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For describing the electrodynamics of hard super-
conductors, the critical-state model is widely used.
According to this model, a current with a density
assumed to be critical is induced in a hard superconduc-
tor as a response to any external perturbance giving rise
to an electric voltage in this superconductor. For sub-
stantiating this model, the idea of pinning vortices
according to which the vortex structure relaxes to the
equilibrium state between the pinning and Lorentz
forces acting on a vortex. In this case, the nonlocal
dynamics of vortices is described by a macroscopic
function, namely, the magnetic induction. This is true
when the vortex density varies gradually in the spatial
scale on the order of the London depth. In these cases,
the evolution of the magnetic flux is a direct conse-
quence of the collective nature of diffusion processes
proceeding in hard semiconductors as a response to
macroscopic perturbances of various nature. For such
phenomena, the critical-state model makes it possible
to investigate quasistatic properties of a hard supercon-
ductor in a simple and obvious form and to calculate
both its magnetization and energy loss for remagnetiza-
tion using only the equation

curlB = µ0Jc.

Here, Jc is the critical-current density in a superconduc-
tor. However, generally speaking, this value is, to a cer-
tain degree, conventional, which is associated with the
fact that the voltage nonlinearly increasing with the
electric current arises inside a hard superconductor well
before the value Jc is attained. This is the region of the
magnetic-flux creep in which the vortex lattice comes
gradually into motion.

The investigation of the nature of the transport fea-
tures and magnetic properties in superconductors of the
second kind within the region of the magnetic-flux
creep is of perpetual significant interest, especially in
recent years in connection with discovering high-tem-
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perature superconductors [1–7]. At the same time, in
the cases when the screening currents incompletely
penetrate a sample, no fundamental physical regulari-
ties in the electrodynamic behavior of a hard supercon-
ductor are formulated taking account of the creep.
There are also a number of ambiguous solutions [3, 4]
for high-temperature superconductors.

As follows from the creep thermal-activation
model [1], the relation between the electric-field
strength and the current density is described by the
exponential function

where Ec is the constant dependent on vortex-lattice
parameters, T is temperature, and U(J) is the potential
barrier for thermal fluctuations. In the case of U(J) =
U0(1 – J/Jc) (U0 is the vortex activation energy), this
expression can be written in the form

(1)

where Jδ = kTJc /U0 .
In spite of the fact that formula (1) is universal for

superconductors of the second kind in a wide range of
variation of the electric-field strength, it has a number
of singularities. First, E ≠ 0 for J = 0. Second, the ther-
mal-activation model leads to a linear dependence of
the parameter Jδ on the superconductor temperature. At
the same time, no similar dependence is observed for
actual hard superconductors [8–10]. In this case, a
number of phenomenological models have been formu-
lated on the basis of numerous experiments, and, along
with (1), the equation of the type presented in [10] can
be used:

(2)

where ρn is the superconductor specific electric resis-
tance in the normal state, Tc is the superconductor crit-

E Ec
U J( )

kT
------------– 

  ,exp=

E Ec

J Jc–
Jδ

-------------- 
  ,exp=

E Jρn
J
Jδ
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ical temperature, T is the superconductor temperature,
and Jδ and Tδ are the electric-current constant and tem-
perature constant for the electric-field strength growth.

Equation (2) allows us to avoid an ambiguity asso-
ciated with appearing nonzero values of E in (1) and
also to take into account an effect of the finite increase
in the superconductor temperature on the state’s stabil-
ity in the creep region [11]. It turns out to be possible to
describe the actual experiments on determination of
conditions for the conservation of the superconductiv-
ity in complex superconducting structures based on
hard superconductors [12, 13]. Moreover, if we intro-
duce Jk = Jδ(Tc – T0)/Tδ (where T0 is the coolant temper-
ature), which can be interpreted as a maximum possible
value for the dissipation-free electric-current density in
a hard superconductor, model (2) transforms into the
critical-state model (Jk  Jc) [10] for Jδ, Tδ  0. In
this paper, we invoke dependence (2) and study features
of a macroscopic mechanism for the magnetic-flux dif-
fusion inside a hard superconductor.

We consider a well-cooled semi-infinite supercon-
ductor. Let a uniform external magnetic field parallel to
the superconductor boundary surface be absent at an
initial moment and then begin to grow with a constant

rate  = . To simplify the analysis to be done, we

assume that the critical temperature of the supercon-
ductor depends only parametrically on the induction of
the external magnetic field. Then, in the isothermal
approximation, the set of Maxwell equations

with respect to the electric-field strength is reduced to
the initial boundary value problem of the form:

(3)

(4)

where, according to (2),  = .

We estimate the multiplier ahead of the derivative
with respect to time in equation (3). Taking into
account the fact that δ = Jδ/Jk ! 1 [10] in hard super-
conductors, while J < Jk in the region of the magnetic-
flux creep, it is easy to find from equation (2) 

Therefore, by virtue of the smallness of this term, we

Ḃ
dB
dt
-------

B∂
t∂

------- curl E, curl B– µ0J= =
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J∂
E∂

------ E∂
t∂
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Jkρn
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J
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------------------- 
    !  1.exp=                          
obtain after obvious transformations

Thus, instead of equation (3), we can consider a simpli-
fied equation of the form

We seek its solution in the class of the self-similar
functions [14] by virtue of the existence of the one-
parameter group of transformation with two invariants
of the form

In this case, the initial problem is reduced to inte-
grating the ordinary differential equation with respect
to V(Z)

(5)

with the boundary conditions

(6)

In Fig. 1, we plot the family of possible phase trajec-
tories for equation (5), which, in the case of Z = 0, sat-
isfy the desired boundary condition. Among the invari-
ants shown, only the dashed curve describes a unique
solution to equation (5). Actually, in the phase trajecto-
ries lying below the dashed curve, the sections with
negative values of V(Z) appear. Therefore, these
solutions do not satisfy the physical meaning of equa-
tion (3). In the phase trajectories lying above the dashed

curve, the positive values of  exist; i.e., in this case,

the requirement of boundedness for the values of V(Z)
as Z  ∞ is violated. Therefore, boundary value prob-
lem (5), (6) belongs to the class of problems for which
the bounded solution exists in a finite region [15]. In
this case, it is easy to show that the desired invariant
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, it is necessary to use the condition of con-
tinuity for the magnetic induction at the superconductor
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surface. In the case under consideration, this condition
has the form

(7)

where x0(t) = Z0 t/µ0Jδ.

These results show that, in the case of the macro-
scopic diffusion of magnetic vortices, the electromag-
netic field induced by them occupies a bounded space
in the hard-superconductor bulk. In other words, even
in the presence of the creep, the electromagnetic field
cannot instantly penetrate a hard superconductor for an
infinitely large distance but propagates across it with a
constant velocity in the form of a wave. On the wave
front x0(t), which separates the magnetized region from
the region into which no magnetic flux has yet pene-
trated, both the electric-field strengths and magnetic
induction and all their derivatives with respect to the
spatial coordinate are equal to zero. This fact represents
a characteristic feature of the mechanism for diffusion
processes proceeding in hard superconductors as a
response to external perturbances of various nature.

Using the properties discussed of the V(Z) invariant,
we pass from boundary value problem (5), (6) to the
equivalent integral equation of the second kind

For solving this equation, it is reasonable to use the
method of successive approximations. It turns out in
this case that even the linear approach V0 = Z0 – Z
approximates the desired values of V(Z) with a good
accuracy virtually within the entire range of variation
of Z. By virtue of the above-considered specific fea-
tures of the V(Z) invariant, a slight difference is
observed only in a small neighborhood of the point
Z = Z0 .Therefore, in the linear approximation, the elec-
tric-field strength induced by the magnetic-flux diffu-
sion inside the hard superconductor is described by the
expression

In this case, the distribution of the magnetic-field
induction inside the hard superconductor has the fol-
lowing form in quadratures:

Substituting the corresponding value E(x, t) into this
formula and into (7) and using simple manipulations

with allowance for the relationship x0(t) ! Jkρn/ , we

µ0 J x t,( ) xd

0
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∫ dB
dt
-------t, t 0,>=

Ḃ
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E
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  x.d

0

x

∫–=

Ḃ
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easily find the linear approximation for the magnetic-
field induction

(8)

and the law of growth for the magnetization boundary
x0(t) = vt penetrating the hard superconductor with a
constant velocity

(9)

The presented expressions enable us to find an ana-
lytical expression for the magnetic moment of a super-
conductor as a function of time and the rate of variation
of the external magnetic field. According to linear
approximation (8), (9) and in the case of incompletely
penetrating screening currents into a superconducting
plate with a half-width a, the desired value of the mag-
netic moment is
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dt
-------t µ0Jkx–=

+ µ0Jδ x x0 x–( )

dB
dt
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Fig. 1. Phase plane for problem (5), (6).
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It should be noted that, as was indicated previously,
model (2) transforms into the critical-state model for Jδ,
Tδ  0. It is easy to verify that this passage to the
limit is fulfilled for all the above-written linear approx-
imations of the corresponding expressions describing
the macroscopic pattern for the diffusion of magnetic
vortices.

In order to verify the analysis performed, we carried
out a certain numerical experiment. In Fig. 2, for vari-
ous time moments, dashed lines present linear approx-
imations of the spatial distribution for the strength of
the electric-field induced inside the Nb–Ti supercon-
ductor by an external magnetic field varying with the

rate  = 1 T/s. Here, the solid lines present the

numerical results obtained on the basis of the direct
solution to the nonlinear initial boundary value prob-
lem (3), (4). The initial parameters were given to be
equal to

ρn = 5 × 10–7 m, Jδ = 4 × 107 A/m2,

Tδ = 0.048 K,  Tc = 9 K, T0 = 4.2 K.

In the numerically solving problem (3), (4), the plate
half-width was assumed to be 10–6 m.

In the insert to Fig. 2, we show the character of vari-
ation of the electric-field strength immediately near to
the mobile boundary of the magnetization region. By
virtue of the smallness of the spatial section, the figure
is plotted schematically. Nevertheless, the curve pre-
sented is obtained on the basis of the numerical calcu-

dB
dt
-------

5

6

2 4 6
–1

0

0

1

2

3

4

E, 10–8 V/m

x, 10–8 m

1 2 3 4

x

E

Fig. 2. Distribution of the electric-field strength inside the
Nb–Ti superconductor: t = (1) 0.9 × 10–4 s, (2) 1.2 × 10–4,
(3) 1.5 × 10–4, (4) 2 × 10–4 s.
lation of problem (3), (4), which was carried out with a
necessary accuracy in the neighborhood of this boun-
dary.

In Fig. 3, the corresponding time variation of the
coordinate for the magnetization-region front is shown.
The appearance of the horizontal section indicates the
complete penetration of the magnetic flux into the
superconductor.

The results presented in Figs. 2 and 3 obviously
demonstrate features of the electrodynamic behavior of
a hard superconductor in the region of the magnetic-
flux creep, which were formulated above.

Thus, in the case of incomplete filling of the cross
section of a hard-superconductor plane-parallel plate
by screening currents, the diffusion of the magnetic
flux in the creep region proceeds with a constant rate as
in the Bean critical-state model. Therefore, when arbi-
trary external perturbances act upon a hard supercon-
ductor, an electromagnetic field, which exists only
within a finite region, is induced in the superconductor.
Such a situation takes place even in the case when the
electric-field, appearing well before the critical current
has been attained, exists inside the superconductor. In
this case, the spatial distributions of both the electric-
field strength and the magnetic-field induction are well
approximated with a good accuracy (not only qualita-
tively but also quantitatively) by linear dependences.
However, in contrast to the critical-state model with the
creep in a small neighborhood of the mobile magneti-
zation-region front, the magnetic induction and the

1.5 4.50

2

4

6

8

10
x0, 10–7 m

t, 10–3 s

3.0

Fig. 3. Time dependence of a position for the magnetiza-
tion-region front. The calculation is performed in the linear
approximation (dashed line) and on the basis of the numer-
ical solution to problem (3), (4) (solid line).
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electric-field strength approach smoothly unperturbed
values.
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It is shown in paper [1] that, in the case of existence
strains (i.e., nonzero strain-rate tensor), hydrodynamic
flows are locally unstable everywhere with respect to
eddy perturbations. To be exact, for the given strain-
rate tensor

there is always a direction, such that a curl of velocity
oriented along it grows in absolute value. This direction
is determined by one or two eigenvectors correspond-
ing to the matrix dik for one or two positive eigenvalues.
In turn, the positive eigenvalues exist always due to the
incompressibility condition (divv = 0), which leads to
zero trace of the matrix dik and, consequently, to the
zero sum of all three eigenvalues.

As a result, the eddy flow component (the vector w)
turns out to be related to its deformation component
(the tensor dik) by the Helmholtz hydrodynamic equa-
tions [2]

(1)

that leads finally to a symmetry spontaneous violation
after the instability has developed. This fact implies
that symmetry of the flow under investigation changes
when random origination and unstable development of
new vortices occur.

It is interesting to clarify the inverse dependence of
the flow deformation on the flow vorticity and to derive
a system of equations determining an interdependent
behavior of dik and ωi . For this purpose, we, first, differ-
entiate the ith and kth components of the hydrodynamic
equations with respect to xk and xi , respectively, and

dik
1
2
---

∂v i

∂xk

--------
∂v k

∂xi

---------+ 
 =

∂ωi

∂t
-------- v—( )ωi+

1
2
---

∂v i

∂xk

--------
∂v k

∂xi

---------+ 
  ωk νcurlicurlw,–=

w curlv,=
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then summarize the results obtained. This yields the
following equation for dik:

(2)

where  =  + (v—), ϕ is the potential of the external

force —ϕ, and the summation is performed over identi-
cal indices.

System of equations (1), (2) describes simultaneous
behavior of the deformations dik and velocity curls ωi in
hydrodynamic flows. The choice of these quantities as
observable ones agrees with the general concept for
equations to be invariant under the Galilean transfor-
mations. In fact, here, the observable quantities are pre-

sented by the spatial velocity gradients  and their

time derivatives . At the same time, the tensor 

can be decomposed into the symmetric and antisym-
metric parts:

These symmetric and antisymmetric parts determine
deformation and vorticity of flows, respectively. Thus,
both these parts are coupled by the formalized laws of
conservation (1), (2).

Terms containing pressure and the external force
represent disadvantage of equation (2) with respect
to (1), since owing to these terms, local qualitative
investigation of dik as a function of ωi becomes more
difficult. Therefore, we start with considering a simpler
case of interdependent behavior of their absolute values
estimated by d2 = dikdik and ω2 = ωiωi. Scalar multipli-

ddik
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--------- dindnk

1
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---ω2δik

1
4
---ωiωk
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∂xi∂xk
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cation of (1) by w and (2) by dik (with respect to the
indices i and k) yields

(3)

(4)

where d3 = dindnkdki . Equations (3) and (4) determine
time dependence of squared moduli of the both strain
and velocity curl on four factors, which are described
by four different terms occurring in the right-hand sides
of (3) and (4). The strictly negative terms proportional
to the viscosity ν describe dissipative processes. The
divergence terms describe an additional contribution to
the time variation of the velocity curl and the strain that
inflows (outflows) to (from) a space point under consid-
eration from (to) its nearest neighborhood. After inte-
grating over volume of a closed system, these terms
turn into surface integrals and disappear by virtue of
boundary conditions. The terms ωidikωk entering with
opposite signs into the right-hand sides of (3) and (4)
are mostly interesting. For such a term in (4) resulting
in an increase (decrease) in a degree of vorticity, a sim-
ilar term in (3) having the opposite sign causes a simul-
taneous decrease (increase) in the strain level. In other
words, the terms ωidikωk describe a nonlinear channel
of energy transfer from the vortex motion to that caused
by deformation and vice versa. As a result, the transfer
intensity depends on a mutual configuration of ωi and
dik , as well as on their absolute values. Such a mutual
transformation of vortex-induced and deformation-
induced flows into each other represents a very impor-
tant component of, to some extent, the chaotic process
of flow variability. It clearly manifests itself in the ana-
lytic approach based on using the quantities dik and ωi

as observable ones. It is worth noting here that, in con-
nection with problems of field generation in magneto-
hydrodynamics and electrical hydrodynamics, nonlin-
ear pendulum-type transformation of energy of defor-
mation-induced flows into that of electric and magnetic
fields, and vice versa was discussed previously in [4, 5].
Moreover, the transformation was described in terms of
the type AidikAk , where the vector A represented either
electric-field (E) or magnetic-field (H) intensities. It is
of interest to note that certain features of uniform iso-
tropic turbulence simulated numerically in [3] implied
such a transformation. The instability caused every-
where by eddy perturbations (at a given strain), which
was discussed in [1], proves to be a part of a general
pendulum-type process for mutual strain-to-vortex
transformation. In this case, it was noted [1] that it is
basically impossible to magnetically confine the
plasma in magnetohydrodynamics.

dd2

dt
-------- –
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---------–=

+
2
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2
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The term in (3) proportional to d3 is of no less
importance and interest. It proves to be related to the
fundamental phenomenon of intermittent behavior in
the problem of turbulence. This fact is analyzed below.
The quantities d2 and d3 occurring in (3) and (4) repre-
sent contractions of the tensor dik with respect to the
indices i and k, that is, scalars. Therefore, in the refer-
ence system related to the principal axes of contrac-
tion–tension, considerations of invariance allow these
quantities to be substituted by the following expres-
sions containing the principal values λk of the contrac-

tions tension: d2 =  +  +  and d3 =  +  + .
With the use of the incompressibility condition d3 =
3λ1λ2λ3, the expression for d3 can be written as divv =
λ1 + λ2 + λ3 = 0. Taking this relation into account and
combining (3) and (4) together yield

(5)

Equations (4) and (5) help us to estimate qualita-
tively the state of flows with respect to their deforma-
tion and vorticity. We note first that the second term in
the right-hand side of (5), which contains square brack-
ets, is always negative and determines viscous dissipa-
tion. The term with braces in (5) represents divergence
and determines the inflow (outflow) of vortices and
strains to (from) the point under consideration from (to)
its vicinity. After integrating over volume, this term
vanishes because of zero boundary conditions. There-
fore, after the above-mentioned integration, we obtain
from (5)

(6)

We now consider different cases of time behavior of
absolute values for both velocity curls and strains.
According to (6), the time variation of the sum of
squares for both the velocity curl ω2 and the strain d2

depends essentially on sign and value of the volume-

averaged product of all three eigenvalues . The
sign of this product is opposite for each of the two pos-
sible local vortex structures. It is positive when domi-
nant structures correspond to one positive and two neg-
ative eigenvalues, i.e., when vortices capable of grow-
ing have the velocity curl directed along an eigenvector
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calculated for the matrix dik at the positive eigenvalue.

Then, the relations  < 0 and  > 0

yield  < 0. Consequently, for flows in which one

positive eigenvalue dominates (the case of tension
along one of the axes), an intense growth of vortex
tubes is accompanied by a decrease in strains, that is, by
the energy transfer from the strains to the vortices
through a channel described by the term ωidikωk . As a
result, such a state cannot exist long, because this effect
(development of vortex tubes) leads inevitably to liqui-
dation of the cause (the strains).

The other possible vortex structure called a pan-
cake-like or sheet-like one [3, 6], is associated with
dominance of two positive and one negative eigenval-

ues. Then, the average product  occurring in the
right-hand side of (6) proves to be negative and the gen-
eral time dependence in (5) (without taking into
account the dissipative terms) becomes positive. Con-
sequently, the growth of vortices maybe is not followed
by a decrease in the degree of deformation. However,
the dependence of |ω| on the corresponding positive
term λi is stronger than a linear function [this fact
results from (4)]. Therefore, the absence of decreasing
the strains does not proceed long and can lead to a
decrease in the deformation level. Anyhow, vortices
whose positive eigenvalue is modulo intermediate and,
consequently, the smallest will exist longer. As a result,
flows characterized by two positive eigenvalues prove
to be the most tenacious of life (although, less intense
than the vortex tubes). Moreover, in this case, vortices
that must become dominant in the due course have
velocity curls directed along an eigenvector calculated
for the matrix dik at the intermediate positive eigen-
value. The conclusions based on the investigation pre-
sented here agree with the results of numerical simu-
lation for developed homogeneous isotropic turbulence
[3, 6].

As a limiting case, we can consider a vortex motion
with velocity curls directed mainly along the eigenvec-
tor corresponding to the zero eigenvalue. This case is
treated in [6] as similar to two-dimensional. Here, how-
ever, an interesting problem arises. It concerns investi-
gating a special class of solutions for which det(dik) = 0.
Because of this condition, the system of equations for
vi and p [equations (1) and (2)] becomes overdeter-
mined that often corresponds to the continuity break-
down. In solids, a special class of solutions can be asso-
ciated with the development of instability leading to fis-
suring.

Finally, it is of interest to consider the case of quasi-
steady (on the average) developed vortex flows of a

low-viscosity fluid. Then, the quantity  appear-

d d
2 ω2 4⁄+( )

dt
--------------------------------- dω2

dt
---------

dd
2

dt
--------

λ1λ2λ3

λ1λ2λ3
ing in the right-hand side of (6) must be equal to zero.
This implies such a flow pattern at which both possible
above-discussed vortex structures (with λ1λ2λ3 > 0 and
λ1λ2λ3 < 0, respectively) exist in space and time. They
alternate with each other, i.e., vortex tubes with intense
periodic vortex motion give place to less intense plane
pancake-like structures. These facts reveal a cause of
intermittent behavior (alternation) representing the fun-
damental feature of developed turbulence and discov-
ered previously by experimental and numerical model-
ing [3, 6, 7]. On the other hand, in the closed systems,
zero value of the time derivative occurring in is caused
by intermittent behavior of the two alternative flow
structures, which are characterized by opposite signs of
the product λ1λ2λ3 . Consequently, the approach based
on using the strains dik and the velocity curls ωi as
observable quantities reveals the fundamental fact that
the intermittent behavior causes conservation of the
sum of squares of both the strains and velocity curls and
vice versa. This new law of conservation is important
for theory of developed quasi-steady turbulence.

We note in conclusion that, since the terms ωidikωk

and λ1λ2λ3 occurring in (4) and (5) vanish in the two-
dimensional case, the two effects revealed here are
three-dimensional in principle. They exhibit the nonlin-
ear pendulum-type energy exchange between vortices
and strains and the fact that conservation of the sum of
squares of velocity curls and strains relates to the

totally intermittent behavior (  = 0). Both effects
lead inevitably to three-dimensional chaos. However,
because of causality existing always between vortices
and strains, this chaos is ordered to some extent.
Numerical simulation of developed homogeneous tur-
bulence, which was carried out in [6], revealed a certain
organization of turbulent chaos as well.

REFERENCES

1. V. A. Dubrovskiœ, Dokl. Akad. Nauk 356, 36 (1997)
[Phys.–Dokl. 42, 464 (1997)].

2. N. E. Kochin, I. A. Kibel’, and N. V. Roze, Theoretical
Fluid Mechanics (OGIZ, Leningrad, 1948), Vol. 2.

3. Z.-S. She, E. Jackson and S. A. Orszag, Nature 344
(6263), 226 (1990).

4. V. A. Dubrovskiœ, Dokl. Akad. Nauk SSSR 286, 74
(1986).

5. V. A. Dubrovskiœ and N. N. Rusakov, Dokl. Akad. Nauk
SSSR 306, 64 (1989).

6. A. Vincent and M. Meneguzzi, J. Fluid Mech. 225, 1
(1991).

7. L. D. Landau and E. M. Lifshits, Hydrodynamics
(Nauka, Moscow, 1986).

Translated by Yu. Verevochkin

λ1λ2λ3
DOKLADY PHYSICS      Vol. 45      No. 2      2000



  

Doklady Physics, Vol. 45, No. 2, 2000, pp. 55–57. Translated from Doklady Akademii Nauk, Vol. 370, No. 6, 2000, pp. 757–759.
Original Russian Text Copyright © 2000 by Ya. Kobelev, L. Kobelev, Romanov.

                                                                  

PHYSICS
Fractal Dimensionality of a Surface
as an Order Parameter
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Many properties of solids (including properties of
their surfaces) can be described on the basis of experi-
mental and theoretical studies of fractal dimensionality
for crystallite surfaces. This description is based on an
assumption, confirmed experimentally, that the distri-
bution of surface clusters consisting mainly of atoms
composing the crystallite surface is governed by frac-
tal-geometry laws [1]. Many physical properties for a
set of atomic clusters on a surface of a polycrystal and
on crystallite surfaces inside a polycrystal can be
described, in a rather good approximation, as properties
of fractal sets (which are represented by these clusters).
In the last decade, as a result of a large number of phys-
ical and materials-technology studies [2], the concept
of a fractal dimensionality for these sets has become a
new physical characteristic of solids, which is associ-
ated with their strength, friability, kinetics of cracking,
and roughness of their surfaces. This characteristic
depends on temperature, pressure, as well as both con-
ditions and duration of crystallite growth, etc. and is
widely used for describing physical properties in solid-
state physics, materials technology, and other fields of
physics. Nevertheless, in the majority of papers we
know, when theoretically describing the dependence of
physical effects on the fractal dimensionality, the
authors treat it as a parameter to be found experimen-
tally. However, the fractal dimensionality has been
found in a number of experiments to depend on temper-
ature, both conditions and duration of growth of poly-
crystals [3], shock pressure [4], etc.

The goal of this paper is to construct a phenomeno-
logical theory for the dependence of the fractal dimen-
sionality of crystallite surfaces on physical quantities
such as temperature, duration of growth, pressure, etc.
In this case, the fractal dimensionality for a surface
should be considered (by analogy with the paper [5], in
which the fractal dimensionality was treated as an order
parameter appearing in a fractal set of space-time
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points) as a new order parameter. This parameter
appears in the process of self-organizing clusters of sur-
face atoms in the case of varying both internal and
external crystallite parameters. This approach is similar
to the well-known Ginzburg–Landau theory [6] of
order parameters and allows us to describe fairly com-
pletely the phenomenological dependence of the fractal
dimensionality of crystallite surface on arbitrary phys-
ical parameters.

FRACTAL DIMENSIONALITY 
AS AN ORDER PARAMETER

1. We denote as d(r, t) the local fractal dimensional-
ity of a crystallite surface. Following [5], we consider
this quantity as a function of the potential interaction
energy of ions and electrons forming the surface and
those inside the crystallite, which influence formation
of the fractal distribution of surface clusters. Employ-
ing methods of statistical physics (since the surface is
formed by a macroscopic number of atoms), we can
present, in the final analysis, the physical quantities
such as pressure, temperature, duration of growth, etc.
as sums of the potential interaction energies of atoms
and electrons. In a phenomenological theory, a micro-
scopic nature of the physical quantities characterizing
crystallite properties can be ignored. Thus, these quan-
tities can be substituted into the Ginzburg–Landau free-
energy functional as parameters, namely, the pressure
P, temperature T, time t (or the surface growth dura-
tion), the crystallite mean surface area S0 , etc. We
denote as Pi and Si (i = 1, 2, 3, …) physical quantities
of two types; namely, Pi are the physical quantities
varying with Si , and Si are those determining the
dynamics (in the Si space) for the dependence of the
fractal dimensionality on Pi in the case under consider-
ation. The choice of Pi and Si is conditional and is dic-
tated by the type of experiments studying the depen-
dence of the fractal dimensionality on various physical
quantities. The pressure, time, etc. can be chosen as Pi ,
while time and mean increment of the area (per unit
time) for the growing crystallite surface, etc. can be
chosen as Si .

2. Taking into account the aforesaid and assuming
that the fractal dimensionality of the surface appears as
000 MAIK “Nauka/Interperiodica”
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an order parameter [6] (i.e., as a phase transition), we
write out the free-energy functional in the form (the
vertical dash separates out the functional dependence)

(1)

For small values of d and its derivatives with respect to
Pi , we expand the integrand of (1) in a series and
rewrite (1) in the form

(2)

Here, Pi is one of crystallite physical parameters; ϕ is a
function of the parameters (Pi, Si) that are determined
by potentials of electrons and ions on the surface and,
in turn, determine the energy advantage in the case of
the origination of a fractal structure on the surface for
ϕ < ϕ0; and ai, bi, etc. are functions of Pi and Si (in a
nonlinear case, they are functions of d).

MINIMUM PRINCIPLE 
OF THE FRACTAL DIMENSIONALITY. 

EQUATIONS FOR THE FRACTAL 
DIMENSIONALITY

1. We now employ the minimum principle of the
fractal dimensionality (which was first proposed in [5])
for functional (2). This principle requires that the frac-
tal dimensionality must have a minimum for all realiz-
able states of the fractal system under consideration. To
find the fractal dimensionality of d and its parametric
dependence, we vary functional (2) with respect to d,
equate the variation to zero, and obtain, as a result, the
equations

(3)

and the boundary conditions

(4)

2. If d depends explicitly on Si , equation (3) takes
the form

(5)
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--------=

+ ϕ ϕ0–( )d k1d2 k Pi Si,( ).+ +
The choice of terms to be kept in the expansion of the
functional is determined by physical conditions of the
problem under consideration. When the relaxation term
and that containing k are disregarded, with both ϕ – ϕ0
and nonlinear terms being small, equation (3) trans-
forms into the diffusion equation

(6)

in the (Si, Pi) space.
The dependence of the fractal dimensionality

(treated as an order parameter) of a crystallite surface
on various physical quantities is described, in the above
approximations, by equations similar to diffusion ones.
Particular cases of this problem were analyzed to
describe the dependence of the fractal dimensionality
for a growing crystal on the growth duration [7] or on
shock pressure [8]. In these cases, either the variation
(per unit time) of the mean area of a growing crystallite
or its mean area was taken as Si, while the time or the
pressure was taken as Pi .

3. Two arguments are worth noting. Firstly, if the
system memory is taken into account, equation (3) can
be written out in terms of the Riemann–Liouville frac-
tional derivatives [9] or the generalized fractional
derivatives [5]. Secondly, a similarity to the Ginzburg–
Landau method will be enhanced if the complex field
ψ(Pi, Si), which defines d by the relation d = ψ*ψ, rather
than the fractal dimensionality of d, is taken as an order
parameter. In the latter case, we assume d to be real,
choose the other dependence of the free-energy func-
tional on ψ and ψ* with k = 0 and vary the functional
with respect to ψ*. As a result, instead of (4), we obtain
the equation similar to the Landau–Ginzburg equation
of the phenomenological superconductivity theory

(7)

Almost all of the qualitative conclusions, following
from equations (3) and (7), which relate to the behavior
of d, are identical. In particular, for small ϕ – ϕ0 , pro-
vided that the diffusion contributions, an explicit
dependence of d on Si , and the constant term are
ignored, the fractal dimensionality of the crystallite
surface is governed by the equation

(8)

4. A number of particular cases of equation (3) was
given in [10]. We now consider the dependence of the
function ϕ – ϕ0 on potentials of physical fields deter-
mining the surface structure of a solid body. As far as
the fractal structure of the surface is completely deter-
mined by the electronic and ionic states of the crystal-
lite, the function ϕ – ϕ0 , within the framework of statis-
tical concepts (classical or quantum), is a functional of
the density distribution for electrons and ions in the
crystallite. The function ϕ(r, t|ne, ni) can depend on

∂d
∂Si

------- 2
∂

∂Pi

-------- bi Pi Si,( ) ∂d
∂Pi

--------=

∂ψ
∂Si

-------
∂

∂Pi

-------- A Pi( ) ∂ψ
∂Pi

-------- ϕ ϕ0–( )ψ k1ψd+ + 0.= =

d ϕ0 ϕ–( ).∼
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either the mean kinetic energy of electrons and ions
[i.e., on temperature: ϕ – ϕ0 ~ T(r, t) – T0(r, t)] or on the
mean potential energies of interacting electrons and
ions [which are expressed in terms of the electron and
ion density distributions, for example,

etc.], or on other combinations of the electron and ion
potentials determining the formation of a fractal set of
clusters on the crystallite surface. These combinations
allow for the interaction between electrons and ions and
are expressed, ultimately, in terms of the variables Pi .
The choice of the distribution functions ne(r, t) and
ni(r, t) is determined by either corresponding models
(quantum-mechanical, statistical, etc.) of solid-state
physics, which describe physical properties of the crys-
tallite surface. In other approaches, these functions are
given by kinetic equations for open systems (see, e.g.,
[11]). In the phenomenological theory, this procedure
yields the choice of the function ϕ – ϕ0 . It should be
kept in mind that the choice of the fractal-dimensional-
ity normalization must take into account the fact that
the crystallite-surface dimensionality is equal to two if
a fractional part of the fractal dimensionality is absent.

5. Equations for the density of electrons and ions of
a surface containing fractal structures must depend on
the local fractal dimensionality d(r, t). Therefore, the
set of equations for d(r, t) and n(r, t) is a consistent sys-
tem for describing fractal properties of a surface. In
kinetic equations for n(r, t), the fractal dimensionality
can be introduced by using the mathematical method of
generalized fractional derivatives, which was proposed
in [5]. This method makes it possible to estimate not
only the dependence of the fractal dimensionality on
physical parameters but to allow for the influence of the
fractal dimensionality originated on the behavior of
electrons and ions on the surface. Kinetic equations for
large systems containing fractal structures are given
in [12].

Thus, the interpretation of appearance of the fractal
dimensionality of crystallite surfaces as a phase transi-
tion results in a new order parameter (fractal dimen-
sionality). It is determined by the atomic-cluster distri-
bution on the crystallite surface and allows the well-

ϕ ϕ0 V( e r r1–( )ne r1 t,( )[∫∼–

– V( i r r1–( )ni r1 t,( ) ]dr1
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developed mathematical method of the Ginzburg–Lan-
dau theory of order parameters [6] to be employed for
describing the fractal dimensionality as a function of
physical characteristics (internal and external) of the
crystallite. The method of thermodynamic flows, which
was used in [7, 8]), is a particular case of the problem
of the fractal dimensionality. In the method under con-
sideration, the fact that the derivatives in equations (3)
for the fractal dimensionality are fractional can be
taken into account by replacing integer derivatives by
the generalized fractional ones used in [5].
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In γ-manganese alloys, whose FCC-structure is sta-
bilized by copper additives, FCC–FCT martensite
transformation takes place in the case of a considerably
large manganese content [1]. As manganese is dis-
solved (up to 70%), a martensite transformation is com-
pletely suppressed in homogeneous alloys. A metasta-
ble region of segregation [2], which makes it possible
to obtain isomorphic nanocrystalline γ1 and γ2 phases,
enriched and depleted by manganese, exists in Mn–Cu
system. The phase segregation extends the range of
martensite transformation. In this case, martensite
shears involve regions both enriched and depleted by
manganese, so that, as a result of the transformation,
two martensite nanocrystalline FCC-phases are formed
with a various degree of manifesting tetragonal proper-
ties. As a result of the martensite transformation, a
twinned structure, containing thin and rough twins,
forms in the bulk of the alloy, with sizes of these twins
being, approximately, 1 and 10 µm, respectively. The
boundaries of thin twins are parallel to the {110}-type
planes, and the tetragonal c-axes in neighboring crys-
tals are mutually perpendicular. The rough twins con-
tain colonies of thin twins. The boundaries of rough
twins are {110} planes inclined at an angle of 60° to
boundaries of thin twins [3].

Such a structure admits a possibility of plastic
deformation by two mechanisms, namely, by twinning
and usual slipping along the {111}-type planes in

〈1 0〉  direction. In the latter case, the noticeable hard-
ening of alloys occurs [4] owing to the phase segrega-
tion accompanied by formation of nanocrystalline dis-
perse phases and appearance of lattice distortions due
to the various degree of manifesting tetragonal proper-
ties in the phases. This fact can be a cause of a number
of features in which the shape-memory effect manifests
itself. In this paper, conditions for realization of the

1
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deformation by twinning in various variants of marten-
site crystals are analyzed. Critical shear stresses of
twinning and slipping in microvolumes are also deter-
mined as a result of studies of single-crystal mechani-
cal properties.

Under the FCC–FCT transformation, the volume of
the alloy changes negligibly, and we can consider the
parameters of the tetragonal lattice to be c = a0(1 – 2δ)
and a = a0(1 + δ), the degree of manifesting tetragonal
properties is 1 – c/a = 3δ and depends on temperature.
We assume that the transformation deformation is of
the Bain nature, and the twinning (in the case of invari-
ant lattice) is an additional deformation.

A fragment of the twinned structure after the FCC–
FCT transformation with two variants (V1 and V2) of
rough twins is shown in Fig. 1.

In thin V1(C ||OY) and V1(C ||OZ) twins composing
V1 twins, shears take place, which are determined by
the D1(YZ) and D1(ZY) matrices: for V1(C||OY)

for V1(C ||OZ)

and the general (rough) shear is

In thin V2(C ||OZ) and V2(C ||OX) twins correspond-
ing to the V2 variant, the following shears take place:

D1 YZ( )
0 0 0

0 2δ– 0

0 0 2δ 
 
 
 
 

,=

D1 YZ( )
0 0 0

0 δ 0

0 0 δ– 
 
 
 
 

=

D1 ZX( )
δ 0 0

0 0 0

0 0 δ– 
 
 
 
 

.=
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Fig. 1. Fragment of a twinned structure in the alloy under study for two variants (V1 and V2) of rough twins: (1) the boundaries of
thin twins; (2) the boundary of rough twins; (3) the V1(C ||OY) variant of a thin twin; (4) the V1(C ||OZ) variant of a thin twin. The
direction of tetragonal c-axis is indicated by the arrow.
for V2(C ||OZ)

for V2(C||OX)

and the general (rough) shear is

The boundary between the V1 and V2 rough twins is

the (1 0) plane, the (011) and (101) planes being the
boundaries of thin twins in V1 and V2, respectively.

Under compression deformation along OZ-axis in a
V1(C ||OY) thin twin, the twinning shear equal to
−2D1(YZ) occurs, so that a jump of the tetragonal axis

D2 ZX( )
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0 0 0
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 
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to the C ||OZ position takes place. In this case, the
boundaries of thin twins shift into V1(C ||OY) twins. As

is seen from Figs. 1 and 2, the direction [01 ] is the
shear direction for (011) planes. The twinned shear
indicated can be extended to a V2(C ||OX) twin but can-
not be realized in V2(C ||OZ) owing to the incompatibil-
ity of twinned systems. As is seen from Fig. 2, this
shear can be carried out in V2(C ||OZ) by slipping along

two systems, namely, (111) [01 ] and ( 11) [01 ], i.e.,
with the same directions of slipping coinciding with the
direction of the twinned shear. In the case of equal ini-
tiation of two slipping systems, the efficient slipping
plane (of the zig-zag shape in the cross section) coin-
cides with the (011) twinning plane, i.e., a nearly com-
plete accommodation of slipping and twinning is
observed.

Under compression along the OY-axis in V1(C ||OZ),
the –2D1(ZY) shear passing into a V2 twin occurs. A
similar situation takes place also under compression
along the OX-axis when the twinning deformation,
starting in a V2 rough twin as a result of the presence of
twinning boundaries in it, passes to a V1 twin.

The deformation under both compression and ten-
sion for other variants of martensite crystals can be
considered in a similar way. This allows us to carry out
the averaging with respect to different orientations and
derive the following equations for compression and

1

1 1 1
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Fig. 2. Deformation by: (1) twinning and (2) dislocation slipping in V1 and V2 rough twins under compression along the OZ-axis
of a single crystal. [Section by the (100) plane.]
tension along [001], when two mechanisms are realized
in common:

Here, τs and τt are critical shear stresses for slipping (in

{111} 〈1 0〉 system) and twinning (in {101} 〈1 0〉),
where fs and ft are the Schmit factors for slipping (0.41)
and twinning (0.5); σc and σt are the normal stresses at
the yield initial stage under compression and tension of
single crystals along 〈100〉 , respectively. As is seen
from these equations, for determination of crystal shear
stresses, it is sufficient to carry out mechanical tests
with the determination of yield stress under compres-
sion and tension.

Mechanical tests were carried out with single crys-
tals of 75% Mn–25% Cu alloy, which were grown by
the Bridgman method. Dendrite liquation in the crys-
tals was virtually eliminated by long-lasting annealing
at 800°C for 150 h in the argon ambient. The samples
for compression or tension tests, which had been made
respectively, in the shape of parallelepipeds with the
size of 10 × 5 × 5 mm3 or with the operating part 10 ×
4 × 2 mm3 and heads for mounting in holders, were fab-
ricated by the oriented electric-spark saw. The [100]
and [111] crystallographic directions were chosen as
the load axes. The heat treatment included quenching at
800°C and annealing at 450°C for 2 h, when the phase
segregation occurred. The mechanical tests were per-
formed with the “Instron” test machine at room temper-
ature (when the degree of tetragonal properties attained
1 – c/a = 0.03) at the strain rate of 0.5 mm/min.

0.055
τ s

f s
----- 0.945

τ t

f t
----+ σc,=

0.445
τ s

f s
----- 0.555

τ t

f t
----+ σt.=

1 1
The results of mechanical tests for single crystals
are shown in Fig. 3. Both under compression and ten-
sion along the [001] direction, we have observed a pla-
teau of slight yield (such a plateau was not observed for
the deformation along the [111] direction). We can see
that the plateau of the slight yield in the tension curve
is higher by the factor of 1.5 to 2 than for compression
in the [100] direction. The substitution of the corre-
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Fig. 3. Stress–strain curves for single crystals of 75% Mn–
25% Cu alloy quenched and annealed at 450°C for 2 h:
(1) compression deformation along the [111] direction;
(2) tension along the [001] direction; (3) compression along
the [001] direction.
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sponding values into equations leads to the following
result: τs = 2.6 and τt = 1.0 kg/mm2.

It seems to be unexpected that the critical shear
stresses of the accommodation slipping turned out to be
very low. They are nearly by the order of magnitude
lower than those fixed in the region of the hard yield,
when possibilities of twinning processes were
exhausted. In this case, the critical shear stress for slip-
ping, which was calculated according to the curves of
deformation along the [111] and [001] directions,
turned out to be equal to 17 kg/mm2.

The slight dislocation motion in the martensite at
the initial stage of plastic deformation is likely caused
by accommodation stresses arising in the course of
transformation in the slipping regions and, owing to the
load applied, directed along the shear stresses. Another
cause of this light plastic deformation occurring in the
microvolume under consideration can be associated
with a possible passing by dislocations around the
nanoparticle distortion fields formed as a result of
phase segregation.

It is worth noting that the experimental result
obtained makes it possible to understand a number of
features in kinetics of martensite transformations, in
particular, an extraordinary small hysteresis of FCC–
FCT martensite transformation in alloys containing
manganese.
DOKLADY PHYSICS      Vol. 45      No. 2      2000
As is well known, the hysteresis of direct and
inverse transformations is determined by a stored
energy of plastic strain, while growing crystals of a new
phase. A small magnitude of slipping stresses deter-
mines the small work of the accommodation plastic
deformation, and, consequently, small temperature
hysteresis of the martensite transformation in γ-Mn
alloys.
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Solving Problems of the Optimum Control 
on the Basis of Atomic Functions
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A problem of optimum control or a boundary value
problem can be reduced to a multiparameter optimiza-
tion with a given performance criterion (goal function).
To do this, a multiparameter approximation for the
desired control function in the problem of the optimum
control (or the boundary being optimized in the bound-
ary value problem) should be preliminarily introduced
[1–4]. Such an approximation must be performed
within a class of functions satisfying a priori all the
constraints to the problem under consideration. The
choice of this class significantly affects the successful
solving of the problem. Here, a restriction most fre-
quently met is the requirement of smoothness (i.e., of
infinite differentiability). This requirement is satisfied
by atomic functions that are highly flexible and conve-
nient for any approximation [5–10].

SETTING UP THE PROBLEM
OF THE OPTIMUM CONTROL 

OF A DYNAMIC PROCESS

To prevent the subsequent solutions from becoming
too cumbersome, we dwell on the simplified version of
the optimum-control problem, in which: (a) the left
endpoint of phase trajectories is mobile; (b) their right
endpoint is free (constraints are introduced into the
general functional, i.e., into the goal function); (c) the
state-variables vectors and control vectors are continu-
ous; and (d) the interval of motion T0 is specified. Solv-
ing of this problem allows us to adequately illustrate
fundamental features of the method proposed. Extend-
ing the method to the general case also presents no par-
ticular problem [3, 4]. For the conditions indicated, the
problem of the optimum control is posed as follows.
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(I) A mathematical model for a dynamic process is
specified in the form of ordinary differential equations
(equations of state)

(1)

or, in the vector form,

Here, X = (X1, X2, …, Xn)T is the n-dimensional (trans-
posed) vector of phase variables, g(T) = (g1, g2, …, gm)T

is the m-dimensional control vector for the interaction
process, M are its control parameters, and T is the
reduced space length or reduced interaction time for the
process development.

(II) The boundary conditions are specified at the left
endpoint for T = 0 as

(2)

where B = (B1…Bj…Bc)T are the parameters of the ini-
tial conditions for the process.

(III) The goal function for the problem is specified
in the form of the functional (the Boltz problem)

(3)

We formulate the problem of the optimum control in
the following form: among the parameters M and B and
continuous functions Xs(T) (s = 1, 2, …, n) and gk(T)
(k = 1, 2, …, m) satisfying equations (1) in the interval
[0, T0] and satisfying boundary conditions (2) at T = 0,
we should find those for which functional (3) attains its
extremum.

dXs

dT
--------- Ẋs f s X1 X2 … Xs …, Xn,, , , ,[= =

g1 T( ) … gk T( ) M1 … Ml T ] ,, , , ,, ,
s 1 2 … N , 0 T T0,≤ ≤, , ,=

∆

dX
dt
------- Ẋ f s X g T( ) M T, ,,[ ] .= =∆

Xs 0( ) Xs B( ),=

J Φ X T0( )( ) f n 1+ X g M T, , ,( ) T .d

0

T0

∫+=
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APPROXIMATION OF THE CONTROL

We approximate the desired control function in the
following manner:

(4)

Here, Tki is the translation parameter, ρki is the parame-
ter of the width for the function up(z), and Tki/ρki ∈
[0, T0]. The function up(z) (atomic function) is defined
as a finite solution to the equation (see [5–10])

(5)

Fast-calculation methods for the function up(z) are
given in [5–10]; in particular, tables for up(z) are pre-
sented in [5]. The tables providing the appropriate
accuracy by interpolation are most reasonable for using
in calculations. After solving the Cauchy problem (1),
(2) and using (4), functional (3) becomes a function of
3N × m parameters: Aki, Tki, ρki , M, and B. The mini-
mum of this function can be found by one of the meth-
ods for minimizing functions of many variables. When
gradient methods are applied to minimize J, the compo-
nents of the gradient of J, in accordance with the theory
developed in [1–4], are determined in the following
way:

(6)

qk
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Here,

is the Hamiltonian function; the Lagrange multipliers
λs(T) (i.e., variables conjugated according to Hamilton)
are determined from the following boundary value
problem:

(7)

(8)

THE SCHEME OF THE ITERATIVE PROCEDURE
We suppose that in the course of minimizing J, a

point ( , , , Tki, ) is attained in the
space of the parameters being optimized. In this case:

(i) System (1) is solved with the indicated values of
the parameters and boundary conditions (2) with allow-
ance for equation (4);

(ii) The boundary conditions for λs(T0) are deter-
mined in accordance with (8);

(iii) Going from the left to the right (i.e., from T0 to
0 in terms of the T variable), systems of equations (1)
and (7) are solved simultaneously. At the same time, the
components of the gradient of J are determined in
accordance with (6). These components are used as ini-
tial data while employing gradient methods of minimi-
zation to find the next (n + 1)th-point for the minimiz-
ing sequence in the space (Bj, Mi, Aki, Tki, ρki). The
Goldfarb method with variable metric [12] can be rec-
ommended as the most efficient with respect to the con-
vergence rate and stability.

AN EXAMPLE OF SOLVING THE PROBLEM 
OF THE OPTIMUM CONTROL

We present the results of application of the method
described for solving the problem of optimizing (with
respect to the efficiency) the profile of the irregular
waveguide in a relativistic traveling-wave tube. Equa-
tions (1) governing the nonlinear interaction of the
electron current with an electromagnetic wave excited
in the waveguide by this current are described in detail
in [13–15]. These equations are not presented here due
to their cumbersome form. In the case under consider-
ation, the normalized profile of the waveguide

acts as a control function for the interaction process.
Here, b(T) is the inner radius of the waveguide, b0 is the

I J λ sϕ s

s 1=

n

∑ T ,d
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critical radius for the E01-wave [13–15], T = Z/L, Z is
the current length along the waveguide axis, and L is
the length of the interaction region, i.e., T ∈  [0, 1],
T0 = 1. The control function g(T) was specified in the
form of (4).

We present here the data from one of the optimum
variants found: 2πL/λ = 31.4 (λ is the wavelength
used), |I0| = 200 A is the electron beam current, β0 =
ν0/c = 0.729 (ν0 is the electron velocity, c is the speed
of light in vacuum), and Pin = 0.06P0 is the input power
(P0 is the electron-beam power). For the optimized
variant, the calculated efficiency is ηopt = 0.814 (the
efficiency for a traveling-wave tube with a regular cor-
rugated waveguide does not exceed the level of 0.45).
The integral characteristics η(T) and G(T) for this vari-
ant are shown in Fig. 1. Here, G(T) is the function of the
phase-focusing action for electrons: G = 1 in the
absence of the bunching, while G = 0 in the case of the
complete (ideal) bunching. The optimum profile of the
waveguide gopt(T) is shown in Fig. 2. The mechanism of
the optimum interaction within the variant under con-
sideration differs noticeably from that previously found
in [13–15]. It can be interpreted as a mechanism of a
double strong phase focusing for an electron bunch,
when its energy is taken off twice as intensely. The first
segment, where the energy is taken off, is located
within the interval T = 0.2–0.7. In this segment, the
bunching is the most pronounced at T = 0.64. Further-
more, the bunch decomposes (T = 0.64–0.72). To
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restore bunching in the segment T = 0.72–0.84, the
strong regime of the energy take-off is engaged, and a
characteristic shoulder is formed on the curve η(T). At
T = 0.85, the level of bunching is restored, and further-
more, up to T = 1, the second segment of the enhanced
energy take-off with improved bunching function is
located.

Thus, in this paper, the gradient method is proposed
for solving problems of the optimum control. The
method is based on approximating the control in the
class of atomic functions and using a conjugated (in the
Hamiltonian sense) system of equations for the analytic
determination of the goal-function gradient. Owing to
this approach, the method proposed accelerates the
solving of the optimization problem by the factor of
(n + 3)/4, where n is the number of the parameters
being optimized. Using, as an example, the method
proposed for solving the problem of optimization (with
respect to the efficiency) of the irregular-waveguide
profile in a relativistic traveling-wave tube, we have
performed the numerical experiment that has demon-
strated the efficiency of the method. Therefore, this
approach can have wide applications in optimizing
electronic microwave equipment and instrumentation.
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In this study, on the basis of X-ray-structural data
and the measurements of magnetic characteristics (the
magnetic permeability, the maximum induction, and
the coercive force), we have revealed correlations
between modifications of structural and magnetic pro-
perties on various types of relaxation annealing.
Moreover, by analyzing the correlation functions {A(S)
and the radial-distribution function} and using values
of structural parameters, we investigated the processes
of the amorphous-state stabilization, the nucleation,
and the growth of the crystalline phase for magneti-
cally soft amorphous cobalt-base alloys obtained by
the spinning of melts. We investigated the multicom-
ponent amorphous alloys with the following composi-
tions: Co57Ni10Fe5Si11B17, Co67Fe3Cr3Si15B12, and
Co68Fe4Cr4Si13B11. All of these alloys have a virtually
zero magnetostriction. The structure was analyzed with
invoking the data of molecular-dynamic simulation for
binary amorphous alloys Co1 – xBx and Fe1 – xBx [1].

For the alloys under consideration at room tempera-
ture, we observe a typical diffraction pattern with a pro-
nounced effect in the form of a split second maximum
(see Fig. 1). It can be also easily seen that the first min-
imum is deeper than that for melts [2, 3]. In the scatter-
ing curve (Fig. 2), a secondary maximum appears (with
the shape of a “shoulder”) in the region of small angles
(superimposed on the principle peak of intensity). It is
worth noting that, for the alloy Co57Ni10Fe5Si11B17 , the
curves both for the structural factor and for the radial-
distribution functions, with the splitting of the second
peaks into subpeaks, differ substantially from the cor-
responding curves for other alloys: adding nickel with
decreasing the concentration of cobalt leads to increas-
ing the fraction of large interatomic spacings and to
“loosening” the packing around metalloid atoms. These
changes are just reflected by the “inversion” of the ratio
between the heights of the right-hand and left-hand
subpeaks of the second peak. It is remarkable that, in
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the multicomponent alloys under consideration, the
half widths L1/2 {or Lc for the first A(S) peaks} of the
principle maxima of the radial-distribution function are
close to those for the model melts [1]. The half-widths
for the first diffraction maxima are related to the corre-
lation radii and to the statistics of interatomic spacings,
and the height A(S1) is related to the packing density of
atoms [4]; i.e., the higher first A(S) maximum corre-
sponds to the alloy with close-packed metal atoms. As
a result of the relaxation, increasing the first subpeak
occurs, being accompanied by decreasing the shoulder
(the second subpeak), whereas, in the case of the
recrystallization, the opposite picture is observed: the
first subpeak decreases, while the shoulder is modified
into the Bragg diffraction maximum. It means that the
structural relaxation is not the onset of the crystalliza-
tion but is a transformation of the system state into the
V-structure state [5]. In this case, the position of the first
A(S) maximum for the multicomponent amorphous
cobalt-base bands is displaced towards larger scattering
angles as compared with its abscissa for liquid cobalt at
Tmelt and for the Co80B20 melt near the liquidus curve,
whereas the most probable spacing R1 does not virtu-
ally differ from that for cobalt [3].

The temperature modifications of the structure of
alloys were investigated at the step-like conditions of
heating the samples with the heating time of 45–60 min
at the exposure temperatures. In Fig. 2, we present the
structural factors A(S) obtained by the X-ray analysis of
the alloy Co68Fe4Cr4Si13B11 under the heating condi-
tions stated. The most probable is the formation of new
metastable phases: amorphous and crystalline. In this
case, additional sources of inner stresses appear in the
amorphous matrix as a result of the multiphase nucle-
ation and the development of a frame-like structure of
individual local packings around the metalloid atoms
[5]. It can be seen from Fig. 2 that the ordinates of the
first peaks in the structural factor vary insignificantly
(the similar picture took place also for the radial-distri-
bution function), while the shape of the curves changes
appreciably. It is distinct from the case of binary alloys
for which increasing and narrowing the peaks indicated
always take place on the heat treatment. Moreover, we
000 MAIK “Nauka/Interperiodica”
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Fig. 1. Radial-distribution functions of atoms in amorphous alloys of various compositions as the Fourier images of the X-ray struc-
tural factors: (A) Co68Fe4Cr4Si13B11, (B) Co67Fe3Si15B12, and (C) Co57Fe5Ni10Si11B17.
observed that the values of parameters S1 (as well as R1)
are close to those for a close-packed structure of atoms
of a base metal (Co). This fact shows that the relaxation
annealing sometimes leads to increasing and narrowing
every A(S) peak or the radial-distribution function of
atoms (this is especially true for the first peak, that is
typical for single- or two-component amorphous met-
als), because the number of locally-equilibrium values
of interatomic spacings, the spread around which
decreases under annealing, is determined by the com-
position, while these equilibrium values themselves are
determined by the nature of chemical bonds in an amor-
phous alloy. The annealing results in increasing the
density of an amorphous alloy and in isolating a free
volume if the diffusion processes become more intense.

The half-width of the integral radial-distribution
functions of atoms in the multicomponent alloys under
consideration is equal to 0.046 nm (for comparison, it
is 0.039 nm for Fe80B20 and 0.45 nm for Co80B20 [1])
and is known to be directly related to the mean square
displacements of atoms (L1/2 ⇒ 〈∆ R2〉). For the V-struc-
DOKLADY PHYSICS      Vol. 45      No. 2      2000
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Fig. 2. X-ray structural factors for the amorphous bands of the Co68Fe4Cr4Si13B11 alloy obtained on relaxation heating with time
of high-temperature storage of 45–50 min for every temperature of exposure.
ture at a temperature T with heat displacements of
atoms about the equilibrium centers in the amorphous
structure, the mean square displacement 〈∆R2〉  can be
related to the Debye characteristic temperature ΘD [3]
as

where M is the molar mass. For the known settled-life
time τ, the diffusion coefficient D = 〈∆R2〉/τ, limiting

∆R〈 〉 2 2.89T

MΘD
2

--------------,=
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the intensity of the relaxation process, can also be esti-
mated.

The annealing not only results in decreasing the
spread of partial interatomic spacings about the equilib-
rium values, but also activates sharply the diffusion
processes accompanying the rearrangement of local
packings. In this case, for multicomponent alloys, a
more sensitive characteristic of the structure modifica-
tions resulted from the relaxation annealing is some-
times not the height G(R) of the principle peak, but its
half-width L1/2 {like the half-width Lc for A(S)}, which
almost symbasically repeats the extrema of significant
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temperature modifications of magnetic characteristics
(see Fig. 3). From Fig. 3, it is seen that a nonmonotone
variation in the half-width of the first peaks of the
radial-distribution function of atoms {and A(S)} corre-
lates reasonably well with the temperature variation in
such magnetic characteristics as the coercive force Hc
and the permeability µ for the amorphous magnetic
cobalt-base alloys. Such an implicit dependence of Hc
and µ on the relaxation processes at the local-coordina-
tion scale is determined by the specificity of formation
of magnetic moments in cobalt-base alloys. In their
turn, the magnetic moments are completely determined
by the distribution of interatomic spacings between the
nearest neighbors independently of values of their local
coordination numbers, as with iron-base ferromagnet-
ics. Such a character of structural modifications stems,
above all, from the intensity of the relaxation processes
at the initial stage of crystallization including that in the
surface layers possessing higher density of microinho-
mogeneity defects as compared with bulk. And here,
not only a value of an annealing temperature, but also
its duration, determining the “incubation period” for
the phase, chemical, and structural modifications, turns
out to be the decisive factor. In the course of relaxation,
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Fig. 3. Dependence of magnetic characteristics (Hc, µ0, and
µmax) on the annealing temperature T(K) for the amorphous
alloy Co57Fe5Ni10Si11B17, and the dependence of the half-
width of the radial-distribution function of atoms (L1/2),
A(S), and Lc on the temperature of the X-ray diffraction
analysis (TC is the Curie temperature).

0.3
a single amorphous phase breaks down into a kind of
two structure-different phases, namely, the surface and
bulk ones, naturally, with different magnetic character-
istics.

In the crystalline compounds of the type of the Fe3C
“cementite” with the local trigonal–prismatic order in
the coordination sphere, metalloid atoms are sur-
rounded by nine other atoms: six metal atoms (the first
nearest neighbors in the coordination shell) and three
metalloid atoms (the second nearest neighbors in the
first coordination shell). The local order around the
metalloid atoms in amorphous iron-base alloys (for
example, in the binary Fe80B20 alloy, molecular-
dynamic model) is known to be close to the trigonal–
prismatic order (from 6 to 8 vertexes in the first coordi-
nation with semioctahedrons on the faces) correspond-
ing to the Archimedean antiprism (the Voronoœ polyhe-
dron {0, 2, 8} with topological distortions {0, 2, 8, 1},
with the most likely angles of 75°, and with the metal–
metalloid spacings on the order of 0.82R1) or to the
dodecadeltahedron {0, 6, 2} also with 8 vertexes and
with the semioctahedrons on every face [5]. At the
same time, the basis of the composition ordering in
cobalt-base alloys is likely provided by quasi-molecu-
lar formations emerging around every atom. These for-
mations are geometrically close to the trigonal–pris-
matic polyhedrons with three semioctahedrons per
every square face of the prism (with the coordination
being close to 9, with the angles of 82°, with the inter-
atomic metal–metalloid spacing being on the order of
0.76R1 as opposed to 0.82R1 in the Fe-base alloys, and
with both the Voronoœ-type polyhedrons {0, 3, 6} and
their topological distortions, e.g., {0, 3, 6, 1}, prevail-
ing). With lower probability, Co atoms form the octahe-
dron coordinations around the metalloid atoms with the
characteristic interatomic spacings of 0.71R1 and with
an angle of 90° (the octahedron coordination can be
transformed into the prismatic one by turning only one
face through 60° [5]). In other words, it can be assumed
that the amorphous band is heterogeneous in types of
packing of atoms and in distribution of components,
and it involves atomic microgroups, which differ in the
interatomic spacings, coordination numbers, and con-
centration of components. Actually, the metal–metal-
loid spacings (in the range from 0.71R1 to 0.83R1) must
be smaller, and the metal–metal spacings (close to R1)
must be larger in amorphous alloys than those in pure
metals; it is these groups that influence the position and
the shape of the first maximum. In the course of vitrifi-
cation of a melt, these stiff quasimolecular formations
combine into an immobile frame (the residual diffusion
of metal atoms being realized in cavities of the frame
[5]) and dictate the features of the shape for the first
peaks of structural factors in the small-angle region.

The relaxation of the structure in an amorphous
alloy, as noted above, involves the topological and com-
position or chemical ordering. In the first case, the
geometry of the short-range order varies predomi-
DOKLADY PHYSICS      Vol. 45      No. 2      2000
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nantly. This manifests itself, firstly, as the regulariza-
tion of interatomic spacings in the first coordination
around the metal atoms, that approaches an icosahe-
dron in shape (with two characteristic spacings R1 and
0.95R1). As a consequence, the left-hand subpeak of the
second peak emerges and grows. Secondly, the regular-
ization of the geometry of the prismatic (octahedron)
coordination for the nearest neighbors around the met-
alloid atoms also develops in accordance with the
dimensional factor through the relationship between
the atomic radii for metals and metalloids. The types of
contacts for the second nearest neighbors (through a
pair of atoms or a “dumbbell”, a triple contact, a trian-
gle, and the contacts in linear chains [6]) are also rele-
vant. The composition relaxation involves such an ele-
ment of structural modifications as “avoiding” the first
nearest neighboring metalloid atoms (by “wedging” the
pairs formed in the course of the superfast annealing by
the pairs of metal atoms). The presence of a shoulder in
the first peak of the radial-distribution function of
atoms (Fig. 1, curve C) can be associated with an inho-
mogeneous localization of atoms in the first coordina-
tion sphere. These atoms provide the presence of, at
least, two shortest spacings that correspond to the first
peak of the radial-distribution function.

The heating to temperatures of 620–720 K influ-
ences predominantly the modification of such charac-
teristics as L1/2 and Lc. At the same temperatures, as
already noted, significant modifications of magnetic
properties are also observed (see Fig. 3). Decreasing
the half-widths of the peaks is most likely influenced by
atomic microgroups enriched in metalloid atoms. In
these microgroups, the nearest spacings between the
metal atoms differ considerably from those inherent in
pure metals with close packing of atoms.

At temperatures in the range 790–800 K, the diffrac-
tion pattern is still characterized by a diffusion distribu-
tion of intensity; L1/2 and Lc decrease; simultaneously,
the height of the first diffraction maximum A(S1)
increases considerably (6.0–7.0), and also the position
of the right-hand subpeak of the second pike is
changed. Consequently, as a result of the diffusion pro-
cesses with increasing the heating temperature, the
short-order modifications occur, above all, in coordina-
tions around the metalloid atoms; besides, the atoms
are redistributed in microgroups, and the “preparation”
for the crystallization takes place being attended with
increasing the intensity of the small-angle scattering.
The asymmetry of the first peak of the radial-distribu-
tion function increases, R1 being virtually invariable.
The microdomains are enlarged including those with
the short-range order of the type of intermetallic
phases. Several nearby coordination spheres of these
phases get into the domain of the first maximum of the
radial-distribution function, and this determines the
symmetry of the maximum. In the case of multicompo-
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nent amorphous alloys, the shape of the splitting (into
subpeaks) for the second peak of the radial-distribution
function {A(S)} and another features (harmonics and
shoulders) are influenced by the specificity of forma-
tion of the first coordination, above all, from the base-
element atoms around the metalloid atoms and by the
action of components (nickel, iron, manganese, and
chromium) on the density and the geometry of packing
because these elements lead to a marked redistribution
of statistical weights of the spacings between the first,
second, and subsequent nearest neighbors. Increasing
the metalloid concentration also modifies the shape of
the splitting for the second peak of the structural factor
(the radial-distribution function) for the complex-com-
position alloys under consideration. It is accompanied
by a marked reduction in the height of the right-hand
subpeak of the second peak. This reduction is virtually
as much as that for the continuous “relaxation anneal-
ing” in the case of simulated two-component amor-
phous magnetic alloy Co1 – xBx [1]. However, in contrast
with single- and two-component amorphous alloys, in
the case of thermal treatment of multicomponent sys-
tems, the intensity of relaxation processes is character-
ized more adequately not by the growth and narrowing
of the first peak of the function of radial distribution of
atoms (the structural factor) but its half-width L1/2,
which can vary in a nonmonotone way (correlating
with Hc, µ0, and µmax) reflecting both the regular suc-
cession of the “switching-on” the diffusion processes
and their intensity according to the type of chemical
bond and the values of potential barrier for every com-
ponent.
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A basis for many astrometric studies is the dynamic
theory of the Earth’s rotation about its center of mass.

At the end of the 18th century, L. Euler derived dif-
ferential equations for the rotary motion of a rigid body
about a fixed point, which were used in the original
form until the present time. He showed that the instan-
taneous axis of rotation can circumscribe a cone about
the body axis. Euler also evaluated that the period of
this motion, which he called the period of free nutation,
is about 305 days for a body with the Earth’s dimen-
sions and shape. The effect of external forces was
assumed to be absent.

Nearly a century later, from observations, the period
of nutation was found to be 412 to 430 days. The dis-
agreement of this estimate with the predicted one was
ascribed to the elasticity and deformability of the Earth,
inhomogeneity of its structure, etc. This value was
called the Chandler period in honor of its discoverer.

Since then, all existing theories about the Earth’s
rotation came to be constructed on the basis of the inte-
rior structure of the Earth, whereas the observed rota-
tional parameters, in turn, are considered as criteria for
accepting an appropriate Earth model.

The Earth’s rotation around the axis passing through
the center of mass is usually considered, almost without
exception, independently of the displacement of the
Earth’s center of mass about the Sun and about the
barycenter of the Earth–Moon system. The interaction
between translational and rotational motions is postu-
lated to be absent [1].

From the dynamic standpoint, this approach
accounts quite adequately for the overall motion of the
Earth in space. However, the specialized international
observations and studies of the motion of the Earth’s
poles have revealed that, within the framework of this
approach, understanding the mechanisms of excitation
of the basic component of the pole motion, i.e., the
Chandler component, did not advance.
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In our opinion, it is the currently available precision
in determining parameters of the Earth’s rotation that
necessitates the removal of a number of simplifications
in the presently accepted Earth-rotation theory. When
constructing a high-precision theory for the rotary
motion of the deformable Earth, a more general state-
ment of the problem seems to be appropriate. We imply
such subtle dynamic effects as the free nutation of the
Earth-rotation axis and the variation of latitudes. A
mathematical model is proposed in which the Earth is
considered as an elastic rigid body dissipating its
energy in the deformation process and executing trans-
lational–rotary motion in the Earth–Moon system in the
gravitation field of the Sun.

We propose a new theoretical model in which the
orbit of the viscoelastic planet evolves as a result of the
work accomplished by internal dissipative forces (with
allowance for no thermodynamic processes), whereas
the planet by itself executes orbital–rotary motion.

1. The Earth is conceived as consisting of two com-
ponents: the rigid one (core), occupying the domain
Ω1 ∈  E3 , and the viscoelastic shell (mantle), occupy-
ing, in the natural undistorted state, the domain Ω ∈  E3 .
The densities of these components are ρ1 and ρ2 ,
respectively (E3 is the three-dimensional Euclidean
space). The domains Ω1 and Ω have a common bound-
ary Γ. On the boundary between the core and the mantle,
particles of the elastic medium (mantle) do not move;
the other part of the boundary (the Earth’s surface) is
free. The elastic medium obeys the linear theory of
elasticity for small strains. The modal approach is taken
as the basic one. In the case of the axial-symmetric
elastic component with axisymmetric boundary condi-
tions, the vector u of the elastic displacement is repre-
sented in the form of [5] as

(1)

Here, qkm(t) and pkm(t) are the generalized normal coor-
dinates (modal variables) describing the planetary
motion in terms of the internal degrees of freedom;

u r t,( ) qkm t( )Vkm r( ) pkm t( )Wkm r( )+[ ] .
k m, 0=

∞

∑=
000 MAIK “Nauka/Interperiodica”



        

TRANSLATIONAL–ROTARY MOTION 71

                                                                              
Vkm(r) and Wkm(r) are the characteristic free-oscillation
forms for the elastic component, which correspond to
the fundamental frequency νkm and obey the orthonor-
malization conditions. The characteristic forms Vkm(r)
and Wkm(r) are functions of the coordinates r for an
elastic-medium particle. These functions are obtained
from one another by rotating through the angle ϕk =
π/(2k) about the symmetry axis, where 2k is the number
of nodes of the characteristic form counted off along
the parallel, and m is the corresponding form number at
a fixed k. It is worth noting that the equations for free
oscillations of an axial-symmetric elastic body (planet)
are conveniently considered in a cylindrical coordinate
system (ρ, ϕ, z). Then, in this system, orthogonal-basis
characteristic forms with k ≠ 0 are

(2)

Axial-symmetric characteristic forms describing longi-
tudinal–transversal strains correspond to the case k = 0.
Bending-type strains correspond to forms with k = 1.
For k = 2, we obtain strains that can serve to describe
tidal humps such as on a celestial body.

Viscoelastic features of the material of the planet
shell (mantle) are specified by dissipative functional
D[ ] proportional to the potential-energy functional
corresponding to elastic strains. This is true provided
that, in the latter functional, components of the small-
strain tensor are substituted by the corresponding com-
ponents of the strain-rate tensor, i.e., D[ ] = χbE[ ]
(the Kelvin–Voigt model), where χ is the coefficient
accounting for the energy dissipation, and b is a dimen-
sional constant.

The model proposed allows us to derive mathemat-
ically justified results compatible with the current-
observation precision, while describing the transla-
tional–rotary motion of planets and their satellites.

2. The equations of motion involve equations both
describing the translational–rotary motion of a planet
as a whole and determining strains. The class of prob-
lems under consideration is characterized by the pres-
ence of processes with various characteristic times.
Basic methods for solving these problems are the aver-
aging method and its modifications.

We present equations for the translational–rotary
motion of a deformable-planet–satellite system in the
field of an attracting center (three-dimensional version
of the problem). These equations have been originally
derived by the authors and can be used for mathemati-
cally modeling the motion of the Earth–Moon system
in the gravitation field of the Sun.

Vkm ρ ϕ z, ,( )

=  Ukm ρ z,( ) kϕ Vkm ρ z,( ) kϕ Wkm ρ z,( ) kϕsin,cos,sin{ } ,

Wkm ρ ϕ z, ,( ) Ukm ρ z,( ) kϕ Vkm ρ z,( ) kϕ ,sin–,cos{=

Wkm ρ z,( ) kϕcos } .

u.

u. u.
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We assume that Oξ1ξ2ξ3 is the inertial coordinate
system with the origin at the attracting center O and
with the Oξ3-axis orthogonal to the plane of the orbit of
the point C0 , which is the barycenter of the planet–sat-
ellite system. We introduce the König coordinate sys-
tem C0  at the center of mass of the deformable-

planet–satellite system. Notice that in the undistorted
state, the planet is dynamically compressed, i.e., C > A,
where C and A are the axial and equatorial moments of
inertia, respectively. A coordinate system x1x2x3 is
rigidly bound to the planet hard core; the axes of the
system are aligned in parallel with the principal central
axes of the undistorted planet; the point  is the center
of mass of the planet in the absence of strains. The
functional for the potential energy of attraction
between the planet and the satellite is

(3)

Here, f is the gravitational constant; m1 and m2 are the
masses of the planet and the satellite, respectively;
R21 = R21  is the radius vector drawn from the point

C2 to the center of mass of the satellite (the point C1).
The matrix O(t) specifies the transition from the coor-
dinate system C2x1x2x3 (which is obtained from the

coordinate system x1x2x3 by parallel translation to

the point C2) to the König coordinate system C0 .

O−1  = (γ1, γ2, γ3) are the projections of the unit vec-

tor  onto the axes of the coordinate system C2xi (i =

1, 2, 3); ρ2 = const and Ω are the density of the elastic
component and the domain occupied by it in the natural
undistorted state; w and u are the vectors of the elastic
displacement (with respect to the coordinate systems
C2xi and xi) for a particle of the medium, which
occupied the position r; and uC is the planet center-of-
mass displacement, occurring under deformations,
with respect to the planet core. The terms on the order

of  and higher are omitted in (3). Here, l is

the characteristic size of the planet, and R21(0) is the
initial value of R21 . The form of the potential-energy
functional for attraction of the satellite and the planet
by the center O is similar to (3).

For describing rotary motion of the planet as a
whole about its center of mass (i.e., about the point C2),
we use the canonical Andouer variables Ii, ϕi (i = 1, 2, 3).

ξ1' ξ2' ξ3'

C2'

C2'

Π –
m1m2 f

R21
----------------- µ1R21

3– 1
2
--- A C–( ) 1 3γ3

2–( ) U1+ ,+=

U1 ρ2 r w,( ) 3 O 1– R21
0 r,( ) O 1– R21

0 w,( )–[ ] x,d

Ω
∫=

w u uC, µ1– f m1, dx dx1dx2dx3.= = =

R21
0

C2'

ξ1' ξ2' ξ3'

R21
0

R21
0

C2'

l
R21 0( )
---------------- 

  3
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Here, I2 = |G| is the module of the kinetic-moment vec-
tor G, I1 and I3 are the projections of the vector G onto
the axes C2x1 and C2 , respectively; and the following

relations are valid: cosδ1 = I3  and cosδ2 = I1 . The

relative orbital circular motion of the centers of mass
C1 and C2 is described in terms of the Delone variables
Λ, H, ϑ , and h, where Λ = |L| is the total angular
momentum for the centers of mass of the planet and
satellite, while their moving about the barycenter; H is
the projection of the vector L onto the axis C0 , ϑ  is

the true anomaly, h is the longitude of the ascending

orbital node on the plane C0 , and  = cos i, where

i is the inclination of the center-of-mass orbital plane
to the ecliptic plane. While deriving the equations of
motion, it is convenient to use the Routh functional
R[Λ, H, ϑ, h, Ii, ϕi, w, ]. The equations of transla-
tional–rotary motion for the deformable-planet–satel-
lite system in the field of a gravitation center, written
out as the canonical Routh equations, have the form

ξ3'

I2
1– I2

1–

ξ3'

ξ1' ξ2'
H
Λ
----

w.

İ i –
∂R*
∂ϕ i

---------- 3µ1R21
3– A C–( )γ3

∂γ3

∂ϕ i

--------




+=

+ ρ2
∂

∂ϕ i

-------- O 1– R21
0 r,( ) O 1– R21

0 u,( )[ ] xd

Ω
∫ 




+ 3µ0R 3– A C–( )κ3

∂κ3
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


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∂
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

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ḣ 3µ0R 3– m*R21
2 θ∂ θcos

∂H
---------------cos–=

– 3µ1R21
3– A C–( )γ3

∂γ3

∂H
--------





+ ρ2
∂

∂H
------- O 1– R21

0 r,( ) O 1– R21
0 u,( )[ ] xd

Ω
∫ 




,

ϑ̇ n µ0R 3– m*R21
2 R21

1– ∂R21

∂Λ
----------- 1 3 θcos

2
–( )





+=

– 3 θ∂ θcos
∂Λ

---------------cos




3µ1R21
4– ∂R21

∂Λ
----------- 1

2
--- A C–( ) 1 3γ3

2–( ) ∫–

+ ρ2
∂

∂Λ
------- O 1– R21

0 r,( ) O 1– R21
0 u,( )[ ] xd

Ω
∫

– 3µ1R21
3– A C–( )γ3

∂γ3

∂Λ
--------





+ ρ2
∂

∂Λ
------- O 1– R0 r,( ) O 1– R0 u,( )[ ] xd

Ω
∫ 




.

DOKLADY PHYSICS      Vol. 45      No. 2      2000



TRANSLATIONAL–ROTARY MOTION 73
Here, R* = , Gw =

, and

µ0 is the gravitational parameter of the attracting center.
Furthermore, O–1R0 = (κ1, κ2, κ3) are the projections of
the unit vector R0 onto the axes of the coordinate sys-
tem C2xi (i = 1, 2, 3), and (R0, ) = cosθ =

cosϑ cos(ϑ1 – h) + cosi sinϑ sin(ϑ1 – h).
The equation for the angular variable ϕ2 can be

obtained by adding the term  to the right-hand side

of the equation for ϕ3, while substituting   .

Equations (4) obtained make it possible to study the
complex problem of the translational–rotary motion for
the Earth–Moon system with allowance made for vis-
coelastic properties of the Earth material.

It is worth noting that setting up the problem in such
a way may play a crucial role in studying the evolution

1
2
--- G Gw J 1– w[ ] G Gw–( ),–( )

ρ2 r w+( ) w×[ ] xd

Ω
∫ .

J 1– w[ ] J0
1– J0

1– J1 w[ ] J0
1– …,+–=

J0
1– diag A 1– A 1– C 1–, ,( ),=

∂R*
∂ϕ2
----------

∂R*
∂ϕ3
---------- 0, m*

m1m2

m
-------------,= = =

R21
0

∂R*
∂I2
----------

∂ ·( )
∂I3
--------- ∂ ·( )

∂I2
---------
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processes in the Solar system under the action of grav-
itation tides [2–8]. The global evolution of the Earth–
Moon system can be evaluated on the basis of the evo-
lution (averaged) equations derived on the basis of the
exact equations for system (4).
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1. As a result of developing autonomous pulsed
magnetohydrodynamic (MHD) generators [1–3], the
“Sakhalin” MHD power system was constructed in
Russia, which operates by combusting the solid (pow-
der) plasma-forming propellant (see Fig. 1). This sys-
tem is now the most powerful in the world (the electric
power in the channel amounts to 600 MW). Using such
a large-scale power system (plasma flow rate amounts
to 1000 kg/s) with a high-temperature working medium
(T0 up to 3900 K) and electrical conduction σ ≥ 50 S/m,
σu2 ≥ 200 (S/m) (km/s)2 and employing to a great extent
advantages associated with three-dimensional nature of
MHD energy conversion, we have managed to attain
the MHD interaction factor Si = σB2L/ρu ≥ 1. This
enabled us to obtain extremely high operating parame-
ters and unique specific characteristics.

2. Components of the “Sakhalin” MHD power
system are typical of the autonomous pulsed MHD
power systems operating with a solid plasma-forming
propellant [1–3].
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Plasma generator represents a combustion cham-
ber for a solid plasma-forming propellant with addi-
tives of salts of cesium or potassium. The propellant
combustion rate depended on pressure inside the
plasma generator, as well as on the propellant tempera-
ture, and varied from 1 to 1.7 cm/s. The plasma-gener-
ator case was constructed of a glass-fiber material and
has the shape of a cylinder 1.8 m in diameter and 4.5 m
long. Seven cylindrical charges of solid plasma-form-
ing propellant each 0.55 m in diameter and 3.72 m long
are placed inside the case along its longitudinal axis.
This provides a necessary value and desired time-
dependence for pressure inside the plasma generator
(p0 ≈ const). The combustion-product pressure inside
the plasma generator varied within the range from 4 to
5.7 MPa; the designed temperature was 3800–3900 K.
The propellant mass amounted to 5800–6200 kg, while
the plasma-generator total mass attained 7500 kg.

The subcritical and critical parts of a graphite–
supersonic nozzle are located in the rear cover of the
plasma generator. The critical cross section has a rect-
angular shape close to the quadratic one with an area of
0.272 m2.

MHD channel. The Faraday-type MHD channel
with continuous electrodes of the rectangular cross sec-
tion was used in the “Sakhalin” power system.
Designed plasma parameters at the input of the MHD
channel are the following. Pressure is 0.25–0.35 MPa,
temperature T ~ 2750 K, the Mach number (according
to the mixture parameters) is 2.4, the velocity is
2050 m/s, the electrical conduction is ~50 S/m, the
electron mobility is 0.17–0.25 T–1, and the near-elec-
trode voltage drop is 200 V.

The gas-dynamic contour of the MHD channel con-
sists of three sections: the accelerating section (1.29-m
long supersonic part of the nozzle), the electrode sec-
tion, and the diffuser one (1.3 m long). The electrode
zone is 4.5 m long, the areas of the input and output
cross sections are 1.0 m × 0.9 m and 1.0 m × 1.6 m,
000 MAIK “Nauka/Interperiodica”
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Fig. 1. General view of the “Sakhalin” MHD power system on a test bed.
respectively. Graphite modules 93 mm × 93 mm in area
and 25 mm thick, which are attached to copper bars
each with a cross section of 10 mm × 45 mm. The total
thickness of electrode walls amounts to 70 mm.

Insulating walls in the electrode and exhaust zones
are formed by two-layer plates each 50 mm thick. The
electrode walls and insulating ones form a box placed
inside the stainless-steel load-bearing frame.

Basic parameters of the MHD channel are the fol-
lowing. The electric-current intensity is ~200 kA, the
voltage ~2.5 kV, the power—600 MW. The energy-
conversion coefficient amounts to 12%, the power den-
sity attains 100 MW/m3, the specific energy yield is
close to 0.7 MJ/kg, the mass is ~6 t.

Magnetic system. In order to provide the magnetic-
field induction within the working space of the MHD
channel, the iron-free magnetic system was used. The
electromagnet consists of two plane trapezoidal (race-
track) coils with a rectangular cross section of 0.4 m ×
0.75 m, and of the load-bearing frame. Each coil con-
sists of four isolated sections with independent termi-
nals, that enables us to change their connection. Non-
cooled windings (with the filling factor of 0.7) are man-
ufactured from an aluminum-alloy bar with the cross
section of 46 mm × 46 mm. Their heating attained
~30 K in a time of the pulse duration. The load-bearing
frame is a welded leak-tight structure made of titanic
alloy (see Fig. 1). The masses of the winding and the
magnet are 16.5 t and ~30 t, respectively.

Basic parameters of the electromagnet are: the induc-
tion is lower than 2.5 T, the field inhomogeneity along
the channel is lower than 15% at the edges, the magnet
constant is α0 = B0/Im = 0.045 T/kA, the inductance is
6.5 mH (in the case of the self-excitation), the number of
winding sections to be switched is four, the nominal cur-
rent intensity is 50 kA, the energy stored is ~100 MJ.
ADY PHYSICS      Vol. 45      No. 2      2000
Inductive storage is employed as a load of the
MHD generator. This device is used to store electrical
energy up to 600 MJ. The inductive storage is an iron-
free cylindrical solenoid formed by four sections 5.3 m
in height and 4.9 m in diameter with its mass equal to
39 t. The sections are electrically isolated from each
other and are supplied with independent terminals. An
aluminum-alloy bar with the cross section of 45 mm ×
230 mm is used as a winding conductor. The current-
carrying winding serves also as a load-bearing element
resisting to tearing forces.

Basic parameters of the inductive storage are the
following. The inductance is 30 mH, the resistance is
3.5 mΩ, the electrical current should be lower than
210 kA, the magnetic-field induction attains up to ~2 T,
the stored-energy density per mass and volume units
are 15 MJ/t and 1 MJ/m3, respectively.

The initial magnetic field within the MHD-channel
space is produced by the initial excitation system based
on the condenser battery (1920 units, two sections): the
maximum voltage amounts to 5 kV, the total capacity is
0.27 F, the maximum accumulated energy is 0.65 MJ,
the maximum discharge current is 50 kA, and the mass
is 9300 kg.

In order to provide the energy extraction to the load
and a desired commutation of the magnet sections, we
have developed switching equipment: high-current one-
shot connecting (CS) and disconnecting (DS) switches
and commutating devices (CD) including CS and DS;
powerful ballast resistors (R), and valve devices (V).

3. A circuit diagram and operating mode of the
MHD power system. The operating mode of the MHD
power system is governed by commands (cyclogram)
realized by a control system.

Figure 2 presents the circuit diagram for the MHD
power system. Here, D is an autonomously controlled
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Fig. 2. Schematic circuit diagram of the MHD power system.
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discharger, S is a switch connecting the initial excita-
tion system (IES) to the electromagnet winding, R6–R9
are resistors limiting the voltage at the 4DS–6DS and
equalizing electrical currents in the sections; R4 and R5
are ballast resistors, R10–R13 are resistors for the induc-
tive-storage energy dissipation, Rl is the load resistor.

Following the “plasma-generator start” command,
in a prescribed time interval (1–2 s), connection of the
initial-excitation system to the electromagnet-feed cir-
cuit occurs by switching on the S key. During ~0.1 s,
the excitation current attains its maximum value I0 =
(4–20 kA), and generation of the current (power) in the
MHD channel starts.

After the voltage at the MHD-channel clamps has
exceeded that of the initial-excitation system, the mag-
net is connected to the MHD channel by means of the
4CS-1 contactor.

Further operating mode of the MHD power system
is described by the designed (ideal) cyclogram (see
Fig. 3, pk = 5.6 MPa). In Fig. 3, a moment of switching
on the initial-excitation system is chosen as the starting
one. When the prescribed (initial) magnetic field Bin (or
the magnet current Im ~ 50 kA) is attained, the magnet
windings are commutated anew by disconnecting the
1DS-1–6DS-3 and connecting the 1CS-4–3CS-4 con-
tactors. Commutation overvoltages arising as a result of
this process are suppressed by the R6–R9 ballast resistors.
To stabilize the magnetic field at the level attained, the R4
(24 mΩ) ballast resistor is inserted into the magnet-feed
circuit by actuating the 6DS-1 disconnecting device.

The 1L–4L inductive storage is connected in paral-
lel to the MHD channel via the 5CS-1 contactor. In the
first experiments, the R10–R13 resistor block (with an
equivalent resistance of 47.5 mΩ) was employed as a
MHD-channel load instead of the inductive storage.
As the inductive-storage current Is attains a pre-
scribed value of ~150 kA, the energy extraction to the
load occurs by disconnecting the 1CD–4CD contac-
tors. The energy extracted is monitored according to the
both CD disconnecting time and load parameters. After
the energy has been extracted, the load current is cut off
by connecting the 1CD–4CD devices, and the MHD
system returns again to the energy-storing regime.

4. Results of the experimental investigations.
Tests of MHD-power system components have verified
their expected properties. After assembling the MHD-
power system and placing it on the test bed (see Fig. 1),
the experiments with the MHD generator, which had
been aimed at studying its self-excitation and the MHD
generation of electrical energy, were performed. The
results of two such experiments (nos. 1 and 2) are pre-
sented in the table.

In these experiments, the parallel connection of four
magnet sections was used during the entire run of the
MHD-generator tests. In order to provide reliable self-
excitation, the maximum current in the initial-excita-
tion system was set to be sufficiently large (I0 ≈ 18 kA).

In the course of the experiment no. 1, at the moment
of 3.1 s after the propellant had been ignited, the initial
excitation system was switched on. Within 0.1 s, the
magnet current I0 attained the value I0 = 18.4 kA, and
self-excitation of the MHD generator started. In 4.3 s,
the currents of the both magnet and channel had
increased up to ~130 kA, whereupon (at the time point
of 4.4 s), the ohmic load with the equivalent resistance
of 47.5 mΩ was connected in parallel to the channel. In
this case, the load current was 40 kA, while the channel
current has jumped up to 180 kA. In the channel, both
the current and the voltage continued their increasing,
and to the moment of 5.3 s, they attained 200 kA and
2.55 kW, respectively, while the power reached the
DOKLADY PHYSICS      Vol. 45      No. 2      2000
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Fig. 3. Designed cyclogram of the MHD-power system operation.
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value of 510 MW. To that time, the electromagnet cur-
rent increased from 130 to 150 kA at a voltage of
~1.2 kV, i.e., the electromagnet has consumed ~35% of
the power generated.

Furthermore, within the time interval from 5 to 7 s,
the electrical parameters of the channel and magnet
became stable at the level of Ich ≈ 190 kA, Im ≈ 150 kA,
B0 ≈ 2 T, Vch ≈ 2.3 kV, Vl ≈ 2 kV and Vm ≈ 1.2 kV.

Following the propellant-combustion attenuation,
generation of the electric-power Ne in the MHD chan-
nel decreased during the time from 7 to 7.4 s, while the
S      Vol. 45      No. 2      2000
magnetic field and the current inside the magnet
(Im, Vm) attenuated until ~7.8 s.

In the experiment no. 2, the self-excitation regime
proceeded similarly to that in experiment no. 1. At the
time of 4.36 s after the propellant-combustion had been
started (the initial-excitation system had been switched
on at t = 2.57 s) the channel current attained the value
of Ich = Im = 170 kA (Vch = 2.86 kV). To the time point
t = 4.58 s, the values of electrical quantities were: Ich =
Im = 193 kA, Ne = 502 MW, Vch = 2.6 kV, B0 = 2.2 T,
p2 = 0.3 MPa. Furthermore, (after the time moment
Table 1.  Basic results of typical complex experiments
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1 5780 7.37 45.5 18.4 200 2.55 510 2.09 152 – 0.35 10.9(118)

2 5810 7.52 43.7 17.4 193 2.6 502 2.2 190 – – 11(121)

3 6460 8.64 43.5 6.1 195 1.41 275 1.5 56.1 165 0.28 32(1022)

4 6260 8.17 44.4 4.4 209 1.75 365 1.54 52.5 156 0.25 47.5(2256)

5 6146 7.71 46.8 4.54 180 2.16 388 1.54 52.6 126 0.29 40(1600)

6 6170 7.98 46.3 3.94 200 1.86 372 1.55 56 141 0.28 50.8(2577)
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Fig. 4. Variation of MHD-power system key parameters in the experimental run no. 6.
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t = 4.6 s), the MHD-channel operating mode was close
to the short-circuit regime: the current has jumped up to
Ich = 291 kA, while the voltage has fall down to
0.2−0.4 kV. In this process, the static pressure at the
channel-input has increased up to its maximum value
p1 = 0.35 MPa (with the 0.4 s delay), while at the out-
put, it has increased up to 0.48 MPa, i.e., by the factor of
four compared to the jump-free damping of the super-
sonic flow. The current inside the magnet had attained
the maximum value of 240 kA, then it has dropped to
zero in the time of 2.5 s (to the time point t = 7 s).

As a result of the MHD-generator tests, we have
made the following conclusions:

The operation of the plasma generator at p0 ≈
4.5 MPa and the mass flow rate of 800 kg/s appeared to
be stable and reproducible.

Properties of plasma formed as a result of combus-
tion of the powder propellant are close to expected ones
[σch ≈ 50 S/m, σch  ≥ 200 (S/m) (km/s)2].

In the case when four electromagnet sections are
connected in parallel, and the initial current within the
initial-excitation system is ~17 kA, the self-excitation
time is ~1.5 s, and the current-amplification factor is
11, while the energy-gain factor (with respect to the
energy accumulated in the magnet) amounts to 120.

The MHD channel provides the electrical-power
generation at the 500-MW level.

The MHD channel can operate efficiently in the sep-
aration-flow regime and in the pseudo-jump one; the
MHD power system carrying the short-circuit regime;

After slightly repairing the fire surface of the gas-
dynamic channel, the nozzle and the MHD channel can
be employed for further experiments.

uch
2

We have also performed a series of experimental runs
with the inductive storage of energy and its extraction
into the Rl ohmic load (see Fig. 2). The results for four
typical events are presented in Table 1 (runs nos. 3–6).

A typical experimental cyclogram for the operation
of the MHD-power system is presented in Fig. 4 (run
no. 6 in Table 1). For all of the four experiments
nos. 3−6, in spite of their noticeable differences, there
are the following common properties.

The initial currents I0 were 4–6 kA that resulted in a
time delay of the MHD-generator self-excitation up to
~2 s, and even to short-term attenuating the magnetic
field (the current). After the current intensity in the
magnet had attained a prescribed (nominal) value Im =
Ich, the required commutation of the magnet block from
the parallel-connection regime to the series–parallel
one (2 × 2) occurred. At the same time, a ballast resistor
was inserted into the magnet circuit by means of two
disconnecting devices. This resulted in stabilization of
the magnetic-field induction (i.e., current) at a level of
1.5 T (~50 kA). With the parallel connecting an active–
inductive load to the MHD channel (at t = 4–5 s after
the combustion had started), an increase of the currents
in the both channel and inductive storage began (from
~50 to 200 kA and from zero to ~150 kA, respectively).
These currents reached their maximum (designed) val-
ues within 2.0 to 2.5 s.

Up to this moment, the fraction of the power con-
sumed by the magnet has attained 25% of the total
power generated and even lower with allowance for the
ballast resistor introduced into the magnet circuit. The
current-amplification factor in the MHD-channel–mag-
net system arrived at Im/I0 = 30–50, while the gain factor
for the energy stored in the magnet (~100 MJ) attained
1000 to 2000. The maximum energy accumulated in the
DOKLADY PHYSICS      Vol. 45      No. 2      2000
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inductive storage was close to 420 MJ, and even 680 MJ
(run no. 4) with the extracted energy taken into account.

In the runs nos. 3–6, the energy extraction from the
inductive storage to the ~0.1-Ω load has been carried
out by two pulses with a short time gap between them.
In this case, the desired current value (~150 kA) was
attained. Usually, it happened within the time interval
of 5–6 s after the fuel had been ignited (Fig. 4). Initially,
the energy was extracted from the first and third sec-
tions of the inductive storage (provided by the 1CD-1
and 3CD-1 commutating devices), and then, from the
second and fourth ones (2CD-1 and 4CD-1). The rela-
tive energy extracted to the load amounted to 10–30%.

After the energy has been extracted to the load, the
R5 ballast resistor was introduced into the magnet cir-
cuit, which resulted in fast attenuation of both the mag-
net current Im and the magnetic field (Fig. 4). In this
case, the current from the inductive storage began to
flow in the MHD channel. After disappearance of the
magnetic field, this current became to be equal to time-
decreasing current of the inductive storage. As a result,
all the electrical parameters attenuated in a time
exceeding by 1 to 2 s that of the existence of the plasma
flow (see Fig. 4).

We observed no noticeable visible damages of basic
elements and electrical insulation of the MHD power
system. The damages of the fire surfaces of MHD-
channel walls exhibited erosive nature and corre-
sponded to expected bounds.

5. As a result of performing a vast amount of calcu-
lated-theoretical, design-technological, and experimen-
tal work, we succeed in constructing and testing the
“Sakhalin” autonomous pulsed MHD power system
that is the most powerful in the world and operates with
a powder (solid) propellant. This power system exhibits
record parameters and unique specific characteristics
presented in Table 2.

The “Sakhalin” MHD power system is the most
powerful of the series of autonomous pulsed solid–pro-
pellant MHD systems constructed in Russia, such as
“Pamir,” “Ural,” “Soyuz,” and “Khibiny.”

Plasma-forming powders [4] have opened a funda-
mentally new tendency in the field of pulsed-power
engineering. In contrast to solid propellants, their dis-
tinctive feature is a higher (by four orders of magni-
tude) electrical conduction of the combustion products
at a rather low (~3800 K) burning temperature. There
exists an actual feasibility to increase electrical conduc-
tion even more by a factor of 1.5 to 2. Physicochemical
and strength characteristics of the powders make it pos-
sible to develop plasma generators with a charge mass
within the range from several tens of grams to several
tens of tons. These generators are capable of operating
within the temperature range of ±40°C, with the stor-
age stability being guaranteed for decades. The charge
production is provided by the uninterrupted-automated
technology with the remote control and inspection that
is very important in the case of employing high-power
DOKLADY PHYSICS      Vol. 45      No. 2      2000
condensed substances (powders). The “Sakhalin” MHD
power system and the experimental results obtained in
the process of its tests have shown that the modern status
of science and engineering enables us to construct com-
pact autonomous MHD systems of short-term operation.
These facilities provide a power of ~1 GW and an elec-
tric-energy accumulation up to several gigajoules at an
energy density of ~10 MJ/t, i.e., ~1 MJ/m3.
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Table 2. Basic parameters of the “Sakhalin” MHD power
system

Consumption-product mass flow 
rate 720–1000 kg/s

Electric-energy generation time 5–6 s

Electric power of the MHD 
channel 510 MW

MHD-channel nominal current 200 kA

Nominal voltage 2.5 kV

Maximum energy accumulated in a 
pulse up to 600 MJ

MHD-generator mass 
(without IES) 50 t

MHD-generator size (length ×
width × height) 13.5 m × 3.7 m × 2.7 m

Energy-transformation efficiency 12%

Power density in the MHD
channel 90 MW/m3

Specific energy output per fuel unit 
mass 0.65 MJ/kg

Energy extracted per fuel unit mass up to 0.15 MJ/kg

Gain factor for the energy extracted up to 650

Specific MHD-generator mass per 
power unit 0.1 t/MW

Specific volume of the MHD 
generator 0.3 m3/MW

Mass energy density 5 MJ/t

Volume energy density 0.5 MJ/m3
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1. We consider harmonic vibrations of a plate
x, y ∈  S, 0 ≤ z ≤ h, whose elastic characteristics λ = λ(z),
µ = µ(z), and the density ρ = ρ(z) are positive piecewise
continuous functions of the variable z and whose faces
(z = 0, z = h) are stressless. We will seek the solution of
equations of the elasticity theory in the following form

(1)

After separating variables, we arrive at the spectral
problems:

(i) relative to a pair of functions a = {a1, a2}

(2)

and (ii) relative to a3

(3)

Here, ω is the cyclic frequency of vibrations.
We denote the spectra of the problems (2) and (3)

with respect to the parameter k by Λ1(ω) and Λ2(ω),
respectively.

Statement 1. The spectra Λ1(ω) and Λ2(ω) are sym-
metric sets. For any real value of the frequency ω,
Λ1(ω) consists of a bounded set of real eigenvalues and

ux a1 z( )m1 x, x y,( ) a3 z( )m2 y, x y,( ),+=

uy a1 z( )m1 y, x y,( ) a3 z( )m2 x, x y,( ),–=

uz ika2 z( )m1 x y,( ),=

∆mα k2mα+ 0, ∆ ∂2

∂x2
--------

∂2

∂y2
--------, α+ 1 2.,= = =

L ik ω,( )a –k2Ca ik Ba( )' B*a'+[ ]+{≡

+ Aa'( )' ρω2a Aa' ikBa+( ) z 0 h,= },+ 0,=

C λ 2µ+ 0

0 µ
, B 0 µ

λ 0
,= =

B* 0 λ
µ 0

, A µ 0

0 λ 2µ+
;= =

µa3'( )' k2µ ρω2–[ ] a3– 0, a3' z 0 h,= 0.= =
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denumerable set of complex eigenvalues, and Λ2(ω)
consists of a bounded set of real eigenvalues and denu-
merable set of imaginary eigenvalues.

Remark 1. A more comprehensive description of
eigenvalues, eigenfunctions, and associated functions
can be found, for example, in [1, 2].

The homogeneous fundamental solutions of the
form

(4)

(5)

correspond to the ordinary eigenvalues kp ∈  Λ1 and
kv ∈  Λ2 .

Theorem 1. If the spectra Λ1(ω) and Λ2(ω) consist
of only nondegenerate eigenvalues, then any homoge-
neous solution (meeting the condition of zero stress at
z = 0 and z = h) can be presented as a finite or infinite
sum of fundamental solutions (4) and (5). In this case,
if S is an unbounded domain, the solutions of the Helm-
holtz equations, which correspond to either real or
complex values of kp and kv, can be chosen on the basis
of either the energy conservation principle for radia-
tion [1, 3, 4] or the condition of damping, respectively.

Remark 2. The proof of a similar theorem, which
was given for a static problem in [5], can be applied,
with insignificant modifications, to the case of station-
ary vibrations under consideration.

2. Assume that kc is a degenerate eigenvalue and ωc

is the critical frequency at which this kc appears. The
pair (kc, ωc) and the fundamental solutions correspond-
ing to it will be referred to as the critical pair and the
critical modes, respectively. We restrict ourselves by
the description of the most typical cases when kc = 0.

uxp a1 p z( )m1 p x, x y,( ),=

uyp a1 p z( )m1 p y, x y,( ),=

uzp ikpa2 p z( )m1 p x y,( ),=

∆m1 p kp
2 m1 p+ 0,=

uxv a3v z( )m2v y, x y,( ),=

uyv a3v z( )m2v y, x y,( ), uzv– 0,= =

∆m2v kv
2 m2v+ 0,=
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Substituting k = 0 into (2) and (3) gives two self-
conjugate spectral problems of determining the critical
frequencies:

(6)

(7)

Here, equation (6) is a result of the indicated substitu-
tion both into relations (2) (a1 = ϕ(1)) and (3) (a3 = ϕ(1)),
and equation (7) follows from (2) (a2 = ϕ(2)).

We denote the sets of eigenvalues of problems (6)

and (7) by { } and { } (n = 1, 2, …), respec-
tively.

Let  be the eigenfunction, and ωc = , with

Here,  is a solution of the boundary-value problem

Statement 2. If  ≠ 0, the root subspace of prob-
lem (2), which corresponds to the critical pair

{0, }, consists of the eigenvector  = { , 0}

and the adjoint vector  = {0, i }. The general
form of the fundamental solution is as follows:

(8)

Here, the function bx(x, y) and by(x, y) satisfy the equa-
tions

(9)

that formally coincide with equations of the elasticity

theory in the plane case. The function ϕ2 =  is the

µϕ 1( )'( )' ρω2ϕ 1( )+ 0,=

ϕ 1( )' z 0 h,= 0,=

λ 2µ+( )ϕ 2( )'[ ] ' ρω2ϕ 2( )+ 0,=

ϕ 2( )' z 0= h, 0.=

ωn
1( ) ωn

2( )

ϕ r0
1( ) ωr

1( )

λ r λϕ r1
1( )'ϕ r0

1( ) λ ϕ r0
1( )( )2 µϕ r0

1( )'ϕ r1
1( )–+[ ] z,d

0

h

∫=

µr µ ϕ r0
1( )( )2

z,d

0

h

∫=

dr
1( ) λ r 2µr.+=

ϕ r1
1( )

λ 2µ+( )ϕ1'[ ] ' ρ ωr
1( )( )2ϕ1+ λϕ r0

1( )( )' µϕ r0
1( )',––=

λ 2µ+( )ϕ1' λϕ r0
1( )'+[ ] z 0= h, 0.=

dr
1( )

ωr
1( ) ar0

1( ) ϕ r0
1( )

ar1
1( ) ϕ r1

1( )

ux
1( ) ϕ r0

1( )bx ϕ r2
1( )θ x, ,+=

uy
1( ) ϕ r0

1( )by ϕ r2
1( )θ y, , uz

1( )+ ϕ r1
1( )θ.= =

λ r µr+( )θ x, µr∆bx+ 0,=

λ r µr+( )θ y, µr∆by+ 0, θ bx x, by y, ,+= =

ϕ r2
1( )
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solution to the problem

Remark 3. If λr + µr ≠ 0, the functions bx and by can
be represented in terms of the biharmonic Airy func-
tions Φ in the following way [6]:

where ε, cx, and cy are arbitrary constants,

Statement 3. If  = 0 (the first exceptional case),
there exist at least two (or just two, in the case of a

homogeneous plate) additional adjoint vectors  =

{ , 0} and  = {0, i }, where ϕ3 =  is a
solution to the problem

In this case, the fundamental solutions are determined
by the relations

where C is an arbitrary constant. The functions bx and
by satisfy the equations

(10)

Remark 4. In this case,

Let  be the eigenfunction and ωc = , with

Statement 4. If  ≠ 0, the root subspace of prob-
lem (2), which corresponds to the critical pair

µϕ2'( )' ρ ωr
1( )( )2ϕ2+

=  –λϕ r1
1( )' µϕ r1

1( )( )' µλ r µr λ–⁄( )ϕ r0
1( ),+–

ϕ2' ϕ r1
1( )+( )

z 0 h,=
0.=

2µrbx –Φ x, K px εy– cx,+ +=

2µrby –Φ y, K py εx cy,+ + +=

px x, py y, ∆Φ, px y, py x, ,–= = =

θ ∆Φ
2 λ r µr+( )
------------------------, K

dr
1( )

2 λ r µr+( )
------------------------.= =

dr
1( )

ar2
1( )

ϕ r2
1( ) ar3

1( ) ϕ r3
1( ) ϕ r3

1( )

λ 2µ+( )ϕ3'[ ] ' ρ ωr
1( )( )2ϕ3+ – λϕ r2

1( )( )' µϕ r1
1( )',–=

λ 2µ+( )ϕ3' λϕ r2
1( )'+[ ] z 0 h,= 0.=

ux
1( ) ϕ r0

1( )bx ϕ r2
1( )θ x, ,+=

uy
1( ) ϕ r0

1( )by ϕ r2
1( )θ y, , uz

2( )+ ϕ r1
1( )θ ϕ r3

1( )C,+= =

∆ bx xx, by xy,+( ) 0, ∆ bx xy, by yy,+( ) 0.= =

2µrbx –Φ x, εy– cx,+=

2µrby –Φ y, εx cy, ∆2Φ+ + 2 λ r µr+( )C.= =

ϕ r0
2( ) ωr

2( )

dr
2( ) µϕ0r

2( )ϕ r1
2( )' µ ϕ0r

2( )( )2 λϕ0r
2( )'ϕ1r

2( )–+[ ] z.d

0

h

∫=

dr
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{0, }, consists of the eigenvector  = {0, }

and the adjoint vector  = {i , 0}. The general
form of the fundamental solution is as follows:

(11)

Here,  is a solution to the problem:

Statement 5. If  = 0 (the second exceptional
case), there exist at least two (or just two, in the case of

a homogeneous plate) additional adjoint vectors  =

{0, } and  = {i , 0}, where  and  are
solutions of the following problems:

In this case, the fundamental solutions are determined
by the relations:

(12)

Statement 6. If ωc =  =  (the third excep-
tional case), two fundamental solutions correspond to
the spectral pair, namely:

(13)

(14)

The existence of the fundamental solutions of the
form (13) and (14) follows from relations (8), (9), and
(10) when bx and by are constants. However, these rela-
tions and especially equations (11) and (12) admit the
existence of the critical modes in which the displace-
ment amplitudes infinitely increase with x and y, while
the stress amplitudes remain bounded. As is known [6],
similar properties are inherent in solutions of plane

ωr
2( ) ar0

2( ) ϕ r0
2( )

ar1
2( ) ϕ r1

2( )

ux
2( ) ϕ r1

2( )bz x, , uy
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2( )bz y, ,= =
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ϕ r1
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µϕ1'( )' ρ ωr
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2( )( )',–=
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z 0 h,=
0.=

dr
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2( ) ϕ r2
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2( )( )' µϕ r1
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2( ),––

λ 2µ+( )ϕ2' λϕ r1
2( )+[ ] z 0 h,= 0,=

µϕ3'( )' ρ ωr
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z 0 h,=
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ux
2( ) ϕ r1

2( )bz x, ϕ r3
2( )∆bz x, ,+=

uy
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2( )bz y, ϕ r3
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2( )bz ϕ r4
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ωr
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ux
1( ) bxϕ r0

1( ), uy
1( ) byϕ r0

1( ),= =

uz
1( ) 0, bx x, by y,+ 0;= =

ux
2( ) uy

2( ) 0, uz
2( ) ϕm0

2( ).= = =
static problems of the elasticity theory and problems of
bending. In the first and second exceptional cases, the
equations given above admit solutions with infinitely
rising stress amplitudes. Therefore, for an unbounded
plate, the solution may belong to a class of the general-
ized functions infinitely rising at |x |, |y |  ∞. These
fundamental solutions have no physical meaning
because of two idealizations used, namely, we assumed
the plate to be unbounded and the material to be per-
fectly elastic. However, the boundary-value problem
can become intractable on account of the condition of
finiteness for solutions. In the case of critical frequen-
cies, a theorem similar to that given above can be for-
mulated only if all the solutions meeting the above rela-
tions are taken into account. In the resonance case for
an unbounded plate, the unique solution can be selected
on the basis of the energy conservation principle for
radiation by constructing specific fundamental solu-
tions similar to those obtained in [2, 7].

3. We now consider a plate having a layered two-
phase periodic structure with the period l. Each phase is
characterized by the length lβ and the mechanical
parameters λβ, µβ, and ρβ (β = 1, 2, l = l1 + l2), with
h = Nl, where N is a natural number. Employing the
Floquet–Lyapunov theory [8] to equations (8) and (9),
we can reduce the problem of determining the critical
frequencies to the problem of finding the roots of the
following equations:

The following eigenfunction corresponds to each of the

roots ω =  (s = 1, 2, …):

when mh ≤ z ≤ mh + l1, m = 0, …, N – 1;

when mh + l1 ≤ z ≤ mh + l.

γncos q1
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---
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p α( )k2
α( )-----------------

p α( )k2
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α( )-----------------+
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 
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Here, (z – mh, rn) and (z – mh, rn) are derived
by the substitution of 

and 

,

into the following equations:

The construction of the remaining functions men-
tioned in Statements 2–6 and the test for the fulfillment
of various conditions can be carried out by a program
similar to Maple V.

y1ns
α( ) y2ns

α( )

z z mh– , r rn iγn( ),exp= = =

kβ kβns
α( ) ωns

α( )

cβ
α( )---------= =

y1 z r,( ) pk1k2 k1 z l1–( )( )cos=

+ rpk2 pk2 q2 k1z( ) k1 k1z( ) q2( )coscos–sinsin[ ] ,

y2 z r,( ) rk1 k1 q1( ) (k1 z l–( )sinsin[=

+ pk2 k2 z l–( ) q1( ) ]cos(cos

– r2 pk1k2 k1 z l1–( ),(cos

C1 y1 z, 0 rn
1–,( ), C2 y1 z, 0 rn,( ).–= =
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The effects observed when a self-maintained glow
discharge occurring in a supersonic gas flow interacts
with shock waves are currently of considerable scien-
tific interest [1–5]. It is established that the glow dis-
charge can decrease the amplitude of the shock wave
and increase the width of its front [3, 4]. It rearranges
the pattern of the supersonic gas flow around the body.
In particular, this manifests itself as a dissipation of the
front shock [5]. Seemingly, the fact that the effects
observed cannot be explained exclusively within the
scope of a model of temperature distribution for a neu-
tral gas should be considered as proven now [3, 4].
Therefore, energy characteristics of the supersonic gas
flow with a discharge become important for discrimi-
nating “thermal” effects from “nonthermal” ones (asso-
ciated with properties of plasma).

We have already established the fact [5] that, if the
longitudinal glow discharge occurs at the incident-flow
Mach number M = 3.2, the voltage in it drops notice-
ably only in the near-electrode regions. In addition, a
model of the non-self-maintained discharge can be
used to describe the potential distribution in a discharge
gap except the near-electrode regions.

However, the effect of variation of the interelectrode
spacing L, the static pressure P (the density ρ), and the
incident-flow Mach number M on energy characteris-
tics of the discharge remained completely unknown
until now. Here, we are the first to present the results of
the investigation that concerns the effect of the above-
mentioned parameters on the voltage–current charac-
teristic of a longitudinal self-maintained glow dis-
charge occurring in a hypersonic air flow.

A setup used in the experiments to investigate the
discharge was similar to that applied in [5]. A stream-
lined model body, i.e., a cylinder 8 mm in diameter, was
placed in a hypersonic air flow (M = 7.1, 8.15 and ρ =
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2.8 × 10–2–5.4 × 10–2 kg/m3). The cylinder spherical
head served as a cathode, while the 0.2-mm plate
shifted upstream and located in the plane of symmetry
of the model body at a distance L = 21–52 mm from the
cathode served as an anode. To localize the discharge,
the anode had a triangular cusp at its back edge. Both
the plate (the anode) and the cylinder (the cathode)
were placed at the zero angle of incidence to the flow.
A high-voltage power supply contained a full-wave
rectifier without smoothing filters. The duration of
measurement runs used for constructing each voltage–
current characteristic was 10–2 s. Gas renewal in the dis-
charge occurred during the characteristic time of 2 ×
10–5–5 × 10–5 s. Therefore, with respect to processes in
the discharge, these characteristics can be considered as
steady-state. Duration of each experiment was 10 s. In
this period, the voltage–current characteristics were
measured and recorded automatically about 103 times.

Figure 1 presents the discharge appearance in the
hypersonic air flow at M = 8.15. The pattern is almost
the same as at M = 7.1 and similar to that observed at
M = 3.2 in [5]. The volume occupied by the discharge
(the non-near-electrode zones) has the shape of a cylin-
der of about 3 mm in diameter, which turns into a cone
near the head, i.e., near the cathode of the streamlined
body. The cathode layer, characteristic for glow dis-
charges, forms at the cathode. Photographing shows
that the thickness of the layer is about 0.6 mm. In our
experiments, the characteristic maximum current den-
sity observed at the cathode was 0.38 A/cm2. The same
quantity in the volume occupied by the discharge took
the value 4.7 A/cm2. Variation of the interelectrode
spacing did not affect the shape of the near-cathode
region of the discharge but changed the length of the
discharge-occupied volume. To visualize the wave pat-
tern of the flow around the body, we applied the shadow
method. The results obtained by us are similar to those
presented in [5]: the discharge causes dissipation of the
shock wave in front of the blunt part of the body.

Figures 2–4 show the voltage–current characteris-
tics. Each curve presented is obtained by averaging sev-
eral thousands of experimental results. The dependence
of the voltage between the anode and cathode on the
strength of the electric current exhibits a pronounced
hysteresis: two values of the voltage can correspond to
2000 MAIK “Nauka/Interperiodica”



 

DOKLADY

       

SELF-MAINTAINED GLOW DISCHARGE IN A HYPERSONIC AIR FLOW 85

                   
Fig. 1. Discharge appearance at M = 8.15.
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Fig. 2. Effect of the electrode spacing on the voltage–current characteristics.
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400
one value of the current in the discharge. The direction
of movement around the hysteresis loop is identical for
all of the curves and is shown by arrows in Fig. 4. Each
of the voltage–current characteristics can be divided
into two parts. In accordance with the direction of
movement around the hysteresis loop, the first part
begins at the maximum value of the voltage and ends in
the region of its minimum. It corresponds to the dis-
charge ignition and is characterized by both the short
duration and increased spread of the experimental
 PHYSICS      Vol. 45      No. 2      2000
results. Going further along the voltage–current charac-
teristic, we traverse its second (main) part. It corre-
sponds to the dominant part of the discharge duration
and is characterized by high reproducibility. Analyzing
this region allows the following conclusions to be
drawn. Within the range of variation of the parameters
investigated, the interelectrode spacing affects the volt-
age–current dependence most strongly. Increasing the
interelectrode spacing enhances both the discharge-gap
voltage and the effect of hysteresis. An increase in the
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Fig. 3. Effect of static pressure on the voltage–current characteristics.

Fig. 4. Effect of the Mach number on the voltage–current characteristics.
static pressure has the same, but less pronounced,
effect. An increase in the Mach number from 7.1 to 8.15
does not affect noticeably the voltage–current charac-
teristics.

Below, we consider the hysteresis in greater detail.
According to paper [6], this phenomenon can be asso-
ciated with processes that occur at the cathode surface
at the boundary separating current and current-free
zones of the discharge in the regime when not the entire
cathode surface glows (in the case of classic glow dis-
charges, such a regime is usually called normal). How-
ever, only processes occurring in the near-cathode
regions cannot explain the hysteresis observed in our
experiments, as evidenced by the following arguments.
The direction of movement around the hysteresis loop
is opposite to that observed in [6], and the value of the
hysteresis depends on the interelectrode spacing, i.e.,
on processes occurring in the volume occupied by the
discharge. Apparently, this volume decreases with
reducing the electric current more slowly than it
increases with the current growth. At the same time, the
normal component of the cathode-current density can
vary depending on whether the current in the discharge
increases or decreases, which is a cause of the hys-
teresis.
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In this study, we investigated a specific instability
inherent in flows of perfect incompressible fluid and
appearing as an unlimited growth of strains in liquid
particles. As a result, in three-dimensional flows, a vor-
tex grows indefinitely with time, while for two-dimen-
sional flows the growth of the vortex gradient is typical.
In the general case, these statements remain to be hypo-
thetical; however, their validity is beyond any doubt
considering a set of examples available for particular
flows and classes of flows.

The problem of global unambiguous solvability for
the Euler equations of perfect incompressible fluid
remains to be the most urgent in the mathematical
hydrodynamics. Because the local unambiguous solv-
ability was established as early as 1920th in classical
studies by N. Günter and L. Liechtenstein, the problem
reduces to deriving reasonably strong prior estimates
for solutions and, above all, for a vortex. However, the
satisfactory results are now known only in the two-
dimensional case [1–7]. For example, if the initial data
and the boundary of the flow domain are C∞-smooth, it
is possible to guarantee the existence of a unique C∞-
smooth solution for all values of the time variable t. An
interesting review of results and unresolved problems
can be found in [8].

From the physical point of view and also from the
point of view of a computer experiment, the conclusion
about the smoothness of two-dimensional flows is of
somewhat formal character. The examples presented in
[9] have shown that the vortex gradient can grow indef-
initely with time in two-dimensional flows, while in
three-dimensional flows the vortex itself can grow
indefinitely. Meanwhile, this is the smoothness, that is
conserved uniformly at infinite intervals of time, could
be considered as real and observable in natural and
computer experiments. Such a conservation of the
smoothness can be provided only by the global prior
estimates of derivatives, which are based on the conser-
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vation laws. In the dynamics of the perfect incompress-
ible fluid, the law of conservation of circulation (the
Helmholtz–Thomson theorem) acts also along with the
law of conservation of energy. In the two-dimensional
case, the vortex conservation follows from the law of
conservation of circulation, but constraints are not
imposed on its derivatives. In the three-dimensional
case, there are no obstacles for the indefinite growth of
the vortex and the deformation rate.

There are likely no laws that should require the
growth of a vortex for all or at least “almost all” three-
dimensional flows, excluding, perhaps, steady, peri-
odic, and quasi-periodic flows. The same can be said
also with respect to the vortex gradient in the two-
dimensional case. Therefore, such a growth, resulting
in a gradual loss of the flow smoothness, sometimes
takes place, and sometimes does not. At the same time,
it can be assumed with confidence that the class of
flows for which this phenomenon occurs is so wide that
a dense set of initial data corresponds to this class
everywhere in the phase space of the system. As a
result, it turns out that almost any steady flow is unsta-
ble in the sense of Lyapunov in the vortex metric
(max|curlv| + minor norm) in the three-dimensional
case and in the vortex-gradient metric (max|∇ω|  +
minor norm) in the two-dimensional case. This smooth-
ness-loss phenomenon and a sort of the stochastic
behavior associated with it were, for the first time,
pointed to in [9].

The results presented in what follows illustrate and
confirm the point of view proposed. The details can be
found in [10].

1. Basic equations and definitions. The motion of
a fluid in the domain $ ⊂ Rn with an impenetrable
boundary is considered as given if, for an arbitrary liq-
uid particle occupying the position a = (a1, …, an) ∈  $
at the initial moment t = 0, its position x(a, t) ∈  D is
known for all t ∈  R; moreover, x(a, 0) = a. Differenti-
ating with respect to time t gives the Lagrangian veloc-
ity field a  (a, t) at the moment t. The Eulerian
velocity field is determined as v(x, t) = (x–1(x, t), t) at
the moment t for an arbitrary x ∈  $.

ẋ
ẋ

000 MAIK “Nauka/Interperiodica”
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For an arbitrary continuum, the following relation-
ship is valid:

(1)

Here, S =  is the distortion matrix.

The Lagrangian condition of incompressibility for a
homogeneous medium is

(2)

From this condition, it follows that TrD = 0. D can be
represented in the form D = E + Ω , where E is the sym-
metric matrix (of deformation rates), and Ω is the skew-
symmetric matrix (of rotations). For n = 3, the action of
the skew-symmetric operator Ω on an arbitrary vector

ξ ∈  R3 is specified by the vector product Ωξ = ω ∧  ξ,

where ω = curlv is the vortex.
The Lagrange equations of motion for a homoge-

neous incompressible fluid (with the unit density) can
be written in the form:

(3)

where p = p(a, t) is the pressure, and the following des-
ignations are used:

(4)

The corresponding Euler equations look like: 

(5)

Differentiating with respect to xi, we derive the rela-
tionship:

(6)

From this relationship, the pair of equations for E and
Ω follows:

(7)

The latter equation yields the conservation law:

(8)

so that the following equality is fulfilled for all t:

Ṡ DS,=

D
∂v
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∂ak
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n
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1
2
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ẋ̇
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∂p
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dv i
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∂p
∂xi
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dt
----- ∂

∂t
----- v k

∂
∂xk

--------+= 
  .= =

Ḋ Π D2, Π–
∂2 p

∂xi∂xk
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 

i k, 1=

n
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d
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----- S*ΩS( ) 0,=

S*ΩS Ω0, Ω0 Ω t 0= .= =
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In the three-dimensional case, this is the Cauchy classi-
cal equation for a vortex:

(9)

Note the following generalization of equation (8): if the
matrix-valued function Vλ is the solution to the Cauchy

problem  = (E + λΩ)Vλ, Vλ|t = 0 = I, then

( ΩVλ) = 0. Here, λ is an arbitrary quantity con-

served for liquid particles, i.e.,  = 0. For λ = 1, we

have V1 = S.

2. Loss of smoothness at the boundary and the
instability of steady flows. Sometimes, it is possible to
find the local Lyapunov functional, i.e., the function of
Eulerian unknown quantities, which increases (or
decreases) monotonically in the course of a motion of a
liquid particle. The first example is the plane motion of
a fluid when there is a straight stream line, for example,
an interval of the x-axis on the plane x, y. In this case,
the following relationship holds [9]:

(10)

Here, ω is the vortex, and ωx and ωy are its derivatives.

The second example is given by the axially symmet-
ric flow of a fluid. Let u, v, and w be the components of
the velocity in the cylindrical coordinates r, θ, and z. If
u and w are independent of θ and v = 0, then, for a liq-
uid particle moving along an impenetrable cylinder r =
r0 (in this case,  = 0), the following relationship

will be fulfilled:

(11)

If the trajectory of the liquid particle lies in the plane
z = z0 , we shall have

(12)

It is worth noting that the value ω in the plane case and
the value q in the axially symmetric case are conserved
in the liquid particle:  = 0 and  = 0.

If the boundary of the domain $ contains a portion
of the plane x3 = 0 in which the rectilinear trajectory
x2 = 0 of the liquid particle lies, then

(13)

The following lemma is applicable to these situations [9].

ωi ω0k

∂xi

∂ak

--------, i k, 1 2 3., ,= =
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d
dt
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dλ
dt
------

d
dt
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u r r0=

d
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2, q
ω
r
----, ω uz wr.–= = =

d
dt
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r
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  q2qr
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ω̇ q̇

d
dt
-----ω1ω2ω3 ω1
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Lemma. Let us assume that f and g are the smooth
functions of time t: 0 ≤ t < ∞, and the following equation
is fulfilled:

(14)

Let ωf(0)g(0) > 0. In this case, the function f2(t) + g2(t)
is unbounded on the interval [0, ∞), i.e., such a
sequence tn  +∞ exists that f 2(tn) + g2(tn)  ∞.
Moreover, the function f 2(t) + g2(t) tends to infinity at
t  +∞ “with the probability equal to unity.” This
means that, for any real N at T  +∞, the limiting
equality is valid:

(15)

According to this lemma the modulus of the vortex
gradient increases indefinitely at t  +∞ both in the
plane and axially symmetric cases considered above,
broadly speaking, for the half of the initial data (for
another half, this takes place at t  –∞). In the three-
dimensional case, it follows from (13) that the vortex
itself increases indefinitely.

The class of flows with the indicated broken
smoothness is so large that its representatives can be
found in an arbitrarily small vicinity of an arbitrary
steady regime. More precisely, an arbitrarily small C∞-
smooth local (near a point of rectilinear trajectory of a
liquid particle) perturbation leads to a flow with a dam-
age of the smoothness under the conditions specified by
theorem 1.

Theorem 1. Under conditions of equalities (10)–
(12), any steady flow (for example, in the case of a band
confined between a straight line and a certain curve, or
in the similar domain of rotation) is unstable in the vor-
tex-gradient metric.

Under conditions specified by equality (13) (for
example, for flows in a parallelepiped), any steady flow
is unstable in the vortex metric.

Recall that, according to the Arnold results [11, 12],
there are many plane and axially symmetric steady
flows stable in the vortex metric.

3. Incompressible motions of a dust medium. If
particles of a continuum do not interact, each of them
execute coasting along the geodesic line, which is a
straight line in the Rn case. In the classical works by
Ya.B. Zel’dovich, the theory of a self-gravitating dust
medium is used as the basis for investigating the uni-
verse at large scales [13]. The Lagrange equations of
motion look like  = 0; whence it follows that x(a, t) =
a + tv0(a), where v0 is the initial velocity. The Euler

equation of motion is  = 0, or, in coordinates,

(16)

d
dt
----- fg ω f 2, ω const.= =

1
T
---mes t: f 2 t( ) g2 t( ) N2; 0 t T≤ ≤>+{ } 1.→

ẋ̇

dv
dt
------

∂v i

∂t
-------- v k

∂v i

∂xk

--------+ 0, i 1 … n., ,= =
In general, the equations for a dust medium can be
obtained from the corresponding equations for an
incompressible fluid by putting p = 0 in the latter ones
and rejecting the incompressibility conditions detS = 1
and divv = 0. Instead of (6), we have

(17)

This equation for a liquid particle can be integrated:

In the one-dimensional case, the collapse always
takes place: the nonzero solution of set (16) cannot be
determined for all t ∈  R. For n ≥ 2, the globally defined
motion of continuum is possible if D0 has no real eigen-
values except, maybe, zero.

It turns out that the incompressibility condition
det(I + tD0) = 1 is fulfilled for a dust medium if and

only if  = 0; i.e., D0 is a nilpotent operator. In this
case for all t

It turns out that the incompressible flows of a dust
medium are globally defined, but both the deformation
rates and the vortex grow polynomially with time (lin-
early, in the R3-case). The examples of such flows can
be found in [10]. Note that the solutions of the Euler
equations of the type considered are mentioned in [14].

4. Three-dimensional instability of plane flows. A
plane flow with the velocity field (u(x, y, t), v(x, y, t)) in
the domain $ ∈  R2 can be treated as the three-dimen-
sional flow in the cylinder $ × R with the velocity field
(u, v, 0). For perturbed flows, we lay down the condi-
tion of periodicity for velocity and pressure in the axial
variable z. If the initial perturbation of the velocity field
looks like (0, 0, w0(x, y)), i.e., the z-component of the
velocity is independent of z, then u(x, y, t), v(x, y, t),
and p(x, y, t), as before, will be defined by the two-
dimensional Euler equations in the $ domain. For
the z-component w = w(x, y, t), we have the Cauchy
problem:

(18)

This problem is globally univalently solvable, and

max|w(x, t, y)| with respect to (x, y) ∈   is t-indepen-
dent. However, the derivatives wx and wy , as a rule,
grow with time.

Let u, v, p be a time-independent solution of the
plane problem in $, the boundary ∂$ being impene-
trable. Let ψ be the corresponding stream function,
and ψ = c0 be the nondegenerate stream line, so that

Ḋ D2.–=

D t( ) D a t,( ) I tD0+( ) 1– D0,= =

D0 D0 a( ) D a 0,( ).= =

D0
n

D t( ) I tD0– t2D0
2 …– 1–( )n 2– tn 2– D0

n 2–+ +( )D0.=

dw
dt
------- 0, w x y 0, ,( ) w0 x y,( )= =

d
dt
----- u∂x v∂y+= 

  .

$
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|∇ ψ| ≠ 0 everywhere in this line. In this case, we can
introduce the action–angle variables ψ, ϕ in the vicinity
of this line, where ϕ is determined as the solution of the

differential equation  = ν(c)|∇ψ|  in every line ψ = c.

Here, s is the arc length, and ν(c) is the frequency of
rotation of a liquid particle with the axis of rotation
being aligned with the stream line ψ = c. In this case,
s = 0 corresponds to a certain curve which is a transver-
sal to the stream line ψ = c0 . Then, equation (18) takes
the form wt + ν(ψ)wϕ = 0, and the solution of Cauchy
problem (18) is w = w0[ϕ – tν(ψ), ψ]. Now, it is easy to
verify that |∇ w|  ∞ at t  ∞ always when the fol-
lowing conditions are fulfilled:

(19)

The first condition is fulfilled by the choice of the initial
velocity w0 , while the second one is the condition of the
nonlinearity for a pendulum with the Hamiltonian func-
tion ψ(x, y). This condition is not always (but as a rule)
fulfilled. For example, if ψ = ψ(r), where r is the polar
radius, then ν'(ψ) = 0 everywhere only in the case of the
solid-state rotation, when ψ(r) = ωr2/2.

5. Composition of Lagrangian motions and the
time growth of a vortex. The configuration space for a
perfect incompressible fluid in a fixed domain is a
group of volume-conserving transformations. It is nat-
ural to ask: under which conditions will the composi-
tion g(t)h(t) of two solutions of Lagrange equations (2)
and (3) also be a solution? The general answer is
unknown, but some examples can be given.

Let [U(y), 0, 0] and [0, 0, W(x, y)] be two steady
flows (x, y, z are the Cartesian coordinates in R3) with
smooth profiles U and W. The following motions g(t),
h(t) [(a, b, c) ∈  R3] of particles correspond to these
flows:

(20)

The composition acts according to the rule g(t)h(t) =
[a + tU(b), b, c + tW(a, b)]. The corresponding Euler
field

(21)

satisfies the Euler equations with the pressure p = 0. We
arrived at the incompressible motion of a dust medium.
However, an analogous flow in the cylindrical coordi-
nates with the components

(22)

dϕ
ds
------
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ϕ

∂w0 ϕ c0,( )
∂ψ

-------------------------- 0, ν' c0( ) 0.≠>

g t( ) a b c, ,( ) a tU b( ) b c, ,+( ),=
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corresponds to a nonzero pressure p = p(r) determined

from the equation  = . Solution (21) can be con-

sidered as a flow in the layer y1 < y < y2 with impenetra-
ble walls y = y1 and y = y2 . We can conclude that the
steady flow [0, 0, W(x, y)] is unstable in the sense of
Lyapunov in the vortex metric for an arbitrary periodic
(with respect to x ) and variable profile W(x, y). This is
the rare instance when it has been possible to establish
the instability by presenting an explicitly growing per-
turbation. Note that solution (21) in the particular case
when U = siny, W = cosx is presented (with a misprint)
in [8]. Correspondingly, solution (22) helps to establish
that both flows [0, 0, W(r, θ)] and [0, V(r), 0] are

unstable in the vortex metric if  is not a constant and

 ò 0.
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