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Abstract—Collisionless particle confinement in axisymmetric configurations with magnetic field nulls is ana-
lyzed. The existence of an invariant of motion—the generalized azimuthal momentum—makes it possible to
determine in which of the spatial regions separated by magnetic separatrices passing through the magnetic null
lines the particle occurs after it leaves the vicinity of a magnetic null line. In particular, it is possible to formulate
a sufficient condition for the particle not to escape through the separatrix from the confinement region to the
external region. In the configuration under analysis, the particles can be lost from a separatrix layer with a thick-
ness on the order of the Larmor radius because of the nonconservation of the magnetic moment µ. In this case,
the variations in µ are easier to describe in a coordinate system associated with the magnetic surfaces. An anal-
ysis is made of the applicability of expressions for the single-pass change ∆µ in the magnetic moment that were
obtained in different magnetic field models for a confinement system with a divertor (such that there is a circular
null line). © 2005 Pleiades Publishing, Inc.
1. Some types of magnetic confinement systems,
both closed and open, are equipped with elements for
producing reversed magnetic fields (cusp devices), for
instance, systems based on a field reversed configura-
tion (FRC) [1, 2], a bidipole confinement system with
an internal conductor [3, 4], the AMBAL-M open sys-
tem [5, 6], and the EPSILON linked mirror system with
divertors [7]. Such elements can function, in particular,
as an MHD stabilizer. A separatrix surface, which con-
tains magnetic null lines and/or points, is a natural
boundary between the internal region, where hot
plasma is confined, and external regions, through which
the particles that have escaped from the confinement
region move toward the walls and are lost there. Since
the adiabatic invariant µ—the magnetic moment of a
particle—is not conserved in the vicinity of a zero of
the magnetic field, it is relevant to study the question of
how the nonadiabatic character of motion influences
particle losses from the confinement region. An exten-
sive literature exists concerning various aspects of this
problem (see, e.g., review [8]). The aim of the present
paper is to give a simple presentation of some results on
the effect of magnetic field nulls on plasma confine-
ment in axisymmetric poloidal magnetic field configu-
rations (among which are confinement devices
described in [1–6] and a system with a stabilizing diver-
tor described in [7]). The existence of an integral of
motion—the generalized azimuthal momentum—
makes it possible to easily determine the conditions
under which the particle cannot escape through the sep-
aratrix from the confinement region into the external
region. The effects of the nonconservation of the mag-
netic moment µ can be accounted for relatively simply
by working in a coordinate system associated with a
1063-780X/05/3112- $26.001003
magnetic surface. Also, a comparative analysis is car-
ried out of the formulas describing the change in µ at
different magnetic surfaces in different models devel-
oped for divertor-equipped confinement systems,
which have received little study.

2. In a cylindrical coordinate system (r, ϑ , z), the
axisymmetric poloidal magnetic field B{Br, 0, Bz} is
described by only one component of the vector poten-
tial Aϑ:

(1)

For a particle with mass m and charge q that moves in
such a field, the generalized azimuthal momentum is
conserved,

. (2)

Here, the prime denotes the derivative with respect to
time and c is the speed of light. Accordingly, the equa-
tions of particle motion have the form (see, e.g., [9])

(3)

where u = qΦ + u0, with Φ(r, z) being the electric poten-
tial, and

(4)

Equations (3) have the energy integral
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It is convenient to switch from the component Aϑ to the
flux function

(6)

The surface ψ = const is composed of the magnetic field
lines. In terms of the flux function, the quantity u in
Eqs. (3) is written as

(7)

Before passing to the analysis of the spatial restric-
tions on particle motions in one or another magnetic
field geometry, we explain the physical meaning of the
generalized momentum P in expression (7).

Let us consider a uniform magnetic field B{0, 0, Bz}
in a straight solenoid whose axis is the z axis of a
Cartesian coordinate system (x, y, z). We set the poten-
tial equal to zero, Φ = 0. In particle motion, the coordi-
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Fig. 1. Projection of a portion of a particle trajectory onto
the (x, y) plane.
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Fig. 2. Larmor circle in a uniform magnetic field at r0 =

.2 ρ
and y – , remain constant (here, v x, y are the
velocity components and ωB = qBz/mc is the gyrofre-
quency). Consequently, the distance r0 from the center of
a circle to the axis of the solenoid also remains constant,

(8)

We rewrite the left-hand side of this equality as r2 + ρ2 +

2rvϑ /ωB (where the Larmor radius ρ =  +

 is a conserved quantity) and take into account
the equality r2 = 2ψ/Bz to see that, in the case at hand,
the momentum P = mrvϑ + (q/c)ψ is given by the
expression

(9)

and, hence, the generalized azimuthal momentum is
related to the radial coordinate of the Larmor center.
The generalized momentum can also be written in the
form

(10)

where ψ0 and ψρ are the magnetic fluxes (multiplied by
(2π)–1) through the circle at which the Larmor center is
located and through a Larmor circle, respectively. Note
that the generalized momenta P of the particles with
r0 > ρ and with r0 < ρ have opposite signs. This circum-
stance will be important in analyzing different regions
of particle motions in configurations with a field null at
the magnetic axis (see below).

In the general case in which the magnetic field is
nonuniform and the electric field —Φ is nonzero, the
particle trajectory is more complicated than a helix, but
the meaning of the generalized momentum P as a char-
acteristic of a certain surface near which the particles,
on the average, move does not change. If the particle
trajectory does not encircle the axis of the solenoid dur-
ing the cyclotron period, so that there exist points where
vϑ = 0 (Fig. 1), it is convenient to consider the axisym-
metric surface which passes through these points. We
denote the flux through this surface by ψ* to rewrite
expression (2) as

(11)

Note that the surface ψ* = const does not coincide with
the surface ψ0 = const, at which there is the Larmor cen-
ter. In the case of a uniform magnetic field and for Φ =
0, we have ψ* = ψ0 – ψρ, as is illustrated in Fig. 2.

The most interesting confinement systems are those
whose size across the magnetic field is much greater
than the mean ion Larmor radius. In such systems, the
total flux ψ is much higher than the characteristic flux
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Fig. 3. Contours of the same value of potential (7) with Φ = 0 in a configuration with a divertor (such that there exists a circumfer-
ence at which the magnetic field vanishes) for cP/q ≡ ψ* = (a) 0.9ψsep, (b) ψsep, and (c) 1.1ψsep. The coordinates are given in units
of L/2π, where L is the distance between the end mirrors (or the period in a periodic sequence of confinement cells with divertors).
The white striplike regions are around the value umin = 0. The field null is at the radius rsep = 2.4.
through a Larmor circle, ψρ. In what follows, we will
consider precisely these confinement systems.

3. The region where the particle can move may be
determined by considering the relief of the potential
u(r, z). For Φ = 0, the potential vanishes at a line along
which ψ = cP/q and increases on both sides from it. The
“corridor” u ≤ E at the bottom of the “valley” in the

relief has a width of δψ ~ (c/q) ; with allowance
for the relationship δψ = Brδn (where δn is the distance
from the magnetic surface along the normal to it), this
corresponds to a δn value on the order of the Larmor
radius. In the presence of separatrices, the valleys have
a branched shape in a certain range of values of the ratio
P/q (Fig. 3). Because of this branched shape, the parti-
cles can escape from the confinement region along the
separatrices. The conditions for the particles not to
occur in such channels and, accordingly, not to escape
along the separatrices will be discussed below for sev-
eral types of magnetic configurations.

4. Let us consider a spindle cusp—a configuration
with one field null at the axis at z = 0. For simplicity, we
assume that the z = 0 plane is a symmetry plane and
that, at sufficiently large distances from it (|z | > l), the
magnetic field is uniform and its strength is equal to
B = B0. An important point for further analysis is that
the total flux ψ has opposite signs in the two halves of
the confinement system (to be specific, we set ψ > 0 to
the right from the null). The contours of the same value
of ψ(r, z) in the meridional cross section, or equiva-
lently, the magnetic field lines, are shown in Fig. 4.

Let a particle be initially in a uniform magnetic field
to the right from the point z = 0, and let it move toward
the field null to occur in the zone of nonadiabatic
motion (in Fig. 4, the boundaries of this zone are shown
schematically because now we do not need to know its

r mE
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exact shape). In order to determine the distance the par-
ticle can travel when moving away from the field null
after passing its vicinity with, generally, a change in its
magnetic moment µ (and, accordingly, in its Larmor
radius), we show in Fig. 5 the dependence of P/q on the
radial coordinate of the Larmor center, r0, in the right
(subscript plus) and left (subscript minus) regions of a
uniform magnetic field. It is important to stress that
there are ranges of distances, r0+ and r0–, in which the
ratio P/q takes on the same values. If

(12)

(where ρ+ and ρ– are the Larmor radii in the right and
left regions of a uniform magnetic field), then the

invariant P/q is larger than  = /2c. This
implies that a particle that has the transverse velocity
ρ+ |ωB | to the right of the field null cannot occur in the
left region and move there with the transverse velocity
ρ– |ωB |. The particle not only can return back but also
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Fig. 4. Meridional cross section of the magnetic surfaces
ψ = const in a confinement system with a field null at the axis.
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can pass into a narrow circular slit around the magnetic
null line. Moreover, in both these allowed situations,
the particle, acquiring a new value of µ, remains con-
fined to the magnetic surface determined by the initial
value of ψ* (see formula (11)) on the same side of the
separatrix z = 0, despite the fact that it was able to cross
the separatrix because of the nonadiabatic effects in this
region. The maximum value of r* on the right-hand

side of inequality (12) is  = , where ρE is the
largest possible Larmor radius (calculated in terms of

the velocity ). Consequently, for r0+ > , any
particle of energy E is forbidden to pass into the region
z < –l, regardless of the value of the pitch angle.

If the Larmor center of an incident particle is within
the cylinder

(13)

then it can either return back to the axis, or can escape
into a circular slit around the separatrix z = 0 (in this
case, the Larmor center of the particle does not cross
the separatrix), or can escape through a region near the
axis (r0– < ρ–) into the left region of a uniform magnetic
field. Note that, in the latter case, the Larmor orbit of
the escaping particle encircles the axis. In all these
three situations, we have P/q > 0.
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Fig. 5. Dependence of P/q on  in the right and left regions

of a uniform magnetic field.
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Fig. 6. Contours of ψ in a bidipole confinement system.
Finally, we see from Fig. 5 that, for

(14)

when P/q < 0 and the Larmor orbit of the incident par-
ticle encircles the axis, the following situations are
allowed: (i) backward reflection; (ii) escape into the left
region of a uniform magnetic field, where the Larmor
center will be at a distance from the axis that is greater
than ρ– (the Larmor orbit does not encircle the axis) but
is less than r*; and (iii) return into the circular slit (in
this case, the Larmor center will move near the separa-
trix on the left of it, ψ < 0).

Let us now follow the motions of a particle propa-
gating from the circular slit and approaching the field
null that are allowed by the conservation law for the
generalized azimuthal momentum P. For definiteness,
we assume that the particle is confined to the magnetic
surface ψ* = const. For

(15)

(the Larmor center is not too close to the separatrix), the
particle is forbidden to pass into the left region of a uni-
form magnetic field. In this case, the particle can return
back to the hole or can pass into the right region of a
uniform field; moreover, in either case, the particle will
eventually occur at its initial magnetic surface ψ*. If
condition (15) is not satisfied, then the particle also can
pass into an axial uniform-field region with a radius on
the order of ρE.

5. In a configuration with closed magnetic field lines
and with two magnetic nulls on the axis (such as, e.g.,
an FRC or a bidipole confinement system), a particle
that, by virtue of equality (11), is restricted to move
near the closed magnetic surface ψ* = const that is at a
large distance ∆ * ρE from the separatrix (see Fig. 6) is
confined absolutely: without colliding with other
plasma particles, it cannot move away from this surface
and escape from the region bounded by the separatrix.
The only particles that are allowed to cross the separa-
trix are those in a boundary layer with a thickness of
about ~ρE. In a region near the field null, the radius ρE

can be estimated by calculating it in terms of the mag-

netic field at a distance ρE from the null:  ~

, where the gradient is taken at the null
point. Detailed calculations of particle trajectories in a
configuration in the form of a Hill vortex can be found
in [10].

The size of the region of nonadiabatic motion, lna,
can be larger than ∆ (the results of calculations for some
types of magnetic configurations are presented in [8]).
The pitch angle of a particle that has visited this region
can change, but the particle itself will remain confined,
provided that it will move outside the aforementioned
boundary layer.
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6. In a configuration with a divertor, such that there
exists a circular null line at r = rsep and z = 0, the point
(rsep, 0) is a saddle point of the flux function ψ(r, z). For
definiteness, we assume that Bz > 0 at the axis. We then
see that the flux function ψ in the equatorial cross sec-
tion, , takes on its maximum value ψ = ψmax at
r = rsep. For any value of ψ in the half-open interval [0,
ψmax), there exists a magnetic surface ψ = const with the
same value of the flux function in the sector between
the “limbs” of the separatrix in the region r > rsep.
Accordingly, the generalized azimuthal momenta P =
(q/c)ψ* of a particle that resides in the axial region and
of a particle that remains in the external sector will be
the same. The conservation of P allows the particles to
stay in both these regions. However, the potential bar-
rier u given by expression (7) may hinder the passage of
the particles from one of these regions into another.

Indeed, let us consider the radial profile of u in the
equatorial plane, , for Φ = 0. Between the minima

 = 0 on both sides of the separatrix r = rsep, the

profile has a maximum,  = umax (see Fig. 3a),
whose magnitude is determined by the difference ψmax–
ψ*: the larger the distance from the separatrix at which
the particle starts moving, the higher the maximum.
The particle can pass through the maximum only when
umax < E. It is easy to see that this condition can be sat-
isfied only for particles that are within a separatrix layer
with a thickness on the order of the Larmor radius. The
particles that start moving at distances from the separa-
trix that exceed the layer thickness cannot cross it.

Let us now consider the motion of the particles that
are near such magnetic surfaces ψ = const lying outside
the separatrix layer, from which the plasma can be
transported in a transverse direction through the mag-
netic field null, but passing through the region of nona-
diabatic motion. We assume that this region is wider
than the separatrix layer and is crossed by the magnetic
surface ψ = const. In such circumstances, the magnetic
moment µ of a particle that crosses the nonadiabatic
region can change. In particular, it may become
smaller, which implies that the particle velocity along a
magnetic field line increases. Accordingly, in a config-
uration with closed magnetic field lines, no particles
will be lost, as was already mentioned in Section 5. In
a configuration with open field lines, however, the par-
ticles will be put into the loss cone. This loss channel
can be closed by the ambipolar end plugs.1

7. Since a moving particle is confined to a certain
magnetic surface ψ = ψS, its motion can conveniently
be described in a coordinate system associated with this

1 In confinement systems in which the straight sections are con-
nected by curvilinear elements, the superbanana losses can be
avoided by using curvilinear elements of special geometry with
which to ensure the omnigeneity property—the coincidence of
the averaged drift surfaces of the particles with the magnetic sur-
faces.

ψ z 0=

u z 0=

u z 0=

u z 0=
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surface [11, 12]. In this case, the familiar results on
variations in the magnetic moment µ can be reproduced
in a relatively simple way. The coordinate system in
question is introduced as follows: the coordinate δ is
reckoned from the reference magnetic surface ψS along
the normal to it and the role of the coordinate z is played
by the longitudinal coordinate s (the length along the
magnetic field line). In these coordinates, we have

(16)

where the functions rS and zS are related to the reference
surface and θ(s) is the angle between the normal to it
and the radial direction. We also introduce the dimen-
sionless variables by normalizing the time to the recip-
rocal of the gyrofrequency at a certain fixed point at
which the magnetic field strength is equal to B = B0 and
the quantities r, δ, and s to a characteristic scale length
L, e.g., the period of a periodic sequence of divertors
(see below). For brevity, we set ψS = ψ* = cP/q. The
position of this magnetic surface can easily be deter-
mined, e.g., for a particle flying from the uniform field
region; in this case, the magnetic surface can be simply
described in terms of the radial coordinate of the Lar-
mor center (see Section 2). The Hamiltonian is given by

the expression H = m(LωB0/2π)2 , where the dimen-
sionless Hamiltonian has the form

(17)

with pδ = , ps = (1 – δ/R(s))2, and R–1 = –dθ/ds being
the magnetic field line curvature. The dimensionless

Hamiltonian  is on the order of (ρ/L)2; it can be con-
veniently used as a measure of the degree to which the
moving particles are magnetized. The magnetization is

strong when  ! 1.

For |δ/rS | ! 1 and |δ/R | ! 1, we take into account the
relationship ψ – ψS ≈ rSb(s)δ and ignore the terms on

the order of O  to obtain

(18)

where b(s) = B(s)/B0 is the dimensionless magnetic
field along the field line ψ = ψS. In accordance with
what was said above, expression (18) implies that the
deviation δ is no larger than the quantity

(19)

which has the meaning of the dimensionless Larmor
radius at the point where the magnetic field at the refer-
ence magnetic surface ψ* is minimum.
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With dimensionless Hamiltonian (18), the equations
of motion read

(20)

They describe fast oscillations of δ and far slower
(because of the smallness of δ in the second term of the
second equation) oscillations of s. The transverse
action is an adiabatic invariant,

(21)

Combining expressions (21) and (18), we find

(22)

In order to determine the transverse action invariant Jδ,

we can choose the time at which  = 0. This yields

(23)

where ρ is the dimensionless radius of the Larmor cir-
cle. We thus see that, to within a constant factor, the adi-
abatic invariant Jδ coincides with the magnetic moment
µ. Hence, approximate expression (18) for the dimen-
sionless Hamiltonian, which is valid for small values
|δ/R | ! 1, is consistent with the adiabatic invariance
of µ.

8. By taking into account the correction to Hamilto-
nian (18) that is introduced by the magnetic field line
curvature, it is possible to describe how the magnetic
moment µ changes when the oscillations of δ come into
interplay with the motion along the magnetic field line.
(That the magnetic moment µ is not converted prima-
rily because of the field line curvature was pointed out
in [11] and also in [8].) In expression (17), we keep the
term that is linear in δ/R. As a result, we obtain

(24)

and, instead of the first of equations of motion (20), we
arrive at

(25)

Multiplying Eq. (25) by  yields the following equa-
tion for the invariant Jδ defined by equality (22):

(26)
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Ĥ
1
2
--- pδ

2
ps

2
1 2δ

R
------+ 

  b
2

s( )δ2
+ + ,=

δ̇̇ b
2

s( )δ+
ps

2

R
-----.–=

δ̇

J̇δ –
ps

2δ̇
Rb
--------- ḃ
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We assume that the changes in µ are sufficiently small,
so we can substitute the quasiclassical solution to
Eq. (25) with a zero curvature (this solution is consistent
with the conservation of µ) into the right-hand side of
Eq. (26) to obtain δ = , where ϕ =  is
the phase of Larmor rotation. In this case, Eq. (26) takes
the form

(27)

The increment in Jδ during the time interval ∆t is
found by integrating Eq. (27). Both terms on the right-
hand side of this equation are oscillating functions;
consequently, if there is a need to calculate the incre-
ment ∆Jδ during the half-period of bounce oscillations
(or, for transit particles, during the transit time) then it
should be noted that the corresponding contributions to
∆Jδ are exponentially small in the adiabaticity parame-
ter—the ratio of the oscillation frequency to the bounce
frequency (or, equivalently, the inverse transit time).
Since the oscillation frequency in the second term
(namely, 2b, which corresponds to the dimensional fre-
quency 2ωB) is two times higher than that in the first
term, its contribution to ∆Jδ can be ignored. As a result,
we arrive at the following familiar expression:

(28)

where ∆ϕ =  and b∆t @ 1.

Note that, for the solution to the total (with allow-
ance for curvature) equation (25), the δ value averaged
over the Larmor period is nonzero. The reasons for this
are as follows. The centrifugal force  gives rise
to azimuthal drift. The δ coordinate of the stopping
points (with respect to the azimuthal angle ϑ) on the
cycloidal trajectory differs from δ0 = (δmax + δmin)/2 by
the amount v dr/ωB (this difference has been touched on
in Section 2). The drift due to the transverse nonunifor-

mity of the magnetic field, proportional to , is taken
into account by retaining the quadratic term in the
expansion of ψ – ψS in powers of δ in expression (17).
In this case, Eq. (25) contains a term ∝δ 2 and a term

∝  is added to the right-hand side of Eq. (26). As a
result, the right-hand side of Eq. (27) will contain a term
with sin3ϕ (which introduces merely an exponentially
small correction to ∆Jδ) and also a term proportional to
∝ (Jδ/l⊥ )sinϕ (where l⊥  is the dimensionless scale on
which the magnetic field varies in the transverse direc-
tion). This latter term also makes an insignificant contri-
bution to ∆Jδ because the power of the quantity b in it is
larger than that in the term with the curvature by one unit
(an important factor in calculating Jδ is the singularity
1/b(s) in the complex plane; see [8], Section 7).
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9. The change in the magnetic moment of the mov-
ing particles, ∆µ, was calculated for magnetic configu-
rations of different geometries (see, e.g., [13–17] and
also [8]). Here, we present a particular version of
expression (28) for a straight periodic sequence of con-
finement cells with divertors. To be specific, we con-
sider transit particles in the equatorial plane of a diver-
tor and assume that the particle velocity components
satisfy the inequality v ⊥  ! v ||. Let us estimate the
change in the magnetic moment by using the approxi-
mate formulas [8] for ∆µ that refer to two different
regions of magnetic surfaces ψS: the axial region and
the separatrix region. The aim is to analyze how much
the results obtained for these two regions differ from
one another.

For the magnetic surfaces ψS near the magnetic axis,
the function b(s) can be described in terms of only one
harmonic in the longitudinal coordinate s,

(29)

In this case, the period along the magnetic field lines
(contained in the characteristic scale length to which
the coordinate s was normalized) and the modulation
depth εS depend on ψS. In particular, for the representa-
tion of the magnetic field of a chain of divertors (see
Section 10 below), the modulation depth is equal to

(30)

where rmax is the dimensionless distance from the axis
to the point at which the magnetic field along the mag-
netic field line is minimum and ε is the modulation
depth at the axis. In approximation (29), for a particle
in its transit through one period of the system, we have

(31)

where C1 is a numerical factor on the order of unity and
ϕ0 is the phase of Larmor rotation at the point at which
the magnetic field is minimum [8].

Near the separatrix layer, where the dependence b(s)
along the magnetic field lines is more pronounced, it is
convenient to use the plane cusp approximation,
because the layer thickness is much less than rsep. In this
approximation, we obtain from [8] the estimate

(32)
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where C2 ~ 1. In the axial region, where rmax ! 1 and
ε ≈ εS, the argument of the exponential function in rela-
tionship (32) is close to that in formula (31) because

 = 2.83 ≈ 3. Figure 7 shows how the estimates
given by relationships (31) and (32) depend on the

radius rmax for  = 0.001 and ε = 0.4 in the model that
will be used in Section 10. It is seen that formula (32)
provides a fairly good description of nearly the entire
confinement region, except for a narrow axial region
rmax u 0.1, in which the resulting estimates are different
because formula (31) contains the small factor rmax.

10. Here, we consider one convenient approxima-
tion for the magnetic field in a straight periodic confine-
ment system. At a low plasma pressure, β ! 1, the mag-
netic field differs only slightly from that in vacuum;
thereby, in the simplest case, it can be represented as a
sum of the uniform field and one harmonic in the longi-
tudinal coordinate z,

(33)

Here, I1 is the first-order modified Bessel function; 0 <
B1 < B0; and k = 2π/L, with L being the period of the
confinement system along its axis. In the region r u
L(2π), we have

(34)

2 2
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2
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Fig. 7. Dependence of the quantity  on the radius of

the magnetic surface for a divertor cell: curves 1 and 2 are
calculated from formulas (31) and (32), respectively. The

parameter values are ε = 0.4 and  = 0.001, the dimension-
less radius of the separatrix being 2πrsep/L = 2.4.
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the characteristic frequencies is ωpi/ωB0 = 39, and the dimensionless plasma density is  = 2.7 × 1021. The separatrix radius is rsep =
2.44(L/2π).

Ĥ
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For kr ! 1, both terms on the right-hand side of repre-
sentation (33) are written in the paraxial approxima-
tion. Since, however, the total magnetic field vanishes
at the radius such that

(35)

(where ε = B1/B0), representation (33) describes a non-
paraxial situation. In order to satisfy the condition
krsep u 1, the parameter ε should be close to unity. In
practice, for r u rsep, the accuracy of calculation of the
components Bz and Br from the second term of repre-
sentation (33) in approximation (34) is no worse than
10% even with ε > 0.4.

As an example of how to apply representation (33)
and approximation (34), we evaluate the important inte-

gral U =  in which the integration is carried out

over one period L1 along a magnetic field line. We begin
with the dimensionless expression presented in [9],

(36)

Calculations yield

(37)

where K is the elliptic integral of the first kind, w =

, ξ = , ζ =

, and  = 4π2ψ/B0L2. As ψ increases
from zero at the axis to ψsep at the separatrix, the param-

krsep 2 1 ε–( )/ε=
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eter w increases from zero to unity. The function U =

 has a logarithmic singularity

at the separatrix:

  (38)

where the subscript “axis” stands for the value of the
function at the axis.

11. Here, for the aforementioned confinement sys-
tem with divertors, we compare the changes in µ due to
nonadiabatic effects with those due to Coulomb scatter-
ing. Assuming that the Coulomb scattering is weak (the
collisions are infrequent), we have |∆v ⊥ | ! v  for transit
time scales. For simplicity, we restrict ourselves to con-
sidering only highly transit ions whose velocity compo-
nents satisfy the inequality v ⊥  ! v || (we do not consider
how the ions return to the divertor cell: whether they are
reflected from a strong magnetic mirror or an electro-
static plug or they pass back through the curvilinear
connecting elements). The changes in the magnetic
moment that are of interest to us will be characterized
in terms of the dispersion of the increment in µ in tran-
sit through one period of the system.

The dispersion of the increment in the magnetic
moment, ∆µ = (mv ⊥ /B)∆v ⊥ , of a particle that moves
along a portion of its trajectory within the time dt and
undergoes small-angle scattering is given by the rela-
tionship 〈(∆µ)2〉  = (mv ⊥ /B)2〈(∆v ⊥ )2〉 , 〈(∆v ⊥ )2〉  =

(v 2/τ)dt, τ = 2πv 3n/( ), where n is the plasma den-
sity, λ is the Coulomb logarithm, and ωpi is the ion

4
π
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plasma frequency (see, e.g., [18]). The total dispersion
during the transit time is

(39)

(where E = mv 2/2), or, in dimensionless form, which
involves the invariant Jδ,

(40)

where we have introduced the dimensionless plasma den-

sity  = nL3 and the function  is given by formula (37).
Using formula (32) and assuming that the phase ϕ0

varies in a random manner (i.e., setting 〈sin2ϕ0〉  = 1/2),
we estimate the dispersion that could be introduced by
the nonadiabatic effects:

, (41)

where Λ = (1 – εS) . The ratio

〈(∆Jδ)2〉na/〈(∆Jδ)2〉c is equal to

(42)

Figure 8 shows how the quantity Π depends on the
radius rmax of the magnetic surface for 10-keV D ions
and for 3.5-MeV 4He ions in a divertor cell with reactor
parameters. We can see that, for the main plasma, the
effect of the nonadiabatic nature of the ion motion is
small over the entire volume, but for fast particles, this
effect can be significant. It should be noted, however,
that, even when the dispersion given by formula (41)
exceeds that given by formula (40), we cannot speak of
the decisive role of nonadiabatic effects in particle
losses because, for values of (∆Jδ)2 that are small but
are larger than those given by formula (40), it may well
be that the magnetic moment µ will not change at all.
An excess of the standard mapping parameter (see [8])
over a certain critical value can be considered to serve
as a criterion that the magnetic moment does indeed
change. This excess takes place in a separatrix layer
with a thickness on the order of ρE.

12. In summary, we can say that, in the confinement
systems under consideration, namely, those with mag-
netic null lines and/or points near the plasma boundary,
transverse losses of particles due to the nonadiabatic
nature of their motion can occur only from a separatrix
layer with a thickness on the order of the Larmor radius.
The depth of the region where the magnetic moment µ
changes is of the same order of magnitude, but not all
of the particles that enter this region are allowed by the
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--------------- 

  1/4
e

Λ

2Ĥ
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conservation law for the generalized azimuthal
momentum to pass through the separatrix, so such par-
ticles can be subject to absolute confinement.

ACKNOWLEDGMENTS

This work was supported in part by the RF Program
for State Support of Leading Scientific Schools (project
no. NSh-2024.2003.2) and the Russian Foundation for
Basic Research (project no. 03-02-16768).

REFERENCES

1. M. Tuszewskii, Nucl. Fusion 28, 2033 (1988).
2. B. L. Wright, Nucl. Fusion 9, 1739 (1990).
3. A. I. Morozov, V. P. Pastukhov, and A. Yu. Sokolov, in

Proceedings of the Workshop on D-3He Based Reactor
Studies, Moscow, 1991, Paper IC1; in Proceedings of the
International Sherwood Fusion Theory Conference,
Santa Fe, 1992, Paper 2C44.

4. M. M. Berdnikova, S. V. Vaœtonis, A. M. Vaœtonene, et al.,
Vopr. At. Nauki Tekh., Ser. Termoyadernyœ Sintez, No. 1,
22 (2003).

5. G. I. Dimov, Preprint No. 2-150 (Inst. of Nuclear Phys-
ics, Siberian Division, USSR Acad. Sci., Novosibirsk,
1982).

6. T. D. Akhmetov, V. S. Belkin, E. D. Bender, et al., Fiz.
Plazmy 23, 988 (1997) [Plasma Phys. Rep. 23, 911
(1997)].

7. V. V. Arsenin, E. D. Dlougach, V. M. Kulygin, et al.,
Nucl. Fusion 41, 945 (2001).

8. B. V. Chirikov, in Reviews of Plasma Physics, Ed. by
B. B. Kadomtsev (Énergoatomizdat, Moscow, 1984;
Consultants Bureau, New York, 1987), Vol. 13.

9. A. I. Morozov and L. S. Solov’ev, in Reviews of Plasma
Physics, Ed. by M. A. Leontovich (Gosatomizdat, Mos-
cow, 1963; Consultants Bureau, New York, 1966), Vol. 2.

10. M. Y. Wang and G. H. Miley, Nucl. Fusion 19, 39 (1979).
11. A. M. Dykhne and A. V. Chaplik, Zh. Éksp. Teor. Fiz. 40,

666 (1961) [Sov. Phys. JETP 13, 465 (1961)].
12. J. Lacina, Czech. J. Phys. B 13, 401 (1963).
13. R. J. Hastie, G. D. Hobbs, and J. B. Taylor, in Proceed-

ings of the 3rd International Conference on Plasma
Physics and Controlled Nuclear Fusion Research,
Novosibirsk, 1968 (IAEA, Vienna, 1969), Vol. 1, p. 389.

14. G. E. Howard, Phys. Fluids 14, 2378 (1971).
15. R. H. Cohen, G. Rowlands, and J. H. Foote, Phys. Fluids

21, 627 (1978).
16. A. V. Zvonkov and A. V. Timofeev, Fiz. Plazmy 11, 320

(1985) [Sov. J. Plasma Phys. 11, 186 (1985)].
17. S. V. Kuz’min and P. B. Lysyanskiœ, Fiz. Plazmy 15, 778

(1989) [Sov. J. Plasma Phys. 15, 449 (1989)].
18. B. A. Trubnikov, Reviews of Plasma Physics, Ed. by

M. A. Leontovich (Gosatomizdat, Moscow, 1963; Con-
sultants Bureau, New York, 1965), Vol. 1.

Translated by G.V. Shepekina



  

Plasma Physics Reports, Vol. 31, No. 12, 2005, pp. 1012–1028. Translated from Fizika Plazmy, Vol. 31, No. 12, 2005, pp. 1087–1103.
Original Russian Text Copyright © 2005 by Timofeev.

                                                                

PLASMA OSCILLATIONS 
AND WAVES

       
ICR Heating in Ion Separation Systems
A. V. Timofeev

Russian Research Centre Kurchatov Institute, pl. Kurchatova 1, Moscow, 123182 Russia
Received February 24, 2005; in final form, May 19, 2005

Abstract—A systematic procedure for analyzing the physical processes that govern ICR heating in systems for
ion separation is developed. The procedure is based on an analytic model of an rf antenna generating rf fields
within a plasma column in a magnetic field and includes such issues as the calculation of rf fields, examination
of the ICR interaction of ions with these fields, and determination of the distribution function of the ion flow at
the exit from the ICR heating system. It is shown that, even in ICR heating systems with easily achievable
parameter values, ions with appreciably different masses can be efficiently separated by energy. © 2005 Pleia-
des Publishing, Inc.
1. INTRODUCTION

ICR systems for ion separation are based on the pos-
sibility of selective heating of ions of one species in a
plasma with a complex ion composition (see, e.g., [1]).
An analysis of the physical processes occurring in such
systems is carried out in several steps: the development
of a model of an antenna that excites rf fields within a
plasma column; the calculation of rf fields; the exami-
nation of the resonant interaction of ions with these
fields; and, finally, the determination of the distribution
function of the ions produced in the ICR interaction
process.

The key problem is that of calculating the fields.
There is no general and universal means of solving it.
The spatial distributions of the fields and their polariza-
tion depend essentially on such parameters as the
plasma density, the temperature of the plasma compo-
nents, the magnetic field strength, etc. For a plasma
with several ion species, the important parameters are
relative concentrations of the species and also the rela-
tionships between their gyrofrequencies, on the one
hand, and the rf field frequency, on the other. A rather
complicated problem involving a variety of factors is
that of the excitation of rf fields in a plasma containing
a mixture of isotopes having almost equal masses. In
what follows, a study will be made of a simpler case of
a plasma with two ion species whose masses, as well as
concentrations, are vastly different. Let the mass num-
ber of 3% of the ions be equal to A = 100, and let the
mass number of the remaining ion species be equal to
A = 200. Numerical estimates will be carried out for the
PS-1 plasma separator that is now under construction at
the Nuclear Fusion Institute of the Russian Research
Centre Kurchatov Institute. The parameters of the sep-
arator are as follows: the magnetic field B0 ≈ 5 kG, the
plasma density n0 ≈ 1012 cm–3, the electron temperature
Te ≈ 5 eV, the ion temperature Ti ≈ 0.5 eV, the antenna
radius rA = 15 cm, the vacuum chamber radius rB =
20 cm, the mean plasma radius rPl = 10 cm, and the
1063-780X/05/3112- $26.001012
antenna length 2L = 1 m. The total length 2L1 of the
heating system along the magnetic field can be several
times greater than the antenna length. We will assume
that the lighter ion species satisfies the ICR condition
ω ≈ ωi ≈ 5 × 105 s–1.

In order to calculate rf fields in a plasma under the
above conditions, it is expedient to utilize an approach
in which the rf field generated by a current-carrying
antenna is represented as a superposition of the TM and
TE modes [2, 3], each of which is a superposition of the
electric and magnetic fields described by an indepen-
dent solution to the set of Maxwell’s equations. In vac-
uum, the electric field of the TE modes is perpendicular
to the waveguide axis (so the longitudinal electric field
component is zero) and the magnetic field of the TM
modes is oriented in the same manner. In a plasma
waveguide, the polarization of the independent modes
is mixed, so the terms TE and TM modes are rather con-
ventional. In what follows, the mode in which the main
component of the electric field is the transverse one will
be called the TE mode and that in which the main com-
ponent of the electric field is longitudinal will be
referred to as the TM mode.

In vacuum, the electric fields of both of the modes
are nearly potential. However, the TE and TM modes
generated by the current-carrying antennas are phased
in such a way that their potential components cancel
one another, leaving a comparatively weak vortex elec-
tric field. The TM mode is efficiently screened by the
plasma due to the redistribution of the electrons along
the main magnetic field under the action of the longitu-
dinal electric field of this mode. On the other hand, the
plasma exerts a weaker influence on the TE mode,
which thereby can penetrate deep into the plasma col-
umn even when the plasma density is high. In this case,
there is a strong potential electric field of the TE mode
within the plasma because the TM mode is screened by
the electric charge. Based on these distinctive features
of the excitation of rf fields by current-carrying anten-
 © 2005 Pleiades Publishing, Inc.
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nas, it is possible to obtain an analytic expression for
the left-polarized electric field, whose interaction with
ions under the ICR conditions is especially intense. The
change in the ion energy in this field and the shape of
the distribution function of the accelerated ions are
quite easy to calculate. As a result, in the present paper,
a comparatively simple (essentially analytic) model is
proposed that describes the entire ICR heating process.
The starting point of the ICR heating model is the
model of current-carrying antennas (a helical and a spi-
ral one), which is described in Section 2. In Section 3,
the spatial structure of the rf field is analyzed based on
the above considerations. It is found that the main con-
tribution to the left-polarized electric field comes from
a small number of largest scale axial harmonics. In Sec-
tion 4, it is shown that, under conditions corresponding
to the screening of the TM mode by the plasma, the
potential approximation provides a satisfactory
description of the rf field in a system stretched along its
axis. The boundary conditions at the ends of the plasma
column are discussed, as well as their dependence on
the electric contact between the plasma and the ends of
the vacuum chamber. In Section 5, the ICR heating pro-
cess is considered and the causes for the broadening of
the resonance lines in ICR heating systems are dis-
cussed. Finally, Section 6 gives an analysis of how the
energy distribution of the ion flow is influenced by such
factors as the velocity of the directed ion motion, rf
field frequency, and system length.

2. CURRENT-CARRYING ANTENNAS
AND CURRENT SPECTRUM

The antennas used for ICR heating of a plasma col-
umn are composed of finite-width conductors having
the form of a helix wound on a cylindrical surface
around the plasma. In order for the ion heating to be
efficient, it is necessary that the antenna current have
both the azimuthal and longitudinal components (see,
e.g., [2, 3]). This requirement can be met, e.g., when the
conductor is at least partially wound along a helix. It is

Fig. 1. Helical antenna. The instantaneous directions of the
current are indicated by arrows.
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in this way that the conductors are wound in the most
widely used helical antennas.

The antennas can conveniently be analyzed by con-
sidering their mappings onto a plane. For instance, the
mapping of the helical antenna shown in Fig. 1 is given
in Fig. 2a, in which the points separated by the distance
4b = 2πrA (where rA is the antenna radius) in the hori-
zontal direction should be identified. The current distri-
bution in a helical antenna can be treated as a superpo-
sition of two distributions. One of the distributions is
displayed in Fig. 2b. The other distribution is such that
each of the parallelograms in Fig. 2b is contracted

(‡) ∆L 

2b 2‡

2L

(b)

2L'

(c)

Fig. 2. Mappings of antennas onto a plane: (a) helical
antenna, (b) an element of a model of a helical and spiral
antennas (with a continuous current density distribution),
and (c) spiral antenna.
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toward the point of intersection of the diagonals in a
ratio of 1/(1 – ∆). In the contracted parallelograms, the
current density is the same as that in the parallelograms
in Fig. 2b and the current direction is reversed.

In Fig. 2a, the current lines along the inclined (heli-
cal) portion of the antenna rotate in the azimuthal direc-
tion. For a = b (where b = πrA/2), the outermost current
lines, which connect two ends of the antenna (z = ±L),
rotate half a turn. Such an antenna is called a half-wave
antenna [1]. The turning angle can be arbitrary. Increas-
ing this angle leads to an increase in the θ component
of the antenna electric field. It is this component that is
responsible for the excitation of the transverse electric
field, which heats the ions under ICR conditions. In this
situation, however, the longitudinal wavenumber also
increases, which can have an undesirable effect.

In a helical antenna, the current flows along narrow
strips of width L∆, so its spectrum in the longitudinal
wavenumbers changes insignificantly up to the wave-
numbers k|| ≈ 1(L∆). The wider the current-carrying
conductors, the narrower the spectrum. In the limit ∆ =
1, the current distribution passes over to that shown in
Fig. 2b. In practice, such a distribution can be achieved
with a spiral antenna—a system of conductors wound
along spirals that emerge from the centers of the paral-
lelograms (see [2]). An approximate analysis of a spiral
antenna can be carried out by modeling it as a set of
similar helical antennas of decreasing size that are
nested inside one another on a cylindrical surface of
radius rA (see Fig. 2c).

The TE wave under consideration is excited by the
azimuthal component of the antenna current. In the
spectrum of the TE wave in the azimuthal wavenum-
bers, the first mode, which runs in the azimuthal direc-
tion in the sense of the ion gyration, plays the most
important role because this is the only mode that excites
the electric field whose left-polarized component E+ =

 is nonzero at the cylinder axis (see, e.g., [1–

6]). It is precisely this electric field component that
heats the ions under the ICR conditions. For the
antenna current distribution shown in Fig. 2b, the first
azimuthal mode is described by the expression

(1)

Here, J0θ is the density of the surface current in the por-
tions of the antenna conductors where it flows in the
azimuthal direction, the coordinate z varies within the
interval –L' ≤ z ≤ L', and A = a/b.
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The current density given by expression (1) has
components that are even and odd in z (see Fig. 3). In
the direction of the angular coordinate θ, they are
shifted by an angle of π/2; the even component is pro-
portional to sinθ and the odd component is proportional
to cosθ. It is easy to see that the z-averaged value of
Jθ(θ, z) is equal to zero. In fact, if this were not the case,
the current continuity condition would fail because of
the azimuthal modulation of the current and a charge
would be accumulated.

For further analysis, it is necessary to expand the
current density in a Fourier series in the z coordinate.
The family of functions into which the current density
should be expanded is determined by the boundary con-
ditions. The simplest boundary conditions can be for-
mulated by adopting one of the two diametrically oppo-
site assumptions: that the rf fields are completely
reflected from the chamber ends or that they are com-
pletely absorbed at the ends. In the first case, standing
waves with a discrete wavelength spectrum are estab-
lished in the system; the maximum wavelength can be
twice as large as the system length. In the second case,
as in an infinite space, there exist running waves of arbi-
trary wavelength, having a continuous spectrum. It is
under this assumption that the problem of the excitation
of electromagnetic fields in a plasma column was ana-
lyzed in [5, 6]. In [4], both types of the boundary con-
ditions were considered.

In the frequency range under consideration, it is dif-
ficult to make the chamber ends completely absorbing.
The assumption that the ends are reflecting seems to be
more realistic. There are various possible boundary
conditions corresponding to the complete reflection. It
will be shown below that the specific form of the
boundary conditions depends on the nature of the elec-
tric coupling between the plasma and the chamber
ends. When the coupling is perfect, the electric field
component tangential to the surfaces of the ends should
be assumed to vanish, Et = 0. When the chamber ends
are completely insulated from the plasma, it is neces-
sary to use the boundary condition ∂Et/∂z = 0. These
boundary conditions will be satisfied automatically if,
in the first case, the even component of the current den-
sity will be expanded into a Fourier series in the func-

tions cos  and the odd component will be

expanded in the functions sin ; in the second

case, it is necessary to use the functions cos  and

sin , respectively.

The electric contact between the plasma and the
chamber ends implies that there should be an electric
current. Since we are interested in alternating electric
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fields, we must regard the chamber ends as emitting
ones (see below). Usually, in systems for ICR ion sep-
aration, no special means are used to initiate the emis-
sion current from the ends. It is for these reasons that
the model of insulated ends seems to conform better to
the actual conditions.

It will be shown below that the electric current den-
sity and left-polarized electric field are expanded in
Fourier series in the same functions.

The rf fields generally extend outside of the ICR
heating system along the magnetic field. Consequently,
the length of the interval (–L1, L1) on which the func-
tions are expanded in Fourier series cannot be less than
2L. Note, however, that the region occupied by rf fields
can be made shorter by introducing well-conducting
grids (transparent to the plasma) into a separation sys-
tem (as was proposed by V.A. Zhil’tsov).

With allowance for these considerations and the
assumption that the chamber ends are insulated from
the plasma, we obtain

(2)

where

Qk(L') = sin  

– sin  + , a0 = , a± = .

In expression (2), it has been convenient to switch
from summation over the positive integer values of k to
summation over all integer values of k. In the case of con-
ducting ends, k should be replaced with k + 1/2 in the first
sum in expression (2), and vice versa in the second sum.

An analysis shows that, even with a small number of
harmonics (k = 10), the Fourier series expansion makes
it possible to reconstruct current density (1) with good
accuracy. When there is a need to use actual current
density distributions, which are combinations of distri-
butions (1) with different values of L' and exhibit
shorter spatial scales (see below), it is necessary to take
a larger number of Fourier harmonics.
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Fig. 3. Longitudinal (along the z axis) profiles of the density
of the azimuthal current component rotating in the azi-
muthal direction in the sense of the ion gyration (m = –1)
within half-wave antennas: (a) spiral antenna (n = 10) with
a continuous current density distribution, (b) helical
antenna (n = 1), and (c) spiral antenna (n = 5). In all three
figures, the solid curves are for the azimuthal current com-
ponent that is even in z, and the dotted curves are for the
component that is odd in the longitudinal coordinate.
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If the current density varies in time according to the
law ∝ cos(ωt), then, for waves rotating in the azimuthal
direction in the sense of the ion gyration, it is described
by the expression

(3)

By summing expressions (3), first, with L' =  over

the range 1 ≤ p ≤ n and, second with L' = 

over the same range and by taking the difference
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Fig. 4. Spectra of the azimuthal current density in the longi-
tudinal wavenumbers in a helical (n = 1) and a spiral (n = 5)
half-wave antennas for L1 = 2L: (a) even and (b) odd current
density components. In both figures, spectra 1 and 2 refer,
respectively, to a helical and a spiral antenna.
between the first and the second sums, it is possible to
construct the current density distributions in the
antenna types under consideration with an arbitrary
number of conductors. In other words, in order to
obtain the spectrum of a spiral antenna, the coefficients
Pk(L') and Qk(L') in expression (3) should be replaced

with the sums Rk =  – 

and Sk =  – , respec-

tively, where n is the number of conductors in a spiral
antenna. A helical antenna can be treated as a limiting
case of a spiral antenna with n = 1.

The spectra of the current density in spiral and heli-
cal half-wave antennas carrying the same total current
are compared in Fig. 4. In the model developed here,
namely, that in which a spiral antenna is composed of
individual conductors, the current in each conductor of
the spiral antenna is n times lower than that in the only
conductor of the helical antenna. The spectra shown in
Fig. 4 were calculated for L1 = 2L. As expected, the
spectrum of the current density in a helical antenna is
far wider than that of a spiral antenna: its width is deter-
mined by the width of the conductor, ∆ = L/10. Accord-
ingly, the amplitudes of the Fourier harmonics with
numbers of up to k ≈ 20 are essentially the same. The
oscillatory nature of the spectrum is explained by the
fact that the antenna size is a multiple of the length of
the interval used for Fourier series expansions.

In the case of an n = 5 spiral antenna, the contribu-
tions of individual conductors to the Fourier coeffi-
cients have different phases, so the total contribution is
significantly smaller than that of an individual conduc-
tor. The only exception to this is Fourier harmonics
with the smallest numbers k (in this case, the corre-
sponding contributions of the conductors differ moder-
ately) and also harmonics with the numbers k ≈ 2nq,
where q is an integer (in this case, the periodic character
of the positions of the conductors comes into play).

3. SPATIAL STRUCTURE OF RF FIELDS

3.1. Radial Field Structure and Screening 
of the TM Mode

In determining the spatial structure of the rf fields
excited by a current-carrying antenna in a plasma
waveguide, it is necessary to take into account the
plasma inhomogeneity and the complicated shape of
the antenna (see above). In some cases, it is reasonable
to supplement the natural assumption that the plasma
column is azimuthally and axially uniform. The rf fields
in such systems can be conveniently represented as a
superposition of the components that are harmonic
functions of the longitudinal coordinate z. (That the
first azimuthal harmonic plays a special role in analyz-
ing the ICR interaction process was pointed out above.)
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Evaluation of the radial dependence of each of the com-
ponents, as well as the calculation of their sum, can be
carried out only numerically (see, e.g., [4, 6]), so it
becomes more difficult to reveal the qualitative regular
features of the excitation of rf fields in a plasma
waveguide. The analysis can be made much simpler by
referring to the long-known idea that the transverse
electric field of an rf antenna is amplified as a result of
plasma response to the antenna longitudinal field. This
idea was employed in [2, 3], where the antenna electro-
magnetic field was represented as a superposition of the
modes that are known as TM and TE modes in vacuum.
In a plasma, these modes become the so-called slow
waves (Trivelpiece–Gould and hybrid modes) and fast
waves (Alfvén and magnetosonic modes).

The effect of the plasma on the TM mode becomes
important even at a low plasma density if the condition
|ε||| ≥ 1 (where ε|| is the longitudinal permittivity of the
plasma) is satisfied. For systems with the parameters
mentioned in the Introduction, the electron thermal
velocity is higher than the characteristic phase velocity
of rf oscillations along the magnetic field, ω ! k||vTe. In
this case, the longitudinal dielectric function is

ε|| ≈  + , where de =  is the

Debye radius and vTe = .

In a plasma, the TM mode transforms into potential
oscillations. The short-wavelength potential oscilla-
tions satisfy the dispersion relation

(4)

Here, ε⊥  ≈  + , where  =

, , and W is the probability integral

of the complex argument. With the ion separation prob-
lem in mind, we assume that (i) the ion plasma compo-
nent consists of two ion species, namely, lighter ions
(with a mass number of A = 100) and heavier ions (with
a mass number of A = 200), and (ii) the gyrofrequency
of the lighter ions is close to the rf field frequency, ω ≈

 = 2ωi . In what follows, the primed quantities will
characterize the lighter ions.

When the concentration of lighter ions is so low that
their contribution to the dielectric function can be
ignored, dispersion relation (4) yields

(5)

In this case, the TM mode transforms into ion acous-
tic oscillations modified by the presence of a magnetic
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field. However, for the parameters of the system that
were mentioned in the Introduction, the governing con-
tribution to ε⊥  comes from the lighter ions. In its inter-
action with these ions under the ICR conditions, the
TM mode rapidly loses its energy and is strongly
damped on short spatial scales when penetrating from
the plasma boundary deeper into the plasma.

As an equation for k⊥ , dispersion relation (4) has the
solution

(6)

The longitudinal electric field of the TE mode is
weak (in vacuum, it vanishes), so the plasma responds

to it to a lesser extent. Under the condition  @ ε⊥ , the
effect of the plasma on the TE mode can be ignored and
the fields of the mode can be described by the vacuum
equation (see, e.g., [3])

(7)

According to [2, 3], the total transverse electric field
is expressed in terms of B|| and E|| through the relation-
ship

(8)

which yields

(9)

If, in accordance with what was said above, the TM
mode is localized near the plasma boundary and does
not penetrate deep into the plasma, then, for the central
region of the plasma column, we can set E|| = 0. In the
central region, the transverse electric field coincides
with the electric field of a TE mode in a vacuum
waveguide:

(10)

It should be noted that, under the condition k||rA ! 1
and under vacuum conditions, the quantities B|| and
iN||E|| in expression (9) nearly cancel one another (their
sum is approximately (k||rA)2 times smaller than each of
them). As a result, the screening of the TM mode by the
plasma leads to an increase in the transverse electric
field due to the “liberation” of the electric field of the
TE mode. This additional transverse electric field is
potential because it is generated by the charges that are
induced near the plasma boundary in the interaction
with the TM mode. The amplification of the transverse
electric field in the plasma was thoroughly discussed in
[2, 3].
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The above considerations of the spatial structure of
the rf field are confirmed by the results of calculations
carried out by the method described in [3]. In these cal-
culations, an analysis was made of the fields excited by
an individual axial Fourier harmonic of the current. The
current distribution was approximated by the expres-
sion (see Fig. 5)

where k|| = π/L, L = 50 cm is the half-length of the
antenna, rA = 15 cm, ∆A = 10–2rA, and rB = 20 cm is the
radius of a perfectly conducting wall. In accordance
with Section 2 of the present paper, the azimuthal wave-
number was set equal to m = –1.

The radial plasma density profile was taken to be

where ∆Pl is a parameter characterizing the steepness of
the density profile. Here, we set ∆Pl = rPl/2 = 5 cm.

The remaining parameter values used in calcula-
tions have been mentioned in the Introduction.

The rf fields were calculated from Maxwell’s equa-
tions with the following expressions for the current
density components:
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Fig. 5. Radial profiles of (1) the plasma density and of (b)
the current density in the antenna.
where

The longitudinal component of the ion current was
ignored because of its smallness in comparison to the
longitudinal electric current.

Calculations show that, in the presence of plasma,
the longitudinal electric field is markedly lower than
that in vacuum (see Fig. 6a; curves 1, 2). The radial
scale length on which this field decays is about several
centimeters, which agrees in order of magnitude with
expression (6) for Imk⊥ . In a plasma without resonant
(lighter) ions, the oscillations manifest themselves as
ion acoustic waves (see relationship (5)). This is evi-
denced by the oscillatory structure of the longitudinal
electric field, which becomes more pronounced as the
electron temperature is increased (see Fig. 6b). In
accordance with expression (6), the higher the electron
temperature, the longer the wavelength and, simulta-
neously, the weaker the resonant interaction of the lon-
gitudinal electric field with the electrons, which leads
to an increase in the field amplitude. In Fig. 6a, the lon-
gitudinal electric field is seen to have a maximum in the
boundary region, where the plasma density is low. The
maximum is due to the plasma resonance, which occurs

under the condition  =  + .

The TE mode is characterized by the longitudinal
magnetic field. Figure 6c shows that the plasma with
the above parameters has essentially no effect on the TE
mode—the radial profile of the longitudinal magnetic
field in Fig. 6c is the same as that in vacuum. At the
same time, the left-polarized electric field in a plasma
is stronger than that in vacuum (cf. curves 1 and 2 in
Fig. 6d). It follows from the aforesaid that, in the cen-
tral plasma region, this field coincides with the field of
the TE mode in vacuum (see Fig. 6d, curve 3). There is
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Fig. 6. Radial profiles of the rf fields: (a) longitudinal electric field in vacuum (curve 1), in a plasma having a density of 1012 cm–3

and containing 3% of light (resonant) ions (curve 2), and in a plasma of the same density without resonant ions (curve 3); (b) lon-
gitudinal electric field in the central region of a plasma of density 1012 cm–3 without resonant ions for Te = (1) 5 and (2) 50 eV;

(c) longitudinal magnetic field in a plasma of density 1012 cm–3; and (d) left-polarized electric field in vacuum (curve 1) and in a
plasma of density 1012 cm–3 (curve 2) and TE mode field in vacuum (curve 3). All of the profiles were calculated for k|| = 6.3 ×
10−2 cm–1 and for an antenna current of 1 A.
a sharp jump in the vacuum field of the TE mode at the
surface on which the current-carrying conductors of the
antenna are wound. Since, however, the equations used
to analyze the rf fields are inapplicable to this region,
Fig. 6d shows only a portion of the radial profile of the
left-polarized electric field amplitude.

The transverse electric field is independent of the
plasma density and, under the conditions ε|| @ 1 and

ε⊥  ! , coincides with the transverse electric field of
the TE mode. In the case under examination, these con-
ditions correspond to the density range 105 ≤ n0 ≤
1014 cm–3. The plasma with a density above the upper
limit has a substantial influence on the TE mode: in par-

N ||
2
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ticular, it reduces the left-polarized component of the
electric field of the mode. It should be noted that, if the
concentration of resonant ions is low and if the trans-
verse dielectric function is governed by nonresonant
ions, then there is an Alfvén resonance in the plasma,

provided that ε ≥ . In the vicinity of this point, the
TE and TM modes interact closely with one another to
convert into a single plasma mode, thereby strengthen-
ing the rf fields. A further increase in the plasma density
is accompanied by a displacement of the Alfvén reso-
nance toward the plasma boundary and by a weakening
of the left-polarized electric field in the main part of the
plasma column.

N ||
2
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The above analysis is qualitatively consistent with
that used in [4] to obtain the dependence of the left-
polarized electric field on the plasma density. Note,
however, that the plateau in this dependence, which
reflects the excitation of the vacuum TE mode, termi-
nates at a lower plasma density (n0 ≈ 1012 cm–3) in com-
parison to that indicated above. This may be attributed
to a different ion composition of the plasma. In [4] (see
also [5, 6]), the plasma was considered to contain a
mixture of ion isotopes of the same chemical element.
The isotopes were assumed to have almost the same
mass; consequently, under the ICR conditions for the
target isotope (i.e., the isotope to be heated), the waste
(main) isotope turned out to be in a nearly resonant
state. As a result, the transverse dielectric function ε⊥  of
the plasma increased and, therefore, the Alfvén reso-
nance conditions were easier to satisfy. In [5, 6], the
excitation of electromagnetic fields in a plasma column
was attributed to the Alfvén resonance, and this point of
view was, in particular, promoted by using the continu-
ous k||-spectrum approximation without imposing any
restrictions on the longitudinal wavenumber k|| from
below.

3.2. Axial Field Structure

In order to find out how the rf field depends on the
longitudinal coordinate z, it is necessary to take the sum
of Fourier series that are analogous to those in expres-
sion (3) and have Fourier coefficients that are analo-
gous to those shown in Fig. 6. The corresponding
numerical procedure is fairly laborious. With the above
considerations, however, it is possible to construct a
simpler procedure on the basis of the analytic expres-
sions for B|| and E+ that derive from Eq. (7) and relation-
ship (10).

Since the antenna conductors are thin, the current
distribution in the antenna can be approximated by a
distribution in the form of a δ function. In this case,
Eq. (7) yields

(11)

where Jθ is the surface current density, Φm(ρA, ρB) =

Im(ρA)Km(ρB) – Km(ρA)Im(ρB), ρ = (  – 1)1/2rω/c, Im

is a modified Bessel function, and Km is a Bessel func-
tion.

Expression (11) implies that only long-wavelength
modes such that k||rA ≤ 1 reach the central region of the
plasma column. As a result, the spectrum of B|| in the
longitudinal wavenumbers in this region becomes
depleted of higher harmonics.

The left-polarized electric field E+ can be obtained
from expression (10). For the mode in question,
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namely, that with m = –1, the field has the form

(12)

Expression (12) shows that the contribution of the
higher harmonics to the Fourier expansion of the left-
polarized electric field is even smaller than that to the
Fourier expansion of the longitudinal magnetic field.
The Fourier spectra of the density of the currents in a
helical and a spiral antenna are strikingly different (see
Fig. 4). As for the Fourier spectra of the rf fields excited
by these antennas, the difference between them is less
pronounced because of the suppression of the higher
harmonics (see Fig. 7).

In the central region of the plasma column, which is
of most interest to us, the longitudinal magnetic field
depends linearly on the radius and the left-polarized
electric field is constant. Consequently, the axial pro-
files of these fields can be characterized by the quanti-
ties B||, 0(z) =  and E+, 0(z) = E+(r, z)|r = 0.

Since the amplitudes of the higher Fourier harmonics of
the fields B|| and E+ are smaller than those of Jθ, the
axial profiles of these fields are smoother. In particular,
for L1 > L, these fields extend outside the antenna (see
Figs. 8, 9). According to Fig. 8, the higher Fourier har-
monics make a contribution to the axial profile of the
longitudinal magnetic field; this is why, in Fig. 7, the
magnetic fields of the helical and the spiral antenna are
seen to differ from one another. However, the left-
polarized electric fields of these antennas are virtually
indistinguishable (see Fig. 9).

4. POTENTIAL APPROXIMATION
AND BOUNDARY CONDITIONS

The vacuum equations for the TE and TM modes
provide the basis for an even simpler approximate
method for calculating the rf fields. Let us assume that
the plasma density is high enough for the electric
charge that neutralizes the TM mode to be localized in
a thin surface plasma layer. If the distance from the
antenna to the plasma surface is small, then, roughly
speaking, the screening layer can be assumed to coin-
cide with the surface of the antenna cylinder.

Poisson’s equation makes it possible to express the
jump in the radial electric field in terms of the surface
current density:

(13)

On the other hand, Eq. (7) gives

(14)

E+ r k ||,( )
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2 2π

c
2
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where Jθ is the surface density of the azimuthal current
flowing in the antenna.

Expressions (8), (13), and (14) yield the following
relationship between the screening charge density and
the azimuthal current density in the antenna:

The vacuum equation for the TM mode (see, e.g.,
[3]),

(15)

σ 1
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2
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r
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1
r
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dr
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dE||

dr
-------- ω

c
---- 

 
2

k ||
2

– m
2

r
2

------– 
  E||+

=  –
4πi
ω

-------- J || cN ||ρ–( ),

(‡)

1

100

10–3

10–6

10–10

10–11

(E+, ev/n)2, arb. units

0 1 2 3 4 5 6 7 8 9 10

(b)

10–9

10–8

10–7

10–5

10–4

10–2
10–1

2
4

3

100

10–3

10–6

10–10

(E+, od/n)2, arb. units

–1 0 2 3 4 5 6 7 8 9 10

10–9

10–8

10–7

10–5

10–4

10–2

10–1

3

1
k

4

2
1

Fig. 7. Spectra of the left-polarized electric field of a helical
(n = 1) and a spiral (n = 5) half-wave antenna: (a) even and
(b) odd components. The profiles in both figures refer to a
helical antenna such that (1) L1 = L and (3) L1 = 2L and to a
spiral antenna such that (2) L1 = L and (4) L1 = 2L.
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implies that this mode is not excited when the longitu-
dinal current and electric charge both oscillate at the
antenna surface. In Eq. (15), the surface density of the
longitudinal current is given by the expressions

(16)

A differential analogue of the first equality in
expressions (7) is the equation

(17)

The longitudinal current density  differs from that

in the antenna, J|| = – , by a small amount
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Fig. 8. Axial profiles of the longitudinal rf magnetic field of
a half-wave antenna: (a) even and (b) odd components. The
profiles in both figures refer to (1) a helical antenna (n = 1),
(2) a spiral antenna (n = 5), and (3) a spiral antenna (n = 10)
with a continuous current density distribution for L1 = 2L.
The total antenna current is 100 A.
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This additional current is carried by electrons in
their motion along the magnetic field; the result is the
onset of the screening charge,

The above relationships provide an approximate
calculation of the electric field of the simplest (helical)
antenna. In the region |z | < L, the distribution of the lon-
gitudinal current density in such an antenna is given by
the expression

(18)

σ
k ||

ω
----δJ ||.=
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2
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Fig. 9. Axial profiles of the left-polarized electric field of a
half-wave antenna: (a) even and (b) odd components. The
profiles in both figures refer to (1) a helical antenna (n = 1),
(2) a spiral antenna (n = 5), and (3) a spiral antenna (n = 10)
with a continuous current density distribution for L1 = 2L.
Curves 4 show the field profiles in vacuum. The total
antenna current is 100 A.

0.10

–0.10
where α = Aπ/2 and I (0) is the current in each of the two
helical conductors (which are assumed to be infinitely
thin).

According to Eq. (17), the distribution of the screen-
ing charge is described by a discontinuous function,
which has jumps at the antenna surface. At a fixed coor-
dinate z, the longitudinal currents flowing in the con-
ductors on the opposite sides of the antenna cylinder
have opposite signs; consequently, the screening
charges also have opposite signs there. Such charges
generate a transverse electric field. The left-polarized
electric field at the center of the chamber is determined
by the first azimuthal harmonic of the electric current.
This harmonic, which runs in the direction of the ion
gyration (see above), makes the following contribution
to the longitudinal current density given by expression
(18):

The density of the charge that screens the TM mode
can be found from Eq. (17):

(19)

where the small difference between J|| and  has been
ignored.

For convenience in further calculations, the factor

f (t, θ, z) = sin , which accounts for the

spatiotemporal structure of the charge, can be repre-
sented as

The electric potential generated by a charge with
density (19) is described by Poisson’s equation,

(20)

where ρ = δ(r – rA)σ, the azimuthal wavenumber being
m = –1.

In Eq. (20), the longitudinal structure of the electric
field is taken into account parametrically because the
screening effect under discussion is important for
antennas whose length in the magnetic field direction is
sufficiently large, L @ rA.

Using expression (19), we find

(21)

By derivation, expression (21) is valid only for the
region |z | < L.

Let us now consider the question about the bound-
ary conditions. The boundary conditions of the first
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kind, in which E+(zb) = 0, admit that  ≠ 0. In

this case, by virtue of relationships (17) and (21), there
should be an electric current that flows across the
plasma boundary. Consequently, the boundary condi-
tions of the first kind imply that the ends the vacuum
chamber should be conducting. By similar reasoning,
the boundary conditions of the second kind, in which

 = 0, are valid for the chamber ends insulated

from the plasma.

In order to satisfy the first-kind boundary conditions
(which imply conducting ends), the even component of
the electric field should be expanded in a Fourier series

in the functions cos  and the odd electric

field component should be expanded in the functions

sin . For the second-kind boundary conditions

(which imply insulated ends), it is necessary to use the

functions cos  and sin , respec-

tively. The electric current should be expanded in the
same functions. In fact, the derivatives of the parame-
ters of the oscillations in question with respect to z are
calculated by multiplying their Fourier transforms by
−ik||. From expression (12), it is seen that the operator
relating the azimuthal antenna current density Jθ and
the left-polarized electric field E+ contains the deriva-
tives that are even in the z coordinate and does not con-
tain odd derivatives.

We continue the electric field to the plasma bound-
ary, assuming initially that the ends of the plasma col-
umn are insulated. We take into account that the space
charge, whose density is independent of the z coordi-
nate, does not generate a TM mode (see Eq. (15)). It is
for this reason that Eq. (17) determines the charge den-
sity to within a constant. Adding a constant to expres-
sion (19) and, accordingly, to expression (21) does not
violate the boundary conditions. The additive constants
can be different for different intervals along the z coor-
dinate; in any case, the charge density should be contin-
uous. Taking into account this continuity condition, we
arrive at the following expression for the function fod,
which describes the distribution of the odd part of the
charge density:

(22)

For the even part of the charge density, it is also nec-
essary to take into account the condition that the elec-
tron charge be conserved along each magnetic field line
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(for the odd part, this conservation condition is satisfied
automatically):

(23)

In the case of conducting ends, the continuity condi-
tions at z = ±L and the condition for the left-polarized
electric field to vanish at z = ±L1 will be satisfied for the
even part of the charge density if we set

(24)

In order to satisfy the boundary conditions for the
odd part of the charge density, it is necessary to assume
that an alternating longitudinal current flows across the
surface plasma layer (which screens the TM mode) and
that this current is independent of the z coordinate. This
current is not incorporated into Eq. (7) for the TE mode
and enters only into its solutions through the boundary
conditions. According to Eq. (17), the required longitu-
dinal current is screened by a charge whose density
changes linearly with the z coordinate. By introducing
the corresponding term into the equation for the odd
part of the charge density, it is possible to satisfy the
boundary conditions at the ends:

(25)

Expressions (22)–(25) describe the longitudinal
profile of the space charge density. The left-polarized
electric field, which is of most interest to us, can be
found from expressions (19) and (21).

The approximate expressions for the left-polarized
electric field provide a quite satisfactory description of
the field of the TE mode in the cases of conducting and
insulated ends. To see this, Fig. 10 presents the fields of
a helical half-wave antenna (A = 1). The odd compo-
nent of these fields extends outside the antenna to the
region |z | > L. In the case of a one-wave antenna (A =
2), the fields in this region are far weaker. In fact, in
such an antenna, each generatrix of the antenna cylin-
der is intersected by both helical conductors. The con-
ductors carry equal currents whose densities J||(z) have
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Fig. 10. Axial profiles of the left-polarized electric field of
a helical half-wave antenna with (a) conducting and (b)
insulated ends for L1 = 2L. Curves 1 and 2 refer to the even
and odd field components, respectively; the solid curves are
for the total left-polarized electric field; and the dashed
curves are for the potential component of this field. The
total antenna current is 100 A.

E+, V/cm

–2 –1 1 2

103 zω/c

1
2

–0.10

0

Fig. 11. Axial profiles of the left-polarized electric field of
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antenna with insulated ends, and the dotted curves refer to
an antenna with conducting ends. The total antenna current
is 100 A.
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opposite signs; consequently, the jumps in the screen-
ing charge density near the conductors also have oppo-
site signs (see Eq. (17)). This is confirmed by the results
of numerical calculations shown in Fig. 11.

Note that, according to [7, 8], the electric field also
is “confined” to the antenna surface, provided that the
plasma density is high enough to satisfy the condition

 ≥ ε⊥ .

To conclude this section, we estimate the rf field
amplitudes. For this purpose, we describe the rf fields
by their lowest axial harmonics, which remain essen-
tially undamped when they penetrate into the central
region of the plasma column. In doing so, in expres-
sions (11) and (12), we can set ρA, ρB ≤ 1. Conse-
quently, in order of magnitude, we have

where I (0) is the total antenna current. We set this cur-
rent equal to I (0) = 100 A. For a system with the param-
eter values mentioned in the Introduction, we obtain the
estimates B||, 0 ≈ 1 G and E+, 0 ≈ 1 V/cm. The estimates
obtained in numerical calculations are about one order
of magnitude smaller (see Figs. 8–11).

5. ICR INTERACTION

When the rf field frequency is close to the ion gyrof-
requency, the equation of motion of an ion interacting
with the left-polarized electric component of this field
can be written approximately as

(26)

where v+ = (v x + iv y)/ .

The transverse electric field of the TE mode is
essentially uniform in the central region of the cham-
ber, which is occupied by the bulk plasma. This is why,
in Eq. (26) and in the subsequent formulas, the radial
dependence of the field component E+ is ignored.

Using Eq. (26), we find that, for the ions that have
passed through the ICR heating system, the quantity
v+(t) is described by the expression

(27)
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where v ⊥ 0 and ϕ0 are the initial velocity and initial
phase of the ion gyration. As in Sections 3 and 4, the
electric field in expression (27) is represented in a com-
plex form,

(28)

where z = z0 + v ||t, Ψp = (ρA, p, ρB, p)/ (ρB, p),

ρA, p = (  – 1)1/2rAω/c, ρB, p = (  – 1)1/2rBω/c, and
k||, p = πp/L1.

Expression (27) implies that, in the interaction of
the ions with the rf field, the increment ∆v+ is indepen-
dent of v ⊥ 0 and ϕ0. In this case, by the symmetry prop-
erties of the antenna, the function E+(z, t) is such that, in
a frame of reference rotating with the left-polarized
electric field, the plane v x0v y is displaced uniformly as
a single entity due to the ICR interaction. In this plane,
it is convenient to direct the 0v x axis along the displace-
ment. In this case, we obtain

(29)

where Ω = ωi – ω, Ω' = , αk(Ω') =

, and βk(Ω') = .

If the system were infinite in the direction of the
main magnetic field, then the longitudinal velocity of
the ions that take part in the ICR interaction process
would satisfy the condition

(30)

Since the length of the actual systems is finite, the
ICR lines are broadened if the longitudinal wavenum-
ber k|| is understood to take the values k|| = kπ/L1, (k +
1/2)π/L1 (see above).

In the model under consideration, an ion flies
through the heating system over the time τ = 2L1/v ||. As
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a result, the resonance line acquires a finite width, δω =
2π/τ (the time-of-flight broadening). Of course, in a
finite time, an ion acquires a finite velocity increment.
The intensity of the ICR interaction is characterized by
the factors γ1 = cos(Ω')αk(Ω') and γ2 = sin(Ω')βk(Ω'). In
the “resonant” case (Ωτ ≤ 1), these factors are equal in
order of magnitude to γ1, 2 ≈ τ. If the rf field frequency
is far from being resonant (Ωτ ≥ 1), then, as Ω
increases, the factors γ1, 2 oscillate in such a way that
their amplitude decreases according to a power

(Lorentzian) law, γ1, 2 ≈ .

The time-of-flight broadening, i.e., the broadening
of the ICR line by δω = 2π/τ, is, in principle, unavoid-
able. As for the Lorentzian law of decrease of the fac-
tors γ1, 2 at Ωτ ≥ 1, the model under consideration
attributes it to the sharp boundary of the ICR heating
system: behind this boundary, the left-polarized electric
field vanishes, whereas, at the boundary, the z-deriva-
tive of this field undergoes a jump. It is well-known that
the Fourier spectra of nonanalytic functions have pro-
nounced (power-law) tails at large wavenumbers. Con-
sequently, for any value of the quantity Ω and of the
longitudinal ion velocity, there always exists a compo-
nent in the Fourier expansion of the function E+(z) that
satisfies resonance condition (30). It is the amplitude of
this harmonic that determines the ICR interaction
intensity. Since, in the case at hand, the derivative
dE+/dz has a jump at the plasma boundary, we arrive at

the law E+(k||) , which corresponds to the

Lorentzian law of decrease of the factors γ1, 2 in the
limit |Ω|  ∞.

By applying a nonuniform magnetic field, the ICR
interaction region can be localized to a zone where
E+(z) ≠ 0. In this case, the wings of the ICR line are
determined by the characteristic magnetic field gradient
at the boundary of the ICR heating region. For instance,
when the magnetic field at the boundaries of the system
decreases on a characteristic spatial scale LB (LB < L1),
the ICR line has broadened only by an amount of δω ≈
v ||/LB.

The cyclotron resonance at k|| = 0 (i.e., the funda-
mental resonance) has its specific features. Under the
condition

, (31)

all of the ions, independently of their longitudinal
velocities, take part in the resonant interaction, which
itself is not associated with the time-of-flight broaden-
ing effect. Because of the uniform motion of the ions
along the magnetic field, the ICR interaction intensity
is determined by the averaged strength of the left-
polarized electric field, ∆v x ∝ 〈 E+(z)〉 z ∝  

(see expression (29)). For insulated ends, we have
〈E+(z)〉 z = 0 (see Sections 3, 4). This conclusion corre-

1

Ω2τ
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k ||
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k|| ∞→
∝

ω ωi=

E+ k ||( ) k|| 0=
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lates with the conservation condition for the screening
electron charge. In such systems, the ions for which
condition (31) is not satisfied slip out of the ICR inter-
action process.

In the case of conducting ends, the charge from them
can enter the system, so we have 〈E+(z)〉z ≠ 0. That the
ions in such systems can be heated under condition (31)
follows from the expression for the increment in the
velocity of ion gyration,

(32)

where the quantities (Ω') =  and

(Ω') =  do not vanish at Ω' = 0, in con-

trast to the quantities αk and βk.

The characteristic increment in the ion gyration
velocity can be determined based on the approximate
estimate for the left-polarized electric field that was
derived at the end of the previous section. Using expres-
sion (29), we find

where ρi is the mean ion gyroradius. This estimate
shows that the antenna current I (0) = 10 A is sufficient

to provide efficient ion heating, . The cur-

rent obtained in numerical calculations is several times
higher (see below).

6. ENERGY DISTRIBUTION 
OF THE ION FLOW

The ion flow that is injected into the ICR heating
system is produced in a gas-discharge source. The
velocity of such flows at the exit from the source is
equal in order of magnitude to the ion acoustic velocity.
The normalized (to unity) distribution of the ions in the
flow over longitudinal velocities has the form

(33)
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where A0 =  + (1 + erf(U0)) (with erf(U0) =

) is the normalizing factor, u|| = v ||/vTi > 0

and U0 = V0/vTi . If V0 = , then, for Te = 10Ti, we
have U0 = 2.24.

The resonant (heated) ions and the nonresonant ions
(which remain cold) can be separated out by various
methods. The separation method described in [1] is
based on the fact that the gyroradii of the heated and
cold ions are different. Since the increment in the trans-
verse ion energy is considerably higher than their initial
transverse energy, the ion distribution over this energy
component is close to that over the total energy. An
analysis shows that, in the case of ion separation in a
curvilinear magnetic field [9, 10], the distribution over
the degrees of freedom (i.e., over transverse and longi-
tudinal energies) plays a minor role. With these circum-
stances in mind, we will analyze the ion distribution
over the total energy.

Using expressions (29) and (33), we can find out
how the ions that have passed through the ICR heating
system are distributed over the absolute value of the
total velocity. Assuming that the ion flow at the
entrance to the heating system obeys velocity distribu-
tion (33), we obtain

(34)

Integrating over the azimuthal angle in velocity
space and over the transverse velocity, we reduce
expression (34) to

(35)

For systems with parameters close to those men-
tioned in the Introduction, the most important of the full
set of axial harmonics are the largest scale ones, whose
wavenumbers k are on the order of unity, or, more pre-
cisely, on the order of L1/L (see Sections 3, 4). These
largest scale harmonics interact efficiently with an ion
flow when the rf field frequency satisfies the relation-
ship Ω ≈ πV0/L. The ions whose velocity is substan-
tially higher than V0 are accelerated because of the
time-of-flight broadening of the ICR line: as the longi-
tudinal ion velocity v || increases, the factors γ1, 2, which
describe the ICR interaction efficiency, decrease com-
paratively gradually, according to a power law (γ1 ∝

, γ2 ∝  ). Note that, in distribution (33), the frac-
tion of ions with longitudinal velocities v || @ V0 is
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exponentially small. As for the slow ions (v || ! V0), the
model under consideration implies that they are accel-
erated in the same manner as resonant ions with v || ≈ V0
because of the broadening of the ICR line due to a jum-
plike decrease in the rf field at the ends of the system.
In systems with a nonuniform magnetic field, this
acceleration mechanism is less pronounced (see
above), and so the ion energy distribution at the exit
from the ICR heating system can be enriched with ions
of low longitudinal velocities v || in the low-energy
range.

The ions that move slowly along the magnetic field
stay in the ICR heating system for the longest time. It is
these ions that form the high-energy tail of the ion dis-
tribution at the exit from the system. The fraction of
slow ions in the distribution over longitudinal velocities
is largest when the mean velocity of the directed ion
motion is zero, V0 = 0. In this case, the tail in the ion dis-
tribution is most pronounced (see Fig. 12a). The higher
the directed ion velocity V0, the smaller the relative
spread of the ions in their longitudinal velocities and,
accordingly, the narrower the energy distribution func-
tion of the ions at the exit from the ICR heating system.
Since the heating time also decreases with increasing
V0, the rf field amplitude has to be increased in order to
provide efficient separation of the resonant and nonres-
onant ions.

In the PS-1 device, the electron temperature is
expected to be about ten times higher than the initial ion
temperature; this corresponds to U0 = 2.24. It is for this
value of U0 that the distribution functions presented in
Figs. 12b and 12c were calculated. Figure 12b shows
that, in the ICR interaction process, the ion acceleration
is governed by the fundamental harmonic of the rf field:
the ions interact resonantly with this harmonic under
the condition ∆ωi ≈ –πV0/L (L1 = 2L). Because of the
presence of other harmonics in the spectrum of the rf
field and because of the time-of-flight broadening
effect, the corresponding resonant line is broadened. As
|∆ωi | decreases, the ions that move slowly along the
magnetic field are heated more efficiently, and so the
distribution function acquires a tail. Simultaneously,
the efficiency with which fast ions are heated decreases,
with the result that the maximum of the distribution
function is displaced toward lower energies. An
increase in |∆ωi |, in fact, causes the slow ions to drop
out of the ICR interaction process. In this case, the dis-
tribution function in the low-energy range becomes
close to its initial shape but acquires a low hump.

The heating asymmetry with respect to the sign of
∆ωi is associated with the direction along which the
antenna conductors are wound on a cylindrical surface:
this direction corresponds to a right-hand screw (see
Figs. 1, 2). Consequently, the current density compo-
nent that runs in the azimuthal direction in the sense of
the ion gyration (i.e., to the left for B0 > 0) is dominated
by the waves propagating in the positive direction of the
PLASMA PHYSICS REPORTS      Vol. 31      No. 12      2005
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Fig. 12. Distribution functions F(u) of the ion flow over the
total velocity at the exit from the ICR heating system. (a)
Dependence on the flow velocity along the magnetic field
for (1) U0 = 0, I(0) = 50 A, and  = ΩL1/vTi = –1.2; (2) U0 =

2.24, I(0) = 100 A, and  = –6; and (3) U0 = 4.48, I(0) =

200 A, and  = –12.5. (b) Frequency dependence for U0 =

2.24, I(0) = 100 A, and  = (1) –4, (2) –6, (3) –8, and (4) 6.
(c) Dependence on the scale length and amplitude of an rf
field for (1) L1 = 2L and I (0) = 50 A, (2) L1 = L and I (0) =

100 A, (3) L1 = 2L and I(0) = 100 A, (4) L1 = 4L and I (0) =

100 A, and (5) L1 = 2L and I (0) = 200 A. In plots (a) and (b),
the distributions were calculated for a helical half-wave
antenna such that L1 = 2L. The dotted curves are for the ini-
tial distribution function.
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z axis. In accordance with condition (30), such waves
will interact resonantly with the ion plasma component,
provided that their frequency is higher than ωi . In for-
mula (29), which was used in numerical calculations,
the asymmetry with respect to the sign of Ω stems from
the summation of the first term (which is even in Ω) and
the second (odd) term.

Although the increment in the ion gyration velocity
depends in a fairly complicated manner on the length of
the ICR heating system (see expression (29)), the main
effect of variation of L1 is associated with the time the
ions stay in the system. Figure 12c shows that the effect
of variations in the system length can be compensated
for by variations in the rf field amplitude in such a way
that the product E+L1 remains approximately constant.

In this section, we have calculated ion distribution
function (35) under ICR heating conditions in systems
with insulated ends. The main distinguishing feature of
systems with conducting ends is the possibility of ICR
heating under fundamental cyclotron resonance condi-
tion (31). If, in this case, we set V0 = 0, then we arrive
at the following simple analytic expression for the ion
distribution function:

where the values of ∆u0 are determined by the relation-
ship ∆ux = ∆u0/u||. This expression agrees well with the
results of numerical calculations by formulas (32) and
(35) in the range ∆u0 ≥ 1.

7. CONCLUSIONS
An analysis of the ICR heating process in ion sepa-

ration systems requires consideration of a number of
issues, each of which is the subject of a separate section
of the present paper. A central problem in this analysis
is the calculation of electromagnetic fields excited by
an rf antenna in a plasma column. This was done by
representing the rf field as a superposition of the inde-
pendent solutions to Maxwell’s equations that describe
the modes known as TM and TE modes in vacuum. In
a plasma, the TE mode transforms into the so-called
fast waves (Alfvén and magnetosonic modes) and the
TM mode transforms into the so-called slow waves

F u( )
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u
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(lower-hybrid and electron modes). Under the condi-
tions adopted in the present study, the TM mode does
not penetrate deeply into the plasma, while the TE
mode is only slightly affected by the plasma and can
thus be treated in the “vacuum” approximation. These
characteristic properties of the problem under consider-
ation provide a comparatively simple description of the
spatial structure of an rf electromagnetic field and make
it possible to calculate the energy distribution of an ion
flow at the exit from the ICR heating system. Calcula-
tions show that the selective ICR heating of a small
additive of ions with a mass very different from that of
the bulk ions may be possible in systems with fairly
moderate parameters.
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Abstract—Problems related to creating a superpower pulsed current generator (Baikal project, ≈10 MV,
≈50 MA, ≈150 ns) for inertial confinement fusion are considered. In order to test the circuit design of the gen-
erator, the MOL unit (3.7 MA, 5 MV, 150 ns), in which a plasma opening switch (POS) is proposed for use as
an output power sharpener, is now under construction. Results are presented from experimental testing of a
number of proposals enabling the POS operation under the MOL conditions: (i) plasma guns were employed
to connect the POS to the inductive storage circuit, (ii) a separating discharger was used to avoid a POS reclo-
sure and to switch the current to a load whose impedance was initially low and increased with time, and (iii) a
programmable filling of the POS gap with plasma was implemented in order for the POS to pass a long current
prepulse with parameters close to those in actual systems. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION
The Baikal project is aimed at creating a superpower

pulsed current generator (≈10 MV, ≈50 MA, ≈150 ns)
for inertial confinement fusion [1]. A distinctive feature
of the project is that, instead of rather expensive capac-
itors, a shock-excited generator with several cascades
for power sharpening will be used as a primary energy
storage. A plasma opening-switch (POS) is proposed
for use as the final sharpening cascade. The MOL unit,
which models the main elements of the future genera-
tor, is now under construction [2]. Figure 1 shows a
schematic diagram of the connection of the sharpening
POS1 to the MOL circuit.1 After several sharpening
cascades, the energy of the shock-excited generator in
the form of a high-current pulse is fed to a magnetic
compressor, whose primary circuit is a rectangular
loop, one side of which is movable and is made of a
metal foil. When the pulse current Iin flows through the
primary loop, its inductance L3 increases due to the foil
acceleration by the magnetic field.

In the initial stage of the foil acceleration, the mag-
netic flux through the secondary loop of the magnetic
compressor is produced with the help of auxiliary
capacitor C2. The foil is the common conductor of both
the primary and secondary loops of the magnetic com-
pressor. As the foil is being accelerated, the secondary
loop shrinks and its inductance L4 decreases. After
POS1 (which is switched to the magnetic compressor
circuit through switch S7) becomes conducting, the foil
is efficiently decelerated by the compressed magnetic
field. Step-up transformer T1 serves to match the
parameters of the magnetic compressor and POS1. The
load (liner) is imitated by POS2, whose impedance (like
that of the liner) is initially low and increases with time.
Since a real liner is a very complicated system with

1 A detailed description of the MOL is given in [2].
1063-780X/05/3112- $26.00 1029
properties that are not known in advance, the substitu-
tion of such imitator for the liner simplifies the problem
of studying and adjusting the main switch (POS1). To
increase the efficiency of energy transfer to a low-
impedance load, it was proposed to use separating dis-
charger POS2 between POS1 and the load [3]. The cal-
culated shape of the POS current pulse formed by the
magnetic compressor is shown in Fig. 2. The POS1 con-
duction phase is thought to terminate after the current
reaches its maximum. The calculated current pulse can
be conventionally divided into two phases: a prepulse
(~38 µs), during which a major fraction of the charge
(~80%) is passed, and the main pulse, which lasts over
~2 µs and carries most of the energy (~70%).The total
duration of the current pulse is about 40 µs. In order to
pass such a long current pulse, it was proposed that the
filling of the POS gap be programmable, i.e., that an
additional plasma be injected as the POS plasma is
being eroded [4].

As was shown in [5], a POS can efficiently interrupt
the current only if an external axial magnetic field is
applied and the linear (along the circumference of the
POS outer electrode) density qlin of the charge passed

S5
L3 L4

S6

C2

T1

Iin S7 S8

POS1 POS2 L

Fig. 1. Circuit diagram of connecting the POS to the power
supply of the MOL unit.
© 2005 Pleiades Publishing, Inc.
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through the POS is lower than 5 mC/cm. To reduce the
density of the current passed through a POS, a multi-
module POS scheme (Fig. 3) was proposed in [3].

In order to justify the proposed scheme of a POS,
the following problems were considered:

(i) designing a POS module,
(ii) connecting the POS to the inductive storage cir-

cuit with the help of plasma guns,
(iii) preventing the POS from reclosure when the

load impedance is low,
(iv) transferring the stored energy to a load whose

impedance is initially low and increases with time and
evaluating the efficiency of energy transfer,

(v) determining the current distribution along the
POS and the minimum possible POS length, and

(vi) implementing a programmable filling of the
POS gap with plasma in order for the POS to pass a
long prepulse with parameters close to those in actual
systems.

2. POS MODULE AND SCHEME
OF THE EXPERIMENT

The POS module (Fig. 4a) is designed as a prototype
module of the MOL generator and is intended for full-
scale tests at a current of ≈600 kA and passed charge of
≈5 C on the 1/6-MOL stand, which was specially cre-
ated on the basis of the RS-20 machine. The module
design allows such modules to be compactly packed
without disturbing the external magnetic field produced
by the solenoid of the module. The solenoid is wound
on the inner high-voltage POS electrode (anode). Such
a design allows one, first, to more efficiently use the
volume occupied by each module and, second, to con-
centrate a major part of the magnetic energy in the POS
gap due to the skinning of the solenoid magnetic field
by a copper cathode (see Fig. 4b). Near the end faces of
the copper cathode, magnetic field lines diverge from
the anode, thus preventing the leakage of the electron
current along the field lines from the cathode to the

2

0 20

I, åÄ

40 t, µs

4

Fig. 2. Calculated waveform of the POS current.
anode. Under the MOL operating conditions, the sur-
faces of the POS electrodes will be bombarded by
intense fluxes of charged particles accelerated in the
electrode gap. Therefore, it was proposed that the
metallic surfaces of the electrodes be protected by a
≈7-mm-thick, partially (≈20%) pyrolyzed multilayer
carbonic material.2 The material is highly resistive to
the action of high-power pulsed fluxes [6]; possesses
the high mechanical strength; and has the optimal con-
ductivity, which allows one, on the one hand, to operate
with high current densities (≈10 kA/cm2) and, on the
other hand, to avoid the skinning of the external mag-
netic field. The high energy density (≈10 J/cm2) needed
to evaporate and ionize the material reduces the proba-
bility of an uncontrolled plasma generation when a long
current prepulse is passed through the electrodes. In
this study, we used a copper cathode coated with car-
bon. The thickness of the stainless-steel anode was cho-
sen such that the magnetic field of the solenoid could
penetrate through it. Flashboard plasma guns had ten
gaps, in which plasma was sequentially produced, and
an accumulating volume [7], from which the plasma
entered the POS gap through holes in the cathode
(Fig. 5). These guns are rather compact, and the dielec-
tric (acrylic plastic) forming the plasma is protected
from fluxes of charged particles accelerated in the POS.
Moreover, the guns allow one to produce a slightly
pulsed plasma flux for the programmable filling of the
gap with plasma when passing a prepulse [7].

The electric circuit of the stand comprises prepulse
battery C1 and main-pulse battery C2 (see Fig. 6), as
well as a magnetic-field battery and a four-section bat-
tery supplying the plasma guns. The magnetic-field bat-
tery was controlled by two ignitrons: one switched the
battery on, and another shunted the solenoid after the
first half-period of the current. The half-period of the
quasi-steady magnetic field (B = 3–6 kG) was T/2 =
100 µs. Each section of the plasma-gun battery had an
individual trigger. The load was separated from the
POS by a discharger, which was a set of stainless-steel
plates insulated by a 1-mm vacuum gap [8]. The dura-
tion of the voltage pulse applied to the gap between
plane stainless-steel electrodes was determined by the
formation time of the explosive-emission plasma. The
gap operated as a discharger if the electric field on the
surface of a plane cathode exceeded the threshold for
explosive electron emission, i.e., if E > 100 kV/cm. For
a linearly increasing gap voltage, the voltage pulse
duration is equal to τpulse = 20/(E – 100) µs, where E (in
kV/cm) is the strength of the uniform electric field in
the gap. The duration of the discharger short-circuiting
was about 10 ns and did not depend on the number of
gaps. In our experiments, the number of the discharger
gaps was varied from 2 to 4, so the breakdown voltage
was ≈30–60 kV.

2 The material is fabricated at TsNIIMMASh (OAO Avionika,
Khot’kovo, Moscow oblast, Russia).
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(a)

(b)

1 4 3 65 2 7 8 9

13 12 11 10

Fig. 4. (a) Schematic of a POS module: (1) insulator; (2) POS anode; (3) cathode; (4) Rogowski coil for measuring the input POS
current; (5) plasma guns; (6) solenoid; (7) Rogowski coil for measuring the output POS current; (8) inductive load; (9) separating
discharger; (10) ion collectors 1, 2, and 3 (from left to right); (11) gun power supply; (12) high-voltage conductor; and (13) solenoid
power supply. (b) Pattern of the lines of the external magnetic field in the POS gap.

1 2 3 4 5 6 8 9 10 11 12

7

Fig. 3. Schematic of the multimodule POS1 of the MOL unit: (1) transformer output, (2) vacuum chamber, (3) POS1 cathode with
plasma guns, (4) POS1 anode with a solenoid, (5) anode electrodes, (6) connecting plate, (7) separating discharger, (8) return-current
conductor, (9) POS2 cathode, (10) POS2 anode, (11) POS2 separating discharger, and (12) low-inductance load.
As a load with an initially low and, then, increasing
impedance, we used 1.6-µF capacitor Cl (Umax =
100 kV, LCl = 0.3 µH). The voltage across such a load
PLASMA PHYSICS REPORTS      Vol. 31      No. 12      2005
increases with time as the current flows. This results in
a reclosure of the POS, and the load capacitor dis-
charges through it. In our experiments, we measured
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1

9
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7
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Fig. 5. (a) Schematic of a plasma gun with an accumulating volume: (1) dielectric ring, (2) outer electrode, (3) inner electrodes,
(4) power supply cables, (5) discharge gaps, (6) injected plasma, (7) accumulating volume, (8) output apertures in the conducting
ring (POS cathode), and (9) conducting ring with output apertures. (b) Image-tube photographs of the plasma glow at 3 µs after the
beginning of the discharge (the exposure time is 200 ns).

(a) (b)
the input and output currents of the POS (by Rogowski
coils and shunts), the voltages across the POS and the
capacitive load (by dividers), the voltage across an
inductive load (by a loop), and the distribution of the
ion current along the POS (by three ion collectors). The
plasma gun currents and the magnetic field were also
monitored.

3. EXPERIMENTAL RESULTS

3.1. Connecting the POS to the Storage Circuit 
with the Help of Plasma Guns

The possibility of connecting a POS to the inductive
storage circuit with the help of plasma guns was consid-
ered in [7]. The design of the MOL generator is appre-
ciably simplified if the POS itself turns the inductive
circuit on. There is a keep-alive voltage (≈10 kV) across
the POS electrodes, so the current begins to run through
the storage circuit after the POS gap is shorted by
plasma. While the plasma crosses the gap, the electrons
emitted from the plasma surface bombard the anode,

POS

C1 C2

1 2 3

Cl Ll2

Ll1
SD

S

Fig. 6. Circuit diagram of a POS module: (1) prepulse bat-
tery, (2) main-pulse battery, (3) POS with separating dis-
charger SD and an inductive or a capacitive load connected
through switch S.
thereby producing the secondary plasma (the so-called
“active phase”). Estimates show that, under the MOL
operating conditions, the energy deposited by electrons
at the anode during the active phase would be about
5 J/cm2, which is close to the threshold for plasma pro-
duction. Applying a quasi-steady external magnetic
field of about 2 kG allows one to significantly suppress
the plasma electron current and to reduce the energy
deposited by electrons at the anode. Estimates show
that, in this case, the deposited energy is as low as
1 J/cm2; i.e., the magnetic field does suppress plasma
production in the initial stage of the POS operation.

The connection of the POS to the inductive storage
circuit by plasma guns is illustrated in Fig. 7a. When
the time delay between the discharges of the fast battery
and the guns is short enough, the separating discharger
breaks down and the increasing current flows through
the load, bypassing the POS gap. Due to the inductive
voltage drop, the voltage across the gap is about 6 kV.
The plasma then closes the POS gap and shunts the
load. The increase in the current flowing through the
POS plasma leads to the opening of the POS, and the
current switches to the load. Such an experiment allows
one to determine the optimal time delay between trig-
gering the guns and the POS battery. With this time
delay (Fig. 7b), the most advantageous regime of POS
operation is observed. The proposed method of experi-
mentally determining the optimal time delay between
triggering the guns and the POS may be used in gener-
ators with a low “rate of fire.”

3.2. Influence of a Separating Discharger
when Operating with a Low-Inductance Load

After the POS current is switched to a low-imped-
ance load, the POS is usually reclosed by the plasma
existing in the POS gap. As a result, the load is discon-
nected from the inductive energy storage, because two
PLASMA PHYSICS REPORTS      Vol. 31      No. 12      2005
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independent currents flow through the POS. One of
them is the current that flows through the POS–load cir-
cuit, whose decay time is equal to Ll/Rl (where Ll  and
Rl are the inductance and resistance of the circuit), and
another is the oscillating current that flows through the
POS–Marx generator (MG) circuit (the period of this
current is determined by the inductance of the circuit L0

and the MG capacitance C0). The use of a separating
discharger allows one to achieve a more complete ero-

Iin

1 23 4

1 µs

(b)

Ul

Igun

Il

Iin

1 2 3 4

1 µs

(a)

Ul

Igun

Il

Fig. 7. (a) Connection of the POS to the storage circuit with
the help of plasma guns and (b) POS breaking after the time
delay chosen using plot (a) for Hz = 2 kG. The times indi-
cated correspond to (1) the switching-on of the plasma
guns, (2) the breakdown of the separating discharger, (3) the
POS closure by the plasma, and (4) the POS breaking. The
scales are 2 kA/division for the gun current Igun, 15 kV/divi-
sion for the load voltage Ul, and 60 kA/division for the POS
input current Iin and the load current Il.
PLASMA PHYSICS REPORTS      Vol. 31      No. 12      2005
sion of the POS plasma, i.e., to produce a wider vacuum
gap between the anode and cathode plasmas. With an
external magnetic field, this makes it possible to sub-
stantially prolong the high-resistance phase of the POS.

(c)

Iin

Il

Ul

2 µs

(b)

Iin
Il

Ul

(‡)

Iin

Il

Ul

2 µs

2 µs

Fig. 8. Effect of the separating discharger: (a) short-cir-
cuited discharger, (b) discharger with one gap, and (c) dis-
charger with four gaps for Hz = 2 kG. The scales are
60 kA/division for the POS input current Iin and the load
current Il and 15 kV/division for the load voltage Ul.
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400 ns

Ji1

(c)

Ji2

Ji3

Udiv

(b)

UÒ

Iin

400 ns

Udiv

(‡)

Iin

RPOS

Il

UÒ

Il

1 2 3 4 5

Fig. 9. Energy transfer to a capacitive load: (a) at the front
of the current pulse and (b) near the peak of the current for
Hz = 2 kG. (c) Distribution of the ion currents for the case
corresponding to plot (b). The times indicated in plot (a)
correspond to (1) the beginning of the current interruption,
(2) the breakdown of the separating discharger and the
beginning of the capacitor charging (peak on the UC wave-
form corresponds to the inductive voltage), (3) the end of
energy transfer from the inductive storage and the begin-
ning of energy transfer from the capacitive storage, (4) the
passage of the capacitive load current into an oscillatory
mode, and (5) the POS reclosure and the beginning of the
discharge of the capacitive load. The scales are 0.5 Ω/divi-
sion for the POS resistance RPOS; 60 kA/division for the
POS input current Iin and the current through a capacitive
load Il; 15 kV/division for the voltages at the capacitive

load, UC, and at the input divider, Udiv; and 10 (A/cm2)/divi-
sion for the ion current densities Ji1, Ji2, and Ji3 at ion collec-
tors 1, 2, and 3, respectively.
The breakdown strength of the separating discharger
(or the number of the discharger gaps) significantly
affects the instant of its breakdown and the rise rate of
the current transferred to the inductive load, i.e., the
voltage across the load and the value of the current
itself (see Fig. 8). If the discharger is closed (Fig. 8a),
the POS reclosure by the plasma limits the current
switched to the low-inductance load. When four gaps
are used (Fig. 8c), the energy is almost entirely released
in the POS and no more than 12% of the current is
transferred to the load. There is an optimal breakdown
strength of the discharger (one to two 1-mm gaps; see
Fig. 8b) at which 60–70% of the current is transferred
to a 50-nH load at a current rise rate of ~1012 A/s. In this
case, the POS reclosure occurs ≈0.5 µs after the current
is switched to the load. As is usually observed in POS
experiments, the generated voltage and the duration of
the POS current pause increase with increasing external
magnetic field and current rise rate. The reproducibility
of the results is fairly high: in about 80% of shots, the
scatter in the rise rate of the load current is at a level of
20%.

Ji1

(b)

1 µs
Ji3

Ji2

Iin

(‡)

Udiv

Il

Fig. 10. POS operation with a short current prepulse and a
capacitive load for Hz = 3 kG: (a) waveforms of the POS
input current Iin (60 kA/division), the current through a
capacitive load Il (60 kA/division), and the voltage at the
input divider Udiv (15 kV/division) and (b) waveforms of
the ion current densities Ji1, Ji2, and Ji3 at ion collectors 1,

2, and 3, respectively (10 (A/cm2)/division).
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3.3. POS Operation with a Capacitive Load

We used a capacitive load as an analogue of a load
whose impedance is initially low and, then, increases
with time. As the capacitor is being charged, its voltage
increases. This allows one to evaluate the quality of the
POS operation and to trace variations in its resistance
RPOS (Fig. 9a). At a capacitive storage energy of W0 =

Iin

1 µs

Ji3

Ji2

Ji1

Fig. 11. Distribution of the ion currents in the absence of an
external magnetic field. The scales are 60 kA/division for
the POS input current Iin and 10 (A/cm2)/division for the
ion current densities Ji1, Ji2, and Ji3 at ion collectors 1, 2,
and 3, respectively.
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6.6 kJ and an inductive storage energy of WH = 2 kJ, the
energy released in the POS is WPOS = 1.6 kJ and the
energy transferred to the capacitive load is WC = 0.5 kJ.
The efficiencies of energy transfer of the inductive stor-
age energy and the capacitive storage energy to the load
are WC/WH = 25% and WC/W0 = 7.5%, respectively.
After the capacitor has been charged (over about 1 µs),
the POS gap closes again. By the instant at which the
current is interrupted, ≈25% of the energy accumulated
in the inductive storage is transferred to the capacitor. If
the current is interrupted near the peak of the current
(Fig. 9b), when the inductive storage energy increases
by 1.5–2 times, then the efficiency of energy transfer
from the inductive storage to the load decreases to
≈10%. In this case, the efficiency of energy transfer
from the capacitive storage to the load remains at a level
of 7%.

3.4. Distribution of the Ion Current 
along the POS

As was shown in [9], without a magnetic field, there
is a minimum length of a POS at which it operates effi-
ciently. For the current ≈100 kA and the duration of the
conduction phase ≈1 µs, the minimum length was
found to be ≈40 cm, i.e., about three POS diameters.
Experiments showed that, in the presence of an external
magnetic field, the POS can efficiently operate when its
length is approximately equal to (or, in some cases [10],
even substantially less than) its diameter (see, e.g., [5]).
Nevertheless, the choice of the POS length remains a
pressing problem for the MOL generator, which has a
long conduction phase. Measurements with the help of
three ion collectors 10 (see Fig. 4) showed that the ion
current flows mainly through collector 2, located near
the guns, on the load side. The ion current at a level of
~10 A/cm2 begins to flow long before the drop in the
current (Fig. 9c). As was pointed out in [11], this indi-
cates the start of plasma erosion. At the instant of the
Fig. 12. (a) Anode coated with stainless steel (the power was supplied to the left end; a ring-shaped region exposed to electrons is
seen) and (b) cathode coated with carbon (the power was supplied to the front end; a ring-shaped region exposed to ions is seen).

(a) (b)
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current interruption, the ion current at collector 2
reaches its maximum (≈20 A/cm2) and a narrow peak at
a level of 5–10 A/cm2 is observed in the signal from col-
lector 1. The signal from collector 3 does not exceed
2 A/cm2. Similar results were also obtained when oper-
ating with a prepulse (Fig. 10). The only difference was
that the current at collector 2 had two sharp peaks: one
at the instant of the current interruption and another at
the instant of the POS reclosure. Without an external
magnetic field, the situation was quite different: at the
instant of a small decrease in the current, the ion current
at a level of more than 30 A/cm2 was observed only at
collector 3 (Fig. 11), whereas at collectors 1 and 2, it
was as low as 2 A/cm2. Thus, in the presence of an
external magnetic field, the ion current at the POS cath-
ode is mainly observed in the plasma gun region at the
instant of the current interruption. This is confirmed by
traces of the accelerated particles bombarding the POS
electrodes (Fig. 12). These results prove the conclusion
drawn in [5] that the external magnetic field signifi-
cantly decreases the velocity of the axial plasma expan-

800

600

400

200

0

 Current, kA

(‡)

(b)10

5

0

n, 1015 Òm–3

0 0.5 1.0 1.5
Time, µs

nFB

n2

IG

IL2

Fig. 13. Change in the plasma density in the POS gap during
the current interruption: (a) time evolutions of the generator
current IG and the current IL2 switched to the load; (b) time
evolution of the plasma density nFB produced by the guns in
the POS gap and the time evolution of the plasma density in
the course of the generator operation.
sion. The axial expansion is related to the stretching of
the plasma along the axis due to the axial plasma drift
in the magnetic field of the current under the action of
the electric field of the electron space charge. Applying
an external magnetic field turns the axial drift into the
azimuthal one. As a result, the charge separation along
the axis and, accordingly, the axial plasma acceleration
vanish almost completely.

1
2

3 4

IPOS Igun

Igun

IPOS
3.1 kA

Igun

IPOS
3.1 kA

IPOS
3.1 kA

Igun

0 40 t, µs

(b)

(‡)

(1)

(2)

(3)

Fig. 14. (a) Scheme of the experiment on the programmable
filling of the POS gap with plasma: (1) battery (6 µF,
50 kV), (2) shunt, (3) plasma gun, and (4) capacitors of the
gun power supply. (b) Waveforms of the POS and gun cur-
rents for (1) one, (2) two, and (3) three feeding pulses of the
plasma guns.
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3.5. POS Operation with a Current Prepulse

In order for a POS to pass a long current prepulse, a
programmable filling of the POS gap by plasma was
proposed in [4]. The proposal is based on the ion cur-
rent measurements, which indicate that the plasma ero-
sion occurs long before the interruption of the POS cur-
rent [11]. Later on, the dynamics of the plasma density
during the conduction phase was studied in [12]
(Fig. 13). It can be seen that the plasma density in the
POS gap changes appreciably when the current flows
through it: the hatched area in Fig. 13b corresponds to
the slow preliminary plasma erosion, which is followed
by the fast erosion and the interruption of the POS cur-
rent. The programmable filling of a POS with plasma is
intended to partially balance plasma losses during the
phase of slow plasma erosion and, thereby, to prolong
the conduction phase. The feasibility of this idea was
demonstrated in [4, 7]: when two or three feeding
pulses were applied to plasma guns filling the POS gap
with plasma, the charge passed through the POS
increased two- or threefold, respectively, as compared
to the case with one feeding pulse (Fig. 14).

The use of plasma guns with an accumulating vol-
ume allows one to partially balance plasma losses dur-
ing the passage of the current and to increase the dura-
tion of the conduction phase (including the prepulse
phase) to 5–7 µs (Fig. 10). In this case, the waveform of
the passed current has the same shape as that without a
prepulse and up to 30% of the inductive storage energy
is transferred to the capacitor.

2 µs

Iin

Il

10 µs

Iin

Il

Iin, Il

Fig. 15. Waveforms of the current with a prepulse (the sep-
arating discharger is short-circuited, Hz = 6 kG). The arrows
show the instants at which the plasma guns are switched on.
The scales of the POS input current Iin and the current
through an inductive load Il are 120 kA/division).
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It should be noted that the modeling of the MOL
current pulse by the sum of two POS currents imposes
more stringent requirements upon a POS: whereas the
MOL prepulse transfers ≈80% of the charge and ≈20%
of the energy, the modeled prepulse transfers ≈80% of
both the charge and energy. Probably, it is for this rea-
son that, with a metal-coated anode, the production of
the secondary plasma did not allow us to achieve a
fairly sharp interruption of the current when the guns
were multiply switched on.

When we used a carbon-coated anode, the POS effi-
ciently switched the current to the load after passing the
prepulse (Fig. 15). In this case, the linear density of the
passed charge reached 20 mC/cm.

4. CONCLUSIONS

It has been shown that a POS can be connected to
the inductive storage circuit with the help of plasma
guns. By applying a magnetic field and by using a sep-
arating discharger, it is possible to maintain the high
POS resistance over ~1 µs and to transfer up to 20–30%
of the stored energy to a load whose impedance
increases with time. Applying an external magnetic
field appreciably reduces the axial plasma velocity and
decreases the length of the energy deposition region on
the POS electrodes to less than 10 cm. The programma-
ble filling of the POS with plasma allows the POS to
operate after passing a long (≈40 µs) current prepulse.
In this case, the linear density of the passed charge
reaches 20 mC/cm. It may be expected that, under the
conditions of a real MOL pulse with an increasing cur-
rent growth rate, the efficiency of the POS operation
will be appreciably higher.
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Abstract—Results are presented from experimental studies of the neutron emission generated in the collision
of deuterium plasma flows produced in discharges in crossed E × H fields and propagating in opposite direc-
tions in a neutral gas across an external magnetic field. It is shown that the interaction of oppositely propagating
deuterium plasma flows gives rise to the generation of soft X-ray emission and neutron emission from the dd
reaction (dd  3He + n) and is accompanied by an almost complete depolarization of the flows and rapid
variations in the magnetic field (at a rate of ~1011 G/s). The measurements were performed at energies and
velocities of the flows of up to 600 J and 3.5 × 107 cm/s, respectively. The plasma density in each flow was
~1015 cm–3. The upper estimates for the astrophysical S factor and the effective cross sections of the dd reaction
obtained from our measurements are compared to theoretical calculations and to the results of experiments per-
formed in the MIG high-current accelerator (Institute of High-Current Electronics, Russian Academy of Sci-
ences, Tomsk). © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Investigation of strong interactions between light
nuclei in the range of ultralow energies (from a few
electronvolts to a few kiloelectronvolts) is of interest for
verifying fundamental symmetries (such as charge
symmetry and isotopic invariance) [1] and for solving
some astrophysical problems [2–4]. It was found, for
example, that stars and the Galaxy contain fewer light
nuclei (except for 4He) than predicted by conventional
star models and by the theory of fusion reactions under
conditions of thermodynamic equilibrium. To explain
this phenomenon, the authors usually modify the star
models by assuming that there are no nuclear or plasma
resonances or other anomalies related to collective pro-
cesses in plasma [5]. In this way, the cross sections for
nuclear reactions measured in the range of high ener-
gies are extrapolated to the astrophysical energy range
for which experimental data are lacking [6].

Experimental investigations of reactions between
light nuclei (dd, pd, dt, dHe, etc., reactions) in the range
of ultralow energies require that there be high-intensity
flows of accelerated ions, because cross sections for
these processes at such energies are very small (10–35–
10–43 cm2).

In experimental studies of the dd reaction at colli-
sion energies of 0.5–3.7 keV (in the center-of-mass
1063-780X/05/3112- $26.00 1039
frame), high-intensity ion flows were used that were
produced in the SGM high-current accelerator (Insti-
tute of High-Current Electronics, Russian Academy of
Sciences, Tomsk) during the formation of direct and
reverse Z-pinches [7–12]. At high energy densities,
however, fast nonlinear processes occurring in the liner
are accompanied the background emission (neutrons
and γ rays), which substantially complicates measure-
ments of the nuclear reaction yield and the interpreta-
tion of experimental results. These difficulties have
stimulated the search for alternative methods for gener-
ating intense low-energy flows of light nuclei.

In [13], results were presented from experimental
studies of the formation and interaction of two long
(~10 µs) deuterium plasma flows propagating in oppo-
site directions across a magnetic field. Based on these
results, preliminary estimates were obtained for the
energy parameters of discharges capable of generating
oppositely propagating deuterium plasma flows in
crossed electric and magnetic fields for studying the dd
reaction. The use of oppositely propagating plasma
flows was expected to substantially lower the device
power; to decrease the plasma and energy densities in
the flows; and, consequently, to reduce the background
emission intensity.

The present paper describes further attempts to
determine experimental conditions under which the dd
© 2005 Pleiades Publishing, Inc.
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Fig. 1. Arrangement of detectors in the propagation region of the plasma flows: (A) anode, (C) cathode, (H0) initial magnetic field,
(Hi) field produced by the depolarization current Ic (DH) magnetic probe, (1–4) electrodes for measuring the potential difference
across the flows, (K1–K4) collimators of the optical detectors, (Z1, Z2) floating probes, and (Ip) discharge current.
reaction can be studied by using two oppositely propa-
gating deuterium plasma flows.

2. EXPERIMENT

2.1. Experimental Setup

Experiments were carried out in a device described
in [13]. Figure 1 shows the arrangement of the optical
detectors and other diagnostics. Two oppositely propa-
gating plasma flows were formed in a ceramic chamber
(18 cm in diameter and ≈150 cm in length) placed in a
solenoidal magnetic field with a mirror ratio of ≈1.4.
The initial magnetic field in the discharge region was
H0 ≈ 104 G. Two pairs of electrodes were placed in the
chamber so that the distance between their centers was
10 cm (the electrode length along the chamber axis
being 24 cm, and the interelectrode gap being D ≈
2 cm). After the working gas (deuterium) was fed into
the preliminary evacuated chamber, discharges were
initiated in the discharge gaps. The discharges were
powered in parallel through strip-line conductors from
a capacitive storage with a capacitance of C ≈ 18 µF. An
IPT-4 ignitron was used as a switch. An approximate
equality of the currents in two discharges was achieved
by adjusting the profiles of the discharge gaps. The time
interval between the leading edges of the discharge cur-
rent pulses, as well as between those of signals from
optical detectors (LD1, LD3), whose collimators (K1,
K3) were located near the exits of the discharge gaps
(see Fig. 1), was less than 100 ns.
The current Ip in both discharge gaps flowed across
the magnetic field in opposite directions (see Fig. 1).
The plasma in the discharge gaps was accelerated under
the action of the electrodynamic force. Outside the dis-
charge gaps, the polarization of the plasma flows [13–
16] led to the formation of the electric field Ey ~ VH/c
perpendicular to the external magnetic field. As a result,
the plasma flows drifted in opposite directions in the
crossed Ey and H fields and collided at the center of the
chamber. The free-propagation distance of each flow
until they collided was L ≈ 3 cm. From the measured
voltages between electrodes 1–2 and 3–4 (Fig. 1), we
determined the field Ey in the flows propagating across
the magnetic field. In addition, these electrodes were
used to determine the time and degree of depolarization
of the flows during their collision, when the field rap-
idly decreased. Optical detectors LD1–LD4 with a spa-
tial resolution of ~1 mm were used to measure the prop-
agation velocities of the flow fronts and the velocity
distribution of the liner ions. The detectors measured
the intensity of the Hα line of deuterium. Each detector
consisted of a collimator, quartz fiber, and filtered pho-
tomultiplier. For each flow, we used individual pairs of
optical filters, LD1–LD2 and LD3–LD4, with collima-
tors K1–K2 and K3–K4, respectively. The collimators
in each pair were separated by a distance of 2.2 cm
along the propagation direction of the flows. Variations
in the magnetic field in the flow interaction region were
measured by one-turn loops DH with an area of ≈7 ×
10–2 cm2. The energies of the flows were measured by
PLASMA PHYSICS REPORTS      Vol. 31      No. 12      2005
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Fig. 2. Energy characteristics of the discharge: waveforms of the (1) voltage, (2) current, and (3) power.
calorimeters TD, which were calibrated in the evacu-
ated working chamber by discharging a capacitor with
a known energy through a manganin spiral wound on
the copper cone of the calorimeter. All these detectors
were mounted on a platform that could be displaced
along the magnetic field and along the propagation
direction of the flows. The discharge current Ip was
measured by a Rogowski coil. The potential of the field
Ex was measured with the help of floating probes Z1
and Z2, placed at a distance of 0.5 cm from one another.
In measuring electric signals, we used optical decou-
pling.

Neutrons from the d + d  3He + n reaction were
measured by plastic scintillation detectors S1–S3,
placed at a distance of 150 cm from the flow interaction
region, behind a 5-cm-thick lead wall. The dimensions
of scintillators S1 and S2 were 10 × 10 × 80 cm. The
scintillator S3 was 16 cm in diameter and 20 cm thick.
The plastic scintillator of the soft X-ray (SXR) detector
(3 mm thick and 30 mm in diameter) was separated
from the evacuated volume by a 40-µm beryllium foil
and was placed at the chamber axis outside the mag-
netic field at a distance of 1 m from the flow interaction
region. The SXR and neutron detectors are not shown
in Fig. 1. All signals from the optical detectors and
diagnostic probes were recorded using Tektronix TDS-
2014 digital oscilloscopes.

2.2. Energy Characteristics

The energy characteristics of the discharge are
shown in Fig. 2. It can be seen from waveform 1 that the
discharge voltage decreases rapidly at t > 6 µs. The rea-
son for this is that the plasma propagating along the
magnetic field reaches the region where magnetic field
PHYSICS REPORTS      Vol. 31      No. 12      2005
lines passing through the discharge volume intersect
the chamber wall. In this case, the discharge current
flowing along the magnetic field lines becomes closed
through the chamber wall and the discharge voltage
drops to a value characteristic of an arc discharge. The
distance from the center of the discharge to the region
where the magnetic field lines intersect the chamber
wall is ≈40 cm.

Figure 3 shows the energy density distribution in
each flow. The measurements were performed by mov-
ing calorimeters TD along the fronts of the flows (along
the electrodes). Based on these measurements, the
effective width of the flow along the magnetic field was
estimated at l ≈ 10 cm.

The energy density measured by calorimeters TD
placed over (and under) the flow was nearly one-sev-
enth of the energy density in the flow. From these mea-
surements, the thickness of the plasma flow was esti-
mated at d ≈ 3 cm. The total energy of each flow was up
to ≈600 J. Comparing the energy parameters of the dis-
charge and the plasma flows, we found that the conver-
sion efficiency of the discharge energy into the flow
energy was ≈0.45. The conversion efficiency depended
on the initial pressure of the neutral gas (deuterium) in
the working chamber. Under our experimental condi-
tions, the optimal deuterium pressure was ≈0.5 torr.

2.3. Collision of the Flows

The first effective collision event occurs 2.0–2.5 µs
after the beginning of the discharges. Over the time
interval from 0 to 2.0 µs, the flow energy is expended
on the ionization of the neutral gas at the fronts of the
flows in the field Ex, on the formation of the drift chan-
nels (the charging of the plasma capacitors) [13–16],
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and on the entrainment of the ionized gas into drift
motion.

Before the collision, the flows propagate in the
formed drift channels. As the colliding flows penetrate
into one another to a depth equal to the length of their
fronts, they undergo volume depolarization. Hence, the
size (along the propagation direction of the flows) of
the region where the flows efficiently interact with one
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Fig. 3. Energy density distribution in the flow along the
magnetic field.
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Fig. 4. (1) Variations in the electric field strength Ey
between electrodes 3 and 4 during the interaction of two
plasma flows and (2) the magnetic probe signal UDH.
another is on the order of the double length of the flow
fronts.

After the flows have been completely depolarized
(Ey  0), the drift velocity in the collision region (and
near it) decreases to zero (V  0) [13, 16], i.e., the
flows stop penetrating into the collision region. Then,
the flows emerging from the discharge gaps again
form drift channels and a new collision occurs, and so
on. The periodicity of collisions can be judged from
the periodicity of the magnetic field peaks (Figs. 4, 5).
In one shot, we observed up to seven collision events
of the oppositely propagating flows. The interaction
time of the colliding portions of the flows is on the
order of τ = 200–300 ns. Hence, the total effective
time of the interaction of the oppositely propagating
flows is T = nτ.

The collision of the plasma flows with oppositely
directed polarization electric fields is characterized by
a rapid decrease in the field strength Ey in the flows
(Fig. 4, curve 1), i.e., the flows become depolarized.
The field strength Ey was measured between electrodes
3 and 4 (Fig. 1), located at a distance of ≈2 cm from the
center of the collision region. The process of depolar-
ization, which occurs when the plasma capacitors are
discharged by the current Ic of (Fig. 1), is accompanied
by variations in the magnetic field in the flow collision
region (Fig. 4, curve 2). From the relationship V =
nAdH/dt (where V is the detector voltage in volts, n = 1
is the number of turns of the magnetic coil, and A ≈ 7 ×
10–6 m2 is the turn area), we could estimate the rate at
which the magnetic field varied. It turned out that this
rate was higher than 1011 G/s. By using magnetic
probes, we estimated the effective longitudinal (along
the flow propagation direction) size of the interaction
region. The measurements showed that, as the magnetic
probes were displaced by 1 cm toward the flows from
the positions corresponding to the maximum ampli-
tudes of the DH signals, the signal amplitude rapidly
dropped (by a factor of about 5). From this, the longitu-
dinal size of the collision region was found to be 2 cm.

The collision of the oppositely propagating deute-
rium plasma flows was accompanied by the generation
of neutrons and SXR emission (Fig. 5; curves 1, 3).

3. RESULTS AND DISCUSSION

In none of 30 shots (acts of flow generation) did
scintillation detectors S1–S3 show the presence of neu-
trons within the time interval 0–2 µs. On the other hand,
20 neutrons were detected within the time interval 2–
6 µs (see table). It is this time interval within which up
to seven collisions of the flows occurred. The collision
period can be roughly estimated by assuming that the
time between collisions is determined by the charging
time of the plasma capacitor, whose size along the flow
is equal to the distance through which the flows freely
propagate until they collide (L ≈ 3 cm). Taking into
account ohmic losses caused by the charging current
PLASMA PHYSICS REPORTS      Vol. 31      No. 12      2005
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Fig. 5. Signals from (1) neutron detectors, (2) magnetic probes, (3) SXR detectors, and (4) detectors measuring the potential differ-
ence (field Ey) in the colliding plasma flows.
flowing through the flow front, we find that the time
between collisions is equal to [16]

(1)

where β = ωe/νie ≈ Ex/Ey is the degree of magnetization
of electrons, with ωe and νie being the electron cyclo-
tron frequency and the frequency of binary collisions,
respectively [15]. The ratio of the fields Ex and Ey at the
flow front was measured to be ≈2–4. Hence, for H =
104 G, V = 3 × 107 cm/s, L = 3 cm, and β = 2, we find
that T ≈ 1 µs. The higher the electron temperature and
the flow velocity, the shorter the collision period.

An analysis of the experimental data shows that the
neutron yield is maximum during the first collision. In

T
L
V
--- 2eHL

McVβ
--------------- 

 exp
0.5

,≈
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subsequent collisions (except for some specific cases),
both the neutron yield and the amplitude of the mag-
netic field peaks decrease (Fig. 4). At the same time, the
flow parameters after the first collision change only
slightly. To clear up the nature of this phenomenon, it is
necessary to carry out additional investigations.

In fifteen test shots with only one plasma flow, when
collisions were absent, no neutrons were observed.

The table presents the flow front velocity calculated
using the data from the optical detectors (Fig. 6) and the
values of the velocity (in brackets) and density nd cal-
culated from the continuity equations for the mass and
energy flows in the discharge [13] for the time intervals
within which neutrons were observed.
Table

Shot no. 1 9 11 16 17 18 20 25 27 28 30

S1 + +++ + + + + + +

S2 – – – – – – – ++ + +

S3 + +++ + + – – – –

V × 107 cm/s 2.8 (2.8) 3.2 (2.9) 2.8 (2.8) 3.5 (3.7) 3.2 (3.6) 3.2 (3.3) 3 (3) 3.2 (2.9) 3.5 (3.4) 3.5 (3.5) 3.5 (2.5)

nd × 1015 cm–3 0.9 0.62 0.9 0.85 1 1.3 1 0.65 0.75 0.8 0.6
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Fig. 6. Signals from optical detectors LD1 and LD2 and the magnified fragment of the signal fronts. The distance between detector
collimators K1 and K2 along the flow propagation direction is ≈2.2 cm; ∆t is the time during which the flow travels this distance.
The continuity equations for the mass and energy
flows in the discharge are

(2)

(3)

where P(t) is the time-varying electric power of the dis-
charge; M0, V0, and n0 are the mass of molecular deute-
rium and the velocity (at room temperature) and density
of the neutral gas particles entering the discharge gap
through the cross section S0; M, V, and nd are the mass,
velocity, and density of deuterium ions in the plasma
flow escaping from the discharge gap through the cross
section S; and K = 0.45 is the conversion efficiency of
the discharge electric energy into the flow kinetic
energy. The results of previous studies of the current
distribution in a discharge in crossed electric and mag-
netic fields [17] show that the current surface at the
entrance to the discharge gap has the shape of a semi-
cylinder. It is assumed that the neutral gas flows into the
discharge gap through this surface. In this case, the cyl-

VMndS V0M0n0S0,=

P t( ) MV
2

2K
-----------VndtS,

KP t( )
S

--------------- MV
2

t( )
2

------------------V t( )nd,= =
inder diameter D is equal to the electrode gap length
and the surface ratio is S0/S ≈ 0.5π.

From Eqs. (2) and (3), we find

(4)

For each shot, the value of the discharge power P(t)
(see Fig. 2, curve 3) corresponded to the time t ≈ tn – tdel,
where tn is the time at which a neutron is detected and
tdel is the sum of the following times: the time during
which the plasma flow travels the distance (≈3 cm)
from the discharge gap to the collision region, the time
a 2.5-MeV neutron takes to fly from the flow collision
region to the neutron detector (the flight base being
≈150 cm), and the delay time of the photomultiplier.

An analysis of the temporal distributions of the sig-
nals from light detectors K1 and K2 (or K3 and K4)
positioned at a distance of 2.2 cm from one another
allowed us to recover the ion energy distribution in the
oppositely propagating flows.

V t( ) 2KP t( )
πMV0n0S
------------------------, nd t( )

π3
V0

3
n0

3
SM

2KP t( )
--------------------------.= =
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As an example, Fig. 7 shows waveforms of the sig-
nals from optical detectors LD1 and LD2 for shot
no. 18. The voltages U(t) at the outputs of the optical
detectors were approximated by the function

, (5)

where A, U0, t1, t2, and t0 are variable parameters.

The procedure of recovering the ion energy distribu-
tion in the plasma flow by analyzing the shapes of the
optical detector signals is described in [10–12].

Figure 8 shows the deuteron distribution (averaged
over several shots) over the collision energy in the cen-
ter-of-mass frame, f(Edd).

At present, a generally accepted conception of the
interaction of oppositely propagating deuterium plasma
flows is still lacking. For this reason, we used the fol-
lowing model to estimate the astrophysical S factor and
the effective cross section for the dd reaction.

U U0 A 1 e
t t0–

t1
------------–

– 
 

p

e
t t0–

t2
------------–

+=
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Fig. 8. Average deuteron energy distribution in the plasma
flow.
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The total number of deuterons (per one shot) in a
plasma flow colliding with an oppositely propagating
flow is

(6)

where nd = 0.85 × 1015 cm–3 is the deuteron density in
the flow, l = 10 cm is the flow size along the magnetic
field (in the direction perpendicular to the flow propa-
gation direction), d = 3 cm is the flow thickness,  is
the average plasma flow velocity, k is the number of
collisions of the flows in one shot, and τ = 200–300 ns
the interaction time of the colliding flows.

The total number Nd of deuterons per one shot is on
average Nd = 2 × 1018.

Using the above model of oppositely propagating
deuterium plasma flows, formulas (13) and (14) from
[10], and the measured deuteron energy distribution,
we determined the upper estimates for the astrophysical

Sdd factor and the effective cross section  for the dd
reaction:

S ≤ 68 barn keV,  Òm2,

 Òm2,

where  is the effective cross section for the dd reac-
tion calculated for the astrophysical S factor equal to
S = 53 barn keV [6, 18] and corresponding to the mea-
sured energy distribution of deuterons f(Edd) in the
plasma flow.

The upper estimates for the S factor and the effective
cross sections for the dd reaction were calculated for
Nd = 2 × 1018, nd = 0.85 × 1015 cm–3, and the efficiency
of neutron detection by the experimental device εn =
2.4 × 10–3 (calculated by the Monte Carlo method).

The above estimates for the S factor and  agree
with both the results of experiments performed in the
SGM high-current plasma accelerator [7, 11, 12] and
results of theoretical calculations [19].

4. CONCLUSIONS

The results of our experiments on the interaction of
oppositely propagating deuterium plasma flows across
the magnetic field can be formulated as follows.

(i) Conditions required for experiments on measur-
ing the characteristics of the dd reaction with the
required statistical accuracy have been achieved.

(ii) The efficient interaction of oppositely propagat-
ing deuterium plasma flows and the associated emis-
sion of 2.5-MeV neutrons have been found to be pulsed
in character.

(iii) The measured boundary value of the astrophys-
ical S factor and the effective cross section for the dd
reaction agree with those calculated from the measured

Nd ndldVkτ ,=

V

σ̃dd

σ̃dd
exp 5 10

–33×≤

σ̃dd
cal 4 10

–33×≤

σ̃dd
cal

σ̃dd
exp
deuteron energy distribution in the oppositely propa-
gating plasma flows.

In order to correctly interpret the data that will be
obtained in future experiments on studying the dd reac-
tion with the use of oppositely propagating deuterium
plasma flows, it is necessary to study in detail the gen-
eration of two oppositely propagating deuterium
plasma flows in discharges in crossed E × H fields, the
propagation of these flows in a neutral gas, the forma-
tion of drift channels, and the depolarization and colli-
sion of such flows.

Furthermore, it is necessary to study how the deu-
teron energy distribution is affected by the electric
fields arising in the flow collision region due to rapid
variations in the magnetic field.

It should be noted that measurements of SXR emis-
sion generated in the collision of oppositely propagat-
ing plasma flows can provide additional information on
the influence of strong electric fields on the electron
energy distribution in the plasma.
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Abstract—A self-consistent equilibrium state of a thin-walled annular electron beam in an external magnetic
field is investigated with allowance for diamagnetic effect and relativistic effects in the beam rotational motion.
An equation for the relativistic angular velocities of the beam rotation is derived in the hydrodynamic approx-
imation. The main parameters of the beam equilibrium state are obtained analytically and are calculated numer-
ically. The parameters of a longitudinally homogeneous, relativistic diamagnetic high-density electron beam
are determined. © 2005 Pleiades Publishing, Inc.
High-current relativistic electron beams found
widespread use in various fields of science, engineer-
ing, and technology soon after physicists learned to
produce them in the 1960s. It is not surprising, there-
fore, that a host of works were devoted to studying the
equilibrium configurations of such beams and to deter-
mining the maximum possible values of their parame-
ters. This research was so extensive not only because of
the wide variety of applied problems associated with
high-current beams but also because of the large num-
ber of parameters involved in the equilibrium equations
for such beams (see below). The latter circumstance
makes the beam equilibrium problem far more difficult
to examine mathematically and even complicates its
formulation. The problem can be successfully analyzed
only under certain, often unrealistic, simplifying
assumptions. Essentially all of the equilibrium prob-
lems for high-current beams to which more or less com-
plete solutions have ever been obtained are described in
the well-known monographs [1–7] (see also the origi-
nal literature cited therein).

Here, we investigate the equilibrium problem for a
particular type of beam under specific conditions,
namely, the equilibrium of a longitudinally homoge-
neous, annular relativistic beam with an infinitely thin
wall in an external magnetic field. The physics of such
a beam constitutes the basis of the theory of relativistic
plasma microwave electronics—a theory that provides
a good qualitative description of experiments [8].

We consider an axisymmetric, longitudinally homo-
geneous, electron beam propagating along an external
uniform magnetic field. In the hydrodynamic approxi-
mation, the states of such a beam are determined from
1063-780X/05/3112- $26.00 1048
the following familiar balance equation for the radial
forces [2]:

(1)

Here, ωe(r) is the angular velocity of the beam rotation,
ωb(r) is the Langmuir frequency of the beam electrons,
f ≤ 1 is the coefficient of neutralization of the beam
charge by the immobile ion background, and Ωe is the
electron gyrofrequency in the external magnetic field.
Equation (1) is written under the assumption that the
longitudinal velocity of the beam electrons is constant
over the entire beam cross section and is equal to
v ||(r) = u = β0c = const. The relativistic factor of the
beam electrons, γb(r), is given by the formula

(2)

The first term in Eq. (1) stems from the repulsive
nature of the centrifugal force, the term proportional to
1 – f arises from the repulsive nature of the electrostatic

force, the term proportional to –  accounts for the
magnetic compression force exerted on the beam by its
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own azimuthal magnetic field, and the last term is due
to the compressive force of the external magnetic field.

Equation (1) can be analyzed using two approaches
[2, 4]: the first is to find the corresponding Langmuir
frequency ωb(r), i.e., to determine the radial electron
density profile, assuming that the angular velocity ωe(r)
of the beam rotation is known, and the second is to
determine the angular rotation velocity ωe(r) from a
given Langmuir frequency ωb(r), assuming that the
parameters f, β0, and Ωe are known. In either case, the
analysis of integral equation (1) runs into difficulties
when account is taken of the diamagnetic effects, as
well as of the dependence of the relativistic factor γb(r)
of the beam on its angular rotation velocity. Such diffi-
culties, however, do not arise in the case of an annular
electron beam with a thin (or, more precisely, an infi-
nitely thin) wall. This case, which is of practical impor-
tance, is the subject of the present paper.

The squared Langmuir frequency of the electrons of
an annular beam with an infinitely thin wall is given by
the formula

(3)

where ∆b is the beam wall thickness, rb is the mean

beam radius, and ω0b is a constant. The product 
determines a measurable quantity—the density of the
beam electrons per unit area of the beam wall. It is obvi-
ous that, in the case of distribution (3), Eq. (1) is mean-
ingful only for the radius r = rb, although it is formally
valid for the radii r at which the electron density is zero.

We rewrite radial force balance equation (1) in the
form

(4)

where

(5)

Multiplying Eq. (4) by δ(r – rb), integrating the result-
ing equation over r in the vicinity of the radius r = rb,
and taking into account distribution (3), we obtain the
equation

(6)

where ωe = ωe(rb), and γ = γb(rb) = (1 –  – )–1/2.
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In calculating the integral in Eq. (6), we must keep
in mind that the function G(rb, r') at the point r' = rb is
discontinuous because of the discontinuity in the com-
ponents of the self-field of a beam with a δ-shaped dis-
tribution of the charge density. The main property of the

δ function,  = f(0), can be naturally gener-

alized as follows:

(7)

Using this generalization and performing integration in
Eq. (6), we obtain the following equation for the angu-
lar rotation velocity ωe of a thin-walled annular beam:

(8)

In deriving Eq. (6) and, accordingly, basic equation
(8), we did not address the question of the discontinuity
in the function ωe(r) due to the shear of the rotation
velocity of an annular beam with an infinitely thin wall.
This question, however, is quite important because, in
deriving local equation (6) from integral equation (4), it
is necessary to calculate the integrals

(9)

In order to investigate the structure of the function ωe(r)
and to eliminate problems associated with its disconti-
nuity, instead of distribution (3), we use the following
distribution for the squared Langmuir frequency of the
beam electrons:

(10)

where ε ! rb. In the limit ε  0, distribution (10)
passes over to distribution (3). Note that the quantities
∆b and 2ε are equivalent in meaning to one another. In
taking the limit ε  0, however, the beam density per

unit wall area, which is proportional to ~ , should
be treated as an independent constant. Integrals (9)
should be calculated over the interval r ∈ [rb – ε, rb + ε].

If we ignore both diamagnetic effects and relativis-
tic effects in the beam rotation, then, using Eq. (1), we
obtain from distribution (10) the following familiar dis-
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tributions of the angular rotation velocity of the beam
[2]:

(11)

where γ0 = (1 – )–1/2. In the limit ε  0, function
(11) has a discontinuity at the point r = rb. It is easy to
see that integrals (9) with distribution (11) are indepen-
dent of ε. In particular, we have

(12)

When the diamagnetism of the beam and relativistic
effects in its rotation have to be taken into account, for-
mula (12) is of course invalid. In this case, the angular
rotation velocity ωe should be determined from Eq. (8).
Hence, the quantity ωe in Eq. (8) is the angular velocity
of rotation at a certain point inside the beam, i.e., the
angular velocity averaged over the shear of the rotation.

Let us now proceed to the investigation of Eq. (8). In
this way, the main difficulty is introduced by relativistic
effects in the beam rotational motion, i.e., by the fact
that the relativistic factor γ is a nonlinear function of ωe.
As for the diamagnetic effects, they lead to only a sim-
ple correction—the second term in the coefficient in

front of . Equation (8) can generally be solved only
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Fig. 1. Dimensionless angular rotation velocity y = ωrb/c of
a thin-walled annular beam in an external magnetic field for
z = Ωerb/c = 1 and β0 = 0.8, calculated (1) with and (2) with-
out allowance for the diamagnetism of the beam and relativ-
istic effects in its rotation.
numerically. In obtaining numerical solutions, it is con-
venient to use the dimensionless variables

(13)

in terms of which Eq. (8) has the form

(14)

Let us consider the results of solving Eq. (14) numeri-
cally, restricting ourselves to the case of a completely
unneutralized electron beam, f = 0. Figure 1 shows the
dimensionless frequencies y(x) calculated for β0 = 0.8
and z = 1. Curve 1 in the figure was obtained from
Eq. (14), while curve 2 was obtained from an equation
in which relativistic effects in the beam rotational
motion and diamagnetic effects were ignored. In
dimensionless variables (13), the latter equation has the
form

(15)

For f = 0, the solutions to Eq. (15) are given by the for-
mulas

(15‡)

As might be anticipated, in conventional variables,
these formulas coincide with expressions (12) (with
f = 0).

From Fig. 1, it is clear that relativistic effects in the
beam rotational motion substantially decrease the

higher angular velocity . We can also see that the
range of dimensionless densities x at which the beam
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Fig. 2. Dimensionless angular rotation velocity y = ωrb/c of
a thin-walled annular beam in an external magnetic field for
z = Ωerb/c = 1 and β0 = 0.1, 0.5, 0.8, and 0.9.
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can be in a steady state is narrower, primarily because
of the diamagnetic effect. Figure 2 shows the dimen-
sionless angular velocities y(x) calculated for z = 1 and
for different values of β0 (see the numerals by the
curves y(x)). We see that the higher the longitudinal

velocity, the lower the two rotation velocities . Fig-
ure 3 also shows the dimensionless angular velocities,
but calculated for a stronger magnetic field, z = 5. The

angular velocities  and  are seen to become
asymmetric with respect to their half-sum. The higher

angular velocity  depends more weakly on the

beam density than does the lower angular velocity .
The stronger the external magnetic field and the less
pronounced the relativistic effects in the beam longitu-
dinal motion, the larger the asymmetry (Fig. 4).

Figure 5 shows the maximum values of the dimen-
sionless density of the beam electrons, xmax, as func-
tions of the dimensionless magnetic field z for different
β0 values. A beam with a dimensionless density in the
range x > xmax cannot be in the steady state in which we
are interested here. This result is quite obvious: the
stronger the external magnetic field and the more pro-
nounced the relativistic effects in the beam longitudinal
motion, the wider the range of densities at which the
beam can be in a steady state. Note that such a result
does not contradict the data presented in Fig. 1. Curve 2
in Fig. 1 was calculated from Eq. (15), which does not
apply to the parameter values adopted above. As for
Fig. 5 and subsequent figures, they were obtained from
the correct equation (14).

Let us now consider some of the results obtained by
solving Eqs. (8) and (14) analytically for a particular
case of f = 0. The maximum dimensionless densities at
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Fig. 3. Dimensionless angular rotation velocity y = ωrb/c of
a thin-walled annular beam in an external magnetic field for
z = Ωerb/c = 5 and β0 = 0.1, 0.5, 0.8, and 0.9.
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which the beam can be in a steady state are given by the
approximate formulas

(16)

which agree satisfactorily with the data presented in
Fig. 5. For x ! xmax, Eq. (14) yields the following two
expressions for the dimensionless angular velocities:

(17)

According to these expressions, we always have y(+) ≥
y(–); here, the equality sign refers only to the case x =
xmax, to which formulas (17) are inapplicable, and,
moreover, the maximum y(+) is reached only for x = 0
(see Figs. 2–4). This is why the maximum dimension-
less angular velocity of an annular beam is given by the
quantity y(+) from formulas (17). On the other hand, the
beam rotational motion is nonrelativistic when y2 ! 1 –

 (see formula (2)). Consequently, with allowance for
formulas (17), we find that relativistic effects in the
beam rotational motion are unimportant under the ine-
quality

(18)

This condition, however, applies only to a beam rotat-
ing at a high frequency. As for the rotation at a low fre-
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quency y(–) for x ! xmax, it is always nonrelativistic, as
follows from formulas (17).

In dimensional variables, angular velocities (17) are
given by the expressions

(19)

These expressions imply that, in a weak external mag-
netic field, z ! 1 (when the beam rotational motion is

nonrelativistic), the frequency  coincides with the
relativistic electron gyrofrequency Ωe/γ0; in this case,
only the axial motion of the beam electrons is relativis-
tic. For a strong external magnetic field z @ 1 (the case

of relativistic beam rotation), the frequency  differs
qualitatively from that in the previous case and can be
obtained by equating the total relativistic factor of an

electron, γb = (1 –  – y2)–1/2, to infinity. Accordingly,
the angular velocity of the beam rotation cannot in prin-

ciple be higher than c/(rbγ0). The frequency  exhib-
its qualitatively the same structure (see the second of
expressions (19)) as its nonrelativistic analogues and
has the same physical meaning (see [2]). Generally, rel-
ativistic effects in the beam rotation at a low frequency

 are unimportant as long as x ! xmax.
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ωb
2

Let us determine the conditions under which dia-
magnetic effects do (or do not) play a role. Equation (8)
implies that the diamagnetism of an electron beam is
insignificant for x ! γb. This yields the condition under
which diamagnetic effects can be ignored:

(20)

We see from condition (20) and formulas (16) that, for
z ! 1, diamagnetic effects are always small and that, for
z @ 1, the diamagnetism of high-density beams should
always be taken into account. The diamagnetic effects

of the beam rotation at a low frequency  are unim-
portant as long as x ! xmax.

For large z values and arbitrary x values, Eq. (14) is
quite difficult to investigate analytically. Since the case
of a strong external magnetic field is of considerable
interest, we again turn to the results of numerical calcu-
lations. Figure 6 presents the dimensionless frequency
y(x) calculated for β0 = 0.9 and for different values of z
(see the numerals by the curves). An analysis of Fig. 6
and Eq. (14) shows that, for a strong external magnetic
field, the following approximate expressions are valid:

(21)

We thus see that, when z @ 1, formulas (17) and (19)
are approximately valid for sufficiently large x values;
however, the closer the dimensionless beam density x to
xmax, the worse the validity of the formulas.
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Formulas (21) can help us to answer the question of
whether the above equilibrium states can be achieved in
practice. In terms of γ and γ0, the dimensionless angular
velocity y has the form

(22)

The total relativistic factor of the beam, γ, should be
considered as a given quantity determined by the accel-
erating voltage of a high-current diode. The longitudi-
nal relativistic factor can take on values from 1 to γ: for
γ0 = 1, the beam can execute only rotation motion and,
for γ0 = γ, the beam does not rotate at all.

If we substitute y = y(+), with y(+) being defined in
formulas (21), into expression (22), then we obtain γ @
1 (or, more precisely, γ  ∞). Consequently, in a
strong external magnetic field, equilibrium rotation of

an annular electron beam at a high frequency  is
possible only when the energy of the beam electrons is
sufficiently high. Substituting y = y(–), with y(–) being
defined in formulas (21), into expression (22), we arrive
at the relationship

(23)

From Fig. 5 we see that, for z > 1, this relationship can
easily be satisfied for a certain value of the dimension-
less density lying in the range x < xmax.

Finally, we determine the parameters of a relativistic
diamagnetic annular beam of maximum possible den-
sity, x = xmax, in a strong external magnetic field, z @ 1.
To do this, we substitute the corresponding value of xmax
from formulas (16) into relationship (23). As a result,
we obtain the following beam parameters:

(24)

We see from Fig. 6 that the ωe value given by formulas
(24) is several times less than that calculated numeri-
cally. This circumstance is a consequence of the fact that

y
2 γ0
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2
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-----– .=

γ0
3

2
-------γ, ωe

1
2
--- c

rbγ0
---------.= =
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relationship (23) is inapplicable to the limit x  xmax.
However, the above formulas predict the correct orders
of magnitude of the quantities and provide their correct
dependence on the main parameters of the problem.
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Abstract—A new method for processing experimental data from MHD diagnostics is discussed that provides
a more detailed study of the dynamics of large-scale MHD instabilities. The method is based on the Hilbert–
Huang transform method and includes an empirical mode decomposition algorithm, which is used to decom-
pose the experimental MHD diagnostic signals into a set of frequency- and amplitude-modulated harmonics in
order to construct the time evolutions of the amplitudes and frequencies of these harmonics with the help of the
Hilbert transform. The method can also be applied to analyze data from other diagnostics that measure unsteady
oscillating signals. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The development of novel approaches to studying
the dynamic parameters of large-scale MHD perturba-
tions in tokamaks is important since, in recent years,
interest has renewed in neoclassical tearing modes and
resistive wall modes (RWMs) caused by the finite con-
ductivity of the chamber wall. An analysis of the char-
acteristic features of these instabilities is required to
understand the physical mechanisms governing their
behavior and to elaborate methods for controlling them.

Detailed investigation of the dynamic properties of
MHD instabilities requires further development of the
methods for MHD diagnostics of tokamak plasmas. An
efficient path in this direction is to refine methods for
processing experimental data. MHD diagnostics usu-
ally provide information in the form of signals from
numerous magnetic probes that are arranged near the
plasma boundary and measure the magnetic field per-
turbations driven by MHD instabilities. The recorded
signals have the form of oscillations whose parameters
change throughout the discharge. The oscillations have
both regular and stochastic components, whose inten-
sity ratio depends on the discharge regime. It should be
noted that, in modern tokamaks, the diagnostic com-
plexes operate under the conditions of high-level noises
that are introduced by the plasma and the power elec-
trotechnical equipment and mask the desired signals
from MHD instabilities.

The unsteady (and sometimes nonlinear) character
of oscillations limits the possibilities of the standard
spectral methods in investigating the dynamics of insta-
bilities. However, limitations imposed by the unsteady
character of oscillations can be removed by applying
the time–frequency distribution (TFD) methods [1],
which make it possible to follow the time evolution of
the signal spectrum. At present, such methods as the
windowed Fourier transform, the wavelet transform
1063-780X/05/3112- $26.001054
[2], and the Choi–Williams distribution [3] have
already found application in MHD plasma diagnostics.

It should be noted that, however, that the TFD meth-
ods do not provide simultaneous precise measurements
of the spectral and temporal parameters of the signals
because of the restrictions imposed by the uncertainty
relation. These restrictions can be removed by using an
approach in which the experimental data to be analyzed
are converted into a so-called analytic signal [4]. It was
recently proposed to use this approach in studying the
characteristic properties of the dynamics of MHD per-
turbations in tokamaks [5]. This approach was success-
fully applied in experiments on studying the effect of
the control electromagnetic system on MHD instability
in the HBT-EP tokamak [6].

In contrast to the TFD methods, which involve a for-
mal decomposition of the nonlinear oscillatory process
into individual harmonics, the approach based on the
analytic signals allows one to interpret the nonlinearity
of oscillations as a variation in the instantaneous fre-
quency during the oscillation period [7, 8]. Such an
interpretation was used in studying the dynamics of a
tearing mode in a tokamak [9]. The approach in ques-
tion, however, is subject to a serious restriction: it
requires that the basic oscillating function be mono-
component; i.e., the number of local extremes of the
function and the number of its zeros should differ by no
more than unity and the upper and lower envelopes of
the oscillating function should be symmetric with
respect to its zero level [7].

The latter (symmetry) requirement is often not sat-
isfied for MHD diagnostic signals because of the pres-
ence of externally induced signals from the electrotech-
nical equipment, plasma noises, and measurement
instruments and also because of the simultaneous
development of several MHD modes that exhibit differ-
ent time behaviors. This drawback can be overcome by
using the recently developed Hilbert–Huang transform
 © 2005 Pleiades Publishing, Inc.
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Fig. 1. (a) Original signal f(t) with the indicated extremes; (b) envelopes calculated by interpolating between the extremes of f(t)
(dashed curves) and the mean m(t) of the envelopes (heavy curve); (c) difference between the original signal and the mean of the
envelopes, f(t) – m(t); and (d) monocomponent function f0(t).
(HHT) method, which is based on the decomposition of
the original function f(t) into a set of monocomponent
harmonics fi(t) and the construction of the correspond-
ing analytic signal for each of them [7, 8]. The HHT
method makes it possible to determine such time-
dependent spectral parameters of the monocomponent
harmonics fi(t) as the amplitude, phase, and instanta-
neous frequency, i.e., to follow the dynamic parameters
of the object described by the original function f(t). It is
worth noting that the monocomponent harmonics of the
signal analyzed by means of MHD diagnostics often
come from individual (generally unsteady) nonlinear
oscillatory processes related to MHD plasma instabili-
ties.

The decomposition method under consideration,
which was called the empirical mode decomposition
(EMD) method, consists in successive calculations of
the harmonics fi(t) having the shape of amplitude- and
frequency-modulated oscillations. The EMD method is
suitable for processing signals from magnetic probes in
a tokamak because they are oscillations with time-vary-
ing amplitude and frequency. In our earlier paper [10],
this method was successfully applied to analyze the
spatial structure of large-scale MHD perturbations.
PLASMA PHYSICS REPORTS      Vol. 31      No. 12      2005
2. HILBERT–HUANG TRANSFORM 
ALGORITHM

In the initial step of the EMD method, the basic
oscillating function f(t) with t ∈  [a, b] is decomposed
into monocomponent harmonics by an algorithm that
was proposed by Huang et al. [7] and is based on the
following idea. All extremes of the function f(t) on the
interval [a, b] are found. The upper, u(t), and lower,
d(t), envelopes of the function f(t) are calculated by
interpolating between its local maxima and minima,
respectively, in terms of periodic cubic splines, as is
shown in Fig. 1a. The mean of the envelopes, m(t) =
(u(t) + d(t))/2, is calculated and is subtracted from the
original function f(t) in order to eliminate the local
trend (Fig. 1b). The function f(t) – m(t) (Fig. 1c) is then
regarded as the original function, and the above proce-
dure for eliminating the local trend is applied to it. The
cycle of these iterations is continued until the mean of
the envelopes at a certain iteration step becomes small
enough to satisfy a stopping criterion on the interval [a,
b]. The iterative process yields a monocomponent func-
tion (harmonic) f0(t) (Fig. 1d). The monocomponent
harmonic so calculated is subtracted from the original
signal, and the above cycle of iterations is applied to the
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Fig. 2. Decomposition of the signal f(t) showing the intensity of the deuterium Dβ  spectral line into a set of monocomponent har-
monics f0(t) – f4(t) and the global trend r5(t).
remainder f(t) – f0(t) to obtain the second monocompo-
nent harmonic f1(t). This second harmonic and the first
one are subtracted from the original signal and the
above cycle of iterations is again applied to the remain-
der f(t) – f0(t) – f1(t) to obtain the third monocomponent
harmonic f2(t). This procedure is continued until the
remainder becomes a global trend nonoscillating on the
interval [a, b] or satisfies the condition that the devia-
tion of the mean m(t) of the envelopes from zero be
small. Hence, the EMD method decomposes the origi-
nal function into the sum of monocomponent harmon-
ics plus the remainder in the form of either a nonoscil-
lating trend or a trend whose oscillation amplitude is
less than a prescribed threshold value. As an example of
how to apply the EMD algorithm, Fig. 2 shows the
decomposition of an experimental signal from a photo-
multiplier that recorded the evolution of the intensity of
the Dβ spectral line emitted from the T-10 plasma.

The EMD method can formally be described as the
following, easily implemented, numerical algorithm
for decomposing the function f(t) with t ∈  [a, b].

(i) Initialization: i = 0, ri(t) = f(t), t ∈  [a, b].

(ii) Initialization: j = 0, gj(t) = ri(t), t ∈  [a, b].

(iii) Determination of the extremes of gi(t).

(iv) Calculation of the upper and lower envelopes
uj(t) and dj(t) by spline interpolation using the extremes
obtained.
PLASMA PHYSICS REPORTS      Vol. 31      No. 12      2005
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Fig. 3. Results from a temporal–frequency analysis of a test signal x(t): (a) spectrogram; (b) scalogram; (c) time evolutions of the
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(v) Calculation of the mean of the envelopes (the
local trend): mj(t) = (uj(t) + dj(t))/2.

(vi) Elimination of the local trend: gj + 1(t) = gj(t) –
mj(t).

(vii) Determination of whether or not gj(t) satisfies a
stopping criterion. If not, the j = j + 1 iterate is taken
and step (iii) is repeated.

(viii) Extraction of the monocomponent harmonic:
fi(t) = gj(t).

(ix) Elimination of the extracted harmonic: ri + 1(t) =
ri(t) – fi(t).

(x) If the oscillation amplitude ri + 1(t) is above the
threshold level, the i = i + 1 iterate is taken and step (ii)
is repeated.

The algorithm yields the decomposition

(1)f t( ) f i t( ) rn t( ),+
i 0=

n 1–

∑=
PLASMA PHYSICS REPORTS      Vol. 31      No. 12      2005
where the remainder rn(t) is the global trend of the func-
tion f(t). The stopping criterion (in step (vii)) checks
whether the function gj(t) is monocomponent; different
authors have formulated it in different ways [7, 8, 11–
13]. We are using here the criterion in the formulation
by Flandrin et al. [13]: the function gj(t) is considered
monocomponent if the inequality gj(t) < δ1 is satisfied
for 95% of the interpolation points in the interval t ∈  [a,
b] and the inequality gj(t) < δ2 is satisfied for the
remaining 5% of the points; the quantities δ1 < δ2 in
these inequalities are specified in advance. If the func-
tion gj(t) satisfies this criterion, the harmonic fi(t) = gj(t)
is considered to be singled out. As a result, each func-
tion fi(t) in decomposition (1) is monocomponent and
oscillates on its own characteristic time scale, which
decreases as the number i of the function increases. The
process of the calculation of the function is thus
reduced to the elimination of the local trend corre-
sponding to the time scale on which the function oscil-
lates.
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Fig. 4. (a) Original signal y(t), (b) Hilbert spectrum, (c) spectrogram, and (d) scalogram.
A serious problem in the practical implementation
of the EMD algorithm is that, in calculating the upper
and lower envelopes by spline interpolation, the itera-
tion procedure diverges in the end portions of the inter-
val on which the oscillating function is defined. As the
algorithm operates, these end portions expand more
deeply into the interval, thereby distorting the shapes of
the harmonics that are being singled out. For functions
defined on short intervals, this can lead to a wrong
result. This problem can be overcome in different ways,
e.g., by smoothing the functions over the end portions
of the interval or by extrapolating the functions beyond
the interval in question by means of a mirror image
reflection or by the method of neuronets [13–15]. In our
case, the duration of the experimental signal substan-
tially exceeded the time interval of interest to us. This
is why we extended the interval by an amount of 5% in
both directions, smoothed the signal over the end por-
tions of the extended interval, and linearly extrapolated
the functions at these portions when applying spline
interpolation. As a result, each of the end portions in
which the iteration procedure diverged did not exceed
5% of the entire extended interval. After the decompo-
sition process was completed, the end portions by
which the original time interval was extended were dis-
carded, so the behavior of the functions on them did not
affect the signal on the time interval of interest to us.

In comparing the EMD technique to spectral meth-
ods, it should be noted that, in the first case, the decom-
position is carried out in the space of time realizations,
whereas, in the second case, it is carried out in the space
of spectral representations. In the EMD method, there
is no need to utilize a predetermined set of basis func-
tions for decomposition, whereas the spectral methods
make use of harmonic functions as the basis for decom-
position. Hence, the EMD method does not make any a
priori assumptions regarding the shape of the oscilla-
tions of the individual harmonics, the only exception
being a rather weak condition that the harmonics be
monocomponent. In [7, 8], it was shown that the mono-
component harmonics yielded by the EMD method are
mutually orthogonal with sufficient accuracy. This cir-
cumstance makes it possible to consider the EMD as a
decomposition into the basis functions that are deter-
mined by the character of the signal itself; i.e., the basis
for decomposition is in a sense adaptive.
PLASMA PHYSICS REPORTS      Vol. 31      No. 12      2005
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For each of the harmonics fi(x), with the help of the
Hilbert transform

, (2)H x t( )[ ] v . p.
x τ( )

π t τ–( )
------------------ τd

∞–

+∞

∫=
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it is possible to construct the analytic signal zi(t),

(3)
f̂ i t( ) H f i t( )[ ] ,=

zi t( ) f i t( ) i f̂ i t( ),+=
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with uniquely defined amplitude Ai(t), phase ψi(t), and
instantaneous frequency ωi(t):

(4)

Ai t( ) zi t( ) f i
2

t( ) f̂ i
2

t( )+ ,= =

ψi t( ) zi t( )arg
f̂ i t( )
f i t( )
-----------,arctan= =

ωi t( )
dψi t( )

dt
---------------

f i t( ) f̂ i' t( ) f i' t( ) f̂ i t( )–

f i
2

t( ) f̂ i
2

t( )+
----------------------------------------------------.= =
With the resulting sets of Ai(t) and ωi(t), it is possi-
ble to construct the time–frequency distribution for the
function f(t), also known as the Hilbert spectrum H(ω,

t) = (ωi, t).

Let us consider how the HHT method is used to ana-
lyze several different test signals. As an example, we
examine a signal that is a superposition of two fre-
quency-modulated sinusoidal components and one
amplitude-modulated component (a Gaussian wave
packet):

Ai∑
PLASMA PHYSICS REPORTS      Vol. 31      No. 12      2005
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(5)

Figures 3a and 3b present the spectrogram (the win-
dowed Fourier transform) and scalogram (the wavelet
transform in the frequency–time plane) of the signal
x(t), and Fig. 3c presents the results obtained by the
HHT method, namely, the time evolutions of the ampli-
tude and instantaneous frequency of the monocompo-
nent harmonics of the signal x(t).

The Hilbert spectrum displayed in Fig. 3d clearly
shows that the HHT method makes it possible to
remove the frequency–time uncertainty typical of the
spectrogram and scalogram and to exactly depict the
evolution of the frequencies and amplitudes of the har-
monics of the test signal x(t) in the time–frequency
plane with a resolution limited only by the discrete rep-
resentation of the signal.

In order to illustrate how the HHT method can be
used to analyze a nonlinear oscillatory process, we
choose a test function y(t) describing a Stokes wave
(Fig. 4a):

(6)

Figure 4b presents the frequency–time parameters of
the signal y(t) that were obtained using the HHT
method. We clearly see the frequency modulation of the
signal, which manifests itself in the anharmonicity of
the oscillations (Fig. 4a). In contrast to the Hilbert spec-
trum, the spectrogram and scalogram (see Figs. 4c and
4d, respectively) do not reveal internal modulation, i.e.,
variation in the instantaneous frequency during the
oscillation period, because of the limited frequency–
time resolution; in this case, the nonlinearity manifests
itself as the presence of an additional harmonic.

3. APPLICATION OF THE HHT METHOD
TO THE EXPERIMENTAL DATA 

FROM MHD DIAGNOSTICS

The HHT method was used to analyze signals from
the MHD diagnostic complex in investigating the
dynamic behavior of large-scale MHD perturbations in
the T-10 tokamak. The corresponding HHT algorithm
was implemented as an individual program module and
was integrated into the system for acquisition and anal-
ysis of MHD diagnostic data.

Let us consider examples of how the HHT method
was applied in practice. Figure 5a displays the time
evolution of the perturbed poloidal magnetic field Bθ(t)
of the m = 2 unstable MHD mode. Figure 5b clearly
demonstrates the behavior of the frequency and ampli-
tude of the mode. Along with the general tendencies,

x t( ) 2π 6t
5.6
π

------- πt
14
------ 

 sin+ 
 sin=

+ 2π 3t
2.8
π

------- πt
14
------ 

 sin+ 
 sin

+ 0.2 t 28–( )2
–( ) 4πt( ).sinexp

y t( ) 0.6πt 0.3 1.2πt( )sin+( ).cos=
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we also see that there is internal modulation, which is
caused by the nonuniformity of rotation of the magnetic
island, as was previously shown in [9]. The spectro-
gram and scalogram presented in Figs. 5c and 5d reflect
the global behavior of the frequency, but the nonuni-
form rotation of the perturbation manifests itself in the
same manner as in the test signal, i.e., as the presence
of the second harmonic.

Figure 6 illustrates an analysis of the MHD diagnos-
tic signals from two MHD modes that develop simulta-
neously and exhibit different dynamic behavior. The
figure displays the time evolutions of the M2 and M3
signals, corresponding to the m = 2 and m = 3 unstable
MHD modes; the signal from a solitary magnetic probe
P1, which recorded the total perturbation of the poloi-
dal magnetic field at the place where it was positioned;
and the monocomponent harmonics P1_0 and P1_1 of
the signal P1, which were singled out by the EMD
method. The data presented in Fig. 6 show good agree-
ment between the results of the decomposition of the
total perturbation of the poloidal magnetic field into the
m = 2 and 3 MHD modes by the methods of spatial Fou-
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rier analysis and the results of the EMD method. The
M3 signal and the monocomponent harmonic P1_0
related to it behave in essentially the same manner, as
well as the M2 signal and the related P1_1 harmonic.
The EMD algorithm first singles out the high-frequency
harmonic of the signal P1, which corresponds to the
field perturbation associated with the evolution of the
m = 3 MHD mode, and, then, it singles out the signal
harmonic associated with the m = 2 mode. This indi-
cates that each monocomponent harmonic in the signal
P1 corresponds to its own oscillatory process.

The spectrogram of the signal P1 in Fig. 7a shows
the presence of two modes of MHD perturbations. It is,
however, difficult to draw any conclusion about the
nonuniformity of their rotation because the oscillation
frequency of the poloidal magnetic field of the m = 3
mode is two times higher than that of the field of the
m = 2 mode and the plot of the second harmonic of the
m = 2 mode oscillations in the frequency–time plane
overlaps with that of the first harmonic of the m = 3
mode oscillations.

The wavelet transform in Fig. 7b also shows the
presence of two oscillatory processes; moreover, the
vertical strips in the transform provide qualitative evi-
dence that the oscillations are frequency-modulated,
which is a consequence of the nonuniform rotation of
the MHD perturbations. For the experimental signals
under analysis, the Hilbert–Huang transform (Fig. 8)
makes it possible to separate out the oscillation modes
and to expand the method that was previously used to
investigate the characteristic dynamic properties of an
individual tearing mode [10] to the case in which two
unstable MHD modes exist simultaneously. It should
be noted that time evolutions (see Fig. 8a) are easier to
analyze quantitatively than a Hilbert spectrum (see
Fig. 8b).
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4. CONCLUSIONS

The HHT method raises the temporal–frequency
analysis of the MHD diagnostic signals to a qualita-
tively new level. The HHT algorithm is free of restric-
tions on the frequency and time resolution, so it allows
one to determine how the instantaneous frequency of
the signal varies during the oscillation period and
thereby to thoroughly investigate the fine structure of
the spectral dynamics of unstable MHD perturbations.
The HHT method can also be used to analyze the data
from other diagnostics that measure unsteady oscillat-
ing signals.
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Abstract—The problem is considered of configurations of a strongly magnetized inviscid plasma around a
rotating magnetized central body. Strong plasma magnetization implies that the Hall conductivity is much lower
than the transverse conductivity, which in turn is much lower than the longitudinal conductivity. For such con-
ditions, a self-consistent set of equations is derived that describes the conduction current density, the magnetic
and electric fields, and the angular frequency of the plasma rotation under the assumptions that the components
of the dielectric tensor of the plasma envelope are known functions of height and that the plasma mass velocity
has only the azimuthal component. Under the assumption that the transverse conductivity is constant over a
magnetic surface, the nonlinear equations derived are solved in quadratures within the class of angular fre-
quency distributions that are symmetric about the equatorial plane. A particular solution for the plasma config-
urations in a dipole magnetic field is considered that corresponds to a model exponential dependence of the
transverse conductivity on the number of the L-envelope (or, equivalently, on the number of the unperturbed
magnetic surface). © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

At present, there is a wide variety of models of the
Earth’s plasmasphere and the plasmaspheres of other
planets (see, e.g., [1]). Most of them were developed
with the aim of systematizing the experimental data for
different plasmasphere regions, and the physical quan-
tities in them are described by analytic functions that
were obtained by approximating these data mathemati-
cally [2]. The most important task of the models is to
provide a quantitative description of plasmaspheric
phenomena and an analysis of observations, theoretical
investigation often being insufficiently comprehensive.
In this context, it is relevant to construct such self-con-
sistent models of the plasmaspheres of magnetized
planets in which the main qualitative effects would be
derived from first principles and the experimental data
would serve as the basis for a quantitative description.

On the other hand, it should be noted that, when
investigating the plasmaspheres, most attention is usu-
ally focused on the interaction of the plasma envelope
with the solar wind [3]. At the same time, the dynamics
of the plasmaspheric layers adjacent to the planet’s sur-
face is also fairly complicated [4] because it involves
electrodynamic and magnetohydrodynamic phenom-
ena, which should generally be described in a self-con-
sistent manner.

The formulation and analysis even of a simplified
model of the plasma envelope of a rotating magnetized
central body run into significant difficulties. They are
associated, first of all, with the nonlinear structure of
equations, even in the simplest axisymmetric case, and
with the necessity of accounting for the anisotropic
conductivity of a viscous plasma in a magnetic and a
1063-780X/05/3112- $26.00 1064
gravitational fields. Of course, this task touches on a
number of important problems in the physics of magne-
tohydrodynamic flows and plasma configurations in
fields of different origin and, consequently, is signifi-
cant not only for practical applications associated with
the description of the planetary plasmaspheres but also
from the standpoint of general physics.

In attempting to describe the Earth’s plasmasphere
self-consistently, Bespalov and Chugunov [5] consid-
ered an axisymmetric problem about the steady-state
simultaneous rotation of a plasma envelope and a mag-
netized spherical body in the magnetohydrodynamic
approximation. Under the assumption that the conduc-
tivity of an inviscid plasma is uniform and isotropic,
they described plasma configurations rotating differen-
tially in a dipole magnetic field. They found that the dif-
ferential (nonrigid) nature of the envelope rotation
plays a significant role in the dynamics of the system
because it leads to the generation of conduction current
at the expense of the unipolar induction effect [6]. For
a rotating system, this effect was thoroughly considered
in [7–11] using a non-self-consistent approach in which
the electric potential and conduction current were cal-
culated from the prescribed profiles of the plasma con-
ductivity and of the angular rotation frequency of the
plasma medium.

Papers [12–14] considered a generalization of the
self-consistent problem of the plasma envelope to the
case of a viscous plasma with a nonuniform and aniso-
tropic conductivity. It was found that, in a wide range
of the envelope parameters, perturbations in a differen-
tially rotating layer whose thickness is determined by
the magnetic and hydrodynamic viscosity are subject to
© 2005 Pleiades Publishing, Inc.
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a dynamic skin effect. In the approximation used in
[12–14], the magnetic field perturbations and conduc-
tion current vanish in an inviscid plasma flow. In this
case, the higher order terms that can be omitted when
viscosity is important should be taken into account in
the corresponding equations. The objective of the
present paper is to consider the characteristic features
of the formation of an inviscid plasma envelope and the
generation of magnetic field perturbations within it.

In what follows, we will study the problem of con-
figurations of an inviscid plasma around a rotating mag-
netized central body under the assumption that the
plasma is strongly magnetized, i.e., that the Hall con-
ductivity is much lower than the transverse conductiv-
ity, which in turn is much lower than the longitudinal
conductivity. This problem is important, e.g., for inves-
tigations of the planetary plasmaspheres at consider-
able heights, where the plasma is rare and is highly
magnetized. In Section 2, we formulate the problem
and derive a self-consistent set of equations describing
a strongly magnetized inviscid plasma. In Section 3,
using the assumption that the transverse conductivity is
constant over a magnetic surface, we solve this set of
nonlinear equations in quadratures to obtain a solution
that has a certain symmetry property. In Section 4, we
analyze a particular solution for plasma configurations
in a dipole magnetic field.

2. FORMULATION OF THE PROBLEM

We consider a time-independent axisymmetric
problem of the plasma motion around a rotating mag-
netized central body under the assumption that the
plasma mass velocity V has only the azimuthal compo-
nent. In spherical coordinates (r, Θ, ϕ), the plasma
motion can be described in terms of the angular rotation
frequency ω,

(1)

The parameters of the plasma envelope, as well as of
the fields and currents, can be described by magnetohy-
drodynamic equations. For a uniform anisotropic
plasma conductivity, the problem in question was thor-
oughly discussed in [12]. In [14], it was generalized to
the case of a nonuniform plasma conductivity.

The magnetic field B can conveniently be described
by the vector potential A in the Coulomb gauge,

Using Ohm’s law for an anisotropic conducting
moving medium [15],

(2)

(where Σ is the conductivity tensor and c is the speed of
light), we can algebraically obtain the following local
expression for the electric field E in terms of the mag-

V 0 0 ω r Θ,( )r Θsin, ,( ).=

B — A, — A⋅× 0.= =

j Σ E
1
c
---V B×+ 

 =
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netic field, conduction current density j, and mass
velocity:

(3)

Here, σ||, σ⊥ , and σH are the longitudinal, transverse, and
Hall conductivities, respectively, which are all assumed
to be given functions of the coordinates. The quantity

is the effective Cowling conductivity.
In the steady-state axisymmetric problem, the azi-

muthal component of the electric field is equal to zero,
which yields the following algebraic expression relat-
ing the azimuthal current density to the magnetic field
and to the current density:

(4)

In the model of a viscous medium that was considered
in [12–14], the second term on the right-hand side of
relationship (4) was treated as the main one and the first
term was ignored under conditions in which the Hall
conductivity predominates over the transverse conduc-
tivity. In contrast, in the inviscid plasma flow under
examination here, the second term vanishes and the azi-
muthal component jϕ of the current density is a second-
order quantity in the azimuthal magnetic field compo-
nent Bϕ.

Another important fact is that, in the models consid-
ered in [12–14], the difference between the electric
field and the unipolar field

(5)

was treated as being insignificant in writing the equa-
tions for the angular rotation frequency of the medium
and its density. The situation with an inviscid medium
is different: for a nonuniform effective Cowling con-
ductivity, this difference can govern the profiles of the
angular rotation frequency ω, the conduction current
density, and the magnetic field perturbations.

The basic set of equations that was presented in [14]
describes the electric and magnetic fields, the conduc-
tion current density, and the angular rotation frequency
of the medium and its density in the plasma envelope.
For an inviscid medium, however, this set can be sim-
plified. In fact, let us assume that the conductivity ten-
sor components satisfy the conditions

(6)

which imply that the medium is strongly magnetized.
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In this way, it is convenient to switch from the vector
potential component Aϕ to the quantity Φ, which has the
meaning of the magnetic flux through a part of a sphere
of radius r within the angular intervals from 0 to Θ, and
to introduce the quantity I, which is proportional to the
total current through the same part of the sphere:

In what follows, we will work in dimensionless vari-
ables f = f DIMENSIONAL/f0. The corresponding normaliz-
ing factors are the radius r0 of the spherical body, the
angular rotation frequency of the body ω0, and the mag-
netic field strength B0 = |B(R, 0)| at the pole of the body.
The remaining normalizing factors are expressed in

terms of the factors just introduced: Φ0 = , I0 =
r0B0, j0 = cB0/4r0, and E0 = ω0r0B0/c.

In these dimensionless variables, we have

(7)

where  =  +  is a second-

order differential operator. Under the above assump-
tions, the azimuthal component of the Navier–Stokes
equation for a plasma medium yields (see [14])

(8)

We thus see that the quantity I is an arbitrary function
of the magnetic flux Φ. Relationship (8) implies, in par-
ticular, that the lines of the meridional component of
the conduction current density coincide with the lines
of the meridional component of the magnetic field. In
this case, the azimuthal component of the Ampère’s
force should be equal to zero in order to ensure that the
plasma can be steady, because there are no other azi-
muthal forces that act on an inviscid plasma moving
only in the azimuthal direction. Note that the approach
used here has much in common with the method based
on the Grad–Shafranov equation [16] and can be
regarded as a generalization of this method to the case
of a strongly anisotropic plasma (in a geometry with the
corresponding symmetries).

With relationship (8), algebraic relationship (4) can
be substantially simplified. Under conditions (6), it
takes the form

(9)

We assume that the plasma envelope only slightly dis-
torts the magnetic self-field of the central body, so that

I ! 1. (10)

Φ 2πr Θsin Aϕ , I⋅ 2r Θsin Bϕ .⋅= =

πr0
2
B0
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1
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  ,–=
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-------r
1
r
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∂Θ
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I Î Φ( ).=
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1
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Y 1
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  Î
2
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 
2 1

r
2

---- ∂Φ
∂Θ
------- 

 
2

+

------------------------------------------
σ̃⊥

σ||
------.–=
Taking into account conditions (6), we see that the
quantity Y is small in comparison to unity and is on the
order of the larger of the two quantities—the quantity
I2 and the ratio .

Conditions (6) and (10) enable us to combine Eq. (3)
and the equation — × B = 4πj/c into the following
dimensionless equation (this point was discussed in
[14]):

(11)

where  =  –  is the Jacobian and

(12)

is the radius-dependent magnetic Reynolds number,
proportional to the effective Cowling conductivity

(r).

The above equations should generally be supple-
mented with the equation of motion in the meridional
plane, the equation of state, and the heat balance equa-
tion. These three equations determine the density, pres-
sure, and temperature of the plasma. However, in the
model proposed here, these plasma parameters are not
considered because they do not enter into the equations
for the electrodynamic quantities. The components of
the conductivity tensor are assumed to be known func-
tions of the coordinates and to be related to an actual
plasma density distribution, which is not discussed
here. Of course, it is clear that, in a fully self-consistent
theory, the conductivity tensor should not be consid-
ered to be given but instead should be described self-
consistently with allowance for the processes of ion
production and ion recombination. If, however, the pro-
files of the conductivity tensor components form inde-
pendently of the phenomena that are accounted for in
the model, this drawback of the theory seems to be
insignificant.

The above set of four equations (7)–(9) and (11)
describes four unknown functions jϕ, I, Φ, and ω,
because the meridional components of the magnetic
field and conduction current are obtained by differenti-
ating the functions I and Φ, respectively, and the elec-
tric field is given by expression (3). Hence, this is a
closed set of equations for describing the magnetic and
electric fields, the conduction current, and the angular
rotation frequency of the medium under the conditions
adopted here.

σ̃⊥ /σ||
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3. CLASS OF SOLUTIONS TO THE NONLINEAR 
EQUATIONS IN THE CASE OF CONSTANT 

TRANSVERSE CONDUCTIVITY 
OVER A MAGNETIC SURFACE

The above set of equations contains an arbitrary

function (Φ) of the magnetic flux and function (12),
which is assumed to be given. Under conditions (6), the
Cowling conductivity is approximately equal to the
transverse conductivity.

The fundamental difficulty in solving the set of
equations is associated with Eq. (11). It is easy to see,
however, that the right-hand side of this equation is a
small quantity of the third or higher order in I. It is then
clear that, under the conditions adopted here, the angu-
lar rotation frequency is approximately constant over a
magnetic surface. As follows from Eq. (11), the small
deviations of the angular rotation frequency from the
distribution ω = ω(Φ) are important in determining the
azimuthal component of the magnetic field.

In analyzing the set of equations, the key question is
how to specify the function σ⊥ (r, Θ). As a simple exam-
ple, we consider the case in which the magnetic
Reynolds number, like the quantity I, is a function of
only Φ,

(13)

or, in other words, the transverse conductivity is con-
stant along a magnetic field line. In our opinion, the
assumption that the plasma density (and, accordingly,
the magnetic Reynolds number) is a function of the
magnetic surface seems to be quite realistic, in particu-
lar, because it is consistent with the experimental data
on the inner plasmaspheres of the Earth and Jupiter. For
instance, in terrestrial conditions, the plasma density
varies insignificantly (as a power of the number of the
L-envelope—the coordinate of the magnetic surfaces
that is expressed in Earth radii and is measured from the
Earth’s center in the magnetic equatorial plane) within
the volume enclosed by a certain L-envelope (up to L ~
5, 6) and decreases abruptly at greater heights. It is also
clear that, under conditions in which the longitudinal
conductivity plays a dominant role, the direction along
a magnetic field line is a preferential direction. This jus-
tifies the assumption that the magnetic Reynolds num-
ber is a function of Φ.

In the expression for Y, we can omit the ratio ,

assuming that it is small in comparison to . As a
result, under conditions (6), we arrive, instead of
Eq. (11), at the equation

(14)

Î

ReM ReM Φ( ),=

σ̃⊥ /σ||

Î
2

ReM
∂ ω Φ,( )
∂ r Θ,( )
------------------- πÎ

2

Θsin
------------ ∂2

Î

∂Φ2
----------

∂ Î
∂Φ
------- 1
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---------
∂ ReM

∂Φ
-------------–

 
 
 

,=
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which can conveniently be rewritten as

If the function X, which depends on the magnetic flux
Φ, has a nonzero component symmetric with respect to
the Θ = π/2 plane, then the solution ω contains a non-
zero antisymmetric part. For instance, for a dipole mag-
netic field and for a function Φ = ΦH, the solution to
Eq. (14) has the form

(15)

where Z is an arbitrary function.
We restrict ourselves to considering only the func-

tions of Φ that are symmetric with respect to the
Θ = π/2 plane. In this case, if only symmetric distribu-
tions of ω are of interest to us, then it is necessary to set

X = 0. This condition relates the function (Φ), which
was assumed to be arbitrary up to this point, to the mag-
netic Reynolds number ReM(Φ),

i.e., we have

(16)

where C0 is a constant of integration. In this case, the
angular rotation frequency of the envelope is equal to

(17)

where  is an arbitrary function.
Hence, for a class of solutions ω that are symmetric

with respect to the Θ = π/2 plane, the function (Φ) is
naturally determined by expression (16) and the angu-
lar rotation frequency, too, is a function of the magnetic
flux. The physical meaning of the resulting solution
(17) is that the angular rotation frequency of the
medium is constant along a magnetic field line and the
rotation of the medium along one magnetic surface is
independent of the rotations along the other magnetic
surfaces. In this respect, the problem based on the
above set of equations differs substantially from the
problems considered in [12–14], in which the viscous
interaction between the layers in the plasma envelope
was fundamentally important for the generation of the
electric current and magnetic field perturbations.

Expressions (9), (16), and (17) describe, respec-
tively, the azimuthal component of the conduction cur-
rent, the conduction current I, and the angular rotation
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∂Φ
------- 1

ReM

---------
∂ ReM

∂Φ
-------------– 0,=
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Fig. 1. Normalized model distributions of the magnetic Reynolds number for ∆Φ = 0.1 and 10.
frequency in terms of the given function (13) and the
function Φ, which is to be determined from Eq. (7).
Under the above assumptions, this equation can be
rewritten as

(18)

where Φ0 is a constant of integration. Equation (18) is
in fact analogous to the Grad–Shafranov equation.
Hence, under the assumption that the transverse con-
ductivity is constant over a magnetic surface, the prob-
lem of finding the sought-for class of solutions to the
above set of nonlinear equations is reduced to that of
solving partial differential equation (18) with the
known right-hand side.

4. PARTICULAR SOLUTION

Now, we apply the approach used in [12–14] and
assume that the magnetic flux Φ is the sum of the
unperturbed flux ΦH, associated with the magnetic self-
field of a spherical body, and a small perturbation Φ1,
which is to be determined,

where , , ,

and .

The validity of the above linearization procedure, as
well as of the above simplifying assumptions, is
checked simply by substituting the solution obtained
into the basic set of equations.
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We specify dependence (13) by choosing it in a sim-
ple form suitable for solving the problem,

(19)

where

(20)

In this case, the following boundary condition is satis-
fied:

ReM  = 0.

It is clear that it is sufficient to consider solely the val-
ues ΦH > –1, because the values ΦH < –1 are reached
only inside the spherical body (at r < 0), and that the

value  = ReM(–1) should be regarded as positive.
The parameter ∆Φ determines the spatial scale on
which the distribution ReM and, accordingly, the com-
plete solution are localized in the radial and polar direc-
tions simultaneously. The change in a model distribu-
tion of the magnetic Reynolds number with increasing
∆Φ is illustrated in Fig. 1, in which the distributions are
plotted for two opposite cases: 1 @ ∆Φ = 0.1 and
1 ! ∆Φ = 10.

With allowance for the condition

I  = 0

we find from expression (16) the conduction current I:

(21)
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Fig. 2. Distributions of the azimuthal component of the current density that correspond to the model distributions of ReM for ∆Φ =
0.1 and 10.
The azimuthal component of the conduction current
density can be found from expression (9):

(22)

the radial and meridional components being

(23)

The lines of the meridional component of the conduc-
tion current density coincide with the lines of the unper-
turbed dipole magnetic field; i.e., the conduction cur-
rent always flows over a magnetic surface.1 The value
of the conduction current density at each of the mag-
netic surfaces is determined by the function ∂I/∂ΦH,
which is proportional to ReM. Note that, according to
condition (20), the meridional current flows along the
magnetic field lines in a direction opposite to that of the
magnetic field. A comparison between expressions (9)
and (23) shows that the azimuthal current is much
lower than the meridional current: the absolute value of

the meridional current density, (  + )1/2, is a first-
order quantity in the parameter I, whereas the azi-
muthal current density jϕ is a second-order quantity in
this parameter.

The azimuthal current density is negative, which
indicates that the azimuthal current flows in a direction
opposite to that of the plasma motion. The distributions
of the azimuthal current density for 1 @ ∆Φ = 0.1 and
1 ! ∆Φ = 10 are shown in Fig. 2.

1 It is assumed that the current loops in the envelope are closed in
its lower layers, which are characterized by a sufficiently high
quasi-isotropic conduction.
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For

(24)

we obtain the following estimate of the half-width of
the interval of the angles Θ that corresponds to the cur-
rent jet:

(25)

the scale on which the azimuthal current density jϕ var-
ies in the radial direction being estimated by

(26)

These two estimates were obtained under the assump-
tion that condition (24) is satisfied for the r values under
consideration. Estimates (25) and (26) imply that, when
the parameter ∆Φ is sufficiently small, the correspond-
ing solution is strongly localized near the circle {r = 1,
Θ = π/2}.

The total current in the jet,

, (27)

can be obtained by numerically integrating expression
(22) for the azimuthal current density. For instance, for
the two cases under discussion, we have (∆F = 0.1) ≈

0.037 , and (∆F = 10) ≈ 0.16 .
The distribution of the azimuthal component of the

magnetic field, Bϕ = I/(2rsinΘ), is symmetric with respect
to the equatorial plane. It is clear that this distribution is
topologically equivalent to distributions (19) and (17).

Above, we have considered a steady solution to the
problem. The question of the stability of the solution is
very complicated and is not discussed here. However,
there are some experimental and theoretical arguments
supporting the conclusion that such axisymmetric flows
can indeed occur in nature. First, note that, although the
axis of the Earth’s magnetic field deviates from the vec-
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tor of the angular velocity of the Earth’s rotation (this
deviation manifests itself as periodic perturbations in
the plasma envelope), the structure of the plasmasphere
does not change, thereby providing evidence of its sta-
bility. The second argument is that any perturbation dis-
torts the electric field and causes it to deviate from
being equilibrium. This process is accompanied by the
corresponding redistribution of charges. However,
since the system under consideration is dissipative, it
should be subject to relaxation processes on character-
istic time scales on the order of 1/4πσ, where σ is the
effective conductivity. This is why the perturbed charge
density should relax to an equilibrium distribution.
Finally, that magnetohydrodynamic flows similar to
those considered above can be stable follows from the
experimental investigations of pinches [17].

5. CONCLUSIONS

The problem of configurations of an inviscid plasma
in the field of a rotating magnetized spherical body has
been formulated in the strongly anisotropic conductiv-
ity approximation, σH ! σ⊥  ! σ||. For such conditions,
the corresponding simple set of equations has been
derived under the assumption that the transverse con-
ductivity is constant along a magnetic field line and a
class of solutions to these nonlinear equations has been
found by solving them in quadratures. We have consid-
ered a model dependence of the transverse conductivity
on the magnetic flux Φ. For this dependence, which was
chosen satisfy the natural boundary conditions, the dis-
tributions of the conduction current and dipole mag-
netic field perturbations have been obtained under the
assumption that the magnetic self-field of the central
body is only slightly distorted by the plasma envelope.

It has been shown that, in the geometry chosen to
solve the problem, the angular rotation frequency of an
inviscid plasma is an arbitrary function of the magnetic
flux Φ, so that the electrodynamic quantities are inde-
pendent of the angular rotation frequency, provided that
it is constant along the magnetic field.

In the geometry chosen to describe an inviscid
plasma flow such that the plasma mass velocity has
only the azimuthal component, the conduction current
flows over a magnetic surface. In this case, the azi-
muthal component of the conduction current density is
a second-order quantity in the azimuthal component Bϕ
of the perturbed magnetic field of the central body, in
contrast to the case of a viscous plasma medium, in
which it is a first-order quantity in Bϕ and is propor-
tional to the Hall conductivity.

Under conditions of strongly anisotropic conductiv-
ity of an inviscid medium such that the longitudinal
conductivity is very high, the form of the solution is
determined by the geometry of the unperturbed mag-
netic field of the central body: the transverse conductiv-
ity, the angular rotation frequency, and the quantity I =
2BϕrsinΘ are constant over a magnetic surface and the
conduction current flows over it. In the case of a dipole
magnetic field, the solution varies in accordance with
the number of the magnetic surface, i.e., it is localized
in the radial and polar directions simultaneously.
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Abstract—The transport of charged particles across a strong magnetic field with a small random component
is studied in the double diffusion approximation. It is shown that the density of the particles whose initial dis-
tribution is stretched along the field satisfies a subdiffusion equation with fractional derivatives. A more gen-
eral initial particle distribution is also considered, and the applicability of the solutions obtained is discussed.
© 2005 Pleiades Publishing, Inc.
1. In this paper, we consider the diffusion of magne-
tized charged particles in a strong time-independent
longitudinal magnetic field with a small random trans-
verse component. Such a situation often occurs in sys-
tems in which there is a preferential direction of the
magnetic field, e.g., in tokamaks, open magnetic traps,
and other types of magnetic confinement systems. A
stochastic magnetic field can be described in the sim-
plest diffusion approximation [1–3]. Although this
well-known approach has a long history and is widely
used in studying the problems of heat transport in
plasma, it is expedient to briefly outline its main aspects
in order to provide a better insight into the phenomenon
in question. The geometry of the problem is as follows.
The magnetic field B points preferentially in the z direc-
tion. This indicates that the component of the magnetic
field that is parallel to the z axis is much stronger than
its random transverse component δB, B|| @ δB. An
important point is that the magnetic field is nondiver-
gent, — · B = 0. A flux tube of such a field is shown in
the figure, which is borrowed from the excellent review
by Isichenko [4]. In a certain plane z = z0, we choose a
contour that encloses a bundle of magnetic field lines.
In moving in the longitudinal (positive or negative)
direction, we see that individual magnetic field lines
move away from one another and the contour is
deformed: it becomes more and more curved, but the
area enclosed by it is conserved because of the conser-
vation of the magnetic flux. As a result, the distance d
between the walls of the magnetic flux tube decreases
exponentially. When moving away from the z = z0

plane, we see that the contour fills the perpendicular
plane more and more uniformly. After averaging over
the tube cross-sectional area, we can say that the aver-
aged density b of the magnetic field lines decreases so
as to satisfy the diffusion equation in which the role of
time is played by the z coordinate (or, in a more general
case, the superdiffusion equation in which the role of
1063-780X/05/3112- $26.00 1071
the Laplacian is played by its fractional power , with
β < 1),

(1)

Here, DB is the effective diffusion coefficient [5] and z
is the absolute distance from the initial position of the
contour. Let us briefly comment on this equation. In the
problem as formulated, the mean magnetic field is gen-
erally the same over the entire space and has a certain
constant strength B0. However, if we wish to trace the
behavior of the density of a bundle of magnetic field
lines marked by the particles moving along them, then
we see that, because of the magnetic field fluctuations,

∆⊥
β

∂b
∂z
------ DB∆⊥ b.=

d

Magnetic flux tube in a magnetic field with a random com-
ponent.
© 2005 Pleiades Publishing, Inc.
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this density behaves according to a diffusion law, as is
implied by Eq. (1). In other words, by the quantity b
satisfying Eq. (1), we mean the density of the marked
magnetic field lines. As was said above, this approach
implies that, before applying the averaging procedure,
we must choose a certain contour enclosing magnetic
field lines in order to trace its deformation and expan-
sion in moving along the z axis. At this point, it is useful
to mention other approaches to describing a stochastic
magnetic field. The equation for an individual magnetic
field line can be written as

(2)

where r' is the coordinate in the plane perpendicular to
the z axis. The corresponding averaging procedure,
which inevitably involves certain assumptions about
the behavior of the random magnetic field component
δB⊥ , reduces Eq. (2) to Eq. (1). The form of Eq. (2)
clearly points to the analogy with the problem of a ran-
dom two-dimensional incompressible flow with a time-
dependent velocity field and with the problem of
Hamiltonian chaos [6]. An analogous result on the dif-
fusion of magnetic field lines can also be obtained in
terms of quasilinear theory (see, e.g., [7]). The above
behavior of the magnetic field may stem from different
reasons, primarily from various plasma instabilities
(see the papers cited above and also [8]).

We thus have determined how the magnetic field
should be described in the model developed here. The
next step is to describe the behavior of charged parti-
cles. It is well known that the squared ratio of the parti-
cle gyrofrequency to the collision frequency deter-
mines the ratio between the longitudinal and transverse
transport coefficients in a magnetic field. We assume
that the magnetic field is strong and, accordingly, that
the particles are magnetized, (ωB/ν)2 ∝ Dn||/Dn⊥  @ 1. In
the limit in which this ratio tends to infinity, the parti-
cles move exactly along the magnetic field lines and do
not jump from one line to another (the questions of the
transverse transport and about the applicability limit of
this approximation will be discussed in more detail
below). The density distribution of the particles along a
magnetic field line is determined by collisions among
them and by their collisions with other plasma parti-
cles. This distribution is also described by a diffusion
equation,

(3)

where l is the coordinate along the magnetic field line
and the longitudinal diffusion coefficient Dn is assumed
to be constant and to be the same for all particles (here-
after, we omit the subscript indicating that the diffusion
is in the longitudinal direction). Since the magnetic
field fluctuations are small, we can set l . z.

dr'
dz
-------

δB⊥

B0
----------,=

∂nb

∂t
-------- Dn

∂2
nb

∂l
2

----------,=
Hence, we have described the model with which we
will study the transport of charged particles in a sto-
chastic magnetic field. All the simplifying assumptions
of the model are well known and seem to be suitable for
providing an adequate description of the physical pic-
ture of heat transport. Note again that, in the above sim-
plified model, the magnetic field is time-independent
and the magnetized particles take a random walk
exactly along the magnetic field lines, without jumping
from one line to another. Thus, if a randomly moving
particle returns to its initial position, its transverse dis-
placement is zero. The task now is to give a rigorous
derivation of the equations that describe transverse dif-
fusion in the problem as formulated.

2. Although the diffusion equations describing the
magnetic field evolution and the evolution of the parti-
cles are simple and well studied, their simultaneous
solution in the model under consideration is a nontrivial
task. From the formal (mathematical) point of view,
Eqs. (1) and (3) are not coupled to one another: Eq. (3)
describes the particle transport as a function of time and
the z coordinate, while Eq. (1) describes the expansion
of the magnetic field lines in the transverse direction as
a function of the same z coordinate. It is easy to see,
however, that, when the stochastic behavior of a mag-
netic field line and the particle diffusion along it are
taken into account simultaneously, the result is effec-
tive transport in the transverse direction (for simplicity,
one can consider ballistic motion of the particles along
the field; in this case, the transverse particle transport
will occur in accordance with the diffusion of the mag-
netic field lines). Simple scaling estimates based on the
set of Eqs. (1) and (3) yield the following self-similar
relationship between the variables in the problem, or
equivalently, the following new relationship between
the spatial and the time scales:  ∝ t1/4. The most likely
candidates that possess this self-similarity property and
that can be used to describe the diffusion of passive par-
ticles (i.e., the particles that have no effect on the
medium) are, e.g., equations with the squared Lapla-
cian on the right-hand side and equations with a time-
dependent diffusion coefficient. However, equations of
the first type represent an unphysical situation because
their Green’s function is not of fixed sign, whereas
equations of the second type imply that the problem is
spatially inhomogeneous. These preliminary consider-
ations show that the answer should be sought in another
class of equations. It should be emphasized that, in
what follows, the desired equations will be rigorously
derived based on a precise formulation of the problem.

In constructing the most general solution for the par-
ticle distribution step by step, we consider a simple
problem in which the particles are initially localized at
the point (r0, ζ), i.e., n0(r) = n0δ(r' – r0)δ(z – ζ). The
radius vector r is defined by the pair (r', z), where r' is
the position vector in the plane that is perpendicular to
the z axis and passes through the point z. In this case,
the solution is quite evident—it is simply a product of

r
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the solutions to Eqs. (1) and (3) with the initial condi-
tions B0 and n0/B0, respectively:

(4)

The same solution can be obtained in a mathematically
more precise way. For simplicity, we consider a planar
problem in which the position vector r' has only one
component, r'  x (with this simplification, we will
arrive at the same final result but after far more illustra-
tive manipulations). The probability density for the
occurrence of a particle at a given point is equal to

.

From the equation of particle motion (see Eq. (2)), we
have

Here, V(t) is a random Gaussian variable with a zero
mean, which describes the collision-induced random
variations in the velocity of a particle moving along a
magnetic field line. The quantity (t) is the sum of
independent random quantities and is therefore a ran-
dom Gaussian quantity having the probability density
function

.

Analogously, we have

where (t), too, is a random Gaussian quantity with the
probability density function

Consequently, the sought-for probability density func-
tion is equal to

Taking the integrals in this function yields formula (4).
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The above mathematical procedure corresponds to a
random time replacement or to the substitution of one
random process for the argument (carrier) of another
random process. The resulting random process will be
nondiffusive, and, moreover, it will be non-Markovian.
In what follows, it will be shown that the random-walk
process just considered, namely, the one whose argu-
ment is also a random-walk process, obeys a subdiffu-
sion scaling.

To do this, we consider an initial particle distribu-
tion that is uniform along the z axis. In experiments,
such a distribution can be produced, e.g., with the help
of a laser pulse.

It should be kept in mind, however, that, in this situ-
ation, particles with different coordinates ζ can occur at
the same magnetic field line; in this case, the above ini-
tial condition in the form of a delta function for the
equation describing the diffusion along this field line is
incorrect. However, for a two-dimensional random-
walk process, the probability that the trajectory will
return to its initial point is zero. This question, which is
important for achieving a realistic formulation of the
problem of the transverse evolution of particles distrib-
uted initially around the z axis in such a manner that the
transverse size of the distribution is much less than its
longitudinal size, will be discussed below.

In the model formulation of the problem, the solu-
tion is obtained by integrating formula (4) over ζ and by
setting r0 = 0:

(5)

The integral in formula (5) is expressed through the
Meyer’s G function, which is defined in terms of a
fairly involved contour integral containing Euler’s
gamma function [9]. The solution obtained, however,
can be investigated without reference to the asymptotic
expressions of this complicated special function. Let us
try to find out what equation function (5) would satisfy.
Taking the Fourier transformation of function (5) in the
variable r' and then the Laplace transformation of the
resulting function in the time t, we can easily calculate
the integral to obtain

(6)

Here, the subscripts p and k refer to the Laplace and
Fourier components of the function and the quantities p
and k themselves are the variables in the Laplace and
Fourier representations, respectively. We transform
expression (6) by multiplying it by the denominator of

n r' t,( ) 2 n0
e

z ζ–( )2
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-------------------------–
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its right-hand side and by applying the inverse Fourier
transformation in the coordinate:

To within a factor of , the expression on the left-hand
side is nothing more than the fractional time derivative
of order 1/2. Finally, in conventional coordinates, the
equation satisfied by function (5) is rewritten as

(7)

In order for Eq. (7) to be capable of describing particles
that obey a uniform distribution in the longitudinal
direction and a given distribution in a direction trans-
verse to the magnetic field, it is sufficient to make the
replacement n0  n0(r'). We thus have shown that the
expansion of an initial particle distribution stretched
along the z axis is described by a subdiffusion equation.

The possibility of using a fractional-derivative sub-
diffusion equation with an appropriate self-similarity
property in analogous problems was pointed out by
Balescu [10]. In that paper, the parameters of the equa-
tion were chosen to satisfy the dimensional estimates of
the characteristic spatial and time scales of the problem
and also to be consistent with the results that were
obtained for the moments of the distribution function in
other models. It was not, however, clearly formulated to
what extent this equation is applicable to the physical
problem. In a subsequent paper [11] (see also [12]),
Vanden Eijnden and Balescu used a hybrid kinetic
equation in order to derive an asymptotic expression for
the particle density that was analogous to the expres-
sion obtained from an equation with fractional deriva-
tives and that provided exactly the same behavior of the
moments of the distribution function. An important
advantage of [11] is that Vanden Eijnden and Balescu
considered the possible mechanisms for collisional
transverse transport; this problem, however, is more
complicated and goes beyond the scope of the present
paper (see [13]). In what follows, a simple and rigorous
derivation of an effective transport equation that is valid
on arbitrary time scales will be proposed that does not
require any additional model assumptions. Moreover,
solution (4) applies to any localized initial particle dis-
tribution. The solution method proposed here also helps
to demonstrate a relationship with the model of ran-
dom-walk processes in continuous time and to analyze
memory effects that are exhibited by subdiffusion equa-
tions (see below) and are often fall out of consideration
and thereby are not discussed in the literature. It should
be noted that there are alternative approaches to solving
the problem under consideration, e.g., the approach
developed by Kota and Jokipii [14], who used the Kubo
formalism, which is based on an analysis of the velocity
correlation functions and yields a subdiffusion scaling,
too.

np p

Dn

------------- DB∆⊥ np

n0δ r'( )
Dn p

-----------------.+=

π

∂1/2
n

∂t
1/2

----------- DB πDn∆⊥ n
n0δ r'( )

t
-----------------.+=
At this point, it is also expedient to mention a paper
by Zybin and Istomin [15], who studied particle trans-
port in a random magnetic field and considered an anal-
ogous model called the “second-order diffusion”
model. They asserted that, in such a formulation of the
problem, the transverse transport is purely diffusive and
the assumption of a subdiffusion scaling is erroneous.
Note that the subdiffusion regime in the double diffu-
sion model was proposed as early as 1962 by Getmant-
sev [16] (see also [17]). A more detailed discussion of
the history of this issue, as well as of the relevant
numerical and theoretical results, can be found in [4], in
a recent review by Bakunin [18], and in a paper by Kota
and Jokipii [14]. It is of interest to note that the true der-
ivation of the subdiffusion scaling at the beginning of a
paper by Zybin and Istomin [15] was subsequently
declared invalid. The main error made by the authors of
[15] in considering their model example was that they
estimated the rate of diffusion of particles along the
magnetic field lines by the particle characteristic veloc-
ity. However, this estimate in fact corresponds to
switching from the original diffusive motion of the par-
ticles to their ballistic unidirectional motion and leads
naturally to a diffusion scaling. The use of such an
approach can stem from the assumption that the mag-
netic field is unsteady or from the assumption that the
particles can jump from one magnetic field line to
another due to collisions. Averaging over the ensemble
of realizations of the magnetic field, i.e., switching from
a fixed random magnetic field configuration to an aver-
aged configuration, also can yield analogous results,
which are erroneous in the model under consideration.

3. Subdiffusion equations have been known for a
fairly long time: rich experience has been gained in
using them, and their properties, solutions, and asymp-
totics have been examined in detail [19–21]. However,
not all of the papers considering subdiffusion equations
were based on a reasonable physical model (or even any
model at all) from which they were derived. This is why
it is necessary to mention interesting papers [22–24]
(see also [25]). It is expedient to point out only the main
properties of Eq. (7) (see [26]) because our purpose
here is not to consider the general features of subdiffu-
sion equations. The Green’s function for Eq. (7) is a
self-similar function of the form (see formula (5))

(8)

In our case, the self-similarity property, which, as a rule,
greatly simplifies the analysis of the equations, is attract-
ing in character. This means that any initial particle dis-
tribution will asymptotically evolve to the Green’s func-
tion profile. Recall also that the subdiffusion regime cor-
responds to a slower expansion of a particle cloud than in
the case of conventional diffusion: the characteristic
cloud width  increases according to the law

(9)

G r t,( ) 1

t
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Note that this law determines the applicability limit of
the model proposed here: on long time scales, the evo-
lution of a particle cloud is governed by the competition
between subdiffusion expansion (9) and the slow trans-

verse diffusion  ∝  D*t, which was ignored up to this
point because of the assumption of a strongly magne-
tized plasma (see above). The determination of the
effective transverse diffusion coefficient D* for parti-
cles in a stochastic magnetic field is a fairly compli-
cated task. Following [2, 3], this coefficient can be esti-
mated by the formula D* = (δB/B)(Dn⊥ Dn)1/2; in this
case, we have Dn(δB/B)2 > Dn⊥  (of course, other esti-
mates can also be used, see, e.g., [27]). A comparison
of the above expansion rates yields the following esti-
mate for the applicability limit of the model developed

here: t ! t* = ( /Dn⊥ )(B/δB)2. We see that, for a
strongly magnetized plasma and for small magnetic
field fluctuations, this time can be fairly long.

All the features mentioned above could also be
derived directly from formula (5). For an asymptotic anal-
ysis, however, the Laplace–Fourier transformation
method makes this derivation somewhat more illustrative.
Moreover, in rare cases only, the Green’s function can be
expressed in terms of tabulated special functions in con-
ventional coordinate space, as in the above analysis.

An important property of subdiffusion equations is
that they exhibit memory effects, which were analyzed
in [28]. Equation (7) does not possess the property of
continuous evolution. In other words, if we consider a
state to which the system has evolved by a certain time
as a new initial condition, then the continuity of the
evolution is violated. Through a special choice of the
initial condition, it is also possible to affect the initial
stage of the process. For subdiffusion equations of form
(7), these effects manifest themselves on macroscopic
time scales. In [28], it was shown that, in order to pro-
vide an adequate description of the situation, it is nec-
essary to take into account the dependence on the
microscopic details of the transport process, as well as
of the initial distribution. Presumably, the reason why,
in our case, the continuity of the evolution is violated is
associated with the averaging of the magnetic field over
a small cross-sectional area in formulating the initial
condition in the diffusion approximation. This averag-
ing corresponds to a redistribution of the particles over
the magnetic field lines in such a way that no two of
them have different coordinates and occur at the same
field line. In order to preserve the continuity property, it
is necessary to take into account the distribution of the
particles over the magnetic field lines and to solve the
diffusion equations with an initial condition that
remembers all information about the prehistory of the
evolution. In so doing, however, it is necessary to know
the behavior of each magnetic field line and, conse-
quently, to solve exact dynamic equation (2), which is
a separate and complicated task. This is why, in what
follows, we will again use the above averaged descrip-

r
2

DB
2
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tion of the magnetic field but will give an estimate of
the extent to which this approach is realistic.

4. In order to demonstrate the consequences of the
memory effects, which, in the case at hand, stem from
the characteristic features of the initial particle distribu-
tion over the magnetic field lines, we consider a prob-
lem in which the particles are initially distributed over
a cylindrical region Ω of a certain radius and of compa-
rable height. In this problem, we are dealing with two
possible situations. In the first situation, the particles
are distributed in such a way that no two of them occur
at the same magnetic field line and have different coor-
dinates. In this situation, the solution for the particle dis-
tribution is obtained by simply integrating formula (4)
(the case when the region Ω lies in a plane perpendicu-
lar to the z axis also presents no problem because, in
this case, each of the particles occurs at its own mag-
netic field line):

(10)

In the second situation, the particles are distributed over
a cylindrical region Ω in such a way that they obey a
certain given distribution along each of the magnetic
field lines that cross the cylinder. What are the conse-
quences of such a distribution? Let us consider a mag-
netic field line such that its portion inside the cylinder
coincides with the cylinder axis and has a length a (with
such a symmetric model condition, the final result will
not change qualitatively, because we will be interested
in the behavior of the particles on spatial scales much
greater than the dimensions of the region Ω). Let the
coordinate origin be at the center of one of the bases of
the cylinder. In this case, the particle density is calcu-
lated by the formula (z > a)

(11)

where G(z, t) and B(r', z) are the Green’s functions of

Eqs. (1) and (3), respectively; A = ; and Az0 =

. If we use approximation (10) for the cho-

sen magnetic field line, then we arrive at a different
solution,

(12)

The main difference between density distributions (11)
and (12) is as follows. In formula (11), the particle evo-
lution is described by a single diffusion equation with
the initial condition n0(z) and the diffusive random walk
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of a given magnetic field line comes into play at the
point z = a. In formula (12), we are dealing with point
sources producing particles that diffuse along their own
magnetic field lines, which, in turn, are distributed dif-
fusively and originate from given points. By subtract-
ing one integral from another, we can estimate the accu-
racy of the averaged approximate formula (10). We
subtract formula (11) from formula (12) and take into
account the condition z @ a to obtain

(13)

where  =  – ζ)n0(ζ)dζ is a certain longitudinal

dimension of the region Ω that is averaged over the ini-
tial distribution. We thus see that, because of the diffu-
sive character of the function B on long spatial scales
z @ a, the discrepancy ∆n1 is small in comparison to the
mean value n of the particle density on such spatial
scales. This indicates that the particle transport is
asymptotically described by subdiffusion equation (7).

Let us now turn to Eq. (7), because it is the equation
for which we wish to analyze the influence of the mem-
ory effects. As the initial condition, we choose a general
particle density distribution whose asymptotic behavior
is described by Eq. (7). Let the region Ω be stretched
along the z axis and let the characteristic longitudinal
dimension of this region be much greater than the spa-
tial scale on which we will follow the evolution of the
particle density and which, in turn, substantially
exceeds the transverse dimension of the region, l|| @
r' @ l⊥ . The mean length a' of the portion of the mag-
netic field line that is inside the region can be estimated

from the diffusion scaling: a' = /DB. We are thus
faced with the situation that was considered above. The
only difference is that, in formula (13), we must replace
the length a with the estimate a' and integrate over the
cross-sectional area S of the region,

We denote by A0 = const the integral over the region
on the right-hand side of this formula. For n0 = const,
the integral is approximately equal to –Sa'2n0/2 ~

− , which will be used below for estimates. In
order to calculate the accuracy of this integral estimate
at the point (r', z), we must take the sum of the contri-
butions from the regions of length on the order of a' and
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switch from the sum to an integral over ζ with a weight-
ing function of 1/a',

Since the magnetic field satisfies Eq. (1), we can replace
the derivative with respect to the z coordinate with the
transverse Laplacian operator. Taking into account that
the Green’s function for the equation describing the par-
ticle density is independent of r', we can factor it out of
the integral sign. As a result, we arrive at the following
final estimate of the order of smallness of the approxi-
mation accuracy (see formula (4)):

(14)

where the particle density n(r', t) satisfies subdiffusion
equation (7) and is a self-similar function of form (8).

A more sophisticated problem is that in which the
magnetic field lines cross the initial region many times.
According to the theory of Brownian motion, the prob-
ability that the magnetic field line passes through the
initial region in a finite time (a finite value of the z coor-
dinate) is equal to unity. Since the diffusion equation
automatically takes into account the contribution of
such trajectories, it can be stated that the above diffu-
sion approximation adequately describes the situation
under analysis. Let us discuss this problem in more
detail. We choose a certain point with the coordinates
( , z1) in the region Ω. With a probability determined
by diffusion, a certain number of the magnetic field
lines that pass through the vicinity of this point also
pass through the vicinity of a point ( , z2) lying in the
region Ω (for definiteness, we set z2 > z1). By virtue of
the symmetry of the problem (see the comments on
Eq. (1) and formula (4)), we can reverse the direction of
motion1 and choose a bundle of magnetic field lines
passing through the vicinity of the point ( , z2) to see
that the same number of them should pass through the
vicinity of the point ( , z1). In other words, any two
points in the initial region are connected by magnetic
field lines whose density depends on the relative posi-
tions of the points. The contributions of these points to
the density of the magnetic field lines at a certain spatial

1 A similar effect underlies the mechanism of enhanced diffusion
in a stochastic magnetic field [2, 3]: a particle that starts from a
certain initial point will execute a random walk along a magnetic
field line and then, because of the slow transverse diffusion, it
will occur at a nearby magnetic field line and will move along it
but in the opposite direction; as a result, the particle, on average,
moves away over a long distance from the initial point.
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point ( , z3) should be calculated by summing them
with the corresponding diffusive weighting functions
B(|  – |, |z1 – z3 |) and B(|  – |, |z2 – z3 |). By
doing this, we automatically and correctly take into
account the trajectories that pass through all three of
these points (it is obvious that such trajectories always
exist). We thereby have shown that the above two
approaches to calculating the particle density at a given
point are completely equivalent to one another, specifi-
cally, the approach based on a correct total initial con-
dition that is formulated for the common magnetic field
lines and involves nontrivial density values n0( , z1)

and n0( , z2), which should be obtained by calculating
the probability for the trajectory to pass through three
fixed points (or even through more points, if account is
taken of the repeated returns of the trajectory), and the
approach based on formula (4) with the same initial
conditions on the particle distributions in the form of
delta functions but with allowance for the diffusive
expansion of the magnetic field lines. Consequently, for
an initial particle distribution over a region of finite
transverse dimension, the deviation of the evolution of
the particle density in the initial stage from that pre-
dicted by Eq. (7) can be attributed to the particles mov-
ing along the portions of the magnetic field lines that
are inside the initial region and have the mean length

a' = /DB. By virtue of estimate (14), the contribution
of these particles is small.

5. Thus, in considering the problem of the particle
transport in a strong time-independent longitudinal
magnetic field with a small random transverse compo-
nent, a simple method for calculating the particle den-
sity has been proposed and the criteria for its applica-
bility have been given. With this method, it has been
demonstrated that the evolution of an initial particle
distribution stretched along the magnetic field is
described by a subdiffusion equation with fractional
derivatives that has a self-similar solution consistent
with the well-known scaling  ∝ t1/4. It should be noted
that the problem considered above constitutes one of
the few examples of the rigorous derivation of an equa-
tion with fractional derivatives and thereby shows the
naturalness and importance of this approach to describ-
ing stochastic processes in which the subdiffusive
behavior of the particles is an inherent feature of the
physical phenomenon.
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Abstract—In experiments on off-axis electron-cyclotron resonance heating in the T-10 tokamak, a steep gra-
dient of the electron temperature was observed to form for a short time at a relative radius of ρ ≈ 0.25 after the
heating power was switched off. Small-scale fluctuations of the electron density were studied with the help of
correlation reflectometry. It was found that, in a narrow region near ρ ≈ 0.25, the amplitude of the density fluc-
tuations was two times lower than that in the ohmic heating phase. Quasi-coherent fluctuations were suppressed
over a period of time during which the steep temperature gradient existed. Measurements of the poloidal rota-
tion velocity of turbulent fluctuations show that there is no velocity shear after the heating is switched off. An
analysis of the linear growth rates of instabilities shows that the ion-temperature-gradient mode is unstable at
ρ ≈ 0.25 throughout the entire discharge phase. The effect observed can be explained by an increase in the dis-
tance between the rational surfaces near the radius at which the safety factor is q = 1 due to the temporary flat-
tening of the q profile after the off-axis electron-cyclotron resonance heating is switched off. © 2005 Pleiades
Publishing, Inc.
1. INTRODUCTION

Discharges with off-axis electron-cyclotron reso-
nance heating (ECRH) are of great interest for tokamak
studies. First, off-axis ECRH leads to the formation of
broader profiles of the electron temperature and plasma
current density. As a result, sawtooth oscillations are
suppressed, which is convenient for studying the
plasma properties in the central region of the plasma
column. Furthermore, in accordance with the model of
critical gradients [1], the formation of a flat electron-
temperature profile in the plasma core should suppress
turbulence. Experiments on the T-10 and TEXTOR
tokamaks have shown that an electron transport barrier
forms in the transient stage of a discharge after off-axis
ECRH is switched off [2].

In this paper, we present results from studying
small-scale density fluctuations in T-10 discharges with
off-axis ECRH. The paper is organized as follows: the
scheme of experiment, diagnostics used, and the basic
properties of the tokamak plasma are described in Sec-
tion 2. Section 3 is devoted to measurements of the den-
sity fluctuations. The transport coefficients are esti-
mated in Section 4. The experimental results are dis-
cussed in Section 5. The main results of the study are
summarized in the Conclusions.

2. EXPERIMENTAL PARAMETERS

We carried out measurements of turbulence in
experiments with off-axis ECRH in the T-10 tokamak
1063-780X/05/3112- $26.00 0985
[2]. The circular-cross-section plasma of the T-10 toka-
mak has a major radius of R = 1.5 m and a minor radius
of a = 0.3 m. In the main series of experiments, the
plasma current was Ip = 180 kA and the toroidal mag-
netic field was BT = 2.33 T. The average electron den-
sity varied in the range of (1.5–2) × 1019 m–3. In order
to verify the results obtained, we also performed con-
trol experiments at different values of the current and
the magnetic field. The plasma was heated by two
gyrotrons with a frequency of 140 GHz and total power
of 0.53 MW. This corresponds to clearly pronounced
off-axis (at a relative radius of ρ = r/a = 0.4 if the
Shafranov shift is taken into account) heating at the sec-
ond harmonic of the electron-cyclotron frequency. The
radial width of the region where the microwave power
was absorbed was determined from the experimental
data by using the COBRA code and was found to be
about 4 cm (at a level of e–1) [3].

The electron temperature was measured by a multi-
channel radiometer operating at the second harmonic of
the electron-cyclotron emission. To find the absolute
values of the electron temperature, the radiometer was
calibrated by using the signals recorded in the ohmic
phase of a discharge with the known electron tempera-
ture profile Te(r), which was calculated from the slope
of the X-ray spectra measured by a multichannel X-ray
spectrometer. The electron density was measured by an
eight-channel radio interferometer and eight-channel
HCN-laser interferometer. The radial profile of the
© 2005 Pleiades Publishing, Inc.
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Fig. 1. Time evolution of the plasma parameters in a discharge with off-axis ECRH: (a) central electron temperature, (b) electron
temperature in the ECRH region, (c) average electron density, (d) intensity of the Dα line, (e) density fluctuations in the frequency
range 50–400 kHz (the horizontal dashed line shows the level of density fluctuations at ρ ≈ 0.25 in an ohmic discharge), and
(f) position of the critical-density surface. The vertical dashed line shows the instant at which ECRH is switched off, and the dashed-
and-dotted line shows the start of a decrease in the central electron temperature. Hatched regions I, II, and III show the time intervals
over which the plasma parameters were averaged during the ECRH, transient, and ohmic phases of the discharge, respectively.
plasma density Te(r) was reconstructed using the data
from all the 6 vertical channels of both interferometers.

Small-scale fluctuations of the plasma density were
measured by an O-mode correlation heterodyne reflec-
tometer [4]. The reflectometer recorded the parameters
of a wave reflected from three points located at different
poloidal angles. This allowed us to determine the
amplitude of electron density fluctuations, as well as
their poloidal coherence and velocity.

The discharge scenario was as follows. After both
the plasma current and electron density had reached
their steady-state values (0.5 s after the beginning of the
discharge), off-axis ECRH was switched on and oper-
ated over about 0.35 s. ECRH was followed by an
ohmic phase, which lasted over about 0.1 s. Typical
behavior of the plasma parameters during a discharge is
shown in Fig. 1. The characteristic phases of the dis-
charge—the ECRH phase, the transient phase (in which
a steep electron temperature gradient forms), and the
ohmic phase—are denoted in Fig. 1 by I, II, and III,
respectively. It can be seen in Fig. 1b that the electron
temperature in the heating region (ρ ≈ 0.45) decreases
immediately after off-axis ECRH is switched off (the
dashed vertical line). On the other hand, the central
temperature (Fig. 1a) remains unchanged over 10–
20 ms after ECRH and then also decreases due to the
onset of sawtooth oscillations.

Such plasma behavior leads to the formation of
steep electron temperature gradients at radii less than
the radius of the heating region. Typical profiles of the
electron temperature in discharges with off-axis ECRH
are depicted in Fig. 2a (the symbols and curves show
the experimental data and their approximations, respec-
tively). Here and in the subsequent figures, the profiles
corresponding to the ECRH phase (I), transient phase
PLASMA PHYSICS REPORTS      Vol. 31      No. 12      2005
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(II), and ohmic phase (III) are shown by dashed lines
and open triangles, solid lines and semi-closed circles,
and dashed-and-dotted lines and closed squares,
respectively. One can see that the temperature profile
during ECRH (I) is wider than that in the ohmic phase
(III). At ρ ≈ 0.2, the parameter R/LTe (where LTe =
(dlnTe/dr)–1 is the inverse temperature gradient), char-
acterizing the steepness of the electron temperature
profile, varies from 4 in the ECRH phase to 6 in the
ohmic phase. However, in the transient phase, the elec-
tron temperature gradient is very steep, R/LTe ~ 15. This
value is larger than that predicted by the model of crit-
ical gradients. Hence, the onset of strong turbulence
and enhanced transport could be expected in this region
[1]. Nevertheless, that the central temperature is
retained over a long time contradicts this approach. It
should also be noted that the region where the electron
temperature gradient is steep coincides with the posi-
tion of the phase reversal of sawtooth oscillations in the
ohmic phase of the discharge. It is commonly accepted
that this position corresponds to the magnetic surface
with q = 1.

The behavior of the average electron density in these
experiments is typical of ECRH discharges in T-10 (see
Fig. 1c). The density begins to grow just after the
ECRH is switched off. The reconstruction of the den-
sity profile shows that, during ECRH, the profile is
additionally peaked at radii less than the radius of the
heating region (Fig. 2b, curve I). This allowed us to
measure density fluctuations in the plasma core. Such a
narrow peak in the density profile persists for a while
after ECRH is switched off (Fig. 2b, curve II) and then
relaxes to that shown by curve III in Fig. 2b. Special
investigations showed that the peak was not an artifact;
it was also observed in the raw data of the interferome-
ter. The influx of neutrals from the rail limiter of T-10
was monitored by the intensity of the Dα line (Fig. 1d).
It was found that the influx highly increased during
ECRH and then rapidly decreased.

3. MEASUREMENTS OF TURBULENCE

Plasma turbulence was analyzed by measuring
small-scale fluctuations of the electron density with the
help of an O-mode correlation heterodyne reflectome-
ter [4]. Since the reflectometer frequency was fixed dur-
ing a tokamak discharge, the radial profiles of density
fluctuations were measured in a series of similar dis-
charges with different reflectometer frequencies. To
measure the radial profiles of turbulence more accu-
rately, we also varied the average electron density.
Since the position of the reflecting layer changed dur-
ing a discharge, the point of reflection was determined
from the reconstructed radial profile of the electron
density. The time evolution of the position of the reflec-
tion point during a discharge are illustrated in Fig. 1f.
The amplitude of fluctuations was calculated from the
data obtained by the quadrature (vector) detection of
PLASMA PHYSICS REPORTS      Vol. 31      No. 12      2005
the electric field of the reflected wave. A correction for
the nonlocal character of reflectometric measurements
was made using a 1D geometrical approach [5].

Typical behavior of electron density fluctuations in
the frequency range of 50–400 kHz is shown in Fig. 1e.
The fluctuation level during ECRH is much higher than
that in the ohmic phase and decreases substantially over
about 10 ms after ECRH is switched off. Moreover,
within this time interval, the fluctuation level is about
two times lower than that in the same region of the
plasma column in the ohmic phase (light horizontal
dashed line).

The radial profile of the amplitude of density fluctu-
ations was measured as was described above and was
averaged over the data from three measurement chan-
nels. The results of these measurements are presented
in Fig. 3a. It can be seen that, in the ohmic phase, the
level of density fluctuations (curve III) is nearly con-
stant in the gradient region. During ECRH, the fluctua-
tion level is two to four times higher throughout the
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plasma column (curve I). This means that, even in the
region in which the electron temperature gradient is
low, the level of turbulence is higher than that in the
ohmic phase. Such behavior contradicts the model of
critical gradients. Over 5–15 ms after ECRH, the level
of density fluctuations (curve II) decreases to the ohmic
level at all radii under analysis, except for a narrow
region near ρ ≈ 0.3, where it becomes two times lower
than that in the ohmic phase. The position of this region
agrees well with the position of the steep electron tem-
perature gradient, because the radial position of the
reflection point is determined with an error of about
2 cm due to an uncertainty in reconstructing the radial
electron density profile.

Correlation measurements also showed that the
level of poloidal coherency in the region where the
oscillations were suppressed for 5–20 ms after ECRH
was four times lower than that during ECRH (Fig. 3b;
curves II and I, respectively). This indicates that the
poloidal correlation lengths decrease after ECRH. The
correlation level in the ohmic phase is somewhat higher
than that during ECRH.

A thorough study of the turbulence spectra gives
additional information on the mechanisms of the effects
observed. Figure 4 shows typical Fourier spectra of tur-
bulence measured near ρ ≈ 0.3 during ECRH (curve I),
5–15 ms after ECRH (curve II), and in the ohmic phase
(curve III). It can be seen that the level of broadband
(BB) density fluctuations during ECRH is rather high.
There is also a peak of low-frequency (LF) quasi-coher-
ent (QC) oscillations around a frequency of 0.1 MHz.
As was shown in [6], such spectra are typical of regimes
with high particle fluxes. After ECRH is switched off,
the turbulence level at high frequencies decreases and
LF QC oscillations disappear. This indicates that the
instability is suppressed in the region of a steep temper-
ature gradient. After the steep temperature gradient dis-
appears, the level of BB oscillations increases. In this
phase of the discharge, both LF and high-frequency
(HF) QC oscillations are present in the spectrum.

The suppression of density fluctuations has been
frequently observed in transport barriers in other toka-
maks [7]. Such suppression is often attributed to the
stabilization of turbulence by the velocity shear [8]. In
our experiments, the poloidal velocity was measured by
determining the poloidal time delay of density fluctua-
tions from the cross-correlation function. Since the
poloidal angle between the reflection points is known,
we can find the angular velocity of fluctuations. The
results obtained are presented in Fig. 5. In the ohmic
phase (curve III), the angular rotation velocity through-
out the plasma core is constant and exceeds the velocity
in the outer region of the plasma column. The region
with a nonzero velocity gradient lies inside the q = 2
magnetic surface (the position of this surface is shown
by the vertical dashed-and-dotted line). Outside the q =
2 surface, the rotation velocity is about two times
slower. The velocity profile during ECRH (curve I) is
PLASMA PHYSICS REPORTS      Vol. 31      No. 12      2005
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similar to that in the ohmic phase, but the location of the
high velocity gradient is shifted toward the center of the
plasma. Such behavior may be explained as follows.
The electron transport in plasma highly increases dur-
ing ECRH, so the absolute value of the plasma potential
decreases. As a result, the electric field decreases,
which leads to a decrease in the velocity of E × B rota-
tion. After ECRH is switched off (curve II), the rotation
velocity decreases at all radii under analysis and a flat
profile of the rotation velocity is established. This
means that the stabilization by the velocity shear cannot
explain the effects observed. In order to verify these
results, we performed additional experiments at differ-
ent values of the plasma current and magnetic field.
Reflectometric measurements showed that the behavior
of density fluctuations in these regimes was similar to
that in the base discharges.

4. STUDY OF TRANSPORT IN DISCHARGES 
WITH OFF-AXIS ECRH

Transport coefficients in discharges with off-axis
ECRH in T-10 have been previously investigated by
different methods. An analysis of the cooling-pulse
propagation shows that, after ECRH is switched off, the
electron thermal diffusivity χe at ρ ≈ 0.3 decreases to
lower than 0.3 m2/s [9]. A more sophisticated model
that takes into account the temporal behavior of the
temperature [3] shows that χe is about 0.25 m2/s at radii
less than the radius of the heating region and that there
is a narrow layer (∆ρ ≈ 0.05) within which the thermal
diffusivity is minimal (about 0.15 m2/s).

Both methods allow the effective electron thermal
diffusivity χe to be accurately estimated but cannot dis-
tinguish between the heat fluxes due to heat conduction
and to particle transport. On the other hand, as was
noted above, the shape of the turbulence spectrum may
indicate the existence of high fluxes of charged parti-
cles during ECRH. In order to verify this assumption,
we analyzed the transport coefficients by using the heat
balance equation. The total heat flux can be written in
the form

where  is the effective thermal diffusivity due to
particle transport,

with Γn being the particle flux. It should be noted that
the coefficient 3/2 in front of the term corresponding to
the heat flux is not commonly accepted, and some
authors prefer 5/2. Estimates obtained with both these
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coefficients differ insignificantly. Experimental data
were analyzed with the 1.5D ASTRA code [10]. In the
computations, we used the experimental data on the
profiles of the electron temperature and density, the
loop voltage, and the total ECRH power. The profile of
the absorbed ECRH power determined by Andreev
et al. [3] was used. The time dependence of the neutral
influx was determined from the intensity of the Dα line.
The absolute value of the neutral influx was chosen
such that the ratio of the heat diffusivity to the diffusion
coefficient was χe/De ≈ 2 for the ohmic phase of a dis-
charge [11]. The obtained value of the particle influx
does not contradict previous measurements. The neo-
classical resistivity was used to compute the ohmic
power and the diffusion of the current. The ion temper-
ature was determined under the following assumptions:
the rate of electron-to-ion heat transfer and the profile
of the ion thermal diffusivity were both neoclassical,
but the diffusivity profile was multiplied by a factor of
2–3 to adjust the calculated values of the ion tempera-
ture and neutron flux to the measured ones. It was found
that the effective thermal diffusivity obtained from the
analysis of the balance equation was close to that
obtained by other methods.

Interesting data can be obtained from an analysis of
the heat-flux structure. Figure 6 compares the total

effective thermal diffusivity  (curve 1) and the
effective thermal diffusivity due to particle transport

 (curve 2) in the region with a steep gradient of the
electron temperature. One can see that, during ECRH,
a major fraction of the heat flux is transferred by the
particle flux. This is due to the large influx of neutrals
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arriving from the wall and the rail limiter during ECRH
and to the deep penetration of these neutrals into the
discharge. After ECRH is switched off, both the neutral

influx and  decrease. In the ohmic phase, the effec-
tive thermal diffusivity increases again.

5. DISCUSSION

Our experiments demonstrate that the following
effects take place after ECRH is switched off: (i) the
formation of a steep electron temperature gradient,
(ii) the suppression of small-scale density fluctuations,
and (iii) a decrease in the electron transport coeffi-
cients. All this indicates the formation of an inner trans-
port barrier (ITB). The question naturally arises as to
the mechanism for the formation of such a barrier. As
was discussed above, the suppression of plasma insta-
bility by the velocity shear is impossible because of the
flat profile of the angular rotation velocity.

A possible mechanism for the stabilization of fluc-
tuations is a decrease in the growth rates of instabilities.
We estimated the thermal diffusivity from the measured
profiles of the electron temperature and density and
from the calculated profiles of q and the ion tempera-
ture by using a linear theory. Previous experiments
showed that the main sources of turbulence in the
plasma core are the ion-temperature-gradient (ITG)
mode and the dissipative trapped-electron (DTE) mode
[12]. The thermal diffusivity for the ITG mode was cal-
culated according to [13], and the contribution from the
DTE mode was estimated using [14].

Figure 7a presents the results of calculations for
three phases of the discharge: during ECRH (curve I),
5–15 ms after ECRH (curve II), and in the ohmic phase
(curve III). The heavy and light curves correspond to
the ITG and DTE modes, respectively. It can be seen
that, in the plasma core, the ITG-driven transport pre-
vails throughout the discharge. After ECRH is switched
off, the thermal diffusivity in the barrier region changes
only slightly. Such behavior is expectable because both
the ion temperature and the density profile, which
determine transport, change insignificantly in this
region. It is interesting that, after ECRH is switched off,
the region dominated by the DTE mode shifts toward
the center. This correlates with the onset of HF QC
oscillations in the plasma core in the ohmic phase
(Fig. 4, curve III).

Thus, the linear theory of instabilities fails to
explain the entire set of the experimental data. Experi-
ments with off-axis ECRH show that the formation of
an ITB is very sensitive to the profile of q [2]. There-
fore, we used an approach based on the analysis of
transport coefficients with allowance for the magnetic
field configuration [15]. The plasma transport in this
model results from the interaction among radially
localized modes having large poloidal (m) and toroidal

χe
eff
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(n) numbers. The contribution from each mode located

at the radius  to the plasma transport is defined as

where χ0 is the thermal diffusivity determined from the
linear theory of instability and ρi is the ion Larmor
radius. The authors of [15] suggested that the transport
be calculated by summing over all modes m and n. This,
however, leads to a substantial increase in the transport
at the plasma periphery, so that the calculated values of
the thermal diffusivity considerably exceed the mea-
sured ones. On the other hand, a nonlinear analysis of
the instability dynamics that was performed with the
help of 3D gyrokinetic simulations showed that the
transport was caused by the coupling of modes having
equal toroidal numbers n and that, at each instant, there
was only one m mode with the corresponding value of
n [16]. Therefore, the method proposed in [15] was
modified to take into account the coupling of modes
with different poloidal but equal toroidal numbers. The
resulting transport was computed by averaging over all
the possible toroidal numbers,

The maximum poloidal and toroidal numbers are deter-
mined by the appropriate instabilities. The value of k⊥ ρi

was chosen to be equal to 0.3 for the ITG mode and 1
for the DTE mode. Accordingly, the maximum poloidal
and toroidal numbers were taken to be

This corresponds to the maximum poloidal number in
the gradient region of about 20–40 for the ITG mode
and 60–120 for the DTE mode. In this approach, the
rate of plasma transport is proportional to “the density
of the excited modes,” which has the meaning of the
average number of rational magnetic surfaces with
equal toroidal numbers n within a given radial interval.
The computed densities of the excited modes for three
phases of the discharge are presented in Figs. 8a–8c.
The profile of q (Fig. 8d) needed for these calculations
was taken from [2]. One can see that the density of
rational magnetic surfaces is almost constant through-
out all radii of interest in both the ECRH (curve I) and
ohmic (curve III) phases. However, 12 ms after the
ECRH is switched off (curve II), the density of mag-
netic surfaces has a minimum at ρ ≈ 0.2, which corre-
sponds to the region with a low q gradient. The reason
for this is that the number of rational surfaces with high
numbers m and n decreases in a region corresponding
to low rational values of q. If the gradient of q is low in
this region, then the magnetic surfaces are separated
from one another by a distance that exceeds their radial

rm
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r( ) χ0 rm
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size, so coupling between them becomes impossible.
This leads to a reduction in transport. It should be noted
that a similar conclusion was drawn in [17].

The calculated thermal diffusivities are shown in
Fig. 7b. It can be seen that the thermal diffusivity
decreases substantially after ECRH is switched off.
This approach also explains the disappearance of QC
oscillations after ECRH. The formation of radially
stretched structures that manifest themselves as QC
oscillations is related to the toroidal coupling of the
excited modes with large rational numbers. If the cou-
pling is broken (e.g., due to the velocity shear or to the
long radial distance between modes), the QC oscilla-
tions disappear. Thus, the reduction in transport in this
regime is related to a break in the toroidal coupling of
the excited modes, rather than to a decrease in the linear
growth rates of instabilities.

6. CONCLUSIONS

The formation of a steep gradient of the electron
temperature has been observed in T-10 experiments
after off-axis ECRH was switched off. It has been
found that the transport coefficients in the steep-gradi-
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Fig. 8. Radial profiles of the densities of the excited modes
within time intervals (a) I, (b) II, and (c) III. (d) Radial pro-
file of q within time intervals I, II, and III (taken from [2]).
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ent region are rather low (about 0.15–0.3 m2/s) and the
density fluctuations are suppressed. This allows us to
interpret these results as the formation of a temporary
ITB in these discharges. It has been shown that the
mechanism for stabilization of instabilities by the
velocity shear does not operate under these conditions.
The formation of the barrier is attributed to a decrease
in the number of rational magnetic surfaces with high
numbers of m and n around the surfaces with low m and
n. This concept, however, requires a more accurate
analysis.
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Abstract—The neutral gas shielding model and neutral-gas–plasma shielding model are analyzed qualitatively.
The main physical processes that govern the formation of the shielding gas cloud and, consequently, the abla-
tion rate are considered. For the neutral gas shielding model, simple formulas relating the ablation rate and
cloud parameters to the parameters of the pellet and the background plasma are presented. The estimates of the
efficiency of neutral gas shielding and plasma shielding are compared. It is shown that the main portion of the
energy flux of the background electrons is released in the plasma cloud. Formulas for the ablation rate and
plasma parameters are derived in the neutral-gas–plasma shielding model. The question is discussed as to why
the neutral gas shielding model describes well the ablation rate of the pellet material, although it does not take
into account the ionization effects and the effects associated with the interaction of ionized particles with the
magnetic field. The reason is that the ablation rate depends weakly on the energy flux of hot electrons; as a
result, the attenuation of this flux by the electrostatic shielding and plasma shielding has little effect on the abla-
tion rate. This justifies the use of the neutral gas shielding model to estimate the ablation rate (to within a factor
of about 2) over a wide range of parameters of the pellet and the background plasma. © 2005 Pleiades Publish-
ing, Inc.
1. INTRODUCTION

Pellet injection into tokamak and stellarator plasmas
is one of the most promising methods for fueling reac-
tors. It is this circumstance that stimulates interest in
studying the interaction of pellets with plasmas in toka-
maks and stellarators. Pellets are also used to diagnose
the tokamak plasma and to control its parameters.

The main parameter that determines the fueling effi-
ciency of a tokamak reactor is the ablation rate of the
pellet material. This is why the physical mechanisms
that govern the ablation rate have been studied in many
theoretical and experimental papers.

The pellet injected into the tokamak plasma evapo-
rates due to heat fluxes carried by electrons and ions of
the background plasma, producing a neutral gas cloud
around it, which then ionizes (see figure). This cloud
shields the pellet from the plasma particle flux, thereby
governing the plasma particle energy loss and the abla-
tion rate.

The first attempt to describe the ablation of a pellet
was made by Parks et al. [1, 2], who developed the neu-
tral gas shielding (NGS) model in studying the deceler-
ation of the background plasma electrons in an expand-
ing spherical neutral gas cloud. This model makes it
possible to obtain simple formulas for the dependence

of the ablation rate , cloud temperature TN, and cloud
density nN on the pellet radius rp, the temperature T0 and
density n0 of the background plasma, and the atomic
mass MI of the pellet material [2]. The NGS model was
later refined by many authors [3–11]. Although the
NGS model is based on simple assumptions, it satisfac-
torily describes the ablation rates of the pellets and their

Ṅ
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lifetimes in experiments on various fusion devices [12].
This is why the model is widely used to estimate the
pellet penetration depths [13, 14]. On the other hand,
the NGS model (at least, in [2]) does not take into
account such factors as the shielding by the secondary
(ablated) plasma, which expands preferentially along
the magnetic field; the effects of the electrostatic
shielding of the cloud [15–17]; and the two-dimen-
sional character of neutral gas expansion. It is therefore
surprising that the NGS model is capable of satisfacto-
rily describing the experiment.

Because of the above internal contradictions of the
pellet ablation model, attempts have been made to
improve it. There are several possible ways of doing so.

First, it can be improved by a more accurate descrip-
tion of the deceleration of the background electrons
with allowance for their energy distribution [3, 18]. For
a hydrogen (or deuterium, or tritium) pellet, the subli-
mation energy is negligibly low, so that only an insig-
nificant portion of the heat flux carried by the electrons
that are in the tail of the distribution function reaches
the pellet. Macaulay [7] showed that, in a model with a
Maxwellian electron distribution function, the ablation
rate is four times higher than that in a model with a
monoenergetic electron beam.

The second way is to account for the geometric
effects associated with the fact that hot electrons move
along the magnetic field while the expansion of neutral
gas is essentially spherical [3]. This approach makes it
possible to incorporate the two-dimensional distribu-
tion of the ablation rate over the pellet surface and leads
to a coefficient of about 2 in the expression for the abla-
tion rate [3].
 © 2005 Pleiades Publishing, Inc.
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Third, it was proposed to take into account the fol-
lowing circumstance. After ionization, the particles
expand along the magnetic field rather that across it.
This provides a description of the pellet shielding with
allowance for the contribution of ionized particles. This
approach (which also accounts for the Maxwellian dis-
tribution of the background electrons) was called the
neutral-gas–plasma shielding (NGPS) model [18]; it
was further developed in [6–10].

The fourth way to improve the model is to take into
account atomic processes occurring at the pellet surface
(the sublimation and dissociation of molecules [19])
and in the cloud (radiation emission and ionization), as
well as the possible change in the shape of the pellet
[4, 8, 11].

Fifth, it was pointed out that a cold cloud surround-
ing the pellet is charged negatively with respect to the
background plasma. Parks et al. [2] considered the for-
mation of an electric field inside the cloud that is nec-
essary for the conduction current to balance the influx
of hot electrons. This potential was found to be low in
comparison to the energy of the hot electrons, so the
formation of the electric field in the cloud was not
incorporated into the NGS model [2]. In [15–17], it was

B, z

y

x, ∇ B

Vp

Plasma
cloud

Neutral
gas cloud

Pellet

Schematic representation of the cloud surrounding a pellet.
shown that, in one-dimensional geometry, the ambipo-
larity constraint and quasineutrality condition at the
interface between the hot background plasma and the
cold cloud lead to the onset of an electrostatic potential
on the order of the temperature of the background
plasma, ∆Φ ≈ (1–2)T0/e, which indicates a decrease in
the energy flux by a factor of exp(∆Φ). This effect was
called electrostatic shielding. Its influence on the abla-
tion rate was investigated, e.g., in [8–10].

Finally, the expansion dynamics of the cloud and its
shape are highly sensitive to the plasma polarization in
a nonuniform magnetic field and to the particle drift in
crossed electric and magnetic fields [20]. The effect of
the drift on the ablation rate is associated with the fact
that the plasma is blown away from the cloud toward
the low-field side of the torus. In [21], it was shown that
this process occurs primarily with the plasma at the
ends of a cigar-shaped cloud, so the shielding efficiency
of the ionized part of the cloud changes only slightly.
The particle drift influences not only the shielding effi-
ciency but also the distribution of the material ablated
from the injected pellet [22, 23]: the ablated material is
displaced a long distance toward the low-field side of
the torus. This displacement was observed in many
experiments on present-day tokamaks [13, 14, 24, 25].
When the particle drift is taken into account, the prob-
lem of the ablation of the pellet material becomes three-
dimensional.

The above effects were incorporated in various
numerical [7–11, 21, 26] and analytical [3, 10] models
of pellet ablation and pellet cloud evolution. There is
now no model, however, capable of providing a suffi-
ciently complete description of all of the above effects,
because the ablation of the pellet material is a rather
complicated process.

In the present paper, based on elementary physical
estimates, we propose simple scalings describing the
ablation rate of the pellet material as a function of the
parameters of the pellet and the background plasma, as
well as the cloud parameters. We estimate the relative
contributions of the neutral gas cloud and plasma cloud
to the shielding of the pellet. We also discuss the ques-
tion of why the results of calculations based on the
NGS model agree satisfactorily with the experimental
data.

2. NEUTRAL GAS SHIELDING MODEL

The NGS model provides a simple physical pattern
of the ablation of a pellet in a homogeneous plasma. In
the model, it is assumed that the neutral gas cloud
around the pellet (see figure) expands in a spherically
symmetric fashion and is heated by the background
plasma electrons that are decelerated within it. Let us
show how a simple analysis can lead us to the sought-
for scalings describing the ablation rate of the pellet and
the cloud parameters as functions of the pellet radius rp,
the temperature T0 and density n0 of the background
PLASMA PHYSICS REPORTS      Vol. 31      No. 12      2005
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plasma, and the atomic mass MI of the material of the
injected pellet.

Let r∗  be the characteristic radius of the neutral gas
cloud. Thus, the neutral gas density nN and the expan-
sion velocity V∗  are related by

(1)

The energy flux of the background electrons and the

divergence of this flux are on the order of qinc ~ 

(where me is the mass of an electron) and ∇  · qinc ~

, respectively. The latter estimate represents the

heat that is released within the cloud and goes primarily
into the expansion of the cloud, so we have ∇  · qinc ~
nNTN∇  · V. Insignificant energy losses by ionization and
radiation emission can be ignored. The time derivatives
are absent because a steady-state expansion is consid-

ered. Using the estimate ∇  · V ~ , we obtain

(2)

It is known [27] that the deceleration of a monoen-
ergetic electron beam in the cloud by Coulomb colli-
sions is described by the equation

(3)

where n is the instantaneous neutral density and Λ is the
Coulomb logarithm. The factor Z(Z + 1) arises because
of the following circumstance: along its path, a fast
electron collides with Zn electrons (either free or
bound), whose contribution to the cross section for
Coulomb collisions is equal to Zne4 · 14, and with n
nuclei, whose contribution is nZ2 · 12e4 (here, the num-
ber of electrons and nuclei is normalized to a unit vol-
ume). In our elementary dimensional analysis, we
ignore inelastic collisions and the electron distribution
over pitch angles.

In Eq. (3), we make the replacement  = 

(where s is the coordinate along the path of an electron)
and integrate over s to obtain

(4)

where s0 is the coordinate corresponding to the pellet
surface, V0 is the electron velocity at this surface, and
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V (∞) is the initial electron velocity in the background
plasma. Since the sublimation energy in hydrogen is
small, the shielding should be efficient enough for the
energy of the electrons that reach the pellet to be very
low. Consequently, we can set V0 = 0. The electrons that
reach the pellet have initial velocities higher than the

electron thermal velocity VT =  [28]; these are
the electrons that are in the tail of the distribution func-
tion. In order to take this effect into account, we will
use the estimate V (∞) = αVT and will retain the factor
α > 1 in further manipulations. Note that the case α = 1
corresponds to the approximation of the Maxwellian
electron distribution by a monoenergetic electron beam
with an energy equal to the electron temperature. This
approach was used in the earliest versions of the NGS
model [2].

The integral  can be estimated in order of

magnitude by nNr∗ , so relationship (4) can be rewritten
as

(5)

This relationship implies that the mean free path of
the background electrons should be on the order of the
cloud radius r∗ .

The set of Eqs. (1), (2), and (5) should be closed by
the additional assumption that the cloud expands at the
sound speed,

(6)

where MI = µImp, with mp being the mass of a proton.
In the approach utilized here, supplementing this rela-
tionship with the numerical coefficient γ = 7/5 for
hydrogen molecules (deuterium) or with γ = 5/3 for
atoms into which the molecules are dissociated would
lead to an excessive accuracy.

With the same accuracy, we can assume that r∗  = rp

because the pellet radius is the only characteristic
dimension in the problem under consideration (the
mean free path of the background electrons is equal in
order of magnitude to rp). After some algebra, from
Eqs. (1), (2), (5), and (6) we obtain

(7)

(8)

(9)

2T0/me

n sd
s0

∞∫

α 4
T0

2
4πZ Z 1+( )e

4ΛnNr*.∼

V* T N/MI,=

Ṅ
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The temperature T0 of the background plasma is
expressed in kiloelectronvolts, the density n0 of the
background plasma in units of 1013 cm–3, the pellet
radius in millimeters, the ablation rate in reciprocal sec-
onds, the temperature TN of the neutral gas cloud in
electronvolts, and the density nN of the neutral gas
cloud in units of 1018 cm–3. We then explicitly evaluate
the constants in order to convert expressions (7)–(9)
into a form suitable for calculations:

(10)

(11)

(12)

These are just the sought-for scalings. They differ
from the so-called Parks scalings [2] in the powers of

the temperature (the Parks scalings are such that  ~

, TN ~ , and nN ~ ). This difference
arises because, in [2], use was made of the results of
more accurate calculations of the cross section for elec-
tron scattering by neutral atoms [1], rather than of the
simple Rutherford cross section σ ~ V–4. If we set α ≈
3, we see that the numerical coefficients approximately
coincide with those presented in [2]. Recall that the
fraction of electrons that have passed through the cloud
and reached the pellet is equal to 1 – erf(α).

Formulas (7)–(9) describe the qualitative depen-
dence of the ablation rate and cloud parameters on the
parameters of the pellet and the background plasma.

The NGS model was further developed by various
authors. Kuteev et al. [3] and Houlberg et al. [18] pro-
posed to take into account the Maxwellian electron dis-
tribution function. In [3, 7, 11], two-dimensional mod-
els were constructed in which hot electrons were
assumed to fly along the magnetic field whereas the
expansion of the cloud was assumed to be spherically
symmetric (i.e., the cloud expanded exactly in the
radial direction).

In carrying out numerical simulations with allow-
ance for sublimation and dissociation, Macaulay [7]
analyzed the results of a model supplemented with the
assumptions that the electron flow is directed along the
magnetic field and that the electrons obey a Maxwellian
distribution and compared them to formulas analogous
to relationships (7)–(9) and with the Parks scalings [2].
He confirmed the conclusion of the preceding paper by
Kuteev et al. [3] that accounting for a Maxwellian elec-
tron distribution increases the ablation rate by a factor
of 4; however, taking into account the geometric effects
(the directional character of the electron flow) and
atomic processes, in turn, reduces the ablation rate by a
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factor of 2. The resulting scalings thereby turn out to be
very similar to the Parks scalings [2].

It should be noted, however, that with such improve-
ments, in which only one or several of the above effects
influencing the ablation of the pellet material are taken
into account, as well as with the original Parks model,
there remains an uncertainty in the numerical coeffi-
cient. In fact, each of these effects leads to a correction
to the numerical coefficient in expression (7) for the
ablation rate and to the powers of the parameters in the
scalings. However, the other effects lead to a correction
of the same order of magnitude and thereby can change
this numerical coefficient, as well as the powers of the
parameters, by an amount comparable to that intro-
duced by one of them.

The NGS model is incomplete because it does not
incorporate a wide class of phenomena, such as the
ejection of molecules and clusters from the pellet sur-
face, their dissociation and ionization, their interaction
with the tokamak magnetic field, the transition from
spherically symmetric expansion of the cloud near the
pellet to the expansion preferentially along the mag-
netic field, the magnetic field inhomogeneity, the pitch
angle scattering, inelastic processes, and the details of
the electrostatic shielding. The question as to why this
model nevertheless provides a successful description of
experiments will be discussed below.

3. NEUTRAL-GAS–PLASMA SHIELDING 
MODEL

In this section, we will apply the above qualitative
analysis to the NGPS model, which is a continuation of
the NGS model. One of the purposes of Houlberg et al.
[18]—the originators of the NGPS model—was to take
into account the contribution of the plasma cloud sur-
rounding the neutral gas cloud to the shielding of the
pellet (see figure).

We again assume that the cloud of neutral particles
around the pellet expands in a spherically symmetric
fashion. However, calculations [6, 29] show that, when
the degree of ionization becomes relatively high (about
5%), the Lorentz force created in the interaction of the
diamagnetic currents with the magnetic field becomes
strong enough to counterbalance the pressure gradient
force and the cloud stops expanding in the direction
transverse to the field. The cloud further expands pref-
erentially along the magnetic field (the transverse drift
and diffusion are ignored); as a result, it acquires a cigar
shape, observed in all pellet injection experiments (see,
e.g., [30]). The transverse size of the cloud is precisely
(to within a factor on the order of unity [29]) the dis-
tance the neutral particles travel before they become
ionized. We denote this distance by li .

We assume that the background electrons are decel-
erated both in the neutral gas cloud (with the character-
istic density nN and characteristic temperature TN) and
in the plasma cloud (with the characteristic density np
PLASMA PHYSICS REPORTS      Vol. 31      No. 12      2005
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and characteristic temperature Tp). In this section, we
ignore electrostatic shielding; its effect on the ablation
of the pellet material will be considered below. Since
the expansion of neutral atoms is spherically symmet-
ric, we can, as before, use formula (1), in which we
replace the expansion velocity V∗  with the sound speed

csN =  corresponding to the temperature of the
neutral gas cloud. As a result, we obtain

(13)

Upon ionization, the ions and electrons, as well as
the remaining neutrals, fly along the magnetic field.
Under the assumption that they fly within a cylindrical
channel of radius li , we obtain from the particle conser-
vation law the relationship

(14)

where csp =  is the sound speed in the plasma
cloud and the factor 2 reflects the fact that the particles
within the cylinder expand in two opposite directions.

Let the fraction of the background electron flux qinc
that reaches the neutral gas cloud be β (in this case, the
fraction of the background electrons that are deceler-
ated in the plasma cloud is equal to (1 − β)qinc), and let
all the energy released within the neutral gas cloud go
into the expansion of the cloud. By analogy with rela-
tionship (2), we then obtain

(15)

In the plasma cloud, the energy balance equation has
the form

(16)

where lz is the longitudinal size of the cloud and Ei is the
ionization energy (for hydrogen, we have Ei = 13.6 eV).
The second term on the right-hand side of relationship
(16) shows that the energy acquired by an originally
neutral atom as it travels a distance equal to the cloud’s
characteristic size is sufficient for its ionization. In the
original NGPS model [18], it was proposed to estimate
the longitudinal size of the plasma cloud by

(17‡)

This estimate corresponds to the assumption that ion-
ized particles are confined by the magnetic field, so, in
the reference frame associated with the pellet, they lag
behind the pellet. Accordingly, estimate (17a) gives the
distance the particles travel at the sound speed during
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the time required for the pellet to move a distance equal
to the transverse size of the cloud.

However, for the pellet parameters in present-day
tokamaks, a more realistic situation is that in which the
drift of ionized particles in a nonuniform magnetic field
leads to plasma polarization; as a result, the particles
drift toward the low-field side of the torus with the

acceleration g = , where R is the tokamak major

radius.
Hence, as the pellet travels a distance equal to the

transverse size of the cloud, the ionized particles travel
along the magnetic field a distance of only

(17b)

In what follows, we will discuss both of these alterna-
tive versions.

The possible effect of the poloidal drift in the radial
electric field on the shape of the cloud (and, accord-
ingly, on its longitudinal size) was discussed in [8]. It is
likely, however, that the radial electric field should be
almost completely shielded by the cloud’s self-field
(which ensures the common motion of the pellet and of
the cloud across the magnetic field, see [20] for details)
and should manifest itself only at the edges of the
cloud. This is why the effect of the poloidal drift on the
ablation rate of the pellet material seems to be quantita-
tively unimportant and thereby will be ignored in fur-
ther analysis.

In the case in question, the law by which the hot
electrons are decelerated, i.e., relationship (4), remains
valid. It is only necessary to represent the integral on its
right-hand side as the sum of the integrals over the neu-

tral gas cloud and plasma cloud,  ≈ nNrp + nplz.

Substituting this estimate into relationship (4) (and

again setting V0 = 0 and V (∞) = ), we obtain

(18)

In order to close the set of equations, we need two
more relationships. One of them is derived from the
assumption that the cloud expansion is continuous, i.e.,
is not accompanied by the onset of discontinuities and
shock waves; accordingly, the pressures in the neutral
gas cloud and in the plasma cloud should be of the same
order of magnitude:

(19)

Another relationship can be obtained by noting that,
since the ionization rate depends strongly on tempera-
ture, the temperature of the plasma cloud remains con-
stant from the beginning of ionization until all the neu-
tral atoms have become ionized. Hence, the last of the
required relationships has the form

(20)

2
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Setting Tp = 1 eV, we can ignore the first term on the
right-hand side of Eq. (16)—the one that describes the
expansion and heating of the cloud—and retain only
the second term, which describes energy losses by ion-
ization.

Equations (15), (16), and (19) then yield the follow-
ing relationships between the parameters of the neutral
gas cloud and those of the plasma cloud:

(21)

(22)

Using formulas (13), (14), and (22), we obtain the fol-
lowing relationship between the pellet radius and the
transverse size of the cloud:

(23)

Combining formulas (13), (14), and (18) gives

(24)

Using alternative relationships (17a) and (17b)
between lz and li, we arrive at the following two alterna-

tive sets of equations for  and β:

(25‡)

(25b)

respectively. Eliminating the ablation rate  in
Eqs. (25a) and (25b), we obtain the following two alter-
native equations for β:

(26‡)
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ṄT pβEi

2

4πrp
2

1 β–( )2
T p

--------------------------------------=

α 4
T0

2 4 Z Z 1+( )( )e
4Λ Ṅ
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Ṅ

As
1 β–( )2

β
------------------- 1 β–

β
------------Bs

β
1 β–
------------Cs+ 

  ,=
(26b)

where As = , Bs = ,

Cs = , and Ad =

.

Since Eqs. (26a) and (26b) are difficult to solve ana-
lytically, we solved them numerically for two sets of
plasma and pellet parameters typical of the present-day
tokamaks and of the projected ITER device.

For the parameters of the present-day tokamaks,
namely, T0 = 1 keV, Tp = 1 eV, Z = 1, rp = 0.1 cm,
n0 = 3 × 1013 cm–3, µI = 2, Vp = 5 × 104 cm/s, and R =
150 cm, Eq. (26a) has the solution βs = 0.013 and
Eq. (26b) has the solution βd = 0.014. Both these solu-
tions were calculated for α = 3.

This numerical analysis shows that the electrons of
the background plasma lose a significant portion of
their energy in the plasma cloud rather than in the neu-
tral gas cloud. In such circumstances, however, the con-
tributions of the neutral gas and plasma clouds to the
shielding of the pellet turn out to be approximately the
same (in order to see this, compare the two terms in
parentheses in Eqs. (26)).

For the parameters of the future tokamak reactor,
namely, T0 = 10 keV, Tp = 1 eV, Z = 1, rp = 0.3 cm,
n0 = 1014 cm–3, µI = 2, Vp = 15 × 104 cm/s, and R =
620 cm, the solutions are βs = 0.02 and βd = 0.38. Both
these solutions were again calculated for α = 3.

Using the smallness of the parameter β, we can
obtain approximate scalings that relate the ablation rate
and the parameters of the neutral gas cloud to the
plasma and pellet parameters and are analogous to scal-
ings (7)–(9). In fact, for β ! 1, we can assume that

(27)

and, instead of relationship (2), can write

(28)

Combining formulas (1), (5), (6), (27), and (28) (in
fact, we are considering the neutral gas cloud in the
same manner as in Section 2, but with allowance for the
fact that, after the background electrons have passed
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through the plasma cloud, their energy flux is attenu-
ated by a factor of β), we obtain

(29)

(30)

(31)

(32)

or

(33)

(34)

(35)

(36)

Here, the temperature T0 of the background plasma is
expressed in kiloelectronvolts, the density n0 of the
background plasma in units of 1013 cm–3, the pellet
radius in millimeters, the ablation rate in reciprocal sec-
onds, the temperature TN of the neutral gas cloud and
the ionization potential Ei in electronvolts, and the den-
sity nN of the neutral gas cloud in units of 1018 cm–3.

For T0 = 1 keV, Tp = 1 eV, Z = 1, rp = 0.1 cm, n0 =
3 × 1013 cm–3, and µI = 2 (and again for α = 3), scalings

(33)–(36) yield  = 2.2 × 1024 s–1, TN = 0.027 eV, nN =
1.51 × 1020 cm–3, and β = 0.12. For comparison, scal-
ings (10)–(12) with the same parameter values give

 = 3.3 × 1024 s–1, TN = 1.53 eV, and nN = 3.0 ×
1019 cm–3 (α = 2). Note that formulas (10) and (33)
yield approximately the same values of the ablation rate
and the values of the density of the neutral gas cloud
that are given by formulas (9) and (31) differ by a factor
of Z(Z + 1) = 2. At the same time, the NGS model
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Ṅ

Ṅ
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highly overestimates the temperature of the neutral gas
cloud: at temperatures higher than 1 eV, the ionization
processes and the interaction of the ionized particles
with the magnetic field become significant. However,
when the plasma shielding is taken into account, the
temperature values become more realistic.

4. EFFECT OF THE ELECTROSTATIC 
SHIELDING

Let us now consider how the electrostatic shielding
affects the ablation rate of the pellet material. Recall
that the shielding effect occurs at the interface between
the background plasma and the cold cloud surrounding
the pellet and serves to reduce the electron heat flux and
to ensure that the net current flowing into the cloud be
zero.

If the potential drop at the interface between the
background plasma and the cloud is equal to ∆Φ, then
the energy flux density of the originally Maxwellian
electrons after they have passed through the shielding

layer is reduced by a factor of , the mean

electron energy being unchanged. In other words, the
electron distribution function remains Maxwellian with
the same temperature but with a density reduced by a

factor of . In this case, the mean free path

of the background electrons, of course, does not change
but their number becomes smaller, indicating a lower
energy release in the cloud around the pellet.

Formally, this implies that, in calculating the abla-
tion rate, we must replace the background plasma den-
sity n0 in all the formulas of Section 3 with

n0 .

In a one-dimensional approach, the shielding poten-
tial was estimated in [8, 15–17]. Later on, an attempt to
take into account the effect of fast ions was made by
Kuteev and Kostrukov [9], who showed that this poten-
tial is on the order of several units of the background
plasma temperature, e∆Φ ~ T0. In their numerical sim-
ulations, Garzotti et al. [10] chose the value e∆Φ = 2T0.

Within the cloud, the current of hot electrons to the
pellet is neutralized by the conduction current of cold
electrons, which is directed outward from the pellet.
This conduction current in the cloud also is maintained
by a potential drop, which, however, is much lower than
the energy of the hot electrons, as follows from the esti-
mates made by Parks [2] and from the results of numer-
ical simulations carried out by Lengyel et al. [26].

Hence, the main effect of the electrostatic shielding
is an effective decrease in the background plasma den-
sity. Following Garzotti et al. [10], in our simple model,

e∆Φ
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 exp

e∆Φ
T0

----------- 
 exp

e∆Φ
T0
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we can set e∆Φ = 2T0. In this case, formulas (33)–(36)
become

(37)

(38)

(39)

(40)

5. DISCUSSION OF THE RESULTS

In Section 2, we have presented the simplest quali-
tative estimates of the ablation rate of the pellet mate-
rial under the assumption that the pellet is surrounded
only by a neutral gas cloud. These estimates, which
underlie the NGS model, reflect the main processes
occurring in the neutral gas cloud around the pellet,
specifically, the expansion of the cloud and the heating
and deceleration of the background electrons in it.

In Section 3, we have obtained analogous qualitative
estimates with allowance for the shielding of the pellet
by a plasma cloud produced as a result of the ionization
of the neutral particles in the gas cloud. These simple
estimates show that only a small portion (about 1–2%)
of the energy flux of the background electrons reaches
the neutral gas cloud while essentially all the electron
energy flux is attenuated within the plasma cloud. This
is why the NGS model, which does not take into
account the presence of the plasma cloud, is incom-
plete.

Scalings (29), (33), and (37), which have been
obtained for the ablation rate of the pellet material with
allowance for the plasma shielding, are very similar to
the Parks scalings [1] and to the scalings derived by
Garzotti et al. [10]. The similarity concerns the powers
of the corresponding parameters of the background
plasma and of the pellet. Let us make a more detailed
comparison of formula (37) to the following formula
from [10]:

(41)

This scaling was obtained via numerical simulations
of a wide diversity of experiments from the Interna-
tional Pellet Ablation Database (IPADBase) [12] by
adjusting the coefficients in the powers of the parame-
ters in a way to provide the best possible description of
the experimental results. In the simulations, the electro-
static shielding was taken into account by choosing the
shielding potential such that e∆Φ = 2T0. The numerical
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results and, accordingly, the scalings were shown to
agree with the experiments.

Ignoring the cross dependence on the quantities in
the powers of the parameters in scaling (41) (the corre-
sponding coefficients are small), we arrive at the fol-
lowing expression for the ablation rate (we have
already set µI = 2, R = 1.5 m, and B = 2.5 T):

(42)

where the temperature T0 of the background plasma is
expressed in kiloelectronvolts, the density n0 of the
background plasma is in units of 1013 cm–3, and the pel-
let radius is given in millimeters. For T0 = 1 keV, rp =

0.1 cm, and n0 = 3 × 1013 cm–3, formula (42) yields  =
2.5 × 1024 s–1.

Substituting the parameter values α = 3, Z = 1, Tp =
1 eV, Ei = 13.6 eV, and µ = 2 into scaling (37) gives

(43)

where the temperature T0 of the background plasma is
also expressed in kiloelectronvolts, the density n0 of the
background plasma is in units of 1013 cm–3, and the pel-
let radius is in millimeters. For T0 = 1 keV, rp = 0.1 cm,
and n0 = 3 × 1013 cm–3, formula (43) yields an ablation

rate of  = 0.82 × 1024 s–1. For comparison, with the
same parameter values, the corresponding Parks scal-

ing [2] gives  = 1.06 × 1024 s–1.
We thus see that scaling (37) also agrees satisfacto-

rily with the scaling in the NGS model and is capable
of describing the pellet injection experiments.

The remaining cloud parameters calculated from
formulas (38)–(40) are as follows: TN = 0.037 eV, nN =
7.5 × 1019 cm–3, and β = 0,004. The plasma cloud den-
sity estimated from formula (22) is equal to np ≈ 5.2 ×
1017 cm–3. These parameter values agree satisfactorily
with the measurement data obtained by Müller et al.
[31] (a plasma cloud temperature of (1–4) eV and a
plasma cloud density of (1.0–3.5) × 1017 cm–3) and with
the numerical results calculated by Pegourie and Pic-
chiotino [6] and Senichenkov et al. [21].

Since the NGS model does not take into account the
strong plasma and electrostatic shieldings, the fact that
it agrees with formulas (37) and (42) appears at first
glance to be surprising. This can be explained as fol-
lows.

Let the energy flux of the hot electrons that have
passed through the regions of the electrostatic and
plasma shielding and have reached the neutral gas
cloud just near the pellet be attenuated by a factor of β
(this is precisely the above definition of the parameter
β—the fraction of the background electrons that reach
the neutral gas cloud). In this case, in the analysis car-
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ried out in Section 2, we must formally replace n0 with

βn0. However, the ablation rate  depends weakly on

the background plasma density n0,  ~ ; conse-
quently, when the electron energy flux is attenuated by
a factor of β, the ablation rate decreases by a factor of
only β1/3, i.e., by a considerably smaller amount.

Our rough estimates (see formula (37)) yield β =
0.004 and, accordingly, β1/3 ≈ 0.15. Hence, when both
the electrostatic and plasma shieldings are taken into
account, the ablation rate is six to seven times lower
than that predicted by the NGS model without allow-
ance for the kinetic effects. However, when the electron
distribution function is assumed to be Maxwellian, the
ablation rate becomes higher by approximately the
same factor (α = 3, α2 = 9). This indicates that the coef-
ficient α effectively takes into account the fact that the
cloud should be thick enough to stop the hottest elec-
trons from the tail of the Maxwellian distribution func-
tion.

In this case, it is important that, for the parameters
chosen above (namely, those of the present-day toka-
maks), the contributions of the neutral gas cloud and
plasma cloud to the shielding of the pellet turn out to be
approximately the same; consequently, ignoring the
thickness of the plasma cloud leads us to an error of
about a factor of 2.

Note that, since the density of the neutral gas cloud
is proportional to α4 (see formula (31)), accounting for
the kinetic effects (by introducing the coefficient α)
substantially increases the shielding efficiency of the
neutral gas cloud, in agreement with the results
obtained by Kuteev and Tsendin [28].

As a result, the ablation rates calculated from the
Parks scaling and from scaling (37) proposed here dif-
fer by a factor of less than 2, so our rough scaling can
well be used for estimates. Note finally that numerous
improvements and refinements of the NGS model do
not lead to a greater reliability of the predictions in
comparison to that provided by scalings (7)–(9)
because, by accounting for, e.g., the variable shape of
the pellet while simultaneously ignoring the plasma
shielding, it is impossible to appreciably increase the
accuracy of the model.

6. CONCLUSIONS

In this paper, we have qualitatively analyzed the
NGS and NGPS models and have indicated the main
physical processes that govern the formation of the
shielding cloud and, accordingly, the ablation rate of
the pellet material. In the NGS model, these are the
expansion of the cloud and its heating, as well as the
deceleration of the background plasma electrons in it.
This model makes it possible to obtain simple analytic
formulas relating the ablation rate and cloud parame-
ters to the parameters of the background plasma and

Ṅ

Ṅ n0

1
3
---
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pellet parameters. For the NGPS model, we have car-
ried out a similar analysis with allowance for the decel-
eration of the background electrons in the plasma cloud
surrounding the neutral gas cloud. We have considered
two cases: that in which ionized particles are stopped
by the magnetic field and that in which they drift toward
the low-field side of the torus. For both cases, we have
compared the estimates of the efficiency of neutral gas
shielding and plasma shielding and have shown that the
main portion of the energy flux of the background elec-
trons is released in the plasma cloud. We have derived
formulas for the ablation rate and plasma parameters in
the NGPS model and have found that the ablation rate
is approximately the same as that in the NGS model. At
the same time, the NGPS model has been found to yield
more reasonable parameters of the neutral cloud than
does the NGS model.

We have discussed the question of why the NGS
model describes well the ablation rate of the pellet
material, although it does not take into account the ion-
ization effects and the effects related to the interaction
of ionized particles with the magnetic field. The reason
is that the ablation rate depends weakly on the density
of the hot electrons and, consequently, on their energy
flux, which is proportional to their density. As a result,
the attenuation of this flux by the electrostatic shielding
and plasma shielding has only a slight influence on the
ablation rate. This justifies the use of the NGS model to
estimate the ablation rate (to within a factor of about 2).

Hence, in spite of its simplicity, the NGS model can
be used to estimate the ablation rates of pellets over a
wide range of the parameters of the pellet and the back-
ground plasma. The NGS model, however, is inapplica-
ble for calculating the parameters of the cloud (espe-
cially its temperature), so it is necessary to use more
elaborate and accurate models.
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