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1 Endohedral metallofullerene (Mm–C2n) is a carbon
cluster molecule containing one metal atom (some-
times, two or three metal atoms) inside a fullerene cage
C2n [1]. There are grounds for believing that this new
class of compounds holds much promise for a variety of
applications, including materials science, NMR imag-
ing, and nuclear medicine [2–6]. It was demonstrated
by EPR (electron paramagnetic resonance) that M–C2n

of Group III metals (M = La, Sc, Y, Gd) are paramag-
netic and that unpaired electrons in these molecules are
almost totally localized on the fullerene shell [2, 3].

This raises the question of whether the electron spin
density may be localized beyond the fullerene shell.
Recently, we observed new EPR signals for La–C82 and
Y–C82 in dimethylformamide (DMF) with unusually
small hyperfine splitting (HFS) constants ALa and AY
[7, 8]. This decrease in the HFS constant was allegedly
ascribed to a partial transfer of the unpaired electron
onto the solvation shell atoms [7, 8]. Herein, we studied
the EPR and ENDOR (electron-nuclear double reso-
nance) spectra of La–C82 in the polycarbonate matrix
and demonstrated for the first time that the area of
localization of the electron spin density is indeed not
limited by the fullerene cage.

The synthesis of La–C82-containing soots in an elec-
tric-arc reactor and the technique of extraction of
La−C82 from the soots were described earlier [5, 7, 8].
As probed by mass spectroscopy, the samples of
La−C82 contained neither C60 nor other pristine
fullerenes [7, 8]. Poly(bisphenol A carbonate) (PC,
Mw = 64000; Aldrich) was used. An La–C82-doped PC
film was prepared as described in [9]. X-band EPR
spectra (~9.5 GHz) were recorded on a Varian E-104A
spectrometer. Q-band ENDOR spectra (~35 GHz) were
recorded on a modified Varian E-110A at NWU.

1 This article was submitted by the authors in English.
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ENDOR stands for EPR-detected NMR spectroscopy.
In an ENDOR experiment, the spectrometer magnetic
field and microwave frequency are maintained at fairly
constant values fitting to the electron spin resonance
condition of the paramagnetic center and the micro-
wave irradiation power is provided sufficiently large to
saturate the EPR signal. Simultaneously, the sample is
exposed to a variable radio-frequency field and the
intensity of the saturated EPR signal is taken as a func-
tion of the radio frequency. If the radio frequency cor-
responds to a magnetic resonance frequency of a
nuclear spin, then the reorientation of the nuclear spin
takes place. As a result, the saturation of the EPR signal
is relieved and this signal builds up [10].

The experimental results are depicted in Figs. 1 and
2. A solution of La–C82-doped PC in o-dichlorobenzene
(DCB) is a gel. The EPR spectrum of this gel at room
temperature shows two partially overlapped octet sig-
nals with the intensity ratio ≈2 : 1. The HFS constant of
the stronger octet is 0.115 mT, while that of the second
one is 0.081 mT. Both octets are essentially identical to
the well-known signals of La–C82 in DCB (without
PC additions) and arise from the La–C82 isomers differ-
ing in the symmetry of their fullerene cages [2, 3]. The
octet HFS appears due to the coupling of the unpaired
electron to the 139La nuclear magnetic moment (I = 7/2)
[2, 3].

The individual spectral lines for this gel are almost
as narrow as for pure DCB (Hpp ≈ 0.014 mT in the
absence of oxygen), although significantly larger line
widths should be observed for a viscous polymer solu-
tion. It is known that the widths of the HFS components
for paramagnetic molecules in a liquid depend on the
extent to which molecular rotation averages the HFS
and g-factor anisotropy: the greater the mobility, the
narrower the HFS lines (see, for example [11]). The low
influence of the solution viscosity in our case may
result from an essentially isotropic contact character of
hyperfine coupling in La–C82 [2, 3].

In the room-temperature EPR spectrum of an
La−C82-doped PC film, the octet HFS is unobservable
(Fig. 1, 2). This is obviously caused by a low rotational
mobility of La–C82 in the solid polymer. The octet HFS
002 MAIK “Nauka/Interperiodica”



 

330

        

KOLTOVER 

 

et al

 

.

                                                                                                                           
1

2

3

0.2 mT

1 2

2.000

1.995

1.991

5 mT 0.5 MHz

Fig. 1. X-band EPR spectra of La–C82 in polycarbonate
(PC) samples: (1) a solution of PC in DCB (gel) at 293 K in
the absence of oxygen (10–3 mm Hg), (2) an La–C82-doped
PC film at 293 K, and (3) an La–C82-doped PC film at
425 K. The microwave power is P = 0.5 mW (frequency
~9.5 GHz), and the amplitude of modulation (100 kHz) of
the spectrometer magnetic field Hm = 0.01 mT.

Fig. 2. Q-band (1) EPR and (2) 1H ENDOR spectra of
La−C82 in a polycarbonate film at 2 K. The EPR spectrum
was recorded at the microwave frequency 38.218 GHz, P =
1 mW, and Hm = 0.25 mT (100 kHz). The ENDOR spectrum
was recorded at the microwave frequency 35.218 GHz,
spectrometer magnetic field strength H0 = 1261 mT (at g =
1.995 of the EPR signal). The ENDOR doublet is centered
at ν0 = 53.691 MHz.
appears above the temperature of transition of polycar-
bonate from the glassy state into the high-elasticity
state (≈400 K) when the mobility of the polymer seg-
ments becomes high enough (Fig. 1, 3).

Figure 2 shows Q-band EPR and ENDOR signals of
La–C82 in a PC film. The increase in the microwave fre-
quency from X- to Q-band increases the Larmor fre-
quency of protons from, thus eliminating the spectral
overlap of 1H ENDOR signals with those of other
nuclei [10]. An intense ENDOR signal has been
detected in the radio-frequency range in which reorien-
tations of proton nuclear spins take place. It is known
that the nuclear spin of 12C is zero, while 13C (natural
abundance 1.1%, I = 1/2) and 139La exhibit essentially
different Larmor frequencies (~13 and 8 MHz, respec-
tively) [10]. Since La–C82 molecules lack hydrogen
atoms, the observed 1H ENDOR spectrum unambigu-
ously testifies to the coupling of the unpaired electron
spin of La–C82 to the nuclear spins of the polymer
hydrogen atoms.

The detected ENDOR signal consists of two lines,
although poorly resolved, which is typical of 1H
ENDOR (I = 1/2) [10]. Obvious reasons for the poor
resolution of the doublet are the existence of different
types of protons in the polymer and the dipole–dipole
interaction of the electron and proton spins.

The resonance radio frequencies for the 1H ENDOR
signal are determined by the formula [10]

ν± = (AH/2 ± gNβNH)/h.

Here, AH is the hyperfine coupling constant resulting
mainly from the electron-spin density localized on the
proton, H is the magnetic field strength, gN is the
g-value of a proton, βN is the nuclear Bohr magneton,
and h is Planck’s constant [10]. Hence, from the split-
ting of the doublet, one can estimate the upper limit of
the contact hyperfine coupling with the polymer pro-
tons: AH ≤ 0.0028 ± 0.0001 mT.

Thus, the intense matrix ENDOR signal testifies to
the fact that the area of localization of the electron spin
density is indeed not restricted by the fullerene cage.
This “spin leakage” of the fullerene shell can be of
obvious importance in explaining such properties of
M–C2n as their tendency to form dimers and nonpara-
magnetic clusters in liquid solutions and solids.
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As is well known, optical inhomogeneities exist in
most transparent objects. They arise because of nonuni-
form concentration of particles in condensed media,
turbulent air motion, roughness of interfaces between
media, etc. These inhomogeneities, as well as phase
aberrations in optical elements that form light beams,
can noticeably affect the propagation of light beams,
producing both static and dynamic distortions in them.

For example, the radiation of a point source (i.e., a
spherical or plane wave with a uniform intensity distri-
bution) in the case of propagation through a turbulent
atmosphere turns into a wave characterized by a ran-
domly curved unsteady wave front [1–3]. Then, due to
the interference of different parts of the wave, ampli-
tude inhomogeneities of the light field appear in the
beam cross section, namely, local maxima and minima
in which the light intensity may differ by many times
from the average intensity.

The evolution of these inhomogeneities leads to
scintillation of the light power recorded by a detector
with a small (compared to inhomogeneity sizes) diam-
eter. This phenomenon is quite familiar: this is the
effect that is responsible for the twinkling of stars. In
optical communication, location, and ranging, this
effect causes strong fading of signals, which signifi-
cantly affects the efficiency of the corresponding sys-
tems (see, e.g., [4]).

In this study, we attempt to decrease the effect of
optical inhomogeneities on the amplitude distribution
of the radiation transmitted through them by using an
extended light source with a random angular spectrum.

From the conceptual standpoint, the possibility of
such a decrease [5] is clear from the following reason-
ing. An extended source can be considered as a set of
diffraction-size (i.e., virtually point-size) oscillators
that closely adjoin each other. Therefore, we can
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expand the field produced by them as a sum of beams
from distant point emitters. As is well known, spatial
coordinates are readily transformed into angular ones
by placing a source in the focal region of a proper lens.
As a result of this transformation, the above “elemen-
tary” beams become noncollinear at the lens output.
Therefore, the spatial distributions of their intensities in
the far-field zone turn out to be shifted with respect to
each other, which, generally speaking, should result in
the smoothing of inhomogeneities in the light field.

From the simplest geometric construction, it follows
that the relative shifts of the distributions mentioned
above at a distance L from a lens with focal length F

reach , where d is the source diameter and F ! L.

However, the effective smoothing of the inhomogene-
ities takes place only when these shifts exceed the spot
diameter δ within which the emission of one elemen-
tary beam is smeared by the optical inhomogeneities,
i.e., if the condition

(1)

is satisfied.

We have performed experiments to verify the above
concept. For this purpose, we applied two sources,
namely, extended and point sources. We used the output
end of a multimode lightguide 112 µm in diameter as
the extended source. The source was located in the
focal region of a lens with a focal length of 3.6 cm and
a diameter of 1.6 cm. Coherent radiation with stabilized
(with an accuracy no less than 0.4%) power from a
semiconductor laser that generated at a wavelength λ =
0.785 µm was delivered to the lightguide input. Then,
at the lens output, we observed a beam with a randomly
nonuniform wave front and a uniform (on average)
intensity distribution.

At distances significantly exceeding the initial cross
section of the laser beam (1 × 3 µm2), its wave front was
quite close to spherical; i.e., this laser was virtually a
point light source. Taking this fact into account, we
placed a similar laser in the vicinity of the focal surface
of another lens with the same characteristics mounted

d
F
---L

d
F
---L δ>
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Fig. 1. Snapshot photograph of the far-field zone of light beams passing through turbulent air: (on the left) the beam from the point
source; (on the right) the beam from the extended source; the circle between the photographs corresponds to the receiving aperture
of the telescope.
near the first one. The outgoing light is a nearly spheri-
cal wave with a front curvature governed by the laser
position with respect to the lens.

Both beams formed by these lenses were directed to
another building 300 m away, where their parts, cap-
tured by a telescope with a diameter of 10 cm, were
focused on a photodetector. Then, the photodetector
signals were analyzed by a dedicated electronic system
with a sampling frequency of about 20 kHz.

Since the beam from the extended source was, in
fact, formed by overlapping coherent waves,1 its inten-
sity distribution contained small-scale inhomogeneities
usually called speckles [6]. Their minimum possible
size in the vicinity of the photodetector is equal to ε =

, where D is the beam diameter at the lens output.

In our case, ε ≈ 3 cm. It is clear that averaging of
speckle inhomogeneities of the light field is attained
only when the aperture of the receiving device Ω
exceeds ε, i.e., when the inequality

(2)

1 To be more precise, due to the depolarization of laser radiation in
the lightguide, this beam consisted of two orthogonally polarized
sets of coherent waves.

2λ
D
------L

Ω 2λ
D
------L>
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is satisfied. Based on relation (2), we chose the diame-
ter of the receiving telescope.

Near the telescope, the cross section of the beam
from the extended source was a sharp light circle with a
diameter of 0.9 m, whereas the second beam was blurred.
By longitudinal displacement of the laser with respect to
the lens, the divergence of this beam was adjusted in such
a way that the brightness of the light in the center of its
angular distribution was equal to the mean brightness of
the beam from the extended source (provided that the
total powers of these beams were identical).

The instability in the recorded light power can be
conveniently characterized by the scintillation index Si,
i.e., the rms deviation of the instantaneous power from
the mean (over time) power, where the deviation mag-
nitude is normalized to the mean power. It is known that
in the case of well-pronounced air turbulence (arising,
e.g., in summer due to strong heating of the Earth’s sur-
face by solar radiation), light propagation over long
atmospheric paths can give rise to Si ~ 1. The results of
this study were obtained in winter when turbulence is
usually rather small and, correspondingly, the atmo-
spheric value of Si is much lower. In our experiments
with the point source, Si did not exceed 0.03, whereas
with the extended source, it was 0.02.

To produce stronger turbulent inhomogeneities, we
used a thermal radiator mounted 10 cm below the
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Fig. 2. Power of light impinging on the detector as a function of time: the first and second halves of the oscillogram were obtained
with the point and extended sources, respectively.
beams and 1 m from the lenses. The radiator consisted
of 12 electrically heated steel tubes with a diameter of
1 cm located 2.5 cm apart in the transverse (with
respect to the beams) direction. The radiator tempera-
ture T could reach 300°C.

The experiments with the point source showed that
its light scintillation index continuously rises with heat-
ing and reaches ~0.5 at the temperature indicated
above. For the extended source, this index was equal to
~0.1; at T > 70°ë, it weakly depended on the radiator
temperature. It should be noted that the mean power
(~10–5 W) of the received radiation was also almost
independent of the degree of heating. This implies that
condition (1) was satisfied in all the experiments.

The spectral analysis of intensity fluctuations for
light passing through the turbulent air layer showed that
changes in its optical inhomogeneities occurred during
the time t > 5 × 10–3 s. With allowance for this fact, the
far-field zone of the beams was photographed with an
exposure of 10–3 s. Examples of pictures obtained by
this method are shown in Fig. 1. As is seen, the initially
uniform light distribution over the cross section of the
point-source beam is strongly distorted in the case of
propagation through an inhomogeneous medium. For
the extended source, a beam passing through the same
medium undergoes almost no changes that could be
recorded by the receiving aperture whose size is shown
in Fig. 1.

Correspondingly, when operating with the two dif-
ferent kinds of beams (emitted by point and extended
light sources), the time characteristics of the light
power P being received differ markedly from each
other (see Fig. 2). In this case, the power P is normal-
ized to its mean value averaged over time. In this repre-
sentation, Si is the rms deviation from unity. For the
case shown in this figure, Si = 0.48 and 0.105 for the
point and extended sources, respectively. Thus,
employment of the extended source leads to the sup-
pression of scintillations by a factor of 4.6.

A statistical analysis of the observations, which is
illustrated in Fig. 2, makes it possible to determine the
probability of optical radiation with a specified power
impinging on a detector (Fig. 3).2 From the results
shown in Fig. 3, it follows that, for the point source, the
received power sometimes drops to the level of P ≈ 0.1
and, with the same probability, can reach 4; i.e., the
spread of extremal values reaches 40. For the extended
source, the corresponding spread is lowered by a factor
of 20.

It is worth noting that in order to decrease the effect
of atmospheric distortions, it was previously proposed
to simultaneously illuminate a detector with many light
beams spaced in such a way that changes in optical
inhomogeneities along different light paths for the
beams would be uncorrelated with each other [7]. Tech-
nically, this method is much more complicated than that
discussed above. In particular, in order to implement
the method of [7], we need to use a large number of

2 In this figure, the area under each curve, which represents the
integral probability of receiving the signal from the detector,
equals unity. The apparent difference in these areas is caused by
using a logarithmic scale along the ordinate axis.
DOKLADY PHYSICS      Vol. 47      No. 5      2002
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Fig. 3. Probability density W for an optical signal with a given power P incoming to a photodetector: solid and dashed lines corre-
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Fig. 4. Dependence of the received light power P on the cross-sectional displacement l of a glass sample placed in the light beam:
thin and thick lines correspond to the point and extended sources, respectively. The power is normalized to that impinging on the
detector if the inhomogeneous sample is replaced by a parallel-sided plate made of the same glass.
devices forming and aiming many beams. In addition,
this method, generally, is not capable of eliminating the
effect of static aberrations in the optical elements
(lenses, glasses, etc.) through which the beams pass.

However, the mechanism of smoothing the light
field considered in this study is able to effectively act
independently of whether the optical inhomogeneities
are dynamic or static. To verify this statement, we
investigated the transmission of both beams through a
sample made of low-grade glass. A 3-mm-thick sample
was located 20 cm from the lenses and slowly moved in
the transverse direction. As a result, various parts of the
DOKLADY PHYSICS      Vol. 47      No. 5      2002
sample were in the light beam in turn and the aberra-
tions were therefore also different. Correspondingly,
the amount of light entering the receiving telescope var-
ied. As was expected, the sensitivity to optical inhomo-
geneities sharply decreased (Fig. 4) when the extended
source was used.

Thus, it has been established that the use of
extended sources of light beams makes it possible to
decrease by many times the effects of both dynamic and
static inhomogeneities on the spatial distribution of
light propagating through them.
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The cylindrical shell of a rod fuel element restricts
the penetration of the products of nuclear fission.
Residual stresses arising in the shell change the charac-
ter of diffusion processes [1, 2]. For example, compres-
sive stresses impede the migration of interstitial impu-
rities through the shell, whereas tensile stresses give
rise to the opposite effect. These effects are caused by
the interaction between impurity atoms and residual
stresses of different signs. In this study, the kinetics of
diffusion migration of interstitial impurities through a
cylindrical shell with residual stresses is analyzed. The
choice of this model is explained by the following rea-
sons. First, it is possible to obtain residual stresses of
different signs in a cylindrical shell by cutting it, adding
(excluding) a part of a material, and joining the cut
edges. Second, the logarithmic dependence of the first
invariant of the residual-stress tensor on the radial coor-
dinate makes it possible to obtain the exact analytical
solution of the diffusion equation in a field of forces.
Third, this model analysis has a direct practical appli-
cation. The depletion of a ceramic nuclear fuel (UO2,
UC, UN) is accompanied by an increase in the concen-
tration of interstitial impurities (O, C, N) on the inner
shell surface. Their diffusion migration through the
shell depends on the level and character of the residual-
stress distribution.

Residual stresses of different signs in a cylindrical
shell can be as follows. In the first case, the edges of the
shell cut are moved apart at an angle ω and the missing
material is placed there. In this case, the regions near
the inner and outer shell surfaces are in tension and
compression states, respectively. In the second case, the
shell is cut by an angle ω and the cut edges are joined.
The residual stresses change in sign: the neighborhoods
of the inner and outer shell surfaces are in tension and
compression states, respectively.

Interstitial impurities interact with the field of resid-
ual stresses of different signs. The interaction potential
for the dimensional effect (only size misfit between the
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ul. Zheleznodorozhnaya 24, 
Podol’sk, Moscow oblast, 142100 Russia
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atoms of an impurity and a basic metal is taken into
account) is defined by the well-known relation [3]

(1)

where σll is the first invariant of the residual-stress ten-
sor and δv  is the change in the volume of the shell
material after the introduction of an interstitial impu-
rity. If δv  > 0, the potential V takes negative values for
σll . Therefore, interstitial impurities are attracted to the
tension domain of residual stresses. For δv  > 0 and
σll < 0, the potential V takes positive values. Therefore,
impurity atoms are repulsed from the compression
region of residual stresses. We consider zirconium,
which is everywhere used in structural elements of
nuclear power engineering, as a shell material. The
first invariant of the residual-stress tensor depends log-
arithmically on the radial coordinate (planar deforma-
tion) [4]:

(2)

where µ is the shear modulus, ν is the Poisson ratio, and
ω is the rotation angle of the edges of the shell cut.
When all other factors are the same, the sign of σll

depends on the rotation angle of the edges of the shell
cut. Conditionally, we assume that ω < 0 when σll > 0
and σll < 0 on the inner and outer shell surfaces, respec-
tively. The rotation angle ω > 0 corresponds to σll < 0
and σll >0 on the inner and outer shell surfaces, respec-
tively.

The equilibrium concentration of interstitial impuri-
ties depends exponentially on the potential V:

(3)

where C0 is the concentration of interstitial impurities
on the inner boundary of the shell without residual
stresses, k is the Boltzmann constant, and T is the abso-

V
σll

3
------δv ,–=

σll
µω 1 ν+( )
2π 1 ν–( )
------------------------- 1 2 r

R
---

2
r0

R
---- 

 
2

1
r0

R
---- 

 
2

–

---------------------
r0

R
----ln+ln+

 
 
 
 
 
 
 

,=

Cp C0
V
kT
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lute temperature. Tensile and compressive stresses
increase and decrease, respectively, the boundary con-
centration of impurity atoms (with respect to C0) in
accordance with Eq. (3).

The diffusion migration of interstitial impurities
through a cylindrical shell with residual stresses is
described by the time-dependent diffusion equation in
the field of the potential V under the corresponding ini-
tial and boundary conditions:

(4)

where D is the diffusivity of interstitial impurities. The
value of Cp depends on the sign of residual stresses on
the inner shell boundary. The positive sign of the sec-
ond term on the right-hand side of Eq. (4) corresponds
to compressive stresses on the inner shell surface. They
are logarithmically reversed to tensile stresses on the
outer shell boundary. This distribution of residual
stresses “extracts” interstitial impurities from the inner
shell surface. The negative sign of the above term cor-
responds to the case where tensile stresses on the inner
shell surface are logarithmically reversed to compres-
sive stresses on the outer surface. This distribution of
residual stresses retards the migration of interstitial
impurities through the shell. The physical meaning of
the initial and boundary conditions for problem (4) is
evident. At the initial time instant, the concentration of
interstitial impurities equals zero. The same concentra-
tion remains unchanged at the outer shell boundary.
This means that impurity atoms leave the outer shell
surface as soon as they arrive at it. This condition
makes it possible to more clearly emphasize the role of
residual stresses. The boundary condition at r = r0
means that, on the inner shell surface, the constant equi-
librium concentration of interstitial impurities is main-
tained in accordance with the interaction potential. Up
to constants, the potential V has the form [5]

(5)

Constant relations (2) are of no importance since the
diffusion of impurity atoms depends on the gradient of
the potential V. In this case, ∆V = 0, because V is a har-
monic function. With allowance for Eq. (5), problem (4)
is mathematically formulated as follows:

(6)

The dimensionless parameter α specifies the ratio of the
binding energy of an interstitial impurity in the field of
residual stresses to the thermal motion energy:
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If |α| ! 1, the field of residual stresses is a weak distur-
bance of the impurity diffusion flux induced by the con-
centration gradient. At |α| @ 1, the dominant contribu-
tion to the diffusion process comes from the field of
residual stresses. For |α| ≈ 1, the diffusion fluxes of
interstitial impurities, which are caused by the gradi-
ents of concentration and potential V, are approximately
equal to each other. Let us estimate |α| for a Zr–H sys-
tem. If kT = 10–20 J, µ = 4 × 1010 Pa, v  = 0.3, |ω| =
0.3 rad, and δv  = 3 × 10–30 m3, we have |α| ≈ 1. For this
reason, without loss of generality, the dimensionless
parameter α is taken to be equal to unity in absolute
value. The sign of this parameter depends on the type of
residual stresses in the cylindrical shell. If ω < 0 (tensile
stresses on the inner surface), it is assumed that α = –1.
In this case, the kinetics of the diffusion of interstitial
impurities with allowance for the sign of Eq. (4) are
found by solving the problem

(7)

where 

At α = –1, the equilibrium concentration of intersti-
tial impurities at the inner shell boundary exceeds the
corresponding value in the absence of residual stresses.
Problem (7) shows that residual stresses of this type
change the symmetry of the diffusion equation: the dif-
fusion process in the cylindrical shell is spherically
symmetric. The transformation of the coordinate
dependence decreases the rate of formation of the con-
centration profile. Mathematically, this fact immedi-
ately follows from the form of the diffusion equation.

At  < 0, the variation rate of the concentration 

in Eq. (7) is less than the rate in Eq. (6) for α = 0. The
retardation of the process kinetics is physically caused
by the fact that tensile stresses decrease in the radial
direction and are even reversed to compressive stresses.
The solution of problem (7) gives the concentration
field of interstitial impurities for a given type of resid-
ual stresses:

(8)

For ω > 0 (compressive stresses on the inner shell
surface), it is assumed that α = 1. In this case, the kinet-
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ics of the diffusion of the interstitial impurities with
allowance for the sign of Eq. (4) are determined by
solving the problem

(9)

where 

At α = 1, the equilibrium concentration of interstitial
impurities on the inner shell surface is less than the cor-
responding value in the absence of residual stresses.
Residual stresses of the other type again change the
symmetry of the problem. The diffusion of interstitial
impurities in the cylindrical shell is now plane symmet-
ric. This change in the coordinate dependence increases
the rate of formation of the concentration profile. Math-
ematically, this conclusion follows from the form of the

diffusion equation. When  < 0, the variation rate of

the concentration  for α = 1 in Eq. (9) is higher than

the rate in Eq. (6) at α = 0. Compressive stresses in the
radial direction are changed to tensile stresses, and
therefore the diffusion migration of interstitial impuri-
ties is accelerated. The field of the impurity-atom con-
centration for this distribution of residual stresses has
the form

(10)

We now compare Eqs. (8) and (10), which are rep-
resented in the form

(11a)

(11b)

respectively. Here, f (r, t) is the expression in braces in
Eqs. (8) and (9). At C(R, t) = 0, the diffusion flux of
impurity atoms through the outer shell surface has the
form

(12)
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and makes it possible to separate the contribution of
residual stresses of different signs to the diffusion of
interstitial impurities. The diffusion flux of interstitial
impurities has the form

(13a)

(13b)

for Eqs. (11a) and (11b), respectively.

The analysis of Eqs. (13) shows that the dominant
contribution to the diffusion flux of interstitial impuri-
ties comes from the equilibrium concentration on the
inner shell surface. If the inner domain of the cylindri-
cal shell is in the compression state, the flux of impurity
atoms through the outer surface is much less than the
flux for residual stresses of the opposite sign. There-
fore, in order to decrease the penetration of interstitial
impurities through the shell of a fuel element in the pro-
cess of nuclear fuel depletion, one must create com-
pressive stresses near the inner shell surface. This
action can also prevent the penetration of products of
nuclear fission. For the same initial concentration of
interstitial impurities on the inner shell surface, the dis-
tribution of residual stresses is of crucial importance.

The diffusion fluxes of interstitial impurities
through the cylindrical shell can be best illustrated for
a steady-state process. Here, the effects of two distribu-
tions of residual stresses on diffusion are compared
with each other and with the case of the absence of
stresses. In addition, the stationary distribution of the
concentration of interstitial impurities makes it possible
to obtain their integral value in the shell when the total
diffusion flux at the outer boundary is equal to zero.
The steady-state field of the interstitial-impurity con-
centration in the cylindrical shell with two types of
residual stresses and in the absence of them has the
form

(14a)

(14b)

(14c)

respectively. Expressions (14a) and (14b) describe the
concentration of the interstitial impurities when the
inner region of the cylindrical shell is in the tension and
compression states, respectively. Relationship (14c)
describes the concentration of interstitial impurities in
the absence of residual stresses. The diffusion fluxes for
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Eqs. (14) determine the migration of impurity atoms
through the cylindrical shell:

(15a)

(15b)

(15c)

The analysis of Eqs. (15a) and (15b) shows that, in the
steady-state regime, the diffusion flux of interstitial
impurities in the first case is greater than the flux in the
second case. Tensile residual stresses on the inner shell
surface increase the flux of impurity atoms through the
outer boundary. In the absence of residual stresses
[Eq. (15c)], the flux of interstitial impurities is interme-
diate between the above cases.

Thus, the theoretical analysis of the above model of
the diffusion of interstitial impurities through a cylin-
drical shell with residual stresses leads to the following
conclusions. If the inner region of the shell is in a ten-
sion state, the diffusion flux of impurity atoms through
the outer boundary is maximal, which is due to the high
concentration of impurity atoms at the inner shell
boundary. Tensile stresses increase the equilibrium
concentration of interstitial impurities compared to the
case where stresses are absent. If the inner region of the
shell is in a compression state, the diffusion flux of
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-----------------------,=

j
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--------------.=
interstitial impurities through the outer boundary is
minimal, which is due to a low value of the equilibrium
concentration of impurity atoms at the inner shell
boundary. Compressive stresses decrease the equilib-
rium concentration of interstitial impurities compared
to the case where stresses are absent. The analysis
showed that the promotion or retardation of the process
kinetics due to a change in the coordinate dependence
of the diffusion equation is of minor importance. As a
rule, the diffusion migration of interstitial impurities
through the cylindrical shell is determined by their con-
centration at the inner boundary. Therefore, in order to
decrease the penetration of interstitial impurities and
fission products through the shell of a fuel element, it is
necessary to create compressive stresses on its inner
surface.
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The response of metal to an external physicome-
chanical action is determined by both the thermody-
namic state of the metal and the characteristics of the
loading process.

By convention, the phenomenon of failure can be
divided into two regions, namely, the quasistatic lon-
gevity region (t > 10–4 s) and the dynamic longevity
region (t < 10–6 s).

In [1–7], a thermal shock caused by high-current
beams of relativistic electrons is described in detail. In
this case, in contrast to traditional loading methods, the
failure process proceeds over times t < 10–8 s and at the

energy-supply rate  ~ 1012 K/s, which is accompa-

nied by temperature variation up to the melting temper-
ature Tmelt. This makes it possible to obtain more com-
prehensive data on the time–temperature dependences
of the process, because the effect of the actual crystal-
lattice structure is less pronounced under these testing
conditions. Thus, the results of these investigations
yield additional information about the behavior of spe-
cific substances and are important on their own for fail-
ure physics, e.g., in constructing failure models of high-
rate deformation.

We have investigated the regularities of dynamic
failure for a series of metals with atomic numbers Z ~
13–92 (Al, Ti, Ta, Ni, Pb, Cu, Cd, Sn, Zn). The experi-
ments were carried out in the time-to-rupture range t ~
10–5–10–10 s at initial temperatures T0 between 4 K and

Tmelt . The energy-supply rates were  ~ 106−1012 K/s

 ~ 105–1011 J/(g s)  and  ~ 1−104 J/g. The

results are presented in the table.
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Evidently, the formation of a dynamic-strength
database by combining results obtained by analysis of
partial properties is not optimal. The main task is to
reveal general regularities that characterize the behav-
ior of metals and remain invariable with respect to
changes in external conditions. It was demonstrated
in [1–7] that, in the dynamic failure of metals, the resis-
tance to external effects arises due to the appearance of
a certain dissipative structure formed in a sample,
namely, a cascade of failure centers. The use of the
method for spectral determination of the failure-center
size distribution at various stages of the process made it
possible to establish general regularities in the forma-
tion of a cascade of failure centers. Using the similarity
transformation, we obtained the size distribution of
failure centers for various materials in terms of univer-
sal coordinates. This shows that the dynamic failure of
metals obeys a single dominant process. This process
combines the accumulation and growth of failure cen-
ters, which determine a major part of the longevity
time. The developing cascade of failure centers is a
fractal cluster. The process of accumulation of failure
centers (development of damage capability) can be
described within the self-similar approximation [1].
The spectral distribution of the failure centers by size

Time regularities of dynamic failure for a number of metals

Metal
P, GPa

t = 10–6 s t = 10–7 s t = 10–8 s t = 10–9 s t = 10–10 s

Cd 0.54 0.76 1.12

Ni 3.48 5.82 9.68 14.4

Ta 4.96 7.47 10.87 15.0

W 9.0 14.9 21.35 25.25

Fe 4.61 7.98 12.09 18.8

Cu 1.66 3.77 6.99 10.21

Pb 0.37 0.7 1.0

Ti 2.13 4.93 10.42 14.0

Sn 0.61 0.76 1.34
002 MAIK “Nauka/Interperiodica”
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Fig. 1. (a) Size distribution of failure centers in Fe samples with a thickness ∆ = 4 × 10–4 m (closed symbols) and Cu samples with
a thickness ∆ = 10–3 m in metallographic sections parallel to the failure surface [δd(δs) > δj(δh) > δm(δn) > δr(δe) > δ+ (Here, δ is
the depth measured from the failure surface.)]. (b) Accumulation rate of failure centers (mathematical-simulation results and exper-
imental data) for various metals at the longevity scale tr: ( ) Pbσ1, ∆ = 3 × 10–4 m; (h) Pbσ2, ∆ = 4 × 10–4 m; ( ) Cuσ1, ∆ = 2 ×
10–4 m; (s) Cuσ2, ∆ = 4 × 10–4 m, ( ) Cu; ∆ = 5 × 10–5 m; ( ) Pb, ∆ = 2.3 × 10–4 m (σ1 > σ2); and (curve) results of calculations
by Eq. (1).
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has the form N(D) ~ D–α, where D is the failure-center
size and α > 1 (Fig. 1). The accumulation rate of failure
centers can be described by an evolutionary equation of
the form (Fig. 1)

(1)

The data displayed in Fig. 1 show the correlated
behavior and the onset of self-organization of a cascade
of failure centers in the scale of a sample undergoing
failure. The results of fractographic studies have shown
that the violation of continuity and the presence of fail-
ure centers is observed only in the loading zone of a
sample.

The use of interactive image analysis systems made
it possible to reveal the appearance of plastic-flow
zones as in the case of turbulence, even at low initial
temperatures (T ~ 4 K). The appearance of these zones
results in loss of the long-range order of the crystal lat-
tice in the vicinity of failure centers that form and grow.
We imply micro- and mesolevels of the deformation
structure (Fig. 2).

dN
dt
------- Nβ, β 1.>∼
Zones of crystal-lattice flow in the vicinity of an
individual failure center separated from a neighboring
center by a distance exceeding the size of the failure
center itself are structured. This process occurs in such
a manner that the tangents drawn to the boundaries of
both the failure centers and slip bands, which relate to
the same radius vector, are nearly parallel (Fig. 2). In
the state preceding rupture, the average size of the fail-
ure centers reaches a few percent of the sample thick-
ness. The zones of crystal-lattice flow (instability
zones) in the vicinity of failure centers spaced by dis-
tances on the order of their size have no preferential
directions. Here, the crystal lattice loses its long-range
order. These zones determine the correlated behavior
of a cascade of failure centers near the percolation
threshold.

In percolation theory, there is a method that makes
it possible to quantitatively describe the phase connect-
edness, including the connectedness of failure centers
arising in the process of dynamic failure (in the case of
a many-center failure). We analyzed the problem of
spheres, i.e., a spherical region that exists around fail-
ure centers in which plastic-flow fields affect the pro-
DOKLADY PHYSICS      Vol. 47      No. 5      2002
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Fig. 2. Structuring of crystal-lattice slip bands in the vicinity of growing failure centers and tangents to the slip bands.

Q

Fig. 3. Failure-center percolation cluster obtained with the help of a random-number generator with allowance for the N(D) ~ D-α

distribution law and the rate N(t) of failure-center accumulation. The pattern is a computer version of a percolation metallographic
section obtained by cutting the volume cluster by a Q plane. Solid lines show the appearance of connectedness between neighboring
failure centers. The broken line intersecting the entire section shows the appearance of an infinite cluster changing the connected-
ness of the sample. Closed circles represent failure centers of the crystal lattice. The circles around the failure centers bound the
zones with plastic-flow fields affecting the failure centers.
DOKLADY PHYSICS      Vol. 47      No. 5      2002
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Fig. 4. Longevity for various metals in terms of the universal coordinates. The data for ρ(T, P), H(T), Γ(T, P), and ρ(T, P), H(T),
Γ(T, P), Lm are taken from tables. The data for E = P/Éρ are measured in this study. Here, H is the enthalpy, Γ is the Grüneisen
parameter, and ρ is the material density.
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cess of dynamic failure. For a sphere of radius R, taking
into account the data of fractographic analysis, we can
derive the expression

N–1/3 . 1.2R (2)

(N is the density of the failure centers). This expression
enables us to estimate the passage from microfracture
to macrofracture both qualitatively and quantitatively.
Figure 3 shows the computer version of a percolation
metallographic section for a cascade of failure centers.
According to expression (2), the failure process is con-
trolled at its final stage by the concentration criterion [1]
for all linear size scales under consideration. It was
DOKLADY PHYSICS      Vol. 47      No. 5      2002
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demonstrated that, at the final stage, the cascade of fail-
ure centers is a percolation cluster. In this case, a con-
nectedness of the failure-center system arises. Figure 3
presents the results of a mathematical simulation of the
volume of a failure-center percolation cluster. The com-
puter version of a metallographic section obtained by
cutting the percolation-cluster volume by the plane Q is
also presented.

According to the structural and energy analogy in
the behavior of metal when thermal and mechanical
energy are delivered, in either case, violation of the
long-range crystal lattice takes place. With allowance
for this fact, we present data on longevity for a set of
metals in terms of universal coordinates (Fig. 4). On the
basis of data taken from the literature, we can conclude
that, in the quasistatic longevity range, regions of plas-
tic flow of the crystal lattice also appear in the mouth of
a growing crack. The universal coordinates make it pos-
sible to determine the time dependence for ratios of the
critical density of the absorbed energy (which leads to
failure) to the energy parameters of the crystal lattice
(enthalpy H and melting heat Lm). The data in Fig. 4
present the absolute values of the dissipative energy
loss of an unloading wave by failure in the dynamic
range. These data are close to the unified curve and
determine the boundary. The failure region lies above
this boundary. The inserts in Fig. 4 show a change in the
failure mechanism from a single-center to a many-cen-
ter failure. Systematized data are presented for pure
metals in the quasistatic range [8].

The generalized approach (including micro-, meso-,
and macrolevels of failure) to investigating the
dynamic-failure process made it possible to reveal the
universal attributes of the evolution of arising struc-
tures. These attributes can be considered as a manifes-
tation of self-similarity in the behavior of metals under
pulsed loading. Here, the universality is a consequence
of the space–time self-organization in ensembles of
failure centers within a size range exceeding four
orders of magnitude. This fact testifies to the absence of
any specific length scale within the range under consid-
eration, which is associated with the physics of forma-
tion of a cascade of failure centers.

Taking into account the self-similarity of the process
of accumulating damage capability in the dynamic lon-
gevity range, we can obtain the relation between the
critical energy density and the longevity, namely, Eγt =
const [1, 5, 6], where γ ~ 3.8. The resulting expression
specifies the amplitude–time coordinate irrespective of
the method of loading and geometry. Hence, we can
impose certain conditions on a nonhomogeneous wave
equation that describes the motion of an elastoplastic
continuum. The self-consistency in the calculation of
the amplitude P(x, t) [E(x, t)] at each point of the coor-
dinate axis makes it possible to describe the wave
motion of the medium and the accumulation of the
DOKLADY PHYSICS      Vol. 47      No. 5      2002
damage capability for various profiles of the absorbed
energy. Thereby, the absolute value of the dissipative
energy loss in the one-dimensional case (amplitude–
time dependence) is established. Its computational and
theoretical justification in two- and three-dimensional
cases allows us to describe the dynamic-failure process
for various geometries of the system under study and to
predict the behavior of unexplored materials.

It should also be noted that the data presented in
Fig. 4 can be used in computer-aided design of resistant
materials for specific operating conditions (e.g., when
choosing a material for the screen of an output window
of a pulsed relativistic-electron accelerator, etc.).

Thus, we have demonstrated that, in the dynamic
longevity range, the thermodynamic potential
(enthalpy) is a parameter that controls the dynamic-fail-
ure process. The ratio of the absorbed-energy density to
the energy parameters of the crystal lattice (enthalpy
and phase-transition heat) is an invariant of the behav-
ior of a metal with respect to external actions.

At pulsed-pressure amplitudes P ~ 1–30 GPa and in
the longevity range t ~ 10–6–10–10 s, the evolution of
micro- and mesoscopic defects in the phenomenon of
dynamic failure is a defining feature in the invariant
behavior of metals under a thermal shock.
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Orange crystals of the Ca3V10O28 · 16H2O pascoite
mineral and the K2Mg2V10O28 · 16H2O hummerite min-
eral were found in the vanadium-containing uranium
ores of the Colorado plateau [1]. Later on, synthetic
analogs of these minerals were obtained and then
described by a general formula A2M2V10O28 · nH2O,
where A = K, Cs, NH4, or Rb and M = Mg, Zn, Mn, or
Co. A distinctive structural feature of these compounds
is the presence of the (V10O18)6– decavanadate complex
in their structure.

The decavanadate ion is formed when V2O5 vana-
dium oxide is placed in an acid solution with pH rang-
ing from 2 to 6 [2]. The divanadate ion V2O5 is poly-
merized in the solution and forms the V10O28 molecular
group. The structure of the V10O28 complex is formed
by ten VO6 octahedrons linked by common edges into a
ten-nuclear octahedral cluster (Fig. 1). The ideal sym-
metry of the V10O28 decavanadate ion is mmm.

In the crystal structures of the group of compounds
under consideration, the decavanadate complexes com-
bine with M-octahedrons and A-ten-vertex polyhe-
drons, forming layers parallel to the ab plane. Water
molecules are situated in the interlayer space.

The crystal structures of pascoite and hummerite
minerals differ in the number and character of coordi-
nation of cations linking (V10O28)6– cluster anionic
groups into a unified configuration. In a Ca3V10O28 ·
16H2O pascoite unit cell [3], two calcium atoms are in
seven-vortex polyhedrons formed by two oxygen atoms
of a decavanadate group and five water molecules. The
distorted octahedron around the third calcium atom is
formed by water molecules. In the structure of
K2Mg2V10O28 · 16H2O hummerite [4], magnesium ions
are located in octahedrons composed of water mole-
cules. Of the ten oxygen atoms participating in the
coordination of potassium atoms, five atoms belong to
three neighboring decavanadate ions and the other five
belong to water molecules.

Moscow State University, 
Vorob’evy gory, Moscow, 119899 Russia
1028-3358/02/4705- $22.00 © 20346
The crystal structure of the synthetic K2Zn2V10O28 ·
16H2O compound representing a zinc analog of the
hummerite mineral was recognized on the basis of
experimental data obtained by X-ray photography [2].
In this paper, we present results on refining the structure
of this phase. This refinement is aimed at both the local-
ization of hydrogen atoms and analysis of the features
of hydrogen bonds.

Semitransparent crystals of a prismatic habitus and
orange color were prepared by a conventional method
of hydrothermal synthesis [5] in a ZnO–V2O5–KF–
K3PO4–H2O system at a temperature T = 250°C and
pressure P = 100 atm. The mass ratios of the compo-
nents were

ZnO : V2O5 : KF : K3PO4 = 2 : 2 : 1 : 1.

The dependence of the degree of vanadate-ion poly-
merization on the pH in a solution is well known. For
example, in alkaline solutions, colorless orthovana-
dates, pyrovanadates, and methavanadates crystallize at
pH > 12.6, pH from 12.6 to 9.6, and pH from 9.6 to 6.5,

VVV

b

ac

Fig. 1. V10O28 ten-nuclear octahedral cluster.
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Table 1.  Crystallographic characteristics, experimental data, and refinement of the structure

C r y s t a l l o g r a p h i c  c h a r a c t e r i s t i c s

Formula K2Zn2V10O28 · 16H2O

Absorption µ, mm–1 4.16

Space group P 1bar

Number of formula units Z 1

Parameters of the unit cell

a, Å; α 10.802(2); 104.83(3)°
b, Å; β 11.157(2); 109.43(3)°
c, Å; γ 8.770(2); 64.99(3)°

Volume, Å3 895.0(3)

Density ρ, g/cm3 2.697

E x p e r i m e n t a l  d a t a

Diffractometer SYNTEX P

Radiation MoKα (graphite monochromator)

Temperature, K 293

Survey region θmax 30.0°
Index constraints –15 ≤ h ≤ 14, –15 ≤ k ≤ 15, 0 ≤ l ≤ 12

D a t a  f o r  s t r u c t u r e  r e fi n e m e n t

Number of reflections: independent/observed with I > 1.96σ(I) 3608/3275

Refinement method According to F2

Number of refined parameters 327

Correction for absorption (semiempirical over equivalents)

Tmax, Tmin 1.000, 0.742

Extinction coefficient 0.0004(3)

Uncertain factors

R (for the observed reflections) 0.039

wR2 (for all independent reflections) 0.094

s 1.110

Residual electron density, e/Å3

ρmax, ρmin 0.58, –0.58

1

respectively. In acid solutions, typical orange polyvan-
adates and light yellow pervanadates are crystallized at
pH ranging from 6.5 to 2.0 and pH < 0.8. It is shown [2]
that three types of (V10O28)6–, (HV10O28)5–, and
(H2V10O28)4– complex ions are present in the orange
solution (pH from 2.0 to 6.5), decavanadate ions being
the prevailing component in the solution. Qualitative
X-ray spectral analysis based on a CamScan 4DV
device showed the presence of K, Zn, and V atoms in
the crystal compositions we obtained. These data, the
orange color of the crystals, and their synthesis in an
acid solution admitted the possibility of the participa-
tion of (V10O28)6– decavanadate ions in forming the
structure of the compound we obtained.

The parameters of the unit cell and triclinic crystal
symmetry were determined by the photographic
DOKLADY PHYSICS      Vol. 47      No. 5      2002
method with a rotating-crystal X-ray camera and
refined while investigating a crystal with average linear
dimensions of ~0.1 mm by means of a SYNTEX P-1
four-circle diffractometer. These parameters turned out
to be a = 10.802(2), b = 11.157(2), c = 8.770(2) Å,
α = 104.83(3)°, β = 109.43(3)°, and γ = 64.99(3)°. Tak-
ing into account the elemental composition of the given
phase and based on the data obtained for both the met-
ric of the unit cell and crystal symmetry, we identified
the crystal with the K2Zn2V10O28 · 16H2O water potas-
sium and zinc decavanadate.

We obtained the experimental material needed to
refine the structure of this crystal by the 2θ : θ scanning
method and with the same diffractometer using Mo-Kα
radiation. The recorded reflection intensities were cor-
rected with allowance for the Lorentz factor and the
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Table 2.  Coordinates of basis atoms and equivalent temperature parameters

Atom x y z Ueq, Å2

V1 –0.00274(9) 0.47729(8) 0.67734(10) 0.0170(2)
V2 0.28103(9) 0.44692(8) 0.61576(10) 0.0188(2)
V3 0.94915(9) 0.27565(8) 0.35303(10) 0.0183(2)
V4 0.23696(9) 0.24458(9) 0.30811(11) 0.0207(2)
V5 0.22779(9) 0.19733(8) 0.63439(11) 0.0210(2)
Zn 0.77078(7) 0.20981(6) 0.77442(8) 0.0236(2)
K 0.5831(1) 0.2258(1) 0.3146(2) 0.0352(3)
O1 0.3052(4) 0.1288(3) 0.4583(4) 0.0219(7)
O2 0.1002(3) 0.3785(3) 0.4855(4) 0.0171(7)
O3 0.8573(3) 0.4101(3) 0.5240(4) 0.0162(6)
O4 0.0976(4) 0.3368(3) 0.7682(4) 0.0211(7)
O5 0.8617(3) 0.4469(3) 0.2593(4) 0.0179(7)
O6 0.3428(4) 0.3452(3) 0.4366(4) 0.0211(7)
O7 0.3976(4) 0.5133(4) 0.7059(5) 0.0272(8)
O8 0.3387(4) 0.3026(3) 0.7217(4) 0.0216(7)
O9 0.0624(4) 0.1634(3) 0.5087(4) 0.0208(7)
O10 0.8267(4) 0.2173(4) 0.2602(4) 0.0259(8)
O11 0.0690(4) 0.2045(3) 0.2216(4) 0.0211(7)
O12 0.6917(4) 0.9225(4) 0.2572(5) 0.0303(9)
O13 0.1087(4) 0.4158(3) 0.2028(4) 0.0205(7)
O14 0.3233(4) 0.1610(4) 0.1727(5) 0.0309(9)
O15 (H2O) 0.3233(5) 0.6322(4) 0.3650(5) 0.0304(9)
O16 (H2O) 0.6534(5) 0.3356(5) 0.9410(6) 0.0363(10)
O17 (H2O) 0.1276(5) 0.8986(4) 0.4076(6) 0.0356(10)
O18 (H2O) 0.3941(4) 0.8564(4) 0.3734(5) 0.0290(9)
O19 (H2O) 0.0597(6) 0.7330(6) 0.0977(6) 0.0499(14)
O20 (H2O) 0.1559(5) 0.9398(4) 0.0817(5) 0.0339(10)
O21 (H2O) 0.3459(6) 0.4093(5) 0.0702(6) 0.0452(12)
O22 (H2O) 0.4179(7) 0.8878(7) 0.0055(7) 0.0498(13)
H1 0.472(7) 0.824(6) 0.366(7) 0.02(2)
H2 0.033(7) 0.744(7) 0.011(9) 0.03(2)
H3 0.384(6) 0.928(6) 0.397(7) 0.03(2)
H4 0.272(7) 0.613(6) 0.397(8) 0.02(2)
H5 0.093(7) 0.978(7) 0.424(8) 0.05(2)
H6 0.677(9) 0.311(9) 0.023(11) 0.04(3)
H7 0.051(7) 0.886(7) 0.395(8) 0.03(2)
H8 0.004(7) 0.722(7) 0.138(8) 0.05(2)
H9 0.118(8) 0.014(7) 0.106(9) 0.04(2)
H10 0.221(8) 0.930(7) 0.046(9) 0.06(2)
H11 0.345(8) 0.389(8) –0.007(10) 0.08(3)
H12 0.281(9) 0.409(8) 0.089(10) 0.03(3)
H13 0.401(12) 0.958(12) 0.019(13) 0.08(5)
H14 0.639(9) 0.414(9) 0.963(11) 0.11(3)
H15 0.368(7) 0.566(7) 0.320(8) 0.05(2)
H16 0.487(12) 0.866(11) 0.064(14) 0.16(5)

Note: For hydrogen atoms, the values of isotropic temperature factors are given.
DOKLADY PHYSICS      Vol. 47      No. 5      2002
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Table 3.  Interatomic distances, Å

V1-octahedron V2-octahedron V3-octahedron V4-octahedron

V1–O13 1.686(3) V2–O7 1.608(4) V3–O10 1.605(4) V4–O14 1.608(4)

O4 1.701(3) O6 1.830(4) O11 1.814(3) O1 1.835(4)

O5 1.905(3) O8 1.838(4) O9 1.843(4) O6 1.849(4)

O3 1.936(3) O5 1.974(3) O5 1.995(3) O11 1.915(4)

O2 2.117(3) O3 2.012(3) O3 2.016(3) O13 2.058(4)

O2 2.131(3) O2 2.243(3) O2 2.229(3) O2 2.304(3)

Average 1.913 Average 1.918 Average 1.917 Average 1.928

V5-octahedron Zn-octahedron K-ten-vertex polyhedron

V5–O12 1.602(4) Zn–O17 2.066(4) K–O22 2.767(5)

O1 1.839(4) O19 2.066(5) O10 2.786(4)

O8 1.876(4) O20 2.074(4) O6 2.802(4)

O9 1.897(4) O16 2.096(4) O15 2.936(5)

O4 2.022(4) O15 2.097(4) O14 2.979(4)

O2 2.342(3) O18 2.119(4) O18 3.006(5)

Average 1.930 Average 2.086 O12 3.040(4)

O7 3.060(4)

O21 3.084(6)

O17 3.260(6)

Average 2.972

Table 4.  Geometrical characteristics of hydrogen bonds

D–H ⋅ ⋅ ⋅A d(D–H), Å d(H ⋅ ⋅ ⋅A), Å Angle DHA, degrees d(D–A), Å

O8 0.78(8) 2.19(8) 162(6) 2.947(6)

O18–H1 ⋅ ⋅ ⋅O6 2.60(6) 118(5) 3.045(6)

O1 2.58(8) 131(5) 3.145(7)

O19–H2 ⋅ ⋅ ⋅O11 0.74(7) 2.07(7) 171(8) 2.802(6)

O18–H3 ⋅ ⋅ ⋅O1 0.74(6) 2.03(6) 164(8) 2.750(5)

O15–H4 ⋅ ⋅ ⋅O3 0.82(8) 1.88(8) 173(7) 2.692(7)

O17–H5 ⋅ ⋅ ⋅O9 0.80(7) 1.93(7) 163(8) 2.707(5)

O16–H6 ⋅ ⋅ ⋅O10 0.77(9) 2.33(9) 161(12) 3.066(6)

O17–H7 ⋅ ⋅ ⋅O9 0.86(9) 2.01(8) 148(6) 2.774(7)

O19–H8 ⋅ ⋅ ⋅O4 0.85(9) 1.96(9) 170(7) 2.793(8)

O20–H9 ⋅ ⋅ ⋅O11 0.76(8) 2.03(8) 164(9) 2.770(5)

O21–H10 ⋅ ⋅ ⋅O22 0.82(9) 2.11(10) 167(7) 2.909(10)

O21–H11 ⋅ ⋅ ⋅O8 0.65(8) 2.32(8) 175(10) 2.970(6)

O21–H12 ⋅ ⋅ ⋅O13 0.78(11) 2.35(10) 169(8) 3.115(8)

O22–H13 ⋅ ⋅ ⋅O14 0.71(12) 2.29(12) 150(12) 2.926(8)

O16–H14 ⋅ ⋅ ⋅O21 0.81(10) 2.14(11) 152(10) 2.877(8)

O7 0.78(7) 2.37(8) 132(7) 2.951(7)

O15–H15 ⋅ ⋅ ⋅O21 2.44(7) 141(7) 3.090(6)

O22–H16 ⋅ ⋅ ⋅O12 0.73(12) 2.51(12) 148(12) 3.155(9)
DOKLADY PHYSICS      Vol. 47      No. 5      2002
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Fig. 2. Crystalline structure of K2Zn2V10O28 · 16H2O in the ab projection. Potassium (K) atoms are shown as spheres.
polarization effect. The crystallographic characteristics
of Zn-vanadate, data of the X-ray experiment, and
parameters of the crystal-structure refinement are pre-
sented in Table 1.

All calculations were carried out using the SNELXL
software package [6]. Curves of atomic scattering and
corrections for anomalous dispersion, which had been
taken from [7], were used. The structure was refined in
a full-matrix anisotropic approximation with due
regard for absorption and secondary isotropic extinc-
tion. The positions of 16 independent hydrogen atoms
were localized on the basis of a difference synthesis of
the electron density and then refined in the isotropic
approximation. The coordinates of basis atoms with
equivalent temperature parameters and interatomic dis-
tances are given in Tables 2 and 3, respectively. The
geometric characteristics of hydrogen bonds are listed
in Table 4.

Zinc atoms form isolated [Zn(H2O)6]2+ octahedral
complexes in the crystal structure. The Zn–O inter-
atomic distances in the octahedron vary from 2.066 to
2.119 Å. These distances are regularly longer than the
corresponding values in the Mg octahedron for the
K2Mg2V10O28 · 16H2O isostructural hummerite, in
which they lie within the range from 2.052 to 2.100 Å.
The coordination potassium polyhedron is an irregular
ten-vortex polyhedron in which interatomic distances
are within the range 2.767–3.260 Å.

Five crystallographically independent vanadium
atoms form a ten-nuclear decavanadate cluster. V-octa-
hedrons linked by their edges are strongly distorted,
and, in this case, two types of V-octahedron distortion
can be distinguished in the structure. Two shortened
bonds, namely, V1–O13 = 1.686 Å and V1–O4 =
1.701 Å in the V1O6 octahedron (with an angle of
107.49(2)° between them), against the background of
the other four V–O distances lying within the range
1.905–2.131 Å testify to a tendency of vanadium to the
VO2 configuration. This configuration is characteristic
of some vanadium-containing compounds (e.g., KVO3
and KVO3 · H2O) [2]. VO vanadyl ions can be separated,
since they are connected to the other four independent
vanadium atoms. Thus, in the octahedral complexes
around V2, V3, V4, and V5 atoms, we can isolate one
shortened (1.602–1.608 Å) and one elongated (2.229–
2.342 Å) V–O bond and vanadium polyhedrons can be
interpreted as distorted pseudotetragonal bipyramides.

V10O28 decavanadate clusters and Zn(H2O)6 octahe-
drons in the crystal structure are combined with each
other by hydrogen bonds and form layers parallel to the
ab plane. Potassium atoms are situated in the same lay-
ers alternating with decavanadate groups along the a
DOKLADY PHYSICS      Vol. 47      No. 5      2002
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Table 5.  Local balance of valences

Atom V1 V2 V3 V4 V5 Zn K H1 H2 H3 H4 H5 H6

O1 0.92 0.91 0.02 0.20
O2 0.43 0.30 0.34 0.26 0.23

0.41
O3 0.70 0.57 0.56 0.23
O4 1.32 0.55
O5 0.76 0.63 0.60
O6 0.93 0.88 0.16 0.04
O7 1.69 0.08
O8 0.91 0.82 0.05
O9 0.90 0.78 0.22
O10 1.71 0.17 0.09
O11 0.97 0.74 0.17
O12 1.72 0.09
O13 1.37 0.50
O14 1.69 0.10
O15 0.35 0.11 0.77
O16 0.35 0.91
O17 0.38 0.05 0.78
O18 0.33 0.09 0.89 0.80
O19 0.38 0.83
O20 0.36
O21 0.08
O22 0.18
ΣSij 4.99 5.03 5.08 4.99 2.15 0.11 1.00 1.00 1.00 1.00 1.00 1.00

Atom H7 H8 H9 H10 H11 H12 H13 H14 H15 H16 ΣSij |δ |

O1 2.05 0.05
O2 1.97 0.03

O3 2.06 0.06
O4 0.18 2.05 0.05
O5 1.99 0.01
O6 2.01 0.01
O7 0.06 1.83 0.17
O8 0.11 1.89 0.11
O9 0.18 2.08 0.08
O10 1.97 0.07
O11 0.18 2.06 0.06
O12 0.13 0.07 2.01 0.01
O13 0.08 1.95 0.05
O14 1.79 0.21
O15 0.89 2.12 0.12
O16 0.86 2.12 0.12
O17 0.82 2.03 0.03
O18 2.11 0.11
O19 0.82 2.03 0.03
O20 0.82 0.87 2.05 0.05
O21 0.89 0.92 0.14 0.05 2.08 0.08
O22 0.13 0.87 0.93 2.11 0.11
ΣSij 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
DOKLADY PHYSICS      Vol. 47      No. 5      2002
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Fig. 3. K, V, and Zn layers in K2Zn2V10O28 · 16H2O structure linked along the c axis by water molecules in a common crystalline
construction.
axis (Fig. 2). In the direction of the c axis, the layers are
interleaved by water molecules (Fig. 3).

Eight independent water molecules in the structure
play a different crystal-chemistry role. Six of them,
O15–O20, coordinate Zn atoms. In this case, O15, O17,
and O18 also participate in the coordination of potas-
sium atoms. Two additional water molecules, O21 and
O22, belong only to the potassium coordination sphere.
O21 and O22 atoms not only function as donors (H2O
molecules) in the structure but also as acceptors for
hydrogen bonds (Table 4).

Hydrogen bonds, which play an important role in
stabilizing the given structure, as is usual for inorganic
compounds, are asymmetric and significantly nonlin-
ear. The system of hydrogen bonds is complicated by
the presence of so-called bifurcation bonds acting in the
structure between the water molecule containing O15
and two acceptors on one side and the water molecule
containing O18 and three acceptors of hydrogen bonds
on the other side (Table 4).

After the localization of 16 hydrogen atoms had
been established, we managed to calculate the local
valence balance [8] in the structure with consideration
of the proton contribution [9] (Table 5). The criterion of
the balance quality, which was calculated for oxygen
atoms [10] and equaled 3.6%, shows the reliability of
the obtained structural data. Employing the parameters
and the function calculated in [10] yields close results
with a balance quality criterion of 3.2%.
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Thermal stability plays the principal role in the pro-
cess of developing efficient nanostructural materials.
Nonetheless, information on the influence of thermal
effects on nanostructures is rather scarce, being limited
to only a few studies (e.g., [1–5]). The evolution of
nanostructural ensembles has been analyzed only for
nitride films [3]. Therefore, it is of interest to study this
evolution for boride–nitride nanostructural films, which
have both a rather small crystallite size (about 1−2 nm)
and high hardness (40–60 GPa [6]). Our preliminary
results were reported in [7, 8].

Methods of preparing films by nonreactive magne-
tron sputtering were described previously in [9]. The
temperature of silicon substrates and stainless-steel
blades was held constant at about 150°C. The films
were deposited by means of hot-pressed targets con-
taining both separate compounds (TiB2 and TiN) and
their mixtures with mass ratios of 25/75, 50/50, and
75/25. The structure of the films deposited on the
blades was analyzed with JEOL-200CX and JEM-3010
microscopes. Foils were prepared from the films by
electrolytic dissolution of the blades with subsequent
ion polishing. The grain-size distributions were
obtained on the basis of dark-field electron-microscopy
images at magnifications of 50 000–100 000 (JEOL-
200CX) and 700 000 (JEM-3010) with the use of the
Image-Pro Express 4.0 and Statistica computer pro-
grams. Crystallite clusters containing no less than
1000–2000 grains were used for each of the distribu-
tions. The measurements were performed for crystallite
sizes exceeding 1 nm. According to the recommenda-
tions of [10], the minimum effective resolution
achieved for dark-field images is about 1 nm.

The phase composition of the films was studied by
X-ray phase analysis (XRPA) and microelectron dif-
fraction structural analysis (MDSA). The hardness of
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films sputtered onto the silicon substrates was deter-
mined in the course of 7–10 measurements on a PMT-3
microhardness meter for loads of 0.2, 0.3, and 0.5 N. As
before [6, 9], values of  related to the intrinsic hard-
ness of the films were estimated by the method of [11].
This method excludes, to a sufficient degree, the effect
of both film thickness and substrate type on measure-
ment results. The method allows us, at least to a first
approximation, to normalize the measured hardness
values and to simplify their comparison. Information
about the film composition according to data of Auger-
electron spectroscopy is given in [6, 9]. Annealing was
carried out in vacuum (10–4 Pa) at 700 and 1000°C for
15 min.

A typical dark-field electron-microscopy image and
the results of data processing are presented in the figure
and Table 1, respectively. All the films are characterized
by a very fine nanostructure, with crystallite sizes that
are minimum for films II and III and maximum for the
TiN film (V). The sizable value of the root-mean-square
error for the original films is evidence of rather broad
grain-size distributions. The analysis of histograms has
shown that these distributions are well described by the
log-normal function. It is important that in the condi-

HV0

10 nm

Dark-field electron-microscopy image (film III).
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Table 1.  The average size (L) of crystallites in the original and annealed films (1–2 nm thick) deposited with the use of
various targets

Target Film
L, nm

Original films Tann = 700°C Tann = 1000°C

TiB2 I 3–5 [9] Unannealed Unannealed

TiB2 + 25%TiN II 2.3 ± 1.1 4.4 ± 1.4 Unannealed

TiB2 + 50%TiN III 2.9 ± 1.1 3.7 ± 1.2 3.4 ± 1.9

TiB2 + 75%TiN IV 5.4 ± 4.0 8.1 ± 4.4 7.9 ± 3.8

TiN V 9.9 ± 8.8 13.0 ± 6.6 10.2 ± 7.0

Table 2.  Effect of annealing on the microhardness. çV is the microhardness for a load of 0.3 N, and çV0 is the intrinsic micro-
hardness (GPa) estimated by the method of [11]

Film
Original films Tann = 700°C Tann = 1000°C

HV HV0 HV HV0 HV HV0

I 20 ± 1 41–46 20 ± 2 40–46 17 ± 2 35–39

II 20 ± 2 40–46 20 ± 1 40–45 16 ± 2 32–38

III 18 ± 2 46–52 19 ± 1 47–54 16 ± 1 38–45

IV 22 ± 2 53–59 22 ± 2 52–58 15 ± 3 32–42

V 16 ± 1 36–40 17 ± 1 38–42 15 ± 2 33–40
tions under consideration, the annealing slightly affects
the average value of the crystallite size. The character-
istics of original and annealed nanostructural ensem-
bles are found to be virtually the same.

We should note that according to XRPA and MDSA
data obtained before and after annealing, the films have
an identical single-phase composition. Films I, II, and
III–V have hexagonal (AlB2-type) and cubic (NaCl-
type) structures, respectively; i.e., decomposition of the
supersaturated Ti(B, N) solid solutions does not occur.

Values of the microhardness for the original and
annealed films are listed in Table 2. The range of 
values allows for measurements with loads not only of
0.3 N but also of 0.1 and 0.5 N. As is seen, a tempera-
ture of 700°C, in fact, does not affect the microhardness
value. However, after annealing at 1000°C, a certain
decrease in the values of HV and  is noticed. For
films I–III and IV, this decrease reaches 15–20 and
30%, while for the coarsest grained film V, the decrease
in hardness is quite insignificant (only about 4%). It is
difficult to suggest a conclusive explanation for the
results obtained or for differences in both the grain-size
variations (Table 1) and microhardness (Table 2) after
annealing at 1000°C. Most likely, this should be associ-
ated with different levels of residual stresses for films of
different compositions and with possible features of the
temperature dependences for the processes of recrystal-

HV0

HV0
lization and relaxation of residual stresses. It is known
that high values of film hardness are caused not only by
a small grain size but also by the presence of significant
residual compressive stresses (see, e.g., [4, 12]). We can
certainly assume that relaxation of stresses at the inter-
face between a high-melting compound (film) and sili-
con (substrate) occurs more intensely than recrystalli-
zation of the refractory compound in itself. As a result,
we observe a certain reduction of the hardness in the
case of a very minor change in grain sizes.

In the structures of films II and III, we should note
the presence of a significant number of crystallites with
a size of about 1 nm and smaller (Fig. 1, Table 1). The
presence of these small crystallites in films was indi-
cated previously in [4, 6, 13]. It is rather difficult to
obtain perfect high-resolution images of such grains,
since it is almost impossible to find small diffracting
crystallites in the plane of the foil being studied. None-
theless, one of the authors (D.V. Shtansky) has suc-
ceeded in finding them in (Ti, Al)(B, N) films: cubic
particles 1.5–2 nm in size were distinctly identified
with high resolution.

We recall that the period of a cubic crystal lattice,
e.g., titanium nitride, is 0.424 nm (for the hexagonal
TiB2, a . 0.303 nm and Ò .  0.323 nm) [14]; i.e., there
are only 8 or 27 unit cells in the TiN and TiB2 crystal-
lites with sizes of about 1 nm and even fewer in the
crystallites with sizes of about 0.5 nm. Thus, in this
DOKLADY PHYSICS      Vol. 47      No. 5      2002
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case, we, in fact, are dealing with cluster-consolidated
materials. The fraction corresponding to the interface
area is rather large in such objects. From simplest esti-
mates (the fraction of the near-boundary regions is
about 3s/L, where s is the boundary width), it follows
that for a grain size of ~2 nm and a reasonable boundary
width of ~0.5 nm, this fraction can equal about 75%. The
module design of such cluster-consolidated materials
obviously needs more detailed analysis (see, e.g., [15]).
However, it is important to note the necessity of thor-
oughly studying the properties of these objects in com-
bination with a detailed structural certification. A fact
of especial importance is that within the nanometer
range, crystallite sizes are close to those of the de Bro-
glie wavelengths for nitrides, borides, and carbides of
transition metals. The properties of these metals resemble
Bi-type semimetals. Therefore, in this case, we can
expect the manifestation of dimensional quantum effects.

Thus, in the conditions under study of vacuum
annealing (temperatures up to 1000°C, duration of
15 min), the structure and phase composition of
boride–nitride films turned out to be rather stable,
although their microhardness was reduced, on average,
by about 4–30%. This fact is associated with a possible
relaxation of compressive stresses. We also pay atten-
tion to the presence in the structure of certain films of a
considerable number of crystallites with a size of ~1 nm
and smaller. For such cluster-consolidated materials,
we can expect the manifestation of dimensional quan-
tum effects.
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There exists a practical problem of determining the
elastic modulus for rubbers deposited onto a glass fiber.
In this connection, the problem of propagation of a lon-
gitudinal acoustic wave in a thin elastic fiber immersed
in the bulk of a low-modulus elastic matrix is theoreti-
cally solved in this paper.

The basic parameters that determine the propagation
velocity c0 of a longitudinal acoustic wave in an elastic
bar are its density ρ0 and elastic modulus E [1]:

(1)

The velocity of a longitudinal ultrasound wave in a
bar in the shape of a thin elastic strip decreases if the
bar is immersed in the bulk of a low-modulus matrix [2]
or in a viscous liquid [3]. The decrease in the wave
velocity is caused by the involvement in vibrations of a
matrix (liquid) boundary layer that moves as an associ-
ated mass together with the strip.

The goal of the present paper is to solve the problem
of the propagation of a longitudinal acoustic wave in a
thin elastic bar in the shape of a fiber and immersed in
the bulk of a low-modulus matrix.

We consider a longitudinal acoustic wave in an elas-
tic cylindrical bar (fiber) immersed in the unbounded
volume of a low-modulus matrix (Fig. 1). The presence
of the matrix is taken into account by adding to the
oscillatory equation a term describing the interaction of
the fiber with the liquid [3, 4]:

(2)

Here, u is the fiber displacement from the equilibrium
position, ρ0 is the fiber density, R is the fiber radius, πR2

is the cross-sectional area of the fiber, and E is the elas-
tic modulus of the fiber. Furthermore, τ is the shear
stress and y is the axis along which the longitudinal
acoustic wave propagates.

c0
E
ρ0
-----.=

πR2ρ0
∂2u

∂t2
-------- πR2E

∂2u

∂y2
-------- 2πRτ .+=
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In order to find stresses τ, we consider stimulated
transverse shear vibrations of a matrix in contact with a
fiber. The matrix motion in cylindrical coordinates is
described by the equation

(3)

where ρ is the matrix density, G is the matrix shear
modulus, and r is the radial coordinate. 

Let the bar execute longitudinal harmonic vibrations
along its axis y with the angular frequency ω. We seek
a periodic solution to Eq. (3) in the form

u(r, t) = s(r)exp(iωt).

Replacing the variables

r = x = ,

where k⊥  = , we reduce Eq. (3) to the Bessel

equation of the zeroth order:

(4)

The general solution to this equation has the form
CJ0(x) + BY0(x), where C and B are constant and J0(x)

ρ∂2u

∂t2
-------- G

∂2u

∂r2
--------

1
r
---∂u

∂r
------+ 

  ,=

G

ω2ρ
---------

x
k ⊥
-----

ω2ρ
G

---------

d2s

∂x2
--------

1
x
--- ds

dx
------ s+ + 0.=

Fig. 1. Calculation scheme. Y is the fiber axis, R is the fiber
radius, and ω is the angular frequency of the vibrations.

Y

r
H

2R

ω

002 MAIK “Nauka/Interperiodica”



        

LONGITUDINAL ACOUSTIC WAVE IN A THIN FIBER 357

                    
and Y0(x) are Bessel functions of the first and second
kinds, respectively.

If the matrix was in the quiescent state at the initial
moment, then a longitudinal wave in the fiber initiates
the appearance of a divergent wave in it. The divergent
cylindrical wave is described by the complex Hankel
function of the second kind [5]

(5)

where A = const and i = .

The stress with which the matrix acts on the fiber is

τ = –G  for r = R. Using the relationship (x0) =

− (x0), where (x0) is the first-order Hankel
function [5, 7], we arrive at the relationship

(6)

Here, x0 = k⊥ R = R is a dimensionless parameter

characterizing the ratio of the fiber radius and the length
of the transverse wave in the matrix.

The solution to Eq. (2) for longitudinal fiber vibra-
tions has the form

where k|| is the wave number. The boundary conditions
are reduced to the equality of the displacements of the
strip and matrix at their interface x = x0 . The substitu-
tion of the solution into Eq. (2) with allowance for the

boundary conditions u0 = A (x0) and relationship (1)
leads to the equation

(7)

From here, we can find the wave number k||:

(8)

where c0 is the speed of sound in the fiber in the absence
of the liquid and

(9)

s AH0
2( ) x( ) A J0 x( ) iY0 x( )–[ ] ,= =

1–

du
dr
------ H0

2( )'

H1
2( ) H1

2( )

τ AGk ⊥ H1
2( ) x0( ) iωt( ).exp=

ω2ρ
G

---------

u u0 i ωt k ||y–( )[ ] ,exp=

H0
2( )

k ||
2 ω2

c0
2

------ 1
2 ρGH1

2( ) x0( )

Rρ0ωH0
2( ) x0( )

----------------------------------+
 
 
 

.=

k ||
ω
c0
---- 1 α iβ+ + ,=

α
2 ρG J0 x0( )J1 x0( ) Y0 x0( )Y1 x0( )+[ ]

Rρ0ω J0
2 x0( ) Y0

2 x0( )+[ ]
-------------------------------------------------------------------------------------,=

β
2 ρG Y0 x0( )J1 x0( ) J0 x0( )Y1 x0( )–[ ]

Rρ0ω J0
2 x0( ) Y0

2 x0( )+[ ]
-------------------------------------------------------------------------------------.=
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The wave number k|| is complex-valued, and its
imaginary part determines the wave attenuation. Evi-
dently, the wave attenuation is caused by a loss of
energy within the fiber, which is spent on exciting a
wave in the matrix. The speed of sound is determined

by the ratio  of the angular frequency to the wave-

number modulus:

(10)

For asymptotic values x @ 1, the functions J0, Y0, J1 ,
and Y1 take the form [5, 7]

(11)

At the same time, Eq. (9) can be reduced to the form

(12)

For α = 0 and weak attenuation of a longitudinal wave,
i.e., β ! 1, the expansion of formula (10) yields

(13)

The attenuation of a plane wave in the fiber is
described by the expression

(14)

The effect of a liquid on the speed of sound in a
cylindrical fiber is similar to that in a thin strip [2].
In this case, in the asymptotic region x @ 1, formulas (13)
and (14) coincide with the solution to the plane problem
of an elastic strip with a thickness R that is immersed in
a low-modulus matrix.

In the calculations, the functions J0 and J1 were found
by numerical integration of the Bessel function [7]:

(15)

where n = 0, 1 is the Bessel function index.

ω
k ||
----

c
c0

1 α+( )2 β2+4
------------------------------------.=

J0 x( ) = 2
πx
------ x

π
4
---– 

  , J1 x( )cos  = 2
πx
------ x

3π
4

------– 
  ,cos

Y0 x( ) = 2
πx
------ x

π
4
---– 

  , Y1 x( ) = 2
πx
------ x

3π
4

------– 
  .sinsin

α 0, β 2 ρG
Rρ0ω
---------------.= =

c c0 1 ρG

R2ρ0
2ω2

------------------– 
  .≈

u u0 βz–( )exp
ρG

Rρ0c0
--------------y– 
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1

2π
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Fig. 2. Dependence of the coefficients α and β on the
parameter x0 . The calculations are performed for densities

of the coating and substrate ρ = 930 kg/m3 and ρ0 =

2600 kg/m3, respectively. The matrix shear modulus is G =
1 MPa, the vibration frequency is f = 250 kHz, and the speed
of sound in the fiber is c0 = 5.1 km/s. The parameter x0 was
varied by a change in the fiber radius.
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Fig. 3. Longitudinal-wave velocity as a function of the
parameter x0 . The calculation parameters correspond to
Fig. 2.
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Fig. 4. Coefficients α and β as functions of the vibration fre-
quency. The calculation parameters correspond to Fig. 2;
the fiber radius is R = 30 µm.
The function Y0 was calculated by numerical inte-
gration according to the formula from [7]:

.

In turn, the function Y1 was determined by numerical

differentiation: Y1(x) = .

The coefficients α and β calculated according to
Eq. (10) as functions of the dimensionless parameter x0
are plotted in Fig. 2. These coefficients monotonically
decrease, the decrease rate being much more rapid for
the coefficient α than for coefficient β. This behavior is
quite consistent with asymptotic formula (12).

Curves 1 and 2 in Fig. 3, which were calculated
according to expressions (10) and (13), respectively,
show the dependences of the speed of sound on the
parameter x0 . The speed monotonically increases and,
at high x0 , attains the ultimate value of the speed of
sound in an isolated fiber. It is worth noting that for-
mula (13) was derived under the assumption x0 @ 1.
This fact explains the deviation of this formula from the
exact solution for small x. Analysis of the numerical
solution shows that formulas (10) and (13) differ from
each other at large values of the parameter x0 as well.
This can be explained by the fact that, at high values of
the parameter x0 , the deviation of the speed of sound
from that in the initial fiber is on the order of β2 . The
values of the parameter α are also on the order of β2 .
Therefore, formula (13) is not exact in the asymptotic
region x0 @ 1.

Figure 4 presents the coefficients α and β calculated
according to Eq. (10) as functions of the vibration fre-
quency f. The slopes of the curves in the high-frequency
region, in which the inequality x0 @ 1 is fulfilled, are
equal to –1 (for α) and –2 (for β). It follows from here

that α   and β  

The effect of the presence of the matrix on the coef-
ficients α and β and, correspondingly, on the speed of
sound is noticeable provided that x0 ≈ 2π, whence it fol-

lows that the critical frequency is f * < . At fre-

quencies lower than f *, the wave attenuation is so much
strong that it loses the capability of propagating along
the bar. This conclusion is also valid in analysis of the
effect of the fiber diameter. If the diameter is smaller
than the length of the transverse wave in the matrix, the
longitudinal wave attenuates very strongly and ceases
to propagate. The estimate for the fiber critical radius is

R ≈ .

Y0 x( )
2
π
--- xtcos

t2 1–
---------------- td

1

∞

∫–=

∆Y0

∆x
---------–

∞ 1
f
--- ∞ 1

f 2
-----.

G

ρR2
---------

G

ρ f ∗ 2
------------
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In this work, the problem of the propagation of a
longitudinal acoustic wave in a thin elastic strip with a
low-modulus coating has been solved theoretically. The
coating can give rise to the appearance of frequency
bands with anomalous dispersion and forbidden bands
wherein the propagation of waves is impossible
because of strong attenuation.

The basic parameters determining the propagation
of a longitudinal acoustic wave in an elastic rod are the
density and elastic modulus of the rod [1]:

(1)

where E is the elastic modulus and ρ0 is the rod density.

The velocity of a longitudinal supersonic wave in a
thin elastic strip decreases if the strip is embedded in a
low-modulus elastic matrix [2]. This effect is attributed
to the involvement of the boundary layer of the matrix
in oscillations.

If the elastic modulus of the coating is negligible
compared to the modulus of the substrate, the speed of
sound in the coating is negligible according to Eq. (1)
and the longitudinal wave propagates through the sub-
strate. The longitudinal oscillations of the strip with
allowance for shear stresses induced by interaction with
the coating are described by the equation [3, 4]

(2)

where u is the displacement of an element of the strip
(substrate) from the equilibrium position, H is the strip
thickness, τ is the shear stress at the boundary between
the strip and coating, and y is the axis along which a
longitudinal acoustic wave propagates in the strip.

c0
E
ρ0
-----,=

ρ0H
∂2u

∂t2
-------- EH

∂2u

∂y2
-------- τ ,+=
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In order to find the stress τ, we consider the trans-
verse shear oscillations of the coating in the 0 < x < h
layer (Fig. 1). These oscillations are described by the
equation [1]

(3)

where ρ and G are the density and shear modulus of the
coating, h is the thickness of the low-modulus coating,
and x is the axis perpendicular to the strip plane. For
bilateral coating (Fig. 1b), the shear stress τ is doubled.
In this case, solution of the problem remains the same
if H in Eq. (2) is equal to half the substrate thickness.

A solution of Eq. (3) for forced shear oscillations of
the coating is sought in the form of the sum of two trav-
eling waves:

(4)

where ω is the angular frequency of strip oscillations

ρ∂2u

∂t2
-------- G

∂2u

∂x2
--------,=

u u0 i ωt k ⊥ x–( )–[ ] u1 i ωt k ⊥ x–( )[ ] ,exp+exp=

y

x
0

Hh2
1

ω

h 2 H

(b)(a)

Fig. 1. The model of a composite for (a) unilateral and
(b) bilateral coating: (1) an elastic rod with thickness H and
(2) a coating with thickness h.
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and

(5)

is the wavenumber describing a transverse wave in the
coating. The boundary conditions for solution (4) are
determined by the absence of shear stresses at the free
boundary of the coating u'(0) = 0, and solution (4) takes
the form of the standing wave

(6)

where A is a certain constant.
The shear stress τ at the boundary of the strip and

coating is determined as

 

and is equal to

(7)

A solution of Eq. (2), which determines longitudinal
oscillations of the strip, is sought in the form

(8)

where k|| is the wavenumber describing a longitudinal
wave in the rod.

Taking into account that the displacements of the
coating and strip are equal to each other at their bound-
ary, we find the constant A entering into Eq. (7):

Assuming that the length of the longitudinal wave in
the rod is much greater than the length of the transverse
wave in the coating, we obtain the dispersion relation

(9)

from Eqs. (2), (7), and (8).
The wavenumber k|| is found from Eq. (9) as

(10)

The wavenumber k|| is imaginary when

An imaginary k|| value corresponds to very strong
attenuation of the longitudinal wave and to the exist-
ence of a forbidden frequency band. This is explained
by the reflection of the transverse wave from the free
boundary of the coating and by the interaction of the
reflected wave with the rod. This interaction is particu-
larly strong when the total path to the free boundary and
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back is equal to half the wavelength. This condition is
generally written in the form

where n is a positive integer.

The phase velocity  of the transverse wave is
equal to

(11)

A feature of solution (11) is that the phase velocity
of an acoustic wave in the rod with a coating for

 < 0 exceeds the velocity in the original rod.

For a very thin coating, when k⊥ h ! 1, i.e., h ! λ⊥ ,
by taking into account Eq. (5), we obtain the asymptotic
solution

(12)

where m = ρh and m0 = ρ0H are the masses of the coat-
ing and substrate, respectively.

In the limit of small thickness values h ! λ⊥ , the
coating vibrates with the substrate as an associated
mass. Equation (12) follows from classical formula (1)

h
λ⊥

2
------ nλ⊥ ,+=

ω
k ||
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c
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Gk ⊥

ρ0ω
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c c0
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Fig. 2. The velocity of a longitudinal wave vs. the oscilla-
tion frequency f for the densities of the coating ρ =
930 kg/m3 and the substrate ρ0 = 2600 kg/m3, shear modu-
lus G = 1 GPa, coating thickness h = 100 µm, substrate
thickness H = 50 µm, and speed of sound in the substrate
c0 = 5.1 km/s. The dashed line is the speed of sound in the
substrate free of a coating.

Ò, km/s

f, MHz

10

5

5 10 15 20



362 BAZHENOV, BERLIN
if the composite rod–coating is treated as a homoge-
neous material with averaged rigidity and density [5]:

(13)

where Vp and Vo are the bulk fractions of the coating
and substrate, respectively.

If the rigidity of the coating is negligible and VpEp !
VoE, Eq. (12) follows from Eqs. (1) and (13). Thus,
Eq. (12) is an analog of the so-called mixture rule
implying that the rigidity Ec and density ρc of a rein-
forced composite material are determined by averaging
the characteristics of reinforcement and matrix [5].

The velocity of an acoustic wave is calculated by
Eq. (11) and is shown in Fig. 2 as a function of the fre-

ρc V pρ Voρo,+=

Ec V pEp VoE,+=

Fig. 3. The same as in Fig. 2, but vs. coating thickness h.
The oscillation frequency is f = 750 kHz.
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Fig. 4. The same as in Fig. 3, but vs. shear modulus of the
coating G.

c, km/s

h, µm

10

8

6

4

2

0 200 400 600 800 1000
quency of oscillations f = ω/2π. The calculations were
performed for a 100-µm-thick epoxy coating deposited
on a 50-µm aluminum substrate. For low frequencies
corresponding to the limit of small coating thickness,
the speed of sound is lower in the coating than in the
substrate. However, the megahertz region involves the
set of periodically repeated forbidden bands and bands
where the phase velocity is higher than the velocity of
propagation in the original substrate.

The velocity of the wave as a function of coating
thickness h is shown in Fig. 3, which is similar to Fig. 2
and exhibits the same set of bands. The speed of sound
decreases linearly with increasing thin-coating thick-
ness, which is evident if Eq. (12) is expanded in a series
and only the two first terms are retained: c =

Figure 4 shows the velocity of the wave as a function
of the shear modulus of the coating G. Forbidden bands
appear if the shear modulus of the coating is lower than
a certain critical value, which is equal to 0.9 MPa for
the parameters used in the calculation. For higher rigid-
ity of the coating, these bands are absent. The general
expression for the critical value G* of the shear modu-

lus of the coating is found from the condition h = :

(14)

where f =  is the oscillation frequency. Thus, a low-

modulus raw-rubber coating applied to a thin strip can
give rise to the very surprising appearance of bands
with anomalous dispersion and bands where waves
strongly attenuate and therefore cannot propagate.
Bands with anomalous behavior of the composite
appear when the coating thickness is commensurate
with the length of the transverse wave in the coating
material.
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The mechanisms of the initial stage of plastic defor-
mation in polycrystals are of principal importance in
understanding the general regularities of the mechani-
cal behavior of materials. Investigations of polycrystals
in the region of microplastic deformation showed that
the deformation curve consists of two parts specified by
different hardening coefficients corresponding to the
two stages of the microplasticity process [1]. At the first
stage of the process, the coefficient of cold hardening is
independent of grain size. At the second stage, the coef-
ficient increases with decreasing grain size. A simpli-
fied model [1] of this phenomenon assumes that plastic
deformation at the first stage occurs in individual grains
and the transition to the second stage is caused by the
transfer of deformation from grain to grain due to the
concentration of stresses at the boundaries of plasti-
cally deformed grains.

To determine the mechanisms responsible for the
appearance and initial development of plastic flow in
polycrystals, it is necessary to consider the results of
structure investigations. Numerous experimental data
[2–4] indicate that grain boundaries are the main
sources of dislocations at the first stage of microplastic
deformation in polycrystals. A detailed analysis of the
formation and distribution of dislocations in the micro-
plastic region was performed in [4] for polycrystalline
copper with a grain size of 18 µm. When the strain
reached 10–4, grain-boundary dislocations with a mean
density of 8.5 × 104 cm–1 appeared inside grain bound-
aries. The distribution of dislocations over grain bound-
aries was initially rather nonuniform: there were three
to four grain boundaries free of dislocations per grain
boundary containing dislocations. When the strain
increased to 3 × 10–4, the density of grain boundary dis-
locations increased by more than a factor of 3 and their
distribution became more uniform. The development of
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intragrain deformation was observed only when a cer-
tain degree of plastic strain was achieved.

In our opinion, the character of evolution of the dis-
location structure that was observed in [3, 4] is attrib-
uted to the fact that, at the first stage of the process, dis-
locations are directly generated in grain boundaries
and, at the second stage, dislocations are emitted from
grain boundaries into the grain bulk in contrast to the
simplified model proposed in [1]. Here, this concept is
extended and a strict model quantitatively describing
the regularities at the initial stage of a microplastic flow
of polycrystalline materials, including nanocrystals, is
developed.

So far, several mechanisms responsible for the gen-
eration of dislocations from grain boundaries have been
proposed [2]. For any specific structural mechanism,

we introduce the shear stress (T) characterizing the
generation of a dislocation inside a grain boundary of
the ith type at temperature T. The superscript i relates to
two unit vectors, namely, the vector of mutual grain
misorientation q and the normal to the grain-boundary

plane n: i = (q, n). The stress  is determined by the
structure and state of grain boundaries, the number of
impurities, and temperature T. When an external shear
stress τa admissible in the plane of grain boundaries

reaches , the nucleation of dislocations in grain
boundaries of the ith type becomes energetically possi-
ble. Due to the incompatibility of elastic deformations
in neighboring grains, a concentration of stresses arises
at their boundaries [5] and facilitates the formation of
dislocations. The generation of boundary dislocations,
which cannot slide in the boundary at low temperatures,
leads to uniform relative displacement over the area of
a grain face or the facet of the grain boundary.

On the mesoscopic scale, plastic deformation occurs
due to the formation and development of domains of
grain boundary deformation. The boundaries between
such domains are the lines of steps, kinks, and junctions
of grain boundaries. Under the action of an external
stress on a mesh of grain boundaries in a polycrystal at
qτa > τg (q is the concentration coefficient of stresses at
grain boundaries due to the incompatibility of elastic

τg
i( )

τg
i( )

τg
i( )
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deformation in anisotropic grains), N domains of grain
boundary deformation with volumes Ωs and proper

strain  arise, which gives rise to plastic deformation
of the sample:

(1)

where V is the sample volume and  are the cosines
of the angles between the axes of the coordinate system
associated with the sth domain and the coordinate axes
of the basis system, one of whose axes coincides with
the load axis. When grain boundary deformation is
purely shear, the shear us in the sth domain of the
boundary with the normal ns results in the plastic strain

(2)

Here, each coefficient  is the product of the two
direction cosines of the angles (i) between the normal
ns to the plane of the sth domain of grain boundary
deformation and the kth basis vector and (ii) between
the direction of the grain boundary strain ms in this

plane and the ith basis vector and  = , where δ is

the thickness of the grain boundary and us is the shear
averaged over the area Ss.

Let  be the stress at which grain boundary defor-
mation arises in a polycrystal and which is averaged
over the ensemble of grain boundaries. In the case of
uniaxial extension (compression), the first domains of
grain boundary deformation appear in the polycrystal at

 > q–1  ≡ . The planes of these domains are ori-

ented at an angle of approximately 45° to the load axis.
Let L be the mean size of the domains of grain bound-
ary deformation. With a further increase in the external
stress σa , their concentration N and mean size L
increase; i.e., the volume fraction f = ωδL2N (ω is the
numerical coefficient) of these domains also increases.
In addition, with increasing σa , shear in the domains of
grain boundary deformation and, therefore, the energy
of these domains also increase, which gives rise to
effective cold hardening. The volume fraction of the
domains of grain boundary deformation is proportional
to the total area of grain boundaries per unit volume and
consequently is higher when the grain of the polycrys-
tal is smaller, all other factors being the same. The total
strain εn is equal to the sum of the elastic εy and plastic
ε strains, and, in the case of uniaxial extension,

(3)
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The plastic strain in the direction of the load axis is
defined by the volume fraction f and the equilibrium
value of the mean shear strain γ in the domains of grain
boundary deformation:

(4)

where m is the mean orientation factor. The domains of
grain boundary deformation can be considered as pla-
nar inclusions with uniform proper strain γ. We assume
that a domain of grain boundary deformation has the
shape of an oblate ellipsoid with the principal semiaxes

a = b = , c =  (c ! a and c ! b), ω = , and shear

deformation is uniform within Ω . The internal shear
stress [7] in a domain of grain boundary deformation
with the shear strain γ is equal to [6]

(5)

Here, A = , where ν is the Poisson ratio and

G is the shear modulus of the material. The plastic
strain is related to the external stress as

(6)

where (σa – σg)m = τa – τg .
Dislocations that are formed inside grain boundaries

at the first stage of microdeformation can be considered
as grain boundary dislocations that are “geometrically
necessary” [7] and provide the compatibility of elastic
grain deformations. Some of these dislocations partici-
pate in the relaxation of internal stresses concentrated
at grain boundaries due to the difference in elastic grain
deformations. At this stage of microplastic deforma-
tion, grain boundary strain ε* attains the critical value
at which the condition of emission of dislocations into
the grain bulk is satisfied. At ε > ε*, microplastic defor-
mation of the polycrystal passes to the second stage,
intragrain plastic deformation. The value ε* is deter-
mined by the mechanisms and conditions for emitting
dislocations from the grain boundary: “torch” emission
of dislocations from the boundaries of the domains of
grain boundary deformation at γ > γ* or the uniform
egress of dislocations from grain boundaries at τa ≥ τe.
These two conditions determine limiting strain values

 = m f γ* and  = (τa – τe), respectively; ε* =

min{ , }. At ε > ε*, the contribution of internal
stresses caused by grain boundary deformation to fur-
ther cold hardening of the polycrystal decreases. How-
ever, another component of hardening from the stress
fields of dislocations emitted into the grain bulk
appears. The density of dislocations emitted into the
grain bulk is proportional to the length of dislocations
inside the grain boundary per unit area and to the area
of the grain boundary per unit volume Sv . The total area
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of grain boundaries per unit volume is Sv =  (qv is the

numerical coefficient ~3). Some of the dislocations
passing to the grain bulk will provide the compatibility
of the elastoplastic deformations of grains [7]. Their

density equals ρg = . The stresses caused by

dislocations with density ρ are equal to σi = αGbρ1/2,
where α ≈1.

Assuming that the area of grain boundaries per unit
volume that are involved in grain boundary deforma-
tion at the initial stage of deformation is proportional to

Sv , i.e.,  = hSv , plastic strain can be written as ε =

mδh γ(σa), where the coefficient h at  > τg takes a

finite value h0 = const. With a rise in the external stress,
the concentration and the mean area of the domains of
grain boundary deformation increase and h further
increases with increasing σ.

Finally, for microplastic flow of a polycrystal, the
plastic strain depends on the external stress as

(7)

where L = ζD (ζ is a numerical parameter less than
unity).

Since L ~ D, the behavior of deformation at the first
stage of microplastic deformation (at ε < ε*) does not
depend on the grain size and stress depends linearly on
strain. Relationships (3) and (7) describe the behavior
of the polycrystal strain σa(εn) in the range of micro-
plastic deformation. At the first stage (at ε < ε*), σ
depends linearly on ε. The inclination of the straight
line σ(ε) at σ > σg is determined by the so-called
relaxed shear modulus of the polycrystal [8]. At the sec-
ond stage (at ε > ε*), σ depends parabolically on ε.

The above analysis reveals the mechanisms deter-
mining the yield point of polycrystalline materials in a
wide range of grain sizes and anomalies in the depen-
dence of the yield point in a polycrystal on the grain
size. The yield point σy is defined as a stress corre-
sponding to a given level, e.g., 0.2%, of the plastic
strain εm . For common polycrystalline materials with
grain size D ≈ 10–100 µm, we have ε* ! εm and
σ(ε*) ≈ σg and Eq. (7) leads to the standard Hall–Petch
relationship. The stage of grain boundary deformation
is completed much earlier than the level of deformation
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corresponding to the yield point is achieved, and the
dominant part of microdeformation is associated with
the development of plastic deformation in individual
grains and with the extension of plasticity domains.

For submicrocrystalline materials (D ≈ 0.1–1 µm),
the contributions from both grain boundary deforma-
tion and intragrain deformation can be comparable at
the stage of microplastic deformation. For nanocrystal-
line materials (D ≈ 1–100 nm), the structural mecha-
nism of grain boundary deformation is fundamentally
different [9]. The generation and multiplication of dis-
locations are hindered in them because of significant
energy consumption on overcoming the image and lin-
ear-tension forces. It is assumed that high shear stresses
rearrange the structural elements of grain boundaries in
nanocrystals and microdomains of shear transforma-
tions form, inducing grain boundary microsliding [9].
However, the grain boundary stage of microplastic
deformation as a whole corresponds to the features of
plastic flow in nanocrystalline materials. The plastic
strain caused by the mechanism of grain boundary
microsliding [9] for nanomaterials with D ~ 10 nm is
equal to ε* ≈ 10–3–10–2; i.e., it may exceed the plastic
strain corresponding to the yield point. In this case,
σm(D) is determined by the first of Eqs. (7). If L = ζD,
where ζ is a constant, Eq. (6) indicates that the yield
point is independent of the grain size and, when accom-
modation processes occur, the Hall–Petch relation with
slightly varying function σy(D) will be valid, which was
observed experimentally in [10]. If either L ~ Dp, where
the exponent p < 1, or L is independent of D, the yield
point of nanocrystals, which is determined by the first
of Eqs. (7), increases with the grain size in accordance
with experimental data [10].

Thus, in different ranges of crystallite sizes, the
nature of the yield point of polycrystals can be deter-
mined by different structural mechanisms of plastic
deformation. The evolution of the dislocation structure
and the character of deformation behavior at the stage
of microplastic flow in polycrystalline materials
depend not only on grain size but also on the type and
state of grain boundaries and the state of the crystal lat-
tice of a material. For example, for polycrystals with
τg > τe, the dislocations that are formed inside grain
boundaries and have lattice Burgers vectors will imme-
diately penetrate to the bulk of a grain.

Consequently, the process of microdeformation in
polycrystals generally consists of several stages. At the
first stage, grain boundary deformation occurs in a non-
uniform stress field concentrated at grain boundaries.
The second stage corresponds to the emission of dislo-
cations from grain boundaries into the grain bulk. At
the final stage of microdeformation, the domains of
grain boundary and intragrain plastic deformations are
extended and these processes are intensified.
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The behavior of dust particles in a plasma is cur-
rently under active investigation [1, 2]. Crystal and liq-
uid structures, clouds, and voids have been obtained,
and the size separation of dust particles has been
observed [3, 4]. For practical applications, it is interest-
ing to investigate the conditions under which dusty for-
mations conserving their internal structure move in a
plasma under the action of an external electric field and
are deposited on certain surfaces. The results of such
investigations can provide a basis for a method of dis-
posing of dust particles from a stationary low-tempera-
ture plasma. Mastering this technology will make it
possible to separate particles by size, to remove them
from wall plasma regions and surfaces being worked by
plasma etching, and to control processes of forming
dusty plasma structures.

Dust particles are a significant factor in processes
occurring in prospective power plants. For example, in
the photovoltaic electric-power source proposed in [5, 6],
the efficiency of the device depends on the possibility
of producing and maintaining a stable dusty crystal in a
plasma generated by hard ionizers. In lasers with nuclear
pumping [7], dust particles produced within a laser-active
element can degrade the device parameters. The produc-
tion of a dusty crystal involving micron-sized fuel parti-
cles will make it possible to obtain a uniform energy con-
tribution of nuclear-reaction products to the laser-active
medium and conserve its optical transparency.

Micron-sized dust particles are present in magnetic-
confinement thermonuclear facilities [8, 9]. These par-
ticles are produced due to the interaction of a plasma
with a wall surface. The production of dust particles
appeared to be a serious safety-engineering problem for
the future international thermonuclear experimental
reactor (ITER) [10, 11] characterized by high flux den-
sities of plasma particles (in the steady state). The
ITER, like most existing large facilities, will have car-
bon-based wall components (graphite, carbon compos-
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ites). Implantation of tritium into graphite dust can pro-
duce dust particles that each involves two tritium atoms
per carbon atom, and the total tritium mass of the dusty
component may be as great as a few kilograms. Dust
particles can give rise to tritium ejection into the envi-
ronment in the case of a serious accident. Dust particles
are highly mobile and can pollute sizable areas.

In this study, the possibility of removing dust parti-
cles from a dusty structure preformed in a nuclear-
induced plasma by an external electric field was
checked experimentally.

The experiments were conducted in a nuclear-
induced plasma with a track structure, which means
that the plasma is quasineutral only for volumes con-
taining abundant nuclear-particle tracks, i.e., in the
vicinity of a radioactive source. Within the tracks, the
quasineutrality is very rapidly violated because the dif-
fusion coefficients of electrons and ions are very differ-
ent. In an electric field, a track breaks down into moving
bunches of electrons and ions. The charge of a dust par-
ticle is formed by its interaction with these bunches [12].
Other mechanisms of charging dust particles, e.g.,
through secondary electron emission, as an ionizing
particle passes through a dust particle will be signifi-
cant for a high-activity radioactive source.

Experiments on removing dust particles from a vol-
ume filled with nuclear-induced plasma were con-
ducted on an experimental set similar to that described
in [13] and whose layout is shown in Fig. 1. They were
carried out in neon at a pressure of 25–100 kPa. A
radioactive source, a thin circular 252Cf layer 7 mm in
diameter and with an activity of 4 × 106 Bq, was located
at the center of the lower ground electrode. To generate
electric fields of various patterns, three structures of the
upper (high-voltage) electrode were used. The elec-
trodes were spaced about 40 mm apart. Micron-sized
polydisperse zinc particles were employed in the exper-
iments. When a voltage of 160 V was applied to the
upper continuous electrode (A in the right-hand part of
Fig. 1) and a gas-dust mixture was injected, the dust
particles formed a cloud with well-defined boundaries
within a few minutes. The cloud had the shape of a trun-
cated cone whose base was on the upper-electrode
plane and whose vertex was close to the radioactive
source. When the gas pressure and electrode potentials
were constants, the upper part of the cloud, in a few
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Fig. 1. The layout of the experimental set.
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Fig. 2. The charge (in e) of a dust particle 1.4 mm in radius vs. spatial coordinates. The point 0 corresponds to the source center.
The potential of the upper continuous electrode is equal to 152 V. The upper and lower electrodes are spaced 3.5 cm apart. The neon
pressure is equal to 0.76 × 105 Pa.
minutes, took a streamlined shape close to the spheri-
cal one [14]. The radius of the dust particles composing
the cloud was calculated by the Stokes formula using
the measured velocity of particle fall after the electric-
field source had been turned off and appeared to be
1.0−1.4 µm [the particle mass was (3–8) × 10–11 g]. The
charge of levitating and slow-moving particles was cal-
culated from the equilibrium condition for a dust parti-
cle in the electric field and lay in the range between 400
and 1000 e depending on the particle radius. Figure 2
shows the spatial dependence of the mean dust-particle
charge calculated for an experimental cell with a contin-
uous upper electrode by the procedure taken from [12].
The observed values of the dust-particle charge are
closely reproduced by the proposed procedure.

When the upper-electrode potential increases above
160 V once the dust-particle cloud has formed, dust
particles stream to this electrode. The higher the poten-
tial, the higher the velocity of these particles. It is inter-
esting that not all of the structure steams forward when
the upper-electrode potential is less than 200 V. One or
a few jets are produced in the upper part of the struc-
ture. The shape and position of their bases on the elec-
trode are time-variant (Fig. 3a). Near the electrode, the
particle velocity within a jet decreases and the jet
expands into a funnel shape. There are almost no dust
particles outside the cloud and jets.

The employment of an auxiliary hemispherical elec-
trode (Ç in the right-hand part of Fig. 1B) 3 mm in
diameter and insulated from the principal electrode
ensured the removal of dust particles from the cloud
(Fig. 3b). When the potential of the principal upper
electrode is equal to U . 200 V and the auxiliary elec-
trode potential is equal to U . 300 V, a single dusty jet
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(a) (b)

Fig. 3. (a) Dusty jet involving particles moving toward the high-voltage electrode and (b) the drift of dust particles to the auxiliary
hemispherical electrode.
directed toward the auxiliary electrode is produced. The
dust particles are attracted to the electrode and remain
on its surface.

Two thin-walled tubes (ë in the right-hand part of
Fig. 1), which have diameters of 3 and 5 mm and poten-
tials of opposite sign, create an electric field whose con-
figuration is such that negatively charged dust particles
from the cloud are collected in the inner tube whose
positive potential is equal to 150 V (Fig. 4). In this case,
the particles remain on the inner surface of the tube. A
potential equal to –200 V was applied to the outer tube.
The potentials were measured with respect to the lower
ground electrode.

In conclusion, we note that the deposition of dust
particles on the collecting probe occurs over a narrow
range of electric field strength under the indicated con-
ditions. As the field strength increases, dust particles
form stable vortex structures in the vicinity of the probe
electrodes [14].

+

–

Fig. 4. Removal of particles by means of coaxial sound; the
inner and outer tubes are 3 and 5 mm in diameter, respec-
tively.
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Porous materials and systems are extensively used
in power plants, reactors, and thermal protection ele-
ments. To correctly determine the regimes and parame-
ters of heat- and mass-exchange processes proceeding
in them, one needs to know the main structural charac-
teristics of a porous medium. The most important char-
acteristics are the mean value M[Π], variance D[Π],
and higher order moments of porosity. The probability
density of the porosity distribution over area and vol-
ume gives exhaustive information on a nonuniform
structure.

Definition. A structure is called nonuniform, homo-
geneous, and isotropic if the porosity (translucence)
probability distribution over area is unique, continuous,
and single-modal for any section of a chaotic porous
medium.

The simplest and most usual example of a nonuni-
form homogeneous isotropic porous medium is a disor-
dered packing of identical spherical particles. The the-
orem given below without any proof (the derivation fol-
lows from [1]) defines the unique normal distribution
for this packing.

Theorem 1. Chaotic packings of identical spherical
particles dp = const are nonuniform homogeneous iso-
tropic structures with the following probability density
of the porosity distribution 0 ≤ Πmin ≤ Π ≤ Πmax ≤ 1:

(1)

where 

 and  for area and volume, respectively.

A simple but important corollary follows from the
theorem: the mean value of porosity over the ensemble
〈Π〉  = M[Π] is equal to the mean value over area and

volume  =  = 〈è〉  = .
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It is known that the value of the mean porosity of the
spherical packings is very stable when it is close to 0.4.
Experimental data are given in [2–5]:

 = 0.38–0.41 for a spherical packing without
additional mechanical actions.

 = 0.35–0.39 for a spherical packing with subse-
quent vibration or shaking.

The physical assumptions for theoretical justifica-
tion are the following:

(i) èmin = 0.26 corresponds to the densest packing
(hexagonal, fcc, and some nonlattice structures with the
coordination number 12).

(ii) èmax = 0.476 and the coordination number 6 cor-
respond to the least dense cubic packing. It is known
that the stability limit for systems of chaotically
arranged molecules is achieved for the density corre-
sponding to the density of cubic packing [6].

Theorem 2. In an infinite chaotic spherical packing
obtained as a result of a mechanical action (mixing,
vibration, etc.) in the gravitational field, the maximum
of the entropy of the porosity probability distribution is

achieved for  = 0.37.
Proof. The entropy of the probability distribution

for random porosity is

For a spherical packing, we have

Hence, Hmax = ln (èmax – èmin) for  =

 = 0.37. In the absence of a mechanical

action, èmax and  increase slightly owing to the exist-
ence of unstable configurational inclusions that are less
dense than a cubic packing.
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Note that a similar result leading to an entropy max-

imum for  =  is also valid for a discrete

binomial distribution, which gives rise to a limiting
normal distribution in theorem 1.

Theorem 3 (main structural theorem). A chaotic
porous medium is homogeneous and isotropic if and only
if the porosity probability distribution density for an
arbitrary area S of any section obeys the normal law: 

(2)

where SD is the dispersion area, which is an inherent
parameter characterizing the nonuniformity of the
porous structure.

Proof. Sufficiency follows from the definition of a
homogeneous isotropic porous medium.

In order to prove necessity, we specify uniformly
distributed random points N0 on the section area S0
(Fig. 1). Some points N0, è are situated in pores, and the

average porosity  is defined as usual:  = ,

where S0, è is the pore area in the section. The random

quantity  satisfies the relation

with a uniform distribution for

The quantity  for N0  ∞ is asymptotically

normal with the expectation M  =  and vari-

ance D  = . Then, e.g., according to

the “rule of three sigma,” we obtain

This relation substantiates the application of the Monte
Carlo method to determine the mean porosity when
N0 @ 1. Let us consider a certain region with the area S,
S < S0 in a section; N is the common number of random
points, Nè is the number of random points in pores, and
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 è =   is the porosity of the region  S . Then, it is simple

to show that

For 
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dent of area and porosity and is a characteristic of the
structure. The theorem has been proven.
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Corollary 2. For chaotic homogeneous isotropic
porous media, the probability distribution of porosity
over volume obeys the normal law. The proof is similar.

Corollary 3. Of all continuous distributions, the
normal distribution has the largest entropy for a given
variance.

This known result of calculus of variations thermo-
dynamically explains the abundance of homogeneous
isotropic porous systems in nature and the normal law
of the porosity distribution in them.

Corollary 4. The dispersion diameter for a spheri-
cal packing is defined by the formula

(4)

which follows from Eqs. (1)–(3). The equivalent diam-
eter is defined by the known formula

(5)

For  = 0.37, èmin = 0.26, and èmax = 0.476, Eqs. (4)
and (5) yield de = 0.392dp  and dD = 0.394dp; i.e., the
equivalent diameter is almost equal to the dispersion
diameter: de ≈ dD. 

dD

4SD

π
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σdS

è 1 è–( )
---------------------------= =

=  
2 èmax è–( ) è èmin–( )

3 èmax èmin–( ) 1 è–( )è
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1
2
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d p,
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2èd p

3 1 è–( )
---------------------.=

è

This fact is important when using experimental data
where de is the determining size.

Corollary 5. The mean value 〈è〉  of porosity over

the ensemble is equal to the mean value  of porosity

over area and, since V[a, b] = (x)dx, to the mean value

 over volume. The ergodicity has been proven:

The chaotic deviations of local porosity values from
the mean value cause the appearance of macrodisper-
sion flows, which are primarily responsible for the heat-
and mass-exchange processes in nonuniform porous
structures.
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1. INTRODUCTION

The method of synthesizing dynamical systems that
have a given structure of partition in trajectories on a
C1-class plane [1, 2] can be used for the analytical con-
struction of controls that ensure the desired properties
of motion of mechanical systems. These systems are
described by equations of the form

(1.1)

Here, µ is a small parameter; f and g are nonlinear func-
tions of the variables q1, q2, , , and t; and u1, u2 are
the controls. This is illustrated below by solving the
matching problem for slowly varying oscillation ampli-
tudes of two coupled pendulums (Fig. 1). This problem
is inverse with respect to the problem considered in
Section 3, Chapter 5 of [3].

2. FORMULATION OF THE PROBLEM

Let ϕ and ψ be the angles of deviation from a verti-
cal line for the first and second pendulums with masses
m1 and m2 . Let c, l, and d also be, respectively, the
spring rigidity, the pendulum length, and the distance
between the pendulum rotation axis and the spring fix-
ation point. We seek the moments U1 and U2 , which
possess the following properties. The system has a sta-
ble (in large) biharmonic motion with amplitudes a and
b periodically varying under the action of these
moments on the first and the second pendulums,
respectively. These amplitudes are related to each other
by the condition ω0(a, b) = 0, which corresponds to the
stable limiting cycle of the given partition scheme in the

a11 q̇̇1 a12 q̇̇12 b1 q1 c11q1 c12q2+ +sin+ + µ f u1+( ),=

a21 q̇̇1 a22 q̇̇2 b2 q2sin c21q1 c22q2+ + + + µ g u2+( ).=

q̇1 q̇2

Peoples’ Friendship University, 
ul. Miklukho-Maklaya 6, Moscow, 117198 Russia
1028-3358/02/4705- $22.00 © 20373
trajectories for the first quadrant of the plane (a, b),
Fig. 2. Using the equalities

(2.1)

(2.2)

we specify other special trajectories contained in this
region. Here, ω1 = 0 and ω2 = 0 are the separatrix
straight lines and ω3 = 0 is the unstable focus located
inside the limiting cycle ω0 = 0.

3. SOLUTION OF THE PROBLEM

The pendulum system is described by the following
equations of motion:

(3.1)

Here, M1 , M2 are the moments of force, which do not

ω1 a≡ 0,   ω 2 b  = 0 ≡ ,  =  

ω
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2
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m2l2ψ̇̇ m2gl ψ cd2ψ cd2ϕ–+sin+

=  M2 ϕ ϕ̇ ψ ψ̇ t, , , ,( ) U2.+

ϕ ψ

Fig. 1.
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enter into the left-hand sides of Eqs. (3.1). We use the
following notation:

Then system (3.1) can be transformed to the form

(3.2)

For reasonably small values of the right-hand sides of
Eqs. (3.2), the solution to this system is sought in the
form

(3.3)

Here, a, b, β1, β2 are slowly varying functions of time
and k1 , k2 are the principal frequencies, which can be
found from the frequency equation

.

We assume that 0 < k1 < k2, and α1 , α2 are the distribu-
tion coefficients:

(3.4)
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2 g
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ψ α1a k1t β1+( ) α2b k2t β2+( ).sin+sin=

k4 n1
2 n2

2+( )k2– n1
2n2

2 B1B2–+ 0=

α1 = 
k1

2 n1
2–

B1
--------------- = 

B2

k1
2 n2

2–
---------------, α2 = 

k2
2 n1

2–
B1

--------------- = 
B2

k2
2 n2

2–
---------------.

0.6

0.4

0.2 0.6

0.2

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

y(t)

0.4 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
x(t)

Fig. 2.

0

We suppose that the first derivatives of ϕ and ψ with
respect to time have the same form as for constant a, b,
β1 , β2 . In other words,

(3.5)

Then, the following additional conditions imposed on
the variables a, b, β1 , β2 can be obtained:

(3.6)

Differentiating derivatives (3.5) with respect to time,
we find

We now substitute these expressions for  and  into
Eqs. (3.2). By taking into account relationships (3.4),
the system of equations obtained together with equal-

ities (3.6) can be solved with respect to , , a ,

b  [3]: 

(3.7)

Here,

(3.8)

ϕ̇ ak1 k1t β1+( ) bk2 k2t β2+( ),cos+cos=

ψ̇ aα1k1 k1t β1+( ) bα2k2 k2t β2+( ).cos+cos=

ȧ k1t β1+( )sin ḃ k2t β2+( )sin+

+ aβ̇1 k1t β1+( ) bβ̇2 k2t β2+( )cos+cos 0,=

α1ȧ k1t β1+( )sin α2ḃ k2t β2+( )sin+

+ α1aβ̇1 k1t β1+( ) α2bβ̇2 k2t β2+( )cos+cos 0.=

ϕ̇̇ ȧk1 k1t β1+( ) ak1 k1 β̇1+( ) k1t β1+( )sin–cos=

+ ḃk2 k2t β2+( ) bk2 k2 β̇2+( ) k2t β2+( ),sin–cos

ψ̇̇ ȧα1k1 k1t β1+( )cos=

– aα1k1 k1 β̇1+( ) k1t β1+( )sin

+ ḃα2k2 k2t β2+( ) bα2k2 k2 β̇2+( ) k2t β2+( ).sin–cos

ϕ̇̇ ψ̇̇

ȧ ḃ β̇1

β̇2

ȧ
1

k1 k1
2 k2

2–( )
-------------------------

B2

α1
----- f ∗ B1g∗+ 

  ξ ,cos=

ḃ
1

k2 k1
2 k2

2–( )
-------------------------

B2

α2
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  η ,cos–=

aβ̇1
1

k1 k1
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  η .sin=

ξ k1t β1, η+ k2t β2,+= =

f ϕ ψ ϕ̇ ψ̇, , ,( )
g
l
--- ϕ ϕsin–( ) 1

m1l2
---------- M1 U1+( ),+=

g ϕ ψ ϕ̇ ψ̇, , ,( )
g
l
--- ψ ψsin–( ) 1

m2l2
---------- M2 U2+( ),+=
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and f *, g* denote the same functions in which ϕ, ψ, ,
 are replaced by their expressions from Eqs. (3.3)

and (3.5).
To solve the posed problem, we make up the system

of equations

(3.9)

which has a given structure of the partition in trajecto-
ries of the region a > 0, b > 0 (Fig. 2). By equating the
right-hand sides of the corresponding equations (3.7)
and (3.9), we arrive at

(3.10)

where µ = . Taking µ1 = µ2cos2ξcos2η in

Eqs. (3.10), we solve these equations with respect to f*
and g*:

(3.11)

After substituting the expressions for f * and g*
from (3.11) into (3.7), we obtain

(3.12)

With allowance for the fact that a, b, β1 , β2 vary
slowly (in the case of a corresponding choice of µ2), we
average the right-hand sides of Eqs. (3.12) over the

periods  and . As a result, we arrive at the reduced

equations

(3.13)

The system of equations (3.13) has the following solu-
tions: β1 = 0, β2 = 0, and a, b such that their variations
are represented by the given partition in trajectories of
the region a > 0 and b > 0 in the plane (a, b) (Fig. 2).

Using relations (3.3) and (3.5), the variables a, b and
functions cosξ, cosη can be expressed in terms of ϕ, ψ,

, and :

ϕ̇
ψ̇

ȧ µA a b,( ), ḃ µB a b,( ), µ 0≥ ,= =

B2

α1k1
----------- f ∗ B1

k1
-----g∗+ 

  ξcos– µ1A,=

B2

α2k2
----------- f ∗ B1

k1
-----g∗+ 

  ηcos µ1B,=

µ1

k2
2 k1

2–
---------------

f ∗ α1α2µ2

B2 α1 α2–( )
---------------------------- Ak1 η Bk2 ξcos+cos( ) ξ η ,coscos=

g∗ µ2

B1 α1 α2–( )
----------------------------–=

× Aα1k1 ηcos Bα2k2 ξcos+( ) ξ η .coscos

ȧ µ2A ξcos
2 ηcos

2
, ḃ µ2B ξcos

2 ηcos
2

,= =

aβ̇1 µ2A ξ ξ ηcos
2

,sincos–=

bβ̇2 µ2B ξcos
2 η η .sincos–=

2π
k1
------ 2π

k2
------

ȧ µ2A, ḃ µ2B, β̇1 0, β̇2 0.= = = =

ϕ̇ ψ̇

a
k1

2 α2ϕ ψ–( )2 α2ϕ̇ ψ̇–( )2+

k1
2 α1 α2–( )2

-----------------------------------------------------------------

1/2

,=
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Passing to the variables ϕ, ψ, , and  in (3.11), we
obtain

fp = µ2F(ϕ, ψ, , ), gp = µ2G(ϕ, ψ, , ).

Finally, equating the right-hand sides of equalities (3.8)
to fp and gp , respectively, we find the desired controlling
moments

Here, the arbitrary nonnegative factor µ2 is chosen to
satisfy the smallness requirement for the right-hand
sides of the equations composing system (3.2).

4. CONSTRUCTION OF EQUATIONS 
FOR PROGRAMMED AMPLITUDE VARIATIONS

In order to construct (by the method of [2]) the vec-
tor fields for comparison directions, which correspond
to a set of special trajectories defined by Eqs. (2.1), we
explicitly express the parameter λ from (2.2):

Then, we calculate the partial derivatives of the func-
tion Ω:

,

where we have taken

(4.1)

We now construct functions of the scalar products of
these vectors by the vector P = {A, B} for the right-hand
sides of the equations of system (3.8) which determine

b
k2

2 α1ϕ ψ–( )2 α1ϕ̇ ψ̇–( )2+

k2
2 α1 α2–( )2

-----------------------------------------------------------------

1/2

,=

ξcos
α2ϕ ψ–

k1 α1 α2–( )
---------------------------

k1
2 α2ϕ ψ–( )2 α2ϕ̇ ψ̇–( )2+

k1
2 α1 α2–( )2

-----------------------------------------------------------------

1/2

,=

ηcos
α1ϕ̇ ψ̇–

k2 α1 α2–( )
---------------------------

k2
2 α1ϕ ψ–( )2 α1ϕ̇ ψ̇–( )2+

k2
2 α1 α2–( )2

-----------------------------------------------------------------

1/2

.=

ϕ̇ ψ̇

ϕ̇ ψ̇ ϕ̇ ψ̇

U1 µ2F
g
l
--- ϕ ϕsin–( ) M1,––=

U2 µ2G
g
l
--- ψ ψsin–( ) M2.––=

λ
ω1ω2

ω3 ω1ω2–
------------------------- Ω.≡–=

∂Ω
∂a
-------

b a 1–( )2 b 1–( )2 2a a 1–( )–+[ ]
a 1–( )2 b 1–( )2 ab+ +[ ] 2

---------------------------------------------------------------------------------,=

∂Ω
∂b
------- a a 1–( )2 b 1–( )2 2b b 1–( )–+[ ]

a 1–( )2 b 1–( )2 ab+ +[ ] 2
---------------------------------------------------------------------------------=

n na; nb{ } , t nb; –na{ } ,= =

na b a 1–( )2 b 1–( )2 2a a 1–( )–+[ ] ,=

nb a a 1–( )2 b 1–( )2 2b b 1–( )–+[ ] .=
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the partition in trajectories of the region a > 0, b > 0 for
the given structure (Fig. 2). In particular, the functions

(4.2)

are of this kind, where we take ξ1 > 0, which corre-
sponds to the stable limiting cycle ω0 = 0, and ξ2 > 0,
which corresponds to the motion of the representation
points around the point ω2 = 0 in a counterclockwise
direction. The right-hand sides

(4.3)

of the desired system correspond to the functions F1
and F2 from (4.2).

The correctness of the construction of the functions
F1, F2 from (4.2) and A, B from (4.3) is supported by
plotting Figs. 1 and 2 with the help of a computer using
the Maple V Release 5 applied software package.

F1 P n⋅ ξ1ω0ω1ω2ω3,= =

F2 P t⋅ ξ2ω3= =

A ξ1ω0ω1ω2ω3b a 1–( )2 b 1–( )2 2a a 1–( )–+[ ]=

+ ξ2ω3a a 1–( )2 b 1–( )2 2b b 1–( )–+[ ] ,

B ξ1ω0ω1ω2ω3a a 1–( )2 b 1–( )2 2b b 1–( )–+[ ]=

+ ξ2ω3b a 1–( )2 b 1–( )2 2a a 1–( )–+[ ]
Remark. A method is developed in [1] for synthe-
sizing systems of equations in form (3.8) of the C1 class
which have more complicated structures for the parti-
tion in trajectories.
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For nonlinear nonautonomous systems of ordinary
differential equations, we consider two basic classes of
partial stability problems: (i) problems of stability with
respect to variables of the zero equilibrium position
(Lyapunov–Rumyantsev partial stability problems) and
(ii) problems of stability of “partial” equilibrium posi-
tions. The corresponding definitions of stability are uni-
fied so that the solvability conditions for these two
classes of problems are identical in the context of the
Lyapunov function method. We present a number of
such common stability conditions. The results are illus-
trated by examples.

1. TWO BASIC CLASSES 
OF PARTIAL STABILITY PROBLEMS

Since the middle of the 20th century, the theory of
partial stability has been actively developing along with
conventional investigations in the theory of stability. A
special feature of the former theory is analysis of the
stability of the processes in dynamic systems with
respect to only a fraction of the variables (instead of all
the variables) specifying the state of these systems.

The theory of partial stability investigates the fol-
lowing two basic classes of problems.

1. The Lyapunov–Rumyantsev problems [1–10] of
stability with respect to the components of a vector y
(problems of y-stability) of the equilibrium position x =
(yT, zT)T = 0 of the system of ordinary differential equa-
tions

, (1)

under quite general assumptions about the vector func-
tions Y, Z. Hereafter, T means transposition.

In this case, the following conditions occur:

(2)

ẏ Y t y z, ,( ), ż Z t y z, ,( )= =

Y t 0 0, ,( ) 0, Z t 0 0, ,( ) 0.≡≡
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System (1), (2) is constructed as the system describing
a disturbed motion for each particular process whose
stability is studied, and the notion of stability is corre-
spondingly formalized mathematically.

Let x(t) = x(t; t0, x0) be the solution of system (1)
with the initial condition x0 = x(t0; t0, x0).

Definition 1. The equilibrium position x = 0 of
set (1), (2) is

(i) y-stable if, for arbitrary ε > 0 and t0 ≥ 0, there is
δ(ε, t0) > 0 such that ||y(t; t0, x0)|| < ε for all t ≥ t0 follows
from ||x0 || < δ;

(ii) uniformly y-stable if δ is independent of t0; 

(iii) asymptotically y-stable if it is y-stable and, for
arbitrary t0 ≥ 0, there is ∆(t0) > 0 such that the rela-
tionship 

(3)

takes place for any solution x(t; t0, x0) of system (1), (2),
for which ||x0 || < ∆;

(iv) uniformly asymptotically y-stable if it is uni-
formly y-stable, ∆ is independent of t0 , and Eq. (3) is
satisfied uniformly with respect to t0, x0 .

2. The problems of stability of partial equilibrium
positions [3, 9–11], i.e., the problems of stability (with
respect to components of the vector y) of partial equi-
librium positions y = 0 of set (1).

In this case, the condition

(4)

is valid and the position y = 0 is the invariant set of this
system if the solution of system (1) is unique.

Definition 2. The partial equilibrium position y = 0
of system (1), (4) is

(i) stable if, for arbitrary ε > 0 and t0 ≥ 0, it is possi-
ble to find δ(ε, t0) > 0 such that ||y(t; t0, x0) || < ε for all
t ≥ t0 follows from ||y0|| < δ and ||z0 || < ∞;

(ii) asymptotically stable if it is stable and it is pos-
sible to find ∆(t0) > 0 for arbitrary t0 ≥ 0 such that

y t; t0 x0,( )           0, t          ∞ lim

Y t 0 z, ,( ) 0≡
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Eq. (3) is satisfied for any solution x(t; t0, x0) of set (1),
(4) with ||y0|| < ∆ and ||z0 || < ∞.

Similar to definition 1, we introduce the notion of
uniform stability (including uniform asymptotic sta-
bility).

Remarks. 1°. Under condition (4), set (1) need not
have the zero equilibrium position x = 0.

2°. The Lyapunov–Rumyantsev problems of partial
stability do not generally reduce [10] to any problems
of stability of sets [12, 13], whereas the problems of
stability of partial equilibrium positions are problems
of the stability of invariant sets. Nevertheless, the indi-
cated problems can be brought together and their solv-
ability conditions can be made identical by a certain
mutual modification of the notions of Lyapunov–
Rumyantsev partial stability and the stability of partial
equilibrium positions.

2. UNIFICATION OF THE NOTION
OF PARTIAL STABILITY

To establish the relation between the two types of
partial stability problems, we somewhat modify defini-
tion 1 of y-stability of the equilibrium position x = 0 for
system (1), (2).

Definition 3. The equilibrium position x = 0 of sys-
tem (1), (2) is

(i) y-stable for large z0 if, for arbitrary ε > 0, t0 ≥ 0,
and L > 0, it is possible to find δ(ε, t0, L) > 0 such that
||y(t; t0, x0)|| < ε for all t ≥ t0 follows from ||y0|| < δ and
||z0 || < L;

(ii) asymptotically y-stable for large z0 if this posi-
tion is y-stable for large z0 and, for arbitrary t0 ≥ 0, it is
possible to find ∆(t0, L) > 0 such that Eq. (3) is satisfied
for any solution of system (1), (2) with ||y0|| < ∆ and
||z0 || < L.

Similarly, we introduce the notion of uniform y-sta-
bility (including uniform asymptotic y-stability) for
large z0 .

An opposing step for unifying the notions is the cor-
responding refinement of the notion of stability of par-
tial equilibrium positions.

Definition 4. The partial equilibrium position y = 0
of system (1), (4), is

(i) stable for large z0 if, for arbitrary ε > 0, t0 ≥ 0, and
L > 0, it is possible to find δ(ε, t0, L) > 0 such that
||y(t; t0, x0)|| < ε for all t ≥ t0 follows from ||y0|| < δ and
||z0 || < L;

(ii) asymptotically stable for large z0 if it is stable for
large z0 and it is possible to find ∆(t0, L) > 0 for arbitrary
t0 ≥ 0 such that Eq. (3) is satisfied for any solution of
system (1), (2) with ||y0|| < ∆ and ||z0 || < L.

The notion of uniform stability (including uniform
asymptotic stability) for large z0 is similarly intro-
duced.
       

3. COMMON CONDITIONS 
OF PARTIAL STABILITY IN THE CONTEXT 

OF THE LYAPUNOV DIRECT METHOD

One of the basic methods of investigating the prob-
lems of stability is the Lyapunov function method, also
often called the Lyapunov direct method. The modifica-
tion carried out in Section 2 for the notions makes it
possible to give the common solvability conditions for
the two classes of problems of partial stability in the
context of the LFM.

We introduce the assumptions [1–3], which are
conventional for the theory of partial stability, that
system (1) is continuous in the region

(5)

and its solutions are unique and z-continuable. We con-
sider the following functions: (i) a(r), which is contin-
uous and steadily increasing for r ∈  [0, h] such that
a(0) = 0, (ii) and the scalar continuous function V(t, x),
V(t, 0) ≡ 0 and the vector function W(t, x), W(t, 0) ≡ 0,
which is continuously differentiable in region (5).

Theorem 1. Let there be a scalar function V and a
vector function W = W(t, x), W(t, 0) ≡ 0 such that, in
the region

, (6)

the conditions

(7)

(8)

are satisfied. In this case, (i) condition (4) is valid for
set (1), and the partial equilibrium position y = 0 of
system (1), (4) is stable for large z0 (ii) and the equilib-
rium position x = 0 of system (1), (2) is y-stable for
large z0 . 

The proof of this theorem is divided into two stages.
(i) Let us show that condition (4) is valid if condi-

tions (7) and (8) are satisfied. We consider the solution
x(t; t0, 0, z0) of system (1) for arbitrary t0 ≥ 0 and z0 . By
virtue of Eqs. (7), V(t0, 0, z0) ≡ 0.

On the basis of the equality

(9)

and the inequalities V ≥ 0 and  ≤ 0, we obtain that

(10)

In view of the first of Eqs. (7), it follows from
Eq. (10) that

(11)

t 0, y h, z ∞<≤≥

t 0, y W t x,( )+ h, z ∞<≤≥

V t y z, ,( ) a y W t x,( )+( ), V t 0 z, ,( ) 0,≡≥

V̇ t x,( ) 0≤

V t x t; t0 x0,( ),( ) V t0 x0,( ) V̇ τ x τ ; t0 x0,( ),( ) τd

t0

t

∫+=

V̇

V t x t; t0 0 z0, ,( ),( ) 0.≡

y t; t0 0 z0, ,( ) 0.≡
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Let us prove that identities (4) and (11) are equi-
valent.

We substitute the solution x(t; t0, 0, z0) into system (1).
Taking into account Eq. (11) and the arbitrariness of
t0 ≥ 0 and z0 , we arrive at identity (4).

Conversely, if identity (4) is satisfied, system (1)
admits the equilibrium position y = 0. Taking into
account the assumption that the solution of system (1)
is unique, we have identity (11) in this case.

(ii) We show that the partial equilibrium position y = 0
of system (1) is y-stable for large z0 if conditions (7),
(8) are satisfied.

By virtue of the conditions V(t, 0, 0) ≡ V(t, 0, z) ≡ 0
for arbitrary ε > 0, t0 ≥ 0 and L > 0, it is possible to find
δ(ε, t0, L) > 0 such that V(t0, x0) < a(ε) follows from
||y0 || < δ and ||z0 || < L.

Taking into account inequality (8) and Eq. (9), we
have

(12)

for all t ≥ t0 .

By virtue of the properties of the function a(r), ine-
qualities (12) indicate that ||y(t; t0, x0)|| < ε follows from
||y0 || < δ and ||z0 || < L for arbitrary ε > 0, t0 ≥ 0, and
t ≥ t0 . The theorem has been proven.

Discussion of theorem 1. (i) If conditions (7) are
supplemented by the assumption that V(t, x) ≤ b(||x||)
[b(r) is a function of the same type as a(r)], the stability
in theorem 1 is uniform. If conditions (7) are supple-
mented by the assumption that V(t, x) ≤ b(||y ||), the con-
ditions of theorem 1 guarantee the corresponding prop-
erties of uniform stability as a whole with respect to z0

(L = ∞ in definitions 2 and 3) [3, 10]. In this connection,
we emphasize that the conditions V(t, 0) ≡ 0 and
V(t, x) ≤ b(||x ||) are weaker than the condition V(t, x) ≤
b(||y ||).

(ii) If condition (7) is satisfied, the function V is not,
generally speaking, y-positive definite in Rumyantsev’s
sense [2, 3], because the condition V(t, y, z) ≥ a(||y ||)
does not have to be valid in region (5) [8].

(iii) As a further unification of definitions 2 and 3,
we may introduce a more general notion of y-stability
(asymptotic y-stability) of the set x = 0 for large z0

without the assumption that this set is an equilibrium
state of system (1). Such a notion was introduced
in [14] in connection with problems of coordinate syn-
chronization of dynamic systems [15] in the context of
the theory of partial stability.

a y t; t0 x0,( ) W t x t; t0 x0,( ),( )+( )
≤ V t x t; t0 x0,( ),( ) V t0 x0,( ) a ε( )<≤
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Example 1. Let system (1) consist of the equations

(13)

where a and b are certain constants.
We consider the auxiliary functions

For a < 0, 2a + b < 0, and y = (y1, y2)T, the following
conditions are satisfied in region (6):

,

for a certain γ = const > 0.
On the basis of theorem 1 (with allowance for

remark (i) about the uniform character of stability), we
conclude that (i) the partial equilibrium position y1 =
y2 = 0 of system (13) is uniformly stable for large z10
and (ii) the equilibrium position y1 = y2 = z1 = 0 is uni-
formly stable with respect to y1 and y2 for large z10 .

4. GENERALIZATION 
OF COMMON CONDITIONS 

OF PARTIAL STABILITY

In order to include the stability problem with respect
to some of the variables for the partial equilibrium posi-
tion of system (1), we introduce the designation y =

( , )T.

Let system (1) have the partial equilibrium position
y = 0.

Definition 5. The partial equilibrium position y = 0
of system (1), (4) is y1-stable for large z0 if, for arbitrary
ε > 0, t0 ≥ 0, and L > 0, it is possible to find δ(ε, t0, L) > 0
such that ||y1(t; t0, x0)|| < ε for all t ≥ t0 follows from
||y10 || < δ, ||y20 || < δ, and ||z0 || < L.

Theorem 2. Let there be a scalar function V and a
vector function W = W(t, x), W(t, 0) ≡ 0 for system (1)
such that, in the region

,

the conditions

are satisfied. In this case, (i) the partial equilibrium
position y = 0 of system (1), (4) is y1-stable for large z0

ẏ1 y2
2z1, ẏ2 ay2 y1y2

2z1,+= =

ż1 bz1 2y1y2z1
2,–=

V y1 2a b+( ) 1– W1–[ ] 2
y2

2 W1
2, W1+ + y2

2z1.= =

V y1 y2 z1, ,( ) γ y1
2 y2

2 W1
2+ +( ), V 0 0 z1, ,( ) 0,≡≥

V̇ 2 y2
2 2a b+( )W1

2 y1y2W1+ +[ ] 0≤≤

y1
T y2

T

t 0, y1 W t x,( ) h, y2 ∞, z ∞<<≤+≥

V t y1 y2 z, , ,( ) a y1 W t x,( )+( ),≥

V t 0 0 z, , ,( ) 0, V̇ t x,( ) 0≤≡
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and (ii) the equilibrium position x = 0 of system (1), (2)
is y1-stable for large z0 .

5. COMMON CONDITIONS 
OF PARTIAL ASYMPTOTIC STABILITY

Along with the previously introduced functions, we
also consider (i) the vector function U(x), U(0) = 0,
which is independent of t and is continuous in region (5),
and (ii) the scalar functions ai (i = 1, 2, 3), which are of
the a(r) type from Section 3.

Theorem 3. Let there be a scalar function V and two
vector functions U and W such that the following con-
ditions are valid in region (6):

(a) a1(||y || + ||W(t, x) ||) ≤ V(t, y, z) ≤ a2(||y || +
||U(x) ||);

(b) V(t, 0, z) ≡ 0;

(c) (t, x) ≤ –a3(||y || + ||U(x) ||).
In this case, (i) condition (4) is valid for system (1)

and the partial equilibrium position y = 0 of system (1)
(4) is uniformly asymptotically stable for large z0  and
(ii) the equilibrium position x = 0 of system (1), (2) is
uniformly asymptotically y-stable for large z0 . 

The proof is performed according to [3, 10] with
allowance for the proof of theorem 1.

Discussion of theorem 3. (i) If W ≡ 0 and U = z*
(the vector z* involves some or all of the components
of the vector z), conditions (a) and (c) of theorem 3
coincide with the conditions

(14)

of Rumyantsev’s theorem [1, 3] on asymptotic stability
with respect to some of the variables. However, in the
general case, conditions (a) and (c) are more general
than (14) even for W ≡ 0.

(ii) If the conditions of theorems 1 and 2 are valid,
system (1) does not need to have the equilibrium posi-
tion x = 0. At the same time, the fulfillment of Eq. (3) is
not associated with the presence of either the equilib-
rium position x = 0 or the partial equilibrium position
y = 0 of system (1). Therefore, conditions ensuring the
fulfillment of Eq. (3) can be interpreted as conditions of
the y-attraction of either the equilibrium position x = 0
or the partial equilibrium position y = 0 when either
condition (2) or condition (4) is satisfied for system (1),
respectively.

Example 2. Let system (1) consist of the equations

(15)

where a, b, c, d, and e are certain constants.

V̇

a1 y( ) V t y z, ,( ) a2 y z∗+( ),≤ ≤

V̇ a3 y z∗+( )–≤

ẏ1 ay1 by1
2z1, ż1+ cy1 dz1 e,+ += =
We consider the auxiliary functions

(16)

For a < 0 and a(a + d) – e2 > 0, the following con-

ditions are valid in region (6):

for U1 = y1z1 and a certain γ = const > 0.

On the basis of theorem 3, the partial equilibrium
position y1 = 0 of system (15) is uniformly asymptoti-
cally stable for large z10 , whereas there is no equilib-
rium position y1 = z1 = 0 for this system.

It should be noted that function V (16) does not sat-
isfy conditions (14).

6. CONCLUSION

In this paper, we unified the notions in the two basic
classes of problems of partial stability: the problems of
stability with respect to some of the variables in the
Lyapunov–Rumyantsev sense and the problems of sta-
bility of partial equilibrium positions. As a result, in the
context of the Lyapunov function method, we obtained
the common conditions of such unified partial stability
for general nonlinear time-dependent systems of ordi-
nary differential equations.

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation
for Basic Research and by the Ministry of Education of
the Russian Federation.

REFERENCES

1. V. V. Rumyantsev, Vestn. Mosk. Univ., Ser. Mat., Mekh.,
Astron., Fiz., Khim., No. 4, 9 (1957).

2. C. Corduneanu, Rev. Roum. Math. Pure Appl. 9, 229
(1964).

3. V. V. Rumyantsev and A. S. Oziraner, Stability and Sta-
bilization of Motion in Some Variables (Nauka, Moscow,
1987).

4. L. Hatvani, Alkalmazott Matematika Lapok 15, 1
(1991).

5. A. S. Andreev, Prikl. Mat. Mekh. 55, 539 (1991).
6. V. I. Vorotnikov, Stability of Dynamic Systems in Some

Variables (Nauka, Moscow, 1991).

V
1
2
--- y1

2 W1
2+[ ] , W1 = U1 y1z1.= =

1
4
---

V y1 z1,( )
1
2
--- y1

2 U1
2+( ), V 0 z1,( ) 0,≡≤

V̇ ay1
2

ey1U1 a d+( )U1
2+ +≤

+ b c+( )y1
2U1 bU1

3 γ y1
2 U1

2+( ),–≤+
DOKLADY PHYSICS      Vol. 47      No. 5      2002



TWO CLASSES OF PARTIAL STABILITY PROBLEMS 381
7. V. I. Vorotnikov, Avtom. Telemekh., No. 3, 3 (1993).

8. V. I. Vorotnikov, Partial Stability and Control
(Birkhauser, Boston, 1998).

9. A. L. Fradkov, I. V. Miroshnik, and V. O. Nikiforov, Non-
linear and Adaptive Control of Complex Systems (Klu-
wer, Dordrecht, 1999).

10. V. I. Vorotnikov and V. V. Rumyantsev, Stability and
Control in Some of the Phase-Vector Coordinates of
Dynamic Systems: Theory, Methods, and Applications
(Nauchnyœ Mir, Moscow, 2001).

11. M. M. Khapaev, Averaging in Stability Theory (Kluwer,
Dordrecht, 1993).
DOKLADY PHYSICS      Vol. 47      No. 5      2002
12. V. I. Zubov, Methods of A. M. Lyapunov and Their Appli-
cations (Noordhoff, Groningen, 1964).

13. A. S. Galiullin, I. A. Mukhametzyanov, R. G. Mukhar-
lyamov, and V. D. Furasov, Construction of Systems of
Programmed Motion (Nauka, Moscow, 1971).

14. V. I. Vorotnikov, Dokl. Akad. Nauk 375, 622 (2000)
[Dokl. Phys. 46, 876 (2000)].

15. H. Nijmejer, I. I. Blekhman, A. L. Fradkov, and
A. Yu. Pogromsky, Systems Control Lett. 31, 299
(1997).

Translated by V. Bukhanov



  

Doklady Physics, Vol. 47, No. 5, 2002, pp. 382–386. Translated from Doklady Akademii Nauk, Vol. 384, No. 1, 2002, pp. 52–56.
Original Russian Text Copyright © 2002 by Druzhinina, Shestakov.

                                                                                                                                                                                                  

MECHANICS
On the Validity of the Property of Asymptotic Rigidity 
in the Joukowski Sense for the Integral Set 

of a Nonlinear Differential Equation under Perturbations
O. V. Druzhinina and A. A. Shestakov

Presented by Academician V.V. Rumyantsev December 28, 2001

Received December 29, 2001
The existence and asymptotic stability of integral
sets of ordinary differential equations were studied
in [1–11]. In this paper, we analyze the validity of the
property of asymptotic rigidity in the Joukowski sense
for the integral set of an ordinary differential equation
under small perturbations.

1. ASYMPTOTIC RIGIDITY
IN THE JOUKOWSKI SENSE

FOR AN INTEGRAL SET

Let a steady-state differential equation

(1.1)

satisfy the Lipshitz condition with a constant K > 0 on
the set M ::= {x ∈ Rn: |x | < r}. Let Γ ::= {γ(t, q), q ∈  Q}
be the set of positive semitrajectories of Eq. (1.1),
where Q is a bounded set on Rm, with m ≤ n.

We consider the set of functions

(1.2)

depending on a spatial parameter q ∈ Q, where ϕ(t) is a
continuous scalar function strictly increasing on R+ =
[0, ∞).

Definitions 1.1. The set Γ ⊂ Rn is referred to as an
integral (invariant) set with respect to Eq. (1.1) if, for
each point p ∈ Γ , the inclusion x(t) ∈ Γ  occurs, where
x(t) is the solution to this equation under the initial con-
dition t = t0, x = p for arbitrary values of t within the
range of the definition for this solution.

Let Eq. (1.1) under the initial condition t = t0, x = p,
with d(p, Γ) ≤ µ ≤ α, have a unique solution x(t) =

dx
dt
------ g x( ), x Rn, g C M Rn,( )∈∈=

γ ϕ t( ) q,( ), q Q Rm,⊂∈
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x(t, t0, p) belonging to the set M. In addition, let there
exist constants λ > 0, 0 < α < λ, and r > 0 such that

d(p, Γ) < λ ⇒  |p | < r, (1.3)

where d(·, Γ) is the distance from a point to the set. The
integral set Γ ⊂ Rn, generated by the set of solutions
{γ (t, q), q ∈  Q} of Eq. (1.1), is referred to as asymptot-
ically (or exponentially) rigid in the Joukowski sense if,
for every solution x(t) to Eq. (1.1), with t0 ≥ 0 and d(p,
Γ) ≤ α, there exists a strictly increasing continuous
function ϕ: R+  R+ such that, respectively, either

(1.4)

or

(1.5)

Here, γ (·, q0) is a certain function belonging to
set (1.2); the functions ψ(·) and h(·) are positive definite
and continuous; ψ(µ) is a nondecreasing function of
µ > 0, with µ(0) = 0; and h(t) is a nonincreasing func-
tion of t > 0, with h(0) = 1 and h(t)  0 as t  +∞.

Comments to Definitions 1.1. (I) If a set Γ is
asymptotically (exponentially) rigid and ϕ(t) = t + ∆,
∆ ∈ R, then the set is asymptotically (exponentially)
stable with an asymptotic amplitude and phase in the
sense of J. Hale [5]. (II) The asymptotic (exponential)
rigidity of the set Γ expresses its asymptotic (exponen-
tial) stability in the Lyapunov sense under the linear
time-reparametrization representing the homeomor-
phism R+ in R+ [10–12].

Theorem 1.1. If the integral set Γ ⊂ Rn of Eq. (1.1)
is asymptotically rigid in the Joukowski sense and if the
function ψ(µ) entering into Eq. (1.4) is a linear func-
tion of the form ψ(µ) = Cµ, then the set Γ is exponen-
tially rigid in the Joukowski sense. 

x t( ) γ ϕ t( ) q0,( )– ψ µ( )h t t0–( ) t t0≥∀≤

x t( ) γ ϕ t( ) q0,( )–

≤ Lµ ω t t0–( )–( ), L 1 ω 0 t t0≥∀,>,≥exp .
002 MAIK “Nauka/Interperiodica”
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Proof. Let an integral set Γ ⊂ Rn be asymptotically
rigid. We assume that ψ(µ) = Cµ and ϕ(t) = t + ∆0. In
this case, we have

(1.6)

We choose σ such that 0 < Ch(σ) = l < 1 and assume
that τk = t0 + kσ, pk = x(τk, t0, p), and dk = d(pk, Γ) for
k ≥ 0. Then, according to the definition and with regard
for the equality x(t, t0, p) = x(t, τk, pk) for t ≥ τk , we find
that dk ≤ l k – 1µ. Assuming that ω = −σ−1logl and L =
Cl–2, for t0 + kσ ≤ t < t0 + (k + 1)σ, we arrive at 

(1.7)

By virtue of Eq. (1.7), the set Γ is exponentially
rigid. Theorem 1.1 is proven.

2. VALIDITY OF THE PROPERTY 
OF ASYMPTOTIC RIGIDITY 

FOR AN INTEGRAL SET GENERATED 
BY A BOUNDED SET OF INITIAL POINTS

We now consider the problem of the existence of a
rigid integral set for the perturbed differential equation

(2.1)

provided that the perturbing vector function G(t, y) sat-
isfies the relationships

(2.2)

(2.3)

where F(t) is a positive definite continuous function of
t ≥ 0.

For condition (2.3) to be satisfied, it is sufficient that

(2.4)

or

(2.5)

Lemma 2.1. Let (I) the integral set Γ of Eq. (1.1) be
exponentially rigid in the Joukowski sense and
(II) x(t, t0, p) and y(t, t0, q) be solutions to Eqs. (1.1) and
(2.1) under the initial conditions x(t0, t0, p) = p and
y(t0, t0, q) = q, respectively. Then, provided that

, (2.6)

x t( ) γ t ∆0+ q0,( )– Cµh t t0–( )  t t0.≥∀≤

x t( ) γ t ∆0+ q0,( )–  = x t τk pk, ,( ) γ t ∆0 q0,+( )–

≤ Ch t τk–( )dk Cµlk 1–≤

=  Cl 2– µl ω k 1+( )σ– Lµl
ω t t0–( )–

.≤

dy
dt
------ g y( ) G t y,( ), y Rn,∈+=

G t y,( ) F t( ) t y,( )∀ R+ M,×∈≤

F t( ) td

t

t 1+

∫t ∞→
lim 0,=

F t( )         ∞ , t           + ∞

F t( ) td

0

∞

∫ +∞.<

t0 0, d q Γ,( ) α<≥
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the following estimate is valid:

(2.7)

Lemma 2.1 is proved with the help of the Gronwall–
Bellman lemma [3].

Theorem 2.1. Let (I) differential equation (1.1)
have an exponentially rigid integral set Γ generated by
a set of solutions γ(t + 
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 In this case, a constant σ ≥
0 can be found such that, if the initial conditions t = t0
and y = q satisfy the inequalities

(2.8)

there exists a solution y(t) = y(t, t0, q) to Eq. (2.1) which
is defined for all t ≥ t0 and converges uniformly with
respect to (t0, q) to the integral set Γ of Eq. (1.1) as
t  +∞; i.e., 

(2.9)

Proof. We choose numbers δ > 0, β > 0, and an inte-
gral number a such that the inequalities

(2.10)

are satisfied. Let conditions (2.8) be met. Since β < λ
and |q | < r, the solution y(t) to Eq. (2.1) is defined on
the interval to the right of t0 , on which |y(t) | < r. By vir-
tue of the inequality β ≤ α, the solution x(t, t0, q) is
defined for all t ≥ t0 . Let γ(·) be a solution belonging to
the set {γ(t + ∆), q)} to which the solution x(t, t0, q) cor-
responds. By virtue of the exponential rigidity, for
t ∈ [t0, t0 + a], we have

(2.11)

x t t0 q, ,( ) y t t0 p, ,( )– K t t0–( ){ } F t( ) t.d

0

t

∫exp≤

t0 σ, d q Γ,( ) β, β≤≥ min α 1
2
---C 1– λ, 

  ,=

d y t( ) Γ,( )          0, t         + ∞ .

Ch r( )
1
2
---, aδ aK( )exp

1
2
---β,≤ ≤

F t( ) td

t

t 1+

∫ δ t σ,>∀<

y t( ) γ t( )– Cβh t t0–( ) aK( ) F t( ) td

t0

t0 a+

∫exp+≤

≤ Cβ aK( ) F

t0 i+

t0 i 1+ +

∫ t( )dt
i 0=

a 1–

∑exp+

≤ Cβ aK( )aδ λ
2
---

β
2
--- λ .<+≤exp+
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It follows from (2.11) that the solution y(t) can be
extended as far as τ1 = t0 + a. Assuming that y1 =
y(τ1, t0, q), we arrive at

We then find by induction that the solution y(t) can be
extended to all values of t ≥ t0. In order to prove (2.9), it
is sufficient to be convinced that 

Let numbers δ1, σ0 ≥ σ, and an integer number a1 ≥ a
be chosen such that

If  and , then

It is evident that there exists a smallest integral num-
ber b such that τi = t0 + ab ≥ σ2. It follows from (2.14)1
that

Then,

(2.15)

Since Ch(a1) <  for a1 > 0, then we have

Finally, we prove by induction that

(2.16)

Since the choice of σ1 is independent of (t0, q), with
t0 ≥ σ, the inequality d(q, Γ) ≤ β and relationship (2.9)
are valid. Theorem 2.1 is proved.

Theorem 2.2. Let (I) Eq. (1.1) have an asymptoti-
cally rigid integral set Γ generated by a compact set of
initial points; (II) the vector function G(t, y) satisfy

y1 γ τ1( )– aK( )aδ Cβha+exp≤

< β
2
--- β

2
---+ β,=

2.12( )1

d y1 Γ,( ) β.≤ 2.12( )2

σ1 σ ε 0 d y t( ) Γ,( ) ε t σ1, d q Γ,( ) β.≤≥∀≤>∀≥∃

Cβh a1( )
1
4
---C 1– ε, Ka1( )a1β

1
4
---C 1– ε,≤exp≤ 2.13( )1

F t( ) td

t

t 1+

∫ δ1 t σ0.≥∀≤ 2.13( )2

τ i t0 ia+= yi y τ i t0 q, ,( )=

d yi Γ,( ) β t 0, y0 q.≡≥∀≤ 2.14( )1

d y τ i a1+ t0 q, ,( ) Γ,( ) 1
2
---C 1– ε.≤ 2.14( )2

d y t( ) Γ,( )
1
2
---ε a1K( ) F t( ) td

τ i a1+

τ i 2a1+

∫exp+≤

≤ 1
2
---ε a1K( )a1δ1 ε≤exp+

t τ i a1+ τ i 2a1+, )[ .∈∀

1
2
---

d y τ i 2a1+ t0 q, ,( ) Γ,( )
1
2
---C 1– ε.<

d y t( ) Γ,( ) ε, t σ2 ::= σ2 a1 a.+ +≥∀≤
Eqs. (2.2) and (2.3); and (III) hypothesis (III) of Theo-
rem 2.1 be valid. In this case, the conclusion of Theo-
rem 2.1 is valid.

Theorem 2.2 is proved in much the same way as
Theorem 2.1.

The Hale and Stokes theorems [5] on asymptotic
stability with an asymptotic amplitude and phase for
the bounded integral set of an autonomous differential
equation follow from Theorems 2.1 and 2.2.

3. VALIDITY OF THE PROPERTY 
OF ASYMPTOTIC RIGIDITY 

FOR A PERIODIC INTEGRAL SET

Let Eq. (1.1) have a rigid periodic integral set Γ and
its trajectories have the period ω(q). We now consider
the problem of the existence of a rigid integral set for
the perturbed differential equation

(3.1)

under conditions of the validity of (2.2), (2.3), and

(3.2)

(3.3)

where ω(q) is the period of the set γ(t, q), q ∈ Q; i.e.,

(3.4)

Theorem 3.1 Let the period ω(q) of a periodic inte-
gral set Γ generated by the set γ(t + ∆, q), with ∆ ∈ R
and q ∈  Q, be independent of q and the vectors

(3.5)

be linearly independent of each other for all (t, q) ∈
R × Q. Let a perturbation vector function G(t, y) satisfy
the condition |G(t, y) | ≤ F(t), with ∀ (t, y) ∈ R+ × M, and
the function F(t) meet condition (2.5). In this case, if the
conditions

 (3.6)

are satisfied (with σ the same as in Theorem 2.1), then
(I) there exists a point q1 ∈ Q such that

(3.7)

where C(q1) is a trajectory of Eq. (1.1); i.e.,

(3.8)

and (II) there exists a point q1 ∈ Q and a number ∆1 ∈
R dependent on (t0, q) such that 

(3.9)

dy
dt
------ g y( ) G t y,( ), t y,( ) R+ Rn×∈+=

F τ( ) τd td

t

∞

∫
0

∞

∫ +∞,<

ω q( ) C1 q( ), γ t q,( ) C2 t q,( ),∈∈

γ t ω q( ) q,+( ) γ t q,( ) t q,( )∀ R Q.×∈=

∂γ t q,( )
∂t

----------------- ∂γ t q,( )

∂q i( )-----------------, 
  ,

t q,( ) R Q, i×∈ 1 2 … m, , ,=

d q Γ,( ) β, t0 σ≥<

d y t( ) C q1( ),( )        0, t        ∞ ,

C q1( ) γ t q,( ): 0 t ω q1( )≤ ≤{ } ;=

y t( ) γ t ∆1+ q1,( )–         0, t         ∞ .
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Proof. Let conditions (3.6) be met. Then, according
to Theorem 2.1, the solution y(t) to Eq. (3.1) is defined
for all t ≥ t0 and satisfies condition (2.9). We choose
sequences τk ⊂  R, qk ⊂ Rn, and ∆k ⊂ R and, after that,
yk = y(τk, t0, q) and γk = γ(∆k, qk), such that

(3.10)

We now prove that

(3.11)

Since Q is a bounded set and the period ω(q) is a
continuous function of q, there exist constants π1 and π2
such that

(3.12)

We choose an integral number a such that ch(aπ1) ≤

. Let a point (t0, q) be given and the function γ0(t) cor-

responding to a function x(t, t0, q) belong to the set Γ.
In this case, γ0(t) is a periodic function with the period
ω0 ∈ [π1, π2]. Let τ1 = t0 + aω0, y1 = y(τ1, t0, q), γ0 =
γ0(t0) = γ0(τ1), and d0 = d(q, Γ). Then, we have

(3.13)

Introducing the notation

we arrive at the inequality

 

It follows from the inequality |y1 – γ0 | ≤ Ω1, with
γ0 ∈ Γ , that Ω1 ≥ d1 , where d1 = d(y1, Γ).

Let the function γ1(t) with a period ω1 belong to the
set Γ and correspond to x(t, τ1, y1). Let τ2 = τ1 + aω1,
y2 = y(τ2, t0, q) , and γ1 = γ1(τ1) = γ1(τ2).

In this case,

yk        γ ∆ 1 q 1 , ( ) Γ , τ k        + ∞ , ∈  

y

 

k

 
γ

 

k

 

–         0, k         + ∞ .

y t( ) γ t τk– ∆1+ q1,( )–          0, 

t

 
τ

 

k

 
τk 1+,[ ] , k         + ∞ . ∈

0 π1 ω q( ) π2 q Q.∈∀≤ ≤<

1
2
---

y1 γ0– cd0h aω0( ) aω0K( ) F t( ) td

t0

τ1

∫exp+≤

≤ cd0h aω0( ) aω0K( ) F t( ) td

t0

τ1

∫exp+

≤ 1
2
---d0 c1 F t( ) t, c1 ::= aπ2K( ).expd

t0

τ1

∫+

Ω1 ::= 
1
2
---d0 c1 F t( ) t,d

t0

τ1

∫+ 3.14( )1

y1 q– y1 γ0 τ1( )–≤ γ0 t0( ) q– cd0 Ω1.+≤+

y2 γ1–
1
2
---d1 c1 F t( ) t.d

τ1

τ2

∫+≤
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Denoting

we have

Proving by induction, we find for all k ≥ 0 that dk ::=
d(yk, Γ), dk ≤ Ωk, τk + 1 = τk + aωk, yk + 1 = y(τk + 1, t0, q),
and γk = γk(τk) = γk(τk + 1), where the functions γk(t)
belong to set (1.2) and have the period ωk. It is evident
that

where

Then,

(3.15)

Since dk ≤ Ωk ,

By induction, we find for all integral numbers i > 0
that

Using (3.15), we obtain the inequality

(3.16)

In addition, we have

It follows from estimates (2.5) and (3.16) that

(3.17)

Hence, yk is a Cauchy sequence in Rn and the right-
hand side of inequality (3.17) approaches zero as

Ω2 ::= 
1
2
---d1 c1 F t( ) t,d

τ1

τ2

∫+ 3.14( )2

y2 y1– cd1 Ω2 Ω2 cΩ1.+≤+≤

yk 1+ γk– Ωk 1+ ,≤ 3.15( )k

Ωk 1+  ::= 
1
2
---dk c1 F t( ) t.d

τk

τk 1+

∫+ 3.14( )k 1+

yk 1+ yk– cdk Ωk 1++ Ωk 1+ cΩk.+≤ ≤

Ωk 1+
1
2
---Ωk c1 F t( ) t.d

τk

τk 1+

∫+≤

Ωk i+ 2 i– dk c1 2 j i– 1+ F t( ) t.d

τk j+

τk j 1+ +

∫
j 0=

i 1–

∑+≤

Ωk i+

i 1=

s

∑ dk 2c1 F t( ) t s 0.>∀d

τk

τk s+

∫+≤

yk s+ yk– yk i 1+ + yk 1+–
i 0=

s 1–

∑≤

≤ cdk c 1+( ) Ωk i+ .
i 1=

s

∑+

yk s+ yk– 1 2c+( )dk 2c1 c 1+( ) F t( ) t.d

τk

∞

∫+≤
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k  ∞. Therefore, yk  . As far as the sets
[0, π2] and Q are compact and Γ = {γ(t, q): 0 ≤ t ≤ π2,

q ∈ Q}, the set Γ is also compact. Thus, Γ =  and  =
γ(∆1, q1) for certain values of ∆1 ∈ R and q1 ∈ Q. Since
|yk + 1 – γk |  0 as k  ∞, then γk  γ(∆1, q1) as
k  ∞. From Eqs. (3.15) and (3.16), we have

(3.18)

It follows from (3.18) that d(y(t), c(q1))  0 as
k  ∞. Since the period ω(q) is constant, we find that
ω(q) = ω, with ∀ q ∈ Q, and therefore τk = t0 + kaω ≡
t0(modω) and γ((t – τk) + ∆1, q1) = γ(t – t0 + ∆1, q1) ∀ k,
∀ t. For ∆* = ∆1 – t0, we have |y(t) – γ(t + ∆*, q1)|  0
as t  ∞. Theorem 3.1 is proven.

Theorem 3.2. Let the period ω(q) of a periodic inte-
gral set Γ generated by the set {γ(t + ∆, q), ∆ ∈ R,
q ∈ Q} depend on q and vectors (3.5) be linearly inde-
pendent of each other for all (t, q) ∈ R × Q. Let the per-
turbing vector function G(t, y) satisfy conditions (3.2)
and (3.3) in addition to the hypotheses of Theorem 3.1.
In this case, the integral set Γ ⊂ Rn of Eq. (3.1) is
asymptotically rigid in the Joukowski sense.

The proof of Theorem 3.2 is based on Theorem 3.1.
The theorems of M. Urabe [4] on asymptotic stabil-

ity with the asymptotic amplitude and phase of the peri-
odic integral set of Eq. (1.1) follow from Theorems 3.1
and 3.2.
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τk

τk s+

∫+≤
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MECHANICS
Characteristic Relations for the Velocities of Displacements 
in the Three-Dimensional Problem 

of the Full Limit Equilibrium of a Soil Continuum
D. D. Ivlev*, Academician A. Yu. Ishlinskiœ**, and R. I. Nepershin***

Received January 11, 2002
Characteristic relations for the velocities of dis-
placements in the three-dimensional problem of the full
limit equilibrium of a Coulomb soil continuum are
obtained. The corresponding relations for the plane and
axisymmetric problems follow from the relations for
the three-dimensional problem. As an example, com-
patible fields of slip lines and displacement velocities
are constructed for the problem of the pressure of a
smooth flat elliptic die on the soil half-space.

Analytical methods of constructing slip-line fields
and determining the critical load exist for the plane [1]
and axisymmetric [2] problems of the limit equilibrium
of a Coulomb soil continuum. The three-dimensional
problem is statically determinate and hyperbolic when
the soil continuum is at full limit equilibrium, which
corresponds to the edges of the Coulomb pyramid in the
space of the principal stresses [3, 4]. For the three-
dimensional problem of the full limit equilibrium of a
soil continuum, the characteristic relations for stresses
and calculations of slip surfaces were presented in [5].

In this paper, we derive characteristic relations for
the velocities of displacements along slip lines for the
three-dimensional problem of the full limit equilibrium
of the Coulomb soil continuum. The compatible fields
of these lines and displacement velocities are con-
structed for the problem of the pressure of a smooth
elliptic die on the half-space.

At the three-dimensional full limit equilibrium of
the Coulomb soil continuum, the principal stresses sat-
isfy the relations [5]

(1)
σ1 σ2 σ 1 λ ρsin–( ) h,–= =

σ3 σ 1 λ ρsin+( ) h.–=
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pr. Vernadskogo 101, Moscow, 117526 Russia
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Here, λ = +1 (–1) for σ3 > σ1 (σ3 < σ1) and σ is the
reduced average pressure calculated as [1]

(2)

where k is the cohesion and ρ is the angle of internal
friction. Hereafter, compressive normal stresses are
considered to be positive.

The axis of the characteristic cone coincides with
the direction of the stress σ3. Slip surfaces are tangent
to the characteristic cone and form the angle

(3)

with the stress σ3 . In the Cartesian coordinates {x, y, z},
the direction of σ3 is specified by the unit vector n with
the components

(4)

where ϕ and θ are the angles between the x-axis and the
vector n and between the z-axis and the projection of
the vector n onto the plane {y, z}, respectively. In turn,
the unit vectors l and m specify the directions of the
stresses σ1 and σ2 , respectively.

We introduce the orthogonal curvilinear coordinate
system {1, 2, 3} connected with a surface orthogonal to
the vector m. Line 3 is directed along the unit vector m,
line 2 is opposite to the principal normal to the line 3,
and the principal normals to lines 1 and 2 are directed
along the vector –m (Fig. 1).

In many important practical problems, the surface
{1, 2} is plane or approximately plane. In this case, the
three-dimensional problem can be solved as a sequence
of two-dimensional problems formulated at the known
surfaces {1, 2}, where boundary conditions for stresses
are used to determine slip surfaces and the field of
stresses in the region of the limit equilibrium [5].

To determine the field of displacement velocities,
we use the isotropy condition and the generalized asso-
ciated rule of a plastic flow for the edges of the Cou-
lomb pyramid. The condition and the rule ensure the
maximum flow freedom for both a perfectly plastic

σ 1
2
--- σ1 σ3+( ) h, h+ k ρ,cot= =

µ π
4
--- ρ

2
---–=

n1 ϕ , ncos ϕ θ, nsinsin ϕ θ,cossin= = =
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body and the Coulomb soil continuum at the limit equi-
librium [6–8]. The generalized associated flow rule
leads to the following expression for strain rates:

. (5)

The dissipative function D for compressive principal
stresses has the form

, (6)

and the principal strain rates satisfy the inequality

(7)

The right-hand side of Eq. (5) determines the variation
rate for the medium density ω:

(8)

Relations (7) and (8) indicate that deformation of the
soil continuum in the region of the limit equilibrium
decreases its density.

According to the isotropy condition, the principal
strain rates ε1, ε2, and ε3 are directed along the unit vec-
tors l, m, and n of the principal stresses, respectively.
The strain rates along the slip lines α and β, as well as
along the directions α1 and β1 orthogonal to these lines,
are related to ε1 and ε3 by the formulas

(9)

(10)

which lead to the invariant relations

(11)

ε1 ε2 ε3+ + ε1 ε2 ε3–+( ) ρsin=

D ε1 ε2 ε3–+( )k ρcos 0≥=

ε1 ε2 ε3–+ 0.≥

d
dt
----- ωln( ) ε3 ε1 ε2+( )–[ ] ρ .sin=

εα εβ ε1 µsin
2 ε3 µ,cos

2
+= =

εα1 εβ1 ε1 µsin
2 ε3 µcos

2
,+= =

εα εα1+ εβ εβ1+ ε1 ε3.+= =

~
~

1

2

3

βϕµ

µ

α
β1

α1

R3

m

n

l

Fig. 1. Curvilinear coordinates and slip lines in the surface
orthogonal to the stress σ2 .
Expressions (3), (9), and (11) yield

, (12)

and Eqs. (5), (11), and (12) lead to

(13)

According to the isotropy condition, the shear rates
along the normal to the surface {1, 2} are equal to zero.
The displacement-velocity vector lying in the plane
tangent to the surface {1, 2} satisfies this condition. Its
projections onto the slip lines are denoted as Vα and Vβ.

The strain rates εα, εβ, and ε2 are found by differen-
tiating the velocity vector in the orthogonal curvilinear
coordinates {α, α1, 3} and {β, β1, 3}, where the rotation
angles ϕα, ϕβ, and ϕ3 of tangents to the coordinate lines
α, β, and 3, respectively, are considered as independent
variables. Then, in terms of the coordinates {α, α1, 3},

(14)

, (15)

whereas, in terms of the coordinates {α, α1, 3},

(16)

. (17)

If the surface {1, 2} is of low curvature, the touching
planes of the curves α, α1, β, and β1 are close to the
plane tangent to the surface {1, 2}. Then, variations of
the curvature radii of the slip lines satisfy the relations
(Fig. 1)

(18)

Differentials of the curvature radius R3 satisfy the rela-
tions

(19)

(20)

where ϕ is the angle between the direction of the stress
σ3 and the coordinate line 1 on the surface {1, 2}.

εα εα1– εβ εβ1– ε3 ε1–( ) ρsin= =

εα εβ
–ε2 1 ρsin–( )

2
---------------------------------.–= =

εα
∂

∂Sα
-------- Vα Vβ ρsin+( ) Vβ ρ

∂ Rαln
∂Sα1

---------------,cos–=

ε2 Vα Vβ ρsin+( )
∂ R3ln
∂Sα

-------------- Vβ ρ
∂ R3ln
∂Sα1

--------------cos–=

εβ
∂

∂Sβ
-------- Vβ Vα ρsin+( ) Vα ρ

∂ Rβln
∂Sβ1

---------------,cos+=

ε2 Vβ Vα ρsin+( )
∂ R3ln
∂Sβ

-------------- Vα ρ
∂ R3ln
∂Sβ1

--------------cos+=

dRα dSα1– dSβ ρ,cos= =

dRβ dSβ1– dSα ρ.cos–= =

dR3 dSα ϕ µ+( ) in α ,sin=

dR3 dSβ ρ ϕ µ+( )cos in α1,cos–=

dR3 dSβ ϕ µ–( ) in β,sin=

dR3 dSα ρ ϕ µ–( )cos in β1,cos=
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Expressions (13)–(20) provide the following differen-
tial relations for the velocities Vα and Vβ:

(21)

(22)

Here, dϕ is the angle of rotation of a tangent to the slip
lines along the arcs dSα and dSβ and the velocity com-
ponent V2 along the coordinate line 2 is expressed as

(23)

(24)

If the surface {1, 2} is plane and  = 0, Eqs. (21)

and (22) describe flow kinematics in the plane limit
equilibrium of the Coulomb soil continuum. If all the
planes {1, 2} intersect each other along the line 1,
Eqs. (21)–(24) describe flow kinematics in the axisym-
metric full limit equilibrium of the soil continuum.

When ρ = 0, where  = 0 and  > 0, Eqs. (21)

and (22) go over into Geiringer’s equations of plane
deformation and into the relations for velocities of axi-
symmetric shear of a perfectly plastic body, respec-
tively [9].

For the plane limit equilibrium of a soil continuum,
the homogeneous differential relations (21) and (22)
admit velocity discontinuities [V]α = const and [V]β =
const when the velocity components Vβ and Vα are con-
tinuous along the slip lines α and β, respectively. For

 > 0, Eqs. (21)–(24) complemented by the equations

dSα sin(ϕ + µ) = dR3 and dSβsin(ϕ – µ) = dR3 along the
α and β lines, respectively, lead to the following differ-
ential relations for the velocity discontinuities:

(25)

(26)

The integration of Eqs. (25) and (26) for a given dis-

continuity [V  at the point  of line 2 determines

d Vα ρVβsin+( ) ρVβdϕcos+

+ 1 ρsin–( )
V2

2R3
---------dSα 0 along α ,=

d Vβ ρVαsin+( ) ρVαdϕcos–

+ 1 ρsin–( )
V2

2R3
---------dSβ 0 along β.=

V2 Vα ρVβsin+( ) ϕ µ+( )sin=

– ρVβ ϕ µ+( ) in α ,coscos

V2 Vβ ρVαsin+( ) ϕ µ–( )sin=

+ ρVα ϕ µ–( ) in β.coscos

1
R3
-----

1
R3
----- 1

R3
-----

1
R3
-----

d V[ ] α 1 ρsin–( ) V[ ] α
dR3

2R3
--------- along α ,–=

d V[ ] β 1 ρsin–( ) V[ ] β
dR3

2R3
--------- along β.–=

]α β,
0 R3

0
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the variation of velocity discontinuity along the slip
lines α and β as follows:

(27)

Below, we consider the problem of constructing
compatible fields of slip lines and velocities at the full
limit equilibrium of the half-space x ≥ 0 when a die that
is flat, smooth, and elliptic in plan presses on this half-
space.

The surfaces {1, 2} are assumed to be plane and
orthogonal to the ellipse contour. In the plane {1, 2},
we specify the Cartesian coordinate system {x1, x2}
with the origin at the point of intersection of this plane
with the ellipse axis. The x1-axis is parallel to the x-axis
of the basic coordinate system {x, y, z}, and the x2-axis
is normal to the ellipse.

In the plane x = 0 of the coordinate system {x, y, z},
the ellipse is parametrically specified as

(28)

The minor semiaxis of the ellipse is directed along
the z-axis and has a length considered to be the charac-
teristic dimension of the problem, and b is the length of
the major semiaxis. The ellipse curvature radius R and
the angle θ between the z-axis and the plane {1, 2}
passing through the point z0, y0 are determined by the
expressions

(29)

The plane {1, 2} intersects the y-axis at the following
distance d from the die boundary:

(30)

The curvature radius of the coordinate line 3 normal
to the plane {1, 2} is determined by the expression

(31)

Based on the static boundary conditions of the prob-
lem and taking body force into account, we calculated
slip surfaces in [5]. Figure 2 shows the field of slip lines
in the plane θ = const under the assumption that, upon
reaching the limit equilibrium, the material can slip
along the smooth die boundary OA. The boundary AB
is free of shear stresses and is subject to a given pres-
sure p. The quantity γH = 1 is considered to be the char-
acteristic stress, where γ is the volume weight of the
medium and H is the length of the minor semiaxis of the
ellipse. The die is forced into the half-space with veloc-
ity V = 1 along the x-axis.

V[ ] α β, V[ ] α β,
0 R3

0

R3
----- at R3, R3

0 0.>=

z0 ξ , y0cos b ξ , 0sin ξ π
2
---.≤ ≤= =

R
1
b
--- ξsin

2
b2 ξcos

2
+( )

3/2
, θtan

ξtan
b

-----------.= =

d
1
b
--- ξsin

2
b2 ξcos

2
+ .=

R3 R d– x2.+=
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D

α

µ

x1

0.5

C

α

αβ

0 A 0.5 1.0 B x2

1.105

d = 0.443

β

Fig. 2. Slip lines caused by penetration of a smooth elliptic die into the half-space in the plane θ = 0.798 at b = 3 and p = 0.1.
The velocity components along the x1- and x2-axes
are related to Vα and Vβ as

(32)

which can be inverted as

(33)

The half-space below the boundary ODCB is station-
ary. At the point O, the die velocity Vx = 1 causes a
velocity gap along a tangent to the slip line α,

at x2 = 0. (34)

This gap varies along the boundary ODCB accord-

ing to Eq. (27), where  and R3 are defined by Eq. (31)
at x2 ≥ 0. Since the velocity component normal to the α
line ODCB is continuous, Vβ = 0. Thus, at the boundary
ODCB, boundary conditions for velocities are deter-
mined by the expressions

(35)

At a smooth die boundary OA, ϕ = 0. The continuity
of the velocity component normal to this boundary and
the first of Eqs. (32) yield the boundary condition

(36)

The calculation of the slip-line field on the basis of
the static boundary conditions of the problem provides
the coordinates of the slip-line points and the angles ϕ
in the region of the limit equilibrium. The field of the

V x1 Vα ϕ µ+( )cos Vβ ϕ µ–( ),cos+=

V x2 Vα ϕ µ+( )sin Vβ ϕ µ–( ),sin+=

Vα
V x2 ϕ µ–( ) – cos V x1 ϕ µ–( )sin

ρcos
----------------------------------------------------------------------------,=

Vβ
V x1 ϕ µ+( )sin  – V x2 ϕ µ+( )cos

ρcos
-----------------------------------------------------------------------------.=

V[ ] α
0 1

µcos
------------=

R3
0

Va
1

µcos
------------ R d–

R d– x2+
------------------------, Vβ 0 at ODCB.= =

Vα Vβ+
1

µcos
------------ at OA.=
displacement velocities Vα and Vβ is found by integrat-
ing differential relations (21)–(24) with boundary con-
ditions (35) and (36). In the region OAD, we solve the
mixed problem with conditions (35) specified in OD
and relations (22), (24), and (36) applied in OA. In the
regions ADC and ACB, we solve the Goursat problem
with conditions (35) specified in DC and CB, respec-
tively, and using velocities found in AD and AC, respec-
tively.

AO
Vx1

D[V]0
α

Vx2

µ

0–B

B

C

A

1

Fig. 3. Hodograph of displacement velocities in the region
of the limit equilibrium for the slip-line field shown in
Fig. 2.

1
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Relations (21)–(24) are integrated numerically via
approximating velocity differentials by finite differ-
ences and variable functions by their average values
between nodes of the slip lines. As a result, these rela-
tions lead to the system of two linear equations for Vα
and Vβ at the nodes of the slip-line network. In the coor-
dinates {x1, x2}, the velocity is found from Eqs. (32). In
the coordinates {x, y, z}, the velocity vector is expressed
as

(37)

(38)

where y0, θ, and d are determined by Eqs. (28)–(30).
To calculate the fields of slip lines and displacement

velocities when the elliptic die presses on the half-
space, we have written a computer program. Figure 3
shows the field of displacement velocities in the
hodograph plane {Vx1, Vx2}. The field was calculated
for the slip-line field in the plain θ = 0.798 that is shown
in Fig. 2. Figures 2 and 3 demonstrate that strain rates in
the region of the limit equilibrium satisfy the inequalities
ε1 > 0, ε2 > 0, and ε3 < 0. Dissipative function (6) is pos-
itive, and the rate of variation of medium density (8) is
negative. The penetration of the die into the half-space
decreases the density in the region of the limit equilib-

U V x1, V V x2 θ, Wsin V x2 θ,cos= = =

x x1, y y0 x2 d–( ) θ, zsin+ x2 θ,cos= = =
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rium. In this case, the maximum decrease occurs near
the die edge.
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Basic results related to the stability of motion and
rigidity of trajectories were established in classic stud-
ies [1, 2]. The theory of the stability of motion has been
developed in papers of both Russian and foreign
authors (see, e.g., [4–7]).

In this paper, we establish the principle of reducing
the problem on stability in the Joukowski sense for tra-
jectories of a differential equation describing certain
celestial-mechanics systems to a problem on stability in
the Lyapunov sense for a linear time-dependent second-
order differential equation. We apply the results to the
analysis of stability in the Joukowski sense for trajecto-
ries of certain Keplerian motions.

We consider a conservative system with two degrees
of freedom described by the set of equations

(1)

where a(x1, x2) and U(x1, x2) are given functions of x1

and x2 . Here,  is the partial derivative of U with
respect to xi , i = 1, 2. It is well known [8, 9] that for any
conservative system with two degrees of freedom,
set (1) represents a canonical form with respect to the
properly chosen coordinate system (x1, x2).

A variety of problems of celestial mechanics are
reduced to equations taking the form of Eqs. (1). These
are the classic problem of two spherical bodies, the
problem of two fixed and one mobile material points,
the restricted circular three-body problem, the problem
of a point moving under the action of several material
rings and of two points circling around their center of
inertia, the restricted circular three-body problem in a
gravitating medium, the problem of a point inside a
gravitating ring similar to Saturn’s rings, etc. [10–12].

For a series of celestial-mechanics problems, the
condition of stability in the Lyapunov sense turns out to

ẋ̇1 2a x1 x2,( ) ẋ2 Ux1
x1 x2,( ),+=

ẋ̇2 2– a x1 x2,( ) ẋ1 Ux2
x1 x2,( ),+=

Uxi

Russian Open State Technical University of Railway 
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ul. Chasovaya 22/2, Moscow, 125808 Russia
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be too rigorous and it is not satisfied in a number of
important cases. Thus, the analysis of a less rigorous
characteristic, namely, the stability of trajectories in the
Joukowski sense, is of interest [13, 14].

Let xi = ϕi(t) (i = 1, 2) be a solution to Eqs. (1) which
does not correspond to the equilibrium state. The Jacobi
equations of system (1), which determine a perturba-
tion y(t) = (y1(t), y2(t)) of the solution xi = ϕi(t), take the
form

(2)

where a[t] ::= a(ϕ1(t), ϕ2(t)). The coefficients Ai(t) and
Bi(t) are determined by the relationships

where the argument [t] of the functions implies that this
function is evaluated for x1 = ϕ1(t) and x2 = ϕ2(t).

The set of linear Jacobi equations (2) has a first inte-
gral of the form

(3)

It is evident that the expressions

(4)

belong to the solutions to Eqs. (1) with an accuracy to
the second order in y1 and y2 if and only if the functions
yi are solutions to Jacobi equations (2). Therefore, yi =

ẏ̇1 2a t[ ] ẏ2– Ai t( )yi,
i 1=

2

∑=

ẏ̇2 2a t[ ] ẏ1+ Bi t( )yi,
i 1=

2

∑=

A1 t( ) Ux1x1
t[ ] 2ax1

t[ ]ϕ̇ 2,+=

A2 t( ) Ux1x2
t[ ] 2ax2

t[ ]ϕ̇ 2,+=

B1 t( ) Ux2x1
t[ ] 2ax1

t[ ]ϕ̇ 1,–=

B2 t( ) Ux2x2
t[ ] 2ax2

t[ ]ϕ̇ 1,–=

ϕ̇1 t( ) ẏ1 ϕ̇2 t( ) ẏ2 Ux1
t[ ] y1 – Ux2

t[ ] y2–+

=  h const.=

xi ϕ i t( ) yi+=
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δxi and integral (3) of Eqs. (2) can formally be derived
from the kinetic-energy integral for system (1)

(5)

on condition that h = δc1 .
We assume that

(6)

Identity (6) implies that the integration constant h
entering into Eq. (3) and determined by the four initial
values of the solution y(t) = (y1(t), y2(t)) to Eqs. (2) is
zero.

After substituting the solution x = ϕ(t) into (1) and
(5) and differentiating the results of the substitution
with respect to t, we arrive at (2) and (6), where yi are
replaced by (t), i.e.,

(7)

Thus, the quantities y(t) are isoenergetic perturba-
tions of the quantities ϕi(t), i = 1, 2. Since the solution
xi = ϕi(t) to set (1) does not correspond to an equilib-
rium state, solution (7) to Jacobi equations (2) is not
identically equal to zero. Therefore, the origin t = 0 of
the t-axis can always be chosen such that for the solu-
tion xi = ϕi(t) under consideration, we have

(8)

Since expression (3) is an integral of Eqs. (2), the
perturbation determined by the four initial values

(9)

is an isoenergetic perturbation if and only if the con-
dition

(10)

is satisfied. It follows from Eqs. (8) and (10) that the set
of isoenergetic perturbations of the solution ϕ(t)
depends only on the three constants entering into (9).

For a fixed value of t, the projection z(t) of the per-
turbation y(t) = (y1(t), y2(t)) along the directed normal
to the trajectory of the solution xi = ϕi(t) is determined
by the formula

(11)

Definition 1. The scalar function z = z(t) is referred
to as a normal perturbation of the solution xi = ϕi(t) to
conservative system (1) with two degrees of freedom if
there exists at least one solution yi = yi(t) to Jacobi
equations (2) such that the function z(t) can be pre-
sented in form (11).

1
2
--- ẋ1

2 ẋ2
2+( ) U x1 x2,( )– c1=

ϕ̇1 t( ) ẏ1 t( ) ϕ̇2 t( ) ẏ2 t( )+

– Ux t[ ] y1 t( ) Uy t[ ] y2 t( )– 0 t.∀=

ϕ̇ i

yi ϕ̇ i t( ), i 1 2.,= =

ϕ i 0( ) 0, ϕ̇ i 0( ) 0, i≠ ≠ 1 2.,=

yi 0( ), ẏi 0( ), i 1 2,=

ϕ̇1 0( )y1 0( ) ϕ̇2 0( ) ẏ2 0( )+

– Ux1
0[ ] y1 0( ) Ux2

0[ ] y2 0( )– 0=

z t( )
ϕ̇2 t( )–

ϕ̇1
2

t( ) ϕ̇2
2

t( )+
-------------------------------y1 t( )

ϕ̇1 t( )

ϕ̇1
2

t( ) ϕ̇2
2

t( )+
-----------------------------------y2 t( ).+=
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We consider the function

(12)

related to the function z = z(t) by the expression

(13)

Theorem 1. Any normal perturbation z(t) = (  +

)–1/2u(t) of a solution (ϕ1(t), ϕ2(t)) to a conservative
system with two degrees of freedom is a solution to the
following linear second-order differential equation:

(14)

Conversely, any solution u(t) to Eq. (14) is a normal
perturbation of the solution (ϕ1(t), ϕ2(t)) to conserva-
tive system (1) with two degrees of freedom. In this
case, the coefficients A(t), B(t), and C(t) of Eq. (14) are
determined by the formulas 

Remark. Substituting (13) into Eq. (14), we arrive
at the equation 

(16)

where the coefficient D(t) is unambiguously deter-
mined by set (1), by its solution xi = ϕi(t), and by the
relationship

(17)

where

Proof. Let y = y(t) be the solution to Jacobi equa-
tions (2) such that condition (6) is satisfied. By virtue of

u u t( ) ::= ϕ̇1 t( )y2 t( ) ϕ̇2 t( )y1 t( )–=

u ϕ̇1
2 ϕ̇2

2+( )
1/2

z, ϕ̇1 ϕ̇1 t( ), ϕ̇2 ϕ̇2 t( ).= = =

ϕ̇1
2

ϕ̇2
2

A t( ) u̇̇ B t( )u̇ C t( )u+ + 0.=

A t( ) ::= 
1
2
--- ϕ̇1

2
t( ) ϕ̇2

2
t( )+( ),– 15( )1

B t( ) ::= ϕ̇1 t( )ϕ̇̇1 t( ) ϕ̇2 t( )ϕ̇̇2 t( ),+ 15( )2

C t( ) ::= 2a t[ ] ϕ̇ 1 t( )ϕ̇̇2 t( ) ϕ̇2 t( )ϕ̇̇1 t( )–( )

– ϕ̇̇1
2

t( ) ϕ̇2
2

t( )+( ) 1
2
--- ϕ̇1

2
t( ) ϕ̇2

2
t( )+( )+

× –4a2 t[ ] Ux1x1
t[ ] Ux2x2

t[ ]+ +[
15( )3

– ϕ̇1 t( )ax2
t[ ] ϕ̇ 2 t( )ax1

t[ ]–( ) ] .

ż̇ D t( )z+ 0,=

D t( ) D1 t( ) D2 t( ),+=

D1 t( ) v 2– v̇̇ v 2v̇ 2–( ),=

v 2 U t[ ] h+( ),=

18( )1

D2 t( ) 2v 2– Ux1

2 t[ ] Ux2

2 t[ ]+( )=

+ 4v 2– a t[ ] Ux1
t[ ]ϕ̇ 2 Ux2

t[ ]ϕ̇ 1–( ) 18( )2

– 4a2 t[ ] Ux1x1
t[ ] Ux2x2

t[ ] .+ +
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Eqs. (1), we have

(19)

Thus, it follows from Eq. (6) that

(20)

Taking into account Eq. (12), we arrive at

(21)

It follows from Eqs. (3) and (19) that

Multiplying Eqs. (22)1–(22)4 by y2, –y1 and (t) –

(t), respectively, and summing the products
obtained, we have

(23)

Introducing the notation

we find from Eqs. (12) and (20)

(24)

We then use Eqs. (19) and (24) and the algebraic

Ux1
t[ ] ϕ̇̇ 1 t( ) 2a t[ ]ϕ̇ 2 t( ),–=

Ux2
t[ ] ϕ̇̇ 2 t( ) 2a t[ ]ϕ̇ 1 t( ).–=

ϕ̇1 t( ) ẏ1 ϕ̇2 t( ) ẏ2 ϕ̇̇1 t( ) 2a t[ ]–( )y1–+

– ϕ̇̇2 t( ) 2a t[ ]ϕ̇ 1 t( )+( )y2 0.=

u̇̇ 2 ẏ1 ϕ̇̇2 t( ) ẏ2ϕ1 t( )–[ ]+

=  y2 ϕ̇̇̇ 1 t( ) y1 ϕ̇̇̇ 2 t( )– ẏ̇2ϕ̇1 t( ) ẏ̇1ϕ̇2 t( ).–+

ϕ̇̇̇ 1 t( ) 2a t[ ]ϕ̇̇ 2 t( )=

+ Ux1x1
t[ ] 2ax1

t[ ]ϕ 2 t( )+( )ϕ̇1 t( ) 22( )1

+ Ux1x2
t[ ] 2ax2

t[ ]ϕ̇ 2 t( )+( )ϕ̇2 t( ),

ϕ̇̇̇ 2 t( ) 2a t[ ]ϕ̇̇ 1 t( )–=

+ Ux2x2
t[ ] 2ax2

t[ ]ϕ 1 t( )–( )ϕ̇2 t( ),
22( )2

ẏ̇2 2– a t[ ] ẏ1=

+ Ux2x1
t[ ] 2ax1

t[ ]ϕ̇ 1 t( )–( )y1 22( )3

+ Ux2x2
t[ ]    2–  a x 

2
 t [ ]ϕ ˙ 1 t ( )[ ] y 2 ,

ẏ̇1 2a t[ ] ẏ̇2=

+ Ux1x1
t[ ] 2ax1

t[ ]ϕ̇ 2 t( )+( )y1 22( )4

+ Ux1x2
t[ ] 2ax2

t[ ]ϕ̇ 2 t( )+[ ] y2.

ϕ̇1

ϕ̇2

y2 ϕ̇̇̇ 1 t( ) y1 ϕ̇̇̇ 2 t( )– ẏ̇2ϕ̇1 t( ) ẏ̇1ϕ̇2 t( )–+

=  2a t[ ] ϕ̇̇ 1 t( )y1 ϕ̇̇2 t( )y2 ϕ̇1 t( ) ẏ1– ϕ̇2 t( ) ẏ2+ +{ }
+ Ux1x1

t[ ] Ux2x2
t[ ]+{

– 2 ϕ̇1 t( )ax2
t[ ] ϕ̇ 2 t( )ax1

t[ ]–[ ] } ϕ̇ 1 t( )y2 ϕ̇2 t( )y1–( ).

H t( ) ::= –4a2 t[ ] Ux1x1
t[ ] Ux2x2

t[ ]+ +

– ϕ̇1 t( )ax2
t[ ] ϕ̇ 2 t( )ax1

t[ ]–[ ] ,

u̇̇ H t( )u– 2 ẏ1 ϕ̇̇2 t( ) ẏ2 ϕ̇̇2 t( )–( )+ 0.=
identity [8]

(25)

.

As a result, we have

(26)

It is easy to prove that Eq. (14), with its coefficients
determined from formulas (15)1–(15)3, follows from
Eq. (26).

Now, we prove that for an arbitrary solution u = u(t )
to Eq. (14), there exists at least one solution {y1(t),
y2(t)} such that the three functions u(t), y1(t), and y2(t)
satisfy conditions (6) and (12).

Let the initial conditions for the solution u(t) to
Eq. (14) be given by the values

(27)

We specify the four initial values in (9) as follows.
One of them, for example, y1(0), is chosen arbitrarily,
and the three remaining values, y2(0), (0), and (0),
are chosen in such a way that they satisfy the set of
algebraic equations

Since the determinant of set (28)1–(28)3 is not zero,
the quantities y2(0), (0), and (0) are uniquely
determined by this set. We denote the solution to Eq. (2)
under initial conditions (9) as 

. (29)

By virtue of Eq. (28)3 , the integration constant c for
solution (29) is equal to zero; therefore, the function

(30)

is a solution to Eq. (14). 
It follows from Eqs. (28)1, (28)2, and (30) that 

(31)

ϕ̇1 t( )ϕ̇̇1 t( ) ϕ̇2 t( )ϕ̇̇2 t( )+( )u ϕ̇1
2

t( ) ϕ̇̇2
2

t( )+( )u–

=  ẏ1ϕ̇1 t( ) ẏ2ϕ̇2 t( ) y1 ϕ̇̇1 t( )– ẏ2 ϕ̇̇2 t( )–+{ }

× ẏ1 t( )ϕ̇̇2 t( ) ẏ2 t( )ϕ̇̇1 t( )–{ }

– ẏ1 ϕ̇̇2 t( ) ẏ2 ϕ̇̇1 t( )–( ) ẏ1
2 t( ) ẏ2

2 t( )+( )

ϕ̇1 t( )ϕ̇̇1 t( ) ϕ̇2 t( )ϕ̇̇2 t( )+( )u̇

+ 2a t[ ] ϕ̇ 1 t( )ϕ̇̇2 t( ) ϕ̇2 t( )ϕ̇̇1 t( )–( )u

+
1
2
--- – u̇̇ H t( )+( ) ϕ̇1

2
t( ) ϕ̇2

2
t( )+( ) ϕ̇̇1

2
t( ) ϕ̇2

2
t( )+( )u– 0.=

u 0( ), u̇ 0( ).

ẏ1 ẏ2

–u 0( ) ϕ̇2 0( )y1 0( )– ϕ̇1 0( )y2 0( )+ 0,= 28( )1

–u̇ 0( ) ẋ̇2 0( )y1 0( )– ϕ̇̇1 0( )y2 0( )+

– ϕ̇2 0( ) ẏ1 0( ) ϕ̇1 0( ) ẏ2 0( )+ 0,=
28( )2

–Ux1
0[ ] y1 0( ) Ux2

0[ ] y2 0( )–

+ ϕ̇1 0( ) ẏ1 0( ) ϕ̇2 0( ) ẏ2 0( )+ 0.=
28( )3

ẏ1 ẏ2

y1 ψ1 t( ), y2 ψ2 t( )= =

α t( ) ::= ϕ̇1 t( )ψ2 t( ) ϕ̇2 t( )ψ1 t( )–

u 0( ) α 0( ), u̇ 0( ) α̇ 0( ).= =
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Therefore, the given solution u(t) to Eq. (14) has the
same initial values as solution (30). Hence, u(t) ≡ α(t)
and an arbitrarily given solution u(t) can be represented
using the isoenergetic perturbation (y1(t), y2(t)) deter-
mined by Eqs. (2). This perturbation is responsible for
the normal displacement z(t) and depends on three arbi-
trary constants. At the same time, the general solution
to Eq. (14) depends only on two arbitrary constants pro-
vided that A(t), B(t), and C(t) are given. This is
explained by the fact that the trivial solution u ≡ 0 to
Eq. (14) corresponds not only to the trivial solution
y1(t) = y2(t) = 0 of Eqs. (24) but also to the isoenergetic
perturbation y1 = c (t) and y2 = c (t), with c = const,
c ≠ 0. The constant c is just the missing third arbitrary
constant. In fact, the functions (t) and (t) cannot
be identically equal to zero or represent the trivial solu-
tion y1 = y2 ≡ 0, because otherwise the solution xi = ϕi(t)
would degenerate into the equilibrium state, which is
excluded by the definition of the theorem. Thus, Theo-
rem 1 is proved.

Definition 2. The solution xi = ϕi(t) (i = 1, 2) to con-
servative system (1) with two degrees of freedom is
referred to as (I) a stable solution in the Joukowski
sense if for an arbitrary number ε > 0, there exists a
number δ = δ(ε) such that

(32)

where z(t) is a normal perturbation of the solution xi =
ϕi(t) (i = 1, 2) to conservative system (1) or as (II) a
asymptotically stable solution in the Joukowski sense if
this solution is stable in the Joukowski sense and, in
addition,

|z(t)|  0, as t  +∞. (33)

Remark. The notion of stability for the solution
(y1(t), y2(t)), which was formulated above using the
normal perturbation z(t), is equivalent to the notion of
stability in the Lyapunov sense for the reparameterized
solution (ϕ1(t), ϕ2(t)) [13, 14].

ϕ̇1 ϕ̇2

ϕ̇1 ϕ̇2

z t0( ) δ z t( )⇒ ε  t∀ t0,≥< <
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Theorem 2. For the conservative system with two
degrees of freedom, the motion corresponding to the
solution xi = ϕi(t) (i = 1, 2) to Eqs. (1) is stable (asymp-
totically stable) in the Joukowski sense if the solution
u(t) to second-order equation (14) is stable (asymptot-
ically stable) in the Lyapunov sense.

Theorem 2 is a corollary of Theorem 1 and the def-
initions of both stability (asymptotic stability) in the
Lyapunov sense and stability (asymptotic stability) in
the Joukowski sense.

Example 1. Let U(x1, x2) = const (Coriolis force
field). For a = 2ω = const, we are dealing with a poten-
tial motion with respect to a coordinate system uni-
formly rotating with angular velocity ω. In this case, the
system of equations (1) takes the form

(34)

where U = 2ω and D(t) = 32ω2. All trajectories of
Eq. (34) are stable in the Joukowski sense.

Example 2. Let U(x1, x2) = [ω2(  + ) + h] (iner-

tial motion with respect to a uniformly rotating coordi-
nate system). In this case,

(35)

where  = ω2x1,  = ω2x2,  = ω2,  = 0,

 = ω2, and D(t) = (  + )ω. For h > 0, all tra-
jectories of Eq. (35) are stable in the Joukowski sense.

Example 3. Let ω = 0, U = r–1 + h, and r2 =  + 

(Keplerian motion with respect to a fixed coordinate
system). In this case, Eqs. (1) take the form

, (36)

where  = –r–3x1,  = –r–3x2,  = –r–3 + 3r–5 ,

 = 3r–5x1x2, and  = –r–3 + 3r–5 . The func-
tion D(t) corresponding to Eq. (17) is

ẋ̇1 2ωẋ2– 0, ẋ̇2 2ωẋ1+ 0,= =

1
2
--- x1

2 x2
2

ẋ̇1 2ωẋ2– ω2x1– 0, ẋ̇2 2ωẋ1 ω2x2–+ 0,= =

Ux1
Ux2

Ux1x1
Ux1x2

Ux2x2
ϕ1

2 ϕ2
2

1
2
--- x1

2 x2
2

ẋ̇1 Ux1
, ẋ̇2 Ux2

= =

Ux1
Ux2

Ux1x1
x1

2

Ux1x2
Ux2x2

x2
2

D t( )
ω2 ϕ̇1

2 ϕ̇2
2 ϕ1 ϕ̇̇1 ϕ̇̇2+ + +( ) 4ω3 ϕ1ϕ̇2 ϕ2ϕ̇1–( )– 6ω2h–

ω2 ϕ1
2 ϕ2

2+( ) 3h+
--------------------------------------------------------------------------------------------------------------------------------

3ω4 ϕ1ϕ̇1
2 ϕ̇2

2 ϕ1 ϕ̇̇1 ϕ̇̇2+ + +( )

ω2 ϕ1
2 ϕ2

2+( ) 3h+( )2
--------------------------------------------------------------------.–=
Example 4. Let ω ≠ 0 and U =  + r2 + 

(Keplerian motion with respect to a uniformly rotating
coordinate system). In this case,

1
r
--- ω2

2
------ h

2
---

Ux1
–r 3– x1 ω2x1, Ux2

+ –r 3– x2 ω2x2,+= =

Ux1x1
–r 3– 3r 5– x1

2 ω2, Ux1x2
+ + 3r 5– x1x2,= =
For simplicity, we consider only those phase-space
points whose projections onto the (x1, x2) plane coin-
cide with one of the libration points. In this case,  =

 = 0 in the libration points and the equations of
motion take the form

(37)

Ux2x2
–r 3– 3r 5– x2

2 ω2
.+ +=

Ux1

Ux2

ẋ̇1 2 ẋ2– Ux1
, ẋ̇2 2 ẋ1+ Ux2

.= =
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The function corresponding to Eq. (17) is

If

, (38)

then the motion corresponding to the solution zi = zi(t)
to Eq.(16) is stable in the Lyapunov sense [15]. There-
fore, in the cases considered in Examples 3 and 4, the
Keplerian trajectory that corresponds to the solutions
xi = ϕi(t) to Eqs. (36) and (37) will be stable in the
Joukowski sense if condition (38) is satisfied.
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1. The system of three equations under consider-
ation has the vector form [1]

(1)

where u is the desired displacement vector, P is the
given body force, µ and λ are the Lamé constants, ρ is
the material density, and ∆ is the Laplace operator. Sys-
tem (1) can be written in any orthogonal coordinate sys-
tem [1, 2]. I investigated the problem of reducing this
system to one independent and two coupled equations
and demonstrated that this reduction is possible only in
Cartesian, circular cylindrical, and spherical coordinate
systems. Below, the reduction will be represented in
these coordinate systems.

Equation (1) is preliminarily rewritten as follows.
The symbol µ will denote the Poisson ratio, and the
shear modulus G will be used instead of the Lamé con-
stant µ. Then, in terms of the notation

(2)

Eq. (1) can be written as

(3)

where c2 = G1/2ρ–1/2 is the velocity of an elastic shear
wave.

First, system (3) is considered in the Cartesian coor-
dinate system. Notation (2) is presented in the form

. (4)

In addition, the partial derivatives of a function f(x, y, z)
with respect to the first, second, and third variables are
denoted as this function with a prime, a dot, and a
comma, respectively, i.e.,

(5)

µ∆u λ µ+( )grad divu( )+ ρ∂2u

∂t2
-------- P,–=

2Gu u*,=

∆u* grad divu*( )
1 2µ–

------------------------------+
1

c2
2

----∂2u*

∂t2
------------ 2P,–=

2G ux,uy,uz( ) u v w, ,=

∂f
∂x
------ f ',

∂f
∂y
----- f

. ∂f
∂z
-----, f

,
.= = =
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For further transformations, the functions

(6)

are introduced. As a result, Eq. (3) takes the scalar form

(7)

The first and second of Eqs. (7) are differentiated
with respect to x and y, respectively, and the results are
added. The resulting equation and the third of Eqs. (7)
form the system of coupled equations

(8)

The second and first of Eqs. (7) are differentiated
with respect to x and y, respectively, and the results are
subtracted from each other. The resulting equation,
with allowance for the second of Eqs. (6), takes the
form

(9)

When the functions w and Z have been found from sys-
tem (8) and the function Z* has been found from
Eq. (9), the displacements u and v  should be sought by
solving the Poisson equation

(10)

Z u' v
.
, Z∗+ v ' u

.
–= =

∆u
Z w

,
+( )'

1 2µ–
---------------------+

1

c2
2

----∂2u

∂t2
-------- 2Px,–=

∆v
Z w

,
+( )

.

1 2µ–
----------------------+

1

c2
2

----∂2v

∂t2
--------- 2Py,–=

∆w
Z w

,
+( )

,

1 2µ–
----------------------+

1

c2
2

----∂2w

∂t2
--------- 2Pz.–=

∆Z
∇ xy Z w

,
+( )

1 2µ–
-----------------------------+

1

c2
2

----∂2Z

∂t2
--------- 2 Px' Py'+( ),–=

∆w
Z w

,
+( )

,

1 2µ–
----------------------+

1

c2
2

----∂2w

∂t2
--------- 2Pz,–=

∇ xy f f '' f
..

.+=

∆Z∗ 1

c2
2

----∂2Z∗
∂t2

------------ 2 Px
.

Py'–( ).+=

∇ xy
u

v

Z' Z∗ .–

Z
.

Z∗ '–
.=
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In order to obtain the first of Eqs. (10), one should
differentiate the first and second of Eqs. (6) with respect
to x and y, respectively, and subtract the results from
each other. The second of Eqs. (10) is obtained simi-
larly.

It is convenient to formulate boundary conditions
for system (8) in terms of the following combinations
of shear stresses:

which are similar to Eqs. (6). These combinations sat-
isfy the equations

In addition, it can be shown that

The above transformation is valid for the equations of
decoupled thermoelasticity and for problems of statics.

2. Let us write Eq. (3) in the cylindrical coordinates
r, ϕ, z and introduce the notation

(11)

which is similar to Eqs. (4) and (5), and take

(12)

instead of Eq. (6). Then, the scalar form of Eq. (3) is [1]

(13)

where ∆ is the Laplace operator in the cylindrical coor-
dinate system [1].

The first of Eqs. (13) is multiplied by r, differenti-
ated with respect to this variable, and divided by it. The
second of Eqs. (13) is differentiated with respect to ϕ
and divided by r. The results are added and, after some
manipulations with allowance for Eqs. (12), yield an

τ
τ*

τ zx' τ zy
.

+

τ zy' τ zx
.

–
,=

2τ ∇ xyw Z
,
, 2τ .

+ Z*,
.= =

1 2µ–( )σz µZ 1 µ–( )w
,
.+=

2G ur uϕ uz, , u v w, , ,=

∂f r ϕ z, ,( )
∂r

------------------------- f ',
∂f
∂ϕ
------ f

.
,

∂f
∂z
----- f

,
,≡≡≡

Z

Z*

1
r
--- ru

rv

'
v

u

.

±
 
 
 

=

∆u
u 2v

.
+

r2
------------------– Z w

,
+( )'

1 2µ–
---------------------+

1

c2
2

----∂2u

∂t2
-------- 2Pr,–=

∆v
v 2u

.
–

r2
------------------– Z

.
w

,
+( )

.

1 2µ–
-----------------------+

1

c2
2

----∂2v

∂t2
--------- 2Pϕ ,–=

∆w
Z w

,
+( )

,

1 2µ–
----------------------+

1

c2
2

----∂2w

∂t2
--------- 2Pz,–=
equation which, together with the third of Eqs. (13),
forms the system of two equations

(14)

where

The second of Eqs. (13) is multiplied by r, differen-
tiated with respect to this variable, and divided by it.
The first equation is differentiated with respect to ϕ and
divided by r. Subtraction of the results and certain
transformations with allowance for Eqs. (12) lead to the
equation

(15)

When the functions w and Z have been found from sys-
tem (14) and the function Z* has been found from (15),
the unknown displacements u and v  should be deter-
mined by solving the equations

(16)

Here, the first of Eqs. (16) is derived as follows. The
first of Eqs. (12) is multiplied by r, and the product is
differentiated with respect to this variable. The second
of Eqs. (12) is differentiated with respect to ϕ. The
results are subtracted from each other. The second of
Eqs. (16) is obtained similarly by interchanging the
above manipulations with the first and second of
Eqs. (12).

It is convenient to formulate boundary conditions
for system (14) in terms of the following combinations
of shear stresses:

which are similar to Eqs. (12). These combinations can
be expressed in terms of functions satisfying Eqs. (14)
and (15) as follows:

The normal stress σz satisfies the formula

As in the case of Cartesian coordinates, the reduc-
tion of Eqs. (13) to system (14) and Eq. (15), which are
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independent of each other, is valid for the equations of
decoupled thermoelasticity and the static equations of
elasticity theory.

3. We now present Eq. (3) in the spherical coordi-
nate system (r, θ, ϕ) and introduce the notation

(17)

Then, with the use of auxiliary functions Z and Z*,
which, instead of Eqs. (12), are defined by the formulas

(18)

vector equation (3) can be represented in the scalar
form [1]:

(19)

(20)

(21)

Here, ∆ is the Laplace operator in the spherical coordi-
nate system and the operator ∆0 can be represented as

(22)

where

Both sides of Eq. (20) are multiplied by sinθ, differen-
tiated with respect to the variable θ, and divided by
sinθ. Equation (21) is differentiated with respect to ϕ
and divided by sinθ. Summation of the results and sub-
sequent transformations with allowance for Eqs. (17)
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and (18) yield an equation which, together with
Eq. (19), forms the system of two coupled equations

(23)

Equation (20) is multiplied by sinθ, differentiated
with respect to the variable θ, and divided by sinθ.
Equation (21) is differentiated with respect to ϕ and
divided by sinθ. Subtraction of the derived equations
and subsequent transformations with allowance for
Eqs. (18) and (22) lead to the equation

(24)

When the functions u and Z have been found from
system (23) and the function Z* has been found from
Eqs. (24), the displacements v  and w should be deter-
mined by solving the equations

(25)

The first of Eqs. (25) is derived as follows. The first
of Eqs. (18) is multiplied by sin2θ, differentiated with
respect to the variable θ, and divided by sinθ. The sec-
ond of Eqs. (18) is multiplied by sin2θ, differentiated
with respect to the variable ϕ, and divided by sin2θ. The
equations obtained are subtracted from each other. To
derive the second of Eqs. (25), the above manipulations
with the first of Eqs. (18) should be applied to the sec-
ond of them and vice versa. The results should be
added.

It is convenient to formulate boundary conditions
for the system of Eqs. (23) and (24) in terms of the fol-
lowing combinations of shear stresses:

which are similar to Eqs. (18). These combinations can
be expressed in terms of solutions of the above
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equations as follows:

In addition, the normal stress σr satisfies the formula

(26)

As in the coordinate systems considered above, the
reduction of Eqs. (19)–(21) to system (23) and Eq. (24),
which are independent of each other, is valid for the
equations of decoupled thermoelasticity and the static
equations of elasticity theory. This conclusion was
demonstrated in [3], where particular problems of ther-
moelasticity were solved and the efficiency of applying

2τ
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r
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r
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  '
, 2τ∗+ r
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r

------ 
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.= =

1 2µ–( )rσr 2µu 1 µ–( )ru' µZ .+ +=
analogs to Eqs. (23)–(25) to obtain exact solutions to
certain problems of thermoelasticity was shown.
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INTRODUCTION

For small disturbances of a free flow, the laminar–
turbulent transition in a boundary layer on a smooth
surface of an aircraft occurs due to amplification of var-
ious unstable modes [1]. Both stability theory and
experimental data imply the dominance of the first and
second disturbance modes in a hypersonic boundary
layer.

The first mode corresponds to Tollmien–Schlichting
waves whose instability at low Mach numbers is due to
viscous effects. These disturbances can be stabilized by
cooling the corresponding surface, by suction, or by
choosing a favorable pressure gradient. On the basis of
the theoretical investigations from [2, 3], it was shown
in [4] that the amplification of Tollmien–Schlichting
waves can be considerably reduced using a thin pene-
trable coating (perforated sheet) arranged above a lon-
gitudinal cavity. These conclusions have not yet been
corroborated experimentally, because the realization of
this method is associated with a number of difficulties
discussed in [4].

The second mode is the result of inviscid instability
and belongs to the family of acoustic disturbances [1].
For a thermally insulated surface, the growth rates of
the second mode exceed those of the first mode for
Mach numbers M > 4 [1, 5]. For cooled surfaces, the
second mode begins to dominate at even lower values
of M. In contrast to the first mode, cooling destabilizes
the second mode. Since the temperature of the surface
of a typical hypersonic vehicle is substantially lower
than that of a thermally insulated wall (Tw < 0.2Tad), the
first mode is suppressed naturally, whereas the second
mode becomes more stable and can initiate an early
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transition. In order to increase the length of a laminar
flow, it is necessary to stabilize the second mode.

The second mode is associated with high-frequency
acoustic disturbances. Therefore, the assumption was
made in [6] that ultrasound-absorbing coatings (UAC)
can efficiently stabilize this type of instability. This
hypothesis was verified in the framework of linear sta-
bility theory in the inviscid [6] and viscous [7] approx-
imations. In [7], a perforated surface with cylindrical
blind microholes was analyzed. It was shown that a rel-
atively thin porous coating can induce a dramatic
decrease in the second mode growth rate. Qualitative
corroboration of these results was obtained in the
experiments in [8] performed in the GALCIT T-5 shock
tube at M = 5–6. The transition locus was measured for
a model of an acute cone with a vertex semiangle of 5°.
Half of the cone surface (between generatrices) was
covered with a perforated (approximately 100 cylindri-
cal holes per mm2) sheet 0.5 mm thick, whereas the
other half was continuous. The experiments showed
that the flow in the boundary layer was laminar on the
porous surface, up to the cone base. At the same time,
on the continuous surface, a transition was observed in
the middle cross section of the cone. The results of the
experiments [8] were rather impressive; however, they
did not answer the question as to what occurs with the
disturbances in the boundary layer and whether the sec-
ond mode is really suppressed.

Many materials that can efficiently absorb acoustic
disturbances have a random porosity. For practical use,
UAC should be compatible with heat-resistant coatings
that also have a chaotic microstructure. The interaction
of unstable disturbances with such coatings has still not
been investigated.

The lack of direct experimental corroboration of the
theory and the practical advantages of materials with
random porosity have initiated a number of theoretical
and experimental studies of the stability of a boundary
layer on a porous surface with a random microstructure.
The main objective of this study were the following: to
directly measure the disturbances in the boundary layer
on porous and continuous surfaces; to develop a theo-
retical model corresponding to available experimental
002 MAIK “Nauka/Interperiodica”
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data; and to directly compare them with results of the-
oretical calculations.

POROUS COATING

We chose a felt metal as a UAC prototype. Its porous
layer consisted of thin wires connected to each other
and to a substrate in a random fashion. The wires were
made of stainless steel 30 µm in diameter. The layer
thickness was 0.75 mm. To ensure continuity of the
coating, the felt-metal layer was deposited onto a solid
base, namely, a stainless steel sheet 0.245 mm thick.
The average porosity of the coating was φ ≈ 0.75; the
average pore diameter was approximately 100 µm, so
that there were about 20 pores per disturbance wave-
length in the boundary layer.

EXPERIMENTAL METHOD

The experiments were carried out in the T-326 wind
tunnel of the Institute of Theoretical and Applied
Mechanics, Siberian Division, Russian Academy of
Sciences. The following parameters of the unperturbed
flow were chosen: the Mach number of the incoming
flow was M∞ = 5.92, the stagnation temperature was

 = 390 K, the unit Reynolds number was Re1∞  =
12.0 × 106 1/m, and the surface temperature was  =

0.82 .
We used an acute cone with a vertex semiangle of 7°

and a height of 0.5 m as a model. The cone was installed
in the flow at the zero angle of attack. The half of the
cone surface between generatrices was covered with
the UAC, whereas the other half was continuous. The

T0*

Tw*

T0*
leading edge of the coating was located 186 mm from
the cone vertex. A source of artificial disturbances was
placed at a distance of 69 mm. The disturbances were
introduced into the flow by means of a high-voltage
periodic electric discharge initiated in a miniature
chamber placed inside the model. The disturbances
penetrated into the boundary layer through a hole
0.4 mm in diameter in the cone surface. Spatial distri-
butions of pulsations of the mass flow were measured
by a hot-wire anemometer and were subjected to Fou-
rier analysis, which made it possible to obtain the wave
characteristics of the pulsations. This technique was
successfully used for investigating wave packets prop-
agating in the hypersonic boundary layers [9].

These measurements showed that the flow was lam-
inar on both continuous and porous surfaces. The aver-
age flow characteristics in the boundary layer (the flow-
velocity profile, the boundary-layer thickness, etc.)
turned out to be close to each other and were consistent
with calculations based on the boundary-layer theory.

The spectra of natural disturbances were measured
in various cross sections along the longitudinal (X) and
normal (Y) coordinate axes. In Fig. 1, we show exam-
ples of the amplitude–frequency spectra of mass flow
pulsations. The spectra were measured at the Y-level
corresponding to maximal disturbances and in the cross
section X = 293 mm on the continuous (1) and porous (2)
surfaces. The arrows in Fig. 1 show the direction of
variations in the spectrum pulsation amplitudes as the
surface changed from solid to porous. For the solid sur-
face, we obtained the typical disturbance spectrum
of [5]. On the porous surface, we observed destabiliza-
tion of the first mode (low-frequency disturbances
within the 100- to 200-kHz band) and strong stabiliza-
2.5

2.0

1.5

1.0

0.5

0 100 200 300 f, kHz

A

2

1

Fig. 1. Amplitude–frequency spectra for the mass flow pulsations on (1) solid and (2) porous surfaces. X = 293 mm.
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Fig. 2. Distribution of the mass flow pulsations in a wave packet as a function of the wave-vector inclination angle: (1) solid surface
and (2) porous surface; X = 293 mm and f = 280 kHz.
tion of the second mode (high-frequency disturbances
within the 225- to 350-kHz band). This confirms the
concept of stabilizing the second mode with ultra-
sound-absorbing coatings.

Artificial wave packets were introduced into the
boundary layer at a frequency f = 280 kHz, which cor-
responded to the most intense disturbances of the sec-
ond mode. The initial amplitudes of the disturbances in
the boundary layers on the solid and porous surfaces
were adjusted to be equal. The distributions for mass
flow pulsations of the A were measured in the boundary
layer and were subjected to Fourier analysis. From the
wave spectra, we determined the wave amplitudes for
various inclination angles χ of the wave vector to the
flow. Examples of the dependences obtained for
solid (1) and porous (2) surfaces are shown in Fig. 2.
The maximum at χ = 0 shows that two-dimensional dis-
turbances dominate in both cases, which is typical of
the second mode. It can be seen that the UAC strongly
stabilizes the disturbances within a wide range of incli-
nation angles χ.

STABILITY ANALYSIS AND COMPARISON 
WITH EXPERIMENTAL DATA

The stability of a hypersonic boundary layer on a
solid surface was analyzed on the basis of the classical
approach [1]. The boundary value problem for search-
ing for eigenvalues is formulated using a linear set of
stability equations for three-dimensional disturbances.
These equations are derived from the complete Navier–
Stokes equations and are complemented by zero
DOKLADY PHYSICS      Vol. 47      No. 5      2002
boundary conditions for disturbances of the velocity
and temperature both on the surface and outside the
boundary layer. The problem was numerically inte-
grated with allowance for the effects of nonparallel flow
streamlines in the boundary layer [10]. The averaged
flow was calculated for a compressible boundary layer
at an acute cone for a zero angle of attack.

The formulation of the problem on a porous surface
differs from the classical problem in the boundary con-
ditions for Y = 0. The disturbances of the velocity and
temperature are generally proportional to pressure dis-
turbances with corresponding coefficients that charac-
terize the acoustic admittance of a porous medium. The
parametric calculations showed that a reasonably good
approximation can be obtained if the admittance coeffi-
cient is taken into account only for disturbances of the
normal velocity component, while the remaining coef-
ficients can be set equal to zero. In this case, the approx-
imated boundary conditions have the form

Here, u, w, and v  are disturbances of the longitudinal,
transverse, and normal velocity components; θ is the
temperature disturbance; and p is the pressure distur-
bance. They are made dimensionless with respect to the

flow characteristics , , and  at the upper
boundary-layer edge, respectively. It was found in [8]
that the admittance coefficient is

y 0: u w θ 0, v Ay p.= = = = =

Ue* Te* ρe*Ue*
2

Ay
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where h =  is the porous-layer thickness (δ* is the

boundary-layer displacement thickness), Z0 = 

is the characteristic impedance, and Λ =  is

the propagation constant or the complex wave number

 =  is the angular frequency of the distur-

bance, and Tw =  is the dimensionless temperature

of the surface . The dynamic density  and the

dynamic compressibility , which were normalized to
the average values of the density and pressure on the
surface, were calculated using the semiempirical rela-
tionships from [11]. These relationships describe sound
propagation in a porous material with a solid structure.
The parameters involved in these relationships were
determined from the data of laboratory measurements
related to the reflection of sound from samples of felt
metal.

Stability calculations were performed for the condi-
tions of the wind-tunnel experiment: the local Mach
number was Me = 5.3; the local temperature was  =
59.3 K; the specific heat ratio was γ = 1.4; the Prandtl
number and the local unit Reynolds number were Pr =

0.708 and Re1 =  = 15.5 × 106 1/m, respectively; and
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Fig. 3. Growth curves in the mass-flow disturbances for
two-dimensional waves, χ = 0, f = 280 kHz: (1) and (2), the-
oretical predictions; (3) and (4), experimental data; (1) and
(3), porous surface; (2) and (4), solid surface.
the surface temperature was  = 5.5 . The last
value is close to the temperature of a heat-insulated
wall. The data presented in Fig. 3 allow us to compare
the theoretical curves for the mass-flow growth (lines)
with the experimental data (symbols) for two-dimen-
sional disturbances (χ = 0) at a frequency f = 280 kHz.
Good agreement between the theoretical and experimen-
tal results is observed. It should be noted that the theoret-
ical values of the growth rates for disturbances (or the
slope of the growth curves) are very close to the experi-
mental data within the range 190 < X < 260 mm, espe-
cially for the porous surface.

The results of the present study lead to the following
conclusions. If the three-dimensional effects of the
mean flow are minimized (which helps to avoid cross-
flow instability), the surface roughness is made accept-
able (to avoid bypass), and the second mode is stabi-
lized using a thin porous coating, then it seems to be
possible to retain the laminar flow around the greater part
of a hypersonic vehicle surface. This leads to both a con-
siderable decrease in heat flows and an increase in the
lift–drag ratio, which is an important factor in developing
hypersonic vehicles of new generation.
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The nonlinear game problem of the reorientation of
an asymmetric rigid body in the presence of uncon-
trolled noise and inaccurately specified inertial charac-
teristics is considered. Certain geometric restrictions
are imposed on controlling moments and noise. A
method of solving this problem [1–4] is developed on
the basis of the equivalent linearization of nonlinear
conflict-controlled systems and by using the methods
of linear game theory [5]. The admissible range of noise
was found as a function of the constraints imposed on
the controlling moments and the original position of the
body, as well as of the constraints on the inertial char-
acteristics of the body.

1. Formulation of the problem. We consider three
equations, one of which has the form

(1.1)

where xi are the projections of the angular velocity x of
the body onto the axes of the Oxyz system, ui are the
controls (the projections of the controlling moment u
onto the same axes), Ji are the axial moments of inertia
and Jij are the centrifugal moments of inertia of the
body, v i characterize external forces and uncontrolled
disturbances and are treated as the components of a
vector v, and (123) means that the other two equations
are obtained by cyclic permutation of the subscripts
1  2  3. These equations describe the rotational
(angular) motion of a rigid body with respect to the
Cartesian coordinate system Oxyz associated with the
body.

In most applied problems, the inertial characteristics
of a body are specified with uncertainties. Tolerances
for the parameters of system (1.1) are defined as

(1.2)

where , , and γ are given positive numbers.

J1 ẋ1 J12 ẋ2– J13 ẋ3– J3 J2–( )x2x3+

+ J23 x3
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Along with Eqs. (1.1), we consider the following
kinematic equations in the Rodrigues–Hamilton vari-
ables (hereafter, summation with respect to the sub-
script 

 

i

 

 is performed from 1 to 3) [6]:

 

(1.3)

 

which determine the orientation of the body. The vari-
ables 
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 forming the vector 
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 are related to each
other as
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respectively, and satisfy the constraints 
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corresponding to a pair of vernier (rotary) engines,
which generate controlling moments 

 

u

 

i

 

 with respect to
the axes of the 

 

Oxyz

 

 system [7].
Noise 
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 can be realized in the form of arbitrary
piecewise continuous functions 
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 satisfying the
constraint
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In this case, the probability characteristics of realiz-
ing noise within the limits imposed by inequalities (1.6)
are unknown.

 

Problem 1. 
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 and all inertial character-
istics satisfying conditions (1.2), it is necessary to find
the controls 

 

u

 

i

 

 

 

∈

 

 K transferring a body from the initial
state l(t0) = l0 to a given state l(t1) = l1 in a finite time.
Both states are rest states: x(t0) = x0 = x(t1) = x1 = 0. The
time t1 > t0 is not fixed.

Remarks. (i) Below, we take l1 = (1, 0, 0, 0) with-
out loss of generality.

(ii) A further solution of problem 1 is valid for all Ji ,
J12, J13, and J23 values satisfying conditions (1.2),

2λ̇0 xiλ i( ),∑–=

2λ̇1 x1λ0 x3λ2 x2λ3–+   123 ( ) ,=

λ0
2 λ i

2∑+ 1.=

u ui
2∑ 

  1/2
α≤ const 0>= =

v i βi≤ const 0.>=
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although the inertial characteristics of an actual body
satisfy additional relations [8].

2. Auxiliary linear conflict-controlled system. By
solving Eqs. (1.1) with respect to , we arrive at the
expressions

(2.1)

Here, ∆ = det(J), where J is the matrix of the inertia ten-
sor of the body.

Following [2–4], we differentiate both sides of each

of Eqs. (1.3) for  with respect to time and substitute
 from Eqs. (2.1), where Fi are represented in the form

where  are free of terms dependent on ui .

After transformations, we obtain the equations

(2.2)

If, following [1–3], fi and ϕi are treated as auxiliary
controls and noise, respectively, the initial controls ui

depend explicitly on the matrix components of the iner-
tia tensor of the body. In case (1.2) under consideration,
this leads to uncertainty in the realization of ui .

In the method of equivalent linearization, this uncer-
tainty can be overcome as follows. According to esti-

mates (1.2), we have Ji =  + δi , where δi is any

number from the given range δi ∈  [0, ], where  =

( )( )–1 – 1.

ẋi

ẋ1 F1 x u v, ,( ) ∆ 1– P1Λ1 Q1Λ2 R1Λ3+ +( ),= =

P1 J2J3 J23
2 , Q1– J3J12 J13J23,+= =

R1 J2J13 J12J23,+=

g1 J2 J3–( )x2x3 J23 x2
2 x3

2–( )+=

+ J13x2 J12x3–( )x1  123 ( ) ,

Λ i gi ui v i.+ +=

λ̇ i

ẋi

F1 J1
1– u1 ∆ 1– P1

*u1 Q1u2 R1u3+ +( ) F1* x v,( ),+ +=

P1* J1
1– J2J13

2 J3J12
2 2J12J13J23+ +( )   123 ( ) ,=

Fi*

λ̇̇ i f i l u,( ) ϕ i l v x, ,( ),+=

f 1
1
2
--- λ0J1

1– u1 λ2J3
1– u2 λ3J2

1– u3–+[ ] f 1
0,+=

f 1
0 1

2
---∆ 1– λ0P1*u1 λ2Q1u2 λ3R1u3–+( ),=

ϕ1
1
2
---∆ 1– λ0P1Λ1* λ2Q1Λ2* λ3R1Λ3*–+( )=

–
1
4
---λ1 xi

2  123 ( ) , Λ i * ∑  g i v i .+=

Ai
– Ai

–

δi
+ δi

+

Ai
+ Ai

–

                     
Let us use the equalities

(2.3)

which can be directly verified. With allowance for
Eq. (2.3), Eqs. (2.2) are represented in the form

(2.4)

and expressions for  are obtained from the expres-

sions for  at ϕi =  = 0 and  =  =  = –1.

We treat  and  as auxiliary controls  and

noise  and Eqs. (2.4) as a conflict-controlled system:

(2.5)

In this case, the initial controls have the form

(2.6)

and are free of inaccurately specified inertial character-
istics.

Then, the solution of original nonlinear problem 1 is
constructed on the basis of the corresponding game
problems for linear system (2.5). As a result, Eqs. (2.6)
can be treated as the general form of controls in prob-
lem 1.

In order to estimate auxiliary noise , we propose
the principle of specification and further verification of
its levels on the set of states of linear system (2.5).

3. Auxiliary linear game problem and algorithm
for solving problem 1. Let us solve the game problem
of the fastest transfer (for any admissible ) of sys-
tem (2.5) to the position

(3.1)

In order for this problem to be solvable, the admis-
sible levels  must be higher than the levels . The
corresponding constraints are taken in the form

For fixed  and  values such as  > , the
game problem indicated above for system (2.5) reduces

Ji
1– Ai

– 1 δi+( )[ ] 1–
Ai

–( ) 1–
1 δi*–( ),= =

δi* δi 1 δi+( ) 1– ,=

λ̇̇ i f i* l u,( ) ϕ i* l u v x, , ,( ),+=

ϕ1* ϕ1
1
2
--- λ0δ1*u1 A1

–( ) 1– λ2δ3
*u3 A3

–( ) 1–
+[–=

– λ3δ2*u2 A2
–( ) 1– ] f 1

0   123 ( ) +

f i*

ϕ i* f i
0 δ1* δ2* δ3*

f i* ϕ i* ui*

v i*

λ̇̇ i ui* v i*.+=

u1

2A1
–

λ0
--------- λ0

2 λ1
2+( )u1* λ1λ2 λ0λ3+( )u2*+[=

+ λ1λ3 λ0λ3–( )u3* ]   123 ( )

v i*

v i*

λ i λ̇ i 0.= =

ui* v i*

ui* α i*, v i* βi*≤ ≤ ρiα i*, 0 ρi 1.< <=

α i* βi* α i* βi*
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to the problem of the optimal speed for the system [5]

(3.2)

The boundary conditions are the same as for system
(2.5). System (3.2) follows from Eqs. (2.5) at  =

−ρi . These “worst”  values are optimal controls
of an “opponent.”

The solution of the speed problem for system (3.2)
has the form [9]

(3.3)

where ψi =  – [2 (1 – ρi)]–1 | | are the switch
functions.

Since  =  = 0 due to x0 = x1 = 0, the quantity

(3.4)

determines the minimum guaranteed time of control in
the linear game problem for system (2.5). In this case,
the quantity τ determines the guaranteed time of reori-
entation in problem 1.

An iteration algorithm for solving problem 1
includes the following stages [2–4]:

(i) Specification of  and preliminary choice of
the value τ = τi . This condition determines the values

 and ρi in Eqs. (3.3).

(ii) Verification of actual fulfillment of inequalities
 ≤  and constraint (1.5) on the set of states of the

system specified by Eqs. (2.5) and (3.3).
The algorithm will be described in Section 5.
Remarks. (i) Form (2.6) of the controls formally

leads to a singularity arising at λ0 = 0. However, |λ0 | ∈
[ , 1] in the control process and this singularity does
not arise.

(ii) Let l1 ≠ (1, 0, 0, 0). In this case, in order to avoid
a singularity, it is sufficient to pass to controls obtained
from Eqs. (2.6) by rearranging subscripts (or to the
combination of these controls).

4. Estimation of the admissible region of uncon-
trolled noise. Let us find the sufficient condition on α,

βi , , δi , and γ that determines the possibility of solv-
ing problem 1 in the approach proposed above.

Let δ* = max( ), A∗  = min( ), and A* = max( );

B+ and C+ be the middle and larger  values, respec-
tively; and

λ̇̇ i 1 ρi–( )ui*, ui* α i*.≤=

v i*

ui* v i*

ui* λ i λ̇ i,( ) = 
α i* ψi λ i λ̇ i,( ), ψisgn 0≠

α i* λ isgn α i* λ̇ i, ψisgn– 0,= =



λ̇ i– α i* λ̇ i λ̇ i

λ̇ i
0

λ̇ i
1

τ max τ i( ), τ i 2 λ i
0 α i* 1 ρi–( )[ ] 1–{ }

1/2
= =

βi*

α i*

v i* βi*

λ0
0

λ0
0

δi* Ai
– Ai

–

Ai
+

D max B+C+ γ C+ γ+( ),[ ] ,=
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Theorem 1. Let the admissible region of noise v i be
estimated by the inequality

(4.1)

In this case, problem 1 is solved by means of con-
trols (2.6) and (3.3) satisfying given constraint (1.5). 

The proof of the theorem is divided into the follow-
ing three stages:

(i) Applying the scheme used in [1–3], we obtain the
estimates

(4.2)

(ii) Let us estimate  on the set of possible states
of the system specified by Eqs. (2.5) and (3.3). By using
the Cauchy–Schwartz inequality and relations ∆ ≥ ∆∗
and (1.4), Eqs. (2.4) for  can be estimated as

(4.3)

where a supremum is calculated on set (1.2), whereas a
maximum is chosen for each i among the three values

sup( , Qi , Ri). In this case, since |x1x2| ≤ 

(123), we have

(4.4)

Taking into account inequalities (4.4) and relations
Di ≤ D and Ei ≤ E, we refine estimates (4.3) as

E max γ2A*
1– B+ C+ 2γ+ +( ) γ C+ γ+( ),[ ] ,=

∆* A1
–A2

–A3
– γ2 A1

+ A2
+ A3

+ 2γ+ + +( ).–=

βi
2∑ 

  1/2
Kα ,<

K D 1– ∆*
3

3
------- A*( ) 1– λ0

0 A*
1– δ*– E–

 
 
 

.=

1
4
--- u 2 λ0

0( ) 2–
A*( )2 α i*

2.∑≤

v i*

v i*

v 1*
1
2
---∆*

1– D1 v i
2∑ 

  1/2
E1 u+

1
2
---δ* u *+≤

+
1
2
---∆*

1– D1 gi
2∑ 

  1/2 1
4
--- λ1

0 xi
2  123 ( ) , ∑  +  

u

 

*

 

u

 

i

 

A

 

i

 

–

 

( )–1[ ]
2∑

 
 
  1/2

,=

Ei max sup Pi* Qi Ri, ,( )[ ] ,=

Di max sup Pi Qi Ri, ,( )[ ] ,=

Pi*
1
2
--- xi

2∑

g1
1
2
--- J2 J3– J13 J12 J23+ + +( ) xi

2∑≤

≤ 1
2
--- C+ A*–( ) 3γ+[ ] xi

2   123 ( ) . ∑

v i*
1
2
---∆*

1– D v i
2∑ 

  1/2
E u+≤
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(4.5)

To estimate , we solve the system for  in
Eqs. (1.3) with respect to xi . After corresponding
manipulations, we arrive at the equalities

(4.6)

which provide the inequality

Estimates for  have the form [4]

Taking Eqs. (1.5) and (4.5) into account, we obtain

(4.7)

(iii) The resulting estimates (4.2) and (4.7) are
applied to prove the theorem. Let us demonstrate that,
when conditions (4.1) are satisfied, there are numbers

 and  such that  >  and the following ine-
qualities are satisfied on the set of possible states of the
system specified by Eqs. (2.5) and (3.3):

(4.8)

which corroborate the specified levels  of auxiliary

noise  and inequality (1.5).

Taking Eq. (4.1) into account, we set

(4.9)

where ε > ε1 > 0 are as small as desired.

In view of Eqs. (4.9), we have  >  for a given
arbitrarily small value ε > 0. Therefore, the auxiliary
game problem for linear system (2.5) is solvable.

Then, we demonstrate that Eqs. (4.8) are satisfied on
the set of possible states of the system specified by
Eqs. (2.5) and (3.3) for a sufficiently small value ε > 0.
Indeed, in this case, the value ϕ in Eqs. (4.7) differs

+
1
2
---δ*A*

1– u L xi
2,∑+

L
1
4
---

3
4

-------∆*
1– D C+ A*–( ) 3γ+[ ] .+=

xi
2∑ λ̇ i

x1 2λ0
1– λ0

2 λ1
2+( )λ̇1 λ1λ2 λ0λ3+( )λ̇2+[=

+ λ1λ3 λ0λ2–( )λ̇3 ] 123( ),

1
4
--- xi

2 λ0
2– λ̇ i

2
.∑≤∑

λ̇ i
2

λ̇ i
2

λ̇ i
+

( )
2

≤ λ i
0 α i*( ) 1– α i*( )2 βi*( )2

–[ ] .=

v i* ϕ ,≤

ϕ 1
2
---∆*

1– D βi
2∑ 

  1/2
αE+

1
2
---αδ*A*

1–+=

+ 4 λ0
0( ) 2–

L λ i
0 α i*( ) 1– α i*( )2 βi*( )2

–[ ]{ } .∑

α i* βi* α i* βi*

v i* βi*,≤

βi*

v i*

βi
2∑ 

  1/2
Kα ε ,–=

α i* α*
3

6
------- λ0

0 A*( ) 1– α , βi* α* ε1,–= = =

α i* βi*
              

arbitrarily little from the value ϕ = α*. For this reason,
taking Eqs. (4.7) into account, we have  ≤  on
the set of possible states of the system specified by
Eqs. (2.5) and (3.3).

Let us also demonstrate that constraints (1.5) are
satisfied on the set of possible states of the system spec-
ified by Eqs. (2.5) and (3.3) for a sufficiently small
value ε > 0. Indeed, taking Eqs. (4.2) and (4.9) into
account, we have

The theorem has been proven.
Remarks. (i) Estimate (4.1) is a sufficient condition

and is directly associated with proposed form (2.6) of
the control laws. This form is only one of the possible
forms of (2.6) (which go over from one to another by
rearranging the subscripts) that enable one to consider
the problem of reorientation for any initial position of
the body. In view of this circumstance and the accepted
assumption that l1 = (1, 0, 0, 0), we can consider that

 ≥  in Eq. (4.1).

(ii) Condition (4.1) guarantees that the controls
specified by Eqs. (2.6) and (3.3) solve problem 1 for a
large enough (but finite) τ value. If condition (4.1) is
oversatisfied, the guaranteed time τ of reorientation can
be found by the algorithm that was mentioned in Sec-
tion 3 and will be described in Section 5.

(iii) The above approach is associated with the con-
cept of the decomposition of nonlinear controlled sys-
tems [10, 11] and is based on results obtained in [12]. The
subject under consideration is connected with [13–15].

5. Realization of an algorithm for solving prob-
lem 1 and estimation of the guaranteed time of
reorientation. Let α, δi, and γ be given and estimate
(4.1) be oversatisfied, i.e.,

(5.1)

where σ > 0 is a certain number. In this case, the follow-
ing iteration algorithm can be applied to find τ:

(i) According to Eq. (4.9),  = α* is taken, which
guarantees the fulfillment of inequality (1.5).

(ii) A probe value τ = τi is specified, which deter-

mines the  values in view of Eq. (3.4).

(iii) Inequalities  ≤  are verified on the basis
of estimates (4.7). If these inequalities are not satisfied
or are oversatisfied, the value τ increases or decreases,
respectively.

One can obtain a direct upper estimate for the guar-
anteed time of reorientation τ calculated by this algo-
rithm.

v i* βi*

u 2 4 λ0
0( ) 2–

A*( )2 α i*
2∑≤  = 12 λ0

0( ) 2–
A*α*( )2 = α2.

λ0
0 1

2
---

βi
2∑ 

  1/2
Kα σ ,–=

α i*

βi*

v i* βi*
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Theorem 2. Let equality (5.1) be satisfied. In this
case,

6. Calculations for a centrally symmetric body. In

this case, the  values are equal to each other (  =
A–) and estimate (4.1) has the form

(6.1)

For the same α, , δi, and γ values, the region of
admissible noise (6.1) is considerably wider than the
region of admissible noise (4.1) for an asymmetric
body.

7. Example. Let us consider the reorientation of a
rigid body from the position x0 = 0, l0 = (0.701, 0.353,
0.434, 0.432) to the position x1 = 0, l1 = (1, 0, 0, 0).

(i) For  = 4 × 104 kg m2,  = 8 × 104 kg m2, and

 = 5 × 104 kg m2, we have K = 0.1209 and 0.1819 for
γ = 103 kg m2 and δi = 0.05 and 0, respectively, whereas
K = 0.2024 for δi = γ = 0.

(ii) For  = A– = 4 × 104 kg m2, we have K∗  =

0.3239 and 0.3783 for γ = 103 kg m2 and δi = 0.05 and
0, respectively, whereas K∗  = 0.4047 for δi = γ = 0.
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τ τ *≤ 2λ* 2 σ∆*
1– D( ) 1–[ ]

1/2
,=

λ* max λ i
0 2L λ0

0( ) 2–
1–[ ]+{ }

1/2
.=

Ai
– Ai

–

βi
2∑ 

  1/2
K*α ,<

K* DA–( ) 1– ∆*
3

3
------- λ0
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In this paper, we present and analyze the law of the
filtration of two immiscible fluids in anisotropic media
with monoclinic symmetry of the filtration properties.
It was shown that the symmetry of the filtration proper-
ties can generally change when passing from the abso-
lute-penetrability tensor to the phase-penetrability ten-
sor. In this case, the tensors of phase-penetrability coef-
ficients are not coaxial with each other or with the
absolute-penetrability tensor. Furthermore, the position
of the principal axes of the tensors of phase-penetrabil-
ity coefficients can depend on saturation.

Generalization of the classical models that describe
the two-phase-filtration of immiscible fluids in terms of
the tensors of phase-penetrability coefficients to the
case of anisotropic filtration properties is of current
interest, because real porous and cracked media that are
used as collectors of a hydrocarbon raw material are
usually anisotropic. In [1–3], we established the struc-
ture of constraints for the tensors of the coefficients of
absolute, phase, and relative penetrabilities for media
revealing anisotropic filtration properties; wrote and
analyzed the tensors of phase and relative penetrabili-
ties; and determined the general form of the functions
of relative phase penetrabilities.

However, we considered only the simplest types of
anisotropy: the filtration laws for media with trans-
verse-isotropic and orthotropic filtration properties. In
media with these types of anisotropy, the position of all
the principal axes of the absolute-penetrability tensor is
considered to be a priori known. In real porous and
cracked media, this is seldom the case. For example, in
cracked collectors with mutually perpendicular cracks,
it is possible to determine the positions of all the prin-
cipal axes of the penetrability tensor, whereas in porous
media with pronounced stratification, it is a priori pos-
sible to establish the position of only one principal axis
perpendicular to the stratification direction. Anisotropic
continua for which the position of only one principal

Gubkin State Academy of Oil and Gas,
Leninskiœ pr. 65, Moscow, 117917 Russia
1028-3358/02/4705- $22.00 © 20410
axis in the second-rank material tensors is a priori
known have monoclinic symmetry. There are only three
such point symmetry groups, and they are classified as
the monoclinic-system symmetry groups in crystallog-
raphy [4]. For this reason, many real collectors of
hydrocarbon raw material have monoclinic symmetry
of the filtration properties.

PRINCIPAL RELATIONSHIPS

In the phenomenological theory of the two-phase
filtration of immiscible fluids (e.g., oil and water),
Darcy’s law is assumed to be satisfied for each phase.
Thus, along with the tensor kij of absolute-penetrability
coefficients, which satisfies the material properties in
Darcy’s law for the filtration of a single homogeneous
fluid, additional material characteristics are introduced

in the form of phase-penetrability tensors , where
the superscript α = 1, 2 is the phase number. The ten-

sors  determine and specify the filtration properties
for a simultaneous flow of two immiscible homoge-
neous fluids.

It was experimentally established that the tensors

 and kij for isotropic porous media are related as 

(1)

where δij is the Kronecker delta; k and kα are the coef-
ficients of absolute and phase penetrabilities, respec-
tively; and f α(s1, s2) are the relative phase penetrabili-
ties, which are functions of the phase saturations s1 and
s2 of the porous medium. Since the sum of the satura-
tions is equal to unity, only one of them can be taken as
an argument. Conventionally, the water saturation is
taken as the argument and is designated as s.

The generalization of Eq. (1) to the case of anisotro-
pic media has the form [1]

(2)

where  are the components of the fourth-rank ten-

kij
α

kij
α

kij
α

kαδij f α s1 s2,( )kδij,=

kij
α Fijkl

α kkl,=

Fijkl
α
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sor symmetric in the first and second pairs of subscripts

and their permutation. The components  determine
and specify the tensors of the coefficients of relative
phase penetrabilities. An explicit form of the tensors kij

and  is determined in independent experiments, and,
in general, the external symmetries of these tensors (the
type of anisotropy) can differ from each other [2]. In
this case, the symmetry of the tensor kij is higher than

or coincides with the symmetry of ; therefore, the

external symmetry of the tensors  generally coin-

cides with the external symmetry of the tensors  [2].

We suppose that the tensors  and  have the sym-
metry groups of the monoclinic system.

The fourth-rank and second-rank tensors for the
monoclinic symmetry groups have the respective forms 

(3)

(4)

where a = e1, c = e2, and b = e3, ei are the unit vectors

of the crystal system of coordinates and  and kkl are
the scalar coefficients. The subscripts in the scalar coef-

ficients  are the same as in crystallography for the
matrix representation of fourth-rank tensors [4]. The
transition from four to two subscripts is accomplished
by the replacement of a pair of subscripts with a single
subscript according to the rule

(11) ↔ 1, (22) ↔ 2, (33) ↔ 3,

(23) = (32) ↔ 4, (5)

(31) = (13) ↔ 5, (12) = (21) ↔ 6.

It should be noted that tensors (3) and (4) differ from
those presented for the monoclinic symmetry groups

Fijkl
α

kij
α

kij
α

Fijkl
α

kij
α

kij
α Fijkl

α

Fijkl
α c11

α aia jakal c12
α aia jckcl cic jakal+( )+=

+ c13
α aia jbkbl bib jakal+( ) c22

α cic jckcl+

+ c33
α bib jbkbl c23

α cic jbkbl bib jckcl+( )+

+ c15
α aia jbkal aia jakbl bia jakal aib jakal+ + +( )

+ c25
α cic jbkal cic jakbl bia jckcl aib jckcl+ + +( )

+ c35
α bib jbkal bib jakbl bia jbkbl aib jbkbl+ + +( )

+ c44
α cib jckbl bic jckbl bic jckbl bic jbkcl+ + +( )

+ c46
α cib jakcl cib jckal+( aic jckbl cia jckbl+ +

+ bic jakcl aic jbkcl bic jckal cia jbkcl )+ + +

+c55
α bia jbkal bia jakbl aib jbkal aib jakbl+ + +( )

+c66
α aic jakcl aic jckal cia jakcl cia jckal+ + +( ),

kij
α k11

α aia j k31
α aib j bia j+( )+= k22

α cic j k33
α bib j,+ +

cmn
α

cmn
α
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in [5] in the specification of the coordinate axes [4].
Tensors (3) and (4) are written in crystallographic coor-
dinates. In the crystallographic coordinate system
OXYZ, the OY axis coincides with the twofold symme-
try axis for the symmetry groups 2 and 2 : m (the desig-
nation of symmetry groups is given according to
A.V. Shubnikov) or is perpendicular to the symmetry
plane for the symmetry group m. In [5], the coordinate
system was oriented so that the OZ axis was substituted
for the OY axis.

Let the tensor kij also be of the monoclinic symmetry
group, i.e., form (4), but without the superscript α in its

components. In this case, substituting the tensors 
and kij into Eq. (2), we obtain the explicit form of the
phase-penetrability tensors in a porous medium with
monoclinic symmetry of the filtration properties. The
tensors are represented by Eq. (4) where the invariant
coefficients are determined by the equalities

(6)

ANALYSIS OF PRINCIPAL RELATIONSHIPS

As is easily seen from Eqs. (6), the symmetry of the

tensors  does not change if the tensor kij has higher,
up to isotropic, symmetry. Indeed, it is necessary to set
k13 = 0 in Eqs. (6) for symmetry groups of the rhombic
system (orthotropic filtration properties), k13 = 0 and
k11 = k33 for transverse isotropy, and k13 = 0 and k11 =
k22 = k33 for isotropy. In all these cases, Eqs. (6) indicate

that  and  and therefore the mon-

oclinic symmetry of the tensors  is conserved. Thus,
when of passing from the absolute-penetrability tensor
to the phase-penetrability tensors, the symmetry of the
filtration properties can change. In this case, for the
absolute-penetrability tensors with higher symmetry of
the filtration properties, the position of only one princi-
pal axis remains unknown after passing to a two-phase
flow. For monoclinic symmetry of the absolute-pene-
trability tensor, the direction of the a priori known prin-
cipal axis of the phase-penetrability tensors is also con-
served, but the positions of the other two principal axes
of the absolute-penetrability tensor can differ from the
respective axes of the phase-penetrability tensors. Let
us prove the statement. The tensor of the absolute-pen-
etrability coefficients with monoclinic symmetry can
be reduced to the principal axes through rotation about

Fijkl
α

k11
α c11

α k11 c12
α k22 c13

α k33 2c15
α k31,+ + +=

k22
α c12

α k11 c22
α k22 c23

α k33 2c25
α k31,+ + +=

k33
α c13

α k11 c23
α k22 c33

α k33 2c35
α k31,+ + +=

k31
α c15

α k11 c25
α k22 c35

α k33 2c55
α k31.+ + +=

kij
α

k13
α 0≠ k11

α k22
α k33

α≠ ≠

kij
α
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the OY axis through an angle ϕ determined from the
equality

(7)

Similarly, to reduce the phase-penetrability tensors

 to the principal axes, it is necessary to rotate the
coordinate system about the OY axis through the angles

 determined as 

(8)

However, whereas k13, k11, and k33 are constant in
Eq. (7), and therefore the angle ϕ is fixed, the compo-

nents of the phase-penetrability tensors , , and

 in Eq. (8) depend on the saturation and vary; as a

result, the angles  can also vary. Indeed, as follows

from relationships (2), the coefficients  are dimen-
sionless functions of saturation. Therefore, the compo-

nents of the tensors  of the phase-penetrability coef-

ficients can be represented in the form  = (s, πij)kl ,

where πij =  and the passage from two subscripts to

2ϕtan
2k13

k11 k33–
-------------------.=

kij
α

ϕα

2ϕαtan
2k13

α

k11
α k33

α–
-------------------.=

k13
α k11

α

k33
α

ϕα

cmn
α

kij
α

kl
α f l

α

ki

k j

----

Z

X
0

2
3

1

Section of the surface of the tensor  of the phase-pene-

trability coefficients for various values of the functions of

relative phase penetrabilities (s, πij) ≡ : (1)  =

 =  = 1; (2)  = 0.85,  = 0.9,  = 0.375; and

(3)  = 0.46,  = 0.795,  = 0.295.

kij
2

f l
2

f l
2

f 1
2

f 3
2

f 5
2

f 1
2

f 3
2

f 5
2

f 1
2

f 3
2

f 5
2

one subscript is performed according to rule (5). In this
case, Eq. (8) can be represented in the form

(9)

where (s, πij) are functions depending on the satura-
tion and the ratio between the components of the abso-
lute-penetrability tensor. The condition that the tensors

 and kij have common principal axes in the OXZ
plane imposes the following constraint on the functions

(s, πij):

(10)

However, it is impossible to verify conditions (10) by
comparison with available experimental data, because
there are no such investigations for samples with an
established type of filtration-property anisotropy [6].
For this reason, we simulate the possible behavior of
the phase-penetrability tensor by considering sections

of the indicatory surfaces of the  tensor by the OXY
plane. The indicatory surface of the filtration properties
is determined by the equality

(11)

where ni are the components of the unit vector specify-
ing the direction along which the phase penetrability
kα(n) is determined. In the OXZ plane, Eq. (11) for ten-
sors (4) takes the form

(12)

where β is the angle between the coordinate axis OX
and the unit vector ni . Passing from the components of
the tensors of phase-penetrability coefficients to the
components of the absolute-penetrability tensor, we
rewrite Eq. (12) in the form

Using the results of numerical and laboratory exper-
iments [6, 7], it is possible to analyze the behavior of
sections of the phase-penetrability surface preassigned

values of functions (s, πij). The results of this simu-

lation are shown in the figure. Since the component 

(or, which is the same, ) appears in Eq. (12), the ori-
entation of the principal axes of the phase-penetrability
tensor varies with varying saturation.

2ϕαtan
2 f 5

α s πij,( )k5

f 1
α s πij,( )k1 f 3

α s πij,( )k3–
-------------------------------------------------------------,=

f l
α

kij
α

f l
α

π13

f 3
α s πij,( ) f 5

α s πij,( )–

f 1
α s πij,( ) f 5

α s πij,( )–
--------------------------------------------------,=

π13

f 3
1 s πij,( ) f 5

2 s πij,( ) f 3
2 s πij,( ) f 5

1 s πij,( )–

f 1
1 s πij,( ) f 5

2 s πij,( ) f 1
2 s πij,( ) f 5

1 s πij,( )–
----------------------------------------------------------------------------------------------.=

kij
α

kα n( ) kij
αnin j,=

kα n( ) k11
α β 2k31

α β β k33
α β,sin

2
+sincos+cos

2
=

kα n( ) f 1
α s πij,( )k1 βcos

2
=

+ 2 f 5
α s πij,( )k5 β β f 3

α s πij,( )k3 β.sin
2

+sincos

f l
α

k13
α

k5
α
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