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1. Deductive construction of thermodynamics of
nonequilibrium processes is based on axiomatically
introducing a certain general principle used further-
more to derive all principal thermodynamic equations
and laws [1]. A well-known principle of such a type is,
e.g., Onsager principle for the minimum-energy dissi-
pation. Another less known principle proposed by Zie-
gler [2], is that of the maximum for the dissipation-
work rate, or the entropy-production rate. According to
this principle, a nonequilibrium system tends to its final
state by the shortest possible way. In [3], the modern
critical analysis of all basic principles for irreversible
processes of phenomenological thermodynamics is
presented, and a rather general variational principle is
put forward. In this paper, it is indicated that one of the
interesting consequences of the approach proposed is
the statement that an arbitrary nonequilibrium dynamic
system tends to a local equilibrium state with the
extreme velocity. Thus, in [2] and [3], similar state-
ments (below, for brevity referred to as the maximum
principle) on the behavior of a nonequilibrium-system
are formulated independently.

Here, we would like to emphasize that these papers,
apparently, due to their formalized and specific charac-
ter, have not attracted proper attention. As a result, in
consequent years, many researchers, studying particu-
lar nonequilibrium systems, independently came up to
similar conclusions. Thus, in [4], the maximum princi-
ple is based on analysis of experimental data on the
chemical-reaction kinetics. In [5], the necessity of this
principle follows from analysis of a choice of the diffu-
sion path in the triple system. In [6], the fastest-reaction
principle was introduced for hydrodynamics and geo-
physics. In [7], the increase in the entropy production in
the course of kinetic phase transition was discussed.
Finally, in [8], it was emphasized (as applied to study-
ing the biological-evolution rate) that in the case of the
existence of several trajectories leading to the given
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value of the biological perfection, evolution chooses
the most rapid trajectory among those leading to the
final state.

Taking into account all the mentioned examples, we
can conclude that the maximum principle is met suffi-
ciently widely in describing processes occurring in
nonequilibrium systems. At the same time, studying
consequences, in which this principle is revealed in
specific systems, has received little attention in litera-
ture. It seems, however, that this principle could turn
out to be rather fruitful for analysis of nonequilibrium,
self-organizing systems in which transitions from one
of the evolution regimes to another are possible. One of
the pronounced examples is the morphological transi-
tion in the course of the nonequilibrium crystallization.

2. We consider the most typical situation, of the iso-
thermal isobaric crystallization from the supersaturated
solution. The system is assumed to be two-component
(a crystallizing medium and a solvent), the solvent
being completely displaced by the growing crystal. It is
well known that the local entropy production for sys-
tems of this type is given by the expression

(1)

where j is the flow-rate density for the crystallizing
component, —µ is the chemical-potential gradient.
Expression (1) is applicable to all parts of the volume
under consideration and, in particular, to a domain in
the vicinity of the surface of a crystal growing with the
local linear velocity V. In this case, the flow-rate den-
sity can be written out in the form:

(2)

where Csol is the crystal density and Cs is the concentra-
tion near the crystal surface.

Based on the maximum principle, we can conclude
that the crystal growth (i.e., the evolution of the non-
equilibrium crystallizing system towards its equilib-
rium state) proceeds with the maximum possible local
entropy production. It follows from (1) and (2) that σ is

σ j—µ,–=

j Csol Cs–( )V,–=
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directly proportional to the velocity of increasing the
growing-crystal mass. In [9], on the basis of analysis of
the anisotropic Hele–Shaw experiment, and numerical
calculations of the dendritic growth, a hypothesis has
been put forward that in the case of more than one pos-
sible morphologies, only the most rapidly growing of
them is nonlinearly stable and, therefore, observable.
Thus, this example is one more independent illustration
in favor of the maximum principle. For the systems
under consideration, this principle can be formulated
more rigorously in such a manner: in the presence of a
sufficient level of fluctuations, that local state is real-
ized among possible ones, which is characterized by
the maximum value of the entropy production.

3. Employing (1), we now consider the possible
consequences of the application of the maximum prin-
ciple to the growth of a spherical crystal from the super-
saturated solution, according to the calculation in the
Mullins–Sekerka classical approximation [10]. We
assume that the growing spherical particle with the
radius R is subjected to deformation described by a sin-
gle spherical harmonic Ylm(θ, ϕ):

Here, δ(t) ! R and t is time. The calculations are per-
formed in the first order of the perturbance amplitude
δ(t). It is possible to show, that the difference in the
near-surface entropy production for the perturbed (p)
and non-perturbed (n) cases (per unit solid angle) is
determined by the expression of the form:

(3)

Expression (3) is obtained for the direction (θ, ϕ) corre-
sponding to the maximum value of Ylm(θ, ϕ), for which
the most dangerous (from the standpoint of violating
the spherical-growth) state is realized. In doing so, we
have assumed that —µ ~ —Cs/Cs, while the relative
supersaturation ∆ is small (∆ ! 1). Transforming (3)
with allowance for the results of [10], we obtain:

where  = 2Γ/∆ is the radius of a critical germ for the
production of the crystalline phase, Γ is the capillary
constant [10], and l is the number of a perturbing har-
monic.

Within the range of possible changing in the sphere

radius [ , ]  = [1 + (l + 1)(l + 2)/2]  is the
radius of the sphere-stability loss with respect to infi-
nitely small perturbance of its shape [10]), the function

r θ ϕ t, ,( ) R δ t( )Ylm θ ϕ,( ).+=
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dδ
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(σp – σn) increases monotonically intersecting zero at

the point  = (l3 + 2l2 + l – 2)/(2l).

Thus, the difference between the entropy production
in the cases of the perturbed and unperturbed sphere,

changes its sign at the point , which differs from the

value  predicted by the Mullins–Sekerka theory.
This difference [arising due to the presence of an addi-
tional term in (3), which is proportional to the pertur-
bance amplitude δ] is caused by the fact that the
entropy production per unit solid angle [in accordance
with (1) and (2)] depends not only on the linear velocity
of the crystal growth but on the change in the crystal

surface as well. When R =  then, according to the
results of the Mullins–Sekerka theory, the crystal loses
its stability under an infinitely small perturbance. In the
terminology of the equilibrium thermodynamics, this
point can be called the spinodal of the given morpho-

logical transition. Within the range ( , ), the grow-
ing sphere is stable with respect to infinitely small per-
turbances [10]. However, as far as in the presence of a
perturbance, the entropy production within this range is
higher, the maximum principle results in the fact that
the growth of the perturbed sphere is more preferable.
This contradiction can be eliminated by the assumption
that the growth is metastable within this range, i.e.,
unstable with respect to small but finite perturbances.

The point , we call binodal of a morphological tran-
sition. It should be noted that in the given case, the
nature of arising instability can be explained by a pos-
sibility of the appearance of the azimuth flows nearby
the sphere surface. These flows arise due to the irregu-
larity of the substance distribution within the solid
angles when the perturbance is imposed and are
directed to the maximum value of Ylm(θ, ϕ).

4. Figure 1 presents, as an illustration, the morpho-
logical phase diagram of the stable and unstable crystal
growth. The diagram shows the crystal size as a func-
tion of the supersaturation and demonstrates the
regions of existence and coexistence of morphologies.
As is seen from this figure, the metastable regions
related to different harmonics can intersect each other.
Therefore, for a given R, there exists a possibility for
simultaneous developing several different morpholo-
gies in the solution (in the case presented, there are
three morphologies, namely, metastable spherical
phase and two morphological ones corresponding to
the second and the third harmonics). It should be
emphasized that this fact well-known experimentally
[11, 12] cannot be described within the classical pertur-
bation theory [9, 10].

Thus, it is shown that the application of the maxi-
mum principle enables simple theoretical description
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Morphological phase diagram for the stable and unstable
growth. The diagram is plotted for the relative supersatura-
tion ∆ as a function of the radius R for l = 2, 3. Dashed and
solid lines correspond to the spinodal and binodal, res-
pectively. The metastable region is shaded. The stable and
unstable growths occur below the binodal and above the
spinodal, respectively. The diagram is plotted for Γ =
10−7 cm.
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of the coexistence of different morphological phases on
the basis of the metastability concept.
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With a goal of studying formation of the molecular-
domain structure for polymeric semiconductors [1], we
used the model of double-layer spheroids for the evalu-
ation of parameters of conducting polyacenequinone
macromolecules on the basis of their dielectric spectra
in accordance with the generalized Lorenz–Lorentz
formula [2].

Polyacenequinones were obtained by the method [3]
of polycyclocondensation of pyrene with dianhydride
of pyromellitic acid in the presence of anhydrous zinc
1028-3358/00/4504- $20.00 © 20132
chloride at 580 K. When adjusting reaction conditions
in order to obtain low-resistance polymers, the process
duration varied within the range from 0.17 to 20 h (this
duration is indicated in the polymer definitions [3]).
Polycyclocondensation proceeds via intermediate com-
plexes containing zinc chloride and results in ladder
polymers. Their macromolecules contain aromatic con-
densed conjugate systems including cycles of benzoid
and chinoid structures according to the following sche-
matic diagram:
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Chain fragment
With increasing the duration of the process, the
polycyclocondensation is accompanied by sewing
macroscopic chains (macrochains) [4] with forming
insoluble nonmelting three-dimensional polymers
exhibiting the domain structure [1].

Previously, this fact was not taken into account, and
dielectric spectra of polyacenequinones were inter-
preted on the basis of the concept of electronic relax-
ation polarization of conducting molecular chains [5].

The values of parameters in the dispersion region
caused by the interlayer polarization of such polymers
(see table) were determined by the method of disper-
sion diagrams [6] (Fig. 1). These parameters are: the
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low-frequency  and the high-frequency  limits of
the dielectric permittivity ε'; the relaxation time τ =
(2πνM)–1, where νM is the value of the frequency ν of
the electric field applied, for which the coefficient of
dielectric loss ε'' has the maximum  and the parame-
ter of the relaxation time distribution is 0 ≤ α ≤ 1. The
plots are the normalized Debye functions: i.e., the

reduced dielectric permittivity ε1 = , where

∆ε' =  –  and the reduced loss factor ε2 = .

Previously, it was assumed that the increment ∆ε' of
the dielectric permittivity in the dispersion region does
not change with increasing the reaction duration t of the
polyacenequinone formation from 3 to 8 h [7]. How-
ever, the use of the pseudoisolation effect for conduct-
ing macromolecules [8] in order to determine their

εS' ε∞'

εM''

ε' ε∞'–( )
∆ε'

--------------------

εS' ε∞'
ε''
εM''
------
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shape made it possible to measure parameters of the
dispersion region under conditions of the maximum
electrical conduction σ0 ≈ 10–2 S/m attained for t = 20 h
(Fig. 1). In this case, a significant increase of ∆ε' was
found (Fig. 2), which provides evidence for a large vol-
ume concentration of the conducting phase v  1 in
accordance with the generalized Lorenz–Lorentz
formula.

The structure model of close-packed two-layer
spheroids was employed to estimate the domain param-
eters of these polymers. Below, we mark the values
related to the low-resistance part of the spheroid and
relatively high-resistance near-surface layer by the sub-
scripts 1 and 2, respectively. For simplicity, all the
spheroids are considered to be equal and oriented by
their variable semiaxis a in parallel to the electric field

applied. We call the ratio f =  (b and c = b are the other

semiaxes) the domain-shape coefficient determining its
depolarization coefficient 0 ≤ N ≤ 1 [2].

In order to describe the frequency dependence of the
complex dielectric permittivity ε, we used the general-
ized Lorenz–Lorentz formula

(1)

The volume concentration of the conducting phase was
determined as

(2)

where V is the volume. Thus, for close-packed sphe-
roids v  1 as V2  0. In an alternating electric
field with the circular frequency ω, the quantities εi (i =
1, 2) in formula (1) are complex:

(3)

Here, we consider for simplicity  to be the same and

equal to  = 4, i.e., to the value of the dielectric per-

b
a
---

ε ε2 1
v ε1 ε2–( )

ε2 1 v–( )N ε1 ε2–( )+
-----------------------------------------------------+ .=

v
V1

V1 V2+
------------------,=

εi εi' jεi''– ε∞' j
σi

ε0ω
---------.–= =

εi'

ε∞'
DOKLADY PHYSICS      Vol. 45      No. 4      2000
mittivity of polyacenequinones at sufficiently high fre-
quencies and low temperatures, σ is the conductivity
and ε0 is the electric constant in IS.

10–4
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5
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ε1

103 105 107 ν, Hz
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Fig. 1. Dispersion plots for 76EHE (20) polyacenequinone:
(1, 2) compressed sample; (3) mixture with a paraffin;
(4) active conduction σ; (5) σ + σ0 . Temperature is 293 K.
The thickness of the compressed sample is 0.28 mm, its
diameter is 2.5 mm; the rigid electrodes are made of steel.
Parameters of dielectric spectra and molecular domains of polyacenequinones

Polymer
σ0,

10–5 S/m
σp, 

10–5 S/m
νM, 104 Hz α , 104 Hz α' N f

Synthesis [13]
76EHE(24*) 2 2.3 1.6 5.3 0.47 6 0.47 0.31 0.87
76EHE(5) 5 10 5.7 7.4 0.55 22.4 0.5 0.24 0.69
76EHE(10) 27 – 3.2 11.8 0.55 – – – –

Synthesis [7]
76EHE(3) 70 200 158 3.3 0.6 400 0.6 0.34 1.04
76EHE(8) 500 720 300 7.6 0.6 1580 0.6 0.39 1.23
76EHE(20) 710 340 70 16.6 0.5 710 0.5 0.33 1.00

Note: Polymer 76EHE(24*) was obtained with the interruption in the synthesis process.

εM'' νM'
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Substituting εi from (3) into formula (1), we obtain
expressions for parameters of the Debye equation [9]:

(4)

(5)

Here,

(6)

τ τ0

1 1
1 v–( )N

---------------------- 1–
σ2

σ1
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----------------------------------------------------,=
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1 1
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----------------------------------------------------+
2

---------------------------------------------------------------------.=
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1 v–( )Nσ1
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Fig. 2. The dielectric-permittivity increment for polyacene-
quinone as a function of the synthesis duration t: (—data
of [7], )—data of [1].
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Fig. 3. Reduced dielectric permittivity increment as a func-
tion of the reduced conduction of the domain insulating
layer for: (1, 2) a spherical domain; (3, 4) a planar domain
(N = 1). The volume concentration of the domain conduct-
ing phase is (1, 3) 0.9 and (2, 4) 0.5.

42
31
(7)

It was assumed previously that β = , and in this

case, τ and ∆ε' are equal to τ0 and ∆ε'0, respectively.
However, for low-resistivity polymeric semiconduc-
tors, this assumption requires substantiation, since the
cause for the formation in the process of synthesis of
domain near-surface layers has still not been estab-
lished. In the case of their small thickness (and, conse-
quently, a large value of ∆ε'), the increase of σ2 is pos-
sible due to charge-carrier tunneling. It follows from
Fig. 3 and formula (4) that a noticeable reduction in τ
and ∆ε' is expected already for β = 0.01.

The values of parameters for the structure model
proposed are presented in the table; these parameters
are determined with allowance for the depolarization
coefficient of domains, calculated according to the for-
mula taken from [8]:

(8)

Here,  is the frequency in the maximum of the loss
factor for a mixture of polyacenequinones with a paraf-
fin for reasonably small volume concentration v'(0, 1)
of the polymer,  ≈ 2 is the dielectric permittivity of
paraffin. The values of N obtained are close to 1/3 (see
table), which is consistent with a spherical shape of
domains. Based on this fact, we have proposed a
method for determination of dielectric-spectrum
parameters. This method is characterized by a high sen-
sitivity in choosing optimum variants of dispersion
plots (Fig. 4) and can be employed for low-resistance
polymers, when the use of the logarithmic-asymptote
method [1] is hampered. With allowance for the value
of N obtained, the frequency  in the spectrum of the
mixture of polyacenequinones with paraffin makes it
possible to determine the value of σp, i.e., the most
probable value of domain conduction in the static dis-
tribution [8]. The other parameter of this distribution is
α, which takes values virtually similar to the analogous
parameter α' for the mixture [10] (see table).

A possibility of employing formula (8) for determi-
nation of the domain depolarization coefficient is
explained by the fact that the domains, but not the
grains, are structure elements responsible for the inter-
layer polarization in the dispersion region under study
in the mixture of polyacenequinones with paraffin. This
statement is also true in that case when a grain contains
many domains significantly different in their con-
duction. The grains are responsible for the surface
capacity [11]. In the spectra of compressed polyacene-
quinone samples, the corresponding dispersion region

∆ε'0
v ε∞'

1 v–( )N
----------------------.=

σ2

σ1
-----

1
N
----

1 v '–
εp'

-------------- ∆ε'
νM' νM⁄ 1–
-------------------------- εp' ε∞'–+

 
 
 

.=

νM'
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lies within the range of lower frequencies. This region
reduces in the case of isolating grains by paraffin and
becomes virtually unobservable for v' = 0.1.

With account of the domain distribution as a func-
tion of the conduction, we should replace σ1 by σn in
formulas (4)–(6) (see table). In this case, the most prob-
able value of the relaxation time in the statistical distri-
bution must be taken for this quantity.

According to formula (7), in the case of ∆ε' = 80
(Fig. 2), the volume concentration of the conducting
phase in the spherical domain attains 0.87. This corre-
sponds to the ratio h/R = 0.047, where h is the thickness
of the near-surface insulated layer in the domain and R
is its radius. Estimating R by a value not more than
1 µm [12], we obtain h ≤ 50 nm.

For explanation of the expected values of ∆ε' > 100
(Fig. 2), we can assume the existence of deformation of
spherical domains in the vicinity of their contact with
neighbor ones. The limiting structure model is a close
package of two-layer cubes, which is equivalent to a
compressed two-layer spheroid (f = ∞) oriented perpen-
dicular to the electric field (N = 1). In this case, formu-
las (1) and (2) are consistent with the Maxwell–Wagner
two-layer model [9], provided that we ignore the insig-
nificant contribution of thin insulated layers located in
parallel with the electric field.

The study carried out testifies to the fact that the
model of two-layer spheroids and the method of the
pseudoisolation effect suggested can be used for study-

–20 0 20 40 δ, %
0

0.5

1.0
N

Fig. 4. Dependence of the depolarization coefficient of a
domain on the relative variation in the dielectric-permittiv-
ity increment δ for a constant value of the relaxation-time
distribution parameter: (_) 76EHE(3), (() 76EHE(20).

.

..

.

.
.
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ing the domain structure of low-resistance polymeric
semiconductors with large values of the dielectric-per-
mittivity increment.
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Spinning waves represent a spiral-helix motion of a
localized combustion center, which occurs along the
lateral surface of a cylindrical sample [1, 2]. After their
discovery, these waves stimulated a lot of investiga-
tions. Solving unsteady two-dimensional equations of
heat conduction and kinetics in the case of combustion
of a thin adiabatic shell, authors of [3] have performed
for the first time computer modeling of a spinning wave.
Then, the two-dimensional approach started to be used in
other theoretical studies as well (see, e.g., [4, 5]). How-
ever, processes that occurred inside a solid sample in
the presence on its lateral surface of a spinning wave
remained yet unknown. Attempts to consider three-
dimensional models [6, 7] have not yield desired
results, because computational algorithms chosen led
to rather difficult calculations.

In [8], we have succeeded in a three-dimensional
numerical investigation of a spinning wave for a cylin-
der, having a small radius, and have compared the
results obtained with those of the two-dimensional cal-
culation. It was shown that, as in the two-dimensional
case, the three-dimensional wave has only one spinning
center moving with a constant velocity along a spiral
helix. Both models yield close values for the tempera-
ture of the center and its dimensions on the surface. The
wave period and the center velocity of motion exhibit
somewhat stronger differences. In addition, in [8], a
new characteristic of a combustion center, namely, its
radial dimension was defined. This quantity has a
noticeable value, but the radius is smaller than that of
the cylinder. While the combustion center moves along
a spiral path, its dimensions do not vary. Therefore, its
thermal effect on the cylinder axial region is constant in
its magnitude (but not in the direction). As a result,
combustion of the cylinder central domain occurs in a
steady mode that is impossible for the one-dimensional
regime of the flame propagation when parameters
related to the unstable region have the same values.
Furthermore, such a steady-state spinning wave is
called classical.

Here, we present results for the numerical analysis
of three-dimensional equations that describe gas-free
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combustion of samples having large radii. New types of
spinning waves, which were not described in literature
and have undoubtedly three-dimensional nature, have
been discovered.

Similarly to [8], we solved the simplest unsteady
dimensionless system of equations describing gas-free
combustion (according to Frank-Kamenetskiœ [9]) with
the corresponding boundary conditions. For brevity, we
do not write out this system of equations here. How-
ever, we emphasize that the constitutive parameters of
the problem are the following: the dimensionless tem-

perature θ = , the dimensionless time τ = , the

dimensionless cylinder radius R0 = , the Todes crite-

rion Td = Ar , and the Arrhenius criterion Ar =

. Here, T is temperature; T∗  is the characteristic

temperature usually taken to be coincident with the
combustion adiabatic temperature; t is time; t∗  is the
characteristic reaction time; r0 is the dimensional cylin-
der radius; h∗  is the characteristic width of the reaction
zone; R is the gas constant; E is the activation energy;
and T0 is the initial temperature of both the sample and
the environment.

We emphasize that, for the chosen temperature
scale, the equality θ = θad = 0 corresponds to the adia-
batic temperature; the initial temperature is negative
(θ0 = –Td–1); and the combustion-center temperature is
superadiabatic (θ > 0). Details concerning the equations
and relations connecting dimensional and dimension-
less quantities are presented in [8].

In this paper, similarly to [8], we pay attention
mainly to the role of two parameters. They are:

—The depth of the remoteness from the stability
limit [10] αst = 9.1Td–2.5Ar1 and

1 The quantity αst is inversely proportional to the enthalpy excess
in the combustion wave. For the stability limit (critical stability),

αst =  = 1. In the unstable region, αst < 1.

T T*–
ArT*
---------------- t

t*
----

r0

h*
------

T*
T* T0–
------------------

RT*
E

-----------

αst
crit
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—The dimensionless radius of the cylinder2 R0 =

 [8], where ∆zm = a .

Carrying out the calculations, we paid most atten-
tion to the quantity R0 , as the most important one in
analysis of not one-dimensional regimes. The role of
the heat loss is not considered here. Similarly to [8], the
main results following from the analysis of unsteady
temperature fields and the conversion depth were calcu-
lated with the help of a Pentium-266 personal com-
puter.

Below, we describe characteristic features of newly
discovered types of spinning waves.

1. Unsteady one-center spinning waves. The
behavior of the spinning center resembles that
described in [8] but has an unsteady nature. The dimen-
sions of the center, the velocity of its motion along a
spiral helix, and temperature fluctuate. When expand-
ing, the center embraces by its peripheral region a part
of the cylinder axis and then narrows again. In contrast
to the steady case [8], this causes oscillations of both
temperature and an instantaneous combustion rate at
the cylinder axis. When the combustion center becomes
localized in near-surface layers of the cylinder, the heat
flux transferred from it to the cylinder axis is insuffi-
cient to cause the transformation of the substance on
the axis, because the cylinder has a large radius. How-
ever, this flux forms an extensive zone of the warmed-
up substance in the cross section orthogonal to the axis.
The combustion center approaching this zone initiates
its frontal burning. Depending on the constitutive
parameters, the temperature maximum can occur at any
point of the frontal line, including the cylinder axis as
well. After the interior of the sample has burnt, the
combustion center again becomes localized near the
cylinder surface at which the substance is yet unre-
acted. That is why, the structure and velocity of the
combustion center exhibit temporal periodic variations
with periodicity not related to 2π.

2. Two-center spinning waves. There are two spin-
ning centers situated symmetrically. Their motion can
be accompanied by either steady-front propagation
along the cylinder axis (at small diameters of the sam-
ples and insignificant remoteness from the stability
threshold) or burning-cylinder central domains in the
pulsating regime. In the second case, the behavior of
the combustion centers is unsteady. Initially, they
expand in the radial direction. As a result, their periph-
eral regions collide on the cylinder axis, and form a
two-headed structure, the temperature increasing in the
center of the cylinder. Then, the binary combustion
center decomposes into two narrowing parts, and tem-
perature on the cylinder axis drops. The complete sep-

2 The quantity uZFK represents a steady-state wave-propagation
velocity given by the Zel’dovich–Frank-Kamenetskiœ theory; α is
the thermometric conductivity; ∆zm is the width of the Mikhel’son
pre-ignition zone.

r0

Td∆zm

---------------- uZFK
1–
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aration of a combustion center from the surface does
not occur. The periodicity of the unsteady two-headed
regime is not connected strictly with 2π. Temperature
oscillations in the combustion centers in the cylinder
surface areas occur simultaneously (Fig. 1).

We call these regimes conjugate spinning waves.
3. Three-center spinning waves. In contrast to the

above-discussed regime, a three-center spinning wave
has three combustion centers, which, in turn, leave the
surface and move toward the interior of the cylinder.
The center, being inside the cylinder, merges with one
of the two near-surface centers. As a result, two new
combustion centers arise. One of them reaches the sur-
face, while the other moves to the third center. Observ-
ing the cylinder surface, we would see disappearance
and, then, appearance of the combustion centers. To be
more exact, three combustion centers visible on the sur-
face, in turn, flash and, then, lose their brightness. Such
regimes can be called flickering spinning waves.

4. Many-center waves. In this regime, four spin-
ning centers that can, in pairs, leave the surface and dis-
place toward the interior of the sample are formed.
Moving, they can interact with both each other and the
centers staying in the near-surface layer. Possible divi-
sion of the centers into two parts leads to formation of
two-headed structures. The maximum number of the
heads observed simultaneously is six. Among the
steady-state regimes discovered, this regime is the most
complicated, because the spatial inhomogeneity and
unsteady temporal behavior are the most clearly
expressed in it (Fig. 2).

The features noted above represent only a small part
of the information obtained. Discussing it, we present
below the data that are, in our opinion, the most
important.

First of all, we emphasize that, as the cylinder radius
increases, the space-time pattern of spinning-wave
propagation becomes more complicated. From the clas-
sical steady-state spinning wave, which has one com-
bustion center localized near the cylinder surface [8],
we pass to many-center regimes. In these regimes, the
velocity of the centers is unsteady, the centers separate
from the surface (the phenomenon of flickering) and
interact in the sample volume with the subsequent for-
mation of many-headed structures.

We keep the term spinning for such regimes,
because the velocity of a combustion center preserves
the spiral (translational–rotational) component in the
cases described. However, the role of this component
decreases with increasing R0, i.e., the spinning pattern
of wave propagation becomes more complicated
(degenerates). Simultaneously, the role of the radial
component of the center velocity becomes more essen-
tial, which leads to forming complicated configurations
of the unsteady temperature field.

This result is extremely important. It implies that, in
the general case, it is impossible to ignore the radial
heat transfer in the case of the gas-free combustion of
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Combustion-front surface

Temperature field

0

–Td–1

0

–Td–1

0

–Td–1

1

0

1

0

1

0

 Conversion-depth fields

Isotherms in the cross section containing a point with the maximum temperature

θ > –2 –2 < θ < –1 –1 < θ < 0 0 < θ < 1 1 < θ < 2 θ > 2

Fig. 1. Conjugate spinning wave at time moments corresponding to the expansion of combustion centers in the radial direction,
merging the centers on the axis, and localization of the centers on the surface. Front structure (the dashed line corresponds to the
cross section orthogonal to the axis and passing through a point with the maximum temperature), temperature fields and conversion
depths, as well as isotherms for the same cross section are shown for each of these moments at αst = 0.9 and R0 = 67.
solid samples. Thus, the two-dimensional analysis car-
ried out in [3] and in other studies can be valid only for
either samples of small diameters or an artificial model
of the adiabatic cylindrical shell.
In all the cases under consideration, even in the case
of many-center waves, we deal with the periodic wave
propagation. Although, for each set of the values of αst

and R0, the structure and velocity of the wave undergo
DOKLADY PHYSICS      Vol. 45      No. 4      2000
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–Td–1–Td–1

0

τ1 + 0.9τp

τ1 + 0.8τp

τ1 + 0.7τp

τ1 + 0.6τp

τ1 + 0.5τp

τ1 + 0.4τp

τ1 + 0.3τp

τ1

τ1 + 0.1τp

τ1 + 0.2τp

τ1 + 1.9τp

τ1 + 1.8τp

τ1 + 1.7τp

τ1 + 1.6τp

τ1 + 1.5τp

τ1 + 1.4τp

τ1 + 1.3τp

τ1 + τp

τ1 + 1.1τp

τ1 + 1.2τp

Fig. 2. Dynamics of the temporal variations in the structure of the temperature field for a many-center wave. The patterns corre-
sponds to the cross section orthogonal to the axis and containing a point with the maximum temperature (the point moves downward
as the sample combustion occurs). The data are presented with temporal discreteness equal to  0.1 of the wave period τp for αst = 0.9
and R0 = 86.
DOKLADY PHYSICS      Vol. 45      No. 4      2000



140 IVLEVA, MERZHANOV
diverse variations during the period, the pattern
observed being repeated in the next period. Even for the
most complicated many-center wave, there exist the
propagation periodicity (Fig. 2). Reflecting a tendency
to chaotization, the period increases and the front struc-
ture becomes more complicated with increasing R0 .
The onset of chaos is expected at small values of αst and

Td

0

R0 = 67

u

Td

0

R0 = 15

Td

0

R0 = 17

Td

0

R0 = 52

Td

0

R0 = 26

Td

0

R0 = 68

Td

0

R0 = 73

t

Fig. 3. Temporal dependence of instantaneous translational
velocity for the wave propagation along the cylinder axis.
The data correspond to different radii R0 of the cylinder and
various regimes occurring at αst = 0.9. The following struc-
tures are shown from above to below: the plane front
(R0 ≈ 15); the classical spinning wave (R0 ≈ 17); the
unsteady one-center wave (R0 ≈ 52); the steady conjugate
spinning wave (R0 ≈ 26); the unsteady conjugate spinning
wave (R0 ≈ 68), the flickering wave (R0 ≈ 67); and the many-
center wave (R0 ≈ 73). The graduation mark on the time axis
is equal to ∆τ = 250.
large R0 . In our opinion, the chaotic regime has the fol-
lowing features: the presence of many combustion cen-
ters, variation of their number due to their appearance
and disappearance, and an often change in directions of
their motion. However, the main feature of the chaotic
regime of combustion is the absence of the periodicity
in the unsteady structure of the front propagation.

Figure 3 shows instantaneous velocities characteriz-
ing wave propagation along the cylinder axis, as a func-
tion of time at different αst and R0 . The region of both
plane one-dimensional self-sustained oscillations of

the front (αst <  = 1, R0 < ) and the spinning

waves (αst <  = 1, R0 > ). Since αst < , all
the data presented relate to the unstable region. A curi-
ous fact was discovered when the effect of the cylinder
radial dimension on the combustion regime was inves-
tigated. At small R0, the velocity oscillates periodically
near a certain average value  ≈ Td (in accordance

with [10]). After the threshold  ≈ 16 has been
passed, the regime acquires the one-center nature and
corresponds to the steady character of the front propa-
gation along the cylinder axis. With further increasing
R0 (and preserving the one-center regime), the oscilla-
tions, whose amplitude grows with increasing sample
diameters, appear on the cylinder axis again. There is a
simple explanation for this, seemingly, unusual effect.
When plane self-sustained oscillations occur, the insta-
bility is distributed uniformly over the sample cross
section, i.e., all of its points are under the same condi-
tions. For a classical-spinning wave, the instability
region is localized in cylinder surface layers, and the
substance conversion in the interior of the sample is
governed by the heat flux transferred from the combus-
tion center moving in the near-surface layers. As the
cylinder radius grows, the one-center regime becomes
unsteady. At the same time, velocity oscillations arise
on the cylinder axis. The larger the cylinder radius, the
more considerable the oscillations (Fig. 3). A similar
situation arises in the case of conjugate regimes: At
small R0, both the centers on the cylinder surface and
the combustion front on its axis move with the constant
velocity (Fig. 3). However, with increasing R0, the
unsteady character of the front propagation along both
the surface and the axis of the cylinder enhances
(Fig. 3).

As is shown in this paper, an increase in R0 leads
also to forming the flickering and other many-center
regimes. In these regimes, the character of the front
propagation along the sample axis is controlled by the
variation of the heat flux from the moving centers.

An important result of our calculations is the non-
uniqueness of the steady-state spinning regimes discov-
ered here and occurring at large values of R0 (Fig. 4).
Thus, the existence of two regimes (one-center and
two-center waves) is possible at  < R0 < . More-

α st
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crit

α st
crit R0

crit α st
crit
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crit

R0' R0''
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over, if  < R0 < , three regimes (one-center, two-
center, and three-center waves) can occur. Realization
of one or other regime depends on ignition conditions.
The non-uniqueness of the spinning waves should be a
subject of a more detailed study and needs in substanti-
ation.

The three-dimensional spinning waves occurring in
gas-free systems are ill-studied experimentally because
of opacity of the samples. A possibility for forming gas-
free spinning waves in solid samples has been discov-
ered in [2]. The unsteady one-center spinning wave was
realized, seemingly, in [11]. In a number of studies, a
set of combustion centers was observed on the sample
surface.

Analysis of the calculation results, which was car-
ried out in this paper, allows the conclusion to be drawn
that three-dimensional modeling unstable regimes for
gas-free combustion is important principally. We con-
sider the information obtained to be only the first step

R0'' R0'''

2 centers

3 centers

1 center

20 40 60 R0R'''0R''0R'0
200

400

600

τ–

Fig. 4. Non-uniqueness of the steady-state spinning regimes
for αst = 0.86. Here,  is the average time of the complete
center revolution about the cylinder axis.

τ
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in investigating this complicated problem. Of urgent
interest is a deeper study of the instability region for
considering the problems of chaotization and chaotic
flame propagation, the role of heat loss bounding
regions of stable and unstable combustion with respect
to various parameters, the thorough investigating
nature of the non-uniqueness, and many others.
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Synthesis and studying properties of superheavy
chemical elements have recently turned out to be one of
many urgent problems in modern physics [1, 2]. At
present, a growing interest to synthesis and chemistry
of actinides and transactinides stimulates intense inves-
tigating characteristics of superheavy elements. The
relativistic character of superheavy atoms (we imply
that due to a large electric charge of the nucleus, the
motion of atomic electrons is described by relativistic
equations) is one of basic features resulting in addi-
tional difficulties of such investigations. In this paper,
we study the classical dynamics of a relativistic elec-
tron subjected to the action of a periodic perturbance in
the electric field of a supercharged nucleus (Z > 137).
An atom, whose nuclear charge exceeds 137, is referred
to as a supercritical atom [3, 4]. Quantum-mechanical
properties of supercritical atoms and quasi-classical
dynamics for their energy levels, deeply embedded into
the low energy continuum, have been considered in a
series of papers by V.S. Popov and his coworkers [3–5].
As is well known [3, 6], the point-charge approxima-
tion is irrelevant to the relativistic-electron motion in
the Coulomb field of a charge Z > 137. In this case, reg-
ularization of the problem should be performed with
allowance for finite dimensions of the nucleus. This
regularization includes the redefinition of the Coulomb
potential in the following manner:

Here, f(r/R) is a cutting function that allows for finite
dimensions of the nucleus and R is the nuclear radius.
In what follows, we consider the case f(r/R) = 1 (i.e.,
the charge is distributed over the nuclear surface). The
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relativistic momentum is defined by the expression

where ε is the electron energy and M is the orbital
moment. This equation can be rewritten in the form

Turning points are defined as zeros of the momen-
tum p. One of these points lies inside the nucleus and is
given by the expression

The turning point laying outside the nucleus is
determined by the equation

Therefore, the action variable allowing for finite
dimensions of the nucleus (for Z > M) can be deter-
mined from the expression

(1)

where

and

The Hamiltonian of a relativistic electron in the field
of a supercharged nucleus (Z > 137) can be found
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from (1) in the action–angle variables:

(2)

When deriving this expression, we took into account
that ε ~ 0, for Z ≥ M. The eigenfrequency is determined
from the expression

(3)

It is worth noting that equation (2) is derived under

the assumption  @ R; therefore, the depen-
dence of H0 on the nuclear radius is disregarded.

In the case of Z > M (r > R), the path equation takes
the form [9]

(4)

For Z ~ M (ε ~ 0), we have

or

For r < R, the path equation can be rewritten in the
form

(5)

where

We now consider the interaction of this supercritical
atom with a linearly-polarized monochromatic perturb-
ing field

(6)

where θ and ψ are Eulerian angles.
The total Hamiltonian can be written out in the form
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where xk and yk are the Fourier components of the elec-
tron-dipole moment

(8)

(9)

Evaluating integrals (8) and (9) by the steepest-
descent method, we obtain

(10)

To study the stochasticity of a supercritical atom, it
is necessary to find (as was carried out in [7, 8]) the res-
onance width

where rk = .

Employing the Chirikov’s criterion [7, 8] to Hamil-
tonian (7), we find the critical external field from which
the stochastization of the electron motion begins:

(11)

With regard to (10), the critical field is given by the
equation

(12)

Similarly to the consideration of [7, 8], we evaluate the
diffusion coefficient

(13)

Thus, we have studied the stochastization process
for a hydrogen-like atom with a supercharged nucleus
(Z > 137). The analytical formulas obtained indicate
that the critical field needed for the stochastization of a
supercritical atom is very small. This fact is associated
with the exponential dependence of Hamiltonian (2).
The results obtained can be useful for studies of slow
collisions of heavy ions (with the total charge of collid-
ing ions exceeding 137) interacting simultaneously
with a monochromatic radiation field.
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1. Nowadays, advances of activity in fundamental
science representing the basis of the pioneering tech-
nology and also in commerce (a small-scale and large-
scale business), etc. depend principally on the possibil-
ity and ability of gaining and properly processing large
and super-large data arrays. This fact implies the urgent
necessity in convenient and reliable systems of high-
performance data processing [1]. The design of such
systems satisfying a variety of requirements for quality,
high performance, cost, etc. is impossible without
using three-dimensional integrated circuits capable of
operating in microwave and extremely high-frequency
wave ranges [2].

For solving the problem of designing basis compo-
nents of three-dimensional integrated circuits (“struc-
tural units” of these integrated circuits), it is necessary
to have good mathematical models for both transmis-
sion lines and various-type heterogeneities in them
(basis components). Such models must primarily sat-
isfy the requirement for consistency with the actual
physical conditions. Indeed, for example, after a mono-
lithic chip has been fabricated, it is impossible to a
designer “manual” refining a ready device. This
requirement is well satisfied by the mathematical mod-
els for transmission lines and their heterogeneities,
which are constructed on the basis of a rigorous electro-
dynamic approach. (We imply, e.g., the method of par-
tial domains [3–5], as well as the universal analytical
method based on solving singular integral equations
with application of the Schwinger transformation [4]).

In this paper, we formulate and solve the problem of
transmitting a proper electromagnetic wave through a
jump of a slot width in a generalized double-sided slot
waveguide. The solution is given by both the rigorous
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electrodynamic method and using the approximate
model based on the classical theory of a long transmis-
sion line. This is the key problem for three-dimensional
integrated circuits operating in the microwave and
extremely high-frequency wave ranges.

2. A generalized double-sided slot waveguide pre-
sents two connected slots of arbitrary widths and arbi-
trarily arranged with respect to each other on different
sides of a dielectric plate [6]. The natural model of this
waveguide is a structure placed in a rectangular
waveguide, i.e., the closed model of a generalized dou-
ble-sided slot waveguide. Such a model makes it possi-
ble to obtain characteristics of guided waves with a rea-
sonable accuracy also for an open structure by means of
removing screen walls at a distance on the order of the
wavelength λ0 in free space [6]. The electrodynamic
characteristics of the regular generalized double-sided
slot waveguide were investigated by both approximate
and exact methods [6]. Here, the solution to this part of
the problem is assumed to be known.

The model of a long transmission line is used for
estimates and can also be applied as a zero approxima-
tion in a more rigorous analysis. The basis of this
approach is an assumption of the conservation of the
wave type in the case of the jump-like change in param-
eters of the transmission line. Under the condition of
the conservation of the single-wave regime of the trans-
mission line both ahead and back of the jump of the
parameters, the coefficient of wave reflection from the
joint of two transmission lines with wave resistances Z1
and Z2 can be determined from the following expres-
sion:

Electrodynamic approach. Let the fundamental
wave of the waveguide A be incident on a segment with
the jump-like change in a slot width (waveguide B)
(Fig. 1). When a wave is incident on a heterogeneity, a
part of the wave is reflected backward into the
waveguide A. There, it is redistributed between the fun-
damental and highest-type waves. The other part of the

R Z2 Z1–
Z2 Z1+
----------------- .=
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wave goes into the waveguide B, whose total field also
represents the superposition of all waves of this
waveguide.

We represent the fields of proper waves of the
waveguides A and B in the form

Here, i and j are the subscripts of the proper waves for
the waveguides A and B, respectively; ai and bj are the
amplitude coefficients of the proper waves; γij are the
propagation constants for the proper waves (the signs
minus and plus correspond to waves propagating in the
positive and negative directions of the z-axis, respec-

ẽai bj, x y z, ,( ) ai

b j 
 
 

eai bj, x y,( ) γi j, z+−( ),exp=

h̃ai bj, x y z, ,( ) ai

b j 
 
 

hai bj, x y,( ) γi j, z+−( ).exp=
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Fig. 1. Geometry of a heterogeneous section for a general-
ized double-sided slot waveguide.
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Fig. 2. Reflection coefficient for the fundamental wave of a
generalized double-sided slot waveguide, which is reflected
from a symmetric jump in the second-slot width, as a func-
tion of the jump magnitude: f = 20 GHz, εr = 2.22, w1 =

 = 0.1 mm, d = 0.254 mm, h1 = h2 = 3.42 mm, and b =

3.56 mm.

w2
1

tively), the fields of the waveguides A and B being sewn
in the jump plane. If we impose the condition of conti-
nuity for the transverse components of the total electro-
magnetic field and the condition of vanishing the tan-
gential components of the electric field at a metal sur-
face, we obtain the set of linear algebraic equations
with respect to the coefficients  and :

Here, the normalization condition is

where δij is the Kronecker delta; and S is the cross sec-
tion of the waveguide structure.

3. The reflection coefficient for the fundamental
wave as a function of a magnitude of the slot-width
jump is presented in Fig. 2 (curve 1). In this case, the
parameters of the transmission line are chosen in such
a way that, at a given frequency, the single-wave regime
takes place in both semi-infinite sections of the line
(both in the waveguide A and waveguide B). In the same
figure, we present the similar dependence obtained
from the theory of a long transmission line (curve 2). It
is evident that this approximate model is quite accept-
able for describing the slot-width jump of the general-
ized double-sided slot waveguide in the single-wave
regime in regular transmission lines arranged on both
sides of a heterogeneity.

A priori, it is clear that for low and high magnitudes
of a jump in parameters of the waveguide structure, the
value of the reflection coefficient must tend to zero and
to that of the reflection coefficient from the infinite
jump, respectively. It is also clear that, with increasing
magnitudes of such a jump, the scattering characteris-
tics of a heterogeneity depend less on its particular
value (i.e., the characteristic must tend to “saturation”).
The behavior of the curves presented in Fig. 2 is in
complete agreement with the above considerations.

The modulus of reflection coefficient R as a function
of the frequency is shown in Fig. 3 for a fundamental
wave reflected from the joint between two semi-infinite
sections of generalized double-sided slot waveguides.
The presence of maxima and minima for the reflection
and transmission coefficients is caused by the passage
of the first highest-type wave from the cut-off domain
to the running-wave domain. The reflection coefficient

ai b j

ρIa1bn aiIaibn

i 2=

∞

∑ b jIbjbn

j 1=

∞

∑–+ Ia1bn,–=

ρIama1 aiIamai

i 2=

∞

∑ b jIambj

j 1=

∞

∑+ + Iama1,–=

Iaibj eai hbj× S.d
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∫=

ei h j× Sd
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∫ δij,=
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for the fundamental wave in the low-frequency region
(section 1 in Fig. 3) behaves monotonically. This coef-
ficient has a very low absolute value (compared to the
reflection from the fin-line joint with the same geome-
try parameters) up to the cut-off frequency (fc1) for the
first highest-type wave in the waveguide A. Nearby this
frequency, the curve begins to rise steeply and attains
its maximum at the cut-off frequency of the first high-
est-type wave in the waveguide B (fc2 , segment 2 in
Fig. 3). Furthermore, the amount of energy reflected
into the fundamental wave of the waveguide A
decreases sharply to a certain value, whose modulus
exceeds the energy reflected in the single-wave regime.
The mechanism governing the transformation of the
fundamental-wave energy into that of highest-type
waves implies that a symmetric slot-width jump of the
generalized double-sided slot waveguide has properties
of a band-rejection filter (rejecter). The Q-factor of this
filter depends substantially on a magnitude of the jump
in parameters of the generalized double-sided slot
waveguide and decreases with increasing the difference

 –  (cf. curves 1 and 2 in Fig. 3).

The modulus of the reflection coefficient R as a
function of the frequency is presented in Fig. 4 for the
first highest-type wave of the generalized double-sided
slot waveguide. In the frequency region lower than fc1 ,
the highest-type wave turns out to be in the cut-off
regime. At a frequency close to fc1 , we have |R|  1
(Fig. 4). Therefore, all the remaining scattering param-
eters for the jump tend to zero. Thus, the electromag-
netic energy transported by the first highest-type wave
(near its cut-off frequency) is totally reflected from a

w2
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1
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Fig. 3. Modulus of the reflection coefficient for the funda-
mental wave in a generalized double-sided slot waveguide
as a function of the frequency. The reflection occurs from
the symmetric jump in the width of the second slot: εr =

2.22, w1 =  = 0.1 mm, d = 0.254 mm, h1 = h2 = 3.42 mm,

b = 3.56 mm; ∆w2/w1 = (1) 2.8; (2) 5.5.

w2
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transmission-line heterogeneity. With increasing the
frequency, the absolute value of the reflection coeffi-
cient decreases weakly. This decrease is caused by the
increasing energy exchange between the incident wave
and the fundamental waves of the waveguides A and B.
Since the propagation constants for these waves and the
field configurations in the transverse cross section dif-
fer considerably, then the energy-exchange is also
rather small. Therefore, the reflection coefficient |R|
decreases weakly from unity up to the frequency fc2 . As
in the case when the fundamental wave of the general-
ized double-sided slot waveguide passes through a het-
erogeneity, the energy transformation from one wave
type to another increases with the absolute value of the
jump (cf. curves 1 and 2 in Fig. 4). This fact results in
a decrease in the Q-factor of the total reflection of the
wave near its cut-off frequency with increasing the dif-
ference in parameters of the transmission line ahead
and back of the joint.

It is necessary to note that the similar behavior of the
reflection coefficient for highest-type waves nearby
their cut-off frequencies takes place in the case when
the electromagnetic wave is incident onto an open end
of the waveguide [7, 8]. This fact made it possible, in
due time, to design a new class of resonance structures,
called open resonators, having a more rarefied spec-
trum of eigenfrequencies compared to closed reso-
nance structures [8]. A certain interest lies also in struc-
tures based on generalized double-sided slot
waveguides with a smooth variation of parameters
along the transmission line. Based on them, in particu-
lar, it is possible to develop, resonators with “nonfocus-
ing mirrors” having a uniform (equidistant) spectrum

Fig. 4. Modulus of the reflection coefficient for the first
highest-type wave of the generalized double-sided slot
waveguide as a function of the frequency. The reflection
occurs from the symmetric jump in the width of the second

slot: εr = 2.22, w1 =  = 0.1 mm, d = 0.254 mm, h1 = h2 =

3.42 mm, b = 3.56 mm. (1) ∆w2/w1 = 0.69; (2) ∆w2/w1 = 2.8.
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1
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of eigenfrequencies. In other words, in this case, the
spectrum of a string is realized in the open resonator [9].

4. Thus, we have investigated characteristics of scat-
tering for a symmetric jump in the width of a single slot
of a generalized double-sided slot waveguide. It has
been shown that the reflection coefficient for the funda-
mental wave reflected from the joint of two semi-infi-
nite segments of the generalized double-sided slot
waveguide has a very small absolute value compared to
the reflection from the fin-line joint with the same
geometry parameters. Moreover, the slot-width jump
has the filtering properties, and we can safely use it for
these purposes, while designing the basis components
of microwave three-dimensional integrated circuits.
The modulus of the reflection coefficient for the first
highest-type wave in the generalized double-sided slot
waveguide tends to unity near its cut-off frequency sim-
ilarly to the case of the incidence of an electromagnetic
wave onto the waveguide open end [7, 8].
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1. Systems for remote probing of the Earth’s sur-
face, which are based on spacecraft or aircraft, are
widely used all over the world for both the ecological
and agricultural monitoring and for the prospecting of
natural resources [1–4]. Unfortunately, the quality of
the initial images is often unacceptable so that to ensure
both the desired reliability and the adequate interpreta-
tion of remote-probing data. Because of this, improving
the image quality is one of the first stages as remote-
probing data are processed [1, 2, 4]. The analysis of
features intrinsic in, for example, radar images allows
the following conclusions: As a rule, remote-probing
data are distorted because the resolution of remote-
probing systems is insufficient. The radar images are
significantly distorted by random noise, which is a
complex composition of both the Gaussian additive and
multiplicative noises and a process of random pips.
Under such conditions, the algorithms of the image-
data processing must ensure the effective noise sup-
pression and reproduction of well-defined borders on
the images.

In this paper, we present new robust filtration algo-
rithms applicable to radar-data processing. These algo-
rithms are based on the robust theory of point estimates
and combine ranked and robust maximum likelihood
estimates (R- and M-estimates, respectively). The
RM-filters obtained improve the quality of images (in
particular, radar images under consideration) by means
of the effective suppression of specl- and impulse
noises to ensure the reproduction of well-defined bor-
ders on the images. Usually, a linear filtration consis-
tent with the additive Gaussian noise is performed in
receivers. Then, an image is formed in the remote-prob-
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ing system on the basis of the principle of a posteriori
Bayes minimum risk [1]. As was proved, for example,
in [1, 2], such a method can ensure the restoration of
slurred-over images and, to a certain degree, diminish
the influence of multiplicative noise. Unfortunately, the
realization of such algorithms significantly complicates
the present-day remote-probing systems because the
environmental parameters that are used to eliminate a
parametric uncertainty of the original signals should be
estimated. In addition, this method ignores impulse
noise. At the output of an image former in the remote-
probing system, the signal, after it has been consis-
tently filtered and transformed into a digital form, can
be written out in the form

(1)

Here, e(x, y) = | (x,y)|, | (x,y)| is the original complex-
valued radar image; n(x, y) is the additive receiver
noise; Ψ(∆x, ∆y) is the positive point-scattering func-
tion; and ne(x, y) is the multiplicative noise determined
by the signal reflection at a rough surface. The func-
tional nim(x, y, s(x, y)) denotes the impulse noise due to
shot effects and has the form

(2)

The high resolution of the image formers similar to
a radar with a synthesized aperture is their main advan-
tage. However, the images formed by such systems are
significantly distorted by multiplicative specl-noise.
If the influence of the point-scattering function is assu-
med to be restricted and determined by the width of its
main lobe, then equation (1) can be used as a model of
the signal and noise for the images at the output of the
radars with synthesized apertures. It follows from the
aforesaid that the radar images formed need the image
noise filtration to be applied. At the same time, a priori
information on the signal and noise distribution is com-
plicated enough to be exactly analyzed. Because of this,
a priori uncertainty related to both the type and the

q x y,( ) nim(x y[Ψ ∆x ∆y,( )*,=

× ne x y,( )e x y,( )[ ] n x y,( ) ] ) .+

ė ė

nim x y s x y,( ), ,( )

=  
Pi,  a pip with random amplitude

1 Pi,  otherwise.–  


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parameters of the signal and noise distributions, which
is usually eliminated on the basis of parametric
approaches, will be settled below with the help of non-
parametric methods.

2. In the literature on image processing [10–12], a
number of nonlinear noise filtration methods, which
were based on heuristic approaches, has been recently
presented and studied. In contrast to heuristic methods,
we here propose new robust image filters based on the
classical theory of restoration and filtration of images,
i.e., on the methods of robust point R- and M-estimates.
In the classical linear theory of restoration, because of
physical restrictions of the detectors in image formers,
image distortions are often described as a linear shift
modeled by the convolution operator in the presence of
the Gaussian additive noise. The Wiener optimum lin-
ear filter [1, 2] is a known solution to such an inverse
problem. In a spatial domain, such a filter can be real-
ized by locally averaging the readings inside a moving
square window scanning the image:

(3)

Here, (i, j) is the image estimate, u(i, j) is the original
image distorted by the Gaussian noise, 2K + 1 is the
moving-window size along both of the coordinate axes,
and i and j are the running coordinates. Algorithm (3) is
widely known as the standard linear smoothing filter,
which is optimum only if both the image and the noise
have the Gaussian distribution. Usually, this assump-
tion is not valid for various types of images, in particu-
lar, for radar images formed by remote-probing sys-
tems. However, expression (3) can be used as a generat-
ing equation to find image filters with more acceptable
noise-suppression properties. Namely, instead of the
local arithmetic average, one can use robust estimates
for a local average of the readings inside the moving
window.

Average ranked estimates R belong to a class of non-
parametric robust estimates based on statistical infer-
ences from the theory of ranked criteria [14]. The sam-
ple median is a fairly-known ranked estimate. This esti-
mate is obtained with the use of the most powerful
ranked test, namely, the sign test, provided that a priori
information on the distribution of the data Xi is entirely
absent. Another well-known ranked estimate to be used
below is the Wilcockson’s R-estimate

This estimate follows from the most powerful test,
namely, the ranked criterion for the Wilcockson’s sign
ranks provided the distribution of initial data has a sym-
metric form.

ŝ i j,( )
1

2K 1+( )2
----------------------- u i m j n–,–( ),

n K–=

K

∑
m K–=

K
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i 1 … M, j, , 1 … N , M N .×, ,= =
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θWil θ̂T 0.5 Xi X j+( ).{
i j≤
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The generalized form of the equation for robust
M-estimates has been proposed in [13]:

where f(X) is the probability density function for the
sample data Xi and θ is a shift. The M-robust solution to
the estimate θ is determined by imposing certain
restrictions on the function ψ(X) or the samples Xi – θ.
The simplest restriction on the range of the function
ψ(X) is the M-estimate for the normal distribution with
long “tails” [13]:

(4)

Another way for obtaining the function (X) is dis-
regarding anomalous readings, namely, pips over the
initial data sample. This leads to the so-called lowered
M-estimates. As was proved in paper [13], the cut
median

(5)

is the most robust lowered M-estimate. To keep the cal-
culations down, we use below the simple cut function

(6)

to find the robust lowered M-estimates.
When deriving the filtration algorithms, we employ

the simplified single-step method for calculating the
lowered M-estimates of the average θ-value:

(7)

Here,  is the normalized ψ-function: ψ(X) = X (X).
It is evident that formula (7) represents the arithmetic

average of (Xi – med{X}), which is evaluated on

the interval [–r, r].
3. In the approach under consideration, instead of the

arithmetic averaging in relation (7), we use R-estimates
similar to the median average and Wilcockson’s ones:

(8)

(9)
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As is to be expected, new RM-estimates (8) and (9)
have robust properties superior to those for the basic R-
and M-estimates. As was noted above, ranked image fil-
ters (R-filters) can be easily obtained from generating
equation (3) by changing from the arithmetic averaging
to the universal ranked estimate. Choosing the ranked
estimate in the form of the median one and performing
the corresponding substitutions, we obtain a standard
median filter. A more complicated rank estimate based
on the Wilcockson’s criterion determines the Wilcock-
son’s standard filter [7, 8, 10]. To increase the robust-
ness of standard filters, one can employ the methods
known in the robust-estimate theory, for example, the
censoring or others [9, 14]. The application of a censor-
ing operation to a linear smoothing filter determines the
α-censored filter (α-TM filter) [8, 10]:

(10)

where L = (2K + 1)2 and Rq(k) is the reading having the
kth rank among the window elements q(i + m, j + n) (m,
n = –K, …, K). Using the censoring in the Wilcockson’s
estimate and changing the arithmetic average in generat-
ing equation (3), we can easily obtain the Wilcockson’s
censored filter (Wilcockson’s α-TM filter) [9, 10]:

(11)

The proposed method for constructing new robust
filters of the RM-type employs generating equation (3),
robust estimates (7)–(9), and various influence func-
tions ψ(X).

The standard M-filter [11] is obtained with the use
of the function ψ(X) given by expression (4):

(12)

where

Using RM-estimate (9), we obtain the Wilcockson’s
standard M-filter

(13)
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where k, l = –K, …, K and the vector y denotes an inter-
mediate sequence of data. Similarly, using cutoff func-
tion (6) in (7) and performing corresponding changes
in (3), we obtain the cutoff M-filter

(14)

where g(i, j) = |q(i, j) – med{q(i, j)}|, g(i, j) = g(i + m, j +
n), q(i, j) = q(i + m, j + n), with m, n = –K, …, K.

êCM i j,( )
1
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------------------------------------ ψcut g i j,( )( )q i j,( ),
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K
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Fig. 3. (a) Initial test image, (b) model image typical for radars with synthesized apertures; outputs for various types of filters:
(c) linear smoothing, (d) median, (e) Wilcockson’s, (f) standard TM-, (g) Wilcockson’s standard TM-, (h) cut average, (i) Wilcock-
son’s cut, and (j) cut median.
     
Using RM-estimate (9) in (14), we obtain the Wil-
cockson’s cutoff M-filter

(15)

(16)

The cutoff median filter is found by using RM-esti-
mate (8) in (12):

(17)

Here, the vector y is determined by expression (16).

4. We have performed a series of various tests to
study properties of new algorithms (13), (14), (15), and
(17). In addition, we have compared them with known
relations (3) and algorithms (11) and (12). Filtration
criteria were the mean-square error, the correlation
coefficient ρ, and the noise-suppression efficiency
ε = 1/(2(1 – ρ)). To compare various filters, we use the
convenient criterion for the relative efficiency of the
noise suppression εr = ε/εrf, where εrf is the efficiency of
a calibrating filter. To estimate and compare various fil-
ters, we performed the filtration of the test image shown
in Fig. 3a by all the above-mentioned filters. In this
case, we set the following parameters of the filters: the
window measures 5 × 5 readings for all the filters, the
censoring coefficient for filters (10) and (11) is α =

êWCM i j,( ) med
yk yl+

2
--------------- k l≤,

 
 
 

.=

y q i m j n+,+( ): q i m j n+,+( ){=

– med q i m1 j n1+,+( ){ } b } ,≤

m n m1 n1, , , K … K ., ,–=

êMCM i j,( ) med y{ } .=
30%, and the adaptation parameter for filters (12)–(15)
and (17) is b = 65. The simulation results suggest that
filters (11) and (13) have the best properties in respect
to the reproduction of well-defined borders on the
images. Filter (12) has the worst response to a step sig-
nal (almost as the standard linear smoothing filter). To
obtain quantitative characteristics of the noise suppres-
sion by the filters under consideration, we distorted the
standard image “Lena” by noises with various distribu-
tions, namely, by the Gaussian additive white, Rayleigh
multiplicative, and impulse noises. In this case, we vary
the parameters of both the filters and the noises: the
window size from 3 × 3 to 5 × 5 readings, the censoring
coefficient α for filters (10) and (11) from 5 to 45%, and
the adaptation parameter b from 5 to 250. The simula-
tion results for Rayleigh multiplicative noise (with the
linear smoothing filter serving as a calibrating one) are
shown in Fig. 1. The data processing results for the
images distorted by impulse noise (with the median fil-
ter serving as a calibrating one) are shown in Fig. 2. It
follows from the visual comparative analysis of the fig-
ures that the RM-filters have an intermediate quality of
filtration for various types of noises. Filter (13) ensures
the best results provided the noise level is low and the
window aperture is small. Wilcockson’s cutoff filter (15)
has the best quality provided the noise level is high. In
addition, both the RM-filters ensure more well-defined
borders on the images in comparison to analogous
M-filters (12) and (14). To model noisy images typical
for remote-probing systems, we distorted an original
image (see Fig. 3a) by Rayleigh multiplicative noise
with the variance of 0.25, convolved it with the uncer-
tainty function Ψ(∆x)Ψ(∆y), and, in addition, distorted
by Rayleigh additive noise with the relative variance of
DOKLADY PHYSICS      Vol. 45      No. 4      2000
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Simulation results of model images typical for radars with (a) lateral survey and (b) synthesized aperture

Type of filter
(window size of 5 × 5 readings)

(a) (b)

mean-square 
error

optimum
values, b, α

mean-square
error

optimum
values, b, α

Linear smoothing 510.2 – 632.6 –

Median 636.8 – 466.0 –

Standard M-, (12) 508.6 5 460.3 15

Wilcockson’s standard M-, (13) 509.5 10 463.8 20

Cut average, (14) 476.6 55 411.6 60

Wilcockson’s cut, (15) 472.1 55 407.1 60

Cut median, (17) 458.5 60 395.9 80

α-TM-, (10) 510.4 45% 461.9 45%

Wilcockson’s α-TM-, (11) 510.7 45% 461.9 45%
0.05 and by impulse noise with the pip probability of
0.01. To model images typical for radars with synthe-
sized apertures, we distorted the original test image by
Rayleigh multiplicative noise with the variance of 1.0,
convolved it with the uncertainty function Ψ(∆x) ×
Ψ(∆y), added to Rayleigh additive noise with the rela-
tive variance of 0.05, and distorted by impulse noise
with the pip probability of 0.01. The table lists quanti-
tative characteristics of data processing for remote-
probing model images and corresponding optimum
tuning coefficients for the filters under consideration. It
follows from the table that the RM-filters, on the whole,
ensure the high quality of the remote-probing images
processed. Both the cut average and Wilcockson’s α-
TM filters ensure the maximum noise suppression on
the model image (a) typical for radars with lateral sur-
vey, provided the original test image distorted by a con-
volution serves as a calibrating one. Both the Wilcock-
son’s cut and median cut filters ensure the best quality
of images in respect to the minimum mean-square error
for the model images under consideration.

The filtration results for a model image typical for
radars with synthesized aperture are shown in Fig. 3
(the corresponding parameters are given in the table).
Figure 3b shows the model image distorted as was
described above. It follows from a visual comparative
analysis of Fig. 3 that the best qualitative results are
ensured by filters (15) and (17). They effectively sup-
press noise and reproduce well-defined borders on the
images, with the cutoff median filter slightly distorting
these borders. The M-filters insufficiently reproduce
well-defined borders, while the standard filters (linear
smoothing, median, and Wilcockson’s ones) insuffi-
ciently suppress noise.

5. Thus, here we proposed and analyzed new robust
RM-filters for the processing of remote-probing
DOKLADY PHYSICS      Vol. 45      No. 4      2000
images, which use basic positive features of the M- and
R-filters. It follows from our simulation results that all
the RM-filters under consideration adequately repro-
duce well-defined borders on the images and suppress
impulse noise. In actual practice, when noise is spa-
tially correlated and involves anomalous interference,
both of the standard filters, namely, the median and lin-
ear filters, do not ensure adequate noise suppression. In
this case, the RM-filters described above make it possi-
ble to obtain images with high visual quality and better
quantitative characteristics of noise suppression in com-
parison with the basic M-filters. The useful properties of
the RM-filters may be due to their local adaptability
associated with the method of calculating the M- and R-
estimates.
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Gas-discharge light sources play a major role
among a variety of lighting devices. As a rule, the max-
imum power of intense arc gas-discharge lamps with
different filling is limited by the maximum admissible
current, since corrosion of the electrode material
strongly depends on the current density. At present, the
most powerful xenon arc lamp has a wattage of 50 kW
and a service life of about 500 h. Alternatives to electric
arc lamps are electrodeless induction lamps. However,
the complexity and high cost of power supply units, as
well as difficulties associated with a low coupling fac-
tor for a load (plasma) and a generator, prevent wide
usage of intense high-frequency and microwave induc-
tion lamps. These problems can be solved by using the
low-frequency induction discharge of the transformer
type [1, 2]. The use of magnetic circuit in this type of
induction discharge makes it possible to both operate at
lower frequencies (10–100 kHz) and increase the cou-
pling factor between a load and a power supply unit.

The achievements of modern electronics allow us to
produce intense, small-size, and inexpensive power-
supply units operating in the low-frequency radiowave
region (10 to 100 kHz). Recently, amorphous magnetic
materials with an extremely low loss in high magnetic
fields (up to 1 T) in the same frequency range have
become available. Thus, it is possible to develop
devices based on the low-frequency induction dis-
charges of the transformer type, which are competitive
with those based on the high-frequency and microwave
discharges.

The absence of electrodes in the low-frequency
induction discharge of the transformer type allows
development of high power-capacity thermoelectric
facilities with an “unlimited” service life. In the case of
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630090, Russia
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the employment of this discharge in a lighting fixtures,
the induction-lamp service life is limited only by the
service life of the lamp-bulb material and is as long as
10000 h or even longer.

In this study, we have investigated emissive proper-
ties of the transformer discharge in vapors of sulfur and
mercury in order to develop powerful lighting devices
(up to 50 kW and higher).

The experimental setup involved a power-supply
unit, an induction lamp, and measuring devices. The
schematic diagram of such a setup is shown in Fig. 1.
As a power-supply unit, we used either a PPCh stan-
dard generator (250 kW, 25 kHz) or a pilot module of a
transistor power-supply unit (30 kW, 25 kHz) devel-
oped at the Institute of Nuclear Physics, Siberian Divi-
sion, Russian Academy of Sciences. The induction
lamp consisted of magnetic circuit (1) with a system
of primary windings (2) and a quartz discharge cham-
ber (3). The magnetic circuit was composed of four
separate rings made of 3425 cold-rolled sheet trans-

2

3
8

4

9

5

6 7

1

Power-
supply 

~

Induction
lamp

Fig. 1. Schematic diagram of the experimental setup for
testing optical characteristics of low-frequency induction
discharge in vapors of sulfur and mercury: (1) transformer
magnetic circuit; (2) transformer primary windings;
(3) quartz discharge chamber; (4) luxmeter; (5) monochro-
mator; (6) PMT; (7) recorder; (8) screen; and (9) turning
mirror.
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Fig. 2. Spectral distribution for the light emission of a dis-
charge in sulfur vapors (PAr = 115 Pa and PS = 50 Pa).
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Fig. 3. Spectral distribution for the light emission of a dis-
charge in mercury vapors (PHg < 104 Pa and PAr = 200 Pa).
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Fig. 4. Integrated light flux Φ and light efficiency J for a dis-
charge in mercury vapors as a function of the total discharge
power.
former steel. The magnetic-circuit total cross section
was S ≈ 300 cm2. The quartz discharge chamber had the
shape of a closed torus with the cross-section diameter
of 80 mm. The perimeter of the discharge chamber
midline was ~1.8 m.

Figure 2 shows the spectral distribution for the radi-
ation emitted in the visible region by the low-pressure
discharge in sulfur vapor (êAr = 115 Pa, êS = 50 Pa).
Our experiments have demonstrated that the low-pres-
sure discharge with a partial sulfur pressure of 2 to
50 Pa has the low energy efficiency (light efficiency
J ~ 4 lm/W), but a “good” spectral distribution in the
blue and red frequency regions of the emissive spec-
trum.

Figure 3 shows the spectral distribution in the visi-
ble region for the discharge in mercury vapors (êHg ~
104 Pa). Figure 4 shows the light efficiency and total-
light flux for the discharge in mercury vapors as a func-
tion of the power consumed. It is seen that the mercury
low-frequency induction discharge of the transformer
type with a moderate pressure (~104 Pa) produces the
integral light flux attaining 2.5 × 106 lm for the total dis-
charge power of ~43 kW. This exceeds the efficiency
characteristic of the best mercury arc lamps and the
best high-pressure and superhigh-pressure xenon lamps
(see, e.g., [3]).

Thus, the possibility of developing high-intensity
gas-discharge light sources based on the low-frequency
induction discharge of the transformer type has been
shown experimentally. The advantages of this light
source compared to arc lamps, as well as high-fre-
quency and microwave lamps, are, respectively, the
absence of disadvantages associated with the electrode
service life and simplicity and low cost of the power
supply unit and the lamp itself. The large extent of the
luminous area and the high total light flux attained
make it possible to apply this device even today in
UV-drying technology and in other fields of industry in
which intense UV-light fluxes are required.
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Nowadays, self-propagating high-temperature syn-
thesis (SHS) in thin two-layer films has only begun to
be investigated [1, 2]. This process is characterized by
three principal parameters: (1) an initiation temperature
T0 above which the SHS arises spontaneously; (2) self-
maintained nature of the SHS front propagation, this
front being observed visually; and (3) variation of sam-
ple resistance (up to two orders of magnitude) follow-
ing the passage of the SHS front. The substantial dis-
tinction of the SHS in thin films from the SHS in pow-
ders consists in the fact that there exist two types of the
former process. The first of them is similar to the SHS
in powders in which new equilibrium phases are
formed among reaction products. The metastable and
amorphous phases were also discovered among them
[1, 2]. The second type is characterized by the fact that,
after the passage of the SHS front along the sample and
a decrease in the substrate temperature Ts below the ini-
tiation temperature T0 (Ts < T0), the second front arises
on the film surface. This front moves in the direction
opposite to that of the SHS front. For eutectic systems,
initial reagents are formed in products of the second-
type reaction, therefore, the SHS can be initiated
repeatedly. This new phenomenon was called the mul-
tiple SHS (MSHS) and represents a reversible struc-
tural phase transition [3, 4]. Hypothetically, the mecha-
nism of the MSHS is specified by mechanisms of phase
stratification arising in the case of eutectic solidifica-
tion, as well as eutectoid and spinodal decomposition
[3, 4]. In [4], it was shown that the resistance of the sec-
ond-type samples varies virtually reversibly after the
MSHS front has passed. It is known that the metal–
dielectric transition [5, 6] is also characterized by a crit-
ical temperature Tc at which the jump and the change in
conductivity take place. The self-maintained motion of
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the metal–dielectric-transition front exists in VO2 film
samples [5]. This fact presumes that the MSHS is sim-
ilar to the metal–dielectric phase transition.

This study is devoted to investigation of the SHS in
S/Fe two-layer film systems. The result of this investi-
gation is the conclusion that the MSHS in S/Fe two-
layer films and the metal–dielectric transition in iron
monosulfide coincide.

S/Fe two-layer film samples were obtained by the
consequent vacuum deposition of an iron layer
(20−50 nm thick) and a sulfur layer (40–100 nm thick)
on glass and mica substrates. The ratio between the
thicknesses of iron and sulfur were taken to be ~ 1 : 2.2,
which is close to the atomic ratio 1 : 1. A conversion
degree η was determined by the variation of the mag-
netic moment of the iron layer and is described in stud-
ies [1, 2]. The SHS in S/Fe thin films was initiated by
two methods. In the first case, a sulfur layer was depos-
ited on the iron film at various substrate temperatures
Ts. In Fig. 1 (curve a), we present the conversion degree
η for the S(110 nm)/Fe(50 nm) sample as a function of
a substrate temperature Ts . From this dependence, it
follows that the formation of the chemical compound of
iron and sulfur takes place at substrate temperatures
close to Ts = 420 K. In this case, the S/Fe two-layer
films were heated to the temperature Ts > 420 K. An
essential distinction of the reaction in the S/Fe films
from that in the samples, in which the SHS takes place,
is an impossibility to visually observe the front motion.
This can be associated with the fact that the reaction
between sulfur and iron involves small sample depths,
as a result of which the front motion is difficult to
observe. An alternative explanation is that the SHS
kinetics in these samples is not of the wave nature, and
the reaction propagates perpendicularly to the film sur-
face. Therefore, the SHS cycle consists in the following
procedures: samples are heated with a rate of ~20 K/s,
hold for 15 s, and cooled with a rate of ~10 K/s. This
time is sufficient for passage of the SHS front including
the time of induction. The magnetic analysis shows
000 MAIK “Nauka/Interperiodica”
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that, after the first cycle of heating, the iron layer 20–
25 nm thick is involved in the reaction. The conversion
degree η was not constant. It depended on the thickness
of both iron and sulfur films, on the heating rate, and
attained in the experiments the range of values η = 0.15
to 0.85. In Fig. 1 (curve b), we present the experimental
dependence of the conversion degree η on a substrate
temperature Ts for S(65 nm)/Fe(30 nm) samples. This
dependence confirms also that the formation of the
compound of iron and sulfur occurs at temperatures
close to 420 K. The dependences η(Ts) presented in
Fig. 1 are typical for the SHS in thin two-layer films [1, 2].
Diffraction patterns taken from the samples, after the
reaction between S and Fe has occurred, show the pres-
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Fig. 1. Conversion degree η as a function of the substrate
temperature Ts: (a) during depositing a sulfur layer
(~110 nm thick) onto an iron film (~50 nm thick); (b) after
heating a two-layer S(65 nm)/Fe(30 nm) film with a rate of
~20 K/s, holding for 15 s, and subsequent cooling with a
rate of ~10 K/s (a MSHS cycle).

Fig. 2. Electrical resistance R of a two-layer film sample
S(65 nm)/Fe(30 nm) as a function of a substrate temperature
Ts for three subsequent MSHS cycles. Arrows show the
direct and back variations of the resistance.
ence of residual iron, stoichiometric iron sulfide FeS,
and also reflections, that were referred to a group of
intermediate pyrrhotines. This group consists of the
homologous series of FenSn + 1 having the FeS structure
with a deficiency of iron [7, 8]. The curves R(Ts)
depend strongly on the conversion degree η. This
dependence is presented in Fig. 2 for three first cycles
of the SHS and η = 0.85. As is seen from Fig. 2, no
jump-like variation of the electrical resistance takes
place in the S/Fe samples during their heating as it was
observed after the SHS front has passed [1, 2]. This is
associated with the fact that the resistances of initial
and reacted films are close. The direct and back varia-
tions of the R(Ts) dependences for the electrical resis-
tance on a substrate temperature Ts do not coincide.
However, the type of the electrical conductivity
changes from semimetallic to semiconductive with
decreasing the substrate temperature in the neighbor-
hood of Ts = 420 K. The similar dependences R(Ts) for
various SHS cycles and the coincidence between the
initiation temperature and temperature corresponding
to the change of the electrical-conductivity type (Fig. 2)
confirm the fact that the MSHS phenomenon or its vari-
ety arise in the S/Fe film samples during cyclic heating
with an initiation temperature T0 = 420 K. It is well
known [5, 6, 8] that, in massive FeS samples, the
metal–dielectric phase transition with a critical temper-
ature Tc = 420 K is observed. The structural mechanism
of this transition is considered to be associated with a
change in the crystal lattice. At a temperature T > Tc ,
FeS iron monosulfide has a perfect hexagonal lattice of
the NiAs type. At temperatures T < Tc , iron atoms are
grouped into triangular clusters in the basis plane forc-
ing the sulfur atoms to displace along the c-axis [6–8].
The consequence of this fact is forming a superstruc-
ture with a doubled lattice parameter along the c-axis
(2C superstructure). In such a superstructure, the elec-
trical conductivity along the c-axis decreases by three
orders of magnitude and varies only insignificantly in
the basis plane [8]. The superstructures associated with
ordering cation vacancies and having periods multiple
to that of the FeS basis lattice are also formed in
FenSn + 1 intermediate pyrrhotines (n > 7). For example,
the Fe7S8 structure forms 4C, Fe9S10–5C, and
Fe11S12−6C superstructures [7]. These long-period
superstructures (modulated phases) arise in intermetal-
lic [9], polytypic [10], and other chemical compounds.
Nowadays, they represent an object of investigations [11].
As was said above, the mechanism of the MSHS is
associated with phase-stratification mechanisms. It is well
known [12] that, in the spinodal decomposition, modu-
lated structures with a period of 10–500 nm arise. During
the spinodal decomposition, there exist also nanometer-
scale (nanoscale) modulated structures composed of
alternating ordered and disordered phases [13, 14]. In this
case, the processes of the phase stratification and order-
ing proceed simultaneously. The dynamics of develop-
ing such nanoscale modulated phases was considered
DOKLADY PHYSICS      Vol. 45      No. 4      2000
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in [15]. This presumes a unique mechanism of phase
stratification, ordering, and formation of modulated
phases.

The coincidence between the initiation temperature
T0 for the MSHS in the S/Fe film samples having the
critical temperature Tc and the metal–dielectric transi-
tion in FeS iron monosulfide (T0 = Tc = 420 K), as well
as close dependences R(Ts) for various cycles of initia-
tion and identical mechanisms of reversible structural
transitions of the MSHS and the metal–dielectric tran-
sition make it possible to assume that these mecha-
nisms coincide. On the basis of aforesaid, we can
present the following mechanism for the MSHS in S/Fe
two-layer films. With increasing the sample tempera-
ture, the interfacial boundary between iron and sulfur
becomes unstable, and the process of intense diffusion
proceeds perpendicularly to the interface up to a depth
of 20–25 nm. As a result of this process, the synthesis
of iron sulfides occurs. With decreasing temperature,
the nanoscale stratification takes place at Ts < T0: the
iron and sulfur atoms displace within the lattice form-
ing the nanoscale clusters (nanoclusters), whose orde-
red arrangement, in turn, forms superstructures. Since
the reaction products represent primarily FeS iron
monosulfide, this substance determines the initiation
temperature T0 = 420 K and temperature dependences
R(Ts). In the next cycles (n > 2) at Ts > T0 , the MSHS
proceeds between the nanoclusters of iron and sulfur.
At Ts < T0 , the phase stratification arises similarly to the
first cycle. The actual picture is complicated by the pro-
cess of afterburning, which can take place for n > 2 [2].
Strictly speaking, the MSHS in the S/Fe two-layer films
occurs within the temperature interval T0 = 370–430 K
(Fig. 1). From the iron–sulfur state diagram [8], it fol-
lows that, in this temperature interval, not only struc-
tural transitions arise in FeS (T0 = 420 K) but also in the
intermediate pyrrhotines (T0 = 370–420 K). On the
basis of above statements and results of studies [1, 2, 4],
we can assume that the SHS and the MSHS in two-
layer film systems are initiated at temperatures corre-
sponding to the minimum temperature of structural
phase transitions on the phase diagram.

The only motivation of this study is a necessity to
show that the structural phase transitions (the multiple
self-propagating high-temperature synthesis and the
metal–dielectric transition) can coincide. Among com-
pounds for which the metal–dielectric transitions are
DOKLADY PHYSICS      Vol. 45      No. 4      2000
observed in the form of the phase-transition wave, VO2
vanadium dioxide [5] is present. The dependences for
the front velocity on the substrate temperature during
the metal–dielectric transition in VO2 films and for the
MSHS-front motion [3, 4] are also similar. Therefore,
it should be expected that the metal–dielectric transi-
tion in VO2 films is also determined by the MSHS reac-
tions.
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The interest in the intermetallic Ni3Al single crys-
tals atomically ordered according to the L12-type is
caused by the anomalous temperature dependence of
critical-cleaving stresses τcr. These stresses increase
with the test temperature up to T = Tp [Tp is the peak
temperature for the τcr(T) curve] and then abruptly
decrease at T > Tp [1]. Another feature of the mechani-
cal behavior of Ni3Al crystals lies in a strong orienta-
tional dependence of τcr and Tp within the range of the
temperature anomaly. Asymmetry effects of τcr are also
observed, i.e., dependence of critical-cleaving stresses
for a fixed crystal orientation on the sign (tension or
compression) of stresses applied [2, 3]. Theoretical
approaches are developed [4] to explain these non-
Schmid behavior of plasticity in Ni3Al intermetallic
compounds. These approaches are based on analysis of
transverse slip processes of a〈110〉  screw superdisloca-
tions from the {111} octahedron planes to the {010}
cube planes. Formation of the Kear–Wilsdorf disloca-
tion barriers results in a blocking of gliding screw dis-
locations. The more intense transverse slipping disloca-
tions from {111} to {010} planes occur, the larger
resistance is undergone by the a〈110〉{111} disloca-
tions to their motion in the primary slip system. The
tensor components of external applied stresses affect
processes of transverse slipping in the primary slip sys-

tem [ 01]{111} and in the 〈110〉  {010} system of
transverse slipping. Components of the stress tensor
also affect splitting the leading partial dislocation into
the partial Shockley dislocations in the primary plane
and in the plane of transverse slipping. Based on these
facts, we can explain experimental data on the orienta-
tional dependence and asymmetry of τcr [1–5].
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Up to now, systematic experimental data for binary
Ni3Al crystals of the stoichiometric composition,
which are devoted to studies of the orientational depen-
dence and asymmetry of τcr are absent in literature. This
is associated with a difficulty of synthesizing large sin-
gle crystals from which the samples for studying strain
by tension could be prepared. Only one study is known
[5], in which stoichiometric Ni3Al single crystals were
obtained, and their mechanical properties under com-
pression deformation were studied. Systematic experi-
ments under deformation by tension of Ni3Al single
crystals of the stoichiometric composition are neces-
sary to understand their properties. First, it is important
to explain how the deviation from the stoichiometry
affects the orientational dependence of τcr and Tp. Sec-
ond, by comparison of data on tension of crystals of dif-
ferent orientations with the results of the compression
experiments [5], a possibility arises to study the asym-
metry phenomenon. These experiments allow us to
study the validity of the Boas–Schmid law for stoichio-
metric Ni3Al single crystals. Another possibility for
these crystals is the existence of the orientational
dependence and asymmetry for τcr , as it is usually
observed in nonstoichiometric binary Ni3Al crystals
and single crystals of ternary Ni3AlMe alloys [1–3, 5].

The crystals under investigation were grown in
magnesium oxide crucibles by the Bridgman method in
the helium ambient. Furthermore, the crystals were
homogenized at 1473 K for 24 h in the inert gas. The
samples for tests by tension have the shape of a double-

Table 1.   Schmid factors for tension in the [ 01](111)
primary slip system for Ni3Al single crystals

Crystal orientation Schmid factor

001 0.41

016 0.482

013 0.5

012 0.485

011 0.41

1
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blade with the working part 1 × 3 × 12 mm in size. Ori-
entation of the samples was determined by a diffracto-
meter. The crystals were cut off by the electric-spark
tool, and the damaged layer was removed by the
mechanical polishing and chemical etching in the aqua
regia (1 part of NHO3 + 3 parts of HCl), and electrolytic
lapping in the electrolyte (80 g of Cr2O3 + 210 ml of
H3PO4) at the voltage U = 22 V for the time t = 2–3 min.
The tests were carried out in vacuum of 1.3 × 10–3 MPa

011
012

013

016

001

5

1 2

3 4

400 600 800 1000 T, ä
0

200

400

800

σ0.1, MPa

600

Fig. 1. Temperature dependence of the axial stresses σ0.1 for
stoichiometric Ni3Al single crystals under tension. (1) [001]
tension axis; (2) [011]; (3) [016]; (4) [013]; (5) [012].
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at the PRV setup. Experimental results were obtained
by averaging over 3–5 samples.

The yield-stress σ0.1 as a function of the test temper-
ature T = 300–1173 K for tension of Ni3Al crystals of
different orientation is presented in Fig. 1. It is seen that
for all the orientations studied, three regions can be iso-
lated in the curves σ0.1(T): the first one (T = 300–373 K)
is characterized by a weak dependence of σ0.1(T); in the
second region (373 K < T < Tp = 1023 K), an anomalous
dependence of σ0.1(T) is observed at which the increase
of deforming stresses occurs with increase in T; and,
finally, at T > Tp in the third region, the normal temper-
ature dependence σ0.1(T) takes place.

The peak temperature Tp and critical-cleaving
stresses τcr for the primary octahedral slip system

[ 01](111) (Fig. 2) weakly depend on the orientation

(Fig. 1). The Schmid factors for the [ 01](111) primary
slip system are presented in Table 1. This behavior of Tp
and τcr(T) (Figs. 1, 2) turns out to be untypical for ternary
Ni3AlTi crystals and binary crystals deviated from the
stoichiometry [1–3, 5], in which a strong orientational
dependence of Tp and τcr is also observed on the sign of
applied (tension or compression) stresses. Maximum val-
ues of Tp and τcr are attained for the [001] orientation and
a significant decrease in Tp, and τcr occurs when
approaching to the [001] orientation at T < Tp [1–3, 5].

Finally, one more important difference in mechani-
cal behavior of stoichiometric Ni3Al single crystals
from the ternary Ni3AlTi alloys (Al-enriched Ni3Al
crystals) [1–3, 5] is the absence of the asymmetry phe-
nomenon: the values of τcr turn out to be independent of

1

1
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Fig. 2. Temperature dependence of critical-cleaving stresses τcr for stoichiometric Ni3Al single crystals under (a) tension and
(b) compression [5]; (1, 1') [016] tension / compression axis; (2, 2') [012] tension axis; (3, 3') [011]; (4) [011]; (5) [013]. (1–5) ten-
sion; (1'–3') compression.

τcr, MPa
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the deformation direction, i.e., tension or compression
(Fig. 2). The data on compression deformation are
taken for comparison from [5]. As is seen from Fig. 2,
at the stage of the anomalous dependence of τcr(T), the
values of τcr turn out to be close to each other under ten-
sion and compression. Consequently, in stoichiometric
Ni3Al single crystals, the Boas–Schmid law is valid
under both tension deformation and compression
deformation in contrast to nonstoichiometric binary
and ternary Ni3Al crystals [1–3, 5]. Thus, the results of
this work show that, when developing a theory of
anomalous temperature dependence for τcr(T) in
L12-intermetallic compounds, we should take into
account not only the action of the external-stress fields
on the core structure of gliding a〈110〉(111) screw dislo-
cations [4], but also the change in the gliding dislocation
structure caused by a deviation in the composition of the
Ni3Al intermetallic compound from the stoichiometry or
when doping this compound with a third element.

Ni3Al crystals preserve their strength after unload-
ing and repeated loading at T < Tp (Fig. 3, curves 1

2

1

3

4

5

0

200

400

600

800

σ, MPa

ε

Fig. 3. Strain hardening curves for [001] Ni3Al single
crystals of the stoichiometric composition under tension.
(1, 2) one-stage deformation; (3–5) two-stage deformation.
(1, 4, and 5) Tdef = 300 K; (2 and 3) Tdef = 873 K.

1%
and 2). This fact implies that the dislocation structure
formed turns out to be stable after the first loading and
does not relax in the loading–unloading cycle [6, 7]. If
a crystal deformed up to ε = 4% at T1 = 873 K is
unloaded and cooled down to T2 = 300 K, the level of
deforming stresses attained in the case of a high-tem-
perature deformation does not preserve under repeated
low-temperature deformation (Fig. 3, curves 3–5).

We denote the strain, at which the deformation

occurring at T1 = 873 K is finished, as . We also
denote the stress corresponding to the plastic-flow

onset at the second low-temperature stage at T2 as .

Then /  = 3.5, and the macroscopic jump of

stresses ∆ =  –  = 460 MPa (Table 2 and Fig. 3).

It is seen from Fig. 3 and Table 2 that the dislocation
“frame” arising in [001] crystals of multiple orienta-
tions, does not resist the dislocation motion in the case
of the low-temperature deformation. This conclusion
follows from the comparison of the yield stress for
crystals deformed according to the two-stage scheme at
T1 = 873 K up to ε = 4%, and then at T2 = 300 K, and
the yield stress of crystals deformed only at T2 = 300 K
(Table 2, Fig. 3, curves 3–5). Dislocations introduced
into a crystal at high-temperature T1 increase the strain-
hardening coefficient Θ, which rises with growing ε at
the temperature T1 and higher in 〈001〉  crystals of the
multiple orientation stronger than in 〈012〉  ones.

Such a feature of the macroscopic jump of stresses
under the two-stage deformation is associated with the
anomalous dependence of deforming stresses (Figs. 1, 2).
The dislocations of the high-temperature “frame” turn
out to be weakly interacting with fresh dislocations
providing the plastic flow at the second low-tempera-
ture deformation stage.

Thus, we have studied, for the first time, the orien-
tational dependence of critical-cleaving stresses in sto-
ichiometric Ni3Al single crystals under the deformation
by tension. It is found within the temperature range of
observation of anomalous dependence for τcr(T) that
the Boas–Schmid law holds and the values of τcr turn
out to be independent of the crystal orientation and the
direction of deformation (tension or compression).

σf
I

σ0.1
II

σf
I σ0.1

II

σf
I σ0.1

II
Table 2.  Mechanical properties of Ni3Al single crystals under tension

Orientation of 
the tension axis

 Stage I  Stage II

Tdef, K , MPa , MPa εI, % ΘI, MPa , MPa εII, % ΘII, MPa ∆, MPa ∆, %

873 540 670 4.0 3250 210 5.0 2800 460 69

[012] 710 10 1700 220 5.0 4600 490 69

[012] 300 120 490 34 1250

σ0.1
I σf

I σ0.1
II
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Consequently, the non-Schmid effects observed previ-
ously in ternary Ni3AlTi crystals and nonstoichiometric
binary Ni3Al crystals [1–3, 5] are a result of the action
on the core structure of a screw a〈110〉{111} disloca-
tion related not only to the external-stress field, but also
to the deviation from the stoichiometry and doping with
a third element [1–5].
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On a Necessity of Extending the Concept 
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In studying objects and systems, whose mathemati-
cal models are presented by sets of ordinary differential
equations, equivalent transformations are widely used.
According to the traditional definition of the equiva-
lence, transformations are considered to be equivalent
if all solutions of a transformed system coincide with
those of the initial one. The theory of equivalent trans-
formations is well developed.

However, in a number of practical problems of
power engineering, the traditional classical definition
of equivalence is inadequate and needs further exten-
sion. We call equivalent in the extended sense two sets
of differential equations if all solutions to these sets
coincide for calculated values of parameters, and, in
addition, under small variations of parameters, the
solutions to the transformed set differ a little from the
solutions to the initial set on the entire interval 0 ≤ t < ∞.

This new definition, i.e., the equivalence in the
extended sense, is necessary, e.g., for investigating the
maintenance of the stability under small variations
(unavoidable in actual practice) of parameters for con-
trol systems in energy-producing facilities. Generally,
combinations of differential equations of various orders
are primary and physically meaningful mathematical
models for both a controlled object and a feedback-real-
izing device (controller). Such systems, being incon-
venient for straightforward investigating, are transfor-
med almost without exception into the standard Cauchy
form by employing equivalent (in the classical sense)
transformations. If all the solutions to the transformed
closed system asymptotically approach zero with time
lapse, and this feature is preserved under variation of
parameters, the conclusion is drawn that the control sys-
tem under investigation is stable and maintains stability
under variations of its parameters [1, 2]. However, if the
transformations of the equations for the system are
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equivalent in the classical sense but not in the extended
one, such conclusion will be wrong, and this may be a
source of accident for a system being designed.

We present an example of transformations that are
equivalent in the classical sense but are not equivalent
in the extended sense.

We consider a control system, whose mathematical
model is represented by the following set of equations:

(1)

(2)

Here, D = . Equations (1) and (2) describe a con-

trolled object and a device in the feedback circuit,
respectively, x is a regulated variable, u is the control-
ling action, and m is the parameter, whose calculated
value is equal to unity. We transform equation (1) into
the Cauchy form for the calculated value m = 1. Per-
forming the well-known transformations, we obtain

(3)

where the new variables x1, x2, x3 , and u are related to
the original ones x, u by the equations

(4)

Substituting (4) into (2), we obtain the equation for
the feedback circuit expressed in terms of the new vari-
ables:

(5)

Substituting (5) into (3), we obtain the following
equations for a closed system:

(6)

mD
3

2 2m+( )D
2

4 m+( )D 2+ + +[ ] x

=  D
2

2D 1+ +( )u,

D
2

4D 5+ +( )x D 1+( )u.=

d
dt
-----

ẋ1 –2x1 x2 u,+ +=

ẋ2 x3,=

ẋ3 –x2 2x3,–=

x1 x; x2 ẋ1 2x1 u;–+= =

x3 ẋ2, u u.= =

u –x1 2x2– x3.–=

ẋ1 –3x1 x2– x3,–=

ẋ2 x3,=
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The characteristic polynomial for set (6)

(7)

has the roots λ1 = –3 and λ2 = λ3 = –1. Therefore, all
solutions to equations (6) are of the form

(8)

and are asymptotically attenuating as t increases.

For m = 1, the straightforward substituting (2) into
(1) yields the equation for the closed system, which has
the form

(9)

Taking into account (4), we obtain from (9) that the
solution x = x1 conserves the form of (3).

Thus, for the calculated value of the parameter
m = 1, all the solutions to initial system (1), (2) coin-
cide with the solutions to transformed system (6). This
should be expected since the transformations used are
equivalent in the classical sense. Are they also equiva-
lent in the extended sense?

To study this point, we transform equation (1) into
the Cauchy form for m ≠ 1; i.e., we assume that the
parameters of the object deviate from the calculated
values. As a result, we obtain

(10)

Next, we substitute the value of u from equation (5)
into (10). In doing so, we assume that the parameters of
the feedback-circuit device (controller) remain unchan-
ged. Since the parameters of the controlled object and the
controller can be independent (either totally or partially)
of one another, such an assumption may well satisfy the
actual situation.

We find the following equations for the closed
system:

(11)

ẋ3 –x2 2x3.–=

λ 3
5λ 2

7λ 3+ + +

xi c1e
3t–

c2t c3+( )e
t–

+=

D
3

5D
2

7D 3+ + +( )x 0.=

ẋ1 –
2
m
----x1

1
m
----x2

1
m
----u,+ +=

ẋ2 x3,=

ẋ3 –x2 2x3.–=

ẋ1 –
3
m
----x1

1
m
----x2–

1
m
----x3,–=

ẋ2 x3,=

ẋ3 –x2 2x3–=
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with the characteristic polynomial

It follows from this expression that the solutions to sys-
tem (10) are very close to the solutions to system (8) for
the values of m differing little from m = 1. Moreover,
for all 0 < m < ∞, the solutions remain tending to zero
as t  ∞.

Thus, based on studying transformations of sys-
tem (11), we should conclude that the control system
under study would be stable and would maintain stability
for both small and large (within the range 0 < m < ∞)
deviations of the parameter m from the calculated value
m = 1.

However, the straightforward substitution of the
value u from (2) into (1) yields the following equation
for the closed system:

(12)

For m = 1, its solutions, as should be expected, coincide
with the solutions to system (11) for m = 1 (i.e., the
direct evidence of the equivalence in the classical sense
is available). However, for m > 1, the difference
between solutions to systems (11) and (12) increases
indefinitely with t, since solution to equation (12) for
m  > 1 (but not for m < 1) includes a term increasing
indefinitely with time. Transformations that changed
equations (1), (2) into equation (11) are not equivalent
in the extended sense (although they are equivalent in
the classical sense).

While studying equation (11), we can arrive at the
erroneous conclusion that the stability of the closed
system being studied is maintained under small varia-
tions of parameters. Erroneous conclusions of this kind
are rather dangerous, since systems realized on the
basis of these conclusions can lose their stability under
small variations of parameters, the variations being
necessarily of definite sign. Such systems can with-
stand the most severe tests and function properly for an
indefinite period of time. Furthermore, under small
drift of parameters, which is unavoidable in actual prac-
tice, these systems can suddenly lose their stability and
terminate in an accident [3]. Certainly, errors can be
easily avoided for moderate-order systems like those
of (1), (2). However, when calculating modern control
systems of high orders, even employing efficient and
perfect methods (for example, proposed in [1, 2]) may
cause an error if the difference between equivalence in
the classic and extended sense is not taken into account.

To ensure against errors, it is desirable to develop a
theory of transformations equivalent in the extended
sense. For a particular case of linear control systems,
methods of transformation were proposed and studied
in [4], which exclude appearance of systems losing

λ3
2 3

m
----+ 

  λ 2
1 6

m
----+ 

  λ 3
1
m
----.+ + +

1 m–( )D
2

2 m–( )D 3+ +[ ] D 1+( )2{ } x 0.=
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their stability under small variations of parameters. For
nonlinear systems, more complicated cases of stability
loss are possible, which call for further profound inves-
tigation.
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The problem of estimating the transport capacity of
liquid and gas flows has been previously considered
using various levels of source information, namely, for
unknown distributions of dispersed particle in sizes and
incomplete data on the probability of catching mass
from that inherent in the initial particles [1–4]. How-
ever, a very important case when solutions to the equa-
tions of motion for a gaseous or liquid medium and dis-
persed particles immersed into it are available [5], with
granulometric data on the composition being absent,
still remains to be analyzed.

In this paper, we try to fill in this gap. Employing
stochastic approaches in mechanics, we use the follow-
ing expression [1–3]:

(1)

Here, ε is the relative entrainment, i.e., the mass frac-
tion of the dispersed particles entrained by a liquid or
gas flow; P–(r) is the probability of entraining a mass
from that inherent in a particle with the initial radius r;
and F(r) is the mass distribution function in sizes of the
initial particles. F(r) is the mathematical expectation of
the mass fraction of the initial particles with their sizes
less than r, which are caught by the fluid flow. We will
treat F(r) as an unknown function.

We then transform equation (1) using the integration
by parts and taking into account that F(0) = 0 and
F(∞) = 1. As a result, equation (1) takes the form

(2)

In practical cases, P–(∞) = 0.

ε P– r( ) F r( ).d

0

∞

∫=

ε P– ∞( ) F r( ) P– r( ).d

0

∞

∫–=
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To estimate the value of F(r), we use the inequality

(3)

where ξ is the integration variable, rmax is the maximum
size of the particles, which are brought into the fluid flow
(if data determining rmax are absent, we set rmax = ∞).
Since

(4)

it follows from expression (3) that

(5)

Here, the notation  stands for the integral dF(r)

that means, in the physical sense, a generalized charac-
teristic of dispersity and can be directly found for n = 1,
2, and 3, even with unknown distribution functions of
particles in sizes [1–4].

Then, using equality (2) and inequality (5) and tak-
ing into account that the function P–(r) could have local
maxima and minima (that are associated with the influ-
ence of diffusion, adhesion, and crushing and aggrega-
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tion of the particles in flows), we obtained the expres-
sion for the upper bound of the relative entrainment:

(6)

Here, Θ  is the step function of the sign

of the derivative of P–(r): Θ(+) = 0 and Θ(–) = – 1. The

function Θ  can be written in the fol-

lowing form:

if  ≠ 0.

Relation (6) is appropriate in the case when there
exist solutions to the equations of motion for a gaseous
or liquid medium and dispersed particles immersed into
it, with granulometric data on the composition being
absent.

Expression (6) can be rewritten in the form

(7)

or by repeatedly integrating by parts

Here, ai and bi are the initial and terminal points,
respectively, of the ith section, on which the probability
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P–(r) decreases on the interval [0, ] for i ≤ k or on

the segment [ , ∞] for i > k;

k and l are the numbers of the sections, on which the

probability P–(r) decreases on the intervals [0, ]

and [ , ∞], respectively.

If the derivative of this probability is negative at all
radii (i.e., the probability of the mass entrainment
decreases monotonically with increasing the particle
size) and data determining rmax are absent, inequality
(6) takes the simpler form:

(8)

It is worth noting that, after integrating by parts once
again, relation (8) can be rewritten in a more compact
form:

(9)

To use practical inequalities (6)–(9), we must evalu-
ate the function P–(r) by solving the equations of
motion for dispersed particles in flows. For example, if
spherical particles precipitate according to the Stokes
law in a laminar flow inside a rectangular slit channel
and the particle content is less than 0.5% of the volume,
we can write out the equations

(10)

Here, x and y are the Cartesian coordinates along which
the precipitation of the dispersed particles and the fluid
flow occur, respectively; u(x) is the fluid velocity pro-
file in the rectangular channel; g is the gravitational
acceleration; r is the radius of the dispersed particles;
ρ0 and ρ1 are the densities of the fluid and the particles
in the flow, respectively; η is the fluid viscosity; and t is
the elapsed time from the instant of the particle injec-
tion into the flow.
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Assuming zero initial velocity of the particle precip-
itation, the solution to set of equations (10) can be writ-
ten out in the following form:

(11)

(12)

Here,

h0 is the initial distance of a particle to the origin (in the
case of the uniform distribution of particles in height, h0
is the uniformly distributed random variable; A1 is an
integration constant determined from the value of the
velocity component along the y-axis at the instant of the
particle injection in the flow region under consider-
ation; and τ1 and τ2 are the time integration variables.

It follows from (11) and (12) that

(13)

(14)

Here, H is the flow depth; h*(r) is the coordinate of the
initial level from which a particle manages to attain the
bottom in the residence time of the particle inside a
fixed region of the flow; L is the length of this fixed
region, in which the dispersed particles are caught;
and t∗  is an auxiliary parameter determined from equa-
tion (13) for h*(r) > 0.

For a given minimum value of r, when carrying out
the calculations, we assume h*(r) to be slightly less
than H and then diminish its value by increasing the
auxiliary parameter until equality (13) is satisfied. The
quantity obtained is the desired value of h*(r).
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Such calculations must be repeated for sequential
values of particle sizes until h*(r) is of the order of
zero.

Note that h*(r2) = 0 for any r2 ≥ r1 provided that
h*(r1) = 0. Because of this, for all large r, we set
h*(r) = 0.

Using the quantity h*(r) determined from the solu-
tion to equations (13) and (14), we find the function

(15)

where Φζ(x) is the function of the initial distribution of
particles in depth. In the case of the uniform distribu-
tion of particles in depth, equation (15) takes the form

(16)

Provided that the applicability conditions for the
Stokes law are satisfied and the particle precipitation
occurs from a laminar flow of fluid with an approxi-
mate piston regime of motion, with the initial distribu-
tion of the particles in depth being uniform and the par-
ticle concentration being less than 0.5%, the probability
P–(r) takes the form

(17)

Here,  is the minimum radius (the size of separation)
of the particles that are completely caught by the flow.
Under these conditions, we find from inequality (9) that
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The relation obtained can also be used to estimate the
relative entrainment of particles by the flows subjected
to centrifugal forces.

It is interesting to note that, as it follows from ine-
quality (18) for 
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, provided all particles injected
into a fluid flow have the same size, equal or greater
than the size of separation, the relative entrainment is
zero, (as was to be expected from the definition of ).

To experimentally verify relation (18), we used the
data, obtained in collaboration with L.E. Nezhyta, on
catching dispersed kaolin particles in the centrifugal
“Plava-E” separator with the capacity index 
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allowed us to find directly  = Sρ1/3 [1–3]. The size
of separation was evaluated from the well-known for-
mula

,

where Q is the volume velocity of the flow in the cen-
trifugal separator.

The results of our calculations and experiments are
presented in the table and confirm the validity of proven
inequality (18). At the same time, using solutions to the
equations of motion for particles and fluid allows us to
improve the accuracy of estimating the relative entrain-
ment, with the domain of application being constricted.

More complex dependencies of the drag forces for
particles can be similarly used to evaluate the function
P–(r) entering into inequalities (6)–(9). In the equations
of motion, we can also allow for effects associated with
the Brownian motion, adhesion, turbulent diffusion,
crushing and aggregation of particles in flows, and elec-
tromagnetic forces. In these more complex cases, the

r 1–

rs0

9ηQ
2 ρ1 ρ0–( )gΣ
--------------------------------=

Experimental and calculated estimates of the relative entrain-
ment

Q, 10–6 m3/s
Relative entrainment, ‰ 

experimental according to (18)

2.9 15 ≤21.2

3.64 17 ≤23.7

7.14 20 ≤33.3

10 39 ≤39.4
function P–(r) is determined from other formulas, but
the method of estimating the entrainment by flows
remains the same and inequalities (6)–(9) can be also
used.

Thus, we have analyzed the case when solutions to
the equations of motion for both a fluid and dispersed
particles immersed into it are known, with granulomet-
ric data on the composition being absent. Using the
solutions to the equations of motion, we have managed
to estimate the entrainment of dispersed particles with
unknown distributions by gas and liquid flows.
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1. Setting the problem. At the present time, solving
the problem of motion of a solid body in a resisting
matter completely depends on developing mathemati-
cal methods and possible model constraints inherent in
the problem. For example, the well-known Kirchhoff
problem of motion of a solid body in a perfect incom-
pressible fluid, being quiescent at infinity and executing
vortex-free motion [1], deals with only one aspect of
the problem. This aspect is related to the problem of
integrability of corresponding dynamic systems (in our
case, with the existence of the complete set of analytic
and meromorphic first integrals).

It is easy to note that the Kirchhoff problem is one
of the first approximations to the description of the
interaction between a body and a medium because, on
introducing an arbitrarily small viscosity, the dynamic
Kirchhoff systems cease to be conservative. Thus,
asymptotic limiting sets appear in the phase space of
resulting systems because they become dissipative “as
a whole.” Therefore, no complete set of even-continu-
ous first integrals can be asserted [2].

In connection with this comment, we indicate
another aspect of the problem, namely, the complete
qualitative analysis of dynamic systems (the topology
of phase-space splitting into trajectories). It is the
aspect that is an object of the present analysis.

2. Initial conditions and choice of variables. We
consider a problem of a three-dimensional motion of a
dynamically symmetric solid body under the condition
that the line of action of the force S applied to the body
from the matter does not change its orientation with
respect to the body, a part of the body surface having
the shape of a flat disk. The matter flows around the
disk [3] according to laws of a jet flow around a body
[4, 5]. The force S is aligned with the normal to the disk
and is a quadratic form of the velocity of the disk cen-
ter. The gravity force acting on the body is assumed to
be negligible compared to the resisting force of the
matter.

Institute of Mechanics, Moscow State University, 
Michurinskiœ pr. 1, Moscow, 117192 Russia
1028-3358/00/4504- $20.00 © 20171
The choice of six dynamic phase variables v, α, β
(i.e., spherical coordinates of the velocity vector for the
disk center) and p, q, r (the components of the body
absolute angular velocity in the coordinate system
linked with the body) allows us to consider the six-
order system of dynamic equations as independent.
Moreover, because the resisting force admits a group of
the body rotation about the axis of dynamic symmetry
(which passes through the center of mass and the center
of the disk), the longitudinal component of the angular
velocity being conserved: p = p0 = const [3, 6].

3. Dynamic equations of motion. If (A, B, B) are
the principal moments of inertia for the body, m and σ
are its mass and the distance between the center of mass
and the disk, respectively, z1 = qcosβ + rsinβ, z2 =

rcosβ – qsinβ, zi = Ziv, i = 1, 2,  = α'v,  = β'v,

 = v 'v, then, in the absence of the proper rotation
(p0 = 0), dynamic equations of motion take the form

(1)

(2)

(3)

(4)

Here, Ψ(α, Z1, Z2) = –σ(  + )cosα +

F(α)sinα  – , F(α), s(α) are the pair of

dynamic functions. They are determined with the use of
an experimental information about features of jet flows
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around bodies [7]. The typical representatives for the
classes of functions {F} and {s} are the functions

(5)

Equations (1)–(4) and (2)–(4) form closed sub-
systems of the fourth and third orders, respectively.

Under certain natural conditions, the set of equa-
tions (1)–(4) together with condition (5) reflects princi-
pal topological features for the division of the general
set (1)–(4) into trajectories. In addition, vector fields of
the general set (1)–(4) and also of equations (1)–(4)
together with condition (5) are topologically equivalent.

4. System rest points. In the phase space of the set
of equations (2)–(4), rest points can be projections of
nonsingular phase trajectories in the fourth-order phase
space of the set of equations (1)–(4). Indeed, the set of
equations (1)–(4) has equilibrium positions filling in
one-dimensional manifolds. Therefore, the problem of
rest points is divided into two ones: for the set of equa-
tions (1)–(4) in the fourth-order phase space and for the
shortened set of equations (2)–(4) in the phase space
{(α, Z1, Z2) ∈ R3: 0 < α < π, Z1 > 0}.

The rest points of the set of equations (1)–(4) are
given by the following relations including the parame-
ter v1:

(6)

In the phase space of the set of equations (1)–(4),
system (6) specifies a two-dimensional manifold (cir-
cular cylinder) completely filled with rest points.
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The set of equations (2)–(4) has rest points in the
space {(α, Z1, Z2) ∈  R3: 0 ≤ α ≤ 
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, which are
specified by the relations
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System (8), and only it, specifies in the phase space
rest points, to which manifolds of the rest points of the
set of equations (1)–(4) are projected.

Due to the simplicity of the mechanical interpreta-
tion of steady motions corresponding to rest points (7),
(8), we will call these points explicit equilibrium posi-
tions (EEP).
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;

(ii)  At    k   = 0,  the rest point   (7) is repulsing.
(iii) At k = 1, the rest point (7) is repulsing or attract-

ing if µ2 < µ1 or µ2 > µ1 , respectively.
The vector field of the set of equations (2)–(4) pos-

sesses the property of central symmetry with respect to
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the points (πk, 0, 0), i.e., in the coordinates (α, Z1, Z2),
this field changes its direction after the replacement

Moreover, the plane {(α, Z1, Z2) ∈ R3: Z1 = 0} is
integral, and the vector field of the system possesses the
following symmetry: α- and Z2-components remain
invariable, and the Z1-component changes its sign after
the replacement

For the further analysis, we introduce definitions for
the layer family  = {(α, Z1, Z2) ∈ R3: α1 < α <

α2}, and in this case  = Π,  = Π'. Note,

that, in fact, the layer Π(0, π) is the phase space of the set
of equations (2)–(4).

7. Introducing into the phase-pattern classifica-
tion. We will study those dynamic systems of the form
(2)–(4), for which IEP exist only outside the plane
{(α, Z1, Z2) ∈ R3: Z1 = 0}. In the general space of phys-
ical parameters, only the domain

(9)

will be, basically, investigated.
The typical topological classification of EEP was

given above. For the complete classification of phase
patterns, we present here a number of statements solv-
ing many urgent problems of a qualitative character.

Statement 2. In the case of the set of equations (2)–
(4), trajectories going to infinity exist and are unique.
Their α- and ω-limiting sets are infinite points
(+0, +∞, +∞) outside the integral plane {(α, Z1, Z2) ∈
R3: Z1 = 0} and points (+0, 0, +∞) laying in it.

Statement 3. For systems of equations of the
form (2)–(4), there exist no closed characteristics in
the domain of parameters (9).

The principal problem in the classification of (three-
dimensional) phase patterns is that of the behavior of
stable and unstable separatrices of existing (in our case,
nonisolated and nonhyperbolic) saddles.

Statement 4. (I) In the layer Π', stable separatrices

for points (8) at Z2 <  have the origin of coordinates

as α-limiting sets (Fig. 2). 
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(II) In the domain of parameters (9), separatrices,

entering into points (8) at Z2 <  in the layer Π', have

the point (π, 0, 0) as an α-limiting set (Fig. 2).

8. The principal classification theorem. 
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The classification theorem. For an arbitrary isp
from the domain of definition, there exists a point in the
parameter space of the system of equations (2)–(4), for
which, in accordance with Definition 2, the behavior of
separatrices under consideration is realized in the sys-
tem phase space.
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9. Classification of a certain set of three-dimen-
sional phase patterns. By virtue of the principal theo-
rem, we can perform a complete classification of phase
patterns for the set of equations (2)–(4) when its param-
eters take values corresponding to domain (9). There
exists an infinite number of such topologically non-
equivalent patterns.

In order to perform the complete classification of
the patterns, we should investigate separatrices going

Z2

Z1

π/2

α

π/2

α

Z2

Z1

Fig. 3.

Fig. 4.
out from points (8) at Z2 <  into the layer Π'. Such

separatrices can have limiting sets belonging to IEP.
The equilibrium position (of IEP) in the half-space
{(α, Z1, Z2) ∈ R3: Z1 > 0} is of a saddle type with one
attracting proper direction and two repulsing ones. One
stable branch (of the given IEP) has the point (π, 0, 0)
as an α-limiting set. The unstable directions, over which
an entire plane is pulled, have attracting points (8) for

Z2 >  and also an infinite point as limiting sets (see

Statement 2).
Topological types of three-dimensional phase pat-

terns are “coded” by the isp index. This index “is
responsible” for separatrix surfaces far from IEP.

10. Examples for three-dimensional phase pat-
terns. Certain fragments of phase patterns for the set of
equations (2)–(4), which are, generally speaking, topo-
logically nonequivalent, are shown in Figs. 3 and 4
(Fig. 3: isp = 0; Fig. 4: isp = 2).
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Polymeric materials used today represent, as a rule,
heterogeneous systems with a large relative interfacial
area. A polymeric layer formed at this area has a com-
plex microstructure and the microscopic-scale mechan-
ical characteristics of this layer differ from those far
from the interface [1].

It was understood for long [2, 3] that allowance for
features of the interfacial layer is important in describ-
ing macroscopic, rheological, and mechanical proper-
ties of heterogeneous polymeric materials. However, at
that time, this urgent problem faced a fundamental dif-
ficulty, namely, the lack of direct quantitative data on
the structure and properties of the interfacial layer.

Recently, an efficient tool of investigation called the
numerical experiment, associated with the essential
development of methods of molecular physics and
appearance of a new generation of computers, became
available. Such an experiment yields direct quantitative
characteristics of macromolecule conformation occur-
ring in specific interfacial layers [4, 5]. These data
allow elastic properties of the interfacial layer to be cal-
culated as functions of its molecular and structure
parameters.

In this paper, we describe elastic properties of the
interfacial layer consisting of macromolecules, whose
one end is attached to a surface of a filling agent. Our
description is based on the approach proposed in [6].
We also use data concerning conformation of macro-
molecules in the interfacial layer, which were obtained
on the basis of the direct numerical experiment [5].

We consider a small element of the filling-agent sur-
face to be plane and set a uniform distribution of
“active” centers over it. In each of these centers, an ini-
tial segment of a macromolecule is rigidly fixed. The
number of such centers per unit area is denoted as χ.
The existence of the impermeable surface changes con-
formation of macromolecules attached to the surface
compared to that of free (unfixed) macromolecules sit-
uated far from the surface. We assume that the other

Institute of Applied Mechanics, 
Russian Academy of Sciences, 
Leninskiœ pr. 32a, Moscow, 117334 Russia
1028-3358/00/4504- $20.00 © 20175
(free) ends of macromolecules belonging to the interfa-
cial layer are attached to a three-dimensional polymer
network having known mechanical characteristics. Fig-
ure 1 shows a scheme of this near-surface layer. The
filling-agent surface includes the coordinate X2- and
X3-axes. The X1-axis is directed along the normal to the
surface element. Dots on the surface represent sites of
macromolecule-tail attachments. The dots also denote
nodes of the polymer network and sites of its attach-
ments to macromolecules belonging to the interfacial
layer of the thickness h. Evidently, the scheme under
consideration describes only approximately an actual
physical medium, where, in our opinion, other types of
the macromolecule attachment to the surface exist nec-
essarily. Nevertheless, the scheme proposed can turn
out to be useful for analysis of possible approaches to
estimating features of mechanical characteristics of the
interfacial layer.

We consider an effect of the surface as a certain
force acting on each macromolecule and changing the
conformation of a macromolecule attached to the sur-
face. This force causes deformation of the macromole-
cule, the initial state being considered as the conforma-
tion of a free macromolecule. This representation
makes it possible to use the classical dependence
between the stress and elongation and to introduce a
phenomenological coefficient (front factor) to take the
surface effect into account. Within the scope of this rep-

X1

X2

h
0

Fig. 1. Schematic diagram of the interfacial layer.
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resentation, the stress tensor of the interfacial layer σls

can be written as [6]

(1)

Here, C = , where T is the absolute temperature

expressed in energy units, χ is the number of macro-
molecules attached to a unit area of the surface, R02 is
the root-mean-square distance between ends of a mac-
romolecule, which is measured far from the surface,
N is the number of macromolecule segments, a is the

linear size of a segment; λln = , where xn and  are

the coordinates of a point belonging to the interfacial
layer before and after the deformation, respectively;
α(n) is the relative variation of coordinates of a point in
the interfacial layer, which is caused by the effect of the
surface (and is presented in the coordinate axes shown
in Fig. 1); p is the omnidirectional pressure; δls is the

Kronecker delta; and  is the actual stress caused by
fictitious surface forces.

In accordance with the notation accepted, the sum-
mation is implied over two identical indices (except
that in parentheses). Relation (1) is written for an
incompressible body [6]. In this case, the following
equalities hold true:

(2)

In the coordinate system shown in Fig. 1, the com-

ponents of the stress tensor  are:

(3)

We consider small strains of the interfacial layer and
present λik in the form

(4)

where uik is the derivative of the ith displacement com-
ponent with respect to the kth coordinate. We can
present the function uik as the following sum of its sym-
metric (εik) and antisymmetric (ωik) parts:

(5)

where εik = (uik + uki) and ωik = (uik – uki).

From the zero resulting moment of forces applied to
an elementary volume of the interfacial layer, it follows

σls 2Cλ lnλ snα n( )
2 pδls σls

0 .––=

TχR02

6Na2h
----------------

∂xl'

∂xn

-------- xl'

σls
0

α2 α3 α1
1/2.= =

σls
0

σ11
0 2C α1

2 α2
2–( ),=

σ22
0 σ33

0 0,= =

σik
0 0, if i k.≠=

λ ik δik uik,+=

uik εik ωik,+=

1
2
--- 1

2
---
that ωik = 0. Thus, relation (4) can be rewritten in the
form

(6)

where, by definition, εik are the components of the
small-strain tensor.

Substituting (6) into (1) and ignoring the terms of
the second-order smallness with respect to the strains,
we obtain

(7)

In the case of the uniaxial tension along the X1-axis,
we find from (7)

(8)

In addition, σ22 = σ33 = 0 and, consequently, p can
be derived from the relation

(9)

Substituting into (8) the value of p found from (9)
under the condition of interfacial-layer incompressi-
bility

(10)

and using relations (2) and (3), we obtain

(11)

Relation (11) leads to the following expression for
the elastic modulus of the interfacial layer strained
along the X1-axis:

(12)

The relationship

(13)

follows also from the condition σ22 = σ33 = 0.

Using (13) and the incompressibility condition, we
find the following relations between strains occurring
along and across the axes of tension, respectively:

(14)

As a result, the corresponding Poisson’s ratios are
equal to

(15)

Similarly, if tension along the X2-axis occurs,
expression (7) yields

(16)

Under the condition σ11 = σ33 = 0, relations (2), (3),

λ ik δik εik,+=

σis 2C δinδsnα n( )
2 δsnα n( )

2 εin δinα n( )
2 εsn++( )=

– pδis σis
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σ11 2C α1
2 2α1

2ε11+( ) p– σ11
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C α2
2 α3

2 2α2
2ε22 2α3

2ε33+ + +( ) p– 0.=

ε11 ε22 ε33+ + 0=

σ11 2C 2α1
2 α2

2+( )ε11.=

E1 2C 2α1
2 α2

2+( ).=

p 2C α2
2 2α2

2ε22+( ) 2C α3
2 2α3

2ε33+( )= =

ε11 2ε22– 2ε33.–= =

ν12 ν13 0.5.= =

σ22 2C α2
2 2α2

2ε22+( ) p.–=
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(10), and (16) lead to the formula

(17)

which allows elastic modulus of the interfacial layer for
strains along the X2-axis to be expressed as

(18)

It follows also from the condition σ11 = σ33 = 0 that

(19)

Using (2), (19), and the incompressibility condition,
we derive the following relations for strains occurring
along and across the axes of tension, respectively:

(20)

As a result, the corresponding Poisson’s ratios are

(21)

Similarly, for tension occurring along the coordinate
X3-axis, elastic modulus of the interfacial layer for
strains along the direction of this axis is defined by the
formula

(22)

and the corresponding Poisson’s ratios are

(23)

Formula (1) and conditions of the corresponding
pure-shear loading with formula (2) taken into account
yield the relations

(24)

As a result, expressions for the elastic-shear moduli are
written out as

(25)

The relations derived lead to the following equalities:

(26)
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Thus, within the framework of the description pro-
posed, the interfacial layer is represented as an incom-
pressible transversely isotropic medium with the fol-
lowing five independent constants: E1, E2, ν12, G12 , and
G23 . Consequently, this layer cannot be described
within the scope of relations valid for an isotropic
medium. The dependence between stresses and strains
(the generalized Hooke’s law) has the form

(27)

The relationships derived can be used for numeri-
cally evaluating elastic properties of matrix composites
with allowance for features of the interfacial layer. In
this case, values of αn enter into the formulas as a
parameter, which should be determined beyond the
scope of the approach under discussion. Relationship (2)
allows only one parameter α1 to be used, which we
denote furthermore as α. Depending on both the num-
ber of the segments N and the density χ of macromole-
cules attached to the filling-agent surface, this parameter
can be evaluated according to the data taken from [4, 5].
In these studies, distances between ends of a free mac-
romolecule (R0) and of that, whose one end is attached
to the surface (R), are determined by methods of colli-
sional molecular dynamics (a numerical experiment).
Based on these data, values of α = R/R0 are found. The
constant C in expression (1) depends on N, h, and χ.
According to the data of [7, 8], the scaling dependence

(28)

is reproduced in the case when the surface density of
attached macromolecules is not very low.

Using (28), we express C in terms of N and χ as:

. (29)

Relation (29) and values of α allow dependences of
E1, E2, G12 , and G23 to be constructed as functions of N
and χ. Figure 2a shows the ratios between the elastic
moduli of the interfacial layer and 2CN as a function of
N for small surface density of attached macromolecules
(the macromolecules do not interact). Figure 2b pre-

ε11
1
E1
-----σ11

ν12

E1
-------σ22–

ν12

E1
-------σ33,–=

ε22
ν12

E1
-------– σ11

1
E2
-----σ22

ν23

E2
-------σ33,–+=

ε33
ν12

E1
-------– σ11

ν23

E2
-------σ22

1
E2
-----σ33,+–=

ε12
1

2G12
-----------σ12,=

ε13
1

2G13
-----------σ13,=

ε23
1

2G23
-----------σ23.=

h aNχ1/3=

C . 
Tχ2/3

2a3N
-------------



178 OBRAZTSOV et al.
sents the ratios between the elastic moduli of the inter-

facial layer and the quantity  as functions of χa2

for N = 15.
Thus, the following conclusions can be made.
An interfacial layer formed by those macromole-

cules, whose one end is attached to active centers of a
filling-agent surface, represents transversely isotropic
medium characterized by five elastic constants. Struc-
ture anisotropy of the interfacial layer is explained by
both the effect of the surface on the macromolecule
conformation and, in the case of a high surface density
of attached macromolecules, by their interaction with
each other. Elastic properties of the interfacial layer
depend strongly on the density of attached macromole-
cules on the filling-agent surface.
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The local pressure gradient, caused by either an
incident shock wave or a reverse flow turn, is known to
violently affect characteristics of a hypersonic bound-
ary layer and, under certain conditions, can result even
in its separation. The investigation of both laminar and
turbulent separation flows is of great interest, because
they arise often in the case of air flow around aircrafts.
The effect of a pressure gradient and a separation
induced by it on the primary instability of a laminar
boundary layer remains to be a less investigated matter.

As previous studies have shown, the influence of a
pressure gradient on the value of the Reynolds number
in the laminar-to-turbulent transition decreases with
increasing the Mach number [1, 2]. In the case of a
hypersonic boundary layer, the pressure gradient selec-
tively affects various types of perturbances. For exam-
ple, oblique waves of the first mode are much more sta-
ble in the presence of unfavorable (positive) pressure
gradients than two-dimensional waves [3]. The theoret-
ical analysis [4] of stability for a boundary layer shows
that favorable (negative) pressure gradients exhibit a
stabilizing action on perturbances of the second mode
decreasing a peak value of the growth coefficient and
shifting it to the higher-frequency region, thereby nar-
rowing the frequency range for perturbances being
intensified.

In experimental investigations of the boundary-
layer stability, as a rule, the development of natural per-
turbances is studied. A disadvantage of this approach is
the impossibility to obtain the complete spatial charac-
teristic for the wave field of perturbances in the bound-
ary layer and, thus, the impossibility of detailed com-
parison with results of theoretical analysis.

The method of artificial perturbances is free of the
disadvantage indicated and has found wide applica-
tion in investigating stability of incompressible flows.
The first successful attempt of using artificial pertur-
bances in a compressible boundary layer was made

Institute of Theoretical and Applied Mechanics, 
Siberian Division, Russian Academy of Sciences,
Institutskaya ul. 4/1, Novosibirsk, 630090 Russia
1028-3358/00/4504- $20.00 © 20179
in [5] and, nowadays, the attempts are made to use this
method for investigating stability of a hypersonic
boundary layer [6, 7].

The method of artificial wave packets based on artifi-
cial perturbances is widely applied for investigating sta-
bility of a supersonic boundary layer [8, 9]. This method
offers undeniable advantages, because it enables us to
obtain a complete space–time characteristic of the wave
field in a boundary layer.

The concept of the method is based on introducing
a local periodic perturbance with a given phase and a
reasonably small amplitude. Thus, a wave packet is
formed in the boundary layer. This packet can be pre-
sented as a result of interference of a set of plane waves
(at the linear phase of evolution). Three-dimensional
analysis makes it possible to obtain the distributions for
amplitudes and phases at each point and to reconstruct
the field of artificial perturbances. The further spatial
spectral analysis makes it possible to isolate individual
plane waves with characteristic tilt angles and phase
velocities and to follow their evolution.

The use of artificial perturbances for investigating
the stability of a boundary layer with a pressure gradi-
ent and the separation area is especially urgent because
there are additional types of perturbances in this case
(second-mode perturbances or Görtler vortices), which
are difficult to separate. In spite of attempts to apply
this method for studying a hypersonic boundary layer,
this paper represents the first successful experience in
using the artificial perturbances for investigating the
stability of a high-velocity boundary layer.

The experiments were carried out in the T-326
hypersonic wind tunnel of the Institute of Theoretical
and Applied Mechanics, Siberian Division, Russian
Academy of Sciences. The Mach number of the
approach stream was chosen to be M∞ = 5.92, and the
unit Reynolds number was Re1 = 12.5 × 106 m–1. As an
experimental model, we used an acute-angled cone
166 mm long with a semi-apex angle of 7° and a com-
pression angle of 10°. The axial-symmetry conditions
for flows around the cone were fulfilled. For the flow
parameters indicated, a laminar boundary layer with
the separation area near the break of the cone generatrix
000 MAIK “Nauka/Interperiodica”
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was realized in the model. The configuration of the flow
near the separation area was investigated by various
methods including visualization of the limiting stream-
lines, Schlieren visualization, measurement of the ther-
mal flow on the model surface, measurement of the
velocity field by a Pitot tube and a thermal flowmeter.
The flow diagram obtained on the basis of these inves-
tigations is presented in Fig. 1. In the same figure, the
static-pressure distribution at the model surface is
shown. As is seen from Fig. 1, the separation area is
localized within 100–135 mm. It is worth noting that in
this case, the laminar separation of the boundary layer
with the laminar join arises. This fact is confirmed by
the obtained distributions of flow parameters in the
boundary layer.

In the same figure, positions of the cross sections
(S1–S9), in which we investigated the distribution of
pulsation characteristics of the boundary layer, are
given. The first two cross sections S1 and S2 are located
upstream of the separation area; the cross sections S4,
S5, and S6 are in the region of the developed separation
flow; the cross sections S8 and S9 are downstream of
the join line; and the cross sections S3 and S7 lie in the
vicinity of the separation and join points.

In this study, we used as a source of perturbances an
electric discharger placed at a distance of 60 mm from
the tip of the model and operating at a frequency
f = 40 kHz [a dimensionless frequency parameter is
F = 2πf/(Re1Ue) = 0.22 × 10–4]. The principle of the
source action is based on the electric discharge in a

80
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90 100 110 120 130 140 150

cross sections

Shock waves

Separation flow

S9S8S7S6S5S4S3S2S1

7°

17°

Positions of investigated

1
2

Fig. 1. Static-pressure distribution at the model wall and the
diagram for the flow near the separation area: (1) experi-
mental data; (2) calculation results for nonviscous flow at
the cone.
closed chamber connected with the model surface
through an orifice 0.4 mm in diameter. The average and
pulsation characteristics of the flow in the boundary
layer were measured by a direct-current thermal flow-
meter with the frequency range up to 200 kHz.

The equipment used in this experiment and methods
of data acquisition enable us to investigate the evolu-
tion of artificial perturbances, whose amplitudes attain
the level of natural pulsations of the boundary layer.
For detecting a signal corresponding to an artificially
introduced perturbance, we used a narrow-band filter
tuned at the perturbance-source frequency. Recording
the alternating component of the thermal-flowmeter
signal was synchronized with igniting the electric dis-
charge in the perturbance-source chamber. In order to
eliminate an influence of a random non-correlated
noise and contribution of natural perturbances, we per-
formed multiple summing up and averaging the ther-
mal-flowmeter signal.

In a hypersonic boundary layer, the transverse dis-
tribution of natural-pulsation amplitudes is known to
have a pronounced maximum or a “critical layer”
located near the upper interface of the boundary layer
in which a larger fraction of the pulsation energy is con-
centrated [10]. The investigations of evolution of natu-
ral perturbances (Fig. 2) have shown that, for the given
model, this feature is observed in both the boundary
layer and free shear flow above the separation area. The
measurements of artificial-perturbance distributions
and their comparison with calculation results show that

1
2
3
4

0 0.4 0.8 1.2
A/Amax

0.4

0.8

1.2

1.6

2.0

y/δ

Fig. 2. Distributions of the normalized pulsation amplitude
for the mass flow rate across the boundary layer (f =
40 kHz): (1) calculation according to the locally cocurrent
theory; (2) artificial perturbances, the cross section S2;
(3) natural perturbances, the cross section S2; (4) natural
perturbances, the cross section S5.
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the perturbance introduced has a similar distribution,
which is characteristic of the first-mode vortex pertur-
bances. Therefore, the spatial distribution for the char-
acteristics of artificial perturbances were investigated
only in the “critical layer.”

In each of the cross sections indicated, we have
obtained the distributions for amplitudes and phases of
artificial perturbances in the transversal direction,
owing to which we have managed to obtain the spatial
spectrum. For analysis, we used the Fourier transfor-
mation with application of spectral windows. The
amplitude spectra over the transversal wave number β
are presented in Fig. 3. The value of the two-dimen-
sional-wave amplitude (β = 0) was chosen as a normal-
izing coefficient for each cross section. It is seen that
the source generates a wave packet with a majority of
waves having low tilt angles (the cross section S1).
Thereafter, the plane-wave contribution (β = 0)
decreases sharply, and the oblique waves begin to play
the principal role (the cross section S3). The wave with
the tilt angle of ~60° (β = 0.7), which manifests itself
already in the second cross section, is detected in the
wave spectra for all other cross sections. It is necessary
to note an increase in the contribution of the two-
dimensional wave in the spectrum of the S4 cross sec-
tion located immediately downstream of the separation
line. This testifies to the fact that the circular separation
line is a generator of two-dimensional perturbances. In
the process of evolution of the wave packet in the mix-
ing layer above the separation area, the plane wave
decays rapidly, and the oblique wave with the wave-
vector tilt of ~60° (the cross sections S5–S9) begins to
dominate anew. For the cross sections (S7, S9) located
downstream of the separation area, we observe a peak
corresponding to a wave propagating at an angle of
~80° (β . 1.8) in the transversal wave spectra. The
appearance of strongly oblique perturbances is charac-
teristic for the phenomenon of the subharmonic reso-
nance [11] and evidences in favor of the onset of non-
linear processes in the boundary layer.

Owing to the fact that the flow under study is rather
complicated, while the number of cross sections inves-
tigated is limited, it seems to be impossible to perform
the complete spectral analysis in the longitudinal direc-
tion. To obtain the longitudinal phase velocities Cx for
the waves with various tilt angles χ, we used a simpli-
fied procedure. The longitudinal wave number αr was
estimated from the phase spectra ϕ(β) obtained from

the formula αr(β) = , and the phase velocity of

perturbances was determined as Cx(χ) = , where χ =

 is the angle between the wave front and the

main-stream direction, Ue is the velocity at the bound-

∆ϕ β( )
∆x

--------------

λ f
Ue

------

β
α r

-----arctan
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ary-layer interface, and λ =  is the perturbance

wavelength.

It is necessary to note that these estimates are of an
integral nature, therefore, we can make only general
conclusions on the structure of the wave packet. In
Fig. 4, we present the dependences Cx(χ) and  =

1 –  for the perturbance phase velocity and the

maximum velocity of propagation of acoustic pertur-
bances, respectively, on the wave-front tilt angle. In the
same figure, the results of the theoretical calculations
for the phase velocity of vortex perturbances with a fre-
quency of 40 kHz as a function of the tilt angle χ are
shown. Figure 4 demonstrates that, for the perturbances
located below the curve , the major contribution is
caused by acoustic waves, while above this curve—by
the vortex waves. In the separation area and further
downstream, the perturbance phase velocities with the
angles χ below 55° are smaller than . Thus, the
acoustic perturbances prevail in this zone. At the same
time, an increase in the integral phase velocity Cx for
χ = 20°–35° indicates the presence of waves of the vor-
tex nature with these angles χ. For tilt angles above 55°,
the vortex perturbances dominate.

This study is the pioneering example of the use of
artificial perturbances for investigating complicated
processes occurring when a hypersonic boundary layer

2π
α r

------

Cx' χ( )

1
Me χcos
-------------------

Cx'

Cx'

0 1 2 3

β, rad/mm

4

8

12
A/Aβ = 0

1
2
3
4
5
6
7
8
9

Fig. 3. Amplitude spectra of artificial perturbances as a
function of the transversal wave number β: numbers (1–9)
correspond to the cross sections S1–S9.
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interacts with a local pressure gradient. The wave spec-
tra obtained and the estimates made for wave-tilt angles
show that the appearance of two-dimensional pertur-
bances is observed in the separation area, which is asso-
ciated with a high susceptibility of the boundary layer
in the inhomogeneity zones. From the estimates of per-

0 20 40 60 80

0.2

0.4

0.6

0.8

1.0
Cx

1

2

3

χ, deg

Fig. 4. Phase velocity of artificial perturbances as a func-
tion of the wave-vector tilt angle χ: (1) results of calcula-
tions according to the locally cocurrent theory; (2) experi-
mental data; (3) maximum phase velocity of acoustic per-
turbances .Cx'
turbance phase velocities, it follows that the acoustic
waves prevail at the wave-vector tilts lower than 55°,
while the vortex waves dominate at higher tilt angles.
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of a Stable (in the Lyapunov Sense) Attractor

O. V. Druzhinina and A. A. Shestakov
Presented by Academician V.V. Rumyantsev July 7, 1999

Received July 14, 1999
An urgent problem in the Lyapunov stability theory
[1–3] is finding criteria that make it possible to distin-
guish simple-attracting sets (simple attractors) from
strange-attracting sets (strange attractors) [4–6]. There
is a principal distinction in the behavior of dynamic
systems with simple and strange attractors, because the
former systems are regular, while the latter ones are
random.

In this paper, it is shown that if the invariant set
A ⊂ Rn of a dynamic system ϕ: Rn  Rn is compact,
attracting, stable in the Lyapunov sense, and there
exists a trajectory, whose closure is dense in A, then the
set A is a stable torus and, hence, the dynamic system
will be regular.

According to the assumption of Ruelle and Takens,
all trajectories of strange attractors are unstable in the
Lyapunov sense, and this was taken by these authors as
a starting point for explaining the turbulence phenome-
non. They proceed from the following turbulence defi-
nition: “… the motion of a liquid medium is turbulent
if this motion is described by the integral curve of a
vector field, which tends to an nonempty set A being
not an equilibrium state or a closed orbit” [6]. Theo-
rems proved by us elucidate the attractor structure in
various systems in the case of the absence of the turbu-
lence in the Ruelle–Takens sense.

Following [7, 8], we refer to the invariant set M ⊂  Rn

of the dynamic system ϕ: Rn  Rn as stable in the
Lyapunov sense as t  +∞ provided that the condi-
tion

is satisfied at each point m of this set for all t ∈  R+,
where x ∈  M and d is the metric of the space Rn.

In other words, the stability of a set in the Lyapunov
sense implies that all points of this set are stable in the
Lyapunov sense. We note, that the equilibrium state,
periodic trajectory, and almost-periodic trajectory with
a compact closure are sets stable in the Lyapunov sense.

ε∀ 0 δ 0, d m x,( ) < δ d ϕ t m,( ), ϕ t x,( )( ) ε<⇒>∃>
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We will denote positive and negative limiting sets of
a point x ∈  Rn as ω(x) and α(x), respectively. An open
sphere of a radius δ with the center at the point y ∈  Rn

is denoted as Bδ(y).
In [8], the following statement on the uniform sta-

bility of the compact set M ⊂  Rn is established.
Statement 1. Let M be a compact set stable in the

Lyapunov sense as t  +∞, and m1 ∈  M. Then, for
each number ε > 0, there exists a number δ > 0, such
that

(1)

Next, we formulate lemmas required in what fol-
lows.

Lemma 1. Let: (1) A be a compact set stable in the
Lyapunov sense as t  +∞; (2) A be an attractor as
t  +∞, i.e., for arbitrary neighborhood U of the set A,
there exist a neighborhood V of the set A, such that

(2)

(3) there exists a trajectory C(a), a ∈  A, which is dense
everywhere in the set A. Then, for an arbitrary λ > 0,
there exists a number δ(λ) > 0, such that

(3)

Lemma 1 is a direct corollary of Statement 1, as well
as of the definition of the attractor, and the presence in
the set A of the trajectory dense everywhere.

Corollary 1. For arbitrary two points b1, b2 ∈  A,
b1 ≠ b2 , the relation

(4)

takes place.
Lemma 2. Let the prerequisites of Lemma 1 be sat-

isfied. Then, the set A is the minimum set of almost peri-
odic (in the Bohr sense) trajectories.

Proof. We prove initially, that

(5)

d m1 m2,( ) δ d ϕ t m1,( ), ϕ t m2,( )( ) ε t R+,∈∀<⇒<
m2 M.∈

ϕ t V,( ) U  t R+ and ω x( ) A x V ;∈∀⊂∈∀⊂

b1 b2 A∈,∀
d b1 b2,( ) δ λ( ) d ϕ t b1,( ), ϕ t b2,( )( ) < λ  t R.∈∀⇒<

µ∃ 0, d ϕ t b1,( ), ϕ t b2,( )( ) µ t R∈∀>>

a∃ A     C + a ( )∈  A .=     
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By virtue of condition (3) of Lemma 1,

We assume that if b ∈ α (a), then ω(b) ⊃  C(a).
Indeed, let x = ϕ(a, t1), and we choose a number ε > 0.
Since the point b ∈ α (a) is stable in the Lyapunov
sense, then, for an arbitrary number c ∈  R, there exist
t2 < c and t1 > t2 , such that d(ϕ(t2 + t, a), ϕ(t, b)) > ε
∀ t ∈ R+ and d(x, ϕ(t1 – t2, b)) > ε. This proves the inclu-
sion. Since α(a) is invariant and closed, then α(a) ⊃

ω(a) and, thus, ω(a) ⊃  C(a). Since  ⊃ ω (a), then

 = A. Thus, statement (5) is established.

We now show that the set A is the minimum one. To
do this, we choose b ∈  A and ε > 0. Then, by virtue of
arguments proved above, there exists the point a1 ∈  A,

such that  = A and d(ϕ(t, a1), ϕ(t, b)) < ε ∀ t ∈

R+. Since ε is arbitrary, then  = A.

Because the point b is arbitrary, each half-trajectory
of the set A is dense everywhere in A, and hence, the
set  A consists of almost periodic trajectories. Thus,
Lemma 2 is proved.

Let A be an attractor as t  +∞. Denote the attrac-
tion set as Π(A), such that

In addition, for an arbitrary point a ∈  A, we define

It is easy to show that for different points a1 and a2 ,
the sets K(a1) and K(a2) are nonintersecting and

(6)

We now establish equality (6). Indeed, let x ∈ Π (A)
and τn  +∞. Since ω(x) ⊂  A, then we can choose a
subsequence sn  +∞, such that ϕ(sn, x)  y ∈  A as
sn  +∞. We define the sequence  = ϕ(sn, y). Since

 ∈  A, then we can choose the convergent subse-

quence , such that   a as k  +∞. The
point a is stable in the Lyapunov sense. Therefore,
d(ϕ(sk, a) ϕ(sk, x))  0 as k  +∞. Consequently,
from the stability of the point a, it follows that x ∈  K(a).
Thereby, the validity of relation (6) is proved.

Lemma 3. The attraction set Π(A) is open and sta-
ble in the Lyapunov sense as t  +∞.

Proof. The property of openness for the set Π(A) is
established in [8]. We will prove that the set Π(A) is sta-

a∃ A     C a ( )∈  A .=

C+ a( )

C+ a( )

C+ a1( )

C+ b( )

Π A( ) x Rn: ω x( ) A∈∈{ } .=

K a( )
=  x Π A( ): d ϕ t x,( ), ϕ t a,( )( )        0,  t        + ∞( )( )∈{ } .

Π A( ) K a( ): a A∈{ } .∪=

ysn

ysn

ysk
ysk
                                            

 

ble in the Lyapunov sense. By virtue of Statement 1, for
an arbitrary 

 

ε

 

 > 0, there exists 

 

δ

 

(

 

ε

 

) > 0

 

, such that

Let 

 

ε

 

 > 0 and 

 

y

 

 

 

∈

 

 

 

Π

 

(

 

A

 

)

 

. We choose the number

 

λ

 

 > 0, such that 

 

B

 

λ

 

(

 

y

 

) 

 

∈

 

 

 

Π

 

(

 

A

 

)

 

 and the inequality

is satisfied for a certain 

 

τ

 

 > 0, where 

 

r

 

 is the distance
from the point to the set.

The existence of the number 

 

τ

 

 follows from the def-
inition of the attractor. Due to the continuity of the
dynamic system, we can choose 

 

λ

 

1

 

 < 

 

λ

 

, such that the
following expressions hold:

Hence,

Thus, Lemma 3 is proved.
Let 

 

A

 

 be a set for which conditions (

 

1

 

)–(

 

3

 

) of
Lemma 1 are satisfied. We show that if 

 

a

 

 

 

∈

 

 

 

A

 

 then, for
each neighborhood 

 

N

 

1

 

 of the point 

 

a

 

, there exists the
neighborhood 

 

N

 

2

 

 

 

⊂

 

 

 

N

 

1

 

, such that

 

(7)

 

Actually, let 

 

N

 

1

 

 be the neighborhood of a point

 a    ∈    A  . We may take that  N
 1   is an open sphere  B  λ  (  a) with

the radius λ and Bλ(a) ⊂  Π(A). From the property of
stability in the Lyapunov sense of the point a, it follows
that

(8)

The choice of the number δ(λ) is performed according
to (3). Let x ∈  (a) ∩ K(b). For large values of s, we

have d(ϕ(s, b), ϕ(s, x)) < δ(λ). Consequently,

Implication (7) follows from the inequality obtained
and condition (3) of Lemma 1.

The following theorem also takes place:
Theorem 1. Let the invariant set A ⊂  Rn of the

dynamic system ϕ: Rn  Rn be compact, attracting as
t  +∞, stable in the Lyapunov sense as t  +∞,
and there exist in A a trajectory everywhere dense.

a b A,∈,

d a b,( ) δ d ϕ t a,( ), ϕ t b,( )( ) ε t R+.∈∀<⇒<

r ϕ t x,( ), A( ) 1
2
---δ ε

2
--- 

  , x Bλ y( ), t τ>∈<

d ϕ t x,( ), ϕ t y,( )( ) 1
2
---δ ε

2
--- 

  ,<

x Bλ1
y( ), t 0 τ,[ ] .∈∈

d ϕ t x,( ), ϕ t y,( )( ) ε t x,( ) R+ Bλ1
y( ).×∈∀<

x N2 K b( )∩( )∈ b N1.∈⇒

δ∃ 1 0>

x Bδ1
a( ) d ϕ t x,( ), ϕ t a,( )( ) 1

2
---δ λ( ) t R+.∈∀<⇒∈

Bδ1

1
2
---

d ϕ s ϕ s b,( ),–( ), ϕ s ϕ s a,( ),–( )( ) d b a,( ) λ .<=
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Then, the set A is a torus. In particular, if A is a hyper-
bolic set, then it will be either an equilibrium state or a
closed trajectory.

Proof. By lemmas 1 and 2, the set A is a minimum
set of almost-periodic trajectories. We impart to A the
structure of a compact topologic group, which is
always possible [8]. The set is compact, and, conse-
quently, by the Pontryagin theorem [9], the commuta-
tive connected finite-dimensional topologic group is
locally homeomorphic to the set being the Cartesian
product Γ1 × Γ2 . Here, Γ1 is the compact zero-dimen-
sional topological group and Γ2 is the n-dimensional set
homeomorphic to the sphere |x| < 1. The set Γ1 is dis-
crete or perfect. A perfect zero-dimensional set from Rn

is known from [8] to be the Cantor set. Therefore, A is
a local disk or a product of the Cantor set by an
n-dimensional element. It follows from the Pontryagin
theorem that if A is connected locally, then A is the Car-
tesian product of n circumferences, i.e., A is an
n-dimensional torus T n.

We now establish that A possesses the property of a
local connectedness. To do this, we assume the con-
trary. Then, each point a ∈  A has a neighborhood N1 ,
such that A ∩ N1 is a product of a n-dimensional ele-
ment and a Cantor set. Let N2 be the connected neigh-
borhood of a point a ∈  A. Since for any neighborhood
N1, there exist a neighborhood N2 ⊂  N1, such that

then we can assume that

Due to the property of the intersection A ∩ N1, A can be
decomposed into a sum of two sets Ai (i = 1, 2), such
that

We now assume that

Next, we show that sets Ui are open. Indeed, let y ∈
K(b) ∩ N2 and b ∈ Ai . According to Lemma 3, the set
Π(A) is stable in the Lyapunov sense. Hence, we have

where δ(λ) is a number corresponding to the number
λ > 0 chosen in the same manner as in the item (3) of
Lemma 1. If x ∈  Bε(y) ∩ N2 ∩ K(a), then for a suffi-
ciently large t, we have d(ϕ(t, a), ϕ(t, b)) < δ(λ). Hence,
d(a, b) < λ. From the last inequality and statement (7),

x N2, x K b( ) b N1,∈⇒∈∈

N2 K b( ): b A N1∩∈{ } .∪⊂

Ai N2 ∅ ,=∩
d a1 a2,( ) c 0 ai Ai i 1 2,=( ).∈∀> >

Ui K b( ): b Ai∈{ } N2.∩∪=

ε∃ 0,>

d x y,( ) ε d ϕ t x,( ), ϕ t y,( )( ) 1
2
---δ λ( ),<⇒<
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it follows that x ∈  Ui, U1 ∩ U2 = [, U1 ∪ U2 = N2 , and
the set N2 is a combination of two open nonempty sets,
which contradicts to the connectedness of the set N2.
The contradiction obtained proves the local connected-
ness of the set A. Therefore, the set A is a torus. The the-
orem is proved.

Theorem 1 is generalized to the case of a connected
metric space X and a finite-dimensional attractor A ⊂ X.
Namely, the following theorem takes place.

Theorem 2. Let X be a locally connected metric
space. Let the invariant set A ⊂  X of a dynamic system ϕ:
X  X be finite-dimensional, attracting as t  +∞,
stable in the Lyapunov sense as t  +∞, and a trajec-
tory dense everywhere there exist in A. Then, the set A
is a topological torus. In particular, if A is hyperbolic
set, then it will be either an equilibrium state, or a
closed trajectory.

The proof of Theorem 2 is performed in the same
manner as that of Theorem 1.

Comments to Theorem 2. It was established by
V. V. Nemytskiœ and V. V. Stepanov [8], that for any
compact metric group G, there exists a dynamic sys-
tem, such that G is a minimal set of almost-periodic tra-
jectories in this dynamic system. Therefore, any such a
group can be a stable attractor, and hence, the condition
of Theorem 2 stating that the set A is contained in a cer-
tain closed locally connected metric space cannot be
relaxed.
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