layer can be estimated xak0'8
neutronscm™2s~! with a proton current of 1 mA. Then the UCN density in the source
trap will be p=2.4x 10*®,=2x 10* neutrons/cri. Such a density will be 2 to 3 orders
of magnitude higher than in present-day sources.

CONCLUSIONS

In proposing a new type of UCN source based on a pulsed accelerator, we under-
score that such a source is different from a reactor-based source. The advantage of a
pulsed UCN source lies in the fact that a high UCN density is obtained at low tempera-
tures of the solid deuterium as a result of the high pulse density of the neutron flux. The
peak heat load at the moment of the pulse is taken up by the specific heat of deuterium
and then removed by heat conduction on account of the quite high thermal conductivity
of deuterium. The heat load on a stationary reactor-based source of UCNs is much higher
than the average load on a pulsed UCN source.

807 JETP Lett., Vol. 66, No. 12, 25 Dec. 1997 Serebrov et al. 807



It should be noted that the basic premises of the present design have already been
checked experimentalf7.* This gives hope that the estimates presented here for the UCN
density in a trap are quite realistic.

The design of the solid deuterium source of UCNs with high density in a trap can be
implemented on accelerators in LANWUSA), PSI (Switzerland, Institute of Nuclear
ResearctiRussia, KEK (Japan, and on a complex of the future European pulsed source.

The first experimental checks of the proposed design can be started on a small
model, using heavy icéD,0) instead of solid deuterium.

We thank our colleagues at the St. Petersburg Institute of Nuclear Physics, Los
Alamos National Laboratory, and PSI for helpful discussions.
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The spatially periodic modulation of optical anisotrdpyOA) induced

in oxide glass by mutually coherent light beams with different frequen-
cies (w and 2w) is unstable under illumination with monochromatic
light with frequencyw. Disturbances with small amplitudes intensify
and disturbances with large amplitudes relax. Irrespective of its initial
degree, the MOA reaches the same steady-state level, which depends
on the illumination intensity. Intensification of MOA is accompanied
by the appearance of second-harmonic radiation whose intensity grows
in time to a steady-state level. The instability of the anisotropy is due to
degenerate three-wave mixing and to feedback arising as a result of the
coherent photogalvanic effect. A hypothesis that takes into account the
observed giant growtkby three orders of magnitugief light absorp-

tion in the MOA region is proposed to explain the stabilization of the
instability and the formation of stationary periodic refractive-index
gratings. © 1997 American Institute of Physics.
[S0021-364(97)00524-0

PACS numbers: 42.70.Ce, 42.65.Sf

It has been established in a number of recent works that the symmetry of an opti-
cally isotropic mediunm{glasg can be lowered by irradiation with monochromatic radia-
tion. As a result, the state of the glasslight system is unstable. The change in sym-
metry is accompanied by a restructuring of the spectrum and spatial distribution of the
light flux. This is manifested experimentally as the spontaneous appearance and ampli-
fication of the second harmonic under prolonged transmission of monochromatic light
through an optical fibérP or as a self-maintained diffraction of light in bulk sampfes.
is believed® that the coherent photogalvanic effs¢t(CPGB — the appearance of a
steady-state current in a medium illuminated by two mutually coherent sources with
different frequenciesd and 2w) — is responsible for the instability. On the basis of this
idea, the instability and growth of fluctuations of optical anisotropy in an isotropic me-
dium under monochromatic illumination could be due to intensification of macroscopic
fluctuations of the electrostatic field.

In the present letter we report the results of a direct observation of the instability of
photoinduced modulation of the anisotropic refractive index in glass and investigate the
properties of this instability.

The experiments were performed in oxide glass and consisted of the following. First,
a reversible spatially periodic changen of the refractive index — an grating"'® —
was produced in glass by two mutually coherent beams at the fundamental and doubled
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FIG. 1. Evolution of the diffraction efficiency of gratings with different initial amplitudes.

frequencies of a pulsed neodymium laser. The grating played the role of an initial dis-
turbance at the next stage of the experiment. The amplitude of the initial disturbance was
varied by varying the duration of illumination of the glass, and the angle between the
beams was chosen so that thae grating would be oriented at the Brewster angle with
respect to the beam at the fundamental frequentgin beanm After the initial distur-
bance was produced, the beam at the doubled frequency was covered and the dynamics of
the diffraction efficiency of the main beamy=14/1, was investigated as a function of

the amplitude of the initial disturbance amgd (I4 and|, are the peak powers of the
diffracted and incident light In this formulation, the main beam was the probe beam and
simultaneously fulfilled the role of a “pump.” In another series of experiments, after the
initial disturbance was written the dynamics of the second-harmonic radiation arising
from the region of the grating under illumination by the main beam was investigated as
a function of the intensity of the main beam and the amplitude of the initial disturbance.

1. A typical family of curves of the evolution of the diffraction efficiency for dif-
ferent initial disturbances is presented in Fig. 1. The arrows mark the moments when the
writing of the gratings ceases and illumination of the gratings by radiation only at the
fundamental frequency starts. Curtecharacterizes the dependence of the diffraction
efficiency of the initial disturbance on its writing time. One can see from the figure that
disturbances with small amplitudes grow and disturbances with large amplitudes relax.
However, irrespective of the initial value, the diffraction efficiency of the gratings
reaches the same steady-state leygt 7,. Investigation of the dependence gf on the
illumination intensity showed that the steady-state level increases monotonically;with
and saturates at quite high valueslef On the whole, the observed dynamics of the
gratings is formally similar to the evolution of disturbances in active nonlinear oscillatory
systems with a stable limit cycle.

Thus there exists in the system a photoinstability of photoinduced refractive-index
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FIG. 2. Evolution of SHG efficiency with different illumination intensity: 1 4, 2 — 1.41,.

gratings whereby the system is brought to a stable steady state that depends on the
intensity of the incident light.

2. Amplification of the gratings is accompanied by the appearance and growth of
second-harmonic radiation from the region of the grating. The direction and polarization
of this radiation are the same as in the case of the beam with the doubled frequency
employed for producing the initial disturbance. The efficiengy=1,/1, of second-
harmonic generatiofSHG) (I, is the peak power of the second harmonic produéed
observed to increase to a steady-state leygl(see Fig. 2, where the process is shown
for two different intensities of the main beanThe level,, increases with ;. Satura-
tion of SHG and diffraction efficiencies is reached over the same period of time, i.e., a
direct correlation is observed betwegg(t) and 74(t).

If the diffraction efficiency of the initial disturbance is much greater thgnthen
the second-harmonic radiation at the initial stage of the relaxation of the grating is not
detected to within the sensitivity of the apparatus. However, radiation does arise in the
region ny=<1.279, and intensifies rapidly with decreasing amplitude of the grating, reach-
ing a maximum atpy= 7. The SHG efficiency then equals the steady-state valye
The correlation of the SHG efficiency with the relative diffraction efficiency is shown in
Fig. 3. Thus, a direct relation is observed between the intensification of the gratings and
the increment to the SHG efficiency.

We shall now discuss the results, proceeding from the fact that the change in the
optical properties of glass is due to the appearance of an electri&figldn the glass as
a result of the CPGE. The appearance of optical anisotropy in the simplest model is
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described as follows. The two-frequency light fi#dw,20w) =E(w) + E(2w) with

E(w)=¢Eexpi(kir—wt), E(2w)=6E,expi(ky,r—2wt) (1)
produces in the glass a spatially periodic grating of the CPG cud et
I(r)=(a1e1(e16,) +2,6) ESEexpiger, ge=(2k;—ky). 2

In Egs.(1) and(2) E; », € ,, andk; , are the amplitudes, polarizations, and wave
vectors of the harmonics ara , are the photogalvanic constants. Charge separation by
the current)(r) results in the appearance and growth of an electrostatic field E:

dE 4=«

dt e S ©
whereJ. is the conduction current ardis the static permittivity. For small values &f,
while the electrical conductivityr does not depend on the fiefdut can depend on the
intensity of the light, the conduction current is proportional to the fidlg= o(14,15)E,
and a periodic grating of the field with wave vectgg accumulates in the sample:
E=(J/o)(1—exp(-t/7)), 7=€eldmwo. The field grating is accompanied by a grating of
the effective second-order polarizabilig?)~ x*)E with vectorq, = g and a refractive-
index gratingAn~ y(®)E? with vectorq,=2qg, i.e., the glass transforms into an inho-
mogeneous optically uniaxial medium. In our experiment the gratings studied play the
role of an initial disturbance and model fluctuations of the electrostatic field.

The appearance of an effective second-order polarizability in the disturbed medium
produces conditions for the appearance of a CPG current under monochromatic illumi-
nation of the medium, since SHG becomes possible. As a result of this, small spatial
fluctuations of the field can be intensified by monochromatic light and a mutual change in
the optical properties of the medium and light flux should occur. The scenario of such an
instability of system can be represented, using an idea of Ref. 4, as follows.
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FIG. 4. Attenuation of the intensity of light at the doubled-frequency.

Let a weak fluctuation fieldE(r) exist in the medium. Monochromatic ligh( )
incident on the medium in the region whelfg# 0 generates a field,5(2w,k,4)at the
doubled frequency. The fields generated by this harmonic and by the incident light induce
a CPG currentig~ Engi, which under certain conditions intensifies the initial charge
separation, causing the field to increase in time. In other words, the CPGE engenders in
the system a positive feedback which results in a lightre accurately, photoelectric
instability of the system. The Fourier componeBt¢q)expi(q-r) of the field which are
spatially in phase with the currengj€ 2k, —k,4) and are polarized so as to give maxi-
mum SHG efficiency should grow the most. For this reason, the development of insta-
bility should be accompanied by the formation of predominantly periodic anisotropic
structures. In our experiment the conditions of maximum intensification were satisfied by
choosing the polarization and angle of incidence of the light on the grating. In the
process, a second harmonic widh,= 2k, —ge is generated, and the spatial phase syn-
chronism of this grating and of the initial grating of the field arises automatically.

It is important to underscore that the mechanisms studied should result in instability
of anisotropy fluctuations not only of electrostatic origin. The only requirement is that
they be accompanied by nonzero second-order polarizability. For this reason, the insta-
bility of optical anisotropy fluctuations studied above is quite universal and can be ob-
served in a medium with any symmetry.

Comparing the experimental results with the model considered above shows that
they qualitatively fit in the model, excluding the stabilization of the instability and the
relaxation of the gratings.

Let us examine the possible mechanisms of stabilization, remaining within the phe-
nomenological mode(3). The CPG currendg is determined by the relatiof2), except
that the external fiel&E(2w) in it is replaced byE,4(2w), which arises as a result of
generation. Stabilization of instability appears with a change in sigh,6fl.. This is
possible, if at some value of the field increases with the field more slowly thdp or
decreases. Our experiments correspond to the latte(sas&ec. 2 As the amplitude of
the grating increasgsvith 4/ 79>1), the intensity of the generated harmonic decreases
rapidly and, correspondingly, the currehtshould decrease.

The decrease in SHG efficiency is due to the rapid increase in the absorption of light
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at this frequency as the amplitude of the grating increases above a steady-state level.
Special experiments showed that as it passes through the grating, the doubled-frequency
radiation can be attenuated on the beam axis by a factor of 30, irrespective of the
polarization of the incident light. Figure 4 shows the time dependence of the intensity

| (2w) of the light with the doubled frequency after passing through the grating when the
initial disturbance is written all the way to saturation. The typical intensity distribution
over the diameter of the transmitted beam is shown in the inset. Since the transverse size
of the grating is somewhat smaller than the beam diameter, the obtained distribution
approximately reflects the dependence of the attenuation on the transverse distribution of
the amplitude of the grating. If it is assumed, for a rough estimate, that the decay over the
length of the grating is exponential, then the observed attenuation corresponds to absorp-
tion a~7 cm . The change in absorption compared with an unperturbed medium is
three orders of magnitude.

We note that an increase in light absorption has been obsériredptical fibers
with prolonged passage of mutually coherent bichromatic light with frequengciarad
2w through them as well as with monochromatic illumination of germanium—aluminum
silicate optical fibers doped with erbiuth At the present stage of the investigations, we
do not completely understand the nature of the giant increase in absorption in the grat-
ings, but it has been established experimentally that under our conditions it is not due to
decay mechanismgeneration of subharmonics

We also note that an increase in the currént as a result of an increase in photo-
conductivity accompanying SHG, or an increase in conductivity with an increase of the
field could make an additional contribution to stabilization of the instability. However,
these mechanisms should not lead to a decrease of the SHG efficiency with increasing
amplitude of the gratings. Therefore their contributions are not determining in our ex-
periments, though they could be significant under other condifionsther materials

Of course, we do not claim that the scheme studied here gives an exhaustive de-
scription of the observed phenomena. It does not include diffusion and recombination of
charge carriers, which damp the instability, and it neglects the nonlocal relation between
the electrostatic field ane,y. Such a relation should have an integral representation,
describing the simultaneous growth of harmonics in space, and should be obtained in a
self-consistent solution of the problefsee, for example, Refs. 4 andl. However, we
assume that these factors should not fundamentally change the interpretation of the ex-
perimental results.

We thank M. V. /I:'ntin for fruitful debates and a discussion of the results.
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Effects of two strong fields in resonant four-wave mixing

S. A. Babin, E. V. Padivilov, and D. A. Shapiro

Institute of Automation & Electrometry, Russian Academy of Sciences,
630090 Novosibirsk, Russia

(Submitted 8 September 1997; resubmitted 13 November)1997
Pis’'ma Zh. Kksp. Teor. Fiz66, No. 12, 777-78225 December 1997

An explicit solution is obtained for the four-wave mixing
ws= w1~ wo+ w3 Of two strong fieldsE; ,E; and two weak fields
E,,E, in a four-level system with large Doppler broadening. Reso-
nance of the intensity dependence of the mixing coefficient is found
around equal Rabi frequencies; - d; = E;- d3, whered, ; are the di-
pole moments of the corresponding transitions. The effect is interpreted
as a crossing of quasi-energy levels. Up to 6 peaks appear in the de-
pendence of the conversion coefficient on the detuning of the probe
field E,. The unexpected additional pair of peaks is a consequence of
averaging over velocities. The results permit interpretation of the satu-
ration behavior found in recent experiments on mixing in sodium va-
por. © 1997 American Institute of Physid$0021-364(07)00624-3

PACS numbers: 42.65.Hw

Four-level systems are promising objects for resonant optics and spectroscopy ow-
ing to the great variety of nonlinear effects. These include nonlinear interference, inver-
sionless gain, resonance refraction, electromagnetically induced transparency, optically
induced energy-level mixing and shifting, population redistribution,(ste Refs. 1 and
2 and citations there)nRecent experiments on continuous resonant four-wave frequency
mixing of the Raman type with sodium molecules in a heat ¥fipgave interesting
behavior of the generated wave power as a function of the frequencies and intensities of
the incident waves. In particular, the dependence of the output power on the intensity of
the first strong field was found to saturate in an experiment on down-convénsioite
the dependence on the intensity of the third wave exhibited linear growth. The measure-
ments were taken at large Doppler broadening, whereas the nonperturbational analytical
theory was intendé for atoms at rest.

From the mathematical standpoint the development of a nonperturbative theory in-
volves the solution of a set of 16 algebraic equations for the steady-state elements of the
atomic density matrix for the four-level system. The problem is only to analyze the
resulting awkward expression and to average this expression over a Maxwellian velocity
distribution. In the present paper we study the particular case of two strong and two weak
fields interacting with a four-level system having some symmetry. The fourth degree
equation can be reduced to a biquadratic one, and then the integration can be done
analytically (Fig. 1b.

Let us consider the conversion of two strong incident wakzgg resonantly inter-
acting with opposite transitiorgl,mn and the weak field, near the resonance with the
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1
n_v,t * ‘l fi ;
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FIG. 1. Conversion coefficient 8,)|? (arbitrary unit$ as a function of the detuning of the second field at
|G4|=1, |G3|=0.5, kyv1=7.0, kov1=6.9, y=0.2 (@), y=0.02 (b), and y=0.02 at|G,|=|G4/=0.5 (¢) (all
values are in ns'). The inset shows the level diagram of a four-level system interacting with two strong
driving fields at opposite transitior(solid arrow$ and with two weak fieldgwavy arrows. The dotted lines
show the forbidden transitions.

transitiongn into the fourth output weak wavié, (inset of Fig. 3. The electric field in
the cell is

4
E(r,t)= 21 E, expliw,t—ik,r), (1)

whereE, is the amplitude of theth field, andw, ,k, are the frequency and wave vector.
The index v numbers the transitionsy=1,2,3,4. The detuningd);=w;— g,
Qo=wr—wgy, Q3=wz—on, Q=0s—oy, are assumed to be small;
w;;=(E;—E;j)/h are the transition frequencies between energy leiglandE;. The
indicesi,j=m,n,g,l denote the energy levels. The frequency and wave vector of fourth
wave satisfy the phase-matching conditop= w;,— w,+ w3, Ky=k;—Kky+Kj.

The Maxwell equation for the output wave can be reduced to
dE4 27T| (1)m|dm|

WS (), @

where x is the coordinate alongf,, d,, is the matrix element of the dipole moment

operatord, ¢ is the speed of lightp, is the coherence at the transitiorl, and the angle
brackets denote averaging over the velocity distribution. We are to calqulatas a
function of the input amplitudek, ; 5, their wave vectors, , ;, and the frequency de-
tuningsQ; 5 3

With this goal we solve the equation for Wigner’s atomic density matrix

d
ot

— TV V—’_Fylj pPij= qjélj_l[\’\/rb]ljv (3)
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wherev is the atomic velocityy;; are relaxation constantg; = Q;exp(—v?/v%)/vim®?

is the Maxwellian excitation function, and= — E(r,t) - d/2% is the interaction operator.

To the zeroth approximation we can neglect both the weak figlds—0. The
problem boils down to finding the populationgp;=p;; and coherences
P1=pgI€XP(—iQt+iKy-T), p3=pmeXp(—iQst+iks-r) of a pair of separated two-level
systems. The solution for a two-level system in a strong field is well kn@ea Ref. V.

Weak fields with amplitude&,=E,- dy/2i andG,=E,4- d,, /2% give rise to cross-
coherence between levels belonging to the opposite two-level systems at the allowed
transitions,p,=pgn€Xp(—iQst+ik, 1), ps=pmeEXp(=iQat+ik,-r), and at the forbidden
transitions, ps=pgmeXp(—iQst+iks-r), ps=pn exp(=iQ¢t+iks-r), where Q5=Q;
—Q4, Qg=01—Q,, ks=k;—Kky, ke=k;—k5. To first order one can neglect the influ-
ence of these fields on the populatiopsand coherencep, ;. A set of 4 algebraic
equations for the off-diagonal matrix elements appears:

T'2po—iGypg +iGgps=—iGo(pg—pn),

I7p3 +iG3pg —iG1ps=iGy (pm—p1), (4)
I'sps—iG1p; +1G3p2=iGp3 —iGjp1,

I3 pg +iG3ps —iGT pp=—iGop7 +iG} p3.

Here G,=E;-dg/2h and G3=E;-d,/2h are the Rabi frequencied;,=vy,+iQ,,
Y1="Ygl» ¥3= Ymn» Y2=Ygn, andy,=yn are the constants for relaxation of the coher-
ence at the allowed transitions=y,, and yg=1vy, are the constants for forbidden
transitions, and), =0 ,—k,-v is the Doppler-shifted detuning.

The solution of Eq(4) for the off-diagonal element at transitionl can be written
as

ps=—1B4GIG,G3 —ia,G} . 5

In the thin-medium approximation the generated field is sm@l}| <|G,|, so that one
may neglect the absorptian, and find the coefficienB,. We found the intensity of the
output wave by integrating E@2) from x=0 to the cell length_:

2772w L

|4(|—):| o253

(Ba)(dgi-€1)(dgn- €2) (dmn- €3) (A~ €4)[ 21115 5, (6)
wheree, is the polarization of theth wave, and ,=c|E,|%/8 is its intensity. We find

the coefficient3, by comparing Eq(4) to a solution of the form5):

1 . G1|?—|Gg*~T.T's
B4:5 (F5+F6)(pg_pn)_ iG* P1
1

| 1Gy?=Gyf?- Tl
iG%

ot . W)
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Here the elementpy,p,,p1,p3 are solutions for separated two-level systems. The de-
terminantD of set(4) is a polynomial of fourth degree in the velocity. The averaging of
the coefficientB, over velocity can be done by using the residue theorem in the Doppler
limit k,v>|G,|,|Q,],7.

To examine the intensity dependence of the coefficgntlet us consider the case
of equal relaxation constanty;{ = y), excitation of the lower level only, detunings of the
strong field such thaf), /k,;=Q3;/ks<<v{, and equal wave numbers of the two weak
fields. The conditionk,=k, (and thereforeks=kg) seems realistic for the down-
conversion experiment of Ref. 3, where the difference of the wave numbers of the weak
fields was about 10%. One can ignore the difference-k, provided that
[k, — k4| <(kokskske) Y. In view of the phase-matching condition it is reasonable that the
weak field detunings depend on a single paramefer Q,=k,Q;/k;+Q,
Q,=ks Q41 /k;— Q. If all the wave vectors are parallel, then the expression{fgy)
assumes a simple form:

_ N S Cly) dy
B = Topr® | 5w T2+ k2y?
C(y)=4|Gy[%iz+ (7= ikpy)[|G1|*~[Ga|*~ (y—i(key — Q) (y—i(ksy —Q))].

Here y=Kk,-Vik,— Q,/ky, z=Q—ivy, T2 =7?+4|G,|? is the saturated width, and
N=Q, /vy is the unperturbed population. The determin2Ky) turns out to be a function
of y2:

D(y)=r*y*—2xk?y?A1 +A7, ©)

®

AS=[Z22—(|G4|—|G3)) [ 2>~ (|G4| +|G3])?],

-1/2

K
1o =2,

ko[, ko
Ay =(p?l2=1)Z2=|G1*+|G4|*, u= o

kil™ kg
The limiting caseu— corresponds to a quasi-degenerate four-level systega-0.
The opposite limitu— 2 meank;— 0. The detuning dependence|df,| takes its mini-
mum values at

This is a consequence of the level splitting by the strong driving field. Note that at
|G,|=|G3| the two minima merge together. The reason is the equal Rabi splitting for
each level.

The simple form of the determinaf®) allows calculating the mixing coefficiei(8)
explicitly,

2,22
o Ne @a/kt +izu?  4iz|Gq|2+ p(ulB2—A) [ 1
<,84>=£ yHizu®  4iz|Gyf"+ y(u 1)<_+ M”

KUT F§1+F31RM+A2M2 R AZ FS].
(11)

whereR=+2(A,—A;), RR>0. The branch of the double-valued functidn should be
chosen according to the following rules:

819 JETP Lett., Vol. 66, No. 12, 25 Dec. 1997 Babin et al. 819



Detuning

10

W v

Velocity

FIG. 2. Two positive solution§*?(y) of the equatiorD(y,2) =0 as a function of//vy . The other two zeros
are symmetricQ®=—-0M 0®=—0®@. The Maxwellian distribution is shown by the dotted curve.

RA,<0 atP,<|Q|, RA,=0at|Q|<P_, signJA,)=signQatP_<|Q|<P,,
whereP. =||G,| = |Gg||.

The mixing coefficient(3,)|? calculated from Eq(11) is plotted in Fig. 1a as a
function of the detunind). The coefficient has 4 peaks at points given(h9) as for
motionless particles. At equal distances between quasi-energy |8#gls |G;| the two
central peaks coalesce at the cedier 0 (Fig. 10. Besides the zeros df,, zeros of
R(Q2) may add two peaks near the centeig. 1b arising from averaging over velocities.

To interpret the twadditional peaks let us plot the two positive zerf$'-2)(y) of D as

a function of velocityy (Fig. 2). The two negative zeros are located symmetrically about
they axis. Thereturn points? where the derivativé(*? (y) equals zero, are places of
minimum variation of the eigenfrequencies. They therefore give the main contribution to
the integral over velocity. The integration over each neighborhood adds one sharp peak in
the spectrum, as shown schematically at the right. The two upper return points denoted by
the large black circles are located at zero velocity. Two additional return points, shown
by the small black circles, appear at finite velocity and correspond to the additional peak.
The return points can be found analytically from the conditions

dz_O b 0 aD+¢9D dz_O
ay =% (y,2)=0, o T azay
At y=0 this gives four solutiong10) at y=0, namely,z=+|G,|=|G3|. At real
y=*/A,/« there are two additional solutions:
G2 1G4
e pt—4
The coefficientA; becomes positive aiG;/G3|=u?/(u?—4)=k2/k3; otherwise the
return point vanishes, and with it the additional peak.

(12

z=%*2

(13

The value|(3,)|? at exact resonancé),=0, v=1,...,4) is shown in Fig. 3 as a
function of|G,|?. The sharp peak 46,|=|G3| confirms the qualitative interpretation of
the effect as a crossing of quasi-energy levels. The inset in Fig. 3 illustrates the case
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FIG. 3. Conversion coefficienf(8,)|?> (in arbitrary unit$ versus|G,|? at |G3|=0.5, Q=0, k=7,
kur=6.5: y=0.06(a), y=0.6 (b); intensityl, (arb. unit$ versus|G,|? at y=0.6 (c). The parameters faib)
and(c) correspond to experiment; all values are in”hsThe boxes denote the experimental points from Ref.
3. The inset illustrates the Rabi splitting of dressed states.

where the cross-transition from the upper sublevel of leyéb the upper sublevel of
level n has the same frequency as the transition between their lower sublevels. Concur-
rently, the same resonance is achieved for the transitieh In this case only 3 peaks
remain in the spectrurFig. 19, with a predominant maximum at the center. The cross-
ing condition|G,|=|G3| brings about the maximum conversion efficiency in the inten-
sity dependence.

The splitting effect is evident from experimental restfton resonant four-wave
mixing in N&. The main feature is saturation of the output power as a function of one of
the strong fields. The experimental conditions of Ref. 3 generally satisfy the above
model: (1) a down-conversion level schemg,<w; (see inset, Fig. dwith k;v;=7.0
ns !, kyur=6.5 nst, kgvr=5.2 ns’!, kywr=5.7 ns'!; (2) the interaction region is
short enough(about 1 cm that the model of thin media can be employéd) the
estimated  level  parameters  are N;~10"cm 3>N,~10" cm 3>Ng,N,;
Ym=7Yg~0.2 nst, y,=v~0.02ns . A slightly noncollinear geometrymixing angle
6~10 2) leads to an effective broadenidgo~ kv - 6~0.1 ns 1. Another factor is the
usual jitter of laser frequencies, especially for dimer and dye ladess; 0.2—0.4 ns?.
Thus, the effective value/=0.3-0.6 n5! seems reasonablé4) the maximum field
values estimated from the focusing geomet(@;|"™*~1 ns !, |G,|™>~0.2 ns !, and
|G5|™*~0.5 ns 1, nearly correspond to the condition of two strong fields.

The resonance conditidi®,|=|Gg| may result in peaks in botB,(1,) andB,(l3).
If |G41|™>|G4™® the peak is seen only if4(l,). The width of the peak is determined
by the decay rate. Since in the experiment~|G3|™®, the peak is wid€Fig. 3b) and
gives a smooth saturation curligl,) (Fig. 39, in agreement with the experimental data
(boxes in Fig. 3. At the same time, there is no saturation fgfl 3) in both theory and
experiment. Under the opposite experimental conditi@y|"*<|G5™* (Ref. 4, the
behavior ofl 4(11) andl,(l3) changes.

Thus the model explains qualitatively the main features of the measured saturation
curves. To observe the sharp resonances arising from Rabi splitting, stabilization of laser
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frequencies seems to be important. To increase the efficiency of conversion into the
fourth wave it is necessary to tune the laser frequencies to the corresponding peaks. The
optimum atQ),=0 corresponds to equal Rabi frequendi€s|=|Gg|.

The authors are grateful to S. G. Rautian, A. M. Shalagin, and M. G. Stepanov for
fruitful discussions and to B. Wellegehausen and A. A. Apolonsky for clarifying the
details of their experiments. This work was partially supported by the RFBR, Grants
96-02-00069G and 96-15-96642, and Deutsche Forschungsgemeinschaft, Grant WE 872/
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Precompression of matter during radiative energy
transfer in a steady-state thermonuclear burn wave

S. Yu. Gus’kov and L. P. Feoktistov
P. N. Lebedev Physics Institute, Russian Academy of Sciences, 117924 Moscow, Russia

(Submitted 28 October 1997
Pis’'ma Zh. Kksp. Teor. Fiz66, No. 12, 783-78625 December 1997

It is shown that precompression of matter ahead of the thermonuclear
burn wave front can occur in the central volume of a multilayer cylin-
drical system under conditions of radiative energy transfer outside the
region of wave propagation. The degree of compression is sufficient for
the development of a self-maintained wave of fusion reactions.
© 1997 American Institute of Physids$0021-364(07)00724-X

PACS numbers: 28.52.Cx, 44.4a

1. From the standpoint of initial energy costs one of the most economical versions of
a steady-state fusion reaction with unlimited intensification in terms of energy is a ther-
monuclear burn wave in a cylindrical system under conditions such that a portion of the
energy released is converted into thermal radiation and this radiation is used for precom-
pression of thermonuclear fuel ahead of the wave ftofte following such system is
being studied: two infinitely long coaxial cylindrical shells of matter consisting of heavy
elements, the inner shell containing the thermonuclear material and the gap between the
shells being filled with matter consisting of light elements. The conversion of the released
thermonuclear energy into thermal radiation occurs in the inner shell and radiative trans-
fer occurs along the gap between the cylinders.

In the present letter, a theoretical groundwork is laid for the possibility of initiation
and the conditions of propagation are determined for an “exterfailth respect to the
burn region wave of radiative energy transfer which provides the precompression of
thermonuclear matter that is required for the development of a stationary burn wave.

2. Without going into the specific method of initial ignitigthis can be irradiation
with a laser pulse or ion begmwe take as the conditions of propagation of a self-
maintained wave of DT reactions the well-known conditions of development of a deto-
nation wavé or a thermonuclear burn waveyhich require that the parameter (prod-
uct of the density of the matter by the radius of its cylindrical volurmued temperature
exceed the values

pofc=0.3—0.4g/cnt, T.=10 keV. )

Moreover, we shall assume that the propagation of the wave is characterized by a definite
degreen of fuel burnup. Further, we shall assume, as is ordinarily done for pulsed
inertial systems, that neutrons do not deposit energy in the system, wheaticles

are completely stopped in the burn region and the inner shell.
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Thus the problem is formulated as follows. The system contains a source of energy
with thermonuclear energy release intensity in terma pfrticles that corresponds to the
above-indicated ignition paramete(¥). We are interested in the rate of heat transfer
through the gap between the cylinders and the ratio of this rate and the velocity of a
“conventional” burn wave that would propagate along an isolated cylindrical volume of
DT matter with the prescribed parametéts. Is it possible for the rate of heat transfer
through the gap to exceed the velocity of a “conventional” burn wave under the addi-
tional requirement that the pressure in the gap will be sufficient for compression of DT
matter so that the ignition conditiorl) is satisfied?

In the approximation of a uniform temperature distribution over the cross section,
the following equation of energy balance, established in the system after the burn wave
front passes, holds:

3
_ B
TJ_; Ajmj+sw—eanmml, 2

whereT is the temperature of the mattékj andm; are, respectively, the specific heats
and massegper unit length of parts of the cylindrical systertthe indices 1, 2, and 3
refer to the DT material, the inner shell, and the gap between the shells, respectively
my=at2py, my=m(r5—r%)p,, andmg=m(r5—r3)pgz; ry, r,, andrs are, respectively,

the radii of the inner and outer surfaces of the inner shell and the inner surface of the
outer shell;3 is the ratio of the thermal energy of the matter to the kinetic energy and can
be estimated from the self-similar solution for isothermal expansion of idtiera
cylindrical geometry=1/3(y—1), vy is the adiabatic exponeftatio of specific heajs
W,=40T%c is the energy density of the equilibrium radiatiom=1.03x 10?*
ergs/cn- s-keV* is the Stefan—Boltzmann constaatis the speed of lightS= wrg; and,
€,=6.8x 10" ergs/g is the calorific value of the DT matter in termsaoparticles.

We shall now determine the region of characteristic parameters of the system, pro-
ceeding from the ignition conditiond). The density and temperature of the DT material
compressed by the inner shell under pressure in the gap are, neglecting the energy losses
in the shell,

v+1
y—1

P~ P1 (3

my| Y~ T TAsma B
my CC AImM (14B)

The compression time of the inner cylindger, /v, (v, is the average velocity of the
shell material toward the cenjeis

(1+B)p, | m3)A
1+ —|=
(y—1)(RP—1)W5\ My

1/2

; (4)

t%rz

)

A=r,—r, is the thickness of the inner sheR=r3/r,, W3=A3Tp5 is the internal
energy of the matter in the gap between the shells. This approximation is valid for not
very high ratiosm,/m;=<10-20. Assuming that the degree of burnup is 20% and, for
definitenessm,/m; =10, p;=0.2 g/cn? (density of DT ice, p,=20 g/cn?, andp;=2
g/cn?, we obtain that according to E€B) the parametep.r.=0.4 g/cnt corresponds to
massesn;~2x 10 2 g/cm andm,~2x10"! g/cm with the aspect ratio of the inner
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shellr,/A=~20 andr,~0.18 cm. As a result of the energy balance equaf®n the
second ignition conditioiT.=10 keV is satisfied withT=2 keV andmg/m;~12.5,
which corresponds t&R~1.5. For higher values of the paramefra higher ignition
temperature is reached with a lower temperature in the Bap14 keV andT~1.4 keV
for R~2 andT.~16 keV andT~1 keV for R~2.5.

3. We now proceed directly to the problem of heat transfer along the gap between
the shells. The transfer equation is

JoT 9
A3m3ﬁ = (9_X

X )

&Wr) C 2m(rg+ry)
2 ER GO

where y=L4c/3=2(r;—r,)c/3 is the thermal conductivity, which in the case of radia-
tive transfer in the gap between the shells is determined by a geometric factor, since the
geometric radiative transfer length, under these conditions is much smallby more

than an order of magnitugiehan the material transfer lengt(T,p)=qs/q, is the
“albedo” of the shell — the ratio of the energy flux transferred by the radiational thermal
conductivity in the shell and converted into internal eneggyf the vaporized material

to the equilibrium radiation flux, .

Setting in Eq.(5) x~V,t, we obtain the following simple estimate for the rate of
heat transfer along the gap between the shells:
Wr 1/2
W31+W52+W3) ’

1/2

V,=

271, R-1
3Ry

(6)

whereWg; + W= (ct/2r,(R—1)) aW, is the specific internal energy of the vaporized
parts of the shells. We note that the heat-transfer Vgténcreases as the shell albedo
decreases.

Let us examine in greater detail the process of vaporization of the shells and let us
estimate the “albedo.” Radiative transfer in the shell material consisting of heavy ele-
ments is determined by the material path length, which can be represented as a power-law
function of the temperature and density of the materjataT"/p™. For definiteness, we
hall assume that the shells are made of the same material. The radiation flux into each
shell can be approximately determined as

W, 4 \L,cW, .,

=X 5x “\2+n)3 h° @
whereh is the thickness of the layer of vaporized matter

h~qgt/Ws, (©)]

W,=ATp, is the internal energy of the vaporized shell material. Combining &ysnd
(8), it is easy to obtain an expression for the albedo and the rate of increase of the
thickness of the layer of vaporized shell material:

1/2 h 1/2

4

3

4

4+n

Lr Ws

ct W,

1

3

4+n

W ©

o~ , U~ — =

t

4 )Wr
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The necessary condition for rapid radiative transfer is that the gap must not be filled
with the vaporized heavy-element shell matter. This condition is satisfied if the rate of
increase of the thickness of the layer of vaporized matter is less than the rate at which this
material is removed into the volume of the shell by the shock wave:

y+1/\pso
wherepg, is the initial density of the shell materiabfy=p,). The expression fos, in
Eg. (9) reduces this condition to

12

UVhSUg™

1

3

4

4+n

2W?
PSOCZWr

L,
ct

v—1

y+1

(10

When the conditior(10) is satisfied, a region of vaporized matter is formed at the
boundaries of the shells. The pressure in this region equals the pressure of the matter in
the gapWs=W; (“Sakharization” process A wave of radiative heat conduction propa-
gates into the shell along this vaporized matter.

Comparing Eqgs(9) and(10) shows that the minimum value of the albedo, which, as
shown above, corresponds to the maximum rate of heat transfer along the gap, is reached
whenv,=v4 (equality in the conditior(10)):

11

Amin~™

y—1 2w |*?
y+1psoczwr2

The rate of heat transfer along the gap between the shells should exceed the velocity
of the burn wave front at least during the compression of the inner shell by the pressure
generated when heat wave heats up the material in the gap. Substituting expresBions
and (4) into Eq.(6) we find that the maximum rate of heat transfer along the (@ath
minimum albed over the compression time of the inner shell is

y—1 2W; )m[ &
3

V,=c
Y+1 peoc®W 3(§+2)

X

(1+B)(1+mg/my) A

ve _{2<y+1><R—1>2<R2—1> rp| 2

(12

Finally, substituting expressioi@) into Eq.(10), using the “Sakharization” condi-
tion W,=Wj3, and taking the constant and exponents in the expression for radiation path
length, respectivelya=10"3, n=3, andm=1, we find that the condition that the radia-
tive transfer channel not be filled during the compression of the internal cylinder requires
2

Tsli{
X

For the system parameters which were determined in Sec. 2 the condition that the
gap between the shells not be filled leads to the requireiferit.2 keV. According to
Egs.(12), the rate of heat transfer along the gap/is= 10 2c=3x10% cm/s, which is
approximately three times higher than the velocity of a “conventional” thermonuclear
burn wave for the ignition conditiondl).

1/11
y—1
y+1

p3r3(R—1)%
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In summary, our theoretical analysis substantiates the possibility of a wave of ra-
diative energy transfer propagating in a multilayer cylindrical system, permitting the

propagation of a thermonuclear burn wave with precompression of the cold thermo-
nuclear matter at the wave front.
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Observation of the plasma channel dynamics and
Coulomb explosion in the interaction of a high-intensity
laser pulse with a He gas jet

G. S. Sarkisov,?, V. Yu. Bychenkov, and V. T. Tikhonchuk
P. N. Lebedev Physics Institute, Russian Academy of Sciences, 117924 Moscow, Russia

A. Maksimchuk, S. Y. Chen, R. Wagner, G. Mourou, and D.
Umstadter

Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Ml 48109-2099,
USA

(Submitted 11 November 1997
Pis’'ma Zh. Kksp. Teor. Fiz66, No. 12, 787—-79225 December 1997

We report the first interferometric observations of the dynamics of
electron—ion cavitation of relativistically self-focused intense 4 TW,
400 fs laser pulse in a He gas jet. The electron density in a channel 1
mm long and 3Qum in diameter drops by a factor of approximately 10
from the maximum value of-8x 10'° cm™3. A high radial velocity of

the plasma expansion; 3.8x 10° cm/s, corresponding to an ion energy

of about 300 keV, is observed. The total energy of fast ions is estimated
to be 6% of the laser pulse energy. The high-velocity radial plasma
expulsion is explained by a charge separation due to the strong pon-
deromotive force. This experiment demonstrates a new possibility for
direct transmission of a significant portion of the energy of a laser pulse
to ions. © 1997 American Institute of Physics.
[S0021-364(07)00824-4

PACS numbers: 52.50.Jm, 52.20.Hv, 42.65.Jx

A number of proposed applications of ultrahigh-intensity, short laser pulses implies
laser guiding for distances much longer than the Rayleigh length. Guiding of intense laser
pulses in underdense plasmas due to the relativistic self-focusing was first reported in
Ref. 1 and then studied in detail in Refs. 2—6. However, the dynamics of plasma channel
at high laser intensities and phenomena associated with its expansion have not yet been
addressed. This letter presents new experimental results on the dynamics of the plasma
channel produced by an ultrahigh-intensity, short laser pulse and offers a theoretical
interpretation for these results.

The experiment was performed using the 10 TW Ti:sapphire—Nd:glass laser system
based on chirped-pulse amplificatibdeveloped at the Center for Ultrafast Optical Sci-
ence, University of Michigan. The laser operates at the wavelexgtth.053 um and
produces 3-J, 400-fs FWHM pulses with an intensity contrast of TBe laser beam, 50
mm in diameter, was focused with an off-axis parabolic mirfdB@3,f =16.5 cm to a
10 um spot with a vacuum intensity %610'® W/cn?. Laser beam was focused in a
high-back-pressuré/ MPg He gas jet expanding through a nozzle 1 mm in diameter.
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The optimal conditions for beam guiding correspond to focusing of the laser on the jet
edge, with a He atom density,.=3x 10'° cm™ 2. The jet thickness was about 1 mm. A
two-channel optical setup has been used for simultaneous recording of interferometric
and shadow plasma images. The probe beam was split from the main beam, propagated
through an adjustable optical delay, and was incident on a plasma in the direction per-
pendicular to the interaction beam. The plasma was imaged using a single spherical lens
with angular aperture- 7° on two cooled 12-bit CCD cameras. The spatial and temporal
resolution was 1@«m and 400 fs, respectively. For the electron density measurements the
air-wedge shearing interferometavas used.

The plasma evolution was investigated in the time interval froé1to +55 ps. As
t=0 we take the time of arrival of the maximum laser intensity in the focal ptan@.
The first signs of gas ionization were observedat—2 ps. This indicates the laser
intensity is above the He ionization threshotd10'® W/cn?, at that time’ We observed
a fast gas ionization in the cone of laser convergence, which is 8.6°. It propagates along
the laser axis approximately at the speed of light until it reaches the rear side of the jet.
On the time of ionizatiorifrom —2 to + 3 p9 the front part of interferogram is blurred
because of the fringe motion during the exposure time. The first signatures of plasma
channel formation(fringe bending on the laser axisvere observed at=0 ps. The
channel length increases with subluminal velocity up to 100Q.

The interferometric and shadow plasma images taker-a0 ps are shown in Fig.
1 for a laser energy of 1.7(4.3 TW). The local opposite displacement of the interference
fringes in a narrow axial region in the interferogram indicates a decrease of the phase
shift in this region and hence a decrease of the electron density. This region is manifested
in the shadow image by a bright narrow line, which is due to refraction of the probe beam
on the high radial electron density gradient. The two-dimensional reconstruction of the
electron density profile for=35 ps(assuming the axial symmetry of a plagnfiar the
same laser conditions is presented in Fig. 2a. The maximum electron density 076
cm™ 2 at a radius of=20 um and the depth of the plasma channel is up to 80—90%. The
accuracy of measurement of the channel depth is limited by the Abel inversion procedure.

The dynamics of electron density profile near the focal plasel(00 wm) is shown
in Fig. 2b. The electron density gradient at the channel walls reaches the valuel6f%
cm™ 4 at a time of 7 ps and remains practically the same out to 55 ps. The evolution of the
lineal electron densitynumber of electrons per unit lengtN.=27/rdrng(r)) at
z=100 um and the evolution of the mean electron density in the same cross section are
presented in Fig. 3a. After the initial phase of fast ionizatifnom —2 to 0 ps the
number of electrons remains consténom O to 9 p3, and then ionization starts again. At
the same time the average electron density starts to decrease. These features are in
agreement with the temporal behavior of the plasma radias-400 xm (shown in Fig.
3b). It remains approximately the same from 0 to 9 ps then the plasma begins to expand
radially with almost constant velocity. If we define the plasma edge as a region where the
electron density equals>510*® cm™2 (17% ionization, then the expansion velocity
equals 3.& 1% cm/s (curve 1 in Fig. 3b. The region of higher degree of ionization,
1.5x 10" cm™2 (50% ionization, expands at a lower velocity 2.5x 10° cm/s(curve2
in Fig. 3b.

We attribute the plasma expansion to ionization of the ambient gas by fast ions
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FIG. 1. Interferometri¢a) and shadowb) images of a plasma at time 20 ps after focusing 1.7 J, 4.3 TW laser
pulse. The 10Qum spatial scale is shown in left corner. The vertical line in the shadow image marks the
position of focal plane. Arrows indicate the plasma channel. The horizontal arrow indicates the direction of the
interaction laser beam.

expelled from the channel. Then the expansion of plasma @dtfe 17% ionization can

be related to the propagation of fast ions with an energy of about 300 keV, while the
expansion of the main plasma voluniwith 50% ionization corresponds to 130 keV

ions. This assumption of collisional ionization of the gas by fast ions also explains the
~10 ps delay time, which is the time needed for fast ions to penetrate through the
laser-ionized plasma volume and reach the ambient @d® velocity of the plasma
profile at a given density is lower than the actual ion velocity on account of the radial ion
expansion and the decrease of the ion flux. However, we neglect this difference in present
paper and, therefore, underestimate the ion engrgy.

The channel diametdfFig. 3b also changes with time. Up to tinte=9 ps we do
not observe a significant variation of channel diamé&er10—-15um, which is at the
limit of our spatial resolution. At>9 ps the channel diameter increases te-35 um
at a velocity of about & 10’ cm/s.

The initial laser beam channeling can be attributed to the effect of relativistic self-
focusing of intense laser puldeThe critical power for relativistic self-focusing
P.=17n./n, GW (wheren, is the electron density amu. is the critical density corre-
sponds under our conditions to 280 GW, which is more than 10 times lower than the
actual laser power. Therefore we speculate that a substantial part of the laser power is
trapped in a narrow channel near the laser axis. The amount of trapped power depends on
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FIG. 2. Two-dimensional electron density distributiog(r,z), at time 30 pga), and the evolution of the radial
electron density profileng(r,t), at the axial positiorz=100 um from the focugb).

the focusing conditions and it is about 50% in the present case. This estimate is deduced
from the measurement of the radial energy distribution in the output plane of the laser
channel. The actual diameter of the laser channel is probably smaller than the instrumen-
tal resolution and was not measured directly in the experini8eiow we estimate the

Rpum/D um
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FIG. 3. a: Temporal evolution of the linear electron density(t), (curvel) and the mean electron densi®)

in the cross section located &t 100 um from the focal plane. b: Temporal evolution of the plasma radius at
z=100 um for then,=5x 10" cm 2 (1) and 1.5< 10 cm™2 (2), and the temporal evolution of the plasma
channel diamete(3).
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channel radius asy=~3um by relating it to the fast ion energyThe rest of laser power
is not trapped and ionizes gas in the laser convergence cone. The measured initial fully
ionized plasma radius in the focal planerjs=40 um.

The laser pulse exerts a radial ponderomotive force on electrons, expels them from
the axis, and forms an electron channel. Its defith/n.= )\gvf\/1+ a?/2, is about 10%
for a laser channel radiug,~3um anda?~5. This formula follows from Poisson’s
equation and the balance between the electrostatic and ponderomotive potentials. Here
Ae=Clw, is the electron inertia lengthw, is the electron plasma frequency, and
a=0.85<10 °\[um] JI[W/cn?] is the dimensionless laser field vector potential in a
channel. The ions do not have time to move during the passage of the laser pulse and the
electrons return to their original position when the pulse ends. However, the laser pulse
supports the electron channel and because of that loses its energy for ion acceleration.
Then the ions in the wakee of the laser pulse acquire a kinetic energy and begin to move
in radial direction. This effect, known as "Coulomb explosiot has been discussed as
a mechanism of plasma channel formatfon.

For a relatively short laser pulse<r,/u;~1 ps, the velocity acquired an idwith
the massM) from the laser pulse can be estimateduas (Z/M)mcV, [dt\1+a?/2.
Then one finds the ion kinetic energy

z ., a’
Ei:mm C Vrf dt 1+7

and the corresponding pulse energy loss per unit lenigittz=— 2 frdrn;e¢; . Accord-

ing to the observations there is a characteristic maximum ion ene8§0 keV. Formula

(1) also predicts the high-energy cutoff. For estimates we assume a Gaussian pulse shape
in time and over the radius,=| y,exp(—t¥7—r?r3), with 7=240 fs. Then to accom-
modate the maximum ion energy of 300 keV with 50% laser energy trapping in the
channel, the laser channel radius in Eb). has to bery=3um, which determines the
maximum laser intensityl,,~ 8.3x 10 W/cn?. These estimates of the channel radius
and laser intensity qualitatively agree with the theory of relativistic self-focusing Refs. 1
and 11. The group of fast 300 keV ions is responsible for the preionization of ambient
gas(cf. Fig. 3b, curvel). Equation(1) predicts a rather wide energy spectrum of the ions
with mean energy of-130 keV. These ions are initially concentrated in a cylinder of
radiusR~5 um and then begin to expand radially. These ions are responsible for the
bulk of the ionization of the ambient g&50%, cf. Fig. 3b, curve?). The characteristic
energy deposited into these iongdi§/dz~ 0.5 J/cm, which constitutes about 6% of the
laser pulse energy trapped in a channel 1 mm in length.

2

@

There are also relatively low-energy iof@bout 10 keV expelled from a larger
radius,r o~ 15 um, which are responsible for the slow dynamics of the plasma channel.
They are accelerated by the low-intensity wings of the untrapped part of the laser beam.
According to Eq.(1), the intensity required for acceleration of these ions is beloif 10
W/cn?.

This regime of plasma channel formation due to the ion acceler&tioulomb
explosion” according to the terminology of Ref. & completely different from the
mechanism of plasma thermal heating and electron-impact ionization. In the latter case
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plasma expands with the ion acoustic veloéitfhe electron temperaturé, can be
estimated as about 100 eV, according the measurements of Ref. 5 for conditions similar
to the present experiment. Therefore the ion acoustic velagity\ZT,/M~7x10°

cm/s in our experiment is less than one-tenth of the ion expansion velocity. We also
disagree with the conclusion of Ref. 5 that the plasma expands at the ion acoustic
velocity, since the conditions of that experiment are similar to ours.

Initially the accelerated ions propagate through a plasRn(,~40 wm) and can-
not be seen with our diagnostic tools. After a delay tigrer ,/u;~ 10 ps they penetrate
into the neutral gasr(>r,) and begin to ionize it. Although the ionization consumes a
negligible part of ion energy, it proceeds very efficiently because the fast ion velocity,
u~(2-4)x10% cm/s, is comparable to the velocity of bound electrons in the helium
atom. These conditions correspond to the maximum of the ionization cross-section
0;~3x10 % cn? (Ref. 13. It is about an order of magnitude larger than the cross
section of He ionization due to electron collisions.

The electron density at the radiudehind the group of fast ions can be estimated as
Ne~nZ.r5ai/r. This corresponds to about 10% ionizatiorr at100 um. The degree of
preionization decreases withas the fast ion flux decreases. The 100 eV electrons that
accompany fast ions can also contribute to the gas ionization at a level of a few percent.
According the same formula, the maib30 ke\) ions that penetrate into the preionized
gas somewhat later produce three times higher ionization at the same distance. Thus one
may expect about 50% ionization for-100 wm, in agreement with experimental re-
sults. The total number of the electrons behind the ion front increases linearly with time,
while the average electron density is inversely proportional. tAll these qualitative
relations as well as the number of the electrons agree with data shown in Fig. 3a.

In conclusion, the temporal evolution of the plasma channel created due to the
relativistic self-focusing ba 4 TW, 400 fs laser pulse has been observed for the first time
using the interferometric technique with high spatial and temporal resolution. By com-
parison of the experimental data with theoretical estimates we demonstrate that the chan-
nel evolution is dominated by the Coulomb explosion effect, with the subsequent pen-
etration of high-energy ions into the ambient neutral gas. This experiment reveals a new
efficient mechanism of direct deposition of the laser energy into the high-energy ions
(~6% for our conditiong which can play a fundamental role in the absorption short,
high-intensity laser pulses. We estimate the fast ion energy 280 keV or 80 keV/
nucleon, which is comparable to that observed in a solid-target experithent.
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Critical dynamics of spin systems in the four-loop
approximation

V. V. Prudnikov,? A. V. Ivanov, and A. A. Fedorenko
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A field-theoretic description of the critical dynamics of spin systems is
constructed. Using the PadBorel summation technique, the dynamic
critical exponent for two- and three-dimensional systems is evaluated
directly in the four-loop approximation. The results are compared with
the values obtained for the dynamic exponent by Monte Carlo methods.
© 1997 American Institute of Physids$0021-364(107)00924-9

PACS numbers: 03.78k, 75.40.Cx

Renormalization group methods are widely used to describe the anomalous proper-
ties of the thermodynamic characteristics of systems undergoing second-order phase tran-
sitions. Such methods make it possible to calculate the critical exponents characterizing
the asymptotic behavior of the thermodynamic and correlation functions near the critical
temperature. Of these methods the most promising is the field-theoretic appiohels.
two important advantages. First, it makes it possible to use the powerful and convenient
mathematical arsenal developed in quantum field theory. This is especially important for
calculating the high-order fluctuation corrections for second-order phase transitions on
the basis of the perturbation theory. Second, it makes it possible to perform calculations
directly for d=2, 3 in the form of an expansion in terms of the interaction vertex of
magnetization fluctuations without using anexpansion £¢=4—d, whered is the di-
mension of the systemThus far calculations of the static critical exponents describing
the equilibrium behavior of a system near a critical point have been performed on the
basis of this approach for thgp* model in the six-loop approximationThe values so
obtained for the exponents are considered to be most accurate. However, calculations
with this degree of accuracy are not available for the nonequilibrium properties of sys-
tems undergoing second-order phase transitions. This is due, above all, to the fact that the
volume of calculations grows rapidly even in the lowest orders of perturbation theory.
The most accurate results have been obtained in Ref. 3, where the calculations were
performed in the three-loop approximation.

In the present letter we construct a field-theoretic description of the nonequilibrium
critical behavior of ferromagnets in the four-loop approximation. The model consists of a
classical spin system that is thermodynamically equivalent to Qifr) symmetric
Ginzburg—Landau model with effective Hamiltonian

1 9o
_- d 2 2, 90 4
H=73 fd X(fo<P + (Vo) + 15| )
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whered is the dimension of the systera(x,t) is an-component order paramet@nag-
netization, ro~T—T.. (T, is the critical temperature determined by the mean-field
theory), andgy>0 is the interaction vertex of the magnetization fluctuations.

The dynamical behavior of a magnet in the relaxation regime near the critical point
is described by a Langevin-type kinetic equation for the magnetization:

Je

—)\5H++)\h 2
- %8 {tho 2

where\, is a transport coefficient(x,t) is a random force, ant(x,t) is the external
magnetic field. It is known that its solution in the form of correlation functions can be
obtained using a generating functional of the form

0= [ DleIDlslexd ~Hule. 1+ [ onerat). ®
where an auxiliary field) and the effective Hamiltonian
e 5H

have been introduced. The magnetization correlation function is then determined as

1 520
G(x.)=((0.0¢(x))= 5 5

(0,0 6h(x,t) " ©

Instead of the correlation function it is more convenient to study its vertex part, which
can be represented in the Feynman diagram formalism in the four-loop approximation as

w n+2
I‘(2)(k,w;7'o,!]0,/\0)=r0+k2_)\_0_ + @yg
(n+2)(n+8)
s, o), (R g

The four-loop diagrams are presented in the figure. The Feynman diagrams contain
ad-dimensional integration over momenta and are characterized near the critical point by
an ultraviolet divergence with pole-type singularities at large momknfehese poles
can be eliminated using a dimensional-regularization scheme in which renormalized
quantities are introducetiWe define the renormalized order parameterasZ ¢,

Then the renormalized vertex functions will have the generalized form

TRV (k,@;r, g\, 1) =Z™ ™ (K, ;1 9,00, No) (6)
with renormalized coupling constagt temperature, and transport coefficiert
Go=n*"9Z49, ro=w’Zr, Nol=pPZ\7H (7)

where the scale parameteris introduced in order to make the quantities dimensionless.
The factorsZ are determined from the requirement that the renormalized vertex functions
be regular, as reflected in the normalization conditions:
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FIG. 1. Four-loop diagrams contributing to the vertex function. The solid lines represent the function
Go(k,w)=(rgtk®—iw/r\g)™* and the crosses represent the functionCo(k,w)=2\"1
X ((ro+k?2+ (w/hg)?)~*

ar@(k
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a2 (k,w)
21(2,) = — =2
zr |ki,pj:0 1,z d=iw) |2, o Vo )

We carried out this regularization procedure for the vertex functions in the four-loop
approximation. For this purpose we represent as follows the vertex functions appearing in
the normalization conditions:

T, —0=0o+A1g5+Az05+Asds, (10
or 2 3 4
2 =1+B195+B2got B3Jo, (11
A P
or® 2 3 4
- =1+Cy05+ C2090+ C30p. (12
H=10) |y g0

where the coefficients are sums of the corresponding diagrams or their derivatives for
zero external momenta and frequencies. The values of these coefficiemts- forare
presented in Table I. The diagrams in the figure which form the coeffi€igdiecompose

into 48 4d-fold integrals, whose numerical values are given in Table Il. We write the
expansion of the quantitieg,, Z, andZ, in terms of the renormalized coupling constant

g as

Jo=0+b;9%+b,g°+bsg?, (13
Z=1-20%-2,0°— z30%, (14
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TABLE I. Values of the coefficients in the expressions for the vertex functions.

Coefficient d=2 d=3

A, -1.0 -1.0

A, 1.3750699 1.2222222
Az —2.3054548 —1.7053479
B, 0.0084916 0.0054869
B, —0.0116591 —0.0070112
Bs 0.0179966 0.0101430
Ci 0.0152547 0.0096865
C, —0.0213740 —0.0126257
Cs 0.0352450 0.0169420

Z)\:1+dlg2+ d2g3+ d3g4, (15)

where the unknownk;, z;, andd; are expressed in terms Af, B;, andC; with the aid
of the normalization conditions. The next step in the field-theoretic approach is to deter-
mine the scaling functions that determine the differential equation of the renormalization

group:

il SOV LDV VT (16
Hon B&g Yooy TINgr— 5 vs|br )
To discuss the dynamical behavior we shall require only the funciii{g3 and vy, (9):
A aInZyg]™t dinz, L
B@)=—(4-d)| —==| L n(@)=B) —55— (17
TABLE IlI. Values of the four-loop diagrams.
N d=2 d=3 N d=2 d=3 N d=2 d=3
1 0.165307 0.104869 17 0.004131  0.001108 33 0.007463  0.002527
2 0.009670 0.004166 18  0.003307 0.000923 34  0.029449  0.014580
3 0.022921 0.008180 19  0.003343 0.000932 35 0.070254  0.039776
4 0.059714 0.029674 20  0.034609 0.019410 36  0.006421  0.002378
5 0.003943 0.003264 21  0.034135 0.019189 37  0.012723  0.004691
6 0.010076 0.015354 22 0.011294 0.004177 38  0.007370  0.003820
7 0.028777 0.014330 23  0.004644 0.001928 39  0.027311  0.011650
8 0.016314 0.011627 24  0.005891 0.000706 40  0.013297  0.005377
9 —0.006853 —0.002506 25  0.010167 0.003421 41  0.007464  0.003981
10 0.002744 0.000823 26  0.003535 0.000862 42  0.010303 0.003314
11 0.009238 0.003444 27  0.002471 0.000551 43  0.023519  0.009470
12 0.010685 0.003745 28  0.011209 0.003898 44  0.010905 0.003866
13 —-0.012280 —0.004883 29  0.003405 0.001077 45 0.038420  0.023730
14  —-0.012280 —0.004883 30  0.011007 0.003815 46  0.062921  0.033485
15 0.017180 0.007527 31 0.012666  0.007379 47 0.021633  0.007121
16  —0.014199 —0.005471 32  0.009667 0.004177 48  0.011691  0.004760
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The explicit form of the first of these functions in the six-loop approximation was ob-
tained in Ref. 2. The dynamic scaling functign(g) in the four-loop approximation,
taking account of Eqg.7)—(15), assumes the form

y(9)=—(4—d)g[2(B;—C;)+(3B,—3C,—4A;B; +4A,C;)g+(4B3—4C;
—9A;B,+9A,C,+10A%B; — 10AC, — 4A,B, + 4A,C,— 8B, D, + 6B?

-2CchH’]. (18
Substituting the values of the coefficients from Table I, we obtain
7(9)=0.0270582%—0.004184°+0.02213@*, (19
for d=2 andn=1 and
(9)=0.0083992%— 0.00004%°+ 0.020423*, (20)

for d=3 andn=1. The dynamic exponemtcharacterizing the critical retardation of the
relaxation processes is determined as

z=2+v(9%), B(9*)=0, (21
where the values of the fixed points in the four-loop approximatioe
g*(d=2)=1.8836, g*(d=3)=1.4299. (22

The series obtained are asymptotically convergent. We used the-Ba# method to
sum thent. Using[3/1] approximants, we obtained the following values of the exponent
z

zZ¥(d=2)=2.093, z¥(d=3)=2.017

while in the precedingthree-loop approximation its values we®(d=2)=2.066 and
z3)(d=3)=2.016, respectively. The small change in the exponenfor three-
dimensional systems suggests that the higher-order corrections will give only very small
changes, falling outside the accuracy of the experiment. For two-dimensional systems,
however, there are no grounds for such an assertion.

Let us now compare our results with those obtained in other works. Monte Carlo
simulation of the three-dimensional Ising model gives the following values:
z=1.99+0.032 2.10+0.02° 1.97+0.08/ and 2.04-0.018 The field-theoretic approach
in the two-loop approximation with interpolation of thet® and 4— ¢ expansion results
givesz=2.02° Hence one can see that, with the exception being Ref. 6, our value of the
dynamic exponent¥(d=3)=2.017 is in good agreement with the results obtained in
the works cited. We present the results of a computer simulation of the two-dimensional
Ising model:z=2.14+0.02° 2.13+0.031°, 2.076+0.005 2.24+0.0412 2.24+0.071
and 2.16-0.041* for the field-theoretic approach in the two-loop approximation with
interpolation of the ¢ and 4—¢ expansion resultg=2.126 (Ref. 9 and the high-
temperature expansion gives-2.183+0.005° Hence, one can see that for the two-
dimensional Ising model the values of the exponentie in a quite wide range
2.08<z=<2.24 and our values are near the lower limit. However, our procedure for
calculating the exponents is considered to be most accurate, so that the computed values
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can serve, we hope, as standards for computer simulations of homogeneous systems and
can be used for developing methods for simulating disordered systems.

This research was supported by the Russian Fund for Fundamental Re$&anth
No. 97-02-16121
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Characteristic features of the sorption of light atoms on
the surface of a single-layer carbon tubelene

I. V. Zaporotskova and A. O. Litinskil
Volgograd State University, 400062 Volgograd, Russia

L. A. Chernozatonskir®
Institute of Biochemical Physics, Russian Academy of Sciences, 117334 Moscow, Russia

(Submitted 18 July 1997; resubmitted 10 November 3997
Pis'ma Zh. EKsp. Teor. Fiz66, No. 12, 799-80425 December 1997

The mechanisms of sorption of H, O, C, and Cl atoms on the surface of
a single-layer carbon tubelene are studied, and a comparison is made
with the case of sorption of these atoms on graphite. Three versions of
the position of the adatoms above the surface were studied. A cyclic-
cluster model and an appropriately modified MNDO computational
scheme are used. The optimal geometry of the sorption complexes and
the sorption energies are obtained. The high hydrogen accumulation
efficiency in a material consisting of single-layer carbon nanotubes is
explained. ©1997 American Institute of Physics.
[S0021-364(®7)01024-4

PACS numbers: 68.45.Da, 81.05.Ys

A great deal of attention is now being devoted to experimental and theoretical
investigations of recently discovered new forms of carbon — nanotaesbelenes’—°
These tubes, ranging up to several microns in length and several nanometers in diameter,
consist of one or several graphite layers, depending on the preparation conditions. Tube-
lene structures are classified using the symbalsnj proposed by Hamadet al* An
(n,m) tube, characterized by chiral symmetry, is obtained by twisting a graphite frag-
ment so that the last hexagon from a row lies above the first hexagon with displacement
mA;+nA,, whereA; andA, are primitive translation vectors of the graphite fragment.
The following names have been adopted for tubelenes exhibiting cylindrical symmetry:
(n,n) tubelene — armchair-typen(0) tubelene — zigzag-type. Theoretical investiga-
tions have shown that depending on the diameter and chirality tubes can possess both
metallic, for example, 1f,n) tubes, and semiconductor conductiviy.At present, a
structure in which the elastic properties and conductivity of individual multilayer
nanotube%’ and bundles of single-layer tubesl nm in diametéthas been prepared and
investigated.

In the present letter we call attention to the fact that on account of their strongly
curved surface tubelenes, just as fullerethkich attach to themselves different atoms,
radicals and functional groups, and on whose basis compounds with different physical
chemical properties are obtaitfedcan be of great interest as a strong sorbent of atoms.
The sorption properties of small-diameter nanotubes, comparable in sizg anCGy,
are calculated. The characteristics of sorption of light at@stom$ on the surface of
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FIG. 1. Expanded unit cell of &, 6) nanotube.

single-layer(6, 6) carbon tubelene with a diametei ® A are determind — a compari-

son with the case of sorption of the same adatoms on graphite showed that the sorption is
highly efficient. A more detailed calculation is made of the sorption of hydrogen atoms
on the surface of a nanotube in the ratigp/8, which suggested an explanation of the
recently observed high efficiency of hydrogen accumulation in a carbon nanotube
material®

Previously, calculations of the electronic structure of nanotubes were performed
using methods such as tlad initio method® the local-density approximatiot,cyclic
cluster in Hickel-type computational schem¥sthe extended Htkel method, and
others® In the present letter we present MND@odified neglect of diatomic overlap
calculations performed with a cyclic-cluster modeior the most often observed one-
layer tub&°® — the armchair type. Cyclic boundary conditions in the direction of the
nanotube axis were imposed on the molecular orbif&ll®s) of a cylindrical expanded
unit cell (EUC), containing 96 atoms and consisting of four carbon armchair cliiigs
1). The matrix elements of the one-electron Hamilton{&ock operator —) of the
EUC in the MNDO approximation at&

(A)
1
F'rAqAZ OrqUrr + 2 Pr’q’[<rq|r’q,>_ §<I’r ’|qq,>}
r/q’

(B)
+ > X Ppt<rq|pt>_ZB<rQ|SBSB>}’ D
B(=A) | pt
1 A B
FﬁE‘:/a?t(AB)sﬁB—zE > P(rr ), 2
rl t/

wherer, g, r’, andq’ ares-, p-, andd-type atomic orbitals localized on atom A; t,
p’, andt’ are atomic orbitals on atom BJ,, is the kinetic and potential energy of an
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FIG. 2. Fragments of an expanded unit cell with an indication of the position of the sorbate atom.

electron in atom A5, is the Kroneckers-function; P is the density matrixmatrix of
bond orders Zg is the charge ma B atom;8%®) is a resonance integra;is the matrix
of interatomic overlaps{rr’|qq’) and(rq|pt) are one- and two-center electron repul-

sion integrals, respectively; ansl are s-type atomic orbitals of atom B.

The imposition of cyclic boundary conditions on the MOs of the EUC reduces to the
fact that the two-center integrals of the tyB&® and(r aga|psts) in Egs.(1) and(2) (we
denote them ag(A, B)) can be calculated for each pair of atofAs B) within a prefixed
interaction radiuy, i.e., at distanceR,g<Ry. If for a given A € EUC and Be EUC
the distancdr,g> R, and the translation vector of the EUC transfers an atom BUC
into an atom Be EUC such thaR,g<R,, then the functiomy(A, B’) is calculated as
g(A, B).

In our case the dimensions of the expanded unit ¢elbng the tube axis
L(EUC)=8.4 A) made it possible to choosR, such that interactions up to the third
sphere of neighbors inclusively are taken into account, which, in contrast to previously
employed methods, makes it possible to make allowance for the nanotube curvature quite
accurately.

Three versions of adsorption of atoms were studigcabove a carbon atom,)ll
above the center of the C—C bond, and #bove the center of the hexag(ig. 2). The

TABLE 1.

lad» ES! QA lad Es: QA lad» Es: QA

A Y A eV A eV

| 1 1l
Sorption on the surface of @,6) nanotube
H 2.1 4.7 0.67 15 4.0 0.62 1.6 4.5 0.76
(0] 2.0 4.9 -1.98 - - - 15 2.6 —-1.99
C 1.8 9.4 1.31 - - - 15 51 1.3
Cl 15 6.9 -0.98 14 1.2 —0.98 - - -
_ Sorption on the surface of a graphite layer

H 1.4 2.56 0.27 1.3 -0.7 0.31 1.4 3.08 0.22

2.0 0.56 -1.99 15 2.02 -1.97 1.3 -5.0 -1.97

1.6 1.47 0.50 15 -1.2 0.36 1.6 —-2.4 0.81
Cl 2.0 1.13 —-0.99 2.2 1.32 —-0.99 25 0.36 —0.99
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C—C bond lengths in a tubelene were assumed to be 1.4 A. The distances between the
adatoms and the tubelene surface were optim{ged Table)l The quite large value of

L shows that the interaction of adatoms from different EUCs can be neglected, i.e., it can
be assumed that adsorption of a single atom is studied.

The calculation of the difference of the total energies of the electronic system of a
noninteracting absorbent and the corresponding atom and their sorption caifiplse
I) showed that the position | on the tubelene surface is energetically the most advanta-
geous position for all adsorbed atoms. In the case of the sorption of H and C atoms
electron density & p,g is transferred from the adatom to the surface in all cases and for
O and CI atoms electron density is transferred from the surface to the adatom, and in
addition these atoms transform practically completely into the anidnsadd CI.

For comparison, we performed calculations of sorption of the same atoms on a
graphite surfacéin the one-layer approximatiorin the same positions as in a nanotube
(see Table )l This surface was modeled by a cyclic cluster with the compositign C
(66 unit cellg, forming a uniformly expanded graphite cell whose MOs were required
to satisfy cyclic boundary conditions. It was found that the most advantageous positions
are: fa H — above the center of a hexagon, for O and Cl — above the center of a bond,
and for C — above a carbon atom on the surface. The computed sorption energies of the
selected atoms on graphite agree well with existing experimentalBgxp) (H) = 2.5
eV* andEg(exp) (O) = 2.0-3.5 e\A®

The fact that the most advantageous version of sorption of the adatoms studied is
above a carbon atom of tubelene can be explained by the fact that the sorption bond is
stronger because it has a higlseype fraction(appearance qfs’ hybridization, wheres
is small but nonzeno

The study of the character of the damping of a disturbance produced on the surface
by the adatoms showddee Table Il that the following. ) The disturbance completely
damps out at the boundaries of a clugtar the carbon atoms — zero chargeonfirm-
ing the conclusion that the sorption is singular.l2 contrast to graphite, the degree of
damping of a disturbance on a tubelene surface is direction dependent: It decays more
slowly along the axis of the tube than along the circumference of the tyb&h&
disturbance introduced by adsorbed hydrogen decays more rapidly than a disturbance
produced by O, C, and Cl atoms. Thus, in the casermdnéd atom is adsorbed in the
position |, the disturbance extends to the first interaction sphere along the circumference
and to the third sphere along the axis of the tubelene. For complexes with O, C, and ClI
atoms in the same positions, the disturbance extends to the third and fourth spheres,
respectively. #The greatest disturbance of the surface occurs in the cases when H and ClI
are adsorbed above a bofitl and O and C are adsorbed above an afbm

It was recently shown that hydrogen gas can condense up to high densities in a
material consisting of bundles of single-walled carbon nanotdibéswever, a simple
calculatiorf of the coverage by densely packed hholecules inside a nanotulfaith
nearest-neighbor distance 3.51 A and with molecules approaching the wall to 2.95 A
gave for a characteristid0, 10 tube the ratio g/H; or 0.012 of the weight of a carbon
nanotube. This estimate is 2.5-5 times below the experimental data. As noted by the
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TABLE II.

Spheres of interaction 1 2 3 4 5
a | 0.10 0.05 0.01 0.0 0.0
(along Il 0.14 0.07 0.02 0.0 0.0
H axis) [ 0.11 0.06 0.01 0.0 0.0
b I 0.10 0.01 0.0 0.0 0.0
(along cir- Il 0.14 0.03 0.0 0.0 0.0
cumferencg 1 0.11 0.03 0.0 0.0 0.0
I 0.58 0.25 0.14 0.07 0.0
e} a [ 0.28 0.21 0.15 0.05 0.0
I 0.58 0.08 0.03 0.0 0.0
b [ 0.28 0.07 0.02 0.0 0.0
I 0.40 0.21 0.04 0.02 0.0
C a I 0.20 0.13 0.05 0.03 0.0
I 0.40 0.10 0.01 0.0 0.0
b Il 0.20 0.10 0.02 0.0 0.0
I 0.42 0.20 0.09 0.04 0.0
Cl a Il 0.48 0.21 0.11 0.06 0.0
I 0.42 0.10 0.03 0.0 0.0
b Il 0.48 0.12 0.03 0.0 0.0

authors’ a possible explanation is that hydrogen is adsorbed on the outer walls of the
carbon nanotubes.

Using the method presented above, we calculated two verétogs3) of a carbon

b

FIG. 3. Expanded unit cells of @, 6) carbon tube, unfolded in a plane, with an indication of the positions of
the hydrogen atom€illed circles on the surface in twda, b computational versions.
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tube with hydrogen atoms located above the carbon attiis position of sorption of

one H atom is energetically advantageous, see Tabliewas found that from the energy
standpoint it is even more advantageous for a group of hydrogen atoms to settle above
opposite vertices of hexagons, Fig. 3&1.2 A, Q,=0.11, andE,=5.2 eV), and not

in chains, Fig. 3ar,;=1.2 A, Q4=0.15, andEs=4.5 eV). Such hydrogenization can be
represented qualitatively as follows. A,Hnolecule approaching close to a metallic
nanotube is subjected to image forces, the interaction en&gst ¢ 4.5 eV)*® between
hydrogen atoms in the molecule decreasiBiy=E,+e?/d,!” e is the electron charge,
andd is the distance from the metal surface. The coupling force of these atoms decreases
substantially ati=1.5 A, and the atoms strive to occupy the most advantageous position
above the carbon atoms at opposite vertices of the hexégign 3b. Allowing for
hydrogen sorption in the ratio,8H on the surface of the sanf&0, 10 tube characteristic

for the material, we obtain reasonable agreement with experifriEme: total fraction of
hydrogen atomgon the surface and in the channel —,§H;¢9 is now 0.033 of the
weight of such a material.

So, our calculations have shown that carbon tubes with nanometer diameter possess
the 2 to 6 times greater sorption power for sorbing light atoms than graphite. This opens
up new prospects for using such tubes as sorbents of atoms of other elements or mol-
ecules and for obtaining new materials and polymers by saturating the free bonds of the
adatoms.

We thank E. G. Gal'pern and I. V. Stankevich for a discussion of this work and Yu.
E. Lozovik for a helpful debate and a discussion of the possible mechanism of hydrogen
adsorption on a metal nanotube. One of(lusA. C.) is grateful to the Japanese Society
for the Support of Science. This work was supported by the Russian Fund for Funda-
mental ResearclGrant 96-02-184455a
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Spectroscopic manifestations of the difference of the
local symmetry of calamitic and discoidal nematics

E. M. Aver'yanov®
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It is shown that the difference in the local symmetry of nhematics con-
sisting of rod-shaped and disk-shaped molecules is manifested as an
observable qualitative difference in their spectroscopic characteristics.
The well-known controversial experimental data are explained.
© 1997 American Institute of Physids$0021-364(07)01124-9

PACS numbers: 61.30.Eb, 78.40.Dw

1. Calamitic (N) and discoidal Np) nematics, consisting of rod-shaped and disc-
shaped molecules, respectively, have the same macroscopic symmetry but different local
symmetry. A well-known consequence of the latter circumstance is that the sign of the
reactive coefficient in the equations of hydrodynamics of these liquid crydt@ls) is
different’?> Moreover, the difference of the local symmetry Nf and N phases is
manifested in the characteristics of the dipole—dipole intermolecular interactions and in
the fact that the components of the Lorentz teris@re in opposite relation for electric
fields directed parallel|) and perpendicularl() to the directom, i.e.,Lj<L, (N) and
L;>L,(Np) (Refs. 3 and 4 This creates a distinction wherein tNg, nematics can have
a ferroelectric stafe and also means that the local-field effects will have a different
manifestation in the anisotropic spectroscopic properties of calamitic and and discoidal
LCs. The latter aspect has thus far not been noted in the literature.

Recently, however, the substantial improvement in the accuracy of measurements of
the positionswy; (j =||,.L) of the polarized IR absorption ban#s(w) of nematicsN,
smecticsA(S;), and discoticsDy, o) (Refs. 7 and Bas well as the first polarization
investigations of electronic absorption in tNg andDy, g, phase$'®have shown that the
dependences of the componeatg; on the phase state of these LCs are characterized by
large diversity and by anomalies whose origins are as yet unclear. In the present letter it
is shown that the observed features of the variationsof reflect the different local
symmetry of the corresponding LCs.

2. Let us consider a uniformly oriented nemahicor Ny with orientational order
parameter of the molecule®=(3 cog6.,— 1)/2, where6,., is the angle between the
molecular symmetry axi$ and the directon. Let us separate in the spectrum of the
molecule an isolated nondegenerate transition with frequenc¢yrenormalized by the
static intermolecular interactions in the LCs. The transition dipole momentkes an
angleg with the axisl. Nearw; the componentg;(w) of the permittivity tensor of the
LC can be represented in the fotm
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whereey,; are the components of the background permittivity for the given transitign,
is the plasma frequencyF;=FC;/3, F is the transition oscillator strength,
C”: 1+ ZS% , CL = 1_ S% y SB: (3C0§ﬂ_1)/2, andfbj = 1+ L](ebj_l) ar-e the baCk-
ground components of the local-field tensor. The absorption coeffiigat) is given by
the expression

ej(w)zebj—l— wjzzwf—ngijdbj, (1)

2
Kj(w): %[[(63)2*‘(6]/)2]1/2_ éj/]1/2’ (2)

where the real c{j’) and imaginary éj’) parts of the componentg(w), taking account of
the inequalitiesw,> (w1 — wj), w;>1I", can be put into the form

’r_ o "
€] = €pj— Xej

Herex=2(w— ;)/T" anda;= (w3F;f3)/(4T w;ep;). The position of the maximund,
of the bandK;(w) is determined by the solution of the equation

6;’:4aj6bj/(l+xz). (3)

x3—3a;x*—x+a;=0. 4

For very strong absorption bands wil>1 it follows hence that(,wl/\/§ and
r wiFLify; T

Syt —— =g — P I~ ©)

M3 T 201 23

Fora;<1/4 or (w;— wj)=<(0.2-0.4)I", which is typical for IR and UV absorption bands
of LCs, we obtain from Eq(4), taking account of the Ed1),

wpFifey  opfplLiFyl
UL 1

Bwjebj 1 2(,()1 \ _4Lj6bj

w

: (6)

To analyze the shifts of the frequencies,; at the transitiond —N(Np) —Sa(D)we
introduce the parameter

0j=(@mj— wom)/ (w1~ o), (7)

for which the expressions

3epi—2 3CiL fp; fo.
89=1-3C|L;fyj/fp, SW="20 Jjbj(l— b)

8
) Aep foi \7 4Ljep, ®

follow from Egs. (1), (5), and (6). The surfacesy| , (S,8) have a line of intersection
8j(S=0)=0. For S=1, we haves¥(8=90°)=6{(8=0)=1, &"(8=90°)= 5"
X(B=0)=(3ep—2)/4epi, Which also fix the surfaceg | (S,8) at one end. A change
in the anisotropy of the tensoeg, L, andf, accompanying a change in the temperature,
phase state, or type of LC is manifested as a deformation of the sudaceS, 8) and

a displacement of their free endg(S=1,6=0) andd, (S=1,86=90°).

3. Let us now consider the experimental consequences of the reléBpricor LCs
with small birefringenceAn=n;—n, we havel;~1/3, f,;~f,; (Ref. 3 and from Eq.
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FIG. 1. s§M(S,B) for calamitic(a) and discoidalb) LCs calculated according to E¢B) with the parameters
7o and ey;; presented in the text.

(8) we obtaind{¥=1-C; and 6" = 5{% (3 ey — 2) /ey . For B<By="54.7° (8> B)

we have the inequalitie§ <0, 6, >0 (>0, §, <0) and the surface§; , (S,8) inter-
sect along the straight lin= By . The splittingA v = wmy, — oy, is proportional to the
oscillator strength of the transition and depends strongly on the arglef the orien-
tation of the transiton moment. ForB<By (B8>Bm) Wwe have Aw>0,
Ki(@m)>K (0on) (Aw<0, K <K,), in agreement with the data of Ref. 11 for the IR
absorption band corresponding to vibration of @& N bond in nematic and smecti;
phases of the LC 4CCH. For fixg@lwe haveA o~ S, which corresponds tA w increas-
ing at aN— Sg transition for the 4CCH band under discusstén.

To compare the consequences of the relati@hsvith the data of Refs. 7-10, let us
setAe,= €| — € =A€pS andLj=1/3+Db;S, wherebj=27, andb, =— 0% For ca-
lamitic (discoida) LCs we take 73=-0.12(0.24), A€p=0.73(—1.10), and

€pi= €p= (€p +2€,,)/3=2.53(2.60). These parameters are close to the experimental
values for calamitic LC5and also for a discoidal nematissomorphic to the objects
investigated in Ref. 9.

The dependenceiﬁv")(s,ﬁ) presented in Figs. 1la and b show a qualitatively differ-
ent character of the effect of the anisotropy of the tenkors,, andf, on the functions
6;(S,B) for the two types of LCs under study, the anisotropy of the tehsbeing the
main factor. Compared with the case of isotropic tendars,, andf,, in calamitic
(discoida) LCs an increase ofrg| results in a displacement of the free ends of the
surfacess;(S,B) in opposite directions: upwar@ownward — for §(S=1, 8=0) and
downward(upward — for §, (S=1, 8=90°). This is accompanied by a displacement of
the line of intersection of the surfacéi(S,5) and J, (S,), which for calamitic(dis-
coidal) LCs corresponds to the valugs= 8,<Bum (80> Bwm)- Anisotropy of the tensadr
in the calamitic(discoida) LCs intensifies the splittinddw of the bandsK;(w) for
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transitions with3=90° (8=0), induces a change of the sign &t for values ofg in

the intervalB,<B8<Bm (Bo> B> Bwm), and decreasesw for 8=0 (8=90°). The latter
explains the small difference,~ vy, for IR absorption bands witfg=0 in calamitic
nematic phases of pectinate polynfeasd low-molecular compountfswith large bire-
fringence and anisotropy of the tendo?

It is evident from Fig. la that for smaf and S=0.3—0.4, close to the typical
values ofS near the temperatur€y, of the | —N transition, the average valug; is

virtually identical tow,,;. This explains the small change EPnj for bands with3=0 at
a | —N transition and in a narrow interval of the nematic phase with low valued ‘of
The observed growth cxfmj for isolated IR absorption bands wi=0 in the nematic
and smecti@ phases with decreasing temperafurerresponds to the data in Fig. 1a and
is explained by an increase & and anisotropy of the tensdr. In addition, the more
rapid growth oféj(w) for high values ofS correlates with an appreciable change:i,nj at

a N—S, transition and into the smectic phasé quantitative estimate of the shifts
a_)mj— wmi atl —N—S, transitions can be obtained taking account of the fact that for the
isotropic phase of a LC witla,;=2 it follows from Eq.(6) that w; — o\ = (w;— ;) /2.

For typical values/; — Vm/)~5 cm ! for the IR absorption bands we obtain from E@).

and the data in Fig. 1a wit6=0.6—0.8 andB=0 7mj— vmi~2—3 cm 1, in agreement
with experiment.

For absorption bands witg~ gy andK;~K, in uniaxial LCs there is no contri-
bution from static interband interactions to the observed splitiag(Ref. 13 andAw
is determined completely by the anisotropy of the ten&qrs,, andf,. The observed
relation o> wy, for the IR absorption bands with;~K, in calamitic nematic$
corresponds to the data of Fig. 1a.

As one can see from Fig. 1b, for discoidal LCs with=0.24 the surface@ﬁw)
x(S,B) and s")(S,B) are divided by a gap and the relatiar,, > oy, holds irrespec-
tive of the values o5 andB. This explains the increase i, for isolated IR absorption
bands with different values ¢8 at al — Dy, transition® Electronic transitions polarized
in the plane of the aromatic core of discoidal molecules are characterized by the value
B=90°. In theNp phase withS=0.3—-0.6 (Ref. 4 from Fig. 1b it follows that for such
bands|5ﬁw)|s5iw) with nonmonotonic variation oﬁﬁw). For this reason, at &—Np
transition a very small displacement of the maximurg of an unpolarized absorption
band neafT,, and a weak increase i@, far from Ty, can be expected. The latter has
been observed in Ref. 9. The maximuy, of the weak electronic band undergoes, at the
same time, a low-frequency shift on account of the fact that the static interactions make
the determining contributiof?

In the discoticDy,y with S~0.9 the static intermolecular interactions decreagg
for electronic absorption bands and have virtually no effechan®® The dependence of
wmi in solution on the type of solvent can serve as a measure of the effect of these
interactions onw, ,. As one can see from Fig. 1b, for electronic bands y@th90° the
relationswp,, = wm> oy, are expected in th®p, phase. This explains the increase in
wm for intense electronic absorption bands in a number of objects accompanying a
transition from solution to thd®,, phase®!* In addition, a larger increase i, is
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FIG. 2. 8)(S, 7,) for calamitic(a) and discoidalb) LCs calculated according to E) with 3=0 (a) and 90°
(b) and the parameters,;; presented in the text.

observed in LC¥ where the static intermolecular interactions have only a weak effect on
the positions ofw,; and wy,; -

For the weak electronic bands of the same objects, the small increasg idue to
the resonance intermolecular interactions are compensated by a decreagge m
account of static interactions. As a result, for objects where the influence of static inter-
actions on the position ob,,; in solution is strony’ and weak* w,,, is observed to
decreas¥ and remain constatftat a transition from solution into thB,,, phase. Thus
the datd®'*in the Dy, phase confirm thab,,,, increases as a result of resonance inter-
molecular interactions. If the static interactions made a determining contribution, then
w., Would have decreased with increasiBdor bands of any intensity witl8> 3y, .2

For B=const the surfaces;(S,r,) characterize the displacement of the polarized
absorption bands with a change in temperature in the LCs with different anisotropy of the
tensorL. Figure 2 displays the functiorzﬁv")(s, 7o) for calamitic and discoidal LCs for
values of 8 corresponding to the strongest manifestation of the anisotrgpgf the
tensorL in the possible ranges—(1/6)<ro(N)<0® and 0<7,(Np)=<1/3 taking ac-
count of the nonlocality of the molecular polarizability. Comparing Figs. 1 and 2 gives an
idea of the behavior of the functionﬁw)(s, 7o) for intermediate values€ B<90°.

4. In summary, the difference of the local symmetry between the calamitic and
discoidal LCs is manifested as a qualitative difference between their observed spectro-
scopic features. In addition, the latter are determined mainly by the anisotropy of the
tensorL. This distinguishes qualitatively the corrections to the position of the polarized
absorption bands for local-field anisotropy from the analogous corrections to the intensi-
ties of these bands, which depend on the anisotropy of the tépnsbit is significant that
for LCs with a large anisotropy of the tenshrthe tensorf, can be isotropié. The
controversial experimental data on the dependence,gfon the type of LC, the tem-
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perature, the polarization of the bands, and the orientation of the transition
moment$~?1can be explained in a unified approach. The qualitatively different char-
acter of the functions;(S) in Fig. 2 for calamitic §=0) and discoidal §=90°) LCs

with large and small anisotropy of the tendomakes it possible to judge the magnitude
of this anisotropy without determining the componebfsexperimentally. This presents
new possibilities in searching for discoidal nematics satisfying the requirenidtsa
ferroelectric state to arise in them.

This work was supported by the Russian Fund for Fundamental Research through
the Grant 97-03-33719 and the State Science and Technology Program “Fundamental
spectroscopy” through Grant 2.3. | am grateful to Dr. D. Markovitsi for sending me
reprints of Refs. 9 and 10.
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Excitation of plasma oscillations during the motion of
Josephson vortices in layered superconductors
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The electric and magnetic fields arising during uniform motion of a
vortex lattice in a magnetic field oriented parallel to the conducting
layers are calculated in an exactly solvable model. For low tempera-
tures and high velocities of the lattice, features due to the excitation of
plasma oscillations of the superconducting electrons appear in the
current—voltage characteristic. Peaks associated with plasmon excita-
tion and the Cherenkov effect are present in the radiation spectrum.
© 1997 American Institute of Physids0021-364(07)01224-3

PACS numbers: 74.80.Dm, 74.56, 74.25.Fy

Experimentat? and theoreticdl® investigations performed in the last few years
have shown that plasma oscillations of superconducting electrons at frequencies in the
hundreds of megahertz to terahertz range exist in layered superconductors. The existence
of a weakly damped characteristic mode results in resonance features in the forced os-
cillations when the frequency and wave vector of the driving force are close to those of
the characteristic mode. Specifically, for sufficiently rapid motion of a lattice of Joseph-
son vortices produced by a magnetic field oriented parallel to the layers, the frequencies
of variation of the electromagnetic field fall within the same frequency range as the
plasma oscillations. Under the influence of a transport current flowing in a direction
perpendicular to the layers the velocity imparted to these vortices can be very high, since
the modulus of the order parameter in them is disturbed very little. For this reason, for
sufficiently high voltages on the superconductor it is possible that the conditions of
resonance and generation of plasma oscillations are satisfied, which in turn should influ-
ence the form of the current—voltage characterid€). We present below a solution of
the problem of the motion of a Josephson vortex lattice in an infinite crystal in not very
strong magnetic fields, in which the nonlinear cores of the vortices do not overlap. We
assume that the characteristic frequencies of the problem are low compared with the
amplitudeA of the order parameter.

The presence of vortices changes the characteristic oscillations, imparting to the
spectrum an acoustic forfif However, the response of a superconductor to the motion of
a vortex lattice under the action of a transport current is not associated with the oscilla-
tions of the vortices. For this reason, forced oscillations are determined by the character-
istic modes with a plasma edge.

For high velocities the shape of the vortices changes. This makes it much more
difficult to calculate the dynamics of the vortices, since the standard approach employing

853 0021-3640/97/120853-07$10.00 © 1997 American Institute of Physics 853



the perturbation theory in the velocity becomes inapplicable. For a strict solution of the
problem, it is necessary to solve Maxwell’s equations into which expressions for the
current and charge density are substituted. Having in mind high-temperature supercon-
ductors, we shall assume that the order parameter has the form characterigdic for
pairing. The expressions for the charge and current densities are nonlinear functions of
the phase difference of the order parameter between neighboring layers and in the general
case have a quite complicated fofrBesides the dependence on the time derivatives of
the superconducting momentul = (1/2)iqx,— (1/c)A, and the phase difference, the
quasiparticle current density also depends on the gradient of the gauge-invariant scalar
potential u,=(1/2) (dxn/dt) + ®,, whereA, is the vector potentialp,, is the electric
potential, andy,, is the phase of the order parameter in thih layer. (We assume

h=1, e=1) In the general case the potentia| is found from the solution of Poisson’s
equation, but in the problem of vortices at low temperatdres\, which we shall study,

the imbalance of the populations of the quasiparticle branches and the potgntiaé to

this imbalance can be neglected iif,(d)2<1, wherer, is the Thomas—Fermi screening
radius andd is the period of the crystal in a direction perpendicular to the layers. The
linear-response expression can be used for current along the layers, since in the problem
of Josephson vortices the characteristic scale of the currents is determined by the critical
currentj. in a direction perpendicular to the layers, and this current is small compared
with the critical current in the direction of the layers. The expression for the current
density in thenth layer, written in the Fourier representation, is

C2

in= Pi—iwo(w)P,.

42 "

The first term here describes the superconducting current and the second term describes
the quasiparticle current-iw andiqg correspond to the time derivative and gradient in

the direction of the layers. The frequency dependence of the conduetj\i®y) depends

on the symmetry of the order parameter and is determined by the momentum scattering
time. We shall employ for it the expression from Ref. 10.

The superconducting current density between the layeaedn+1 is determined
by the expression

J'(f%(%) =]j¢ Sin ¢,

where g, is the gradient-invariant phase difference. We shall switch to the exactly solv-
able model, replacing the sine by a saw-tooth function

J'f%(%):jc arcsin sing,, (1)

as was done in Ref. 11. This substitution was also used in solving the problem of the
motion of Josephson vortices in an approximation linear in the veldtity.accordance

with Eqg. (1), we employ a linear dependence of the quasiparticle current on the phase
difference:

j9P=—iwo, (0)e,/(2d).

We substitute the expression for the current densities into Maxwell’'s equation
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L
el

2
after replacing the derivatives with respect to the coordinate in the direztjmrpen-
dicular to the layers by a finite difference and expressing the magnetic field ip the
direction in terms ofp, andP,;:

c dp, C
Hy=54 2x —g(Pr+17Pn)

wherex is the coordinate in the direction of motion of the vortices.

In the displacement current, we allow only the component alongz thgis, since
because of the strong anisotropy the plasma frequency in a direction parallel to the layers,
Q,=c/\, is much higher than the characteristic frequencies of the problem, which are
close to the plasma frequency in the direction perpendicular to the laygrse,/\.,
wherec,=c/ /e, € is the dielectric constant along tizeaxis, and\ and\.=c/\/8xdj,
are the screening lengths of the magnetic field for screening by currents flowing along
and across the layers, respectively. As a result, we obtain the equations

2 2

2
. € J%¢y 5 0 A d(dmo, 0
i)~ grd 2 TN g (PP =— o Sl =+ Zfen, @®
c? 9 , C? J J
E&(¢n_¢nfl)+ﬂppn_?(Pn+l+ Pn-172Py)=——{ 4moy+ —|Py. (4)

Solving these equations, we find the electric and magnetic fields as functions of the
coordinates and time.

The model phase dependence of the curf&himakes it possible to find the exact
solution of Egs(3) and(4) by means of the Fourier transformation. Strictly speaking, it
is necessary to take into account the curvature of the flux lines during the motion.
However, we shall confine our attention below to the case when the displacement of the
center of a vortexy(y) along thex axis at distanceg~ \ . is small. A calculation of the
deformation based on the balance equation for the forces exerted on a vortex by the
transport current and the currents produced by the vortices themselves irHields;
shows that the deformation can be neglected if

Xo(A¢) - A juHe
¢ 7d In(A/d) jH

<1. 5

We shall assume th&t is much larger thatd ., and the conditior(5) holds.
As a result, we obtain for a triangular lattice moving with veloaity

(@2 w2+ iwoy) ¢~ 262qKPle=T15(q— wlu), ©
—(PqK/2d?) ¢+ (8 2~ w2 +iwQ,)P=0. 0
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Here K=2 sink/2, |k|<w is the wave number obtained as a result of performing a
discrete Fourier transformation with respect to the layer numbér wi(1+X2g?),
Q 2=05(1+\K%d?), w, =470, €, O, =47, and finally

M=47Xw}liw) > exd—i(l+m/2)gX—imkz/d].
I,m

The solution of Egs(6) and (7) for the phase difference has the form
e=I1(1+\?K?/d?) 8(q— w/u)/D, (8)

whereD is the determinant of the systei®), (7). The zeros oD determine the spectrum
of the characteristic oscillations — plasmons. At sufficiently high frequencies and low
temperatures, for which the dielectric relaxation frequenciewRand Im(}, are small,

D=[(w;~ »)(1+N\2K%/d?) + w2\ iq? ~i o[ 0 (1+ 2K/ d?) + O ()~ ?
+wiNZg?)/ Q5]

We shall illustrate the change in the character of the solution as a function of the
frequency for the example of the components of the electric Bgld —i(w/2d) ¢. The
slowly varying (along z) part of the fieldE, produced by a single vortex at frequency
w=qu (g=27/X) has the form

U, exp—2z/A)

E,= ;
‘ 2d\/(w'23— wz—iwwr)(wg—wz—k wg)\ng—iwwr)

A—)\\/ wg—wz—iwwr ©
wg—wz—l- a)’zj)\ng—iwwr.

The total field is described by the sum of fields produced by all vortices. One can see that
at low frequencies the decay length of the field is of the ordei 0find when the
frequency exceeds the plasma frequency the real part of the argument of the exponential
in Eq. (9) becomes small, i.e., in the region of plasma oscillations the decay length of the
field increases rapidly and is determined by the damping of the plasmons.

To find a relation between the transport currgptand the velocityu of the vortex
lattice, we premultiply Eq(3) by (c?/A2)de,/dx and Eq.(4) by 49P,/dx, and then add
these equations, integrate ower and sum over alh. As a result, the terms on the
left-hand side of the equality obtained form a combination which is a total derivative with
respect t, the integral of which reduces t02d22nH§| % . This expression determines
the force acting on the lattice. It is proportional to the half-sum of the magnetic fields on
different sides of the sample, i.e., the external magnetic field, and the difference of the
magnetic fields, which by means of E@) can be expressed in terms of the transport
current. We write the right-hand side of the equation with the aid of the Fourier trans-
formation, substituting into it the solution of Eq®) and (7). The result is
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1672dj,, = J dqdkuwn il ew, (1+A2K?/d?)?

QK d)]/[D]? X el maximied, (10)
m

Substituting into Eq(10) the solution(6) and (7), we find thegependence op of the

velocity of the vortices and hence of the average electric isk27n u (wheren, is
the density of vortices

In the limit of low velocities of the latticeyu<<(d/\)c, the effect of the velocity on
the shape of the vortices can be neglected. In this case the IVC is described by Ohm’s law
with resistivity

- 1 2n,dx, "
P= o+ / 2 T ’ ( )
L Ho(MA)

wherel ;=d\./\. The last factor in Eq(11) describes the fraction of the superconductor
volume occupied by the nonlinear region of the vortex. We can see an analogy with the
Bardeen—Steven law, in which the ar&aof the vortex core is replaced by the axbe,

of the nonlinear region of the Josephson vortex.

An analytical expression for the dependence @h j,, can also be obtained for the
case of frequencies of the order of the plasma frequency and small damping of the
plasmons:
sinhb _Xc, o (wp)

——, a= , =——-a.
coshb—cosa AU 2w,

Ju=lec

The last factor in this formula describes oscillations which appear in the IVC as a result
of the interference of plasmons emitted by different vortices. In the limit of high veloci-
ties, the IVC goes over to Ohm’s law with a resistivify= 27n d\;/o(w,). The form

of the IVC in the region of the plasma oscillations is sensitive to the magnitude and
anisotropy of the quasiparticle conductivity. An increase in the conductivity results in
stronger damping of the plasmons and suppression of the characteristic features. The
regime of very weak damping is easily achievable with isotropic pairing, when the order
parameter has no nodes and the quasiparticle density at low temperatures becomes expo-
nentially small. In the case af pairing the damping is greater and the peaks in the IVC
are smaller. Figure 1 shows the functipp(u), found numerically under the assumption

that the real part of the quasiparticle conductivity is described by the equations from Ref.
10 and falls off as 12 at frequencies greater than the reciprocal of the momentum
relaxation time. We note that the conditigh) for neglecting the deformation of the
vortices is difficult to satisfy at high currents in regions near the maxima, so that finding
the shape of the IVC near the tops of the peaks requires a more accurate calculation that
takes into account the curvature of the flux lines during the motion.

Therefore, regions of negative differential conductivity, where a uniform flow of the
lattice of Josephson vortices is unstable, appear on the IVC in the region of plasma
oscillations. These sections alternate with regions of stability. Uniform motion is stable at
high voltages.
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FIG. 1. Typical curve of the transport current versus the velocity of vortices in aHiel@0H ;.

The excitation of plasma oscillations is associated with the generation of electro-
magnetic radiation. Let us find the radiation energy flux alongxttaxis at frequency
wn=2muN/X, whereN is the number of the harmonic. For this, we calculate the Poynt-
ing vector, using expressions for the electric and magnetic fields that can be easily found
with the aid of Eq.(8):

2 4 21,2142
r ucwp(1+12k?/d?%) S gmzdgy
- 160ZdX?|D(w=wy)|? ™

It is obvious that the energy flux grows rapidly at resonance frequencies at {idh

small. For a triangular lattice the odd harmonics of the radiation contain peaks near the
plasma frequency and the even harmonics also contain peaks at velocities close to the
velocity of lightc, in the medium, which plays the role of the Swihart velocity in a tunnel
junction. The latter peaks correspond to Cherenkov radiation. Figure 2 shows the function
S(u) for the first harmonic, where the energy flux is expressed in the units
So=h?c?w,/(16e°\?\,). For valuese=25,A=0.2 um, and\.=60 xm, characteristic

for BSCCO, ands,~ 10 W/cnt. The form of the curve and the sizes of the peaks depend
strongly on the magnitude and anisotropy of the conductivity. The lattice velocities
corresponding to the peaks in the radiation are not necessarily correlated with the peaks
in the IVC, so that it is possible to observe radiation peaks at frequencies of the order of
plasma frequencies at voltages in the regions of stable uniform motion of the vortex
lattice.

The peak in the energy flux with>c, is much higher than the peaks near the
plasma frequency. It is described approximately by the expression

S= Sohz
471+ hN3(1-u?c2) ]2+ hN2w?(u=c,)}’
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FIG. 2. Typical curve of the radiation energy flux at the frequency of the first harmonic versus the velocity of
the vorticesH=20H;.

whereh=472\\.n_. We note that the frequencies corresponding to a lattice moving
with velocity close toc, fall into the frequency range below the amplitude of the order
parameter only in sufficiently weak magnetic fields, where the lattice peticsicom-
parable to\.. As the field increases, the frequency will reath which will lead to
stronger damping as a result of pair breaking.

We also note that the effects which we have studied above refer to higher frequen-
cies and voltages than those at which the experimental investigations of Josephson vor-
tices are usually conducted, as, for example, in the recent work Ref. 13 where non-
Josephson radiation was observed during motion of vortices in BSCCO. Since we are
studying a uniform motion of a vortex lattice in an infinite crystal, such radiation does not
occur in our formulation of the problem.

This work was supported by Grant 96053 from the Russian Program
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Inelastic(Raman light scattering by phonons interacting with anisotro-
pic imperfections is investigated. Three different kind of disorder-
induced defectgpoint, linear and planarhave been considered. The
optical phonon width and line shape are found to depend importantly
on the dimension of the imperfections. There is a close correspondence
between the scale of the imperfection and the phonon line shape ob-
served in the Raman scattering experiments. The dependence of the
phonon frequency shift and width on the defect concentrations is cal-
culated, and the critical concentrations at which the optical phonon can
no longer be observed are determined. 1@97 American Institute of
Physics[S0021-364(®7)01324-9

PACS numbers: 78.30.Ly, 61.72y, 63.20.Dj

1. Many problems encountered in disorder systems have well-known theoretical
explanations. In particular, the dynamics of impurities in crystals has been described in
Refs. 1 and 2, where both the density of states and frequency of local vibrations were
specially considered. The influence of impurities on the vibrational Raman scattering has
been examined in Refs. 3 and 4, but so far there has been no relevant interpretation of the
optical phonon interaction with anisotropic imperfections. This is done in the present
work. Let us emphasize the peculiarities of this phenomenon.

First, the different type of imperfection®.g., impurities, vacancies, dislocations,
crystallite boundarigshave different spatial structure. Dislocations are an example of line
defects. In the case of ion implantation, the defects are certainly more elongated in the
direction normal to the surface than in the tangential direction. Finally, the boundaries of
crystallites or pores are plane defects. In this work, we focus on the interaction of optical
phonons with three main kind of disorder-induced defei)spoint defects,(ii) line
defects, andiii) a random set of plane defects. Both the optical phonon width and line
shape are found to depend importantly on the dimension of the imperfections.

Second, because the optical phonons are usually observed in inéRestian light
scattering, the momentum transtefwhich is of the order of the incident light momen-
tum »@/c) is much smaller than the cutoff valu€")=\/w,'/s determined by the
phonon widthI'=5 cm '=10"? s 1, the frequencyw,=5%x10? cm =10 s ! and
the dispersion parameter=10° cm/s which is of the order of the sound velocity. There-
fore, the conditiork<k™) holds and we have to calculate the width in the vicinity of an
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extremum of the branch, taking into account self-consistently the phonon width and shift
which result from the interaction of phonons with the disorder. The siz&1is mod-
erately large in the atomic scade= ws/wy: 1k a= Jw,/T/7 and this is the existence

of this large(on the microscopic scal@arameter K" that provides justification for the
present theory.

Third, since the optical phonons are bosons, they can be excited or emitted singly in
the process of interaction with light. Then the Raman cross section of the first order is
determined by the phonon Green function averaged over the distribution of the imper-
fections. Therefore, a simple theory can be advanced using Dyson’s equation with a
squared phonon—imperfection potential as transition probability. A similar technique has
been recently applied to the problem of strain relaxation near semiconductors
heterointerfaces,except that averaging over the distribution of imperfections can be
performed now in an explicit form. We obtain the phonon shift and widlth., the
phonon self-energyin the case of the various imperfection geometry. The phonon line
shape i.e., the frequency dependence of the inelastic light scattering cross &gbtan
is proportional to the imaginary part of the averaged Green functienomes asymmet-
ric and conditioned by the parametesk™) = ry/a\wy/T'=0.1ry/a for the set of
values listed before, wherg is the domain size where phonons can be scattered by the
imperfection. Before closing this series of introductory remarks, it may be be useful to
notice that this asymmetry has no connection to the well known Fano resonance in
conducting systems. Indeed, the Fano resonance results from a contribution of the elec-
tron loop in the photon—phonon vertex while, in our case, the asymmetric phonon line
shape originates from the phonon density of final states when one considers the scattering
of phonons by the imperfections.

2. The inelastic light scattering cross section is determined by the Green function of
optical phononD; (r,r’,w) which obey the equation

(H=ioT' "™+ V(r)—w®)D(rr,0)=8r-r"),

where the matriH;; = wgb‘ij + Mmm(?z/t?Xu?Xm represents the long-wave expansion of the
dynamical matrix near a extremum of the branch. The damping parafiféfedescribes

the intrinsic phonon width caused by the phonon—phonon and electron—optical phonon
interactions and the matrix

vij(r>=§ vij(r=rp) 1)

is the interaction with imperfections located at points In the case of a substitutional
defect of massm, instead of m, the interaction may be simply estimated as
vij(r—rp)=38;8(r—ry,) wga’(m—m,)/M, whereM anda® are the mass and volume of

the lattice cell. For a line defectr r,) is a two-dimensional vector. It becomes one-
dimensional for a plane defect. The phonon degeneracy has been taken into account by
using the subscrigt. For instance, in a cubic crystal, there are three optical phonons at
theI" point with a threefold degenerate frequenéy(,2,3). The long-range Coulomb
forces split this degeneracy in such a way that the LO phonon has a higher frequency than
the twofold degenerate TO phonon.
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The Green function has to be averaged over defects distributed randomly. Using the
diagram technique and summing diagrams with the averag®¥g) and
(6Vij(r) 6Vim(ry)) =Wijm(r—r’), where 8V=V—(V), we obtain the Dyson equation
for the averaged Green function. Near the branch maximum, we seek its solution

D (k,0)=w(k,0)=sk?—iwlj(k,o0)— o ¥)
and arrive at a system of coupled integral equations
w?(k,0)— o —io(T;(k o) =T{") = (V;)

_ _ J d3k1 ijmj(kl_k)
m J (27)°% wi(ki,0)— k2 —iwl (K, 0)— o?’

3

where the unknown functions afg(k,w) and wj(k, ).

The conditions of validity for Dyson’s equatidB) should be outlined here. The line
shape on the wings|¢— wg|>T) can be obtained using the perturbation the@he
Born approximatiohwhenwé(kl,w) —iwl'y(ky,w) is substituted in the right-hand side
(i.e., in the phonon self-energfor its unperturbed value3—iwI'("™ . At the center of
the line, the diagrams with intersections of the correlator lines make a contribution of the
order of the leading diagram, and a more sophisticated theory is needed.

The correlation functiotW;y,,j(k,—k) has the meaning of a transition probability
(j,k)—(m,kq). In order to find the average®/) and{sV(r)sV(r')), let us write the
Fourier transform in Eq(l) for the point defects

Vij(r)=§ f

Averaging, i.e., performing an integration over all positions of the defects in a (arge
the microscopic scalevolumeV, we get immediatelyVj;(r))=n,v;;(q=0), wheren,
is the volume concentration of defects.

d3q

(277)3Uij(Q)eiq(r_r")- )

The contributions to the two-point correlation function come from the terms which,
in the product of two sum#l), involve the same defect:

dd A ,
<5vim<r>5v”<r'>>:nvj (@ ()T, (5)
(27)
Equation(5) gives the Fourier transforiwq,;(q) of the potential—potential correlation
function for point defects. For line defects we obtaWy,;(q)=27né(q,)
Xvim(q.)vj(d,), whereq, is the two-dimensional vector in the plane perpendicular to
the set of line imperfections any is their concentration per unit area. A similar expres-
sion (with a two-dimensionals function) can be found for plane imperfections with
concentratiom, per unit length.

3. For simplicity, let us consider only the case of a phonon singlet. We will discuss
the interband phonon transitions in the conclusion. In this case the subscriptsand
V;j; take only one valuej=1) and we will omit them. The poles of the phonon Green
function give the phonon dispersion law. In the absence of imperfections, (Biagd
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(3) we get near the maximum of the branaif(k) = w3—s?k?—iwl'™, where the
parametess depends on th&-direction. This is not essential in what follows.

One point should be noticed. When applied to Raman scattering, the momkntum
and frequencyv in Egs.(3) have the meaning of the momentum and frequency transfers
from the light. Then the values,<k™ = \/woI'/s are important in the denominator of
Eq. (3) if one is interested in a neighborhodd,— w|=T" of the phonon frequency,.

The size ™ is large on the atomic scate= s/ wo: k™ =a\wy/T'/7=10a. On the

other hand, the phonon momentum transter<k) in the interaction with an imperfec-

tion is determined by the domain sizg in which the imperfection relaxes. The two
valuesk™ and 1f, may be of the same magnitude, but they are much larger than the
small momentum transfdr= (/¢ from the incident light. Thetk can be omitted in the
integrand, i.e., the unknown functions;(k,w) and I'(k,w) can be regarded as
k-independent. But these functions depend essentially drecause of the square root
singularity of the phonon density of states at the extremum of branches. This dependence
is responsible for the non-Lorentzian shape of the phonon nafdeourse, the asym-
metric broadening and line shift are much more pronounced for the short-range disorder
rok™=<1). Finally, if we put(for the correlation function onjythe Fourier component
v(9)=v(q=0) in the regiorg<r, ! and equal to zero elsewhere, all the integrals can be
done analytically, and one obtains a system of coupled algebraic equatidn&fprand
w(w).

Let us now present the results. We will denote the phonon self-energy, i.e., the
right-hand side of Eq(3), by X (w). Then our main equation will take the form

wH(0)— wi—io(T(0)-TIM)—(V)=3 (). (6)

We see that the linear tergV) gives only uniform shift for the squared phonon fre-
quencyw{"?= w3+ (V) which is always linear in the concentration of defects, but can
have an arbitrary sign. The additionahomogeneoushift and broadening result from
the bilinear(with respect to the imperfection potenjigérm>. To find them, we have to

solve Eq.(6).
i. Point imperfectionsThe imaginary and real parts ) with

X

S(w)=A

1
2b—(a1—ia2)(§ log +i arctanx; +i arctanxz)) (7)

X5+1
give a system of two coupled equations for the unknown functiops») andI'(w),
wherex,=(b+a,)/a,, X,=(b—a;)/a,, a;=(w3(w)— w?+Q?%(w))*? a,=(— wi(w)
+ 0+ 0%(0)Y%sign(), Q% o)=(0i(0)— )+ T?(w), b=y2s/r,, and
A=n,v%(q=0)/4\27%s°.

Let us write v(q=0)=grgw(2) for estimates(where g=1 if the force constants
change around imperfectiong hen the linear terndV) in (6) givesgn,raw3/2, and the
second-order term in(7) gives A=g?n,riwy(rowe/s)%4y2m2. For the above-
mentioned example of a substitutional defect, the Fourier component
v(q)=wga3(m—mv)/M, and we need to cut off the real part of integf8) at 1la
instead of 17,
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FIG. 1. Theoretical Raman intensifymaginary part of the phonon Green function, the left panghonon
width (top of the right paneland shift(dotted line$ plotted as function of the frequency transfer in the case of
point defects with a potential of the small radiygs= 3.5a in atomic unitsa. The intrinsic phonon width is taken

2 cm 1, but three different values of the dimensionless interaction con&tan\/ wq have been used in E(l)

and the corresponding total widtfis(cm 1) obtained at the line centerg) perfect crystalAy=0,T'=2 (b)
Ay4=0.075,I"=4.84,(c) A;=0.187,I'=7.40.

The numerical solution to the coupled systén-(7) as a function of the frequency
transfer, together with the Raman cross section which is proportional (&), is
shown in Fig. 1 for several values of the interaction consfaandr,=3.5a. One find
clearly that the line shape is asymmetric. The resonance curve drops more slowly on the
low-frequency side of the peak and, as we have said, this comes about simply because the
density of phonon states increases below the maximum. The center of tlietioemal-
ized phonon frequengyis determined by the equation,(w)=w (see EQq.(2) with
k=0). Using Egs(6) and (7) at the center of the line, one can easily find the phonon
width I and the defect-induced shiftuf — wq) -

ii. Line imperfectionsin this case,

(SZ/I’%-Fwz—wi(w))2+w2F2(w) ) wi(w)—(u2
3 (w)=B| = log 5 —i arcta
2 (02— 0i(0))*+ 0T w) ol'(w)
) Szlrg—wi(w)-l-wz
—i arctan o (o) : 8)

whereB=ngw?(q, =0)/4xws? andv(q, =0)=griw3.

The resonance line appears wider than it was in ¢adecause of the more impor-
tant frequency dependence of the line shift.
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ii. Plane imperfectionsWe obtain

2

1 x1+1 ) )
3(w)=C Elog > l+arctanx1+| arctanx, (—aj+iay), 9)
X5+

where the notation is the same as(i; C=n,v%(q,=0)/\2ms, the one-dimensional

Fourier component (q,= 0)=gm§r0, andn, is the lineal concentration of scattering
planes(density per unit length In other words §,a) ~! is the average crystallite or pore
size measured in atomic units.

It is interesting to remark that one obtains the same frequency dependence of the
Raman cross section in the limiting case of the very large potential raghi¥>1 for
all dimensions. This case describes simply the small-angle scattering of phonons by
imperfections and, as a consequence, the phonon cannot “see” really the geometry of the
imperfections. As an example, we show the case of the line defects in Fig. 2 for long-
range disorder. Although our final results have been written for a single phonon mode,
the basic Dyson equatiof8) may be applied to a degenerate phonon. In this case, the
phonon scattering by the anisotropic imperfections implies both damping and splitting of
the degenerate phonon mode.

4. In Fig. 3 the inhomogeneous shifthe homogeneous shift is not includeshd
width are shown as functions of the defect concentration for different dimensions of the
imperfections. They would be linear functions if the standard perturbation theory were
used. For imperfections on an atomic scaje-a, one can obtain from Eq$7)—(9) the
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FIG. 3. Dependence of the inhomogeneous phonon shift and \adtthe line centejson the imperfection
concentration for three kinds of defects. The potential radjss3.5a and the phonon—imperfection coupling
g=0.5 are taken for all cases. The concentrations are given by the dimensionless varjgblesr3, n,r, for
the point, line, and plane imperfections, respectively. The solid curves are the solutions of eq@tid®)s

rough estimateg’—T'("=gn,a’(wol")** for the point defects]'—I'(" = g®nsa’w,
for the line defects, anll —T'")=g?n_awy(wy/T")¥? for the plane defects, whege=1
is a dimensionless coupling of phonons with the imperfections.

The fact that the optical phonons are not visible in the Raman scattering if
I'' wy>.01 (roughly) gives that defines the critical concentrations of the point and line
defects as1,a’g?=(I'/ wo)Y>=.1 andnsa?g?=T"/w,=.01, respectively, and the critical
crystallite size ,g%) ~1~a(w/T")%¥?~=10°a above which the Raman lines are no longer
observed.

Our results also show that there is a definite correspondence between the imperfec-
tion scalery and the phonon line shape observed in the Raman scattering. The crossover
valuer,* for the potential radius is determined by the phonon width= \T wy/s. In
the case of the short-range imperfection poterkidlr,=<1, the phonon line shape is
asymmetric due to the influence of the phonon density of g&de Fig. 1 For the
imperfections of large radiug")r,>1, the influence of phonon—defect scattering results
in a symmetric but non-Lorentzian line shafsee Fig. 2
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interfaces and ion implantation. It is my pleasure to thank him for comments and ideas.
I am also grateful to V. Fateev for discussions and comments. This work was supported
in the framework of INTAS program 0101-CT93-0023 and also by Russian Fund for
Fundamental Researc¢Brant No 97-02-16044
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The thermal conductivity of the pure and zinc-doped spin-Peierls com-
pound CuGe@is investigated for the first time. Characteristic features
reflecting the changes in the phonon spectrum of the crystals are ob-
served in thek(T) curves at a transition into the dimerized state in
CuGeQ atTsp=14.2 K and in CygeZNg 05e0; at T5,=10.6 K. Near

the spin-Peierls transition temperaturg, the thermal conductivity of

ClUy 9eZNg 05€0; (k=3 W/m-K) is much less than the thermal con-
ductivity of CuGeQ (k=215 W/mK). © 1997 American Institute

of Physics[S0021-364(®7)01424-7

PACS numbers: 72.208i, 72.80.Sk, 75.80kq

Copper germanate CuGe® currently one of the most popular objects of investi-
gation in solid-state physics. This is due to the discovery of a spin-Peierls transition in
this inorganic compountiPreviously, a structural transition due to magnetoelastic inter-
action in quasi-one-dimensional chains of half-integer spins had been observed only in
some organometallic compounti$. In the orthorhombic structure of CuGgQhe
magnetic-moment carriers with spB=1/2 are Ca" ions, forming chains of copper—
oxygen octahedra along thleaxis. Along thea andb axes these chains are separated
from one another by nonmagnetic chains of germanium—oxygen tetrahedra. The antifer-
romagnetic exchange interaction in a chain is estimated td.5€120 K, and the hier-
archy of exchange integrals along the principal crystallographic axes is
Ja=0.1-J,=0.01J; (Ref. 5. At T,=14.3 K the periods of the crystal lattice along the
a andc axes double, and the €t ions are shifted in pairs toward one another. The
dimers formed do not possess a magnetic moment, and the paramagnetic susceptibility of
CuGeQ rapidly decreases with temperature in all crystallographic directions. In the
absence of a constant magnetic field, the spin-Peierls transition is a second-order phase
transition, accompanied by sharp anomalies of the specifi€ Ardtelastic moduli.The
introduction of a small quantity of impurities which break the magnetic chains results in
a rapid decrease of the spin-Peierls transition temperature. This effect has been investi-
gated in greatest detail for the system;CiZn,GeQ; (Ref. 8.

In contrast to the thermodynamic properties, the kinetic characteristics of GuGeO
have been little studied. It is shown only in Ref. 7 that the damfikg the velocity of
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FIG. 1. Temperature dependences of the thermal conductivity of Cy@edg the crystallographic directions
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sound exhibits an anomaly near the spin-Peierls transition. In the present letter we report
the results of an investigation of the thermal conductivity of copper germanate. The
thermal conductivitk of CuGeQ and Cy 47Ny oGe0; single crystals grown from melt

by the floating-zone method was measured by the stationary heat flux nieffu.
dimensions of the CuGeample in the, b, andc directions were equal to 0.24, 0.86,

and 4 mm and the dimensions of the GgZn, o/Ge0; sample were equal to 0.05, 0.8,

and 3 mm. The thermal conductivity measurements were performed along the crystallo-
graphic directiond andc in the temperature interval 5-100 K.

The temperature dependences of the thermal conductivity in pure GU@eO
shown in Fig.1. Dependences of this type are characteristic for dielectrics, where heat is
transferred by phonons. As the temperature decreases, the thermal conductivity along the
¢ axis at first increases with increasing carrier mean free path, reaches its maximum value
k=29 W/m:- K at T=23.3 K, and then decreases as a result of the decrease in the number
of phonons. The thermal conductivity along thexis does not exhibit a distinct phonon
maximum, and its absolute magnitude is much smaller. From Fig. 2, where measurements
of the thermal conductivity along the dimerization agisn pure and doped samples at
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FIG. 2. Temperature dependences of the thermal conductivity of Cy@ed Cuy 4eZn; /Ge0; near the
spin-Peierls transition along thleaxis. The lines are drawn according to the relatien(T—T,)* .
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low temperatures are displayed on an enlarged scale, one can see that features are ob-
served in the curvels(T) near the spin-Peierls transition. The critical temperatures were
determined from the maximum of the derivatig&/d T near the spin-Peierls transition.

The transition temperatures, established in this manner, into the dimerized state in
CuGeQ (Tsp=14.2 K) and CygeZNng ofGe0; (Tsp=10.6 K) are in good agreement with

the results of other measuremehfs® The thermal conductivity of the pure sample
k=21.5 W/m K near the spin-Peierls transition is much higher than the thermal conduc-
tivity of the doped sample=3 W/m- K. This is due to the presence of a large number of
defects in the doped sample.

At high temperatures the thermal conductivity of dielectrics is due mainly to
phonon—phonon interactions accompanied by umklapp processes. This causes the ther-
mal conductivity to decrease &s-T~ ! for T>0, where® is the Debye temperature.

The Debye temperature for CuGg@as determined in Ref. 6 to @ =360 K. At low
temperature§ <© collisions of long-wavelength phonons do not lead to umklapp pro-
cesses, and the phonon mean free pathdetermined by scattering on defects. When
is comparable to the dimensions of the sample, the thermal condudtisiiyps increas-
ing and its behavior is determined by the specific l@at

It can be conjectured that the maximum in the functigi) for CuGeQ is deter-
mined by phonon scattering by the surface. This conjecture, however, is at variance with
the estimate of the phonon mean free path. From data on the thermal conductiviey
specific heatC,® and the speed of sound’ the temperature dependence of the phonon
mean free path can be determined using the gas-kinetic relation(1/3)Cul. It is
shown in Fig. 3. One can see that the maximum in the temperature deperkdénc
T=23.3 K is observed for carrier mean free paths much smaller than the geometric
dimensions of the sample. This makes it impossible to attribute this feature to scattering
of phonons by the boundary of the crystal. The most likely cause of the limitation on the
phonon mean free path and hence on the thermal conductivity seems to be scattering by
planar defects, examples of which are, cleavage planes in the crystal. We note that
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CuGeQ crystals, being layered compounds, easily split into plates with thicknesses of
the order of microns.

The minimum in the dependent€l) near the spin-Peierls transition temperature in
CuGeQ is due mainly to a jump in the specific heaC,=7.8 J/kg K:® the change in
the velocity of longitudinal sound along tleeaxis is small afl s, Av/v= 103 (Ref. 7).

The dips observed in the temperature dependences of the thermal conductivity in
CuGeQ and CuyoeZny oGe0; near the spin-Peierls transition are apparently due to
actuation of an additional mechanism of phonon scattering, on critical fluctuations of the
order parameter. The specific nature of the spin-Peierls compounds is that the density of
states of the short-wavelength phonons increases as the transition tempgtgtise
approached? Quasi-one-dimensional critical fluctuations which lead, specifically, to
characteristic diffuse scattering of x rayslevelop in spin-Peierls magnets long before
static lattice distortions appear at,. The appearance of such phononsTas T,
increases the probability of phonon—phonon interactions accompanied by umklapp pro-
cesses, which is proportional toT(—Tsp)*l. However, as shown in Fig. 2, the
experimental data are approximated best by a fundti@n) ~(T—Tsp)“. In the case of
CuGeQ a=0.70+0.05, and in the case of GyZny o5e0; =0.76+0.03. This means
that asT, is approached from the high-temperature side, not only the mean free path of
short-wavelength phonons but also the number of such phonons changes. It is interesting
to note that the critical exponent determined in this manner is close to the critical
exponent B=0.66 determined from the intensity of the additional crystallographic
reflections near the spin-Peierls transition temperature in CyGeio- 52~ (T—T)?,
where § is the order parameter corresponding to dimerization of the lattice. However,
below T, the order parameter corresponds to static dimerization of the lattice, and above
Tsp it corresponds to dynamic lattice fluctuations.

The thermal conductivity of spin-Peierls magnets cannot be compared directly with
that of compounds undergoing a Peierls transitfolfin compounds exhibiting a metal—
insulator transition, conduction electrons play the main role in heat transfer processes
near the transition and against their background the anomalies due to a change in the
phonon spectrum of the crystal are weak. An analogy can be drawn between the behavior
of the spin-Peierls magnets and the thermal conductivity of magnetic dieleétiite
magnon subsystem in such materials can be manifested in heat transfer processes in two
ways. First, magnons as independent quasiparticles can themselves transfearat
second, the magnetoelastic interaction of magnons with phonons opens up an additional
phonon scattering channel. Thus, in easy-plane antiferromagnets a minimum of the ther-
mal conductivity, due to scattering of phonons by critical fluctuations of the magnon
subsystem near the ‘Bepoint, was observed against the background formed by the
phonon maximum. However, the magnon spectrum in easy-plane antiferromagnets con-
tains a gapless branch, so that at low temperatures magnons can be excited together with
phonons. In spin-Peierls compounds below the transition temperature, an energy gap
opens up in the spectrum of magnetic excitations. This suppresses the spin—phonon
interaction mechanisms.
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