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1. We consider two-dimensional potential ideal-gas
flows. At the hodograph plane, they are described by
the Chaplygin equations

¢z+qu9 = 01 ¢e_lpz =0 (1)

or the Chaplygin equations of the second order for the
stream function [1-4]:

kLIJ66+L|Jzz =0, z= J-gdq, k = _2 . Q)

Hereafter, ¢ isthe potential; Y isthe stream function; g,
8, u, and v are the modulus, angle of inclination, and
horizontal and vertical components of the velocity vec-
tor, respectively; M is the Mach number; p is pressure;
and p isthe density.

Egs. (1) and (2) have an infinite set of exact solu-
tions [1-4]. In this paper, we show that each solutionis
associated with aproper set of gas-dynamics equations,
one of them being divergent (see Theorem 1). Our
detailed analysis of the solutions to system (1), which
are found by the method of separation of variables led
to one more algorithm for constructing an infinite set of
conservation laws (see Theorem 2). The set constructed
includes, asaparticular case, the set of the conservation
lawsfoundin [5, 6]. They can be applied to two-dimen-
sional steady flows (mass, momentum, and angular-
momentum conservation laws). It isworth noting that a
finite set of the conservation laws was found in [5, 6]
for the cases of both steady and unsteady three-dimen-
siona flows.

Theorem 1. For each solution ¢ = f(z, 8) # const
and ) = g(z, ) # const to Chaplygin equations (1), the
introduction of variables o and (3 dependent on the
functionsf(z, 8) and g(z 6), respectively, a = f(z, 6) and
B = g(z 9) yields a system of uniformly divergent gas-
dynamics equations in the plane of the potentials
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(¢ and ) and, as a result, a conservation law in the
physical plane:

kBy+0ay = 0, By—04 = O; 3)

(apu+Bv),+(apv —Pu),
= (fpu+gv),+ (fpv —gu), = 0. )
Remark. The solutions$ = f =const and Y = g =
const also allow us to obtain certain conservation laws
on the (x, y)-plane. For example, substituting either
f=1andg=0orf=0andg=1into (4), weobtain the

conservation law for either mass or circulation, respec-
tively.

2. We consider several tentative examples of exact
solutions.

A flow with a source (radial motion). In this case,
g=9andf:—J’kdz:—K(z).Then,
(Kpu-6v),+ (Kpv +86u), = 0.

A flow similar to a potential vortex. In this case,
f=0andg=z Then,

kz¢+6llJ =0,
(Opu+zv),+(6pv —zu), = 0.

z,—0, = 0,
¥ ¢ (5)

It is worth noting that system (5) is well known in gas
dynamics [4], but irrespectively of the potentia -vortex
flow.

2
Thesolution y=g=06zand ¢ =f= % - F(2), with

F(2 = I k zdz, |eads to the equations

2 2
k(ez)¢+5%—FHw = 0, (ez)w—%—lﬁi = 0;
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and

2 2
E'.%—FHpu+esz +%—ngv—ezda = 0.
X y

2
Thesolutiond =f=-6K(ZandPp=g= % -G(2,

with G(2) = I K (2)dz, leads to the equations

—(%¢—(9K)w =

1
o

2
0, E%-(%m + (BK),

and

%Kpu—%—%v %va+ (%LE

It should be noted that the angle 8 of inclination of
the velocity vector enters into the conservation laws
under consideration as both an explicit argument and
the argument of the trigonometric functions. Moreover,
the two last solutions depend on the variable 6%. This
fact can be used to carry out certain estimates. For
example, using the known asymptotic form of the sym-
metric flow around abody [7] and the conservation law
presented above, we can prove that the following rela
tionships are satisfied at an arbitrary streamline over its
entire length:

+00 +o00

I(G(Z) —-G(z.))adl =

0.

I%zqdl >0.

—00

3. In order to construct new systems of equations
and conservation laws, we now consider known solu-
tionsto Egs. (1), which are found by the method of sep-
aration of variables. The four independent solutions are
of theform

f, = —Xh(l)cos)\e, g, = hMsinre;
f, = %h?gn)\e, g, = h®cosAB;
1 (6)
fg= —thz)cosxe, g; = h®sinAe;
f, = 2nPsnA0, g, = h®cose.

A

Here, A is an arbitrary constant, and the functions
hO(; 2) and h@(A; 2) are two independent solutions to
the ordinary differential equation of the second order:
h,(2) = A2kh(2). The subscript z stands for differentia-
tion with respect to z

Since the solutions depend on the arbitrary constant
A, it is possible to construct an infinite set of the func-
tions(f;, g). Therefore, according to Theorem 1, we can
find an infinite set of gas-dynamics equations (3) with

RYLOV

the variables (a = f;, B = g;) dependent on correspond-
ing functions and an infinite set of conservation laws
acquiring the following form:

(f)e—(9)y = 0,
(fipu+gv), +(fipv—-gu), = 0.

In the genera case, the functions h¥ and h® are
expressed interms of the hypergeometric functions[1-4].
Inthe case of A = 1, they take the known explicit form:

1 1 1

h1 2 = =, P12 =-—=,

(1,2 g ™ (1,2 Y

h(1: 2) = 9' h‘z’ 1:7) = p+pq
(1,2 q (179= 50

Thefunctions hV correspond to the Ringleb flow [1,
3, 8]. The streamline pattern for the flow corresponding
to the function h® isvery similar to that for the Ringleb
flow [1]. We now present the relations that describe
such flows, the systems of gas-dynamics equations in
the form of Egs. (3), and the corresponding conserva-
tion lawsin the physical plane.

Ringleb flow. (a):

cosH sinB
- f - T - = ]

0 1 00 g =0q q
KBn8 |, reosty _ 5 cen8y _rposén _
O D¢ O quJ Dqu qu[l¢

[£os6 sin@ 1 , rosb sinB
Tpq P17 Y0, " Opg P g ’
= 1,+0, = 0.

Ringleb flow. (b):
sine _ _ cosO.

b =1, = oq ' Y =0 _q ;
EPOSQ] _pneg _ EPOSQ] LEN60
D q quD 0 q | q DppD

[] sin® cos® 1 [gnb cosf
Opq P77 0, 0pg PV " g LEy
=0-1,=0

M odified Ringleb flow. (a):
2
_ - p*pg - - Pgnn-
= f, = =—=%co0s0, = = £9no;
o) 3 Y P = 0g; q
k[psm(% + pq cos(%
sm(% cosEH = 0;
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(p+pu’)x+(puv), = 0
M odified Ringleb flow. (b):

2
=f, = —msine, = = £)cose;
0] 4 00 Y =0, q

2
kD—)cos —Msin =0,
[ %4, 0 pq %w

2
(P (P+Pq 4 - N
= COS + sm(% =0;
Ly %w U pq b

(puv),+ (p+pv?y, = 0.

The Ringleb flow was comprehensively discussed in
the literature [1, 3, 8]. It represents one of afew exact
solutions to the problem on a flow with alocal super-
sonic area. However, the Ringleb flow leads to no
instructive conservation law in the (x, y)-plane. At the
same time, the modified Ringleb flow was only briefly
mentioned in the literature [1], not being discussed in
detail. However, as was shown above, this is the flow
that is associated with the momentum conservation law.
Nevertheless, we prove bel ow that a combination of the
functions describing the Ringleb flows of both types
entersinto the known angular-momentum conservation
law.

Itisevident that Theorem 1 does not exhaust all pos-
sible conservation laws, in particular, the angular-
momentum conservation law. The following theorem,
which to alarge extent generalizes the conservation law
mentioned above, is of interest.

Theorem 2. For arbitrary values of A, the following
conservation laws hold:

(f3R(LA) + T,R(2,A)),
—(9:R(L, M) +94R(2,2)), = O, )

(fiR(3,A) + f,R(4, 1)),
—(9:R(3,A) + 9.R(4,A)),, = 0. (®)
Here, f; and g; are the functions given by Egs. (6), and

the function R(i, A) is defined by its derivatives:

Remark. In contrast to Theorem 1, the expressionsin
the parenthesesin (7) and (8) do not satisfy system ().

Corallary. For A =1, the function R can be written
out in the explicit form
R11 =y, R(21) =x, R@B1=X-= Ipdy,
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R(4,1) = Y = [pdx,

with the integrals taken along streamlines.

In the case of A = 1, in the potentia plane and the
physical plane, conservation law (7) takesthefollowing
forms, respectively:

2 2
[P+ pPq p+pq
1 cosfy — ———1sinb
0 pq Y %p

(P p _
—=sinBy + £ cosb =0,
5" g %q,

((p+pU’)y—puvx)x+ (puvy—(p+pv?)x)y = 0.
Thisis simply the angular-momentum conservation law.

For A = 1, the functionsf and g entering into (7) cor-
respond to the modified Ringleb flow, while the func-
tion R corresponds to the Ringleb flow. At the same
time, these flows interchange in conservation law (8).
Asaresult, we have

[pos8y _sné.; _[8nB, , cosb . _
Upq pg U, Uq q 4,
X—Y, = 0.

Asisseen, for A = Linthe physical plane, conservation
law (8) has an extremely simple form.
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The upper temperature phase-state boundary (PSB),
below which substances in their condensed state are
thermodynamically stable, can be reached by both
high-intensity heating and a sharp decrease in pressure
(see, eg., [1-4]). Thermal processes accompanying the
decomposition of materials under one-sided heating of
their surface layers are of the most interest for practice,
in particular, from the standpoint of both the stability of
heat-resistant coatings and burning [5]. A hew method
of contact thermal analysis, described in [6, 7], makes
it possible to record the kinetics of thermal decomposi-
tion with aduration from several secondsto several tens
of microseconds and to determine kinetic parametersin
the immediate vicinity of the PSB of materials.

In this study, we propose a mathematical model for
describing the results of kinetic investigations and ssm-
ulating processes at the front of polymer decomposition
under high-intensity thermal attacks on surface layers
for temperatures up to the PSB.

The position of the PSB is thermodynamically
determined from the condition that the second variation
of one of the thermodynamic potentials is zero; e.g.,
&’G = 0, where G is the Gibbs free energy [1]. At the
stability boundary, the derivatives 3—5 and g—\T/ vanish,
and, therefore, the PSB can be calculated from the
equation of state. The wide-range equations of state
proposed recently in [8, 9] alow accurate calculations
of the parameters of both polymers and other materials.
Experimental methods enable us to determine the
kinetic analogs of the temperatures at the PSB, the
attainable superheating temperatures T, [2-4, 6, 7],
which are only dlightly (2-5°C) lower than corre-
sponding temperatures on the PSB at a given pres-
sure. Figure 1 shows the simplified block diagram of
asetup for contact thermal analysisand signal record-
ing from a photodetector for three linear polymers

Mendeleev University of Chemical Technology,
Miusskaya pl. 9, Moscow, 125190 Russia

being examined. These are (1) polymethylmethacrylate
(PMMA), (2) high-density polyethylene (LPP), and
(3) polyethylene glycol (PEG-40000) with a molecular
mass of 40000 amu. The plots clearly demonstrate that
the thermal decomposition of the first two polymersis
amultistage process that can be treated with allowance
for the evaporation of the resulting products of complex
chemical composition[11, 12]. To develop a mathemat-
ical model for processes occurring at the thermal-
decomposition front under intense heating, it is suffi-
cient to determine by recording photodetector signals
the thermal-decomposition duration at a certain tem-
perature. In other words, we need to measure the time
interval ty between the first dip (the moment when a
sample is set onto a substrate) and the moment when
the ty line becomes horizontal . Figure 2 shows the time
ty in the semilogarithmic scale as a function of the
reciprocal absolute temperature attained when testing
samples. The lower branches of the plots have a shape
close to inclined straight lines and can be described by
the Arrhenius equation. The left upper branches are
bent upward and asymptotically approach vertical

straight lines with abscissas _% This behavior isincon-
|

sistent with Arrhenius kinetics.

To describe the experimental results, various modi-
fied Arrhenius equations were proposed in [10, 11],
whose additional multiplier takes into account the
peculiar behavior of systems near the PSB. We use the
following equation to obtain this multiplier in the ana-
lytical form:

N alink 0 En
k(T) = exp N Bexp R0 (1)
where T,, E, and B are the problem parameters and the
exponent n lies within the range from 3 to 20, depend-
ing on the substance properties. Equation (1) forn=0
transforms into the ordinary Arrhenius equation. The
preexponential factor is responsible for the accelerated

1028-3358/02/4703-0176%$22.00 © 2002 MAIK “Nauka/Interperiodica’
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Fig. 1. Determination of the parameters for the upper temperature boundary of thermodynamic stability of polymeric materials:
(a) block diagram of the experimental setup; (b) recording signals from a photodetector for (1) polymethylmethacrylate, (2) low-

density polyethylene, and (3) polyethylene glycol.

decomposition of polymers due to weakening theinter-
molecular interaction and the intensification of homo-
geneous nucleation near the PSB [2-4, 6, 10].

We consider the thermal decomposition of a mate-
rial half-space, which is described by the heat-conduc-
tion equation

g—)\d—T— F(T) +pCpu— dT

dx” dx ax

(2)
where u isthe decomposition-front velocity, F(T) isthe
DOKLADY PHYSICS Vol. 47

No. 3 2002

heat-absorption function usualy taken in the form
F(T) = p,QKk(T) [5] under the assumption that thermol-
ysisis a zero-order reaction, Q is the thermal effect of
the reaction with the rate constant k(T), and p is the

density. For these reactions, we have k(T) = tl , which
d
allows the use of Eg. (1).

The last term on the left-hand side of Eq. (2) is usu-
aly ignored because of its smallness [5]. Integrating
Eg. (2) with allowance for the boundary condition
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Fig. 2. Results of studying the kinetics of polymer thermal
decomposition near the PSB: (1) high-impact polystyrene,
(2) block polystyrene, (3) high-density polyethylene,
(4) lavsan (dacron), (5) low-density polyethylene, (6) poly-
vinyl chloride, (7) polymethylmethacrylate, (8) polycapro-
lactam, (9) polyethylene glycol, (10) borax, (11) Alanin-
skoe-deposit oil.

10—1 -

10—2 -

1.1 1.2 1.3 1.4 LS
(1/T) x 10°, K

Fig. 3. (1, 2) Decomposition-front velocity and (3) burning
rate as afunction of the reciprocal temperature for (1) poly-
methylmethacrylate and (2, 3) polymethylmethacrylate +
triethylene glycol; 111 are regimes of therma decomposi-
tion. Experimental points are obtained by linear pyrolysis,
and dashed lines are calculated by Egs. (5) and (7) with
n = 48for heating regimes|1 and I11. For n =100, the dashed
lines merge with the vertical dashed-dotted straight line.

T = T, asx — oo and taking into account variations of

Ao(T
the thermal conductivity A(T) = —"%L—) caused by the

0
appearance of secondary porosity [6], we obtain

SHLENSKY, LYAPIN

dT _ 1/2
2T = b 0

T
Here, J(T) = Ik(T)dT, D= O, O ° and p, and A,
TO
aretheorigina values of p and A, respectively.
Furthermore, we equate the heat flow q,, arriving at

the surface to the general heat spent for heating and
decomposing the material:

T
quw = —)\WEg_X%X:O - up[cp(Tw_TO) +EQ]’ (4)

P(Ty)

where A, = A(T,) = XAy, X = , and & isthe frac-

tion of the reacted substance. Substituting the tempera-
ture gradient from Eqg. (3) into Eqg. (4), taking into
account Eq. (1), and approximately cal culating theinte-
gral J(T,) for n < 55 with an accuracy of 5% (see
Appendix), we arrive at the equation

_ DA,exp(—E/2RT,)exp(T,/T)"*B"
ol Cp(Tw—To) + EQI[N(Ty, /T}) + E/RTZ]

Forn=0and T < T, Eq. (5) goes over into the well-
known Merzhanov—Dubovitskii formula [12] that
describes the linear dependence of logu on T,

_ J aRT2Bexp(-E/RT,,)
=

E[(T,—To) +Q/2C,]° ©)

where aisthe thermal diffusivity, A, = Ay, and & = 1.

We compare the result obtained with available
experimental data. Figure 3 shows the rate of thermal
decomposition and gasification of linear PMMA and
spatialy cross-linked polymers produced by the copo-
lymerization of methyl methacrylate and diethyl ether
or triethylene glycol (TEG) in the case of burning and
linear pyrolysis. The sampleswere heated by thelinear-
pyrolysis method through contacting their end surface
with ahot metallic plate containing numerous holes for
the removal of pyrolysis products.

The lower sections of the plots (Fig. 3, regimel) cor-
respond to low temperatures at which sample cooling by
a surrounding medium affects the result. In region Il,
experimental data are approximated by an inclined
straight line [Eq. (6) and Eq. (5) for T < T}]. In this case,
the kinetic parameters determined by solving the inverse
problem of nonisothermal kinetics agree well with those
obtained by the thermal analysis (see Table 1).

Regime IlIl observed for higher temperatures
sharply differsfrom the two other regimes: the thermal-
decomposition rate increases abruptly with aminor rise
in temperature. Experimental points deviate upward

DOKLADY PHYSICS Vol. 47
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from the straight sloping Arrhenius line that corre-
spondsto Eq. (6). At the sametime, this deviation com-
pletely corresponds to Eq. (5), which includes the PSB
parameters. For this case, the maximum temperature of
the surface for PMMA samples (T,, ~ 512°C) corre-
sponds to data shown in Fig. 2, where the temperature
T, of various PMMA trade marks (shaded region) lies
within the range 500 to 515°C [12].

Therelation of Egs. (5) and (6) is descriptively rep-
resented as the product

u=K(Tu, (7
where
exp(T./T)"?
NRT(T,/T)"/E+1

Introducing the coefficient K(T,) provides the
description of thetransition fromregime |l toregimelll
and a further increase in the thermal-decomposition
rate. According to data of [2-4], the frequency of nucle-
ation rises by two—nine orders of magnitude with an
increase in temperature near the PSB by only 1°C. This
rise can be described by Eq. (1) with n = 20-100.
Table 2 presents the values of K(T,,) for PMMA at E =
43.0 kcal/mol and T, = 773 K for n =24 and 48 for var-

K(Tw) =

. . T
ious ratios T

This table demonstrates that the coefficient K(T,) is
close to unity for T < T,, and Eqg. (5) approximates the
linear section of the plots. The dashed line in Fig. 2
shows an increase in the decomposition-front velocity
u according to Egs. (5) and (7) for n=24. A similar cal-
culation was performed for other polymers of the spa-
tially cross-linked structure, PMMA + TEG (2 and
10%, respectively).

According to Eq. (3), the highest temperature gradi-
ents arise near the heated surface. In particular, the ther-

T-T
mal-decomposition depth | ~ 2

3 isequal to 1.3 x
&
103 mm for PMMA at T, = T, and dEI
X
For this value of |, Egs. (5) and (7) are applicable for
small polymeric particles, polymer granules, and poly-
meric drops of various shapes with the characteristic
sizeL > |. Thelimitation of an increasein surface tem-
perature (stabilization) with q,, is predicted by Egs. (4)
and (7) and is corroborated in experiments with various
methods of thermal supply, e.g., heating by an electric
arc, radiant and convective heating, diffusion burningin
media enriched in an oxidant, laser-beam action, etc.
[5, 11-15].
Thus, we may state that theoretical and experimen-
tal studies[10, 12, 13] involving microscopic and mac-
roscopic kinetics of polymer thermal decomposition

=3 x 108 K/m.
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Table 1. Kinetic parameters of the polymer thermal decom-
position for polymethylmethacrylate (PMMA) and methyl
methacrylate-triethylene glycol (MMA + TEG), which are
determined by methods of thermal analysis (TA) and linear
pyrolysis (LP)

E, kcal/mol logB [s]
Polymer

TA LP TA LP
PMMA 426+2|43+£3(1247+£0.7|13.32t1
MMA + 435+2|43+£3(1214+£07|1251+£1
2% TEG-3
MMA + 438+2|43+£3| 123+£07|1251+1
10% TEG-3

Table 2. Values of the K(Ty,) coefficient for polymethyl-
methacrylate (PMMA)

_'_I'_ K (TW)

T n=24 n=48
0.8 1.066 1.004
0.85 1.133 1.013
0.9 1.289 1.071
0.95 1.552 1.159
1.0 1.995 1.575
1.1 5.042 1125

1.2 249.6 3.06 x 10%°

under one-sided heating alow us to make important
conclusions. These studies have demonstrated that het-
erogeneous nucleation changes to homogeneous nucle-
ation near the PSB with anincreasein the heating inten-
sity. The Arrhenius equation traditionally applied for
mathematically simulating polymer thermal decompo-
sition does not involve information on the PSB param-
eters and, therefore, cannot alow for a change in the
nucleation mechanism near the PSB. The above-pro-
posed modification of the Arrhenius equation, in con-
trast to other attempts [10, 11], provides not only
numerical calculation of the macroscopic kinetics of
thermal -decomposition processesfor polymers near the
PSB but also analytical description of these processes.
In particular, this modification makes it possible to
derive the expression for the linear rate and the mass
rate of the thermal decomposition with the variation in
the parameters near the PSB taken into account. The
expression abtained is corroborated by the data of pre-
vious experimental studies. The above-proposed rela-
tions considerably improve the accuracy of calculations
for temperature fields and other characteristics of the
thermal decomposition under the highly intense heating
of polymeric materials.
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Appendix. Calculation of the J(T) integral. We
approximately calculate the integral [expF(x)dx by

the following method. For a linear function F(x), the
integral is exactly calculated as

J’epr(x)dx = expF(x)/F'(x) + const.

This expression is used as the first approximation
for integrating the nonlinear function F(x) = k(T) witha
certain error A, whose upper estimateis

_ B(n(n- 1)(T/T))" - 2E/RT)
n(T/T,)" + (E/RT)?

E
< exp ] explff)

The corresponding expression for the desired integral
can be written out in the form

BT DTDn

J(M) = expH
n(TIT)" + ERRT o) SPE RTD
which is used to calculate the gradient %;I—; and the
decomposition-front velocity ul.
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The intricate behavior of nonlinear dynamical sys-
tems currently attracts the attention of researchers. Toa
large extent, it is associated with the fundamental prob-
lem of studying the laws of dynamical chaos. Systems
with discrete time (of mapping) arethe simplest nonlin-
ear dynamical systems exhibiting many typical phe-
nomena.

However, there are only a few results on analyzing
transients, even though dynamical chaos and scenarios
of the order—chaos transition are actively studied. It is
generally thought that transients are unessential fea-
tures of the system dynamics and do not carry any par-
ticular information. Stable regimes (periodic, quasi-
periodic, chaotic) are amajor focus of interest, whereas
no consideration is given to transients. When transients
are prolonged processes, they may be perceived as
obstacles to efficient investigations of the system under
consideration. At the sametime, therole of transientsin
nonlinear-system dynamicsis of great importance. For
a number of dynamical systems (systems under an
external impulse action, systems with very prolonged
transients, systems with multistability, and distributed
oscillatory systems), a transient substantially deter-
mines their behavior. Thus, an important class of phe-
nomena was actually disregarded. As will be shown
bel ow, anumber of scaling laws exist for transients, and
processes occurring in a system affect the transient-
duration dependence on initial conditions under the
variation of controlling parameters.

In this paper, transients in anonlinear discrete-time
dynamical system are analyzed in detail for the first
time, and mechanisms complicating the transient-dura-
tion dependence on initial conditions are disclosed.
Fundamentally new scaling laws typical for transients
are found.

We study transients by the example of the classic
nonlinear-dynamic model, logistic mapping [1]:
Xn+ 1= FOG) = AX(1 = Xp). ey

The dependence of the transient duration on initial
conditionsisinvestigated for various values of the con-

Saratov State University,
ul. Universitetskaya 42, Saratov, 410601 Russia

trolling parameter A in the range from 1.0 to 3.57. In
other words, the subharmonic-cascade regionis consid-
ered [1].

Figure 1 illustrates the dependence of the transient
duration for A values corresponding to cases where a
fixed stable point existsin the system. It is seen that the
dependence of the transient duration K on the initial
conditions X, is of a complex “jagged” form. The
dependence K(x,) is regularly complicated as the con-
trolling parameter A increases.

Global minimain the transient-duration dependence
correspond to the initial conditions x, coinciding with
the points of an attractor that exists in the system phase
space for a given value of the controlling parameter A.
In other words, for A = 1-3, the global minimum of the
transient-duration dependence is attained at the fixed

stable point X = )-‘-X_—l , Whichisan attractor (Fig. 1). As

the parameter A increases and the fixed point x° losesits
stability, the global minimaof thetransient durationini-
tially correspond to the elements of the stable 2-cycle

[A = 3—(1 + 4/6)], and then to the elements of the stable
cycle with a period of 4, etc.

Since logistic mapping (1) is irreversible, two
sequencesof points { X%} |-, and {x™} |\". | existfor

A = 1-3.1 These points are mapped into the fixed stable
point X, in afinite number of iterations:

XX = f(x”) = F(FOE) = F(FOEY)

= .= fOD) = 1 O:D). ?

The sequence { xi(o)} |f°: , converges to the boundary of
the attraction pool of the mapping attractor x =0 as

x(©

X% =5 i 3)

The sequence { x} |["_, converges to the other bound-

1 with the exception of the case A = 2 for which X’ = 0.5, the condii-
tion f(x) = x is satisfied only for x = x°.

1028-3358/02/4703-0181$22.00 © 2002 MAIK “Nauka/ Interperiodica’
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Fig. 1. The Lameray diagram and the transient-duration
dependence for the logistic mapping at the controlling
parameter A = 2.75 corresponding to the case where a fixed
stable point is realized in the system.

ary of the attraction pool of the mapping attractor x=1as

1 X
XY, = 1—'T, i —» o0, )

Since the points of the sequences { xi(k)} |T°: 1.k=0,1
are mapped into the fixed stable point x, in afinite num-
ber of iterations, the minima of the transient durations
are also observed at these points (Fig. 1), and K(xi('i)1 =

KOxX®) + 1. The maxima of the transient duration

behave similarly. Therefore, the dependence of thetran-
sient duration K on the initial conditions x, in the sys-
tem under consideration exhibits scaling with the scale
factor A relative to the boundariesx = 0 and x = 1 of the
attraction pool of the attractor (Fig. 2).

Asthe controlling parameter A increases, acascade of
period-doubling bifurcations occurs in the system [1],
and the dependence of the transient duration K on the
initial conditions X, is complicated for few reasons.
First, unstable cycles appear, and the transient duration
is infinite for the initial-condition points x, coinciding

KORONOVSKII er al.
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Fig. 2. Scaling for the transient-duration dependence K(xg)

with the scale factor A with respect to the attraction-pool
boundary x = 0 of the attractor. The region to the left of the
dashed lineisexaggerated by afactor of A. Onrescaling, the
transient-duration dependence is repeated by shifting to
greater values by +1. The results are obtained for the con-
trolling-parameter value A = 2.75 when a fixed stable point
isrealized in the system.

with the elements of these unstable cycleﬁ.2 Simulta
neoudly, the transient duration is also infinite at the set

(<)

of points { y:(} |i - ,»Which, by virtue of theirreversibil-
ity of mapping (1), are mapped into elements of unsta-
ble cycles in a finite number of iterations. Second, the
number of sequences { X} |, and {y} |, whose

elements are mapped in a finite number of iterations
into elements of either stable or unstable cycles
increases.®

When stable 2n-cycles, n=1, 2, ..., areredlized in
the system, the transient-duration dependence aso

2Maxima of the transient durations are of different height and do
not turn to infinity in numerical simulation, because the initial
conditions x, are given with afinite accuracy.

3 Generally, the number of these sequencesisinfinite for A > 3.
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exhibits scaling in the vicinity of the attraction-pool
boundary points of the attractor. However, after the fixed
point x, has lost its stability (and a stable cycle with a
period of 2 appears), ascaling in thevicinity of thisfixed
unstable point is observed with the scale factor p = f'(X0),
which isamultiplier of this fixed point. To illustrate this
behavior, Figure 3 shows the transient-duration depen-
dences near an unstable fixed point for A = 3.25.

The existence of the unstable fixed point implies that

[

there are two sequences { zi(k)} |i -,,K=0, 1, converging
from the left and right to the unstable point x, as
Z_(k) 0

a+1—x+'ux, i~ oo, 5)

A local minimum of the dependence K(x,) corre-
i=1
(Fig. 3). Similar to Eq. (2), every element 2 is
mapped into elements of the stable 2-cycle in a finite
number of iterations. Moreover, every element of the

sponds to every element of the sequences {zi(k)} |

sequences {z} |, generates one or severd

sequences { X} | ", converging to the attraction-pool
boundary points of the attractors x = 0 and x = 1. In
other words, scaling with respect to the unstable point
X, is transferred to scaling in the vicinity of the attrac-
tion-pool boundaries of the attractor. The exception is
the case where the maximum-stability cycle with a
period of 2 isrealized in the system. In this case, only
these two points are mapped into the elements of the
stable 2-cycle in afinite number of iterations.

It is apparent that, as the controlling parameter A
increases, similar phenomena will be also observed on
the basis of the elements of 2n-cycles, n=0, 1, ..., los
ing their stability. Thus, the transient-duration depen-
dence K(x,) isregularly complicated asthe parameter A
increases. The elements of unstable 2n-cycles, which
appear due to the cascade of the period-doubling bifur-
cations, are responsible for this complication.

The scaling of the transient dependence K(x,)
described above is not unique. There is one more type
of scaling caused by the behavior of the logistic map-
ping at the critical point [1]. The renormalization-group
analysis [2] demonstrates that the dependences of the
duration of transients for maximum-stability cycles
exhibit scaling laws with the scaling constants a =
—2.503 and b = 2. When a selected segment is scaled by
a factor of a with respect to the point x = 0.5 and the
transient duration is increased by a factor of b for the
2n-cycle (n = 1, 2, ...), the dependence K(x,) corre-
spondsto the similar dependencefor the (2n—1)-cycle.

Thus, in this paper, using a logistic equation as an
example, we reveded the reasons complicating the
transient-duration dependence on initial conditions
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Fig. 3. Scaling in the vicinity of the unstable fixed point x°
for A = 3.25. The region between the dashed lines is exag-
gerated with the scale factor p = 2.562. On rescaling, the
transient-duration dependence K(x,) is repested by shifting
to greater values by +1.

when the controlling parameter varies and found uni-
versal scaling laws for such acomplication.
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1. The sine-Gordon (sG) equation
0:0,® = sin®, (D

where § = X — ct and n = x + ct are the light-front vari-
ables, describes numerous physical phenomena [1-5].
It was first applied in the differential geometry of sur-
faces with constant negative curvature (see, e.g., [6]).
Among other applications, this equation provides a
rather general scheme of three-frequency interaction
involving a counterrunning wave [7].

2. Equation (1) can be generalized by analyzing
four-frequency interaction. When frequencies «y and
wave numbers k; satisfy resonance conditions

K, +k, = ks +Kg,

the wave equation for a field reduces [8] to the set of
equations for slow amplitudes a; . This set consists of
four similar equations, thefirst of whichis
4
(0,+c,0)a, = ia, Z oylal*+ihalaza,, ()
j=1

where ¢ is the group velocity and h; and g are the non-
linearity coefficients proportional to the components of
the cubic susceptibility. Furthermore, we assume that a
pair of waves propagates contrary to another pair and
that the absol ute val ues of the group velocities are equal
to each other, ¢, = ¢; =—c¢, =—c, = C. Inthiscase, under
the physically realizable conditions g;; = g and g,; =
g4, and under the assumption of the equiphase condi-
tion, Egs. (2) (in the natural normalization to the non-
linearity coefficients and for the real-valued amplitudes
A)) are reduced to the set

0,A1 3 = TAAA ., 0:A 4 = FAIAA,,. (3)

The set of equations (3) has two independent integrals,
A+ A =G&)and A3 + A; =F2(1), where G(§) and

Wt W, = W3+ Wy,

Institute of General Physics, Russian Academy of Sciences,
ul. Vavilova 38, Moscow, 117942 Russia

F(n) are arbitrary functions. The substitution

Autin, = G(E)epHsT

. {d
A+iA, = FmexpH2E
with thereal-valued functions ¢, reduces Egs. (3) to the
desired set of equations

0.¢. = sng;, )

whereo, = aix arethe operators of differentiation with

respect to the new independent variables

X, = [dn F2(n), x_ = —Idzez(a).

Differentiation of set (4) yields a pair of second-
order equations

0,0_¢. = J1—(0,0,)°sin¢.. (5)

Each of these equationsis a peculiar generalization
of the sG equation. Indeed, these equations for
(0:0.)*> < 1 (particular linearization) reduce to Eq. (1).

In the three-frequency problem [7], sG equation (1)
arisesfromtheset 0,®P, =sin®_, 0_P_= P,. Therefore,
set (4) can bereferred to as the symmetric sine-Gordon
(SsG) equation. Set (4) was first derived in [9, 10] for
the case of the interaction of a pair of counterrunning
waves with a standing low-frequency wave.

3. The set of equations (4) hasaclass of self-similar
solutions depending only on the linear combination S=
AX, + (=1)"\"'x_ of the variables x,, where A and n are
real-valued and integer-valued parameters, respec-
tively. Set (4) reduced for this class of solutions hasthe
integral (Hamiltonian)

(-1)"Acosh, —A""cosp_ = H.

For [H| > |H,|, where H, = A — A1, both components
¢, of asef-similar solution periodically oscillate. For

1028-3358/02/4703-0184%$22.00 © 2002 MAIK “Nauka/Interperiodica’
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|H| < [Hs|, one component oscillates, whereas the other
unboundedly increases.

For H = (-1)™"H,, where mis an integer, the separa-
trices of above regimes are the solitons

b, = (+1)" x 2[arctan(ACe®) + arctan(Ce®)]

1+A
where A\ = X
case of A = £1, solution (6) describes a smooth drop
between two constant levels, i.e., a simple ttkink. For
A # £1, solution (6) is the superposition of two kinks
with the constant relative shift AS= In|A|. The sum and
difference of two kinks is a two-step kink with a total
amplitude of 21t and a pulse, respectively. In the coor-
dinate system (x, t) (X, = x £ t), the amplitude and width
of this pulse are determined by the parameter A and

2 n 2
A -CEDT (_];) L For
1-A
A2 <1, thecomponent ¢_ hasthe pulseform. In contrast

to Egs. (4), the classical sine-Gordon equation has only
simple-kink self-similar solitons.

4. The sum and difference of the solutions to
Egs. (4),

and C is a constant. In the limiting

depend on the pulse velacity v =

P, = 0. %0, ()

satisfy Eq. (1) in the form 9,0_®, = sin®,. Therefore,
set (4) describing actual phenomena [e.g., those
described by Eq. (2)] is adynamical realization of the
formal Béacklund transformation (BT) relating two
solutions to the sG equation (see, e.g., [1, 4]) with the
transformation parameter equal to 1. The pairs of solu-
tionsto the sG equation do not all generate the solution
to set (4) according to Eq. (7). However, the aforemen-
tioned relation can be used to construct those exact
solutions to set (4) that describe interactions between
solitons (6).

To construct these exact solutions, we apply the
method that was devel oped for constructing many-soli-
ton solutions of the classical sine-Gordon equation and
is based on the commutativity of Backlund transforma:
tions. The method consists in constructing closed
chains or networks of successive BTs[1, 4]. To obtain
solutionsto the SsG set, this method should be adapted
to Egs. (4) using chains that end by the Backlund trans-
formation with the parameter A = 1. In this case, the
components of a solution to set (4) are constructed as
the half-sum and half-difference [see Eq. (7)] of two
solutions to the sG equation related by the above trans-
formation. However, thistransformation correspondsto
introducing a simple kink to the interaction between
solitons[see Eq. (6) asA — 1]. In order to obtain gen-
eral many-soliton solutions to set (4), in particular,
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Fig. 1. Interaction between two composed symmetric sine-
Gordon solitons (6) for A; = —% JAy = —g ,C=-1,andm=

n = 0: the elastic collision of two pulses (¢_, solid line) and
of two double kinks (¢, dashed line).

without introducing a simple kink, it is necessary to
remove this kink from the interaction, shifting the kink
to +oo. This result is attained by taking O or o for the
free constant of the first transformation (withA = 1) in
the chain (i.e., taking the degenerate first transforma-
tion). This modified method provides many-soliton
solutions of set (4), including solutions describing
breather-type solitary waves and their interaction.

Figure 1 shows an example of the exact solution to
set (4). This solution describes a collision of two com-
posite solitons (A% # 1) [see Egs. (6)]. For themotion in
the same direction in the (x, t) coordinate system, each
of the components of the solution ¢, describes interac-
tion between equal -type solitons. Here, one of the com-
ponents (¢_ when v > 0) presents a most interesting
case of the interaction between pulse solitons. After
interaction, the shape of the solitons is completely
recovered.
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Fig. 2. (a) Surface of revolution (10) (contoursu; , = const

are shown) and (b) generatrix z(p) (solid line) and curvature
Kg (dashed line) as afunction of radius p.

5. We now discuss the application of SsG equations
in the geometry of surfaces.

Let a surface in the three-dimensional space with
Cartesian coordinates r = {r,, r,, r;} be specified by
equationsry = ryu;, U,), k=1, 2, 3. The Gaussian coor-
dinates (u;, u,) of the surface are chosen in such aman-
ner that itsmetric tensor g;; hastheformg,; =g,,=1and
012 = 0y, = cos@. In this case, the Gaussian curvature of
the surfaceis[11]

__1 %
singou,0u,’

Kg =

®)

This equation indicates that the angle ¢ between the
contoursu, , = const for asurface of aconstant negative
curvature K; = -1 is described by the sG equation. An
example of such asurface isthe Beltrami surface [6].

KRASNOSLOBODTSEYV et al.

@

I3

Fig. 3. Thesame asin Fig. 2 for surface of revolution (11).

We now discuss surfaces for which the angle @ is
determined by Eq. (4) for x,=u, , and ¢, = @. It follows
from Egs. (8) and (4) that the curvature Kg = —cos¢_ of
these surfaces can vary. We seek a corresponding exam-
ple among surfaces of revolution,

ry = psing, rs = z(p).

In addition, we suppose that the angle ¢ and radius
p depend only on the sum o = u, + u,. Substituting these
relations into the definition for g;; yields

B=b(u-u), p=b"

The generatrix of the surface of revolution, z(p), is
determined by the equation

r, = pcosp,

sn‘—g‘, b = const.

DOKLADY PHYSICS Vol. 47 No.3 2002
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To construct a surface corresponding to set (4), we
use simple-kink solution (6) for A = %1, ¢ =

i(ul + Uz)]

2arctan[e . In this case, the dependence of the
curvature on surface coordinates also has the form of a
surface-curvature kink

Kg = tanh(u, + u,) ©)

describing avariation in the curvature K from 1 to 1.
In order to determine the surface, we should also

specify the parameter b. For b = % the surface is

expressed in elementary functions as
¢20] -2

p=2[l+e ,

) e (10)
ry = arcsinh(e) —2[1+¢e ]

andisshowninFig. 2.

For b = 1, the generatrix of the surface is specified
by the quadrature

20, —1/2

p=[1+e"] ,

(o)

+25 +25 +45s
ry = $I“/(1+e )(1J+rze2 T€ )ds
! (1+e™)

and is shown in Fig. 3. In the vicinity of p = 1, both of
the curvature radii of surface (11) have amost the same
magnitudes and this surface is close to the unit-radius
hemisphere. As p — 0, this surface degenerates to a
Beltrami pseudosphere. Thus, kink (9) here describesa
variation in the curvature from the region with K; = 1,
in which the surface is locally spherical, to the region
with K; = -1, in which the surface behaves as a Bel-
trami pseudosphere.

The above applications of SsG equations are evi-
dently related to each other. For the four-wave problem
described by these equations[see Egs. (3), (4)] with sta-

(11)
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tionary boundary conditions, the squared amplitudes of
the interacting waves are proportiona to the functions
1 £ cos¢, ; . Therefore, the squared amplitudes of waves

for each solution to set (4) are proportional to the Gauss-
ian curvature of a surface generated by this solution.
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A phenomenon that is paradoxical at first sight is
studied: an appropriatel y-organized energy outflow from
aresonator cavity results not in the attenuation of nonlin-
ear vibrations but in their noticeable enhancement.

An increase in the resonator Q-factor and in the
energy accumulated in it is well pronounced when the
frequencies of higher harmonics generated in anonlin-
ear medium are close to the natural frequencies of the
resonator.

Animportant example of nonlinear systemswith the
necessary properties is an acoustic resonator with
selective losses. First, we consider a conventional reso-
nator whose right boundary x = L isfixed and whose | eft
boundary x = 0 oscillates with the velocity

u(x=0,t) = Asin(wgt). €))

Here, wy, = TC/L, where cisthe speed of sound. Sincethe
spectrum of the natural frequenciesis equidistant, w, =
nw, (N=2, 3, ...) and a cascade of nonlinear processes
takes placein the system, resulting in an effective trans-
fer of energy to the high-frequency region (higher har-
monics). In this region, the energy of oscillations is
heavily absorbed due to the high-frequency dissipation
effects, which are usually related to the viscosity and
thermal conductivity of the medium [1]. A standing-
wave field formed in the resonator involves shock
fronts traveling between the walls [2]. Nonlinear
absorption occurring in the narrow region of the front
determines the Q,,-factor of the resonator in the strong-
oscillation mode. This Q-factor is much less than the

conventional linear quality Qj, [3]:
Q B Dﬁl:lﬂz Czp
Thw,

= OreAd Qiin = ()
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Here, p, €, and b are the density, nonlinearity, and effec-
tive viscosity of the medium, respectively [1].

Recall that the quantity Q is the ratio of the charac-
teristic amplitude of field oscillationsin the resonator to
the amplitude of the oscillations of the boundary.

The necessity of increasing the energy stored in a
resonator arises in many applications (see, e.g., [4, 5]).
The ways of increasing Q,, were discussed in [6]. One
important method based on the introduction of selective
losses at the second-harmonic frequency 2w, is ana
lyzed below.

The genera ideas of controlling the nonlinear inter-
actions by introducing selective losses were reported in
[7, 8]. In this case, the absorption at the frequency 2w,
suppresses the generation of the second harmonic and,
therefore, interrupts the cascade of the nonlinear trans-
fer of energy upwards over the spectrum. In practice,
losses at the frequency 2w, can be realized either by
introducing resonant scatterersto the medium (e.g., gas
bubbles to a fluid) or by using selective boundaries
(e.g., transmitting the frequency 2wy, and reflecting all
other frequencies[9]).

We analyze a nonlinear resonator in an approximate
approach. As was shown in [2], an oscillating field
between thewallsx =0 and x = L can be represented as
the superposition of two mutually opposing waves.
Each of them can be strongly distorted due to nonlinear
self-action, but the contributions of cross interactions
are nonresonant and can be neglected [3]. The velocity
u of oscillating medium particlesin one of the opposing
waves obeys the equation [3, 7, 10]:

1ou_g ou_ b du
cot 2 ot 347912
R c 2c’pot 3)
. a .
= Zsm(wor)—gbz(t)sn(Zwor).

Here, for definiteness, the wave traveling in the positive
x-axis direction is considered; t is the slow time corre-
sponding to the transition to a steady state in the reso-
nator; the fast time 1 describes the oscillations; a isthe
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selective-absorption coefficient; and the amplitude of
the second harmonic,

by(t) = ]Z_Ju(t, 1)SiN(20,T) d(0,T), )
0

isnot known in advance. Thus, Eq. (3) with Eq. (4) isa
nonlinear integro-differential equation [7]. When the
right-hand side of Eq. (3) is defined, Eg. (3) goes over
into a Burgers-type inhomogeneous equation [11].

For convenience, we use the dimensionless vari-
ables
_u _ _t
V——,e—wOT,T—t—, )

uO s

where t, is the characteristic nonlinear time of forming
a discontinuity in the wave and u, is the characteristic

amplitude;
(o _ | Ac
EWoUo’ Y = \ome ©)

Equation (3) with Eq. (4) in view of Egs. (5) and (6)
takes the form

L

oV _\v_ oV
0T 00  j¢?
n (M

= sing- Dsin261g_JV(T, 0')sin20'de’.
0

Here, the dimensionless numbers

b t
wo-t—sandD: 9 - at,  (@®)
a

r= =
€Wy

"~ 2epcu,

are the ratios of the nonlinear time t, to the time of the
conventional absorption t, and to the characteristic time
a~! of selective losses, respectively.

To anayze the excitation of forced oscillations in
the resonator, EQ. (7) should be solved with the zero ini-
tial conditions V(T =0, 8) = 0. For T — oo, abalance
between the energy inflow from the source (oscillating
wall) and the losses of three types—uviscous, nonlinear,
and selective—is achieved. Steady-state oscillations
are most easily analyzed. At the same time, steady
states, where nonlinearity is most pronounced, are of
the most interest. The steady-state solution satisfying
the periodical conditions, which reduces to the homo-
geneous boundary conditions

Vy(8=T) = Vy(8=-m) = 0
DOKLADY PHYSICS \Val. 47
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Fig. 1. One-period profiles of oscillations for various values
of selective absorption D.

when the wall motion is described by Eq. (1), has the
form

Va(6)

2

x| 1+ D(1— cos6) %JVS(G')sinZG'dG'}
0

= +(1+ cosf)"?

12 9)

Thesigns + and —in solution (9) are taken for the half-
periods 0 < B < tand —1t< 0 < O, respectively. In the
vicinity of 8 = 0, a shock front is formed. Ignoring its
structure, we set I = 0 in solution (9). Allowance for
nonzero I values can be made by the method of
matched asymptotic expansions (see, e.g., [12]) and
will give only small corrections (in the strongly pro-
nounced-nonlinearity mode) for the energy characteris-
tics of the field.

The one-period profiles of oscillations are shown in
Fig. 1 for the D selective absorption values [EQ. (8)]
equal to 0, 1, 4, 10, and 20. In the presence of only non-
linear absorption, the profile has the form

V4(0) = 2cosgsgn6, (10)
which isthe known solution of the nonuniform Burgers
equation [11] and follows from (9) for D = 0. With an
increase in the selective absorption D, the dimension-
less amplitude of the discontinuity does not increase,
but a noticeable increase in the perturbation Vg is
observed in smooth sections of the profile. For D > 1,
the oscillation isalmost harmonic, V4 = V,,sin8, and the
jump of the small relative magnitude 2 < V, only
remains at the point 6 = 0.

Thus, the amplitude B, of the second harmonic 2w,
decreases noticeably with increasing D. The onset of
this process is shown in Fig. 2. The suppression of the
2wy, wave retards the energy transfer to higher harmon-
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0 5 10 15 20 D

Fig. 2. The solid lines are the amplitudes B, and B, of the
first and second harmonics, respectively, and the corre-
sponding product DB, for various values of selective
absorption D and (dashed line) the amplification coefficient
K of the oscillation energy accumulated in the cavity of res-
onator.

Fig. 3. Shapes of oscillations in the cavity sectionsx = L/8,
L/4, L/2,3L/4, and 7L/8 for D = 20.

ics 3wy, 4wy, ... . Therefore, energy is accumulated at
the fundamental frequency w,, which virtually doesnot
attenuate. The first-harmonic amplitude B,(D) is aso
shown in Fig. 2. This figure shows product DB,(D)
appearing in the basic formulas below.

In particular, perturbation (9) attains the maximum
vaueVy=2a 6 =0for DB, <0.5, and for DB, > 0.5
the peak (see Fig. 1) isshifted to the point 6,,,,, at which

1 _ 1+2DB,

2DBJ) ~  2DB,

The mean intensity over period

Vi = Va%max = arccos

(1)

| = V2 = 2+ DB,(D) (12)

RUDENKO et al.

also increases with an increasein DB,(D), i.e., with the
enhancement of selective absorption.

In the limit D > 1, we obtain the formula DB, =
213D?3 and the expressions

V4 =2"°D"sing + 2°D™sin26, (13)

Voo = 22D, and 1 =2"°D%° (14)

for the steady-state profile, maximum (11), and mean
intensity (12), respectively.

The profiles of standing waves between the walls of
resonator O < x < L are plotted by combining two func-
tions (9) shifted relative to another [2, 3]:

V(X, wt) =V Ot+n—n[)%—v 0t—n+n)—|E.(15)

The shapes of oscillations measured in the cavity
sectionsx = L/8, L/4, L/2, 3L/4, and 7L/8 are shown in
Fig. 3 for D = 20. Similar profiles in the absence of
selective absorption (D = 0) were plotted earlier (see
Fig. 4in[3])

The comparison of results showsthat for D = 20 the
“traveling discontinuities’ in the profiles of standing
waves are less pronounced than in the absence of selec-
tive losses. Consequently, nonlinear attenuation is par-
tially suppressed. As aresult, the maximum V valuesin
Fig. 3 are approximately as high as the corresponding
peaksfor D = 0.

The Q-factor of the resonator in the nonlinear oscil-
lation mode with a complicated spectrum can be
defined as the ratio of the maximum velocity perturba-
tion 2u,,,, in the standing wave to the velocity ampli-
tude A of the boundary oscillations:

_ SUmax _ 2C .
Q=2 A A/T[?A(D(DBZ)’
1+2DB
©=""""2 for

/2DB,

and & = 2 for 2DB,< 1.

Itisalso possibleto define Q in terms of the ratio of the
average intensities of these oscillations:

2DB,>1, (16)

2 ZLT2 _ 2c
o = (2+DB,).

Formulas (16) and (17) both describe an increase
in the Q-factor with enhancement the selective
absorption D.

“Amplification coefficient” K(D) of the oscillation
energy accumulated in the resonator cavity is shown in
Fig. 2 by the dashed line.

The estimation of the nonlinear factor Q,; by Eq. (2)

for a conventional air-filled resonator whose boundary
oscillateswith the velocity A= 10 cm/syields Q,, ~ 85.

(17)
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If theright wall x = L of the resonator transmits 98% of
the incident radiation power at the second harmonic
frequency, it follows from Eq. (16) that Q = 300; i.e,,
selective losses should increase the resonator Q-factor
by a factor of about 3.5 and the energy of oscillations
by more than an order of magnitude.

We note that the problems of nonlinear systemswith
selective losses are recently of interest in connection
with a number of applications[13, 14].
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The choice of ssmple and efficient means for protec-
tion from blast loads when detonating explosives is a
topical problem in fundamental and applied studies. In
searching for these means, sources of blast loads in the
form of explosive charges were placed inside various
containment shells or immersed in diverse media con-
suming blast energy.

There exist two directions aimed at creating means
for blast protection. The first is associated with the
obvious attempt to surround an explosive charge by a
solid impermeable shell. Here, we dea with a trivia
case when an explosive chargeis placed into aclosed or
half-closed container [1]. In practice, it was shown that
this method of charge localization is poorly efficient.
Afterwards, in order to improve the exploitation prop-
erties of a protective container, itsinner cavity came to
be filled with a compressible substance. In[2], [3], and
[4], aliquid foam, aliquid containing gas bubbles, and
agranular or fibrous material, respectively, were used as
fillers of containers. Each of these blast-consuming
media can be characterized by an effective apparent den-
sty o, which differs from the skeleton-material density
p. For example, for water foam, o0 = 10-30 kg/m3 at p =
1000 kg/m?; for water saturated with gas bubbles, o =
900-990 kg/m3; and for fibrous and granular fillers, o >
1000 kg/m? at p = 2000 kg/m?.

The second line of studies aimed at creating means
of protection is specified by the complete rejection of
an impermeable solid shell around an explosive charge.
Inthis case, avariant of blast suppression in the volume
of a sprayed liquid (most often, water) can be consid-
ered asan ultimate case[5]. However, dueto theimpos-
sibility of obtaining highly concentrated liquid sprays
with g = 1-2 kg/m3, thismeans of blast suppression has
proved unfeasible.

* Semenov I nstitute of Chemical Physics,
Russian Academy of Sciences,
ul. Kosygina 4, Moscow, 117977 Russia
** Sientific and Industrial Enterprise of Special Materials,
B. Sampsonievskii pr. 28A, S. Petersburg,
194044 Russia

In order to obtain a sufficient concentration of a
blast-consuming material to provide reliable damping
of explosive waves, gasfilled covers consisting of
water foam [6] or polyurethane foam [7] were pro-
posed. For these materials, o = 10-20 kg/m?® and 50—
100 kg/m?3, respectively, while p = 900 kg/m?3.

In practice, the application of gasfilled shells to
confine the demolition effects of explosive charges
(with aweight not more than 3 kg) has shown that the
energy of explosion products is spent mainly for the
kinematic acceleration of containment shells. In addi-
tion, the role of the transformation of energy flows at
the interfaces of explosion products, the blast-consum-
ing medium, and the atmosphere is also significant.
Attempts associated with regulating blast loads at the
expense of energy lossfor evaporating or spraying pro-
tective-medium materials have demonstrated little
effect.

By virtue of the dominating role of inertial proper-
ties of containment shells when suppressing explosion
shock waves, the change in the kinematic characteris-
tics of a medium that damped the expansion of explo-
sion products turned out to be an efficient means of
blast reduction. Note that, for the medium surrounding
an explosive charge, the compressibility is the most
important characteristic. A reliable reduction of explo-
sion effectsis attained when the protective mediumisa
liquid that assures (at least, at initial expansion stages)
against the penetration of explosion products into the
atmosphere being protected.

As is known, the measure of the compressihility of
aliquid is the speed of sound in it. We can control the
speed of sound in aliquid by incorporating into its vol-
ume porous elements, gas bubbles, or hollow polymeric
inclusions. The embedding of compressible inclusions
is especially significant in affecting the propagation of
moderate-intensity shock waves with afrontal pressure

P

drop 51 < 1000. For higher-intensity shock waves, the
0

presence of compressible elements is of less impor-

tance. The immersion of explosive charges in a com-

pressible two-phase medium critically changes the

characteristic time scales of al wave processes and
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enhances the possibilities of efficient energy exchange
between the explosion products and the containment
shell [8].

These arguments make it possible to propose a new
blast-reduction method. Figure 1ashows such ascheme
for an explosive charge (7), which involves a thin
layer of a liquid dispersion medium confined in the
volume (2) between elastic shells (3). Theliquid layer
is separated from the explosive charge by a gas-illed
spacing [4]. The arrangement of the basic e ements dif-
fers from that in the case of a traditional scheme [9]
(Fig. 1b). The crucial role of the air spacing consistsin
reducing the amplitude of the shock wave (due to the
difference in the explosive-charge volume Ry, and the
shell inner cavity R,) before its meeting with the liquid

layer.

On the basis of published [9] and new experimental
data, we can compare the efficiency of the blast reduc-
tion for the schemes shown in Figs. 1aand 1b. Informa-
tion on the blast reduction with the help of awater shell
contacting the explosive charge (i.e., for the scheme
shown in Fig. 1b) was taken from [9]. Data on the blast
reduction according to the scheme shown in Fig. 1a
were obtained in aseries of experimentssimilar to [10].
Theratio of the water mass (M) to the explosive-charge
mass (G) was 50 (G = 40 and 100 g in [9] and [10],
respectively).

Figure 2 shows the amplitude variation ® for the
coefficient of the blast reduction as a function of the

The distance R was

normalized distance R* = %
G

measured from the blast epicenter to the measurement
AP(R*)
AP (R¥)
was evaluated using the amplitude of the shock wave
AP(R*) for the explosion in the liquid shell and the
amplitude AP,(R*) for the explosion in the gas-filled
shell of the same size according to the scheme shownin
Fig. 1c. Thisisjustified by the fact that the value of AP,
(crosshatched region 7 in Fig. 2) is by 10-20% smaller
than that of AP,(R*) for a completely open charge.

point. The blast-reduction coefficient d =

The regions 2 and 3 for values of ® in Fig. 2 were
obtained, respectively, for explosions corresponding to
the schemes shown in Figs. 1b and 1la

Figure 3 shows the variation in the pressure pulse
for the shock wave in the case of compression phase |,
when detonating an explosive in the gas-filled air shell
(curve 1 according to [9]). The bands of values denoted
as2 and 3for |, were obtained for explosions using the
schemes shown in Figs. 1b and 1a, respectively.

The plotsin Figs. 2 and 3 confirm that the scheme
presented in Fig. 1afor reducing the demalition effect
of an explosion has the highest efficiency.
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(a)

b — o

(©)

Fig. 1. Possible schemes of blast reduction, which use elas-
tic containers filled with liquids: (1) explosive charge,
(2) dispersion medium, (3) €elastic shells, and (4) air
spacing.
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Fig. 2. Dependence of the coefficient of the shock-wave
amplitude reduction on the normalized distance in the case
of various blast schemes.

Our investigations are based on the rational use of
propagation features for pressure waves and rarefaction
waves when detonating explosivesin amedium charac-
terized by elevated (compared not only to aliquid, but
also to agas) compressibility.
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Fig. 3. Dependence of the pressure pulse for the compres-
sion phase on the normalized distance in the case of various
blast schemes.

The essential distinction in the above method of
blast reduction is the preliminary correction of initial
conditions for the expansion of explasion products due
to the attached volume of athin gas layer between the
explosive-charge surface and a compressible medium.

The described method of blast reduction wasused in

designing a series of devices for the rapid and reliable
protection of equipment and personnel in the process of
the conservation and/or elimination of explosive sub-
stances and systems.

N

10.
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INTRODUCTION

Employment of atomic functions (AF) in the digital
processing of one-dimensiona signals was thoroughly
analyzedin[1, 2]. Many operations of one-dimensional
signal processing are considered to be applicableto the
multidimensional case [3]. For example, employing
operations of the direct product or rotation of one-
dimensional windows, it is possible to synthesize mul-
tidimensional atomic-function windows having rectan-
gular, hexagonal, or circular apertures. While using
windows with an arbitrary reference region, certain
complications of both a qualitative and quantitative
nature arise, which are associated with a necessity of
analytically describing the geometry of this region.
This problem can be solved with the help of application
of the R-function method [4]. In the present paper, we
consider for the first time problems of constructing
multidimensional windows based on both R functions
and atomic functions, as well as on the concepts devel-
oped in [1].

R FUNCTION AND THE INVERSE PROBLEM
OF ANALYTICAL GEOMETRY

Let aregion Q with the boundary 0Q be given in the
space R". Let it be necessary to construct a function
w(X), X = (X}, X, ..., X;). This function must be strictly
positiveinside Q, negative outside Q, and equal to zero
on dQ. The equation w(x) = 0 determinesin theimplicit
form the boundary of the region. We assumethat Q can
be represented as a combination of certain initia
regions Q,, Q,, ..., Q,, on the basis of the following
logical operations over sets, namely, n (intersection),

* |nstitute of Radio Engineering and Electronics,
Russian Academy of Sciences, Mokhovaya ul. 18,
Moscow, 103907 Russia

** Bauman Moscow Sate Technical University,
Vtoraya Baumanskaya ul. 5, Moscow,
107005 Russia

O (association), and = (complementation). We can
write out this assumption in the form
Q=F{Q,Q,....Q13,{n O3 }). (1)
Inthis case, we also assumethat theinitial regions have
simpler shapes than Q and that, for each of them, the
equation for its boundary w(x)=0,i=1,2, ..., mis
known. The theory (method) of R functions was devel-
oped by Rvachev [4]. In the framework of the set the-
ory, this method makes it possible (on the basis of
describing the Q region) to obtain the equation w(x) = 0
in the analytical form for the boundary of this region.
According to [4], one of the basic complete systems of
Rfunctionsisthe M, system of the form

L (x+y—JX+y’—2axy),

1+a

L x+y+C+y—2axy), @

l+a
X E X

xtyy=

XU y=

Here, a = a(x, y) isan arbitrary function satisfying the
condition -1 < a < 1. Usually, it isassumed that a =0
(N, system) or a = 1 (N, system). The correspondence
established by Rvachev between logical-algebra func-
tions and R functions makes it possible to find a con-
structive solution to the inverse problem of analytical
geometry. To do this, it is sufficient to formally
exchangein (1) Q by uxX(x), Q; by w(x),i=1,2, ..., m,
and to use symbols of Roperations{ [} [ -) in system (2)
instead of {n, [, =}, respectively. As a result, we
obtain the analytical expression that determines the
equation for the boundaries of the region Q in terms of
elementary functions

w(x) = 0. (3)

In this case, w(x) > 0 for inner points and wx(x) < O for
outer points of the region Q.
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ATOMIC FUNCTIONS

The class of atomic functions [1, 2] includes finite
solutions to functional differential equations (FDE) of
the form

N M
dy"(¥) = § cuy(ax—by).
2 2

Here, a, d,,, ¢, and b, are numerical parameters, and
[a] > 1. One of basic types of AF is determined by the
following FDE:

L(ZX) = y(ax+ 1) —y(ax—1), “)
a

where a > 1. Finite solutions (4) with the carrier
1 1 :
[ -1 Efﬂ areusually denoted ash,(x) [5]. Their

Fourier transform has the form
Fa(p) = [7] sine(pa™, )
k=1

where sinc(X) = —5123( . Using expression (4), we can
express the derivatives of the nth order in terms of the
values of functionsthemselves. For a = 2, we obtain the
most well-known and investigated function h,(x) =
up(X). The principa properties of both the parent’s
function up(x) and the function h,(x) are described in
[1, 2,4, 5]. Asarule, atomic functions and R" functions
are constructed on the basis of the direct product of
one-dimensional AF, e.g.,

upy(x) = [ up(x))-

j=1

SYNTHESIZING TWO-DIMENSIONAL FILTERS
WITH A FINITE PULSE CHARACTERISTIC
AND A REGULAR APERTURE ON THE BASIS
OF ATOMIC FUNCTIONS

One promising direction in the application of R
functions and atomic functionsisthe digital processing
of multidimensional signals. As is well known [3], in
problems of the digita filtration of two-dimensional
signals, filterswith afinite pulse characteristic (FPC fil-
ters) gained the most acceptance. Their principal
advantage compared to filters with an infinite pulse
characteristic isthe possibility to synthesizefilterswith
a zero phase shift. In addition, a number of difficulties
in constructing two-dimensiona filters with an infinite
pulse characteristic are associated with the necessity to
provide their stability. A two-dimensional FPC filter
ensures the zero phase shift, provided that its frequency
characterigtic is a real-valued function H(w,, w,) =

KRAVCHENKO, BASARAB

H*(w,, w,) or that the pulse characteristic is symmetric
with respect to the origin of a coordinate system; i.e.,
h[n,, n,] =h*[-n;,—n,]. Thereexist several methodsfor
calculating two-dimensional FPC filters [3]; among
them, the window-function method is the most widely
propagated in practice. In correspondence with this
method, the desired two-dimensional frequency char-
acteristic of the filter is represented in the form of the
Fourier series

—j (W Ny + w,Ny,)
Ho(wy, ;) = Z z ho[n;, njJe """ 7

n, = —oon, = —o

, (6)

where

j(wyNng +0,N5)

1T[T[
ho[n;, n,] = — Hy(w,, w,)e dw, dw,.
ol N1, Ny 4T[2J'J’o(1z) 1dw,

—T-Tt

Here, hy[n,, n,] is the infinite pulse characteristic of a
two-dimensional filter that correspondsto the given fre-
guency characteristic Hy(w;, ). In order to realize the
two-dimensional FPC filter, the summation in series (6)
should be limited. This results in deteriorating the con-
vergence of truncated series (6) to the given frequency
characteristic in its discontinuity points (the so-called
Gibbs effect). To improve the convergence, the coeffi-
cients hy[n,, n,] should be multiplied by the two-
dimensional window function w[n,, n,]. In other
words, the functions
h[n;, n,] =w[n;, n,] - hy[ny, n, ]

are used as filter coefficients.

For filters with the zero phase shift, the window
function must satisfy the condition wn,, n,] = w*[-n,,
—n,]. Two-dimensional FPC filters are synthesized on
the basis of two-dimensional window functions defined
on rectangular, hexagonal, or circular reference regions
(apertures) [3], which we call regular.

In the simplest case of a square aperture, the two-

dimensional weight window isformed on the basis of a
direct product of one-dimensional windows

wing, ] =w[n; ] -wn,]. (7

The window with a hexagonal reference region is
formed in asimilar manner:

2

Finaly, in the case of a circular aperture, the two-
dimensional window is obtained by rotating a one-
dimensional window about the symmetry axis and is
described by the expression

winy, n,] = wl/n; +ng]. ©9)

A large number of one-dimensional window weight
functions are known [1, 15]. In addition, in solving

ng+ nz«/é} [W[nl - nz«/é] )
2

win, nyl = wln,] EW[

DOKLADY PHYSICS Vol. 47 No.3 2002



A NEW METHOD OF MULTIDIMENSIONAL-SIGNAL PROCESSING

197

Table 1. Basic physica parameters of two-dimensiona Kravchenko—-Rvachev windows constructed on the basis of the atomic

function hy(x)

Equivalent Correlation of Parasitic Maximum Maximum Window Coherent
Parameter noise overlappingsegments| amplitude |transformation| level of side | width at the amolification
a band, bin (50% overlap), % |modulation, dB|  loss, dB lobes, B |6-dB level, bin| &P
b, b, bs b, bs b, bg
11 20.7 2x1077 0.2 134 -154.3 6 0.03
12 10.24 8x 1073 0.3 10.4 —86.1 4.2 0.05
13 7.02 0.18 05 9 -55.2 35 0.07
15 4.49 2 0.7 7.2 -36.3 2.8 0.12
2 2.62 12 12 54 -23.3 2.1 0.25
3 174 29 18 4.2 -17 17 0.45
5 1.35 40 25 38 -145 15 0.64

problems of one-dimensional signal processing, new
widow classes, e.g., Rvachev—Kravchenko windows
and Kravchenko windows (both based on atomic func-
tions), as well as hybrid windows, e.g., Kravchenko—
Hamming windows, Kravchenko—Kaiser windows, and
Kravchenko—Blackman—Harris windows, find applica
tion [1, 2]. Using expressions (7)—(9), we can synthe-
size their two-dimensional analogs with regular refer-
ence regions. Below, we thoroughly analyze windows
with square apertures, which are based on the atomic
function h,(x). To compare the characteristics of two-
dimensional windows (in the plane w, = 0) defined on
the square aperture (-1 < x< 1, -1 <y< 1), weemploy
the following set of physical parameters.

1. The equivalent noise band,

11

_f J’ WA(x, y)dxdy
b, = 4=1L

[ j J’ wW(X, y)dxdy}

-1-1

>

2. The correlation of overlapping segments,
11
b, = 24—~
f Iwz(x, y)dxdy
-1-1

3. The parasitic modulation amplitude (expressed in
decibels),

100%.

2

b; = -10log W(v2, 0)
W(0, 0)

where W(p, g) is the two-dimensional Fourier trans-
form for the window function.

DOKLADY PHYSICS Vol. 47 No.3 2002

4. The maximum transformation loss (expressed in
decibels),

b, = 101og(b, ) + bs.

5. The maximum level of side lobes (expressed in
decibels),

2

W(uk! O)
W(0, 0)
where{uy} are points of local maxima (excluding u,).

6. The asymptotic-decrease velocity for side lobes
(expressed in decibels per octave),

b = 10Iogm|<'(:1x

b = 101og lim |W(2u, 0)|?,
u- | W(u, 0)
7. The window width at the 6-db level,
b7=2U,

where u is the maximum frequency such that
IOIOg‘VM ?=6.

W(u, 0)
8. The coherent amplification,
1 11
bg = Z_Il :[1 w(X, y)dxdy.

Here, the normalization conditions w(x, y) = 0 for
IX|> 1 or ly| > 1; w0, 0) = 1; and W(-X, y) = W(X, ) =
W(X, =y) = w(=X, -y) are fulfilled. By virtue of the con-
dition of symmetry in the plane w, = 0, the window has
the same characteristics.

The principal physical characteristics of the normal-
h.(x/(a—1))
h,(0)
eter a are presented in Table 1. As in the one-dimen-

sional case, owing to the infinite differentiability of
atomic weight functions, the value of bs for al taken

ized windows as functions of the param-
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Fig. 1. Two-dimensional Kravchenko—Rvachev window with a square reference region, which is constructed on the basis (a) of the

N system, and (b) of the logarithm of its frequency characteristic.

windowsisequa to infinity. In the case of ignoring this
parameter, windows with a = 2 are similar to well-
known Tukey windows [1].
In the one-dimensional case, modified (M + 1)-term
windows of theform [1, 2]
M

W(x) = wix) + 5 e (x)
k=1

are used with the intent of improving the bs parameter.
We now employ asimilar approach for the two-dimen-
sional case restricting this approach by the two-term
windows (M = 1). We consider two-dimensional weight
functions with a square aperture, which are based on
one-dimensional windows [1]:

(10)

w,(X) = up(x) +0.01up"(x),

1 mn
W,(X) = 1.5249%11_5(2x)+@h1,5(2x)g.

The numerical experiment has shown that as far as the
bs parameter (equal to —31.1 and -52.7 dB) is con-
cerned the synthesized windows are comparable to the
classica Hamming windows (cosine squared) and
Blackman windows, however, they considerably
exceed these windows with respect to the parameter by.
The parameters of synthesized windows are: b, = 2.25
and 3.65 bin; b, = 17 and 4.7%; b; = 1.4 and 0.9 dB;
b,=4.9 and 6.5 dB; b; = 2 and 2.5 bin; and bg = 0.25
and 0.14. The choice of a larger number of terms in
expansion (10) alows two-dimensional weight win-
dows with higher characteristics to be synthesized.

SYNTHESIZING TWO-DIMENSIONAL FPC
FILTERS WITH AN ARBITRARY AMPLITUDE
ON THE BASIS OF R FUNCTIONS

The above approaches (i.e., direct product and rota-
tion) do not allow us to synthesize two-dimensional fil-
DOKLADY PHYSICS Vol. 47

No. 3 2002
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Fig. 2. Two-dimensional Kravchenko-Rvachev window with a square reference region, which is constructed on the basis (a) of the
N, system, and (b) of the logarithm of its frequency characteristic.

ters with reference regions of an arbitrary configura-
tion. This statement especially relates to nonconvex
regions, e.g., cross-shaped and star-shaped ones. The
only exception belongs to filters based on the simplest
rectangular Dirichlet window. Employing the R-func-
tion method, we can efficiently realize the synthesis of
two-dimensional windows for apertures of an arbitrary
shape.

Let Q betherequired reference region for awindow.
Using one of the complete systems of R functions, we
construct an eguation for its boundary 0Q, wx(X, y) = 0.
Itisevident that the function

(w(xy) +w(x y)) A1)

coincides with wxx, y) inside Q, becomes zero outside
it, and (m;aé(Qd)(x, y) = 1. Here, (X, y) isthe window
XY,
function finitein R>. The new class of the weight func-
DOKLADY PHYSICS Vol. 47

No. 3 2002

tions (windows) proposed having an arbitrary aperture,
we call two-dimensional Kravchenko—Rvachev win-
dows, or KR2 windows. As examples, contour images
and perspective projections of square KR2, windows
and KR2, windows constructed with the help of R oper-
ations of system (2) inthecaseof a =0 anda =1 are
shown in Figs. 1 and 2. The logarithms of their fre-
guency characteristics (expressed in decibels) are also
given in the same figures. Characteristics of these win-
dows are presented in Table 2. Using the diversity of
R-function systems [4], we can obtain the equation for

w(x, ) that provides the most suitable frequency char-
acteristic of the desired FPC filter.

We now describe a new method for constructing a
two-dimensional analog wn,, n,] of aone-dimensional
prototype window w[n] on an arbitrary reference region
whose boundary is described by algebraic curves with
an order not exceeding two. Initially, on the basis of a
complete system (2) of R functions for a = 1 with the
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Table 2. Basic physical parameters of two-dimensional Kravchenko—Rvachev windows

Equivalent Correlation of Parasitic Maximum Maximum Window Coherent
) noise  |overlappingsegments| amplitude |transformation| level of side | width at the amolification
Window band, bin | (50% overlap), % |modulation,dB| loss, dB lobes, dB |6-dB leve, bin P
b, b, by b, b b, bg
KR2; 1.27 40 2.4 75 -17 14 0.55
KR2, 15 31 21 7.2 -20 14 0.33

help of (11), we compose the equation for the reference
region w(x, y) = 0 such that maxw(x, y) = w0, 0) = 1.
Furthermore, the two-dimensional window is repre-
sented in the form

wlng, ny] = w(l-w[ny, nyl). (12)

In the case of a circular reference region for the unit
radius and of acenter intheorigin, described by thefor-

mulaw(X, y) = 1 — /X, —y*= 0, relationship (12) coin-
cides with expression (9). Thus, formula (12) represents
the generalization of the expression (9) for the case of the
reference region of an arbitrary configuration.

We consider the algorithm proposed for the case of
a square aperture represented by the equation

w(X, y)
=(1-90A+x) 0 (1-y)L(1+y) =0

or, with allowance for (2) in the complete form,

W y) = 1=3(X +1yi + Iy = I]) = 0.

Then, formula (12) acquires the form

+|n,| +||ng —
w[ng n,] = Wgnﬂ Iy 2||n1| |n2||D.

(13)
We now compare formulas (7) and (13). It is evident
that when n, or n, are equal to zero they yield the same
result transforming into the one-dimensional prototype
weight function. However, in contrast to expression (7),
formula (13) also yields the same function at the diag-
onals of the square (|n,| = |n,|). Thisfact can turn out to
be useful, e.g., for image processing, when four rather
than two directionsin theimage plane are equivalent. In
addition, the algorithm indicated is applicable for the
case of areference region with an arbitrary geometry,

i.e., when the direct product in the forms of (7) or (8) is
unacceptable.

CONCLUSIONS

Thus, new designs of two-dimensional windows
proposed and substantiated in this paper can find wide
application in solving problems of processing multidi-
mensional digital signals of Doppler radars and radar
stationswith digital synthesis of the antenna’s aperture,
in the case of signal isolation and compression, and in
solving problems of medical telemetry, mathematical
modeling of a heart bioelectric generator, computer
thermography, and tomography as well.
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INTRODUCTION

While studying the diffraction of electromagnetic
waves on ideally conducting arrays, the solution to
electrodynamic boundary value problems is tradition-
aly reduced to that of the first or second boundary
value problem of mathematical physics. However, vari-
ation in the geometry of the structure that we deal with
and allowance for its physical parameters (e.g., the
impedance) that were not previously taken into account
result in the complication of the mathematical model
under consideration. Solving electrodynamic boundary
value problems for superconductors and superconduct-
ing coatings suggests introducing impedance boundary
conditions [1]. This corresponds to solving the third
and fourth boundary value problemsfor such structures
(with alowance for connection of the normal and tan-
gential derivatives). In this paper, an approach is pro-
posed based on employing the Kontorovich—Lebedev
integral transformation and singular integral equations.
Thisapproach is used for solving problems of wave dif-
fraction on a three-dimensional array consisting of
irregular planar impedance strips on which the third
and fourth boundary conditions are given.

FORMULATION OF THE PROBLEM:
THE THIRD BOUNDARY CONDITION
ON STRIPS

We consider a scalar problem for wave diffraction
on a periodic array composed of N infinitely thin
unbounded imperfectly conducting irregular (angular)
planar strips having a common vertex. The array is
located in the plane z = 0 of a Cartesian coordinate sys-

tem. The array periodis| = ZT\ILT the width of the strips
isa, and the dlit width isd = | — a and defines dihedral

* Kharkov Technical University of Radio Electronics,
pr. Lenina, Kharkov, 61276 Ukraine
** |nstitute of Radio Engineering and Electronics,
Russian Academy of Sciences,
Mokhovaya ul. 18, Moscow, 103907 Russia

angles formed by the planes passing through the
OZ-axis and the edge of neighboring strips (seefigure).
We introduce a spherical coordinate system (r, 3, ¢)

with the origin at the vertex of the strips Ethe array

plane is defined by the equation 9 = g% A source of

spherical wavesislocated at the point B(r ), o= (ro, 9,
¢,), and the wave field varies according to a harmonic
law. We need to find a potentia u(r), r = (r, 9, ¢) cor-
responding to the total field and satisfying the follow-
ing equations and conditions.

1. Helmholtz equation (everywhere outside the
strips and the source), i.e.,

Au-q’u =0, q>0;
2. The boundary condition on the array strips =

For G =0 ELol0 0

3. The condition of the energy boundedness
[ +0uf)dv <o
D

4. The condition at infinity.

z

.B(Vo’ﬁo,q)o)

Geometry of the problem.

1028-3358/02/4703-0201$22.00 © 2002 MAIK “Nauka/Interperiodica’
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The validity of the conditions 2—4 provides the
uniqueness of the solution to the problem formulated.
With due regard for n = ey, boundary condition (1) can
be written as

Floug| _
Fu+ rosd =0
5 = Hr9.0) OR: rO[0,+%),8 = 2 ¢ 017,
O 2 0@
- _ d d7
L = ELS, L = Hs-1)l +35.8l -
CL = [0, 2m]\L.
We now assume that one of the cases
E=lf t=oons, 1=7, Z=oms (3)
or
=0, {=const, £=E, &=const (4)

takes place. Then, the condition (2) acquires the form
ou]
Fu+l3gn .

where € and { are constant quantities. Furthermore, we
consider boundary condition (5) instead of (1), assum-
ing the validity of formulas (3) or (4). The desired
potential u can be represented in the form

=0, &)

U = Ug+U. (6)
_ _exp(=qr) -
Here, u, = A =1y corresponds to the source field

(primary field), while the potential u, is caused by the
existence of the array and corresponds to the secondary
field.

To solve the problem formulated, we make use of a
pair of Kontorovich—Lebedev integral transformations
with respect to the radial coordinate [2]:

.T(q )

G(r) = IG(f) @

+o0o

TE[ZI TS nhnfG(t)wdt
0

r

G(r) = (®)

Here, K;(2) isthe Macdonald function. With allowance
for the representati on

ok
J'Tsmhnr Z amTU(OT)em"’%dT,
r

m= —o

€))

DOROSHENKO,
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u9a@9,98, m,1)

DP—:U2+|T(COS'B)P—112+|T( COSSO) 8 <19O
[P 1/2+|r( COS'S)P—ll2+|r(COS'BO) 9 <’901
! .
M= -m+i
—imi mK- EQ O
amr - ie ¢0(_1) IT(qu) 1
4r,

JF() coshmr%erHTD'

O

whereT (2) isthegammafunctionand P, ., (cos9) is

the associated Legendre function of the first kind, we
seek the potential u, in the form of the Kontorovich—
L ebedev integral (N—9):

qr)

K
J’rsmhnr z b, U~ "( dt, (10
— m Tt
me - _amtp—ll2+ir(cos'30)1 19O<
Upne
0 +e +
O PTy2n+N| (cosd) i(NN+m)d
0 Xm n+m0(T) d _menn € ’
Chemw P, (cosd
|:| d_s 1/2 IT( )6:1'[/2
O
Tt
<f <=
P <9 <3
) %m P (—cos9) -
0Y Ve g domm,
e Gg Pz ir(~cosD)
9 =1/2
O
%T<8 <7

FUNCTIONAL RELATIONSHIPS.
THE SINGULAR INTEGRAL EQUATION

In order to determine the unknown coefficients
Xm n+m, A Y n+m, » We Use the boundary condition (5)

ou,
g, + 55| = |&u NE 5]
|: ! 09 9 =1m/2+0 ! 09 9 =1m/2-0
(11)
- Yo -
= {8 gg]l = a0, e0L
and the conjugation condition in dlits
ou, = 0y , dOCL. (12)
09 [9=5-0 99 |9=5+0
DOKLADY PHYSICS Vol. 47 No.3 2002
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Extracting from formulas (11) and (12) conditions for
their transforms (7), and allowing for representation (10),
we arrive at the system of equations with respect to the
coefficients z, connected with the desired coefficients
(by virtue of the array periodicity, these equations are
considered for a period)

1 n (1) in
&2 Z N(nav)n (L& )ze v

n=—oo

-2 3 No+va-e®)zem = g, 19

n=-ow

Wl <=,

+00
> ze™ =0, T[Ta<|ljJ| <T

n=—ow

(14)

Here, m=mo+v m, is an integer closest to E %s
vei
2’
;lnl _ (l) — _1\N(n+v)+1
N(n+v) n( ) = ( 1
il
F[Q+|T+N(n+v)5
x coshTiT - (15)
F[E+|T—N(n+v)g
1
X d >
N(n+v)
+ir(cosd ]
[ggPR(eosD)|
@ _ 1 _ n
1 en - (1)’ Zn - (_l) (ym,n_xm,n)i
_sn
[
= N¢ —=T,
P ¢ b

and g is transform (7) of the function g. For €, the
estimate

(J) - OD [
CN? n+v)3j

takes place. After differentiating both parts of Eq. (14)
with respect to ¢ and complementing the additional
condition at Y = 11, we obtain the relations

N(n+v)>1, j=1,2

+o00

S (evzd™ =0, Meipsn

| (16)

n=-o
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z (-D"z, =0, Y=T1 (17)

We now introduce the function

+o0o

FW) =15 N(n+v)ze™™, pO[-m 1, 18)

n=—oo

where

—I\}l]J —|nl|J
z,= mIF(LU) dy,

n+v#0.

(19)

Forn+v =0, whichispossibleatn=0andv =0, zis
determined from relationship (17). In accordance with
relationship (16),

Fy) =0
so that we find from (19)
— 1 vy _—iny
z, = ij(w)e e dy,
S

S |wl<d, 5= 9‘|1‘

¥<|L|J|ST[,

(20)

With allowance for

< (1)

n+v

n=-o

we have from relationships (17) and (20)

.T[ e—ivB —
sinTtv

"Vﬁjds Q1)

2= 2T[|N_[ (B)Dsmrtv v

Thus, we can derive a singular integral equation for
determination of the unknown function F() (18) from
Eq. (15) by substituting into it the representation (20),
(21) for z,:

L IF(B)e

1.5 iv (22)
+ 1 Km(B-W)F(B)e™dB = Eg(w),

UREESY
where
- 2,9 10
Km(®) = {"F500t5 -39
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_!._ 2,V 2_1_|:||:E._ U ive]
+2iN% Ar ZA¥D® snmve O

_l_ 2 1 |n| —|n9
+2iE [ZN (n+v)2n

nz0

|n| (2) —|n9
2|Z Z

nz0

_ z 1 |n| (1) —|n6i|
n

2 2 n
=N (n+v)°N

Av _ 1 |n|

"7 N(n+v)n -
The singular integral equation obtained (22) with the
Cauchy kernel and the smooth function K, (8) can be

solved numerically by its discretization and the
employment of Gaussian quadratures.

(1))
n=0

THE FOURTH BOUNDARY CONDITION
ON STRIPS

We now analyze the problem of wave diffraction on
aperiodic array composed of stripsfor which the fourth
boundary condition is given. Everywhere outside the
strips and the source, the desired potential w(r) satisfies
the Helmholtz equation with the boundary conditions

L =0 o

constraints of the finite energy, and conditions at infin-
ow

(23)

ity. In condition (23), ?)_ and ac are the normal and
tangential derivatives of w(r), respectively,
= rl ’ = r! 1
G = G 9), & =10 ¢) o4
N =26, G=VE&+U&.

Taking into account relationships (24), we can write out
conditions (23) in the form

E'T;zrv

Assuming v, = 0, we obtain from boundary condi-
tions (23)

= 0. (25)

= 0. (26)

g am ov
199 "+ oM ¢6¢D

Next, we consider the following particular cases of
condition (26):

(1)) {1=x1=const, (,Hy =X, = cCONL,
Ho(F, )20,

(i) {1 = Xak(r, 9),

(oMe = X2K(r, 9), X2 = congt,

X, = congt,
K(r,¢) #0;

DOROSHENKO,

KRAVCHENKO

(ifi) C1 = XaMo(r, 9),
(, = X, = congt.

X, = const,

In each of these cases, this condition is transformed
to theform

ov ov

_ _ Tt
X163+X26¢ 01 8 -

> r 0 (0, +).

(27)
o OL.

Here, X, and X, are constants. Under the assumptions
made above, initial boundary condition (23) is reduced
to the form (27), which is analyzed below. We seek the
potential w; corresponding to the secondary field in
form (10):

J’rsmhnr z [AVASOR LI s ”(q) dr, (28)

bmr = _athTJJZHT(COS'sO)! '80<
Vim
E - < ( )PT];ZT\IH(COS’S) i(NN+m)d
m, n+m; +
[h=- PmZIJZrlNIT(O)
1l
Tt
<y <=
P<9<3
-4 +oo m+nN
E V ()P—]J2+IT( COS‘S) |(nN+m)¢
m, n+my +
%‘1 = —00 PT]JZT\‘IT(O)
E]—Tz<8 <TI

As a result of the employment of the boundary con-
dition

[X 6W1+ awl}
! 09 X2 aq) 9 =m/2+0
awl ow,
R
= (0G5 rugg)| =1,
6 0L

and the condition Wy g _ ;5.0 = Wi|g orpr0s ¢ U CL

for the conjugation in dlits, we arrive at the system of
equations

DOKLADY PHYSICS Vol. 47 No.3 2002
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Here, f isthe transform of the function f. After intro-
ducing the function
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and using formulas (19)—21), we arrive at
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Singular integral equation (31) has the Cauchy kernel,
Q.«(8) being the smooth function.

CONCLUSIONS

Thus, as a result of employing Kontorovich-Lebe-
dev integral transformation, the third and fourth bound-
ary value problems of the Helmholtz equation for the
three-dimensional array consisting of planar angular
strips are reduced to singular integral equations of the
first kind with the Cauchy kernel. The unambiguous
solvability of singular integral equations (22) and (31)
follows from their equivalence to the pair summator
equations (13), (14) and (29), (30), respectively, the lat-
ter being adequate to the initial boundary value prob-
lem. The algorithms developed imply the necessity of
numerically solving singular integral equations. The
approach can be realized by discretizing singular inte-
gral egquations and using Gaussian quadratures.
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In connection with the practical problem of measur-
ing the elastic modulus for rubber deposited on a metal
or glass substrate, we theoretically solve the problem of
the propagation of longitudinal acoustic wavesin athin
elastic strip-shaped rod embedded in an unbounded
bulk low-modulus matrix. The speed of the propagation
of acoustic wavesin an elastic rod is determined by the
density p, and elastic modulus E of the rod [1]:

E
= |=. 1
c J; ey

The velocity of longitudinal ultrasonic waves in a
thin strip-shaped rod was found to decrease upon dip-
ping the rod into afluid [2, 3]. This decrease is caused
by a boundary layer involved in joint vibrations with
therod. The thickness of the boundary layer dependson
the vibration frequency and the density and viscosity of
the fluid [4-6]. This effect was used for determining
fluid viscosity, and the results of these acoustic mea-
surements are consistent with those obtained by con-
ventional methods [3].

L et the elastic modulus of the strip be much greater
than the modulus of the matrix. In this case, according
to Eg. (1), the longitudinal-wave velocity in the rod is
much higher than that in the matrix. Being in contact
with the strip, the boundary layer of the matrix is
involved in the motion. It is evident that the matrix
motion is of a shear origin and that alongitudinal wave
in the strip excites a shear wave in the matrix.

We assume that the strip width significantly exceeds
the length of the transverse wave excited in the matrix.
Under this assumption and taking into account that a
strip element is subjected to the elastic tensile—com-
pressive forces and forces of shearing interaction with
the latter caused by the matrix, one can describe the
longitudinal vibrations of the strip by the equation

o°u o°u
h— = Eh— + 21. 2
pO atz ayz ( )

Institute of Synthetic Polymeric Materials,
Russian Academy of Sciences,
Profsoyuznaya ul. 70, Moscow, 117393 Russia

Here, uisthe displacement of the strip element from its
equilibrium position, h is the strip thickness, T is the
shear stress at the rubber—strip interface, and y is the
strip axis along which the acoustic wave propagates.
The factor 2 corresponds to the two strip—matrix inter-
faces.

To determine the quantity T, we consider the shear
vibrations of the matrix in the elastic half-plane x > 0.
These vibrations are described by the equation [1]

2
- ¢, 3)

ax

0°u

ot

Here, p and G are the density and shear modulus of the
matrix, respectively, and x is the axis perpendicular to
the strip plane.

The boundary conditions are determined by the
requirement that displacements of the matrix at thex=0
interface are equal to those of the strip. We seek a solu-
tion of Eq. (3) in the form of atraveling wave:

u = upexp[—(wt—kox)], )

wherek; isthe wave number of atransversewaveinthe
matrix and wisthe angular frequency of the strip vibra-
tions. Substituting Eq. (4) into Eq. (3), we have

k. = w[c%. )

The length of the transverse wave in the matrix is
given by the formula

where f = w/21t is the vibration frequency. For G =
1 MPaand p = 10° kg/m3, which are typical values for
rubber, f = 250 kHz, and the transverse wave length is
estimated as 125 pum.

1028-3358/02/4703-0206%$22.00 © 2002 MAIK “Nauka/Interperiodica’
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Stress in the matrix at the strip—matrix interface is
ou

defined as G—

Ix at x=0andisequa to

T = iGkyu. (6)
We seek a solution of Eq. (2) intheform
u = upexp[—i(wt—kyy)l, (7

where k; is the wave number.

Assuming that the longitudinal wavelength in the
rod is much greater than the transverse wavelength in
rubber, and substituting Egs. (6) and (7) into Eq. (2), we
obtain the following expression for the wave number of
the longitudinal wave in the rod:

p )\D
k }1 + =20 ¢ (8)
[ 4 lepoh

where ¢, is the speed of sound in the rod and ¢ =

1 PAS
2arctanTTpOh

The phase velocity of the longitudinal waveis equal
to w/k;. Using theequality A = 217k and taking Eq. (5)
into account, we obtain the following expression for the
phase velocity of the longitudinal wave:

= —2 ©)

pG
1
£

When A5 < h, the second term in the radicand is
much less than unity. Retaining the first two terms in
the expansion of Eq. (9) in a power series of thisterm,
we have the relation

c=co%L

which can be written in the form

_ PG [

41e £2p2n)’ (10

(11)

where m; = pA; and m, = poh are the masses of the
boundary layer and strip, respectively.

The complex-valued component of the wave num-
ber determines wave damping. It is easy to prove that
theinequality A; < hissatisfied for ¢ < 1. Inthiscase,
No. 3
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Fig. 1. Speed of sound vs. the shear modulus G. The calcu-
lations were carried out for the strip thickness h = 0.1 mm,
Co = 5.1 km/s, vibration frequency f = 250 kHz, py =

2.6 g/em®, and p = 0.93 g/cm?®.

B, m™!
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Fig. 2. The same as in Fig. 1, but for the damping coeffi-
cient.

the amplitude of the longitudinal wave in the strip is
given by the relationship

u = upexp(—By), (12)
JGp
PoCoh

gitudinal wave. It is worth noting that the coefficient
is equal to the ratio m,/m, of the boundary-layer mass
to the strip mass. If the wave damping factor is small,
the coefficient 3 can be considered as a small parame-
ter. In this case, the decrease in velocity is a second-
order correction in the damping coefficient.

The results calculated by Eq. (9) for the velocity of
the propagation of acoustic waves are shown in Fig. 1
asafunction of the matrix shear modulus G. The veloc-
ity of sound decreases monotonically with the increas-
ing shear modulus of the matrix. A similar dependence
for the damping coefficient is presented in Fig. 2. In
the case of the matriceswith small coefficients of stiff-

where3 = isthe damping coefficient for thelon-
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ness, the damping coefficient increases very rapidly as

BO J/G.

Thus, the results of embedding athin strip in alow-
modulus matrix are similar to the results of the immer-
sion of the strip into afluid [4—6]. Namely, longitudinal
vibrations of the strip excite a transverse wave in the
matrix. There is also an inverse effect, which becomes
substantial when the strip mass is commensurable with
the mass of the matrix boundary layer. Because of the
presence of the matrix, thelongitudinal waveisdamped
and its velocity decreases.
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INTRODUCTION

Currently, new approachesin the analysisand synthe-
sis of antenna systems, which are based on concepts of
fractal geometry, have received wide recognition [1-8].
As is well known, the simplest mathematical abstrac-
tion for aself-similar set is a Cantor set (dust isan ana-
log) [9-12]. On this basis, one-dimensiona and two-
dimensional antenna radiators were developed and
their properties were thoroughly investigated [6, 7].

In the present study, a new class of self-similar sets
based on a simple recurrence procedure is considered.
In this case, terms of the sequence being formed alter-
nate in accordance with the distribution law for signs of
derivatives of certain atomic functions (AF) [13]. These
functions are finite solutions to functiona differential
equations relating shifts and compressions of such
functions to their derivatives. Note that atomic func-
tions turn out similar to linear combinations of their
derivatives. Therefore, their multiple differentiation
makes it possible to design a new type of self-similar
antenna arrays.

THE h,(x) FAMILY OF ATOMIC FUNCTIONS

Atomic functions are finite solutions to linear func-
tional differential equations with constant coefficients

N M
Y dy"(x) = 3 cny(ax—by).
n=1 m=1

Here, a, d,, ¢,,, and b,, are numerical parameters, and
[a] > 1. One of the basic classes of atomic functionsis
determined by the following expression:

2y'(2x) = y(ax+1) —y(ax—1). ey
a

* |nstitute of Radio Engineering and Electronics,
Russian Academy of Sciences,
Mokhovaya ul. 18, Moscow, 103907 Russia
** Bauman Moscow Sate Technical University,

Vtoraya Baumanskaya ul. 5, Moscow,
107005 Russia

Solutions (1) for the function h,(x) are determined on
thecarrier [-(a— 1)1, (a—1)'], and their Fourier trans-
forms have the form:

Fa(p) = [ sine(pa’™),
k=1

where sinc(X) = S'—QX . The derivatives of the nth order

can beexpressed intermsof the function h,(x) initself as

n(n+3)
hi”(x) = 2"a ?
(2)
Zék aEa X + zaJ Lty lﬂ

j=1
where
0, =1, O, =0, Oxn_1=0, k=12,....(3)

Here, p;(k) denotesthejth bit in the binary representation
of the number k; i.e., p;(K) = [k x 2i1mod 2. Fora=2, we
obtain the simplest atomic function up(x) with the car-
rier (-1, 1), which satisfies the equation

@ = y(2x+ 1) —y(2x-1).

Expression (2) for the derivatives of up(x) hasthe form
2I‘I
up™(x) = 2" Z dup(2"x + 2" + 1 - 2K).
k=1
In Fig. 1, plots are presented for the function up(x),
its first two derivatives, and the Fourier transform as
well. Asis seen from Figs. 1b and 1c, the derivatives
consist of equal parts, similar to the function itself in
the shift—compression sense. In addition, in each of

these segments, the derivatives have a sign determined
by the recurrence sequence (3).

DESIGN OF A SELF-SIMILAR ANTENNA ARRAY

Certain questions associated with the application of
atomic functions in problems of antenna-array synthe-

1028-3358/02/4703-0209%$22.00 © 2002 MAIK “Nauka/Interperiodica’
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Fig. 1. (a) Atomic function up(x), (b) itsfirst derivative, and (c) second derivatives; as well as (d) the Fourier transform.

sisare considered in[1-4]. In the present study, we use

an original approach for creating a non-Cantor antenna

array of anew type. Thisarray is based on the employ-

ment of generating sequence (3). It is well known that
the multiplier of a linear equidistant array is repre-
sented in the form [14]

EI +22I cos(ny) for 2N +1 element
0 n=
AFW) =10 ' )
r cos[ ID } for 2N elements.
23 lnoos -3
21 +1

Here, ) = kd(cosO — cos8,), k = and d isthe dis-

7 )
tance between array elements. Let certain of them be
switched off or removed so that

(1 if the element is switched on
if the e ement is switched off.

n

Asaresult, anonequidistant equal-amplitude line of
discrete radiatorsis formed.

The simplest scheme (based on the Cantor-set con-
cept) for constructing afractal array is analyzed in [5].
The 101 equidistant generating sequence consisting of
three elements (with the central one switched off) is
considered as an initial sequence. The triad Cantor
array is obtained recursively by the sequentia
exchange of unity by 101 and zero by 000 at each
design stage [6]. Possible generaizations of Cantor
radiators (two-scale arrays) and methods for improving
their characteristics are considered in [7].

We now investigate one possible design of a self-
similar antenna array. Assuming the number of its ele-

ments to be even, we use therelationship I, =

n

2
a law for the dectric-current distribution, where 8, are
recursively determined from relationships (3). Let N =4,
Then, the expression for the multiplier of array (3) can
be written out in the form

N
AF(Y) = 5 &+ Deos[fh-F].  ©
n=1
It iS E\IIdent thaI 6N—i+l = 6i and 6N/2—i+1 = _6i . ThUS,
it can be shown that the preceding relationship has a
simpler form

AF, () = 4cosD > Dz cos[%n 1+ ] 6)

The number of arithmetic operations needed for
finding AF, in accordance with formula (6) is less than
in the case of employing formula(5) by afactor of four.
We now denote b, o b, _, the concatenation of two finite

sequences b, and b,_,, where n is the recursion index.

DOKLADY PHYSICS Vol. 47 No.3 2002
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Fig. 2. (@) Moduli of the antenna-array multiplier for thefirst three stages of construction, k=1, 2, 3, and (b) multipliersfor an array
of the second level (solid line) and combined array (dashed line) formed by the convolution of arrays of the first and second levels.

Then, the following recurrence formulafor the ordered
set of included (1) and excluded (0) array elementstakes
place:

I"I—lo 'En_l, n = 1, 2, (7)

Here, the bar from above denotes the logical negation.
The desired current distribution has the form | = F, o

F,., n=0, 1, .... Thus, we have obtained the following
algorithm for constructing a discrete radiator line.
Beginning from the initial sequence 11, we should sub-
stitute 1001 instead of 1 and 0110 instead of 0. In par-
ticular, at the second step, we have 10011001.

2002
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It is of interest to compare expression (7) with the
Fibonacci sequence

Fo = 1, 1=0, Fy=F_1°F_,,
n=23..,
which is formed from the initial unity by the recurrent
exchange 1 by 10 and O by 1.

We consider a number of properties for the new
array. Furthermore, we use the normalized expresi on

cos[%n 1+ L|J} (8)

AF (P) = — cos%NZqH

instead of (6).
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Fig. 3. Directiona -effect coefficients (DEC) asfunctions of theangle 6 for (a) k=1, (b) 2, and (c) 3, and (d) DEC for the combined
array formed by the convolution of arrays of the first and second levels.

In Fig. 2, we show the results for the multiplier (8),
which are obtained at the three first stages of designing
the array. L et the distance between itsthree elements be

aquarter of thewavelength; i.e., d= % . Inthiscase, for

6, = 90°, we arrive at the following expression for the
array directional-effect coefficient (DEC):

Dy(u) = 22K

J'AFi(qJ)du

where ) = Tu/2 and u = cosB. The maximum value of
this coefficient correspondsto u = 0. It turns out that in

the asymptotic limit, D, (0) ) :W4Dk,1(0). The values
of the DEC are presented for k=1, ..., 5inthe follow-
ing table:
k 1 2 3 4 5
D,(0) 3.771 13258 52.282 208.422 832.983

Plots of the DEC for k=1, 2, 3 are shown in Figs. 3a,
3b, and 3c.

We now consider the procedure of constructing a
combined two-scale array [7], which is defined as a
convolution of two arrays with a different number of
elementsN, =4%and N, = 4'. Inthis case, the array mul-
tiplier is a product of the multipliers corresponding to
initial radiators AF, | () = AF(Y)AF, (). This combi-
nation makes it possible to optimize the array design
from the standpoint of decreasing the level of side
lobes. Figure 2b exhibits moduli of the multipliers for
the initial array of the second level (N, = 16) and an
array represented as a convolution of two sequencesfor
two linear discrete radiators of the second and first
(N, = 4) levels. The directional-effect coefficient of the
resulting array is shownin Fig. 3d.

A TWO-DIMENSIONAL ARRAY

The Sierpinski carpet is a generalization of the Can-
tor set to the two-dimensional case. In[6], problemsare
analyzed associated with constructing a fractal antenna
array based on the Sierpinski carpet. In our case, the
process of constructing a plane system of discrete radi-

atorsis quite similar. We take the matrix {1 1} asanini-
11
DOKLADY PHYSICS Vol. 47 No.3 2002
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Fig. 4. Two-dimensional antenna arrays and their corresponding multipliers for the threefirst construction stages.

N

> 3

m=-N+1n=-N+1

X eXp[iBn—%Ewﬁ %‘%%}

respectively. The expression for the array multiplier
AFk(l‘Ile LIJZ)

takesthe form

0000
0110
0110
0000

1111
1001
1001

tial sequence and then sequentially change each 1 or 0 by
or
1111

2002
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where N = 4X, In Fig. 4 (on the right), we demonstrate
the general view of two-dimensional arrays (discrete
radiators are situated in the center of black sguares). On
the left, their multipliers are displayed as functions of
angles g, and |s,, which vary within the limits from 0
tort

Thus, in the present study, a new approach associ-
ated with the concept of atomic functions is proposed
for constructing one-dimensional and two-dimensional
antenna arrays. The construction is based on the recur-
rence procedures; however, in contrast to the traditional
Cantor setsit cannot becalled fractal. It iseasy to verify
that the new type of array is based on the Hausdorff—
Besikovich sets of unit dimensionality [8]. In spite of
this fact, these arrays possess self-similar properties,
which allows us to considerably simplify the analysis
of their properties and characteristics. Possible general-
izations of the arrays proposed, such as combined two-
scale ones and two-dimensional discrete radiators, are
also considered.
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In this paper, the theoretical study of acoustic-vibra-
tion excitation while combusting aluminum particlesin
a gas mixture is carried out. At long distances, alumi-
num particles are considered to be monodisperse and
immobile with respect to the gas. In determining the
excitation conditions for acoustic vibrations, the gas
mixture used was considered as a perfect gas. Expres-
sions for the frequency and excitation increment of
acoustic vibrations are obtained, characteristics of a
fuel and of an oxidizer explicitly entering into these
expressions.

In [1], powders prepared on the basis of carbon and
metals were suggested asafuel for pulsed MHD gener-
ators. Air or oxygen are oxidizersin this case. Charac-
teristics of MHD generators while operating with these
fuels, in fact, do not differ from those obtained using
solid rocket propellants. In this case, the powder-like
fuel presents the possibility for profound control of the
device power when changing the mass flow-rate of
components and provides for long-term operation of
powerful MHD generators. It was shownin[2] that alu-
minum fuel isoptimal for pulsed MHD generators, pro-
vided that the air oxidizer is employed.

It is known [3] that in the process of burning a dis-
perse fuel the acoustic vibrations can be excited, which
resultsin violation of the normal operation of combus-
tion chambers and even in their destruction. Inthe prac-
tice of rocket-engine development [4], engines having
pressure-vibration amplitudes of not more than 5%
from the nominal value are related to those exhibiting
stable combustion. It was shown in [5] that the require-
ments for stability of the combustion process in the
MHD-generator combustion chamber should be more
rigorous than in rocket engines. This is caused by the
fact that for such pressure vibrations electric-power
pul sation phenomena hinder the normal operation of an
MHD generator. Therefore, consideration of acoustic-
vibration excitations in the case of combusting a pow-
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Joint Institute for High Temperatures,
Russian Academy of Sciences,
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der-likefuel in the combustion camber of an MHD gen-
erator is an urgent problem.

Usually, in studies of acoustic-vibration excitation,
it issuggested that, in the case of combusting adisperse
fuel, the burning zone is substantially smaller than the
length of the combustion chamber [3, 4]. In actual con-
ditions, the burning zone has a certain extension along
the longitudinal axis of the combustion chamber, which
is comparable with itslength [6]. Therefore, in the case
of acoustic vibrations of pressure, disturbances of the
velocity and temperature of the gas mixture along the
length of the combustion chamber are different, which
affects the stability of the combustion process[3, 4]. In
this paper, in studies of the excitation of acoustic vibra-
tions, a distributed combustion model is used. In other
words, we assume that the zone of burning aluminum
particles is approximately equal to the length of the
combustion chamber.

Here, in calculations of the burning processin afor-
ward-flow combustion chamber, the aluminum parti-
cles are considered to be monodisperse and immobile
with respect to the gas mixture. It is assumed that the
particle combustion occursin the vapor-phase diffusion
regime. The specific heat ¢, and the adiabatic index y of
the gas mixture were assumed to be constant and inde-
pendent of its temperature and component concentra-
tions. The flow in the combustion chamber was
assumed to be one-dimensional under complete mixing
in the transverse direction and in the absence of mixing
in the longitudinal direction. Such assumptions are
common in caculations of the design of combustion
chambers [6]. While analyzing acoustic vibrations, the
gas mixture was considered as a perfect gas, and the
presence of a disperse phasein it wasignored.

Under these assumptions, the continuity equation,
the equation of motion, and the energy equation can be
written in the form

p,0 _ _3M;

ot TaxtPW = m W 0
ou, Odu_ 1dp
o Yax T pox’ @)
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o7 ua_TD QW op

pCpDat ot’

where W is the combustion rate for aluminum particles
in the volume unit, Q is the thermal effect of the reac-
tion of the aluminum oxidation, and M and M, are the
atomic and molecul ar masses of aluminum and oxygen,
respectively.

Below, we consider that a local thermodynamic
equilibriumis conserved in the gas phase. Thisassump-
tion is common in studies of the excitation of acoustic
vibrations in combustion chambers [3]. Then, we can
write the equation of state for the gas mixture

p=p(pT). 4)

It is known [3, 4] that high-frequency acoustic
vibrations are the most dangerous and difficult for elim-
ination. As follows from [3], they are characterized by
the fact that for them, the parameter Sh> 1. Here, Sh =
wl/u, w isthe angular frequency, and | is the chamber
length. Thus, linearizing equations (1)—(3) with allow-
ancefor Sh> 1, wearrive at

dop', Jou, Op _ 3My,,
ot TPax TUax T am W ©)
ou _ _1ap'
- pox’ ©
T, 0T Q30
pcp%@at US = a ot @

Here and below, the perturbations are indicated by
primes.

Linearizing (4), we obtain a thermodynamic con-
nection between perturbations of p, p, and T.

p_p T
. T ®)
P pa:t T

Here, a; isthe isothermal sound velocity.

Substituting expression (8) into Eq. (5) with account
of (7), we obtain

1orpp, uoT ou udp _ QW
yatDpD Tox ' ox pox 4Mpc,T’
Then, using the relation
op _ _poT
X Tox’
we write out the last equation in the form
10 (PO, 0u _ QW ©)
yatDpD ax ~ 4Mpc, T’

Differentiating Eq. (6) with respect to x and Eq. (9)

PESOCHIN

with respect to t, and excluding u', we find
ow'

Frpp_10mpn_ QW o
ax2Epd ™ g2¢?0pl] 4Mpc,TaZ ot

where a; is the adiabatic sound velocity.

To solve the last equation, it is necessary to obtain
the expression for W'. As arule, for description of the
combustion of metal particles, the combustion theory
for drops of aliquid fuel complemented with the allow-
ance for the formation of condensed products (oxides)
isused [7]. It is considered that in the diffusion vapor-
phase model of combusting metal particles, as in the
combustion theory of liquid-fuel drops, chemical trans-
formations including the formation of condensed com-
bustion products (oxides) occur in anarrow zone above
the particle surface. This theory leads to a satisfactory
agreement for the calculated time of combusting a
metal particle with the experimental data in the low
pressure zone (p < 30 atm). In the zone of high pres-
sures characteristic for the conditionsin the combustion
chamber of a pulsed MHD generator, a noticeable dis-
crepancy with the vapor-phase diffusion model is
observed. The combustion time for an aluminum parti-

cle becomes proportional to r2® but not to r3 (the

Sreznevskii law). Here, ry istheinitial radius of a parti-
cle. Thisis associated with the fact that, in the case of
high pressures, the liquid aluminum oxide is accumu-
lated at the surface of a particle, thus hampering its
evaporation. At the present time, there is no theoretical
model of the vapor-phase combustion of auminum par-
ticles with allowance for the accumulation of the oxide
at their surfaces. Therefore, in this paper, an empirical
time dependence for the size of a burning particle is
employed [7]:

3/2 3/2

r¥? = 32 _qet. (11)

Here, a isan empirical constant and cisthe dimension-
less mass concentration of oxygen far away from the
burning particle.

For combustion of a monodisperse system of alumi-
num particles in the combustion chamber of a pulsed
MHD generator, there exists a correlation between the
particle sizes and oxygen concentration:

(rirg)
wherec, istheinitial dimensionless mass concentration
of oxygen.

Differentiating (11) with respect to t and substitut-
ing the last relation into the equation obtained, we have

3 3r—5/2dr
oof Gt

= clcy,

= —ac,. (12)

Theinitial conditionisr =r,fort=0.
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The solution to this equation has the form

3/2
oo - 1
— = —. 13
Lk 1+acyt/rd? (13

The number of particles N per volume unit of the
combustion chamber is determined from the balance
equation

_n To _ M Tg poCo

where p, is the density of an aluminum particle.

When deriving thisexpression, the change of the gas
mixture flow-rate as a result of combustion of aumi-
num particles was ignored. We should note that this
assumption is common in calculations of combustion
chambers [3]. With the help of Egs. (12)—(14), we can
obtain the expression for the steady-state combustion
rate of aluminum particles in the volume unit

2
W = ammtp NG - EMTo pocod
dt 3M, T (L+acet/ry”)

Asisseen from this expression, in contrast to the high-
temperature combustion of the monodisperse system of
carbon particles [8], in the case of the combustion of
aluminum particles, the boundary of the burning zone
is absent and the process is continued beyond the com-
bustion chamber (in the nozzle and in the channel of a
MHD generator).

The energy equation for the steady-state combustion
of aluminum particles in the combustion chamber has
the form

ar _ Q
Pellax = am '
The boundary conditionis T =T, for x=0.

The approximated solution to the last equation has
the form

c
T =T+ Qc [1— 1 = 2};
SMiCol (1 + acyx/ LT

here, Wi sthe average vel ocity of the gasmixtureinthe
combustion chamber: [ u, [TUT,, [(TCisthe gas-mix-
ture temperature averaged over the combustion cham-
ber length.

Averaging the last expression over the chamber
length, we arrive at the expression:

o0 _ [0 _ ag |

To Uo r§’2

(16)

O(go
where | is the length of the combustion chamber.
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When deriving the expression for [TL] it was taken
into account that the following inequalities take place:

C ocl
QO >1 0

: > 1.
3MLC, T, Ugr 2

Furthermore, averaging expression (15) for the
steady-state combustion rate, we obtain with the help
of (16)

_ M PoCoUg
W= M

In [7], the results of experiments on the combustion
rate of finely dispersed aluminum particles as a func-
tion of temperature and pressure for the invariable com-
position of the gas mixture are given. According to
these data, the combustion rate practically does not
change within the temperature range from 1600 to
3300 K, and the pressure dependence ceases to mani-
fest itself for p > 25 atm. In this case, we can obtain an
approximate expression for W'

. p' _ M PoColpp’
W = W[ =——F——%.
ODB My ly p

It istaken into account in the last expression that for
acoustic vibrations in gas mixtures the following rela
tionships takes place the (quasi-adiabatic approach) [3]

p_1p N _p

p yp N Y
Substituting the expression for W' into (10), we
obtain an equation of the telegraph-type, which approx-
imately describes the excitation of acoustic vibrations

while combusting aluminum particles in the combus-
tion chamber of a pulsed MHD generator:

Opp_ 1 , 8 drph
ax*pH Ul T Pttt

QCy Ug
where & BMyC, ol -

To determine frequencies of acoustic vibrationsas a
result of their excitation, it is necessary to set boundary
conditions for Eq.(17). The question on the boundary
conditions at the nozzle inlet is rather complicated and
can bethe object of aspecial study [3, 4]. In the present
paper, similar to [4], the simplest assumption is made
that the flow-velacity perturbations in the critical cross
section of the nozzle are absent. Then, the boundary
conditions can be written in the form

(17)

op' _ A

W Oforx=0; (17.1)
op' _ _

W Oforx=1I. (17.2)
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Solving Eq. (17) by the method of separation of
variables with alowance for the boundary conditions,
we obtain

P - &% B cos X
o e kZlBkcos i

X cos[ | %’Tl—gz mﬁm—a t+ ¢k}.

Here, k=1, 2, 3, ... . The quantities By, ¢,, and the
eigenfrequency are determined from the initial condi-
tions and boundary conditions, respectively. This fre-
guency is

(18)

Tk (&

Wy = |

Itisseen from expression (18) that for & > 0 the exci-
tation of acoustic vibrations caused by the combustion
of aluminum particles can occur with the increment

21d

= .
/%’-Tl'-% -5

As follows from formula (18), excitation of the
acoustic vibrations resultsin a decrease of the vibration
frequency of the combustion chamber compared to the
eigenfrequency. However, this decreaseisinsignificant.
For example, for combustion of auminum particles
withr,=30um, T,=400K inair, thevalueof disequal
to ~70 s for the principal harmonic (3000 s™? (I ~ 1 m).
As is seen from expressions (18) and (19), the excita-
tion conditions for acoustic vibrations are improved
with an increase in the initial concentration of the oxi-
dant and adecrease in theinitial sizes of aluminum par-
ticles (or a reduction in the length of the combustion
chamber). These conclusions are confirmed by the
known fact of the excitation of acoustic vibrations by
enhancement of the afterburn in the combustion cham-
ber [3].

M= (19)

PESOCHIN

In conclusion, we note that the condition of the
vibration excitation, which is known in thermal acous-
tics as the Rayleigh criterion [3], allows us to obtain
sufficient conditions for acoustic stability and revea
sources of the vibration energy in the case when they
are not evident, e.g., for phase transitions in vapor—gas
mixtures [9]. However, this criterion does not allow us
to determine the increment and the vibration frequency.
The model of the acoustic-vibration excitation, which
is suggested in this paper as distinct from the Rayleigh
criterion, makes it possible to obtain (with invoking a
known empirical dependence for the rate of steady-
state combustion of an individual aluminum particle)
the expression for the increment and frequency, which
explicitly depends on the fuel and oxidant parameters.
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The problem on steady viscous-fluid flows in a
plane confusor (the Jeffrey—Hamel problem [1-3])
again attracts attention due to increased numerical and
analytical possibilities of currently available comput-
ers, as well as to the development of corresponding
software[4, 5]. Thisattention is also induced by practi-
cal needsfor solving awider class of problemson flows
of a viscoplastic medium with a low yield stress in a
plane confusor [6, 7]. In this paper, we report the results
of constructing and investigating multimode and asym-
metric solutions in a wide region of physical and geo-
metric parameters of the system. New qualitative
mechanical effects were established and discussed.

1. We consider a steady flow of an incompressible
fluid with density p in a plane confusor, which has
angle2f3 (0 < B < 1) and outflow power Q (Q > 0) at the
point O. It is convenient to describe the motion in the
polar coordinates(r, 8), wheretheregion occupied by the
fluid hastheform |8|< (3, r > 0. In addition to the density,
the fluid is characterized by the kinematic viscosity v.
For the plane confusor, three quantities {p, Q, v} are
dimensionally dependent ([Q] = [V]). Sincethereareno
other dimensional quantitiesin the problem, the subse-
guent equations cannot be made totally dimensionless.

Q

The Reynolds number Re = 5 isadimensionless com-

bination.

For a certain distribution of the pressure p in the
angle 6 (for r — oo, this distribution can be found on
the basis of kinematic relationships), the velocity field
(v,, vg) isradial [1, 3]:

vV, = —%V(e), ve=0. €))
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According to Egs. (1) providing the incompressibility
condition, we write the nonzero components of the
strain-rate and stress tensors

Vip = —Vgg = %V(e)’ Vig = —E%V‘(e)’ @)

_ 2pQ°
O g0 = —P V(6),
,00 p 2he (6)
o? (€))
— - _P -
0,, = —p, O, =— V'(8).
PO = e ©)

The substitution of Egs. (3) into two Navier—Stokes
equations [1] leads to the following ordinary differen-
tial equation for the function V(0) appearing in
Egs. (1)«3) and yields the pressure p:

V'+4V-ReV’ = C, C = condt; %)
_ pQ’
= =< (c-4v). 5)
P 2r2Re( )

The mechanical meaning of the constant C is clear
from the condition of adhering the fluid to the confusor
walls|8]=

V(£B) = 0, C = V"(). (6)

Furthermore, the integral condition of constant
flow rate closes the formulation of the Jeffrey—Hamel
problem:

B
[v(e)de = 1. %)
-B

The analytical investigations of the problem,
Egs. (4), (6), and (7), were extensively considered and
reported in special papers[4, 5] and manuals[1-3]. The
order of EQ. (4) can be reduced by multiplying both
sidesby V' and isolating the total derivatives. The equa-
tion has the first integral

1 1

iV'2 + 2V2—§ReV3—CV = %V‘ZGB). (8)
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It follows from Eq. (8) that the derivatives V' are
equal in magnitude at the zeros 6; of the function V(8);
i.e., we have V'2(6,) = V'*(FB). Equations (8) and (4)
can be integrated in elliptic functions [1-3]. However,
it is difficult to analyze the elliptic integrals obtained
and to solve the set of two transcendental equations
with respect to the constants of integration [1]. Onefails
to construct an explicit solution of the boundary value
problem for arbitrary values of parameters 3 and Re.

It should be noted that Re can formally be negative;
in this case, a diffuser flow takes place (Q < 0). Such a
flow was considered as more complicated and diverse
than the confusor one. Asymmetric (about the axis 6 = 0)
regimes and regimes admitting the aternation of flow-
out and flow-into zones (multimode regimes) were
known for this flow [1-3]. The presence of these
regimesis the manifestation of the fact that the nonlin-
ear boundary value problem with the condition of con-
stant flow rate has several solutions. With increasing
Re, a steady flow in a diffuser loses its stability and
becomes turbulent.

However, the asymmetric and multimode character
was not explicitly established for a confusor flow.
Therefore, the following questions remained unan-
swered: (@) Are the asymmetric or multimode velocity
profiles possible in the confusor along with the sym-
metric and single-mode ones, and if so, under what con-
ditions? (b) If these profiles are possible, what are their
properties?

The boundary value problem, Egs. (4) and (6), with
condition (7) is two-parametric; it admits variational
treatment [4, 5]. For further numerical—analytical
investigation, it is convenient to change the parameters
(B, Re) to the pair (a, b), where a = 4 and b = 2[3Re.
Changing V(6) to the new unknown function y(x), where

= % and the argument 6 = 2x — 1B (0 < X < 1),
theinitial problem is represented in the form

y'+a’y—-by’ = A, y(0) = y(1) = 0,

1

y'(0) =, Iy(X)dx =1, )
0

A = 8p%°C = y"(0) = y"(1).

Along with the variables y and y', we introduce the
variable z characterizing the fluid flow rate according to

Eq. (8):

z =y-1, z(0) =0, z(1) =0. (10)

It is necessary to solve the boundary value problem,
Egs. (9) and (10), for the variablesy and z. The param-
eter A isunknown and must be calculated. This param-
eter can be excluded by differentiating Eq. (9); how-
ever, a third-order nonlinear equation is obtained as a
result.

AKULENKO et al.

2. Onthe basis of the high-accuracy numerical—ana-
lytical method with improved convergence[4] inawide
range of parameters (a, b), we constructed numerical
solutions to problem (9) in the class of symmetric sin-
gle-mode profiles y(x) [5]. We also analytically investi-
gated the following asymptotic cases of the parameters
(a, b) or (B, Re):

() Re < 1, 0<[3<g;

(ii)Re~1, 0<P < I;
(i) <1, PRe ~ I;
(V)Re>1, B~ 1.

In case (iii), numerical methods should be applied
[5]; incase (iv), there existsaformal passagetothedis-
continuous-profile limit for an inviscid fluid. The pres-
ence of thelarge parameter b requires the application of
methods of singular perturbations [8]. By means
of these methods, the asymptotic behavior of the solu-
tion [1] in case (iv) can be represented in the very con-
venient form [5, 7]

6
1+ cosh[arccoshS + ﬁ(l— |2x — 1|)}

yw(x) =1-

Y.(0) = Yo(1) = 0, (11)

1 4b 1
ym(o) = Voo: /\/%1 yoo(o) = }\oo:_bu b — 0,

Expressions (11) provide satisfactory accuracy for
b~ 10°-10%

Further, we present certain integral estimates for
y(X), A, and y following from Eqg. (9). It should be noted
that, for an arbitrary function f(x) continuoudly differ-
entiableon theinterval 0 < x < 1, thefollowing equality
isvalid:

o +a’y—by?) frdx = A[f(x) = F(x)], (12)

where two arbitrary zeros x; and x, of the function y(x)
satisfy the conditions 0 < x; < %, < 1. In Eg. (12) and
below, we omit the limits of integration with respect to
x from x, to x,.

A. Let f(X) = y(X); inthiscase, integration of EQ. (12)

by parts yields two important equalities

Y'(X2) = 2y'(Xy). (13)

If x, =0 and x, = 1, the lower sign in Eq. (13) corre-

sponds to the symmetrical single-mode regime includ-

ing the classical one; the upper sign corresponds to the

asymmetric regime. It follows from the condition

y'(1) = y'(0) that the multimode velocity profile is pos-
sible.
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B. Let f' =y and f(0) = 0. In this case, taking into
account the Friedrichsinequality

g

J.y.zdx > {ml[yZdX,

we obtain the upper estimate of the parameter A from
Eqg. (12):

Mydx = [(=y'?+a’y? —by®)dx
J’y I(y y —by’)
2 O

DZ 2 3
<@ —ﬁly dx—Dbfy’dx,
|:| (XZ_Xl) I

which is very accurate for the case of the single-mode
flow (on the entireinterval 0 < x< 1).

C. Let f(x) = y'(X); in this case, integrating (12) by
parts, we write the equality

nAy = [(y"=a’y” +2byy )dx,

where n takes the values -2, 0, and 2 depending on the
choice of the sign in Eq. (13). For n =0, i.e,, for the
functions with the boundary conditions

y(x1) = y(%;) =0,
Y'(X) = V(%) Y'(x1) = y'(X),
one more Friedrichsinequality isvalid:

2 4-7'[‘2 2
"Cdx = ——— [y"“dx.
Iy (Xz—xl)zj.y

Thisinequality and Eqg. (15) lead to the estimate

(14)

(15)

I{_f'ﬂz__ —a’+ 2by}y‘2dx <0. (16)

(Xo—X;)°

3. For definiteness, we consider afixed value of the
aperture angle B = 10°, i.e.,, a= 0.7, that is widely met
in the applied problems [5, 7]. Numerous calculations
were also carried out for other values of a. The value b
is considered to vary within wide limits. 0 < b < 200,
i.e,, 0 <Re = 600.A high-accuracy solution of Egs. (8)
and (10) with a relative error of 10—10-28 {absolute
error O(1073)} can be constructed using the modified
method of improved convergence of the Newton algo-
rithm type and the procedure of continuation with
respect to a parameter [4]. It was successfully applied
to the classical problem of investigating single-mode
symmetric flows [5] for which an exact limiting solu-
tion is known in the analytical form for b — 0 and
arbitrary a.

Substantial difficulties in constructing multimode
velocity profiles are caused by the degeneration of the
problemfor b — 0. Thisfact leadsto unlimited values
of the desired parameters y(b) and A(b) necessary for
integrating the corresponding Cauchy problem. For a
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certain fixed value of the parameter b = b, (convention-
ally, b, = 10) and the number of the chosen mode (n =
2,3,4,...), weseek unknown valuesy and A and calcu-
late them with a high accuracy, providing the above
residual with respect to the boundary conditions. Then,
by means of the procedure of continuation with respect
to the parameter b, we plot universal curves y(b) and
A(b) for 0 < b < by and b, < b < «. The difficulties in
these calculations are aggravated by the fact that the
valuesy, >y, and A, > A, (by severa orders of magni-
tude) and attain high valuesfor b = 1, for example, y;s ~
10* and A5 ~ 10°. These circumstances can explain why
conclusive results on determining and analyzing multi-
mode flows in the Jeffrey—Hamel problem have not
been obtained yet.

Below, we outline and discuss the graphic represen-
tation of the results of numerical—analytical investiga-
tion of multimodeflowsfor n=2, 3, 4, 5. They are com-
pared with the corresponding curves for the classical
solution (n = 1), which was studied in detail in [5], in
particular, for various values of the parameter a. It was
established that the odd n modes for n = 2 correspond
to symmetric (about x = 1/2, i.e,, 6 = 0) solutions,
whereas the even n modes correspond to asymmetric
solutions.

The analysis shows that the flows have certain struc-
tural properties. Namely, the positive maxima (n = 3)
and the negative minima (n = 4) of thefunctionsy,,(x, b)
have the same magnitudes. Furthermore, in all the zeros
X, i=1,...,n+ 1, of the function y,(x, b) (for fixed n,
b), the derivatives y,, are equal in magnitude; i.e.,

yn(b) =V (X, b). Thus, in acertain sense, amultimode
flow is a combination (aggregate) of single-mode and
two-mode flows. This property likely follows from the
fact that the flows are radial.

Figures 1 and 2 show the functions y,(b) and A,(b)
in different scalesfor 1 <b <10 and 10 < b <200. The
functions determine the solutions to the boundary value
problem, Egs. (9) and (10), by integrating the Cauchy
problems for afixed value of the parameter a (i.e., the
angle ). The curves are grouped in pairsn =2 and 3,
and n = 4 and 5. Interesting properties of these curves
manifest themselves near b = 0, and the graphs have
vertical asymptotes: y, — 4o and A, — —oo for
b — +0. We recall that finite valuesy, and A, corre-
spond to the classical single-mode solution [5]. Large
magnitudes of y,, and A, for b ~ 1 are also remarkable.
The differencesy, —V,_; and A,,_, — A, increase indefi-
nitely for b - +0 and with the number n. Every curve

y,, attains aminimum for a certain large value b = b}, ~
10>-10° and tends very slowly to asymptote vy, =
~/4b/3 (11) from above. Similarly, the curves A, attain

maxima for certain b = b)) ~ 102 and also tend very
slowly to asymptote A,, = —b (11) from below. On the
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Fig. 1. y, and A, vs. the parameter b, 1 <b < 10.

basis of these facts, we arrive at the important mechan-
ical conclusion that all the modes of steady flows,
including the fundamental one (n = 1, see [5]), tend to
aperfect-fluid flow in thelimit b —» o (Re — ) in
acertain metricfor 0<x< 1.

The curves y,,(b) and A, (b) are essentially the prin-
cipal result of these investigations and provide the
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Yn

500

9%}

W(

—7000

—14 000
A 10

n

|
100 b 200

Fig. 2. Thesameasin Fig. 1, but for 10 < b < 200.

numerous characteristics of steady flows in a confusor
by integrating the Cauchy problem for Egs. (9) and
(20). These characteristics, cited in Section 1, are
velocity profile (1), pressure (5), components of the
strain-rate tensor (2) and strain tensor (3), etc. The
shape of the curvesy,, and A, israther simple; however,
their construction requires very cumbersome high-

2,3 V4,5
300 3 350
5 i j
0 0
-300+ -350
—600 ! =700 '
0 0.5 1 0 0.5 1

Fig. 3. Velocity profilesy,(x) for b = 1.
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Fig. 4. Thesameasin Fig. 3, but for b = 200.

accuracy calculations, which are considerably compli-
cated for b — +0 and b — oo, Pronounced boundary
layer effectstake placein the problem. Calculating algo-
rithms on the basis of the known functional-analysis
methods (Bubnov-Galerkin), finite-element and finite-
difference methods does not provide satisfactory results.

To illustrate multimode flows, Figs. 3 and 4 show
the velocity profilesy,(x), n=2, 3, 4, 5, for arelatively
small value of b = 1 and arelatively large value of b =
200, respectively. For small values of the parameter
b (Re), large oscillations of positive and negative veloc-
ity values, i.e., the functions y,,(x), are observed. The
inflow (y,, > 0) and outflow (y, < 0) regions correspond
to these values. An increase in the parameter b(Re)
reduces the amplitude of oscillations and reverse flows.
For large valuesb ~ 10>-10°, the pronounced forms cor-
responding to confusor flow (11) are observed for a
weakly viscous fluid. A deviation from the rectangular
profile of aflow of anonviscous (perfect) fluid in acer-
tain metric tendsto zerofor 0 < x< 1; near x=0 and 1

(6= FB), typical boundary layer phenomena arise.

ACKNOWLEDGMENTS

Thiswork was supported by the Russian Foundation
for Basic Research, project nos. 99-01-00222,
99-01-00276, 01-01-06306, and 99-01-00125.

DOKLADY PHYSICS Vol. 47 No.3 2002

REFERENCES

N. E. Kochin, I. A. Kibel’, and N. V. Roze, Theoretical
Hydromechanics (Fizmatlit, Moscow, 1963).

L. D. Landau and E. M. Lifshitz, Course of Theoretical
Physics: Fluid Mechanics (Nauka, Moscow, 1986; Per-
gamon, New York, 1987).

L. G. Loitsyanskii, Mechanics of Fluids and Gases
(Nauka, Moscow, 1987).

L. D. Akulenko and S. V. Nesterov, Dokl. Akad. Nauk
374, 624 (2000) [Dokl. Phys. 45, 543 (2000)].

L. D. Akulenko, D. V. Georgievskii, S. A. Kumakshev,
and S. V. Nesterov, Dokl. Akad. Nauk 374, 44 (2000)
[Dokl. Phys. 45, 467 (2000)].

D. M. Klimov, S.V. Nesterov, L. D. Akulenko, D. V. Geor-
gievskii, and S. A. Kumakshev, Dokl. Akad. Nauk 375,
37 (2000) [Dokl. Phys. 45, 601 (2000)].

D. V. Georgievskii, Stability of Deformation Processes
of Viscoplastic Bodies (1zd. URSS, Moscow, 1998).

S. A. Lomov, Introduction to the General Theory of Sin-
gular Perturbations (Nauka, Moscow, 1981).

Trandated by V. Bukhanov



Doklady Physics, \ol. 47, No. 3, 2002, pp. 224-228. Translated from Doklady Akademii Nauk, Vol. 383, No. 1, 2002, pp. 51-56.

Original Russian Text Copyright © 2002 by Zubin, Ostapenko.

MECHANICS

On an Extreme Feature of Detached Flows
upon the Interaction of a Shock with a Boundary L ayer

M. A. Zubin and N. A. Ostapenko
Presented by Academician G.G. Chernyi September 20, 2001

Received September 27, 2001

Calculations carried out with empirical relations
under certain assumptions have revealed nontrivial reg-
ularities inherent in A-configurations of shocks pro-
duced at the devel oped separation of aturbulent bound-
ary layer in cone flows and are characterized by the
minimum (or near-minimum) production of entropy.

Experimental studies [1-4] of the separation of a
turbulent boundary layer in cone flows under the action
of shocks revealed that a disturbed flow has a number
of fundamental featuresthat have not been theoretically
explained yet. Among them are the following ones. A
flow with a boundary layer separation has a cone char-
acter, which isdisturbed only in the regions of laminar-
to-turbulent state transition [2-4]. The quantitative
characteristics of a detached flow for the artificially
induced turbulence of a boundary layer [1] coincide
with those under natural conditions of varying the local
Reynolds number along the line of turbulent boundary
layer separation in the range Re x 107° [ (1.5; 20) [4].
Some other features will be mentioned later.

Semiempirical relations for angles ¢ and y between
the direction of an undisturbed flow with the Mach
number M and the lines of separation and attachment,
respectively (seeFig. 1, theflow diagram), are obtained

. . . Yy . T 0
in [4] for regimes of “free” interaction Hm <3 —€q

[5, 6]. These relations are applicable for calculating the
angular dimensions and position of the region of sepa-
rating the turbulent boundary layer under the model-
problem conditions (a flow in a right dihedral angle,
Fig. 1). They may also be used for similar calculations
in a shock layer at the interaction of a boundary layer
with curvilinear shocks and compression-shock sys-

Institute of Mechanics, Moscow State University,
Michurinskiz pr. 1, Moscow, 117192 Russia

tems[4, 7, 8]. The formulafor calculating the angle ¢
has the form [4]

¢ = hlogH + by,
h = 5.1exp(-0.89M) + 0.71, )
Mag

o = arcsin o

Here, the quantities with the index k correspond to the
formation of separating the turbulent boundary layer,
and py = 1.6 isthe minimum value of the intensity p of
the shock C generated by a plate A, which makes an
angle a with the flow direction at infinity (Fig. 1). The
shock is incident at a right angle on the plate B posi-
tioned along the flow direction. The Mach number

Mnb
2.4

22F

20

1.6

1.4

Fig. 1.
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ON AN EXTREME FEATURE OF DETACHED FLOWS UPON THE INTERACTION

M, = 1.23 of the undisturbed-flow vel ocity component
normal to the wave correspondsto p,.

The values of p, and M, agree with data on the for-
mation of a plane separation (seeg, e.g., [9]). Thisisone
of the general features of separating the turbulent
boundary layer in flowswith various dimensions. Among
these features is the fact that the pressure downstream
from the oblique shock above the region of the devel oped
separation is equal to the pressure plateau p,. The latter
corresponds to the free-interaction regimes [2, 3].
According to[10], p, (divided by the pressure p,, in the
undisturbed flow) can be calculated by the formula

p, = 0.287 + 0.713M, 2)

which yields adequate results for M [ (1.75, 5). For
cone flows with boundary-layer separation, in Eg. (2)
M should be replaced by the Mach number M, =
Msing(ps) [2-4] of the free-flow velocity normal to the
separation line.

For “restricted” interaction, the indicated property
holds as before, but with other pressurelevels[5, 6]. For
M =3.04 and € O (36°, 46°), the Slope 6, of the oblique
shock above the separation region is calculated as

8, = K(€)[ps— Ps(€)] +04[ ps(e)],
Psm = Ps= Ps(€), 3)

K(g) = —1.03¢” + 1.774¢ —0.577,

dlpye)l = 5 —¢. )

Here, theintensity py(€) of theincident shock C (Fig. 1)
is such that, according to Eq. (4), the separation line
coincides with the leading edge of the plate B having

the glancing angle €; the slope 62 [ps(€)] of the shock

above the separation region corresponds to this case
andiscalculated using both Eq. (2) (with M replaced by
M cose) and the above pressure-plateau property; and
the intensity pg,, of the incident shock C corresponds to

the maximum possible value of the angle 6 = g - €

(Fig. 1) at restricted interaction for fixed sweep anglec.

Under certain assumptions, the above dataenable us
to calculate the entropy variation induced by passing
the shock A-configuration of a developed detached
flow. It is impossible to calculate the entropy-flow
increment by introducing a reference volume including
the characteristic region of the disturbed flow produced
by the interaction of the incident shock with the bound-
ary layer (Fig. 1). Thefirst reason is the lack of neces-
sary qualitative data on the flow parametersin a conic
separation zone and in adjacent flow regions. More-
over, itisdifficult to simulate three-dimensional mixing
processesin such away asto provide an efficient calcu-
lation of the entropy increment caused by viscosity and
heat conductivity.
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Nevertheless, the effect of various processes on
entropy production can be estimated. Let us consider
the entropy increment AS, = S, — S, per unit mass of a
gas (S, is the specific entropy in an undisturbed flow)
when one or several shock waves of local supersonic
regions located in the separation-zone outline travel
through the shock A-configuration and move further
downstream [2—6]. We suppose that this entropy incre-
ment is about the increment in a single incident wave
characterized by the Mach number M,, of the velocity
normal to the wave front:

AS, Oc, In§1+ -(M; —1)}
0
(5)
M?-1)]' D
2y
x|:l_y+1 Mn i| %
0

Here, ¢, is the constant-volume specific heat for ideal
gas, and y is the specific heat ratio.

L et the entropy per unit mass of the gasincrease due
to viscosity (in the presence of velocity gradients) by
AS, in acharacteristic timeof T=L/U,, whereL isthe
characteristic dimension of the reference volume in the
flow direction or the length of the experimental model
[2-4] and U,, is the velocity magnitude for the undis-
turbed flow. The similar increment determined by heat
conductivity (in the presence of the temperature gradi-
ent) is denoted by AS,. These increments are about

V
Here, Re is the Reynolds number calculated on the
length L, and Pr is the Prandtl number. We take into
account the foregoing intervals of varying the quanti-
ties appearing in Egs. (6), as well as the fact that M, >
M, for a developed detached flow. Then, we conclude
that the entropy increment in compression shocks of the
shock A-configuration, i.e., AS, from (5), makes the
greatest contribution to entropy production.

To find the entropy production in compression
shocks situated under the contact-discontinuity surface
emanating from the shock branch line, one should cal-
culate the entropy flow transported in a unit of time by
the gas particles passing through the oblique shock
above the separation region and other downstream
waves.

We assume that the isentropic-decel eration parame-
ters (and, consequently, entropy) on all current surfaces
between the indicated contact-discontinuity surface
and conic separation region (Fig. 1), after the passage
of all discontinuities, are closeto (or coincide with) the
corresponding parameters for gas particles passing

y(y=1)M?
A, 0, LY=L
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through the oblique shock and breakdown shock wave
in the branch-line vicinity. There is only indirect sup-
port for this speculation. Such an assumption was made
in [2] for particles on the current surface coming to the
attachment line (Fig. 1), and this allowed description of
those observed qualitative changesin theinternal flow of
the separation region that are caused, among other fac-
tors, by the transonic transition of the backward flow.

Since the entropy flow downstream of the shock
A-configuration is generally described by an improper
integral, one should consider theratio of thisflow to the
entropy flow transported in unit time by the correspond-
ing particles of the undisturbed flow. Under the above
assumption, this ratio reduces to the ratio of the values
S, and S, of the specific entropy in the shock branch
line under the contact-discontinuity surface and in the
undisturbed flow, respectively. The reason isthat, under
the accepted assumption, the integrals are the mass
flows upstream and downstream of the shock A-config-
uration and are equal and cancel each other according
to the mass conservation law. In turn, the calculation of
the ratio §/S, is equivalent to the calculation of the

\
EE—% %E_bg , which will be dis-

entropy function s =

cussed | ater.

To calculate gas parameters under the contact-dis-
continuity surface emerging from the shock branch
line, one needs to determine the Mach number M,,, of
the undisturbed-flow velocity component normal to the
branch line. Relations (1), (2) (free interaction) or (3),
(4) (restricted interaction) are inadequate to calculate
M., for the given M and a. The quantity M, should be
determined from a solution of the corresponding
boundary value problem, since the oblique shock above

ZUBIN, OSTAPENKO

the separation region interacts with the incident shock
on the section of the subsonic cone flow downstream of
the shock. The branch-line position is considered to be
little different from the position of theline of the oblique-
shock intersection with the undisturbed shock C incident
on the plate B at aright angle (Fig. 1). This assumption
is strongly supported by experimental results obtained
for a disturbed flow by a special optic method [2-6].
Thus, we accept that M, is equal to the Mach number
of the velocity normal to the line of intersection of the
incident shock and the oblique shock specified by
empirical relations (1), (2) or (3), (4).

The dependencies M, calculated in such away are
shown in Fig. 1 for the undisturbed-flow Mach number
M = 3.04 corresponding to approximations (3). Curve 1
and a [ [12°, 30°] correspond to the free-interaction
case, whereas curves 24 for € = 46°, 41°, and 36°,
respectively, correspond to the restricted interaction.
The upper circle, triangle, and diamond denote the ori-
gins of respective curves 2—4, which show the solutions
of Eqg. (4). The termina points of these curves corre-
spond to the values of the intensity of the incident
shock C, when its position coincides with the leading

edge of the plate B: 0 = g—s (Fig. 1, the flow dia-

gram). Curves 24 differ little from curve 1 for the same
p; value, because the angle between the line of intersec-
tion of the oblique shock with the incident shock and the
plate B is small compared with the angle 6.

The branch-point structure is calculated for a three-
shock configuration, which is supplemented with acen-
tered rarefaction wave when the corresponding solution
isabsent. In this case, the parameters of the breakdown
shock wave at the branch point correspond to the acous-
tic point in the interior polar constructed for the Mach
number of the uniform-flow velocity component down-
stream of the oblique shock above the flow separation
region normal to the branch line.

Figure 1 also shows the data cal cul ated for the pres-
sure p, (divided by the pressure p,,) downstream from
the shocks at the branch point for (line 5) free and
(lines 6-8 corresponding to lines 24 for M,,)
restricted interactions. Figure 2 shows the Mach num-
bers on the sphere M, and the total velocity M, for
parameters under the contact discontinuity at the
branch point (curves 1, 5 and 24, 6-8 correspond to
free and restricted interactions, respectively). The cir-
cles, triangles, and diamonds have the same meaning as
inFig. 1.

The results obtained for p, (Fig. 1) and M, (Fig. 2)
with empirical relations (1)—3) point to an unexpected
fact: the total pressure recovery factor n in the flow
downstream from the shock A-configuration takes close
values for two fundamentally different interaction
regimes if the incident shocks have the same intensity.
The same conclusion aso holds for the entropy func-
tion related to the recovery factor ass=n!-V.

DOKLADY PHYSICS Vol. 47

No. 3 2002



ON AN EXTREME FEATURE OF DETACHED FLOWS UPON THE INTERACTION

Let us consider the dependence s(y, M, py), where
Ps is the arbitrary intensity of the oblique shock rami-
fying in the three-shock configuration in aflow with the
Mach number M. For y=1.4 (air), Figs. 3aand 3b show
the curve nets sy, M, ps) corresponding to the Mach
numbers M = (1) 1.5, (2) 1.7, (3) 1.9, (4) 2.1, (5) 2.3,
and (6) 24and M = (1) 1.5, (2) 2, (3) 2.5, (4) 3, (5) 3.5,
and (6) 4, respectively. From the right, the curves are

+ S
bounded by the values p,, = ; Ps

determined by Eq. (2) and p; is the pressure at the

sound point of the interior polar constructed for the
number M. For each M value, the point A indicates the
svalue corresponding to the normal shock wave. These
values do not coincide with the ordinates of the curves
sy, M, py) for p — 1, because shock disturbance for
asubsonic flow downstream from it dependsirregularly
on the intensity of the interacting oblique shock [11].

, Where p, is

Asisseenin Fig. 3, for each number M, thereis an
oblique shock with an intensity of pg such that, as it
ramifies, the entropy increment for gas particles which
have passed the shock A-configuration under the con-
tact discontinuity is minimal. Curves 7 in Figs. 3a and
3b correspond to the values of the entropy function for
P< = P; given by Eq. (2) [10]. Thus, curves 7 give
insight into entropy production in the shock A-configu-
ration, which isrealized in atwo-dimensional problem
when a direct shock wave interacts with a turbulent
boundary layer.

The other curvesin Fig. 3 correspond to the results
of calculations for the case of separation in a cone flow
(Fig. 1). Here, the net of the curves M = const should be
considered as M, = const, and the value of the abscissa
Pps should be considered as the intensity of the oblique
shock interacting with the normally incident shock C.
In Fig. 3a, curve § corresponds to s(y, M, p,) for free
interaction. Here, p, is determined by Egs. (1) and (2),
where M should be replaced by M= Msing (py). The
Mach number for the undisturbed flow is M = 3.04,
a° 0 [12.5°, 30°], M, O [1.74; 2.64], M, O [1.51,
2.39]. In Fig. 3a, curves 9-11 correspond to the case of
restricted interaction, when the slope of the oblique
shock is determined by Eq. (3) with € = 46°, 41°, and
36°, respectively. Theuse of Egs. (1) and (2) allowscal-
culations of s(y, M, p,) for various M values. In
Fig. 3b, the entropy functionis shown for M =(8) 3.04,
(9) 4, (10) 5, and (11) 6.

Theresults presented in Fig. 3 support the hypothesis
that the principle of minimum entropy production [12]
with restriction is realized in the flow formed by the
interaction of shocks with a boundary layer. In this
case, the states of particles at the entry and exit of the
reference volume outside the layers where viscosity
and heat conductivity are substantial should be
accepted as the stationary states.
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Indeed, curves 7 in Fig. 3 indicate that entropy pro-
duction in the shock A-configuration is not minimal. In
order for it to reach aminimum, aconsiderableincrease
of oblique-shock intensity above the separation region
isrequired. Thisincreaseisincompatible with available
experimental data and the physical meaning of the the-
oretical results[13]. In other words, the existing spread
of experimental data [9] for the pressure plateau in the
separation region of a turbulent boundary layer
excludes the values pg = p, that exceed certain critical
values p,(M) and are close to the minimum points of
curves 1-6. This is the essence of the foregoing restric-
tion. At the same time, in the case of aturbulent bound-
ary layer, p,(M) is large enough to alow the shock A-
configuration to considerably reduce entropy production
in contrast to the case of the separation of a laminar
boundary layer.

For the free interaction of shocks with a turbulent
boundary layer in cone flows, the two-dimensional sep-
aration has the foregoing fundamental propertiesin the
plane normal to the separation line. However, an addi-
tional degree of freedom, the angle ¢(p,) calculated
from semiempirical formula (1), arises in the disturbed
flow. It is precisely this degree of freedom combined
with dependence (2) that makes it possible to choose
the value M,,, in such a way that the corresponding p,



Fig. 4.

value provides the minimum value of sy, M, p,)
(Fig. 3b, curves 8-11). For restricted interaction, the
angle of the oblique shock above the separation region
rises linearly with the intensity of incident shock (3),
and M, is virtudly unaffected (Fig. 1, curves 1-4). In
this case, the disturbed flow loses one degree of freedom
and its equilibrium state becomes further from the state
with minimum entropy production (Fig. 3a, curves 9—
11). However, the corresponding increasein the entropy
function is small, as was indicated above, when the
resultsfor p, (Fig. 1) and M, (Fig. 2) were discussed.

Under the assumption that the principle of minimum
entropy production with restriction is realized for the
flows under consideration, it is easy to show that the
cone character of aflow for free interaction is the key
manifestation of this principle. Indeed, if the disturbed
flow were not a cone flow but became a quasi-two-
dimensional flow beginning with a certain local Re
number, the values of the entropy function in the corre-
sponding region of the shock-wave configuration
would lie not in curves 8-11 but in curve 7 (Fig. 3b);
i.e., entropy production would increase. The cone char-
acter of the flow can only be violated in regions of the
laminar-turbulent transition, where p,(M) changes.
This behavior was observed experimentally.

In summary, we conclude that entropy production
realized in the shock A-configuration with the restric-
tion on p, is analogous to the attainment of a boundary
extremum in optimization problems.

Since Eq. (2) [10] is generally one of the available
approximations for the pressure plateau [9], it is
instructive to consider the effect of the p, value on the
results cal culated for the entropy-function. Figures4aand

ZUBIN, OSTAPENKO

4b show results for M = 4 and 5, respectively. Curves 7
correspond to the separation in the two-dimensional
problem. Curves 9 and 10 correspond to the respective
lines in Fig. 3b. The dashed lines bound the regions
involving all the pressure plateau va uesfound in various
experiments [9]. It is seen that the results of the calcula-
tions with the possible spread of s(y, M,,,, p;) values do
not change the above conclusions.

In conclusion, we note that the functional correspond-
ing to entropy production can have no minimum because
of conditions excluding process-parameter values falling
outside the restrictions imposed, as in the above case of
the two-dimensiona separation, by the properties of the
local or global structure of a disturbed flow. As a conse-
guence of these redtrictive conditions, which are some-
times difficult to revea, only a certain boundary extre-
mum for the indicated functional is realized.

ACKNOWLEDGMENTS

Thiswork was supported by the Russian Foundation
for Basic Research (project no. 00-01-00234) and the
program “Universities of Russia—Fundamental Inves-
tigations” (project no. 99-1653).

REFERENCES

1. V. S. Dem'yanenko and V. A. Igumnov, lzv. Sib. Otd.
Akad. Nauk SSSR, Ser. Tekh. Nauk, No. 8, 56 (1975).

2. M. A. Zubin and N. A. Ostapenko, lzv. Akad. Nauk
SSSR, Ser. Mekh. Zhidk. Gaza, No. 3, 51 (1979).

3. M. A. Zubin and N. A. Ostapenko, Jet and Detached
Flows (Mosk. Gos. Univ., Moscow, 1979).

4. M. A. Zubin and N. A. Ostapenko, lzv. Akad. Nauk
SSSR, Ser. Mekh. Zhidk. Gaza, No. 6, 43 (1983).

5. M. A. Zubin and N. A. Ostapenko, Dokl. Akad. Nauk
368, 50 (1999) [Dokl. Phys. 44, 626 (1999)].

6. M. A. Zubin and N. A. Ostapenko, Izv. Akad. Nauk,
Ser. Mekh. Zhidk. Gaza, No. 3, 57 (2000).

7. M. A. Zubin and N. A. Ostapenko, lzv. Akad. Nauk
SSSR, Ser. Mekh. Zhidk. Gaza, No. 3, 68 (1989).

8. M. A. Zubin and N. A. Ostapenko, lzv. Akad. Nauk,
Ser. Mekh. Zhidk. Gaza, No. 2, 137 (1992).

9. G. N. Abramovich, Applied Gas Dynamics (Nauka,
Moscow, 1976).

10. G. I. Petrov, V. Ya Likhushin, I. P. Nekrasov, and
L. I. Sorkin, Effect of Viscosity on Supersonic Stream
with Compression Shocks, Preprint No. 224, TIAM
(Tsentral’'nyi Inst. Aviatsionnykh Motorov, Moscow,
1952).

11. N. A. Ostapenko, Dokl. Akad. Nauk 372, 181 (2000)
[Dokl. Phys. 45, 225 (2000)].

12. 1. R. Prigogine, Introduction to Thermodynamics of Irre-
versible Processes (Interscience, New York, 1968).

13. L. V. Gogish, V. Ya. Neiland, and G. Yu. Stepanov, in
Itogi Nauki Tekh., Ser.: Gidromekh. (VINITI, Moscow,
1975), Vol. 8.

Trandlated by V. Tsarev

DOKLADY PHYSICS Vol. 47 No.3 2002



Doklady Physics, Vol. 47, No. 3, 2002, pp. 229-232. Translated from Doklady Akademii Nauk, Vol. 383, No. 1, 2002, pp. 57-60.

Original Russian Text Copyright © 2002 by Sedenko.

MECHANICS

Stability of Steady-Flows of Two Ideal Fluids
with Different Constant Densities

V. |. Sedenko
Presented by Academician I.1. Vorovich July 4, 2001

Received August 22, 2001

In this paper, the stability of steady flowsin the sys-
tem of two ideal fluids with different constant densities
is analyzed with alowance for surface tension at their
interface. The analysisis based on the abstract scheme
proposed by Arnol’d [1, 2]. The fluids in this system
can have free boundaries. It is shown that the well-
known Rayleigh-Taylor instability is compensated for
certain vortex flows by vorticity and surface tension.

Themethod reportedin[1, 2] wasused in [3] to ana-
lyze the stability of steady flows of anideal fluid with a
free boundary.

It was shown that, among all fields with the same
vorticity, only the velocity fields for steady flows corre-
spond to the critical points of kinetic energy (aswell as
to the critical points of the momentum and angular
momentum functionals if the flow is invariant under
tranglations and rotations, respectively). If the critical
point is the nondegenerate maximum or minimum for
the connective of integrals at the layer of flows with the
same vorticity, the corresponding flow is stable.

1. THE EULER EQUATIONS FOR FLOWS
OF AN IDEAL INHOMOGENEOUS FLUID
WITH A PIECEWISE CONSTANT DENSITY

Let a time-dependent domain D(t) in the three-
dimensional space R* have the boundary 0D(t) = S, O
S,(t) and be filled with two ideal fluids with the inter-
face S;(t), where S, S,(t), and S;(t) at any t consist of
a finite number of connected closed digjoint surfaces.
Here, S, is a set of rigid walls and S,(t) is the free
boundary. The fluid is subjected to the bulk forces with
potential U(x) and to the capillary forces with the sur-
facetension o = 0. Then, velocity V; (x, t) and pressure
pi (X, t) in the domain D, (t) for each t value satisfy the
Euler equation

pi(Vie + (Vi, )Vi) = —grad(U + p)), divV; = 0; (1)

Rostov Sate University of Economics,
ul. Bol’shaya Sadovaya 69,
Rostov-on-Don, 34400 Russia

the kinematic boundary conditions
Vin(x,t) = 0, xOS,
Vin(X, 1) = Xin(x, 1), x0 S(1);
and the dynamic boundary conditions
x 1 S,(1),
pi(X ) = pj(x, t) + 20H(x, 1), 3)

x 1 $(1),

Here, H, (X, t) is the average curvature of the surfaces
S(t) at the point x [the average curvature is expressed
in terms of the principal radii of curvature by the rela-

tionship H = 2-'(R;" + R;)], X;, denotes the normal

component of the velocity of a point at the boundary of
domain D, (t), and the subscript takesthe valuesk = 2. 3.

2

pi(x,t) = 20H(x, t),

ij=12.

2. CONFIGURATION SPACE

A flow isreferred to as steady flow when domains
Di0 filled with corresponding homogeneous fluids and

velocity fields V7, i = 1, 2, are independent of time't.
Now, we define the configuration space M° correspond-
ing to the steady flow {(D?, V?): i = 1, 2}, the stability
of which will be studied. Let M be a manifold formed
by sets of pairs {(D;, V,): i = 1, 2}, where D; is a
domain, V; isasolenoidal vector field inthe domain D;,
i =1, 2 and Vip(X) = Vjp(X), x O D; n D;. We have
{(Dy, V))} O MO if there existsaset of mapsg;,i =1, 2,
such that

(1) g; diffeomorphism of the domain Dio into D,
conserves a volume el ement;

(29S=S;
(3) :S=gS whereS0AD; n aD%,i,j=1,2.

1028-3358/02/4703-0229%$22.00 © 2002 MAIK “Nauka/Interperiodica’
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3. FUNCTIONALS OF ENERGY, MOMENTUM,
AND ANGULAR MOMENTUM

Set (1) with boundary conditions (2) and (3) hasthe
total-energy integral

2 3
1 .2
E = z I 2inidx+ I Udx + ZO"f ds, 4)
1=1p,(1) D(1) k=2 s

which isthe sum of the kinetic energy, potential energy
of the field of bulk forces, and surface energy of capil-
lary forces. For each element {(D;, V;):i=1, 2}, Eq. (4)
determines the energy functional. If the rigid walls are
invariant under trandlations along the OX axis or to
rotations about the OX; axis, it is possible to define the
momentum functional with respect to the OX, axis

2
L, = ithj)’pivi e, dx

or the angular momentum functional with respect to the
OX; axis

2
K3z J’ piVix Rdx, R = (Xq, X5 X3),
i=1p,(1

respectively.

4. THE INVARIANT FOLIATION ON M°

Generalizing the definition from [3], werefer to ele-
ments {(D;, V))} {(D;, V;)} as elements with equal
vorticity if there exists a set of maps g;, i = 1, 2, such
that

(1) g; diffeomorphism of the domain D; into D; con-
serves a volume element;

(29S=S;

(3) S=gS whereS dD; n 0D, i,j=1,2;

(4) the equality

jiVidx = fVi'dx, i =12
fi gifi
is satisfied for any closed path y; in the domain D;.
Thus, we define the invariant Helmholtz—Thomson
foliation on M?, i.e.,, the partition into the classes of
equivalence: two elements belong to one layer if and
only if their vorticities are equal. The invariance of this
foliation for the aforementioned dynamic system isthe
essence of the Helmholtz—Thomson theorem on the
vortex conservation.
Theorem 1. Let V;(x, t) satisfy Egs. (1)—3) in the
domain D, (t) for all t O (-0 and d) and X (t) be the path
of a fluid particle. Then,

{(Di(0), Vi(x, 0))} and {(D(t), Vi(x, t))}

SEDENKO

have equal vorticities, and the map g; transforms x; (0)
into x;(t). The subscript takes the valuesi = 1, 2.

5 VARIATIONS OF ELEMENTS
FROM M? ALONG THE LAYERS
OF THE INVARIANT FOLIATION

Let solenoidal vector fields f,(x, T) defined in the
neighborhoods of D, (0) be such that g;(x (0)) = X (1) is
asolution of the set of differential equations

dx _

dt

The following conditions are satisfied: f,,(x, T) = 0,
xOS; fin(X, 1) =f,(X, 1); xOID; (1) n dD;(1);1,j=1, 2.

Similar to [3], it can be shown that velocity varia-
tions have the form

f.(x,7), i =12

5V, = aﬁ Vi(x,T) = f;xr, +grada + gradp;,(5)
T =0
2, _ 10°
OV = S| Vi)
B (6)

= 20, x{ f, 1} +,xr] + grada’ + gradp’.

Here, a and o are determined by the conditions

divdV, = divd’V; = 0, (7)
A Vi(giex TN(Gix T) = 0, ®)
Tli=0
d2
—_— Vi(gi: X T)N(gi: %, T) = 0, C))
dtl,-o

where r;(x) = curl Vi(x, 0), {f,(x, 0), r;(X)} is the Poisson
bracket for the vector fields f;(x, 0) and r;(X); ¢;(X) =

9| fx 1;andi =1 2 InEgs (8 and (9),
T =0
x O dD;(0), and n(g;; X, 1) is the unit vector of the outer

normal to dD; (1) at the point g,.x, i =1, 2. In Egs. (5)
and (6), B and B> are harmonic functions in the
domanD,, i =1, 2. At theinterfaces between fluid par-

ticles of different densities, the following conditions
should be satisfied:

gradpi(x) Ch(x) = gradp;(x) Ch(x),

) ) (10)
gradB;(x) th(x) = gradpj(x) h(x),

where x [0 dD; n 0dD; and n(x) is the unit vector of the
outer normal to dD; at the point x.
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6. VARIATIONAL PRINCIPLES
FOR THE ENERGY FUNCTIONAL

Theorem 2. Let{(D?, V?):i=1, 2} bea steady flow

of an ideal fluid. Then, {(D?, V) i =1, 2} isacritical
point of the energy functional E at a layer of the invari-
ant foliation; conversely, any critical point of the
energy functional corresponds to a steady flow. If the
steady flow is invariant under translations along the
OX, axis, thisflow is a critical point of the momentum
functional L, at thislayer. If the steady flow isinvariant
under rotations about the OX; axis, this flow is a criti-
cal point of the angular momentum functional K at this
layer.

7. THE SECOND VARIATIONS OF ENERGY,
MOMENTUM, AND ANGULAR MOMENTUM

Taking into account Theorem 2 and using Egs. (5)—
(10), we derive the following formulas for the second
variation of the energy functional:

2

25°E = 3 [il(fixr, + grad(a} + )’

i=l|;)i

+Vx £ [ fj, r} ]dx

* Z I[%pivi(fi XTI+ grad(c(il + B'l))

i=19D,

Vi, g0
+graj%)|—2‘ + UD Dfinin

+0(0(Fin Fin) +(2K—4H2>(fm)2)}ds

and momentum functional

2

28°L, = z %{piei x f. 4 f,,r}dx
i=1 D

+j[2pi(fixri+grad(a%+sﬁ)) [k,

D,
|
+grad(p;Vie,) ] findsg

where e, isthe unit vector of the OX; axis.

The formulafor &K, is similarly derived and has a
similar form.
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8. THE STABILITY CRITERION

Theorem 3. If some linear combination of second
variations,

WO°E + 1p8°Ly + 387K, (11)
taken along the Helmholtzlayer at thepoint {(D?, V?):
i =1, 2} corresponding to a steady flow of an ideal fluid
with piecewise constant density is a fixed-sign qua-
dratic form of f. and grad;, i = 1, 2, then the steady
flow is stable under small finite perturbations of the
velocity V?°, vortex r, and domain boundary dD?,
i=1 2

9. STABILITY OF FLOWS
IN A TWO-LAYER FLUID

Let us consider a plane-parallel flow in a layer
where the straight linesy = 0 and y = a correspond to
rigidwallsand the straight liney =y, (0 <y, <a) isthe
interface between fluid particles with the densities p,
and p, and velocity profiles u, (y) and u,(y) in the upper
and lower layers, respectively. We analyze the stability
of this flow under perturbations periodic in x with the
period X.

9.1 Flowsin a Rigid-Wall Channel
with High Surface Tension at the Interface

In this case, the second energy variation has the
form

25%E = i Ipi[a(v°)2+ %(&?)Z}dxdy

i:1Di

+ I [ZPlul(Y1) 6\/21 fro— 2p2U2(Y1)6Vgl o

y=Y1
2 2
0 [, Y 2 0} U 2
+ O_yB)lED( f2) = a_y%zim( f2)

2 2
09 fury”, e D}dx.

(12)

TOmMax 0 T Oax 00
For Eq. (12) to be positive definite, the condition

ufl;(y) E|2|—(—¥2 > O! y D [yl! a']
u; () uz ()
and the following conditions at the y =y, interface

o> C(X1 ui(y1)1 u;'(yl)! pi’i = 1! 2)

should be satisfied. If surface tension increases at the
interface, we will eventually obtain all flows with pro-
files minimizing the energy functional in the situation
when the interface is replaced by arigid wall.

>O! yD[O!yl]v
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9.2. Flowsin a Rigid-Wall Channel
with High Surface Tension at the Interface
Letusset y, =2, W, =-2¢, and 3 = 0in Eq. (11)
assuming that u,(y,) = u,(y,) = c. Then, we have the
square form
2

28°E - 2¢8°L, = ZIp[(BV)

IlD

(13)

Luy)-c 0, 9 fa
o (6)}dxdy+cj’ [Da;D =2 Jox,
Y=¥1

which is positive definite if each velocity profile satis-
fied the conditions
uy)—c
u; (y)
Note that the stability conditions for low surface ten-
sion are satisfied only when the velocity is continuous

i =12

SEDENKO

at the interface. Thus, bulk forces that can stabilize a
flow with a free boundary [3] cannot stabilize a flow
with an interface.
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1. The universally integrable problem of three vorti-
ces[1, 4-6] has attracted the interest of researchers for
over one hundred years [6]. Thisis not associated only
with the vortex problem in itself but also has numerous
analogies in the mechanics of solids, astrophysics, the
dynamics of superfluid helium, and mathematical biol-
ogy [1, 5]. A new peak of interest in this problem was
stimulated by the discovery of so-called three-polar
structures [13], i.e.,, symmetric triples of vortices
(=K, 2K, —K) and by later observation of their spontane-
ous origin from chaos[12]. In most studies[1, 4—7, 10,
12-15], the dynamics of vortices was analyzed in the
framework of the homogeneous-fluid model. At the
same time, the geophysical problems (some of them
were discussed in [2, 3, 8, 11]) are characterized by
noticeable density gratification. In this paper, we ana
lyze the problem of three vortices that exist in a two-
layer fluid and have zero total intensity.

2. We take the following assumptions: (i) the upper
and lower layers have equal thicknessvalues (h, = h, =
1/2) and the densities p, and p, in the layers satisfy the
condition Ap = p, — p; > 0; and (ii) one vortex with an

intensity Ki corresponds to the upper layer, whereas

two vortices with intensities k; and k5 are located in

the lower layer. The complex form of equations of
motion for three discrete vortices in two immiscible
fluid layers rotating with a constant angular velocity
(in the presence of ahard cap on the upper surface) is

dz _ 1 ¢ K} i !
@ Eﬁglzé_zill—ﬂé—zllKl(vlzz—zll)], M

* Water Problems Institute, Russian Academy of Sciences,
Novaya Basmannaya ul. 10, Moscow, 107078 Russia
E-mail: m_sokolovskiy@mail.ru

** Laboratoire de Geophysique et Industriel Courants,
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dzy 10 k; 1 m 1 m
E—ﬁm[l—ﬂzfﬂKl(V|21—Zz|)]
am (2)
3- 3- 0
=2 —[1+y|3 "~ Z|Ky(v|Z ”‘—z;”l)]g
2

3_
2

Here, Zy = x; + iy, isthe complex coordinate of the

mth vortex in the nth layer; the overbar implies complex
conjugation; the parameter y is inversely proportional
to the Rossby internal deformation radius

_[ gAph;h, T’Z.
pof?(hy+hy) )

Ky isthe kth-order modified Bessdl function of the sec-
ond kind; g is the acceleration of gravity; and f is the
Coriolis parameter equal to the double angular velocity
of the fluid-plane rotation about a normal to this plane.
According to assumption (ii) above, the variable min
Eq. (2) takesthe values 1 and 2. Thus, Egs. (1), (2) are
the set of ordinary differential equations that should be
complemented by initial conditions for the origina
coordinates of all three vortices.

The set of Egs. (1), (2) can be represented in the
standard Hamiltonian form with the Hamiltonian

1
3)

1.1 11 11 1.2 21 21
+K1K3[Indyy + Ko(ydz))] +K K3[Indy; + Ko(ydz)]}
where dy" = |z — z¢|. In addition to Hamiltonian (3),
the original set has the first integrals for the momenta

P = KiZ + K323 + KoZo, P = KiZj + K325 + Koz
and the angular momentum
1|_1|2 1|_1|2 2|_2|2
M = K1|21| + K2|22| + K2|Zz| ,
whose values are evidently determined by the initia
conditions.

1028-3358/02/4703-0233%22.00 © 2002 MAIK “Nauka/Interperiodica’
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(b)

Fig. 1. (a) Phase portrait of the relative motion for athree-vortex system in atwo-layer fluid under conditions (4) and P = 1.7. Thick
lines are separatrices that separate the regions of different types {1}, {2}, and {3} of interactions between the vortices. The dark
region is the nonphysical region of the phase plane (axes of trilinear coordinates are aso shown). (b) The same asin Fig. lawith
the singular points indicated. Squares and circles on the boundary of the physical region correspond to the coordinates of the rep-
resentation pointsin the phase space for the original configurations of the vorticesin the numerical calculations presented in Figs. 2

and 3, respectively.

It is easy to verify that the invariants H, M, and

P - P areininvolution, and therefore set (1), (2) always
has aregular solution [1, 4].

Inwhat follows, we assumethat the total intensity of
vorticesis zero and

Ki=—2K, K;Z K§=K>0. @)

Thus, the upper-layer vortex is attributed to the anticy-
clonic vorticity compensated by the two cyclonesinthe
lower layer.

3. We now assume that P # 0. In this case, the rela-
tive motion can be analyzed in the trilinear coordinates
[1,7,15]

_3kaK(0%)’

_ _ 3kiK3(d3)”
1 P2

] 2 = P2 ]
_ 3kiKy(dz)”
3 P2

which possess the obvious property

t,+t,+t; = 3.

In the plane specified by the coordinatest,, t,, t; (whose
meaning isillustrated in Fig. 1a), it is necessary to sep-
arate so-called physical regions where the triangle ine-
quality is satisfied. Under condition (4), this implies
that

12t + (t,—t5)°<0 for t;<0, t,=0, t;=0.

In the trilinear coordinates, the isolines of Hamilto-
nian (3) coincide with those of the function

—t
W(ty, tp t;) = In[—l}
&t

3
0 /—t PO 0 /t PO 0 P
—2| Koy [0+ 2K,y 250+ 2Ky [2=0|.
OA 3k™ 0 0 A 6k 0 A 6k

In essence, these isolines are the phase trajectories for
the relative motion of the three-vortex system under
consideration and are shown in Fig. 1 for P = 1.7.

The basic general properties of the phase curves are
the following.

(1) All the phase curves start and finish at the physi-
cal-region boundary. Therefore, al relative motions of
vortices are periodical, and vortices pass through two
collinear positionsduring aperiod. From this, it follows
that exhaustive information on possible motions of the
system of vortices can be acquired from theinitial con-
dition for three vortices being located in the same
straight line.

(I1) Possible motions for the system of three vortices
can be classified into three qualitatively different types
according to theinitial collinear configuration of vorti-
ces.

(11) The phase portrait can have singular points of
elliptic (e) and hyperbolic (h) types (see Fig. 1b).

(IV) The phase curves are symmetric about the
straight line t, = t;, because the variables t, and t; are
proportional to the distances squared between the anti-
cyclone of the upper layer and equivalent (with each
other) cyclones of the lower layer.
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The phase portraits (we present here only one exam-
plefor aparticular value of the system momentum) pro-
videtotal information on the relative motion of the sys-
tem of vortices. However, it is known that this analysis
does not reveal all characteristic properties of the abso-
lute motion of vortices [5]. Below, the basic features of
the vortices are analyzed on the basis of numerical cal-
culations. We also present the trajectories of vortices,
indicating (by markers) their synchronous collinear
positions additionally marked by segments passing
through these positions. Without loss of generality, the
original positionsof vorticesare attributed to the x-axis.

Wetake X; = X5 = 0 (one of the lower-layer vorticesis

exactly under the upper-layer vortex) and >‘<§ # 0 asthe
simplest (reference) original positions of the vortices
X;, Xa, and x5, respectively. In this case, the momen-
tum P of the system of vortices is completely deter-
mined by the initial vortex position )‘é At the same
time, the sets of coordinates

2 2
X; = X5+ X, 5)

conserve the given P value for all x,. An arbitrary set of
numerical experiments with initial conditions (5) for

fixed >‘<§ corresponds to a specific phase portrait (e.g.,
that presented in Fig. 1). In what follows, we also use
the notation X, = yx, and X = yx, aong with x, and

m

Xy -
The trajectories and vortices (for their collinear
positions) are shown in Figs. 2 and 3 by solid lines and

triangles for the upper-layer vortex xi , by long dashes
and circles for x,l2 , and by short dashes and squares for

x§ . The size of amarker is proportional to the intensity

of the corresponding vortex. We imply the upward
trand ational motion everywhere. In figure captions, the
notationt = (t,, t,, t;) is used.

4. Figure 2 shows characteristic examples of
motions for each of three types.

For type {1} (see Fig. 2d), the interaction between
the lower-layer vortices is predominant. The system of
vortices moves in the direction perpendicular to the x-
axis. In this case, the anticyclonic vortex of the upper
layer undergoes small periodic deviations from the rec-
tilinear motion. The lower-layer vortices revolve in the
cyclonic direction around a certain center moving
trandationally so that the vortices change their places
in the collinear positions for each half-period.

Motions of type {2} are characterized by dominat-
ing interactions between the upper-layer vortex and one
of the lower-layer vortices, which was initialy located
closer to the upper-layer vortex.
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(b) (c)
Fig. 2. Trajectories of absolute motion for P =1.7. Theini-

tial conditions are specified by Egs. (5) for )?i = 7(% =0;

X5 = 1.7; X = (@ -0.3, (b) -02, () 1.L; and (a) t =

(-1.2561, 4.0692, 0.1869), (b) (—1.7543, 4.6713, 0.0830),
and (c) (~15.7889, 16.2768, 2.5121).

~ -

(b) (©)

Fig. 3. The same as in Fig. 2, but for (8) X, = —0.6,
(b) 0.2062, and (c) 0.9611 and (a) t = (-0.2595, 2.5121,
0.7474), (b) (—4.6321, 7.5438, 0.0883), (c) (-13.6197,
14.7020, 1.9177).

According to Fig. 2c, solutions of type {3} arefea-
tured by anticyclonic revolutions of al three vortices.
This is caused by the defining role of the upper-layer
vortex.

The cyclicity periods for vortices in the upper and
lower layers relate to each other as 1 : 2 for motions of
types {1} and {3}, whereas these periods coincide in
the case of type{2}. Thisdifferenceis explained by the
fact that each phase curve of types{1} and {3} ismirror
symmetric, whereasthe curve of type{ 2} isasymmetric.
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The examples of phase curves presented in Fig. 2
correspond to the conditions when they pass far from
the separatrices and singular points. However, the sta-
tionary solutions corresponding to singular points are
of the most interest.

In the vicinity of the singular point e, the lower-
layer vortices approach each other at an infinitesimal
distance and should orbit acommon center with a (the-
oretically) infinite angular velocity. In this case, inter-
layer interactionis manifested almost exclusively asthe
linear displacement of the entire configuration. In
essence, the limiting-case structure is equivalent to a
two-layer pair of vortices of intensities —2k and 2K in
the upper and lower layers, respectively. The motion
with characteristics close to those described above is
exemplified in Fig. 3a, where ydy = 0.5 is not small.
(The lower-layer vortices undergo 66 revolutions dur-
ing the calculation time; to avoid overloading, we mark
in the figure only the original and final collinear posi-
tions of the vortices.) With a decrease in the original
distance between the lower-layer vortices, the pattern
becomes less instructive. For this reason, the results of
corresponding calculations are not presented.

We now consider a point e, belonging to the bound-
ary of the physical region (seeFig. 1b). Asisknown [1],
the collinear three-vortex configurations corresponding
to such singular points should revolve around the vor-
ticity center. The presence of these elliptic points under
the condition of the zero total intensity of the systemis
aremarkable (and surprising) property of the two-layer
configuration. Since, in this case, the vorticity center
movesto an infinitely far point, the collinear configura-
tion of the three vortices, as a pair of vortices, should
move uniformly and rectilinearly in the direction nor-
mal to the straight line in which vortices lie (a corre-
sponding exampleis shown in Fig. 3b). This configura-
tion, naturally referred to asatriton, can be the simplest
example of the vortex structures referred to as amodon
with araider [9].

A hyperbolic point h apparently corresponds to the
unstable solution associated with the trandationally
moving configuration in the form of an isosceles trian-
gle (t, = t;). This configuration isillustrated in Fig. 3c
exhibiting trajectories of the vortex-structure motion
for which the representation point in the phase planeis
originaly located at the boundary of the physica
region near the separatrix. The markers (positions of
vortices) and segments connecting them in this figure
indicate not only collinear but also other synchronous
intermediate vortex configurations for time intervals
during which the representation point resides in the
vicinity of the intersection point h of the separatrices.
These unstable configurations obviously cannot be
long-lived. As is seen in this figure, they periodically
rearrange with alternation of the mutual positions of the
lower-layer vortices after passing through collinear
states.

SOKOLOVSKII, VERRON

5. The general conditions for the existence of these
stationary solutions for an arbitrary momentum value
of the system are the following.

5.1. Triangular configuration. From Egs. (1) and
(2), it iseasy to derive the condition for the existence of
the rectilinear motion of this vortex structure:

1+ 2L|cos|K,(2L|cosd|) _
cos (I)

= 4[1-LKy(L)] (©)

with L = yi, where | is the length of the lateral side of
the isosceles triangle, as well as the expression for the
velocity of thisstructureinthey direction parallel to the
base of the triangle:

v = S0 (). ™

Equation (6) can be treated as a dispersion equation
relating the length of the triangle lateral side to the
angle ¢ adjacent the base. Equation (6) has a (unique)
solution L(¢) only in the interval |¢| < 173; i.e., the tri-
angle cannot be equilateral (more exactly, the limiting
value |¢] = Tr/3 is an asymptotic one as L — o and
V| — 0) The velocity of the triangular structure
coincides with that of a certain hypothetical pair con-
sisting of vortices located in different layers, having
intensities —2k and 2k, and spaced by the distance
equal to the height of the corresponding isosceles trian-
gle. Figure 4ashowsthe dispersion curve L(¢) and V(¢)
(7). For ¢ =0, wehaveV =0, and L takesthevaluel, =
0.8602 at which the degenerate (to the segment) sym-
metric three-vortex configuration is stationary. The
extremal values of V are attained for |¢| = 0.82173 and
L =1.874.

5.2. Collinear configuration. We now denote as A
and B, respectively, the quantities X; and X5 that are
proportional to the origina distances between the
upper-layer vortex (for Xi = 0) and its partners from

the lower layer. From equations of motion (1), (2), we
obtain the following conditions for the uniform motion
of the entire configuration as a rigid body along the
y axis.

A’+ AB+B? _
AB(A+B)

This equality can also be treated as a dispersion egqua-
tion relating the geometric parameters of the solutions
inthe form of thetrandational collinear configurations.
Thetrandational velocity is expressed as

Ki(A) +K(B) +K (A+B). (8)

_ Ky 1
v=dlkmw-zrkm] O

Lin the homogeneous fluid [10], a similar stationary state is the
configuration in the form of an equilateral triangle with an arbi-
trary side length.
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Fig. 4. Geometry parameters characterizing stationary solu-
tions for the (&) triangular and (b) collinear configurations.

Figure 4b demonstrates dispersion curve (8) and
vortex-structure velocity (9). In the asymptotic limit as
A — 0or B— 0, i.e, when the coordinates of a
lower-layer vortex coincide with those of the upper-layer
vortex, we have, respectively, B — o and A — oo,
Thisimpliesthat the second vortex in the lower layer is
infinitely far away. The limiting velocity of the config-
uration also tends to zero but takes extremal values for
A/B and B/A=0.0075. The condition A< B (A>B) leads
toV<0(V>0). For A=B, thevelocity reversesitssign.

In this case, the conditions X% = X§ =L, are satisfied
with the same value of L, which is observed when the
triangular configuration with the symmetric location of

the cyclonic vortices degenerates with respect to the
upper-layer anticyclonic vortex (see Section 5.1).

6. In conclusion, we emphasize that, in the present
study, modes intrinsic to the problem of a system of
threevorticesin atwo-layer rotating fluid with layers of
identical thickness values are classified for the case
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when the total intensity of the system is zero and the
lower-layer vortices are equivalent to each other. New
stationary solutions are obtained, and genera condi-
tionsfor their existence are found.
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Taking friction forces into account, we investigate
the interaction between an elliptic-paraboloid die and a
layer. Theinvestigation concernsthe effects of the Cou-
lomb friction coefficient, die shape, elastic constants,
and layer thickness on contact stresses, the dependence
of the vertical die displacement on a pressing force, the
dimensions and shape of the contact area, and the dis-
placement of layer-surface points outside the contact
area. It is discovered that the contact-area shape and
displacements of the surface points are qualitatively
different at small and large values of the Poisson ratio.

We investigate the case of the limit equilibrium.
Quasistatic die motion aong the layer surface can be
considered in a moving coordinate system in asimilar
way. The integral equation derived for the problem is
solved by the method of nonlinear boundary integral
equations[1, 2].

Friction forces were taken into account in two-
dimensional contact problems [3, 4] and three-dimen-
sional ones for a half-space [5-7] and awedge[8, 9].

Letarigid dielying onthelayer surface z= h be sub-
jected to the normal force P and tangential force T
directed along the Ox-axis of the Cartesian coordinate
system (X, y, 2) with the origin on the lower surface of
the layer. Under the assumptionsthat the friction forces
under thedieare parallel totheforce T, thelayer surface
z=0isrigidly fixed, and the dieisin the limit-equilib-
rium state and does not rotate, we arrive at the boundary
value problem presented by Lamé equations and the
boundary conditions

w = 5—f(X, y)! Tz = MOz Ty, = 0,
z=h, (xy)0Q, n
0,=1,=1,=0, z=h, (xy)0Q,

u=v=w=0 z=0.
Here, u, v, and w are the components of the displace-
ment vector along the x-, y-, and z-axes, respectively;

Institute of Mechanics and Applied Mathematics,
Rostov Sate University, pr. Sachki 200/1, Rostov-on-Don,
344104 Russia

0, Ty, and 1y, are the components of the stress tensor;
W is the friction coefficient; o is the die displacement;
f(x, y) isthe shape of the die base; and Q is the contact
area.

In addition, we suppose the conditions of statics
P=((o,(xYy0dQ, T = puP.
i

Representing the components of the displacement
vector in the layer as double Fourier transforms in the
coordinates x and y, we obtain the following integral
equation for the unknown contact pressure g(x, y) under
the die:

[fon. Ok, y-Banck = FE2E-1(xy)),

) ()
(x,y)0Q,

where G is the modulus of elasticity in shear and v is
the Poisson ratio. The kerndl k(t, T) can be represented
as the difference of two terms

_ K(1-2v)
e= 5 )

Upon simplifying, these terms take the form

K(t, T) = Ky(t, T) —eky(t, 1),

ki(t, 1) =

=+ [(Li) ~ D3y + Py, )
1

2, 2
' +T

Ko(t, T) =
] 5)
x| 1+ [(Lotyh) - 1)J,(yNto + Tz)dy}
0

2k sinh2u—4u

Ly(u) = ,
! 2K cosh2u + 4u% + 1 + K*

2k (cosh2u—1) —4u’(1—2v) ™"

Lo(u) =
2 2Kk cosh2u + 4u% + 1 + K?
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where J,(X) (n = 0, 1) are the Bessel functions, y =

Jo?+B%, and K =3 — 4v.

We consider an dliptic-paraboloid die elongated
along the y-axis. Then the function f(x, y) on the right-
hand side of Eq. (2) takes the form

2 2
=X 4 Y
f(Xl y) - 2R1 + 2R2’
where R, and R, are the radii of die curvature in the
planesy = 0 and x = 0, respectively.

It should be noted that integral equation (2) involv-
ing only the kernel k, (t, T) corresponds to the contact
problem of the frictionless indentation of a die into a
layer [10].

Integral equation (2) with kernels (4) and (5) needs
to be complemented not only by the conditions of stat-
ics but also by a condition for finding the contact area.
This condition will be formulated and realized when
solving the equation.

When the layer thicknessish —» oo, integral terms
in kernels (4) and (5) vanish and Eq. (2) coincides with
the integral equation of the similar half-space problem
considered in [5].

Integral equations (2) are solved here by the method
of nonlinear boundary conditions [1, 2]. This method
enables us to simultaneously find the distribution func-
tion of contact stresses, the contact area, and the dis-
placements of the layer-surface points outsidethediein
a certain region containing the contact area.

Omitting the details of the method, we note that it
was previously applied to the problems where the die
displacement was given, whereas other quantities
including forces on the die were sought [1, 2, 8, 9, 11].
Here, we use amore natural modification of the method
inwhich forces applied to thedieare given, whereasdie
displacement is determined by solving the problem.

Certain results of the numerical calculationsare pre-
sented below. The accuracy of the results was checked
by comparing them for different numbers of discretiza-
tion nodes of the nonlinear integral equation that was
taken from [1, 2], equivalent to Eq. (2), and involving a
condition for determining the contact area. In addition,
the results were compared with the known particular
casesfor u=0[10, 12].

Our numerical calculations show that the die dis-
placement & at agiven force P is amost independent of
the friction coefficient p but depends strongly on the
Poisson ratio v and other parameters. Table 1 presents
thediedisplacement & =3 x 1073 calculated at P = 107,
H=0.9,R, =R, =1.0, and indicated values of the Pois-
son ratio v, shear modulus G, and layer thickness h. We
note that variations in P and G such that P/G = const
leave the results unchanged. Here and below, dimen-
siona quantities are presented in the International Sys-
tem of Units.

R, > R;,
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Fig. 1. The deformed surface z= h in the vicinity of the die
at|x]<2a,0<y<?2afor(a)v=0.1and(b) 0.4

According to Table 1, the die displacement & calcu-
lated at the constant force P decreases as the Poisson
ratio v increases or the layer thickness h decreases.

Table1
h
Gx109 v
0.5 0.2 0.1 0.05 | 0.02
7.0 01129 |121 | 109 | 0.907 | 0.617
03 | 1.08 | 1.01 | 0.912 | 0.750 | 0.504
0.4 | 0.967 | 0.906 | 0.811 | 0.657 | 0.430
1.0 01 |452 | 404 |336 | 255 | 165
031|379 |337 279 |210 | 134
04 339 | 299 |245 | 180 | 110
Table2
P x1077 10 | 20 3.0 4.0 5.0
6*(h=0.1) | 0910| 1.37 | 1.73 2.03 231
6*(h=0.02) | 0.50 | 0.708 | 0.864 | 1.00 112
Px 10~ 60 |70 8.0 9.0 10.0
6*(h=01) | 255 | 278 | 2.99 3.19 3.37
6*(h=002) | 122 | 1.32 | 14 1.49 1.58
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(a)

(b)

/C\ |

a

(e

Fig. 2. Contact area and stress contoursin it for (a) v =0.1
and (b) 0.4.

Table 2 presents the o* values at v = 0.3, G =
7 %10 u=0.9, R, =R, =1.0, and indicated values of
P and h. At other values 1 < 1.0 and identical values of
the other parameters, the results are the same.

We numerically investigated the vertical displace-
ments of the points of the layer surface z = h and the
contact-area shape. These characteristics also depend
strongly on the layer thickness h, the coefficient of fric-
tion W, and the Poisson ratio v. The dependence on the
last parameter is the strongest. For Poisson ratios close
to zero, layer-surface pointsin the vicinity of the die at
x>0 are less displaced in the direction of the force P
than those at x < 0. For Poisson ratios closeto 0.5, these
displacements at x > 0 are larger than those at x < 0.
This difference increases as the relative layer thickness
h* = h/D decreases or the friction coefficient p
increases. In addition, the contact area is displaced in
the direction of the force T at small v and in the oppo-
sitedirection at large v, in contrast to the case of p = 0.
The calculations also show that, at small h*, the layer

CHEBAKOV

surface bulges either at x > 0 (small v) or at x < 0
(v close to 0.5). This behavior is illustrated in Figs. 1
and 2.

Figure 1 showsthe deformed surfacesin the vicinity
of thedieand underitat P=10", G=7 x 10'°, u = 0.9,
h=0.02, and R, = R, = 1. These surfaces correspond to

Vw ax|<2a,0<y<
2afor (@ v=0.1 (a=3.51) and (b) 0.4 (a=2.93).

For the same parameter values, Fig. 2 shows (curve0)
the contact-area boundary and (/—6) contours of the

function o+, YO= q(x Y)JR
dimensionless contact stresses q(x, y) at y = 0. The

curves numbered by n correspond to the values g* =
0.1n. Maxima of the quantity g*(x', y') in the contact
area are Qng, = O*(0.15, 0) = 0597 and Q). =
g*(—0.1,0) = 0.661, respectively. The point coordi-
nates X' are presented here with an absolute error less
than or equal to 0.05a. It is noteworthy that the point of
the maximum contact stressesis displaced in the direc-
tion of theforce T at v = 0.1 and in the opposite direc-
tionat v = 0.4, in contrast to the case of p = 0.

the function w*(x, y) = —

describing the
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Theremote control of robotsin the Internet medium
is a new promising trend in scientific research, which
has important practical importance. However, the
progressin thisfield is restrained by limitations on the
data-transmission rate intrinsic to the Internet. The
principal problem is the presence of substantial arbi-
trary time delays in the communication channel. This
fact hampers the realization of Internet control and, in
the magjority of cases, makesit impossible.

The author has developed several new original
methods for the efficient control of robots through the
Internet. The methods proposed are based on employ-
ing avirtual control medium involving a three-dimen-
sional model of a robot with its workspace and repre-
senting the robot’s current state. The use of control
models for both arobot and its operation medium pro-
vides a fast response in the system being controlled to
the actions of an operator, which minimizes the trans-
mitted-data flow and promotes efficient operation even
in the case of substantial delays in the communication
channel. A language and a medium for the remote pro-
gramming of robots through the Internet are devel oped.
The efficiency of the methods proposed was corrobo-
rated in numerous experiments with I nternet-controlled
manipulation robots and mobile robots in which com-
mon-use communication channels were employed. The
methods developed can be applied to a wide class of
systems for the remote control of robots with delays
inherent in communication channels. We also present
here certain experimental data and discuss domains for
possible application of the results of this study.

1. Significant progress achieved in recent years in
the field of computer and Internet technologies pro-
vided afast quantitative and qualitative risein the appli-
cation of the Internet robotics. The applications of net-
work robotics, which became quiteimportant in practice,
are remote education and remote controlled automated
production, in particular, in extremal media [1]. How-
ever, currently developed systems with robot control

Keldysh Institute of Applied Mathematics,
Russian Academy of Sciences,
Miusskaya pl. 4, Moscow, 125047 Russia

based on transmitting video images has certain disad-
vantages, such as substantial delays in the feedback
channel and the control medium that is inconvenient
for an operator. In addition to the considerable delays
while transmitting video images, their size and quality
can hamper the estimate of robot positions and distances
between objects in the workspace for an operator.

To overcome these disadvantages, the author has
devel oped new methods for improving the efficiency of
controlling robots through the Internet [2-5]. These
methods are based on using virtual three-dimensional
models of arobot and its workspace in the online (real-
time) regime. The idea of this approach consistsin the
fact that, instead of cumbersome video images, the
operator receives a minimum set of parameters unam-
biguoudly defining the state of arobot and its operation
medium (the set of generalized coordinates of the robot
and of an abject interacting with this rabot). Then, the
operation scene is visualized by methods of computer
graphics (Fig. 1). This approach makes it possible not
only to minimize the delays in the system response to
the contral actions (by minimizing the data transmit-
ted), but also to provide a comfortable controlling
medium for the operator (with the possibility of chang-
ing the direction of view, magnifying details of the
scene, and using half-transparent images). Application
of the computer simulation of the robot and its work-
spacefor the Internet control provided the possibility of
an efficient control even for low transmission rates
(0.1-0.5 kbyte/s) in the case of employing commonly
used communication channels. The corresponding
graphic module isrealized in the Java3D language.

To minimize the data flow between a server and a
client, we developed a special exchange algorithm.
Every message involves an instruction code and a set of
its associated parameters (integers). For visualizing the
robot and the object in their current state, it is necessary
to transmit only 80 bytes. This provides a rate of
renewal for the three-dimensional image at the opera-
tion scene on the order of 12 times per second for the
transmission rate of 1 kbyte/s. At the same time, in the
case of using video images, the scene renewal takes
place with a frequency lower than 1 frame per 5s.

1028-3358/02/4703-0241$22.00 © 2002 MAIK “Nauka/ Interperiodica’
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Fig. 1. Virtual medium for the robot control.

For this reason, a unique solution for efficient Inter-
net robot control through commonly used communica:
tion channels is operation with the three-dimensional
computer model of a robot and its workspace. This
makesit possibleto reduce time delaysto an acceptable
level and to provide a fast response of the system to
operator actions.

2. We have developed an Rcl language (Robot-con-
trol language) for the remote programming of robots
through the Internet. This language involves instruc-
tions setting motion and positions of a robot (pointsin
its workspace) and service commands.

Motion-setting instructions enable an operator to
direct the robot grip to points determined a priori, to
displace the grip at a desired distance from a current
position, to rotate it with respect to a chosen axis, etc.

Robot-position instructions make it possible to
determine and to change pointsin the robot workspace.

Service instructions enable a user to control a grip,
to calibrate a robot, and also to store on a disk and to
load programs and data needed in the course of the cur-
rent control session.

An important feature of the Rcl language devel oped
for the remote programming of robotsisthe possibility
to program operationsin the on-lineregime, i.e., in the
current robot-control session. Moreover, it turns out to
be possible to execute both individual commands and
their arbitrary combinations, including those using con-
trol constructions in the Rcl language (cycles, condi-
tions, and procedures). For example, the following
fragment of the program makesit possible to determine

two pointsin the robot workspace and to organizeadis-
placement of the grip along the given segment:

Rcl > here A
Rcl > moves 100 200 300
Rcl > here B
Rcl > procline {n} {
global A; global B;
for {seti O} {$i <$n} {incri} {
gosA; gosB; }
}

Rcl > line 3.

The use of the remote-programming medium
enabled us to essentially improve the efficiency of exe-
cuting repeated actions by an operator. We developed
an extension of the Rcl language for programming the
motion of mobile robots.

3. Currently, the methods described have no analogs
among operating systems. On the basis of these meth-
ods, in the Keldysh Institute of Applied Mathematics
(KIAM), Russian Academy of Sciences, systems for
controlling the RM-01 manipulation robot, the CRS
mani pul ation robot, and the Nomadic XR 4000 mobile
robot through the Internet were developed (together
with De Montfort University, England; Nantes Institute
of Cybernetics [IRCCyN], France; and the Laboratory
of Anaysis of Systems [LAAS-CNRS], Toulouse,
France, respectively).

The purpose of the experiments with the RM-01
robot (Fig. 2) was gripping arod on the bifilar suspen-
sion using avirtual control medium. We performed sev-
eral experimental runswhen the robot established inthe
KIAM was controlled through the common-use net-
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work from various ingtitutions in Moscow, England,
France, and South Korea [2—4].

Potentialities of the Internet-control system for the
RM-01 robot were shown during the Day of the Faculty
of Mechanics and Mathematics in Moscow State Uni-
versity (MSU). The robot was controlled by students
from the MSU main building (at a distance of approxi-
mately 25 km).

The remote control of the RM-01 robot through the
common-use network was successfully demonstrated
at the IEEE International Conference on Robotics and
Automation ICRA'2001 (Seoul, South Korea, May,
2001). The robot was controlled from the conference
hall at a distance of over 10 000 km. Using the virtual
controlling medium, an object was gripped in the real-
time scale, although a delay in the transmission of
video images reached more than 30 s.

Similar experiments were performed with the CRS
manipulation robot that gripped parall el epiped-shaped
objects [4]. The remote-control system for the CRS
robot was demonstrated at the Exposition of digital
technologies in Vandee province (Montegue, France).
Accessto therobot situated at a distance of 50 km from
the exposition hall was realized through a conventional
telephone line (34800 kbyte/s) and using a mobile
phone (9 600 kbyte/ s).

Experiments with the Nomadic robot (Fig. 3) were
devoted to developing a platform for mobile telecom-
munication conferences [5]. The robot was controlled
by choosing target points on two-dimensional or three-
dimensional maps of its workspace, while the naviga-
tion between the chosen positions was realized locally
in the automatic regime. The robot was equipped with
aset of sensors, astereoscopic pair of TV cameras, and
devices for vocal communication.

4. We have developed methods for the efficient
Internet control of robots. The methods are based on
using virtual three-dimensional models of a robot and
itsworkspace in the onlineregime, aswell asamedium
for the remote programming of robots. This enabled us
to overcome aprincipal problem of the Internet control,
namely, the presence of substantial arbitrary time
delays in communication channels, to provide a fast
response of the system on controlling actions of an
operator, and to provide a convenient and efficient con-
trol medium.

Our further investigations are focused on develop-
ing methods of reconstruction of the three-dimensional
model of the robot workspace including processing
mobile objects. We intend to devel op various technolo-
gies for the remote Internet control of robots, which
will provide efficient functioning of an operator in the
case of various network-connection rates. In particular,
it is assumed to analyze events and the workspace state
of arobot and to transmit a small data set determining
this state to an operator. We develop algorithms for
gripping a complicated dynamic object (e.g., arod at
the bifilar suspension) by an Internet-controlled robot.
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No. 3 2002

Fig. 2. RM-01 manipulation robot.

Fig. 3. Nomadic XR 4000 mobile robot.

These algorithms are based on both the application of a
system of technical vision and the prediction of the
object motion on the basis of an adequate dynamic
model [6, 7].

Of special interest is the creation of a medium for
remote education in the field of robotics and mecha-
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tronics on the basis of developing systems for Internet-
controlled robots. The principal features of these sys-
tems isthe possibility to carry out experiments with an
actual robot and actual equipment, which is of specia
interest for universities and other educational institutions
having no such device and equipment. The methods
developed make it possible to redlize the joint use of
expensive robotics equipment through the Internet.
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INTRODUCTION

Infiltration of liquids in a stratum system and the
deformation of surrounding rocks are known to be
interrelated processes (see, i.e., [1]). In certain cases,
such an interrelation is manifested especially clearly
and, asarule, iscaused by the presence of insufficiently
compacted clay layers contacting a header in use.
While boring and exploiting a stratum, water flows in
from clay layers compressed by overlying rocks. The
softer the clay layer, the greater its strain and, therefore,
the larger the ground shrinkage and the water yield
from the stratum to the header. These effects were
repeatedly observed in the practice of oil production
and hydrogeology. Reiterated many-meter shrinkages
were observed in the Wilmington [2] and Eckofisk [3]
oil fields, in the process of the underground-water
extractionin Mexico [2], etc. Balance calculations per-
formed for the Belozerskii water-bearing complex [4]
can serve as one more example. These calculations
showed that the water inflow into a water-bearing stra-
tum, which had been caused by compressing slightly
permeabl e rocks surrounding the stratum, provides the
predominant contribution to the water discharge rate.

Theoretical description of the effects indicated
above requires setting and solving combined problems
of rock geomechanics and water infiltration in deform-
able strata. Some of the results of studies of this kind
weredescribed in [5-7]. However, the specific nature of
the object under consideration, which is presented by a
soft clay layer contacting a header, does not allow the
results of these papers to be used immediately. In this
paper, we propose a new formulation of the problem,
which takes into account the key role of the clay layer
in the process under study. Additionally, wefind an ana-
lytical solution to this problem.

Research Institute of Mathematics and Mechanics,
Kazan State University,
ul. Universitetskaya 17, Kazan, 420008 Russia

1. STATEMENT OF THE PROBLEM

We consider a porous stratum lying on an imperme-
ablerigid base and separated from overlying rocks by a
soft clay layer.

Using the conventional infiltration equation for lig-
uidinalayer and considering, asin[5, 6], the superposed
rocks as an impermeable elastic plate, we arrive at

mp2P —kap = 9 (M)

DA’w = T. Q)

Here, m, 3, k, and h arethe porosity, compressibility, fil-
tration coefficient, and thickness of the stratum, respec-
tively; qisthe overflow of theliquid from the clay layer
into the stratum; p is the pressure variation with respect
to the initial pressure in the stratum; D is the rigidity
modulus for the plate of overlying rocks; I' is the nor-
mal load (per unit area) applied to the lower plate-base
surface, i.e., to the boundary with the clay layer; and w
isthe plate’s bending equal to the shrinkage of the clay
layer. It is necessary to supplement Egs. (1) and (2) by
relations describing macroscopic rheology of the clay
layer. The corresponding conditions should relate the
quantities g and I entering into the right-hand sides of
Egs. (1) and (2) to pressure p at the base surface of the
clay layer and to the layer’s shrinkage w. These rela-
tions are found by solving the problem on the unidi-
mensional consolidation of aclay layer. One of them,

q=Ww, 3)

isaconsequence of the assumption conventional for the
theory of infiltration consolidation [8]. According to
this theory, the compressibility of both the liquid and
the skeleton nuclei islower than that of the skeleton by
itself. The second relation significantly depends on the
deformation model accepted for describing the behav-
ior of the clay-layer porous matrix. Considering insuf-
ficiently compacted clays, we accept the ultimate rheo-
logical scheme in which the porous matrix is assumed
to be force-free deformable only until its strain € has
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attained a certain value €,. The model allows for two
main features of the deformation process in insuffi-
ciently compacted clays. (a) at the initial-compaction
stage, the strain resistance is primarily associated with
infiltrating a liquid rather than with stresses in the
matrix; and (b) the secondary compactionissmall com-
pared to theinitial one.

Within the framework of this scheme, solving the
unidimensional problem on the consolidation of a clay
layer is not difficult and yields the following macro-
scopic relation:

W= K\EI—\(;(F—p), WS W, = eH. (4)

Here, K and H are the filtration coefficient and the
thickness of the clay layer, respectively. The physical
meaning of relation (4) isevident: thefiltration flow from
the layer into the stratum [the left-hand side of (4)] is

determined by the current penetration depth Z—V and the
0

pressure drop (I — p) in the compression wave.

Eliminating ' and g from (1)—(4), we arrive at the
system of two nonlinear parabolic equations with
respect to the pressure p and the shrinkage w. After
introducing the dimensionless coordinates (p, isachar-
acteristic pressure)

w p t X
W ’ ’ t -, X——
Wo P Po to Xo
= W(Z) > khw,
" poKey Kep '
the system can be written out in the form
op_ow _
be 3t ot Ap, &)
p+ WCZ)—VtV = eA’w, w<l. 6)

The dimensionless parameters € and be are determined
by the relationships

be = mBhIOo1 _ DWo K 7

W, & po LkhHU

Thetypical values of these parameters are

2 2
9 M -13 M
k01075~ KO107°Z—, hOHD 10m,
mO1, €,010", p,010°Pa, D 010" Pa m’.

In this case,
t,~ 3 years, X~ 1 km,e~ 103, andb~ 1.

The value of D corresponds to the stratum depth of
occurrence and to the Young's modul us on the order of

100 m and of 10 Pa, respectively.

EGOROV, KOSTERIN

2. ASYMPTOTIC METHOD
FOR SOLVING THE PROBLEM

The smallness of the quantity € impliesthat studying
the asymptotic behavior of solutionsto Egs. (5) and (6)
as € — 0 isthe main task to be considered. Indeed,
thisisthe asymptotic solution that describes the process
for long intervals (months or years) and, because of
this, isof great practical interest. On the other hand, the
method proposed is applicable only in this asymptotic
region. As we show below, for time intervals on the
order of or shorter than a day (i.e., outside the asymp-
totic region), the size of the disturbed-pressure region
in a stratum is smaller than its depth of occurrence.
Because of this, the treatment of superposed rocksasan
elastic plate becomes inadequate.

Itisnatural to take the solutionto Egs. (5) and (6) in
the case of € = 0 asa principa term of the correspond-
ing asymptotic solution. From the physical standpoint,
the condition € = 0 implies the following assumptions:
(i) the compressibility of the stratum is negligible com-
pared to that of the clay layer and (ii) the rock pressure
isconstant [1]. In the case of € =0, Egs. (5) and (6) are
reduced to a nonlinear steady-state equation with
respect to the auxiliary function

t

P(x,t) = —J’p(x, t)dt. 7
0

With regard to the equality
p = P with w = min(1, ./2P), (8)

which follows from (6) and (7), we write out the equa-
tion mentioned above in the form

min(1, /2%)-A% = 0. )

The boundary conditions for % are related to those for
pressure. The latter are specified by the exploitation
regime for the stratum and determine the parametric
dependence of the desired function % on time.

In many cases, the solution to Eq. (9), with p and w
subsequently found from (8), describes both the stra-
tum pressure and the clay-layer shrinkage with an accu-
racy sufficient for practical applications. As arule, an
improvement of the description is needed near the
boundaries (boreholes, isobars), where the correspond-
ing shrinkage field, in general, does not satisfy natural
boundary conditions. To do this, a boundary layer
approximation should be constructed and then sewed
with the solution to Eq. (9).

In order to illustrate and estimate capabilities of the
asymptotic method proposed, we now consider a stra-
tum being exploited by a gallery of boreholes that may
operate either under constant-pressure conditions or
constant-yield conditions.
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3. THE PRINCIPAL TERM
OF THE ASYMPTOTIC SOLUTION

In the cases under consideration, the problem
becomes unidimensional and Eq. (9) should be solved
in the region x > 0 under the boundary condition
9% (o0) = 0. The boundary condition at the borehole gal-
lery has aform of either %(0) =t (constant pressure) or
9%'(0) =—t (constant yield). In both the cases, the distur-
bance propagation velocity isfinite, with P (x, t) =0 for
X> X:«(t), and there are two time ranges characteristic for
the process. For 0 <t < t., the shrinkage is everywhere
smaller than the ultimate value, and the function % is
given by the formula

(x=%)"

<
L=<ty 72

X < Xx(t): P = (10)

In the two regimes under consideration, respectively,
ts= % with X«(t) = (72", and ts = @ with Xs(t) =

(18t)!/3, At the second stage of the process, an ultimate-
shrinkage region 0 < x < x*(t) appears near the gallery
and then begins growing. For the two regimes, x*(t) =

bi_L1_ |2 5t = t— |2 i
2t 3 A/;)andx(t)—t J;,r&p&tlvdy.lnthe

region mentioned above, the function % isgiven by for-
mulas

oy
tzt*,x<x*(t):@:t+w _ﬁx

(constant pressure),

(t-x* 1

>t s (+). Op—
t>t*, X< X*(t): P > 5

(constant yield).

Intheregion x*(t) < X< X«(t), thefunction P isgiven,
as before, by formula (10), where X .(t) = X*(t) + /6.

The most important characteristics of the solutions
presented above are listed in the table.

In order to estimate the range of applicability of the
asymptotic method under consideration, we compared
orders of the terms omitted in Egs. (5), (6) and of the
basic terms entering into solution (10). Simple calcula-
tions showed that the ratio of these terms for the two
regimes are on the order of et ~'/> and et !, respectively.
Therefore, the lower bound for the range of applicabil-
ity of the asymptotic method is on the order of €2 (min-
utes) and of € (days), respectively. It isworth noting that
in such time intervals the shrinkage-crater size is only
on the order of X&' (about 30 m) and of x,&'”* (about
100 m), respectively (seetable). Asarule, these values
do not exceed the stratum depth of occurrence.

4. THE BOUNDARY LAYER CORRECTION

It is evident that at the first stage of the process the
principal term of the asymptotic solution found does
not satisfy the natural symmetry conditions

x=0: — =—=0.

ow _ d’w
aX ax3

This discrepancy is explained by the presence of a
boundary layer with the thickness on the order of '/
near the point x = 0. Introducing the boundary layer
coordinate y = x4, we seek the boundary layer cor-

rections to the principal term (w, = /2%, and p, =
_op ) of the asymptotic solution in the form

w=wW,+ %W, (L, y)+ ..., p=p, + ¥ p L,y +.... (11)

Basic characteristics of processes when exploiting strata with the help of aborehole gallery

Exploitation regime |  Timeinterval P{)?Si')re _;.i(%lfjt) Csrg'err‘kxa%g shri'\rqlfgé g‘\‘fv'g(‘) )
Constant pressure t<z -1 E%'H_M (72" J2t
t>%‘ 1 %t—@_m E+2£ 1
Constant yield (< ﬁ _%2_3%—1/3 1 (18t)1’3 %1/3 -
t> @ —t 1 t+ 2 @ 1
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Gas or fluid flows in which pressure p isidentically
constant (p = const) arereferred to asisobaric (inertial)
flows[1].

In this paper, we study the structural characteristics
of isobaric flows in a gas and an ideal incompressible
fluid (below, for brevity, isobaric flows). Equations
describing isobaric flows are completely integrable. For
thefirst time, formulas for the general solution to these
equations were derived in [2, 3] (see adlso [4], where a
more general set of equations was integrated). Chrono-
logically, the first but less successful attempt to study
theintegrability of equationsfor isobaric flowswas pre-
sented in [5]. The general solution found in [2, 3] was
written in an implicit form as a set of functional equa-
tions for the components of the velocity vector, which
involve a certain number of arbitrary functions. In this
connection, the problem arisesto present asimpler and
more constructive description of the entire variety of
flows being determined by implicit formulas concern-
ing the genera solution. This problem is partialy
solved in the present paper. Namely, we propose here
an explicit geometrical description of the structure of
three-dimensional steady-state and two-dimensional
unsteady-state flows. The case of two-dimensional
steady-state flowsisrather trivial and is not considered
here. Indeed, it is easy to show that al such isobaric
flows (even in the assumption that they are determined
only locally) are of a shear type in any connected
domain. This implies that the flow paths are parallel.
The problem concerning the explicit description of
three-dimensional unsteady-state flowsis still open.

1. LOCAL CLASSIFICATION
OF ISOBARIC FLOWS ACCORDING
TO THEIR RANK [2, 3]

In Euler variables, the isobaric flows are described
by the following set of equations for the velocity field

All-Russia Research Institute of Experimental Physics,
pr. Mira 17, Sarov, Nizhni Novgorod oblast,
607190 Russia

u=u(x,t)[1]:
u,+ (ud)u = 0,

1

divu = 0. W
Here, u = (u, v, w), X = (X, v, 2) [for two-dimensional
flows, wehaveu = (u, v) and x = (x, y)]. Let & = (&, n,
() be the Lagrangian coordinates of gas (fluid) parti-
cles: & = x(0). From the first equation in (1), it follows
that u = u(§), and the condition of divergence-free flow
implies that the function u(§) satisfies a set of three
equations obtained by putting to zero the invariants of

the Jacobian matrix J= (;—g [1-3]. Inparticular, we have

Ug Uy U
detd = VeV Ve | = 0. 2)

We W, W,

We restrict our analysis to the consideration of the
local structure of isobaric flows, assuming that every-
wherein the domain under study the flow is smooth and
therank rk J of the Jacobian matrix hasaconstant value.
Based on equation (2), we can classify the isobaric
flows according to their rank:

(i) rkd=0. Inthiscase, u = const and the flow is uni-
form.

(@ii) rkJd = 1. In this case, two components of the
velocity vector are functions of the third component.
Theflow isreferred to asasimple wave[2] or aflow of
rank 1.

(iii) rkJ = 2. For such aflow, one component of the
velocity vector is a function of two other components.
Theflow isreferred to as adouble wave [2] or asaflow
of rank 2.

2. BASIC CLASSES OF THREE-DIMENSIONAL
ISOBARIC STEADY-STATE FLOWS

In our terminology, basic classes are three classes
composed of the following isobaric flows:
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() shear flows, i.e., flows occurring in parallel
planes and along parallel straight linesin each plane;

(I1) conic (conic-type) flows, i.e., flows occurring
along families of half-planes tangential to arbitrary
convex conic surfaces, and, in each half-plane, moving
along straight lines paralld to the generatrix of the
conic surface belonging to this half-plane;

(111 tangential (tangential-type) flows, i.e., flows
occurring along families of half-planestangential to the
so-called tangential surfaces (the surfaces formed by
tangents to arbitrary three-dimensional curves). These
surfaces obey certain conditions of convexity (ensuring
the absence of intersections between the tangential
half-planes). In each half-plane, the flows move along
straight lines parallel to the generatrix of the tangential
surface belonging to this half-plane.

In the general case, for all aforementioned flows,
gas (fluid) flows with its own velocity aong each
straight line (streamline).

The shear flows are well known [6]. In the steady-
state case, they are specified by the following explicit
formulas in the coordinate system with the Oz-axis
orthogonal to the flow planes

u = —Bo(ax+py, 2),
v = a¢(ax+py,2z),
w = 0,
a=a@ B=pd oC@+FE@=L
Here, a and ¢ can be arbitrary functions. In the case of

vector fieldsu of form (3), equations (1) for the steady-
state flows,

3)

(udu = 0, 4)
divu = 0, &)

are satisfied in atrivial way.
We now describe in more detail the structure of
conic-type isobaric flows. Let K be an arbitrary convex

conic surface in space R3(x, y, z) with the vertex O and
adirecting curvey, r = r(t) be the vectorial parametric
dr(

equationfory, t(t) = Tt) be avector tangent toy, T, be

a plane tangent to the surface K at the point r(t), I; =
T, n K bethe generatrix of thesurfaceK lyingin g, and
T and T be half-planes for which the straight line |,
divides the 1g, plane and which contain vectors t(t) and
—1(t), respectively. A conic flow of the general form
related to the surface K (and determined by it or, more
precisely, by families{ T } and{ 1 }) is constructed in
the following manner. We choose one from two fami-
lies of tangent half-planes. For definiteness, let it be

{1 }. Ineach haf-plane Tt , we define avector field u

parallel to the generatrix |, 0 1t and depending on a
single parameter d, which is the distance between the

SHEMARULIN

application point of the vector u and the straight line ;.
Imposing the requirement that u smoothly dependsont
and d, we aobtain a smaooth vector field u = u(x, y, 2

defined in domain G = [] 1t . The convexity of curvey

t

ensures the absence of intersections of the half-planes
from the chosen family and, hence, the unigueness of
the field u in G. For the field u constructed in such a
manner, Eq. (4) is satisfied automatically and the valid-
ity of equation (5) is verified by direct calculations.
Thisimpliesthat such an arbitrary field u isthe velocity
field of the eventual steady-state isobaric flow. Werefer
to each pair (u|g, G'), where G' isa subdomain of G, as
a conic-type flow. In the most genera situation for
domain G', we can admit flows with discontinuities
along the lined surfaces consisting of paths (stream-
lines), as well as to start and terminate the paths,
thereby allowing the existence of surface sources and
sinks.

In asimilar manner, we can construct isobaric flows
of the tangential type determined by the tangential sur-
face T with the directrix three-dimensional curvey. In
this case, generatrices|; of the surface T are tangents to

y, whereas the tangent half-planes Tt and 11, of the sur-

face T coincide with the half-planes into which I,
divides the osculating plane 1t of the curve y. Half-

planes Tt and 11, differ from each other, because one

of them contains vector v(t) of the main normal to the
directrix curve y and the other half-plane contains the
opposite vector —v(t). Similar to the case of conic flows,
tisthe parameter of motion along the curvey.

3. LOCAL STRUCTURE
OF THREE-DIMENSIONAL ISOBARIC
STEADY-STATE SIMPLE WAVES

Without the loss of generality, we can write for the
simple wave

u=ow, v=~fw. (6)

Here, w# 0 and 0w # 0 everywhere within the range of
the definition of the flow. To analyze the structure of
steady-state simple waves, we can use the genera
expression implicitly describing the class of three-
dimensional isobaric flows of rank 1 [2, 6]. If relation-
ships (6) are met, then this expression has the form

€ = o'W +A(w,n—f (W), (M

where ¢(w), f(w), and A(a, B) are arbitrary smooth
functions. The passage from representation (7) to the
representation in Eulerian variables is performed using
the equations

x=&+ut, y=n+vt, z={+wt. )

On the other hand, in such an analysis, we can use rela
tionships (6) directly substituting them into equations (4)
DOKLADY PHYSICS Vol. 47
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and (5) and then find an equivalent (in the case under
study) system of two scalar quasilinear equations

d(W)w, + f(w)w, +ww, = 0, €))
(10)

These equations describe simple waves in terms of
the vel ocity-vector third component.

Let

o'Wy + F(Ww, +w, = 0.

m, = {(xY,2) OR> w(X, y, 2 =w = const}

be the level surface of the velocity field u.

Proposition 1. For isobaric three-dimensional
steady-state simple waves (6), surfaces 1, are cylindri-
cal (in particular, they can be planar and even degen-
erate to straight lines). Generatrices of these surfaces
are streamlines of the field u, which are determined by
equations (8) [characteristics of eguation (9)]. The
range of definition for a simple wave can be divided
into subdomains such that for each of them one of the
following properties takes place.

(A) Everywhere, characteristics of equations (9)
and (10) coincide. Inthiscase, these characteristicsare
parallel and the simple wave corresponds to the flow
along parallel straight lines.

(B) Everywhere, characteristics of equations (9)
and (10) are different; in this case, all surfaces 1, are
planar (and, hence, form a one-parameter family);
each surface 1, is a combination (family) of stream-
lines passing through various points of a certain char-
acteristic of equation (10). Below, the simple wave is
referred to as the flow in a one-parameter family of
planes {T,} .

Based on Proposition 1 and using the well-known
classification of one-parameter families of planes([7, §],
we can prove the following theorem.

Theorem 1. An arbitrary isobaric three-dimen-
sional steady-state simple wave islocally a flow of one
of the following four types. flows along paralléel
straight lines (special shear motion) with different (in
the general case) velocity values for each streamline,
aswell as shear, conic, and tangential flows. For shear
flows, the flow is constant in each plane Tt, of the corre-
sponding parallel bundle, whereas for conic and tan-
gential flows the flow is constant in each tangent half-

plane Tt corresponding to the conic or tangential sur-
face. In the general case, the velocity in each plane T,
and the absol ute val ue of the vel ocity in each half-plane

10 aredifferent.

4. LOCAL STRUCTURE
OF ISOBARIC THREE-DIMENSIONAL
STEADY-STATE DOUBLE WAVES

Theformulasimplicitly specifying the general solu-
tion of rank 2 for equations that describe isobaric flows
DOKLADY PHYSICS Vol. 47
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in the Eulerian coordinates have the following form
[2, 3]

G(uy, Uy, ug) = 0, OG#0,
3
Z(X‘_t
i=1

3
z (% —tu;)(x; —tu

i,j=1

3
—ZZ(xi—t

where u = (u;, Uy, Us), X = (X}, X, X3), U =U(X, 1); G, H,
and X are arbitrary smooth functions for which set of
equations (11) is solvable with respect to u,, u,, and us.
Without the loss of generality, we can assume that
everywhere in the definition range of the solution u
under study the following conditions are met

0G
U3¢ 0, 6_3 #0.

For the steady-state solutions u = u(x), set (11)
becomes “ split” with respect to t. As aresult of such a
splitting, we obtain a system of functional equations
implicitly describing isobaric  three-dimensional
steady-state double waves

G(uy, Uy, uz) = 0, OG#0,

0G
Ul)m = H(uy, Uy, Uy),

0°G (11)

j)auiauj

oH
U|)a_u = Z(Uy, Uy, Ug),

3
0G
__leié_u—i = H(uy, Uy, Uy),

3

0G
Z '6u =0
= (12)

3
z = Z(uy, Uy, Ug),

Z ' ’dua

oH

'au =0

3
Z X'ujau ou; Z

i,j=1 i=

° 9°G
2. "auau = O
ij=1 e

The following set of equations plays an important
rolein the analysis of the structure characteristic of the
double waves

A, = f(Ay),

—F'AD (X =A1X3) + (X —AyX3) = h(Aq, AY),
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" oh
—f (Al)(xl—A1x3)2—2(x1—xlx3)a—A1 (13)

dh
—2(X2—)\2X3)(ﬁ2 = Z;(uy, Uy, Ug)

wheref, h, and Z, can be arbitrary smooth functions for
which Eq. (13) is solvable with respect to u;, u,, and u;.
All such functionsf, h, and Z, arereferred to as admis-
sible.

Theorem 2. Arbitrary set (12) as a set of equations
with respect to variablesu,, u,, U; isequivalent to a cer-
tain set of form (13). The entire variety of isobaric
three-dimensional steady-state double waves is
described by solutions of rank 2 to sets (13) with vari-
ous admissible functionsf, h, and %, .

From Theorem 2, it follows that level surfaces m, of
thevector function A = (A, A,) play themainrolein the
local classification of isobaric steady-state double
waves.

Proposition 2. For any isobaric three-dimensional
steady-state flow of rank 2 in a domain, where u; # 0,

the surface i, is a part of the plane ¢ determined by
first two equations of set (13). If a certain streamline |
of the vel ocity field u hasa common point with a certain
surface m, , then! O m, . All streamlines (even if they

are defined only locally) lying in any fixed surface m,
Ao = (A2, A3) are paralle, and the vector A5 = (A2,
)\g, 1) playstherole of a directrix.

Theorem 3. If in the set of equations (13), function
f = f(A,) is linear, then an isobaric three-dimensional
steady-state flow determined by this set is of the shear
type. In the case of nonlinear function f [it is assumed
that f"(A,) # 0 everywhere within the definition range of

the solution], the one-parameter family of planes 1

(see formulation of Proposition 2) containing surfaces
T, hasan envelope which iseither a conic or tangential
surface. Hence, in this case, the isobaric flow deter-

mined by the set of equations (13) isa flow of either the
conic or tangential type.

The following classification theorem is a conse-
guence of Theorems 1-3.

Theorem 4. An arbitrary isobaric three-dimen-
sional steady-state flow isa combination of domainsfor
shear flows, conic flows, and tangential flows.

SHEMARULIN

5. LOCAL STRUCTURE
OF ISOBARIC TWO-DIMENSIONAL
UNSTEADY-STATE FLOWS

We now put in correspondence an unsteady-state
vector field u = u(x, y, t) in R%(x, y) to the steady-state
vector field u, = u,(x, y, t) = u + k, wherek is the unit
vector of the time axis Ot in space R3(x, y, t). The field
u satisfiesthe set of equations (1) if and only if thefield
u, satisfies equations (4) and (5), where

.0 .0 0
0= 'ﬁ + JW + kﬁ'

By virtue of this fact, a new theorem immediately
follows from Theorem 4.

Theorem 5. An arbitrary two-dimensional
unsteady-state isobaric flow considered as a steady-
state flow in R3(x, y, t) isa combination of domains for
shear, conic, and tangential flows of rank 1, for which
the third component w (along the Ot-axis) of the veloc-
ity vector u; = (u, v, w) is identically equal to unity
(w=1). Inanarbitrary given streamline of thefield u,,
both components, u and v, are uniquely determined
from the condition w = 1. The case of “flow” in
R3(x, y, t) along parallel straight linesisexcluded, asit
corresponds to the constant flow in R%(x, y).

divu = u,+ v, +w,.

6. EXAMPLES

Theorems 4 and 5 yield a constructive method for
determining al three-dimensional steady-state and
two-dimensional unsteady-state isobaric flows. Below,
we present two examples of isobaric flows constructed
according to this method.

Example 1. Let K beaconic surface specified by the
equationd=x>+y>—r’2=0,r >0,G={(X,Y,2):d> 0}.
Asthedirectrix of surface K, wetakecircley= {(x,y, 1):
X2 +y? =12}, If the point P = (x,y, 2 O G, then half-

planes Tt tangent to K and passing through P contact y

rxz ¥ y.J/d (Tyzt x./d
X2 + y2 X2 + y2
quently, vector fields u* = (%, n*, 1) are velocity fields
for two conic axisymmetric flows of rank 1, which are

defined in G and are associated with K.

Example 2. Flows with singularities. Let K be a
conic surface specified by the equationd = 22 — 4xy = 0.
As the directrix y of the surface K, we take the ellipse
obtained by intersecting K by theplanex+y=1.1f P=
(X, ¥, 2) isapoint belonging to the outer part of the conic
surface K (i.e., to the domain d > 0), then coordinates
&%, n*, ¢* of points contacting the curve y for the half-
planes 1 passing through P satisfy the following rela
tionships

iZ?z\/a £ _
4y ) n _Z

a points & = r ,N*= . Conse-

tZi,\/a, Et + _ 1.
X

&= 2 +n° =
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Hence, the formulas

U= z¥ ./d St = z+./d
4yd ’ 4xd ’

specify velocity fields for two conic-type flows of
rank 2 associated with K. Domain G = {(x, y, 2): d > 0,
xy # 0}, which is outer with respect to K, isa common
part of the definition range for these flows. We assume
that

w'=dt (14

m={(XxYy,2):y=02z<0,
T[Z = {(X,y,Z):y:O,Z>O},

where n‘f and ng are the half-planes supplementary to
1, and T, respectively. The first flow [upper signs
in(14)] is extended by continuity to n‘f and ng
(excluding the Oz-axis), whereas at 11, and 1, it has sec-
ond-order discontinuities. The second flow [lower signs

in (14)] isextended by continuity to 1; and T, (exclud-
ing the Oz-axis), whereas it has the second-order dis-

continuities at T and 5.

Note 1. It can be shown that the steady-state axi-
symmetric isobaric flows described in [3, 9, 10] are
conic-type flows of rank 2 (in the general case) in
R3(x,y, 2), whereas the two-dimensional (planar)
unsteady-state isobaric flow described in [2] is the axi-
symmetric conic-type flow of rank 1 in R3(x, y, 1),
which is obtained from the flow corresponding to the
velocity field u* from the Example 1, if we put in it
r=1andz=t- 1. Hence, the cone K, characteristic of
the flow described in [2] is obtained from the cone K of
Example 1 (at r = 1) by shifting this cone upward by 1
along the z axis.
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Note 2. Using the constructions suggested in the
present paper, it is possible to construct flows of ideal
incompressi ble fluid even with nonzero pressure gradi-
ent as a superposition of isobaric flows. By a method
similar to that under discussion here, it is also possible
to construct unsteady-state three-dimensional isobaric
flows. In this case, it is necessary to consider single-

parameter families { R;: A 0 R} of hyperplanes in
RY(x, Y, z t).
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1. INTRODUCTION

The first systematic investigation of the flutter of a
plate dates back to Movchan [1] in 1956. He studied the
vibrations and stability of arectangular plate under the
condition that the velocity vector of a flow be parallel
to a plate side. For aerodynamic-interaction pressure,
the “plunger-theory” formula was used. This special
formulation was used in amost al the studies pub-
lished before the survey [2]. The conventional methods
of solving particular problems, for example, the finite-
element method or the difference method, being the
methods with saturation [3] turned out to be inefficient
[4]. The reliability of the frequently used Bubnov—
Galerkin method is not definitively clarified as to the
plate configuration and the type of boundary condi-
tions; thisfact was pointed out in [2]. In the generalized
formulation [5, 6], this paper discusses the flutter of a
plate with an arbitrary contour given in a parametric
form. For this case, we develop the saturation-free
method previously proposed in [4]. We present the
results of calculations for the rectangular and elliptic
plates in the case of an arbitrary direction of the flow-
velocity vector.

2. FORMULATION OF THE PROBLEM

Let a plate occupy the region K with the piecewise
smooth contour 0K in the plane xy. A gas flow with the
velocity vector v = { vcosB, vsinB}, v = |v|, density p,,
and pressure p, (parameters of aunperturbed state) pass
over one side of this plate. As usua, the plate deflec-
tions w(x, y, t) are assumed to be w(x, y, t) =
O (X, y)exp(wt). In this case, we obtain the eigenvalue
problem in the generalized formulation [5, 6]:

DA*$ — B(v, gradd) = A, (2.1)
blok =0, (2.2)
L($)lok = 0. (2.3)

* |ngtitute for Problemsin Mechanics,
Russian Academy of Sciences,
pr. Vernadskogo 101, Moscow, 117526 Russia
** Moscow State University,
\orob’ evy gory, Moscow, 119899 Russia

k
Here, D is the torsiona rigidity of the plate, B = %’

0

KPo

0

ential operator known from the theory of plates. The

parameter A isrelated to the vibration frequency by the

expression phw? + Bw + A = 0, where p and h are the
density of the plate and its thickness, respectively.

CS = , kisthe polytropic index, and L isthe differ-

The plate vibrations are stable and unstable when
Rew > 0 and Rew < 0, respectively. The boundary
between these regionsin the complex plane A isthe sta-
bility parabola

B?ReA = ph(ImA)2. (2.4)

If al A values are inside the parabola, the motion is
stable; if at least one eigenvalue is outside the parabola,
the mation isunstable. It is proven [7] that ReA > 0 for
the boundary conditions of fixing and simply support-
ing, al A are real for v = 0, and certain eigenvalues
become complex with increasing v. Therefore, the
problemisto find such a v value at agiven 6 for which
a certain the eigennumber first falls on parabola (2.4).
Thisflow velocity v, istaken asthe critical velocity of
flutter.

To solve problem (2.1)—<2.3) under condition (2.4),
we developed a numerical—analytical method without
saturation in two modifications. The first modification
[4] is used when the analytical (relatively simple for-
mula-specified) conformal mapping of the region K
onto the unity circle is known. Here, this restriction is
removed (the second modification): when the contour
0K of theregionisgiven by parametrical equations, the
conformal mapping is constructed numerically accord-
ing to the procedure described in [8].

The algorithm of solving boundary value problem
(2.1)—2.3) isasfollows. Upon the double conversion of
the Laplace operator, EQ. (2.1) changes to an integral
equation and boundary conditions (2.2) and (2.3) are sat-
isfied exactly and approximately, respectively. For
numerical solution, we use the interpolation formula[3]
providing the method without saturation. The software
package realizing this calculation was reported in [9].

1028-3358/02/4703-0254%$22.00 © 2002 MAIK “Nauka/ Interperiodica’
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3. RESULTS OF PARTICULAR CALCULATIONS

In the calculations, we used the following parameter
values: p, = 1.0133 x 10° Pa, p, = 1.2928 kg/m?, p =
0.33, k=1.4,E=6.867 x 10'° Pa, p = 2.7 x 10° kg/m?3,
and relative plate thickness h = 0.003 (the ratio of plate
thickness to a half-length along the x-axis). The other
parameters were made dimensionless, asin [4].

3.1. Rectangular simply-supported plate occu-
pying theregion K: {|x|< 1, ly| < b}. Boundary condi-
tions (2.3) have the form

0’9 =g 00
X oy’

Let H be the matrix of the discrete Laplace operator
with boundary condition (2.2). In this case, the matrix
of the discrete biharmonic operator with boundary con-
dition (3.1) isH?. Thisfact enablesusto relatively sim-
ply perform the discretization of spectral problem (2.1),
(2.2), (3.1). This procedure is described in detail in
[10]. The results of calculations are presented in the
third column of the table (eigenvalue numbers are indi-
cated in parentheses).

3.2. Elliptic simply-supported plate. The contour
of theregion K is given parametrically by the equations
X = cost and y = bsint; the ellipse is inscribed into the
rectangle from the above example. The simply-support-
ing condition requires that the bending moment van-
ishes; therefore, we have

=0.

Iyl =b

(3.1

X =1

_0% . 9%, 0dr
L($) g = —2 +pA—t +K=2 =0
ox on>  Lpg ond

instead of EQ. (2.3). Here, p is the Poisson ratio and K
isthe curvature. The calculationswere carried out using
numerical conformal mapping according to the proce-
dure from [8]; the results are presented in the second
column of the table. For comparison, the fourth column
presents the results calculated for the rectangular plate
by the Bubnov—Galerkin method.

4. DISCUSSION OF THE RESULTS

Thetable demonstrates that the dependence v_,(8) is
nonmonotonic. First, v, increases with 6, and this

increaseismore rapid in the region 6 O %—[ %TH Near

the point 6 = %T , V(0) has amaximum. Finaly, v,,.

decreases dightly when 6 approaches g Itischaracter-

istic and very interesting that the plate-motion form is
modified near the point maxv, so that the second
eigenvalue first falls onto the stabilization parabola.
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Table
- Rectangular | Bubnov—-Ga-
® Elliptic plate plate lerkin method
0 04029 (1) | 0.3546(1) 0.3042
g 04221(1) | 03737(D) 0.3307
g 04868 (1) | 0.4346(1) .
5n
= 05404 (1) | 0.4801 (1) 0.4207
%” 06012 (1) | 05235 (1) -
151
= 06124(2) | 05275(2) 0.4022
g 06108(2) | 05257 (2) 0.4121

The presence of max v, near the point 6 = 135—2T[ isthe

so-caled effect of stabilization of the plate vibrations
against the fluctuations of the flow-velocity direction

near the point 6 = 1_21 It should be noted that this effect

was previously discovered in the problem of the flutter
of an infinite strip.
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Rolling of arigid cylinder along a viscoelastic half-
space was considered in [1, 2]. When a contact arc
between the cylinder and a plastic domain is small, the
problem of rolling a smooth cylinder along the rigid-
plastic half-space was solved in [3] by the small param-
eter method. In this study, we consider the problem of
rolling and dliding a cylinder along the boundary of a
perfectly plastic half-space with alowance for contact
friction. The limiting values of forces and a contact arc
for steady plastic flow are obtained.

Figure 1la shows a steady plastic domain arising in
the process of rolling and diding a cylinder along the
boundary of an incompressible perfectly plastic half-
space [3]. We assume that the cylinder axis is fixed and
the half-space moveswith aunit velocity V = 1. Along the
boundary OEDB, thevelacity is continuous. In the case of
a stationary plastic flow, the boundaries AB and OA are
streamlines, the tangents to which at the points B and O
aredirected aong the half-space boundary. Therefore, the
lower point O lies on the half-space boundary y = 0.

For a cylinder of aradius R rolling with an angular
velocity w without dlipping, we have a relationship
wR =1 at its contact point O with the rigid domain. At
the other points of the contact arc, the plastic material
dlides from the point O to the point A and tangential
stresses of friction appear on the contact surface and
form a positive moment M. Thisis the case for rolling
the cylinder with the diding it forward along the con-
tact arc. If the angular velocity w is equal to zero or is
so small that the plastic material slidesfrom the point A
to the point O in the entire contact arc, the contact-fric-
tion stresses and the moment M reversetheir signs. This
is the case for rolling while diding at the point O or
dliding the cylinder backwards without rolling in the
contact arc OA. If the cylinder is smooth, the plastic
domain is independent of w and is the same for both
forward and backward slide.

We measure stressesin the units of doubl e the shear-
flow stress, and lengths, in the units of the contact arc

Moscow State Academy of Instrumentation Engineering
and Informatics, ul. Sromynka 20,
Moscow, 107846 Russia

OA. Stresses and velocitiesin the plastic domain satisfy
hyperbolic equations of the plane plastic flow in the
didinglines & and n [4]:

dy _
dx dx

do—-d¢p =0in & do+dd =0inn, (@2
dVe=V,d¢ = 0 in &,
dV,+Vedo = 0 in n,

where o is the mean stress, ¢ is the slope angle of the

tang for ¢ and dy _ —cotd¢ for n, (1)

3)

Fig. 1. (a) Field of diding linesand the normal-pressure dis-
tribution at the contact boundary and (b) hodograph of
velocities in the process of rolling a cylinder with forward
sliding for o = 0.5236 and 1. = 0.2 at the point A.

1028-3358/02/4703-0256%$22.00 © 2002 MAIK “Nauka/Interperiodica’
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tangent to the sliding line & and V; and V,, are the com-
ponents of the vel ocity vector inthedirections & and n.

For a steady plastic flow, the boundary AB, whichis
free of external stresses and coincides with the direc-
tion of the second principal stress, isastreamline:

_m_Y o1
tan D-vy °T 72

where V, and V, are the velocity-vector components
related to V; and V,, as

Vy=Vecosp -V, sing, V,=V,sin +V,cosd.(5)

Along the rigid plastic boundary O-B, velocities are
continuous: V, = -1 and V, = 0. From Egs. (5), we find

Vg = —cosd, V, = sing in O-B. (6)

Since the contact arc OA istaken as the characteris-
tic dimension, the cylinder radius R and the contact
angle o, arerelated as Ra, = 1. The surface velocity of
the cylinder can vary intherange0 < wR < 1. The shear
stresses 1. of contact friction appear at the boundary
OA, and the dliding lines intersect this boundary at the
angle:

in AB, )

1 1

0 2arccosZTC, 0<t.<Z > (7

For forward diding, wR > V., where V. isthe veloc-
ity of the material at the contact boundary and 6 is the
angle between the dliding line n and the tangent to OA.
For backward diding, wR < V,, the direction of T,
changes, and 6 is the angle between the diding line &
and the tangent to OA. Therefore, the angle ¢ specify-
ing the direction of dliding lines with respect to OA is
determined as

o = ox+e—’—2T if WR>V, (8)

for forward sliding or as
¢ =a-0 if wR<V, ©)
for backward diding. For asmooth cylinder, T, =0, it

follows from Eq. (7) that 6 = - and Egs. (8) and (9)

yieldthesame$ = a - 2 T valueat the boundary OA.

Since the velocity normal to the cylinder is equal to
zero, kinematic boundary conditions at OA have the
form

Ve = Vjtanb, V; = V,cotb (10)

for forward and backward dliding cases, respectively.
For asmooth cylinder, Egs. (10) both yield the equality
VE = Vn.
Thus, for a smooth cylinder, the boundary condi-
tions for stresses and velocities are independent of the
DOKLADY PHYSICS Vol. 47
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direction of the materia diding along the contact
boundary OA. In this case, the fields of stresses and
velocities in the plastic region are independent of the
rotation of the cylinder and are the same for forward
and backward dlides.

The angle Y of the centered fan of the diding-line
field at the point A is determined by the expressions

W = ?’Z"—(ac+s+e) it WR>V, (1)

for forward dliding or

Y = §+9—(GC+B) if WR<V, (12)

for backward diding, where

Vo
v,
is the slope angle of the tangent to the boundary AB at
the point A.

The mean stress at the point O isfound from thefirst
of Egs. (2) for & of the dliding line O-B and boundary
conditions (8) and (9) at a = O:

0y = ——%L+3TD+6

B = —arctan (13)

(14)

for forward sliding or

Oy = —%%H[ZE—G

for backward sliding, where 6 is determined by Eq. (7).

Expression (14) shows that, for forward diding, the
bearing capacity of arigid wedge at the point O isvalid

(15)

ift.=0 Eb = EE at this point. Therefore, the plastic

domain shown in Fig. lacan beformed only if the con-
tact-friction stress varies and equal s zero at the point O.
Experimental data on rolling corroborate that stress
vanishes at the point of the outlet of a workpiece from
the contact with the roll [5]. In this study, we assume
that 1, varieslinearly and ismaximal at the point A. For
backward dliding, the bearing capacity of arigid wedge
at the point O is valid for each vaue of 1, that is
assumed to be constant in OA.

The mean value of ¢ decreases in magnitude along
OA and, a the point A, takes the following value
depending on the angle ),

0n = —3(1+2y). (16)

If the distribution of o aong the contact arc OA is
known, it is possible to determine the normal pressure
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on the cylinder

-0, = —%r—%sinZda,

and the forces and moment with allowance for the rela-
tionship Ra. = 1 are found in the form

(17)

¢

Q C%CI[(_O”)COSO( +1.8na]da, (18)
0

T
I}

al—CJ’[(—on)sinO( F1.c080] (19)
0

(20)

where the upper and lower signs correspond to the for-
ward and backward diding cases, respectively, and

—onz—%—%anszrczo

for asmooth cylinder.
For a rough cylinder and linearly varying T,

Eq. (20) yields M = %(TC)A and —, for forward and

backward dliding cases, respectively.

The above equations show that the problem of roll-
ing and dliding a cylinder calls for the joint consider-
ation of stress and velocity fields. The solution to the
problem can be found by the following way.

Taking into account known values (14) and (15) at
the point O, we set a continuous distribution of o at the
boundary OA and an initial approximation for theangle
B. Then, o and the boundary conditions (8) and (9)
define the Cauchy datafor Egs. (1) and (2) and thefield
of dliding linesin the domain OAE. In the domain AED,
thefield of diding linesisfound by solving the Goursat
problem with given o and ¢ in AE and at the singular
point A with the angle  specified by Egs. (11) and
(12). In the domain ABD, we solve the inverse Cauchy
problem with given o and ¢ in AD and conditions

-1 ody G

2" dx 4]
at the unknown boundary AB. As a result, we find the
free boundary AB and the rigid plastic boundary O-B.
Next, we find the field of velocities in the plastic
domain by solving the mixed boundary value problem
for Egs. (3) with boundary conditions (6) and (10). If
steady-flow condition (4) is satisfied at the boundary
AB, the distribution of o over OA isthe solution to the
problem. Since the sequence of solving the boundary
value problems for Egs. (1)—(3) determines the field of
dliding lines with the boundary AB and the velocity

NEPERSHIN

field dependent on the distribution of o over OA, Eq. (4)
is the determining equation for the unknown distribu-
tion of o over OA.

The fields of dliding lines and velocities for a given
distribution of o over the boundary OA were calculated
numerically by using afinite-difference approximation
of differential equations (1)—(3). The boundary AB free
of external stressesis obtained by solving the sequence
of the elementary inverse Cauchy problems starting
worth the an initial point A. The coordinates of these
boundary points are found from the differential equa

: dy _ _ g - i
tion of the AB contour Ix = taan 20 and differen

tial equation (1) for the &-line. The velocities at the
boundary OA are obtained by solving the elementary
mixed problems for differential equation (3) aong the
n-line with allowance for boundary conditions (10).
Since differential equations (2) and (3) are linear, the
finite-difference equations are also linear. For this rea-
son, the calculation of a detailed network of sliding
linesand thefield of velocitiesfor ao distribution given
at 20 nodes at the boundary OA takes afraction of asec-
ond on a Pentium-133 compulter.

Let o be the vector of unknown o values at the N
nodes at the boundary OA and f be the vector of the dif-
ferences between the slope angles of tangents to the
boundary AB and velocity vector at the N nodes of this
boundary. These differences are the errors of stationary
condition (4) for given ¢. The procedure of computing
the fields of diding lines and velocities provides a con-
tinuous f—o dependence, and condition (4) takes the
form of the N-dimensional nonlinear vector equation

f(o) = 0. 1)

Equation (21) is solved by the Broyden method [6], in
which the iterative process does not require the evalua-
tion of derivatives. Taking theinitial approximation for
the angle (3, we specify theinitial approximation ¢ by
a linear distribution over OA from the value specified
by Egs. (14) and (15) at the point O to value (16) at the

point A. The functional matrix g—;' at the initial point
J

o isfound viasolving N problemsfor the variations of

o’ by the finite-difference method. Equation (21) is

solved in several iterations with an accuracy of |f; [, <

104,i=1,2,...,N. Theconditiony = 0 at the point B

is satisfied with an accuracy of 107.

Figure 1 shows (a) thefield of sliding lineswith dis-
tribution of the contact pressure and (b) the hodograph
of velocities for rolling a rough cylinder without dlip-
page at the point O (wR = 1) for the contact angle o, =
0.5236 for forward sliding with the maximum value
1.= 0.2 at the point A. For this case, we obtain 3 =
0.703, P =0.55,Q=2.03, F =0.394, and M = 0.1. With
increasing the contact angle a., the centered-fan angle
) vanishes, the domain AED in the physical plane con-
tracts to a line, the velocity at the singular point A
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becomes single-valued, and the corresponding arc A-A
at the hodograph of vel ocitiestendsto thefixed point O.
Thus, aong the free boundary AB, the velocity of a
material particle decreases from 1 at the point B to O at
the point A when {y — 0 Then, the velocity increases
from O to 1 when the particle moves along the cylinder
boundary from the point A to the point O. For 1. = 0.2,

we find the ultimate contact angle a; = 0.65 at which

asteady plastic flow with theforcesQ =1.828 and F =
0.427 is possible. An increase in friction for forward
dliding leadsto increasing both the angle Y and the ulti-

mate contact angle o asy — 0.

Theratio g can be treated as the coefficient of roll-

ing friction caused by the asymmetry of the plastic
domain about the y-axis coinciding with the axis of the
cylinder. In the case of forward dliding for given 1. val-
ues, it ispossibleto find the contact angles a, for which
the force F = 0. This is the limiting case of rolling a
thick workpiece without penetrating plastic deforma-
tions into its depth; i.e., when only the surface layer is
plastically deformed.

Figure 2 shows (a) the field of diding lines with the
contact-pressure distribution and (b) the hodograph of
velocities for rolling and sliding a cylinder with back-
ward dliding at the contact boundary OA for o, = 0.2
and 0 < wR < 0.59 and the contact-friction stress 1, =
0.2. In this case, we have B = 0.364, P = 0.801, Q =
2.03,F=0.39,and M =-0.2. Anincreasein friction for
backward dliding leadsto decreasing the angle |, alim-

iting contact angle a} , and normal pressure on the cyl-

inder. Moreover, this pressure is distributed more uni-
formly than pressure for rolling the cylinder with for-
ward dliding.

At w= 0, we obtain the diding of around die ahead
of which a steady plastic domain depending on the ver-
tical force Q and the contact friction 1. isformed. This
problem also describes the process of drawing a thick
workpiece between circular matrices when only the
surface layer undergoes plastic deformation. As
T. — 0.5 (for backward sliding), o, —» 0 vanishes,
the plastic region ABDE degenerates into the point A,
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Fig. 2. The same asin Fig. 1, but for the process of rolling
acylinder with backward sliding for o, = 0.2 and 1, = 0.2.

and the domain OAE degenerates into a shear line with
theuniform pressure-c,=0.5 + g at the boundary OA.

Thisisthe case of dliding an absolutely rough plane die
along the boundary of a plastic half-space.
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