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Studying the process of the formation of polymer
semiconductors by the method of dielectric spectros-
copy has considerable significance for developing
materials of molecular electronics with prescribed elec-
trophysical properties, in particular, materials synthe-
sized from conducting molecular chains [1, 2]. With
this purpose, we used the model of grains–interlayers
[3], which was modified with allowance for the spheri-
cal shape of grains. This modified model was applied to
determine the thickness h of high-resistance surface
layers for conducting molecular domains of polyacene-
quinones [4] on the basis of their dielectric-spectra
parameters. The corresponding structure model of the
polymer represents the close packing of identical cubes
with ribs of length L in which two-layer spherical
domains are inscribed. In this case, the low-resistance
part of a domain is a sphere with the radius R = L/2 – h
[5]. The permittivity ε' of both this sphere and its envi-
ronment in the cube is assumed to be identical and
equal to  = 4, i.e., to the value of ε' for polyacene-
quinones at sufficiently high frequencies of the applied
electric field.

For calculating the low-frequency limit   of the
permittivity for the proposed structure model in the
region of dispersion associated with the interlayer
polarization [6] of conducting spheres, we consider two
neighboring cubes with a common face. The conduct-
ing spheres 1 and 2 in these cubes have charges Q1 and
Q2 and potentials U1 and U2 = –U1. In this case, the
charges can be expressed in terms of the potentials for
the conducting spheres by the equation Qi = cikUk ,
where i, k = 1, 2; k is the summation index; and the
capacitance coefficients cik [7] are the functions of the
structure-model parameter γ = h/R:
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(2)

Here, C0 = 2πε0 R, ε0 = 8.85 × 10–12 F/m, n are inte-

gers, and f (γ) is expressed by the formula

(3)

Ignoring the surface capacitance of the conducting
spheres, which is associated with the stray field outside
the cubes, we can express the relation between their
static capacitance Cs and C0 by the formula

(4)

For γ ≥ 10, according to formula (4) with allowance
for (1)–(3), Cs and C0 virtually coincide, and the per-
mittivity of the structure model approaches its high-fre-
quency value . By this reason, the relationship
between  and  must be similar to (4):

(5)

For γ ≤ 0.1, the function F(γ) virtually coincides
with the logarithmic asymptote

(6)

where a = 2.2 and k = 1.1.

The contribution of the polarization mechanism
under consideration to the permittivity of the polymer
for the proposed model 1 is expressed by the formula

(7)

Here, ∆ε' =  –  is the increment of permittivity
within the dispersion region and b = 1.2. In this case,
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Parameters of dielectric spectra and structure models for polyacenequinones.

Polymer σ0, 10–5 S m–1 ∆ε' τp, 10–8 s α γ2, 10–2 γ4, 10–2

55JTK(2) 200 10 2.8 8 0.65 – 6.6

55JTK(3) 700 10 2.8 1.8 0.65 – 6.6

55JTK(5) 600 28 7.8 3.2 0.65 14 –

76EHE(3) 70 13 3.3 10 0.6 – 1.4

76EHE(5) 5 32 7.8 280 0.55 12 –

76EHE(8) 500 30 7.6 5.3 0.6 13 –

76EHE(10) 27 50 12 500 0.55 8 –

76EHE(20) 710 80 17 0.5 5 –

76EHE(24*) 2 27 5.3 1000 0.47 14 –

Note: σ0 is the specific conductivity for the direct current. The 76EHE(24*) polymer is obtained with an interruption in the course of synthesis.

εM
''
the values of the volume concentration for the conduct-
ing phase

(8)

are assumed to be reasonably high: γ1  0, v1  π/6.
A similar contribution for the grain–interlayer

model [3] (model 2) can be calculated from the gener-
alized Lorenz–Lorentz formula [8]:

(9)

Here, 0 ≤ N ≤ 1 is the coefficient of the grain depolar-
ization, which is equal to 1 for the extremely com-
pressed conducting spheroids (or the close-packed two-
layer cubes [3]) perpendicular to the applied electric
field, while the volume concentration of the conducting
phase is expressed by the relationship

(10)

where γ2 = . With decreasing thickness of insu-

lating interlayers in such cubes (h2  0, v2  1), the
increment of the permittivity for this model as
∆ε'  ∞ is

(11)

For the structure model of the close-packed two-
layer spheres, ∆ε' is calculated from formula (9) for N =
1/3 (model 3). In this case, the maximum value for the
volume concentration v3 of the conducting phase corre-
sponding to γ3 = 0 is 0.637.

In the proposed structure model of the close-packed
cubes, the two-layer spheres form a cubic lattice. To
fulfill the condition v  1 as ∆ε'  ∞, which is
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characteristic of the grain–interlayer model [3], we can
determine the volume concentration of the conducting
phase without taking into account the dielectric matrix
outside these spheres:

(12)

Here, V is the volume, and the subscripts 1 and 2 are
referred to the conducting volume of the sphere and to
the near-surface high-resistance layer, respectively. In
this case, in the proposed variant of the model of spher-
ical grains–interlayers (model 4), the following expres-
sion for ∆ε' follows from formula (7) with allowance
for (12):

(13)

The corresponding expression related to the model of
two-layer spheres (model 5) follows from formula (9)
for N = 1/3:

(14)

In an alternating electric field with the circular fre-
quency ω, the permittivity ε' and the loss factor ε'' for
polyacenequinones within the radio-frequency range
and in the absence of the barrier polarization mecha-
nisms are described by the Debye equation [8]:

(15)

Here, j is the imaginary unit, τp is the most probable
value of the relaxation time τ in the statistical distribu-
tion being explained by the distribution of domains
over the conductivity, and α (0 ≤ α ≤ 1) is the parameter
of this distribution.
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Dispersion plots for 76EHE(3), 76EHE(8), and 76EHE(24*) polyacenequinones: (1) ε1; (2) ε2 . The sample diameter and thickness
are 2.5 and 0.1 mm, respectively [11]. (3) ε2 for the mixture of a polymer with paraffin for the polymer volume concentration
of 0.1 [5] and εM = 0.1. Temperature is 293 K.
76EHE and 55JTK polyacenequinones on the basis
of pyrene and dianhydride of pyromellitic acid, as well
as of pyrene and 2-chlorbenzoic acid, respectively,
were obtained according to the well-known method [9]
of polycyclic condensation at 306°C in the presence of
zinc chloride with the ratio 1 : 1 : 2 between the initial
reactants. The duration of the reaction, which varied
within the limits from 2 to 20 hours, is indicated in the
parentheses near the name of a polymer in the notation
of [9] (see table).

Parameters of dielectric spectra for the investigated
polyacenequinones are determined by the method of
dispersion plots [10] with allowance for the assumed
spherical shape of domains [5]. In Fig. 1, we display the
frequency dependences for reduced values of permit-

tivity ε1 =  and the loss factor ε2 = , where

 is the maximum of ε'' in the dispersion region.

The values of the parameter γ are also presented in
the table. When estimating the thickness of surface lay-
ers in domains of size L ≤ 1 µm [11], model 5 admits
h ≤ 20 nm for the largest observed values of ∆ε' on the

ε' ε∞'–

∆ε'
--------------- ε''

εM''
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order of 100. However, this model does not take into
account mutual capacitance of neighboring conducting
domains. The better substantiated model 4 makes it
possible to explain only values of ∆ε' lower than in
model 5 by an order of magnitude (see table) due to a
low mutual capacitance of the neighboring spherical
conductors. In this case, according to formula (13), the
magnitude of h does not exceed 30 nm. For ∆ε' @ 10,
better results are given by model 2 of close-packed con-
ducting cubes separated by insulating interlayers (see
table). For substantiating its applicability, it is possible
to assume that the deformation of spherical domains in
the region of their contacts with neighboring ones
increases the mutual capacitance of conducting
regions. In this case, we can expect an increase in the
depolarization coefficient of domains from one-third
for the conducting spheres to unity for conducting
cubes. In principle, this fact admits experimental verifi-
cation provided that the accuracy of measuring param-
eters for the dielectric spectra is improved.

In the case of determining ∆ε' by the method of the
domain-pseudoisolation effect [5], the order of magni-
tude for the result obtained is independent of the depo-
larization coefficient when it varies in the above-indi-
cated limits. Therefore, for estimating the parameter γ2
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according to formula (11), we used the values of ∆ε'
corresponding to N ≈ 0.3 [5] (see table).

We have assumed that the deformation of domains
corresponding to the increase in N proceeds in the liq-
uid state of the reacting mixture and is conserved after
its solidification. An original drop of monomers is
probably formed by means of a spontaneous dispersing
in the melt of pyrene and dianhydride of pyromellitic
acid and acquires the spherical shape owing to the sur-
face tension in the liquid dispersion medium [13; 14,
p. 162]. The cause of the domain deformation can be an
increase in their volume concentration in the dispersion
liquid. Such a mechanism for the formation of polymer
semiconductors represents an interest for molecular
electronics as a controlled method for fabricating
molecular and submolecular heterogeneities at the
microstructure and nanostructure levels.

The investigation carried out testifies to the possibil-
ity of using dielectric spectroscopy for studying the for-
mation processes of polymeric semiconductors.
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1. The block structure of a material arising in the
course of its fracture was discussed in [1]. This problem
can be formulated in the following way.

Let us consider a medium with particles xi . Under
loading, it transforms into a new structural state with
blocks Xi . If H(α, β, e) and H'(α', β', e') are free ener-
gies of the initial and final states, respectively, the tran-
sition can be represented as the following transfor-
mation:

Here, α and β are the coefficients of elasticity and e and
e' are the strains corresponding to particles xi and
blocks Xi , respectively. The block state, referred to as
the fracture state, is completely defined by coefficients
α' and β'.

On the other hand, a local phase transition is
observed in the vicinity of a crack tip. In ZrO2, for
example, the local phase transition manifests itself in
the anomaly of the crack propagation rate [2]. Local
phase transitions were also observed in the course of
the hot pressing of boron nitride [3], at the surfaces of
pores, and during the thermal fracture of diamonds [4].
Thus, the state close to fracture can be considered as
that of the state of phase transition or the critical state.
Based on an analogy between the (σ, e) diagrams and
(P, V) or (P, ρ) diagrams, the authors of [5–8] analyzed
the critical state of a strained medium. In this paper, we
follow the same concept and use the renormalization
group technique to determine coefficients α' and β' in
the fracture state. These coefficients are assumed to
depend on α and β according to the model discussed
in [9]. Then, we derive the equation of the fracture sur-
face in the parametric µ-space. This means that the cri-
terion of fracture corresponds here to a surface in the
parameter space.

2. Let us consider a close vicinity of the crack tip in
an elastic medium. The free energy in this domain can

H α β e, ,( )         H ' α ' β ' e ' , , ( ).                                
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be written in the momentum representation

We assume, of course, that only the second order tran-
sition occurs in the vicinity of the crack tip. Function F
plays here the role of Hamiltonian H in the theory of
phase transitions:

(1)

The parameter space is formed by the following µ
points:

3. To determine the fixed point, we use the method
of renormalization group Rs [10]. Under the effect of
Rs , Hamiltonian H transforms according to the follow-
ing rules:

(2)

where δ  = . In the second-order

approximation, we have
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Hamiltonian H after transformation Rs,  and 〈H1〉
denotes the average over the Gaussian distribution

exp( ).

Substituting (1) into (3), calculating the integral
in (3), and replacing ei by λsei(sp), we find

(4)

(5)

Similarly to [12], we described here the state with
strain ei (i = 1, 2, …, 9) in the E space. To calculate
averages over , we separate  from e, assuming
according to the definition that eik =  + ,  =

L−d/2 , and  = L–d/2 . As a result, we

find

(6)

(7)

where

and n is the strain space dimension (n = 1, 2, …, 9).
Let us calculate the expression

(8)

where Q = β/4. Note that, according to the Wick theo-
rem, the average of an odd function is equal to zero.
Then, we consider the approximation e'(y) ≈ e'(x) +
δe'(x). In the zeroth-order approximation, we have
e'(y) ≈ e'(x) (see [11]), and (11) can be reduced to the
following form:
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êi
2〈 〉 nB 1 s

–2 e+–( ) nC s,ln–=

ei'êi( )
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where G(r) = (2π)–2r–2ρ–1(J0(Λr/s) – J0(Λr)), d = 4, and
J0 is the Bessel function. We limit ourselves to the
case when both λ and β are of the order of o(e) and
calculate (9) accurate to the order of o(e2). If compo-
nents (λ*, β*) of the fixed point are actually of the order
of o(e), we may implement the obtained results to
determine these components. According to [10],
expression (9) already contains β2 = o(e2) as a factor;
hence, it is sufficient to calculate the corresponding
integral only at d = 4 – e, and it is possible to neglect λ.
It is known that

As a result, we find

(10)

Term (b) in (10) is a constant depending on e'(x) and
contributes to the additive quantity A'Ld involved in (3).
Term (a) has the form e'2(x), and it contributes to λ. The
other terms in (10) contain e'4(x). Relationship (10) can
be represented as
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(13)

Here, we consider the critical state as the fracture
state. Therefore, the critical character of a region adja-
cent to the crack tip determines the properties of the
crack. Let us discuss the features of the fixed point in
the course of phase transition. Fixed point (λ*, β*)
described above is stable, since y2 = –e < 0. Under con-

dition  = µ*, the equation

describes the critical surface accurate to O(e).

4. Features of the model that describes the develop-
ment of a crack in a continuous medium are summa-
rized below. Under the effect of external forces, the sys-
tem involving the medium with the crack turns out to be
in the state of fracture (in the state of phase transition).
Since stresses are concentrated at the crack tip, the
phase transition occurs precisely in this region. This
phase transition of the second order reduces the
strength of the medium and promotes propagation of
the crack. Paper [13] puts forward the scaling law,
according to which the defect formation process is self-
similar in the course of multiple fracture. In fact, our
model allows a similar interpretation. However, in the
modern theory of critical phenomena, the scaling has a
more fundamental physical meaning than simply the
geometric similarity of a crack. It is related to the fluc-
tuation behavior of stress and strain fields accompany-
ing the plastic deformation. As a result, each point µ of
the parameter space determines the distribution of the
probability density for the state under study. The
change in the character of strains in the medium deter-

Dλ' Q2sd rdd 48n2 n2 2+( )G2 r( )G 0( )[d∫–=

+ 32n2 n2 2+( )G3 r( ) ] ,

Dβ' Q2sd 72n2G2 r( ) rdd .d∫–=
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Lµ

s ∞→
lim

λ 1
2ρ
------β n2

2
----- 1+ 

  Λ2k4+ 0=
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mines the new point µ'. We described this change by the
renormalization group transformation Rs ,

We constructed the renormalization group in two
stages. The first stage involves the coarse-grain parti-
tioning H''[e] = KsH[e], where Ks is the Kadanoff trans-
formation. At the second stage, we reduced the system
by a factor of s down to the initial dimension H'[e] =

, x' = x/s. The scaling parameter s
reflects the correlation length of fluctuations and, con-
sequently, the block dimension in the fractured state.
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Nowadays, one of the most widespread technologi-
cal processes for separation of complex mixtures is
membrane filtration. Among the materials used in this
process, an important role is played by track mem-
branes (nuclear filters) manufactured by means of irra-
diating polymeric films by high-energy ion beams with
the subsequent etching tracks until pores have been
obtained [1]. The distinctive features of track mem-
branes compared to traditional ones are their high
selectivity with respect to particles to be filtered, low
adhesion ability, and inertial behavior with respect to a
large number of compounds—including also biological
objects. The track membranes are used in the processes
of purification, concentration, and filtration of viruses,
for purging vaccines of medicine solutions [2], etc.
These membranes are also promising in developing
means for protecting respiratory organs against unfa-
vorable actions.

Determining the geometrical dimensions of filtra-
tion channels in track membranes is rather significant
for using them efficiently. Meanwhile, the solution of
this problem is not evident in the case of pore diameters
smaller than 0.5 µm. Standard methods of optical
microscopy make it impossible to resolve such sizes,
while electron and X-ray microscopy (wavelengths of
0.05 to 0.3 nm) require additional processing of the sur-
face for materials under study.
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EXPERIMENTAL SETUP 
AND SCHEMATIC DIAGRAM 

OF THE EXPERIMENT

For investigating properties of track membranes, we
used a microscope operating with soft X-rays and hav-
ing a Schwarzschild lens. The microscope magnifica-
tion attained 20× at a wavelength of 20 nm [3, 4]
(Fig. 1). The Schwarzschild lens was composed of two
spherical mirrors (a concave mirror with R = 100 mm
and a convex one with r = 35 mm) with an aperture of
0.17 and a common center of curvature. The object
under investigation was situated at a point where the
third-order spherical aberrations were compensated.
The theoretical spatial resolution of the lens was
0.1 µm. The mirrors had multilayer Mo/Si coatings
providing a reflection factor of ~20% at a wavelength of
20 nm. A thin aluminum filter cut off the visible-range
radiation. Plasma was formed as a result of focusing the
YAG-laser radiation (λ = 1.06 µm, τ = 5 ns, E = 0.1 J)
upon the surface of a solid-state target onto a spot 0.1 mm
in diameter. The object was illuminated by the laser-
plasma source with the help of an optical condenser. The
lens, the source, and the photographic film were placed
into a vacuum chamber with a pressure on the order of
10−3 mm Hg. The image was recorded for 1 to 10 laser
bursts by UF-4 film (NIIKhIMFOTOPROEKT, Russia).

In contrast to the previous versions of the Schwarzs-
child microscope operating with a unique intense laser
in the single-pulse mode (the pulse energy attained
20 J), the new microscope uses a low-power pulse-fre-
quency laser. The exposure of the film is regulated by
the number of pulses of the solid-state laser and is
unlimited. The construction of the device provides suf-
ficient stability so that no adjustment is necessary dur-
ing the time interval between laser pulses.

IMAGE FOR THE SET 
OF TRACK MEMBRANES

Track membranes can be investigated by X-ray
microscopes because they provide a good contrast in
the wavelength region near 20 nm, which is difficult to
000 MAIK “Nauka/Interperiodica”
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Fig. 1. Schematic diagram of the X-ray microscope operating at a wavelength of 20 nm: (1) massive tungsten target, (2) laser plasma,
(3) optical condenser, (4) aluminum filters 0.4–0.5-µm thick, (5) test object, (6) UF-4 photosensitive film, and (7) Schwarzschild
lens.

2.5 µm 10 µm

(a) (b)

Fig. 2. Images of nuclear filters with pore diameters of (a) 0.2 and (b) 1 µm. The images were obtained by means of an X-ray micro-
scope with an operating wavelength of 20 nm.
attain in the visible range or harder X-ray (the wave-
length λ < 0.3 nm) spectral range.

As samples, we used irregular track membranes fab-
ricated from polyethylene terephthalate (lavsan, i.e., a
Russian equivalent of Dacron) with a pore diameter of
1 µm (a matrix thickness of 20 µm) and 0.2 µm (a
matrix thickness of 10 µm) [5]. Moreover, we investi-
gated regular track membranes with a pore diameter of
0.5 µm and a period of 1 µm.

In Fig. 2, the shape of pores in the irregular track
membranes with orifice diameters of 1 µm is well seen.
The density of the orifices measured on photographs
amounted to 6.28 × 107 cm–2.

In order to attain the highest possible resolution, we
investigated membranes with small orifices. In this
case, it turned out that for orifice diameters smaller than
0.15 µm, the membranes became virtually opaque
DOKLADY PHYSICS      Vol. 45      No. 6      2000
owing to the diffraction inside the pore channels. The
minimum diameter of pores that we managed to inves-
tigate was 0.2 µm. Figure 2 presents the photograph of
such a membrane, which exhibits the shape of channels
and density of orifices. This density amounted to 1.35 ×
108 cm–2. In both cases, the measured densities coin-
cided with those found in the independent electron-
microscopic investigations.

In addition to membranes with irregularly disposed
pores, we also obtained images of track membranes
with a regular set of pores (a mean diameter of orifices
was 0.5 µm). In Fig. 3, we show the photographs
obtained with the help of the electron microscope and
Schwarzschild microscope. Using such photographs, it
is easy to estimate the magnification of the microscope
and to compare the imaging properties of the Schwarzs-
child microscope with a standard image obtained by the
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Fig. 3. Images of a regular track membrane with channel diameters of 0.5 µm. The images were obtained by means of an X-ray
microscope with a wavelength of 20 nm and by an electron microscope.
Fig. 4. Numerical simulation of the field inside and beyond a pore of 0.2 and 1 µm in diameter.
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electron microscope. The Schwarzschild microscope
reproduces the periodic structure well. It is also seen
that the dimension of the orifices is not markedly dis-
torted by diffraction effects.

The visualization of pores with a small diameter of
~0.2 µm required a considerable increase in the expo-
sure time compared to pores with a diameter of ~1 µm,
and, as has been noted, for pore diameters of ~0.15 µm
the pores became virtually opaque. In order to investi-
gate the dependence of the transparency of pores on
their diameter, we performed numerical simulation of
the interaction between an electromagnetic wave and
small orifices.

NUMERICAL CALCULATION 
OF A FIELD BEYOND THE TRACK MEMBRANE

A field beyond the membrane filter was calculated
theoretically by the numerical solution of the parabolic
wave equation under the assumption that the plane
monochromatic wave is incident to the filter [6]. The
permittivity of the track membrane involved the real
and imaginary parts according to known constants for a
wavelength of 20 nm.

The field distribution for various distances from the
membrane plane can be seen in Fig. 4. The exposure
time for photographic materials is determined experi-
mentally, and the complete blackening can be attained
when the radiation passed corresponds to an arbitrary
color, thereby inducing either an increase or decrease in
the orifice size compared to the actual one.

The calculation results for the field beyond pores of
0.2 µm in diameter show a considerable decrease in the
membrane transmission for X-ray radiation, which cor-
responds to experimental observations.

Thus, using the Schwarzschild microscope, we
managed to observe the structure of track membranes,
with the resolution being higher than that of the optical
microscope without additionally processing the mem-
DOKLADY PHYSICS      Vol. 45      No. 6      2000
brane surface. We succeeded in measuring the density
of tracks and in studying their shape. The resolution of
0.2 µm obtained for an actual object is close to the the-
oretical ultimate resolution.

By the method of the parabolic equation, we per-
formed numerical simulation of the X-ray transmission
through pores with allowance for the diffraction as well
as for the refraction and absorption in the membrane
material.

In contrast to electron microscopy, the method
described for investigating track membranes is nonde-
structive and makes it possible to obtain information
about the entire track, not just about the part of the
membrane adjacent to this track.
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In contrast to thermally ionized gas, gas-discharge
plasma has unusual dynamic properties discovered dur-
ing the period from the late sixties to the early seventies
[1–3]. In such plasma, the measured sound velocity
turned out to be lower than that in the nonionized gas at
the same temperature. Moreover, amplitudes of sound
waves in gas-discharge plasma turned out to be larger
than those in the nonionized gas at the same external
parameters and was seen to increase by several times
while cooling plasma [3].

In 1978, it was also found that a spherical model
body moving in air gas-discharge plasma began to gen-
erate a head shock wave at a Mach number smaller than
that for the body moving in air at the same gas param-
eters [4].

Theoretical analysis of this phenomenon [5–7]
failed to explain both unusual effects of cooling plasma
under the action of sound waves [8] and the consider-
able decrease of the heat flow at the frontal surface of a
spherical model body moving in plasma compared to
those in air (at the same velocity, temperature, and
static pressure) [9].

These experimental results suggest that, apart from
the conventional kinetic energy of random motion,
there exists an additional potential energy of intermo-
lecular interaction in plasmas.

On the basis of this assumption, the following two-
term equation of state for gas-discharge plasma was
proposed [10, 11]:

(1)

Here, P and T are pressure and temperature; n is the
current particle density (concentration); n0 is the den-
sity of plasma originating in the process of gas dis-
charge at the initial values P0 and T0; α is a coefficient
of the interparticle interaction; and k = 1.38 ×
10−16 erg/K is the Boltzmann constant.

P nkT α n2 n0
2–( ).+=
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Using equation (1) and the first law of thermody-
namics, which is written in a differential form, we
obtain the expression for the sound velocity squared

(2)

where CV is the molar heat capacity at a constant vol-
ume and constant plasma temperature, and µ is the
molecular mass. As is seen from formula (2), the sound
velocity in plasma and Poisson’s ratio γP are higher than
the corresponding experimental values for ideal gas.

It should be noted that vibrational degrees of free-
dom for molecules turn out to be excited in gas dis-
charge and, therefore, the distribution function of the
electron energy becomes nonequilibrium. However, all
these effects result in the increase of the internal molec-
ular energy, which must be accompanied by a decrease
in the ratio γP for specific heat capacities of plasma, i.e.,
contradictory to available experimental data. Thus, the
increase of γP cannot be explained by intramolecular
processes but is a result of intermolecular interaction.

Measurements of the drag force acting upon a
spherical model body moving either in slightly ionized
gas-discharge plasma or, for comparison, in nonionized
air [12] have led to the discovery of three effects.

Firstly, the sound velocity W in gas-discharge
plasma turned out to be equal to 840 m/s (a point of
inflection for the velocity dependence of the drag coef-
ficient Cx , which occurs due to the change from the
subsonic to supersonic motion), while the gas-kinetic
(thermal) value at T = 1140 K is 660 m/s.

Secondly, for subsonic velocities, the value of Cx in
plasma turned out to be considerably smaller than that
in nonionized air. This fact is explained by the decrease
in Cx with an increasing Mach number for subsonic
velocities. Since the sound velocity in plasma is always
higher than that in air, the Mach number in plasma (for
equal velocities) is smaller than that in air.

W2 CV R+
CV

-----------------
RT0

µ
---------

2αNn0

µ
-----------------+=

=  
CV R+

CV
-----------------

2αNn0

RT0
-----------------+ 

  RT0

µ
--------- γP

RT0

µ
---------,=
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The third effect is the most important and surpris-
ing. Namely, a significant rise of Cx can be expected in
plasma for supersonic velocities compared to that in
nonionized air, which is, naturally, impossible.

From various explanations of this phenomenon,
only one turned out to be consistent with experimental
data. Namely, there is a small amount of additional
“hidden” mass of metastable molecules bound with
each other in gas-discharge plasma consisting of mole-
cules of slightly ionized ideal gas [13]. The molecules
of the hidden mass are integrated into a volume struc-
ture, i.e., a certain “skeleton,” with large bonding ener-
gies and, therefore, have no translational degrees of
freedom. This implies that these molecules do not pro-
duce the external pressure. Therefore, when measuring
pressure, their presence in plasma remains unobserv-
able. Moreover, the motion of optical electrons in the
particles forming the skeleton is unaffected by the
action of the electromagnetic field within the visible-
light range. Thus, the presence of bound particles in
gas-discharge plasma cannot be detected by interfer-
ometers.

We denote the densities of free and bound molecules
(atoms) by nf and nb, respectively. Then, the total parti-
cle density in plasma is n = nf + nb. Since the relative
concentrations of free and bound molecules are inde-
pendent of the density, then, we can write ψ = nf 0/n0 =
nf /n for the former, and 1 – ψ = nb0/n0 = nb/n for the lat-
ter. Therefore, the external (measured) pressure is

(3)

and the additional internal pressure (potential energy)
of bound particles in plasma is given by

(4)

Thus, the equation of state for gas-discharge plasma
takes the form

(5)

In this case, the specific factor (1 – ψ) appears in the
expression for the molar bonding energy in plasma [11]:

(6)

In turn, the equation for the sound velocity squared
changes:

(7)

The energy equation for a mole of gas-discharge
plasma flow having the velocity v (and the initial veloc-
ity v0) is also modified:

Pf nfkT ψnkT ,= =

Pb α 1 ψ–( ) n2 n0
2–( ).=

P Pf Pb+ ψnkT α 1 ψ–( ) n2 n0
2–( ).+= =

Ub 2αN 1 ψ–( )n0.=

W2 ψ
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RT0
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µ
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(8)

Using the system of equations (5)–(8), the equations for
conservation of the mass and momentum,

, (9)

(10)

and the experimental data of [12], we can find the char-
acteristics of the plasma structure [13]. Namely, it
turned out that α = 3.608 × 10–30 erg cm3, Ub = 0.974 ×
104 J/mol, nb0 = 0.224 × 1017 cm–3, and the molar bond-
ing energy is equal to 10.8 × 10–13 erg. Under the con-
ditions of this specific plasma, ψ = 0.85.

Our calculations have shown that, in the stagnation
zone at the frontal surface of a spherical model body
moving with the velocity of 1320 m/s, the relative com-
pression of plasma was 4.42 (in contrast to 3.12 in ideal
air), and the stagnation temperature was Ts = 1573 K
(smaller by 319 K than Ts in nonionized air for identical
gas-dynamic parameters).

Since the external pressure is determined only by
free molecules, the stagnation pressure is Ps = ψnskTs =
12.21 × 104 dyne/cm2, which corresponds to the drag
coefficient Cx = 0.974. Without allowance for a contri-
bution of bound molecules, the value of Cx is found to
be overestimated by 19%.

The results of two more experiments performed in
air plasma [4, 14], in which the sound velocity was reli-
ably measured, showed that structures originating in air
plasma had the same bonding energy even though the
values of P0 and T0 , as well as methods of the ionization
production, had been quite different. This is an impor-
tant indication for the existence of a skeleton. In fact,
there must exist a standard type of structure in plasmas
having an identical physical character (gas discharge
and molecular mass) because molecules of slightly ion-
ized ideal gas are only its “filler.”

For nb0 = 0.224 × 1017 cm–3, the average intermolec-
ular distance is 3.5 × 10–6 cm. Molecules are able to
interact with each other at such large distances only if
their valence electrons form a common collective sys-
tem; i.e., a Rydberg state of the gas excited by the elec-
tron impact is originated. Such an unusual state of mat-
ter is appropriately referred to as a “gas crystal.”

Highly excited metastable molecules forming the
skeleton are generated as a result of the gas-discharge
process and then are deactivated in a decomposing
plasma at a temperature of about 1400 K with a time
constant of 0.02 s.

ψ CV R+( )T0 2αN 1 ψ–( )n0
1
2
---µv 0

2+ +

=  ψ CV R+( )T αN 1 ψ–( ) n
n0

2

n
-----+ 

  1
2
---µ

n0v 0( )2

n
------------------.+ +

n0v 0 nv=

ψn0kT0
µ
N
----n0v 0

2+ ψnkT
µ
N
----nv 2,+=



254 MISHIN
Thus, the existence of the strong interaction
between particles, despite a low average density of the
structure under consideration, is explained.
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1. The data on the values of specific free energy σ of
the crystal–liquid interface1 are few and rather unreli-
able. In contrast to the surface tension at the equilib-
rium liquid–vapor boundary, there is no simple method
for measuring σ at the melting curve at certain temper-
atures and corresponding pressures [1]. The theoretical
estimates of σ for the crystal–melt boundary are highly
questionable. The scatter in the different calculated val-
ues of σ in metals [2] ranges within an order of magni-
tude, and this does not allow us to draw any definite
conclusion concerning the temperature dependence
of σ.

The surface tension plays the dominant role in the
spontaneous nucleation of the crystal phase, and it sig-
nificantly affects the formation of the polycrystalline
structure in solids. Basically, the theory of homoge-
neous nucleation is universal as far as mechanisms
underlying the coexistence and metastability of the
involved phases are concerned [3, 4]. A systematic
study of homogeneous nucleation for boiling [5] and
crystallization [6] of different substances definitely
suggests that such experiments can provide certain
information on the surface tension at the interphase
boundary. This technique was successively and widely
implemented for vapor bubbles nucleating in over-
heated liquids [5, 7]. Independent measurements of σ
by the capillary technique at the same temperatures
allowed us to compare the data and to estimate the cor-
rection related to the curvature of the interface. Usually,
this correction does not exceed 2–6% if critical radius
r∗  of the nucleating bubbles is about 5 nm, r∗  ≈ 5 nm.

For the crystal–liquid interface, the authors of [8]
used the following relationship,

 (1)G
W*
kT
-------- 62,≈=
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Russian Academy of Sciences, 
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1 The term “surface tension” will be used as another equivalent
for σ.
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as a condition of the homogeneous nucleation. Based
on (1), they found the values of σ for a series of organic
substances using the attained degree of overheating
T0 – T. Here, W∗  is the work needed to nucleate a bubble
of critical size and k is the Boltzmann constant. Within
the thermodynamic approximation, it is possible to use
one of the following expressions for work W∗  needed
to form a spherical nucleus with radius r∗ :

(2)

Here, vS is a specific volume of the crystalline phase,
and µL and µS are the chemical potentials of the liquid
and crystal at given pressure p0 and temperature T < T0
of the experiment. Parameters p0 and T0 correspond to
a point chosen in the equilibrium melting curve
µL(T0, p0) = µS(T0, p0). The heat of melting ∆H is related
to the entropy jump ∆s at the melting curve by the con-
ventional relation ∆H = T0∆s.

Based on condition (1), the authors of [8] calculated
the surface tension using the values of vS, ∆s, T0, and T
(known from the experiment) at the crystal–melt inter-
face at atmospheric pressure. A similar approach to the
estimations of σ for a number of metals was employed
by Hollomon and Turnbull [9]. A more detailed exper-
imental study in the kinetics of spontaneous crystalliza-
tion [6] allowed us to refine and extend the set of exist-
ing data on the surface tension of metals, water, and
organic compounds. Similar to previous experiments,
supercooling was performed under atmospheric or
lower pressures.

The aim of this paper is to determine the tempera-
ture dependence of the surface tension at the boundary
between the crystal and its melt for a large portion of
the melting curve. We are unaware of any such data.
This situation is in striking contrast with the large body
of information on the behavior of σ at the phase bound-
ary between liquid and vapor in pure substances. In the
latter case, the surface tension gradually decreases with

W*
4π
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2 16π

3
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µL µS–( )2
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increasing of temperature and vanishes at the critical
point obeying the power law, σ ~ (Tc – T)1.25. Such
behavior is also confirmed by an analysis of experimen-
tal data on the kinetics of spontaneous boiling in
liquids.

We want to show that despite the narrow range of
available data on the kinetics of spontaneous crystalli-
zation (p ≈ patm) range, it is possible to formulate a scal-
ing rule allowing us to extend our predictions of the σ
values to a wider range in the equilibrium melting curve
pSL = f(T). In a differential form, the latter relationship
is given by the Clapeyron–Clausius equation

(3)

where ∆v = vL – vS is the specific volume jump at melt-
ing. It is convenient to approximate the melting curve
itself by the Simon equation

(4)

which allows the extrapolation of the melting curve to
the negative pressure range [10] with the asymptote
p  –p∗  at T  0; c and p∗  are the constants char-
acterizing a specific substance; and T0 is the melting
temperature at p = 0.

2. Now we turn to the methodological background
of the discussed estimates for the σ(T) dependence at
the melting curve. In the experiments reported in book
[6], it was possible to observe the spontaneous crystal-
lization of the supercooled liquids either at atmospheric
pressure or in vacuum for a broad range of nucleation
rates J from J ≈ 102 s–1 cm–3 up to J ≈ 1020 s–1 cm–3. The
temperature dependence of J agrees well with the the-
ory of homogeneous nucleation. For a steady-state pro-
cess, we have

(5)

where N1 is the number of molecules in the unit volume
of a liquid at temperature T of the experiment. For the
low-viscosity liquids, the kinetic factor B varies only
slightly with an increasing degree of supercooling ∆T =
T0 – T. Factor B is of the order of 1010–1011 s–1. The
exponential factor in (5) provides the main contribution
to the change of J; this factor involves work W∗  needed
to form a critical nucleus. The latter expression in (2) is
derived in the framework of the linear approximation
for the expansion in terms of ∆T of chemical potentials
µL(T, p) and µS(T, p) near the point of the phase equi-
librium between the liquid and crystal at T = T0, p =

dp
dT
------

∆s
∆v
--------,=

1 p
p*
------+

T
T0
----- 

  c

,=

J N1B –
W*
kT
-------- 

  ,exp=
const. Employing this form of work W∗ , we obtain the
following expression for exponent G = –W∗ /kT in (5):

(6)

Expression (6) implies the applicability of condition (1).
This condition itself corresponds to a fixed (accurate to
an order of magnitude) nucleation rate,  ≈ 6. The
processing of experimental data [6] revealed a certain
linearization of the J(T) curve plotted in coordinates

 versus [T(T0 – T)2]–1. Since  ≈ const – G, the
combination

(7)

remains constant for a specified deeply supercooled liq-
uid. If the jump in entropy ∆s is fixed in relation to the
reference point {T0, p0} in the melting curve, we get a
constant value of σ from the experimental data on the
homogeneous nucleation at various degrees supercool-
ing. This was the behavior observed in [6]. On the other
hand, when comparison with predictions (5) and (6)
suggests pronounced changes in σ with increasing
degree of supercooling by several Kelvins, we get an
indication of the inhomogeneous character of the
nucleation.

However, the constant value of combination (7) can
be also understood in a different way, as the correlation
between the changes of σ, ∆s, and vS at the melting
curve. Then, we can use this condition to estimate σ
based on the known values of ∆s and vS . Here, we
accept this point of view. It is suggested by the experi-
ments on the homogeneous nucleation; however, essen-
tially, it is an assumption, since it was not verified in
experiment that the linearity and the slope of the 
versus [T(∆T)2]–1 curve remain unchanged at different
pressures. We reduce expression (7) to a dimensionless

form, dividing it by  (T0 is the temperature corre-
sponding to the melting curve of a given substance for
p = 0):

(8)

We assume number Nc to be independent of tempera-
ture. It is convenient to fit the melting curve choosing
the reference point at T0, p = 0. The corresponding value
σ = σ0 can be taken from the experiments on the nucle-
ation kinetics [6], where σ0 is a single important fitting
parameter of the theory.

Number  for the normally melting substances
is close to 0.5. Actually, combinations (7) and (8) intro-
duced to determine the surface tension at the crystal–
liquid phase boundary imply the applicability of a phe-
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nomenological approach based on thermodynamical
scaling. The surface tension is assumed to be an explicit
function of temperature only, whereas the pressure cor-
responds to this temperature at the melting curve or at
its metastable continuation, according to approxima-
tion (4), toward the p < 0 range. Similar to the case of
vapor nuclei in an overheated liquid, we will neglect the
correction to σ0 due to the curved surface of the crystal-
line nuclei.

3. The values of parameters determining number Nc
for several substances at similar points of melting
curves under zero (atmospheric) pressure are presented
in the table. Surface tension σ0 is taken from [6], except
for the values for sodium [2] and argon. For argon, σ0

is determined using condition  = 0.5 with the val-
ues of T0, vS, and ∆H taken from [11].

Condition Nc = const allows us to estimate for each
of the substances under discussion how the surface ten-
sion changes throughout the melting curve and its
metastable continuation to the region T < T0, p < 0. To
calculate σ(T) based on (7), we should know entropy
jump ∆s and the specific volume of the crystal phase at
different points of the pSL = f(T) curve. These values are
taken from the published data for pSL > 0 and through
the use of approximations consistent with the Simon
equation for pSL < 0 [10]. The calculations of σ(T) are
illustrated in Fig. 1 for mercury and argon and in Fig. 2
for tin, lead, and sodium. The values of σ are denoted
by squares in the temperature range where the kinetics
of nucleation was experimentally studied [6]. The
points corresponding to the calculations using condi-
tion Nc = const and the published experimental data on

Nc1/3
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∆H and vS are denoted by circles. To plot the continu-
ous curves, we used the extrapolation for the ∆H and vS

values. Temperatures T0 for mercury and tin are indi-
cated by arrows. For the other substances in Figs. 1 and
2, temperature T0 corresponds to the last left point (cir-
cle). The values of σ marked by squares correspond to
negative pressures, since the spontaneous crystalliza-
tion was observed [6] for a finite supercooling of the

30

20

10

0 100 200 300 400

σ, mJ/m2

T, K

Ar

T0

Hg

Fig. 1. Temperature dependence of the surface tension of
argon and mercury at the melting curve.
Parameters characterizing the crystal–liquid equilibrium in a number of substances at atmospheric pressure; Nc is di-
mensionless combination (8)

Substance T0, K vS, 10–3 m3/kg ∆H, kJ/kg σ0, mJ/m2 Nc1/3

Sodium 370.8 1.019 115.2 20 0.50

Copper 1356 0.119 203.1 200 0.54

Silver 1235 0.102 104.7 143 0.55

Indium 429.8 0.139 28.4 31 0.49

Tin 505.0 0.139 60.7 60 0.54

Mercury 234.3 0.070 11.5 23 0.51

Lead 600.0 0.091 22.6 40 0.50

Argon 83.8 0.608 29.8 7 0.5

Tetrachloromethane 250.6 0.570 16.4 6.7 0.47

Benzene 278.6 0.990 128.2 21.7 0.54

Gallium 302.9 0.175 80.3 40 0.41

Antimony 903.7 0.152 163.9 101 0.41

Bismuth 544.5 0.103 52.6 69 0.55

Water 273.2 1.090 334.4 28.7 0.41
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liquid, T < T0 . Here, the projection mapping the points
at given T falls within the portion of the melting curve
where p < 0. This does not disagree with the fact that
the σ0 values were determined from the experiments on
the nucleation kinetics at fixed ∆H and vS taken at T0 .

The width of the temperature range corresponding
to the variation of σ in Figs. 1 and 2 depends on the
available data for ∆H and vS at high pressures. For
argon, the extreme right point corresponds to a pressure
of 1770 MPa [11]; for mercury, 2000 MPa [12]; for Sn,
2600 MPa [13]; for Pb, 5000 MPa [14]; and for Na,
2200 MPa [15]. A conventional method used for esti-
mating σ(T) at the melting curve results in a decrease of
the surface tension with temperature increase at p > 0.
In addition, we observe a peak in σ and reveal a ten-
dency to the decrease of σ with temperature within the
negative pressure range.

Nonmonotonic behavior of σ(T) at the melting
curve is caused by specific features characterizing
changes in the states of a coexisting crystal and liquid.
Although the difference of densities ρS – ρL decreases
with an increase in temperature, the densities ρS and ρL

themselves increase. The elasticity  of both

phases characterizing their thermodynamic stability

∂p
∂ρ
------ 

 
T

70

60
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40

30

20

10

0
200 400 600 800 T, K
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Pb

Na

T0

σ, mJ/m2

Fig. 2. Temperature dependence of the surface tension of
tin, lead, and mercury at the melting curve.
also increases. On the contrary, approaching the spin-

odal state  = 0 along the melting curve, the crystal

and liquid turn out to be stretched, i.e., at T/T0 ! 1 [10].
The values of σ0 for substances presented in the

table are determined from the experiments on sponta-
neous crystallization using the theory of homogeneous
nucleation. This method is sufficiently reliable, and the
estimates of different authors lend support to it. How-
ever, the surface tension at the crystal–liquid boundary
was determined based on condition Nc = const
[see (8)]. This condition following from experiments
on the nucleation kinetics requires, nevertheless, fur-
ther verification.
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1. Although studies of excitations of singlet levels
for a magnesium atom have been undertaken repeat-
edly, the authors of the majority of publications
restricted their investigations to transitions from the

lowest levels, primarily from the resonance 3p -
level. This is true for both earlier experimental papers
[1, 2] and much more recent ones [3]. In the theoretical
papers [4–6], excitation of the same level was also stud-
ied. Moreover, excitation of the 4s1S0- and 3d1D2-levels
was investigated only in the recent paper [7].

Only in two papers [8, 9], the excitation of higher
singlet levels of a magnesium atom was studied. In [8],
the cross sections and optical excitation functions
(OEFs) for 17 spectral lines relevant to transitions
between singlet levels have been measured. For the
S-series, the measurements were carried out up to the
value of the principal quantum number n = 9, and for
the D-series, even up to n = 13. The most intense lines
were studied by the method of intersecting beams,
while a vapor-filled cell was employed for investigating
less intense ones. For the main part of the experiment,
the current density of the electron beam was as much as
3–7 mA/cm2 , and the width of the energy distribution
was 0.8–1.0 eV (for 90% of the electrons). For studying
the structure of the OEF, an electrostatic velocity selec-
tor was used, which allowed one to reduce the width of
the electron-energy distribution to 0.3–0.4 eV at the
expense of simultaneously decreasing the beam current
to ~1 µA.

The primary objective of the subsequent study [9]
was to investigate the OEF structure within the energy
range from the excitation threshold to 11 eV. This was
done with the purpose of studying the formation mech-
anisms for such a structure. Owing to usage of a tro-
choidal electron monochromator, the full width at the
half-maximum for the electron energy distribution
function amounted to 0.1 eV. Ten OEFs were recorded,
four of them belonging to the singlet-term system.

P1 0
1

Moscow Institute of Power Engineering
(Technical University), ul. Krasnokazarmennaya 14,
Moscow, 111250 Russia
1028-3358/00/4506- $20.00 © 20259
In [9], the spectral resolution was rather poor. As a con-
sequence, for example, the 470.299-nm and 473.003-nm
lines were not resolved. However, the overall OEF
obtained can be considered completely related to the
470.299-nm line, the excitation cross section of which
is larger by approximately an order of magnitude than
that for the 473.003-nm line.

2. From the above discussion, it follows that the
excitation of the lowest singlet levels for a magnesium
atom has been studied rather thoroughly, whereas the
excitation of higher levels for the singlet-term system
had been investigated only in experimental paper [8]
and was not treated theoretically. In the present study,
the method of extended intersecting beams is employed
for investigating the excitation of singlet levels of a
magnesium atom. The technique and experimental pro-
cedure, as well as control experiments and analysis of
experimental errors, have been covered many times in
the author’s papers (see, e.g., [10]). Therefore, there is
no reason for repeatedly describing them in the present
paper. Only the main experimental parameters defining
the conditions for performing this study are briefly out-
lined.

Throughout the entire operating range of electron
energies, the current density of the electron beam did
not exceed 1.0 mA/cm2 , with the width of the electron-
energy distribution function being 0.9–1.0 eV (for 90%
of the electrons). For the main part of the 250- to
600-nm spectral range, the spectral resolution was
about 0.1 nm and about 0.2 nm outside this range. At a
crucible temperature of 750 K, the atomic concentration
in the beam-intersection region was 1.0 × 1011 cm–3 for
the main part of the experiment, and it was reduced to
(1–2) × 109 cm–3 in studies of the head line for the res-
onance series.

It is well known [2] that, at low electron energies,
the radiation relevant to the head line (with a wave-
length of 285.213 nm) of the resonance series for MgI
possesses a high degree of polarization, which
approaches 100% near the threshold. Special measure-
ments of the monochromator spectral transmission for
linearly polarized radiation have shown that the MDP-3
diffractometer used in this study introduced an error not
exceeding ±10% throughout the entire spectral range
000 MAIK “Nauka/Interperiodica”
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Fig. 1. Optical-excitation functions for a magnesium atom.
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even in the case of completely polarized radiation.
Therefore, in this study, we introduced no corrections
for possible linear polarization of the radiation.

3. For an electron-exciting energy of 30 eV, the val-
ues of 46 excitation cross sections were measured for
the MgI spectral lines belonging to the singlet-term
system and lying within the spectral range between 202
and 822 nm. Twenty-four OEFs were recorded within
the electron energy range from the excitation threshold
to 200 eV. The experimental results are presented in
Table 1. There, along with the transitions and the num-
ber of an OEF according to the sequence of the curves
in Fig. 1, the values for the following quantities are
given: the wavelength λ; the internal quantum number J;
the energies of the lower (El) and upper (Eu) levels; the
cross sections for an electron energy of 30 eV (Q30) and
at the OEF maximum (Qmax); and, finally, the position
of the maximum for the energy E(max).

In [8], for 1S- and 1D-series of MgI, the dependence
of the spectral-line excitation cross section Q on the
principal quantum number for the upper level n was
found to be of the form

(1)

where Ai and αi are constants with characteristic values
for each of the spectral series. However, it is worth not-
ing that deviations from this dependence for some
experimental points were found in [8] to be rather large.

Q Ain
α i–

,=
This is true for initial portions of both series as well as
for certain higher terms of the D-series.

The dependence Q = f(n) plotted according to the
results of the present study is shown in Fig. 2 in a log-
arithmic scale. The choice of the coordinate system is
dictated by the fact that in this system power-law
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Fig. 2. Dependence Q = f(n) for singlet spectral series of

MgI: (d) 3p –ns ; (×) 3d –np ; (+) 3p –
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Table 1.  Excitation cross sections for a magnesium atom

λ, Nm Transition J El, cm–1 Eu, cm–1 Q30,
10–18 cm–2

Qmax,
10–18 cm–2 E(max), eV OEF

202.582 3s21S–4p1P0 0–1 0 49346 6.66 – – –

269.245 3p3P0–7d1D 2–2 21911 59041 0.27 0.35 9.0 10

276.522 3p3P0–6d1D 1–2 21870 58023 0.82 1.02 9.0 9

276.834 3p3P0–6d1D 2–2 21911 58023 1.77 2.22 9.0 9

285.166 3p3P0–5d3D 2–1, 2, 3 21911 56968
1320. 1450.

– –

285.213 3s21S–3p1P0 0–1 0 35051 18 6

291.545 3d1D–3p3d1D0 2–2 46403 80693 0.28 – – –

377.983 3p1P0–26d1D 1–2 53051 61500 0.18 – – –

378.169 3p1P0–25d1D 1–2 35051 61487 0.24 – – –

378.398 3p1P0–24d1D 1–2 35051 61471 0.30 – – –

378.670 3p1P0–23d1D 1–2 35051 61452 0.38 – – –

378.957 3p1P0–22d1D 1–2 35051 61432 0.49 0.53 10.0 24

379.316 3p1P0–21d1D 1–2 35051 61407 0.65 0.69 10.0 23

379.717 3p1P0–20d1D 1–2 35051 61379 0.79 0.85 10.0 22

380.180 3p1P0–19d1D 1–2 35051 61346 0.96 1.02 10.0 21

380.741 3p1P0–18d1D 1–2 35051 61308 1.25 1.34 10.0 20

381.412 3p1P0–17d1D 1–2 35051 61262 1.39 1.51 9.8 19

382.200 3p1P0–16d1D 1–2 35051 61208 1.75 1.90 9.8 18

383.168 3p1P0–15d1D 1–2 35051 61142 2.14 – – –

384.370 3p1P0–14d1D 1–2 35051 61060 2.56 2.88 9.5 17

385.886 3p1P0–13d1D 1–2 35051 60958 2.95 3.39 9.5 16

387.831 3p1P0–12d1D 1–2 35051 60828 3.68 4.28 9.5 15

390.386 3p1P0–11d1D 1–2 35051 60659 4.68 5.44 9.2 14

393.840 3p1P0–10d1D 1–2 35051 60435 6.55 7.90 9.2 13

398.421 3p1P0–10s1S 1–0 35051 60143 0.32 – – –

398.675 3p1P0–9d1D 1–2 35051 60127 8.30 10.5 9.0 12

405.469 3p1P0–9s1S 1–0 35051 59707 0.61 0.77 9.0 5

405.751 3p1P0–8d1D 1–2 35051 59689 12.9 16.1 9.0 11

407.506 3p3P0–3d1D 1–2 21870 46403 0.165 – – –

408.133 3p3P0–3d1D 2–2 21911 46403 0.22 – – –

416.510 3p1P0–8s1S 1–0 35051 59053 1.32 1.65 9.0 4

416.727 3p1P0–7d1D 1–2 35051 59041 17.9 23.3 9.0 10

435.191 3p1P0–6d1D 1–2 35051 58023 28.7 35.9 9.0 9

435.453 3p1P0–7s1S 1–0 35051 58009 2.74 3.47 9.0 3

470.299 3p1P0–5d1D 1–2 35051 56308 46.2 63.3 8.8 8

473.003 3p1P0–6s1S 1–0 35051 56186 6.20 8.38 9.0 2

552.840 3p1P0–4d1D 1–2 35051 53134 66.8 94.1 8.5 7

571.109 3p1P0–5s1S 1–0 35051 52556 21.7 28.2 9.0 1

696.540 3d1D–11f 1F0 2–3 46403 60755 1.35 – – –

706.040 3d1D–10f 1F0 2–3 46403 60562 1.67 – – –

719.317 3d1D–9f 1F0 2–3 46403 60301 2.23 – – –

738.700 3d1D–9p1P0 2–1 46403 59936
3.39 – – –

738.768 3d1D–8f 1F0 2–3 46403 59935
DOKLADY PHYSICS      Vol. 45      No. 6      2000
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Table 2.  Values of Ai and αi for singlet series of a magnesium atom

Series
n αi Ai, cm2

this study [8] this study [8] this study [8]

3p1 –ns1S0 5–10 5–9 6.12 6 4.00 × 10–13 2.6 × 10–14

3p1 –nd1D2 5–20 4–13 2.91 4.5 2.64 × 10–15 8.8 × 10–15

20–26 5.88 3.75 × 10–10

3d1D2–np1 7–8 13.2 9.85 × 10–7

8–9 8.74 9.30 × 10–11

3d1D2–nf 1 6–11 2.49 5.13 × 10–16

P1
0

P1
0

P1
0

F3
0

dependence (1) is represented by straight lines. This
allows the power-law dependence, as well as possible
deviations from it, to be more clearly revealed. The
numerical values of the constants Ai and αi are given in
Table 2.

As is shown in [11], the singlet terms for the 3snl-
configurations (l = s, p, d), corresponding to a single-
electron excitation of a magnesium atom, are perturbed
by the action of the shifted terms of the 3pnl-configura-

tion. Only for the nf  terms is the quantum effect
small in its absolute value and changes within a narrow
range as the principle quantum number varies within
the interval n = 4–12. Thus, the 1F0-series may be con-
sidered as unperturbed, and the dependence Q = f(n)
must be exactly consistent with power law (1). From
Table 1, it is seen that two pairs of lines in the red part
of the spectrum, which are associated with transitions
from the 1F0- and 1P0-levels, could not be experimen-
tally resolved. Therefore, we can isolate the values of
the cross sections for the lines of the 1F0-series with
n = 7 and 8 from the total cross sections for the unre-
solved pairs of lines by interpolating the power-law
dependence in Fig. 2. The remaining values of the cross

sections are assigned to the lines of the 3d1D2–np -
series with n = 8 and 9 (by the way, the triplet transition
contributes about 1% to one additional unresolved pair
of lines with wavelengths of 285.166 and 285.213 nm).

The quantum defect for the ns1S0, np , and nd1D2

terms is equal to 1.5, 1.0, and 0.5, respectively, and var-
ies rather markedly as the principle quantum number
changes from 3 to 10. Sizable perturbations are also
observed for similar terms of a calcium atom [11].
However, for the terms under consideration for a mag-
nesium atom, the quantum defect varies monotonically,
whereas for a calcium atom the monotonicity is essen-
tially broken for all three perturbed series. As a conse-
quence, the behavior of the cross sections for the 1S0-,

-, and 1D2-series of a calcium atom substantially

F1 0
3

P1 0
1

P1 0
1

P1 0
1

deviates from the power-law dependence [12], whereas
for a magnesium atom, such deviations are extremely
small and exceed experimental errors only for 1D2-
series.

Firstly, such deviation exists at the beginning of the
series at n = 4; similar deviation in this series has been
previously discovered for a calcium atom [12]. Sec-
ondly, the rate of the decrease of the cross section with
increasing n for a magnesium atom changes at about
n = 20, which is also seen from Table 2. However, an
alternative explanation for this deviation can be put for-
ward which is not associated with the excitation of lev-
els. It was shown in [13] that, in the experiments with
extended intersecting beams, radiating transitions from
levels having rather large lifetimes can be recorded. In
particular, the lifetime of the bismuth levels was found
to exceed 10–2 s [13]. Since the time of flight for atoms
through the collision region is about 10–5 s, a major por-
tion of excited atoms do not radiate in the field of view
of the optical system but undergo nonradiating relax-
ation at the surface of the atomic collector. This fact can
be taken into account by multiplying the measured
cross section Q* by the factor

(2)

where v is the average velocity of atoms, L is the flight
distance, and τ is the proper lifetime for atoms in the
excited state.

Up to now, experimental data concerning values for
the lifetimes of high-lying 1D2-levels of a magnesium
atom are not known. Correct extrapolation of available
data for low-lying levels towards higher n-values can-
not be performed, as far as it was established in [14]
that for low-lying 1D2-levels of a magnesium atom,
experimental values for the lifetimes behave irregularly
and differ significantly (by one or two orders of magni-
tude!) from theoretical ones. This situation was con-
firmed later in [15], where it was also shown that the

κ 1

1
vτ
L

------ 1 e L/vτ––( )–
------------------------------------------,=
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Table 3.  Comparison of values for Qmax, which are obtained in the present study and of those from [8]

Series n λ, nm
Qmax, 10–18 cm2

Q[this study]/Q[8]
this study [8]

3s1S0–np1 3 285.213 1450 860 1.69

3p1 –ns1S0 5 571.109 28.2 5.2 5.43

6 473.003 8.38 0.64 13.1

7 435.453 3.47 0.24 14.5

8 416.510 1.65 0.09 18.3

9 405.469 0.77 0.04 19.2

3p1 –nd1D2 4 552.840 94.1 15.0 6.26

5 470.299 63.3 6.9 9.18

6 435.191 35.9 2.5 14.4

7 416.727 23.3 1.6 14.6

8 405.751 16.1 0.68 23.6

9 398.675 10.5 0.45 23.4

10 393.840 7.90 0.37 21.3

11 390.386 5.44 0.16 34.0

12 387.831 4.28 0.11 38.9

13 385.886 3.39 0.075 45.2

P1
0

P1
0

P1
0

discrepancy between experimental and theoretical val-
ues of lifetimes for 1D2-levels of magnesium atoms
could be eliminated if the perturbance caused by the
terms of the 3pnl-configuration was taken into account.
From the above considerations, it appears that cur-
rently, due to the lack of reliable data on lifetimes for
low-lying levels of a magnesium atom, we cannot
quantitatively examine the conjectured reason for the
deviation of the dependence Q = f(n) from the power
law for 1D2-series of MgI at n ≥ 20.

We now turn to the comparison of the absolute val-
ues for the cross sections and consider the data pre-
sented in Table 3. The values of the cross sections for a
resonance line obtained in the present study are 1.7
times as large as those obtained in [8]. For the lowest
investigated transitions of the 1S0- and 1D2-series, this
factor ranges up to 5.4 and 6.3, respectively. The dis-
crepancy factor increases respectively to 13.1 and 9.2
for the next terms of the same series, and 19.2 and 45.2
for the highest terms recorded in [8]. If we extrapolate
the serial dependence found in [8] for the 1D2-series to
the cross-section value for n = 26, which was studied in
the present paper, then we would find for the cross sec-
tion Q(26) a value of 2.5 × 10–21 cm2. This value is by
about two orders of magnitude lower than that mea-
sured in the present study, and recording it is unfeasible
with the available sensitivity of our setup. On the other
hand, the straightforward correlation of the results of
the present study and of paper [8] with theoretical val-
DOKLADY PHYSICS      Vol. 45      No. 6      2000
ues of the cross sections for the lowest excited singlet

4s1S0-, 3p -, and 3d1D2-levels of a magnesium atom
is incorrect. Firstly, in both experiments, the cross sec-
tions for the excitation of spectral lines, but not levels,
were measured. Secondly, in both experimental studies,
the cross sections for the allowed infrared transitions
from the 4s1S0- and 3d1D2-levels with corresponding
wavelengths of 1183 and 881 nm, respectively, were
not measured.

However, it should be borne in mind that the contri-
bution of the cascade transitions for the three levels
under discussion cannot be too large and, according to
our estimate, comprises 10–20% of the total excitation
cross section. On the other hand, the cross sections for
the head lines of the S- and D-series can be obtained by
extrapolating the above-discussed serial regularities.
Allowing for these considerations, we can obtain the
following values of the cross sections (expressed in
units of 10–16 cm2) for head lines at the electron energy
of 30 eV (according to the present study, [8], and [7],
respectively): 0.88, 0.43, and 1.03 for the 4s1S0-level;

1.32, 0.79, and 1.58 for the 3p -level; and 1.07, 0.28,
and 1.70 for the 3d1D2-level. Thus, the results of the
present study are by 15, 16, and 37%, respectively,
lower than the theoretical values for the three levels
under discussion. The results of [8] are 2.4, 2.0, and
6.1 times as large as the theoretical values, respectively.

P1 0
1

P1 0
1
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At the same time, it is worth noting that the OEFs
recorded in the present study coincide, within the exper-
imental errors, with those obtained previously in [8] but
substantially differ from the theoretical OEFs [7] by the
general behavior of the energy dependence. Appar-
ently, this discrepancy cannot be completely explained
by the contribution of cascade population.
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The propagation of waves—independently of their
nature—is a subject of investigation in various fields of
physics. Wave processes whose general theory is deter-
mined by conditions of geometrical optics are of spe-
cial interest. There exist two basic relations in geomet-
rical optics: the eikonal equation and the transport
equation. In this paper, we concentrate our attention on
the transport equation, which is associated with logical
incompleteness of its solution.

As is well known, the transport equation for a scalar
field exhibits the form

(1)

Here, A and φ are the amplitude and phase of a wave,
respectively. Since, within geometrical optics

(2)

where n is the refractive index and S is the unit vector
of the normal to the wave front, then (1) transforms into

(3)

Here, s is directed along the normal to the wave-sur-
face front. With allowance for (2), expression (3) trans-
forms into

(4)

The solution to equation (4) can be written in the form

(5)

where  corresponds to the initial value of
relevant variables. Thus, the solution to the transport
equation written out in the form (1), (3), or (4) is
reduced to finding a possibility for explicitly represent-
ing divS and performing relevant integration in (5).

2∇ A∇φ A∆φ+ 0.=

∇φ p nS,= =

n
dA2

dσ
--------- A2divp+ 0.=

σd
d

A2n( ) A2ndivS+ 0.=

A2 σ( )n σ( ) A2n( )σ σ0= divS σd

σ0

σ

∫–
 
 
 

,exp=

A2n( )σ σ0=
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Explicit representation of divS appears to be a rather
intricate problem. The general representation of divS is
outlined in the well-known course of higher mathemat-
ics by V.I. Smirnov (see [2, vol. 4]):

(6)

where

(7)

represents the Jacobian for the conversion from the
Cartesian coordinates (x, y, z) to the ray coordinates
(ξ, η, σ) for an arbitrary point belonging to the wave-
front surface:

(8)

The solution to the transport equation given in the
from (5)–(7) was included into one of the latest mono-
graphs devoted to this subject [3]. The monographs [2]
and [3] are separated in time by approximately
30 years. To our knowledge, any new results in this
field have not been obtained until now. The compli-
cated form of the expression for divS (6), (7) makes it
impossible to derive an explicit solution for A in a
majority of problems important for practice. The sim-
plest solution to the transport equation corresponds to
the case of wave propagation through plane-laminated
media [4].

Another representation for divS is also known [5]:

(9)

where H corresponds to the average curvature of the
wave-front surface. However, this representation is still
sufficiently complicated, since it is necessary to deter-
mine principal radii of curvature at each point of the
surface (8), with allowance for its various possible ori-
entations in space.

Below, we present a new solution to the problem of
determining divS, which enables us to perform an inte-
gration in (5) in the simplest way.

divS sd
d

D,ln=

D σ( ) ∂ x y z, ,( )
∂ ξ η σ, ,( )
-----------------------=

φ x y z, ,( ) const.=

divS 2H ,=
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As is well known [6], the general integral definition
for divS is given in the form

(10)

where Σ is a surface bounding the volume V and N is an
external normal to this surface. Since the surface Σ is
arbitrary, it can be chosen to have a cylindrical shape,
with the lateral walls being parallel to the S rays, while
the bases of the cylinder are the cross sections for the
ray tubes by planes parallel to the (x, y)-plane, and the
z-axis is considered as the polar axis. Since SN = 0 on
the lateral walls, the integral in (10) is calculated only
over the bases. As a result, this integral can be pre-
sented, with an accuracy to the second-order terms, in
the form

(11)

Within the same approximation, simple considerations
yield the obvious result

(12)

Substituting (11) and (12) into (10) and passing to the
limit, we obtain the following rather simple expression
for divS:

(13)

A similar expression for the divergence of the unit-vec-
tor field could be derived on the basis of general con-
cepts of differential geometry. In [6], the expression is
presented for the difference between the ray-tube areas
that relate to two close wave fronts (8) separated by the
distance δσ:

(14)

Here, g =  represents the first quadratic
form, while H is the average curvature of the wave-
front surface (8). In this case, evidently,

(15)

It follows from (14) and (15) that, in the limiting
case,

(16)

Combining (16) and (9), we obtain

(17)

divS

SN Σd

Σ
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V
---------------------,
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Sz Σd
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dSz
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V  .  S z δσ δΣ .

divS σd
d

Sz.ln=

δΣ 2Hg δσ δξ δη ,–=

g11g22 g12
2–

δΣ δg δξ δη .=

2H σd
d

– g.ln=

divS σd
d

g.ln–=

                  
It is well known that for the wave-front surface written
out in the form (8), the relation

(18)

is valid [7], which confirms the identity of (13) and (17).

The explicit expression obtained for divS (13)
enables us to perform integrating transport equation (4).
As a result, we obtain

(19)

A particular case (19) for the plane-laminated
medium was presented in [4].

The normal vector p is known to be determined
from the differential equation [7]

(20)

Therefore, we obtain from (20)

(21)

where (x0, 

 

y

 

0

 

, 

 

z

 

0

 

)

 

 are specified for the initial step of
integration in (21) when 

 

σ

 

 = 

 

σ

 

0

 

.

Thus, expression (19) provides the complete solu-
tion to the problem under consideration. Practical
application of (19) is restricted only by the possibility
of performing an integration in (21), which presents a
rather trivial problem.

It should be emphasized that solution (19) to the
transport equation is valid under the following condi-
tions:

(i) The wave-front surface (8) is free of singular
points.

(ii) The field of the unit vectors 

 

S

 

 has no intersecting
points.

To illustrate the possibility of the practical applica-
tion for the result obtained (19), we present a solution
to one of the simplest problems for the wave propaga-
tion through a scattering medium.

We consider fluctuations of signal amplitudes in the
course of wave propagation through a statistically
homogeneous medium featuring the isotropic spatial
correlation function. This presents a particular interest,
since a similar problem was analyzed previously in [7].

gSz 1=

A
A0 n x0 y0 z0, ,( )Sz x0 y0 z0, ,( )

n x y z, ,( )Sz x y z, ,( )
-------------------------------------------------------------------=

=  
A0 pz0

x0 y0 z0, ,( )

pz0
x y z, ,( )

-----------------------------------------.

dp
dσ
------ ∇ n.=
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z

 

p

 

z0
x0 y0 z0, ,( )

∂n
∂z
------ σ,d

σ0

∫+=

pz0
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According to the definition of the level χ, we obtain
from (19)

(22)

This is valid provided that fluctuations of the level are
small, i.e.,  ! , where

(23)

since n = 1 + n1 .

It is evident from (22) and (23) that, within accuracy
to the second-order terms, 〈χ〉  = 0.

For the given particular problem, the basic goal is
calculating the variance 〈χ 2〉  of level fluctuations.

While performing a relevant procedure for the deter-
mining the value of 〈χ 2〉 , it is necessary to take into
account that the argument n1(r) in the integrand (23)
has the form

(24)

Thus, for determining 〈χ2〉 in accordance with (22)–
(24), we need detailed analysis for all terms of the sec-

ond-order with respect to . Let the path of the
propagating wave lie in the (x, z) plane, with ϑ0 being
the polar angle for this path. Then,

(25)

where S0 = sinϑ0, C0 = cosϑ0, while (x', z') are the coor-
dinates of a point in the new coordinate system.

According to (21), in this coordinate system, the
projections of the ray deviation have the forms

(26)

Here, ϑ1 is the scattering angle. We can show that

 = 0 within accuracy to the second-order terms in

. In the case of the small-angle scattering,
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 ! 1. For isotropic scattering, the correlation
function R(r) has the form

(27)

The result obtained indicates the necessity of allow-
ance for the next terms in the expansion in series with
respect to χ (22). Then,

(28)

When n corresponds to the Gaussian random process, it
follows from (28) that 

In [7], for a similar problem, it was obtained that 

It is evident that in the case of small-angle scattering,

with the conventional relation  ! 1 being true, we

have

. (29)

The considerable discrepancy of the values for 〈χ 2〉
could be related to the following arguments. When cal-
culating

where

(30)

it was assumed in [7] that

(31)

In other words, the differentiation operator had been
introduced into the integrand. However, such a proce-
dure is incorrect, since the ray’s trajectory in the inte-
grand and, consequently, arbitrary points of the ray do
depend on σ. Moreover, expression (30) follows from
the solution to the variational problem. Hence, with the
help of the relevant procedure [9], the left-hand side
in (31) must naturally be associated with the variational
derivative.

A considerable difference between the exact value

of 〈χ2〉  and  presented in [7] indicates the impor-
tance of the solution obtained for the transport equa-
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tion. Thus, solution (19) to the transport equation
exhibits the complete form, which enables us to solve
arbitrary problems, in particular, those of great practi-
cal importance. It should be emphasized that the solu-
tion is based on the proven theorem (17) having its own
significance for determining the variation of the field of
unit-vectors.

Thus, we have considered the phenomenon of
diverging rays in the framework of geometrical optics.
The exact expression for the divergence of the rays as a
function of their angular components is determined.
This result makes it possible to represent the solution to
the transport equation in the form of an algebraic func-
tion for direction cosines of rays.
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The method of discrete (or auxiliary) sources
(MDS) proposed by V.D. Kupradze [1] and somewhat
later by K. Yasuura [2], which was advanced further in
a number of papers (see, e.g., [3, 4]), is one of the most
efficient methods in solving boundary value problems
for the Helmholtz equation. The method has been
applied to a wide range of problems, although in some
cases, the algorithms developed on the basis of the
method were found to be unstable. This fact is explained
in [5, 6], where a linkage between the method of auxil-
iary sources and the problem of analytic continuation
for a wave field is established.

We consider, for definiteness, a two-dimensional
external problem of diffraction, when the uniform
Dirichlet boundary condition (for the total, i.e., incident
and scattered fields) holds at the boundary S of a scat-
terer.

In this case, in accordance with the method of aux-
iliary sources, the initial boundary value problem
reduces to the following algebraic system:

(1)

In this system, U0(r) is the initial (incident) field,

(k|r – r ' |) is the fundamental solution to the Helm-
holtz equation, Im are coefficients to be determined, rn

are the radii vectores of the collocation points at the
boundary S, and rm are the radii vectores for coordi-
nates of sources on a certain carrier Σ entirely residing
inside S.

ImH0
2( ) k rn rm–( )

m 1=

N

∑ U0 rn( ),–=

n 1 … N ., ,=

H0
2( )
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System (1) can be derived from the following Fred-
holm integral equation of the first kind [5, 6]

(2)

by substituting the Riemannian sum for the integral in
the left-hand side of (2) and equating the left- and right-
hand sides at discrete points of the boundary S.

Equation (2) is naturally derived by employing rep-
resentation for the secondary (diffraction) field U1(r) in
terms of wave potentials with densities, whose carrier
is Σ. Then, this representation should be substituted
into the boundary condition [in the case under consid-
eration, it is (U1 + U0)|S = 0].

The method for solving diffraction problems by
reducing them to an integral equation of type (2) with
respect to the auxiliary current I(rΣ) is referred to as the
method of auxiliary currents.

The following theorem providing a basis for the
method of auxiliary currents was proved in [5, 6] (see,
also, [7, 8]).

Let a simple closed curve Σ be such that k2 is not an
eigenvalue of the internal uniform Dirichlet problem
for the domain inside Σ (in this case, Σ is said to be non-
resonance). Then, equation (2) is solvable if and only if
Σ encloses all singularities of the wave field U1(r)
inside S.

It is easy to show that equation (2) has a unique solu-
tion if the conditions of the theorem are met.

The order N of an algebraic system in the method of
auxiliary sources is determined, in particular, by the
desired accuracy of the solution to the initial boundary-
value problem. As N increases, the sources become
more and more closely situated in Σ. Therefore, it is
clear that in the method of auxiliary sources, the carrier
Σ must also enclose singularities of the field U1(r).
Ignorance of this fact causes deterioration of the corre-
sponding calculation algorithms.

In this paper, we propose to employ for solving
equations of type (2) the linear or spline approximation
of the auxiliary current I(rΣ). Such an approach must
ensure an appreciable increase in the accuracy of calcu-

H0
2( ) k rS rΣ–( )I rΣ( ) σd

Σ
∫ U0 rS( ), rS S,∈–=
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lations compared to the method of auxiliary sources,
the order N of the algebraic system being retained.
Moreover, the method of auxiliary sources must be sta-
bler to various variations (within the admissible limits)
for the carrier Σ of the auxiliary current.

For definiteness, we assume that the boundary S and
carrier Σ of the auxiliary current are specified by the
parametric equations

and

for the boundary S and for the carrier Σ, respectively.

Then, equation (2) takes the form

(3)

where 

We now divide the interval [0, 2π] into N equal parts
and replace the desired auxiliary current on the partial
arc Σk from  to  by a polynomial in terms of t'
with indeterminate coefficients. Performing the inte-
gration and equating the left- and right-hand sides in (3)
at N collocation points, we reduce the problem to an
algebraic system in these coefficients.

For example, in the case of linear approximation, we
have

(4)

where Im = I( ) and I0 = IN .

In line with the presented logic pattern, we have
the following algebraic system for finding the coeffi-
cients Im:

(5)

Here,  = U0(tn),

x x t( ), y y t( ), t 0 2π,[ ] ,∈= =

x x0 t'( ), y y0 t'( ), t' 0 2π,[ ]∈= =

H0
2( ) kR t t',( )[ ] I t'( ) t'd

0
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+ .=
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I t'( )
N
2π
------ Im t' tm 1–'–( ) Im 1– tm' t'–( )+[ ] ,=

m 1 2 … N ,, , ,=

tm'

αn m, βn m 1+,+( )Im

m 0=

N 1–

∑ Un
0,–=

n 0 1 … N 1.–, , ,=

Un
0

αn m,
N
2π
------ H0

2( ) kR tn t',( )[ ] t' tm 1–'–( ) t',d

tm 1–'

tm'

∫=

αn 0, αn N, ;=
In a similar manner, quadratic splines can be used
for approximating the auxiliary current:

(6)

Here, by virtue of the continuity for the first derivatives
of I(t') at the nodes t' = , we have

(7)

In this case, for indeterminate coefficients Im, we have
the system of equations

(8)

where

(9)

We can see that the solution to the system of alge-
braic equations (8) is essentially the perturbed solution
to system (5). Therefore, for sufficiently large values of
N, we should expect a high degree of consistency
between the corresponding solutions {Im} to both the
systems.

A similar procedure may be employed while
approximating auxiliary current by higher-order
splines. Moreover, for algebraization of equation (2),
instead of the collocation method, we can use, e.g., the
projection method. However, this gives rise to double
integrals in calculating matrix elements for the corre-
sponding algebraic systems.

We now consider examples for applying the method
proposed for solving diffraction problems. We consider
the diagram of scattering of the plane monochromatic
electromagnetic wave

by a perfectly conducting infinite cylinder, whose gen-
eratrix is parallel to the Oz-axis and the directrix of S is
given in the parametric form. Here, w0 = ksinθ0, v0 =

βn m,
N
2π
------ H0

2( ) kR tn t',( )[ ] tm' t '–( ) t'.d

tm 1–'

tm'

∫=

I t'( )
N
2π
------ Im t' tm 1–'–( ) Im 1– tm' t '–( )+[ ]=

+ am t' tm 1–'–( ) t' tm'–( ).

tm'

am am 1++
N
2π
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 
2

Im 1+ 2Im– Im 1–+[ ] ,=

m 1 2 … N 1,–, , ,=

a1 aN+
N
2π
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∑ –Um
0 amγn m, ,
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tm'
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U0 i w0x v 0y–( )–( )exp=
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kcosθ0, k = 2π/λ, λ is the wavelength, and θ0 is the
angle of incidence (see Fig. 1). The electric-field vector
is taken to be parallel to the cylinder generatrix and per-
pendicular to the plane of incidence.

We assume that Σ belongs to the internal (with
respect to S) region (Fig. 1) and satisfies all the above-
listed conditions. Then, the expression for the scatter-
ing diagram in the polar coordinates (r, ϕ) takes the
form

(10)

where (r0(t'); ϕ0(t')) are the polar coordinates of points
belonging to Σ. Starting from the relations obtained
above, we calculate scattering diagrams corresponding
to various cross-section shapes of the initial perfectly
conducting infinite cylinder.

1. An elliptic cylinder. In this case, the directrix of
S is specified in the form

As an auxiliary surface, we choose a cylindrical one for
which Σ can be represented as

Without loss of generality for the numerical experi-
ment, we consider the case when the angle of incidence
θ0 = π/4, ka = 3, and kb = 1.2. We vary the value of ka0
assuming kb0 = 1.08. The generatrix Σ of the auxiliary
cylinder must enclose the interfocal segment [2kf =

2  = 2 × 2.7495…; 2f is the interfocal dis-
tance] in which singularities of the analytic continua-
tion are concentrated [9]. The restriction indicated is
reduced to the inequality ka0 > kf. Numerical experi-
ments have shown that the scattering diagrams corre-
sponding to all kinds of possible combinations of
parameters and various approaches to the realization of
the auxiliary-current method coincide within the limits
of graphic accuracy for ka0 ∈  [2.72; 2.80] (i.e., for

ka0  kf) and N = 70 and 90. Thus, while calculating the
scattering diagram, it is not evident whether the singu-
larities for the analytic continuation of the wave field
play a fundamental role in the choice of an auxiliary
contour Σ.

However, it is worth noting that the reliability of the
results obtained is primarily determined by the accu-
racy for the fulfillment of the boundary condition
between collocation points. Therefore, we choose the
maximum (in the absolute value) difference δ between
the left- and right-hand sides of (5) and (8), which are
obtained in the method of auxiliary sources, as a mea-
sure of an error of the numerical solution obtained
when the values of t vary from 0 to 2π. Figure 2 shows
the ka0-dependence of the residual δ for various realiza-
tions of the auxiliary-current method at N = 90. It is

f ϕ( ) ikr0 t'( ) ϕ0 t'( ) ϕ–( )cos( )I t'( )exp t',d

0

2π

∫=

x t( ) a tcos , y t( ) b t, t 0;  2 π[ ] . ∈  sin= =

x0 t'( ) a0 t'cos , y0 t'( ) b0 t', t' 0;  2 π[ ] . ∈  sin= =

ka( )2
kb( )2

–

≤
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easy to see that the value 

 

ka

 

0

 

 = 

 

kf

 

 is the threshold one in
the sense that for 
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0

 

 > 

 

kf

 

, the solution is stable,
whereas for 

 

ka

 

0

 

 < 

 

kf

 

 it is unstable. The larger 

 

N

 

 is, the
more pronounced is the threshold effect, the residual
corresponding to the discrete-source method being sev-
eral times larger than that obtained from (5) or (8).

The character of the results shown in Fig. 2 does not
vary if another contour enclosing the singularities is
chosen: only the value of 

 

δ

 

 can change.

 

Fig. 1. 

 

Geometry for the problem of scattering of a plane
electromagnetic wave by an infinite cylinder in realization
of the auxiliary-current method.
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auxiliary-current method (
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2. A cylinder with a multifoil-shaped cross sec-
tion. In this case, it is more convenient to specify the
equation for the directrix of S in the polar coordinates

where a > 0, τ ∈ (0; 1), q ∈  N. As an auxiliary surface,
we choose a cylindrical one for which Σ can be repre-
sented as

with

q = 2, 3, …,

To properly use the auxiliary-current method, the
values of the parameter β must belong to the set [0; 1],
since for β ≥ 1 the directrix of Σ encloses S. At the same
time, at β < 0, the singularities for the continuation of
the wave field do not lie within the inner (with respect
to Σ) region [9]. We consider the case with θ0 = π/2,

r ϕ( ) a 1 τ qϕcos+( ),=

r0 ϕ( ) a0 1 τ0 qϕcos+( )=

a0 b0 c+( ) 1 τ0+( )⁄ ,=

b0

aτ 2, q⁄ 1=

aq
τ2 q 1–( ) A+

q 1–( )A
------------------------------ τ q 1–( )

A
------------------

1 q⁄

,
=

A 1 1 τ2 q2 1–( )+[ ]1/2
,+= c β a 1 τ+( ) b0–[ ] .=

8

7

6

5

4

3

2

1

0 90 180 270 360

ϕ, deg

| f(ϕ) |

Fig. 3. Amplitude in the scattering diagram |f(ϕ)| for the
case of scattering of a plane electromagnetic wave by a per-
fectly conducting infinite cylinder with a multifoil-shaped
cross section (θ0 = π/2, ka = 6, τ = 0.2, and q = 4).
                                        

ka = 6, τ = 0.2, and q = 4 (quarterfoil-shaped cross sec-
tion). We will vary the value of β assuming τ0 = 0.2.

The numerical experiments performed for the case
β ∈ [–0.3; 0.3] and N = 90 have shown that the scatter-
ing diagrams corresponding to different approaches to
the realization of the auxiliary-current method coincide
with the curve shown in Fig. 3 with graphic accuracy.
At the same time, the character of the dependence of δ
on β is similar to that shown in Fig. 2. This unambigu-
ously implies that positions of the singularities for the
analytic continuation of the wave field must be taken
into account while choosing an auxiliary surface. As in
the case of an elliptic cylinder, the threshold effect is
the most pronounced for the realization corresponding
to the discrete-source method.

The approach proposed can be extended in an appar-
ent manner to arbitrary boundary conditions, to prob-
lems of wave scattering by periodic surfaces and dis-
crete gratings, as well as to three-dimensional and vec-
torial problems.
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The advances in developing modern microwave
devices are associated with the design of functional
systems implementing a variety of wave phenomena
(both at the surface and in the bulk) occurring in semi-
conductor structures [1–4], especially taking into
account progress in modern precision technologies. A
large number of papers deal with the problems of man-
ufacturing active devices based on the long-range (pro-
longed) interaction of drifting charge carriers in semi-
conductors with fields generated by structures [1–8].

Formulation of the problem. We consider the elec-
tron–wave interactions in the distributed semiconduc-
tor structure with reflecting screens. The key element of
the electrodynamic model of the system under study is
a semiconductor film of thickness h and a periodic
structure placed at distance b from the film (l is the
period of the structure, and d is the distance between its
elements) arranged on substrates between the screens
(Fig. 1). The semiconductor is subjected to applied lon-
gitudinal electric and magnetic fields. The wave inter-
actions in the system consisting of the semiconductor
and the periodic microstructure are described by the set
of equations

(1)

Here, ν = , νk are the collision frequencies corre-

sponding to the kth scattering mechanism, mα is the

curlH
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effective mass of conduction electron, VT is the veloc-
ity, and the remaining notation is conventional for elec-
trodynamics. The system is in the nonequilibrium state;
therefore, the disturbances of the space charge arising
in the semiconductor propagate in the form of electro-
kinetic waves, which, in turn, are transformed into elec-
tromagnetic radiation. A certain part of this radiation
reflected from the interfaces interacts with charge car-
riers, etc. The reflecting screens can be made of a super-
conductor (a film or a layered composite structure is
possible). The superconductor is described within the
framework of a two-fluid Gorter–Casimir model [9, 10].
In the electrodynamic structure under study, the fields
should meet the following requirements: the Helmholtz
equation, the Floquet condition, the finiteness condi-
tion for the energy integral, the condition on the ideal
metal, the continuity condition for the field at the
boundary of dielectric and plasma media [11], and the
impedance boundary condition [9, 10, 12]

(2)

where Z is the impedance and n is the external unit nor-
mal to the screen surface.

Solution method. If the fields at the corresponding
boundaries meet the aforementioned conditions, we
have a system of functional equations with respect to
the unknown field amplitude. According to [13], we
obtain an infinite system of linear algebraic equations
of the second order. The latter system belongs to the
Fredholm type. The existence and uniqueness theorems

nE[ ] Z n nH[ ][ ] ,–=

ε4

ε3

ε2

l

f

h

b

d 0 E0, H0, Z

Y

Fig. 1. Electrodynamic model of the distributed semicon-
ductor structure.
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are proved in the same way as in [14]. From this sys-
tem, one can easily derive the characteristic equation

(3)

where

j = 1, 2, 3, 4 are the numbers of regions;

 and 

Here, α is the required dimensionless constant charac-
terizing the wave propagation along the system, Vd is
the drift velocity, ωp is the plasma frequency, Z1 and Z2
are the impedances of the “upper” and “lower” screens,

and , , and  are complicated functions of
polynomials and the Legendre functions defined
in [13]. Equation (3) is obtained under the assumption
that the cyclotron frequency is much larger than all
characteristic frequencies of the system. Characteristic
equation (3) allows us to analyze the spectrum of bulk
and surface waves, which can propagate in the system
at any values of its parameters (except those imposed
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by the aforementioned conditions). The infinite system
of algebraic equations is a system of the Fredholm type.
Hence, for physical analysis, one can use an approxi-
mate solution utilizing the reduction of the system and,
consequently, also the reduced form of characteristic
equation (3). From the asymptotic solution of (3) for m,
n = 0, –1, –2, we find (in the first approximation of the
perturbation theory) the complex constants characteriz-
ing the wave propagation for the cases of plasma

(  @ ν2) and relaxation (  @ ) mechanisms
responsible for generating oscillations for the drift flow
of the charge carriers in the semiconductor. Taking into
account that the plasma mechanism is more efficient
(within the given formulation of the problem), we
present below an analytical expression for the complex
constant corresponding to the propagation of the leak-
ing space charge wave. In the case of narrow spacing
between the electrodes of the periodic microstrip struc-
ture (ε1 = ε2 = 1, Z2 = 0), the propagation constant for
the leaking space charge wave has the form

(4)

where

.

Analysis of relationships (3) and (4) demonstrated
that each nth space harmonic is put into correspon-
dence with the infinite set of electromagnetic waves
driven by the space charge waves with the radiation
losses. This set involves the combination of fast and
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slow space charge waves. Depending on the parameters
(geometric, dynamical, electrical), the propagation of
these waves can be accompanied by an increase or
decrease of their amplitude. The increasing space
charge waves in the semiconductor provide an indica-
tion of the modulation of the drifting carriers and the
generation of the coherent radiation. Under the effect of
the field, the modulation (“bunching”) increases along-
side the coherent radiation of the system. Since the
radiating bunches are formed by the field itself, this is
the induced radiation. However, the system supporting
the induced radiation has a fundamental property,
namely, the possibility of amplifying the radiation.
Thus, the system under study is unstable, and it can
amplify an input signal. Any feedback mechanism in
the system gives rise to self-sustained oscillations.

Excitation of the open resonance system. To sup-
port the self-sustained oscillation mode with efficient
feedback, we placed a system consisting of a semicon-
ductor and a microstrip structure in the field of the open
resonator with superconducting mirrors. The elements
of the microstrip structure were also made up of a
superconductor. The self-excitation condition for such
a resonance system is as follows:

(5)

where P is the power transferred by the flow of the
drifting charge carriers in the semiconductor to the
microwave field, W is the field energy stored in the res-
onator, and Q is the Q factor of the loaded system. It is
known that the Q factor of the loaded system under
study is inversely proportional to the total losses and
has the form

(6)

where D is the distance between the mirrors, λ is the
wavelength, and R is the parameter characterizing the
losses: ohmic losses at the mirrors and the microstruc-
ture, diffraction losses, losses in the semiconductor and
in the substrate, coupling losses related to the load, etc.
Diffraction losses can be reduced by adjusting the aper-
ture of the resonator mirrors. The losses in the substrate
can be lowered if we use high-resistivity semiconduct-
ing substrate materials with low losses, such as gallium
arsenide and silicon. Ohmic losses can be significantly
reduced by using large-area high-Tc YBCO film at liq-
uid nitrogen temperature. It is shown in [15] that the
tangent of the dielectric loss angle ( ) for the struc-
ture with electrodes made of YBCO is less than 
for the samples with metallic electrodes within the
whole temperature range. Thus, the superconducting
mirrors, which form the open resonator, and the super-
conducting electrodes in the periodic microstructure
results provide a much larger reduction of ohmic losses
in the resonance system than in the case when these ele-
ments are made of a metal. Thus, it leads to an

P
ωW
Q

---------,≥

Q
2π
λ

------D
R
----,=

δtan
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enhanced Q factor of the loaded system. The complex
power corresponding to interaction of the drifting
charge carriers in the semiconductor with the field of
the open resonator can be written as

(7)

Here,

(8)

hj is the propagation constant of the spatial charge
wave, Bn is the field amplitude of the synchronous har-
monics averaged over the cross section of the semicon-
ductor film, and θn is the coefficient characterizing the
flow efficiency. The first and the second terms in (7)
determine the efficiency of the energy exchange with
the slow and fast space charge waves, respectively.
From (5), we find the threshold value of the current
needed to promote the self-sustaining mode:

where

L is the length of the sample where the interaction
between the field and charge carriers occurs, An is the
field harmonic in the spatial spectrum of the resonance
system, S0 is the sample cross section, and D is the dis-
tance between the mirrors of the open superconducting
resonator.

Numerical simulations. We present here the results
of the numerical solution of the reduced (m, n = 0, –1,
–2) characteristic equation (3) dependent on the screen
positions, i.e., on f and a (Figs. 2 and 3). The real part
and imaginary parts of χα are plotted by solid and
dashed lines, respectively. Note that the periodic
microstrip structure with the screen placed above it
forms the electromagnetic structure, which is equiva-
lent by its properties to a “comb.” The presence of the
screen above the semiconductor–microstrip structure
provides the formation of the electromagnetic system
with characteristics similar to those of an orotron oscil-
lator.
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Fig. 2. Real and imaginary parts of the solution to character-
istic equation (3) versus position of the “upper” screen for
GaAs (ε3 = 12, m* = 0.07m0, n0 = 1014 cm–3, ν = 1011 s–1,

m0 is the free electron mass) at χ = 5 × 10–3, β = 5.05 × 10−3,

H = 60, a = , z1 = 0.265 – i × 2.7 × 10–4, ε1 = ε2 = 1, z2 = 0,

p = –1, θ = 0.2.

λ
4
---

Fig. 3. Imaginary part of the solution to characteristic equa-
tion (3) versus position of the “lower” screen for InSb (ε3 =

17.6, m* = 0.013m0, n0 = 1013 cm–3, ν = 1011 s–1) at H = 60,

χ = 2 × 10–3, β = 2.02 × 10–3, z1 = 0.265 – i × 2.7 × 10–4,

f = , ε1 = ε2 = 1, z2 = 0; p = –1, θ = 0.2.
λ
2
---
In conclusion, electrodynamic analysis of the semi-
conductor structure presented in this paper demon-
strates a principal possibility for exciting microwave
oscillations in this structure. The analytical expression
for the threshold current necessary for the excitation of
the open resonator is found.
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1. Constructing adequate mathematical models for
complex resonance systems is an urgent problem in the
theory of diffraction. In [1, 2], using an approach based
on conjugate integral equations and the method of dis-
crete singularities, the diffraction from two model non-
uniformities of planar and cylindrical types was stud-
ied. In this paper, a new approach is developed for ana-
lyzing the excitation of a resonance system of coupled
endovibrators in a cylindrical waveguide structure.

2. We consider a round waveguide with a finite num-
ber of rectangular corrugations of arbitrary width and
height (see figure). From infinity in the direction of
increasing z-values, a bunch of waves uniform in azi-
muth propagate which are the proper waves of the
round waveguide. The time dependence is given by the
factor exp(–iωt). It is required to find the fields dif-
fracted and scattered by nonuniformities. We consider
a case of excitation with only the components Eϕ, Hr,
and Hz being nonzero. The initial vectorial problem
reduces to the scalar first boundary value problem for
the Helmholtz equation with respect to the component
Eϕ ≡ u(r, z) of the electric field. We seek the solution to
the problem in the form

where the incident field is given as

Here, ℘  is a fixed positive integer,  = k2 – / ,
µ1p is the pth zero of the first-order Bessel function,

Rek|| ≥ 0, Imk|| ≥ 0, k = ω/c, and u– and  are to be
determined.
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The function u satisfies the boundary conditions

(1)

  

(2)

(3)

the conjugation conditions

(4)

(5)

and the emission condition (which will be stated
below).

Since the boundary has breaks, the above conditions
should be supplemented with the Meixner condition:

(6)

3. In the region @ = {(r, z): r < r0, z ∈ R}, the solu-
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Cross section of a waveguide by a plane passing through the
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tion is sought in the form

(7)

where γ2(λ) = λ2 – k2, and, in accordance with the emis-
sion condition, we choose that branch of the function
γ(λ) for which Reγ ≥ 0 and Imγ ≤ 0; I1(z) is the modified
Bessel function of the first-order.

In the region $q = {(r, z) : r0 < r < rq, aq < z < bq}, q =
1, 2, …, m, we present the solution to the problem sat-
isfying boundary conditions (2), (3) in the form

(8)

where

K1(z) is the first-order MacDonald function.

Substituting expressions (7) and (8) into conjuga-
tion condition (5), we have

(9)

We now rewrite equation (9) in the following equiv-
alent form:

(10)
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Following [3], we introduce the new function

By virtue of condition (4), the representation
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 possesses the properties

Using the parametric representation for the Hilbert
transformation [4], the definition of the function 

 

F

 

(

 

ζ

 

)

 

,
and its property (a), we find for the first term in the left-
hand side of equality (10)

 

(11)

 

Employing the integral operator with the Hilbert kernel
[5], we obtain for the second term in the left-hand side
of equality (10)
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tion (10) to the form
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(13)

where Kqk(z, ζ  is the known continuous

function.
Thus, the initial problem of diffraction is reduced

mathematically to solving the system of singular inte-
gral equations on a set of nonoverlapping segments Lk:
Lk ∩ Lq = ∅ , k ≠ q, k, q = 1, 2, …, m. The correctness
of the rearrangement of equation (10) is provided by
the following asymptotic estimates:

In accordance with the Meixner condition (6) on the
edge of the right dihedral angle, the solution to the sys-
tem of singular integral equations (13) with the addi-
tional condition [property (b) for the function F(z), z ∈
R] is sought in the form

where Sk(ζ) = Uk(ζ), and Uk(ζ) is
bounded within the interval [ak, bk].

5. Using the linear transformation ζ = gq(t), q = 1,
2, …, m: (aq, bq) ° (–1, 1), we can reduce system (13),
which is written with respect to an unknown function
F(ζ) given on a set of m intervals, to the form of m
unknown functions in a single interval.

The formal discretization procedure is performed
according to the method of discrete singularities [6].

The system of linear algebraic equations for appro-
ximately solving a system of singular integral equa-
tions (13) with additional conditions has the form
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where  = cos π, i = 1, 2, …, nk are zeroes for

Chebyshev polynomials of the first-kind;  =

cos π, j = 1, 2, …, nk – 1 are zeroes for Chebyshev

polynomials of the second-kind; νki ≡ ( ) are
values of the interpolational polynomials approximat-
ing the desired functions Sk(gk(t)) at nodes of the net-
work; i = 1, 2, …, nk, k = 1, 2, …, m; and nq is the order
of the quadrature formula.

The accuracy of the finite-discrete approximation
for the system of singular integral equations and addi-
tional conditions can be improved by increasing the

power nq of the interpolational polynomials (t)
under the condition of a corresponding increase in the
number of the collocation points nq – 1, q = 1, 2, …, m.

The approximate values of the amplitude and Fou-
rier coefficients are directly expressed in terms of the
solutions to the system of linear algebraic equations

6. Thus, in this paper, a formal procedure for con-
structing an exact mathematical model for the diffrac-
tion of proper waves on a resonance system of coupled
endovibrators in a waveguide cylindrical structure is
proposed. The issue of physical substantiation for the
choice of points in gaps, in which electromagnetic
fields are sewed together, is considered now purely
from the standpoint of mathematical advisability for
choosing the collocation points and nodes of an inter-
polational function when discretizing a system of sin-
gular integral equations. It is worth reminding that pre-
viously, in most cases, this problem was solved empir-
ically (the partial-domain method, the method of
integral equations, etc.). The new approach may be
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highly profitable for numerically analyzing mecha-
nisms of diffraction scattering by multiple-component
structures in various physical situations.
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Measuring the spectral emissivity of a surface
whose radiation does not obey the Lambert law pre-
sents considerable difficulties when a black body or
certain integrating cavities (of spherical or other
shapes) are not employed. Until now, only two noncon-
tact methods are known for solving this problem in the
on-line mode.

The first one is the Kunz method [1–3] based on
determining the ratio of spectral-absorption coeffi-
cients for two laser beams with different wavelengths.
The method uses thermal effects caused by the action
of these beams on a surface, whose emissivity must be
measured.

The second is the Svet method [4, 5] based on the
optimum employment of the excess information con-
tained in the spectrum of the proper thermal radiation.

It should be noted that only nowadays, i.e., a quarter
century after both these methods had been proposed,
they, being promoted by the progress of modern micro-
electronics and laser technique, began to be developed.
Recently, the author has suggested [6–8] a new method
for the determination of true temperature, which is
based on measuring the proper radiation of a body. The
method makes it possible to apply the thermodynamic
temperature scale without using a black body. Physi-
cally, this method exploits changes in properties of a
medium under investigation. The changes result in the
temperature dependence for spectral components of the
emissivity coefficients. The method enables us to elim-
inate the influence of the emissivity and response func-
tion, although it makes it impossible to directly obtain
values of desired quantities.

In this paper, we consider the further development
of this new method applying directional relative modu-
lation reflectometry. This enables us to considerably
reduce the necessary excessiveness of spectral compo-
nents used and, as a result, to obtain a rather efficient
method for measuring the emissivity of a surface, in

IVTAN (Institute of High Temperatures) Scientific Association, 
Russian Academy of Sciences, 
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particular, of that whose radiation does not obey Lam-
bert’s law.

Thus, this measurement method is based on the
combined employment of radiation pyrometry and rel-
ative directional reflectometry of a surface in the pro-
cess of its cooling or heating.

Here, we consider several variants of implementing
this method. The first one is associated with a system
measuring the proper radiation, which is calibrated in
terms of temperatures, i.e., represents a brightness
pyrometer operating at two wavelengths. The second
one implies using a noncalibrated system, i.e., a linear
system for measuring radiation spectral intensities (for
two wavelengths as well).

In the first case, we measure the difference between

reciprocal values of two brightness temperatures 

and , which correspond to two values of the true
temperature:

On exponentiating both above expressions, we
obtain

(1)

(2)

Here, ε(λi, Tj) represent the values of the desired emis-
sivity corresponding to the wavelengths λi (i = 1, 2) and
temperatures Tj (j = 1, 2).

At the same time, for the same temperatures and
wavelengths, the ratio of the directional-reflection
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coefficients measured by a reflectometer should satisfy
the relations

Here, ρ*(λi, Tj), (i = 1, 2, j = 1, 2) are the directional
spectral-reflection coefficients for the wavelengths λi

and temperature Tj (j = 1, 2); ρ(λi, Tj) is the coefficient
of the normal spectral reflection for the same tempera-
tures and wavelengths; x1 and x2 are the coefficients tak-
ing into account scattering of the radiation due to the
surface roughness. In the case when the emitting sur-
face is smooth, i.e., satisfies the Lambert’s law, x1 =
x2 = 1.

Applying Kirchhoff’s law for opaque bodies, we
obtain

Temperature variation naturally results in a change
of the emissivity:

where αi, βi, …, γi are the coefficients of a power poly-
nomial approximating the temperature dependence of
the emissivity.

Introducing the following notation for the polyno-
mial in the right-hand side of the above-expression,

we can write out

or

(3)

(4)

Taking into account expressions (1) and (2), we
obtain four expressions (1)–(4) for four variables:
ε(λ1, T2), ε(λ2, T2), ∆ε1 , and ∆ε2 . Simultaneous solving

ρ* λ1 T1,( )
ρ* λ1 T2,( )
-------------------------

x1ρ λ1 T1,( )
x1ρ λ1 T2,( )
---------------------------,=

ρ* λ2 T1,( )
ρ* λ2 T2,( )
-------------------------

x2ρ λ2 T1,( )
x2ρ λ2 T2,( )
---------------------------.=

ρ* λ1 T1,( )
ρ* λ1 T2,( )
-------------------------

1 ε λ1 T1,( )–
1 ε λ1 T2,( )–
------------------------------,=

ρ* λ2 T1,( )
ρ* λ2 T2,( )
-------------------------

1 ε λ1 T1,( )–
1 ε λ2 T2,( )–
------------------------------.=

ε λ i T j,( ) ε λ i T j 1–,( ) α i T1 T2–( )+=

+ βi T1
2 T2

2–( ) … γi T1
n T2

n–( ),+ +

α i T2 T1–( ) βi T2
2 T1

2–( ) … γi T2
n T1

n–( )+ + + ∆εi,=

ρ* λ1 T1,( )
ρ* λ1 T2,( )
-------------------------

1 ε λ1 T2,( )– ∆ε1–
1 ε λ1 T2,( )–

---------------------------------------------
1 ∆ε1–

1 ε λ1 T2,( )–
------------------------------,= =

ρ* λ2 T1,( )
ρ* λ2 T2,( )
-------------------------

1 ε λ2 T2,( )– ∆ε2–
1 ε λ2 T2,( )–

---------------------------------------------
1 ∆ε2–

1 ε λ2 T2,( )–
------------------------------= =

A 1
ρ* λ1 T1,( )
ρ* λ1 T2,( )
-------------------------–

∆ε1

1 ε λ1 T2,( )–
------------------------------,= =

B 1
ρ* λ2 T1,( )
ρ* λ2 T2,( )
-------------------------–

∆ε2

1 ε λ2 T2,( )–
------------------------------.= =
of these equations does provide all desired values of the
emissivity. It is natural that in doing so, for various
wavelength ratios λ2/λ1 , we need to perform computer
calculations. However, for reasonable and sufficiently
efficient (from the technical standpoint) ratios
λ2/λ1 = 2, we obtain an analytical solution featuring the
form of a quadratic-equation.

Indeed, for λ2/λ1 = 2,

(5)

(6)

Using (3), (4) and (5), (6), we obtain the regular
quadratic equation for ε(λ2, T2)

The roots of this equation can be simply evaluated since
0 < ε(λ2, T2) ≤ 1.

The second variant of the method under consider-
ation enables us to find the unknown values of the emis-
sivity without using the pyrometer calibration. For this
purpose, it is necessary to measure only spectral radia-
tion intensities. However, it is necessary to execute
these measurements for three (not two) thermal states
of the surface, i.e., for three unknown values of temper-
atures T1, T2, and T3 .

Indeed, having measured the ratios of the direc-
tional-reflection coefficients for two wavelengths at
three different temperatures, we can write out as before

(7)

(8)

(9)

(10)

Hence, it follows that

On the other hand, measuring not temperature, but
spectral intensities of the radiation for three unknown

J1

A 1 A–( )ε λ1 T2,( )[ ]+

B 1 B–( )ε λ2 T2,( )[ ]+{ } 2
---------------------------------------------------------------,=

J2

ε λ1 T2,( )2

ε λ2 T2,( )
------------------------.=

ε λ2 T2,( )2 J1 1 B–( )2 J2 1 A–( )–[ ]

+ ε λ2 T2,( )J1 2B 1 B–( )× J1B2 A–[ ]+ 0.=

A1 1
ρ* λ1 T1,( )
ρ* λ1 T2,( )
-------------------------–

∆ε1 1,

1 ε λ2 T2,( )–
------------------------------,= =

A2 1
ρ* λ1 T3,( )
ρ* λ1 T2,( )
-------------------------–

∆ε1 2,

1 ε λ2 T2,( )–
------------------------------,= =

B1 1
ρ* λ2 T1,( )
ρ* λ2 T2,( )
-------------------------–

∆ε2 1,

1 ε λ2 T2,( )–
------------------------------,= =

B2 1
ρ* λ2 T3,( )
ρ* λ2 T2,( )
-------------------------–

∆ε2 2,

1 ε λ2 T2,( )–
------------------------------.= =

∆ε1 1, A1 1 ε λ1 T2,( )–[ ] ,=

∆ε1 2, A2 1 ε λ1 T2,( )–[ ] ,=

∆ε2 1, B1 1 ε λ2 T2,( )–[ ] ,=

∆ε2 1, B2 1 ε λ2 T2–( )–[ ] .=
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temperatures and two wavelengths λ1 and λ2 , we can
write out

(11)

(12)

The spectral intensities are described by the expres-
sion

(13)

where i = 1, 2 and j = 1, 2, 3; ξi is the response function;
C1 and C2 are the pyrometric constants.

Thus, we obtain six equations (7)–(12) with
11 unknown variables: ε(λ1, T2), ε(λ2, T2); ∆ε1, 1, ∆ε1, 2,
∆ε2, 1 , ∆ε2, 2; ξ1 , ξ2; T1 , T2 , and T3 .

As is seen from equations (11) and (12), the
unknown values of the response functions ξ1 and ξ2 , as
well as temperatures T1, T2 , and T3 , are eliminated.

Hence, in this variant, the method under consider-
ation enables us to find the desired values of the emis-
sivity, but not the values of temperature and response
functions.

In the case when the wavelength ratio is λ2/λ1 = 2,
the value of ε(λ2, T2), as before, is evaluated analyti-
cally from the quadratic equation

J1
U λ1 T1,( )/U λ1 T2,( )[ ]

λ1

U λ2 T1,( )/U λ2 T2,( )[ ]
λ2

----------------------------------------------------------=

=  
1 ∆ε1 1, /ε λ1 T2,( )+

1 ∆ε2 1, /ε λ2 T2,( )+[ ]
λ2/λ1

------------------------------------------------------------,

J2
U λ1 T3,( )/U λ1 T2,( )[ ]

λ1

U λ2 T3,( )/U λ2 T2,( )[ ]
λ2

----------------------------------------------------------=

=  
1 ∆ε1 2, /ε λ1 T2,( )+

1 ∆ε2 2, /ε λ2 T2,( )+[ ]
λ2/λ1

------------------------------------------------------------.

U λ i T j,( ) ξ iC1λ i
5– ε λ i T j,( ) –

C2

λ iT j

---------- 
  ,exp=
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Owing to weak temperature dependence of the
emissivity, it is reasonable to extend the temperature
intervals T1–T2 and T2–T3 .

In the case of insufficient monochromaticity, we
should allow for the variation of the effective values of
wavelengths with temperature [9, 10] and use lasers in
the reflectometer.
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The anisotropy of deformability is inherent to lay-
ered and fractured rocks (varved clays, schists, and
stratifications of limestone, sandstone, and other rocks
and semirocks), which results in a complicated behav-
ior of rocky solids under loading. In particular, the
inclined position of layers with respect to the plane of
the building basement results in lower stability owing
to the nonuniformity of its displacements. The anisot-
ropy is often taken into account by representing the
mountain mass as a transversally isotropic body.

In this case, the elastic stressed-deformable state is
well determined by the Young and shear moduli and the
Poisson coefficients E||, E⊥ , G⊥ , ν||, ⊥ , G|| (or ν||, ||), where
subscripts || and ⊥  define the direction along and across
the bedding.

Here, we discuss the conventional (so-called effec-
tive) characteristics of deformability, i.e., the parame-
ters generally characterizing the deformability of a cer-
tain virtual material. The latter is assumed to be uni-
form and transversally isotropic, situated within the
bulk of the rock under study, and similar in deformabil-
ity to the actual rock massif. The effective characteris-
tics of deformability critically depend on the correct-
ness of averaging over the actual characteristics of the
rock layers.

Historically, the first formulas allowing one to esti-
mate the effective values of deformation moduli of lay-
ered rocks along and across the bedding were sug-
gested by Tarkhov [1]. Subsequent work in this direc-
tion (described in the comprehensive review [2])
generalized, in fact, the Tarkhov formulas, supplement-
ing them by formulas for the shear modulus and the
Poisson coefficients. The substantial difference in con-
ditions under which the characteristics were deter-
mined does not allow us to consider them as belonging
to one and the same rigidity tensor. The correct solution
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of the problem demands finding the invariant character-
istics of the deformability for the equivalent uniform
medium, which would provide the exact determination
of average displacements and stresses in the nonuni-
form massif at any boundary conditions. One such
method, namely, the method of asymptotic homogeni-
zation, was proposed in [3, 4], based on the substitution
of exact equations with fast-oscillating coefficients fol-
lowing from the elasticity theory by averaged equa-
tions. The effective characteristics determined in the
framework of this method ensure meeting the afore-
mentioned condition. The method allows us to deter-
mine the values of displacements and stresses with any
given accuracy and does not require the weakening
conditions of the type discussed in [1, 2].

The essence of the method is the following. The dis-
placement vector is presented in the form of the series
expansion in terms of small parameter ε = δ/L, where δ
is the size of the typical structure element (unit cell) and
L is the characteristic size of the domain. This allows us
to replace the system of elasticity theory equations in
terms of displacements by a system of recurrent rela-
tionships providing an opportunity to determine subse-
quent terms of the series. One of these relationships
generates the system of averaged equations with
respect to the zero-approximation term (the initial term
of a series) u(0); the other relationships allow us to sub-
sequently determine u(i), i = 1, 2, … . The asymptotic
conditions result in equations with respect to auxiliary
matrix functions Ni(ξ1, ξ2, ξ3), i = 1, 2, 3, which allow
us to obtain effective rigidity tensor  and to study the
structure of the displacement and stress fields (for a
structureless material).1 Here, Aik = ||Cijkl|| are the matri-
ces, the elements of which correspond to Hook’s law in
the form σij = Cijklεkl (i, j, k, l = 1, 2, 3; the summation
over repeated indices is implied); ξi = xi/ε are the “fast”
variables describing the local properties; and xi are the
conventional coordinates used to describe the average
properties.

1 Another way to determine the function with a “structure” is sug-
gested by Revuzhenko [5]. To meet the above conditions, it is
necessary to make the averaged function (displacement) approxi-
mately equal to the actual one together with its derivatives.
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Solving these equations, we get the formula for the
effective rigidity tensor,

(1)

In the case of a layered material, (1) can be written
in the form

(2)

where we define 〈 f(ξ)〉  = f(ξ)dv, Q is the region occu-

pied by a typical structure element, x = (ξ1, ξ2, ξ3), and
axis x1 is directed across the bedding.

The discussed formulas provide the solution to the
averaged problem with an accuracy ||u – u(0)|| ~ O(εm),
where m = 1 for the one-dimensional problem and m =
1/2 in the other cases [4]. The plots of the bulk and
shear moduli and the Poisson coefficients versus rela-
tive thickness α = δn/δ (n = 2) of the intermediate layer
are shown in Fig. 1, where the parameters used in cal-
culations are also presented. It was assumed in the cal-
culations that E1 = 2.6 × 103 MPa for the rock under
study.

The fracture is caused by local physical processes,
i.e., by processes at the microscopic level. Conse-
quently, accurate description of the stress (strain) field
is required. The concentration of stresses (strains) plays
the essential role here. It is natural to formulate such a
description based on the method of asymptotic homog-
enization, which takes into account the structure of
nonuniformity elements and their interrelation. Let

, ,  be the displacements, strains, and
stresses obtained from the solution of the averaged
(homogenized) problem. The stresses (including
stresses at the microscopic level [4]) can be written in
the following form:

(3)

where  = cijkl + cijmn  and  are the compo-

nents of the effective tensor of compliance, which is
inverse with respect to the effective rigidity tensor.

A tensor with components defined by the relation-
ship

(4)

will be referred to as the stress concentration tensor.

Âij Aij Aik

∂N j

∂ξk

---------+= .

Âij Aij〈 〉 Ai1 A11
1–〈 〉 A11

1–〈 〉 A11
1– A1 j〈 〉+=

– Ai1 A11
1– A1 j〈 〉 ,
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∫

ui
0( ) εij

0( ) σij
0( )

σij
0( ) c̃ijklεkl

0( ) c̃ijkl

∂uk
0( )
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----------- c̃ijklĉklmn
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1–=
DOKLADY PHYSICS      Vol. 45      No. 6      2000
Taking into account relationships  =  +

ε  (i, j, k = 1, 2, 3) [4] for the displacements,

which describe their local behavior, and neglecting the
second order terms, we get the following expressions
for strains: 

(5)

where ∆ijkp = (δikδjp + δipδjk) is the unit tensor of the

fourth rank. Here, we used the symmetry conditions

ui
1( ) ui

0( )

nk
ij∂u j

0( )
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-----------

εij
1( ) ∆ijkp

1
2
---

∂nk
ip

∂ξ j

---------
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∂ξ i

----------+ 
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Fig. 1. Dependence of the effective characteristics of
deformability of layered rocks on the relative thickness of
the intermediate layer: (a) the Young moduli, (b) shear mod-
uli, and (c) the Poisson coefficients.
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 =  and  = . Note that the second term
in (5) takes into account the microscopic strains.

Let us define the expression in brackets in (5) as
the strain concentration tensor and denote it as ξ ijkp .
Using (3), we can find that stresses and strains involv-
ing those related to the microscopic distortion obey the
following relationship:

(6)

This relationship proves the correctness of the intro-
duced definition of the concentration tensors.

Further on, the strength criteria for the geological
materials will be represented as tensor polynomials [6]:

(7)

where Fij, Fijkl, and Fijklmn, … are the components of the
strength tensors of the corresponding ranks and σij are
the components of the stress tensor.

If criterion (7) is known for each sth component of
the rock ground, then, substituting (3) in it and taking
into account (4), we get

(8)

where

(9)

nk
ip nk

jp εkp
0( ) εpk

0( )

σij
1( ) cijklεkl

1( ).=

F F0 Fijσij Fijklσijσkl+ +=

+ Fijklmnσijσklσmn …+ 0,=
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F̃ij
s( )σij

0( ) F̃ijkl
s( ) σij

0( )σkl
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+ F̃ijklmn
s( ) σij

0( )σkl
0( )σmn
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s( )
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s( ) ζ prijζmnkl….=

N b
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T

Fig. 2. Schematic diagram illustrating loading of the colum-
nar brickwork sample, which models the behavior of the
fractured rocky grounds.
We assume below that the stress field  is uni-
form for the typical structure element. Then, the “true”

stresses   at it are determined by relationship (3).
We will assume that the typical structure element cor-
responds to the limiting state if there exists a connected
domain [defined by (8) and (9)] in the limiting state
which “cuts” it. For example, in the case of layered
rocks, this domain either crosses the layer as a whole,
or passes the layers from one to another edge of the typ-
ical structure element.

Relationships (7)–(9) determine, in general, the
anisotropy in the strength characteristics of rocky
grounds, as well as their dependence on the strength
and deformation characteristics of its components, on
the volumetric fraction, and on the mutual arrangement
and shape of the components forming the rock. It can
be shown that the fracture can also occur at hydrostatic
uniform compression, even if this compression does
not destroy each individual component.

As an example, we compare the strength character-
istics calculated in the framework of the asymptotic
homogenization method with the results of laboratory
studies of the shear resistance [7]. Planar model sam-
ples 0.04 m thick had a brickwork structure containing
bricks 0.04 × 0.015 × 0.005 m in size. The strength of
blocks with respect to uniaxial compression and to the
tension was Rc = 0.6 MPa and Rp = 0.07 MPa, respec-
tively, the bulk modulus was E = 10–80 MPa, and the
parameters characterizing shear resistance to a shear
along the horizontal cracks within the same brick were

 = 0.5 and c = 0. Tests of the combined samples
were performed according to a torqueless loading
scheme (Fig. 2) under normally directed loads in the 0-
to 1.2-MPa range. As a result of shear tests, the follow-
ing values of strength characteristics of a combined
model were obtained: Ò = 0.2–0.028 MPa and ϕ =
35°−39°.

In calculating the strength characteristics according
the brickwork model of the rock base, the bulk modulus
was taken equal to 60 MPa, and the level of normal
stresses was assumed to be 0.08 MPa. The cracks were
modeled by a continuous medium with mechanical
characteristics determined according to [8, 9]. As a
result of calculations, we obtained the following val-
ues: c = 0.03 MPa and ϕ = 38°, which agree well with
the available experimental data.
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Introduction. It is well known that complex design
elements in industrial facilities can be affected by ther-
mal and mechanical stresses. In the temperature field, a
design element playing the role of a mechanical unit
can be affected by an incident wave with arbitrary pro-
file and wavefront. As a result, we observe the diffrac-
tion of thermoelastic waves by complex objects. These
diffraction problems are studied in mechanics of
deformable solids, physics, seismology, etc.

Formulation of the problem and the method of
its solving. Mathematical formulation of such prob-
lems is reduced to analyzing the following system of
differential equations [1]:

(1)

Here, U is the displacement vector with components u1,
u2, and u3; αT is the thermal expansion coefficient of the
material; T(x1, x2, x3) is the temperature of an elastic
body; λ and µ are the Lamè coefficients; ρ is the density
of the material; and F(x1, x2, x3) are the volume forces
acting upon the elastic body. Without any loss of gener-
ality, we assume for simplicity that F(x1, x2, x3) = 0.

The following conditions are specified at the bound-
ary of the elastic body:

(2)
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Here, n is the unit vector of the outer normal to the
boundary surface S, and y(x) is the stress vector at S,
which is a sum of the mechanical and thermal contribu-
tion to the total stress acting upon body Ω . In this case,
we assume that solvability conditions for equations (1)
and (2) are met. In addition to equation (1) and bound-
ary condition (2), a complete system of the equations
describing the diffraction of thermoelastic waves
involves the heat conduction relations [2, 3]

(3)

(4)

(5)

Equation (3) is a linear differential equation with vari-

able coefficients akl, a2 = c

 

ρ

 

/ , 

 

c

 

 is the coefficient of

heat transfer, and  is the heat conduction. Relation-
ship (4) is a general boundary condition, which can be
reduced to mixed boundary conditions, as well as to
boundary conditions of the first, second, and third kinds
depending on the choice of coefficients 
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Methods of solving problem (3)–(5) are adequately
covered, for example, in [2–4].

AT
∂

∂xl

------- akl
∂T
∂xk

-------- 
 

k l,

3

∑ f x( ) a2∂T
∂t
------,+= =

x = x1 x2 x3, ,( ) Ω,∈

 
T x t

 
,( )

 
H

 

1

 
Ω

 
A,( )∈

≡ T /T H1 Ω( ) AT x t,( ) L2 Ω( )∈,∈{ } ,

BmT bkl
m ∂T

∂xk

-------- ν l xk,( ) b0
mT–cos

k 1=

3

∑ g
m

x( ),= =

x S, S∈ Sp, m
p

∪ 1 2 3 4,, , ,= =

T
t 0= ψ x( ).=

λ
λ

bkl
m b0

m

Sp
p 1=

r∪
000 MAIK “Nauka/Interperiodica”



APPLICATION OF THE R-FUNCTION THEORY 289
By using the R-function theory, analytical solutions
to heat conduction problems can be written in the
form [4]

where g(t) is a function meeting initial condition (5) and
operator B(T) is an analytical solution to problem (3), (4)
constructed using the R-function theory [4] and exactly
meeting boundary conditions (4). According to [1], the
system of equations (1) can be transformed into that for
potentials corresponding to longitudinal Φ and trans-
verse Ψ waves:

(6)

Here, t = c1t1; γ = c1/c2; c1 and c2 are the propagation
velocities of longitudinal and transverse waves, respec-
tively; and γ1 = (3λ + 2µ)gradαT .

Let us write in the following form boundary condi-
tions related to the effect of the wave with an arbitrary
profile on an elastic medium weakened by the hole with
a complex shape (having the boundary contour Γ):

(7)

where n and τ are the vectors along normal and tangent
to the boundary contour Γ, respectively.

We will solve problem (6) and (7) using a method
based on the R-function theory [4]. Let us represent the
analytical solutions for potentials Φ and Ψ in the form
of relationships discussed in [5], omitting factor
exp(−iωt) in the case of steady-state motions:

(8)

Here, ω = ω(x) are functions describing the equation for
contour Γ, T1 and D1 are differential operators defined
in [4], and Φi1 are special functions, conventional poly-
nomials, or polynomials with local supports.

Solutions (8) take the form of functional relation-
ships involving either elementary functions or superpo-
sitions of elementary and special functions. Both
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boundary conditions (7) and the configuration of the
domain, in which problem (6) and (7) is considered, are
treated analytically. Moreover, due to an arbitrary
choice of functions Φi1 (i = 1, 2), we can take into
account certain a priori information on exact solutions
(if they exist) and approximate them in the metrics of a
corresponding functional space. To account for the con-
ditions at infinity, we introduce pseudodifferential
operators

S1 Φ( ) ∂Φ
∂n
-------, S2 Φ( ) ∂Ψ

∂n
--------,= =

(a)

(b)

(c)

Fig. 1.
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which are defined in a bounded domain Ω0 ∈ Ω  with
boundary Γ0 .

Provided that function ω(x) is chosen in the form 

with ω0 being the equation for boundary Γ0 of domain
Ω0 , structural formula (8) describes fairly well wave
processes in various zones of incident and reflected
waves. From the relationships found for potentials Φ
and Ψ, the components of the strain and stress tensors
are determined by the formulas [1]

ω
ω0r

ω0 r+
--------------, r x1

2 x2
2+( )1/2

,= =

(a)

(b)

(c)

Fig. 2.
where the asterisk stands for transposition and E is the
unit matrix. Displacement vector U can be presented in
the form

where Up and Us correspond to the potential and sole-
noidal fields, respectively,

Numerical simulations. We analyzed the steady-
state diffraction of thermoelastic waves in an elastic
medium weakened by a circular hole of radius r (Fig. 1)
and by the same hole with an additional segment
(Fig. 2). Temperature T0 was kept constant at the cavity
boundary Γ, and the elastic medium was exposed to an
incident wave.

In Figs. 1 and 2, we present stress distributions σθ in
elastic media weakened either by a circular hole or the
same hole with an additional segment for the cases of
(a) short, (b) medium, and (c) long incident wave. The
effect of the temperature field is the most pronounced if
this field is accompanied by a short-incident wave, and
it is much weaker for long-incident waves.

Thus, we proposed and substantiated a method of
solving boundary value problems for the diffraction of
thermoelastic waves by complex objects based on the
R-function theory. Our numerical simulations for the
diffraction of thermoelastic waves either by a circular
hole in an elastic medium or by the same hole with a
segment demonstrated that the method is rather effi-
cient. The effect of the temperature field was shown to
be more (less) pronounced provided this field is accom-
panied by a short (long) incident wave. This method
can be used for studying thermoelastic waves in objects
subjected simultaneously to complicated thermal and
wave stresses.
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MECHANICS
Mechanical Aspects 
of Hydrogen Enhanced Fatigue-Crack Growth
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It is well known [1] that absorption of hydrogen
results in substantial degradation of mechanical proper-
ties for many metals and alloys, most structural steels
included. The most significant effect is the reduction of
the resistance to fracturing. In particular, reduction of
the critical-stress intensity under monotonous loading
is observed. In cyclical loading, reduction of the crack-
growth threshold and increase of the crack-growth rate
takes place. A similar effect is observed under slowly
varied loading.

Hydrogen embrittlement includes several mecha-
nisms developing at various levels of material structure.
Among them are penetration of atomic hydrogen into
the metal lattice, interaction between atomic hydrogen
and dislocations, hydrogen accumulation in micropores
and microcracks, and formation of hydrides and decar-
burization as a result of chemical reactions. Frequently,
common electrochemical corrosion occurs along with
hydrogenization. All these effects are closely associ-
ated with atomic-hydrogen transport in the solid phase.
Along with classical diffusion, hydrogen transport con-
trolled by stress-strain and distributed-damage fields
takes place. In addition, the transport of gaseous hydro-
gen or a hydrogen-carrying agent to the crack tip
should also be analyzed. In the case of cyclical loading,
the cyclical convective motion of gaseous or liquid
media within the crack hollow should be also taken into
account.

Until now, hydrogen embrittlement was studied
mostly by specialists in materials science, electrochem-
istry, and those branches of industry for which this
effect is important. The suggested models included one
or two possible mechanisms and resulted in estimates
of qualitative character. The most important quantita-
tive parameter is the crack growth rate enhanced by
hydrogen embrittlement. This parameter is assessed as
the ratio of a characteristic length used in fracture
mechanics, such as the crack-tip opening displacement,
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and a characteristic time of hydrogen diffusion in the
solid phase. A detailed analysis of works published
before 1977 was given in paper [2]. Since then, no sub-
stantial progress has been observed [3]. However,
mechanical aspects of hydrogen embrittlement are
important in evaluating the safe service life for pressure
vessels, pipelines, and other highly stressed structural
components subjected to contact with molecular hydro-
gen or its carrier. As many interacting and partially
competing mechanisms enter the picture, phenomeno-
logical models seem more realistic from the practical
viewpoint. The number of model parameters should be
minimal, and the methods for assessing these parame-
ters from direct macroscopic experiments should be
indicated.

From the viewpoint of mechanics of deformable
solids, crack initiation and growth is a result of the
interaction of two mechanisms: damage accumulation
near the crack tip and the general balance of forces and
energy in the system involving the cracked body, load-
ing, and environment [4, 5]. Due to irreversibility of
cracks in common materials, the constraints put on the
crack dimensions are treated as unilateral. As applied to
a single-parameter crack with depth a, the crack beha-
vior depends on the relationship between generalized
(in the meaning of analytical mechanics) forces: the
generalized driving force G and the generalized resis-
tance force Γ. The former can be associated with the
energy release rate in linear fracture mechanics, and the
latter, with the critical magnitudes of this rate. A crack
does not grow at G < Γ. The crack front propagates con-

tinuously at G = Γ,  < , and as a jump (until the

next arrest or until the final failure) at G = Γ,  > .

In the case of G > Γ, the state of the system is unstable.
This approach is valid at both long cyclical and slowly
varied loading. Then, the generalized forces depend on
the damage accumulated in the tip zone and, some-
times, in the far-field zone. The crack growth is fre-
quently accompanied by environmental effects; then,
the corrosion, hydrogen, etc. modes of damage should
be included.

∂G
∂a
-------

∂Γ
∂a
------

∂G
∂a
------- ∂Γ

∂a
------
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It is natural to model dispersed damage accumula-
tion in the framework of damage continuum mechan-
ics. In general, damages are described in terms having
a tensorial nature. However, when the crack trajectory
is known beforehand, e.g., from symmetry consider-
ations, the damage level may be characterized by a sca-
lar Rabotnov–Kachanov quantity ω (0 ≤ ω ≤ 1).

In the presence of several different mechanisms,
corresponding damage measures should be introduced.
We distinguish mechanical damage produced by cycli-
cal loading ωf, and that by sustained loading, ωs . Cor-
rosion damage is characterized by the measure ωc .
Hydrogenization effects are introduced by two mea-
sures ωa and ωb . The first one takes into account the
material degradation due to the direct action of atomic
hydrogen; the second one corresponds to the degrada-
tion due to chemical actions. Kinetic equations are to
be formulated for each measure to connect the damage
rate with the corresponding damaging factor such as the
tensile stress range or the concentration of atomic
hydrogen. The set of all introduced damage measures
as functions of time t are denoted by ω(t).

The conditions of stability and growth of a single-
parameter crack given by the depth a may be for-
mulated in terms of the function H(N) of the cycle num-
ber N:

(1)

Here a(t) is the crack size; s(t) is the set of load and
environment parameters. Let the transport of the agent
from the crack mouth to the crack tip and of atomic
hydrogen in the solid phase be described in the one-
dimensional approximation. Let ce(t) and c(x, t) be the
concentrations of molecular or chemically bounded
hydrogen in the environment and in the crack hollow,
respectively. The equation of diffusion should be sup-
plemented with a convection term, as well as with a
term taking into account hydrogen adsorption on crack
faces:

(2)

Here, D is the diffusion coefficient, v is the agent’s con-
vective velocity, kf(c) is the adsorption rate, and h is the
crack opening displacement. For the hydrogen trans-
port in the solid phase, we have the equations

The first equation describes the diffusion process with
the coefficient Ds and the transport controlled by the
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stress gradient  with the coefficient Bs . The last term

in this equation takes into account trapping of atomic
hydrogen, e.g., because of the formation of hydrides.
The rate of the latter process is given in the second
equation of (3). We can assume that 

with two threshold-concentration values cat and cbt and
rate parameter kb. All material parameters depend, in
the general case, on temperature and local damage
measures. The boundary conditions for equations (2)

and (3) are c = ce at x = 0; D  = kf(c) and D  =

Ds  +  at x = a. The thickness of the surface

embrittlement film is small. Therefore, we may assume
that ca  c∞ and cb  c∞ as x  ∞. The initial
conditions depend on that whether the crack hollow is
“dry” at t = 0 or filled with the carrying agent, whether
the solid phase is initially hydrogenized or not, etc.

The crack hollow volume under cyclical loading
varies cyclically. A part of the agent leaves the hollow
while downloading, and the fresh agent enters the hol-
low while uploading. This is the so-called pumping
effect of fatigue cracks. Due to this effect, the concen-
tration of the agent at the crack tip approaches a certain
quasi-steady level that depends on the hydrogen
adsorption and corrosion rates. In any case, at the crack
tip, we have an estimate for the film thickness of the

hydrogen embrittlement:  ~  and less. Here a0 is

the initial crack depth. The estimate for the thickness of

the corrosion and hydrogenization film is λh ~ 

and less. As Ds is two–three orders of magnitude
smaller than D, the film thickness is small compared to
the size of the zone corresponding to a cyclical process.

The proposed model includes, along with the partial
differential equations (2) and (3), the ordinary differen-
tial equations of damage accumulation and the func-
tional relationships with respect to the function H(N)
entering into equation (1). Obviously, the realization of
equation (1) requires solving the problem of continuum
mechanics for a body with a crack, whose size is sub-
jected to isochronic variation [5]. The corresponding
computational algorithm is rather complicated. It con-
tains several iteration loops as well as special means to
provide computational stability. Some details are pre-
sented in paper [7] as applied to corrosion fatigue
cracks.

The estimation of model parameters meets certain
difficulties. The direct identification of these parame-
ters leads to ill-posed problems. However, a number of
the parameters can be estimated from direct macro-

∂σ
∂x
------

g ca cb,( ) kb ca cat–( ) cbt cb–( )=

∂c
∂x
------ ∂c

∂x
------

∂ca

∂x
--------

 ∂cb

∂x
--------



∂c
∂x
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ce

a0
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Ds/D0

a0
---------------
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scopic experiments. For example, the damage measures
can be found by analyzing the reduction of the specific
work for destruction of samples subjected to the corre-
sponding action. In turn, this makes it possible to eval-
uate parameters for right-hand sides in equations
describing the accumulation of damages.

Numerical simulation, parameter assessment, and
comparison with available experimental data show that
the proposed model gives a satisfactory presentation of
hydrogen-enhanced cracking in metals and alloys.
Among these effects are the following: first, the
decrease of the crack-growth threshold under cyclical
and/or sustained loading; second, the tendency to the
formation of a plateau on the crack-growth diagrams in
the domain of low mechanical loads and/or short
cracks; third, the influence of the mean applied stress,
the applied-stress range, and load frequency on the
crack growth rate and the summed cycle number
(summed time) until the final failure. In addition, a
deeper insight becomes possible into the internal mech-
anisms that are difficult to observe and measure
directly. In particular, the following phenomena can be
described within the framework of the proposed model:
the effect of crack closure under cyclical loading on the
agent concentration at the tip, the intermittent blunting
and sharpening of the tip, and the change of the ratio
DOKLADY PHYSICS      Vol. 45      No. 6      2000
between the mechanical, corrosion, and hydrogen-
induced damages during all stages of the crack growth.
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We consider the dynamics of a small body in a non-
uniform potential flow of incompressible fluid. An
asymptotic analysis of both the flow interaction with a
body and stability of its equilibrium is developed.
Studying the dynamics of a body in a nonuniform flow
is of interest as far as this is associated with hydrody-
namic interaction of bodies moving in a fluid. Certain
basic methods for solving this problem are described
in [1–9].

Let, being free of a body, a potential flow of a per-
fect fluid have the velocity v(x, t) and the pressure
p(x, t). The distance r0 between the geometric center of
the body (x = q) and external boundaries of the flow is
large compared to the body diameter D; i.e., the param-
eter D/r0 is small [6, 7]. Other possible small parame-
ters are introduced below. Dynamics of the surface of
the body in the fluid is described by the Lagrange func-
tion L [6, 7]:

, (1)

which takes into account the perturbance of the fluid
velocity v' – v caused by the body. Here, Ω and V are
the domains occupied by the fluid and the small body,
respectively, while ρ is the fluid density. The Lagrange
function (1) forms the basis for an effective method of
calculating the response of a body subjected to strain-
ing due to the hydrodynamic effect of nonuniform flow
[6, 7]. In the case of a rigid body, dynamic equations
include the Lagrange function Lb describing the body’s
dynamics:

(2)

Here and below, α, β = 1, 2, …, 6. The coordinates
q3 + i = ϕi (i = 1, 2, 3) represent the angles determining

L
ρ
2
--- v' v–

2 τd

Ω
∫ p τd

V

∫–=

d
dt
----- L'∂

qα
.∂--------

L'∂
qα∂
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the orientation of the axes zi . These axes are tied to the
body, and their origin is located in the body center q.

In the vicinity of a small body, we define the unper-
turbed fluid velocity v by the first terms of the expan-
sion into the Taylor series at the point x = q [6, 7]. We
make use of the notation ∇ ivj = vij(q, t), ∇ i∇ jvk =
vijk(q, t) and assume that the derivatives having an order
of magnitude, which exceeds the second one, are zero.
Due to the harmonic properties of the velocity potential
(v = ∇Φ ), only 12 quantities vij and vijk out of 36 are
independent.

The velocity perturbation v' – v is expressed in
terms of the potential perturbation Φ' – Φ, which
depends linearly on the relative velocity u =  – v(q),
the angular velocity w, as well as the derivatives vij and
vijk . The coefficients of the linear form Φ' – Φ depend
on the body orientation and the difference x – q. At a
large distance from the body, they decrease no slower
than |x – q|–2. Therefore, similarly to [6, 7], calculating
integrals in (1) yields

(3)

(Summation is implied over identical indices.) The first
three terms of expressions (3) are indicated in [6, 7].
The coefficients occurring in (3) are constant in the
coordinate system zi and depend on the body’s shape
and diameter D: Γijk ~ D4, Γ3 + ijk ~ D5 [6, 7]; A, B, I ~
D5; Q ~ D6. The apparent-mass coefficients (λij ~ D3,
λ3 + ij ~ D4, λ3 + i 3 + j ~ D5) are determined by solving the
problem for the motion of a rigid body in an unbounded
uniform flow [2, 3]. It is convenient to calculate (3) in
the zi-axes. To do this, we express both the velocity
components ui and derivatives of vi in terms of the cor-
responding quantities by using the xi-axes. The contri-

q.

L T u w,( ) pV– Γα jkUαv jk Aijkluiv jkl+ +=

+ Θijklωiv jkl Bijklv ijv kl
1
2
--- Iij∇ i∇ j p,–+

2T λαβUαUβ, Ui ui,= =

U3 i+ ωi, Iij ziz j τ .d

V
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bution of different terms in (3) is estimated with allow-
ance for the possible validity of the relation ω ~ u/D. At
large values of r0 , the effect of a weak flow perturbance
caused by a small body on the velocity field v can attain

the maximum value on the order of uD3/ . Therefore,
it is useless to retain those terms in (3) whose order of
magnitude exceeds D5 . In the case of a variable body
volume, the other estimate is valid [6–8].

For a spherical body, G, A, and Q are equal to zero.
However, the values of

(4)

are nonzero, where δij is the Kronecker delta and R =
D/2. Relations (2)–(4) lead to the following formula for
a force acting on a spherical body in a nonuniform flow:

, (5)

where g is the mass force. Compared to the formula
known from [6–8], relation (5) contains the new term

∇ 2 . According to (5), gas-bubble acceleration in a

nonuniform flow can differ noticeably from the previ-
ously known value and equals the threefold accelera-
tions of the fluid. For the first time, the first term occur-
ring in (5) was written out by N.E. Joukowski for the
case of an immovable sphere.

Small parameters in the problem of dynamics for
a body placed in a flow. It is well known that the
description of the dynamics for a body in a nonuniform
flow is based on the dependence of the Lagrange func-
tion on the velocity v(q) with allowance for the term
T – pV, where the kinetic energy T of the relative
motion includes coefficients of apparent masses [6, 7].
This description is adequate when flow around the body
is determined mainly by the relative velocity [7]. It is of
interest to find small parameters corresponding to an
approximately uniform flow around a rigid body and
their possible role in describing the dynamics of the
process. Below, we consider the general case when the
apparent-mass tensor is not spherical.

The contribution of different terms to the pertur-
bance of the velocity v' – v, which occurs near the body,
is estimated taking into account the properties of the
solutions to the corresponding Neumann problems of
the Laplace equation. If u2 @ D2vijvij , the contribution
of terms (the maximum of their moduli) determined by
the quantity vij  is small compared to that for terms
depending on the velocity u. If u2 @ D4vijkvijk , the con-
tribution of terms determined by vijk is small. Under
these conditions, a flow around a small body is close to
uniform. At the same time, the contributions to (3) of
terms containing G, A, Q, and B are small compared to
those of T(u, w). The contribution of the mentioned
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terms to  is small as well. We now introduce the

parameter

(6)

The small parameter ε combines the two above-men-
tioned conditions into a single one for an approxi-
mately uniform flow around a body, which is uniform
at ε = 0. If ε is not small, it is necessary to take into
account all terms in (3). The parameter ε is similar to
D/r0 and represents also one of the definitions for the
dimensionless diameter of a small body. Therefore,
expansion in terms of the small parameter D/r0 [6, 7]
coincides with that in terms of small ε. The parameter ε
allows us to refine the limits on the applicability of the
equations for each approximation. We note that the
velocity u occurring in the definition of ε is known
a priori, e.g., in problems of calculating the hydrody-
namic response or the stability of the equilibrium.

We introduce a parameter determining the role of
the second integral occurring in (1) and in the dynamic
equations (2) with respect to angular variables:

(7)

If ε2 is small (ε2  0), the term  – I——p in (3) is also

small as compared to T(u, w), and the second integral
in (1) is insignificant for calculating the hydrodynamic
angular momentum. In the case when ε2 is on the order
of unity, the contribution of the mentioned term to
equations of the body rotation is not small. When we
deal with the steady-state flow and when the magnitude
of the velocity u is on the order of v, then the order of
magnitude for (7) does not exceed that for (6), and the
parameter ε2 differs insignificantly from ε (by a factor
on the order of unity). In the limit of a weakly nonuni-
form flow (small values of ε and ε2), the interaction of
the body and flow is determined by the Lagrange func-
tion T – pV [6, 7].

We assume that the coordinate system zi coincides
with the main axes of the apparent-mass tensor. The
velocity v is given in the inertial system xi , which is
related to the system zi by the transformation

(8)

where eij depend on the angles ϕk . The angles ϕ1, ϕ2,
and ϕ3 represent those for successive rotations about
the axes 1, 2, and 3, respectively, of the movable trihe-
dron. As a result, the trihedron axes transform from
xi − qi to the zi-axes.

The equilibrium of a body in a steady-state flow is

described by the equations ∇ L = 0 and  = 0 (i = 1,

2, 3). We assume that qi = 0, ϕi = 0, mass forces are
absent, and the parameter ε is small. Then, taking into

L∂
ϕ i∂

-------

ε DG
u

---------, G
2

v ijv ij u v ijkv ijk, G 0.>+= =

ε2 D pij pij( )1 4/ ρu
2( )

1 2/–
, pij ∇ i∇ j p.= =

1
2
---

zi eij x j q j–( ),=

L∂
ϕ i∂
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account (3), we can conclude that the direction of the
velocity v is almost collinear to the first axis:

(9)

As for the exponent in (9), N = 1 for G ≠ 0 and N = 2 for
G = 0 (the latter case is possible for a symmetric body).
The first angle ϕ1 = O(1) is determined only with allow-
ance for those terms in (3) which are small with respect
to ε, because at ε = 0 this angle is arbitrary. Using

 = 0 at ϕ1 = 0, we impose restrictions on vij and vijk .

We admit that λ11 > 0. Then, the three equations of
equilibrium ∇ iL = 0 yield v1j = GO(εN) (j = 1, 2, 3).

Symmetry in perturbation dynamics. We con-
sider a case with a body being not spherical but sym-
metric with respect to three mutually perpendicular
planes. Then, λαβ = 0 at α ≠ β, G = 0, and N = 2. The
dynamic equations are written out in the linear approx-
imation with respect to small perturbances qα . The
functions eij(ϕk) occurring in (8) are calculated with an
accuracy to small quantities of the second order, ϕkϕl ,
inclusively. The following equations with respect to the
coordinates qi result from (2), (3), (8), and (9):

(10)

(11)

Here, m is the body mass, and the quantities vi , vij , and
vijk are calculated at the point x = 0 at which v2 = v3 = 0
and v1j = 0 (j = 1, 2, 3). The equations are valid within
an accuracy to ε2 . The equation with respect to q2 is
similar to (10). We introduce the new notation

(12)

and normalize the quantities λij , ρV, and m to λ11 . With
the notation of (12), the equations with respect to the
variables qi contain neither dimensional quantities nor
the parameter ε. By virtue of | | ≤ 1 and | | ≤ 1, the
coefficients of these equations that depend on the non-
uniformity of the velocity field are bounded. With the
notation of (12), equation (2) with respect to the coor-
dinate ϕ2 takes the form

(13)
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m λ11+( )q1

..
λ11 ρV+( )v 1v 11 jq j– 0.=
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D
----, v ij

v ij

G
------,= = =

ṽ ij

ukv kij

G
2

--------------, ϕ i

ϕ i

ε
----= =

v ij ṽ ij

ε2
a2ϕ2

..
ϕ2 q3

.
– v 3 jq j+ + 0,=
where the quantity a2 = (λ55 + J2)(λ11 – λ33)–1D–2

includes the body moment of inertia J2 with respect to
the z2-axis, and the dot denotes differentiation with
respect to .

Equation (2) with respect to the coordinate  is
similar to (13). The equation with respect to ϕ1 proves
to be independent of the other five equations of small-
perturbation dynamics.

Amplitudes of the perturbations have the form  =

cα exp( ). For certain motions, the first term in (13)
need not necessarily be small despite a small value of ε.
With the notation of (12), the solution to the system

depends on ε in a specific manner, in particular,  ~

(1/ε) . Values of the characteristic exponent  are

large:  ~ 1/ε as ε  0. To exclude instability with
a high increment, it is necessary to accept that λ11 > λ33
and λ11 ≥ λ22 . The mentioned “rapid” motions corre-
spond to the solution of the problem, which concerns
small perturbances of equilibrium for a body placed
into a uniform flow [3]. The derived system of equa-
tions allows two values of , which correspond to the
next approximation in the small ε, to be obtained.

To solve the problem of stability, it is sufficient to
consider other solutions, which, in the limit ε  0, are

independent of ε. For them, in particular,  ~ ,

and the first term in (13) is small, so that  ~ 1. We
now derive the asymptotic equations for such “slow”
motions. It follows from relation (13) and a similar
equation for α = 6 written in the initial notation that

(14)

If two apparent-mass coefficients coincide with each
other, then (λ11 = λ22), and only the first equation of (14)
remains. Substituting (14) into both (9) and a similar
equation with respect to q2 yields the equation for the
slow-perturbation dynamics

(15)

Here, ∇ i are calculated at the point x = 0. In contrast to
(10), relation (15) is free from contributions of both
velocities and the apparent-mass coefficients λ22 and
λ33 . As in the case of a mass point, the inertial term
occurring in (15) is symmetric. This symmetry (isot-
ropy) is unexpected, because the apparent-mass tensor
is not spherical. Regularity (15) is valid, for example, in
the case of a disk, a thin symmetric body, and ellip-
soids. Symmetry of equations describing small pertur-
bances occurs in another problem as well, namely,

t

ϕ3

qα

Λt

ϕ2
.

ϕ2 Λ
Λ

Λ

ϕ2

..
ϕ2

Λ

v 1ϕ2 q3

.
– v 3 jq j+ 0,=

v 1ϕ3 q2

.
v 2 jq j–+ 0.=

m λ11+( )qi
.. λ11 ρV+( )q j∇ j∇ i v

2
2⁄( )– 0,=

i 1 2 3., ,=
DOKLADY PHYSICS      Vol. 45      No. 6      2000



ON THE DYNAMICS OF A SMALL BODY IN A NONUNIFORM FLOW 297
when a body moves in a fluid under the effect of a con-
stant (at t > 0) external force. If initial conditions are
appropriate, there exists the solution to this problem,
which, for short times, is described by an equation sim-
ilar to (15).

The effective potential energy entering into (15) has
no minimum in the equilibrium position (because
∆(v2) ≥ 0), and this is similar to the known case of the
sphere [9]. This behavior agrees with the fact that the
condition L ≥ 0 indicates instability [9]. With only one
exception, relation (15) corresponds to the exponential
instability of equilibrium for a body placed into flow.
We now show that (15) can describe the neutral stabil-
ity of the equilibrium. We assume that —v = 0 and con-
sider two cases. In the first of them, except for v122 =
γ ≠ 0 and v111 = –γ, the quantities vijk = 0 for all ijk (per-
mutation of the indices is insignificant). Based on (15),
we can express the characteristic exponent in the form

In the second case, among all vijk, only v233 = γ and
v222 = –γ are nonzero. In contrast to the first case,
vivijk = 0 for all jk. As a result, according to (15), the
exponent Λ = 0; i.e., the equilibrium is neutrally stable
in the framework of (15). The same result is obtained
by solving the system of equations (10), (11), (13) and
the similar equations with respect to the variables q2
and ϕ3 . It is noteworthy that these results are valid for
small ε. Therefore, we may conclude that in the second
case, Λ = Λ1O(ε). Thus, the effect of an abnormally
strong (by a factor of ε–1) decrease in the perturbance
amplitude for the equilibrium state of the body in the
flow is possible. This effect is caused by a variation of
the orientation of the coordinate system under the con-

Λ1 v 1 γ( )1 2/ λ11 ρV+( )1 2/ λ11 m+( ) 1 2/–
.=
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dition of a given nonuniformity of the velocity field
with respect to the vector u.

When a body is in equilibrium, and its center is sit-
uated at the critical point (v = 0) of a steady-state flow,
the parameter ε is unlimitedly large. The corresponding
linear problem of the equilibrium stability has been
considered in the case of —v ≠ 0 and ——v = 0. The
exponential instability is proven to occur for an arbi-
trary symmetric body [10]. If the center of the body is
immovable, its stable orientation in the steady-state flow
can be determined with the use of formulas (2) and (3).
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In this paper, the time-dependent equation for diffu-
sion in an aperiodic porous medium with weakly pene-
trable inclusions is considered. The asymptotic behav-
ior of its solutions is described by an averaged equation
with memory. Effective parameters are calculated with
the help of solutions to local problems. The general
model obtained is shown to describe three qualitatively
distinguished cases differing by the degree of inhomo-
geneity of a medium.

1. Introduction. We consider here transport pro-
cesses in a porous medium representing the spatial
alternation of two types of rocks with contrast transport
properties. In this case, we cannot ignore the existence
of a weakly conducting subsystem since, even being
virtually impenetrable, it can contain a considerable
quantity of a fluid. Objects of this type are widely met
in hydrology or oil engineering, where natural porous
strata are composed of rocks with sharply different pet-
rographic properties or are dissected by nets of cracks.
For the description of such objects, a model of media
with double porosity is used. In the framework of this
model, a medium is represented as a unified highly pen-
etrable system (matrix) Ωε having weakly penetrable
inclusions (blocks) Fε. The porosity of blocks is con-
sidered to be not lower than that of the matrix. If the
scale of an inhomogeneity ε is small, the averaged
behavior of the system is of interest. This behavior is
complicated due to the fact that the medium involves
the second substantial parameter ω ! 1 equal to the
ratio between the conductivity of blocks and that of the
matrix, so that the asymptotic degeneracy of coefficients
of the equations occurs on the inclusions as ω  0.

The classical model of flow through a medium with
double porosity [1] was based on the hypothesis of a
quasisteady exchange process between the blocks and
the matrix. In the general case, the exchange process is
unsteady, and, by virtue of the Duhamel principle, the
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appearance of operators of the time-convolution type
can be expected. A similar model with memory was
proposed in [2, 3] for a particular relation between the
medium parameters when ω ~ ε2 (ε2-model). In the
more general case, media with double porosity corre-
spond to all situations when ω ~ ε2 . Four classes of such
media [4] can be distinguished. For ω ! ε2 , weakly
penetrable blocks can be ignored; for ω ~ ε2 , the trans-
port is described by the above model with a long-term
memory; for ω ~ ε2 , the medium has a short-term mem-
ory; and, for ε ! ω ! 1, the medium behavior is mod-
erately inhomogeneous without memory.

Similar objects were studied in [5, 6].
In this paper, we derive a mathematically rigorous

general macroscopic model for the zero-order trans-
port. The generalization concerns three aspects: (a) the
heterogeneity can be aperiodic; (b) the ratio between
conductivities is arbitrary, so that ω ! 1; (c) the degree
of connectedness of the block system is arbitrary. To
derive the model, we have used the variational method
developed in [7–9]. The periodic cases, for which the
effective coefficients can be calculated explicitly, are
considered as examples.

2. Formulation of the problem. Let Ω be a
bounded region in R3 with a piecewise-smooth bound-
ary ∂Ω . The following initial boundary value problem
is considered:

(1)

(2)

where aε(x), f ε(x), and (x) are given. We assume that

f ε(x) ∈ L2(Ω), (x) ∈ H1(Ω), and aε(x) is the positive
limited function in Ω for an arbitrary ε > 0.

It is known that for an arbitrary ε > 0, there exists a
unique solution uε(x, t) to problem (1), (2), which
belongs to the class C[0, T; H1(Ω)].

u
ε∂

t∂
------- div a

ε
x( )∇ u

ε
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u
ε∂
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------- x t,( ) 0, x Ω, t∂ 0 T,( ),∈ ∈=

u
ε

x 0,( ) u0
ε

x( ), x Ω,∈=
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2000 MAIK “Nauka/Interperiodica”



A MODEL FOR FILTRATION IN AN APERIODIC MEDIUM WITH DOUBLE POROSITY 299

                 
We assume that there exists a set F(ε) ⊂ Ω , which
satisfies the following conditions:

(i) F(ε) becomes progressively denser in Ω , so that,
in the case of an arbitrary ball V(x, ρ) with the center at
the point x ∈ Ω  and radius ρ, we have V(x, ρ) ∩ Fε ≠ 0,
V(x, ρ) ∩ (Ω\F(ε)) ≠ 0 for a reasonably small ε > 0;

(ii)  as ε  0;

(iii) the region Ω(ε) = Ω0F(ε) is strongly connected
[8] with respect to the region Ω, and, moreover, aε(x) ≥
a0 > 0 for x ∈ Ω (ε).

We denote the norms in the spaces L2(Q) and H1(Q)
as ||·||Q and ||·||1, Q , respectively, and investigate the
asymptotic behavior of the solution uε(x, t) as ε  0.

To do this, we introduce a local description of the
penetrability for the sets Ω(ε).

Let K(z, k) =  be a cube with its center at the point
z ∈ Ω  and an edge of length h > 0. We define the func-
tional for the vectors l = (l1, l2, l3) ∈ R3 assuming

(3)

Here, (·, ·) is the scalar product in R3 and 0 < γ < 2. The
lower bound in (3) is taken according to the class of

functions νε(x) ∈ H1(Ω(ε) ∩ ). Functional (3) is qua-
dratic with respect to the vector l ∈ R3 . The following
representation is also true:

if

where, (x) is the function minimizing (3) and l is the
unit vector along the xj-axis.

We consider also the functional
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where (x) and (x) are the indicators of the sets

F(ε) and Ω(ε), respectively; λ > 0, s ∈ R. The lower
bound in (4) is taken according to the class of functions

wε(x) ∈ H1( ).
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 as an “accumulator” of particles.

 

3. The generalized model of filtration in an aperi-
odic medium with double porosity. 
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where b1(x) and b2(x, λ) are the nonnegative continuous
functions and bλ(x, λ) = O(|λ|δ), δ < 1 as |λ|  ∞, and
|  – π| ≥ θ00;

(iii) there exists the continuous function m(x) > 0
such that

(iv) the functions f ε(x) and (x) are uniformly lim-
ited in L2(Ω) with respect to ε. They are zero for x ∈ F(ε)

and converge in L2(Ω(ε)) to the functions f(x) and u0(x),
respectively.
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Then, the solution to problem (1), (2) converges in

L2( ), where  = Ω(ε) × (0, T), to the solution
u(x, t) of the following problem:

where

Moreover, uε(x, t) (x) converges weakly in L2(ΩT) to

the function

The proof of Theorem 1 is based on the Laplacian
transformation of problem (1), (2) to the time-indepen-
dent boundary value problem:

(5)

where gε(x) = λ–1f ε(x) + (x), the functions aε(x),

f ε(x), and (x) are defined previously and λ > 0. It is
known that the unique solution to problem (5) exists in
the H1(Ω) class for an arbitrary ε > 0.

We now consider the time-independent variant of
Theorem 1.

Theorem 2. Let the conditions of Theorem 1 be ful-
filled. Then, the sequence of the solutions {uε(x)} to
problem (5) strictly converges in L2(Ω(ε)) as ε  0 to
the solution u(x) of the following boundary value
problem:

(6)
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Here, g(x) = λ–1f(x) + u0(x), and the functions aij(x),
bλ(x), m(x), f(x), and u0(x) are defined in Theorem 1.

Moreover, the functions uε(x) (x) weakly con-

verge in L2(Ω) to the function

(7)

Theorem 2 is proved by the variational method for
λ > 0. Namely, the “coordinate” functions are obtained,
making it possible to construct on this basis an approx-
imation appropriate for solving variational problems.

4. Penetrability of inclusions ~e2: A periodic
medium. The well-known model with memory, which
was derived for the case aε ~ ε2 for x ∈ F(ε) [2, 3], is
developed for a disconnected system of blocks. Theo-
rem 1 makes it possible to obtain the generalization of
this model for the case of the connected set F(ε).

Let Ω be a bounded region in R3, and F(ε) is a set
in Ω. We assume that F(ε) is the periodic lattice with the
period ε, which is composed of cylinders with a radius
rε = rε (r < 1/2). We put Ω(ε) = Ω\F(ε). In the region Ω ,
we consider initial boundary value problem (1), (2) for
the following definition of aε(x):

(8)

where θ = 2.
It is easy to show that conditions (i)–(iii) are ful-

filled.

Let Π be a unit cube in R3: Π = {x ∈ R3: |xi| < 1/2},

F ⊂ Π , P = Π \ .
Using Theorem 1, we conclude that the solutions

{uε(x, t)} to problem (1), (2), with the coefficient aε(x)

defined as (8), converge in L2( ) to the solution of
the following initial boundary value problem:

where m = mesF, {aij  are defined as aij(x) = (∇ ui,

∇ uj)dx, while uk is the solution to the boundary value
problem

χ
F

ε( )

ω0 x( ) b1 x( )
b2 x λ,( )

λ
------------------+

 
 
 

u x( ).=

a
ε

x( )
aεθ

, x F
ε( )∈

1, x Ω ε( )
,∈

=

F

ΩT
ε( )

m
u∂
t∂

----- aij
∂2

u
xi x∂ j∂

---------------
i j, 1=

3

∑–
∂
t∂

---- B t τ–( )u x τ,( ) τd

0

t

∫+ m f x( ),=

x t,( ) ΩT ;∈

∂u
νa∂

-------- x t,( ) 0, x Ω, t 0 T,( );∈∂∈=

u x 0,( ) u0 x( ), x Ω,∈=

}i j, 1=
3

P

∫
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(10)

(11)

The function w(x) is the solution to the boundary value
problem

(12)

It is known that a unique solution w(x, λ) to problem
(12) exists for λ ∈ C\{λ:  = π}, w(x, λ) being the
analytical function in the λ-complex plane. Therefore,
representation (11) for the function bλ(x) is true for an
arbitrary λ ∈  C\{λ:  = π}.

The sequence of the functions {uε(x, t) (x)}

weakly converges in L2(ΩT):

5. Penetrability of inclusions higher than e2: A
periodic medium. For simplicity, we consider the case
of a disconnected set of blocks, for example, in the
form of a periodic system of balls. Let Ω be a bounded

region in R3, and F(ε) be the  set of balls disposed
periodically along the coordinate axes with the period ε.
We assume that Ω(ε) = Ω\F(ε). In the region Ω , we con-
sider initial boundary value problem (1), (2), in which
aε(x) is defined as (8) for 0 < θ < 2. In this case, bλ(x) =
bλ = λ(1 – m), where m = mesΠ \F, by virtue of which the
kernel B(x, t) turns out to be constant.

From Theorem 1, it follows that the solutions
{uε(x, t)} to problem (1), (2) converge in L2(Ω(ε)) to the
solution of the following initial boundary value problem:

where β =  for ν1(x), which is the solution to
problem (10).
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x P x

 

:  x k 1/2 ± = { } . ∩∂∈  =

B t( )
1

2πi
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w x
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x F
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x
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λarg
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χ
F
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ω x t,( ) B t τ–( )u x τ,( ) τ .d

0

t

∫=

Fα
ε( )

u∂
t∂

----- β∆u– m f x( ), x t,( ) ΩT ;∈=

u∂
ν∂

------, x Ω, t 0 T,( ); u x 0,( )∈∂∈ u0 x( ), x Ω,∈=

∇ ν1 p
2
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The sequence {uε(x, t) (x)} converges weakly in

L2(ΩT) to the function (1 – m)u(x, t).

6. Penetrability of inclusions smaller than e2: A
periodic medium. Let Ω, F(ε), and Ω(ε) be the sets
defined in Section 4. We consider initial boundary
value problem (1), (2), where aε(x) is defined as (8) for
θ > 2. In this case, bλ(z, ε, h) = O(εθ/2 + 1) as ε  0.
This implies that bλ(x) = 0.

According to Theorem 1, we find that the solutions
{uε(x, t)} to problems (1), (2), for θ > 2 converge in

L2( ) to the solution of the following initial bound-
ary value problem:

Here, m = mesF, β = , and the function ν1(x) is
the solution to problem (10).

The sequence {uε(x, t) (x)} weakly converges to

zero in L2(ΩT).
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