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Mechanical twinning in Gadfield-steel polycrystals
(containing 12 wt % of Mn and 1 wt % of C, in addition
to Fe) promotes the high rate Θ of strain hardening [1–6].
The combined effect of a high concentration of intersti-
tial atoms CC = 1–1.3% and the low energy of stacking
faults γsf = 0.025 J/m2 gives rise to the fact that we can
observe twinning within a wide temperature range after
a small strain by slipping in the case of both tension and
compression [1–3]. Hence, the interstitials introduced
into the fcc host do not suppress twinning, although the
a/6〈211〉  shear by twinning removes carbon atoms from
octahedral interstitial positions to tetrahedral ones.
On the contrary, the interstitials stimulate intense twin-
ning [1–3]. The twins induced by strains in Gadfield
steel are, in fact, pseudotwins, since positions of inter-
stitial atoms in the untwinned material and in the twin
turn out to be nonequivalent [1, 7, 8]. Therefore, the
pseudotwins are more efficient obstacles to slipping
and twinning in intersecting systems compared to twins
in pure fcc metals and substitution alloys [7]. The high
rate of strain hardening in Gadfield steel can be
explained on the basis of this concept [1].

A widespread interest in mechanical twinning in
Gadfield-steel single crystals is associated, first of all,
with the fact that only single crystals allow us to reveal
basic regularities in the orientation dependence of twin-
ning [4–6]. According to previous experimental data
for fcc crystals [7], it is possible to vary the multiplicity
of the twin-induced shear by changing orientation of

the tension axis in a crystal. For [ ] orientations,
three intersecting systems of twins have the same

Schmid factors, whereas for [ ] and [ ] orienta-
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tions, there exists only one such a system. For [001] ori-
entations, deformation could occur only by slipping,
since twinning was not observed previously in fcc crys-
tals for these orientations [7]. The second source of
interest is related to features of twinning. Twinning

accompanying the [ ] tension of crystals should be

generated by a/6[ ] (111) dislocations in the primary
slipping system, whereas the reverse twin-induced

a/6[ ] shear was not observed in experiments in
which compression of these crystals was used. This
shear causes formation of AA stacking in the three-
layer model of the fcc lattice [7, 10]. Therefore, the for-
mation of such high-energy defects requires higher
stresses compared to those characteristic of the compet-
ing (namely, slipping) strain mechanism. Another pos-
sibility for the strain by twinning in the course of the

compression of [ ] crystals is related to formation of
two-layer extrinsic stacking faults [10]. In this case, the

a/6[ ] shear can be represented as a sum of two

shears in the AA plane (a/6[ ]) and in the neighbor-

ing plane above A (a/6[ ]). Although the energy γe of
extrinsic stacking faults exceeds only slightly that of
intrinsic stacking faults γI , the former are observed in
experiments much more rarely than the latter ones and
do not play an equally important role in the mechanical
twinning [7, 10]. The goal of the present paper is the
experimental study of the orientation dependence of
strain by twinning in the case of strain by tension or
compression, and to reveal a possibility of twinning
owing to the motion of extrinsic stacking faults.

The Gadfield-steel single crystals were produced by
the Bridgman method, i.e., by seeded growth in the
rare-gas ambient. The sample preparation and experi-
mental technique are reported in detail in [5, 6].

It was demonstrated experimentally that in the case

of tension of [ ], [ ], [ ] and [011] crystals, the
strain by twinning is observed from the very beginning
of the plastic deformation (see Fig. 1, curves 1, 2, and
3). The twins are easily revealed by the metallographic
technique, electron microscopy, and X-ray diffraction
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(Figs. 1–4). In the [ ] crystals, the high values of Θ
are related to the development of twinning in two inter-
secting systems. In this case, one of the twinning sys-
tems turns out to be more developed than the other. The
precession of the crystal axis demonstrates that the ori-
entation of the sample axis varies along a large circle

passing through the [ ]–[011] poles in the [ ]
direction (Fig. 1). Theoretical estimates of the crystal-
axis position, which were obtained under assumption
that only one twinning system is efficient, exceed only
slightly the measured values. It is clear that this differ-
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Fig. 1. Flow curves for the Gadfield-steel single crystals in

the case of tension: (1) [ ]; (2) [ ]; (3) [011];

(4) [ ]; (5) [012]; (6) [011]. Numbers in circles denote
both the flow curves and the crystal-axis precession corre-
sponding to these curves.
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Fig. 2. Twinning by a Luders band in the case of tension of
[ ] crystals. ε = 6.4%, Ttest = 300 K.377
ence stems from the activation of secondary twinning
systems. Their interaction with the primary one gives
rise to high values of Θ and determines the linearity of
the dependence σ(ε) [5, 6].

Metallographic studies of [ ], [ ] and [011]
crystals demonstrate that twining develops there
through the Luders band in the single twinning system

[ ] (111) from the very beginning of the plastic flow
(Fig. 1, curves 2, 3 and Fig. 2). This stage of deforma-
tion corresponds to the portion of the flow curve with
the strain-hardening coefficient Θ close to zero. The
passage to the stage with high Θ correlates with the for-
mation of the secondary twinning systems. Thus, for
the development of strains by twinning at the very
beginning of the plastic flow in the Gadfield-steel crys-
tals, the following conditions should be met. First, the
Schmid factor for twinning mtw should be larger than
the corresponding factor msl for slipping (see table).
Second, the Schmid factor m1 and hence, the applied
external stresses acting onto the leading Shockley dis-
location b1 causing twinning, should exceed those act-
ing onto the trailing dislocation b2 . Therefore, the
Schmid factor m2 should be smaller than m1 (see table).
In combination with strong friction forces existing in
the Gadfield steel due to the high concentration of car-
bon atoms, these two conditions favor easy nucleation
and propagation of twins in such high-strength crystals
according to the slipping-source mechanism [2, 7, 9].
This mechanism does not require a considerable strain
by slipping, which precedes that by twinning.

For the [012] and [ ] orientations, the geometric
conditions of twinning turn out to be less favorable than
of slipping (mtw/msl < 1), see table. The difference in
the Schmid factors for b1 and b2 dislocations becomes
significantly smaller compared to the orientations dis-
cussed above (see table). For these orientations, it was
found that the deformation begins from slipping (Fig. 1,
curves 4 and 5). The shear develops within a single sys-
tem; the precession of the crystal axis tends exactly to

the [ ] pole along the large circle passing through

the [ ] pole and the initial orientation of the crystals
(Fig. 1). The passage to twinning occurs after a consid-
erable strain by slipping. The strain corresponding to
the nucleation of the first twinning lamellas is indicated
by an arrow at the flow curves (Fig. 1, curves 4 and 5).
Furthermore, we observe the stage of strain hardening
related to twinning–slipping and twinning–twinning
interactions. The change of strain mechanism from
slipping to twinning occurs when the crystal axis does

not attain the [001]–[ ] symmetry line.
Thus, in contrast to well-studied regularities of

twinning in pure fcc metals and in the substitution solid
solutions with values γsf = 0.025–0.03 J/m2, which are
close to those in the Gadfield steel, the Gadfield-steel
crystals exhibit certain qualitatively new features of
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twinning. Indeed, in the former two materials, twinning
is always preceded by slipping and, in the beginning of
the twinning process, the crystal axis is located sym-

metrically [7]. Firstly, for [ ], [011], [ ], and

[ ] orientations, twinning develops from the very
beginning of the plastic flow without the macroscopic
strain by slipping preceding twinning. Secondly, for

[012] and [ ] orientations, twinning is preceded by
slipping, and the passage to twinning is observed when
the crystal axis does not become symmetrical. The
energy of stacking faults is the same both in the Gad-
field steel and in fcc crystals subjected to twinning.
Therefore, the physical mechanisms of such a differ-
ence in the features of twinning cannot be related to the
value of the energy γI. The difference is determined by
different levels of the frictional distorting stresses [4–7].
The solid-solution hardening of the Gadfield steel by
carbon, gives rise to the significant enhancement of the
friction forces compared to Ag and Au crystals and cop-
per-based alloys with the similar values of γI [7]. Thus,
the necessary conditions for twinning in the Gadfield-

steel crystals are met for the [ ] crystals owing to the
non-dislocation hardening mechanism (the solid-solu-
tion hardening by interstitial atoms) rather than to usual
strain hardening.

The importance of the high level of distorting strains
for the development of twinning in the Gadfield-steel
crystals manifests itself in the experimentally observed
polarity phenomenon for the twinning shear in the case

of the strain of [ ] crystals by tension or compres-

sion. For the compression of [ ] crystals, the strain
by twinning is observed after a small stage of the unsta-
ble deformation associated with the formation of mac-
roscopic shear bands. At the beginning of the plastic
deformation, twinning develops in the two systems
within the localized-shear bands, while at ε > 9%, it is
observed outside the regions of the localized strain
(Fig. 3). The electron microscopy reveals the isolated
stacking faults and thin microtwins (Fig. 4). Previously,
twinning was not observed in the course of compres-

sion of [ ] crystals such as fcc metals and alloys. It
is explained by the fact that the shear by twinning,
which leads to intrinsic stacking faults in this orienta-
tion correspond to low values of the Schmid factor
(mtw ~ 0.157), which are much lower than those for
slipping (msl ~ 0.27). In this case, twinning can be
caused only by extrinsic stacking faults, and the

Schmid factor for the a/6[ ] shear turns out to be
high (mtw ~ 0.31).

Therefore, in the high-strength Gadfield-steel crys-
tals, twinning becomes the polar mechanism of the
deformation in contrast to the features characteristic of
twinning in the case of low-strength fcc crystals [7].
This conclusion is maintained by experimental obser-
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vations of twinning accompanying tension of fcc crys-
tals. Previously, mechanical twinning was not observed
in experiments for fcc crystals of the [001] orientation

25 µm

Fig. 3. Metallographic image of twinning in the case of

compression of [ ] crystals. ε = 9.8%, Ttest = 300 K. The
repeated polishing and etching were performed according to
methods described in [1, 5, 6].

111

330 nm

g = 004
–

Fig. 4. Twinning in the case of compression of the [ ]
crystals. ε = 6 %, Ttest = 300 K.

111

Table 1.  Schmid factors msl (for slipping) and mtw (for twin-
ning) and the factor Q = (m2 – m1)/2, where m1 and m2 are
Schmid factors for the leading and trailing Shockley disloca-
tions. (For orientations under study, these factors were
determined in the case of tension at room temperature.)

Orientations msl mtw Q = (m2 – m1)/2

11 0.27 0.314 –0.08

77 0.40 0.50 –0.11

011 0.41 0.47 –0.12

23 0.45 0.45 –0.06

012 0.49 0.42 0

001 0.41 0.236 0.12

1

3

1
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and for [ ] crystals in the cases of strain by tension
and compression, respectively. That is why these orien-
tations were not considered as twinning orientations [7].

At the deformation by compression of [001] crys-
tals, the twinning systems turn out to be more stressed
than the slipping ones. The external-stress field favors
splitting of a perfect dislocation into partial Shockley
dislocations accompanying the formation of intrinsic
stacking faults (see table). An intense twinning in the
case of compression was observed for [001] crystals,
which starts from early stages of plastic flow in the
Gadfield-steel single crystals.

We may conclude that Gadfield-steel single crystals
are characterized by the development of twinning from
the beginning of the plastic flow without preceding
slipping and by the polarity of the twin shear. These
features are in a marked contrast with the behavior of
pure fcc metals and substitution alloys. We can expect
that similar features of the development of twinning
could be found in single crystals of austenitic stainless
steels characterized by low values of stacking fault
energy γsf = 0.020 J/m2, high nitrogen content CN >
0.5–0.7 wt %, and in the case of precipitation of
nitrides.
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Certain materials, whose microscopic properties are
functions of coordinates of their body points, are
related to microheterogeneous polymeric materials.
Their typical examples are cellulose, crystallizing rub-
bers, and, in part, crystalline polymers.

In this paper, the elastic mechanical properties of
such materials are described within the framework of
the scaling concept [1] with the use of the two-phase
model. Basic structural and mechanical parameters are
indicated, and the dependence of the elastic mechanical
properties of such materials on these parameters are
revealed.

On the basis of structural studies, it is established
that the microheterogeneous polymeric materials,
listed above, contain domains with the ordered arrange-
ment of segments of extended polymeric macromole-
cules (crystallites) connected with each other by seg-
ments of chaotically tangled linking macromolecules
(amorphous domains) [2–4]. At the next structural
level, spatially alternating amorphous and crystalline
regions give rise to fibrils from which the spherulites
are formed. The fact that a spherulite is deformed under
small elastic deformations, similar to the entire sample
[5, 6], allows us to not consider it as a mechanically
inhomogeneous formation. Thus, the isotropic materi-
als indicated are modeled by chaotically oriented crys-
tallites bound by segments of linking macromolecules
(Fig. 1).

We consider an element of the model (bounded in
Fig. 1 by solid lines), which incorporates a part of the
crystallite with a segment of a macromolecule extend-
ing from it into an amorphous region. We will charac-
terize the model element, the crystallite and the macro-
molecule segment in the amorphous domain, by vectors
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with components , , and , respectively (Fig. 1).
These components are connected by the relation

(1)

Under the deformation of a model element, the vector
components are transformed in the following manner:

(2)

where the strain gradients for the model element, crys-
tallite, and the macromolecule segment in the amor-
phous domain are denoted, respectively, by the expres-
sions with indices separated by commas. Here and
below, the summation is performed with respect to
indices repeated twice. It follows immediately from
relations (1) and (2) that

(3)

In accordance with the scaling representation, the free
energy Fa of a macromolecule segment with the dis-
tance between the ends l and number of segment sec-

tions n is Fa ~ Tl2n–1a–2, where T is the absolute tem-

perature in the energy units, and a is a linear size of the
macromolecule segment section. We express l2 in terms
of the gradients ηi, k [5]:

Using relation (3), we exclude gradient ηi, k from l2:

(4)

The elastic energy of a crystallite in the approximation
of an isotropic body [5] is
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Model of a microheterogeneous polymeric material.
where S0 is the area of the crystallite cross section per-
pendicular to the direction of the macromolecule and
related to one macromolecule segment in the amor-
phous domain, G is the shear modulus, ν is the Pois-

son’s ratio for a crystallite,  is the sum of squares for
the components of the crystallite strain tensor uik =

(ξl, iξl, k – δik), and  is the square of the sum of these

components. Replacing the proportionality sign by the
equality sign, as is often implied in the scaling theory,
we write out the elastic energy of a model element as
F = Fa + Fk . Then, we obtain on the basis of (4)

(5)

We consider the macroscopically homogeneous
deformations (strain gradients Xi, k are constant along
the sample). For a given Xi, k , the strain gradients ξµν
take values providing the minimum of the function F.
Equating the partial derivatives (with respect to ξµν) of
this function to zero, we arrive at the system of equa-
tions determining ξµν:

(6)

uik
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--- ull
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Solving equations (6) allows us to calculate ξµν . We
restrict ourselves by an approximation sufficient for
applications in practice. We consider small finite mac-
roscopic deformations and estimate the value of ∆.
From the data of [2–4], the minimum value of G for cel-
lulose and polyethylene (in the direction normal to the
macromolecule orientation) is estimated as G ~
109 N/m, n ~ 10, d0 ~ 10 nm, a ~ 1 nm. Theoretical esti-
mates [6] indicate that not more than a half of all chains
existing in a polyethylene crystallite go out into the
amorphous domain. Thus, not more than ten segments
of macromolecules must go out from the crystallite
cross section area of 25a2 into the amorphous domain
that yields the estimate S0 ~ 2.5a2. Using these data, we
find ∆ ~ 10–2. This allows us to ignore the first term
in (6) and, consequently, we have, in this approxima-
tion, ξµν = 0. This result corresponds to the approxima-
tion of absolutely rigid crystallites.

Thus, the model element possesses the energy

(7)

Assuming that crystallites and segments of macromol-
ecules in the amorphous domain differ only by their
orientations, we write out the density of the elastic
energy Φ of the sample. To do this, we average the
expression (7) with respect to the equiprobable and
independent orientations d0 and l0 , and multiply it by
the number M of segments of linking macromolecules
per unit volume in the sample:

M = KSm, (8)

where K is the number of crystallites per unit volume,
S is the crystallite cross section perpendicular to the
direction of the macromolecule orientation, m is the
number of macromolecule segments extending into the
amorphous domain from the crystallite unit surface.

F
3T

2na2
-----------Xl i, Xl k, Ri

0Rk
0.=
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Employing (1), (7), and (8), we obtain after simple
transformations

Φ = CI,

where I is the first invariant of the macroscopic strain
tensor (I = Xl, iXl, kδik), which was introduced similarly
to [7],

(9)

and χ = d0/R0. Relationship (9) corresponds, in its form,
to the first Mooney constant that has acquired the
molecular structure interpretation for the given
material.

In accordance with (9), the elastic properties for a
given polymeric material are independent (in the
explicit form) of the crystallite volume fraction or of
the amorphous part. The degree of crystallinity is deter-
mined by the ratio of the crystallite linear size (along

C
KSmTl02

2na2
--------------------- 1 χ2

1 χ–( )2
-------------------+ ,=
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the orientation direction of the macromolecules) and
the crystallite large period.
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The method of integral equations has a wide appli-
cation in solving internal and external boundary value
problems of electrodynamics [1–15]. The integral
equations of electrodynamics present the boundary
value problem as that with nonlocal boundary condi-
tions. This seems to be reasonable in the case of scatter-
ing problems when the internal field (or the volume
current density) is expressed directly in terms of the
incident-wave field, while the scattered-wave field is
found only at the second stage of construction of the
solution.

Formulation of the problem and the method of
solving. We consider a system of two parallel super-
conducting vibrators with the lengths L1, L2 and radii
b1, b2 . The distance between the vibrators is d, and their
centers are shifted by h (Fig. 1). For definiteness, we
assume both the vibrators to be placed in the YOZ plane
and to be parallel to the OZ-axis. Specific features of
the electromagnetic wave scattering in superconductors
can be taken into account by setting the impedance
boundary conditions on the surface of the vibrators. We
construct a structure for the solution to the problem on
the basis of integral equations of the macroscopic elec-
trodynamics [1]. In the case of two arbitrary material
bodies with the volumes V1 and V2 , these equations
have the following form:

(1)

(2)

E r1( ) E0 r1( )=

+
1

iωε
--------- graddiv k0

2ε+( ) A11 r1( ) A12 r1( )+[ ] ;

E r2( ) E0 r2( )=

+
1

iωε
--------- graddiv k0

2ε+( ) A22 r2( ) A21 r2( )+[ ] ;
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(3)

(4)

where

(5)

Here, E0 and H0 are strengths of the electric and mag-
netic fields for the given electromagnetic field; E and H
are the corresponding strengths for the perturbed elec-
tromagnetic field; k0 = ω/c is the wave number; ω is the
frequency; c is the speed of light; rk = rk(xk, yk, zk) and

 = ( , , ) are the radii vectores of the
observation and integration points, respectively; and jm

is the volume density of a current induced in the mth
body. Equations (1)–(4) are equivalent to the Maxwell
equations and the boundary conditions on the interfaces
between the media. The solution to the boundary value
problem of electrodynamics involves two stages. At the
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first stage, we find the currents induced in each material
body by the source field and by the field generated by
the other material body. In this case, initial integral
equations (1)–(4) represent the set of Fredholm inho-
mogeneous integral equations of the first kind with a
unique solution. At the second stage, we construct the
diffracted field using the already known currents. In
this case, equations (1)–(4) are simply the equalities for
which the total field in the left-hand side is represented
as a sum of the primary field, E0, H0 , and scattered
fields.

Determination of currents. As we pass from arbi-
trary material bodies to thin linear vibrators, we take
into account that only the longitudinal currents are of
significance for the problem, while the transverse cur-
rents can be ignored. Projecting equations (1) and (2)
onto the vibrator axes, we find the expressions for tan-
gential components of the total electric field at the sur-
faces of each of the vibrators:

(6)

(7)

where k = k0 .

As far as the first integral terms in (6) and (7) have
singularities in the case of coincident observation and
integration points, we isolate them considering the
electrostatic parts of the corresponding integrals. As a
result, after a sequence of manipulations, we obtain the
equations for currents in each antenna, which contain
small parameters. With allowance for the impedance
boundary conditions Ez1(z1) = Z1I1(z1) and Ez2(z2) =
Z2I2(z2) valid at the surfaces of the superconductors (Zk

is the corresponding component of the surface-imped-

iωε Ez1 z1( ) E0z1 z1( )–[ ] ∂2

∂z1
2

------- k2+
 
 
 

=

×
j1z r1'( ) ik r1 r1'––( )exp

r1 r1'–
--------------------------------------------------------- r1'd

V1

∫



+
j2z r2'( ) ik r1 r2'––( )exp

r1 r2'–
--------------------------------------------------------- r2'd

V2

∫ 



;

iωε Ez2 z2( ) E0z2 z2( )–[ ] ∂2

∂z2
2

------- k2+
 
 
 

=

×
j2z r2'( ) ik r2 r2'––( )exp

r2 r2'–
--------------------------------------------------------- r2'd

V2

∫



+
j1z r1'( ) ik r2 r1'––( )exp

r2 r1'–
--------------------------------------------------------- r1'd

V1

∫ 



,

ε
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ance tensor  for the kth vibrator, k = 1, 2), these equa-
tions take the following form:

(8)

(9)

where αk = –  are small parameters;

Ẑk

d2I1 z1( )
dz1

2
------------------- k2I1 z1( )+ α1 iωε E0z1 z1( ) Z1I1 z1( )–[ ]{=

+ F11 z1 I1,( ) F12 z1 I2,( ) } ;+
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1
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According to (8), the current at an arbitrary point z1 of
the first antenna is determined by the given source field
E0z1(z1); its proper field F11(z1, I1) generated by the cur-
rents in other sections of the first antenna, and by the
field F12(z1, I2) generated by the currents in the second
antenna. The functions E0z2(z2), F22(z2, I2), and
F21(z2, I1) entering into equation (9) have a similar mean-
ing. An approximate solution to each of equations (8)
and (9) can be constructed by the perturbative method
[2] as a power series of αk, k = 1, 2. However, using this
method, we arrive at different formulas for currents in
the case of resonant and nonresonant vibrators. More-
over, the resonance formula turns out to be approximate
in a number of cases and makes it impossible to deter-
mine the amplitude of the current. In spite of the proper
and mutual fields of antennas, which enter into the
right-hand side of equations (8) and (9), the nonreso-
nant formula is independent of them. The solution suit-
able for resonant and nonresonant antennas was
obtained in [3, 4] by the partial-averaging methods in
investigating isolated linear vibrators. In this paper, the
partial-averaging method [3] is applied for solving
equations describing currents in a system of two paral-
lel superconducting vibrators. Solving equations (8)
and (9) by the method of variation of arbitrary con-
stants, we obtain the following results:

(10)

(11)

(12)

(13)

The coefficients A1(z1), B1(z1), A2(z2), and B2(z2) are
found from the equations

(14)

(15)

+
d2I1 z1'( )

dz1'
2

------------------- k2I1 z1'( )+

L1–

L1

∫

×
ik z2 z1'–( )2

d2+– 
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----------------- A1 z1( )k kz1 B1 z1( )k kz1;cos+sin–=
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----------------- A2 z2( )k kz2 B2 z2( )k kz2.cos+sin–=

dA1 z1( )
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α1iω εZ1
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(16)

(17)

where

and 

The set of equations (14)–(17) is completely equiv-
alent to (8) and (9). It belongs to the set of integro-dif-
ferential equations written out in the standard form and
is not solved with respect to derivatives. Using the well-
known schemes [3, 8], we average this set over the z1
and z2 variables explicitly entering into it. This averag-
ing is quite justified because all the functions standing
in the right-hand sides of equations (14)–(17) are
bounded in their definition domain. They are continu-
ous with respect to the z1 and z2 variables, and satisfy
the Lipschitz conditions with respect to A1, B1, A2, and
B2 . As a result of averaging, we obtain the following set
of inhomogeneous differential equations:

(18)

where the bar sign over the corresponding function
denotes its averaged value;
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Here,

f 2 z2( ) iω ε
k0
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+ F22 z2 A2 B2, ,( ) F21 z2 A1 B1, ,( ),+

f 1 z1( ) iω ε
k0

-------------E0z1 z1( )=

+ F11 z1 A1 B1, ,( ) F12 z1 A2 B2, ,( ).+

F11 z1 A1 B1, ,( ) A1 L1( )sinkL1 B1 L1( ) kL1cos–[ ]=

×
ik z1 L1–( )2 b1

2+– 
 exp

z1 L1–( )2 b1
2+

---------------------------------------------------------------

+ A1 L1–( ) kL1 B1 L1–( ) kcos L1+sin[ ]

×
ik z1 L1+( )2 b1

2+– 
 exp

z1 L1+( )2 b1
2+

---------------------------------------------------------------;

F12 z1 A2 B2, ,( )

= A2 L2 h+( ) k L2 h+( ) B2 L2 h+( ) k L2 h+( )cos–sin[ ]

×
ik z1 L2– h–( )2 d2+– 

 exp

z1 L2– h–( )2 d2+
------------------------------------------------------------------------

– A2 –L2 h+( ) k –L2 h+( )sin[

– B2 –L2 h+( ) k –L2 h+( ) ]cos

×
ik z1 L2 h–+( )2 d2+– 

 exp

z1 L2 h–+( )2 d2+
------------------------------------------------------------------------;

F22 z2 A2 B2, ,( )

= A2 L2 h+( ) k L2 h+( ) B2 L2 h+( ) k L2 h+( )cos–sin[ ]

×
ik z2 L2– h–( )2 b2

2+– 
 exp

z2 L2– h–( )2 b2
2+

------------------------------------------------------------------------

– A2 –L2 h+( ) k –L2 h+( )sin[

– B2 –L2 h+( ) k –L2 h+( ) ]cos

×
ik z2 L2 h–+( )2 b2

2+– 
 exp

z2 L2 h–+( )2 b2
2+

------------------------------------------------------------------------;
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Integrating equations (18)–(21) and substituting the
averaged values (z1), (z1), (z2), and (z2)
instead of A1(z1), B1(z1), A2(z2), and B2(z2) into (10) and
(11) found above, we obtain asymptotic expressions for
currents in the system of two thin parallel supercon-
ducting antennas in the case of an arbitrary excitation:

(19)

In these formulas,  and  are the complex wave
numbers:

where

and 

are the values of surface impedances normalized to the
wave resistance of the free space. The presence of real

F21 z2 A1 B1, ,( ) A1 L1( ) kL1 B1 L1( ) kL1cos–sin[ ]=

×
ik z2 L1–( )2 d2+– 

 exp

z2 L1–( )2 d2+
---------------------------------------------------------------

+ A1 L1–( ) kL1 B1 L1–( ) kcos L1+sin[ ]

×
ik z2 L1+( )2 d2+– 

 exp

z2 L1+( )2 d2+
----------------------------------------------------------------.

A1 B1 A2 B2

I1 z1( ) A1 L1–( ) k̃1 z1 L1+( ) kL1–[ ]cos=

+ B1 L1–( ) k̃1 z1 L1+( ) kL1–[ ]sin

+ α1 ε f 1 z1'( ) k̃1 z1 z1'–( )sin z1' ,d

L1–

z1

∫
I2 z2( ) A2 –L2 h+( ) k̃2 z2 L2+( ) kL2– κ2h–[ ]cos=

+ B2 –L2 h+( ) k̃2 z2 L2+( ) kL2– κ2h–[ ]sin

+ α2 ε f 2 z2'( ) k̃2 z2 z2'–( )sin z2' .d

–L2 h+

z2

∫

k̃1 k̃2

k̃1 k κ1+ k̃1' ik̃1'',    k ̃ 2 +  k κ 2 + k ˜ 2 ' ik ˜ 2 '',+= = = =

k̃1' k0 ε 1 α1
X1

k0b1
----------– 

  ,=

k̃1'' k0 ε α1
R1

k0b1
---------- 

  , k̃2' k0 ε 1 α2
X2

k0b2
----------– 

  ,= =

k̃2'' k0 ε α2
R2

k0b2
---------- 

  ,=

Z1 R1 iX1+
R1 iX1+
4πk0/ω
--------------------,= =

Z2 R2 iX2+
R2 iX2+
4πk0/ω
--------------------= =



112 KRAVCHENKO et al.
parts of the surface impedances implies attenuating the
current amplitudes in the antennas. A change in the
imaginary parts of the surface impedances of the super-
conducting vibrators affects the resonance frequency.
The coefficients (–L1), (–L1), (–L2 + h), and

(–L2 + h) are found from the conditions of current
vanishing at the vibrator ends, and the symmetry con-
ditions associated with the method of exciting the
vibrators.

Relationships for currents. In the case of exciting
the vibrators by the plane electromagnetic-wave field
{E0z1(z1) = E0z2(z2) = E0}, the expressions for currents
have the form

(20)

where
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The formulas for the currents are valid in the most gen-
eral case, when the lengths of vibrators and the dis-
tances between them are arbitrary. The mutual effect of
the vibrators on the currents is described by the func-

tions  and . As one of the vibrators is removed
to infinity (d  ∞), we obtain the well-known formu-
las [15] for the current in an isolated vibrator. For two
active vibrators excited under conditions of cophasing,
i.e., {E0z1(z1) = V01δ(z1) and E0z2(z2) = V02δ(z2 – h)}, the
expressions for currents have the following form:
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We should bear in mind that, in order to find the current
at the center of the first and second vibrators, it is neces-
sary to substitute z1 = 0 and z2 = h into expressions (20).
The choice z2 = h is explained by the fact that the center
of the second vibrator is shifted by the distance h with
respect to the center of the first one.

Radiation fields. The radiation fields at an arbitrary
point r, which belongs to none of the vibrators, can be
found by substituting the expressions obtained for the
currents into equations (1) and (3) [or (2) and (4). When
the radiation fields are considered in the far-field
zone of the antenna system under investigation, expres-
sions (5) take the following form:

(21)

where

(22)

Substituting (21) and (22) into expressions (1) and (3)
for the fields, and restricting ourselves by only terms on
the order of 1/r, we find the fields in the far-field zone:

(23)

where

With allowance for expressions (23) obtained for the
radiation fields, the power-flux density has the form

Numerical experiment. We calculated the current
distribution along one of the vibrators in the system of

+ α1

V01k̃2

E02
------------- k̃1L1sin
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DOKLADY PHYSICS      Vol. 45      No. 3      2000
sesquialteral wavelength vibrators (L/λ = 0.75), arranged
at a distance d = λ, as a function of the complex surface
impedance (normalized to 120π) for Z1 = Z2. Curves in
Fig. 2 correspond to the following cases: (1) perfectly
conducting vibrators, (2) superconductors made of nio-
bium (0.1676 × 10–4 + i × 0.303 × 10–2)/120π [9],
(3) vibrators with the purely imaginary surface imped-
ance Z = 0 + i × 0.3, and (4) vibrators with the real
impedance Z = 0.1 + i × 0. The appearance of the com-
plex surface impedance leads to a change in both the
amplitude and type of the current distribution function.
It is of special importance to emphasize that a change
in the imaginary part of the surface impedance results
in a variation in the resonance frequency of the antenna
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(a change in the position of zeros in the current distri-
bution along the vibrator), which can be used for
detecting the superconductivity. The increase in the real
part of the surface impedance results in both decreasing
the amplitude and distorting the shape of the current
due to the Joule loss. We have considered also a system
of passive vibrators of various lengths (L1 = 0.25λ and
L2 = 0.5λ) placed at a distance d = 0.5λ and h = 0. Using
formulas (20) and (23), we plotted the power directivity
patterns in the plane perpendicular to the vibrators
(Fig. 3) as a function of the normalized complex sur-
face impedances for Z1 = Z2 . The curves in Fig. 3 cor-
respond to the following cases: (1) superconducting
vibrators made of niobium; (2) and (3) impedance
vibrators with impedances of 0.05 + i × 0.3 and 0.1 +
i × 0, respectively. Increasing the active part of the sur-
face impedance of the antennas results in the disappear-
ance of the zeros in the directivity pattern.

Thus, we have shown the efficiency of the method of
integral equations, which makes it possible to analyti-
cally solve, in the general form, the problem of excita-
tion of a current, and also the determination of the radi-
ation fields for two parallel superconducting antennas.
An extension of the method presented here to the inves-
tigation of antenna arrays with a larger number of
vibrators causes no principal difficulties.

REFERENCES
1. N. A. Khizhnyak, Integral Equations of Macroscopic

Electrodynamics (Naukova Dumka, Kiev, 1986).
2. M. A. Leontovich and M. L. Levin, Zh. Tekh. Fiz. 14,

481 (1944).
3. Yu. A. Mitropol’skiœ, Ukr. Mat. Zh., No. 1, 30 (1972).
4. V. F. Kravchenko, in Proceedings of the International

Conference on Operator Theory and Its Application to
Scientific and Industrial Problems, Winnipeg, Canada,
1998 (Winnipeg, Canada, 1998), p. 49.

5. V. F. Kravchenko, in Proceedings of the IMA Conference
on Boundary Integral Methods: Theory and Applica-
tions, Salford, UK, 1997 (Salford, UK, 1997), p. 4.

6. Yu. V. Gandel’, V. F. Kravchenko, and N. V. Morozova,
Electromag. Waves and Electron. Syst. 2, 4 (1997).

7. Yu. V. Gandel’, V. F. Kravchenko, and V. I. Pustovoœt,
Dokl. Math. 54, 959 (1996).

8. V. F. Kravchenko, Dokl. Akad. Nauk SSSR 309, 594
(1989) [Sov. Phys.–Dokl. 34, 983 (1989)].

9. V. F. Kravchenko, Dokl. Akad. Nauk 328, 272 (1993)
[Dokl. Phys. 38, 22 (1993)].

10. V. F. Kravchenko and V. T. Erofeenko, Dokl. Math. 53,
429 (1996).

11. V. F. Kravchenko and R. G. Tyutyukin, Radiotekhnika,
No. 2, 8 (1997).

12. V. F. Kravchenko and A. B. Kazarov, Zarubezhn.
Radioélektronika. Usp. Sovrem. Radioélectroniki,
No. 11, 59 (1997).

13. V. F. Kravchenko and G. L. Sidel’nikov, Dokl. Akad.
Nauk 361, 185 (1998) [Dokl. Phys. 43, 408 (1998)].

14. I. K. Lifanov, Method of Singular Integral Equations
and Numerical Experiment (Yanus, Moscow, 1995).

15. N. N. Gorobets, V. A. Petlenko, and N. A. Khizhnyak, in
Scientific and Methodological Papers on Applied Elec-
trodynamics (Izd. MEI, Moscow, 1983), No. 6.

Translated by V. Bukhanov
DOKLADY PHYSICS      Vol. 45      No. 3      2000



  

Doklady Physics, Vol. 45, No. 3, 2000, pp. 115–117. Translated from Doklady Akademii Nauk, Vol. 371, No. 1, 2000, pp. 49–51.
Original Russian Text Copyright © 2000 by Ivlev, Ishlinski

 

œ

 

, Maksimova.

                                                          

MECHANICS
Isotropy Conditions and the Generalized Associate Law
of Plastic Flow

D. D. Ivlev*, Academician A. Yu. Ishlinskiœ**, and L. A. Maksimova*

Received October 8, 1999
1. The isotropy conditions of continuum, for which
stress (σij) and strain-rate (εij) tensors are defined in an
orthogonal system of coordinates, have the form [1]

(1.1)

Furthermore, we consider an isotropic perfectly
plastic medium obeying the equilibrium equations

(1.2)

the plasticity conditions

(1.3)

and the associate law of plastic flow

(1.4)

where the summation is carried out over the subscript k.
Using the Eulerian representation for the medium

flow, we write out the relation between the components
of the tensor εij and the translational-velocity compo-
nents u, v, and w:

σxεxy τ xyεy τ xzεyz+ + τ xyεx σyεxy τ yzεxz,+ +=

τ xyεxz σyεyz τ yzεz+ + τ xzεxy τ yzεy σzεyz,+ +=

τ xzεx τ yzεxy σzεxz+ + σxεxz τ xyεyz τ xzεz.+ +=

∂σx

∂x
--------

∂τ xy

∂y
---------

∂τ xz

∂z
---------+ + 0,=

∂τ xy

∂x
---------

∂σy

∂y
--------

∂τ yz

∂z
---------+ + 0,=

∂τ xz

∂x
---------

∂τ yz

∂y
---------

∂σz

∂z
--------+ + 0,=

f k σij( ) 0,=

εij λ k

∂ f k

∂σij

---------, λ k 0,≥=

εx
∂u
∂x
------, εy

∂v
∂y
-------, εz

∂w
∂z
-------,= = =
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(1.5)

We assume that the plastic state is determined by a
single smooth yield function

(1.6)

According to (1.4) and (1.6),

(1.7)

We restrict ourselves to the case of an incompress-
ible material. Then,

(1.8)

We now have eight equations (1.1), (1.2), (1.6), and
(1.8) to determine nine unknowns presented by six
stress components σij and three velocity components u,
v, and w. The missing expression, for example,

(1.9)

can be derived from two arbitrary relations in (1.7) by
means of elimination of the quantity λ. Consequently,
for a smooth yield surface in the case of an isotropic
perfectly plastic body, application of the isotropy con-
ditions (1.1) may be accompanied by using, in part,
relations of the flow associate law (1.9).

We consider a plasticity condition in the form

(1.10)

Then, it follows from equations (1.7) and (1.10):

(1.11)

Expressions (1.11) lead to the following representa-
tions of the second (I2) and third (I3) invariants of the

εxy
1
2
--- ∂u

∂y
------ ∂v

∂x
-------+ 

  , εxz
1
2
--- ∂u

∂z
------ ∂w

∂x
-------+ 

  ,= =

εyz
1
2
--- ∂v

∂z
------- ∂w

∂y
-------+ 

  .=

f σij( ) 0.=

εij λ ∂f
∂σij

---------, λ 0.≥=

εx εy εz+ + 0,
∂f
∂σx

-------- ∂f
∂σy

-------- ∂f
∂σz

--------+ + 0.= =

εx

∂ f ∂σx⁄
-------------------

εy

∂f ∂σy⁄
------------------=

aσ1 bσ2 cσ3+ + κ ,=

a b c+ + 0, a b c κ   =  const. , , ,  =

ε1 λa, ε2 λb,= =

ε3 λc, ε1 ε2 ε3+ + 0.= =
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strain-rate tensor:

(1.12)

(1.13)

In turn, expressions (1.12) and (1.13) yield the equation

, (1.14)

which can be used instead of (1.9).
For the Tresca plasticity condition

(1.15)

in accordance with (1.7), the equalities

(1.16)

hold, and the relation (1.14) takes the form

(1.17)

The plasticity condition

(1.18)

which uses the maximum reduced stress (see [2]), and
relations (1.10)–(1.13) turn equation (1.14) into

(1.19)

If the plasticity condition is defined as an intersec-
tion of two smooth yield surfaces

(1.20)

then the system of nine equations (1.1), (1.2), (1.8), and
(1.20) is closed, and expressions (1.1) play the role of
relations for the generalized associate law of plastic
flow.

In the case of the completely plastic state, when
three plasticity conditions take place, only two relations
among those in (1.1) are independent [3].

2. We now consider certain linearized relations of
the perfect-plasticity theory. We assume that, in the ini-
tial and strained states, the substance is homogeneous
and isotropic:

(2.1)

The x-, y-, and z-axes of the Cartesian coordinate
system are directed along the principal directions 1, 2,
3, respectively. Then,

(2.2)

I2 εijεij ε1ε2 ε2ε3 ε3ε1+ += =

=  λ2 ab bc ca+ +( ),

I3 εijε jkεki λ3abc.= =

I3

abc
--------- 

 
2 I3

ab bc ca+ +
------------------------------ 

 
3

– 0=

σ1 σ2– 2κ , σ2 σ3 σ1≤ ≤=

ε1 ε2+ 0, ε3 0,= =

I3 εxεyεz 2εxyεyzεxz+=

– εxεyz
2 εyεxz

2– εzεxy
2– 0.=

2σ1 σ2– σ3– κ ,=

I3

2
---- 

 
2 I2

3
---- 

 
3

+ 0.=

f 1 σij( ) 0, f 2 σij( ) 0,= =

σ1
0 σ2

0 σ3
0 ε1

0 ε2
0 ε3

0   =  const. , , , , ,

σx
0 σ1

0, σy
0 σ2

0, σz
0 σ3

0, τ xy
0 τ yz

0 τ xz
0 0,= = = = = =

εx
0 ε1

0, εy
0 ε2

0, εz
0 ε3

0, εxy
0 εyz

0 εxz
0 0.= = = = = =
    

Parameters describing a perturbed state are pre-
sented as

 

(2.3)

 

Here and below, primes mark the perturbance compo-
nents.

The equilibrium equations have the form

 

(2.4)

 

It follows from relations (2.2), (2.3), and (1.1) that

 

(2.5)

(2.6)

 

According to expressions (2.6), applied for an iso-
tropic body, increments of principal tangential stresses
and of shear rates are proportional to the initial values
of these quantities.

The linearized equations of the perfect-plasticity
theory make it possible to reveal the main features of the
deformation process [4]. Below, we consider a plane cor-
responding to the Tresca plasticity condition (1.15).

According to (2.1)–(2.3) and (1.15)–(1.17), we have

 

(2.7)

(2.8)

(2.9)

 

Equations (2.4) and (2.7)–(2.9) yield

σij σij
0 σij' , εij+ εij

0 εij' , ui+ ui
0 ui'.+= = =

∂σx'

∂x
--------

∂τ xy'

∂y
---------

∂τ xz'

∂z
---------+ + 0,=

∂τ xy'

∂x
---------

∂σy'

∂y
--------

∂τ yz'

∂z
---------+ + 0,=

∂τ xz'

∂x
---------

∂τ yz'

∂y
---------

∂σz'

∂z
--------+ + 0.=

σx' σ1' , σy' σ2' , σz' σ3' ,= = =

εx' ε1' , εy' ε2' , εz' ε3' ,= = =

τ xy'
σ1

0 σ2
0–

ε1
0 ε2

0–
-----------------εxy' ,=

τ yz'
σ2

0 σ3
0–

ε2
0 ε3

0–
-----------------εyz' , τ xz'

σ1
0 σ3

0–

ε1
0 ε3

0–
-----------------εxz' .= =

ξ σx' σy'= = ,

τ xy'
κ
εx

0
----εxy' , τ yz'

σz
0 σy

0–

εx
0

-----------------εyz' ,= =

τ xz'
σx

0 σz
0–

εx
0

-----------------εxz' ,=

εx' εy'+ 0, εz' 0,
∂u'
∂x
------- ∂v '

∂y
--------+ 0,

∂w'
∂z
-------- 0.= = = =
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(2.10)

(2.11)

Assuming the validity of the expressions

(2.12)

we satisfy the incompressibility condition (2.11). Elimi-
nating the variable ξ from the first two equations (2.10),
and using (2.12), we obtain the following equation for
the function Ψ:

(2.13)

where

It is of interest to consider the particular case

(2.14)

In this case, with allowance for (2.14), equation (2.13)
takes the form

(2.15)

The case, when Ψ is independent of the z-coordi-
nate, corresponds to plane deformation that has been
considered in [4].

Under the condition of the maximum reduced stress,
we have, in accordance with (1.17) and (1.18),

(2.16)

Equations (2.16) and (2.6) yield

(2.17)

In turn, (2.17) and (1.5) lead to

∂ξ
∂x
------

κ
2εx

0
-------- ∂

∂y
----- ∂u'

∂y
------- ∂v '

∂x
--------+ 

  σx
0 σz

0–

2εx
0

-----------------∂2u'

∂z2
---------+ + 0,=

∂ξ
∂y
------

κ
2εx

0
-------- ∂

∂x
------ ∂u'

∂y
------- ∂v '

∂x
--------+ 

  σz
0 σy

0–

2εx
0

-----------------∂2v '

∂z2
----------+ + 0,=

∂σz'

∂z
--------

σx
0 σz

0–

2εx
0

----------------- ∂
∂x
------ ∂u'

∂z
------- ∂w'

∂x
--------+ 

 +

+
σz

0 σy
0–

2εx
0

----------------- ∂
∂y
----- ∂v '

∂z
-------- ∂w'

∂y
--------+ 

  0,=

∂u'
∂x
------- ∂v '

∂y
--------+ 0,

∂w'
∂z
-------- 0.= =

u'
∂Ψ
∂y
--------, v '–

∂Ψ
∂x
--------,= =

κ∆∆Ψ

+
∂2

∂z2
------- σz

0 σy
0–( )∂

2Ψ
∂x2
---------- σx

0 σz
0–( )∂

2Ψ
∂y2
----------+ 0,=

∆ ∂2

∂x2
--------

∂2

∂y2
--------.–=

σz
0 1

2
--- σx

0 σy
0+( ).=

∆∆Ψ ∂2

∂z2
------- ∂2Ψ

∂x2
---------- ∂2Ψ

∂y2
----------++ 0.=

εx
0 λ0, εy

0– λ0, εz
0– 2λ0,= = =

εx' λ', εy'– λ', εz'– 2λ'.= = =

εx' εy'– 0, εxy' 0, εx' εy' εz'+ + 0.= = =
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(2.18)

The problem of determining components of transla-
tional-velocity perturbations (2.18) is kinematically
definable. With (2.12) taken into account, we obtain

(2.19)

For an edge determined by the equations

(2.20)

the equality

(2.21)

holds. Then, using (2.4), (2.6), (1.5), (2.21), and (1.8),
we can write out the following system of equations:

(2.22)

where

In all cases of static indeterminacy, the above-con-
sidered equations are of the elliptic type. Linearized
equations for statically definable states of a perfectly
plastic body have been considered in [5].
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In this study, we propose an idea of creating
dynamic materials by which we mean the media com-
posed of regular materials distributed in space and time.
An important class of such structures, which are dis-
tributed only in space at a microscale, is a class of stan-
dard composites. The appearance of time as a supple-
mentary and, as a rule, fast-varying independent vari-
able converts such materials into dynamic composites,
i.e., into space–time formations.

Properties of dynamic materials can be substantially
different from those of their constituent initial materi-
als. By varying material parameters of the initial com-
ponents and the character of changing these parameters
in time, we can control the dynamic properties of these
materials and obtain some effects impossible when
using regular materials.

The aforesaid refers not only to mechanical materi-
als characterized by the inertial, elastic, dissipative, and
other parameters, but also to electrotechnical materials,
whose principal characteristics are the self-inductance,
the capacitance, etc. Important principal aspects of this
problem are also associated with taking into account
relativistic effects [1–3]. However, in this paper, we
shall restrict our consideration only to classical
mechanical materials.

1. TWO TYPES OF DYNAMIC MATERIALS

Two methods for obtaining dynamic materials and
two types of such materials, respectively, are conceiv-
able.

The first-type materials are obtained by instanta-
neous or gradually changing the material parameters of
various parts of a system (masses, rigidities, self-induc-
tance, capacitance, etc.) with no relative motion of these
parts. Such a method is termed the activation [2, 3], and
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the corresponding materials are called the dynamic
materials of the first type or activated dynamic mate-
rials.

In the second method, the entire system or its certain
parts are presumed to be set in motion, which is prede-
termined or excited by a certain method. Such a method
will be conventionally called the kinetization, and the
corresponding materials will be called the dynamic
materials of the second type or kinetic dynamic mate-
rials.

In particular, a dynamic material of the second type
can be imagined in the form of two or several mutually
penetrating media occupying a certain domain of
space, with each medium accomplishing a particular
motion (for example, fast vibrations) with respect to
others. It is natural that material parameters and prop-
erties of such a material can be substantially different
from those of the initial media. There are considerable
opportunities for controlling these properties.

2. ON A TECHNICAL REALIZATION
OF DYNAMIC MATERIALS

The natural question arises about the possibilities
for the technical realization of the dynamic materials
described. As to the materials of the first type, the cor-
responding methods are known for the electrotechnical
materials. Therefore, we dwell here on certain methods
for realizing the dynamic materials of the second type.
In Fig. 1, we show the system consisting of plates adja-
cent to one another. Every plate is set in periodic vibra-
tions

with the period Ts depending on the coordinate xs (the
number of a plate). The density, the elastic modulus, or
other material parameters, as well as the thickness of
each plate, can be distributed in a certain way along the
length of the plate (z-coordinate). In Fig. 1, the one-
dimensional case, when material properties vary “rap-
idly” along the x-coordinate, is shown. However, a
more complicated two-dimensional variant of this
scheme is also conceivable. The variant, which is sim-

u xs t,( ) u xs t Ts+,( )=
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pler for realization, corresponds to all odd plates and all
even plates moving identically, i.e.,

In this case, each of the odd plates can be adjoined to a
certain vibrating solid, and each of the even plates, to
another solid.

In Fig. 2, we present the scheme of the system in
which the odd circular disks are fixed at a certain shaft,
while the even disks are attached to another shaft. The
shafts can rotate with certain angular velocities ω1 and
ω2 or accomplish rotary vibrations with the frequencies
ω1 and ω2 and with the angular amplitudes Φ1 and Φ2 .
Parameters of the plate’s material can depend on the
angular coordinates ϕ1 and ϕ2 and, of course, on the
number of a plate. In this case, the one-dimensional
medium with variable material parameters is a rod with
the x-axis and a lens-shaped cross section. Using the
disks with more complicated shapes (see, for example,
dashed curves in Fig. 2) instead of the circular ones
with identical radii, it is also easy to obtain the cross-
section area of the rod which is variable along the
x-coordinate and in time. One can also envision an even
more complicated case when each disk is fixed at
its own shaft and vibrates or rotates according to its
own law.

In Fig. 3, we show a vessel completely filled with a
liquid of certain density ρ0 , elasticity E0 , viscosity µ,
and with other certain material parameters. In this ves-
sel, balls with different diameters ds (which are small as
compared with the vessel dimension), densities ρs , and
other material parameters are distributed in a particular
way. The vessel is set in periodic vibrations in one, two,
or three directions. In this case, it is known that the balls
will vibrate with amplitudes substantially dependent on
the ball dimension and density [4, 5]. Choosing, in a
certain way, these parameters and the concentrations of
the balls in the vessel, we obtain a medium, whose
effective properties vary along one, two, or three coor-
dinates. The balls can be deformable (for example, rub-
ber capsules filled with air), and in this case, resonance
effects can be employed. For preserving the medium
properties when vibrations are discontinued for a
while, the balls can be bound by elastic elements pro-
viding a particular arrangement of the balls in the static
position and also, possibly, the resonance effects when
the vessel vibrates. A homogeneous suspension is the
simplest version of the medium described. In this case,
the liquid is one of the mutually penetrating media,
while the set of particles forming the suspension is the
other one. Instead of the balls, bodies with a more com-
plicated shape can be used. Effective properties of the
media described can be determined using the methods
outlined in book [6] and report [10].

u t x1,( ) u t x3,( ) … u t x2n 1–,( ),= = =

u t x2,( ) u t x4,( ) … u t x2n,( ).= = =
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3. ON THE POSSIBILITIES PROVIDED
BY THE USE OF DYNAMIC MATERIALS

Certain possibilities provided by using the dynamic
materials can be illustrated by the simplest example.
We consider a rod, whose effective density ρ, elastic
modulus E, and cross-section area F can be specified in
the form of functions of the x-coordinate, measured
along the rod axis, and the time t. The motion of such a
rod is described by the equation

(1)

where ψ = ψ(x, t) = E(x, t)F(x, t), ϕ = ϕ(x, t) =
ρ(x, t)F(x, t), and the subscripts t and x denote the corre-
sponding partial derivatives.

It is proposed to provide the required motion u(x, t)
of the rod through the proper choice of the functions ρ,
E, and F (and, of course, the initial conditions); i.e., this
is a peculiar inverse problem of mechanics.

The solution to equation (1) depends on two func-
tions ϕ and ψ, both of them entering the equation com-
pletely symmetrically. If the function ψ is given, it is
easy to find from this equation:

(2)

For a given ϕ, the function ψ can be determined by the
same equality by substituting ψ for ϕ, t for x, and x for t.

Two particular cases are of interest for which
expression (2) can be further simplified.

(1) The function u(x, t) is given in the form of a
product

or in the form of the sum of such products. In this case,
it is natural to seek the functions ϕ and ψ in the same
form:

In this case, the variables in equation (1) can be sepa-
rated, and we find

where λ is a constant. From these formulas, any two
functions can be determined if two others are given.

(2) The function u(x, t) is given in the form

i.e., in the form of a wave traveling with a certain veloc-
ity v.

ϕut( )t ψux( )x,=

ϕ 1
ut

---- ψux( )x t.d∫=

u x t,( ) u1 t( )u2 x( )=

ϕ x t,( ) ϕ1 t( )ϕ2 x( ), ψ x t,( ) ψ1 t( )ψ2 x( ).= =

ϕ1
λ

u1( )t

----------- ψ1u1 t, ϕ2d∫ 1
λ
---

ψ2 u2( )x[ ] x

u2
-------------------------,= =

ψ1
1
λ
---

ϕ1 u1( )t[ ] t

u1
-----------------------, ψ2

λ
u2( )x

------------ ϕ2u2 x,d∫= =

u x t,( ) u x vt–( ),=
In this case, it is natural to seek the functions ϕ and
ψ also in the form of traveling waves (“waves of prop-
erties”)

and from equation (1), we obtain the ordinary differen-
tial equation

with the independent variable z = x – vt (the prime
denotes differentiating with respect to this variable).
From this equation, it is easy to determine one of the
functions ϕ or ψ if the other is known.

As was shown in papers [1–3], under certain condi-
tions, it is possible to isolate completely a certain part
of a body from long-wave disturbances by activating a
dynamic material through the organization of the
“wave of properties”.

4. ON DYNAMIC SURFACES

It should be noted that two-dimensional analogs of
proposed dynamic materials (they can be called dynamic
surfaces) are known. Remarkable dynamic properties
manifested by these surfaces serve as further corrobo-
ration of significant technical potentialities provided by
the use of dynamic materials. However, it is worth not-
ing that the indicated surfaces have never been men-
tioned as being dynamic materials. We outline three
indicated systems.

The first of them is a plane formed by two systems
of alternating parallel fibers. The fibers of the first sys-
tem (assume, for example, that they are the odd fibers)
move in a certain direction, while the fibers of the other
system (the even fibers) move with the same velocity in
the opposite direction. It is easy to see that a reasonably
extended body lying on such a surface will be under the
action of the viscous-friction-type forces, whereas the
friction between an individual fiber and the body is of
the dry type (the Coulomb-type) [7, 8].

Another example is a surface formed by two identi-
cal parallel horizontal rollers rotating with identical
angular velocity in opposite directions. A linear “elas-
tic” restoring force acts on a body placed on such roll-
ers. In other words, the body behaves as a conservative
linear oscillator in spite of the fact that the forces of dry
friction act between the body and the surface of the roll-
ers [7, 8].

A plane formed by two groups of alternating rods
can serve as the third example. The rods of the first
group (assume that they are the odd rods) are attached
to a certain solid, while the rods of the second group, to
another solid. These solids each execute given transla-
tion vibrations along certain trajectories [9]. Under cer-
tain conditions, a sufficiently extended body placed on
such a plane experiences impact and force actions with
a nonzero mean component; this is unattainable or is
not easily attainable using a continuous vibrating

ϕ x t,( ) ϕ x vt–( ), ψ x t,( ) ψ x vt–( ),= =

v 2 ϕu'( )' ψu'( )'=
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plane [9, 10]. This fact makes it possible to obtain a sig-
nificant technological effect in systems for transporting
and sifting bulk materials.

Needless to say, the realization of the idea of dynamic
material is more complicated in the three-dimensional
case and requires special technical solutions; here, we
presented the concepts of three such solutions. More-
over, such solutions are the subject for patenting. One
of the concerns of this work was to initiate the appear-
ance of these solutions.
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Testing the strength properties of different materials
implies a choice of reliable parameters being measured
that characterize the fracture. For example, in analysis
of the dynamic fracture of materials containing cracks,
a concept of the dynamic fracture viscosity is widely
used. This quantity is assumed to be the intrinsic char-
acteristic of the material, and its time dependence
(before the fracture has occurred) corresponds to a
steadily decreasing function. An empirical formula for
this dependence was proposed in [1]:

Here, KId and KIs are dynamic and static fracture viscos-
ities, respectively, and tc is the time lapse before fractur-
ing. However, the experimental data demonstrate a pos-
sibility of a nonclassic (nonmonotone) behavior of the
dynamic fracture viscosity for some materials under
specific conditions of their loading. In [2], this effect is
related to only variations in mechanical properties for
the materials under an intense high-rate loading (a pas-
sage to the viscoelastic state). The rheological models
describing such a behavior are rather complicated and
nonuniversal, and hence they are hardly applicable to
actual calculations of strength characteristics. The
dependence of the parameters characterizing the static
fracture (the fracturing stress and the crack strength
limit) on the typical size of cracks existing in the mate-
rial was revealed in [3]. We can also expect the exist-
ence of a certain relationship between the characteris-
tics of dynamic fracture and the crack size in the case
of the dynamic loading.

As a test example, we consider a problem where the
normal pressure σzz = –σH(t) is suddenly applied to the
surface of the disk-shape crack with the radius R, which
is located within the homogeneous isotropic elastic
space. Here, σ is a constant factor and H(t) is the Heavi-
side step function.

KId KIs
C

tc
2

----.+=
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Universitetskaya nab., 
St. Petersburg, 199164 Russia
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We now use certain explicit results reported in [4].
Then, the stress intensity factor can be written in the
form

(1)

where kI = σ  is the stress intensity factor for the

corresponding static problem, t ' = t/T is the dimension-
less time. Here, T = R/c2 is the characteristic time of the
problem (the time for a wave to pass by the distance
equal to the crack radius) and c2 is the transverse wave
velocity. The Laplace transform of the function

, (2)

can be found as a solution to the Fredholm integral
equation

(3)

with the kernel

Here, we use the following notation

KI t'( ) kI ϕ 1 s,( ) s,d

0

t'

∫=

2R
π

-----------

Φ 1 p,( ) ϕ 1 t,( )e pt– td

0

+∞

∫=

Φ η p,( ) η Φ ξ p,( )H ξ η,( ) ξ ,d

0

1

∫+=

0 ξ ,  η 1, ≤≤

H ξ η,( )

=  h ξ η,( ) 2 p
π

------ ω x( ) ξpx( ) ηpx( )sinsin x.d

0

+∞

∫+

h ξ η,( ) Mp
2m
-------- e ξ η– mp– e ξ η+( )mp––( ),=

ω x( ) 1 M

x2 m2+
-----------------

2

1 θ2–
--------------–+=

× x2 0.5+( )2
x2 x2 1+( ) x2 θ2+( )–

x x2 θ2+
----------------------------------------------------------------------------------,
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where ν is the Poisson’s ratio and c1 is the velocity of
longitudinal waves.

Integral equation (3) was solved numerically with
the use of the Simpson integration formulas and the
Gauss exclusion method. The numerical inversion of
the Laplace transform (2) can be performed by using
the Bellman matrices, the corresponding technique is
described in the monograph [5].

We have calculated the dependence of the stress
intensity coefficient on the dimensionless time substi-
tuting the original ϕ(1, s) into (1). This dependence
plotted for different values of the Poisson’s ratio (ν =
0.09, 0.29, and 0.49) is shown in Fig. 1.

We assume furthermore that the fracture occurs
according to the elastic–fragile scenario (i.e., the mate-
rial retains its elastic properties until the fracture has
occurred). The analysis of the strength and fracture is
performed on the basis of the structure-time criterion [6]

(4)

Here, τ is the structural time for fracturing. We calcu-
late the dynamic fracture viscosity (the critical value of
the coefficient for stress intensities initiating fracturing
the material at a time tc)

Here,  = tc/T and σc is the minimum load leading to
fracturing. This load is determined by substituting (1)
into (4) under the condition of equality attained in (4).

Introducing the notation f(t ') = (1, s)ds, we find

eventually the following expression for the dynamic
fracture viscosity

(5)

The crack size is involved here into T and .

The dependence of the dynamic fracture viscosity
calculated according to (5) on the time elapsed before
the fracture has appeared is shown in Fig. 2 for the case
of a high-strength steel (ν = 0.29, τ = 7 µs, c1 =

6 mm/µs, and KIs = 47 MPa ) at different values of

M
3 4θ2– 3θ4+

4 1 θ2–( )
--------------------------------, m

1 2θ2 6θ4– 5θ6+ +

8M 1 θ2–( )
-----------------------------------------------,= =

θ
c2

c1
---- 1 2ν–

2 2ν–
---------------,= =

KI s( ) s KIsτ .≤d

t τ–

t

∫

KId KI tc'( ) σc
2R
π

----------- ϕ 1 s,( ) s.d

0

tc'

∫= =

tc'

ϕ
0

t'

∫

KId KIs
T
τ
--- f s( )

f tc'( )
------------ sd

tc τ–( )/T

tc/T

∫
1–

.=

tc'

m
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the parameter T/τ. We can distinguish three qualita-
tively different types of the behavior for the dynamic
fracture viscosity at different values of T/τ.

(i) If the ratio T/τ is sufficiently small (we have con-
sidered the case of T/τ = 0.1, which corresponds to R =
2.5 mm), then the oscillations of the dynamic fracture
viscosity are negligible and decay rapidly, i.e., the frac-
ture of the material exhibits a quasi-static behavior.

(ii) When the characteristic time T of the problem is
comparable with the structural time of the fracture (the
case of T/τ = 1 corresponding to R = 25 mm is consid-
ered), we observe the significant nonmonotonicity of
the dynamic fracture viscosity since the initial oscilla-
tions of KId are rather pronounced. Such a dependence
of the dynamic fracture viscosity on the time elapsed
before the fracture agrees qualitatively and coincides
(on the order of magnitude) with the similar nonmono-
tone experimental curve reported in [2]. The tests were
performed for a sample of the high-strength steel with
the same mechanical properties and containing the
crack of the same size as was discussed above.

(iii) With increasing the ratio T/τ, the nonmonoto-
nicity of the dynamic fracture viscosity gradually dis-
appears. If the characteristic time T of the problem
much exceeds the structural time for fracturing (we

0 1 2 3 4 5 t'

0.5

1.0

KI(t')
ν = 0.49

ν = 0.09

ν = 0.29

0 5 10 tc/τ

0.5

1.0

KId/KIs

T/τ = 10

T/τ = 1
T/τ = 0.1

Fig. 1. Stress-intensity coefficient as a function of dimen-
sionless time at different values of the Poisson’s ratio.

Fig. 2. Dynamic fracture viscosity as a function of time
elapsed before fracturing high-strength steel at different val-
ues of the ratio T/τ.
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have considered the case T/τ = 10 corresponding to R =
250 mm), then the behavior of dynamic fracture viscos-
ity is nearly indistinguishable from the classical behav-
ior observed in experiments for sufficiently long cracks
(see, e.g., [1]).

We may conclude that the nonclassic (nonmono-
tone) diagrams of the dynamic fracture viscosity were
obtained in this study in accordance with the elastic-
fragile fracture scenario for a material. It was shown
that these diagrams are related to the effect of the crack
size on the dynamic fracture viscosity. Hence, it fol-
lows that the dynamic fracture viscosity depends not
only on the mechanical properties of the material but on
the geometry parameters of a specific problem as well.
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A criterion of stability in the Lyapunov sense, which
is established here, concerns a family of periodic solu-
tions depending on many independent parameters. The
solutions relate to a (n + k)-dimensional system of time-
independent differential equations of the following
vector form:

(1)

Here, x = (x1, …, xn + k) ∈  J ⊂  Rn + k and, in the set J, the
function g: J  Rn + k has continuous second order
partial derivatives with respect to components of the
vector x ∈  Rn + k.

The following holds true:

Theorem 1. Let the following conditions hold:
(i) The differential system (1) has the family of ω-peri-
odic solutions

(2)

which depend on k independent parameters (k ≥ 1)
belonging to the set B = {h ∈  Rk, |h| ≤ r}. (ii) The system
of variational equations

(3)

has k + 1 zero characteristic exponents and n – 1 char-
acteristic exponents with negative real-valued parts.

Then, at sufficiently small values of |h1|, …, |hk|,
each solution of family (2) is stable in the Lyapunov
sense if and only if the period ω of family (2) is inde-
pendent of the parameters h1, …, hk . 

Remark. The condition of Theorem 1 for existence
of k + 1 zero characteristic exponent is met automati-
cally (see [1, 2]).

Proof. Necessity. Let, at sufficiently small values of
|h1|, …, |hk|, each solution of family (2) be stable in the

ẋ g x( ), g x( ) g1 x( ) … gn k+ x( ), ,( ).= =

xs ϕ s t h1 … hk, , ,( ), s 1 … n k,+, ,= =

ẏ
∂g
∂x
------ ϕ s t h1 … hk, , ,( )( )y, y Rn k+ ,∈=
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Lyapunov sense. Assume further that  ≠ 0, i.e., the

parameter hk is a period of functions (2). The change of
variables t  tω–1 turns (1) into the system

(4)

having 2π-periodic solutions. Let the set (σ, ψ(t)) be a
solution to the following variational system for (4):

(5)

We denote the fundamental matrix of solutions to (5)
by Y(t). It is the solution to the matrix differential
equation

(6)

where E is a unit matrix of the order (n + k). Unity rep-
resents the eigenvalue of the matrix Y(2π) with the mul-
tiplicity (k + 1).

As is known [2], the necessary condition concerning
the stability of the solution in the first approximation
lies in the fact that the Jordan block corresponding to
the unit eigenvalue is diagonal, i.e., there are k + 1 inde-
pendent eigenvectors corresponding to unity. If this is
not the case, there is the nonzero vector y1(0) satisfying
the relations

(7)

Relations (7) hold because Y(2π) has a nontrivial
proper subspace corresponding to unity.

Let y1 = , where  ≠ 0. Then, the function

y1(t) will satisfy the equation

(8)

because (8) represents the result of differentiation of
system (5) with respect to hi .

∂ω
∂hk

--------

ωẋ g x( ), x Rn k+ ,∈=

σ ẏ
∂g
∂x
------ ψ t( )( )y, y Rn k+ .∈=

σẎ t( ) ∂g
∂x
------ ψ t( )( )Y t( ), Y 0( ) E,= =

E Y 2π( )–[ ] y1 0( ) 0, E Y 2π( )–[ ] 2y1 0( )≠ 0.=

∂ψ t( )
∂hi

-------------- ∂ψ
∂hi

-------

σ ẏ1
∂g
∂x
------ ψ t( )( )y1

1
σ
--- ∂σ

∂hi

-------ψ̇ t( ),–=
000 MAIK “Nauka/Interperiodica”



126 DRUZHININA
Relation (8) is a linear nonhomogeneous equation
with respect to y1 . The latter quantity can be expressed
as

(9)

Since the derivative (t) represents a solution to
system (5), (t) = Y(t) (0) or Y–1(t) (t) = (0). Sub-
stituting the obtained relation into (9) yields

or

(10)

Since (0) ≠ 0, y1(0) ≠ 0. Moreover, the equality
Y(2π) (0) = ψ(0) leads to the relation [E –
Y(2π)]2y1(0) = 0.

Solution (2) is unstable in the Lyapunov sense.
Because of the contradiction obtained, the assumption
that one of the parameters hk represents the period is
false.

Let, at sufficiently small values of |h1|, …, |hk|, the
period ω of family (2) be independent of the parame-
ters.

We take the solution ϕi(t, 0, …, 0) to system (1) as
an unperturbed one and assume that the perturbations
yi = xi – ϕi(t, 0, …, 0) satisfy the equations for perturbed
motion

(11)

Here, Pij(t) =  and Yi are the func-

tions of the second order of smallness with respect to
the components yi . The functions Pij and Yi are ω-peri-
odic in t.

We consider the variational system

(12)

Since system (1) admits solution (2), the differential
system (11) has the solution ψi = ϕi(t, h1, …, hk) –

y1 t( ) Y t( ) y1 0( ) 1
σ
---∂ω

∂hi

------- Y 1– τ( )ψ̇ τ( ) τd

0

t

∫– .=

ψ̇
ψ̇ ψ̇ ψ̇ ψ̇

y1 t( ) Y t( ) y1 0( ) 1

σ2
----- ∂σ

∂hi

-------ψ̇ 0( )t– ,=

E Y 2π( )–[ ] y1 0( ) 2π
σ2
------ ∂σ

∂hi

-------ψ̇ 0( ).–=

ψ̇
ψ̇

dyi

dt
------- Pij t( )y j Yi t y1 … yn k+, , ,( ),+

j 1=

n k+

∑=

i 1 … n k.+, ,=

∂gi ϕ s t 0 … 0, , ,( )( )
∂x j

---------------------------------------------

dyi

dt
------- Pij t( )y j, i

j 1=

n k+

∑ 1 … n k.+, ,= =
ϕi(t, 0, …, 0), which depends as well on k arbitrary
parameters. This solution can be written as

(13)

Here, the functions Ψi are ω-periodic in t and are of the
second (or higher) order of smallness with respect to hj .

As a result, the variational system (12) has the fam-
ily of periodic solutions of the form

(14)

depending on k arbitrary parameters. Therefore, the
variational system (12) has k + 1 characteristic expo-
nents with zero real-valued parts. We assume that real-
valued parts of the other characteristic exponents are
nonzero. According to A.M. Lyapunov, even if one of
the characteristic exponents has a positive real-valued
part, the periodic solution under investigation is always
unstable.

If real-valued parts of n – 1 characteristic exponents
are negative, the issue of stability cannot be solved
based on variational equations, because the other k + 1
exponents have zero real-valued parts. However, in the
case under consideration, if differential system (12) has
n – 1 characteristic exponents with negative real-valued
parts, then, at sufficiently small values of |hi|, i = 1, …,
k, both the unperturbed solution and solutions (14) are
stable in the Lyapunov sense. Moreover, each perturbed
solution that is sufficiently close to the unperturbed
one, approaches one of the periodic solutions (2).

Indeed, a linear real-valued transformation that con-
tains a periodic matrix and has an inverse transfor-
mation with the same properties allows differential sys-
tem (12) to be reduced to a linear system with a con-
stant matrix. In addition, the characteristic equation of
this system has n – 1 and k + 1 roots with negative and
zero real-valued parts, respectively.

Differential system (12) has a periodic solution with
k arbitrary parameters, and coefficients of the transfor-
mation are periodic functions of the same period.
Therefore, the system with a constant matrix must have
k independent solutions consisting of either constants
or ω-periodic functions. These solutions can be related
only to those roots of the characteristic equation which
have zero real-valued parts. Moreover, all of these roots
are equal to either ±2πi/ω or zero. To be specific, we
assume that the characteristic equation of the system
with a constant matrix has the zero root of the multi-
plicity m1 and imaginary roots equal to ±2πi/ω of the
multiplicity m2 , where m1 + 2m2 = k. The solutions cor-
responding to these roots must be free from secular
terms. Therefore, each such root causes both the deter-
minant of the characteristic equation and its minors to

ψi

∂ϕ i

∂h j

-------- 
 

0

h j Ψi t h1 … hk, , ,( ),+
j 1=

k

∑=

i 1 … n k.+, ,=

ϕ i*
∂ϕ i

∂h j

-------- 
 

0

h j, i
j 1=

k

∑ 1 … n k,+, ,= =
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vanish, and the orders that do not exceed the root mul-
tiplicity are lowered by unity. Consequently, using a
linear transformation with a constant matrix allows sys-
tem (12) to be transformed into

where ui, vj, wj, and zs are new variables, and asi are
constants such that the roots of the equation

(15)

have negative real-valued parts. In the new variables,
the family of periodic solutions (14) of system (12) has
the following form:

(16)

Here, αi, βj , and γj are constants. Consequently, in the
new variables, the periodic solution (13) to the system
of equations describing the perturbed solution (11) can
be written as

(17)

Here, Ui, Vj, Wj , and Zs are the functions of the corre-
sponding variables and have a second (or higher) order
of smallness with respect to them. They are ω-periodic
functions in t.

The substitutions

dui

dt
------- 0, i 1 2 … m1,

dv j

dt
---------, , , 2π

ω
------w j,= = =

dw j

dt
---------

2π
ω
------v j, j 1 … m2,, ,= =

dzs

dt
------- as1z1 … asnzn, s+ + 1 … n,, ,= =

A λE– 0, A asi ,= =

ui* α i, i 1 2 … m1,, , ,= =

v j* β j
2π
ω
------t γ j

2π
ω
------t,sin+cos=

u j* β j
2π
ω
------t γ j

2π
ω
------t, jcos+sin– 1 … m2,, ,= =

z1* … zn* 0.= = =

ui α i Ui t α1 … αm1
β1 … βm2

γ1 … γm2
, , , , , , , , ,( ),+=

i 1 … m1,, ,=

v j β j
2π
ω
------t γ j

2π
ω
------t V j t α1 … αm2

, , ,( ),+sin+cos=

w j β j
2π
ω
------t γ j

2π
ω
------t Ws t α1 … αm2

, , ,( ),+cos+sin–=

j 1 … m2,, ,=

zs Zs t α1 … αm2
, , ,( ), s 1 … n., ,= =

ui yi Ui t y1 … ym1
ym1 1+ … ym2 m2+ ,, , , , , ,(+=

ym1 m2 1+ + … yk ), i, , 1 … m1,, ,=
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transform (11) into the following differential system:

(19)

The system obtained has the solution y1 = c1, …, yk = ck,
x1 = … = xn = 0, where cj are arbitrary constants. There-
fore, the functions Xs and Yj must vanish at x1 = x2 =
… = xn = 0.

All of the transformations used are such that the
problem of stability with respect to the original vari-
ables is equivalent to that with respect to the new vari-
ables. Consequently, the problem under consideration
is reduced to the investigation of the zero solution y1 =
… = yk = x1 = … = xn = 0 to differential system (19),
which was studied by Lyapunov in the case when real-
valued parts of the roots of equation (15) were negative.
According to Lyapunov, both the unperturbed solution
and all of the solutions y1 = c1, …, yk = ck that are suffi-
ciently close to the former are stable. Moreover, at suf-
ficiently small perturbations, each perturbed solution
tends asymptotically to one of those mentioned above
as t  +∞. Going over to the original variables allows
the following conclusions to be formulated: At suffi-
ciently small absolute values of h1, …, hk, the solution
ϕi(t, 0, …, 0) and all of the solutions ϕi(t, h1, …, hk) are
stable in the Lyapunov sense. Each perturbed solution
tends asymptotically to one of those mentioned above
as t  +∞. The theorem has been proved.

For solutions of family (2), the proof of Theorem 1
leads to the sufficient criterion of instability in the
Lyapunov sense. It is formulated below.

Theorem 2. Let conditions (i) and (ii) of Theorem 1
hold. If the period ω of the family of periodic solu-
tions (2) is a parameter, then, at sufficiently small val-
ues of |h1|, …, |hk|, each solution of family (2) is unsta-
ble in the Lyapunov sense.

Obviously, Theorem 1 is valid as well in the case of
the periodic solution xs = ϕs(t) (s = 1, …, n). This case,
which was under study in [3], corresponds to the one-
parameter family xs = ϕs(t + h) (s = 1, …, n), where h is

v j = ym1 j+
2π
ω
------tcos

+ ym1 m2 j+ +
2π
ω
------t V j t y1 … yk, , ,( ),+sin

w j ym1 j+
2π
ω
------tsin–=

+ ym1 m2 j+ +
2π
ω
------t W j t y1 … yk, , ,( ), j+cos 1 … m2,, ,=

zs xs Zs t y1 … yk, , ,( ), s+ 1 … n, ,= =

dxs

dt
-------- as1x1 … asnxn+ +=

+ Xs t y1 … yk x1 … xn, , , , , ,( ), s 1 … n,, ,=

dy j

dt
-------- Y j t y1 … yk x1 … xn, , , , , ,( ), j 1 … k., ,= =
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the parameter. The case of the family of periodic solu-
tions xs = ϕs(t, h1, …, hk) (s = 1, …, n + k) was under
investigation in [4]. The sufficient conditions of stabil-
ity in the Lyapunov sense have been established in
papers [3, 4]. Theorem 1 shows that the conditions of
the Andronov–Vitt theorem and the Malkin theorem are
not only sufficient but also necessary.

Theorem 2 is new and can be applied in celestial
mechanics [5]. In particular, a theorem formulated
below is established with its help.

Theorem 3. Canonical equations of motion corre-
sponding to the general three-body problem and writ-
ten in the synodic coordinate system describe a family
of periodic motions of an arbitrary period. These
motions are unstable in the Lyapunov sense.
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Gravity strongly affects the combustion of high-
caloric metallothermic compounds. In these processes,
high-temperature heterogeneous melts composed of
mutually insoluble components are produced as the
products of combustion. Usually, these melts contain a
metallic (heavy) and oxide (lighter) phases. In the grav-
ity field, the phase separation takes place on the macro-
scopic level (the heavy phase precipitates and the
lighter phase rises to the surface) and a two-layer (or
multilayer) cast product is eventually formed. This phe-
nomenon was used in investigating the processes of the
self-propagating high-temperature synthesis in centrif-
ugal separators, in which the gravity effect of phase
separation was enhanced [1–3]. Of no less interest is
the opposite formulation of the problem: to study how
these processes proceed in the weightless state, i.e.,
without gravity. Earlier, a marked effect of micrograv-
ity on combustion processes and structure formation
was noted in combustion of element-containing mix-
tures [4–7].

In this paper, we present the results of the pioneer-
ing experiments on the “liquid-flame” combustion of
metallothermic compounds, which were carried out at
the orbital space station “Mir”.

In the preliminary investigations on the earth, we
conducted a search for an initial system for realizing a
“liquid” flame under the microgravity conditions.
Based on the results of the thermodynamic analysis and
experiments, the composition containing 60% of the
thermite mixture 3NiO + 5Al and 40% of the mixture
of elements Ni + Al was chosen as the model system.
The overall scheme of the chemical transformation in
this mixture is of the form:

The model mixture satisfies the principal requirements
of the space “liquid-flame” experiment:

3NiO
39
5
------Al

14
5
------Ni

29
5
------NiAl Al2O3.+ + +

Institute of Structural Macrokinetics, 
Russian Academy of Sciences, 
Chernogolovka, Moscow oblast, 142432 Russia
1028-3358/00/4503- $20.00 © 20093
a high temperature (2650 K) is attained in combus-
tion; at this temperature, all the condensed substances
(initial, intermediate, and final) are in the liquid-phase
state, while the concentration of gaseous products
(vapors and suboxides) is low;

the combustion of the mixture proceeds within the
steady regime with a low rate (~0.5 cm/s), the sub-
stance loss caused by dispersing the melt is less than
1%, and the combustion products (aluminum oxide and
nickel aluminide) take the cast form with a distinct sep-
aration of layers.

The major set of experiments on realizing the “liq-
uid-flame” combustion under the microgravity condi-
tions at the “Mir” station1 and the comparative terres-
trial experiments were carried out using the setup
“Optizon” at the air pressure of 0.4 atm [8]. For the syn-
thesis, we used the powders of NiO, Ni, and Al with the
particle sizes less than 10 µm. After mixing, the initial
mixtures were pressed in the form of tablets with mass
of 4.5 g, 8.5 mm in diameter, and 20 mm in height. The
tablets were placed in quartz cups of 13 mm in diameter
and 80 mm in height. The tablets were ignited by
locally heating the upper face of a tablet employing
focused beams from three halogen lamps. Upon com-
pletion of the experiments at the “Mir” station, the sam-
ples were transported to the earth for investigation.
A visual analysis of the combustion products revealed
that, under both the microgravity and terrestrial condi-
tions, the metallic and oxide phases were separated. In
both cases, the combustion products took the cast form.
The comparison between the characteristics of combus-
tion products produced under the microgravity condi-
tions and natural terrestrial conditions showed that they
differ only slightly (see table). The X-ray phase analy-
sis has shown that the combustion products obtained
both at the “Mir” station and under the terrestrial con-
ditions are identical. In both cases, the metallic phase
represents nickel aluminide (NiAl) with the b.c.c. lat-
tice, and the oxide phase is aluminum oxide with the
corundum lattice. Thus, we can conclude that the grav-

1 The gravity acceleration at the “Mir” station is 10–2g, where g is
the free fall acceleration.
000 MAIK “Nauka/Interperiodica”
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ity only weakly affects the processes of dispersion, the
formation of chemical and phase compositions of the
combustion products, and also the completeness of the
phase separation between the metallic and oxide phases.

8.5 mm

11.5 mm
5.6 mm

13.0 mm

20
 m

m

18
 m

m

5 
m

m

Oxide
ellipse

Oxide
layer

layer
MetallicMetallic

drop

(a) (b) (c)

Fig. 1. Effect of microgravity on the macrostructure of cast
combustion products: (a) initial tablet; (b) space experi-
ment; and (c) terrestrial experiment.
Contrastingly, the macrostructures of the cast prod-
ucts obtained under the space and terrestrial conditions
are dramatically different. Under the microgravity con-
ditions, the oxide phase is formed in the shape of a thin-
wall shell (a prolate spheroid). At the poles of the shell,
metallic particles of spherical form and of approxi-
mately equal weight (m ~ 1.5 g, Fig 1b) are located.
Smaller-sized metallic spherical particles (m ~ 0.2–
0.3 g) were found in the quartz cup. The total height of
the object obtained is approximately equal to the height
of the initial tablet. The combustion products obtained
under terrestrial conditions were in the form of two
dense cylindrical layers with a distinct separation
between the metallic and oxide layers (Fig. 1c). The
total height of the layers is four times less than the
height of the initial sample, and the diameter of the lay-
ers is equal to the diameter of the quartz cup.

The microanalysis revealed that the samples
obtained under the space conditions are dramatically
distinct in the microstructure of the oxide phase and are
identical in the microstructure of the metallic phase
(a) (b)

(d)(c)

Fig. 2. Effect of microgravity on the microstructure of cast combustion products: (a) and (b) space experiments; (c) and (d) terrestrial
experiments; (a) inner surface of the oxide shell; (b) outer surface of the oxide shell; (c) free surface; (d) surface adjacent to the
metallic ingot. 400×.
DOKLADY PHYSICS      Vol. 45      No. 3      2000
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(a)

(c) (d)

(b)

Fig. 3. Distribution of elements in metallic particles at the surface of the oxide shell; (a) and (b) surface element; (c) distribution of
Ni; (d) distribution of Al in particles. (a) 4000×; (b), (c), and (d) 6000×.
from that obtained under the terrestrial conditions.
Moreover, an appreciable difference between the
microstructures of the outer and inner surfaces of the
oxide phase of the combustion products (the shell)
obtained under the microgravity conditions was
revealed (Figs. 2a and 2b). Namely, at the inner surface
of the oxide sphere, the alternation of metallic and
oxide bands was found, the metallic bands having a dis-
crete structure. The metallic particles forming the rows
are mushroom-shaped, contain Ni and Al (Fig. 3), and,
according to the X-ray analysis, are intermetallic com-
pounds (NiAl). On the outer surface, there are no
metallic “rows,” and the major area of this surface is
smooth. The analysis of the oxide-film cross section
revealed the multitude of channels of the rounded cross
section, which came out into the inner cavity of the
sphere.

On the surface of the “terrestrial” samples, there are
virtually no metallic particles, and the surface has a
pronounced relief (Figs. 2c and 2d).

The results obtained enable us to conclude that grav-
ity strongly affects the formation of macrostructure and
microstructure of cast combustion products.
DOKLADY PHYSICS      Vol. 45      No. 3      2000
It is known that the process of phase separation in
the combustion products for the thermite-type systems
proceeds in two stages under the terrestrial conditions:

Effect of microgravity on the substance loss in combustion
and characteristics of the phase separation

Parameters
Experimental conditions

a = 10–2g a = 1g calculated 
values

Initial mass of a tablet, g 4.5 4.5 4.5
Final mass of products, g 4.0 3.9 4.5
Final mass of the metallic 
phase, g

3.43 3.30 3.73

Final mass of the oxide 
phase, g

0.57 0.60 0.77

Depth of dispersion,
mass %

11 13 –

Completeness of the
metal yield, mass %

92 88 100

Completeness of the
oxide yield, mass %

74 78 100
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the stage of forming small-sized (primary) drops of the
metallic phase caused by the forces of surface (inter-
phase) tension and the stage of precipitating the drops
under the action of gravity forces and forming an ingot.
In the space experiments, the second stage was absent.
Both of these processes, i.e., the formation of the pri-
mary drops and the following separation between the
metallic and oxide phases, proceed only by the action
of the forces of interphase tension without participation
of the gravity forces. A whimsical shape of the space
products is associated with a weak gassing. Under the
terrestrial conditions, the gravity ejects rapidly the gas
bubbles from the melt. Under the space conditions, a
gas inflates the liquid product and it forms a large
bubble.
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One of the central problems in the theory of antenna
synthesis is the problem of approximating a given
directivity pattern by integral functions of exponential
type, i.e., by functions related to the class of Wσ func-
tions [1]. In fact, if a given directivity pattern belongs
to this class, then there exists an exact solution to the
synthesis problem. As is well known [2], the desired
directivity pattern for antennas does not belong to this
class. Thus, these approximating functions are deter-
mined by requirements of practice and can acquire var-
ious forms. In this case, the synthesis problem has no
exact solution, and a question arises on approximating
with a predetermined accuracy a given directivity pat-
tern by functions belonging to the class of Wσ func-
tions.

The statement of the problem. The essence of the
approximation method proposed in [2] is the following.
The given directivity pattern is approximated by a poly-
nomial Pk(z) of a reasonably high degree. According to
the Weœerstrass theorem, this procedure can be realized
with an arbitrary predetermined accuracy. Furthermore,
the polynomial obtained is multiplied by an auxiliary
function Um(z) having the following properties:

(I) Um(z) belongs to the class of Wσ functions;

(II) As z  ∞, the function Um(z) on the real axis
has an infinitesimally small value on the order of
o(1/zm), where m > k;

(III) In the segment where a directivity pattern is
given, the function Um(z) tends to unity with increasing
m, i.e., for any ε1 there exists a number m, such that
|1 − Um(z)| < ε1 in the domain –L/λ ≤ z ≤ L/λ, where L
and λ are the antenna length and wavelength, respec-
tively.
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Moscow, 103907 Russia
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The product Pk(z)Um(z) belongs to the class of Wσ
functions, and, consequently, there exists an amplitude-
phase distribution of currents, which depends on the
antenna aperture and provides the given directivity
pattern.

Indeed, by virtue of the validity of the inequality
|R(z) – Pk(z)| < ε2 ,

(1)

The conditions |R(z)| ≤ 1 and |Um(z)| ≤ 1 are satisfied for
arbitrary m in the segment –L/λ ≤ z ≤ L/λ, and, conse-
quently,

(2)

Similar reasonings are also applicable in the case when
trigonometric polynomials Tk(z) are used as approxi-
mating functions. Then, the directivity patterns
obtained belong to the class of Wσ functions. They are
realizable and can be represented in the form of the
Kotel’nikov series [2]

(3)

where

(4)

As the auxiliary function Um(z), it was proposed
in [2] a function that represents the Fourier transform
of a cosine function of the mth power:

(5)

R z( ) Pk z( )Um z( )– R z( ) R z( )Um z( )–≤
+ R z( )Um z( ) Pk z( )Um z( )– R z( ) ε1 Um z( ) ε2.+<

R z( ) Pk z( )Um z( )– ε1 ε2, m k.>+≤

Rs z( ) Rs m( )S z m–( ),
m

∑=

Rs Pk z( )Um z( ),=

S z( ) σz( )sin
σz

-------------------,=

zn
πn
σ

------.=

Um z( ) 1
2π
------ eizy Γ2 m 2 1+⁄( )

m!
------------------------------- 2 y

2
---cos 

  m

y.d

π–

π

∫=
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Fig. 1.
Here, Γ(α) is the gamma function. For even and odd m,

(6)

and

(7)

respectively. Both these functions belong to the class of
Wπ functions. They have a maximum equal to unity at
the point z = 0. The first zero is located at the points z =
m/2 + 1. For all points at which z = n and n ≤ m, the
equality

(8)

is valid. At the points z = n and n > m, Um(n) = 0. By the
appropriate choice of m, we can approach the function
Um(z) infinitely close to unity in the given interval, and
approximate the given directivity pattern with an arbi-
trary predetermined accuracy [see (2)]. We note that the
use of the function Um(z) as an auxiliary one in practical
calculations is not necessarily advantageous. In the
cases when the ratio L/λ is large, the degree of the poly-
nomial Pk(z) must be high enough. However, due to the

Um z( ) πzsin

πz 1 z2

p2
-----– 

 
p 1=

m

∏
-----------------------------------,=

Um z( ) πzcos

1
2z

2 p 1+
---------------- 

 
2

– 
 

p 1=

m

∏
-----------------------------------------------,=

Um n( ) m!( )2

m n+( )! m n–( )!
----------------------------------------=
fact that m > k, the function Um(z) will tend to zero
slowly outside the segment L/λ ≤ |z | ≤ m. This leads to
the appearance of lateral lobes that can be successfully
suppressed by the theory of atomic functions.

Atomic functions. As is well known, there exists a
numerous family of atomic functions [3]. The simplest
of them denoted as up(y) obeys the following differen-
tial equation:

(9)

The Fourier transform of the function up(y) has the
form

(10)

The function up(y) is infinitely differentiable, finite,
and obeys the following properties:

(11)

This function was employed as an auxiliary one for the
approximation of a given directivity pattern [3, 4]. After
this approximation has been realized, the directivity
pattern obtained is the minimum one outside the seg-
ment –L/λ ≤ z ≤ L/λ. In [3], the atomic function Ξn(y)

dup y( )
dt

----------------- 2up 2y 1+( ) 2up 2y 1–( ).–=

Up z( ) 1
2π
------ eiyzup y( ) yd

∞–

∞

∫ z 2 p–×sin

z 2 p–×
-----------------------.

p 1=

∞

∏= =

(a) 0 up y( ) 1, up y–( )≤≤ up y( ),=

(b) up y k–( )
k ∞–=

∞

∑ 1.≡
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was used while solving the synthesis problem. The
Fourier transform of this function has the form

(12)

For n = 1, Ξ1(y) = up(y). At the present time, the follow-
ing approximating functions and corresponding distri-
butions fs(y) of the electric current (field) along the
antenna length are studied:

(I) Approximation by trigonometric polynomials:

(13)

(14)

(II) Approximation by shifts of the functions Kn(z):

(15)

(16)

Kn z( ) z n 1+( ) p–sin

z n 1+( ) p–
--------------------------------

n

.
p 1=

∞

∏=

Rs z( ) Kn αz( ) ame iβzm– ,
m β 1 α–( )/α–=

β 1 α–( )/α

∑=

f s y( ) amΞn
y βm–

α
---------------- 

  .
m β 1 α–( )/α–=

β 1 α–( )/α

∑=

Rs z( ) amKn α z βm–( )( ),
m

∑=

f s z( ) Ξn
z
α
--- 

  ame iβym– .
m

∑=
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(III) Approximation by polynomials:

(17)

(18)

The choice of the parameters α, β and an for these func-
tions is determined by the accepted approximation
methods (the mean-square, uniform, and pointwise
approximations) [3].

Numerical experiment. Numerical calculations by
the methods proposed and substantiated above were
conducted for a cosecant directivity pattern under the
following conditions:

(19)

The plots for directivity pattern (19) (dashed line) and
directivity pattern synthesized by the Woodward
method [4] (solid line) are shown in Fig. 1 (L/λ = 3π).
The directivity pattern plotted by the method of atomic
functions [see formulas (15), (16)] with the parameters
n = 1, α = 2π, β = 1, am = R(m) are shown in Fig. 2. The
comparison and physical analysis of the results

Rs z( ) Kn αz( ) amzm,
m 0=

k

∑=

f s y( ) α i
α
---– 

  m

amΞn
m( ) y

α
--- 

  .
m 0=

k

∑=

R z( )
0, z 1 7,( )∉
cosec z( ), z 1 7,( ).∈




=
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obtained have shown that the more exact approxima-
tion of directivity patterns is attained owing to unique
properties of the atomic function [3]. For example, in
the non-zero segments of R(z), oscillations of the func-
tion Rs(z) (15) and its side lobes are essentially sup-
pressed.

Thus, the method for approximating directivity pat-
terns by integral functions of the exponential type is
substantiated by the theory of atomic functions. Such
an approach appears to be rather promising in analysis
and synthesis of a new class of radiating systems.
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