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The discovery of the phenomena of random syn-
chronization [1, 2] and random synchronous response
[3] has called a widespread interest to applications of
random signals in communication systems. This inter-
est is caused, first of all, by the possibility of the imple-
mentation of receivers (guided dynamic systems) self-
synchronized with transmitters (guiding random sys-
tems). However, these are not the only potential appli-
cations of the random synchronization and the random
synchronous response in communication systems.
Based on these phenomena, it is possible, in principle,
to decompose a sum of random signals into initial ran-
dom components [4–6]. Such an approach suggests
new concepts of signal multiplexing and demultiplex-
ing in the communication systems.

Conventional methods of signal multiplexing are
the frequency separation, time separation, and code
separation. The separation based on the random syn-
chronization is not similar to any of these methods. The
principal idea of such a method is the following. We
consider m pairs of random receivers and transmitters.
For transmitting random signals xj(k), j = 1, 2, …, m
from the receivers to the transmitters, we use a single
communication channel in which signals are summed
up. In general, the sum of random signals is supple-
mented by noise η(k).

At the receiving terminal, each receiver separates
out its specific signal from the total sum implementing
the dynamic effect of random synchronization of pro-
cesses in the transmitters and the receiver.

We now consider this problem for the specific case
of two receiver–transmitter pairs. The dynamics of
transmitters is assumed to be governed by one-dimen-
sional mappings f of the same type, but with different
values of parameters µ1 and µ2

(1)
x1 k 1+( ) f 1 x1 k( ) µ1,( ),=

x2 k 1+( ) f 2 x2 k( ) µ2,( ).=
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The signal in the channel has the form

(2)

In [4], the following scheme of signal separation
was suggested. The receivers from each pair are mutu-
ally coupled, and their dynamics is described by the
following equations

(3)

where α is the coupling constant. In the case of syn-
chronization, the terms in square brackets become neg-
ligible [at the noise level of η(k)], and we have y1(k) ≈
x1(k) and y2(k) ≈ x2(k), i.e., the “proper” signals are sep-
arated out by the receiver. The analysis of the signal-
separation scheme demonstrates that (i) the separation
is possible in the case of µ1 ≠ µ2 , and (ii) the scheme is
efficient only for very low noise level.

In paper [7], information aspects of the random syn-
chronization were analyzed. The random synchroniza-
tion of two systems was defined there as the situation
when the output signals of the systems coincide or
asymptotically tend to each other. In this case, it is not
necessary for the signals of one system to directly
affect another system. Instead, we can only transmit to
one system a minimum amount of information con-
cerning the state of another system. It was also shown
that the implementation of such a random synchroniza-
tion provides an opportunity to improve significantly
the stability of synchronization with respect to noise.

In this paper, we introduce a new separation scheme
for random signals. The scheme is based on the afore-
mentioned type of random synchronization. We show
that this scheme is more stable to the noise than the
scheme proposed in [4].

For clarity, both sources of the randomness are
described below by the logistic-parabola map

(4)

u k( ) x1 k( ) x2 k( ) η k( ).+ +=

y1 k 1+( ) = f 1 y1 k( )( )

+ α u k( ) f 1 y1 k( )( )– f 2 y2 k( )( )–[ ] ) ,

y2 k 1+( ) f 2 y2 k( )( )=

+ α u k( ) f 1 y1 k( )( )– f 2 y2 k( )( )–[ ] ) ,

x1 k 1+( ) µ1x1 k( ) 1 x1 k( )–( ),=

x2 k 1+( ) µ2x2 k( ) 1 x2 k( )–( ).=
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The essence of the proposed scheme of signal sepa-
ration is the following. The receiver, being the separator
of random signals, involves copies of the maps generat-
ing random signals of the transmitters. The signals u(k)
are fed to the input of the receiver. Assume that at a time
moment k, the receiver contains not only an estimate of
the sum of random signals in the form u(k), but also
separate estimates for magnitudes of random signals
X1(k) and X2(k). We iterate each of the maps

(5)

by one backward step with the initial conditions X1(k)
and X2(k), respectively. This operation is equivalent to
iterating the maps f –1 (inverse with respect to the
maps f) by one step forward. Some properties of these
maps were discussed in [8]. Maps (5) iterated forward
are stretching on the average, hence, they are compress-
ing at the backward iteration. Therefore, the estimates
for X1 and X2 corresponding to the (k – 1)th time
moment and obtained from the estimates at the kth time
point have a higher accuracy on the average than the
latter estimates themselves. However, it should be
taken into account that maps (5) are two-valued in the
case of the backward iteration in time. Iterating the
maps for one step, we obtain two values rather than one
for each of the map. Hence, it is necessary to choose the
“correct” branch after the iteration. The net signal at the
kth time point and the estimates for each individual sig-
nal do not contain the information necessary for the
correct choice of branches at the (k – 1)th step and can-
not be used for this purpose. However, at (k – 1)th time
point, the signal u(k – 1) being the estimate of the sum
of two random signals at this moment of time is fed to
the receiver. Signal u(k – 1) can be used for the correct
choice of the branch. Actually, we have the following
combination of branches, which minimizes the root-
mean-square deviation of the estimates for the sum of
two random signals from the net signal fed to the
receiver (under condition of low noise)

(6)

Here, (k – 1) and (k – 1) are values of the variables
y1 and y2 for various branches. This relationship allows

y1 k 1+( ) µ1y1 k( ) 1 y1 k( )–( ),=

y2 k 1+( ) µ2y2 k( ) 1 y2 k( )–( )=

δ u k 1–( ) y1
j k 1–( )– y2

i k 1–( )– .=

y1
j y2

i

4 8 12 16 l
0

1

2
νi(l)

Fig. 1. Branching of the solution while iterating inverse maps.
l is the iteration number, νi(l) = y1(l) + y2(l), i = 1, ..., 4.
us to choose the correct branch. The procedure provid-
ing the choice of the “correct” combination of branches
is illustrated in Fig. 1. Asterisks denote magnitudes of
the signal u(l) corresponding to l < k. The figure dem-
onstrates that at the lth step, we choose only one from
four possible values, which is the closest to u(l). In turn,
the chosen value gives rise to four branches at the
(l − 1)th step. Repeating this procedure provides an
opportunity to obtain the separation of signals at an
arbitrary time point l < k.

We have discussed the scheme of signal separation
under the condition that the estimates of signals X1(k)
and X2(k) are known. However, in the general case, the
separate estimate for the state of guiding systems at the
time instant k is absent. The calculations show that, as
such an estimate, we can take a pair of arbitrary points
y1(k) and y2(k) belonging to the attractors of maps (5).
Starting from these initial conditions, we obtain the cal-
culated trajectories converging with time to the trans-
mitter trajectories. However, the time of convergence
strongly depends on the choice of particular conditions
specified for the attractor. To ensure the acceleration of
the convergence process and improve the initial esti-
mates for the signals X1(k) and X2(k), we proceed in the
following manner. We specify a series of initial values

for the variable y1(k) at the time moment k: (k – 1), j
= 1, 2, …, m. Each initial value must belong to the
attractor, and the whole series should be arranged more
or less uniformly on it. The similar series of initial val-
ues is specified for the variable y2(k). Let ε be an admis-
sible accuracy of the estimate for the variables y1(k) and
y2(k) being separated. From these series of initial val-

ues, we form pairs ( (k), (k)), i, j = 1, 2, …, m, and
choose those meeting the condition

(7)

We iterate each of chosen pairs by one step back-
ward. As a result, we obtain the doubled number of
pairs. Among them, we choose a pair minimizing
expression (6). Then, we repeat the procedure
described above.

The efficiency of the proposed separation scheme
for random signals was tested using the guiding sys-
tems described by logistic maps with µ1 = 3.7 and µ2 =
3.8. The signal-to-noise ratio for each of the isolated
signals was calculated as a function of the signal-to-
noise ratio for the signal u(k). As a criterion of the effi-
ciency for separation of signals, we can consider the
relationship between the noise levels in the isolated sig-
nals and in the signal u(k). The range of noise levels in
the channel, in which the noise level of the isolated sig-
nal turns out to be below than the noise level of a signal
in the channel, can be referred to as a range of efficient
separation of signals. The separation is inefficient if the
noise level in the isolated signal far exceeds the noise
level in the channel. The results of calculations are

y1
j

y1
j y2

i

u k( ) y1
j k( )– y2

i k( )– ε.<
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illustrated by Fig. 2 (curve 2). In the process of signal
separation, failures can sporadically arise (Fig. 3). The
failures lead to a pronounced scatter in the estimates
based on the criterion of the signal-to-noise ratio.
Therefore, we used additionally the second criterion for
the signal-separation efficiency, namely, relative time τ
needed for the efficient separation of signals (Fig. 4,
curve 2). It is clear that the separation is efficient only
if τ is close to unity. The results presented in Figs. 2 and
4 show that efficient signal separation is possible for
signal-to-noise ratio exceeding 70 dB. For comparison,
in Figs. 2 and 4, we present the corresponding results
(curve 1) for the scheme discussed in [4]. From the
comparison of the curves, it follows that the proposed
scheme for separating random signals remains efficient
in the case of the noise level exceeding by 20−30 dB the
corresponding level for the scheme proposed in [4].

Analysis of situations reconstructed by the above
method shows that its efficiency decreases with
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(Signal-to-noise ratio)–1, dB (channel)

–140

–120
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(Signal-to-noise ratio)–1, dB (receiver)
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3

Fig. 2. Signal-to-noise ratio at the receiver output as a func-
tion of the signal-to-noise ratio in the channel: (1) method
reported in [4]; (2) algorithm with the single sequence;
(3) algorithm with M sequences (M = 16).
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increasing external noise due to failures in the process
of separation. The failures stem by the incorrect choice
of branches for the inverse maps, which is caused by
the effect of external noise. This leads to an idea to
improve the algorithm by monitoring several other
branches in addition to the “optimum” one and to
choose between them by averaging the desynchroniza-
tion signal over long time interval.

This idea was realized in the form of the following
algorithm. In contrast to the original version of the
algorithm, we choose for the (k – 1)th time point M
pairs of estimates (branches) instead of one. At all sub-
sequent iteration steps for the f –1 map, each branch
splits into four prototypes, see Fig. 1. The number of
branches increases by the factor of four. Some of these
branches nearly coinciding with each other can form
“bundles.” In the course of further iterations, the
branches belonging to the same bundle approach one
another exponentially and form essentially the same
solution. Therefore, we take only one branch from each
bundle. After that, we choose M branches among the
remaining ones. The chosen branches correspond to the
minimum values of the root-mean-square deviation of
the estimate for the sum of two random signals from the
net signal fed to the receiver. Moving in such a manner
from the final element of sequence u(k) to its beginning,

we obtain M versions for the pairs of sequences ( ,

), m = 1, 2, …, M. Then, we apply the criterion of the
minimum distance squared between the sum of recon-
structed sequences and the observed sequence u(i)

. (8)

According to this criterion, we chose the best pair

( , ), which is assumed to be the actual pair of
sequences obtained as a result of demultiplexing.

The results of numerical simulations of the random
signal separation based on the algorithm with a non-
unique sequence are presented in Figs. 2 and 4 (curves 3).
These results show that such an algorithm allows us to

y1
m

y2
m

u i( ) y1
m i( ) y2

m i( )––( )2

i 1=

k

∑
m 1 2 … M, , ,=

limmin

y1
j y2

j
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Fig. 3. Failures in the process of signal separation (δ is the difference between the transmitted signal and the signal at the receiver
output).
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separate random signals with the noise level approxi-
mately by 20 dB higher than those processed using the
algorithm with the single sequence.

Thus, we have proposed and analyzed an algorithm
for separation of the sum of random signals, which is
based on their dynamic properties. The algorithm is
efficient not only in the absence of noise, but at nonzero
noise as well. The results presented in this and previous
papers suggest the possibility and viability of a funda-
mentally new approach to multiplexing the signals in
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Fig. 4. Relative mean time of synchronization τ as a func-
tion of the signal-to-noise ratio in the channel.
communication systems. The approach is based on the
dynamic properties of systems with chaos inherent in
them.
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In laser materials activated by transition metal ions,
activator ions often possess different formal charges.
The relative content of each type of ion in a crystal
depends on the crystal-growth conditions, in particular,
on the oxidizing potential of the growth ambient. The
ionic radius of cations and specific features of their
electron structure, which correspond to the given value
of the formal charge, determine the specific crystallo-
graphic positions (one ore more) occupied by the acti-
vators under study in the structure typical of the given
chemical composition and morphology.

The above considerations are undoubtedly applica-
ble to chromium ions, which can have various values of
the formal charge ranging from +2 to +6. According to
the present-day knowledge, Cr4+ and Cr6+ ions occupy,
as a rule, tetrahedral sites in crystal structures, whereas
Cr2+ and Cr3+ ions occupy octahedral sites. Thus, two
ions, Cr3+ and Cr4+, the most important for the laser
physics, occupy crystallographic positions with differ-
ent coordination numbers. Therefore, in the case of
crystals activated by Cr3+ and Cr4+ ions, octahedral and
tetrahedral positions should be provided, respectively.
If a structure involves simultaneously positions of two
or more types, having both the octahedral and tetrahe-
dral coordination with respect to cations, chromium
enters into the crystalline structure predominantly in
the form of Cr3+ ions occupying the octahedral sites [1].
The content of Cr4+ in such structures is usually very low
(as a rule, it does not exceed few percent of the total chro-
mium content in the crystal [2]).

The increase in Cr4+ content of crystals can be
attained for such compounds in which the host crystal
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contains only tetrahedral sites. In this case, the concen-
tration of Cr4+ ions occupying the tetrahedral sites
depends on the formal charge of the substituted cation:
the Cr4+ content for the isovalent substitution is usually
higher than for the heterovalent one. However, in prac-
tice, it is difficult to ensure a significant increase in the
Cr4+ content of crystals even when all aforementioned
conditions are met. This is illustrated by the results pre-
sented below.

We have studied lithium-gallate crystals doped with
chromium, which were grown with the help of the Kri-
stall-2 facility by the Czochralski method in iridium
crucibles at a rate of 3 mm/h in a weakly oxidizing
ambient (N2 + 2 vol % of gas mixture). The grown crys-
tals were studied by methods of X-ray diffraction anal-
ysis and fluorescence spectroscopy.

The structure of LiGaO2 is a derivative of the wurtz-
ite structure. Within this structure, Li+ and Ga+ ions are
ordered occupying tetrahedral sites. In addition, the
LiGaO2 structure involves a large number of octahedral
voids usually unoccupied [3]. Cr4+ ions occupy tetrahe-
dral positions substituting Ga3+ ions. The concentration

O(1)

O(2)

O(1)*

I

II
Cr

O(2)*

O(1)

O(2)*

O(2)
Li

Fig. 1. Scheme for the transformation of GaO4 tetrahedrons
to octahedrons in LiGaO2 crystals.
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Fig. 2. Luminescence spectrum for Cr3+ ions in LiGaO2 at 77 K.
of chromium ions grows with the concentration of
vacancies in lithium positions ( ) [4].

At the same time, the specific features of electron
structure determine for Cr3+ ions a tendency toward the
occupation of octahedral positions. This tendency is so
pronounced that it seems to be quite probable for chro-
mium ions to enter the vacant octahedral voids in the

LiGaO2 structure and form interstitial  atoms. This
is possible only in the case of simultaneous formation
of cation vacancies, obeying the relationships 2  +

VLi'

Cri
...

VLi'
 or 2  +  (we use here the Kröger–Wink
notation for point defects with maximum values of for-
mal charges). The relationships stem from the small
spacings between interstitial cations in the octahedron
and adjacent cations in the tetrahedron. Such a process
is the most probable in the central part of LiGaO2:Cr
crystals, because it is the most defect-rich region in a
sample (the bulk defect), see [4].

On the other hand, it is unreasonable to exclude a
possibility for rearrangement of some tetrahedrons in
the structure of LiGaO2 with forming octahedral
groups. This phenomenon was reported previously for

VGa''' VGa''' VLi'
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melilite crystals [5]. The X-ray diffraction studies of
our LiGaO2:Cr samples reveal for the tetrahedrons
(Ga, Cr)O4 the decrease either in the (Ga, Cr)–O(1)*
distance (from 1.821 to 1.785 Å) or (Ga, Cr)–O(2)*
distance (from 1.816 to 1.742 Å) compared to the cor-
responding distances in the undoped LiGaO2 crystal
[4]. The observed changes in interatomic distances of
(Ga, Cr)O4 tetrahedrons suggests the tendency to rear-
rangement of (Ga, Cr)O4 tetrahedron in LiGaO2:Cr3+

structures to the octahedron with Cr3+ ions displaced
toward O(1)* (Fig. 1, direction I) or O(2)* (Fig. 1,
direction II).

Our studies of the luminescence spectra also present
an indication for the simultaneous existence of both
Cr4+ and Cr3+ ions in LiGaO2:Cr samples. In the near-
infrared range, we observed the broadband lumines-
cence with λmax ~ 1.25 µm. The analysis of the kinetics
of the luminescence relaxation reveals the nonexponen-
tial nature of the decay for excited states of chromium
ions. The lifetime of the excited state increases from
9 µs at initial stages of the process to 22 µs at the final
stages of the luminescence relaxation. Taking into
account the spectral range of the luminescence band
and characteristic microsecond lifetimes, we relate
(similar to [6, 7]) the band near λmax ~ 1.25 µm to the
3T2–3A2 transition occurring in Cr4+ ions. In [7], this
decay was reported to be exponential with the lifetime
τ = 25 µs, whereas the decay curve in [6] was presented
as a superposition of two exponential ones with τ1 =
4 µs and τ2 = 18 µs. The significant difference in the
data concerning the decay kinetics for the excited state
of Cr4+ ions can be explained by uncontrolled impuri-
ties in the initial mixture prepared for the crystal
growth. Another possibility might also be uncontrolled
deviations from stoichiometry in the melt due to the
intense evaporation of the components (both lithium
oxide and gallium oxide). In the latter case, not only the
structural perfection and optical quality but also the
luminescence spectra of LiGaO2 samples turn out to be
sensitive to specific features of the crystal growth tech-
nology (such as temperature gradients in the system,
total pressure of the gas ambient, the existence of gas
flow in the growth zone, etc.) and can vary even within
the same growth batch.

While exciting LiGaO2:Cr crystals by the second
harmonics of the neodymium laser (λ = 532 nm), we
have observed, for the first time, the narrow lumines-
cence bands in the vicinity of the wavelength of
720 nm. The lifetime of the excited state at the final
stages of luminescence relaxation was about 1 µs at
295 K and 2.8 µs at 77 K. The characteristic features
(line widths, spectral range, and the lifetime of the
DOKLADY PHYSICS      Vol. 45      No. 5      2000
excited state) of the observed bands make it possible to
identify them as R line with the accompanying vibra-
tional structure of the optical centers based on Cr3+ ions
(2E–4A2 transition) in the octahedral surrounding. The
typical luminescence spectrum of Cr3+ ions in LiGaO2
crystals (77 K) is shown in Fig. 2. The luminescence
decay curves of Cr3+ are nonexponential. This can be
related to both Cr3+ centers of different types and extin-
guishing their luminescence at lattice defects. Unfortu-
nately, the available spectral data do not provide an
opportunity to put forward any justified assumptions
concerning the number of Cr3+-based optical centers
and their nature.

Thus, LiGaO2:Cr crystals grown in the weakly oxi-
dizing ambient contain chromium ions in two valence
states, namely, Cr4+ and Cr3+. The results of spectro-
scopic studies imply the formation of Cr3+ centers with
the octahedral coordination in LiGaO2 structure char-
acterized by purely tetrahedral coordination for all cat-
ions. In accordance with X-ray diffraction data, Cr3+

ions can be located within distorted (close to octahe-
dral) gallium tetrahedrons or within the octahedral
voids accompanied by the vacancies in the adjacent cat-
ion positions.
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In recent years, a large number of studies and mono-
graphs [1, 2] have been devoted to the effect of fractal
characteristics of crystallite surfaces on many proper-
ties of solids (including their strength, brittleness, etc.).
Fractal structures in solids are spontaneously formed in
processes of crystallization from melts. These struc-
tures are characterized by the self-similarity of hetero-
geneities (crystallochemical, mechanical, crystallo-
graphic ones, etc.) in various scales of consideration. A
number of properties of solutions to the diffusion equa-
tion and Klimontovich kinetic equation in the fractal
space [3, 4] and the self-induced-wave processes
described by nonlinear equations of fractal diffusion
[5] were also studied. In [6], we considered fractal
dimensions of time and space, which determine poten-
tials of physical fields as functions of coordinates and
time. We proposed also to describe the dynamics of the
processes proceeding in fractal manifolds by the math-
ematical formalism of generalized fractional deriva-
tives. In this case, the fractal dimensions can be consid-
ered, in particular, as the order parameters (in the Gin-
zburg–Landau sense [7]). In [6, 8], the fractal
dimension of a crystallite surface was considered (on
the basis of results of [6]) as a phenomenological order
parameter, and the dependence of the fractal dimen-
sions on potentials determining the crystal-lattice struc-
ture was presented. A question arises: whether exist the
fractal structures of dynamic type stemming the time
(possibly, also space) memory of particles on their
motion in large systems of interacting objects, which
are described by kinetic equations? (We imply systems
of interacting particles, electron–ion plasma, biologi-
cal, chemical, and other large systems.) Whether these
structures arise during the short-term formation of the
self-similar (both time and space) density pertur-
bances? What role do they play in the behavior of such
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systems? In particular, how do these structures affect
the stability conditions for system states (e.g., in
plasma)? If the fractal structures exist, for their descrip-
tion (i.e., for including the fractal characteristics into
kinetic equations), it is necessary to consider the sys-
tem of a large number of objects as a multifractal set.
The properties of this set must depend on the fractal
dimension corresponding to each time and space point.
To allow for the effect of fractal structures arisen in a
multifractal system on its properties in the kinetic equa-
tions describing the behavior of the system, it is neces-
sary, according to [6], to introduce the following mod-
ifications:

—To replace time derivatives by generalized frac-
tional derivatives (making it possible to describe the
dynamics of a multifractal system and the existence of
the time memory in this system) with the fractional
index ν = 1 + d(r, t), where ν is the fractional dimension
(local fractal dimension) of the multifractal system
under consideration;

—To write out equations determining d (a fractional
addition to the system fractal dimension) using the sys-
tem characteristics (interaction potentials and distribu-
tion functions).

In this case, the dependence of d on physical char-
acteristics (for example, electric potentials of electrons
and ions, while analyzing properties of the electron–ion
plasma) of the system can be estimated considering d as
an order parameter [6, 8] and determining d(t) from the
equations for order parameters and distribution func-
tions corresponding to the kinetic equations in the sta-
tistical theory of open systems [9].

The goal of this study is to obtain the kinetic equa-
tions for large systems, which take into account the
presence of fractal structures in these systems (see
also [10]). In this case, the appearance of fractal struc-
tures is considered as a consequence of self-organiza-
tion processes proceeding in the system. The answer to
the question on the existence of fractal structures and
conditions under which they arise can be obtained from
the combined solving equations for the fractal dimen-
sions considered as the order parameters and from the
kinetic equations for the distribution functions of sys-
tem objects. In this study, we formulated the general
equations of such a type. As an example, we present the
000 MAIK “Nauka/Interperiodica”
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equations for electron–ion plasma (without taking into
account the pumping fields and the magnetic self-
fields). Electron–ion plasma with fractal structures is
described in the framework of the Vlasov kinetic equa-
tion [11] with the Klimontovich collision integrals [12]
for an electrically neutral system of interacting particles.

1. APPEARANCE OF A FRACTAL DIMENSION
IN LARGE SYSTEMS

When considering a large system of objects as a
multifractal set, we can choose the set R1 (at ν < 1) or
R2 (at ν > 1) for the time memory and R3 (or R4) for the
space memory as a measure carrier. Each point of these
sets is characterized by a local fractal dimension
να(r, t) (α = t, r, p). This consideration assumes certain
trajectories to be inaccessible for particles of the sys-
tem, and the dimension of the set of accessible trajecto-
ries to be fractional similar to strange attractors. From
a mathematical standpoint, the presence of the time
memory for the past (future) is described by introduct-
ing generalized fractal derivatives with respect to time
(in terms of the equation formalism of generalized frac-
tional derivatives) instead of integer derivatives. We
consider a system consisting of a large number of iden-
tical objects of arbitrary nature (physical, chemical,
biological, economical, etc.) and interacting with each
other. We also leave room for describing the behavior
of this system by methods of statistical physics for open
systems (kinetic equations, Langevin equations, reac-
tion-diffusion equations, etc.). We denote the probability
density for localizing an object with the momentum p at
the point r and at the moment of time t as ni(r, p, t). We
write out the corresponding collision integrals as Ii, col.
Such a system is described by the nonlinear equations
of statistical physics for open systems

. (1)

(Here, the dependence of Li on operators is determined
by the choice of a particular problem.) In this system,
under certain conditions, processes of self-organiza-
tion, in particular, phase transitions leading to the
appearance of ordered structures of various types,
which also include the fractal structures, can arise. In
this study, we consider the behavior of a system
affected by only fractal structures, i.e., structures char-
acterized by the fractal dimension (determined, for
example, as the box dimension or the Hausdorff dimen-
sion). These structures are assumed to be order param-
eters (similar to the order parameters from [7]). The
appearance of fractal dimensions in a system of this
type can be described by the methods used in [6]. To
explain the appearance of the fractal dimension in the
system, we use the notation introduced previously for
the fractional addition to the local fractal dimension
d(r, t) and the fractal dimension (at the points r, t) of the
system: ν = 1 + d(r, t). In the absence of fractal struc-
tures, the dimension of the system under consideration

Li ∂/∂t ∇ i Ii col,, ,( )ni r t,( ) 0=
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is integer-valued. Following [6], we consider the equa-
tion for d(r, t) as the order parameter (determined by
varying the Ginzburg–Landau-type functional of the
fractal dimension for the system free energy):

(2)

Here, we choose the time as the variable Si determining
the dependence of the fractal dimension on physical
variables. In this case, equation (2) takes the following
form (when using the integer derivatives ∂/∂t instead of
the generalized fractional derivatives in the equation
determining d):

(3)

According to [6], ϕ' –  can be presented in the form
of the functional for the physical variables Pi , which
depends on the distribution functions

(4)

In [4], nj(r, p, t) and ni(r, p, t) are the densities of the
one-particle distribution functions for objects of vari-

ous type (for example, electrons, ions, etc.),  are the
dimensional constants providing the dimensionless (a =
j, i) fractional dimension di, and A are the functions
determining the dependence on Pi . The choice of
parameters Pi depends also on the choice of a model.
For Pi , we can choose time [13], pressure [14], coordi-
nates, temperature, etc.

2. FRACTAL DIMENSION
AND FRACTIONAL DERIVATIVES

To describe the dynamics of functions given on frac-
tal sets, it is necessary to use the mathematical formal-
ism of fractional derivatives, because the ordinary dif-
ferentiation and integration of such functions lead to
the loss of essential properties characteristic of fractal
systems. For systems conserving the time memory, it is
convenient to use the generalized fractional derivatives
(first proposed in [6]), which are the generalization of
the fractional derivatives and the Riemann–Liouville
integrals:

(5)

(6)

∂d
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-------
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------------------------------------------------------------.
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Here, ν = 1 + d, Γ is the gamma-function, a and b are
constants (taking values from 0 to ∞), α – 1 < ν ≤ α, α =
{ν} + 1, {ν} is the integer part of ν ≥ 0, and α = 0 for
ν < 0. For ν = const, the generalized-fractional deriva-
tives (5), (6) coincide with the Riemann–Liouville frac-
tional derivatives. For ν = n + d(t) and d(t)  0, the
generalized-fractional derivatives can be presented
through the integer derivatives and integrals. For ν = 1,
generalized-fractional derivatives (5) and (6) coincide
with the first derivative with respect to time. It is possi-
ble to show (see [6]) that, for the fractal dimensions dif-
fering only slightly from the integer values (ν ~ 1,

|d| ! 1), the generalized-fractional derivative 
from (5) takes the form

(7)

In (7), a is the numerical coefficient depending on the
choice of the integral regularization in the fractional
derivative and the coefficients of the gamma-function
expansion into series (for ν < 1 and a = 0.5). The func-
tions under the integrals in (5) and (6) are considered as
the generalized functions given in the set of finite func-
tions [15]. In the presence of the system fractal struc-
tures, the integer derivatives with respect to time should
be replaced by integral operators (5) or (6). As was
noted above, the dependence d(r, t) on time and coor-
dinates is determined by the distribution of potential
fields generated by objects, constituting the system, and
by their distribution functions.

3. KINETIC EQUATIONS 
WITH FRACTAL STRUCTURES

Let a large system or several systems each com-
posed of i (i = 1, 2, ...) subsystems of Ni objects be
described by the kinetic equation for the distribution
functions fi(t). In the presence of the system under
description of fractal structures, in addition to the equa-
tions determining the functions fi(t), it is necessary to
also write out the equations for the fractal dimensions
νi(r, t) of these systems. The set of equations describing
the behavior of these objects takes the form

(8)

(9)

In (8) and (9), Li and  are the operator functions
determining a particular form of kinetic equations
(depending on the chosen statistical model for descrip-
tion of the system of the objects under consideration)
and equations for the fractal dimensions (obtained
according to the rules of the previous section). The
quantities Ii, col are the collision integrals for the corre-

sponding systems and  and  are the general-
ized fractional derivatives replacing the ordinary deriv-

D+ t,
ν

D+ t,
ν n D– t,

ν n
∂
∂t
-----n a

∂
∂t
----- Γ 1– 1 ν–( )nd( ).+≈≈

Li D+ t,
di D– t,

di D+ r,
di D– r,

di … di d j Ii col,, , , , , , ,( ) f i r t,( ) = 0,

L̃i D+ t,
di … D+ r,

di … f i f j, , , , ,( )di r t,( ) 0.=

L̃i

D+ α,
di D– α,

di
atives with respect to time, coordinates, and momenta.
Equations (8) and (9) describe the behavior of large
systems with allowance for appearing in them the frac-
tal structures. In the case of the absence of fractal struc-
tures, equations (9) yield zero solutions for the frac-
tional addition to the dimensions of time and space. In
this case, the generalized fractional derivatives coin-
cide with ordinary derivatives, and equation (8) coin-
cide with the known kinetic equations (including the
Langevin equations, equations of the reaction-diffusion
type, etc.).

4. KINETIC EQUATIONS FOR PLASMA 
WITH FRACTAL STRUCTURES

We consider, as an example, the kinetic equations
for the Coulomb plasma with allowance for fractal
structures. We introduce the following notation: let a =
e, i correspond to the electron and ion plasma compo-
nents, ea and ma are masses of the particles, Na is the
total number of particles of the type a,

V is the volume of the system, and Na = 0. The

kinetic equations for the function fa of such a system
(the Vlasov equations with the Klimontovich dissipa-
tive collision integrals) with allowance for the fractal
structures have the following form (for simplification
in (8) and (9), the generalized fractional derivatives are
conserved only to take into account the fractal struc-
tures with the time memory):

(10)

(11)

where  is the Landau dissipation,  is the Kli-
montovich collision integral describing spatial diffu-
sion, and the equations for E have the form:

We consider a plasma state for which the fractal
structures arisen have the fractal dimension not con-
taining explicitly the dependence on time and on the
parameter Pi . In this case, we find for da(r, t) (a = i, e,
a ≠ a', and Va is the Coulomb interaction):

(12)
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r( ) r p t, ,( ),+
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∂
∂Pi

-------- D0 r t,( )
∂da

∂Pi

-------- ϕa ϕa0–( )da k1da
2,+ +=

Ia
ν( ) Ia

r( )

— E× 0, —E 4π eana f a r p t, ,( ) p.d∫∑= =

da r t,( ) β0 dr p Va r r'–( ) f a r p t, ,( )([d∫=

– Va' r r'–( ) f a' r p t, ,( ) ] β0 V0〈 〉 .–
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Instead of a set of equations for fa and da , we obtain
after the substitution of (12) into (10) (e.g., for ν < 1,
ν = 1 + d, |d| ! 1)

(13)

(14)

The values 〈Va〉  – 〈V0〉  can be replaced by 〈T 〉  – 〈T0〉  etc.
depending on the choice of a model for describing the
fractal structures arising in plasma. For changes in the
spectrum of elementary excitations in plasma nearby
the state with a uniform density f0(p), we find using the
known calculation methods (for the spectrum of longi-
tudinal oscillations):

(15)

For cold electron plasma, relationship (15) leads to a
minor renormalization of the frequency. For certain tem-
peratures at 〈V〉 – 〈V0〉 < 0 and d ~ 1, equation (10) is a
nonlinear integro-differential equation with the gener-
alized-fractional derivative. In this case, the spectrum
of elementary excitations can be more complicated
than (15) and reflects a substantial effect of fractal
structures on the plasma behavior.

The method proposed of allowance for fractal struc-
tures in the systems described by kinetic equations
leads to additional equations determining the depen-
dence of the system fractal dimension on the distribu-
tion functions of the system objects. The equations for
the distribution functions, written out by means of the
generalized-fractional derivatives and involving the
fractal dimensions, are supplemented by equations for
determining the fractal dimensions themselves, which
depend on the distribution functions. The consistent set
of equations formed involving the generalized frac-
tional derivatives is more complicated than the initial
set of kinetic equations (into which it transforms when
the fractional additions to the fractal dimension vanish)
even for a small value of these additions compared to

∂
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the integer dimensions. The appearance of new nonlin-
ear terms in equations of the system can lead to the gen-
eration of new singular points of the bifurcation type,
phase transitions, etc. This enables us to hope that, with
allowance for external fields, we can obtain more con-
venient methods for controlling the behavior of compli-
cated large statistical systems.
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Materials consisting of ultrafine grains attracted
widespread attention among specialists in physics and
materials science about ten years ago [1–4]. This class
of materials involves nanocrystalline ones with the
mean grain size of about 10 nm and materials with the
grains of submicron (about 100 nm) size. The interest
in these materials stems from their significant differ-
ence in physical properties compared to conventional
coarse-grained materials. This fact opens new possibil-
ities in producing advanced materials with specified
and even ultimate properties. However, physical mech-
anisms underlying the specific features of such materi-
als are not yet quite clear [5]. To solve this problem, it
seems reasonable to study their electronic structure.

In this paper, we present the results of our experi-
mental studies of the electronic structure, which were
performed by the field-emission electron spectroscopy.

As a material for our studies, we have chosen nickel
(99.98% of purity). Its submicron-grained structure
was formed by significant plastic deformations pro-
duced by the torsional technique under quasi-hydro-
static pressure of about 8 GPa on the basis of the Bridg-
man anvil-type facility [3, 4, 6]. The field-emissive
cathodes were made of submicron-grained nickel by
the method of electrochemical etching. The cathodes
had a shape of pointed tips with the curvature radius of
about 100 nm. The experiments were performed under
conditions of ultrahigh vacuum (<10–8 Pa) and
employed a setup including an autoelectronic projector
for continuous monitoring emission patterns and a dis-
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persive electrostatic energy analyzer with the resolu-
tion not worse than 30 meV [7]. The cathode surface
was subjected to cleaning in order to attain the stability
of both the emission current and the emission pattern.
The cleaning was performed by the method of evapora-
tion in the reverse electric field. The cathode micro-
structure was studied by the JEM-2000EX electron
microscope. For comparison, we also studied a sample
of the nickel single crystal produced by annealing of
the submicron-grained pointed tip in the experimental
setup at about 800°C.

As a result of nickel processing by deformation, we
obtained submicron-grained samples with a homoge-
neous grain structure having the mean grain size of
0.1 µm and nonequilibrium grain boundaries. This non-
equilibrium state manifests itself by the diffuse contrast
of grains in the electron-microscopy images and in
curvy extinction contours within the grains. These
results testify to the long-range internal stresses, whose
sources are evidently induced by grain boundaries [3, 4].
Such a microstructure was also conserved in submi-
cron-grained tips of autoelectronic emissive cathodes
manufactured by electrochemical etching.

In the course of electron field-emission studies of
the submicron-grained samples, the emission pattern
included two regions with parallel alternating light and
dark stripes. The emission pattern for the single-crys-
talline sample looked like a fragment of the conven-
tional emission pattern for nickel [8].

The energy distributions of emitted electrons were
recorded from both the light regions and the intermedi-
ate ones located between light and dark stripes. For a
submicron-grained sample, we have obtained two types
of electron distributions depending on the choice of the
emission region at the cathode surface. While scanning
the light region, we obtained spectra having only a sin-
gle peak (Fig. 1a), whereas scanning intermediate
regions between light and dark stripes has revealed an
additional peak in the low-energy part of the distribu-
tion (Fig. 1b). For annealed nickel, the electron total-
energy distribution had the conventional form corre-
sponding to the free-electron model [9].
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Fig. 1. Total-energy distributions for electrons emitted from submicron-grained nickel at different autoelectronic-emission voltages.
For submicron-grained samples, the electron distri-
bution differed from the conventional one. In contrast
to annealed nickel, we observed significant broadening
the peaks and their shift toward low-energies. For the
energy distribution corresponding to a submicron-
grained sample, the full peak width at the half-maxi-
mum was 0.35 eV or larger. For nickel single crystals,
this value equaled 0.24 eV (Fig. 2). The average shift of
the peak in the energy distribution for the submicron-
grained sample was 0.16 eV compared to single-crystal
samples.

For interpretation of the experimental data obtained,
we present the electron total-energy distributions in the
following form [10, 11]:

where j is the emission-current density, e is the electron
charge, S is the effective emission area for the spectra
recorded. The function f(x, y) is defined as

where x = (ε – εF)/k T, y = T/2Ti, ε is the energy of emit-
ted electrons; εF is the Fermi energy; k is the Boltzmann
constant; í is the absolute temperature; Ti is the inver-
sion temperature for which the calorimetric Notting-
ham effect vanishes [12], i.e.,

(1)

h is the Planck constant; m is the effective electron
mass; ϕ is the work function; E is the electric-field
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intensity; η(x) is a slightly varying function of x

and θ(x) is the Nordheim function.
The electron total-energy distribution N expressed

in terms of the function f(x, y) has the maximum

at an energy

(2)

Relationship (2) shows that the position of the maxi-
mum in the horizontal axis shifts to the left with
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Fig. 2. Energy distributions for electrons emitted from
annealed nickel at different emission voltages.
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decreasing y. As an illustration, we present in Fig. 3
plots for the function f(x, y). As is seen, the curve
becomes wider, and its maximum shifts to the left with
decreasing y. The decrease in y can be caused by elevat-
ing the inversion temperature Ti. It is clear from (1) that
the inversion temperature can increase due to the
growth of the electric field E or/and decrease in the
work function ϕ. Figures 1 and 2 demonstrate that the
appreciable emission from a submicron-grained sample
occurs at lower voltages. This implies the decrease in
the work function. Therefore, the broadening of the
peak in the energy distribution for electrons emitted
from submicron-grained samples and the leftward shift
of this peak can be attributed to the lowering of the
effective work function. Additional peaks in the distri-
bution curves recorded from the boundary regions
between the light and dark domains can be related to
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Fig. 3. Plots for the function f(x, y).
the competition between the emission processes of
regions with low and high work functions.
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Molecular vibrations are known not to be strictly
harmonic. In the case of XH-bonds, their anharmonic-
ity is sufficiently large to affect the frequencies of the
first-order transitions. For example, while deuteration
of a certain compound, the decrease in the valence-
vibration frequency squared of its XH-bond is smaller
than its reduced-mass rise. For compensating this
effect, the so-called “spectroscopic” masses of the pro-
tium and deuterium atoms were introduced into the the-
ory of harmonic molecular vibrations [1].

Anharmonic molecular vibrations are usually calcu-
lated on the basis of the perturbation theory. This
method involves large computational difficulties and,
therefore, allows the evaluation of only second-order or
third-order transitions for 3-atomic to 5-atomic mole-
cules [2, 3]. It was believed that calculations for higher-
lying levels and larger-size molecules could be per-
formed by using modern computers. However, this
hope has turned out to be not quite justified.

The application of the Ritz variational procedure for
evaluating anharmonic vibrations of polyatomic mole-
cules makes it possible to significantly simplify the cal-
culations and to find all energy levels lying in the lower
quarter of a potential well [4–7]. Moreover, a code was
recently developed, which has made it possible to cal-
culate all vibrational energy levels for molecules with a
practically arbitrary number of atoms [8]. In spite of
these arguments, calculation of the anharmonic vibra-
tions has not yet become an ordinary procedure in spec-
trochemical practice. Such a calculation is impossible
because potentials of bonds for specific molecules are
unknown. In contrast to a harmonic potential function,
arbitrary anharmonic potentials can be defined by not
less than two parameters. In the case of the Morse
potential

which is used by the code described in [8], these param-

E De 1 expα re r–( )–[ ] 2,=

Kurnakov Institute of General and Inorganic Chemistry,
Russian Academy of Sciences,
Leninskiœ pr. 31, Moscow, 117907 Russia
1028-3358/00/4505- $20.00 © 20201
eters are the depth De of the potential well and the fac-
tor α, which is inversely proportional to the well width.
The former parameter can usually be found from inde-
pendent measurements, while the latter, as a rule,
remains unknown. The absolute value of the bond equi-
librium length re, easily measurable by electron-dif-
fraction methods and according to rotational molecular
spectra, does not explicitly influence the form of the
Morse potential.

At the same time, from general physical reasons, the
width of a potential well could be assumed to increase
with the bond length. If such an assumption is valid,
and a one-to-one correspondence between the length of
a bond and the width of its potential well can be ascer-
tained, the calculation of anharmonic vibrations for a
large variety of molecules could be easily performed
with the help of the method described in [8]. This paper
is devoted to searching for a correlation between the
length rXY of an X–Y-bond and the coefficient αXY
entering into the expression for the Morse potential
energy of this bond.

To solve this problem, we have analyzed all known
neutral and charged diatomic hydrides (50 protium
molecules and 38 their deuterium analogues). For
ground states of these compounds, the anharmonicity
coefficients ωexe (standing ahead the vibrational quan-
tum number squared in the expression for the molecular
energy), as well as the interatomic distances re have
been accurately measured [9]. This made it possible to
calculate the desired quantities αXY . To compare with
the hydrides, we analyzed also 28 homopolar mole-
cules formed by atoms of the first and seventh groups
of the periodic system of elements, as well as those of
the first period.

Using the expression for the anharmonicity coeffi-
cient ωexe in the Morse function (see, for example, [8]),
we obtain the relationship

Here, the coefficient α, reduced mass M, and ωexe are
expressed in Å–1, atomic units, and cm–1, respectively.

α 0.2436 Mωexe( )1/2.=
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Reduced masses M (atomic units), anharmonicity coefficients ωexe (cm--1), exponential factors α--1 (Å) of the Morse function,
and equilibrium bond lengths re (Å) for diatomic molecules and ions

Molecule M ωexe α–1 re Molecule M ωexe α–1 re

HeH+ 0.8051 157.7 0.364 0.770 IH 0.9999 39.64 0.652 1.61
LiH 0.8812 23.20 0.908 1.595 CsH 1.000 12.93 1.142 2.49
BeH 0.9064 36.31 0.716 1.34 BaH 1.000 14.50 1.078 2.23
BH 0.9233 49.40 0.608 1.23 YbH 1.002 21.06 0.894 2.05
CH 0.9297 63.02 0.536 1.12 LuH 1.002 22.0 0.874 1.91
NH 0.9402 78.35 0.478 1.04 PtH 1.002 46.0 0.605 1.53
OH 0.9481 84.88 0.458 0.970 AuH 1.003 43.12 0.624 1.52
OH+ 0.9480 78.52 0.476 1.029 HgH+ 1.003 40.9 0.641 1.59
FH 0.9571 89.88 0.443 0.917 TlH 1.003 22.7 0.860 1.87
FH+ 0.9571 89.00 0.445 1.00 PbH 1.003 29.75 0.751 1.84
NaH 0.9655 19.72 0.941 1.89 BiH 1.003 31.6 0.729 1.81
MgH 0.9672 31.89 0.739 1.73 H2 0.504 121.3 0.525 0.741
MgH+ 0.9672 31.94 0.738 1.65 Li2 3.508 2.61 1.357 2.67
AlH 0.9715 29.09 0.772 1.65 LiNa 5.376 1.61 1.394 2.81
SiH 0.9728 35.51 0.698 1.52 B2 5.504 9.35 0.572 1.59
SiH+ 0.9728 34.24 0.711 1.504 C2 6.000 13.34 0.459 1.242
PH 0.9761 44.5 0.623 1.42 N2 7.002 14.32 0.410 1.097
SH 0.9770 59.9 0.537 1.34 O2 7.997 11.98 0.419 1.21
ClH 0.9796 52.82 0.571 1.275 F2 9.49 11.24 0.398 1.41
ClH+ 0.9796 52.54 0.572 1.315 Na2 11.49 0.725 1.422 3.08
KH 0.9824 14.3 1.095 2.24 FCl 12.31 6.16 0.471 1.63
CaH 0.9830 21.8 0.887 2.00 NaK 14.46 0.511 1.510 3.59
CrH 0.989 32.0 0.730 1.66 FBr 15.31 4.05 0.521 1.76
MnH 0.990 28.8 0.769 1.73 FI 16.52 3.12 0.572 1.91
CoD 1.948 17.59 0.701 1.52 Cl2 17.48 2.68 0.600 1.99
NiH 0.9906 38 0.669 1.47 K2 19.48 0.283 1.749 3.91
CuH 0.9919 37.51 0.676 1.46 ClBr 24.23 1.84 0.614 2.14
ZnH 0.992 55.14 0.555 1.59 AgCl 26.35 1.17 0.739 2.28
ZnH+ 0.992 39.0 0.660 1.51 ClI 27.41 1.50 0.640 2.32
GaH 0.9933 28.77 0.768 1.66 Cu2 31.46 1.03 0.723 2.22
GeH 0.9939 37.0 0.677 1.59 As2 37.46 1.12 0.635 2.10
BrH 0.9954 45.22 0.612 1.414 Br2 39.46 1.08 0.630 2.28
BrH+ 0.9954 47.4 0.598 1.45 Kr2 41.96 1.34 0.547 4.03
RbH 0.9960 14.21 1.091 2.37 Rb2 42.46 0.105 1.944 3.94
SrH 0.9964 17.0 0.997 2.146 BrI 48.66 0.814 0.652 2.47
PdD 1.977 19.59 0.660 1.53 I2 63.45 0.615 0.657 2.67
AgH 0.9984 34.06 0.704 1.52 Xe2 65.19 0.65 0.63 4.36
CdH+ 0.999 35.4 0.690 1.67 Cs2 66.45 0.082 1.755 4.47
InH 0.999 25.61 0.812 1.84 Au2 98.48 0.42 0.638 2.47
Using this formula for protium and deuterium forms of
the hydrides, we have evaluated the values of αH and
αD . In the table, to reduce its size, we list the calculated
results only for protium forms of the hydrides (except
for CoD and PdD).
It follows from the results obtained that, for the mol-
ecules and ions under consideration, the width parame-
ter α of the potential function varies more than by the
factor of 5 (from 0.514 to 2.745 Å–1). However, for such
pairs of unlike molecules as CH and SH, CrH and BiH,
DOKLADY PHYSICS      Vol. 45      No. 5      2000
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and ZnH+ and PdD, the values of α coincide with the
accuracy better than 0.1%. This situation can be
explained by both the incomplete adequacy of the
Morse function for actual potentials of existing bonds [1]
and the complicated dependence of potentials under
consideration on different bond parameters. To find the
lower estimate for the difference between the Morse
function and the actual form of a bond potential, we can
compare the values of the exponential factors αH and
αD , which were calculated for the same potential.
Indeed, it follows from the results presented in the
table, that the ratio αH/αD averaged over the 38 mole-
cules is equal to 1.001. In this case, the root-mean-
square deviation is 0.011. Therefore, the value of α for
each molecule is found within the error of not less than
1%. Such an error, fairly significant when estimating
the parameter of a specific molecule, becomes unessen-
tial when analyzing the totality of the molecules for
which this parameter varies by the factor of 5.

To examine the influence of the bond length on the
parameter αXY , which is inversely proportional to the
width of the potential well of an XY-molecule, we plot

the values of  as a function of the corresponding
bond lengths (see figure). As is seen, there exists no

unified dependence between the parameters  and
rXY for the entire totality of the molecules under consid-
eration. However, for certain more narrow molecular
groups, we can observe very clear correlations between
these parameters. Indeed, almost all the homopolar
molecules (shown in figure by circles) can be divided
into three sets: (F2, FCl, FBr, FI, Cl2, ClBr, As2, ClI,
Br2, Au2, BrI, and I2), (N2, O2, C2, and B2), and (Li2,
LiNa, Na2, NaK, K2, Rb2, and Cs2), which obey three
different dependences. It is curious that the first of these
sets contains Au2 and As2 molecules in addition to those
formed by atoms of seventh group of the periodic sys-
tem of elements. For the hydrogen molecule, none of
these dependences holds. Thus, the presence of differ-
ent dependences for various groups of the homopolar
molecules implies that, in general, the parameter αXY is
determined not only by the bond length.

Moreover, the results presented indicate that in the
case of diatomic hydrides quite a different situation
takes place. Indeed, for 48 of 50 hydrides (except LiH
and BeH), for which we succeeded in evaluating the

parameters  and rXH , the proportionality factor
between them varies from 0.4 to 0.5 (dots in the figure).
If this spread is considered to be a statistical straggling,
the mean value of the factor will be approximately
equal to 0.45. However, this spread is unlikely random.
More probably, it is caused by a specific electronic
structure of various atoms. Therefore, for the bonds
such as OH, NH, FH, CH, and BH, which are the most

popular in spectroscopic practice, the relation  =

αXY
1–

αXY
1–

αXH
1–

αXH
1–
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(0.475 ± 0.015)rXH, based on the corresponding values
shown in figure, is more correct. It is worth noting that

the values of , which were found by solving
inverse spectroscopic problems [8] for larger molecules
(H2O, H2S, H2Se, HCN, C2H2, C2H4, COH2, and NH3)
shown by crosses in figure satisfy this relation as well.

Thus, it follows from the results obtained that, in the
case of approximating the potential of XH-bonds by the
Morse function, the coefficients  turn out to be
inversely proportional to the lengths of these bonds.
Since the proportionality factor remains essentially
constant in passage from one atom X to another, we can
expect that this factor is unaffected by varying the
length of the XH-bond, which is caused by intramolec-
ular or intermolecular interactions. Therefore, for an
arbitrary molecule with the known length of its XH-
bond, the dependence found makes it possible to eval-
uate the parameter αXH. As a result, anharmonic vibra-
tions of XH-bonds and their reaction capabilities can be
successfully calculated for a wide class of molecules
and chemical complexes.
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1. A concept of the “true solid-state combustion”
(TSC) has long been in use for processes of self-propa-
gating high-temperature synthesis (SHS) [1]. It was put
forward based on the comparison of adiabatic combus-
tion temperatures (Tad) and characteristic temperatures
of the most low-melting eutectics in the equilibrium
phase diagrams. For example, Ni + 2Si mixture is char-
acterized by Tad = 1869 K, whereas the lowest eutectic
temperature in the phase diagram for Ni–Si system is
1560 K. Therefore, it is natural to expect that it is suffi-
cient to introduce about 20 wt % of the final product
into the mixture (and thereby to lower Tad) to attain a
solid-state combustion regime [1]. However, the TSC
was still not observed in experiments despite much
efforts made in this direction. Moreover, the available
data on nonequilibrium eutectics cast a certain doubt on
the possibility of predicting the TSC based only on
analysis of equilibrium phase diagrams.

Estimates obtained within the framework of the
model for the reaction-induced diffusion demonstrate
[2, 3] that ultrafine particles (of ≤0.1 µm) of SHS
reagents are needed to realize the true solid-state com-
bustion. Currently, it is impossible to obtain the pow-
ders with such small particles of SHS components.
In [1], several possible ways to attain the TSC were
suggested, but none of them has been implemented yet.

In this paper, it is shown that the true solid-state
combustion in SHS systems can actually be imple-
mented using preliminary mechanical activation of the
reacting mixtures by intense grinding in the planetary
mill.

2. The preliminary mechanical activation of reacting
mixtures was performed in the argon ambient using a
water-cooled AGO-2 planetary ball mill [4].

The combustion of the samples having bulk density
was also performed in the argon ambient at the atmo-
spheric pressure. The SHS was initiated using the fuse
ignited by the current-heated nichrome spiral.

Institute of Solid-State Chemistry and Mineral Processing,
Siberian Division, Russian Academy of Sciences,
ul. Kutateladze 18, Novosibirsk, 630128 Russia
1028-3358/00/4505- $20.00 © 20205
For measuring the combustion rate Uc and tempera-
ture Tc, the tungsten–rhenium thermocouples 100 µm
in diameter were used. They were placed at certain dis-
tances between them. The signals from thermocouples
were recorded by an N-117 loop oscilloscope.

Reacting mixtures after mechanical activation and
SHS products were analyzed by the X-ray diffraction
technique and by means of scanning electron micros-
copy. X-ray diffraction patterns were recorded by
DRON-3M and URL-63 diffractometers (using CuKα
radiation). Electron microscopy studies were per-
formed using JSM-T20 and JEM-2000FX-II micro-
scopes supplied by JEOL.

The experiments were performed using the well-
known and rather thoroughly studied Ni–Ti SHS sys-
tem, as well as certain compositions for Ni–Si, Ni–Al,
and Fe–Fe systems. To prepare reacting mixtures, we
used such powders as carbonyl nickel PNK-1L5, ultra-
pure carbonyl iron (grade A), aluminum PA-4, titanium
PTOM, and high-purity semiconducting silicon.

3. It is well known that the SHS in Ni–Ti systems
cannot be initiated without preliminarily heating the
reacting mixture [3]. Our experiments demonstrated
that after a short-term preliminary mechanical activa-
tion, Ni + 45 wt % Ti samples began to burn at the room
temperature. For this composition, the plots of Uc and
Tc as a function of mechanical activation time are pre-
sented in Fig. 1. We call attention to the anomalously
low values of Tc . These very low values of Tc after the
preliminary mechanical activation turned out to be
characteristic of all systems under study. The cause of
this behavior is yet not quite clear.

The electron microscopy studies of SHS products
demonstrated that the solid-state combustion regime
appears at an arbitrary duration of the mechanical acti-
vation. None of the samples exhibited any traces of
melting. The morphology and microstructure of initial
samples remained unchanged in the SHS products.

It was also found that the products of mechanical
activation had very complicated structures, and their
morphology was changing in the course of mechanical
processing. Even after 30 s of mechanical activation, it
was practically impossible to find initial nickel and tita-
000 MAIK “Nauka/Interperiodica”
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nium particles in the sample. The products contained
agglomerates of various shapes and sizes. As a rule,
large agglomerates consisted of smaller rounded parti-
cles that, in turn, also appeared to be agglomerates of
initial nickel and titanium.

When the duration of mechanical activation grows,
the fraction of large agglomerates increases. With the
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Fig. 1. Combustion rate Uc and temperature Tc as a function
of duration of preliminary mechanical activation for Ni + Ti
(45 wt %) composition.

10 µm

Fig. 2. Composites formed after 2.5-min mechanical activa-
tion of Ni + Ti (45 wt %).
growth of their density, these agglomerates acquire a
plateletlike shape. The formation of so-called layered
composites begins [5]. An external view of these com-
posites is shown in Fig. 2. Even after 2.5 min of
mechanical activation, the composites of this system
have a rather dense surface with 0.5–0.1-µm grain
sizes. In some cases, the surface of composites bears
traces of pronounced plastic distortions resembling
those produced by drawing.

The further increase in the time of mechanical acti-
vation leads to increasing density of composites and to
decreasing grain size down to that characteristic of
ultrafine grains (≤0.1 µm), see Fig. 3.

The reduction of combustion rate after 3.5 min of
mechanical activation is related to the “poisoning” of
reacting mixture by intermediate intermetallic com-
pounds arising as a result of mechanically induced
fusion [6], and by the consequent destruction of the
large-scale layered structure in the composites.

Thus, the obtained results suggest that the imple-
mentation of the SHS at the room temperature in a Ni–
Ti system and the enhancement of Uc with the duration
of the mechanical-activation time are caused by the fine
grinding of reagents and the increase in their contact
areas within the arising layered composites. The struc-
ture of these composites, the clear traces of plastic
deformation observed at their surface, as well as the
corresponding models of solid-state chemistry clearly
indicate the decrease in the characteristic size of inho-
mogeneities and formation of a new structure with high
density of defects [7].

The fine grinding of reagents down to ultrafine grain
size apparently gives rise to the TSC.

For all durations of the mechanical-activation time,
the X-ray diffraction patterns exhibit only the NiTi
lines (the basic phase) with a small admixture of reflec-
tions corresponding to the Ti2Ni phase. The lines corre-

10 µm

Fig. 3. Surface of the layered composite [Ni + Ti (45 wt %),
3.5-min mechanical activation].
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sponding to titanium and nickel are not observed. Just
the same composition of products is also observed for
the SHS occurring in the case of preliminary heating
the mixture of conventional powders [3].

We have succeeded in attaining the solid-state com-
bustion regime for some other systems, in particular,
for Ni + Si (10 wt %) mixtures and, strange as it may
seem, for Ni + Al (13 wt %). The latter fact is surpris-
ing, because this system involves such a low-melting
reagent as aluminum. Note that it is impossible to attain
the SHS in these compositions without their prelimi-
nary mechanical activation. Similarly to the previous
case, the increase in mechanical activation time for
these compositions results in the formation of layered
composites, which are characterized by the ultrafine
grinding of reagents causing the enhanced contact area.
For these mixtures, the plots of the combustion rates as
functions of preliminary mechanical activation time
have a pronounced peaked shape.

The electron-microscopy studies of these two sys-
tems did not reveal any melting of SHS products in all
the samples except those corresponding to the maxi-
mum values of Uc and Tc (mechanical activation for
2 min).

After the SHS, has occurred the samples consist of
the same layer composites, even the traces of drawing
remain at their surface. The grain size remains nearly
unchanged. The only difference between them and the
initial samples is, maybe, the lower density of certain
composites after the SHS. The microscopic image of
the Ni + Al (13 wt %) composites in the SHS products
with the flaked upper platelets is presented in Fig. 4
(after 1.5 min of mechanical activation).

The SHS products for these compositions corre-
sponding to maximum values of Uc and Tc contain,
although quite rarely, spherical partially-melted parti-
cles. The surface of these particles clearly exhibits the
pattern typical of the crystallization from the liquid
phase.

For the Fe–Si system, we succeeded in attaining the
solid-state combustion for Fe + Si, 5Fe + Si, and 3Fe +
Si compositions (after 3 min of mechanical activation).
It was impossible to attain the SHS for the Fe + 2Si
composition (after the same mechanical activation dur-
ing 3 min). According to the data reported in [8], the
SHS for this composition can be performed by heating
a sample up to about 400°C after mechanical activation
for 4 h. However, the mill of distinctly different design
was used in this case.

In our case, the electron microscopy revealed that
the Fe + 2Si composition differs from other ones of this
system: products of the mechanical activation contain
ultrafine particles of the reagents, but they do not form
dense composites. Ultrafine particles form only loose
agglomerates. Obviously, this fact related to the volu-
metric fraction of low-plasticity silicon in the mixture.
DOKLADY PHYSICS      Vol. 45      No. 5      2000
(The value of the latent heat of FeSi2 formation even
exceeds slightly the ∆H value for FeSi).

This result seems to be quite interesting, since it
unambiguously demonstrates that not only fine grind-
ing is important for the SHS process after mechanical
activation but the formation of dense composites as
well, in which the drastic increase in the contact surface
area occurs.
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The flicker noise (1/f noise) is a universal phenom-
enon observed while measuring transport processes in
various systems. In studies [1–3], the mathematical the-
ory of the processes generating the 1/f noise was pro-
posed. This theory explains its nature from a unified
standpoint. The basic assumption consists in the fact
that the 1/f noise, in itself, is not a physical process but
results from the conversion, in the course of measure-
ments, of a certain actual physical process (with an
essential dependence of the spatial coordinate) into a
purely temporal random function with the (1/f)-type
spectrum. According to the second assumption of the
theory, the mechanism responsible for this process is a
sequential combination of two mechanisms: the forma-
tion of fluctuations and their essentially slower relax-
ation described, respectively, by pulsed Poisson pro-
cesses S(x, t) and R(x, t) with the pulses ais(x – xi)δ(t –
ti) and air(x – xi, t – ti), where i = 1, 2, …, K. Here, K is
the number of pulses for the observation time t0, ai is
their amplitude, xi and ti are the parameters characteriz-
ing the location of fluctuations and moments for their
initiation, which are distributed uniformly within the
interval (0, L), and (0, t0); r(x – xi), (t – ti) is the solution
to the diffusion equation  = U  + κDr'' with the ini-
tial condition r(x – xi, 0) = s(x – xi) and the boundary
condition r(0, t) = r(L, t) = 0. According to the third
assumption of the theory, the observed value is a relax-
ation flux J(x, t) formed by a sum of contributions

In [1–3], the measured spectrum F(ω) of such a process
was proven to have the desired shape F(ω) ~ ω−α only if
s(x) ~ x–β, β = 3/2 – α, β ∈  (0, 1), and α ∈  (0.5, 1.5). In
the same studies, the general reason is indicated for the
initiation of the process S(x, t), which is the basic one in
the generation of the 1/f noise.

The goal of this study is mathematical description of
the general physical mechanism for the formation of
the process with power-type fluctuations and estima-
tion on this basis of the amplitude of the 1/f noise spec-
trum. According to the general theory of nonlinear
waves [4, 5], such density distributions for a physical
parameter of the medium (e.g., mass, temperature, and
momentum) arise near discontinuities for the solutions
to evolution equations of the shock-wave type. The

rt' rx'

j x xi t ti–,–( ) κDairx' x xi– t ti–,( ).–=
1028-3358/00/4505- $20.00 © 20208
appearance of these distributions is a characteristic
result of developing smooth perturbations propagating
in continuous media. The principal conditions of such
a development is a nonlinear relation between the den-
sity of a medium parameter and its flux, as well as a suf-
ficiently large amplitude of perturbations required to
overcome the smoothing action of the relaxation pro-
cesses. The second condition implies that the initial
fluctuation pulses inherently constitute rare events and,
thereby, give rise to a nearly Poisson process. Thus, the
process S(x, t) is simply a random sequence of shock
waves arising due to fluctuations of the field of a con-
tinuous physical parameter. Since this physical situa-
tion has an exceptionally general nature [4], the univer-
sality of the 1/f noise as the observable phenomenon
becomes understandable.

The more detailed presentation of the proposed
physical picture is based on the general evolution equa-
tion for a medium parameter [4, 5]:

(1)

where ρ = ρ(x, t) is the density of the medium parame-
ter, q = q(x, t) = Q(ρ) – ξ  is its flux, and I(ρ) is the
operator determining the variation in the number of par-
ticles in the flux due to collisions (collision integral).

We now make standard simplifying assumptions
inherent in both the theory of nonlinear simple waves
[4] and relaxation approximation for I(ρ) [6]. We con-
sider equation (1) to be one-dimensional and the rela-
tion between q and ρ to be pure functional (ξ = 0) and
quadratic:

We also take into account that the state of the medium
is close to the equilibrium one, i.e., I(ρ) = (ρ − )/τr

(τr is the relaxation time), and Z = B(ρ − ) ! 1. In this
case, equation (1) and the boundary condition for the
quantity ρ can be written in the reduced form as

(2)

Here, the smooth function R(t) is the time dependence
of the initial perturbance in a small physical neighbor-
hood of the point x = 0 in which all the physical param-
eters used are considered to be determinate.

ρt qx'+ I ρ( ),=

ρx'

Q ρ( ) c0 ρ ρ–( ) B ρ ρ–( )2
/2+[ ] .=

ρ
ρ

Zt' c0 1 Z+( )Zx' Z/τ r++ 0, Z 0 t,( ) BR t( ).= =
000 MAIK “Nauka/Interperiodica”
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Changing variables ζ = x, τ = t – x/c0, Z = U(ζ, τ)
in (2), we obtain in the first approximation for Z ! 1 the
equation  – U /c0 + U/δ = 0, where δ = c0τr . Solv-
ing this equation by the method of characteristics, we
find the implicit expression for the form of the evolving
perturbance among the initial variables, which is valid
until the moment tcr of the shock-front formation:

(3)

For t > tcr, the localized field perturbance of an arbi-
trary initial shape degenerates gradually into a moving
pulse of the triangular shape with the parameter density
distribution

where xF(t) is the pulse-front coordinate [4], i.e., repre-
sents the distribution of the desired type, which yields
F(ω) ~ ω–1. The general condition  = ∞ for the
onset of the formation of the shock front is specified
for (3) in the form of the implicit limitation from below
for the amplitude of initial fluctuations, which depends
essentially on their shape:

(4)

We determine the explicit form of this condition on
the basis of a standard approximation for R(t) as a sum
of exponential curves (de Prony approximation) and
assumptions that their exponents are real and the initial
fluctuations have the Markovian behavior. The first
condition implies that only aperiodic motions take part
in the formation of these fluctuations. The second con-
dition implies that the medium is close to the equilib-
rium state, which leads to the fact that the function R(t)
is even.

The condition of smoothness for R(t) requires the
presence of at least two exponentials in its approxima-
tion. Thus, we arrive at the simplest model shape of ini-
tial fluctuations corresponding to all the conditions:

(5)

(for the physical sense of τs and τr see below).
The maximum value (R'(t))max is attained for tm =

τslnp and is (R'(t))max = R(0)(1 – plnp)/τu. Since
plnp  0 for p  0, the value of R'(tm) is indepen-
dent of τs for reasonably small values of p and is equal
to R(0)/τu. From here, we find the critical amplitude
A = R(0) = Z(0)/B for fluctuations of the field ρ(x, t):

(6)

Thus, this is the presence of the limitations of type (4)
and (6) which leads to the fact, that the fluctuations
capable of forming the shock compressions, are related

Uζ' Uτ'

t x/c0– τ rZ 1 x/δ( )exp–[ ]–

=  R
1–

B
1–
Z x/δ( )exp( ).

Z xF t( ) x–( )signc0[ ] 1/2– ,∼

Zx'( )t tcr=

R'( )max R'> Bτ r 1 x/δ–( )exp–( )[ ] 1–
Bτ r( ) 1–

.>=

R t( ) = R 0( ) 1 p–( ) 1– t /τu–( )exp p t /τ s–( )exp–[ ] ,

p τ s/τu=

A τu/Bτ r.=
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to the most significant and, therefore, rare ones. Hence,
they form the time sequence close to the pulsed-Pois-
son process [1]. This fact confirms the physical expla-
nation for the form of the process S(x, t) and, together
with it, the entire picture of generating the 1/f noise,
which was presented above.

We note that the most general consideration of the
evolution of initial perturbances with the conservation
of the gradient term in the definition of the function
q(x, t) (i.e., for ξ ≠ 0) leads to the same qualitative con-
clusions. In the important particular case of I(ρ) = 0,
equation (1) transforms into the Bürgers equation [4]:

 + c  = ξ , where c = Q'(ρ). The difference from
case (2) consists here only in the method of determin-
ing the critical amplitude. As far as the dynamics of
acoustic processes and transport fluxes is successfully
simulated by the Bürgers equation [4], the above argu-
ments offer a physical explanation for the 1/f noise
generation in these processes.

We now extend the theory under discussion to con-
ducting systems. According to this theory, the fluxes
inducing the 1/f noise are the diffusion fluxes of con-
duction electrons. Fluctuations of the electron density
are efficiently suppressed by the Coulomb screening
already at distances on the order of interatomic ones
[6]. Therefore, the generation of electron fluxes of the
desired type by an electron subsystem as itself is
impossible. However, it is possible as a consequence of
macroscopic-fluctuation motions of the shock type in
the phonon subsystem. Their principal feasibility is
provided by the equations of phonon hydrodynamics
[7] describing the evolution of phonon wave packets:

(7)

Here, δT(x, t), P(x, t), and V(x, t) are the local quasi-
equilibrium and, therefore, functionally related fields
of temperature perturbations, averaged phonon quasi-
momentum, and averaged drift velocity of phonons,
respectively. The quantities T, C, and S are the local
magnitudes of temperature, specific heat, and entropy
density; the definition of η is given in [7].

We prove this statement reducing (7) to (2) by the
iterative method. In the zero approximation with

respect to , we ignore the relaxation term P/τr and,
integrating the simplified set of equations by the
method used in [8], while solving the set of gas-
dynamic equations, we find its solution in the form of
the Riemannian simple wave δT = g(x ± tcT(δT)) [g is

ct' cx' cxx''

∂P
∂t
------ S

∂ δT( )
∂x

--------------- P
τ r
----+ + 0,=

C
∂ δT( )

∂t
--------------- ST

∂V
∂x
-------+ 0, P ηV .= =

τ r
1–
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the arbitrary smooth function, cT =  .

(1 + Z), Z = BδT]. The differential bonds

between the fields δT, V, and P are transformed into the
relationships

under assumption of smallness of their amplitudes.
Substituting the relations found into the first equation
of set (7), we obtain relationship (2).

Next, we describe the mechanism for formation of
the large-scale fluctuations δT(t) = δT(0, t), which
define the boundary condition in (2), by the example of
a uniform metal steady-state system with the electric
current. The basis of this mechanism is assumed to be
the equilibrium fluctuations ∆n of the phonon density
n =  + ∆n stemmed by the heat exchange of a sample
with a thermostat and causing the fluctuations ∆Ie and
∆Ve of both the mean free path le and the drift velocity

Ve =  + ∆Ve for the conduction electrons. Since le ~

n–1 and Ve ~ le, then /  = /  = /  =

E and  = /(nee) (where  is the mean current den-
sity, and ne is the density of conduction electrons). The
process of development of the large-scale fluctuations
δVe(t) caused by them can be described by the Lan-
gevin equation [10]

where Γ(t) is the “Langevin force” with the exponential
correlation function

corresponding to the Markovian behavior of the equi-
librium fluctuations. Here, τs is the time of the electron
mean-free path between collisions with phonons, and
τu is the relaxation time of the parameter Ve, which is on
the order of the relaxation time for the total momentum
of the electron flux. Solving this equation under condi-
tions of the Langevin approach τs/τu ! 1 (which is valid
provided that the predominant interaction mechanism
for electrons and phonons is the electron–phonon scat-

TS
2
/ηC
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 
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2
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2
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2
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2
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V e J J

δV̇ e –
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2

τ s
----------

 
 
  t

τ s
----– 

  ,exp=
tering [6]), we find the correlation function (t) for
the parameter Ve:

which is of type (5), whose form is repeated by the pro-
cess δVe(t) [9].

Since in a metal system, τu @ τe > τs (τe is the relax-
ation time of the electron quasi-momentum in the
N-processes [6]) and |δVe| ! | | ! cs ! cF (cF is the
Fermi velocity), the carrying away of the phonon sub-
system by slow perturbances in the electron subsystem
proceeds adiabatically and is virtually complete. This
fact causes the conversion of fluctuations δVe(t) into
perturbances of the phonon drift velocity V(t) with the
approximate conservation of their shape and amplitude
(|δVe| ≈ |V|). By these means, the field V(t) of large-scale
fluctuations [with δT(t) = δT(V) and the correlation
functions KV(t) . (t) and KT(t) = (ηT/C)KV(t)] is
formed in the phonon subsystem in the neighborhood
of the point x = 0. The further evolution of these func-
tions leads to formation of abrupt fronts in the field
δT(x, t). They, in turn, induce the thermal excitation of
electron fluxes δJe(x, t), which was observed in experi-
ments.

We now estimate the amplitude FδJ(ω) of the 1/f
spectrum for the fluxes δJe. Since they are of the ther-
moelectric nature [6], then

Here, JT = –κD , κD = κ/C, QT is the differential

thermal electromotive force, σ is the electrical conduc-
tivity, and κ is the thermal conductivity. Substituting
the general expression F(ω) from [1] for fluxes, we
obtain

Here, the parameter  is the mean number of maxima

for the random process δ (t), which are located above
critical level (4) in a unit volume. This number is equal
to

where w(x1, x2, x3) is the common density of the distri-

bution δ , δ , δ  [11]. According to (5), b = (Bτr)–1,

KVe
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τr is the characteristic attenuation time δT(x, t) for
waves, which is on the order of time for attaining the
thermal equilibrium with a thermostat. Owing to the
steadiness and the Gaussian behavior of δT(t), we have
w(x1, x2, x3) = w(x1, x3)w(x2), where w(x1, x3), w(x2) are
the two-dimensional and one-dimensional Gaussian
densities of the distribution, respectively, with the vari-

ances  = (–1)i (0), i = 1, 2, 3, and the correlation
coefficient

From here, w(0) = (2π )
–1/2

,  = /(τuτs), where

 = D[δT] = EηTC–1(τu/τs). For a low attenuation
of waves determined by the condition

we obtain  = (4π)–1(d3/d2)(1 – γ). It is impossible to
use the value KT(t) found for estimating d3/d2 and γ due
to the absence of the multiple differentiability of the
process δT(t) with such a correlation function [11].
Therefore, we represent KT(t) in the de Prony general
form:

where τs = τ1 ! τ2 ! … ! τm – 1 ! τm = τu. Thus, d3/d2 ~

 and γ ~ 1. According to the similarity method γ =
γ(τs/τu, τ2/τu, …, τm – 1/τu), with γ . γ(τs/τu), as far as just
the parameters τs and τu dominate in the definition of
δT(t). Since τs/τu ! 1, γ . 1 – a(τs/τu) and γ ~ 1, then this
implies also that a ~ 1. Thus, for b' ! 1  ~ (4πLτu)–1 and

is independent of  and .

The parameter

is the mean power of a pulse in the S(x, t) process. In the
case of a large amplitude of fluctuations δT(t) b'' =

A/d0 ! 1. Hence, it follows that  ~ /2. Taking into
account that σ ~ nee2τe/me, Ne = neL is the total number
of conduction electrons in a sample of the unit cross
section, we obtain for b' ! 1 and b'' ! 1 the 1/f noise
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spectral density equal to FδJ(f) (f = ω/2π) and its
desired amplitude αH in the Hooge form:

(8)

From the meaning of physical parameters in (8), it fol-
lows that the Hooge coefficient αH is independent of Ne
in correspondence with the Hooge empirical law [12].

In an actual conducting system, the values of E, η,
and B depend essentially on a particular form of the
density for system phonon states [7, 9]. At the same
time, the values τs and τe depend on the parameters of
various and mutually interfering scattering mecha-
nisms [6]. This fact makes it extremely difficult to
obtain a rigorous estimate of αH. Nevertheless, at not
too low temperatures T ≥ 0.1θD, the standard estimates
lead to

Mi  ~ θD (Ni is the concentration of ions in the lattice,
Mi is the ion mass, cs is the sonic velocity, θD is the
Debye temperature, and εF is the Fermi energy.) These
estimates obtained in the framework of the Debye
model for a phonon subsystem [7] and gas model of the
electron subsystem [6] yield the value 

αH ~ 10−2 , 

which agree quite well with experimental values

 ~ 10–4–10–2 [12].

The estimates for values b' and b'' [b' ~ b'' =
(d0b)−1(τu/τr))] is extremely difficult due to the same
reasons. However, because of τu/τr ! 1, the conditions
b' ! 1 and b'' ! 1 for the derivation of formula (8),
which correspond to the experiment [12], are likely not
strict in actual conducting systems and can be easily
satisfied.

This fact explains the dependence Fδj(f) ~  and its
independence of the value of τr that experiences an
influence of particular experimental conditions and the
state of the sample surface. This theory presents also
the derivation of both the Hooge law and interval for
the variation of the exponent α strictly corresponding to
the experiment [12]. As a result, this theory yields the
justified theoretical derivation of basic empirical regu-
larities established for the 1/f noise.

Thus, in accordance with the data of [1–3] and the
results of this study, there exists a general physical
mechanism responsible for occurrence of the 1/f noise
in the case of observation of various transport phenom-
ena involving acoustic, transport, and electrical ones.
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This mechanism consists in the transformation of the
form of large-scale fluctuations of a macroscopic
parameter characterizing the transport process into an
essentially inhomogeneous form of the shock-wave
type with the subsequent generation of diffusion fluxes
corresponding to this parameter. The 1/f noise, in itself,
is not the physical process. It is a random signal formed
in the course of statistical measurements for these
fluxes.
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In [1], A. Griffith suggested the following energy
condition for determining critical stresses and sizes of
defects formed as a result of single loading solids:

– . (1)

Here, Up =  –  is a change in the potential

energy for the defect formation;  and  are the
potential energies of a solid with and without the
defect, respectively; γ is the specific energy for the for-
mation of a unit of the defect surface Σ; and A is the
work of external forces. In problems of uniaxial and
biaxial tension (compression) of a plane with a defect,
the critical stresses determined by condition (1) have
usually the same value for tension and compression.
However, this conclusion contradicts to experimental
data. In this paper, we suggest another energy condition
similar to that of Griffith but differing from it, namely,

– (2)

Here, U = Up + Uk is the change in the internal energy,

and Uk =  –  is the change in the heat compo-
nent of the internal energy. Condition (2) represents the
first law of thermodynamics, while condition (1) fol-
lows from (2) in the case of ignoring the energy Uk in
it. For isothermal deformation of solids, which obeys
Hooke’s law, components of the internal energy U have
the form [2]

(3)

where σij and εij are the stress-tensor and strain-tensor
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components, respectively; δij is the Kronecker delta; V1
and V0 are the volumes of the solid with and without the
defect, respectively; α0 is the coefficient of linear ther-
mal expansion; and T0 is temperature. We now analyze
conditions (1) and (2) for the fragile strength in the case
of two models of isolated defects. In the first model (A),
the stresses on the exterior surface of the solid are
given, whereas in the second model (B), the displace-
ments are given, which correspond to stresses applied
prior to formation of a defect. In both the models (A)
and (B), stresses on the defect surface are zeros. In the
first (A) model, the external forces do work on the exte-
rior defect boundary, whereas in the (B) model, the
work of external forces equals zero. Consider the inte-
grals comprising Uk in (3) for the models (A) and (B)
in the case of the plane problem of elasticity theory:

(4)

Here, σx and σy are the stress components in a Cartesian
coordinate system; χ = 1 or (1 + ν) in the cases of a
plane stressed state and plane deformation, respec-
tively; ν is the Poisson’s ratio; and D1 and D0 are the
domains occupied by the solid with and without a
defect, respectively. Stresses σx and σy and the bound-
ary condition in the first boundary value problem, which
are expressed in terms of the Airy stress function [3],
have the form

(5)

(6)

where (x, y) ∈ S = Γ0 + Σ (Γ0 is the outer contour of the
solid); σnx and σny are the stress components on the con-

Uk α0T0χ σx
1( ) σy

1( )
+ 

  xd yd∫
D1

∫=

– σx
0( ) σy

0( )
+ 

 ∫
D0

∫ dxdy.

σx
∂2

F

y
2∂

---------, σy
∂2

F

x
2∂

---------,= =

Fx s( ) F∂
x∂

------ σny s( ) s C,+d

0

s

∫–= =

Fy s( ) F∂
y∂
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0

s

∫ D,+= =
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tour S; n is an outward normal to the contour; and C and
D are arbitrary constants. We now make use of the fact
of the validity in the model (A) the boundary conditions

 = ,  =  on Γ0, and  =  = 0 on

Σ, and the equality  + Ddy = 0. Thus, after substi-

tuting (5) into (4) with allowance for relations (6) and
using the Green’s formulas, we obtain Uk = 0. Hence,
the model (A) leads to a Griffith condition (1). Taking (3)
into account, we can write out the internal-energy
increment in the form

(7)

where k1 = E/(1 – ν) or E/(1 – 2ν) for the plane-stressed
state and the plane deformation, respectively; E is the
Young’s modulus; ui are the displacement vector com-
ponents; ni are direction cosines. Expression (7) was
derived with the use of Betti’s reciprocal theorem,
Hooke’s law, Green’s formula, and the equation of

equilibrium. Since in the (B) model,  =  on Γ0

and nj = 0 on Σ, expression (7) is reduced to

(8)

Here, Uk ≠ 0 and, hence, the model (B) leads to condi-
tion (2).

We now consider a problem of the plate fracture due
to formation of a defect with an elliptic cross section
under the action of principal tensile and/or compressing
stresses P1, and P2 . Let the P1 stress direction form an
angle α with the xO-axis, and let the ellipse principal
semiaxes be denoted by a and b, a ≥ b. Then, integral (8)
can be represented in the following complex form:

(9)
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Σ
∫° ,
where stresses σx, σy, and σxy and displacements u and
v are calculated according to the formulas of [3]

(10)

with relevant indices; k = 3 – 4ν and (3 – ν)/(1 + ν) for
the plane deformation and the plane stressed state,
respectively; and µ = E/2(1 + ν). In the plane case and
with allowance for (10), we substitute into (9) the func-
tions from [3]

the boundary condition ϕ1(z) + z  +  = 0 on
the ellipse contour; and the function [3]

that maps the plane with an elliptic hole onto the plane
|ξ| > 1 with a round hole. We also use the function ϕ1(ξ),
which, in this case, is the same for problems being
solved within models (A) and (B) [3],

Then, taking into account that

we integrate (9) along the circle |ξ| = 1 and, as a result,
obtain the expression for the increment of the total
energy

(11)

Substituting (11) in (2) and considering that dA = 0 in
the model (B), we can obtain the macroscopic criterion
for the fragile fracture as a function of the physicome-
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P1 P2–
2

-----------------ze
2iα–

,= =

ϕ1' z( ) ψ1 z( )

z ω ξ( ) c ξ m
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4
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--e
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a
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P1 P2+( )2

4
------------------------- 1 m

2
+( )–

– P1
2

P2
2

–( )m 2αcos
P1 P2–( )2

2
------------------------+

–
α0T0k1 k 1+( )πc

2

2µ
-------------------------------------------

P1 P2+
2

------------------ 1 m
2

+( )

----- – P1 P2–( )m 2αcos 4γaE q( ).+
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chanical parameters γ, α0, µ, ν of the material and the
temperature T0 for an arbitrary combination of critical
stresses P1 and P2 , and sizes a, b, as well as the location
(α) of the defect. For example, in the case of m = 0 (a =
b = a0) or m = 1 (b = 0), we obtain from (11) and (2) the
criterion of the fragile fracture for a plate having a
round defect with the radius a0 or a cut with a half-
length a, respectively,

In the particular case of P1 = P2 = P, these expressions
make it possible to obtain the critical stresses for biax-
ial tension P+ and biaxial compression P–,

2 P1
2

P2
2

+( ) P1 P2–( )2
+

+ 4α0T0k1 P1 P2+( ) 16µ
k 1+
------------ γ

a0
-----– 0,=

P1
2

P2
2

P1
2

P2
2

–( ) 2αcos–+

+ 2α0T0k1 P1 P2+( ) P1 P2–( ) 2αcos–[ ]

–
32µ

π k 1+( )
--------------------γ

a
--- 0.=
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We obtain also the formula P+ + P– = –2α0T0k1 , which
is valid for arbitrary m and α.
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The goal of this study is to investigate steady vortex
flows of homogeneous ideal fluid, whose helicity,
locally defined as h = u · ∇ × u [1], is bounded. In this
case, a set of constitutive hydrodynamic equations con-
tains both Euler equations and continuity equations:

(1)

Here, u is the flow velocity and pressure p is normal-
ized to the density.

For steady flows of ideal fluid, trajectories of
marked particles coincide with streamlines [2] and
form integral lines. The proposed geometric descrip-
tion is based on the assumption that the integral flow
lines are geodesics at the second-order surfaces being
parametrized and fill in the space occupied by the fluid.
At the same time, the velocity field is formed by geode-
sic flows determined by these surfaces. In this case, an
individual integral second-order surface is character-
ized by the vector function f and is given in a paramet-
ric form. The parameters t and τ are responsible for
motion along a specific geodesic transition from one
geodesic to another on the same surface. The vectors 

and  are tangents and vector [  × ] is the normal
to the integral surface. Primes denote differentiation,
and indices signify the differentiation variables. For
describing a transition from one integral surface to
another, the variable n is used defining the vector

(2)

where the functions α, β, and γ depend on t, τ, and n.

The direction vectors , , and  specify a curvi-
linear coordinate system used furthermore for describ-
ing vortex flows.

A tangential geodesic flux J satisfying the condition
DJJ = 0 is one of the characteristics for integral surfaces
formed by geodesic lines [3]. The covariant derivative
D of an arbitrary vector field X with respect to the tan-

u∇( )u ∇ p, ∇ u⋅– 0.= =

f t'

f τ' f t' f τ'

fn' α f t' βf τ' γ f t' f τ'×[ ] ,+ +=

f t' f τ' fn'
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gential field Y is calculated according to the following
rules:

Here, N = ∇ F|r ∈  F is a field of normals to the second-
order surface F = F0 .

Since the geodesic-flux vector J coincides with the
vector  tangential to a geodesic line at each point of a
surface, the equation

(3)

follows from the above definition.

Using the geometric vector field , we can con-
struct an infinite set of equally directed physical vector
fields u,

(4)

These fields differ from one another by the amplitude
function u(t, τ, n). Velocity-vector field (4) determines
a hydrodynamic flow in the case when this field satis-
fies the set of equations (1).

Substituting (4) into (1) with allowance for (3), we
can reduce initial system (1) to the form

(5)

From the second equation of set (5), it follows that

Using definition of the vorticity w = ∇ × u and
excluding the pressure from the first equation of sys-
tem (5), we obtain the equation

∇ uw = ∇ wu. (6)

Employing the representation w = p  + q  + r ,
where p, q, and r are functions of the variables t, τ, and

DYX ∇ YX
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------------------------------, ∇ YX Y∇( )X.≡–=
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u u t τ n, ,( )f t'.=

u
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2
---------------------------------, uG( )t'– 0.= =
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G
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n, we can transform equation (6) to the form

(7)

Here, xk is one of the variables t, τ, n.

Integrating (7), we transform the first equation of
system (5) to the form

(8)

where T is a twist of an individual integral line.
The elements ε and ξ of the second quadratic form

of a surface are determined by the relations

where  is the Christoffel symbol, while ε = λtt and
ξ = λtτ . According to (8), the change in the twist for an
individual particle trajectory is determined by the nor-
mal component R of the vorticity vector w .

The class of possible solutions narrows in the case
of the local coincidence of the tangential spaces of inte-
gral surfaces for the velocity field and vorticity field.
This makes it possible to reduce (8) and, consequently,
system (1) to the equation  = 0, which implies invari-
ance of the twist for an individual integral line.

Equations (8) contain only functions describing the
internal geometry for flow integral surfaces. Since the
incompressibility equation transforms into the form,
representing the velocity field, then the initial hydrody-
namic problem is reduced to the pure geometric one.
We imply the problem of determining characteristics of
a Riemannian space, whose internal geometry is con-
strained by condition (8). In this case, the boundary
conditions impose restrictions on the external geometry
of the flow under investigation [3].

From the smoothness condition for the operation of
the mixed differentiation in the curvilinear coordinate
system (t, τ, n), it follows that equation (8) must be sup-
plemented with the Gauss and Peterson–Codazzi equa-
tions

(9)

Here, _ = εη – ξ2 is the Gaussian curvature of the sur-
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face,  are the components of the curvature tensor,
and η = λττ .

We can pass to an orthogonal coordinate system
bound to the surface (as has been done, for example,
in [4]). Then, the first and second quadratic forms
become diagonal simultaneously, and equations (8) and
(9) acquire a more symmetric form, which simplifies
solving the problem.

The new parametrization corresponding to such an
orthogonal coordinate system is described by two
parameters {a, b}, so that the vectors  and  are tan-

gential to the integral surfaces. The orthogonal pair ( ,

) for the new system can be obtained by a local rota-

tion of the orthogonal pair of the initial system ( ,  –

(gtτ /gtt) ) through the angle ϕ(t, τ) determined by the
diagonalization condition. As a result of this transfor-
mation, equations (9) take the form

(10)

and (8) reduces to the equation

(11)

Here, gaa, gbb, and λ, ν are the coefficients for the first
and second quadratic forms in the new parametrization,
respectively. Thus, the following relations hold:

(12)

where ∆ is the transformation Jacobian for passing to
the new parametrization.
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The right-hand side of the second equation in (12)
can be reduced to zero if the additional condition of the
conservation of a surface local element (the equireality
condition for the performed affine transformation) is
imposed.

Straightforward methods are not feasible for finding
the angle ϕ necessary for constructing solutions to
symmetrized equations (10), (11). The reason is that
system (12) is reduced to the dual Riccati equations for
the function Q by introducing a new variable Q = .
Although these equations always possess the solution,
regular methods for its construction are not available.

In the given physical problem, additional topologi-
cal flow characteristics, i.e., the density of helicity h
and density of the flow parity ℘  (the latter depending
on conditions for the generation of the helical struc-
ture), must be used for determining the local rotation
angle ϕ. In steady-state problems, these topological
quantities are related by the equation of the helicity-
density conservation for Hamiltonian flows [5]

which rearranges in the coordinate system (a, b) to the
form

(13)

Equations (13) and (12) allow us to find an explicit
expression for the angle ϕ providing the most compact
and symmetric form

(14)

Here, the following notation is used:

and, in this case, Ψ℘  =  for ℘  = 0.

Relation (14) has a simple geometric interpretation.
In the case of zero parity, the space of angles for inter-
nal geometry ΨG (the space definition involves only
coefficients of the first and second quadratic forms of
the surface) is orthogonal to the space of parity angles
Ψ℘  (which is defined invoking topological flow charac-
teristics). For nonzero parity, this orthogonality is bro-
ken, the spaces are projected onto each other, which
results in changing the angle ϕ.
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2
---
Employing geometric images provides a means for
treating the internal flow structure as a set of integral
surfaces possessing certain properties that can be spec-
ified with a reasonable degree of arbitrariness. In par-
ticular, using the conditions that integral surfaces of the
velocity field are isoenergetic and integral surfaces of
the vorticity field in fluid with a free boundary are iso-
vortical, we can construct the solution in the form of a
set of modified Rankine vortices [6]. These vortices,
unlike the classic one [7], have bounded integral invari-
ants, namely, the energy, momentum, angular momen-
tum, vorticity, and helicity (here, total quantities are
implied).

Reducing hydrodynamic equations to equations of
differential geometry makes it possible to analyze
properties of steady helical flows in a new way and con-
struct a formalism of searching for their hidden features
that do not manifest themselves immediately in studies
of physical fields alone. Among these characteristics,
there are the helicity density and parity density and their
integral analogues, i.e., the total flow helicity and total
flow parity, since only these quantities allow us to unam-
biguously classify different-type helical flows.

The proposed geometric approach is also applicable
to the problems of helical-structure evolution in viscous
media. However, in this case, the problem of helicity
and parity sources arises, since in viscous media, in
contrast to Hamiltonian ones, both dissipation and gen-
eration of topological flow characteristics occur.
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The ideal-plasticity condition suggested in [1] has
the form

(1)

where σi are the principal-stress components and κ is
the yield stress.

According to [2], plasticity condition (1) can be
written as

(2)

where σx , τxy , ... are the stress components in the Car-
tesian xyz coordinate system.

Relations (2) can be rewritten in the form

(3)

(4)

Following ideas of Prandtl, who has treated the
plane problem on compressing a layer of an ideal plas-
tic material by rough plates [3], we assume that

(5)
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τ xz

-------------
τ xzτ yz

τ xy

-------------+ + 2κ .=

τ xz az c1, τ yz+ bz c2,+= =

a b c1 c2, , , const.=
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It follows from (4) and (5) that

(6)

With regard to (3) and (6), we have

(7)

From the equations of equilibrium σij, j = 0 and rela-
tions (5)–(7), we obtain

(8)

Combining (7) and (8) yields

(9)

where τxy, τxz, and τyz are determined from (5) and (6).

We now consider the case of a plastic-material layer
with the thickness 2h and assume that the x- and y-axes
lie in the middle plane z = 0. In what follows, we pass
to dimensionless variables. Namely, we normalize the
stresses to the yield stress κ and all linear dimensions—
to the quantity h.

τ xy

az c1+( ) bz c2+( )

az c1+( )2
bz c2+( )2

+
-----------------------------------------------------=

× κ κ 2
az c1+( )2

– bz c2+( )2
–± .

σx σ 2κ
3

------– τ xy

az c1+
bz c2+
----------------,+=

σy σ 2κ
3

------– τ xy

bz c2+
az c1+
----------------,+=

σz σ 2κ
3

------–
1

τ xy

------ az c1+( ) bz c2+( ).+=

σ –ax by– C
2κ
3

------
τ xzτ yz

τ xy

-------------, C–+ + const.= =

σx –ax by– C
τ xyτ xz

τ yz

-------------
τ xzτ yz

τ xy

-------------,–+ +=

σy –ax by– C
τ xyτ yz

τ xz

-------------
τ xzτ yz

τ xy

-------------,–+ +=

σz –ax by– C,+=
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According to (5), for the upper and bottom sides of
the layer, we obtain, respectively,

(10)

At these sides, the tangential-stress vectors take the
form

(11)

where i and j are the unit vectors along the x- and
y-axes, respectively.

According to (10) and (11), the total tangential
stresses on the layer sides are given by

(12)

where κ1 and κ2 are dimensionless values of the total
tangential stresses, with κ1 ≤ 1 and κ2 ≤ 1.

With regard to (10) and (11), the angle between the
vectors T1 and T2 , as well as the directions of these vec-
tors are given by the relations

(13)

(14)

The values of a, b, c1 , and c2 are being found according
to the given values of κ1, κ2, µ1, and µ2 .

The case c1 = c2 = 0 and µ1 = µ2 was considered
in [4].

We now assume that, on the upper and lower plate
sides, the tangential stresses attain the yield stress (i.e.,
κ1 = κ2 = 1) and the vector T1 is directed along the x-
axis:

(15)

The vector T2 takes the form

(16)

It follows from (15) and (16) that

(17)

In the case under consideration, according to (14)–
(17), we have

(18)

τ xz
+

a c1, τ yz
+

+ b c2, z+ 1,= = =

τ xz
–

–a c1, τ yz
–

+ –b c2, z+ 1.–= = =

T1 τ xz
+ i τ yz

+ j, T2+ τ xz
– i τ yz

– j,+= =

T1 τ xz
+2 τ yz

+2
+ a c1+( )2

b c2+( )2
+ κ1,= = =

T2 τ xz
2– τ yz

2–
+ –a c1+( )2

–b c2+( )2
+ κ2,= = =

ϕcos
T1 T2⋅
T1T2

----------------
c1

2
c2

2
a

2
b

2
+( )–+

κ1κ2
-------------------------------------------,= =

µ1tan
τ yz

+

τ xz
+

------
b c2+
a c1+
--------------, µ2tan

τ yz
–

τ xz
–

------
b c2–
a c1–
-------------,= = = =

ϕ µ2 µ1.–=

T1 a c1+( )i, a c1+ 1, b c2+ 0.= = =

T2 –a c1+( )i –b c2+( ) j, T2+ 1.= =

b
2

a 1 a–( ).=

a cos2ϕ
2
---, b

ϕ
2
--- ϕ

2
---,cossin= =

µ1 0, ϕ µ2–= =
and, with allowance for (18) and (9),

(19)

Introducing the variables

(20)

we obtain, in accordance with (19) and (20),

(21)

Thus, the pressure increases linearly along the
bisectrix of the angle between the vectors T1 and T2 . In
this case, the following relations take also place:

(22)

To determine the constant C entering into relation (9),
we assume that the plate edge ξ = 0 is stress-free [5],
and the normal stress averaged over the layer depth, σξ,
vanishes:

(23)

It follows from (23), (9), and (19) that

(24)

The equations defining the kinematics of plastic
flow can be written as

(25)

(26)

where εx, εxy, … are the components of the plastic-strain
rate [2].

Using conditions (2), we can rewrite equations (25)
in the form

(27)

Finally, we write out the components U, V, and W of

σz
ϕ
2
--- x

ϕ
2
---cos y

ϕ
2
---sin+ 

  C.+cos–=

ξ x
ϕ
2
---cos y

ϕ
2
---sin , η+ –x

ϕ
2
---sin y

ϕ
2
---,cos+= =

σz –
ϕ
2
---ξcos C.+=

σz –ξ C,   for   ϕ + 0,= = 

σ

 

z

 

–
2

2
-------

 

ξ

 

C

 

,   for   ϕ +  π
 

2
---.= =

σξ zd

1–

1

∫ 0.=

2C = 
τ xyτ xz

τ yz

-------------cos2ϕ
2
---

τ xyτ yz

τ xz

-------------sin2ϕ
2
--- τ xy ϕsin+ + z.d

1–

1

∫

εx εxy

n2

n1
----- εxz

n3

n1
-----+ + εxy

n1

n2
----- εy εyz

n3

n2
-----+ +=

=  εxz

n1

n2
----- εyz

n2

n3
----- εz,+ +

εx εy εz+ + 0,=

τ yz

εx

τ yz

------
εxy

τ xz

------
εxz

τ xy

------+ + 
  τ xz

εxy

τ yz

------
εy

τ xz

------
εyz

τ xy

------+ + 
 =

=  τ xy

εxz

τ yz

------
εyz

τ xz

------
εz

τ xy

------+ + 
  .
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the strain rate as

(28)

With regard to (28), relations (27) take the form

(29)

In (29), the components of tangential stresses τij are
given by (5) and (6) and depend on the coordinate z.
Two equations (29) define two continuous functions
u(z) and v(z).

U p1x q1y u z( ), V+ + p2x q2y v z( ),+ += =

W pz.=

τ yz

2 p1

τ yz

--------
q1 p+ 2

τ xz

----------------- u'
τ xy

------+ + 
 

=  τ xz

q1 p2+
τ yz

-----------------
2q2

τ xz

-------- v '
τ xy

------+ + 
 

=  τ xy
u'
τ yz

------ v '
τ xz

------ 2 p
τ xy

------+ + 
  .
DOKLADY PHYSICS      Vol. 45      No. 5      2000
Thus, the components of both the stresses and strain
rates can be determined from relations (5)–(7), (28),
and (29).
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Propagation of surface waves in a uniform elastic
half-space was first treated by Rayleigh [1]. The paper
of Rayleigh initiated a large body of theoretical and
experimental studies concerning the surface-wave
propagation along free boundaries of spherical layers,
cylinders, plates, shells, and other elastic bodies [2–4].

In this paper, we consider free vibrations driven by
the surface waves in vertically nonuniform elastic half-
spaces. We derive dispersion equations for the surface
waves and find their phase velocities.

1. We consider a plane wave {u(x, z, t), 0, w(x, z, t)}
propagating in a nonuniform elastic medium occupying
domain z ≥ h in the Cartesian xyz coordinate system. If
external bulk forces are absent, the equations of motion
for this nonuniform elastic medium take the form

(1.1)

(1.2)

We assume that the stresses are zero at the boundary
z = h of the nonuniform elastic half-space. Using the
Hooke’s law, we can write the boundary conditions at
z = h as

(1.3)

(1.4)

In general, the Lamé coefficients λ and µ and den-
sity ρ of the medium are functions of spatial coordi-
nates. In the our case of a vertically nonuniform
medium, the Lamé coefficients and the density depend

∂
x∂

----- λ u∂
x∂

----- w∂
z∂

------+ 
  2µ u∂

x∂
-----+

+
∂
z∂

----- µ u∂
z∂

----- w∂
x∂

------+ 
  ρ∂2

u

t
2∂

--------,=

∂
x∂

----- µ u∂
z∂

----- w∂
x∂

------+ 
 

+
∂
z∂

----- λ u∂
x∂

----- w∂
z∂

------+ 
  2µ w∂

z∂
------+ ρ∂2

w

t
2∂

---------.=

τ xz µ u∂
z∂

----- w∂
x∂

------+ 
  0,= =

σzz λ u∂
x∂

----- w∂
t∂

------+ 
  2µ w∂

z∂
------+ 0.= =
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only on the z-coordinate, and the Poisson’s ratio σ
equals 0.5.

We seek a solution for free vibrations of the verti-
cally nonuniform elastic half-space in the form

(1.5)

(1.6)

This form corresponds to the sine wave with the fre-
quency ω and wave number k propagating along the
x-axis.

Substituting (1.5) and (1.6) into equations (1.1) and
(1.2), we obtain the following system of differential
equations for unknown functions f(z) and ϕ(z)

(1.7)

(1.8)

Here,

(1.9)

(1.10)

(1.11)

We now consider the vertically nonuniform media
assuming that the following conditions are met

(1.12)

The condition cs = const implies that the functions µ/µ0

u x z t, ,( )
f z( )

µ z( )
------------- i kx ωt–( )[ ]exp ,=

w x z t, ,( )
ϕ z( )

µ z( )
------------- i kx ωt–( )[ ] .exp=

d
2

f

dz
2

--------- 3n1
2

f– 2ik
dϕ
dz
------+ 0,=

d
2ϕ

dz
2

---------
1
3
---n2

2ϕ–
2ik
3

--------df
dz
-----+ 0.=

n1 k
2

k1
2

–
1
3
---g, n2

2
+ k

2
k2

2
– 3g,+= =

k1
ω
cd

----, k2
ω
cs

----, cd 3cs, cs
µ
ρ
---,= = = =

g
µ'
µ
---- 

  µ'
2µ
------ 

  ' µ'
2µ
------ 

 
2

.+≡

cs const, g
µ'
µ
---- 

  const.= =
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and ρ/ρ0 are identical, i.e.,

(1.13)

The second condition in (1.12) is a differential equa-
tion for an unknown function υ(z)

(1.14)

Here, a is an arbitrary constant.
Solving equations (1.14) for the initial conditions

µ(h) = µ0 and µ'(h) = , we obtain the relationships for
the following vertically nonuniform media

(1.15)

(1.16)

(1.17)

2. According to (1.5) and (1.6), the solution to equa-
tions (1.7) and (1.8), which decreases exponentially
with the distance from the free surface of the vertically
nonuniform medium described by (1.15), determines
the components of the displacement vector

(2.1)

(2.2)

where A and B are arbitrary constants. The branches n1
and n2 of the radicals are specified by the existence con-
ditions for a surface wave

(2.3)

Substituting expressions for u and w into boundary
conditions (1.3) and (1.4), we arrive at the system of

µ
µ0
----- ρ

ρ0
-----= υ z( ).≡

g
µ'
µ
---- 

  g
υ'
υ
---- 

  υ'
2υ
------ 

  ' υ'
2υ
------ 

 
2

+≡ a.= =

µ0'

(A)
µ
µ0
----- = 

ρ
ρ0
----- = 1

µ0'

2µ0
-------- z h–( )+

2

,   for   a  = 0,

(B)
µ
µ0
----- ρ

ρ0
----- z h–

p
-----------cos

µ0' p
2µ0
--------- z h–

p
-----------sin+

2

,= =

for   a 
1

 
p

 
2

 -----,–=

(C)
µ
µ0
----- ρ

ρ0
----- cosh

z h–
p

-----------
µ0' p
2µ0
---------sinh

z h–
p

-----------+

2

,= =

for   a 
1 
p

 
2

 -----.=

u
1

µ z( )
-------------=

× A zn1–( )exp B zn2–( )exp+[ ] i kx ωt–( )[ ] ,exp

w
1

µ z( )
-------------=

×
n2

k
-----A zn1–( )exp

k
n2
-----B zn2–( )exp+ i kx ωt–( )[ ] ,exp

niarg 0,   for   k 
2
 k 1

2
 0 i 1 2 , = ( ) . > –=                                    
DOKLADY PHYSICS      Vol. 45      No. 5      2000
linear homogeneous equations with respect to the con-
stants Ä and Ç:

(2.4)

(2.5)

where,

(2.6)

If the nontrivial solution to equations (2.4) and (2.5)
exists, the dispersion equation takes the form

(2.7)

Factorization of dispersion equation (2.7) yields

(2.8)

(2.9)

It follows from (2.8) and (2.9) that equation (2.7) has
the unique positive solution at an arbitrary value of the
parameter ε ≠ 0.

Henceforth, we introduce the following notation

(2.10)

(2.11)

If ε = 0 (  = 0), then the elastic medium is uniform.
It follows from (2.8) that

If ε ≠ 0, then the elastic medium is nonuniform. In
this case, the surface-wave phase velocity is determined
from (2.9) and can be presented by the expression

(2.12)

where Ω = .

Expression (2.12) demonstrates that the surface
wave, propagating in a vertically nonuniform medium,
is characterized by the pronounced dispersion, in con-
trast to the case of a uniform medium. When ε > 0, such

n2 2n1 ε+( )A n
2 εn2+( )B+ 0,=

n2 n
2

3εn1+( )A k
2

2n2 3ε+( )B+ 0,=

n
2

2k
2

k2
2
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--------.= =

n
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2
n1– ε n

2
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2
–( ) 3n1 n2+( )–

+ 3ε2
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2
–( ) 0.=

N1N2 K
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–( ) 3N1N2 K
2
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+ 3 3+( )H ] 3 2 3–( )N1 N2 3 3–( )H+ +[ ] 0.=
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k
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N1 K
2 1

3
---– , N2 K

2
1– , H

ε
k2
----.= = =

µ0'

cR
ρ
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2
3
--- 3 3–( ) 0.9194cs.≈=

cR

cR
0
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Ω 3 3+

2
1
3
---Ω2 2 3+

4
---------------- 4 3 1–

3
-------------------Ω2

3ε2
+

3
4
---ε–

2

+

----------------------------------------------------------------------------------------------------------,=

ω
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a wave can arise at frequencies Ω ≥ Ω0 , where Ω0 =

ε . The phase velocity attains its maximum
value cs when Ω = Ω0. Then, this velocity gradually

decreases with increasing Ω and tends to  as Ω  ∞.

At ε > 0, the surface wave can arise at an arbitrary
frequency. In this case, the phase velocity increases
monotonically within the range (0, +∞), and cR tends to

 at Ω  ∞. However, in both cases, cR ≤ cs .

Thus, the nonuniformity of the medium affects the
phase velocity at low frequencies. At high frequencies,
the surface-wave phase velocity is close to the Ray-
leigh-wave velocity in the uniform elastic medium.

3 2 3+( )

cR
0

cR
0

5 10

0.6

0.8

15
Ω

ε = –1.5
ε = –0.5
ε = 0

0.4

0.2

1.0

1.2

0

cR/cR
0

Fig 1.
Plots of phase velocity as a function of frequency Ω
are presented in Figs. 1 and 2 for various values of ε.

REFERENCES
1. J. W. Rayleigh, Proc. London Math. Soc. 17 (253), 4

(1885).
2. P. Pfeiffer, in Hanbbuch der Physik. Band IV. Mechanik

der elastischen Körper, Ed. by R. Grammel (Springer,
Berlin, 1928; ONTI, Moscow, 1934).

3. I. A. Viktorov, Sonic Surface Waves in Solids (Nauka,
Moscow, 1981).

4. G. A. Maugin, Adv. Appl. Mech. 23, 373 (1983).

Translated by V. Chechin

5 10

1.04

1.08

15
Ω

ε = 1.5

ε = 0

1.02

1.00

1.10

0

cR/cR
0

ε = 0.5

20

1.06

0.98

Fig. 2.
DOKLADY PHYSICS      Vol. 45      No. 5      2000



  

Doklady Physics, Vol. 45, No. 5, 2000, pp. 225–228. Translated from Doklady Akademii Nauk, Vol. 372, No. 2, 2000, pp. 181–184.
Original Russian Text Copyright © 2000 by Ostapenko.

                                          

MECHANICS
On Interaction of Strong Shock Waves 
with Weak Low-Intensity Shocks

N. A. Ostapenko
Presented by Academician G.G. Chernyœ January 28, 2000

Received February 7, 2000
At present, the theory of interaction of shock waves
propagating through perfect gas with a constant heat
capacity appears to be a completely developed field of
supersonic gas dynamics. For problems of interference
and diffraction of shock waves, this theory provides a
way of interpreting results for numerous experiments.
It is performed under the assumption that in the small
vicinity of branch points, flows separated by surfaces of
parameter discontinuities are uniform.

However, it should be emphasized that, to a large
extent, the concept of completeness of the theory has an
a posteriori nature. This is associated with the fact that
in theoretical (calculated) studies of shock-wave inter-
action problems, especially in the case of three-dimen-
sional gas flows, it is frequently taken that the structure
of branch points results from solving the boundary
value problem as a whole. This is a possible reason why
certain properties of interaction of strong shock waves
with weak low-intensity shocks, which are the subject
of the present study, remain uninvestigated.

Perturbances of the slope of the shock-wave and
parameters behind it in the vicinity of a branch point are
shown to be finite in the general case when an oblique
shock of an arbitrarily low intensity impinges on a
strong shock wave. If the shock-wave slope with res-
pect to a uniform-flow velocity is equal to a certain
value depending on the Mach number and the adiabatic
exponent, then the perturbance of this quantity will also
be arbitrarily small.

Let u, p, and ρ be the velocity, pressure, and density
of a uniform flow with a Mach number M. We assume
that there exists in this flow a strong shock wave (the
causes for its occurrence are inessential), which is char-
acterized by the slope θ with respect to the direction of
the unperturbed velocity, and σ is the flow turning
angle in the shock wave. The intensity of a weak

Institute of Mechanics, Moscow State University,
Michurinskiœ pr. 1, Moscow, 119899 Russia
1028-3358/00/4505- $20.00 © 20225
oblique shock incident upon the strong shock wave is
assumed to be small:

(1)

Using familiar relations and retaining only the terms
linear in ∆p, we can write out expressions for parameters
characterizing the oblique shock and flow behind it:

(2)

Here, γ is the ratio of the specific heat capacities.

We now assume that polars (heart-shaped curves),
describing possible shock transitions from states in the
unperturbed flow to those behind the oblique shock,
intersect each other. In this case, the condition for the
velocities of locally uniform gas flows to be parallel on
each side of the contact discontinuity emerging from
the triple point of the λ-configuration for the shock
waves must hold:

(3)

Here, θ1 and θ2 are slopes for the shock waves emerging
from the branch point with respect to the directions of
velocities of the unperturbed flow and the uniform flow

pk

p
----- 1– ∆p ! 1.=
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1
M
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4γ M2 1–
---------------------------∆p O ∆ p2( ),+ +=
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M2 1–
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--------------------∆p O ∆ p2( ),+=

ρk 1 ∆p
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θ1 θ1 ε 2
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ε γ 1–
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behind the oblique shock, respectively. These slopes
can be found from the following formulas:

(4)

The “plus” and “minus” signs correspond to the
position of the point of intersection for polars in the
plane of the variables σ, p at σ > 0 and σ < 0, respec-
tively. The presence of the pressure p1 under the radical
sign in equation (4) testifies to the fact that one more
condition holds at the contact discontinuity: gas pres-
sures on each side of the contact discontinuity are
equal.

Substituting pk from (1) and Mk from (2) to the sec-
ond relation of (4), we find the relationship between the
angles θ2 and θ1:

(5)

Equation (5) can be written out in the form

(6)

which holds true at an arbitrary finite value of the coef-
ficient A . Note that according to (4) and (5), we
have for θ1 = π/2

(7)

By employing relations (2) and (6), we can recog-
nize that terms linear in the oblique-shock intensity ∆p
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Fig. 1.
[see (1)] are the principal ones in equation (3). Ignoring
for simplicity terms on the order of ε2 compared to
unity, we can show that at arbitrarily small values of ∆p,
for satisfying equation (3), the angle θ1 must be deter-
mined by the formulas

(8)

Here, MD is the Mach number for an unperturbed flow
for which D = 0. According to the calculation for air
(γ = 1.4), MD = 1.064. From (8), it follows that for
M < MD , polars do not intersect each other. In these
cases, the structure of the branch point must be supple-
mented with a centered rarefaction wave. The relevant
isentrope must be drawn from the sound point of the
inner polar until it intersects the external polar (σ > 0).

As M  M0 [see (8)] θ1  π/2, so that the coef-
ficient A  in (6) remains finite. As M  ∞, solu-
tion (8) to equation (3) indicates the existence of the

asymptote:  = – . The sound-flow regime is
realized behind the shock wave having the indicated
slope with respect to the direction of the unperturbed
flow.

The result obtained testifies to the fact that, at an
arbitrarily small ∆p, perturbances of a strong shock
wave (i.e., of its slope) and parameters behind it in a
certain vicinity of the branch point (whose relative size
can only be determined as a result of solving the bound-
ary value problem) are finite in the general case.
Indeed, if the slope of a shock wave subjected to a weak
perturbance is equal to θ = θ1(M, γ) [see (8)], then,
according to (6), the wave, in itself, and parameters
behind it acquire perturbances on the order of O(∆p).
However, if the slope of the unperturbed shock wave is
θ ≠ θ1(M, γ), the slopes of the shock waves emerging
from the branch point acquire finite changes for an arbi-
trarily small intensity of the oblique shock.
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The dependence K(M) ≡ | |, which was calcu-
lated in accordance with (8) for M ∈  [MD, 6] at γ = 1.4,
is shown in Fig. 1. This dependence characterizes the
slope of the perturbed strong shock wave at the branch
point. As is seen, the normal shock wave (θ = π/2) in air
is weakly perturbed when the Mach number of the

unperturbed flow is M = M0 . As M  ∞, K  .

As an illustration, for the same range of variations of
the Mach-number (see Fig. 2), the pressure coefficient
Cp in the region behind the shock wave with the slope
θ1 (curve 1) is shown. The ratio of Cp to the magnitude
of the pressure coefficient behind the normal shock
wave for the same values of M (curve 2) is also demon-
strated. This plot allows us to gain an impression of the
pressure variations behind the perturbed normal shock
wave under the action of a weak shock with an arbi-
trarily small intensity.

We introduce the entropy function S = (p1/p)/(ρ1/ρ)γ

and the coefficient of the total pressure restoration,
which is equal to the ratio of the isentropically stagnant
gas pressure behind the shock wave with the slope θ1 to
that ahead of the wave Kv = p1t/pt . These quantities are

related to each other by the formula S = .

Figure 3 shows the function S(M) for M ∈ [MD, 6]
(curve 1) and, for comparison, variation of the entropy
function behind the shock wave (curve 2). The function
Kv(M) is shown in Fig. 4 (curve 1). Curve 2 in the same
figure represents the ratio of the total pressure restora-
tion behind the normal shock wave to that behind the
wave with the slope θ1 . According to these data, at high
supersonic velocities, after perturbance of the normal
shock wave, the total pressure increases by more
than 20%.
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The function M1(M) and variation of the flow Mach
number behind the normal shock wave are also shown
in Fig. 4 by curves 3 and 4, respectively. Fast diver-
gence of the indicated curves from each other for M > 2
and (more than twofold) increase of the M1 behind the
perturbed shock wave compared to the value of the
same parameter behind the normal shock wave for
M > 5 provide the indicated increase by more than 20%
of the restoration coefficient for the total pressure. This
result may provide an explanation for the “anomalous”
phenomena of the force and heat nature on external and
internal (air intakes) elements of an aircraft under the
conditions of a hypersonic flow, which are conse-
quences of “weak interactions.”
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228 OSTAPENKO
It follows from the calculations (see Fig. 4, curve 3)
that, in a small vicinity of the number M = MD , the flow
velocity behind the shock wave with the slope θ1

becomes supersonic. This is associated with the fact
that the solutions to equation (3) are approximated by
relations (8). For M = MD , the Mach number M1 must
be equal to unity. Indeed, for all 1 < M < MD, when the
polars do not intersect each other, the isentrope emerg-
ing from the sound point of the internal polar at
∆p  0 will intersect the external polar at a point
arbitrarily close to its sound point. Therefore, in the
case of the weak interaction within the indicated range
of the numbers M, the limiting slope θ1 for the shock
wave will be that for which the sound regime of the
flow is realized behind the shock wave. Therefore, in
the interval [1, MD], the function K(M) (see Fig. 1) will
increase monotonically from zero to K(MD), and
M1 ≡ 1.
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An important problem of gas dynamics is studying
flows with discontinuity surfaces intersecting each
other. We imply, e.g., the intersection of a shock wave
with a tangential discontinuity, in other words, with a
contact discontinuity (and its limiting cases, such as a
rigid wall and a free surface) or with another shock
wave. For one-dimensional unsteady flows, a relatively
simple local problem of intersecting discontinuities is
always solvable and has been studied comprehensively
in [1]. It should be noted that since initial boundary
value problems are of the hyperbolic type, their known
local solutions make possible continuation of the solu-
tion to be obtained into the domain of its determinacy.

In the general case of steady-state three-dimen-
sional flows, the problem can be reduced locally to
intersection of rectilinear discontinuities with a con-
stant intensity in a certain plane. In this statement, there
are no length scales inherent in the problem. Therefore,
its solutions are self-similar. These solutions are also
well studied throughout the entire domain of their exist-
ence [2, 3].

However, in contrast to one-dimensional unsteady
flows, these locally self-similar solutions are not neces-
sarily determined by the given local conditions. This is
explained by the fact that the corresponding boundary
value problems are nonhyperbolic. For example, regi-
ons of subsonic flow, which occur either as a result of
interaction of discontinuities or due to the existence
(even while formulating the problem) of subsonic-flow
regions. By virtue of these reasons, a possibility arises
for conditions given downstream to affect the flow near
a point of intersecting discontinuities.

The progress in analytically investigating non-self-
similar flows with intersecting discontinuities is rather
insignificant, because of complexity and diversity of
these flows. It is sufficient to mention the semi-centen-
nial history of yet unfinished investigation of the prob-
lem for irregular (Mach) intersection of counter-propa-
gating shock waves and a specific case of the problem

Institute of Mechanics, Moscow State University,
Michurinskiœ pr. 1, Moscow, 117234 Russia
1028-3358/00/4505- $20.00 © 20229
presented by irregular reflection of a shock wave from
a rigid wall.

In this paper, we consider non-self-similar interac-
tion of a shock wave with discontinuities of both possi-
ble types with subsonic flows behind them, i.e., with a
contact discontinuity surface or another shock wave.

We begin our consideration with the problem con-
cerning reflection of a shock wave from a contact sur-
face presented by a boundary between supersonic and
subsonic flows. This problem has self-similar solutions
only in two limiting cases. They are the reflection of a
shock wave with a supersonic (or sonic) flow velocity
behind it from a free surface (i.e., from a boundary with
a quiescent gas) and the regular reflection of a shock
from a rigid wall. In all other cases, the self-similar
solutions do not exist.

This fact made the authors of [2] to declare that “the
intersection of a shock wave with a tangential disconti-
nuity having the nonzero (but subsonic) fluid velocity
behind it is impossible at all” [2, p. 582]. The excessive
rigorism of this statement will be shown below.

Seemingly, the authors of [4] were the first, who
investigated the non-self-similar interaction of a local
perturbance propagating from a supersonic-flow region
to its boundary with a subsonic flow. They considered
in the linear approximation unidirectional uniform
flows (supersonic in one half-plane and subsonic in the
other). These flows were perturbed by a general-form
pressure wave propagating from the supersonic region
to the boundary between the flows. The analytic solu-
tion obtained was applied, in particular, to calculating
the flow distorted by a localized continuous triangular
wave of increased pressure. Since, being unbounded in
its width, the subsonic region requires pressure to be
constant at infinity, the author has not considered a
stepwise pressure wave, describing approximately a
weak-shock wave.

In the same linear approximation, this has been done
in [5]. In this paper, a supersonic flow occupies a half-
plane as before. At the same time, a subsonic-flow
region represents a finite-width layer separating the
supersonic region and flowing along a plane-rigid wall.
The authors have considered the problem of reflecting
a weak shock wave from the boundary between the
flows. The other problem solved by the authors con-
000 MAIK “Nauka/Interperiodica”
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cerns the flow perturbed by the small deviation of a part
of the wall toward the side occupied by gas (flow
around a concave angle) in the absence of perturbances
coming from the supersonic region.

In accordance with the solution to the first problem,
as flow approaches the point of meeting the shock, the
pressure at the contact surface increases starting from
its value in the incoming flow. Behind this point, the
pressure drops and tends to its value behind the shock
reflected from the rigid wall. At the very point of inter-
section, the pressure has a logarithmic singularity tend-
ing to infinity. Being concave toward the supersonic
flow before the point of meeting with the shock, the
boundary line is convex behind this point and has a ver-
tical tangent (with respect to the wall confining the
flow).

In a rather inaccessible paper [6] published many
years ago by the author of the present study, the same
problems as posed in [5] had been solved with nonlin-
ear effects taken into account. The consideration was
restricted by the assumption of low-intense shock
waves, which made it possible to ignore arising vortic-
ity of the supersonic flow. The allowance for the non-
linearity in the problems under consideration enabled
us to find a structure of the non-self-similar flow, which
occurred in the case when a sufficiently weak shock

O
A B

O

2ε

2ε

ε

Fig. 1. Intersection of a weak pressure shock with a contact
discontinuity surface.

O

O

B

A
ε

Fig. 2. Flow region in the hodograph (V, θ) plane.
wave had intersected a contact surface bounding a
region of subsonic flow. This flow structure is shown in
Fig. 1. At the point O of the shock incidence, the sepa-
rating contact line has a break forming an angle with a
concavity towards the subsonic region. Thus, for the
subsonic gas flow, the point O is a braking point with
the zero velocity and maximum pressure at this point.
A simple compression wave forms in the supersonic
flow ahead of the incident shock wave due to the pres-
sure increase transferred forward through the subsonic
region. The wave is refracted while passing by the
shock and gives rise to a reflected shock. Near the
point O, this shock interacts with a centered rarefaction
wave outgoing from the same point (at this point, the
incoming shock is reflected from the boundary as from
a free surface, at which the pressure is equal to the Pitot
pressure in the subsonic flow). As a result of this inter-
action, the infinitely weak reflected shock arises
already at the point O. The shock intensity grows grad-
ually, and, at infinity, takes the value that corresponds
to the reflection from the rigid wall having none of
adjacent subsonic layer. 

Thus, the flow asymptotic behavior is observed at a
small distance from the point of shock intersection with
the contact surface, as well as far from the rigid wall.
This asymptotic behavior corresponds to the two
above-mentioned exceptional cases of the existence of
self-similar flows.

Figure 2 shows the region of the subsonic flow in the
motion-hodograph plane (in the polar V, θ-coordinates,
where V and θ represent the magnitude of the velocity
and the angle of inclination of the velocity vector to the
direction of the unperturbed flows, respectively). The
lines AO and BO correspond to the contact discontinu-
ity. To obtain them, the relation between pressure p and
the angle θ, which corresponds to simple waves, both
ahead and behind the incident shock and the Bernoulli
integral in the subsonic flow were used. The rectilinear
segment AB corresponds to the wall bounding the flow.
In this segment, the stream function ψ is equal to zero,
while, in the contour AOB, it is equal to a gas-flow rate
in the subsonic layer (ψ = Q). An assigned value of Q
determines the characteristic dimension of the problem,
i.e., a width of the layer in the unperturbed state.

We pay attention to the facts indicated in [6] but not
emphasized there. The point O shown in Fig. 2 remains
fixed no matter of the intensity of the incident shock.
Hence, even for an arbitrary weak shock, the flow per-
turbance is finite in the vicinity of this point. In partic-
ular, pressure at the point O differs significantly from
that in the incoming flow: it is equal to the Pitot pres-
sure of this flow. The angle of the separating-line
approaching the incident shock does not depend as
much on the shock intensity. However, the angle of the
separating-line break at the intersection point decreases
in proportion with a decrease in the shock intensity.

For invariable initial parameters of the problem and
an unlimited increase in the width of the subsonic layer,
DOKLADY PHYSICS      Vol. 45      No. 5      2000
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the flow in a fixed vicinity of the point O tends to the
self-similar one. This corresponds to the reflection of
the shock from a free surface, with the pressure on it
equal to the Pitot pressure of the subsonic flow. Thus,
as the intensity of a shock impinging onto the boundary
between supersonic and subsonic flows tends to zero,
the maximum perturbance remains finite and invari-
able. This nonlinear character of the interaction holds
in progressively decreasing vicinity of the point at
which the discontinuities interact with each other.

Recently, N.A. Ostapenko has informed the author
on a similar property of a solution to another problem.
It concerns interaction of an initial plane shock wave,
behind which flow is subsonic, with a low-intensity
pressure shock approaching it from the front and hav-
ing the same or opposite direction. The self-similar
solution to this problem exists only in particular cases
when parameters of both shocks and the incident flow
are linked by a certain relation. This restriction is
caused by subsonic gas velocity behind the shock.
Here, the self-similar solution loses additional arbitrari-
ness occurring in the case of supersonic flow and is
associated with a possibility of appearing either a cen-
tered rarefaction wave or a pressure shock, both outgo-
ing from the interaction point. In all other cases, no
self-similar solutions exist.

On the basis of these facts, Ostapenko has drawn a
conclusion that, for the above-mentioned relation bet-
ween the defining parameters, a low-intensity incident
shock causes similar small perturbances of both the
main shock and the flow behind it. In the general case,
this perturbance remains finite at arbitrary low intensity
of the incident shock. The behavior of the flow is quite
analogous to that described above, while analyzing the
first problem.

In the case of interaction of discontinuities, which
was considered by Ostapenko, mathematical statement
of the problem is almost completely equivalent to the
first case.

We now analyze in detail both the correspondence
of and difference in the two problems. In the first case,
the simple-wave relation between the pressure p and
the angle θ of the velocity-vector inclination is used
from both sides of the interaction point at the boundary
separating the subsonic-flow region. The position of
this boundary in the physical plane is unknown before-
hand. In the case considered by Ostapenko, a form of
this relation corresponds to the conditions existing in
the shock wave. In addition, a tangential discontinuity
penetrates from the point of interaction of the shocks
into the subsonic region. In the case of the existence of
the tangential discontinuity, it is preferable to map a
subsonic-flow region not onto the hodograph plane, as
is done in Fig. 2, but onto the (p, θ) plane. The triangu-
lar region AOB shown in Fig. 3 represents an example
of such mapping. Figure 4 presents the configuration of
the discontinuities in the flow plane. In Fig. 3, identical
letters are used to mark points and regions of the flow
DOKLADY PHYSICS      Vol. 45      No. 5      2000
plane and the corresponding states. The definiteness of
mapping is provided by the condition of boundedness
for the subsonic-flow region by the wall AB inclined to
the approaching flow at an angle θw , which differs from
the angle θa corresponding to the self-similar flow. The
same condition provides the existence of a linear scale
that is necessary in the non-self-similar case and can be
taken, for example, as the length of the segment OC.
Similarly to the previous problem, the shock bounding
the subsonic region has a break at the point O, which
forms a concave angle with a concavity towards this
region.

At the point O behind the shock, both pressure and
the angle of inclination for the velocity vector are con-
tinuous, while the value of the velocity has a jump. This
leads to forming the tangential discontinuity OB. If the
intensity of the interacting shocks is sufficiently high, it
is necessary to take into account the vorticity in a wake
adjacent to the tangential discontinuity OB behind the
most curved part of the shock near the point O.

By virtue of complicated boundary conditions for
the stream function in the region AOB of the (p, θ)
plane, it is more convenient to carry out actual solving
of the problem directly in the flow plane. Certainly, this
makes solving the problem more complicated com-
pared to the first problem.

O B A

(V, θ)

2ε

Fig. 3. Flow region in the (p, θ) plane for the second
problem.

O

B
A

p

ε θa θw θ

Fig. 4. Intersecting shocks in the case of the subsonic gas
velocity behind them.
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Similarly to [6], for constant parameters of the prob-
lem and unlimited distance between the points C and O,
the flow in a fixed vicinity of the point O becomes pro-
gressively close to the self-similar and corresponds to
the above-mentioned special relation between the ini-
tial parameters.

In contrast to Fig. 2, the position of the point O in
Fig. 3 depends on the intensity of the first shock,
namely, the angle ε. However, as was shown by Ostap-
enko, the position of the point O becomes stabilized as
ε  0. Consequently, in this limiting case, nonlinear
effects remain significant at arbitrarily small ε in a pro-
gressively decreasing vicinity of the point O. At the
same time, the intensity of the tangential discontinuity
vanishes together with ε. Obviously, it should be kept
in mind that, when the region with essentially nonlinear
effects becomes sufficiently small, large gradients of
gas-dynamic quantities in it require taking into account
the viscosity and heat conduction of gas.

It is noteworthy that, in the linear approximation
and with allowance for the flow vorticity, pressure
behind the shock has the logarithmic singularity at the
point O as in the problem discussed in [6]. Generally
speaking, in the linear approximation (with respect to ε),
mathematical problems related to interaction of a weak
pressure wave, propagating from a supersonic region,
with a pressure shock or a contact discontinuity having
a subsonic flow velocity behind them turn out to be
almost completely identical.
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1. The problem of calculating unsteady flow distri-
butions is very urgent in studying multiloop hydraulic
systems (urban heat supply and water supply, water
heating and building ventilating, cooling technological
facilities, adverse-waste removing, etc.). The necessity
for solving this problem arises, for example, in evaluat-
ing consequences of hydraulic shock and developing
measures for its protection, in analyzing controlling
processes in the case of normal and emergency condi-
tions, in designing regimes of putting into operation
and shutting-down long pipelines, and in many other
cases.

2. Unsteady motion of compressible viscous contin-
uous fluid in an isolated pipe is described by the classi-
cal system of hydrodynamic equations [1, 2]. Based on
them, N.E. Joukowski has derived formulas for calcu-
lating propagation of shock waves [3].

Models for fluid motion in a pipe were extended to
unsteady flow distributions in multiloop systems. For
this purpose, in certain cases, the original system of
hydrodynamic equations was used directly (see, for
example [4, 5]), while in other cases, the solution was
based on the Joukowski equation [6, 7]. Significant
computational difficulties were revealed in both the
cases. These difficulties are related to a necessity of
specifying two separate boundary conditions (for pres-
sures and rates) for each section of the calculation
scheme. Such a necessity arises in the course of solving
the system of partial differential equations (being
reduced under certain conditions to equations of the
hyperbolic type). The boundary conditions involve
time-dependent variables being unknown functions of
the flow distribution. The simplification of computatio-
nal difficulties by transforming computational schemes,
for example through passing from close graphs to trees,
restricts possibilities in the formulation of the flow-dis-
tribution problems. Provision for requirements of the
approximation, stability, and convergence of computa-
tional procedures, as well as finding the numerical solu-
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tion with acceptable accuracy turn out to be rather com-
plicated.

In order to overcome difficulties arising in simula-
tion of unsteady processes in complex hydraulic sys-
tems, we may employ a technique developed in the the-
ory of hydraulic circuits, which allows us to represent
laws of one-dimensional flow in simpler form com-
pared to the traditional approach, i.e., the “network”
form.

3. Based on analogy between electrical and hydrau-
lic circuits, V. Ya. Khasilev and A. P. Merenkov laid, in
the 1960s, foundations for theory of hydraulic circuits
[8–10]. Its subject is direct and inverse problems of
flow distributions and problems of optimum synthesis
(i.e., choice of schemes and parameters) for hydraulic
circuits.

As applied to problems of flow distributions, models
in the theory of hydraulic circuits are based on the rep-
resentation of an actual circuit network by an oriented
marked graph (circuit) specified by the number of
nodes m, branches (arcs, sections) n, linearly indepen-
dent loops c, as well as by matrix A with the dimension
(m – 1) × n for joints of linearly independent nodes and
branches and by the matrix B with the dimension Ò × n
for coincidence of linearly independent directed loops
and branches, etc.

Each branch is described by integral parameters: the
desired flow rate xi , loss in head yi , constant resistance
si , and the total head Hi . 

In the framework of the theory of hydraulic circuits,
the following methods were developed for solving
direct problems of the steady flow distribution in cir-
cuits with lumped parameters: the loop flow-rate
method (the analogue of the loop-current method in
electric circuits), node pressure method (the analogue
of the node-potential one), and the method of searching
for the extremum of a function, whose form is deter-
mined on the basis of principles of mechanics or the
second law of thermodynamics [11].

In the loop flow-rate method, the initial system of
equations has the form

(1)Ax Q,=
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(2)

(3)

where Q is the vector of inflows and discharges in
nodes of a hydraulic circuit.

4. In order to use the network approach in the theory
of hydraulic circuits, while solving problems of
unsteady flow distribution, we can, in particular, pass
from a system of algebraic equations (1)–(3) to the sys-
tem of algebraic-differential equations

(4)

(5)

(6)

where x(t), y(t), H(t), Q(t) are, respectively, vectorial
functions of flow rates, pressure loss, total head in
branches and inflows (discharges) at nodes of a hydrau-
lic system.

5. To determine the form of the function

fi , we take into account the fact that cir-

cuits with lumped parameters are considered (the den-
sity ρ and temperature T being constant). We assume,
in addition, that the dependence of the pressure loss on
the flow rate in a branch is quadratic. Then, the system
of one-dimensional hydrodynamic equations takes the
form

(7)

(8)

where w and P are the rate and pressure of a continuous
medium; ζ and t are geometric and time coordinates of
the pipeline section; Z, λ, and c0 characterize gravity,
viscosity, and roughness, respectively.

By changing the variables w and P, that are the func-
tions of geometric and time coordinates, and of the
integral parameters (the flow rate x and the loss in the
head y within a branch of the circuit), we obtain a clos-
ing equation in the differential form

(9)

Here, yi(t) and xi(t) are the desired functions of time in
problems of flow distributions, which determine the
state of the ith section; Ri(t), Si(t), and Ci(t) are known
parameters of the ith section; Hgi(t) and Hi(t) are,
respectively, the gravity head and total head in the ith
section of the circuit.

By 0,=

yi Hi+ f i xi( ), i 1 … n,, ,= =

A t( )x t( ) Q t( ),=

B t( )y t( ) 0,=

yi t( ) Hi t( )+ f i xi t( )
dxi

dt
------- t, , 

  , i 1 … n,, ,= =

xi t( )
dxi

dt
------- t, , 

 

ρ∂w
∂ζ
------- 0,=

ρ∂w
∂t
------- ρZ

∂P
∂ζ
------–

λρ
2D
-------w

2
c0w,+ +=

yi t( ) Hi t( )+ Ri t( )
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Based on closing relationship (9) and exploiting
foundations and the matrix technique of the theory of
hydraulic circuits, we can formulate the mathematical
model of an unsteady flow-rate distribution for a
hydraulic circuit with lumped parameters. This model
naturally fits the network model of the first and second
Kirchhoff laws written out in form (4), (5) and closing
relation (9) for all branches of the circuit (i = 1, …, n).

6. Furthermore, we followed the method of simpli-
fying the realization of computational algorithms,
which was used by V.Ya. Khasilev and A.P. Merenkov
in the case of a steady flow distribution [8–10]. To do
this, we employ transformations of the original multi-
circuit digraph into two subgraphs: i.e., a tree (graph
without directed circuits) and chords (branches com-
plementing the tree to a multicircuit graph). This made
it possible to pass from a space with the dimension 2n
to those of dimensions c (in the method of circuit flow-
rates) or m – l (in the method of node pressures).

As a result of the manipulations performed with
respect to the desired vectorial function for the flow
rates on chords [xc(t)], we obtain the canonical system
of nonlinear differential equations

(10)

where Zc and Zd are square-diagonal matrices with
components equal to the absolute value of flow rates in
sections:

dxc t( )
dt

--------------- HQ t( ) σ t( )xc t( )– Sc t( )Zcxc t( )–=

– Bd t( )Sd t( )Zd Bd
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d
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System of equations (10) complemented by initial
conditions has a unique solution (the Cauchy problem).

7. On the basis of the extremum approach [10, 11],
we can formulate, in the variational form, the problem
of analysis of unsteady regimes in hydraulic circuits
with lumped parameters.

We write out the equation of virtual displacements
for a branch of a hydraulic circuit in the form

Then the Lagrange function for the hydraulic circuit as
a whole can be written as 

(11)

This implies the following formulation of the extre-
mum problem: It is necessary to determine those com-
ponents of the vectorial function x(t) in a given hydrau-
lic circuit with n branches, which satisfy the conditions
of the material balance at circuit nodes of (4) and min-
imize the Lagrange function (11).

8. Steady states of a hydraulic circuit, which corre-
sponded to limiting points of models (10) and (4), (11)
(as d/dt[x(t)]  0), were determined on the basis of
solutions to the systems of nonlinear algebraic equa-
tions [8–10] related to systems appearing in the loop
flow-rate method. These states are, in particular, useful
for determination of the initial flow distributions, while
solving unsteady problems.

9. In the framework of the theory for hydraulic cir-
cuits, preliminary investigations of inverse problems
for the unsteady flow distribution and stability of
hydraulic systems were also performed. Studies associ-
ated with the experimental verification of the models
proposed now are being conducted, whose first results
have shown a qualitative agreement between the model
solutions and actual unsteady processes. As a whole,
the approach proposed to the description of unsteady

--+ 2Sd t( )Ω t( )Bd
T

t( )




.

hi t( )dxi Ri t( )
dxi t( )

dt
-------------- si t( )xi

2
t( ) ci t( )xi t( )+ +=

---± Hgi Hi t( )– dxi.

W Ri t( )xi t( )
dxi

dt
------- si t( )

xi
3

t( )
3

------------+
i 1=

n

∑=

+ ci t( )
xi

2
t( )

2
------------ Hgixi t( ) Hi t( )xi t( )–± .
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flows in multiloop circuits must, seemingly, be useful
in both developing theory of hydraulic circuits and
improving the efficiency of applications of this theory
in practice.
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In [1], the solution to the problem concerning action
on a face of a three-dimensional elastic wedge of nor-
mal and tangential (but perpendicular to the wedge
edge) loads was obtained. In solving the problem, the
complex-valued Fourier–Kontorovich–Lebedev inte-
gral was used, and the problem of the elasticity theory
was reduced to the Hilbert boundary value problem
generalized by I.N. Vekua (see [2]). In the special case
when a wedge angle corresponds to a half-space, the
formulas obtained for displacements and stresses in the
wedge, whose one face is stress-free, coincide with the
known solutions to the Boussinesq and Cerruti prob-
lems [3].

In this paper, a contact quasi-static problem based
on the solution obtained in [1] is considered. We ana-
lyze a die moving along a face of an elastic wedge in
the direction orthogonal to the wedge edge. Since the
die represents an elliptic paraboloid strongly elongated
along the edge, friction forces can be approximately
considered as collinear with and directed oppositely to
the die motion. The statement of the problem general-
izes the well-known case of die motion in a half-space
[4]. The integral equation of the contact problem with
an unknown contact region is solved by the method of
nonlinear boundary integral equations [5, 6]. The effect
of the Coulomb friction factor on the dependence
between an impressing force and die upsetting is inves-
tigated for different wedge angles. After solving the
contact problem, the effective stress [7] is calculated on
the symmetry axis of the contact region. Being impor-
tant in applications to the Novikov gear transmissions
[8, 9], this effective stress is calculated as a function of
the wedge angle, distance between the die and the
wedge edge, and direction and magnitude of the fric-
tion forces.

Other methods for solving three-dimensional con-
tact problems in the presence of friction were used
in [10, 11].

Institute of Mechanics and Applied Mathematics, 
Rostov State University, 
pr. Stachki 200/1, Rostov-on-Don, 344090 Russia
1028-3358/00/4505- $20.00 © 20236
In the quasi-static contact problem under consider-
ation, a rigid die, initially imbedded into a face of an
elastic wedge with the opening angle α, begins its suf-
ficiently slow skewness-free motion along this face in
the direction perpendicular to the wedge edge. Below,
we use the cylindrical coordinates r, ϕ, z with the z-axis
directed along the wedge edge. The problem is
assumed to be symmetric with respect to the z-coordi-
nate. The other wedge face (ϕ = 0) is stress-free. The
boundary condition describing contact of the bodies
uϕ(r, α, z) = –[δ – f(r, z)], (r, z) ∈ Ω , where δ corre-
sponds to the die upsetting and the function f(r, z) = (r –
a)2/(2R1) + z2/(2R2) presents the shape of the wedge
base (R1 ! R2), is satisfied due to application of for-
mula (4) from [1]. As a result, we obtain an integral
equation with respect to the unknown normal contact
pressure σϕ(r, α, z) = –q(r, z) in the unknown contact
region (r, z) ∈ Ω :

(1)

(2)

q x y,( ) 1
R
--- µ 1 2ν–
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--------------------r x–

R
2

-----------– K x y r z, , ,( )+ xd yd
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Here, θ = G/(1 – ν), ν is the Poisson’s ratio, G is the
shear modulus, µ is the Coulomb friction factor, R =

, Kiτ(x) is the MacDonald function,
and the functions Φn(u, β) (n = 1, 2) are calculated by
using the integral second-kind Fredholm equations (0 ≤
u < ∞)

(3)

(4)

The functions Wn(u, α), fn(u, α), hn(u, α), and Ln(u, t) (n =
1, 2) are determined according to formulas (2) from [1].
For µ > 0 and µ < 0, the die begins its motion toward the
wedge edge and in the opposite direction, respectively.
To improve convergence of the integrals, the singular
part is explicitly isolated in the kernel of the integral
equation (1). At α = π, equation (1) coincides with
equation (3) from [4] (with allowance for the fact that,
at µ > 0, the motion occurs oppositely to the positive
direction of the r-axis).

The formal solution to equations (3) can be written
as functional series in powers of (1 – 2ν), which are
uniformly convergent in the space of the functions that
are continuous and bounded at the semiaxis [1]. The
method of mechanical quadratures and the Gaussian
quadrature could be used for practical solving
equations (3). Singular integrals appearing in expres-
sions (2) and (4) are calculated by the standard-regular-
ization method. It is applied after the infinite range of
integration has been partitioned to localize the singular-
ities in a finite interval.

To solve the integral equation (1) under the condi-
tion q(r, z) = 0, (r, z) ∈ ∂Ω , the method of nonlinear
boundary integral equations [5, 6] is applied. It allows
simultaneous determination of normal contact pressure
and the contact region. The main features characteriz-
ing the integral operator generated by the kernel of
equation (1) at µ = 0 (i.e., its strict positiveness and
complete continuity [6]) remain valid at µ ≠ 0 as well
(for α = π, this was noted in [5]). Therefore, data
obtained in [6], at µ = 0, concerning the existence and
uniqueness of the solution to equation (1), as well as the
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method of constructing the solution, completely corre-
spond to the case under consideration when friction
forces are taken into account. Furthermore, omitting
primes, we use the dimensionless notation (2.1)
from [6] (see also the paragraph following formulas (2.1)
in [6]).

Analysis of the results obtained shows that, at α =
180°, the quantity P(δ) (see [6]) is practically indepen-
dent of µ. An explanation of this fact is presented
below. At α = 180°, the solution to equation (1) can be
sought as a series in powers of the small parameter ε* =
µ(1 – 2ν)/(2 – 2ν) [4]. Rejecting the terms on the order

of  (at µ = 0.2 and ν = 0.3,  ≈ 0.003) yields that
in the case of die motions in positive and negative
directions of the r-axis

q(r, z) = q0(r, z) – ε*q1(r, z) + O( ),

and

q(r, z) = q0(r, z) + ε*q1(r, z) + O( ),

respectively.
Here, the function q(r, z) satisfies the integral equa-

tion for the contact problem in the case of the friction-
free half-space. The function q1(r, z) is expressed in
terms of q0(r, z) regardless of ε*. The normal force P
[integral of the function q(r, z) taken over the region Ω]
is, obviously, independent of the direction of the die
motion in the half-space. Therefore, the integral of the
function q1(r, z) taken over the contact region must be
equal to zero. Consequently, the terms describing the
effect of friction forces on the function P(δ) are on the
order of o(ε*). The friction essentially affects the
eccentricity (and the momentum) of the normal force,
which provides the skewness-free die motion. As is
well known, in the axisymmetric contact problem with
allowance for friction [12], friction forces do not affect
the dependence P(δ) at all. (Two independent systems
of stresses and strains arise there: one of them deter-
mines the normal force regardless of µ, while the other,
the force momentum dependent on friction.) The
smaller the wedge angle, the stronger the friction and
the effect of the motion direction on the function P(δ).
Table 1 (for a quarter of space, α = 90°), presents the nor-
mal force P × 103 as a function of the upsetting δ × 103

at different values of the friction factor µ. Here, the
values A = 0.1, B = 0.005, ε = 0.15, λ = 1, and ν = 0.3
(γ = 0) are taken in the notation of [6].

In the case of the angle α < π, the closer the die to
the wedge edge, i.e., the smaller λ [6], the smaller the
value of P(δ) due to the increase in the flexibility of the
elastic material. Being known at zero friction [6], this
conclusion is valid at fixed µ ≠ 0 as well. If the die
moves to the wedge edge (µ > 0 and λ is fixed), then
P(δ) is smaller (it is easier to impress the die) compared
to its value at µ = 0 and the same value of λ. If the die

ε*
2 ε*

2

ε*
2

ε*
2



238 POZHARSKIŒ
moves off the edge (µ < 0 and λ is fixed), P(δ) exceeds
its value corresponding to µ = 0 and to the same value
of λ. This increase in the force (at µ < 0) occurs because
of higher maximum normal contact pressure. At the
same time, the area of the contact region occurring at
µ < 0 can be smaller than that at µ = 0, while the latter,
in turn, is smaller compared to area of the region Ω at
µ > 0. (For example, at α = 70°, λ ≈ 0, and δ × 103 = 6.5,
values of the rest parameters are the same as in Table 1).
At δ = const, the motion of the die toward the wedge
edge (µ > 0) counteracts the loss of the contact in the
vicinity of the edge (i.e., to the departure of the edge
from the die), which is observed at µ = 0, λ ≈ 0, and suf-
ficiently acute angles α [6].

After the contact problem has been solved, in other
words, when the function q(r, z) and the contact area Ω
are already known, it is possible to determine the
dimensionless effective stress  = σe/(2πθ), which is
important in applications [8, 9]. The method of optical
analogy made it possible to determine (see [12, p. 67])
that, for nonzero friction under the smooth die, the zone
of the maximum tangential stresses is shifted close to
the boundary of the elastic half-plane. Furthermore,
based on the concept of the surface strength, we calcu-
late  at the axis of symmetry of the contact region (z
= 0). To do this, we employ the first formula (3.1) ([6])
and the following formulas (primes are omitted):

σe'

σe'

σe  =  2 
1 2/– σ r σ ϕ – ( ) 

2 σ ϕ σ z – ( ) 
2 σ z σ r – ( ) 

2
 6 τ r ϕ 

2
 + + + , 

Table 1.  Force P × 103 at α = 90°

µ δ × 103 = 
4 4.5 5 5.5 6 6.5

–0.2 0.531 0.632 0.740 0.849 0.965 1.09

–0.1 0.510 0.605 0.708 0.812 0.920 1.03

0 0.491 0.581 0.678 0.777 0.879 0.986

0.1 0.474 0.559 0.650 0.746 0.841 0.942

0.2 0.457 0.539 0.625 0.716 0.808 0.903
(5)
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In (5), all components of the stress tensor are normal-
ized to 2πθ. To improve convergence of the integrals

occurring in expressions for  and  in (5), the

terms corresponding to the case α = π are explicitly iso-
lated there. For α = π, we have E1(β, t, u) ≡ E2(β, t) ≡ 0.
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The results of integrating by parts testify to the coinci-
dence of the stresses σr and σz calculated at the boundary
of the half-space by both (5) and the formulas from [3].

If to set in (5) µ = 0 and α = π and consider the func-
tion q(r, z) as defined by law (3.4) of [6] in the elliptic
region Ω , then, at the point of the initial contact (in the
center of the ellipse), the expression for σe turns into
the known formula (3.5) of [6]. For the sufficiently
elongated ellipse under consideration, σe correspond-
ing to the center of the ellipse, has the maximum value
for the contact surface and considerably exceeds the
values of σe at the ellipse edge [7]. If the shape of the
ellipse Ω is close to a circle, the maximum value of σe

on the contact surface is attained at the edge of the
major semiaxis. However, this value only slightly
exceeds that at the point of the initial contact [7].

Table 2 presents the values for upsetting δ × 103 and
the maximum effective stress σe × 103 occurring at the
symmetry axis of the contact region. The data corre-
spond to the constant impressing force P × 103 = 0.583
and different friction factors µ (and directions of the die
motion), for the half-space, the wedge with the opening
angle α = 110°, and values of λ, which characterize a
degree of the die closeness to the wedge edge [6]. Values
of other parameters are the same as in Table 1. If friction
forces are taken into account for the half-space (and for
the wedge at values of λ and α being not too small),
then the maximum of σe is attained, as before, at the
point of the initial contact, and the value of σe grows
with increasing |µ|. For the constant impressing force in
the vicinity of the wedge edge (and sufficiently small
values of λ), a point corresponding to the maximum of
σe begins to shift from the initial contact point. At µ < 0
and µ > 0, this shift occurs, as a rule, toward the wedge
edge (friction forces are directed toward the edge) and
in the opposite direction (friction forces are directed
from the edge), respectively. For α = 70°, λ = ε, and val-
ues of other parameters corresponding to Table 2, the
contact is violated in the vicinity of the edge (due to a
significant increase in the upsetting at a constant force).
Table 2.  Upsetting and effective stress at a constant force P

µ
α = 180° α = 110°, λ = ε α = 110°, λ = ε/2 α = 110°, λ = ε/4

δ × 103 max σe × 103 δ × 103 max σe × 103 δ × 103 max σe × 103 δ × 103 max σe × 103

–0.2 4.00 1.61 4.52 1.56 4.74 2.10 5.02 2.40

–0.1 4.00 1.26 4.76 1.17 5.04 1.53 5.32 1.82

0 4.00 1.12 5.00 1.08 5.34 1.49 5.62 1.80

0.1 4.00 1.26 5.23 1.29 5.42 1.56 5.90 2.04

0.2 4.00 1.61 5.46 1.73 5.89 1.99 6.18 2.34
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