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Crystalline materials with Jahn–Teller centers are
ideal for simulating diffusion processes in systems with
a multiwell potential. The Jahn–Teller mechanism of
interparticle interaction allows the description of vari-
ous phase transformations, including the transition to
Jahn–Teller glass [1, 2], structure transitions with ferro-
magnetic-distortion and antiferromagnetic-distortion
ordering [3], spin-reorienting transitions [4, 5], phase
decay [6], etc. In previous studies [7, 8], it was shown
that the presence of multiwell-potential centers in a
crystal lattice can substantially affect the magnitude
and shape of diffusion potential barriers. In this case,
the migration of diffusing atoms was considered as for
nondegenerate systems under the assumption of a sta-
tistically average (i.e., thermodynamically equili-
brated) configuration of the crystalline surroundings.
At the same time, the properties of degenerate systems
depend strongly on the characteristic time of relaxation
of degenerate centers and on the distribution function
for this time. For this reason, the diffusion coefficients
for anions in crystals are theoretically analyzed here
under the assumption that there is no time to establish
the equilibrium population of degenerate levels in a
Jahn–Teller subsystem during a diffusion migration. In
this case, the symmetry of the anion surroundings of a
diffusing atom at a saddle point is determined by a ran-
dom configuration of vibron states of the nearest Jahn–
Teller centers (see Figs. 1–3). The displacements (cor-
responding to these states) of anions from the symmet-
ric positions give rise to the change in the shape of the
potential barrier and, therefore, in activation energy for
the migration frequencies. Taking into account the mul-
tiwell shape of the potential energy of anions and the
characteristic scale of Jahn–Teller strains (10–2–10–1 for
3d ions), one may expect that the above effects can give
rise to both qualitative and quantitative changes in the
diffusion coefficients.

The investigation was carried out for a spinel lattice,
where anions form a close-packed fcc structure and cat-
ions occupy half of the octahedral sites and one-eighth
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of the tetrahedral sites [9]. In this case, each anion has
three nearest octahedral cations (the bonds are directed
along the coordinate axes) and one tetrahedral cation
(the bond is directed along the trigonal axis). We
assume that Jahn–Teller ions occupy only octahedral
sites.

Let a Jahn–Teller center (Jahn–Teller cation plus
anion octahedron, see Fig. 1) be characterized by three
lowest vibron states each corresponding to the exten-
sion of the octahedron along one of the coordinate axes
and compression along the other two axes [10]. Then,
the position (displacement) of each anion is determined
by the set of vibron wave functions specified at the
three nearest Jahn–Teller octahedral cations (see
Fig. 2). There are nine such states of the anion. In this
case, if Jahn–Teller deformations are accompanied by a
small change in volume, the anion displacement uJT
along the bond to a Jahn–Teller cation in two of three
possible vibron states of this cation is half of the dis-
placement when the anion moves away from the cation
in the third state.

It is obvious that, if Jahn–Teller states are random in
diffusion migration, the corresponding distribution of
activation energies for the frequencies of these migra-
tions must also be random. In this case, there arise con-

JT

d(3x2 – r2)

JT

d(3y2 – r2)

JT

d(3z2 – r2)

Fig. 1. Displacements of anions in the three lowest vibron
states with the indicated symmetries of wave functions.
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figurations that give rise to both a decrease and an
increase in activation energies compared to the case
where the Jahn–Teller displacements of anions in a
crystal lattice are absent.

The above behavior is pronounced in the elastic
model of diffusion potential barriers. In this model,
activation energy is attributed to the work expended on
deforming a lattice when a diffusing particle moves
through a channel (passage) whose center is at a saddle
point and whose size is, as a rule, smaller than the dif-
fusing atom. The difference between these two sizes
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Fig. 2. Configurations of anions and cations near a saddle
point: (open circle) anion, (closed circle) octahedral cation,
(triangle) tetrahedral cation, and (square) anion vacation.
Anions nearest to the saddle point are numbered.
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Fig. 3. Displacements of anions in two vibron configura-
tions.
determines the desired activation energy. This energy is
proportional to the square of this size difference and
must noticeably vary under rather small variations in
the channel diameter that are induced by the Jahn–
Teller displacements of anions. Figure 3 shows two
possible configurations of anions for which changes in
the sizes of the passage channel must be of different
signs. For simplicity, only vibron states with cation-
anion bonds oriented along the Z-axis are shown. We
analyze the effect of these Jahn–Teller displacements
caused by the multiwell shape of the potential energy
on the diffusion coefficient of anions.

In the high-symmetric cubic phase of cooperative
Jahn–Teller systems (i.e., for temperatures T above the
structure-transition temperature TD), the diffusion-
coefficient tensor Dij is isotropic, i.e., Dij = D0δij . In the
low-symmetric phase, the diffusion coefficients can be
anisotropic because of Jahn–Teller strains eJT. The ran-
dom walk method provides the following expressions
for the corresponding Dii [11]:

(1)

where xk , yk , and zk are the projections of the displace-
ment of a diffusing atom onto the coordinate axes upon
k-type migration and Γk is the frequency of these migra-
tions. In this case, one can assume that migrations of
each type are characterized by the Arrhenius tempera-
ture dependence

(2)

where  is the pre-exponential factor and Ek is the
potential-barrier height.

In the lattice under consideration, there are three
basic types of migrations between the nearest positions.
If Jahn–Teller strains are ignored, these types have the
same configuration of anions and differ only in octa-
and tetrahedral cations surrounding the saddle point.
For brevity, we consider only one type of diffusion
migration under the assumption that the migrations
shown in Figs. 2 and 3 are determining. In this case, the
diffusion coefficient has the form

(3)

where Wi is the probability of the ith configuration of
vibron states of Jahn–Teller centers nearest to the sad-
dle point, ∆Ei is the change in the potential-barrier
height in the ith configuration caused by the displace-
ments of anions, and D0 is the diffusion coefficient in
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the absence of Jahn–Teller interactions. The case where
the relaxation of Jahn–Teller levels is slow compared to
the characteristic time of the above-barrier migration of
an anion is analyzed. For this reason, the anisotropy of
the diffusion coefficients of anions is not considered.

For simplicity, we analyze the variation of activation
energy ∆Ei in the elastic model of diffusion potential
barriers [12, 13]. In this case,

(4)

where  is the passage radius in the ith configura-

tion;  is this radius in the configuration undisturbed
by Jahn–Teller configurations; Ranion is the radius of a
diffusing anion; and Keff and v eff are the effective values
of the elastic modulus and volume, respectively, which
describe the work expended on deforming the lattice

upon diffusion migration (v eff ~ 4π /3). In this
case, it is evident that the changes in the potential bar-
rier heights alternate in sign (see Fig. 3). In the
stretched rectangle involving atoms 1–4, the passage
diameter increases, and therefore the activation energy
of migration decreases (∆Ei < 0). In contrast, activation
energy increases (∆Ei > 0) in the contracted rectangle.

In systems with a small number of Jahn–Teller
bonds of anions nearest to a saddle point, the entire
spectrum of possible changes in energy ∆Ei can be eas-
ily exhausted. This case can be simulated by taking into
account only those displacements of anions 1–4 indi-
cated in Fig. 3 which are determined by Jahn–Teller
bonds oriented along the Z-axis. The most substantial
increase in the channel diameter and decrease in activa-
tion energy must occur in the configuration shown in
Fig. 3b. The probability of this configuration is quite
high and is equal to 16/81. The dominant role of one
such contribution to Eq. (3) must give rise to the simul-
taneous decrease in both activation energy and pre-
exponential factor in the diffusion coefficient. In this
case, the effect of decreasing activation energy must
undoubtedly prevail.

In general, when the displacements of four oxygen
atoms nearest to the saddle point are determined by
electron states of ten Jahn–Teller cations in octahedral
sites, 310 configurations of atoms 1–4 in Fig. 2 should
be considered (the number of Jahn–Teller ions in the
cluster in question is 10). In view of this circumstance,
the summation with respect to configurations i in
Eq. (3) can be replaced by integration by introducing
the distribution function f(∆E) for the activation ener-

∆Ei Keffv eff=

× Rpol
i Ranion–( )2

Rpol
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– /Ranion
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i

Rpol
0
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gies of migration frequencies. Then,

(5)

For simplicity, the function f(∆E) is taken in the Gaus-
sian form. In this case, it is actually seen that the diffu-
sion coefficient increases due to the multiwell shape of
the potential relief (D > D0). This effect is attributed to
the fact that a diffusing particle under conditions where
τΓ0 @ 1 (τ is the relaxation time of a Jahn–Teller center)
migrates at the instant when the configuration with the
lowest potential barrier is realized.

Temperature dependences of the diffusion coeffi-
cients similar to Eq. (5) can also occur in nondegener-
ate systems with random deformation fields caused by
defects [8]. However, the conditions determining the
domain of existence of this dependence differ funda-
mentally from the above conditions. In nondegenerate
systems, in order to obtain this dependence, the interac-
tion between a diffusing particle and defects must be
long-range sign-alternating and lower than kBT for any
allowable distances in the lattice. In the presence of
short-range interactions such as blocking or capture of
a diffusing atom by defects, the above effect was
absent.

By using Eq. (4), the dispersion ∆ in Eq. (5) is easily
estimated as

(6)

If the difference Ranion –  between the anion size and
the size of the passage at the saddle point is comparable
with Jahn–Teller displacements uJT ~ (10–1–10–2)Ranion, D
must increase considerably compared to D0 in the tem-
perature range kBT < ∆ (∆ ≥ 10–1 eV).

We now discuss the possibility of observing the
above effect. The diffusion of anions is usually
observed at temperatures considerably above room
temperature. At these temperatures, the condition
τΓ 0 > 1 can be satisfied in both low-symmetric and
high-symmetric phases of cooperative Jahn–Teller sys-
tems with the transition temperature TD ~ (102–103) K.1

The presence of the cooperative Jahn–Teller effect
ensures diffusion in a crystal through fast channels of

1 The relaxation time τ of a multilevel system decreases with increas-
ing temperature and splitting energies of degenerate levels [10].
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anion migration, and the relatively high temperature
provides quite large local Jahn–Teller displacements.

The results can be verified experimentally by replac-
ing Jahn–Teller ions in the systems under consideration
with orbitally nondegenerate ions and with other types
of replacements. These replacements must result in a
noticeable decrease in the diffusion coefficients. This
decrease is associated with the decrease in the total
number of degenerate centers or in the concentration of
degenerate centers with relatively long relaxation
times. As a result, the dispersion of activation energies
in Eq. (5), which is related to various configurations of
the Jahn–Teller displacements of anions, decreases, and
therefore the diffusion coefficient D also decreases.

Note that the anisotropic deformation of the lattice
in the low-symmetric phase of the Jahn–Teller system
for τΓ 0 < 1 can also give rise to a noticeable variation
of the diffusion coefficients Dij at least in certain direc-
tions. For replacements resulting in the suppression of
Jahn–Teller ordering, this effect gradually vanishes. In
contrast to this case, noticeable anisotropy of the diffu-
sion coefficients is absent in the case where τΓ 0 > 1 and
the effect remains in the high-temperature phase.
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211[ ]
Epitaxial films with quasi-one-dimensional and
one-dimensional structures have recently been actively
investigated. A promising method for preparing them is
the growth of epitaxial structures (ESs) by molecular-
beam epitaxy (MBE) on the vicinal surface of GaAs
with δ-doped layers [1–3]. Previously, for this purpose,
tin was used as an electrically active impurity for
δ-doping. Due to the significant difference in the
atomic radius of tin compared to that of gallium and to
high diffusion mobility, tin segregates [4] and is prefer-
entially accumulated at the edges of steps [1, 5]. For
this case, epitaxial structures δ-doped with tin (so-
called δ-Sn doping) were synthesized and investigated.
The results of relevant studies are presented in [6, 7].

In this paper, the conductance anisotropy of δ-Sn-
doped ESs was studied for ESs grown by the MBE
method on (111)A GaAs substrates misoriented by the

angles 0.5°, 1.5°, and 3° in the  direction. As a
dopant impurity in GaAs, silicon possesses
amphotheric properties, manifesting them most
strongly in the case of the (111)A substrate [8]. It is
well known that in GaAs with the (100) orientation, sil-
icon predominantly behaves as a donor. At the same
time, in ESs grown on (111)A GaAs substrates, both
strongly compensated semi-insulating layers and either
n- or p-layers can be obtained [8–12] depending on the
growth temperature Tg and ratio γ of arsenic and gal-
lium fluxes. (Here, γ = PAs/PGa, where PAs and PGa are
the partial pressures of As and Ga for the ES growth
region in the MBE setup.) In addition, it is well known
[8] that for (111)A GaAs substrates misoriented in the

 direction by a small angle α ranging from 0.5°
to 3°, a vicinal surface arises with terraces of (111)A
orientation and steps of (100) orientation. The arrange-
ment of Ga and As atoms on the vicinal surface is
shown in Fig. 1 for the indicated misorientation direc-
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tions. When growing a δ-Si-doped layer on this surface,
we can expect the predominant doping of steps with
(100) orientation by donor silicon. The terraces with
(111)A orientation are doped differently depending on
the growth conditions, so that we can expect the forma-
tion of Si atomic chains on the steps of such a vicinal
surface. These structures are promising from the stand-
point of the development of so-called quantum wires on
their basis.

To check the nonuniformity of silicon doping of the
vicinal (111)A GaAs surface, the conductance anisot-
ropy of such structures was studied. The samples were
grown using a TsNA-24 MBE setup (made in Russia)
on semi-insulating (111)A GaAs substrates misori-

Ga
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(111)A
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[111]

[011]

[211]

[011]

[211]
I

Fig. 1. Schematic arrangement of Ga and As atoms on the
(111)A surface for misorientation of substrates in the

 direction and schematic sketch of the Hall bridge for
measuring the resistance anisotropy.
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ented from the (111)A plane in the  direction by
the angles α = 0.5°, 1.5°, and 3°. All of these samples,
as well as a test sample with (100) orientation, were
grown simultaneously with each other. For this pur-
pose, the indicated substrates were glued with indium
onto a common molybdenum holder. The structures
that were grown included an undoped buffer GaAs
layer 0.42 µm thick, a δ-Si layer, an undoped GaAs

211[ ]
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Fig. 2. Temperature dependences of the resistance for sam-

ples (a) 2 and (b) 3 in the (1)  and (2)  direc-
tions, respectively, and (3) the anisotropy coefficient kan =
Rpe/Rpa.

211[ ] 011[ ]
layer 50 nm thick, and a homogeneously doped GaAs
layer 30 nm thick with a Si concentration of ~1018 cm–3

for filling surface states. The epitaxial growth was per-
formed at a temperature Tg = 610°C, and the value of γ
was 14. After the growth had been completed, the sam-
ples were prepared by the photolithography method in
the form of an L-type Hall bridge for further measure-
ments. A view of this bridge is shown in Fig. 1.

The resistance of the structures was simultaneously
measured by four probes parallel and perpendicular to
the step faces of the vicinal surface. Temperature
dependences of the resistance were measured within
the range 4.2–300 K. The Hall effect and magnetoresis-
tance were investigated in magnetic fields up to 0.5 T.
The measurement results are listed in the table.

Nonuniform distribution of the impurities on the vic-
inal surface results in anisotropy of the resistance mea-
sured along and across the steps. As an example, temper-
ature dependences of the resistance for samples 2 and 3
in the  direction (pa-direction) and the 
direction (pe-direction), as well as the coefficient of the
resistance anisotropy kan = Rpe/Rpa, are shown in Figs. 2a
and 2b. For all vicinal samples, the resistance Rpe perpen-
dicular to step edges is much larger than the resistance
Rpa parallel to these edges. The coefficient kan of the resis-
tance anisotropy increases as the temperature decreases
similar to vicinal GaAs-structures with Sn-δ doping
studied previously [6, 7]. Conductance anisotropy was
not found in test sample 1 with (100) orientation.

Resistance anisotropy is associated with different
effects of the nonuniform impurity distribution on the
carrier mobility for various current directions. The car-
rier mobility for motion along the steps of the vicinal
surface is mainly determined by scattering on ionized
impurities randomly located along the terraces. Since
silicon is predominantly accumulated at the edges of
steps, if the current direction is along the steps, the dis-
persion of step widths [1] and the random formation of
steps with a height of several monolayers [13] signifi-
cantly affect the carrier mobility. This results in the
appearance of a periodic potential, which additionally
scatters electrons [14, 15].

The values of Rpa, kan, and Hall concentrations nH for
the samples at temperatures of 300, 77, and 4.2 K are
listed in the table. The resistance of the structures

011[ ] 211[ ]
Table

Sample

300 K 77 K 4.2 K

Rpa, ω/h kan
nH,

1012 cm–2 Rpa, ω/h kan
nH,

1012 cm–2 Rpa, ω/h kan
nH,

1012 cm–2

1, (100) 305 1.0 –12 280 1.0 –11.6 293 1.0 –10.4

2, α = 0.5° 1750 2.3 28 3910 6.0 3.3 10700 7.4 –

3, α = 1.5° 2600 1.1 21 23100 1.5 3.6 73800 1.5 –

4, α = 3.0° 3540 1.0 21 23700 1.0 3.6 139000 – –
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increases and the resistance anisotropy decreases with
an increase in the misorientation angle α from 0.5° to
3°. This indicates enhancement of the contribution
independent of the carrier scattering direction at large
misorientation angles.

Studies of the Hall effect have shown that sample 1
possesses n-type conductance with an electron mobility
of 2000 cm2/V s and that all the vicinal samples have
p-type conductance with a hole mobility of about
80 cm2/V s that weakly decreases with temperature.
Thus, for the chosen regimes of epitaxial growth on vic-
inal surfaces with (111)A orientation, silicon behaves
predominantly as an acceptor. The Hall concentration
in samples 2–4 decreases by almost a factor of 6 from
room to nitrogen temperatures (see table). At helium
temperature, we were unable to measure the Hall coef-
ficient.

In the low-temperature region (below 50 K), the
resistance of the samples obeys the Mott law for hop-
ping conductivity in the two-dimensional case: ρ =

ρ0exp  (Fig. 3), i.e., the charge carriers are local-

ized on the nonuniformities of the potential relief. The
parameter T0 is equal to 31 and 23 K for a current direc-
tion across the steps and 22 and 18 K for a current
direction along the steps for samples 2 and 3, respec-
tively. This parameter is associated with both the den-
sity of states at the Fermi level and the localization radius
T0 = C( a2)–1, where C = 13.8 is a numerical coeffi-
cient. The localization radius a for sample 2 obtained in

T0

T
----- 

 
1/3

NEF

12.0

0.2

ln R

T –1/3, K–1/3

11.6

11.2

10.8

10.4

10.0
0.3 0.4 0.5 0.6 0.7

Fig. 3. Resistance logarithm for samples 2 (squares) and 3
(triangles) as a function of T –1/3 according to measure-

ments along the  direction.211[ ]
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this manner is approximately 60 and 72 for current direc-
tions across and along the steps, respectively. In other
words, in the pe-direction, the holes are more strongly
localized, which is again testifies to relief anisotropy.

Thus, the experiments carried out have shown that
the nonuniform distribution of silicon in δ-doped GaAs
layers grown by the MBE method on (111)A GaAs sub-

strates misoriented in the  direction results in
anisotropy of the resistance both along and across the
steps of the vicinal surface.
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Polycrystalline carbonado diamonds are synthe-
sized from a carbon material in the presence of a nickel
alloy catalyst. A polycrystal is a composite material that
consists of a diamond phase and a binder (up to 20%)
whose composition is close to the catalyst. The proper-
ties of the binder significantly affect the properties of
the composite material as a whole. The strengthening
properties of nickel alloys can be improved by doping
them with disperse particles.

In this study, we determined the conditions for
forming the dispersion-strengthened binder in a poly-
crystalline diamond. Carbonado samples were synthe-
sized in a high-pressure toroid-type chamber at an ini-
tial pressure of 8.0 GPa and a temperature of 1800–
2000 K in 12 s. The mass of the resulting polycrystal
was 0.8 carat. We used MGOSCh graphite as the carbon
material.

In this study, we also used ultrafine powders (UDPs)
that were obtained by the plasmochemical method and
had the following characteristics:

nickel and molybdenum (MIKhM) with an average
particle size of 100 nm and an oxygen content of 3 and
5%, respectively;

titanium nitride (INKhP, Chernogolovka) with an
average particle size of 70 nm.

Ultrafine powders were preliminarily mixed in a
barrel mixer. To distribute the components more uni-
formly, the ultrafine-powder mixture was additionally
treated with high-frequency (22 kHz) ultrasound in
hexane for 1 min. The mixture was further compacted
under a pressure of 800 MPa into rods of the desired
sizes.

The compacts were used to synthesize polycrystal-
line carbonado diamond. However, polycrystals were
not formed because the catalyst contained a large quan-
tity of gaseous impurities, primarily oxygen, hydrogen,
nitrogen, carbon dioxide, and carbon monoxide [1].
Annealing the compacts in hydrogen at a temperature
of 1070 K for 1 h leads to the removal a great deal of

Moscow State Institute of Steel and Alloys
(Technical University),
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the gaseous impurities and to sintering of the ultrafine
powders with an increase in the strength of the samples.
The ability of the compacts to form polycrystalline dia-
mond is totally restored and is comparable with the
reaction ability of a compact catalyst.

Strengthening disperse particles can be distributed
more uniformly and their size can be reduced by using
the internal nitriding method [2] to produce dispersion-
strengthened catalysts. For nitriding, we used sintered
(Ni–15Mo)–Ti samples obtained by mouthpiece com-
paction. Nitriding was performed in a nitrogen-filled
gasostat under a pressure of 150 MPa and at a temper-
ature of 1250 K for 1 h. In the process of nitriding, tita-
nium, which was previously in the nickel solid solution,
interacts with nitrogen and, as a result, forms disperse
particles of TiN. In this case, due to the low thermody-
namic stability of molybdenum nitride [2], molybde-
num remains in the γ-solid solution and conserves the
nickel strengthened alloyed solid solution.

The porous structure of the sintered samples (a
porosity of ~15%) allows the easy propagation of nitro-
gen over the entire volume in the process of nitriding.
As a result, uniformly distributed disperse TiN precipi-
tate is formed in the γ-solid solution matrix. To deter-
mine the TiN lattice constant, we used the reflection
from the (220) plane and obtained the value (4.243 ±
0.003) × 10–10 m corresponding to the stoichiometric
composition of TiN [3]. The average size of the dis-
perse TiN particles was determined by the X-ray
method from widening of the (220) diffraction line and
was equal to 30–40 nm. The method of determining the
dispersivity of particles in such dispersion-strength-
ened materials is well known [4].

The quantitative content of TiN in the nitrided sam-
ples was determined by various methods.

For the quantitative X-ray phase analysis, we used
the calibration curve method [5]. The standard samples
were mixtures of powders of nickel and ultrafine TiN
with nearly stoichiometric composition, a lattice con-
stant of (4.240 ± 0.003) × 10–10 m, and an average par-
ticle size of approximately 70 nm. The ratio of intensi-
ties of the (220) diffraction lines of TiN and nickel in
the samples was determined at least three times for each
composition. The results of the quantitative X-ray
phase analysis of nitrided samples are as follows: the
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content of titanium in the initial powder mixture was
equal to 2, 3, 4, 6, and 10%, whereas the content of tita-
nium nitride in the nitrided samples was equal to 1.6 ±
0.5, 2.4 ± 0.6, 2.9 ± 0.6, 3.9 ± 0.7, and 6.1 ± 0.8%.

The nitrogen content in the nitrided samples was
determined by the meltback method on a LECO
TC-136 installation. The nitrogen content was deter-
mined with an accuracy of 2%. The amount of TiN was
calculated from the stoichiometry of its composition
under the assumption of the absence of dissolved nitro-
gen in the nickel solid solution. The last assumption
does not introduce any substantial error into the calcu-
lation, because nitrogen solvability in solid nickel is
less than 0.07% [2]. The results are listed in the table. A
comparison between the data described above and
listed in the table shows that the results obtained for the
titanium nitride content in the nitrided catalysts by two
different methods coincide within the errors.

After synthesizing polycrystalline diamonds, we
compared their strength properties. The polycrystals
were crushed, a 400/315 fraction was sifted, and the
crushing strength was determined according to the
GOST 9206-80 method using the PA-4E installation.
The results of the tests were processed by mathematical
statistics methods. For a confidence level of 95% and a
number of measurements of at least 100, the confidence
interval for strength values did not exceed 6 N (the rel-
ative confidence deviation was no more than 8%).

The results of the strength tests of the diamond poly-
crystals obtained by using dispersion-strengthened cat-
alysts are shown in Figs. 1–3. It should be noted that the
effect of strengthening of the diamond polycrystals is
observed if the disperse phase is distributed reasonably
uniformly in the initial catalyst. In particular, if com-
pacted powder mixtures are used as the catalysts, the
synthesized polycrystals are strengthened only in the
case of additional treatment of an ultrafine-powder
mixture by ultrasound (Fig. 1, curve 4). If coarse-
grained powders of nickel and molybdenum are used,
the additions of both ultrafine and coarse-grained TiN
powders only slightly affect the strength of the synthe-
sized diamond polycrystals. The highest strengthening
of carbonado polycrystals is achieved by using the dis-
persion-strengthened catalysts obtained by the internal
nitriding method (Fig. 2, curve 2). In such catalysts, the
TiN strengthening phase is more dispersed and uni-
formly distributed.

The form of experimental strengths of diamond
polycrystals as functions of disperse TiN admixtures in
the initial catalyst is likely caused by the effect of dis-
perse particles on the strength of the nondiamond com-
ponent of the polycrystals. Strengthening of the metal
phase by noncoherent particles takes place, as a rule,
according to the Orowan mechanism [4]. In this case,
the fraction of the strengthening phase generally must
not exceed several percent, whereas the distances
between particles of the phase and their sizes must dif-
fer by an order of magnitude or more. It should be noted
DOKLADY PHYSICS      Vol. 47      No. 6      2002
that the nonuniformity of the distribution of disperse
particles significantly reduces the degree of strengthen-
ing [4].

The above results make it possible to explain both
the effect of dispersivity and the uniformity of the
strengthening-phase distribution in the initial catalyst
on the degree of strengthening of the synthesized dia-
mond polycrystals and the character of concentration
strength dependences with a maximum. In particular,
the large fraction of disperse phase violates the optimal
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Fig. 1. The strength F of ARK4 400/315 diamond powders
vs. the Al2O3 content c in the Ni–15Mo catalyst for
(1) coarse-grained Ni, Mo, and Al2O3 (32/20) powders;
(2) ultrafine Ni, Mo, and Al2O3 powders mixed in a mixer;
and (3) the same as 2, but the mixture is additionally treated
by ultrasound.

Results of quantitative analysis of nitrided samples by the
meltback method

Content of
titanium in the initial
powder mixture, %

Content of
nitrogen in the

nitrided samples, %

Calculated TiN 
content in the

nitrided samples, %

0.5 0.14 0.62

1 0.25 1.1

2 0.42 1.9

3 0.54 2.4

4 0.68 3.0

6 0.99 4.4

10 1.5 6.6
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Fig. 2. The same as in Fig. 1, but vs. the titanium content in
(1) and (2) a catalyst consisting of coarse-grained Ni–15Mo
and ultrafine TiN powders, (3) and (4) a catalyst consisting
of ultrafine Ni–15Mo and TiN powders, (2) and (4) mix-
tures additionally treated by ultrasound.
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Fig. 3. The same as in Fig. 1, but vs. the titanium content in
(1) the synthesized catalyst and (2) the nitrided catalyst.
geometric parameters for dispersion strengthening,
embrittles the nondiamond component, and therefore
worsens the strength properties of the polycrystal.

CONCLUSIONS

(i) A method for growing polycrystalline diamonds
with a dispersion-strengthened intercrystalline binder
was developed.

(ii) On the basis of the methods of powder metal-
lurgy and internal nitriding, a method of producing a
dispersion-strengthened catalyst with a certain porosity
and composition was developed for synthesizing poly-
crystalline diamonds.
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The theory of high-Tc superconductivity extensively
uses a scenario considering competitive normal-state
instabilities: spin-density wave (SDW), charge-density
wave, and Cooper instability (primarily against d pair-
ing). Many numerical and other nonperturbative calcu-
lations were performed in the two-dimensional Hub-
bard model with migrations over the nearest neighbors
[1–4]. In this model, the dominant instability is appar-
ently the SDW instability caused by nesting, which is
substantial at doping degrees for which the Fermi sur-
face passes near Van Hove singularities of the electron
spectrum. In this scenario, an alternative mechanism of
superconductivity is d pairing induced by the closeness
of a system to the point of the quantum transition to the
state with a spin-density wave [5–13]. Continuing study
[8], we here consider Tc as a function of doping in the
Hubbard model with weak repulsion in the carrier-con-
centration range where the Cooper amplitude depends
on the closeness of a system to the transition to the state
with a spin-density wave.

The following excitation spectrum of a two-dimen-
sional electron system for a square lattice with migra-
tions over the nearest neighbors,

, (1)

has saddle points ,  at the vertices of the so-

called magnetic Brillouin zone. Using the jump integral
t and lattice constant a as units of measurement and
measuring quasimomenta from saddle points, e.g., p =
(–π + x, –π + y), we have γp = xy near such a point. If
the Fermi surface passes near saddle points, which cor-
responds to low hole concentrations and µ ! t, and
interaction is weak, it is customary to speak of the Van
Hove scenario. The relation γp + γp + Q = 0, where vector
Q is any side of the magnetic zone, is referred to as
nesting, which is one of the aspects of the Van Hove
scenario.

γp 4t
pxa
2

--------
pya
2

--------coscos=

π
a
---±

 π
a
---± 


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For scattering on the Fermi surface by vector Q + q,
where q ! Q, the polarization operator

(2)

has a double logarithmic singularity, because the chem-
ical potential measured in units of t is µ ! 1. In fact, the
denominator of the integrand has a minimum at the

point x = , y =  and, with logarithmic accuracy,

we obtain the expression

(3)

In this case, the minima of  and  are equal to µ.

For weak Hubbard repulsion U (measured in units
of t), the ladder amplitude in the SDW channel,

(4)

has a singularity at k =  = 1.

In the logarithmic approximation, it is possible to
write a closed ladder equation for the mass operator on

the mass shell displacement from the mass shell gives

rise to relatively small corrections of the order of

, more exactly, for the factor

(5)

Let us consider the following Π operator with the
exact Green’s functions G = (εZp – γp + µ)–1:

(6)
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Quantities Zp depending on slowly varying logarith-
mic variables ηx,y can be taken at the point of a mini-
mum of the expression γp + γp + q; i.e., the replacement
Zp + q  Zp  Zq/2  Zq can be made. Thus,

(7)

In the Van Hove scenario, the kernel of integral
equations for quantity Λ and superconducting gap ∆
with the d symmetry is the ladder amplitude

(8)

In the logarithmic approximation, scattering on one
side of a square corresponding to the Fermi surface is

described by the kernel  if the initial loga-

rithmic momentum η is lower than the final momentum
η'; otherwise, the kernel has the same form but with the
replacement of η by η'. With the same logarithmic
accuracy, scattering from one side of the square to
another side makes the same contribution as the first
type of scattering. The equations for Λ and ∆ have the
form

(9)

Π q 0,( ) Zp
1– Π0 q 0,( ).=

UΠ
1 UΠ–
------------------ = 

UΠ0

Z UΠ0–
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η xη y

Zq η xη y–
----------------------- = 

η xη y

1 Λq η xη y–+
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kη
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0
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Minimum of the denominator in Eq. (10) vs. concentration

for weak coupling 2  = 0.2.g
                                    

(10)

In order to solve the self-consistent equation for the
parameter Λη , it is convenient to introduce the function
z(x) = 1 + Λ(x) – k2x, which is the inverse scattering
amplitude in the equation for a gap. Differentiating the
integral equation for Λη , we arrive at the first-order dif-
ferential equation

(11)

The numerical solution of this equation indicates
that the function z(x) attains its minimum at the point
x = 1, which is a boundary of the interval (0, 1). For
weak interaction, quantity r(k) = z(1, k) is a positive

function of the doping parameter k =  and van-

ishes at the point k = 1 in the ladder approximation
without mass corrections. This behavior corresponds to
the critical point of the quantum transition to the state
with a spin-density wave. Although there is a small

parameter , this equation cannot be analyzed analyt-
ically, because the point x = 1 is an essential singularity
of its solution z(x) in the limit r(k)  0.

The figure shows the function r(k) = z(1, k) for weak

interaction with 2  = 0.2. The quantity r(k) character-
izes closeness to the critical point. With allowance for
mass corrections, the figure indicates that the critical
point is shifted to the region k > 1, i.e., to the region of
lower gap concentrations, and is not reached in the self-
consistent description being considered. A state
described by the self-consistent equation can be treated
as a metastable state from which the system transits to
the superconducting state and is therefore is stabilized.
If interaction is weak and r ! 1, the dominant contribu-
tion to integrals in the equation for the gap is made by
the vicinity of the point x = 1, where z(x, k) = r(k) + k2τ,
τ = 1 – x. In this case, the equation for the gap takes the
form

(12)

Assuming that  @ 1, we formally obtain the
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BCS limit. Assuming that the gap is a constant, we find

(13)

in the logarithmic approximation.

The quantity  near the minimum of the func-

tion r(k) varies rapidly compared to k. For this reason,
the coupling constant λ and Tc = µ–1/λ as functions of k
have maxima near the critical doping parameter k.

Thus, Tc depends nonmonotonically on carrier con-
centration near optimal doping in the Van Hove sce-
nario.
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We consider a method of producing two-dimen-
sional phase structures that provide the desired inten-
sity of electromagnetic-field distribution in the near-
field diffraction zone. In a particular case, such a phase
element plays the role of a lens having many foci with
different intensities (Fig. 1), which is impossible to
realize by traditional methods [1]. In a more general
case, we deal with images formed in the focal plane.
Therefore, such phase structures are artificial holo-
grams simulated by computer-aided synthesis [2],
which are called computer-generated holograms
(CGHs). We show the possibility of combining multifo-
cus phase CGHs in a continuous raster pattern, which is
important not only for parallel data-processing sys-
tems, but also for forming complex images in the focal
plane. When synthesizing such raster patterns, the
problem of matching image fragments produced by
individual CGHs and eliminating mutual interference is
solved.

We perform the calculation of multifocus phase
CGHs in the Fresnel approximation. In the region of
Fresnel diffraction, the electromagnetic field in an
observation plane is written as

where U(x0, y0) is the electromagnetic-field amplitude
in the observation plane, U(x1, y1) is the amplitude in
the plane directly behind a CGH, z is the distance

between these planes, and k =  is the wave number.

U x0 y0,( ) jkz( )exp
jλz

---------------------- j
k
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----- x0

2 y0
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× U x1 y1,( ) j
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We now solve the inverse problem, i.e., construction
of an artificial phase hologram that produces the given
distribution of the field amplitude in the focal plane.

The function U(x0, y0) can be found as the Fourier
transform of the function

It is worth noting that the expression exp (  +

)  corresponds to the transmission function of a thin

lens with the focal length F = z.
In the discrete representation, the phase structure of

a CGH and the complex amplitude-phase distribution
in the focal plane are set on a two-dimensional M × M
computational net. The iteration procedure for CGH
synthesis starts from the specification of a random
phase distribution in the focal plane for the desired
amplitude distribution. The inverse discrete Fresnel
transformation of the resulting distribution yields the
corresponding amplitude-phase distribution in the

U x1 y1,( ) j
k
2z
----- x1

2 y1
2+( ) .exp

j
k
2z
----- x1

2

y1
2

Focal length F

Screen

CGH

Fig. 1. Scheme of a multifocus CGH.
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CGH plane. This distribution is then replaced by a uni-
form distribution, whereas the phase function is
retained (or is quantized to the assigned number of lev-
els). The direct discrete Fresnel transformation pro-
vides a new complex distribution in the focal plane,
which, generally speaking, differs from the desired dis-
tribution. After replacing the amplitude distribution in
the focal plane by the desired one (with the retained
phase distribution), we pass to the next iteration cycle.

At the first stage of synthesis, we perform a fixed
number of iterations, retaining the best intermediate
result corresponding to the maximum energy efficiency
for the minimum deviation from the desired final distri-
bution. In the process of synthesis, the optimum quan-
tization of the CGH continuous phase function is
achieved by tuning phase discrimination levels. In this
case, we use the optimizing algorithm of coordinate-
wise descent, with the number of degrees of freedom
being equal to the number of quantization-phase levels.

At the second stage of synthesis, optimization of the
phase distribution obtained in the focal plane at the first
stage occurs. The purpose of this operation is to find the
best (continuous or quantized) CGH phase function. In
this case, we use the optimizing algorithm of coordi-
nate-wise descent for the number of degrees of freedom
that is equal to the number of output diffraction orders
with nonzero intensity.

We should bear in mind that, in the discrete repre-
sentation of a phase structure with a D × D quadratic

aperture, the discretization step  must be smaller

than the minimum size of a phase-structure element. In
the simplest case of an axial focusing CGH forming one
focus (i.e., in the case of a phase Fresnel lens), the local
period of the phase structure is minimal at the aperture
edge and equals

where R is the radius of the last Fresnel zone R =

, and F is the focal length.

Thus, for N levels of a phase quantization, the fol-
lowing condition must be fulfilled:

(1)

Hence, we have the following constraints on the
maximum possible size of the CGH quadratic aperture

D
M
-----

∆min
λF
R

-------,=


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D
M
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or the minimum possible focal length:

(2)

It is clear that the minimum size of an element of the
CGH phase structure also depends on the complexity of
the desired light distribution in the focal plane. In the
simplest case of two-level phase quantization (N = 2)
(within the visible range λ = 0.65 µm), it follows from
inequalities (2) that, for the focal length F = 2.0 mm,
the constraint imposed on the aperture is D < 0.24 mm
for M = 64, which corresponds to the angular aperture

 < 0.12. The aperture D can be slightly increased

when using a larger step of the discretization net. For
example, for M = 128, we obtain D < 0.34, which cor-

responds to the angular aperture  < 0.17. However,

we should keep in mind that, in this case, both the cal-
culation time and the amount of topological informa-
tion increase, which complicates the preparation of
phase structures.

Thus, it follows from inequalities (2) that the real-
ization of large apertures with small focal lengths is
impossible. This restriction can be overcome by pro-
ducing raster patterns, i.e., by combining several multi-
focus structures into a unified phase matrix. This makes
it possible to realize complex light distributions over a
large area at relatively small focal lengths. When syn-
thesizing a raster pattern, the given electromagnetic-
field distribution in the focal plane is initially divided
into several regions. In each of them, the field is formed
by a corresponding phase element. As is seen from
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Fig. 2. Raster pattern of focusing CGHs.
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Fig. 3. Calculated phase structures of individual multifocus CGHs and corresponding experimental light distributions of prepared
samples.
Fig. 2, for the raster pattern composed of focusing
CGHs located close to each other, the computational
nets for light distributions of individual phase struc-
tures overlap in the focal plane, which causes mutual
interference.

To avoid this interference when specifying light dis-
tribution formed by each individual CGH in the focal
plane, we should use only the central part of the discret-
ization net, which is smaller than the value of M by a
factor of α. The coefficient α defines the magnification
of the linear size DF in the focal plane with respect to
the aperture D of an individual phase element. Taking
into account the fact that the linear size between neigh-

boring readings in the plane of a phase element is ,

and in the focal plane, it is , we find

(3)

In order to avoid the superposition of fields formed
by individual axial focusing CGHs, it is necessary (for
specifying these fields in the focal plane) to use a com-
putational net with dimensions C × C (with area D × D).
With allowance for Eq. (3), we arrive at

(4)

and this dimension is independent of the value M of the
discretization net.

Thus, in the case of synthesis of a continuous raster
pattern, the general final distribution should be divided
into regions of C × C readings, in each of which the dis-
tribution is formed by an individual focusing CGH.

For the above example (M = 64, N = 2, λ = 0.65 µm,
and F = 2.0 mm) at D = 0.192 mm, we obtain from rela-
tionship (4) that C = 28. In this case, α = 2.26. There-

D
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λF
D
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α
DF

D
-------

λFM
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------------.= =
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M
α
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D2

λF
-------,= =
fore, in order to specify a light distribution in the focal
plane from the entire discretization net consisting of
64 × 64 readings, we need to use its central part with the
dimension of 28 × 28 readings.

In the synthesis of individual focusing CGHs, we
used a Pentium III/733 MHz/256 MB personal com-
puter. The adjustment of the computer-synthesis meth-
ods of CGH-phase focusing was performed for a dis-
cretization net of size M = 64. Furthermore, in order to
decrease calculation errors associated with discretiza-
tion of the phase structure, the estimate of the parame-
ters of the CGH synthesized for the discretization net
M = 64 was performed for a larger net with M = 1024.

The preparation of samples of focusing CGHs for
the visible spectral range requires high precision in
forming the surface phase relief (errors in the depth and
over the plane are ~0.01 and ~0.1 µm, respectively) [3].
Therefore, we applied an ad hoc method of direct elec-
tron-beam recording of the phase relief in an electron-
resist layer, which was then subjected to chemical and
plasmochemical treatments [4]. The method is based on
dosed electron irradiation of phase regions and makes it
possible (in one technological cycle) to form 2…8-
level relief quantized in depth within the electron-resist
layer over an area of ~6 × 6 mm2 with the desired accu-
racy. The electron-beam setup based on a ZRM-20
(Carl Zeiss) scanning electron microscope enables us to
achieve the accuracy above-mentioned for phase-relief
formation.

As an illustration, we consider an example of the
synthesis and preparation of the raster pattern of focus-
ing CGHs. Figure 3 shows the calculated phase struc-
tures of individual multifocus CGHs and the corre-
sponding light distributions formed by these multifocus
elements in the focal plane. The parameters of the ele-
ments are F = 2.0 mm, λ = 0.65 µm, D = 0.192 mm,
M = 64, and N = 2.
DOKLADY PHYSICS      Vol. 47      No. 6      2002
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Figure 4 shows the experimental output light distri-
bution formed by a raster pattern with 8 × 8 = 64 mul-
tifocus CGHs with a total aperture of 1.536 ×
1.536 mm2 . Note that according to formula (3), the
magnification factor for a linear size of the computa-
tional net in the focal plane with respect to that of the

CGH aperture is α =  = 2.26. In order to avoid

overlap of the fields formed by the individual focusing
CGHs in the focal plane, the operating fields were writ-
ten into the C × C reading matrices of discretization-net

nodes, where, according to relationship (4), C =  = 28.

In Fig. 4, the distributions corresponding to the individ-
ual focusing CGHs are outlined.

λFM

D2
------------

M
α
-----

Fig. 4. Experimental output distribution formed by a raster
pattern with a general aperture of 1.536 × 1.536 mm2. The
raster is based on 8 × 8 multifocus elements with the focal
length of 2.0 mm.
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The experimental results obtained correspond to the
calculated ones with an accuracy sufficient for practical
applications.

The developed technique for synthesizing multifocus
CGHs and the method of direct electron-beam recording
made it possible to produce a new class of elements for
laser optics. Combining multifocus CGHs into raster pat-
terns enables us to obtain complex light distributions
with a large total aperture for small focal lengths, which
is impossible using conventional methods.

The multifocus CGH raster patterns considered in
this study can be applied in fiber-optics communica-
tion, in image processing systems, and for making opti-
cal neural networks. In particular, when using these ras-
ter patterns, the problem of splitting light from one fiber
into several is solved rather simply and more efficiently
(see, e.g., [5]).
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1. Inelastic collisions of electrons with metal atoms
have been studied for about 70 years. Originally, these
studies were based on employing a vapor-filled cell-
method, which had rather limited potentialities. Some-
what later, a significantly more efficient method of
crossed beams was developed. However, the operating
parameters associated with practical realizations of the
method by several experimental groups allow them to
study only low-temperature metals. The highest operat-
ing temperature (almost 1900 K) was attained in [1] in
experiments with gadolinium. In these experiments, the
authors noted that “the study of electron-impact excita-
tion… of gadolinium atoms involves considerable
experimental difficulties.”

The limitations associated with the vaporization
temperature of the samples being analyzed were over-
come in 1969 after the method of extended crossed
beams had been proposed. A universal setup based on
this method was developed in 1974 [2]. The setup
makes it possible to study any chemical element, e.g.,
boron (2400 K) [3], zirconium (2700 K) [4], and nio-
bium (2900 K) [5].

2. In this study, the method of extended crossed
beams was employed to investigate inelastic collisions
of slow electrons with tantalum atoms. Both the excita-
tion of resonant transitions and the branching accompa-
nying it were studied.

An extended beam of tantalum atoms with a cross
section of 200 × 26 mm2 in the region of intersection
with an electron beam was formed by surface evapora-
tion from a graphite substrate and by subsequent shap-
ing of the atomic beam with the use of three cooled dia-
phragms. Evaporation occurred as a result of the elec-
tron beam heating the tantalum surface to a temperature
of 3400 K. The tantalum-atom concentration in the
beam intersection region reached 2.1 × 109 cm–3. The
molten-zone diameter was about 9 mm; its further
growth was restrained by extremely large radiation
losses from the tantalum surface. Since the melt was
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bounded by the autocrucible and did not come in con-
tact with the substrate, its dissolution in the molten
metal and contamination of the beam by carbides were
completely excluded.

Like other refractory metals, tantalum atoms have a
series of low-lying levels belonging to the fundamental
5d36s2a4F term. Although splitting is fairly pronounced
for this term, these levels can be populated as a result of
thermal excitation during evaporation of tantalum.
Assuming that the Boltzmann distribution is applicable,
we obtained the following estimate for the level popula-
tions under our experimental conditions (atomic concen-
trations in the beam, percent): 5d36s2a4F3/2 (0)—40.6;
5d36s2a4F5/2 (2010)—26.1; 5d36s2a4F7/2 (3963)—15.3;
and 5d36s2a4F9/2 (5621)—9.5, where the numbers in the
parentheses are the level energies expressed in cm–1.
Since the energy differences for these levels are very
large, their populations decrease fairly sharply with an
increase in the excitation energy, in spite of increasing
statistical weight and very high temperatures. There-
fore, in this experiment, the summed atomic concentra-
tions at the levels of the principal term, at three levels
of the 5d36s2a4P term (for E > 6000 cm–1), and at the
levels of the sextet 5d46sa6D term (for E > 9700 cm–1)
are equal to 91.5, 6.0, and 2.5%, respectively. These
values should be taken into account when comparing
experimental data with theoretical results. However,
when solving practical problems, this distribution is
unlikely to significantly affect the accuracy of the
results, because, in fact, a similar low-energy distribu-
tion always occurs in an actual plasma.

The presence of very intense background radiation
is one of the most important factors in experiments with
refractory elements. At the above-mentioned tempera-
ture of molten metal, it is very difficult to shield the
photodetector from the radiation scattered by structural
elements of the electron gun. Under the conditions of
this experiment, the presence of intense background
light from the surface of the molten metal allowed us to
carry out the measurements only in the ultraviolet
region for λ < 370 nm. In the longer wave range, the
noise level at the photodetector input increased intoler-
ably. This problem could be partially solved if, instead
002 MAIK “Nauka/Interperiodica”
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of thermal evaporation, sputtering by ion bombardment
were used. However, this method has many of its own
intrinsic difficulties.

The spectral resolution of our optical system
reaches about 0.1 nm. Although this value is close to the
best one used in beam experiments, it did not allow us
to avoid blending in certain experiments with tantalum,
because the spectrum of TaI has a lot of lines. The elec-
tron-beam current density did not exceed 1.0 mA/cm2,
and the width of the electron energy distribution was no
greater than 1.0 eV (for 90% of electrons). Other exper-
imental conditions, the technique applied, and the mea-
surement procedure are thoroughly described in [6].

The measurement errors of relative values of the
cross sections vary from 10 to 22%. The absolute val-
ues of the cross sections were found to an accuracy of
±25 to 37%, because the atomic concentration of tanta-
lum in the beam was quite small.

3. We have investigated the optical emission spec-
trum of tantalum atoms under bombardment by a
monoenergetic electron beam with an energy of 50 eV.
The excitation cross sections for more than 100 spectral
lines of TaI were measured within the spectral range
from 230 to 370 nm. About one-third of these lines cor-
respond to resonance lines and to transitions to higher
levels, which compete with them in branching. The
optical excitation functions (OEFs) were measured for
a series of lines within the electron energy range from
0 to 250 eV. No lines that could reliably be assigned to
the spectrum of singly charged tantalum ions were
found. The same occurs in the case of niobium atoms.
At the same time, as was found in [7], the excitation
efficiency for singly charged vanadium ions is not
much lower than that for atomic lines.

The results obtained for the resonance lines and the
transitions competing with them are presented in
Table 1. The wavelength λ, the transition type, the
internal quantum number J, and the lower and upper
energy levels Elow and Eup are presented according to
the data of [8, 9]. The table also contains the position
E(Qmax) of the maximum, as well as the excitation cross
sections Q50 and Qmax at an electron energy of 50 eV
and at the OEF maximum, respectively. The numbers in
the OEF column correspond to those for the curves in
the figure. The optical excitation functions for the lines
with a common upper level are naturally identical.
Unfortunately, only the parity and the quantum number
J are known for almost all upper levels under investiga-
tion; their configurations and terms are unknown. All
the energy levels lying lower than 33500 cm–1 and only
a few higher lying levels of TaI were identified in [9].

As is well known, methods based on optical record-
ing of atoms excited by electron impact make it possi-
ble to measure the excitation cross section Qki for a
spectral line (k and i stand for the upper and lower lev-
els of the transition being studied, respectively). At the
same time, the excitation cross section qk for a k level is
DOKLADY PHYSICS      Vol. 47      No. 6      2002
a basic collision characteristic for both theoretical con-
siderations and most practical problems. These quanti-
ties are related to each other by a simple relationship
that is a particular form of the balance equation under
conditions of steady excitation:

(1)

Here, the first sum allows for branching, i.e., competi-
tion between spontaneous emitting transitions from the
k level. The second sum is the contribution of cascade
transitions to the k level from all higher lying l levels.
The simplified notations introduced in our previous
publications are used on the right-hand side of Eq. (1).
It follows from Eq. (1) that the excitation cross section
for an energy level can be completely determined by
measuring Qki and requires no additional information.

However, the accuracy of the cross section qk found
in this manner is determined by both the measurement
accuracy of Qki (and Qlk) and the completeness of
allowance for possible transitions associated with the k
level. In actual experiments, such completeness is
always limited for many reasons. The following factors
are the basic ones: (i) constraints imposed on the work-
ing spectral range, (ii) insufficient sensitivity of the
recording system, and (iii) the possibility of blending.

At present, electron-atomic collisions are usually
studied in the ultraviolet and visible regions. Far fewer
studies are carried out in the vacuum-ultraviolet and
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Table 1.  Excitation cross sections for spectral lines of tantalum atoms

λ, nm Transition J Elow, cm–1 Eup, cm–1 Q50,
10–18 cm2

Qmax,
10–18 cm2

E(Qmax),
eV

OEF

242.764 5d36s2 a4F– 3/2–3/2 0 41179 46.5

244.717 5d36s2 a4F– 3/2–5/2 0 40851 34.9

254.680 5d36s2 a4F– 3/2–3/2 0 39253 37.1

255.943 5d36s2 a4F– 3/2–5/2 0 39059 83.3 95.8 26 6

256.370 5d36s2 a4F– 3/2–3/2 0 38994 30.4

257.379 5d36s2 a4F– 5/2–5/2 2010 40851 106

264.747 5d36s2 a4F– 3/2–3/2 0 37760 654 695 26 5

265.661 5d36s2 a4F– 3/2–5/2 0 37630 199 219 30 4

266.807 5d36s2 a4F– 9/2–9/2 5621 43090
 90.0

266.862 5d36s2 a4F– 3/2–1/2 0 37461

268.428 5d36s2 a4F– 5/2–3/2 2010 39253 94.0

269.131 5d36s2 a4F– 3/2–5/2 0 37145 38.3

269.830 5d36s2 a4F– 5/2–5/2 2010 39059 119 137 26 6

270.306 5d36s2 a4F– 5/2–3/2 2010 38994 24.5

271.013 5d36s2 a4F– 7/2–5/2 3963 40851 89.5

271.467 5d36s2 a4F– 3/2–5/2 0 36825 460 597 19 3

273.292 5d36s2 a4F– 3/2–3/2 0 36580 20.3

277.588 5d36s2 a4F– 3/2–5/2 0 36014 91.2 111 19 2

279.634 5d36s2 a4F– 5/2–3/2 2010 37760 109 116 26 5

280.658 5d36s2 a4F– 5/2–5/2 2010 37630 77.7 85.4 30 4

284.852 5d36s2 a4F– 7/2–5/2 3963 39059 64.8 74.5 26 6

287.142 5d36s2 a4F– 5/2–5/2 2010 36825 85.6 112 19 3

287.336 5d36s2 a4F– 3/2–5/2 0 34792
67.0

287.356 5d36s2 a4F– 7/2–5/2 3963 38753

289.184 5d36s2 a4F– 5/2–3/2 2010 36580 86.2

293.355 5d36s2 a4F– 3/2–3/2 0 34078 181 218 20 1

296.947 5d36s2 a4F– 7/2–5/2 3963 37630 37.2 40.9 30 4

304.956 5d36s2 a4F– 5/2–5/2 2010 34792 72.1

317.359 5d36s2 a4F–5d26s26p z2P° 3/2–1/2 0 31500 40.5

318.095 5d36s2 a4F – 5d26s26p z2F° 3/2–5/2 0 31428 67.6

333.241 5d36s2 a4P– 5/2–3/2 9253 39253 22.6

339.833 5d36s2 a4F–5d26s26p z2F° 5/2–5/2 2010 31428 21.4

340.694 5d36s2 a4F – 5d26s26p y4G° 3/2–5/2 0 29343 35.8

344.515 5d46s a6D– 3/2–3/2 9975 38994 14.6

348.052 5d36s2 a4P– 3/2–5/2 6068 34792 26.2

348.462 5d36s2 a4F – 5d36s6p x4D° 3/2–3/2 0 28689 10.7

356.479 5d36s2 a2D– 3/2–3/2 10950 38994 21.4

356.672 5d36s2 a4P– 1/2–3/2 6049 34078 23.9 28.8 20 1
DOKLADY PHYSICS      Vol. 47      No. 6      2002
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infrared (especially for λ > 1 µm) regions. The spectral
range of tantalum atoms is basically limited by the
boundary of the vacuum ultraviolet region, whereas
many spectral lines of TaI, which greatly contribute to
the cascade population of the levels, are related to the
red and infrared regions. Under the conditions of our
experiment, these lines cannot be recorded. The limita-
tion is a result of the intense background light men-
tioned above rather than insufficient sensitivity of the
recording system (this background causes intense noise
at the input of the photodetector and can render it inop-
erative).

Since no data on the cascade transitions of TaI are
available, Eq. (1) cannot be used to completely deter-
mine qk . However, the total excitation cross section
ΣQ50 for a level, allowing for both direct electron
impact excitation of the level from the initial states and
the contribution of cascade filling, can be found for a
series of levels. For atoms similar to tantalum, a typical
contribution of cascade filling amounts 10 to 50% of
the total excitation cross section.

The competing transitions from a k level can be
taken into account more accurately by using available
data on the branching ratios (BR). As a rule, these data
are obtained with the use of gas–discharge radiation
sources that provide a radiation intensity several deci-
mal orders of magnitude larger than that in the beam

crossing region. Since  =  (where Aki is the

radiative-transition probability), when determining the
total excitation cross sections, the measurement data
for Aki can be used to find the branching ratios.

Many branching ratios for 253 spectral lines of TaI
within the range from 312 to 825 nm were found in
[10]. These transitions belong to 31 upper levels within
the spectral range from 23300 to 35500 cm–1. A gas–
discharge hollow-cathode lamp was used as a radiation
source with tantalum sputtered by buffer-argon ion
bombardment of the cathode. The measurements were
performed for all known branching lines of the levels
mentioned above, in particular, for the lines whose con-
tribution was less than 1%. Although the long-wave
region recorded in [10] was bounded by the beginning
of the near-ultraviolet region, the analysis showed that
no important infrared branches were omitted.

The total excitation cross sections calculated for
13 energy levels of TaI are presented in Table 2. Unfor-
tunately, of all levels investigated in the present study,
only two were considered in [10]. For other levels, the
branching was taken into account according to the data
of Table 1. As is seen from Table 2, the total excitation
cross sections for the 8 levels being studied exceed
10−16 cm2. At present, the theoretical evaluation of the
excitation cross sections for these levels of tantalum
atoms is impossible, because it is necessary to assign

Qki

Qkm

---------
Aki

Akm

--------
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the levels to configurations and terms and to determine
their wave functions.

4. Thus, electron-impact excitation of chemical ele-
ments with an evaporation temperature higher than
3000 K has been studied. The data obtained for the total
cross sections can be used in astrophysics, plasma
chemistry, and plasma physics. At present, it is impos-
sible to interpret the results in detail because no data on
the configurations and terms are available for the levels
studied.

Table 2.  Total excitation cross sections for energy levels of
tantalum atoms

λ, nm Eup, cm–1 Q50,
10–18 cm2 BR [10]

ΣQ50,
10–18 cm2

348.462 28689 10.7 0.116 92.3

340.694 29343 35.8 0.674 53.1

339.833 31428 21.4 89.0

318.095 67.6

356.672 34078 23.9 204.9

293.355 181

348.052 34792 26.2 98.3

304.956 72.1

289.184 36580 86.2 106.5

273.292 20.3

287.142 36825 85.6 545.6

271.467 460

296.947 37630 37.2 313.9

280.658 77.7

265.661 199

279.634 37760 109 763

264.747 654

356.479 38994 21.4 90.9

344.515 14.6

270.306 24.5

256.370 30.4

284.852 39059 64.8 267.1

269.830 119

255.943 83.3

333.241 39253 22.6 153.7

268.428 94.0

254.680 37.1

271.013 40851 89.5 230.4

257.379 106

244.717 34.9
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1. INTRODUCTION

One of the basic mathematical models of plasma is
the set of master equations for the distribution functions
of ions and electrons with the Coulomb collision oper-
ators [1]. The master equation is written in the six-
dimensional phase space uniting the coordinate space
and velocity space. This model in the general form is
intricate, because it is multidimensional and involves
effects with substantially different characteristic times.
However, particular cases allow a change from Carte-
sian coordinates (X, Y, Z, v 1, v 2, v 3) to specially chosen
phase variables separated into slow and fast variables.
Then, averaging with respect to fast variables can be
performed. This procedure reduces the dimension of
the problem, excludes fast oscillating processes, and
separates slow-evolution variations of the distribution
function, which are of principal interest.

We deal with a high-temperature toroidal plasma
used in experiments on controlled thermonuclear
fusion in tokamaks. In these systems, the degrees of
freedom can be separated into three fast and three slow
variables, and one can use the symmetry in the azimuth
angle. After averaging with respect to the fast motions,
the master equation with three phase variables is
obtained.

Various modifications of the averaging method for
master equations were analyzed in many works. Their
results were generalized and developed in [2]. How-
ever, the fundamental properties of the averaged Cou-
lomb collision operator were not appropriately studied.

In the initial master equation, the Coulomb collision
operator (see, e.g., [3]) (i) vanishes for Maxwell distri-
butions of particles with the same temperature and
average transport velocity, (ii) conserves the number of
particles, (iii) conserves the total momentum of par-
ticles, (iv) conserves the total energy of particles,
(v) does not increase the H function (analog of the Bolt-
zmann H theorem), and (vi) is elliptic. These are the six
fundamental properties of this operator.

Moscow State University, Vorob’evy gory, 
Moscow, 119899 Russia
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The averaging of the master equation is not an iden-
tical mathematical transformation. Therefore, it is rea-
sonable to determine the extent to which the averaged
equations conserve the above properties. This problem
will be discussed in this paper.

2. AVERAGED EQUATION

A detailed derivation of the averaged master equa-
tion was presented in [2]. Here, we use the results of
that study as input data for analyzing the properties of
the averaged Coulomb collision operator.

We consider a plasma column of toroidal configura-
tion with noncircular section and introduce two special
coordinate systems in the six-dimensional phase space.
One system, the so-called local-coordinate system,
unites the toroidal coordinates (γ, ξ, η) in the coordinate
space and spherical coordinates (v , θ, ϕ) in the velocity
space with the polar axis directed along the magnetic
field: (γ, ξ, η, v , θ, ϕ) ≡ (x1, x2, x3, x4, x5, x6) ≡ x. Here, γ
is the label of a magnetic surface, e.g., half the surface
width in the equatorial plane; and η and ξ are the toroidal
and generalized poloidal angles, respectively. The other
coordinate system, the so-called system with the con-
stant of motion, involves the constants of the collision-
less motion of particles (see, e.g., [4]) (γ0, v0, θ0) ≡ 
and fast angular variables (ξ, η, ϕ): (γ0, ξ, η, v0, θ0, ϕ) ≡
( , , , , , ) ≡ . Quantities (γ0, v 0, θ0) are
any three independent constants of motion. A particular
choice can be determined, e.g., by convenience of phys-
ical interpretation or numerical solution of the master
equation [2, 5, 6].

It is assumed that the six-dimensional phase space
can be divided into domains, each allowing the change
from the local coordinates x to the coordinates .

The averaged three-dimensional nonlinear integrod-
ifferential master equation has the form [2]

(1)

where  ≡ (t, γ0, v0, θ0) is the desired distribution
function of α particles. The summation with respect to

X

x1 x2 x3 x4 x5 x6 x

x

∂ f α
0

∂t
--------- Cα β, f α

0 f β
0,( ),

β
∑=

f α
0 f α

0
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β is preformed over all types of plasma particles,
including α particles:

(2)

Here, Uik =  – , where u = v – v ' is the relative

velocity; u = |u |; δik is the Kronecker delta, e is the elec-
tron charge; lnΛαβ is the Coulomb logarithm; eα, eβ and
mα, mβ are the charges and masses of particles, respec-

tively; Zα = ; and  ≡ (X, Y, Z, , , ). We

use the International System of Units and imply sum-
mation with respect to repeated subscripts i and k from
1 to 3. Angular brackets denote the component of a cer-
tain integrable function a( ) that is independent of fast
variables:

where the integrals are calculated over the domains of
varying ξ, η, and ϕ, which are covered by the particle
trajectory with specified constants of motion  ≡
(γ0, v0, θ0), and  is the Jacobian of the transforma-
tion to coordinates .

Equation (1) is written for each kind of plasma par-
ticle; i.e., the set of equations is considered. This set
with corresponding boundary and initial conditions
allows computer calculations of various kinetic effects
in a toroidal plasma. Numerical methods of solving
Eq. (1) were presented and justified in [5].

When the other three angular variables vary, a fixed
set of the constants of motion (γ0, v 0, θ0) specifies a cer-
tain hypersurface containing the particle trajectory.
Equation (1) describes the evolution induced in the dis-
tribution function of these surfaces by Coulomb colli-
sions. Coulomb interaction changes the constants of
collisionless motion. It is interesting that the collision
operator in the nonaveraged equation acts only in the
velocity space, whereas in the averaged equation, this
operator acts in the space of three phase variables,
which depend not only on velocities, but also on coor-
dinates.

Cα β, f α
0 f β

0,( )
Zα

2 Zβ
2e4 Λαβln

8πε0mα
--------------------------------=

× 1
1〈 〉

--------
xn∂
∂ ∂xn

∂v i

-------- v 1'd v 2'd v 3'd∫
n 1 4 5, ,=

∑

×
f β

0 t X',( )
mα
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0 t X,( )
∂v k
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f α

0 t X,( )
mβ
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∂ f β

0 t X',( )

∂v k'
----------------------– Uik .

δik

u
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uiuk

u3
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eα

e
----- X' X v 1' v 2' v 3'

x

a〈 〉 ξ η ϕ a x( ) g ,d

∆ϕ
∫d

∆η
∫d

∆ξ
∫≡

X

g
x

3. PROPERTIES 
OF THE AVERAGED COULOMB COLLISION 

OPERATOR

For brevity, we present the properties without
proofs.

Property 1. Averaged Coulomb collision operator (2)

vanishes for Maxwell distributions (t, ) and

(t, ) of α and β particles with the same uniform
(in coordinate space) temperature T = const and uni-
form densities nα = const and nβ = const, where

Here, T is the temperature measured in energy units, v 0
corresponds to the total particle energy conserved in
stationary magnetic and electric fields, 

Φ(γ, ξ) is the electrostatic potential, and vp = const is
the uniform transport velocity.

If nα, nβ, T, or vp depends on γ0 or γ, the operator

( , ) is generally nonzero. The radial flux

generally does not vanish either. Operator ( ,

) differs in this property from the nonaveraged
operator, where density, temperature, and transport
velocity can depend on coordinates [3]. This situation is
physically attributed to the fact that the Coulomb colli-
sion operator in the averaged equation carries informa-
tion about the motion of particles and acts in both
velocity space and coordinate space, whereas the oper-
ator in the nonaveraged equation acts only in velocity
space.

Property 2. Averaged Coulomb collision operator (2)
conserves the number of α particles in the system.

Property 3. The averaged Coulomb collision oper-

ator ( , ) + ( , ) conserves the gen-
eralized total toroidal moment Pα + Pβ of α and β par-
ticles if Pα = Pα(γ0, v 0, θ0) and Pβ = Pβ(γ0, v 0, θ0).

For proof, it is necessary to consider the generalized
toroidal moment

averaged with respect to gyroangle ϕ. Here, χ is the
angle of the magnetic field with respect to the toroidal

direction,  is the component of the metric tensor of
the transformation from (X, Y, Z) to (γ, ξ, η), and ψ(γ)

f M α,
0 X

f M β,
0 X

f M α,
0 t X,( ) nα

mα

2πT
---------- 

 
3/2 mαv 0

2

2T
-------------– 

  .exp=

mαv 0
2

2
------------- mα

v vp–
2

-------------- eαΦ γ ξ,( ),+=

Cα β, f M α,
0 f M β,

0

Cα β, f M α,
0

f M β,
0

Cα β, f α
0 f β

0 Cβ α, f β
0 f α

0

Pα mα g33
realv 3 χ eαψ γ( ),–cos=

Pβ mβ g33
realv 3 χ eβψ γ( ),–cos=

g33
real
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is the poloidal flux of the magnetic field. Moments Pα and
Pβ are constants of the drift motion in an axisymmetric
plasma [4] and are expressed in terms of (γ0, v0, θ0) [2].

In contrast to the nonaveraged case, moments in
other directions are not generally conserved, because
averaging provides the transition to the description of
extended objects that change their shape upon colli-
sions.

Property 4. The averaged Coulomb collision oper-

ator ( , ) + ( , ) conserves the total
energy of α and β particles.

Property 5 (analog of the Boltzmann H theorem).
The averaged Coulomb collision operator

 does not increase the Boltzmann

H function:  ≤ 0. If the distribution functions of all

kinds of particles are Maxwell distributions with uni-
form densities and the same uniform temperature, we

have  = 0.

Property 6. When  > 0, the averaged Coulomb
collision operator is elliptic and elliptic-parabolic or
elliptic-ultraparabolic at any point  of the space of the

constants of motion if matrix , n = 1, 4, 5 and i =

1, 2, 3, is nondegenerate and degenerate, respectively.
Note that properties 1 and 4 were proven by using

the specific definition of the constant of motion v 0 . In
property 3, it is assumed that the generalized toroidal
moment is expressed in terms of (γ0, v 0, θ0). Thus, prop-
erties 1, 3, and 4 impose some specific (although quite
general) requirements on the coordinate system with
the constants of motion. The domain of applicability of
properties 2, 5, and 6 is wider, because they require
only a particular form of the averaged Coulomb colli-
sion operator.

4. CONCLUSION
The physical and mathematical properties of the

Coulomb collision operator in the averaged master

Cα β, f α
0 f β

0 Cβ α, f β
0 f α

0

Cα β, f α
0 f β

0,( )β∑α∑
dH
dt
-------

dH
dt
-------

f β
0

X

∂xn

∂v i

-------- 
 
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equation have been investigated. This operator was
shown to have the basic properties of the original oper-
ator in a certain weakened form.

Properties 1–5 of the averaged Coulomb collision
operator were proven only integrally over the entire
coordinate space. Moreover, property 3 was proven in a
truncated form. This situation is not surprising, because
the Coulomb operator in the averaged equation carries
information about the particle trajectory and acts not
only in the velocity space, but also in the coordinate
space. In addition, the averaged operator describes
interaction between extended objects whose shape can
change upon collisions.

The above study leads to the conclusion that the
basic properties of the general averaged master equa-
tion correspond to the physical knowledge of processes
occurring in a toroidal plasma and that this equation can
be used for simulations. Therefore, the applicability of
various particular averaged kinetic models to an ade-
quate description of a tokamak plasma is corroborated.
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The spectrum of relaxation times is a convenient
characteristic of the viscoelastic behavior of linear
polymers and allows the prediction of the relaxation
properties of polymers under almost any experimental
conditions [1]. The most popular models based on
molecular dynamics of the Rouse and Doi–Edwards
polymer chains [2] provide this characteristic in an
explicit form. Agreement between experimental data
and a theoretical model can be estimated by comparing
the corresponding relaxation spectra. For this reason,
methods for calculating a relaxation spectrum are
developed on the basis of analyzing experimental data,
primarily, the dependences of the elastic modulus on
time and frequency. However, in the mathematical
sense, this problem belongs to a class of ill-posed prob-
lems that are extensively solved by the Tikhonov
method of nonlinear regularization [3–5]. A number of
software packages have been developed to calculate the
relaxation spectrum under certain assumptions [4–6].

However, the question arises as to whether it is
always necessary to represent the relaxation-time dis-
tribution function in an explicit form.

In recent papers [7, 8], the concept of effective
relaxation time τeff was introduced and its time depen-
dence was proposed as a qualitative characteristic of the
relaxation spectrum. Similarly, one can use the fre-
quency dependence of the mean relaxation time. In this
case, there are two experimental relations: the real
G'(ω) and imaginary G''(ω) parts of the complex elastic
modulus. Therefore, there are two parameters with dif-
ferent degrees of averaging over relaxation times.

In the terminal zone (ω  0), the effective relax-

ation time defined as  =  takes a lim-

iting value equal to the ratio of the second and first
moments of the relaxation-time distribution, i.e., is the

τeff w, ω( ) G ' ω( )
ωG '' ω( )
--------------------
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weighted-mean relaxation time [9, 10]

(1)

At ω  0, another effective relaxation time

defined as  =  is the mean relaxation

time

(2)

Thus, the ratio γ =  characterizes the width of

the relaxation-time distribution.

Figure 1 presents the frequency dependence of the
mean relaxation times (curves 1, 2), whereas Fig. 2
shows their ratio. The calculations were performed by
the corresponding formulas from [2] for the chain
lengths n = 11–501. As is seen, these parameters are
constant in the terminal zone (I) but vary with fre-
quency in the region of the high-elasticity plateau (II),
where the models give different behaviors of these
parameters: τeff, w ≈ ω–1 and τeff, n ≈ ω–1/2 according to
the Rouse model, and τeff, w ≈ ω–1/2 and τeff, n ≈ ω–3/2

according to the Doi–Edwards model. Consequently,
the ratio of the mean times γ decreases as the square
root of frequency in the first model and increases pro-
portionally to frequency in the second model. In fre-
quency zone III, τeff, w takes a constant value, whereas
τeff, n decreases with increasing frequency due to the
effect of high-frequency modes. This behavior gives
rise to an increase in the distribution width.

Thus, different frequency dependences obtained for
the mean relaxation times and their ratio in these two
models are attributed to substantial differences in the
relaxation spectra in these models.
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The mean relaxation times and their ratios are very
sensitive to the structure of polymer chains. This sensi-
tivity can be illustrated by the example of modified
Rouse chains, whose relaxation properties were
described recently in [11].

Let us consider a chain whose structure is expressed
in terms of the friction coefficients of the links as

100–(1–1–1–10–)m–1–1–1–10,

where m = 0, 2, 4, 6, 8 and the numbers are the ratios of
the friction coefficient of a given link to the value for a
certain chosen link.

The mean times and their ratios are plotted versus
frequency in Figs. 1 and 2 (curves 3), respectively. In
the terminal region, these quantities are constant and
the mean times 〈τ〉 n and 〈τ〉 w are proportional to the
chain length n = 5m + 1 to the power of 1.66 and 1.72,
respectively, while their ratio is γ ~ n0.063.

In the region of the high-elasticity plateau, the ratio
of the mean times varies as the square of the frequency.
Thus, the relaxation behavior of the modified Rouse
model is close to that of the Doi–Edwards model. This
result shows that the above relaxation characteristics
are very sensitive to both the type of motion (Rouse and
Doi–Edwards models) and the chain structure.

The analysis of experimental relaxation curves
obtained in [9, 12–15] for certain linear polymers with
narrow mass distribution of molecules shows that the
effective relaxation times in the terminal zone are inde-
pendent of frequency and, according to Eqs. (3) and (4),
can be determined as the mean relaxation times 〈τ〉 w
and 〈τ〉 n. As an example, Figs. 1 and 2 (curves 4) show
data for polystyrene [12]. Similar results are obtained
as well for poly(methyl methacrylate) [9] and 1,4-
polybutadiene [13].

The average relaxation times as functions of molec-
ular mass (M) are shown in Fig. 3. One can see that 〈τ〉 w
and 〈τ〉 n are power functions, where the second time
varies more slowly than the first one. The dependence
〈τ〉 n ~ M3, 4 (see table) obtained for all polymers being
investigated agrees with the familiar dependence of vis-
cosity on molecular mass [1]. For both the limiting val-
ues and the high-elasticity plateau (zone II), the expo-
nent of M depends on the method of averaging the
relaxation time. For all polymers being considered,
which have different molecular masses, τeff, n decreases
almost linearly with increasing frequency (the expo-
nent is close to 1.2), whereas τeff, w ≈ ω–0.7. Conse-
quently, the ratio of these times increases as the square
root of frequency. These dependences apparently show
that the relaxation spectra of polymers with narrow
mass distribution of molecules are intermediate
between wide and narrow spectra characteristic of the
Rouse and Doi–Edwards models, respectively.
DOKLADY PHYSICS      Vol. 47      No. 6      2002
In zone III, the relaxation behavior of the polymer
systems differs considerably from that of the models.
The spectral width of model chains increases due to the
contribution of high-frequency modes but decreases for
actual polymers. This is associated with vitrification:
all low-frequency modes are frozen out, so that τeff, w
decreases even more rapidly than τeff, n.

In contrast to the results of the Rouse and Doi–
Edwards models, γ is proportional to a relatively low

8

4
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2
3
4

–4 –2 0 2 4
log ω

log〈τ〉

I II III

B

A

Fig. 1. Frequency dependence of the mean relaxation times
for (1) the Rouse model at n = 501, (2) the Doi–Edwards
model at n = 501, (3) the modified Rouse model at m = 8,
and (4) polystyrene (experimental data from [12], molecu-
lar mass is equal to 3 × 106); A and B mark τeff, w and τeff, n,
respectively; I, II, and III show the terminal zone, the zone
of high-elasticity plateau, and the zone of high-frequency
modes (vitrification), respectively.
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Fig. 2. The same as in Fig. 1, but for the ratio of the average
relaxation times γ.
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power of M (see table). Nevertheless, its distribution
widens with increasing molecular mass.

Being free of calculation errors, the method of char-
acterizing the spectrum by the mean relaxation times
can be a reliable basis for analyzing the relaxation prop-
erties of polymers. In a certain sense, the approach pro-
posed here is similar to the method that estimates the
mass distribution of polymer molecules by using the

4

4.5

log〈τ〉

log M

2

0

–2

–4

5.0 5.5 6.0 6.5

1
2
3

Fig. 3. The mean relaxation times as functions of molecular
mass for polystyrene: data from [12] for (1) 〈τ〉 w, (2) 〈τ〉 n,
and (3) τmax (according to [14]).

Dependence of the relaxation times on molecular mass of a
polymer for different averaging methods

Polymer

Dependence form

〈τ〉 n 〈τ〉 w τmax

Rouse model M1 M2 M2 M1

Doi–Edwards model M3 M3 M3 M0

Modified Rouse model M1.66 M1.72 M1.73 M0.063

Polystyrene M3.4a M3.7a M4b M0.28

Poly(methyl methacrylate)c M3.4 M3.65 – M0.26

1,4-polybutadiened M3.2 M3.4 – M0.13

a [12], b [8, 15], c [9], d [13].

γ
τ〈 〉 w

τ〈 〉 n
-----------=
ratio of mean values /  instead of the distribution
curve. Of course, the average molecular masses and
distribution function are structural characteristics of a
polymer, whereas the relaxation spectrum reflects its
dynamic behavior. However, the relaxation spectrum is
uniquely related to the polymer structure and therefore
is physical like the mass distribution of molecules.
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One of the best known equations describing the
propagation of nonlinear waves in a dissipative medium
is the Bürgers equation (see, e.g., [1])

(1)

For definiteness, we hereafter use the notation accepted
in the theory of intense acoustic perturbations [1],
namely, p is the pressure increment; x is the coordinate
along the propagation direction for a plane wave; τ = t –

 is the time in a coordinate system moving at the

speed of sound c; ρ is the density of the medium; and ε
and b are the coefficients of nonlinearity and of effec-
tive viscosity, respectively.

Dissipative effects are described by the term with
the second derivative on the right-hand side of Eq. (1).
Evolution equation (1) serves as a universal model for
traveling waves of various physical natures provided
that the dispersion equation for the corresponding infin-
itesimal perturbations takes the form [2]

(2)

i.e., contains a small imaginary correction depending
on the frequency squared. According to Eqs. (1) and
(2), the damping coefficient for a weak harmonic signal
is proportional to ω2 . For elastic waves, this depen-
dence is determined by the processes of viscosity and
thermal conduction in the continuum.

Equation (1) has the following solution with the
steady-state (independent of the coordinate) profile:

(3)

This solution is a solitary shock, i.e., a shock wave with
a finite front thickness. Profile (3) forms as a result of
competition between nonlinear steeping and dissipative
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smoothing of the wave front. Solutions to Eq. (1) and
the relevant nonlinear wave processes have been well
studied [1].

If the additional term in dispersion equation (2) is
real-valued and proportional to the frequency cubed,
the right-hand side of the corresponding differential
equation, i.e., the Korteweg–de Vries equation, involves
the third derivative with respect to τ, in contrast to the
second derivative in Eq. (1). Solutions to this equation
have also been studied in detail (see, e.g., [3–5]). For the
Korteweg–de Vries equation, the steady-state profile
has the form of a solitary undamped pulse (soliton)
resulting from the competition between nonlinear wave
front steeping and dispersion spread of harmonics
forming the pulse.

Signal attenuation proportional to the frequency to
the fourth power was observed in numerous experi-
ments. Such a dependence occurs in media containing
small inhomogeneities, for example, in rocks [6], in
spongy cranial bones [7], and in any media with small-
scale parameter fluctuations for which the Rayleigh
scattering law is valid [8]. Strong monopole-type scatter-
ing is observed in liquids containing gas bubbles. In this
case, the coefficient of sound damping has the form [9]

(4)

where a is the bubble radius, n is the volume bubble
concentration, and ω∗  is the resonance frequency. In all
the cases mentioned above, dispersion equation (2)
should take the form

(5)

Hence, evolution equation (1) is reduced to the form

(6)

As far as we know, the processes described by Eq. (6),
in contrast to the Bürgers equations and Korteweg–de
Vries equations, have not been analyzed.

α βω4, β 4πna2

ω*
4

---------------,= =

k
ω
c
---- iβω4.+=

∂p
∂x
------

ε
c3ρ
-------- p

∂p
∂τ
------– β∂4 p

∂τ4
--------.–=
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To do this, it is convenient to rewrite Eq. (6) in
dimensionless variables:

(7)

where

(8)

Here, xs is the characteristic nonlinear length (disconti-
nuity formation distance [1]), ω0 is the characteristic
frequency, and the dimensionless number R is the
unique similarity criterion analogous to the inverse
Reynolds–Goldberger acoustic number in Eq. (1) [1].

If we ignore the nonlinear term in Eq. (7), then the
solution corresponding to the initial perturbation

(9)

takes the form

(10)

where

(11)

is Green’s function. In particular, stepwise initial per-
turbation (9) V0 =  evolves as

(12)

Solution (12) is self-similar: the thickness of the infi-
nitely steep (at z = 0) wave front increases with the dis-
tance covered by the shock wave as z1/4.

If we ignore the higher derivative in (7), which
describes the scattering, nonlinear effects cause a nar-
rowing of the front thickness as (z0 – z)–1 until the point
z = z0 is attained, at which a discontinuity forms. It is
evident that the two contradictory tendencies might
lead to the formation of a steady-state wave similar
to (3). The dynamics of front formation can be
described by the solution to Eq. (7), which has the form

V = , where θf = θf(z) is an unknown front thick-

ness. Substituting this expression into Eq. (7) and

∂V
∂z
------- V

V
∂θ
------– R

∂4V
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---------,–=

V
p
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-----, θ ω0τ , z

ε
c3ρ
--------ω0 p0x

x
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2π
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V
1
π
--- ωθ( )sin

ω
-------------------- Rω4z–( ) ωdexp

0

∞

∫ V0 z–1/4θ( ).= =

θ
θf
----tanh
allowing for only the terms linear in θ, which are
responsible for the front slope in the vicinity of the
front center at θ = 0, we arrive at

(13)

Equation (13) has the solution

(14)

where the constant C is determined by the given initial
front thickness θf(z = 0). The solution describes the
approach of the front thickness θf(z) to its steady-state
value (16Γ)1/3 =  as z  ∞.

It is worth noting that the steady-state profile

(15)

is not an exact solution to Eq. (7) but satisfies a different
equation

(16)

The latter is a steady-state variant of the generalized
evolution equation

, (17)

where the nonlinearity is defined as f(V) =  – .

The ordinary differential equation similar to (16)

(18)

corresponds to Eq. (7) and describes a steady-state
wave in a medium with quadratic nonlinearity. Equa-
tion (18) has a monotonically increasing particular
solution in quadratures,

(19)

which attains the value V = 1 in a finite time θ = θ∗ , with

(20)
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where Γ is the gamma function. Solution (19) is shown
in Fig. 1. Curves 1–5 correspond to the numbers R
equal to 2.2 × 10–4, 6.1 × 10–3, 2.8 × 10–2, 7.7 × 10–2, and
2.2 × 10–1, respectively. The scattering process intensi-
fies with increasing R, and the front becomes thicker.

It is worth noting that both the first and second
derivatives of the function V vanish at the point θ = θ∗ ,
while the third derivative is positive. Hence, the func-
tion V keeps growing in the region θ > θ∗ . Thus, the
steady-state front described by solution (19) is formed
for a perturbation indefinitely increasing at infinity.
The difference from the behavior of steady-state solu-
tion (3) to Bürgers equation (1) (for which the function
V tends to unity as θ  ∞) is due to the fact that the
stronger frequency dependence of the energy loss for
scattering (ω4 instead of ω2) can be compensated by a
higher energy influx to the front region. The influx is
provided by the function V, which increases indefinitely
as θ  ∞.

Another steady-state solution obtained by the
numerical integration of Eq. (18) for R = 0.5 is shown
in Fig. 2, where curves 1–3 correspond to the function
V(θ) and its first and second derivatives, respectively.
As is seen, the solution is bounded (as θ  ∞) and its
amplitude increases nonmonotonically. The function
V(θ) approaches unity asymptotically, accomplishing
damped oscillations with a period equal to the settling
time.

It should be noted that for a scattering medium with
quadratic nonlinearity, evolution equation (7) has a
self-similar solution of the form

(21)

Substituting solution (21) into Eq. (7), we arrive at an
ordinary fourth-order differential equation:

(22)

If we ignore the nonlinear term, Eq. (22) has the
solution

(23)

Function (23) behaves like the third derivative with
respect to ξ of a stepwise perturbation similar to (12);
i.e., it describes a solitary tripolar pulse. The form of
this pulse can be found with allowance for nonlinearity
only by the numerical integration of Eq. (22).

We now consider the decrease in the energy density
E = 〈V 2 〉  of a wave. Here, the angle brackets stand for
either the average value over a period (for signals peri-
odic in θ) or the integral taken over the time interval for
which V ≠ 0 (for perturbations bounded in θ). Multiply-

V
1
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-------Φ ξ θ
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-------= 
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ing Eq. (7) by 2V and integrating the result over θ, we
arrive at the relationship

(24)

In the linear approximation, using Eqs. (10) and (11),
we obtain

, (25)

where S0 is the initial spectrum. It follows from Eq. (25)
that the rate of a decrease in the energy E of a traveling
wave is proportional to the number R [see (8)]. Since
the linear solution is given by explicit expressions (10)
and (11), the left-hand side of Eq. (25) can be found
immediately and expression (24) may be proved to be
valid identically.

We failed to find the general solution to Eq. (7) with
allowance for the nonlinear term. However, we were
able to evaluate the energy decrease for a steady-state
wave. After integrating by parts and choosing a new

dE
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------- 2R

∂2V
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Fig. 1. Shock-front profile described by exact solution (19)
to Eq. (7) for various values of the dimensionless parame-
ter R.

1.0

0.5

0

–0.5

1

2

3

1 2 θ

V

Fig. 2. (1) Shape of a steady-state bounded wave and its
(2) first and (3) second derivatives for R = 0.5.
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variable (V instead of θ), we reduced the average on the
right-hand side of Eq. (24) to the expression

(26)

When calculating the integral, we used steady-state
equation (18). Substituting Eq. (26) into Eq. (24), we
obtain 

(27)

Therefore, in the vicinity of the shock-wave front, the
rate of energy-density decrease is independent of the
linear energy-loss coefficient R as in the case of a
steady-state wave described by the Bürgers equation.

In certain scattering media, the frequency depen-
dence of the wave damping coefficient differs from the
ω4  power law. This situation occurs, e.g., in biological
tissues [7] and in randomly inhomogeneous media [8]
(in which the ω4 dependence turns into a slower ω2 one
for sufficiently high frequencies). For example, for
media with refractive-index fluctuations, dispersion
equation (5) should be rewritten in the form

(28)

where 〈µ2〉  is the mean square of refractive-index fluc-
tuations and a is the correlation radius. The correspond-
ing generalization of evolution equation (7) takes the
form

(29)

In Eq. (29), we use dimensionless notation (8) with A2 =

. Equation (29) can be rewritten in several inte-
grodifferential forms. One of them is

(30)

where the kernel is given by the expression

(31)
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It is easy to see that in the extreme cases of large and
small values of the number A, the model described by
Eqs. (29)–(31) is reduced to conventional Bürgers
equation (1) and to Eq. (7), respectively.

The behavior of the damped nonlinear waves
described by the evolution equations with dissipative
terms of the fourth and higher orders (and by their
combinations) is of importance for a series of applica-
tions in geophysics, in nonlinear diagnostics, and in
medicine.

It is natural that numerical methods should be
employed for solving particular problems. Neverthe-
less, since these equations are universal, it is advisable
that their general properties be analyzed and their ana-
lytical solutions be found.
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A solid-state structure described by the Fedorov
group has a unified and simply connected electronic
subsystem. Overlap integrals, which determine both the
structure of the energy bands and the corresponding
potentials, depend on the average position of nuclei and
are calculated within Brillouin zones, on which the
entire space of the wave vectors of single-electron func-
tions is divided. Thus, there is no necessity for the strict
requirement of translational equivalence of the struc-
ture, since the band structure is primarily determined
by the polyhedral partition of the reciprocal space and
by the requirements of Fermi–Dirac statistics. For
small rms deviations of the atomic positions (from their
positions in the corresponding crystal structures), only
slight variations in the band structure and density of the
tails of the localized states occur [1, 2]. The variant is
ideal when the total rms deviation in the atomic posi-
tions within each generating polyhedron is close or
equal to zero in a structure that is not translationally
invariant. Polyhedral partition allows us to use the stan-
dard methods of algebraic geometry in the local
approach and in the linear approximation within the
framework of equi-affine transformations.

In 1985, a 14-atom cluster [3], which is a nonconvex
diamond parallelohedron [4] and is a generating dia-
mond cluster (GCD) consisting of two seven-vertex sin-
gle-cap octahedrons, was separated from the diamond
structure. The graph of this cluster is the graph of inci-
dency of the common subconfiguration of the finite
projective plane PG(2, 2) = 73 and the Desargues con-
figuration 103, and its group of collineations and corre-

lations is the group PG (7), which is isomorphic to

PGL2(7) and has the orthogonal subgroup m [4]. A
single-cap octahedron is the joining of an octahedron
and a tetrahedron (with a common face) from the fcc

lattice generated by vectors , , and

L2
'

3

1
2
--- 1

2
--- 0, , 

  1
2
--- 0

1
2
---, , 

 
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. The connection of the single-cap octahedron

vertex common to the tetrahedron and octahedron with
the six remaining vertices determines the subsystem ∆
of six fcc lattice vectors:
∆ = {α1, α2, α1 + α2, α2 + α3, α1 + α2 + α3; α1 + 2α2 + α3},

where α1 = , α2 = , α3 = .

The subsystem ∆ is a subsystem of the root system C3
generating the root lattice D3 coinciding with the fcc
lattice. The first five vectors of ∆ belong to the first
coordination sphere of the fcc lattice (and to the root
system D3), and the sixth vector belongs to the second
coordination sphere. The symplectic group Sp(2L, K)
above the field K [5] corresponds to the C3 algebra (this
is important when the antisymmetry of the total wave
function of the electronic subsystem is taken into
account).

The diamond structure  is the self-glueing of two
lattices D3:

 = D3 ∪ [1] D3. (1)

Therefore, 14 vertices of GCD determine 13 nonzero
vectors:

GCD = {∆ ∪  (α1 + 2α2 + α3) [1] ∆–}, (2)

where [1] =  is the self-glueing vector of the

lattice D3 [6], α1 + 2α2 + α3 = (0, 0, 1) ∈ D3, ∆– = –∆ =
{–α1, –α2, –(α1 + α2), –(α2 + α3), –(α1 + α2 + α3);
−(α1 + 2α2 + α3)}.

The finite projective plane PG(2, 2) is determined
above the Galois field GF(2). Subsequently, group

PG (7) is obtained from the symplectic group Sp(2L,
K) by transition from K field to GF(2) field [5]. In this
case, invariants of the integer quadratic form determin-
ing the conic section on the projective plane correspond
to GCD(2), because it is a subconfiguration of PG(2, 2).
Group PGL2(7) is the homomorphic image of the (2, 3, 7)
group, which maps a hyperbolic plane divided into hep-
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tagons [7] onto the same plane. The Fedorov group of

diamond is the Fd m group. Therefore, the diamond
structure divided into the 14-vertex parallelohedrons
GCD should be invariant with respect to the GA group

containing subgroups (2, 3, 7) and R m, R m ⊂
Fd m:

PSL2(7) (2, 3, 7) ⊂ GA = ∪ gPG (7) ⊃  R m ⊃  m, (3)

where GA ⊃  g ∉ PG (7). The minimum group that can
contain GA is the symplectic group Sp(2, C) isomorphic
to SU(2) group and to a three-dimensional sphere S3;
Sp(2, C) = Sp(1, H), where C and H are the fields of
complex numbers and quaternions, respectively [8].

In 1986, S.P. Novikov [8, 9] suggested the most gen-
eral definition of quasicrystallographic groups: sub-
group G of the E(n) group involving all motions of n-
dimensional Euclidean space En is called an n-dimen-
sional quasicrystallographic group if its intersection
with subgroup T(n) ⊂ E(n) of all translations is a certain
quasilattice T, which is a finitely generated subgroup
(i.e., it has a rank and is discrete) generating En as a lin-
ear space. In the standard terminology, T is a quasilat-
tice of G and the orthogonal part of the factor group
G/T  R is the point group of the quasicrystal. If R
is infinite, the group of linear parts of this n-dimen-
sional quasicrystallographic group G∞(n) belongs to the
group of linear parts of a certain finitely generated qua-
sicrystallographic group and is an algebraic subgroup
of the general linear group GL(n, Z) set above the ring
Z [9]. Therefore, the construction of G∞(3) reduces to
the construction of an infinitely generated subgroup
R ⊂ O(n), n ≥ 3 that is not quasiresolvable (i.e., it does
not contain a resolvable subgroup of a final index) and
maps a certain quasilattice T into itself.

By virtue of Eq. (1), quasicrystallographic dia-
mond-like structures cannot be obtained by the stan-
dard method of the truncation of a certain multidimen-
sional crystal [10], which allows us to obtain only
“physical” quasicrystallographic groups characterized
by finite point groups R and quadratic quasilattices T.
This means that only groups G∞(3) whose linear
approximations represent the symmetry of the approx-
imants of a quasicrystal with an infinite R can be the
quasicrystallographic groups for diamond-like struc-
tures. The finite approximant is a 240-vertex structure
on a three-dimensional sphere, i.e., diamond-like poly-
tope {240} [11, 12]. The infinite approximants are dia-
mond in E3 and {6, 3, 3} honeycombs in a three-dimen-
sional hyperbolic space, which involve a {6, 3}2,1 map
(seven hexagons on the torus) determining the graphs
of 14-vertex generating clusters [4, 7, 11].

Since the form of the physical equations must be
independent of the choice of coordinate system and
gauge invariant, it is necessary to use the method of
fiber spaces and equivariant isomorphisms of fibering,

3

3 3

3

L2
' 3 3

L2
'

which induce the identity mappings of the base space.
The corresponding equations and their solutions for
gauge fields are not considered in this paper. However,
the gauge in which the linear approximation for each
section is specified or the chiral field (in the general
case of equations for gauge potentials) determines the
finite or infinite approximants of a quasicrystal with
G∞(3). The fibering corresponding to G∞(3) is nontriv-
ial and does not admit a continuous global section.
Therefore, gauge transformations are described by a
pair of functions (dependent on the section) taking val-
ues in the holonomy groups (i.e., of a given connected-
ness). For any vector fibering above the compact base,
the GL(n, R) group reduces to the O(n) subgroup and
sewing functions are defined as matrix functions of
dimensionality n. If the transformations are constant,
the gauge is substantially local and belongs to the cen-
ter of holonomy, and connectedness sections form an
Abelian group. In this case, such local gauge transfor-
mations do not change any connectedness. Thus, gauge
potentials are specified not as connectednesses in the
principal bundle, but rather as vector functions taking
values in the corresponding Lie algebra [5, 8].

The root lattice E8 (defined finally by a four-dimen-
sional icosahedron, the {3, 3, 5} polytope [11]) con-
tains sublattices D3, D6, and H4 , which are basic for dia-
mond-like structures [5–7]. This allows us to represent
G∞(3) in terms of the Bruhat decomposition [5]:

G∞(3) = ∪ BwB, w ∈ W, (4)

where B is the Borel subgroup assigned by the choice
of the corresponding Weyl chamber [5] that is in the E8
lattice and, in turn, is determined by the GC vectors;
and W is the Weyl group of the second-rank Tits system
of an infinite dihedral group in the case under consider-
ation [5]. On going over from the quasicrystal with
G∞(3) to diamond defined by Eqs. (3), the subgroup of
the (2, 3, 7) group, which is specified by GCD(2), cor-
responds to group B.

Group G∞(3) defined by the root lattice can also be
considered as a reductive group [5]. Therefore, the fol-
lowing relations are valid:

G∞(3) ⊂  Sp(2L, K) · V = ∪ g(Sp(2L, K) ∩ V). (5)

Here, (G, G) ⊇  PGL(2, Q) ⊇  Sp(2L, K), where (G, G) is
the derived subgroup of G∞(3) and the fields Q and K
are different; group V is the subgroup of the centralizer
of a singular torus; g ∈ G∞(3); Sp(2L, K) ∩ V is the
finite group that is obtained from Sp(2L, K) by the tran-
sition from K to GF(q) [5] and represents the symmetry
of the initial generating cluster. Relations (5) allow us
to adequately describe a diamond-like structure formed
of the clusters elementarily similar [13] to the initial
generating cluster.

The {240} polytope contains a 14-vertex GC30/11
(part of a Petrie polygon [11] of the {240} polytope),
DOKLADY PHYSICS      Vol. 47      No. 6      2002
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Fig. 1. Computer model of the maximum determined noncrystalline diamond-like structure (left part) across (along the twisted dia-
mond channel) and (right part) along the rod axis. The twisted diamond channel is surrounded by (dark circles and links) four 30/11
channels, which are marked in black. The axis of the rod is formed by the alternating penta- and heptacycles marked by 5 and 7.
which is elementarily similar to GCD and contains only
hexacycles of the twisted-boat type. The whole maxi-
mum determined noncrystalline diamond-like structure
can be assembled from GCD and GC30/11 containing
only hexacycles by means of the algorithm defined
finally by Eqs. (5). In this case, channels with trans-
verse penta- and heptacycles appear between GCD and
GC30/11 [2, 4].

The maximum determined noncrystalline diamond-
like structure was simulated by computer model [2]
realized in E3 as a rodlike structure assembled from lin-
ear substructures (channels) generated by GCD and
GC30/11 (Fig. 1). The model allowed us to calculate its
structural parameters, in particular, the radial distribu-
tion function. Figure 2 shows this function along with
the corresponding function for the Polk model—a con-
tinuous random network of tetrahedrally connected
atoms, which involves only penta-, hexa-, and heptacy-
cles [1]. The radial distribution function in the Polk
model, which is in fact a model of amorphous silicon,
has no more than four peaks. In contrast to the Polk
model, the radial distribution function for the maxi-
mum determined noncrystalline diamond-like structure
(Fig. 2) has eight to ten peaks. Since no more peaks are
observed, this structure differs from the crystalline
structure. On average, this maximum determined non-
crystalline diamond-like structure has diamond bond
lengths and diamond angles between them and is a
maximum determined diamond analog of semiconduct-
ing amorphous silicon. The calculations show [14] that
diamond-like materials of this type will not have the
drawbacks inherent in modern polycrystalline dia-
DOKLADY PHYSICS      Vol. 47      No. 6      2002
mond-like films. The characteristics (mobility, break-
down voltage, etc.) of diamond classified among wide-
gap semiconductors allow us to expect the development
of semiconductor structures of the next generation. The
maximum determined noncrystalline diamond-like
structure is expected to provide a basis for a nanocom-
posite diamond-like substance with unique properties,
for which the description of the band structure can be
reduced to just the description of its linear part. For a
quasicrystal with G∞(3), the soliton-type solution will
be inherent in the electron subsystem [8].
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Fig. 2. Radial distribution function (RDF) for (thick line)
the computer model of the maximum determined noncrys-
talline diamond-like structure (340 atoms) and (thin line)
the Polk model (588 atoms). Smoothing of discrete func-
tions was carried out by the standard procedure.
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The isothermal decomposition of austenite in eutec-
toid carbon steel is known to lead to the formation of
perlite, i.e., a structure composed of alternating plates
of ferrite and cementite, the crystallogeometric match-
ing between them being specified by the orientation
relationships (ORs). The evolution of the lamellar car-
bide phase under annealing involves processes of
crushing the plates, spheroidization of the obtained
fragments, and their coalescence. The processes of
spheroidization and coalescence are explained well by
the tendency of a system (in our case, the two-phase
mixture of ferrite and cementite) to decrease the area of
the interface surface of carbide particles [1, 2]. How-
ever, the kinematics of the initial stages of carbide-
phase coagulation is insufficiently studied.

Analysis of thermodynamic features of the process
of modifying the shape of cementite plates under
annealing and of the mechanism of redistribution of
carbon atoms shows that the character of the progress
of spheroidization essentially depends on cementite-
structure defects possessing additional energy [1, 2].

In this paper, we analyze the defect structure of
cementite, clarify the role of defects in the crystalline
structure of cementite in the processes of dissolution
and coagulation of the carbon phase, and also deter-
mine the crystallographic characteristics of defect for-
mations.

The investigations were carried out with samples of
U8 carbon eutectoid steel containing 0.8% C, 0.18%
Mn, 0.22% Si, 0.17% Cr, 0.12% Ni, and 0.10% Cu. The
perlite structure in U8 steel was obtained by the isother-
mal aging of blanks previously heated to 1050°C for 5
and 30 min at 500, 600, 650, and 700°C. The fine struc-
ture was studied by electron microscopy both immedi-
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ately after the isothermal perlite decomposition and
after the subsequent heating of the perlite structure to
600, 650, or 700°C with holding for 5, 30, 180 min,
and 30 h. The crystallographic characteristics of the
planar defects in perlite cementite were determined by
g · b analysis [3].

Electron microscopy analysis of the orientation rela-
tionships between structure components of perlite
obtained at various transformation temperatures
showed that both Pitch–Patch ORs and Bagryatskiœ
ORs known from the literature were observed. For both
types of ORs in the lamellar perlite obtained immedi-
ately after completing the perlite transformation,
defects were found in the cementite plates in the form
of a system of parallel planes. The planar defects in
cementite were observed for all investigated tempera-
tures of the perlite transformation within the range
500–700°C. The dark-field image of a perlite-structure
fragment obtained at 650°C for 30-min holding is
shown in Fig. 1. As is seen, the cementite plate has a
nonuniform contrast and contains multiple defects in

0.3 µm

Fig. 1. Dark-field image of the perlite microstructure for U8
carbon steel. The image is obtained at 650°C, with a 30-min

exposure in the g = 12 c = 110α reflection common to fer-
rite and cementite.
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Fig. 2. Dark-field image of the perlite microstructure in the

g = 103c = 1 0α common reflection. The image is obtained
at 600°C after additional annealing at 650°C for 30 h.
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0.4 µm

Fig. 3. Dark-field image of the perlite microstructure in the

g = 2 c reflection after isothermal decomposition at
700°C and additional annealing at 700°C for 30 h.

1 1
the form of thin parallel bands arranged at a certain
angle to the ferrite–cementite interface. The distances
between different bands are 15–25 nm.

On the basis of crystallographic analysis of diffrac-
tion patterns obtained from cementite plates containing
defect planes and using the statistical treatment of the
results from 20 perlite colonies, we determined the
crystallographic types of the defect planes, namely,
{101}c and {103}c. Specific features of the arrange-
ment of atoms in these planes enable us to assume the
possibility of forming planar defects in them. On the
basis of an analysis of the crystallographic relationship
between phases participating in the isothermal transfor-
mation of austenite with the formation of lamellar per-
lite, we considered the mechanism of the appearance of
planar defects in cementite as a possible way of com-
pensating a mismatch between the crystal lattices of
austenite, ferrite, and cementite [4].

Upon an additional annealing of lamellar perlite, we
observed a modification in the morphology of the
cementite plates. Figure 2 shows a microfragment of
the perlite structure after decomposition at 600°C and
an additional annealing at 650°C for 30 h. The arrow in
Fig. 2 shows an intermediate stage of the formation of
a neck on cementite plate I. It is seen that swelling of
the cementite plate II located in front of the neck occurs
during annealing. This experimentally corroborates the
mechanism found in [1, 2] of redistributing carbon
atoms, which leads to the dissolution of certain plates
and the growth of other plates. Furthermore, acute-
angled segments of cementite appear (see Fig. 2, car-
bide fragment IV), which cannot be explained by exist-
ing models of the dissolution of lamellar structures.

The transport of carbon atoms from defect sites of
the cementite plates can lead to nucleation in the ferrite
matrix of fine globular cementite particles with a more
perfect structure. The results of this study have experi-
mentally corroborated this assumption. After additional
annealing, fine-disperse precipitates of globular car-
bides were found in the α state in the ferrite component
of perlite (see Fig. 2). The average size of these globular
carbides is ~7–8 nm, which is much smaller than the
width of the cementite plates.

From Fig. 2, we can also see that the planar interface
of cementite plate IV becomes irregular and jagged. A
connection between the line of the planar defect exit to
the interface and ripples on the boundary can be traced.
(The average spacing between the ripples is about
25 nm.) Thus, an accelerated outflow of carbon takes
place in the sites of intersection of the planar defects
with the ferrite–cementite habit plane.

The most important mechanism of modifying the
cementite-plate shape under annealing is fragmenta-
tion. In this study, along with the previously considered
mechanisms of neck formation, thinning, and plate sep-
aration, we experimentally found another mechanism
of fragmenting cementite plates. It is associated with
the formation of planar defects in cementite during
annealing, which were called fracture planes in [7]. We
observed sequential stages of the cementite-plate divi-
sion that begins with the formation of a planar defect,
continues as the formation of a thin ferrite interlayer
(Fig. 3), and is finally finished by division of the plate
into blocks (Fig. 4). In this case, the thickness of the
separated plate fragment does not vary substantially
compared to the rest of the fragment; i.e., active disso-
lution of the plate takes place near the fracture plane. It
should be noted that in each individual perlite colony,
we observed only one type of fracture plane for all
cementite plates, which also coincides with the plane
that limits the ends of the cementite fragments (see
DOKLADY PHYSICS      Vol. 47      No. 6      2002
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Fig. 3). Furthermore, in the process of coagulation and
spheroidization of carbides, the formed plate fragments
bounded by the fracture planes serve as nuclei for gen-
erating globular particles (see Fig. 4). A unified spatial
orientation of carbide particles was quite often
observed in perlite colonies containing coagulated car-
bides. On the basis of crystallographic analysis of dif-
fraction patterns obtained for cementite plates contain-
ing fracture planes, we determined the fracture-plane
indices: {110}c, {101}c, and {103}c. For a cementite
plate divided into blocks, an increase in the total surface
of cementite particles takes place that at first glance
contradicts the coalescence principle. However, this
seeming contradiction is eliminated if surfaces with a
lower specific energy appear.

During the dissolution of cementite plates, the struc-
ture of the ferrite–cementite interface also changes. The
arising system of grooves and ripples at the exits of the
defect cementite planes to the habit plane creates local
elastic stresses [5, 6]. On the other hand, this system
becomes a source generating dislocations in the ferrite
matrix. Thus, when perlite is annealed, the conditions
for the generation and motion of dislocations in ferrite
arise. The dislocations arising in the ferrite matrix are
often decorated by a chain of fine-disperse globular car-
bide particles.

The investigation of the spatial distribution of dislo-
cations showed that only a minor fraction of them are
chaotically distributed in the ferrite-matrix bulk. The
major fraction of the dislocations are spatially redistrib-
uted in the stress fields generated by the cementite-plate
fragments and forms groups of dislocations, subbound-
aries, nets, or walls whose spatial disposition correlates
with that of carbide fragments.

Thus, we pioneered in discovering planar defects of
lamellar perlite in cementite, which are arranged in the
{101}c and {103}c planes. The exits of the defect planes
to the habit plane are sites of accelerated carbon out-
flow, whereas the terraces arising on the phase interface
are sources of local elastic stresses and dislocations in
the ferrite matrix. Upon additional annealing of lamel-
lar perlite, we experimentally found that the fragmenta-
tion of cementite plates proceeds by division into
blocks bounded by a single set of planes. The preferen-
DOKLADY PHYSICS      Vol. 47      No. 6      2002
tial outflow of carbon takes place along these planes
with the subsequent formation of ferrite bridges.
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Fig. 4. Dark-field image of the perlite microstructure in the

g = 1 1c reflection after isothermal decomposition at
600°C and additional annealing at 700°C for 30 h.
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The behavior of an elastoplastic material under
loading (in particular, at the supercritical stage) is
rather intricate. The material passes through different
deformation stages from the development of different
kinds of damage to gross failure. In this case, the com-
plete description of changes in the physicomechanical
properties of material is complicated by the fact that,
due to rearrangement of the structure, the initially uni-
form stressed state (because of the development of sig-
nificant plastic deformations) becomes nonuniform.
Moreover, deformation is accompanied by the forma-
tion and development of defects in the form of pores
and microcracks at the supercritical stage and the inten-
sity of the processes changes. Hence, determination of
the material properties at the different stages of defor-
mation is complicated.

The occurrence of limiting states (the loss of stabil-
ity of one or another process) is accompanied by
changes in the mechanisms of deformation, structural
modifications (attainment of the critical values), devel-
opment of discontinuities, and changes in the dynamics
of the processes occurring in a material.

It is of interest to investigate the development of
deformation and damage accompanying deformation in
an integrated approach uniting the method for con-
structing the true deformation curve and the methods
for recording the variations of different physical param-
eters.

A study of the development of elastoplastic defor-
mations and damage will provide physically justified
estimates for the mechanical properties of a material.

In this paper, the deformation and failure of a
strengthening elastoplastic material are studied by ana-
lyzing the true deformation curve and variation in tem-
perature of a deformed sample.

It is known that the transition to the plastic stage of
deformation is accompanied by the appearance of irre-
versible plastic deformations and dissipation of energy
into heat [1–11]. The engineering of advanced measur-
ing systems with quite high IR sensitivity makes it pos-
sible to analyze IR images in real time and to determine
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the time variation in temperature of the sample under
investigation.

We investigated plane samples that were made of
the low-alloyed 18G2S steel and had operative parts of
65 × 15 × 2.4 mm dimensions. The mechanical charac-
teristics determined from testing by the standard tech-
nique are as follows: yield point σt = 406.5 MPa, break-
ing point σv = 563 MPa, residual elongation δk =
25.85%, and narrowing ψk = 55%. The samples were
subjected to uniaxial tension on an Instron-1195 testing
machine with a rate of 8.3 × 10–5 m/s.

The kinetics of development, localization of defor-
mation, and variation in temperature of the samples
were investigated by the IR radiation method. The tech-
nique simultaneously records a deformation curve and
the pattern of IR radiation and variation in temperature
of a sample right up to its failure. The kinetics of the IR-
field development and variation in temperature of a
sample were investigated with the aid of a Thermovi-
sion 550 (Agema) IR imager with an IR sensitivity of
±0.1 K [10]. The sample temperature in the process of
deformation was also measured by using copper–con-
stantan thermocouples and a Hewlett-Packard 3497A
Data Acquisition/Control Unit with an accuracy of
±0.05 K.

Figure 1 shows typical IR-radiation patterns that
characterize the kinetics of IR-field development along
the sample and correspond to the different stages of
deformation. The dynamics of IR-field development
represent the processes of plastic deformation and their
localization. In order to determine an increase in tem-
perature, as well as the agreement between thermal-
front propagation, thermal-effect localization, and tem-
perature variation, the deformation rate must exceed the
rate of temperature variation. It is worth noting that this
boundary depends on the initial structure of the sample
material.

The appearance of a local zone of IR radiation and
the propagation of the IR-field front along the sample
corresponds to the yield plateau where the motion of
Chernov–Luders bands is observed. Previously, this
process was observed in holographic interferograms
[12]. Toward the end of the yield plateau, the thermal
front reaches the opposite end of the sample. The veloc-
ity of the IR-field front provides information on the
dynamics of the motion of the deformation center in the
002 MAIK “Nauka/Interperiodica”
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(a) (b) (c)

36.0

28.0

Fig. 1. Thermograms of a standard smooth sample made of 18G2S steel: (a) σ = 669.1 MPa, ε = 14.8%; (b) σ = 791.0 MPa, ε =
20.3%; and (c) σ = 1134.8 MPa, ε = 23.8%.
process of plastic deformation. The appearance of a
local zone of intense IR radiation corresponds to the
onset of narrowing formation in the sample. When the
sample fails, a bright flash of IR radiation is observed.

Joint analysis of the deformation curve and the
curve of maximum temperature makes it possible to
judge the character of the deformation process, struc-
tural variations, and the development of damage in the
material (Fig. 2). Analysis of the maximum tempera-
ture as a function of strain testifies to the existence of
several sections characterized by different rates of
material heating. Therefore, the ∆T–ε dependence can
be used to study the stages of elastoplastic deformation
and the development of the defect structure in the mate-
rial. The basic stages of deformation strengthening can
be described in accordance with [13].

At the elastic stage of material deformation, a
decrease in temperature is observed (section OA' in
curve 2). The yield plateau is characterized by a mono-
tonic rise in temperature (section A'B'). At the initial
stage of deformation strengthening, the sample temper-
ature is somewhat stabilized (section B'E'), which may
be caused by a decrease in the number of movable dis-
locations and the onset of deformation strengthening.

A further rise in strain is accompanied by an
increase in temperature. After loss of the stability of
plastic deformations, which is accompanied by narrow-
ing formation in the sample, the rise in temperature
becomes substantial (section C 'D').

At the prefailure stage, temperature decreases. A
short-term decrease in temperature in the localization
zone of plastic deformations is observed at the super-
critical stage of material deformation (point F ' in
curve 2). A decrease in temperature and the corre-

sponding equivalent critical strain  = 0.96 precedeε f
DOKLADY PHYSICS      Vol. 47      No. 6      2002
the complete failure of the sample. Here,  = εf /εk,
where εf is the critical strain corresponding to the point
F ' and εk is the final strain. This phenomenon is charac-
teristic of ductile failure of an elastoplastic material and
can indicate the onset of failure, i.e., the formation of an
incipient crack. At the instant of sample failure, a sharp
jump in temperature occurs (not shown in Fig. 2).

It should be noted that an increase in the slope of the
∆T vs. ε dependence characterizes a rise in the defor-
mation rate. The propagation of the IR-field front and
the increase in temperature on it indicate that the defor-
mation is more intense at the front of the Chernov–Lud-
ers bands. The presence of characteristic sections in the
maximum temperature plot is associated with the evo-
lution of a dislocation structure and damage, as well as
with the existence of stages in the development of elas-
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Fig. 2. (1) Deformation and (2) temperature curves for a
smooth sample made of 18G2S steel.
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Fig. 3. Dynamics of the pattern of IR radiation for a sample made of 18G2S steel with a central circular hole: P = (a) 32.2, (b) 32.75,
and (c) 20 kN.
toplastic deformations. The transition points at the
boundaries between the stages of the strain dependence
of temperature are related to the instability of the pro-
cesses (occurrence of limiting states): attainment of the
yield point, loss of the stability of plastic deformations,
and the formation of an incipient crack.

We also investigated samples made of 18G2S steel
annealed at a temperature of 1073 K, and strengthened
under preliminary loading to a residual strain of 4.8%,
as well as standard samples made of D16 aluminum
alloy, poly(methyl methacrylate), and solidified PN-12
polyester resin.

For samples made of strengthened 18G2S steel and
D16 alloy, the deformation curves do not have yield
plateaus, but the onset of yield is unambiguously deter-
mined by the onset of an increase in the sample temper-
ature. The temperature curve for the sample of strength-
ened 18G2S steel has no section II corresponding to the
yield plateau. After the onset of yield, the temperature
rises monotonically to the point C ' and then as for the
original material. Annealing leads to an increase in the
length of the stable-temperature section at the initial
stage of material strengthening. The character of the
temperature change for a polymeric material differs
significantly from that for metallic alloys. The temper-
ature diagram consists of three sections: temperature
decreases on the section of elastic deformation, is sta-
ble on the second section, and increases abruptly on the
third section in a time shorter than the corresponding
time for the metal alloys.

Thus, a complete description of the properties of a
material (particularly when nonuniform deformation is
developed) requires not only the mechanical character-
istics, but also additional information about the pro-
cesses accompanying deformation, damage develop-
ment, and failure.
To investigate the effect of a stress concentrator on
the variation in the temperature regime, we tested plane
samples made of 18G2S steel that had operative part
dimensions of 95 × 30 × 2.25 mm and a central circular
hole 6 mm in diameter. Figure 3 shows the typical IR-
radiation patterns obtained by the IR imager for uniax-
ial tension with the same loading parameters. The pres-
ence of the geometric stress concentrator results in the
localization of deformations and, accordingly, the IR
field in bounded regions where zones of plastic defor-
mations are developed. Analysis of the tensile stress–
strain diagram and the maximum temperature curve
shows that the onset of the increase in temperature at
the point A' corresponds to the yield of the material over
the minimum section, and a further significant increase
in temperature at the point B' corresponds to the onset
of ductile failure (Fig. 4). A technique for determining
the zone of plastic deformation by measuring the size of
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Fig. 4. (1) Tensile stress–strain diagram and (2) temperature
curve for a sample made of 18G2S steel with a central cir-
cular hole.
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an IR field was described in [14]. The possibility of
experimentally estimating the shape and size of a plas-
tic zone around the geometric stress concentrator on the
basis of holographic interferograms was shown in [12].

Thus, the IR radiation method can be used to inves-
tigate the process of deformation and failure of materi-
als that differ in chemical composition, structure, and
manufacturing methods. It has been shown that, by ana-
lyzing the kinetics of IR-field development on the IR-
radiation pattern, one can trace the process of deforma-
tion and its localization. The following features of a
deformed elastoplastic material have been established:
temperature stabilization on heating at the initial stage
of material strengthening and a decrease in temperature
at the prefailure stage. The occurrence of limiting states
on the macroscopic level can be determined from the
characteristic variations in the temperature of a sample,
regardless of differences in the deformation mecha-
nisms and the development of damage.
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The Rayleigh–Benard convection in a plane fluid
layer is actively studied both theoretically and experi-
mentally. Diverse types of structures observed under
natural and laboratory conditions [1, 2] should be clas-
sified, and the conditions of their existence should be
determined. In this paper, in order to determine permis-
sible types of convection structures in a fluid layer
heated uniformly from below, the method of calculat-
ing discrete symmetries is first applied. It unites the
methods of continuous-group theory, the formalism of
differential forms, and the method of imbedding in
higher dimension space [3, 4].

We consider the steady motion of a single fluid
whose density depends only on temperature as ρ =
ρ0(1 – T). The corresponding system of equations in the
Boussinesq approximation has the form

(1)

Here, u is the velocity; P is the pressure free of the
hydrostatic component; T is the dimensionless temper-
ature obtained by the change of variables αT  T,
where α is the constant thermal expansion coefficient;
H is the intensity of the heat source; δ(z) is the Dirac
delta function; and g is the acceleration of gravity. In
addition, the kinematic viscosity ν, the thermal diffu-
sivity χ, and the diffusion coefficient D are assumed to
be functions of medium temperature and a prime
denotes differentiation with respect to temperature. 

The parameters nu, nT, and nρ are equal to unity in
the general case and to zero in regions where (u∇ )u ≈ 0
or u · ∇ T ≈ 0. They are introduced into Eqs. (1) for more
compact representation of the results and to minimize
calculations of symmetries.

nu u∇( )u –∇ P ν∆u+=

+ νT' 2 ∇ T∇( )u ∇ T ∇ u×( )×+( ) Tg,–

nTu ∇ T⋅ χ∆T χT' ∇ T+ ∇ T Hδ z( ),+⋅=

nρ∇ ρ u( )⋅ ∇ D∇ρ( ).⋅=
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The symmetries of the structures are analyzed by the
method of seeking the discrete symmetries of the dif-
ferential equations [3, 4]. For this purpose, system (1)
is represented in the differential form

(2)

Here, δki is the Kronecker delta,  is the partial deriv-
ative of the ith field with respect to the jth coordinate,
dV = dx ∧  dy ∧  dz, ∧  and | are the symbols of exterior and
interior multiplication, and summation is implied over
the repeated indices.

Considering only translations of spatial variables and
following the procedure discussed in [3, 4], we introduce
new variables, which are denoted by a tilde, as

(3)

where ax , …, AT , Au, … are constants, while u, ν, and w
represent components of the velocity u.

The introduction of common notation  for both

coefficients and functions in Eq. (3) so that ΨT ≡  or

pP
k nu puk

j u j νT' pT
j puk

j pu j

k+( )– Tgδkz+ +( )dV

=  νd puk

j ∂x j
dV( ),∧

nT pT
j u j χT' pT

j pT
j–( )dV χd pT

j ∂x j
dV( ),∧=

nρ pT
j u j – DT' pT

j pT
j  – pu j

j( )dV Dd pT
j ∂x j

dV( ).∧=

pi
j

x̃ = axx bxy x0, ỹ+ +  = ayx byy y0, z̃+ +  = azz,

T̃ ATT Auu Aνv Aww A x y z, ,( ),+ + + +=

P̃ BPP BTT Buu Bνv Bww+ + + +=

+ Bx x( ) By y( ) Bz z( ),+ +

ũ ΦTT Φuu Φνv Φww Φ x y z, ,( ),+ + + +=

ν̃ ΨTT Ψuu Ψνv Ψww Ψ x y z, ,( ),+ + + +=

w̃ ΩTT Ωuu Ωνv Ωww Ω x y z, ,( ),+ + + +=

Gk
i

GT
ψ
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Ω (x, y, z) ≡  leads to the system of constitutive equa-
tions

(4)

Here,

and αi , βi , and γi are unknown functions.

If system (4) is degenerate, i.e., the principal deter-
minant of its left-hand sides vanishes, Eqs. (3) describe
regular flow symmetries and locally are the following
rotations in the horizontal plane and extensions with the
factor c:

(5)

The degeneration of system (4) can be of the first

kind, when θ ≠ , and of the second kind, when θ =

. Both the solution of system (4) and the form of

Eqs. (3) depend only on the parameters nT and nu ,
which determine the physical flow pattern.

If convective temperature transport can be neglected
(nT = 0), we have

(6)

where AT is a nonzero constant, whereas transforma-
tions of the other field variables are of general form (3).

At nT ≠ 0, the flow pattern depends strongly on con-
vective heat transport and

(7)

whereas the pressure transformation has form (3).

GR
ω

ax
2 bx

2+( )α i ay
2

by
2+( )βi az

2γi+ +

=  χ̃ ∆GR
i 1

χ
---GT

i ST
1
ν
---Guk

i SP
k+ + 

  ,

α i βi γi+ + S̃T , axbxα i aybyβi+ χ̃ ∂2

∂x∂y
------------GR

i .= =

SP
k pP

k nu puk

j u j νT' pT
j puk

j pu j

k+( )– Tgδkz,+ +=

ST nT pT
j u j χT' pT

j pT
j ,–=

ax c θ, bxcos x θ, aysin c θ,sin–= = =

by c θ, azcos c.= =

πn
2

------

πn
2

------

T̃ ATT T0, T0+ const;= =

T̃  = ATT T0, T0+  = const, c = 1,
χ̃T'

χ̃
-----AT±  = 

χT'

χ
-----,

ũ
χ̃

cχ
------ u θcos ν θsin+( ),=

ν̃ χ̃
cχ
------ –u θsin ν θcos+( ), w̃

χ̃
cχ
------w,= =
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If advection is weak (nu = 0), we have

(8)

where ϕ1, ϕ2, ϕ3 , and ψ1 are arbitrary constants.
If advection is substantial (nu ≠ 0),

(9)

and the condition  = cν  must be satisfied.

Transformations (6)–(9) involve geometric symme-
tries and specific symmetries corresponding to the tem-
perature dependence of the kinetic coefficients of the
medium.

To analyze the geometric symmetries with allow-
ance for the effect of a heat source, it is sufficient to
consider the most general transformations (9), which,
together with equations relating the tangent spaces of
the original and new variables, generate transforma-
tions of the form

(10)

To separate geometric symmetries, we consider the
kinetic coefficients as constants (  = ν,  = χ). The

cyclicity condition (  = f) for the n-fold application
of Eqs. (9) and (10) to an input quantity f determines the

T̃
ν̃
ν
---T T0, T0+ const,= =

ũ u θcos ν θsin ϕ1z ϕ2x ϕ3y ϕ0,+ + + + +=

ν̃ –u θsin ν θcos ψ1z ϕ2y ϕ3x– ψ0,+ + + +=

w̃ w ϕ2 θcos ϕ3 θsin+( )z+=

+ ψ1 θsin ϕ1 θcos–( )x ϕ1 θsin ψ1 θcos+( )y– ω0,+

P̃
ν̃

cν
------P 2

ν̃ ν̃T'

c3ν
--------- ϕ2 θcos ϕ3 θsin+( )T cT0g,–+=

T̃ ATT T0, T0+ const, c 1,±= = =

ν̃T'

ν̃
-----AT

νT'

ν
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ν̃2

ν2
-----P cT0g,–= =

ũ
ν̃

cν
------ u θcos ν θsin+( ),=

ν̃ ν̃
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------ u– θsin ν θcos+( ), w̃

ν̃
cν
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ν̃ ν̃T' νT'

p̃i
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y θsin–
ν̃2

cν2
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x,=

p̃i
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y θcos+
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cν2
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z ν̃2
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quantum of the rotation angle as

(11)

In the first case (c = 1)  = T; i.e., the temperature
field does not vary. At n = 1, (11) the transformation is
identical because θ = 2π. At n > 1, the velocity field is
symmetric about the rotation group SO2n(2) or SOn(2)
when n is 2 to an integer power or otherwise, respectively.

Although the method of seeking discrete symme-
tries deals with locally defined quantities (derivatives
and differentials), the elements of the above groups act
globally, i.e., on the entire fluid volume. All convective
cells belong to the same symmetry group only at n = 2,
3, 4, 6. This restricts the possible types of regular struc-
tures, which can consist of one regular or several possi-
bly irregular elements.

One-element structures are formed by squares (n =
2, symmetry degeneration of the second kind), triangles
(n = 3, first-kind degeneration), and hexagons (n = 6,
first-kind degeneration).

At n = 6, the group SO6(2) has the subgroup SO3(2),
and, as is shown in Fig. 1, the multielement structures are
formed of regular [symmetry SO6(2)] and irregular [sym-
metry SO3(2)] hexagons. In this case, the global flow pat-
tern is symmetric under rotations about the centers of reg-

θ π
2n
------ 3 1–( )n–( ) at c 1,= =

θ 2π
n

------ at c 1– .= =

T̃

Fig. 1.

Fig. 2.
ular [by the angle , which is a discrete element of the

group SO6(2)] and irregular [by the angle , which is a

discrete element of the group SO3(2)] hexagons. Symme-
try degeneration of all elements is of the first kind.

At n = 4, the SO8(2) group has the SO4(2) subgroup
and, as is shown in Fig. 2, multielement structures con-
sist of squares and octagons (regular or irregular). If
these octagons are regular, degeneration is of the first
and second kinds for octagonal and square cells,
respectively. The flow is symmetric under rotations

about the centers of the regular octagons by the angle 

[group SO8(2)] and about the centers of squares by the

angle  [group SO4(2)]. If the octagons are irregular

[subgroup SO4(2)], degeneration is of the second kind
for all cells. All structures described here were
observed in the convection patterns [2].

The symmetry SO2(2) with the discrete rotation
angle π is absent in media with constant kinetic coeffi-
cients (c = 1). For so-called roll convection, when cells
are horizontal cylinders, this means that vorticity can-
not reverse sign in neighboring elements.

When kinetic coefficients depend on temperature
(c = –1), flow circulation in the cells changes sign when

 = –ν , i.e., when the derivative of the kinetic
coefficient changes sign. This phenomenon was
observed in [5]. According to Eqs. (7), a similar effect
occurs at  = –χ  for slightly varying kinematic
viscosity and strong temperature dependence of ther-
mal diffusivity. In this case, as for constant kinetic coef-
ficients, the above set of geometric symmetries is sup-
plemented only by the symmetry group SO2(2). In the
case of roll convection, this symmetry makes alterna-
tion of vorticity sign in the cells possible, and this effect
is observed in media with strong temperature depen-
dence of kinematic viscosity [2]. In this case, convec-
tion rolls are very unstable in the longitudinal direction
and tend to turn into square cells.
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Here we present our reaction to the paper by
V.V. Okorokov “On the Discrepancy of Experiments
Supporting Certain Conclusions of General Relativity,”
which was recently published in Doklady Physics [1].

As is stated in [1], experimental data related to the
so-called red shift of photons contradict experiments in
which the acceleration of the atomic-clock rate with
increasing distance from the Earth was verified. This is
an erroneous statement by Okorokov that initiated a
thorough analysis of the problem in question in 1998
[2–5]. It was clearly demonstrated that the results of
both types of experiments are in excellent agreement
with each other.

The seeming contradiction is of a purely termino-
logical nature. It is caused by the fact that the interpre-
tation of experiments on the photon red shift in a num-
ber of papers is insufficiently consistent. In actual con-
ditions, the change in the photon frequency is of a
relative, rather than an absolute character. In the Earth’s
static gravitational field, a photon emitted by a source
located in the basement of a building cannot cause the
reverse nuclear transition in a detector placed in the
building’s attic. However, this is not due to a decrease
in the photon energy but rather to the fact that the dis-
tance between nuclear levels in the attic is larger than in
the basement. The same argument is also true for
atomic layers in an atomic clock. Thus, the photon fre-
quency decreases only with respect to the nuclear tran-
sition frequency or with respect to the atomic-clock fre-
quency (cf. [6, Section 88]).

In the scientific and popular-science literature, this
argument is insufficiently clarified. This explains Okoro-
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kov’s error and the necessity of publishing papers [2–5].
It should be emphasized that absolute conservation of
the photon frequency and absolute acceleration of the
clock rate take place only in a static gravitational field.
In the picture described above, the same time is used
along the entire photon path, e.g., the time counted off
by the clock at infinity. In [6], this time is called uni-
versal.

In the general case of a nonstatic field, there is no
global time, and global clock synchronization is impos-
sible (see, e.g., [6, Section 85]). In this case, a logical
possibility is to supply each point in space with a stan-
dard clock measuring the local time. In this general
covariant picture, a comparison of the clock rate at dif-
ferent points is possible only through an exchange of
(light) signals. Clearly, in this case, the effects of the
photon red-shift and the acceleration of the clock rate
are indistinguishable. This general covariant definition
of the red-shift effect was given by H. Weyl in [7].
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In the classic monograph “Mechanics of Continua”
[1], L. Landau and E. Lifshitz stated that the nonuni-
form heating of a solid phase does not result in the
appearance of convection as usually takes place in liq-
uids. The cause of this difference between solids and
liquids was regarded by the authors to be evident, and
therefore they did not analyze it. However, in geologi-
cal models describing deformation processes in Earth’s
rocks down to depths of 3000 km, there are widely used
concepts that these processes may result in the genera-
tion of circular convective fluxes in the Earth’s mantle,
with the sizes of convection cells ranging from 700 to
2500 km at temperature gradients of 1–2°C per km
[2–4]. The authors of these models assume that even
though the viscosity of the Earth’s mantle is as great as
1023–1025 Pa s, the large sizes of the convection cells
make it possible to attain values of the Rayleigh num-
ber for which free convection arises in liquids [2, 3].
The authors believe that this is the main argument in
favor of free convection becoming possible in the con-
ditions under consideration not only in liquids, but in
solids as well. We feel that the problem of free convec-
tion in the Earth’s mantle is not so simple or evident.
Therefore, the possibility of occurring such a process in
a nonuniformly heated solid should be analyzed in
more detail.

In rheology, two ultimate kinds of deformation pro-
cesses are indicated, namely, perfectly elastic and per-
fectly fluid regimes [5]. The deformation of a perfectly
elastic body is described by Hooke’s law, which states
that the stress F is proportional to the strain S:

F = ÖS. (1)

Here, Ö is the elastic modulus. In the case of a perfectly
elastic body, its deformation is a reversible process so
that, when unloaded, the body is completely restored to
its original size and shape. In the case of a perfectly
fluid body, even the slightest loads result in irreversible
strains that are conserved in the absence of loads [5].
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Properties of actual bodies depend on both strain and
strain rate. By varying the deformation conditions, we
can make an arbitrary material fluid, and rheology can
describe its deformation from the general standpoint
independently of the aggregate state of the material.
Nevertheless, there exist deformation regimes that can
take place only in liquids and which are unrealizable, in
principle, for bodies with a crystalline structure. One
such regime is free convection in a liquid, which is
caused by the presence of a vertical temperature gradi-
ent in it.

In this study, we consider certain features of the
mechanism of displacing structural elements in both
crystalline substances and liquids during a deformation
process. In a crystalline substance, irreversible strains
in it are caused by either plastic flow or creep. The plas-
tic deformation of a solid results in the directed motion
of a system of dislocations, with the atoms and ions
translating in the lattice sites (Fig. 1). In this case, the
strains take the form a stepped shift whose magnitude
is a multiple of the site spacing. The viscosity of an iso-
tropic solid subjected to plastic deformation is
described by the equation [6]

σik = 2η uik – δiku||  + ξu||δik . (2)

Here, σik is the dissipation tensor, η and ξ are the vis-
cosities, uik and u|| are the derivatives of the strain tensor
with respect to time, and δik is the unit tensor. It is
important to emphasize that Eq. (2) only formally coin-
cides with the expression of [6] for the viscous strain
tensor in a fluid.

Creep is a type of plastic deformation that takes
place in crystalline bodies at high temperatures and at
low strain rates [7]. This deformation process is real-
ized by transverse dislocation glide when the disloca-
tions creep from one lattice plane to another. This leads
to bulk saturation of the crystal by dislocations. As a
result, this deformation process occurs under fairly
small stresses. In this case, the point defects accumu-
lated at grain boundaries play an important role,
because their migration promotes the dislocation


 1

3
--- 


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motion. The viscosity of a solid body subjected to creep
deformation is described by the equation [7]

Here, L is the grain spacing, ä is Boltzmann constant,
í is temperature, R is the grain radius, Ç is a constant,
D is the diffusivity, and Ω is the atomic volume.

In the course of plastic deformation or creep of a
crystalline body, bulk displacement of its material
occurs. In both cases, this proceeds by skipping atoms
and ions between lattice sites or vacancies. Such jumps

η 2kTRL
3BDΩ
-----------------.=

Fig. 1. Scheme of dislocation motion under plastic defor-
mation of crystals.
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are possible provided that the load applied to the solid
is sufficiently large. It is worth emphasizing that in both
cases, these displacements are unidirectional and are
directed either parallel or perpendicular to the applied
loads. In no case can they form a closed circular motion
in the bulk of the solid. If a displacement caused by
creep deformation is directed along the temperature
gradient, it can be accompanied by heat transfer. By
analogy with liquids, this process can be treated as
forced convection. In contrast to free convection,
forced convection is caused by external forces and
ceases after these forces have stopped acting. In order
to understand the key differences between deformation
in liquids and that in solids, we now consider certain
basic features of liquids. There are many models that
have been proposed for describing the structure of
molecular and nonassociated liquids (such as liquid
argon), associated liquids (such as water and silicate
melts), ionic liquids (e.g., salt melts), etc. These models
treat a liquid as either a disordered crystal lattice (poly-
hedron hole model), a system of structured fragments
separated by vacancies (quasi-crystal model), or as
islets with an ordered structure which are separated by
cavities filled with gaseous particles (discernible struc-
ture model) [8, 9]. A distinctive feature of all these
models of fluid bodies is the existence of a certain free
volume in them, which is a key difference compared to
the crystalline state. The size of this free volume is suf-
ficient for both the deformation of the body and the
variation of its shape to occur without a noticeable load.

We now consider a fluid flow under conditions of
free convection. The simplest and most obvious exam-
ple of such a flow is a layer of a liquid bounded by two
infinite parallel plates whose temperatures are kept con-
stant, with the temperature of the lower plate being
higher than that of the upper plate (Fig. 2). When the
liquid is heated, a layer in contact with the lower-plate
surface is formed. In this layer, the free volume is larger
and therefore the density is lower than those in higher
lying layers. As a result, the heated layer begins to float
up, forming ascending flows of the heated liquid. A key
difference between these ascending flows and arbitrary
directed displacements of material in a solid consists in
the fact that, in this case, the fluid moves as finite vol-
T1

T2

T2  > T1

Fig. 2. Vertical cross section of convection cells between two infinite parallel plates. The dimensions of the open circles correspond
to the sizes of free volumes in the liquid. The dashed lines bound the domains of a stable structure in the liquid.
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umes forming ascending and descending jets between
the parallel plates rather than as translations of particles
from an equilibrium position to another one. In this
case, no specific convective particles originate in the
liquid. A system of convection cells with a cross-sec-
tional shape similar to a right hexagon [1] is formed in
the space between the plates. The liquid rises to the sur-
face of the upper plate at the center of the hexagon,
while the cooled liquid descends at the periphery
(Fig. 2) The cell size is determined by the distance
between the plates, the temperature difference, and the
viscosity of the fluid.

When estimating the possibility of matter moving
from the heated part of a body to its cooled part, it is
very important to determine the relative values of the
forces causing the free convection. This can be per-
formed in the following manner. In contrast to a solid,
the shape of a liquid is gravitationally unstable. There-
fore, under the action of gravity, the liquid is deformed,
taking the form of the vessel in which it is contained.
Forces acting in the process of free convection are
determined by the difference in the densities of heated
and cooled layers of the liquid. These forces are much
weaker than the gravitational forces that affect the
shape of the liquid. Hence, in this process, the behavior
of the liquid to a great extent corresponds to a perfectly
fluid body.

We now imagine that instead of a liquid, a giant
crystal of a mantle mineral, for example, MgSiO3 , is
placed between the plates. When the lower part of the
crystal is heated, the interatomic distances in this
domain (to be more precise, the amplitudes of atomic
oscillations with respect to equilibrium positions)
slightly increase. However, no free volume or directed
pyroxene flow in pyroxene can arise. The strength of
solids is much greater than that of liquids. Therefore, in
the Earth’s gravitational field, a solid conserves its
shape for an infinitely long time. Moreover, the differ-
ence in densities of heated and cooled parts of the crys-
tal cannot violate interatomic bonds in the crystal and
form ascending and descending flows of the crystalline
substance. Therefore, the assumption of free convec-
tion in the polycrystalline mantle is nonsense from the
standpoint of the physics of solids. The reasoning based
on the large size of the convection cells is not conclu-
sive because, regardless of the cell sizes, the displace-
ment of the substance in the convection process occurs
by the motion of elementary particles that form the
structure of the substance.

The groundlessness of the concept of free convec-
tion in the mantle is also evident for the following rea-
sons. Let us assume the mantle to be a polycrystalline
aggregate with a grain size of 0.5 cm. For a temperature
gradient of 1–2°C per km (this value is considered by a
number of authors to be sufficient for convection to
originate in the mantle), the temperature difference
between the lower and upper boundaries of a grain is no
higher than 10–5°C. For such a temperature gradient in
the grain, internal stresses sufficient for dislocations or
vacancies to move in the direction of the gradient can-
not, in principle, originate.

The impossibility of free convection in the solid-
phase mantle implies that the present-day concept of
continental plate tectonics is groundless. Indeed, both
the mechanism of motion of the plates and the possibil-
ity of their immersion in so-called subduction zones
(whose existence has long been questioned) turn out to
be extremely doubtful [10]. Nevertheless, this argu-
ment does not suggest that large-scale horizontal dis-
placements of crustal blocks are impossible, but it
forces us to seek other mechanisms to explain the hid-
den nature of such motions.
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1. INTRODUCTION

W. Thomson (Lord Kelvin) [1] formulated the sta-
bility problem for the permanent rotation of a system of
n point vortices situated at the corners of a regular
n-gon. He pointed to the profound analogy between this
problem and the problem of equilibrium stability for a
system of n magnets floating in an external magnetic
field. The latter problem was investigated experimen-
tally by Mayer in [2, 3]. Thomson emphasized the
importance of determining the largest n value for which
the given steady-state regime is stable.

Many authors have investigated the problem.
According to [4, 5], the regime is exponentially unsta-
ble at n ≥ 8 and stable in the linear approximation at
n ≤ 6. The case n = 7 is questionable, because the zero
eigenvalue of the linear problem has a multiplicity of 4,
while the normal value is equal to 2.

In this paper, we prove that a regular vortex hepta-
gon is stable. This proof requires a special investigation
of nonlinearity; at n ≤ 6, the linear approximation is suf-
ficient [6]. Thus, the complete answer to Thomson’s
question is that stability occurs only at n ≤ 7.

We note that Khazin [7, 8] erroneously stated that
nonlinear analysis is necessary at n ≤ 6 and the given
regime is unstable at n = 7.

The right conclusion concerning the stability at
n = 7 was drawn in [9, 10]. However, the analysis car-
ried out in [9] is insufficient, and as the authors of [10]
wrote, their result “was accurate to extensive numerical
computer calculations.”

Excellent reviews of results on the stability of both
regular vortex polygons and more complex configura-
tions of point vortices were presented in [11].

In this section based on [12], we present certain gen-
eral results concerning steady motions in symmetric
systems and their stability. In our opinion, this general
theory will be useful, in particular, in investigating
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Rostov-on-Don, 344090 Russia
1028-3358/02/4706- $22.00 © 20465
many other vortex problems. It is noteworthy that the
rigorous definition of the stability of steady motion was
obscured in many papers and this fact often led to mis-
understanding.

2. STEADY MOTIONS
OF SYMMETRIC DYNAMICAL SYSTEMS

In the Banach space V, we consider the autonomous
differential equation

(2.1)

for which the Cauchy problem is globally and uniquely
solvable. This means that, for any v  ∈  V, there is a sin-
gle solution u(t) = Ntv  defined for all t ≥ 0, where Nt:
V  V is the evolution operator.

Let G be a Lie group and L: g ° Lg be its isomor-
phism onto a certain subgroup L(G) of the diffeomor-
phism group DiffV of the space V. We call (Nt , V) a
symmetric dynamical system with the symmetry group
G if, for any t ≥ 0 and g ∈  G, the operators Nt and Lg

commute with each other:

(2.2)

According to this equality, the transformations Lg con-
vert motions into motions. Differentiating Eq. (2.2)
with respect to t at t = 0, we arrive at the symmetry con-
dition in the differential form

(2.3)

for all g ∈  G and v  ∈  V. Here, (v ) is the Frechét
derivative of the operator Lg at the point v .

Let A = AG be the Lie algebra of the group G. Each
element a ∈  A uniquely defines the one-parameter sub-
group g(τ) = expτa, where exp: A  G is the exponen-
tial mapping and a is the generator of the subgroup g(τ).

We define the generator T(a): V  V (infinitesimal
operator) of the one-parameter subgroup Lg(τ) of the
group L(G) as

(2.4)

u̇ F u( ),=

LgNt NtLg.=

Lg' v( )F v( ) F Lgv( )=

Lg'

T a( ) d
dτ
-----

τ 0=

L τaexp . =
002 MAIK “Nauka/Interperiodica”
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The operator T(a) is generally nonlinear but depends
linearly on a.

We call the solution u(t) of Eq. (2.1) steady-state if
it can be presented in the form

(2.5)

for certain a ∈  A and v  ∈  V. In other words, steady
motion is realized by the transformations of a certain
one-parameter subgroup Lg(t),  g(t ) = exp ta of the
group L(G).

Any one-parameter subgroup g(t) = expta and any
v  ∈  V satisfy the formula

(2.6)

Substituting Eq. (2.5) into Eq. (2.1), using Eqs. (2.3)
and (2.6), and reducing the reversible operator (v ),
we obtain the equation of steady motions

(2.7)

which is closed, at least formally. In a finite-dimen-
sional case, this means that the number of equations
coincides with the number of unknowns. The equation
is determined, because the presence of the unknown
vector a is compensated by the symmetry of Eq. (2.1).
If v  ∈  V and a ∈  A satisfy Eq. (2.7), steady motion is
described by Eq. (2.5)

The simplification of the problem due to the transi-
tion from differential equation (2.1) to Eq. (2.7) resem-
bles the separation of variables in the linear case. The
equation for a vector function with values in the space V
reduces to an equation immediately in the space V. As a
result, we obtain a peculiar eigenvalue problem whose
parameter is the element a of the Lie algebra of the
symmetry group G.

If v  is the initial point of a certain steady motion, all
points of the orbit O(v ) = {Lhv : h ∈  G}, which is
obtained by the action of the group G and passes
through the point v, belong to trajectories of steady
motions. In particular, each point v τ = Lexpτav  belong-
ing to the trajectory of steady-state regime (2.5) satis-
fies Eq. (2.7) with the same a.

The change of variables u(t) = Lg(t)w(t) with g(t) =
expta in Eq. (2.1) leads to the equation

(2.8)

which describes relative motion in the frame of refer-
ence given by the subgroup Lg(t) of the group L(G).
According to Eq. (2.7), the initial point v  of steady
motion (2.5) is an equilibrium of Eq. (2.8). It is also
called the relative equilibrium of Eq. (2.1). Each point
Lg(τ)v  of trajectory (2.5) is also a relative equilibrium.

Equation (2.8) can be derived for any subgroup
g(t) = expta (a ∈  A). This equation is autonomous pre-
cisely because of symmetry. If perhaps only the vector

u t( ) L taexp v=

d
dt
-----Lg t( )v Lg t( )' v( )T a( )v .=

Lg t( )'

F v( ) T a( )v ,=

ẇ T a( )w+ F w( ),=
a is changed, the transformations of the group L(G)
conserve the form of Eq. (2.8).

In contrast to equilibria, a steady-state regime is
never asymptotically stable, because there are other
steady-state regimes close to it. In general, it can be sta-
ble in the Lyapunov sense for systems with dissipation,
when its trajectory is asymptotically stable. For conser-
vative systems, when trajectories of steady-state
regimes are not isolated (fill entire submanifolds in the
phase space), Lyapunov stability is possible, but only as
an infrequent exception. Indeed, if an initial perturba-
tion leads to an adjacent steady-state regime with
another trajectory, both steady motions must satisfy a
certain isochronism condition. For example, if they are
periodic, the perturbation should not change the period.
Otherwise, the departure of the perturbed motions from
each other in a finite time can become of the order of
trajectory diameter. Therefore, other definitions of sta-
bility are reasonable in the general theory.

A steady-state solution u(t) = Lexptav  of Eq. (2.1) is
stable in the Routh sense if its trajectory 7 = {w: w =
Lexpτav , τ ∈  R} is a stable family of equilibria of rela-
tive-motion equation (2.8). In more detail, for any
ε > 0, there exists δ > 0 such that the inequality
ρ(w(t), 7) < ε (ρ is the distance) is satisfied at all t ≥ 0
for each solution w(t) of Eq. (2.8) when ρ(w(0), 7) < δ.

The steady motion us(t) = Lexptav  is called G-stable
if, for each δ > 0, there exists ε > 0 such that the inequal-
ity ||w0 – v || < δ at initial time t = 0 leads to the inequal-
ity ρ(w(t ), O(v )) < ε at all t > 0. Here, w(t ) is the solu-
tion of the Cauchy problem for Eq. (2.8) with the initial
condition w(0) = w0.

This steady motion is asymptotically G-stable if it is
stable and the invariant set O(v ) is attracting; i.e.,
ρ(w(t), O(v ))  0 at t  +∞ if the initial point w0

is so close to O(v ) that ρ(w0, O(v )) < δ0 , where the
number δ0 > 0 is determined by the given steady-state
regime.

It was assumed above that, for any initial condition
u(0) = u0 ∈  V, the Cauchy problem for Eq. (2.1) has a
solution u(t) defined at all t > 0. In general, the defini-
tion of stability must include the continuability of any
solution of Eq. (2.1) with the initial point u0 in a certain
vicinity of the point v  onto the semi-infinite interval
[0, ∞).

Lyapunov and his followers studied a more general
concept of stability with respect to certain variables
(see, e.g., [13]).

We note that the concepts of steady motion and its G
stability depend on the considered symmetry group G.
In order for steady motion to be stable, this group
should be maximal in a certain sense.
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CERTAIN CRITERIA FOR STABILITY 
OF STEADY MOTIONS 

Hereafter, all given functions are assumed to be C∞-
smooth.

Proposition 2.1. A steady-state regime u0(t) =
Lexptav  is stable in the sense of Routh and G-stable
under the following conditions: (i) The function u0(t) =
Lexptav  is a steady-state solution of Eq. (2.1) with the
symmetry group G, and its orbit O(v) is compact;
(ii) The function V is given in the vicinity O(v ), invari-
ant with respect to the transformation group Lexpta gen-
erating the regime u0 , and reaches a transversally strict
minimum (or maximum) in this orbit (locally strict min-
imum or maximum in the space of orbits of the group

Lexpta); (iii) The derivative  is negative (positive)
according to Eq. (2.1) and, in particular, can be an inte-
gral of this equation.

We define this proposition concretely for the follow-
ing Hamiltonian system in R2n:

(2.9)

We conventionally assume that the symmetry group G
acts in the phase space R2n of Eq. (2.9) by means of
symplectic diffeomorphisms. In this case, the Hamilton
equation

(2.10)

with the Hamiltonian M corresponds to each one-
parameter subgroup expta of the group G. In addition,
the operator T(a) is the right-hand side of Eq. (2.10):

(2.11)

The algebra of functions with the Lie multiplication
given by the Poisson brackets {M1(u), M2(u)} =
(JgradM1(u), M2(u)) corresponds to the Lie algebra A.

The Noether theorem for Eq. (2.9) states that, if
JgradM(u) is a symmetry, M(u) is an integral of
Eq. (2.9).

Equation (2.7), which describes steady motion gen-
erated by the symmetry group with the Hamiltonian
λM(u) (λ ∈  R), is written as

(2.12)

The corresponding equation of relative motion (2.8)
takes the form

(2.13)

The steady-state regime u0(t) can be found as a solution
of the Cauchy problem

(2.14)

Equation (2.12) allows the following variational inter-
pretations.

(1) At a given λ, v  is the critical point for the func-
tion H – λM.

V̇

u̇ J grad H u( ).=

u̇ J grad M u( )=

T a( )u J grad M u( ).=

grad H v( ) λM v( )–( ) 0.=

ẇ J grad H w( ) λM w( )–( ).=

u̇0 J grad M u0( ), u0
t 0= v .= =
DOKLADY PHYSICS      Vol. 47      No. 6      2002
(2) The point v  is critical for the contraction of the
function H to the set of the M: M(u) = M(v ) function
level.

(3) At λ ≠ 0, v  is the critical point for the contraction
of the function M to the set of the H(u) = H(v ) level.

Here, in items (2) and (3), the quantity λ is the
Lagrange multiplier for these problems of a conditional
extremum.

We call the function H – λM, where λ is determined
by the given steady motion, the relative (reduced)
Hamiltonian. This is the most natural Lyapunov func-
tion for the problem of the Routh stability. The relative
Hamiltonian H – λM is an integral of the equation of rel-
ative motion (2.13) and is invariant under the transfor-
mations Lexpτa at all τ ∈  R. Indeed, the function H is
invariant according to the original symmetry condition,
and the function M is the Hamiltonian corresponding to
the transformation group Lexpτa . Therefore, Proposi-
tion 2.1 leads directly to the following statement.

Proposition 2.2. Let the relative Hamiltonian
H − λM reach a transversally strict minimum or maxi-
mum in the trajectory of the steady-state regime u0 with
a compact orbit. Then, the steady-state regime u0 is sta-
ble in the Routh sense and G-stable.

The instability of a steady motion in the Routh sense
does not exclude the stability of an invariant set of
steady motions (the group orbit of the given steady
motion). If this stability occurred, perturbations would
grow only along the invariant set. In reality, exponential
instability in the linear approximation generally causes
the growth of perturbations in the transverse direction
as well. For families of periodic motions, this fact was
established in [14, 15].

3. STEADY ROTATION OF A SYSTEM
OF POINT VORTICES

Plane motion of a system of n point vortices is
described by the following Kirchhoff equations in the
Hamiltonian formalism:

(3.1)

Here,

(3.2)

is the Hamiltonian, xk and yk are the Cartesian coordi-
nates of the kth vortex, and κk is its strength.

Equation (3.1) corresponds to the Poisson brackets
for the functions U and V:

. (3.3)

κ k

dxk

dt
-------- ∂H

∂yk

--------, κ k

dyk

dt
-------- ∂H

∂xk

--------, 1– k n.≤ ≤= =

H
1

4π
------ κ jκ k x j xk–( )2 y j yk–( )2+ln

1 j k n≤<≤
∑–=

U V,{ } 1
κ k

----- ∂U
∂xk

-------- ∂V
∂yk

-------- ∂U
∂yk

-------- ∂V
∂xk

--------– 
 

k 1=

n

∑=
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Kirchhoff found the following four integrals of sys-
tem (3.1): the function H, the momentum components

I1 =  and I2 = , and the total moment of

inertia M =  + ).

Introduction of the complex variables zk = xk + iyk

and  = xk – iyk reduces the Kirchhoff equations to the
system of n complex differential equations

(3.4)

Now,

(3.5)

is a function of the variables zk and  and the equa-
tions of motion take the form

(3.6)

where the prime denotes omission of the term with j =
k. The phase space Z of system (3.6) is Cn with cuts
along all hyperplanes zj = zk (j ≠ k).

It is noteworthy that, if the strengths have identical
signs, the Cauchy problem for system (3.6) is globally
solvable and its trajectories are compact in Z.

Below, we consider the symmetry group. System (3.6)
is invariant with respect to the group G of the Euclid-
ean motions of the plane R2. For any point z =
(z1, z2, …, zn) ∈  Z and any motion g ∈  G, the action
g ° Lg of this group in the phase space Z is determined
by the equality Lgz = (gz1, gz2, … , gzn). The group G
includes the specular reflection j: z ° z*, translations
gtr: z ° z + h (h ∈  C), and rotations grot: z ° eiαz
(α ∈  R). We note that, according to the Noether theo-
rem, the momentum integrals and the integral of
moment of inertia arise due to the translational and
rotational invariances of the Hamiltonian H, respec-
tively.

The equation of steady motions (2.7) and (2.11) that
corresponds to the translation group gtr takes the form

(3.7)

with the unknowns v , z1, z2, …, zn ∈  C. After analyzing
it, we conclude that a nonequilibrium steady-state
regime corresponding to the translation group can exist

only when  = 0.

κ kxk

k 1=

n

∑ κ kyk

k 1=

n

∑

κ k xk
2(

k 1=

n

∑ yk
2

zk*

κ kżk 2iHzk
* , k– 1 2 … n., , ,= =

H
1

4π
------ κ jκ k z j zk–( ) z j* zk*–( )[ ]ln

1 j k n≤<≤
∑–=

zk*

żk*
1

2πi
--------

κ j

zk z j–
--------------, k

j 1=

n

'∑ 1 2 … n,, , ,= =

v *
1

2πi
--------

κ j

zk z j–
--------------, k

j 1=

n

'∑ 1 2 … n, , ,= =

κn

k 1=

n

∑

According to Eq. (2.5), the steady motion corre-
sponding to the rotation subgroup grot is sought in the
form zk = eiωtuk . Simultaneously, the equation of steady
motions (2.7) and (2.11) is written as 

(3.8)

for the unknowns u1, u2, …, un ∈  C and ω ∈  R.
For identical strengths κ1 = … = κn = κ, system (3.8)

has the familiar exact solution (R > 0 is arbitrary)

(3.9)

The moment integral is related to R by the equality

The corresponding steady-state regime is described
by the equations

(3.10)

The existence of steady-state rotation regimes is
also proven in the general case of arbitrary strengths κk

with identical signs.

4. STABILITY 
OF A REGULAR VORTEX n-GON

It is assumed that all vortices have the identical
strength κ. Then, a system of vortices that are situated
along a circle of radius R at the corners of a regular
n-gon rotates with a constant angular velocity. This
motion corresponds to steady-state solution (3.10) and
relative-motion equation (2.13) with the relative Hamil-
tonian

(4.1)

Here, w = (ν1, ν2, …, νn, µ1, µ2, …, µn) ∈  R2n and λ is
determined from the equation of steady motion (2.12).

In each plane of the variables (v k, µk), we introduce
polar coordinates and represent v k + iµk in the form

(4.2)

In terms of the variables r = (r1, r2, …, rn) and θ =
(θ1, θ2, …, θn), steady motion (3.10) corresponds to
the continuous family that involves equilibria of sys-

iωuk*
1

2πi
--------

κ j

uk u j–
---------------, k

j 1=

n

'∑ 1 2 … n, , ,= =

uk Re
2π
n

------ i k 1–( )
,   k 1 2 … n , , , , = =  

ω κ

 

n

 

1–

4

 

π

 

R

 

2

 

------------.=

M κ zk
2

k 1=

n

∑ κnR2.= =

zk t( ) Reiωtuk, k 1 2 … n., , ,= =

E w( ) H w( ) λM w( ),–=

M κ ν k
2 µk

2
+( ), λ

k 1=

n

∑ ω
2
----.–= =

νk iµk+ R 1 rk+( )e
i

2π
n

------ k 1–( ) θk+ 
 

,    R 0. ≥ =
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tem (2.13) and is situated on the straight line Γ =
{(r, θ) ∈  R2n: r = 0, θ1 = θ2 = … = θn}.

The Taylor expansion of the function E(w(ρ)), ρ 
(r, θ) has the following identical form in the vicinity of
each equilibrium of the family Γ:

(4.3)

Here, the ellipsis means the terms of powers exceeding 4,

where (for k = 2, 3)

All matrices Bj (j = 1–6) are circulant matrices, i.e.,

polynomials of the cyclic matrix C = (cij , whose
nonzero elements are c1, 2 = … = cn – 1, n = cn, 1 = 1. As a
result,

where

The eigenvalues λ1k and λ2k of the matrices B1 and

=
def

E w ρ( )( ) κ2

4π
------ E0 E2 w ρ( )( )+(=

+ E3 w ρ( )( ) E4 w ρ( )( ) …+ + ).

E2 w ρ( )( ) B1r r,( ) B2θ θ,( ),+=

E3 w ρ( )( ) B3r r2,( ) B4θ r2,( )+=

+ 2 B4r rθ,( ) B4θ θ2,( ),–

E4 w r 0,( )( ) B5r2 r2,( ) B6r r3,( ),+=

rk = r1
k r2

k … rn
k, , ,( ), rθ = r1θ1 r2θ2 … rnθn, , ,( ),

θ2 = θ1
2 θ2

2 … θn
2, , ,( ).

def def

def

)ij 1=
n

B1 b1I B0, B2+ b2I B0, B3– b3I B0,–= = =

B0 = amC
m

, B4

m 1=

n 1–

∑ 2
2πm

n
-----------am

2
C

m
,sin

m 1=

n 1–

∑=
def

B5 b5I
3
2
--- am

2
C

m
, B6

m 1=

n 1–

∑+ 2
2πm

n
-----------am

2
C

m
,cos

m 1=

n 1–

∑–= =

am
1
2
--- 1

1 2πm
n

-----------cos–
-----------------------------, b1

1
12
------ n 1–( ) 11 n–( ),= =

b2
1
12
------ n

2
1–( ),=

b3
1
12
------ n 1–( ) n 3–( ),=

b5
1

1440
------------ n 1–( ) n3 n2 109n– 251+ +( ).=
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B2  are, respectively,

The following theorem justifies the application of
the linearization method to the problem of stability of a
vortex n-gon at n ≠ 7. It is noteworthy that this theorem
treats instability in the strongest sense; i.e., the invariant
set of steady rotations is transversally unstable.

Theorem 3.1. Steady rotation (3.10) of a regular
vortex n-gon is stable in the Routh sense (and G-stable)
at n ≤ 6 and unstable at n ≥ 8.

Proof. At n ≤ 6, all eigenvalues of the matrices B1
and B2 except λ2n = 0, which corresponds to the proper
subspace Γ, are positive. Therefore, the quadratic form
E2 is positive-definite in the subspace Γ⊥  = R2n * Γ.
Expansion (4.3) indicates that the relative Hamiltonian
E(w(ρ)) reaches a transversally strict minimum in the
family of equilibria Γ. Thus, the conditions of State-
ment 2.2 are satisfied.

Proof of instability for n ≥ 8 is based on the fact that
the transverse component of the system under consider-
ation is separated, i.e., is independent of the tangential
component. Therefore, the instability of the system fol-
lows from the general Lyapunov theorems concerning
instability.

At n = 7, the matrix B1 has a double zero eigen-
value so that, in order to solve the problem of the
transverse minimum, one should use the next terms of
expansion (4.3).

In the R7 space, the circulant matrices B1 and B2 have
the common proper basis

As a result, Bjhk = λjkhk, where j = 1, 2 and k = 1, …, 7.

The vectors r and θ can be represented in this basis as

(4.4)

The Hamiltonian E(w(ρ)) is independent of the vari-
able ζ7 and, in the vicinity of the family Γ, has the

λ1k n 1–
1
2
---k n k–( ),–=

λ2k
1
2
---k n k–( ), 1 k n.≤ ≤=

hm 1 mα( )cos … 6mα( )cos, , ,( ),=

h7 m– 0 mα( )sin … 6mα( )sin, , ,( ),=

h7 1 1 1 1 1 1 1, , , , , ,( ), m 1 2 3, α, , 2π
7

------.= = =

r r̂ r̃, r̂+ ξ3h3 ξ4h4+ ker B1,∈= =

r̃ ξ1h1 ξ2h2 ξ5h5 ξ6h6 ξ7h7,+ + + +=

θ θ⊥ ζ7h7, θ⊥+ ζ khk.
k 1=

6

∑= =
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asymptotic form

(4.5)

where the function S has the form

(4.6)

For arbitrary x ∈  R, we present the polynomial S as
the following sum:

(4.7)

where α3 = , α4 = , and β = ξ3ξ4. At x ∈  ,

, the quadratic forms S1 and S2 are simultaneously

positively definite, and therefore the Sylvester criterion
is satisfied.

Thus, the function S has a strict local minimum at
zero, and the Hamiltonian E(w(ρ)) satisfies the condi-
tions of Proposition 2.2. Consequently, the following
theorem is valid.

E w ρ( )( ) κ2

4π
------ E0 S r̂ r̃ θ⊥, ,( )+(=

+ o r̂ 4 r̃ 2 θ⊥
2+ +( ) ), r̂ r̃ θ⊥, ,( )           0,

2
7
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2 ξ2
2 ξ5

2 3ξ6
2 12ξ7

2+ + + +=

+ 3ζ1
2 5ζ2

2 6ζ3
2 6ζ4

2 5ζ5
2 3ζ6

2+ + + + +

+
9
2
---ξ3

2ξ1 6ξ3
2ξ7 9ξ3ξ4ξ6– 6ξ4

2ξ7
9
2
---ξ4

2ξ1–+ +

+
9
2
---ξ3

2ζ6 9ξ4ξ3ζ1
9
2
---ξ4

2ζ6– 6
3
8
--- ξ3

2 ξ4
2+( )2

.+ +

2
7
---S S1 S2 ξ2

2 ξ5
2 5ζ2

2 6ζ3
2 6ζ4

2 5ζ5
2,+ + + + + + +=

S1 = 3ξ1
2 12ξ7

2 3ζ6
2 9

2
---α3ξ1 6α3ξ7 6α4ξ7++ + + +

–
9
2
---α4ξ1

9
2
---α3ζ6

9
2
---α4ζ6– 6

3
8
---α3

2 6
3
8
---α4

2 2xα3α4,+ + + +

S2 3ξ6
2 3ζ1

2 9βξ6– 9βζ1 12
3
4
--- 2x– 

  β2,+ + +=

ξ3
2 ξ4

2 4
7
8
---–



3
8
---– 



Theorem 3.2. The steady rotation (3.10) of a regu-
lar vortex heptagon is stable in the Routh sense and
G-stable.
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In [1], we gave preliminary estimates of the possi-
bility of designing transport routes in space on the basis
of cable systems. We propose to displace space objects
by arranging two-way transport of equal-mass loads by
their exchange at contact centers.

In this study, we extend the problem of applying the
cable systems and consider the possibility of directly
converting the mechanical energy of a space-object’s
motion into electric energy and vice versa. In order to
implement this project, it is necessary to solve the fol-
lowing problems.

(i) The direct conversion of the energy accumulated
aboard a space object, namely, in a cable system, into
the mechanical energy of orbital motion. This implies a
variation of the space-object’s orbit by means of direct
energy conversion without employing jet propulsion.
We propose to use as an energy source an electric accu-
mulator or a generator that produces electric energy
aboard a spacecraft. The same scheme also makes it
possible to realize the reverse process, i.e., the conver-
sion of mechanical energy into electric energy.

(ii) The transfer of mechanical energy from one
object to another.

(iii) The use of the mechanical energy of motion of
natural celestial bodies, in particular, of the moon.

When a space object performs a gravitational
maneuver near the moon, the mechanical energy of this
object can increase. This energy can be used to change
a spacecraft’s orbit or be converted into electric energy
aboard the spacecraft.

The purpose of this study is to show that the prob-
lems formulated above can be solved on the basis of
existing systems of space technology and modern mate-
rials.

For practical realization of this project, it is neces-
sary to preliminarily deploy a group of cable systems in

Institute for Space Research, 
Russian Academy of Sciences, ul. Profsoyuznaya 84/32, 
GSP-7, Moscow, 117810 Russia
1028-3358/02/4706- $22.00 © 20471
circumterrestrial orbits. The design of each object of
this group must be specialized for the optimal realiza-
tion of a particular problem. Each object is assumed to
occupy a preassigned orbit. For the optimal choice of
parameters of this group, it is necessary to solve a num-
ber of scientific and technological problems. In addi-
tion to the problems listed in this paper, the construc-
tion of this space system will make it possible to carry
out transport operations and to launch spacecrafts into
their orbits at lower costs than those inherent in conven-
tional means of rocket engineering. In the framework of
this study, we assume that a group of cable systems
exists, and we develop principles of its operation.

The group consists of cable systems with a unified
structural scheme. Henceforth, we call this cable sys-
tem a sling. The sling shown in Fig. 1 is made up of two
blocks B and C, which are linked by a long cable. The

Vk

V2p

K2

C

V1p

K1

B

c.m.

ωp

Fig. 1. Sling-motion scheme.
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blocks are mated with detachable containers K1 and K2 .
The cable system is launched into a satellite orbit. The
mean angular velocity of system rotation with respect
to its center of mass is ωp , the rotation plane being coin-
cident with the orbit plane.

1. ENERGY CONVERSION

We denote by (B) and (C) the tangential
velocities of the blocks B and C with respect to the cen-
ter of mass of the cable system. Modern high-strength
materials make it possible to design a cable system sev-
eral hundred kilometers long with tangential velocities
on the order of 1500 m/s.

The dynamics of the cable-system motion was
investigated on the basis of integrating equations of
motion [1] in the gravitational field of two loads linked
by an imponderable stretchable cable. The motion pro-
ceeds in the orbit plane. We consider a variant of an
equatorial orbit; therefore, the orbital plane undergoes
no perturbations due to the Earth’s nonsphericity.

The cable is assumed to be in tension during rota-
tion, the tension force being proportional to the cable
elongation according to Hooke’s law:

(1)

Here, xj and yj are the coordinates of two bodies; γj = 1
for j = 1 and γj = –1 for j = 2; R is the Earth’s radius; µ1 =
398606 km3/s2; mj is the mass of the end blocks; Rj =

; and Lu = .

The cable tension is determined by the expression

(2)

Here, Em is the elastic modulus of the cable material, Sh

is the cable cross-sectional area, dL is the cable elonga-
tion, dL = Lu – L0 , and L0 is the cable length in the non-
stretched state.

Along with a simplified model of an imponderable
cable, we investigated the model of spatial motion for a
sling with a heavy stretchable cable. The qualitative
results for this model coincide with the solution to
Eqs. (1).

In Eqs. (1), we multiply each of the first two equa-
tions by  and , respectively, and the other two

equations—by  and . Furthermore, we sum all the
equations obtained and take the integral of both the
right-hand and left-hand sides. As a result, we obtain

v 1 p v 2 p

m jx j" –
m jµ1x j

R j
3

---------------- γ jF dL( )
x2 x1–

Lu

---------------,+=

m jy j" –
m jµ1y j

R j
3

---------------- γ jF dL( )
y2 y1–

Lu

---------------, j+ 1 2.,= =

x j
2 y j

2+ x1 x2–( )2 y1 y2–( )2+

F dL( )
dLEmSh

L0
-------------------.=

x1' y1'

x2' y2'
the expression for the total mechanical energy Qs of the
sling:

(3)

In (3), Q1 and Q2 determine the mechanical energy of
the end blocks of the sling. The quantity Qp character-
izes the energy of longitudinal vibrations of the stretch-
able cable.

Certain results in the analysis of the sling-motion
dynamics were obtained using the methods of multiple-
frequency vibrations in nonlinear systems [2]. How-
ever, numerical integration of Eqs. (1) was used as a
basic method of investigation. To realize this approach,
it is necessary to select variants of particular numerical
values for cable-system parameters and to set the initial
conditions for Eqs. (1) in the corresponding manner.

When integrating Eqs. (1), we additionally deter-
mined the coordinates of the motion of the sling’s cen-
ter of mass:

The current altitude of the sling’s center of mass in its

orbital motion is H =  – R.

The tangential velocities  and  of blocks B
and C with respect to the cable-system’s center of mass
determine the rotation regime of the sling around its
center of mass. Upon decreasing these velocities, a res-
onance regime is possible for which the period of rota-
tion around the center of mass equals the period of
orbital rotation of the center of mass. Since this regime
is unstable, the tangential velocities are chosen from the
condition for the orbital-rotation period T0 to exceed
the period Tp of the sling rotation. In this case, the rota-
tion regime is steady. Depending on the initial condi-
tions, the sling rotates either clockwise or counter-
clockwise.

We also calculated the components (Lx , Ly) of the
vector directed along the stretched cable from block B
to block C with respect to the orbital system of coordi-
nates, i.e., the components along both the radius vector
and the perpendicular to it. The components Lx(t) and
Ly(t) are periodic functions that can be represented in

Qs Q1 Q2 Qp,+ +=

Q1 = m1
µ1

R
-----
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R1
-----–

v 1
2

2
------+ 
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----------------------------------------------, v j
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xc

kmx2 x1+
1 km+

----------------------, yc

kmy2 y1+
1 km+

----------------------, km

m2

m1
------.= = =

xc
2 yc

2+

v 1 p v 2 p
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the form of the sum of harmonics with frequencies that

are multiples of ωp = . The cable tension F(dL)

oscillates about a mean value with the double frequency
2ωp . F(dL) attains its maximum or minimum values if
the cable is directed along the radius vector or the per-
pendicular to it, respectively.

We now sequentially consider the methods of solv-
ing the formulated problems.

The idea that orbit parameters can vary with the size
of a space object was advanced in the well-known
monograph [4]. In the present study, we consider a sling
to be such an object and show that, by properly varying
the geometric size of the cable system, it is possible to
transform the orbital parameters and to convert the
energy accumulated aboard a space object into mechan-
ical energy and vice versa. We assume that reversible
electric motors are installed in the end blocks of the
sling operating according to the recuperation principle,
as well as accumulators and electric-current sources.

The sling dimensions vary provided that an electric
motor situated in one or both end-block motors begins
at once to pull or release the cable in the time interval
(0 < t < T) so that the cable’s free-state length L0(t) cor-
responds to the formula

(4)

To carry out this operation, the energy

(5)

is required, where F(t) is the cable tension and  is

the rate of cable-length variation provided by the
electric motors. The recuperation loss is ignored in for-
mula (5). According to formula (3), at the initial time
t = 0, the total mechanical energy of the sling is Qs(0).
At t > T, when the operation of the motors is completed,
the sling-motion parameters are changed, and, accord-
ing to (3), the total mechanical energy of the sling
becomes equal to Qs(T). The results of integrating
equations of motion (1) within the interval (0 < t < T)
with a cable length varying according to law (4) show
that

(6)

where ∆1Q is determined as a result of calculating inte-
gral (5). If ∆1Q > 0, this implies that the electric energy
was converted into the mechanical energy of the sling.
If ∆1Q < 0, the inverse conversion takes place.

Furthermore, we consider certain options for con-
trolling the cable length.

In option 1, the cable is pulled with a constant veloc-
ity, ∆l > 0, l(t) = t∆l. When the tangential velocities
increase, the cable tension and the mechanical energy

2π
T p

------

L0 t( ) L0 l t( ).–=

∆1Q
l t( )d
dt

-----------F t( ) td

0

T

∫=

dl t( )
dt

-----------

Qs T( ) Qs 0( )– ∆1Q;=
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of the sling also grow. According to relation (5), we
determine the energy expenditures for the work of the
electric motors. When the cable is released, ∆l < 0, the
processes have the opposite sign and the corresponding
quantity of energy arrives at the accumulators of the
end blocks.

In option 2, we propose a law (4) of cable-length
variation such that after completing the control cycle,
the electric energy is converted into mechanical energy,
while the sling dimensions remain the same. We use the
fact that the tension force F(t) of the sling vibrates
about an average position with a frequency 2ωp . We
propose to vary the cable length within the interval 0 <
t < T according to the law

(7)

The quantity fω(t) represents a sinusoid with the fre-
quency 2ωp , and p1 is the parameter. When the control
is set in this form, synchronization is provided between
the excitation-force frequency and the sling-rotation
frequency that varies in the control process. The quan-
tities Lx and Ly can be measured by autonomous means
for determining the angular orientation aboard the
space object. In option 2, an increment in the mechani-
cal energy of the sling is distributed differently than in
option 1: the sling-rotation velocity varies simulta-
neously with the orbital velocity of the sling’s center of
mass. If p1 > 0 in control law (7), and the sling rotates
clockwise, the angular velocity ωp of the sling rotation
decreases, the long semiaxis ap of the orbit increases,
and the energy supply ∆1Q in the accumulators grows.
For p1 < 0, the variations of the parameters have the
opposite sign. If the sling rotates counterclockwise and
p1 > 0, the quantities ωp and ap increase, while ∆1Q
decreases; i.e., the energy is spent.

In option 3, we simultaneously realize control
according to options 1 and 2. This makes it possible to
solve the problem of winding the sling cable; i.e., by
pulling the cable, we are able to join blocks B and C.
We also solve the problem of unrolling the cable to a
given length and imparting a given angular rotation
velocity to the sling. The law of the cable-length varia-
tion in option 3 is

For the chosen parameters ∆l and p1 , when the cable
is being pulled, the quantity ∆l reduces the cable length,
while the quantity p1 decreases the angular velocity ωp .
After completing the process of winding the sling, the
long semiaxis ap of the center-of-mass orbit increases,
and additional energy arrives at the accumulator. When
the sling is unwound, energy expenditure is required.

In options 1 and 2, the angular velocity of the sling
rotation varies, which limits the possible values of the
converted energy ∆1Q. In option 4, the entire energy is

l t( ) p1 f ω t( ), f ω t( )
LxLy

Lu
2

-----------.= =

l t( ) t∆l p1 f ω t( ).+=
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spent on varying the orbital parameters and the angular
velocity is virtually invariable. This enables us to con-
vert a considerably higher energy ∆1Q. In option 4, the
orbit of the motion of the sling’s center of mass must be
elliptic. In this case, it turns out that the cable tension
varies depending on the altitude H of the orbit. The law
of cable-length variation is

When choosing the corresponding values of p1 and
hp , the following evolution of motion parameters is
observed. The consumption of electric energy is associ-
ated with the decrease in the orbit perigee rp , but the
orbit apogee ra increases much more strongly. Thus, the
long semiaxis ap of the orbit, the mechanical energy,
and the eccentricity ep also increase. If the values p1 and
hp are chosen with the opposite sign, the evolution of
parameters is opposite and the energy supply in the
accumulators increases. The quantity ωp remains
invariable. A sling operating according to option 4 must
be specialized for solving the problems of conversion
of electric energy into mechanical energy and vice
versa. The sling orbit must have optimal parameters, for
example, rp = 500–600 km and ra = 2500–3500 km. At
considerable distances from the Earth, the efficiency of
the operations decreases. The converted mechanical
energy should be transferred to another object of the
cable-system group for the purpose of a preset variation
of spacecraft orbits.

2. ENERGY TRANSFER 
FROM ONE SPACE OBJECT TO ANOTHER
We consider the model of a possible interaction

between two spacecraft that move in the same plane

L0 t( ) L0 p1 f ω t( ) hpH f ω t( ).+ +=
along elliptic orbits with various orbital parameters as
in Fig. 2. We assume that the collision of these two
objects has occurred at point D. At the moment of col-
lision, the relative velocity of one body with respect to
another can attain 1000–1500 m/s. It is evident that, if
we consider conventional spacecraft, mating is
excluded and failure of the contacting objects will
occur. However, if one of these spacecrafts is a sling,
then their contact and mating into a unified object is
possible. In Fig. 2, we show a general case of the con-
tact. Near point D, the intersection of orbits of the
objects occurs along lines 1 and 2. Object A1 is the
sling, whose center of mass moves along line 1. The
components of the velocity vector are u1 {u1x, u1y}. A11
and A12 are the end blocks of the sling with masses m1
and m2 . The rotation of the sling is clockwise. Object A2
is the exchange load with a mass ∆m moving along
line 2 and having the velocity vector u2  {u2x , u2y}. The
velocity of object A2 with respect to object A1 is ∆u with
the vector components (∆u1, ∆u2). If the circular veloc-
ity of sling block A12 coincides with ∆u, contact
between object A2 and end block A12 is possible. For
this to occur, the sling’s center of mass must be at a
given point O1 of the trajectories at the moment of con-
tact, and the phase ϕ1 of the sling rotation must also cor-
respond to the calculated one. Launching of the sling to
the point of contact, which corresponds to the given
conditions, can be realized by controlling the cable
length according to options 1 and 2. This control can
change the orbit, the sling rotation velocity, and the
cable length.

The method of solving the problem of controlling
the motion of load A2 in the zone of contact with the end
block is based on the method [3] of controlling the pro-
1

2

A11

A11

A11

A12

A

A2

O2

O1

V1

D V2

A12

V2

ωp

A1

A1

V1

Fig. 2. Scheme of contacting block A2 with sling A.
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cess of landing a free-flying platform onto a landing
pad of an orbital station. End block A12 moves in the
contact zone along a cycloid whose cuspidal point coin-
cides with the contact point.

After completing the contact, the velocity u1v of the
sling’s center of mass connected with the object A2 is

The sling’s center of mass displaces to the point O2
in a jumplike manner, as can be seen in Fig. 2. Thus,
mating takes place for two bodies, which arrive at the
contact point with substantially different velocities. As
the contact between object A2 and end block A12 is
accomplished with virtually zero velocity, this opera-
tion requires no energy. Therefore, the momentum of
the unified body is equal to the sum of momenta of A1
and A2 , excluding the expenditure for the excitation of
longitudinal cable vibrations. When object A2 separates
from the sling, the energy carried away by this object
depends on the phase of sling rotation at the moment of
separation.

The principal scheme of the energy exchange is the
following. As an example, we consider a system of two
objects A1 and A2 which move along their orbits near
the Earth. A1 is a heavy object, such as an orbital sta-
tion. This object is tied by a cable to end block A12,
which rotates around the common center of mass in the
orbital plane. Thus, A1 is a sling. A2 is a sling energy
converter, which moves along an elliptic orbit. We for-
mulate a problem of the transfer of a fraction of the
energy from object A2 to object A1 such that the masses
of objects remain invariable after completing the oper-
ation. At a given time, a load G breaks away from end
block A12, and then mating of this load with the end
block of sling A2 takes place. Later, in the correspond-
ing rotation phase, the load breaks away from sling A2
and joins end block A12 of sling A1 . The problem
parameters can be chosen in such a way that after sep-
aration from the sling, the load G carries away a higher
energy than that transferred by it at the moment of mat-
ing with sling A2. The energy excess obtained is trans-
ferred to sling A1. When performing this maneuver, the
long semiaxis of sling A2’s orbit decreases.

Thus, if sling A2 has a power source, its energy can
be converted into the mechanical energy of the motion
of orbital station A1. In order to attach practical signifi-
cance to this mechanism, it suffices to have a reason-
ably powerful energy source. As a prospect, it is possi-
ble to consider the fundamental possibility of using the
mechanical energy of natural celestial bodies, namely,
the moon.

u1v u1
∆u∆m

m1 m2 ∆m+ +
---------------------------------.+=
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3. TRANSFERRING THE MOON’S MECHANICAL 
ENERGY TO CABLE SYSTEMS

The principles of solving this problem are the fol-
lowing. The cable group is supplemented by sling A3
moving along an extended elliptic orbit such that its
perigee occurs near the terrestrial surface, and the orbit
apogee is approximately equal to the radius of the
moon’s orbit. The rotation period of A3 is on the order
of 7–8 days. In Fig. 3, we show an example of the cal-
culation for the gravitational maneuver of object A3 .
The trajectory of the moon’s motion is line L, and that
of sling A3 is line A3 . The trajectories were obtained by
directly calculating the set of equations for a plane
restricted three-body problem with the corresponding
choice of initial conditions. Of course, this example
does not reflect the actual complexity of the problem
under consideration. At the moment t = 0, object A3 is
in orbit perigee [position A3(0)]. The moon’s coordi-
nate was denoted by L(0) at t = 0. Furthermore, in the
process of the motion, the straight lines in Fig. 3 con-
nect the coordinates of the objects at equal moments of
time. The time is indicated in hours. The first turn is
performed by the sling when the moon moves along a
remote portion of the orbit and the sling orbit is close to
ellipsis. At the next turn, the sling approaches the moon
in the orbit apogee. The sling orbit undergoes a substan-
tial perturbation, and its long semiaxis increases, which
leads to an increment in the sling energy. The energy
increment is the result of the moon–sling energy

510 h

95 h

256 h

194 h

300 h

375 h

–3.6 × 105 km –1.2 × 105 3.6 × 105 km1.2 × 105

–3.6 × 105 km

2.4 × 105

1.4 × 105

–1.2 × 105

–2.4 × 105

L

–4.4 × 105

L(0)

A3
A3

A3(0)

A3

L

Fig. 3. Example of the gravitational maneuver of sling A3.
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exchange. The energy increment should be transferred
to a sling of another group whose orbit is closer to the
Earth. It is assumed that after the energy exchange, the
orbital parameters of sling A3 will return to approxi-
mately the initial position and the described gravita-
tional maneuver can be repeated. The cycle takes nearly
a month. The energy increment is proportional to sling
A3’s mass. The energy obtained can be used in the form
of mechanical energy to change the parameters of the
orbit of space objects. This energy can be also accumu-
lated in the form of electric energy.
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In this paper, it is proved that the limiting trajectory
of a solid body as small as is wished which is placed in
the flow of a viscous incompressible fluid does not
coincide with the trajectory of a fluid particle (except
for the case of a quasi-solid flow). Therefore, visualiz-
ing flows by solid particles (or by their suspensions) is
not quite correct.

One method of hydrodynamic visualization consists
in marking flows by small solid particles whose density
is equal to the fluid density. The method is based on a
hypothesis asserting the identity of a fluid-particle tra-
jectory r(t) [i.e., a vector line of the velocity field
V(r, t)] and the limiting trajectory (t) of a freely

moving solid particle of radius δ. For example, visual-
ization by 45-µm solid balls was employed to study the
statistical properties of turbulent flows [1]. The method
was substantiated by the convergence of the sequence
of measured trajectories. However, this implies, at best,
only the existence of a limiting particle trajectory but
does not prove the hypothesis. Moreover, the following
analysis performed in the framework of the mechanics
of a viscous incompressible fluid shows that the corre-
sponding identity

(1)

occurs only in the case of a quasi-solid flow.

Let, as in [1], a solid particle be a 3D-ball  of
radius δ with the boundary Γδ(t). Let the densities of the
ball and fluid be equal to unity. We consider a flow in

the cylinder  = , where D is a bounded
3D-domain with the boundary S ∈  C2 + 2h, 2h < 1, and T
is the time interval. 

The flow corresponds to the solution of the initial
boundary value problem A described by the Navier-

Rδ
δ 0→
lim

r0∀ Dδ ⊂⊂ D, Rδ 0( )∈ r0 r 0( ),= =

Rδ t( )
δ 0→
lim r t( )≡

Bδ t( )

DT D T×
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Stokes equations for the 3D-velocity vector V(r, t) and
the pressure p(r, t):

(2)

Let the initial and boundary conditions be given by
smooth functions

Let the traces of these functions at t = 0, r ∈  S be con-
cordant. Then, there exists the unique solution

to the problem A either at T = T(Re) or at any T if the
Reynolds number Re defined by the conditions of the
problem being discussed is sufficiently small [2, 3].
Below, we assume that the time interval T is defined by
one of these conditions.

For simplicity, let the flow motion begin from a qui-
escent state, i.e.,

We now place a ball Bδ(0) of a sufficiently small
radius δ > 0 at an arbitrary point of the domain D at the
time t = 0. Afterwards, the ball begins its free motion
under the action of only hydrodynamic forces. We
denote by Rδ(t) the trajectory of the ball’s center of
inertia. In accordance with the laws of motion, the
ball’s movement is characterized by both the velocity

vector Uδ(t) =  of the center of inertia and the

angular velocity vector Ωδ(t). In accordance with the
accepted simplification, Uδ(0) = Ωδ(0) = 0.

We formulate the initial boundary value problem Aδ
for system (2), which describes the flow in the subdo-
main external with respect to the ball. Apart from the

velocity and pressure fields { (r, t), (r, t)} deter-

mined in the bent cylinder , the solution

involves the vector functions Uδ(t) and Ωδ(t), t ∈  .

divV 0, Vt V ∇⋅( )V ∇ p µ∆V–+ + 0.= =

V r 0,( ) C2 2h+ D( ), V r S t,( ) C2 2h 1 h+,+ S T×( ).∈∈

V r t,( ) C2 2h+ 1 h+, DT( ), ∇ p r t,( ) C2h h, DT( )∈∈

V r 0,( ) 0, V r S 0,( )
V r S 0,( )∂

t∂
------------------------ 0.= = =

dRδ t( )
dt

----------------

Vδ
– pδ

–

D\Bδ t( )( ) T×
T
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The velocity field (r, t) inside the ball is given by
the formulas

(3)

The field (r, t) for Ω = const corresponds to the
exact solution to the system (2) for the so-called quasi-
solid motion. By virtue of the nonslip condition, we

obtain (r , t) = (r , t), the boundary condi-

tion on S remaining the same: (r|S, t) = V(r|S , t).

The functions Rδ(t), Ωδ(t), Uδ(t) =  together

with (r, t), (r, t) should be determined when solv-
ing the problem Aδ from Newton’s law and expressions
for the hydrodynamic force and moment acting on the
ball Bδ(t):

(4)

.

The initial conditions are Rδ(0) = r0 ∈  Dδ, Ωδ(0) = 0,
Uδ(0) = 0, where the distance between the subdomain
Dδ ⊂⊂  D and S is δ (for sufficiently small δ).

In formulas (4), (r, t) = – (r, t)E + µ(∇ (r, t) +

(r, t)∇ ) is the stress tensor, E is the unit tensor, µ > 0
is the viscosity, wδ is the volume, and Iδ is the moment

of inertia of the ball Bδ. The tensor (r, t) function-
ally depends on Rδ(t), Ωδ(t), Uδ(t).

The problem Aδ differs from the initial boundary
value problem with the mobile boundary by the fact
that the functions Rδ(t), Ωδ(t), and Uδ(t) are given. As
was noted in [3], the solvability of the above problem in
the class of smooth functions is the same as in the case
of the initial boundary value problem with the fixed
boundary. The solution to the latter problem continu-
ously depends on initial and boundary conditions [3]. If
this behavior is conserved for the boundary value prob-
lem with the mobile boundary—i.e., if the solution to

this problem, which is determined in ,

Vδ
+

t∀ T∈ r Bδ t( ),∈,

Vδ
+ r t,( ) Uδ t( ) Ωδ t( ) r Rδ t( )–( )× ,+=

Rδ t( ) r0 Uδ t( ) t.d

0

t

∫+=

Vδ
+

Vδ
+ |Γδ t( ) Vδ

– |Γδ t( )

Vδ
–

Rδ t( )d
dt

---------------

Vδ
– pδ

–

dUδ t( )
dt

----------------
Fδ t( )

wδ
------------,

dΩδ t( )
dt

-----------------
Kδ t( )

Iδ
-------------,= =

Fδ t( ) Πδ
– r t,( ) · n s,d∫∫=

Γδ(t)

Kδ t( ) r Rδ t( )–( ) Πδ
– r t,( )×[ ]  · n sd∫∫=

Γδ(t)

Πδ
– pδ

– Vδ
–

Vδ
–

Πδ
–

D\Bδ t( )( ) T×
continuously depends on Rδ(t), Ωδ(t), and Uδ(t)—then
the problem Aδ has a solution in the same class of
smooth functions. Indeed, in this case, the force and the
moment acting on the ball Bδ(t) from the fluid are
expressed by continuous functional dependences on the
functions Rδ(t), Ωδ(t), and Uδ(t). In accordance with the
Peano theorem, by virtue of the continuity of the right-
hand part of system (4) with respect to these arguments,
there exists a solution to Cauchy problem (4), which
determines the trajectory Rδ(t) in the time segment .
This reasoning allows us to make the following
assumption.

Assumption 1. For each reasonably small positive
δ, there exists a solution to the problem Aδ

We consider that the ball Bδ(t) follows the flow if it
does not disturb the original flow on the entire trajec-
tory; i.e.,

It is evident that if the original flow V(r, t) in 
is quasi-solid, then the ball Bδ of an arbitrary radius fol-
lows the flow irrespective of its initial position in Dδ.
[In this case, identity (1) is also valid.]

Experimental data on the self convergence of the
sequence of trajectories Rδ(t) [1] make it possible to
accept the following assumption.

Assumption 2. We make an assumption that

By virtue of this assumption, ∃ (r, t), (r, t) ∈
( \R0(t)) × , so that

,

Identity (1) expressing the disappearance of the dis-
turbance produced by the ball as δ  0 corresponds
to the equality

T

Vδ
– r t,( ) C2 2h+ 1 h+, DT \ Bδ t( ) T×( )( ),∈

∇ pδ
– r t,( ) C2h h, DT \ Bδ t( ) T×( )( ),∈

0 h< h δ( ) 1
2
---,<=

Rδ t( ) C2 T( ), Uδ t( )∈
dRδ t( )

dt
---------------- C1 T( ),∈=

Ωδ t( ) C1 T( ).∈

t T , r D\Bδ t( ) Vδ
– r t,( ) V r t,( ).≡∈∈∀

D T×

Rδ t( )
δ 0→
lim∃ R0 t( ) C2 T( ).∈=

V0
–

D T

t∀ T , r D\Bδ t( ), 0 δ ! 1∀<∈∈

Vδ
– r t,( ) V0

– r t,( ) o δ( ).+=

V0
– r t,( ) V r t,( ), r t,( ) D\R0 t( )( ) T .×∈≡
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We now show that if identity (1) occurs, then the ini-
tial flow is quasi-solid. Let

Then

By this construction, V(r, 0) ≡ (r, 0) ≡ 0. By vir-
tue of the continuous dependence of the solution to the
initial boundary value problem with a mobile boundary
on the boundary condition and on Γδ(t), the velocity

field V(r, t) of the original flow in  for 0 <
δ ! 1 is approximately quasi-solid. In other words,
within the accuracy to the term o(1), it coincides there

with the field (r, t). By virtue of the arbitrariness of
both the ball radius δ and its initial position in Bδ, the
approximately quasi-solid character of the initial flow

t∀ T∈ , r D\Bδ t( ),∈

Vδ
– r t,( ) V r t,( ) o 1( ), δ         0.+=

t∀ T , r Γδ t( ),∈∈

V r t,( ) = Vδ
– r t,( ) o 1( )+  = Vδ

+ r t,( ) o 1( ), δ         0.+

Vδ
+

Bδ t( ) T×

Vδ
+
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exists everywhere in 
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. Passing to the limit as
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, we obtain that the original flow should be
quasi-solid everywhere in 
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×

 

 

 

.
Thus, in the framework of the assumptions made

above, we have proved the following theorem.

 

Theorem. 

 

In order for the trajectory of a solid ball
B

 

δ

 

 

 

freely driven in a flow of a viscous incompressible
fluid 

 

(

 

of the same mass density

 

) 

 

to coincide, as

 

 

 

δ

 

  0

 

,

 
with the trajectory of a fluid particle passing through
the same initial point, it is necessary and sufficient for
the flow to be quasi-solid.
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Investigation of the kinetics of crack nucleation and
development in a loaded solid is among the most
important problems in the mechanics and physics of
failure [1, 2]. Traditionally, when interpreting the
nature of failure in a loaded material, it is assumed that
the onset of failure is associated with a random fluctua-
tion in a sample cross-section region in which the max-
imum value of the applied stress is attained [3]. From
the standpoint of physical mesomechanics, which com-
bines the approaches of continuum mechanics and the
physics of plasticity [4–7], this is an erroneous assump-
tion, since the process of failure in solids is strictly
deterministic. In mesomechanics, plastic deformation
is considered to be a local loss in shear stability of a
material at different scale levels, and failure in itself is
accounted for by a global loss of shear stability at the
macroscopic level. Failure occurs in a localization
region of a stress macroconcentrator and is determined
by the mechanics of the development of macrobands of
localized deformation, where the relaxation processes
at the microscale and macroscale levels have an accom-
modation character. This study is devoted to the exper-
imental substantiation of this fundamentally important
aspect.

Deformation and failure of a loaded solid are always
associated with the action of maximum shear stresses
on a sample from a base stress concentrator (test-
machine grip). In plastic materials, this is manifested in
the onset of loading and is expressed as propagating
surface-defect flows in conjugate directions of the max-
imum tangent stresses τmax [7, 8]. There is a possibility
of increasing the scale level of this effect and of deter-
mining the role of deformation accommodation meso-
bands in failure of polycrystals. To do this, it is neces-
sary to block surface-defect flows using special treat-
ment of the materials. In this case, the defect flows must
propagate by developing meso- and macrobands of a
localized deformation in the conjugate directions along
the vector of τmax. These bands determine the mecha-
nism of deformation and failure of the material. In this

Institute of Strength Physics and Materials Science, 
Siberian Division, Russian Academy of Sciences, 
Akademicheskiœ pr. 2/1, Tomsk, 634021 Russia
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study, the treatment consisted in the preliminary cold
rolling of polycrystals.

In our investigations, we used polycrystals of armco
iron, high-nitrogen Kh17AG18 steel, and commercial
BT-1 titanium as typical materials with body-centered
cubic, face-centered cubic, and face-centered close-
packed crystal lattices, respectively. In a state cold-
hardened by cold rolling, these materials exhibit differ-
ent degrees of shear stability at the mesoscale level. The
initial average grain sizes were 30, 15, and 200 µm for
armco iron, high-nitrogen steel, and titanium, respec-
tively. The cold rolling was performed using a labora-
tory mill at room temperature 293 K, and different com-
paction degrees were obtained as a result of multiple
runs. Samples with dimensions of the working part of
30 × 4 × 1 mm3 were cut by the electric-erosion method.
The experiments were performed in the conditions of
static sample tension at a rate of 3 × 10–5 m s–1 using an
IMASh-20-78 testing machine with an attached
TOMSC measuring optical and TV system [4] for
investigating the evolution of deformation mesostruc-
tures immediately in the loading process.

The curves of plastic flow in polycrystals of armco
iron, which were obtained under tension in the initial
state and with different degrees of preliminary cold
rolling, are shown in Fig. 1. (The curves for high-nitro-
gen steel and titanium have a similar qualitative charac-
ter.) Figure 1 illustrates the well-known fact of the insta-
bility of the cold-shaped state of metals, which is obtained
by rolling followed by subsequent tension [9, 10]. It is
this instability under conditions of a high level of exter-
nal applied stresses that causes the formation of defor-
mation mesobands and development of plastic flow at
the mesoscale level. In cold-rolled materials, the high
degree of imperfection of the crystal lattice and the
well-pronounced texture prevent the occurrence of
crystallographic deformation mechanisms at the
microscale level. Under these conditions, the local loss
in lattice shear stability within the regions of stress
microconcentrators does not occur. The level of
deforming stresses progressively increases and attains
values where the shear stability in the extended regions
of a loaded polycrystal is lost, and the stress mesocon-
centrators are formed at the onset of plastic flow. They
relax by means of noncrystallographic propagation of
002 MAIK “Nauka/Interperiodica”
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deformation-defect flows through all internal interfaces
independently of the crystal structure of the material. In
this case, in a polycrystal at the stage of parabolic
strengthening, a well-pronounced fragmented meso-
band structure forms. Elements of this structure (bands
of localized plastic deformation) are oriented in conju-
gate directions with respect to τmax (Fig. 2). The nature
of these bands is related to the displacement of different
parts of the crystal with respect to each other. A dis-
placement along one band is inevitably accompanied
by a constrained rotation in the sample and by bending
of its axis. Since the position of the sample axis is fixed
by the testing machine, a counter (induced) stress
mesoconcentrator arises at the opposite end of the sam-
ple, which generates the displacement and formation of
a mesoband in the conjugate direction. The vector sum
of these displacements shifts the sample points in the
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Fig. 1. Curves for flows of armco-iron polycrystals with a
different degree of preliminary cold rolling: (1) 0, (2) 30,
(3) 50, and (4) 80%.
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direction of the acting force, which obeys the laws of
continuum mechanics. The dynamics of the mesoband
structure in the tension process determines the features
of the stress–deformation curves shown in Fig. 1, and
the stage nature of plastic deformation at the mesolevel.

Failure of polycrystals represents the final stage in
the evolution of the mesostructure. Ultimately, the
deformation is concentrated in one of the most devel-
oped bands, the so-called superlocalization band. The
descending part of the curves in Fig. 1 corresponds to
this stage. The stress macroconcentrator formed in a
given region of the material generates two adjacent sub-
bands (macroband dipole) within the superlocalization
band along which the counterdisplacement of two poly-
crystal parts occurs. In each half of the sample, rota-
tional deformation modes with opposite sign are devel-
oped and, as a result, the sample fails. In this case, the
main crack accommodates the difference in material
rotations in the two adjacent bands when the possibili-
ties of fragmentation in the material as an accommoda-
tion process of the rotational type at the mesoscale level
become exhausted. Failure of the material occurs in a
quasibrittle manner without the neck formation.

In general, the character of failure is determined by
the condition of self-consistency in the failure region
for all deformation scale levels. The crack trajectory
can be determined by either the superlocalization band
(direction of τmax) or the action of normal stresses (the
failure occurs perpendicular to the axis of tension). This
depends on the degree of development of accommoda-
tion processes of plastic flow in adjoining material at a
lower scale level. These processes lead to relaxation of
the stress macroconcentrator in the superlocalization
band. Figure 3 illustrates failure of the materials under
investigation.

Failure of the armco-iron polycrystals occurs
strictly along the macroband dipole of the localized
deformation (Fig. 3a). This is associated with the fact
that the development of accommodation processes at
lower scale levels is manifested very weakly.
σ

Fig. 2. Formation of the mesoband structure in the process of tension of cold-rolled high-nitrogen steel (the rolling degree is 80%);
ε = 0.4%. Magnification is ×10.
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Fig. 3. Character of failure in polycrystals and corresponding displacement-vector fields preceding failure: (a) armco iron, (b) high-
nitrogen steel, and (c) titanium.
The character of failure of high-nitrogen steel corre-
sponds to normal separation (Fig. 3b). Although this
failure was preceded by the strong development of a
localized deformation within the macroband dipole, the
main crack propagated across the sample rather than
along the macroband. This is caused by the intense
development of a system of conjugate bands of accom-
modation plastic flow at the mesoscale level in the
region of failure. The superposition of such conjugate
displacements at the mesoscale level determines the
development of failure of the normal-separation type.

Failure of Ti polycrystals an the intermediate char-
acter. Initially, the main crack propagates along the
macroband dipole and later develops according to the
normal-separation scheme. In this case, the accommo-
dation shears at the mesoscale level are developed rela-
tively weakly and are intensified only at the final stage
of failure.

In conclusion, it is worth noting that the degree of
activity of the plastic-deformation accommodation pro-
cesses at the mesoscale level in the region of the super-
localization macroband determines not only the charac-
ter of failure but, in many respects, also the macrome-
chanical properties of polycrystals. For example, the
values of the ultimate strengths obtained in this study
for armco iron, titanium, and high-nitrogen steel are
DOKLADY PHYSICS      Vol. 47      No. 6      2002
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570, 820, and 1500 MPa, respectively, which correlates
well with the above failure mechanisms.

Thus, the results obtained convincingly testify to the
fundamental importance of the multilevel approach to
solving the problems of deformation and failure of
solids.
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