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1. We consider two-dimensional potential ideal-gas
flows. At the hodograph plane, they are described by
the Chaplygin equations

(1)

or the Chaplygin equations of the second order for the
stream function [1–4]:

(2)

Hereafter, ϕ is the potential; ψ is the stream function; q,
θ, u, and v  are the modulus, angle of inclination, and
horizontal and vertical components of the velocity vec-
tor, respectively; M is the Mach number; p is pressure;
and ρ is the density.

Eqs. (1) and (2) have an infinite set of exact solu-
tions [1–4]. In this paper, we show that each solution is
associated with a proper set of gas-dynamics equations,
one of them being divergent (see Theorem 1). Our
detailed analysis of the solutions to system (1), which
are found by the method of separation of variables led
to one more algorithm for constructing an infinite set of
conservation laws (see Theorem 2). The set constructed
includes, as a particular case, the set of the conservation
laws found in [5, 6]. They can be applied to two-dimen-
sional steady flows (mass, momentum, and angular-
momentum conservation laws). It is worth noting that a
finite set of the conservation laws was found in [5, 6]
for the cases of both steady and unsteady three-dimen-
sional flows.

Theorem 1. For each solution ϕ = f(z, θ) ≠ const
and ψ = g(z, θ) ≠ const to Chaplygin equations (1), the
introduction of variables α and β dependent on the
functions f(z, θ) and g(z, θ), respectively, α = f(z, θ) and
β = g(z, θ) yields a system of uniformly divergent gas-
dynamics equations in the plane of the potentials

ϕ z kψθ+ 0, ϕθ ψz– 0= =

kψθθ ψzz+ 0, z
ρ
q
--- q, kd∫ 1 M2–

ρ2
----------------.= = =
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(ϕ and ψ) and, as a result, a conservation law in the
physical plane:

(3)

(4)

Remark. The solutions ϕ = f = const and ψ = g =
const also allow us to obtain certain conservation laws
on the (x, y)-plane. For example, substituting either
f = 1 and g = 0 or f = 0 and g = 1 into (4), we obtain the
conservation law for either mass or circulation, respec-
tively.

2. We consider several tentative examples of exact
solutions.

A flow with a source (radial motion). In this case,

g = θ and f = − dz = – K(z). Then,

A flow similar to a potential vortex. In this case,
f = θ and g = z. Then,

(5)

It is worth noting that system (5) is well known in gas
dynamics [4], but irrespectively of the potential-vortex
flow.

The solution ψ = g = θz and ϕ = f =  – F(z), with

F(z) = zdz, leads to the equations

kβϕ αψ+ 0, βψ αϕ– 0;= =

αρu βv+( )x αρv βu–( )y+

=  fρu gv+( )x fρv gu–( )x+ 0.=

k∫
kθϕ Kψ– 0, θψ Kϕ+ 0;= =

Kρu θv–( )x Kρv θu+( )y+ 0.=

kzϕ θψ+ 0, zψ θϕ– 0,= =

θρu zv+( )z θρv zu–( )y+ 0.=

θ2

2
-----

k∫

k θz( )ϕ
θ2

2
----- F– 

 
ψ

+ 0, θz( )ψ
θ2

2
----- F– 

 
ϕ

– 0;= =
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and

The solution ϕ = f = –θK(z) and ψ = g =  – G(z),

with G(z) = (z)dz, leads to the equations

and

It should be noted that the angle θ of inclination of
the velocity vector enters into the conservation laws
under consideration as both an explicit argument and
the argument of the trigonometric functions. Moreover,
the two last solutions depend on the variable θ2 . This
fact can be used to carry out certain estimates. For
example, using the known asymptotic form of the sym-
metric flow around a body [7] and the conservation law
presented above, we can prove that the following rela-
tionships are satisfied at an arbitrary streamline over its
entire length:

3. In order to construct new systems of equations
and conservation laws, we now consider known solu-
tions to Eqs. (1), which are found by the method of sep-
aration of variables. The four independent solutions are
of the form

(6)

Here, λ is an arbitrary constant, and the functions
h(1)(λ; z) and h(2)(λ; z) are two independent solutions to
the ordinary differential equation of the second order:
hzz(z) = λ2kh(z). The subscript z stands for differentia-
tion with respect to z.

Since the solutions depend on the arbitrary constant
λ, it is possible to construct an infinite set of the func-
tions (fi , gi). Therefore, according to Theorem 1, we can
find an infinite set of gas-dynamics equations (3) with

θ2

2
----- F– 

  ρu θzv+ 
 

x

θ2

2
----- F– 

  ρv θzu– 
 

y
+ 0.=

θ2

2
-----

K∫
k

θ2

2
----- G– 

 
ϕ

θK( )ψ– 0, θ2

2
----- G– 

 
ψ

θK( )ϕ+ 0;= =

θKρu
θ2

2
----- G– 

  v– 
 

x
θKρv

θ2

2
----- G– 

  u+ 
 

y
+ 0.=

G z( ) G z∞( )–( )q ld

∞–

+∞

∫ θ2

2
-----q ld

∞–

+∞

∫ 0.>=

f 1
1
λ
---hz

1( ) λθ, g1cos– h 1( ) λθ;sin= =

f 2
1
λ
---hz

1( ) λθ, g2sin h 1( ) λθ;cos= =

f 3
1
λ
---– hz

2( ) λθ, g3cos h 2( ) λθ;sin= =

f 4
1
λ
---hz

2( ) λθ, g4sin h 2( ) λθ.cos= =
the variables (α = fi , β = gi) dependent on correspond-
ing functions and an infinite set of conservation laws
acquiring the following form:

In the general case, the functions h(1) and h(2) are
expressed in terms of the hypergeometric functions [1–4].
In the case of λ = 1, they take the known explicit form:

The functions h(1) correspond to the Ringleb flow [1,
3, 8]. The streamline pattern for the flow corresponding
to the function h(2) is very similar to that for the Ringleb
flow [1]. We now present the relations that describe
such flows, the systems of gas-dynamics equations in
the form of Eqs. (3), and the corresponding conserva-
tion laws in the physical plane.

Ringleb flow. (a):

Ringleb flow. (b):

Modified Ringleb flow. (a):

f i( )ϕ gi( )ψ– 0,=

f iρu giv+( )x f iρv giu–( )y+ 0.=

h 1( ) 1; z( ) 1
q
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h 2( ) 1; z( ) p
q
---, hz

2( ) 1; z( ) p ρq2+
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ϕ f 3
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p
q
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ϕ
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ψ
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 

ϕ
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Modified Ringleb flow. (b):

The Ringleb flow was comprehensively discussed in
the literature [1, 3, 8]. It represents one of a few exact
solutions to the problem on a flow with a local super-
sonic area. However, the Ringleb flow leads to no
instructive conservation law in the (x, y)-plane. At the
same time, the modified Ringleb flow was only briefly
mentioned in the literature [1], not being discussed in
detail. However, as was shown above, this is the flow
that is associated with the momentum conservation law.
Nevertheless, we prove below that a combination of the
functions describing the Ringleb flows of both types
enters into the known angular-momentum conservation
law.

It is evident that Theorem 1 does not exhaust all pos-
sible conservation laws, in particular, the angular-
momentum conservation law. The following theorem,
which to a large extent generalizes the conservation law
mentioned above, is of interest.

Theorem 2. For arbitrary values of λ, the following
conservation laws hold:

(7)

(8)

Here, fi and gi are the functions given by Eqs. (6), and
the function R(i, λ) is defined by its derivatives:
Rϕ (i, λ) = gi and Rψ(i, λ) = fi .

Remark. In contrast to Theorem 1, the expressions in
the parentheses in (7) and (8) do not satisfy system (1).

Corollary. For λ = 1, the function R can be written
out in the explicit form

p ρu2+( )x ρuv( )y+ 0.=

ϕ f 4
p ρq2+

ρq
------------------ θ, ψsin– g4

p
q
--- θ;cos= = = =

k
p
q
--- θcos 

 
ϕ

p ρq2+
ρq

------------------ θsin 
 

ψ
– 0,=

p
q
--- θcos 

 
ψ

p ρq2+
ρq

------------------ θsin 
 

ϕ
+ 0;=

puv( )x p ρv 2+( )y+ 0.=

f 3R 1 λ,( ) f 4R 2 λ,( )+( )ϕ

– g3R 1 λ,( ) g4R 2 λ,( )+( )ψ 0,=

f 1R 3 λ,( ) f 2R 4 λ,( )+( )ϕ

– g1R 3 λ,( ) g2R 4 λ,( )+( )ψ 0.=

R 1 1,( ) y, R 2 1,( ) x, R 3 1,( ) X p y,d∫= = = =
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with the integrals taken along streamlines.

In the case of λ = 1, in the potential plane and the
physical plane, conservation law (7) takes the following
forms, respectively:

This is simply the angular-momentum conservation law.

For λ = 1, the functions f and g entering into (7) cor-
respond to the modified Ringleb flow, while the func-
tion R corresponds to the Ringleb flow. At the same
time, these flows interchange in conservation law (8).
As a result, we have

As is seen, for λ = 1 in the physical plane, conservation
law (8) has an extremely simple form.
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The upper temperature phase-state boundary (PSB),
below which substances in their condensed state are
thermodynamically stable, can be reached by both
high-intensity heating and a sharp decrease in pressure
(see, e.g., [1–4]). Thermal processes accompanying the
decomposition of materials under one-sided heating of
their surface layers are of the most interest for practice,
in particular, from the standpoint of both the stability of
heat-resistant coatings and burning [5]. A new method
of contact thermal analysis, described in [6, 7], makes
it possible to record the kinetics of thermal decomposi-
tion with a duration from several seconds to several tens
of microseconds and to determine kinetic parameters in
the immediate vicinity of the PSB of materials.

In this study, we propose a mathematical model for
describing the results of kinetic investigations and sim-
ulating processes at the front of polymer decomposition
under high-intensity thermal attacks on surface layers
for temperatures up to the PSB.

The position of the PSB is thermodynamically
determined from the condition that the second variation
of one of the thermodynamic potentials is zero; e.g.,
δ2G = 0, where G is the Gibbs free energy [1]. At the

stability boundary, the derivatives  and  vanish,

and, therefore, the PSB can be calculated from the
equation of state. The wide-range equations of state
proposed recently in [8, 9] allow accurate calculations
of the parameters of both polymers and other materials.
Experimental methods enable us to determine the
kinetic analogs of the temperatures at the PSB, the
attainable superheating temperatures Tl [2–4, 6, 7],
which are only slightly (2–5°ë) lower than corre-
sponding temperatures on the PSB at a given pres-
sure. Figure 1 shows the simplified block diagram of
a setup for contact thermal analysis and signal record-
ing from a photodetector for three linear polymers

∂ p
∂V
------- ∂T

∂V
-------
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being examined. These are (1) polymethylmethacrylate
(PMMA), (2) high-density polyethylene (LPP), and
(3) polyethylene glycol (PEG-40000) with a molecular
mass of 40000 amu. The plots clearly demonstrate that
the thermal decomposition of the first two polymers is
a multistage process that can be treated with allowance
for the evaporation of the resulting products of complex
chemical composition [11, 12]. To develop a mathemat-
ical model for processes occurring at the thermal-
decomposition front under intense heating, it is suffi-
cient to determine by recording photodetector signals
the thermal-decomposition duration at a certain tem-
perature. In other words, we need to measure the time
interval td between the first dip (the moment when a
sample is set onto a substrate) and the moment when
the td line becomes horizontal. Figure 2 shows the time
td in the semilogarithmic scale as a function of the
reciprocal absolute temperature attained when testing
samples. The lower branches of the plots have a shape
close to inclined straight lines and can be described by
the Arrhenius equation. The left upper branches are
bent upward and asymptotically approach vertical

straight lines with abscissas . This behavior is incon-

sistent with Arrhenius kinetics.

To describe the experimental results, various modi-
fied Arrhenius equations were proposed in [10, 11],
whose additional multiplier takes into account the
peculiar behavior of systems near the PSB. We use the
following equation to obtain this multiplier in the ana-
lytical form:

(1)

where Tl, E, and B are the problem parameters and the
exponent n lies within the range from 3 to 20, depend-
ing on the substance properties. Equation (1) for n = 0
transforms into the ordinary Arrhenius equation. The
preexponential factor is responsible for the accelerated

1
Tl

----

k T( ) T
Tl

---- 
  n

B –
E

RT
------- 

  ,expexp=
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Fig. 1. Determination of the parameters for the upper temperature boundary of thermodynamic stability of polymeric materials:
(a) block diagram of the experimental setup; (b) recording signals from a photodetector for (1) polymethylmethacrylate, (2) low-
density polyethylene, and (3) polyethylene glycol.

(a)

(b)
decomposition of polymers due to weakening the inter-
molecular interaction and the intensification of homo-
geneous nucleation near the PSB [2–4, 6, 10].

We consider the thermal decomposition of a mate-
rial half-space, which is described by the heat-conduc-
tion equation

(2)

where u is the decomposition-front velocity, F(T) is the

d
dx
------λdT

dx
------ F T( )– ρCpu – 

dT
dx
------+ 0,=
DOKLADY PHYSICS      Vol. 47      No. 3      2002
heat-absorption function usually taken in the form
F(T) = ρ0Qk(T) [5] under the assumption that thermol-
ysis is a zero-order reaction, Q is the thermal effect of
the reaction with the rate constant k(T), and ρ is the

density. For these reactions, we have k(T) = , which

allows the use of Eq. (1).

The last term on the left-hand side of Eq. (2) is usu-
ally ignored because of its smallness [5]. Integrating
Eq. (2) with allowance for the boundary condition

1
td
---
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T = T0 as x  ∞ and taking into account variations of

the thermal conductivity λ(T) =  caused by the

appearance of secondary porosity [6], we obtain

λ0ρ T( )
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-----------------
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Fig. 2. Results of studying the kinetics of polymer thermal
decomposition near the PSB: (1) high-impact polystyrene,
(2) block polystyrene, (3) high-density polyethylene,
(4) lavsan (dacron), (5) low-density polyethylene, (6) poly-
vinyl chloride, (7) polymethylmethacrylate, (8) polycapro-
lactam, (9) polyethylene glycol, (10) borax, (11) Alanin-
skoe-deposit oil.
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Fig. 3. (1, 2) Decomposition-front velocity and (3) burning
rate as a function of the reciprocal temperature for (1) poly-
methylmethacrylate and (2, 3) polymethylmethacrylate +
triethylene glycol; I–III are regimes of thermal decomposi-
tion. Experimental points are obtained by linear pyrolysis,
and dashed lines are calculated by Eqs. (5) and (7) with
n = 48 for heating regimes II and III. For n = 100, the dashed
lines merge with the vertical dashed-dotted straight line.
(3)

Here, J(T) = , D = , and ρ0 and λ0

are the original values of ρ and λ, respectively.
Furthermore, we equate the heat flow qw arriving at

the surface to the general heat spent for heating and
decomposing the material:

(4)

where λw = λ(Tw) = χλ0, χ . , and ξ is the frac-

tion of the reacted substance. Substituting the tempera-
ture gradient from Eq. (3) into Eq. (4), taking into
account Eq. (1), and approximately calculating the inte-
gral J(Tw) for n < 55 with an accuracy of 5% (see
Appendix), we arrive at the equation

(5)

For n = 0 and T < Tl, Eq. (5) goes over into the well-
known Merzhanov–Dubovitskiœ formula [12] that
describes the linear dependence of  on Tw:

(6)

where a is the thermal diffusivity, λw = λ0 , and ξ = 1.
We compare the result obtained with available

experimental data. Figure 3 shows the rate of thermal
decomposition and gasification of linear PMMA and
spatially cross-linked polymers produced by the copo-
lymerization of methyl methacrylate and diethyl ether
or triethylene glycol (TEG) in the case of burning and
linear pyrolysis. The samples were heated by the linear-
pyrolysis method through contacting their end surface
with a hot metallic plate containing numerous holes for
the removal of pyrolysis products.

The lower sections of the plots (Fig. 3, regime I) cor-
respond to low temperatures at which sample cooling by
a surrounding medium affects the result. In region II,
experimental data are approximated by an inclined
straight line [Eq. (6) and Eq. (5) for T < Tl]. In this case,
the kinetic parameters determined by solving the inverse
problem of nonisothermal kinetics agree well with those
obtained by the thermal analysis (see Table 1).

Regime III observed for higher temperatures
sharply differs from the two other regimes: the thermal-
decomposition rate increases abruptly with a minor rise
in temperature. Experimental points deviate upward

dT
dx
------ D J T( )( )1/2.–=

k T( ) Td

T0

T

∫
2ρ0Q

λ0
------------- 

 
1/2

qw λw
dT
dx
------ 

 
x 0=

– uρ Cp Tw T0–( ) ξQ+[ ] ,= =

ρ Tw( )
ρ0

--------------

u = 
Dλw E/2RTw–( ) Tw/Tl( )n/2B1/2expexp

ρ0 Cp Tw T0–( ) ξQ+[ ] n Tw
n 1–( /Tl

n ) E/RTw
2+[ ]

--------------------------------------------------------------------------------------------------------------.

ulog

u1
aRTw

2 B E/RTw–( )exp
E Tw T0–( ) Q/2Cp+[ ]
------------------------------------------------------,=
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from the straight sloping Arrhenius line that corre-
sponds to Eq. (6). At the same time, this deviation com-
pletely corresponds to Eq. (5), which includes the PSB
parameters. For this case, the maximum temperature of
the surface for PMMA samples (Tw ~ 512°ë) corre-
sponds to data shown in Fig. 2, where the temperature
Tl of various PMMA trade marks (shaded region) lies
within the range 500 to 515°ë [12].

The relation of Eqs. (5) and (6) is descriptively rep-
resented as the product

u = K(Tw)u1, (7)

where

Introducing the coefficient K(Tw) provides the
description of the transition from regime II to regime III
and a further increase in the thermal-decomposition
rate. According to data of [2–4], the frequency of nucle-
ation rises by two–nine orders of magnitude with an
increase in temperature near the PSB by only 1°C. This
rise can be described by Eq. (1) with n = 20–100.
Table 2 presents the values of K(Tw) for PMMA at E =
43.0 kcal/mol and Tl = 773 K for n = 24 and 48 for var-

ious ratios .

This table demonstrates that the coefficient K(Tw) is
close to unity for T < Tl , and Eq. (5) approximates the
linear section of the plots. The dashed line in Fig. 2
shows an increase in the decomposition-front velocity
u according to Eqs. (5) and (7) for n = 24. A similar cal-
culation was performed for other polymers of the spa-
tially cross-linked structure, PMMA + TEG (2 and
10%, respectively).

According to Eq. (3), the highest temperature gradi-
ents arise near the heated surface. In particular, the ther-

mal-decomposition depth l ~  is equal to 1.3 ×

10–3 mm for PMMA at Tw ≈ Tl and  = 3 × 108 K/m.

For this value of l, Eqs. (5) and (7) are applicable for
small polymeric particles, polymer granules, and poly-
meric drops of various shapes with the characteristic
size L @ l. The limitation of an increase in surface tem-
perature (stabilization) with qw is predicted by Eqs. (4)
and (7) and is corroborated in experiments with various
methods of thermal supply, e.g., heating by an electric
arc, radiant and convective heating, diffusion burning in
media enriched in an oxidant, laser-beam action, etc.
[5, 11–15].

Thus, we may state that theoretical and experimen-
tal studies [10, 12, 13] involving microscopic and mac-
roscopic kinetics of polymer thermal decomposition

K Tw( )
Tw/Tl( )n 2⁄exp

nRT Tw/Tl( )n/E 1+
-----------------------------------------------.=

T
Tl

----

T T0–
dx
dT
------

---------------

dT
dx
------
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under one-sided heating allow us to make important
conclusions. These studies have demonstrated that het-
erogeneous nucleation changes to homogeneous nucle-
ation near the PSB with an increase in the heating inten-
sity. The Arrhenius equation traditionally applied for
mathematically simulating polymer thermal decompo-
sition does not involve information on the PSB param-
eters and, therefore, cannot allow for a change in the
nucleation mechanism near the PSB. The above-pro-
posed modification of the Arrhenius equation, in con-
trast to other attempts [10, 11], provides not only
numerical calculation of the macroscopic kinetics of
thermal-decomposition processes for polymers near the
PSB but also analytical description of these processes.
In particular, this modification makes it possible to
derive the expression for the linear rate and the mass
rate of the thermal decomposition with the variation in
the parameters near the PSB taken into account. The
expression obtained is corroborated by the data of pre-
vious experimental studies. The above-proposed rela-
tions considerably improve the accuracy of calculations
for temperature fields and other characteristics of the
thermal decomposition under the highly intense heating
of polymeric materials.

Table 1.  Kinetic parameters of the polymer thermal decom-
position for polymethylmethacrylate (PMMA) and methyl
methacrylate–triethylene glycol (MMA + TEG), which are
determined by methods of thermal analysis (TA) and linear
pyrolysis (LP)

Polymer
E, kcal/mol logB [s–1]

TA LP TA LP

PMMA 42.6 ± 2 43 ± 3 12.47 ± 0.7 13.32 ± 1
MMA + 
2% TEG-3

43.5 ± 2 43 ± 3 12.14 ± 0.7 12.51 ± 1

MMA + 
10% TEG-3

43.8 ± 2 43 ± 3 12.3 ± 0.7 12.51 ± 1

Table 2.  Values of the K(TW) coefficient for polymethyl-
methacrylate (PMMA)

K (TW) 

n = 24 n = 48

0.8 1.066 1.004

0.85 1.133 1.013

0.9 1.289 1.071

0.95 1.552 1.159

1.0 1.995 1.575

1.1 5.042 112.5

1.2 249.6 3.06 × 1030

T
Tl
-----
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Appendix. Calculation of the J(T) integral. We

approximately calculate the integral  by

the following method. For a linear function F(x), the
integral is exactly calculated as

This expression is used as the first approximation
for integrating the nonlinear function F(x) = k(T) with a
certain error ∆, whose upper estimate is

The corresponding expression for the desired integral
can be written out in the form

which is used to calculate the gradient  and the

decomposition-front velocity u.
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The intricate behavior of nonlinear dynamical sys-
tems currently attracts the attention of researchers. To a
large extent, it is associated with the fundamental prob-
lem of studying the laws of dynamical chaos. Systems
with discrete time (of mapping) are the simplest nonlin-
ear dynamical systems exhibiting many typical phe-
nomena.

However, there are only a few results on analyzing
transients, even though dynamical chaos and scenarios
of the order–chaos transition are actively studied. It is
generally thought that transients are unessential fea-
tures of the system dynamics and do not carry any par-
ticular information. Stable regimes (periodic, quasi-
periodic, chaotic) are a major focus of interest, whereas
no consideration is given to transients. When transients
are prolonged processes, they may be perceived as
obstacles to efficient investigations of the system under
consideration. At the same time, the role of transients in
nonlinear-system dynamics is of great importance. For
a number of dynamical systems (systems under an
external impulse action, systems with very prolonged
transients, systems with multistability, and distributed
oscillatory systems), a transient substantially deter-
mines their behavior. Thus, an important class of phe-
nomena was actually disregarded. As will be shown
below, a number of scaling laws exist for transients, and
processes occurring in a system affect the transient-
duration dependence on initial conditions under the
variation of controlling parameters.

In this paper, transients in a nonlinear discrete-time
dynamical system are analyzed in detail for the first
time, and mechanisms complicating the transient-dura-
tion dependence on initial conditions are disclosed.
Fundamentally new scaling laws typical for transients
are found.

We study transients by the example of the classic
nonlinear-dynamic model, logistic mapping [1]:

xn + 1 = f(xn) = λxn(1 – xn). (1)

The dependence of the transient duration on initial
conditions is investigated for various values of the con-

Saratov State University, 
ul. Universitetskaya 42, Saratov, 410601 Russia
1028-3358/02/4703- $22.00 © 20181
trolling parameter λ in the range from 1.0 to 3.57. In
other words, the subharmonic-cascade region is consid-
ered [1].

Figure 1 illustrates the dependence of the transient
duration for λ values corresponding to cases where a
fixed stable point exists in the system. It is seen that the
dependence of the transient duration K on the initial
conditions x0 is of a complex “jagged” form. The
dependence K(x0) is regularly complicated as the con-
trolling parameter λ increases.

Global minima in the transient-duration dependence
correspond to the initial conditions x0 coinciding with
the points of an attractor that exists in the system phase
space for a given value of the controlling parameter λ.
In other words, for λ = 1–3, the global minimum of the
transient-duration dependence is attained at the fixed

stable point x0 = , which is an attractor (Fig. 1). As

the parameter λ increases and the fixed point x0 loses its
stability, the global minima of the transient duration ini-
tially correspond to the elements of the stable 2-cycle

[λ = 3–(1 + )], and then to the elements of the stable
cycle with a period of 4, etc.

Since logistic mapping (1) is irreversible, two

sequences of points  and  exist for
λ = 1–3.1 These points are mapped into the fixed stable
point x0 in a finite number of iterations:

(2)

The sequence  converges to the boundary of
the attraction pool of the mapping attractor x = 0 as

(3)

The sequence  converges to the other bound-

1 With the exception of the case λ = 2 for which x0 = 0.5, the condi-
tion f(x) = x0 is satisfied only for x = x0 .

λ 1–
λ

------------

6

xi
0( ){ } i 1=

∞
xi

1( ){ } i 1=

∞

x0 f x1
0( )( ) f f x2

0( )( )( ) f f x2
1( )( )( )= = =

=  … f n( ) xn
0( )( ) f n( ) xn

1( )( ).= =

xi
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∞
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λ
--------, i         ∞ .=
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ary of the attraction pool of the mapping attractor x = 1 as

(4)

Since the points of the sequences , k = 0, 1
are mapped into the fixed stable point x0 in a finite num-
ber of iterations, the minima of the transient durations

are also observed at these points (Fig. 1), and K( ) =

K( ) + 1. The maxima of the transient duration
behave similarly. Therefore, the dependence of the tran-
sient duration K on the initial conditions x0 in the sys-
tem under consideration exhibits scaling with the scale
factor λ relative to the boundaries x = 0 and x = 1 of the
attraction pool of the attractor (Fig. 2).

As the controlling parameter λ increases, a cascade of
period-doubling bifurcations occurs in the system [1],
and the dependence of the transient duration K on the
initial conditions x0 is complicated for few reasons.
First, unstable cycles appear, and the transient duration
is infinite for the initial-condition points x0 coinciding

xi 1+
1( ) 1

xi
1( )

λ
--------, i         ∞ .–=

xi
k( ){ } i 1=

∞

xi 1+
k( )

xi
k( )

                     

0.8

f(x)

0.4

0
x  2

(0) x  1
(0) x  (0) x  2

(1) x  3
(1)

40

0 0.2

K(x0)

20

0.4 0.6 0.8 x0

Fig. 1. The Lameray diagram and the transient-duration
dependence for the logistic mapping at the controlling
parameter λ = 2.75 corresponding to the case where a fixed
stable point is realized in the system.
                   

with the elements of these unstable cycles.2 Simulta-
neously, the transient duration is also infinite at the set

of points , which, by virtue of the irreversibil-
ity of mapping (1), are mapped into elements of unsta-
ble cycles in a finite number of iterations. Second, the

number of sequences  and  whose
elements are mapped in a finite number of iterations
into elements of either stable or unstable cycles
increases.3 

When stable 2n-cycles, n = 1, 2, …, are realized in
the system, the transient-duration dependence also

2 Maxima of the transient durations are of different height and do
not turn to infinity in numerical simulation, because the initial
conditions x0 are given with a finite accuracy.

3 Generally, the number of these sequences is infinite for λ > 3.

yi
k{ } i 1=

∞

xi
k( ){ } i 1=

∞
yi

k{ } i 1=

∞

                                 

80

0.005

 

K

 

0.010 0.015 0.0200

60

40

20

80

0.0060.0040.0020

60

40

20

20

0 0.001 0.002

 

x

 

0

 

40

60

80

 

Fig. 2. 

 

Scaling for the transient-duration dependence 
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 with respect to the attraction-pool
boundary 
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 = 0 of the attractor. The region to the left of the
dashed line is exaggerated by a factor of 

 

λ

 

. On rescaling, the
transient-duration dependence is repeated by shifting to
greater values by +1. The results are obtained for the con-
trolling-parameter value 

 
λ

 
 = 2.75 when a fixed stable point

is realized in the system.
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exhibits scaling in the vicinity of the attraction-pool
boundary points of the attractor. However, after the fixed
point x0 has lost its stability (and a stable cycle with a
period of 2 appears), a scaling in the vicinity of this fixed
unstable point is observed with the scale factor µ = f '(x0),
which is a multiplier of this fixed point. To illustrate this
behavior, Figure 3 shows the transient-duration depen-
dences near an unstable fixed point for λ = 3.25.

The existence of the unstable fixed point implies that

there are two sequences , k = 0, 1, converging
from the left and right to the unstable point x0 as

(5)

A local minimum of the dependence K(x0) corre-

sponds to every element of the sequences 

(Fig. 3). Similar to Eq. (2), every element  is
mapped into elements of the stable 2-cycle in a finite
number of iterations. Moreover, every element of the

sequences  generates one or several

sequences  converging to the attraction-pool
boundary points of the attractors x = 0 and x = 1. In
other words, scaling with respect to the unstable point
x0 is transferred to scaling in the vicinity of the attrac-
tion-pool boundaries of the attractor. The exception is
the case where the maximum-stability cycle with a
period of 2 is realized in the system. In this case, only
these two points are mapped into the elements of the
stable 2-cycle in a finite number of iterations.

It is apparent that, as the controlling parameter λ
increases, similar phenomena will be also observed on
the basis of the elements of 2n-cycles, n = 0, 1, …, los-
ing their stability. Thus, the transient-duration depen-
dence K(x0) is regularly complicated as the parameter λ
increases. The elements of unstable 2n-cycles, which
appear due to the cascade of the period-doubling bifur-
cations, are responsible for this complication.

The scaling of the transient dependence K(x0)
described above is not unique. There is one more type
of scaling caused by the behavior of the logistic map-
ping at the critical point [1]. The renormalization-group
analysis [2] demonstrates that the dependences of the
duration of transients for maximum-stability cycles
exhibit scaling laws with the scaling constants a =
−2.503 and b = 2. When a selected segment is scaled by
a factor of a with respect to the point x = 0.5 and the
transient duration is increased by a factor of b for the
2n-cycle (n = 1, 2, ...), the dependence K(x0) corre-
sponds to the similar dependence for the (2n – 1)-cycle.

Thus, in this paper, using a logistic equation as an
example, we revealed the reasons complicating the
transient-duration dependence on initial conditions

zi
k( ){ } i 1=

∞
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zi
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when the controlling parameter varies and found uni-
versal scaling laws for such a complication.
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1. The sine-Gordon (sG) equation

, (1)

where ξ = x – ct and η = x + ct are the light-front vari-
ables, describes numerous physical phenomena [1–5].
It was first applied in the differential geometry of sur-
faces with constant negative curvature (see, e.g., [6]).
Among other applications, this equation provides a
rather general scheme of three-frequency interaction
involving a counterrunning wave [7].

2. Equation (1) can be generalized by analyzing
four-frequency interaction. When frequencies ωj and
wave numbers kj satisfy resonance conditions

the wave equation for a field reduces [8] to the set of
equations for slow amplitudes aj . This set consists of
four similar equations, the first of which is

, (2)

where cj is the group velocity and hj and gjl are the non-
linearity coefficients proportional to the components of
the cubic susceptibility. Furthermore, we assume that a
pair of waves propagates contrary to another pair and
that the absolute values of the group velocities are equal
to each other, c1 = c3 = – c2 = –c4 = c. In this case, under
the physically realizable conditions g1j = g3j and g2j =
g4j, and under the assumption of the equiphase condi-
tion, Eqs. (2) (in the natural normalization to the non-
linearity coefficients and for the real-valued amplitudes
Aj) are reduced to the set

. (3)

The set of equations (3) has two independent integrals,

 +  = G2(ξ) and  +  = F2(η), where G(ξ) and

∂ξ∂ηΦ Φsin=

ω1 ω2+ ω3 ω4, k1 k2+ + k3 k4,+= =

∂t c1∂x+( )a1 ia1 g1 j a j
2 ih1a2*a3a4+

j 1=

4

∑=

∂η A1 3, A2A4A3 1, , ∂ξ A2 4,± A1A3A4 2,+−= =

A1
2 A3

2 A2
2 A4

2
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F(η) are arbitrary functions. The substitution

with the real-valued functions ϕ± reduces Eqs. (3) to the
desired set of equations 

(4)

where ∂± =  are the operators of differentiation with

respect to the new independent variables

Differentiation of set (4) yields a pair of second-
order equations

(5)

Each of these equations is a peculiar generalization
of the sG equation. Indeed, these equations for
(∂±ϕ±)2 ! 1 (particular linearization) reduce to Eq. (1).

In the three-frequency problem [7], sG equation (1)
arises from the set ∂+Φ+ = sinΦ–, ∂−Φ– = Φ+. Therefore,
set (4) can be referred to as the symmetric sine-Gordon
(SsG) equation. Set (4) was first derived in [9, 10] for
the case of the interaction of a pair of counterrunning
waves with a standing low-frequency wave.

3. The set of equations (4) has a class of self-similar
solutions depending only on the linear combination S =
λx+ + (–1)nλ–1x– of the variables x±, where λ and n are
real-valued and integer-valued parameters, respec-
tively. Set (4) reduced for this class of solutions has the
integral (Hamiltonian)

For |H | > |Hs |, where Hs = λ – λ–1, both components
ϕ± of a self-similar solution periodically oscillate. For

A3 iA1+ G ξ( )
iϕ+

2
-------- 

  ,exp=

A4 iA2+ F η( )
iϕ–

2
------- 

 exp=

∂±ϕ± ϕ+− ,sin=

∂
∂x±
--------

x+ ηF2 η( ), x–d∫ ξG2 ξ( ).d∫–= =

∂+∂–ϕ± 1 ∂±ϕ±( )2– ϕ±.sin=

1–( )nλ ϕ + λ 1– ϕ–cos–cos H .=
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|H | < |Hs |, one component oscillates, whereas the other
unboundedly increases.

For H = (–1)mHs, where m is an integer, the separa-
trices of above regimes are the solitons

(6)

where Λ =  and C is a constant. In the limiting

case of λ = ±1, solution (6) describes a smooth drop
between two constant levels, i.e., a simple π kink. For
λ ≠ ±1, solution (6) is the superposition of two kinks
with the constant relative shift ∆S = ln|Λ|. The sum and
difference of two kinks is a two-step kink with a total
amplitude of 2π and a pulse, respectively. In the coor-
dinate system (x, t) (x± = x ± t), the amplitude and width
of this pulse are determined by the parameter λ and

depend on the pulse velocity v  = . For

λ2 < 1, the component ϕ– has the pulse form. In contrast
to Eqs. (4), the classical sine-Gordon equation has only
simple-kink self-similar solitons.

4. The sum and difference of the solutions to
Eqs. (4),

, (7)

satisfy Eq. (1) in the form ∂+∂–Φ± = sinΦ±. Therefore,
set (4) describing actual phenomena [e.g., those
described by Eq. (2)] is a dynamical realization of the
formal Bäcklund transformation (BT) relating two
solutions to the sG equation (see, e.g., [1, 4]) with the
transformation parameter equal to 1. The pairs of solu-
tions to the sG equation do not all generate the solution
to set (4) according to Eq. (7). However, the aforemen-
tioned relation can be used to construct those exact
solutions to set (4) that describe interactions between
solitons (6).

To construct these exact solutions, we apply the
method that was developed for constructing many-soli-
ton solutions of the classical sine-Gordon equation and
is based on the commutativity of Bäcklund transforma-
tions. The method consists in constructing closed
chains or networks of successive BTs [1, 4]. To obtain
solutions to the SsG set, this method should be adapted
to Eqs. (4) using chains that end by the Bäcklund trans-
formation with the parameter λ = 1. In this case, the
components of a solution to set (4) are constructed as
the half-sum and half-difference [see Eq. (7)] of two
solutions to the sG equation related by the above trans-
formation. However, this transformation corresponds to
introducing a simple kink to the interaction between
solitons [see Eq. (6) as λ  1]. In order to obtain gen-
eral many-soliton solutions to set (4), in particular,

ϕ± 1±( )m 2× ΛCeS( )arctan CeS( )arctan±[ ]=

+ π 1 1±( )n
2

-------------------- m+ ,

1 λ+
1 λ–
------------

λ2 1–( )n–[ ] 2

1 λ4–
-------------------------------

Φ± ϕ+ ϕ–±=
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without introducing a simple kink, it is necessary to
remove this kink from the interaction, shifting the kink
to ±∞. This result is attained by taking 0 or ∞ for the
free constant of the first transformation (with λ = 1) in
the chain (i.e., taking the degenerate first transforma-
tion). This modified method provides many-soliton
solutions of set (4), including solutions describing
breather-type solitary waves and their interaction.

Figure 1 shows an example of the exact solution to
set (4). This solution describes a collision of two com-
posite solitons (λ2 ≠ 1) [see Eqs. (6)]. For the motion in
the same direction in the (x, t) coordinate system, each
of the components of the solution ϕ± describes interac-
tion between equal-type solitons. Here, one of the com-
ponents (ϕ– when v  > 0) presents a most interesting
case of the interaction between pulse solitons. After
interaction, the shape of the solitons is completely
recovered.

2
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Fig. 1. Interaction between two composed symmetric sine-

Gordon solitons (6) for λ1 = , λ2 = , C = –1, and m =

n = 0: the elastic collision of two pulses (ϕ–, solid line) and
of two double kinks (ϕ+, dashed line).
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5. We now discuss the application of SsG equations
in the geometry of surfaces.

Let a surface in the three-dimensional space with
Cartesian coordinates r = {r1, r2, r3} be specified by
equations rk = rk(u1, u2), k = 1, 2, 3. The Gaussian coor-
dinates (u1, u2) of the surface are chosen in such a man-
ner that its metric tensor gij has the form g11 = g22 = 1 and
g12 = g21 = cosφ. In this case, the Gaussian curvature of
the surface is [11]

(8)

This equation indicates that the angle φ between the
contours u1, 2 = const for a surface of a constant negative
curvature KG = –1 is described by the sG equation. An
example of such a surface is the Beltrami surface [6].

KG –
1

φsin
----------- ∂2φ
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Fig. 2. (a) Surface of revolution (10) (contours u1, 2 = const
are shown) and (b) generatrix z(ρ) (solid line) and curvature
KG (dashed line) as a function of radius ρ.

(a)

(b)
We now discuss surfaces for which the angle φ is
determined by Eq. (4) for x± = u1, 2 and ϕ+ = φ. It follows
from Eqs. (8) and (4) that the curvature KG = –cosϕ– of
these surfaces can vary. We seek a corresponding exam-
ple among surfaces of revolution,

In addition, we suppose that the angle φ and radius
ρ depend only on the sum σ = u1 + u2. Substituting these
relations into the definition for gij yields

The generatrix of the surface of revolution, z(ρ), is
determined by the equation

r1 ρ β, r2sin ρ β, r3cos z ρ( ).= = =

β b u1 u2–( ), ρ b 1– φ
2
---sin , b const.= = =

dz
dρ
------ 

 
2

1 b2ρ2–( ) dρ
dσ
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 
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Fig. 3. The same as in Fig. 2 for surface of revolution (11).
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To construct a surface corresponding to set (4), we
use simple-kink solution (6) for λ = ±1, φ =

. In this case, the dependence of the
curvature on surface coordinates also has the form of a
surface-curvature kink

(9)

describing a variation in the curvature KG from 1 to –1.
In order to determine the surface, we should also

specify the parameter b. For b = , the surface is

expressed in elementary functions as

(10)

and is shown in Fig. 2.
For b = 1, the generatrix of the surface is specified

by the quadrature

(11)

and is shown in Fig. 3. In the vicinity of ρ = 1, both of
the curvature radii of surface (11) have almost the same
magnitudes and this surface is close to the unit-radius
hemisphere. As ρ  0, this surface degenerates to a
Beltrami pseudosphere. Thus, kink (9) here describes a
variation in the curvature from the region with KG ≈ 1,
in which the surface is locally spherical, to the region
with KG ≈ –1, in which the surface behaves as a Bel-
trami pseudosphere.

The above applications of SsG equations are evi-
dently related to each other. For the four-wave problem
described by these equations [see Eqs. (3), (4)] with sta-

2 e
u1 u2+( )±

[ ]arctan

KG u1 u2+( )tanh±=

1
2
---

ρ = 2 1 e 2σ+−+[ ] 1/2–
,

r3 e σ+−( )arcsinh 2 1 e
±2σ

+[ ]
1/2–

–=

ρ 1 e 2σ+−+[ ] 1/2–
,=

r3
1 e 2s±+( ) 1 e 2s± e 4s±+ +( )

1 e 2s±+( )2
----------------------------------------------------------------- sd

0

σ

∫+−=
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tionary boundary conditions, the squared amplitudes of
the interacting waves are proportional to the functions
1 ± . Therefore, the squared amplitudes of waves
for each solution to set (4) are proportional to the Gauss-
ian curvature of a surface generated by this solution.
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Enhancement of Energy and Q-factor of a Nonlinear Resonator
with an Increase in Its Losses
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A phenomenon that is paradoxical at first sight is
studied: an appropriately-organized energy outflow from
a resonator cavity results not in the attenuation of nonlin-
ear vibrations but in their noticeable enhancement.

An increase in the resonator Q-factor and in the
energy accumulated in it is well pronounced when the
frequencies of higher harmonics generated in a nonlin-
ear medium are close to the natural frequencies of the
resonator.

An important example of nonlinear systems with the
necessary properties is an acoustic resonator with
selective losses. First, we consider a conventional reso-
nator whose right boundary x = L is fixed and whose left
boundary x = 0 oscillates with the velocity 

(1)

Here, ω0 = πc/L, where c is the speed of sound. Since the
spectrum of the natural frequencies is equidistant, ωn =
nω0 (n = 2, 3, …) and a cascade of nonlinear processes
takes place in the system, resulting in an effective trans-
fer of energy to the high-frequency region (higher har-
monics). In this region, the energy of oscillations is
heavily absorbed due to the high-frequency dissipation
effects, which are usually related to the viscosity and
thermal conductivity of the medium [1]. A standing-
wave field formed in the resonator involves shock
fronts traveling between the walls [2]. Nonlinear
absorption occurring in the narrow region of the front
determines the Qnl-factor of the resonator in the strong-
oscillation mode. This Q-factor is much less than the
conventional linear quality Qlin [3]:

(2)

u x 0= t,( ) A ω0t( ).sin=

Qnl
8c

πεA
---------- 

 
1/2

, Qlin
c2ρ

πbω0
-------------.= =
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Here, ρ, ε, and b are the density, nonlinearity, and effec-
tive viscosity of the medium, respectively [1].

Recall that the quantity Q is the ratio of the charac-
teristic amplitude of field oscillations in the resonator to
the amplitude of the oscillations of the boundary.

The necessity of increasing the energy stored in a
resonator arises in many applications (see, e.g., [4, 5]).
The ways of increasing Qnl were discussed in [6]. One
important method based on the introduction of selective
losses at the second-harmonic frequency 2ω0 is ana-
lyzed below.

The general ideas of controlling the nonlinear inter-
actions by introducing selective losses were reported in
[7, 8]. In this case, the absorption at the frequency 2ω0
suppresses the generation of the second harmonic and,
therefore, interrupts the cascade of the nonlinear trans-
fer of energy upwards over the spectrum. In practice,
losses at the frequency 2ω0 can be realized either by
introducing resonant scatterers to the medium (e.g., gas
bubbles to a fluid) or by using selective boundaries
(e.g., transmitting the frequency 2ω0 and reflecting all
other frequencies [9]).

We analyze a nonlinear resonator in an approximate
approach. As was shown in [2], an oscillating field
between the walls x = 0 and x = L can be represented as
the superposition of two mutually opposing waves.
Each of them can be strongly distorted due to nonlinear
self-action, but the contributions of cross interactions
are nonresonant and can be neglected [3]. The velocity
u of oscillating medium particles in one of the opposing
waves obeys the equation [3, 7, 10]:

(3)

Here, for definiteness, the wave traveling in the positive
x-axis direction is considered; t is the slow time corre-
sponding to the transition to a steady state in the reso-
nator; the fast time τ describes the oscillations; α is the

1
c
---∂u

∂t
------ ε

c2
----u

∂u
∂τ
------–

b

2c3ρ
-----------∂2u

∂τ2
--------–

=  
A

2L
------ ω0τ( )sin

α
c
---b2 t( ) 2ω0τ( ).sin–
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selective-absorption coefficient; and the amplitude of
the second harmonic,

(4)

is not known in advance. Thus, Eq. (3) with Eq. (4) is a
nonlinear integro-differential equation [7]. When the
right-hand side of Eq. (3) is defined, Eq. (3) goes over
into a Burgers-type inhomogeneous equation [11].

For convenience, we use the dimensionless vari-
ables

(5)

where ts is the characteristic nonlinear time of forming
a discontinuity in the wave and u0 is the characteristic
amplitude:

(6)

Equation (3) with Eq. (4) in view of Eqs. (5) and (6)
takes the form

(7)

Here, the dimensionless numbers

(8)

are the ratios of the nonlinear time ts to the time of the
conventional absorption ta and to the characteristic time
α–1 of selective losses, respectively.

To analyze the excitation of forced oscillations in
the resonator, Eq. (7) should be solved with the zero ini-
tial conditions V(T = 0, θ) = 0. For T  ∞, a balance
between the energy inflow from the source (oscillating
wall) and the losses of three types—viscous, nonlinear,
and selective—is achieved. Steady-state oscillations
are most easily analyzed. At the same time, steady
states, where nonlinearity is most pronounced, are of
the most interest. The steady-state solution satisfying
the periodical conditions, which reduces to the homo-
geneous boundary conditions

b2 t( ) 2
π
--- u t τ,( ) 2ω0τ( )sin ω0τ( ),d

0

π

∫=

V
u
u0
-----, θ ω0τ , T

t
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εω0u0
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---------.= =
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π

∫sin–
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V st θ π=( ) V st θ π–=( ) 0= =
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when the wall motion is described by Eq. (1), has the
form

(9)

The signs + and – in solution (9) are taken for the half-
periods 0 < θ ≤ π and –π ≤ θ < 0, respectively. In the
vicinity of θ = 0, a shock front is formed. Ignoring its
structure, we set Γ = 0 in solution (9). Allowance for
nonzero Γ values can be made by the method of
matched asymptotic expansions (see, e.g., [12]) and
will give only small corrections (in the strongly pro-
nounced-nonlinearity mode) for the energy characteris-
tics of the field.

The one-period profiles of oscillations are shown in
Fig. 1 for the D  selective absorption values [Eq. (8)]
equal to 0, 1, 4, 10, and 20. In the presence of only non-
linear absorption, the profile has the form 

 

(10)

 

which is the known solution of the nonuniform Burgers
equation [11] and follows from (9) for 

 

D

 

 = 0. With an
increase in the selective absorption 

 

D

 

, the dimension-
less amplitude of the discontinuity does not increase,
but a noticeable increase in the perturbation 
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observed in smooth sections of the profile. For 
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decreases noticeably with increasing 
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. The onset of
this process is shown in Fig. 2. The suppression of the
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 wave retards the energy transfer to higher harmon-
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Fig. 1. One-period profiles of oscillations for various values
of selective absorption D.
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ics 3ω0, 4ω0, … . Therefore, energy is accumulated at
the fundamental frequency ω0 , which virtually does not
attenuate. The first-harmonic amplitude B1(D) is also
shown in Fig. 2. This figure shows product DB2(D)
appearing in the basic formulas below.

In particular, perturbation (9) attains the maximum
value Vst = 2 at θ = 0 for DB2 ≤ 0.5, and for DB2 > 0.5
the peak (see Fig. 1) is shifted to the point θmax at which

(11)

The mean intensity over period

(12)

Vmax V st θmax
1

2DB2
--------------arccos= 

  1 2DB2+

2DB2

-----------------------.= =

I V st
2 2 DB2 D( )+= =

6

4

2

0 5 1510 20 D

DB2

2B1

K

10B2

Fig. 2. The solid lines are the amplitudes B1 and B2 of the
first and second harmonics, respectively, and the corre-
sponding product DB2 for various values of selective
absorption D and (dashed line) the amplification coefficient
K of the oscillation energy accumulated in the cavity of res-
onator.
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Fig. 3. Shapes of oscillations in the cavity sections x = L/8,
L/4, L/2, 3L/4, and 7L/8 for D = 20.
also increases with an increase in DB2(D), i.e., with the
enhancement of selective absorption.

In the limit D @ 1, we obtain the formula DB2 ≈
21/3D2/3 and the expressions 

(13)

(14)

for the steady-state profile, maximum (11), and mean
intensity (12), respectively.

The profiles of standing waves between the walls of
resonator 0 < x ≤ L are plotted by combining two func-
tions (9) shifted relative to another [2, 3]:

(15)

The shapes of oscillations measured in the cavity
sections x = L/8, L/4, L/2, 3L/4, and 7L/8 are shown in
Fig. 3 for D = 20. Similar profiles in the absence of
selective absorption (D = 0) were plotted earlier (see
Fig. 4 in [3])

The comparison of results shows that for D = 20 the
“traveling discontinuities” in the profiles of standing
waves are less pronounced than in the absence of selec-
tive losses. Consequently, nonlinear attenuation is par-
tially suppressed. As a result, the maximum V values in
Fig. 3 are approximately as high as the corresponding
peaks for D = 0.

The Q-factor of the resonator in the nonlinear oscil-
lation mode with a complicated spectrum can be
defined as the ratio of the maximum velocity perturba-
tion 2umax in the standing wave to the velocity ampli-
tude A of the boundary oscillations:

(16)

It is also possible to define Q in terms of the ratio of the
average intensities of these oscillations:

(17)

Formulas (16) and (17) both describe an increase
in the Q-factor with enhancement the selective
absorption D.

“Amplification coefficient” K(D) of the oscillation
energy accumulated in the resonator cavity is shown in
Fig. 2 by the dashed line.

The estimation of the nonlinear factor Qnl by Eq. (2)
for a conventional air-filled resonator whose boundary
oscillates with the velocity A = 10 cm/s yields Qnl < 85.
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If the right wall x = L of the resonator transmits 98% of
the incident radiation power at the second harmonic
frequency, it follows from Eq. (16) that Q ≈ 300; i.e.,
selective losses should increase the resonator Q-factor
by a factor of about 3.5 and the energy of oscillations
by more than an order of magnitude.

We note that the problems of nonlinear systems with
selective losses are recently of interest in connection
with a number of applications [13, 14].
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when Detonating Explosives
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The choice of simple and efficient means for protec-
tion from blast loads when detonating explosives is a
topical problem in fundamental and applied studies. In
searching for these means, sources of blast loads in the
form of explosive charges were placed inside various
containment shells or immersed in diverse media con-
suming blast energy.

There exist two directions aimed at creating means
for blast protection. The first is associated with the
obvious attempt to surround an explosive charge by a
solid impermeable shell. Here, we deal with a trivial
case when an explosive charge is placed into a closed or
half-closed container [1]. In practice, it was shown that
this method of charge localization is poorly efficient.
Afterwards, in order to improve the exploitation prop-
erties of a protective container, its inner cavity came to
be filled with a compressible substance. In [2], [3], and
[4], a liquid foam, a liquid containing gas bubbles, and
a granular or fibrous material, respectively, were used as
fillers of containers. Each of these blast-consuming
media can be characterized by an effective apparent den-
sity σ, which differs from the skeleton-material density
ρ. For example, for water foam, σ = 10–30 kg/m3 at ρ =
1000 kg/m2; for water saturated with gas bubbles, σ =
900–990 kg/m3; and for fibrous and granular fillers, σ ≥
1000 kg/m3 at ρ ≥ 2000 kg/m3.

The second line of studies aimed at creating means
of protection is specified by the complete rejection of
an impermeable solid shell around an explosive charge.
In this case, a variant of blast suppression in the volume
of a sprayed liquid (most often, water) can be consid-
ered as an ultimate case [5]. However, due to the impos-
sibility of obtaining highly concentrated liquid sprays
with σ ≥ 1–2 kg/m3, this means of blast suppression has
proved unfeasible.
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In order to obtain a sufficient concentration of a
blast-consuming material to provide reliable damping
of explosive waves, gas-filled covers consisting of
water foam [6] or polyurethane foam [7] were pro-
posed. For these materials, σ = 10–20 kg/m3 and 50–
100 kg/m3, respectively, while ρ = 900 kg/m3.

In practice, the application of gas-filled shells to
confine the demolition effects of explosive charges
(with a weight not more than 3 kg) has shown that the
energy of explosion products is spent mainly for the
kinematic acceleration of containment shells. In addi-
tion, the role of the transformation of energy flows at
the interfaces of explosion products, the blast-consum-
ing medium, and the atmosphere is also significant.
Attempts associated with regulating blast loads at the
expense of energy loss for evaporating or spraying pro-
tective-medium materials have demonstrated little
effect.

By virtue of the dominating role of inertial proper-
ties of containment shells when suppressing explosion
shock waves, the change in the kinematic characteris-
tics of a medium that damped the expansion of explo-
sion products turned out to be an efficient means of
blast reduction. Note that, for the medium surrounding
an explosive charge, the compressibility is the most
important characteristic. A reliable reduction of explo-
sion effects is attained when the protective medium is a
liquid that assures (at least, at initial expansion stages)
against the penetration of explosion products into the
atmosphere being protected.

As is known, the measure of the compressibility of
a liquid is the speed of sound in it. We can control the
speed of sound in a liquid by incorporating into its vol-
ume porous elements, gas bubbles, or hollow polymeric
inclusions. The embedding of compressible inclusions
is especially significant in affecting the propagation of
moderate-intensity shock waves with a frontal pressure

drop . For higher-intensity shock waves, the

presence of compressible elements is of less impor-
tance. The immersion of explosive charges in a com-
pressible two-phase medium critically changes the
characteristic time scales of all wave processes and

P1

P0
----- 1000≤
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enhances the possibilities of efficient energy exchange
between the explosion products and the containment
shell [8].

These arguments make it possible to propose a new
blast-reduction method. Figure 1a shows such a scheme
for an explosive charge (1), which involves a thin
layer of a liquid dispersion medium confined in the
volume (2) between elastic shells (3). The liquid layer
is separated from the explosive charge by a gas-filled
spacing [4]. The arrangement of the basic elements dif-
fers from that in the case of a traditional scheme [9]
(Fig. 1b). The crucial role of the air spacing consists in
reducing the amplitude of the shock wave (due to the
difference in the explosive-charge volume Rch and the
shell inner cavity Rin) before its meeting with the liquid
layer.

On the basis of published [9] and new experimental
data, we can compare the efficiency of the blast reduc-
tion for the schemes shown in Figs. 1a and 1b. Informa-
tion on the blast reduction with the help of a water shell
contacting the explosive charge (i.e., for the scheme
shown in Fig. 1b) was taken from [9]. Data on the blast
reduction according to the scheme shown in Fig. 1a
were obtained in a series of experiments similar to [10].
The ratio of the water mass (å) to the explosive-charge
mass (G) was 50 (G = 40 and 100 g in [9] and [10],
respectively).

Figure 2 shows the amplitude variation Φ for the
coefficient of the blast reduction as a function of the

normalized distance . The distance R was

measured from the blast epicenter to the measurement

point. The blast-reduction coefficient 

was evaluated using the amplitude of the shock wave
∆P(R*) for the explosion in the liquid shell and the
amplitude ∆P0(R*) for the explosion in the gas-filled
shell of the same size according to the scheme shown in
Fig. 1c. This is justified by the fact that the value of ∆P0
(crosshatched region 1 in Fig. 2) is by 10–20% smaller
than that of ∆P1(R*) for a completely open charge.

The regions 2 and 3 for values of Φ in Fig. 2 were
obtained, respectively, for explosions corresponding to
the schemes shown in Figs. 1b and 1a.

Figure 3 shows the variation in the pressure pulse
for the shock wave in the case of compression phase I+
when detonating an explosive in the gas-filled air shell
(curve 1 according to [9]). The bands of values denoted
as 2 and 3 for I+ were obtained for explosions using the
schemes shown in Figs. 1b and 1a, respectively.

The plots in Figs. 2 and 3 confirm that the scheme
presented in Fig. 1a for reducing the demolition effect
of an explosion has the highest efficiency.

R* R

G
1/3

----------=

Φ ∆P R*( )
∆P0 R*( )
----------------------=
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Our investigations are based on the rational use of
propagation features for pressure waves and rarefaction
waves when detonating explosives in a medium charac-
terized by elevated (compared not only to a liquid, but
also to a gas) compressibility.

1

1

1

4

(a)

(b)

(c)

Fig. 1. Possible schemes of blast reduction, which use elas-
tic containers filled with liquids: (1) explosive charge,
(2) dispersion medium, (3) elastic shells, and (4) air
spacing.
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Fig. 2. Dependence of the coefficient of the shock-wave
amplitude reduction on the normalized distance in the case
of various blast schemes.
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The essential distinction in the above method of
blast reduction is the preliminary correction of initial
conditions for the expansion of explosion products due
to the attached volume of a thin gas layer between the
explosive-charge surface and a compressible medium.

80

1.6

40

20

100

60

2.0 2.4 2.8 R*, m/kg1/3

1

2

3

I, kPa ms/kg1/3

Fig. 3. Dependence of the pressure pulse for the compres-
sion phase on the normalized distance in the case of various
blast schemes.
The described method of blast reduction was used in
designing a series of devices for the rapid and reliable
protection of equipment and personnel in the process of
the conservation and/or elimination of explosive sub-
stances and systems.
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INTRODUCTION

Employment of atomic functions (AF) in the digital
processing of one-dimensional signals was thoroughly
analyzed in [1, 2]. Many operations of one-dimensional
signal processing are considered to be applicable to the
multidimensional case [3]. For example, employing
operations of the direct product or rotation of one-
dimensional windows, it is possible to synthesize mul-
tidimensional atomic-function windows having rectan-
gular, hexagonal, or circular apertures. While using
windows with an arbitrary reference region, certain
complications of both a qualitative and quantitative
nature arise, which are associated with a necessity of
analytically describing the geometry of this region.
This problem can be solved with the help of application
of the R-function method [4]. In the present paper, we
consider for the first time problems of constructing
multidimensional windows based on both R functions
and atomic functions, as well as on the concepts devel-
oped in [1].

R FUNCTION AND THE INVERSE PROBLEM
OF ANALYTICAL GEOMETRY

Let a region Ω with the boundary ∂Ω be given in the
space Rn. Let it be necessary to construct a function
ω(x), x = (x1, x2, …, xn). This function must be strictly
positive inside Ω , negative outside Ω , and equal to zero
on ∂Ω . The equation ω(x) = 0 determines in the implicit
form the boundary of the region. We assume that Ω can
be represented as a combination of certain initial
regions Ω1, Ω2 , …, Ωm on the basis of the following
logical operations over sets, namely, ∩ (intersection),
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Moscow, 103907 Russia

** Bauman Moscow State Technical University, 
Vtoraya Baumanskaya ul. 5, Moscow, 
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∪  (association), and ¬  (complementation). We can
write out this assumption in the form

(1)

In this case, we also assume that the initial regions have
simpler shapes than Ω and that, for each of them, the
equation for its boundary ωi(x) = 0, i = 1, 2, …, m is
known. The theory (method) of R functions was devel-
oped by Rvachev [4]. In the framework of the set the-
ory, this method makes it possible (on the basis of
describing the Ω region) to obtain the equation ω(x) = 0
in the analytical form for the boundary of this region.
According to [4], one of the basic complete systems of
R functions is the Rα system of the form

(2)

Here, α = α(x, y) is an arbitrary function satisfying the
condition –1 < α ≤ 1. Usually, it is assumed that α ≡ 0
(R0 system) or α ≡ 1 (R1 system). The correspondence
established by Rvachev between logical-algebra func-
tions and R functions makes it possible to find a con-
structive solution to the inverse problem of analytical
geometry. To do this, it is sufficient to formally
exchange in (1) Ω by ω(x), Ωi by ωi(x), i = 1, 2, …, m,
and to use symbols of R operations {∧ , ∨ , –) in system (2)
instead of {∩, ∪ , ¬ }, respectively. As a result, we
obtain the analytical expression that determines the
equation for the boundaries of the region Ω in terms of
elementary functions

(3)

In this case, ω(x) > 0 for inner points and ω(x) < 0 for
outer points of the region Ω .

Ω F Ω1 Ω2 … Ωm, , ,{ } ∩ ∪ ¬, ,{ },( ).=

x ∧ α  y
1

1 α+
------------- x y x2 y2 2αxy–+–+( ),≡

x ∨ α  y
1

1 α+
------------- x y x2 y2 2αxy–++ +( ),≡

¬ x x.–≡

ω x( ) 0.=
002 MAIK “Nauka/Interperiodica”



196 KRAVCHENKO, BASARAB
ATOMIC FUNCTIONS

The class of atomic functions [1, 2] includes finite
solutions to functional differential equations (FDE) of
the form

Here, a, dn , cm , and bm are numerical parameters, and
|a| > 1. One of basic types of AF is determined by the
following FDE:

(4)

where a > 1. Finite solutions (4) with the carrier

− ,  are usually denoted as ha(x) [5]. Their

Fourier transform has the form

(5)

where sinc(x) ≡ . Using expression (4), we can

express the derivatives of the nth order in terms of the
values of functions themselves. For a = 2, we obtain the
most well-known and investigated function h2(x) ≡
up(x). The principal properties of both the parent’s
function up(x) and the function ha(x) are described in
[1, 2, 4, 5]. As a rule, atomic functions and Rn functions
are constructed on the basis of the direct product of
one-dimensional AF, e.g.,

SYNTHESIZING TWO-DIMENSIONAL FILTERS 
WITH A FINITE PULSE CHARACTERISTIC 

AND A REGULAR APERTURE ON THE BASIS
OF ATOMIC FUNCTIONS

One promising direction in the application of R
functions and atomic functions is the digital processing
of multidimensional signals. As is well known [3], in
problems of the digital filtration of two-dimensional
signals, filters with a finite pulse characteristic (FPC fil-
ters) gained the most acceptance. Their principal
advantage compared to filters with an infinite pulse
characteristic is the possibility to synthesize filters with
a zero phase shift. In addition, a number of difficulties
in constructing two-dimensional filters with an infinite
pulse characteristic are associated with the necessity to
provide their stability. A two-dimensional FPC filter
ensures the zero phase shift, provided that its frequency
characteristic is a real-valued function H(ω1, ω2) =

dny n( ) x( )
n 1=

N

∑ cmy ax bm–( ).
m 1=

M

∑=

2y ' x( )
a2

--------------- y ax 1+( ) y ax 1–( ),–=

1
a 1–
----------- 1

a 1–
-----------

Fa p( ) sinc pa k–( ),
k 1=

∞

∏=

xsin
x

----------

upn x( ) up x j( ).
j 1=

n

∏=
H*(ω1, ω2) or that the pulse characteristic is symmetric
with respect to the origin of a coordinate system; i.e.,
h[n1, n2] = h*[–n1, –n2]. There exist several methods for
calculating two-dimensional FPC filters [3]; among
them, the window-function method is the most widely
propagated in practice. In correspondence with this
method, the desired two-dimensional frequency char-
acteristic of the filter is represented in the form of the
Fourier series

(6)

where

Here, h0[n1, n2] is the infinite pulse characteristic of a
two-dimensional filter that corresponds to the given fre-
quency characteristic H0(ω1, ω2). In order to realize the
two-dimensional FPC filter, the summation in series (6)
should be limited. This results in deteriorating the con-
vergence of truncated series (6) to the given frequency
characteristic in its discontinuity points (the so-called
Gibbs effect). To improve the convergence, the coeffi-
cients h0[n1, n2] should be multiplied by the two-
dimensional window function w[n1, n2]. In other
words, the functions

h[n1, n2] = w[n1, n2] · h0[n1, n2]

are used as filter coefficients.
For filters with the zero phase shift, the window

function must satisfy the condition w[n1, n2] = w*[–n1,
–n2]. Two-dimensional FPC filters are synthesized on
the basis of two-dimensional window functions defined
on rectangular, hexagonal, or circular reference regions
(apertures) [3], which we call regular.

In the simplest case of a square aperture, the two-
dimensional weight window is formed on the basis of a
direct product of one-dimensional windows

w[n1, n2] = w[n1] · w[n2]. (7)

The window with a hexagonal reference region is
formed in a similar manner:

(8)

Finally, in the case of a circular aperture, the two-
dimensional window is obtained by rotating a one-
dimensional window about the symmetry axis and is
described by the expression

(9)

A large number of one-dimensional window weight
functions are known [1, 15]. In addition, in solving

H0 ω1 ω2,( ) h0 n1 n2,[ ] e
j ω1n1 ω2n2+( )–

,
n2 ∞–=

∞

∑
n1 ∞–=

∞

∑=

h0 n1 n2,[ ] 1

4π2
-------- H0 ω1 ω2,( )e

j ω1n1 ω2n2+( )
ω1d ω2.d

π–

π

∫
π–

π

∫=

w n1 n2,[ ]  = w n1[ ] w
n1 n2 3+

2
------------------------ w

n1 n2 3–
2

----------------------- .⋅ ⋅

w n1 n2,[ ] w n1
2 n2

2+[ ] .=
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Table 1.  Basic physical parameters of two-dimensional Kravchenko–Rvachev windows constructed on the basis of the atomic
function h0(x)

Parameter
a

Equivalent 
noise

band, bin

Correlation of
overlapping segments 

(50% overlap), %

Parasitic
amplitude 

modulation, dB

Maximum 
transformation 

loss, dB

Maximum
level of side 

lobes, dB

Window 
width at the

6-dB level, bin

Coherent
amplification

b1 b2 b3 b4 b5 b7 b8

1.1 20.7 2 × 10–7 0.2 13.4 –154.3 6 0.03

1.2 10.24 8 × 10–3 0.3 10.4 –86.1 4.2 0.05

1.3 7.02 0.18 0.5 9 –55.2 3.5 0.07

1.5 4.49 2 0.7 7.2 –36.3 2.8 0.12

2 2.62 12 1.2 5.4 –23.3 2.1 0.25

3 1.74 29 1.8 4.2 –17 1.7 0.45

5 1.35 40 2.5 3.8 –14.5 1.5 0.64
problems of one-dimensional signal processing, new
widow classes, e.g., Rvachev–Kravchenko windows
and Kravchenko windows (both based on atomic func-
tions), as well as hybrid windows, e.g., Kravchenko–
Hamming windows, Kravchenko–Kaiser windows, and
Kravchenko–Blackman–Harris windows, find applica-
tion [1, 2]. Using expressions (7)–(9), we can synthe-
size their two-dimensional analogs with regular refer-
ence regions. Below, we thoroughly analyze windows
with square apertures, which are based on the atomic
function ha(x). To compare the characteristics of two-
dimensional windows (in the plane ω2 = 0) defined on
the square aperture (–1 ≤ x ≤ 1, −1 ≤ y ≤ 1), we employ
the following set of physical parameters.

1. The equivalent noise band,

2. The correlation of overlapping segments,

3. The parasitic modulation amplitude (expressed in
decibels),

where W(p, q) is the two-dimensional Fourier trans-
form for the window function.

b1 4

w2 x y,( ) xd yd

1–

1

∫
1–

1

∫

w x y,( ) xd yd

1–

1

∫
1–

1

∫
2

----------------------------------------------.=

b2

w x y,( )w x 1– y,( ) xd yd

0

1

∫
1–

1

∫

w2 x y,( ) xd yd

1–

1

∫
1–

1

∫
-----------------------------------------------------------------100%.=

b3 –10 W π/2 0,( )
W 0 0,( )

-------------------------
2
,log=
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4. The maximum transformation loss (expressed in
decibels),

b4 = 10 ) + b3 .

5. The maximum level of side lobes (expressed in
decibels),

b5 = 10 ,

where {uk} are points of local maxima (excluding u0).
6. The asymptotic-decrease velocity for side lobes

(expressed in decibels per octave),

b6 = 10 .

7. The window width at the 6-db level,

b7 = 2u,

where u is the maximum frequency such that

10  = 6.

8. The coherent amplification,

Here, the normalization conditions w(x, y) = 0 for
|x | > 1 or |y | > 1; w(0, 0) = 1; and w(–x, y) = w(x, y) =
w(x, −y) = w(–x, –y) are fulfilled. By virtue of the con-
dition of symmetry in the plane ω1 = 0, the window has
the same characteristics.

The principal physical characteristics of the normal-

ized windows  as functions of the param-

eter a are presented in Table 1. As in the one-dimen-
sional case, owing to the infinite differentiability of
atomic weight functions, the value of b5 for all taken

b1(log

W uk 0,( )
W 0 0,( )
---------------------

2

k
maxlog

W 2u 0,( )
W u 0,( )

----------------------
2

u ∞→
limlog

W 0 0,( )
W u 0,( )
-------------------

2
log

b8
1
4
--- w x y,( ) xd y.d

1–

1

∫
1–

1

∫=

ha x/ a 1–( )( )
ha 0( )

--------------------------------
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Fig. 1. Two-dimensional Kravchenko–Rvachev window with a square reference region, which is constructed on the basis (a) of the
R0 system, and (b) of the logarithm of its frequency characteristic.
windows is equal to infinity. In the case of ignoring this
parameter, windows with a ≥ 2 are similar to well-
known Tukey windows [1].

In the one-dimensional case, modified (M + 1)-term
windows of the form [1, 2]

(10)

are used with the intent of improving the b5 parameter.
We now employ a similar approach for the two-dimen-
sional case restricting this approach by the two-term
windows (M = 1). We consider two-dimensional weight
functions with a square aperture, which are based on
one-dimensional windows [1]:

w̃ x( ) w x( ) ckw
2k( ) x( )

k 1=

M

∑+=

w1 x( ) up x( ) 0.01up" x( ),+=

w2 x( ) 1.5249 h1.5 2x( ) 1
128
---------h1.5" 2x( )+ 

  .=
The numerical experiment has shown that as far as the
b5 parameter (equal to –31.1 and –52.7 dB) is con-
cerned the synthesized windows are comparable to the
classical Hamming windows (cosine squared) and
Blackman windows; however, they considerably
exceed these windows with respect to the parameter b6.
The parameters of synthesized windows are: b1 = 2.25
and 3.65 bin; b2 = 17 and 4.7%; b3 = 1.4 and 0.9 dB;
b4 = 4.9 and 6.5 dB; b7 = 2 and 2.5 bin; and b8 = 0.25
and 0.14. The choice of a larger number of terms in
expansion (10) allows two-dimensional weight win-
dows with higher characteristics to be synthesized.

SYNTHESIZING TWO-DIMENSIONAL FPC 
FILTERS WITH AN ARBITRARY AMPLITUDE 

ON THE BASIS OF R FUNCTIONS

The above approaches (i.e., direct product and rota-
tion) do not allow us to synthesize two-dimensional fil-
DOKLADY PHYSICS      Vol. 47      No. 3      2002
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Fig. 2. Two-dimensional Kravchenko–Rvachev window with a square reference region, which is constructed on the basis (a) of the
R1 system, and (b) of the logarithm of its frequency characteristic.
ters with reference regions of an arbitrary configura-
tion. This statement especially relates to nonconvex
regions, e.g., cross-shaped and star-shaped ones. The
only exception belongs to filters based on the simplest
rectangular Dirichlet window. Employing the R-func-
tion method, we can efficiently realize the synthesis of
two-dimensional windows for apertures of an arbitrary
shape.

Let Ω be the required reference region for a window.
Using one of the complete systems of R functions, we
construct an equation for its boundary ∂Ω, ω(x, y) = 0.
It is evident that the function

(11)

coincides with ω(x, y) inside Ω , becomes zero outside
it, and  = 1. Here, (x, y) is the window

function finite in R2 . The new class of the weight func-

ω̃ x y,( ) 1
2 ω x y,( )

x y,( ) Ω∈
max

------------------------------------- ω x y,( ) ω x y,( )+( )≡

ω̃ x y,( )
x y,( ) Ω∈
max ω̃
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tions (windows) proposed having an arbitrary aperture,
we call two-dimensional Kravchenko–Rvachev win-
dows, or KR2 windows. As examples, contour images
and perspective projections of square KR21 windows
and KR22 windows constructed with the help of R oper-
ations of system (2) in the case of α ≡ 0 and α ≡ 1 are
shown in Figs. 1 and 2. The logarithms of their fre-
quency characteristics (expressed in decibels) are also
given in the same figures. Characteristics of these win-
dows are presented in Table 2. Using the diversity of
R-function systems [4], we can obtain the equation for

(x, y) that provides the most suitable frequency char-
acteristic of the desired FPC filter.

We now describe a new method for constructing a
two-dimensional analog w[n1, n2] of a one-dimensional
prototype window w[n] on an arbitrary reference region
whose boundary is described by algebraic curves with
an order not exceeding two. Initially, on the basis of a
complete system (2) of R functions for α ≡ 1 with the

ω̃
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Table 2.  Basic physical parameters of two-dimensional Kravchenko–Rvachev windows

Window

Equivalent 
noise

band, bin

Correlation of
overlapping segments 

(50% overlap), %

Parasitic
amplitude 

modulation, dB

Maximum 
transformation 

loss, dB

Maximum 
level of side 

lobes, dB

Window 
width at the

6-dB level, bin

Coherent
amplification

b1 b2 b3 b4 b5 b7 b8

KR21 1.27 40 2.4 7.5 –17 1.4 0.55

KR22 1.5 31 2.1 7.2 –20 1.4 0.33
help of (11), we compose the equation for the reference
region ω(x, y) ≥ 0 such that maxω(x, y) = ω(0, 0) = 1.
Furthermore, the two-dimensional window is repre-
sented in the form

(12)

In the case of a circular reference region for the unit
radius and of a center in the origin, described by the for-

mula ω(x, y) = 1 – = 0, relationship (12) coin-
cides with expression (9). Thus, formula (12) represents
the generalization of the expression (9) for the case of the
reference region of an arbitrary configuration.

We consider the algorithm proposed for the case of
a square aperture represented by the equation

or, with allowance for (2) in the complete form,

Then, formula (12) acquires the form

(13)

We now compare formulas (7) and (13). It is evident
that when n1 or n2 are equal to zero they yield the same
result transforming into the one-dimensional prototype
weight function. However, in contrast to expression (7),
formula (13) also yields the same function at the diag-
onals of the square (|n1| = |n2 |). This fact can turn out to
be useful, e.g., for image processing, when four rather
than two directions in the image plane are equivalent. In
addition, the algorithm indicated is applicable for the
case of a reference region with an arbitrary geometry,

w n1 n2,[ ] w 1 ω n1 n2,[ ]–( ).=

x2 y2–

ω x y,( )
=  1 x–( ) ∧ 1 1 x+( ) ∧ 1 1 y–( ) ∧ 2 1 y+( ) 0=

ω x y,( ) 1
1
2
--- x y y x–+ +( )– 0.= =

w n1 n2,[ ] w
n1 n2 n1 n2–+ +

2
----------------------------------------------------- 

  .=
i.e., when the direct product in the forms of (7) or (8) is
unacceptable.

CONCLUSIONS

Thus, new designs of two-dimensional windows
proposed and substantiated in this paper can find wide
application in solving problems of processing multidi-
mensional digital signals of Doppler radars and radar
stations with digital synthesis of the antenna’s aperture,
in the case of signal isolation and compression, and in
solving problems of medical telemetry, mathematical
modeling of a heart bioelectric generator, computer
thermography, and tomography as well.
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INTRODUCTION

While studying the diffraction of electromagnetic
waves on ideally conducting arrays, the solution to
electrodynamic boundary value problems is tradition-
ally reduced to that of the first or second boundary
value problem of mathematical physics. However, vari-
ation in the geometry of the structure that we deal with
and allowance for its physical parameters (e.g., the
impedance) that were not previously taken into account
result in the complication of the mathematical model
under consideration. Solving electrodynamic boundary
value problems for superconductors and superconduct-
ing coatings suggests introducing impedance boundary
conditions [1]. This corresponds to solving the third
and fourth boundary value problems for such structures
(with allowance for connection of the normal and tan-
gential derivatives). In this paper, an approach is pro-
posed based on employing the Kontorovich–Lebedev
integral transformation and singular integral equations.
This approach is used for solving problems of wave dif-
fraction on a three-dimensional array consisting of
irregular planar impedance strips on which the third
and fourth boundary conditions are given.

FORMULATION OF THE PROBLEM:
THE THIRD BOUNDARY CONDITION

ON STRIPS

We consider a scalar problem for wave diffraction
on a periodic array composed of N infinitely thin
unbounded imperfectly conducting irregular (angular)
planar strips having a common vertex. The array is
located in the plane z = 0 of a Cartesian coordinate sys-

tem. The array period is l = , the width of the strips

is α, and the slit width is d = l – α and defines dihedral

2π
N
------
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pr. Lenina, Kharkov, 61276 Ukraine 
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Russian Academy of Sciences, 
Mokhovaya ul. 18, Moscow, 103907 Russia
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angles formed by the planes passing through the
OZ-axis and the edge of neighboring strips (see figure).
We introduce a spherical coordinate system (r, ϑ , ϕ)

with the origin at the vertex of the strips the array

plane is defined by the equation ϑ  = . A source of

spherical waves is located at the point B(r0), r0 = (r0, ϑ0,
ϕ0), and the wave field varies according to a harmonic
law. We need to find a potential u(r), r = (r, ϑ , ϕ) cor-
responding to the total field and satisfying the follow-
ing equations and conditions.

1. Helmholtz equation (everywhere outside the
strips and the source), i.e.,

2. The boundary condition on the array strips Σ

(1)

3. The condition of the energy boundedness

4. The condition at infinity.




π
2
---



∆u q2u– 0, q 0;>=

ξu ζ∂u
∂n
------+ 

 
Σ

0, ξ r ϕ,( )ζ r ϕ,( ) 0;≠=

( ( ( (

u 2 ∇ u 2+( ) Vd

D

∫ ∞;<

0

z

y

x n

B(r0, q0, ϕ 0)

n

Geometry of the problem.
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The validity of the conditions 2–4 provides the
uniqueness of the solution to the problem formulated.
With due regard for n = eϑ, boundary condition (1) can
be written as

(2)

We now assume that one of the cases

(3)

or

(4)

takes place. Then, the condition (2) acquires the form

(5)

where ξ and ζ are constant quantities. Furthermore, we
consider boundary condition (5) instead of (1), assum-
ing the validity of formulas (3) or (4). The desired
potential u can be represented in the form

(6)

Here, u0 =  corresponds to the source field

(primary field), while the potential u1 is caused by the
existence of the array and corresponds to the secondary
field.

To solve the problem formulated, we make use of a
pair of Kontorovich–Lebedev integral transformations
with respect to the radial coordinate [2]:

(7)

(8)

Here, Kiτ(z) is the Macdonald function. With allowance
for the representation

(9)

ξu ζ1
r
--- ∂u

∂ϑ
-------+ 

 
Σ

0,=

Σ r ϑ ϕ, ,( ) R3: r [0 +∞) ϑ π
2
--- ϕ L∈,=,,∈∈

 
 
 

,=

L Ls, Ls
s 1=

N

∪ s 1–( )l
d
2
---+ sl

d
2
---–, 

  ,= =

CL 0 2π,[ ] \L.=

( (

ξ 1
r
---ξ , ξ const, ζ ζ , ζ const= = = =

( (

ζ ζ r, ζ const, ξ ξ , ξ const= = = =

( (

ξu ζ ∂u
∂ϑ
-------+ 

 
Σ

0,=

u u0 u1.+=

qr–( )exp
4πr0 r r0–
----------------------------

G τ( ) G r( )
Kiτ qr( )

r
----------------- r,d

0

+∞

∫=

(

G r( )
2

π2
----- τ πτG τ( )

Kiτ qr( )

r
----------------- τ .dsinh

0

+∞

∫=

(

u0
2

π2
----- τ πτ amτUmτ

0( )eimϕ Kiτ qr( )

r
-----------------

m ∞–=

+∞

∑ τ ,dsinh

0

+∞

∫=
where Γ(z) is the gamma function and (cosϑ) is
the associated Legendre function of the first kind, we
seek the potential u1 in the form of the Kontorovich–
Lebedev integral (7)–(9):

(10)

FUNCTIONAL RELATIONSHIPS.
THE SINGULAR INTEGRAL EQUATION

In order to determine the unknown coefficients
 and , we use the boundary condition (5)

(11)

and the conjugation condition in slits

(12)

Umτ
0( ) ϑ ϑ 0 m τ, , ,( )

=  
P–1/2 iτ+

m ϑcos( )P–1/2 iτ+
m ϑ 0cos–( ), ϑ ϑ 0<

P–1/2 iτ+
m – ϑcos( )P–1/2 iτ+

m ϑ 0cos( ), ϑ ϑ 0,<



amτ
1

4r0
-------e

imϕ0–
1–( )mKiτ qr0( )

r0

------------------- 1
πτcosh

------------------

Γ 1
2
--- m– iτ+ 

 

Γ 1
2
--- m iτ+ + 

 
----------------------------------,=

P–1/2 iτ+
m

u1
2

π2
----- τ πτ bmτUmτ

1( )Kiτ qr( )

r
-----------------

m ∞–=

+∞

∑sinh τ ,d

0

+∞

∫=

bmτ amτP–1/2 iτ+
m ϑ 0cos( ), ϑ 0

π
2
---,<–=

Umτ
1( )

=  

xm n m0+, τ( )
P–1/2 iτ+

m nN+ ϑcos( )

ϑd
d

P–1/2 iτ+
m nN+ ϑcos( )

ϑ π/2=

---------------------------------------------------------ei nN m+( )ϕ ,
n ∞–=

+∞

∑

0 ϑ π
2
---< <
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m nN+ – ϑcos( )

ϑd
d

P–1/2 iτ+
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ϑ π/2=

-------------------------------------------------------------ei nN m+( )ϕ ,
n ∞–=

+∞

∑

π
2
--- ϑ π.< <



















xm n m0+, ym n m0+,

ξu1 ζ
∂u1

∂ϑ
--------+

ϑ π/2 0+=

ξu1 ζ
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∂ϑ
--------+
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Extracting from formulas (11) and (12) conditions for
their transforms (7), and allowing for representation (10),
we arrive at the system of equations with respect to the
coefficients zn connected with the desired coefficients
(by virtue of the array periodicity, these equations are
considered for a period)

(13)

(14)

Here,  = m0 + ν, m0 is an integer closest to , –  ≤

ν < ,

(15)

and  is transform (7) of the function g. For , the
estimate

takes place. After differentiating both parts of Eq. (14)
with respect to ψ and complementing the additional
condition at ψ = π, we obtain the relations

(16)

ξ2 1
N n ν+( )
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n
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1( )–( )zneinψ

n ∞–=

+∞

∑

– ζ2 N n ν+( ) n
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+∞

∑ ξg ψ( ),=
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(
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+∞
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m
N
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N
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2
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1
2
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1
N n ν+( )
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n
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π
--- 1–( )N n ν+( ) 1+=

× πτ
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2
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 

Γ 1
2
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 
----------------------------------------------------cosh

× 1

ϑd
d

P–1/2 iτ+
N n ν+( ) ϑcos( )

ϑ π/2=

2
-----------------------------------------------------------------,

1 εn
2( )–

1

1 εn
1( )–

----------------, zn 1–( )n ym n, xm n,–( ),= =

ψ Nϕ ϕ
ϕ
------π,–=

g

(

εn
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εn
j( ) O

1

N2 n ν+( )2
-------------------------- 

  , N n ν+( ) @ 1, j 1 2,= =

n ν+( )zneinψ
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+∞

∑ 0,
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l

------- ψ π,≤<=
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(17)

We now introduce the function

(18)

where

(19)

For n + ν = 0, which is possible at n = 0 and ν = 0, z0 is
determined from relationship (17). In accordance with
relationship (16),

so that we find from (19)

(20)

With allowance for

we have from relationships (17) and (20)

(21)

Thus, we can derive a singular integral equation for
determination of the unknown function F(ψ) (18) from
Eq. (15) by substituting into it the representation (20),
(21) for zn:

(22)

where
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The singular integral equation obtained (22) with the
Cauchy kernel and the smooth function  can be
solved numerically by its discretization and the
employment of Gaussian quadratures.

THE FOURTH BOUNDARY CONDITION
ON STRIPS

We now analyze the problem of wave diffraction on
a periodic array composed of strips for which the fourth
boundary condition is given. Everywhere outside the
strips and the source, the desired potential w(r) satisfies
the Helmholtz equation with the boundary conditions

(23)

constraints of the finite energy, and conditions at infin-

ity. In condition (23),  and  are the normal and

tangential derivatives of w(r), respectively,

(24)

Taking into account relationships (24), we can write out
conditions (23) in the form

(25)

Assuming v r = 0, we obtain from boundary condi-
tions (23)

(26)

Next, we consider the following particular cases of
condition (26):
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In each of these cases, this condition is transformed
to the form
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 are constants. Under the assumptions
made above, initial boundary condition (23) is reduced
to the form (27), which is analyzed below. We seek the
potential 
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 corresponding to the secondary field in
form (10):
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for the conjugation in slits, we arrive at the system of
equations
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(29)

(30)

Here,  is the transform of the function f. After intro-
ducing the function

and using formulas (19)–(21), we arrive at

(31)
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Singular integral equation (31) has the Cauchy kernel,
Qντ(θ) being the smooth function.

CONCLUSIONS

Thus, as a result of employing Kontorovich–Lebe-
dev integral transformation, the third and fourth bound-
ary value problems of the Helmholtz equation for the
three-dimensional array consisting of planar angular
strips are reduced to singular integral equations of the
first kind with the Cauchy kernel. The unambiguous
solvability of singular integral equations (22) and (31)
follows from their equivalence to the pair summator
equations (13), (14) and (29), (30), respectively, the lat-
ter being adequate to the initial boundary value prob-
lem. The algorithms developed imply the necessity of
numerically solving singular integral equations. The
approach can be realized by discretizing singular inte-
gral equations and using Gaussian quadratures.
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In connection with the practical problem of measur-
ing the elastic modulus for rubber deposited on a metal
or glass substrate, we theoretically solve the problem of
the propagation of longitudinal acoustic waves in a thin
elastic strip-shaped rod embedded in an unbounded
bulk low-modulus matrix. The speed of the propagation
of acoustic waves in an elastic rod is determined by the
density ρ0 and elastic modulus E of the rod [1]:

(1)

The velocity of longitudinal ultrasonic waves in a
thin strip-shaped rod was found to decrease upon dip-
ping the rod into a fluid [2, 3]. This decrease is caused
by a boundary layer involved in joint vibrations with
the rod. The thickness of the boundary layer depends on
the vibration frequency and the density and viscosity of
the fluid [4–6]. This effect was used for determining
fluid viscosity, and the results of these acoustic mea-
surements are consistent with those obtained by con-
ventional methods [3].

Let the elastic modulus of the strip be much greater
than the modulus of the matrix. In this case, according
to Eq. (1), the longitudinal-wave velocity in the rod is
much higher than that in the matrix. Being in contact
with the strip, the boundary layer of the matrix is
involved in the motion. It is evident that the matrix
motion is of a shear origin and that a longitudinal wave
in the strip excites a shear wave in the matrix.

We assume that the strip width significantly exceeds
the length of the transverse wave excited in the matrix.
Under this assumption and taking into account that a
strip element is subjected to the elastic tensile–com-
pressive forces and forces of shearing interaction with
the latter caused by the matrix, one can describe the
longitudinal vibrations of the strip by the equation

(2)

c
E
ρ0
-----.=

ρ0h
∂2u

∂t2
-------- Eh

∂2u

∂y2
-------- 2τ .+=
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Here, u is the displacement of the strip element from its
equilibrium position, h is the strip thickness, τ is the
shear stress at the rubber–strip interface, and y is the
strip axis along which the acoustic wave propagates.
The factor 2 corresponds to the two strip–matrix inter-
faces.

To determine the quantity τ, we consider the shear
vibrations of the matrix in the elastic half-plane x > 0.
These vibrations are described by the equation [1]

(3)

Here, ρ and G are the density and shear modulus of the
matrix, respectively, and x is the axis perpendicular to
the strip plane.

The boundary conditions are determined by the
requirement that displacements of the matrix at the x = 0
interface are equal to those of the strip. We seek a solu-
tion of Eq. (3) in the form of a traveling wave:

(4)

where k⊥  is the wave number of a transverse wave in the
matrix and ω is the angular frequency of the strip vibra-
tions. Substituting Eq. (4) into Eq. (3), we have

(5)

The length of the transverse wave in the matrix is
given by the formula

where f = ω/2π is the vibration frequency. For G =
1 MPa and ρ = 103 kg/m3, which are typical values for
rubber, f = 250 kHz, and the transverse wave length is
estimated as 125 µm.

ρ∂2u

∂t2
-------- G

∂2u

∂x2
--------.=

u u0 i ωt k ⊥ x–( )–[ ] ,exp=

k ⊥ ω ρ
G
----.=

λ⊥
1
f
--- G

ρ
----,=
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Stress in the matrix at the strip–matrix interface is

defined as  at x = 0 and is equal to

(6)

We seek a solution of Eq. (2) in the form

(7)

where k|| is the wave number.

Assuming that the longitudinal wavelength in the
rod is much greater than the transverse wavelength in
rubber, and substituting Eqs. (6) and (7) into Eq. (2), we
obtain the following expression for the wave number of
the longitudinal wave in the rod:

(8)

where c0 is the speed of sound in the rod and ϕ =

.

The phase velocity of the longitudinal wave is equal
to ω/k||. Using the equality λ⊥  = 2π/k⊥  and taking Eq. (5)
into account, we obtain the following expression for the
phase velocity of the longitudinal wave:

(9)

When λ⊥  ! h, the second term in the radicand is
much less than unity. Retaining the first two terms in
the expansion of Eq. (9) in a power series of this term,
we have the relation

(10)

which can be written in the form

(11)

where m1 = ρλ⊥  and m0 = ρ0h are the masses of the
boundary layer and strip, respectively.

The complex-valued component of the wave num-
ber determines wave damping. It is easy to prove that
the inequality λ⊥  ! h is satisfied for ϕ ! 1. In this case,

G
∂u
∂x
------

τ iGk ⊥ u.=

u u0 i ωt k ||y–( )–[ ] ,exp=

k ||
ω
c0
---- 1

ρ2λ⊥
2

π2ρ0
2h2

----------------+4 eiϕ ,=

1
2
---

ρλ⊥

πρ0h
------------arctan

c
c0

1 ρG

π2 f 2ρ0
2h2

----------------------+4

------------------------------------.=

c c0 1 ρG

4π2 f 2ρ0
2h2

-------------------------– 
  ,=

c c0 1
m1

2

4π2m0
2

---------------–
 
 
 

,=
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the amplitude of the longitudinal wave in the strip is
given by the relationship

(12)

where β =  is the damping coefficient for the lon-

gitudinal wave. It is worth noting that the coefficient β
is equal to the ratio m1/m0 of the boundary-layer mass
to the strip mass. If the wave damping factor is small,
the coefficient β can be considered as a small parame-
ter. In this case, the decrease in velocity is a second-
order correction in the damping coefficient.

The results calculated by Eq. (9) for the velocity of
the propagation of acoustic waves are shown in Fig. 1
as a function of the matrix shear modulus G. The veloc-
ity of sound decreases monotonically with the increas-
ing shear modulus of the matrix. A similar dependence
for the damping coefficient is presented in Fig. 2. In
the case of the matrices with small coefficients of stiff-

u u0 βy–( ),exp=

Gρ
ρ0c0h
-------------

4.4

5

Ò, km/s

G, MPa
10 15 200

4.8

5.2

120

0 5

β, m–1

G, MPa

80

40

10 15 20

Fig. 1. Speed of sound vs. the shear modulus G. The calcu-
lations were carried out for the strip thickness h = 0.1 mm,
c0 = 5.1 km/s, vibration frequency f = 250 kHz, ρ0 =

2.6 g/cm3, and ρ = 0.93 g/cm3.

Fig. 2. The same as in Fig. 1, but for the damping coeffi-
cient.
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ness, the damping coefficient increases very rapidly as

β ∝  .
Thus, the results of embedding a thin strip in a low-

modulus matrix are similar to the results of the immer-
sion of the strip into a fluid [4–6]. Namely, longitudinal
vibrations of the strip excite a transverse wave in the
matrix. There is also an inverse effect, which becomes
substantial when the strip mass is commensurable with
the mass of the matrix boundary layer. Because of the
presence of the matrix, the longitudinal wave is damped
and its velocity decreases.
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INTRODUCTION

Currently, new approaches in the analysis and synthe-
sis of antenna systems, which are based on concepts of
fractal geometry, have received wide recognition [1–8].
As is well known, the simplest mathematical abstrac-
tion for a self-similar set is a Cantor set (dust is an ana-
log) [9–12]. On this basis, one-dimensional and two-
dimensional antenna radiators were developed and
their properties were thoroughly investigated [6, 7].

In the present study, a new class of self-similar sets
based on a simple recurrence procedure is considered.
In this case, terms of the sequence being formed alter-
nate in accordance with the distribution law for signs of
derivatives of certain atomic functions (AF) [13]. These
functions are finite solutions to functional differential
equations relating shifts and compressions of such
functions to their derivatives. Note that atomic func-
tions turn out similar to linear combinations of their
derivatives. Therefore, their multiple differentiation
makes it possible to design a new type of self-similar
antenna arrays.

THE ha(x) FAMILY OF ATOMIC FUNCTIONS

Atomic functions are finite solutions to linear func-
tional differential equations with constant coefficients

Here, a, dn , cm , and bm are numerical parameters, and
|a| > 1. One of the basic classes of atomic functions is
determined by the following expression:

(1)

dny n( ) x( )
n 1=

N

∑ cmy ax bm–( ).
m 1=

M

∑=

2y ' x( )
a2

--------------- y ax 1+( ) y ax 1–( ).–=
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Solutions (1) for the function ha(x) are determined on
the carrier [–(a – 1)–1, (a – 1)–1], and their Fourier trans-
forms have the form:

where sinc(x) ≡ . The derivatives of the nth order

can be expressed in terms of the function ha(x) in itself as

(2)

where

(3)

Here, pj(k) denotes the jth bit in the binary representation
of the number k; i.e., pj(k) = [k × 2j] mod 2. For a = 2, we
obtain the simplest atomic function up(x) with the car-
rier (–1, 1), which satisfies the equation

Expression (2) for the derivatives of up(x) has the form

In Fig. 1, plots are presented for the function up(x),
its first two derivatives, and the Fourier transform as
well. As is seen from Figs. 1b and 1c, the derivatives
consist of equal parts, similar to the function itself in
the shift–compression sense. In addition, in each of
these segments, the derivatives have a sign determined
by the recurrence sequence (3).

DESIGN OF A SELF-SIMILAR ANTENNA ARRAY

Certain questions associated with the application of
atomic functions in problems of antenna-array synthe-
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Fig. 1. (a) Atomic function up(x), (b) its first derivative, and (c) second derivatives; as well as (d) the Fourier transform.
sis are considered in [1–4]. In the present study, we use
an original approach for creating a non-Cantor antenna
array of a new type. This array is based on the employ-
ment of generating sequence (3). It is well known that
the multiplier of a linear equidistant array is repre-
sented in the form [14]
(4)AF ψ( )

I0 2 In nψ( ) for 2N 1 element+cos
n 1=

N

∑+

2 In n
1
2
---– 

  ψ for 2N elements.cos
n 1=

N

∑







=

Here, ψ = kd(cosθ – cosθ0), k = , and d is the dis-

tance between array elements. Let certain of them be
switched off or removed so that

As a result, a nonequidistant equal-amplitude line of
discrete radiators is formed.

The simplest scheme (based on the Cantor-set con-
cept) for constructing a fractal array is analyzed in [5].
The 101 equidistant generating sequence consisting of
three elements (with the central one switched off) is
considered as an initial sequence. The triad Cantor
array is obtained recursively by the sequential
exchange of unity by 101 and zero by 000 at each
design stage [6]. Possible generalizations of Cantor
radiators (two-scale arrays) and methods for improving
their characteristics are considered in [7].

We now investigate one possible design of a self-
similar antenna array. Assuming the number of its ele-

2π
λ

------

In

1 if  the  element  is  switched  on

0 if  the  element  is  switched  off. 



 
=

                    
ments to be even, we use the relationship In =  as

a law for the electric-current distribution, where δn are
recursively determined from relationships (3). Let N = 4k.
Then, the expression for the multiplier of array (3) can
be written out in the form

(5)
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. Thus,
it can be shown that the preceding relationship has a
simpler form
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The number of arithmetic operations needed for
finding 
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 in accordance with formula (6) is less than
in the case of employing formula (5) by a factor of four.
We now denote 

 

b

 

n

 

 ° 

 

b

 

n

 

 – 1

 

 the concatenation of two finite
sequences 

 

b

 

n

 

 and 

 

b

 

n

 

 – 1

 

, where 

 

n

 

 is the recursion index.

δn 1+
2

--------------

 
AF

 

k

 
ψ( ) δ

 

n

 
1+

 
( )
 

n
 

1
2
---–

 

 
  ψ

 
.cos

 

n

 

1=

 N  
∑

 
=

AFk ψ( ) 4
Nψ
2

-------- 
  2n 1–

δn

2
-----+ 

  ψ .cos
n 1=

N /4

∑cos=

       
DOKLADY PHYSICS      Vol. 47      No. 3      2002



A NEW CLASS OF SELF-SIMILAR ANTENNA ARRAYS 211

    
                    

0.2

0.50 1.0 1.5
ψ

–0.5–1.0–1.5

1.0

|AF2(ψ)|

|AF1(ψ)||AF2(ψ)| 

0.4

0.6

0.8

(b)

|AF1(ψ)|

0.4

0.6

0.8

(a)

0.2

1.0

|AF2(ψ)|

|AF3(ψ)|

Fig. 2. (a) Moduli of the antenna-array multiplier for the first three stages of construction, k = 1, 2, 3, and (b) multipliers for an array
of the second level (solid line) and combined array (dashed line) formed by the convolution of arrays of the first and second levels.
Then, the following recurrence formula for the ordered
set of included (1) and excluded (0) array elements takes
place:

(7)

Here, the bar from above denotes the logical negation.
The desired current distribution has the form I = F2n °
F2n , n = 0, 1, …. Thus, we have obtained the following
algorithm for constructing a discrete radiator line.
Beginning from the initial sequence 11, we should sub-
stitute 1001 instead of 1 and 0110 instead of 0. In par-
ticular, at the second step, we have 10011001.

F0 1, Fn Fn 1–  ° Fn 1– , n 1 2 …., ,= = =
DOKLADY PHYSICS      Vol. 47      No. 3      2002
It is of interest to compare expression (7) with the
Fibonacci sequence

which is formed from the initial unity by the recurrent
exchange 1 by 10 and 0 by 1.

We consider a number of properties for the new
array. Furthermore, we use the normalized expression

(8)

instead of (6).

F0 1, F1 0, Fn Fn 1–  ° Fn 2– ,= = =

n 2 3 …,, ,=

AFk ψ( ) 4
N
---- Nψ

2
-------- 

  2n 1–
δn

2
-----+ 

  ψcos
n 1=

N /4

∑cos=
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Fig. 3. Directional-effect coefficients (DEC) as functions of the angle θ for (a) k = 1, (b) 2, and (c) 3, and (d) DEC for the combined
array formed by the convolution of arrays of the first and second levels.
In Fig. 2, we show the results for the multiplier (8),
which are obtained at the three first stages of designing
the array. Let the distance between its three elements be

a quarter of the wavelength; i.e., d = . In this case, for

θ0 = 90°, we arrive at the following expression for the
array directional-effect coefficient (DEC):

where ψ = πu/2 and u = cosθ. The maximum value of
this coefficient corresponds to u = 0. It turns out that in
the asymptotic limit, Dk(0) 4Dk – 1(0). The values

of the DEC are presented for k = 1, …, 5 in the follow-
ing table: 

Plots of the DEC for k = 1, 2, 3 are shown in Figs. 3a,
3b, and 3c.

k 1 2 3 4 5

Dk(0) 3.771 13.258 52.282 208.422 832.983

λ
4
---

Dk u( ) 2
AFk

2 ψ( )

AFk
2 ψ( ) ud

1–

1

∫
------------------------------,=

≈
k → ∞
We now consider the procedure of constructing a
combined two-scale array [7], which is defined as a
convolution of two arrays with a different number of
elements N1 = 4k and N2 = 4l. In this case, the array mul-
tiplier is a product of the multipliers corresponding to
initial radiators AFk, l(ψ) = AFk(ψ)AFl(ψ). This combi-
nation makes it possible to optimize the array design
from the standpoint of decreasing the level of side
lobes. Figure 2b exhibits moduli of the multipliers for
the initial array of the second level (N1 = 16) and an
array represented as a convolution of two sequences for
two linear discrete radiators of the second and first
(N2 = 4) levels. The directional-effect coefficient of the
resulting array is shown in Fig. 3d.

A TWO-DIMENSIONAL ARRAY

The Sierpinski carpet is a generalization of the Can-
tor set to the two-dimensional case. In [6], problems are
analyzed associated with constructing a fractal antenna
array based on the Sierpinski carpet. In our case, the
process of constructing a plane system of discrete radi-

ators is quite similar. We take the matrix  as an ini-1 1

1 1
DOKLADY PHYSICS      Vol. 47      No. 3      2002
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z

AF1

AF2
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Fig. 4. Two-dimensional antenna arrays and their corresponding multipliers for the three first construction stages.
tial sequence and then sequentially change each 1 or 0 by

,

1 1 1 1

1 0 0 1

1 0 0 1

1 1 1 1

or

0 0 0 0

0 1 1 0

0 1 1 0

0 0 0 0
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respectively. The expression for the array multiplier
takes the form

AFk ψ1 ψ2,( ) Im n,

n –N 1+=

N

∑
m –N 1+=

N

∑=

× i m
1
2
---– 

  ψ1 n
1
2
---– 

  ψ2+ ,exp
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where N = 4k. In Fig. 4 (on the right), we demonstrate
the general view of two-dimensional arrays (discrete
radiators are situated in the center of black squares). On
the left, their multipliers are displayed as functions of
angles ψ1 and ψ2 , which vary within the limits from 0
to π.

Thus, in the present study, a new approach associ-
ated with the concept of atomic functions is proposed
for constructing one-dimensional and two-dimensional
antenna arrays. The construction is based on the recur-
rence procedures; however, in contrast to the traditional
Cantor sets it cannot be called fractal. It is easy to verify
that the new type of array is based on the Hausdorff–
Besikovich sets of unit dimensionality [8]. In spite of
this fact, these arrays possess self-similar properties,
which allows us to considerably simplify the analysis
of their properties and characteristics. Possible general-
izations of the arrays proposed, such as combined two-
scale ones and two-dimensional discrete radiators, are
also considered.
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In this paper, the theoretical study of acoustic-vibra-
tion excitation while combusting aluminum particles in
a gas mixture is carried out. At long distances, alumi-
num particles are considered to be monodisperse and
immobile with respect to the gas. In determining the
excitation conditions for acoustic vibrations, the gas
mixture used was considered as a perfect gas. Expres-
sions for the frequency and excitation increment of
acoustic vibrations are obtained, characteristics of a
fuel and of an oxidizer explicitly entering into these
expressions.

In [1], powders prepared on the basis of carbon and
metals were suggested as a fuel for pulsed MHD gener-
ators. Air or oxygen are oxidizers in this case. Charac-
teristics of MHD generators while operating with these
fuels, in fact, do not differ from those obtained using
solid rocket propellants. In this case, the powder-like
fuel presents the possibility for profound control of the
device power when changing the mass flow-rate of
components and provides for long-term operation of
powerful MHD generators. It was shown in [2] that alu-
minum fuel is optimal for pulsed MHD generators, pro-
vided that the air oxidizer is employed.

It is known [3] that in the process of burning a dis-
perse fuel the acoustic vibrations can be excited, which
results in violation of the normal operation of combus-
tion chambers and even in their destruction. In the prac-
tice of rocket-engine development [4], engines having
pressure-vibration amplitudes of not more than 5%
from the nominal value are related to those exhibiting
stable combustion. It was shown in [5] that the require-
ments for stability of the combustion process in the
MHD-generator combustion chamber should be more
rigorous than in rocket engines. This is caused by the
fact that for such pressure vibrations electric-power
pulsation phenomena hinder the normal operation of an
MHD generator. Therefore, consideration of acoustic-
vibration excitations in the case of combusting a pow-
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Russian Academy of Sciences, 
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1028-3358/02/4703- $22.00 © 20215
der-like fuel in the combustion camber of an MHD gen-
erator is an urgent problem.

Usually, in studies of acoustic-vibration excitation,
it is suggested that, in the case of combusting a disperse
fuel, the burning zone is substantially smaller than the
length of the combustion chamber [3, 4]. In actual con-
ditions, the burning zone has a certain extension along
the longitudinal axis of the combustion chamber, which
is comparable with its length [6]. Therefore, in the case
of acoustic vibrations of pressure, disturbances of the
velocity and temperature of the gas mixture along the
length of the combustion chamber are different, which
affects the stability of the combustion process [3, 4]. In
this paper, in studies of the excitation of acoustic vibra-
tions, a distributed combustion model is used. In other
words, we assume that the zone of burning aluminum
particles is approximately equal to the length of the
combustion chamber.

Here, in calculations of the burning process in a for-
ward-flow combustion chamber, the aluminum parti-
cles are considered to be monodisperse and immobile
with respect to the gas mixture. It is assumed that the
particle combustion occurs in the vapor-phase diffusion
regime. The specific heat cp and the adiabatic index γ of
the gas mixture were assumed to be constant and inde-
pendent of its temperature and component concentra-
tions. The flow in the combustion chamber was
assumed to be one-dimensional under complete mixing
in the transverse direction and in the absence of mixing
in the longitudinal direction. Such assumptions are
common in calculations of the design of combustion
chambers [6]. While analyzing acoustic vibrations, the
gas mixture was considered as a perfect gas, and the
presence of a disperse phase in it was ignored.

Under these assumptions, the continuity equation,
the equation of motion, and the energy equation can be
written in the form

(1)

(2)

ρ∂
t∂

------
∂
x∂

----- ρu( )+
3
4
---

M1

M
-------W ,–=

u∂
t∂

----- u
u∂
x∂

-----+
1
ρ
--- p∂

x∂
------,–=
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(3)

where W is the combustion rate for aluminum particles
in the volume unit, Q is the thermal effect of the reac-
tion of the aluminum oxidation, and M and M1 are the
atomic and molecular masses of aluminum and oxygen,
respectively.

Below, we consider that a local thermodynamic
equilibrium is conserved in the gas phase. This assump-
tion is common in studies of the excitation of acoustic
vibrations in combustion chambers [3]. Then, we can
write the equation of state for the gas mixture

(4)

It is known [3, 4] that high-frequency acoustic
vibrations are the most dangerous and difficult for elim-
ination. As follows from [3], they are characterized by
the fact that for them, the parameter Sh @ 1. Here, Sh =
ωl/u, ω is the angular frequency, and l is the chamber
length. Thus, linearizing equations (1)–(3) with allow-
ance for Sh @ 1, we arrive at

(5)

(6)

(7)

Here and below, the perturbations are indicated by
primes.

Linearizing (4), we obtain a thermodynamic con-
nection between perturbations of p, ρ, and T.

(8)

Here, aT is the isothermal sound velocity.

Substituting expression (8) into Eq. (5) with account
of (7), we obtain

Then, using the relation

we write out the last equation in the form

(9)

Differentiating Eq. (6) with respect to x and Eq. (9)
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with respect to t, and excluding u', we find

(10)

where as is the adiabatic sound velocity.

To solve the last equation, it is necessary to obtain
the expression for W '. As a rule, for description of the
combustion of metal particles, the combustion theory
for drops of a liquid fuel complemented with the allow-
ance for the formation of condensed products (oxides)
is used [7]. It is considered that in the diffusion vapor-
phase model of combusting metal particles, as in the
combustion theory of liquid-fuel drops, chemical trans-
formations including the formation of condensed com-
bustion products (oxides) occur in a narrow zone above
the particle surface. This theory leads to a satisfactory
agreement for the calculated time of combusting a
metal particle with the experimental data in the low
pressure zone (p < 30 atm). In the zone of high pres-
sures characteristic for the conditions in the combustion
chamber of a pulsed MHD generator, a noticeable dis-
crepancy with the vapor-phase diffusion model is
observed. The combustion time for an aluminum parti-

cle becomes proportional to  but not to  (the
Sreznevskiœ law). Here, r0 is the initial radius of a parti-
cle. This is associated with the fact that, in the case of
high pressures, the liquid aluminum oxide is accumu-
lated at the surface of a particle, thus hampering its
evaporation. At the present time, there is no theoretical
model of the vapor-phase combustion of aluminum par-
ticles with allowance for the accumulation of the oxide
at their surfaces. Therefore, in this paper, an empirical
time dependence for the size of a burning particle is
employed [7]:

(11)

Here, α is an empirical constant and c is the dimension-
less mass concentration of oxygen far away from the
burning particle.

For combustion of a monodisperse system of alumi-
num particles in the combustion chamber of a pulsed
MHD generator, there exists a correlation between the
particle sizes and oxygen concentration:

where c0 is the initial dimensionless mass concentration
of oxygen.

Differentiating (11) with respect to t and substitut-
ing the last relation into the equation obtained, we have

(12)

The initial condition is r = r0 for t = 0.

∂2

x2∂
------- p '

p
---- 

  1

as
2

----- ∂2

t2∂
------ p '

p
---- 

  γQ

4MρcpTas
2

--------------------------- W '∂
t∂

---------,–=

r0
3/2 r0

2

r3/2 r0
3/2 αct.–=

r/r0( )3 c/c0,=

3
2
---r0

3r 5/2– dr
dt
----- αc0.–=
DOKLADY PHYSICS      Vol. 47      No. 3      2002



ACOUSTIC INSTABILITY WHILE COMBUSTING ALUMINUM PARTICLES 217
The solution to this equation has the form

(13)

The number of particles N per volume unit of the
combustion chamber is determined from the balance
equation

(14)

where ρ0 is the density of an aluminum particle.

When deriving this expression, the change of the gas
mixture flow-rate as a result of combustion of alumi-
num particles was ignored. We should note that this
assumption is common in calculations of combustion
chambers [3]. With the help of Eqs. (12)–(14), we can
obtain the expression for the steady-state combustion
rate of aluminum particles in the volume unit

(15)

As is seen from this expression, in contrast to the high-
temperature combustion of the monodisperse system of
carbon particles [8], in the case of the combustion of
aluminum particles, the boundary of the burning zone
is absent and the process is continued beyond the com-
bustion chamber (in the nozzle and in the channel of a
MHD generator).

The energy equation for the steady-state combustion
of aluminum particles in the combustion chamber has
the form

The boundary condition is T = T0 for x = 0.

The approximated solution to the last equation has
the form

here, 〈u〉  is the average velocity of the gas mixture in the
combustion chamber: 〈u〉  = u0 〈T〉/T0, 〈T〉  is the gas-mix-
ture temperature averaged over the combustion cham-
ber length.

Averaging the last expression over the chamber
length, we arrive at the expression:

(16)

where l is the length of the combustion chamber.
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When deriving the expression for 〈T〉 , it was taken
into account that the following inequalities take place:

Furthermore, averaging expression (15) for the
steady-state combustion rate, we obtain with the help
of (16)

In [7], the results of experiments on the combustion
rate of finely dispersed aluminum particles as a func-
tion of temperature and pressure for the invariable com-
position of the gas mixture are given. According to
these data, the combustion rate practically does not
change within the temperature range from 1600 to
3300 K, and the pressure dependence ceases to mani-
fest itself for p > 25 atm. In this case, we can obtain an
approximate expression for W '

It is taken into account in the last expression that for
acoustic vibrations in gas mixtures the following rela-
tionships takes place the (quasi-adiabatic approach) [3]

Substituting the expression for W ' into (10), we
obtain an equation of the telegraph-type, which approx-
imately describes the excitation of acoustic vibrations
while combusting aluminum particles in the combus-
tion chamber of a pulsed MHD generator:

(17)

where δ = .

To determine frequencies of acoustic vibrations as a
result of their excitation, it is necessary to set boundary
conditions for Eq.(17). The question on the boundary
conditions at the nozzle inlet is rather complicated and
can be the object of a special study [3, 4]. In the present
paper, similar to [4], the simplest assumption is made
that the flow-velocity perturbations in the critical cross
section of the nozzle are absent. Then, the boundary
conditions can be written in the form

 = 0 for x = 0; (17.1)

 = 0 for x = l. (17.2)
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Solving Eq. (17) by the method of separation of
variables with allowance for the boundary conditions,
we obtain

(18)

Here, k = 1, 2, 3, … . The quantities Bk, ϕk, and the
eigenfrequency are determined from the initial condi-
tions and boundary conditions, respectively. This fre-
quency is

It is seen from expression (18) that for δ > 0 the exci-
tation of acoustic vibrations caused by the combustion
of aluminum particles can occur with the increment

(19)

As follows from formula (18), excitation of the
acoustic vibrations results in a decrease of the vibration
frequency of the combustion chamber compared to the
eigenfrequency. However, this decrease is insignificant.
For example, for combustion of aluminum particles
with r0 = 30 µm, T0 = 400 K in air, the value of δ is equal
to ~70 s–1 for the principal harmonic ∼ 3000 s–1 (l ~ 1 m).
As is seen from expressions (18) and (19), the excita-
tion conditions for acoustic vibrations are improved
with an increase in the initial concentration of the oxi-
dant and a decrease in the initial sizes of aluminum par-
ticles (or a reduction in the length of the combustion
chamber). These conclusions are confirmed by the
known fact of the excitation of acoustic vibrations by
enhancement of the afterburn in the combustion cham-
ber [3].

p '
p
---- eδt Bk

πkx
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---------cos
k 1=

∞

∑=

× πk
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 
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l
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α s
2〈 〉 δ 2–

-----------------------------------------.=
In conclusion, we note that the condition of the
vibration excitation, which is known in thermal acous-
tics as the Rayleigh criterion [3], allows us to obtain
sufficient conditions for acoustic stability and reveal
sources of the vibration energy in the case when they
are not evident, e.g., for phase transitions in vapor–gas
mixtures [9]. However, this criterion does not allow us
to determine the increment and the vibration frequency.
The model of the acoustic-vibration excitation, which
is suggested in this paper as distinct from the Rayleigh
criterion, makes it possible to obtain (with invoking a
known empirical dependence for the rate of steady-
state combustion of an individual aluminum particle)
the expression for the increment and frequency, which
explicitly depends on the fuel and oxidant parameters.
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The problem on steady viscous-fluid flows in a
plane confusor (the Jeffrey–Hamel problem [1–3])
again attracts attention due to increased numerical and
analytical possibilities of currently available comput-
ers, as well as to the development of corresponding
software [4, 5]. This attention is also induced by practi-
cal needs for solving a wider class of problems on flows
of a viscoplastic medium with a low yield stress in a
plane confusor [6, 7]. In this paper, we report the results
of constructing and investigating multimode and asym-
metric solutions in a wide region of physical and geo-
metric parameters of the system. New qualitative
mechanical effects were established and discussed.

1. We consider a steady flow of an incompressible
fluid with density ρ in a plane confusor, which has
angle 2β (0 < β < π) and outflow power Q (Q > 0) at the
point O. It is convenient to describe the motion in the
polar coordinates (r, θ), where the region occupied by the
fluid has the form |θ| < β, r > 0. In addition to the density,
the fluid is characterized by the kinematic viscosity ν.
For the plane confusor, three quantities {ρ, Q, ν} are
dimensionally dependent ([Q] = [ν]). Since there are no
other dimensional quantities in the problem, the subse-
quent equations cannot be made totally dimensionless.

The Reynolds number Re =  is a dimensionless com-

bination.

For a certain distribution of the pressure p in the
angle θ (for r  ∞, this distribution can be found on
the basis of kinematic relationships), the velocity field
(v r , vθ) is radial [1, 3]:

(1)

Q
ν
----

v r
Q
r
----V θ( ), v θ 0.≡–=
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According to Eqs. (1) providing the incompressibility
condition, we write the nonzero components of the
strain-rate and stress tensors

(2)

(3)

The substitution of Eqs. (3) into two Navier–Stokes
equations [1] leads to the following ordinary differen-
tial equation for the function V(θ) appearing in
Eqs. (1)–(3) and yields the pressure p:

(4)

(5)

The mechanical meaning of the constant C is clear
from the condition of adhering the fluid to the confusor
walls |θ| = β

(6)

Furthermore, the integral condition of constant
flow rate closes the formulation of the Jeffrey–Hamel
problem:

(7)

The analytical investigations of the problem,
Eqs. (4), (6), and (7), were extensively considered and
reported in special papers [4, 5] and manuals [1–3]. The
order of Eq. (4) can be reduced by multiplying both
sides by V ' and isolating the total derivatives. The equa-
tion has the first integral

(8)
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It follows from Eq. (8) that the derivatives V ' are
equal in magnitude at the zeros θi of the function V(θ);
i.e., we have V '2(θi) = V '2( ). Equations (8) and (4)
can be integrated in elliptic functions [1–3]. However,
it is difficult to analyze the elliptic integrals obtained
and to solve the set of two transcendental equations
with respect to the constants of integration [1]. One fails
to construct an explicit solution of the boundary value
problem for arbitrary values of parameters β and Re.

It should be noted that Re can formally be negative;
in this case, a diffuser flow takes place (Q < 0). Such a
flow was considered as more complicated and diverse
than the confusor one. Asymmetric (about the axis θ = 0)
regimes and regimes admitting the alternation of flow-
out and flow-into zones (multimode regimes) were
known for this flow [1–3]. The presence of these
regimes is the manifestation of the fact that the nonlin-
ear boundary value problem with the condition of con-
stant flow rate has several solutions. With increasing
Re, a steady flow in a diffuser loses its stability and
becomes turbulent.

However, the asymmetric and multimode character
was not explicitly established for a confusor flow.
Therefore, the following questions remained unan-
swered: (a) Are the asymmetric or multimode velocity
profiles possible in the confusor along with the sym-
metric and single-mode ones, and if so, under what con-
ditions? (b) If these profiles are possible, what are their
properties?

The boundary value problem, Eqs. (4) and (6), with
condition (7) is two-parametric; it admits variational
treatment [4, 5]. For further numerical–analytical
investigation, it is convenient to change the parameters
(β, Re) to the pair (a, b), where a = 4β and b = 2βRe.
Changing V(θ) to the new unknown function y(x), where

V =  and the argument θ = (2x – 1)β (0 < x < 1),

the initial problem is represented in the form

(9)

Along with the variables y and y', we introduce the
variable z characterizing the fluid flow rate according to
Eq. (8):

(10)

It is necessary to solve the boundary value problem,
Eqs. (9) and (10), for the variables y and z. The param-
eter λ is unknown and must be calculated. This param-
eter can be excluded by differentiating Eq. (9); how-
ever, a third-order nonlinear equation is obtained as a
result.

β+−

y
2β
------

y" a2y by2–+ λ , y 0( ) y 1( ) 0,= = =

y ' 0( ) γ, y x( ) xd

0

1

∫ 1,= =

λ 8β3C y" 0( ) y" 1( ).= = =

z ' y 1, z 0( )– 0, z 1( ) 0.= = =
2. On the basis of the high-accuracy numerical–ana-
lytical method with improved convergence [4] in a wide
range of parameters (a, b), we constructed numerical
solutions to problem (9) in the class of symmetric sin-
gle-mode profiles y(x) [5]. We also analytically investi-
gated the following asymptotic cases of the parameters
(a, b) or (β, Re):

(i) Re ! 1, 0 < β < ; 

(ii) Re ~ 1, 0 < β ! 1;

(iii) β ! 1, βRe ~ 1; 

(iv) Re @ 1, β ~ 1.

In case (iii), numerical methods should be applied
[5]; in case (iv), there exists a formal passage to the dis-
continuous-profile limit for an inviscid fluid. The pres-
ence of the large parameter b requires the application of
methods of singular perturbations [8]. By means
of these methods, the asymptotic behavior of the solu-
tion [1] in case (iv) can be represented in the very con-
venient form [5, 7]

(11)

Expressions (11) provide satisfactory accuracy for
b ~ 103–104.

Further, we present certain integral estimates for
y(x), λ, and γ following from Eq. (9). It should be noted
that, for an arbitrary function f(x) continuously differ-
entiable on the interval 0 < x < 1, the following equality
is valid:

(12)

where two arbitrary zeros x1 and x2 of the function y(x)
satisfy the conditions 0 ≤ x1 < x2 ≤ 1. In Eq. (12) and
below, we omit the limits of integration with respect to
x from x1 to x2 .

A. Let f(x) = y(x); in this case, integration of Eq. (12)
by parts yields two important equalities

(13)

If x1 = 0 and x2 = 1, the lower sign in Eq. (13) corre-
sponds to the symmetrical single-mode regime includ-
ing the classical one; the upper sign corresponds to the
asymmetric regime. It follows from the condition
y'(1) = y'(0) that the multimode velocity profile is pos-
sible.

π
2
---

y∞ x( ) 1
6

1 5arccosh b
2
--- 1 2x 1––( )+cosh+

----------------------------------------------------------------------------------------------,–≈

y∞ 0( ) y∞ 1( ) 0,= =

y∞' 0( ) γ∞
4b
3

------, y∞'' 0( ) λ∞ b, b          ∞ .–  ≈  =  ≈=

y" a2y by2–+( ) f ' xd∫ λ f x2( ) f x1( )–[ ] ,=

y ' x2( ) y ' x1( ).±=
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B. Let f ' = y and f(0) = 0. In this case, taking into
account the Friedrichs inequality

,

we obtain the upper estimate of the parameter λ from
Eq. (12):

(14)

which is very accurate for the case of the single-mode
flow (on the entire interval 0 ≤ x ≤ 1).

C. Let f(x) = y'(x); in this case, integrating (12) by
parts, we write the equality

(15)

where n takes the values –2, 0, and 2 depending on the
choice of the sign in Eq. (13). For n = 0, i.e., for the
functions with the boundary conditions

one more Friedrichs inequality is valid:

This inequality and Eq. (15) lead to the estimate

(16)

3. For definiteness, we consider a fixed value of the
aperture angle β = 10°, i.e., a ≈ 0.7, that is widely met
in the applied problems [5, 7]. Numerous calculations
were also carried out for other values of a. The value b
is considered to vary within wide limits: 0 < b ≤ 200,
i.e., 0 < Re & 600. A high-accuracy solution of Eqs. (8)
and (10) with a relative error of 10–7–10–8 {absolute
error O(10–5)} can be constructed using the modified
method of improved convergence of the Newton algo-
rithm type and the procedure of continuation with
respect to a parameter [4]. It was successfully applied
to the classical problem of investigating single-mode
symmetric flows [5] for which an exact limiting solu-
tion is known in the analytical form for b  0 and
arbitrary a.

Substantial difficulties in constructing multimode
velocity profiles are caused by the degeneration of the
problem for b  0. This fact leads to unlimited values
of the desired parameters γ(b) and λ(b) necessary for
integrating the corresponding Cauchy problem. For a
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certain fixed value of the parameter b = b0 (convention-
ally, b0 ≈ 10) and the number of the chosen mode (n =
2, 3, 4, …), we seek unknown values γ and λ and calcu-
late them with a high accuracy, providing the above
residual with respect to the boundary conditions. Then,
by means of the procedure of continuation with respect
to the parameter b, we plot universal curves γ(b) and
λ(b) for 0 < b < b0 and b0 < b < ∞. The difficulties in
these calculations are aggravated by the fact that the
values γn @ γ1 and λn @ λ1 (by several orders of magni-
tude) and attain high values for b = 1, for example, γ5 ~
104 and λ5 ~ 105. These circumstances can explain why
conclusive results on determining and analyzing multi-
mode flows in the Jeffrey–Hamel problem have not
been obtained yet.

Below, we outline and discuss the graphic represen-
tation of the results of numerical–analytical investiga-
tion of multimode flows for n = 2, 3, 4, 5. They are com-
pared with the corresponding curves for the classical
solution (n = 1), which was studied in detail in [5], in
particular, for various values of the parameter a. It was
established that the odd n modes for n ≥ 2 correspond
to symmetric (about x = 1/2, i.e., θ = 0) solutions,
whereas the even n modes correspond to asymmetric
solutions.

The analysis shows that the flows have certain struc-
tural properties. Namely, the positive maxima (n ≥ 3)
and the negative minima (n ≥ 4) of the functions yn(x, b)
have the same magnitudes. Furthermore, in all the zeros
xi , i = 1, …, n + 1, of the function yn(x, b) (for fixed n,
b), the derivatives  are equal in magnitude; i.e.,

γn(b) = ± (xi , b). Thus, in a certain sense, a multimode
flow is a combination (aggregate) of single-mode and
two-mode flows. This property likely follows from the
fact that the flows are radial.

Figures 1 and 2 show the functions γn(b) and λn(b)
in different scales for 1 ≤ b ≤ 10 and 10 ≤ b ≤ 200. The
functions determine the solutions to the boundary value
problem, Eqs. (9) and (10), by integrating the Cauchy
problems for a fixed value of the parameter a (i.e., the
angle β). The curves are grouped in pairs n = 2 and 3,
and n = 4 and 5. Interesting properties of these curves
manifest themselves near b = 0, and the graphs have
vertical asymptotes: γn  +∞ and λn  –∞ for
b  +0. We recall that finite values γ1 and λ1 corre-
spond to the classical single-mode solution [5]. Large
magnitudes of γn and λn for b ~ 1 are also remarkable.
The differences γn – γn – 1 and λn – 1 – λn increase indefi-
nitely for b → +0 and with the number n. Every curve

γn attains a minimum for a certain large value b =  ~
102–103 and tends very slowly to asymptote γ∞ =

 (11) from above. Similarly, the curves λn attain

maxima for certain b =  ~ 102 and also tend very
slowly to asymptote λ∞ = –b (11) from below. On the

yn'

yn'
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γ
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basis of these facts, we arrive at the important mechan-
ical conclusion that all the modes of steady flows,
including the fundamental one (n = 1, see [5]), tend to
a perfect-fluid flow in the limit b  ∞ (Re  ∞) in
a certain metric for 0 < x < 1.

The curves γn(b) and λn(b) are essentially the prin-
cipal result of these investigations and provide the
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Fig. 1. γn and λn vs. the parameter b, 1 ≤ b ≤ 10.
numerous characteristics of steady flows in a confusor
by integrating the Cauchy problem for Eqs. (9) and
(10). These characteristics, cited in Section 1, are
velocity profile (1), pressure (5), components of the
strain-rate tensor (2) and strain tensor (3), etc. The
shape of the curves γn and λn is rather simple; however,
their construction requires very cumbersome high-
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Fig. 2. The same as in Fig. 1, but for 10 ≤ b ≤ 200.
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Fig. 4. The same as in Fig. 3, but for b = 200.
accuracy calculations, which are considerably compli-
cated for b  +0 and b  ∞. Pronounced boundary
layer effects take place in the problem. Calculating algo-
rithms on the basis of the known functional-analysis
methods (Bubnov–Galerkin), finite-element and finite-
difference methods does not provide satisfactory results.

To illustrate multimode flows, Figs. 3 and 4 show
the velocity profiles yn(x), n = 2, 3, 4, 5, for a relatively
small value of b = 1 and a relatively large value of b =
200, respectively. For small values of the parameter
b (Re), large oscillations of positive and negative veloc-
ity values, i.e., the functions yn (x), are observed. The
inflow (yn > 0) and outflow (yn < 0) regions correspond
to these values. An increase in the parameter b(Re)
reduces the amplitude of oscillations and reverse flows.
For large values b ~ 102–103, the pronounced forms cor-
responding to confusor flow (11) are observed for a
weakly viscous fluid. A deviation from the rectangular
profile of a flow of a nonviscous (perfect) fluid in a cer-
tain metric tends to zero for 0 < x < 1; near x = 0 and 1
(θ = ), typical boundary layer phenomena arise.
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On an Extreme Feature of Detached Flows 
upon the Interaction of a Shock with a Boundary Layer
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Calculations carried out with empirical relations
under certain assumptions have revealed nontrivial reg-
ularities inherent in λ-configurations of shocks pro-
duced at the developed separation of a turbulent bound-
ary layer in cone flows and are characterized by the
minimum (or near-minimum) production of entropy.

Experimental studies [1–4] of the separation of a
turbulent boundary layer in cone flows under the action
of shocks revealed that a disturbed flow has a number
of fundamental features that have not been theoretically
explained yet. Among them are the following ones. A
flow with a boundary layer separation has a cone char-
acter, which is disturbed only in the regions of laminar-
to-turbulent state transition [2–4]. The quantitative
characteristics of a detached flow for the artificially
induced turbulence of a boundary layer [1] coincide
with those under natural conditions of varying the local
Reynolds number along the line of turbulent boundary
layer separation in the range Re × 10–6 ∈  (1.5; 20) [4].
Some other features will be mentioned later.

Semiempirical relations for angles ϕ and γ between
the direction of an undisturbed flow with the Mach
number M and the lines of separation and attachment,
respectively (see Fig. 1, the flow diagram), are obtained

in [4] for regimes of “free” interaction ϕ <  – ε

[5, 6]. These relations are applicable for calculating the
angular dimensions and position of the region of sepa-
rating the turbulent boundary layer under the model-
problem conditions (a flow in a right dihedral angle,
Fig. 1). They may also be used for similar calculations
in a shock layer at the interaction of a boundary layer
with curvilinear shocks and compression-shock sys-


 π

2
--- 



Institute of Mechanics, Moscow State University, 
Michurinskiœ pr. 1, Moscow, 117192 Russia
1028-3358/02/4703- $22.00 © 20224
tems [4, 7, 8]. The formula for calculating the angle ϕ
has the form [4]

(1)

Here, the quantities with the index k correspond to the
formation of separating the turbulent boundary layer,
and pk = 1.6 is the minimum value of the intensity ps of
the shock C generated by a plate A, which makes an
angle α with the flow direction at infinity (Fig. 1). The
shock is incident at a right angle on the plate B posi-
tioned along the flow direction. The Mach number

ϕ h
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Mnk = 1.23 of the undisturbed-flow velocity component
normal to the wave corresponds to pk .

The values of pk and Mnk agree with data on the for-
mation of a plane separation (see, e.g., [9]). This is one
of the general features of separating the turbulent
boundary layer in flows with various dimensions. Among
these features is the fact that the pressure downstream
from the oblique shock above the region of the developed
separation is equal to the pressure plateau p1. The latter
corresponds to the free-interaction regimes [2, 3].
According to [10], p1 (divided by the pressure p∞ in the
undisturbed flow) can be calculated by the formula

, (2)

which yields adequate results for M ∈  (1.75, 5). For
cone flows with boundary-layer separation, in Eq. (2)
M should be replaced by the Mach number Mns =
Msinϕ(ps) [2–4] of the free-flow velocity normal to the
separation line.

For “restricted” interaction, the indicated property
holds as before, but with other pressure levels [5, 6]. For
M = 3.04 and ε ∈  (36°, 46°), the slope θs of the oblique
shock above the separation region is calculated as

(3)

(4)

Here, the intensity ps(ε) of the incident shock C (Fig. 1)
is such that, according to Eq. (4), the separation line
coincides with the leading edge of the plate B having

the glancing angle ε; the slope  of the shock
above the separation region corresponds to this case
and is calculated using both Eq. (2) (with M replaced by
Mcosε) and the above pressure-plateau property; and
the intensity psm of the incident shock C corresponds to

the maximum possible value of the angle θ =  – ε

(Fig. 1) at restricted interaction for fixed sweep angle ε.
Under certain assumptions, the above data enable us

to calculate the entropy variation induced by passing
the shock λ-configuration of a developed detached
flow. It is impossible to calculate the entropy-flow
increment by introducing a reference volume including
the characteristic region of the disturbed flow produced
by the interaction of the incident shock with the bound-
ary layer (Fig. 1). The first reason is the lack of neces-
sary qualitative data on the flow parameters in a conic
separation zone and in adjacent flow regions. More-
over, it is difficult to simulate three-dimensional mixing
processes in such a way as to provide an efficient calcu-
lation of the entropy increment caused by viscosity and
heat conductivity.
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θs K ε( ) ρs ps ε( )–[ ] θ s
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ps ε( )[ ] ,+=

psm ps ps ε( ),≥ ≥
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Nevertheless, the effect of various processes on
entropy production can be estimated. Let us consider
the entropy increment ∆Sw = Sw – S∞ per unit mass of a
gas (S∞ is the specific entropy in an undisturbed flow)
when one or several shock waves of local supersonic
regions located in the separation-zone outline travel
through the shock λ-configuration and move further
downstream [2–6]. We suppose that this entropy incre-
ment is about the increment in a single incident wave
characterized by the Mach number Mn of the velocity
normal to the wave front:

(5)

Here, cv is the constant-volume specific heat for ideal
gas, and γ is the specific heat ratio.

Let the entropy per unit mass of the gas increase due
to viscosity (in the presence of velocity gradients) by
∆Sµ in a characteristic time of 
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∞

 

, where 

 

L

 

 is the
characteristic dimension of the reference volume in the
flow direction or the length of the experimental model
[2–4] and 

 
U

 
∞ 
 is the velocity magnitude for the undis-

turbed flow. The similar increment determined by heat
conductivity (in the presence of the temperature gradi-
ent) is denoted by 
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. These increments are about
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Here, Re is the Reynolds number calculated on the
length 
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, and Pr is the Prandtl number. We take into
account the foregoing intervals of varying the quanti-
ties appearing in Eqs. (6), as well as the fact that M
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 for a developed detached flow. Then, we conclude
that the entropy increment in compression shocks of the
shock 

 

λ

 

-configuration, i.e., 

 

∆

 

S

 

w

 

 from (5), makes the
greatest contribution to entropy production.

To find the entropy production in compression
shocks situated under the contact-discontinuity surface
emanating from the shock branch line, one should cal-
culate the entropy flow transported in a unit of time by
the gas particles passing through the oblique shock
above the separation region and other downstream
waves.

We assume that the isentropic-deceleration parame-
ters (and, consequently, entropy) on all current surfaces
between the indicated contact-discontinuity surface
and conic separation region (Fig. 1), after the passage
of all discontinuities, are close to (or coincide with) the
corresponding parameters for gas particles passing
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through the oblique shock and breakdown shock wave
in the branch-line vicinity. There is only indirect sup-
port for this speculation. Such an assumption was made
in [2] for particles on the current surface coming to the
attachment line (Fig. 1), and this allowed description of
those observed qualitative changes in the internal flow of
the separation region that are caused, among other fac-
tors, by the transonic transition of the backward flow.

Since the entropy flow downstream of the shock
λ-configuration is generally described by an improper
integral, one should consider the ratio of this flow to the
entropy flow transported in unit time by the correspond-
ing particles of the undisturbed flow. Under the above
assumption, this ratio reduces to the ratio of the values
Sb and S∞ of the specific entropy in the shock branch
line under the contact-discontinuity surface and in the
undisturbed flow, respectively. The reason is that, under
the accepted assumption, the integrals are the mass
flows upstream and downstream of the shock λ-config-
uration and are equal and cancel each other according
to the mass conservation law. In turn, the calculation of
the ratio Sb/S∞ is equivalent to the calculation of the

entropy function , which will be dis-

cussed later.

To calculate gas parameters under the contact-dis-
continuity surface emerging from the shock branch
line, one needs to determine the Mach number Mnb of
the undisturbed-flow velocity component normal to the
branch line. Relations (1), (2) (free interaction) or (3),
(4) (restricted interaction) are inadequate to calculate
Mnb for the given M and α. The quantity Mnb should be
determined from a solution of the corresponding
boundary value problem, since the oblique shock above

s
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the separation region interacts with the incident shock
on the section of the subsonic cone flow downstream of
the shock. The branch-line position is considered to be
little different from the position of the line of the oblique-
shock intersection with the undisturbed shock C incident
on the plate B at a right angle (Fig. 1). This assumption
is strongly supported by experimental results obtained
for a disturbed flow by a special optic method [2–6].
Thus, we accept that Mnb is equal to the Mach number
of the velocity normal to the line of intersection of the
incident shock and the oblique shock specified by
empirical relations (1), (2) or (3), (4).

The dependencies Mnb calculated in such a way are
shown in Fig. 1 for the undisturbed-flow Mach number
M = 3.04 corresponding to approximations (3). Curve 1
and α ∈  [12°, 30°] correspond to the free-interaction
case, whereas curves 2–4 for ε = 46°, 41°, and 36°,
respectively, correspond to the restricted interaction.
The upper circle, triangle, and diamond denote the ori-
gins of respective curves 2–4, which show the solutions
of Eq. (4). The terminal points of these curves corre-
spond to the values of the intensity of the incident
shock C, when its position coincides with the leading

edge of the plate B:  (Fig. 1, the flow dia-

gram). Curves 

 

2

 

–

 

4

 

 differ little from curve 

 

1

 

 for the same

 

p

 

s

 

 value, because the angle between the line of intersec-
tion of the oblique shock with the incident shock and the
plate 

 

B

 

 is small compared with the angle 

 

θ

 

.
The branch-point structure is calculated for a three-

shock configuration, which is supplemented with a cen-
tered rarefaction wave when the corresponding solution
is absent. In this case, the parameters of the breakdown
shock wave at the branch point correspond to the acous-
tic point in the interior polar constructed for the Mach
number of the uniform-flow velocity component down-
stream of the oblique shock above the flow separation
region normal to the branch line.

Figure 1 also shows the data calculated for the pres-
sure 

 

p

 

2

 

 (divided by the pressure 
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∞

 

) downstream from
the shocks at the branch point for (line 

 

5

 

) free and
(lines 
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 corresponding to lines 
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4

 

 for M
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)
restricted interactions. Figure 2 shows the Mach num-
bers on the sphere M

 

n

 

2

 

 and the total velocity M

 

2

 

 for
parameters under the contact discontinuity at the
branch point (curves  1 ,  5  and  2 – 4 ,  6 – 8  correspond to
free and restricted interactions, respectively). The cir-
cles, triangles, and diamonds have the same meaning as
in Fig. 1.

The results obtained for 

 

p

 

2

 

 (Fig. 1) and M

 

2

 

 (Fig. 2)
with empirical relations (1)–(3) point to an unexpected
fact: the total pressure recovery factor 

 

η

 

 in the flow
downstream from the shock 

 

λ

 

-configuration takes close
values for two fundamentally different interaction
regimes if the incident shocks have the same intensity.
The same conclusion also holds for the entropy func-
tion related to the recovery factor as 

 

s

 

 = 

 

η

 

1 – 

 

γ

 

.

θ π
2
--- ε–=
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Let us consider the dependence s(γ, M, pss), where
pss is the arbitrary intensity of the oblique shock rami-
fying in the three-shock configuration in a flow with the
Mach number M. For γ = 1.4 (air), Figs. 3a and 3b show
the curve nets s(γ, M, pss) corresponding to the Mach
numbers M = (1) 1.5, (2) 1.7, (3) 1.9, (4) 2.1, (5) 2.3,
and (6) 2.4 and M = (1) 1.5, (2) 2, (3) 2.5, (4) 3, (5) 3.5,
and (6) 4, respectively. From the right, the curves are

bounded by the values , where p1 is

determined by Eq. (2) and  is the pressure at the
sound point of the interior polar constructed for the
number M. For each M value, the point A indicates the
s value corresponding to the normal shock wave. These
values do not coincide with the ordinates of the curves
s(γ, M, pss) for pss  1, because shock disturbance for
a subsonic flow downstream from it depends irregularly
on the intensity of the interacting oblique shock [11].

As is seen in Fig. 3, for each number M, there is an
oblique shock with an intensity of pss such that, as it
ramifies, the entropy increment for gas particles which
have passed the shock λ-configuration under the con-
tact discontinuity is minimal. Curves 7 in Figs. 3a and
3b correspond to the values of the entropy function for
pss = p1 given by Eq. (2) [10]. Thus, curves 7 give
insight into entropy production in the shock λ-configu-
ration, which is realized in a two-dimensional problem
when a direct shock wave interacts with a turbulent
boundary layer.

The other curves in Fig. 3 correspond to the results
of calculations for the case of separation in a cone flow
(Fig. 1). Here, the net of the curves M = const should be
considered as Mnb = const, and the value of the abscissa
pss should be considered as the intensity of the oblique
shock interacting with the normally incident shock C.
In Fig. 3a, curve 8 corresponds to s(γ, Mnb, p1) for free
interaction. Here, p1 is determined by Eqs. (1) and (2),
where M should be replaced by Mns = Msinϕ (ps). The
Mach number for the undisturbed flow is M = 3.04,
α° ∈  [12.5°, 30°], Mns ∈  [1.74; 2.64], Mnb ∈  [1.51,
2.39]. In Fig. 3a, curves 9–11 correspond to the case of
restricted interaction, when the slope of the oblique
shock is determined by Eq. (3) with ε = 46°, 41°, and
36°, respectively. The use of Eqs. (1) and (2) allows cal-
culations of s(γ, Mnb, p1) for various M values. In
Fig. 3b, the entropy function is shown for M = (8) 3.04,
(9) 4, (10) 5, and (11) 6.

The results presented in Fig. 3 support the hypothesis
that the principle of minimum entropy production [12]
with restriction is realized in the flow formed by the
interaction of shocks with a boundary layer. In this
case, the states of particles at the entry and exit of the
reference volume outside the layers where viscosity
and heat conductivity are substantial should be
accepted as the stationary states.

pss

p1 ps
s

+
2

-----------------=

ps
s
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Indeed, curves 7 in Fig. 3 indicate that entropy pro-
duction in the shock λ-configuration is not minimal. In
order for it to reach a minimum, a considerable increase
of oblique-shock intensity above the separation region
is required. This increase is incompatible with available
experimental data and the physical meaning of the the-
oretical results [13]. In other words, the existing spread
of experimental data [9] for the pressure plateau in the
separation region of a turbulent boundary layer
excludes the values pss = p1 that exceed certain critical
values pcr(M) and are close to the minimum points of
curves 1–6. This is the essence of the foregoing restric-
tion. At the same time, in the case of a turbulent bound-
ary layer, pcr(M) is large enough to allow the shock λ-
configuration to considerably reduce entropy production
in contrast to the case of the separation of a laminar
boundary layer.

For the free interaction of shocks with a turbulent
boundary layer in cone flows, the two-dimensional sep-
aration has the foregoing fundamental properties in the
plane normal to the separation line. However, an addi-
tional degree of freedom, the angle ϕ(ps) calculated
from semiempirical formula (1), arises in the disturbed
flow. It is precisely this degree of freedom combined
with dependence (2) that makes it possible to choose
the value Mnb in such a way that the corresponding p1

Fig. 3.
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value provides the minimum value of s(γ, Mnb, p1)
(Fig. 3b, curves 8–11). For restricted interaction, the
angle of the oblique shock above the separation region
rises linearly with the intensity of incident shock (3),
and Mnb is virtually unaffected (Fig. 1, curves 1–4). In
this case, the disturbed flow loses one degree of freedom
and its equilibrium state becomes further from the state
with minimum entropy production (Fig. 3a, curves 9–
11). However, the corresponding increase in the entropy
function is small, as was indicated above, when the
results for p2 (Fig. 1) and M2 (Fig. 2) were discussed.

Under the assumption that the principle of minimum
entropy production with restriction is realized for the
flows under consideration, it is easy to show that the
cone character of a flow for free interaction is the key
manifestation of this principle. Indeed, if the disturbed
flow were not a cone flow but became a quasi-two-
dimensional flow beginning with a certain local Re
number, the values of the entropy function in the corre-
sponding region of the shock-wave configuration
would lie not in curves 8–11 but in curve 7 (Fig. 3b);
i.e., entropy production would increase. The cone char-
acter of the flow can only be violated in regions of the
laminar–turbulent transition, where pcr(M) changes.
This behavior was observed experimentally.

In summary, we conclude that entropy production
realized in the shock λ-configuration with the restric-
tion on p1 is analogous to the attainment of a boundary
extremum in optimization problems.

Since Eq. (2) [10] is generally one of the available
approximations for the pressure plateau [9], it is
instructive to consider the effect of the p1 value on the
results calculated for the entropy-function. Figures 4a and
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1.0
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Fig. 4.
4b show results for M = 4 and 5, respectively. Curves 7
correspond to the separation in the two-dimensional
problem. Curves 9 and 10 correspond to the respective
lines in Fig. 3b. The dashed lines bound the regions
involving all the pressure plateau values found in various
experiments [9]. It is seen that the results of the calcula-
tions with the possible spread of s(γ, Mnb, p1) values do
not change the above conclusions.

In conclusion, we note that the functional correspond-
ing to entropy production can have no minimum because
of conditions excluding process-parameter values falling
outside the restrictions imposed, as in the above case of
the two-dimensional separation, by the properties of the
local or global structure of a disturbed flow. As a conse-
quence of these restrictive conditions, which are some-
times difficult to reveal, only a certain boundary extre-
mum for the indicated functional is realized.
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In this paper, the stability of steady flows in the sys-
tem of two ideal fluids with different constant densities
is analyzed with allowance for surface tension at their
interface. The analysis is based on the abstract scheme
proposed by Arnol’d [1, 2]. The fluids in this system
can have free boundaries. It is shown that the well-
known Rayleigh–Taylor instability is compensated for
certain vortex flows by vorticity and surface tension.

The method reported in [1, 2] was used in [3] to ana-
lyze the stability of steady flows of an ideal fluid with a
free boundary.

It was shown that, among all fields with the same
vorticity, only the velocity fields for steady flows corre-
spond to the critical points of kinetic energy (as well as
to the critical points of the momentum and angular
momentum functionals if the flow is invariant under
translations and rotations, respectively). If the critical
point is the nondegenerate maximum or minimum for
the connective of integrals at the layer of flows with the
same vorticity, the corresponding flow is stable.

1. THE EULER EQUATIONS FOR FLOWS 
OF AN IDEAL INHOMOGENEOUS FLUID 

WITH A PIECEWISE CONSTANT DENSITY

Let a time-dependent domain D(t) in the three-
dimensional space R3 have the boundary ∂D(t) = S1 ∪
S2(t) and be filled with two ideal fluids with the inter-
face S3(t), where S1, S2(t), and S3(t) at any t consist of
a finite number of connected closed disjoint surfaces.
Here, S1 is a set of rigid walls and S2(t) is the free
boundary. The fluid is subjected to the bulk forces with
potential U(x) and to the capillary forces with the sur-
face tension σ ≥ 0. Then, velocity Vi (x, t ) and pressure
pi (x, t ) in the domain Di (t ) for each t value satisfy the
Euler equation

(1)ρi Vit Vi ∇,( )Vi+( ) grad U pi+( ),   div V i – 0;= =                         
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the kinematic boundary conditions

(2)

and the dynamic boundary conditions

(3)

Here, Hk(x, t) is the average curvature of the surfaces
Sk(t) at the point x [the average curvature is expressed
in terms of the principal radii of curvature by the rela-

tionship H = 2–1(  + )], 

 

χ

 

in

 

 denotes the normal
component of the velocity of a point at the boundary of
domain 

 

D

 

k

 

(

 

t

 

)

 

, and the subscript takes the values 

 

k

 

 = 2. 3.

2. CONFIGURATION SPACE

A flow is referred to as steady flow when domains

 filled with corresponding homogeneous fluids and

velocity fields 

 

, 

 

i

 

 = 1, 2, are independent of time 

 

t

 

.
Now, we define the configuration space 

 

M

 

0

 

 correspond-

ing to the steady flow {

 

( , ): 

 

i

 

 = 1, 2}, the stability
of which will be studied. Let 

 

M

 

 be a manifold formed
by sets of pairs {
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i
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V

 

i

 

): 

 

i

 

 = 1, 2}, where 

 

D

 

i

 

 is a
domain, 
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 is a solenoidal vector field in the domain 
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im
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. We have
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i
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)} 

 

∈

 

 

 

M

 

0

 

 if there exists a set of maps 

 

g

 

i

 

, 

 

i

 

 = 1, 2,
such that

(1) 
 

g
 

i

 
 diffeomorphism of the domain  into 

 
D

 

i

 

conserves a volume element; 

(2) 

 

g

 

i

 

S

 

1

 

 = 

 

S

 

1

 

; 

(3) 

 

g

 

i

 

S

 

 = 

 

gjS, where S ⊂  ∂  ∩ ∂ , i, j = 1, 2.

Vin x t,( ) 0, x Si,∈=

Vin x t,( ) χ in x t,( ), x S3 t( );∈=

pi x t,( ) 2σH x t,( ), x S2 t( ),∈=

pi x t,( ) p j x t,( ) 2σH x t,( ),+=

x S3 t( ), i j, 1 2.,=∈
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1– R2

1–

Di
0

Vi
0
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0 Vi
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0
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0 D j
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3. FUNCTIONALS OF ENERGY, MOMENTUM, 
AND ANGULAR MOMENTUM

Set (1) with boundary conditions (2) and (3) has the
total-energy integral

, (4)

which is the sum of the kinetic energy, potential energy
of the field of bulk forces, and surface energy of capil-
lary forces. For each element {(Di , Vi): i = 1, 2}, Eq. (4)
determines the energy functional. If the rigid walls are
invariant under translations along the OX axis or to
rotations about the OX3 axis, it is possible to define the
momentum functional with respect to the OX1 axis

or the angular momentum functional with respect to the
OX3 axis

respectively.

4. THE INVARIANT FOLIATION ON M0

Generalizing the definition from [3], we refer to ele-
ments {(Di , Vi)} {( , )} as elements with equal
vorticity if there exists a set of maps gi , i = 1, 2, such
that

(1) gi diffeomorphism of the domain Di into  con-
serves a volume element; 

(2) giSi = S1; 
(3) giS = gjS, where S ⊂  ∂Di ∩ ∂Dj , i, j = 1, 2; 
(4) the equality 

is satisfied for any closed path γi in the domain Di.
Thus, we define the invariant Helmholtz–Thomson

foliation on M0, i.e., the partition into the classes of
equivalence: two elements belong to one layer if and
only if their vorticities are equal. The invariance of this
foliation for the aforementioned dynamic system is the
essence of the Helmholtz–Thomson theorem on the
vortex conservation.

Theorem 1. Let Vi(x, t) satisfy Eqs. (1)–(3) in the
domain Di(t) for all t ∈  (–δ and δ) and xi(t) be the path
of a fluid particle. Then,

E
1
2
---ρiVi

2 xd

Di t( )
∫

i 1=

2

∑ U xd

D t( )
∫ σ ds

Sk t( )
∫°

k 2=

3

∑+ +=

L1 ρiVie1 xd

Di

∫
i 1=

2

∑=

K3 ρiVi R e3⋅× x, Rd

D1 t( )
∫

i 1=

2

∑ x1 x2 x3, ,( ),=

Di' Vi'

Di'

Vidx

ri

∫° Vi'dx, i

giri

∫° 1 2,= =

Di 0( ) Vi x 0,( ),( ){ }    and    D i t ( ) V i x t ,( ),( ){ }                                   
have equal vorticities, and the map gi transforms xi(0)
into xi(t). The subscript takes the values i = 1, 2.

5 VARIATIONS OF ELEMENTS 
FROM M0 ALONG THE LAYERS
OF THE INVARIANT FOLIATION

Let solenoidal vector fields fi(x, τ) defined in the
neighborhoods of Di

 

(0)

 

 be such that 
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i
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 is
a solution of the set of differential equations

The following conditions are satisfied: 
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 = 1, 2.

Similar to [3], it can be shown that velocity varia-
tions have the form

 

(5)

(6)

 

Here,  and  are determined by the conditions

 

(7)

(8)

(9)
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 is the Poisson
bracket for the vector fields 

 

f

 

i

 

(

 

x

 

, 0)

 

 and 

 

r

 

i(x); ϕi(x) =

fi(x, τ); and i = 1, 2. In Eqs. (8) and (9),

x ∈  ∂Di(0), and n(giτ x, τ) is the unit vector of the outer
normal to ∂Di(τ) at the point giτx,  i = 1, 2. In Eqs. (5)

and (6),  and  are harmonic functions in the
domain Di , i = 1, 2. At the interfaces between fluid par-
ticles of different densities, the following conditions
should be satisfied:

(10)

where x ∈  ∂Di ∩ ∂Dj and n(x) is the unit vector of the
outer normal to ∂Di at the point x.

dxi

dτ
------- f i x τ,( ), i 1 2.,= =

δVi
∂
τ∂

-----
τ 0=

Vi x τ,( ) f i ri gradα i' gradβi
1,+ +×= =

δ2Vi
1
2
---

∂2

τ∂
-----

τ 0=

Vi x τ,( )=

=  
1
2
--- f i f i ri,{ }× ϕi ri×+[ ] gradα i

2 gradβi
2.+ +

α i
1 α i

2

divδVi divδ2Vi 0,= =

d
dτ
-----

τ 0=

Vi giτ x τ,( )n giτ x τ,( ) 0,=

d2

dτ2
--------

τ 0=

Vi giτ x τ,( )n giτ x τ,( ) 0,=

∂
τ∂

-----
τ 0=

βi
1 βi

2

gradβi
1 x( ) n x( )⋅ gradβ j

1 x( ) n x( ),⋅=

gradβi
2 x( ) n x( )⋅ gradβ j

2 x( ) n x( ),⋅=
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6. VARIATIONAL PRINCIPLES 
FOR THE ENERGY FUNCTIONAL

Theorem 2. Let {( , ): i =1, 2} be a steady flow

of an ideal fluid. Then, {( , ): i =1, 2} is a critical
point of the energy functional E at a layer of the invari-
ant foliation; conversely, any critical point of the
energy functional corresponds to a steady flow. If the
steady flow is invariant under translations along the
OX1 axis, this flow is a critical point of the momentum
functional L1 at this layer. If the steady flow is invariant
under rotations about the OX3 axis, this flow is a criti-
cal point of the angular momentum functional K3 at this
layer.

7. THE SECOND VARIATIONS OF ENERGY, 
MOMENTUM, AND ANGULAR MOMENTUM

Taking into account Theorem 2 and using Eqs. (5)–
(10), we derive the following formulas for the second
variation of the energy functional:

and momentum functional

where e1 is the unit vector of the OX1 axis.

The formula for δ2K3 is similarly derived and has a
similar form.

Di
0 Vi

0

Di
0 Vi

0

2δ2E ρi f i ri + grad α i
1 βi

1+( )×( )2[
Di

∫
i 1=

2

∑=

+ Vi f i f i ri,{ }⋅× ]dx

+ 2ρiVi f i ri grad α i
1 βi

1+( )+×( ) ---


Di∂
∫

i 1=

2

∑

+ grad ρi

Vi
2

2
------ U+ 

  f i⋅ 
 f in

---+ σ ∇ f in f in,( ) 2K 4H2–( ) f in( )2+( ) ds

2δ2L1 ρiei f i f i ri,{ }⋅× xd

Di

∫



i 1=

2

∑=

+ 2ρi f i ri grad α i
1 βi

1+( )+×( ) e1⋅[
Di∂
∫

+ grad ρiVie1( ) f i ] f inds




,
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8. THE STABILITY CRITERION

Theorem 3. If some linear combination of second
variations,

(11)

taken along the Helmholtz layer at the point {( , ):
i =1, 2} corresponding to a steady flow of an ideal fluid
with piecewise constant density is a fixed-sign qua-

dratic form of fi and grad , i = 1, 2, then the steady
flow is stable under small finite perturbations of the

velocity , vortex , and domain boundary ∂ ,
i = 1, 2. 

9. STABILITY OF FLOWS
IN A TWO-LAYER FLUID

Let us consider a plane-parallel flow in a layer
where the straight lines y = 0 and y = a correspond to
rigid walls and the straight line y = y1 (0 < y1 < a) is the
interface between fluid particles with the densities ρ1
and ρ2 and velocity profiles u1(y) and u2(y) in the upper
and lower layers, respectively. We analyze the stability
of this flow under perturbations periodic in x with the
period X.

9.1 Flows in a Rigid-Wall Channel
with High Surface Tension at the Interface 

In this case, the second energy variation has the
form

(12)

For Eq. (12) to be positive definite, the condition 

and the following conditions at the y = y1 interface

should be satisfied. If surface tension increases at the
interface, we will eventually obtain all flows with pro-
files minimizing the energy functional in the situation
when the interface is replaced by a rigid wall.

µiδ
2E µ2δ

2L1 µ3δ
2K3,+ +
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0 Vi

0
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1

Vi
0 ri

0 Di
0

2δ2E ρi δ V0( )2 ui

ui"
----- δri

0( )2
+ xd yd

Di

∫
i 1=

2

∑=

+ 2ρ1u1 y1( )δV11
0 f 12 2ρ2u2 y1( )δV21

0 f 22–

y y1=

∫

+
∂
y∂

----- ρ1

u1
2

2
----- 

  f 12( )2 ∂
y∂

----- ρ2

u2
2

2
----- 

  f 22( )2–

+ σ
∂ f 12

x∂
---------- 

 
2 ∂ f 22

x∂
---------- 

 
2

+ 
  dx.

u1 y( )
u1" y( )
------------- 0, y 0 y1,[ ] ,

u2 y( )
u2" y( )
------------- 0, y y1 a,[ ]∈>∈>

σ C X; ui y1( ) ui" y1( ) ρi i 1 2,=, , ,( )>
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9.2. Flows in a Rigid-Wall Channel
with High Surface Tension at the Interface 

Let us set µ1 = 2, µ2 = –2c, and µ3 = 0 in Eq. (11)
assuming that u1(y1) = u2(y1) = c. Then, we have the
square form 

(13)

which is positive definite if each velocity profile satis-
fied the conditions

Note that the stability conditions for low surface ten-
sion are satisfied only when the velocity is continuous

2δ2E 2cδ2L1– ρi δVi
0( )2

---

D j

∫
i 1=

2

∑=

+
ui y( ) c–

ui' y( )
------------------- δi

0( )2
dxdy σ

∂ f 12

∂x
---------- 

 
2 ∂ f 22

∂x
---------- 

 
2

+ x,d

y y1=

∫+

ui y( ) c–

ui" y( )
-------------------- 0, i> 1 2.,=
at the interface. Thus, bulk forces that can stabilize a
flow with a free boundary [3] cannot stabilize a flow
with an interface.
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1. The universally integrable problem of three vorti-
ces [1, 4–6] has attracted the interest of researchers for
over one hundred years [6]. This is not associated only
with the vortex problem in itself but also has numerous
analogies in the mechanics of solids, astrophysics, the
dynamics of superfluid helium, and mathematical biol-
ogy [1, 5]. A new peak of interest in this problem was
stimulated by the discovery of so-called three-polar
structures [13], i.e., symmetric triples of vortices
(−κ, 2κ, –κ) and by later observation of their spontane-
ous origin from chaos [12]. In most studies [1, 4–7, 10,
12–15], the dynamics of vortices was analyzed in the
framework of the homogeneous-fluid model. At the
same time, the geophysical problems (some of them
were discussed in [2, 3, 8, 11]) are characterized by
noticeable density stratification. In this paper, we ana-
lyze the problem of three vortices that exist in a two-
layer fluid and have zero total intensity.

2. We take the following assumptions: (i) the upper
and lower layers have equal thickness values (h1 = h2 =
1/2) and the densities ρ1 and ρ2 in the layers satisfy the
condition ∆ρ = ρ2 – ρ1 > 0; and (ii) one vortex with an

intensity  corresponds to the upper layer, whereas

two vortices with intensities  and  are located in
the lower layer. The complex form of equations of
motion for three discrete vortices in two immiscible
fluid layers rotating with a constant angular velocity
(in the presence of a hard cap on the upper surface) is

(1)

κ1
1

κ2
1 κ2

2

dz1
1

dt
-------

1
2πi
--------

κ2
j

z2
j z1

1–
-------------- 1 γ z2

j z1
1– K1 γ z2

j z1
1–( )–[ ] ,

j 1=

2

∑=
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(2)

Here,  =  + i  is the complex coordinate of the
mth vortex in the nth layer; the overbar implies complex
conjugation; the parameter γ is inversely proportional
to the Rossby internal deformation radius

Kk is the kth-order modified Bessel function of the sec-
ond kind; g is the acceleration of gravity; and f is the
Coriolis parameter equal to the double angular velocity
of the fluid-plane rotation about a normal to this plane.
According to assumption (ii) above, the variable m in
Eq. (2) takes the values 1 and 2. Thus, Eqs. (1), (2) are
the set of ordinary differential equations that should be
complemented by initial conditions for the original
coordinates of all three vortices.

The set of Eqs. (1), (2) can be represented in the
standard Hamiltonian form with the Hamiltonian

(3)

where  = |  – |. In addition to Hamiltonian (3),
the original set has the first integrals for the momenta

and the angular momentum

whose values are evidently determined by the initial
conditions.

dz2
m

dt
-------- = 

1
2πi
--------
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1
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1 z2

m–
--------------- 1 γ z1

1 z2
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1 z2
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
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3 m–
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3 m– z2
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3 m– z2
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


.

zn
m xn

m yn
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g∆ρh1h2

ρ0 f 2 h1 h2+( )
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H
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12ln K0 γd22
12( )–[ ]{–=

+ κ1
1κ2

1 d21
11ln K0 γd21

11( )+[ ] κ 1
1κ2

2 d21
21ln K0 γd21

21( )+[ ] } ,+

dkl
mn zl

n zk
m

P κ1
1z1

1 κ2
1z2

1 κ2
2z2

2, P+ + κ1
1z1

1 κ2
1z2

1 κ2
2z2

2+ += =
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t2 t3
t1

{1}
{2}{2}

{3}

e1

e2

h

(a) (b)

Fig. 1. (a) Phase portrait of the relative motion for a three-vortex system in a two-layer fluid under conditions (4) and P = 1.7. Thick
lines are separatrices that separate the regions of different types {1}, {2}, and {3} of interactions between the vortices. The dark
region is the nonphysical region of the phase plane (axes of trilinear coordinates are also shown). (b) The same as in Fig. 1a with
the singular points indicated. Squares and circles on the boundary of the physical region correspond to the coordinates of the rep-
resentation points in the phase space for the original configurations of the vortices in the numerical calculations presented in Figs. 2
and 3, respectively.
It is easy to verify that the invariants H, M, and
P ·  are in involution, and therefore set (1), (2) always
has a regular solution [1, 4].

In what follows, we assume that the total intensity of
vortices is zero and

(4)

Thus, the upper-layer vortex is attributed to the anticy-
clonic vorticity compensated by the two cyclones in the
lower layer.

3. We now assume that P ≠ 0. In this case, the rela-
tive motion can be analyzed in the trilinear coordinates
[1, 7, 15]

which possess the obvious property

In the plane specified by the coordinates t1, t2, t3 (whose
meaning is illustrated in Fig. 1a), it is necessary to sep-
arate so-called physical regions where the triangle ine-
quality is satisfied. Under condition (4), this implies
that

P

κ1
1 2κ , κ2

1– κ2
2 κ= 0.>= =

t1

3κ2
1κ2

2 d22
21( )2

P2
-----------------------------, t2– –

3κ1
1κ2

2 d21
21( )2

P2
-----------------------------,= =

t3

3κ1
1κ2

1 d21
11( )2

P2
-----------------------------,–=

t1 t2 t3+ + 3.=

12t1 t2 t3–( )2 0 for t1 0, t2 0, t3 0.≥≥<≤+
In the trilinear coordinates, the isolines of Hamilto-
nian (3) coincide with those of the function

In essence, these isolines are the phase trajectories for
the relative motion of the three-vortex system under
consideration and are shown in Fig. 1 for P = 1.7.

The basic general properties of the phase curves are
the following.

(I) All the phase curves start and finish at the physi-
cal-region boundary. Therefore, all relative motions of
vortices are periodical, and vortices pass through two
collinear positions during a period. From this, it follows
that exhaustive information on possible motions of the
system of vortices can be acquired from the initial con-
dition for three vortices being located in the same
straight line.

(II) Possible motions for the system of three vortices
can be classified into three qualitatively different types
according to the initial collinear configuration of vorti-
ces.

(III) The phase portrait can have singular points of
elliptic (e) and hyperbolic (h) types (see Fig. 1b).

(IV) The phase curves are symmetric about the
straight line t2 = t3 , because the variables t2 and t3 are
proportional to the distances squared between the anti-
cyclone of the upper layer and equivalent (with each
other) cyclones of the lower layer.

W t1 t2 t3, ,( )
t1–

t2t3
--------ln=

– 2 K0 γ
t1P2–

3κ2
-------------

 
 
 

2K0 γ
t2P2

6κ2
----------

 
 
 

2K0 γ
t3P2

6κ2
----------

 
 
 

+ + .
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The phase portraits (we present here only one exam-
ple for a particular value of the system momentum) pro-
vide total information on the relative motion of the sys-
tem of vortices. However, it is known that this analysis
does not reveal all characteristic properties of the abso-
lute motion of vortices [5]. Below, the basic features of
the vortices are analyzed on the basis of numerical cal-
culations. We also present the trajectories of vortices,
indicating (by markers) their synchronous collinear
positions additionally marked by segments passing
through these positions. Without loss of generality, the
original positions of vortices are attributed to the x-axis.

We take  =  = 0 (one of the lower-layer vortices is

exactly under the upper-layer vortex) and  ≠ 0 as the
simplest (reference) original positions of the vortices

, , and , respectively. In this case, the momen-
tum P of the system of vortices is completely deter-

mined by the initial vortex position . At the same
time, the sets of coordinates

(5)

conserve the given P value for all x0 . An arbitrary set of
numerical experiments with initial conditions (5) for

fixed  corresponds to a specific phase portrait (e.g.,
that presented in Fig. 1). In what follows, we also use

the notation X0 = γx0 and  = γ  along with x0 and

.

The trajectories and vortices (for their collinear
positions) are shown in Figs. 2 and 3 by solid lines and

triangles for the upper-layer vortex , by long dashes

and circles for , and by short dashes and squares for

. The size of a marker is proportional to the intensity
of the corresponding vortex. We imply the upward
translational motion everywhere. In figure captions, the
notation t = (t1, t2, t3) is used.

4. Figure 2 shows characteristic examples of
motions for each of three types.

For type {1} (see Fig. 2a), the interaction between
the lower-layer vortices is predominant. The system of
vortices moves in the direction perpendicular to the x-
axis. In this case, the anticyclonic vortex of the upper
layer undergoes small periodic deviations from the rec-
tilinear motion. The lower-layer vortices revolve in the
cyclonic direction around a certain center moving
translationally so that the vortices change their places
in the collinear positions for each half-period.

Motions of type {2} are characterized by dominat-
ing interactions between the upper-layer vortex and one
of the lower-layer vortices, which was initially located
closer to the upper-layer vortex.
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According to Fig. 2c, solutions of type {3} are fea-
tured by anticyclonic revolutions of all three vortices.
This is caused by the defining role of the upper-layer
vortex.

The cyclicity periods for vortices in the upper and
lower layers relate to each other as 1 : 2 for motions of
types {1} and {3}, whereas these periods coincide in
the case of type {2}. This difference is explained by the
fact that each phase curve of types {1} and {3} is mirror
symmetric, whereas the curve of type {2} is asymmetric.

(a) (b) (c)

Fig. 2. Trajectories of absolute motion for P = 1.7. The ini-

tial conditions are specified by Eqs. (5) for  =  = 0;

 = 1.7; X0 = (a) –0.3, (b) –0.2, (c) 1.1; and (a) t =
(−1.2561, 4.0692, 0.1869), (b) (–1.7543, 4.6713, 0.0830),
and (c) (–15.7889, 16.2768, 2.5121).

X1
1

X2
1

X2
2

(a) (b) (c)

Fig. 3. The same as in Fig. 2, but for (a) X0 = –0.6,
(b) 0.2062, and (c) 0.9611 and (a) t = (–0.2595, 2.5121,
0.7474), (b) (–4.6321, 7.5438, 0.0883), (c) (–13.6197,
14.7020, 1.9177).
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The examples of phase curves presented in Fig. 2
correspond to the conditions when they pass far from
the separatrices and singular points. However, the sta-
tionary solutions corresponding to singular points are
of the most interest.

In the vicinity of the singular point e1 , the lower-
layer vortices approach each other at an infinitesimal
distance and should orbit a common center with a (the-
oretically) infinite angular velocity. In this case, inter-
layer interaction is manifested almost exclusively as the
linear displacement of the entire configuration. In
essence, the limiting-case structure is equivalent to a
two-layer pair of vortices of intensities –2κ and 2κ in
the upper and lower layers, respectively. The motion
with characteristics close to those described above is

exemplified in Fig. 3a, where γ  = 0.5 is not small.
(The lower-layer vortices undergo 66 revolutions dur-
ing the calculation time; to avoid overloading, we mark
in the figure only the original and final collinear posi-
tions of the vortices.) With a decrease in the original
distance between the lower-layer vortices, the pattern
becomes less instructive. For this reason, the results of
corresponding calculations are not presented.

We now consider a point e2 belonging to the bound-
ary of the physical region (see Fig. 1b). As is known [1],
the collinear three-vortex configurations corresponding
to such singular points should revolve around the vor-
ticity center. The presence of these elliptic points under
the condition of the zero total intensity of the system is
a remarkable (and surprising) property of the two-layer
configuration. Since, in this case, the vorticity center
moves to an infinitely far point, the collinear configura-
tion of the three vortices, as a pair of vortices, should
move uniformly and rectilinearly in the direction nor-
mal to the straight line in which vortices lie (a corre-
sponding example is shown in Fig. 3b). This configura-
tion, naturally referred to as a triton, can be the simplest
example of the vortex structures referred to as a modon
with a raider [9].

A hyperbolic point h apparently corresponds to the
unstable solution associated with the translationally
moving configuration in the form of an isosceles trian-
gle (t2 = t3). This configuration is illustrated in Fig. 3c
exhibiting trajectories of the vortex-structure motion
for which the representation point in the phase plane is
originally located at the boundary of the physical
region near the separatrix. The markers (positions of
vortices) and segments connecting them in this figure
indicate not only collinear but also other synchronous
intermediate vortex configurations for time intervals
during which the representation point resides in the
vicinity of the intersection point h of the separatrices.
These unstable configurations obviously cannot be
long-lived. As is seen in this figure, they periodically
rearrange with alternation of the mutual positions of the
lower-layer vortices after passing through collinear
states.

d22
12
5. The general conditions for the existence of these
stationary solutions for an arbitrary momentum value
of the system are the following.

5.1. Triangular configuration. From Eqs. (1) and
(2), it is easy to derive the condition for the existence of
the rectilinear motion of this vortex structure:

(6)

with L = γl, where l is the length of the lateral side of
the isosceles triangle, as well as the expression for the
velocity of this structure in the y direction parallel to the
base of the triangle:

(7)

Equation (6) can be treated as a dispersion equation
relating the length of the triangle lateral side to the
angle ϕ adjacent the base. Equation (6) has a (unique)
solution L(ϕ) only in the interval |ϕ| < π/3; i.e., the tri-
angle cannot be equilateral (more exactly, the limiting
value |ϕ| = π/3 is an asymptotic one as L  ∞ and
|V |  0).1 The velocity of the triangular structure
coincides with that of a certain hypothetical pair con-
sisting of vortices located in different layers, having
intensities –2κ and 2κ, and spaced by the distance
equal to the height of the corresponding isosceles trian-
gle. Figure 4a shows the dispersion curve L(ϕ) and V(ϕ)
(7). For ϕ = 0, we have V = 0, and L takes the value L0 =
0.8602 at which the degenerate (to the segment) sym-
metric three-vortex configuration is stationary. The
extremal values of V are attained for |ϕ| = 0.82π/3 and
L = 1.874.

5.2. Collinear configuration. We now denote as A

and B, respectively, the quantities  and  that are
proportional to the original distances between the

upper-layer vortex (for  = 0) and its partners from
the lower layer. From equations of motion (1), (2), we
obtain the following conditions for the uniform motion
of the entire configuration as a rigid body along the
y axis:

(8)

This equality can also be treated as a dispersion equa-
tion relating the geometric parameters of the solutions
in the form of the translational collinear configurations.
The translational velocity is expressed as

(9)

1 In the homogeneous fluid [10], a similar stationary state is the
configuration in the form of an equilateral triangle with an arbi-
trary side length.
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Figure 4b demonstrates dispersion curve (8) and
vortex-structure velocity (9). In the asymptotic limit as
A  0 or B  0, i.e., when the coordinates of a
lower-layer vortex coincide with those of the upper-layer
vortex, we have, respectively, B  ∞ and A  ∞.
This implies that the second vortex in the lower layer is
infinitely far away. The limiting velocity of the config-
uration also tends to zero but takes extremal values for
A/B and B/A = 0.0075. The condition A < B (A > B) leads
to V < 0 (V > 0). For A = B, the velocity reverses its sign.

In this case, the conditions  =  = L0 are satisfied
with the same value of L0 , which is observed when the
triangular configuration with the symmetric location of
the cyclonic vortices degenerates with respect to the
upper-layer anticyclonic vortex (see Section 5.1).

6. In conclusion, we emphasize that, in the present
study, modes intrinsic to the problem of a system of
three vortices in a two-layer rotating fluid with layers of
identical thickness values are classified for the case

X2
1 X2

2

5

4

3

2

1

–1–π/2 –π/3 –π/3 –π/2

L(ϕ)

V(ϕ)

(a)

(b)5

4

3

2

1

–1

0 1 2 3 4 5

B(A)

V(A)

Fig. 4. Geometry parameters characterizing stationary solu-
tions for the (a) triangular and (b) collinear configurations.
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when the total intensity of the system is zero and the
lower-layer vortices are equivalent to each other. New
stationary solutions are obtained, and general condi-
tions for their existence are found.
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Taking friction forces into account, we investigate
the interaction between an elliptic-paraboloid die and a
layer. The investigation concerns the effects of the Cou-
lomb friction coefficient, die shape, elastic constants,
and layer thickness on contact stresses, the dependence
of the vertical die displacement on a pressing force, the
dimensions and shape of the contact area, and the dis-
placement of layer-surface points outside the contact
area. It is discovered that the contact-area shape and
displacements of the surface points are qualitatively
different at small and large values of the Poisson ratio.

We investigate the case of the limit equilibrium.
Quasistatic die motion along the layer surface can be
considered in a moving coordinate system in a similar
way. The integral equation derived for the problem is
solved by the method of nonlinear boundary integral
equations [1, 2].

Friction forces were taken into account in two-
dimensional contact problems [3, 4] and three-dimen-
sional ones for a half-space [5–7] and a wedge [8, 9].

Let a rigid die lying on the layer surface z = h be sub-
jected to the normal force P and tangential force T
directed along the Ox-axis of the Cartesian coordinate
system (x, y, z) with the origin on the lower surface of
the layer. Under the assumptions that the friction forces
under the die are parallel to the force T, the layer surface
z = 0 is rigidly fixed, and the die is in the limit-equilib-
rium state and does not rotate, we arrive at the boundary
value problem presented by Lamé equations and the
boundary conditions

(1)

Here, u, ν, and w are the components of the displace-
ment vector along the x-, y-, and z-axes, respectively;

w δ f x y,( ), τ xz– µσz, τ yz 0,== =

z h, x y,( ) Ω,∈=

σz τ xz τ yz 0, z h, x y,( ) Ω,∉= = = =

u ν w 0, z 0.= = = =

Institute of Mechanics and Applied Mathematics, 
Rostov State University, pr. Stachki 200/1, Rostov-on-Don, 
344104 Russia
1028-3358/02/4703- $22.00 © 20238
σz , τxz , and τyz are the components of the stress tensor;
µ is the friction coefficient; δ is the die displacement;
f(x, y) is the shape of the die base; and Ω is the contact
area.

In addition, we suppose the conditions of statics 

Representing the components of the displacement
vector in the layer as double Fourier transforms in the
coordinates x and y, we obtain the following integral
equation for the unknown contact pressure q(x, y) under
the die:

(2)

where G is the modulus of elasticity in shear and ν is
the Poisson ratio. The kernel k(t, τ) can be represented
as the difference of two terms

(3)

Upon simplifying, these terms take the form

(4)

(5)

P σz x y 0, ,( ) Ω, Td∫
Ω
∫ µP.= =

q η ξ,( )k x η– y ξ–,( ) η ξd  d∫
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∫ 2πG
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k t τ,( ) k1 t τ,( ) εk2 t τ,( ), ε–
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2 2ν–
------------------------.= =
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t2 τ2+
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where Jn(x) (n = 0, 1) are the Bessel functions, γ =

, and κ = 3 – 4ν.

We consider an elliptic-paraboloid die elongated
along the y-axis. Then the function f(x, y) on the right-
hand side of Eq. (2) takes the form

where R1 and R2 are the radii of die curvature in the
planes y = 0 and x = 0, respectively.

It should be noted that integral equation (2) involv-
ing only the kernel k1(t, τ) corresponds to the contact
problem of the frictionless indentation of a die into a
layer [10].

Integral equation (2) with kernels (4) and (5) needs
to be complemented not only by the conditions of stat-
ics but also by a condition for finding the contact area.
This condition will be formulated and realized when
solving the equation.

When the layer thickness is h  ∞, integral terms
in kernels (4) and (5) vanish and Eq. (2) coincides with
the integral equation of the similar half-space problem
considered in [5].

Integral equations (2) are solved here by the method
of nonlinear boundary conditions [1, 2]. This method
enables us to simultaneously find the distribution func-
tion of contact stresses, the contact area, and the dis-
placements of the layer-surface points outside the die in
a certain region containing the contact area.

Omitting the details of the method, we note that it
was previously applied to the problems where the die
displacement was given, whereas other quantities
including forces on the die were sought [1, 2, 8, 9, 11].
Here, we use a more natural modification of the method
in which forces applied to the die are given, whereas die
displacement is determined by solving the problem.

Certain results of the numerical calculations are pre-
sented below. The accuracy of the results was checked
by comparing them for different numbers of discretiza-
tion nodes of the nonlinear integral equation that was
taken from [1, 2], equivalent to Eq. (2), and involving a
condition for determining the contact area. In addition,
the results were compared with the known particular
cases for µ = 0 [10, 12].

Our numerical calculations show that the die dis-
placement δ at a given force P is almost independent of
the friction coefficient µ but depends strongly on the
Poisson ratio ν and other parameters. Table 1 presents
the die displacement δ* = δ × 10–3 calculated at P = 107,
µ = 0.9, R1 = R2 = 1.0, and indicated values of the Pois-
son ratio ν, shear modulus G, and layer thickness h. We
note that variations in P and G such that P/G = const
leave the results unchanged. Here and below, dimen-
sional quantities are presented in the International Sys-
tem of Units.

α2 β2+

f x y,( ) x2

2R1
---------

y2

2R2
---------, R2 R1,≥+=
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According to Table 1, the die displacement δ calcu-
lated at the constant force P decreases as the Poisson
ratio ν increases or the layer thickness h decreases.

Table 1

G × 10–10 ν
h 

0.5 0.2 0.1 0.05 0.02

7.0 0.1 1.29 1.21 1.09 0.907 0.617

0.3 1.08 1.01 0.912 0.750 0.504

0.4 0.967 0.906 0.811 0.657 0.430

1.0 0.1 4.52 4.04 3.36 2.55 1.65

0.3 3.79 3.37 2.79 2.10 1.34

0.4 3.39 2.99 2.45 1.80 1.10

Table 2

P ×10–7 1.0 2.0 3.0 4.0 5.0

δ*(h = 0.1) 0.910 1.37 1.73 2.03 2.31

δ*(h = 0.02) 0.50 0.708 0.864 1.00 1.12

P × 10–7 6.0 7.0 8.0 9.0 10.0

δ*(h = 0.1) 2.55 2.78 2.99 3.19 3.37

δ*(h = 0.02) 1.22 1.32 1.41 1.49 1.58

2a

–2a 2a
–1.0

–0.5

0
x

zy

–1.0

–0.5

0

–2a 2a

x

z y

(a)

(b)

Fig. 1. The deformed surface z = h in the vicinity of the die
at |x| ≤ 2a, 0 ≤ y ≤ 2a for (a) ν = 0.1 and (b) 0.4.

2a
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Table 2 presents the δ* values at ν = 0.3, G =
7 × 1010, µ = 0.9, R1 = R2 = 1.0, and indicated values of
P and h. At other values µ < 1.0 and identical values of
the other parameters, the results are the same.

We numerically investigated the vertical displace-
ments of the points of the layer surface z = h and the
contact-area shape. These characteristics also depend
strongly on the layer thickness h, the coefficient of fric-
tion µ, and the Poisson ratio ν. The dependence on the
last parameter is the strongest. For Poisson ratios close
to zero, layer-surface points in the vicinity of the die at
x > 0 are less displaced in the direction of the force P
than those at x < 0. For Poisson ratios close to 0.5, these
displacements at x > 0 are larger than those at x < 0.
This difference increases as the relative layer thickness
h* = h/D decreases or the friction coefficient µ
increases. In addition, the contact area is displaced in
the direction of the force T at small ν and in the oppo-
site direction at large ν, in contrast to the case of µ = 0.
The calculations also show that, at small h*, the layer

Fig. 2. Contact area and stress contours in it for (a) ν = 0.1
and (b) 0.4.
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surface bulges either at x > 0 (small ν) or at x < 0
(ν close to 0.5). This behavior is illustrated in Figs. 1
and 2.

Figure 1 shows the deformed surfaces in the vicinity
of the die and under it at P = 107, G = 7 × 1010, µ = 0.9,
h = 0.02, and R1 = R2 = 1. These surfaces correspond to

the function w*(x, y) = –  at |x | ≤ 2a, 0 ≤ y ≤

2a for (a) ν = 0.1 (a = 3.51) and (b) 0.4 (a = 2.93).
For the same parameter values, Fig. 2 shows (curve 0)

the contact-area boundary and (1–6) contours of the

function q* , =  describing the

dimensionless contact stresses q(x, y) at y ≥ 0. The
curves numbered by n correspond to the values q* =
0.1n. Maxima of the quantity q*(x ', y ') in the contact
area are  = q*(0.15, 0) = 0.597 and  =
q*(−0.1, 0) = 0.661, respectively. The point coordi-
nates x' are presented here with an absolute error less
than or equal to 0.05a. It is noteworthy that the point of
the maximum contact stresses is displaced in the direc-
tion of the force T at ν = 0.1 and in the opposite direc-
tion at ν = 0.4, in contrast to the case of µ = 0.

REFERENCES
1. B. A. Galanov, Prikl. Mat. Mekh. 49, 627 (1985).
2. B. A. Galanov, Dokl. Akad. Nauk SSSR 296, 812 (1987)

[Sov. Phys. Dokl. 32, 857 (1987)].
3. L. A. Galin, The Contact Problems in the Theory of Elas-

ticity and Viscoelasticity (Nauka, Moscow, 1980).
4. V. M. Aleksandrov, Prikl. Mat. Mekh. 34, 246 (1970).
5. L. A. Galin and I. G. Goryacheva, Prikl. Mat. Mekh. 46,

1016 (1982).
6. A. S. Kravchuk, Trenie Iznos 2, 589 (1981).
7. A. A. Spektor, Prikl. Mat. Mekh. 51, 76 (1987).
8. D. A. Pozharskiœ, Dokl. Akad. Nauk 372, 333 (2000)

[Dokl. Phys. 45, 236 (2000)].
9. D. A. Pozharskiœ, Prikl. Mat. Mekh. 64, 151 (2000).

10. I. I. Vorovich, V. M. Aleksandrov, and V. A. Babeshko,
Nonclassical Mixed Problems in the Theory of Elasticity
(Nauka, Moscow, 1974).

11. I. A. Lubyagin, D. A. Pozharskiœ, and M. I. Chebakov,
Prikl. Mat. Mekh. 56, 286 (1992).

12. A. I. Lur’e, The Theory of Elasticity (Nauka, Moscow,
1970).

Translated by Yu. Verevochkin

w x y 0, ,( )
δ

-----------------------

x
a
---

 y
a
---

 q x y,( ) R2

πG 2δ
---------------------------

qmax* qmax*
DOKLADY PHYSICS      Vol. 47      No. 3      2002



  

Doklady Physics, Vol. 47, No. 3, 2002, pp. 241–244. Translated from Doklady Akademii Nauk, Vol. 383, No. 2, 2002, pp. 198–201.
Original Russian Text Copyright © 2002 by Belousov.

          

MECHANICS
New Efficient Methods for Controlling Robots 
through the Internet

I. R. Belousov
Presented by Academician D.E. Okhotsimskiœ October 18, 2001

Received October 22, 2001
The remote control of robots in the Internet medium
is a new promising trend in scientific research, which
has important practical importance. However, the
progress in this field is restrained by limitations on the
data-transmission rate intrinsic to the Internet. The
principal problem is the presence of substantial arbi-
trary time delays in the communication channel. This
fact hampers the realization of Internet control and, in
the majority of cases, makes it impossible.

The author has developed several new original
methods for the efficient control of robots through the
Internet. The methods proposed are based on employ-
ing a virtual control medium involving a three-dimen-
sional model of a robot with its workspace and repre-
senting the robot’s current state. The use of control
models for both a robot and its operation medium pro-
vides a fast response in the system being controlled to
the actions of an operator, which minimizes the trans-
mitted-data flow and promotes efficient operation even
in the case of substantial delays in the communication
channel. A language and a medium for the remote pro-
gramming of robots through the Internet are developed.
The efficiency of the methods proposed was corrobo-
rated in numerous experiments with Internet-controlled
manipulation robots and mobile robots in which com-
mon-use communication channels were employed. The
methods developed can be applied to a wide class of
systems for the remote control of robots with delays
inherent in communication channels. We also present
here certain experimental data and discuss domains for
possible application of the results of this study.

1. Significant progress achieved in recent years in
the field of computer and Internet technologies pro-
vided a fast quantitative and qualitative rise in the appli-
cation of the Internet robotics. The applications of net-
work robotics, which became quite important in practice,
are remote education and remote controlled automated
production, in particular, in extremal media [1]. How-
ever, currently developed systems with robot control
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based on transmitting video images has certain disad-
vantages, such as substantial delays in the feedback
channel and the control medium that is inconvenient
for an operator. In addition to the considerable delays
while transmitting video images, their size and quality
can hamper the estimate of robot positions and distances
between objects in the workspace for an operator.

To overcome these disadvantages, the author has
developed new methods for improving the efficiency of
controlling robots through the Internet [2–5]. These
methods are based on using virtual three-dimensional
models of a robot and its workspace in the online (real-
time) regime. The idea of this approach consists in the
fact that, instead of cumbersome video images, the
operator receives a minimum set of parameters unam-
biguously defining the state of a robot and its operation
medium (the set of generalized coordinates of the robot
and of an object interacting with this robot). Then, the
operation scene is visualized by methods of computer
graphics (Fig. 1). This approach makes it possible not
only to minimize the delays in the system response to
the control actions (by minimizing the data transmit-
ted), but also to provide a comfortable controlling
medium for the operator (with the possibility of chang-
ing the direction of view, magnifying details of the
scene, and using half-transparent images). Application
of the computer simulation of the robot and its work-
space for the Internet control provided the possibility of
an efficient control even for low transmission rates
(0.1–0.5 kbyte/s) in the case of employing commonly
used communication channels. The corresponding
graphic module is realized in the Java3D language.

To minimize the data flow between a server and a
client, we developed a special exchange algorithm.
Every message involves an instruction code and a set of
its associated parameters (integers). For visualizing the
robot and the object in their current state, it is necessary
to transmit only 80 bytes. This provides a rate of
renewal for the three-dimensional image at the opera-
tion scene on the order of 12 times per second for the
transmission rate of 1 kbyte/s. At the same time, in the
case of using video images, the scene renewal takes
place with a frequency lower than 1 frame per 5 s.
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Fig. 1. Virtual medium for the robot control.
For this reason, a unique solution for efficient Inter-
net robot control through commonly used communica-
tion channels is operation with the three-dimensional
computer model of a robot and its workspace. This
makes it possible to reduce time delays to an acceptable
level and to provide a fast response of the system to
operator actions.

2. We have developed an Rcl language (Robot-con-
trol language) for the remote programming of robots
through the Internet. This language involves instruc-
tions setting motion and positions of a robot (points in
its workspace) and service commands.

Motion-setting instructions enable an operator to
direct the robot grip to points determined a priori, to
displace the grip at a desired distance from a current
position, to rotate it with respect to a chosen axis, etc.

Robot-position instructions make it possible to
determine and to change points in the robot workspace.

Service instructions enable a user to control a grip,
to calibrate a robot, and also to store on a disk and to
load programs and data needed in the course of the cur-
rent control session.

An important feature of the Rcl language developed
for the remote programming of robots is the possibility
to program operations in the on-line regime, i.e., in the
current robot-control session. Moreover, it turns out to
be possible to execute both individual commands and
their arbitrary combinations, including those using con-
trol constructions in the Rcl language (cycles, condi-
tions, and procedures). For example, the following
fragment of the program makes it possible to determine
two points in the robot workspace and to organize a dis-
placement of the grip along the given segment:

Rcl > here A
Rcl > moves 100 200 300
Rcl > here B
Rcl > proc line {n} { 

global A; global B;
for {set i 0} {$i < $n} {incr i} {

gos A; gos B; }
}

Rcl > line 3.
The use of the remote-programming medium

enabled us to essentially improve the efficiency of exe-
cuting repeated actions by an operator. We developed
an extension of the Rcl language for programming the
motion of mobile robots.

3. Currently, the methods described have no analogs
among operating systems. On the basis of these meth-
ods, in the Keldysh Institute of Applied Mathematics
(KIAM), Russian Academy of Sciences, systems for
controlling the RM-01 manipulation robot, the CRS
manipulation robot, and the Nomadic XR 4000 mobile
robot through the Internet were developed (together
with De Montfort University, England; Nantes Institute
of Cybernetics [IRCCyN], France; and the Laboratory
of Analysis of Systems [LAAS-CNRS], Toulouse,
France, respectively).

The purpose of the experiments with the RM-01
robot (Fig. 2) was gripping a rod on the bifilar suspen-
sion using a virtual control medium. We performed sev-
eral experimental runs when the robot established in the
KIAM was controlled through the common-use net-
DOKLADY PHYSICS      Vol. 47      No. 3      2002
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work from various institutions in Moscow, England,
France, and South Korea [2–4].

Potentialities of the Internet-control system for the
RM-01 robot were shown during the Day of the Faculty
of Mechanics and Mathematics in Moscow State Uni-
versity (MSU). The robot was controlled by students
from the MSU main building (at a distance of approxi-
mately 25 km).

The remote control of the RM-01 robot through the
common-use network was successfully demonstrated
at the IEEE International Conference on Robotics and
Automation ICRA’2001 (Seoul, South Korea, May,
2001). The robot was controlled from the conference
hall at a distance of over 10 000 km. Using the virtual
controlling medium, an object was gripped in the real-
time scale, although a delay in the transmission of
video images reached more than 30 s.

Similar experiments were performed with the CRS
manipulation robot that gripped parallelepiped-shaped
objects [4]. The remote-control system for the CRS
robot was demonstrated at the Exposition of digital
technologies in Vandee province (Montegue, France).
Access to the robot situated at a distance of 50 km from
the exposition hall was realized through a conventional
telephone line (34800 kbyte/s) and using a mobile
phone (9 600 kbyte/ s).

Experiments with the Nomadic robot (Fig. 3) were
devoted to developing a platform for mobile telecom-
munication conferences [5]. The robot was controlled
by choosing target points on two-dimensional or three-
dimensional maps of its workspace, while the naviga-
tion between the chosen positions was realized locally
in the automatic regime. The robot was equipped with
a set of sensors, a stereoscopic pair of TV cameras, and
devices for vocal communication.

4. We have developed methods for the efficient
Internet control of robots. The methods are based on
using virtual three-dimensional models of a robot and
its workspace in the online regime, as well as a medium
for the remote programming of robots. This enabled us
to overcome a principal problem of the Internet control,
namely, the presence of substantial arbitrary time
delays in communication channels, to provide a fast
response of the system on controlling actions of an
operator, and to provide a convenient and efficient con-
trol medium.

Our further investigations are focused on develop-
ing methods of reconstruction of the three-dimensional
model of the robot workspace including processing
mobile objects. We intend to develop various technolo-
gies for the remote Internet control of robots, which
will provide efficient functioning of an operator in the
case of various network-connection rates. In particular,
it is assumed to analyze events and the workspace state
of a robot and to transmit a small data set determining
this state to an operator. We develop algorithms for
gripping a complicated dynamic object (e.g., a rod at
the bifilar suspension) by an Internet-controlled robot.
DOKLADY PHYSICS      Vol. 47      No. 3      2002
These algorithms are based on both the application of a
system of technical vision and the prediction of the
object motion on the basis of an adequate dynamic
model [6, 7].

Of special interest is the creation of a medium for
remote education in the field of robotics and mecha-

Fig. 2. RM-01 manipulation robot.

Fig. 3. Nomadic XR 4000 mobile robot.
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tronics on the basis of developing systems for Internet-
controlled robots. The principal features of these sys-
tems is the possibility to carry out experiments with an
actual robot and actual equipment, which is of special
interest for universities and other educational institutions
having no such device and equipment. The methods
developed make it possible to realize the joint use of
expensive robotics equipment through the Internet.
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INTRODUCTION

Infiltration of liquids in a stratum system and the
deformation of surrounding rocks are known to be
interrelated processes (see, i.e., [1]). In certain cases,
such an interrelation is manifested especially clearly
and, as a rule, is caused by the presence of insufficiently
compacted clay layers contacting a header in use.
While boring and exploiting a stratum, water flows in
from clay layers compressed by overlying rocks. The
softer the clay layer, the greater its strain and, therefore,
the larger the ground shrinkage and the water yield
from the stratum to the header. These effects were
repeatedly observed in the practice of oil production
and hydrogeology. Reiterated many-meter shrinkages
were observed in the Wilmington [2] and Eckofisk [3]
oil fields, in the process of the underground-water
extraction in Mexico [2], etc. Balance calculations per-
formed for the Belozerskiœ water-bearing complex [4]
can serve as one more example. These calculations
showed that the water inflow into a water-bearing stra-
tum, which had been caused by compressing slightly
permeable rocks surrounding the stratum, provides the
predominant contribution to the water discharge rate.

Theoretical description of the effects indicated
above requires setting and solving combined problems
of rock geomechanics and water infiltration in deform-
able strata. Some of the results of studies of this kind
were described in [5–7]. However, the specific nature of
the object under consideration, which is presented by a
soft clay layer contacting a header, does not allow the
results of these papers to be used immediately. In this
paper, we propose a new formulation of the problem,
which takes into account the key role of the clay layer
in the process under study. Additionally, we find an ana-
lytical solution to this problem.
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1. STATEMENT OF THE PROBLEM

We consider a porous stratum lying on an imperme-
able rigid base and separated from overlying rocks by a
soft clay layer.

Using the conventional infiltration equation for liq-
uid in a layer and considering, as in [5, 6], the superposed
rocks as an impermeable elastic plate, we arrive at

(1)

(2)

Here, m, β, k, and h are the porosity, compressibility, fil-
tration coefficient, and thickness of the stratum, respec-
tively; q is the overflow of the liquid from the clay layer
into the stratum; p is the pressure variation with respect
to the initial pressure in the stratum; D is the rigidity
modulus for the plate of overlying rocks; Γ is the nor-
mal load (per unit area) applied to the lower plate-base
surface, i.e., to the boundary with the clay layer; and w
is the plate’s bending equal to the shrinkage of the clay
layer. It is necessary to supplement Eqs. (1) and (2) by
relations describing macroscopic rheology of the clay
layer. The corresponding conditions should relate the
quantities q and Γ entering into the right-hand sides of
Eqs. (1) and (2) to pressure p at the base surface of the
clay layer and to the layer’s shrinkage w. These rela-
tions are found by solving the problem on the unidi-
mensional consolidation of a clay layer. One of them,

, (3)

is a consequence of the assumption conventional for the
theory of infiltration consolidation [8]. According to
this theory, the compressibility of both the liquid and
the skeleton nuclei is lower than that of the skeleton by
itself. The second relation significantly depends on the
deformation model accepted for describing the behav-
ior of the clay-layer porous matrix. Considering insuf-
ficiently compacted clays, we accept the ultimate rheo-
logical scheme in which the porous matrix is assumed
to be force-free deformable only until its strain e has

mβ∂ p
dt
------ k∆p–

q
h
---,=

D∆2w Γ .=

q ẇ=
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attained a certain value e0 . The model allows for two
main features of the deformation process in insuffi-
ciently compacted clays: (a) at the initial-compaction
stage, the strain resistance is primarily associated with
infiltrating a liquid rather than with stresses in the
matrix; and (b) the secondary compaction is small com-
pared to the initial one.

Within the framework of this scheme, solving the
unidimensional problem on the consolidation of a clay
layer is not difficult and yields the following macro-
scopic relation:

(4)

Here, K and H are the filtration coefficient and the
thickness of the clay layer, respectively. The physical
meaning of relation (4) is evident: the filtration flow from
the layer into the stratum [the left-hand side of (4)] is

determined by the current penetration depth  and the

pressure drop (Γ – p) in the compression wave.
Eliminating Γ and q from (1)–(4), we arrive at the

system of two nonlinear parabolic equations with
respect to the pressure p and the shrinkage w. After
introducing the dimensionless coordinates (p0 is a char-
acteristic pressure)

the system can be written out in the form

(5)

(6)

The dimensionless parameters ε and bε are determined
by the relationships

The typical values of these parameters are 

In this case,

t0 ~ 3 years, x0 ~ 1 km, ε ~ 10–3, and b ~ 1.

The value of D corresponds to the stratum depth of
occurrence and to the Young’s modulus on the order of
100 m and of 1010 Pa, respectively.

ẇ K
e0

w
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2. ASYMPTOTIC METHOD
FOR SOLVING THE PROBLEM

The smallness of the quantity ε implies that studying
the asymptotic behavior of solutions to Eqs. (5) and (6)
as ε  0

 

 is the main task to be considered. Indeed,
this is the asymptotic solution that describes the process
for long intervals (months or years) and, because of
this, is of great practical interest. On the other hand, the
method proposed is applicable only in this asymptotic
region. As we show below, for time intervals on the
order of or shorter than a day (i.e., outside the asymp-
totic region), the size of the disturbed-pressure region
in a stratum is smaller than its depth of occurrence.
Because of this, the treatment of superposed rocks as an
elastic plate becomes inadequate.

It is natural to take the solution to Eqs. (5) and (6) in
the case of 

 

ε

 

 = 0 as a principal term of the correspond-
ing asymptotic solution. From the physical standpoint,
the condition 

 

ε

 

 = 0 implies the following assumptions:
(i) the compressibility of the stratum is negligible com-
pared to that of the clay layer and (ii) the rock pressure
is constant [1]. In the case of 

 

ε

 

 = 0, Eqs. (5) and (6) are
reduced to a nonlinear steady-state equation with
respect to the auxiliary function

 

(7)

 

With regard to the equality

 

(8)

 

which follows from (6) and (7), we write out the equa-
tion mentioned above in the form

 

(9)

 

The boundary conditions for 

 

3

 

 are related to those for
pressure. The latter are specified by the exploitation
regime for the stratum and determine the parametric
dependence of the desired function 

 

3

 

 on time.

In many cases, the solution to Eq. (9), with 

 

p

 

 and 

 

w

 

subsequently found from (8), describes both the stra-
tum pressure and the clay-layer shrinkage with an accu-
racy sufficient for practical applications. As a rule, an
improvement of the description is needed near the
boundaries (boreholes, isobars), where the correspond-
ing shrinkage field, in general, does not satisfy natural
boundary conditions. To do this, a boundary layer
approximation should be constructed and then sewed
with the solution to Eq. (9).

In order to illustrate and estimate capabilities of the
asymptotic method proposed, we now consider a stra-
tum being exploited by a gallery of boreholes that may
operate either under constant-pressure conditions or
constant-yield conditions.

3 x t,( ) p x t,( ) t.d

0

t

∫–=

p 3̇ with w– min 1 23,( ),= =

min 1 23,( ) ∆3– 0.=
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3. THE PRINCIPAL TERM 
OF THE ASYMPTOTIC SOLUTION

In the cases under consideration, the problem
becomes unidimensional and Eq. (9) should be solved
in the region x > 0 under the boundary condition
3(∞) = 0. The boundary condition at the borehole gal-
lery has a form of either 3(0) = t (constant pressure) or
3'(0) = –t (constant yield). In both the cases, the distur-
bance propagation velocity is finite, with 3(x, t) ≡ 0 for
x > x*(t), and there are two time ranges characteristic for
the process. For 0 < t < t*, the shrinkage is everywhere
smaller than the ultimate value, and the function 3 is
given by the formula

t ≤ t*, x < x*(t): 3 = (10)

In the two regimes under consideration, respectively,

t* = , with x*(t) = (72t)1/4, and t* = , with x*(t) =

(18t)1/3. At the second stage of the process, an ultimate-
shrinkage region 0 < x < x*(t) appears near the gallery
and then begins growing. For the two regimes, x*(t) =

 and x*(t) = , respectively. In the

region mentioned above, the function 3 is given by for-
mulas

t ≥ t*, x < x*(t): 3 = t +  – x

(constant pressure),

t ≥ t*, x < x*(t): 3=  – 

(constant yield).

x x*–( )4

72
---------------------.

1
2
--- 2

3
---

2t
1
3
---– 2

3
---– t

2
3
---–

x x x*–( )
2

----------------------- 2
3
---

t x–( )2

2
----------------- 1

6
---
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In the region x*(t) < x < x*(t), the function 3 is given,

as before, by formula (10), where x*(t) = x*(t) + .

The most important characteristics of the solutions
presented above are listed in the table.

In order to estimate the range of applicability of the
asymptotic method under consideration, we compared
orders of the terms omitted in Eqs. (5), (6) and of the
basic terms entering into solution (10). Simple calcula-
tions showed that the ratio of these terms for the two
regimes are on the order of εt –1/2 and εt –1, respectively.
Therefore, the lower bound for the range of applicabil-
ity of the asymptotic method is on the order of ε2 (min-
utes) and of ε (days), respectively. It is worth noting that
in such time intervals the shrinkage-crater size is only
on the order of x0ε1/2 (about 30 m) and of x0ε1/3 (about
100 m), respectively (see table). As a rule, these values
do not exceed the stratum depth of occurrence.

4. THE BOUNDARY LAYER CORRECTION

It is evident that at the first stage of the process the
principal term of the asymptotic solution found does
not satisfy the natural symmetry conditions 

x = 0:

This discrepancy is explained by the presence of a
boundary layer with the thickness on the order of ε1/4

near the point x = 0. Introducing the boundary layer
coordinate y = xε–1/4, we seek the boundary layer cor-

rections to the principal term (w0 = , and p0 =

) of the asymptotic solution in the form

w = w0 + ε1/4w1(t, y) + …,  p = p0 + ε3/4p1(t, y) + … . (11)

6

∂w
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∂x3
--------- 0.= =
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Basic characteristics of processes when exploiting strata with the help of a borehole gallery

Exploitation regime Time interval Pressure
p(0, t)

Yield
–p'(0, t)

Shrinkage
crater x*(t)

Maximum
shrinkage w(0, t)

Constant pressure t < –1

t > –1 1

Constant yield t < – 1
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As a result, we find that the function w1 satisfies the lin-
ear equation

under the following boundary and initial conditions:

Thus, the problem formulated above has the self-sim-
ilar solutions w1 = t3/8W(yt –1/8) and w1 = t5/12W(yt –1/12) in
the two regimes, respectively. The solution to the corre-
sponding ordinary differential equations with respect to
W can be found in an explicit form. We here write out
only corrections to the maximum shrinkage w(0, t). For
the two regimes, they are equal to −0.5204ε1/4t3/8 and
−0.4786ε1/4t5/12, respectively. The corrections to pres-
sure and the yields are significantly smaller than those
presented above. According to (11), they are on the
order of ε3/4 and ε1/2, respectively. Therefore, for typical
values of the problem parameters, these corrections can
be ignored in contrast to the correction to the shrinkage.

∂
∂t
----- w0 0 t,( )w1( )

∂4w1

∂y4
-----------– 0=

∂w1

∂y
---------

y 0=

∂w0

∂x
---------

x 0=

= , ∂3w1

∂y3
-----------

y 0=

0,=

w1 t 0= 0, w1 y ∞= 0.==
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Gas or fluid flows in which pressure p is identically
constant (p ≡ const) are referred to as isobaric (inertial)
flows [1].

In this paper, we study the structural characteristics
of isobaric flows in a gas and an ideal incompressible
fluid (below, for brevity, isobaric flows). Equations
describing isobaric flows are completely integrable. For
the first time, formulas for the general solution to these
equations were derived in [2, 3] (see also [4], where a
more general set of equations was integrated). Chrono-
logically, the first but less successful attempt to study
the integrability of equations for isobaric flows was pre-
sented in [5]. The general solution found in [2, 3] was
written in an implicit form as a set of functional equa-
tions for the components of the velocity vector, which
involve a certain number of arbitrary functions. In this
connection, the problem arises to present a simpler and
more constructive description of the entire variety of
flows being determined by implicit formulas concern-
ing the general solution. This problem is partially
solved in the present paper. Namely, we propose here
an explicit geometrical description of the structure of
three-dimensional steady-state and two-dimensional
unsteady-state flows. The case of two-dimensional
steady-state flows is rather trivial and is not considered
here. Indeed, it is easy to show that all such isobaric
flows (even in the assumption that they are determined
only locally) are of a shear type in any connected
domain. This implies that the flow paths are parallel.
The problem concerning the explicit description of
three-dimensional unsteady-state flows is still open.

1. LOCAL CLASSIFICATION
OF ISOBARIC FLOWS ACCORDING 

TO THEIR RANK [2, 3]

In Euler variables, the isobaric flows are described
by the following set of equations for the velocity field

All-Russia Research Institute of Experimental Physics, 
pr. Mira 17, Sarov, Nizhni Novgorod oblast, 
607190 Russia
1028-3358/02/4703- $22.00 © 20249
u = u(x, t) [1]:

(1)

Here, u = (u, v , w), x = (x, y, z) [for two-dimensional
flows, we have u = (u, v) and x = (x, y)]. Let x = (ξ, η,
ζ) be the Lagrangian coordinates of gas (fluid) parti-
cles: x = x(0). From the first equation in (1), it follows
that u = u(x), and the condition of divergence-free flow
implies that the function u(x) satisfies a set of three
equations obtained by putting to zero the invariants of

the Jacobian matrix J =  [1–3]. In particular, we have

(2)

We restrict our analysis to the consideration of the
local structure of isobaric flows, assuming that every-
where in the domain under study the flow is smooth and
the rank rkJ of the Jacobian matrix has a constant value.
Based on equation (2), we can classify the isobaric
flows according to their rank:

(i) rkJ ≡ 0. In this case, u = const and the flow is uni-
form.

(ii) rkJ ≡ 1. In this case, two components of the
velocity vector are functions of the third component.
The flow is referred to as a simple wave [2] or a flow of
rank 1.

(iii) rkJ ≡ 2. For such a flow, one component of the
velocity vector is a function of two other components.
The flow is referred to as a double wave [2] or as a flow
of rank 2.

2. BASIC CLASSES OF THREE-DIMENSIONAL 
ISOBARIC STEADY-STATE FLOWS

In our terminology, basic classes are three classes
composed of the following isobaric flows:

ut u ∇⋅( )u+ 0,=

divu 0.=

∂u
∂x
------

detJ
uξ uη uζ

v ξ v η v ζ

wξ wη wζ

0.= =
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(I) shear flows, i.e., flows occurring in parallel
planes and along parallel straight lines in each plane;

(II) conic (conic-type) flows, i.e., flows occurring
along families of half-planes tangential to arbitrary
convex conic surfaces, and, in each half-plane, moving
along straight lines parallel to the generatrix of the
conic surface belonging to this half-plane;

(III) tangential (tangential-type) flows, i.e., flows
occurring along families of half-planes tangential to the
so-called tangential surfaces (the surfaces formed by
tangents to arbitrary three-dimensional curves). These
surfaces obey certain conditions of convexity (ensuring
the absence of intersections between the tangential
half-planes). In each half-plane, the flows move along
straight lines parallel to the generatrix of the tangential
surface belonging to this half-plane.

In the general case, for all aforementioned flows,
gas (fluid) flows with its own velocity along each
straight line (streamline).

The shear flows are well known [6]. In the steady-
state case, they are specified by the following explicit
formulas in the coordinate system with the Oz-axis
orthogonal to the flow planes

(3)

Here, α and ϕ can be arbitrary functions. In the case of
vector fields u of form (3), equations (1) for the steady-
state flows,

(4)

, (5)

are satisfied in a trivial way.
We now describe in more detail the structure of

conic-type isobaric flows. Let K be an arbitrary convex
conic surface in space R3(x, y, z) with the vertex O and
a directing curve γ, r = r(t) be the vectorial parametric

equation for γ, t(t) =  be a vector tangent to γ, πt be

a plane tangent to the surface K at the point r(t), lt =
πt ∩ K be the generatrix of the surface K lying in πt , and

 and  be half-planes for which the straight line lt

divides the πt plane and which contain vectors t(t) and
–t(t), respectively. A conic flow of the general form
related to the surface K (and determined by it or, more

precisely, by families { } and { }) is constructed in
the following manner. We choose one from two fami-
lies of tangent half-planes. For definiteness, let it be

{ }. In each half-plane , we define a vector field u

parallel to the generatrix lt ⊂  and depending on a
single parameter d, which is the distance between the

u βϕ αx βy+ z,( ),–=

v αϕ α x βy+ z,( ),=

w 0,=

α α z( ), β β z( ), α2 z( ) β2 z( ) 1.≡+= =

u ∇⋅( )u 0,=

divu 0=

dr t( )
dt

-----------

πt
+ πt

–

πt
+ πt

–

πt
+ πt

+

πt
+

application point of the vector u and the straight line lt .
Imposing the requirement that u smoothly depends on t
and d, we obtain a smooth vector field u = u(x, y, z)

defined in domain G = . The convexity of curve γ

ensures the absence of intersections of the half-planes
from the chosen family and, hence, the uniqueness of
the field u in G. For the field u constructed in such a
manner, Eq. (4) is satisfied automatically and the valid-
ity of equation (5) is verified by direct calculations.
This implies that such an arbitrary field u is the velocity
field of the eventual steady-state isobaric flow. We refer
to each pair (u|G' , G'), where G' is a subdomain of G, as
a conic-type flow. In the most general situation for
domain G', we can admit flows with discontinuities
along the lined surfaces consisting of paths (stream-
lines), as well as to start and terminate the paths,
thereby allowing the existence of surface sources and
sinks.

In a similar manner, we can construct isobaric flows
of the tangential type determined by the tangential sur-
face T with the directrix three-dimensional curve γ. In
this case, generatrices lt of the surface T are tangents to

γ, whereas the tangent half-planes  and  of the sur-
face T coincide with the half-planes into which lt
divides the osculating plane πt of the curve γ. Half-

planes  and  differ from each other, because one
of them contains vector n(t) of the main normal to the
directrix curve γ and the other half-plane contains the
opposite vector –n(t). Similar to the case of conic flows,
t is the parameter of motion along the curve γ.

3. LOCAL STRUCTURE
OF THREE-DIMENSIONAL ISOBARIC 

STEADY-STATE SIMPLE WAVES

Without the loss of generality, we can write for the
simple wave

(6)

Here, w ≠ 0 and ∇ w ≠ 0 everywhere within the range of
the definition of the flow. To analyze the structure of
steady-state simple waves, we can use the general
expression implicitly describing the class of three-
dimensional isobaric flows of rank 1 [2, 6]. If relation-
ships (6) are met, then this expression has the form

(7)

where ϕ(w), f(w), and λ(α, β) are arbitrary smooth
functions. The passage from representation (7) to the
representation in Eulerian variables is performed using
the equations

(8)

On the other hand, in such an analysis, we can use rela-
tionships (6) directly substituting them into equations (4)

πt
+

t
∪

πt
+ πt

–

πt
+ πt

–

u ϕ w( ), v f w( ).= =

ξ ϕ ' w( )ζ λ w η f ' w( )ζ–,( ),+=

x ξ ut, y+ η v t, z+ ζ wt.+= = =
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and (5) and then find an equivalent (in the case under
study) system of two scalar quasilinear equations

(9)

(10)

These equations describe simple waves in terms of
the velocity-vector third component.

Let

be the level surface of the velocity field u.
Proposition 1. For isobaric three-dimensional

steady-state simple waves (6), surfaces πw are cylindri-
cal (in particular, they can be planar and even degen-
erate to straight lines). Generatrices of these surfaces
are streamlines of the field u, which are determined by
equations (8) [characteristics of equation (9)]. The
range of definition for a simple wave can be divided
into subdomains such that for each of them one of the
following properties takes place.

(A) Everywhere, characteristics of equations (9)
and (10) coincide. In this case, these characteristics are
parallel and the simple wave corresponds to the flow
along parallel straight lines.

(B) Everywhere, characteristics of equations (9)
and (10) are different; in this case, all surfaces πw are
planar (and, hence, form a one-parameter family);
each surface πw is a combination (family) of stream-
lines passing through various points of a certain char-
acteristic of equation (10). Below, the simple wave is
referred to as the flow in a one-parameter family of
planes {πw}.

Based on Proposition 1 and using the well-known
classification of one-parameter families of planes [7, 8],
we can prove the following theorem.

Theorem 1. An arbitrary isobaric three-dimen-
sional steady-state simple wave is locally a flow of one
of the following four types: flows along parallel
straight lines (special shear motion) with different (in
the general case) velocity values for each streamline,
as well as shear, conic, and tangential flows. For shear
flows, the flow is constant in each plane πp of the corre-
sponding parallel bundle, whereas for conic and tan-
gential flows the flow is constant in each tangent half-

plane  corresponding to the conic or tangential sur-
face. In the general case, the velocity in each plane πp

and the absolute value of the velocity in each half-plane

 are different.

4. LOCAL STRUCTURE 
OF ISOBARIC THREE-DIMENSIONAL

STEADY-STATE DOUBLE WAVES

The formulas implicitly specifying the general solu-
tion of rank 2 for equations that describe isobaric flows

ϕ w( )wx f w( )wy wwz+ + 0,=

ϕ' w( )wx f ' w( )wy wz+ + 0.=

πw x y z, ,( ) R3: w x y z, ,( ) w const= =∈{ }=

πt
±

πt
±
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in the Eulerian coordinates have the following form
[2, 3]:

(11)

where u = (u1, u2, u3), x = (x1, x2, x3), u = u(x, t); G, H,
and Σ are arbitrary smooth functions for which set of
equations (11) is solvable with respect to u1, u2, and u3 .
Without the loss of generality, we can assume that
everywhere in the definition range of the solution u
under study the following conditions are met

For the steady-state solutions u = u(x), set (11)
becomes “split” with respect to t. As a result of such a
splitting, we obtain a system of functional equations
implicitly describing isobaric three-dimensional
steady-state double waves

(12)

The following set of equations plays an important
role in the analysis of the structure characteristic of the
double waves

G u1 u2 u3, ,( ) 0, ∇ G 0,≠=

xi tui–( )∂G
∂ui

-------
i 1=

3

∑ H u1 u2 u3, ,( ),=

xi tui–( ) x j tu j–( ) ∂2G
∂ui∂u j

---------------
i j, 1=

3

∑

– 2 xi tui–( )∂H
∂ui

-------
i 1=

3

∑ Σ u1 u2 u3, ,( ),=

u3 0,
∂G
∂u3
-------- 0.≠≠

G u1 u2 u3, ,( ) 0, ∇ G 0,≠=

xi
∂G
∂ui

-------
i 1=

3

∑ H u1 u2 u3, ,( ),=

ui
∂G
∂ui

-------
i 1=

3

∑ 0,=

xix j
∂2G

∂ui∂u j

---------------
i j, 1=

3

∑ 2 xi
∂H
∂ui

-------
i 1=

3

∑– Σ u1 u2 u3, ,( ),=

xiu j
∂2G

∂ui∂u j

---------------
i j, 1=

3

∑ ui
∂H
∂ui

-------
i 1=

3

∑– 0,=

uiu j
∂2G

∂ui∂u j

---------------
i j, 1=

3

∑ 0.=

λ2 f λ1( ),=

f ' λ1( ) x1 λ1x3–( ) x2 λ2x3–( )+– h λ1 λ2,( ),=
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(13)

,

where f, h, and Σ1 can be arbitrary smooth functions for
which Eq. (13) is solvable with respect to u1, u2, and u3 .
All such functions f, h, and Σ1 are referred to as admis-
sible.

Theorem 2. Arbitrary set (12) as a set of equations
with respect to variables u1, u2, u3 is equivalent to a cer-
tain set of form (13). The entire variety of isobaric
three-dimensional steady-state double waves is
described by solutions of rank 2 to sets (13) with vari-
ous admissible functions f, h, and Σ1 . 

From Theorem 2, it follows that level surfaces πλ of
the vector function l = (λ1, λ2) play the main role in the
local classification of isobaric steady-state double
waves.

Proposition 2. For any isobaric three-dimensional
steady-state flow of rank 2 in a domain, where u3 ≠ 0,

the surface πλ is a part of the plane  determined by
first two equations of set (13). If a certain streamline l
of the velocity field u has a common point with a certain
surface , then l ⊂ . All streamlines (even if they

are defined only locally) lying in any fixed surface 

l0 = ( , ) are parallel, and the vector  = ( ,

, 1) plays the role of a directrix.

Theorem 3. If in the set of equations (13), function
f ≡ f(λ1) is linear, then an isobaric three-dimensional
steady-state flow determined by this set is of the shear
type. In the case of nonlinear function f [it is assumed
that f ''(λ1) ≠ 0 everywhere within the definition range of

the solution], the one-parameter family of planes 
(see formulation of Proposition 2) containing surfaces
πλ has an envelope which is either a conic or tangential
surface. Hence, in this case, the isobaric flow deter-
mined by the set of equations (13) is a flow of either the
conic or tangential type.

The following classification theorem is a conse-
quence of Theorems 1–3.

Theorem 4. An arbitrary isobaric three-dimen-
sional steady-state flow is a combination of domains for
shear flows, conic flows, and tangential flows.

– f '' λ1( ) x1 λ1x3–( )2 2 x1 λ1x3–( ) ∂h
∂λ1
--------–

– 2 x2 λ2x3–( ) ∂h
∂λ2
-------- Σ1 u1 u2 u3, ,( )=

λ1

u1

u3
-----, λ2

u2

u3
-----,= =

πλ*

πλ0
πλ0

πλ0

λ1
0 λ2

0 l0
* λ1

0

λ2
0

πλ*
5. LOCAL STRUCTURE 
OF ISOBARIC TWO-DIMENSIONAL

UNSTEADY-STATE FLOWS

We now put in correspondence an unsteady-state
vector field u = u(x, y, t) in R2(x, y) to the steady-state
vector field u1 = u1(x, y, t) = u + k, where k is the unit
vector of the time axis Ot in space R3(x, y, t). The field
u satisfies the set of equations (1) if and only if the field
u1 satisfies equations (4) and (5), where

By virtue of this fact, a new theorem immediately
follows from Theorem 4.

Theorem 5. An arbitrary two-dimensional
unsteady-state isobaric flow considered as a steady-
state flow in R3(x, y, t) is a combination of domains for
shear, conic, and tangential flows of rank 1, for which
the third component w (along the Ot-axis) of the veloc-
ity vector u1 = (u, v , w) is identically equal to unity
(w ≡ 1). In an arbitrary given streamline of the field u1 ,
both components, u and v, are uniquely determined
from the condition w ≡ 1. The case of “flow” in
R3(x, y, t) along parallel straight lines is excluded, as it
corresponds to the constant flow in R2(x, y).

6. EXAMPLES

Theorems 4 and 5 yield a constructive method for
determining all three-dimensional steady-state and
two-dimensional unsteady-state isobaric flows. Below,
we present two examples of isobaric flows constructed
according to this method.

Example 1. Let K be a conic surface specified by the
equation d ≡ x2 + y2 – r2z2 = 0, r > 0, G = {(x, y, z): d > 0}.
As the directrix of surface K, we take circle γ = {(x, y, 1):
x2 + y2 = r2}. If the point P = (x, y, z) ∈  G, then half-

planes  tangent to K and passing through P contact γ

at points , η± = r . Conse-

quently, vector fields u± = (ξ±, η±, 1) are velocity fields
for two conic axisymmetric flows of rank 1, which are
defined in G and are associated with K.

Example 2. Flows with singularities. Let K be a
conic surface specified by the equation d ≡ z2 – 4xy = 0.
As the directrix γ of the surface K, we take the ellipse
obtained by intersecting K by the plane x + y = 1. If P =
(x, y, z) is a point belonging to the outer part of the conic
surface K (i.e., to the domain d > 0), then coordinates
ξ±, η±, ζ± of points contacting the curve γ for the half-
planes π± passing through P satisfy the following rela-
tionships

∇ i
x∂

∂
j

y∂
∂

k
t∂

∂
, divu+ + ux v y wt.+ += =

πP
±

ξ± r
rxz y d+−

x2 y2+
------------------------=

ryz x d±
x

2
y2+

------------------------

ξ± ζ± z d+−
4y

---------------, η± ζ± z d±
4x

---------------, ξ± η±+ 1.= = =
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Hence, the formulas

(14)

specify velocity fields for two conic-type flows of
rank 2 associated with K. Domain G = {(x, y, z): d > 0,
xy ≠ 0}, which is outer with respect to K, is a common
part of the definition range for these flows. We assume
that

where  and  are the half-planes supplementary to
π1 and π2 , respectively. The first flow [upper signs

in (14)] is extended by continuity to  and 
(excluding the Oz-axis), whereas at π1 and π2 it has sec-
ond-order discontinuities. The second flow [lower signs

in (14)] is extended by continuity to  and  (exclud-
ing the Oz-axis), whereas it has the second-order dis-

continuities at  and .

Note 1. It can be shown that the steady-state axi-
symmetric isobaric flows described in [3, 9, 10] are
conic-type flows of rank 2 (in the general case) in
R3(x, y, z), whereas the two-dimensional (planar)
unsteady-state isobaric flow described in [2] is the axi-
symmetric conic-type flow of rank 1 in R3(x, y, t),
which is obtained from the flow corresponding to the
velocity field u+ from the Example 1, if we put in it
r = 1 and z = t – 1. Hence, the cone K1 characteristic of
the flow described in [2] is obtained from the cone K of
Example 1 (at r = 1) by shifting this cone upward by 1
along the z axis.

u± z d+−
4yd

---------------, v ± z d±
4xd

---------------, w± d 1–= = =

π1 x y z, ,( ): y 0 z 0<,={ } ,=

π2 x y z, ,( ): y 0 z 0>,={ } ,=

π1
d π2

d

π1
d π2

d

π1 π2

π1
d π2

d
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Note 2. Using the constructions suggested in the
present paper, it is possible to construct flows of ideal
incompressible fluid even with nonzero pressure gradi-
ent as a superposition of isobaric flows. By a method
similar to that under discussion here, it is also possible
to construct unsteady-state three-dimensional isobaric
flows. In this case, it is necessary to consider single-

parameter families { : λ ∈ R1} of hyperplanes in
R4(x, y, z, t).
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1. INTRODUCTION

The first systematic investigation of the flutter of a
plate dates back to Movchan [1] in 1956. He studied the
vibrations and stability of a rectangular plate under the
condition that the velocity vector of a flow be parallel
to a plate side. For aerodynamic-interaction pressure,
the “plunger-theory” formula was used. This special
formulation was used in almost all the studies pub-
lished before the survey [2]. The conventional methods
of solving particular problems, for example, the finite-
element method or the difference method, being the
methods with saturation [3] turned out to be inefficient
[4]. The reliability of the frequently used Bubnov–
Galerkin method is not definitively clarified as to the
plate configuration and the type of boundary condi-
tions; this fact was pointed out in [2]. In the generalized
formulation [5, 6], this paper discusses the flutter of a
plate with an arbitrary contour given in a parametric
form. For this case, we develop the saturation-free
method previously proposed in [4]. We present the
results of calculations for the rectangular and elliptic
plates in the case of an arbitrary direction of the flow-
velocity vector.

2. FORMULATION OF THE PROBLEM

Let a plate occupy the region K with the piecewise
smooth contour ∂K in the plane xy. A gas flow with the
velocity vector v = {v cosθ, v sinθ}, v  = |v |, density ρ0 ,
and pressure p0 (parameters of a unperturbed state) pass
over one side of this plate. As usual, the plate deflec-
tions w(x, y, t) are assumed to be w(x, y, t) =
ϕ(x, y)exp(ωt). In this case, we obtain the eigenvalue
problem in the generalized formulation [5, 6]:

D∆2ϕ – β(v, gradϕ) = λϕ , (2.1)

ϕ|∂K = 0, (2.2)

L(ϕ)|∂K = 0. (2.3)

* Institute for Problems in Mechanics, 
Russian Academy of Sciences, 
pr. Vernadskogo 101, Moscow, 117526 Russia

** Moscow State University, 
Vorob’evy gory, Moscow, 119899 Russia
1028-3358/02/4703- $22.00 © 20254
Here, D is the torsional rigidity of the plate, β = ,

 = , k is the polytropic index, and L is the differ-

ential operator known from the theory of plates. The
parameter λ is related to the vibration frequency by the
expression ρhω2 + βω + λ = 0, where ρ and h are the
density of the plate and its thickness, respectively.

The plate vibrations are stable and unstable when
Reω > 0 and Reω < 0, respectively. The boundary
between these regions in the complex plane λ is the sta-
bility parabola

β2Reλ = ρh(Imλ)2. (2.4)

If all λ values are inside the parabola, the motion is
stable; if at least one eigenvalue is outside the parabola,
the motion is unstable. It is proven [7] that Reλ > 0 for
the boundary conditions of fixing and simply support-
ing, all λ are real for v  = 0, and certain eigenvalues
become complex with increasing v. Therefore, the
problem is to find such a v  value at a given θ for which
a certain the eigennumber first falls on parabola (2.4).
This flow velocity v cr is taken as the critical velocity of
flutter.

To solve problem (2.1)–(2.3) under condition (2.4),
we developed a numerical–analytical method without
saturation in two modifications. The first modification
[4] is used when the analytical (relatively simple for-
mula-specified) conformal mapping of the region K
onto the unity circle is known. Here, this restriction is
removed (the second modification): when the contour
∂K of the region is given by parametrical equations, the
conformal mapping is constructed numerically accord-
ing to the procedure described in [8].

The algorithm of solving boundary value problem
(2.1)–(2.3) is as follows. Upon the double conversion of
the Laplace operator, Eq. (2.1) changes to an integral
equation and boundary conditions (2.2) and (2.3) are sat-
isfied exactly and approximately, respectively. For
numerical solution, we use the interpolation formula [3]
providing the method without saturation. The software
package realizing this calculation was reported in [9].

k p0

c0
--------

c0
2 k p0

ρ0
--------
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3. RESULTS OF PARTICULAR CALCULATIONS

In the calculations, we used the following parameter
values: p0 = 1.0133 × 105 Pa, ρ0 = 1.2928 kg/m3, µ =
0.33, k = 1.4, E = 6.867 × 1010 Pa, ρ = 2.7 × 103 kg/m3,
and relative plate thickness h = 0.003 (the ratio of plate
thickness to a half-length along the x-axis). The other
parameters were made dimensionless, as in [4].

3.1. Rectangular simply-supported plate occu-
pying the region K: {|x | ≤ 1, |y | ≤ b}. Boundary condi-
tions (2.3) have the form 

(3.1)

Let H be the matrix of the discrete Laplace operator
with boundary condition (2.2). In this case, the matrix
of the discrete biharmonic operator with boundary con-
dition (3.1) is H2 . This fact enables us to relatively sim-
ply perform the discretization of spectral problem (2.1),
(2.2), (3.1). This procedure is described in detail in
[10]. The results of calculations are presented in the
third column of the table (eigenvalue numbers are indi-
cated in parentheses).

3.2. Elliptic simply-supported plate. The contour
of the region K is given parametrically by the equations
x = cost and y = bsint; the ellipse is inscribed into the
rectangle from the above example. The simply-support-
ing condition requires that the bending moment van-
ishes; therefore, we have

instead of Eq. (2.3). Here, µ is the Poisson ratio and κ
is the curvature. The calculations were carried out using
numerical conformal mapping according to the proce-
dure from [8]; the results are presented in the second
column of the table. For comparison, the fourth column
presents the results calculated for the rectangular plate
by the Bubnov–Galerkin method.

4. DISCUSSION OF THE RESULTS

The table demonstrates that the dependence v cr(θ) is
nonmonotonic. First, v cr increases with θ, and this

increase is more rapid in the region θ ∈ . Near

the point θ = , v cr(θ) has a maximum. Finally, v cr-

decreases slightly when θ approaches . It is character-

istic and very interesting that the plate-motion form is
modified near the point maxv cr so that the second
eigenvalue first falls onto the stabilization parabola.

∂2ϕ
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The presence of maxv cr near the point θ =  is the

so-called effect of stabilization of the plate vibrations
against the fluctuations of the flow-velocity direction

near the point θ = . It should be noted that this effect

was previously discovered in the problem of the flutter
of an infinite strip.
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Table

θ Elliptic plate Rectangular 
plate

Bubnov–Ga-
lerkin method
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0.6012 (1) 0.5235 (1) –
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Rolling of a rigid cylinder along a viscoelastic half-
space was considered in [1, 2]. When a contact arc
between the cylinder and a plastic domain is small, the
problem of rolling a smooth cylinder along the rigid-
plastic half-space was solved in [3] by the small param-
eter method. In this study, we consider the problem of
rolling and sliding a cylinder along the boundary of a
perfectly plastic half-space with allowance for contact
friction. The limiting values of forces and a contact arc
for steady plastic flow are obtained.

Figure 1a shows a steady plastic domain arising in
the process of rolling and sliding a cylinder along the
boundary of an incompressible perfectly plastic half-
space [3]. We assume that the cylinder axis is fixed and
the half-space moves with a unit velocity V = 1. Along the
boundary OEDB, the velocity is continuous. In the case of
a stationary plastic flow, the boundaries AB and OA are
streamlines, the tangents to which at the points B and O
are directed along the half-space boundary. Therefore, the
lower point O lies on the half-space boundary y = 0.

For a cylinder of a radius R rolling with an angular
velocity ω without slipping, we have a relationship
ωR = 1 at its contact point O with the rigid domain. At
the other points of the contact arc, the plastic material
slides from the point O to the point A and tangential
stresses of friction appear on the contact surface and
form a positive moment M. This is the case for rolling
the cylinder with the sliding it forward along the con-
tact arc. If the angular velocity ω is equal to zero or is
so small that the plastic material slides from the point A
to the point O in the entire contact arc, the contact-fric-
tion stresses and the moment M reverse their signs. This
is the case for rolling while sliding at the point O or
sliding the cylinder backwards without rolling in the
contact arc OA. If the cylinder is smooth, the plastic
domain is independent of ω and is the same for both
forward and backward slide. 

We measure stresses in the units of double the shear-
flow stress, and lengths, in the units of the contact arc
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OA. Stresses and velocities in the plastic domain satisfy
hyperbolic equations of the plane plastic flow in the
sliding lines ξ and η [4]:

(1)

(2)

(3)

where σ is the mean stress, ϕ is the slope angle of the

dy
dx
------ ϕ   for   ξ and 

dy
dx

 ------tan  ϕ for   η ,cot–= =

dσ dϕ– 0 in   ξ , d σ d ϕ + 0 in   η ,= =
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dV

 

η
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ξdϕ+ 0 in   η ,=         

Fig. 1.

 

 (a) Field of sliding lines and the normal-pressure dis-
tribution at the contact boundary and (b) hodograph of
velocities in the process of rolling a cylinder with forward
sliding for 
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tangent to the sliding line ξ and Vξ and Vη are the com-
ponents of the velocity vector in the directions ξ and η. 

For a steady plastic flow, the boundary AB, which is
free of external stresses and coincides with the direc-
tion of the second principal stress, is a streamline:

(4)

where Vx and Vy are the velocity-vector components
related to Vξ and Vη as

(5)

Along the rigid plastic boundary O–B, velocities are
continuous: Vx = –1 and Vy = 0. From Eqs. (5), we find

(6)

Since the contact arc OA is taken as the characteris-
tic dimension, the cylinder radius R and the contact
angle αc are related as Rαc = 1. The surface velocity of
the cylinder can vary in the range 0 ≤ ωR ≤ 1. The shear
stresses τc of contact friction appear at the boundary
OA, and the sliding lines intersect this boundary at the
angle:

(7)

For forward sliding, ωR > Vc, where Vc is the veloc-
ity of the material at the contact boundary and θ is the
angle between the sliding line η and the tangent to OA.
For backward sliding, ωR < Vc, the direction of τc
changes, and θ is the angle between the sliding line ξ
and the tangent to OA. Therefore, the angle ϕ specify-
ing the direction of sliding lines with respect to OA is
determined as

(8)

for forward sliding or as

(9)

for backward sliding. For a smooth cylinder, τc = 0, it

follows from Eq. (7) that θ =  and Eqs. (8) and (9)

yield the same ϕ = α –  value at the boundary OA.

Since the velocity normal to the cylinder is equal to
zero, kinematic boundary conditions at OA have the
form

(10)

for forward and backward sliding cases, respectively.
For a smooth cylinder, Eqs. (10) both yield the equality
Vξ = Vη.

Thus, for a smooth cylinder, the boundary condi-
tions for stresses and velocities are independent of the

ϕ π
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direction of the material sliding along the contact
boundary OA. In this case, the fields of stresses and
velocities in the plastic region are independent of the
rotation of the cylinder and are the same for forward
and backward slides.

The angle ψ of the centered fan of the sliding-line
field at the point A is determined by the expressions

(11)

for forward sliding or

(12)

for backward sliding, where

(13)

is the slope angle of the tangent to the boundary AB at
the point A.

The mean stress at the point O is found from the first
of Eqs. (2) for ξ of the sliding line O–B

 

 and boundary
conditions (8) and (9) at 
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 = 0:
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for backward sliding, where 
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Expression (14) shows that, for forward sliding, the
bearing capacity of a rigid wedge at the point 
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 at this point. Therefore, the plastic

domain shown in Fig. 1a can be formed only if the con-
tact-friction stress varies and equals zero at the point 
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Experimental data on rolling corroborate that stress
vanishes at the point of the outlet of a workpiece from
the contact with the roll [5]. In this study, we assume
that 
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on the cylinder

, (17)

and the forces and moment with allowance for the rela-
tionship Rαc = 1 are found in the form

(18)

(19)

(20)

where the upper and lower signs correspond to the for-
ward and backward sliding cases, respectively, and 

for a smooth cylinder. 
For a rough cylinder and linearly varying τc,

Eq. (20) yields M = (τc)A and –τc for forward and

backward sliding cases, respectively.
The above equations show that the problem of roll-

ing and sliding a cylinder calls for the joint consider-
ation of stress and velocity fields. The solution to the
problem can be found by the following way.

Taking into account known values (14) and (15) at
the point O, we set a continuous distribution of σ at the
boundary OA and an initial approximation for the angle
β. Then, σ and the boundary conditions (8) and (9)
define the Cauchy data for Eqs. (1) and (2) and the field
of sliding lines in the domain OAE. In the domain AED,
the field of sliding lines is found by solving the Goursat
problem with given σ and ϕ in AE and at the singular
point A with the angle ψ specified by Eqs. (11) and
(12). In the domain ABD, we solve the inverse Cauchy
problem with given σ and ϕ in AD and conditions 

at the unknown boundary AB. As a result, we find the
free boundary AB and the rigid plastic boundary O–B.
Next, we find the field of velocities in the plastic
domain by solving the mixed boundary value problem
for Eqs. (3) with boundary conditions (6) and (10). If
steady-flow condition (4) is satisfied at the boundary
AB, the distribution of σ over OA is the solution to the
problem. Since the sequence of solving the boundary
value problems for Eqs. (1)–(3) determines the field of
sliding lines with the boundary AB and the velocity

σn– σ 1
2
--- 2θsin– 
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---,

dy
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------– ϕ π

4
---– 

 tan= =
field dependent on the distribution of σ over OA, Eq. (4)
is the determining equation for the unknown distribu-
tion of σ over OA.

The fields of sliding lines and velocities for a given
distribution of σ over the boundary OA were calculated
numerically by using a finite-difference approximation
of differential equations (1)–(3). The boundary AB free
of external stresses is obtained by solving the sequence
of the elementary inverse Cauchy problems starting
worth the an initial point A. The coordinates of these
boundary points are found from the differential equa-

tion of the AB contour  =  –  and differen-

tial equation (1) for the ξ-line. The velocities at the
boundary OA are obtained by solving the elementary
mixed problems for differential equation (3) along the
η-line with allowance for boundary conditions (10).
Since differential equations (2) and (3) are linear, the
finite-difference equations are also linear. For this rea-
son, the calculation of a detailed network of sliding
lines and the field of velocities for a σ distribution given
at 20 nodes at the boundary OA takes a fraction of a sec-
ond on a Pentium-133 computer.

Let s be the vector of unknown σ values at the N
nodes at the boundary OA and f be the vector of the dif-
ferences between the slope angles of tangents to the
boundary AB and velocity vector at the N nodes of this
boundary. These differences are the errors of stationary
condition (4) for given s. The procedure of computing
the fields of sliding lines and velocities provides a con-
tinuous f–s dependence, and condition (4) takes the
form of the N-dimensional nonlinear vector equation 

(21)

Equation (21) is solved by the Broyden method [6], in
which the iterative process does not require the evalua-
tion of derivatives. Taking the initial approximation for
the angle β, we specify the initial approximation s0 by
a linear distribution over OA from the value specified
by Eqs. (14) and (15) at the point O to value (16) at the

point A. The functional matrix  at the initial point

s0 is found via solving N problems for the variations of
s0 by the finite-difference method. Equation (21) is
solved in several iterations with an accuracy of | fi |max ≤
10–4, i = 1, 2, …, N. The condition y = 0 at the point B
is satisfied with an accuracy of 10–6.

Figure 1 shows (a) the field of sliding lines with dis-
tribution of the contact pressure and (b) the hodograph
of velocities for rolling a rough cylinder without slip-
page at the point O (ωR = 1) for the contact angle αc =
0.5236 for forward sliding with the maximum value
τc = 0.2 at the point A. For this case, we obtain β =
0.703, ψ = 0.55, Q = 2.03, F = 0.394, and M = 0.1. With
increasing the contact angle αc , the centered-fan angle
ψ vanishes, the domain AED in the physical plane con-
tracts to a line, the velocity at the singular point A

dy
dx
------ ϕ -

tan
π
4
---



f s( ) 0.=
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becomes single-valued, and the corresponding arc A–A
at the hodograph of velocities tends to the fixed point O.
Thus, along the free boundary AB, the velocity of a
material particle decreases from 1 at the point B to 0 at
the point A when ψ  0 Then, the velocity increases
from 0 to 1 when the particle moves along the cylinder
boundary from the point A to the point O. For τc = 0.2,

we find the ultimate contact angle  = 0.65 at which
a steady plastic flow with the forces Q = 1.828 and F =
0.427 is possible. An increase in friction for forward
sliding leads to increasing both the angle ψ and the ulti-
mate contact angle  as ψ  0.

The ratio  can be treated as the coefficient of roll-

ing friction caused by the asymmetry of the plastic
domain about the y-axis coinciding with the axis of the
cylinder. In the case of forward sliding for given τc val-
ues, it is possible to find the contact angles αc for which
the force F = 0. This is the limiting case of rolling a
thick workpiece without penetrating plastic deforma-
tions into its depth; i.e., when only the surface layer is
plastically deformed.

Figure 2 shows (a) the field of sliding lines with the
contact-pressure distribution and (b) the hodograph of
velocities for rolling and sliding a cylinder with back-
ward sliding at the contact boundary OA for αc = 0.2
and 0 ≤ ωR < 0.59 and the contact-friction stress τc =
0.2. In this case, we have β = 0.364, ψ = 0.801, Q =
2.03, F = 0.39, and M = –0.2. An increase in friction for
backward sliding leads to decreasing the angle ψ, a lim-
iting contact angle , and normal pressure on the cyl-
inder. Moreover, this pressure is distributed more uni-
formly than pressure for rolling the cylinder with for-
ward sliding.

At ω = 0, we obtain the sliding of a round die ahead
of which a steady plastic domain depending on the ver-
tical force Q and the contact friction τc is formed. This
problem also describes the process of drawing a thick
workpiece between circular matrices when only the
surface layer undergoes plastic deformation. As
τc  0.5 (for backward sliding), αc  0 vanishes,
the plastic region ABDE degenerates into the point A,

α c*

α c*

F
Q
----

α c*
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and the domain OAE degenerates into a shear line with

the uniform pressure –σn = 0.5 +  at the boundary OA.

This is the case of sliding an absolutely rough plane die
along the boundary of a plastic half-space.
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Fig. 2. The same as in Fig. 1, but for the process of rolling
a cylinder with backward sliding for αc = 0.2 and τc = 0.2.
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